
GO Corpomtion GO Technical Library

,--------

PenPoinf Application
Writing Guide

EXPANDED SECOND EDITION

em GO Corpomtion

GO Technical Library

PenPoint Application Writing Guide, Expanded Second Edition provides
a tutorial on writing PenPoint applications, including many coding samples.
It also provides information about PenPoint 2.0 Japanese and how it supports
internationalized applications. This is the first book you should read as a
beginning PenPoint application developer.

PenPoint Architectural Reference, Volume I presents the concepts of the
fundamental PenPoint classes. Read this book when you need to understand
the fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics,. and so on.

PenPoint Architectural Refer~~ce~;~yoiluitle II presents the concepts of the
supplemental PenPoint classes. You' sftqulsl read this book when you need to
understand the supplemental PenPoinr 's'rlbsystems, such as the text subsystem,
the file system, connectivity, and so on.

PenPoint API Reference, Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference, Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the PenPoint
Notebook User Interface, sets standards for using those elements, and describes
how PenPoint uses the elements. Read this book before designing your
application's user interface.

PenPoint Development Tools describes the environment for developing,
debugging, and testing PenPoint applications. You need this book when
you start to implement and test your first PenPoint application.

PenPoint

PenPoint Application
Writing Guide

EXPANDED SECOND EDITION

I'll) GO Corpomtion

GO Technical Library ..
TT Addison-Wesley Publishing Company

Reading, Massachusetts. Menlo Park, California. New York
Don Mills, Ontario. Wokingham, England. Amsterdam
Bonn. Sydney. Singapore. Tokyo. Madrid. San Juan
Paris. Seoul. Milan. Mexico City. Taipei

Warranty Disclaimer
and Limitation of
Liability

u.s. Government
Restricted Rights

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 1991-1993 GO Corporation. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: PenPoint, the PenPoint logo, EDA, GO,
GO Corporation, the GO logo, GOWrite, ImagePoint, MiniNote, MiniText, and NotePaper.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, © 1983 Merriam
Webster. © 1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

PANOSE is a trademark of ElseWare Corporation, Seattle, Washington.

GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYTHING ELSE.
GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its
correctness, accuracy, reliability, currentness, or otherwise. The entire risk as to the results and
performance of the PenPoint software and documentation is assumed by you. The exclusion of
implied warranties is not permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits,
business interruption, loss of business info.rmation, cost of procurement of substitute goods or
technology, and the like) arising out of the use or inability to use the documentation or defects
therein even if GO Corporation has heen advised of the possibility of such damages, whether under
theory of contract, tort (including negligence), products liability, or otherwise. Because some states
do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitations may not apply to you. GO Corporation's total liability to you from any cause
whatsoever, and regardless of the form of the action (whether in contract, tort [including
negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software-Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and
Computer Software), as applicable. Manufacturer is GO Corporation, Suite 400, 919 East Hillsdale
Boulevard, Foster City, CA 94404, USA.

ISBN 0-201-62299-8

123456789-AL-9796959493

First Printing, February 1993

Preface

The PenPoint Application Writing Guide: Expanded Second Edition is an updated
version of the PenPoint Application Writing Guide printed in March 1992. This
expanded edition includes new information that reflects GO Corporation's
enhancements to the PenPoint™ operating system for PenPoint 2.0 Japanese
and the PenPoint Software Development Kit (SDK) 2.0 Japanese.

This book is an up-to-date introduction to the PenPoint SDK 2.0 Japanese oper
ating system and contains errata and additional information for earlier PenPoint
SDKs. Unless stated otherwise, discussions of the PenPoint operating system and the
PenPoint SDK in this book are valid for PenPoint 1.0, PenPoint 1.01, and PenPoint
2.0 Japanese.

PenPoint 2.0 Japanese is a Japanese product with Japanese system resources (on-line
help, menu choices, and so on). Developers who do not read Japanese can run the
PenPoint SDK 2.0 Japanese with U.S. English resources, but there are some parts of
the system that show Japanese text even with the U.S. English feature enabled.

Intended audience
This book is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C program
ming language and related development tools such as MAKE utilities.

Document structure
This book contains several parts:

.. Part 1: PenPoint Application Writing Guide is an introduction to the PenPoint
operating system and the PenPoint SDK. It introduces you to basic PenPoint
programming concepts, then illustrates those concepts by examining some of
the sample applications included with the PenPoint SDK.

• Part 2: PenPoint Internationalization Handbook describes the features
PenPoint provides that allow you to write an application that is easy to port
from one national locale to another.

• Part 3: PenPoint Japanese Localization Handbook shows how to use features
of the PenPoint SDK 2.0 Japanese that support Japanese-language application
development.

• Part 4: PenPoint Development Tools Supplement provides new information
about the development tools you use with the PenPoint SDK. This part is
an update to PenPoint Development Tools originally published for the
PenPoint SDK 1.0.

vi PENPOINT APPLICATION WRITING GUIDE
Preface

• Part 5: PenPoint Architectural Reference Supplement provides new information
about the architecture of the PenPoint operating system and the classes that it
provides. This part is an update to PenPoint Architectural Reference originally
published for the PenPoint SDK 1.0.

• Part 6: PenPoint User Interface Design Reference Supplement provides new
information about user interface design and the user interface classes that
PenPoint provides. This part is an update to PenPoint User Interface Design
Reference originally published for the PenPoint SDK 1.0.

• Part 7: Sample Code provides descriptions and listings of the sample applica
tions used as examples in this book, and descriptions of the other sample code
included with the PenPoint SDK.

Each of these parts was at one time intended to be a separate document, but they
have been bound together into a single volume for your convenience. Be aware that
you may still find some cross-references that refer to a part of this volume as though
it were still a separate book.

Other sources of information
Several parts of this book supplement existing books published for the PenPoint
SDK 1.0. These books include PenPoint Development Tools, PenPoint Architectural
Reference, and PenPoint User Interface Design Reference.

For information on the classes, messages, macros, functions, and structures that the
PenPoint SDK header files define, see the header files themselves. Many of the
header files have changed since the PenPoint API Reference was published for the
PenPoint SDK 1.0.

". Part 1/ PenPoint Application Writing Guide

1 / Introduction 5

2 / PenPoint System Overview 7

3 / Application Concepts 23

4/ PenPoint Class Manager 43

5 / Developing an Application 61

6 / A Simple Application (Empty Application) 91

7 / Creating Objects (Hello World: Toolkit) 111

8 / Creating a New Class (Hello World:
Custom Window) 123

9/ Saving and Restoring Data (Counter) 133

10/ Handling Input (Tic-Tac-Toe) 145

II/Refining the Application (Tic-Tac-Toe) 155

12/ Releasing the Application 169

Part 2 / PenPoint Internationalization
Handbook

13 / Introduction 175

14 / Overview 177

15 / PenPoint Support for International Software 183

16/ Procedures 209

17 / Porting to PenPoint 2.0 229

18/ Localization Guidelines 235

19 / Additional Resources 237

". Part 3/ PenPoint Japanese Localization
Handbook

20 / Introduction 243

21 / Japanese Characters 245

22/ Processing Japanese Text 255

23/ Development Environment 273

24 / Procedures 283

25/ Resources 301

26/ Japanese Character Set 303

". Part 4/ PenPoint Development Tools
Supplement

27 / Introduction 375

28 / Road Map 377

29 / Creating Applications and Services 381

30 / Debugging 395

31 / Tools and Utilities 403

32/ Miscellaneous 415

Part 5 / PenPoint Architectural Reference
Supplement

33 / Overview 427

34/ Class Manager 433

35 / Application Framework 435

36 / Windows and Graphics 441

37 / UI Toolkit 445

38 / Input and Handwriting Recognition 451

39/ Text 463

40 / The File System 467

41 / System Services 471

42 / Utility Classes 479

43 / Connectivity 483

44 / Resources 495

45 / Installation API 499

46 / Writing PenPoint Services 503

47 / International Services and Routines 507

Part 6 / Pen Point User Interface Design
Reference Supplement

48 / Introduction 517

49 / The Notebook 519

50/ The Bookshelf 523

51 / Overall System Changes 535

Part 7 / Sample Code 549

Index 659

,.. List of Tables

3-1 Notebook organization and the file system 36

5-1 Generic status values 81

5-2 Status-checking macros 82

6-1 Common header files 99

10-1 Tic-Tac-Toe files 147

15-1 How to work with strings 186

15-2 Formatting differences between countries 196

15-3 PenPoint international functions 197

15-4 Some functions from ISR.H 198

15-5 International function structures 201

15-6 GO's gesture symbols 203

15-7 Makefile variables 206

16-1 8- and 16-bit functions 213

16-2 Resource utility functions 221

16-3 Converting to international functions 226

21-1 Japanese writing 247

21-2 Unicode encoding of Japanese characters 250

21-3 Japanese font files 251

22-1 Japanese punctuation marks 257

22-2 Japanese behavior of international functions 262

22-3 Default Japanese Formatting 267

22-4 Supported Japanese eras 268

22-5 Date formats 268

22-6 Time Formats 269

23-1 Debug CharSet variable values 274

23-2 GO's sample makefile variables 275

23-3 DOS utilities 276

23-4 Character sets in control files 278

24-1 Using VCONVERT 285

29-1 Attributes stamped by the makefile 385

29-2 Makefile variables 386

29-3 Sample distribution disk structure 390

30-1 DebugCharSet variable permissible values 398

30-2 Mini-debugger controls 402

31-1 Valid values for CHARSET 403

31-2 Attribute utilities 404

31-3 Attributes stamped on installable items 406

31-4 Attributes stamped on documents 406

31-5 Using VCONVERT 409

32-1 PenPoint Development Tools errata 422

. 33-1 New header files 430

33-2 Header files changed for resource strings 430

33-3 Some data name changes 431

34-1 Part 1 (Class Manager) -typos 434

35-1 Part 2 (Application Framework)-typos 439

36-1 Part 3 (Windows and Graphics)-typos 443

37-1 clsAcetateLayout synchronization messages 447

37-2 Part 4 (VI Toolkit)-typos 449

38-1 clsKKC messages 452

38-2 clsCharTranslator messages 456

38-3 Changed gesture names 459

38-4 Obsolete gesture names 460

38-5 Part 5 (Input and Handwriting
Translation)-typos 461

39-1 New gesture targets 463

39-2 Part 6 (Text)-typos 465

40-1 Stamped attributes-PenPoint 2.0 installable
items 467

40-2 Stamped attributes-PenPoint 2.0
documents 467

40-3 Part 7 (File System)-typos 469

41-1 Compose Text format code types 472

41-2 Renamed counted string functions 474

41-3 Renamed WATCOM functions 475

41-4 Part 8 (System Services)-typos 477

43-1 Default I/O port state settings 485

43-2 MODEM_METRICS fields 486

43-3 Discrete modem initialization messages 487

43-4 Modem service creation and initialization
messages 490

43-5 Modem service request messages 490

43-6 Client and observer notification messages 491

43-7 Predefined service managers 492

43-8 Part 10 (Connectivity)-typos 493

44-1 Resource file utility routines 495

44-2 Part 11 (Resources)-typos 497

47-1 Header files 507

47-2 Delimiting routines 509

47-3 Hyphenation routines 509

47-4 Time conversion functions 509

47-5 Formatting functions 510

47-6 Parsing functions 510

47-7 Sort and compare functions 511

47-8 Character set conversion functions 511

47-9 String compression functions 512

47 -10 CHARTYPE macros 512

49-1 Gestures used in the Table of Contents 520

51-1 Non-core gestures used in MiniText 537

51-2 Gestures that work in MiniNote 541

51-3 Gestures used in edit pads 544

51-4 Gestures used in Japanese edit pads 547

List of Figures

3-1 Application, view, and object classes 30

3-2 Application Framework and Notebook
hierarchy 33

3-3 The Notebook hierarchy as mirrored by the
file system 34

3-4 Notebook hierarchy and application
processes 35

4-1 Message handling by a class and its ancestors 46

4-2 Sending msgListAddltemAt to a list 47

4-3 How messages to instances are processed
by classes 49

6-1 Empty Application option sheet 94

7 -1 UI Toolkit components 115

9-1 Counter Application objects 135

10-1 Tic-Tac-Toe classes and instances 146

11-1 Stationery notebook and Stationery menu 160

11-2 Quick Help 162

11-3 Application and document icons 167

14-1 Common source code for multiple
localizations 178

14-2 Multiple source files for multiple
localizations 179

14-3 Japanese Text in MiniText 180

15-1 Unicode architecture 185

21-1 Character code spaces 253

22-1 Handling the KKC gesture 259

22-2 Displaying the translated characters 259

22-3 Handling a character alternatives request 260

22-4 Text with selected bunsetsu 263

22-5 Text with sentence selected 264

23-1 Unicode Browser 280

23-2 Japanese virtual keyboard 281

28-1 Creating an application 379

31-1 Specifying a resource with RESDEL 408

38-1 Translation alternatives returned by
msgXIateData 459

Part 1 I
PenPoint Application

Writing Guide

~ Chapter 1 / Introduction Not all active documents are on-screen

5 Intended audience Application classes and instances

5 Other sources of information 28 PenPoint drives your application

29 Application objects
Chapter 2 / PenPoint System Overview A descendant of clsApp

7 Design considerations An instance of cls Win

7 User interface
An instance of clsObject

The pen 31 Understanding the application hierarchy

Notebook metaphor The Notebook's own hierarchy
The Bookshelf

9 Object-oriented architecture The Notebook
9 Architecture and functionality Page-level applications

10 Kernel layer Sections
Floating accessories

11 System layer Embedded applications
File system Application data
Resource manager

38 Activating and terminating documents Networking
Windowing Turning a page and msgAppClose

Graphics Restoring inactive documents

Printing Page-turning instead of closing

User Interface Toolkit Saving state (no quit)

Input and handwriting translation 40 Documents, not files and applications
Selection Manager and data transfer No new, no save as ...

16 Component layer Stationery

16 Application Framework layer 41 Shutting down and terminating applications
Conserving memory

17 Application layer Avoiding duplication

17 Software development environment Hot mode

Software development kit Components

Coding conventions
Chapter 4 / Pen Point Class Manager Extensibili ty

18 PenPoint design guidelines 43 Objects instead of functions and data

Conserve memory 44 Messages instead of function calls
Think small

45 Classes instead of code sharing
Use a modular design Handling messages
Your application must recover
Take advantage of object-oriented programming 47 Sending a message

Consider sharing code and data Message arguments

Use document orientation ObjectCallO parameters

Design for file format compatibility Returned values

Exploit the pen How objects know how to respond

Use the PenPoint user interface 49 Creating an object

Chapter 3 / Application Concepts
Classes and instances
An alternative explanation

24 PenPoint programming is unique The _NEW structure

24 How applications work Identifying _NEW structure elements

Installing and starting applications Code to create an object

MS-DOS installation Identifying the new object: UIDs

PenPoint installation 55 Creating a class
Installer responsibilities New class message arguments
Running a PenPoint application Method tables
Life cycle of a document Self
Activating a document Possible responses to messages

",. Chapter 5 / Developing an Application

61 Designing your application
Designing the user interface
Designing classes
Designing messages
Designing message handlers
Designing program units

63 Designing for internationalization and localization
Porting from PenPoint 1.0 to PenPoint 2.0 Japanese
Preparing for internationalization

66 Development strategy
Application entry point
Application instance data
Creating stateful objects
Displaying on screen
Creating component classes

67 Development cycles
Compiling and linking
Installing the application
Debugging

69 A developer's checklist
Checklist of required interactions
Checklist of nonessential items

71 GO's coding conventions
Typedefs
Variables
Functions
Defines (macros and constants)
Class manager constants
Exported names

74 PenPoint file structure
File header comment
Include directives
Defines, types, globals
Function prototypes
Message headers
Indentation
Comments
Some coding suggestions

77 PenPoint types and macros
Data types
Basic constants
Legibility
Compiler isolation
Data conversion and checking
Bit manipulation
Tags
Return values
Return status debugging function
Error-handling macros

84 Debugging assistance
Printing debugging strings
Assertions

Debugging flags
Suggestions

87 The tutorial programs
Empty Application
Hello World (Toolkit)
Hello World (Custom Window)
Counter Application
Tic-Tac-Toe
Template Application
Other code available

Chapter 6 / A Simple Application
(Empty Application)

91 Files used
Not the simplest

92 Compiling and linking the code
Compiling method tables

92 Installing and running Empty Application

92 Interesting things you can do with Empty Application

94 Code run-through
PenPoint source code file organization
Empty Application's source code
Libraries and header files
Class UID

Class creation
Documents, accessories and stationery

101 Where does the application class come from?
Installation and activation

104 Handling a message
Method table
msgDestroy

105 Message handler
Parameters
Parameters in EmptyAppDestroyO
Status return value
Message handlers are private

108 Using debugger stream output

108 The debugger stream
Seeing debug output

Chapter 7 / Creating Obiects
(Hello World: Toolkit)

111 HelloTK
Compiling and installing the application
Interesting things you can do with HelloTK

112 Code run-through for HELLOTK1.C
Highlights of HELLOTKI
Sending messages
Creating toolkit components
Where the window goes
Why msgAppInit?

Why did the wIndow appear?
Possible enhancements

119 Highlights of the second Hello TK
Only one client window per frame
Layout
Possible enhancements

Chapter 8 / Creating a New Class
(Hello World: Custom Window)

123 Hello World (Custom Window)
Compiling the code
Highlights of clsHello World
Highlights of clsHello Win

125 Graphics overview
System drawing context
Coordinates in drawing context
When to paint

127 When to create things
Instance data
Is it msgNew or msgInit?
Window initialization

129 Using instance data
No filing yet

130 Drawing in a window

131 Possible enhancements

131 Debugging Hello World (Custom Window)

Chapter 9 / Saving and Restoring Data
(Counter)

133 Saving state

133 Counter application
Compiling and installing the application
Counter Application highlights
Counter class highlights
Instance data
Getting and setting values

138 Object filing
Handling msgSave
Handling msgRestore

140 Counter Application's instance data
Memory-mapped file
Opening and closing the file
Filing the counter object

143 Menu support
Buttons

Chapter 10 / Handling Input
(Tic-Tac-Toe)

145 Tic-Tac-Toe objects
Application components
Separate stateful data objects

146 Tic-Tac-Toe structure

147 Tic-Tac-Toe window
Coordinate system
Advanced repainting strategy

148 View and data interaction
Data object design
Instance data by value vs. by reference
Saving a data object
Handling failures during msgInit and msgRestore

150 The selection and keyboard input
How selection works

151 More on view and data interaction

152 Handwriting and gestures
Input event handling
Gesture handling
Keyboard handling

Chapter 11 / Refining the Application
(Tic-Tac-Toe)

155 Debugging
Tracing
DebugfO statements and debug flags
Dumping objects
Symbol names

159 Installation features

159 Stationery
Creating stationery
How Tic-Tac-Toe handles stationery

160 Help notebook
Creating help documents

161 Quick Help
Creating Quick Help resources

164 Standard message facility
Using StdMsgO facilities
Substituting text and defining buttons
StdMsgO and resource files or lists
StdMsgO customization function

166 Bitmaps (icons)
Creating icons

Chapter 12 / Releasing the Application

169 Registering your classes

169 Documenting the application
Writing manuals
Screen shots
Gesture font

170 On-disk structure

170 Sharing your classes

Chapter 1 / Introduction

The PenPoint™ operating system is an object-oriented, multitasking operating
system that is optimized for pen-based computing. Writing applications for the
PenPoint operating system will present you with some new challenges. However,
PenPoint contains many features that make application development far easier
than development in many other environments.

One feature that makes application development easier is the PenPoint Application
Framework, which eliminates the need to write "boilerplate" code. In other oper
ating systems, programmers must write code to perform housekeeping functions,
such as application installation, input and output file handling, and so on. These
are provided automatically by the PenPoint Application Framework.

PenPoint also provides most of the on-screen objects used by the PenPoint Note
book User Interface (NUl). By using these objects, your application can conform to
the PenPoint NUl, without a great amount of work on your part.

In this manual, you will learn about the PenPoint operating system, the PenPoint
development environment, and, of course, how to write applications for the Pen
Point operating system. The PenPoint Software Development Kit (SDK) contains
several sample applications that you can compile and run. These sample applica
tions are used throughout this manual to demonstrate concepts and programming
techniques.

Intended audience
This manual is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C program
ming language and related development tools, such as make utilities.

You should also be aware of the information in the companion volume, PenPoint
Development Tools. Pay particular attention to Chapter 2, Roadmap to SDK Docu
mentation, which describes the organization of the PenPoint SDK documentation
and recommends a path through the manuals.

Other sources of information
For conceptual information about the various classes in PenPoint, see the PenPoint
Architectural Reference.

For information on running PenPoint on a PC, see the Running PenPoint on a PC
document that comes with the PenPoint SDK.

We sometimes use the names
"PenPoint 2.0" and "Pen Point SDK
2.0" in this document. Because
this release of Pen Point has been
localized only to Japan, these
terms refer to Pen Point 2.0
Japanese and PenPoint 2.0 SDK
Japanese.

6 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

To learn how to use the PenPoint development tools and utilities, such as the
PenPoint source-level debugger, see PenPoint Development Tools.

For reference information on the classes, messages, macros, functions, and struc
tures defined by PenPoint, see the PenPoint API Reference. The information in
the PenPoint API Reference is derived directly from the PenPoint header files
(in PENPOINT\SDK\INC).

Chapter 2 I PenPoint System Overview

When GO Corporation undertook to build a mobile, pen-based computer system,
we quickly recognized that existing standard operating systems were not adequate
for the task. Those systems, designed for the very different needs of keyboard-based
desktop computers, would require such extensive rewriting to support this new
market that they would no longer run the installed base of applications that made
them standard in the first place. We therefore determined that a new, general
purpose operating system would be needed, designed specifically for the unique
requirements of pen-based computing. The result is the PenPoint™ operating
system. This document is a brief introduction and overview of its design goals,
architecture, and functionality.

Design considerations
Mter extensive research and analysis, GO identified the following key requirements
for pen-based system software:

.. A direct, natural, intuitive, and flexible graphical user interface .

.. Strong support for handwriting recognition and gesture based commands.

.. A richer organizational metaphor than the traditional file-system model.

.. A high degree of memory conservation through extensive sharing of code,
data, and resources.

.. Priority-based, preemptive multitasking.

.. Detachable networking and deferred data transfer.

.. Hardware independence (ability to move to new processors quickly).

The PenPoint operating system was developed to satisfy these requirements.

User interface
PenPoint's most distinctive feature is its innovative user interface. The user interface
is the cornerstone on which the entire system is built; all other design consider
ations follow from it. The user interface, in turn, is based on two main organizing
principles:

.. The use of a pen as the primary input device.

.. The use of a notebook metaphor that is natural and easy to use.

The consequences of these two basic design features permeate the entire system.

8 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The pen
The pen naturally combines three distinct system control functions: pointing, data
input, and command invocation. Like a mouse, it can point anywhere on the
screen to designate an operand, specify a location, draw a picture, drag an object, or
select from a menu. Through sophisticated handwriting recognition software, it can
replace the keyboard as a source of text input. Finally, it can do something neither a
mouse nor a keyboard can do: issue commands through graphical gestures.

Gestures

Gestures are simple shapes or figures that the user draws directly on the screen to
invoke an action or command. For example, a cross out X gesture is used to delete,
a circle 0 to edit, and a caret /\ to insert. A set of built-in core gestures form the
heart of the PenPoint user interface:

Caret /\ Check v
Circle 0 Cross out X
Flick left Flick right

Flick up Flick down

Insert space L Pigtail J
Press 1 Tap y

Tap press ·1 Undo ~

To exploit the unique properties of the pen, PenPoint provides strong support for
gestural command invocation. The same handwriting translation subsystem that
recognizes characters for text input also recognizes those shapes that constitute
meaningful gestures. The form, location, and context of the gesture then determine
the action to be performed and the data objects affected. Because a gesture can be
made directly over the target object, it can specify both the operand and the opera
tion in a single act. This gives the pen-based interface a directness and simplicity
that cannot be achieved with a mouse.

PenPoint control

The pen has one more notable property as a control device. Because it draws
directly on the face of the screen (rather than on a physically separate working sur
face such as a mouse pad or graphics tablet), it eliminates a major source of diffi
culty among new computer users-the relationship between movement of the
mouse and the movement of the cursor on the screen. With a pen, the user's eye is
focused exactly where his or her hand is working. Most PenPoint applications can
thus dispense with an on-screen cursor for tracking the pen, though one is available
as an optional user preference.

Notebook metaphor
Instead of a traditional file system based on a hierarchy of nested directories and
cryptic file names, PenPoint uses a "notebook" metaphor for information storage
and retrieval. By using familiar models of working with paper-based documents,

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 9
Object-oriented architecture

the notebook approach provides a rich variety of natural and intuitive techniques
for organizing and accessing information:

• A bookshelf upon which multiple user notebooks may reside, as well as sys
tem notebooks for help information and stationery, an inbox and outbox, and
various tools and accessories. A user can have any number of notebooks open
at once; typical use involves one main notebook.

• A table of contents offering an overview of all available documents in the
notebook, allowing easy manipulation and navigation at the global level. The
table of contents can be organized in natural page number order, or sorted by
name, size, type, or date.

• Sections and subsections for hierarchical organization.

• Page numbers and notebook tabs for direct random access.

• Page turning for sequential access.

Because the notebook is a familiar, physical, and stable model, a user can employ
spatial memory of layout and juxtaposition to help find and organize their infor
mation.

Object-oriented architecture
To facilitate code sharing and overall memory conservation, PenPoint uses an
object-oriented approach to system architecture. All application programming
interfaces (APIs) above the kernel layer are implemented using object-oriented
programming techniques of subclass inheritance and message passing. This helps to
ensure that PenPoint and its APIs have these characteristics:

• They are compact, providing a body of shared code that need not be dupli
cated by all applications.

• They ar~nsistent, since all applications share the same implementation of
common system and user interface functions.

• They are flexible, allowing applications to modify PenPoint's behavior by sub-
classing its built-in classes.

The event-driven, object-oriented nature of the system minimizes the need to "rein
vent the wheel" with each new application. Programmers can "code by exception,"
reusing existing code while altering or adding only the specific behavior and func
tionality that their own applications require. Because the object-oriented architec
ture is system-wide, these benefits are not restricted to single applications; in fact,
applications can share code with each other just as readily as with the system itself.

Architecture and functionality
PenPoint's overall software architecture is organized into five layers:

1 The kernel, which provides multitasking process support, memory manage
ment, and access to hardware. The kernel works closely with the PenPoint
class manager, which makes PenPoint object oriented.

10 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

2 The system layer, which provides windowing, graphics, and user interface
support in addition to common operating system services such as filing and
networking.

3 The component layer, which consists of general-purpose subsystems offering
significant functionality that can be shared among applications.

4 The Application Framework, which serves as a "head start" for building
applications .

.5 The applications themselves.

Each of these layers is discussed in detail below.

Kernel layer
The kernel is the portion of the PenPoint operating system that interacts directly
with the hardware. Besides handling such low-level tasks as process scheduling and
synchronization, dynamic memory allocation, and resource management, it also
provides these services, which are needed to support the object-oriented software
architecture:

• Priority-based, preemptive multitasking.

• Processes and threads (lightweight tasks sharing the same address space).

• Interprocess communication and semaphores .

.. Task-based interrupt handling.

.. 32-bit flat memory model.

• Protected memory management and code execution.

• Heap memory allocation with transparent relocation and compaction (no
fixed-length buffers).

• Object-oriented message passing and subclass inheritance.

All hardware dependencies in the kernel are isolated into a library subset called the
machine interface layer (MIL) to facilitate porting to a wide variety of hardware and
processor architectures. The kernel runs on both PC and pen-based machines. All of
PenPoint's APIs use full 32-bit addresses.

Other parts of the kernel layer support features that keep PenPoint small and effi
cient. These parts are defined below.

Loader Unlike a traditional, disk-based operating system, PenPoint's loader
does not require multiple copies of system and application code to be
present in the machine at the same time. Instead, it maintains a single
instance of all code and resources, which are shared among all clients.
When installing a new application, the loader reads in only those compo
nents that are not already present in memory.

CHAPTER 2 I PENPOINT SYSTEM OVERVIEW 11

Power Conservation When running on battery-powered hardware, the ker
nel reduces power consumption by shutting down the CPU whenever there
are no tasks awaiting processor time. Subsequent events such as pen activ
ity or clock-chip alarms generate interrupts that reactivate the CPU. The
kernel also monitors the main battery and will refuse to run if power is too
low, ensuring reliable protection of user data.

Class Manager PenPoint's Class Manager works closely with the kernel
to support object-oriented programming techniques such as single
inheritance subclassing and message passing. The Class Manager also
provides important protection and multitasking services not found in C++
or other object-oriented languages. These services safeguard the operating
system against possible corruption arising from the use of object-oriented
techniques. For example, instance data for system-defined classes is pro
tected so that the data cannot be altered by any subclasses. Applications
thus derive the benefits of subclassing without jeopardizing the integrity of
the system.

System layer
PenPoint's system layer provides a broader range of support services than a tradi
tional operating system. In addition to the usual system facilities such as filing and
networking, it also provides such high-level services as windowing, graphics,
printing, and user interface support. This helps keep application code compact and
consistent while facilitating application development for the machine.

File system
PenPoint's file system is designed for compatibility with other existing file systems,
particularly MS-DOS, and includes full support for reading and writing MS-DOS

formatted disks. It provides many of the standard features of traditional file sys
tems, including hierarchical directories, file handles, paths, and current working
directories, as well as such extended features as 32-character file names, memory
mapped files, object-oriented APIs, and general, client-specified attributes for files
and directories.

The PenPoint file system is a strict superset of the MS-DOS file system; all PenPoint
specific information is stored as an MS-DOS file within each MS-DOS directory. This
approach is used when mapping to other file systems as well. Additional, installable
volume types are also supported.

Resource manager
PenPoint's Resource Manager and the resource files that it controls allow applica
tions to separate data from code in a clean, structured way. The Resource Manager
can store and retrieve both standard PenPoint objects and application-defined data,
in either a specific file or a list of files. Resources can be created directly by the
application or by compiling a separate, text-based resource definition file:

System layer

12 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Networking
PenPoint provides native support for smooth connectivity to other computers and
networks. Multiple, "auto configuring" network protocol stacks can be installed
on the fly. AppleTalk™ protocol is built in, enabling connection to other networks
through a variety of AppleTalk-compatible gateways. With the appropriate TOPS
software, users can configure their systems to connect directly to desktop
computers.

Through the use of these networking facilities, remote services such as printers are
as easily accessible to PenPoint applications as if they were directly connected.
Remote file systems on desktop computers and network file servers are also trans
parently available via a remote-file-system volume. A user can browse PC and file
server directories, for instance, using PenPoint's Connections notebook. Several
remote volumes can be installed at once: for example, a PenPoint system can hook
directly to a Macintosh and a DOS computer at the same time.

A typical user, while on an airplane, might mark up a fax, fill out an expense report
to be electronically mailed to the payables department, draft a business letter to be
printed, edit an existing document, and export it to a PC's hard disk. Upon connec
tion to the physical devices, conventional operating systems would require that user
to run each application, load each document and dispense with it. PenPoint's In
box and Out box services allow the user to defer and batch data transfer operations
for completion at a later time. Upon returning to the office and establishing the
physical connection, the documents are automatically faxed, printed, and mailed.
These services are extensible and can support a wide variety of transfer operations,
including electronic mail, print jobs, fax transmissions, and file transfers.

Windowing
The window system supports nested hierarchies of windows with multiple coordi
nate systems, clipping, and protection. Windows are integrated with PenPoint's
input system, so that incoming pen events are automatically directed to the correct
process and window. Windows use little memory and can therefore be used freely
by applications to construct their user interface.

Usually windows appear on screen, but they can also be created on other, off-screen
image devices, such as printers.

The window system maintains a global, screen-wide display plane called the acetate
plane, which is where ink from the pen is normally "dribbled" by the pen-tracking
software as the user writes on the screen. The acetate plane greatly improves the
system's visual responsiveness, both in displaying and in erasing pen marks on the
screen.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 13

'r Graphics
PenPoint's built-in graphics facility, the ImagePoint™ imaging model, unifies
text with other graphics primitives in a single, PostScript-like imaging model.
ImagePoint™ graphics can be arbitrarily scaled, rotated, and translated, and can be
used for both screen display and printing. ImagePoint's graphics capabilities include
these elements:

Polylines

Rectangles

Rounded rectangles

Polygons

Sampled images

Text

Bezier curves

Ellipses

Arcs

Sectors

Chords

A picture segment facility allows ImagePoint messages to be stored and played back
on demand, facilitating a variety of drawing and imaging applications. For
improved performance, the imaging system dynamically creates machine code
when appropriate for low-level graphics operations such as direct pixel transfer. The
ImagePoint API also supports the use of color, (specified in conventional RGB

values) allowing PenPoint to run on grey-scale and color screens.

To conserve memory, ImagePoint uses outline fonts to render text at any point size.
(Bitmap fonts are automatically substituted at low resolutions for improved visual
clarity.) Fonts are heavily compressed and some character styles are synthesized to
minimize memory requirements. If a requested font is not present, ImagePoint will
find the closest available match. Text characters can be scaled and rotated in the
same way as other graphical entities.

Printing
The ImagePoint imaging model is used for printing as well as screen display,
allowing applications to use the same image-rendering code for both purposes,
rebinding it to either a screen window or a printer as the occasion demands.
PenPoint handles all printer configuration, and automatically controls margins,
headers, and footers, relieving the application of these details. (As in most other
areas of Pen Point, applications can override the default behavior.)

One key benefit of this approach is that documents to be faxed are rendered specif
ically for a 200-DPI output device. The resulting output will be of sufficiently high
quality that mobile users may not require a portable printer at all, opting instead to
use a nearby plain paper fax machine.

PenPoint supports Epson-compatible dot-matrix printers and HP Laserjet-compat
ible laser printers. When the printer does not have a requested font, the ImagePoint
imaging model will render and download one from its own set of outline fonts,
ensuring good WYSIWYG correspondence and shielding the user from the complex
ities of font management.

System layer

14 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

User Interface Toolkit
PenPoint's User Interface Toolkit offers a wide variety of on-screen controls:

Menu bars Nonmodal alerts

Pull down menus Pushbuttons

Section tabs

Window frames

Title bars

Scroll bars

Option sheets

Dialog boxes

Progress bar

Modal alerts

Trackers

Exclusive choice buttons

Nonexclusive choice buttons

Pop-up choice lists

List boxes

Editable text fields

Handwriting pads

Grabbers

Busy clock

A major innovation in PenPoint's User Interface Toolkit is automatic layout.
Instead of specifying the exact position and size of controls, the application need
only supply a set of constraints on their relative positions, and the Toolkit will
dynamically calculate their exact horizontal and vertical coordinates. This makes it
easy for programmers or users to resize elements of the user interface, change their
fonts or other visual characteristics, or switch between portrait and landscape screen
orientations, while preserving the correct proportions and positional relationships.

Input and handwriting translation
PenPoint's input subsystem translates input events received by the hardware into
messages directed to application objects. The low-level pen events include:

In proximity Out of proximity

Tip down Tip up

Move down

Window enter

Move up

Window exit

These low-level events can be grouped into higher-level aggregates called scribbles,
which are then translated by the handwriting translation (HWX) subsystem into
either text characters or command gestures. These characters or gestures in turn are
dispatched to the appropriate objects via a rich input distribution model that
includes filtering, grabbing, inserting, and routing of input up and down the
window hierarchy.

The portion of the GOwrite handwriting translation engine that matches and
recognizes character shapes is replaceable, allowing PenPoint to improve its HWX

techniques as better algorithms become available. There are two parts to the hand
writing translation engine: the first part matches shapes, the second part uses con
text to improve the translation.

Also called the Pen Point UI
Toolkit.

CHAPTER 2 I PENPOINT SYSTEM OVERVIEW 15

The current HWX engine recognizes hand-printed characters and has the following
characteristics:

• Operates in real time (shape matcher operates at 60 characters per second on
33 Mhz 80486).

• Runs in a background process.

• Handles mixed upper- and lowercase letters, numerals, and punctuation.

• Tolerates characters that overlap or touch.

• Recognizes characters independently of stroke order, direction, and time order.

• Uses context to distinguish nonunique character forms such as the letter "0"

and the numeral "0".

• Tolerates inconsistency by same user (that is, the user may shape the same
character in different ways at different times).

• Accepts optional context-sensitive aids (such as word lists, dictionaries, and
character templates) provided by an application. Applications are given great
control over this process; they may issue constraints that merely influence the
result or force a match against a predefined list.

Although PenPoint is designed primarily for pen-based input, it is not limited to
the pen. For high-volume data entry, PenPoint accepts input from a keyboard.

As an alternative, PenPoint also provides a software "virtual keyboard." Users
can display the keyboard on the screen and input text by tapping on the keys with
the pen.

Selection Manager and data transfer

The Selection Manager subsystem maintains a system-wide selection, which is the
target for all editing operations. The Selection Manager also implements a single
level stack for temporarily saving the current selection. Editing is based on a move
and-copy model, rather than a "clipboard" (cut-and-paste) model. The source and
destination applications negotiate data transfers from one application to another.
The destination application requests a list of available data formats from the source
application. PenPoint supports a variety of standard transfer formats, including
Rich Text Format (RTF), structured graphics, and Tagged Image File Format (TIFF);

applications can extend this list to include other formats as well.

PenPoint's object-oriented architecture also makes possible the PenPoint EDATM or
embedded document architecture. This is a unique form of "live" data transfer in
which the transferred data carries with it an instance of its own source application.
Through object-oriented message passing, this embedded application instance can
then be used to display, edit, or otherwise manipulate the data from within the des
tination application. Although more conventional forms of "hot links" and
Dynamic Data Exchange (DDE) linking are still possible in PenPoint, such live
application embedding obviates the need for most of them.

System layer

16 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Component layer
Above and beyond the traditional kernel and system facilities, PenPoint adds a rich,
powerful, and extensible component layer. Components are general-purpose code
units with application-level functionality that can be shared and reused as building
blocks by multiple client applications. They speed the development of applications,
reduce memory consumption, and provide for more consistent user interfaces and
tighter integration across diverse applications.

PenPoint includes several components, such as a multifont, WYSIWYG text editor
and a scribble editing window that can be embedded within any application that
needs them. You can include these components in your application without paying
any license fee to GO.

Third-party developers may market components to other developers. Applications
may also provide their own general-purpose components to be installed and shared
in the PenPoint runtime environment.

Application Framework layer
The Application Framework is a set of protocols rigorously defining the structure
and common behavior of a PenPoint application. Through the Application Frame
work, applications inherit a wide variety of standard behavior, including installation
and configuration, creation of new documents, application stationery (template
documents), on-line help, document properties, spell checking, search and replace,
import! export file dialogs, and printing. New code is required only for added func
tionality or to modify or override specific aspects of the default behavior. Use of the
Application Framework thus yields significant savings in programming time and
code space.

An application developer creates the application code and any resources needed by
the application. When a user installs an application, the PenPoint Application
Framework takes care of:

.. Copying the application code and all other auxiliary files to the system.

.. Creating new documents.

• Creating and terminating tasks.

• Storing and retrieving user data in the file system.

.. Creating and destroying a main window for the application.

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application's state explicitly from one
session to the next.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 17

". Application layer
Using the "live" recursive embedding available through EDA, PenPoint's notebook
metaphor and user interface are implemented as a set of bundled system applica
tions. Although the user simply perceives these collectively as "the Notebook," they
are in fact distinct applications, providing a cleanly delineated and modular
architecture.

The key bundled applications include Bookshelf, Notebook, and Section applica
tions that together constitute the core notebook metaphor. In addition:

• The Table of Contents (TOC) application provides a user interface for special
ized organization and retrieval at the front of the notebook.

• A bundled text editor provides end users with intuitive, pen-based Rich Text
editing.

• A standard Send user interface and an Address List allow for the addressing of
all electronic mail, fax, and file transfers.

• A file browser allows the user to point to files and directories and use standard
gesture commands to manipulate them.

Multiple instances of the Notebook can be created; in fact, the Create, Help,
Configuration, In box, and Out box applications are all instances of the notebook
application. Developers benefit from this code sharing; users benefit from decreased
memory requirements as well as greater consistency in the user interface. The Help
notebook, for example, consists of help documents ordered by section (applica
tion), and therefore looks just like the standard table of contents. Users already
know how to navigate through this notebook and can even create hyperlink refer
ences to important sections. Developers can simply write ASCII text to provide on
line documentation. Documents in the Help notebook can be any type of PenPoint
application documents. Developers can also leverage existing application code to
build very powerful help systems that can demonstrate real functionality.

Software development environment
With the exception of some hardware-dependent code, PenPoint and the applica
tions it supports are written in ANSI C, using current versions of leading pc-based
development tools. Developers already acquainted with object-oriented concepts,
and with the graphical user interfaces and multitasking found in operating systems
like OS/2 and Macintosh System 7, will find the development environment familiar.

Software development kit
The PenPoint SDK provides developers with the documentation and tools to
develop applications. The kit includes a source-level symbolic debugger, as well as
an outline font editor for creating scalable and rotatable application-specific glyphs.
Because PenPoint runs on DOS 386 machines, the full application edit-compile
debug cycle can be accomplished solely on a PC, or on a combination of a PC and a
pen computer running PenPoint. In the former configuration, you use a pen-driven
digitizer tablet to simulate pen input. In the latter configuration, the PC serves as

Application layer

18 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

a debugging monitor, as well as a convenient repository of tp.e development system
libraries, header files, on-line documentation, and source code.

Coding conventions
All PenPoint code is written in accordance with modern software engineering stan
dards, including:

.. Consistent naming conventions for modules, functions, and variables .

.. Carefully designed modularity.

.. Proper commenting and formatting of source code.

Almost all of the C code is structured using object-oriented programming tech
niques. Classes are defined and objects are created and sent messages by making
calls into a library of C routines called the C~ass Manager. These techniques are in
the mainstream of currently evolving industry practices, but the details are unique
to GO and are well documented in the SDK materials.

Extensibility
PenPoint is extensible in a variety of ways, allowing for th~ addition of new
networking protocols, imaging models, font models, and file-system volumes.
PenPoint can run on computer architectures ranging from solid-state, pocket pen
computers to powerful disk-based workstations with pen-tablet screens.

The operating system is a working whole, with most modules integrated and tested
as part of the full system since early 1988. Because of techniques such as hardware
memory pr?tection, object-oriented programming, rigorous modularization, and
extensive sharing of code, PenPoint is a highly reliable operating system.

PenPoint design guidelines
To this point, this chapter has presented concepts that relate to the PenPoint oper
ating system as a whole. The remainder of the chapter describes important points
that application developers will have to keep in mind while designing and coding
PenPoint applications.

Conserve memory
Do not squander memory. Your application should use little memory when active.
It must be able to further reduce its memory usage when off-screen. An application
that is packed with functionality but consumes a lot of memory is less likely to be
successful than one that meets key needs and requires very little memory.

Think small
Most PC programs stand alone as large monolithic programs that attempt to do
everything. In the cooperative, multitasking PenPoint environment with its
Embedded Document Architecture, it makes more sense to provide programs that
present a facet of functionality or that orchestrate other applications and compo-

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 19
Pen Point design guidelines

nents. Use existing classes and components where possible rather than writing your
own from scratch.

PJr Use a modular design
Consider writing your application as a set of separable components. A component
is a separately loadable module (a dynamic link library or OLL) that provides soft
ware functionality. A component has a well-defined programmatic interface so that
other software can reuse it or replace it. With modular design, your application
becomes an organizing structure that ties together other components in a useful
way. For example, an outliner application might use a drawing component, a
charting component, and a table entry component; you could license these compo
nents to or from other developers. GO is working to develop a market for third
party components, and offers several components itself, including Text View™ and
the TableServer™ .

Your application must recover
Users may go for weeks or months without backing up their PenPoint computer's
file system. If your application goes wrong, the PenPoint operating system will try
to halt your application rather than the entire computer, but it is your responsi
bility to ensure that a new invocation of your application will be able to recover
cleanly using whatever information it finds in the file system. This precept some
times conflicts with avoiding data duplication, because the memory file system is
more bullet-proof than the address space of a running application. For this reason,
filed state will usually survive a process crash.

Moreover, most users will not have the PenPoint computer boot disks on hand.
That means you cannot rely on the user being able to press the reset switch in a
jam. PenPoint uses hardware and software protection techniques to secure against
applications unintentionally corrupting the kernel and/or file system, but it is not
foolprooE

PJr Take advantage 01 object-oriented programming
You don't get to vote on using object-oriented techniques. You must write a class
for your application that inherits from clsApp. The windows your application dis
plays on the screen must be instances of clsWin (or instances of a class that inherits
from clsWin). Of course, there are tremendous payoffs from PenPoint's object-ori
ented approach in program size reduction, code sharing, application consistency,
programmer productivity, and elimination of boilerplate code (those large chunks
of setup or housekeeping code that appear unchanged in every application).

PJr Consider sharing code and data
Think about what other parts of PenPoint need to access your classes, what tasks
need to run the code in them, and who maintains their data. If your application has
a client-server architecture, with a separate back-end or a core engine, you'll need to
have the big picture in mind when choosing local or global memory, dynamic or

20 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

well-known objects, process or subtask execution, protecting shared data with
semaphores and queued access, and so on.

PenPoint is a rich operating system that makes its kernel features available to appli
cations. A straightforward application may not need to concern itself with any of
the kernel features. It just interacts with PenPoint subsystems, which make careful
use of the kernel. For example, none of the sample programs use any advanced
kernel features.

Use document orientation
In the PenPoint operating system, the user sees documents, not separate programs
and program files. Every document on a page is the conjunction of data and a pro
cess running an application. This leads to a document-centered approach to appli
cation design in place of a program-oriented approach. By comparison, on a
Macintosh or IBM PC-compatible computer, the user tends to start a program and
work on a succession of files. Under PenPoint, the user turns to a new document
(or taps in a floating document) and the system unobtrusively turns control over to
the right program for that document.

There are many ramifications of this orientation: applications have no Open ...
or Save As ... commands; the PenPoint operating system, not the user, saves data
and quits programs; you deliver application templates and defaults to the user as
stationery.

Design for file format compatibility
The PenPoint application environment differs from that of other operating systems
in that PenPoint saves your application data, along with information about objects
in the document. Because of this filing method, your data formats within PenPoint
will differ from their PC equivalents.

Most PenPoint users, however, will need to read and write application data in for
mats that are understood by other non-PenPoiht applications. Either your applica
tion should be able to read and write data in other formats, or you should create an
import or export filter for your PenPoint files. PenPoint provides import and export
filters for some common file formats. Because the import-export mechanism is class
based, you or other application developers can create import-export filters for other
file formats.

Exploit the pen
Graphical user interfaces built around a mouse or other pointing devices lead to
flexible program architectures that respond to the user's actions instead of requiring
the user to perform certain steps. The pen-oriented notebook interface of PenPoint
is even more free-form. Just as with a mouse, the user can point to and manipulate
(click, drag, stretch) entities on-screen, but in the PenPoint operating system the
user can also make gestures and handwrite characters "on" the visual entities.
Taking advantage of the pen is a challenge and a tremendous opportunity.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 21
Pen Point design guidelines

"., Use the PenPoint user interlace
The Notebook User Interface (NUl) differs from other graphical user interfaces. If
you are porting a DOS or Macintosh-based program to PenPoint, rather than create
new user interface classes, try to create a user interface that takes advantage of the
PenPoint UI Toolkit.

The PenPoint User Interface Design Reference describes the PenPoint user interface,
its rationale, and how and when to use its components. You should not deviate
from the PenPoint interface. Remember that a consistent user interface allows users
to learn your application quickly; an inconsistent user interface will count against
your application in product reviews (and acceptance in the marketplace).

The PenPoint UI Toolkit contains classes that create almost every on-screen object
in the PenPoint NUL If you use these classes, it is hard to deviate from the standard.
Additionally, it is easier to follow the conventions by using these classes than to sub
class and change their default behavior.

Chapter 3 / Application Concepts

This chapter gives you the big picture of application development for the PenPoint™
operating system. It introduces the design issues you need to consider when writing
an application for a mobile, pen-based computer, how applications work under
PenPoint, and how you use the PenPoint classes.

This chapter also presents concepts in general terms to provide the fundamental
understanding that puts the balance of this manual in context. You needn't have
read any of the other documentation before reading this chapter. However, if you
have the SDK software, you might want to read the "Getting Started" document in
the Open Me First packet for detailed instruction on how to compile and run the
tutorial programs.

If you want a basic look at how the PenPoint operating system works, without
a focus on writing applications, read Chapter 2, PenPoint System Overview. If
you need an introduction to object-oriented programming, read these industry
publications:

Principles of Object-Oriented Design, Grady Booch,
The Benjamin/Cummins Publishing Co., 1991.

Object-Oriented Programmingfor the Macintosh, Kurt Schmucker,
Hayden Book Company, 1986.

Object-Oriented Programming: An Evolutionary Approach, Second Edition,
Brad J. Cox and Andrew J. Novobilski, Addison-Wesley Publishing Company, 1991.

However you do it, make sure you come to understand the basics of object-oriented
programming, because in PenPoint every application must be class-based.

This chapter points out some of the aspects of the PenPoint operating system that
may have an notable effect on your approach to application design.

As you know, application development takes place at two levels:

• At the architectural level, where you design your application.

• At the implementation level, where you write and test program statements.

At the architectural level, this chapter assumes that you have basic familiarity
with object-oriented programming. In developing a PenPoint application you'll
be designing different kinds of objects and the interactions between them and
PenPoint. The section "How Applications Work" introduces the PenPoint
Application Framework, which influences and supports the structure of all
PenPoint applications.

24 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

At the programming statement level, this chapter assumes that you are well-versed
in C programming. You'll be writing C code that makes heavy use of the PenPoint
Class Manager. Chapter 4, PenPoint Class Manager introduces the Class Manager
and shows you what lines of code in PenPoint look like.

With some understanding of the Application Framework and the Class Manager,
you'll have the tools necessary to understand both the architecture and implemen
tation of simple PenPoint programs and applications. Later chapters in this manual
describe the SDK sample programs in PENPOINT\SDK\SAMPLE (the installation pro
cedure for the SDK creates the PENPOINT directory on your hard disk).

". PenPoint programming is unique
Just as a PenPoint computer is used in work environments that differ from other
computers, PenPoint applications execute in an environment that differs from con
ventional PC application environments. There are eight key differences found in
PenPoint application environments:

., Stylus-based user interaction .

., Object-oriented programming .

., Disk storage unnecessary .

., Multitasking .

., Cooperating, simultaneously active, embeddable applications .

., Graphics-intensive user interface .

., Notebook metaphor .

., Document orientation instead of application and file orientation.

Dealing with these aspects of PenPoint requires you to observe a number of guide
lines, described in the following sections. The benefit is that the software architec
ture of PenPoint eliminates much of the work for you.

The Class Manager supports the pervasive use of classes and objects throughout
PenPoint; not only in the user interface area, but also in areas such as the file system
and the imaging model. These classes provide you with ready-made components
that you can use as is or customize in your applications. These objects already con
serve memory, exploit the pen interface, cooperate with other processes, and so on.
In particular, nearly all of the work your application needs to do to work within the
PenPoint Notebook is already implemented by pre-existing classes that comprise
the PenPoint Application Framework.

How applications work
In the PenPoint operating system, the environment in which your application runs
and how it starts up are unlike any other operating system.

MS-DOS accepts a command line, executes a single program at a time, and does
little while that program is running. The PenPoint Application Framework takes an
active role in running your application. The Application Framework is responsible

CHAPTER 3 / APPLICATION CONCEPTS 25
How applications work

for activating, saving, restoring, and terminating your application. Additionally, the
Application Framework plays a part in installing and deinstalling your application.

Because all PenPoint applications use the Application Framework, all applications
behave consistently. Additionally, the Application Framework handles the house
keeping functions that Macintosh or MS-DOS programs must perform from boiler
plate code. Meanwhile, the PenPoint Application Framework presents the PenPoint
user with multiple small, concurrent documents as part of a consistent, rich note
book metaphor.

It's difficult to cleanly define the PenPoint Application Framework, because it is
both external to your application and something your application is itself a part of
But here's an attempt:

PenPoint Application Framework Both the protocol for supporting multi
ple, embeddable, concurrent applications in PenPoint, and the support
code that implements most of an application's default response to the
protocol.

To help you understand how an application fits into the PenPoint computing envi
ronment, this section walks through some important stages in the life of an applica
tion. By the end of this section you should understand a little about the PenPoint
Application Framework, some of the classes of objects in PenPoint, and why classes
are so important. The next section explains class-based programming in PenPoint.

With an understanding of the PenPoint Application Framework and the Class
Manager under your belt, you'll be able to work through the tutorials on PenPoint
programming that begin in Chapter 6. The tutorial summarizes other PenPoint
subsystems: windows, User Interface (UI) Toolkit, filesystem, and handwriting
translation. The tutorial incorporates these subsystems into a set of increasingly
functional sample programs.

Installing and starting applications
Mter acquiring an application, the user must install the application in the PenPoint
computer. Usually an application distribution disk contains the code and data
that implement the application's classes, and any other classes required by the
application.

We'll first look at how a user installs and starts a program on a traditional PC oper
ating system (MS-DOS). Then we'll compare these operations with installing and
running an application on PenPoint.

MS-DOS installation
In MS-DOS, the user usually installs a program by copying the program from distri
bution disk to a hard disk. Once on the hard disk, the program does nothing until
the user types a command to start the program.

Some MS-DOS programs require the user to copy the files from distribution disks to
the hard disk; others provide their own installation programs that copy the files to

26 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

the hard disk and alter system configuration parameters for their program. Installa

tion varies tremendously from program to program.

When the user types the startup command for a program, MS-DOS loads the pro

gram into memory from the hard disk and transfers control to the program. Once

the program is running, it controls most of the operations of the CPU until the user

leaves the program.

".. PenPoint installation
In PenPoint, the user installs a program by opening the Connections or Settings

notebook on the Bookshelf and turning to the installable software sheet (or by

inserting a disk that contains quick installer information).

From the installable software sheet, the user can choose various categories of install

able items, including applications, services, dictionaries, and so on. When the user
turns to a page for an installable item, the Installer shows all the available applica

tions that can be installed from the currently open volumes. The user selects an

item and taps the Installed? checkbox next to the item. The Installer copies the pro

gram to an area of memory set aside for programs (the loader database) and copies
other files required by the program (such as help files, application resource files, and

stationery files) to the file system.

From this point, running PenPoint applications differs significantly from the MS

DOS model. Once a program is in the loader database, PenPoint can transfer con

trol directly to it; there is no intermediate step of loading the program into

memory, because it is there already.

PenPoint transfers control to your program under two conditions: the user is

installing your program, or the user is opening a document that requires your pro

gram (we will cover this case in the next section).

Installer responsibilities
During installation, the Installer calls a standard entry point (called mainO) in your

program in such a way that you can tell that your program is being installed. At this

time, most programs create their application class and any other classes that they

need. Some programs initialize files or common data structures such as dictionaries

or stationery.

If your application requires code for other classes (such as a special character-entry
class) and resources (such as a special font), the Installer ensures that these classes

and resources are present in the computer. If they are not present, the Installer

copies and installs them also. In turn, these classes may require additional classes

and resources, and so on.

The Installer keeps track of all installed applications. When the Installer initializes

your application, the application specifies whether it should go in the Tools Acces

sory palette or in the Stationery notebook, or both (or neither). Depending how

your application initializes itself, the user will now see the application in the

Accessories window, or in the Stationery notebook and Create pop-up menu.

CHAPTER 3/ APPLICATION CONCEPTS 27
Running a PenPoint application

Mter installation, your code is in a similar state to an MS-DOS.EXE or .COM pro
gram that has just been loaded into memory but not yet run. However, when the
MS-DOS program terminates, it removes itself from memory. PenPoint programs
stay in the system until the user removes the application.

Running a PenPoint application
When running an MS-DOS program, the user has to find a file that contains data
understood by the program. When the user decides to stop using the program, he
or she must save the data to a file and then exit. If the user chooses a file that the
program doesn't understand, the program might display garbled information, at
best, and at worst the program might crash.

PenPoint takes a fundamentally different approach: the user creates a document
from a list of available applications and, at some later time, tells PenPoint to acti
vate the document. The user doesn't have to activate the document immediately
after creating it and, in fact, can create many, many documents without activating
any of them.

Life cycle of a document
The standard components of an application include its application code, applica
tion object, resource file, instance directory, process, and main window. The full life
cycle of a document created by an application includes the following operations:

+ Document creation (create file)

+ Activation (create process)

+ Opening (open on screen)

+ Closing (remove from scre~n)

+ Termination (terminate process)

+ Destruction (delete file)

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application's state explicitly from one
session to the next.

Activating a document
When the user activates the document, PenPoint finds out from the document
what application it requires and creates a process that "runs" the application (see
"Application classes and instances" on the following page for more details). When
the user deactivates the document, PenPoint saves all of the document's informa
tion and then destroys the application process.

Not all active documents are on-screen
It's only when the user activates a particular document that the document has a
running application process. When the user activates a document, the PenPoint
Application Framework creates an application process and calls the standard mainO

A Pen Point document remains
in the computer from the time
it is created until the time
that the user deletes it, but
the application process exists
only while the document is
active.

28 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

entry point in your code in such a way that your application can tell that it is
starting an application process (and not being installed).

However, just because a document is running, doesn't mean that it must be on
screen; conversely, if a document is not on-screen, its process might still be running.

The most common example of this is when the user makes a selection in a docu
ment and then turns to another document (perhaps to find a target for a move or
copy). The document that owns the selection must remain active until it is told to
release the selection.

A second example is when the user chooses accelerated access speed (sometimes
called hot mode) from the Access document option sheet, the application processes
will continue running, even when the user has turned to another page.

For a third example, you might want to create a stock-watcher-type program that
runs in the background most of the time. This type of program will also be active,
but not on-screen.

Application classes and instances
A PenPoint computer contains only one copy of your application code in memory,
but a user can simultaneously activate several documents that use your application.
PenPoint can do this because your application code is a PenPoint class and an active
document is an instance of your application class.

When the user installs your application, your application creates your application
class. When the user activates a document that uses your application, the Applica
tion Framework creates an instance of your application class.

Accept this as fact for now. We will spend pages and pages in this and other man
uals explaining how this works.

PenPoint drives your application
Because of all the states that an application can be in, an application can't take con
trol and start drawing on the screen and processing input when its mainO function
is called. In additon, your application can't find out on its own if it is on-screen or
should terminate. Instead it must be directed what to do by the PenPoint Applica
tion Framework. The Application Framework sends messages to documents (and
hence to your application code) to initialize data, display on screen, save their state,
read their state, shut down, and so on. This is why applications must be imple
mented as classes.

For example, when a document needs to be started up to do some work, the Pen
Point Application Framework sends msgAppActivate (read this as "message app
activate") to the document. When the user turns to a document's page, the Pen
Point Application Framework sends it msgAppOpen.

A typical MS-DOS program written in C has a mainO routine that displays a wel
come message, parses its command line, creates a user interface, initializes struc
tures, and then waits for user input. By contrast, a PenPoint application's mainO

CHAPTER 3 / APPLICATION CONCEPTS 29

routine usually creates the application object and then immediately goes into a loop
waiting for messages to the application object to arrive. Because all applications
enter this loop, there is a routine, AppMainO, which enters the loop for you.

", Application objects
Most PenPoint applications perform three minimum actions:

• Respond to user and system events (including PenPoint Application Frame
work messages).

• Create one or more windows for user input and to display output.

• Create one or more objects to maintain their data.

There are object classes already written in PenPoint for each of these actions:
clsApp, clsWin, and clsObject, respectively. These classes do the right kinds of
things for applications themselves, for windows, and for data. They provide a skel
eton of correct behavior, although obviously GO's code doesn't create the user inter
face and data classes needed to implement behavior specific to your application. To
get the behavior you want, you often need to create descendant classes that inherit
from existing classes.

A descendant of clsApp
Lots of the behavior that is common to all applications is already implemented
for you.

The PenPoint Application Framework's interactions are sophisticated and complex.
You'll learn more about them in the following sections. Applications need to behave
in a standard way to work well in the framework. To simplify life for the application
developer, your application class inherits most of this standard behavior from the
class clsApp. clsApp handles all the common machinery of application operation,
so that many applications do not need to do anything in response to messages like
msgAppActivate and msgAppOpen. Applications rely on clsApp to create their
main window, display the main window, save state, terminate the application
instance, and so on.

You must write a descendant class of clsApp and create it during installation. In the
example shown here, the descendant is clsTttApp. At the appropriate time, the
PenPoint Application Framework sends this class a message to create an instance of
the class (Tic-Tac-Toe application instance in the figure). However, you must
decide when to create your application's other objects (windows and filing objects).

An instance of clsWin
The PenPoint Application Framework creates a frame for your application by
default. This is a window with many decorations: a title bar, a shadow if the
window is floating, optional resize corners, close box, menu bar, tab bar, command
bar, etc. These decorations surround space for a client window. It is up to you to
create the client window. You can also create windows to go into your frame's menu
bar, tab bar, and command bar, and you can create floating windows, additional

Application objects

The EMPTYAPP sample
program in the Tutorial does
nothing signincant in response
to any message, yet because it
inherits from Cl5App you can
create Empty Application
documents, coPy them, float
them, embed them, and so on.

Frames support only one client
window, but you can insert
other windows inside the client
window.

30 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

PenPoint
provides:

Objects in a running
instance of your
application

You must
write:

clsObject

several
window

subclasses

frames, and so on. Most applications create one or more windows to draw in and
allow user input.

All window classes inherit from clsWin. This class does not paint anything useful in
its window, so you must either create your own window class that draws what you
want or you must use some of the many window descendant classes in PenPoint.

Some window classes

The Tic-Tac-Toe application, for example, creates several kinds of windows based
on existing classes in PenPoint (see Figure 3-1):

.. A scrolling client window (an instance of clsScrollWin), which lets the user
scroll its contents .

.. An option sheet for its options (clsOption) .

• An option card for the option sheet (clsOptionTable).

CHAPTER 3 / APPLICATION CONCEPTS 31

Understanding the application hierarchy

.. Various user interface component windows (clsButton, clsLabel, clsInteger
Field) for the option card .

.. Menus .

.. A Tic-Tac-Toe view (clsTttView) to display the grid and Xs and Os.

Like clsTttApp, you have to write the code for clsTttView and create the class at
installation. Your application must create the various windows at the appropriate
times, such as when it receives msgAppInit or msgAppOpen.

Using cis View

Many applications will use clsView, a specialized descendant of clsWin, for their
custom windows. clsView associates its window with the data object it is dis
playing; the data object sends the view a message when its data changes. In the
case ofTic-Tac-Toe, clsTttView inherits from clsView, so the Tic-Tac-Toe window
IS a vIew.

In Tic-Tac-Toe, a clsTttView instance observes the data object (an instance of
clsTttData). More than one view can be associated with the same data; in theory
two views of the Tic-Tac-Toe board could show their state in different ways. When
the data changes, all the views are notified and can redraw themselves.

An instance of clsObiect
Instead of managing all of the data involved with an application itself, a PenPoint
application typically creates separate objects that maintain and file different parts of
the data. These objects respond to messages like "Save yourself" and "Restore your
self from a file."

clsObject is actually the ancestor of all classes in PenPoint, including clsWin and
clsApp. There is no class specifically for objects that must be filed. Filing is such a
general operation that all objects in the PenPoint operating system are given the
opportunity to respond to msgSave and msgRestore messages. PenPoint supplies
various descendant classes, which help in storing structured data, such as a list class
(clsList), a picture segment (clsPicSeg), a block of styled text (clsText), and so on.

In Figure 3-1, the data for the Tic-Tac-Toe application (the values of the nine
squares) is maintained by a separate object, Tic-Tac-Toe square values, an instance
of the specialized class clsTttData.

Understanding the application hierarchy
You may have wondered how PenPoint keeps track of all the sections, documents,
and embedded documents in a notebook if application objects are not immediately
up and running when they are created. The answer is that each document and
section in a notebook is represented in an application hierarchy in the PenPoint
file system. The Notebook table of contents displays a portion of this application
hierarchy.

32 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The reason it is called an application hierarchy is that the directory structure is the
same as the hierarchy of documents in PenPoint (including embedded documents,
accessories, and other floating documents not on a page in the Notebook). Each
notebook has a directory in the file system. Within the notebook, each document
or section has a directory. Within each section, each document or section has a
directory. Within each document, all embedded documents have a directory, and so .
on (see Figure 3-3).

As an example, when the user creates a document in a section of the Notebook, the
PenPoint Application Framework creates a new application directory in that sec
tion's directory. When the application is told to save its state by the PenPoint Appli
cation Framework, the PenPoint Application Framework gives it a file to save to in
that application directory.

All PC operating systems have a file system, and in most you can store application
data in a similar hierarchy of directories and subdirectories. Some may even provide
a folder or section metaphor for their file system. But they do not directly weave
applications into this file system. The Notebook's TOC (tap on its Contents tab to
move to it) shows the organization of documents in the Notebook, and this is the
organization of part of PenPoint's file system.

In PenPoint, the application hierarchy exists in the PENPOINT\SYS\BOOKSHELF

directory on theSelectedVolume. You can inspect the application hierarchy your
self Modify your ENVIRON.INI file so that the DebugSet parameter specifies
IDB800. Run PenPoint and go to the Connections notebook. Using the directory
view, browse through the disk volume. In the PENPOINT directory, you should see
directories called NOTEBOOK, SECTION, and so on. Compare this with the Note
book TOC. The Browser shows exactly what the file system looks like, while the
Notebook TOC interprets this part of the file system as the application hierarchy.

If your selected volume is your hard drive, you can also inspect this hierarchy from
DOS. However, to keep path names short, all of the PenPoint directory names
below PENPOINT use two letter names. For example, the SYS directory is SS in DOS,

the Bookshelf directory is BF, the Notebook is NK, and so on.

The Notebook's own hierarchy
The PenPoint classes and application hierarchy probably seem obscure and con
fusing at this point. So let's look at how the Notebook itself is written using this
metaphor. Each component of the Notebook is itself a document, with its own
main window, a parent window, and a directory in the file system's application
hierarchy.

The important concept to grasp is that there is a correspondence among:

• The PenPoint applications.

• The functionality of the parts of the notebook metaphor.

• The visual presentation of parts of the Notebook.

• The PenPoint file system layout.

The application hierarchy
differs from the class
hierarchy explained in the
next chapter, and from the
hierarchy of windows
on-screen.

Strange and important!

CHAPTER 3 I APPLICATION CONCEPTS 33
Understanding the application hierarchy

Some of these relationships are:

Running documents are instances of application classes.

Functionality of notebooks, sections, and pages is delivered by application
classes.

Visual components of a notebook are these applications' windows.

Sections and pages in a notebook are these applications' directories.

Section name and page number location in a notebook combine to form a
location in the file system.

This figure shows how a typical mix of applications in a running PenPoint system
uses different kinds of classes.

all classes
in PenPoint

PenPoint
application

classes

clsObject

clsClass

clsAppMgr

,...-------------1 theBookshelf ------i clsBSApp

my
Notebook

clsApp

clsRoot
ContainerApp

clsNBApp

The following ngures are
explained in more detail in
Part 2: Application Framework
of the Pen Point Architectural
Reference.

fiGURE 3-2

clsContainer -
App

clsSectApp

applications --I-rf-f application
classes

34 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Bookshelf
I-doc.res
t docstate.res

Notebook

t doc.res
docstate. res
Contents

doc. res
docstate. res
browstate
Read Me First
tdoc.res

docstate. res

S~~~~!~:s
- docstate. res
- browstate
- NeW' Product Ideas

L etc ...
Package Design LeHer

I-doc.res
t docstate. res

Suggestion
I_doc.res
L docstate.res

etc ...

Figure 3-3 and Figure 3-4 indicate how the same visual components exist in the file
system, and as processes and objects.

You can use the Connections notebook to explore the relationship between docu
ments and the file system yourself To view the running PenPoint file system in the
Connections notebook, you need to set the B debug flag to hexadecimal 800 in
order to view the contents of the boot file system. The easiest way to do this is to
modify the DebugFlag line in ENVIRON.INI.

The BookshelF
The highest level of the application hierarchy is the Bookshelf This is an applica
tion, but there is only one instance of it-you can't create additional bookshelves.
The Bookshelf application manages bookshelves and floating applications. Its
parent window is the entire screen of the PenPoint computer. It draws the white
background.

The Notebook
Below the Bookshelf's's directory lies the directory of the main Notebook
(and other documents on the bookshelf). The Notebook application presents
the familiar visual metaphor of a notebook with pages and tabs. All applications
that "live" on a page have subdirectories in the Notebook. There are usually several
notebooks on a PenPoint computer: the main Notebook, the Stationery notebook,
and the Help notebook. Even the In box and Out box are implemented as
notebooks.

CHAPTER 3 / APPLICATION CONCEPTS 35

Understanding the application hierarchy

Notebook hierarchy and application processes

Document Process Process 0

NB Process
NB Application
Class

:':.
:.

--- -----

Notebook Contents

-- -- -- Section -- Application Class

.........
.........

......... Samples
.........

.........
.........

.........
.........

"-

"-
"-

"- MiniText "-
"-

"-
Package Design LeHer Application Class

"- "-
'\. "-

"- "-
"- "-

'\.
"-

"- MiniNote
"- Suggestion Application Class

"-
"-

"-
"-

'\.

36 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Notebook document stores the section tab size, the current page shown in
the Notebook, the page numbering scheme, and so on in its directory.

When the user taps to turn a page in the Notebook, the Notebook traverses the
application hierarchy to the next document directory and sends a PenPoint Appli
cation Framework message to that document's application to start it up.

The Notebook's window covers most of the screen except for the Bookshelf at the
bottom.

Page-level applications
The subdirectories in the Notebook's directory relate directly to the documents
and sections in the Notebook. The name of the subdirectory is the name of the
document or section. Each of these subdirectories contains the filed state bf an
instance of a section or document.

This table lists some of the items in the Notebook (shown in Figure 3-3), the direc
tory in which each of the items are stored, and the class from which each item is
instantiated.

Actually, sections are
documents that know how to
behave in a table of contents.

Samples

New Product Ideas

Package Design Letter

Suggestion

Stored in directory

Notebook Contents

Samples

Samples

Package Design Letter

Instance of class

clsSection

clsMiniText

clsMiniText

clsMiniNote

Most applications have a menu bar. The PenPoint Application Framework supplies
a set of standard application menus (SAMs), to which applications add their own
menu items. The PenPoint Application Framework provides support for the menus
(Document, Edit, and Options) and many of the items on the menus.

Applications draw in the window that the Notebook provides for them. A page
level applications's window is the Notebook area; except for the tabs area.

".. Sections
Sections are similar to other applications: they are instances of an application class
(clsSectApp), they appear on a Notebook page, they can have tabs. A section appli
cation displays a table of contents showing the documents that are in that section:
these are simply the application subdirectories in the section's own directory.

One difference between a section and other applications is that a section has a spe
cial attribute in its directory entry. When the Notebook is traversing the application
hierarchy (to display its table of contents, or turn to the next page), if it comes
across a section it descends into the section. This enables the Notebook to number
pages correctly.

Section data stored in the section's directory entry includes the state of its table of
contents view (expanded or compressed). The Notebook Contents page is an
instance of clsSectApp, just like other sections.

CHAPTER 3 / APPLICATION CONCEPTS 37
Understanding the application hierarchy

"" Floating accessories
Most PenPoint applications are part of the Notebook. But some applications, such
as the calculator, the disk viewer, and the snapshot tool, don't "live" on a page in the
Notebook. These accessories "float" on the Bookshelf when active, appearing over
pages in the Notebook. Their parent window is the Bookshelf, not the Notebook
page area. They aren't part of the Notebook's table of contents and you can't turn
the page to them. However, a floating application is still part of the same under
lying model: it has a directory (it's just not a subdirectory of the Notebook), it is
sent messages, and so on.

",. Embedded applications
It is possible to embed documents in other documents that permit it. For example,
an on-line "electronic newspaper" document might embed an instance of a cross
word puzzle application in itself; the crossword puzzle class might allow the user to
embed an instance of a text application in a crossword puzzle document to let the
user jot down notes and guesses. The design of PenPoint makes it easy to write
applications that can embed, and can be embedded in, other applications.

When the user creates a new document in the Notebook, PenPoint actually embeds
the application in the Notebook application. This document embedded in the
Notebook is called a page-level application.

Only page-level applications appear in the Notebook's Table of Contents; appli
cations that are embedded in page-level applications do not. It doesn't make sense
for a user to turn the page to an application embedded in the current page.

Application embedding is very straightforward. When the user moves or copies an
application, the Bookshelf application sends a msgAppCreateChild message to the
destination application. If the application permits embedding, the PenPoint Appli
cation Framework handles this message by creating a directory for the embedded
application within the destination application's directory.

When an application is embedded in another, the embedded application is inserted
into two hierarchies: the file system hierarchy and the window system hierarchy. In
the file system, the application directory for an embedded application is a subdirec
tory of the application directory of the application in which it is embedded. In the
window system, the parent application supplies a window into which the
embedded application can insert its main window.

Thus, in our example, the newspaper application uses an application directory for
the newspaper document. Within that directory is an application directory for the
crossword document. Within the crossword application directory is a directory for
the text editor document. The newspaper document window contains a window
that is the main window for the crossword document. The crossword document
window contains a window that is the main window for the text editor.

38 PEN POINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

Application data
A document stores data in its directory so that when its running process is termi
nated, its state lives on in the file system. The Application Framework can later
create a new process for the document and direct the document's application to
restore the document from this filed state.

Some information is of interest to this instance only, such as the visible part of the
file, the user's current selection, and so on. This would probably be saved by the
application itself, that is to say, when the application receives msgSave it writes this
information out.

The application can also tell the Application Framework to send msgSave to other
objects to get them to save their data (your application can't send msgSave directly
to another object). For example, the image in a sketching program might be imple
mented as a separate object; when the application is told to save, it tells the Applica
tion Framework to save the image object.

By default dsApp saves the information about the document, including its com
ments, frame window position, mode, and so on, so you only need to save those
things created by your application class.

Activating and terminating documents
In the section ''Application classes and instances" on page 28, we described how an
instance of the application is created. The previous section should help clarify the
relationship between the file system and an instance of your application. The loca
tion of a document in the file system hierarchy has a one-to-one correspondence
with its location in the Notebook, on a page, within a section, and so on. See the
figure to get a sense of the relationship.

The main determinant of how and when documents blossom from being directo
ries and data in the file system to being live running processes and objects is the
user's action of turning the page.

When the user turns to a page, the documents on that page become visible; if they
aren't already running, the Application Framework activates them.

Turning a page and msgAppC/ose
When the user turns to another page, the docume'nt on the original page no
longer needs to appear on screen, so the PenPoint Application Framework sends
msgAppClose to the application instance, indicating that it can close down its user
interface.

When it receives msgAppClose, the application might still have some processing to
do or it might be talking to another application. The application can finish its work
before acting in response to msgAppClose.

To respond to msgAppClose, the application should save (to the file system) any
data about on-screen objects that the user moved or changed. The application

There are many mechanisms
that automatically propagate
meg5ave to related objects.
Frames can be set to save
child windows, views save their
data objects, and so on.

CHAPTER 3 I APPLICATION CONCEPTS 39
Activating and terminating documents

should then destroy and remove all windows that it created, thereby reducing
memory usage.

An application instance may receive msgAppTerminate after msgAppClose
(if it isn't in "hot mode"). When it receives msgApp Terminate, the application
must save all data that will be required to restore the document to the screen exactly
as it was before, because msgAppTerminate kills the document's process.

'Jr Restoring inactive documents
When the user turns back to the saved document, the Application Framework
looks at that document's directory. If the process for the document was terminated,
the Application Framework starts a new process, creates a new instance of the appli
cation class, and recreates the document based on information in the directory. As
part of this re-creation, the Application Framework sends the document msg
Restore, which tells it to read its state back in from the file system.

The Application Framework then sends msgAppOpen to the application, telling it
to prepare to draw on the screen. The Application Framework also sends msg
Restore and msgAppOpen to any embedded applications in that document.

Finally, the Application Framework inserts the application's windows into the
screen, and the windows receive messages telling them to paint.

From this point the user can interact with the document. When the user makes a
gesture within the document, the document's application controls the resulting
action.

Page-turning instead of closing
As described in "Turning a page and msgAppClose," most PenPoint applications
don't need a Close menu item. Most documents are active until the user turns the
page; others may be active even when off-screen (for instance, if they have the selec
tion or are involved in a copy operation). The user doesn't know what a running
application is: when the user turns to a page, everything on it appears exactly as it
was when the page was last "open," and every window responds to the pen. The fact
that some of the applications may have been running all the time while others were
terminated and restarted should be inconsequential to the user.

Saving state (no quit)
In an MS-DOS or Macintosh program, the user explicitly quits the application, and
thus doesn't expect the application to reappear in exactly the same state.

Because of Pen Point's notebook and paper paradigm, you must preserve all the
visual state of your application so that when it is restarted it appears the same. This
has strong implications for the kinds of information your application needs to save
when an application receives msgSave.

40 PENPOINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

Documents, not files and applications
It's important to understand that the application instance and the file it is editing
are conjoined.

The user should rarely, if ever, see "files." Instead, she or he sees only documents.
(The exception to this is when importing data from and exporting data to other
computers.) Ordinarily, for every document in the application hierarchy there is an
application.

A user can deinstall an application without deleting the application's documents in
the file system. If the user tries to turn to one of these documents, there is no code
to activate them. Instead, these orphan applications are handled by a "mask" appli
cation that tells the user that the application has been deinstalled and prompts the
user to reinstall the application.

No ne~ no save as ...
On a PC, the user usually starts an application, and then chooses what file to open
with that application. But in the PenPoint operating system, the user can start an
application by:

.. Turning to the page that contains a document.

.. Floating a document .

.. Creating a new embedded document.

The document open on a page, and any floating or embedded documents on that
page, are all applications with open files. You do not open a file from within an
application. Instead, you turn to (or float or embed) another document and
PenPoint starts up the correct application for that document.

Thus, it does not make sense to try to open another document from the current
application, or to save the current document as another document.

The only time that an application needs to actually open a file from disk is when it
is importing or exporting data that will be used by a file-oriented program on a file
oriented operating system.

Stationery
Users often want new instances of an application to start off from a particular state.
Instead of opening a template from within the application, Penpoint supports
application-specific stationery. The default piece of stationery is an application
instance started from scratch. The user can create additional stationery documents,
which are just filed documents kept in a separate notebook.

In the case of Tic-Tac-Toe, each document shows a view of its own board. There is
no new command, because the user can always create a new document. There is no
save command either-the Tic-Tac-Toe state is saved on every page turn. There's no
open command, because the user can either turn to another Tic-Tac-Toe's page to
"read it in," or can start from a desired template by accessing documents in the
Stationery menu or auxiliary notebook.

CHAPTER 3 / APPLICATION CONCEPTS 41
Shutting down and terminating applications

".. Shuffing down and terminating applications
If a document is in the application hierarchy, it always exists as a directory in the
file system, whether it has a running process or not, and whether it is visible or not~
When the user deletes a document (page-level or embedded), PenPoint deletes its
directory from the file system.

The user can also elect to use the installer to deinstall or deactivate an application.
This might be necessary when the user needs more room on the computer for a dif
ferent application, or when the user isn't using an application any more. Deinstalla
tion removes all application code from the loader database, which prevents the user
from running it. However, the documents still exist in the application hierarchy,
and can spring back to life if and when the user re-installs the application. Deacti
vation also removes the application code, but PenPoint remembers where the appli
cation came from, so that it can prompt the user to insert the appropriate disk if the
user chooses to reactivate the application.

Conserving memory

When a document is active, it is obviously consuming memory, but when it is not
active, it can still consume memory (if the computer is using a RAM-based file
system). The document's saved state is in the application hierarchy, which can be in
the RAM file system; the RAM file system shares RAM with running processes. This
emphasizes how important it is to conserve memory.

You should also try to conserve memory when an instance is running but not open
(for example, if it has the selection but is off-screen). This is an opportunity to
destroy UI controls and other objects which are only needed when your application
IS on-screen.

Avoiding duplication
Documents receive messages from the Application Framework telling them to save
their state to their directory. When a document starts up, its corresponding applica
tion often reads all of this state back into memory. This means that there are two
copies of the document's state; the one in its address space and the saved copy in the
file system. This can be quite wasteful of space. There are several approaches to
eliminating this redundancy:

.. Don't read state back into memory. Read information in from the file system
when needed. This works well for database-type objects. Because the applica
tion hierarchy is in memory, file I/O is faster than you might think, but this is
still slow. It does prevent the user from reverting to the filed state of the docu
ment, since the filed state is always being updated. Your application would
have to disable Revert, or make its own backup copy of filed state.

.. Use memory-mapped files to map filed state into the application's address
space. This works well for large data files, but it does interfere with Revert.

While the application is
not available, the mask
application handles the
application's documents.

42 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

.. Read state back into memory, then delete the information from the file sys
tem. This means that if the application instance crashes, there is nothing in
the file system to recover.

.. Refuse to save state to the file system. This implies that the application
process can't be terminated. This also means that the application state can't
be recovered.

Hot mode
The last alternative above is supported by the PenPoint Application Framework. An
application class or the user (by choosing Accelerated for Access Speed in the appli
cation's option sheet) can tell the PenPoint Application Framework that an applica
tion instance should not be terminated. This is called hot mode. It means that the
document will appear much faster when the user turns to it, because its process
never went away. Ordinarily the Application Framework must start a new process,
create a new application object, tell it to restore its state, then put it on-screen.

Components

As we have seen, you can embed applications within other applications. This is the
basis for the Application Framework's hierarchy. Applications require a good deal of
overhead: each has its own directory, has code in the loader database, and runs as its
own process (in addition to the directories and processes used by that application's
documents).

You can reduce the size of an application by using components. Components are
separate DLLs that provide a well-defined API to their clients. Most components can
be used as part of an applications, but they don't require much overhead.

Components don't run as a separate process, and don't have a separate directory.
Some components, such as Reference buttons, manifest themselves as visible
objects and let the user embed, move, and copy them. Others, such as text views,
are visible but can be added to applications only programmatically. Still others,
such as the Address Book, do not even have a UI; that is, they do not display on
screen (the address book provides information that other applications then format
and display).

Chapter 4 / PenPoint Class Manager

The previous chapter introduced some of the concepts in the PenPoint™
Application Framework. This section quickly covers the PenPoint operating
system's object-oriented Class Manager. The Application Framework largely deter
mines the overall structure of your applications; sending messages to objects using
the Class Manager makes up 800/0 of the line-by-line structure of your code. With
an understanding of the Application Framework and the Class Manager, you can
start the tutorial.

There are three elements to the PenPoint operating system's object-oriented soft
ware environment: objects, messages, and classes.

Perhaps the simplest way to introduce the concepts of objects, classes, and messages
is by looking at an example. The example discussed in the next three sections out
lines what must happen to set the title of an icon. A user sets an icon's title by
making the check V' gesture over it. When its option sheet appears, the user enters
a new icon title, makes sure the layout style is one that includes the title, and taps
Apply.

If you feel that you understand the concepts of object-oriented, message-passing,
class-based systems, you can skip this introduction and go directly to the section
titled "Sending a Message."

Objects instead of functions and data
In a non-object-orientedsystem, the icon and its title would be stored in a data
structure. Any piece of code that gets or sets information pertaining to the icon
must know the exact organization of that data structure. To modify the icon title,
the program would locate the data structure that represented the icon; for example,
it might change the icon's title string by changing a pTitleString pointer. This pro
gram will break if the internal structure changes or if the string is later implemented
by storing a compact resource identifier.

In an object-oriented system, anything in the system can be an object. In our
example, the icon is represented by an object. The object knows about both the
data for an icon and the functions that manipulate it. The object hides, or encapsu
lates, the details of its data structures and implementation from clients. One of the
messages understood by the object might be "Set Your Title String," which tells the
object to change its title.

Because the object contains the code for the functions that manipulate it, the object
locates its own internal data structures that represent the title, and changes the title.

44 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

This encapsulation reduces the risk of clients depending, either deliberately or
accidentally, on implementation details of a subsystem. If the internal structure
changes, only the object's code that manipulates the structures must change. Any
client that sends the "Set Your Title String" message can still send that message and
will still get the same effect.

Some objected-oriented systems, including PenPoint, use software and hardware
protection facilities to prevent clients from accessing or altering the internal struc
tures of objects, whether accidentally or maliciously.

Ideally, in object-oriented operating systems, the objects presented to clients should
model concrete ideas in the application. For example, if your application's user
interface requires a button, it should create an object for that button; if your appli
cation has a counter, it should create an object to maintain that counter value.

Messages instead of function calls
Modular software systems are sometimes object-oriented without being message
passing. That is to say, they have objects that hide data structures from clients (such
as "window"), and you pass these software objects as arguments to functions which
act on them. Using the example of setting an icon's string, in such systems you
might pass the icon Window object to a routine called WindowSetStringO.

But this approach requires that clients know which function to call, or that the
function handle many different kinds of objects. The implementation of icon
strings might change so that icons need to be handled specially by a new IconSet
StringO function. Again, all clients would have to change their function calls.

Message-passing systems flip this control structure so that the object hides the rou
tines it uses. A client simply sends a message to the object, and the object figures
out what to do. This is known as data encapsulation. In the example we're using,
clients send the message msgLabelSetString to the icon; the only argument for the
message is a pointer to the new title string.

Because icons (or other objects) respond to messages, it doesn't restrict the imple
mentation of icons: if, in the future, icons handle titles differently than other labels,
they can still respond to msgLabelSetString correctly.

"The object figures out what to do" sounds like black magic, but it is actually not
very complicated. You call a C routine to send a message to an object. Inside the
Class Manager code, the Class Manager looks up that message in a table (created by
the developer of the icon class) that specifies what function to call for different mes
sages. If the message is in the table, the Class Manager then calls the icon's internal
function which actually implements the message.

One benefit of using messages instead of function calls is that many different
objects can respond to the same message. All objects that come from a common
ancestor will usually respond to the messages defined by that ancestor. For instance,
you can send msgLabelSetString to almost any object. (In some systems, this is
called "operator overloading.")

Note The term "client" here
and elsewhere in the SDK
documentation means any
code making use of a software
facility.

An object can respond to any
message sent to it; the
message does not have to be
de-Aned by the object's class
or its ancestor class.

CHAPTER 4 / PEN POINT CLASS MANAGER 45
Classes instead of code sharing

You can send any message to any object. Depending on whether it knows how to
respond to the message, the object chooses what to do:

.. If the object understands the message and can handle it, the object processes
the message .

.. If the object doesn't understand the message, it gives the message to its ances
tor, to see if its ancestor knows how to handle the message (more on ancestors
later in this section).

.. If the object understands the message, but doesn't want to handle it, the object
can ignore the message (by returning a nonerror completion status), reject the
message (by returning an error completion status), or give the message to its
ancestor.

Classes instead of code sharing
Icons and several other similar objects have titles. Thus, each of those objects that
has a modifiable title must handle the "set string" message in some way or other.

In other programming methodologies, programmers take advantage of functional
overlap by copying function code, trying to make data structures conform so the
same routine can be used, or calling general routines from object-specific routines.
However, whether you copy code or link with general routines, the resulting exe
cutable file contains a static copy of the shared code. The best you can hope for is
shared code implemented by the system, which is rare.

In a class-based system, an object is an instance of a specific class. The class defines
the data structures that are used by its instances, but doesn't necessarily describe the
data in the structures (it is the data stored in these structures that differentiates each
instance). The class also contains the functions that manipulate the object's data.

Each instance of a class contains the data for the specific thing being described
(such as an icon). Each instance also knows to which class it belongs. Thus, there
can be many instances of a class (and data for each instance), but the code for that
class exists in only one place in the entire system.

If an existing class does almost, but not quite, everything you want, you can create
a new class that inherits its behavior from the existing class. The new class is said to
be a subclass or descendant of its ancestor class. The subclass contains unique
functionality that was not previously available in its ancestor.

The subclass should not reproduce anything that was defined by its ancestor. The
subclass only defines the additional data structures required to describe the new
thing and the functions required to handle messages for the new thing.

Of course, subclassing does not stop at one generation. The icon window class, for
example, has eight ancestors between it and clsObject, which is the fundamental
class for all classes in PenPoint.

Take a look at the PenPoint Class Hierarchy in the class hierarchy poster. Find the
relationship between dsIcon and dsLabel (they're near the lower right edge).

46 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Handling messages
An object can send a message to its ancestor class either when it doesn't recognize
the message or when it chooses to allow its ancestor class to handle the message.

Because the icon window class inherits from the window class, the icon window
automatically responds to all the messages that a window responds to (such as msg
WinDelta to move it or msgWinSetVisible to hide it) in addition to all the mes
sages specific to an icon window (such as msgIconSetPictureSize). A class can
override or change some of its ancestors' messages; for example, the icon window
responds to msgWinRepaint by letting its ancestor label paint the string, then it
draws its picture.

clsObject

msgListAddltem
List

By making it very easy to inherit behavior from existing classes, class-based systems
encourage programmers to extend existing classes instead of having to write their
own software subsystems from scratch. If you create a new kind of window, sayan
icon with a contrast knob, you can make it a descendant of another class, and it will
inherit all the behavior of that class, or as much behavior as you choose.

You may find it easier to understand class-based programming by viewing code
instead of reading abstract explanations. The next few pages give some simple
examples of using messages and classes, and even the very simplest program in the
tutorial is fully class-based (in fact, for an application to run under PenPoint, it
must be class-based).

Remember that even when
the ancestor handles the
message, it uses the data
for the object that initially
received the message.

CHAPTER 4/ PENPOINT CLASS MANAGER 47

Sending a message
In PenPoint, you usually send a message to an object using the ObjectCallO func
tion (or ObjectSendO if the object is owned by another process). The differences
between ObjectCallO and ObjectSendO are detailed in Part 1: Class Manager, of
the PenPoint Architectural Reference.

Here's a real-life example of sending a message. PenPoint provides a utility class,
clsList, which maintains a list object. The messages that clsList responds to are doc
umented in Part 9: Utility Classes, of the PenPoint Architectural Reference and in the
clsList header file (PENPOINT\SDK\INC\LIST.H). This is the definition of msgList
AddItemAt from LIST.H:

Sending a message

/**
msgListAddItemAt takes P_LIST_ENTRY, returns STATUS
Adds an item to a list by position.
**/
#define msgListAddItemAt MakeMsg(clsList, 10)

Don't worry about the details of the definition right now; this just tells us that
msgListAddItemAt is defined by clsList, that the message uses a P _LIST_ENTRY

structure to convey its arguments, and that the message returns a value of type
STATUS when it completes.

We want to send msgListAddItemAt to a list object, telling it to add the value 'G'

to itself at position three in the list.

MsgListAdditem
List

Message arguments
Now, in order for a list object to respond appropriately to msgListAddItem, it's
going to need some additional information. In this case the additional information
is the item to add to the list (G), and where to add it (third postion). Most messages
need certain information for objects to respond correctly to them. The informa
tion, called message arguments, you pass to the recipient along with the message.

In this case, the header file informs us that msgListAddItemAt takes a
P _LIST_ENTRY. In PenPoint's C dialect, this means "a pointer to a LIST_ENTRY"

structure. Here's the structure:
typedef struct LIST_ENTRY {

U16 position;
LIST ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;

U16 is an unsigned 16-bit number, P _UNKNOWN means a 32-bit pointer to an
unknown. (Chapter 5, Developing an Application, describes the rest of PenPoint's
ubiquitous typedefs and #defines.)

The use of a weak word
like "takes" is deliberate.
Although a class usually
requires a specific message
argument structure, there
is no mechanism available to
detect when you pass it the
wrong structu reo

48 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

When you can deliver the message and its arguments to a list object, you're set.
Here's the C code to do it:

LIST list; II the object
LIST_ENTRY add; II structure for message arguments
STATUS s; II most functions return a STATUS value
II Add an item to the list:
II 1. Assemble the message arguments;
add. position = 3;
add. item = (LIST ITEM)'G';
II 2. Now send the message and message arguments to the object.
if ((s = ObjectCall(msgListAddItemAt, list, &add)) != stsOK) {

Dbg(Debugf(U_L(IIadd item failed: status is: Ox%lX", s)));
}

ObjectCall() parameters

The code fragment above assumes that the list object (list) has already been created;
object creation is covered later in this chapter. As you can see, ObjectCallO takes
three parameters:

., The message (msgListAddItem). Messages are just 32-bit constants defined by
a class in its header file. You can send an object a message defined by any of
the classes from which it inherits. (Some objects even respond to messages
defined by classes that are not their ancestors.)

., The object (list). Objects are referenced by UIDs, unique 32-bit ID numbers.
UIDs are discussed in more detail later .

., The arguments for the message (add). Not all messages take arguments (msg
FrameClose, for example, takes none), but others do (msgIconSetPictureSize,
for example, takes a width and height). The PenPoint Architectural Reference
manual and the header files (in this case, PENPOINT\SDK\INC\LIST.H) docu
ment each message's arguments.

ObjectCallO has one 32-bit parameter for all the message's arguments; if a message
takes more arguments than can fit in 32 bits, you must assemble the arguments in a
structure and pass ObjectCallO a pointer to the structure. In this case, msgList
AddItem takes a P _LIST_ENTRY, a pointer to a LIST_ENTRY structure. (The Pen
Point convention is that a type that begins with P_ is a pointer to a type.) Hence the
address of the add structure (&add) is passed to ObjectCallO.

Returned values
The result of sending a message is returned as a status value (type STATUS). stsOK
("status OK") is zero. All status values that represent error conditions are less than
zero. Note that STATUS is a 32-bit quantity, hence the %lX in the DebugfO state
ment to print out a long hexadecimal.

Some messages are designed to return errors that you should test for. For example,
the status returned by sending msgIsA to an object is stsOK if the object inherits
from the specified class, and stsBadAncestor if the object does not.

Some objects respond to messages by returning a positive value (which is not a
status value, but an actual number). Others return more complex information by

The term "parameters" is
used in function calls; the
term "arguments" is used for
data reqUired for a speci-Ac
message .

We use bold face to indicate
items de-Aned by Pen Point
and other symbols used in
examples .

CHAPTER 4 / PENPOINT CLASS MANAGER 49

filling in fields of the message argument structure supplied by the caller (or buffers
indicated by pointers in the message argument structure) and passing back the
structure.

How objects know how to respond
The list object responds to msgListAddltem because it is an instance of clsList. But
what does that mean?

The list object has several attributes. Among them are the class that created the
object and the instance data for that object. As described above, when you define a
class, you must also create a table of the messages handled by your class.

The Class Manager finds out which class created the object and looks for the
method table for that class. The method table tells the Class Manager that the class
has a function entry point for that message, so the Class Manager calls that func
tion entry point, passing in the message and the message argument structure.

Although the object receives the message, its class has the code to handle the
message.

If the class decides to give the message to its ancestor, it passes the message and the
message arguments to the ancestor (but the instance data is still the instance data
for the object that received the message).

clsObject

MsgListAddltem
List clsList

Creating an object
Where did the list object in the example above come from?

The short answer is that a client asked clsList to create an instance of itself by
sending msgNew to clsList. In many ways this is no different than when we sent
msgListAddltem to the list object in the previous example.

Classes and instances
The longer answer involves understanding the relationship among classes and

. instances. In the section "Sending a Message," we discussed the fact that you send
messages to objects and those objects respond to the messages. We also discussed
how a class describes the data structures and the code used by its instances.

A class responds to msgNew by manufacturing an instance of itself. What is an
instance? It is merely an identifier and the data structures that represent an object.

Creating an object

The Class Manager gives
the object a pointer to the
object's instance data. This
is one aspect of Pen Point's
data integrity.

50 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Thus, the class asks the Class Manager to allocate the data structure and assign an
identifier to the structure.

How can a class respond to a message? This is a fundamental concept and one that
is hard to understand at first: a class is an object, just like any other PenPoint object.
And just like any other PenPoint object, an object is an instance of a class. In the
case of classes, all classes are instances of clsClass.

You can think of classes as objects that know how to create instances.

When a client sends a message to a class, the class behaves like any other object and
allows the class that created it (clsClass) to handle the message. clsClass contains
the code that creates new objects.

Thus, in answer to our original question about how did the list object come into
being: a client sent msgNew to the object named clsList. clsList is an instance of
clsClass, so the code in clsClass created a new object that is an instance of clsList.

An alternative explanation
At an implementation level, here's what actually happens.

The PenPoint Class Manager maintains a database of data structures; each data
structure represents an object. The PenPoint Class Manager locates these objects by
32-bit values, called UIDs (unique identifiers); UIDs are explained later in this
chapter in "Identifying the new object: UIDs" on page 54. The data structure for
each object contains some consistent information (defined by clsObject) that indi
cates the class to which the object belongs and other attributes for the object. Other
information in the data structure varies from object to object, depending on which
class created the object.

When a client sends a message to an object, the Class Manager uses the UID to
locate the object. The Class Manager then uses the object's data structure to
find the class that created the object. The Class Manager finds the class and uses
the class's method table to find the entry point for the function that handles the
message.

To create an object, the process works the same way. A client sends msgNew to a
class object. The Class Manager locates the object, finds the class that created the
object (clsClass), and calls the function in clsClass that creates new objects.

The NEW structure
For many classes, the _NEW structure is identical to the structure that contains the
object's metrics.

You send msgNew to nearly every class to create a new instance of that class. In the
case of msgNew, the message argument value is always a pointer to a structure that
defines characteristics for the new object. This structure is commonly called the
class's _NEW structure because the name of the structure is a variation of the class
name, followed by _NEW. For clsList, the _NEW structure is LIST_NEW.

In other words, all classes
are objects, but not all
objects are classes.

When the object created by
ole;Clae;e; is an instance of
ole;Clae;e;, the new object is
a class.

The exceptions are
pseudo-classes and
abstract classes.

CHAPTER 4 / PENPOINT CLASS MANAGER 51

The _NEW structure is mainly used to initialize the new instance. For example,
when creating a new window you can give it a size and specify its visibility.

The _NEW structure differs depending on the class to which you send it. You can
find the specific _NEW structure to use when creating an instance of a class by
looking in the PenPoint API Reference manual or in the class's header file. For
clsList, messages and message arguments are defined in PENPOINT\SDK\INC\

LIST.H. The _NEW structure is LIST_NEW. This excerpt comes from the LIST.H file:
typedef struct LIST_NEW_ONLY {

LIST_STYLE style;
LIST FILE MODE fileMode;
U32 - - reserved[4];// Reserved

LIST_NEW_ONLY, *P_LIST_NEW_ONLY;

#define listNewFields\
objectNewFields \
LIST NEW ONLY list;

typedef struct LIST_NEW {
listNewFields

} LIST_NEW, *P_LIST_NEW;

".,.. Reading the _NEW structure definition

To read the _NEW structure definition, you need to perform the work that the
compiler does in its preprocessor phase, expanding the macro definitions. The
_NEW structures in the PenPoint API Reference have all been expanded for your
convenIence.

Start by looking for the definition for the _NEW structure (typedef struct
LIST_NEW) at the end of the example. The structure is represented by a #define
name (in this case listNewFields).

Here's where it gets tricky; start thinking about inheritance. The #define name (list
NewFields) has two parts:

.. The #define name for the objectNewFields structure of the class's immediate
ancestor (in this case, objectNewFields, which defines the arguments required
by clsObject) .

.. A _NEW_ONLY structure for the class being defined (LIST_NEW_ONLY). The
LIST_NEW_ONLY structure contains the actual msgNew arguments required
for clsList.

Each subclass of a class adds its own _NEW_ONLY structure to the ... NewFields
#define used by its immediate ancestor. This is how the _NEW structure for a class
contains the arguments required by that class, by its ancestor class, by that class's
ancestor, by that class's ancestor, and so on.

In this case, however, there is only one ancestor, clsObject. objectNewFields is
defined in PENPOINT\SDK\lNC\CLSMGR.H:

#define objectNewFields OBJECT NEW ONLY object;

Creating an object

52 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

OBJECT_NEW_ONLY is defined in the same file. It has many fields:
typedef struct OBJECT_NEW {

U32 newStructVersioni II Out: [msgNewDefaults] Validate msgNew

OBJ KEY
OBJECT

keYi
uidi

II In: [msgNew] Valid version
II In: [msgNew] Lock for the object
II In: [msgNew] Well-known uid
II Out: [msgNew] Dynamic or Well-known uid

OBJ CAPABILITY capi II In: [msgNew] Initial capabilities
CLASS objClassi II Out: [msgNewDefaults] Set to self

OS HEAP ID - - heapi

II In: [msgObjectNew] Class of instance
II In: [msg*] Used by toolkit components
II Out: [msgNewDefaults] Heap to use for
II additional storage. If capCall then
II OSProcessSharedHeap else OSProcessHeap

U32 spare!i II Unused (reserved)
U32 spare2i II Unused (reserved)
OBJECT_NEW_ONLY, OBJECT_NEW, * P_OBJECT_NEW_ONLY, * P_OBJECT_NEWi

Most elements in an argument structure are passed In to messages-you're speci
fying what you want the message to do. Out indicates that an element is set during
message processing and passed back to you. In: Out means that you pass in an ele
ment and the message processing sets the field and passes it back to you.

A _NEW_ONLY for each class

Why such a complicated set of types? Thanks to class inheritance, when you create
an instance of a class, you are also creating an instance of that class's immediate
ancestor class, and that ancestor's ancestor class, and so on up the inheritance hier
archy to the root Object class. Each ancestor class typically allows the client to ini
tialize some of its instance data. Many classes allow you to supply the msgNew
arguments of their ancestor(s) along with their own arguments.

This is true for clsList: it inherits from clsObject (as do all objects) and part of its
msgNew argument structure is the OBJECT_NEW argument structure for clsOb
ject. clsList has three msgNewarguments of its own: how it should file the entries
in the list, a list style, and a reserved U32.

These large message arguments structures are intimidating, but the good news is
that by sending msgNewDefaults, you get classes to do the work of filling in appro
priate default values. You then only need to change a few fields to get the new
object to do what you want.

Identifying _NEW structure elements
As a class adds a _NEW_ONLY structure to a _NEW structure, it also gives a name to
the _NEW_ONLY structure. From the clsList example, we can expand the
LIST_NEW definition as:

typedef struct LIST_NEW {
objectNewFields
LIST NEW ONLY listi

LIST_NEW, *P_LIST_NEWi

CHAPTER 4 / PENPOINT CLASS MANAGER 53

The name list identifies the LIST_NEW_ONLY structure within the LIST_NEW struc
ture with the name list. We can carryon the expansion to apply the definition of
objectNewFields:

typedef struct LIST_NEW {
OBJECT_NEW_ONLY object;
LIST_NEW_ONLY list;

} LIST_NEW, *P_LIST_NEW;

You can see now, when you create an identifier of type LIST_NEW, you can specify
the _NEW_ONLY structures by specifying their names. For example, if your code
contains:

LIST_NEW myList;

You can refer to the LIST_NEW_ONLY structure by myList.1ist, and the OBJECT_
NEW_ONLY structure by myList.object.

".. Code to create an object
This example code creates the list object to which we sent a message in the first
code fragment. Later code will show how the list class is itself created.

The preceding discussion mentioned that the client sends msgNew to a class to
create an instance of the class. The function parameters used in ObjectCallO for
msgNeware the same as before (the object to which you send the message, the mes
sage, and the message argument value).

As we have seen, the _NEW structure can get quite large (because most subclasses
add their own data fields to the _NEW structure). Many classes have default values
for fields in the _NEW structure, yet clients must be able to override these defaults,
if they want.

To initialize the _NEW structure to its defaults, clients must send msgNewDefaults
to a class before sending msgNew. msgNewDefaults tells a class to initialize the
defaults in the _NEW structure for that class. Mter msgNewDefaults returns, the
client can modify any fields in the_NEW structure and then can call msgNew.

LIST list; II Object we are creating.

Creating an object

LIST NEW new; II Structure for msgNew arguments sent to clsList.
STATUS Si

II Initialize _NEW structure (in new).
ObjCallRet(msgNewDefaults, clsList, &new, s);
II Modify defaults as necessary.
new.list.fileMode = listFileltemsAsData;
II Now create the object by sending msgNew to the class.
ObjCallWarn(msgNew, clsList, &new, s);
II The UID of the new object is passed back in the _NEW structure.
list = new.object.uid;

Because almost every message returns a status value (to say nothing of most func
tion calls), your code tends to become littered with status checking. Hence
PENPOINT\SDK\INC\CLSMGR.H defines several macros to check for bad status
values. This fragment uses one of those macros, ObjCallWarnO. ObjCallWarnO
does a standard ObjectCallO with its first three parameters, and assigns the return
value to its fourth. If the returned value is less than stsOK, ObjCa1IWarnO prints a

Status values less than
eteOK indicate errors.

54 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

warning to the debugging output device (when compiled with the DEBUG flag).
There are many other macros of a similar nature; they are documented in Part 1:
Class Manager of the PenPoint Architectural Reference.

Identifying the new object: UIDs
When you send msgNew to a class, the message needs to give you an identifier for
the new object (so your code can use it). As mentioned previously, messages often
pass back values in the structure that contains the message arguments. In this case,
clsObject passes back the UID of the newly created object in its OBJECT_NEW
structure (in object. uid).

In our code example, the UID for the new object was passed back in new.object.uid.
The sample copied the value to the object named list, and henceforth uses list when
referring to the new list object.

You refer to objects using UIDs. A UID is a 32-bit number used by the Class Man
ager to indicate a specific PenPoint object. An object's UID is not a C pointer; it con
sists of information used by the Class Manager to find an object and information
about the object's class and other things. The symbol list in this example is the UID
of our list object; clsList is the UID of the list class.

PenPoint defines many classes that clients can use to create instances for their own
use (such as the list class, the window class, and so on). All of these built-in classes
are depicted in the class hierarchy poster.

When a client sends msgNew to a class to create a new object, the class is identified
by a unique value. If an application knows this value and the class is loaded in
PenPoint, the application can create an instance of the class. This value is called a
global well-known UID.

Thr global well-known UIDs of all the public PenPoint classes, including clsList,
are clefined in PENPOINT\SDK\INC\UID.H. Because all PenPoint programs include
this header file when they are compiled, all programs know about these classes.

clsList is defined with this line in UID.H:
#define clsList MakeWKN(lO,l,wknGlobal)

MakeWKNO (pronounced "make well-known") is a macro that returns a 32-bit
constant. Here the parameters to MakeWKNO mean "create a well-known UID in
global memory for version 1 of administered ID 10." No other well-known UID
uses the number 10.

Eventually, when you finalize your application, you will need to define your own
well-known UIDs. Contact GO Customer Services at 1-415-358-2040 (or by
Internet electronic mail at gocustomer@go.com) for information on how to get a
unique administered value.

Until that time, you can use some spare UIDs, defined in PENPOINT\SDK\
INC\UID.H, for this purpose. These UIDs have the values wknGDTa through
wknGDTg.

There are other types of
UIDs: local well-known UIDs
and local private UIDs. There
are no global, private UIDs.

CHAPTER 4/ PENPOINT CLASS MANAGER 55

~ Creating a class
You have seen how to send a message to an object and how to send msgNew to a
class to create a new object. You use the same procedure to create any object and
send it messages, so you can send messages to any instance of any class in PenPoint.

The last step is to create your own classes for your application. At the very least, you
must create a class for your own application; frequently, you will also create special
window classes and data objects that draw and store what you want.

Creating a class is similar to creating an instance, because in both cases you send
msgNew to a class. When you create a class, you send msgNew to clsClass. This is
the class of classes. Remember that a class is just an object that knows how to create
instances of itself; in this case, clsClass knows how to create objects which them
selves can create objects.

In short, to create a class, you send msgNew to clsClass, and it creates your new
class object. A routine much like this in the PenPoint source files creates clsList; it is
executed when the user boots PenPoint (when the SYSUTIL.DLL is loaded).

Creating a class

Some classes, such as c:leLiet,
are created at boot time; other
classes are created later, such
as at application installation.

/**
ClsListInit
Install clsList
**/
STATUS ClsListInit (void)
{

CLASS NEW new;
STATUS s;

ObjCallWarn(rnsgNewDefaults, clsClass, &new, s);
new.object.uid = clsList;
new.class.pMsg = (P_MSG) ListMethodTable;
new.class.ancestor = clsObject;
new.class.size = SizeOf(P_UNKNOWN);
new.class.newArgsSize = SizeOf(LIST_NEW);
ObjCallRet(rnsgNew, clsClass, &new, s);
return stsOK;
II ClsListInit

New class message arguments

The important thing, as always, is the group of message arguments. Here the mes
sage is msgNew, just as when we created the list object; because we are sending it to
a different class, the message arguments are different. When sent to clsClass,
msgNew takes a pointer to a CLASS_NEW structure. Like LIST_NEW, CLASS_NEW

includes the arguments to OBJECT_NEW as part of its message arguments. Briefly,
the CLASS_NEW message arguments are:

.. The same OBJECT_~EW arguments used by other objects-a lock, capabili
ties, a heap to use (and a UID field in which the Class Manager returns the
UID of the object) .

.. The method table (new.class.pMsg) which is where you tell the class which
functions handle which messages. You must write the method table. This is
the core of a class, and is discussed in great detail in the next section.

56 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

• The ancestor of this class (new.class.ancestor). The Class Manager has to
know what the class's ancestor is so that your class can inherit behavior from
it; that is, let the ancestor class handle some messages. In this case, clsList is an
immediate descendant of clsObject.

• The size of the data needed by instances of the class (new.class.size). The Class
Manager needs the information to know how much room to allocate in mem
ory when it creates a new instance of this class.

• The size of the structure that contains information used to create a a new
instance of the class (new.class.newArgsSize).

For a list, the instance data is just a pointer to the heap where it stores the list infor
mation, hence the size is SizeOf(P _UNKNOWN). For other objects, the instance
data may include a lot of things, such as window height and width, title, current
font, etc. Note that an object has instance data for each of the classes it is an
instance of--not just its immediate class, but that class's ancestor, and that ances
tor's ancestor, and so on.

The instance data size must be a constant! If, say, a title string is associated with
each instance of your class, then you need either to have a (small) fixed-size title
or to keep the string separate and have a pointer to it in the instance data.

Method tables
Nearly all classes respond to messages differently than their ancestors do-other
wise, why create a new class? As a class implementer, you have to write methods to
do whatever it is you want to accomplish in response to a particular message.

In PenPoint, a method is a C function, called a message handler. The terms mes
sage handler and method are used interchangably.

When a client sends a message to an instance of your class, you want the Class
Manager to call the message handler that is appropriate for that message. You tell
the Class Manager what to do with each message through a method table.

A method table is simply a mapping that says "for message msgSomeMsg, call my
message handler MyFunctionO." You specify the table as a C array in a file that is
separate from your code (you must compile it with the method table compiler,
described below). A method table file has the extension .TBL. Each class has its own
method table; however, a single method table file can have method tables for several
classes. At the end of the file is a class info table that maps a class to the method
table for that class. There must be an entry in the class info table for each method
table in the file. The file looks something like this:

MSG_INFO clsYourClassMethods[] = {

msgNewDefaults, "myClassNewDefaults",
msgSomeMsg, "MyFunction",
0,

} ;

CLASS INFO classInfo[] = {

objCallAncestorBefore,
flags,

"clsYourClass", clsYourClassMethods, 0,
o

} ;

P _UNKNOWN is the typedef
used in Pen Point for a pointer
to an unknown type.

Important! Instance data
size must be a constant.

Some classes exist just to
de-Ane a set of messages;
the implementation of those
messages is up to its
descendants.

CHAPTER 4 I PENPOINT CLASS MANAGER 57

The quotation marks around the messages and classes are required. You can tell
the Class Manager to call your ancestor class with the same message before or
after calling your function by setting flags in the third field in the method table
(the third field in the CLASS_INFO table is not currently used and should always
contain 0).

Identifying a class's message table

To convert the method table file into a form the Class Manager can use, you com
pile the table file with the C compiler, then run the resulting object through the
Method Table compiler (PENPOINT\SDK\UTIL\CLSMGR\MT.EXE). This turns it into
a .OBJ file that you link into your application.

The most important argument you have to pass to msgNew when creating a class is
a pointer to this method table (new.class.pMsg in the code fragment above). When
you create the class, you set new. class. pMsg to cls YourClass.

When an object is sent a message, the Class Manager looks in its class's method
table to see if there is a method for that message. If not, the Class Manager looks in
the class's ancestor's method table, and so on. If the Class Manager finds a method
for the message, it transfers execution to the function named in the method table.

When the Class Manager calls the function named in the method table, it passes
the function several parameters:

• The message sent (msg).

• The UID of the object that originally received the message (self).

• The message arguments (pArgs). The Class Manager assumes that the message
arguments are a pointer to a separate message arguments structure).

• The internal context the Class Manager uses to keep track of classes (ctx).

• A pointer to the instance data of the instance.

Self
Self is the UID of the object that received the message.

As we discussed before, when an object receives a message, the class manager first
sees if the object's class can handle the message, then it passes the message to its
ancestor, which passes the message to its ancestor, and so on. However, the data
that each of those classes work on is the data in the object that first received the
message (which is identified by self). This is fundamental to understanding object
oriented programming in PenPoint: calling ancestor makes more methods available
to the data in an object, it doesn't add any new data.

A second fundamental concept is that an ancestor may need to make a change
to the data in the object. However, rather than making the change immediately
by calling a function, the ancestor sends a message to self to make the change.
Be careful not to get pulled into the semantic pit here; self means the object
that received the original message, not the ancestor class handling the message.
(Remember that the ancestors only make more functions available; not more data.)

Creating a class

Of course, each ancest.or
deals with only the parts of
the object data that it knows
about; an ancestor can't
modify a structure deflned
by its descendant.

58 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

Because the message is sent to self, self's class can inspect the message and choose
whether it wants to override the message or allow its ancestor to handle it. Each
ancestor inspects the message and can either override the message or pass it to its
ancestor. This continues until the ancestor that sent the original message receives
the message itself and, having given all of its descendants the opportunity to over
ride the message, now handles the message itself (or even passes the message to its
ancestor!) .

Possible responses to messages
Here are some of the flavors of responses you can make to a message in a message
handler:

4> Do something before and/or after passing it to the ancestor class. This might
include modifying the message arguments, sending self some other message,
calling some routine, and so on. This means that the class will respond to the
message differently than its ancestor.

4> Do something with the message, but don't pass the message to the ancestor
class. This is appropriate if the message is one you defined, because it will be
unknown to any ancestor classes. If the message is one defined by an ancestor,
this response means that you're blocking inheritance, which is occasionally
appropriate.

<$> Do nothing, but return some status value. This blocks inheritance, and means
that it's up to descendant classes to implement the message. This is not as
rare as it sounds; many classes send out advisory messages informing
their instances or other objects that something has happened. For example,
clsWindow sends self the message msgWinSized if a window changes size.
This is useful for descendant classes that need to know about size changes, but
clsWin itself doesn't care.

What messages does your message handler have to respond to? It usually ought to
respond to all the messages specific to your class which you define-no other
ancestor class will. Ordinarily an instance of each class has its own data, so most
classes intercept msgNew to execute a special initialization routine; if there are
defaults for an instance's data, the class will also respond to msgNewDefaults. Most
classes should also respond to msgFree to clean up when an instance is destroyed.

Here is clsList's method table.

II
II Include files
II
#include <list.h> II where the messages are defined
MSG INFO ListMethods []
{

1* clsObject methods *1
msgNewDefaults, "ListNewDefaults" , 0,
msgInit, "Listlnit", 0,
msgFree, "ListMFree" , 0,
msgSave, "ListSave", 0,
msgRestore, "ListRestore", 0,

When such a message is new
to a class (no ancestor), it is
called an abstract message.

CHAPTER 4 / PEN POINT CLASS MANAGER 59

} ;

/* clsList methods */
msgListFree, "ListMFree" , 0,
II Functions for the rest of the clsList methods ...
.. . ,
... ,
o

CLASS_INFO classInfo[]
{

} ;

"ListMethodTable" , ListMethods, 0,
o

Note that clsList responds to most intercepted messages by calling an appropriate
function (ListlnitO, ListMFreeO, and so on). The functions that implement the
various list messages are not printed here; indeed, external code should never call
routines internal to a class. One of the goals of object-oriented programming is to
hide the implementation of a class from clients using the class.

Creating a class

Chapter 5 / Developing an Application

Thus far, we have described the PenPoint™ operating system and PenPoint
applications from a conceptual point of view. By now you should understand
how PenPoint differs from most other operating systems and what the PenPoint
Application Framework and Class Manager do for you.

With this chapter we start to address what you, as a PenPoint application developer,
have to do when writing PenPoint applications.

+ The first section describes many of the things that you have to think about
when designing an application.

+ The second section describes some of the things that you have to consider
when designing an application for an international market.

• The third section describes the functions and data structures that you will
create when you write an application.

• The fourth section describes the cycle of compiling and linking that you will
follow when developing an application.

• The fifth section provides a checklist of things that you must do to ensure that
your application is complete.

• The sixth and following sections describe the coding standards and naming
conventions used by GO. Included in these sections is a discussion of some of
the debugging assistance provided by PenPoint.

• The last section describes the tutorial programs provided with the SDK.

Designing your application
When you design a PenPoint application, there are several separate elements that
you need to design:

• The user interface

• The classes

• The messages

+ The message handlers

+ The program units

This section points out some of the questions you must ask yourself when
designing an application. This section does not attempt to answer any of the ques
tions; many answers require a good deal of explanation, and many decisions involve
your own needs.

62 PENPOINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

Just read this section and keep these questions in mind as you read the rest of the
manual.

Designing the user interface
The most obvious part of a PenPoint application is the user interface. Almost as
soon as you determine what your application will do, you should begin to consider
your user interface.

Your user application should be consistent with the PenPoint user interface, which
is described in detail in the PenPoint User Interface Design Reference.

Designing classes
PenPoint provides a rich set of classes that can do much of the work for your
application. Your task is to decide which of these classes will serve you best. The
PenPoint Architectural Reference describes the PenPoint classes and what they can
provide for you.

If the classes provided by PenPoint don't do exactly what you need, you should look
for the class that comes closest to your needs, then create your own class that
inherits behavior from that class.

Designing messages
Mter determining that you need to create your own class, you need to decide what
messages you need. Usually you add new messages to those already defined by your
class's ancestors.

However, the real trick to subclassing comes when you decide how to handle the
messages provided by your class's ancestors. If you do not specify how your class
will handle your ancestors' messages, the PenPoint class manager sends the messages
to your immediate ancestor, automatically. If you decide to handle an ancestor
message, you then need to decide when your ancestors handle the message, if at all.
Do you:

.. Call the ancestor before you handle the message?

.. Call the ancestor after you handle the message?

., Handle the message without passing it to your ancestor at all (therebyover
riding ancestor behavior)?

Designing message handlers
Mter determining the messages that you will handle, you then need to design the
methods that will do the work for each of the messages. In considering the methods
and the information they need, you will probably start to get an idea of the instance
data that your class needs to maintain.

CHAPTER 5 / DEVELOPING AN APPLICATION 63
Designing for internationalization and localization

Designing program units
When you understand the classes that you require, you should consider how
to organize your classes and their methods into program units. The common
approach used in our sample code is to place the source for each class into a
separate file.

You should consider whether a class will be used by a number of different applica
tions or used by a single application. If the class can be used by more than one
application (such as a calculator engine), you should compile and link it into a
separate DLL (dynamic link library). Each application tells the installer which DLLs
it needs at install time. The installer then determines whether the DLL is present or
not. If not, it installs the DLL.

Designing lor internationalization and localization
PenPoint 2.0 Japanese contains support for applications that are written for
more than one language or region. The process of generalizing an application so
that it is suitable for use in more than one country is called internationalization.
Modifying an application so that it is usable in a specific language or region is called
localization.

PenPoint 1.0 already includes many features that will be used to support inter
nationalization. For example, PenPoint 1.0 uses PenPoint resource files to store its
text strings. When localizing to a specific language, a different resource file will be
created that contains text strings in that language.

There are two aspects to the changes implied by PenPoint 2.0 Japanese. The first is
making your application port easily to PenPoint 2.0 Japanese. The second is inter
nationalizing your application.

Porting Irom PenPoint J.O to PenPoint 2.0 Japanese
PenPoint 2.0 Japanese incorporates some major changes that will cause applications
compiled for PenPoint 1.0 to be incompatible with PenPoint 2.0 Japanese. The
data created by 1.0 applications should still work under PenPoint 2.0 Japanese, and
properly writtern 1.0 applications should be portable to PenPoint 2.0 Japanese with
nothing more than a recompilation.

This section describes how to write your PenPoint 1.0 application so that it will be
portable to PenPoint 2.0 Japanese. Using these guidelines does not mean that you
will have internationalized your application! Internationalization and localization
are much larger issues, and are dealt with elsewhere. These instructions are intended
only to make it easier for you to port your United States English application to
PenPoint 2.0 Japanese.

The biggest change is that PenPoint 1.0 uses the ASCII character set, while PenPoint
2.0 Japanese uses Unicode. ASCII is an 8-bit character set; Unicode is a 16-bit char
acter set. This affects character types, string routines, quoted strings, and other
string-related entities.

64 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Character types

PenPoint provides three character types: CHAR8, CHAR16, and CHAR. The first two
provide 8- and 16-bit characters, respectively. In PenPoint 1.0, the plain CHAR type
is 8 bits long; in PenPoint 2.0 Japanese, CHAR is 16 bits long. You need to convert
all of your character data to use the CHAR type, except where you know the size
you'll need will be the same under PenPoint 1.0 and PenPoint 2.0 Japanese (for
example, in the code that saves and restores data).

Any places where you depend on a CHAR having a small value, you should rethink
the problem. For example, if you currently translate a character by indexing 256-
element array (CHAR array[sizeof(CHAR)]), you probably won't want to use the
same strategy when sizeof(CHAR), and therefore the size of your array, is 65,536.

Any places where you depend on sizeof(CHAR) being one byte, you need to change
the value.

String routines

All of the familiar C string routines (strcmp, strcpy, and so on) still exist in PenPoint
2.0 Japanese, and they still work only on 8-bit characters. The INTL.H header file in
PenPoint 1.0 defines a new set of string routines (named UstrcmpO, UstrcpyO, and
so on) that perform the equivalent functions on 16-bit Unicode characters.

In PenPoint 1.0, the u ... O functions are identical to their 8-bit namesakes. In
PenPoint 2.0 Japanese, they are 16-bit routines. In other words, the old routines
only work on CHAR8 strings, while the u ... O routines work on CHAR8 strings in
PenPoint 1.0 and on CHAR16 strings in PenPoint 2.0 Japanese. If you use the u ... O
versions and CHAR strings in your PenPoint 1.0 code, you will not have to change
anything for PenPoint 2.0 Japanese, because CHAR is an 8-bit value in PenPoint 1.0
and a 16-bit value in PenPoint 2.0 Japanese.

You should use the u ... O versions wherever you use CHAR strings, which should be
for every string you display on the screen or debugging ourput device.

Character and string constants

When you use CHAR8, you can use standard C conventions for forming character
and string constants. That is:

CHAR8 *s = "string";
CHAR8 e = 'e';

When you use the CHAR16 type, you must precede the character or string constant
with the letter L, which tells the compiler you are using a 16-bit (long) character, as:

CHAR16 *s = L"string"
CHAR16 e = L'e'

When you use the CHAR type, you must precede the character or string constant
with the identifier U_1, which means UNICODE, long. In PenPoint 1.0, this tells
the compiler to use 8-bit characters; in PenPoint 2.0 Japanese, this tells the com
piler to use 16-bit characters.

CHAR *s = U_L"string";
CHAR e = U_L' e' ;

CHAPTER 5 / DEVELOPING AN APPLICATION 65
Designing for internationalization and localization

Preparing for internationalization
PenPoint 1.0 does not contain all the messages, functions, and tools that you
will need to internationalize your application. However, there are several facilities
available in PenPoint 1.0 that you can use to reduce the work needed to inter
nationalize. This section lists these facilities.

",... Move strings into resource files

You should move as many of your text strings into resource files as possible. When
text strings are hard-coded into your application, they are very difficult to translate
and do not allow users to change language dynamically. If you move your applica
tion's text strings into resource files they are easy to translate and allow users to
change language simply by substituting one resource file for another.

If you use the StdMsgO facility for displaying dialog boxes, error messages, and
progress notes, your text strings are already in resource files. The positional param
eter facility provided with StdMsgO and the compose text string routines do not
depend on the order of replaceable values in the function parameters. These func
tions are unlike printfO, where the order of the function parameters is directly
related to the order of replaceable values in the string. When you use StdMsgO
or compose text, the function parameters are always in the same order, but your
string can use them in the order dictated by the national language in which you
are writing.

Identify and modu/arize code that varies with locale

When internationalizing an application, moving its text strings to resource files
allows users to change the language, but in order to support another language, parts
of your application code must be equally replaceable. For example, when sorting
characters in another language, you must be prepared to handle different sort
sequences.

PenPoint 2.0 Japanese provides a number of services to perform functions that vary
by language, such as sorting, number formatting, number scanning, numbers with
units, times and dates (input and output), character comparisons, character conver
sions, spell-checking, and so on.

The PenPoint Services architecture enables you to create functions that users can
install and activate whenever they choose. For instance, users can install several
different printer drivers, but they only make one driver current at a time. Similarly,
users of PenPoint 2.0 Japanese can install several different sort engines and choose
one to use with the current language.

You should identify and flag any language-dependent routines, such as text manip
ulation, in your PenPoint 1.0 application. When you port the code to PenPoint 2.0
Japanese, use services to replace them wherever possible.

66 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Part 13: Writing PenPoint Services in the PenPoint Architectural Reference describes
how to create your own services. If you make your language-dependent functions
into services in PenPoint 1.0, the change to PenPoint 2.0 Japanese will be much
eaSIer.

New text composition routines

The file CMPSTEXT.H contains Compose TextO routines for assembling a com
posite string out of other pieces. Use these routines to create strings in your UI

don't use sprintfO! The ComposeTextO routines will also save you effort because
you can specify the resource ID of a format string and the code will read it from the
res file for you. You can, of course, give the format string directly to the routines.

Development strategy
Where do you start writing an application?

The PenPoint Application Framework provides so much boilerplate work for you,
it is very easy to create applications through incremental implementation. You start
with an empty application, that is, one that allows the Application Framework to
provide default handling of most messages. Then, one by one, you add new objects
and classes to the application, testing and debugging as you go.

As we shall see in Chapter 6, A Simple Application (Empty Application), the
PenPoint SDK includes sources for an empty application called Empty Application.
You can copy, compile, install, and run Empty Application.

This section describes the fundamental parts of PenPoint applications. These are
the parts that you will probably work on first. They are also the parts you will
return to many times to modify.

Application entry point
All PenPoint applications must have a function named mainO, which is the entry
point for an application. When the application is installed, mainO creates the appli
cation class and can create any other private classes required by all instances of the
application.

Application instance data
In PenPoint, objects that are instances of the same class share the same code. For
example, if there are two insertion pads visible on the screen, they are both running
the same copy of the insertion pad class code, but each instance of the insertion pad
has different instance data.

As soon as your application has data that can be different for each of its documents,
your application needs to maintain instance data.

What do you save in instance data?

The most common use of instance data is to save identifiers for objects created by
your application. The PenPoint object-data model suggests that any time you have
data, you should use a class to maintain that data.

CHAPTER 5 / DEVELOPING AN APPLICATION 67

When your application class has instance data, it must be prepared to respond to
msglnit by initializing values in the instance data (if needed).

Creating stateful objects
Stateful objects contain data that must be preserved when a document is not active.

You can do some interesting things with an application that uses only the behavior
provided by the Application Framework. However, soon after you start developing
an application, you will want the application to be able to save and restore data
when the user turns away from and turns back to its documents. To save and restore
documents, you need to create, save, and restore stateful objects.

Usually an application's instance data contains some stateful objects and some non
stateful objects.

If your application class has stateful objects, you must be prepared to handle:

msgApplnit by creating and initializing the stateful objects required by
a new document. Your application can create additional stateful objects
later.

msgSave by saving all stateful objects to a resource file.

msgRestore by restoring all stateful objects from a resource file.

Displaying on screen
Most applications need to display themselves on screen. The PenPoint Application
Framework provides access to the screen by creating a frame object.

When your application receives msgAppOpen, it should create the remaining non
stateful objects that it needs to display on screen, and then should display itself in
the frame provided by the application framework.

When your application receives msgAppClose, it should remove itself from the
frame and destroy all of its nonstateful objects.

".. Creating component classes
If you create new component classes that can be shared by a number of different
applications (or other components), you usually define the component classes in
a DLL file.

As an application executable file must have a function named mainO, a DLL file
must have a function named DLLMainO. DLLMainO creates the component
classes defined in the DLL.

Development cycles
The compile, install, test, and debug cycle in PenPoint is similar to the develop
ment cycle for most other operating systems. This section briefly describes the steps
involved in the development cycle. Later sections cover these steps in greater detail.

Development cycles

Any class with instance
data must respond to
msglnit in the same way.

68 PEN POINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

Compiling and linking
There are several types of files used to compile and link PenPoint applications.
These files include:

+ The make file.

+ The application's method table files.

• The application's C source and header files.

• The PenPoint SDK header and library files.

Method table files

You create a method table file to equate the messages handled by your class to a
function defined in your source. You create one method table per class, but one
method table file can cbntain several method tables.

You compile the method table and then compile the resulting intermediate object
file with the PenPoint method table compiler, MT. This produces:

• A header file that you use when you compile your C source.

+ An object file that you use when you link your application.

C source and header files

PenPoint applications are written in the C language; the object-oriented extensions
are provided through standard C function calls. The source for each class (applica
tion or component) is maintained in a separate file.

Following normal C programming practice, it is advisable to define your symbols,
structures, macros, and external declarations in one or more header (.H) files.

PenPoint SDK files

The PenPoint SDK header and library files are in the directories PENPOINT\

SDK\INC and PENPOINT\SDK\LIB, respectively.

You should include these directories in your compiler and linker search paths.

Installing the application
One difference between PenPoint and most other operating systems is that once
you have compiled an application, you must install the application into PenPoint
before you can use it. There is no "run" command in PenPoint, so you must use the
Notebook to transfer control to the application.

Additionally, all application code in PenPoint is shared. PenPoint must know where
your application code is installed so that all instances of your application use the
same code.

CHAPTER 5 / DEVELOPING AN APPLICATION 69

There are two ways to install an application into PenPoint:

.. Install when you boot PenPoint.

.. Install explicitly with the PenPoint application installer.

A developer's checklist

You can install an application when you boot PenPoint by adding your application's
PenPoint name to your PENPOINT\SDK\BOOT\locale\APP.INI file (where locale is
USA for United States English and JPN for Japanese).

You can explicitly install a PenPoint application by running the PenPoint applica
tion installer (found in the Connections and Settings notebooks).

You can use the Connections notebook to tell PenPoint to display the installable
applications (or any other installable items) whenever a volume becomes available.

". Debugging
There are a number of tools available to you to aid in debugging. Among them are:

.. Using DebugfO or DPrintfO statements to send text to the debugger stream.
You can use a second monitor or the system log application to view the debug
ger stream. You can also save the debugger stream in a log file. The DebugfO
and DPrintfO statements are described later in this Chapter. The system log
application is described in PenPoint Development Tools .

.. Using the PenPoint source debugger (DB) to debug your application. The
debugger is described in PenPoint Development Tools.

.. Handling msgDump. msgDump requests an object to format its instance
data and send it to the debugger stream. While developing an application, you
can send msgDump to any object whose state is questionable. From the
PenPoint source debugger, you can use the od command to send msgDump to
an object. It is not a good idea to send msgDump in production code.

A developer's checklist
When your PenPoint application does what you want it to, you can stop and
move on to your next project. However, PenPoint applications are far more useable
when they can interact with the PenPoint operating system and other applications.
There is such a wealth of interaction that it is easy to omit some behavior from your
application.

This section presents two checklists. The first checklist details all the interactions
that you should include in your PenPoint application, starting at the fundamental
Application Framework interactions. The second checklist lists the interactions that
you should consider adding to your application to improve its appearance or
usability.

70 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Checklist 01 required interactions
You should use this checklist to ensure that your application is complete. The items
in the checklist point to parts of this manual and the PenPoint Architectural Refer
ence where the item is described in detail.

Handle application class installation (in mainO when processCount equals 0).

o Create the application class.

Create any private classes used by the application class.

Handle application object instantiation (in mainO when processCount is
greater than 0).

Create an instance of your class.

Create any private classes required by an instance of your
application class.

Create any other objects required at the time.

Create and display windows.

Insert yourself into frame on msgAppOpen.

Remove yourself from frame on msgAppClose.

Handle application termination.

Respond to msgFree protocol.

Handle application deactivation or deinstallation (msgAppTerminate).

Handle msgDump.

Handle msgSave.

Save data.

Save objects.

Handle msgRestore.

Restore data.

Restore objects.

Observe objects.

Handle input.

Handle selection protocol.

Respond to Printing messages.

Checklist 01 nonessential items
Use this checklist to ensure that you have considered all possible nonessential addi
tions to your application. The items in the checklist point to parts of this manual
and the PenPoint Architectural Reference where the item is described in detail.

Add menus to SAMs.

Handle Option sheet protocols.

Create an option sheet.

Create application-specific option cards.

Allow Application Embedding.

Respond to move/copy protocol.

o Handle document import and export.

D Handle Undo.

D Respond to traversal protocols.

o Define document icons.

o Create Stationery.

D Create Help notebook files.

D Create Quick Help Resources.

GO~ coding conventions

CHAPTER 5 / DEVELOPING AN APPLICATION 71
GO's coding conventions

At GO, we have developed techniques to make PenPoint code easier to write,
understand, debug, and port. Some of our techniques are stylistic conventions,
such as how variable and function names should be capitalized. Others fall under
the category of extensions to C, including a suite of basic data types that are com
piler and architecture independent. This section describes:

• The conventions that GO code follows.

• The global types, macros, constants, and constructions provided in PenPoint.

• PenPoint's global debugging macros and other functions that we have found
useful to diagnose program errors.

While we would be delighted for you to follow all of our conventions, we obviously
do not expect every developer to do so. Conventions are a matter of taste, and you
should follow a style that is comfortable to you. However, we do recommend that
you make use of our extensions. They will help make your code easier to debug and
port. Also, by describing our style, we hope to make it easier for you to understand
our header files and sample code.

Typedefs
All typedefs are CAPITALIZED and use the underscore character to separate words.

typedef unsigned short U16;
typedef U16 TBL_ROW_COUNT;

Pointer types have the prefix P _.

typedef unsigned short U16, * P_U16;
typedef TBL_ROW_COUNT *P_TBL_ROW_COUNT;

In structure definitions, the name of the structure type is also the structure tag.
typedef struct LIST_ENTRY {

U16 position;
LIST_ITEM item;

} LIST_ENTRY, *P_LIST_ENTRY;

The tag name is used by the PenPoint source-level debugger.

72 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Variables
Variable names are mixed case, always starting with a lowercase letter, with capitial
ization used to distinguish words. Variable names do not normally include under
score characters.

U16 numButtons;

Pointer variable names are prefixed with a lowercase p. The letter following the p is
capitalized.

P U16 pColorMap;

Functions
Functions are mixed case, always starting with a capital letter, with capitialization
used to distinguish words. Function names do not normally include underscore
characters.

Function names often use a Noun-Verb style. The verb is what the function does,
the noun is the target of the function's action.

TilePopUp(); PenStrokeRetrace();

However, the mainO function is simply main 0 .

Defines (macros and constants)
Defines follow the same capitalization rules as variables and functions. Macros
follow the rules for function names (mixed-case, first letter uppercase) and con
stants follow the rules for variable names (mixed-case, first letter lowercase).

:j/:define OutRange (v, 1, h) ((v) < (1) I I (v) > (h))
:j/:define maxNameLength 32
:j/:define nameBufLength (maxNameLength+1)

Class manager constants
You use several special kinds of constants when writing Class Manager code:

• Class names

• Well-known objects

.. Messages

.. Status values

Class names

Class names start with "cls" followed by the name of the class: clsList, clsScrollBar,
and so on.

Well-known objects

Pre-existing objects in PenPoint to which you can send messages have the prefix
"the": theRootWindow, theSystemPreferences, and so on.

CHAPTER 5 / DEVELOPING AN APPLICATION 73
GO's coding conventions

~ Messages

Messages follow the standard style for constants, but have special prefix "msg". This
is followed by the name of the class that defines the message (possibly abbreviated)
and finally by the action requested by the message: msgListRemoveltem, msg
AddrBookChanged, and so on.

The exceptions to this rule are the basic clsObject messages, including msgNew,
msgSave, and msgFree, which apply to all classes. These basic messages do not
identify their class.

~ Status values

Like messages, status values follow the standard style for constants. However, all
status values start with the prefix sts. This is followed by the name of the class that
defines the status value (possibly abbreviated) and finally by a description of the
status: stsListEmpty and stsListFull.

For more information on the way unique messages and status values are con
structed for a class, please refer to Part 1: Class Manager of the PenPoint Architec
tural Reference.

Exported names
At GO, we use prefixes to indicate the architectural subsystem or component that
defines an exported variable, define, type, or function. Prefixes help lower the possi
bility of name conflicts across PenPoint. They also help developers find which files
contain the relevant source code.

Note that fields within exported structures are not prefixed, and locals within
sample code source files are generally not prefixed either.

For example, exported System Service names are all prefaced with os:
#define osNurnPriorities51
#define osDefaultPriority 0
typedef U16 OS_INTERRUPT_IDi II logical interrupt ID
STATUS EXPORTEDO OSProgramInstall

P_CHAR pCornmandLine, II dlc or exe name (and arguments)
P CHAR pWorkingDir, II working dir of the program
P-OS PROG HANDLE pProgHandle, II Out: program handle
P-CHAR pBadName, II Out: If error, dil/exe that was bad
P=CHAR pBadRef II Out: If error, reference that was bad

) i

The file PENPOINT\SDK\UTIL\TAGS\TAGS lists most of the exported names in
PenPoint. You can scan it to see if a particular prefix is used.

The standard global include file PENPOINT\SDK\INC\GO.H does not prefix its
identifiers-if something is common across PenPoint, such as the U16 type, it is not
prefixed in any way.

74 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

PenPoint file structure
At GO, we follow a similar structure for both header files and source code files.

The general structure of a header file is shown below:
file header comment
:jf:includes
:jf:defines
typedefs
global variables
function prototypes
message· headers

Here is the general format of the source code file for a class implementation:
file header comment
:jf:includes
:jf:defines
typedefs
global variables
internal functions
exported functions
"methods" implementing messages
class initialization function
main() function (for application classes)

File header comment

The file header comment contains a brief description of the contents of the file. It
also includes the revision number of the header file. If you have a problem using a
PenPoint API, the revision level of the software is important information.

Include directives
The include directives all follow the file header and are of the form:

:jf:include <incfile.h>

Note that the filename for the include file does not contain any directory informa
tion. To locate include files, you specify an include path externally (either in the
INCLUDE system variable or as a compiler flag).

Multiple inclusion

PenPoint has many subsystems, each linked to other subsystems. Each element
tends to have its own header file(s). Consequently, including the header file for one
subsystem leads to it including dozens of other subsystems. Often the same header
files are included by other header files. This can slow down compiling and may lead
to errors if header files are compiled in more than once.

All PenPoint header files guard against being included multiple times by defining
a unique string (FILENAME_INCLUDED) and checking to see if this string has been
defined:

/**
filename.h
(C) Copyright 1991, GO Corporation, All Rights Reserved.
Include file format.

CHAPTER 5 / DEVELOPING AN APPLICATION 75

$Revision$
$Author$
$Date$

***1
#ifndef FILENAME_INCLUDED
#define FILENAME_INCLUDED
II defines, types, and so on of header file
#endif II FILENAME_INCLUDED

where FILENAME is the name of the include file itself

You can speed up compiling by putting the same checks in your files to avoid
reading even the first few lines of a header file a second time:

#ifndef LIST_INCLUDED
#include <list.h>
#endif II LIST_INCLUDED

".,. Common header files

In a class implementation, if you include the header file of your immediate
ancestor, this will usually include the header files of all your ancestors.

If you include any header file at all, you will not need to include <GO.H>.

~ Defines, types, 910&0/s

Pen Point file structure

This section of a file holds all of the #defines, typedefs, and global and static decla
rations used only in this file. By grouping these items in one place, you will be able
to find them more easily.

Function prototypes
Function prototypes inlieatkr files indicate the parameters and format of PenPoint
functions. Each is preceded by a comment header:

1**
Function returns TYPE

Brief description.
Comments, remarks.
*1
function declaration;

For example:
1**
OSHeapBlockSize returns STATUS

Passes back the size of the heap block.
The size of the heap block is the actual size of the block. This may
be slightly larger than the requested size.
See Also

*1

OSHeapBlockAlloc
OSHeapBlockResize

STATUS EXPORTED OSHeapBlockSize
P UNKNOWN pHeapBlock, II pointer to the heap block
P=SIZEOF pSize II Out: size of the heap block

) ;

The header file descriptions of functions provide a "reminder" facility, not a
tutorial.

76 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Message headers
Many header files contain message headers, which are where messages are described
and where their constants and related data structures are defined. Message headers
have the following format:

1***
msgXxxAction takes STRUC_TURE, returns STATUS

category: message use
Brief description.

Comments, remarks.
*1
*define msgXxxAction MakeMsg(clsXxx, 1)
typedef struct STRUC_TURE {

} STRUC_TURE, *P_STRUC_TUREi

For example:

1**
msgAddrBookGetMetrics takes P_ADDR_BOOK_METRICS, returns STATUS.
Passes back the metrics for the address book.

*1
*define msgAddrBookGetMetrics
typedef struct ADDR_BOOK_METRICS

U16 numEntriesi
U16 numServicesi
U16 numGroupsi
U32 spare1i
U32 spare2i

MakeMsg(clsAddressBook, 8)

II Total number of entries
II Number of known services
II Number of groups in the address book

ADDR_BOOK_METRICS, *P_ADDR_BOOK_METRICSi

We relied on the regular format of message descriptions in header files to generate
the datasheets for messages in the PenPoint API Reference.

In, out, and in-out

In a message header, you can assume that all parameters and message arguments are
input-only (In) unless otherwise specified (Out or In-Out).

Indentation
Most PenPoint header files use four spaces per tab for indentation. Most program
mer's editors allow you to adjust tab spacing; setting it to four will make it easier to
read GO files.

Comments
In general, slash-asterisk C comments (1* and */) indicate the start and end of
functional areas, and slash C (II) comments are used for in-line comments within
functions.

Some coding suggestions
Here are some of the other conventions that GO code follows (more or less):

.. Always include the default case in your switch statements to explicitly show
that you are aware of what happens when the switch fails.

CHAPTER 5 / DEVELOPING AN APPLICATION 77
PenPoint types and macros

.. Don't use load-time initializations, except for constant values. Since PenPoint
restarts code without reloading it, your code should explicitly initialize your
variables.

.. Use #defines for constants and put the defines in an include file (if it is used
across multiple files) or at the beginning of the source file with a comment to
indicate its use.

.. When defining an external function, use prototype declarations to describe
the parameters and types it requires.

• Make calls to external functions as specified by the include file of the sub
system exporting the function .

.. If your files fully declare the types of their functions, this will help them to be
independent of any flags that may be set during compilation.

• A source file should compile without warnings.

• Structure names must not be used as exported names. Use the type name to
export a structure type. Structure names should be used only for self-referenc
ing pointers.

• Code for a single function should not exceed a few pages. Break it up (but
don't go overboard!).

• Use GO's Class Manager to support standard object-oriented programming
methodologies .

.. The most important parameter to a function should be the first parameter, for
example, WindowDrag(pWin, newx, newy). This is usually the object on
which the function acts.

PenPoint types and macros
In developing PenPoint, we found it useful to establish a "base" environment that
goes beyond the structures and macros provided by the C language. This section
describes many of these extensions. For a complete list, please look at
PENPOINT\5DK\INC\GO.H, where all of our extensions are defined.

Data types
To allow for portability between different C compilers and processors, we define six
basic data types that directly indicate their size in bits. Three are signed: 58, 516,

and 532. The others are unsigned: U8, U16, and U32. We also define corresponding
pointers for each, prefixed with P _, and pointers to pointers, which are prefixed
with PP_.

To plan for internationalization efforts, we provide the CHAR data type. CHAR is
functionally equivalent to char and is defined to be a U8 in PenPoint 1.0. In Pen
Point 2.0 Japanese, which includes support for international character sets, we've
changed CHAR to U16. Simply stated, you should use CHAR instead of char to
ensure an easier transition to PenPoint 2.0 Japanese.

78 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

CHAR has two related data types: P _CHAR, which represents a pointer to a char
acter, and PP _CHAR, which is a pointer to a string.

P _UNKNOWN is for uninterpreted pointers, that is, pointers that you do not deref
erence and about which code makes no assumptions.

P _PROC is for pointers to functions. It assumes the Pascal calling convention.

The SIZEOF type is for the sizes of C structures returned by sizeo£

The status values returned by many functions are of type STATUS. This is a signed
32-bit value, although most subsystems encode status values to indicate the class
defining the error to avoid status value conflicts. "Return values" on page 80
describes status values in greater detail.

~ Basic constants
Use the enumerated type BOOLEAN for logical values true and false. The BOOLEAN

type also defines the values True, False, TRUE, and FALSE to preempt any discus
sion about capitalization rules.

Similarly, null is the preferred spelling for null (0), but NULL is also defined. pNull
is a null pointer.

minS8, maxS8, minS16, maxS16, minS32, and maxS32 are the minimum
and maximum integer values for the three signed types. maxU8, maxU16,
and maxU32 are the maximum values of the three unsigned types. Obviously,
the minimum unsigned value is zero.

Names in many PenPoint subsystems can be no longer than 32 characters. This
limit is defined as maxNameLength. Since strings are normally null-terminated, we
define nameBufLength to be maxNameLength + 1.

Legibility
GO.H defines AND, OR, NOT, and MOD to be the corresponding C logical "punctu
ation;" this avoids confusion with the double-character bit operators && and II.

Compiler isolation
GO.H provides macros and other #defines that you can use to ensure compiler
independence.

Function qualifiers

GO.H introduces a layer in between the special function qualifier keywords, such as
STATIC, by providing uppercase versions of all these keywords.

Using the uppercase versions allow you to easily remove or redefine these keywords
in source code if necessary. This allows you, for example, to experiment with
changing the calling sequences of your code to check for errors or changes.

It's important to explicitly specify calling conventions in your function prototypes
so that code can compile with a different set of compiler switches from GO's
defaults, yet still observe the protocol requirements.

CHAPTER 5 I DEVELOPING AN APPLICATION 79
Pen Point types and macros

STATIC, LOCAL, and GLOBAL are compiler #defines that support the appearance
(if not the reality) of modular programming .

.".,.. Enumerated values

Some compilers base the size of an enum value on the fields in that enum. This has
unfortunate side effects if an enum is saved as instance data; programs compiled
under different compilers might read or write different amounts of data, based on
the size of the enum as they perceive it.

To guarantee that an enum is a fixed size, use the Enum160 and Enum320
macros. These macros create enums that are 16 and 32 bits long, respectively. The
macros expect a single argument-the name of the enum to be defined.

Within an Enum160 or Enum320, use the bit flags (HagO through Hag31, also
defined in GO.H) to define enumerated bits.

Most PenPoint header files indicate when bits in an enum can be ORed to specifY
several flags. If a PenPoint header file uses the HagO-style bit flags, assume that you
can OR these flags.

Data conversion and checking
AbsO, EvenO, and OddO are macros that perform comparisons, returning a
boolean. Max and Min return the larger and lesser of two numbers, respectively.

OutRangeO and InRangeO check whether a value falls within a specified range.
They work with any numeric data type.

Be careful when using the AbsO, MinO, MaxO, OutRangeO, and InRangeO
macros because their parameters are evaluated multiple times. If a function call
is used as an argument, multiple calls to the function will be made to evaluate
the macro.

8it manipulation
GO.H defines each bit as HagO through Hag31, with HagO being the least-significant
(rightmost) bit.

LowU160, HighU160, LowUBO, and HighUBO extract words and bytes by
casting and logical shifts. MakeU160 and MakeU320 assemble words and 32-bit
quantities out of 8-bit and 16-bit quantities.

FlagOnO and FlagOffO check whether a particular flag (bit) is set or reset.
FlagSetO and FlagClrO set a particular flag. All four can take a combination of flags
ORed together. You can use these bit manipulation macros with U8, U16, or U32

data types.

80 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Tags
There are several types of values passed around or otherwise shared among
subsystems and applications in PenPoint:

.. Class names

.. Messages

.. Return values

.. Window tags

All of these are 32-bit constants (U32). As you develop code and classes, you will
define your own. It is vital that they not conflict, so GO provides a tag mechanism
to guarantee unique names for them. GO administers a number space in which
every developer can reserve a unique set of numbers. A tag is simply a 32-bit con
stant associated with an adminstered number. With each administered number you
can define 256 different tags: because the administered numbers are unique, so will
be the tags.

You usually use your classes' administered number to define messages, status values,
and window tags, since these are all usually associated with a particular class. See
Part 1: Class Manager of the PenPoint Architectural Reference for an explanation of
how classes, tags, and administered numbers relate to each other.

Return values
Most PenPoint code returns error and feedback information by returning special
values from functions rather than generating exceptions. PenPoint still uses excep
tions for certain types of errors: GP fault, divide by 0, and so on. Otherwise, func
tions that return success or failure must return a status value. Status values are 32-
bit tags, defined in GO.H:

typedef S32 STATUS, * P_STATUSi

The universal status value defined to mean "all is well" is stsOK. By conven
tion, return values less than stsOK denote errors, while return values greater than
stsOK indicate that the function did not fail, but may not have completed in the
usual way.

There is a set of GO standard status values that you can use in different situations
(described below), but usually each subsystem needs to define its own specific status
values. To guarantee uniqueness among status values returned by third-party soft
ware, group your status values by class, even if the status does not come from a
class-based component. GO administers well-known numbers for classes, as
explained above in "Tags."

Defining status values

GO.H defines a macro, MakeStatus(wkn,sts), to make a 32-bit error status value
from a well-known 32-bit identifier and an error number. Usually, the well-known
number is the class that defines the error.

CHAPTER 5 / DEVELOPING AN APPLICATION 81

Pen Point types and macros

To make a status value that does not indicate an error, use MakeWarning(cls, msg),
which creates a positive tag.

So, if you want to define status values, all you need is a reserved class. GO can allo
cate one for you. You can then define up to 256 error status values and 255 success
status values, using MakeStatusO and MakeWarningO with numbers in the range
0-255. If you need more status values, you can request another class UID.

~ Pseudodasses for status values

Since not everything in the PenPoint API is a message-based interface to an object
oriented class, there are several pseudoclasses defined solely to provide "classes" for
status values from some subsystems: clsGO, clsOS, clsGoMath, and so on. You can
ask GO for your own pseudoclasses for error codes if necessary.

~ Testing returned status values

To test a STATUS value for the occurrence of an error, just test whether the value is
less than stsOK. To test for one specific error, compare the value to the full error
code from the appropriate header file. There are macros to assist in this, described
in "Error-handling macros" on page 82.

There are a small number of system-wide error/status conditions. You can return a
generic status value instead of defining your own, so long as you use it consistently
with its definition. If you need to convey a slightly different sense, define your own
context-specific status value.

Here are the generic status values. Their "class" identifier is the pseudo-class clsGO.

Status value

stsOK

,.. Errors

stsBadParam

stsNoMatch

stsEndOfData

stsFailed

stsTimeOut

stsRequestNotSupported

stsReadOnly

stsIncompatible Versions

stsNotYedmplemented

stsOutOfMem

,.. Nonmerror status values
stsRequestDenied

stsRequestForward

sts TruncatedData

lJescripticm

Everything's fine.

One or more parameters to a function call or message are invalid.

A lookup function or message was unable to locate the desired item.

Reached the end of the data.

Generic failure.

A time-out occurred before the requested operation completed.

The message is not supported.

The target can't be modified.

The message has a different version than the recipient.

The message is not yet fully implemented.

The system has run out of memory.

The recipient decided not to perform the operation.

The recipient asks the caller to forward the request to some other object.

The request was satisfied, but not all the expected data has been
passed back.

82 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The macro StsOKO returns true if the status returned by an expression is greater
than or equal to stsOK. If you want to check for any status other than stsOK, use
StsFailedO. See "Error-Handling Macros," below.

Return status debugging function
The function Sts WarnO evaluates any expression that returns a STATUS. If you do
not set the DEBUG preprocessor variable during compilation, StsWarnO is defined
to be the expression itself-a no-op. This means that whenever you call a function
that returns a status value, you can use StsWarnO.

If DEBUG is defined, and the expression evaluates to an error (less than stsOK),
then StsWarnO prints the status value returned by the expression together with the
file and line number where StsWarnO was called (the special compiler keywords
FILE and _LINE_).

Human-readable status values

You can load tables of symbol names in the Class Manager so that if you have set
DEBUG, the above functions will print out a string for status return values, instead
of a number. For an example of this, see the S_TTT.C file of the Tic-Tac-Toe sample
program in Part 7: Sample Code.

Error-handling macros
Every PenPoint function or message returns a STATUS that you should check. The
following status macros make function checking much easier by handling typical
approaches to handling errors.

Error handling appr@@cn

Check for an error (no warning)

Check for an error and warn

Return if result is an error

Jump to an error handler if result is an error

Check that the result is not an error

StsChkO

StsFailedO

StsRetO

StsJmpO

StsOKO

The Class Manager defines similar macros for checking the status values returned
when sending a message.

Each status value checker works with any expression that evaluates to a STATUS.

Each takes the expression and a variable to assign the status to. All of these macros
(except StsChkO) call StsWarnO, so that they print out a warning message if you
set the DEBUG preprocessor variable during compilation.

Since often one function calls another which also returns STATUS, using these
macros consistently will give a "stack trace" indicating the site of the error and the
nested set of functions which produced the error.

The examples below assume that MyFuncO returns STATUS.

CHAPTER 5 / DEVELOPING AN APPLICATION 83

".,.. StsChk(se, s)

Checks for an error.

Pen Point types and macros

• Description Sets the STATUS s to the result of evaluating se. If s is less than
stsOK, returns true, otherwise returns false. Does not print out a warning
message.

• Example
STATUS s;
if (StsChk (MyFunc (param1, param2), s)) {

II MyFunc() failed

".,.. StsFailed(se, s)

Checks for an error.

• Description Sets the STATUS s to the result of evaluating se. If s is anything
other than stsOK, returns true and prints an error if DEBUG is set. If s is
stsO K, returns false.

• Example
STATUS s;
if (StsFailed(MyFunc(param1, param2), s)) {

II MyFunc() returned other than stsOK, so check status
switch (Cls(s)) {

else {
II MyFunc() did the expected thing, so continue

• Remarks This is analogous to StsOKO, but it reverses the sense of the test
in order to be more consistent with other checking macros.

StsJmp(se, s, label)

Jump to label on error.

'*' Description Sets the STATUS s to se. If s is less than stsOK, it prints an
error if DEBUG is set and does a go to to label. This is useful when you have a
sequence of operations, any of which can fail, each having its own clean-up
code.

'*' Example
STATUS s;
pMem1 = allocate some memory;
StsJmp(MyFunc(param1, param2), s, Error1);
pMem2 = allocate some more memory;
StsJmp(MyFunc(param1, param2), s, Error2);

return stsOK;
Error2:

II Handle error 2.
OSHeapBlockFree(pMem2);

Error1:
II Handle error 1.
OSHeapBlockFree(pMem1);
return s;

84 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

~ StsOK(se, s)

Checks that things are OK .

.. Description Sets the STATUS s to the result of evaluating se. If s is greater
than stsOK, returns true. Otherwise, prints an error if DEBUG is set and
returns .

.. Example
STATUS S;
if (StsOK(MyFunc(paraml, param2), s)) {

II MyFunc() succeeded, continue.
else {

II MyFunc() failed, check status.
switch (Cls(s)) {

Remarks This is analogous to StsFailedO, but reverses the sense of the test
and returns true for any status value that is not an error. In other words,
this could return true, but the status might be some other value than
stsOK, such as stsNoMatch.

StsRet(se, s)

Returns status on error .

.. Description Sets the STATUS s to se. If s is less than stsOK, prints an error if
DEBUG is set and returns s. This is useful if one function calls another and
should immediately fail if the second function fails .

.. Example
STATUS S;

II If MyFunc has problems, return.
StsRet(MyFunc(paraml, param2), s);

Debugging assistance
GO has developed a set of useful functions and macros to assist in debugging
PenPoint applications. They are no substitute for DB, the PenPoint Source-level
debugger, or the PenPoint mini-debugger (both these debuggers are documented in
PenPoint Development Tools). However, they help you trace the operation of a pro
gram without using a debugger. They are an elaboration of the time-honored tech
nique of inserting printfO lines in your code.

Printing debugging strings
DPrintfO and DebugfO print text to the debugger stream. They take a formatting
string and optional parameters to display, in the same manner as as the standard c
function printfO. The only difference between D PrintfO and DebugfO is that
DebugfO supplies a trailing newline (if you want a newline at the end of DPrintfO
output, end it with \n).

Debugf("Entering init method for clsApp");
Debugf ("main: process count = %d", processCount);

CHAPTER 5 / DEVELOPING AN APPLICATION 85

".,. Debugger stream

The debugger stream is a pseudo-device to which programs (including PenPoint)
can write debugging information. There are several ways to view the debugger
stream:

• If you have a single screen, you can see the most recent lines written to the
debugger stream when you press Pause.

Debugging assistance

• If you have a second (monochrome) monitor, serial terminal, or PC running
communications software, you can constantly watch the debugger stream on
this monitor while you run PenPoint on the main (VGA) monitor.

You can send the debugger stream to a log file, by setting the 0 debugger flag
to the hexadecimal value 8000. Usually you do this in the ENVIRON.lNI file,
but you can also do it from the PenPoint symbolic debugger, or from the
mini-debugger.

DebugSet=/DD8000
DebugLog=\\boot\tmp\run3.log

• You can use the System Log application to view the debugger stream while
running a PenPoint appliction.

None of these destinations are mutually exclusive.

",.. Assertions
Often when working on functions called by other functions, you assume that the
software is in a certain state. The ASSERTO macro lets you state these assumptions,
and if DEBUG is set, it checks to see that they are in fact the case. If they are not sat
isfied, it will print an error. For example, a square root function might rely on never
being called with a negative number:

void MySqRoot(int num) {
ASSERT(num >= 0, "MySqRoot: input parameter is negative!");
II Calculate square root ...

The test is only performed if DEBUG is defined.

Debugging flags
At different times you want to print different debugging information, or you want
your program to work a certain way. DEBUG is the common #define used by Pen
Point to include debugging output; if you set DEBUG when compiling, the status
checking macros print out additional information, the ASSERTO macro is enabled,
and so on. You can use your own C preprocessor directives to get finer control over
program behavior, for example:

OBJECT myDc
#ifdef MYDEBUGl
II Dump DC state
ObjectCall(msgDump, myDc, Nil(P_ARGS));
#endif

The disadvantage of this technique is that you must recompile your program to
enable or disable this code.

86 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Another approach is to check the value of a flag in your code. PenPoint supports
256 global debugging Hag sets. Each flag set is a 32-bit value, which means that
you can assign at least 32 different meanings to each debugging flag set.

Because there are 256 debug flag sets, they can be indexed by an 8-bit character.
Commonly, we refer to a specific debugging flag set by the character that indexes
that flag. GO has reserved all the uppercase character debug flags sets (A through z),
and has reserved some of the lowercase characters also. To find which debug flag
sets are available, see the file PENPOINT\SDK\INC\DEBUG.H.

You can set the value of a flag set, and retrieve it. The typical way you use debug
ging flag sets is to set the value of a flag set before running a program, and in the
program check to see which bits in the flag set are on. The function DbgFlagGetO
returns the state of a flag set ANDed with a mask.

For example, if you were using the flag F in your program and were checking the
third bit in it to see whether or not to dump an object, the code above would be:

if (DbgFlagGet (' F', Ox0004)) {
II Dump DC state
ObjectCall(msgDump, mydc, Nil(P_ARGS));

You only need to compile your program once, and you can turn on object dumping
by changing the F flag set to Ox4 (or Ox8, or OxF004, and so on). The disadvantage
of this is that the flag-testing code is compiled into your program, increasing its size
slightly. Often programmers bracket the entire DbgFlagGetO test within a DbgO
macro so that the flag-testing code is only compiled while in the testing version of
their program.

Setting debugging flag sets

There are several ways to set debugging flag sets. Note that there is a single set of
these flags shared by all processes.

• In PENPOINT\BOOT\ENVIRON.INI, set the flag to the desired bit pattern with:
DebugSet=/DFnnnnIDfmmmm ... ,

where F and fare letters that identify a particular flag set and nnnn and mmmm are
a hexadecimal values. For example, DebugSet=/DFE004.

• By typing fs F nnnn in either the PenPoint source-level debugger or the
PenPoint mini debugger.

• By using DbgFlagSetO in a program, for example:
DbgFlagSet('F' ,OxE004).

Suggestions

Isolate debugging messages

In general, always isolate all debugging code using preprocessor directives:
#ifdef DEBUG
Debugf(U L(~Debugging output string"))
#endif -

CHAPTER 5 / DEVELOPING AN APPLICATION 87
The tutorial programs

DEBUG is the conventional flag for debugging code, used by much of PenPoint. If
you have a short statement that you want to isolate for debugging purposes, you
can use the DbgO macro, which has the effect of using the preprocessor directives
shown above:

Dbg(Debugf(U_L("Debugging output string")))

~ Use the status-checking macros

Using the status-checking macros StsOKO, StsJumpO, and so on, and their coun
terparts for sending messages may seem cumbersome, but they provide useful
debugging information if DEBUG is defined. Also, since most functions and mes
sage sends return the error status if they encounter an error, the "stack" of status
prints provides a traceback showing where the error first occurred and who called it.

This status error listing shows the result of sending msgDrwCtxSetWindow to
objNull:

c> ObjectCall: sts=stsBadObject "tttview.c".@232 task=Ox05d8
c> object=objNull
c> msg=msgDrwCtxSetWindow, pArgs=26ec0438
» StatusWarn: sts=stsBadObject "tttview.c".@330 task=Ox05d8
» StatusWarn: sts=stsBadObject "tttview.c".@743 task=Ox05d8
Page fault in task 05D8 at IB:440CCD52. Error code = 0004.
EAX=OOOOOOOO EBX=04000002 ECX=E002E5CF EDX=440CCD05 ESI=41BC8EFO EDI=4401EC38
EIP=440CCD52 EBP=004329EO ESP=004329CC FLG=00010246 CR2=0000000C CR3=00077000
CS=OOlB DS=002B SS=002B ES=002B FS=OOOO GS=OOOO TSS=05D8 TNAME=TICl

,.", Use the debuggers

If your code crashes unexpectedly, you can use the PenPoint mini-debugger to get
a stack trace at the assembly-language level (type st at its> prompt). The linker's
.MAP files enable you to translate assembly language addresses to functions and line
numbers.

If you suspect that your code is going to crash or behave improperly, run it from the
PenPoint source-level debugger. This lets you step through your code, query and set
values, and evaluate simple c expressions.

Both debuggers are described in PenPoint Development Tools.

The tutorial programs
Now that you've read the broad overview of PenPoint and its class-based applica
tions, views, and objects, you are ready to get down to some of the nuts and bolts of
writing an application. This section describes the remaining chapters in this book
and the sample programs used in those chapters. The programs are:

• Empty Application

• Hello World (toolkit)

• Hello World (custom window)

• Counter Application

• Tic-Tac-Toe

• Template Application

88 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Chapter 6, A Simple Application (Empty Application), explains how to compile
and run programs using Empty Application. The chapter is quite long because it
teaches the general development cycle:

., How to compile an application .

., How to install an application on a PC or PenPoint computer.

• How to run an application .

., Some interesting things to look for when running any application .

., How to use some of the PenPoint debugging tools.

The Empty Application is used to illustrate these steps, but the comments are
applicable to all the other sample applications.

Empty Application
The tutorial starts off with an extremely simple application, Empty Application.
Chapter 6 explains how to build and run it and how the application works. Empty
Application has no view, no data, and no application-specific behavior (apart from
printing a debugging message). It only responds to one message from the Applica
tion Framework. However, it does create an application class (as all PenPoint appli
cations must), and through inheritance from dsApp, you can create, open, float,
zoom, close, rename, file, embed, and destroy Empty Application documents.

Hello World (Toolkit)
The next application is the traditional "Hello World" application. This prints
Hello World! in its window. Rather than creating a window from scratch, this uses
the existing User Interface Toolkit components. One of these is dsLabel, which dis
plays a string. Hello World (toolkit) uses this existing class instead of creating its
own. The components in the UI Toolkit are rich in features; for example, labels can
scale their text to fit. If you can use a toolkit class, do so.

Hello World (toolkit) is described more fully in Chapter 7, Creating Objects (Hello
World: Toolkit).

CHAPTER 5 / DEVELOPING AN APPLICATION 89
The tutorial programs

'r Hello World (Custom Window)
Of course it is possible to draw text and graphics yourself. Hello World (custom
window) draws the text Hello World in its window, and draws a stylized exclama
tion mark beside it. To do this, the application must create a separate window class
and create a system drawing context to draw in its window, which is substantially
harder than using toolkit components.

Hello World (custom window) is described in Chapter 8.

'r Counter Application
Counter Application displays the value of a counter object in a label. It creates a
separate counter class and interacts with it. The application has a menu created
from UI Toolkit components that lets the user choose whether to display the
counter value in decimal, hexadecimal, or octal.

Both the application and the counter object must file state. The tutorial programs
presented before Counter Application are not stateful, that is, they don't have data
that the user can change permanently. Realistic applications must allow users to
change things, so they must file their state.

The application object uses a memory-mapped file to keep track of its state. Using
a memory-mapped file avoids duplicating data in both the memory file system
in program memory. By contrast, the counter object writes its value to a file when
it is saved.

The counter application is described in Chapter 9.

Tic-Tac-Toe
The rest of the tutorial develops a "real" working application, Tic-Tac-Toe. This
application is covered in Chapters 10 and 11.

Tic-Tac-Toe presents a tic-tac-toe board and lets the user write Xs and Os on it. It is
not a true computerized game-the user does not play tic-tac-toe against the com
puter. Instead, it assumes that that there are two users who want to play the game
against each other.

Although a tic-tac-toe game is not exactly a typical notebook application, Tic-Tac
Toe has many of the characteristics of a full-blown PenPoint application. It has a
graphical interface, handwritten input, keyboard input, gesture support, use of the
notebook metaphor, selection, data import and export, option cards, undo support,
stationery, help text, and so on.

90 PEN POINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

Template Application
As its name implies, Template Application is a template, "cookie cutter" applica
tion. As such, it does not exhibit much functionality. However, it does handle many
"typical" application messages. This aspect makes Template Application a good
starting point for building a real application.

Other code available
Other source code is provided in the SDK in addition to the tutorial code.

All the source to sample programs is on-disk in PENPOINT\SDK\SAMPLE. Some of
the other sample programs are described in Appendix A, Sample Code. Excerpts
from sample programs also appear and are described in those parts of the PenPoint
Architectural Reference that cover related subsystems.

Chapter 6 / A Simple Application
(Empty Application)

Applications written for many operating systems have to perform housekeeping
functions by implementing their own boilerplate code; that is, code that is essen
tially the same from one application to the next. In the PenPoint™ operating
system, the PenPoint Application Framework performs most of these housekeeping
functions. By using the Application Framework, you can create an application that
can be installed, that can create multiple instances of itself, that can handle page
turns, floats and zooms, and that can display an option sheet, all without writing an
additional line of code.

Empty Application is a very simple application. Like all PenPoint applications,
Empty Application is a subclass of dsApp, so Empty Application inherits all of the
Application Framework behavior. The only additional code in Empty Application
is a method that responds to msgDestroy by sending a message to the debug stream
(when the program is compiled with the DEBUG preprocessor #define name).

The PenPoint Application Framework is responsible for everything else Empty
Application does. Because the Application Framework handles so much of an
application's interaction with the system, even such an insubstantial application
has substantial functionality.

Files used
The code for Empty Application is in PENPOINT\SDK\SAMPLE\EMPTYAPP. There
are three files in the directory:

EMPTYAPP.C Contains the application class's code and initialization routine.

METHODS.TBL Contains the list of messages that the application class
responds to and the associated message handlers to call.

MAKEFILE Contains rules that tell the make utility how to build Empty
Application.

There is also a text file file called README.TXT that describes Empty Application,
but the README. TXT file is not required to compile and link the application.

Not the simplest
The name Empty Application is not quite accurate, because it isn't totally empty.
You could create an application with no method table at all; that is, one that
responds to no messages at all and relies entirely on methods inherited from dsApp.
Empty Application handles one message by printing a string to the debug stream,
so it needs a method table.

92 PEN POINT APPLICATION WRITING GUIDE
Part 1 /Application Writing Guide

Compiling and linking the code
The source code for sample applications is in subdirectories of PENPOINT\SDK\

SAMPLE. Each subdirectory contains a "makefile" that tells the make utility how to
build the application. All you need to do to compile and link Empty Application is
make PENPOINT\SDK\SAMPLE\EMPTYAPP the current directory and start the make
utility, but you need to understand what the files are doing so that you can later
modify the makefiles to fit your needs.

These sections describe the actual commands used to compile, link, and stamp
EMPTYAPP.

Compiling method tables
You compile method tables into an object file by running them through the
PenPoint method table compiler (in PENPOINT\SDK\UTIL\CLSMGR\MT.EXE).

By convention, method tables have the suffix .TBL. The control files that the make
utility uses include a default rule for compiling method tables. MT produces an
object file and a header file for the method table. You use these files when you com
pile and link the application.

Installing and running Empty Application
As described in the "How applications work" on page 24, you must install an appli
cation in PenPoint before you can run it. To install Empty Application, you either
install it at boot time or use the Settings notebook on a running PenPoint system.
The Application Installer is described in Using PenPoint.

To install the application at boot time:

+ Add a line that says \ \BOOT\PENPOINT\APP\Empty Application to PENPOINT\

BOOT\locale\APP.INI (where locale is USA or JPN).

+ Boot PenPoint on your PC .

.. When the Notebook appears, draw a caret A in the TOC to insert an Empty
Application document in the Notebook.

When you create an Empty Application document in the Notebook, PenPoint cre
ates a directory for the document in the application hierarchy (that's why it shows
up in the table of contents), but it's only when you turn to the document's page
that a process for the document is activated. Until then the document isn't running
and doesn't have a process or a valid dsEmptyApp object.

Interesting things you can do with Empty Application
Although Empty Application doesn't do any useful work, you can learn a lot about
the operation of PenPoint by studying it. PenPoint provides a host of features and
support to even the simplest application. You can try the following:

The section "Installation and
activation" on page 101
explains the difference between
Installation and Activation,
and the relationship between
PenPoint processes and
application classes.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 93

Interesting things you can do with Empty Application

• Create multiple instances (documents) of it. The PenPoint file system appends
a number to each document to guarantee a unique application directory name
in the application hierarchy. You create documents by performing one of these
actions:

• Choose Empty Application from the Create menu in the Notebook
contents page.

• Choose Empty Application from the pop-up menu that appears when
you draw a caret /\ on the contents page.

• Use the Stationery notebook to create Empty Application documents in
the Notebook.

• Tap and hold on the title bar or name of an Empty Application docu
ment in the TOC to make a copy of an existing document. Drag the
icon that appears to where you want it to go, such as on the icon book
shelf, or elsewhere in the TOC.

• Tap the Accessories icon in the bookshelf below the Notebook and tap
the Empty Application icon in its window.

• Float a Notebook Empty Application document by turning to the Notebook's
table of contents and double-tapping on its page number (you must first
enable floating in the Float & Zoom section of Pen Point Preferences).
Compare the difference between an accessory and a floating document
accessories have no page number.

• Zoom a floating Empty Application by flicking upwards on its title bar
(you must first enable zooming in the Float & Zoom section of PenPoint
Preferences) .

• Display the properties of an Empty Application document by drawing a
check V' in its title bar. An option sheet for the document appears, with sev
eral cards in it for the document's appearance.

• In the table of contents, press and hold on a Empty Application title until a
dashed line appears around it. You can now move the document around. Try
moving it to another place in the Notebook.

• Give the Empty Application document a tab in the notebook by writing a "T"
in its title bar. You can use the tab to navigate to the Empty Application docu
ment quickly.

• Give the Empty Application document a corkboard margin by writing a "c"
in its title bar. A thick strip appears at the bottom of its window.

• As you turn the pages, note the sequence of messages sent to each instance of
clsEmptyApp by the PenPoint Application Framework.

• Select an Empty Application document in the table of contents, then use the
disk viewer to open a directory on your hard disk. Copy the document to the
hard disk. Then delete the document by drawing a cross out X over it.

94 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

• Set the G debugger flag to 1000 in PENPOINT\BOOT\ENVIRON.INI (or set the
flag with the fs mini-debugger command). This turns on debugging info for
reading and writing resources in clsResFile. This is the class that files objects
during msgAppSave processing.

• Select an Empty Application document in the Toe and move it by pressing
and holding on its title. Move it inside another open document. If the other
application supports it, the PenPoint Application Framework will embed the
Empty Application document inside the other.

Code run-through
Enough details of running Empty Application; now let's look at its C code. First
we'll look at the layout of PenPoint source files.

Pen Point source code file organization
Most source code in PenPoint has a similar structure. Although Empty Application
is a very simple application, it has a similar layout to other applications.

Remember that application programs have at least on~ class (the application class
itself), so an application program is composed of at least these two files:

• The method table that specifies the messages to which this class responds and
the functions that handle those messages.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 95

• The C source code for the class.

The organization of the C source code is described in the sections below.

Method table file

The method table file lists all the messages that the class handles. The PenPoint
Class Manager sends any messages not listed in the method table to the class's
ancestor for handling (and possibly to the ancestor's ancestor). Looking at a class's
method table gives you a good feel for what the class does.

The method table file always has the suffix .TBL. It looks like C code, but you pro
cess it with the method table compiler MT before linking it into your program.

A single method table file can have method tables for several different classes. The
names of the method tables are usually pretty self-explanatory, typically the name of
the class with the word Methods appended. For example, Empty Application's class
is clsEmptyApp, and Empty Application's method table is clsEmptyAppMethods.

Although the normal practice is to define a method for each message, you can use
the wild-card feature of method tables to have one method handle several messages.
Method table wild cards match any message within a given set of messages, and call
the associated method. Method table wild cards are described in Part 1: Class
Manager of the PenPoint Architectural Reference.

Application C code file

By convention, an application source code file is usually organized into the
following sections:

• #indude directives for the header files required by the application.

• #defines and typedefs.

• Utility routines.

• Message handlers.

• Class initialization routine.

• mainO entry point.

The application's mainO routine is at the end of the source file. The operating
system calls the application's mainO routine under two circumstances:

• When installing the application (this happens only once).

• When activating individual documents (this happens each time the user turns
to or floats a document that uses the application).

The C files for nonapplication classes don't have mainO routines, because only
applications actually start C processes. The declaration for the mainO routine is:

main (argc, argv, processCount)

The argc and argv parameters are not used in PenPoint. PenPoint uses the process
Count parameter to pass in the number of processes running this application.
When processCount is 0, there are no other processes running this application; this

Code run-through

96 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

indicates that PenPoint is installing the application. Once an application is
installed, the process that has a process Count of 0 stays in memory until the appli
cation is deinstalled.

On installation, mainO initializes the application class, by calling an initialization
routine. This routine precedes mainO in the source file. Standard practice is to
name this routine using the name of the application class (with an initial capital
letter), followed by "Init". For example, the initialization routine for clsEmptyApp
is ClsEmptyAppInitO.

When the initialization routine creates the application class, it specifies the method
table used by the application class.

In the method table, you establish a relationship between the messages that your
class handles and the name of a function in your C code file that handles each mes
sage. These functions are called message handlers and are similar to the "methods"
of other object-oriented systems. Message handlers should be local static routines
that return STATUS. If your class does handle a message, the method table also indi
cates whether the Class Manager should call your class's ancestor before or after
(if at all).

Message handler parameters

Because the Class Manager calls your message handlers, you don't get to choose
message handler parameters. The arguments passed to all message handlers are:

msg The message itself.

self The object that received the message.

pArgs The message argument. This 32-bit value can be either a single argu
ment or a pointer to a structure containing a number of arguments.

ctx A context maintained by the Class Manager.

pData The instance data of self.

Because the parameters to message handlers are always the same, PENPOINT\SDK\

INC\CLSMGR.H defines several macros to generate standard message handler decla
rations. The MsgHandlerO macro generates a message handler declaration based
on the name of the function. The MsgHandlerWithTypesO macro generates a
message handler declaration based on the name of the function and the types to
which to cast its arguments.

Empty Appl;cat;on~ source code
This section presents an overview of Empty Application's method table and C

source code.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 97

,.,." Method table

The method table file, METHODS.TBL, specifies that Empty Application has one
message handler; clsEmptyApp handles msgDestroy in a function called Empty
AppDestroyO.

MSG_INFO clsEmptyAppMethods [] = {
#ifdef DEBUG
msgDestroy, "EmptyAppDestroy",objCallAncestorAfter,
#endif
o
} ;

The #ifdef and #endif statements cause the message handler to be defined only
when you specify IDDEBUG in the compiler options.

C source code

There are three significant parts ofEMPTYAPP.C:

• The mainO routine, which handles application installation and application
startup.

• The initialization routine, which is invoked by mainO at installation time.

+' The message handler for msgDestroy, which was specified in the method
table.

This section presents this code without further comment. Subsequent sections in
this chapter examine the code in detail.

The mainO routine for EMPTYAPP.C is:

Code run-through

1**
main

Main application entry point (as a PROCESS -- the app's MsgProc
is where messages show up once an instance is running).

**1
void CDECL
main (

S32
CHAR *
U32

argc,
argv[] ,
processCount)

Dbg(Debugf (U_L ("main: starting emptyapp.exe[%d]"), processCount);)
if (processCount == 0) {

}

II Create application class.
ClsEmptyAppInit();
II Invoke app monitor to install this application.
AppMonitorMain(clsEmptyApp, objNull);

else {
II Create an application instance and dispatch messages.
AppMain();

II Suppress compiler's "unused parameter" warnings
Unused(argc); Unused(argv);

} 1* main *1

98 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The initialization routine invoked by mainO on installation is:

1**
ClsEmptyApplnit
Install the EmptyApp application class as a well-known UID.

**1
STATUS
ClsEmptyApplnit (void)
{ .

Error:

APP _ MGR _NEW new;
STATUS s;

II
II Install the Empty App class as a descendant of clsApp.
II
ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid clsEmptyApp;
new.cls.pMsg clsEmptyAppTable;
new.cls.ancestor clsApp;

II
II This class has no instance data, so its size is zero.
II
new.cls.size = Nil (SIZEOF) ;

II
II This class has no msgNew arguments of its own.
II
new.cls.newArgsSize = SizeOf(APP_NEW);
new. appMgr. flags. accessory = true;
Ustrcpy (new.appMgr. company, U L("GO Corporation"));
Ustrcpy(new.appMgr.defaultDocName, U_L(IIEmpty App Document"));
ObjCaIIJmp(msgNew, clsAppMgr, &new, s, Error);
II
II Turn on message tracing if flag is set.
II
if (DbgFlagGet('F', OxlL))

Debugf(U_L(IITurning on message tracing for clsEmptyApp"));
(void) ObjCallWarn (msgTrace, clsEmptyApp, (P_ARGS) true);

return stsOK;

return s;

} 1* ClsEmptyApplnit *1

Finally, the message handler for msgDestroy is:

1**
EmptyAppDestroy
Respond to msgDestroy by printing a simple message if in DEBUG mode.

**1
MsgHandler(EmptyAppDestroy)
{

4I=ifdef DEBUG
Debugf (U_L ("EmptyApp: app instance %p about to die!"), self);

4I=endif
II
II The Class Manager will pass the message onto the ancestor
II if we return a non-error status value.
II
return stsOK;
MsgHandlerParametersNoWarning; II suppress compiler warnings

} 1* EmptyAppDestroy *1

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 99

Libraries and header files
You interact with most of PenPoint by sending messages to objects. Thus a typical
application only uses a few functions and only needs to be linked with APP.LIB and
PENPOINT.LIB. However, you need to pick up the definitions of all the messages
you send, status values you check, and objects to which you send messages from
their respective header files.

Because Empty Application only looks for CLSMGR.H and APP.H messages, it only
needs to include a few header files from PENPOINT\SDK\INC:

Header file Purpose

Fundamental constants and utility macros in PenPoint.

Operating system constants and macros.

Code run-through

GO.H

OS.H

DEBUG.H

APP.H

APPMGR.H

CLSMGR.H

Functions and macros to put debugging statements in your code.

Messages defined by clsApp.

Class UID

msgNew arguments of clsAppMgr used when an application class is created.

Functions and macros that provide PenPoint's object-oriented extensions to C.

To write even the simplest application you must create your own application class,
so that's primarily what Empty Application does.

Your application needs to have a well-known UID (unique identifier, the "handle"
on a Class Manager object) so the system can start it. All well-known UIDs contain
a value that is administered by GO-this keeps them unique. When you finalize
your application, you must obtain a unique administered value from GO. Contact
GO Customer Services at 1-415-358-2040 (or by Internet electronic mail at
gocustomer@go.com) for information on how to get a unique administered value.
Until you get an administered value for your application, you can use the pre
defined well-known UIDs that are set aside for testing. These test UIDs, wknGDTa
through wknGDTg, are defined in PENPOINT\SDK\ INC\UID.H for this purpose.
Just define your class to be one of them:

#define clsMyClass wknGDTa

This is the approach that Empty Application takes. However, most other sample
applications use well-known UIDs assigned to them by GO. Because most applica
tions aren't part of the PenPoint API, these well-known UIDs don't show up in
PENPOINT\SDK\INC\ UID .H.

You can use local well-known UIDs instead of global well-known UIDs for classes
that your application uses internally. These do not contain an administered value;
however, you must ensure that they remain unique within your application.

Be on the lookout for conflicts with other test software when using the well-known
testing UIDs (wknGDTa through wknGDTg). If another application happens to
use the same well-known testing UID for one of its classes, you will have problems
installing your application because it has the same UID as another class.

100 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Class creation
The initialization routine ClsEmptyAppInitO creates the clsEmptyApp class. It
should look familiar to you from the discussion of classes in Chapter 3, Application
Concepts. However, application classes are slightly different from other classes. You
create most classes by sending msgNew to clsClass, whereas you create application
classes by sending msgNew to clsAppMgr.

STATUS
ClsEmptyAppInit (void)
{

APP_MGR_NEWnew;
STATUS s;
II
II Install the Empty App class as a descendant of clsApp.
II
ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;

Ustrcpy(new.appMgr.defaultDocName, U_L("Empty App Document"));
ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

~ clsAppMgr explained

The PenPoint Application Framework needs to know a lot of things about an
application before it can set in motion the machinery to create an instance of the
application. It needs to know:

,. Whether the application supports embedding child applications.

,. Whether the application saves its data or runs continuously ("hot mode").

,. Whether the application's documents appear as stationery or accessories.

• The icon to use for the application's documents.

,. The default name for the application's documents.

Instances of the application class can't provide this information because the
PenPoint Application Framework needs this information before it creates an
application instance. To solve this cleanly, application classes are not instances
of clsClass, but instead are instances of clsAppMgr, the application manager class.
When an application is installed, its clsAppMgr instance is initialized, and this
instance can supply the needed information.

new.cls.newArgsSize = SizeOf(APP_NEW);
new.appMgr.flags.accessory = true;
Ustrcpy(new.appMgr.company, U_L("GO Corporation"));
Ustrcpy(new.appMgr.defaultDocName, U_L("Empty App Document"));
ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

Application classes should be well known so that other processes can send messages
to them. Otherwise, the Notebook would not be able to send messages to your
application class to create new documents when the user chooses it from the Create
menu. You supply the UID for your application class in the msgNew arguments.

Tip It is better to specify
the company name, default
document name, and other
locale-dependent information
in the USA.RES or JPN.RES
file. This helps when porting
your application to other
locales.

CHAPTER 6 I A SIMPLE APPLICATION (EMPTY APPLICATION) 101
Where does the application class come from?

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

II
II This class has no instance data, so its size is zero.
II
new.cls.size = Nil(8IZEOF);

The cls.pMsg argument to msgNew establishes the connection between the new
class and its method table. More on this later.

"'''' Documents, accessories and stationery
We have been referring to all copies of an application as documents. Not all docu
ments in the system live on a page in the Notebook. Tools such as the clock and the
personal dictionary float above the Notebook.

If you set appMgr.flags.accessory to true, clsAppMgr will put your application in
the Accessories palette. When the user taps on your application's document icon,
clsApp will insert the new document on screen as a floating document. If you set
appMgr.flags.stationery to true, clsAppMgr will put a blank instance of your appli
cation in the Stationery notebook (whether or not your application has custom
stationery). When the user selects and copies the stationery document from the
Stationery palette, clsApp will insert the new document in the Notebook.

Where does the application class come from?
The connection between a process running in PenPoint and an application class is
not immediately obvious. You're probably wondering who calls the initialization
routine for clsEmptyApp, who sends msgNew to create a new Empty Application
instance, what process corresponds to this application instance, and why the
familiar-looking c mainO routine doesn't do very much.

Installation and activation
The connection between an application class and a PenPoint process is an applica
tion's mainO routine. Every executable must have a m.ainO routine; it is the routine
that PenPoint calls when it creates a new process running your application's execut
able image.

void CDECL
main (

832
CHAR *
U32

argc,
argv [],
processCount)

Dbg(Debugf (U_L ("main: starting emptyapp.exe[%d]"), processCount);)

The kernel keeps track of the number of processes running a particular program,
and passes this to mainO as a parameter (processCount). For applications, there are
two points at which PenPoint does this: application installation and document
activation.

Tip For debugging purposes,
it's convenient to be able to
create documents both as
floating accessories and
Notebook pages.

102 PEN POINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

Application installation occurs when the user or APP.INI installs the application;
that is, when PenPoint loads the application from disk into memory. No applica
tion documents are active at this point, but the code is present on the PenPoint
computer.

Document activation occurs every time the user starts up a document that uses the
application, typically by turning to its page.

When the user creates a document in the Notebook's TOC, PenPoint does not exe
cute the application code, it merely creates a directory for the document in the
applica~ion hierarchy. Try it: while turned to the TOC, create a new Empty Applica
tion document. The DebugfO statement in mainO does not print out anything
until you turn to the document.

In MS-DOS, loading and executing code are part of the same operation; on a
PenPoint computer, installing an application, creating documents for that appli
cation, and executing application code are three separate operations.

On MS-DOS, quitting an application is an action under the control of the user.
In PenPoint, when the user turns away from a document, PenPoint determines
whether it should destroy the application process or not. PenPoint does not keep
running processes around for every application on every page, so it destroys pro
cesses that aren't active (thereby destroying application objects).

PenPoint starts and destroys application processes without the user's knowledge
and, ideally, without any effect apparent to the user.

A simple discussion of main()

When an application is installed, PenPoint creates a process and calls the applica
tion's mainO to run in the process. At this time, this is the only copy of the applica
tion running on the machine; thus, processCount contains the value o. During
installation, you should create your application class and any other classes you
need. You then call AppMonitorMainO, which handles application installation,
import, copying stationery and resources, and so on. Empty Application doesn't
take explicit advantage of any of these features, but other programs do.

if (processCount == 0) {
II Create application class.
ClsEmptyAppInit();
II Invoke app monitor to install this application.
AppMonitorMain(clsEmptyApp, objNull);

else {

The process that PenPoint created at application installation keeps on running until
PenPoint deactivates or deinstalls the application. Therefore, all subsequent pro
cesses that run the application's code will have processCount values greater than o.
When a document is activated (typically by the user turning to its page), PenPoint
calls mainO (processCount is greater than zero). At this point you should call the
PenPoint Application Framework routine AppMainO. This creates an instance of

CHAPTER 6 I A SIMPLE APPLICATION (EMPTY APPLICATION) 103
Where does the application class come from?

your application class and starts dispatching messages to it (and other objects created
by the application) so that the new instance can receive Class Manager messages:

if (processCount == 0) {

else {
II Create an application instance and dispatch messages.
AppMain()i

II Suppress compiler's "unused parameter" warnings
Unused(argc)i Unused(argv)i
} 1* main *1

Most applications follow these simple steps and have a mainO routine similar to the
one in EMPTYAPP.C.

A complex explanation 01 main()

The following paragraphs explain the process interactions taking place around
mainO. Read on if you really want to understand how application start-up works.

Installation occurs when PenPoint reads PENPOINT\BOOT\APP.INI (and SYSAPP.INI)

and when the user installs applications using the Installed Applications page of the
Settings notebook. PenPoint or the Settings notebook calls the System Services rou
tine OSProgramInstallO, which loads the executable code for your application
(EMPTYAPP.EXE) into a special area of Pen Point memory called the loader database.
OSProgramInstallO also creates a new PenPoint process and calls the function
mainO with processCount equal to 0. At this point your code should initialize any
information that all instances will need, such as its application class and any other
nonsystem classes required by your application. The one thing every Empty Appli
cation instance needs is clsEmptyApp itself, hence when the mainO routine in
EMPTYAPP.C is called with processCount of 0, it creates clsEmptyApp.

Application installation

The process that PenPoint creates when processCount equals ° also manages other
application functions that are not specific to an individual document. These func
tions include copying stationery during installation, de-installation, file import,
and so on. Rather than saddle your application with all these responsibilities, the
PenPoint Application Framework provides a class, dsAppMonitor, which provides
the correct default behavior for all these functions. When you call AppMonitor
MainO it creates one of these objects and dispatches messages to it. If your applica
tion needs to do more sophisticated installation (shared dictionaries, configuration,
and so on), or can support file import, you can subclass clsAppMonitor and have a
custom application installation manager.

Activation occurs in an indirect fashion when the user chooses Empty Application
from the Tools notebook or the Stationery notebook. The Notebook or Bookshelf
application sends msgAppCreateChild to the current selection. When clsApp
receives this message, it creates a new slot in the application hierarchy for the new
document. But a process and an application object aren't created until needed. The

104 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

document may not be activated until the user turns to the document's page, or
otherwise needs to interact with it.

Activating an application

At or before the point where a live application instance is needed, the PenPoint
Application Framework sends the application's parent msgAppActivateChild.
While processing this, clsApp calls the System Services routine OSProgram
InstantiateO. OSProgramlnstantiateO creates a new PenPoint process, and in the
context of that process it calls the function mainO with processCount set to a non
zero number.

Finally, there is a running process for an Empty Application document! In theory,
you could put any code you want in mainO, just like an ordinary C program. How
ever, the only way a PenPoint application knows what to do-when to initialize,
when it's about to go on-screen, when to file, and so on-is by messages sent to
its application object. So, the first and only thing you need to do in mainO when
processCount is non-zero is to create an instance of your application class and then
go into a dispatch loop to receive messages. This is what the AppMainO call does.
AppMainO does not return until the user turns away from the document and the
application instance can be terminated.

Handling a message
clsEmptyApp only responds to one message. That doesn't mean that Empty
Application documents don't receive messages-if you turned on tracing while
running Empty Application, you'll have seen the dozens of messages that an Empty
Application application instance receives during a page turn. It means only that
clsEmptyApp lets its ancestor take care of all messages except one, and it turns out
that clsApp does an excellent job of handling PenPoint Application Framework
messages.

A real application or other class has to intercept some messages, otherwise it has the
same behavior as its parent class. In the case of an application class, the application
needs to respond to PenPoint Application Framework messages that tell documents
when to start up, when to restore themselves from the file system, when they are
about to go on-screen, and so on. If the application has standard application menus
(SAMs), it will receive messages such as msgAppPrint, msgAppPrintSetup, and
msgAppAbout, from the buttons in the menus.

Often, the class responds to these messages by creating, destroying, or filing other
objects used by the application. EMPTYAPP.C doesn't do any of this; all it does is
print a string when it receives one particular message, msgDestroy.

Method table
Objects of your classes (especially application instances) receive lots of messages
regardless of whether or not you want your class to deal with those messages. Your
class's method table tells the Class Manager which messages your class intercepts.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 105

This code sample is from Empty Application's method table file (METHODS.TBL):

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

MSG_INFO clsEmptyAppMethods [] = {
#ifdef DEBUG

msgDestroy, "EmptyAppDestroy" , objCallAncestorAfter,
#endif

o
} ;

CLASS_INFO classInfo[] = {

} ;

"clsEmptyAppTable", clsEmptyAppMethods, 0,
o

This basically says "If an instance of clsEmptyApp receives msgDestroy, call
EmptyAppDestroyO, then pass the message to clsEmptyApp's ancestor."

The link between the functions in a method table and a particular class is estab
lished by one of the msgNew arguments when you create the class (new.cls.pMsg).
This is the name you associate with the class's MSG_INFO array in the CLASS_INFO

array; in this example, the pMsg is clsEmptyAppTable. This code sample is from
ClsEmptyApplnitO in EMPTYAPP.C:

II Install the Empty App class as a descendant of clsApp.
II
ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

".. msgDesfroy
The names of most messages identify the class that defined them: for example,
msgAppOpen is defined by clsApp. Messages defined by the Class Manager itself
are the exception to this convention. msgDestroy is defined by the Class Manager
in PENPOINT\SDK\INC\CLSMGR.H; this is why Empty Application's METHODS.TBL

#includes this header file. The Class Manager responds to msgDestroy by
destroying the object that received msgDestroy.

Message handler
The message handler (also known as a method) is just a C routine you write that
does something in response to the message. Empty Application's message handler
for msgDestroy is EmptyAppDestroyO, which just prints a string to the debugger
stream.

The name you give the message handler must match the name you specified in the
method table (EmptyAppDestroyO).

Message handler

The Class Manager actually
turns around and sends the
object another message,
megFree, to free the object.

106 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application- Writing Guide

Parameters
The parameters that the Class Manager passes to a message handler are:

msg The message received by the instance.

self The UID of the instance that received the message.

pArgs The message arguments passed along with the message by the sender
of the message.

ctx A context that helps the Class Manager keep track of the class in the
instance's hierarchy that is currently processing the message.

pData A pointer to the instance data, information specific to the instance
whose format is defined by the class.

Here's the definition from CLSMGR.H:

II Definition of a pointer to a method.
typedef STATUS (CDECL * P_MSG_HANDLER)
MESSAGE msg,
OBJECT self,
P ARGS
CONTEXT
P IDATA
) ;

pArgs,
ctx,
pData

You never call your message handlers, the Class Manager does, and always with the
same set of parameters. The PenPoint Method Table Compiler generates a header
file containing function prototypes for all the message handlers specified in the
message table; you can guard against accidentally leaving out a parameter by
including these files in your class implementation C files:

#ifndef APP INCLUDED
#include <app.h> II for application messages (and clsmgr.h)
#endif
#ifndef DEBUG INCLUDED
#include <debug.h> II for debugging statements.
#endif
#ifndef APPMGR INCLUDED
#include <appmgr.h> II for AppMgr startup stuff
#endif
#ifndef INTL INCLUDED
#include <intl.h> II for international routines
#endif
#include <methods.h> II method function prototypes generated by MT
#include <string.h> II for strcpy().

MsgHandlerO is a macro that expands into the correct definition of a pointer to a
message handler. It saves you typing all these parameters.

1**
EmptyAppDestroy
Respond to msgDestroy by printing a simple message if in DEBUG mode.

**1
MsgHandler(EmptyAppDestroy)
{

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 107

~ Parameters in EmptyAppDestroy()
It turns out that Empty Application's EmptyAppDestroyO routine doesn't need
most of the parameters. The informative string prints out the UID of self (the
Empty Application document that received the message) and doesn't use the rest of
the parameters.

4tifdef DEBUG
Debugf (U_L ("EmptyApp: app instance %p about to die!"), self);

4tendif

We aren't interested in the msg, since the Class Manager should only call this func
tion with msgDestroy. clsEmptyApp has no instance data, so we don't need pData.
(Remember, we specified that class.size is 0 when we created clsEmptyApp.)
Although we don't need these parameters, there is no way to tell the Class Manager
not to send them.

The C compiler will warn about unused parameters in functions. Since many mes
sage handlers won't use all their parameters, CLSMGR.H defines a fragment of code,
MsgHandlerParametersNoWarning, which mentions each parameter. You can
stick this in your message handler at any point.

MsgHandlerParametersNoWarning;11 suppress compiler warnings
} 1* EmptyAppDestroy *1

Status return value
Message handlers are supposed to return a status value. This is important both to
indicate to the sender of the message that the message was handled successfully, and
to control how the Class Manager passes the message up the class ancestry chain.
Empty Application's method table directed the Class Manager to pass msgDestroy
to clsEmptyApp's ancestor after calling Empty Application's handler:

msgDestroy, "EmptyAppDestroy",objCallAncestorAfter,

IfEmptyAppDestroyO were to return an error status value, the Class Manager
would not call the ancestor, and the normal result of sending msgDestroy would be
pre-empted (the application object would not go away). Sometimes this is what you
want, but not in this case, so we return stsOK.

II The Class Manager will pass the message onto the ancestor
II if we return a non-error status value.

return stsOK;

Message handlers are private
Although message handlers are just regular C functions, you normally do not want
other code to call your message handlers. One of the goals of object-oriented pro
gramming is to hide the implementation of functionality from clients of that func
tionality. Clients should communicate with your objects by sending them messages,
not by calling your functions. That way you can change the names and implemen
tation of a message handler without affecting clients of your API.

Message handler

108 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Using debugger stream output
There are two main ways to debug programs in PenPoint:

.. Send data to the debugger stream.

.. Use the PenPoint source-level debugger.

Additionally, you can use the PenPoint mini-debugger, which is part of PenPoint,
but is most useful when debugging kernel and device-interface code.

Note that you can't use debugging tools designed to run under DOS because these
packages require your executable file to be running under DOS.

This section discusses sending data to the debugger stream. For a complete tutorial
on how to use the PenPoint source-level debugger (DB) and mini-debugger (mini
DB), see the part on debugging in PenPoint Development Tools.

The debugger stream
You can send data to the debugger stream with DebugfO and DPrintfO statements
in your code. This is much like debugging a DOS application by adding printfO
statements to the code.

EMPTYAPP.C uses the system debugging output function DebugfO to print strings
to the debug stream (Empty Application doesn't use its PenPoint windows to dis
play anything).

DebugfO is much like the standard C function printfO. The %p formatting code in
the format string means "print this out as a 32-bit hexadecimal pointer." Because
UIDs such as self are 32 bits, this is a quick and dirty way to print a UID value. The
Class Manager defines routines that convert UIDs to more meaningful values that
this application could have used instead; the message tracing and status warning
debugging facilities use these fancier output formats.

Seeing debug output
There are several ways to view the information sent to the debugger stream:

.. If you press Pause while running PenPoint, your screen will switch from
graphics to text display and you will see strings that have been written to the
debugger stream.

.. If you have a second monitor and do not set monodebug=off in your MIL.INI
file, debugger stream data is displayed on the second monitor.

.. If you turn on the 8000 bit in the 0 debug flag, debugging strings will be cop
ied to the file \PENPOINT.LOG on theBootVolume (the directory specified
with PenPointPath in ENVIRON.lNI).

.. You can run the System Log application.

The System Log application is a PenPoint application that allows you to review data
sent to the debugger stream. To use it, install it by uncommenting it in SYSAPP.INI
or by installing from disk Gust as you install any other application in PenPoint).

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 109

When the System Log application is installed, it adds its icon to the Accessories
window. Tap on the icon to open the application.

The debugger stream

Debug strings appear in the System Log application. You can scroll up and down to
see its contents.

You can also check flags, see available memory, and set flags from the System Log
application. To learn more about the System Log application, see the part on
debugging in PenPoint Development Tools.

Chapter 7 / Creating Obiects
(Hello World: Toolkit)

Although Empty Application shows that the Application Framework can do many
things for an application, Empty Application is still rather boring, in that it doesn't
contain anything or show anything on screen. This chapter describes how to create
objects. It so happens that these objects also display things on screen.

A standard, simple test program is one that prints "Hello World." With the
PenPoint™ operating system, there are two different ways to approach this:

• Use PenPoint's UI Toolkit to create a standard label that contains the text .

• Create a window and draw text in it using text and drawing services provided
by the ImagePoint™ imaging model.

These two styles mirror two general classes of program. Programs such as database
programs and forms can use standard user interface components to create dialogs
with the user. Programs such as presentation packages and graphics editors do a lot
of their own drawing. They need to create a special kind of window and draw in it.

This chapter shows the first approach; the application clsHello World calls on the
UI Toolkit to create a label object. The next chapter describes how to create a
window and draw in it (and also discusses how to create a new class).

Even programs that do use custom windows will make heavy use of the UI Toolkit.
Every application has a menu bar with standard menu buttons, a frame, and at
least one option sheet, and most programs will add to these to implement other
controls and dialogs with the user.

Moreover, using the UI Toolkit is much simpler than using a window. The toolkit
component classes are all descendants of clsWin, the class that supports overlapping
windows on the screen (and printer). But they know how and when to draw them
selves and file themselves, so there's very little you need to do besides create them
and put them in your application's frame.

Hel'oTK
Hello World (toolkit) uses UI Toolkit components to display the words "Hello
World!" These components know how to draw themselves and position themselves.
Consequently, it's extremely simple to create the application.

The directory PENPOINT\SDK\SAMPLE\HELLOTK actually contains two different
versions of Hello World (toolkit). The first version, HELLOTK1.C, creates a single
label in its frame. Usually you want to put several windows in a frame; this is more
complex and is handled by HELLOTK2.C.

An application can choose not
to use these UI elements, but
doing so involves extra work
and goes against GO's User
Interface guidelines.

112 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Compiling and installing the application
Both versions of Hello World (toolkit) (HELLOTKI.C and HELLOTK2.C) have a
single C file. Consequently, compiling, downloading, and' running it are the same as
for Empty Application. Because there are multiple versions of the code, copy the
version you want to run as HELLOTK.C before building the application.

This creates a PENPOINT\APP\HELLOTK directory and compiles a HELLOTK.EXE
file in it. It uses STAMP to give the directory the long name Hello World (toolkit) and
the .EXE the long name Hello World (toolkit).exe.

Install Hello World (toolkit) either by adding \\BOOT\PENPOINT\APP\Hello World
(toolkit) to PENPOINT\BOOT\locale\APP.INI (where locale is a locale such as JPN or
USA) before starting PenPoint or by installing the application using the Installer.

Create Hello World (toolkit) application instances from the Stationery notebook,
from the stationery quick menu, or from the Accessory palette.

Interesting things you can do with HelloTK
Alas, Hello World (toolkit) doesn't do much more than Empty Application besides
display a label. It doesn't do anything less, so you can create multiple instances of it
as accessories or as pages in the Notebook, you can trace messages to it (by setting
the F flag to Ox20), and so on.

The only new thing to do is to notice how the label draws itself Try zooming or
resizing a Hello World (toolkit) document.

Code run-through for HELLOTKJ.C
HELLOTKl.C creates a single label in its frame.

Highlights of HELLOTKJ
The method table for Hello World (toolkit) only responds to one message,
msgApplnit.

msgAppInit, "HelloAppInit", objCallAncestorBefore,

In order to avoid clashing with other Hello World applications, HELLOTKl.C uses a
different well-known UID.

#define clsHelloWorld wknGDTb II avoids clashing with other HelloWorlds

Most of the work is done in the message handler HelloApplnitO, which responds
to msgApplnit by creating the client window (a label).

So that it can use the same method table as HELLOTK2.C, HELLOTKl.C responds to
msgAppOpen and msgAppClose as well as msgApplnit; however, it does nothing
with these messages but return stsOK.

The only significant thing that happens in Hello World (toolkit) is that it responds
to msgApplnit by creating a label. The code to do this is very simple, about 35
lines, but deciding w4at to do in those few lines introduces several key concepts in
PenPoint application development:

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 113
Code run-through for HELLOTK1.C

• Choosing what classes to use.

• Deciding when to create objects.

It also involves some common programming techniques:

• Creating an instance of a class.

• Sending messages to self.

",. Sending messages
Empty Application receives messages, but does not send messages. Often in
responding to a message, your application must send other messages. It might send
messages to other objects, or even send itself messages to get its ancestor classes to
do things. Hello World (toolkit) shows how to send a few simple messages.

ObjectCall()

Use ObjectCallO to pass a message to another object in your process. This works
like a function call: the thread of control in your application's process continues in
the message handler of the other object's class, and returns to your code when the
other object's class returns a status value to your code.

There are other ways to send a message:

• Asynchronously

• Using the input queue

• Between processes

In a simple application, stick to ObjectCallO.

Testing return values and debugging

Because messages return a status value, you should usually check their return values.
This would ordinarily lead to lots and lots of constructs in your code, such as the
following:

if ((s = ObjectCall(msgXxx, someObject, &args) < stsOK) {
II Print standard warning if DEBUG set
II Handle error ...

To save typing and code complexity, for every Class Manager function that returns
a status value, there are macro versions of the function that jump to an error han
dler, or return true if there's an error, etc. For ObjectCallO, these are ObjCall
WarnO, ObjCallRetO, ObjCalljmpO, ObjCallChkO, and ObjCalIOKO.

The return value of ObjCallWarnO is the status value returned by ObjectCallO. If
compiled with the DEBUG preprocessor variable set, then ObjCallWarnO prints out
an error string if the status value is an error (that is, less than stsOK).

The other macros incorporate ObjCallWarnO into their behavior:

ObjCallRetO Calls ObjCallWarnO and then returns the status value if it
IS an error.

114 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

ObjCalljmpO Calls ObjCallWarnO and then jumps to a error label (where
you can handle the error) if the status value is an error.

ObjCallChkO Calls ObjCallWarnO and then returns the value true if the
status value is an error.

ObjCallOKO Calls ObjCallWarnO and then returns the value true if the
status value is not an error (that is, greater than or equal to stsOK).

Creating toolkit components

HELLOTKI.C responds to msgAppInit by creating a label. Labels are one of the
many components provided by the VI Toolkit. But why does it create this particular
kind of component?

What kind 01 component?

It's worth taking a close look at the class hierarchy poster to see all the toolkit
classes.

Most of the VI Toolkit classes are windows. clsWin implements the standard
window behavior of multiple overlapping regions on a pixel device, but clsWin
does not draw images in a window. The descendants of clsWin inherit clsWin's
behavior and add the ability to draw images, handle input, and so on. All of the VI

toolkit components inherit from clsBorder, a special kind of window which knows
how to draw a border.

Part 4: UI Toolkit of the PenPoint Architectural Reference explains the VI Toolkit in
all its multilevel glory. For a hint of what it can do, Figure 7-1 shows a screen shot
with all the different kinds of VI Toolkit components present.

There are many other classes in the VI Toolkit. There are several base classes that
provide lower-level functionality. And there are many specialized components
classes, such as date handwriting input fields.

For Hello World (toolkit), all we need is a class that can display a string, such as
clsLabel.

To learn more about a class, you can try to:

• Use the class browser to get a brief description of it and all its messages.

• Read about it in its subsystem's part of the PenPoint Architectural Reference.

• Look up its "datasheets" in the PenPoint API Reference.

• Look at its header file in PENPOINT\SDK\INC.

The class Browser, the header, and the documentation all give you the information
you need to create an instance of the class.

msgNew arguments lor clsLabel

As you learned in Chapter 3, Application Concepts, you create objects by sending
msgNew to their class. Different classes allow different kinds of initialization, so
you pass different arguments to different classes. The documentation states what

Tip Some of the key decisions
you make in any object
oriented programming system
are choosing which built-in
classes to use and which built
in classes to subclass.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 115
Code run-through for HELLOTK1.C

Title Bar Menu Bar Page Number

message arguments a given class needs for msgNew. In the header file, the infor
mation is expressed as follows:

msgNew takes P_LABEL_NEW, returns STATUS

This says that you should pass in a pointer to a LABEL_NEW structure when you
send msgNew to clsLabel. What you typically do is declare a LABEL_NEW structure
in the routine which sends msgNew. You can give this any variable name you want;
Hello World (toolkit) names it In, the first letter of each part of the structure name.
The sample code follows this naming convention consistently.

Frame

Pull-down Menu

Menu Button

Tab Bars

Vertical Scroll bar

Option Sheet

Option Table

Labels

Popup Choice

Toggle Table

Shadow

Command Bar

Bookshelf

116 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

1**
HelloAppInit

Respond to msgAppInit by creating the client window (a label).
**1
MsgHandler{HelloAppInit)
{

APP METRICS
LABEL NEW
STATUS

am;
In;
s;

Before you send msgNew to a class, you must always send msgNewDefaults to
that class. This takes the same message arguments as msgNew (a pointer to a
LABEL_NEW structure in this case). This gives the class and its ancestors a chance to
initialize the structure to the appropriate default values. It saves your code from ini
tializing the dozens of fields in a _NEW structure.

II Create the Hello label window.
ObjCallWarn{msgNewDefaults, clsLabel, &In);

Note the use of ObjCallWarnO instead of ObjectCallO. As mentioned earlier, Obj
CallWarnO, when compiled with DEBUG set, sends a warning message to the
debugging output device when it returns a non-zero status value.

Now you're ready to give values to those fields in the structure that you care about.
Figuring out what's in a _NEW structure is not easy. It contains initialization infor
mation for the class you are sending it to, along with initialization information for
that class's ancestor, and for its ancestor's ancestor, all the way to initialization argu
ments for clsObject. Sometimes the only initializations you're interested in are the
ones for the class you've chosen, but in the case of the UI Toolkit, you often have to
reach back and initialize fields for several of the ancestor classes as well.

In.label.style.scaleUnits = bsUnitsFitWindowProper;
In.label.style.xAlignment = lsAlignCenter;
In.label.style.yAlignment = lsAlignCenter;
In.label.pString = U_L{IIHello World!");

You can look up the hierarchy for a class by looking in the PenPoint API Reference
section for that class. The description of the _NEW structure for msgNew always
gives the _NEW_ONLY structures that make up the _NEW structure. Thus, the hier
archy for clsLabel expands to:

LABEL_NEW {
OBJECT NEW ONLY object;
WIN NEW ONLY win;
GWIN NEW ONLY gWin;
EMBEDDED_WIN_NEW_ONLYembeddedWin;
BORDER NEW ONLY border;
CONTROL_NEW_ONLYcontrol;
LABEL NEW ONLY label;

When in doubt, rely on msgNewDefaults to set up the appropriate initialization,
and modify as little as possible.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 117
Code run-through for HELLOTK 1.C

All you need do to create a label is pass clsLabel a pointer to a string to give the
string a label. However, the LABEL_STYLE structure contains various style fields
that also let you change the way the label looks.

We want the text to fill the entire window, so the scaleUnits field looks promising.
This is a bit field in LABEL_STYLE, but rather than hard-code numeric values for
these in your code, LABEL.H defines the possible values it can take. One of these is
IsScaleFitWindowProper. This tells clsLabel to paint the label so that it fills the
window, but keeping the horizontal and vertical scaling the same. Other style fields
control the alignment of the text string within the label. In this example, we'd like
to center the label.

By the way, one reason that clsLabel has so many style settings and other msgNew
arguments is that many other toolkit components use it to draw their text, either by
creating lots of labels or by inheriting from clsLabel. Thus clsLabel draws the text
in tab bars, in fields, in notes, and so on:

II Create the Hello label window.
ObjCaIIWarn(msgNewDefaults, clsLabel, &In);
In.label.style.scaleUnits = bsUnitsFitWindowProper;
In.label.style.xAlignment = IsAlignCenter;
In.label.style.yAlignment = IsAlignCenter;
In. label. pSt ring = U_L(IIHello World! ");
ObjCaIIRet(msgNew, clsLabel, &In, s);

Now the label window object exists. The Class Manager passes back its UID in
In.object.uid. But at this point it doesn't have a parent, so it won't show up on
screen.

Where the window goes
Empty Application appeared on-screen even though it didn't create any windows
itself The Application Framework creates a frame for a document. Frames are UI

Toolkit components. A frame can include other windows within it. Empty Applica
tion's frame has a title bar, page number, and resize boxes; you've seen other applica
tions whose frames also include tab bars, command bars, and menu bars.

Most importantly, a frame can contain a client window, the large central area
in a frame. Empty Application didn't supply a client window (hence it looked
pretty dull).

Hello World (toolkit) wants the label it creates to be the client window. The mes
sage msgFrameSetClientWin sets a frame's client window. But the label must have
its frame's UID to send a message to its frame. Hello World (toolkit) didn't create
the frame, its ancestor clsApp did.

clsApp does not define a specific message to get the main window. Instead, it pro
vides a message to get diverse information about application instances, including
the main window of that application. An application can have a different main
window for itself other than a frame.

118 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Information made public about instances of a class is often called metrics, and the
message to get this information for an application is msgAppGetMetrics. msg
AppGetMetrics takes a pointer to an APP _METRICS structure, one of the fields in
the structure is main Win. Here is how HelloApplnitO gets its main window:

APP METRICS am;

II Get the app's main window (its frame).
ObjCallJmp(msgAppGetMetrics, self, &am, s, error);

II Insert the label in the frame as its client window.
ObjCallJmp(msgFrameSetClientWin, am.mainWin, \

(P_ARGS)ln.object.uid, s, error);

Note that·the code sends msgAppGetMetrics to self We have been talking loosely
about Hello World (toolkit) doing this and that, but remember that this code is
run as a result of an instance of clsHello World receiving a message, and that
clsHello World is a descendant of clsApp. Thus, the document is the application
object to which we want to send msgAppGetMetrics. In the middle of responding
to one message (msgApplnit), we need to send a message to the same object that
received the message. This is actually very common. The Class Manager provides a
parameter to methods, self, which identifies the object that received the message.

Why msgApplnif?
Earlier you turned on message tracing to Empty Application. This causes the class
manager to dump out every message received by instances of clsEmptyApp. You
should have noticed that each Empty Application document receives dozens of
messages during the course of a page turn to or from itself. These messages are sent
to documents (application instances) by the PenPoint Application Framework.

If you want your application to do something, you must figure out when to do it.
Your process can't take over the machine and do whatever it wants, whenever it
wants. It must do what it wants in response to the appropriate messages.

One of the hardest things in PenPoint programming is figuring out when to
do things.

So, when should Hello World (toolkit) create its label? Because it inserts the label in
its frame (using msgFrame5etClientWin), it can't create the label before it has a
frame. But it should have a label in its frame before it goes on screen.

It turns out that clsApp creates the document's frame in response to msgApplnit.
Thus Hello World (toolkit) can get its frame and insert the label in its msgApplnit
handler, but it must do so after clsApp has responded to the message. This is why
its method table tells the Class Manager to first send the message to its ancestor:

MSG_INFO clsHelloMethods [] = {
msgApplnit, "HelloApplnit" ,
msgAppOpen, "HelloOpen",

objCallAncestorBefore,
objCallAncestorAfter,

Note that doing this relies on knowing what the ancestor class does. You'll spend
a lot of time reading Part 2: Application Framework of the PenPoint Architectural
Reference to learn about the PenPoint Application Framework messages and how
clsApp responds to them.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 119
Highlights of the second HelloTK

Why did the window appear?
If you're familiar with other window systems, you may be wondering how the label
gets sized, positioned, and made visible on screen. These will be explained during
the development of other tutorial programs. But here's a summary.

When the application is about to go on screen it receives msgAppOpen. clsApp
inserts the main window (the frame) in the Notebook's window and tells it to lay
out. clsFrame takes care of sizing and positioning its title bar, page number, move
box, and client window (the label). Each of these windows is sent a message by the
window system to repaint itself when it is exposed on screen. clsLabel responds to
the repaint message by painting its label string. Thus all you need to do is put a
toolkit window inside your frame, and the system takes care of the rest for you.

Possible enhancements
You can change the class of the window created in HelloAppInitO to be some other
kind of window class by changing the class to which Hello World (toolkit) sends
msgNewDefaults and msgNew. But different classes take different message argu
ments when they are created. You need to replace the declaration of a LABEL_NEW

structure with the msgNew arguments of the new class.

If the class handling the message expects different arguments, it will blindly read
past the end of the structure you passed it, and if it passes back values, it will over
write random memory. A given class receiving a given messsage has to be given a
pointer to the appropriate structure, otherwise unpredictable results will occur: but
it can't enforce this.

There are many classes which inherit from clsLabel, consequently, if you used
one of these, you wouldn't even have to change the initialization of the structure.
For example, clsField inherits from clsLabel, and FIELD_NEW includes the
same NEW_ONLY structures as LABEL_NEW, so it takes the same border and
label specifications.

Highlights of the second Hel'oTK
HELLOTK2.C is much like HELLOTKl.C. The big difference is that it supports more
than one window. Most applications have many windows within their frame.

You compile and run it the same way. Just copy HELLOTK2.C to HELLOTK.C and
follow the steps outlined above.

Only one client window per frame

Frames only support a single client window. But usually you'll want several win
dows in your application. You have two alternatives:

,. Subclass clsFrame (which is very difficult).

,. Create a client window, then insert all the windows you want into that client
window (which is quite easy).

Warning Passing the wrong
message arguments with a
message is one of the more
common errors in Pen Point
programming. The C compiler
will not catch the error.

120 PEN POINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

The toolkit provides two window classes that help you organize the windows
within the client window. These are called layout windows. To understand why
they're needed, you need to know a little bit about layout.

Layout
When you're using several windows, something is responsible for positioning them
on the screen. You can set a window's position and size to some value with msg
WinDelta. However, if the user changes the system font size, or resizes the frame,
or changes from portrait to landscape mode, the numbers you pick are unlikely to
still be appropriate. It's more convenient to specify window locations at an abstract
level:

.. "I want this window below that one, and extending to the edge of that other
" one .

.. "Position these windows in two columns of equal width."

The VI Toolkit provides two layout classes that support these styles, clsCustom
Layout and clsTableLayout. Both are packed with features. Both layout their own
child windows according to the constraints (for custom layout) or algorithm (for
table layout) that you specify. The general way of using layout windows is to create
one, specify the layout you want, and insert the windows in it.

HELLOTK2.C uses a custom layout window and positions a single label in its center
using ClAlign(clCenter, clSameAs, clCenter).

CstmLayoutSpeclnit(&(cs.metrics))i
cs.child = In.object.uidi
cs.metrics.x.constraint = CIAlign(clCenterEdge, clSameAs, clCenterEdge)i
cs.metrics.y.constraint = CIAlign(clCenterEdge, clSameAs, clCenterEdge);
cs.metrics.w.constraint = clAsIsi
cs.metrics.h.constraint = clAsIsi
ObjCallJmp(msgCstmLayoutSetChildSpec, cn.object.uid, &cs, s, error2)i

Possible enhancements
You might consider trying to add one of the following to HELLOTK2.C.

Fields

Change the label to be an editable field. There are several ways of handling hand
writing in PenPoint. One way is to use a VI component that allows editing, cls
Field. Since fields have similar behavior to labels (they display a string, have a
length, font, and so on), clsField inherits from clsLabel. This makes it easy to
update the application: replace the LABEL_NEW structure with FIELD_NEW, and
clsLabel with clsField, and recompile. You can now hand-write into the field.

More components

Add some more controls, using different custom layout constraints. You should be
able to put together a simple control panel.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 121
Highlights of the second HelloTK

".,.. General model 01 controls

You specify the Metrics of each control when you create it, then you insert them
in your layout window. The controls lay themselves out, repaint themselves, and
support user interaction without any intervention on your part. When the user
activates a control, the control sends its client (set in the msgNew arguments of
clsControl, or by msgControlSetClient) a notification message.

For more information on controls, see Part 4: UI Toolkit of the PenPoint
Architectural Reference.

Chapter 8 / Creating a New Class
(Hello World: Custom Window)

This chapter describes how you create a new class. Along the way, the chapter
also describes how to display the string "Hello World!" on screen by creating and
drawing in custom windows.

".. Hello World (Custom Window)
Hello World (custom window) creates an instance of a custom window and uses the
custom window to display some text.

It's still not a very realistic application because it doesn't file any data, but it does
use an additional class, a descendant of clsWin, to do its drawing. Your application
may be able to use only standard UI components from the UI Toolkit and other
PenPoint™ subsystems; but if not, you will create new classes of windows to imple
ment the special behavior you require.

So far, our example applications have been quite simple and have not needed to
define their own classes (apart from creating a subclass of clsApp). One of the big
advantages in object-oriented programming is that when you do define a class,
other applications can create instances of the class (rather than defining new classes
on their own).

So that other applications can use the new class, developers often define each class
in a single C file and then compile and link one or more C files into a DLL. The C

file that contains the application class (and has mainO) is compiled into an execut
able file.

To show this coding style, Hello World (custom window) is implemented as
an application and a separate DLL. There are two parts to Hello World (custom
window): clsHelloWorld (the application class), and clsHelloWin (the win
dow class). HELLO.C implements clsHelloWorld and HELLOWIN.C defines
clsHelloWin. HELTBL.TBL contains the method table for clsHelloWorld;
HELWTBL.TBL contains the method table for clsHello Win.

Compiling the code
Compiling and linking the Hello World (custom window) executable is somewhat
similar to compiling Empty Application. However, Hello World (custom window)
is compiled and linked in two parts: an EXE file that contains the application, and a
DLL file that contains the class of the client window (clsHelloWin).

You can build Hello World (custom window) by changing the directory to
PENPOINT\SDK\SAMPLE\HELLO and running the make utility.

124 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

Note that because the application class, clsHello World, and its window class are in
different files, compiling is more efficient if they have separate method table files
(HELTBL.TBL and HELWTBL.TBL).

Linking DLLs

When you link DLLs (dynamic link libraries), the information you provide to the
linker is slightly different from the information you provide when linking an exe
cutable image. In addition to the object code, the linker requires a DLL.LBC file.
This file lists all the exported functions defined in the DLL being linked. Usually,
PenPoint DLLs only have the single entry point DLLMainO. The lines in the
DLL.LBC file have the form:

++entry_point.'lname'

Letter case doesn't matter in the DLL.LBC file.

The entry-point is the name of the exported function. In PenPoint, this is DLL
MainO, the entry point for the DLL. The PenPoint Installer uses the lname to iden
tify code modules. An lname is composed of a company ID, a project name, and a
revision number. The revision number takes the form Vmajor(minor) , where major
is the major revision number and minor is the minor revision number.

Thus, for Hello World (custom window), the DLL.LBC file contains the single line:
++DLLMAIN.'GO-HELLO_DLL-V2(O)'

In this example, the entry point is DLLMainO and the lname is GO-HELLO_DLL
V2(0). The lname indicates that the company is GO, the project is HELLO_DLL, and
the version is 2(0).

OLe Files

Because Hello World (custom window) requires that HELLO.DLL be loaded before
HELLO.EXE can run, you need to have a HELLO.DLC file in the Hello World
(custom window) application directory that expresses the relationship:

GO-HELLO_DLL-V2(O) hello.dll
GO-HELLO_EXE-V2(O) hello.exe

The PenPoint installer uses this information when installing the Hello World
(custom window) application. The first line indicates that the Hello World (custom
window) application depends on the DLL file HELLO.DLL, version 2(0). Should this
DLL already be loaded, PenPointwill not attempt to load it. The second line tells
PenPoint to install the executable file HELLO.EXE.

Because the PenPoint name of the application directory is "Hello World," the
makefile must STAMP the .DLC file with the name "Hello World" so that the
Installer will find it.

CHAPTER 8/ CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 125

",. Highlights of clsHelloWorld
The method table for clsHello World (in HELTBL.TBL) handles two significant
messages:

msgAppOpen, "HelloOpen" , objCallAncestorAfter,
msgAppClose, "HelloClose", objCallAncestorBefore,

The handler for msgAppOpen creates an instance of clsHello Win and inserts it as
the frame's client window.

The handler for msgAppClose destroys the client window.

When processCount is 0, mainO calls ClsHellolnitO.

",. Highlights of clsHelloWin
The DLLMainO for clsHelloWin is the only thing defined in DLLINIT.C. The
DLLMainO calls Cis Hello WinlnitO, the initialization routine for clsHello Win.

STATUS EXPORTED DLLMain (void)
StsRet(ClsHelloWinInit(), S)i

The method table for clsHello Win (in HELWTBL.TBL) handles three significant
messages:

msgInit, "HelloWinInit" , objCallAncestorBefore,
msgFree, "HelloWinFree" , objCallAncestorAfter,
msgWinRepaint, "HelloWinRepaint" , 0,

clsHello Win is the first sample application that defines its own instance data (in
HELLOWIN.C).

typedef struct INSTANCE_DATA {
SYSDC dCi

} INSTANCE_DATA, *P_INSTANCE_DATAi

clsHello Win responds to msglnit by zeroing the instance data, creating a drawing
context, initializing the drawing context, and storing the drawing context in the
hello window object's instance data.

The class responds to msgDestroy by destroying the drawing context.

clsHello Win responds to msgWinRepaint by calculating the text width and scaling
the window so that it fits the text

Graphics overview
To draw in a window you need to create a drawing context object (often abbrevi
ated to DC). You send messages to the drawing context, not your ~indow, to draw.
The drawing context's class knows how to perform these graphics operations. There
could be different kinds of drawing contexts to choose from on PenPoint: For
example, there might be one available from a third-party company which under
stands 3-D graphics, or you could create your own.

Graphics overview

126 PEN POINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

System drawing context
The standard system drawing context (sometimes abbreviated to sysDC) supports
the ImagePoint imaging model. You can draw lines, polygons, ellipses, Bezier
curves, and text by sending messages to an instance of the system drawing context.

Each of these graphic operations is affected by the current graphics state of your
DC. The system drawing context strokes lines and the borders of figures with the
current line pattern, width, end style, and corner style, all of which you can set and
get using system drawing context messages. Similarly, it fills figures with the current
fill pattern. Most drawing operations involve both stroking and filling a figure, but
by adjusting line width and setting patterns to transparent, you can only fill or only
stroke a figure.

The pixels of figures on the screen are transformed according to the current
rasterOp. This is a mathematical description of how the destination pixels on
the screen are affected by the pixels in the source figure. To paint over pixels on the
screen, you use the default rasterOp, sysDcRopCopy; another common rasterOp is
sysDcRopXOR, which inverts pixels on the screen.

At this writing there are no PenPoint computers that support color, however, the
system drawing context supports a full color model. You can set the background
and foreground colors (on a black and white display, the resulting colors will always
be black, white, or a shade of gray). The line and fill patterns are mixtures of the
current foreground and background color, or sysDclnkTransparent.

Because the system drawing context is a normal Class Manager object, you create a
new instance of it in the usual way, by sending msgNew to clsSysDrwCtx. Your
drawing messages end up on some window on the screen, so at some point you
must bind your DC to the desired window using msgDcSetWindow.

Coordinates in drawing context
Another vital property of the system drawing context is its arbitrary coordinate
system. You can choose whether one unit in your drawing (as in "draw a line one
unit long") is one point, 0.01 mm, 0.001 inch, 1/20 of a point, one pixel on the
final device. You can then scale units in both the X and Y direction; one useful
scaling is to scale them relative to the height and width of your window. You can
even rotate your coordinate system. What this gives you is the precision of knowing
that your drawing will be an exact size. It also gives you the freedom to use any
coordinate system and scale that suits your drawing. The default coordinates are
one unit is one point (approximately 1/72 of an inch), and the origin is in the lower
left corner of your window.

Hello World (custom window) uses the default units, but scales its coordinate
system so that its text output remains at a regular aspect ratio.

When to paint
Windows need to repaint themselves when they first appear on the screen, when
they are is resized, and when they are exposed after other windows have covered

If you want to draw temporarily
on the screen, it's better to
set the eyeDcDrawDynamic
mode instead of directly
changing the rasterOp.

CHAPTER 8 / CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 127

When to create things

them. Windows receive msgWinRepaint when the window system determines that
they need to repaint, and windows must respond to this.

clsHello Win only paints in response to msgWinRepaint. The way most windows
work is that they repaint dirty areas rather than paint new ones. When a window
wants to draw something new, it can dirty itself and will receive msgWinRepaint.
clsHello Win has no need to dirty itself since it doesn't change what it paints.

When to create things
The need to manage a separate object (a drawing context) introduces two crucial
questions you need to consider when designing an application:

• When do I create and destroy an object (or resource)?

• When do I file it, if at all?

An application can create objects at many stages in its life. It can create objects at
installation, at initialization (or at restore time), when opening, or when painting
its windows. If your application waits until it needs an object before it creates the
object, it will use less memory before it creates the object. But creating objects takes
time, so you may want to create the object at initialization time, before the user
interacts with the application, to reduce the time it takes your application to
respond to the user. As is often the case, you must strike a balance between memory
and performance.

To decide when to create objects, you need to work backwards from when they are
needed. In this case, Hello World only needs a drawing context in its window's
repaint routine. Creating a DC every time you need to repaint is OK, but it is a fairly
expensive operation in terms of time. Besides, realistic applications often use a DC

in input processing as well, to figure out where the user's pen is in convenient coor
dinates. However, we do know that a DC will never be needed when the view
doesn't exist.

clsHello could create the DC and pass it to clsHello Win, but it's usually much
more straightforward for the object that needs another object to create that object.

Hello World creates its window when it receives msgAppOpen and destroys its
window when it receives msgAppClose. These are reasonable times for the window
to create its DC, so clsHello Win creates a DC when it receives msgInit and destroys
the DC when it receives msgFree.

Instance data
In our example, clsHelloWin creates its DC in advance. This means that it has
to store the UID of the DC somewhere so that it can use it during msgWinRepaint.
In typical DOS C programs, you can declare static variables to hold information.
It is possible to do this in PenPoint, but in general you should not do it in object
oriented code.

Instead, you should store the information inside each object, in its instance data.
Up until now our classes have not had to remember state, so they haven't needed

128 PEN POINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

their own instance data. (Even if the class you create does not define instance data
for its objects, its ancestors define some instance data, such as the document name
and the label of the toolkit field.)

Specifying instance data is easy. You just tell the Class Manager how big it is (in the
class. size field) when you create your class. You would typically define a typedef for
the structure of your class's instance data, then give the size of this as the class.size.
In the case of clsHello Win, we define a structure called INSTANCE_DATA:

typedef struct INSTANCE_DATA {
SYSDC dc;

} INSTANCE_DATA, *P_INSTANCE_DATA;

and then in ClsHelloWinlnitO:
STATUS CIsHelloWinInit (void)
{

CLASS NEW new;
STATUS S;

II Create the class.
ObjCaIIWarn(msgNewDefaults, clsClass, &new);
new.object.uid = clsHelloWin;
new.cls.pMsg = clsHelloWinTable;
new.cls.ancestor = clsWin;
new.cls.size = SizeOf(INSTANCE_DATA);
new.cls.newArgsSize = SizeOf(HELLO_WIN_NEW);
ObjCaIIRet(msgNew, clsClass, &new, s);

Is it msgNew or msglnit?
As we discussed, clsHello Win creates its DC when it is created. It does this by
responding to msglnit.

Note that clsHello Win responds to msglnit, not msgNew. When you create an
object, you send its class msgNew. No classes intercept this message, so it goes up
the ancestor chain to clsClass, which creates the new object. The Class Manager
then sends msglnit to the newly created object, so that it can initialize itselE

Window initialization
Here's the Hello WinlnitO code that creates the Hello Window in response
to msglnit:

MsgHandler(HelloWinInit)
{

SYSDC NEW dn;
INSTANCE DATA data;
SYSDC_FONT_SPEC fs;
SCALE fontScale;
STATUS S;

clsHello Winlnit declares an instance data structure. It does this because the pointer
to instance data passed to message handlers by the Class Manager (pData, unused
in this routine) is read-only.

CHAPTER 8 I CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 129

It then initializes the instance data to zero. It's important for instance data to be in a

well-known state. This isn't necessary in the case of clsHelloWin, since the only
instance data is the DC UID that it will fill in, but it is good programming practice.

II Null the instance data.
memset(&data, 0, SizeOf(data));

clsHello Win then creates a DC:

II Create a dc.
ObjCallRet(msgNewWithDefaults, clsSysDrwCtx, &dn, s);

When msgNewWithDefaults returns, it passes back the UID of the new system
drawing context. This is what clsHello Win wants for its instance data:

data.dc = dn.object.uid;

clsHelloWin sets the desired DC state (including the line thickness) and binds it to
self (the instance that has just been created when HelloWinlnitO is called):

II Rounded lines, thickness of zero.
ObjectCall(msgDcSetLineThickness, data.dc, (P_ARGS)O);
if (DbgFlagGet('F', Ox40L)) {

Dbg(Debugf(U_L("Use a non-zero line thickness."));)
ObjectCall(msgDcSetLineThickness, data.dc, (P_ARGS)2);

}

II Open a font. Use the "user input" font (whatever the user has
II chosen for this in System Preferences.
fs.id 0;
fs.attr.group sysDcGroupUserlnput;
fs.attr.weight sysDcWeightNormal;
fs.attr.aspect sysDcAspectNormal;
fs.attr.italic 0;
fs.attr.monospaced 0;
fs.attr.encoding sysDcEncodeGoSystem;
ObjCallJmp(msgDcOpenFont, data.dc, &fs, s, Error);
II Scale the font. The entire DC will be scaled in the repaint
II to pleasingly fill the window.
fontScale.x = fontScale.y = FxMakeFixed(initFontScale,O);
ObjectCall(msgDcScaleFont, data.dc, &fontScale);
II Bind the window to the dc.
ObjectCall(msgDcSetWindow, data.dc, (P_ARGS)self);

At this point, clsHello Win has set up its instance data in a local structure. It calls

ObjectWriteO to get the Class Manager to update the instance data stored in the
Hello Window instance:

II Update the instance data.
ObjectWrite(self, ctx, &data);
return stsOK

Using instance data
Accessing instance data is easy. The Class Manager passes a read-only pointer to
instance data into the class's message handlers.

The Class Manager has no idea what the instance data is, so it just declares the
pointer as a mystery type (p _DATA, which is defined as P _UNKNOWN). The

MsgHandlerO macro names the pointer pData.

Using instance data

m5gNewWithDefault5 works
like m5gNewDefault5 followed
immediately with m5gNew.
Use m5gNewWith Default5
when you don't need to modify
the defaults before creating
the object.

130 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

clsHello Win needs to access its instance data during msgWinRepaint handling so
it can use the DC. It knows that the instance data pointed to by pData is type
INSTANCE_DATA, so it uses the MsgHandlerWithTypesO macro, which allows it to
provide the types (or casts) for the argument and instance data pointers:

MsgHandlerWithTypes(HelloWinRepaint, P_ARGS, P_INSTANCE_DATA)

You can pass the pData pointer around freely within your code, but whenever you
want to change instance data, you must de-reference it into a local (writable) vari
able, modifY the local variable, and then call ObjectWriteO. clsHelloWin creates its
DC when it is created, and never changes it, so it doesn't have to worry about
de-referencing its instance data into local storage. But clsCntr, described in Chapter
9, does have to do this.

No filing yet
On a page turn, the process and all objects associated with a Hello World (custom
window) document are destroyed. Normally this means that objects have to file
their state. However, since clsHello Win destroys its DC when it is destroyed and
never changes its DC's state, it doesn't have to file its DC.

The application does not file its view-it creates it at msgAppOpen to draw, then
destroys it at msgAppClose, and there's no useful state to remember from the DC.
You could imagine an application that would want to remember some of the state
of its DC. For example, if the user could choose the font in Hello World (custom
window), then the program would need to remember what the font was so that
when the user turns back to the application's page the application continues to use
the same font.

Drawing in a window
Empty Application prints out messages, but it doesn't draw them in its window.
Instead it uses the error output routine DebugfO to generate output. Hello World
(custom window) actually draws something in its window. Windows are separate
objects from applications, and the window gets told to repaint, not the application.
Hence, you need to create a window object. The window object will receive msg
WinRepaint messages whenever it needs to paint its window, either because the
application has just appeared on-screen, or because another window was obscuring
part of this window.

clsWin responds to msgWinRepaint by filling self with the background color and
outlining the edge of the window. You could put an instance of cls Win inside your
frame, but we want something more interesting to appear in the window. So
clsHello Win intercepts msgWinRepaint and draws its own thing. It draws
the strings "Hello" and "World" and then draws an exclamation point using
graphics commands. The most complex thing about its repaint routine is its
scaling. It measures how long the strings "Hello" and "World" will be, then uses
this information to scale its coordinate system so that the words and drawing fit in
the window nicely.

CHAPTER 8 / CREATING A NEW CLASS (HELLO WORLD: CUSTOM WINDOW) 131

Possible enhancements
Try drawing some other shapes using other msgDcDraw ... messages. Nest a
clsHello Win window in the custom layout window from HELLOTK2.C.

Debugging Hello World (custom window)

Possible enhancements

If you want to modify Hello World (custom window), you might need to use DB
extensively as you make changes. This section explains techniques developers com

monly use to speed up debugging with DB.

To save typing commands over and over to DB, you can store them in files and read
them into DB using its < command, for example:

<\\boot\proj\setbreak.txt

When it starts, DB looks for a start-up file called DBCUSTOM.DB. It tries to find this
in \ \BOOT\PENPOINT\APP\DB, but you can specify the path to another file by speci
fying the path in a DBCustom line in PENPOINT\BOOT\ENVIRON.INI. You can use
DBCUSTOM.DB to set up the ctx and srcdir for your application's executables and
DLLs, and set breakpoints. Here's how a DBCUSTOM.DB for Hello World (custom
window) might look:

sym "go-hello_exe-V2(O) " \\boot\penpoint\sdk\sample\hello\hello.exe
srcdir "go-hello_exe-V2(O)" \\boot\penpoint\sdk\sample\hello
sym "go-hello_dll-V2(O)" \\boot\penpoint\sdk\sample\hello\hello.dll
srcdir "go-hello_dll-V2(O)" \\boot\penpoint\sdk\sample\hello
bp HelloWinRepaint
g

Whenever you start a new instance of Hello World (custom window)-either by
choosing from the Accessory palette or by turning a page-DB will halt. At that
point you can type t to step a line, g to continue, and so on.

Chapter 9 / Saving and Restoring Data
(Counter)

The sample programs we have considered so far do not have any information to
save. They always do the same thing in response to the same messages. However,
real applicadons must be able to save and restore data.

PenPoint™ applications maintain information about what is on screen, how the
user last interacted with the application, what options were set, what controls were
active at the time, and so on. This information together with the application's data
is called the application's state.

Because PenPoint is an object-oriented system, there is no real distinction between
data and state information. An application is built from a series of objects.
A scribble object might contain the scribbles that the user just drew, while a scroll
window object contains the current scrolling position of the window. The former
contains "user data" and the latter contains state information, but to PenPoint
they are simply objects. This chapter discusses how applications save and restore
their data.

The last part of this chapter describes how to create a menu using clsTkTable.

Saving state
Remember that as the user turns from page to page in the Notebook, the Applica
tion Framework is starting up and shutting down instances of clsApp. When you
turn the page from Empty Application or Hello World, the Application Framework
destroys the clsEmptyApp or clsHello World application object. When you turn
back to that page, the Application Framework creates a new application object.

This is fine, because these applications don't need to remember anything. They start
from scratch each time they appear. However, if applications do change state, they
must preserve this state, so that the user is not aware that the application instance is
coming and going "behind" what is seen on-screen.

Counter application
The Counter Application saves data. Each time the application appears on-screen,
it increments a counter and displays the counter's value. It also lets the user choose
the format in which to display the counter (decimal, octal, or hexadecimal).

Based on the state filing rule, the application has two pieces of state that it
should file:

• The value of the counter.

• The format in which it was told to display the counter.

Note The basic rule for
-Aling state is: if I don't -Ale
this state, will users notice
that the application is
different when they turn
back to its page'?

134 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

clsCntrApp remembers the format in which it displays the counter value. cls
CntrApp could also remember the value of the counter, but one of the benefits of
an object-oriented system is that you can break up your application code into
objects that model the natural structure of the system.

It's natural to think of the application displaying the value of a separate object, so
that's the way we implement it: clsCntrApp creates and interacts with a separate
clsCntr object. Because the format could be applied to all counter objects in the
application, clsCntrApp remembers the format.

Note the difference between Counter Application and the two Hello World sample
programs. The Hello World applications had to create other objects to get the
behavior they needed. An application object is not a window, so they had to create
window objects. In the case of Counter Application's counter object, we're not
forced to use a separate object-we could have clsCntrApp remember the state of
the counter, but for design reasons we choose to implement the counter as a sepa
rate object.

PenPoint has several classes that store a numeric value:

clsIntegerField A handwriting field that accepts numeric input.

clsPageNum The page number in floating frames.

clsCounter The page number with up and down arrows in the Notebook.

These are all window classes that display a numeric value. clsCntrApp creates a
label to display the value of the counter, much like Hello World (toolkit). Hence
none of these are quite right for Counter Application, so we create a separate
counter class. Figure 9-1 shows the classes defined by Counter Application and
their ancestors.

Compiling and installing the application
To compile Counter Application, change to the PENPOINT\SDK\SAMPLE\CNTRAPP

directory and start the MAKE utility. This creates a PENPOINT\APP\CNTRAPP direc
tory and compiles CNTRAPP.EXE in that directory.

Install Counter Application either by adding \ \BOOT\PENPOINT\APP\Counter

Application to PENPOINT\BOOT\locale\APP.INI (where locale is USA for United States
English or JPN for Japanese) before starting PenPoint or by installing the applica
tion using the Installer.

Counter Application highlights
The method table for clsCntrApp handles a number of interesting messages:

msglnit,
msgSave,
msgRestore,
msgFree,
msgApplnit,
msgAppOpen,
msgAppClose,
msgCntrAppChangeFormat,

"CntrApplnit" ,
"CntrAppSave" ,
"CntrAppRestore" ,
"CntrAppFree" ,
"CntrAppApplnit" ,
"CntrAppOpen",
"CntrAppClose" ,
"CntrAppChangeFormat" ,

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
0,

Because the UI Toolkit uses
the symbol cl5Counter already,
Counter Application uses the
symbol cl5Cntr for its counter
class.

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 135
Counter application

Counter Application objects

PenPoint
provides:

Objects in a running
Counter Document

clsCntrApp creates an instance of clsCntr at msgAppInit time.

clsCntrApp responds to msgAppOpen by incrementing the counter, creating a
label containing the counter value, making the label the client window, and creating
the menu bar.

clsCntrApp responds to msgAppClose by destroying the client window.

The class responds to msgCntrAppChangeFormat, which is sent by its menu but
tons, by changing its stored data format.

When processCount is 0, mainO calls CIsCntrAppInitO.

Counter class highlights
The method table for clsCntr is also defined in METHODS.TBL and handles these
messages:

msgNewDefaults,
msglnit,
msgSave,
msgRestore,
msgFree,
msgCntrGetValue,
msgCntrlncr,

"CntrNewDefaults" ,
"Cntrlnit" ,
"CntrSave" ,
"CntrRestore" ,
"CntrFree" ,
"CntrGetValue" ,
"Cntrlncr" ,

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,
0,
0,

FIGURE 9-1

method table

method table

136 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

Instance data

The instance data for a clsCntr object contains the value of the counter:
typedef struct CNTR_INST {

S32 currentyalue;
CNTR_INST,
*P_CNTR_INST;

Make sure you notice the difference between CNTR_INST, the counter's instance
data, and CNTR_INFO, the structure used for the arguments passed with msgCntr
GetValue. In this example, the two structures contain the same data; in a more
complex example, the instance data would contain all the stateful information
required by an instance of the object, while the message argument structure would
only contain the data needed by a particular message.

Because the purpose of clsCntr is to maintain a value for its client, clsCntr must
provide a means for its client to access the value. One common approach lets the
client perform these tasks:

.. Specify an initial value in msgNew .

.. Get the value with a special message .

• Set the value with a special message.

clsCntr does all of these except set the value. The _NEW_ONLY information for
clsCntr contains an initial value. Here is the CNTR_NEW_ONLY structure from
CNTR.H:

typedef struct CNTR_NEW_ONLY {
S32 initialValue;

} CNTR_NEW_ONLY, *P_CNTR_NEW_ONLY;

In case its client doesn't specify an initial value when the client sends msgNew,
clsCntr initializes the msgNew argument to a reasonable value (zero) in msgNew
Defaults:

MsgHandlerArgType(CntrNewDefaults, P_CNTR_NEW)
{

Dbg(Debugf(U_L("Cntr:CntrNewDefaults"));)
II Set default value in new struct.
pArgs->cntr.initialValue = 0;
return stsOK;
MsgHandlerParametersNoWarning;

} 1* CntrNewDefaults *1

In response to msglnit, clsCounter initializes the instance data to the starting value
specified in the msgNew arguments:

MsgHandlerArgType(Cntrlnit, P_CNTR_NEW)
{

CNTR_INST inst;
Dbg(Debugf(U_L("Cntr:Cntrlnit"));)
II Set starting value.
inst.currentValue = pArgs->cntr.initialValue;
II Update instance data.
ObjectWrite(self, ctx, &inst);
return stsOK;
MsgHandlerParametersNoWarning;

} 1* Cntrlnit *1

Important point.

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 137

",. Getting and setting values
clsCntr defines messages to get and set the counter value, msgCntrGetValue and
msgCntrInc. Note how we intentionally limit the API to suit the design of the
object: the client can't directly set the counter value, it can only increment it. This
makes the counter less general.

The (dubious) advantage of the approach used is that if the design of clsCntr
changes so that it has more information, CNTR_INFO could change to include
more information, and clients of it would only need to recompile.

", Getting the value

The handler for msgCntrGetValue is straightforward. Note that the client must
pass it a pointer to the structure in which clsCntr passes back the value.

MsgHandlerWithTypes(CntrGetValue, P_CNTR_INFO, P_CNTR_INST)
{

Dbg(Debugf(U_L(ICntr:CntrGetValue"));)
pArgs->value = pData->currentValue;
return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrGetValue */

In this case, passing a CNTR_INFO structure as the message arguments is not neces
sary. msgCntrGetValue could take a pointer to an S32, instead of a pointer to a
structure that contains an S32. However, as soon as you need more than 32 bits to
communicate the message arguments, you must define a structure and pass a
pointer to the structure.

Incrementing the value

msgCntrIncr increments the value. It doesn't take any arguments.
MsgHandlerWithTypes (Cntrlncr, P_ARGS, P_CNTR_INST)
{

CNTR_INST inst;
Dbg(Debugf(U_L(ICntr:Cntrlncr"));)
inst = *pData;
inst.currentValue++;
ObjectWrite(self, ctx, &inst);
return stsOK;
MsgHandlerParametersNoWarning;

} /* Cntrlncr */

There are a couple of things to note here. First, the instance data is stored in
memory that only the Class Manager can write. When the Class Manager calls the
message handler, it passes a pointer to this protected instance data. If the code had
tried to update the protected pData->currentValue directly, PenPoint would have
generated a general protection fault. That is why the code assigns the instance data
(the implicit pData argument) to a variable (inst) before modifying it. After modi
fying the copy of the instance data, the code calls ObjectWriteO, which directs the
Class Manager to update the protected instance data stored in the object.

Second, the code uses the MsgHandlerWithTypesO macro to define the function.
MsgHandlerWithTypesO works like MsgHandlerO, but lets you specify data types

Counter application

Note Two frequent sources of
programming error are trying to
modify protected, read-only
instance data (instead of a
coPY of the instance data), and
forgetting to update instance
data with ObjectWriteO after
modifying the coPY of the
instance data.

138 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

for the message argument (pArgs) and instance data (pData). In addition to the
name of the method, the MsgHandlerWithTypesO macro takes two arguments
that indicate the types of the message arguments (pArgs) and the instance data
(pData).

In the CntrIncrO example above, the MsgHandlerWithTypesO casts the message
argument as a P _ARGS pointer (the default for pArgs), and the instance data as a
P _ CNTR_INST, a pointer to a CNTR_INST structure.

Object filing
The way objects preserve state is by filing it at the appropriate time. The Applica
tion Framework sends the application instance msgSave when the document
should save its state and msgRestore when the document should recreate itself The
order in which applications receive these and other messages from the Application
Framework is explained in Part 2: Application Framework of the PenPoint Architec
tural Reference manual.

The message arguments to msgSave and msgRestore include a handle on a
resource file. Objects respond by writing out their state to this file and reading
it back in. The objects do not care where the resource file is, nor do they care who
created it.

The Application Framework creates and manages a resource file for each document.
The file handle passed by msgSave and msgRestore is for this resource file. If you
start up the disk viewer with the B debug flag set to 800 hexadecimal, and expand
\ \BOOT\PENPOINT\SYS\Bookshelf\Norebook\CONTENTS, you should be able to see
these files; look for a file called DOC.RES in each document directory.

At the level of msgSave and msgRestore, classes can just write bytes to a file (the
resource file) to save state.

When it receives msgSave, clsCntrApp could get the value of the counter object
(by sending it msgCntrGetValue) and just write the number to the file. However,
this would introduce dependencies between the two objects, which in object-ori
ented programming is a bad thing. So, instead dsCntrApp tells the counter object
to file itself We'll cover exactly how this happens later, but for now just accept that
the dsCntr instance receives msgSave.

Handling msg5ave
The message argument to msgSave is a pointer to an OBl_SAVE structure:

MsgHandlerArgType(CntrSave, P_OBJ_SAVE)

If you look in PENPOINT\SDK\INC\CLSMGR.H, you will notice that one of the fields
in the OBl_SAVE structure is the handle of the file to save to. So all dsCntr has to do
is write that part of its instance data that it needs to save to the file: basically, all of
its instance data.

To write to a file, you sendmsgStreamWrite to the file handle. The message takes a
pointer to a STREAM_READ _WRITE structure, in which you specifY what to file and
how many bytes to write.

Objects can also preserve
state by refusing to be
terminated, although this
usually consumes memory.

CHAPTER 9 I SAVING AND RESTORING DATA (COUNTER) 139

MsgHandlerArgType(CntrSave, P_OBJ_SAVE)
{

STREAM_READ_WRITE fsWrite;
STATUS s;
Debugf ("Cntr: CntrSave") ;
II
II Write instance to the file.
II
fsWrite.numBytes= SizeOf(CNTR_INST);
fsWrite.pBuf= pData;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);
return stsOK;
MsgHandlerParametersNoWarning;
} 1* CntrSave *1

msgStream Write passes back information about how many bytes it actually wrote.
A real application would check this information to make sure that it successfully
filed all its state.

Handling msgRestore

msgRestore is similar to msgSave. The Class Manager handles msgRestore by cre
ating a new object, so the ancestor must be called first. The message argument to
msgRestore is a pointer to an OBJ_RESTORE structure:

MsgHandlerArgType(CntrRestore, P_OBJ_RESTORE)

Again, one of the fields in this structure is the UID of the file handle to restore from.
clsCntr just has to restore self's instance data from the filed data. This is similar to
initializing instance data in msgInit handling, except that the information has to be
read from a file instead of from msgNew arguments. You declare a local instance
data structure:

M$gHandlerArgType(CntrRestore, P_OBJ_RESTORE)
{

CNTR INST inst;
STREAM_READ_WRITE fsRead;
STATUS s;

To read from a file, you send msgStreamRead to the file handle, which takes a
pointer to the same STREAM_READ _WRITE structure as msgStream Write. In the
structure you specify how many bytes to read and give a pointer to your buffer that
will receive the data:

Dbg(Debugf(U L("Cntr:CntrRestore"));)
I I -
II Read instance data from the file.
II
fsRead.numBytes= SizeOf(CNTR_INST);
fsRead.pBuf= &inst;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

You call ObjectWriteO to update the object's instance data.

II
II Update instance data.
II
ObjectWrite(self, ctx, &inst);
return stsOK;
MsgHandlerParametersNoWarning;

} 1* CntrRestore *1

Object filing

140 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

Counter Application's instance data
clsCntrApp's instance data contains:

• The display format to use for the counter value.

• The UID of the counter object.

• A memory-mapped file handle (explained below).

When the user turns away from a Counter Application document's page, the Appli
cation Framework destroys the counter object (and the application instance). When
the user turns back to the Counter Application document, the counter object is
restored with a different UID. Hence clsCntrApp should not file the UID of the
counter object, because it will be invalid upon restore. clsCntrApp only needs to
file the display format and to tell the counter object to save its data.

'Y Memory-mapped file
Counter Application could just write its data to the resource file created by the
Application Framework, just as the counter object did. However, a disadvantage of
filing data is that there are two copies of the information when a document is open:
the instance data in the object maintained by the Class Manager and the filed data
in the document resource file maintained by the file system.

One way to avoid this duplication of data is to use a memory-mapped file. Instead
of reading and writing to a file, you can simply map the file into your address space;
reading and writing to the file take place transparently as you access that memory.

clsCntrApp stores its data (the current representation) in a memory-mapped file.

Opening and closing the file
Because you need to open the file both when creating the document for the first
time, and when restoring the document after it has been filed, you need to open the
file in two different places (msgAppInit and msgRestore), but you only need close
it in one place (msgFree).

Why close the file in response to msgFree? Why not msgSave? Remember that
when an application is created, it is sent msgAppInit (in response to which it cre
ates and initializes objects) and then is immediately sent msgSave (which allows it
to save its newly initialized objects before doing anything else). msgSave is also sent
when the user checkpoints a document. In other words, receiving msgSave doesn't
necessarily mean that we're about to destroy the application object.

Opening lor the lirst time

When Counter Application receives msgAppInit, it creates the counter object:
MsgHandler(CntrApplnit)
{

CNTRAPP_INST insti
Dbg(Debugf(U_L("CntrApp:CntrApplnit")) i)

inst.counter = pNu11i
inst.fileHandle = pNulli
inst.pFormat = pNulli

Tip Saving the UIDs of an
object is usually incorrect.
Either the object has a well
known UID (in which case
there's no reason to -Ale it), or
the UID is dynamic (in which
case the UID will be different
when the object is restored).

Counter Application and the
counter object use different
-Aling methods. This is useful
when you need to differentiate
between instance data and
other forms of data.

II Update instance data.
ObjectWrite(self, ctx, &inst);
return stsOK;
MsgHandlerParametersNoWarning;

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 141
Counter Application's instance data

} 1* CntrApplnit *1

".,.. Opening to restore

CntrAppRestoreO opens a file (called FORMATFILE) where it stores the document's
instance data, then maps the file to memory. This makes the format data available
in inst.pFormat.

MsgHandlerWithTypes(CntrAppRestore, P_OBJ_RESTORE, P_CNTRAPP_INST)
{

Error:

FS NEW fsn;
CNTRAPP INST inst;
STATUS S;

Dbg(Debugf(U_L("CntrApp:CntrAppRestore"));)
II Get handle for format file, and save the handle.
II The default for fsn.fs.locator.uid is theWorkingDir, which
II is the document's directory.
ObjCallWarn(msgNewDefaults, clsFileHandle, &fsn);
fsn.fs.locator.pPath = U_L("formatfile")i
ObjCallRet(msgNew, clsFileHandle, &fsn, s);
inst.fileHandle = fsn.object.uid;
II Map the file to memory
ObjCallRet(msgFSMemoryMapSetSize, fsn.object.uid, \

(P_ARGS) (SIZEOF)cntrAppMemoryMapSize, S)i

ObjCallRet(msgFSMemoryMap, fsn.object.uid, &inst.pFormat, s);
II Restore the counter object.
ObjCallJmp(msgResGetObject, pArgs->file, &inst.counter, s, Error);
II Update instance data.
ObjectWrite(self, ctx, &inst);
return stsOKi
MsgHandlerParametersNoWarning;

return Si

} 1* CntrAppRestore *1

Using a memory-mapped file handle lets you maintain just one copy of the instance
data when the document is open. The alternative is to create an instance data struc
ture in memory when the document opens, copy the filed data to the structure in
memory, then copy changes from the in-memory data structure to the file before
closing the document.

Closing on msgFree

When the application receives msgFree, it destroys the counter object, sends msg
FSMemoryMapFree to unmap the file, and then sends msgDestroy to the file
handle to close the file.

MsgHandlerWithTypes(CntrAppFree, P_ARGS, P_CNTRAPP_INST)
{

STATUS Si

Dbg(Debugf(U_L("CntrApp:CntrAppFree"));)
ObjCallRet(msgDestroy, pData->counter, Nil (P_ARGS), s);

142 PENPOINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

II Unrnap the file
ObjCallRet(rnsgFSMernoryMapFree, pData->fileHandle, Nil (P_ARGS), s);
II Free the file handle
ObjCallRet(rnsgDestroy, pData->fileHandle, Nil (P_ARGS), s);
return stsOK;
MsgHandlerPararnetersNoWarning;

} 1* CntrAppFree *1

Filing the counter object
The only thing that is left to do is to tell the counter object when to save and
restore its data. For this, you send the resource messages msgResPutObject and
msgResGetObject to the resource file handle created by the Application Frame
work. These messages are defined in RESPILE.H. You do not send msgSave and
msgRestore directly to the counter object.

The resource file handle is an instance of clsResFile. When you send a message to
the resource file handle, you tell it which object you want to put or get. In the case
of msgResPutObject, clsResFile writes information about the object to the
resource file, then sends msgSave to the object. In the case of msgResGetObject,
dsResFile reads information about the object from the file, creates the object,
which is essentially empty until clsResFile sends msgRestore to the object. This is
how objects receive msgSave and msgRestore.

Saving the counter object

When Counter Application receives msgSave, it sends msgResPutObject to the file
handle passed in with the msgSave arguments.

MsgHandlerWithTypes(CntrAppSave, P_OBJ_SAVE, P_CNTRAPP_INST)
{

STATUS s;
Dbg(Debugf(U_L("CntrApp:CntrAppSave"));)
II Save the counter object.
ObjCallRet(rnsgResPutObject, pArgs->file, pData->counter, s);
return stsOK;
MsgHandlerPararnetersNoWarning;

} 1* CntrAppSave *1

Counter Application doesn't have to write the instance data to a file, because the
data is a memory-mapped to a file.

Restoring the counter object

When Counter Application receives msgRestore, it sends msgResGetObject to the
file handle passed in with the msgRestore arguments.

MsgHandlerWithTypes(CntrAppRestore, P_OBJ_RESTORE, P_CNTRAPP_INST)
{

FS NEW fsn;
CNTRAPP INST inst;
STATUS s;

CHAPTER 9 / SAVING AND RESTORING DATA (COUNTER) 143

Error:

Dbg(Debugf(U_L("CntrApp:CntrAppRestore"));)
II Get handle for format file, and save the handle.
II The default for fsn.fs.locator.uid is theWorkingDir, which
II is the document's directory.
ObjCallWarn(msgNewDefaults, clsFileHandle, &fsn);
fsn.fs.locator.pPath = U_L("formatfile");
ObjCallRet(msgNew, clsFileHandle, &fsn, s);
inst.fileHandle = fsn.object.uid;
II Map the file to memory
ObjCallRet(msgFSMemoryMapSetSize, fsn.object.uid, \

(P_ARGS) (SIZEOF)cntrAppMemoryMapSize, s);
ObjCallRet(msgFSMemoryMap, fsn.object.uid, &inst.pFormat, s);
II Restore the counter object.
ObjCallJmp(msgResGetObject, pArgs->file, &inst.counter, s, Error);
II Update instance data.
ObjectWrite(self, ctx, &inst);
return stsOK;
MsgHandlerParametersNoWarning;

return s;
} 1* CntrAppRestore *1

Menu support
dsCntrApp creates a menu by specifying the contents of the menu statically in a
toolkit table. dsTkTable is the ancestor of several UI components that display a set
of windows, including choices, option tables, and menus. Instead of creating each
of the items in a toolkit table by sending msgNew over and over to different classes,
you can specify in a set of toolkit table entries what should be in the table. When
you send msgNew to dsTkTable (or one of its descendants) it creates its child
items based on the information you gave it.

When it receives msgAppOpen, dsCntrApp appends its menu to the SAMs
(standard application menus) by passing its menu as an argument to msgApp
CreateMenuBar.

Buttons
The items in the menu are a set of buttons. When you create a button in toolkit
table entry, you specify:

+ The button's string, or a resource ID tag that refers to a string in a resource file.

• The notification message the button should send when the user activates it.

• A value for the button.

• If the string is specified as resource ID, the type of resource (usually tkLabel
StringID to specify a string resource).

There are other fields in a TK_ TABLE_ENTRY, but you can rely on their defaults
ofO.

Menu support

144 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The menu bar used in Counter Application is described by the TK_ TABLE_ENTRY

structure named CntrAppMenuBarO in CNTRAPP.C. CntrAppMenuBarO specifies
user-readable strings, such as the name of the menu and the menu items, with
resource ID tags.

typedef enum CNTRAPP_DISPLAY_FORMAT
dec, oct, hex

1*

CNTRAPP_D I SPLAY_FORMAT ,
*P_CNTRAPP_DISPLAY_FORMAT;

* Here we use tags that are associated with strings in a resource file
* for the name of our menu and the menu items.

*
* When using tags in a TKTable, the fifth field must be an id that gives
* the type of the tag. If there is an item already in the fifth field,
* you can 'or' the two field items, and the system will know which one
* to use.
*1

static const TK_TABLE_ENTRY CntrAppMenuBar[] = {

} ;

{tagCntrMenu, 0, 0, 0, tkMenuPullDown I tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull} ,

{pNull}

When the user taps one of the menu buttons, the menu button sends msgCntr
AppChangeFormat to its client, which by default is the application. The message
argument is the value of the button (dec, oct, or hex). clsCntrApp's message han
dler for msgCntrAppChangeFormat looks at the message argument to determine
which button the user tapped.

MsgHandlerWithTypes(CntrAppChangeFormat, P_ARGS, P_CNTRAPP_INST)
{

APP METRICS am;
WIN thelabel;
STATUS s;
CHAR buf[MAXSTRLEN];
Dbg(Debugf(U_L("CntrApp:CntrAppChangeFormat"));)

II
II Update mmap data
II
* (pData->pFormat) = (CNTRAPP_DISPLAY_FORMAT) (U32)pArgs;
II Build the string for the label.
StsRet(BuildString(buf, pData), s);
II Get app metrics.
ObjCallRet(msgAppGetMetrics, self, &am, s);
II Get the clientWin.
ObjCallRet(msgFrameGetClientWin, am.mainWin, &thelabel, s);
II Set the label string.
ObjCallRet(msgLabelSetString, thelabel, buf, s);
return stsOK;
MsgHandlerParametersNoWarning;

} 1* CntrAppChangeFormat *1

Chapter 1 0 / Handling Input
(Tic-Tac-Toe)

Tic-Tac-Toe is a large, robust application that demonstrates how to "play along"
with many of the PenPoint™ protocols affecting applications:

• SAMs (standard application menus)

., Selections

., Move/copy protocol

., Keyboard input focus

• Stationery

• Help
., Option sheets

The rest of this chapter details the architecture of Tic-Tac-Toe, its files, classes,
objects, etc, and describes some of the enhanced application features implemented
in Tic-Tac-Toe.

Tic-Tac-Toe objects
No tutorial of this size can give you a course in object-oriented program design. It is
an art, not a science. The books mentioned in Chapter 3 will be helpful. No matter
what your experience level, you will find that you will probably have to redesign
your object hierarchy at least once. (Here at GO, we redesigned our class hierarchy
countless times in the first two years-now it is quite stable.) But there are some
generally accepted techniques for breaking up an application into manageable com
ponents, and this tutorial will lead you through them.

Each section from now on will discuss the various design choices made.

Application components
A typical functional application does something in its application window, then
saves data in the document working directory.

Tic-Tac-Toe does this: it displays a tic-tac-toe board in its window, then stores the
state of the board. Its application class is clsTttApp. The application creates its own
class to display the board, clsTttView. It also creates a separate object just to store
the state of the board, cls T ttData.

Tic-Tac-Toe, also known as
Naughts and Crosses, is a
game where two players take
turns placing markers on a 3 x
3 grid. The object is to place
three markers in a row while
preventing your opponent from
placing three markers in a row .

146 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

PenPoint
provides:

Objects in a running
instance of your
application

You must
write:

Separate stateful data objects

clsObject

several
window

subclasses

clsView

The Tic-Tac-Toe data object's set ofXs and Os are the main part of its state, which it
must preserve.

The application and view also maintain some state, the application files its version,
and the view remembers the thickness of the lines on the Tic-Tac-Toe board.

Tic-Tac-Toe structure
Table 10-1 lists the files in PENPOINT\SDK\SAMPLE\TTT that you use to build the
Tic-Tac-Toe application (the directory also contains some text files that provide
information about the application)

FIGURE 10-1

files

MAKEFILE

METHODS.TBL

USA.RC

JPN.RC

TTTPRIVH

TTTAPP.C

TTTVIEWC

TTTDATA.C

TTTUTIL.C

TTTVOPT.C

TTTVXFER.C

TTDBG.C

TTTMBAR.C

TTTAPP.H

TTTVIEWH

TTTDATA.H

Tic-Tac-Toe window

CHAPTER 10/ HANDLING INPUT (TIC-TAC-TOE) 147
Tic-Tac-Toe window

Purpose

Dependency definitions for the MAKE utility.

Message tables for clsTttApp, clsTttView, and clsTttData.

Resource file containing the strings and other resources for the
United States English localization.

Resource file containing the strings and other resources for the Japanese
localization.

Sets up UID-to-string translation tables that the Class Manager uses to
provide more informative debugging output.

TttDbgHelperO support macro and debugger Hags, TTT_ VERSION
typedef, function definitions for routines in TTTUTIL.C and debug
ging routines in TTTDBG.C, and class UID definitions.

Implements the mainO routine and most of clsTttApp's message
handlers.

Implements most of clsTttView, handling repaint and input.

Implements clsTttData.

Utility routines to create scrollwin, create and adjust menu sections, read
and write filed data and version numbers, get application components,
handle selection. Also application-specific routines to manipulate Tic
Tac-Toe square values.

Message handlers for the option sheet protocol.

Message handlers for the move/copy selection transfer protocol.

Miscellaneous routines supporting the Debug menu choices (dump,
trace, force repaint, etc.).

Defines the TK_ TABLE_ENTRY arrays for Tic-Tac-Toe's menu bar.

Defines clsTttApp messages.

Defines clsTttView messages and their message argument structures, and
defines tags used in the view's option sheet.

Defines possible square values, various Tic-Tac-Toe data structures, and
clsTttView messages and their message argument structures.

Sets up UID-to-string translation tables which the Class Manager uses to
provide more informative debugging output.

There is no pre-existing class that draws letters in a rectangular grid. So, some work
is needed here. The PenPoint VI Toolkit provides labels that can have borders, along
with dsTableLayout that lets you position windows in a regular grid. So, you could
create the Tic-Tac-Toe board by creating nine one-character labels in a table layout
window. However, there are some problems with this:

• Labels don't (ordinarily) scale to fit the space available .

• Each label is a window. A window in PenPoint is fairly lightweight
(that is, it has a small system resource requirement), but if we were to
change to a 16 x 16 board, it would use 256 single-character label windows.

A even more efficient way to draw the grid is to create a window and use the
ImagePoint™ graphics system to draw the lines of the 3 x 3 grid.

148 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Coordinate system
The obvious coordinate system is one unit is one square. However, this system
makes it difficult to position characters within a square, since you specify coordi
nates for drawing operations in S32 coordinates.

The Tic-Tac-Toe view uses local window coordinates for its drawing.

Advanced repainting strategy
As explained in Hello World, the window system tells windows to repaint. When a
window receives msgWinRepaint, it always self-sends msgWinBeginRepaint. This
sets up the update region of the window-the part of the window where pixels can
be altered-to the part of the window that needs repainting. Mter sending msg
WinBeginRepaint, a window can only affect its pixels which the window system
thinks need repainting, no matter where the window tries to paint.

Because the window system must calculate this dirty area, it makes the area avail
able to advanced clients by passing it back in the message argument structure of
msgWinBeginRepaint. In a fit of probable overkill, the Tic-Tac-Toe view is such an
advanced client. Tic-Tac-Toe looks at the RECT32 structure passed back and figures
out what parts of the grid lines and which squares it needs to repaint. It wants to do
this in its own coordinate system, so it sends msgWinBeginRepaint to its DC.

View and data interaction
The Tic-Tac-Toe view displays what's in the data object, so it needs access to the
data maintained by the data object. There are various ways that a view can get to
this state. It could share memory pointers with the data object, or it could use the
specialized function ObjectPeekO to look directly at the data object's instance data
memory. However, both of these methods compromise the separation of view and
data into two objects. A purer approach is to have the view object send the data
object a message when it needs to know the data object's state, but you still have to
decide whether the data object should pass the view its internal data structures or a
well-defined public data structure.

These are the classic problems of encapsulation and abstraction faced in object
oriented program design.

Data object design
Tic-Tac-Toe's data object class, clsTttData, is similar to Counter Application's
dsCntr. It lets its client perform these tasks:

.. Specify an initial board layout in msgNew .

.. Get the value of all the squares (msgTttDataGetMetrics) .

.. Set the value of all the squares (msgTttDataSetMetrics) .

.. Set the value of a particular square (msgTttDataSetSquare).

clsTttData gets and sets the square values as part of getting and setting all of its
metrics. The theory is that any client that wants to set and get this probably wants

CHAPTER 10/ HANDLING INPUT (TIC-TAC-TOE) 149
View and data interaction

all the information about the data object. (In fact, clsTttData's instance metrics

comprise only its square values.)

Instance data by value vs. by reference
The instance data for each of clsTttApp, clsTttView, and clsTttData is a pointer

that points to a data structure outside the instance. The outside data structure is
where the class stores the information. Storing instance data by reference in this

way has some advantages:

• You don't have to use ObjectWriteO to update instance data every time state
changes, since the pointer never changes.

• The size of the instance data can vary.

It does mean that the class has to allocate space for the instance information. The
Tic-Tac-Toe classes do this using OSHeapBlockAllocO in msgInit processing.

Saving a data object
clsTttApp tells its view to file, and an instance of clsView automatically files its data
object.

Handling failures during msglnit and msgRestore
msgInit and msgRestore both create objects. ~It is vital that the handlers for these
messages guarantee that the object is initialized to some well-known state, even if
your handler or some ancestor failed in some way, because after a failed creation,

the object will in fact receive msgDestroy.

Note how clsTttData writes appropriate data into its instance data even in the case
of an error.

MsgHandlerWithTypes(TttDataInit, P_TTT_DATA_NEW, PP_TTT_DATA_INST)
{

Error:

P TTT DATA INST - - -
STATUS s;
DbgTttDataInit ((U_1 ("")))
II Initialize for error recovery.
II
pInst = pNull;
II Allocate, initialize, and record instance data.
II
StsJmp (OSHeapBlockAlloc (osProcessHeapId, SizeOf(*pInst), &pInst), \

s, Error);
pInst->metrics = pArgs->tttData.metrics;
ObjectWrite(self, ctx, &pInst);
DbgTttDataInit ((U _1 (" return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

if (pInst) {
OSHeapBlockFree(pInst);

DbgTttDataInit ((U_1 ("Error; returns Ox%lx"), s))
return s;

} 1* TttDataInit *1

150 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The selection and keyboard input
When a computer permits multiple windows on-screen, it must decide which
window receives keyboard input. PenPoint uses a selection model, meaning that it
sends keyboard input to the object holding the selection (along with all the other
move/ copy/ options/ delete messages that the selected object may receive). So, to
allow typing, the Tic-Tac-Toe view must "be selectable."

How selection works
There can only be one primary selection in the Notebook VI at a time. The user
usually selects something on-screen by tapping on it. In response to holding the
selection, the selected thing is highlighted. Depending on what is selected, the user
can then operate on the selection by deleting it, copying it, asking for its option
sheet, and so on.

PenPoint's Selection Manager keeps track of which object has the selection. How
ever, it is up to the class implementor to support selections, to highlight the selec
tion, and to implement whatever operations on that selection make sense. Text
fields and text views support selections, but cls Win and clsObject do not.

Which object?

Because the Tic-Tac-Toe view is the object that draws the Tic-Tac-Toe board, it
makes sense for it to track selections. The selection does not change the board con
tents, so the Tic-Tac-Toe data object need not care.

When the user selects in the Tic-Tac-Toe view, the action selects the entire view. A
more realistic class would figure out which of its squares the user selected, but the
principles used by clsTttView are the same.

clsTttView responds to selection messages sent by the Selection Manager. It asks
theSelectionManager if it holds the selection, and if so, repaints differently to indi
cate this fact.

What event causes selections?

The application developer must decide what input event causes a selection in
the Tic-Tac-Toe view: the usual is a pen-up event or a pen-hold timeout. On
receiving this input event, the object wishing to acquire the selection should send
msgSelSetOwner to the special Selection Manager object. Since the Tic-Tac-Toe
view also supports keyboard input, it also calls the routine InputSetTargetO to
acquire the keyboard focus. From this point on, the view receives keyboard input
events, and may receive other messages intended for the selection, such as options,
move, and copy.

The object which has acquired the selection should highlight the selected "thing"
on-screen. clsTttView draws the board in gray when it has the selection, and in
white when it does not have the selection. It determines whether it has the selection
by sending msgSelIsSelected to self. Here is the code from TttViewRepaintO
(msgSelIsSelected returns stsOK if the receiver of the message has the selection):

CHAPTER 10 I HANDLING INPUT (TIC-TAC-TOE) 151
More on view and data interaction

II Fill the dirty rect with the appropriate background. If we hold the
II selection, the appropriate background is grey, otherwise it is white.
II
s = ObjectCall(msgSelIsSelected, self, pNull);
if (s == stsOK) {

DbgTttViewRepaint ((U_L(IIself is selected")))
ObjectCall(msgDcSetBackgroundRGB, (*pData)->dc, \

(P_ARGS)sysDcRGBGray33);
else {

DbgTttViewRepaint ((U _ L (" self is not selected")))
ObjectCall(msgDcSetBackgroundRGB, (*pData)->dc, \

(P_ARGS)sysDcRGBWhite);

".,.. Supporting selections

When a Tic-Tac-Toe view receives a msgPenHoldTimeout input event, clsTttView
self-sends msgTttViewTakeSel telling it to acquire the selection, and self-sends
msgWinUpdate, which forces it to repaint the entire board. (If the view supported
square-by-square selection, it would convert the input event X-Y coordinates to a
square location on the board).

~ Move/copy protocol

The selection holder receives a variety of messages, including msgSelYield and
the move/copy protocol messages. Because clsTttView inherits from clsEmbed
dedWin, it can rely on clsEmbeddedWin's default handling of many selection
messages.

More on view and data interaction
Thus far the data maintained by the data object has been static; now the user can
change the data. But the user interacts with the view, not the data object. It's the
view that knows what characters the user entered. The view must tell the data
object about the change as well as draw the new data.

The natural way to do this might seem to be for the view to draw the new letter in
the square, and then tell the data object about the new letter. However, this is not
the view-data model. Instead, the view tells the data object about the changed letter
by sending it msgTttDataSetSquare. When the data object receives this message, it
updates its state, then broadcasts msgTttDataChanged to all its observers. When
the view receives msgTttDataChanged, it knows it needs to repaint the board. The
advantages of this model are that the data object can remain in control of its data: it
could reject the update message from the view, and the view would not display bad
data. Also, it allows for several views to display the same data object, since if any of
them updates the data object, they all are told about the change.

To actually draw the new square, clsTttView dirties the rectangle of the square that
changed. This also may seem odd-why not paint the square immediately with the
new value when notified by the data object of the new value? But the Tic-Tac-Toe
view already knows how to repaint itself; it's nice to take advantage of the batching
provided by the window system's repaint algorithm.

152 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Text subsystem is a more compelling argument for the view-data model used
by Tic-Tac-Toe. Using the same kind of message flow to update text views and text
data objects, Text does indeed allow several views of the same underlying object,
and it has a very intelligent window repainting routine.

Handwriting and gestures
Views inherit from clsGWin, so there is little extra work required to make clsTtt
View respond to input events and gestures.

Input event handling
There is one input message in PenPoint, msgInputEvent. Within the message argu
ments of this is a device code that indicates the type of input event. Device codes all
begin with msgKey or msgPen, which is slightly confusing because objects never
receive these messages, they always receive msgInputEvent. clsTttView's handles
msgInputEvent with a routine called TttViewInputEventO.

TttViewInputEventO calls a routine to process keyboard events, and lets clsTtt
View's ancestor, clsEmbeddedWin, handle pen events. clsEmbeddedWin includes
code for handling many pen input events. For example, clsEmbeddedWin watches
for pen-hold timeouts and, if self is moveable or copyable, self-sends msgSelSelect
and msgSelBeginMoveCopy.

MsgHandlerWithTypes(TttViewlnputEvent, P_INPUT_EVENT, PP_TTT_VIEW_INST)
{

STATUS Si

switch (ClsNum(pArgs->devCode))
case ClsNum(clsKey) :

s = TttViewKeylnput(self, pArgs)i
break;

default:
s = ObjectCallAncestorCtx(ctX)i
break;

return Si

MsgHandlerParametersNoWarningi
} /* TttViewlnputEvent */

Gesture handling
When clsTttView's ancestor gets a pen event, the event ends up being handled by
clsGWin. If clsGWin recognizes the pen event as a gesture, it sends msgGWin
Gesture to self In other words, when the user draws a gesture on the Tic-Tac-Toe
view, the view receives msgGWinGesture.

The arguments for msgGWinGesture are different in PenPoint 1.0 than in
PenPoint 2.0 Japanese. For PenPoint 1.0, the arguments include the gesture in the
form of a message identifier. The class for the message is clsXGesture. The number
of the message encodes the actual gesture detected by clsGWin. In PenPoint 2.0
Japanese, the arguments include the gesture in the form of a Unicode character that
represents the gesture.

CHAPTER 10/ HANDLING INPUT (TIC-TAC-TOE) 153
Handwriting and gestures

TttViewGestureO, the handler for msgGWinGesture, uses a switch statement to
take appropriate action based on the gesture argument. Because the msgGWin
Gesture API is different in PenPoint 1.0 than in PenPoint 2.0 Japanese, the code
uses an #ifdef directive that lets you compile the correct switch statement for
PenPoint 1.0 by defining PPl_O, or setting it on the compiler command line. The
switch statement handles the gestures that are meaningful to clsTttView, and lets
the ancestor class handle all other gestures:

MsgHandlerWithTypes(TttViewGesture, P_GWIN_GESTURE, PP_TTT_VIEW_INST)
{

STATUS s;
#ifdef PPl 0

switch (pArgs->rnsg)
#else

switch (pArgs->gesture)
#endif

Error:

case xgslTap:
ObjCallJrnp(rnsgTttViewToggleSel, self, pNull, s, Error);
break;

case xgsCross:
StsJrnp(TttViewGestureSetSquare(self, pArgs, tttX), s, Error);

,break;
case xgsCircle:

StsJrnp(TttViewGestureSetSquare(self, pArgs, tttO), s, Error);
break;

case xgsPigtailVert:
StsJrnp (TttViewGestureSetSquare (self, pArgs, tttBlank), \

s, Error);
break;

case xgsCheck:
case xgsUGesture:

II Make sure there is a selection.
s = ObjectCall(rnsgSelIsSelected, self, pNull);
if (s == stsNoMatch) {

}

ObjCallJrnp(rnsgTttViewTakeSel, self, pNull, s, Error);
ObjCallJrnp(rnsgWinUpdate, self, pNull, s, Error);

II Then call the ancestor.
ObjCallAncestorCtxJrnp(ctx, s, Error);
break;

default:
DbgTttViewGesture ((U _ L ("Letting ancestor handle gesture"»)
return ObjCallAncestorCtxWarn(ctx);

DbgTttViewGesture ((U_L ("return stsOK"»)
return stsOK;
MsgHandlerPararnetersNoWarning;

DbgTttViewGesture ((U_L ("Error; return Ox%lx"), s»
return S;

} 1* TttViewGesture *1

154 PENPOINT APPLICATION WRITING GUIDE

Part 1 I Application Writing Guide

Keyboard handling
clsTttView's keyboard input routine handles multikey input, for example, when
the user presses two keys at once or in rapid succession. The device code for this is
msgKeyMulti, and the input event data includes the number of keystrokes and an
array of their values. The keyCode of a key value is a simple ASCII number.

clsTttView handles the X, 0, and Space keys on the keyboard.

Chapter 11 / Refining the Application
(Tic-Tac-Toe)

Tic-Tac-Toe has many of the niceties expected of a real application. Many of these
enhancements are independent of the program, and could be added to Empty
Application as easily as to Tic-Tac-Toe.

Debugging
You can use DB, the PenPoint™ source-level debugger, to step through code. In an
object-oriented system, your objects receive many messages from outside sources,
many of which you may not expect. It's useful to be able to easily track the flow of
messages through your routines, and to turn this on and off while your program is
running. As you've noticed if you've looked at the code, Tic-Tac-Toe has extensive
support for debugging. It uses the following facilities for debugging:

., msg Trace to trace messages .

., DebugfO to print debugging messages .

., msgDump to dump the state of objects .

., ClsSymbolslnitO to give the Class Manager symbolic names for Tic-Tac-Toe's
objects, messages, and status values.

The complexity in Tic-Tac-Toe arises because it lets you turn features on and off
while the program is running.

Tracing
It's very useful to have a log of what messages are coming in. You can get a message
log by turning on message tracing; you can either turn it on for a class or for a
single instance of that class.

In DEBUG mode, TTTMBAR.C defines a debug menu which can turn tracing on or
off for the various classes. All the menu items send msgTttAppChangeTracing to
the application. The message argument encodes the target object to trace and
whether to trace it or not:

static TK_TABLE_ENTRY traceMenu[] = {

{"Trace App On", msgTttAppChangeTracing, MakeU32 (0,1) },
{"Trace App Off", msgTttAppChangeTracing, MakeU32 (0, 0) },
{"Trace View On", msgTttAppChangeTracing, MakeU32 (1,1) } ,
{"Trace View Off", msgTttAppChangeTracing, MakeU32 (1, 0) },
{"Trace Data On", msgTttAppChangeTracing, MakeU32 (2, 1) },
{"Trace Data Off", msgTttAppChangeTracing, MakeU32 (2, 0) },
{pNull}
} ;

156 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Note that the strings in this TK_TABLE_ENTRY array, unlike the one used for the
menu bar in Counter Application, are not specified with resource IDs. That's
acceptable programming practice in this case, because the user will never see the
trace menu. That means that you'll never have to translate the strings to another
language, so there is no benefit to putting the strings into a resource file (and no
cost to hard-coding them).

The TttDbgChangeTracingO routine is implemented in TTTDBG.C. It simply
sends msgTrace to the target object, with an argument of true or false.

Debugf() statements and debug flags
Going beyond message tracing, it's useful to print out what your application is
doing at various stages. One approach is to add simple DebugfO statements as you
debug various sections. However, in a large program you can quickly get over
whelmed by debugging statements you're not interested in. Tic-Tac-Toe leaves all
the DebugfO statements in the code, and controls which statements show up by
examining a debugging flag set. It uses DbgFlagGetO to check whether a flag is set,
the same as Empty App and the other simpler applications. What Tic-Tac-Toe
provides is an easy way to print out a string identifying the routine, followed by
whatever printfO-style parameters you want to use. Thus this code:

if (s == stsFSNodeNotFound) {
DbgTttAppCheckStationery((U_L("file not found; s=Ox%lx"),s))
goto NormalExit;

will print out
TttAppCheckStationery: file not found; s=Oxnum

but only if the appropriate debugging flag is set.

So, how is it implemented? A definition of its debug routine precedes each function
for which you want to print debugging information, for example, DbgTttApp
CheckStationeryO.

#define DbgTttAppCheckStationery(x) \
TttDbgHelper(U_L("TttAppCheckStationery"),tttAppDbgSet,Oxl,x)

Call this macro anywhere that you might want to display a debugging string. The
parameter to the macro (x) is the Unicode format string and any arguments
«u_L("file not found; s=Ox%lx"),s)). In order to treat multiple parameters as one,
they must be enclosed in a second set of parentheses.

The TttDbgHelperO routine checks if the specified flag (OxOOOl) is set in the spec
ified debugging flag set (tttAppDbg5et), and if so prints the identifying string
(U_L("TttAppCheckStationery")) together with any printfO-style format string
passed in (x).

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE) 157

There are 256 debugging flag sets, each with a 32-bit value. GO uses some of them
for its applications-see PENPOINT\SDK\INC\DEBUG.H for a full list. TTTPRIY.H

defines the debugging flag sets used in Tic-Tac-Toe, such as tttAppDbgSet:

II
II Debug flag sets
II
#define tttAppDbgSet Oxco
#define tttDataDbgSet OxCl
#define tttUtilDbgSet OxC2
#define tttViewDbgSet OxC3
#define tttViewOptsDbgSet OxC4
#define tttViewXferDbgSet Oxcs

Other routines use other flags.

In case you're interested, here's the definition of TttDbgHelperO:
#define TttDbgHelper(str,set,flag,x) \
Dbg(if (DbgFlagGet((set), (U32) (flag») (DPrintf("%s: ",str); Debugf x;})

DprintfO is the same as DebugfO, except that DprintfO doesn't insert an automatic
new line at the end of the function.

Dumping objects
One of the messages defined by the Class Manager is msgDump. A class should
respond to it by calling its ancestor, then printing out information about self's
state. Most classes only implement msgDump in the DEBUG version of their code.

Tic-Tac-Toe lets you dump its various objects from its Debug menu. In
TTTMBAR.C, it defines the menu:

static TK_TABLE_ENTRY debugMenu[] = {
{"Dump View", msgTttAppDumpView,
{"Dump Data", msgTttAppDumpDataObject,
{"Dump App" , msgDump,
{"Dump Window Tree", (U32)dumpTreeMenu,
{"Trace", (U32) traceMenu,

{"Force Repaint", msgTttAppForceRepaint,
{pNull}
} ;

a} ,

a} ,

a} ,

0, 0, tkMenuPullRight},
0, 0, tkMenuPullRight I

tkBorderEdgeTop},
0, 0, tkBorderEdgeTop},

The client of the menu is the application, so to dump the application all the menu
item needs to do is send msgDump. For the view and data object, you would either
have to change the clients of the menu items, or have the application class respond
to special msgTttAppDumpView or msgTttAppDumpData messages by sending
msgDump to the appropriate target. Tic-Tac-Toe does the latter; the handlers for
these messages are in TTTDBG.C.

Dumping any object

Another approach is to have a generic dump-object function in the DEBUG version
of your code which sends msgDump to its argument. When running DB, you can
call this routine directly, passing it the UID of the object you want dumped.

Debugging

158 PEN POINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Symbol names
All the Class Manager's macros (ObjCalIRetO, ObjCallWarnO, ObjCall
AncestorChkO, and so on) print a string giving the message, object, and status
value if they fail (in DEBUG mode). You can also ask DB to print out messages,
objects, and status values. Ordinarily the most the Class Manager and DB can do is
print the various fields in the UID, such as the administrated field and message
number. However, if you supply the Class Manager a mapping from symbol names
to English names, it and DB will use the English names in their debugging output.

The Class Manager routine you use is ClsSymbolslnitO. The routine takes
three arrays, one for objects, one for messages, and one for status values. Each
array is composed of symbol-string pairs. Tic-Tac-Toe sets up these arrays in the
file S_TTT.C:

const CLS_SYM_STS tttStsSymbols[]
0, a} i

const CLS_SYM_MSG tttMsgSymbols[]
msgTttAppChangeDebugFlag, U _L ("msgTttAppChangeDebugFlag") ,
msgTttAppChangeDebugSet, U _ L ("msgTttAppChangeDebugSet ") ,

msgTttViewTakeSel, U _ L ("msgTttViewTakeSel ") ,
0, a} i

const CLS_SYM_OBJ tttObjSymbols[] = {
clsTttApp, U_L("clsTttApp"),
clsTttData, U_L("clsTttData"),
clsTttView, U _ L ("clsTttView") ,
0, a} i

(Tic-Tac-Toe doesn't define any STATUS values.) ClsSymbolslnitO also takes a
fourth parameter, a unique string identifying this group of symbolic names. Here's
the routine in S_TTT.C that calls ClsSymbolslnitO:

STATUS EXPORTED TttSymbolslnit(void)
{

return ClsSymbolslnit(
U_L("ttt") ,
tttObjSymbols,
tttMsgSymbols,
tttStsSymbolS)i

At installation (from process instance 0), TTT.EXE calls TttSymbolslnitO to load
these arrays. To save space, all of this code is excluded if DEBUG is not set.

Generating symbols automatically

It's cumbersome to type in and update the arrays ofUID-string pairs. At GO we
have developed scripts that automatically generate files like S_TTT.C. These scripts
require the MKS toolkit and other third-party utilities, so they are on the unsup
ported SDK Goodies disk.

Printing symbol names yourself

Tic-Tac-Toe just prints UIDs as long integers when it needs to print them out. You
can also print them in hexadecimal format using the %p format code. If you want
to print out the long names within your own code, the Class Manager defines

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE) 159

several functions to convert objects, messages, and status values to strings, such as
ClsObject ToStringO.

Installation features
During installation, PenPoint automatically creates several application enhance
ments based on the contents of the application's installation directory:

.. Stationery.

.. Help notebook documents.

.. Quick-help for the application's windows.

.. Application icons.

The nice thing about these enhancements is that you can create and modify them
separately from writing and compiling the application. In fact, all of these features
could have been added to Empty Application, the very simplest application.

General details on application installation are covered in detail in Part 12: Installa
tion API of the PenPoint Architectural Reference. This section only covers what Tic
Tac-Toe does.

Stationery
The user can pick a Tic-Tac-Toe board to start with from a list of Stationery. The
user can draw a caret /\ over the table of contents to pop up a Stationery menu, or
can open the Stationery auxiliary notebook (see Figure 11-1).

Creating stationery

Installation features

The Installer looks fqr Stationery in a subdirectory called STATNRY. Each Stationery
document should be in a separate directory in STATNRY. You can stamp the directo
ries with long PenPoint names, and in PenPoint 2.0 Japanese you can stamp the
directory with a locale and read the long name from a resource file. You can also
stamp the directories with attributes indicating whether the Stationery should
appear in the Stationery menu and whether it should appear in the Stationery
notebook.

How Tic-Tac-Toe handles stationery
Stationery directories can contain a filed document-a regular instance of the
application. To build such Stationery you copy a document from the Notebook to
the installation volume. One disadvantage of this is that it could make the Statio
nery take up more space, since it's an entire filed document.

Instead, cIsTttApp always checks for a file called TTTSTUFETXT in the document's
directory when a document is first run (during msgApplnit). The routine is Ttt
AppCheckStationeryO in TTTAPP.C. If it finds a TTTSTUFE TXT file, cIs T ttApp
opens it and sends msgTttDataRead to its data object. This tells the data object to
set its state from the file.

160 PENPOINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide'

clsTttData simply reads the first nine bytes of the file and sets its value from those;
for example, the TTTSTUFETXT file for "Tic-Tac-Toe (filled)" (in PENPOINT\APP\

TTT\STATNRy\TTTSTATI) is simply

xoxoxoxox stationery for tttapp

This saves a lot of space over a filed Tic-Tac.::Toe document; however, note that this
form of Stationery doesn't include things like the thickness of the grid in the view.
The user can always make Stationery that is a full document by moving or copying
a Tic-Tac-Toe document to the Stationery notebook.

The makefile for Tic-Tac-Toe creates the STATNRY directory in PENPOINT\APP\

TTT, and then creates the two directories TTTSTATI and TTTSTAT2. The makefile
copies the file FILLED.TXT to TTTSTATI and names it TTTSTUFETXT; it then copies
the file XSONLY.TXT to TTTSTAT2 and also names it TTTSTUFETXT

Help notebook
Tic-Tac-Toe has its own Help information, which the user can view in the Help
auxiliary notebook. Each page in the Help notebook is a separate document.

Tic-Tac-Toe doesn't have to do anything to support this.

CHAPTER 11 / REFINING THE APPLICATION (TlC-TAC-TOE) 161

~ Creating help documents
During installation, if there is anything in the HELP subdirectory of the application
home, the Installer creates a subsection for the application in Applications section
of the Help notebook. The Installer automatically installs help documents in this
section of the Help notebook. Like stationery, you put help documents in subdirec
tories of a special subdirectory in the Tic-Tac-Toe installation directory, called HELP.

You can stamp the directories with long PenPoint names, these are the names of the
pages in the Help notebook.

The Tic-Tac-Toe makefile creates a HELP directory in PENPOINT\APP\TTT and
creates TTTHELPI and TTTHELP2 directories in TTTHELP. The makefile copies
STRAT.TXT to TTTHELPI and names it HELP.TXT; it then copies RULES.TXT to
TTTHELP2 and names it also HELP.TXT.

Help documents can either be complete instances of filed documents (of any type,
such as MiniText or MiniNote, even a help version of your application), or a simple
text file. If the directory contains a simple text file, the Help notebook will run a
version of MiniText on that page, displaying the contents of the file. This is the
approach Tic-Tac-Toe uses.

Quick Help
Quick Help is the other form of help in PenPoint. The Quick Help window
appears when the us~r makes the question mark? gesture in a window, or taps on a
window when Quick Help is up (see Figure 11-2).

clsGWin, the gesture window class, automatically handles the Quick Help gesture.
It will invoke the Quick Help window, if it knows what to display. Instead of speci
fying to clsGWin what strings to display, you create your strings in a separate
resource, and just give clsGWin an ID which it uses to locate the strings. In the
msgNewDefaults handling of clsTttView:

MsgHandlerWithTypes(TttViewNewDefaults, P_TTT_VIEW_NEW, PP_TTT_VIEW_INST)
{

DbgTttViewNewDefaults ((U _ L (" self=Ox%lx") , self))

pArgs->win.flags.input 1= inputHoldTimeout;
pArgs->gWin.helpld = tagTttView;

pArgs->view.createDataObject = true;

This is the only thing clsTttView must do to handle Quick Help.

Creating Quick Help resources

One way to create resources is to tell a resource file to file an object, using say
msgResPutObject. This is what happens when an application is told to save a
document.

However, one goal of resources is to separate the definition of a resource from the
application that uses it. So you can also compile resources under DOS, putting them

Quick Help

162 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

in a resource file, and read them from within PenPoint applications. These
resources aren't objects, they are basically predefined data structures.

In the case of Quick Help, a Quick Help resource consists of three parts:

., The strings that contain the Quick Help text .

., A tagged string array resource (type RC_TAGGED_STRING) that associates each
text string with a tag. The tags are used by the gesture window help Ids to asso
ciate a gesture window with its Quick Help text .

., An RC_INPUT structure containing:

.. A list resource ID created from the administered portion of the Quick
Help ID (in this case dsTttView) and the Quick Help group (usually
resGrpQhelp) .

.. A pointer to the tagged string array resource for the class .

.. A length field (updated by the resource compiler).

.. The identifer for the string array resource agent (resTaggedString
ArrayResAgent) .

CHAPTER 11 / REFINING THE APPLICATION (TIC-TAC-TOE) 163

Each Quick Help string has two parts, which are separated by two vertical line
characters (II). The first part is the title for the Quick Help card; the second part
is the Quick Help text. The vertical line characters are not printed when Quick
Help displays.

These are the United States English Quick Help strings for the Tic-Tac-Toe appli
cation, defined in USA.RC (there is also a Japanese version in JPN.RC):

II Define the Quick Help resource for TTT.
static RC TAGGED STRING tttViewQHelpStrings[] = {

II Quick help for TTT's option card to change the line thickness.
tagTttViewCard,
U_L ("TTT Cardll ")
U_L("Use this option card to change the thickness of the lines ")
U_L("on the Tic-Tac-Toe board."),
II Quick help for the line thickness control in TTT's option card.
tagCardLineThickness,
U_L ("Line Thickness II ")
U_L("Change the line thickness by writing in a number from 1-9."),
II Quick Help for the TTT window.
tagTttView,
U _ L ("Tic-Tac-Toe I I ")
U_L(IIThe Tic-Tac-Toe window lets you to make X's and O's in a"

"Tic-Tac-Toe ")

Quick Help

U L("grid. You can write X's and O's and make move, copy ")
U-L("and pigtail delete gestures.\n\n")
U-L("It does not recognize a completed game, either tied or won.\n\n")
U_L("To clear the game and start again, tap Select All in the Edit menu, ")
U_L(IIthen tap Delete."),
Nil (TAG)

} ;

static RC_INPUTtttViewQHelp =
resTttViewQHelp,
tttViewQHelpStrings,

} ;

0,
resTaggedStringArrayResAgent

See Part 11: Resources, in the PenPoint Architectural Reference, for more information
on resource compiling and the specifics of Quick Help resources.

To compile resource definitions into a resource file, you use the PenPoint Resource
Compiler (PENPOINT\SDK\UTIL\DOS\RC).

The Installer copies the application resource file during installation. Hence the
makefile tells the resource compiler to append the Quick Help resources to the
application resource file. The name of the application resource file includes a three
letter code that indicates the locale for which you've compiled the resource file. For
example, for the United States, the resource file is called USA.RES; for Japan,
it is called JPN.RES. You define in the makefile which locales to compile resource
files for.

164 PEN POINT APPLICATION WRITING GUIDE
Part 1 I Application Writing Guide

Standard message facility
The PenPoint standard message facility, StdMsgO, provides a standard way for your
application to display modal dialog boxes, error messages, and progress notes
without requiring it to create UI objects. StdMsgO uses clsNote (see NOTE.H) to
display its messages. Notes have a title, a message body, and zero or more command
buttons at the bottom.

Message text and command button definitions are stored in resource files. StdMsgO
supports parameter substitution for the message text and button labels (see
CMPSTEXT.H). A 32-bit value (a tag in the case of dialog boxes and a status code in
the case of errors) is used to select the appropriate resource.

StdMsgO provides the following routines for when the programmer knows exactly
which message is to be displayed:

.. System and application dialog boxes use StdMsg(tag, ...)

.. Application errors use StdError(status, ...)

• System errors use StdSystemError(status, ...)

• Progress notes use StdProgressUp(tag, &token, ...)

With StdMsgO, StdErrorO, StdSystemErrorO, and StdProgressUpO, any param
eter substitutions are supplied with the argument list, much like printfO. Like
printfO, there is no error checking regarding the number and type of the substitu
tion parameters. The first three functions return an integer, which indicates the
command button that the user tapped. Progress notes, which use StdProgressUpO,
don't have a command bar.

StdMsgO also provides support for the situation where an unknown error status is
encountered: StdUnknownErrorO. This function does not provide parameter sub
stitution or multiple command buttons, it always displays a single "OK" command
button. StdUnknownErrorO replaces any parameter substition specifications in the
text with "???".

Using StdMsg() facilities
To use StdMsgO, you first define the message text strings. These strings are held in
string array resources, like Quick Help. A single resource holds all the strings for a
given class. There is a separate string array for dialog boxes and error messages. You
should store the application message resources in the application's resource file.
Here's the resource file definition of all of the error notes for the CLOCK sample
application:

static RC_TAGGED_STRING errorStrings[] = {

II Error: user has set alarm to before the current time
stsClockAlarmlnvalid,
U_L("You can't set the alarm date and time to be earlier ")
U_L("than the current date and time."),
II Error: user has specified an out-of-bounds number, like 12:72
stsClockFieldRangeError,
U_L("The "1s you specified is invalid. Choose a number ")
U_L("between "2d and "3d. "),

CHAPTER 11 / REFINING THE APPLICATION (TlC-TAC-TOE) 165
Standard message facility

II Error: user has specified a string with an illegal character
stsClockIntFieldInvalid,

} ;

U_L("The "ls you specified is invalid because it is ")
U_L("blank or contains an invalid character."),
II Error: user has specified a date not using month/day/year format
stsClockDateFieldInvalid,
U_L(IIThe date "ls you specified is invalid because it is ")
U_L("blank or does not follow the format mrn/dd/yy."),
Nil (TAG)

static RC INPUT stdError = {
resClockAppStdMsgError,
errorStrings,

} ;

0,
resTaggedStringArrayResAgent

You must define a tag or error status for each string. The string's position in the
string array determines its tag or status index (starting from 0). Here are the defini
tions for the example above:

#define stsClockAlarmInvalid MakeStatus(clsClockApp, 0)
#define stsClockFieldRangeError MakeStatus(clsClockApp, 1)
#define stsClockIntFieldInvalid MakeStatus(clsClockApp, 2)
#define stsClockDateFieldInvalid MakeStatus(clsClockApp, 3)

To create a note from the items defined above, simply call StdMsgO or StdErrorO.
if ((low <= value) && (value <= high)) {

return stsOK;
else {

II else field out of range
StdMsg(stsClockFieldRangeError, pFieldName, low, high);
return stsFailed;

Progress notes are slightly different from the message functions. Your application
displays a progress note when it begins a lengthy operation, and takes the note
down when the operation completes. PenPoint 1.0 does not support cancellation of
the operation. Here's an example of progress note usage:

SP_TOKEN token;
StdProgressUp(tagFooProgressl, &token, param1, param2);
... Lengthy operation ...
StdProgressDown(&token);

Substituting text and defining buttons
The message strings can contain substituted text and definitions for buttons. String
substitution follows the rules defined by the compose text function (defined in
CMPSTXT.H). A button definition is a substring enclosed in square brackets at the
beginning of the message string. You can define any number of buttons, but you
must define all buttons at the beginning of the string. The button substrings can
contain text substitution. If the string doesn't define any buttons, StdMsgO creates
a single "OK" button.

166 PENPOINT APPLICATION WRITING GUIDE

Part 1 / Application Writing Guide

StdMsgO, StdErrorO, and StdSystemErrorO return the button number that the
user tapped when dismissing the note. Button numbers start with o. For example,
this string definition would result in a return value of 1 if the user tapped Button!:

U_L(II[ButtonO] [Buttonl] [Button2] Here's your message! ")

Be aware that these functions might also return a negative error status, which indi
cates that a problem occurred inside the function.

You can break your message up into paragraphs by putting two newline characters
at the paragraph breaks. For example:

U_L(IIHere's the first paragraph.\n\nHere's the second one. ")

StdMsg() and resource files or lists

There are variations of StdMsgO and StdErrorO that allow you to specify the
resource file handle or resource list to use. These are most useful for PenPoint
Services, where there is no default resource list available. These messages are:

.. StdMsgRes(resource_file, tag, ...)

.. StdErrorRes(resource_file, status, ...)

StdMsg() customization function
The function StdMsgCustomO allows you to customize a StdMsgO note. The
function returns the UID of the note object (created by dsNote), without dis
playing it. You can modify this object as you wish and then display it yourself using
the messages defined by dsNote.

Bitmaps (icons)
PenPoint uses icons to represent applications in the table of contents and in
Browsers. You can also use icons in your own applications. In PenPoint termi
nology, the icon includes optional text as well as a bitmap picture. There are default
bitmaps for applications and documents, but you can create your own using the
bitmap editor (see Figure 11-3).

When it needs a bitmap, the Application Framework searches for it by resource
ID in your application's resource list. If you do not specify an application icon in
your application's resource file, the search gets the default bitmap in the system
resource file. However, if you put a different icon in your application's resource file,
it will be used instead. You don't need to make any changes to your application to
support this.

CHAPTER 11 I REFINING THE APPLICATION (TIC-TAC-TOE) 167

Application and document icons

Creating icons
The bitmap editor application is available in the PENPOINT\APP\BITMAP directory.
It is also available on the PenPoint Goodies disk.

The bitmap editor needs to generate a bitmap as a resource and put it in a resource
file. However, it conforms to the PenPoint document model, so it has no Save com
mand. Instead, you use the About ... menu item in the Document menu to bring up
the Export option card to specify the type of bitmap resource, and then use the
Export ... command to actually generate the bitmap resource. You generally export
four bitmaps, two each for the application and document in 16 x 16 and 32 x 32
sizes. Although you can export them to the APP.RES file in your application's instal
lation directory, it is often preferable to create separate SMICON.RES and
LGICON.RES files for the large and small icons and use the resource compiler to
append these to your application's resource file.

For more information on using the bitmap editor, see Part 3: Tools in PenPoint
Development Tools.

Bitmaps (icons)

Chapter 12 / Releasing the Application

You're almost done, but not quite. Before you make your application available to
the larger world of PenPoint™ users, you must complete these tasks:

.. Register your classes with GO.

• Document the application.

• Prepare your distribution disks.

You should also consider making your classes available to other developers. If you
do so, you need to document the API for those classes.

Registering your classes
While developing an application, you can identify your classes with the well-known
UIDs wknGDTa through wknGDTg. Of course, if you use these UIDs in a pub
lished application, they will conflict with other developers who use your application
and attempt to use these well-known UIDs to test their own applications.

When you are fairly sure that you will publish your application, you must obtain an
administered value for each of your public classes. Remember that a UID consists of
an administered object value, a version number, and a scope (global or local, well
known or private). Contact GO Customer Services at 1-415-358-2040 (or by
Internet electronic mail at gocustomer@go.com) for information on how to get a
unique administered value.

Documenting the application
The need for quality documentation cannot be over-emphasized. There are three
ways in which you should document your application:

• Manuals or other form of separate documentation.

.. Pages in the Help notebook.

.. Quick Help text.

Writing manuals
For more information on documenting your application, contact GO Customer Ser
vices at 1-415-358-2040 (or by Internet electronic mail at gocustomer@go.com)
and ask for Tech Note #8, Documenting PenPoint Applications. This technical note,
written by GO's end-user documentation group, provides information about how
GO writes and produces its end-user documentation. The Tech Notes also give
print specifications, if you want your documentation to appear similar to GO's.

170 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Screen shots
The S-Shot utility enables you to capture TIFF images of PenPoint computer
screens. You can then incorporate your images into your documentation. S-Shot is
on the SDK Goodies disk.

Gesture font
For developer and end-user documentation, GO created an Adobe Type 1 font that
depicts the PenPoint gesture set. If you use a PostScript printer, you can incorporate
this font into your documentation and on-line help.

Registered developers may request a copy of the PenPoint Gesture font from GO by
contacting GO Customer Services.

On-disk structure
When developing your application, the PenPoint file organization requires you to
place your files in certain specific directories under the PENPOINT directory. This is
described in detail in Chapter 3 of Part 12: Installation API in the PenPoint Architec
tural Reference.

Before distributing your application, you should ensure that all your auxiliary files,
such as Help notebook pages, Stationery, Resource files, and so on are in their cor
rect directories.

Sharing your classes
If you have created a component class that might be useful to other PenPoint devel
opers, you should consider licensing the class.

Part 2 /
Pen Poi nt

Internationalization
Handbook

Chapter 13 / Introduction

175 Intended audience

176 Handbook structure

176 How to use this handbook

Chapter 14/ Overview

177 Overview of international software

178 Writing international software
Step 1. Support Unicode
Step 2. Write locale-independent code
Step 3. Use resource files
Step 4. Create your application

182 Internationalization checklist

pr Chapter 15 / PenPoint Support
for International Software

183 International character sets
Multibyte and wide characters
Introduction to Unicode
Unicode architecture
Code supporting Unicode

189 Resource files
Strings in resource files
Resource file structure
Tags in source code
Predefined tags
Working with resource files

196 Locale-independent code

197 PenPoint's international functions
International functions in ISR.H
Locales
Predefined locale identifiers
Styles
Query capability
International function structures
Unicode glyphs
Composed strings

205 Managing your project
Project organization
Makefiles

206 Scanning your source code
Other DOS utilities

207 Missing functions

Chapter 16 / Procedures

209 Supporting Unicode
Prerequisite information
Procedure
Examples
Related procedures

210 Using the DOS utility INTLSCAN
Prerequisite information
Procedure
Related information

211 Interpreting INTLSCAN messages
Prerequisite information
Procedure
Examples
Related information

215 Creating Unicode strings
Prerequisite information
Procedure
Examples
Related procedures

216 Moving strings to resource files
Prerequisite information
Procedure
Example
Related information

219 Using predefined AppMgr tags
Prerequisite information
Procedure
Example
Related information

220 Using resource utility functions
Prerequisite information
Procedure
Example
Related information

222 Using tags in source code
Prerequisite information
Procedure
Examples

223 Using ComposeText functions
Prerequisite information
Procedure
Example
Related information

224 Updating your makefile
Prerequisite information
Procedure
Example
Related information

225 Writing locale-independent code
Prerequisite information
Procedure
Example

227 Checking the system locale
Prerequisite information
Procedure
Example
Related procedures

Chapter 17 / Porting to Pen Point 2.0

229 Changed APls
Prerequisite information
Procedure
Related information

230 Gesture handling code
Prerequisite information
Procedure
Examples

231 Special characters
Prerequisite information
Procedure
Example
Notes

233 File version data

233 Single code base

Chapter 18 / Localization Guidelines

,., Chapter 19 / Additional Resources

237 Texts

238 Standards organizations

Chapter 13 / Introduction

The worldwide software market is growing at an exciting rate. Recognizing this
trend, GO Corporation has designed PenPoint™ to be a global operating system.
Specifically, the PenPoint operating system provides many objects, functions, and
tools that help you prepare your application for an international market.

Modifying an application for use in a specific country (or locale, because countries
like Canada, Switzerland, and Singapore use more than one language) is called
localization. The process of preparing an application so that it is ready to localize is
called internationalization.

This handbook provides a step-by-step guide through the process of international
izing your code. The result is code that is ready to be adapted to particular markets.

This handbook does not contain specific guidelines on how to design a successful
version of your application for a particular market. It does not, for example, offer
specific suggestions on how to design an appropriate user interface for Japan or
Germany or Italy.

Because this handbook does not discuss localization, you may want to work with
your marketing and sales departments, local software partners, localization houses,
users, and other resources to create an appropriate product for a given locale. Also,
Chapter 19, Additional Resources, lists resources that may help you with the local
ization process.

The PenPoint operating system currently supports only American English and
Japanese. Future releases will support more languages and countries.

Infended audience
This handbook is for developers designing original PenPoint applications for an
international market and for developers porting existing PenPoint 1.0 applications
to PenPoint 2.0 Japanese. When used in this document, the terms "PenPoint 2.0"
or "PenPoint SDK 2.0" refer to "PenPoint 2.0 Japanese" or "PenPoint 2.0 SDK

J " apanese.

Many issues that you need to consider while designing international applications
are less important if you are developing only for a local market. For example, con
sider an icon designed to signal "stop." American users might expect such an icon
to look like a traffic light with a red light on top. This icon would be inappropriate
in many countries outside of the United States. In Japan, for example, traffic lights
are horizontal so that the red light is on the far left.

U.S.A. Japan

176 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

This handbook assumes that you are familiar with PenPoint programming. Part 1:
PenPoint Application Writing Guide is the best place to start if you are new to
PenPoint programming. You will also get the most out of this handbook if you
understand what your target locale is and what kind of application you plan to
market there. Once you've identified the target locales for your application, you can
tailor the general recommendations in this handbook to your specific needs.

This handbook also assumes you have installed PenPoint SDK 2.0 Japanese. See
Installing and Running the PenPoint SDK 2.0, a document included with the SDK,

for details on how to install the SDK.

For details on localizing your application to Japan, read Part 3: PenPoint Japanese
Localization Handbook. This part assumes you have internationalized your code
according to the guidelines in this handbook.

Handbook structure
This chapter describes the handbook's purpose and organization.

Chapter 14, Overview, describes the general process of how to write an inter
national application.

Chapter 15, PenPoint Support for International Software, describes PenPoint's
routines, functions, and utilities that support international applications.

Chapter 16, Procedures, provides step-by-step instructions on how to write code
for international applications.

Chapter 17, Porting to PenPoint 2.0, discusses how to port existing PenPoint 1.0
code to the latest version of PenPoint.

Chapter 18, Localization Guidelines, lists general issues to consider while localizing
your application.

Chapter 19, Additional Resources, describes other helpful resources, including dic
tionaries, books, and contacts for standards organizations.

How to use this handbook
If you are new to internationalization issues, begin with Chapter 14, Overview.
If you are familiar with internationalization issues and want to learn how the
PenPoint operating system helps you produce internationalized applications,
read Chapter 15, PenPoint Support for International Software. Both of these
conceptual chapters place the procedures covered in Chapter 16, Procedures, in
perspective.

If you are looking for specific directions on how to perform a task such as supporting
Unicode, see "Supporting Unicode" on page 209 in Chapter 16, Procedures. Each
procedure refers to other information, usually in this handbook, that you need to
understand before doing the procedure.

Chapter 14 / Overview

This chapter provides a general overview of how to write international software.
Chapter 15, PenPoint Support for International Software, provides specific details
on how some special features of the Japanese localization of PenPoint™ operating
system 2.0 help you write international software.

Many books and organizations may also help you internationalize your application.
Chapter 19, Additional Resources, lists some of these resources.

Overview of international software
The goal of internationalization is to make an application easily adaptable for a
target locale. The internationalized version of your source code must support inter
national character sets and behave appropriately for different locales.

In this handbook, we usually use the term locale to identify a particular country,
language, and dialect. Often, as with the USA and Japan, the country name is
enough to identify a locale because the country uses only one language and no
major dialects. Sometimes, however, as in Canada, Switzerland, and Singapore,
countries use multiple languages and even dialects. In such cases, a locale represents
both a country and a language (and sometimes a dialect) such as French-speaking
Canada or Chinese-speaking Singapore.

In the best case, you can maintain a single code base for your application and create
localized versions by simply creating different resource files. Figure 14-1 shows this
optimum design. Remember that resource files are collections of data, such as
strings, that are cleanly separated from your application code.

Think of resource files as modular pieces that can be snapped in and out of your
application as the locale requires. What kind of pieces might be stored as resource
files? Anything that the user sees is a likely candidate. These include user interface
strings, window layouts, icons, and bitmaps.

You can also use resource files to store binary data that your application interprets.
For example, you might use a flag in a resource file to tell your application whether
to calculate in English or metric units. Another set of flags might represent user
preferences.

Sometimes local versions of your application differ too much for you to maintain a
common code base. For example, a Japanese version of your application might need
to provide context-sensitive handwriting recognition that a German version of your
application does not need to provide.

178 PENPOINTAPPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

When local versions of your application differ too much for you to maintain a
common code base, create different DLLs from different source code files as shown
in Figure 14-2. In the example above, you might write all the code that provides
additional Japanese handwriting support in one source file, compile the code into a
DLL, and then link that library with the rest of your application's object files.

If you must resort to separate code bases for each locale, keep the differences iso
lated to as few files as possible. This strategy makes it easier to test and maintain
your code.

Writing international software
This section introduces the process of writing international software. Mter this
overview, you may want to look through Figure 14-1. This checklist is a detailed,
step-by-step description of how to implement the general tasks described here.

Internationalizing an application requires these four general steps:

1 Prepare to handle international character sets by supporting Unicode.

2 Write locale-independent code.

3 Move application components that vary with locale like strings, window lay
outs, and bitmaps into resource files.

4 Update your project files.

FiGURE 14-1

Machine-readable flies,
such as object flies, are
shown with binary number
along their bottom edge;
flies you create and edit are
shown without the binary
numbers.

CHAPTER 14/ OVERVIEW 179
Overview of international software

Multiple source files for multiple localizations

Notice that steps 1 and 2 involve producing the block of common code at the top
of Figure 14-1. Step 3 creates the resource files in the middle tier, and step 4 brings
all the pieces together.

Consider the example of a word processor. A u.s. version of the word processor
should provide functionality and an interface tailored for u.s. users. This applica
tion would:

• Display, read, and write Roman characters.

• Delimit English words, sentences, and paragraphs based on u.s. English gram
matical conventions.

• Sort words based on the order of the English alphabet.

A Japanese version of the word processor, on the other hand, should use an inter
face tailored to Japanese users, and support Japanese functionality:

• Display, read, and write Japanese characters.

• Delimit Japanese phrases, sentences, and paragraphs based on Japanese gram
matical conventions.

• Sort characters based on Japanese sorting conventions.

See Figure 14-3 for a MiniText document that shows how this might look.

FIGURE 14-:2

When you cannot maintain a
single source code base for
all your localizations, keep
functionality speci-Ac to a
locale in a separate -Ale.

180 PEN POINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Again, the goal is to have a single code base for both local versions of your applica
tion. This single code base combined with an appropriate resource file yields a
localized version of your application. The four general steps you must take to write
an international version of your application or service are described in more detail
below.

Step J. Support Unicode
Your application must support multiple character sets such as Roman letters and
Japanese characters. In order to maintain a single code base for all local versions of
your application, you need a single character coding scheme that handles all the
character sets you plan to support. The PenPoint operating system, beginning with
version 2.0 Japanese, uses Unicode as its character coding scheme. Your first task is
to provide Unicode support in your code.

,. The Unicode character encoding scheme is discussed beginning with the sec
tion "International character sets" on page 183.

,. The process of supporting Unicode is discussed beginning with the section
"Supporting Unicode" on page 209.

Step 2. Write locale-independent code
The next step is to make your application behave correctly for a particular locale.
Rather than rewriting major parts of your code to perform local functions (sorting,
formatting, and filing, for example), write a single block of internationalized source
code that behaves as expected in a given locale.

For example, rather than write separate formatting algorithms for English and Japa
nese dates, you can use a single PenPoint function called IntlFormatDateO in your
code that appropriately formats English or Japanese dates depending on the locale.
PenPoint provides a collection of functions whose behavior changes according to
the locale (specified as an argument). These functions are discussed in detail in
Chapter 15, PenPoint Support for International Software.

This screen shows the
result of a user double
tapping to select a
Japanese phrase. A
Pen Point function provides
the phrase-selection
algorithm.

CHAPTER 14 I OVERVIEW 181

Overview of international software

Whenever possible, your application should also use Pen Point-defined objects
because these objects behave appropriately for any currently supported locale. For
example, an input pad (dsIP) in the Japanese version of Pen Point handles Japanese
handwriting recognition.

• The PenPoint international functions are discussed in Chapter 15, PenPoint
Support for International Software.

• For step-by-step instructions on how to use the international functions, see
Chapter 16, Procedures.

",. Step 3. Use resource files
Next, move application elements that vary with locale into resource files. The
strings in your user interface are a good example, though other elements, such as
bitmaps, may also belong in resource files.

Having strings and other elements that vary with locale in resource files makes it
easier to localize your application.

• Resource. files are discussed in the section~'Resource files" on page 189.

• The process of moving things to resource files is discussed beginning with the
section "Using the DOS utility INTLSCAN" on page 210. The discussion
continues in "Moving strings to resource files" on page 216.

Step 4. Create your application
Finally, update your project directory and makefile to create localized versions of
your application or service.

Makefiles are discussed in detail in Chapter 29 of Part 4: PenPoint Development
Tools Supplement. For more details on how to update your makefiles, see "Updating
your makefile" on page 224.

For recommendations on how to organize your project files, see "Managing your
project" on page 205.

182 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Internationalization checklist
These are the steps you should take to prepare your application for an international
market. Don't worry if some of the terms in the checklist are unfamiliar. They will
be explained in the section shown in the checklist.

Understand the steps involved in the internationalization process by reading
this chapter.

Use INTLSCAN to help internationalize your code ("Using the DOS utility
INTLSCAN" on page 210).

Declare character and string data as 16 bits long ("Supporting Unicode"
on page 209).

Use 16-bit routines to handle Unicode characters ("Using the DOS
utility INTLSCAN" on page 210).

Make literal strings Unicode strings ("Creating Unicode strings" on
page 215).

Move most literal strings to resource files ("Moving strings to resource
files" on page 216). (~~

Use resource files to store locale-dependent components ("Resource files" on
page 189).

Use predefined Application Manager tags "Using predefined AppMgr
tags" on page 219).

Use tags in your source code ("Using tags in source code" on page 222).

Use utility functions to read data out of resource files ("Using resource
utility functions" on page 220).

Write locale-independent code ("Locale-independent code" on page 196).

Take advantage of PenPoint's international functions ("PenPoint's inter
national functions" on page 197) ..

Manage your project files ("Updating your makefile" on page 224).

If necessary, handle porting from 1.0 details (Chapter 17, Porting to PenPoint 2.0).

Update your code to reflect new PenPoint APIs ("Changed APIs" on
page 229).

Update your gesture handling code ("Gesture handling code" on
page 230).

Use the bitmap editor to design special characters ("Special characters"
on page 231).

File class version information with your data ("File version data" on
page 233).

Maintain a single code base ("Single code base" on page 233).

Chapter 15 I PenPoint Support for
International Software

This chapter introduces the messages, functions, and utilities the PenPoint™ oper
ating system provides to support international software. Currently, the PenPoint
operating system 2.0 Japanese supports only Japanese and u.s. English. Future
releases of PenPoint will support more locales.

International character sets
English text is composed of letters derived from the Roman alphabet. The Roman
writing system is the most common in the modern world. Some 70 percent of the
world's literate population write or understand a language based on the Roman
writing system.

Languages based on Roman letters are relatively simple to represent. Indeed, 8-bit
ASCII-based encoding schemes are sufficient to encode most European alphabets,
Roman and non-Roman, as well as a large collection of punctuation marks.

Not all countries, of course, use letters from these European alphabets. The Cyrillic
and Hebrew alphabets are two familiar examples.

Some languages do not use alphabets at all, or do not use them as the primary
building blocks of language. Instead, these languages use ideographs (literally
"idea symbols") to represent a thing or idea rather than letters to represent words.

Chinese, Japanese, and Korean are the most common of these ideographic writing
systems, and these languages are written by almost a billion people in the world
today. These character sets contain thousands rather than dozens of characters.

See Part 3: PenPoint Japanese Localization Handbook for more details on the
Japanese language and its encoding.

Multi&yte and wide characters
The problem with large character sets, from a programmer's point of view, is that
they are difficult to represent. Clearly, 8 bytes are insufficient because you can rep
resent only 28 or 256 characters if you use a one-to-one mapping between code
points and represented characters. A code point is a number that represents a par
ticular character. For example, the ASCII code point for the letter 'J\ is Ox41.

Two possible solutions to this problem are multibyte characters and wide
characters.

Multibyte character encoding schemes use one or more bytes to represent a single
character. A good example of this scheme is the Japanese Industrial Standards (JIS)
encoding of Japanese.

Samples of Chinese and
Japanese ideographs
representing the words
for Japanese (left) and
document (right).

184 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

lIS encoding involves two states. In one state, a single byte represents a single ASCII

character. In the other state, two bytes represent a single Japanese character. A spe
cial sequence of codes shifts a text stream between the two states.

Because many of the world's existing computer devices deal with bytes of informa
tion, such a scheme takes advantage of existing byte-sized system designs.

On the other hand, there are drawbacks to multibyte encoding. One of the obvious
disadvantages is that you must know what state a given byte is in before you can
manipulate it. For example, in an arbitrary stream of lIS text, you cannot be sure if
a given byte is a single ASCII character or half a Japanese character without scanning
for the "shift-in" and "shift-out" codes.

Because code that processes these multibyte character sets is complex and error
prone, programmers have developed an alternative scheme: using fixed-length
codes wide enough to accommodate the required characters.

These wide codes allow more characters to be encoded without ambiguity. Char
acter manipulation code is thus easier to write.

However, no widely adopted standard of wide character encoding has been estab
lished. Implementation of wide character sets has been private to a particular com
pany. Though systems could depend on their internal characters being of some
fixed length longer than a byte, they could not depend on other systems using the
same fixed length in the same way.

'T Introduction to Unicode
The PenPoint operating system, beginning with version 2.0 Japanese, encodes its
character using Unicode, a character encoding system that offers advantages of both
multibyte and wide character schemes. It uses a wide, 16-bit code to encode each
character, regardless of the language to which it belongs. For example, Roman let
ters and Japanese characters are both 16-bits long.

The uniform 16-bit length frees the programmer from the difficulties of multibyte
encoding: a 16-bit Unicode code always represents a single character.

The Unicode standard aims to be comprehensive. Because Unicode characters are
uniformly 16-bits long, there are 216 or roughly 65,500 possible characters. Cur
rently, some 34,400 characters and symbols have been assigned as part of Unicode
1.0. According to the Unicode Consortium, these characters are "more than suffi
cient for modern communication."

For more information on Unicode, see Chapter 19, Additional Resources, for more
details on the two-volume book titled The Unicode Standard, Version 1.0.

Minor changes have been made to the Unicode standard since the publication of
the two volumes. This revised standard is Unicode 1.0.1, and PenPoint uses this
most current version of the Unicode standard.

The Unicode Standard is
supported by a nonprofit
corporation called the Unicode
Consortium. It is made up of
companies such as Apple, IBM,
HP, DEC, NeXT, and GO.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 185
International character sets

",. Unicode architecture
The complete Unicode character set is divided into four major zones, as shown in
Figure 15-1.

Unicode architecture

High 00
byte

!
20

40

60

80

AO

CO

EO

FF

Unicode
Low byte ---+
00 20 40 60 80 AO CO EO FF

• Alphabets D Reserved

CJK • Private Use Area

The character set is laid out in successive blocks of 256 code points. A Unicode
code point is a unique 16-bit number representing a particular character. For
example, the code point Ox0041 represents the Latin letter 'K.

Each block (or group of blocks) of256 code points forms a linguistic or functional
category. For example, there are blocks representing ASCII characters, Cyrillic let
ters, Arrows, Mathematical Operators, and Chinese, Japanese, and Korean (C1K)
ideographs.

Each block is identified by the value of its upper byte. For example, ASCII characters
are in block 00, Arabic is in block 06, and Thai is in OE.

Chinese, Japanese, and Korean ideographs occupy the 76 blocks from hex 40 to 8B,
representing a total of approximately 19,500 characters.

For more details on how Unicode compares with existing double-byte character
sets, notably the popular lIS and Shift-lIS used in Japan, please see The Unicode
Standard 1.0 and the Part 3: PenPoint Japanese Applications Handbook.

FIGURE 15-1

The four zones in Unicode
contain the following:

Alphabet5 contain all
alphabets and all other
nonideographic script
characters, as well as
miscellaneous symbols.

CJK contain all Chinese,
Japanese, and Korean
ideographs.

Re5ervea is a currently
unassigned zone reserved
for future use.

Private U5e Area contains
areas that corporations
can use to deflne their
own characters. For
example, GO's gesture
glyphs are in the private
use area. This private area
also includes characters
retained for compatibility
with previous character
encoding standards.

z o
~
N
:::i
<C
Z o

~

186 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Code supporting Unicode
Providing Unicode support in your code is a straightforward, one-time procedure.
Once your code supports Unicode, you never need to rewrite substantial portions
of your code to support different character sets.

ASCII-based encoding systems use 8 bits to encode characters while Unicode uses
16 bits. Supporting Unicode requires you to write code that deals with 16-bit
rather than 8-bit characters. The PenPoint SDK 2.0 Japanese provides tools to help
you make the transition, which impacts the following categories of code:

• Character types.

• String functions.

• Character and string constants.

• String formatting.

Each of these categories is discussed below. Table 15-1 below gives you a flavor of
how the new code will look compared to the old.

The letter 'a' encoded as
8-bit (top) and 16-bit
(bottom) code points.

TABLE 15·1

Affribute 8-bit strings J 6 wbit strings Both 8* and 16-bit

CharadeI' types CHAR8 CHAR16 CHAR

Character/string constants "John" L"John" U_L("John")

String Functions strlen(&aString) strlen 16(&aString) Ustrlen(&aString)

String formaffing "%hs" "%ls" "%s"

fundions isupper(aChar) _uisupper(aChar) Uisupper(aChar)

The last column is labelled "Both 8- and 16-bit." The code shown in this column
works with 8-bit characters in PenPoint 1.0 and 16-bit characters in PenPoint 2.0
Japanese (and beyond).

For example, declaring a variable of type CHAR declares an 8-bit character (CHAR8)
character in PenPoint 1.0 and a 16-bit character (CHAR16) in PenPoint 2.0 Japa
nese. Future releases of the PenPoint operating system will continue to use 16-bit
Unicode characters. Use these hybrid functions and types whenever possible.

Most of the hybrid types are defined CTYPE.H. The hybrid functions are defined in
the same C header file as the equivalent C function. For example, the UstrlenO
function is defined in STRING.H. The U _LO macro is defined in INTL.H.

Several procedures in Chapter 16, beginning with "Examples" on page 210, list
step-by-step directions for writing code that supports Unicode. Read the following
sections for an overview of the process.

The SDK includes a DOS utility called INTLSCAN that flags code that may need to
be changed to support Unicode. The utility is on the Goodies disk in the directory
\SDK\UTIL\DOS. See "Using the DOS utility INTLSCAN" on page 210 for more
information.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 187
International character sets

~ Character types

The PenPoint operating system provides three type declarations for character data:
CHAR8, CHAR16, and CHAR. The first two declare 8- and 16-bit characters, respec
tively. The CHAR type is defined for code portability: it is 8 bits wide in PenPoint
1.0 and 16 bits wide in PenPoint 2.0 Japanese.

If you have PenPoint 1.0 code that uses the char (lower case) type, convert all
of your character data to use the CHAR (upper case) type. You may not need to
change declarations of noncharacter data. Use types such as U8 to declare variables
of fixed size.

Where noncharacter data depends on the size of CHAR being 1 byte, you need to
update your code because CHAR is 2 bytes longs in PenPoint 2.0 Japanese.

The DOS utility INTLSCAN, included on the Goodies disk in \SDK\UTIL\DOS, flags
lines of code that may need to change to support Unicode. See "Using the DOS
utility INTLSCAN" on page 210 for information on how to use INTLSCAN.

String functions

The familiar C string library functions (strcmpO, strcpyO, and so on) still exist in
PenPoint 2.0, but they work only on 8-bit characters. A set of PenPoint macros
such as UstrlenO and UstrcmpO allows you to work with 8-bit and 16-bit strings,
depending on the PenPoint version. These macros are defined in STRING.H.

In PenPoint 2.0 Japanese, the macros are defined to call new functions provided by
the WATCOM C compiler to work with 16-bit data. These functions all have the
character _u prepended to the equivalent C function name. For example, the
header file STRING.H defines prototypes for a set of string functions named
_ustrcmpO, _ustrcpyO, and so on.

These 16-bit functions are defined in the same C header file you would find the
equivalent 8-bit C function. Prototypes for strlenO and _ustrlenO, for example, are .
both defined in STRING.H.

One note before you replace all your 8-bit functions with the 16-bit or hybrid func
tions like UstrlenO. Some functions like isupperO not only have 16-bit equivalents,
but they also have equivalents in the PenPoint international package. In this partic
ular case, the equivalent to isupperO is IntlCharIsUpperO defined in CHARTYPE.H.

The international functions also work on 16-bit characters or strings, but these
functions are more likely to provide behavior appropriate for a particular language.
Use these functions, discussed beginning with the section "Locale-independent
code" on page 196, whenever you are processing linguistically meaningful text.

In summary, GO recommends that you use the following functions, in order of
preference:

• Use the PenPoint international functions such as IntlStrConvertO when you
are processing text the user sees.

• Use the U ... 0 macros such as UstrcmpO when an international function is
unavailable or when you are processing internal data.

188 PENPOINT APPLICATION WRITING GUIDE
Par.- 2 / Internationalization Handbook

• Use the _u ... 0 functions such as _ustrlenO provided by WATCOM when you
are sure your data is 16-bits long.

• Use the C library functions such as strlenO when you are sure your data is 8-
bits long.

~ Character and string constants

When you use CHAR8, you can use the standard C conventions for forming char
acter and string constants. For example:

CHAR8 *s = "string";
CHAR8 c = 'c';

When you use the CHAR16 type, you must wrap the L '''' modifier around your lit
eral character or strings. This tells the compiler you are using a 16-bit (or Long)
character, as in:

CHAR16 *s = L"string";
CHAR16 c = L'c';

When you use the CHAR type, you must put the character or string constant in the
macro V_LO.

CHAR * s = U _ L (" string") ;
CHAR c = U_L('c');

Again, the V_LO macro is a hybrid. In PenPoint 1.0, V_LO tells the compiler to use
8-bit characters; in PenPoint 2.0, it tells the compiler to use 16-bit characters. GO
recommends that you use the V_LO macro around all of your literal strings.

The L"" modifier is part of the C language, and the V_LO macro is defined in
INTL.H.

You can specify particular Unicode characters in literal strings by typing \x value in
the string, where value is a four-digit hexadecimal number. For example, here are
some Quick Help strings from the TextView class:

U L"\xF61F \\tab Pigtail. Delete a character.\\par "
U-L"\xF60A \xF609 \xF60C \xF60B \\tab Flicks. Scroll up, down, left, or
right.\\par "

This code uses the Unicode value for GO's gesture glyphs to specify them in a literal
string. See Table 15-6 for a list of the Unicode value for all of the gesture glyphs.

String formaffing

When you use the standard C formatting codes to format strings, make sure you use
the correct format code. Note that the UprintfO function requires the U_LO macro
wrapped around its format code, as shown below"

Uprintf(U_L("%hs"), "I am an 8-bit string.");
Uprintf(U_L("%ls"), L"I am a 16-bit string.");
Uprintf(U_L("%s"), U_L("I can be either kind of string."));

~ Memory and file space

You may be concerned about the additional memory and file space required to sup
port Unicode. Rest assured that your data files will not automatically double their
size as a result of supporting Unicode.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 189

Unicode does not demand much more storage space than popular multibyte
encoding schemes like Shift-lIS, a standard popular in Japan. Japanese text requires
2 bytes in]IS and Shift-JIS just as it does in Unicode.

Although a Unicode representation of English-only text requires twice the memory
space as an ASCII representation, you can compress the data efficiently when writing
it to a file. In practice, a compressed Unicode file containing English-only text is
less than 1 % larger than the identical file stored in ASCII.

".,.. Compressing Unicode

You can compress Unicode strings with the PenPoint functions IntlCompress
UnicodeO, defined in \2_0\PENPOINT\SDK\INC\ISRH. The function implements a
compression scheme called packed Unicode. This scheme adds 1 byte to every 255
bytes of ASCII data and compresses a typical Shift-lIS file by roughly a quarter. You
can compress data before writing it to a file.

You can also buy commercial compression algorithms to compress filed data. Be
aware, however, that many commercially available compression algorithms are opti
mized for 8-bit data, and Unicode is 16 bits long. On the other hand, algorithms
like the 16-bit Huffman algorithm that are optimized for 16-bit characters are
often memory intensive.

Of course, the data in your application that does not represent text does not require
any additional memory.

". Resource files
PenPoint resource files store objects and data in a structured way that is isolated
from source code. If you are unfamiliar with PenPoint resource files, read Part 11 of
the PenPoint Architectural Reference for an overview.

You can use resource files to store elements of your application that vary from locale
to locale. The most typical example of this is using resource files to store translated
user interface strings.

The following list gives examples of when you might use resource files to store
elements that differ between localized versions of an application.

• Text for menus, Quick Help, and StdMsg ... 0 messages.

• Different, locally appropriate versions of a bitmap representing "stop."

• Two different window layouts for two different locales.

• Flags that your application reads and writes as binary data to save user
preferences.

Resource files usually store user interface elements like strings, window layouts,
and bitmaps. You can, however, use resource files to store things other than UI
elements. The last example, for example, is binary data that influences how your
application behaves.

Resource files

Compression affects only
the size of your flied data.
You will still need 2 bytes
per character of memory
when processing data.

z o
!i
N
::;
<C
Z
o

~

190 PEN POINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

Think of resource files as a place to store modular elements that can be plugged in
and out of your application as appropriate to the locale.

GO recommends that you use a strategy for naming resources files to represent the
specific localization. All of the PenPoint 2.0 sample code, for example, has a USA.RC

file for the American localization and a lPN.RC file for the Japanese localization.

You must use the exact names lPN.RC and USA.RC if your makefile uses the standard
makefile rules included with the sample applications (\2_0\PENPOINT\SDK\SAMPLE\

SRULES.MIF). The standard makefile rules look for particular strings in USA.RC or
lPN.RC to stamp the application directory with PenPoint information.

Resource files existed in PenPoint 1.0, although they were not used extensively in
sample code. Resource file architecture in PenPoint 2.0 Japanese is unchanged, and
there are additional utilities for working with resources in RESUTIL.H. The resource
file architecture supports 16-bit strings.

Strings in resource files
If you have literal strings in your source code, consider moving the strings to
resource files. The DOS utility INTLSCAN flags literal strings (as well as lines t~at
may not be appropriate for international applications) in your code. See "Using the
DOS utility INTLSCAN" on page 210 for details on how to use INTLSCAN.

While you may not need to move literal strings to resource files for a successful
compile, we strongly encourage you to do so. The trade-offs involved in the move
are described in the following sections.

Advantages of moving strings to resource files

.. Strings in resource files are easier to translate because all the strings are in one
place. You can simply pass the resource file to translators, and they can trans
late the strings without any programming knowledge .

.. Applications with strings in resource files are easier to maintain because all
user interface strings are in one place rather than scattered throughout various
source and header files .

.. I-faving strings in resource files makes it easier to maintain a single code base
even if you have many localized versions of your application. Ideally, you can
create new localized versions of your application by simply providing new
resource files.

Disadvantages of moving strings to resource files

Moving strings to resource files makes your code harder to read. People who want
to understand what your code does must follow the tag reference to another file.
Some of the sample code included with the SDK, like EmptyApp, leaves strings in
the source files for exactly this reason.

GO recommends that you use one resource file to contain all the strings for a
particular 10calization.The resource file name should describe the locale, as in
USA.RC and lPN.RC.

CHAPTER 15 I PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 191

",. Resource fi'e structure
This section describes the recommended structure for resource files. Before we
describe the structure, you should understand the following about strings in

resource files.

• Each string is associated with a tag that is defined in a header file. You use this
tag in your source code when you need to use the string.

• Each string can be part of a group. In the resource file, the entire group is
considered a single resource. The four predefined groups for each class are:

• Toolkit strings.

• Quick Help strings.

• Miscellaneous strings (such as format strings for ComposeText
functions).

• Standard Message strings.

You can define your own groups as needed.

• Each group can have up to four arrays that identify lists of indexed resources.
Each array or list is identified as a well-known list resource ID. Because each

array may contain up to 256 entries, your class can have up to 1,024 tags and

corresponding strings just using the predefined groups.

The resource file from the sample Counter Application clearly shows the recom
mended file structure. You can find this code in \2_0\PENPOINT\SDK\SAMPLE\
CNTRAPP.

",.,. Creating tags in header files

You must define a tag for each string you want to use. Remember that tags are just

32-bit numbers with a fixed structure. Define these tags in the header file that your
source code includes. For example, CNTRAPP.H defines these tags:

#define tagCntrMenu MakeTag(clsCntrApp, 0)
#define tagCntrDec MakeTag(clsCntrApp, 1)
#define tagCntrOct MakeTag(clsCntrApp, 2)
#define tagCntrHex MakeTag(clsCntrApp, 3)

When you use resource utility functions from RESUTIL.H to read these strings from
a resource file, use these tags when the functions expect a variable of type
IX_RES_ID. See "Tags in source code" on page 193 for an example.

You must also define a RES_ID for each group. A RES_ID is a 32-bit number, defined
in CLSMGR.H, that identifies a resource. Use a RES_ID to identify a particular
resource in a resource file. The header file CNTRAPP.H defines these RES_IDs:

#define resCntrTK
#define resCntrMisc

MakeListResld (clsCntrApp, resGrpTK, 0)
MakeListResld (clsCntrApp, resGrpMisc, 0)

".,. Defining tags and strings in resource files

You put the literal strings and their associated tags in a resource file. GO recom

mends that you put U.S. English strings in USA.RC, and Japanese strings in JPN.RC.

Resource files

z
o
!i
N
:::i « z o

~

192 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

The data structure that contains a tag and its corresponding string is an array of
structures of type RC_TAGGED_STRING.

1**
Too 1 kit S t r i n g s

***1
1*
* Strings used by toolkit elements in CNTRAPP. In this case, there are
* only the Representation menu and its menu items.
*1

static RC TAGGED STRING tkStrings[] = {
II Representation menu
tagCntrMenu, U_L ("Representation"),
II Decimal menu item
tagCntrDec, U_L(IIDec"),
II Octal menu item
tagCntrOct, U _ L ("Oct") ,
II Hexagonal menu item
tagCntrHex, U_L ("Hex") ,
Nil (TAG)

} ;

Notice that the literal strings are surrounded by the U_LO macro which indicates
the string contains 8-bit character data in PenPoint 1.0 and 16-bit character data in
PenPoint 2.0 Japanese.

An RC_INPUT structure immediately follows the RC_TAGGED_STRING array.
static RC INPUT tk = {

resCntrTK,
tkStrings,
0,
resTaggedStringArrayResAgent

} ;

The macro resCntrTK, defined in CNTRAPP.H, is a 32-bit number that identifies
the resource, in this case the group of strings defined in tkStrings

#define resCntrTK MakeListResId(elsCntrApp, resGrpTK, 0)

The RC_INPUT structure also indicates how the Counter Application should inter
pret the tkStrings array. In this case, the tagged string array resource agent inter
prets the array. Every group has both of these structures: the RC_ TAGGED _STRING

structure and the RC_INPUT structure.

Finally, after all the groups have been similarly defined, one more structure of type
P _RC_INPUT is required to identify all the groups.

P RC INPUT resInput[] = {

} ;

&app,
&tk,
&mise,
pNull

II the Application Framework strings
II the TK strings for CNTRAPP
II the Mise strings for CNTRAPP
II End of list.

Note that Counter Application uses only three out of the four standard groups.
This is fine. Groups may be left empty except for toolkit strings belonging to the
Application Framework. The Application Framework uses those strings to display
information about your application to the user.

CHAPTER 15/ PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 193

Look at the sample code provided with the SDK for more examples of resource files.
The Goodies disk also contains three files in \SDK\UTIL\TEMPLATE. The files,
TEMPLATE.C, TEMPLATE.H, and TEMPLATE.RC, are examples of resource files and
source code that uses resources.

Resource files

z
o
~
N
:::i
<t
Z o ". Tags in source code

Mer defining tags in your resource file, you use them in one of three ways.

• Use tags directly if a function or message expects a tag as a parameter. Stan
dard toolkit elements that inherit from dsTkTable often expect tags. This
code sets up a standard toolkit menu, again in Counter Application.
static const TK_TABLE_ENTRY CntrAppMenuBar[] = {

~
{tagCntrMenu, 0, 0, 0, tkMenuPullDown I tkLabelStringld, clsMenuButton},

{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringld},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringld},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringld},
{pNull} ,

{pNull}
} ;

When you use tags instead of literal strings in a TK_ TABLE_ENTRY, you must
set (or add, using the bitwise OR operator) the tkLabelStringld flag. This flag
directs the code to read the required string out of a resource file.

• Use tags instead of literal strings. Many user interface objects that inherit
from dsLabel allow you to use tags in the place of literal strings. Let the object
know that you are supplying a tag rather than a string by setting the infoType
field of the LABEL_STYLE structure to lsInfoStringld. This constant is defined
in LABEL.H.

• Use resource utility functions to read the required string out of your resource
file. A variety of resource utility functions are defined in RESUTIL.H.

size = sizeof(resStr) / sizeof(CHAR);
ResUtilGetListString (resStr, size, resGrpMisc, tagCntrMessage);

The ResUtilGetListStringO function expects a RES_ID to identify the group
in which the string is defined; in the example shown here, resGrpMisc is the
group defined in CNTRAPP.H. The function also expects a IX_RES_ID.

See "Using tags in source code" on page 222 for more detailed instructions and
code samples.

Predefined tags
The Application Manager has predefined tags that you use to identify your com
pany, application name, and copyright information.

In PenPoint 1.0, you did this by filling in fields of the APP _MGR_NEW structure. In
PenPoint 2.0 Japanese, you must put these strings in a resource file and associate
them with the predefined tags defined in APPTAG.H.

Although this was not
described in detail in the 1.0
documentation, you can use
tags instead of strings in both
Pen Point 1.0 and Pen Point 2.0
Japanese.

194 PENPOINT APPLICATION WRITING GUIDE

Part 2 / Internationalization Handbook

The strings defined in this resource file are used in two ways:

• The Application Framework reads these strings from your resource file when it
needs to display information about your application to the user .

• Standard makefiles (such as those provided with the sample applications) use
the application name and type to stamp your project directory.

This example is from the Counter Application.
static RC_TAGGED_STRING appStrings [] = {

II Default document name
tagAppMgrAppDefaultDocName,

U_L(IICounter Application"),

} ;

II The company that produced the program.
tagAppMgrAppCompany,

U_L(IIGO Corporation"),
II The copyright string.
tagAppMgrAppCopyright,

U_L(II\xOOA9 Copyright 1992 by GO Corporation, All Rights Reserved."),
Nil (TAG) II end of list marker

See "Makefiles" in Chapter 29 of Part 4: PenPoint Development Tools Supplement for
more information on how the standard makefile rules use these tags. As usual, a
RC_INPUT structure follows the RC_TAGGED_STRING structure.

static RC INPUT app = {

tagAppMgrAppStrings, II standard resource ID for APP strings
appStrings, II pointer to string array
0, II data length; ignored for string arrays
resTaggedStringArrayResAgent II How to interpret the data pointer

} ;

Working with resource liles
The PenPoint operating system provides three DOS utilities to work with compiled
resource files (for example, USA.RES). With these utilities, you can append
(RESAPPND), view (RESDUMP), and delete (RES DEL) resources from a resource file.

For example, here is output of the utility RESDUMP on the Counter Application's
resource file USA.RES. The DOS utilities work only on compiled resource files, so the
following example shows the entire application being compiled and created in an
application directory under \2_0\PENPOINT\APP.

CHAPTER 15 I PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 195

C:\>2_0\PENPOINT\SDK\SAMPLES\CNTRAPP> wmake

C:\2 O\PENPOINT\SDK\SAMPLES\CNTRAPP> cd \2 O\penpoint\app\cntrapp
C:\2-0\PENPOINT\APP\CNTRAPP> resdump usa. res
DOS/4GW Protected Mode Run-time Version 1.6
Copyright (c) Rational Systems, Inc. 1990-1992
File Header:

file key=0100023A
file format=3
creator class=[Ox0100023A WKN: Scope=Global Admin=285 Ver=l]
file minimum system version=O
file end=383
reserved=OO 00 00 00 00 00 00 00 00 00 00 00 00 00

Resource 0 is a well-known data resource
resId = [Ox4640008A WKN List: Scope=Global Admin=69 Group=Misc List=O]
Wkn data agent = 8 (String Array), data length=162
Min sys version = 0

Resource files

0: 05 00 00 01 00 00 00 00-16 00 00 00 27 00 00 00 * ' ... *
16: 62 00 00 00 78 00 00 00-86 00 00 00 00 14 43 6F *b ... x Co*
32: 75 6E 74 65 72 20 41 70-70 6C 69 63 61 74 69 6F
48: 6E 00 00 OF 47 4F 20 43-6F 72 70 6F 72 61 74 69
64: 6F 6E 00 00 39 A9 20 43-6F 70 79 72 69 67 68 74
80: 20 31 39 39 32 20 62 79-20 47 4F 20 43 6F 72 70
96: 6F 72 61 74 69 6F 6E 2C-20 41 6C 6C 20 52 69 67

112: 68 74 73 20 52 65 73 65-72 76 65 64 2E 00 00 14
128: 43 6F 75 6E 74 65 72 20-41 70 70 6C 69 63 61 74
144: 69 6F 6E 00 00 DC 41 70-70 6C 69 63 61 74 69 6F
160: 6E 00

Resource 1 is a well-known data resource

unter Applicatio
n ... GO Corporati
on .. 9. Copyright
* 1992 by GO Corp*
oration, All Rig
*hts Reserved *
Counter Applicat
ion ... Applicatio
n.

resId = [Ox40400456 WKN List: Scope=Global Admin=555 Group=ToolKit List=O]
Wkn data agent = 8 (String Array), data length=59
Min sys version = 0

0: 04 00 00 01 00 00 00 00-11 00 00 00 17 00 00 00 * *
16: 1D 00 00 00 23 00 00 00-00 OF 52 65 70 72 65 73 * # Repres*
32: 65 6E 74 61 74 69 6F 6E-00 00 04 44 65 63 00 00 *entation ... Dec .. *
48: 04 4F 63 74 00 00 04 48-65 78 00 *.Oct ... Hex.*

Resource 2 is a well-known data resource
resId = [Ox46400456 WKN List: Scope=Global Admin=555 Group=Misc List=O]
Wkn data agent = 8 (String Array), data length=103
Min sys version = 0

0: 06 00 00 01 00 00 00 00-03 00 00 00 06 00 00 00 * *
16: 09 00 00 00 OC 00 00 00-28 00 00 00 47 00 00 00 * (... G ... *
32: 00 01 00 00 01 00 00 01-00 00 01 00 00 1A 54 68 * Th*
48: 65 20 63 6F 75 6E 74 65-72 20 76 61 6C 75 65 20 *e counter value *
64: 69 73 3A 20 5E 31 73 00-00 1D 52 65 70 72 65 73 *is: A1s ... Repres*
80: 65 6E 74 61 74 69 6F 6E-20 74 79 70 65 20 75 6E *entation type un*
96: 6B 6E 6F 77 6E 2E 00 *known .. *

Each group defined in CNTRAPP.H is a separate resource with its own RES_ID.

Notice that the Application Manager group has a different administered number
(Admin=69) than the Counter Application's groups (Admin=555). Look in
CNTRAPP.H to see that 555 is the well-known UID identifying clsCntrApp.

#define clsCntrAppMakeWKN(555, 1, wknGlobal)

See Part 4: PenPoint Development Tools Supplement for more information on these
DOS utilities.

196 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

J'" Locale-independent code
Your application's behavior will likely vary between locales. Formatting, for
example, is a behavior that varies between locales. Table 15-2 shows some examples
of different formatting conventions.

Attribute

Time formatting

Currency mr.nat:fina

Address formatting

Phone numbers

Papers;zes

Sort order begins

American English example

1,234,567.89

11:45 p.m.

3/31/92

$1995.95

John Smith
Vice-President, Sales
Acme Widgets Corporation
123 Industrial Boulevard
Providence, RI 02913
U.S.A.

(416) 325-2061

Letter, 8.5" x 11"

aAbBcCdDeE

Different country example

Germany: 1.234.567,89

Italy: h 23,45

Sweden: 92-03-31

Norway: Kr. 1,995

Denmark:
Administrerende direkt0r
Acme Corp.
Sandtoften 39
DK-2820 Gentofte
Danmark

France: (16) 2.25.20.61

England: A4, 210 cm x 297 cm

Portugal: aA aA ciA iA. aA.

The following categories of behavior vary from locale to locale. If your application
supports any of these behaviors, make sure local versions of your application imple
ment the behavior appropriately. This list is not comprehensive.

• Formatting conventions

• Number formatting.

• Currency handling.

.• Time and date formatting.

• Numbered items (for example, "3 files").

• Phone number formats.

• Fax dialing formats, cover sheets, and form letters.

• Paper sizes.

• Sorting and comparison rules.

• Word and sentence.

• Linguistic packages.

• Dictionaries.

• Heuristics for text processing.

• Local handwriting tra~slation engines.

Rather than write different code for each country, take advantage of Pen Point's col
lection of international functions. These international functions behave appropri
ately fora particular language or country. Using these functions frees you from
implementing the locally appropriate version of a function yourself

CHAPTER 15 I PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 197
Pen Point's international functions

In the ideal case, the international functions allow you to write and maintain a
single code base no matter how many local versions you create. This single code
base would be locale-independent code.

Sometimes, you cannot write a single block of code to implement all the local vari
ants your application requires. You have two alternatives in this case:

• You can create different DLLs from different source. You then load a different
DLL for each local version of your application. See Figure 14-2 for a diagram
of this situation.

• You can write a service to implement a specific function for a locale.#

". PenPoint's internationql functions
The PenPoint operating system provides a host of types, data structures, and func
tions that simplify your task of writing locale-independent code.

Consider a concrete example. Notice from Table 15-2 that Germans write
1.234.567,89 while the Americans prefer 1,234,567.89.

Rather than write your own formatting algorithm, you can simply call a function
called IndFormatS320 in your code. The functions accepts, among other argu
ments, a locale identifier (see "Locales" on page 199 for a discussion of locale iden
tifiers), and returns the correctly formatted string.

Currently, PenPoint supports only u.s. English and Japanese versions of these inter
national functions. Future releases of PenPoint will support more countries, lan
guages, and functionality.

Table 15-3 describes the international functions PenPoint provides. The next sec
tion describes the most important functions, most of which are in ISR.H. For details
on particular functions, see the on-line header files in \2_0\PENPOINT\SDK\INC.

PenPoint international functions
Header file to include

ISR.H
(stands for "International Services
and Routines")

ISRSTYLE.H

GOLOCALE.H

CHARTYPE.H

INTL.H

Contents

Types and functions such as word, sentence, and paragraph delimiting; line
break calculation; time, date, number, and currency formatting; sorting and
comparison; and Unicode manipulation. These functions deal primarily with
strings.

Styles that used to control how international functions behave. For example,
styles control how to format date and negative numbers, how to sort a list
(whether to consider spaces or not), and how to delimit words.

Constants for country, language, and currency names, as well as names for
commonly used strings like days of the week, months of the year, time zones,
and units of measurement.

Types, macros, and functions that work on individual characters. Sample
operations include checking for spaces and uppercase letters.

Types and macros used by international functions.

z o
~
to-!
::i
<I:
Z o

~

198 PENPOINT APPLICATION WRITING GUIDE

Part 2 I Internationalization Handbook

GLPYH.H

CMPSTEXT.H

Contents

Macros for Unicode code points, such as GO gesture glyphs, commonly used
in PenPoint applications and services.

Functions that compose text from strings and variable values, allowing free
placement of the parameters throughout the text.

Remember to link the appropriate library with your source code if you use any of
these functions. All of the functions described below are defined in INTL.LIB with
the exception of Compose TextO functions, which are defined in SYSUTIL.LIB.

International/unctions in ISR.H

Most of PenPoint's international functions are defined in the header file ISR.H.

Table 15-4 shows some of the most commonly used functions and their behavior.

IntlDelimitWordO

IntlDelimitSentenceO

IntlBreakLineO

IntlSec To TimeStructO

IntlIntlTime ToOSDate TimeO

IntlFormatS320

IntlFormatNumberO

IntlFormatDateO

IntlFormat Time 0
IntlParseS320

IntlParseNumberO

IntlParseDateO

IntlParseTimeO

IntlCompareO

IntlSortO

IntlConvertUnitsO

IntlStrConvertO

IntlMBTo Unicode 0

Default behavior

Delimits a word (or word-equivalent in languages with no words).

Delimits a sentence.

Calculates how to break a line of text that cannot fit on a single line.

Converts time from seconds since 1970 to international time structure.

Converts from international time structure to system time structure.

Formats a signed integer with the proper punctuation, as in 1,896.

Formats a floating point number with the proper punctuation.

Formats a date, such as 26-Dec-1991.

Formats a time, such as 12:45 A.M.

Parses a formatted signed integer, such as (1,592)

Parses a formatted floating point number, such as 12,572.78

Parses a formatted date, such as 26-Dec-1991.

Parses a formatted time, such as 12:45 A.M.

Compares Unicode value of characters.

Sorts strings.

Converts measures in different units, such as feet and meters.

Converts strings between various formats, such as lower- and upper-case.

Converts multibyte characters to Unicode characters.

Many of the functions come in pairs that reverse each other's functionality:

.. The formatting functions such as IntlFormatDateO have parsing equivalents
such as IntlParseDateO .

.. The conversion functions such as IntlMBToUnicodeO have functions that
reverse the conversion such as IntlUnicodeToMBO,

Many of the functions also have counted and uncounted version. Counted
versions have the letter N in their names. For example, the counted version of

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 199
Pen Point's international functions

IntlDelimitWordO is IntlNDelimitWordO. The uncounted functions work on
null-terminated strings. The counted versions work on strings with known length.

Most of the functions require a 32-bit argument that identifies a locale. Locales are
explained in the next section.

~ Locales
This handbook uses the term locale rather than country or language because coun
tries vary a great deal within their borders. Canada, Switzerland, and Singapore, for
example, are countries that use more than one language. Even within a language,
there are distinct variations called dialects. All of these differences influence the
localization process.

The PenPoint international functions take these factors into account by intro
ducing a type called LOCALE_ID. This 32-bit number contains three byte-long
"fields" that correspond to the language, dialect, and country of a particular locale.
Thus, a variable of type LOCALE_ID unique identifies a locale as a 32-bit number.

LOCALE_ID uses only 3 bytes of data. The remaining bits are reserved for future
use. Fill those bits with Os if you do custom manipulation of these identifiers. Usu
ally, just use predefined macros in GOLOCALE.H to manipulate variables of type
LOCALE_ID.

The following code uses a macro defined in INTL.H to create locale identifiers for
two familiar locales. The arguments are constants defined in GOLOCALE.H. The
three arguments correspond to the language, dialect, and country for each locale.

#define locUSA intlLIDMakeLocaleld(ilcEnglish, 0, iccUnitedStates)
#define locJpn intlLIDMakeLocaleld(ilcJapanese, 0, iccJapan)

The types and macros for creating locale identifiers are defined in INTL.H. Lan
guages, dialects, and countries are assigned an 8-bit code and a corresponding mne
monic (like iccUnitedStates) in GOLOCALE.H.

Predefined locale identifiers
The PenPoint operating system identifies the current system locale by setting the a
LOCALE_ID called systemLocale. This initialization is done at boot time, so by the
time your application is running, systemLocale has been set.

If your application must behave differently in different locales, your code can check
the value of systemLocale to control its behavior. The Clock sample application,
for example, checks the value of systemLocale to determine how it should format
the time. See "Checking the system locale" on page 227 for a code sample.

Most commonly, though, your application needs to behave appropriately for only a
single locale. To accomplish this single-locale behavior, use a series of macros whose
names begin with Loc ... 0. For example, use the macro called LocDelimitWordO
to provide word selection functionality appropriate to PenPoint's current locale.
Here is the definition of LocDelimitWord in ISR.H:

#define LocDelirnitWord(tx,s,st) IntlDelirnitWord(tx,s,intlDefaultLocale,st)

200 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Notice that the macros simply call the related international function with the pre
defined locale identifier intlDefaultLocale as an argument.

The international functions provide behavior to support Japanese and u.s. English.
As shown above, two locale identifiers, locUSA and locJpn, are defined in
GOLOCALE.H. You can send these identifiers as arguments to the international
functions.

Styles
Often, even a LOCALE_ID is not enough to specify how a function should behave.
There are, for example, at least four different ways to display a date in each Western
language.

PenPoint introduces a 32-bit number called a style to control how functions should
behave within locales. For example, the various styles associate4 with displaying a
date are defined in ISRSTYLE.H as:

II Flags used with all Date format styles
#define intlFmtDateSpaceFil1 flag16 II Space fill numeric fields
#define intlFmtDateZeroFil1 flag17 II Zero fill numeric fields
II International Date format styles
#define intlFmtDateStyleNumeric OxOOO1 II e.g. 1/14/92
#define intlFmtDateStyleAbbrv OxOOO2 II e.g. 14-JAN-92
#define intlFmtDateStyleShort OxOOO3 II e.g. Jan. 14, 1992
#define intlFmtDateStyleFul1 OxOOO4 II e.g. January 14, 1992

You use these styles when calling the function IntlNFormatDateO. Note that the
function expects, among other things, a locale and a style, as parameters:

S32 EXPORTED IntlFormatDate(
P_INTL_TIME pTimeVal,

) ;

P_CHAR pString,
U32 length,
IX RES_ID format,
LOCALE ID locale,
U32 style

II Time to format
II Out: converted string
II Length of buffer
II Optional explicit format
II Locale to use, intlDefaultLocale for default
II Conversion style to use, or styleDefault

Styles are divided into two halves. The two halves represent major variations (flags)
and more subtle variations (styles).

.. A flag is a major variation that affects all the functions in a given category.
You can specify only one flag at a time .

.. A format style is a more subtle variation. You can sometimes use multiple
variants simultaneously using the bitwise OR operator. If you specify an
unsupported collection of styles, an international function returns the status
stsRequestNotSupported.

The flag intlFmtDateSpaceFill is a good example of a major style. It directs the
date formatting function to use spaces as a placeholder in dates, as in 12/ 3/92.
Because you can only specify one flag at a time, you cannot specify intlFmt
DateSpaceFill and intlFmtDateZeroFill at the same time.

Unlike flags, you can specify a collection of format styles. For example, you can
specify intlFmtTimeStyleStandard and intlFmtTimeForce24Hour simultaneously

CHAPTER 15 I PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 201
Pen Poi nt's international functions

to format a time that looks like 13:57. Use the bitwise OR operator to specify mul
tiple styles simultaneously. For example, define myStyle as follows to specify the
two styles above:

U32 myStyle = intlFmtTimeStyleStandard I intlFmtTimeForce24Hour;

Use the predefined style indStyleDefault as a parameter to an international
function when you want to use what GO expects to be the most common variation
for a given locale. Comments in ISRSTYLE.H identify the default style for a partic
ular locale.

".. Query capability
Many of the PenPoint international functions require a buffer as an argument. A
function that requires a buffer often offers clients a query capability in which the
client requests the function to recommend a size for the buffer to pass in. For
example, if you pass pNull as two of the arguments to the IndDelimitWordO func
tion, the function returns the recommended size of buffer to pass in.

U32 size;
U32 style = intlStyleDefault;
size = LocDelimitSentence(pNull, pNull, style);

Use the size returned by the function to determine how much of your buffer to
send when you call the function again. See the procedure on delimiting words
inPart 3: PenPoint Japanese Localization Handbook for a more detailed code sample.

"., International function structures
The international functions use three new structures as shown in Table 15-5. All of
the structures are defined in ISR.H.

International function structures
Strudure name

INTL_ CNTD _STR

Description

Contains a string and its count. Used by IndNSortO to sort a collection of
counted strings.

A time structure that is a superset of the standard tm structure. It contains
two additional members to represent an era (for example, A.D., heisei) and
time zone. The year member represents the year of an era rather than years
since 1900. Valid eras are defined in GOLOCALE.H.

Contains information on how to break a line, including the position of the
break, the characters to delete from the end and start of the line, and the char
acter to insert at the and start of the line.

The new time structure INTL_ TIME introduces a new era member to accommodate
international calendars. Many calendar systems use era information more heavily
than the Western Gregorian calendar. For example, the Japanese imperial calendar
specifies dates relative to the reign of the current emperor. The year 1992 is repre
sented as heisei 4, the fourth year of the current emperor's reign.

There are international functions to convert between this international time struc
ture and the system time structure OS_DATE_ TIME.

202 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

The line break structure INTL_BREAK_LINE is used by the IndBreakLineO (and its
counted equivalent) to contain information about how a line should break. Dif
ferent languages uses different rules about how lines should break.

For example, English permits words to break roughly at each syllable. A hyphen
is used to indicate that a word continues to the next line. So running becomes

run-ning.

In Japanese, on the other hand, characters simply follow each other sequentially
across lines. The only restriction is that certain characters, such as an open paren
thesis, cannot end or begin a line.

As another example, when the German word backen breaks across lines, it becomes
bak-ken. Notice that the trailing c becomes a trailing k. The IndBreakLineO func
tion uses the INTL_BREAK_LlNE structure to return the necessary line break infor
mation. The structure is defined in ISR.H as follows:

typedef struct INTL_BREAK_LINE
U32 breakAt; II position of line break

This example is given to clarify
the structure. The PenPoint 2.0
Japanese version of
Intl6reakLineO supports only
U.S. English and Japanese.

U32 deleteThis; II chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxlnsert];

II chars to insert at end of this line
U32 deleteNext; II chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxlnsert];

II chars to insert at start of next line
INTL_BREAK_LINE, *P_INTL_BREAK_LINE;

Unicode glyphs
The file GLYPH.H defines mnemonics for the Unicode values of various standard
glyphs. Included are PenPoint user interface glyphs, GO gesture glyphs, Unicode
control characters, and the Unicode values of Pen Point's standard gestures.

For example, you might use the mnemonics to assign the value of a character.
CHAR myGlyph = glyphCheckMark;

Mter you make this assignment, use the standard drawing context messages to draw
the gesture glyph on the screen. See Part 3 of the Architectural Reference for more
information on drawing PenPoint graphics.

Table 15-6 lists the Unicode values of GO's gesture glyphs. The abbreviation "na"
means the gesture glyph was undefined in PenPoint 1.0.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 203
Pen Point's international functions

GO~ gesture symbols TABLE 15-6

Gesture tag Unicode Code in #define Symbol
PenPo;nt Z
1.0 0

xgslTap F600 46 glyph 1 Tap Y !i
N

It
:::i

xgs2Tap F601 128 glyph2Tap <CC .. Z

xgs3Tap F602 129 glyph3Tap ,Y 0

~
xgs4Tap F603 130 glyph4Tap ,Y
xgsPressHold F604 138 glyphPressHold 1
xgsTapHold F605 137 glyph TapHold ·1
xgs2TapHoid F606 244 glyph2TapHoid

xgs3TapHoid F607 245 glyph3TapHoid

xgs4TapHoid F608 246 glyph4TapHoid

xgsFlickUp F609 174 glyphFlickUp

xgsFlickDown F60A 175 glyphFlickDown

xgsFlickLeft F60B 176 glyphFlickLeft

xgsFlickRight F60C 177 glyphFlickRight

xgs0 blFlickUp F60D 178 glyphDblFlickUp II

xgsDblFlickDown F60E 179 glyphDblFlickDown

" xgsDblFlickLeft F60F 180 glyphDblFlickLeft -
xgsDblFlickRight F610 181 glyphDblFlickRight -
xgs TrplFlickUp F611 na glyph TrplFlickUp III

xgsTrplFlickDown F612 na glyph TrplFlickDown

'" xgsTrplFlickLeft F613 na glyph TrplFlickLeft -
xgs TrplFlickRight F614 189 glyph TrplFlickRight -
xgsQuadFlickUp F615 na glyphQuadFlickUp IIII

xgsQuadFlickDown F616 na glyphQuadFlickDown

'''' xgsQuadFlickLeft F617 na glyphQuadFlickLeft ==
xgsQuadFlickRight F618 193 glyphQuadFlickRight =
xgs VertCounterFlick F619 200 glyph VertCounterFlick I,
xgsHorzCounterFlick F61A 201 glyphHorzCounterFlick -
xgsPlus '+' F61B 43 glyphPlus +
xgsLeftParens F61C 40 glyphOpenBracket [

xgsRightParens F61D 41 glyphCloseBracket]

xgsCross / xgsXGesture F61E 88 glyphCross X
xgsPigtailVert F61F 141 glyphPigtail 7
xgsScratchOut F620 140 glyphScratchOut '=-

xgsCircle xgsOGesture F621 79 glyphCircle 0

xgsCircle Tap F622 142 glyph Circle Tap <:!)

xgsCircleLine F623 146 glyphCircleLine ~

xgsCircleFlickUp F624 202 glyphCircleFlickUp cb
xgsCircleFlickDown F625 203 glyphCircleFlickDown cp
xgsDblCircle F626 204 glyphDblCircle dD

xgsCircleCrossOut F627 207 glyph Circle Cross ~

204 PEN POINT APPLICATION WRITING GUIDE

Part 2 / Internationalization Handbook

Gesture tag Unicode #define Symbol

xgsUpCaret F628 143 glyphCaret /\
xgsUpCaretDot F629 95 glyphCaretTap A
xgsDblUpCaret F62A 161 glyphDblCaret A

xgsCheck I xgs VGesture F62B 86 glyphCheck V
xgsCheckTap F62C 136 glyphCheckTap V.

xgsUpArrow F62D 153 glyph UpArrow l'
xgsDownArrow F62E 155 glyphDownArrow ~

xgsLeftArrow F62F na glyphLeftArrow 1-

xgsRightArrow F630 na glyphRightArrow ~

xgs Up2Arrow F631 na glyphUp2Arrow 11'
xgsDown2Arrow F632 na glyphDown2Arrow ~

xgsLeft2Arrow F633 na glyphLeft2Arrow 10=

xgsRight2Arrow F634 na glyphRight2Arrow ~

xgsUpLeft F635 240 glyphUpLeft I

xgsUpRight F636 173 glyph Up Right I

xgsDownLeft F637 169 glyphDownLeft -.-l
xgsDownRight I F638 76 glyphDownRight L
xgsLGesture

xgsLeftUp F639 209 glyphLeftUp L

xgsLeftDown F63A 210 glyphLeftDown r
xgsRightUp F63B 165 glyphRightUp -.l

xgsRightDown F63C 167 glyphRightDown -,
xgsDownLeftFlick F63E 170 glyphDownLeftFlick -.-l
xgsDownRightFlick F640 168 glyphDownRightFlick L
xgsRightUpFlick F643 166 glyphRightUpFlick -.l~

xgsNull F6FF 255 glyph Unrecognized

This table shows only some of the names defined in GLYPH.H. See the on-line
header file for a complete listing.

Composed strings
Because strings created dynamically differ between locales, you need to be careful
composing them. Many of the messages you display to the user are composed
dynamically. For example, the file system dynamically composes the message
"Delete MYFILE.DOC?" when the user makes the cross-out gesture over the file
MYFILE.DOC.

The rules for composing strings differ between locales. Punctuation, word order,
and capitalization rules, for example, vary between locales.

Because the familiar C library functions such as sprintfO and printfO fix the order
of their parameters, they are not appropriate for composing strings where word

TAIEU .. E 15-6 (continued)

CHAPTER 15/ PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 205
Managing your project

order varies. PenPoint's compose text functions, defined in CMPSTEXT.H, allow you
to place parameters where necessary.

The strategy is as follows:

1 Write the message interspersed with placeholders for each of the variables
displayed in the message.

2 Place the entire message in a different resource file for each localized version
of your application.

3 Read the message out of the resource file when you need to display it.

For example, here is part of the resource file TEMPLATE.RC from the Goodies disk.
It shows the English version of a confirmation message. Versions of this message in
other languages may put the variables in different places.

II Define the warninglinformational message resource for EXAMPLE.
static RC _TAGGED_STRING stciMsgWarningStrings [] = {

II Confirmation message used with the undo operation. It allows
II the user to undo the last operation or all operations.
II Buttons: [Undo Als] The last operation is undone
II [Undo all] Undo all operations since last checkpoint
II [Cancel] Cancels the operation, nothing undone
II Parameters: Als The type of the last operation (such as DRAW)
II A2s Name of the picture being worked on
stsExmplConfirmUndo,
U_L("[Undo Als] [Undo all] [Cancel] Undo the last operation (Als) on A2s?"),

Nil (TAG)
} ;

There many ComposeText functions that accept literal strings, pointers to format
strings, and resource identifiers (RES_ID) as parameters. See the header file
\2_0\PENPOINT\SDK\INC\CMPSTEXT.H for details. Remember to ink SYSUTIL.LIB

with your source code if you use these functions.

Managing your project
Your project consists of a collection of files that comprise your application. It
includes header files, source code, resource files, makefiles, and supporting files like
Stationery and help documents. The following sections discuss strategies and tools
you use to create localized versions of your application.

See Chapter 29 of Part 4: PenPoint Development Tools Supplement for more infor
mation on this topic.

Project organization
GO suggests that you keep all your project files in a single directory, including all
the different resource files for your various localizations. Notice in the sample code,
for example, that every application contains a USA.RC and a JPN.RC file. Each file
corresponds to a particular localization.

When you build your application, compile the appropriate resource files and copy
the compiled file into your application directory along with the executable image.

z
o
!i
N
::i « z o

~

206 PEN POINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

The makefiles provided with the sample applications show you how to set up a
makefile to coordinate the process of producing different localizations of your
application.

"., Malcefiles
The makefiles provided with the sample applications contain a few lines that help
create localized versions of your application. The information in this section applies
only if you are using the WATCOM WMAKE application to make your application.

First, you can add a LOCALE flag to the command line to make a particular local
ized version of your application. For example, type one of the following to create
the Japanese or American version of your application:

wmake LOCALE=jpn
wmake LOCALE=usa

Inside the makefile, you can use three resource variables to identify which resource
files to include with the executable image:

Malcefile variables
Variable Usage

RES_FILES

USA_RES_FILES

JPN_RES_FILES

For resource files that are the same for all locales

For resource files unique to the U.S. localization

For resource files unique to the Japanese localization

See "Updating your makefile" on page 224 for details on how to use these
makefiles.

Scanning your source code
INTLSCAN .EXE is a DOS utility located on the Goodies disk. It scans source code
files and flags lines that may not be appropriate for international applications. The
flagged lines fall into one of three categories.

• Code that deals with ASCII. These lines of code usually need to change as
follows:

.. Code that performs ASCII (8-bit) manipulation must be changed to
code that performs Unicode (16-bit) manipulation .

.. Literal ASCII strings must become literal Unicode strings .

.. Strings, including all the strings users see, should be moved into
resource files to facilitate translation.

• Functions that are locale-dependent. Using these locale-dependent functions
will make it difficult for you to localize your application. Consider replacing
your locale-dependent function with a locale-independent equivalent.

• PenPoint 1.0 code that will no longer work under the latest PenPoint version
because of API changes. Calls to the old APIs must be changed to reflect the
new APIs.

TAIUE 15-7

CHAPTER 15 I PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 207

INTLSCAN searches for particular declarations and function calls in your code.
Because it cannot tell what you are doing with a particular variable or function,
it may flag a line that does not need to be changed. If you are certain the code
INTLSCAN flagged will work in all the locales you plan to market your application,
leave it alone.

Conversely, do not assume that because INTLSCAN did not flag any lines in your
code that your application is ready for localization. There are many international
ization issues that INTLSCAN cannot possibly detect. For example, INTLSCAN
cannot tell you whether a particular piece of your application's functionality is
appropriate to a particular locale.

Working with local users and getting familiar with popular local applications may
help you understand the needs of a locale.

See "Using the DOS utility INTLSCAN" on page 210 for step-by-step directions
on using INTLSCAN.

~ Other DOS utilities
A new DOS utility called UCONVERT on the Goodies disk converts between
various character sets and Unicode. Chapter 24 of Part 3: PenPoint Japanese
Localization Handbook contains instructions on using Unicode to convert between
Shift-lIS, ASCII, and Unicode files.

Other utilities included with the PenPoint SDK 2.0 Japanese help you create local
ized versions of your application. See Chapter 31 of Part 4: PenPoint Development
Tools Supplement for details on these utilities.

Missing functions
If your want to maintain a single code base for multiple local versions of your appli
cation, you need the international package unless you plan to implement a function
not already in PenPoint.

If you do implement a new function, and you think the function you implement
would be useful to many developers, contact GO Technical Services with your
suggestion.

Missing functions

z
o
~
N
:::i
<C
Z
o

~

Chapter 16 / Procedures

This chapter provides step-by-step details on how to write internationalized code.
To help you use this chapter more efficiently, each procedure begins with a list of
references to prerequisite information and ends with a list of related information. If
you have read the previous chapters already, don't worry about the prerequisite
information.

The prerequisite information discusses the concepts and motivations for doing a
particular procedure. If possible, an example is included with each task.

Supporting Unicode
Read this section if you want to support Unicode in a new application. If you want
to add Unicode support to an existing PenPoint 1.0 application, see "Using the
DOS utility INTLSCAN" on page 210.

Prerequisite information
Read the following for an overview of Unicode and the code required to support it:

.. "International character sets" on page 183.

.. "Multibyte and wide characters" on page 183.

.. "Unicode architecture" on page 185.

.. "Code supporting Unicode" on page 186.

Procedure
1 Declare character and strings (pointer to characters) as CHAR, which is a 16-

bit type in PenPoint 2.0 Japanese.

2 When you process text that a user sees, use the PenPoint international func
tions such as IntlCharIsUpperO and IntlFormatS320. These functions are
gU:aranteed to behave appropriately for the specified locale.

3 When no international functions are available, use the PenPoint macros U ... 0
functions UstrcpyO and UisupperO rather than the standard C library func
tions to manipulate text. These functions work on 16-bit data in PenPoint 2.0
and on 8-bit data in PenPoint 1.0.

If you followed the
suggestions in "Designing
for internationalization and
localization" in Chapter 5
of Part 1: PenPoint Application
Writing Guide, your code
already handles 16-bit data.
We still recommend that you
work through this procedure
since it provides new details
like which string manipulation
functions to call.

4 Use the WATCOM C compiler _u ... 0 functions such as _ustrcpyO and _uisupperO
for 16-bit data only. These functions may not be locale-independent, so use the
PenPoint international functions whenever you are processing readable text.

210 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

.5 Wrap the U_LO macro around literal strings, including format strings in the
PenPoint U ... 0 functions. See "Creating Unicode strings" on page 215 for
details.

6 Do not depend on CHAR being 1 byte long because CHAR is 2 bytes long in
PenPoint 2.0 Japanese.

7 Run INTLSCAN to help ensure your code supports Unicode. See "Using the
DOS utility INTLSCAN" on page 210 for details.

Examples
See the following sections for code samples:

• "Unicode: 8-bit type-consider CHAR or P _CHAR" on page 212.

• "Unicode: 8-bit function-consider 16-bit replacement" on page 212 .

., "Unicode: check mem size for sizeof(CHAR) != I" on page 213.

• "CHAR8: fixed 8-bit type-are you sure?" on page 215.

Related procedures
., "Using the DOS utility INTLSCAN" on page 210.

• "Interpreting INTLSCAN messages" on page 211.

Using the DOS utility INTLSCAN
This procedure helps you use the DOS utility INTLSCAN.EXE. The utility identifies
lines of code that may not be internationalized.

Prerequisite information
Read the following to understand why you should use INTLSCAN .

., "Overview of international software" on pag~ 177 .

., "Writing international software" on page 178.

• "International character sets" on page 183.

• "Resource files" on page 189.

• "Locale-independent code" on page 196 .

., "Managing your project" on page 205 .

., "Scanning your source code" on page 206.

Procedure
1 Copy INTLS'CAN.EXE to your \2_0\PENPOINT\SDK\UTIL\DOS directory from

the \SDK\UTIL\DOS directory on the Goodies disk.

2 If necessary, use the CONTEXT.BAT batch file to update your PATH variable to
include \2_0\PENPOINT\SDK\UTIL\DOS in your DOS path. See Installing and
Running PenPoint SDK 2.0 for more information on the batch file.
context 2 a

CHAPTER 16 I PROCEDURES 211
Interpreting INTLSCAN messages

3

4

Run INTLSCAN on your source (.C) files by typing:
intlscan *.C

List the error files generated by INTLSCAN:
dir *.ERR

5 Open any .ERR file with a non-zero size. The file contains a list of line
numbers and corresponding INTLSCAN messages.

6 Make any necessary changes to your source code. The next procedure
"Interpreting INTLSCAN messages" on page 211 shows you how to make
the changes INTLSCAN recommends.

7 Repeat steps 4 through 6 for all of your project's header (.H) files.

8 Repeat steps 4 through 6 for all of your project's resource (.RC) files.

",. Related information
.. "Interpreting INTLSCAN messages" on page 211.

.. "Moving strings to resource files" on page 216 .

.. "Updating your makefile" on page 224.

". Interpreting INTLSCAN messages
IfINTLSCAN detects a line of code that may need to be changed, it writes the line
number and one of the following messages to the file FILENAME. ERR. This section
helps you interpret the message and make the recommended changes to your code.

Here is a list of INTLSCAN 's messages. Each of these is discussed below .

.. Unicode: 8-bit type-consider CHAR or P _CHAR .

.. Unicode: Check mem size for sizeof(CHAR) != 1.

.. Unicode: 8-bit function-consider 16-bit replacement.

.. CHAR8: Fixed 8-bit type-Are you sure?

.. Resource: Literal string .

.. Resource: Literal character.

.. ISR: USA function-consider ISR equivalent.

ISR stands for International Services and Routines.

",. Prerequisite information
Read the following to understand why INTLSCAN flags certain lines of code .

.. "International character sets" on page 183 .

.. "Code supporting Unicode" on page 186.

.. "Locale-independent code" on page 196.

.. "Resource files" on page 189.

Tip You can choose what kind
of code INTLSCAN flags. Type
INTLSCAN IH to see which
switches are available.

:2
C
~
!::
<i
:2

~i:('I~ Tip Many editors feature a ;:
"next error" command that
moves you to the next line
that needs attention.

212 PEN POINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

Procedure
1 Open the FILENAME.ERR file generated by INTLSCAN.

2 If your editor supports multiple windows, open your source file, FILENAME.C.

3 If appropriate, make the first recommended change. Remember, the changes
are only recommendations. Some of the flagged lines may not need to change.

4 If your editor supports a "next error" function, use it to move to the next line

INTLSCAN flagged .

.5 You may want to run INTLSCAN after finishing your changes to make sure you
responded to all of INTLSCAN's recommendations.

".. Examples
Each of the possible INTLSCAN messages is listed and described below along with
old and rewritten code examples. The first sentence of each section describes why
INTLSCAN flagged your code.

".,.. Unicode: B-bit type-consider CHAR or P_ CHAR

You see this message when your code contains a 8-bit variable with a type such as
us, P _STRING, or char. If appropriate, redeclare these variables as 16-bit strings or
characters (using types such as CHAR or P_CHAR). Any text processing should be
done in 16 bits. Actual byte-sized data should remain 8-bits long.

Remember that CHAR is 16-bits long in PenPoint 2.0 and 8-bits long in PenPoint
1.0. If you want 16-bit data all the time, use CHAR16.

Here are some examples of old and rewritten code. Old code is on top and grayed
out.

char
typedef CHAR

AM_PM_STR[5] ;
AM_PM_STR[5] i

PCHAR
tmpDate;
tmpDatei

Note that declarations like:

U8 fontSizei

need not change because fontSize is real 8-bit data.

Unicode: B-bit function-consider J 6-bit replacement

You see this message when your code calls a function that works only with 8-bit
data. You may want to replace the function with its 16-bit equivalent. Table 16-1
outlines some of your options.

Strings need to be made of
16-bit characters.

Pointers to (strings) also need
to be 16 bits.

CHAPTER 16 I PROCEDURES 213
Interpreting INTLSCAN messages

8 .. and J 6-&it functions TABLE 16·1

If you want • •• Use •••

A specific 8-bit function

A function that will work on 8-bit data in PenPoint 1.0 and
16-bit data in PenPoint 2.0.

A function from the standard C library such as isupperO.

A PenPoint macro such as UisupperO.

A function that works on 16-bit data only. A WATCOM _u ... O function such as _uisupperO.

A function that works on 16-bit data and whose behavior is
appropriate to any locale PenPoint supports.

A PenPoint international function such as IntlCharIs
UpperO ..

If you want to maintain a single code base that compiles under PenPoint 1.0 and
PenPoint 2.0, use the U ... 0 functions rather than the _u ... 0 functions. The U ... 0
functions are 8-bit in PenPoint 1.0 and 16-bit in PenPoint 2.0. For more details on
maintaining a single code base, see "Single code base" on page 233.

Here are some examples of old and new code:
char S[]i
U16 ix;

ix = strlen(s);
CHAR s[];
U16 ix;

ix = Ustrlen(s);
strcat(tmpStr, " ");
Ustrcat(tmpStr, U_1(" "));

Notice the last code example contains the U_LO macro. This macro, defined in
INTL.H, makes the literal string inside a 16-bit string in PenPoint 2.0. In PenPoint
1.0, it allows strings to remain 8-bits long.

Unicode: check mem size lor sizeol(CHAR) 1= J

You see this message when your code calls a function like OSHeapBlockAllocO
that takes a size in bytes. When you call such functions, remember that 16-bit
strings require twice the memory of 8-bit strings. Hence, if you depend on CHAR

being 1 byte long, multiply your former memory request by the size of CHAR. For
example:

#define MAX DT STR 60
P CHAR pBuf;
OSHeapBlockAlloc(osProcessSharedHeapld,

(SIZEOF) (MAX_DT_STR), &pBuf);
#define MAX DT STR 60
P CHAR pBuf;
OSHeapBlockAlloc(osProcessSharedHeapld,

(SIZEOF) (sizeof(CHAR)*MAX_DT_STR), &pBuf);

Standard C functions like
5trienO work only on 8-bit
arguments. Use U5trienO
instead because it expects
16-bit arguments.

Literal strings need to be
16 bits.

214 PEN POINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

You need to do this multiplication for CHAR types only. You do not need to change
the following code because the SizeOfO macro correctly computes the size of the
structure CLOCK_APP _DATA, taking into account any 16-bit characters or strings it
might have.

OSHeapBlockAlloc(osProcessHeapld, SizeOf(CLOCK_APP_DATA), &plnst);

The SizeOfO macro is defined in GO.H.

Resource: literal string

You see this when your code contains a literal quoted string. Consider putting these
strings in a resource file, unless the string falls into one of these categories:

• Strings that are meaningful in all languages and in all countries. Universally
recognized names like "Disneyland" or "Coca-Cola" might be examples.

• Debugging strings that you display using DebugfO.

• Hidden filenames that users will never see.

If you le~ve the literal string in your code because it falls into one of these three cat
egories, consider wrapping the U _LO macro around the string. This makes it a 16-
bit string in PenPoint 2.0 Japanese.

Move all other strings to resource files. See "Moving strings to resource files" on
page 216 for the procedure.

Here are samples of old and new code that may help you change your code:
((->token.buf, "Error");

II where token.buf in pData is defined as CHAR [maxDigits]
ResUtiIGetListString((*pData)->token.buf, maxDigits, resGrpMisc,
tagCalcAppError);
II Where tagCalcAppError is a tag with a corresponding string in a
II resGrpMisc string array

tx;
tx.pText = "Hello";
SYSDC_TEXT_OUTPUT tx;
P CHAR helloStr;
helloStr =

ResUtiIAllocListString(osProcessHeapld, resGrpMisc, tagHelloStr);
II where tagHelloStr is a tag with a corresponding string in a
II resGrpMisc string array
II Free the string when you are finished
OSHeapBlockFree(helloStr);

".,. Resource: literal character

You see this message when your code contains a literal character. Consider moving
the literal character to a resource file, unless you are certain this character is valid in
every language and every country in the world (and on all hardware, too). If a char
acter stays literal, consider wrapping the U _LO macro around characters so that
they are 16-bit.

Use Re5UtilGetLi5t5tringO
to read the string from a
resource flle into a pre
allocated buffer rather than
use a literal string.

Use Re5UtiiAliooLi5t5tringO
when you do not have a pre
allocated buffer, and you do
not know how long the string
might be. This function
allocates a buffer on the
heap, into which it loads
the requested string from a
resource flle. Remember to free
the string after using it.

For example, change this code:

#define BACK_SLASH_CHAR '\\'

to this:

#define BACK_SLASH_CHAR U_L('\\')

CHAPTER 16 / PROCEDURES 215
Creating Unicode strings

Typically, you may leave back slashes (in a filename, for example) as literals, but
most other characters probably need to go into a resource file.

".,.. ISR: USA function--consider ISR equivalent

You see this message when your code uses a locale-dependent function. Unless you
are sure this function will work in all the locales you sell this application, replace the
function with a locale-independent function from PenPoint's international package.

See "Writing locale-independent code" on page 225 for details. Table 16-3, which
lists locale-dependent functions and their locale-independent equivalents, may also
be helpful.

CHARS: fixed S-bit type-are you sure?

You see this message when your code declares an 8-bit data type by declaring some
thing to be of type CHAR8 or P _CHAR8. Make sure you intend the variable to con
tain only 8-bit data. If the variable stores the value of a Unicode character, use a 16-
bit type like CHAR.

For example,

CHAR8 internal String = "private";

should be changed to
CHAR internalString = U_L("private");

Remember to make sure the use~ does not see this string. If the user does see the
string, it should go in a resource file.

Related information
• "Moving strings to resource files" on page 216 .

• "Updating your makefile" on page 224.

Creating Unicode strings
This procedure writes Unicode characters and strings in your code.

".. Prerequisite information
+ "International character sets" on page 183.

+ "Code supporting Unicode" on page 186.

Procedure
1 Declare all characters and pointer to characters as a 16-bit type. Use CHAR16

for data that is always 16 bits and CHAR for data that will be 8 bits long in
PenPoint 1.0 and 16 bits in later releases.

216 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

2 Wrap the U_LO macro around literal characters and strings. Use the L"" mod
ifier only if you are certain your character data will always be 16 bits long.

a To specify special Unicode characters, use a \x followed by its Unicode value, a
4-digit hexadecimal number.

".. Examples
These code fragments show examples of the U _LO macro and L"" modifier.

Uprintf(U_L("1 am 8 bits long in PenPoint 1.0; 16 bits in PenPoint 2.0");
P_CHAR16 pTheString = L"1 am always a 16-bit string.";
static RC TAGGED STRINGqHelpStrings[] = {

tagT"extVie;, U L (" \xF61F \ \ tab Pigtail. Delete a character. \ \par "),
Nil (TAG)

} ;

".. Related procedures
• "Using the DOS utility INTLSCAN" on page 210.

• "Interpreting INTLSCAN messages" on page 211.

". Moving strings to resource files
This procedure explains how to put strings in a resource file and use those strings in
source code.

".. Prerequisite inFormation
• Part 11: Resources in PenPoint Architectural Reference.

• "Resource files" on page 189.

• "Strings in resource files" on page 190.

• "Resource file structure" on page 191.

• "Tags in source code" on page 193.

Procedure
1 Copy a resource file named USA.RC or JPN.RC from one of the sample app

lications into your project directory. Alternatively, copy the file \SDK\UTIL\

TEMPLATE\TEMPLATE.RC from the Goodies disk. For example, type the
following:
copy \2_0\penpoint\sdk\sample\cntrapp\usa.rc c:\myapp

2 Name the resource file to remind you of which localization the file is for:
USA.RC and JPN.RC, for example.

a Identify the file in which you plan to use a particular string, say PROJECT.C.

4 Define tags for each string in the corresponding header file, PROJECT.H. If you
want to use an array of strings in a group such as the Toolkit group, you need
a RES_ID for each group.

If you read "Designing for
internationalization and
localization" in Chapter 5 of
Part 1: Pen Point Application
Writing Guide, your code may
already have its strings in
resource flies.

CHAPTER 16 / PROCEDURES 217
Moving strings to resource files

5 Replace the template resource file's strings and tags with your own strings
and tags.

6 Modify your implementation in PRO]ECT.C to use your new tags rather than
the literal string. See "Using tags in source code" on page 222 for details.

7 Update your makefile to identify which resources should be included

with your application. See "Updating your makefile" on page 224 for more
information.

".. Example
The following code comes from the Counter Application in 2_0\PENPOINT\SDK\

SAMPLE\CNTRAPP. It shows the result of moving strings to resource files.

The following tags are defined in the header file CNTRAPP.H. The macro Make
ListResldO is defined in RESPILE.H, and the macro MakeTagO is defined in GO.H.
Each group must be identified by a RES_ID created by the MakeListResIDO macro,

and each string must be defined by a TAG created by the MakeTagO macro.

1* The RES IDs for the resource lists used with the TAGs.
*1 -

#define resCntrTK
#define resCntrMisc

MakeListResld (clsCntrApp, resGrpTK, 0)
MakeListResld (clsCntrApp, resGrpMisc, 0)

1*
* TAGs used to identify toolkit strings.
*1

#define tagCntrMenu
#define tagCntrDec
#define tagCntrOct
#define tagCntrHex

MakeTag(clsCntrApp, 0)
MakeTag(clsCntrApp, 1)
MakeTag(clsCntrApp, 2)
MakeTag(clsCntrApp, 3)

1*
* TAGs used to identify miscellaneous CNTRAPP strings.
*1

#define tagCntrMessage MakeTag(clsCntrApp, 4)
#define tagCntrUnknown MakeTag(clsCntrApp, 5)

The next code fragment comes from the resource file USA.RC. The file uses three

groups of strings, Application Framework strings, toolkit strings, and miscellaneous
strings. Note that all the literal strings are enveloped in the U_LO macro, making
them 16-bit Unicode strings.

1**
A P P f ram e w 0 r k s t r i n g s

***1
static RC TAGGED STRING - - appStrings[] = {

II Default document name
tagAppMgrAppDefaultDocName,

U _ L ("Counter Application"),.
II The company that produced the program.
tagAppMgrAppCompany,

U _ L ("GO Corporation"),
II The copyright string.
tagAppMgrAppCopyright,

U_L("\xOOA9 Copyright 1992 by GO Corporation, All Rights Reserved."),
II User-visible filename. 32 characters or less.
tagAppMgrAppFilename,

U_L ("Counter Application"),

218 PEN POINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

} ;

II User-visible file type. 32 characters or less.
tagAppMgrAppClassName,

U_L ("Application") ,
Nil (TAG) II end of list marker

static RC_INPUT app = {
tagAppMgrAppStrings,
appStrings,

II standard resource ID for APP strings
II pointer to string array

} ;

0,
resTaggedStringArrayResAgent

II data length; ignored for string arrays
II How to interpret the data pointer

1**
Too 1 kit s t r i n 9 s

***1
1*
* Strings used by toolkit elements in CNTRAPP. In this case, there are
* only the Representation menu and its menu items.
*1

static RC TAGGED STRING tkStrings[] = {
II Representation menu
tagCntrMenu, U _ L ("Representation") ,
II Decimal menu item
tagCntrDec, U L("Dec"),
II Octal menu item
tagCntrOct, U _ L ("Oct") ,
II Hexagonal menu item
tagCntrHex, U_L ("Hex") ,
Nil (TAG)

} ;

static RC INPUT tk

} ;

resCntrTK,
tkStrings,
0,
resTaggedStringArrayResAgent

1**
Mis cella n e 0 u sst r i n 9 s

***1
static RC TAGGED STRING

II -
miscStrings[] = {

} ;

II Message used to display counter value. The 'Als' argument allows
II the code to fill in the appropriate value based on the user's menu
II choice.
II
tagCntrMessage, U_L("The counter value is: Al s "),
II
II Message indicating an unknown representation type.
II
tagCntrUnknown,
Nil (TAG)

U_L("Representation type unknown."),

static RC INPUT mise
resCntrMisc,

} ;

miscStrings,
0,
resTaggedStringArrayResAgent

CHAPTER 16 / PROCEDURES 219
Using predefined AppMgr tags

Mter each of the groups is defined with a RC_TAGGED_STRING and RC_INPUT

structure, a P _RC_INPUT structure identifies all the groups. Each of the groups is a
separate resource in the resource file.

1**
Lis t 0 f res 0 u r c e s

***1
P RC INPUT resInput [] = {

&app,
&tk,
&misc,
pNull

} i

II the Application Framework strings
II the TK strings for CNTRAPP
II the Misc strings for CNTRAPP
II End of list.

Finally, Counter Application's source code needs to use these tags. Here is the code
that creates the application's menu bar:

static const TK_TABLE_ENTRY CntrAppMenuBar[] = {

} i

{tagCntrMenu, 0, 0, 0, tkMenuPullDown I tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull} ,

{pNull}

Related information
• "Using the DOS utility INTLSCAN" on page 210.

• "Updating your makefile" on page 224.

Using predefined AppMgr fags
The Application Manager has predefined tags that you should use to identify your
company, application name, and copyright information. In PenPoint 1.0, you did
this by filling in fields of the APP _MG~NEW structure. You should now put these
strings in a resource file and use the new predefined tags that are part of the Appli
cation Manager's toolkit group.

Prerequisite information
• "Resource files" on page 189.

• "Strings in resource files" on page 190.

• "Resource file structure" on page 191.

• "Tags in source code" on page 193.

• "Predefined tags" on page 193.

Procedure
1 If you have PenPoint 1.0 code that uses the fields of the APP _MGR_NEW struc

ture to identify your company, application name, and copyright information,
remove these lines.

z
o
!i
N
::i «
Z
o

~

220 PEN POINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

2 Place this information in a resource file appropriate to the localized version.
For example, American strings might go in USA.RC, Japanese strings into
JPN.RC, and so on.

3 Your strings must be 32 characters or less.

Example
Remove these lines from PenPoint 1.0 code:

strcpy(new.appMgr.company, "GO Corporation");
strcpy(new.appMgr.defaultDocName, "Counter Application");
ObjCaIIRet(msgNew, clsAppMgr, &new, s);

and simply call:
ObjCaIIRet(msgNew, clsAppMgr, &new, s)

Then put these lines in your resource file:

1**
A P P f ram e w 0 r k s t r i n g s

***1
static RC TAGGED STRING appStrings[] = {

} ;

II Default document name
tagAppMgrAppDefaultDocName,

U_1("Counter Application"),
II The company that produced the program.
tagAppMgrAppCompany,

U _ 1 ("GO Corporation"),
II The copyright string.
tagAppMgrAppCopyright,

U_1("\xOOA9 Copyright 1992 by GO Corporation, All Rights Reserved."),
II User-visible filename. 32 characters or less.
tagAppMgrAppFilename,

U_1("Counter Application"),
II User-visible file type. 32 characters or less.
tagAppMgrAppClassName,

U_1 ("Application"),
Nil (TAG) II end of list marker

static RC INPUT app = {
tagAppMgrAppStrings,
appStrings,

II standard resource ID for APP strings
II pointer to string array

} ;

0,
resTaggedStringArrayResAgent

Related information

II data length; ignored for string arrays
II How to interpret the data pointer

• "Moving strings to resource files" on page 216.

• "Updating your makefile" on page 224.

Using resource utility functions
This procedure uses functions defined in RESUTIL.H to read data out of resource files.

CHAPTER 16 / PROCEDURES 221
Using resource utility functions

"., Prerequisite information
• "Resource files" on page 189.

• "Resource file structure" on page 191.

• "Tags in source code" on page 193.

"., Procedure
1 Find code where you use msgResReadObject or msgResReadData to read

data out of a resource file.

2 Call Resource Utility functions as shortcuts to reading objects and strings out
of resource files. Table 16-2 lists the available functions.

3 Call one of the first four functions in Table 16-2 to read a single object or
string from theProcessResList, the application's standard list of resources
stored in USA.RES or lPN.RES.

1 Call one of the last three functions in Table 16-2 to read a string from a group.
The functions expect you to specify the group (RES_I D) and the string's loca
tion (IX_RES_ID) in that group. Use the RES_ID and TAGs you defined in your
header file with the MakeTagO and MakeListResIDO macros. See "Strings in
resource files" on page 190 for details on strings in groups.

2 In most cases, avoid the load utilities ResUtilLoadObjectO and ResUtil
LoadListStringO because these fuctions allocate their own memory.

3 Link RESPILE.LIB with your code if you use any of these functions.

Resource utility functions

Description

Loads an object from theProcessResList.

TABLE 16·2

Res UtilLoadObject

Res UtilLoadString

Res Util GetString

Loads a string from theProcessResList into a buffer or a heap ..

Res UtiWlocString

Res UtilLoadListString

Res U til GetListString

Res UtiWlocListString

Example
Replace this code:

Same as ResUtilLoadString except that you provide a buffer and its size.

Loads a string from theProcessResList into a heap you specify.

Loads an item from a string list in theProcessResList into a buffer or a heap.
You pass in the desired string's group and its index in that group.

Loads a string from a string array in theProcessResList into a buffer you
specify. You pass in the desired string's group and index.

Loads a string from a string array in theProcessResList into a heap you
specify.

idefine sampleResld MakeWknResld(clsSample, 17)
readObj.resld = sampleResld;
readObj.mode = resReadObjectMany;
ObjCallRet(msgNewDefaults, clsObject, &readObj.objectNew, status);
status = ObjCallWarn(msgResReadObject, file, &readObj);
object = readObj.objectNew.uid;

222 PEN POINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

with this code:
*define sampleResld MakeWknResld(clsSample, 17)
status = ResUtilLoadObject(sampleResld, &object);

Related information
,. "Moving strings to resource files" on page 216.

,. "Updating your makefile" on page 224.

Using fags in source code
This procedure shows you two ways to use tags that you have defined in resource
and header files in your code.

Prerequisite information
,. "Resource files" on page 189.

.. "Resource file structure" on page 191 .

.. "Tags in source code" on page 193.

Procedure
You can choose anyone of these steps as needed:

1 Use the tag directly when the function or message expects a tag as a parameter.

2 Use a tag in place of a literal string with any UI component that inherits from
clsLabel. Set the label style to IsInfoStringId to let the object know you are
using a tag rather than a literal string.

3 Use ResUtil functions to read the required string out of the resource file. Pass
the tag as a parameter to the function to let it know which string you want.

Examples
The three examples below show the different ways to use a tag in source code.

In toolkit tables

Code from \2_0\PENPOINT\SDK\SAMPLE\CNTRAPP\CNTRAPP.C uses tags to set up
Counter Application's standard toolkit menu.

static const TK_TABLE_ENTRY CntrAppMenuBar[] = {

} ;

{tagCntrMenu, 0, 0, 0, tkMenuPullDown I tkLabelStringld, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringld},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringld},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringld},
{pNull} ,

{pNull}

When you use tags instead of strings in a TK_ TABLE_ENTRY, you must set the flag
tkLabelStringID flag. Notice that the bitwise OR operator is used to add the flag to
another flag, tkMenuPullDown.

CHAPTER 16 / PROCEDURES 223
Using ComposeText functions

".,. In place of a literal string

The toolkit demo sample application in 2_0\PENPOINT\SDK\SAMPLES\ICONS.C

shows the use of tags in place of literal strings. Note that clslcon inherits from
clsLabel.

ICON NEW in;

II Set the icon's label
in.label.style.infoType = lsInfoStringld;
in.label.pString = (P_CHAR)taglconGoLogo;

"." Using resource utility functions

You can also use tags to fetch the required string out of your resource file.
size = sizeof(resStr) I sizeof(CHAR);
ResUtilGetListString (resStr, size, resGrpMisc, tagCntrMessage);

Note that one of the parameter ResUtilGetListStringO expects is the group in
which the string is defined; in this case, resGrpMisc.

Using ComposeTexf functions
This procedure uses Compose Text functions to compose strings while your appli
cation is running. These functions are described in CMPSTEXT.H. Remember to
link SYSUTIL.LIB if you any of these functions.

".. Prerequisite information
• "Resource files" on page 189.

• "Strings in resource files" on page 190.

• "Composed strings" on page 204.

".. Procedure
Identify strings that you compose dynamically from variable values and pieces
of text.

2 Unless these composed strings are never displayed to the user, move these
strings to resource files (if you have not already done so).

3 Include ComposeText parameters in each string, making sure you place the
parameter in the appropriate place.

4 Call ComposeText functions in your source code when you need to create this
string.

".. Example
This code is from the sample Counter Application. First, here is the entry in the
resource file:

II Message used to display counter value. The 'Als' argument allows
II the code to fill in the appropriate value based on the user's menu
II choice.

tagCntrMessage, U_L ("The counter value is: Als"),

224 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

Here is the code that retrieves the string along with formatting information from
the resource file. The next block of lines composes the string.

PCHAR
U32
CHAR

p;
size;
buffer[MINSTRLEN];

II Retrieve format string from resource file, and construct display
II string from format string and counter value.
size = MAXSTRLEN;
SComposeTextL(&p, &size, pNull, resGrpMisc, tagCntrMessage, buffer);

",. Related information
• "Using resource utility functions" on page 220.

• "Updating your makefile" on page 224.

", Updating your makefile
This procedure shows you how to update your makefile to handle multiple resource
files. This applies only if you are using the WATCOM WMAKE tool.

",. Prerequisite information
• "Managing your project" on page 205.

• "Makefiles" on page 206.

",. Procedure
1 Specify a locale in the command line. If you don't specify a locale, the stan

dard makefile rules assume it is JPN.

2 Specify the resource files needed to build a localized version of your applica
tion by setting the RES_FILES, USA_RES_FILES, and JPN_RES_FILES variables in
your makefile.

3 Add $(APP_DIR)\$(TARGET_RESFILE) to your "all" line.

4 Set the variable RES_STAMP to yes. This directs the makefile to use the applica
tion name and type defined in the resource file USA.RC or JPN.RC (depending
on the value of LOCALE).

".. Example
From the command line, you can type either:

wmake LOCALE=usa
wmake LOCALE=jpn

to make the appropriate version of your application.

This sample makefile comes from NotePaper App, one of the sample appli
cations included with the SDK. You can find the code in \2_0\PENPOINT\SDK\

SAMPLE\NPAPP.

CHAPTER 16 I PROCEDURES 225
Writing locale-independent code

* The .res files for your project. If you have resources, add
* $ (APP_DIR)\$ (TARGET_RESFILE) to the "all" target.
RES_FILES = bitmap.res
USA RES FILES = usa. res
JPN RES FILES = jpn.res

* Targets
all: $ (APP_DIR) \$ (PROJ) .exe $(APP_DIR)\$(TARGET_RESFILE) .SYMBOLIC

"" Related information
• "Using tags in source code" on page 222.

". Writing locale-independent code
This procedure helps make your code general enough to behave appropriately for a
given locale. The goal is to maintain a single code base for all local versions of your
application.

Prerequisite information
• "Writing international software" on page 178.

• "Locale-independent code" on page 196.

• "Using the DOS utility INTLSCAN" on page 210.

• "Interpreting INTLSCAN messages" on page 211.

Procedure
1 Run INTLSCAN on your source files to identify code that may be locale

dependent by typing:
intlscan -r -u PROJECT.C

The flags -r and -u force INTLSCAN to suppress messages about Unicode and
resource files. See "Using the DOS utility INTLSCAN" on page 210 for
details on using the INTLSCAN.

2 Identify other functionality that your application performs that may vary
between locales. See "Locale-independent code" on page 196 for a partial
listing of functionality categories that tend to vary tremendously between
locales.

3 Replace locale-dependent function calls with calls to PenPoint international
functions. Table 16-3 lists all the functions INTLSCAN flags and suggests
PenPoint replacements.

4 If the required function does not exist in the PenPoint international package,
write your own locale-independent code. Usually this means your function or
message accepts a locale (and, optionally, a style) as a parameter. If you think
the function you are writing would be widely useful to PenPoint developers,
contact GO Technical Services with your suggestion.

226 PENPOINT APPLICATION WRITING GUIDE

Part 2 / Internationalization Handbook

Example
Table 16-3 lists locale-dependent functions and their suggested replacements from
the PenPoint international package. This table should orient you to the problem
of locale-dependent code and suggest further areas of code that may be locale
dependent.

Ellipses (...) in the chart indicate that there are a number of related funcfions with
similar names. For example, IntlFormat ... means that there are a variety of func
tions like IntlFormatS320, IntlFormatDateO, and so on whose names begin with
IntlFormat.

And #indude this

asctime IntlFormatDate/Time ISR.H -
_bprintf ComposeText CMPSTEXT.H

ctime IntlFormatDate/Time ISR.H -
_gmtime IntlSec To TimeStruct ISR.H

localtime IntlSec To TimeStruct ISR.H -

TABLE 16-3

_vbprintf Compose TextlIntlFormat ... CMPSTEXT.H I ISR.H

asctime IntlFormatDate/Time ISR.H

atof IntlParseNumber ISR.H

atoi IntlParseS32 ISR.H

atol IntlParseS32 ISR.H

bsearch IntlCompare (for compare routine) ISR.H

ctime IntlFormatDate/Time ISR.H

fprintf ComposeText/lntlFormat ... CMPSTEXT.H I ISR.H

fscanf IntlParse ... ISR.H

gcvt IntlFormatNumber ISR.H

gmtime IntlSecTo TimeStruct ISR.H

isalnum IntlCharIsAlphaNumeric CHARTYPE.H

isalpha IntlCharIsAlphabetic CHARTYPE.H

iscntrl IntlCharIsControl CHARTYPE.H

isdigit IntlCharIsDecimalDigit CHARTYPE.H

isgraph IntlCharIsGraphic CHARTYPE.H

islower IntlCharIsLower CHARTYPE.H

isprint IntlCharIsPrinting CHARTYPE.H

ispunct IntlCharIsPunctuation CHARTYPE.H

isspace IntlCharIsSpace CHARTYPE.H

isupper IntlCharIs Upper CHARTYPE.H

isxdigit IntlCharIsHexadecimalDigit CHARTYPE.H

itoa IntlFormatS32 ISR.H

Hind IntlCompare (for compare routine) ISR.H

localtime IntlSec To TimeStruct ISR.H

lsearch IntlCompare (for compare routine) ISR.H

ltoa IntlFormatS32 ISR.H

Converting to internationallunctions
II you are using ••• Consider using

memicmp IntlNStrCompare

mktime IntlTimeStructToSec

printf ComposeText/lntlFormat ...

qsort IntlSortl Compare

scanf IntlParse ...

sprintf ComposeText/lntlFormat ...

sscanf IntlParse ...

strftime IntlFormatTime

stricmp IntlStrCompare

strlwr IntlStrConvert

strnicmp IntlNStrCompare

strtod IntlParseS32

strtol IntlParseS32

strtoul IntlParseS32 (if possible)

strupr IntlStrConvert

tolower IntlStrConvert

toupper IntlStrConvert

ultoa IntlFormatS32 (if possible)

utoa IntlFormatS32 (if possible)

vfprintf Compose Text/lntlFormat ...

vfscanf IntlParse ...

vprintf ComposeText/IntlFormat ...

vscanf IntlParse ...

vsprintf ComposeText/lntlFormat ...

vsscanf IntlParse ...

Checking the system locale

CHAPTER 16 I PROCEDURES 227
Checking the system locale

TABLE 16-3 (continued)

And #inc:lude this

ISR.H

ISR.H

CMPSTEXT.H I ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

CMPSTEXT.H I ISR.H

ISR.H

CMPSTEXT.H I ISR.H

ISR.H

CMPSTEXT.H I ISR.H

ISR.H

This procedure shows you how to check systemLocale to control your application's
behavior.

Prerequisite information
.. "Locale-independent code" on page 196 .

.. "Locales" on page 199.

• "Predefined locale identifiers" on page 199.

Procedure
1 Compare the value of systemLocale with the locale you are interested in.

2 Write the code to perform the special function.

3 Use the comparison to control whether the code executes.

z o
S
~ o

~

228 PEN POINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

".. Example
The following code comes from the Clock sample application. The fragments come
from \2_0\PENPOINT\SDK\SAMPLE\CLOCK\CLOCKAPP.C. Here are the relevant type
and macro definitions:

idefine bothUp(timeUpldateUp)
idefine oneRow 4
idefine oneCo 1 8
idefine sideBySide 32
idefine alarmOnTime 64
idefine timeAndDate (bothUp oneRow
idefine dateOverTime(bothUp oneCo 1

sideBySide I timeFirst)
alarmOnTime)

idefine
idefine

defaultFmtUSA
defaultFmtJPN

timeAndDate
dateAndTime

idefine filedData \
U8 fmt;

BOOLEAN alarmSnoozeEnable;
typedef struct CLOCK_APP_DATA {

filedData II the filed portion of the instance data must come first

OBJECT self;
CLOCK_APP_DATA, *P_CLOCK_APP_DATA;

The code that uses these macros and types checks the system locale and selects an
appropriate date format.

iifdef PP1 0
- II Assume a USA locale for PenPoint 1.0

ielse
plnst->fmt = defaultFmtUSA;

{

II Choose different defaults depending on locale
SYS_LOCALE currentLocale;
currentLocale.pLocaleString=pNull;
II get the current locale
ObjCallWarn(msgSysGetLocale, theSystem, ¤tLocale);
if (currentLocale.localeld==locUSA)

plnst->fmt=defaultFmtUSA;
else if (currentLocale.localeld==locJpn)

plnst->fmt=defaultFmtJPN;
else

plnst->fmt=defaultFmt;
}

iendif

Like most of the sample applications, the Clock application has been written to be
compiled under both PenPoint 1.0 and PenPoint 2.0 Japanese. The symbol PPl_O is
defined to mark code that is for PenPoint 1.0 only.

To maintain a single source code base, you must use the PenPoint bridging package
"included with the PenPoint SDK 2.0 Japanese. See "Single code base" on page 233
in Chapter 17 for more information.

Related procedures
.. "Writing locale-independent code" on page 225.

Chapter 17 / Porting to PenPoint 2.0

This chapter discusses the changes you need to make if you are porting an existing
PenPoint™ 1.0 application to PenPoint 2.0 Japanese. You must perform these
four steps:

1 Make changes required by changed PenPoint APIs.

2 Update your gesture handling code.

3 Use bitmaps rather than fonts to display special characters.

4 If you have not already done so, file version information as part of your
instance data.

You must also make the changes discussed in the first four chapters of this hand
book. For example, your 8-bit character should now be 16-bit data, your strings
should be in resource files, and your locale-dependent functions should have been
replaced with locale-independent functions.

Changed APls
This procedure shows you how to update your PenPoint 1.0 code to reflect the new
PenPoint 2.0 APIs.

PJv Prerequisite information
Various categories of API changes have been made. Many of the fundamental
changes have been discussed in this handbook, such as 8-bit to 16-bit character
data. The PenPoint SDK 2.0 Release Notes describes most of the general API changes,
and the Part 5: Architectural Reference Supplement provides more message and struc
ture-level details.

The DOS utility INTLSCAN flags lines of code that use PenPoint 1.0 APIs.

Procedure
1 Run the utility to identify the lines in your code that contain PenPoint 1.0

APIs. See "Using the DOS utility INTLSCAN" on page 210 for details.

2 Replace the PenPoint 1.0 APIs with their updated APIs.

PJv Related information
• "Single code base" on page 233.

230 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

Gesture handling code
This procedure updates ybur PenPoint 1.0 gesture handling code so that it compiles
under PenPoint 2.0.

Prerequisite information
In PenPoint 1.0, gestures were encoded as 32-bit numbers. Beginning in 2.0, ges
tures are encoded as Unicode characters.

The change is simple. The msg member of the GWIN_GESTURE date structure has
been renamed to gesture. So the declaration used to look like:

typedef struct GWIN_GESTURE {
MESSAGE msg;
RECT32 bounds;
XY32 hotPoint;
OBJECT uid;
U32 reserved;

GWIN_GESTURE, *P_GWIN_GESTURE;

and now looks like this:
typedef struct GWIN_GESTURE

CHAR gesture;
RECT32 bounds;
XY32 hotPoint;
OBJECT uid;
U32 reserved[2];

GWIN_GESTURE, *P_GWIN_GESTURE;

Procedure
To change your code, simply:

II gesture Id
II bounding box in LWC
II gesture hot point
II object in which the gesture was generated
II reserved for future use

II gesture Id (Unicode point)
II bounding box in LWC
II gesture hot point
II object in which the gesture was generated
II reserved for future use

1 Search your.C files for instances of the msg member of the GWIN_GESTURE
structure.

2 Replace them with references to the gesture member.

3 Anywhere you have declared msg to be of type TAG, MESSAGE, or U32, make
sure to change the field name to be gesture of type CHAR.

4 Replace the following obsolete code fragments with their newer counterparts.
Unless you are maintaining a very old code base, you should not have to worry
about this last step.

<$> Replace MsgNew(pg->msg) with pg->gesture.

<$> Replace TagNum(xgsGestureName) with xgsGestureName.

Examples
This sample comes from the Tic-Tac-Toe application. You can find the code listed
here in \2_0\PENPOINT\SDL\SAMPLE\TTT\TT1VIEW.C.

This code is from the TttViewGesture message handler. The old version reads:
MsgHandlerWithTypes(TttViewGesture, P_GWIN_GESTURE, PP_TTT_VIEW_INST)
{

II
STATUS
OBJECT

s;
owner;

CHAPTER 17 / PORTING TO PENPOINT 2.0 231

•• I·

switch(MsgNum(pArgs->msg)) {
case MsgNum(xgslTap) :

Special characters

ObjCallJmp(msgTttViewToggleSel, self, pNull, s, Error);
break;

case MsgNum(xgsCross) :
StsJmp(TttViewGestureSetSquare(self, pArgs, tttX) , s, Error);
break;

case MsgNum(xgsCircle) :
StsJmp(TttViewGestureSetSquare(self, pArgs, tttO) , s, Error);
break;

The new code instead looks like this. Notice pArgs->msg is now pArgs->gesture.
MsgHandlerWithTypes(TttViewGesture, P_GW I N_GE STURE , PP_TTT_VIEW_INST)
{

II
STATUS s;
OBJECT owner;

switch (pArgs->gesture)

case xgslTap:
ObjCallJmp(msgTttViewToggleSel, self, pNull, s, Error);
break;

case xgsCross:
StsJmp(TttViewGestureSetSquare(self, pArgs, tttX) , s, Error);
break;

case xgsCircle:
StsJmp(TttViewGestureSetSquare(self, pArgs, tttO) , s, Error);
break;

Special characters
PenPoint 2.0 no longer supports the 1.0 font editor. If you used the font editor to
design special glyphs to display in your application's user interface, these glyphs will
not display under 2.0.

Prerequisite information
You might have designed certain user interface elements with the font editor. For
example, you might have designed a special interface that allows your application to
control a CD-ROM player. Its buttons are the familiar buttons found on most CD

players, and the icons representing play, skip track, and so on are actually special
glyphs of a font.

If you need to design special screen elements, use the bitmap editor instead of the
font editor.

If you have already created outline fonts with the font editor and need them in your
PenPoint 2.0 Japanese applications, contact GO Technical Services to see if your
fonts can be translated.

232 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

Also contact GO Technical Services if you need a particular Unicode glyph for your
application that is currently unsupported. Given enough demand, it is possible that
future releases of PenPoint will support the glyph you need.

Procedure
1 Install the bitmap editor as you would any other PenPoint application. It is

available in \PENPOINT\APP\BITMAP.

2 Create the special symbols your application needs. Documentation on the
bitmap editor is in Chapter 31, Bitmap Editor, of Part 4: PenPoint Develop
ment Tools Supplement. The bitmap editor saves your bitmap as a resource file
with the extension .RES. .

3 Use messages from clslcon or clsBitmap to read the bitmap out of the
resource file and display it on the screen.

Example
This code comes from the toolkit demo sample application. You can find this code
in \2_0\PENPOINT\SDK\SAMPLE\TKDEMO\ICONS.C. The first thing to do is create
an instance of clslcon. .

ObjCallRet(msgNewDefaults, clslcon, &in, s);
in.control.client = app;
in.win.tag = taglconResource;
in.label.style.infoType = lsInfoStringld;
in.label.pString = (P_CHAR)taglconResource;
ObjCallRet(msgNew, clslcon, &in, s);
in.win.parent = parent;
ObjCallRet(msgWinlnsert, in.object.uid, &in.win, s);

Notice no bitmap is specified here. When it needs the bitmap, clslcon sends the
icon's client msglconProvideBitmap. In this case, the client is the application itself
When the application receives this message, it responds by passing the message to
its ancestor which provides the bitmap.

When you make TKDEMO, the resource compiler appends the ICON. RES file cre
ated by the bitmap editor into either USA. RES or lPN.RES (depending on which
localization you are working on). The application class clsApp knows how to read
the icon our of the compiled resource file, so it responds appropriately to the mes
sage msgIconProvideBitmap.

Notes

There are several reasons GO requires you to create special symbols with the bitmap
editor rather than the font editor.

.. Bitmaps can be local to an application, whereas fonts are a global resource
available to all applications.

.. You can manipulate gray pixels with the bitmap editor.

CHAPTER 17 / PORTING TO PEN POINT 2.0 233

.. dslcon will scale bitmaps with respect to screen resolution and the window
layout, while fonts scale mathematically without regard for the surrounding
visual context. A 10-pt font scaled 1200/0 is 12 points, regardless of whether
this is visually appropriate.

". File version data
Remember to file a version number with the instance data of your application. This
will make it possible for future versions of your application to read documents cre
ated by previous versions of your application. One possible way to file version data
is to set aside the first byte of your filed instance data for a version number.

In general, you cannot read documents created by PenPoint 1.0 applications with
applications created for PenPoint 2.0 Japanese. This is because many PenPoint
objects are filing different data than they did in PenPoint 1.0.

Single code base
GO provides a bridging package that allows you to maintain a single code base that
compiles and runs under both PenPoint 1.0 and PenPoint 2.0 Japanese. Your code
must be written in a special way and must make use of the header files, makefiles,
and library files provided with the bridging package.

See the PenPoint Bridging Handbook included with the PenPoint SDK 2.0 Japanese
for more details on how to use the bridging package. Most of all, the PenPoint
sample applications are specially written to compile and run under both versions of
PenPoint. Use these samples as templates for the applications and services you want
to create to run under both versions of PenPoint.

File version data

Chapter 18 I Localization Guidelines

Mter you finish internationalizing your application, the only step remaining is to
prepare your application for a specific locale.

Remember that your product is much more than code. The released product should
include translated documentation, appropriate packaging, a support plan, and
other marketing and sales preparation.

The goal of localization is to produce a software product that respects a particular
culture's language, customs, and traditions. Though this may seem obvious, a local
ized software product should behave similarly to applications developed by people
native to your target locale.

This handbook does not cover specific details on how to localize to a particular
country. However, here are a few guidelines to consider as you begin the localiza
tion process:

.. Does the application support the local writing system? Your application
should read, write, render, process, and receive user input for all the characters
needed for communicating in the local writing system. The PenPoint™ oper
ating system provides much, if not all, of the required support. Make sure
your application takes advantage of the provided support .

.. Does the application respect local text formatting conventions? Numbers,
times, dates, currencies, and other text should display as the local user expects.

.. Does the application behave as expected? Localized applications, for instance,
should sort and compare using locally accepted precedence rules, calculate
mortgage and interest payments using local formulas, and select words, sen
tences, and paragraphs using local grammatical rules.

.. Does the application support standards popular in the local computing
environment? File and communication standards are particularly important.

.. Does the application respect local customs, taboos, and traditions? For
example, make sure that any gestures, icons, and strings the application uses
are appropriate, meaningful, and nonoffensive.

.. Is the user interface graphically pleasing? What one country considers attrac
tive may not be attractive in another country. Japanese characters, for instance,
usually require more space than Roman characters. Does your interface make
more room elegantly?

236 PENPOINT APPLICATION WRITING GUIDE
Part 2 I Internationalization Handbook

• Is the documentation translated in a way local users find informative and
appropriate? Japanese users, for instance, tend to read documentation from
cover to cover rather than referring to the documentation only when needed.
Is your translation appropriate for such reading?

• Is your packaging appropriate to the locale?

• Has your software and documentation been tested by quality assurance
personnel as well as local users?

Chapter 19 / Additional Resources

This appendix contains references to resources you may find helpful as you prepare
your code for an international market.

Texts
These books may be helpful to you as you plan and design your application. Some
are general guidebooks; others provide specific information on particular countries.

PenPoint Application Writing Guide: Expanded Edition GO Corporation,
1992. An introduction to PenPoint programming updated from the origi
nal edition to discuss new sample code and other changes to the PenPoint
SDK since PenPoint SDK 1.0.

Do's and Taboos Around the World, 2nd ed. Roger Axtell, John Wiley & Sons,
1990. A funny but informative guide to culturally acceptable and unac
ceptable behavior in various cultures.

Do's and Taboos Roger Axtell, John Wiley & Sons, 1989 Similar to Do's
and Taboos Around the World, this book is aimed at small businesses.
It includes discussions of planning for international markets, pricing,
shipping, managing and motivating distributors, and communication.
It also includes an entire chapter on Japan.

Symbol Sourcebook Henry Dreyfuss, Van Nostrand Reinhold, 1984. A
collection of internationally recognized symbols and icons.

Hoover's Handbook o/World Business 1992 The Reference Press, 1991.
Includes statistical and descriptive profiles of major countries and
companies around the world.

The Unicode Standard 1.0: Worldwide Character Encoding The Unicode
Consortium, Addison-Wesley, 1991. The definitive, two-volume book on
the Unicode standard, its history and design, implementation help, and
common glyphs for all characters defined in Unicode 1.0.

Guide to Macintosh Software Localization Apple Computer, Inc., Addison
Wesley, 1992. Despite its title, this book contains general information that
will help developers of any platform internationalize their software.

Digital Guide to Developing International Software Digital Press, 1991.
Although aimed at DEC programmers, this practical book contains tables
of sort orders, formatting conventions, and other specific data that will
help developers localize their products to North American and European
markets.

238 PEN POINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

National Language Information and Design Guide, Volumes 1-4, 2nd ed., IBM
Canada, 1990. Order nos. SE09-8001-01 through SE09-8004-01.
A set of general guidelines and specific details on how to support national
languages. Volume 1 is an overview, and volumes 2 through 4 cover tech
nical details on implementing "left-to-right and double-byte character set
languages" (vol. 2), Arabic scripts (vol. 3), and Hebrew (vol. 4) ..

Gestures Desmond Morris, Peter Collett, Peter Marsh, and Marie O'Shaugh
nessy. Scarborough House, Chelsea, Michigan. A vast collection of appro
priate and inappropriate gestures by culture.

The Standard C Library P.J. Plauger, Prentice Hall, 1992. Although this book
discusses the entire library, it also discusses the C library functions that
deal with multibyte and wide character encoding. See "Large Character
Sets for c" by P. J. Plauger in the August 1992 issue of Dr. Dobb's Journal
for an overview.

Standards organizations
Contact these organizations for more information on their specific standards.

American National Standards Institute (ANSI)

1430 Broadway
New York, NY 10018

Japanese Industrial Standards Committee (jISC)

clo Standards Department
Agency of Industrial Science and Technology
Ministry of International Trade and Industry
1-3-1, Kasumigaseki
Chiyoda-ku
Tokyo 100
Japan

Unicode Incorporated
cI 0 Metaphor Computer Systems
1965 Charleston Avenue
Mountain View, CA 94043
Fax: USA 415-71--3714

Part 3 /
PenPoint Japanese

Localization Handbook

Chapter 20 / Introduction

243 Intended audience

243 Organization of this handbook

Chapter 21 / Japanese Characters

245 Overview of Japanese
Kanji
Kana
Romaji

247 Character encoding
The Japanese character set
Supplemental characters
Half- and full-width variants
Unicode

250 Fonts

251 JIS and Shift-JIS encoding
lIS encoding details
Shift-lIS encoding details
Character set code spaces
Converting to and from Shift-lIS
Gaiji

Chapter 22/ Processing Japanese Text

255 Japanese text entry
Handwriting recognition
Kana-kanji conversion
Romaji-kanji conversion
Supporting KKC and RKC

Using keyboards

262 Handling Japanese text
Delimiting words
Delimiting sentences
Comparing and sorting
Converting between character variants
Converting between Shift-lIS and Unicode
Compressing Unicode

266 Formatting Japanese text
Line breaks
Dates
Times
Numbers

Chapter 23/ Development Environment

273 Development tools
Text editors
Compilers
Debuggers
Makefiles
DOS utilities
Running PenPoint

278 PenPoint environment
ENVIRON .INI
MIL.INI
Initialization files

279 PenPoint tools
MiniText
Unicode Browser
Japanese virtual keyboard

279 Sample code
Japanese versions of sample code
Keisen Table application

Chapter 24 / Procedures

283 Working with Shift-JIS in text files
Prerequisite information
Procedure
Related information

284 Working with Unicode in source code
Prerequisite information
Procedure
Examples
Related information

285 Converting Unicode and Shift-JIS files
Prerequisite information
Procedure
Examples
Related information

286 Converting Unicode and Shift-lIS strings
Prerequisite information
Procedure
Example
Related information

287 Converting between character variants
Prerequisite information
Procedure
Example
Notes
Related information

289 Delimiting words
Prerequisite information
Procedure
Example
Notes
Related information

290 Delimiting sentences
Prerequisite information
Procedure
Example
Notes
Related information

291 Comparing strings
Prerequisite information
Procedure
Example
Notes
Related information

292 Sorting strings
Prerequisite information
Procedure
Example
Notes
Related information

293 Handling line breaks
Prerequisite information
Procedure
Example
Notes
Related information

295 Using Japanese fonts
Prerequisite information
Procedure
Examples
Related information

296 Supporting kana-kanji conversion
Prerequisite information
Procedure
Notes
Examples

Chapter 25 / Resources

Chapter 26 / Japanese Character Set

303 How the list was created

Chapter 20 / Introduction

Japan is an exciting market for PenPoint™ applications. The Japanese localization
of the PenPoint 2.0 Japanese operating system provides many building blocks you
can use to create high-quality, innovative Japanese applications. These building
blocks include:

• A highly accurate handwriting recognition engine.

• An innovative font rendering engine.

• Functions that provide high-level support for Japanese, such as sorting and
date formatting and parsing.

• Support for various ways of accepting Japanese input.

This handbook introduces concepts that help you localize your application to
Japan. It discusses the changes you may need to make to your code, the develop
ment environment, and other issues that may influence the design of your Japanese
product.

,., Intended audience
This handbook assumes the following about its readers:

• You are a developer planning to localize your application or service to Japan.

• You are familiar with PenPoint programming. Part 1: PenPoint Application
Writing Guide is the best place to start if you are new to PenPoint program
mIng.

• You have code that is ready to localize. Specifically, this handbook assumes
that you have applied the procedures described in the Part 2: PenPoint Interna
tionalization Handbook to internationalize your code. For example, your appli
cation should support Unicode, use resource files to store strings, and contain
locale-independent code.

,., Organization of this handbook
Chapter 20, Introduction, describes the organization of this handbook.

Chapter 21, Japanese Characters, describes the Japanese language from a devel
oper's point of view. It describes the official Japanese character set and how
PenPoint 2.0 Japanese represents the character set internally. This chapter includes
a discussion of the popular Shift-JIS Qapanese Industrial Standards) character
encoding standard and how it compares with Unicode.

244 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Chapter 22, Processing Japanese Text, builds on the previous chapter on Japanese
characters and discusses more global issues about processing Japanese text. Topics
include formatting conventions, sorting, and other text-related issues.

Chapter 23, Development Environment, describes the PenPoint 2.0 Japanese
development environment. It describes the tools, utilities, and sample files that are
designed specifically to help you create Japanese applications and services.

Chapter 24, Procedures, gives step-by-step instructions on how to perform
common tasks such as creating Shift-JIS strings, supporting kana-kanji conversion,
and using Japanese fonts.

Chapter 25, Resources, lists some books that may help you design, translate, and
market your Japanese application.

Chapter 26, Japanese Characters, contains a chart that shows the JIS character set
and the Unicode values of each character.

Chapter 21 / Japanese Characters

This chapter and Chapter 22, Processing Japanese Text, explain concepts that you
should understand when writing a Japanese application. This chapter discusses the
Japanese language and how the PenPoint™ operating system encodes Japanese
characters. Topics include:

• Overview of Japanese.

• Kanji.

• Kana.

• Romaji.

• Character encoding.

• The Japanese character set.

• Half- and full-width variants.

• Unicode.

• Fonts.

• JIS and Shift-JIS encoding.

• JIS encoding details.

• Shift-JIS encoding details.

• Converting to and from Shift-JIS.

• Gaiji.

The next chapter discusses more general issues about handling user text input and
processing Japanese text. If you are new to the Japanese language and its encoding,
we recommend you read these two chapters in order.

". Overview of Japanese
The Japanese writing system is among the most complicated in the world. Where
most writing systems use fewer than 255 symbols, Japanese uses over 6,000 symbols.

Fortunately, you do not need to write any code to support this complex language.
Many PenPoint 2.0 Japanese classes and objects already support Japanese behavior.
For example, clsTextView can manipulate and display Japanese text in a window.

Use PenPoint 2.0 Japanese classes and objects whenever possible to implement this
behavior. See Part 4: UI Toolkit and Part 5: Input and Handwriting Recognition of
the PenPoint Architectural Reference for details.

Furthermore, the PenPoint 2.0 Japanese operating system provides a large set of
international functions that have been localized to manipulate Japanese characters.
For example, the IntlSortO function can correctly sort Japanese characters.

246 PEN POINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Use these international functions whenever available to provide behavior Japanese
users expect. See Chapter 22, Processing Japanese Text, for details.

Most languages are written with a single set of symbols. English, for example, uses a
single set of characters from a 26-letter alphabet and a collection of numerals and
punctuation marks. Japanese writing, in contrast, uses four different sets of symbols
called kanji, hiragana, katakana, and romaji. Each of these sets is discussed below.
Table 21-1 summarizes the discussion.

Kan;i
Kanji is a collection of more than 6,000 characters derived from Chinese. Kanji
is the core of Japanese, representing nouns, verbs, adverbs, and adjectives. When a
PenPoint 2.0 Japanese term has a good kanji translation, the kanji is used in the
user interface. An official list of 6,355 characters, representing more than 99 per
cent of kanji in common use, has been published by the Japanese Industrial Stan
dards (jIS) organization. See "Character encoding" on page 247 for more details.

Kana
Kana are two sets of symbols that represent syllables of spoken Japanese. These sets
are called syllabaries because each symbol represents a syllable of spoken language.
Each syllabary contains 46 basic characters. You can apply vocalization markings to
these basic characters to represent a possible total of 104 syllables. These vocaliza
tion markings indicate how to pronounce a syllable. Not all of the possible charac
ters are used in practice.

Hiragana is a set of 83 characters used mainly to write inflections. Both verbs
and adjectives are inflected in Japanese. Pure hiragana words are rare in
computer interfaces. Sometimes, though, you may see hiragana following
kanji to form a complete word, as shown in the examples for ''Apply'' and
"Close" in the margin.

Katakana is a set of 86 characters used mainly to write words borrowed from
foreign languages. These borrowed terms are called loanwords.
For example, the Japanese word for truck is written in katakana and
pronounced teruku; similarly, the word for baseball is written and pro
nounced besubaru. A popular Japanese dictionary lists more than 13,000
loanwords. Katakana words, because of their foreign origin, are often used
in computer interfaces. The katakana equivalents of Pen Point (penpointo),
notebook (noto), and printer (purinda) are shown in the margin.

Roma;i
Romaji is the set of characters of the Latin alphabet. Ji means character in Japanese,
so romaji is literally "roman character." Romaji includes both uppercase and lower
case letters, numerals, and English punctation marks. Japanese uses romaji to repre
sent expressions without turning them into loanwords.

The Japanese localization of the PenPoint 2.0 Japanese operating system provides a
great deal of support for Japanese language processing. For example, the operating

Kanji is the most complex of
all scripts. Each character is
composed of an average of
eig ht strokes.

Document ifli
Cancel If)(rf:!J
Print ~pij!J

Hiragana characters are
rounded and composed of
two or three strokes.

Apply 3IMffl9 ~
Close MG~

Yes ~d:Vl

Katakana characters are
more angular than hiragana.

.A.0 '/~) ~.A'" '/ r.... Pen Point ~ """" I,p- J ...", I ~

Notebook ./ ~ r
Printer 7° 1) /'?'

Examples include:

LPT1:
SDK
DOS

CHAPTER 21 / JAPANESE CHARACTERS 247
Character encoding

Japanese writing
Script

Kanji

Number of characters Typ;cal uses Example

Hiragana

Katakana

Romaji

Roughly 6,400

83 commonly used

86 commonly used

52 letters, 10 numerals,
147 symbols

Key concepts that translate
well into Japanese

Articles
Verb and adjective inflections

Accepted loanwords
Plant, animal names
Onomatopoeia (bang, click)
Telegrams

Foreign words
Transliteration of Japanese

B*aa W:~

/'\/'~-1 /' ~
7° 1) /'-!5'

2.0 SDK, VGA, DOS

system provides an easy way for developers to encode, display, and recognize
Japanese characters. The next few sections discuss character encoding, fonts,
handwriting recognition, and conversion to and from existing Japanese encoding
standards.

Character encoding
The 7 -bit ASCII character encoding scheme is too small to accommodate the thou
sands of Japanese characters. The most popular encoding system commonly used to
encode Japanese in personal computers is called Shift-lIS. See "Shift-JIS encoding
details" on page 252 for details on this encoding system.

Because code that processes Shift-lIS text can be quite difficult to write, the
PenPoint 2.0 Japanese operating system uses Unicode to encode Japanese charac
ters. The following sections discuss Unicode and how it compares with Shift-JIS.

PenPoint 2.0 Japanese provides simple facilities to work with Japanese encoded
characters in either Shift-lIS or Unicode, although your application must process
Unicode characters internally.

'r The Japanese character set
PenPoint 2.0 Japanese supports a standard list of characters published by the lIS
organization in 1990. The characters are listed in a document called JIS C 0208-1990

and include the following:

.. 6,355 kanji in Levell and Level 2 .

.. 86 katakana characters .

.. 83 hiragana characters.

• 10 numerals .

.. 52 Roman characters.

.. 147 symbols .

.. 66 Cyrillic characters.

• 48 Greek characters.

• 32 line elements for making charts.

248 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The kanji are divided into two levels. The Level 1 kanji contains 2,965 of the most These are examples of radicals.

commonly used kanji sorted by pronunciation. The Level 2 kanji includes 3,390 J -L..)

less-frequently used characters sorted by radical. A radical is the most important
part of a kanji, somewhat analogous to a Latin or Greek root word in English.
Within each radical, characters are sorted by the number of strokes required to
write the character (excluding the radical).

Together, these levels define 6,355 characters, or more than 99 percent of the kanji
In common use.

The 1990 JIS standard derives from two previous JIS standards: one published
in 1978 and the other in 1983. New kanji were added and existing characters
rearranged in each edition, so that the standards are not strict supersets. Conversion
between sets, however, is straightforward.

PenPoint 2.0 Japanese has glyphs for all of the characters in the 1990 character set.
See "Fonts" on page 250 for more information.

The handwriting recognition engine that comes with the PenPoint SDK 2.0 Japa
nese can recognize a large fraction of the characters in the 1990 list. See "Hand
writing recognition" on page 255 for details.

Supplemental characters
In 1990, JIS also published a supplemental character list in a document called JIS X

0212-1990. It specifies an additional 5,801 kanji, a collection of245 Latin-based
characters, and 21 miscellaneous symbols and diacritical marks. These characters
are called the JIS Supplemental Characters. Because they are not part of the JIS Level
1 or 2 kanji, these characters are sometimes called gaiji, literally characters (ji)
which are outside (gai) the standard.

These supplemental characters are rarely used variants of characters primarily used
in proper names. The fonts shipped with PenPoint 2.0 Japanese do not contain
glyphs for these supplemental characters, although Unicode does assign each
character a code point. Thus you can represent any of these supplemental characters
internally, but PenPoint 2.0 Japanese cannot display the appropriate glyph.

Because there was no standard way of encoding these characters prior to Unicode,
PenPoint 2.0 Japanese files containing these supplemental characters are incompat
ible. See "Gaiji" on page 254 for information on how PenPoint imports and exports
files containing these characters.

CHAPTER 21 / JAPANESE CHARACTERS 249

Character encoding

".. Ha/f- and full-width variants
Any katakana character may be half- or full-width. In Japanese, this is translated as Zenkaku (full-width)

hankaku (half-width) or zenkaku (full-width). PenPoint 2.0 Japanese can repre
sent and display these half- and full-width variants.

This width distinction is not an inherent part of the language. Rather, it is a histor
ical convention from the]IS standard. To allow more characters to fit per line, the
original]IS standard allowed a variant of the katakana characters to be as wide as a
monospaced Roman letter. Because kanji were twice as wide as Roman characters,
these katakana variants were called half-width characters.

In PenPoint 2.0 Japanese, a normal Roman character remains roughly half the
width of a kanji character. Because Roman characters are often proportional while
Japanese kana and kanji are always fixed-width, the comparison is a rough estimate.
In addition to these normal-width (hankaku) ASCII characters, PenPoint can also
represent and display double-width (zenkaku) ASCII characters.

The double-width Roman characters are monospaced, so they line up evenly with
kanji characters. You might use these double-width characters in a title or table that
contains mixed kanji and roman characters.

To see these zenkaku and hankaku variants, select some text in a MiniText docu
ment and select To Zenkaku or To Hankaku from the Convert menu.

PenPoint 2.0 Japanese provides a function called IntlStrConvertO that can convert
between the half- and full-width characters. Remember that only katakana and
ASCII characters have these half-and full-width variants. See "Converting between
character variants" on page 287 for more information.

Unicode
PenPoint 2.0 Japanese uses the 16-bit Unicode encoding standard to represent Jap
anese characters. Your source code should already support 16-bit Unicode charac
ters. If it does not, see Part 2: PenPoint Internationalization Handbook for details on
how to support Unicode.

The Unicode standard assigns all the characters discussed above a unique 16-bit
number, sometimes called a code point. All the characters specified in the most
current 1990 list, the 5,801 supplemental kanji characters, as well as the half- and
full-width versions of katakana and Roman alphanumerics are assigned unique
Unicode code points.

Thus, your application can represent and manipulate any of these characters
internally.

Table 21-2 shows how various Japanese characters are encoded in Unicode. One of
the design goals of Unicode was to eliminate redundant coding of characters
common to Chinese, Japanese, and Korean (C]K). If all three languages use the
same character, that character is assigned a single Unicode value.

~/#-1/
jjjjjjjjjj

Hankaku (half-width)

,\0 :;;Jj(1:;;
t(t(7)"t(7)"

For more information on the
Unicode standard, consult the
two-volume Unicode Standard:
Version 1.0 and Part 2: Pen Point
Internationalization Handbook.
Unicode encodes over 28,000
characters from the world's
scripts.

250 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The space allotted to these unified characters is labelled eJK ideographs. All of the
lIS kanji fall into this range. Also, because Chinese, Japanese, and Korean share
many punctuation marks, many of the Japanese punctuation marks are encoded as
ideographic punctuation.

Deseription

Romaji (ASCII, Extended Latin)

Ideographic punctuation

Hiragana

Regular-width katakana (zenkaku)

CJK ideographs (kanji)

Half-width katakana (hankaku)

Double-width ASCII

Compatibility Zone

Private Use Zone

Unicode values (hex)

U +OOOO~ U +03FF

U+3000~U+303F

U+3040~U+309F

U+30AO~ U+30FF

U +4EOO~U +9FFF

U+FF60~U+FF9F

U+FFOO~U+FF5F

U+ FEOO~ U +FFEF

U+ EOOO~U+F7FF

Width

Half, proportional

Full, monospaced

Full, monospaced

Full, monospaced

Full, monospaced

Half, monospaced

Full, monospaced

Not applicable

Not applicable

Unicode encodes half-width katkana and double-width ASCII in an area called the
Compatibility zone. It is called the Compatibility zone because the characters in
this zone exist in Unicode solely to be compatible with other character sets like
Shift-lIS. Remember that the half- and full-width distinction for katakana is not
inherent in Japanese, so these characters would not need code points if they did not
exist in the lIS standard.

Because files created on Japanese computers may contain characters outside of the
official lIS list, PenPoint 2.0 Japanese must map them to some location in the Uni
code code space. The Unicode Private Use Zone is used for this purpose. See
"Gaiji" on page 254 for details.

Fonts
The PenPoint operating system 2.0 Japanese currently provides two Japanese fonts,
Heisei Mincho and Heisei Gothic. Use the Mincho font in roughly the same way
you use a Roman serif font, and use Gothic as you would a Roman sans-serif font.
Note that all kanji and kana are monospaced.

The Mincho and Heisei fonts contain glyphs for lIS levels 1 and 2 kanji as well as
all of the other lIS C 0208-1990 characters. This includes the hankaku and zenkaku
versions of ASCII and katakana characters, but does not include the supplemental
characters.

The default system font, used by the system and text applications, is 12-point
Mincho. The default user font used in fields is 12-point Gothic.

Users can set either of these defaults to Gothic, Roman, Sans Serif, or Mincho in
the Preferences section of the Settings notebook. If Roman is the chosen default
font, Japanese characters appear in Mincho. If Sans Serif is chosen, Japanese charac
ters appear in Gothic.

Mincho

Gothic

CHAPTER 21 / JAPANESE CHARACTERS 251
JIS and Shift-JIS encoding

Again, the standard fonts do not contain glyphs for any of the 5,801 supplemental
kanji. So while your application can represent internally any Unicode character, the
only kanji that appear on the screen are JIS levels 1 and 2 characters.

If your application tries to display one of the 5,801 JIS Supplemental Characters, it
will appear as a hex quad. A hex quad is a collection of four hex numbers that rep
resent a single 16-bit code. The first (high) byte is on top, and the second (low) byte
is on the bottom. The first example in the margin represents the hexadecimal
number Ox001B.

Hex quads

00 F1 00
1 B F2 12

z
o
~
N

~
The fonts are divided into several files, as shown in Table 21-3. loY

___ J_a __ p_a_n_e_s_e __ ~_o_n_t __ h_1e __ s __ T_~_Bl_E_2_1-_3 ___________ ~
Font file Size in kilobytes Contents

MC55.FDB 873 Mincho, lIS Level 1

MC80.FDB 1,101 Mincho, lIS Level 2

MC81.FDB 10 Mincho, half-width (hankaku)

GT55.FDB 712 Gothic, lIS Level 1

GT80.FDB 878 Gothic, lIS Level 2

GT81.FDB 7 Gothic, half-width (hankaku)

JIS and Shift-JIS encoding
JIS and Shift-JIS are two popular character encoding schemes used by current Japa
nese computer systems. Think of JIS encoding as the standard on larger computers
and Shift-JIS as the personal computer standard. For example, IBM DOS J5.0/V and
KanjiTalk, the Japanese version of the Macintosh operating system, use the Shift-JIS
encoding standard.

Do not confuse the JIS encoding standard with the JIS character list. The JIS
encoding standard maps characters in the JIS character list to a particular code
point.

Both JIS and Shift-JIS are multi byte encoding systems. That is, both use two bytes
to represent Japanese characters. The only exception is a hankaku character, the
half-width version ofkatakana. Each hankaku character requires one byte.

Both schemes also use a single byte to represent ASCII characters. This allows a text
file to mix ASCII and Japanese characters.

JIS encoding details
JIS encoding overlaps with the printable ASCII characters; that is, its codes fall
between decimal 33 and 126 (hex 21 through SF). ASCII codes still represent ASCII
characters, and each Japanese character is represented as a sequence of 2 byte-
long ASCII codes. Hankaku characters are represented by a single byte between
OxA1 and OxDF.

252 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

To distinguish a single-byte ASCII character from a double-byte Japanese character,
applications must search for a shift state. The shift state indicates whether a given
text stream is in one-byte-per-character mode (ASCII) or two-bytes-per-character
mode Qapanese).

A shift is indicated by a particular escape sequence like ESC $ @ (hex 1B 2440).
"Shift out" marks the beginning of a series of double-byte]IS characters, while
"shift in" marks the return to single-byte ASCII characters. Different shift states are
used for each different character set (1978, 1983, 1990).

The shift state can make text-processing code quite complex. If the application
needs to process text in the middle of a sentence or page, for example, the code may
be required to read backwards to determine the state.

Because the]IS encoding system is not widely used by Japanese personal computers,
PenPoint 2.0 Japanese does not provide any support of the]IS encoding. If neces
sary, convert any]IS files to Shift-lIS before importing them into PenPoint 2.0
Japanese.

Shift-JIS encoding details
Shift-]IS, sometimes abbreviated X]IS, is a variation of]IS encoding used widely by
Japanese personal computers. It eliminates state information by shifting the code of
the first byte of a Japanese character to above hex 80.

The second byte falls between decimal 64 and 126 (hex 40 and 7E). This range
contains both printing and nonprinting ASCII characters. So while the first byte of a
Shift-lIS character cannot be confused with a standard 7-bit ASCII character, the
second byte can be. As in the]IS encoding, hankaku characters are represented by a
single byte between OxA1 and OxDF.

Although the ASCII standard itself is only 7 bits, most vendors use the high ASCII
characters above hex 80 for special characters. For example, IBM uses codes above
hex 80 for line drawing elements, European alphabets, and other glyphs. Thus even
the first byte of a Shift-lIS character overlaps with codes that are previously assigned
code points.

This overlap makes processing text difficult even without explicit state information
embedded in the text stream.

For example, say your code encounters a character with code value below hex 80. It
might be an ASCII character, but it might also be the second byte of a Japanese char
acter. You can check the code of the previous character, but this check does not
always resolve the ambiguity.

If the previous character is above hex 80, it can still be the first or second byte of a
Japanese character. To determine the state of the current character, your code must
scan through the stream backwards until two sequential ASCII characters appear.
This algorithm is complex, error-prone, and computationally expensive.

CHAPTER 21 / JAPANESE CHARACTERS 253
JIS and Shift-JIS encoding

Character set code spaces
Figure 21-1 shows what codes the different character encoding systems occupy.
Each of the two-dimensional charts shows the high byte along the left edge and the
low byte along the top edge. Notice that the original lIS encoding completely over
laps with 7 -bit ASCII; all bytes fall between hex 20 and 80.

Although Shift-lIS solves this overlap problem for 7-bit ASCII, most 8-bit ASCII
code points still overlap with Shift-lIS code points.

Unicode code points are shown on the left side. The four labelled zones contain the
following characters:

Alphabets contains alphabets, syllabaries, and symbols.

High 00
byte

20

! 40

60

80

AO

CO

EO

FF

eJK contains Chinese, Japanese, and Korean characters, including all the lIS
Level 1, Level 2, and supplemental kanji.

Private Use area contains compatibility zone characters and characters for pri
vate, corporate use. GO's gesture glyphs are in the corporate use zone. The
hankaku, katakana, and zenkaku ASCII characters are the in compatibility
zone.

Reserved area is reserved by the Unicode Consortium for future use.

Unicode
Lowbyte --+
00 20 40 60 80 AO CO EO FF

• Alphabets D Reserved

CJK • Private Use Are;/'

High 00
byte

20

! 40

60

80

AO

CO

EO

FF

JIS and Shift-JIS 5hift-JJ5
Low byte --+ High byte: 81-9F, EO-EF

00 20 40 60 80 AO CO EO FF Low byte: 40-7E, 80-FC

JIS • Shift-JIS

Zenkaku: AO-EO

JJ5
High byte: 21-7E
Low byte: 21-7E
Zenkaku: AO-EO

Unicode
See Table 21-2 for the ranges
of Unicode code points.

00 20 40 60 80 AO CO EO FF

• Half-width katakana

254 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Converting to and from Shift-J'S
PenPoint 2.0 Japanese provides various conversion facilities between Shift-jIS and
Unicode:

.. Convert Shift-JIS files to and from Unicode with the DOS utility UCONVERT.
This utility is included with the SDK in \2_0\SDK\UTIL\DOS\UCONVERT. See
"Converting Unicode and Shift-JIS files" on page 285 for details on using the
utility .

.. Directly import Shift-JIS files into MiniText. See "Working with Shift-JIS in
text files" on page 283 for details. .

.. Use the functions IndMBToUnicodeO and IndUnicodeToMBO to translate
text programmatically. The default behavior of this function in PenPoint 2.0
Japanese converts between Unicode and the 1990 Shift-JIS encoding .

.. Use clsText messages msgTextRead and msgTextWrite to read and write
Shift-JIS strings. These messages are documented in TXTDATA.H. Specify
fileTypeASCII as the format. Because Shift-JIS uses 8-bit characters, file-
T ypeASCII works for both Shift-JIS and 8-bit extensions to ASCII. File types
are defined in FILETYPE.H.

Gai;i
Gaiji literally means characters (ji) that are outside (gai) of the standard. There are
thousands of characters that are not included in JIS levels 1 or 2, many of which are
rarely used characters or rare forms of characters used in proper names.

Many of these characters have been defined as part of the 5,801 supplementary
kanji added to JIS in 1990. Unicode assigns each of these characters a unique
16-bit code.

Before Unicode, however, implementation of these gaiji varied tremendously. Con
sequently, files are often incompatible between applications and computer systems.
For example, the AX Consortium, NEC, and Fujitsu each support mutually incom
patible gaiji encoding schemes.

When you import a file containing gaiji encoded by one of these three schemes,
PenPoint 2.0 Japanese automatically maps the characters into parts of the Unicode
Private Use Area. The characters are displayed as hex quads because the fonts
shipped with PenPoint 2.0 Japanese do not contain glyphs for gaiji. When you
export the documents, all the gaiji characters are mapped to their original values.

Note that if the computer from which you are importing does not use the
same gaiji mapping as the computer to which you are exporting, the gaiji are
not mapped correctly. In other words, PenPoint 2.0 Japanese does not translate
between different gaiji encodings.

Unicode sets aside an area
called the Private Use Area to
use as a repository for private
codes. The area lies between
U+EOOO and U+F7FF. See
Unicode Version 1.0, Volume 2
for details.

Chapter 22 I Processing Japanese Text

This chapter discusses how Japanese text is typically processed and how your
application can use the PenPoint™ operating system's support for high-level text
processing. Topics include:

• Japanese text entry.

.. Handwriting recognition.

.. Kana-kanji conversion.

.. Romaji-kanji conversion.

.. Supporting KKC and RKC .

.. Using keyboards.

• Handling Japanese text.

.. Delimiting words .

.. Delimiting sentences .

.. Comparing and sorting.

.. Converting between Shift-JIS and Unicode.

.. Compressing Unicode.

• Formatting Japanese text .

.. Line breaks .

.. Dates .

.. Times .

.. Numbers.

,.. Japanese text entry
Using a keyboard to enter Japanese kanji is a cumbersome and time-consuming
process. One of the most exciting features of PenPoint 2.0 Japanese is Japanese
handwriting recognition.

With PenPoint 2.0 Japanese, users can simply write Japanese characters on their
PenPoint machine and the handwriting recognition engine translates the characters
into a machine-readable form. You do not have to write any code to support this
feature.

Handwriting recognition
The handwriting engine shipped with PenPoint 2.0 Japanese recognizes all of the
lIS kana, romaji, and almost all of the lIS levels 1 and 2 kanji. See "Character recog
nition" on page 256 for more details on which characters the handwriting engine
recognIzes.

256 PEN POINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Here are a few tips that help the handwriting recognizer achieve higher accuracy.
You might mention these tips in your user documentation:

.. Use the correct stroke order. Each Japanese character has a standard stroke
order. Although the engine recognizes popular variations on the stroke order,
recognition is better with the standard stroke order.

.. Print neatly. Highly curved and joined strokes take more time to recognize.

.. Keep radicals separate. Many Japanese characters are composed of two or
more radicals. Do not overlap them when writing .

.. Do not add extra strokes. The engine tolerates missing strokes but not addi
tional strokes .

.. Experiment with simplified forms of a character. The engine recognizes tradi
tional as well as some of the simplified forms of a character.

Character recognition

The handwriting engine recognizes all of the lIS Level 1 kanji (2,965) and roughly
2,900 of the 3,390 Level 2 kanji. The unrecognized characters fall into three
categories:

• Radicals that are not complete characters in themselves, such as J --L.) •

• Rarely used characters, such as ~E i-m jJjf..

• Rare variants of a character whose common style is recognized, such as
• ~1l.

Users can enter characters not recognized by the handwriting engine in one of
three ways:

.. Kana-kanji conversion (KKC) allows users to "spell" the kanji character in
either hiragana or katakana. The user then converts the kana sequence into a
kanji character. See "Kana-kanji conversion" on page 257 for more details
on KKC.

• Romaji-kanji conversion (RKC) allows users to type in the English romaniza
tion for a kanji character. PenPoint 2.0 Japanese uses the Hepburn system of
romanization. See "Romaji-kanji conversion" on page 258 for more infor
mation.

• The Unicode Browser, a PenPoint accessory, allows users to enter these charac
ters from a collection of pop-up lists. See "Unicode Browser" on page 279 for
details. The document New UI Features in PenPoint 2. 0 shows you how to use
the Unicode Browser.

Because the fonts shipped with PenPoint 2.0 Japanese contain glyphs for all Levell
and 2 characters, your application can display these characters even though the
handwriting recognition engine cannot recognize them. The limitation discussed
here applies only to the character recognition engine.

CHAPTER 22 / PROCESSING JAPANESE TEXT 257
Japanese text entry

Punctuation recognition

The handwriting engine recognizes the following Japanese punctuation marks and
symbols. ASCII punctuation marks are used primarily with romaji, although there is

some overlap. Japanese, for example, uses the English question mark.

See the Unicode Standard, Volume 1, pages 332 through 338, for representative

glyphs.

JaDa'nE~se Du,nt:.'fU4aflon marks
Unicode
value

U+3002

U+3001

U+30FB

U+30FD

U+30FE

U+309D

U+309E

U+3003

U+3004

U+3005

U+3006

U+3007

U+30FC

U+300C

U+300D

U+3012

Unicode name

Ideographic period

Ideographic comma

Katakana middle dot

Katakana iteration mark

Katakana voiced interaction mark

Hiragana iteration mark

Hiragana voiced interation mark

Ditto mark

Ideographic ditto mark

Ideographic iteration mark

Ideographic closing mark

Ideographic number 0

Katakana-hiragana prolonged sound
mark

Opening corner bracket

Closing corner bracket

Postal mark

Kana-kanji conversion

Use

Denotes end of sentence.

Indicates pause, clarifies sentence structure.

Separates loanwords that may be unfamiliar to the reader.

Indicates that the previous katakana character should be repeated.

Indicates that the previous katakana character should be repeated
as a voiced character.

Indicates that the previous hiragana character should be repeated.

Indicates that the previous hiragana character should be repeated
as a voiced character.

Indicates above line should be repeated.

Used like a ditto mark to indicate the line above should be
repeated.

Indicates previous kanji should be repeated.

Indicates a deadline (for example, to mail in tax forms).

Denotes the number 0, commonly seen on business cards.

Used to indicate that the previous kana sound should be
elongated.

Used to start a quotation.

Used to end a quotation.

Indicates Japanese postal code, analogous to U.S. zip codes.

The typical method of entering Japanese with a personal computer is called kana
kanji conversion (KKC). The approach is as follows.

The user types kana with a Japanese keyboard. The user then presses a special key to

convert a sequence of kana to a single kanji character.

Japanese has many homophones, words that sound alike. Consequently, a single
sequence of kana specifies a number of possible kanji. Mter the user presses the

convert key, a list of possible matches appears, and the user then selects the desired
character.

PenPoint 2.0 Japanese supports this method of entering kanji in addition to the
direct handwriting recognition discussed above. Users can type or write kana char
acters, and then initiate KKC by pressing a special key (the space bar on American
keyboards and a dedicated KKC key on Japanese keyboards) or by using the right up
-l gesture.

258 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The easiest way to provide KKC support in your application is to use a PenPoint 2.0
Japanese object that implements the behavior. Instances of clsIP or clsField auto
matically support KKC without any additional code.

To provide KKC support with your own custom objects, read the protocol described
below in "Supporting KKC and RKC." Also see "Supporting kana-kanji conver
sion" on page 296 for a code sample.

Romaji-kanji conversion
A process similar to KKC called romaji-kanji conversion (RKC) allows users to
enter Japanese characters by typing English letters. The letters are first translated
into kana, which then undergo KKC to specify a list of possible kanji.

For example, if the user types the word nihongo and hits the convert key, the inser
tion pad replaces nihongo with Japanese characters.

Users can use an attached keyboard or PenPoint's virtual keyboard to type Japanese
characters. The space bar initiates RKC on the English keyboard. The Japanese key
board has a dedicated conversion key, as well as extra keys for scrolling through
alternatives and reversing the conversion.

See "Using keyboards" on page 261 for tips on using the keyboards to type

Japanese.

Supporting KKC and RKC
The easiest way to support KKC and RKC is to create an instance of clsIP or clsField
because these objects already support both character conversions. In general, only
sophisticated text-processing applications, such as word processors, need create
their own classes to handle KKC and RKC.

If you create your own class to support KKC and RKC, it should follow the protocol
described below. Before we describe the protocol, you should know about three
new PenPoint 2.0 Japanese classes.

The first new class, called clsCharTranslator, is an intermediary between clients
that want to support character translation and services that provide character trans
lation functionality. Because clsCharTranslator is an abstract class, its descendant
dsKKCT serves as the actual intermediary.

Both these classes receive messages from the client (often via clsGwin, as described
below), and then request services from clsKKC. Because clsKKC is a descendant of
clsService, it provides APIs for requesting services to perform actual character trans
lations. This architecture permits you to replace the translation engine provided
with PenPoint 2.0 Japanese with your own engine.

Because the character translator requests gesture information, its clients are almost
always subclasses of clsGWin. Every instance of clsGWin creates a character trans
lator (during msgInit) to which it sends translation requests.

You can specify which translator clsGWin sends the message to by filling in the
LOCALE_ID field of GWIN_NEW _ONLY. If you do not specify a translator, clsGWin

nihongo= B :zfs:m

CHAPTER 22 / PROCESSING JAPANESE TEXT 259
Japanese text entry

creates a translator appropriate to the system locale. The default translator for Japan
(locJ pn) is an instance of clsKKCT.

Here is an example of the protocol in action, described as clsIP implements it:

The user writes a few kana characters in an insertion pad, then requests KKC

with the right up -l gesture, as shown in Figure 22-1. When the pad receives a
gesture, it self-sends the message msgCharTransGesture.

Handling the KKC gesture FIGURE 22-1

2 Rather than handling the message itself, clsIP allows the message to be han
dled by clsGWin. In turn, clsGWin sends the message to the character trans
lator it created as part of its response to msgInit. Again, for PenPoint 2.0
Japanese, the default translator is an instance of clsKKCT.

3 When the character translator (an instance of clsKKCT) receives the gesture
information it determines if the gesture is relevant to character translation.
Since the right-up gesture explicitly requests KKC, it sends the msgCharTrans
GetClientBuffer to the client (clsIP) requesting a portion of its buffer.

4 The client sends the requested characters in response to msgCharTransGet
ClientBuffer.

5 The translator communicates with clsKKC, the front-end to the actual service
that provides KKC. In this case, a translation is needed, so the translator sends
msgCharTransModifyBuffer with the translation to the client.

6 Using information sent with msgCharTransModifyBuffer, the insertion pad
updates its internal buffer and user interface to display the translated char
acter. Note that in the result, shown in Figure 22-2, the translated characters
are highlighted. The arguments sent with msgCharTransModifyBuffer con
tain information on which characters to highlight. See Part 6: PenPoint User
Interface Design Reference Supplement for details on how character highlighting
should behave during KKC.

Send me;gCharTrane;
Gee;ture when the user
makes a gesture.

Respond to me;gCharTrane;
GetClient6uffer by sending
the requested portions of
your text buffer.

Handle me;gCharTrane;
Modify6uffer to display
the result of character
translation.

260 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

7 The user then requests a list of alternatives by tapping on the highlighted
character. The insertion pad self-sends msgChar Trans Gesture , again allowing
the message to be handled by clsGWin.

8 The translator receives the message from clsGWin and queries clsKKC for
character alternatives. It also asks the client where the character alternatives
pop-up box should be placed by sending msgCharTransProvideListXY. The
insertion pad calculates the coordinates of the upper-left corner of the pop-up
box. The pop-up box should appear directly below the original character.

9 If the user selects an alternative from the pop-up box, the translator sends
msgCharTransModifyBuffer to the insertion pad. The insertion pad then
updates its buffer and user interface.

10 When the user taps OK to dismiss insertion pad, the pad self-sends msgChar
TransGoQuiescent to reset the translator in preparation for the next character
translation request.

The description above does not exhaust the messages involved in the character
translation protocol. For example, it did not mention any of the messages involved
for supporting keyboard input. The following paragraphs describe the most impor
tant messages involved in the protocol.

The client should self-send the following four messages when appropriate. How
ever, the client should not define a method to handle the message. Rather, the client
should allow the message to be passed up to clsGWin.

1 Self-send msgCharTransKey each time the user presses a key.

2 Self-send msgCharTransChar each time the user edits an existing buffer (for
example, when the user inserts or deletes a character). Normally, you need not
send this message as the user writes a new character. See step 4 below for han
dling this case.

3 Self-send msgCharTransGoQuiescent to cancel the current translation. When
the user taps outside an insertion pad, for example, clsIP self-sends msgChar
TransGoQuiescent.

4 Self-send msgCharTransGesture each time the user makes a gesture on
your text.

Self-send magCharTrana
Geature to notify the
character translator of
the user's tap.

Handle magCharTrana
ProvideLiatXY to let the
character translator
calculate where to place the
character alternatives list.

Handle magCharTrana
ModifyBuffer to update
your buffer with the user's
choice.

CHAPTER 22 I PROCESSING JAPANESE TEXT 261

The client should respond to the following messages sent by the character
translator:

msgCharTransModifyBuffer, which contains information on how to translate
characters. The client should respond by updating its text buffer and user
interface, including updating strong and weak highlighting. The character
translator sends the client a CHAR_TRANS_MODIFY structure containing
all the relevant information.

msgCharTransGetClientBuffer, which asks the client for some text from its
buffer. Pass the requested text to the character translator as part of a
CHAR_ TRANS_GET _BUF structure.

msgCharTransProvideListXY, which asks the client where to put the charac
ter alternative list. The client should compute root window coordinates so
that the pop-up box appears below the original character.

See "Supporting kana-kanji conversion" on page 296 for more details and a code
sample.

",. Using keyboards
The PenPoint operating system 2.0 Japanese supports a number of keyboards
including:

• IBM Japanese ADl.

• IBM u.s. keyboard (IBM AT).

• Toshiba laptop keyboards (Toshiba Dynabook 386/20).

• Toshiba desktop keyboards (ToshibaJ3100ZS).

• AX Consortium keyboard (Okidata 486 VX530)

Set the Keyboard variable in MIL.INI to identify your keyboard. Valid values are
shown in MIL.IN!.

Here are some tips when using the American keyboard:

• The keyboard has two modes: One lets you type English characters, the other
Japanese characters. PressCtrl-Shift-L to toggle between modes.

• If you are having problems toggling modes, cancel the insertion pad, press
Ctrl-Shift-L, and then open another pad.

• Press the space bar to initiate KKC or RKC.

• In Japanese mode, alphabetic keys map to hiragana. Hold down the Shift key
to enter katakana.

• Use the up and down arrows to scroll through the character alternatives pop
up box.

The Japanese keyboard has dedicated keys to initiate character conversion, scroll
through character alternatives, and adjust the current selection.

Japanese text entry

262 PEN POINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook"

The virtual keyboard included as a PenPoint 2.0 Japanese accessory emulates both
American and Japanese keyboards. Bring up the keyboard from the Accessories
notebook and. make the check gesture v on the keyboard title bar to select an emu
lation mode. See "Japanese virtual keyboard" on page 279 for more information.

Hand/ingJapanese text
PenPoint 2.0 Japanese provides a collection of international functions to perform
tasks like formatting dates and times, sorting, and word and paragraph selection.
Because the desired behavior of these functions varies widely between locales, the
international functions accept an argument that identifies a locale. The value of this
argument determines the function's behavior.

Remember that in this context, a locale identifies a country, a language, and an
optional dialect. The default locale in PenPoint 2.0 Japanese is Japan, which is
defined as the 32-bit locale identifier loe]pn in GOLOCALE.H.

See Table 22-2 for a summary of the default behavior of the most important inter
national functions for Japan. The rest of this chapter provides more details by
describing how Japanese is typically processed. Topics include line breaking,
selecting words, sorting, and more.

See Part 2: PenPoint Internationalization Handbook for general information on
these international functions and locales. Most of the international functions are
defined in \2_0\PENPOINT\SDK\lNC\ISR.H.

Chapter 24, Procedures, describes how to use PenPoint's international functions to
give your applications the behavior described here.

If your application needs to provide appropriate behavior in just the default locale
loe] pn, use the Loeo 0 0 0 macros rather than the IntI. 0 00 functions. For example,
here is the definition ofLoeDelimitWordO from ISR.H. Calling LoeDelimitWordO
in PenPoint 2.0 Japanese delimits the Japanese equivalent of a word.

#define LocDelimitWord(tx,s,st) IntlDelimitWord(tx,s,intlDefaultLocale,st)

Notice that it calls the equivalent international function, sending intlDefaultLoeale
as an argument.

IntlDelimitWordO

IntlDelimitSentenceO

IntlBreakLineO

IntlSec To TimeStructO

IntlTimeStructToSecO

IntlFormatS320

IntlFormatNumberO

IntlFormatDateO

IntlFormatTimeO

Def@ult behavior

Delimits a bunsetsu.

Delimits a sentence ended by an ideographic period or other punctuation
mark.

Prevents taboo characters from beginning or ending a line.

Converts time since 1970 from seconds to the Imperial calendar system.

Converts from the Imperial calendar system to seconds since 1970.

Adds thousands separators and a minus sign, as in -1,234,567.

Same as IntlFormatS320, only adds decimal points as needed.

Displays kanji to separate era, day, month, and year.

Displays A.M.lP.M., hours, and minutes with kanji separators.

CHAPTER 22 I PROCESSING JAPANESE TEXT 263

Handling Japanese text

Japanese behavior of international functions
Fundion

IntlParseS320

IntlParseNumberO

IntlParseDateO

IntlParseTimeO

IntlCompareO

IntlSortO

IntlMBTo Unicode 0

IntlUnicodeToMBO

Default behavior

Parses signed integers with thousands separators, decimal point, minus signs.

Same as IntlParseS320, only parses floating-point numbers.

Parses calendar format with kanji to indicate day, month, year.

Parses A.M.lP.M., hours, minutes, with kanji separators.

Compares Unicode values of two characters.

Sorts characters by Unicode value.

Converts latest Shift-JIS encoding (1990) to Unicode.

Converts Unicode to latest Shift-JIS encoding (1990) to Unicode.

Many of these functions are discussed in detail in the rest of this chapter.

Delimiting words
The Japanese equivalent of an English word is called a bunsetsu, which literally
means a phrase.

The rules for delimiting an English word are relatively straightforward because
English uses spaces and punctuation to separate words. Japanese does not use
spaces, so the rules for locating a bunsetsu are quite complicated.

Call the PenPoint 2.0 Japanese function LocDelimitWordO to locate a bunsetsu.
The prototype for the international function follows. Remember that the Loc ... 0
macro calls the IntI. .. 0 function, passing intlDefaultLocale as the LOCALE_ID.

832 EXPORTED 1ntlDelimitWord(

) ;

P CHAR

P U32
p8tring, II
p8tart, II

LOCALE 1D locale, II
U32 style II

Beginning of text region
In/Out: seed positionlstart of word
Locale to use from golocale.h
Delimit style -- from isrstyle.h

This function and the IntlDelimitSentenceO function both take a start position
and return the start and length of the requested item (a word or sentence). The
length is returned by the function, and the start position is returned as one of its
out parameters pStart.

Use the intlDelimitExpandLeft or intlDelimitExpandRight flags to extend the
selection in a single direction one bunsetsu at a time. See the file ISRSTYLE.H for
more details and other valid styles.

See "Delimiting words" on page 289 for more details on how to locate bunsetsu in
your application.

264 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Delimiting sentences
Japanese uses a mark called a maru to end a sentence. It works similarly to the
English period. Unicode calls the symbol the ideographic period (U+3002) because
it is common to Chinese, Japanese, and Korean.

Use the LocDelimitSentenceO macro to find a sentence in a text stream. Here is
the prototype:

832 EXPORTED IntlDelimit8entence(
P CHAR p8tring, II Beginning of text region
P U32 p8tart, II In/Out: seed positionlstart of sentence
LOCALE ID locale, II Locale to use -- from golocale.h
U32 style II Delimit style -- from isrstyle.h

) ;

See "Delimiting sentences" on page 290 for details on how to locate sentences in
your application.

Comparing and sorting
There is a well-established ordering for the kana characters. The characters are
arranged according to the sounds of the "Fifty Sounds Table." You can find the
table in any Japanese dictionary or introduction to Japanese writing. See Chapter
25, Resources, for references to some of these texts.

The kanji characters, however, are more difficult to order. Popular dictionaries sort
characters by radical. Within radicals, they sort characters by the number of addi
tional strokes, not including the radical, it takes to write the character.

The lIS character list, unfortunately, is not uniformly ordered this way. The Level 1
kanji are ordered phonetically (that is, by their kana equivalents), while the Level 2
kanji are ordered by.the radical-stroke scheme.

In a Shift-lIS text that contains both Level 1 and Level 2 kanji, sorting characters is
quite a challenge. Fortunately, the Unicode encoding already puts Japanese charac
ters in sorted order. Thus PenPoint 2.0 Japanese can sort Japanese characters simply
by their Unicode value. Specify the intlSortStyleDictionary style when you call
IntlCompareO or IntlSortO to sort by radicals and number of strokes.

For more information on how Unicode orders Japanese characters, see The Unicode
Standard: Version 1.0, Volume 1.

The other available sort and compare style is intlSortStylePhoneBook. If you
specify this style, the sort and compare functions use the lIS ordering for Level 1
kanji; that is, comparing and sorting is done phonetically. There are various compli
cated comparison rules for characters outside of the Level 1 kanji.

CHAPTER 22 / PROCESSING JAPANESE TEXT 265
Handling Japanese text

Here is the prototype for the IntlSortO function:
STATUS EXPORTED 1ntlSort(

PP CHAR ppString,
U32 count,
LOCALE 1D locale,
U32 style

) ;

II list of strings to sort
II number of strings in list
II Locale to use -- from golocale.h
II Collation style -- from isrstyle.h

See "Comparing strings" on page 291 and "Sorting strings" on page 292 for details
on how to give your application comparison and sort capabilities.

".. Converting between character variants
There are four typical character conversions you may want to support:

• Katakana to hiragana.

• Hiragana to katakana.

• Zenkaku (full-width) to hankaku (half-width).

• Hankaku to zenkaku.

The width conversion functions work with the ASCII and katakana characters. The
normal size for katakana is full-width (zenkaku), and the normal size for alphanu
merics is half-width (hankaku).

You can convert individual characters or strings. Functions that work on individual
characters are in CHARTYPE.H, and have names that begin with IntlChar ... O, as in
IntlCharToUpperO. The string conversion functions, defined in ISR.H. are IntlStr
ConvertO and IntlNStrConvertO.

All of these functions convert a Unicode character or string to another Unicode
character or string. They do not convert between character sets. For more informa
tion on conversions between character sets, see the next section, "Converting
between Shift-lIS and Unicode."

The Unicode representation of zenkaku and hankaku are in a special area called the
Unicode Compatibility Zone, which extends from U+FEOO to U+FFEF. The zone
contains character variants that exist in Unicode solely to be compatible with other
characters sets like Shift-JIS.

The string conversion functions also support conversions to and from the Compat
ibility Zone. Your application might, for example, import a Shift-JIS text, convert it
to Unicode, and then convert all the characters in the Compatibility Zone to their
equivalents outside of the Compatibility Zone. This would convert any half-width
katakana characters to full-width katakana. It would also convert any full-width
alphanumerics to half-width. Think of conversions out of the Compatibility Zone
as converting characters to their most typical form.

The string and character conversion functions also handle conversions between
upper and lowercase and between composed characters and their base character
plus diacritical mark equivalent.

See "Converting between character variants" on page 287 for details on how to pro
vide character conversion support in your application.

z
o
~
N
:::i
<C v
9

See the header -Ale
CHARTYPE.H for more
information about how the
character conversion functions
work. Some functions provide
only an approximation of the
desired conversion.

266 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

Converting between Shilt-JIS and Unicode
Many existing Japanese files are in Shift-lIS format. Therefore, your application
may want to provide import capabilities for Shift-lIS files. PenPoint 2.0 Japanese
provides functions named IntlMBToUnicodeO and IntlUnicodeToMBO to con
vert between Shift-lIS to Unicode strings. The default translation converts to and
from the latest (I990) Shift-lIS encoding.

See "Converting Unicode and Shift-JIS strings" on page 286 for details on how to
use these functions.

If you are converting a string that contains a filename, set the intlCharSetFileNa
meMapping flag. Because operating systems use different characters to represent
path and file names, the string conversion function must know whether the string
to be converted is (or contains) a filename. For example, most Japanese versions of
DOS use the yen (¥) character to separate path names, while most u.s. English ver
sions of DOS use the backslash (\) character.

To convert entire files between different character sets, use the DOS utility UCON
VERT. See "Converting Unicode and Shift-JIS files" on page 285 for details.

Compressing Unicode
Unicode can be efficiently compressed when written to a file, especially if all the
characters in the text stream are from the same character set (for example, all ASCII
text).

All Unicode characters are 16-bits long. Shift-lIS, on the other hand, uses a single
byte to encode hankaku, katakana, and ASCII characters, and two bytes to encode a
all other Japanese characters. Thus, the two character encodings require roughly the
same amount of memory with mostly Japanese text.

When filed, however, Unicode data can be compressed. PenPoint 2.0 Japanese pro
vides functions that allow you to compress Unicode strings before filing them. Typ
ically, these compressed Unicode files store Japanese text using less space than the
identical Shift-]IS file.

Call IntlCompressUnicodeO and IntlUncompressUnicodeO to compress and
decompress Unicode strings. See the header file ISR.H for more information.

Formaffing Japanese text
The following sections describe Japanese text formatting conventions. Table 22-3
shows some of these conventions.

PenPoint 2.0 Japanese provides many formatting functions that provide appro
priate formatting behavior for Japanese text. Your application should simply call
these functions whenever they are available.

The only formatting convention shown in Table 22-3 that does not have native
PenPoint 2.0 Japanese support is phone number formatting. Your application
should provide its own formatting functions to handle phone numbers. Note that
the number of digits in a Japanese area code varies with geographical location.

CHAPTER 22 / PROCESSING JAPANESE TEXT 267
Formatting Japanese text

Formatting area

Date Formatting

Time Formatting

Number formatting

Currency Formatting

Phone Numbers

Paper Sizes

3/31/92

11:45 P.M.

1,234,567.89

$1995.95

(415) 358-2000

Letter, 8.5 in. x 11 in.

Default Japanese formatting

1992£F3 J=J 31 EI

l:f1~3a~517t

1,234,567.89

¥199,500

(045) 472-6000

A4, 210 em x 297 em

Table 22-3 shows the default format for a Western-style (Gregorian) date. See Table
22-5 for the default formatting of an Imperial calendar date.

Line breaks
Japanese, like most other languages, does not permit certain characters to appear at
the beginning or end of a line. For example, in both English and Japanese, you
cannot begin a line with a close parenthesis or end a line with an open parenthesis.

Japanese characters do not use hyphens when they break across lines. Either a break
is permitted and the subsequent characters continue onto the next line, or no break
is permitted.

When romaji appears in text, Japanese uses the same rules as English for line breaks.

Call IntlBreakLineO to ensure your text breaks correctly. The function uses an
INTL_LINE_BREAK structure to contain information about how to break a line.
Here is the structure, defined in ISR.H:

typedef struct INTL BREAK LINE
U32 breakAt;- - II position of line break
U32 deleteThis; II chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxInsert];

II chars to insert at end of this line
U32 deleteNext; II chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxInsert];

II chars to insert at start of next line
INTL_BREAK_LINE, *P_INTL_BREAK_LINE;

Because Japanese does not need hyphens to indicate a line break, you do not need
to use the fields when dealing with Japanese characters. However, because Japanese
follows the same rules as English when text contains romaji, your code should be
prepared to handle these fields. Here is the prototype for IntlBreakLineO itself:

832 EXPORTED IntlBreakLine(
P CHAR pString, II Line to break
U32 pos, II 1st char that won't fit
P _ INTL _BREAK_LINE pBreak, II Out: how to break it
LOCALE ID locale, II Locale to use
U32 style II breaking style

) ;

See "Delimiting words" on page 289 for details.

The line break function does
not currently support
hyphenation, so the various
insert and delete -Aelds in
INTL_BREAK_L1NE are empty.
Hyphenation support is
planned for future releases of
PenPoint.

268 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

Dates

Japanese uses two different date formats. One is based on the Western-style
Gregorian calendar, the other on the Japanese imperial calendar. In the Japanese
imperial calendar, the year 1992 is called Heisei 4, the fourth year of the reign of
the current emperor. Otherwise, the two calendar systems are identical.

The international functions use the structure INTL_ TIME, defined in ISR.H, to rep
resent the current time. The INTL_TIME structure contains a field to represent the
era. Use macros defined in GOLOCALE.H to fill in this field if you use the era field
to represent, for example, a Japanese imperial date.

Table 22-4 shows the four Japanese eras that PenPoint 2.0 Japanese supports, along
with the macro that represents the era.

eras
Er@n@me M@cro in GOLOeJUE.H Yecm.

Meiji itcEraMeiji 1868-1912

Taisho itcEraTaisho 1912-1926

Showa itcEraShowa 1926-1989

Heisei itcEraHeisei 1989-present

Call IntlFormatDateO to get a formatted date string from an INTL_ TIME structure.
The functions accept a number of style flags that can present dates in various for
mats, examples of which are shown in Table 22-5.

I.ocale and style

loc J pn, intlF mtDateStyleFull

1AI:'SlE 22-4

19921f.3 J=J 31 B

~ PX;41f.3 J=J 31 B

1990.1.15

90/1/15

loc J pn, intlF mtDateStyleFull; intlSec To TimeStructStyle Japanese

locJpn, intlFmtDateStyleAbbrv

January 15, 1990

Jan. 15, 1990

1115/90

15-Jan-90

locJpn, intlFmtDateStyleNumeric

locUSA, intlFmtDateStyleFull

locUSA, intlFmtDateStyleShort

locUSA, intlFmtDateStyleNumeric

locUSA, intlFmtDateStyleAbbrv

You use the intlSecToTimeStructStyleJapanese style with the IntlSecToTime
StructO function. All the other styles shown work with IntlFormatDateO.

If you cannot create the date string you want, IntlFormatDateO also accepts an
explicit format string. The string represents a date string constructed from its con
stituent parts. PenPoint 2.0 Japanese allows you to construct a date string using any
of the following parts: day, month, year, day of the week, day of the year, and an
era. See the header file ISRSTYLE.H for more information.

CHAPTER 22 I PROCESSING JAPANESE TEXT 269
Formatting Japanese text

You can also format a date according to user-specified system preferences. The func
tion PrefsIntlDateToStringO returns a pointer to the string containing a formatted
date when you pass it a P _INTL_ TIME structure. The function is defined in
PREPS.H.

See Chapter 107 in the PenPoint Architectural Reference for more general informa
tion on how to observe system preferences.

"., Times
Japanese uses almost the same time formats as American English. The only differ
ence is that kanji characters are used to distinguish hours, minutes, seconds, and
whether the time is A.M. or P.M. Table 22-6 shows some of the time formats you can
create by specifying the appropriate styles when calling IntlFormatTimeO. All of
the examples below assume the locale is locJpn.

rime

15a{t51)t

15a~51)t34fY

lf1~3a;f51)t

lf1&3a;f51)t34fJ>

3:51lf1~

3:51:34lf1~

13:51:34

13:51

Numbers

Locuie und styles

intlFmt TimeStyleLocal

intlFmtTimeStyleLocal, intlFmt TimeDispSeconds

intlFmtTimeStyleLocal

intlFmt TimeStyleLocal, intlFmt TimeDispSeconds

intlFmt TimeStyleStandard

intlFmtTimeStyleStandard, intlFmtTimeDispSeconds

intlFmtTimeStyleStandard, intlFmtTimeForce24Hour,
intlFmt TimeDispSeconds

intlFmtTimeStyleStandard, intlFmtTimeForce24Hour

Japanese uses Arabic numerals to represent numbers for most purposes. In more
formal settings, however, Japanese text uses kanji to represent numbers. PenPoint
2.0 Japanese currently supports only Arabic numerals, although ISRSTYLE.H defines
a style intlFmtNumStyleKanji for future use.

Numbers like 1,234,567 are split every thousand with commas as they are in
English. Specify the default style intlStyleDefault when you call one of the number
formatting functions to format numbers this way.

Japanese occasionally uses an older style of formatting that puts a comma after
every ten thousand, as in 12,3456. You must provide your own formatting function
if you want to support the older style.

Remember that Japanese currency amounts can get quite large. Billions of yen are
not uncommon in typical texts. Remember to set aside screen space to display all
the necessary digits.

TABLE 22-6

270 PEN POINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Call IntlFormatS320 or IntlNFormatS320 to format a signed integer. The equiva
lent functions IntlNFormatNumberO and IntlFormatNumberO work on floating
point numbers.

You can specify many styles that control how numbers are formatted. The following
listing comes from ISRSTYLE.H.

1*
The style flags for number formatting give you extensive control of
how the number is formatted. They work for both the FormatS32 and
the FormatNumber (double) functions.

*1

intlFmtNumLeftJustify: Add padding spaces on the left so that the
decimal points align. This is based on the number of characters not
their widths, so it only works with fixed width fonts.

intlFmtNumRightJustify: Add padding spaces on the right so that the
decimal points align. This is based on the number of characters not
their widths, so it only works with fixed width fonts.

intlFmtNumDropTrailZeros: Drop trailing zeros after the decimal point.
E.g. 23.020 would become 23.02 with this set.

intlFmtNumScale: Move the decimal place to the left by the
number of digits specified by the 'scale' parameter. E.g. a scale of
two would cause 1234. to come out as 12.34 when this flag is set.

intlFmtNumSpaceFill: Force the fill character to be a space. So
if the results of a format would have been "***23.4" it would instead
be" 23.4".

intlFmtNumZeroFill: Force the fill character to be a zero. So
if the results of a format would have been "***23.4" it would instead
be "00023.4".

intlFmtNumForceDecimal: Force a decimal point to be displayed
even if it would not normally be shown. E.g. "123" would become
"123." with this set. This is usually used with a scale of 0 or if
intlFmtNumDropTrailZeros is set.

intlFmtNumDisplayPositive: Force the display of the sign on
positive numbers. E.g. "123" would become "+123" with this set.

#defineintlFmtNumLeftJustifyflag16
#defineintlFmtNumRightJustifyflag17
#defineintlFmtNumDropTrailZerosflag18

II Pad to align on left side
II Pad to align on right side
II Drop trailing zeros in fraction
II Move decimal by scale #defineintlFmtNumScale flag19

#define intlFmtNumSpaceFillflag20
#define intlFmtNumZeroFillflag21
#define intlFmtNumForceDecimalflag22
#define intlFmtNumDisplayPositiveflag23

II Use space character for fill
II Use 0 digit for fill
II Use decimal even if not needed
II Sign on positive num. (e.g. +5)

1*

Each style specifies a general way of formatting a number. The details depend on
the locale and the style flags you give. Also some of the styles are specific to some
regions of the world, and do not make sense everywhere.

intlFmtNumStylePlain: The simplest format for the locale. No
thousands separators or other fancy stuff. In USA & Japan you get
results like "1000.0" and "-1000.0" with this.

intlFmtNumStyleSimple: Default] This is the standard format used
in the locale. It normally includes the thousands separators. In
USA & Japan you get results like "1,000.0" and "-1,000.0" with this.

*1

CHAPTER 22 / PROCESSING JAPANESE TEXT 271
Formatting Japanese text

intlFmtNumStyleAccounting: This is the typical style of numbers used
by accountants and such for the locale. In USA & Japan you get
results like "1,000.0" and "(1,000.0)" with this. This format always
uses some non-blank form of fill by default. For example "**3.45" is
used in USA and Japan.

intlFmtNumStyleFillSign: A common style in some places is to put the
space fill between the sign and the number. This style is only
defined for locales where this makes sense. In USA & Japan you get
results like "- 1,000.0" with this.

intlFmtNumStyleKanji: «Not implemented» This style indicates you
want Kanji digits instead of the normal 0-9.

II International styles
#define intlFmtNumStylePlainOx0001
#define intlFmtNumStyleSimpleOx0002
#define intlFmtNumStyleAccountingOx0003
II Common European/North American styles

II e.g. 1000.0 & -1000.0
II e.g. 1,000.0 & -1,000.0
II e.g. 1,000.0 & (1,000.0)

#define intlFmtNumStyleFillSignOx0004 II e.g. "- 1,000.0"
II Japanese Number Format styles, NOT supported at this time
#define intlFmtNumStyleKanjiOx0005 II Use Kanji digits

Chapter 23 I Development Environment

The Japanese localization of the PenPoint™ 2.0 Japanese operating system devel
opment environment contains many tools, utilities, and sample files that help you
edit, compile, link, and debug Japanese applications. This chapter highlights the
available tools, but does not discuss them in detail. More detailed information can
be found in PenPoint Development Tools and Part 4: PenPoint Development Tools
Supplement, in this book.

This chapter assumes that you are familiar with the process of creating PenPoint
applications. For more information on these topics, consult the PenPoint Applica
tion Writing Guide, Expanded Edition and the two manuals mentioned above.
Chapter 28 of Part 4: PenPoint Development Tools Supplement contains a visual
overview of the entire process of creating PenPoint 2.0 Japanese applications
and services.

,,- Development tools
This section describes the tools you should use to edit, compile, and make
applications.

Text editors
Your source code consists mostly of ASCII files since it is mostly C code.

Sometimes, though, your code contains literal Japanese strings. For example, the
Japanese version of your application resource file, JPN.RC, must contain Japanese
strings encoded as a combination of ASCII and Shift-JIS. Your application uses the
Japanese strings in JPN.RC in its user interface.

The easiest way to work with Shift-JIS files is with a Shift-JIS editor. Most editors
popular in the U.S. have Japanese versions that allow you to edit Japanese text.

You can use MiniText as a Shift-JIS and Unicode editor. First, make sure the
PenPoint system locale is JPN by specifying it when you run the GO batch file:

go jpn

When NliniText imports a DOS file, it assumes high ASCII characters are part of a
Japanese character; that is, it assumes the file contains Shift-JIS data. See "Working
with Shift-JIS in text files" on page 283 for details.

Keep the number of files that contain Shift-JIS characters at a minimum. This will
make your project easier to maintain because all your Japanese strings are in one
place. In the best case, only your application resource file JPN.RC will contain Shift
JIS characters.

274 PEN POINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

Compilers
Make sure your compiler can compile code containing 16-bit characters. You must
set the compiler Hag that enables this feature when compiling code that contains
16-bit Unicode or multibyte Shift-lIS strings.

For example, if you are using the WATCOM C compiler, you must set the compiler
Hag /ZKOU. The standard makefile rules provided with tht; sample applications as
SDEFINES.MIF automatically set this Hag.

The PenPoint 2.0 Japanese resource compiler RC.EXE also uses this Hag because
your resource files often contain Shift-lIS characters.

~ Debuggers
PenPoint 2.0 Japanese allows you to display Japanese strings in the debugger
stream. You can specify which character set you want to display using the Debug
CharSet variable in ENVIRON.lNI discussed in the next section.

You can view the debugger stream on a second monitor only if your debugger
stream contains ASCII characters.

To view kanji in the debugger stream, use the System Log application or save the

debugger stream to a file. See Chapter 10 of PenPoint Development Tools and
Chapter 30 of PenPoint Development Tools Supplement for information on saving
the debugger stream to a file.

The value of DebugCharSet also controls the interpretation of the mini-debugger
memory dump commands (d, da, db, dd, and dw). See Chapter 30 of PenPoint

Development Tools Supplement for details on debugging.

DebugCharSet

The DebugCharSet variable in ENVIRON.lNI controls the character set of your

debugging output. Table 23-1 shows the currently permissible values.

ASCII

XJIS

437

850

Description

Standard 7 -bit ASCII

1990 Shift-JIS character set

IBM Code Page 437 used in U.S. IBM PCs

IBM Code Page 850 used in European IBM PCs

If you are sending debugging information to your PenPoint monitor or a second
debugging monitor, make sure it can display characters in the specified Debug
CharSet. GO does not support using Shift-lIS monitors as second debugging moni
tors. See Chapter 30, Debugging, of Part 4: PenPoint Development Tools Supplement

for information about how to see Shift-lIS in your files.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 275

Literal strings in DebugfO and DPrintfO appear in the specified character set.
Unsupported Unicode characters display as hex quads in PenPoint 2.0 Japanese.
On your monitor, they display as \xnnnn, where nnnn is a four-digit hex number.

The default value of DebugCharSet depends on the value of LOCALE, another
ENVIRON.lNI variable. IfLOCALE=JPN, the default is Shift-JIS. The default is ASCII
if LOCALE= USA.

If DebugCharSet is set to an invalid value, the default character set is assumed.

Makefiles
The standard makefile rules provided with the sample applications help you make
different localized versions of your application. If you write your makefile by tailor
ing a makefile from a sample application, you can add a LOCALE argument to the
command line to make a particular localized version of your application. For
instance, type:

wmake LOCALE=jpn
wmake LOCALE=usa

to create the Japanese and American versions of your application, respectively. If
you do not supply a LOCALE argument, JPN is the default locale.

You must create a file called JPN.RC to contain your application's Japanese strings.
The file should at least contain strings for the tagAppMgrAppFilename and
tagAppMgrAppClassName. The standard makefile rules stamp the application
directory with the strings associated with these tags.

In your makefile, you can use three new variables to identify which resource files to
compile and copy into the application directory with the executable image.

Use

Development tools

RES_FILES

USA_RES_FILES

JPN_RES_FILES

Resource files to be included with all versions of your application.

Resource files to be included with only the American version.

Resource files to be included only with the Japanese version of your application.

See Chapter 29 of PenPoint Development Tools for details on creating PenPoint
applications and services.

DOS utilities
PenPoint 2.0 Japanese provides a collection of DOS utilities that help you work with
resource files, PenPoint file names, and international character sets. See Chapter 14
of PenPoint Development Tools and Chapter 31 of Part 4: PenPoint Development
Tools Supplement for detailed information on how to use the utilities.

276 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The following table briefly summarizes the purpose of each utility.

DOS utilities
Name

PSTAMP.EXE

PDEL.EXE

PCOPY.EXE

PDIR.EXE

PSYNC.EXE

RC.EXE

RESAPPND.EXE

RESDUMP.EXE

RES DEL. EXE

UCONVERT.EXE

CONTEXT. BAT

GO.BAT

LOCALE. BAT

Purpose

Adds special PenPoint information to a DOS file or directory. Replaces
STAMP from PenPoint 1.0.

Deletes specific directory entries from PENPOINT.DIR files.

Recursively copies files and directories to other PenPoint directories.

Lists the PenPoint names and file systems attributes for all the files and
directories in a DOS directory. Replaces GDIR from the utilities included
with PenPoint 1.0.

Scans the current directory and removes any entries from PENPOINT.DIR
for which there are no corresponding files.

Compiles resource files.

Appends resources from one resource file into another.

Shows the contents of a compiled resource file.

Deletes specified resources from a compiler file.

Converts files between character sets, for example from Shift-]IS to Unicode.

A DOS batch file that sets the required DOS environment variables
PenPoint requires. Takes an argument to indicate which version of
PenPoint (1.0 or 2.0).

Boots PenPoint on your development machine, allowing choice of the system
and user locales.

Switches the system and user locales that PenPoint uses.

In PenPoint 2.0 Japanese, the PENPOINT.DIR file is in Unicode format, although

the utilities that deal with PenPoint information can still read ASCII files. For addi

tional information on each utility, type -? or I? after most of these commands to see

a help message. For example, type PDIR I? for help on the PDIR utility.

See PenPoint Development Tools and its supplement for more information.

You can set two DOS environment variables to notify the utilities which character

set or locale you typically work with.

CHARSET can be one of ASCII, 437, LATINI, or 850 to denote a character set.

LOCALE can be either USA or JPN.

For example, if you specify a LOCALE ofJPN, then the DOS utility PDIR will inter

pret your PenPoint names as a Shift-JIS string.

Do not confuse the DOS environment variable with the LOCALE in ENVIRON.lNI.

Only the DOS utilities are sensitive to the DOS environment variable. PenPoint

itself is sensitive to the LOCALE in ENVIRON.lNI.

If you want, set these environment variables in your AUTOEXEC.BAT with the DOS

command SET. Other character sets and locales are supported, but the ones listed

here are the relevant values for Japan.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 277

Running PenPoint
You must remove any terminate-and-stay-resident (TSR) programs before booting
PenPoint 2.0 Japanese. Some TSRs use the same interrupts as PenPoint. This con
flict causes boot error 106 (unknown boot error).

The easiest way to remove TSRs is to remove the programs in GO.BAT and reinstall
them, if necessary, after PenPoint exits. Comments in GO.BAT indicate where you
should remove and reload your TSRs.

The GO.BAT batch file now takes two optional parameters to specify the locales to

boot with:
go system_locale user_locale

When you specify a system locale, PenPoint's behavior and user interface are

changed to be appropriate to the specified locale (u.s. or Japanese).

When you specify both a system and user locale, the batch file directs PenPoint to
change its behavior to match the system locale, but to change its user interface

strings to match the target locale.

When you type GO with no parameters, PenPoint boots in the same state as it was
last booted. If you type GO with no parameters and you are in Debug Tablet mode,
PenPoint warm boots. See Chapter 30 of Part 4: PenPoint Development Tools Supple
ment for more information about debugging modes and warm booting. For

example:

• To boot with Japanese behavior and strings, type
go jpn

• To boot with Japanese behavior, but English strings, type

go jpn usa

Because the batch file only controls the resource files PenPoint loads, the stamped

application and service names appear in the system locale language.

GO.BAT relies on LOCALE.BAT to do the locale switch. Make sure \2_0\PENPOINT\
SDK\UTIL\DOS is in your DOS PATH. Both GO.BAT and LOCALE.BAT require utili

ties in that directory to switch locales.

When you specify a locale with GO.BAT (or LOCALE.BAT) the batch file recursively

deletes your \PENPOINT\SS directory. This deletes any documents that you had
saved in your PenPoint 2.0 Japanese file system. Make sure to save the files to your

hard drive if you need them.

Currently, only two locales are supported: JPN and USA. See page 45 of PenPoint
Development Tools for more information about the GO batch file. The manual
describes the PenPoint boot process, including the order in which files are read and

the actions that are taken as a result.

See Chapter 31 of Part 4: PenPoint Development Tools Supplement for details on how

the batch file coordinates the locale switching.

Development tools

Warning The GO.BAT and
LOCALE.BAT batch -Ales delete
your Pen Point -Ales when you
specify locales.

278 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

PenPoint environment
This section describes the PenPoint 2.0 Japanese environment variables relevant for

developing Japanese applications.

'Jw ENVIRON.INI
There are two important variables new to PenPoint 2.0 Japanese that you should set
when running Japanese applications .

• Locale can be set to USA or]PN. Its value controls PenPoint's behavior and

appearance. Different locales use different fonts, dynamic link libraries, appli
cations, and services. See Chapter 32 of Part 4: PenPoint Development Tools

Supplement for details .

• DebugCharSet can be set to ASCII, X]IS, 437, or 850, controls the interpreta

tion of characters you send to the debugger stream. See Chapter 4 of PenPoint

Development Tools Supplement for details.

Remember to set your PenPointPath to \2_0 if you are working with PenPoint 2.0

Japanese development.

MIL.INI
PenPoint supports many different U.S. and Japanese keyboard models. Set your
Keyboard variable in MIL.INI to identify your keyboard.

The value of Keyboard determines how the keyboard behaves throughout Pen
Point. For example, clsField and clsKKCT observe this variable to determine how

it should handle character input. To change keyboards, you must warm or cold
boot. Swap booting does not change keyboard behavior.

See "Using keyboards" on page 261 for tips on using your keyboard to type Japa

nese and English characters.

Initialization files
PenPoint 2.0 Japanese uses a collection of control files to set up its environment.
Since these files can sometimes contain Japanese filenames, some of these control
files can contain Shift-lIS or Unicode characters. The following table shows which

combinations are permitted.

filename Permissible character sets

MIL.INI ASCII only

ENVIRON.INI ASCII only

BOOT.DLC ASCII, Unicode

CONSOLE.DLC ASCII, Unicode

APP.INI ASCII, Shift-lIS

SERVICE.INI ASCII, Shift-lIS

SYSAPP.INI ASCII, Shift-lIS

SYSCOPY.INI ASCII, Shift-lIS

lA~LE 23-4

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 279

"" PenPoint tools
The SDK includes some PenPoint 2.0 Japanese applications and accessories that can
help you write Japanese applications.

",. MiniText
You can use MiniText as a Shift-JIS and Unicode editor. It supports Japanese hand
writing recognition, KKC, and RKC. Although insertion pads only let you enter
hankaku, you can convert between hankaku and zenkaku by selecting the To
Hankaku or To Zenkaku commands under the Convert menu.

MiniNote assumes any imported text file contain Shift-JIS when the Locale variable
in ENVIRON.INI is set to JPN. Your Shift-JIS file can also contain RTF keywords.
Before you import an RTF file, run the file through the DOS utility RTFTRIM before
importing it. RTFTRIM removes RTF keywords that PenPoint's text component does
not use from an RTF file. See Chapter 31 of Part 4: PenPoint Development Tools Sup
plement for more information on RTFTRIM.

MiniText assumes that any file with a .UNC extension imported into PenPoint is a
Unicode file. Be sure your Unicode files have the .UNC extension before you import
them into your PenPoint notebook.

See "Working with Shift-JIS in text files" on page 283 for details on how to create,
import, and export Shift-JIS files between PenPoint 2.0 Japanese and your develop
ment machine.

Unicode Browser
The Unicode Browser is a PenPoint 2.0 Japanese accessory that allows users to send
characters to the text stream by tapping on them in a table of possible characters.
See Using PenPoint for instructions on using the Unicode Browser.

Japanese virtual keyboard
The virtual keyboard is another PenPoint 2.0 accessory that allows you to send
characters to the text stream. It offers various emulations, including American and
Japanese IBMJ-AO 1 keyboard modes.

Bring up the keyboard by tapping on its icon in the Accessories notebook. Change
modes by making the check V gesture over the title bar to switch modes.

With the Japanese keyboard, you can type romaji, hiragana, or katakana. There are
keys that toggle the keyboard between the character sets.

Sample code
The sample code included with the SDK is a good starting point for your own appli-·
cations. Here are a few details to note about the sample code included with the 2.0J
SDK in \2_0\PENPOINT\SDK\SAMPLE.

Pen Point tools

280 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

Japanese versions of sample code
Most of the sample applications have two resource files, USA.RC and lPN.RC. As
their names suggest, these files contain u.s. English and Japanese strings. Use these
files to help write your own resource files.

All of the sample applications except the Keisen Table application make use of the
Bridging Package. This package allows you to maintain a single code base that com
piles under both PenPoint 1.0 and 2.0. See the PenPoint Bridging Handbook
included with the 2.0 SDK for details on how to do this.

Use the Unicode Browser to
enter hard-to-write
characters or characters
that are not recognized by the
handwriting recognition engine.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 281

Japanese virtual keyboard

". Keisen Table application
The Keisen Table sample application uses hard-coded Japanese strings because the
application is designed exclusively for Japan. It shows how to use toolkit tables to
create a complex Keisen Table, a popular way of gathering data in Japan.

All the hard-coded strings are in Shift-lIS format.

Pen Point tools

FIGURE 23·2

Use the virtual keyboard to
enter characters into the text
stream. You can simulate both
American and Japanese
keyboards.

Chapter 24 / Procedures

This chapter contains step-by-step instructions on how to take advantage of the
PenPoineM operating system's support for Japanese applications. It describes in
detail how to perform several of the common procedures that developers use to
write Japanese applications.

,., Working with Shift-JIS in text files
This procedure shows you one way of creating and editing Shift-JIS strings in a
text file.

".. Prerequisite information
The easiest way to work with Shift-JIS is to edit it with a Shift-JIS editor. This
procedure shows you how to use MiniText as a Shift-JIS editor.

Shift-JIS strings are most commonly used in control files like APP.INI and the
Japanese version of your resource file, JPN.Re.

.. "Character encoding" on page 247 .

.. "Shift-JIS encoding details" on page 252 .

• "Text editors" on page 273 .

• "Initialization files" on page 278.

Procedure
1 Set the BSOO debugging flag so that you can access your hard drive with the

Connections notebook. You can do this one of two ways:

.. Add IBSOO to the DebugSet line in ENVIRON.INI.

.. While in PenPoint, press Break to drop into the mini-debugger. Type
fs B +SOO to set the flag, and then g to resume PenPoint.

2 Create a new MiniText document or import an existing document. You can
import by opening the Connections notebook and choosing Directory under
the View menu. Then browse through your disk and copy a Shift-JIS file to
your PenPoint notebook. Import the file as a MiniText document.

3 Turn to your new or imported MiniText document to edit it.

4 When you are done editing the file, turn back to your table of contents.

5 Open the Connections notebook and choose Directory under the View menu.

6 Move or copy the file to your hard drive.

7 Select Text File as the export type.

284 PEN POINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

Related information
+ "Working with Unicode in source code" on page 284.

+ "Converting Unicode and Shift-JIS files" on page 285.

• "Converting Unicode and Shift-JIS strings" on page 286.

Working with Unicode in source code
This procedure shows you how to create Unicode strings in your source code.

Prerequisite information
• Chapter 15, Part 2: PenPoint Internationalization Handbook.

+ "Character encoding" on page 247.

+ "Unicode" on page 249.

Procedure
1 Declare your character or pointer to characters as a 16-bit type. Use CHAR16

for data that is always 16 bits and CHAR for data that will be 8-bits long in
PenPoint 1.0 and 16 bits long in 2.0 and later releases.

2 Wrap the U _LO macro around literal characters and strings. Use the L" "
modifier if you do not need your code to compile under PenPoint 1.0.

3 Type ASCII characters between the quotation marks.

4 To specify special Unicode characters, use a \x followed by a Unicode code
point, which has 4 hexadecimal digits.

Examples
The following code uses the U _LO macro to indicate that the declared character or
strings are 8 bits long in PenPoint 1.0 and 16 bits long in PenPoint 2.0 Japanese.
The second example declares character data that is always 8 bits long.

Uprintf(U_1("I am 8 bits long in PenPoint 1.0; 16 bits in PenPoint 2.0");
P_CHAR8 pTheString = 1"1 am always a 16-bit string.";
static RC _TAGGED_STRING qHelpStrings [] = {

tagTextView, U_1("\xF61F \\tab Pigtail. Delete a character.\\par "),
Nil (TAG)

} ;

This last example specifies Unicode values directly because they cannot be typed
with the keyboard.

Related information
• "Working with Shift-JIS in text files" on page 283.

+ "Converting Unicode and Shift-JIS files" on page 285.

+ "Converting Unicode and Shift-JIS strings" on page 286.

CHAPTER 24 / PROCEDURES 285
Converting Unicode and Shift-JIS files

". Converting Unicode and Shift-JIS files
This procedure converts files between Unicode and Shift-JIS formats.

",. Prerequisite information
• "Character encoding" on page 247.

• "Unicode" on page 249.

• "Shift-JIS encoding details" on page 252.

• "Converting to and from Shift-JIS" on page 254.

Procedure
If necessary, run CONTEXT.BAT to put your system in the 2_0 context.

The batch file adds \2_0\SDK\UTIL\DOS to the beginning of your PATH.

2 Run UCONVERT.EXE on the file to be converted. The syntax for this DOS

utility is:

UCONVERT s[-d] [-m] ouree-file dest-file [source CharSet] [dest CharSet]

You can specify a character set as either a code page or a locale as follows:

• Specify ASCII with one of the following: ASCII, 437, or USA .

.. Specify Shift-JIS with XJIS or JPN .

.. Specify Unicode with UN!.

Examples
Table 24-1 shows sample runs of the UCONVERT utility.

Command

ueonvert mytext.doe mytext.une

ueonvert mytext.une mytext.jis uni xjis

ueonvert -d myfiles.doe myfiles.jis xjis uni

ueonveit letter.jis letter.une jpn uni

ueonvert -m longfile.437Iongfile.une

Related information

Description

Puts a Unicode copy of ASCII document MYTEXT.DOC in the file
MYTEXT.UNC. ASCII-to-Unicode is the default conversion.

Puts a Shift-lIS version of the Unicode document MYTEXT.UNC in the
file MYTEXT.]IS

Puts a Shift-lIS version of the file MYFILES.TXT containing filenames in
the file MYFILES.JIS. The -d flag is necessary when the input Shift-JIS file
contains filenames.

Puts a Unicode copy of the Shift-lIS file LETTER.JIS in the file
LETTERUNC.

Puts a copy of the extended ASCII file LONGFILE.437 in the Unicode file
LONGFILE. UNC, converting all CRfLF combinations to the Unicode line
separator character (U+2028).

.. "Working with Shift-JIS in text files" on page 283 .

... "Working with Unicode in source code" on page 284 .

... "Converting Unicode and Shift-JIS strings" on page 286.

286 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

Converting Unicode and Shih-JIS strings
This procedure allows your code to convert between Unicode and Shift-lIS strings.

Prerequisite informatiofl
+ "Unicode" on page 249.

+ "The Japanese character set" on page 247 .

., "Shift-JIS encoding details" on page 252 .

., "Converting to and from Shift-JIS" on page 254.

Procedure
1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in

your makefile.

2 Call IntlNUnicodeToMBO to convert a Unicode string to a Shift-JIS string.
Use one of these styles to indicate which lIS character set to convert to:

• indCharSetStyleXJIS maps to the most recent character set (currently
JIS X0208-1990)

• indCharSetStyleXJIS1978 for JIS C6226-1978

• indCharSetStyleXJIS1983 for JIS X0208-1983

• indCharSetStyleXJIS1990 for JIS X0208-1990

3 Call IndMBToUnicodeO to convert a Shift-lIS string to a Unicode string. Use
the same styles to indicate which character set you are converting from. The
default style uses the most current (1990) Shift-lIS standard.

4 Specify the style indCharSetFileNameMapping if the string you want to con
vert contains a filename.

Example
This code fragment converts the multibyte string pStr8 to the Unicode string pStr.

MsgHandlerArgType(MyHandler, P_MY_ARGS)
{

STATUS
U32

s;

P CHAR
P CHAR8

oLength, length;
pStr;
pStr8;

length = pArgs->len;
pStr8 = (P_CHAR8) pArgs->pData;
oLength = length;
if (SizeOf(CHAR) > 1)
{

StsWarn (OSHeapBlockAlloc (osProcessHeapld,
length*sizeof(CHAR), &pStr));

StsWarn(oLength=IntlNMBToUnicode(pNull, 0, pStr8, &length,
intlStyleDefault));

StsWarn (length=IntlNMBToUnicode (pStr, oLength, pStr8, &length,
intlStyleDefault));

CHAPTER 24 / PROCEDURES 287
Converting between character variants

".. Related information
• "Working with Shift-JIS in text files" on page 283.

• "Working with Unicode in source code" on page 284.

• Part 2: PenPoint Internationalization Handbook, "Locale-Independent Code,"
in Chapter 15.

". Converting between character variants
This procedure converts between various character sets, such as from zenkaku (full
width) to hankaku (half-width), and from katakana to hiragana.

Prerequisite information
• "Kana" on page 246.

• "Half- and full-width variants" on page 249.

• "Converting between character variants" on page 265.

Procedure
1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in

your makefile.

2 Allow the user to specify a string to be converted. Collect the string in a buffer
with a terminating null.

3 Call the IndStrConvertO function.

4 Update your memory and user interface.

Example
This code sample uses clsTextView to support string conversion requested by the
user. The functions convert the selected text to all upper-case, all lower-case, or
initial capitals.

OBJECT
int
U32
TEXT BUFFER
P TV SELECT

myTextObject;
desiredState;
attrLimit, startLen, amtRemain, newLen, style;
textBuffer;
pTarget;

switch (desiredState) {
case 1:

style = intlStrConvertStyleToUpper;
break;

case 2:
style = intlStrConvertStyleToProper;
break;

case 3:
style = intlStrConvertStyleToLoweri
break;

288 PENPOINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

while (pTarget->length)
{

II ensure buffer size is less then maxbufferlen
if (pTarget->length> MAXBUFFERLEN)
{

else

amtRemain = pTarget->length - MAXBUFFERLEN;
pTarget->length = MAXBUFFERLEN;

amtRemain = 0;

II Get selected chars into buffer
textBuffer.first = pTarget->first;
textBuffer.length = pTarget->length;
textBuffer.bufUsed = 0;
textBuffer.buf = pSrc;
textBuffer.bufLen = pTarget->length;
ObjCaIIWarn(msgTextGetBuffer, myTextObject, &textBuffer);
startLen = pTarget->length;
if (pTarget->length)
{

if (amtRemain)
style 1= intlStrConvertMoreText;

else
style &= -intIStrConvertMoreText;

II Do conversion with result in pDest
newLen = IntINStrConvert(pDest, MAXBUFFERLEN * 2, pSrc,

&(pTarget->length),&ctx, intlDefaultLocale, style);

Notes
The function prototype for IntlStrConvertO is as follows:

S32 EXPORTEDINTLStrConvert(
P_CHARpDest, II Out: converted string

II Max space available in pDest U32 destLen,
P_CHARpSrc,
LOCALE_IDlocale,
U32 style

II Null-terminted string to be converted.
II Locale to use -- from golocale.h
II Conversion style -- from isrstyle.h

} ;

The relevant styles are:
II Flags used with string conversion styles.
#define intlStrConvertMoreText flag16 II More text than was passed.
II String Conversion styles
#define intlStrConvertStyleToUpper Ox0001 II
#define intlStrConvertStyleToProper Ox0002 II
#define intlStrConvertStyleToLower Ox0003 II
#define intlStrConvertStyleToHiragana Ox0004 II
#define intlStrConvertStyleToKatakana Ox0005 II
#define intlStrConvertStyleToComposed Ox0006 II
#define intlStrConvertStyleToClean Ox0007 II
#define intlStrConvertStyleToCompatibility Ox0008
#define intlStrConvertStyleFromCompatibility Ox0009
#define intlStrConvertStyleToHankaku OxOOOA II
#define intlStrConvertStyleToZenkaku OxOOOB II

All characters
1st letter of words only
All characters
from katakana, not kanji
from hiragana, not kanji
minimize floating forms
maximize floating forms

II Map to C-Zone
II Map from C-Zone

Map to half-width chars
Map to full-width chars

CHAPTER 24 / PROCEDURES 289

",. Related information
See ISR.H for more information about how to convert large chunks of text
extending over multiple buffers (such as converting an entire file).

", Delimiting words
This procedure locates a bunsetsu, the Japanese equivalent of an English word or
phrase, in a text stream.

",. Prerequisite information
"Delimiting words" on page 263.

Procedure
1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in

your makefile.

2 Locate where the user has requested a phrase selection.

3 Call LocDelimitWordO or LocNDelimitWordO.

rr Example
The following code demonstrates the query capabilities of the delimit word and
sentence functions. The code queries a function by calling it with pNull where it
expects a buffer. The function responds to the query by returning the size of the
buffer that the code needs to send to the function. The returned size is used in the
GetSpanBufO call that fills the buffer with nCharToCopy characters.

#define atomSentence 4

typedef struct SPAN_BUF
P_CHAR buf;
TEXT INDEX len;
U32 pos;
BOOLEAN freeBuf;

SPAN_BUF, *P_SPAN_BUF;

SPAN BUF
TEXT INDEX
TEXT SPAN

spanBuf
oldPos, first, baLen;
span, savNChToCopy, nCharToCopy;

STATUS s;
S32 style;
if (span. type == atomSentence)

Delimiting words

savNChToCopy = nCharToCopy = LocDelimitSentence(pNull, pNull, style);
else

savNChToCopy = nCharToCopy = LocDelimitWord(pNull, pNull, style);

290 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

while (TRUE) {
spanBuf:pos = first;
s = GetSpanBuf(pB, &spanBuf, nCharToCopy);
if (s < stsOK) goto CleanUp;
oldPos = spanBuf.pos;
style = (first - spanBuf.pos) > 0 ?

FlagSet(intlDelimitMoreLeft, style)
FlagClr(intlDelimitMoreLeft, style);

style = (first + nCharToCopy) < baLen ?
FlagSet(intlDelimitMoreRight, style)
FlagClr(intlDelimitMoreRight, style);

if (span. type == atomSentence)

else

s = LocNDelimitSentence(spanBuf.buf, spanBuf.len,
&spanBuf.pos, style);

s = LocNDelimitWord(spanBuf.buf, spanBuf.len, &spanBuf.pos, style);

The code uses two class manager macros FlagSetO and FlagClrO to set and clear
style flags. The macros are defined as follows in CLSMGR.H:

:/I:define FlagSet (f, v) ((v) I (f))
:/I:define FlagClr(f,v) ((v) & ("'f))

Notes

The function prototype looks like this:
S32 EXPORTED IntlNDelimitWord(

P CHAR pString, II
U32 length, II
P U32 pStart, II
LOCALE ID locale, II -
U32 style II

) ;

Beginning of text region
Length of text region.
In/Out: seed position/start of word
Locale to use from golocale.h
Delimit style -- from isrstyle.h

The function expects a counted string, a locale, and a style. Remember that calling
LocDelimitWordO sends intlDefaultLocale and intlDefaultStyle as parameters.

Pass in a position you want to search from as pStart. When the function returns,
pStart contains the start of the bunsetsu, and the function itself returns the length
of the bunsetsu.

Related information

.. "Delimiting sentences" on page 290.

.. The header files ISR.H and ISRSTYLE.H contain more information about dif
ferent ways to call the delimit word and sentence functions.

Delimiting sentences
This procedure locates a sentence in a text stream.

Prerequisite information

"Delimiting sentences" on page 264.

CHAPTER 24 / PROCEDURES 291

". Procedure
1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in

your makefile.

2 Locate the position in your text stream where the user requested a sentence
selection.

3 Call LocNDelimitSentenceO or LocDelimitSentenceO.

".. Example
See example for "Delimiting words" on page 289.

Notes
Here is the function prototype:

S32 EXPORTED IntlDelimitSentence(
P CHAR pString, II Beginning of text region
P U32 pStart, II In/Out: seed position/start of sentence
LOCALE ID locale, II Locale to use from golocale.h
U32 style II Delimit style -- from isrstyle.h

) ;

Specify indDlmtSntcStyleSentence as a style to select a sentence without any punc
tuation.

". Related information
"Delimiting words" on page 289.

Comparing strings
This procedure compares two null-terminated strings and returns their sort order.

Prerequisite information
"Comparing and sorting" on page 264.

Procedure
1 Find two null-terminated strings you want to compare.

2 Send the characters to IndCompareO.

". Example
This code compares two literal strings. It is intended as an example of how to call
IndCompareO rather than as good coding practice. Do not use literal strings in
your code unless absolutely necessary.

P CHAR firstString = L"First string";
P CHAR secondString = L"Second string";
LocCompare(firstString, secondString, intlSortStyleDictionary);

Comparing strings

292 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Notes
The function prototype follows:

S32 EXPORTED IntlCompare(
P CHAR pLeft,
P CHAR pRight,

II left string of comparison
II right string of comparison

LOCALE ID locale,
U32 style

II Locale to use -- from golocale.h
II Collation style -- from isrstyle.h

) ;

The function returns:

• -1 when pLeft precedes pRight (left < right)

• 0 when pLeft is the same as pRight (left == right)

.. 1 when pLeft follows pRight (left> right)

• stsRequestNotSupported if the locale or style is unsupported.

The following styles apply with sorting and comparing.
#define intlSortIgnoreCase
#define intlSortStyleDictionary

#define intlSortStylePhoneBook

flag16
OxOOOl

Ox0002

II (*) Ignore case
II e.g. treat space as first

character
II e.g. ignore spaces altogether

Remember that intlSortStyleDictionary uses the lIS order for Level 1 kanji and var
ious rules for other characters, while intlSortStylePhoneBook sorts in Unicode
order, which is a good approximation of the radical and number of stroke sort
orders used in Japanese dictionaries.

Related information
"Sorting strings" on page 292.

Sorting strings
This procedure sorts an array of null-terminated strings.

Prerequisite information
"Comparing and sorting" on page 264.

Procedure
1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in

your makefile.

2 Encode the strings you want sorted as an array of null-terminated strings.

3 Pass in the array as a pointer to a string (type PP _CHAR) as a parameter to Intl
SortO.

Example
No example available.

CHAPTER 24 / PROCEDURES 293

"" Notes
The function prototype follows:

STATUS EXPORTED
PP CHAR
U32
LOCALE ID
U32

) i

IntlSort (
ppString,
count,
locale,
style

II list of strings to sort
II number of strings in list
II Locale to use -- from golocale.h
II Collation style -- from isrstyle.h

See the Notes under "Comparing strings" on page 291 for details on the valid
styles.

"" Related information
"Comparing strings" on page 291.

Handling line breaks

Handling line breaks

This procedure breaks lines of text, ensuring that no character that is not allowed to
begin or end a line does so.

Prerequisite information
"Delimiting words" on page 289.

Procedure
1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in

your makefile.

2 When displaying text that wraps, send the text stream to IntlBreakLineO. The
result is returned in an INTL_BREAK_LINE structure.

3 Check the breakAt field of INTL_BREAK_LINE for the position of the line
break.

4 If the position is at or before the start of a line, the function could not find an
appropriate break point. You should provide a default method to handle this
case. In most cases, you can just include all the characters that will fit on the
line and break when necessary.

"" Example
The following code checks to see if the text in pMetrics fits on the current line. If
the text does not fit, LocNBreakLineO is called to find an appropriate place to
break the line. If the function returns a break position at the beginning of the line,
no appropriate place was found to break the line, and hence the line need not be
remeasured. Otherwise, the line is remeasured and the buffer updated with the cor
rect line break information.

P_TEXT_LINE pMetrics;
P_POSSIBLE_LINE maybeMetrics;
TEXT INDEX savePos, pos, posInBuf;
CHAR charBufMem[MAX_BUF_SIZE];
CHAR *charBufi
BOOLEAN wordWrap;

294 PEN POINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

breakLine; INTL BREAK LINE
U32 style = intlStyleDefault;

if ((!TextFits(pMetrics, &maybeMetrics)) && wordWrap)
{

savePos = pos;
posInBuf = charBuf-charBufMem;
LocNBreakLine(charBufMem, MAX_BUF_SIZE, posInBuf, &breakLine, style);
if (posInBuf == breakLine.breakAt I I breakLine.breakAt == 0)

goto NoReMeasure;
newBreakPos = pos - (posInBuf - breakLine.breakAt);

goto Remeasure;

Notes
The IntlBreakLineO function requires a special structure as a parameter. When the
function returns, the information on how to break the line is passed out in this
structure. The following structure definition is in ISR.H:

typedef struct INTL BREAK LINE {
U32 breakAt; - I T position of line break
U32 deleteThis; II chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxInsert];

II chars to insert at end of this line
U32 deleteNext; II chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxInsert];

II chars to insert at start of next line
INTL_BREAK_LINE, *P_INTL_BREAK_LINE;

The constant intlBreakLineMaxInsert is also defined in ISR.H. Its current value is 8.

Because Japanese simply breaks lines with no changes to the text stream, the fields
deleteThis, insertThis, deleteNext and deleteNext are typically empty.

The current version of this function does not support hyphenation, although such
support is planned. When hyphenation support is provided, and you use this func
tion to check line breaks for romaji, the fields deleteThis and deleteNext are typi
cally empty, while insertThis contains a hyphen.

The prototype for IntlBreakLineO is as follows:
S32 EXPORTED

P CHAR
U32

IntlBreakLine(
pString,

) ;

P INTL BREAK LINE - -
LOCALE ID
U32

Related information

pos,
pBreak,
locale,
style

• "Delimiting words" on page 289 .

• "Delimiting sentences" on page 290.

II Line to break
II 1st char that won't fit
II Out: how to break it
II Locale to use -- from golocale.h
II Break style -- from isrstyle.h

CHAPTER 24 I PROCEDURES 295
Using Japanese fonts

Using Japanese fonts
This procedure describes various methods you can use to specify a particular Japa
nese font.

,...,... Prerequisite information
• "Fonts" on page 250

• PenPoint Architectural Reference, Part 3, Chapters 25-26.

". Procedure
There are a variety of ways your application can work with fonts.

• Use the default system fonts. Set the group field of SYSDC_FONT_ATTR struc
ture to sysDcGroupDefault or sysDcGroupUserInput. The default fonts are
Mincho for the system and Gothic for the user.

• Use clsPopUpChoice to display currently installed fonts in a scrolling window
from which the user may select a font. See the example below for sample code.

• Set the drawing context with the desired font. The short font string for Min
cho is MC55; for Gothic, the string is GT55. You can convert the string to a 16-
bit font identifier with the SysDcFontiDO function. Note that if you specify
sysDcGroupTransitional, the group for Roman fonts, the system displays
Japanese characters in the Mincho font. Similarly, the system displays Gothic
characters when you specify the group as sysDcGroupSansSerif. See Chapter
26 of the Architectural Reference for details.

Examples
The first example is from the Hello World application. It sets the font to be the
default user font by creating a drawing context in which the font group is sysDc
GroupUserInput.

II Create a dc.
ObjCallRet(msgNewWithDefaults, clsSysDrwCtx, &dn, s);
data.dc = dn.object.uid;

II Open a font. Use the "user input" font (whatever the user has
II chosen for this in System Preferences.

II

fs.id = 0;
fs.attr.group= sysDcGroupUserlnput;
fs.attr.weight= sysDcWeightNormal;
fs.attr.aspect= sysDcAspectNormal;
fs.attr.italic= 0;
fs.attr.monospaced= 0;
fs.attr.encoding= sysDcEncodeGoSystem;
ObjCallJmp(msgDcOpenFont, data.dc, &fs, s, Error);

II Scale the font. The entire DC will be scaled in the repaint
II to pleasingly fill the window.

fontScale.x = fontScale.y = FxMakeFixed(initFontScale,O);
ObjectCall(msgDcScaleFont, data.dc, &fontScale);

II Bind the window to the dc.
ObjectCall(msgDcSetWindow, data.dc, (P_ARGS)self);

296 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

You can find this code in \2_0\PENPOINT\SDK\SAMPLE\HELLO\HELLOWIN.C.

The second example comes from the Clock Application. You can find the code in
\2_0\PENPOINT\SDK\CLOCK\CLOCKAPP. C.

You can set up a TK_TABLE that allows the user select from the available fonts. To
do so, include tkPopupChoiceFont as part of the flags field of a dsPopupChoice.
This notifies the popup filed to get the list of available fonts from the system.

static const TK_TABLE_ENTRY clockDisplayCardEntries[] = {

} ;

{hlpClkAppDisplayFont, 0, 0, 0, tkLabelStringld, 0, hlpClkAppDisplayFont},
{fontPrune, 1, 0, tagFont, tkNoClient I tkPopupChoiceFont, clsPopupChoice,

hlpClkAppDisplayFont},

{pNull}

When the user taps Apply and this control is dirty, the Clock application must
rewrite each of its labels in the new chosen font.

StsRetNoWarn(ReadControl(pArgs->win, tagFont, &value, 0, 0, pNull, false), s);
if (s == stsDirtyControl) {

plnst->fontld = (UI6) value;
SysDcFontString((UI6) value, fontName);
Dbg(Debugf(U_L("ClockApp: new font id is Ox%lx, \"%s\""), value,

fontName) ;)
SetLabelFont(plnst->timeWin, plnst->fontld);
SetLabelFont(plnst->arnPmWin, plnst->fontld);
SetLabelFont(plnst->dateWin, plnst->fontld);
SetLabelFont(plnst->alarmWin, plnst->fontld);
*pAppLayout = true;

SetLabelFontO is an internal function that updates the current font specs with the
new font ID.

STATUS SetLabelFont(OBJECT win, U16 fontld) {
SYSDC_FONT_SPEC spec;
STATUS S;

if (win) {
ObjCallRet(msgLabelGetFontSpec, win, &spec, s);
spec.id = fontld;
ObjCallRet(msgLabelSetFontSpec, win, &spec, s);

II SetLabelFont

Related information
+ "Working with Shift-lIS in text files" on page 283.

+ "Working with Unicode in source code" on page 284.

Supporting kana-kanji conversion
The easiest way to support KKC or RKC in your application is to create an instance
of dsIP or dsField, because these classes already support character conversion.

This procedure describes how to make your own class the client of dsCharTrans.
The easiest way to do this is to make your class a subclass of dsGWin or one of its
descendants.

CHAPTER 24 / PROCEDURES 297
Supporting kana-kanji conversion

Prerequisite information
• "Kana-kanji conversion" on page 257.

• PenPoint Architectural Reference, Part 4, Chapter 32.

Procedure

:2

3

Subclass clsGWin or one of its descendants.

Create your window as an instance of this subclass.

When appropriate, self-send the following messages to your window instance.
Do not handle the messages. Rather, allow them to pass up to clsGWin,
which sends the messages to its associated character translator. In PenPoint 2.0
Japanese, this translator is clsKKCT.

Send msgCharTransKeyEvent whenever the user presses a key.

Send msgCharTransChar whenever the user changes the buffer (for example,
when the user inserts or deletes a character).

Send msgChar TransGesture when the user makes a gesture. If the gesture is
relevant to character translator, be prepared to handle msgCharTransGet
ClientBuffer (described below).

Send msgCharTransGoQuiescent to abort any current translations.

4 Your class should respond to the following messages sent by the character
translator.

msgCharTransModifyBuffer, which contains information on how to update
your buffer with the newly translated characters. Respond by updating
your text buffer and user interface, including updating strong and weak
highlighting. The character translator passes you a CHAR_TRANS_MODIFY

structure.

msgCharTransGetClientBuffer, which asks your window instance for some
text. Pass the requested text to the character translator as part of a CHAR_

TRANS_GET _BUF structure.

msgCharTransProvideListXY, which asks your class where to put the charac
ter alternative list. Compute the coordinates so that the list pops up below
the character.

msgCharTransSetMark, which notifies your class that the translator is collect
ing characters. This message is sent for historical reasons. You can largely
ignore it.

298 PEN POINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Notes
The following structures are used or required by the messages that the character
translator sends your class.

The character translator sends the CHAR_TRANS_MODIFY structure to let the client
know how to modifY its buffer. The structure is sent with msgCharTransModify
Buffer. Note that the markRelative, setActiveLenToO, popupEvent, and user fields
are used internally and you generally do not need to worry about them.

typedef struct CHAR_TRANS_MODIFY {
CHAR TRANSLATOR ct;
S32 first;
S32 length;
S32 bufLen;
P CHAR buf;
CHAR TRANS HIGHLIGHT highlight;
U32 markRelative:1,

setActiveLenToO:1,
popupEvent:1,
reserved:29;

U32 user;

II in: originating translator
II in: 1st char to modify
II in: # of chars to replace
II in: # of chars in buf
II in: chars to replace with

II unused (reserved)

U32 spare1; I I unused (reserved)
CHAR_TRANS_MODIFY, *P_CHAR_TRANS_MODIFY;

The CHA~ TRANS_HIGHLIGHT structure contains information on how to high
light characters in the current buffer. The character translator sends you this ·struc
ture as part of the P _ARGS for msgChar TransModifyBuffer.

typedef struct CHAR TRANS HIGHLIGHT {
S32 weakStart;
S32 weakLen;
S32 strongStart;
S32 strongLen;
S32 oldWeakLen;
S32 oldStrongStart;
S32 oldStrongLen;

CHAR TRANS_HIGHLIGHT, *P_CHAR_TRANS_HIGHLIGHT;

The character translator requests part of its client's buffer with msgCharTransGet
ClientBuffer. The CHA~TRANS_GET_BUF structure describes what portion of the
buffer the character translator requires.

typedef struct CHAR TRANS GET BUF
P CHAR buf;
S32 startPosition;
S32 length;
U32 reserved;

CHAR TRANS_GET_BUF, *P_CHAR_TRANS_GET BUF;

When the user requests an alternative to the current translation, the translator
requests the client to provide the location for the pop-up box by sending msgChar
TransProvideListXY. The client fills in the requested information as part of a
CHAR_ TRANS_LIST _XY structure.

typedef struct CHAR TRANS LIST XY
S32 charPosition;
XY32 xy;
U32 reserved1;
U32 reserved2;

{

II
II

character position in client buffer
root window coordinates for list

CHAR TRANS_LIST_XY, *P_C~TRANS_LIST_XY;

CHAPTER 24 / PROCEDURES 299
Supporting kana-kanji conversion

Examples
The following code fragments illustrate different parts of the character translation
protocol. The first fragment shows a typical response to the user pressing a key.

const P INPUT EVENT pEvent,
self,
pKeyData;
pText;
key;
ctChar;

- -
const OBJECT
P KEY DATA
P MY TEXT STRUCTURE - - -
U16
CHAR TRANS CHAR - -

switch MsgNum(pEvent->devCode)
case MsgNum(msgKeyChar) :

pKeyData = (P_KEY_DATA) (pEvent->eventData);
key = pKeyData->keyCode;
ctKeyEvent.keyEvent = msgKeyChar;
ctKeyEvent.keyCode = key;
ctKeyEvent.scanCode = pKeyData->scanCode;
ctKeyEvent.shiftState = pKeyData->shiftState;
s = ObjectCall(msgCharTransKeyEvent,self,&ctKeyEvent);
if (s < stsOK)

break;

s = HandleAnyKey(self, pText, pKeyData->shiftState,
key, pKeyData->repeatCount);

The client self-sends msgCharTransKeyEvent each time the user presses a key. If
the translator does not use the key, the message returns a status less than stsOK. In
this cas~, the client responds by sending the key event to the internal function Han- .

dleAnyKeyO.

The second fragment is part of the HandleAnyKeyO function. It shows a typical
instance of sending msgCharTransChar. Remember that you send msgCharTrans
Char to self when a character in your buffer changes (for example, when the user
inserts or deletes a character). This particular code responds to the user pressing the
backspace key.

CHAR TRANS CHAR ctChar;
U16 repeatCount;
switch (key)
{

case uKeyBackSpace:
ctChar.c = (CHAR) key;
ctChar.position = r.first-1;
ctChar.operation = ctDeleteChar;
for (i = 0, sts==OK && i < repeat Count && ctChar.position >= 0; i++)
{

ObjCallWarn(msgCharTransChar,self,&ctChar);
ctChar.position--;

z o
~
N
::;
«
9

300 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The third fragment shows the entire handler for msgTransCharGetClientBuf The
character translator sends you this message to request a part of your buffer.

MsgHandlerArgType(SampleTextCharTransGetClientBuf, P_CHAR_TRANS_GET_BUF)
{

const P_MY_TEXT_STRUCTURE pText = IDataDeref(pData, P_MY_TEXT_STRUCTURE);
TEXT_BUFFER myText;
myText.buf = pArgs->buf,
myText.first = pArgs->startPosition;
myText.length = text.bufLen = pArgs->length;
ObjCallWarn(msgTextGetBuffer, pText->tb, &myText);
return (stsOK) ;
MsgHandlerParametersNoWarning;

Chapter 25 / Resources

Here are some texts that may help you during your localization process. Though
not listed here, there are also consulting, translation, and marketing companies
that can help you design, test, and translate your Japanese application and
documentation.

Do's and Taboos Around the World, 2nd ed Roger Axtell, John Wiley & Sons,
1990. A funny but informative guide to culturally acceptable and unac
ceptable behavior in various cultures.

Do's and Taboos Roger Axtell. John Wiley & Sons, 1989. Similar to Do's and
Taboos Around the World, this book is aimed towards small businesses.
Includes discussion of planning for international markets, pricing, ship
ping, managing and motivating distributors, and communication. Also
devotes an entire chapter to Japan.

Electronic Handling of Japanese Text Ken Lunde. Describes how Japanese text is
handled electronically. Includes a superb history of Japanese character
encoding. Available through the Internet via anonymous FTP at
MSI.UMN.EDU (128.101.24.1). The files, which include various utility
programs, are in the IPUB/LUNDE directory.

Localization for Japan Apple Computer, Inc. Apple Developer Technical
Publications, 1992. Contains a general overview of the Japanese compu.ter
market. Aimed at the non-programmer.

Kanji and Kana Wolfgang Hadamitzky and Mark Spahn. Charles E. Tuttle
Company, 1981. A concise introduction to the Japanese writing system.

Soft Landing in Japan: A Market Entry Handbook for Software Companies
American Electronics Association, 1990. Contact the AEA at 408-
987 -4200 for more information.

The Unicode Standard· Version 1.0, Volume 1 The Unicode Consortium.
Addison-Wesley, 1991. Introduces the Unicode character encoding
system.

The Unicode Standard· Version 1.0, Volume 2 The Unicode Consortium.
Addison-Wesley, 1992. Shows glyphs for Chinese, Japanese, and Korean
ideographs.

Chapter 26 / Japanese Character Set

The following pages list all the kanji defined by the 1990 }IS character set listed in
Shift-lIS order. The Unicode value for each character is listed underneath each char
acter as a 4-digit hexadecimal number.

We used PenPoint 2.0 Japanese to print this list with a standard 300 dots per inch
(dpi) laser printer.

The fonts shipped with PenPoint 2.0 Japanese contain glyphs for all the characters
listed. The characters that the handwriting recognition engine cannot recognize are
marked with an asterisk(*).

Shift-lIS is ordered by a system called ku-ten. Most Japanese characters require two
bytes of memory (half-width katakana characters, which require a single byte, are
the exception).

Shift-lIS identifies the first byte with a string between ku 1 and ku 94, and the
second byte with a string between ten 1 and ten 94. The kanji begin with ku 16
(hexadecimal Ox81).

Each ku is printed on a separate page that contains characters running from ten 1
to ten 94 for a given ku.

How the list was created
The list was created as follows:

1 A c program generated an RTF file containing the characters in the proper
order and with the Unicode values.

2 The RTF file was passed into the DOS utility RTFTRIM. The result is a legal
RTF file stripped of the RTF keywords that PenPoint's text component does
not use.

3 The trimmed file was imported as a MiniText document and printed to a
spool file. See Chapter 32 of Part 4: PenPoint Development Tools Supplement
for information on printing to a spool file.

4 The spooler output was copied to a laser printer.

304 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU 16 3 4 5 6 7 S 9

!IE n.i ~! ~PJ
.......L....

~ ~ P!r! '~ R E!
4e9c 5516 5a03 963f 54cO 611b 6328 59f6 9022

~ J!N fl 1I[1~ i~ ttEt M.. ::f:±: • 10 ICJ'\ ~ ?
8475 831c 7a50 60aa 63el 6e25 65ed 8466 82a6 9bf5

20 1$ J± ~ 11k rrI ~il ~t ~fJ *lIT *i
6893 5727 65a1 6271 5b9b 59dO 867b 98f4 7d62 7dbe

30 f!~ ~ ~ *fr ~ ~ 1* Wff ~ M
9b8e 6216 7c9f 88h7 5b89 5eb5 6309 6697 6848 95c7

40 ¥i(~ ~ {jt 1ft 1ft {l lID ~ ~
978d 674f 4ee5 4ma 4f4d 4f9d 5049 56f2 5937 59d4

~ 1ft ..:n:.. ~t ~ t~ ~ N: ~ so m ;~ ~ "~,,

5a01 5c09 60df 610f 6170 6613 6905 70ba 754f 7570

~ *l ~ FJ ~ tx ~EEJ .. ~ '..!:B. ~ 60 pf} J!E).§.

79fb 7dad 7def 80c3 840e 8863 8b02 9055 907a 533b

~ t~ ~ fl~ ~
~

~ ~ 70 '5
4e95 4ea5 57df 80h2 90c1 78el' 4cOO 58f1 6ea2 9038

fill ~ ¥ {B~
I=f

~p PIEJ
I=f (zg ftlN 80 1\\' ~ ~

7a32 8328 828b 9c2f 5141 5370 54bd 54el 56eO 59fb

90 §r ~ r¥)~l ~
5f15 98f2 6dcb 80e4 852d

CHAPTER 26 / JAPANESE CHARACTER SET 305

KU 17 3 5 6 8 9

~1G ~~ ~J~ ftJ:t
aJ! nt ti * J~ ~~

9662 9670 96aO 971b 540b 53f3 5b87 70cf 7fbd

10 jf m "
gp ~~

!7'r:t
~Jt fl: ~i S ifUJ IY:

8fc2 96e8 536f 9d5c 7aba 4ell 7893 81fc 6e26 5618

20 llJ{ R ~ ff1~
JII~ ~:e mt M Jl\ ~ ni

5504 6b1d 851a 9c3b 5ge5 53a9 6d66 74dc 958f 5642

A JI $' {i iIi IX JW.,.
~ we r~ 30 ~ {5 ~V

4e91 904b 96f2 834f 990c 53el 55b6 5b30 5t71 6620

~ l44

~i< r~ ~ ~ *Ji ~J{ ~ 40 * 71<
66f3 6804 6c38 6cf3 6d29 745b 76c8 7a4e 9834 82fl

so ~*I WJ< ~Jl ~~ ~ ~ j~R J[\tj
7L ~~ ~

885b 8a60 92cd 6db2 75ab 76ca 99c5 60a6 8bOl 8d8a

60 00 *1 JR P1 [iJ iiI ~ ~ t& ~[!
J~'

95b2 698e 53ad 5186 5712 5830 5944 5bb4 5ef6 6028

ttt fI t&
.. ~

~ ~~ ~ trit ~ mi 70 iJit J\\'

63a9 63f4 6cbf 6fl4 708e 7114 7159 71d5 733f 7eOl

tfg fri i17
.... .±, fd ~ ~ ~ i17 ~Jj so ~

8276 82d1 8597 9060 925b 9dlh 5869 65bc 6c5a 7525

90 [!!] * ~ 11 ~
51f9 592e 5965 51'80 5fdc

306 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU 18 3 6 7 S 9

iEfI B1 tl lW\ ~ ~
~,

;:j>J *l ~
62bc 65fa 6a2a 6b27 6bb4 738b 7fcl 8956 9d2e

~/~ ~ rtrrJ i$ ~ it ~ Jr~ ni fm 10 ~j(I~

9dOe 9ec4 5eal 6e96 837b 5104 5e4b 61b6 81e6 6876

~± G itt fgP l2SJ rMt ~~ .:ft r f~ 20 J~' I~' S

7261 4e59 4 [fa 5378 6069 6e29 7a4f 97f3 4eOb 5316

30 {lZ {PI {DO {iffi f* 110 IlJ a I ~
4eee 4[55 4f3d 41'al 4173 52aO 53ef 5609 590f Sacl

40 * ~ f1J. a~l * ~ ~ iRJ 1< !PJ
5bb6 5bel 79dl 6687 679c 67b6 6b4c 6cb3 706b 73e2

~ * l~ Ii --J-.J..-. =m mI m ~ ~ so 1~

798d 79be 7a3c 7b87 82bl 82db 8304 8377 83ef 83d3

ffi~ ~ ni ~~ J1JQ JM1 ~ !f!)(m ~ 60 ~ i§!J(.

8766 8ab2 5629 8ca8 8fc6 904e 971e 868a 4fc4 See8

70 ~ 7f roo [?A ~ lift ~ 3 iR • 6211 7259 753b 81c5 82bd 86fc 8ccO 96e5 9913 99d5

fr A ~~ @J ~ is Mm Jr~ JI~ J~ 80 :z:;:

4eeb 4fla 8ge3 56dc 584a 58ca 5cfb 5 feb 602a 6094

90 J(1){ Jrj jfX t33 C~
6062 61dO 6212 62dO 6539

CHAPTER 26 / JAPANESE CHARACTER SET 307

KU19 2 3 s 6 7 8 9

ti em fJt~ ifiJ EJ(W. ~ ~ ~
9b41 6666 68bO 6d77 7070 754c 7686 7d75 8285

10 m ~ ~~ ~ ~JL ~ ~ ~ §k ~ I=l

87f9 958b 968e 8c9d 51fl 52be 5916 54b3 5bb3 5d16

20 'I~ 1.HJE iJI U~ $i
..an. f!f ~~ ~~ \~ ~ rm

6168 6982 6daf 788d 84cb 8857 8a72 93a7 9ab8 6d6c

30 • ~1 !s 1$!IWJ ~1;j ttl P~ ~ JJi5
99a8 86d9 57a3 67f1' 86ee 920e 5283 5687 5404 Sed3

fJt tJl f~ f~ ±Jt ~f ~l fl ~ f£J 40 rLx ~
62el 64b9 683c 6838 6hbb 7372 78ba 7a6b 899a 89d2

ijJ$ W~ !1~ M ~f-?J ~ »=b -ffi)8" ~ so :.y: * 8d6b 8m3 90ed 95a3 9694 9769 5b66 5cb3 697d 984d
RR§ f!~ 6ft. f! f~ fffi Ix i~ WIJ ~ 60 ~/, .lL.

984e 639b 7b20 6a2b 6a7f 68b6 geOd 6f5f 5272 SS9d

70 Jr~ tiS r! r~ r~ ~ f~ ,~ H i~
6070 62ec 6d3b 6e07 6edl 845b 8910 8f44 4e14 9c39

80 pt 1ft fi 'fJ **
~B:J
..JL 11 fi ~ • 53f6 691b 6a3a 9784 682a 515c 7ac3 84b2 91dc 938c

Or*! ~~ 18 --f-f- ;Et;
90 ~ ~

565b 9d28 6822 8305 8431

308 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU20 2 3 6 8 9

5*5 ~rJ
+f-
){IJ A $t {frt]a ~ flj

7ca5 5208 82c5 74e6 4e7e 4f83 51aO 5bd2 520a

fWJ WJ ~ n~ ±~ ~ 1=:!::7 'g • -T 10 7G

52d8 52e7 5dfb 559a 582a 5ge6 5b8c 5b98 5bdb 5e72

20 ~ J~ ~ tl It' f~ ~)(m lS m
5e79 60a3 611f 6163 61be 63db 6562 67dl 6853 68fa

30 ffj{ iV\ if r~ trE~ rl !I it CIt: .:on ~
6b3e 6b53 6c57 6f22 61'97 61'45 74bO 7518 76e3 770b

~ W ~ *~ ifr ~ ijf ~mt 4 m 40 IIDL :n:::;

7aff 7bal 7c21 7de9 706 7ffO 809d 8266 83ge 89b3

• j{ 'l!9.. ~ Ft=r' ~ ~ ~ ~l ig so ~

8acc 8cab 9084 9451 9593 9591 95a2 9665 97d3 9928

60 m n ~ J$ ~ m ~ EEl HN E ~
8218 4e38 542b 5cb8 5dcc 73a9 764c 773c 5ca9 7feb

70 JJf Hi ji]i ~§
1$", Jh1~ if: it fG: ~ ~

8dOb 96cl 9811 9854 9858 4fOl 4fOe 5371 559c 5668

80 ~ ~ 91 * U1Z $ ~1 a t$ fJ1 J~\

57fa 5947 5b09 5bc4 5c90 5eOc 5e7e 5fcc 63ee 673a

90 ~ ~ M m ~
65d7 65e2 67lf 68cb 68c4

CHAPTER 26 / JAPANESE CHARACTER SET 309

KU21 3 6 7 S 9

f! ~ ~ ~ it=: '~ ;~ *JT ~ fm
6a5f 5e30 6be5 6e17 6e7d 757f 7948 5b63 7aOO

*C ~~ m ~2 ..!:I:L ~ ,}L *' M .~~ 10 ~

7dOO 5fbd 898f 8a18 8eb4 8d77 8ecc 8fld 98e2 9aOe

20 * ~ i~ fl fJ.R ~ mx ~ 11 jtj{
9b3c 4e80 507d 5100 5993 5b9c 622f 6280 64ec 6b3a

30 ~~ ~JE *it ti 2i ~ir ~i t*I *J ~
72aO 7591 7947 71'a9 87tb 8abe 8b70 63ae 83ca 97aO
± oz: ~ fS f~ §± 116 tq: * *fJ 40 r::t IlP

5409 5403 55ab 6854 6a58 8a70 7827 6775 9ecd 5374

50 ~ JOO ~ ~ IT !A 1fL it & ~
5ba2 811a 8650 9006 4c18 4e45 4ec7 4fl1 53ca 5438

g 17 ~, f~ *7] * l& '-1-

~ f~ 60 rJL
5bae 5fl3 6025 6551 673d 6e42 6e72 6ce3 7078 7403

70 ~ ~ ~ *lk *Lt *,!}. f\1=J 18 4 * ,@
7a76 7aae 7b08 7d1a 7cfc 7d66 65e7 725b 53bb 5c45

SO g 18 t9l1 *
fs.
~ Jfl ~lf ~8 ~ ji

5de8 62d2 62eO 6319 6c20 865a 8a31 8ddd 92f8 6fOl

~fEn {S -'--" -'--" -----'--

-7 I=t ,Jr" 90 7,
~'" f

79a6 9b5a 4ca8 4cab 4eac

310 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU22 3 4 6 7 , 9

{~ {~ {)fj ~
~

~ ~ t~ ~ 71Yt
4f9b 4faO 50dl 5147 7af6 5171 5lf6 5354 5321

10 9HP lllf. ~ m JII~ 5~ 51 Jri ~ ~
537f 53eb 55ae 5883 5eel 5f37 5f4a 602f 6050 606d

20 t~ ~~ *~ r51 3f 3* ~ J}ij • ft
63lf 6559 6a4b 6eel 72e2 72ed 77ef 80f8 8105 8208

30 iii ~~ ~J! • J» • {fP ?~ ~ an
854e 90f7 93el 97ff 9957 9a5a 4efO 51dd 5c2d 6681

40 ~ }a] r±B fj 3i tfPJ *f {m iJJ i$)
696d 5e40 661'2 6975 7389 6850 7e81 50c5 52e4 5747

rtJ ~ fT fO\ ~X ~ *-* * 1m ~ so -, 7T"

5dfe 9326 65a4 6b23 6b3d 7434 7981 79bd 7b4b 7dca

60 W ~ ¥i ~ /."

.:::.~

p~ ill ~ ~ ~H 1L
82b9 83cc 887f 895f 8b39 8fdl 91dl 54lf 9280 4e5d

70 {§
/"'\ ii] [R 3tiJ fIA ~§ ~ ~ m J~lI

5036 53c5 533a 72d7 7396 77e9 82e6 8eaf 99c6 99c8

so ~ 1[. ~ Ja ~ ~ {ll} ~ ~ ~ /~

99d2 5177 611a 865e 55bO 7a7a 5076 5bd3 9047 9685

90 $ tiP ~If ~ Jffi
4e32 6adb 91e7 5c51 5c48

CHAPTER 26 / JAPANESE CHARACTER SET 311

KU23 3 4 6 7 S 9

ftB ~ tlf ~t 18 m A~

ft~ rw ~
6398 7a9f 6c93 9774 8[61 7aaa 718a 9688 7c82

10 ~ *J ~ ~X ~ :f3 • WI[$ if! z
0

6817 7e70 6851 936c 52f2 541b 85ab 8al3 7fa4 8eed ~
N

tt~ * ~ *~ 1* {tJi fflJ R ~ ~
::::;

20 <t: v
0
-!

90el 5366 8888 7941 4fc2 50be 5211 5144 5553 572d w
ifl
IoU

J! ~ *IJ ~ m fI • " M t~
z

30 =t:. ~
<i
""'" 73ea 578b 5951 5f62 5£84 6075 6176 6167 61a9 63b2 ,
17}

~ i!& .§. *i r~ fBi fS * ffiI m 40 ~

643a 656c 666f 6842 6e13 7566 7a3d 7cfb 7d4c 7d99

~ ~ 3t frj 1i ~t ~b • ~ !J{ so :::::E: Sa
7e4b 7f6b 830e 834a 86cd 8a08 8a63 8b66 8efd 981a

\\1~ ±f::" Jill iij{ 'IJ ~Jt ,~ ~ ~~ *11 60 ~I\ A

9d8f 82b8 8fce 9be8 5287 621f 6483 6fcO 9699 6841

70 f~ :x ~ '~ t~ 1\ *± 1\J:l rfrr ~ f3 itt:
5091 6b20 6c7a 6f54 7a74 7d50 8840 8a23 6708 4ef6

so 1~ {~ i! ~ ~ ~IJ nW ~ ~ ~
5039 5026 5065 517c 5238 5263 55a7 570f 5805 5acc

~ ~ ~~ ~ m 90 If!], ;~,

5efa 61b2 6lf8 620 6372

312 PEN POINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU24 2 3 4 S 6 7 8 9

~ fi ~ ~ mx iiJf 1iJl m ~
691e 6a29 727d 72ac 732e 7814 786f 7d79 770c

ffif ~ ~ fi !fif '.m • ~ B ~ 10 :ua
80a9 898b 8b19 8ce2 8ed2 9063 9375 967a 9855 9a13

20 ~ 7C 1* ~ ~J 5~ ~ tJ]{ Yz. ~
ge78 5143 539f 53b3 5e7b 51'26 6elb 6e90 7384 73fe

*~ ~ :::: ~ ~N -¥ f~ r!i P¥ I!!!I 30 i=i

7d43 8237 8aOO 8afa 9650 4e4e 500b 53e4 547e 56fa

40 ~r!l fJ.[a }if 1)1\ p iiJt fi!l M 1J.[
59dl 5b64 5dfl 5eab 5f27 6238 6545 67af 6e56 72dO

so fm *~ ~~ iiA m Jj£ ~~ i~ M Hi
7eea 88b4 80al 80el 83fO 864e 8a87 8de8 9237 96e7

;j ~.t 15. II iIi If lEI li ~ r~ 60 /~ J=J

9867 9f13 4e94 4e92 4fOd 5348 5449 543e 5a2f 5f8e

~mp iftf fa f~ !~A ~ ~1i ~~ ~ Dm 70 m:t p~

5fal 609f 68a7 6a8e 745a 7881 8age 8aa4 8b77 9190

Z ~i
--'-

{~ f* {~ {f 7t 0 ~ 80 5C
4e5e 9bc9 4ea4 4t7c 4faf 5019 5016 5149 5l6c 529f

90 ~:1J ~ !-J 0 rPJ
52b9 52fe 539a 53e3 5411

CHAPTER 26 / JAPANESE CHARACTER SET 313

KU25 3 5 6 7 S 9

FP Pf* m :J:J§ 9r :JL 2ft ~ I
540e 5589 5751 57a2 597d 5b54 5b5d 5b8f 5deS

Pj ~ *]A Wt ~ 51 '['8 i~ tIL 10 Jf~ Z
\)

5de7 5df7 5c78 5e83 5c9a 5eb7 5fl8 6052 614c 6297 ~
N

frJJ ~ :0z En ~ ~ tiL ~ fl f_ ::l
<t

20 {,)

0
-J

62d8 63a7 653b 6602 6643 661'4 676d 6821 6897 69cb w
iJ')
w

iI m ~ ~ ~ l=J3 ~ ii! f~ *l z
30 ~

4%
""'>

6c5f 6d2a 6d69 6e2f 6c9d 7532 7687 786c 7a3f 7ceO c')

~I *t m~ ~ *# ~
...I.r. HfA D~ • 40 IOC I=J

7d05 7d18 7d5e 7dbl 8015 8003 80ar 80bl 8154 818f

mit ift /.- 1j] ~-
..=::t::.

Rftt ~ M ~ 50 1'-r ffi;!

822a 8352 884c 8861 8blh 8ea2 8efe 90ca 9175 9271

liJl\ ~fOOl M ~ JJi N
--L.....

r~ fMjrj WJ 60 ~
783f 92fe 95a4 964d 9805 9999 9ad8 9d3b 525b 52ab

Pj A i:i f~ ri
--L.....

Ii ~ R: ~IJ 70 r::t ~
53f7 5408 58d5 6217 6fcO 8e6a 81'51' geb9 514b 523b
& 00 *~ ~~ ~~ m 1~A i~ n~ IE(so p J • \,

544a 56fd 7a40 9177 9d60 9cd2 7344 6f09 8170 7511

90
m Jim ii ~B J6 J~' J~'

5ffd 60da 9aa8 72dh 811)e

314 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU26 2 3 4 S 6 7 8 9

!1:t ~~ A -, 0SJ :1:$ m· ~, ItH ~
6b64 9803 4eca 56fO 5764 58be 5a5a 6068 61c7

10 ~ .EB fH fIE is .t~ ~ *if Ii ;! ~

660f 6606 6839 68bl 6df7 75d5 7d3a 826e 9b42 4e9b

20 {ti X n~ ~ tr. ~ ~ iY ~ i2J
4f50 53c9 5506 5d6f 5de6 5dee 67tb 6c99 7473 7802

30 ~'F j~ 7' ~ ~ ~ t~ fl f1ti ¥} fi
8a50 9396 88df 5750 5ea7 632b 50b5 50ac 518d 6700

40 EX ~ ~ * *3 :t f* ~ 1Jj iti
54c9 585e 59bb 5bbO 5[69 624d 63al 683d 6b73 6e08

so ~ * ~ ~ U~ ~ ?--'{
7T' ~ mBJ ~ ~

707d 9lc7 7280 7815 7826 796d 658e 7d30 83dc 88el

60 ~ ~ RU 1£ fj ~ ~t f;f jJi ~
8ro9 969b 5264 5728 6750 7[6a 8cal 5lb4 5742 962a

70 m *~$ ~ ~ UI~ :f:~ ~ • {'P ~rJ
583a 698a 80b4 54b2 5dOc 57fc 7895 9dfa 4f5c 524a

80 nip ~ Sf ifiA *$ ~ m ~

* ~tf ~
548b 643e 6628 6714 67f5 7a84 7b56 7d22 932f 685c

90 it ill ~ 00 ijlJ
9bad 7b39 5319 518a 5237

CHAPTER 26 I JAPANESE CHARACTER SET 315

KU27 2 3 6 7 8 9

~
~ t~ 11 ~ fL ~ iSi ~ ~
5bdf 621'6 64ae 64c6 672d 6bba 85a9 96dl 7690

{O:£ j}JIJ ~f ~-L illl B(ffi ~ #): LlJ /.:'\
10 JI\\FJ H\OC z

0
9bd6 634c 9306 9bab 76bf 6652 4e09 5098 53c2 5c71 !;i

N

Jr$ tm ~ ~ ~ !fHt Ji: ~ • ~
::1

20
«t

~ v
0
..J

60e8 6492 6563 6851' 71e6 73ca 7523 7b97 7e82 8695 1M
.n
w

~ .it ~ ~ @T fb J~ {± ff 00 Z
30 ~

<\
~

8b83 8cdb 9178 9910 65ae 66ab 6b8b 4005 4004 4f3a """-
try

40 {t WU ~ 51:. RfiiTI [9 ± ~a ~rff ~
4f7f 523a 531'8 531'2 55e3 56db 58eb 5geb 59c9 59ff

-T WE m ~ffi ± S3 t~ X f~ Wi so J~\ J~'\

5b50 5c4d 5c02 5c2b 5fd7 60ld 6307 6521' 5b5c 65af

~ l:::::" f~ 11: ~ 1f 1B~ tIl: fL * 60 S

65bd 65e8 679d 6b62 6b7b 6eOf 7345 7949 79cl 7cf8

*4£ ~ iji ~~ ¥ ~J! ~Pj ~± ~i\ ~±
70 a'f IlJC\

7d19 7d2b 80a2 8102 81B 8996 8a5e 8a69 8a66 8a8e

~~ j! ~~ lltt ~P] tt 4J it{ {=ij:)~ =....: 80 p

8aee 8ee7 8ede 96ee 98fc 6b6f 4c8b 4Be 4f8d 5150

~ .:±.. ti t~ a~ 90 \j .;~"

5b57 5bfa 6148 6301 6642

316 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU28 2 3 6 7 8 9

'Ix r~ rh • m ~ lifl /l~ rm
6b21 6ccb 6cbb 723c 74bd 75d4 78cl 793a 800c

10 If EJ ~ ~$ fly ~ P: ~~ Pl'
Islr

8033 81ea 8494 8fge 6c50 9c7f 5fOf 8b58 9d2b 7afa

'ID
d:! ~ t pt ¥A ~ ~~ * ~ 20 /,

8ef8 5b8d 96eb 4e03 53fl 57f7 5931 5ac9 5ba4 6089

30 r~ ~ ~ ~ ~ ~ ~ {J~ ~ Z
6e7f 6f06 75be 8cea 5b9f 8500 7bcO 5072 67f4 829d

~
-+-f-o-

*$.i 4 ~ ~t ~ iJ& i~ ;W(40 :~~ I=l

5c61 854a 7cle 820c 5199 5c04 6368 8d66 659c 716e

so *± m'l\ 1\)/ ~ ~~t • j! II' ~ ;f~ {~ ~
793e 7d17 8005 8hId 8cca 906c 86c7 90aa 501f 52 fa

60 R ¥J ~"J fi @"J *R ~~ ~ ~ ~~
5c3a 6753 707c 7235 914c 91c8 932b 82e5 5bc2 5f31
-+.+-- ± Jf;(~ =¥ * J* g;f ~ fj 70 ~
60f9 4e3b 53d6 5b88 624b 6731 6b8a 72e9 73eO 7a2e

~j ~ r~ § {fm g f!5l ~ t§t W 80 X

816b 8da3 9152 9996 5112 53d7 546a 5bff 6388 6a39

90 ~ fiX fm lEI ~)(}aj
7dac 9700 56da 53ce 5468

CHAPTER 26 I JAPANESE CHARACTER SET 317

KU29 3 6 7 8 9

r:::!:7 J?t V\ri {~ ~j(~ t:JH * f:k ~ ,,~\

5b97 5c31 5dde 4 fcc 6101 62fe 6d32 79cO 79cb

~ m; ~ ~]it -+:-t-

~ g 0 iRt 10 ~ ~ L
f:)

7d42 7e4d 7fd2 8led 8211' 8490 8846 8972 8b90 8e74 ;::;
~i

~ iOO ~ ~1ii ~ M 1t 1i 76 + :~

20 < \)
f)
-l

8f2f 9031 914b 916c 96c6 919c 4ccO 4f4f 5145 5341

~Jf tX * tt- i.r1:: ~ M~ m ~JE ~ 30
,,.
,,'"

5f93 620e 67d4 6e41 6cOb 7363 7e26 91cd 9283 53d4

40 Wl m f,r~ 1Jl *m '*' ~ ~A
"'" ttl vr~

5919 5bbf 6ddl 795d 7c2c 7e9h 587e 719f 5lfa 8853

50 ~ {~ W~ * H~ -;t~ ~ ,~~ II fm
8ffO 4fea 5en) 6625 77ae 7ad 821e 991T 51c6 5 faa

13] fl JfD
,-L....

~ itMJ 1m mrt! Ji« il 60 r~
65ec 696f 6b89 6df3 6c96 61'64 76fc 7dl4 5del 9075

70 W¥ Jlrm 911 *JJ pJT ~ Bi m ~ *~
9187 9806 5lc6 521d 6240 6691 66d9 6ela 5eb6 7dd2

80 ~ Eit • ii a~ WJ *~ 1;(Pf 1~ s

7t72 66f8 85af 8517 8ar8 52a9 53d9 5973 5e8f 5f90

90
~O
J~'\ ~lYJ ~~ {~ {~

~

6055 92c4 9664 50b7 511 f

318 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU30 3 4 6 7 8 9

ij91 lEE 7T B P~ Fm J]~ • ?J!
52dd 5320 5347 53ec 54e8 5546 5531 5617 5968

10 ~ ~~ 11i ~~ IJ\ j> [\iij $ * HI
59be 5a3e 5bb5 5e06 5eOr 5ell 5cla 5e84 5e8a seeO
:i:V.. jf\ 19> m * t! ~ l§ f3B A 20 !B'l
5f70 627f 6284 62db 638e 6377 6607 660e 662d 6676

30 f~ m W ~ rB ~~ r~ If§ i~ ~
677e 68a2 6alf 6a35 6chc 6d88 6e09 6e58 713e 7126

~~ tt ~ ~~ ~1t ~ ffJ\ ~

~ *$ 40 J93.
7167 75e7 7701 785d 7901 7965 79fO 7aeO 7bll 7ea7

*B ~ m --f-.f:o- -H-

1if ~ f~ ~iE ~g so ~~ ~
7d39 8096 83d6 848b 8549 885d 88f3 8aH 8a3e 8aS4

~~ ~ ~ g ~1E ~ ~l ~, ¥~ 1: 60 ~

8a73 8c61 8cde 91a4 9266 937e 9418 969c 9798 4eOa

70 3t Zl$ * JL 'IJ tJiX :l:j tfi ~ ~
4e08 4ele 4c57 5197 5270 57cc 5834 58cc . 5b22 Se38

80 llf 11 ~ fj: r~ ~* ~ fi ~ ~
60c5 64fe 6761 6756 6d44 72b6 7573 7a63 84b8 8b72

90 ml ~J£ ~ :J:@: ~'rP
91b8 9320 5631 571'4 98fe

CHAPTER 26 / JAPANESE CHARACTER SET 319

KU31 3 4 6 & 9

fA f@: ffl ill ~i ~~ @ 19m it
62ed 690d 6b96 7led 7e54 8077 8272 89e6 98df

10 M '* m {$ {§ {~ ~ y~ ~ • :z: ~ 0

8755 8tbl 5c3b 4f38 4fel 41b5 5507 5a20 5bdd 5be9 ~
t:

" JI~ f~ *JT
.illl. ~ **

~=t ~ $ «i
20 JL' 1=1 '~ w c

5fc3 614e 632f 65bO 664b 68ee 699b 6d78 6dfl 7533 M.
if
M.

~ ~ 1$ * *$ b! +fa fjT fJ! ~0
2
«j

30 .I~~ a~ tl
::!

75b9 77lf 795e 79c6 7d33 81c3 82af 85aa 89aa 8a3a

40 ~ $ Jl ~t it A {- ~ • :f:
8eab 8f9b 9032 91dd 9707 4cba 4ccl 5203 5875 58ec

so =
~ tk ~ ~ ~1l ill ~$ If] ~ ~l
5cOb 751a 5c3d 814e 8aOa 8fc5 9663 976d 7b25 8acf

~Ji WF ~ 1M
,---- UJ\ ~ §rP it 71< 60 m

9808 9162 56f3 53a8 9017 5439 5782 5e25 63a8 6c34

~j(Hl *~ ~
~

~ @~ &1 ~~ ~ 70 =P<:
708a 7761 7c8b 7feO 8870 9042 9154 9310 9318 968f

fffij tm g .!:±i
~ *~ ~ ~l tJiS t~ &0

I===f
~ I1=i1

745e 9ac4 5d07 5d69 6570 67a2 8da8 96db 636e 6749

90 f§i 1E ~~ ~ fJiS
6919 83c5 9817 96cO 88fc

320 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU32 2 3 4 6 7 8 9

~ m 'f tit ~,j ~ £ ~ ffiU
6f84 647a 5bf8 4cl6 702e 755d 662f 51e4 5236

10 ~ ~i ~iE 1[:£ fiX: IF)(~ ~ H~ fl
52e2 59d3 5f81 6027 6210 653f 6574 66lf 6674 68f2

f£9 IE r3?: ~i ~ ~ *~ ~
-=I:

~ 20 'F.J F
6816 6b63 6e05 7272 75 If 76db 7ebe 8056 58fO 88fd

gg ~fiX if =:~ ill! ~i ~ ij~ for f>G 30 a~ r=:J

897f 8aaO 8a93 8aeb 90ld 9192 9752 9759 6589 7aOe

nfB !i 1m JI~ ~ ~ .:±:h fIT 15 fl 40 S

8106 96bb 5e2d 60de 621a 65a5 6614 6790 77f3 7a4d

~ *::l! ~
=S. 7ffi ~* ~. 1i~ -WJ fill so ,~ ~

7e4d 7e3e 810a 8eae 8d64 8del 8e5f 78a9 5207 62d9

60 f1€ 1~ t:JT ~~ W W ~Jt ~ MS :g
63a5 6442 6298 8a2d 7a83 7beO 8aae 96ea 7d76 820e

!l!lil {W 1t T 2=i ~ W ~ JJ[lii~ 70 g

8749 4ed9 5148 5343 5360 5ba3 5e02 5cl6 5ddd 6226

~ t~ ti m * i~ rJt ~ 11 ~

80 n!~
6247 64bO 6813 6834 6ee9 6d45 6d17 67d3 6f5e 714e

t~ JiJf ~ tltl:

*~ 90 f3'J
717d 65eb 7a7f 7bad 7dda

CHAPTER 26 / JAPANESE CHARACTER SET 321

KU33 3 6 7 8 9

*1 ~ ij~ j4 ~,\ ~

~i ~~ ~ IIJ ~
7e4a 7fa8 817a 821b 8239 85a6 8a6e 8cce 8df5

~ JI ~i ~Jc 00 i~
..:iL. ~ rfJi ~ 10 Jirj J=f

9078 9077 92ad 9291 9583 9bae 524d 5584 6f38 7136

20 ~ fff! *i iji *1 U~ ~ Ilt£l. m 1f
5168 7985 7e55 81b3 7cce 564c 5851 5ea8 63aa 66fe

30 ~ ~ ~1l lffii If* ti~ *13. fil *ll * 66fd 695a 72d9 758f 758c 790c 7956 79df 7e97 7d20

{tJl jj ~R ~fi jWJ ~ {~ ~Ij }X jl 40 .B~~

7d44 8607 8a34 963b 9061 9f20 50e7 5275 53ee 53e2

so ~ ~ ~± * ~ * ~ IT[4WJ rJ! ,~,

5009 55aa 58ce 5941' 723d 5b8h 5e64 531d 60e3 60f3

60 t!l tm t~ 11 t~ 1f! rw ~ ~ fl
635e 6383 6331' 63bb 64cd 65c9 661'9 5de3 6ged 69fd

70 it ~~ 3t-: ir ~ f§ ?&
'D' *~ *'~ , ~C\ ~* IL'~ c,\

6fl5 71e5 4e89 75c9 761"8 7a93 7edf 7dcf 7dge 8061
..........

~ ~ ~ ~ ~I± IE Z JI it 80 .Eft 1'7K ::P<:

8349 8358 846c 84hc 8511) 88c5 8d70 9001 906d 9397
~ I~j f~ t~ jr\~ 90 *~
971c 9al2 50d 5897 618c

322 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU34 3 4 6 7 8 9

HI]I ~~ '& {JE {J!Jj fir] i1P Ef m ,~,

81d3 8535 8d08 9020 4fe3 5074 5247 5373 606f

10 tJE * iltf1 JE ~ {it ~ H~ ,J ~ ~
6349 675f 6e2e 8db3 90lf 4fd7 SeSe 8cca 65cf 7d9a
-L... 1m ;jt Wi ff f* # tit *1 ~ 20 ¥-
5352 8896 5176 63c3 5b58 5b6b 5cOa 640d 6751 905c

30 {ill ~ ~ 7J\ at u~ m 2Z Itf t1
4ed6 591a 592a 6c70 8a51 553e 5815 59a5 6OfO 6253

40 tE fil'B m WE I~t ~'" II'" {* it ~t ffiit
67cl 8235 6955 9640 99c4 9a28 41'53 5806 5bfe 8010

so W & 1~ t:l' tifg ~ 1& * iff! ij6 rtJ Jl!J\ .,~"

5cbl 5e2f 51'85 6020 614b 6234 66ff 6cfO 6ede 80ce

60 Hi!! tf ~ ~ ~ jj! ~% ~ fjJ {~
817f 82d4 888b 8cb8 9000 902c 968a 9edb 9bdb 4ee3

70 # * ~ W~ 1m tI tt ffig !j[~
53fO 5927 7b2c 918d 984c 9df9 6edd 7027 5353 5544

80 ~ t-E tR ttl rR ttl I$ ~ ~, ¥Ii
5b85 6258 629c 62d3 6ca2 6fef 7422 8a17 9438 6fcl

90 a£ i1= fiPt ~~ ~
8afe 8338 51c7 861'8 53ca

CHAPTER 26 / JAPANESE CHARACTER SET 323

KU 35 3 6 7 8 9

np {El it ~ ~ n)G ~ ~ i!!!
53e9 4f46 9054 8fbO 596a 8131 5dfd 7aea 8fbf

g ~ ~m e f# ~i ft 11i ~ :t1! 10 j\\' Z
0

68da 8e37 72f8 ge48 6a3d 8abO 4e39 5358 5606 5766 ~
N

tf! ~ .§. ~ r~ ii '-'-' ~ li#ij • :::i

W< <I:
20 V

0
_I

62c5 63a2 65e6 6b4e 6del 6e5b 70ad 77ed 7aef 7baa 1.\1
VI
W

~~ ~t ns m ~i ~m Bfl !. ~ ItFf
z

30 a:
<J;

""" 7dbb 803d 80e6 86eb 8a95 935b 56e3 58e7 5f3e 65ad """'-
t!'}

alt f."f ~ ~ ~!I.< {@ ~o tili 51B lP~ 40 ~Y<

6696 6a80 6bb5 7537 8ae7 5024 77e5 5730 5flb 6065

so ~ ?tl1 ~ ft fi: ~ ~ Jl£ j;ih ~
667a 6c60 751'4 7ala 7f6c 811'4 8718 9045 99b3 7bc9

60 ~ tt ~ ~
I=Ef ijS f~ ~ ltl

/~'" ~~ ~
755e 7af9 7b51 84c4 9010 7ge9 7a92 8336 5ael 7740

70 q:r {$ E8 J~ tffi JE} t± i± 2 a:
4e2d 4ef2 5b99 5feO 62bd 663c 67fl 6ce8 866b 8877

~1 Wf ~lf j~! f~ r~t 3t ,J4 ~T JtT 80 T

8a3b 914e 921'3 99dO 6a17 7026 732a 82e7 8457 8eaf

90 T ~~ {)aj ~ n
4eOI 5146 51eb 558b 5bf5

324 PEN POINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU 36 3 5 6 7 8 9

$ti ~ fT 93 5~ 1~ f~
J~' f~5

5e16 5e33 5e81 5fl4 5115 5f6b 5fb4 61f2 6311

10 ,~ ~ ~~ Jt~ aIr Hj5 ~~ ij~ n~ ~
66a2 671d 6f6e 7252 753a 773a 8074 8139 8178 8776

20 j)aj ~ m Jj!j5 ~j5 ~ I~ J~ w}] f!P
8abf 8ade 8d85 8df3 929a 9577 9802 gee5 52e5 6357

30 U[H* tit r$ it ~- ~t i$ ~ ft
76f4 6715 6e88 73ed 8ec3 93ae 9673 6d25 58ge 690e

40 fJ@ ~ j~ ;Jj iffi ~ tBJ too *1 fBI
6gee 8ffd 939a 75db 90la 585a 6802 63b4 69fb 4f43

it *13 it
-+.+- mjf

)(illil ff i.Ek t, • so J~ ,~x \ '7!i 'ffi{

6f2e 67d8 8lbb 8526 7db4 9354 693f 6nO 576a 58n

~I *ffi Jl\ m ~~ t~
--L...o.

{~ f' {~ 60
g -r

5b2e 7d2e 722a 540a 91c3 9db4 4ead 4f4e 505e 5075

~rJ ~ J::t j:~ ~ m ~ ~ ~ ~ 70 ~

5243 8cge 5448 5824 5h9a 5eld 5e95 5ead 5en 5f1f

80 1j t! tkf r~ f~ rr PtE 1~ f£ *m
608e 62b5 633a 63dO 68af 6c40 7887 798e 7aOb 7deO

90 mi ~T 8$ ~* ~
8247 8a02 8ae6 8e44 9013

CHAPTER 26 / JAPANESE CHARACTER SET 325

KU37 3 " 6 7 8 9

~~ ~~ ~T W'~ r~ t~ ftl ~ rl
90b8 912d 91d8 9 fOe 6ce5 6458 64e2 6575 6ef4

10 a"J m II ~jjj iij§ f§ 1n~ ~ $(& ~ z
0

7684 7blb 9069 93dl 6eba 54t'2 5tb9 64a4 8f4d 8fed ~
N

~ :A tJl ~ 11 m • ~1t ~~
::;
<I:

20 v
0
...J

9244 5178 586b 5929 5c55 5e97 6dtb 7e8f 751c 8che 1M
th
w

~ • ,~ {~ ~ im B3 1$ 5R H± z
30 ~ 'i

.a:
,.."

8ee2 985b 70b9 4f1d 6bbf 6tbl 7530 96tb 514e 5410 ""-
I7i

40 * ~ ~1i M f! S} *± tll ~ ~
5835 5857 59ac 5c60 51'92 6597 675c 6e21 767b 83df

so 1m ~ f~ ~l ~ft pm ~ 13t ± ~~
8ced 9014 90fd 934d 7825 783a 52aa 5ea6 571f 5974

60 ~ f~U 1t ~ f* ~ m ~ mt ~ ""' ""'
6012 5012 5l5a 51ae 5led 5200 5510 5854 5858 5957

70 ~ ~ ~~ JtJjl t~ ti * f~~ ~t ft
5b95 5cf6 5d8b 60be 6295 642d 6771 6843 68bc 68df

80 ~ rfij r~ ~ ~T ~~ ~ m. m ~
76d7 6dd8 6e6f 6d9b 7061' 7le8 51'53 75d8 7977 7b49

90 ~ a=t fa) M ff~ ~rj
7b54 7b52 7ed6 7d71 5230

326 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU 38 3 6 7 I 9

if '*S
r~ ~ ~t Iii li W~ ~ W~

8463 8569 85e4 8aOe 8b04 8c46 8eOf 9003 900f

10 ~fl ~1ij l1l BI fi~ {f}] j}] JPJ ~ ~
9419 9676 982d 9a30 95d8 50cd 52d5 540c 5802 5eOe

It! ti rtn1 Hi .:0:..
n~ ~ ~ ~ ~ 20 m

61a7 64ge 6dle 77b3 7ae5 80f4 8404 9053 9285 5eeO

~~ ~ ta /.t!J 'II;::£::

* ~ ~ • ~
30 '1' 1JCJ' 1% -9;J:.

9d07 533f 51'97 51b3 6d9c 7279 7763 79bf 7be4 6bd2

3!R ~± f}jj f~ 8 ~ f~ Fa3 ~ ~ 40 iin
72ec 8aad 6803 6a61 511'8 7a81 6934 5c4a gef6 82eb

so ~ W ¥j~ PI rB Jf$ -L~ ~ 14! ~)I
5be5 9149 70le 5678 5c6r 60c7 6566 6c8e 8e5a 9041

60 ifWi tF it ~4! * lJ~ rAJ 'F Jill *i
9813 5451 66c7 920d 5948 90a3 5185 4e4d 51ea 8599

70 ~J* ill t~ ~ jf&J m J~)lf mil ~ m mi
8bOe 7058 637a 934b 6962 99b4 7e04 7577 5357 6960

80 $)(it ift ~ ~ J?Js ~ ~ ~
8edf 96e3 6c5d 4c8c 5c3c 5flO 8fe9 5302 8edl 8089

90 !lIT it B ~L A
8679 5cff 65c5 4c73 5165

CHAPTER 26 / JAPANESE CHARACTER SET 327

KU 39 3 6 7 S 9

~D J7R ~ 1£ ~f ~~ ~};)
llJ~\ ~ ffi

5982 5e3f 97ee 4ctb 598a 5fed 8a8d 6fel 79bO

t1J\ ~ .~ ai ~JL iF .b ~ ~ xf& 10 ~ ~ J\\\ .i~~

7962 5be7 8471 732b 71bl 5e74 5ff5 637b 649a 7le3

*~ 7J ~ Z ~ Ii JIY~ ill *rti Ab
20 Fl~

7e98 4e43 5efe 4e4b 57de 56a2 60a9 6fe3 7dOd 80fd

30 ij~ *rti III ~Jl Ii ~ t~ tI iii f~
8133 81b!' 8tb2 8997 86a4 5df4 628a 64ad 8987 6777

r& iJR ~ iJR ~
I:J:O B J~ 11J: ~ 40 i~

6ee2 6d3e 7436 7834 5a46 7175 82ad 99ae 4ff3 5ec3

tf 13F ~~ ff ~ Jl~
;:f~ ij$ ¥ t'i2 50 FJ

62dd 6392 6557 676f 76e3 724c 80ee 80ba 8f29 914d

fff J# ~t 1i 1l ~l 3ft ~
-:::f:::-

~tf 60 7C
500d 57[9 5a92 6885 6973 7164 72fd 8eb7 58f2 8ceO

~tf
,~ • f¥ -++- is ~U t~ m 70 J.E. f1C

966a 9019 877f 7ge4 77c7 8429 4f2f 5265 535a 62ed

so fB 18 B ~s i f8 ffiB ft ili BI r~
67cf 6eea 767d 7b94 7c95 8236 8584 8 feb 66dd 6f20

90 ~ ~.w P"t:r ~ ~~ ~
7206 7elb 83ab 99cl 9ca6

328 PENPOINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

KU40 3 " 5 6 7 8 9

m ~ ~ ~ • ~ *JJ m }j)1
5lfd 7bbl 7872 7bb8 8087 7b48 6ae8 5e61 808c

10 m m i\ ~ r~ j£ m !I~
~ {t frj

7551 7560 516b 9262 6e8c 767a 9197 9aea 4f10 7f70

20 f~ ~ ~JJ 1\~ P~Jf !~ ~ .. {* *U
629c 7b4f 95a5 9ce9 567a 5859 86e4 96bc 4f34 5224

30 ¥ &:. ~ rflfL ~ lJf fiX r~ ~fL JtJX
534a 53cd 53db 5c06 642c 6591 677f 6c3e 6c4e 7248

40 aB f9£ BI~ ~ ~ • fi& lJij * ~J{
72af 73ed 7554 7e41 822c 85c9 8ca9 7bc4 91c6 7169

50 h~ ~ m ajE {Iff f.J)t
.JlIL. ~ ~ ~ ~

9812 98ef 633d 6669 756a 76c4 78dO 8543 86ee 532a

60 5!f! a ~2 lEE 1&: ~F
J~\ In ftt 1ft ~

5351 5426 5983 5c87 5f7c 60h2 6249 6279 62ab 6590

70 l:~ '~ ~ \ ~ &: E* ~ *3F W ij~ *~
6bd4 6ccc 75b2 76ae 7891 79d8 7deb 7n7 80a5 88ab

so ~1F Jt JI ~.~ ~ fj ~ {Fm f=§ ~
8ab9 8cbb 907f 975e 98dh 6aOb 7c38 5099 5e3e 5fae

ftt m fE J§ ~
90 A

6787 6bd8 7435 7709 7f8c

CHAPTER 26 / JAPANESE CHARACTER SET 329

KU 41 3 6 7 8 9 .. f~ f1f! [21 JE g~
)j:f:::j ~ n* ~

9f3b 67ea 7a17 5339 758b 9aed 5[66 819d 83ft

10 nt 5a5 ~\ ~ $ 1m f~ ~~ tJi *H z
0

8098 5f3e 5fe5 7562 7b46 903e 6867 5geb 5a9b 7dl0 ~
N

B ~ it{ wI *~ 71< ~illf III W ~
::;
«t

20 il~ !lIZ 71' i7R /J, V
0
• .1

767e 8b2e 4ff5 5f6a 6a19 6c37 6f02 74e2 7968 8868
w
i.h
w

~f ~"J JfjJ Wi ~ f) EB ~al ~~ :i1::' Z

30 ifYJ\ ~
<t
~

8a55 8e79 5edf 63cf 75e5 79d2 82d7 9328 92f2 84ge try

t¥ f(I r::t f~ ~Ji\ r~ 7~Ji It • ~ 40 J::t1J

86ed 9c2d 54cl 5f6e 658e 6d5e 7015 8ea7 8ed3 983b

~ }fIt /f {1 J-$ ~ ~ ~
~

~ so 1=1
f.:a

654f 74f6 4eOd 4cd8 57cO 592b 5a66 5bee 51a8 5e03

1M J[ff] r~ f!{ *
~ r~)(r~ jl 60 E3

5e9c 6016 6276 6577 65a7 666c 6d6e 7236 7b26 8150

1'1 3€ ~:ilft ~ Hftt Jti ¥ ~M ffij tmt 70 J:1S "it
819a 8299 8b5c 8eaO 8ee6 8d74 96lc 9644 4fae 64ab

itt • 'iJ mE f§~ !t *1 m ~ J1i 80
I'"~ ~

6b66 821e 8461 856a 90e8 5eOI 6953 98a8 847a 8557

90 {7\ !EIJ 1~ ~M ~~
4fOf 5261' 5fa9 5c45 670<.1

330 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU42 3 4 s 6 7 a 9

far. ~~ ~l ~ 7~ ~ fA ~ fA
798f 8179 8907 8986 6df5 5£17 6255 6cb8 4ecf

10 lt9JJ [tft 71\ P$} PJ: :l:Jt tl m ~ II
7269 9b92 5206 543b 5674 58b3 61a4 626e 711a 596e

20 W • *~ ~)(fjfJ ~ {# ~ !M
7c89 7cde 7dlb 96fO 6587 805e 4e19 4fi5 5175 5840

30 M IJl ~ *~ Ml ~ M ~~ *]{
5e63 5e73 5fOa 67c4 4e26 853d 9589 965b 7c73 9801

40 {~f ~ @ ~ 5j1j W ~ m {i ~
50fb 58cl 7656 78a7 5225 77a5 8511 7b86 504f 5909

W lr1:s.:

r~ ill Jg JJm {! ~ ~~ # so RRl
7247 7bc7 7de8 811)3 8fd4 904d 4tbf 52c9 5a29 5fOl

60 ¥f£ {~ ~m ~m [if 1m ~ m *"i $m
97ad 4fdd 8217 92ea 5703 6355 6b69 752b 88dc 8f14

70 ~! JJ ~ ~ LX: • -g} " t if {hi
7a42 52df 5893 6155 620a 66ac 6bcd 7e3f 83e9 5023

80 {$ ~ * ¥~ * ~ wt * 1M ~
4ff8 5305 5446 5831 5949 5b9d 5cfO 5eef 5d29 5e96

90 m 1~ jj!x 15 M
62bl 6367 653c 65b9 670b

CHAPTER 26 / JAPANESE CHARACTER SET 331

KU 43 3 6 7 S 9

r~ r~
-'-- @ "'i ij?J 7i M 31 J=f

m~ ;?;,

6cd5 6ee1 701'9 7832 7c2b 80de 82b3 840c 84ec - ~ ~jj E *~ ~ ~~ £I • Z. 10 ...!2..

8702 8912 8a2a 8c4a 90a6 92d2 98fd gef3 9d6c 4e4f

L f~ ttU #i fJjj ~~ -c:.- J('t m a 20 J~'\

4eal 508d 5256 574a 59a8 5c3d 5fd8 5fd9 623f 66b4

30 ~ ~ l$ ~ ~jj ijjJ ij~ ~ ~~ W
671b 67dO 68d2 5192 7d21 80aa 81a8 8bOO 8e8e 8ebf

40 ~$ r?1J o}\ ~§ Y", ~t 1~ ~ ~ ~ f"
927e 9632 5420 982e 5317 50d5 535e 58a8 64b2 6734

so !f)(g~ f~ ~D fh ¥~ fr1 !,Jffi $~ ~
7267 7766 7a46 91c6 52c3 6cal 6b86 5800 5e4e 5954

60 * ~~ fL ~ ~ m JJ« Jff m! 9*
672e 7ftb 51el 76c6 6469 78c8 9b54 gebb 57eb 59b9

70 a* t)(~ P.I tW
~ ~ ij~ tit iff fiE

6627 679a 6bce 54e9 69d9 5e55 819c 6795 9baa 67fe

80 ~, f~* ~ f~ x t* * i* ~ {~
9c52 685d 4ca6 4fc3 53c8 62b9 672b 6cab 8fe4 4fad
--f-f-oo]g 7J Jlt fr£J 90 ~
7e6d gebf 4e07 6162 6c80

332 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU44 3 .- 6 7 8 9

ri ~ ~ * ~ 8 ~ wEll ~

1&'
6f2b 8513 5473 672a 9b45 5dO 7b95 5cac 5bc6

Ii r~
::f:rl::

~ HlR ~p *~ ~ HIt ~ 10 :&
871c 6e4a 84dl 7a14 8108 5999 7c8d 6cll 7720 52d9

-= 1HE $. ~ ~ l~ f}jt ~~ ~~ ~ 20 .In" ~95

5922 7121 725f 77db 9727 9d61 690b 5a7f 5a18 5135

30 ~ 1lTl l3Jj I3Fl
.1Dl. ~ ~~ ~~ ~f !J:t lJJJZ

540d 547d 660e 76df 8ft, 9298 gef4 5gea 725d 6ec5

40 ~ fIT! *m ~oo 00 Ii t~ f~ ~ * 514d 68e9 7dbf 7dcc 9762 9cba 6478 6a21 8302 5984

~ =E 51 -c:::
*~ *€

~ {~ * ~ so ~ ~

5b5f 6bdb 731b 761'2 7db2 8017 8499 5132 6728 9ed9

§ ~ m jJt Jt FR *}] -t:tr Fp, rc,' 60 ~

7600 6762 52ff 9905 5c24 623b 7c7e 8cbO 554f 60b6

70 *;t r, j;j. ih {$ ~ ~ lf~ mf 51]\
7dOb 9580 5301 4c5f 51b6 591c 723a 8036 91ee 5f25

:* m 1~ ~~
-J".J.-

~ IEi ~~ fYP it 80 ~~ ~
77e2 5384 5179 7d04 85ac Sa33 Sc8d 9756 67f3 85ae

90 ~ He JJlftr ~ rEB ~ ,~,

9453 6109 6108 6cb9 7652

CHAPTER 26 / JAPANESE CHARACTER SET 333

KU45 3 4 6 7 8 9

~A
ilnU $W1 ul {t {?I ~ ii. fl ~
8aed 8f38 552f 4l'51 512a 52c7 53cb 5ba5 5e7d

10 1~ if tl *-f fm r~ 1m ~~ ~ EB z
0

60aO 6182 63d6 6709 67da 6e67 6d8c 7336 7337 7531 ~
N

1,tJ m s~ ii a:::t j~ £1 ~!k !Y 7 ::::1
20 B <t v

0
.d

7950 88d5 8a98 904a 9091 90l'5 96c4 878d 5915 4e88 w
tfI
Mol

~ 4 ~ fti ff{ {fl f}] fJ.}C ?(;.]I Z
30 ~ 1=1 /"' .q:

~

4f59 4eOe 8a89 8f3f 9810 50ad 5c7c 5996 5bb9 5eb8 ""'-
~

40 ~ t! tl ai f~ f~ i!f: m m m
63da 63fa 64cl 66dc 694a 69d8 6dOb 6eb6 7194 7528

~ $ ~i i€
--+:+-- ¥1 ~~ ~ffi ~ ~J! so ~

7aaf 7f8a 8000 8449 84c9 8981 8b2l 8eOa 9065 967d

• ~X trp ~X tf\ r~)l>J Ii 7)£ m 60 J~'\ ::s:z..
990a 617e 6291 6b32 6c83 6d74 7fcc 7tTc 6dcO 7f85

!II *l * ~ *~ ~ f-& ~ 'i ~~ 70 E8 ~

87ba 88f8 6765 83bl 983c 9617 6dlb 7d61 843d 916a

~L ~~
J-L-l fri] i~

-++- rtil mt: flj 51! 80 ~ ~ ~ .DIL.

4e71 5375 5d50 6b04 6 feb 85cd 862d 89a7 5229 540f

90 Jfj *
;;RrJ
~ JJg I~

5c65 674e 68a8 7406 7483

334 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU 46 3 4 5 6 7 8 9

WIT
----...

m! m • ~ ~ *
-L...

~ li
75e2 88ef 88e1 91ee 96e2 9678 5f8b 7387 7acb

10 ~ tffi ~ ~U i5tt rffi £fit il W1t ;f!ft
844e 63aO 7565 5289 6d41 6ege 7409 7559 786b 7c92

J)i .::D::. g~ i§ tI n* ,. 7 ~ f~ 20 r:g

9686 7ade 9f8d 4fb6 616e 65e5 865e 4e86 4eae SOda

[illj {~ ~ *3f ~
,-,-

1Jlt • D~ it 30 r/~

4e21 51ee 5 bee 6599 6881 6dbe 731f 7642 77ad 7alc

fi ~
~-l- JI • ~~ .ba tJ ~* {tfB 40 ~Uj~ 11.,

7ee7 826f 8ad2 907e 91cf 9675 9818 529b 7dd1 S02b

so)][t* #f t~ fff\ ~r no fRO ~~ M M
5398 6797 6dcb 7ldO 7433 8le8 8f2a 96a3 geS7 ge9f

f~ m ,~ m *§ A {~ {rtl if.; }jJ}J 60 tm "j;/, Tl

7460 5841 6d99 7d2f 985e 4ee4 4f36 4f8b Slb7 S2bl

~ I(tfj ~ *L ~ ~ ~~ ~ @ • 70 -,-:1 \Ill T-I ~

5dba 601e 73b2 793e 82d3 9234 96b7 96f6 970a 9e97

~ M ~ 370 *J 3'tJ ?,IJ • &~, 1~ 80 II" ~ J~"

9f62 66a6 6b74 5217 52a3 70c8 88c2 5ec9 604b 6190

90 ~Jl ~t • ~i ~i~
~f-'

6f23 7149 7c3e 7df4 8061'

CHAPTER 26 / JAPANESE CHARACTER SET 335

KU47 3 6 8 9

~ Jm &* g 3 *1 ~p n~ ~
84ee 9023 932c 5442 9b6f 6ad3 7089 8cc2 8def

• ~ • Jtm ~ ~}j f~ *H~ i& tm 10 7j , .
9732 52b4 5a41 5eca 5f04 6717 697c 6994 6d6a 6fOf

$: ~~ • ~ ~ ~ ~~
--L.. R 1~ 20 /'\

7262 72fc 7bed 8001 807c 874b 90ce 516d ge93 7984

ijtJ ~1< ~ {~ f[] ~5 ili aff n~ ~ 30 ilfffi

808b 9332 8ad6 502d 548c 8a71 6b6a 8cc4 8107 60dl

~ ~ M Ii {BIN ~~
=!:i!:::

~ f~ t~ 40 HI'? ~

67aO 9df2 4c99 4e98 9clO 8a6b 85cl 8568 6900 6e7e

so ~ H~
7897 8155

336 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU48 2 3 S 6 7 8 9

=* 115 ~ 1'* y~ "* #) * X
5 fOe 4el0 4e15 4e2a 4e31 4e36 4e3e 4e3f 4e42

10 ~ * IL J * f~ ** ~ ~* T §
4e56 4e58 4e82 4e85 8e6b 4e8a 8212 5fOd 4e8e 4ege

~ -L.* ---L.- -L..... -L.. • M* {Jj JA if' 20 JL ** ~
4e9f 4eaO 4ea2 4ebO 4eb3 4eb6 4ece 4ecd 4ec4 4ec6

30 f}J it m fJ].* ff fft fn: f~ it f?t
4ec2 4ed7 4ede 4eed 4edf 4ef7 4f09 4f5a 4f30 4f5b

40 iii] {t fT {E f~ {* it i~5 fWl is
4f5d 4f57 4f47 4f76 4f88 4f8f 4f98 4f7b 4f69 4f70

iff f$ * tfij 1m fJl f~ ~il {~ 1l
4f91 4f6f 4f86 4f96 5118 4fd4 4fdf 4 fee 4fd8 4fdb

60 1m {J! {frJ 1~* {$* {~ {RS {)ffi {~ {~
4fdl 4fda 4fdO 4fe4 4fe5 50la 5028 5014 502a 5025

70 f$ f~* {*~ {l§ f~ f~ f)}f! flff fr, fiij
5005 4fle 4ff6 5021 5029 502e 4ffe 4fef 5011 5006

80 fll ~1 11 {~ {~* {~ {tx {f* {~* J~' f~*
5043 5047 6703 5055 5050 5048 505a 5056 506e 5078

90 fl {t~ {f {~ {1Jt
5080 509a 5085 50b4 50h2

CHAPTER 26 / JAPANESE CHARACTER SET 337

KU49 3 6 7 & 9

~ 1~ ff 1l {I {ffiS* f~ 1~ 1~
50c9 50ca 50b3 50c2 50d6 50de 50e5 50ed 50e3

10 {l fl 1- {~ f~* 11 fm* ~ {. {'
50ee 50f9 501'5 5109 5101 5102 5116 5115 5114 511a

20 {II 1ft 1. 111 {I JL J[~ Jt ~
5121 513a 5137 513c 513b 513f 5140 5152 514c 5154

iil nlX
~ i«* /~ ~ n* [Bj* fflT* ¥J. 30 ~~* ~

5162 7a1'8 5169 516a 516c 5180 5182 56d8 518c 5189 t''''j

40 1m ~ ~ ~ r-7'* ~ ~* * ~* • 518f 5191 5193 5195 5196 51a4 51a6 51a2 51a9 51aa

{* {R:* {Ii irf* Ill< {Jt* {JIJ {[rrJ ,-'- '@ so {}Jt* {~*

51ab 51b3 5Ibl 51b2 51bO 51b5 5Ibd 5Ic5 51c9 51db

60 JL ~ m* {-:f: *
~ JIl U ~* ~* fr]* ~rj*

51eO 8655 51e9 5Ied 51fO 5lf5 5He 5204 520b 5214

70 mrj t9J* I5IJ ~rJ *1]* *51* ~Ij)lll wU
520e 5227 522a 522e 5233 5239 5241' 5244 524b 524c

~U ~U
~

t?1J *IJ ~IJ* *rJ @Ij ~U ~* &0 ~ 7J'

525e 5254 526a 5274 5269 5273 527f 527d 528d 5294

90 ?JJJ nnJ * ~* $
77 ~Ij ¥1$

5292 5271 5288 5291 8fa8

338 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU 50 3 5 6 7 8 9

m¥* ~JJ NJJ an ~* ~}] J1JJ Db ~
8fa7 52ac 52ad 52bc 52b5 52cl 52cd 52d7 52de

10 Jh ~JJ i% ~JJ* ~ 'JJ 111 '1* m ~
52e3 52e6 98ed 52eO 52f3 52[5 52f8 52f9 5306 5308

20 iBJ 1m ~ ~P1 r: c ~ [II II ~*
7538 530d 5310 5301' 5315 531a 5323 532f 5331 5333

30 c* I!lli ~* ftt tit * ft re ~* l' [1*
5338 5340 5346 5345 4e17 5349 534d 51d6 535e 5369

40 JB jp* @P ~ ~ }JVj* 1Ji* JW{ 00f*
536e 5918 537b 5377 5382 5396 53aO 53a6 53a5 53ae

Jti* b* ~ ~* -t.'l §ll s ~ft~ UT W 50 t:::c::r .x. ..:::s<:. ~

S3bO 53b6 53c3 7cl2 96d9 53d1' 66fc 71ee 53ee 53e8

60 IY1 rR* Of ptJ: PJf PJT pj[PIL oft u~
53ed 53fa 5401 543d 5440 542c 542d 543c 542e 5436

70 ® ~ 8R n;j(* Up} ~ P!* ~ UIfI ~
5429 541d 544e 548f 5475 548e 545f 5471 5477 5470
I=Hl 0$ l!fl nft~ ote oft P§ 01 8E mX: so .FL ry

5492 547b 5480 5476 5484 5490 5486 54c7 54a2 54b8

90 O.f o~ ~ n~ ~ p

54a5 54ac 54c4 54c8 54a8

CHAPTER 26 / JAPANESE CHARACTER SET 339

KU 51 3 5 6 7 S 9

PB Ogg O:£;* 0* r% OfJ* ~ J1i ~
54ab 54c2 54a4 54be 54bc 54d8 54e5 54e6 550f

10 Oli
0 OJ! ~ ~ Om 0* n~ o,m n~ l@* z

0

5514 54fd 54ee 5400 541'a 54e2 5539 5540 5563 554c !:i
N

i!§ p)t5t P.$ u~ u@ 04' O~ lJW* O~ P~
::
<t

20 5t,X I!J<. J~\ \,j

:3
552e 555c 5545 5556 5557 5538 5533 555d 5599 5580 1M

t:n
M.~

P% n~ P¥/ ~ Df:k n#IT O~P* ¥ nlif om z
30 If «

'4'

54af 558a 559f 557b 557c 5598 55ge 55ae 557c 5583 ''',

40 Oru«* O*~ ofi: ~~ o~ ~ 01 P~ u; ol
55a9 5587 55a8 55da 55c5 55df 55c4 55dc 55e4 55d4

so P{fi ott oj u~ o~ pifL o~ Pi ~* ~
J:IJ:I g

5614 5517 5616 55fc 55fd 561b 551'9 564e 5650 71df

P~ ~ P~R pfH£ oJi ~ Pit pkk p~ pi 60 11\,\ ~

5634 5636 5632 5638 566b 5664 5621' 566c 566a 5686

70 0$ P¥ft* p~~* o~* o~
:IE u~ fI p~ JH • J \\,

5680 568a 56aO 5694 568f 56a5 56ae 56b6 56b4 56c2

so 01 Pjj ~l n~ p~
~ o~* PJI PM 0 1m

56bc 56cl 56c3 56cO 56c8 56ce 56dl 56d3 56d7 56ee

90 ~ ~* [jJ ~ [¥J
56f9 5700 561T 5704 5709

340 PEN POINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU 52 3 4 S 6 7 8 9

l!iJ ~ ~ [II III ~ 2ik ~ ~* tel

5708 570b 570d 5713 5718 5716 55e7 571e 5726

10 ir* iUI* i:j(:f:jf ill: tf :ttt ~* @* !Jt
5737 5738 574e 573b 5740 574f 5769 57eO 5788 5761

20 !fj* tEl * j$< ±H f11* :f:~ :f:}f* ** ~ #l1
577f 5789 5793 57aO 57b3 57a4 57aa 57bO 57e3 57e6

30 :tm ~ i~* ~ tr1* j$!J1H it !r% jjj*
57d4 57d2 57d3 580a 57d6 57e3 580b 5819 581d 5872

40 ~ ~!f§ ~ :±: ~* M~ t(1f fIE I!i ~ trR'*
5821 5862 584b 5870 6bcO 5852 583d 5879 5885 58b9

so !Jt ~ tl ~ iI* ti* m ~ !E m
589f 58ab 58ba 58de 58bb 58b8 58ae 58e5 58d3 58dl

ti* ill a:r ij!* ±~* !J g fr -:::f:- e
60 M -:=; ~ ..!iZ.

58d7 58d9 58d8 58e5 58dc 58e4 58df 58ef 58fa 58f9

ii* -::f::::.o' ~ !X* '!2.* ~* ~* ~* ~ :R: 70 sa ~
58tb 58fe 58fd 5902 590a 5910 591b 68a6 5925 592e

80 *. ** ~ ~ iif* #
~ ~ ~ ~ ~

592d 5932 5938 593e 7ad2 5955 5950 594e 595a 5958

90 fj ~ Jl ~* Ii
5962 5960 5967 596e 5969

CHAPTER 26 / JAPANESE CHARACTER SET 341

KU 53 3 5 6 8 9

~f ~~ #P: {~ {~* 91t ~13 ~a ~~
5978 5981 599d 4f5e 4fab 59a3 59b2 5ge6 59e8

10 ~ ~Jf ~f* ~E ~ ~~ ~ ~]B ~~ ~J3* z
()

59de 598d 59d9 59da 5a25 5alf 5all 5ale 5a09 5ala ~
~

~ ~~ m ~lfi ~ ~-$ ~ ~ 9Ji tJ1t
~=~

20
~(

w'
C}
~»>~;

5a40 5a6e 5a49 5a35 5a36 5a62 5a6a 5a9a 5abe 5abe 1M
V)
10,J

pjB ~!ll 9Jf~ m ~00i ~m ~ ~@ ~rn'* ~~
z

30 ~ m <t
""'%

5aeb 5ae2 5abd 5ae3 5ad7 5ae6 5ae9 5ad6 5afa 5afb '''''"
t4'!

40 • ~, !if ~JJ ~I* ~~ 9-.* * y1i 91
5bOe 5bOb 5b16 5b32 5adO 5b2a 5b36 5b3e 5b43 5b45

so 91 ~ ~ $ ~ ~ f* -L~ !£ "!j. ~
5b40 5b51 5b55 5b5a 5h5h 5h65 5h69 5b70 5b73 5b75

60 ¥ ** 11 r-Lt-* 'e 1J[~ ~* 7rl ~*
5b78 6588 5b7a 5h80 5b83 5ba6 5bb8 5be3 5be7 5bc9

1£ ~ ~ • ~ ~ ~ ~ $ • 70 5t.: ~ ~ a
5bd4 5bdO 5be4 5be6 5bc2 5bde 5be5 5beb 5bfO 5bf6

80 f{* Ri* ~~ W f-J 1]* i')* Jc ~ F
5bf3 5e05 5c07 5e08 5cOd 5cI3 5e20 5e22 5e28 5e38

90 jf 1m @ ~ ~*
5e39 5c4l 5c46 5c4e 5c53

342 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 54 2 3 5 6 7 8 9

Nt M m]I; Y-r ~L*
J.,l...J 71* ~i: ~

5c50 5c4f 5b71 5c6c 5c6e 4e62 5e76 5e79 Se8e

10 !i$ ~ ~* mm m!£* ~B ~ZP* JlI~ ~ir* ~ti*
5c91 5c94 599b 5cab 5cbb 5cb6 5cbe 5eb7 5ee5 Sebe

20 * m~ ~* ~ ~l* mf!1 .* ~ $ tI9I*
5ee7 5cd9 5ce9 5efd 5efa 5ced 5d8e 5eea SdOb 5dlS

30 tMl W* * ~
J.....1-l re W rI@ ~ W JlrffB*

5d17 5d5c 5dlf 5dlb 5dll 5d14 5d22 5dla 5d19 5d18

*
1=1 IIJI!} wi ~ ~* w~~* JII[I $JT ~ 40 EB

5d4c 5d52 5d4e 5d4b 5d6c 5d73 5d76 5d87 5d84 5d82

50 IIJ~ w!i ~I IIJi ~ ~* ~ ~ffi! mt • 5da2 5d9d 5dac 5dae 5dbd 5d90 5db7 5dbc 5de9 5ded

n* {f.g* ~

«< * 616 B FE> {i* ff} ~ 60 W-l JD
5dd3 5dd2 5dd6 5ddb 5deb 5df2 5df5 5eOb 5ela 5e19

70 m m ~ ~l $~ ~l ~Ji ~ ~li ~I
5ell 5elb 5e36 5e37 5e44 5e43 5e40 5e4e 5e57 5e54

80 m $j flU~* m' ~* ff * ~* ~ J* $
5e5f 5e62 5e64 5e47 5e75 5e76 5e7a gebc 5e7f 5eaO

90 Jij $ J1[~* ~*
5ecl 5ec2 5ee8 5edO 5ect'

CHAPTER 26 I JAPANESE CHARACTER SET 343

KU 55 1 3 4 6 7 8 9

• • OOT 1M • JJJ • • Jj!
5ed6 5ee3 5cdd 5eda 5cdb 5ee2 5eel 5ee8 5ee9

10 JiI • • e* L* ~* 7t ** H±* :tr ~ z
0

5eec 5efl 5ef3 Sem Sef4 Ser8 Sere 5f03 5f09 SfSd ~
N

ft* -t ~A* t:j* ~ 511 5M ~m:* 5' • ::i

20
<t v
0
....J

5r5e 5 fOb Sfll Sf16 51'29 Sf2d S08 5[41 5f48 Sf4e w
V)
1M ,. ~* !1.* ~ ~ 1ft ~* f3 ~ m z

30 ;:/ f «
~

5f4e 5f2f 5f51 5fS6 51'S7 SfS9 Sf61 5f6d 5f73 Sf77 ""-
tn

40 ti* t!l 1~ frill 1& 1~ fill 1):£ rjE ~F
5f83 5f82 5f7f 5f8a 51'88 S1'91 5f87 5fge 5f99 Sf98

so f* f~ 1£ 1~ Jilt tJT JI~ 1:H: it ~
5faO Sfa8 Sfad 5fbc Sfd6 s1'n) Sfc4 5[r8 5ffl Sfdd

60 11* :g JI~ Jlft* Jlt JI~ II~ ~ ~* Jli!
60b3 5fff 6021 6060 6019 6010 6029 600e 6031 601b

70 JNj JII~ JI~ II~ 17k * ~ 1~
J~' JI~ f~* 1ijJ

6015 602b 6026 600f 603a 605a 6041 606a 6077 605f

80 JI~* {§[I~ ~ JI~ 11m Jim JI~ JI1PJ ~
604a 6046 604d 6063 6043 6064 6042 606c 606b 6059

90 JI\~ JI~ 111l*
""

Jim t*
6081 608d 60c7 6083 609a

344 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU 56 3 4 5 6 7 8 9

Jr~ Jr~ Jr* Ir~ Jr\E! 'rflJ* 'r~* g Jr,
6084 609b 6096 6097 6092 60a7 608b 60el 6Ob8

10 ~ 111B 'f$ Jr$* 'fl Ifm t~ J[IFEJ 'Iii i~
60eO 60d3 60b4 5ffO 60bd 60c6 60b5 60d8 614d 6115

20 f{f
Ie.' t~ ~ 1*~ 'fIN t~ 'f6 S 'f~* 'UlU 'J~
6106 60f6 6017 6100 60[4 60fa 6103 6121 60fb 60n

30 ~ 1J!t ~ 'rk *l. ~ Ir* Ir~ ~ i~* ~
610d 610e 6147 613e 6128 6127 614a 613f 613c 612c

1~ I[I~ rm* 'f~ I['~ '[i 'f~ $fi* i,jf ~~ 40 T;f'* .I~" ~ .I~" I ""

6134 613d 6142 6144 6173 6177 6158 6159 615a 616b

so 11 'fl* 'f~ 1[' J['lh m f~ '[I ~* ~ .I~" ~ lffi"

6174 616f 6165 6171 6151' 615d 6153 6175 6199 6196

60 plt* ta 'r~ Jr~ 11 t~ ~r'oo 'f1n€ Jf~ 'f~ 11\\ ,;L!J"

6187 61ac 6194 619a 618a 6191 61ab 61ae 61cc 61ca

70 Hi 'I@ 'OO¥ Ib
.IL!J"

I[~ I[fe :ff*
J~'

a:::c:J

'liE 'f~ 1fm
61c9 6117 61c8 61c3 61c6 61ba 61cb 7179 61cd 61e6

r!i 'f~ 'f~ 'r~*
±1{ '[i '[I 'fl {f.~* :It 80 .I .. i;c\ J~"

61e3 61[6 6lfa 61f4 61ff 61fd 6lfc 61fe 6200 6208

J:J<: J5X: fX: ~ ~ 90 ~

6209 620d 620c 6214 621b

CHAPTER 26 / JAPANESE CHARACTER SET 345

KU 57 3 .. 6 7 8 9

4* • ~ ~~ ¥x Jf~ I~ Tri fL
621e 6221 622a 622c 6230 6232 6233 6241 624e

10 ff m rI & 15].* till 11* ~ tt ff
625e 6263 625b 6260 6268 627c 6282 6289 627e 6292

20 1Jl\ 14 tit 1t t:f t#J ttt tlfJ ~ * 6293 6296 62d4 6283 6294 62d7 62dl 62bb 62cf 62ff

30 fR D! tti U W tft 1~ f~ Wl* fJL
62c6 64d4 62c8 62dc 62cc 62ca 62c2 62c7 629b 62c9

40 t! f6 m 1~~* ti !p ilR tff 1~ ~
630c 62ee 62f1 6327 6302 6308 62cf 62f5 6350 633e

so ~ it i~ tf~ t~ ffrX fI& fj tl ftiV
634d 641c 634f 6396 638e 6380 63ab 6376 63a3 638f

60 fljI tfE f1frJ* tr, fm t~ 1~ f* 1~ ¥rM
6389 639f 63b5 636b 6369 63hc 63c9 63cO 63c6 63e3

70 f~ fEB t~~ flf« 1m • 1_ 1& f~§ f~
63c9 63d2 631'6 63c4 6416 6434 6406 6413 6426 6436

80 fI t§b ~ ft t~ • ff r~ tl tJUf
651d 6417 6428 640f 6467 6461' 6476 644e 652a 6495

90 t~ ti 1~ f~ l'
6493 64a5 64a9 6488 64hc

346 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU 58 3 4 s 6 7 8 9

tf ~ tf f$ t~ • fI too $*
64da 64d2 64c5 64c7 64bb 64d8 64c2 64ft 64e7

10 • 1~ tl* 1ft tl tl iI Wri* tJl • 8209 64eO 64el 62ac 64e3 64ef 652c 64f6 64f4 64f2

20 m • f~ M ttl 11* 11 • 11 X*
64 fa 6500 64fd 6518 651c 6505 6524 6523 652b 6534

30 7:.* 5!J: ~5l {~ IBt ~:)(~ !f& ~* a&
6535 6537 6536 6538 754b 6548 6556 6555 654d 6558

40 ~~ m~ $.ix f~ f'~ M ~ ~ ~4 il 11fi
655e 655d 6572 6578 6582 6583 8b8a 659b 659f 65ab

so IT 1m Jim ~ ~ n!f 1i1tt • ~I* X*
65b7 65c3 65c6 65cl 65<.:4 65<.:c 65d2 65db 65d9 65eO

60 5t ~ 5f! ~ fJ!:. ~ * B~ ~ /frJ
65el 65fl 6772 660a 6603 65tb 6773 6635 6636 6634

~ ~ 8YC* g
~ 8m ~ 8ft B15* ~ 70 S ...E3.

661c 6641' 6644 6649 6641 665e 665d 6664 6667 6668

80 I5i fg 8tH ~* • B~* BIll aCt ..§.. aJ}} n~
665f 6662 6670 6683 6688 668e 6689 6684 6698 669d

90 ~* 3i a~ B~~ @~* s·

66cl 66b9 66<.:9 66be 66b<.:

CHAPTER 26 I JAPANESE CHARACTER SET 347

KU 59 3 4 5 6 7 a 9

B~ B~ at a~ nJl HJ!* ai iI B
66c4 66b8 66d6 66da 66eO 663f 66e6 66e9 66fO

10 !l* ~ nm na* ** H~ H3~ • J1t * z
0

66f5 66f7 670f 6716 671e 6726 6727 9738 672e 673f ~
N

~* fA* fh if)] * ff l2 tI t-t fw* f}j*
:::i

20
« v
0
....I

6736 6741 6738 6737 6746 675c 6760 6759 6763 6764 iii.!
V'l
1M

tf * ~* tT fY t?J fJi fP* *ft* fJf
z

30 ~ In' «
~

6789 6770 67a9 677c 676a 678c 678b 67a6 67al 6785
(")

40 fEU fiiJ fJj * tR ~~ fit] tEL t'F tlf
67b7 67ef 67b4 67cc 67b3 67c9 67b8 67e4 67de 67dd

50 f~ fill f'f4 ff~ fv fm ft ~* t~ 1M
67e2 67ee 67b9 67cc 67c6 67c7 6a9c 681e 6846 6829

60 ~ t~ t~ f~ fm f1¥ f.$* *~* fP.J W
6840 684d 6832 684c 68b3 682b 6859 6863 6877 687f

70 Jl fi5 t~ f,@ {I~ t»~ t9! m *~* ~
689f 688f 68ad 6894 689d 689b 6883 6aae 68b9 6874

so ~ fl5 ~* t52 *~* tg f$* ~* f~ lfit
68b5 68aO 68ba 690f 688d 687e 6901 68c3 6908 68d8

90 {oo* f1f* frooJ ~ fEB
6922 6926 68cl 690c 68cd

348 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU60 2 3 4 S 6 7 8 9

fI ~ f* m* *1X ~ • ~ ~D
68d4 68e7 68<15 6936 6912 6904 68d7 68e3 6925

10 flii ~ ~ fJff* f~ fr,* fA* fitl* fFfH tEl
68f9 68eO 68ef 6928 692a 691a 6923 6921 68c6 6979

20 fi tm tfk fit ~ fJR* ff fi frff ~
6977 695c 6978 696b 6954 697e 696e 6939 6974 693d

30 fJ 11f~ fi«* fjj

** ll* fl m* ~ fi
6959 6930 6961 695e 695d 6981 696a 69b2 69ae 69dO

40 ffl tfWi t~ ff ~ ~ ~ *~* m ~
69bf 69cl 69d3 69be 69ce 5be8 69ca 69dd 69bb 69c3

SO fl t~* ff f~ m m fil f~* f~ ~
69a7 6a2e 6991 69aO 699c 6995 69b4 69de 69e8 6a02

(j() ~ fi • ~* If ~ ff,E • fl i&
6alb 69ff 6bOa 69f9 69f2 6ge7 6a05 69bl 6ale 69ed

70 fl ti ~ f~* fl* t* • • fl* fH*
6a14 6geb 6aOa 6a12 6acl 6a23 6a13 6a44 6aOc 6a72

80 tl* ti* fa 1M fit fl f~ fl t~* ft
6a36 6a78 6a47 6a62 6a59 6a66 6a48 6a38 6a22 6a90

90 tl ~ f!~ ~ rrLt
6a8d 6aaO 6a84 6aa2 6aa3

CHAPTER 26 / JAPANESE CHARACTER SET 349

KU61 2 3 4 S 6 7 8 9

~ • Ii f(I ~ *$ fl 11 11
6a97 8617 6abb 6ac3 6ac2 6ab8 6ab3 6aac 6ade

10 fir • fl* mu II fI f$* .* tI ~ Z
t)

6adl 6adf 6aaa 6ada 6aea 6afb 6b05 8616 6afa
;::::

6b12 «
~

II • .* ~ ffiX § ~ tx* *' f«
~
.4{

20 \J
0
_,I

6b16 9b31 6blf 6b38 6b37 76dc 6b39 9800 6b47 6b43 1M
111
MJ

1)\ (IX ax IX ~ Jtt IX M ~ 7f!1
z

30 £t «
~~

6b49 6b50 6b59 6b54 6b5b 6b5f 6b61 6b78 6b79 6b7f

40 lJfc ~ J~ ~ ,~ ~~ Jji JJ jf ~¥
6b80 6b84 6b83 6b8d 6b98 6b95 6bge 6ba4 6baa 6bab

M • J!* ~ B~ ~ ~ H1 ifrt ~,
SO ~*

6baf 6bb2 6bbl 6bb3 6bb7 6bbc 6bc6 6bcb 6bd3 6bdf

60 tiS ?i a ~ • ft tR ~ ~ it
6bec 6beb 6bf3 6bef gebe 6c08 6cl3 6cl4 6clb 6c24

70 ~ * rw t±* i£ iff f!i ill: iJL' trfl
6c23 6c5e 6c55 6c62 6c6a 6c82 6c8d 6c9a 6c8l 6c9b

80 t7J tB ii 19. t* itlt i9c t5b $ illY
6c7e 6c68 6c73 6c92 6c90 6cc4 6cfl 6cd3 6cbd 6cd7

90 m i~ iEl i't: r~
6cc5 6cdd 6cae 6cbl 6cbe

350 PEN POINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU62 2 3 4 5 6 7 S 9

raJ tz r~ ilJS r§* t~
~,-

fIT ~ lJfil
6cba 6cdb 6cef 6cd9 6cea 6dlf 884d 6d36 6d2b

10 ~ i* 1* iii] ~n i~ i~rj ~ il§i ~
6d3d 6d38 6d19 6d3S 6d33 6d12 6dOc 6d63 6d93 6d64

20 ~ ~ ifJr ~ i~ If i~ 'ifi ~J* i1*f*
6dSa 6d79 6dS9 6d8e 6d9S 6fe4 6d8S 6df9 6elS 6eOa

30 ~ '11: t:;,,, ~ ilM m i~ itl ifliJ iJ i.
6dbS 6dc7 6de6 6db8 6dc6 6dec 6dde 6dcc 6de8 6dd2

40 ifff i~ t* rJj~ ~ MB 1m ~ ~ M
6dcS 6dfa 6dd9 6de4 6ddS 6dea 6dee 6e2d 6e6e 6e2e

so ~ ?i i~ i. i~ tfX ~ 1~* riM ~
6e19 6e72 6eSf 6e3e 6e23 6e6b 6e2b 6e76 6e4d 6elf

60 tf-f itt) nm ?¥JJ i~ ~ If# i*n* ~ m
6e43 6e3a 6e4e 6e24 6eff 6eld 6e38 0082 6eaa 6e98

70 r~ ill i* iii im it ¥I m B~ iJ!
6ec9 6eb7 6ed3 6ebd 6eaf 6ec4 6eb2 6ed4 6edS 6e8f

80 if i?§ i!i!
'" *1 ¥~* • ~ mf itt • 6eaS 6ec2 6e9f 6f41 6f11 704c 6eec 6efS 6efe 6f3f

90 t~ ~J\ if ¥~R ~~
6ef2 6f31 6eef 6f32 6ecc

CHAPTER 26 / JAPANESE CHARACTER SET 351

KU63 2 3 4 5 6 7 8 9

~ r~ r~ ~ ?Jj ~ ii* lm tf
6f3e 6fl3 6ef7 6f86 6f7a 6f78 6f81 6f80 6f6f

10 te M* rl • ii m l~ 71* ill ~ :2 (;

6f5b 6ff3 6f6d 6f82 6f7c 6f58 6f8e 6f91 6fc2 6f66
;::
«
!::

~ ~ t~ 13 it rJt ~ ~ tAl if <It
20 '" c

6fb3 6fa3 6fa1 6fa4 6fb9 6fc6 6faa 6fdf 6fd5 6fec Vi
Ii
M

1fi i. ~ ~ ~ ~ il lM ill 14
;;:
«

30 0
¢

6fd4 6fd8 6ffl 6fee 6fdb 7009 700b 6ffa 7011 7001 t'

40 711 • 1& i~ ¥3f* VI • iI M iM
700f 6ffe 701b 701a 6f74 701d 7018 70lf 7030 703e

50 i~ i]l • ~ WP ~rnJ irJj* m ~'F m
7032 7051 7063 7099 7092 70af 70ft 70ac 70b8 70b3

60 ~{y ~~* ~ Zk ~~ ~ ~ m ~-g: ~ .1'" .I,,'
70ae 70df 70cb 70dd 7Od9 7109 70fd 711c 7119 7165

70 iB*
.I ''''

!~,~* J@ ~ ~ 1i ~ 1\ XI ~~ Cl'

7155 7188 7166 7162 714c 7156 716c 718f 71fb 7184

80 m* ~ ,~ 1:rJJ'* • ii n! ~ ~ ~*
7195 71a8 71ac 71d7 71b9 71he 71d2 71c9 71d4 71ce

90 ~l 1£1 ~ 1:';!* fa
71eO 71ee 71e7 71f5 71fc

352 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU64 2 3 4 S 6 7 B 9

~ ~ • if • It $ ~ ~
71f9 71ff 720d 7210 721b 7228 722d 722e 7230

10 ~* ~ ~ll* ff n** Hi ffJ ItI ft tB
7232 723b 723e 723f 7240 7246 724b 7258 7274 727e

20 ~* ~ ~* !ttl • ~I • U* ~t* aH
7282 7281 7287 7292 7296 72a2 72a7 72b9 72b2 72e3

30 ~qt ai< ~ ~ 3l* JH ~ ~ 3~ f~
72e6 72e4 72ee 72d2 72e2 72eO 72el 72f9 72fT 500f

40 ~ ~JG ~Pf ~a ~ 3f* !fflf* ~I ~I ~t
7317 730a 731e 7316 731d 7334 732f 7329 7325 733e

so ~ ~* ~ • ~ ~I ~ IX 3i ~
734e 734f 9ed8 7357 736a 7368 7370 7378 7375 737b

60 II lJJn 1ft f/]* ~ m Iij ~ ~ fI*
737a 73e8 73b3 73ee 73bb 73eO 73e5 73ee 73de 74a2

~ Jj~ f}ft ~ l;J~ ij! IPl 11JI ;£% fi1 70 ~,

7405 746f 7425 73f8 7432 743a 7455 743f 745f 7459

SO ~ ~ g
3i: !JU i1l ~ Jig * Il 1ft ~

7441 745e 7469 7470 7463 746a 7476 747e 748b 74ge

90 ~ It: fill 11 ~*
74a7 74ea 74ef 74d4 73ft

CHAPTER 26 / JAPANESE CHARACTER SET 353

KU65 2 3 4 5 6 7 8 9

• • !f±* Itt it i!ti* Nft* lffi* M*
74eO 74e3 74e7 74e9 7400 74f2 74fO 74f1 74f8

10 ~ fi ~ 11* IB!t Ii* ?it ~ ~ tt*
74f7 7504 7503 7505 750c 750e 750d 7515 7513 751e

20 ~ m Jj!* l:E* PJfr* W#* m~* ~ lifA* #
7526 752c 753c 7544 754d 754a 7549 755b 7546 755a

PJt(* m~ ~* - It~* ~ ~ im WI 00* 30 ffS
7569 7564 7567 756b 756d 7578 7576 7586 7587 7574 e

it e* ~* rr ~ 1iti m re mn ffl em
40

758a 7589 7582 7594 759a 759d 75a5 75a3 75c2 75b3

50 ~* IE m m ~ @* ~ ~ $ ~
75c3 75b5 75bd 75b8 75bc 75bl 75cd 75ca 75d2 75d9

60 ~ ~ ~ ~ :JIm $ ~ $: a m
75e3 75de 75fe 75ff 75fc 7601 75fO 75fa 75f2 75f3

70 • m ~ • a nI ~ ~ • • 760b 760d 7609 76lf 7627 7620 7621 7622 7624 7634

80 • .* mo • m • • • • M*
7630 763b 7647 7648 7646 765c 7658 7661 7662 7668

90 • ~ 1R* • if
7669 766a 7667 766c 7670

354 PENPOINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

KU66 2 3 4 5 6 7 a 9

II A* ~ ;1 ~* 5G* n& • Bt
7672 7676 7678 767e 7680 7683 7688 768b 768e

10 9Jt e~ tg e.w ~m • ~ .* Ii ~
7696 7693 7699 769a 76bO 76b4 76b8 76b9 76ba 76c2

20 fliI ~* JlD.. ia ~ Ii FM JAI ,It M* ~
76cd 76d6 76d2 76de 76el 7005 76e7 76ea 862f 76tb

30 HX OJ) IIi§ O~ WE* 11;* * DJH:* 0* ~
7708 7707 7704 7729 7724 771e 7725 7726 771b 7737

40 D$ 100 01 DJl Dl D~ D$ ~ • Of
7738 7747 775a 7768 776b 775b 7765 777f 777e 7779

so M OJ ~ iii D;J§ HI DI 01* ,. ~
778e 778b 7791 77aO 77ge 77bO 77b6 77b9 77bf 77be

60 V DI Di M " P.I J4- ~ ~ f.I
77bd 77bb 77e7 77ed 77d7 77da 77de 77e3 7700 77fe

70 liID lilt UJt m. PI @ U$ Urt* ~ eJJJ
780c 7812 7926 7820 792a 7845 788e 7874 7886 787e

80 m :{ilk ~ li~* ~ i~* UE ~* U! ~
789a 788e 78a3 78b5 78aa 78af 78dl 78e6 78cb 78d4

90 fI U~ ~ ~ ~
78he 78be 78e5 78ea 78ec

CHAPTER 26 / JAPANESE CHARACTER SET 355

KU67 2 3 4 5 6 7 & 9

~i ~, fl~ m Ul* U~ ~I if • 78e7 78da 78fd 78f4 7907 7912 7911 7919 792c

10 i. irE fflPJ Writ ~ jf~ ffr~ ff~ W~ fr~ z
0

792b 7940 7960 7957 795f 795a 7955 7953 797a 797f r:
<J;
N

~ il* m Jf ffr' frlt • ~ M ~
:d
<1(

20 ;,.$

0
..",.}

798a 799d 79a7 9f4b 79aa 79ae 79b3 79b9 79ba 79c9 1M
\J't
<U

~lt ~ m f~* ~ fJi! fft fJt fiR m z
30 ~

~~
79dS 7ge7 79ec 7gel 7ge3 7a08 7aOd 7a18 7a19 7a20 (":\

40 • 1{* m m J!* fl f~* • f)$* fli
7alf 7980 7a31 7a3b 7a3e 7a37 7a43 7a57 7a49 7a61

50 fj fl ft* I(~ ~* tJJ ~ ~ ~
7a62 7a69 9f9d 7a70 7a79 7a7d 7a88 7a97 7a95 7a98

60 g m B* ~* -= iI 11 WI • " 7a96 7aa9 7ac8 7abO 7ab6 7ac5 7ac4 7abf 9083 7ac7

~ ftt*)tf* fl'j}* li£* M ftT*
...L.L ll8* ~* 70 lLJL*

7aca 7acd 7acf 7adS 7ad3 7ad9 7ada 7add 7ael 7ae2

&0 ~ l1I ltI* ~* ~ 7ft ~ $0 ~ ~
7ae6 7aed 7afO 7b02 7bOf 7bOa 7b06 7b33 7b18 7b19

90 ~ ~8 ¥ * ~* m
7ble 7b35 7b28 7b36 7b50

356 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU68 2 3 4 5 6 7 I 9

m* ~ ij Jt* ~ ~ ~ fg ~
7b7a 7b04 7b4d 7bOb 7b4c 7b4S 7b7S 7b6S 7b74

10 jt ~ 1& ~* m $if Ii ~* • ~
7b67 7b70 7b71 7b6c 7b6e 7b9d 7b98 7b9f 7b8d 7b9c

20 ~* ~ 5* ~ ~* ~ ffl • • ~*
7b9a 7b8b 7b92 7b8f 7bSd 7b99 7bcb 7bcl 7bcc 7bcf

Ji€ l(• frjf l:d:£. iI* m • fi it 30 ~

7bb4 7bc6 7bdd 7be9 7cll 7c14 7be6 7beS 7c60 7cOO

40 ~ fe* • 11 ~* • .* if • • 7c07 7c13 7bf3 7bt7 7c17 7cOd 7bf6 7c23 7c27 7c2a

so • 11 if 1i • ~ IX 1Jf(* 11 Ii
7clf 7c37 7c2b 7c3d 7c4c 7c43 7cS4 7c4f 7c40 7cSO

60 a* • • il* if • *+ m* *Fi* fJ*
7cS8 7cSf 7c64 7cS6 7c6S 7c6c 7c7S 7c83 7c90 7ca4

70 ~* ~ *00* *fiH m ~ ~ ~ m* n
7cad 7ca2 7cab 7cal 7ca8 7cb3 7cb2 7cbl 7cae 7cb9

10 *a ~ m* ~ Ili* ~* frm • m " fl
7cbd 7ccO 7ccS 7cc2 7cd8 7cd2 7cdc 7ce2 9b3b 7cef

90 *1 • 14 *L* ~f
7cf2 7cf4 7cf6 7cfa 7d06

CHAPTER 26 / JAPANESE CHARACTER SET 357

KU69 2 3 4 S 6 7 S 9

*t *~ *!t ~ *IPJ fJb* 1k *iit *A PO

7d02 7dlc 7d15 7dOa 7d45 7d4b 7d2e 7d32 7d3f

10 *Y t¥ ~ ~ *11 ~* ~ -"g *! m
7d35 7d46 7d73 7dS6 7d4e 7d72 7d68 7d6e 7d4f 7d63

20 *~ ~* {~ *; *8 ~* ~ ~ ~ **
7d93 7d89 7dSb 7d8f 7d7d 7d9b 7dba 7dae 7da3 7db5

30 ~ ~Ji! *1* *1 ~~ *19 m~* ~ ,00 ~~ ~~
7dc7 7dbd 7dab 7e3d 7da2 7daf 7ddc 7db8 7d9f 7dbO

40 ~ M *1* m Kit ,)
~ ~* ~ ~~

7dd8 7ddd 7de4 7dde 7dfb 7df2 7del 7e05 7eOa 7e23

SO ** ~ • " ~ ~i ~ ~ *1* • 7e21 7e12 7e31 7elf 7e09 7eOb 7e22 7e46 7d)6 7e3b

60 *' ~ifIi f~ ~ f' *- *1 KI *$* ,~ kfJlf* • ~~
7e35 7e39 7e43 7e37 7e32 7e3a 7e67 7e5d 7e56 7e5e

70 • It *- *i *~ Ii ~I R¢l* ~* • 7e59 7e5a 7e79 7e6a 7e69 7e7c 7e7b 7e83 7ddS 7e7d

SO • 11* ~j *1* *1 kI* ~l* ffI *1 • 8fae 7e7f 7e88 7e89 7e8c 7e92 7e90 7e93 7e94 7e96

90 .* • *1 fijI f&Jc
7e8e 7e9b 7e9c 7f38 7f3a

358 PENPOINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

KU70 2 3 4 S 6 7 I 9

~, fa A tI* • 1m ~ ~ ~
7f45 7f4e 7f4d 7f4e 7f50 7f51 7f55 7f54 7f58

10 ~ 11 fi ;J ~ R* ii* g • • 7f5f 7fOO 7f68 7f69 7f67 7ti8 7f82 7f86 7f83 7f88

20 • 7e ~ ~ fi n .* 11 • • 1\"

7f87 7f8e 7f94 7fge 7f9d 7f9a 7fa3 7faf 7fb2 7fb9

30 .* l' ,1\ .* ~ $1* ~ a ~ " 7fae 7fb6 7fb8 8b71 7fe5 7fe6 7fea 7fdS 7fd4 7fe1

40 ~ tim If B R* ~ ~ Ii * ~
7fe6 7fe9 7ff3 7ff9 98de 8006 8004 800b 8012 8018

so *E m • *' Jf1(IUf:* IWP JffJ ~ ~
8019 801e 8021 8028 803f 803b 804a 8046 8052 8058

(j() ~ ~* -jf* ~~* if W II if ~* • 805a 805f 8062 8068 8073 8072 8070 8076 8079 807d

$ ~$ $.. J1I t!::::' n± BPi ~* Bt* 70 ~

807f 8084 8086 8085 809b 8093 809a 80ad 5190 80ac

80 H' W H~\ Hft ~ JB5 H* M<* Hij ID't
80db 80e5 8Od9 80dd 8Oc4 80da 8Od6 8109 80ef 80ft

90 H~ 1~ • Hi ~
811b 8129 8123 812f 814b

CHAPTER 26 / JAPANESE CHARACTER SET 359

KU 71 3 6 8 9

~ ij$ ~~ B1F HJM ij# H HJ~l H~
968b 8146 813c 8153 8151 80fe 8171 816e 8165

10 ij~ H~ Hi H~ H~ ij~ • ij~ HI H~* z
0

8166 8174 8183 8188 8l8a 8180 8182 81aO 8195 81a4
;::
.;:t
N

ij~ H~* n_* HRt HI H~ Ht ij~* nfa • ::i
«(

20 V
0
<w,;

81a3 815f 8193 81a9 81bO 81bS 81be 81b8 81bd 81cO tM
IA
1M • • Hil H~ Bi Hi H~ nl* ijj ,. Z

30 ~ l;J;\, .;:t
""'1

8le2 81ba 81e9 81ed 81dl 81d9 81d8 8le8 81da 81df {>'$

40 W ~ • • ~ :W ~ ~ W Ii
81eO 8Ie7 . 81fa 8Ub 8He 8201 8202 8205 8207 820a

so ~ 5& ~m m~* ~n m'ijJ ~m W'" IT ~ ml
820d 8210 8216 8229 822b 8238 8233 8240 8259 8258

60 ~J* m! !ft ,m ~~ I:fj; mm 'tm* ~~ ~e* ~I1 mp* JH
825d 825a 825f 8264 8262 8268 826a 826b 822e 8271

I@ ~* X ~ 1:: ~ --f-+- W * D~ 70 n 5t
8277 8278 827c 828d 8292 82ah 8291' 82bb 82ac 82el

~ 1fJ ¥.i=
-+f--

~ --H- ~ 11: if Zj5: 80 £i - a B3: ¥
82e3 82df 82d2 82f4 821'3 82 fa 8393 8303 82fb 82f9

~ tr1 § ~ ~
90 jL

82de 8306 82dc 8309 82d9

360 PENPOINT APPLICATION WRITING GUIDE

Part 3 / Japanese Localization Handbook

KU72 3 " 5 6 7 8 9

mf lBJ ~
-++-

~ 1b frj n ~ ~~

8335 8334 8316 8332 8331 8340 8339 8350 8345
-+f- -+-f-

~ ~*
-H-

~ ~
-+-+-

~ M 10 1~ rr: 11l.* Ef*
832f 832b 8317 8318 8385 839a 83aa 839f 83a2 8396
-H-

Id> W5 H -+.::+- -+.-f- ..!...!.. 7fi ~ frj 20 ~* ~ %* li I~"

8323 838e 8387 838a 837e 83b5 8373 8375 83aO 8389

Ji ~ ~ ii ~
-H- 21- ~

~ flf 30 £L ,fV(;f~

83a8 83f4 8413 83eb 83ce 83fd 8403 83d8 840b 83el

.* ~
-H- -+f-- i$ 'W -+f--

~ ~ ~ 40 rE< ~p r~* rJfJ* \3C:

8317 8407 83cO 83f2 840d 8422 8420 83bd 8438 8506

~ ~j(f4* Jl:t !;i* ~ • t;jj fi* ~ 50 o=:T 7C:L*
83tb 846d 842a 843c 855a 8484 8477 846b 84ad 846e

~ ~ ~ • ~ Jjffi ~)A;: --f.:.f-o.

* 60 ~"J 3!J~ ~*

8482 8469 8446 842c 846f 8479 8435 84ea 8462 84b9
-hI.. ti1il

-+.-f-

~
-H-

~* • ~ Ii ~ 70 ~ ~* ~~
84bf 849f 84d9 84cd 84bb 84da 84dO 84cl 84e6 84d6

~
--f.-.f-

Wi • -+.+-
~ ~ ~ Wi Ii * ~ 80 /." ~ iEJIL

84al 8521 84ff 841'4 8517 8518 852e 85lf 8515 8514
~

W* ~ .:!:th. -Sir
90 ~ .;:t=.::h ..Ep.. :::rw

84fe 8540 8563 8558 8548

CHAPTER 26 I JAPANESE CHARACTER SET 361

KU73 2 3 .. 6 7 a 9

~ ~* ~ fi ~ i1 II lU ~* 9iE
8541 8602 854b 8555 8580 85a4 8588 8591 858a

10 • • ~ M ~ ~ $ m 11 *i om z
0

85a8 856d 8594 859b 85ca 8587 859c 8577 857e 8590 ~
N

ft • • • it ~ f!L ~ ~ ~
::i
<I:

20 v ~ 0
...I

85c9 85ba 85cf 85b9 85dO 85d5 85dd 85e5 85dc 85f9 w
I.I'l
w • ~* ~ ~ M II ft l¥ .* "
Z

30 ~
<t

860a 8613 860b 85fc 85fa 8606 8622 861a 8630 863f "'"'.
M

40 FE JiW* ~ ~m JI~ ~ ~51 ~ }ti !k4
864d 4e55 8654 865f 8667 8671 8693 86a3 86a9 86aa

so ~~ !k$ ~tt !HJi ~r!i !1I£i !klB !I!~ • ~El*
868b 868c 86b6 86af 86c4 86c6 86bO 86c9 8823 86ab

60 !I!@J !R~ m 4 ~ ~ ~:t* mM ~ ~
86d4 86de 86c9 86ec 86df 86dh 86cf 8712 8706 8708

70 Ii If ~ ~ ~ !k,% !Rm !kfIJ !I!~ ~
8700 8703 8611) 8711 8709 870d 861'9 870a 8734 873f

so ~ !I!~ ~fH !lIm !l !RM !l!~ !l!~ if4 !I!~
8737 873b 8725 8729 871a 8760 875f 8778 874c 874e

90 ~ ~ ~ !H~ !Pi
8774 8757 8768 876c 8759

362 PENPOINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU74 3 5 6 7 8 9

~Ii< m !I$) ~Em m !I!~ v", • ~ ~~
8753 8763 876a 8805 87a2 879f 8782 87af 87cb

10 ~ f$!km* !ill ~
:Ea IJ: ~ a* • ~J

87bd 87cO 87dO 96d6 87ab 87e4 87b3 87c7 87c6 87bb

20 ~ fi ~i W* ~ ~ ~~ ~~ m* m
87ef 87f2 87eO 880f 880d 871'e 87f6 87fl 880e 87d2

!If !hi m B ~ A II • ~

If 30 ~* ..r::o::L

8811 8816 8815 8822 8821 8831 8836 8839 8827 883b

Jfnlf IDI3J* itT /-Ji,- /..::b..- 11i *~
-=±::. ~ --'--

40 rp:J fffiJ* a :J?< ~
8844 8842 8852 8859 885e 8862 886b 8881 887e 88ge

50 *8 ff f1f* *~ *~ ~ *-B 111* 18 ** 8875 887d 88b5 8872 8882 8897 8892 88ae 8899 88a2

fY ~ ~ *** *1J\ *~* *fi* ~ ~ ftt
888d 88a4 88bO 88bf 88bl 88e3 88c4 88d4 88d8 88d9

70 ~ f! f!~ f~ ~ 1J1f! fN9 1~* *fJ f,ffij
88dd 881'9 8902 88fc 881'4 88e8 881'2 8904 890c 890a

11* ~* fi *)# 1m *1 15i
---L..

.~ *~ 80 ~
8913 8943 891e 8925 892a 892h 8941 8944 893b 8936

90 11 *¥ flli* 11 It
8938 894c 891d 8960 895c

CHAPTER 26 / JAPANESE CHARACTER SET 363

KU75 3 6 7 9

*rm ~ *l~ *1 *m fl fJ* Iffi ..
8966 8964 896d 896a 896f 8974 8977 897e 8983

10 W 91* ~ ~Jl ~ t1* M ~~ 11 n z
0

8988 898a 8993 8998 89al 89a9 89a6 89ae 89af 89b2 ~
N

W: ~ ft ill M\ ~ ~tt ~~* ~; ~f6
::;
<t:

20 V
0
-J

89ba 89bd 89bf 89cO 89da 89dc 89dd 8ge7 89f4 89f8 !.M
!h
OM

~r ~L ~f ~I ~t ~~ ~Pi BiiJ tJ!i ~1l
z

30 ~
4,'1;
""'t

8a03 8a16 8al0 8aOe 8alb 8ald 8a25 8a36 8a41 8a5b ~'"
M

§A ~~ ~ ~~ ~fB ~J§ frij ~* W5 ~* 40 1=lJ:i e:i

8a52 8a46 8a48 8a7e 8a6d 8a6c 8a62 8a85 8a82 8a84

~~ ~ffX ~3I §¢ ~ffl §~ ~m ~$ ~ fd SO J:tJ=t Pit
8aa8 8aal 8a91 8aa5 8aa6 8a9a 8aa3 8ac4 8aed 8ae2

=:JE ~*
=:-ft ~~ =:1=111 ::::..:h..

~m =:a ~, WI 60 P * PS j:iry ::1=;1 as P4

8ada 8acb 8ar3 8ac7 8ac4 8an 8bl4 8aeO 8ae2 8afi

g~ ~~ §;f* ~ .::/~ §~ §~ §~\ ~~ ~, 70 rt P I=f pfDt PlIIL. pm

8ade 8adb 8bOe 8b07 8bIa 8ael 8bl6 8bl0 8b17 8b20

=:[H ¥~ @ ~~ §~ ~~ ~f ~w ~tl ~i so an -~* 11' 1==1 rtx 11 JI\\

8b33 97ab 8b26 8b2b 8b3c 8b28 8b41 8b4e 8b4f 8b4e
~n §t!£ §1*.* ~an ~fi 90 ali qs J:tS p!f!

8b49 8b56 8b5b 8b5a 8b6b

364 PEN POINT APPLICATION WRITING GUIDE

Part 3 I Japanese Localization Handbook

KU76 3 6 7 8 9

=:.a::t if ~, =".EB. ~
.::::~ §:itft II ~ 15* ~ ~ P.M Pi\\,'

8b5f 8b6e 8b6f 8b74 8b7d 8b80 8b8e 8b8e 8b92

m ~ ~i ~J tN* ~ rJ .!::!:!. ~!B ~ 10 rHl R

8b93 8b96 8b99 8b9a 8c3a 8c41 8c3f 8c48 8c4e 8e4e

20 II ~ ~ ~i ~ ~t ~g ~~ ~f* ~i3
8e50 8e55 8e62 8c6c 8c78 8e7a 8e82 8c89 8e85 8e8a

30 ~m ~}G* ~m ~tt* ~~ ~~* JJt* 1t ~a • 8e8d 8c8e 8c94 8c7c 8e98 621d 8cad 8caa 8ebd 8eb2

~ j\:* ~Z W Jf §~
-::::I:=-'

~ Jf • 40 ~ 7'

8eb3 8eae 8eh6 8ee8 8ed 8ce4 8ec3 8cda 8efd 8efa

~f Jt • R ~ g
~ a If • so R mm.

8efb 8d04 8d05 8dOa 8d07 8dOf 8dOd 8dl0 9f4e 8dl3

m* A: ~Jf $& H~ .::±:. f@t ~ ttl ~~ 60 ;'L*

8eed 8d14 8d16 8d67 8el6d 8d71 8el73 8d81 8d99 8de2

70 fEll: ~~ WJn ~ffit ~n ~~ IfJt ~j{ ~fB m
8dbe 8dha 8dd 8elda 8dd6 8dee 8ddb 8dch 8dea 8deb

80 ~N ~1c ~ ~** ~N ~JE ~* N~ ~ ~~D
8ddf 8dc3 8dfe 8e08 8e09 8dtT 8eld 8ele 8elO 8elf

90 fi* ~i ~m« ~~ ~~
8e42 8e35 8e30 8e34 8e4a

CHAPTER 26 I JAPANESE CHARACTER SET 365

KU77 2 3 4 S 6 7 8 9

• Ni ~i Nff H@ !iI mtE m ~*
8e47 8e49 8e4e 8eSO 8c48 8eS9 8e64 8e60 8e2a

10 M ~, Jl)l Ht £~ Ni ~ RIJ • m z
0

8e63 8eSS 8e76 8e72 8e7e 8c81 8c87 8e8S 8e84 8e8b ~
N

fil m HI iJl ~~* il ~I ~~ f** iI*
::i
<t

20 V
0
...I

8e8a 8e93 8e91 8e94 Sc99 Scaa Seal 8eae 8ebO 8ec6 w
II'!
w

~* ~~* 1(* ~I* flIL ,ill ~* ,~ $iiI ,~
Z

30 ~
<t,

8ebl 8ebe 8eeS SeeS Scch Scdb Sec3 8efe 8efb 8eeb ""-
I:'?

40 ~ $f ,~ ,~ $I[$IN* lP~ ,m ~ ,m
8efe 8fOa SfOS SflS Sfl2 Sfl9 SfI3 8fIe 8fIf 8flb

so ,jij* " $~ $M lPl ~ ,~ ,j ,~* ,-
SfOe 81'26 Sf33 Sf3b Sf39 Sf4S Sf42 8f3e 8f4e Sf49

C50
,_ $I ,~ ,~* ,~ $1 ,Ii * g* ¥*
8f46 8f4e SfS7 SfSe Sf62 S1'63 S1'64 8fge 8f9f 8fa3

-* ¥~*
,

3!E* ~ ~n Jm. ~* 'm 31m '-* ' . 70 L m ~

Sfad 8faf S1b7 Sfda SfeS Sfe2 Sfea 8fef 9087 Sff4

j§ ~* ~ ')j< ~ ~ ~ ~ ~ ~ " ,
80 ~

9005 Sff9 Sffa 9011 901S 9021 900d 90le 9016 900b

3tt ~~ ~ j!* ill: 90 ' * ;r.g

9027 9036 903S 9039 SffS

366 PEN POINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

KU 78 3 4 6 7 a 9

~ '~:J
~ ~ ~ ~* 3! ~ ~* ~

9041' 9050 9051 9052 900c 9049 903e 9056 9058

10 ~ ~ ~ ~ ru~ '11 ~ 3M 3lf 3l! ~
905e 9068 9061' 9076 96a8 9072 9082 907d 9081 9080

20 jI 31* 3iE ~~* tt~ 1i~ ~~ i~ @~ ~
908a 9089 908f 90a8 90af 90bl 90b5 90e2 90e4 6248

30 $~ ~~ ~~ ~~ ,~ ~~ m lit m fttt
90db 9102 9112 9119 9132 9130 914a 9156 9158 9163

40 m ~ ~~ ~~ ~~ ~$ M* ~1II II Ii
9165 9169 9173 9172 918b 9189 9182 91a2 91ab 91af

so ~ M ~= rxt • It ~m " • ~*
91aa 91b5 91b4 91ba 91cO 91cl 91c9 91cb 91dO 91d6

60 ~l* ~ 3fi:* ~}]* ~JJ* ~5l ~ifl* &~ ~JT ~j) ~*
91df 91el 91db 91fc 911'5 911"6 921e 9lff 9214 922e

70 ~11: ~ ~m ~tt ~E ~J: ~tlj ~t ~ ~lH
9215 9211 925c 9257 9245 9249 9264 9248 9295 923f

80 ~~ ~E 1~J ~* ~i ~~ ~gp ~~ ~* ~
924b 9250 929c 9296 9293 929b 925a 92ef 92b9 92b7

90 ~C &5l ~fH ~ffi* ~~
92e9 9301' 921'a 9344 932c

CHAPTER 26 / JAPANESE CHARACTER SET 367

KU79 3 6 7 8 9

~fil ~ ~ W \' rx ~jj* ~1E ~it* ~~1 ~!i!
9319 9322 931a 9323 933a 9335 933b 935c 9360

10 ~ ~* ~~ t..A \ ;jid: ~~ ~J* ~~ \~ti ~* • ~~
937c 936e 9356 93bO 93ac 93ad 9394 93b9 93d6 93d7

20 ti ~,ra* m ~i ~I ~~ ~i it ~* ~,

93e8 93e5 93d8 93c3 93dd 93dO 93c8 93e4 941a 9414

30 m £~ • ~ ~-N ~~ ~i ~!* ~i ~*
9413 9403 9407 9410 9436 942b 9435 9421 943a 9441

40 ~ ~I .* ~J ~" ~jt ~j ~?* ~tM til
9452 9444 945b 9460 9462 945c 946a 9229 9470 9475

so ~I &1 &1* ~I ~ a ~ r-~ M* rllJ'*
9477 947d 945a 947c 947c 9481 947f 9582 9587 958a

60 00 ~lJ* r~ irm* rMi* ~ ~* itsj ~~ fhj
9594 9596 9598 9599 95aO 95a8 95a7 95ad 95bc 95bb

70 rvJ ~ i¥~ iOO* Mj f\n r*1 fif;Jj 'fHJ r»n
95b9 95be 95ca 61'1'6 95c3 95cd 95cc 95d5 95d4 95d6

80 mm fill fTiJ m~ ~f ~m ~JC ~lI: ~~ ~B
95dc 95c1 95c5 95c2 9621 9628 962e 962f 9642 964c

90 ~ff ~[i ~@ ~~ ~~
964f 964b 9677 965c 965c

368 PENPOINT APPLICATION WRITING GUIDE
Part 3 I Japanese Localization Handbook

KU80 3 S 6 7 8 9

~~ ~~ ~* ~~ ~!& ~~ ~~ ~jt ~l
965d 965f 9666 9672 966c 968d 9698 9695 9697

10 ~~ ~ ~I ~i* ~~ ~~I ~* ~~ 1E JIf£
96aa 9687 96bl 96b2 96bO 96b4 96b6 96b8 96b9 96ce

20 tlfj ~ft ~ *~* ~ • ft ~ • • 96cb 96c9 96cd 894d 96dc 970d 96d5 96f9 9704 9706

30 rJ ~
7C. ~ ~ t ~ ~ ~ " fI Ii

9708 9713 970c 9711 9701' 9716 9719 9724 972a 9730

40 • • a R a- m ~ m g tf Ml #.
9739 973d 973c 9744 9746 9748 9742 9749 975c 9760

so iii~* ii I} ~jJ _X* ¥jJ* ~* ,~ '-8 ¥!
9764 9766 9768 52d2 976b 9771 9779 9785 977c 9781

60 '* Wi* ft ~ ,~* t(i'~ ,~ t¥fx ,* ¥~
977a 9786 978b 9781' 9790 979c 97a8 97a6 97a3 97b3

¥Fm* ¥3i 'I ¥!* .::f:::1... t!I" ~ If 8* .:::6:.
70 -.Ef!. ~S ~

97b4 97c3 97c6 97c8 97cb 97dc 9700 9f4f 97f2 7adf

80 gB lZ~* 13 1LJi ~Ji ~j 0 all ~Ji ~Ji* ~
97f6 97f5 980f 980c 9838 9824 9821 9837 983d 9846

90 ~Ji mJt* ij r~ • 984f 984b 986b 9861' 9870

CHAPTER 26 / JAPANESE CHARACTER SET 369

KU 81 2 3 4 S 6 7 8 9

JB ti Ii ji* ga • 1M • R*
9871 9874 9873 98aa 98af 98bl 98b6 98c4 98c3

10 84 til! ~ j~ tnJ j~ im t~ f@ f1j* z
0

98c6 98e9 98eb 9903 9909 9912 9914 9918 9921 991d ~
~~

g B~ i#* ~ ~ fi lfi il* ii fl 41!
20 %,J

r)
oJ

991e 9924 9920 992c 992e 993d 993e 9942 9949 9945
1M
*!)
1M

if fi a jjl • • 1rnt ~ ~ I~
Z
,eX

30 fl.,>
4(-,

9950 994b 9951 9952 994c 9955 9997 9998 99a5 99ad
~'"

t'?

40 £~ ~* i~ ~ IB la ~ j~ ~ ,~
99ae 99bc 99df 99db 99dd 99d8 99dl 99ed 99ee 99ft

so iJii* !W H I~ J§Jt ~l 1# ~ • I~
99f2 99fb 99f8 9aOI 9aOf 9a05 9ge2 9a19 9a2b 9a37

III I~ • I~ ~ 1m I~ Ij! I~' ~ft B
9a45 9a42 9a40 9a43 9a3e 9a55 9a4d 9a5b 9a57 9a5f

70 If II M ft • II If iN * M
9a62 9a65 9a64 9a69 9a6b 9a6a 9aad 9abO 9abc 9acO

tl a Ii R ...r..~

~ ~ ~ ~ ~ 80 ~* ':.'*
9acf 9adl 9ad3 9ad4 9ade 9adf 9ae2 9ae3 9ae6 9aef

90 !t ~ ~* ii fC
9aeb 9aee 9af4 9aft 9af7

370 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU82 2 3 4 5 6 7 8 9

~ ~ II fA ~ Ii .: fit r~J 1M
9afb 9b06 9b18 9bla 9blf 9b22 9b23 9b2S 9b27

10 ~ f§IJ flJ* • ~ ~ ~ ~ ~ • 9b28 9b29 9b2a 9b2e 9b2f 9b32 9b44 9b43 9b4f 9b4d

20 a m • fjjj itt ilP* '" til {Rj* i~* j~*
9b4e 9bSI 9bS8 9b74 9b93 9b83 9b91 9b96 9b97 9b9f

30 ru: t~ 1** l* ~ M tffj i,U* iI* jjfj*
9baO 9ba8 9bb4 9bcO 9bca 9bb9 9bc6 9bcf 9bdl 9bd2

40 DJ* ~ • ftfif fRJ~ ,~* .II'\~ ~* " "-
fjJ}f* it

~""~ 11*
9be3 9be2 9be4 9bd4 9bel 9c3a 9bf2 9bfl 9bfO 9clS

50 N e iW j!* if itt fil .* N* &* I"

9c14 9c09 9c13 9cOc 9c06 9c08 9c12 9cOa 9c04 9c2e

60 ii* • IJ~ fil fj$* .* • • ~ i1i* "v.1=f

9clb 9c2S 9c24 9c21 9c30 9c47 9c32 9c46 9c3e 9cSa

70 M AI B* if ~ ~* ~~* ~ 11 !,i*
9c60 9c67 9c76 9c78 9ce7 9cec 9cfO 9d09 9d08 9ceb

80 » 11 ~* • • ii~ m ~~* i'E {I
9d03 9d06 9d2a 9d26 9daf 9d23 9dlf 9d44 9dlS 9d12

90 ~ ~ ~~ /.~-t~fJ* ~,~*
9d41 9d3f 9d3e 9d46 9d48

CHAPTER 26 / JAPANESE CHARACTER SET 371

KU 83 2 3 4 S 6 7 8 9

Ri W* f\~* ~,~ !i* ~,~ ae ~~ G
9d5d 9d5e 9d64 9d51 9d50 9d59 9d72 9d89 9d87

10 ,,~* ~~ ~* IJJ~ 7" _I ~ • ~j* • B
9dab 9d6f 9d7a 9d9a 9da4 9da9 9db2 9dc4 9dcl 9dbb

20 ii ft~ D* t~ S It JlI • g • 9db8 9dba 9dc6 9dcf 9dc2 9dd9 9dd3 9df8 9de6 9ded

30 ~~ :II I~ fi • Ii ~ II A* • 9def 9dfd gela gelb gele ge75 ge79 ge7d 9e81 9e88

40 • If It {I* II ft ~ ~ ~* ~*
9e8b 9e8c ge92 ge95 ge91 ge9d 9ea5 9ea9 geb8 9eaa

SO ~ • if ~ I!i ~ ft !m I~ f41
9ead 9761 9ecc 9ece 9ecf 9edO 9ed4 9edc 9ede 9edd

J± !-L. ~ ft ,j II If f,({f ti 1m 60 ,,,,,Jl l\\vSt ~

9eeO 9ee5 9ee8 9eef gef4 gef6 gef7 gef9 getb gefc

70 Q • 8* 9)t* ~ M* i@ Jf 7/ff jt
gefd 9f07 9f08 76b7 9fl5 9f21 9f2c 9f3e 9f4a 9f52

80 itt ~ tJili liB ~ tWa Ii 1ft lJE a
9f54 9f63 9f5f 9f60 9f61 9f66 9f67 9f6c 9f6a 9f77

MM .1I:11Jt Ii G * 90 mfT7
9f72 9f76 9f95 9f9c 9faO

KU 84 2 3 4 S 6 7 8 9

~ fj;* ~ fre {.
582f 69c7 9059 7464 51de

Part4/
PenPoint Development Tools

Supplement

Chapter 27 / Introduction

375 Organization of this supplement

Chapter 28 / Road Map

377 Creating a PenPoint application
One time only tasks
Preliminary design
Creating an application
Preparing for distribution

Chapter 29 / Creating Applications
and Services

381 Overview

382 Where to put your files

382 Makefiles
Compiling
Linking
Stamping
Building a resource file

386 Changes from 1.0
Stamping changes
Specifying locales

387 Compiler details
16-bit character flag
DOS environment variables
Working with the method table compiler

388 PenPoint libraries
PenPoint applications

388 Installing PenPoint applications
Installing automatically
Installing applications in \2_0\PENPOINT\APP

Installing applications from any connected disk
Using the Settings notebook
Copying files to the application directory

390 Working with supporting files
Preparing distribution disks
Using short DOS path and file names
Stamping stationery with different names

Chapter 30 / Debugging

395 Overview
Debug version of PenPoint
Sending text to the debugger stream
Viewing the debugger stream
DebugCharSet
System Log

398 Debug modes
DebugTablet
DebugRAM
Running PenPoint 1.0 and 2.0

Warm booting

401 Using the mini-debugger
Displaying Unicode
Disabling the mini-debugger
Turning flag bits on and off
Getting help

Chapter 31 / Tools and Utilities

403 Locales and character sets

404 PenPoint attribute utilities
PSTAMP

PCOPY

PDIR

408 Resource file utilities
RES DEL

409 Other DOS utilities
UCONVERT

RTFTRIM

CONTEXT batch file
GO batch file
LOCALE batch file
Bitmap editor
Font editor

413 PenPoint tools
MiniText
Unicode Browser
Japanese virtual keyboard

Chapter 32 / Miscellaneous

415 MIL.INI

Keyboards
MonoDebug

416 ENVIRON.INI

Locale
Debugging character set
Shutdown and standby buttons
Versions and trademarks
Start application
Autozoom
BkshelfPath
Debugging flags
BOOT.DLC

Interpreting Japanese file names
Repeated lines

419 Printing to a spooler

420 Long DOS file names
Do not use CHKDSK IF

421 Changes to QuickHelp

421 Working with different locales

422 Corrections to previous documentation

Chapter 27 !Introduction

This manual contains updated information about the PenPoint™ development
environment. It describes tools you use to create applications for the Japanese local
ization of the PenPoint operating system.

Much of the information in the PenPoint Development Tools manual is still accurate.
Where information in the PenPoint Development Tools manual is outdated, this
manual provides updates. This manual also describes new tools and utilities avail
able in the PenPoint SDK 2.0 Japanese.

Consult the following sources for more information on the PenPoint development
environment:

.. PenPoint Development Tools

.. PenPoint Application Writing Guide: Expanded Edition

• About PenPoint 2. 0 SDK

To make information easy to find, this manual closely follows the organization of
the original PenPoint Development Tools manual.

Organization 01 this supplement
This chapter, Introduction, describes the purpose and organization of this manual.
Chapter 3, Running PenPoint on a PC, from the original PenPoint Development
Tools has moved to a separate document called Installing and Running PenPoint
SDK2.0.

Chapter 28, Road Map, describes the general process of writing PenPoint applica
tions. This chapter also points out which volumes of the PenPoint documentation
will help you in this process.

Chapter 29, Creating Applications and Services, covers topics related to creating a
PenPoint application or service.

Chapter 30, Debugging, describes PenPoint debugging techniques, including new
tools for debugging PenPoint 2.0 Japanese applications.

Chapter 31, Tools and Utilities, describes various tools that you use to work with
PenPoint directories, resource files, and bitmaps.

Chapter 28 I Road Map

This chapter describes the typical process of creating a PenPoint™ application. The
steps involved are discussed below, and Figure 28-1 is a visual representation of part
of the process. Although applications are explicitly discussed here, the process of
creating a PenPoint service are nearly identical.

Creating a PenPoint application
Creating a PenPoint application or service typically follows these steps. Indicated
after each step is where you can find more information on a particular process.

",. One time only tasks
You only need to perform the following steps once.

1 Install the PenPoint SDK 2.0 Japanese.

'* See Installing and Running the PenPoint SDK 2.0 Japanese for more
information.

2 Learn PenPoint programming and user interface concepts. See the following
for more information.

'* PenPoint Application Writing Guide: Expanded Edition, Parts 1 and 6

'* PenPoint Development Tools

'* PenPoint User Interface Design Reference

,..,.. Preliminary design
You need to perform the following preliminary design tasks each time you create a
PenPoint application or service.

Design your application taking advantage of PenPoint's extensive class library.

'* PenPoint Architectural Reference

'* Part 2: PenPoint Internationalization Handbook

'* Part 3: PenPoint Japanese Localization Handbook

• Part 5: PenPoint Architectural Reference Supplement

2 Plan, design, and begin writing user documentation.

'* Using PenPoint

'* New UI Features in PenPoint

3 Plan, design, and begin producing supporting documents such as Help note
book documents, stationery, and sample documents.

'* PenPoint Development Tools Supplement, Chapter 29

4 If necessary, plan for translation and other localization services.

378 PEN POINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Creating an application
You take the following steps to create a PenPoint application. The steps here corre
spond to the steps in Figure 28-1.

1 Write C code, including source code (.c), header files (.H), resource files (.RC),

a method table (METHODS.TBL), and a makefile (MAKEFILE). Name your
resource file (one for each localization) to remind you of the localization the
file corresponds to. For example, name your resource files]PN.RC and USA.RC

for the Japanese and u.s. English localizations.

3

.. PenPoint Architectural Reference

.. PenPoint Application Programming Interface

.. PenPoint Development Tools

.. On-line header files in \2_0\PENPOINT\SDK\INC

Compile and link your code. This involves compiling source code, resource
files, and your method table, as shown in Figure 28-1. You then link your
object files with PenPoint libraries.

.. PenPoint Application Writing Guide: Expanded Edition

.. PenPoint Development Tools

.. Compiler documentation

Build your PenPoint application in its own directory underneath the
PenPoint application directory (\2_0\PENPOINT\APP) or service directory
(\2_0\PENPOINT\SERVICE). You must put in your application directory the
necessary executable file (.EXE), dynamic link libraries (.DLL), compiled
resource files (.RES), dependency identifier file (.DLC), and supporting
documents.

.. PenPoint Development Tools

4 Stamp your application directory with PenPoint information, including the
application name, the file type (application, service, font, and so on), and the
linker name.

.. PenPoint Development Tools

Preparing for distribution
As you prepare for distribution, remember to take the following steps to

1 Contact GO Technical Services to register your classes.

2 Verify user documentation, translations, and other localization issues

.. Part 2: PenPoint Internationalization Handbook, Chapter 18

3 Create distribution disks.

.. PenPoint Development Tools Supplement, Chapter 29

Typically,use a make-Ale
based on one of the sample
application make-Ales to
coordinate steps 3 and 4.

Different releases of PenPoint
use different root directories.
For example, Pen Point 1.0 uses
\1_01 as its root.

1 Write C code

3 Build
application
directory

4 Stamp
application
directory

CHAPTER 28 / ROAD MAP 379
Creating a Pen Point application

Chapter 29 I Creating Applications
and Services

This chapter describes the process of compiling, linking, and preparing your appli
cation or service to work under the PenPoint™ operating system.

Overview
You typically take the following steps to create a PenPoint application. Although
this discussion centers on applications, the process of creating services is similar.

1 Compile your source code, resource files, and method table.

2 Link your object code with PenPoint libraries to create an executable image
and dynamic link libraries.

3 Build your application by placing the executable image, dynamic link
libraries, resource files, and supporting files in a directory within the PenPoint
application directory. In PenPoint 2.0 Japanese, the application directory is
\2_0\PENPOINT\APP.

4 Stamp your application directory and the PenPoint application directory with
PenPoint file names and attributes.

Rather than performing all these steps manually, you typically create a makefile that
your compiler uses to perform each of these steps. The sample applications
included with the SDK all build on three standard makefiles that work with the
WATCOM WMAKE utility.

• SDEFINES.MIF contains standard definitions used to compile and link
PenPoint applications and services.

<$' SRULES.MIF contains standard rules for creating PenPoint applications.

<$' SVCRULES.MIF contains standard rules for creating PenPoint services.

Use these makefiles as building blocks. Namely, define variables and add rules for
. your own project, but do not make any changes to the sample makefiles. Probably
the easiest way to write your own makefile is to modify one that comes with a
sample application such as Tic-Tac-Toe.

So that you can see the steps involved in creating a typical PenPoint application,
the section "Makefiles" on page 382 steps through the most important parts of
SRULES.MIF.

382 PEN POINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Where to put your files
Don't use the SDK trees (for example, \2_0\PENPOINT\SDK) for your own projects.

GO reserves the right to change the organization of the SDK trees. Also, GO may
provide tools for moving, copying or otherwise manipulating these trees. If you
store your projects in the SDK trees, we cannot guarantee that these tools will work,
nor can we guarantee that they will preserve your sources.

You might use a directory in your root directory such as \MYAPP or in a special
directory containing all your applications such as \APPS\MYAPP.

Makefiles
Most of the complexity of creating a PenPoint application is contained in the file
SRULES.MIF. Stepping through the key parts of this file is a good way to understand
the steps involved in creating an application.

Compiling
First, the makefile compiles your source code, method table, and resource files.
Compiler errors are saved in files with a .ERR extension. After the makefile finishes
creating your application, list all the .ERR files in your directory to make sure there
are no compiler errors.

These commands in the makefile compile your source code, method table, and
resource files .

. c.obj:
set WCC386=$(WCC386)
wcc386p /Fo$*.obj $*.c > $*.err
type $*.err

Method table
. tbl.obj:

set WCC=$(WCC)
set WCC386=$(WCC386)
$(PENPOINT_PATH)\sdk\util\clsmgr\mt $(MT_FLAGS) $< -Fo=$*.obj > $*.err
type $*.err

Resource compiler file
.rc.res:

$ (RC) $*.rc > $*.err
type $*.err

Some variables that are common to all projects are defined in SDEFINES.MIF. For
example, the variable WCC386 lists all the compiler flags required to create the
appropriate object files.

Sometimes old object files get linked to your new project. This happens when the
compiler encounters errors in your updated source code and aborts compilation.
Type WMAKE CLEAN to delete old object files during your compile, test, debug,
and recompile cycles.

CHAPTER 29 I CREATING APPLICATIONS AND SERVICES 383

".. Linking
Mter the source code is compiled into object code, it must be linked with PenPoint
libraries. The makefile accomplishes this by creating a temporary WLINK file. The
%create command creates this file, and the %append command adds the required
lines to the file.

These lines link object files with PenPoint libraries to create executable code or
dynamic link libraries.

$ (APP_DIR) : .SYMBOLIC
mkdir $ (APP _D IR)

* The following complexity is needed to build a WLINK command file.
$ (APP_DIR)\$ (PROJ) .exe : $ (APP_DIR) $ (EXE_OBJS)

%create $ (PROJ) .eln
%append $ (PROJ) .eln SYSTEM PenPoint
%append $ (PROJ) . eln NAME $ (APP _DIR)\$ (PROJ) . exe
%append $ (PROJ) .eln$(LINK_DEBUG)
for %i in ($(EXE_OBJS)) do %append $ (PROJ) .eln FILE %i
for %i in ($ (EXE_LIBS)) do %append $ (PROJ) .eln LIBRARY %i
%append $ (PROJ) .eln $ (EXE DATA DIRECTIVE)
%append $ (PROJ) .eln OPTION Quiet, Map=$(PROJ) .mpe, NOD, Verbose, &
Stack=$(EXE_STACK) , MODNAME=' $ (EXE_LNAME) ,
wlinkp @$(PROJ) .eln
del $ (PROJ) .eln
copy $ (PROJ) .mpe $(APP_DIR)

Your makefile must define some of the variables used by SRULES.MIF. For example,
the EXE_OBJS variable lists all of your object files that are needed to create the final
executable image (.EXE). Again, the easiest way to write a makefile is to tailor the
makefile of a sample application to your own project.

The makefile links the method table object code at this step in the process, but it
does not link the resource object code. The resource object code stays separate from
the executable code so that resource file data is cleanly separated from the rest of
your application. See "Building a resource file" on page 385 for more information
on how the resource file is built later in the process.

The loops in the code above adds a line to the temporary file for each of the object
files and PenPoint libraries needed to create this application. The WLINKP com
mand uses the information in the temporary file to link all the necessary object files
together, and the temporary file is deleted when the linker finishes.

Finally, the makefile copies a file with an .MPE extension to your application direc
tory. The linker creates this so-called map file to provide details about line numbers
and symbol addresses created by the compiler and linker. You can view this file with
a text editor to see details of how the linker created your executable file.

Makefiles

384 PENPOINT APPLICATION WRITING GUIDE

Part 4 / Development Tools Supplement

Stamping
The makefile uses a similar strategy for stamping the application directory. It first
creates a temporary file that contains information about how to stamp your direc
tory, passes that temporary file to the PSTAMP utility, and deletes the file when the
utility is done. The following makefile rules accomplish this:

%create $ (PROJ) .stm
%append $ (PROJ) .stm $(APP_OIR)\ ..
%append $ (PROJ) .stm lu
%append $ (PROJ) .stm In
ifeq RES STAMP yes

%append $ (PROJ) .stm II $(LOCALE)
%append $ (PROJ) .stm Ir "$ (LOCALE) .rc" ""

else
%append $ (PROJ) .stm Ig "$ (EXE_NAME)"

endif
%append $ (PROJ) .stm Id $ (PROJ)
%append $ (PROJ) .stm la imAttrVersion
%append $ (PROJ) .stm la cimAttrProgramName
%append $ (PROJ) .stm la appAttrClassName
%append $ (PROJ) .stm la appAttrClass
-$ (STAMP) -s $ (PROJ) .stm
del $ (PROJ) .stm
%create $ (PROJ) .stm
%append $ (PROJ) .stm $ (APP_OIR)
%append $ (PROJ) .stm lu
%append $ (PROJ) .stm In
ifdef EXE OLC

ifeq RES STAMP yes

"$ (APP_VERSION) "
"$ (EXE_LNAME)"
"Application"
lOOOlaO

%append $ (PROJ) .stm II $(LOCALE)
%append $ (PROJ) .stm Ir "$ (LOCALE) .rc" ".dlc"

else
%append $ (PROJ) .stm Ig "$ (EXE_NAME) .dlc"

endif
%append $ (PROJ) .stm 10 $ (PROJ) .dlc

else
ifeq RES STAMP yes

%append $ (PROJ) .stm II $(LOCALE)
%append $ (PROJ) .stm Ir "$ (LOCALE) .rc" ".exe"

else
%append $ (PROJ) .stm Ig "$ (EXE_NAME) .exe"

endif
%append $ (PROJ) .stm 10 $ (PROJ) .exe

endif
-$ (STAMP) -s $ (PROJ) .stm
del $ (PROJ) .stm

The makefile first stamps a user-visible PenPoint name for your application. The
standard rules use the string associated with tagAppMgrAppFilename as your
application name. The tag and string are defined in the localized version of your
resource file USA.RC or lPN.RC. If you need to stamp PenPoint names yourself, use
the -g or -r option with the PST AMP utility.

The makefile also stamps the directory with the following four attributes:

• A user-visible string describing the file type such as Application, Font,
or Service. SRULES.MIF uses the string associated with tagAppMgrApp
ClassName in the appropriate version of your resource file.

CHAPTER 29 I CREATING APPLICATIONS AND SERVICES 385

+ The linker name of your application. Define this in your makefile with the
EXE_LNAME variable.

+ The version number of your application. Define this in your makefile as the
APP _VERSION.

+ A special 7 -digit hexadecimal number that identifies the file as an application.
SRULES.MIF stamps this number for you. You don't need to set this in either
your makefile or your resource file.

Table 29-1 shows more details about the information the makefile stamps. The
middle column shows the tags (in lower case) or makefile variables (in upper case)
you should define.

Attributes stamped by the makefile

Makefiles

Attribute label

Not an attribute

appAttrClassName

imAttrVersion

cimAttrProgramName

appAttrClass

Makefile variable I Resource file tag

tagAppMgrDefaultDocName

tagAppMgrAppClassName

ExtJlmple attribute value

Counter Application

Application

APP _VERSION

EXE_LNAME

None (automatically stamped)

2.0

GO-CNTRAPP-V2(0)

10001AO

Use the DOS program PSTAMP to manually stamp the directory with this required
information. See "PSTAMP" on page 405 for more information.

Notice that the makefile checks the value of RES_STAMP several times. You must
define this variable in your own makefile. Set it to YES if the makefile should stamp
your project with the application name and type in your resource file.

If you do not set RES_STAMP to YES, the makefile directs PSTAMP to use the
EXE_NAME from your makefile and stamp the type as Application.

Building a resource file
By now, the makefile has created an executable in your project directory and
stamped your directory with PenPoint attributes. The next step is to build your
application resource files, as shown in the following makefile rules:

* * Build the app's .res file

* $ (APP_DIR) \$ (TARGET_RESFILE) : $ (APP_DIR) $($(LOCALE)_RES_FILES) $ (RES_FILES)
for %i in ($($(LOCALE)_RES_FILES)) do -$(RESAPPND) %i temp.res

!ifdef RES FILES
for %i in ($(RES_FILES)) do -$(RESAPPND) %i temp.res

!endif
!ifdef DISTRIBUTED DLLS

for %i in ($ (DISTRIBUTED DLLS)) do -$(RESAPPND)
$ (PENPOINT_PATH)\sdk\dll\%i\$ (LOCALE) .res temp.res
!endif

copy temp.res $(APP_DIR)\$(TARGET_RESFILE)
-del temp.res

386 PENPOINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

The exact resource file that gets built depends on the LOCALE variable. You can
specify the value of LOCALE when you call WMAKE. See "Specifying locales" on

page 386 for details.

Changes from J.O
The following things have changed in SRULES.MIF since PenPoint 1.0.

Stamping changes
In 1.0, SRULES.MIF stamped an application's name and its type (Application") onto
the executable.

In 2.0, the rules changed to allow both the name and the type to be localized. The
new version of SRULES.MIF reads the application name and type from a resource
file. The resource file must have a name of the form Locale.RC where Locale is lPN

or USA.

All you need to do is provide tagAppMgrAppFilename and tagAppMgrApp
ClassName in the resource file for each localization. For example, if you are making
a Japanese version of your application, these strings must be in lPN.RC.

Specifying locales
The WATCOM make utility (WMAKE.EXE) helps you make different localized ver
sions of your application. When you call WMAKE, specify a LOCALE argument in
the command line to make a localized version of your application. For instance,
you can type:

wmake LOCALE=jpn
wmake LOCALE=usa

to create the Japanese and American versions of your application.

The LOCALE variable tells the compiler which resource files to compile and then
copy to your application directory. Specifying lPN as the LOCALE directs the
makefile to use the resource files specified by the variable lPN_RES_FILES. For exam
ple, with the Counter Application, the only resource file specified is lPN.RC.

You need a resource file for each of the localizations you create. If you have both
American English and Japanese versions of your application, you must have files
named USA.RC and lPN.RC.

In your makefile, use the three variables shown in Table 29-2 to identify which
resource files to compile and copy into the application directory with the executable

lmage.

Variable

RES_FILES

USA_RES_FILES

JPN_RES_FILES

Use

Resource files to be included with all versions of your application.

Resource files to be included with only the American version.

Resource files to be included only with the Japanese version of your application.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES 387

For example, this fragment comes from the makefile for the NotePaper application
in \2_0\PENPOINT\SDK\NPAPP:

* The .res files for your project. If you have resources, add
* $ (APP_DIR) \$ (TARGET_RESFILE) to the "all" target.

RES_FILES = bitmap. res
USA RES FILES = usa. res
JPN RES FILES = jpn.res

* Targets
all: $ (APP_DIR) \$ (PROJ) .exe $(APP_DIR)\$(TARGET_RESFILE) .SYMBOLIC

,.. Compiler details
GO uses the WATCOM C 9.01d/386 compiler to compile PenPoint 2.0 Japanese
code. Although other compilers may work, GO does not support them.

J 6-bit character flag
When you compile code containing 16-bit (Unicode) or double-byte (Shift-lIS)
characters, set a compiler flag so that the compiler works for 16-bit characters. For

example, if you are using the WATCOM C compiler, set the compiler flag /ZKOU. All
PenPoint 2.0 Japanese applications should support the 16-bit Unicode character
standard. For more information, see Chapter 15 of Part 2: PenPoint International
ization Handbook.

The standard makefile rules set this flag automatically in SDEFINES.MIF. The Pen
Point 2.0 Japanese resource compiler RC.EXE also sets this flag because your
resource files almost certainly contain Shift-lIS or Unicode strings.

D05 environment variables
You must identify the DOS PATH containing your WATCOM C compiler files. For
example, you might put the following line in your AUTOEXEC.BAT:

path=c:\watcom\bin;

Use the CONTEXT batch file to set up the other DOS environment variables
required to created PenPoint applications. See "CONTEXT batch file" on

page 410 for more details on how to use this batch file.

Working with the method table compiler
The method table compiler, (\2_0\PENPOINT\SDK\UTIL\DOS\MT.EXE), creates.a

header file named METHODS.H from your source file METHODS.TBL. If
METHODS.H already exists, the compiler checks if the firs~ line of the file matches
the following:

"II WARNING: DO NOT EDIT ... "

If that is the first line of the file, or if the file does not exist, the compiler creates a
new METHODS.H.

If a METHODS.H file exists, but the first line is not the one above, the compiler
exists with the error message:

mtcom ERROR: Failed while opening intermediate file (.h file exists)

Compiler details

388 PENPOINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

PenPoint libraries
All the PenPoint 2.0 Japanese libraries are located in \2_0\PENPOINT\SDK\LIB. To
direct the makefile to link a given PenPoint library with your code, you must
include the name of the library as part of the definition ofEXE_OBJS in your make
file.

The PenPoint 2.0 Japanese header files tell you which libraries you need to link.
Remember to include the header file using the #ifndef, #include, and #endif pre
processor directives. The directives prevent files from being included more than
once. For example, to use the PenPoint code that deals with memory allocation,
you must have:

:/I:ifndef OS_HEAP
:/I:include <osheap.h>
:/I:endif

in one of your header files. Then put the following line in your makefile:
EXE OBJS = PENPOINT.LIB

Note that INTL.LIB and BRIDGE.LIB are new to PenPoint 2.0 Japanese.

• INTL.LIB contains all the international functions that are described in more
detail in Part 2: PenPoint Internationalization Handbook .

• BRIDGE. LIB is virtually empty in PenPoint 2.0 Japanese., You can link this
file with specially written code to allow the code to compile and run under
both PenPoint 1.0 and 2.0. See the PenPoint Bridging Handbook for more
information.

", PenPoint applications
Many applications and services are stamped with their Japanese names in the 2.0
SDK. This is because no local application directory exists for each localization.
Applications and services are usually found in \2_0\PENPOINT\APP and \2_0\PEN
POINT\SERVICE.

To see the Shift-JIS names of these applications and services, type
\2_0\penpoint\sdk\util\dos\pdir -c XJIS \2_0\penpoint\app

This also shows you how the Japanese file names relate to DOS names.

Installing PenPoint applications
Section 3.15 of the PenPoint Development Tools suggests using the Installer to install
your application. The Installer no longer exists. Here are some ways to install your
application.

Installing automatically
To have PenPoint automatically install your application at boot time:

1 Add its PenPoint name and path to the appropriate APP.INI file.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES 389
Installing Pen Point applications

2 If the application name contains characters you cannot type with your key
board, just copy the application name from the application's resource file
Locale.RC (USA.RC or JPN.RC) into APP.INI.

The appropriate file depends on whether you are installing your application
for the Japanese (\2_0\PENPOINT\BOOT\JPN\APP.INI) or American English
(\2_0\PENPOINT\BOOT\USA\APP.INI) localization.

",. Installing applications in \2_0\PENPOINT\APP
To install an application in the \2_0\PENPOINT\APP directory:

1 Open the Connections notebook.

2 Make sure you are on the Disks page.

3 Choose Applications from the View menu.

4 Tap on the Install box next to the application you want to install.

Installing applications from any connected disk
To install an application from any connected disk:

1 Open the Connections notebook.

2 Make sure you are on the Disks page.

3 Choose Layout under the Options menu.

4 Select Install in the option sheet that appears.

5 Navigate to an application on any connected disk.

6 Tap on the Install box next to the application you want to install.

Using the Settings notebook
To install an application by copying it into the Settings notebook:

1 Open the Settings notebook, and tap on the Applications button. This shows
the currently installed applications.

2 To install an application, tap on the Install menu item. This brings up a screen
that shows you all the applications in \2_0\PENPOINT\APP. Tap on the Install
box for the application you want to install.

3 If you want to install an application not shown in this window, turn to the
Disks page of the Connections notebook.

4 Select View by Directory.

5 Navigate to the application you want to install.

6 Copy the application into the Installed Applications page of the Settings note
book. Use the tap press ·1 gesture to initiate the copy, then drag the applica
tion on top of the Settings notebook.

Using the Settings notebook is easier if you also want to set preferences for software,
remove software, or save any changes you have made.

390 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Using the Connections notebook is more convenient if you also plan to set up a
printer, transfer files to and from the computer, format a floppy disk, or use net
work resources. It also lets you install applications from any directory, not just
\2_0\PENPOINT\APP.

Aside from these differences, using the Settings notebook is identical to using
the Connections notebook. They are merely different user interfaces for the same
process.

Copying liles to the application directory
On page 51 in PenPoint Development Tools, the last section instructs you to create a
directory called \PENPOINT\APP\EMPTYAPp, and copy EMPTYAPP.EXE into that
directory.

Simply creating the directory and copying the executable file into that directory
does not create a PenPoint application. You need to copy in any resource files,
supporting documents, and stamp the directory with PenPoint information. See
"Stamping" on page 384 for more information on how the standard makefile rules
stamp PenPoint information on application directories.

Working with supporting files
In addition to the executable image and compiled resource files, your application
might require supporting files such as Quick Start documents, Help notebook
documents, and stationery. This section describes strategies for working with these
supporting documents.

Preparing distribution disks
Each of your distribution disks for an application or service should contain certain
directories. Table 29-3 shows the structure for the sample Tic-Tac-Toe application.
You should put similar directories and files beginning at the root of your distribu
tion disk.

Directory and contents

\PENPOINT\APP\TTT
\PENPOINT\APP\TTT\PENPOINT.DIR
\PENPOINT\APp\TTT\ TTT.EXE
\PENPOINT\APP\TTT\USA.RES
\PENPOINT\APP\ TTT\JPN .RES

\PENPOINT\APP\TTT\HELP
\PENPOINT\APP\TTT\HELP\ TTTHELPI
\PENPOINT\APP\TTT\HELP\ TTTHELP 1 \HELP.TXT
\PENPOINT\APP\TTT\HELP\TTTHELP2
\PENPOINT\APP\TTT\HELP\ TTTHELP2\HELP.TXT

\PENPOINT\APP\TTT\STATNRY
\PENPOINT\APP\TTT\HELP\TTTSTATI
\PENPOINT\APP\TTT\HELP\TTTSTATI \TTTFTUETXT
\PENPOINT\APP\TTT\HELP\TTTSTAT2
\PENPOINT\APP\TTT\HELP\TTTSTAT2\TTTFTUETXT

Description

Application directory
PenPoint directory and application information.
Application executable.
Compiled resource file for the USA localization.
Compiled resource file for the]PN localization.

Help directory
Directory containing first page (document) of help text.
Actual help text, page 1
Directory containing second page (document) of help text.
Actual help text, page 2

Stationery directory
Directory containing first stationery document.
Actual contents used by stationery document.
Directory containing first stationery document.
Actual contents used by stationery document.

CHAPTER 29 I CREATING APPLICATIONS AND SERVICES 391

Working with supporting files

See Chapter 11 of this manual for more information on how Tic-Tac-Toe creates
and uses its supporting files. You may also want to examine the makefile for Tic
Tac-Toe to learn how to set up the \HELP and \STATNRY directories.

There is one more file in the Tic-Tac-Toe directory called TTT.MPE. This map file is
created by the linker and is for debugging purposes only. You should not copy the
file to your distribution disks.

Using short DOS path and file names
DOS imposes a 64-character limit on the total length of a path and file name.

The PenPoint document model creates a separate directory for each file. Further
more, each embedded document contains a separate subdirectory beneath the
directory of its parent document.

This recursive structure can create DOS file names longer than the maximum of
64 characters. For example, here is the full path to a stationery document that is
part of a stationery notebook for a typical application:

C:\2_0\PENPOINT\APP\MY_APP\STATNRY\MY_APP_Q\NOTEBOOK\CONTENTS\USQ1SALES\OOC.RES

You can work around the 64-character limit by using the short, 2-character path
name PenPoint creates for each directory. PenPoint can then translate the short file
names into full PenPoint names using information in PENPOINT.DIR. Using this
technique shortens the long path name above to the shorter path name:

C:\2_0\PENPOINT\APP\MY_APP\STATNRY\MQ\NB\CS\US\OOC.RES

To create these short DOS directory names, you must copy the document to a
\PENPOINT directory in the root of any volume.

For example, follow this procedure to save a MiniNote document as a Quick Start
stationery item. The sample application is called MyApp.

1 Before starting PenPoint, set the B flag to 800 by adding IDB800 to the
DebugSet line in ENVIRON.lNI as follows:
OebugSet=/D08000 /0*1 /OB800

You can also type FS B 800 in the mini-debugger to set the flag.

:2 Start PenPoint and create a MiniNote document named something like
MyApp Quick Start. When you have finished the Quick Start document,
open the Connections notebook and set the View to Directory.

3 Open the \PENPOINT directory in the root of any volume except RAM.

4 Copy the Quick Start document into \PENPOINT. Make sure you are copying
into the \PENPOINT directory directly off the root of your volume. For
example, the \2_0\PENPOINT directory will not work.

s Shut down PenPoint.

392 PENPOINT APPLICATION WRITING GUIDE

Part 4 I Development Tools Supplement

6 Navigate into your application directory, and create a \STATNRY subdirectory.
For example, the following creates the subdirectory in C:\2_0\PEN
POINT\APP\MYAPP.
cd c:\2_0\penpoint\app\myapp
md statnry
cd statnry

7 Use the DOS utility PDIR to list the PenPoint names of the files in the
\PENPOINT directory: See "PDIR" on page 407 for more information.
pdir c:\penpoint

8 Note the DOS name of the directory containing MyApp Quick Start. In this
example, the DOS directory name is MT.

9 Copy the PenPoint document to your application's \STATNRY directory. For
example, if the document is in the DOS directory MT, type the following:
xcopy c:\penpoint\mt mt /s/e

10 Append PenPoint attributes from the Quick Start document to the \STATNRY
directory. See "PenPoint attribute utilities" on page 404 for details.
pappend penpoint.dir c:\penpoint\penpoint.dir /g "Myapp Quick Start"

11 Stamp the document to put a check in its menu check box. This forces the
stationery document to appear in the Create menu.
pstamp /g "MyApp Quick Start" /A anmAttrStationeryMenu 1

12 Boot PenPoint and install MyApp. Verify that the only two stationery items
for the application are MyApp and MyApp Quick Start by opening the
Stationery Notebook.

GO uses this technique to save the Sample notebook and Help notebook. These
files are in the \2_0\PENPOINT\BOOT\DOC directory.

'Y Stamping stationery with different names
When you create localized versions of your application, you may want to ship
different versions of your supporting documents, such as stationery and Quick
Start documents. Use the procedure described above in "Using short DOS path and
file names" to create the supporting documents.

However, some supporting documents you create are not language-specific. For
example, the Tic-Tac-Toe sample application uses a piece of stationery to fill in a
Tic-Tac-Toe board. Its stationery files are simply filled with a pattern ofxs and Os.
The only difference between localized versions of the stationery is the stamped
information (containing, among other things, the user-visible file name).

To create this kind of supporting document (which differs only by the stamped
information), create the document in your development directory as described
above.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES 393
Working with supporting files

When you build your application directory, copy the stationery files to \2_0\

PENPOINT\APP\MYAPP\STATNRY and stamp the files as appropriate to the locale.
For example, the following procedure stamps locally appropriate names onto
stationery:

1 Add a tag and an associated string to the resource file for each localization. For
example, you might use the tag tagMyStationeryName and add the appro
priate strings to each resource file.

2 Add lines to your makefile that stamp your stationery with the string associ
ated with the tag. Specify the name that should be stamped by prefixing the
tag name with the & (ampersand) symbol. For example, the following make
file commands stamp the string associated with tagMyStationeryName on
your stationery:
%ereate statnry.stm
%append statnry.stm -u
%append statnry.stm -n
%append statnry.stm $ (PENPOINT_PATH)\app\MyApp\statnry
%append statnry.stm -1 $(LOCALE)
%append statnry.stm -r $ (LOCALE) .re ""
%append statnry.stm -g &tagMyStationeryName
%append statnry.stm -d $ (DOSNAME)
%append statnry.stm -a anmAttrStationeryMenu 1
-$ (STAMP) -s statnry.stm
del statnry.stm

3 Specify a locale when you call WMAKE to create your stationery. For example,
the following commands create u.s. English versions of Tic-Tac-Toe statio
nery.
wmake stationery LOCALE=usa
wmake help LOCALE=usa

If you do not specify a locale, the makefile rules assume JPN.

Chapter 30 / Debugging

You can use a variety of tools to debug your PenPoint™ applications. This chapter
provides an overview of those tools and discusses changes and improvements to the
debugging tools for PenPoint 2.0 Japanese.

See Part 2 of PenPoint Development Tools for more information on using PenPoint's
debugging tools.

Overview
There are a variety of ways to debug your application. Some common strategies are:

• Running the debug version of Pen Point 2.0 Japanese.

• Using DebugfO or DPrintfO to send text strings to the debugger stream. You
can display these strings on your PenPoint screen or a second monochrome
screen dedicated to displaying the debugger stream. You can also use the Sys
tem Log application to write the debugger stream to a file.

• Using the PenPoint source debugger or the mini-debugger.

• Handling msgDump, which requests an object to format its instance data in a
readable format to send it to the debugger stream.

Each of these strategies is discussed in more detail below.

'Y Debug version 01 PenPoint

The PenPoint SDK 2.0 Japanese includes two versions of PenPoint, the production
and debug versions. Each version contains its own set of DLLs, services, and appli
cations.

The production version is what the end-user sees. Its files are in \ ... \PENPOINT\
BOOT\DLL, \ ... \PENPOINT\BOOT\APp, and \ ... \PENPOINT\BOOT\SERVICE. The file
PENPOINT.OS is also part of the production version. The ellipses C •••) represent
either 1_o 1 or 2_0, depending on which version of PenPoint you are developing for.

The debug version lets you see and use the following information in your debugger
stream:

• Warnings from ObjCallWarn/Ret/Jump and StsWarn/Ret/Jump.

• Symbolic names for objects, classes, messages, and status values.

• Additional debugging information that may be helpful for reporting bugs to
Developer Technical Services.

• Special debugging features documented in DEBUG.H.

396 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

The debug version files are in \ ... \PENPOINT\BOOT_DLL, \ ... \PENPOINT\

BOOT_APP, and \ ... \PENPOINT\BOOT_SERVICE. The debug version of
PENPOINT.OS is _PP.OS.

The drawbacks to using the debug version are:

.. It requires more memory .

.. PenPoint 2.0 Japanese runs more slowly.

.. It is unlike the final end-user environment.

.. Some debug warning messages are benign, and these may cause you undue
worry about your own code.

You can modify the GO.BAT file to run either the debug or production version of
PenPoint 2.0 Japanese. The default is the production version.

Sending text to the debugger stream
You can write debug information to the debugger stream using the DebugfO and
D PrintfO functions. The sample code often uses this strategy to identify when a
particular method handler executes. For example, here is the CntrNewDefaults
method from the Counter Application:

MsgHandlerArgType(CntrNewDefaults, P_CNTR_NEW)
{

Dbg(Debugf(U_L("Cntr:CntrNewDefaults"));)
II Set default value in new struct.
pArgs->cntr.initialValue = 0;
return stsOK;
MsgHandlerParametersNoWarning;

} 1* CntrNewDefaults *1

You can find this code in \2_0\PENPOINT\SDK\SAMPLE\CNTRAPP\CNTR.C.

Responding to msgDump is another way to send text to the debugger stream.
Because your shipping product should not handle msgDump, use the #IFDEF and
#ENDIF preprocessor directives to surround code that handles msgDump (and all
other debugging code). For example, here are excerpts from the Tic-Tac-Toe
method table showing how to use the directives:

MSG_INFO clsTttDataMethods[] = {
msgNewDefaults, "TttDataNewDefaults" , objCallAncestorBefore,

#ifdef DEBUG
msgDump,

#endif

} ;

"TttDataDump" , objCallAncestorBefore,

Put a line in your makefile to define the name DEBUG when your application com
piles. When DEBUG is defined, all the debugging code surrounded by the #IFDEF

and #ENDIF preprocessor directives is compiled, so debugging information is sent
to the debugger stream. Here is the line in Tic-Tac-Toe's makefile that defines the
name:

MODE = debug

CHAPTER 30 / DEBUGGING 397

Look in SDEFINES.MIF to see how the MODE line influences which compiler and
debugging flags are set.

See Chapter lOin PenPoint Development Tools for more details on the functions that
send data to the debugger stream.

". Viewing the debugger stream
There are a variety of ways to view the debugger stream. Here are some of your
options. See Chapter 1 0 in PenPoint Development Tools for more information.

~ On the PenPoint screen

To view the debugger stream on the same monitor as your PenPoint screen, you
must uncomment the following line in MIL.INI:

MonoDebug=off

~ On a second monitor

Make sure the line above is commented out if you want to see the debugger stream
on a second, monochrome monitor. This configuration is called two- or dual
headed debugging. Be sure to set the appropriate DebugCharSet to indicate which
character set should be used to interpret the debugger stream codes. See "Debug
CharSet" on page 398 for more details.

GO does not support viewing Shift-lIS on this second debugging monitor.

Using the System Log application

This PenPoint application saves the debugger stream to its own internal buffer. You
can use the application to see the stream in a variety of ways. See "System Log" on
page 398 for details.

".,. Using a serial port

Assign a serial port to the SerialDebugPort variable in MIL.INI to send the debugger
stream to that serial port. The port should be connected to a terminal emulator that
can display the required character set. Most likely, this is another computer running
a terminal emulation package. See "MIL.INI" on page 415 for details.

As a file

You can set variables in ENVIRON.INI to send the debugger stream to a file on your
pc's hard drive. For example, set the following variables to save the stream to the file
PENPOINT.LOG in the root directory of your PC's hard drive. The stream is flushed
to the file after every 10 characters written to the stream.

DebugSet=/DD8000
DebugLog=\PENPOINT.LOG
DebugLogFlushCount=10

Overview

398 PEN POINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

Deb ugCh arSet
The DebugCharSet variable in ENVIRON.INI controls the character set of your
debugging output. Table 30-1 shows the currently permissible values.

Value

ASCII

XJIS
437

850

Description

Standard 7 -bit ASCII

1990 Shift-JIS character set
Extended ASCII used in American PCs

Extended ASCII used in European PCs

If you are sending debugging information to your PenPoint monitor or a second
debugging monitor, make sure it can display characters in the specified Debug
CharSet. If you don't, you will see unmeaningful characters.

Literal strings in DebugfO and DPrintfO appear in the specified character set.
Unicode characters that do not have glyphs display as hex quads in PenPoint
2.0 Japanese. Outside of PenPoint, Unicode characters without glyphs display
as Ix value, where value is a 4-digit hexadecimal number. For example, the first hex
quad in the margin would be displayed as IxOOlB.

The default value of DebugCharSet depends on the value of Locale, another
ENVIRON.INI variable. If Locale is JPN, the default is Shift-Jls. The default is
ASCII if Locale is USA.

If DebugCharSet is set to an invalid value, the default character set is assumed.

System Log

The System Log application writes the debugger stream to a file.

See Chapter 11 of PenPoint Development Tools for information on using the applica
tion. Contrary to the text on page 141 of that chapter, you cannot get or set debug
flags with the System Log application.

In PenPoint 2.0 Japanese, the System Log application can display Shift-JIS charac
ters as well as ASCII text.

Note that the Device List command under View menu is not supported in the pro
duction version of PenPoint 2.0 Japanese.

Debug modes
You can run the debug version of PenPoint in either DebugRAM or Debug Tablet
mode. The DebugRAM mode is convenient for early application testing because it
is much faster, while the DebugTablet mode is more appropriate for more refined
testing because it more closely simulates a notebook computer. For example, in
Debug Tablet mode, files created in PenPoint persist between boots.

Because the Debug Tablet mode most closely matches a real pen computer, GO
encourages you to run in Debug Tablet mode as you get closer to shipping your
product.

Hex quads

00 F 1
1 B F2

00
12

CHAPTER 30 I DEBUGGING 399

Deb ug Table f
The DebugTablet mode, the default mode in PenPoint 2.0 Japanese, simulates a
pen computer most closely. For example, files that you create will persist across
boots. Also, when applications are installed, PenPoint copies executable code to a
special system directory called the loader database. See Section 3.6 of PenPoint
Development Tools for more information on Debug Tablet mode.

If you set SwapBoot to 2 in ENVIRON.INI, PenPoint writes the content of your
simulated notebook, complete with its documents and applications, to a swap file
called \PENPOINT.SWP. The next time you boot, PenPoint reads the swap file to
restore your simulated notebook. This considerably speeds up the boot process.

You specify the size of the swap file by setting SwapFileSize in ENVIRON.INI.

DebugRAM
In the DebugRAM mode, PenPoint creates its run-time file system (the Bookshelf,
Notebook, and document directories) in RAM. If you use the complete Japanese
font set in PenPoint 2.0 Japanese, this mode requires 12 megabytes of RAM. See
Installing and Running the PenPoint SDK 2.0 for strategies on reducing the required
amount of RAM.

In DebugRAM mode, PenPoint does not create the loader database of executable
system code, application executables, and DLLs. Instead, PenPoint pages them in
from the original files. Thus, PenPoint starts from a fresh state each time you boot
in DebugRAM mode.

You can still preserve files by copying them to your DOS disk by using the Connec
tions notebook.

If you install an application or service from a floppy disk, and remove the disk
while the application or service is running, PenPoint 2.0 Japanese may page fault.
This is true only in DebugRAM mode.

Runn;ng PenPo;nf J.O and 2.0
If you are developing PenPoint 1.0 and 2.0 Japanese applications on the same PC,
make sure only one environment uses DebugTablet mode. This protects you from
crashes that occur if the PenPoint operating system tries to read a swap file created
by a different version of PenPoint.

Because DebugTablet is the default mode in PenPoint 2.0 Japanese, set Debug
RAM as your PenPoint 1.0 mode, or change the 2.0 default.

Warm boof;ng
When you are debugging, you frequently want to replace the existing code with the
most recent version. In Debug Tablet mode, you may be able to replace the changed
.EXE and .DLL files in the loader database (in \2_0\PENPOINT\SS\LR), thereby by
passing the PenPoint installer. This technique, called warm booting, saves about
100 seconds during boot.

Debug modes

400 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Warm booting works only when you have:

• Cold booted with your .DLL or .EXE running.

• Made no structural changes to your project's destination directory.

• Not enabled swap booting.

The DLLs and EXEs in the loader database are the same as the files in \2_0\

PENPOINT\APP or \2_0\PENPOINT\BOOT\DLL, except that:

• They are stamped with PenPoint attributes.

• Their PenPoint names are in the linker form rather than the DOS directory
names. The syntax for the linker name is as follows:
company-project-VmajorVersion(minorVersion)

For example, the linker form of the dynamic link library required by the
Calculator sample application is GO-CALC_ENG-V2(O).

Leave the PenPoint attributes unchanged in \2_0\PENPOINT\SS\LR\PENPOINT.DIR,

and just copy in the new version of the DOS file.

The name of the files to copy are the DOS forms of your application's PenPoint
name. The DOS names are usually the first eight letters of the linker name. For
example, GO-CALC_ is the DOS version of the linker name GO-CALC_ENG-V2(O).

If you can guarantee that the first eight characters identify the files you want, write
a makefile to perform the required copying automatically. You might write your
makefile so that typing make warmboot from the DOS prompt takes the required
steps. Your makefile might look something like this:

t
t Warmboot puts the newly recompiled files into the loader database when
t the user is using DebugTablet. This saves having to de-install and
t re-install the app or service to get the new version.
t
WARMEXES =

t if DLL_DIR is defined, then we are processing a service, so don't copy
t the DLL here. There is another double-colon warmboot target in the
t svcrules.mif to handle the service DLL

ifneq DLL_OBJS
ifeq OLL OIR

WARMEXES += $(APP_DIR)\$ (PROJ) .dll
endif
endif

t only get the init.dll or the executable if they are built here
ifneq INIT_OBJS

WARMEXES += $(APP_DIR)\init.dll
endif
ifneq EXE OBJS

WARMEXES += $ (APP_OIR) \$ (PROJ) .exe
endif

warmboot :: \penpoint\ss\lr\penpoint.dir $(WARMEXES) .SYMBOLIC
ifneq OLL_OBJS
ifeq OLL DIR

endif
endif

-copy $ (APP_OIR)\$ (PROJ) .dll \penpoint\ss\lr\$(OLL_LNAME)

CHAPTER 30 / DEBUGGING 401
Using the mini-debugger

ifneq INIT_OBJS
-copy $(APP_DIR)\init.dll \penpoint\ss\lr\$(DLL_LNAME)

endif
ifneq EXE OBJS

-copy $ (APP_DIR) \$ (PROJ) .exe \penpoint\ss\lr\$(EXE_LNAME)
endif

must have booted before to do make warmboot, so quit here if they haven't
\penpoint\ss\lr\penpoint.dir:

@if not exist \penpoint\ss\lr\penpoint.dir &
@echo ******* Error! *********

@if not exist \penpoint\ss\lr\penpoint.dir &
@echo You must first boot PenPoint with Config=DebugTablet to

able to 'make warmboot.'
@if not exist \penpoint\ss\lr\penpoint.dir @%quit

If you are working with services, you might put this rule in your standard service
makefile.

warmboot \penpoint\ss\lr\penpoint.dir $ (DLL_DIR) \$ (PROJ) .dll .SYMBOLIC
ifneq DLL_DIR

-copy $ (DLL_DIR) \$ (PROJ) .dll \penpoint\ss\lr\$(DLL_LNAME)
endif

An 8-character name does not always uniquely identify a file. For example, if you
have two applications with the PenPoint names PENCOMPANY-PROJECTI-Vl(O) and
PENCOMPANY-PROJECT2-Vl(O), the first 8 letters does not distinguish between the
two files.

In this case, use the DOS utility PDIR to determine the DOS name of your .EXE and
.DLL files. Then copy the file (with the 8-character DOS name PDIR shows) into
\2_0\PENPOINT\SS\LR.

Using the mini-debugger
This section contains more detailed information about how to use the mini
debugger. See Chapter 12 of PenPoint Development Tools for more information.

Displaying Unicode
Table 12-1 on page 146 of PenPoint Development Tools shows a series of mini
debugger commands (d, da, db, dd, and dw) that display the contents of particular
memory addresses as ASCII text.

In PenPoint 2.0 Japanese, the same commands display the memory contents as
either multibyte (Shift-JIS) or Unicode characters. The interpretation is controlled
by the mdb command, which controls various aspects of the mini-debugger.

Table 30-2 shows the currently defined controls. Simply type mdb followed by one
of these numbers to activate a control. For example, mdb 6 turns on Unicode inter
pretation of memory dumps.

Note GDIR utility has been
renamed PDIR in Pen Point
2.0 Japanese

402 PEN POINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

Control

1

2

3

4

5
6

7

Meaning

Turn off page fault protection.

Turn on page fault protection.

Turn off symbolic translation during stack traces (st).

Turn on symbolic translation during stack traces (st).

Turn off symbolic translation when displaying address information (ai).

Interpret memory contents as Unicode characters.

Interpret memory contents as multibyte (Shift-JIS) characters.

Disabling the mini-debugger
In the end-user version of PenPoint, the mini-debugger is disabled. You can
explicitly disable the mini-debugger by setting the IDDIOOOO flag. When the mini
debugger is disabled, applications or services that crash are simply terminated, and
operation continues.

Also, set the IDD40000 flag to disable the keys that drop you into the mini
debugger. Without this flag, CTRL-C and BREAK drop you into the mini-debugger.

A PenPoint machine set up for a user has both flags set; namely, IDD50000 is set.

Turning flag bits on and off
The mini-debugger fs command accepts + and - to enable and disable flags. The
operators toggle the value of the flag specified. For example, the following lines
toggle the B 800 flag.

fs B +800
fs B -800

These commands are much simpler than the source-level debugger commands,
where you are responsible for the addition and subtraction of the appropriate bits.

Getting help
Type H or h to see the list of valid commands. Press the space bar to scroll through
the list one line at time; press Return to scroll through an entire screen at once.

Table 12-1 in PenPoint Development Tools erroneously states that you can type the
question mark (?) character to get help.

Chapter 31 / Tools and Utilities

This chapter describes various DOS utilities and PenPoint™ accessories that help
you create PenPoint 2.0 Japanese applications and services. Many of these utilities
are updates of tools found in the 1.0 SDK, so you should look in PenPoint Develop
ment Tools for information on how to use these tools.

The old command-line syntax is still accepted for all utilities. You only need to
rename GDIR and STAMP in your 1.0 scripts, since these utilities have been
renamed.

Most of the new and updated DOS utilities are in \2_0\PENPOINT\SDK\UTIL\DOS.

Type -? or /? after any of these DOS utilities to see a help message.

Locales and character sets
Because you are likely to use different character sets while developing your Pen
Point 2.0 Japanese application, most of the DOS utilities are sensitive to two DOS

environment variables .

... CHARSET can be one of the values in Table 31-1.

... LOCALE, a combination of a country, language, and dialect, can be either USA

or]PN. The locale maps to a default character set. The USA locale maps to
code page 437, while]PN maps to X]IS.

ASCII

XJIS

XJIS 1983

XJIS 1978

437

850

LATINI

Descripti@n

Standard 7 -bit ASCII.

Shift-JIS encoding of the 1990 JIS character set.

Shift-JIS encoding of the 1983 JIS character set.

Shift-JIS encoding of the 1978 JIS character set.

IBM code page 437 used in U.S. PCs.

IBM code page 850 used in European pes.

International Standards Organization (ISO) Latin 1 character set.

Set these environment variables to reflect the character set that your keyboard uses.

You can set the variables in AUTOEXEC.BAT if you use a particular character set
most of the time. Use this line, for example, to specify code page 437 as the default
character set.

set charset=437

With this variable set, the DOS utilities will interpret the characters in stamped
names as ASCII characters. Other character sets and locales are supported, but the
ones mentioned here are the only ones relevant to PenPoint 2.0 Japanese.

404 PEN POINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

If you want to specify a character set or locale for just one time, most utilities accept

a -c or -1 argument. For example, you can type either of the following commands to

display PenPoint directory information, with the PenPoint names interpreted as

Shift-lIS characters.

pdir -cxjis
pdir -1 jpn

Notice in the above example that spaces are not required between flags and their

values. You can type either -cXJIS or -c XJIS to specify the character set.

You may specify explicit Unicode characters by embedding \xhhhh in your strings,

where hhhh is up to 4 hexadecimal digits. For example,

pstamp MyDir -u -g "Q3 Sales in \xOOA5" -d Q3SALES

stamps the directory MyDir with the name Q3 Sales in ¥ because the Unicode

value OxOOA5 represents the ¥ symbol.

PenPoint attribute utilities
PenPoint 2.0 Japanese provides a collection of DOS utilities to stamp directories,

applications, services, and documents with PenPoint attributes. This information is

stored in a file named PENPOINT.DIR in the same DOS directory. Table 31-2 shows

the available utilities.

In PenPoint 2.0 Japanese, PENPOINT.DIR can contain Unicode strings, although

the utilities can still read PENPOINT.DIR containing ASCII strings. That means the

utilities still work with PenPoint 1.0 files. You must have the DOS4GWEXE file in

your DOS PATH to run any of these utilities.

Name

PSTAMP

PDEL
PCOpy

PDIR

PSYNC

Purpose

Adds special PenPoint information to a DOS file or directory.

Deletes specific directory entries from PENPOINT.DIR files.

Recursively copies files and directories to other PenPoint directories. Appends
the appropriate entries in PENPOINT.DIR.

Lists the PenPoint names and file systems attributes for all the files and direc
tories in a DOS directory. Replaces GDIR from the utilities included with
PenPoint 1.0.

Scans the current directory and removes any entries from PENPOINT.DIR
for which there are no corresponding DOS files. Note that this updates the
PenPoint directory information from the DOS information; it does not
update DOS files from the information in PENPOINT.DIR.

CHAPTER 31 / TOOLS AND UTILITIES 405
Pen Point attribute utilities

",. PSTAMP
PSTAMP replaces STAMP from PenPoint 1.0. It has changed in the following ways:

• You can stamp Unicode strings by specifying the -u option.

• You can specify a script file of arguments using the -s option to help automate
the stamping process. The script file must contain the same arguments you
would type in at the command line. These scripts help you avoid the 128-
character limit DOS imposes on commands.

• You can now delete an attribute by specifying the -x argument. Previously, the
only way to do this was to create a new entry that did not contain the attribute
you wanted to delete.

• When manipulating attributes, you can refer to entries one of three ways:

.. By PenPoint name (as it was in the STAMP from 1.0).

.. By DOS name.

.. By the string associated with tagAppMgrAppFilename in a resource file
(jPN.RC or USA.RC).

• PSTAMP assumes you want to manipulate the PENPOINT.DIR in the current
directory, so you don't need to specify a PENPOINT.DIR file each time you run
PST AMP. You can still specify PENPOINT.DIR files in other directories if you
want.

• You may change the PenPoint name of an entry by specifying the -n flag. You
must specify the new PenPoint name and the old DOS name as arguments. If
the entry does not exist already, a new one is created. For example, this com
mand changes the name of the Paint sample application from Paint Demo to
My Paint Program:
PSTAMP -N -D "PAINT.EXE" -G "My Paint Program"

• You may specify symbolic names for all system-defined attributes instead
of attribute numbers. The symbolic names are the #define names of the
attributes in the header files. All names that are defined using a function
of the form FSMake* AttrO are valid.

• Table 31-3 shows some attributes that are commonly stamped onto items you
can install in PenPoint (for example, applications and services). Remember
that there are three kinds of attributes: strings, variables, and fixed (32-bit or
64-bit). See Chapter 72, Using the File System in the Architecture Reference for
more information.

406 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

on

Admin Index Category

62 0 String Yes

260 3 String No

157 12 String No

193 2 String Yes

157 FIX32 Yes

fsAttrName
FS.H

imAttrVersion
INSTLMGR.H

appAttrClassName
APPDIR.H

cimAttrProgramName
CODEMGR.H

appAttrClass
APPDIR.H

Comment

User-visible name of installable item. Must
be unique within the parent directory.

User-visible version string.

User-visible installable type name (for exam
ple, Application, Service, Font, Printer).

Module name such as GO-ABAPP-V2(0).
Must match the module name in the .LBC
file used to build the module.

Installable type. Must be set to the
appropriate installation manager such
as theInstalledApps (01000IAO).

Table 31-3 shows attributes that are commonly stamped on PenPoint documents.

TAlU"E 31~4

Comment
file

62 0 String Yes fsAttrName User-visible name of document. Must be
FS.H unique within the parent directory.

28 0 FIX64 Yes fsAttrDirIndex Directory index. Must be unique.
FS.H

157 12 String No appAttrClassName User-visible name of document's application
APPDIR.H (for example, GOMail, MiniNote).

157 1 FIX32 Yes appAttrClass Document's application class.
APPDIR.H

157 4 FIX32 Yes appAttrSequence Sequence number describing the position of
APPDIR.H an embedded document.

157 3 FIX32 Yes appAttrNumChildren Number of documents embedded within
APPDIR.H this document.

157 6 FIX64 Yes appAttrFlags Document's file system flags (for example,
APPDIR.H moveable, readOnly).

157 9 String No appAttrBookmark User-visible name of a document's tab in the
APPDIR.H notebook.

157 10 String No appAttrAuthor User-visible author field.
APPDIR.H

157 10 String No appAttrComments User-visible comments field.
APPDIR.H

See "Stamping changes" on page 386 for more information about how the standard
makefilerules have changed stamping behavior since 1.0.

CHAPTER 31 / TOOLS AND UTILITIES 407
Pen Point attribute utilities

".. PCOpy
PCOpy allows you to recursively copy files and directories to other PenPoint direc

tories. If the directory you are copying contains a PENPOINT.DIR file, PCOPY

updates the target PENPOINT.DIR file to include the new information.

PCOpy source [target-dir] [IV] [/L locale I /C charset]

The source can be a file or a directory. If source is a directory, PCOPY copies the con

tents recursively. You can also use the standard DOS wildcards * and? to specify
multiple files or directories. The locale and charset specify the locale or character set

from which to translate the PenPoint name. PenPoint names, remember, are written

as Unicode strings. See "Locales and character sets" on page 403 for a list of valid
values.

For example, you might need to copy an application from \2_0\PENPOINT\SDK\APp,

such as SSHOT, to \2_0\PENPOINT\APP. With the tools available in PenPoint 1.0,
you had to use XCOPY to copy the SSHOT directory into \2_0\PENPOINT\APp, then

use PAPPEND to copy SSHOT attributes from its original directory to \2_0\PEN

POINT\APP.

Now, you can simply type the following to achieve the same result:

PCOpy \2_0\PENPOINT\SDK\APP\SSHOT \2_0\PENPOINT\APP

PCOPY recursively copies SSHOT to the target and updates the PENPOINT.DIR file in

\2_ O\PENPO INT\APP.

PCOPY cannot copy to already existing subdirectories below the target directory.

For instance, you can't:

MD D:\2_0\PENPOINT
PCOpy C:\2 O\PENPOINT\SDK\APP D:\2 O\PENPOINT
PCOpy C:\2=O\PENPOINT\APP D:\2_0\PENPOINT

The second PCOPY fails because D:\2_0\PENPOINT\APP already exists.

PDIR

PDIR replaces GDIR from PenPoint 1.0. While GDIR allowed you to specify only

directories, PDIR allows you to specify files as well. For example:

PDIR PENPOINT.BAK

displays PenPoint information about the file PENPOINT.BAK.

PDIR also differs from GDIR in the following ways:

.. Attributes are only printed when you specify the -a argument rather than

printing automatically.

.. Unicode names that have been stamped using PSTAMP's -u option are inter-

preted as characters from the set specified in CHARSET.

If some of the characters in your Unicode strings display as spaces, there is no

equivalent character in the character set you specified. Change your character set or

specify the -u option to display unprintable Unicode characters as hex numbers.

408 PEN POINT APPLICATION WRITING GUIDE

Part 4 I Development Tools Supplement

Resource file utilities
The resource utilities from PenPoint 1.0 have been ported to 2.0 Japanese.

.. RC, the resource compiler, compiles .RC files into .RES files. Applications and
services actually use .RES files, not .RC files.

.. RESAPPEND appends resources from one resource to another. It also compacts
the target resource file by removing deleted or duplicated resources.

.. RESDUMP allows you to view the contents of a resource file.

RESDEL
A new resource file utility, RES DEL, deletes specific resources from a compiled
resource file. The syntax of the command:

RESDEL resource-file-name [resource-ID-spec]

The resource-ID-spec identifies a particular resource in a variety of ways. You can
find a resource ID by examining the contents of a resource file using RESDUMP.

For example, if you wanted to delete a resource from the USA. RES ofTic-Tac-Toe,
first examine the contents of the file by typing:

resdump c:\2_0\penpoint\sdk\app\ttt\usa.res > tempfile

Open tempfile with a text editor and notice that a typical resource looks like the
following:

Resource 0 is a well-known object resource
resld = [Ox0780001A WKN: Scope=Global Admin=13 Tag=15]
Objects class = [Ox010002F4 WKN: Scope=Global Admin=378 Ver=l], data length=401
Min sys version = 0

You can specify the resource with the hexadecimal number Ox078000 1A. To delete
it, just type:

RESDEL C:\2_0\PENPOINT\SDK\APP\TTT\USA.RES Ox0780001A

There are more complex ways of specifying a resource, as shown in Figure 31-1.

a resource

hex number

decimal number)-------------------------1

wkn-res-id
I

admin number

type
I

..... 01-----(decimal number t--------_

decimal number

CHAPTER 31 / TOOLS AND UTILITIES 409
Other DOS utilities

In the above example, note that the resource if a well-known object resource with

global scope, an administered number of 13, and a tag number of 15. Given this

information, you can delete the resource by typing:

RESDEL C:\2_0\PENPOINT\SDK\APP\\TTT\USA.RES G13T15

Type RESDEL IH for details on these alternate ways of specifying resources.

". Other DOS utilities
There are a collection of DOS utilities that do not deal with PenPoint attributes or

resource files.

". UCONVERT
A new utility UCONVERT allows you to convert entire files from one character set

to another. The syntax of the command is as follows:

UCONVERT [-d] [-m] source-file dest-file [source CharSet] [dest CharSet]

You can specify a character set as either a code page or a locale. Any character set

shown in Table 30-1 in Chapter 30, Debugging, is valid. You may also specify UNI

to indicate the Unicode character set. Each locale maps to a default character set:

• USA maps to code page 437 (specified as 437) .

• JPN maps to Shift-JIS (specified as XJIS).

Table 31-5 shows examples of using the UCONVERT utility.

C@mm@nd

uconvert mytext.doc mytext.unc

uconvert mytext.unc mytext.jis uni xjis

uconvert -d myfiles.doc myfiles.jis xjis uni

uconvert letter.jis letter.unc jpn uni

uconvert -m longfile.437Iongfile.unc

RTFTRIM

Descripti@n

Puts a Unicode copy of ASCII document MYTEXT.DOC in the file
MYTEXT.UNC. ASCII-to-Unicode is the default conversion.

Puts a Shift-lIS version of the Unicode document MYTEXT.UNC in the
file MYTEXT.lIS

Puts a Shift-JIS version of the file MYFILES.TXT containing filenames
in the file MYFILES.JIS. The -d flag is necessary when the input Shift-JIS
file contains filenames.

Puts a Unicode copy of the Shift-lIS file LETTER.JIS in the file
LETTER.UNC.

Puts a copy of the extended ASCII file LONGFILE.437 in the Unicode
file LONGFILE.UNC, converting all CRiLF combinations to the Unicode
line separator character (U+2028).

You can use RTFTRIM to convert an RTF document into a form usable by the Help

notebook.

RTFTRIM converts the Japanese RTF form \ xx\ yy to uuuu where xx and yy are the

first and second bytes of a Shift-JIS character and uuuu is the Unicode equivalent.

RTFTRIM also introduces a new keyword \UNC that allows you to embed Unicode

characters in a 7-bit RTF file. Just put \UNCxxxxwhere xxxx is the hex representa

tion of the Unicode character.

410 PEN POINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

This allows you to specify GO gesture glyphs in RTF help files. For example, the lit
eral /UNCF600 represents the Unicode point for the single tap gesture. See the
header file \2_0\PENPOINT\SDK\INC\GLYPH.H for a list of Unicode values for the
GO gesture glyphs~

CONTEXT batch file

The CONTEXT batch file, located in \2_0\PENPOINT\SDK\UTIL\DOS, helps you set
up the DOS environment variables required to run PenPoint and compile PenPoint
applications and services.

Because the batch file accepts I_Olor 2_o as arguments, it is especially useful if you
need to switch between PenPoint 1.0 and 2.0 development.

Mter reading the argument that represents the development environment,
CONTEXT.BAT performs the following actions:

.. Sets these environment variables:

• CONTEXT

• PENPOINT_PATH, GO_PATH, PATH

• INCLUDE

• LIB

.. Adds \2_0\SDK\UTIL\DOS to the end of your PATH .

., Creates \PENPOINT and \PENPOINT\BOOT directories in the root of your
current volume (if they don't already exist) .

. ., Copies the ENVIRON.lNI file from the appropriate \ ... \PENPOINT\BOOT

directory into \PENPOINT\BOOT in the root.

CONTEXT.BAT assumes C: is the source drive. You can change this by reassigning
the 5 RC_DRV variable.

If you change your path in AUTOEXEC.BAT, reboot your machine. Do not simply
run AUTOEXEC.BAT to get the new path because CONTEXT.BAT sets up an environ
ment variable that must be cleared if you change your path.

GO batch file

The GO.BAT batch file now takes two optional parameters to specify the locales to
boot with:

go [system~locale] [user_locale]

When you specify a system locale, PenPoint's behavior and user interface are
changed to be appropriate to the specified locale (U.s. or Japanese).

When you specify botha system and user locale, the batch file directs PenPoint 2.0
Japanese to change its behavior to match the system locale, but to change its user
interface strings to match the user locale.

CHAPTER 31 I TOOLS AND UTILITIES 411

For example:

• To boot with Japanese behavior and strings, type the following command:
go jpn

• To boot with Japanese behavior and English strings, type the following
command:

go jpn usa

When you type GO with no parameters, PenPoint 2.0 Japanese boots in the same
state as it was last booted. If you type GO with no parameters and you are in
Debug Tablet mode, PenPoint warm boots. See "Warm booting" on page 399 for
more information. Because the batch file only controls which resource files
PenPoint loads, the stamped application and service names appear in the system
locale language.

GO.BAT relies on LOCALE. BAT to do the locale switch. Both GO.BAT and
LOCALE.BAT require utilities in the \2_0\PENPOINT\SDK\UTIL\DOS directory to
switch locales.

When you specify a locale with GO.BAT (or LOCALE.BAT) the batch file recursively
deletes your \PENPOINT\SS directory. This deletes any documents that you had
saved in your PenPoint file system. Make sure to save the files to your hard drive if
you need them.

Currently, only two locales are supported: JPN and USA.

LOCALE batch file
GO.BAT calls LOCALE.BAT to implement the required changes. You can call
LOCALE.BAT yourself if you want to change the configuration without booting
PenPoint. Its syntax is similar to GO.BAT:

locale system_locale [user_locale]

LOCALE.BAT edits ENVIRON.lNI and copies the appropriate MIL.RES file from the
appropriate locale-specific boot directory (\2_0\PENPOINT\BOOT\jPN or \2_0\

PENPOINT\BOOT\USA) to \2_0\PENPOINT\BOOT. If you want to load any of your
applications or services at·boot time, remember to specify them in the appropriate
APP.INI or SERVICE.lNI file. PenPoint 2.0 Japanese uses the initialization files in the
directory corresponding to the user locale.

For example, if you are running the system with Japanese behavior and English
strings, only the services in \2_o\PENPOINT\BOOT\USA\SERVICE.INI are loaded. The
KKC engine is not listed in this SERVICE.lNI, so you need to explicitly install this
service if you want to test your application with KKC enabled. Use the Settings
notebook to install the services.

Do not make the changes that LOCALE.BAT implements unless you are sure your
changes are not destabilizing. The way PenPoint 2.0 Japanese handles locales will
change in the future, so you should let LOCALE. BAT handle the switch.

Other DOS utilities

Warning The GO.BAT
and LOCALE.BAT batch flies
delete your PenPoint 2.0
Japanese flies when you specify
locales.

412 PEN POINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

".. Bitmap editor
The bitmap editor is in' \2_0\PENPOINT\SDK\APP\BITMAP.

See "Installing applications from any connected disk" on page 389 for details on
how to install the bitmap editor.

Here is the typical procedure for working with bitmaps:

1 Create a bitmap using the bitmap editor. See Chapter 16 of PenPoint Develop
ment Tools for details on how to use the bitmap editor.

2 If you are creating an icon, define an appropriate hot spot. The hot spot deter
mines the origin of the bitmap. Make sure your hot spot is defined in a way so
that the icon is clearly visible when it is drawn on-screen.

3 If you are creating a bitmap other than an application icon, tap on the
Custom Resource Id choice under the Options menu. Set the following
values:

.. Set the Class number to the administered number for your class.

.. Set the Scope value to match the scope of your class.

.. Set the Id value to the tag value you use to identify your bitmap in your
header file.

4 Export the bitmap. If your bitmap is an application icon, select App or Small
App from the Resource Id pop-up menu. Otherwise, select Custom. Note that
bitmaps are exported as resource object (.RES) files.

5 Create a tag to identify your bitmap with the MakeTagO macro. Typically, this
is done in a header file. Use the Id value you used in step 3.

6 Create an instance of clslcon or clslconToggle.

7 Assign the field that identifies a bitmap to the tag you defined in step 5. For
example, set the win. tag field of the ICON_NEW structure or the
iconToggle.offTag of the ICON_TOGGLE_NEW structure to the tag you
defined to identify your bitmap. See below for an example.

S Set the control.client field of ICON_NEW to OSThisAppO.

The following code comes from the UI Companion, a sample application in
\2_0\PENPOINT\SDK\SAMPLE\UICOMP. The code shows how the frog icon on the
"Lists" page of the UI Companion was created and used.

When the bitmap was created, the following values were assigned in the Custom
Resource Id option sheet:

The values used in the option sheets come from the header file UICOMP.H:

#define clsUICompApp MakeGlobalWKN (3524, 1)

#define taglconFrog MakeTag (clsUICompApp, 36)

CHAPTER 31 / TOOLS AND UTILITIES 413

The code in LISTS.C uses this tag to identify the bitmap when creating an instance
of clslcon Toggle:

ICON_TOGGLE_NEW itn;
STATUS S;

ObjCallWarn(rnsgNewDefaults, clslconToggle, &itn);
itn.iconToggle.offTag = taglconFrog;
itn.iconToggle.onTag = taglconPrince;
itn.icon.pictureSize.w = iconSizeNorrnal;
itn.icon.pictureSize.h = iconSizeNorrnal;
itn. control. client = OSThisApp();
itn.border.style.edge = bsEdgeAll;
ObjCallRet(rnsgNew, clslconToggle, &itn, s);

See the in-line comments in UICOMP.C for more information on using bitmaps.

".. Font editor
The font editor for PenPoint 2.0 Japanese fonts is no longer supported. You should
convert your fonts to bitmaps.

If you have fonts created with the font editor that you believe would be valuable to
a large community of PenPoint programmers, contact GO to negotiate translating
those fonts for use in PenPoint 2.0 Japanese.

Contact GO if you want to see the font specification. With the font specification,
you can create your own fonts.

PenPoinf fools
Aside from the DOS utilities, there are a number of PenPoint 2.0 Japanese applica
tions and accessories to help you create applications and services.

MiniText
You can use MiniText as a Shift-JIS and Unicode editor. MiniText supports Japa
nese handwriting recognition, KKC, and RKC.

See Chapters 4 and 5 of the Japanese Localization Handbook for more details on
how to use MiniText as a text editor.

Unicode Browser
The Unicode Browser allows you to find specific characters and put them into the
input stream. It contains all the characters available in the Japanese fonts when
those fonts are installed.

The first row of characters in the Unicode Browser consists of Latin characters
(the letters a through z, the numbers 0 through 9, mathematical operators,
accented characters, Cyrillic characters) and special fonts (gestures and other GO
glyphs) installed in PenPoint 2.0 Japanese. The remaining rows of the Unicode
Browser contain kanji radicals.

Pen Point tools

414 PENPOINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

Tap on any character in the top level of the Browser to open a submenu. For non
kanji (the top row), the submenu contains the characters in the set represented. For
kanji radicals, the submenu contains all characters that use the displayed radical as
their base radical. The size of this submenu varies from radical to radical.

Tap on a character in the submenu to insert the character into the input stream at
the current insertion point. Tap outside the submenu to close the submenu without
any character being selected. If there is no current insertion point, the submenu
closes and nothing happens.

Japanese virtual keyboard
The virtual keyboard is another PenPoint 2.0 Japanese accessory that allows users to
send characters to the text stream. It offers u.s. and Japanese IBM-AOI keyboard
modes. Bring up the keyboard and make the check vi' gesture over the title bar to
switch modes.

Chapter 32 I Miscellaneous

This chapter describes miscellaneous topics including:

• MIL.INI.

• ENVIRON.INI.

• Printing to a spooler.

• Long DOS file names.

• Changes to QuickHelp.

• Corrections to previous documentation.

MIL.INI
The MIL may print out some initial errors before PenPoint 2.0 Japanese boots.
Because PenPoint isn't running at this time, it hasn't read ENVIRON.INI to deter
mine whether to log to a file. To see these pre-boot errors, either use a second
monochrome monitor or use MIL.INI to log to the serial port.

To see low-level output on a second monochrome monitor, set
LowLevelDebug=mono

in MIL.INI. To direct low-level output to a serial port, connect a serial port to
another computer running a telecommunications package and set

LowLevelDebug=coml
SerialDebugPort=l

in MIL.INI.

Keyboards
The MIL.INI file contains a new variable that allows you to specify what kind of
keyboard you are using. PenPoint 2.0 Japanese supports the following keyboard
types:

• USA 10l-key (IBM AT) keyboard.

• IBM AOI Japanese keyboard.

• AX Consortium keyboard.

• Toshiba 3100 desktop keyboards.

• Toshiba 3100 laptop keyboards.

See MIL.INI for valid values for the Keyboard variable.

The value of Keyboard determines how the keyboard behaves in PenPoint 2.0
Japanese. To change keyboards, you must warm or cold boot. Swap booting does
not change keyboard behavior.

416 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

MonoDebug
The only reason you need to set the MonoDebug variable is if you have a mono
chrome card, but you nonetheless want PenPoint to use the VGA screen for debug
ging output.

The description on page 44 in PenPoint Development Tools may be misleading,
because it suggests that you need to set the variable even if you have a VGA card.

ENVIRON.INI
This section describes changes to ENVIRON.INI since PenPoint 1.0.

Locale
You can boot PenPoint 2.0 Japanese with a system locale different than its user
locale. For example, you can boot with Japanese behavior and English strings in its
user interface. This configuration helps you use PenPoint and test the Japanese ver
sion of your product without having to read Japanese.

See "GO batch file" on page 410 for more details on how system and user locales
differ and how to switch locales.

A new variable named Locale has been added to ENVIRON.INI to represent the
system locale. You should not specify a value for Locale yourself Instead, use the
GO.BAT or LOCALE.BAT batch files to specify locales.

If you specify a user locale while running either GO.BAT or LOCALE.BAT, the batch
files create a variable named LocaleUser in your ENVIRON.INI. Do not modify this
variable. Instead, call the batch files to specify system and user locales.

PenPoint uses LocaleUser to determine where to search for its initialization files
APP.INI, SERVICE.INI, SYSAPP.INI, and SYSCOPY.INI. When Locale is USA, PenPoint
uses \2_0\PENPOINT\BOOT\USA to find the required initialization files. When
Locale is lPN, PenPoint uses \2_0\PENPOINT\BOOT\]PN.

Debugging character set
The DebugCharSet variable in ENVIRON.INI controls the character set of your
debugging output. See "DebugCharSet" on page 398 for more information.

Shutdown and standby buttons
You can put shutdown and standby buttons on the Bookshelf at boot time by
assigning values to two new variables, ShutDownButton and StandByButton.

The values of the variables indicate the position of the buttons in the Bookshel£

Versions and trademarks
In PenPoint 1.0, the three variables Version, Trademark, and CommVersion had
multiline strings, with text items separated by the vertical bar (I) symbol.

A value of 1 puts the button on
the far left side of the Bookshelf.
For example, these lines put the
shutdown and standby buttons
next to each other on the left
side of the Bookshelf.

ShutDownButton=1
StandByButton=2

CHAPTER 32 I MISCELLANEOUS 417

In PenPoint 2.0 Japanese, the version and trademark information is represented
with single-part strings. Everything else is stored in a PenPoint resource file.

Version=2.0
Copyright=1992
CommVersion=1991-1992

Note that the Trademark variable has been replaced by the Copyright variable.

If your code depends on the PenPoint 1.0 strings, you must change the code to
reflect the new values and variable name. GO discourages you from writing code
that depends on these strings.

".. Start application
The variable used to define the default initial application, StartApp, has been
removed from the default ENVIRON.lNI. If you want to specify your own initial
application, add a line to ENVIRON.lNI defining the StartApp variable.

Its value should be the complete path and file name of the initial application. The
file name must contain only ASCII characters.

Autozoom

The Autozoom setting has been removed from ENVIRON.lNI. It is now stored in
the resource file associated with the Bookshelf application. The resource file con
tains the name of the document that is to be automatically zoomed.

BkshelfPath
The BkShelfPath variable identifies the path to the default contents of the
BookshelE When PenPoint 2.0 Japanese boots, it copies the contents of this direc
tory into the BookshelE

Uncommenting the BkShelfPath line in by the default ENVIRON.INI causes
PenPoint to load the Help notebook and several sample documents into the main
PenPoint notebook.

This description updates the description on pages 36 and 37 of the PenPoint
Development Tools.

Debugging flags
Some common debugging flags are set in ENVIRON.INI with the DebugSet
variable. You can set any debugging flag in DebugSet .

• ID*l works only if you run the debug version of Pen Point 2.0 Japanese.
It directs the heap manager to validate heaps after any heap allocations or
deallocations. This validation degrades performance by about 15 percent and
dramatically slows screen layout .

• IDD8000 sends a copy of the debugger stream to the file specified in the
DebugLog variable in ENVIRON .INI. See "Viewing the debugger stream" on
page 397 for details.

ENVIRON.INI

418 PEN POINT APPLICATION WRITING GUIDE
Part 4 I Development Tools Supplement

• IDB800 causes your PenPoint boot volume (the hard drive from which you
booted PenPoint) or RAM (if you specified DebugRAM mode), to appear in
the Connections notebook. Set this flag to copy files between your hard drive
(or RAM) and the PenPoint file system.

Also, page 34 of PenPoint Development Tools says that you should modify
\PENPOINT\BOOT\ENVIRON.lNI to enable logging by uncommenting the line

#DebugSet =/D*1 /DD8000

You should make sure the first DebugSet line is commented out:

#DebugSet=/D*1
DebugSet=/DD8000 /DB800 /D*1

PenPoint ignores duplicate lines in initialization files.

BOOT.DLe

The file BOOT.DLC has moved from \2_0\PENPOINT\BOOT to \2_0\PENPOINT\
BOOT\USA and \2_0\PENPOINT\BOOT\jPN.

Do not put comments in any .DLC files, including BOOT.DLC. Comments some

times cause PenPoint to fail booting.

Where necessary, the version numbers for DLLs have been changed to 2.0. Com

pared to the 1.0 version, the 2.0 version of BOOT.DLC loads additional DLLs. The
exact list of additional DLLs varies between locales.

If you have a .DLC file that refers to a PenPoint DLL, you must update the file to use

the DL~s new version number. For example, the Notepaper App sample application
uses NOTEPAPR.DLL. In 1.0, NPAPP.DLC contained these lines:

GO-NotePaper-V1(0) notepapr.dll
GO-NOTEPAPER_APP-V1(0) npapp.exe

In PenPoint 2.0 Japanese, NPAPP.DLC contains:

GO-NotePaper-V2(0) notepapr.dll
GO-NOTEPAPER_APP-V2(0) npapp.exe

Interpreting Japanese lile names

Japanese names in the initialization files, such as SERVICE.lNI and APP.INI, have
English translations in the comments above them.

Repeated lines
Make sure you do not try to set a variable twice. PenPoint uses the first assignment
if you have two lines trying to assign a value to a variable. For example, if your
MIL.INI contains the lines:

ScreenType=Std480
ScreenType=SuperScriptII

PenPoint uses the Std480 screen parameters.

CHAPTER 32 / MISCELLANEOUS 419
Printing to a spooler

"" Printing to a spooler
The PenPoint SDK 2.0 Japanese includes a special printer service called PRSPOOL.

Use PRSPOOl to print PenPoint files to a spool file on a DOS disk. You can later
copy this spool file to a printer. This procedure lets you print a PenPoint document
without a tablet computer and with no printer attached to your pc. Remember that
end-user versions do not support printing to a spooler.

1 Make sure you load the Out box services. Because printers create sections in
the Out box, you cannot create a printer with Out box support.

2 Install PRSPOOl by uncommenting its line in SERVICE.INI.

3 Install a printer driver by uncommenting the appropriate line in your
SERVICE.lNI file. Alternatively, install the service by opening the Disk page of
the Connections notebook. Select the Services view, and tap on an Install box
to install service. HP LaserJet printers use the PCl service.

4 Turn to the Printers page of the Connections notebook. Create a new driver
with the caret /\ gesture. Choose a driver in the pop-up list.

S Enter a name for this virtual printer.

6 Enable the printer by tapping on the Enable box.

1 Turn to the document you want to print.

S Set any special page layout properties (headers, footers, margins, and so on) by
choosing Print Setup in the document menu.

9 Print the document by tapping on the Print command. You should see the
Out box icon change to full, then eventually return to empty.

10 Exit from PenPoint and go to the root of your PenPoint directories. The
default root is \2_0 for PenPoint 2.0 Japanese.

11 The documents you printed will be named PRFIlE, PRFIlE_l, PRFIlE_2, and so
on in your root PenPoint directory. Print these from DOS by copying them to
a port. For example, this line sends the file to the printer attached to lPTl:

copy PRFILE LPT1: /b

The IB flag tells DOS to use binary mode, which prevents DOS from interpret
ing print driver control characters as end of file markers.

If you print many documents, your PenPoint directory information may get out of
sync. You may want to clean up your directory with a batch file like this:

Delete any spooler files
del \PRFILE*.*
Clean out redundant entries in PENPOINT.DIR
psync /B /D \ /V

The arguments to PSYNC direct the utility to creates a backup PENPOINT.BAK file
and lets you know what files are being cleaned up.

420 PENPOINT APPLICATION WRITING GUIDE

Part 4 I Development Tools Supplement

Long DOS file names
The PenPoint document model creates a directory for each file. Each embedded
document is contained in a separate subdirectory within the directory that contains
the parent document. This recursive structure could create DOS file names longer
than the maximum of 64 characters.

See "Using short DOS path and file names" on page 391 for strategies on creating
distribution disks without violating this 64-character limit.

Do not use CHKDSK IF
Do not use the DOS utility CHKDSK with the IF flag if your PenPoint file system
contains DOS path names longer than 64 characters.

The DOS utility CHKDSK skips all the files whose path names are longer than
64 characters and marks the clusters used by those as lost. Running CHKDSK with
the IF flag will free those erroneously marked clusters, thereby corrupting your file
system.

PenPoint returns stsFSVolCorrupt when it tries to read this file system. Even worse,
you may lose data before seeing this warning from PenPoint if those incorrectly
freed clusters are allocated and used by other files.

You can use CHKDSK without any parameters to check for path names that are too
long. To navigate to those files, you need a DOS utility to shorten the path names
through renaming.

For example, say you have the following path name on a disk:
B:\2_0\PENPOINT\APP\MY_APP\STATNRY\MY_APP_Q\NOTEBOOK\ ... \DOC.RES

Running CHKDSK on B: yields the following output:
c:\>chkdsk b:
Errors found, F parameter not specified
Corrections will not be written to disk
1 lost allocation units found in 1 chains.

512 bytes disk space would be freed
1457664 bytes total disk space

4096 bytes in 8 directories
1453056 bytes available on disk

512 bytes in each allocation unit
2847 total allocation units on disk
2838 available allocation units on disk

655360 total bytes memory
473856 bytes free

Running CHKDSK IF instead of CHKDSK would have erroneously freed the single
allocation unit reported above.

CHAPTER 32 / MISCELLANEOUS 421

~ Changes to QuickHelp
In PenPoint 1.0, you specified special characters like the GO gesture glyphs by
changing the font to Symbol, and using the IF63 keyword.

Changes to QuickHelp

In PenPoint 2.0 Japanese, you can specify a Unicode character representing the spe
cial character by using the \xhhhh where hhhh is a 4-digit hexadecimal Unicode
value. GO has placed its gesture fonts in the Unicode corporate zone from OxF6600
to OxF700. The letter gestures share the same code as the corresponding letter, so
the codes are scattered between Ox0041 and Ox005A. Look in the header file
GLYPH.H for exact code assignments.

The keyword /F63 is no longer recognized in PenPoint 2.0 Japanese.

Working with different locales
You can boot PenPoint with different user and system locales as described in "GO
batch file" on page 410.

Only you as a developer, can take advantage of this locale switching behavior. GO

will never ship an end-user system that supports mixed locales. Consequently,
always do your final user testing with the same system and user locales.

Here are a few other things to note when you boot with a USA user locale:

.. To enable kana-kanji conversion or romaji-kana conversion, you must install
the KKC engine. You can install the engine turning to the Installed Software
page of the Settings notebook, and tapping on the Install menu. The KKC

engine icon has Japanese characters that say VACS VJE. To load the engine
at boot time, add the KKC engine name to \2_0\PENPOINT\BOOT\USA\

SERVICE.INI. Copy and paste the name from \2_0\PENPOINT\BOOT\JPN\

SERVICE.INI

.. To enable Japanese handwriting recognition, you must install the Japanese
handwriting recognition engine.

422 PENPOINT APPLICATION WRITING GUIDE

Part 4 / Development Tools Supplement

Corrections to previous documentation

PenPo;ntue~ve"OADnle'lr errata
Poge and sectioll

Page 25, line 3

Page 36
Line 6 of Table 3-5

Page 43, paragraph 1

Page 54

Page 60, paragraph 2

Page 61
Line 2

Page 61,
Section 3.18.2.1

Page 61
Section 3.18.2

Page 146
Section 12.2

Page 162
Section 14.1

Old text followed by corred;on

The simulation is imperfect (no static RAl\1, no pen-on-screen interaction, and so on)
The simulation is imperfect (for example, no pen-on-screen interaction)

Specifies the when to Hush the debug log to a file.
Specifies when to Hush the debug log to a file.

Repeats next to last paragraph of previous page. Disregard it.

The section on "Volume Selection" belongs on page 37.

Use the UniPenPoft tag in MIL.INI to select a predefined protocoL
Use the UniPenType tag in MIL.INI to select a predefined protocol.

You will probable have to "tune" these .. Jor the specific characteristics of your digitizer.
You will probably have to "tune" these ... for the specific characteristics of your digitizer.

The digitizing resolution of the AceCat5by5 and the MM are listed as 19,500. That should
be corrected to 19,685.

The tags are UNIPENCO!vlPO RT ... UNIPENPROTOCOL, UNIPENPROTOCOL
The tags are UNIPENCOMPORT ... UNIPENYPROTOCOL, UNIPENPROTOCOL.

Typing? displays the available mini-debugger commands.
Typing h displays the available mini-debugger commands.

Plirt 6'fille System in the PenPointArchitectural Reftrence, explains file system .. .
Part 7: File System in the PenPoint Architectural Reference, explains file system .. .

Part 5 /
Pen Poi nt

Architectural Reference
Supplement

Chapter 33 / Overview

427 About this supplement
Intended audience
Document structure

428 PenPoint 2.0 Japanese
Fundamental changes
New sample code
General code and API changes

Chapter 34 / Class Manager

433 What's new

433 Tips and clarifications
Using keys
Don't use msgScavenged
Posting msgDestroy

434 Corrections and errata
ObjectSendO
app Version and minApp Version
Change in title
Typographical errors

Chapter 35 / Application Framework

435 What's new
Document recovery message
Initialization DLL
New and obsolete tags

437 Tips and clarifications
Unimplemented flag for msgPrintGetProtocol
Printed document and msgSave
Class defaults for clsAppMonitor subclasses
Page sequencing and msgAppMgrCreate

438 Corrections and errata
msgSave
Reactivating a document
Getting attributes for many application directories
Terminating a Document
Handling msgApp Terminate
Typographical errors

Chapter 36 / Windows and Graphics

441 What's new
PANOSE typeface matching
Unicode values for gestures and system UI

441 Tips and clarifications
Filing window resources
Receiving msgWin VisibilityChanged
Windows and WKNs

442 Corrections and errata
The current grafic
Repaint
Using a bitmap
Typographical errors

".. Chapter 37 / UI Toolkit
445 What's new

UI components with built-in KKC translation
Text highlighting and "dirtying"
Standard strings
clsKbdFrame
Acetate Layout and Markup classes

447 Tips and clarifications
clsBorder tracks on pen down
Progress bars
XList handlers must handle msgGWinGesture
Field change
Bug in clsLabel
Bug in clsToggleTable

448 Corrections and errata
UI Toolkit programming details
Incorrect table reference
Providing custom backgrounds
Typographical errors

Chapter 38 / Input and Handwriting
Recognition

451 What's new
Kana-kanji conversion class
The character translator classes
Return of translation alternatives
Handwriting changes
Letter practice removed
Changed and obsolete gesture names

460 Tips and clarifications
clsAnimSPaper metrics
Transparent input

460 Corrections and errata
Adding a filter
Typographical errors

Chapter 39 / Text

463 What's new
Gesture targeting
Font substitution algorithm
Hankakulzenkaku implementation
Unicode import type
No white space correction in Japanese version
Taboo and bunsetsu rules
Using msg TextModify

465 Corrections and errata
Typographical errors

Chapter 40/ The File System

467 What's new
Stamped file system attributes

468 Tips and clarifications
Open handles on files
msgFSSetSize does not reposition file pointer
StdioStream Unbind
Memory mapped file problem

468 Corrections and errata
Locators
IseekO and msgFSSeek
Typographical errors

,.. Chapter 41 / System Services

471 What's new
String composition functions
Getting the current locale
Multibyte/Unicode conversion routines

474 Corrections and errata
Ugetc and Uungetc bugs
Renaming of 16-bit utility functions
ecvt and fcvt
HASH.H
SYSTEM.H
OSMemInfo, OSMemUselnfo, OSMemAvailable
Typographical errors

,.. Chapter 42 / Utility Classes

479 What's New
Matching hiragana or katakana text
Adding gestures to Quick Help strings
clsNotePaper changes

480 Tips and clarifications
Cannot intercept export messages
msgImportQuery can arrive twice
New stream disconnected status
clsTable Bug
Known bugs in the NotePaper component

482 Corrections and errata
Getting the current selection
Classes that respond to search messages
Reading and writing streams
Using the PenPoint gesture font

Chapter 43/ Connectivity

483 What's new
Finding, binding to, and opening a modem
Initialization
Establishing a connection (outbound)
Waiting for a connection (inbound)
Transmitting and receiving data
Terminating the modem service
clsModem messages

492 Corrections and errata
Reading and writing with the serial port
Predefined service managers
Typographical errors

,.. Chapter 44/ Resources

495 What's new
Resource file utility routines
New system preferences
New resource group
New and renamed string resource agents

496 Tips and clarifications
msgResWriteData does not copy pData
Saving bitmap editor resources

497 Corrections and errata
Typographical errors

Chapter 45 / Installation API

499 What's new
KKC engine installation

500 Tips and clarifications
Other installation information

500 Corrections and errata
Installation clarifications for production PenPoint
Erroneous Directory
Dynamic Link Libraries

,.. Chapter 46/ Writing PenPoint Services

503 What's new

503 Tips and clarifications
MIL services and other services
theServiceManagers
Responding to msg TrackProvideMetrics
Deinstalling dependent services and applications

505 Corrections and errata
The Service Class and class instances
Handling msgSvcOpenDefaultsRequested
In box and Out box changes

Chapter 47 /International Services
and Routines

507 International and related header files

508 . International routines
Delimiting and hyphenation routines
Time conversion routines
Formatting routines
Parsing routines
Collation routines
String conversion routines
Character set conversion routines
String compression routines
Units conversion routine

512 Character conversion and testing macros
Character flags
External tables

Chapter 33 / Overview

This document provides material that supplements the PenPointArchitectural
Reference manual published for version 1.0 of the PenPoint Software Developers
Kit (SDK). It describes architectural concepts and API definitions and procedures
that are new with both PenPoint SDK 1.0 and PenPoint SDK 2.0 Japanese. It also
offers programming tips, suggests workarounds for known bugs, clarifies some
concepts and procedures, and amends conceptual, procedural, and typographical
errors found in the earlier manuals.

About this supplement

Intended audience

This book is intended for PenPoint application developers who are familiar with
the two-volume PenPoint Architectural Reference or who have access to it. Ideally,
you should read the Supplementwith the earlier volumes at hand. This manual
makes frequent references to these manuals, particularly when it corrects or clarifies
them.

If you do not have copies of the version 1.0 manuals, you can still learn much that
is useful and interesting to PenPoint application developers from this document,
particularly the material new to PenPoint SDK 2.0 Japanese. But to get the full value
of the information presented in the following pages, you should treat the
Supplement as a companion document to its predecessors.

".. Document structure

The structure of Part 4: PenPoint Architectural Reference Supplement is simple. Each
chapter after this Overview chapter is mapped to a part of the earlier PenPoint
Architectural Reference. Thus Chapter 28 is entitled "The Class Manager," the same
title as Part 1 of the earlier document; Chapter 29 is entitled "The Application
Framework," and so on. The last chapter, "International Routines and Services,"
covers functionality entirely new to PenPoint 2.0 so it has no counterpart in the
version 1.0 manuals.

Within each chapter there are up to three major sections. The first section, "What's
New," describes concepts and defines interfaces and functions that are new since
the PenPoint 1.0 SDK. "Tips and Clarifications," the second section, gives some
suggestions on programming and clarifies areas that might have caused confusion.
The final section, "Corrections and Errata," catalogs typographical errors and
amends sections in the earlier manuals that were inaccurate.

We sometimes use the names
"PenPoint 2.0" and "PenPoint
SDK 2.0" in this document.
Because this release of
PenPoint has been localized only
to Japan, these terms refer to
the PenPoint 2.0 Japanese
operating system and the
Pen Point SDK 2.0 Japanese.

428 PEN POINT APPLICATION WRITING G.WIDE
Part 5 I Architectural Reference Supplement

PenPoint 2.0 Japanese

Fundamental changes
The major difference between PenPoint 2.0 Japanese and earlier versions is that
PenPoint 2.0 Japanese contains general modifications to support languages other
than English and specific modifications to support the Japanese language. This
support required three major changes:

• PenPoint expects strings to consist of 16-bit characters.

• Most text strings for display have been moved to resource files.

• Gestures are now Unicode values.

The following sections expand briefly on these changes. For a full description of
these changes, please see the Part 2: PenPoint Internationalization Handbook.

PenPoint 2.0 Japanese supports only American English and Japanese. However, the
modifications present in PenPoint 2.0 SDK Japanese provide most of the features
necessary for supporting other languages in the future.

J 6-bit characters

Almost all strings in PenPoint 2.0 are represented by 16-bit characters, using the
Unicode standard encoding. This global modification implies a number of other
changes. For example, the CHAR type is 16 bits wide and all the U ... O string func
tions of the standard C library expect 16-bit characters.

Text strings moved to resource files

Most text strings displayed in PenPoint 2.0 Japanese have been moved to resource
files. There are currently two versions of each resource file in the PenPoint operating
system; the file USA.RES contains American English strings; the file lPN.RES con
tains Japanese strings.

The resource files that PenPoint uses are determined by the setting of the Locale
and LocaleUser environment variables in ENVIRON.lNI. See Part 4: PenPoint
Development Tools Supplement for more information on these variables.

While we have worked to ensure that all strings have been moved to resource files
and translated to Japanese, a small number of strings might have escaped our
notice. If you find one of these strings in the Japanese version, please notify GO
Developer Technical Support.

CHAPTER 33 / OVERVIEW 429

~ Gestures are now Unicode values

Earlier versions of PenPoint encoded gestures as 32-bit IDs. In PenPoint 2.0
Japanese, gestures are encoded as 16-bit Unicode values. Unicode values further
separate the character used for a gesture and its meaning.

PenPoint 2.0 Japanese

If you use gestures, you must change the ID for each gesture to the Unicode for
that gesture. The Unicode values for gestures and standard User Interface (uI) icons
and symbols are in GLYPH.H.

New sample code
The PenPoint SDK 2.0 Japanese includes four new sample applications:

.. Keisen Table Application Qapanese only), project name KEISEN

.. Serial I/O Demo, project name SXDEMO

.. Video Player, project name V1DPLAY

.. UI Companion, project name UICOMP

Additionally, two samples that were previously released via CompuServe (LBDEMO
and SAMPLMON) are now part of the sample code in the PenPoint SDK 2.0

Japanese.

There are also a number of changes to the 1.0 and 1.0.1 SDK samples. Most of
them (with the exceptions ofEMPTYAPp, HELLO, HELLOTK, BASICSVC and

MILSVC) have had their text strings moved to resource files. (All of them have been
ported, obviously.) All of the earlier sample code has also been updated to use the

Bridging Package; the sample code runs under both the 1.0 and 2.0 Japanese SDKs.

General code and API changes

Library changes

PenPoint 2.0 Japanese contains a new library, INTL.LIB, which contains many of the
functions that you use to store Unicode strings and to get information pertaining to
the current locale.

Please see the documents shipped with the WATCOM compiler for changes in the
PENPOINT.LIB file.

The library BRIDGE.LIB is empty in the PenPoint SDK 2.0 Japanese but is provided

for makefile compatibility when using the Bridging Package. The Bridging Package
allows you to compile your applications under both PenPoint 1.0 and PenPoint 2.0
Japanese. See the PenPoint Bridging Handbook for details.

430 PENPOINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

~ New header files

The header files listed in Table 33-1 have been added to PenPoint SDK 2.0 Japa
nese. Descriptions of these files' contents occur in the appropriate chapter of this
document.

GLYPH.H

KKC.H

PANOSE.H

STDSTR.H

ISR.H

ISRSTYLE.H

INTL.H

ALAYOUT

GOLOCALE.H

CHARTYPE.H

CHARTR.H

BRIDGE.H

KKCCT.H

Unicode values for PenPoint glyphs and gestures.

Definitions for clsKKC, the class that communicates with the kana-kanji conversion service.

The API for the PANOSETM Typeface Matching System.
(PANOSE is a trademark of ElseWare Corporation, Seattle, Washington.)

Tags for UI Toolkit strings.

Header for international routines in INTL.LIB.

Definitions for styles used by routines in ISR.H (included by ISR.H).

Macros for building and manipulating locale values; also the U _LO macro.

Definitions for clsAcetateLayout, a descendent of clsNotePaper, used for layout.

Definitions for locale-related constants used by the ISR routines. Replaces LOCALE.H

Definitions for character types and macros for international character manipulations.

Definitions for clsCharTranslator, the character translator abstract class.

Definitions that allow developers to maintain the same source code for both 1.0 and 2.0
Japanese SDKs.

Definitions for clsKKCCharTranslator, the character kana-kanji translator class.

Changes for resource files and tags

The following table lists the header files that have been changed to support resource
files and tags.

APPTAG.H

APPWIN.H

BATTERY.H

CBWIN.H

GOTO.H

HWGEST.H

HWLETTER.H

ICONWIN.H

POWERUI.H

PREFS.H

QHELP.H

RCAPP.H

SYSTEM.H

All Standard Application Menus (SAMs), all standard option card titles, default document name,
company, copyright for 16-bit filename and classname, used in building app dir. obsolete:
tagAppMgrDefaultDocName, tagAppMgrDisplayedAppName.

Icon win Quick Help. Articles, miscellaneous strings, and errors.

Errors, warnings, and toolkit strings.

Cork board window Quick Help.

Reference button Quick Help and miscellaneous strings.

Toolkit string and gesture names.

Miscellaneous strings.

Icon window layout option card title string.

Power button string.

Toolkit and miscellaneous strings.

Quick Help, toolkit and miscellaneous strings.

Root container application name and document name.

Warnings.

CHAPTER 33 / OVERVIEW 431
Pen Point 2.0 Japanese

".,.. Name changes of data elements

Table 33-3 presents some of the major name changes of data structures, constants,
and variables since version 1.0 of PenPoint. As you can see from scanning the table,
many of these name changes reflect the transition to Unicode. This list is not com
prehensive; for instance, name changes of enumerated and defined values are not
included.

Some data name TABLE 33~3

Header file Data type Old name New name

VOLGODIR.H typedef LV_NATIVE_NAME LV _NATIVE_FS_NAME

XFER.H S typedef XFER_ASCII_METRIC XFER_STRING_METRIC

tag xferASCIIMetrics xferStringMetrics

SENDSERV.H typedef ADDR_BOOK_ATTR SEND _SERV _ATTR

STDIO.H constant ERR SFERR - -
TXDATA.H typedef BYTE_INDEX TEXT_INDEX

XLIST.H typedef X2GESTURE GWIN_GESTURE

XSHAPE.H typedef XS_ASCII_MATCH XS_LATINI_MATCH

(see names) U32 gestureId CHARI 6 gestureId

typedef XS_ASCII_MATCH XS_ TEXT_MATCH

array ascii Match [xsMaxCharList] textMatch [xsMaxCharList]

UI6 matchArraySize matchArrayLength

w
v z w
Qt:
w
Ilol. w
Qt:

Chapter 34 / Class Manager

". What's new
The Class Manager contains no new API, functions, or other features.

Tips and clarifications

Using keys
Readers should read Section 2.7 of the PenPoint Architectural Reference with the
following caveat in mind: you must use unique constants for keys on classes created
by distributed DLLs. The keys must be kept private, or others may be able to
subvert or delete these classes. Particularly, do not use ObjWknKey as the key.

Many applications use a function pointer or pointer to a method table as a key
when creating a class. This will cause a problem if the class is replaced or upgraded;
the new key won't match the old one, so class creation by the new DLL fails. The
problem typically surfaces in distributed DLLs, because two versions of one can be
running at the same time. It does not cause a problem when upgrading applica
tions, because old and new versions of the application do not co-exist.

"" Don't use msg5cavenged
msgScavenged is an obsolete message. It is never sent by the Class Manager, and its
message number is the same as msgFreeSubtask.

Don't send or respond to this message. If you see msgScavenged in any debugging
output, the actual message sent was probably msgFreeSubtask.

Posting msgDestroy
You can use ObjectPost to deliver messages at a later time, which is usually under
stood to be when the handling of the current message is ~omplete. If, however, a
system modal note is displayed during the execution thread of a message handler,
all messages that are currently in the input queue are delivered. Thus a posted mes
sage is delivered before the current execution thread is unwound, and this case
causes severe problems if the posted message is a destructive message, particularly
msgDestroy.

PenPoint guarantees that a posted msgDestroy will not be delivered until the cur
rent execution thread has unwound from the current method handler. If you have
code or logic that depends on a posted msgDestroy getting through while a system
modal note is up, you will need to rethink your logic.

You should also carefully think about any other destructive messages you post
which may get delivered before you unwind from the current execution thread.

434 PEN POINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Corrections and errata

ObjectSend()
Section 2.5.1 in PenPoint Architectural Reference contains the paragraph:

When you send a message with ObjectSendO, your code's task is suspended
while waiting for the message handler to return. Your task resumes operation
when the message handler returns.

These statements are not quite accurate. When you send a message with
ObjectSendO, it is true that the sending task waits for a return status. However, it
can still handle incoming messages while it is waiting. Mter it sends a message,
ObjectSendO responds to anyone of the following events:

• The return status from the called object, after which the calling task continues
to the next line .

• A task-terminated indication, upon which the task continues to the next line .

.. Any incoming ObjectSendO messages for objects owned by the tasks, which
the waiting ObjectSendO dispatches. Specifically, the task's flow of control
jumps to the method that handles the incoming message, returns a status, and
resumes waiting for one of the three events.

appVersion and minAppVersion
The fields appVersion in OBJ_RESTORE and minAppVersion in OBJ_SAVE are
incorrectly documented in the file CLSMGR.H. These 16-bit fields are no longer
used by PenPoint and should not be used by your code.

Change in title
Rename the title of section 4.4.5 of the PenPoint Architectural Reference from
"G· CI' CI " "G· CI' A " ettlng a ass s ass, to ettlng a ass s ncestor.

Typographical errors

I, Preface, vii

1,2.4, ,2

1,4.3.1, '2

1,4.6.3, '2

line

Code example: plnst-»placeHolder::::; -IL
Code example: pInst->placeHolder = -lL

if (s
Code example (twice): if (s < stsOK)

The rnessage taks a to an structure .. .
The message takes a pointer to an OBJ_NOTIFY_OBSERVERS structure .. .

An object must be in to msgDestroy; ..
An object must be prepared to handle msgDestroy. ..

Chapter 35 / Application Framework

What's new

". Document recovery message

The Application Framework includes a new clsApp message that enables your This section applies to clsApp.

application to respond appropriately when its resource file is corrupted. The mes-
sage is msgAppRecover; its pArgs argument points to the handle (DIR_HANDLE) of
the resource file and returns STATUS.

When msgAppRestore fails, the application object self-sends msgApplnit.
Respond to this message as you would when creating a document (initialize your
instance data). clsApp then sends msgAppRecover to its descendants so that they
can modify their instance data. It passes in the handle (DIR_HANDLE) to the
resource file; if this handle is set to objNull, then the resource-file object was not
found or was damaged.

clsApp descendants should respond to msgAppRecover by doing something to
handle the error condition:

• They can reset their instance data to a state different than that of a just-created
document.

• If they are passed a handle to the resource file, they can salvage as much data as
they can. (Make sure that the handle is a valid object, and not objNull.)

• They can determine the cause of the error and display a message that is more
informative than the standard PenPoint error message.

• They can simply return stsOK. By doing this, the data is lost, but the docu-
ment can be re-opened without losing any embedded documents.

If descendents choose not to handle msgAppRecover, PenPoint displays a standard
error message and does not recover the document. If this happens, the document
cannot be re-opened and all embedded documents are lost.

Initialization DLL
To conserve memory, you can include an initialization DLL in your application's
installation procedure. An initialization DLL typically contains code that your
application needs to execute only once, such as code that creates UI components.

When installation occurs, the application monitor installs the initialization DLL in
the loader database, runs it once and then deinstalls the DLL code before it installs
the application code. The objects created by the DLL code are saved to a resource
file before the installation of the application.

This section applies to
clsAppMon.

436 PEN POINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

To use an initialization DLL in you application's installation, complete the proce
dure outlined here. The examples presented are from the VI Companion sample
code (VICOMP):

1 In the application project directory, create a DLL source file named INIT.C.
The entry point must be InitMain, not DLLMain. The code should perform
some once-only initializations, such as building the application's VI compo
nents. In the application's MAKEFILE, you can link the INIT.C file to existing
source files (see item 4, below).

2 Create a file called INIT.LBC and in it list all exported functions defined in the
initialization DLL. In most cases, the only exported function is InitMain. Each
line in the file has the form:

++entry-point.'company ID-project-major version(minor version)'

Thus the sole entry in the VICOMP example of INIT.LBC is:
++InitMain.'GO-UICOMP-Vl(O)'

3 Create a file that has the project name and an extension o(DLC (for example,
VICOMP.DLC). This file expresses the dependencies between an application's
executable file and that application's DLLs. Each line of the file pairs the name
for a PenPoint executable or DLL with the DOS path to the corresponding exe
cutable or DLL file (relative to the application directory in \PENPOINT\APP).
When PenPoint loads an application, it reads the .DLC file to determine which
DLL files to load before it installs the application. The VICOMP.DLC file, for
example, has these two lines:

GO-UICOMP_DLL-Vl(O) uicomp.dll
GO-UICOMP_EXE-Vl(O) uicomp.exe

4 Finally, include several lines in the application's MAKEFILE to specifY the linker
name, object files and libraries for the initialization DLL. The following
example from VICOMP is typical:

INIT_LNAME = GO-UICOMP_DLL-Vl(O)
INIT_OBJS = init.obj buttons.obj lists.obj menus.obj
INIT_LIBS = penpoint resfile

When you build the initialization DLL, the resulting DLL file (such as VICOMP.DLL)
is placed in the same location as the application's executable. This is the default ini
tialization DLL file. When installation begins, msgAMLoadInitDll is sent to the
application monitor, which then looks in the application directory for the initializa
tion DLL file. If you subclass clsAppMonitor, we recommend that your subclass not
respond to msgAMLoadInitDll.

New and obsolete tags
New tags defined in APPTAG.H allow application writers to define the following text
strings in a resource file:

tagAppMgrAppDefaultDocName The default document name for the
application. This appears in the Create menu and the Stationery note
book. If one is not assigned by the application, the tagAppMgrApp
Filename string is used.

CHAPTER 35 I APPLICATION FRAMEWORK 437

tagAppMgrAppCompany The name of the company creating the
application.

Tips and clarifications

tagAppMgrAppCopyright The copyright date information for the applica
tion. The Unicode code point \xOOA9 can be used for the copyright sym
bol in the string. (This is defined in GLYPH.H, but must be literally
included in the string.)

tagAppMgrAppFilename The name of the application or service. This
appears in the Settings notebook and Installation time of the application.
This is also the stamped name of the application when it is built. It is also
the name that is entered in the APP.INI file.

tagAppMgrAppClassName The type of executable being created: Applica
tion, Service, and so on.

The resource that contains these strings is resAppMgrAppStrings. Two Application
Framework tags are now obsolete: tagAppMgrDefaultDocName and tagAppMgr
DisplayedAppName.

Tips and clarifications

Unimplemented Ilag lor msgPrintGetProtocol
Do not set the paginationMethod flag to prPaginationScale (PRINT_PROTOCOLS) Note The PenPoint
when you send msgPrintGetProtocol. Pagination scale is not implemented and Architectural Reference

does not speciflcally
using it can block printing. mentjon this flag.

Printed document and msgSave
Developers should be aware that their documents, when activated by the print
wrapper, receive a msgSave before msgAppOpen. This order, of course, is the
reverse for a screen document. In summary, a printed document receives msglnit,
msgRestore, msgSave and msgAppOpen, in that order.

Class defaults for clsAppMonitor subclasses
When you create a subclass of clsAppMonitor, set the following CLASS_NEW fields
after sending msgNewDefaults to cIsClass:

new.cIs.pMsg Assign to this field a pointer to the method table for your
subclass.

new. cIs. size Set this to the size of your class instance data. This data is usu
ally defined in some structure such as MY_INST_DATA. In this case, assign
SizeOf(MY_INST_DATA) to the size field.

new. cIs. ancestor Set this to the class from which you want your class to
inherit its behavior: cIsAppMon.

438 PENPOINT APPLICATION WRITING GUIDE

Part 5 / Architectural Reference Supplement

new.cls.newArgsSize Set this field to the size of the structure that the
msgNewDefaults and msgNew messages for class instantiation take as an
argument. Forl)ome developers who have tried to subclass clsAppMon,
this field has caused some confusion. This class has no _NEW_ONLY struc
ture of its own and so no lamination takes place. When this situation
occurs, you must provide the size of the ancestor class's newArgs structure.
clsAppMon's ancestor is clsApp, so you assign Sizeof(APP _NEW) to
newArgsSize.

For most subclasses that you create, you may recall, you send msgNewDefaults and
msgNew to clsClass. But when you create subclasses of clsAppMon and other
application classes, send these messages to the application superclass clsAppMgr.

Page sequencing and msgAppMgrCreate
When you create a new document with msgAppMgrCreate, set the sequence field
(APP _MSG_CREATE) to a sequential number, with the parent application being o.
Thus, if you want your document to be the first thing in the parent application, set
sequence to 1. Page numbers are global sequence numbers and not attributes.
PenPoint 2.0 Japanese keeps track of the number of children of a document, and
can compute page numbers from that.

By the way, always set the renumber field to TRUE unless you are going to create
another document with msgAppMgrCreate immediately afterward.

Corrections and errata

msgSave
Item 2 of the numbered list in section 8.2.5.2 of the PenPoint Architectural
Reference, says that "clsApp sends msgRes WriteObject to the resource file handle
with the document's main window as the object." This is incorrect. clsApp sends
msgResPutObject to the resource file handle.

Reactivating a document
Item 5 of the numbered list in section 8.2.6 of the PenPoint Architectural Reference
(clsApp sending msgResReadObject to the resource file handle) is redundant and
should be deleted.

Getting attributes lor many application directories
Section 16.6 of the PenPointArchitectural Reference contains a few inaccuracies.
First, you should not use msgAppDirGetNextlnit in obtaining the attributes of
document directories. Instead, use msgAppDirGetNext only.

You cannot specify a starting point in pFirst. PenPoint 2.0 Japanese sets and resets
this member (and pNext) internally, regardless of what you assign to them. Instead,
assign zero to the handle member and completeattrs, pName, and fsFlags as speci
fied. Mter the last iteration through an application directory, msgAppDirGetNext
returns pNull in pNext. Send the message once before going into the while loop

CHAPTER 35/ APPLICATION FRAMEWORK 439
Corrections and errata

because on the first iteration pNext is pNull. When it completes, msgAppDirGet
Next returns stsOK if a directory is found and stsNoMatch if none is found.

In addition to the foregoing errors, the section states that "you must send
msgAppDirGetNextlnit to clsAppDir." Instead, you send msgAppDirGetNextlnit
and msgAppDirGetNext to an instance of clsAppDir.

".. Terminating a document
Sections 8.2.5 and 8.2.5.1 of the PenPoint Architectural Reference contain a few
errors in the actual order of messages that occur when a user closes a document.
The Notebook does not terminate a document by sending it msgFree. Also, the
first few sentences of 8.2.5.1 give the impression that, after an application frees its
objects, it calls its ancestor (clsApp), which sends msgAppSave to save these just
freed objects.

When a user closes a document, the following exchange of messages occur up to the
point at which the document (application instance) itself receives msgFree:

1 The Notebook sends msgAppTerminate to the document; the document does
not handle this message, but lets it percolate up to clsApp.

2 If msgAppTerminate is sent with pArgs of TRUE, clsApp self-sends
msgFreeOK; if the document doesn't respond to this message, stsOK is
assumed.

3 If the document responds positively (OK to free), clsApp self-sends
msgAppSave. Descendents do not usually handle msgAppSave.

4 clsApp then self-sends msgDestroy.

5 As a result, the document receives msgSave and then msgFree.

The descriptions in section 8.2.5.1 from the third sentence to the end of the section
are correct.

".. Handling msgAppTerminate
Section (13.4.1.2) of the PenPoint Architectural Reference can be deleted. msgApp
Terminate is no longer sent to application monitors.

".. Typographical errors

Part 2 (Application FrameworkJ-Iypos

Volume, section, paragraph Old text on first line
New text on second line

Resourcetl files.
Resource files.

TABU 35-1

Chapter 36 / Windows and Graphics

". What's new

".. PANOSE typeface matching
Clients using the font APr (see section 26.12 in the PenPointArchitectural Reference)
can now access GO's implementation of the PANOSE™ Typeface Matching System.
The PANOSE system defines certain values for typographical attributes in various
scripts, or writing systems (GO currently supports only Latin characters and kanji).
These attributes include genre (display text, decorative, symbols, and so on),
weight, monospace, contrast, ratio, slant, tool type, stroke type, and so on.

Developers of text-processing applications might find the PANOSE APr useful. They
must specifY the required PANOSE values in structure PANOSE_MEM in a nibble
format (two values per byte). A set of macros is provided for inserting and
extracting these values. Two utility functions, PanoseToXDR and PanoseFrornXDR
enable the conversion of PANOSE numbers to and from their XDR representations,
something you must do before filing away the numbers and reading them back in
to your application.(XDR stands for eXternal Data Representation.)

When you have built your PANOSE_MEM structure, insert it into the structure
SYS0 C_FONT _DESC. Then pass a pointer to SYSDC_FONT _DESC when sending
msgDCGetFontDesc and msgDCSetFontDesc. This causes msgDCGetFontDesc
to fetch the DC's current font state and msgDCSetFontDesc to set the drawing
context's current font state. These messages replace msgDCOpenFont.

The APr definitions of the PANOSE structures, functions, macros, and definitions
are in PANOSE.H. The APr definitions of the drawing-context messages are in
SYSGRAF.H. The definition of SYSDC_FONT _DESC is in SYSFONT.H.

Unicode values for gestures and system UI
The file GLYPH.H contains the Unicode values for the standard gestures and for
common ur icons, symbols and other graphics.

Tips and clarifications

Filing window resources
If you file a window with msgResPutObject, that window must not have
wsFileInline set in its style flags.

This is likely to concern you if you allow windows and components (such as refer
ence buttons) to be embedded in your view and you also file those objects yourself
This is because the view files the objects too, and if wsFilelnline is set, then you'll
end up with two copies when you restore them.

442 PEN POINT APPLICATION WRITING GUIDE
Part 5 / Architectural Referenc,e Supplement

The solution is that whenever you deal with a embedded window being added
(normally in your response to msgWinInsertOK), make sure that the wsFileInline
bit is turned off and the wsSendFile bit is set the way you want (usually on).

Receiving msgWin Visi&ilityChanged
msgWinVisibilityChanged is sent only when a window's wsVisible flag changed.
When the window is extracted, msgWinIsVisible will return true, but the flag will
not be changed unless you explicitly change it.

The comments for the message in WIN.H are not correct, because they imply that it
will be sent on insertion. msgWinExtracted is sent on extraction, and then you can
check the ws Visible flag.

Windows and WKNs
Developers should not create window instances with private or process well-known
UIDs. The window system maintains a PenPoint-global database of all windows,
and it expects each UID to be unique.

You can use private well-known UIDs for classes, not for instances.

Corrections and errata

The current gra/ic
The third paragraph of section 27.5.2 the PenPoint Architectural Reference states
in the:

Note that clsPicSeg allocates the memory for the grafic-dependent data struc
ture from the process heap, but it is up to the client to free it with
OSHeapBlockFreeO.

This statement is not complete. By system default, if pData is pNull, clsPicSeg
allocates the memory for the data structure from the local process heap
(osProcessHeapId); otherwise, it uses the heap that you pass in. If you want to have
the heap shared between your process and another process, assign
osProcessSharedHeapId as the default heap when you create your clsPicSeg object
(new. obj ect.heap). You must call OSHeapBlockFreeO to deallocate both
osProcessHeapId and osProcessSharedHeapId.

Repaint
Section 28.2.3 in the PenPoint Architectural Reference begins with two sentences
that describe an obsolete message:

A TIFF object repaints when it receives msgPicSegRedraw. Since a TIFF object
isn't a window and isn't bound to one, you must pass in a drawing context as
the message argument to msgPicSegRedraw.

These descriptions are no longer true. To repaint a TIFF object in its display list, a
clsPicSeg object now must send it msgPicSegPaintObject, passing the TIFF object
a pointer to PIC_SEG_PAINT_OBJECT. Specify the painting rectangle in logical units

CHAPTER 36 / WINDOWS AND GRAPHICS 443
Corrections and errata

and assign the VID of the drawing context or PicSeg object to the picSeg. Ignore all
other fields.

,.,. Using a bitmap
Replace the second paragraph of section 28.1.1 with in the PenPoint Architectural
Reference the following text:

Having created a bitmap, you usually want to get it on the screen in some form.
One way to display a bitmap is to send an instance of clsBitmap msgBitmapCache
ImageDefaults. This message takes a pointer to the SYSDC_lMAGE_CACHE struc
ture used by msgDcCacheImage. clsBitmap fills in the structure with default
values. You can send the bitmap msgDcCacheImage, and then send it msgDc
CopyImage to have the sampled image stored in the bitmap rendered in the
window.

You can also display bitmaps by creating instances of clsIcon or one of its descen
dants. See Part 4: PenPoint Development Tools Supplement for a step-by-step proce
dure. The VI Companion sample application uses this procedure to create an
instance of clsIcon Toggle to display some bitmaps. The source code and comments
are in \2_0\PENPOINT\SDK\INC\SAMPLE\VICOMP\VICOMP.C.

,.,. Typographical errors

Part 3 (Windows and GraphicsJ-typos
Volume, section, paragraph Old text on lirst line

New text on second line

TABLE 36-1

I, 22.1, ~"3 However, every application requires that you design at least one custom sublcass of
clsWin ...
However, every application must use a subclass of clsWin ...

1,23.6, '1 Applications somtimes require windows to have a particular size .. .
Applications sometimes require windows to have a particular size .. .

1,26.12.3.1, '2 The function SysDcFontlD performs this algorithm ...
The function SysDcFontlDO performs this algorithm ...

Chapter 37 / UI Toolkit

,.. What's new

".. UI components with built-in KKC translation
clsField and clsIP objects have built-in support for translation of Japanese charac
ters. If you want to create your own UI client of the kana-kanji conversion (KKC)
character translator, see "The character translator classes" on page 453. If you want
to subclass clsKCC to make your own interface to a KKC engine, see "Kana-kanji
conversion class" on page 451.

Text highlighting and "'dirtying'"
clsLabel now provides a new flag and message with which you can give text selec
tions one of two highlight styles. One highlight style (strong highlighting) is the
standard dark grey rectangle with inverted text. The other highlight style (weak
highlighting) encloses the selection in light grey and underlines it.

The new message is msgLabelProvideHighlight. Because clsLabel self-sends this
message, you must create a subclassed instance of clsLabel. When you change the
LABEL_NEW_ONLY structure defaults for this object, set the label.style.getHigh
light flag to TRUE. (Set only the label.style.stringSelected flag to TRUE if you want
only the standard highlighting style.)

During repaint operations (msgWinRepaint or msgBorderPaintForeground),
clsLabel self-sends msgLabelProvideHighlight if the getHighlight or string
Selected flags are set. For each area to be highlighted, your subclassed object must
specify the span information in a LABEL_SPAN structure and highlight style that
clsLabel needs to draw the highlight graphic. (clsLabel ignores this highlight field if
the stringSelected flag is set to TRUE.)

Next, put these LABEL_SPAN blocks in the spanBuf array of a LABEL_HIGHLIGHT

structure, sorted by increasing index. Set the pSpans field of LABEL_HIGHLIGHT to
point to the start of this buffer. When you send msgLabelProvideHighlight to
clsLabel, pass it a pointer this LABEL_HIGHLIGHT structure. (clsLabel sets the
SYSDC_RGB fields of the structure.)

Another new message, msgLabelDirtySpan, is related to msgLabelProvide
Highlight. Send clsLabel this message, passing it a pointer to LABEL_SPAN, to have
it dirty the area indicated by the span. The highlight information for the span
is ignored.

References to page numbers
are to the Pen Point Architectural
Reference, Volume I.

446 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Standard strings
STDSTR.H contains tag definitions for the standard VI Toolkit strings that were
moved to resource files (such as "OK," ''Apply and Close," and "Contents").

clsKbdFrame
A new class, clsKbdFrame, provides generalized behavior for simulated keyboards.
It supports input filtering and the queuing of character events. PenPoint's virtual
keyboard and its Unicode Browser, for example, make use of clsKbdFrame. The
immediate ancestor of clsKbdFrame is clsFrame. API definition for clsKbdFrame is
in KBDFRAME.H.

Acetate Layout and Markup classes
Two classes have been added to PenPoint to increase the markup functionality
of clsNotePaper: clsAcetateLayout and clsMarkup. Essentially, clsMarkup
implements the transparent, scalable, and rotatable data-drawing layer, and
clsAcetateLayout overlays an instance of clsMarkup on top of an application
window. You can also use clsAcetateLayout to lay one window over another,
thereby enhancing gesture handling.

Using clsMarkup and clsAcetateLayout together

When you want to add a markup layer to your application, you can use clsMarkup
and clsAcetateLayout in a complementary way. clsAcetateLayout synchronizes the
scrolling of a clsMarkup window that is layered over a client application window. It
also handles document embedding so that documents are embedded only in the
client window.

You can think of clsAcetateLayout as an intermediate layer in the window hier
archy. It mediates between the clsMarkup view and the application's own view.
clsAcetateLayout treats the application window as its client (in this context, a client
is a window that is subordinate to the acetate layout in the window hierarchy).

To implement this behavior, insert the instances of clsAcetateLayout and
clsMarkup when your application handles msgAppOpen. After creating the appli
cation's scrolling window, instantiate the Acetate Layout, after setting its client field
to the scrolling window. The Acetate Layout, in turn, has as its child the applica
tion's view (that is, the Opaque View) and the Markup View, layered so that the
Opaque View lies below the Markup View.

clsjlcetateLayout

When you want to lay a window atop another window, you must typically put up
with a lot of drudgery to handle pass-through of gestures and to synchronize the
behavior of the two windows. clsAcetateLayout enables an application to imple
ment a markup overlay atop its window without having to implement gesture and
event pass-through or graphical markup.

Some of the queuing
functionality of claKbdFrame
will be replaced in future
Pen Point versions by
generalized improvements
to the input system.

Do not confuse claAcetate
Layout with the Pen Point
windowing system's
"acetate" layer.

CHAPTER 37 / UI TOOLKIT 447
Tips and clarifications

As a subclass of clsCustomLayout, clsAcetateLayout allows an application to place
and correctly layout a client window (usually a markup layer) atop the application
window. To synchronize the two windows, it handles the messages described in
Table 37-1.

clsAcetateLayout synchronization messages
Takes Description

TABLE 37-1

Message

msgScrollbarVertScroll

msgScrollbarHorizScroll

msgScrollbarProvide Vertlnfo

P _SCROLLBAR-SCROLL

P _SCROLLBAR_SCROLL

P _SCROLLBAR_PROVIDE

Client should perform vertical scroll.

nsgScrollbarProvideHorizinfo

msgScrollWinProvideSize

msgScrollWinProvideDelta

clsMarkup

P _SCROLL_ WIN_SIZE

P _SCROLL_ WIN_DELTA

Client should perform horizontal scroll.

Client should provide the document and view
information for a vertical scroll.

Client should provide the document and view
information for a horizontal scroll.

Self-sent to determine bubble location and size.

Self-sent so that descendants can normalize the
scroll.

Developers can use clsAcetateLayout to help them use clsMarkup. clsMarkup is a
subclass of clsNotePaper optimized so that developers can have graphical markup
tools for a document without requiring their applications to know markup.
clsMarkup is a transparent instance of clsNotePaper with the additional ability to
scale and rotate. clsMarkup provides useful annotation functions, but does not per
form smart markup; that is, the annotations are not tied to the marked-up applica
tion data. You could use clsMark (or an appropriate subclass) to tie the items
together.

Tips and clarifications

clsBorder tracks on pen down
clsBorder doesn't start tracking until it receives msgPenDown. If your application
consumes msgPenDown as part of a press 1 gesture (to create a move icon, for
example), it must self-send a new msgPenDown, which tells clsBorder to start
tracking.

pY Progress bars
When advancing a progress bar, you must advance it by an amount greater than
zero, or your application may page fault.

XList handlers must handle msgGWinGesture
If a gesture window has timeout events enabled, and a hold timeout is initiated by
the user, the gesture window converts the inputHoldTimeout event directly into a
msgGWinGesture, rather than going through the normal protocol of sending out
an XList that will get self-converted to a gesture. If your application is processing
XLists rather than gestures, you must add a handler for msgGWinGesture.

448 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Field change
As a result of better hand printing recognition, there is a change in FIELD.H

related to character box memory. fstBoxMemoryFour is replaced with fstBox
MemoryTwo, which uses two characters of box memory. Existing code that uses
fstBoxMemoryFour will still compile; however, it will only use two-character box
memory.

Bug in clsLabel
Mter you create a label object, clsLabel resets the label.style.infoType field to
lsInfoString. This causes problems particularly if you had earlier set infoType to
lsInfoStringld so that you could read strings from a resource file; attempts to get
new strings for the label object by sending msgLabelSetStringld do not succeed,
Vntil this bug is fixed, work around it by setting the label.style.infoType field to
lsInfoStringld before sending msgLabelSetStringld.

Bug in cis Toggle Table
Instances of clsToggleTable have handlers that override certain clsControl mes
sages. As clsControl defines it, four of these messages (msgControlGetDirty, msg
ControlSetDirty, msgControlGetEnable and msgControlSetEnable) take as
P_ARGS a pointer to a 16-bit BOOLEAN value. But dsToggleTable defines the
P _ARGS for these same messages as a pointer to a U32 data type, bits of which it
reads or toggles before returning the bitmask to the caller. Page faults can occur as a
result of this discrepancy, particular with the msg ... Get ... messages.

As a workaround for msgControlGetDirty and msgControlGet~nable, declare a
U32 variable for the return value and pass a pointer to it. For msgControlSetDirty
and msgControlSetEnable, just be aware of the discrepancy when you send these
messages to dsToggleTable.

Corrections and errata

UI Toolkit programming details
The first paragraph of section 31.5.4 in the PenPoint Architectural Reference suggests
that you can create your application's UI in a separate INIT.DLL and when the appli
cation's "DLLMain routine is called by the Installer, create the VI." The entry point
for INIT.DLL should be named InitMain, not DLLMain; DLLMain gives INIT.DLL

its own process.

For information on creating an initialization DLL for your application, see "Initial
ization DLL" on page 435 of this document.

Incorrect table reference
On the top of page 386 of PenPoint Architectural Reference (section 34.4.2) the def
inition of the constraint field refers to Table 34-2. It should be Table 34-3.

CHAPTER 37 / UI TOOLKIT 449
Corrections and errata

",. Providing custom backgrounds
The description of the BORDER_BACKGROUND fields in section 33.4.5 in the
PenPoint Architectural Reference omits the borderInk field. The value you assign to
this field specifies the color of a graphic object's bordering line. Typical values are
color constants such as bslnkGray66 and bslnkBlack (the default).

",. Typographical errors

Part 4 (UI Toolkit) - typos

Volume, section, paragraph Old text on first Line
New text on second line

TABLE 37-2

I, 46.6, ~17 Assuming that clsMyView does not create a custom sheet, othen ...
Assuming that clsMyView does not create a custom sheet, ...

I, Table 40.3 'fide: SCROLLWIN_STYLE Styles
Title: SCROLL_ WIN_STYLE Styles

verticalScrollbar
vertScrollbar

Chapter 38 !Input and Handwriting
Recognition

", What's new
Two sections in this chapter present information on two new character-translation
components: the kana-kanji conversion class (clsKKC) and the character-transla
tion classes, clsCharTranslator and clsKKCCharTranslator. The information in
these sections pertain to developers who:

• Want their application to handle text entry, particularly direct text entry
("The character translator classes").

• Want to write their own classes to support kana-kanji conversion ("Kana-kanji
conversion class" and "The character translator class").

• Want to implement their own KKC engine ("Kana-kanji conversion class").

Kana-kan;i conversion class
The kana-kanji conversion class (clsKKC) provides default superclass behavior for
kana-kanji conversion (KKC) engines. PenPoint's KKC engine, developed for
PenPoint 2.0 Japanese, is based on this superclass. clsKKC inherits from clsService;
KKC engines are implemented as services. Table 38-1 shows the relationship of
clsKKC and the other classes related to translation of Japanese characters.

The API defined in KKC.H is primarily for developers who want to port exiting KKC

engines to PenPoint 2.0 Japanese. In PenPoint, all KKC engines inherit from
clsKKC. This class provides substantial default behavior for its descendents, thereby
simplifying the work of porting.

Developers may also want to be direct clients of a clsKKC service and provide their
own user interface to the conversion engine. Although this is possible, the character
translator API for KKC (defined in CHARTR.H and KKCCT.H) already provides a
rich, high-level, international protocol and a sophisticated user interface that is
build into objects of dsField and dsIP.

The PenPoint KKC engine has a RKC (romaji-kana) component that converts romaji
into hiragana characters as they are typed or written. Then, given the proper gesture
or keyboard command, the engine converts the hiragana or katakana characters in
the proximate bunsetsu (phrase context) into a list of kanji alternatives for each
kana character. It presents these alternative characters to the user in a pop-up
window.

452 PEN POINT APPLICATION WRITING GUIDE

Part 5 / Architectural Reference Supplement

Generally, clsKKC and its subclasses operate by processing data contained in an
XList. For KKC engines, an XList must contain only two types of elements, xtText
and xtKKCSpan. The xtText elements contain unconverted text and xtKKCSpan
elements hold text that has already been converted.

A KKC span in an XList contains, in addition to the converted text, information
such as conversion alternatives and the decomposition of text into stem and ending.
While there can be multiple conversion alternatives associated within a given span,
only one of them can be the display choice.

A KKC engine service can always construct a display string from the XList. The dis
play string consists of the ordered concatenation of each xtText element and each
xtKKCSpan display choice for that element. The engine operates on the XList by
specifying indices into the display string.

The API definition in KKC.H provides many more details about using clsKKC inter
faces, both for porting purposes and as a client. For information on writing services,
refer to Part 13 of the Penpoint Architectural Reference. For information on using
services, see Chapter 94 of Part 10, "Connectivity." If you are interested in porting
KKC engines, you can contact GO Technical Support to obtain a copy of the "KKC

Porting Kit."

clsKKC messages

Message

msgKKC ConvertS ingle P_KKC_CONVERT

msgKKCConvertMultiple P_KKC_CONVERT

msgKKCConvertRange

msgKKCUnconvertSingle P_KKC_CONVERT

msgKKCAccepted

msgKKCGetMetrics

msgKKCSetChoice

msgKKCAlterSpan

msgKKCChangeText

msgKKCGetChars P_KKC_GET_CHARS

lAIUI':: 38-1

Descripti@n

Produces a list of conversion alternatives for a range of
text. Subclass responsibility.

Converts all unconverted text. Subclasses have the
option of implementing this message.

Converts all text in the specified range as a single span.
Subclasses have the option of implementing this mes
sage.

Converts specified kanji text back to hirigana. Sub
classes may optionally implement this message to pro
vide "reverse henkan" functionality.

Client sends when user accepts current choice.
A subclass option.

Fetches information about the current XList. Useful in
determining the length of the display string and the
number of KKC spans and text elements.

Changes the current choice for the given span. Super
class responsibility.

Extends or shortens the boundaries of a converted
string. Superclass responsibility.

Inserts, deletes and replaces text in the display string.
Superclass responsibility.

Extracts a substring from the given XList and puts it in
a buffer. Superclass responsibility.

clsKKC messages
Message

msgKKClnsertSpan

msgKKCFindElement

msgKKCDumpXlist

msgKKClnitialize

msgKKCRKC

Takes

P.J(LIST

". The character translator classes

CHAPTER 38/ INPUT AND HANDWRITING RECOGNITION 453
What's new

TABLE 38-1 (continued)

Description

Creates, initializes and inserts a new xtKKCSpan.
A KKC engine can self-send this message to have the
superclass manipulate the XList when the engine needs
to supply KKC results to the client object.

Finds the element that contains the character of the dis
play string specified by an index. A KKC engine self
sends this message to convert an incoming display index
into usable text. The superclass passes back the element
index, the string index and the element itself.

Prints the contents of the XList to the debugging con
sole. Valid only in DEBUG mode.

Performs service initialization for a KKC engine. Sub
classes should send this message to clsKKC as part
of their DLLMainO. Clients should never send this
message.

Subclasses can implement this message so that they can
change the default behavior of the superclass' romaji-to
kana conversion algorithm.

Character translators assist in the translation of characters from one set to another
and in the presentation of translation alternatives to users. Working together with
their client VI components, character translators create the user interface for trans
lations of character sets. They also act as intermediaries between their VI clients and
the engines that perform the character-set conversions.

Relation of tran!?lator
classes

PenPoint SDK 2.0 Japanese has two new classes related to character-set translation.
The abstract class clsCharTranslator specifies the standard interfaces and imple;
ments the standard methods for the translations. It inherits from clsObject.

Because clsCharTranslator is an abstract class, only a subclass of it can realize the
latent functionality for a particular character set. PenPoint SDK 2.0 Japanese pro
vides the KKC character translator class for this purpose. clsKKCCharTranslator is a
subclass of clsCharTranslator; objects of this class act as clients to kana-kanji con
version engines through interfaces defined in clsKKC.

The sketch to the right depicts the relationship of these classes. The API definition
for clsCharTranslator is in CHARTR.H. The API definition for clsKKCCharTrans
lator is in KKCCT.H.

454 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

".,. Creating a client of KKC character translator

Because a character translator requests gesture information, its clients usually are
instances of clsGWin or one of clsGWin's subclasses (although, strictly speaking,
they don't need to be). Client objects exchange messages with the KKC character
translator class, clsKKCCharTranslator (and, by inheritance, with clsChar
Translator). The KKC character translator requests translation services from
the KKC conversion-engine class (clsKKC) and receives back translation alterna
tives, which it forwards to the client.

Developers who want to implement their own UI interface for kana-kanji character
conversion in an application must set certain fields in their client object's
_NEW_ONLY structure that derive from clsGWin. Then they must have their client
object observe a specific protocol.

During msgInit, every instance of clsGWin (or one of its subclasses) can create a
character translator that handles translation requests. You must first indicate that
you want a translator created by setting the new.gwin.style.useCharTranslator field
TRUE. Then assign to new.gwin.charTrLocaleId field the locale identifier
(LOCALE_ID) for the translator. If you specify no locale ID (by setting char Tr
LocaleId to zero), clsGWin creates a translator appropriate to the system locale.
The default translator for Japan (locJpn) is an instance of clsKKCCharTranslator.

Rather than generalizing the protocol for all possible client objects of clsGWin, we
can describe the protocol as a client object of clsIP actually implements it:

1 The user writes a few kana characters in an insertion pad, then requests KKC
with the right up -l gesture. When the pad receives the gesture, it self-sends
the message msgChar TransGesture.

2 Rather than handling the message itself, clsIP allows clsGWin to handle the
message. In turn, clsGWin sends the message to the character translator it cre
ated when it responded to msgInit. Again, for PenPoint SDK 2.0 Japanese, the
default translator is an instance of clsKKCCharTranslator.

3 When the character translator (an instance of clsKKCCharTranslator)
receives the gesture information, it determines whether the gesture is relevant
to character translation. Since the right up -l gesture explicitly requests KKC,

it sends the message msgCharTransGetClientBuffer to the client (clsIP)
requesting a portion of its buffer.

4 The client sends the requested characters in response to msgCharTransGet
ClientBuffer.

5 The translator communicates with clsKKC, the front-end to the actual service
that provides KKC. In this case, a translation is needed, so the translator sends
msgCharTransModifyBuffer with the translation to the client.

This section is intended for
developers who, instead of
using ol5Fieid or 0151P, want to
create their own ol5GWin
descendent client of the KKC
character translator.

CHAPTER 38/ INPUT AND HANDWRITING RECOGNITION 455

6 Using information sent with msgCharTransModifyBuffer, the insertion pad
updates its internal buffer and user interface to display the translated char
acter. Note that the translated character is highlighted. The P _ARGS sent
with msgCharTransModifyBuffer also contains highlighting information.
See Part 6: PenPoint User Interface Design Reference Supplement for details on
how character highlighting should behave during KKC.

7 The user then requests a list of alternatives by tapping on the highlighted
character. The insertion pad self-sends msgChar TransGesture, again allowing
the message to be handled by clsGWin.

8 The translator receives the message from clsGWin and queries clsKKC for
character alternatives. It also asks the client where the character alternatives
pop-up box should be placed by sending msgCharTransProvideListXY.

The insertion pad calculates the coordinates of the upper-left corner of
the pop-up box. The pop-up box should appear directly below the original
character.

9 If the user selects an alternative from the pop-up box, the translator sends
msgCharTransModifyBuffer to the client. The insertion pad should then
update its buffer and user interface.

10 When the user taps OK to dismiss the insertion pad, the pad should self-send
msgCharTransGoQuiescent to synchronize the character counts between the
text view and the character translator. This step ensures the correct setting and
clearing of the weak and strong character highlights.

The description above does not exhaust the messages involved in the character
translation protocol. For example, it did not mention any of the messages that
support keyboard input. These are the most important messages involved in the
protocol:

The client should self-send the following four messages when appropriate. How
ever, the client should not define a method to handle the message. Rather, the client
should allow the message to be passed up to clsGWin.

• Self-send msgCharTransKeyeach time the user presses a key.

• Self-send msgCharTransChar each time the user edits an existing buffer (for
example, when the user inserts or deletes a character). As the user writes new
characters, you normally do not send this message until the user makes the
translation gesture. However, when the user is typing, you send each character
with this message.

• Self-send msgCharTransGoQuiescent to cancel the current translation. When
the user taps outside an insertion pad, for example, clsIP self-sends msgChar
TransGoQuiescent.

• Self-send msgCharTransGesture each time the user makes a gesture on
your text.

What's new

456 PENPOINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

The client should respond to the following messages sent by the character
translator:

• msgCharTransModifyBuffer, which contains information on how to translate
characters. The client should respond by updating your text buffer and user
interface, including updating strong and weak highlighting. The character
translator passes you a CHAR_TRANS_MODIFY structure.

• msgCharTransGetClientBuffer, which asks your window instance for some
text from the client's buffer. Pass the requested text to the character translator
as part of a CHAR_TRANS_GET_BUF structure.

• msgCharTransProvideListXY, which asks the client where to put the charac
ter alternative list. The client should compute the coordinates so that the pop
up box appears below the original character.

".,. Highlighting inlormation

When a character translator sends msgCharTransModifyBuffer to a client, that
client should examine the highlight fields in CHAR_ TRAN_HIGHLIGHT. It should
begin weak highlighting from weakStart and extend it for weakLen. Strong high
lighting should begin from strongS tart and extend for strongLen. Previous high
lighting information is provided in oldWeakLen, oldStrongStart and
oldStrongLen.

Some of the length fields can hold 0, indicating that highlighting can be removed.
For example, if there is no strong highlighting required, strongLen is 0. The client
may need to clear any old highlighting that is specified by the old ... fields. Note
that if the character translator just wants to change highlighting information, it will
send this message with the delete and insert lengths of CHAR_TRAN_HIGHLIGHT

set to 0, but with the highlight information changed.

Class Character Translator messages

Takes... ('omments

TABLE 38-2

Message

msgNewDefaults p _ CHA~ TRANS_NEW CHAR_ TRANS_NEW is passed in with all argu
ments set to zero (or pNull, as appropriate).

msgNew

msgCharTransKeyEvent

P _ CHAR_ TRANS_NEW Creates a character translator. If pArgs->char
Trans.pBindings is pNull, the default bindings
(from the system preferences) are used.

P _CHAR_TRANS_KEY_EVENT Clients self-send this message to notify a charac
ter translator of a keyboard event. If the character
translator does not use the key, it returns an error
message. Otherwise, the client should not use the
key because it is being used by the translator.

clsCharTranslator messages
Message

msgCharTransChar

msgCharTransSetMark

msgCharTransGetClientBuf

msgCharTransModifyBuffer

msgCharTransProvideListXY

msgChar TransListActivate

Takes •••

".. Return of translation alternatives

CHAPTER 38 I INPUT AND HANDWRITING RECOGNITION 457
What's new

TABLE 38-2 (continued)

Comments

The client self-sends this message to notify a
character translator of a character about to be
changed. The client then receives back msg
CharTransModifyBuffer; it should examine the
arguments passed it in P _ CHAR_ TRANS_
MODIFY to determine exactly what the charac
ter translator wants to have changed.

The character translator sends this message to the
client to notify that it (the translator) is begin
ning to collect characters at the given position.

The translator sends this message to the client to
request a copy of the characters in the client's
buffer. The client should copy length characters
from startPosition into buf. If fewer than length
characters are available, the client must end the
string that it copies with a null character.

clsCharTranslator (or a subclass of it) sends this
message to the client to tell it how to modify its
buffer. The client should delete length characters
beginning at first and replace them with bufLen
characters from buf. The client should also adjust
its highlighting according to the values in the
highlight structure (CHAR_ TRAN_
HIGHLIGHT). See "Highlighting information"
on page 456.

Sent to the client to request the X-Y coordinates
for the top left corner of the pop up menu for the
alternatives list. Current VI guidelines dictate
that the client should compute the coordinates so
that the menu pops up below the character. The
coordinates are in relation to the root window.

Self-sent to subclasses to activate the alternatives
list. pArgs->charPosition has the character posi
tion in the client's buffer and pArgs->xy has the
root window X-Y coordinates for the list.

The text subclasses for handwriting translation, clsXText and clsXWord, include
new flags that request the translation object to return information in addition to
the best-guess translation. Most other translation flags (hwxFlags) govern which of
the various scoring rules the translation object applies when it chooses the best
translation. The new translation flags specify which additional data that object is to
return:

• xltReturnAltWords: Return the highest ranking alternative word translations.

• xltReturnAltChars: Return the alternative characters in each position of the
best-guess translation.

• xltReturnStrokelds: Return the strokes that belong with each character of the
best-guess translation.

458 PEN POINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

You can set one or more of these flags in the _NEW structures for both clsXText and
clsXW"ord (pArgs->xlate.hwxFlags) when you create the translation object. You can
also set and clear them with msgXlateSetFlags and msgXlateClearFlags any time
before the translation object has received the first stroke from the scribble. To find
out the current hwxFlags settings, send msgXlateGetFlags to the translation object.

To get the information on alternatives, send msgXlateData, to the clsXText or
clsXW"ord object as usual; pass it via P _XLATE_DATA an identifier of the heap from
which memory is to be allocated for the Xlist elements. The translation object
returns the requested information in linked Xlist elements (see Table 38-1).

xltReturnAltWords The translation object returns, along with the best
guess translation for a word (as defined by Locale), a list of alternative
word translations, ranked in order of their scores. The Xlist element
requested by this flag is of type xtTextAltWords, which points to a
WORD_LIST structure that contains the alternative word choices.

xltReturnAltChars The translator returns a list of all alternatives for each of
the characters in the best-guess word translation. Each alternative's plausi
bility is determined by the translator's shape matcher. The Xlist element
requested by this flag is of type xtTextAltChars, and it points to a
XL_CHAR_LIST structure that holds alternative character information.

xltReturnStrokelds The translator returns the pen strokes that underlie
every best-guess and alternate character in the word translation. The Xlist
element requested by this flag is of type xt TextStrokeldList, and it points
to a structure ofXL_STROKE_ID_LIST.

If you set the xltReturnStrokelds flag, you might also want to set
xltReturnAltChars. You can use the stroke-count information returned
via the xtTextAltChars Xlist element to interpret the stroke IDs returned
via the xtTextStrokeldList Xlist element.

The linked list ofXlist elements returned for each type of alternative information
(word, character, and stroke 1D) is often extended beyond a single translated word.
The translator can link that word's sequence ofXlist elements with the Xlist ele
ments returned for the next translated word.

All hwxFlags are.defined in the header file for the abstract superclass, clsXtractl
clsXlate (XLATE.H).

Handwriting changes
Handwriting customization has been removed as a feature from PenPoint 2.0 Japa
nese. Because this version of Pen Point does not use the GOWrite engine, there is no
implementation of handwriting customization.

The header file HWCUSTOM.H remains, as does the hook to the Customize ...
button on the Settings notebook's Installed Handwriting page. ISVs who wish to
use customization may write their own clsFrame descendants conforming to the
HWCUSTOM.H header; customization will proceed as it did in PenPoint 1.0 and

CHAPTER 38 I INPUT AND HANDWRITING RECOGNITION 459
What's new

Translation alternatives returned by msgXlateData FIGURE 38-1

pXList

.--------
xtBounds xtWord xtTextAlt xtTextAlt xtStrokeId

Word Chars List
fl~s ... flags .. flags .. flags ... flags

0 0

ATA ~, WORD_ENTRY ~, WORD_LIST ~,. XL_CHAR_LIST ~ , XL_STROKE_ID_LIST ~,.

box 1 (score I H J a J LIE I J bounds count = 4
baseline count = 2 alt chars[~

--- word [0] /
scores[]
strokes = 3

WORD ENTRY
- --- word[l] aIt chars[]

scores[]
strokes = 1

XL_ CHAR_ALTS aIt chars[]

~
scores[]
strokes = 1

aIt chars[]
scores[]
strokes = 4

alternative characters include best-guess characters

PenPoint 1.01. But the customization classes that GO provided in PenPoint 1.0 and
PenPoint 1.01 are not part of Pen Point 2.0 Japanese.

".. LeHer practice removed
The header file HWLETTER.H remains, as does the hook to the Practice ... button on
the Settings notebook's Installed Handwriting page. ISVs who wish to use letter
practice may write their own clsFrame descendants conforming to tl;le
HWLETTER.H header; letter practice will proceed as it did in PenPoint 1.0 and
1.01. But the letter practice classes that GO provided in PenPoint 1.0 and 1.01 are
not part of PenPoint 2.0.

".. Changed and obsolete gesture names

Changed gesture names
Gesture •••

xgsLLCorner

xgsLLCorner Flick

xgsLRCorner

xgsLRCornerFlick

xgsULCorner

15 Now •••

xgsDownRight

xgsDownRightFlick

xgsDownLeft

xgsDownLeftFlick

xgsUpRight

count

stroke ID

stroke ID

stroke ID

stroke ID

stroke ID

stroke ID

stroke ID

stroke ID

stroke ID

...

...

460 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

xgsAsterisk

xgsDblArrow

xgsFlick Tap Down

xgsFlick Tap Up

xgsLineCaretLeft

xgsParagraph

xgsPolyline

xgsRoundRect

xgs Up Triangle

names

xgsBordersOn

'xgsDblDownCaret

xgsFlick TapLeft

xgsInfinity

xgsLineCaretRight

xgsPigtailHorz

xgsRect

xgsSpline

Tips and clarifications

clsAnimSPaper metrics

xgsCircleDblTap

xgsDown Triangle

xgsFlickTapRight

xgsLeftCaret

xgsLineDblCaret

xgsPlusTap

xgsRightCaret

xgs UpCaretDblDot

Instances of clsAnimSPaper will crash (divide by zero) if they are redrawn with the
delay and interstroke metrics both set to zero. To avoid the problem, ensure that the
interstroke is always non-zero whenever the delay is zero.

Transparent input
If you want transparent input (inputTransparent set), you must make sure that
inputLRContinue is clear.

Corrections and errata

Adding a filter
Section 53.3.2 in the PenPoint Architectural Reference on InputFilterAddO shows an
incomplete prototype and does not describe two of the function's arguments (page
571). The actual prototype is:

STATUS EXPORTED InputFilterAdd(
OBJECT newFilter,
INPUT FLAGS inputEventFlags,
FILTER FLAGS filterFlags,
U8 priority

) ;

The arguments are defined as follows:

newFilter The UID of the filter object to be placed on the filter list.

inputEventFlags By setting flag bits in this U32 field, you indicate those
input events (and related messages) that you want your filter to handle.
Examples of input events that you can specify are input Tip, inputEnter,
and inputTap. See INPUT.H or Table 53-2 in the PenPoint Architectural
Reference for a list of these flags.

CHAPTER 38/ INPUT AND HANDWRITING RECOGNITION 461
Corrections and errata

filterFlags The flags set in this U32 field control event distribution to your
filter. Currently developers can set only one flag, iflSendMyWindowOnly.
By setting it you instruct the input system to withhold messages from the
filter unless the event happened in the filter or in one of that filter's win
dow children or window ancestors.

priority A value from 0 to 255 that indicates the relative priority of the filter.
This value specifies the position of the filter in the list.

",. Typographical errors

PartS

Volume, section, paragraph

I, 52.4, ,1
Old text on first line
New text on second line

... win.input.f1ags .. .

... win.flags.input .. .

TABLE 38-5

Chapter 39 I Text

".. What's new

",. Gesture targeting
In PenPoint 2.0 Japanese, dsTextView targets gestures differently than in other
PenPoint versions. In PenPoint 2.0 Japanese, where a gesture would expand its
target to a word (bunsetsu in the Japanese version), the gesture targets the character
where the hotpoint of the gesture was. As in PenPoint 1.Ox or PenPoint 2.0 running
with u.s. behavior, however, if the gesture is over a selection, then the selection is
the target.

Type the following to run Pen Point
with U.S. behavior:

go usa usa

Table 39-1 lists the gestures that have new (non-bunsetsu) targets in P~nPoint 2.0
Japanese. The Like-Type gestures select similar contiguous characters (that is, those
characters that are all kana or all kanji) instead of following the standard bunsetsu
selection rules.

Note, however, that GO has no
plans to ship a end-user u.s.
localization of Pen Point 2.0.

Gesture Type

Insertion

Selection l

Like-Type

Gesture

---1

---1

A

j\

A
[

]

F

B

I
N

U

t
~

TABU 39-1

Descripti@n Target

New paragraph between characters

New line between characters

Embedder between characters

Floating input pad between characters

Embedded input pad between characters

Select to left between characters

Select to right between characters

Find selected word similar contiguous characters

Bold similar contiguous characters

Italic similar contiguous characters

Normal similar contiguous characters

Underline similar contiguous characters

Increase font size similar contiguous characters

Decrease font size similar contiguous characters

1. In PenPoint 2.0 Japanese, these selection gestures have additional behavior. Making a right bracket gesture before a selection is equivalent
to a single tap (select character); making a left bracket gesture after a selection is equivalent to a double tap (select word).

In terms of API, a new atom type, atomLikeType, enables the selection of a span
that conforms to the international style intlDlmtWordStyleWord. (This new atom
type is in TXTDATA.H.) In addition, move and copy operations for PenPoint 2.0
Japanese now target to the character instead of to the word.

464 PEN POINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

".. Font substitution algorithm
When users now type or write in a Latin or non-Latin font, and a certain character
is missing, the PenPoint 2.0 Japanese operating system substitutes a character from
the closest matching font. This substitution is based on an algorithm that uses the
PANOSE™ Typeface Matching System.

Each font has a selection of Unicode points that identify its characters, which are
mapped to glyphs. If a user-requested glyph is not available in a logical font, the
font-substitution algorithm uses the PANOSE number of that font to get an ordered
list of related fonts, sorted by distance from the original font. It scans the fonts in
this list until it finds the glyph, and then substitutes it.

With the Heisei or Mincho fonts selected, PenPoint 2.0 Japanese converts typed or
written Latin letters and numbers to the closest matching Latin font, and displays
proportionally spaced (hankaku) glyphs. If you don't want this substitution, you
can select the appropriate option from the Convert menu or make the right arrow
gesture to convert the Latin Unicode points to the Compatibility zone equivalents
that display full-width monospaced glyphs. Typing or writing kanji or kana with a
Japanese font selected results in no substitution. The full-width (zenkaku) glyphs
are used for display.

Hankaku/zenkaku implementation
In clsTextView, all Latin letters including the space character (Ox0020) and the
Latin punctuation characters (period, question mark, and so on) default to their
hankaku form. All other kana, kanji, and Japanese punctuation characters default
to their zenkaku form. However, the keyboard driver for the lPN keyboard has
mode switches with which you can control the kinds of characters generated. In
addition, users can convert characters to all hankaku or all zenkaku via the Gestures
or MiniText menus.

Unicode import type
MiniText now supports the Unicode file type (specified in FILETYPE.H). If the
import file has the .UNC extension, the code points will be interpreted as Unicode.
Other imported files are treated as either 7-bit RTF or Shift-lIS depending on the
header. If the file starts with a valid RTF header, it will be read as 7 -bit RTF, other
wise it will be treated as a Shift-lIS file. Because there is no standard for exporting
8-bit (that is, Shift-lIS) characters in RTF format, PenPoint no longer exports RTF in
the 2.0 Japanese version; it does export text as Unicode and Shift-lIS.

No white space correction in Japanese version
Because Japanese doesn't delimit words with spaces, PenPoint 2.0 Japanese does not
correct white space during:

.. Move/copy and delete operations.

.. While accepting translated text from either an embedded IP or a floating IP.

PANOSE is a trademark
of ElseWare Corporation,
Seattle, Washington

Initial spaces are always
displayed as half-width unless
the user converts them
through the Convert menu.

CHAPTER 39 / TEXT 465
Corrections and errata

". Taboo and bunsetsu rules
Lines breaks follow taboo processing rules for Japanese text. In addition to the
English or European characters that cannot start or end a line, extra Japanese char
acters have been added that cannot start or end a line. For example, you can't end a
line with an open bracket ([) and you can't start a line with a close bracket (D.

Word selection follows the Japanese rules for selecting bunsetsu.

". Using msgTextModily
Because text views set the gWin style.useCharTranslator to TRUE, the text view
character count must be synchronized with the character translator to ensure the
correct setting and clearing of the weak and strong highlights. Always end a KKC

session with msgCharTransGoQuiescent before you send a msgTextModify mes
sage to a text view. To end the KKC session, send a message similar to the following:

ObjectCallWarn(msgCharTransGoQuiescent, self, pNull)i

In this ~essage, self is the text view object. clsGWin handles this message by self
sending messages to clear the weak and strong highlights before the
msgTextModify message can change the character counts. Character offsets are
thus synchronized between the character translator and the text view object.

The text view itself ends the KKC session in response to gestures that add and delete
characters. See CHARTR.H for more information on the character translator.

". Corrections and errata

". Typographical errors

Part 6
Volume, section, paragraph

I, Chpt 67 intro, '2

Old text on first line
New text on second line

Code example: s == ObjectCaH(msgWinlnsert, llcw.objcct.id, &new.win);
Code example: s = ObjectCall(msgWinlnsert, new.object.uid, &new.win);

Chapter 40 / The File System

,.. What's new

". Stamped file system attributes
The following file system attributes are stamped on installable items (applications,
services, fonts, and so on) and documents.

TABLE 40-1

62/0 USTR fsAttrName FS.H The visible name of the installable. It must be unique
within the parent directory. It has a minor program-
matic use to handle collisions with items that are
already installed. It is mandatory.

260/3 USTR imAttr Version INSTLMGR.H The visible version string. It is not used in
source code and is optional.

157/12 USTR appAttrClassName APPDIR.H The visible installable type name (such as Applica-
tion, Font, Printer). It is not used in source code and
is optional.

193/2 USTR cimAttrProgramName CODEMGR.H The module name, for example, GO-ABAPP-V2(0).·
This name must match the module name in the .LBC
file used to build the module. It is used in source
code.

157/1 FIX appAttrClass APP.H The installable type. This attribute must be set to the
installation manager that controls this type of install-
able: theInstalledApps, which is 010001AO. It is
mandatory.

TABLE 40-2

Comment

62/0 USTR fsAttrName FS.H The visible name of the document. It must be unique
within the parent directory and is mandatory.

28/0 FIX64 fsAttrDirIndex FS.H The directory index. It must be unique and is manda-
tory.

157/12 USTR appAttrClassName APPDIR.H The visible name of the document's application, for
example, MiniText or GOMail. It is not used pro-
grammatically and is optional.

157/1 FIX appAttrClass APPDIR.H The document's application class. It is mandatory.

157/4 FIX appAttrSequence APPDIR.H The sequence number, which reflects the position of
the document within its embeddor. It is mandatory.

157/3 FIX appAttrNum Children APPDIR.H The number of documents that are embedded within
this document. It is mandatory.

157/6 FIX64 appAttrFlags APPDIR.H The document's flags, such as moveable and
readOnly. It is mandatory.

468 PENPOINT APPLICATION WRITING GUIDE

Part 5 / Architectural Reference Supplement

~'C'JmDetJ aftribufes-PenPoinf

Adminl Type lobel
index

TAIUI: 40-2 (continued)

Header file Comment

157/9 USTR appAttrBookmark APPDIR.H The visible name of the document's tab in the Note
book. It is optional.

157/10 USTR appAttrAuthor

157/10 USTR appAttrComments

Tips and clarifications

Open handles on files

APPDIR.H

APPDIR.H

The visible author field. It is optional.

The visible comments field. It is optional.

When your application has finished with a file or directory, it must free the handle
on the node, especially if the node is on a floppy or other removable media. If you
don't do this and a user ejects the disk, they will continually get a number of
prompts for the disk, which cannot be cancelled.

msgFSSetSize does not reposition file pointer

If you use msgFSSetSize to truncate a file, the file position will not be changed
during the call. To write at the end of the file, you must seek to the end of file.

StdioStreamUnbind
If you use StdioStreamBindO and a read, a subsequent StdioStreamUnbindO will
change the file pointer. Thus, if you plan to rebind and pick up where you left off,
you must get the current file location with an ftellO before unbinding so you can
reset the file pointer after rebinding.

Memory mapped file problem
It's not a good idea to implement a memory-mapped file in a document directory.
Why? Let's say someone launches a document from an extended bookshelf on a
floppy disk. You start writing to the memory map, and then the user ejects the
floppy disk. This causes the memory manager to choke with a page fault.

Because all application directories live on theSelectedVolume, memory-mapped
files in the global application directory are still okay. This seems to be the standard
implementation for memory-mapped files anyway, such as a shared PIM database.

Corrections and errata

Locators

Section 70.6 in the PenPoint Architectural Reference describes implicit and explicit
locators, but does not mention flat locators. Flat locators hold an entire locator
string in a linear (flat) structure. In PenPoint 2.0 Japanese, flat locators are defined
by structure FS_FLAT_LOCATOR and are used by browser objects (clsBrowser). See
Chapter 80 for descriptions of how instances of clsBrowser use flat locators.

CHAPTER 40 / THE FILE SYSTEM 469
Corrections and errata

". Iseek() and msgFSSeek
The WATCOM C Library Reference for PenPoint states that when calling IseekO, the
requested file position may be beyond the end of the file.

This is not true in PenPoint 2.0 Japanese. When the requested position is beyond
the end of file and the file pointer is currently positioned at the end of file, both
IseekO and msgFSSeek return errors. When the requested position is beyond the
end of file and the file pointer is not positioned at the end, they move the file
pointer to the end and do not return an error status.

The workaround for this problem is to use chsizeO or msgFSSetSize to extend the
file, then use IseekO or msgFSSeek.

". Typographical errors

Part 7 (File System)-typos

Volume, section, paragraph

II, 69.2.2, ~5

II, 72.1.1, Table 72-2

Old text on first Line)
New text on second line

Code example: OF_GET get;
(Remove)

fsDenyWriters
fsDenyWriters

Deny access to readers
Deny access to writers.

TABLE 40-3

Chapter 41 / System Services

". What's new

". String composition functions
PenPoint SDK 2.0 Japanese has added six new routines to its Compose Text package
of functions that allow you to compose formatted text strings. The new functions
allow the construction of counted strings (as opposed to null-terminated ones) and
enable you to compose strings using resource files. These functions are:

• SCompose TextN

• VSComposeTextN

• SCompose TextL

• VSComposeTextL

• SComposeTextNL

• VSComposeTextNL

"Function definitions" on page 473 describes these functions in detail.

These Compose Text functions are similar to standard C stdio functions such
as printfO and sprintfO. They use positional format codes to copy a format
argument into an output string, after performing the required substitutions for
the format codes. Use these functions rather than sprintfO to create strings in your
user interface.

The Compose Text functions feature format codes other than those for the usual
data-type conversions. One format code and convention enables conditional inser
tion of singular or plural word forms, such as "is" or "are." Other format codes
make it possible to specify text strings and string lists stored as resources.

Although they accomplish the same thing, the Compose Text functions come in
several varieties. Some allow you to include the strings for composition as argu
ments, others require pointers to those strings, and other functions get the strings
from resource files. In addition, some functions terminate the composed string with
a null character and others do not. The API definitions for these functions are in
CMPSTEXT.H. The functions themselves are in SYSUTIL.LIB.

Format codes

The format string used in string composition contains one or more format codes.
Format strings can also contain literal text, though they need not. A format code
starts with a caret character (A), has one or more digits in the middle, and concludes
with a single letter.

This section replaces section
75.3.3 in the Pen Point
Architectural Reference.

The Compose Text functions
are ideally suited for
i nternationa I ization,
particularly because they
use resource files.

472 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

The string arguments (as literal text, pointers or resource file identifiers) follow the
format string. The digits of the format code specify which argument to insert in
that position and the letter indicates the type of the argument. For instance, format
code A 2s directs a function to insert the second argument as a string.

The following example fills buffer with the string "a B b A c":
SComposeText(&buffer, &size, heap, U L"a "2s b "ls e", "A", "B");

\"c~mJgo'se Text format code TABLE 41 m 1

Type Code

s String. The argument or arguments are pointers to text strings.

Resource ID of a string resource. r

d

x

A

Group number and indexed list resource ID for string list. The group num
ber and the list resource ID must be two separate arguments (in that order).

V32 argument printed as a decimal number.

V32 argument printed as a hexadecimal number.

Literal A character (AA) for putting A in a string. There is no number.

{ ... I. .. } This delimiter format type permits you to conditionally insert singular or
plural word forms into text strings based on the value of an argument. Insert
the singular and plural forms of a word, in that order and separated by a I
character, between the braces. When you use this format type, the Compose
Text function examines the specified argument. If its value is 1, the function
inserts the first string; otherwise, it inserts the second string.

As an example of the { ... I ... } format type, the following function call generates
"There is 1 apple" if numApples is equal to 1 and "There are 5 apples" if
numApples is equal to 5:

{

SComposeText(&buffer, &size, heap,
U_L("There "l{islare} "ld "1 {apple I apples}") , numApples);

~ Function arguments and memory management

The first three arguments for all Compose Text functions are identical:

• A handle (type PP _CHAR) to the buffer that will contain the composed string.

• A pointer (type P _U32) to the size of the buffer (In) or to the length of the text
string in the buffer (Out).

• An identifier of the heap used to allocate memory for the buffer
(OS_HEAP _ID).

All Compose Text functions return the length of the generated string in the length
argument. For those functions that compose null-terminated strings, the null is not
counted in the length.

CHAPTER 41 / SYSTEM SERVICES 473

The Compose Text functions give you two ways to supply the buffer memory:

• You can supply a buffer handle and buffer length and set the heap ID to null.
If this technique is used, and the buffer is too small to hold the results, an
error status is returned.

• You can specify a valid heap ID to have the function allocate memory for the
buffer from the specified heap. You must free the memory when finished with
OSHeapBlockFreeO. If you pass null for the buffer length when specifying a
heap ID, you do not get the actual length of the string back.

"."., Function definitions

SComposeText Composes a null-terminated text string from a format and
arguments.

VSComposeText Composes a null-terminated text string from a format and
a pointer to an argument list.

SComposeTextL Composes a null-terminated text string from a resource
file format and arguments. Unlike SComposeText, this function fetches
the format string from a string array in a resource file.

VSConiposeTextL Composes a null-terminated text string from a resourci
fled format and a pointer to an argument list. This function differs from
VSComposeText in that it fetches the format string from a string array in
a resource file.

SComposeTextN Composes a counted string from a format and arguments.
Unlike SComposeText, the generated string is not terminated with a null
character.

VSComposeTextN Composes a counted string from a format and a pointer
to an argument list. Unlike VSComposeText, the generated string is not
terminated with a null character.

SComposeTextNL Composes a counted string from a resource-file format
and arguments. Unlike SComposeTextL, the generated string is not ter
minated with a null character.

VSComposeTextNL Composes a counted string from a resource-file format
and a pointer to an argument list. Unlike VSComposeTextL, the gener
ated string is not terminated with a null character.

Getting the current locale
To determine the locale the PenPoint 2.0 Japanese operating system is currently
running in, send msgSysGetLocale to the system. The locale ID and a string
describing the locale are returned. msgSysGetLocale is defined in SYSTEM.H.

What's new

474 PENPOINT APPLICATION WRITING GUIDE

Part S / Architectural Reference Supplement

Nlultibyte/Unicode conversion routines
The international conversion functions IntlMBToUnicodeO and IntlUnicode
ToMBO replace the PenPoint 2.0 Alpha functions Ustrcpy8to160 and
Ustrcpy16to80, respectively. Note that this a replacement of functionality, not a
renaming of functions. The interfaces for these new, replacement functions are in
ISR.H. Chapter 47, International Services and Routines, describes these and similar
international conversion functions.

Corrections and errata

Ugetc and Uungetc bugs
UgetcO and UungetcO are WATCOM's Unicode implementations of getcO and
ungetcO. UgetcO is supposed to return the next Unicode character from the input
stream. UngetcO is supposed to push that character back onto the stream. There is
currently a bug in these routines. UgetcO loses the upper half of the Unicode char
acter after bufsiz (512) bytes have been read. UungetcO faults when it tries to push
this character back just after a new buffer is filled.

To work around this bug, include the following code immediately after the
#include for STDIO.H:

#undef Ugetc
#define Ugetc(_fp) FixedUgetc((_fp))
static int FixedUgetc(FILE *file)
{

int tempChar, tempChar2;
tempChar = getc(file);
if (tempChar == EOF) return EOF;
tempChar &= OxOOFF;
tempChar2 = getc(file);
if (tempChar2 == EOF) return EOF;
return (tempChar2 « 8 I tempChar);
#undef Uungetc
#define Uungetc(_ch, _fp) \
(CHAR) (ungetc((_ch) »8, (_fp)), ungetc((_ch)&OxFF, (_fp)))

Renaming of J 6-bit utility functions

The following functions have been renamed:

Version F.O Version 2.0

Umemccpy Uchrccpy

Umemchr Uchrchr

Umemcmp Ustrncmp

Umemcpy Ustrncpy

Umemicmp Ustrnicmp

Umemset Uchrset

CHAPTER 41 / SYSTEM SERVICES 475

Corrections and errata

Note that Ustrncmp, Ustrncpy and Ustrnicmp, unlike their predecessors, do not
copy null as any other character. They treat nulls as early termination, copying the
null and then stopping.

These other 16-bit WATCOM functions have also been renamed:

Renamed WATCOM functions TABLE 41-3

Version 1.0 Version 2.0 Version 7.0 Version 2.0

asetime16 uasetime assert16 uassert - -
atof16 uatof ato116 uatol - -
ehdir16 uehdir ereat16 uereat - -

etime16 - uetime fdopen16 _ufdopen

fgete16 _ufgete fgetehar16 _ufgetehar

fgets16 _ufgets fopen16 _ufopen

fprintf16 _ufprintf fpute16 _ufpute

fputehar16 _ufputehar fputs16 _ufputs
• freopen16 _ufreopen fseanf16 - ufseanf

~ gete16 _ugete getehar16 _ugetehar

getcwd16 _ugetcwd getenv16 _ugetenv

gets 16 _ugets isalnum16 - uisalnum

isalpha16 _uisalpha isascii16 - uisascii

isentrl16 - uisentrl isdigit16 _uisdigit

isgraph16 _uisgraph islower16 - uislower

isprint16 _uisprint ispunet16 _uispunet

isspaee16 _uisspaee isupper16 _uisupper

isxdigit16 _uisxdigit itoa16 - uitoa

ltoa16 - ultoa memeepy16 _uehreepy

memehr16 - uehrehr mememp16 _ustrnemp

memepy16 _ustrnepy memicmp16 _ustrnicmp

memset16 - uehrset open16 _uopen

printf16 _uprintf pute16 _up ute

putehar16 _uputehar puts16 _uputs

remove 16 uremove rename 16 urename - -
rmdir16 urmdir seanf16 useanf - -
setenv16 - usetenv sopen16 _usopen

sprintf16 _usprintf sseanf16 _usseanf

streat16 ustreat strehr16 ustrehr - -
stremp16 _ustremp strempi16 _ustrempi

strepy16 _ustrepy strespn16 _ustrespn

strdup16 _ustrdup strerror16 - ustrerror

stricmp16 _ustricmp strlen16 - ustrlen

strlwr16 ustrlwr strneat16 ustrneat - -
strnemp16 _ustrnemp strnepy16 _ustrnepy

strnicmp16 _ustrnicmp strnset16 _ustrnset

strpbrk16 _ustrpbrk strrehr16 - ustrrehr

476 PENPOINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

Version 1.0 Version 2.0 Version 1.0 Version 2.0

strrev16 ustrrev strset16 ustrset - -

strspn16 _ustrspn strstr16 _ustrstr

strtod16 - ustrtod strtok16 - ustrtok

strto116 ustrtol strtoul16 ustrtoul - -
strupr16 _ustrupr swab 16 _uswab

tmpnam16 _utmpnam tolower16 - utolower

toupper16 _utoupper ubprintf16 _uubprintf

ultoa16 - uultoa ungetc16 _uungetc

utoa16 - uutoa vfprintf16 _uvfprintf

vfscanf16 - uvfscanf vprintf16 _uvprintf

vscanf16 _uvscanf vsprintf16 _uvsprintf

vsscanf16 - uvsscanf _Ubprintf U_bprintf

_ubprintf _u_bprintf _Ufullpath U_fullpath

_Umakepath U_makepath _umemccpy _uchrccpy

- umemchr - uchrchr _umemcmp _ustrncmp

_umemcpy _ustrncpy _umemicmp _ustrnicmp

_umemset _uchrset _ Usplitpath U _splitpath

_ Usplitpath2 U _splitpath2 _Uvbprintf U_vbprintf

_uvbprintf _u_ vbprintf

eevf and levf

These functions are no longer available in PenPoint 2.0 Japanese.

HASH.H
The value in hashTableMaxFillPct has changed from 80 to 98. Now it also
includes HashFunctionString80 and HashCompareString80 for 8-bit strings.

SYSTEM.H
Both sysSysServiceFile (SYSSERVINI) and sysResFile (PENPOINT.RES) have been
removed. These two files are combined in locale. RES (for example, lPN.RES). SYS

TEM.H also includes sysLocaleIndependentResFile (ALL.RES), msgSysGetLocale, a
SYS_LOCALE structure, an 8-bit sysGoldenMaster_8 and a resource ID for warn
Ings.

OSMemlnlo, OSMemUselnlo, OSMemAvai/able
OSMemInfoO is obsolete and has been replaced by OSMemUseInfoO.

OSMemAvailableO returns the amount of swappable memory that can be allocated
before the caution zone is reached. This is the point at which the system begins put
ting up notes warning that memory is getting low.

TABU 41-3 (continued)

CHAPTER 41 / SYSTEM SERVICES 477
Corrections and errata

".. Typographical errors

Part 8 (System Services)-typos TABU 41-4

Volume, section, paragraph

II, 74.6.5, ~4

Old text on first line
New text on second line

A timer request can continue to count down after a PenPoint computer is
powered on.

A timer request can continue to count down after a PenPoint computer is
powered off

Chapter 42/ Utility Classes

,... What's New

'Y Matching hiragana or katakana text
In search and replace operations on Japanese text, you can request
theSearchManager to match text based on the type-hiragana or katakana-of the
specified find string. If the types are different, the target text is passed over, even if
the senses are identical.

To effect this search refinement, set the matchHiraKata flag TRUE. This flag is in
the SR_FLAGS structure, which is itself part of the SR_METRICS structure. Then call
msgSRInvokeSearch (SR_METRICS is part of the argument structure SR_INVOKE_

SEARCH). msgSRRememberMetrics also uses a pointer to SR_METRICS as an
argument.

Note the matchHiraKata flag is automatically set TRUE when the user selects the
Same Hira/Kata Sense option under Match.

Adding gestures to Quick Help strings
RTF is no longer needed to embed gesture glyphs in Quick Help text strings in your
resource files. Because the representation of strings is now Unicode-based, all you
must do is type the Unicode code point for a gesture glyph (in hexadecimal) where
you want the gesture to appear. (These glyphs are defined in GLYPH.H.) You no
longer need to specify \\£63 to enter a gesture font and \\£0 to return from it.

You can still use RTF formatting commands in Quick Help text (such as \\line), and
you can still use the \qh macro to set up an RTF header (although it no longer does
any font mapping). However, you must remove all occurrences of {\\£63 c} (where c
is the gesture symbol) and \\£0 from your Quick Help strings and replace the \\63
sequence with the correct Unicode values.

The following code fragment shows a typical use of a Unicode-specified gesture in
Quick Help strings:

editMenuTag,
U-L("Edit Command I I ")
U-L("{\\qh Tap Edit to display an edit pad ")
U-L("with the selected text.\\line ")
U-L("\\line ")
U-L("You can also put the selected text in an edit ")
U-L("pad by drawing a Circle \xF621 gesture ")
U-L("on the selection.}",)

Note that you must type II to separate the title and the body of text, and that
you must preface each string with the L (or U_L) macro to provide 16-bit
compatibility.

480 PEN POINT APPLICATION WRITING GUIDE

Part 5 / Architectural Reference Supplement

This information on gestures in Quick Help strings replaces sections 84.3.3.1 and
84.3.3.2 in the PenPoint Architectural Reference.

clsNotePaper changes

API changes

clsNPData includes two new messages, msgGetScribbleClass and msgGetTextClass.
When you subclass clsNPTextltem or clsNPScribbleltem, you should also subclass
clsNPData and override the handlers for these two messages to have them return the
appropriate class. These message handlers are required because clsNotePaper instanti
ates text and scribble objects on its own, and needs to be told when to use a subclass.
For this reason, you should not subclass clsNPltem directly; you should only subclass
clsNPTextltem and clsNPScribbleItem.

If you want to add different types of graphical objects, you can treat
clsScribbleltem in an abstract manner. However, if your implementation is not
complete, make sure that it satisfies all requirements of the NPScribbleltem API.

File format changes

In addition to API changes, clsNotePaper includes changes in file formats, particu
larly for file import and export. It now imports Unicode text files. As with Mini
Text, it requires a file suffix of .UNC for Unicode files. For Shift-lIS it expects files to
have suffixes of .S]S. As before, it expects ASCII files to have .TXT suffixes.

Import of .TXT files depends on locale. In the Japan locale, clsNotePaper imports
the file using the Shift-]IS interpretation of the ASCII character set. On the import
of files, clsNotePaper also supports the same word or bunsetsu handling (depending
on locale) that MiniText performs. It does not perform any taboo processing.

Export can be to Unicode or multibyte text files (Shift-lIS/ASCII). The multibyte
format that is used depends on the locale setting of the pen computer (Shift-lIS in
Japan, ASCII elsewhere).

Tips and clarifications

Cannot intercept export messages
Applications that need to modify their document's files on export cannot detect an
export operation. If your application modifies the contents of its documents on
export, it must provide its own menu button to perform special export operations.

msglmportQuery can arrive twice
Under certain race conditions, an application can get msgImportQuery twice.
Message handlers should not assume that they will receive msgImportQuery
only once.

CHAPTER 42 / UTILITY CLASSES 481
Tips and clarifications

".. New stream disconnected status
stsStreamDisconnected has been added to STREAM.H to report disconnected con
ditions in clsMlLAsyncSIO.

Typically, SIO clients should not attempt stream calls unless they are connected.
However, if the connected state of SIO changes to disconnected while in the middle
of an SIO stream call, the stream call will return stsStreamDisconnected instead of
stsFailed.

The difference is important. stsFailed return means that a client should or could
retry. However a stsStreamDisconnected return means that a client must not retry.
For one, there is no reason to retry since the call will continue to return immedi
ately with the same stsStreamDisconnected status, possibly for ever, even if the
cable is reconnected. (The connection functionality in PenPoint 2.0 Japanese
involves messages so it requires that the message input queue be available.)

SIO clients will need to wait for the connected state to change before attempting
any stream call to SIO that can be done in a couple of different ways (they may be
observers of theSerialDevices service manager or may poll the service manager for
connected state information; see SERV1CE.H or SERVMGR.H).

clsTable bug
There is a known bug in clsTable that causes the called table object to return stsOK
when it should return an error status. If you set the tblRowPos field of the pArgs
structures to Nil(TBL_ROW_POS) when sending msgTBLColGetData or
msgTBLRowGetData, stsOK is returned. Nil(TBL_ROW_POS) is undefined for
these messages, and should cause the called object to return an error.

Clients must test the tblRowPos field value in their TBL_COL_GET_SET_DATA and
TBL_GET_SET_ROW structures to ensure that it is not Nil before sending the mes
sages.

msg TBLColGetData and msg TBLRowGetData are described in the PenPoint
Architectural Reference in Table 90-1 (section 90.5, "Using Table Messages") and
section 90.13, "Getting Data." clsTable interfaces are defined in TS.H.

Known bugs in the NotePaper component
Developers should be aware of the following bugs in MiniNote/NotePaper:

., Setting the paper width to 99999 confuses the horizontal scroll bar .

., Setting the line width to zero confuses MiniNote so that further width
changes do not take effect .

., Copying a selection that contains an embedded document from MiniText
into MiniNote results in the embedded document being replaced by a check
mark.

• The circle tap <!) gesture is not targeted, while the circle 0 gesture is.

482 PEN POINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

Corrections and errata

Getting the current selection
Modify the fourth sentence of section 80.2.2 (in the "Using clsBrowser" chapter in
the PenPoint Architectural Reference) so that it reads: "These two messages take a
pointer to a FS_FLAT_LOCATOR structure in which the called object returns the
path or name of the current selection." The messages referred to are
msgBrowserSelection and msgBrowserSelectionDir.

Classes that respond to search messages
Section 86.3 in the PenPoint Architectural Reference states that "clsText is the only
class that responds to the search and replace messages." You should replace dsText
with dsTextView in this sentence.

Reading and writing streams
Sections 79.3 and 79.4 in the PenPoint Architectural Reference are accurate in their
descriptions of how to use msgStreamRead and msgStreamReadTimeOut to read
communications streams. But some implications raised should be clarified. For a
serial communications stream, there is no reliable notion of "end of stream"; con
ceptually, the byte stream is continuous, with no beginning or end. To' read such a
stream, you should send msgStreamReadTimeOut only. Moreover, if you want to
make a nonblocking read of a serial stream, set the timeOut field (STREAM_READ_

WRITE_TIMEOUT) to zero before sending msgStreamReadTimeOut.

Using the PenPoint gesture font

Table 84-2 on pages 188-190 of the PenPoint Architectural Reference lists the tags,
symbols, and ASCII values for the PenPoint gesture font. It is no longer accurate.
Gesture tags are now associated with glyph tags that represent Unicode values.
GLYPH.H contains the current list of glyphs and their associated Unicode values;
XGESTURE.H contains the current list of gesture tags and their associated glyphs.

Chapter 43 / Connectivity

J'" What~ new
dsModem has been re-implemented as a service. As a result, much of the material
covered in Chapter 97 of the PenPoint Architectural Reference, "Data Modem Inter
face," is no longer valid. This section describes the major conceptual changes and
summarizes the new procedure for using a modem service. Except where noted, it
replaces Chapter 97. Refer to MODEM.H for complete API definitions.

~ Finding, binding to, and opening a modem
Since a modem is a service instance, you locate it, bind to it, and open it as you
would any other service. In this case, you must send a series of dsServiceMgr mes
sages to the predefined service manager for modems, theModems. (A modem is
automatically associated with a serial port, so you no longer need to bind to and
open a serial port explicitly, as Chapter 97 describes.)

The following list summarizes the dsServiceMgr messages you must send initially.
These messages are described in greater detail in Chapter 94 in the PenPoint
Architectural Reference.

1 Find the modem service by sending msgIMFind. You pass theModems service
manager the name of the service; in the pArgs structure (1M_FIND), assign a
pointer to the service name to the pName field. If the service is found, you get
back a handle to that service. If it is not found, the return status is sts
NoMatch.

If your application lets users choose a modem, send msgIM GetList to
theModems to get a list of UIDs for modem services. Then send
msgIMGetName to get the name of each service in the list and display these
names in a list. When a user selects one, assign the name to the pName field of
1M_FIND and send msgIMFind.

2 Bind to the service instance so that the service manager can add your applica
tion to the observer list for the service. Your application should bind to the
modem service so that, when the status of the modem changes, theModems
will notify your application and all other observers (see Table 43-6, "Client
and observer notification messages," on page 491). You bind to the modem
service instance by sending msgSMBind to theModems. In the message
argument structure (SM_BINO), set the handle field to the value returned by
msgIMFind and set the caller field to self.

484 PENPOINT APPLICATION WRITING GUIDE

Part 5 / Architectural Reference Supplement

3 Open the service instance by sending msgSM Open to the modem service
manager (theModems). This message takes a pointer to an SM_OPEN_CLOSE

structure that contains the handle returned by msgIMFind, the caller (self)
and a pointer to an argument structure (pArgs) containing data specific to the
modem service.

4 If msgSMOpen returns stsOK, it also returns the UID of the opened modem
service in the service field of SM_OPEN_CLOSE. Assign this UID to a variable
of type OBJECT and specify this object in subsequent messages to the modem
until you close the modem.

The following code fragment demonstrates the locating, binding and opening
procedure:

1M FIND imfi
SM BIND smbi
SM OPEN smOi -
OBJECT myModemi
STATUS Si
imf.pName = U_L("Hayes2400")i
ObjCallRet(msgIMFind, theModems, &imf, S)i II find/get the modem handle
smb.handle = imf.handlei
smb.caller = selfi
ObjCallRet(msgSMBind, theModems, &smb, S)i II bind to modem service
smo.handle = imf.handlei
smo.caller = selfi
ObjCallRet(msgSMOpen, theModems, &smo, S)i II open modem
myModem = smo.servicei

Instead of steps 1 to 3 above, you can send msgSMAccess to theModems and get
back the UID of the modem service in the service field of a SM_ACCESS structure.
When your are finished with the modem service, send msgSMRelease to unbind
and close it. See SERVMGR.H for more information about these messages.

II1;t;cr/;~crt;()11

The object that opens a modem service (for example, your application) becomes its
client. Before it begins sending and receiving data through the modem, the client
should initialize the modem firmware and the serial I/O port.

Applying the default settings

You reset the modem firmware and the I/O port state to the default settings by
sending the modem-service instance msgModemReset. This message takes no
arguments. Mter sending this message, you can change the reset defaults selectively.
A typical usage, following our previous example, would be:

ObjCallRet(msgModemReset, myModem, Nil(P_ARGS), S)i

The default modem firmware settings are:

• Auto-answer disabled.

• Busy tone detection enabled, or as current modem option card settings.

• Command termination = carriage return (ASCII 13).

• Dialing mode from dialing environment.

CHAPTER 43/ CONNECTIVITY 485

• Dial tone detection enabled, or as current modem option card settings.

• Enable carrier upon connect.

• Escape code = ASCII 43.

• Local character echo disabled.

• Send command result codes (words).

• Send verbal result codes.

• Speaker control on until carrier detected, or as current modem option card
settings.

• Speaker volume medium, or as current modem option card settings.

What's new

Default I/O port state settings TABLE 43~1

Setting SIO _METRICS Field

baud rate baud

data bits line.dataBits

stop bits line. stop Bits

parity line.parity

RTS controlOut.rts

DTR controlOut.dtr

XON char flowChar.xon Char

XOFF char flowChar.xoffChar

flow control flow Type.flowControl

Setting'/O port state options

Default value

Highest supported data mode baud rate
or, if not available, 2400

8 bits (sioEightBits)

1 bit (sioOneStopBits)

no parity (sioNoParity)

true

true

Ox 11

Ox13

off (sioNoFlowControl)

You can change the default I/O port state settings by sending msgSioSetMetrics to a
modem service. To discover what these settings are, prior to altering them, send
msgSioGetMetrics to the modem-service object. Other dsMlLAsyncSIODevice
messages that dsModem handles are msSiolnit, msgSioBreakSend,
msgSioControlInStatus, msgSiolnputBufferStatus, and msgSiolnputBufferFlush.
Refer to SIO.H for descriptions of these messages.

The following code fragment demonstrates a typical use of msgSioSetMetrics:
SIO METRICS smetrics;
/* Initialize serial port to preferences */
ObjCallWarn(msgSioGetMetrics, myModem, &smetrics);
smetrics.baud = (U32)9600;
smetrics.line.dataBits = sioSevenBits;
smetrics.line.stopBits = sioTwoStopBits;
smetrics.flowType.flowControl = sioNoFlowControl;
ObjCallWarn(msgSioSetMetrics, myModem, &smetrics);

486 PENPOINT APPLICATION WRITING GUIDE

Part 5 / Architectural Reference Supplement

Initializing the modem

After the serial I/O port has been initialized, you can send clsModem messages to
set the desired features, control flags, and attributes of the modem. You can either
make these settings as a group by sending msgSvcSetMetrics. Or you can initialize
the modem by sending discrete messages (listed below).

If you elect to use msgSvcSetMetrics, you might first want to send
msgSvcGetMetrics to the modem-service object to obtain the current settings.
Both messages take a pointer to the argument structure SVC_GET_SET_METRICS,

whose pMetrics field points to a buffer containing MODEM_METRICS. This met
rics structure consists of a collection of enumerated types that list mutually exclu
sive settings for various modem features. These enumerated data types are also used
as argument structures in the messages that set individual options in the modem
service.

Table 43-2 describes the enumeration fields that make up MODEM_METRICS and
that are used by the messages that set discrete options. Table Table 43-3 lists these
discrete initialization messages; note that most of these messages take as pArgs the
enumerated value itself (which is 32 bits) and not a pointer to that value.

Type Field

MODEM_DIAL_MODE mdmDialMode

MODEM_DUPLEX_MODE mdmDuplexMode

MODEM_SPEAKER_CONTROL mdmSpeakerControl

MODEM_SPEAKE~ VOLUME mdmSpeakerVolume

MODEM_TONE_DETECTION mdmToneDetection

MODEM_ANSWER_MODE mdmAnswerMode

MODEM_AUTO_ANSWER mdmAutoAnswer

U32 mdmAutoAnswerRings

MODEM_MNP _MODE mdmMNPMode

MO DEM_MNP _COMPRESSION mdmMNPCompression

MODEM_MNP _BREAK_TYPE mdmMNPBreakType

MODEM_MNP _FLOW_CONTROL mdmMNPFlowControl

Possible Settings {default emphasized}

Dialing mode: pulse, touch-tone, client sup
plies mode embedded in dial string, use current
dialing environment mode or current modem
firmware dialing mode.

Half duplex, full duplex.

Modem speaker: off, on, off until carrier
detection.

Speaker volume: whisper, low, medium, high.

Busy tone and dial tone: detect neither, detect
both, detect busy tone only, detect dial tone
only.

Type of calls to answer and report connection
about: data mode, fax mode, voice mode.

Enable/ disable auto-answer.

Number of rings before modem answers

Set MNP mode: disable, both modems must
support MNP levels 1-4, attempt to establish
MNP connection, LAPM connection.

Enable/ disable MNP (class 5) compression.

How to handle breaks: don't send break to
remote, empty data buffers before sending
break, send break when it's received, send break
relative to data to be sent.

Flow control for MNP mode: none, XON/
XOFF, RTS/CTR.

Discrete modem initialization messages
Message

msgModemSetAnswerMode

msgModemSetAutoAnswer

msgModemSetDialT ype

msgModemSetDuplex

msgModemSetMNPBreakType

msgModemSetMNPCompression

msgModemSetMNPFlowControl

msgModemSetMNPMode

msgModemSetSpeakerControl

msgModemSetSpeakerVolume

".,.. Response mode

Takes

MODEM_DIAL_MODE

MODEM_DUPLEX_MODE

MODEM_MNP _COMPRESSION

MODEM_MNP _MODE

MODEM_SPEAKER_CONTROL

CHAPTER 43 / CONNECTIVITY 487
What's new

TABLE 43-3

Description

Filters the type of incoming call to answer
and to report connection on. (Some
modems do not have this capability.)

Disables or enables auto-answer mode.
The argument passed in is a pointer to

a structure containing MODEM_
AUTO _ANSWER and an S32 field for
the number of rings before answering.

Sets the mode for dialing

Sets the duplex mode (half or full) for
inter-modem communication.

Specifies how the modem handles a
break character when in MNP mode.

Sets MNP class 5 compression off and
on.

Sets the type of flow control to use
when in MNP mode.

Sets the MNP mode of operation.

Controls the behavior of the modem
speaker.

Sets the volume of the modem speaker.

In your code's modem-initialization section or at any time while a modem service is
open, may also want to set the response mode of the modem service. The response
mode, set with msgModemSetResponseBehavior, affects how the modem-service
object responds to its client:

Respond via status In this mode, the client sends a message to the modem
service, which then sends a command to the modem and then blocks,
waiting for the response from the modem. If a timeout period (specified in
the pArgs structure) elapses, stsTimeout is returned. Respond via status is
the default response mode; the default timeout periods are 2.5 seconds for
commands and 30 seconds for the connection.

Respond via message notification In this mode, the modem service acts as it
does in Respond via status mode. But in addition, it sends
msgModemResponse to the client. This mode is useful when you want to
return to handle other work (such as handling certain abort commands)
without waiting for a return. The client can post a request (via Object
PostAsync) to the modem, thereby freeing up the execution thread so it
can process input events. See Table 43-6, "Client and observer notification
messages," on page 491 for more on msgModemResponse.

488 PEN POINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Transparent This mode essentially disables the modem service's response
processing. Responses to modem commands remain unaltered in the
input data stream. It is the responsibility of the client to read and interpret
these responses. They must ensure that the expected sequences of com
mands are sent (via msgModemSendCommand or through the discrete
command messages).

The advantage of transparent mode is that there is less overhead in pro
cessing characters received from a remote modem. Aside from better per
formance, your application is less likely to have character overruns at high
baud rates. If decide to operate in transparent mode, you might want to
switch to it after initializing the modem and establishing a connection in
one of the other modes.

A related message, msgModemGetResponseBehavior, passes back to the client the
current modem response mode and timeout values. Refer to MODEM.H for details
on msgModemSetResponseBehavior and msgModemSetResponseBehavior.

Establishing a connection (outbound)
If you are initiating an exchange of data, you use clsModem messages to dial and
connect with the remote modem.

To dial another modem, send msgModemDial to the modem service. This message
takes a pointer to a MODEM_DIAL structure that contains the field dialString,
which is of type DIALENV _DIAL_STRING. Assign to this field the phone number
(in the form of a text string) of the remote modem.

The phone number usually contains the number to dial. It can also contain a
number of dial string modifiers defined by the AT command set (although this is
not required). These dial string modifiers are described in the section, "Dial string
modifiers", in Chapter 97 of the PenPoint Architectural Reference.

Although this phone-number string would normally be something that a user
enters or selects from an address book, the following code fragment shows how
dialing would occur with a hard-coded string.

MODEM DIAL dial;
STATUS S;

dial.dialString = U_L" (415-345-7400");
ObjPostAsync(msgModernDial, myModem, &dial, S)i

If msgModemDial returns stsO K, a connection is established with the remote
modem. You can begin sending and receiving data. You can also send
msgGetConnectionInfo to find out the details of the connection. When you are
finished, send the modem service msgModemHangUp (it takes no arguments).
This message terminates the connection and hangs up the phone.

CHAPTER 43 / CONNECTIVITY 489

",. Waiting for a connection (inbound)
When a remote modem attempts to make a connection with your local modem,
you can instruct the modem-service object to automatically answer the phone or
you can answer the phone yourself with clsModem messages.

To instruct the modem to answer the phone automatically, set the
MODEM_AUTO _ANSWER enumerated type to mdmAutoAnswerEnabled, specify
the desired number of rings to wait, and send msgSvcSetMetrics or msgModem
SetAutoAnswer (see "Initializing the modem," on page 486). When another
modem dials your modem's number and the phone rings, the modem service takes
the phone off-hook and sends the client the notification message
msgModemConnected. The client can then send msgModemGetConnectionlnfo
to get more information about the connection.

To answer the phone yourself, set MODEM_AUTO_ANSWER to
mdmAutoAnswerDisabled and send msgSvcSetMetrics or msgModemSet
AutoAnswer. When the phone rings, the modem service notifies the client via
msgModemRingDetected. The client answers the phone by sending msgModem
Answer to the modem service (no arguments required). Once connection is estab
lished, the client can send msgModemGetConnectionlnfo to get more
information about the connection.

Transmitting and receiving data
Once you have established a connection with a remote modem, you can begin
reading or writing data. You effect these functions through clsStream messages.
Send msgStreamWriteTimeout to transmit data to the modem service (and ulti
mately to the remote modem); send msgStreamReadTimeout to read the stream of
data coming into the modem service. See Chapter 79 in the PenPoint Architectural
Reference or STREAM.H for more information on these messages.

If the connection between modems is lost, the client receives msgModem
Disconnected.

Terminating the modem service
To end a modem service, first make sure there is no connection established. Then
send msgSMClose to theModems to close the service. This message takes a pointer
to a SM_BIND structure, which contains:

handle Set to the service handle (obtained early in the procedure via
msglMFind) .

caller Set to the UID of the modem-service client (usually self).

When the message completes successfully, it returns stsOK. Finally, remove your
client from the service's observer list by sending smgSMUnbind to the service man
ager for modems (theModems). If you had opened and bound a modem service
through sending msgSMAccess, close and unbind that service by sending
msgSMRelease.

What's new

490 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

c/sModem messages
See "Initializing the modem," on page 486 for a description of msgSvcSetMetrics.
Refer to Table 43-3 for a list of discrete modem initialization messages.

MessQge

msgNewDefaults

msgNew

MessQge

msgModemAnswer

msgModemDial

msgModemGetConnectionInfo

TQkes

nothing

P _MODEM_DIAL

Description

Initializes the MODEM_NEW structure to
default values.

Creates a new instance of a modem service.

Description

Immediately answers a telephone call.

Dials a remote modem and attempts to
establish a connection.

Passes back information about the current
connection. This information consists
of baud rate, connection type (standard,
LAPM and MNP) and MNP class (if
applicable).

msgModemGetResponseBehavior P _MODEM_REPONSE_BEHAVIOR Passes back the current modem response
mode and the current command-to-

msgModemHangUp

msgModemOffHook

msgModemOnline

msgModemReset

msgModemSendCommand

msgModemSetCommandState

nothing

nothing

nothing

nothing

P _MODEM_SEND_COMMAND

nothing

response timeout values.

Hangs up and disconnects to terminate a
connection.

Picks up the phone line.

Forces the modem online into data mode.

Resets the modem firmware, I/O port state
and service state to default values.

Sends a command to the modem.
The command strings are from the
AT command set (see section 97.4 in the
PenPoint Architectural Reference). In the
argument structure you can also send a
timeout value that supersedes any timeout
specified via msgModemSetResponse
Behavior. The response to the command
is returned via the argument structure.
Clients should use this message only to
obtain modem behavior unavailable
through other messages in the clsModem
API. They are responsible for ensuring that
commands altering modem registers do
not adversely affect clsModem.

Sets the modem into command mode.

CHAPTER 43 I CONNECTIVITY 491
What's new

Modem service request messages TABU 43-5 (continued)

Message

msgModemSetResponseBehavior

msgModemSetSignallingModes

Takes Description

P _MODEM_RESPONSE_BEHAVIOR Set the modem's response mode and the
command-to-response timeout values.
(See "Response mode," on page 487 for a
description of available response modes.)

P _MODEM_SIGNALLING_MODES Restricts the operation of the modem
within specified voiceband and wideband
signalling modes or standards.

The modem service sends two kinds of notification messages, one to its client and
one to its observers. There are several client notification messages, but only one

w

observer notification message, msgModemActivity. ~
&'III::

In order for the client to receive client notification messages, the response mode i
must be set to Respond via status (msgModemSetResponseBehavior). Observer ~

notification messages are sent to all objects on the modem service's observer list; ;:)
they can be objects other than the client of the modem service. ~

~
~
~

Client and observer notilication messages TABLE 43-6 cc

-- ~ Message

msgModemActivity

msgModemResponse

msgModemConnected

msgModemDisconnected

msgModemRingDetected

msgModem TransmissionError

msgModemErrorDetected

Takes

MODEM_ACTIVITY

nothing

nothing

nothing

nothing

nothing

Comments

Observer notification. Informs observers of
a change in modem activity. Passes a pointer
to MODEM_ACTIVITY, which enumerates
possible modem states.

Client notification. Provides the response
to a previous command or request sent to
the modem object. The response behavior
must be set to mdmResponse ViaMessage
via msgModemSetResponseBehavior.
A pointer is passed in to MODEM_
REPONSE_INFO, which enumerates
possible responses.

Notifies client that the modem has con
nected with a remote modem.

Notifies client that the current connection
has been terminated.

Notifies client that a ring indication has
been received from the modem.

Notifies client that an error was detected
during the transmission (sending or receiv
ing) of data. The modem service typically
sends this message as a result of a data
framing error or some other error generated
by low-level modem link protocol.

Notifies client that an unexpected error
indication was received from the modem.

492 PENPOINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

Corrections and errata

Reading and writing with the serial port
Section 95.2.4 of the PenPoint Architectural Reference erroneously calls the pointer
to-buffer field of STREAM_READ_ WRITE pReadBuffer. It should be called pBuf,
and its definition should read:

A pointer to a buffer that receives data read from the stream or that contains
data to be written to the stream. On msgStreamRead, the buffer must be big
enough to hold at least numBytes of data.

Note that this correction applies also to the definition of the
STREAM_READ_ WRITE fields in section 79.3 in the PenPointArchitectural Reference.

Predefined service managers
GO defines a number of service managers in UID.H. Table 43-7 defines the service
managers only listed in section 94.2.1 in the PenPoint Architectural Reference.

Service Manager

theMILDevices

theParallelDevices

theApple TalkDevices

theSerialDevices

thePrinterDevices

the Printers

theSendableServices

the TransportHandlers

theLinkHandlers

theHWXEngines

theModems

theHighSpeedPacketHandlers

theDatabases

fundion

Maintains and manages the list of current MIL services (device drivers).

Maintains and manages the list of current parallel port devices.

Maintains and manages the list of current AppleTalk port devices.

Maintains and manages the list of current serial port devices.

Maintains and manages the list of all devices that support printers.

Maintains and manages the list of all current printers.

Maintains and manages the list of all services that have interfaces
with the Send Manager and whose names appear in the Send menu
(for example, fax and E-mail).

Maintains and manages the list of current transport-level network proto
col handlers.

Maintains and manages the list of current data-communication services
for physical network devices (such as LocalTalk).

Maintains and manages the current list of installable handwriting-trans
lation engines.

Maintains and manages the list of instances that handle communication
over a type of modem.

Maintains and manages the services that perform high-speed packet
transfer over parallel and serial ports.

Maintains and manages services that implement PIA databases.

CHAPTER 43 / CONNECTIVITY 493
Corrections and errata

",. Typographica/.errors

Part J 0 (Connectivity)-typos TABLE 43·8

Volume, section, paragraph

II, 94.1,' 3

II, 99.3.4, '1

Old text on first Line
New text on second line

The services architecture can be though of as being ..
The services architecture can be thought of as being ...

You must add any servicespecific behaviors .. .
You must add any service-specific behaviors .. .

Chapter 44 / Resources

~ What's new

", Resource file utility routines
New functions defined in RESUTIL.H help your application read strings in from its
resource files (theProcessResList). Table 44-1 defines all the resource file utility
functions and marks those that are new.

Ke~~ou,..ce file utility

Res UtilLoadObject

Res UtilLoadString

ResUtilGetString

ResUtiWlocString

Res UtilLoadListString

Res UtilGetListString

Res UtiWlocListString

New?

Yes

Yes

Yes

Yes

Comments

Loads an object from theProcessResList.

Loads a string from theProcessResList. You can allocate memory by
specifying a buffer and a length or by specifying a heap to allocate from.

Gets a string item from theProcessResList.

Reads a string item from theProcessResList and puts it in allocated
memory.

Loads a string from a string array in the application resource list (thePro
cessResList). It uses the group and indexed resource ID to construct the
resource ID of a string list and the index into it. You can allocate mem
ory by specifying a buffer and a length or by specifying a heap to allocate
from.

Gets an item from a string list in the application's resource list. It uses the
group and indexed resource ID to construct the resource ID of a string
list and the index into it. You can allocate memory by specifying a buffer
and a length.

Gets an item from a string list in the application's resource list. It uses the
group and indexed resource ID to construct the resource ID of a string
list and the index into it. You can allocate memory by specifying a heap.

All of these functions are shortcuts to using msgResReadData. They are imple
mented in RESPILE.LIB.

New system preferences
The system preference file (PREEH) contains several new preferences and some new
functions for accessing and manipulating preferences. These items include:

• New preferences for fully enclosed (Japanese-style) character box height and
width .

• New preference for import/export data exchange format (1983 lIS

vs. 1978 lIS).

496 PEN POINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

• The function PrefslntlDateToStringO, which returns a string containing the
Unicode representation of the formatted date based on the current user pref
erence. Use this function instead ofPrefsDateToStringO.

• The function PrefslntlTimeToStringO, which returns a string containing the
Unicode representation of the formatted time based on the current user pref

erence. Use this function instead ofPrefsTimeToStringO.

• New tag tagBSAppAutoZoomDocument, which identifies the document to
be automatically zoomed when PenPoint boots. This replaces the AutoZoom

string in ENVIRON.INI.

New resource group
A new resource group in PenPoint SDK 2.0, called resGrpMisc, allows developers to

read in strings that fall into a miscellaneous category (that is, resources that are not
Toolkit or Quick Help strings).

New and renamed string resource agents
In PenPoint SDK 2.0, the names resStringResAgent and resStringArrayResAgent

now refer to 16-bit string resources. The two resource agents for strings that in

PenPoint 1.0 had these names have been renamed: resStringResAgent is now

resString8ResAgent, while resStringArrayResAgent is now resString8ArrayRes
Agent.

Tips and clarifications

msgResWriteData does not copy pData
You send msgResWriteData to file some data in an object file, passing a pointer to

the data to be written. If this is inside a msgSave handler, clsResFile has not been

written when msgResWriteData returns; clsResFile has just queued it for writing
in the future.

If (p _RES_ WRITE_DATA)pArgs->pData points to data on the stack, it will probably

be corrupt when clsResFile unwinds and writes the data. If pData points to allo
cated memory, there's no easy way to know when it's safe to free it (you could post

self a message to free it).

clsResFile's queued-write behavior is not a complicated multi-threading subtask.

Object filing starts when someone tells clsResFile to write an object; clsResFile tells
that object to save. If one object sends a message to write another object or data

while it's saving, clsResFile queues the write. When msgSave returns, control is

returned to clsResFile, which then processes queued writes. It all takes place by
ObjectCall within one task. Just remember that clsResFile is in the driver's seat.

Saving bitmap editor resources
If while using the bitmap editor you save a bitmap to a resource file, make sure the
file has a name different from any existing resource files. If you save a bitmap to an

existing resource file, the bitmap will be appended to the existing file.

CHAPTER 44 / RESOURCES 497

". Corrections and errata

",. Typographical errors

Part il (Resources)-typos
Volume, section, paragraph

II,102.2, '6

Old text on first line
New text on second line

Code example (tvvice): ObjectCall(' .. ,dsFileHandle, ...)
Code example (twice): ObjectCall(... ,dsResFile, ...

Corrections and errata

TABLE 44~2

Chapter 45 !Installation API

,.. What's new

".. KKC engine installation
Several new API enhancements make possible the installation and deinstallation
of kana-kanji conversion (KKC) engines. In the user interface, these changes show
up in the KKC engines page of the Installed Software section of the Settings note
book. This page lists the installed KKC engines and lets users perform the normal
operations for setting the current engine, deleting an engine, and so on. When users
tap the Install menu item, or when they select the KKC engines view within the
Connections notebook, PenPoint 2.0 Japanese creates a disk viewer that shows all
installable KKC engines on the selected volume.

Install Manager class

PenPoint SDK 2.0 has a new class of installation managers, clsKKCInstallMgr, that
handles the installation and deinstallation ofKKC Engines. This class is a subclass of
clsServiceInstallMgr. The new public header file KKCIMGR.H documents the API
for implementing clsKKCInstallMgr.

At boot time, the INSTALL.DLL creates clsKKCInstallMgr and a single well-known
instance of it, called theInstalledKKCEngines. The clsKKCInstallMgr makes the
first KKC Engine installed the current engine.

Before installation, KKC engines are in the same directory as services
(\2_0\PENPOINT\SERVICE). Once they are installed, however, KKC engines live in
their own subdirectory, \PENPOINT\KKC. In order for a service to be recognized as a
KKC engine, its directory must be stamped differently: appAttrClass must have the
value theInstalledKKCEngines (01000416) instead of theInstalledServices
(01000240).

KKCCT class

The KKC Character Translator class participates as a client in the protocol defined
by clsKKCInstallMgr. This protocol enables clients to open and close engines and
provides dynamic notification of engine changes. User interface elements dynami
cally track the users' preferences for the current engine anywhere that KKC happens
in the system. See KKCIMGR.H for definitions of the protocol.

KKC class

clsKKC provides certain default behavior for deinstallation. Specifically, it responds
to msgSvc Terminate, msgSvc Terminate 0 K, and msgSvcClassGetMetrics.

Since KKC Engines are PenPoint
services, the Disk Viewer shows
all installable services on the
volume, including KKC Engines.
If you install an ordinary
service from the KKC page (or
vice versa), it flnds its way to
the proper Installed Software
page.

500 PENPOINT APPLICATION WRITING GUIDE
Part 5 I Architectural Reference Supplement

"".. Installation routing via appAttrClass

To facilitate the boot-time installation of services and applications, the processing
of .INI files has changed. Instead of the INI filename determining the destination
installation manager, each installable in an INI file is sent to the installation man

ager designated by the appAttrClass attribute on the installable.
'.

If the attribute is not a valid installation class, the item is sent to the installation
manager designated by the name of the INI file being processed. Although this
change implies that APP.INI and SERVICE.INI could be collapsed into a single file,

they remain separate.

Tips and clarifications

Other installation information
There are messages in SYSTEM.H to locate the active area, and messages in
AUXNBMGR.H to locate particular auxiliary notebooks on the Bookshelf.

PenPoint 2.0 by default doesn't consider theSelectedVolume something that it dis
plays in a browser, hence the user can't see theSelectedVolume in Connections or
any other list of attached volumes. This is why in Debug Tablet mode, you can't
install software from the hard drive. Setting the B800 debugging flag overrides this.

Corrections and errata

'nstallation clarifications for production PenPoint
Chapter 110, "Organization of Distribution Volumes," in the PenPoint Architec
tural Reference doesn't mention the \PENPOINT\SYS\LOADER database of code. This
is a key concept on a pen computer. There's no \PENPOINT\APP; instead application

code is copied to \PENPOINT\SYS\LOADER and renamed after the EXE and DLL
lname strings. On a cold boot, PenPoint uses attributes stamped on files in the
loader database to determine the order in which to load these .DLL and .EXE files

there's no APP.INI on a pen computer.

The hierarchy descriptions in Chapter 110 are for the PenPoint configuration for
the SDK, not the pre-set configuration on pen computer installation disks or the

actual configuration of a pen computer running PenPoint.

On a running PenPoint machine, there typically is nothing but\PENPOINT\SYS and
\PENPOINT\BOOT\ENVIRON.INI. There's no other .INI files in the BOOT directory
and there is no \PENPOINT\APP.

Erroneous Directory
Pages 383 and 388 of the PenPoint Architectural Reference, have diagrams showing a
\PENPOINT\SYS\DOC directory. The directory is \PENPOINT\SYS\Bookshelf.

CHAPTER 45/ INSTALLATION API 501

",.. Dynamic Link Libraries
Chapter 111 of the PenPoint Architectural Reference on Dynamic Link Libraries
(DLLs) requires several corrections and clarifications.

".". Minor version numbers

Corrections and errata

Section 111.3 in the PenPoint Architectural Reference claims that the minor version
number (the one in parentheses in the dll-id string) is optional and "is ignored by
the operating system when it determines whether a DLL is already loaded in the
PenPoint computer." Section 111.5 in the PenPoint Architectural Reference says that
"the application monitor does not compare minor version numbers." Both state
ments are wrong. The application monitor does take the minor version number
into account if the rest of both dll-ids are identical. If a DLL is being installed and a
DLL with the same company name, module name and major version number is
already installed, the application monitor installs the new DLL only if it has the
higher minor version number.

Deinstallation

Section 111.5 in the PenPoint Architectural Reference states that "when an applica
tion is deinstalled, the application monitor again opens the corresponding .DLC file
and compares its dll-ids against the currently loaded dll-ids." Not true. Once an
application is installed on a running PenPoint system, there might not be any
"corresponding .DLC file" to open (for example, the file is on an installation disk).
So, when it deinstalls an application, the application monitor gets the application's
dll-ids from the attributes stamped in the \PENPOINT\SYS\LOADER database for
that application.

What happens next is as described in 111.5. The application monitor matches the
to-be-deinstalled dll-id against the application's dll-ids and, if there is a match, dec
rements the dll-id reference counter. If the reference counter becomes zero, the
application monitor deinstalls the DLL.

Naming conventions

Section 111.4in the PenPoint Architectural Reference is mistaken about the naming
conventions for an application directory, an application's .EXE file and its .DLC file.
It is not true that "the .DLC file must have the same name as the application direc
tory and the executable file." A simple application might have only an executable
file (that is, no DLLs); in this case, the name of the executable file should be the
same as that for the application directory. Otherwise, the .DLC file should have the
same name as the application directory; the name of the executable file can be any
valid DOS filename, as long as it's referenced in the .DLC file.

In light of these changes, the examples cited in section 111.4 need to be updated.
An application with the PenPoint name Graph it Right is stored in the directory
\PENPOINT\APP\Graph It Right. If the application has no DLL files, the executable file
is named Graph It Right.EXE. If the application has DLLs, there is a Graph It Right.DLC
file in the application directory; this file lists the dll-ids and DOS pathnames of the
application's DLL files and executable file in order of dependency.

502 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Let's say (as in the section 111.4 example) that the executable file in the Graph It
Right directory is named GRAPHER.EXE. The application's one DLL file is named
FORMS.DLL. Therefore, the application's .DLC file is name Graph It Right.DLC
(not grapher, as in the example) and it contains two lines:

GO-forms_dll-Vl(2)
GO-Grapher_exe-Vl

FORMS.DLL
GRAPHER.EXE

~ Minimum operating system version

In its last sentence, section 111.8 in the PenPoint Architectural Reference says that
"an application can specify the minimum operating system version it will run under
at installation time." Although an application can no longer specify the minimum
operating system version, it can still accomplish the same end.

PenPoint SDK 1.0 has in the pArgs structure for msgSave (OBJ_SAVE) the fields
minApp Ver and minSys Ver. The minApp Ver, once used to specify the minimum
version of Pen Point for an application, is now obsolete. (minSysVer is used for a
different purpose: it helps to prevent the restoration of a system-synchronized
object from a resource file to an older version of PenPoint that may not understand
the filed format.)

An application, at initialization time, can send the message msgGetSys Version to
obtain the current version number of Pen Point. If that version is incompatible with
the application, the application can then do something in response, such as dis
playing a warning message and exiting.

, I

Chapter 46 / Writing PenPoint Services

What's new
PenPoint 2.0 Japanese contains no new features, API, or functions for inclusion in
this chapter.

Tips and clarifications

MIL services and other services

Some readers of the PenPoint Architectural Reference thought that section 93.4.2 did
not clearly explain the difference between MIL services and other services. One one
level, the difference is in function: MIL services generally implement objects that act
as device drivers for a type of device. Other services operate at a more abstract level:
they are removed from the hardware but have interfaces with MIL services.

But there is a more essential difference. The principle difference between MIL ser
vices and other services lies in the use of protected memory. A MIL service com
prises two DLLs. One runs as a protected task in Ring 0 (protected) memory.
Written in procedural code, this DLL controls and responds to the device itselE
Another DLL in Ring 3 memory provides the API for applications and other ser
vices. This DLL, written in object-oriented code, mediates between these client
objects (applications and regular services) and the Ring 0 code.

Non-MIL services can implement many things. The following is a partial list:

.. Connectivity services (for printing, faxing, E-mail, and so on) .

.. Network protocol stacks (using chain of targeted services).

.. Installable file systems .

.. Database engines .

.. Handwriting engines.

Writing a MIL service is not a trivial matter. If you intend to write a MIL service,
refer to the HDK documentation for information on how to proceed.

theServiceManagers

There is a problem with the well-known list theServiceManagers in PenPoint. Its
entries are not the UIDs of the currently existing service managers. Rather, the
entries are pointers into stack frames that have disappeared. When a service man
ager is created, it does add an entry to theServiceManagers, but what it adds is a
bogus pointer into the stack rather than its own UID.

504 PEN POINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

This situation leads to a couple of effects:

• If your service A targets service B and tries to bind to it before service B's ser
vice manager exists, the delayed bind does not automatically happen (as docu
mented and expected) when B's service manager gets created. That's because A
is waiting for B's service manager UID to get added to theServiceManager, and
that never happens. If B's service manager does exist, there's no problem .

• If (as documented in SERVMGR.H) you observe theServiceManagers you will
get notified (via msgListNotifyAddition) when a service manager is created.
However, there's no way of knowing which service manager it is.

If you're waiting for a particular service manager to be created, first observe
theServiceManagers. When you receive msgListNotifyAddition, check pArgs->list
to make sure theServiceManagers is sending the notification. Then send msgObject
Valid to clsObject, passing in the UID of the service manager that you're waiting
for; the response from clsObject tells you whether this service manager now exists.

Responding to msgTrackProvideMetrics
When a service has the autoMsgPass style bit set to TRUE, it forwards all messages
that are not clsObject, clsService, or clsOption messages to its target service. One
such message can be msg TrackProvideMetrics. For example, if the service is the
client of a clsFrame window, it will receive msg TrackProvideMetrics when the
window is dragged around on the screen.

Most services do not need to handle msg TrackProvideMetrics. However, if the ser
vice's target is not opened, a stsSvcTargetNotOpen will be returned when
clsService attempts to forward the message to the target. This could create a
problem if the caller (of msgTrackProvideMetrics) is expecting either stsOK or
stsMessageIgnored before proceeding further. In our clsFrame example, msg Track
ProvideMetrics is sent to the frame's client (the service) after clsFrame already pro
vides an adequate track metrics. The idea is to let the frame's client have a crack at
poking the track metrics. If the service returns stsSvcTargetNotOpen instead of
stsMessageIgnored, when the user drags the clsFrame window, a black box might
appear briefly, but no tracker is created, and thus the window remains where it was.

To fix this problem, simply return stsMessageIgnored in response to
msg TrackProvideMetrics. In your method table, you can say:

{msgTrackProvideMetrics, "StsMessageIgnoredMsgHandler",
} ,

See CLSMGR.H for examples of other default message handlers returning stsOK,
stsFailed, and so on.

CHAPTER 46 / WRITING PEN POINT SERVICES 505
Corrections and errata

".. Deinstalling dependent services and applications
PenPoint 2.0 Japanese allows you to bundle applications and services together. For
example, you might ship a database user interface application along with the data
base service. The service, in this case, is referred to as the dependent service. This
association is made by putting the database service and the SERVICE.lNI file in the
application's directory. Deinstallation of the application and service happens when
the application is deinstalled.

If you chose not to bundle your application and service together, you need to be
very careful about the programmatic dependencies between the two items. You
must be especially careful to test deinstallation, because it is possible to write code
in such a way that once the application is deinstalled, the service would fail to dein
stall, thereby leaving the service permanently installed.

Corrections and errata

The Service Class and class instances
The last paragraph of section 116.4.2 in the PenPoint Architectural Reference says
that "the service can also tell its openers the entry points to specific procedural
interfaces (if any)." But it neither describes how this is done nor refers to another
section containing the general procedure. If you want your service to provide its
clients with a function interface, thereby saving the overhead of object calls, it
should respond to msgSvcGetFunctions. (This message is merely mentioned in
Table 117-1 of the PenPoint Architectural Reference.) To do this, it must be a sub
classed instance of clsService (which, by default, returns a null pointer.) Your ser
vice should pass back to the opener a pointer to a table of function entry points.
The format of this pointer block is up to the service to define. See SERVMISC.H for
more information about msgSvcGetFunctions.

Handling msgSvcOpenDefau/tsRequested
In section 117.7.2.4 of the PenPoint Architectural Reference, delete the last sentence
of the third paragraph. (This sentence is in parentheses and begins "The METH

OD.TBL in the TESTSVC directory does not specify an ancestor call for msgSv
cOpenDefaultsRequested ... ") The method table for the TESTSVC sample service
does specify objCallAncestorBefore for msgSvcOpenDefaultsRequested.

".. In box and Out box changes
There is an In box/Out box bug that can affect an existing client of the In box/Out
box service. The fix for this bug changes how a client enables or disables an Out box
servIce.

You should use this
function-interface
approach only if you are
having performance
problems with your service.

506 PEN POINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

The change adds an explicit message for a client to programmatically enable an Out
box service. In 1.0 (and 1.0a), enabling an Out box service means that the service
becomes the owner of the target. For example:

ObjCallRet(msgSvcGetTarget, anOutboxService, &getTarget, S)i

setOwner.handle = getTarget.targetHandlei
setOwner.owner = anOutboxServicei
ObjCallRet(msgSMSetOwner, getTarget.target.manager, &setOwner, S)i

In PenPoint 1.01 and PenPoint 2.0 Japanese, the above code becomes:
ObjCallRet(msgIOBXSvcEnableService, anOutboxService, (P_ARGS) TRUE, S)i

And the default behavior of msgIOBXSvcEnableService is to do exactly what is
done in PenPoint 1.01 and PenPoint 2.0, namely to make anOutboxService the
owner of its target.

Chapter 47 / International Services
and Routines

Falling under the umbrella designation of International Services and Routines are a
collection of functions, macros, structures and defined values that help developers
internationalize application code. With the international routines, you can write
one code base for your application that works naturally in several countries.

Note that, despite the title
of "International Services
and Routines," there are no
"international" services in
version 2.0 of Penpoint. In
future versions, routines will
call services to implement
internationalization more
thoroughly.

Internationalization in PenPoint makes use of both the international routines and
resource files. Resource files can hold the Unicode text strings-in multiple lan
guages-that an application requires for its UI and other purposes.

Your application will probably need to use the international routines if it must take
into account anything that is culturally dependent, such as time and date formats,
hyphenation rules, units of measure, and so on. (Of course, your application must
also use Unicode for its strings.)

Part 2: PenPoint Internationalization Handbook, describes all aspects of writing your
code for an international market.

International and related header files

ISR.H

ISRSTYLE.H

GOLOCALE.H

Description

Prototypes the functions and defines structures for the PenPoint international
routines. Some routines perform text delimiting, hyphenation, data-type
conversion and the conversion and parsing of dates and times. Other routines
compare, sort and compress strings, and perform conversions involving
dialects, character sets, units of measure and other linguistic elements. The
routines themselves are in INTL.LIB. See "International routines" on
page 508 for descriptions of these routines.

Contains definitions of style values used as parameters in the ISR.H routines.
Most international routines allow the client to specify a style for the opera
tion. Styles modify the locale and must be appropriate to the routine. For
example, some styles enable the client to specify dates in one of the four
(or more) formats possible in each western language,

Defines the locale values used as parameters in the ISR.H routines. These
values are of type LOCALE_ID, which is itself composed of three values:
language, dialect, and country. (See description ofINTL.H, below.) Values
for weights and measures, currencies, time zones, eras and other international
units are also defined. In addition to a list of current locale values,
GOLOCALE.H specifies the required resource IDs for the lists containing the
text strings, contains some macros that make tags for locale values, and
defines some common locales. Note that this header file was named
LOCALE.H in earlier versions of PenPoint.

508 PENPOINT APPLICATION WRITING GUIDE

Part 5 I Architectural Reference Supplement

Header File Description

TASLE 47-1 (continued)

CHARTYPE.H This file defines some classification tables for Unicode characters and pro
vides a set of macros for testing and manipulating characters as specified in
those tables. These macros are similar to those defined in CTYPE.H for the
conversion and testing of ASCII characters. See "Character conversion and
testing macros" on page 512.

INTL.H This file defines the LOCALE_ID used as a parameter in the international
routines. It also contains the macros that you can use to create, modify and
access locale values. LOCALE_ID is an unsigned 32-bit type with three 8-bit
fields for the language, dialect and country values defined in GOLOCALE.H.
Currently, the other bits are reserved for future use.

The macros in INTL.H are:
intlLIDMakeLocaleld(l,d,c) II l=language, d=dialect, c=country
intlLIDGetLanguage(locale) II (values defined in GOLOCALE)
intlLIDGetDialect(locale)
intlLIDGetCountry(locale)
intlLIDSetLanguage(locale,v) II v = GOLOCALE value
intlLIDSetDialect(locale,v)
intlLIDSetCountry(locale,v)

International routines
Most functions require you to supply a locale and a style as arguments. The locale is
a 32-bit type (LOCALE_ID) containing three 8-bit values; one identifies the country
whose conventions the routine should observe and the remaining two identify the
language and dialect that the routine must process. (Currently, no dialect values are
defined, but they could easily be added in the future.)

In most cases the international routines require a style value as a parameter. A style
value modifies the way a routine processes a locale, because there can be variations
of linguistic forms within countries and languages. Styles are 32-bit types con
taining 16-bit segments; the low-order segment identifies a base style and the high
order segment contains flags that modify the base style.

The locale values are defined in GOLOCALE.H. You can compose LOCALE_ID struc
tures by using the intlLIDMakeLoealeIdO and related macros in INTL.H. You use
bitwise operators and intlStyleMask and intlStyleFlagsMask to set the base value
and one or more of the flags defined in ISRSTYLE.H in an unsigned 32-bit integer.

Those routines that take a locale as argument provide a macro that substitutes
intlDefaultLoeale for the locale. The default locale requests the current system
locale. The macro has the same name as the function, but the prefix is Loe instead
of IntI. The following example shows a typical macro definition:

#define LocDelimitWord(tx,s,st) \
IntlDelimitWord(tx,s,intlDefaultLocale,st)

Most of the international functions come in nearly identical pairs. The Intl. .. ver
sions work on null-terminated strings and the IntlN ... versions work on counted
strings. The IntlN ... functions take an extra argument that specifies the legnth of
the passed string. When you read the definitions of international routines in the

CHAPTER 47 I INTERNATIONAL SERVICES AND ROUTINES 509
International routines

following sections, remember that there is a counted-string counterpart to the null
terminating function listed (unless specifically noted otherwise). In other words,
the definition for IntlDelimitWord applies equally to IntlNDelimitWord.

Some of the functions that handle null-terminated strings return the required
length of an output buffer. Remember that these counts do not include the null
character, so if you are using these functions to allocate memory for these buffers,
make sure to add one to the count.

Delimiting and hyphenation routines

UE~I"nn~'n~a routines TABLE 41-2

IntlDelimit Word

IntlDelimitSentence

IntlBreakLine

Description

Finds a "word" in a string. The style argument controls the internal definition
of a word.

Finds a "sentence" in a string. The style argument determines what is
considered a sentence.

Description

Given a string of a certain length, this routine calculates a line break that is
valid for the locale and returns the hyphenation information in a structure of
type INTL_BREAK_LINE. This information includes the position at which
to make the line break, the number of characters to delete from each side of
the break, and the characters to insert on each side of the break point.

Time conversion routines
These routines pass in or receive back time information in an argument of
INTL_ TIME. This structure is a superset of the standard tm structure. In addition to
the standard tm fields, it includes the time zone as a posix string (pTz) and an era
field that can put the year in a context other than anno Domini (AD).

Time IIf'ftnl<I"Aa"'cs.l"'llln

IntlSec To TimeStruct

IntlTimeStructToSec

IntlOSDateTimeToIntlTime

IntlIntlTime ToOSDate Time

TABU: 47·4

Description

Converts the time, in seconds since 0:00 January 1, 1970 UTC (GMT),
into an international time structure (INTL_ TIME). Use the timeO function
to get the current time in seconds. For the current release of PenPoint, set the
pTimeZone field (the target time zone) to pNull.

Converts an international time structure (INTL_ TIME) to the time in sec
onds since 0:00 January 1, 1970 UTe (GMT). Currently, this function
works only on times in the current time zone.

Converts the time in the PenPoint system format into the international time
structure (INTL_ TIME). Since the system time is always a modern Gregorian
date, the era in INTL_TIME is always set to itcEraAD.

Converts the time specified in the international time structure (INTL_
TIME) into the PenPoint system format. Since the system time is always a
modern Gregorian date, you must set the era in INTL_TIME to itcEraAD.

510 PEN POINT APPLICATION WRITING GUIDE
PartS I Architectural Reference Supplement

Note that these last two functions, IntlOSDateTimeToIntlTime and IntlIntl
TimeToOSDateTime, should be used only by code that is involved in setting the
system clock. Other code should use the timeO function and then do conversions
to and from international time with IntlSecToTimeStruct and IntlTime-
Struct loSec.

Formatting routines
These functions take an input value and convert it into a string. They return the
length of the generated string or, if pString is pNull, they do no formatting but do
return the size required for the output buffer.

Calls to IntlFormatS32 and IntlFormatNumber include two extra arguments, one
to indicate the minimum number of integer digits and the other to specify the max
imum number of fractional digits. For 532 values, the fraction displayed is always
zero, unless the intlFmtNumScale flag is set. This allows scaling, particularly for
displaying currency.

Calls to IntlFormatDate and IntlFormatTime include as an argument a resource
tag for a format string. If this tag'is not NIL, the routine fetches the format from
theProcessResList with a resource group of resGrp TK. You can use the format with
Compose Text functions to generate the output string.

IntlFormatS32

IntlFormatNumber

IntlFormatDate

IntlFormat Time

Parsing routines

Descripti@n

Converts a signed integer to a string.

Converts a floating point number to a string.

Converts a time structure to a date string.

Converts a time structure to a time string.

These routines convert an input string into the value of the requested type. They
return the length of the parsed string. You can treat the string as a single item or as
a set of tokens of known type (see I5R.H for further details). Note that the date and
time parsing routines only set values for the date elements that they find in the
string; they do not set default date values. For example, "September" results only in
IntlParseDate setting the mon field and nothing else. You should therefore ini
tialize the INTL_ TIME structure with intlTimeStructInitbefore making a call, so
that you can find out which fields were filled.

IntlParseS32

IntlParseNumber

IntlParseDate

IntlParse Time

Descripti@n

Converts a string to a signed integer.

Converts a string to a floating point number.

Converts a string to a date as contained in an international time
(INTL_ TIME) structure.

Converts a string to a time as contained in an international time
(INTL_ TIME) structure.

CHAPTER 47 / INTERNATIONAL SERVICES AND ROUTINES 511
International routines

",. Collation routines

Sort and compare functions TABU 47-7

Function Description

IntlCompare Compares two strings in a linguistically correct method according to the
locale. You can use it in searching or in sorting a list (although the IntlSort
routine does that already).

IntlSort Sorts an array of strings in a linguistically correct way, according to the locale.

",. String conversion routines
The IndStrConvert routine converts Unicode strings from one stylistic or linguistic
format to another, such as between upper and lower case, katakana and hiragana
and composed characters and floating diacritics. Unlike the character-conversion
macros in CHARTYPE.H, these routines handle conversions that affect the lengths of
strings, or that depend on locale, on context, or on a dictionary for some characters.

You can use the Unicode string conversion routines in three ways:

• In a single call.

• Writing from a single input buffer.

• Using extended input.

See ISRH for further details on these methods.

Character set conversion routines
Both functions return the number of target characters that were produced (not
counting the null) unless there is an error. IflndMBToUnicode, for instance, finds
an unknown character, it converts it to OxFFFD unless you specify a flag to override
this conversion. (The actual character displayed depends on the character set.) The
style parameter specifies the character set to convert from.

The difference in the behavior between the null-terminating and counted-string
versions of these functions is significant in this area. If, for example, there is no null
character in the string given to IndMBToUnicode, the output buffer fills up and
the string is truncated. IntNMBToUnicode updates the source length to be the
number of characters processed and returns normally. To verify that the string was
processed, you can then compare the number of characters passed in with the
number returned.

By the way, do not confuse these routines with the IndStrConvert function, which
only does conversions within Unicode.

Fundion

IntlMBToUnicode

IntlUnicodeToMB

Description

Converts a multibyte string to a Unicode string.

Converts a Unicode string to a multibyte string.

512 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

String compression routines

IntlCompressUnicode

IntlUncompressUnicode

Descripticm

Converts a Unicode string into a compressed form stored in a counted array
of bytes. If successful, it returns the number of bytes of compressed data. The
output buffer must be big enough to hold the compressed data, so you can
call either routine first with a null pointer for the destination, and the
required buffer size is return. (Remember to add 1 for the null character
when allocating memory for this buffer.)

Uncompresses a compressed Unicode string. It returns the number of charac
ters produced, unless there is an error. The output buffer must be big enough
to hold the uncompressed data, so you can call either routine first with a null
pointer for the destination, and the required buffer size is return. (Remember
to add 1 for the null character when allocating memory for this buffer.)

Units conversion routine
The IntlConvertUnits routine converts an input value specified in one unit of mea
sure to a value in another unit of measure. (These unit-of-measure definitions are in
GOLOCALE.H.) It does not require locale or style as arguments.

Character conversion and testing macros
These macros are defined in CHARTYFE.H:

macros

Macr@

IntlGetCharType

IntlCharToUpper

IntlCharToLower

IntlCharIsUpper

IntlCharIsLower

IntlCharToFullWidth

IntlCharToHalfWidth

IntlCharIsFullWidth

IntlCharIsHalfWidth

IntlCharIsKatakana

IntlCharIsHiragana

Descripti@n

Returns the 16-bit flags that apply to a character from the set defined in the
section "Character flags" on page 514. These flags are intended to be "inter
national," rather than specific to any particular language.

If a character is in lower case, it returns the upper-case equivalent; if the char
acter is not in lower case, it returns the character unchanged. One-to-one
single character conversions do not work for all characters.

If a character is in upper case, it returns the lower-case equivalent; if the char
acter is not in upper case, it returns the character unchanged. One-to-one
single character conversions do not work for all characters.

Returns TRUE if the character passed is an uppercase character.

Returns TRUE if the character passed is a lowercase character.

If a character is half-width, it returns the full-width equivalent; if the charac
ter is not h~lf-width, it returns the character unchanged. This macro maps
only the romaji and katakana characters, not the hangul ones.

If a character is full-width, it returns the half-width equivalent; if the charac
ter is not full-width, it returns the character unchanged. This macro maps
only the romaji and katakana characters, not the hangul ones.

Returns TRUE if the character passed is a full-width character.

Returns TRUE if the character passed is a half-width character.

Returns TRUE if the character passed is a katakana character. Includes both
hankaku and zenkaku katakana.

Returns TRUE if the character passed is a hiragana character.

CHARTYPE macros
Macro

IntlCharIsHan

IntlCharIsCompatibilityZone

IntlCharIsGOCorporate

IntlCharIsSpace

IntlCharIsAlphabetic

IntlCharlsAlphanumeric

IntlCharIsFloating

IntlCharIsComposed

IntlCharIsPunctuation

IntlCharIsGraphic

IntlCharIsPrinting

IntlCharIsControl

IntlCharIsDecimalDigit

IntlCharIsHexadecimalDigit

CHAPTER 47 / INTERNATIONAL SERVICES AND ROUTINES 513

Character conversion and testing macros

TABLE 47-10 (continued)

Description

Returns TRUE if the character passed is a kanji, hanja or hanzi character.
XJIS gaiji characters are mapped into the private use area: Oxf300 to Oxf5fc.

Returns TRUE if the character passed is in the Compatibility zone.

Returns TRUE if the character passed is in the GO Corporate zone.

returns TRUE if the character passed is a space character of any kind. This
does not include cursor movement control characters such as tab and
linefeed.

Returns TRUE if the character passed is a character from an alphabetic script.
These include Latin, Greek, Cyrillic, and Latin characters from the Compati
bility zone and excludes digits, punctuation, spaces, and so on.

Returns TRUE if the character passed is a character from an alphabetic script
or an international digit (for example, [0-9]). This includes Latin, Greek,
Cyrillic, and Latin characters from the Compatibility zone and excludes
punctuation, spaces, and so on.

Returns TRUE if the character passed is a floating diacritic. These include
bound graphemes such as circumflex, accent acute, and daku ten.

Returns TRUE if the character passed is a composed character. Composed
characters can reasonably be represented by a base character and a floating
diacritic.

Returns TRUE if the character passed is a punctuation character.

Returns TRUE if the character passed corresponds to a glyph. The character
cannot be a control, spacing, or undefined character.

Returns TRUE if the character passed corresponds to a glyph or space. The
character cannot be a control or undefined character.

Returns TRUE if the character passed is a control character.

Returns TRUE if the character passed is an international digit ([0-9]).

Returns TRUE if the character passed is a hex digit ([0-9a-fA-F]).

514 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Character flags
The following list defines the flags that can be associated with characters. You can
obtain the flags for a character through the IntlCharGetFlags macro.

intlCharTypeSentEndflagO// Can end a sentence
intlCharTypeLineBrkflagl// Breaks a line
intlCharTypeSpaceflag2// White Space (not tab, line Brk)
intlCharTypeNumberflag3// valid char in a number
intlCharTypeWordflag4// valid char in a word
intlCharTypeCantStartLineflagS// Can't start a line
intlCharTypeCantEndLineflag6// Can't end a line
intlCharTypeAlphabeticflag7// Latin, Greek, or Cyrillic
intlCharTypeFloatingflag8// Floating Diacritic
intlCharTypeComposedflag9// Composed Character
intlCharTypePunctuationflaglO// Punctuation Character
intlCharTypeGraphicflagll// Any printing, non-space char
intlCharTypeDecimalDigitflag12// Decimal digit

External tables
The character conversion and testing macros operate on a set of Unicode tables for
each alphabet. These tables are defined in CHARTYPE.H.

Part 6/
PenPoint User

Design Reference
Supplement

Chapter 48 !Introduction

Chapter 49 ! The Notebook

519 Table of Contents
Operational model

519 Standard elements
Table of Contents gestures
Menus
Option sheets

522 Tabs
Change notes

Chapter 50 ! The Bookshelf

523 Help
Change notes

523 Settings
Operational model
Change notes
Preferences
Installed software
Status

533 Accessories
Unicode Browser
Keyboard

Chapter 51 ! Overall System Changes
535 Option sheets

535 MiniText
Change notes
Option sheets
Gestures
Menus

539 MiniNote
Option sheets
MiniN ate gestures

543 Edit pads
Operational model
Change notes
English edit pads
Edit pad gestures
Japanese edit pads
Japanese edit pad gestures

547 Menus
Change notes

Chapter 48 / Introduction

This document is intended for software developers who are developing products
for PenPoint 2.0 Japanese. It provides a description of the user interface from the
end-user's point of view. However, this document is not intended as a user guide
to PenPoint.

The structure of this document is designed to be both useful for finding specific
information and for reading large sections at a time. A considerable amount of
cross-referencing takes place, allowing information to appear in only one place
wherever possible.

Information has been presented in a way that focuses on the "component" level,
often to the exclusion of the "big-picture" level that is provided by end-user docu
mentation. Many of these components are used in multiple places throughout
PenPoint, and this provides the rationale behind the structure.

The major change between version 1.0 and 2.0 of the PenPoint operating system is
support of the Japanese language. Specifically, PenPoint 2.0 Japanese is the Japanese
version of PenPoint, as well as the foundation for a future international versions of
the operating system. Changes to functional components from PenPoint 1.0 can be
found in the sections labelled "Change Notes."

This document relies heavily on the existing set of PenPoint 1.0 documentation,
especially the PenPoint User Interface Design Reference.

Chapter 49 / The Notebook

The Notebook application is the principal user interface to the PenPoint system 0 0
provided by GO Corporation, the NUl (Notebook User Interface). It serves as the
organizing metaphor for the user as well as the underlying component for the
Stationery notebook and other system-level applications.

". Table of Contents
The Table of Contents (Toe) of the PenPoint 2.0 Japanese notebook is used as the
central location for management of documents. The Toe is an application itself
that runs inside the Notebook application (clsSectApp).

Operational model
The Toe is the central application in the PenPoint Notebook, appearing on the
first page of the Notebook and controlling creation and navigation of the Notebook
contents. The user can not delete the Toe page from the Notebook.

The user can only select one item (document or section) at a time in the Toe. The
user can re-order pages by moving or copying document icons. To move the docu
ment, the user presses 1 the document title and drags it a new location. Similarly, to
copy the document, the user tap presses ·1 the document title and drags the mar
quee to a new location.

When the user creates a new document, the icon appears in one of three places,
depending on how the user creates the document:

• At the gesture point if the user uses the caret /\ gesture.

• Below the current selection if the user taps Y on the menu item Create.

• Mter the last page if there is nothing selected when the user taps Y on
Create.

The user turns to documents in the Notebook with the tap Y gesture. A double
tap .Y gesture floats (if float is enabled) the document over the Toe. The user may
tap on the page number or the icon or button (depending on the view) to the left of
the document name. A tap on the document name selects the text. A double tap on
a section name expands the section in the Toe. The circle 0 gesture is used to edit
document names.

Standard elements
The Toe contains a list of the documents and sections currently in the Notebook,
along with the pages on which they are found. Section pages contain another Toe
for that section. The Layout menu controls the view of the Toe.

520 PEN POINT APPLICATION WRITING GUIDE
Part 6 I User Interface Design Reference Supplement

Table 01 Contents gestures

Gestures used in the Table 01 Contents TABLE 49-1

Gesture Name Keyboard Action
y Tap Enter Turns to page (on page # or icon).

Selects name of page (on page).
v ..

X
/\

Double tap

Flick up
or down

Double flick up
or down

Cross out

Caret

Ctrl + Enter

Page Up
Page Down

Ctrl + Home
Ctrl + End

Delete

Floats document (if float enabled).
Open/ closes section.

Scrolls up or down.

Up scrolls to end ofTOC.
Down scrolls to beginning ofTOC.

Deletes target page.

Opens Create menu at target point.

Menus
There are five menus in the Toe: Document, Edit, Options, View, and Create.

Document menu

Send Document Submenu of available services. Selected documents are sent
via selected service.

About Contents Information sheets on Table of Contents.

Edit menu

Move Places selection into Move mode.

Copy Places selection into Copy mode.

Delete Deletes selection. Confirm note is opened.

Rename Opens Edit Pad with selection name available for editing.

Options menu

Document Only available when a document is selected. Opens Document
option sheet.

Section Only available when a section is selected. Opens Section option
sheet.

Layout Opens Layout option sheet.

Controls Opens Controls option sheet.

View menu

Expand Opens all sections one level if no selection. Opens selected section
one level.

Collapse Collapses all sections if no selection. Collapses selected section.

Turn To Turns to selected document or section.

Bring To Floats selected document or section.

CHAPTER 49/ THE NOTEBOOK 521

", Create menu

Document List A list of all documents in Stationery notebook that have
Menu checked. When the user selects one, PenPoint creates a new docu
ment of that type after currently selected document or at end of Toe if no
selection.

Section Creates a new section after current selection or at end of Toe if no
selection.

". Option sheets
There are 4 option sheets available from the Table of Contents: Document, Section,
Layout, and Controls. The Document/Section sheets are only visible when a Docu
ment/Section is selected. The main Toe page (as opposed to the Section Toe
pages) is the only page in the Notebook that does not have the standard Access and
Comments option sheets. The Access Speed for the main TOC is always set to
Accelerated.

~ Document

The Document option sheet provides access to the fixed and variable attributes of a
selected document. These include:

Title The title of the document; not editable here.

Type The type' of document (the application it represents); not editable.

Created The creation date and time; not editable.

Last Modified The date and time of the last access (last checkpoint or page-
turn away from document); not editable.

Filed Size The size of the file on disk in kilobytes; not editable.

Author The author; editable.

Comments Comments; editable.

Section

The Section option sheet is the same as the Document option sheet described in
the preceding section, only the title changes from Document to Section. The
option sheet changes its content as the user changes the selection.

Standard elements

522 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement

Layout

The Layout option sheet provides controls for the visual display of the Toe. The
Show choice allows the user to select either icons or square buttons or neither as the
indicator to the left of the doc.ument name. The default is Icons.

The Columns checklist is a multiple choice list that sets up the columns displayed
in the Toe as well as the Column Headers. The Document name and Page number
always appear, and the user cannot remove them. The default is Column Headers.

The Sort pop-up selects the sort criteria for the Toe. There are five choices: Page,
Name, Type, Date, Size. The default is Page. Sort direction is ascending for Page,
Name, and Type; descending for Date and Size. Sorting only affects the display in
the Toe; it does not re-order the pages of the Notebook.

In PenPoint 2.0 Japanese the sort order is phonetic, with kanji being indexed by the
first phonetic of their Chinese reading according to the JIS standard. Non-JIS char
acters follow in Unicode order.

Controls

The Controls option sheet is the standard PenPoint Controls sheet with the only
choices being: Menu Line, Scroll Margins, and Cork Margin. The default state is
Menu Line on, Scroll Margins on, and Cork Margin off

Tabs

Change notes
.. Tabs do not contain vertical text.

.. Contains zenkaku by default.

Chapter SO/The Bookshelf

Help

"" Change notes
There are no functional changes to the Help system from 1.0 to 2.0.

Settings

Operational model
The Settings notebook gives the user a single place to go to view and modify set
tings both for the PenPoint 2.0 Japanese operating system as a whole and for what
ever software is currently installed in the system.

While it employs the notebook metaphor, the Settings notebook differs from the
normal PenPoint data notebook in two ways:

., It is optimized for quick navigation through a small number of pages
with only one level of sections. Instead of local contents pages for each
section, each page has a pop-up menu in its title line allowing the user
to turn to any other page in that section .

., It is not editable in any way by the user. Neither the pages nor the tabs
can be deleted, re-ordered, or renamed, and the table of contents has no
menu line and no display options .

., It doesn't have page numbers.

"'11 ~II

524 PEN POINT APPLICATION WRITING GUIDE

Part 6 / User Interface Design Reference Supplement

Change notes
• Pen section changed to Pen & Keyboard.

• Writing changed to Writing Style and moved to fifth position from the
first position.

• Keyboard choice added to Pen & Keyboard with pop-up: American,
Japanese AO 1.

• Import/Export choice added to Fonts & Layout with pop-up: 1990
lIS, 1978 lIS.

• Kana-Kanji Conversion section added to Software section.

• Practice ... button (and facility) removed from Handwriting sheet.

• Date formats changed.

• Time formats changed.

Preferences
The user uses the Preferences section of the Settings notebook for viewing and
setting system-wide user preferences. It contains 8 sections.

Pen & Keyboard

There are 5 preferences for pen and keyboard input:

Tap to Align Pen User taps in center of square to align pen.

Pen Cursor User can turn pen cursor on or off (default = off).

Primary Input Determines primary input device, pen or keyboard
(default = pen).

Writing Timeout Interval system pauses after user lifts pen from screen
before translating input (default = 0.6 seconds, range = 0.2 to 1.0 in 0.1
increments, 1.2, 1.5, 2.0 seconds).

Press Timeout Interval user must touch the pen to the screen before the
press gesture is recognized (default = 0.5 seconds, range = 0.2 to 1.0
seconds in 0.1 increments).

CHAPTER SO/THE BOOKSHELF 525

".,.. Fonts & Layout

PenPoint Font Font used by system and applications for text (not in
edit fields) (default = Mincho, choices = Gothic, Roman, Courier,
Sans Serif, Mincho).

Field Font Font used by system for translated text (default = Mincho,
choices = Gothic, Roman, Courier, Sans Serif, Mincho).

Font Size Font size (in points) used as default for both system text and field
text (default = 12 pt., choices = 10, 12, 14, 16, 18, 20, 24 pt.).

Top Edge Determines orientation of screen. Menu has four arrows, one
pointing to each edge of computer. The user chooses one arrow to re-ori
ent the display so that the edge is at the top. Mter the user taps the Apply
button, the arrow again points to the top edge.

Hand Preference Hand Preferences for screen layout. Effects placement of
scrollbars (default = Right, choices = Left, Right).

Scroll Margins Allows user to choose either a traditional scroll margin with
arrows and a drag box or a simple margin for flicking (default = Arrows &

Drag Box, choices = Tap & Flick Area, Arrows & Drag Box).

Import/Export Determines the data exchange format to use (default = New
lIS, choices = New lIS, lIS).

Float & Zoom

Floating Documents Determines if the user can float documents or not
(default = Not Allowed, choices = Allowed, Not Allowed).

Zooming Documents Determines if the user can zoom documents or not
(default = Not Allowed, choices = Allowed, Not Allowed).

Settings

526 PENPOINT APPLICATION WRITING GUIDE
Part 6 I User Interface Design Reference Supplement

~ Writing

Writing Style Determines the type of character input allowed (default =
Mixed Case, choices = Upper Case Only, Mixed Case [applies to Roman
text only]).

Writing Pad Determines type of box used in edit pads (default = Boxed,
choices = Ruled/Boxed, Ruled, Boxed).

Box Size Determines size of box in edit pads with boxes (default = Medium,
choices = Very Small, Small, Medium, Large, Very Large).

Box Shape Determines the proportional shape of the box in edit pads
(default = Medium, choices = Short, Medium, Tall).

Ruled Height Determines the height of space above ruled line in edit pads
(default = Medium, choices = Very Small, Small, Medium, Large,
Very Large).

Unrecognized Character Determines character used to indicate unrecog
nized character, default = 8, choices = e, _).

Time

Current Time Current time as, read from the system clock.

Time Zone Local time zone, with hours difference from GMT

(default = +9 Tokyo).

Format Determines the time format that the user would like PenPoint and
applications to display.

Style Determines the style of the time display that the user would like
PenPoint and applications to display.

Seconds Determines if the user wants seconds displayed as part of time
(default = Not Displayed, choices = Displayed, Not Displayed).

Hour Write-in field to allow user to set the hour (range = 1 to 12 for
12-hour format, 0 to 23 for 24-hour format).

CHAPTER SO/THE BOOKSHELF 527

Minute Write-in field to allow user to set the minutes (range = 0 to 59).

Second Write-in field to allow user to set the seconds (range = 0 to 59).

A.M.lP.M. Sets A.M.lP.M. for time (available only when format = 12 hours).

~ Date

Current Date Current date as set in the system clock, displayed in format
set below.

Format Determines default format for display of date.

Month Determines month of year (choices = January to December).

Day Write-in field for day of month (range = 1 to number of days in
selected month).

Year Write-in field for last two digits of year, assumes 19 preceding these
digits (range = 70 to 99).

Settings

528 PENPOINT APPLICATION WRITING GUIDE

Part 6 I User Interface Design Reference Supplement

~,. Sound

Warning Beep Determines if warning beep sound is made on error condi
tions (default = On, choices = On/Off).

Power

If a machine does not have suspend capability, then Manual Standby and Auto
Standby choices are not visible.

Manual Standby Button that puts the processor into suspend mode.

Manual Shutdown Button that shuts the system down, unless Auto Standby
is on, then processor goes into suspend mode.

Auto Standby Determines if PenPoint automatically suspends the processor
whenever there is no input from the user for the specified period (default =
No, range = 1 to 99 minutes).

Shutdown from Standby Determines if PenPoint automatically shuts the
processor down whenever the system remains suspended (in Standby) for
the specified period (default = No, range = 0.10 and 9.0 hours).

Auto Power-Off Devices Determines if the computer's main circuitry and
peripherals automatically power down when not in use. The manufacturer
specifies the period of inactivity after which each device powers down
(default = No, choices = Yes, No).

Battery Gauge of how much power remains in the battery.

CHAPTER SO/THE BOOKSHELF 529

",. Installed software
The second section of the Settings notebook is for installed software. The Installed
Software section has a page for each category of installable software. From these
pages the user can:

• See what's currently installed on the machine.

• Perform housekeeping functions such as de installing, saving to disk, restoring
from disk.

• Set any options that the installed software provides. For example, an applica
tion may provide options that apply to all instances of the application.

There are seven pages (categories) to the Installed Software section of the Settings
notebook. All seven have the same two menus: Edit and Options.

".,.. Applications

The Applications page shows the applications currently installed in the system. The
Install ... button on the right of the menu line (common to all the pages of the
Installed Software section) displays a sheet showing the installable software of the
appropriate category. The user taps on the checkbox to install (or deinstall) any of
the installable items.

Services

The Services page shows the installed services. Services include printer drivers, net
work connections, and other system-level programs.

Settings

530 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement

".,. Handwriting

The Installed Handwriting page shows the installed handwriting profiles. Each
profile is associated with a handwriting engine and indicates the Current profile.

Dictionaries

The Dictionaries page shows the installed dictionaries. Tapping the Open ... button
opens the selected dictionary (or current dictionary, if none is selected) into its own
pop-up sheet.

Fonts

The Fonts page shows the installed fonts for the system.

CHAPTER 50 / THE BOOKSHELF 531

".,. User Profiles

The User Profiles page shows all the profiles established for a machine. A user
profile consists of all the preference settings for that user. Tapping the checkbox
to make a profile current is equivalent to applying all the user's preferences in a
single step.

".. Status

.,.,. Storage Summary

The Storage Summary page shows the user how much space is currently being used
in the machine for storage, and how much remains to create and work with docu
ments. This page is dynamic and updates to reflect changes in usage when
it is open.

Storage Space The amount of space available for documents, accessories,
and installed software. This is the space available to create new documents,
copy existing documents, import files from disk, or install new software.

Working Space The amount of space available for active documents. Active
documents include open documents and accessories, and also any docu
ments for which the user has set Access Speed to Accelerated on the Access
sheet.

Settings

532 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement

~ Storage Details

The Storage Details page presents a finer-grained view of the storage space usage
than the Storage Summary page.

This page lists:

.. Amount of installed RAM (MB) .

.. Size of internal disk (MB) .

.. Amount of space on internal disk used by PenPoint operating system.

.. Amount of space on internal disk used by other PenPoint files .

.. Amount of space on internal disk reserved as working space .

.. Amount of space on internal disk used by the installed software
(exclusive of PenPoint).

.. Amount of space on internal disk used by documents .

.. Amount of free space available on internal disk.

PenPoint

This page indicates the version of PenPoint currently running, along with the
Copyright notice for the system.

CHAPTER SO/THE BOOKSHELF 533

". Accessories

". Unicode Browser
The Unicode Browser is an accessory to help the user find specific characters
and put them into the input stream. It contains all the characters available in the
Japanese fonts when those fonts are installed. (The figure below is not an exact
representation.)

The first row of characters in the Unicode Browser are hiragana, katakana, roman
alphabet, punctuation, accented upper case roman alphabet, accented lower case
roman alphabet, gesture font, GO VI glyph font. The remaining rows of the browser
contain the kanji radicals.

Tapping on any character in the top level of the Browser opens a submenu.
For non-kanji (the top row), the submenu contains the characters in the set
represented. For kanji radicals, the submenu contains all characters that use the
top-level radical as their base radical. The size of this submenu varies from radical to
radical.

Tapping on a character in the submenu inserts that character into the input stream
at the current insertion point. After the user makes a selection, the submenu closes,
and the Browser remains open. Tapping outside the submenu closes the submenu
without any character being selected. If there is no current insertion point, the sub
menu closes and nothing happens.

The Unicode Browser only accepts the tap Y gesture as a valid gesture on the top
level and the second-level submenu. The close corner closes the Browser.

Accessories

534 PENPOINT APPLICATION WRITING GUIDE
Part 6 I User Interface Design Reference Supplement

Keyboard
The PenPoint™ operating system provides a virtual keyboard. The virtual key
board enters text directly into the input stream.

811l1li.111.l1li11
II III IIIUIUiI III

Chapter 51 / Overall System Changes

This chapter describes changes that affect aspects of the PenPoint user interface
throughout the system.

Option sheets
The option sheet model has not changed between PenPoint 1.0 and PenPoint 2.0.
You can find additional information about option sheets in this document in:

• "MiniText," below.

• "MiniNote" on page 539.

MiniText
MiniText is a simple text processor provided with PenPoint 2.0 Japanese. It pro
vides multifont capabilities and simple formatting tools. MiniText is implemented
as a "wrapper" around the text component of PenPoint. Because it is based on the
core text component, it has changed to support Japanese in PenPoint 2.0.

Like most word-processor applications, MiniText uses a blank page into which the
user can begin entering text. Input is accomplished in either in-line edit pads,
through pop-up edit pads, or with the keyboard. The user selects text and then
operates on it for most commands.

MiniText provides text editor and formatting features in a simple interface. The
user can format characters and paragraphs, set tabs, as well as embed signatures for
letters and other documents.

Change notes
These items have changed in MiniText:

• Units are changed from inches to centimeters.

• Case menu is removed.

• Convert menu is added.

• Default font becomes 12 pt. Mincho.

• Convert text gestures (H, Z) added.

• Greater keyboard support provided.

• Proof & Spell functionality only works on English words.

• Text wraps according to Japanese Taboo processing protocols.

• Fully justified text according to Japanese methods.

• Hankaku and zenkaku spaces added to Insert menu.

536 PEN POINT APPLICATION WRITING GUIDE

Part 6 / User Interface Design Reference Supplement

Option sheets
MiniText provides four option sheets. The user customizes the text and the display
of the text with these sheets. All the functionality in these option sheets is part of
the PenPoint text component and is available to any application that uses the text
component.

Character option sheet

The Character option sheet contains three controls: Font, Size, and Style. The user
controls the attributes of the characters in a document with this sheet.

Font A pop-up list of the fonts currently installed in PenPoint 2.0 Japanese.
The default is Mincho.

Size A pop-up list of the font sizes available for the selected font. The default
size is 12 pt.

Style A multiple checklist of the styles that can be applied to a font. The
default is that no additional styles are added to text.

Paragraph option sheet

The Paragraph option sheet contains eight controls. The user sets the attributes of
paragraphs in the document with this sheet.

Alignment The user aligns paragraphs left, right, center, or justified.

Line Height Height in centimeters.

Between Lines Space between lines, in centimeters.

1st Line Offset The user sets the amount of space that the first line is offset.

Left margin In centimeters.

Right Margin In centimeters.

Space Before Space left before a paragraph, in centimeters.

Space After Space left after a paragraph, in centimeters.

Tab Stops option sheet

The Tab Stops option sheet allows the user to create the tabs for a paragraph. There
can be a maximum of 31 tabs. The user adds new tabs with the caret /\ gesture on
this option sheet and deletes existing tabs with the cross out X gesture. The user
specifies tab stops in centimeters.

Display option sheet

The Display option sheet contains two controls that affect the display of the Mini
Text document.

Magnify Text on Screen Magnification of document display, in text points
added to the current point size.

Show Special Characters Toggles display of tab, line break, and paragraph
break characters.

".. Gestures

Non-core gestures used in MiniText
Gesture

V
.'
,Y
,Y
H

~

~

<f>

<b

A
t~

•
--1

--1

L
-11

-1

-,
~

-7

6

F

I
p

N

5

U

H

z

Name

Double tap

Triple tap

Quadruple tap

Double flick
(four directions)

Scratch out

Circle line

Circle flick down

Circle flick up

Caret tap

Arrow up or
down

Up right

Down left

Down left flick

Down right flick

Right up flick

Right up

Right down

Arrow left

Arrow right

Keyboard

Ctrl + Home
Ctrl + End

Delete

Space bar

Enter

Tab

CHAPTER 51 / OVERALL SYSTEM CHANGES 537

Action

Selects a word. (Selects a bunsetu in Japanese.)

Selects a sentence.

Selects a paragraph.

Up scrolls to end of text.
Down scrolls to beginning of text.
Left scrolls to right edge.
Right scrolls to left edge.

Deletes any character touched by gesture.

MiniText

Brings up empty editing pad to replace word or selection.

Searches towards the end of the text for the next occurrence of
the word (or selection) under the gesture.

Searches towards the beginning of the text for the next occurrence
of the word (or selection) under the gesture.

Creates an embedded insertion pad.

Increases or decreases the point size for the word or selection by the
increments in the Character option sheet.

Inserts a single character.

Inserts a paragraph break.

Inserts a line break.

Inserts a tab.

To upper case (romaji only).

To initial caps (romaji only).

To lower case (romaji only).

On selection, converts text to hankaku
(Japanese only).!

On selection, converts text to zenkaku
(Japanese only).!

Makes the word or selection bold.!

Brings up the Find sheet, set to search from the point of
the gesture.

Italicizes the word or section. 1

Proofs the word (English words only).

Makes the word or selection "normal" -that is, turns off bold,
italic, and underlined! (does not turn offhankakulzenkaku
attribute).

Begins spell-checking words from the point of the gesture
(English words only).

Underlines the word or selection.!

On selection, converts text to hankaku
(Japanese only).!

On selection, converts text to zenkaku
(Japanese only).!

1. The selection works only on characters of the same type, for example all hanakaku. When there are mixed characters, only characters of the
selected type are acted upon.

538 PENPOINT APPLICATION WRITING GUIDE

Part 6 / User Interface Design Reference Supplement

Menus

The menu structure of MiniText provides the dual command path for the gestures
and option sheets.

Edit menu

Most of the Edit menu commands provide the standard functionality described
in the PenPoint User Interface Design Reference. Those commands specific to
MiniText are:

Undo Disabled when keyboard KKC is active.

Edit Opens an edit pad with the current selection in it.

Proof Opens a proof pad with current word and suggested alternates; only
works on English words.

Spell Only works on English words.

Options menu

Character Opens Character option sheet ("Character option sheet" on
page 536).

Paragraph Opens Paragraph option sheet ("Paragraph option sheet" on
page 536).

Tab Stops Opens Tab Stops option sheet ("Tab Stops option sheet" on
page 536).

Display Opens Display option sheet ("Display option sheet" on page 536).

Controls Opens Controls option sheet.

Access Opens Access option sheet.

Comments Opens Comments option sheet.

View menu

The View menu contains two checklists. Selections immediately update the view
of the document.

Screen Format/Printer Format Toggles the view of the document
between Screen Format, text wraps to the right edge of the current view
ing region and Printer Format, text wraps to the right of the currently
selected paper size.

Magnification Checklist of magnification factors. This is the same as the
magnification found in the Display option sheet (see page 536). Magnifi
cation only applies when the Screen Format view has been selected,
although control is always available.

Insert menu

Tab Inserts a tab at the insertion point.

Hankaku Space Inserts a hankaku space at the insertion point.

Zenkaku Space Inserts a zenkaku space at the insertion point.

CHAPTER 51 / OVERALL SYSTEM CHANGES 539

Line Break Inserts a line break after the insertion point.

Paragraph Break Inserts a new paragraph at the insertion point.

Page Break Inserts a new page after the insertion point.

Pop-up Pad Opens a pop-up edit pad; contents go to insertion point.

Embedded Pad Opens an embedded edit pad at insertion point.

Signature Pad Places a signature (ink only) pad at insertion point.

Convert menu

The Convert menu provides functionality for converting text between hankaku and
zenkaku.

To Hankaku Converts selected text to hankaku.

To Zenkaku Converts selected text to zenkaku.

To Uppercase Converts selected text to all uppercase characters
(romaji only).

To Lowercase Converts selected text to all lowercase characters
(romaji only).

Initial Caps Converts selected text to an initial capital letter at the start of
each word (romaji only).

MiniNote
MiniNote is an ink processor implemented around PenPoint's ink component
(dsNotePaper) .

MiniNote has two input modes: ink mode and gesture mode. The default mode is
ink mode. In ink mode, pen input is accepted as is and stored as ink, with the fol
lowing exceptions:

+ The double tap .Y gesture over an ink object selects the object.

+ The scratch out ~ gesture deletes the object .

• The user can make gestures over selected objects.

• The tap press ·1 gesture over white space begins an area select.

.. The flick left right -=- gesture toggles between the two modes.

+ The caret tap A gesture for Date/Time menu.

Gesture mode allows the core gestures anywhere on the screen.

The screen is presented as a blank sheet of paper (lined in some predefined sta
tionery) on which the user can begin writing. The menu line contains a mode
toggle on the right side. The pen icon indicates ink mode. The check icon indicates
gesture mode. The icons are a simple toggle switch that responds to
a tap gesture.

MiniNote

540 PENPOINT APPLICATION WRITING GUIDE

Part 6 / User Interface Design Reference Supplement

Gesture margin

MiniNote has a gesture margin that facilitates line-oriented operations.

The margin also provides additional mode feedback: it is grey in ink mode and
white in gesture mode.

Most of the gestures that are accepted in the body of the document can be made in
the gesture margin, where they are interpreted as applying to the entire line. For
example, double tap .Y selects the line, circle 0 edits the line, down left ~ tidies the
line, and tap press selects the line.

Other useful margin gestures include right down I and right up -I, to open and
close white space by the amount of the vertical leg of the gesture. Left down and
left up L are also accepted, and are more easily made if the gesture margin is on
the right.

Option sheets
MiniNote has two unique Option sheets: Paper and Pen.

Paper option sheet

The Paper option sheet allows the user to specify the size and appearance of the
paper upon which he or she is writing.

Paper Style Allows the user to specify the ruling of the paper from among
the 8 choices available. This is a boxed choice list.

Font Allows the user to select the font for all the translated text in a Mini
Note document. The choices are the installed fonts in the system.

Line Height Contains two fixed line heights: College Ruled (18 pts.), and
Standard (24 pts.), as well as a text field for entering an arbitrary height in
points.

Paper Width Has an overwrite field containing the current paper width and
two commands that affect the contents of the field. The overwrite field is
scaled in centimeters .

., Same as Document The current width of the viewing region into the
overwrite field so that a horizontal scroll margin is not needed .

., Same as Print Settings The current paper width (taken from the
Paper Size control on the Print sheet) into the overwrite field.

CHAPTER 51 / OVERALL SYSTEM CHANGES 541

".,.. Pen option sheet

The Pen option sheet controls the pen width and color. The choices presented in
this sheet are the same as those for the Pen menu.

",. MiniNote gestures

Gestures that work in MiniNote
Gestures Name Action

,., These gestures work in ink and gesture mode
.Y Double tap Selects a single object.

+ Plus Toggles selected state.

~ Scratch out Deletes any ink or text objects touched by the gesture.

·1 Tap press Initiates an area select.

-=- Flick left right Toggles between ink and gesture modes.

A Caret tap Pops up insertion menu with current date and time.

1 Pigtail Deletes ink or text at the pen-down point.

~ Undo Reverses the effect of the most recent operation.

,., These gestures work in gesture mode or over the selection in ink
Y Tap Selects a single object.
V ..

.. y
+
~

1
·1
-=-
A
1
[]

X
/\
0

(!)

v'

ir

-lL

Double tap

Triple tap

Plus

Scratch out

Press

Tap press

Flick left right

Caret tap

Pigtail

Brackets

Cross out

Caret

Circle

Circle tap

Check

Right down
Left down

Right up
Left up

Selects a word or drawing.

Selects line.

Toggles selected state.

Deletes any ink or text objects touched by the gesture.

Initiates a move.

Initiates a copy.

Toggles between ink and gesture modes.

Pops up insertion menu with current date and time.

Deletes ink or text at the pen-down point.

Adjust an existing selection.

Deletes objects or selection.

Pops up an insertion menu with current date and time.

Edits text, translates, and edits ink. All the selected ink is
translated and appears in a pop-up edit pad.

Translates ink to text without displaying an edit pad.

Displays the option sheet for the selection or object.

Opens white space as determined by the length of the
vertical leg.

Closes space as determined by the length of the vertical leg.

MiniNote

542 PENPOINT APPLICATION WRITING GUIDE

L
r
I

B

F

P

5

N

u

Part 6 / User Interface Design Reference Supplement

Flick (four directions)

Double flick (four
directions)

Circle line

Down left

Down right

Up right

Up left

Scrolls to edge.

Scrolls to beginning/end.

Brings up an empty edit pad for the word.

Tidies selected lines (evens out the space between all
objects).

Ungroups the selected scribbles, inserts space.

Right aligns the selected object.

Left aligns the selected object.

Makes the word or selection bold.

Brings up the Find sheet, set to start from the point of
the gesture.

Proofs a word (English words only).

Begins spell-checking from point of gesture (English
words only).

Makes the word or selection "normal" -turns off bold
attribute.

Groups two adjacent scribbles. Start the gesture on one
scribble and finish on the other.

vp.,. Edit menu

Delete Deletes selected objects, closes gap.

Clear Deletes selected objects, leaves gap.

Insert Line Inserts a blank line above the selection.

Translate Translates selection.

Translate & Edit Translates selection and opens edit pad with translation
(Reads Edit for already translated selection).

Options menu

Paper Opens Paper option sheet ("Paper option sheet" on page 540).

Pen Opens Pen option sheet ("Pen option sheet" on page 541).

Arrange menu

Tidy Moves selected objects to left to even gaps between objects.

Center Centers the selected objects.

Align Left Multiple line only. Shifts lines left to begin in same column as
left-most line.

Align Right Multiple line only. Shifts lines right so that they all end in same
column as right-most line.

Group Joins selected objects of like type (scribbles with scribbles, text with
text) into a single object.

Ungroup Breaks a grouped object into constituent scribbles.

CHAPTER 51 / OVERALL SYSTEM CHANGES 543

.,." Pen menu

See "Pen option sheet" on page 541 for illustrations.

". Edit pads
The edit pad (Input Pad) is one of the most universally used controls in PenPoint.
It provides the optimized interface for precise and modal handwriting entry.
Because of the intimate connection between edit pads and the language being
input, edit pads have changed significantly to accommodate Japanese in PenPoint
2.0. This section describes both English language edit pads and Japanese language
edit pads. In PenPoint 2.0 Japanese, the language of the text determines the input
pad provided by the system. Edit pads are created with clsIP.

~ Operational model
The circle 0 gesture opens an edit pad. A circle opens an input pad for the object
that was the target of the gesture. Edit pads are system modal. PenPoint selects the
object being edited so that the user can see what he or she is operating on in con
text. A caret A gesture provides a blank edit pad (often referred to as a writing pad).

Change notes
Japanese edit pads introduced.

English edit pads
The English edit pads are the standard tool for entering and editing English text.
In PenPoint 2.0 Japanese, they are used whenever romaji text is edited.

Standard elements

Edit pads come in three styles: boxed, ruled, and ruled/boxed. The boxed style is
segmented into character spaces, and the ruled style is not. The ruled/boxed style is
ruled when blank, and becomes boxed for all editing. Edit pads have three buttons:
OK, Clear, and Cancel.

Input pads in version 2.0 are always in overwrite mode. Additionally, context
checking is on during the first translation from ink to text.

The buttons for boxed pads work as follows:

OK Translates un translated strokes or closes and accepts completely the
translated text. If the pad is empty when the OK button is pressed, the pad
is closed and nothing is entered into the text stream. If there are all
un translated strokes in the pad, then OK translates them. Subsequent
strokes are translated automatically.

Clear Clears all textlink from the writing area.

Cancel Closes pad without accepting any changes made.

Edit pads

544 PENPOINT APPLICATION WRITING GUIDE
Part 6 I User Interface Design Reference Supplement

In ruled pads, the OK button both translates the ink and puts the text into the
text stream.

In ruled/boxed pads, the OK button presents a boxed pad for editing of the
translated text.

Edit pad gestures
You can use these gestures in input pads:

Name

Pigtail

KeyboCJrd

Delete or
Backspace

Action

Deletes si~gle character.

TABLE 51-3

Scratch out

Down right

Deletes every character it touches.

L Space Inserts spaces equal to the length of the right stroke.

This example shows the typical steps you would go through to enter and translate
text in an edit pad.

EXAMPLE 51-1

User makes caret gesture,
with tip of caret targeted
where new text is to be
inserted.

Blank ruled pad pops up.

User writes in the pad.

The user taps on OK to
translate the text.

The translated text is
presented in overwrite boxes
for easy correction.

CHAPTER 51 I OVERALL SYSTEM CHANGES 545

Translating text in edit pads

". Japanese edit pads
We designed the Japanese edit pads to make correction of near-miss translations
easy and make kana-kanji conversion through both pen and keyboard easier and
more accessible.

Standard elements

The Japanese input pad supports kana-kanji conversion (KKC) in a seamless and
easy-to-use fashion. A new type of highlight, weak highlight, has been introduced
to help support KKC. Weak highlight occurs after character entry by keyboard:

When a phrase (press spacebar once) has been selected, it gets a strong highlight:

The user can press the spacebar again to get a choice list of other phrases to substi
tute. To select one,use the arrow keys to get to desired choice and use enter key to
select:

When the entire phrase has been explicitly accepted through a return, the text
changes to the no highlight state, ready to accept further keyboard input:

Edit pads

EXAMPLE 51 ·1 (continued)

User corrects characters
as needed by overwriting.

When all corrections have
been made, user taps OK to
insert contents of pad into
text stream.

546 PENPOINT APPLICATION WRITING GUIDE

Part 6 / User Interface Design Reference Supplement

If the user enters a new character from the keyboard, a weak selection point
appears in the text box:

All forms of text entry devices used with the keyboard (boxed fields, write-in fields,
and in-line text views) use these same states-weak highlight, strong highlight,
weak selection.

The Japanese input pad is larger than the English input pad to better accommodate
the characters and the choice list.

Character alternative list

The character alternative list allows the user to select alternatives to the displayed
character. This is important because of the occurrence of character "look-a-likes"
and homophones among the character set.

The list contains the known look-a-likes first, in stable order, and always contains
a period and katakana middle dot as the last two entries. The choices are laid in an
approximately square matrix with the current choice highlighted when the list is
opened. The actual character that was written is not necessarily always the first
choice in the list. The common endings are removed from the KKC alternatives.
The user can access the choices on the list without opening the list through the use
of gestures. The last two glyphs in the list are period and katakana middle dot, so
that these characters can be accessed in overwrite mode through the list.

The user can use the arrows key to navigate through this list. The up/down arrow
keys will move through the list, wrapping from column to column. The left/right
arrow keys will wrap from row to row.

CHAPTER .51 / OVERALL SYSTEM CHANGES 547

"". Unicode to character conversion

If the user knows the Unicode equivalent for a character, they may enter the 4-digit
code in an input pad and convert it to the character with the right up ~ gesture. If
the code is also a valid Shift-lIS or ku-ten code, the converted characters will appear
as alternatives in the choice list.

'r Japanese eelit pael gestures

Gestures used in Japanese edit pads
Gesture Name

y Tap

Flick

Keyboard

Space
(after conversion
has taken place)

Up, down, left,
right

Action

Open list of alternatives.

Next choice.
Previous choice (substitute in place).

Menus

-1 Right up

-11 . Right up flick

Space Converts characters (also converts Unicode to character).

Alternate KKC.

I Right down

~ Left arrow
~ Right arrow

". Menus

'r Change notes

AIr + left arrow
Alt + right arrow

Reverse convert ("SaiHenkan").

Shorten phrase.
Extend phrase.

Highlighting of menu items when selected item is black in 2.0 instead of grey
as in 1.0.

Part 7 /
Sample Code

This chapter lists the source code of the sample applications referred to in the
preceding chapters of this book, and describes some of the other applications
included with the PenPoint™ SDK. If you have installed the SDK, you'll find the
sample code in subdirectories of PENPOINT\SDK\SAMPLE.

The following sample applications are described and their code is listed in this
chapter.

551 Empty Application Just about the simplest application you can create.

554 Hello World (toolkit) A simple application that uses the UI Toolkit to
display the words "Hello World."

560 Hello World (custom window) A simple application that uses the
ImagePoint™ graphics system to display the words "Hello World."

568 Counter Application A simple application that saves and restores its data

578 Tic-Tac-Toe A full-featured PenPoint application.

625 Template Application A template for a full-featured PenPoint application.

The following sample applications are described in this part, but their code is
not listed. The sample code is part of the SDK and is in 12-0\PENPOINT\SDK\
SAMPLE.

638 Adder A simple pen-centric calculator, limited to addition and subtraction

639 Calculator A floating, button-operated calculator.

640 Clock A digital alarm clock accessory.

642 Notepaper Application A note-taking application that uses the
NotePaper DLL.

643 Paint A simple raster painting program.

644 Toolkit Demo Examples of how to use of many of the classes of the
UI Toolkit.

646 Input Application An example of pen-based input handling.

647 Writer Application An example of handwriting translation.

648 Keisen Table Application An application that creates a complex layout
using clsTkTable.

650 List Box Demo An application that uses clsListBox.

651 Sample Application Monitor An application that implements a reasonably
sophisticated application monitor.

652 Serial Transmission Demo An application that uses simple serial I/O from
within PenPoint.

653 User Interface Companion An application that implements many of the
diagrams in the PenPoint User Interface Design Reference.

655 Basic Service The absolute minimum code required for a service.

656 Test Service A template for services, including message handler stubs for the
most common service messages.

657 MIL Service A template for Machine Interface Layer services
(device drivers).

Empty Application

Empty Application is the simplest sample application distributed with the PenPoint

Software Developer's Kit. It does not have a view or any data. The only behavior it

adds to the default PenPoint application is to print out a debugging message when

the application is destroyed. To provide this behavior, Empty Application defines

clsEmptyApp, which inherits from clsApp. In its handler for msgDestroy,

clsEmptyApp prints out a simple debugging message.

clsEmptyApp inherits a rich set of default functionality from clsApp. When using

Empty Application, you can create, open, float, zoom, close, rename, embed, and

destroy Empty Application documents.

Objectives

Empty Application is used in the PenPoint Application Writing Guide to show how

to compile, install, and run applications. This sample application also shows how

to:

+ Use DebugfO and #ifdef DEBUG and #endif pairs.

+ Turn on message tracing for a class.

+ Let the PenPoint Application Framework provide default behavior.

Class overview

Empty Application defines one class: clsEmptyApp. It makes use of the following

classes:

clsApp

clsAppMgr

files used

The code for Empty Application is in PENPOINT\SDK\SAMPLE\EMPTYAPP. The

files are:

METHODS.TBL The list of messages that the application class responds to,

and the associated message handlers to call.

EMPTYAPP.C The application class's code and initialization.

METHODS. T8L
/**
File: methods.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.5 $
$Author: aloomis $

$Date: 27 Jul 1992 10:59:38 $

classes.tbl contains the method table for clsEmptyApp.

***/
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

MSG_INFO clsEmptyAppMethods []
#ifdef DEBUG

msgDestroy,
#endif

"EmptyAppDestroy", objCallAncestorAfter,

o
};

CLASS_INFO classInfo[] =
"clsEmptyAppTable" ,
o

};

EMPTYAPP.C

clsEmptyAppMethods, 0,

/**
File: emptyapp.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL,INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Author:

$Date:

1.10 $
aloomis $
16 Sep 1992 12:42:20 $

EMPTY APPLICATION

us
us ...

This file contains just about the simplest possible application.
It does not have a window. It does not have any state it needs to save.
This class does respond to a single message, so it has a separate method
table and a method to handle that message. All the method does is print
out a debugging string.

If you turn on the "Fl" debugging flag (e.g. by putting DEBUGSET=/DFOOOl
in \penpoint\boot\environ.ini), then messages to clsEmptyApp will be
traced.

***1
#ifndef APP INCLUDED
#include <app.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef INTL INCLUDED
#include <intl.h>
#endif

II for application messages (and clsmgr.h)

II for debugging statements.

II for AppMgr startup stuff

II for international routines

#include <methods.h>

#include <string.h>
II method function prototypes generated by MT

II for strcpy().

1*
* Defines, Types, Globals, Etc *
* *1

STATUS EXPORTED EmptyApplnit (void);

#define clsEmptyApp wknGDTa

1*
* Utility Routines *
* *1

1*
* Message Handlers *
* *1

1**
EmptyAppDestroy

Respond to msgDestroy by printing a simple message if in DEBUG mode.
**1
MsgHandler(EmptyAppDestroy)
{

#ifdef DEBUG
Debugf (U_L ("EmptyApp: app instance %p about to die!"), self);

#endif

II
II The Class Manager will pass the message onto the ancestor
II if we return a non-error status value.

II
return stsOK;
MsgHandlerParametersNoWarning; II suppress compiler warnings

1* EmptyAppDestroy *1
1*
* Installation *
* *1

1**
ClsEmptyApplnit

Install the EmptyApp application class as a well-known UID.
**1
STATUS
ClsEmptyApplnit (void)
{

APP_MGR_NEW new;
STATUS s;

II
II Install the Empty App class as a descendant of clsApp.
II
ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;
new.cls.pMsg clsEmptyAppTable;
new.cls.ancestor clsApp;

II
II This class has no instance data, so its size is zero.
II
new.cls.size = Nil (SIZEOF) ;

II
II This class has no msgNew arguments of its own.
II
new.cls.newArgsSize = SizeOf(APP_NEW);
new.appMgr.flags.accessory = true;
Ustrcpy (new. appMgr. company, U_L("GO Corporation"));
Ustrcpy(new.appMgr.defaultDocName, U_L("Empty App Document"));
ObjCallJmp(msgNew, clsAppMgr, &new, s, Error);

II
II Turn on message tracing if flag is set.
II
if (DbgFlagGet ('F', OxlL)) {

Debugf(U_L("Turning on message tracing for clsEmptyApp"));
(void) ObjCallWarn (msgTrace, clsEmptyApp, (P_ARGS) true);

return stsOK;

Error:
return s;

} 1* ClsEmptyApplnit *1

UI
UI
~

1**
main

Main application entry point (as a PROCESS -- the app's MsgProc
is where messages show up once an instance is running) .

**1
void CDECL
main (

S32 argc,
CHAR *
U32

argv[],
processCount)

Dbg (Debugf (U_L ("main: starting emptyapp.exe[%d]"), processCount);)

if (processCount == 0) {

}

II Create application class.
ClsEmptyAppInit();

II Invoke app monitor to install this application.
AppMonitorMain(clsEmptyApp, objNull);

else {

II Create an application instance and dispatch messages.
AppMain();

II Suppress compiler's "unused parameter" warnings
Unused(argc); Unused(argv);

1* main *1

EMPTY APPLICATION

UI
UI
(0)

Hello World (toolkit)

One of the simplest applications in any programming environment is one that
prints the string "Hello World." Because PenPoint provides both an API to the
ImagePoint imaging model and a rich collection of classes built on top of Image
Point, there are two different approaches to building a "Hello World" application.
They are:

1 Create a window and draw text in it using ImagePoint calls.

2 Use PenPoint's VI Toolkit classes to create a label object.Each of these
approaches is worth demonstrating in a sample application.

The first is a good approach for programs that need to do a lot of their own draw
ing, such as free-form graphics editors. The second approach shows how easy it is to
use the toolkit classes, and serves as an example for programs that need to draw
forms or other structured collections of information.

Therefore, there are two "Hello World" sample applications: Hello World (custom
window) and Hello World (toolkit). The rest of this document describes Hello
World (toolkit).

Hello World (toolkit) uses dsLabel, the VI Toolkit label class, to display the words
"Hello World" in a window. The simplest way of doing this is to make a single label,
which also serves as the window for the application. The code for doing so is in
HELLOTKl.C. Since developers will typically want to display more than one toolkit
class in a window, we created a second file, HELLOTKl.C, that shows how to create a
layout object (a window with knowledge of how to layout toolkit objects) and a
label which is inserted into the layout object.

To change between these two source code files, simply copy the version you want
to HELLOTK.C before compiling the application (see the README.TXT file in PEN

POINT\SDK\SAMPLE\HELLOTK for more detailed instructions).

Objectives

This sample application shows how to:

• Use clsLabel.

• Create a custom layout window.

Class overview

Hello World (toolkit) defines one class: dsHelloWorld. It makes use of the follow
ing classes:

clsApp

clsAppMgr

clsCustomLayout

clsLabel

Files used

The code for Hello World (toolkit) is in PENPOINT\SDK\SAMPLE\HELLOTK. The
files are:

METHODS.TBL the method table for clsHello World.

HELLOTK.C source code (actually a copy of either HELLOTK1.C or
HELLOTKl.C) which the makefile compiles.

HELLOTK1.C source code for making a single label, which also serves as the
window for the application.

HELLOTK2.C source code for making a layout object and inserting a label
in it.

METHODS. T8l
1**
File: methods.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.6 $
$Author: aloomis $

$Date: 16 Sep 1992 12:51:12 $

Methods.tbl contains the method table for clsHelloWorld (toolkit version).

***1
II
II Include files
II

'" '" .1:11

#ifndef APP_INCLUDED
#include <app.h>
#endif

MSG .INFO clsHelloMethods []
msgAppInit,

} ;

msgAppOpen,
msgAppClose,

o

CLASS_INFO classInfo[]
"clsHelloTable",
o

};

HELLOTKJ.C

"HelloAppInit", objCallAncestorBefore,
"HelloOpen", objCallAncestorAfter,
"HelloClose", objCallAncestorBefore,

clsHelloMethods, 0,

1**
File: hellotk1. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.12 $
$Author: kcatlin $

$Date: 12 Aug 1992 17:49:16 $
This file contains the application class for a "Hello World" application
using toolkit components. This uses the PenPoint UI Toolkit to draw in
its window -- thus it does not create a window class. It creates a label
as its client window in response to msgAppInit. It has dummy message
handlers for msgAppClose and msgAppOpen so it can share the same methods.tbl
with hellotk2.c.

It does not have any state it needs to save.
It does not have any instance data.

Most applications have more than one window in their frame. hellotk2.c
is an alternative version of hellotk.c which creates a label inside a
custom layout window.

DEBUG FLAGS:

If you turn on the "F20" debugging flag (e.g. by putting DEBUGSET=/F0020
in \penpoint\boot\environ.ini), then messages to clsHelloWorld will be
traced.

***1
#ifndef DEBUG_INCLUDED
#include <debug.h> II for debugging statements.

#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef LABEL_INCLUDED
#include <label.h>
#endif
#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif
#ifndef _STRING_H_INCLUDED
#include <string.h>
#endif
#include <methods.h>

II for O-OP support.

II for application messages (and clsmgr.h)

II for AppMgr startup stuff

II for label.

II for frame metrics.

II for international routines.

II for strcpy().

II method function prototypes generated by MT

#define clsHelloWorld wknGDTb II avoids clashing with other HelloWorlds

1*
* Methods
* *1

1**
HelloAppInit

Respond to msgAppInit by creating the client window (a label) .
**1
MsgHandler(HelloAppInit)
{

APP METRICS
LABEL NEW
STATUS

am;
In;
s;

Dbg(Debugf (U_L ("HelloTK: Create the client Win"));)

II Create the Hello label window.
ObjCaIIWarn(msgNewDefaults, clsLabel, &In);
In. label. style. scaleUnits = bsUnitsFitWindowProper;
In. label. style.xAlignment IsAlignCenter;
In. label. style.yAlignment = lsAlignCenter;
In. label. pSt ring = U L("Hello World!");
ObjCallRet(msgNew, clsLabel, &In, s);

II Get the app's main window (its frame).
ObjCallJmp(msgAppGetMetrics, self, &am, s, error);

*

CODE HELLO WORLD (TOOLKIT)

UI
UI
UI

II Insert the label in the frame as its client window.
ObjCaIIJmp(msgFrameSetClientWin, am.mainWin, \

(P_ARGS)ln.object.uid, s, error);

return stsOK;
MsgHandlerParametersNoWarning;

error:
ObjCaIIWarn(msgDestroy, In.object.uid, Nil(OBJ_KEY));
return s;

1* HelloAppInit *1
1**

HelloOpen

Respond to msgAppOpen by creating UI objects that aren't filed.
But I create my user interface in msgAppInit, so it's filed and
restored for me, so do nothing.

**1
MsgHandler(HelloOpen)
{

Dbg (Debugf (U _ L ("HelloTK: msgAppOpen"));)

II When the message gets to clsApp the app will go on-screen.
return stsOK;
MsgHandlerParametersNoWarning;

1* HelloOpen *1

1**
HelloClose

Respond to msgAppClose by destroying UI objects that aren't filed.
But I create my user interface in msgAppInit, so it's filed and
restored for me, so do nothing.

**1
MsgHandler(HelloClose)
{

Dbg(Debugf (U_L ("HelloTK: msgAppClose"));)

II When the message gets to its ancestor the frame will be taken
II off-screen.
return stsOK;
MsgHandlerParametersNoWarning;

1* HelloClose *1

1**
CIsHelloInit

Install the Hello application.
**1
STATUS CIsHelloInit (void)
{

APP_MGR_NEW new;
STATUS s;

II Install the class.

ObjCaIIWarn(msgNewDefaults, clsAppMgr, &new);
new.object.uid clsHelloWorld;
new.cls.pMsg clsHelloTable;
new.cls.ancestor clsApp;
II This class has no instance data, so its size is zero.
new.cls.size Nil(SIZEOF);
II This class has no msgNew arguments of its own.
new.cls.newArgsSize SizeOf(APP_NEW);
new.appMgr.flags.stationery true;
new.appMgr.flags.accessory true;
new.appMgr.flags.allowEmbedding = false;
new.appMgr.flags.hotMode false;
Ustrcpy (new.appMgr. company, U_L("GO Corporation"));
ObjCaIIRet(msgNew, clsAppMgr, &new, s);
if (DbgFlagGet('F', Ox20L)) {

Dbg(Debugf(U_L("Turning on message tracing for clsHelloWorld
(toolkit)"));)

(void)ObjCaIIWarn(msgTrace, clsHelloWorld, (P_ARGS) true);

return stsOK;

1* CIsHelloInit *1
1**

main

Main application entry point.
**1
void CDECL main

S32
CHAR *
U32

argc,
argv[] ,
processCount)

Dbg(Debugf (U_L ("main: starting HelloTK1.exe[%d]"), processCount);)

if (processCount == 0) {
II Initialize self.
CIsHelloInit () ;

II Invoke app monitor to install this application.
AppMonitorMain(clsHelloWorld, objNull);

else {
II Start the application.
AppMain();

Unused(argc); Unused(argv);

1* main *1
II Suppress compiler warnings

UI
UI
00

HELLOTK2.C
1**
File: hellotk2. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.13 $
$Author: kcatlin $

$Date: 12 Aug 1992 17:49:26 $

This file contains the application class for a "Hello World" application
using toolkit components. This uses the PenPoint UI Toolkit to draw in
its window -- thus it does not create a window class. Instead, it creates
a custom layout window in its frame and inserts a label within the layout
window. (The other version of hellotk.c does not use custom layout or
create more than one toolkit window.)

It does not have any state it needs to save.
It does not have any instance data.

DEBUG FLAGS:
If you turn on the "F20" debugging flag (e.g. by putting DEBUGSET=/F0020

.in \penpoint\boot\environ.ini), then messages to clsHelloWorld will be
traced. If you turn on the "F40" debugging flag then the custom layout window
will be visible (gray background, rounded border) .

***1
fifndef DEBUG_INCLUDED
finclude <debug.h>
fendif
fifndef CLSMGR_INCLUDED
finclude <clsmgr.h>
fendif

fifndef APP_INCLUDED
finclude <app.h>
fendif

fifndef APPMGR_INCLUDED
finclude <appmgr.h>
fendif

fifndef LABEL_INCLUDED
finclude <label.h>
fendif

fifndef FRAME_INCLUDED
finclude <frame.h>
fendif

fifndef INTL INCLUDED

II for debugging statements.

II for o-op support.

II for application messages

II for AppMgr startup stuff

II for label.

II for frame metrics (and clayout.h)

finclude <intl.h>
fendif

II for international routines.

fifndef _STRING_H_INCLUDED
finclude <string.h> I I for strcpy () .
fendif
finclude <methods.h> II method function prototypes generated by MT

fdefine clsHelloWorld wknGDTc II avoids clashing with other HelloWorlds

1*
* Methods
* *1

1**
HelloApplnit

Respond to msgApplnit by creating long-lived objects (filed state) .
But I create and destroy my user interface in msgAppOpen/msgAppClose,
so do nothing.

**1
MsgHandler(HelloApplnit)
{

Dbg (Debugf (U _ L ("HelloTK: msgApplni t")) ;)

II When the message gets to clsApp the frame will be created.
return stsOK;
MsgHandlerParametersNoWarning;

1* HelloApplnit *1
I**********~***

HelloOpen

Respond to msgAppOpen by creating the U.I.:
o a custom layout window
o and a label within it.

**1
MsgHandler(HelloOpen)
{

APP_METRICS am;
WIN_METRICS WID;
CSTM_LAYOUT_NEW cn;
CSTM_LAYOUT_CHILD_SPEC cs;
LABEL_NEW In;
STATUS S;

Dbg(Debugf (U_L ("HelloTK: Create the client Win"»;)

ObjCallWarn(msgNewDefaults, clsCustomLayout, &cn);

II If the frame is floating, this will make it wrap neatly
II around the label.
cn.border.style.leftMargin = cn.border.style.rightMargin = bsMarginSmall;
cn.win.flags.style 1= wsShrinkWrapHeight;

if (DbgFlagGet('F', Ox40L»
cn.border.style.join = bsJoinRound;
cn.border.style.edge = bsEdgeAII;
cn.border.style.backgroundlnk = bslnkGray33;

*

'7 I SAMPLE CODE HELLO WORLD (TOOLKIT)

~
~

ObjCaIIRet(msgNew, clsCustomLayout, &cn, s);

II Create the Hello label window.
ObjCaIIWarn(msgNewDefaults, clsLabel, &In);
In.label.pString = U_L("Hello World!");
ObjCaIIJmp(msgNew, clsLabel, &In, s, error!);

II Insert the Hello win in the custom layout window.
wm.parent = cn.object.uid;
ObjCaIIJmp(msgWinInsert, In.object.uid, &wm, s, error2);

II Specify how the custom layout window should position the label.
CstmLayoutSpecInit(&(cs.metrics»;
cs.child = In.object.uid;
cs.metrics.x.constraint CIAlign(cICenterEdge, clSameAs, cICenterEdge);
cs.metrics.y.constraint CIAlign(cICenterEdge, clSameAs, cICenterEdge);
cs.metrics.w.constraint clAsIs;
cs.metrics.h.constraint clAsIs;
ObjCaIIJmp(msgCstmLayoutSetChildSpec, cn.object.uid, &cs, s, error2);

II Get the app's main window (its frame).
ObjCaIIJmp(msgAppGetMetrics, self, &am, s, error2);

II Insert the custom layout window in the frame.
ObjCaIIJmp(msgFrameSetClientWin, am.mainWin, \

(P_ARGS)cn.object.uid, s, error2);

II When the message gets to its ancestor this will all go on-screen.
return stsOK;
MsgHandlerParametersNoWarning;

error2:
ObjCaIIWarn(msgDestroy, In.object.uid, Nil(OBJ_KEY»;

error!:
ObjCaIIWarn(msgDestroy, cn.object.uid, Nil(OBJ_KEY»;

return s;

1* HelloOpen *1
1**

HelloClose

Respond to msgAppClose by destroying the client window.
The ancestor has already taken us off-screen.

**1
MsgHandler(HelloClose)
{

APP METRICS
WIN
OBJ KEY

am;
win;
key = objWKNKey;

STATUS S;

II Get the client window.
ObjCaIIRet(msgAppGetMetrics, self, &am, s);
ObjCaIIRet(msgFrameGetClientWin, am.mainWin,

II Destroy it.

(P_ARGS)&win, s);

ObjCaIIRet(msgDestroy, win, &key, s);
Dbg(Debugf (U_L ("HelloTK: back from freeing client Win"»;)

II Tell the app that it no longer has a client window.
ObjCaIIRet(msgFrameSetClientWin, am.mainWin, (P_ARGS)objNull, s);

return stsOK;
MsgHandlerParametersNoWarning;

1* HelloClose *1

1**
CIsHelloInit

Install the Hello application.
**1
STATUS CIsHelloInit (void)
{

APP_MGR_NEW new;
STATUS s;

II Install the class.
ObjCaIIWarn(msgNewDefaults, clsAppMgr, &new);
new.object.uid clsHelloWorld;
new.cls.pMsg clsHelloTable;
new. cIs. ancestor clsApp;
II This class has no instance data, so its size is zero.
new.cls.size = Nil(SIZEOF);
II This class has no msgNew arguments of its own.
new.cls.newArgsSize SizeOf(APP_NEW);
new.appMgr.flags.stationery = true;
new.appMgr.flags.accessory = true;
new.appMgr.flags.allowEmbedding = false;
new.appMgr.flags.hotMode = false;
Ustrcpy(new.appMgr.company, U_L("GO Corporation"»;
ObjCaIIRet(msgNew, clsAppMgr, &new, s);

if (DbgFlagGet ('F', Ox20L» {
Dbg(Debugf(U_L("Turning on message tracing for clsHelloWorld

(toolkit)"» ;)
(void) ObjCallWarn (msgTrace, clsHelloWorld, (P_ARGS) true);

return stsOK;

1* CIsHelloInit *1
1**

main

Main application entry point.
**1
void CDECL main

S32
CHAR *
U32

argc,
argv[] ,
processCount)

Dbg(Debugf (U_L ("main: starting HelloTK2.exe[%d]"), processCount);)

UI
UI
co

if (processCount == 0) {
II Initialize self.
ClsHelloInit();

II Invoke app monitor to install this application.
AppMonitorMain(clsHelloWorld, objNull);

else {
II Start the application.
AppMain();

Unused(argc); Unused(argv);
1* main *1

II Suppress compiler warnings

I 7 I SAMPLE CODE HELLO WORLD (TOOLKIT)

UI
UI
0()

Hello World (custom window)

One of the simplest applications in any programming environment is one that
prints the string "Hello World." Because PenPoint provides both an API to the
ImagePoint imaging model and a rich collection of classes built on top of Image
Point, there are two different approaches to building a "Hello World" application.
They are:

1 Create a window and draw text in it using ImagePoint calls.

2 Use PenPoint's UI Toolkit classes to create a label object.

Each of these approaches is worth demonstrating in a sample application. The first
is a good example for programs that need to do a lot of their own drawing, such as
free-form graphics editors. The second approach shows how easy it is to use the
toolkit classes, and serves as an example for programs that need to draw forms or
other structured collections of information.

Therefore, there are two "Hello World" sample applications: Hello World (custom
window) and Hello World (toolkit). The rest of this document describes Hello
World (custom window).

Hello World (custom window) demonstrates how to draw the string "Hello World"
by directly using ImagePoint calls. To do so, it defines a descendant of clsWin. In its
msgWinRepaint handler, the window determines the size of the string "Hello
World" and then calls msgDcDrawText to actually paint the t~xt. It also paints a
large exclamation point after it, using ImagePoint's ability to draw bezier curves.

For demonstration purposes, this application's window is compiled as a
separate DLL.

Objectives

This sample application shows how to:

.. Create a window, and a drawing context (DC) to draw on.

.. Draw text and bezier curves.

.. Separate out part of an application into a re-usable dynamic link library.

Class overview

Hello World (custom window) defines two classes: clsHelloWorld and clsHel-
10 Win. It makes use of the following classes:

clsApp

clsAppMgr

clsClass

clsSysDrwCtx

clsWin

Files used

The code for Hello World (custom window) is in PENPOINT\SDK\SAMPLE\HELLO.

The files are:

HELTBL.TBL the method table for the application class.

HELWTBL.TBL the method table for the window class.

DLLINIT.C the routine to initialize the DLL.

HELLO.C the source code for the application.

HELLOWIN.C the source code for the window class.

HELLOWIN.H the header file for the window class.

HELTBL.TBL
1**
File: heltbl. tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 $
$Author: aloomis $

$Date: 16 Sep 1992 12:44:50 $

heltbl.tbl contains the method table for clsHelloWorld.

***1
II
II Include files

UI

S

II
*ifndef CLSMGR INCLUDED
*include <clsmgr.h>
*endif

*ifndef APP_INCLUDED
*include <app.h>
*endif

MSG INFO clsHelloWorldMethods []

};

msgAppOpen,
msgAppClose,
o

CLASS_INFO classInfo[] = {
"clsHelloWorldTable",
o

};

HELWT8L. T8L

"HelloOpen" ,
"HelloClose",

objCallAncestorAfter,
objCallAncestorBefore,

clsHelloWorldMethods, 0,

1**
File: helwtbl.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 $
$Author: aloomis $

$Date: 16 Sep 1992 12:45:02 $

helwtbl.tbl contains the method table for clsHelloWin.

***1
II
II Include files
II
*ifndef CLSMGR_INCLUDED
*include <clsmgr.h>
*endif

*ifndef WIN_INCLUDED
*include <win.h>
*endif
MSG INFO clsHelloWinMethods []

msgInit,
msgFree,
msgWinRepaint,

"HelloWinInit",
"HelloWinFree",
"HelloWinRepaint",

objCallAncestorBefore,
objCallAncestorAfter,
0,

o
} ;

CLASS_INFO classInfo[] =
"clsHelloWinTable",
o

} ;

DLLINIT.C

clsHelloWinMethods, 0,

1**
File: dllinit. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.9 $
$Author: kcatlin $

$Date: 12 Aug 1992 17:09:56 $

This file contains the initialization routine for the Hello World dll.
**1
*ifndef CLSMGR_INCLUDED
*include <clsmgr.h>
*endif
*ifndef INTL_INCLUDED
*include <intl.h>
*endif
*ifndef DEBUG_INCLUDED
*include <debug.h>
*endif
II The creation routines for each class in this dll.
STATUS ClsHelloWinInit (void);

1**
DLLMain

Initialize DLL
**1
STATUS EXPORTED DLLMain (void)
{

(ODE

STATUS s;

Dbg(Debugf(U_L("Beginning hello.dll initialization."));)

StsRet(ClsHelloWinInit(), s);

Dbg(Debugf(U_L("Completed hello.dll initialization"));)

return stsOK;

HELLO WORLD (CUSTOM WINDOW)

UI

~

} 1* DLLMain *1

HELLO.C
1**
File: hello. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

1.11 $
kcatlin $

$Revision:
$Author:

$Date: 12 Aug 1992 17:10:06 $

This file contains the application class for a simple "Hello World"
application. It creates an instance of clsHelloWin and inserts it in
its frame.

It does not have any state it needs to save.
It does not have any instance data.

DEBUG FLAGS:

If you turn on the "FlO" debugging flag (e.g. by putting DEBUGSET=/DF0010
in \penpoint\boot\environ.ini), then messages to clsHelloWorld will be
traced.

***1
#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef APP_INCLUDED
Unclude <app.h>
#endif

#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef HELLOWIN_INCLUDED
#include <hellowin.h>
#endif

#ifndef _STRING_H_INCLUDED
#include <string.h>

II for debugging statements.

II for application messages.

II for AppMgr startup stuff

II for frame metrics.

II for frame metrics.

II clsHelloWin's UID & msgNew args.

II for strcpy().

#endif

#include <heltbl.h> II method definitions

1**
* Global variables and Defines *
***1

#define clsHelloWorld MakeWKN(2164,1,wknGlobal)

1*
* Methods *
* *1

1**
HelloOpen

Respond to msgAppOpen by creating a clsHelloWin instance and inserting
it as the frame's client window.

**1
MsgHandler(HelloOpen)
{

HELLO_WIN_NEW hwn;
APP_METRICS am;
STATUS s;

II Get the app's main window (its frame).
ObjCallRet(msgAppGetMetrics, self, &am, s);

II Create the Hello window.
ObjCallWarn(msgNewDefaults, clsHelloWin, &hwn);
ObjCallRet(msgNew, clsHelloWin, &hwn, s);

II Insert the Hello win in the frame.
ObjCallJmp(msgFrameSetClientWin, am.mainWin, (P_ARGS)hwn.object.uid,

s, exit);

II Ancestor will put it all on the screen.

return stsOK;
MsgHandlerParametersNoWarning; II suppress compiler warnings

about unused parameters

exit:
ObjCallWarn(msgDestroy, hwn.object.uid, pNull);
return s;

1* HelloOpen *1
1**

HelloClose

Respond to msgAppClose by destroying the client window.
**1
MsgHandler(HelloClose)
{

APP METRICS
WIN
STATUS

am;
clientWin;
S;

II Ancestor has taken the main window (frame) off the screen.

II Get the client window.

UI
0-
~

ObjCallRet(msgAppGetMetrics, self, &am, S)i

ObjCallRet(msgFrameGetClientWin, am.mainWin, &clientWin, S)i

II Destroy it.
ObjCallRet(msgDestroy, clientWin, objWKNKey, S)i

Dbg(Debugf (U_L ("Hello: back from freeing HelloWin"));)

II Update the frame since the client window is gone.
ObjCallRet(msgFrameSetClientWin, am.mainWin, (P_ARGS)objNull, s);
return stsOK;
MsgHandlerParametersNoWarning;

about unused parameters
II suppress compiler warnings

} 1* HelloClose *1

1**
ClsHelloInit

Install the Hello application.
**1
STATUS ClsHelloInit (void)
{

APP MGR NEW new;
STATUS s;

II Install the application class.
ObjCallWarn(msgNewDefaults, clsAppMgr, &new);
new.object.uid clsHelloWorld;
new.cls.pMsg clsHelloWorldTable;
new.cls.ancestor clsApp;
II This class has no instance data, so its size is zero.
new.cls.size = Nil(SIZEOF);
II This class has no msgNew arguments of its own.
new.cls.newArgsSize SizeOf(APP_NEW)i
new.appMgr.flags.stationery = truei
new.appMgr.flags.accessory = truei
Ustrcpy(new.appMgr.company, U_L("GO Corporation"));
ObjCallRet(msgNew, clsAppMgr, &new, S)i

if (DbgFlagGet('F', Ox10L)) {
Dbg(Debugf(U_L("Turning on message tracing for clsHelloWorld")) i)

(void)ObjCaIIWarn(msgTrace, clsHelloWorld, (P_ARGS) true)i

return stsOKi

1* ClsHelloInit *1
1**

main

Main application entry point.
**1
void CDECL main

S32
CHAR *
U32

argc,
argv[] ,
processCount)

Dbg(Debugf(U_L("main: starting Hello.exe[%d]"), processCount)i)

if (processCount == 0) {
II
II Initialize self.
II
II Note that the loader calls DLLMain in the Hello World DLL,
II which creates clsHelloWin.
II
ClsHelloInit () ;

II Invoke app monitor to install this application.
AppMonitorMain(clsHelloWorld, objNull)i

else {
II Start the application.
AppMain()i

Unused(argc); Unused(argv)i
1* main *1

HELLOWIN.C

II Suppress compiler warnings

1**
File: hellowin. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.14 $

$Author: aloomis $
$Date: 16 Sep 1992 12:45:12 $

This file contains a simple "Hello World" window subclass.

It creates a drawing context to paint a welcome message in self.
Since clsHelloWin doesn't use the DC anywhere else but msgWinRepaint,
it could create it on the fly during msgWinRepaint processing, but
instead clsHelloWin saves the DC in its instance data.
Since clsHelloWorld frees· the hello window upon receiving msgAppClose,
the DC doesn't take up space when the application is "closed down."

The repainting routine jumps through some geometryldrawing context hoops
to ensure that the drawing fits in the window yet remains proportionately
sized.

If you turn on the "F40" debugging flag (e.g. by putting DEBUGSET=/DF0040
in \penpoint\boot\environ.ini), then drawing takes places with thick lines
so that drawing operations are more visible. If you turn on the "F20"
debugging flag, messages to clsHelloWin will be traced.

**1
*ifndef DEBUG_INCLUDED

I 7 I SAMPLE CODE HELLO WORLD (CUSTOM WINDOW)

UI
0-
Cot

#include <debug.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef SYSGRAF_INCLUDED
#include <sysgraf.h>
#endif
#ifndef SYSFONT_INCLUDED
#include <sysfont.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif
#include <helwtbl.h>

#ifndef HELLOWIN_INCLUDED
#include <hellowin.h>
#endif

#ifndef OS HEAP_INCLUDED
#include <osheap.h>
#endif
#ifndef GOMATH_INCLUDED
#include <gomath.h>
#endif

#ifndef _STRING_H_INCLUDED
#include <string.h>
#endif

typedef struct INSTANCE_DATA
SYSDC dc;

II method definitions

II clsHelloWin's UID and msgNew args.

II for scale calc. in fixed point.

II for memset().

INSTANCE_DATA, *P_INSTANCE_DATA;

II Scale font to 100 units to begin with.
#define initFontScale 100
II Line thickness a twelfth of the font scale.
#define lineThickness 8

1*

* Methods *
* *1

1**
MESSAGE HANDLER: HelloWinlnit

Create a new window object.
**1
MsgHandler(HelloWinlnit)
{

SYSDC NEW
INSTANCE_DATA
SYSDC FONT SPEC
SCALE

dn;
data;
fSi

fontScalei

STATUS Si

II Null the instance data.
memset(&data, 0, SizeOf(data»;

II Create a dc.
ObjCaIIRet(msgNewWithDefaults,
data.dc = dn.object.uid;

clsSysDrwCtx, &dn, s);

II Rounded lines, thickness of zero.
ObjectCall(msgDcSetLineThickness, data.dc, (P_ARGS)O);
if (DbgFlagGet ('F', Ox40L» {

Dbg(Debugf(U_L("Use a non-zero line thickness."»;)
ObjectCall(msgDcSetLineThickness, data.dc, (P_ARGS)2)i

II Open a font. Use the "user input" font (whatever the user has
II chosen for this in System Preferences.
fs.id 0;
fs.attr.group sysDcGroupUserlnput;
fs.attr.weight sysDcWeightNorrnal;
fs.attr.aspect sysDcAspectNorrnal;
fs.attr.italic 0;
fs.attr.monospaced 0;
fs.attr.encoding sysDcEncodeGoSystem;
ObjCaIIJmp(msgDcOpenFont, data.dc, &fs, s, Error);

II
II Scale the font. The entire DC will be scaled in the repaint
II to pleasingly fill the window.
fontScale.x = fontScale.y = FxMakeFixed(initFontScale,O);
ObjectCall(msgDcScaleFont, data.dc, &fontScale);

II Bind the window to the dc.
ObjectCall(msgDcSetWindow, data.dc, (P_ARGS)self);

II Update the instance data.
ObjectWrite(self, ctx, &data);

return stsOK;

II suppress compiler warnings about unused parameters
MsgHandlerParametersNoWarning;

Error:

ObjCaIIWarn(msgDestroy, data.dc, Nil(OBJ_KEY»;

return S;

1* HelloWinlnit *1

1**
HelloWinFree

Free self.
**1
MsgHandlerWithTypes(HelloWinFree, P_ARGS, P_INSTANCE_DATA)
{

II Destroy the dc. (Assumes that this will not fail.)
II Note that pData is now invalid.
ObjCaIIWarn(msgDestroy, pData->dc, Nil(P_ARGS»;

UI

t

II Ancestor will eventually free self.
return stsOK;
MsgHandlerParametersNoWarning;

1* HelloWinFree *1

1**
HelloWinRepaint

Repaint the window. This is the only paint routine needed; clsHelloWin
relies on the window system to tell it when it needs (re) painting.

**1
MsgHandlerWithTypes(HelloWinRepaint, P_ARGS, P_INSTANCE_DATA)
{

SYSDC TEXT OUTPUT
S32
S32
SYSDC FONT METRICS
SIZE32
WIN METRICS
FIXED
SCALE
RECT32
XY32
STATUS

II

tx;
textWidth;
helloAdjust, worldAdjust;
fm;
drawingSize;
wm;
drawingAspect, winAspect;
scale;
dotRect;
bezier[4];
s;

II Determine size of drawing in 100 units to a point coord. system.
II The words "Hello" and "World" have no descenders (in most fonts!!).
II Height is font height (initFontScale) * 2 - the descender size.
II Width is max of the two text widths plus em.width (width of
II the exclamation point.
II
II Figure out the widths of the two text strings.

II Init tx.
memset(&tx, 0, SizeOf(tx»;
tx.underline = 0;
tx.alignChr = sysDcAlignChrBaseline;
tx.stop = maxS32;
tx.spaceChar = 32;

II Set the overall text width to whichever text string is wider.
tx.cp.x 0;
tx.cp.y 0;
tx.pText U_L("World");
tx.lenText Ustrlen(tx.pText);
ObjectCall(msgDcMeasureText, pData->dc, &tx);
textWidth tx.cp.x;

tx.cp.x 0;
tx.cp.y 0;
tx.pText U_L("Hello");
tx.lenText Ustrlen(tx.pText);
ObjectCall(msgDcMeasureText, pData->dc, &tx);

if (tx.cp.x > textWidth)
II "Hello" is wider
helloAdjust = 0;

}

worldAdjust = (tx.cp.x - textWidth) I 2;
textWidth = tx.cp.x;

else {
II "World" was wider
worldAdjust 0;
helloAdjust = (textWidth - tx.cp.x) I 2;

II Get font metrics.
ObjectCall(msgDcGetFontMetrics, pData->dc, &fm);

drawingSize.w = textWidth + fm.em.w;
II Remember, descenderPos is negative.
drawingSize.h = (2 * initFontScale) + fm.descenderPos;

II
II Must bracket all repainting with msgWinBegin/EndRepaint.
II The window system figures out which part of the window needs
II repainting, and restricts all painting operations to that update
II area.
II
ObjCallRet(msgWinBeginRepaint, pData->dc, pNull, s);

II Fill the background with white to start.
ObjectCall(msgDcFillWindow, pData->dc, pNull);

II
II We have determined the size- of the drawing in points.
II But if the window is much smaller than this the drawing will
II be cropped. So, we must scale it to fit the window.
II You can scale a DC to match the width and height of a window using
II dcUnitsWorld, but then the text would be stretched strangely.
II
II Instead, we'll compute a consistent scaling factor for the drawing.
II
II
II We need to first determine the size of the window.
II We send the message to the DC to get the size in DC units.
II
ObjCallJmp(msgWinGetMetrics, pData->dc, &wm, s, exit);

II Now decide whether to scale by the x or y coordinate.
II Have to hassle with Fixed Point!
drawingAspect = FxDivIntsSC(drawingSize.h, drawingSize.w);
winAspect = FxDivIntsSC(wm.bounds.size.h, wm.bounds.size.w);

if (winAspect > drawingAspect) {
II
II The window is "taller" than the drawing. Scale so the
II drawing fills the window horizontally.
II
Dbg(Debugf(U_L("Window is taller than drawing! Still must calculate

vertical offset!"»;)
scale.x = scale.y = FxDivIntsSC(wm.bounds.size.w, drawingSize.w);

I "7 I SAMPLE CODE HELLO WORLD (CUSTOM WINDOW)

\II
0-
\II

else
II
II The window is "wider" than the drawing. Scale so the
II drawing fills the window vertically.
II
Dbg(Debugf(U_L("Window is wider than drawing! Still must calculate

horizontal offset!"»;)
scale.x = scale.y = FxDivIntsSC(wm.bounds.size.h, drawingSize.h);

ObjectCall(msgDcScale, pData->dc, &scale);

II
II At this point a more sophisticated program would figure out
II which parts need redrawing based on the boundaries of the
II dirty area.
II
II Display the text.

II Display "Hello". tx was set to do this from before, but need to
II reset tx.lenText because msgDcMeasureText passes back in it the
II offset of the last character that would be drawn in it.
tx.cp.x = helloAdjust;
tx.cp.y = initFontScale;
tx.lenText = Ustrlen(tx.pText);
ObjectCall(msgDcDrawText, pData->dc, &tx);

II Display "World".
tx.cp.x = worldAdjust;
tx.cp.y = 0;
tx.pText = U_L("World");
tx.lenText = Ustrlen(tx.pText);
ObjectCall(msgDcDrawText, pData->dc, &tx);

II Paint the exclamation point.
ObjectCall(msgDcSetForegroundRGB, pData->dc, (P_ARGS)sysDcRGBGray66);
II Want Foreground color of Gray for edges of Exclamation Point.
ObjectCall(msgDcSetBackgroundRGB, pData->dc, (P_ARGS)sysDcRGBGray33);
ObjectCall(msgDcSetLineThickness, pData->dc, (P_ARGS)lineThickness);

II Paint the teardrop.
II First the left half ...
bezier[O].x = textWidth + (fm.em.w I 2);
bezier[O] .y = fm.ascenderPos;
bezier[l] .x = textWidth;
bezier[l] .y = initFontScale * 3 I 2;
bezier[2] .x = bezier[l] .x;
bezier[2] .y = initFontScale + fm.ascenderPos;
bezier[3] .x = bezier[O] .x;
bezier[3] .y = bezier[2] .y;
ObjectCall(msgDcDrawBezier, pData->dc, bezier);

II Then the right half ...
bezier[l] .x = textWidth + fm.em.w;

_bezier[2].x =bezier[l] .x;
ObjectCall(msgDcDrawBezier, pData->dc, bezier);

II Paint the dot.
dotRect.origin.x = textWidth + (fm.em.w - (fm.ascenderPos I 2» I 2;
dotRect.origin.y = lineThickness I 2;
dotRect.size.w = dotRect.size.h = fm.ascenderPos I 2;
ObjectCall(msgDcDrawEllipse, pData->dc, &dotRect);

II Fall through to return.
s = stsOK;

exit:
ObjCaIIWarn(msgWinEndRepaint, self, Nil(P_ARGS»;

II Need to restore state if no errors, so might as well do it always.
ObjectCall(msgDcSetForegroundRGB, pData->dc, (P_ARGS)sysDcRGBBlack);
ObjectCall(msgDcSetBackgroundRGB, pData->dc, (P_ARGS)sysDcRGBWhite);
ObjectCall(msgDcSetLineThickness, pData->dc, (P_ARGS)O);
if (DbgFlagGet ('F', Ox40» {

Dbg(Debugf(U_L("Use a non-zero line thickness."»;)
ObjectCall(msgDcSetLineThickness, pData->dc, (P_ARGS)2);

return s;
MsgHandlerParametersNoWarning;

1* HelloWinRepaint *1

1**'
CIsHelloWinlnit

Install the class.
**1
STATUS CIsHelloWinInit (void)
{

CLASS NEW new;
STATUS s;

II Create the class.
ObjCaIIWarn(msgNewDefaults, clsClass, &new);
new.object.uid clsHelloWin;
new.cls.pMsg clsHelloWinTable;
new. cIs. ancestor clsWin;
new.cls.size SizeOf(INSTANCE_DATA);
new.cls.newArgsSize SizeOf(HELLO_WIN_NEW);
ObjCaIIRet(msgNew, clsClass, &new, s);

if (DbgFlagGet ('F', Ox20» {
Dbg(Debugf(U_L("Turning on message tracing for clsHelloWin"»;)
(void)ObjCaIIWarn(msgTrace, clsHelloWin, (P_ARGS) true);

return stsOK;

1* CIsHelloWinInit *1

VI
0.
0.

HELLOWIN.H
/**
File: hellowin.h
(C) Copyright 1992 by GO Corporation, All Rights Reserved.
You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.9 $

$Author: kcatlin $
$Date: 12 Aug 1992 17:10:30 $

This file contains the API definition for clsHelloWin.
clsHelloWin inherits from clsWin.
It has no messages or msgNew arguments.

**/
tifndef HELLOWIN_INCLUDED
fdefine HELLOWIN_INCLUDED
fifndef CLSMGR_INCLUDED
finclude <clsmgr.h>
fendif
fifndef WIN_INCLUDED
finclude <win.h>
fendif
/**
* Global variables and Defines *
***/

fdefine clsHelloWin MakeWKN(2165,1,wknGlobal)

/**
* Common 'defines and typedefs *
***/

fdefine helloWinNewFields \
winNewFields

typedef struct {
helloWinNewFields

} HELLO_WIN_NEW, *P_HELLO_WIN_NEW;

fendif

I 7 I SAMPLE CODE HElLO WORLD (CUSTOM WINDOW)

UI
0-....

Counter Application

Counter Application displays a number on the screen. Every time you turn to its
page, Counter Application increments the number. It also lets you choose the for
mat in which to display the number (decimal, octal, or hexadecimal).

Objectives

Counter Application is the basis for many of the early labs in the PenPoint Program
ming Workshop. This sample application also shows how to:

.. Save and restore application state.

.. Memory-map state data.

.. Separate text strings from your code and put them in separate resource files so
that they can be translated into other languages without requiring recompila
tion.

.. Define tags for strings used as resources.

.. Retrieve strings from resource files using ResUtilGetListStringO.

.. Compose "international" strings using SComposeTextO.

.. Use strings contained in a resource file for menu buttons.

Class overview

Counter Application defines two classes: clsCntr and clsCntrApp. It makes use of
the following classes:

clsApp

clsAppMgr

clsClass

clsFileHandle

clsMenu

clsMenuButton

clsObject

clsLabel

Files used

The code for Counter Application is in PENPOINT\SDK\SAMPLE\CNTRAPP. The files
are:

METHODS.TBL method tables for Counter Application.

CNTRC clsCntr's code and initialization.

CNTRH header file for clsCntr.

CNTRAPP.C clsCntrApp's code and initialization.

CNTRAPP.H header file for clsCntrApp.

JPN.RC strings for the Japanese version (not listed here for typographical rea
sons).

USARC strings for the USA version.

METHODS. T8L
/**
File: methods.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.7 $

$Author: aloomis $
$Date: 27 Jul 1992 10:49:36 $

This file contains the method tables for the classes in CntrApp.
**/
fifndef CLSMGR_INCLUDED
finclude <clsmgr.h>
fendif

fifndef APP_INCLUDED
finclude <app.h>
fendif

fifndef CNTR_INCLUDED
finclude <cntr.h>
fendif
fifndef CNTRAPP_INCLUDED
finclude <cntrapp.h>
fendif

UI
0-eo

MSG_INFO clsCntrMethods[]
msgNewDefaults,
msgInit,

o
};

msgSave,
msgRestore,
msgFree,
msgCntrGetValue,
msgCntrIncr,

MSG_INFO clsCntrAppMethods[]
msgInit,

};

msgSave,
msgRestore,
msgFree,
msgAppInit,
msgAppOpen,
msgAppClose,
msgCntrAppChangeFormat,
o

CLASS_INFO classInfo[] = {

"CntrNewDefaults",
"CntrInit" ,
"CntrSave" ,
"CntrRestore" ,
"CntrFree" ,
"CntrGetValue" ,
"CntrIncr",

"CntrAppInit",
"CntrAppSave" ,
"CntrAppRestore" ,
"CntrAppFree" ,
"CntrAppAppInit",
"CntrAppOpen",
"CntrAppClose",
"CntrAppChangeFormat" ,

"clsCntrTable", clsCntrMethods, 0,
"clsCntrAppTable", clsCntrAppMethods, 0,
o

} ;

CNTR.C

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,
0,
0,

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
0,

1**
File: cntr.c
(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.9.1.0 $
$Author: aloomis $

$Date: 13 Nov 1992 12:00:40 $

This file contains the class definition and methods for clsCntr.

**1
tifndef DEBUG_INCLUDED
tinclude <debug.h>
tendif

tifndef FS_INCLUDED

Hnclude <fs.h>
tendif

tifndef INTL_INCLUDED
iinclude <intl.h>
iendif

iifndef CNTR_INCLUDED
iinclude <cntr.h>
tendif

tinclude <methods.h>
1*

* Defines, Types, Globals, Etc *
* *1

typedef struct CNTR_INST

S32 currentValue;

CNTR_INST,
*P_CNTR_INST;

1*

* Message Handlers *
* *1

1**
CntrNewDefaults
Respond to msgNewDefaults.

**1
MsgHandlerArgType(CntrNewDefaults, P_CNTR_NEW)
{

Dbg(Debugf(U_L("Cntr:CntrNewDefaults"»;)

II Set default value in new struct.
pArgs->cntr.initiaIValue = 0;

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrNewDefaults *1

1**
CntrInit

Respond to msgInit.
**1
MsgHandlerArgType(CntrInit, P_CNTR_NEW)
{

CNTR_INST inst;

Dbg(Debugf (U_L ("Cntr:CntrInit"));)

II Set starting value.
inst.currentValue ; pArgs->cntr.initiaIValue;

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrInit *1

I 7 / SAMPLE CODE COUNTER APPLICATION

VI

~

1**
CntrSave

Respond to msgSave.
**1
MsgHandlerArgType(CntrSave, P_OBJ_SAVE)
{

STREAM_READ_WRITE fsWrite;
STATUS S;

Dbg(Debugf (U_L ("Cntr:CntrSave")) ;)

II
II Write instance to the file.
II
fsWrite.numBytes= SizeOf(CNTR_INST);
fsWrite.pBuf= pData;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrSave *1

1**
CntrRestore

Respond to msgRestore.
**1
MsgHandlerArgType(CntrRestore, P_OBJ_RESTORE)
{

CNTR_INST insti
STREAM_READ_WRITE fsRead;
STATUS Si

Dbg(Debugf(U_L("Cntr:CntrRestore"));)

II
II Read instance data from the file.
II
fsRead.numBytes= SizeOf(CNTR_INST)i
fsRead.pBuf= &insti
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, S)i

II
II Update instance data.
II
ObjectWrite(self, ctx, &inst)i

return stsOKi
MsgHandlerParametersNoWarningi

1* CntrRestore *1

1**
CntrFree
Respond to msgFree.

**1
MsgHandler(CntrFree)
{

Dbg(Debugf(U_L("Cntr:CntrFree"));)

return stsOKi
MsgHandlerParametersNoWarning;

1* CntrFree *1

1**
CntrGetValue

Respond to msgCntrGetValue.
**1
MsgHandlerWithTypes(CntrGetValue, P_CNTR_INFO, P_CNTR_INST)
{

Dbg(Debugf(U_L("Cntr:CntrGetValue")) i)

pArgs->value = pData->currentValue;

return stsOKi
MsgHandlerParametersNoWarning;

1* CntrGetValue *1

1**
CntrIncr

Respond to msgCntrIncr.
**1
MsgHandlerWithTypes (CntrIncr, P_ARGS, P_CNTR_INST)
{

CNTR_INST inst;

Dbg(Debugf(U_L("Cntr:CntrIncr")) i)

inst = *pData;

inst.currentValue++i

ObjectWrite(self, ctx, &inst)i

return stsOKi
MsgHandlerParametersNoWarningi

1* CntrIncr *1

1*

* Installation *
* *1

1**
ClsCntrInit

Create the class.
**1

STATUS GLOBAL
ClsCntrInit (void)
{

CLASS NEW new i
STATUS Si

ObjCallJmp(msgNewDefaults, clsClass, &new, s, Error)i

new.object.uid
new.cls.pMsg

= clsCntri
clsCntrTablei

UI

~

new.cIs.ancestor cIsObjecti
new.cIs.size SizeOf(CNTR_INST)i
new.cIs.newArgsSize SizeOf(CNTR_NEW)i
ObjCaIIJmp(msgNew, cIsCIass, &new, s, Error)i
return stsOKi

Error:
return Si

} /* ClsCntrInit */

CNTR.H
/**
File: cntr.h
(C) Copyright 1992 by GO Corporation, All Rights Reserved.
You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.7 $

$Author: aloomis $
$Date: 27 Jul 1992 10:48:50 $

This file contains the API definition for clsCntr.
**/
fifndef CNTR_INCLUDED
tdefine CNTR_INCLUDED
tifndef CLSMGR_INCLUDED
iinclude <clsmgr.h>
fendif
idefine clsCntr MakeWKN(1, 1, wknPrivate)
fdefine stsCntrMaxReached MakeStatus(clsCntr, 1)

STATUS GLOBAL ClsCntrInit (void)i

/**
msgNew takes P_CNTR_NEW, returns STATUS

Creates a new counter object.
**/

typedef struct CNTR_NEW_ONLY
S32 initialValuei

CNTR_NEW_ONLY, *P_CNTR_NEW_ONLYi
fdefine cntrNewFields \

objectNewFields \
CNTR NEW ONLY cntri

typedef struct CNTR_NEW
cntrNewFields

CNTR_NEW, *P_CNTR_NEWi
/**
msgCntrIncr takes void, returns STATUS

Bumps counter value by one.
**/
tdefine msgCntrIncr MakeMsg(clsCntr, 1)
/**
msgCntrGetValue takes P_CNTR_INFO, returns STATUS

Passes back counter value.
**/
tdefine msgCntrGetValue MakeMsg(clsCntr, 2)
typedef struct CNTR_INFO

S32 valuei
CNTR _INFO, *P _ CNTR INFO;

tendif / / CNTR _INCLUDED

CNTRAPP.C
/**
File: cntrapp.c
(C) Copyright 1992 by GO Corporation, All Rights Reserved.
You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.14.1.0 $

$Author: aloomis $
$Date: 13 Nov 1992 12:01:16 $

This file contains the implementation of the counter application class.

**/
fifndef APP_INCLUDED
Unclude <app.h>
fendif
fifndef APPMGR_INCLUDED
finclude <appmgr.h>
fendif
fifndef OS_INCLUDED
Unclude <os.h>
iendif
fifndef RESFILE INCLUDED
finclude <resfile.h>

7 I SAMPLE CODE COUNTER APPLICATION

UI

:::!

#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif
#ifndef TKTABLE INCLUDED
#include <tktable.h>
#endif

#ifndef MENU_INCLUDED
#include <menu.h>
#endif

#ifndef CMPSTEXT_INCLUDED
#include <cmpstext.h>
#endif
#ifndef RESUTIL INCLUDED
#include <resutil.h>
#endif

#ifndef CNTR_INCLUDED
#include <cntr.h>
#endif
#ifndef CNTRAPP INCLUDED
#include <cntrapp.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef BRIDGE INCLUDED
#include <bridge.h>
#endif
#include <methods.h>

#include <string.h>
#include <stdio.h>
1*

* Defines, Types, Globals, Etc *
* *1

II
II You have to set a maximum size to map for a memory-mapped file, so pick
II something reasonable that's larger than the actual file size.
II
tdefine cntrAppMemoryMapSize 512

typedef enum CNTRAPP_DISPLAY_FORMAT

dec, oct, hex

CNTRAPP_D I SPLAY_FORMAT ,
*P_CNTRAPP_DISPLAY_FORMAT;

typedef struct CNTRAPP INST

1*

P CNTRAPP DISPLAY FORMAT - - -
OBJECT
OBJECT

CNTRAPP_INST,
*P_CNTRAPP_INST;

pFormat;
fileHandle;
counter;

* Here we use tags that are associated with strings in a resource file
* for the name of our menu and the menu items.

*
* When using tags in a TKTable, the fifth field must be an id that gives
* the type of the tag. If there is an item already in the fifth field,
* you can 'or' the two field items, and the system will know which one
* to use.
*1

static const TK_TABLE_ENTRY CntrAppMenuBar[] = {

} ;

{tagCntrMenu, 0, 0, 0, tkMenuPullDown I tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},

{pNull}

1*
* Local Functions
* *1

1**
BuildString

Local function to build a label string
**1
STATUS LOCAL BuildString(

II

P_CHAR p,
P CNTRAPP_INST pData)

CNTR_INFO ci;
STATUS s;
U32 size;
CHAR
CHAR

buffer[MINSTRLEN];
resStr[MAXSTRLEN];

ObjCallRet(msgCntrGetValue, pData->counter, &ci ,s);

1*
* Construct representation-dependent string for value of counter.
*1

switch (*(pData->pFormat)) {

case dec:
Usprintf (buffer, U_L ("%d"), ci. value);
break;

case oct:
Usprintf (buffer, U_L ("%0"), ci. value) ;

UI

~

1*

break;
case hex:

Usprintf(buffer, U_L("%x"), cLvalue);
break;

default:
size = sizeof(p) I sizeof(CHAR);
ResUtilGetListString(p, size, resGrpMisc, tagCntrUnknown);
return stsOK;
break;

* Retrieve format string from resource file, and construct display
* string from format string and counter value.
*1

size = MAXSTRLEN;
SComposeTextL (&p, &size, pNull, resGrpMisc, tagCntrMessage, buffer);

return stsOK;

1* BuildString *1

1*
* Message Handlers *
* *1

1**
CntrApplnit

Respond to msglnit.

**1
MsgHandler(CntrApplnit)
{

CNTRAPP_INST inst;
Dbg(Debugf(U_L("CntrApp:CntrApplnit"»;)

inst.counter = pNull;
inst.fileHandle = pNull;
inst.pFormat = pNull;

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrApplnit *1

1**
CntrAppSave

Respond to msgSave.

Save the counter object using ResPutObject. The counter will
receive msgSave and save any data it needs.

The application doesn't need to save any data, the format data is
memory mapped.

**1

MsgHandlerWithTypes(CntrAppSave, P_OBJ_SAVE, P_CNTRAPP_INST)
{

STATUS s;

Dbg(Debugf(U_L("CntrApp:CntrAppSave"»;)

II Save the counter object.
ObjCallRet(msgResPutObject, pArgs->file, pData->counter, s);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrAppSave *1

1**
CntrAppRestore

Respond to msgRestore.

Open the file holding the application data, memory map the file.
Restore the counter object by sending msgResGetObject -- the counter
will receive msgRestore.

**1
MsgHandlerWithTypes(CntrAppRestore, P_OBJ_RESTORE, P_CNTRAPP_INST)
{

FS NEW fsn;
CNTRAPP INST inst;
STATUS s;

Dbg(Debugf(U_L("CntrApp:CntrAppRestore"»;)

II
II Get handle for format file, and save the handle.
II The default for fsn.fs.locator.uid is theWorkingDir, which
II is the document's directory.
II
ObjCallWarn(msgNewDefaults, clsFileHandle, &fsn);
fsn.fs.locator.pPath = U_L("formatfile");
ObjCallRet(msgNew, clsFileHandle, &fsn, s);

inst.fileHandle = fsn.object.uid;

II
II Map the file to memory
II
ObjCallRet(msgFSMemoryMapSetSize, fsn.object.uid, \

(P_ARGS) (SIZEOF)cntrAppMemoryMapSize, s);
ObjCallRet(msgFSMemoryMap, fsn.object.uid, &inst.pFormat, s);

II Restore the counter object.
ObjCallJmp(msgResGetObject, pArgs->file, &inst.counter, s, Error);

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

Error:

return S;

1* CntrAppRestore *1

I 7 I SAMPLE CODE COUNTER APPLICATION

UI

~

1**
CntrAppFree

Respond to msgFree.
**1
MsgHandlerWithTypes(CntrAppFree, P_ARGS, P_CNTRAPP_INST)
{

STATUS s;
Dbg(Debugf(U_L("CntrApp:CntrAppFree"));)

ObjCaIIRet(msgDestroy, pData->counter, Nil(P_ARGS), s);

II Unmap the file
ObjCaIIRet(msgFSMemoryMapFree, pData->fileHandle, Nil (P_ARGS), s);

II Free the file handle
ObjCaIIRet(msgDestroy, pData->fileHandle, Nil (P_ARGS), s);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrAppFree *1

1**
Cnt rAppAppI nit
Respond to msgAppInit.
Create the file to hold the memory mapped data.

**1
MsgHandlerWithTypes (CntrAppAppInit, P_ARGS, P_CNTRAPP_INST)
{

CNTR_NEW cn;
FS_NEW fsn;
STREAM_READ_WRITE fsWrite;
CNTRAPP_DISPLAY_FORMAT format;
CNTRAPP INST inst;
STATUS s;

Dbg(Debugf(U_L("CntrApp:CntrAppAppInit"));)

inst = *pData;

II
II Create the counter object.
II
ObjCaIIWarn(msgNewDefaults, clsCntr, &cn);
cn.cntr.initiaIValue = 42;
ObjCaIIRet(msgNew, clsCntr, &cn, s);

inst.counter = cn.object.uid;

II
II Create a file, fill it with a default value
II The default for fsn.fs.locator.uid is theWorkingDir, which
II is the document's directory.
II
ObjCaIIWarn(msgNewDefaults, clsFileHandle, &fsn);
fsn.fs.locator.pPath = U_L("formatfile");
ObjCaIIRet(msgNew, clsFileHandle, &fsn, s);

format = dec;

fsWrite.numBytes = SizeOf(CNTRAPP_DISPLAY_FORMAT);
fsWrite.pBuf = &format;
ObjCaIIRet(msgStreamWrite, fsn.object.uid, &fsWrite, s);

inst.fileHandle = fsn.object.uid;

II
II Map the file to memory
II
ObjCaIIRet(msgFSMemoryMapSetSize, fsn.object.uid, \

(P_ARGS) (SIZEOF)cntrAppMemoryMapSize, s);
ObjCaIIRet(msgFSMemoryMap, fsn.object.uid, &inst.pFormat, s);

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrAppAppInit *1

1**
CntrAppOpen

Respond to msgAppOpen.

It's important that the ancestor be called AFTER all the frame
manipulations in this routine because the ancestor takes care of any
layout that is necessary.

**1
MsgHandlerWithTypes(CntrAppOpen, P_ARGS, P_CNTRAPP_INST)
{

APP _METRICS am;
MENU_NEW ron;
LABEL_NEW In;
STATUS s;
CHAR buf[MAXSTRLEN];

Dbg(Debugf(U_L("CntrApp:CntrAppOpen"));)

II Increment the counter.
ObjCaIIRet(msgCntrIncr, pData->counter, Nil (P_ARGS), s);

II Build the string for the label.
StsRet(BuildString(buf, pData), s);

II Create the label.
ObjCallWarn (msgNewDefaults, clsLabel, &In);
In.label.pString = buf;
In.label.style.scaleUnits = bsUnitsFitWindowProper;
In.label.style.xAlignment = IsAlignCenter;
In.label.style.yAlignment = IsAlignCenter;
ObjCallRet (msgNew, clsLabel, &In, s);

II Get app metrics.
ObjCaIIJmp(msgAppGetMetrics, self, &am, s, Error);

II Set the label as the clientWin.
ObjCaIIJmp(msgFrameSetClientWin, am.mainWin, In.object.uid, s, Error);

II Create and add menu bar.
ObjCaIIJmp(msgNewDefaults, clsMenu, &ron, s, Error);

UI

~

mn.tkTable.client = self;
mn.tkTable.pEntries = CntrAppMenuBar;
ObjCaIIJmp(msgNew, clsMenu, &mn, s, Error);

ObjCaIIJmp(msgAppCreateMenuBar, self, &mn.object.uid, s, Error);
ObjCaIIJmp(msgFrameSetMenuBar, am.mainWin, mn.object.uid, s, Error);
return stsOK;
MsgHandlerParametersNoWarning;

Error:
return s;

} 1* CntrAppOpen *1

1**
CntrAppClose

Respond to msgAppClose.
Be sure that the ancestor is called FIRST. The ancestor extracts the
frame, and we want the frame extracted before performing surgery on it.

**1
MsgHandler(CntrAppClose)
{

APP _METRICS am;
STATUS s;

Dbg (Debugf (U _ L ("CntrApp : CntrAppClose")) ;)

II Free the menu bar.
ObjCaIIJmp(msgAppGetMetrics, self, &am, s, Error);
ObjCaIIJmp(msgFrameDestroyMenuBar, am.mainWin, pNull, s, Error);

return stsOK;
MsgHandlerParametersNoWarning;

Error:
return s;

1* CntrAppClose *1

1**
CntrAppChangeFormat

Respond to msgCntrAppChangeFormat.
Update the memory mapped data.

**1
MsgHandlerWithTypes(CntrAppChangeFormat, P_ARGS, P_CNTRAPP_INST)
{

APP METRICS am;
WIN
STATUS
CHAR

thelabel;
s;
buf [MAXSTRLEN] ;

Dbg(Debugf(U_L("CntrApp:CntrAppChangeFormat"));)

II
II Update mmap data
II
* (pData->pFormat) = (CNTRAPP_DISPLAY_FORMAT) (U32)pArgs;

II Build the string for the label.
StsRet(BuildString(buf, pData), s);

II Get app metrics.
ObjCaIIRet(msgAppGetMetrics, self, &am, s);

II Get the clientWin.
ObjCaIIRet(msgFrameGetClientWin, am.mainWin, &thelabel, s);

II Set the label string.
ObjCaIIRet(msgLabeISetString, thelabel, buf, s);

return stsOK;
MsgHandlerParametersNoWarning;

1* CntrAppChangeFormat *1

1*
* Installation *
* *1

1**
CIsCntrAppInit

Create the application class.
**1

STATUS GLOBAL
CIsCntrAppInit (void)
{

APP_MGR_NEW new;
STATUS s;
ObjCaIIJmp(msgNewDefaults, clsAppMgr, &new, s, Error);

new.object.uid = clsCntrApp;
new.cls.pMsg clsCntrAppTable;
new. cIs. ancestor clsApp;
new.cls.size SizeOf(CNTRAPP_INST);
new.cls.newArgsSize SizeOf(APP_NEW);

hfdef PP1_0
strcpy(new.appMgr.defaultDocName, "Counter Application");
strcpy(new.appMgr.company, "GO Corporation");
new.appMgr.copyright = "1992 GO Corporation, All Rights Reserved";

fendif II PP1_0
ObjCaIIJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

Error:
return s;

} 1* CIsCntrApplnit *1

1**
main

Main application entry point.
**1
void CDECL
main (

S32
CHAR *
U32

argc,
argv[],
processCount)

I SAMPlf (ODE COUNTER APPLICATION

UI
UI

if (processCount == 0) {

StsWarn(ClsCntrApplnit(»;
AppMonitorMain(clsCntrApp, objNull);

else {

StsWarn(ClsCntrlnit(»;
AppMain();

Unused(argc); Unused(argv); II Suppress compiler's "unused parameter"
warnings
} 1* main *1

CNTRAPP.H
1**
File: cntrapp.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL,INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.7 $
$Author: aloomis $

$Date: 27 Jul 1992 10:49:02 $
This file contains definitions for clsCntrApp.

**1
'ifndef CNTRAPP_INCLUDED
'define CNTRAPP_INCLUDED

,ifndef CLSMGR_INCLUDED
'include <clsmgr.h>
'endif
1***
* Global Variables and Defines *
***1

II Define a well known UID for the app
fdefine clsCntrApp MakeWKN(555, 1, wknGlobal)

1***
* Common Defines and Typedefs *
***1

1*
* The RES IDs for the resource lists used with the TAGs.
*1

tdefine resCntrTK
Idefine resCntrMisc

1*

MakeListResld (clsCntrApp, resGrpTK, 0)
MakeListResld (clsCntrApp, resGrpMisc, 0)

* TAGs used to identify toolkit strings.
*1

'define tagCntrMenu
fdefine tagCntrDec
fdefine tagCntrOct
fdefine tagCntrHex

1*

MakeTag (clsCntrApp, 0)
MakeTag (clsCntrApp, 1)
MakeTag (clsCntrApp, 2)
MakeTag (clsCntrApp, 3)

* TAGs used to identify miscellaneous CNTRAPP strings.
*1

fdefine tagCntrMessage
fdefine tagCntrUnknown

fdefine MAXSTRLEN
fdefine MINSTRLEN

MakeTag (clsCntrApp, 4)
MakeTag (clsCntrApp, 5)

30
5

1***
* Messages for clsCntrApp *
***1

fdefine msgCntrAppChangeFormat MakeMsg(clsCntrApp,1)

fendif II CNTRAPP INCLUDED

USA.RC
1**
File: usa.rc

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS"), WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.7 $
$Author: kcatlin $
$Date: 17 Aug 1992 11:04:14 $

usa.rc is the English language resource file for the Counter Application.
In addition to the standard application resources, the Counter App also
makes use of toolkit resources to store the string values for the
Representation menu and the menu items, and miscellaneous resources to
store the messages that are printed out in the drawing area. The
Counter App does not use Quick Help strings or Standard Message strings.

***1
lifndef RESCMPLR_INCLUDED
finclude <rescmplr.h>
fendif

fifndef APPTAG INCLUDED
finclude <apptag.h>
fendif

II Resource ID & TAGs for app framework

UI
(;!

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef BRIDGE_INCLUDED
#include <bridge.h>
#endif

#ifndef CNTRAPP_INCLUDED
#include "cntrapp.h"
#endif

II Resource IDs & TAGs for this project.

1**
A P P F ram e w 0 r k S t r i n g s

***1
static RC TAGGED STRING appStrings []

} ;

- -
II Default document name
tagAppMgrAppDefaul tDocName, U _ L ("Counter Application"),

II The company that produced the program.
tagAppMgrAppCompany, U_L{"GO Corporation"),

II The copyright string.
tagAppMgrAppCopyright,
U_L{"\xOOA9 Copyright 1992 by GO Corporation, All Rights Reserved."),

II User-visible filename. 32 chars or less.
tagAppMgrAppFilename,
U_L{"Counter Application"),

II User-visible file type. 32 chars or less.
tagAppMgrAppClassName,
U_L ("Application"),

Nil (TAG) II end of list marker

static RC INPUT app =
resAppMgrAppStrings, II standard resource ID for APP strings
appStrings, II pointer to string array
0, II data length; ignored for string arrays
resTaggedStringArrayResAgent II How to interpret the data pointer

};

1**
Too I kit S t r i n g s

***1
1*
* Strings used by toolkit elements in CNTRAPP. In this case, there are
* only the Representation menu and its menu items.
*1

static RC_TAGGED STRING tkStrings[] = {
II Representation menu
tagCntrMenu, U _ L ("Representation") ,

II Decimal menu item
tagCntrDec, U_L{"Dec"),

II Octal menu item
tagCntrOct, U_L{"Oct") ,

};

II Hexagonal menu item
tagCntrHex,

Nil (TAG)

U_L{"Hex"),

static RC INPUT
resCntrTK,

tk

} ;

tkStrings,
0,
resTaggedStringArrayResAgent

1**
Qui c k H e IpS t r i n g s

(not used)
***1
1**

Mis c e I I a n e 0 u sSt r i n g s
***1
static RC TAGGED STRING miscStrings []

};

- -
II
II Message used to display counter value. The ,A1s' arguement allows
II the code to fill in the appropriate value based on the user's menu
II choice.
II
tagCntrMessage, U_L{"The counter value is: A1s"),

II
II Message indicating an unknown representation type.
II
tagCntrUnknown,

Nil (TAG)

U_L{"Representation type unknown."),

static RC INPUT
resCntrMisc,

mise

miscStrings,
0,
resTaggedStringArrayResAgent

} ;

1**
S tan dar d M e s sag eSt r i n g s

(not used)
***1

1**
Lis t o f Res 0 u r c e s

***1
P RC INPUT

&app,
&tk,
&misc,
pNull

};

reslnput [] = {

II the Application Framework strings
II the TK strings for CNTRAPP
II the Misc strings for CNTRAPP
II End of list.

'7 I SAMPLE CODE COUNTER APPLICATION

UI

Tic-Tac-Toe

Tic-Tac-Toe displays a tic-tac-toe board and lets the user enter Xs and Os on it. It is
not a true computerized game-the user does not play tic-tac-toe against the com
puter. Instead, it assumes that there are two users who want to play the game against
each other.

Although a tic-tac-toe game is not exactly a typical notebook application, Tic-Tac
Toe has many of the characteristics of a full-blown PenPoint application. It has a
graphical interface, handwritten input, keyboard input, gesture support, use of the
notebook metaphor, versioning of filed data, selection, move/copy, option cards,
undo support, stationery, help text, and so on.

Objectives

This sample application shows how to:

• Store data in a separate data object.

• Display data in a view.

• Accept handwritten and keyboard input.

• Implement gesture handling.

• Support most of the standard application menus (move, copy, delete, and undo,
for example).

• Add application-specific menus.

• Add application-specific option cards.

• Provide help.

• Provide quick help (using tags in the resource list) for the view, an option card,
and the controls in the option card.

• Provide stationery documents.

• Have both large and small application-specific document icons.

• Provide customized undo strings.

• Use ClsSymbolslnitO.

• SpecifY an application version number.

Class overview

Tic-Tac-Toe defines three classes: clsTttApp, clsTttView, and clsTttData. It makes
use of the following classes:

clsApp

clsAppMgr

clsClass

clsFileHandle

clsIntegerField

clsIP

clsKey

clsMenu

clsNote

clsObject

clsOption Table

clsPen

clsScrolIWin

clsSysDrwCtx

clsView

clsXferList

clsXGesture

clsXText

Files used

The code for Tic-Tac-Toe is in PENPOINT\SDK\SAMPLE\TTT. The files are:

METHODS.TBL the method tables for all of the Tic-Tac-Toe classes.

TTTAPP.C clsTttApp's code and initialization.

TTTAPP.H header file for the application class.

TTTDATA.C clsTttData's code and initialization.

TTTDATA.H header file for the data class.

TTTDBG.C debugging-related message handlers.

TTTMBAR.C menu bar-related message handlers.

TTTPruv.H private include file for Tic-Tac-Toe.

UI

~

TTTUTIL.C utility functions.

TTTVIEW.C clsTttView's code and initialization.

TTTVIEW.H header file for the view class.

TTTVOPT.C clsTttView's option card-related message handlers.

TTTVXFERC clsTttView's data transfer-related message handlers.

S_TTT.C symbol name definitions and call to ClsSymbolslnitO (this file is

generated automatically).

JPN.RC strings for the Japanese version (not listed here for typographical
reasons).

USA.RC strings for the USA version.

FILLED.TXT stationery file (filled with Xs and Os).

RULES.TXT help file (containing the rules for the game).

STRAT.TXT help file (containing a strategy for playing the game).

XSONLY.TXT stationery file (partially filled, with Xs only).

METHODS. TBL
/**
File: methods.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.7 $
$Author: kcatlin $
$Date: 13 Jul 1992 10:31:50 $

This file contains the method tables for the classes in TttApp.
**/
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef TTTPRIV_INCLUDED
#include <tttpriv.h>
#endif

#ifndef TTTDATA_INCLUDED
#include <tttdata.h>

#endif

#ifndef TTTVIEW_INCLUDED
#include <tttview.h>
#endif

#ifndef TTTAPP_INCLUDED
#include <tttapp.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef SEL_INCLUDED
#include <sel.h>
#endif

#ifndef GWIN_INCLUDED
#include <gwin.h>
#endif

#ifndef OPTION_INCLUDED
#include <option.h>
#endif

#ifndef UNDO_INCLUDED
#include <undo.h>
#endif

#ifndef XFER_INCLUDED
#include <xfer.h>
#endif

MSG_INFO clsTttViewMethods[]
msgNewDe fault s ,
msgInit,
msgFree,
msgSave,
msgRestore,

#ifdef DEBUG
msgDump,

#endif
msgTttDataChanged,
msgWinRepaint,
msgWinGetDesiredSize,
msgGWinGesture,
msgTttViewGetMetrics,
msgTttViewSetMetrics,
msgTttViewToggleSel,
msgTttViewTakeSel,
msgInputEvent,
msgXferGet,
msgXferList,

CODE

"TttViewNewDefaults",
"TttViewInit",
"TttViewFree",
"TttViewSave",
"TttViewRestore",

objCallAncestorBefore,
0,
objCallAncestorAfter,
objCallAncestorBefore,
objCallAncestorBefore,

"TttViewDump" , objCallAncestorBefore,

"TttViewDataChanged",
"TttViewRepaint",
"TttViewGetDesiredSize",
"TttViewGesture",
"TttViewGetMetrics",
"TttViewSetMetrics",
"TttViewToggleSel",
"TttViewTakeSel",
"TttViewInputEvent",
"TttViewXferGet",
"TttViewXferList",

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,

TIC-TAC-TOE

UI

~

} ;

msgOptionApplyCard,
msgOptionRefreshCard,
msgOptionProvideCardWin,
msgOptionAddCards,
msgOptionApplicableCard,
msgSelYield,
msgSelBeginMove,
msgSelBeginCopy,
msgSelMoveSelection,
msgSelCopySelection,
msgSelDelete,
msgSelSelect,
o

MSG_INFO clsTttDataMethods[]
msgNewDefaults,
msgInit,
msgFree,
msgSave,
msgRestore,

hfdef DEBUG
msgDump,

tendif
msgTttDataGetMetrics,
msgTttDataSetMetrics,
msgTttDataSetSquare,
msgTttDataRead,
msgUndoItem,
o

} ;

MSG_INFO clsTttAppMethods[]
msgInit,
msgFree,
msgSave,
msgRestore,

hfdef DEBUG
msgDump,
msgTttAppDumpView,
msgTttAppDumpDataObject,
msgTttAppDumpWindowTree,
msgTttAppChangeTracing,
msgTttAppForceRepaint,

tendif

} ;

msgAppInit,
msgAppOpen,
msgAppClose,
msgAppSelectAII,
msgControlProvideEnable,
o

"TttViewOptionApplyCard",
"TttViewOptionRefreshCard",
"TttViewOptionProvideCard",
"TttViewOptionAddCards",
"TttViewOptionApplicableCard" ,
"TttViewSeIYield",
"TttViewSeIBeginMoveAndCopy",
"TttViewSeIBeginMoveAndCopy",
"TttViewSeIMoveAndSeICopy",
"TttViewSeIMoveAndSeICopy",

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,

"TttViewSeIDelete",
"TttViewSeISelect",

"TttDataNewDefaults",
"TttDataInit" ,
"TttDataFree",
"TttDataSave",
"TttDataRestore",

"TttDataDump" ,

"TttDataGetMetrics",
"TttDataSetMetrics",
"TttDataSetSquare",
"TttDataRead" ,
"TttDataUndoItem",

"TttAppInit",
"TttAppFree",
"TttAppSave",
"TttAppRestore",

0,
objCallAncestorAfter,

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
objCallAncestorBefore,

objCallAncestorBefore,

0,
0,
0,
0,
0,

objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
objCallAncestorBefore,

"TttAppDump" , objCallAncestorBefore,
"TttDbgDumpView" , 0,
"TttDbgDumpDataObject", 0,
"TttDbgDumpWindowTree", 0,
"TttDbgChangeTracing", 0,
"TttDbgForceRepaint", 0,

"TttAppAppInit",
"TttAppOpen",
"TttAppClose",
"TttAppSelectAll",
"TttAppProvideEnable",

objCallAncestorBefore,
objCallAncestorAfter,
objCallAncestorBefore,
0,
0,

CLASS_INFO classInfo[]

} ;

"clsTttViewTable",
"clsTttDataTable",
"clsTttAppTable",
o

TTTAPP.C

clsTttViewMethods,
clsTttDataMethods,
clsTttAppMethods,

0,
0,
0,

/**
File: tttapp.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.13 $
$Author: aloomis $
$Date: 16 Sep 1992 16:45:20 $

This file contains the implementation of the application class.
**/

tifndef APP_INCLUDED
finclude <app.h>
tendif

tifndef APPTAG_INCLUDED
tinclude <apptag.h>
tendif
tifndef RESFILE_INCLUDED
tinclude <resfile.h>
tendif

fifndef FRAME_INCLUDED
tinclude <frame.h>
tendif

tifndef DEBUG_INCLUDED
tinclude <debug.h>
tendif

tifndef TTTVIEW_INCLUDED
tinclude <tttview.h>
tendif
tifndef TTTAPP_INCLUDED
finclude <tttapp.h>
fendif

tifndef TTTDATA INCLUDED

UI
00 o

*include <tttdata.h>
*endif

*ifndef TTTPRIV_INCLUDED
*include <tttpriv.h>
*endif
*ifndef APPMGR_INCLUDED
*include <appmgr.h>
*endif
*ifndef OSHEAP INCLUDED
*include <osheap.h>
*endif

*ifndef FS_INCLUDED
*include <fs.h>
*endif
*ifndef OPTION_INCLUDED
*include <option.h>
*endif
*ifndef INTL_INCLUDED
*include <intl.h>
*endif

*include <string.h>
*include <methods.h>

1*

* Defines, Types, Globals, Etc *
* *1

typedef struct TTT_APP INST

II

U32 placeHolder;
TTT _ APP _ INST,
* P_TTT_APP_INST,
* * PP_TTT_APP_INST;

II CURRENT_VERSION is the file format version written by this implementation.
II MIN_VERSION is the minimum file format version readable by this
II implementation. MAX_VERSION is the maximum file format version readable
II by this implementation.
II
*define CURRENT_VERSION °
*define MIN_VERSION °
*define MAX_VERSION °
typedef TTT_APP_INST
TTT_APP_FILED_O, * P_TTT_APP_FILED_O;

1*

* Utility Routines *
* *1

1**
TttAppFiledDataOFromInstData

Computes filed data from instance data.
**1
STATIC void PASCAL
TttAppFiledDataOFromInstData(

P_TTT_APP_INST pInst,
P TTT_APP_FILED_O pFiled)

*pFiled = *pInst;
1* TttAppFiledDataOFromInstData *1

1**
TttAppInstDataFrornFiledDataO

Computes instance data from filed data.
**1
STATIC void PASCAL
TttAppInstDataFrornFiledDataO(

P_TTT_APP_FI LED_O pFiled,
P TTT APP INST pInst)

*pInst = *pFiled;
1* TttAppInstDataFrornFiledDataO *1

1**
TttAppCheckStationery
The stationery file is deleted if and only if (1) no errors occur
during this process and (2) the file is successfully read as a
stationery file.

**1
*define DbgTttAppCheckStationery(x) \

TttDbgHelper(U_L("TttAppCheckStationery"),tttAppDbgSet,Ox1,x)

*define STATIONERY_FILE_NAME U_L("tttstuff.txt")

STATIC STATUS PASCAL
TttAppCheckStationery(

OBJECT dataObject)

FS NEW
TTT DATA READ
BOOLEAN
BOOLEAN
STATUS

fNew;
dataRead;
fileHandleCreated;
deleteTheFile;
s;

DbgTttAppCheckStationery ((U_ L (\\\\)))

II
II Initialize for error recovery and freeing resources. Set return
II values to something reasonable.
II
fNew.object.uid = objNull;
fileHandleCreated = false;
deleteTheFile = false;

II
II Look for the magic file. If the file doesn't exist, we're done.
II

TlC-TAC-TOE

UI
C» ..

ObjCaIIJmp(msgNewDefaults, clsFileHandle, &fNew, Sj Error);
fNew.fs.mode = fsReadOnly;
fNew.fs.exist = fsNoExistGenError I fsExistOpen;
fNew.fs.locator.uid = theWorkingDir; .
fNew.fs.locator.pPath = STATIONERY_FILE_NAME;
s = ObjectCall(msgNew, clsFileHandle, &fNew);
if (s == stsFSNodeNotFound) {

}

II

DbgTttAppCheckStationery((U_L("file not found; s=Ox%lx"), s»
goto NormalExit;

else if (s >= stsOK) {
fileHandleCreated = true;
DbgTttAppCheckStationery((U_L("file is found"»)

else {
DbgTttAppCheckStationery((U_L("Funny status when looking for file"»)
goto Error;

II Ask the data object to read the file. If the file is
II successfully read as stationery, set up to delete the file.
II If the file is not successfully read as stationery, simply continue.
II
dataRead.fileHandle = fNew.object.uid;
s = ObjectCall(msgTttDataRead, dataObject, &dataRead);
if «s >= stsOK) AND (dataRead.successful»

deleteTheFile = true;

NormalExit:

II
II Be sure to close the file handle first; otherwise the file
II delete will fail.
II
if (fileHandleCreated)

ObjCaIIWarn(msgDestroy, fNew.object.uid, pNull);

II
II Perhaps delete the file. Have to make sure that the file
II is not read-only before deleting it. (Alternatively, I could use
II msgForceDelete, but that's risky.)
II
if (deleteTheFile)

FS GET SET ATTR - - -
FS ATTR LABEL
FS_NODE_FLAGS_ATTR

set;
label
attrs;

fsAttrFlags;

II
II
II
II
II

Turn off readOnly. Don't bother error checking; even
if something goes wrong, we'll go ahead and try to delete
the file, since it might not be readOnly anyhow.

attrs.mask = fsNodeReadOnly;
attrs.flags = 0;
set.pPath = STATIONERY_FILE_NAME;

set.numAttrs = 1;
set.pAttrLabels = &label;
set.pAttrValues = &attrs;
set.pAttrSizes = pNull;
ObjCaIIWarn(msgFSSetAttr, theWorkingDir, &set);

II
II Delete the file. Don't error check. It would be unfortunate
II if the file gets left lying around, but there's nothing we can
II do about it anyhow. And even if the file is left around,
II this routine is only called once in an application's lifetime
II and so there's no risk that we'll use the stationery file
II instead of the proper file.
II
ObjCallWarn(msgFSDelete, theWorkingDir, STATIONERY_FILE_NAME);
DbgTttAppCheckStationery((U_L("stationery file deleted"»)

DbgTttAppCheckStationery((U_L("returns stsOK"»)
return stsOK;

Error:
if (fNew.object.uid)

ObjCallWarn(msgDestroy, fNew.object.uid, pNull);

DbgTttAppCheckStationery«U_L("Error; returns Ox%lx"),s»
return s;

1* TttAppCheckStationery *1

1*

* Message Handlers *
* *1

1**
TttAppInit

Initialize instance data of new object.

Note: clsmgr has already initialized instance data to zeros.
**1
fdefine DbgTttAppInit(x) \

TttDbgHelper(U_L("TttAppInit"),tttAppDbgSet,Ox2,x)
MsgHandler(TttAppInit)
{

P_TTT_APP_INST pInst;
STATUS S;

DbgTttAppInit «U_L (""»)

II
II Initialize for error recovery.
II
pInst = pNull;

II
II Allocate, initialize, and record instance data.
II .
StsJmp(OSHeapBlockAlloc(osProcessHeapId, SizeOf(*pInst), &pInst), \

UI
00
~

s, Error);
pInst->placeHolder = -1L;
ObjectWrite(self, ctx, &pInst);

DbgTttAppInit «U_L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (pInst) {

OSHeapBlockFree(pInst);

DbgTttAppInit «U_L("Error; returns Ox%lx"), s»
return s;

1* TttAppInit *1

1**
TttAppFree

Respond to msgFree.

Note: Always return stsOK, even if a problem occurs. This is
(1) because there's nothing useful to do if a problem occurs anyhow
and (2) because the ancestor is called after this function if and
only if stsOK is returned, and it's important that the ancestor
get called.

**1
*define DbgTttAppFree(x) \

TttDbgHelper(U_L("TttAppFree"),tttAppDbgSet,Ox4,x)

MsgHandlerWithTypes(TttAppFree, P_ARGS, PP_TTT_APP_INST)
{

DbgTttAppFree «U_L (""»)

OSHeapBlockFree(*pData);
DbgTttAppFree (U_L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

1* TttAppFree * I

1**
TttAppSave

Save self to a file.
**1
*define DbgTttAppSave(x) \

TttDbgHelper(U_L("TttAppSave"),tttAppDbgSet,Ox8,x)

MsgHandlerWithTypes(TttAppSave, P_OBJ_SAVE, PP_TTT_APP_INST)
{

TTT_APP_FILED_O filed;
STATUS s;
DbgTttAppSave ((U_L (""»)

StsJmp (TttUtilWriteVersion (pArgs->file, CURRENT VERSION), s, Error);
TttAppFiledDataOFromInstData(*pData, &filed);
StsJrnp(TttUtilWrite(pArgs->file, SizeOf(filed), &filed), s, Error);

DbgTttAppSave ((U _L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttAppSave «U_L ("Error; return Ox%lx"), s»
return s;

1* TttAppSave *1

1**
TttAppRestore

Restore self from a file.

Note: the app object has already received msgInit -- the App Framework
has to create it to send it messages before sending it msgRestore.
Thus the app object has already allocated its instance data in msgInit.

This is unlike other objects which are typically recreated at msgRestore.
**1
*define DbgTttAppRestore(x) \

TttDbgHelper(U_L("TttAppRestore"),tttAppDbgSet,Ox10,x)

MsgHandlerWithTypes(TttAppRestore, P_OBJ_RESTORE, PP_TTT_APP_INST)
{

TTT_APP_FILED_O filed;
STATUS s;
TTT_VERSION version;

DbgTttAppRestore «U_L (""»)

II
II Read version, then read filed data. (Currently there's only
II only one legitimate file format, so no checking of the version
I I need be done.)
II
II Then convert filed data.
II

StsRet(TttUtilReadVersion(pArgs->file, MIN_VERSION, MAX_VERSION, \
&version),s);

StsRet(TttUtilRead(pArgs->file, SizeOf(filed), &filed), s);
TttAppInstDataFromFiledDataO(&filed, *pData);

DbgTttAppRestore «U_L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

1* TttAppRestore *1

1**
TttAppDump

Respond to msgDump.
**1
*ifdef DEBUG

MsgHandlerWithTypes(TttAppDump, P_ARGS, PP_TTT_APP_INST)

I SAMPLE CODE TIC-TAC-TOE

UI
co
Co»

Debugf (U_L ("TttAppDump: placeHolder=%ld"), (U32) «*pData)->placeHolder));
return stsOK;
MsgHandlerParametersNoWarning;

1* TttAppDump * I
4J:endif II DEBUG

1**
TttAppAppInit

Respond to msgAppInit. Perform one-time app life-cyle initializations.
**1
4J:define DbgTttAppAppInit(x) \

TttDbgHelper(U_L("TttAppAppInit"),tttAppDbgSet,Ox20,x)

MsgHandlerWithTypes(TttAppAppInit, P_ARGS, PP_TTT_APP_INST)
{

APP METRICS
TTT VIEW NEW
BOOLEAN
BOOLEAN
OBJECT

am;
tttViewNew;
responsibleForView;
responsibleForScrollWin;
dataObject;

OBJECT scrollWin;
STATUS S;

DbgTttAppAppInit «U_L ("")))

II
II Initialize for error recovery.
II
tttViewNew.object.uid = objNull;
scrollWin = objNull;
responsibleForView = false;
responsibleForScrollWin = false;

II
II Create and initialize view. This creates and initializes
II data object as well.
II
ObjCaIIJmp(msgNewDefaults, clsTttView, &tttViewNew, s, Error);
ObjCaIIJmp(msgNew, clsTttView, &tttViewNew, s, Error);
responsibleForView = true;

II
II Check for stationery.
II
ObjCaIIJmp(msgViewGetDataObject, tttViewNew.object.uid, \

&dataObject, s, Error);
StsJmp(TttAppCheckStationery(dataObject), s, Error);

II
II Create and initialize scrollWin.
II
StsJmp(TttUtiICreateScroIIWin(tttViewNew.object.uid, &scroIIWin), \

s, Error);
'responsibleForScrollWin = true;
responsibleForView = false;

II
II Make the scrollWin be the frame's client win.
II
ObjCaIIJmp(msgAppGetMetrics, self, &am, s, Error);
ObjCaIIJmp(msgFrameSetClientWin, am.mainWin, (P_ARGS)scroIIWin, s, Error);
responsibleForScrollWin = false;

DbgTttAppAppInit «U_L ("returns stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (responsibleForView AND tttViewNew.object.uid)

ObjCaIIWarn(msgDestroy, tttViewNew.object.uid, pNull);

if (responsibleForScrollWin AND scrollWin) {
ObjCaIIWarn(msgDestroy, scrollWin, pNull);

}

DbgTttAppAppInit«U_L("Error; returns Ox%lx"),s))
return s;

1* TttAppAppInit *1

1**
TttAppOpen

Respond to msgAppOpen.

It's important that the ancestor be called AFTER all the frame
manipulations in this routine because the ancestor takes care of any
layout that is necessary.

**1
4J:define DbgTttAppOpen(x) \

TttDbgHelper(U_L("TttAppOpen"),tttAppDbgSet,Ox40,x)

II
II Really a P_TK_TABLE_ENTRY
II
extern P_UNKNOWN tttMenuBar;

MsgHandlerWithTypes(TttAppOpen, P_ARGS, PP_TTT_APP_INST)
{

APP METRICS
OBJECT
BOOLEAN

am;
menu;
menuAdded;

STATUS s;
DbgTttAppOpen ((U _ L ('''')))

II
II Initialize for error recovery.
II
menu = objNull;
menuAdded = false;

II
II Get app and frame metrics.
II
ObjCaIIJmp(msgAppGetMetrics, self, &am, s, Error);

UI
00
0l:Io

II
II Create and add menu bar.
II
StsJmp(TttUtilCreateMenu(am.mainWin, self, tttMenuBar, &menu), s, Error);
DbgTttAppOpen ((U _ L ("menu=Ox%lx") , menu)) ;
ObjCallJmp(msgAppCreateMenuBar, self, &menu, s, Error);
StsJmp(TttUtilAdjustMenu(menu), s, Error);
ObjCallJmp(msgFrameSetMenuBar, am.mainWin, (P_ARGS) menu, s, Error);
menuAdded = true;

DbgTttAppOpen ((U _ L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (menuAdded) {

ObjCallWarn(msgFrameDestroyMenuBar, am.mainWin, pNull);
else if (menu) {
ObjCallWarn(msgDestroy, menu, pNull);

DbgTttAppOpen((U_L("Error; return Ox%lx") ,s»
return s;

1* TttAppOpen *1

1**
TttAppClose

Respond to msgAppClose.

Be sure that the ancestor is called FIRST. The ancestor extracts the
frame, and we want the frame extracted before performing surgery on
it.

**1
tdefine DbgTttAppClose(x) \

TttDbgHelper(U_L("TttAppClose"),tttAppDbgSet,Ox80,x)

MsgHandlerWithTypes(TttAppClose, P_ARGS, PP_TTT_APP_INST)
{

APP_METRICS am;
STATUS S;

DbgTttAppClose ((U _ L ("")))

II
II Get the frame. Extract the menu bar from the frame. Then
II free the menu bar.
II
ObjCallJmp(msgAppGetMetrics, self, &am, s, Error);
ObjCallJmp(msgFrameDestroyMenuBar, am.mainWin, pNull, s, Error);
DbgTttAppClose((U_L("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttAppClose ((U _ L ("Error; return Ox%lx"), s))
return S;

1* TttAppClose *1

1**
TttAppSelectAll

**1
tdefine DbgTttAppSelectAll(x) \

TttDbgHelper(U_L("TttAppSelectAll"),tttAppDbgSet,Ox200,x)

MsgHandlerWithTypes(TttAppSelectAll, P_ARGS, PP_TTT_APP_INST)
{

OBJECT view;
STATUS s;
DbgTttAppSelectAll ((U _ L (" \\)))

StsJmp(TttUtilGetComponents(self, tttGetView, pNull, &view, pNull),
s, Error);

ObjCallJmp(msgTttViewTakeSel, view, pNull, s, Error);

DbgTttAppSelectAll «U_L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttAppSelectAll ((U _ L ("Error; return Ox%lx"), s))
return s;

1* TttAppSelectAll *1

1**
TttAppProvideEnable

Respond to msgControlProvideEnable.
**1
MsgHandlerWithTypes(TttAppProvideEnable, P_CONTROL_PROVIDE_ENABLE,
PP_TTT~P_INST)

{
switch (pArgs->tag)

case (tagAppMenuSelectAll):
pArgs->enable = true;
break;

default:
return ObjectCallAncestorCtx(ctx);

return stsOK;
MsgHandlerParametersNoWarning;

1*
* Installation *
* *1

1**
ClsTttAppInit

Install the application.
**1
STATUS PASCAL
ClsTttAppInit (void)
{

I 7 I SAMPLE CODE TIC-TAC-TOE

UI
GO
UI

APP_MGR_NEW new;
STATUS s;

ObjCaIIJmp(msgNewDefaults, clsAppMgr, &new, s, Error);
new.object.uid clsTttApp;
new.cls.pMsg clsTttAppTable;
new.cls.ancestor clsApp;
new.cls.size SizeOf(P_TTT_APP_INST);
new.cls.newArgsSize SizeOf(APP_NEW);
new.appMgr. flags. stationery true;
new.appMgr.flags.accessory false;

hfdef PP1_0 II manually copy in "About" information

Ustrcpy(new.appMgr.defaultDocName, U_L("Tic-Tac-Toe"));
Ustrcpy(new.appMgr.company, U L("GO Corporation"));
II 00A9 is the "circle-c" copyright symbol
new.appMgr.copyright =

U_L("\xOOA9 1991-1992 GO Corporation, All Rights Reserved.");

#endif II PP1_0
ObjCaIIJmp(msgNew, clsAppMgr, &new, s, Error);

return stsOK;

Error:
return S;

} 1* ClsTttAppInit *1

1**
main

Main application entry point.
**1
STATUS EXPORTED TttSymbolsInit(void);

void CDECL
main (

S32 argc,
CHAR *
U32

argv[] ,
processCount)

if (processCount == 0) {

TttSymbolsInit();

}

II Initialize global classes.
StsWarn(ClsTttAppInit());

AppMonitorMain(clsTttApp, objNull);

else {

II Initialize private classes
StsWarn(ClsTttViewInit());
StsWarn(ClsTttDataInit());

AppMain();

II Suppress compiler's "unused parameter" warnings
Unused(argc); Unused(argv);

1* main *1

mAPP.H
1**
File: tttapp.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.
$Revision: 1.5 $
$Author: kcatlin $
$Date: 13 Jul 1992 10:33:02 $

This file contains the API definition for clsTttApp.
clsTttApp inherits from clsApp.

**1
#ifndef TTTAPP_INCLUDED
#define TTTAPP_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

1*
* Defines *
* *1

1*
* Common Typedefs *
* *1

1*
* Exported Functions *
* *1

1**
ClsTttAppInit returns STATUS

Initializes I installs clsTttApp.

This routine is only called during installation of the class.
*1
STATUS PASCAL
ClsTttAppInit (void);

1*
* Messages for clsTttApp *
* *1

II
II Debug messages aren't in standard header form so that they won't
II show up in automatically-generated datasheets.
II
#ifdef DEBUG

UI
co
00

fdefine dbgMsgStart Ox40
idefine msgTttAppChangeDebugFlag
fdefine msgTttAppChangeDebugSet
fdefine msgTttAppDumpWindowTree
idefine msgTttAppDumpDebugFlags
tdefine msgTttAppDumpView
fdefine msgTttAppDumpDataObject
fdefine msgTttAppChangeTracing
fdefine msgTttAppForceRepaint
fendif

fendif II TTTAPP_INCLUDED

mDATA.C

MakeMsg(clsTttApp,
MakeMsg(clsTttApp,
MakeMsg(clsTttApp,
MakeMsg(clsTttApp,
MakeMsg(clsTttApp,
MakeMsg(clsTttApp,
MakeMsg(clsTttApp,
MakeMsg(clsTttApp,

dbgMsgStart + 0)
dbgMsgStart + 1)
dbgMsgStart + 2)
dbgMsgStart + 3)
dbgMsgStart + 4)
dbgMsgStart + 5)
dbgMsgStart + 6)
dbgMsgStart + 7)

1**
File: tttdata.c
(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.10 $
$Author: aloomis $
$Date: 16 Sep 1992 16:45:34 $

This file contains the implementation of clsTttData.
**1
iifndef DEBUG_INCLUDED
iinclude <debug.h>
iendif

iifndef RESFILE_INCLUDED
iinclude <resfile.h>
iendif
iifndef TTTDATA_INCLUDED
iinclude <tttdata.h>
iendif

iifndef TTTPRIV_INCLUDED
iinclude <tttpriv.h>
iendif

iifndef OS HEAP_INCLUDED
iinclude <osheap.h>
iendif
iifndef UNDO_INCLUDED
iinclude <undo.h>
iendif

fifndef INTL_INCLUDED
finclude <intl.h>
fendif
finclude <stdlib.h>
finclude <string.h>

finclude <methods.h>

1*
* Defines, Types, Globals, Etc *
* *1

typedef struct TTT_DATA_INST {

TTT_DATA_METRICS metrics;

TTT_DATA_INST,
* P_TTT_DATA_INST,
* * PP_TTT_DATA_INST;

II
II CURRENT_VERSION is the file format version written by this implementation.
II MIN_VERSION is the minimum file format version readable by this
II implementation. MAX_VERSION is the maximum file format version readable
II by this implementation.
II
idefine CURRENT_VERSION 0
tdefine MIN_VERSION °
idefine MAX_VERSION °
typedef struct TTT_DATA_FILED_O {

TTT_SQUARES squares;
TTT_DATA_FI LED_O, * P_TTT_DATA_FILED_O;

1*
* Utility Routines *
* *1

1**
TttDataFiledDataOFromInstData

Computes filed data from instance data.
**1
STATIC void PASCAL
TttDataFiledDataOFromInstData(

P_TTT_DATA_INST pInst,
P TTT_DATA FILED 0 pFiled)

memcpy(pFiled->squares, pInst->metrics.squares,
sizeof(pFiled->squares»;

1* TttDataFiledDataOFromInstData *1

1**
TttDataInstDataFromFiledDataO

Computes instance data from filed data.
**1
STATIC void PASCAL

I '7 I SAMPLE CODE TIC-TAC-TOE

UI
co

TttDataInstDataFrornFiledDataO(
P TTT DATA_FI1ED_0 pFiled,
P_TTT_DATA_INST pInst)

memcpy(pInst->metrics.squares, pFiled->squares,
sizeof(pInst->metrics.squares»;

1* TttDataInstDataFrornFiledDataO *1

1**
TttDataNotifyObservers

Sends notifications.
**1
fdefine DbgTttDataNotifyObservers(x) \

TttDbgHelper(U_1("TttDataNotifyObservers"),tttDataDbgSet,Oxl,x)
STATIC STATUS PASCAL
TttDataNotifyObservers(

OBJECT
P ARGS

OBJ NOTIFY OBSERVERS - -
STATUS

self,
pArgs)

nobs;
s;

DbgTttDataNotifyObservers ((U _1 (\"\)))

nobs.msg = msgTttDataChanged;
nobs.pArgs = pArgs;
nobs.lenSend = SizeOf(TTT_DATA_CHANGED);
ObjCallJmp(msgNotifyObservers, self, &nobs, s, Error);

DbgTttDataNotifyObservers ((U _1 ("return stsOK"»)
return stsOK;

Error:
DbgTttDataNotifyObservers ((U_1 ("Error; return Ox%lx"), s»
return Si

1* TttDataNotifyObservers *1

1**
TttDataRecordStateForUndo

Records current state with undo manager.
Assumes that a transaction is already open.

**1
fdefine DbgTttDataRecordStateForUndo(x) \

TttDbgHelper(U_1("TttDataRecordStateForUndo"),tttDataDbgSet,Ox2,x)

STATIC STATUS PASCAL
TttDataRecordStateForUndo(

OBJECT self,
TAG undoTag,
PP TTT DATA INST pData)

UNDO ITEM
STATUS

item;
s;

DbgTttDataRecordStateForUndo ((U_1 ("")))

ObjCallJmp(msgUndoBegin, theUndoManager, (P_ARGS)undoTag, s, Error);
item. object = self;
item. subclass = clsTttData;
item. flags = 0;
item.pData = &((*pData)->metrics);
item.dataSize = SizeOf(((*pData)->metrics»;
ObjCallJmp(msgUndoAddItem, theUndoManager, &item, s, Error);
ObjCallJmp(msgUndoEnd, theUndoManager, pNull, s, Error);

DbgTttDataRecordStateForUndo ((U_1 ("return stsOK"»)
return stsOK;

Error:
DbgTttDataRecordStateForUndo ((U_1 ("Error; return Ox%lx"), s»
return Si

1* TttDataRecordStateForUndo *1

1**
TttDataPrivSetMetrics

Sets metrics and (optionally) records information
needed to undo the set. Assumes an undo transaction is open.

**1
fdefine DbgTttDataPrivSetMetrics(x) \

TttDbgHelper(U_1("TttDataPrivSetMetrics"),tttDataDbgSet,Ox4,x)

STATIC STATUS PASCAL
TttDataPrivSetMetrics(

OBJECT
P TTT DATA METRICS - - -
PP TTT DATA INST - - -
B001EAN

STATUS

self,
pArgs,
pData,
recordUndo)

Si

DbgTttDataPrivSetMetrics ((U_1 (""»)

II
II Perhaps record undo information
II
if (recordUndo) {

}

II

StsJmp(TttDataRecordStateForUndo(self, pArgs->undoTag, pData),
s, Error);

II Change data.
II
(*pData)->metrics = *pArgsi

DbgTttDataPrivSetMetrics ((U_1 ("returns stsOK"»)
return stsOKi

UI
co
co

Error:
DbgTttDataPri vSetMetrics ((U _ L ("Error; return Ox%lx"), s))
return s;

1* TttDataPrivSetMetrics *1

1**
TttDataPrivSetSquare
Sets a square and (optionally) records
information needed to undo the set. Assumes an undo transaction
is open.

**1
'define DbgTttDataPrivSetSquare(x) \

TttDbgHelper(U_L("TttDataPrivSetSquare"),tttDataDbgSet,Ox8,x)
STATIC STATUS PASCAL
TttDataPrivSetSquare(

OBJECT
P_TTT_DATA_SET_SQUARE
PP TTT DATA INST - - -
BOOLEAN

STATUS

self,
pArgs,
pData,
recordUndo)

s;

DbgTttDataPri vSetSquare ((U _ L ("")))

II
II Perhaps record undo information
II
if (recordUndo) {

StsJmp(TttDataRecordStateForUndo(self, (TAG)pNull, pData), s, Error);
}

II
II Change data.
II
(*pData)->metrics.squares[pArgs->row] [pArgs->col] = pArgs->value;
DbgTttDataPri vSetSquare ((U _ L ("returns stsOK"»)
return stsOK;

Error:
DbgTttDataPrivSetSquare «U_L ("Error; return Ox%lx"), s»
return s;

1* TttDataPrivSetSquare *1

1*

* Message Handlers *
* *1

1**
TttDataNewDefaults

Respond to msgNewDefaults.
**1
'define DbgTttDataNewDefaults(x) \

TttDbgHelper(U_L("TttDataNewDefaults") ,tttDataDbgSet, Ox 10,x)
MsgHandlerWithTypes(TttDataNewDefaults, P_TTT_DATA_NEW, PP_TTT_DATA_INST)
{

U16 row;
U16 col;

DbgTttDataNewDefaults «U_L (""»)
for (row=O; row<3; row++) {

for (col=O; col<3; col++) {
pArgs->tttData.metrics.squares[row] [col]

pArgs->tttData.metrics.undoTag = 0;
DbgTttDataNewDefaults «U_L ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

1* TttDataNewDefaults *1

tttBlank;

1**
TttDatalnit

Initialize instance data of new object.
Note: clsmgr has already initialized instance data to zeros.

**1
'define DbgTttDataInit(x) \

TttDbgHelper(U_L("TttDataInit"),tttDataDbgSet,Ox20,x)
MsgHandlerWithTypes(TttDataInit, P_TTT_DATA_NEW, PP_TTT_DATA_INST)
{

P_TTT_DATA_INST pInst;
STATUS s;

DbgTttDatalnit «U_L(""»)

II
II Initialize for error recovery.
II
plnst = pNull;

II
II Allocate, initialize, and record instance data.
II
StsJmp (OSHeapBlockAlloc (osProcessHeapld, SizeOf(*pInst), &plnst), \

s, Error);
plnst->metrics = pArgs->tttData.metrics;
ObjectWrite(self, ctx, &pInst);

DbgTttDataInit «U_L ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (pInst) {

OSHeapBlockFree(plnst);

DbgTttDatalnit «U_L ("Error; returns Ox%lx"), s»
return s;

1* TttDatalnit *1

I 7 I SAMPLE CODE TIC-TAC-TOE

UI
00
0()

1**
TttDataFree

Respond to msgFree.
Note: Always return stsOK, even if a problem occurs. This is
(1) because there's nothing useful to do if a problem occurs anyhow
and (2) because the ancestor is called after this function if and
only if stsOK is returned, and it's important that the ancestor
get called.

**1
#define DbgTttDataFree(x) \

TttDbgHelper(U_L("TttDataFree"),tttDataDbgSet,Ox40,x)

MsgHandlerWithTypes(TttDataFree, P_ARGS, PP_TTT_DATA_INST)
{

STATUS s;
DbgTttDataFree((U_L(\\\\)))

StsJmp(OSHeapBlockFree(*pData), s, Error);

DbgTttDataFree ((U_L ("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttDataFree ((U_L ("Error; return Ox%lx"), s))
return s;

1* TttDataFree *1

1**
TttDataSave

Save self to a file.
**1
#define DbgTttDataSave(x) \

TttDbgHelper(U_L("TttDataSave"),tttDataDbgSet,Ox80,x)

MsgHandlerWithTypes(TttDataSave, P_OBJ_SAVE, PP_TTT_DATA_INST)
{

TTT DATA FILED 0 filed; - - -
STATUS s;

DbgTttDataSave((U_L(\\\\)))

StsJmp (TttUtilWriteVersion (pArgs->file, CURRENT VERSION), s, Error);
TttDataFiledDataOFromInstData(*pData, &filed);
StsJmp(TttUtilWrite(pArgs->file, SizeOf(filed) , &filed), s, Error);

DbgTttDataSave((U_L("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttDataSave((U_L("Error; return Ox%lx"),s))
return s;

1* TttDataSave *1

1**

TttDataRestore

Restore self from a file.

Note: clsmgr has already initialized instance data to zeros.
**1
#define DbgTttDataRestore(x) \

TttDbgHelper(U_L("TttDataRestore"),tttDataDbgSet,Ox100,x)

MsgHandlerWithTypes(TttDataRestore, P_OBJ_RESTORE, PP TTT_DATA_INST)
{

P TTT DATA INST - - -
TTT DATA FILED 0 - - -
TTT VERSION
STATUS

pInst;
filed;
version;
s;

DbgTttDataRestore ((U_L ("")))

II
II Initialize for error recovery.
II
pInst = pNull;

II
II Read version, then read filed data. (Currently there's only
II only one legitimate file format, so no checking of the version
II need be done.)
II
II The allocate instance data and convert filed data.
II
StsJmp(TttUtilReadVersion(pArgs->file, MIN_VERSION, MAX_VERSION, \

&version), s, Error);
StsJmp(TttUtilRead(pArgs->file, SizeOf(filed) , &filed), s, Error);
StsJmp (OSHeapBlockAlloc (osProcessHeapId, SizeOf(*pInst), &pInst), \

s, Error);
TttDataInstDataFromFiledDataO(&filed, pInst);
ObjectWrite(self, ctx, &pInst);
DbgTttDataRestore ((U _ L ("returns stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (pInst) {

OSHeapBlockFree(pInst);

DbgTttDataRestore ((U_L ("Error; returns Ox%lx"), s))
return s;

1* TttDataRestore *1

1**
TttDataDump

Respond to msgDump.
**1
Bfdef DEBUG

MsgHandlerWithTypes(TttDataDump, P_ARGS, PP_TTT_DATA_INST)

UI

8

Debugf (U_1 ("TttDataDump: [%s %s %s] [%s %s %s] [%s %s %s]"),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[O] [0]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[O] [1]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[O] [2]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[l] [0]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[l] [1]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[l] [2]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[2] [0]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[2] [1]),
TttUtilStrForSquareValue«*pData)->rnetrics.squares[2] [2]»;

return stsOK;
MsgHandlerPararnetersNoWarning;

1* TttDataDump *1
#endif II DEBUG

1**
TttDataGetMetrics

**1
#define DbgTttDataGetMetrics(x) \

TttDbgHelper (U_L ("TttDataGetMetrics") ,tttDataDbgSet, Ox 200,x)

MsgHandlerWithTypes(TttDataGetMetrics, P_TTT_DATA_METRICS, PP TTT_DATA_INST)
{

DbgTttDataGetMetrics «U_1 (""»)

*pArgs = (*pData)->rnetrics;

DbgTttDataGetMetrics ((U _ 1 ("returns stsOK"»)
return stsOK;
MsgHandlerPararnetersNoWarning;

1* TttDataGetMetrics *1

1**
TttDataSetMetrics

**/
#define DbgTttDataSetMetrics(x) \

TttDbgHelper (U_1 ("TttDataSetMetrics") ,tttDataDbgSet, Ox 400,x)

MsgHandlerWithTypes(TttDataSetMetrics, P_TTT_DATA_METRICS, PP_TTT_DATA_INST)
{

B001EAN transactionOpen;
STATUS s;

DbgTttDataSetMetrics «U_1 (""»)

II Steps:
II * Initialize for error recovery.
II * Begin the undo transaction.
II * Change the data and record undo information.
II * End the undo transaction.
II * Notify observers.
II
transactionOpen = false;
ObjCallJrnp(rnsgUndoBegin, theUndoManager, (P_ARGS)pArgs->undoTag, s, Error);
transactionOpen = true;
StsJrnp(TttDataPrivSetMetrics(self, pArgs, pData, true), s, Error);

ObjCallJrnp(rnsgUndoEnd, theUndoManager, pNull, s, Error);
transactionOpen = false;
StsJrnp(TttDataNotifyObservers(self, pNull), s, Error);

DbgTttDataSetMetrics «U_1 ("returns stsOK"»)
return stsOK;
MsgHandlerPararnetersNoWarning;

Error:
if (transactionOpen) {

ObjCallJrnp(rnsgUndoEnd, theUndoManager, pNull, s, Error);
II
II FIXME: This should abort, not end, the transaction.
II The abort functionality should be available in M4.S.
II

DbgTttDataSetMetrics «U_1 ("Error; return Ox%lx"), s»
return s;

1* TttDataSetMetrics *1

1**
TttDataSetSquare

Handles both rnsgTttDataSetMetrics and rnsgTttDataSetSquare
**1
#define DbgTttDataSetSquare(x) \

TttDbgHelper(U_1("TttDataSetSquare"),tttDataDbgSet,OxSOO,x)

MsgHandlerWithTypes(TttDataSetSquare, P_TTT_DATA_SET_SQUARE, PP_TTT DATA INST)
{

TTT DATA CHANGED
B001EAN
STATUS

changed;
transactionOpen;
s;

DbgTttDataSetSquare«U_1("row=%ld col=%ld value=%s"), \
(U32) (pArgs->row), (U32) (pArgs->col), \
TttUtilStrForSquareValue(pArgs->value»)

II Steps:
II * Initialize for error recovery.
II * Begin the undo transaction.
II * Change the data and record undo information.
II * End the undo transaction.
II * Notify observers.
II
transactionOpen = false;
ObjCallJrnp(rnsgUndoBegin, theUndoManager, pNull, s, Error);
transactionOpen = true;
StsJrnp(TttDataPrivSetSquare(self, pArgs, pData, true), s, Error);
ObjCallJrnp(rnsgUndoEnd, theUndoManager, pNull, s, Error);
transactionOpen = false;
changed. row = pArgs->row;
changed. col = pArgs->col;
StsJrnp(TttDataNotifyObservers(self, &changed), s, Error);

DbgTttDataSetSquare ((U_1 ("returns stsOK"»)
return stsOK;
MsgHandlerPararnetersNoWarning;

7 I SAMPLE CODE TlC-TAC-TOE

UI
00 -

Error:
if (transactionOpen) {

ObjCaIIJmp(msgUndoEnd, theUndoManager, pNull, s, Error)i
II
II FIXME: This should abort, not end, the transaction.
II The abort functionality should be available in M4.S.
II

DbgTttDataSetSquare «U_L ("Errori return Ox%lx"), s»
return Si

1* TttDataSetSquare *1

1**
TttDataRead

Handles msgTttDataRead, which is sent to read in a stationery file.
Note that stationery files have S-bit characters.

**1
'define DbgTttDataRead(x) \

TttDbgHelper(U_L("TttDataRead"),tttDataDbgSet,Ox1000,x)

'define N_CHARS 9
MsgHandlerWithTypes(TttDataRead, P_TTT_DATA_READ, PP_TTT_DATA_INST)
{

STREAM READ WRITE
CHARS

read;
buf [N_ CHARS+ 1] i
row; U16

U16 COli

STATUS Si

DbgTttDataRead ((U _ L ("")))

II
II Read in the 9 chars that must be present. If there are fewer
II than 9 chars, treat the attempt to read as a failure.
II
read.numBytes = sizeof(CHARS) * N_CHARSi
read.pBuf = bufi
ObjCaIIJmp(msgStreamRead, pArgs->fileHandle, &read, s, Error)i
buf[N_CHARS] = U_L('\O')i
DbgTttDataRead ((U _ L ("read. count=%ld buf=<%s>"), (U32) read. count, buf))

II
II Now convert the buffer contents to reasonable square values.
II
for (row=Oi row<3i row++)

for (COI=Oi col<3i col++)
CHARS chi
ch = buf[(row*3)+col]i
if «ch == 'X') OR (ch == 'x'» {

(*pData)->metrics.squares[row] [col] = tttXi
else if «ch == '0') OR (ch == '0'» {

(*pData)->metrics.squares[row] [col] = tttOi
else {

(*pData)->metrics.squares[row] [col] = tttBlank;

StsJmp(TttDataNotifyObservers(self, pNull), s, Error)i

pArgs->successful = truei
DbgTttDataRead((U_L("retu+n stsOK"»)
return stsOKi
MsgHandlerParametersNoWarningi

Error:
DbgTttDataRead((U_L("Errori return Ox%lx") ,s»
return Si

1* TttDataRead *1

1**
TttDataUndoItem

~*********************1
'define DbgTttDataUndoItem(x) \

TttDbgHelper (U_L ("TttDataUndoItem") ,tttDataDbgSet, Ox200 O,x)
MsgHandlerWithTypes(TttDataUndoItem, P_UNDO_ITEM, PP_TTT_DATA_INST)
{

STATUS Si

DbgTttDat aUndo Item ((U_L(""»)

if (pArgs->subclass != clsTttData)
DbgTttDataUndoItem((U_L("not clsTttDatai give to ancestor"»)
return ObjectCaIIAncestorCtx(ctX)i

StsJmp(TttDataPrivSetMetrics(self, pArgs->pData, pData, false),
s, Error);

StsJmp(TttDataNotifyObservers(self, pNull), s, Error)i

DbgTttDataUndoItem((U_L("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarningi

Error:
DbgTttDataUndoItem((U_L("Errori return Ox%lx") ,s»
return Si

1* TttDataUndoItem *1

1*

* Installation *
* *1

1**
CIsTttDataInit

Install the class.
**1
STATUS PASCAL
CIsTttDataInit (void)
{

CLASS NEW new;

\II

;S

STATUS s;

ObjCaIIJmp(msgNewDefaults, clsClass, &new, s, Error);
new.object.uid clsTttData;
new.cls.pMsg clsTttDataTable;
new.cls.ancestor clsObject;
new.cls.size SizeOf(P_TTT_DATA_INST);
new.cls.newArgsSize SizeOf(TTT_DATA_NEW);
ObjCaIIJmp(msgNew, clsClass, &new, s, Error);

return stsOK;

Error:
return s;

} 1* ClsTttDataInit *1

mDATA.H
1**
File: tttdata.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.6 $
$Author: kcatlin $
$Date: 13 Jul 1992 10:33:16 $
This file contains the API definition for clsTttData.
clsTttData inherits from clsObject.

**1
#ifndef TTTDATA_INCLUDED
#define TTTDATA_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

1*
*

Defines *
* *1

#define numberOfRows 5
#define numberOfColumns 5

II
II Tags used by for undo strings
II
#define tagTttDataUndoDelete MakeTag(clsTttData, 0)

#define tagTttDataUndoMoveCopy MakeTag(clsTttData, 1)

II
II The RES_ID for the resource list used with the TAGs.
II
#define resTttDataTK MakeListResId(clsTttData, resGrpTK, 0)

1*
* Common Typedefs
* *1

typedef OBJECT
TTT_DATA, * P_TTT_DATA;

1*
* Exported Functions
* *1

1**
ClsTttDataInit returns STATUS

Initializes I installs clsTttData.
This routine is only called during installation of the class.

*1
STATUS PASCAL
ClsTttDataInit (void);

1*
* Messages for clsTttData
* *1

1**
msgNew takes P_TTT_DATA_NEW, returns STATUS

category: class message
Creates an instance of clsTttData.

*1
typedef CHAR
TTT_SQUARE_VALUE;
#define tttBlank «TTT_SQUARE_VALUE)U_L(' '»
#define tttX «TTT_SQUARE_VALUE)U_L('X'»
#define tttO «TTT_SQUARE_VALUE)U_L('O'»

typedef TTT_SQUARE_VALUE
TTT_SQUARES [numberOfRows] [numberOfColumns];

typedef struct TTT_DATA_METRICS

TTT_SQUARES squares;
U32 undoTag;

TTT_DATA~TRICS, * P_TTT_DATA_METRICS;

typedef struct TTT_DATA_NEW_ONLY {

TTT_DATA METRICS metrics;

} TTT_DATA_NEW_ONLY, * P_TTT_DATA_NEW_ONLY;

#define tttDataNewFields \
objectNewFields \
TTT_DATA_NEW_ONLY tttData;

typedef struct TTT DATA NEW

*

*

*

'7 I SAMPLE (ODE TIC-T AC-TOE

UI
00
Co»

tttDataNewFields

TTT_DATA_NEW, * P_TTT_DATA NEW;

/**
msgNewDefaults takes P_TTT_DATA_NEW, returns STATUS

category: class message
Initializes the TTT DATA NEW structure to default values.

*/

/**
msgTttDataGetMetrics takes P_TTT_DATA_METRICS, returns STATUS

Gets TTT DATA metrics.
*/
fdefine msgTttDataGetMetrics MakeMsg(clsTttData, 1)

/**
msgTttDataSetMetrics takes P_TTT_DATA_METRICS, returns STATUS

Sets the TTT DATA metrics.
*/
fdefine msgTttDataSetMetrics MakeMsg(clsTttData, 2)

/**
msgTttDataSetSquare takes P_TTT_DATA_SET_SQUARE, returns STATUS

Sets the value of a single square.
*/
fdefine msgTttDataSetSquare

typedef struct {

MakeMsg(clsTttData, 3)

U16
U16
TTT_SQUARE_VALUE

row;
col;
value;

TTT_DATA_SET_SQUARE, * P_TTT_DATA_SET_SQUARE;

/**
msgTttDataRead takes P_TTT_DATA_READ, returns STATUS

*/

Causes data object to try to read stationery from fileHandle.

Returns stsOK if no errors occur, otherwise returns the error
status. Returns stsOK even if values cannot be read from the
file. The "successful" field indicates whether a value was
successfully read. If successful, the data object's state
is changed and notifications are set.

fdefine msgTttDataRead MakeMsg(clsTttData, 4)

typedef struct TTT_DATA_READ

OBJECT fileHandle;
BOOLEAN successful;

TTT_DATA_READ, * P_TTT_DATA_READ;

/**
msgTttDataChanged takes P_TTT_DATA_CHANGED or nothing, returns nothing

category: observer notification
Sent to observers when the value changes.

If pArgs is pNull, receiver should assume that everything has changed.
*/
fdefine msgTttDataChanged

typedef struct {

U16 row;
U16 col;

TTT_DATA_CHANGED, * P_TTT_DATA_CHANGED;

fendif /1 TTTDATA_INCLUDED

mDBG.C

MakeMsg(clsTttData, 5)

1**
File: tttdbg. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.5 $
$Author: kcatlin $
$Date: 28 Jul 1992 11:20:40 $

This file contains the implementation of miscellaneous debugging routines
used by TttApp. The interfaces to these routines are in tttpriv.h.

**1
fifndef WIN INCLUDED
hnclude <win. h>
fendif

fifndef VIEW_INCLUDED
finclude <view.h>
fendif

fifndef DEBUG INCLUDED
finclude <debug.h>
fendif

fifndef OS_INCLUDED
finclude <os.h>
fendif

fifndef APP_INCLUDED
finclude <app.h>
fendif

fifndef FRAME_INCLUDED
finclude <frame.h>
fendif

fifndef CLSMGR_INCLUDED

UI

~

#include <clsmgr.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef TTTPRIV_INCLUDED
#include <tttpriv.h>
#endif

#ifndef TTTDATA_INCLUDED
#include <tttdata.h>
#endif

#include <string.h>
#include <ctype.h>

/*
* Defines, Types, Globals, Etc *
* */

/*
* Utility Routines *
* */

/*
* Message Handlers *
* */

/**
TttDbgDumpWindowTree

Invoked from debugging menu item to display window tree.

Self must be app. If the user picked the first command
in the submenu, pArgs will be 0, and this handler will
dump from the app's mainWin. Otherwise, it will dump from the app's
mainWin's clientWin.

**1
hfdef DEBUG

MsgHandler(TttDbgDumpWindowTree)
{

OBJECT rooti
APP _METRICS ami

STATUS Si

if (((U32) (pArgs)) == 0) {
ObjCallJmp(msgAppGetMetrics, self, &am, s, Error)i
root = am.mainWini

else (
StsJmp(TttUtilGetComponents(self, tttGetView, objNull, &root, \

objNull), s, Error)i

ObjCallJmp(msgWinDumpTree, root, pNull, s, Error)i
return stsOKi
MsgHandlerParametersNoWarningi

Error:
return Si

} 1* TttDbgDumpWindowTree */

#endif II DEBUG

/**
TttDbgDumpView

Self must be app.
**1
hfdef DEBUG
MsgHandler(TttDbgDumpView)
(

VIEW viewi
STATUS Si

StsJmp(TttUtilGetComponents(self, tttGetView, objNull, &view, objNull), \
s, Error)i

ObjCallJmp(msgDump, view, pNull, s, Error)i
return stsOKi
MsgHandlerParametersNoWarningi

Error:
return Si

} 1* TttDbgDumpView */

#endif II DEBUG

1**
TttDbgDumpDataObject

Self must be app.
**/
hfdef DEBUG
MsgHandler(TttDbgDumpDataObject)
(

OBJECT dataObjecti
STATUS Si

StsJmp(TttUtilGetComponents(self, tttGetDataObject, objNull, objNull, \
&dataObject), s, Error)i

ObjCallJmp(msgDump, dataObject, pNull, s, Error)i
return stsOKi
MsgHandlerParametersNoWarningi

Error:
return Si

} /* TttDbgDumpDataObject */

#endif // DEBUG

1**
TttDbgChangeTracing

**/
hfdef DEBUG

MsgHandler(TttDbgChangeTracing)

7 I SAMPLE CODE TIC-TAC-TOE

UI
-0
UI

OBJECT
OBJECT
OBJECT
U32
U16
BOOLEAN
STATUS

view;
dataObject;
target;
args = (U32)pArgs;
targetArg = LowU16(args);
turnTraceOn;
s;

StsJmp(TttUtiIGetComponents(self, tttGetView I tttGetDataObject, objNull, \
&view, &dataObject), s, Error);

turnTraceOn = (HighU16 (args) == 1);

if (targetArg == 0) {
Debugf(U_L("Setting tracing of app %s"), turnTraceOn ? U_L("On")

U_L("Off"»;
target = self;

} else if (targetArg == 1) {
Debugf(U_L("Setting tracing of view %s"), turnTraceOn ? U_L("On")

U_L("Off"»;
target = view;

} else {
Debugf (U_L ("Setting tracing of dataObject %s"), turnTraceOn ? U_L("On")

U_L("Off"»;
target = dataObject;

ObjCaIIWarn(msgTrace, target, (P_ARGS)turnTraceOn);

return stsOK;
MsgHandlerParametersNoWarning;

Error:
return S;

} 1* TttDbgChangeTracing *1
f:endif II DEBUG

1**
TttDbgForceRepaint

**1
Ufdef DEBUG

MsgHandler(TttDbgForceRepaint)
{

OBJECT
STATUS

view;
s;

StsJmp(TttUtiIGetComponents(self, tttGetView, objNull, &view, objNull), \
s, Error);

ObjCaIIJmp(msgWinDirtyRect, view, pNull, s, Error);
ObjCaIIJmp(msgWinUpdate, view, pNull, s, Error);
return stsOK;
MsgHandlerParametersNoWarning;

Error:
return S;

} 1* TttDbgForceRepaint *1
f:endif II DEBUG

mM8AR.C
1**
File: tttmbar.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.6 $
$Author: kcatlin $
$Date: 28 Jul 1992 11:19:22 $

This file contains some of the implementation of TttApp's menu bar.
***1
iifndef TKTABLE_INCLUDED
f:include <tktable.h>
iendif

iifndef INTL_INCLUDED
f:include <intl.h>
f:endif

f:ifndef TTTPRIV_INCLUDED
f:include <tttpriv.h>
f:endif

iifndef TTTAPP INCLUDED
f:include <tttapp.h>
f:endif

1* *
*

*
Defines, Types, Globals, Etc *

* *1
Ufdef DEBUG

static const TK_TABLE_ENTRY dumpTreeMenu[] = {
{U_L("From Frame"), msgTttAppDumpWindowTree, OJ,
{U_L("From View"), msgTttAppDumpWindowTree, 1},
{pNull}

} ;

II
II Arguably this could be improved by showing making three exclusive
II choices, and displaying the current state in the menu. But there's
II no way to get the trace state from the clsmgr, and even if there was,
II it's not terribly important to be that careful with debugging code.
II
static const TK_TABLE_ENTRY traceMenu[] =

{U_L("Trace App On"), msgTttAppChangeTracing, MakeU32(0,1)},

VI :

} i

{U_L ("Trace App Off"),
{U_L("Trace View On"),
{U_L("Trace View Off"),
{U_L("Trace Data On"),
{U_L("Trace Data Off"),
{pNull}

msgTttAppChangeTracing, MakeU32(0,0)},
msgTttAppChangeTracing, MakeU32(1,1)},

msgTttAppChangeTracing, MakeU32(1,0)},
msgTttAppChangeTracing, MakeU32(2,1)},

msgTttAppChangeTracing, MakeU32(2,0)},

static const TK_TABLE_ENTRY debugMenu[]
{U_L("Dump View"),
{U_L("Dump Data"),
{U_L("Dump App") ,
{U_L("Dump Window Tree"),
{U_L("Trace") ,

tkBorderEdgeTop},
{U_L("Force Repaint"),

tkBorderEdgeTop},
{pNull}

} i

4f:endif II DEBUG

static const TK TABLE ENTRY
hfdef DEBUG

msgTttAppDumpView, a},
msgTttAppDumpDataObject, a},

msgDump, a},
(U32)dumpTreeMenu, a, a, tkMenuPullRight},

(U32)traceMenu, a, 0, tkMenuPullRight I

msgTttAppForceRepaint, a, a,

tttReaIMenuBar[]

{U_L("Debug") ,
4f:endif

(U32)debugMenu, a, a, tkMenuPullDown},

{pNull}
}i

II
II Why two variables, one "real" and one not real? The reason is that
II including including tktable.h (which is where TK_TABLE_ENTRY is
II defined) defines do many symbols that the compiler is overwhelmed.
II This bit of trickery allows clients to refer to tttMenuBar without
II including tktable.h
II
P UNKNOWN
tttMenuBar (P_UNKNOWN)tttReaIMenuBari

mPRIv.H
1**
File: tttpriv.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.10 $

$Author:
$Date:

ehoogerb $
22 Oct 1992 16:46:54 $

This file contains things shared by various pieces of TttApp.
**1
4f:ifndef TTTPRIV INCLUDED
4f:define TTTPRIV INCLUDED

4f:ifndef CLSMGR_INCLUDED
4f:include <clsmgr.h>
4f:endif
4f:ifndef GEO_INCLUDED
hnclude <geo.h>
fendif
fifndef SYSFONT_INCLUDED
finclude <sysfont.h>
fendif
4f:ifndef TTTDATA_INCLUDED
4f:include "tttdata.h"
fendif

1*
* Useful

Macros *
* *1

4f:define TttDbgHelper(str,set,flag,x) \
Dbg(if (DbgFlagGet((set), (U32) (flag))) {DPrintf (U_L ("%s: "),str)i Debugf

Xi})

1*
* Common Defines
* *1

1*
* Common Typedefs
* *1

typedef U8
TTT_VERSION, * P_TTT_VERSIONi

1*
* Utility

Routines *
* *1

II
II Function definitions for routines in tttutil.c. Arguably these
II definitions should be in a separate header, but it's simpler just
II to keep them here.
II
STATUS PASCAL
TttUtilCreateScrollWin(

OBJECT clientWin,
P_OBJECT pScrollWin)i

STATUS PASCAL

*

*

I '7 I SAMPLE (ODE TIC-T AC-TOE

U'I
-0

TttUtilCreateMenu(
OBJECT
OBJECT

parent,
client,

P UNKNOWN
P OBJECT

pEntries, II really P_TK_TABLE_ENTRY pEntries
pMenu) ;

STATUS PASCAL
TttUtilAdjustMenu(

OBJECT menu) ;

STATUS PASCAL
TttUtilWrite (

OBJECT
U32
P UNKNOWN

file,
numBytes,
pBuf);

STATUS PASCAL
TttUtilWriteVersion(

OBJECT file,
TTT VERSION

STATUS PASCAL

version) ;

TttUtilRead(
OBJECT file,
U32
P UNKNOWN

numBytes,
pBuf) ;

STATUS PASCAL
TttUtilReadVersion(

OBJECT file,
TTT_VERSION minVersion,
TTT_VERSION maxVersion,
P TTT_VERSION pVersion);

STATUS PASCAL
TttUtilGetComponents(

OBJECT app,
U16 getFlags,
P OBJECT pScrollWin,
P_OBJECT pView,
P OBJECT pDataObject);

II
II Values for the getFlags parameter to TttUtilGetComponents.
II
#define tttGetScrollWin
#define tttGetView
#define tttGetDataObject

void PASCAL
TttUtillnitTextOutput(

P_SYSDC_TEXT_OUTPUT p,
U16
PCHAR

P CHAR PASCAL
TttUtilStrForSquareValue(

flagO
flag1
flag2

align,
buf) ;

TTT_SQUARE_VALUE v);

TTT_SQUARE_VALUE PASCAL
TttUtilSquareValueForChar(

CHAR ch);

1*
* Debugging Routines
* *1

II
II Function defin~tions for routines in tttdbg.c Arguably these
II definitions should be in a separate header, but it's simpler just to
II keep them here.
II
#ifdef DEBUG
MsgHandler(TttDbgDumpWindowTree);

MsgHandler(TttDbgDumpView);

MsgHandler(TttDbgDumpDataObject);
MsgHandler(TttDbgDumpDebugFlags);
MsgHandler(TttDbgChangeDebugSet);

MsgHandler(TttDbgChangeDebugFlag);

#endif II DEBUG

1*
* Global Variables and Defines
* *1

II
II A Note on global well-knows versus private well-knowns.
II
II Strictly speaking, only the application class UID needs to be global.
II If none of the other classes are referenced outside of this
II application, then they can (and should) be private. Thus, clsTttApp
II is a global well-known class; since neither clsTttData or clsTttView
II are referenced outside of this application, they are private classes.
II
II Of course, for any application (including those constructed from this
II template) that uses a global UID, you must contact GO Customer Services
II to receive a UID that is unique across all PenPoint applications. When
II setting up a class as a private well-known, you can use any number you
II like as the UID, as long as the number is unique to the class for your
II application.
II
II Global WKN UIDs also allocated to tic-tac-toe, but not yet used:
II
II 2223, 2224, 2225
II
#define clsTttApp
#define clsTttData
#define clsTttView

II
II Debug flag sets

MakeGlobalWKN (2222,1)
MakePrivateWKN (1,1)
MakePrivateWKN (2,1)

*

*

UI
0()
co

II
#define tttAppDbgSet
#define tttDataDbgSet OxC1
#define tttUtilDbgSet OxC2
#define tttViewDbgSet OxC3
#define tttViewOptsDbgSet OxC4
#define tttViewXferDbgSet OxCS

II tags for stationery and help

#define tagTttStationery1
#define tagTttStationery2
#define tagStrategyHelp
#define tagRulesHelp

#endif II TTTPRIV_INCLUDED

rouT/L.e

OxCO

file names

Make Tag (clsTttApp, 0)
MakeTag(clsTttApp, 1)
MakeTag(clsTttApp, 2)
MakeTag(clsTttApp, 3)

1**
File: tttutil. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.9 $
$Author: aloomis $
$Date: 16 Sep 1992 16:46:04 $

This file contains the implementation of miscellaneous utility routines
used by TttApp. The interfaces to these routines are in tttpriv.h.

**1
#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef FS_INCLUDED
hnclude <fs.h>
#endif

#ifndef SWIN_INCLUDED
#include <swin.h>
#endif

#ifndef MENU_INCLUDED
#include <menu.h>
#endif

#ifndef APP_INCLUDED
hnclude <app.h>
#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif
#ifndef TTTPRIV_INCLUDED
#include <tttpriv.h>
#endif

#ifndef SWIN_INCLUDED
#include <swin.h>
#endif

#ifndef VIEW_INCLUDED
#include <view.h>
#endif

#ifndef NOTE_INCLUDED
#include <note.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif
#ifndef SEL_INCLUDED
hnclude <sel. h>
#endif

#ifndef APPTAG INCLUDED
#include <apptag.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif
#include <string.h>
#include <stdio.h>

1*
* Utility Routines *
* *1

1**
TttUtilStrForSquareValue

**1
II
II Output is nicer if all strings have the same length. Don't worry
II about the "Unknown" string -- it should never be output anyhow.
II
static const P_CHAR valueStrings[] = {

U_L("_"), U_L("X"), U_L("O"), U_L("Unknown")};

P CHAR PASCAL
TttUtilStrForSquareValue(

TTT_SQUARE_VALUE v)

(ODE TIC-TAC-TOE

UI

~

if (v == tttBlank) {
return valueStrings[O];

else if (v == tttX) {
return valueStrings[l];

else if (v == tttO) {
return valueStrings [2];

else {
return valueStrings[3];

1* TttUtilStrForSquareValue *1

1**
TttUtilSquareValueForChar

**1
TTT_SQUARE_VALUE PASCAL
TttUtilSquareValueForChar(

CHAR ch)

return «TTT_SQUARE_VALUE) ch);

1* TttUtilSquareValueForChar *1

1**
TttUtilInsertUnique

Utility routine that inserts and element into an array if
it's not already in the array. Assumes enough space in the array.

**1
#define DbgTttUtiIInsertUnique(x) \

TttDbgHelper(U_L("TttUtilInsertUnique"),tttUtilDbgSet,Ox1,x)

STATIC void PASCAL
TttUtilInsertUnique(

P_U32 pValues,
P U16 pCount,

U32 new)

U16 i;

II In: number of elements in pValues
II Out: new number of elements in pValues

DbgTttUtilInsertUnique «U_L("*pCount=%ld new=%ld=Ox%lx"), (U32) (*pCount), \
(U32) new, (U32) new))

for (i=Oi i<*pCounti i++) {
if (pValues[i] == new) {

DbgTttUtilInsertUnique «U_L ("found it at %ldi returning"), (U32) i))
return;

pValues[*pCount] = neWi
*pCount = *pCount + 1;
DbgTttUtilInsertUnique «U_L ("didn't find it; new

count=%ld") , (U32) (*pCount)))
} 1* TttUtilInsertUnique *1

1**
TttUtilCreateScrollWin

This is in a utility routine rather than in the caller because
including swin.h brings in too many symbols.

The example of scrolling used here is slightly artificial.
This tells the scroll window that it can expand the Tic-Tac-Toe view
beyond its desired size, but should not contract it. Thus if the
scroll win shrinks, the TttView will be scrollable.

When an application does scrolling, the view should get the
messages. So we set the client window appropriately now.

**1
STATUS PASCAL
TttUtilCreateScrollWin(

OBJECT clientWin,
P OBJECT pScrollWin)

SCROLL_WIN_NEW scrollWinNewi
STATUS S;

ObjCaIIJmp(msgNewDefaults, clsScrollWin, &scroIIWinNew, s, Error)i
scroIIWinNew.scroIIWin.clientWin clientWini
scroIIWinNew.scroIIWin.style.expandChildWidth = true;
scroIIWinNew.scroIIWin.style.expandChildHeight = true;
ObjCaIIJmp(msgNew, clsScrollWin, &scroIIWinNew, s, Error);
*pScrollWin = scroIIWinNew.object.uidi
return stsOKi

Error:
return Si

} 1* TttUtilCreateScrollWin *1

1**
TttUtilCreateMenu

This is in a utility routine rather than in the caller because
including menu.h brings in too many symbols.

**1
STATUS PASCAL
TttUtilCreateMenu(

OBJECT
OBJECT
P UNKNOWN
P OBJECT

MENU NEW
STATUS

parent,
client,
pEntries,
pMenu)

mni
Si

II really P_TK_TABLE_ENTRY pEntries

ObjCaIIJmp(msgNewDefaults, clsMenu, &mn, s, Error);
mn.win.parent = parenti
mn.tkTable.client = clienti
mn.tkTable.pEntries = (P_TK_TABLE_ENTRY)pEntries;
ObjCaIIJmp(msgNew, clsMenu, &mn, s, Error)i
*pMenu = mn.object.uid;
return stsOK;

Error:
return Si

§

} 1* TttUtilCreateMenu *1

1**
TttUtilAdjustMenu

"Adjusts" the menu by removing the items that this app
does not support.

Each menu that has an item removed from it must be layed out
and "break adjusted." The latter involves adjusting the border edges
and margins for a menu with lines dividing it into sections.
But because the Standard Application Menus can change, we don't want
to compile in knowledge of which menus these are. (The menu item's
containing menu is easy to find -- it's just the menu item's
parent window.)

The obvious approach is to simply layout and break adjust
the item's menu after removing the item. Unfortunately
this potentially results in laying out and break
adjusting the same menu several times, since several of
the items could be removed from the same menu.

Our solution is to keep an array of all unique parents seen.
The array is known to be no longer than than the array of
disableTags, so space allocation is easy. TttUtilUniqueSort
is used to do the unique insertion. Finally, we run over
the unique array and do the necessary operations on the
menus.

**1
#define DbgTttUtilAdjustMenu(x) \

TttDbgHelper(U_1("TttUtilAdjustMenu"),tttUtilDbgSet,Ox2,x)

II
II Tags which correspond to the menu items that this application
II will not implement.
II
static const TAG disableTags[]

tagAppMenuSearch,
tagAppMenuSpell};

#define N_DISABLE_TAGS (SizeOf(disableTags) I SizeOf(disableTags[O]»

STATUS PASCAL
TttUtilAdjustMenu(

OBJECT menuBar)

WIN parentMenus [N_DISABLE_TAGS);

U16 parentMenuCount;
WIN_METRICS wm;
U16 i;
OBJECT 0;

STATUS s;

DbgTttUtilAdjustMenu ((U_1 (""»)

II There are at most
II one menu per tag.

memset (parentMenus, 0, SizeOf(parentMenus»;
parentMenuCount = 0;

for (i=O; i<N_DISAB1E_TAGS; i++) {

DbgTttUtilAdjustMenu ((U_L ("i=%ld
t=Ox%lx") , (U32) i, (U32) (disableTags [i) »

}

II

if ((0 = (OBJECT)ObjCalIWarn(msgWinFindTag, menuBar,
(P_ARGS) (disableTags [i]») != objNull) {

ObjCaIIJmp(msgWinGetMetrics, 0, &wm, s, Error);
TttUtiIInsertUnique((P_U32)parentMenus, &parentMenuCount,

(U32) (wm.parent»;
ObjCaIIWarn(msgDestroy, 0, pNull);
DbgTttUtilAdjustMenu ((U_L ("destroyed it; parent=Ox%lx"), wm.parent»

else {
DbgTttUtilAdjustMenu ((U_1 ("didn't find tag! "»)

II Adjust the breaks and re-Iayout each affected menu
II
for (i=O; i<parentMenuCount; i++) {

DbgTttUtilAdjustMenu ((U_1 ("i=%ld parent=Ox%lx"), (U32) i,
parentMenus[i]»

II pArgs of true tells menu to layout self.
ObjCaIIJmp(msgMenuAdjustSections, parentMenus[i], (P_ARGS) true, \

s, Error);

DbgTttUtilAdjustMenu ((U_1 ("returns stsOK"»)
return stsOK;

Error:
DbgTttUtilAdjustMenu ((U_L ("Error; returns Ox%lx"), s»
return s;

1* TttUtilAdjustMenu *1

1**
TttUtillWrite

**1
STATUS PASCAL
TttUtilWrite (

OBJECT
U32
P UNKNOWN

STREAM READ WRITE

file,
numBytes,
pBuf)

write;

write.numBytes = numBytes;
write.pBuf = pBuf;
return ObjCaIIWarn(msgStreamWrite, file, &write);

1* TttUtilWrite *1

1**
TttUtilWriteVersion

Optimization Note: This could put in-line or converted to a macro.
**1
STATUS PASCAL
TttUtilWriteVersion(

OBJECT file,

'7 f SAMPLE (ODE TlC-T AC-TOE

~

TTT_VERSION version)

return TttUtilWrite(file, SizeOf(version) , &version);
1* TttUtilWriteVersion *1

1**
TttUtilRead

**1
STATUS PASCAL

file,
TttUtilRead(

OBJECT
U32
P UNKNOWN

numBytes,
pBuf)

STREAM READ WRITE read;
read.numBytes = numBytes;
read.pBuf = pBuf;
return ObjCallWarn(msgStreamRead, file, &read);

1* TttUtilRead */

1**
TttUtilReadVersion

**1
fdefine DbgTttUtilReadVersion(x) \

TttDbgHelper (U_L ("TttUtilReadVersion") ,tttUtilDbgSet, 0 x4,x)

STATUS PASCAL
TttUtilReadVersion(

OBJECT
TTT VERSION
TTT VERSION
P TTT VERSION

STATUS

file,
minVersion,
maxVersion,
pVersion)

s;

DbgTttUtilReadVersion«U_L("min=%ld max=%ld"), (U32)minVersion,
(U32)maxVersion»

StsJmp(TttUtilRead(file, SizeOf(*pVersion), pVersion), s, Error);
if «*pVersion < minVersion) OR (*pVersion > maxVersion» {

DbgTttUtilReadVersion «U_L ("version mismatch;
v=%ld"), (U32) (*pVersion»)

s = stsIncompatibleVersion;
goto Error;

DbgTttUtilReadVersion ((U _ L ("version=%ld; return stsOK"), (U32) (*pVersion)))
return stsOK;

Error:
DbgTttUtilReadVersion ((U _ L ("Error; return Ox%lx"), s))
return s;

1* TttUtilReadVersion *1

1**
TttUtilGetComponents

Note: this is an internal utility routine. Therefore it does not

check carefully for null values.
**1
STATUS PASCAL
TttUtilGetComponents(

OBJECT app,
U16 getFlags,
P_OBJECT pScrollWin,
P_OBJECT pView,
P OBJECT pDataObject)

OBJECT view;
am; APP METRICS

OBJECT
STATUS

client Win;
s;

II
II Get the scrollWin regardless of the getFlags because we need
II the scrollWin to get anything else and we assume the getFlags
II aren't empty.
II
ObjCallJmp(msgAppGetMetrics, app, &am, s, Error);
ObjCallJmp(msgFrameGetClientWin, am.mainWin, &clientWin, s, Error);
if (FlagOn (tttGetScrollWin, getFlags» {

}

II

*pScrollWin = clientWin;

II Do we need anything else?
II
if (FlagOn (tttGetView, getFlags) OR FlagOn(tttGetDataObject, getFlags»

II
II Get the view regardless of the getFlags because we need
II the view to get either the view or the dataObject.
II
ObjCallJmp(msgScrollWinGetClientWin, clientWin, &view, s, Error);
if (FlagOn (tttGetView, getFlags» {

*pView = view;

if (FlagOn (tttGetDataObject, getFlags» {
ObjCallJmp(msgViewGetDataObject, view, pDataObject, s, Error);

return stsOK;

Error:
return s;

} 1* TttUtilGetComponents *1

1**
TttUtilInitTextOutput

**1
void PASCAL
TttUtilInitTextOutput(

P_SYSDC_TEXT_OUTPUT p,

s
~

U16
PCHAR

align,
buf)

memset(p, 0, SizeOf(*p));
p->spaceChar = U_L(' ');
p->stop = maxS32;
p->alignChr = align;
p->pText = buf;
if (buf) {

p->lenText = Ustrlen(buf);

1* TttUtilInitTextOutput *1

TnV'EW.C
1**
File: tttview. c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.17 $
$Author: aloomis $
$Date: 23 Oct 1992 15:44:48 $

This file contains the implementation of clsTttView.
**1
*ifndef APPTAG_INCLUDED
*include <apptag.h>
*endif
*ifndef DEBUG INCLUDED
*include <debug.h>
*endif
*ifndef CONTROL_INCLUDED
*include <control.h>
*endif
*ifndef RESFILE_INCLUDED
*include <resfile.h>
*endif
*ifndef XGESTURE_INCLUDED
*include <xgesture.h>
*endif
*ifndef PEN_INCLUDED
Hnclude <pen.h>
*endif

*ifndef _STDIO_INCLUDED
*include <stdio.h>
*endif
*ifndef SYSGRAF INCLUDED
*include <sysgraf.h>
*endif
*ifndef TTTDATA_INCLUDED
*include <tttdata.h>
*endif
*ifndef TTTVIEW_INCLUDED
*include <tttview.h>
*endif
*ifndef TTTPRIV_INCLUDED
*include <tttpriv.h>
*endif
*ifndef OSHEAP_INCLUDED
*include <osheap.h>
*endif
*ifndef PREFS_INCLUDED
*include <prefs.h>
*endif
*ifndef SEL_INCLUDED
*include <sel.h>
*endif
*ifndef KEY_INCLUDED
*include <key.h>
*endif
*ifndef INTL_INCLUDED
*include <intl.h>
*endif
*ifndef BRIDGE_INCLUDED
*include <bridge.h>
*endif
*include <string.h>

*include <methods.h>

1*

* Defines, Types, Globals, Etc *
* *1

II
II CURRENT_VERSION is the file format version written by this implementation.
II MIN_VERSION is the minimum file format version readable by this
II implementation. MAX_VERSION is the maximum file format version readable
II by this implementation.
II
*define CURRENT_VERSION 0
*define MIN_VERSION 0
*define MAX_VERSION 0

7 I SAMPLE (ODE TIC-TAC-TOE

B

II
II The desired size for the tic-tac-toe view
II
fdefine desiredWidth 200
fdefine desiredHeight 200

typedef struct TTT_VIEW_FILED_O

U32 lineThicknessi

} TTT_VIEW_FILED_O, *P_TTT_VIEW_FILED_Oi

II
II This struct defines the positions and sizes of all of the interesting
II pieces of the window.
II
II It is a relatively large structure, but since it is only used as a
II stack variable, its size isn't of much concern.
II
typedef struct {

U32 normalBoxWidthi
U32
RECT32
RECT32
RECT32
SCALE

normalBoxHeighti
vertLines[2];
horizLines[2]i
r[3] [3] i

scalei

TTT VIEW_SIZES, * P_TTT_VIEW_SIZESi

1*

* Utility Routines *
* *1

1**
TttViewFiledDataOFromInstData

Computes filed data from instance data.
**1
STATIC void PASCAL
TttViewFiledDataOFromInstData(

P_TTT_VIEW_INST pInst,
P TTT VIEW_FILED_O pFiled)

pFiled->lineThickness = pInst->metrics.lineThicknessi
1* TttViewFiledDataOFromInstData *1

1**
TttViewInstDataFromFiledDataO

Computes instance data from filed data.
**1
STATIC void PASCAL
TttViewInstDataFromFiledDataO(

P_TTT_VIEW_FILED_O pFiled,
P_TTT_VIEW_INST pInst)

pInst->metrics.lineThickness = pFiled->lineThicknessi
1* TttViewInstDataFromFiledDataO *1

1**
TttViewNeedRepaint

Marks for repaint.
**1
STATIC STATUS PASCAL
TttViewNeedRepaint(

OBJECT self)

return ObjCaIIWarn(msgWinDirtyRect, self, pNull)i
1* TttViewNeedRepaint *1

1**
TttViewCreateDC

Constructs and initializes dc.

This routine uses the system font as of the time the dc is
created. No effort is made to track changes to the system font.

**1
fdefine DbgTttViewCreateDC(x) \

TttDbgHelper(U_L("TttViewCreateDC"),tttViewDbgSet,Oxl,x)

STATIC STATUS PASCAL
TttViewCreateDC(

OBJECT
P OBJECT

SYSDC NEW
RES READ DATA
PREF SYSTEM FONT - -
STATUS

self,
pDC)

dcNewi
resRead;
fonti
Si

DbgTttViewCreateDC ((U _ L (" self=Ox%lx") , self))

II
II Initialize for error recovery
II
dcNew.object.uid = objNull;
*pDC = objNull;

II
II Create the dc
II
ObjCaIIJmp(msgNewDefaults, clsSysDrwCtx, &dcNew, s, Error);
ObjCaIIJmp(msgNew, clsSysDrwCtx, &dcNew, s, Error);

II
II Set the dc's font to the current system font.
II
resRead.resId = prSystemFont;
resRead.heap = Nil(OS_HEAP_ID);
resRead.pData = &font;
resRead.length = SizeOf(font);
ObjCaIIJmp(msgResReadData, theSystemPreferences, &resRead, s, Error);
ObjCaIIJmp(msgDcOpenFont, dcNew.object.uid, & (font. spec) , s, Error);

g

II
II Bind dc to self
II
ObjCaIIJmp(msgDcSetWindow, dcNew.object.uid, (P_ARGS) self, s, Error);
*pDC = dcNew.object.uid;

DbgTttViewCreateDC ((U_ L ("return stsOK")))
return stsOK;

Error:
if (dcNew.object.uid)

ObjCaIIWarn(msgDestroy, dcNew.object.uid, pNull);

DbgTttViewCreateDC ((U _ L ("Error; returns Ox%lx"), s))
return s;

1* TttViewCreateDC *1

1**
TttViewGestureSetSquare

Handles all gestures that set the value
of a single square.

**1
#define DbgTttViewGestureSetSquare(x) \

TttDbgHelper(U_L("TttViewGestureSetSquare"),tttViewDbgSet,Ox2,x)

STATIC STATUS PASCAL
TttViewGestureSetSquare(

VIEW
P GWIN GESTURE
TTT_SQUARE_VALUE

TTT_DATA_SET_SQUARE
OBJECT
WIN METRICS
STATUS

self,
pGesture,
value) II Either tttX or tttO

set;
dataObject;
wm;
s;

DbgTttViewGestureSetSquare((U_L("hot=[%ld %ld]"),pGesture->hotPoint))

II
II Compute row and col
II
ObjCaIIJmp(msgWinGetMetrics, self, &wm, s, Error);
if (pGesture->hotPoint.x < (wm.bounds.size.w I 3))

set.col = 0;
else if (pGesture->hotPoint.x < (2 * (wm.bounds.size.w I 3))) {

set.col = 1;
else {

set.col 2;

if (pGesture->hotPoint.y < (wm.bounds.size.h I 3)) {
set.row = 0;

else if (pGesture->hotPoint.y < (2 * (wm.bounds.size.h I 3))) {
set.row = 1;

else {
set.row = 2;

II
II Set new square value.
II
set.value = value;
ObjCaIIJmp(msgViewGetDataObject, self, &dataObject, s, Error);
ObjCal1Jmp(msgTttDataSetSquare, dataObject, &set, s, Error);

DbgTttViewGestureSetSquare ((U _ L ("return stsOK")))
return stsOK;

Error:
DbgTttViewGestureSetSquare ((U _ L ("Error; returns Ox%lx"), s))
return s;

1* TttViewGestureSetSquare *1

1**
TttViewInitAndRestoreCommon

Has code common to Init and Restore
**1
#define DbgTttViewInitAndRestoreCommon(x) \

TttDbgHelper(U_L("TttViewInitAndRestoreCommon"),tttViewDbgSet,Ox4,x)

STATIC STATUS PASCAL
TttViewInitAndRestoreCommon(

VIEW self,
P_TTT_VIEW_INST pInst)

STATUS s;

DbgTttViewInitAndRestoreCommon ((U_L ("self=Ox%lx"), self))

II
II Initialize for Error Recovery
II
pInst->dc = objNull;

II
II Recreate the dc
II
StsJmp(TttViewCreateDC(self, &(pInst->dc)), s, Error);

DbgTttViewInitAndRestoreCommon ((U_L ("return stsOK")))
return stsOK;

Error:
DbgTttViewIni tAndRestoreCommon ((U _ L ("Error; returns Ox%lx"), s))
return s;

1* TttViewInitAndRestoreCommon *1

1**
TttViewSingleKey

Utility routine to handle single key.

Actions:
* x sets upper left cell to X
* Y sets upper left cell to Y
* space sets upper left cell to Blank

I 5AMPU com: TIC-T AC-TOE

s
UI

**1
*define DbgTttViewSingleKey(x) \

TttDbgHelper(U_1("TttViewSingleKey"),tttViewDbgSet,Ox8,x)

STATIC STATUS PASCAL
TttViewSingleKey(

OBJECT self,
keyCode) CHAR

TTT_DATA_SET_SQUARE set;
OBJECT dataObject;
B001EAN input Ignored;
STATUS s;

DbgTttViewSingleKey((U_1("")))

ObjCaIIJrnp(rnsgViewGetDataObject, self, &dataObject, s, Error);
input Ignored = TRUE;
if «keyCode == U_1('x')) OR (keyCode == U_1('X')))

input Ignored = FALSE;
set.value = tttX;

else if «keyCode == U_1('0')) OR (keyCode U_1('0')))
input Ignored = FALSE;
set. value = tttO;

else if (keyCode == U_1(' ')) {
input Ignored = FALSE;
set. value = tttBlank;

if (input Ignored) {
s = stsInputIgnored;

else (
set.row = 2;
set.col = 0;
ObjCaIIJrnp(rnsgTttDataSetSquare, dataObject, &set, s, Error);
s = stsInputTerrninate;

DbgTttViewSingleKey ((U _ 1 ("return Ox%lx"), (U32) s))
return s;

Error:
DbgTttViewSingleKey((U_L("Error; return Ox%lx"), s))
return s;

1* TttViewSingleKey *1

1**
TttViewKeyInput
Utility routine that handles all clsKey input events.
Assumes ancestor is not interested in keyboard input.

Note that one and only one of rnsgKeyMulti and rnsgKeyChar should be
handled.

**1
*define DbgTttViewKeyInput(x) \

TttDbgHelper(U_1("TttViewKeyInput"),tttViewDbgSet,Ox10,x)

STATIC STATUS PASCAL

TttViewKeyInput(
OBJECT
P INPUT EVENT - -

STATUS

self,
pArgs)

s;

DbgTttViewKeyInput ((U _ 1 (" self=Ox%lx") , self))

ASSERT«CIsNum(pArgs->devCode) == CIsNum(clsKey)), \
U_1("KeyInput gets wrong cIs"));

if (MsgNum(pArgs->devCode) == MsgNum(rnsgKeyMulti))

U16 i;
U16 j;
P_KEY_DATA pKeyData = (P KEY DATA) (pArgs->eventData);
for (i=O; i < pKeyData->repeatCount; i++) {

for (j=O; j < pKeyData->rnulti[i] .repeatCount; j++)
s = TttViewSingleKey(self, pKeyData->rnulti[i] .keyCode);
if (s < stsOK) {

else

break;

if (s < stsOK)
break;

s = stsInputIgnored;

DbgTttViewKeyInput «U_1("return Ox%lx"), s))
return s;

1* TttViewKeyInput *1
1**

TttViewCornputeSizes
**1
*define DbgTttViewCornputeSizes(x) \

TttDbgHelper(U_1("TttViewCornputeSizes"),tttViewDbgSet,Ox40,x)

*define FONT_SIZE_FUDGE 5

STATIC void PASCAL
TttViewCornputeSizes(

P TTT VIEW SIZES - - -
PP TTT VIEW INST
P RECT32

U32
S16

p,
pData,
pBounds)

thickness;
t;

II window bounds

DbgTttViewCornputeSizes ((U _1 ("bounds= [%ld %ld %ld %ld]"), *pBounds))

thickness = Max(11, (*pData)->rnetrics.lineThickness);
p->norrnaIBoxWidth = Max(11, (pBounds->size.w - (2 * thickness)) I 3);
p->norrnaIBoxHeight = Max(11, (pBounds->size.h - (2 * thickness)) I 3);

II

§

II x and width of horiztonal stripes
II
p->horizLines[O].origin.x
p->horizLines[1].origin.x Oi
p->horizLines[O].size.w =
p->horizLines[1].size.w = Max(1L, pBounds->size.w)i

II
II y and height of vertical stripes
II
p->vertLines[O] .origin.y
p->vertLines[1] .origin.y Oi
p->vertLines[O] .size.h =
p->vertLines[1] .size.h = Max(1L, pBounds->size.h)i

II
II x and width of left column.
II
p->r[O] [0] .origin.x =
p->r[1] [0] .origin.x =
p->r[2] [0] .origin.x = Oi
p->r[O] [0] .size.w =
p->r[1] [0] .size.w =
p->r[2] [0] .size.w = p->normaIBoxWidthi

II
II x and width of left vertical stripe.
II
p->vertLines[O] .origin.x = p->r[O] [0] .size.wi
p->vertLines[O] .size.w = thicknessi

II
II x and width of middle column.
II
p->r[O] [1] .origin.x =
p->r[1] [1] .origin.x =
p->r[2] [1] .origin.x = p->vertLines[O] .origin.x + p->vertLines[O] .size.wi
p->r[O] [1] .size.w =
p->r[1] [1] .size.w =
p->r[2] [1] .size.w = p->normalBoxWidthi

II
II x and width of right vertical stripe.
II
p->vertLines[1] .origin.x = p->r[O] [1] .origin.x + p->r[O] [1] .size.wi
p->vertLines[1] .size.w = thicknessi

II
II x and width of right column. Accumlate all extra width here.
II
p->r[O] [2] .origin.x =
p->r[1] [2] .origin.x =
p->r[2] [2] .origin.x = p->vertLines[1] .origin.x + p->vertLines[1] .size.wi
p->r[O] [2] .size.w =
p->r[1] [2] .size.w =
p->r[2] [2] .size.w = Max(1L, (pBounds->size.w-

I '7 J SAMPLE CODE

II

(p->vertLines[O] .size.w + p->vertLines[1] .size.w +
p->r[O] [0] .size.w + p->r[O] [1] .size.w)))i

II y and height of bottom row.
II
p->r[O] [0] .origin.y =
p->r[O] [1] .origin.y =
p->r[O] [2] .origin.y = Oi
p->r[O] [0] .size.h =
p->r[O] [1] .size.h =
p->r[O] [2] .size.h = p->normaIBoxHeighti

II
II y and height of bottom horizontal stripe.
II
p->horizLines[O] .origin.y = p->r[O] [0] .size.hi
p->horizLines[O] .size.h = thicknessi

II
II y and height of middle row.
II
p->r[1] [0] .origin.y =
p->r[1] [1] .origin.y =
p->r[1] [2] .origin.y = p->horizLines[O] .origin.y + p->horizLines[O] .size.hi
p->r[1] [0] .size.h =
p->r[1] [1] .size.h =
p->r[1] [2] .size.h = p->normalBoxHeighti

II
II y and height of top horizontal stripe.
II
p->horizLines[1] .origin.y = p->r[1] [0] .origin.y + p->r[1] [0] .size.hi
p->horizLines[1] .size.h = thicknessi

II
II y and height of top row. Accumulate all extra height here.
II
p->r[2] [0] .origin.y =
p->r[2] [1] .origin.y =
p->r[2] [2] .origin.y = p->horizLines[1] .origin.y + p->horizLines[1] .size.hi
p->r[2] [0] .size.h =
p->r[2] [1] .size.h =
p->r[2] [2] .size.h = Max(1L, (pBounds->size.h

(p->horizLines[O] .size.h + p->horizLines[1] .size.h +
p->r[O] [0] .size.h + p->r[1] [0] .size.h))) i

II
II Compute font scale info.
II
if «p->normaIBoxWidth - FONT_SIZE FUDGE) > 0) {

t = (S16) (p->normaIBoxWidth - FONT_SIZE_FUDGE)i
else {

t = Oi

p->scale.x FxMakeFixed(t, O)i 0-

TlC-TAC-TOE

o

if ((p->norrnalBoxHeight - FONT_SIZE_FUDGE) > 0) {
t = (S16) (p->normalBoxHeight - FONT_SIZE_FUDGE);

else {
t = 0;

p->scale.y = FxMakeFixed(t, 0);

DbgTttViewComputeSizes((U_L("nBW=%ld nBH=%ld"),p->norrnalBoxWidth, p
>norrnalBoxHeight))

DbgTttViewComputeSizes ((U _ L ("vert [Ud %ld %ld %ld] [%ld Ud %ld %ld]"),
p->vertLines[O], p->vertLines[l]));

DbgTttViewComputeSizes ((U_L ("horiz [%ld Ud Ud %ld] [%ld %ld %ld %ld]"),
p->horizLines[O] , p->horizLines[l]));

DbgTttViewComputeSizes((
U_L("rO [Ud %ld %ld %ld] [%ld Ud %ld %ld] [%ld %ld %ld %ld]"),
p->r [0] [0], p->r [0] [1], p->r [0] [2])) ;

DbgTttViewComputeSizes((
U_L("rl [%ld %ld %ld %ld] [%ld %ld %ld Ud] [%ld Ud %ld %ld]"),
p->r [1] [0], p->r [1] [1], p->r [1] [2])) ;

DbgTttViewComputeSizes((
U_L ("r2 [%ld %ld Ud %ld] [Ud %ld %ld %ld] [%ld %ld %ld %ld]"),
p->r [2] [0], p->r [2] [1], p->r [2] [2])) ;

} 1* TttViewComputeSizes *1

1*

* Message Handlers *
* *1

1**
TttViewNewDefaults

Respond to msgNewDefaults.
**1
tdefine DbgTttViewNewDefaults(x) \

TttDbgHelper (U_L ("TttViewNewDefaults") ,tttViewDbgSet, Ox 80,x)

MsgHandlerWithTypes(TttViewNewDefaults, P_TTT_VIEW_NEW, PP_TTT_VIEW_INST)
{

DbgTttViewNewDefaults((U_L("self=Ox%lx") ,self))

pArgs->win.flags.input 1= inputHoldTimeout;
pArgs->gWin.helpId = tagTttview;
pArgs->embeddedWin.style.moveable = true;
pArgs->embeddedWin.style.copyable = true;
pArgs->view.createDataObject true;
pArgs->tttView.lineThickness = 5L;
pArgs->tttView.sparel = 0;
pArgs->tttView.spare2 = 0;

DbgTttViewNewDefaults ((U_L ("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

l* TttViewNewDefaults *1

1**
TttViewInit

Initialize instance data of new object.

Note: clsmgr has already initialized instance data to zeros.
**1
tdefine DbgTttViewInit(x) \

TttDbgHelper(U_L("TttViewlnit"),tttViewDbgSet,Ox100,x)

MsgHandlerWithTypes(TttViewInit, P_TTT_VIEW_NEW, PP_TTT_VIEW_INST)
{

P_TTT_VIEW_INST pInst;
TTT~ATA_NEW tttDataNew;
STATUS s;
BOOLEAN responsibleForDataObject;

DbgTttViewInit ((U _ L ("self=Ox%lx") ,self))

II
II Initialize for error recovery
II
plnst = pNull;
tttDataNew.object.uid = objNull;
responsibleForDataObject = false;

II
II Allocate instance data and initialize those parts of it
II that come from pArgs.
II
StsJmp(OSHeapBlockAlloc(osProcessHeapId, SizeOf(*pInst), &pInst), \

s, Error);
pInst->metrics.lineThickness = pArgs->tttView.lineThickness;

II
II Create the data object, if appropriate.
II
if ((pArgs->view.dataObject == Nil(OBJECT)) AND

II

(pArgs->view.createDataObject)) {
ObjCallJmp(msgNewDefaults, clsTttData, &tttDataNew, s, Error);
ObjCallJmp(msgNew, clsTttData, &tttDataNew, s, Error);
responsibleForDataObject = true;
pArgs->view.createDataObject = false;
pArgs->view.dataObject = tttDataNew.object.uid;

II Now let ancestor finish initializing self.
II clsView will make self an observer of the data object.
II
ObjCallAncestorCtxJmp(ctx, s, Error);
responsibleForDataObject = false;

II
II Use the utility routine to handle things common to Init and Restore.
II
StsJmp(TttViewInitAndRestoreCommon(self, pInst), s, Error);

ObjectWrite(self, ctx, &pInst);
DbgTttViewInit ((U_L ("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

~ o co

Error:
if (responsibleForDataObject AND tttDataNew.object.uid) {

ObjCallWarn(msgDestroy, tttDataNew.object.uid, pNull);
II clsView will notice that the data object has been destroyed
II and will update its instance data, so no need to ObjectWrite.

if (pInst) {
OSHeapBlockFree(pInst);

DbgTttViewInit «U_L ("Error; returns Ox%lx"), s))
return s;

1* TttViewInit *1

1**
TttViewFree

Respond to msgFree.

Note: Always return stsOK, even if a problem occurs. This is
(1) because there's nothing useful to do if a problem occurs anyhow
and (2) because the ancestor is called after this function if and
only if stsOK is returned, and it's important that the ancestor
get called.

**1
*define DbgTttViewFree(x) \

TttDbgHelper(U_L("TttViewFree"),tttViewDbgSet,Ox200,x)

MsgHandlerWithTypes(TttViewFree, P_ARGS, PP_TTT_VIEW_INST)
{

OBJECT dataObject;

DbgTttViewFree «U_L ("self=Ox%lx"), self))

if «*pData) ->dc) {
ObjCallWarn(msgDestroy, (*pData)->dc, pNull);

if (ObjCallWarn(msgViewGetDataObject, self, &dataObject) >= stsOK) {
if (dataObject) {

ObjCallWarn(msgViewSetDataObject, self, objNull);
ObjCallWarn(msgDestroy, dataObject, pNull);

OSHeapBlockFree(*pData);

DbgTttViewFree((U_L("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

1* TttViewFree *1

1**
TttViewSave

Save self to a file.
**1
*define DbgTttViewSave(x) \

TttDbgHelper(U_L("TttViewSave"),tttViewDbgSet,Ox400,x)

MsgHandlerWithTypes(TttViewSave, P_OBJ_SAVE, PP_TTT_VIEW_INST)
{

TTT VIEW FILED 0 filed; - - -
STATUS s;

DbgTttViewSave ((U _ L ("self=Ox%lx") ,self))

StsJmp (TttUtilWriteVersion (pArgs->file, CURRENT_VERSION), s, Error);
TttViewFiledDataOFromInstData(*pData, &filed);
StsJrnp(TttUtilWrite(pArgs->file, SizeOf(filed) , &filed), s, Error);

DbgTttViewSave ((U _ L ("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewSave ((U _ L ("Error; return Ox%lx"), s))
return S;

1* TttViewSave *1

1**
TttViewRestore

Restore self from a file.

Note: clsmgr has already initialized instance data to zeros.
**1
*define DbgTttViewRestore(x) \

TttDbgHelper(U_L("TttViewRestore"),tttViewDbgSet,Ox800,x)

MsgHandlerWithTypes(TttViewRestore, P_OBJ_RESTORE, PP_TTT_VIEW_INST)
{

P TTT VIEW INST
TTT VIEW FILED 0 - - -
TTT VERSION
STATUS

pInst;
filed;
version;
S;

DbgTttViewRestore ((U _ L (" self=Ox%lx") , self))

II
II Initialize for error recovery.
II
pInst = pNull;

II
II Read version, then read filed data. (Currently there's only
II only one legitimate file format, so no checking of the version
II need be done.)
II
II The allocate instance data and convert filed data.
II
StsJmp(TttUtilReadVersion(pArgs->file, MIN_VERSION, MAX_VERSION, \

&version), s, Error);
StsJmp(TttUtilRead(pArgs->file, SizeOf(filed) , &filed), s, Error);
StsJmp (OSHeapBlockAlloc (osProcessHeapId, SizeOf(*pInst), &pInst), \

s, Error);
TttViewInstDataFromFiledDataO(&filed, pInst);

II

TIC-TAC-TOE

0-

~

II Use the utility routine to handle things common to Init and Restore.
II
StsJmp (TttViewInitAndRestoreCommon (self, pInst), s, Error);

ObjectWrite(self, ctx, &pInst);
DbgTttViewRestore «U_1 ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (pInst) {

OSHeapBlockFree(pInst);

DbgTttViewRestore ((U _ 1 ("Error; return Ox%lx"), s))
return s;

1* TttViewRestore *1

1**
TttViewDump.

Respond to msgDump.
**1
bfdef DEBUG
MsgHandlerWithTypes(TttViewDump, P_ARGS, PP_TTT_VIEW_INST)
{

Debugf(U_1("TttViewDump: dc=Ox%lx lineThickness=%ld"),
(*pData)->dc, (U32) «*pData)->metrics.lineThickness»;

return stsOK;
MsgHandlerParametersNoWarning;

1* TttViewDump *1
=If:endif II DEBUG

1**
TttViewDataChanged

Respond to changes in viewed object.
**1
=If:define DbgTttViewDataChanged(x) \

TttDbgHelper(U_1("TttViewDataChanged") ,tttViewDbgSet, 0 x1000,x)

MsgHandlerWithTypes(TttViewDataChanged, P_TTT_DATA_CHANGED, PP_TTT_VIEW_INST)
{

STATUS s;

DbgTttViewDataChanged((U_1("self=Ox%lx pArgs=Ox%lx") ,self,pArgs»

if (pArgs == pNull) {
ObjCaIIJmp(msgWinDirtyRect, self, pNull, s, Error);

else {
WIN_METRICS WID;
TTT_VIEW_SIZES sizes;
DbgTttViewDataChanged«U_1("row=%ld col=%ld"), (U32) (pArgs->row), \

(U32) (pArgs->col»)
ObjCaIIJmp(msgWinGetMetrics, (*pData)->dc, &WID, s, Error);
TttViewComputeSizes(&sizes, pData, &(wm.bounds»;

ObjCaIIJmp(msgWinDirtyRect, (*pData)->dc, \
& (sizes.r[pArgs->row] [pArgs->col]), s, Error);

DbgTttViewDataChanged((U_1 ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewDataChanged ((U _ 1 ("Error; return Ox%lx"), s))
return s;

1* TttViewDataChanged *1

1**
TttViewRepaint

Respond to msgRepaint.

This handler demonstrates how to do "smart repainting." It asks the
window manager for the "dirty" rectangle, and then only repaints those
objects that intersect with the rectangle.

Smart repainting should be used by applications that have expensive
repainting procedures. Although Tic-Tac-Toe's repainting is not even
close to being prohibitive, it uses smart repainting for the sake
of demonstrating how to do it.

Instead of using smart repainting, many applications simply redraw
their entire window. For an example of this approach, take a look
at Hello World (Custom Window) .

**1
=If:define DbgTttViewRepaint(x) \

TttDbgHelper(U_1("TttViewRepaint"),tttViewDbgSet,Ox2000,x)
MsgHandlerWithTypes(TttViewRepaint, P_ARGS, PP_TTT_VIEW_INST)
{

TTT VIEW SIZES sizes;
SYSDC_TEXT_OUTPUT tx;
XY32 sizeX;
XY32 sizeO;
OBJECT dataObject;
BOO1EAN endRepaintNeeded;
WIN METRICS WID;
RECT32 dirtyRect;
TTT DATA METRICS dm;
U16 row;
U16 col;
U16 i;
STATUS s;
BOO1EAN drawIt;

DbgTttViewRepaint «U_1 ("self=Ox%lx"), self»

II
II General initialization and intialization for error recovery.
II Also collect miscellaneous info needed to paint.
II
endRepaintNeeded = false;

~
o

ObjCaIIJmp(msgViewGetDataObject, self, &dataObject, s, Error);
ObjCaIIJmp(msgTttDataGetMetrics, dataObject, &dm, s, Error);
ObjCaIIJmp(msgWinGetMetrics, (*pData)->dc, &wm, s, Error);
TttViewComputeSizes(&sizes, pData, &(wm.bounds»;

II
II Must do msgWinBeginRepaint before any painting starts, and
II to get dirtyRect.
II
ObjCaIIJmp(msgWinBeginRepaint, (*pData)->dc, &dirtyRect, s, Error);
endRepaintNeeded = true;

II ImagePoint ROUNDS from LWC to LUC, but DrawRectangle TRUNCATES.
II Therefore, increase the size of the dirtyRect so as to be sure to
II cover all the pixels that need to be painted.
II Another solution would be to use finer LUC than points.
dirtyRect.origin.x--;
dirtyRect.origin.y--;
dirtyRect.size.w += 2;
dirtyRect.size.h += 2;

II
II Fill the dirty rect with the appropriate background. If we hold the
II selection, the appropriate background is grey, otherwise it is white.
II
s = ObjectCall(msgSeIIsSelected, self, pNull);
if (s == stsOK) {

DbgTttViewRepaint «U_L ("self is selected"»)
ObjectCall(msgDcSetBackgroundRGB, (*pData)->dc, \

(P_ARGS)sySDcRGBGray33);
else {

DbgTttViewRepaint «U L ("self is not selected"»)
ObjectCall(msgDcSetB~ckgroundRGB, (*pData)->dc, \

(P_ARGS)sySDcRGBWhite);

ObjectCall(msgDcSetFiIIPat, (*pData)->dc, (P_ARGS)sysDcPatBackground);
ObjectCall(msgDcSetLineThickness, (*pData)->dc, (P_ARGS)OL);
ObjectCall(msgDcDrawRectangle, (*pData)->dc, &dirtyRect);
ObjectCall(msgDcSetFiIIPat, (*pData)->dc, (P_ARGS)sysDcPatForeground);

II
II Paint the vertical lines
II
for (i=O; i<2; i++) {

}

II

if (Rect32sIntersect(&dirtyRect, &(sizes.vertLines[i]») {
DbgTttViewRepaint «U_L ("vertical i=%ld; overlap"), (U32) i»
ObjectCall(msgDcDrawRectangle, (*pData)->dc, \

&(sizes.vertLines[i]»;
else {

DbgTttViewRepaint «U_L ("vertical i=%ld; no overlap"), (U32) i»

II Paint the horizontal lines

I f (f< A "4ft.!! r,fIl"u''\1!

II
for (i=O; i<2; i++) {

if (Rect32sIntersect(&dirtyRect, &(sizes.horizLines[i]») {
DbgTttViewRepaint «U_L ("horizontal i=%ld; overlap"), (U32) i»
ObjectCall(msgDcDrawRectangle, (*pData)->dc, \

&(sizes.horizLines[i]»;
else {

DbgTttViewRepaint «U_L ("horizontal i=%ld; no overlap"), (U32) i»

}

II
II Scale the font to the box size.
II
II Note: This could be done once when the window size
II changes rather than each time the window is painted.
II
ObjCaIIJmp(msgDcIdentityFont, (*pData)->dc, pNull, s, Error);
ObjCaIIJmp(msgDcScaleFont, (*pData)->dc, &(sizes.scale), s, Error);

II
II Measure X and 0 in the font.
II
TttUtiIInitTextOutput(&tx, sysDcAlignChrTop, pNull);
tx.pText = U_L("X");
tx.lenText = Ustrlen(tx.pText);
ObjectCall(msgDcMeasureText, (*pData)->dc, (P_ARGS)&tx);
sizeX = tx.cp;
DbgTttViewRepaint «U_L ("measure X= [%ld %ld]"), sizeX.x, sizeX.y»
TttUtillnitTextOutput(&tx, sysDcAlignChrTop, pNull);
tx.pText = U_L("O");
tx.lenText = Ustrlen(tx.pText);
ObjectCall(msgDcMeasureText, (*pData)->dc, (P_ARGS)&tx);
sizeO = tx.cp;
DbgTttViewRepaint «U_L ("measure 0= [%ld %ld]"), sizeO.x, sizeO.y»

II
II Paint the cells.
II
for (row=O; row<3; row++)

for (col=O; col<3; col++)
if (Rect32sIntersect(&dirtyRect, &(sizes.r[row] [col]») {

DbgTttViewRepaint «U_L ("row=%ld col=%ld; overlap"), \
(U32) row, (U32)col»;

if (dm.squares[row] [col] == tttX) {
drawIt = TRUE;
tx.pText = U_L("X");
tx.lenText = Ustrlen(tx.pText);
tx.cp.x = sizes.r[row] [col] .origin.x +

«sizes.r[row] [col] .size.w - sizeX.x) I 2);
tx.cp.y = sizes.r[row] [col] .origin.y + sizeX.y +

«sizes.r[row] [col] .size.h - sizeX.y) I 2);
else if (dm.squares[row] [col] == tttO) {

drawlt = TRUE;

TIC-T AC-TOE

~

}

II

tx.pText = U_1 ("0");

tx.lenText = Ustrlen(tx.pText);
tx.cp.x = sizes.r[row] [col] .origin.x +

«sizes.r[row] [col] .size.w - sizeO.x) I 2);
tx.cp.y = sizes.r[row] [col] .origin.y + sizeO.y +

«sizes.r[row] [col] .size.h - sizeO.y) I 2);
else {

DbgTttViewRepaint ((U_1 ("blank cell"»)
draw It = FA1SE;

if (drawIt) {
ObjCaIIJmp(msgDcDrawText, (*pData)->dc, &tx, s, Error);

else
DbgTttViewRepaint«U_1("row=%ld col=%ld; no overlap"), \

(U32) row, (U32)col»;

II Balance the msgWinBeginRepaint
II
ObjCaIIWarn(msgWinEndRepaint, (*pData)->dc, pNull);

DbgTttViewRepaint «U_1 ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (endRepaintNeeded) {

ObjCaIIWarn(msgWinEndRepaint, (*pData)->dc, pNull);

DbgTttViewRepaint ((U_1 ("Error; return Ox%lx"), s»
return s;

1* TttViewRepaint *1

1**
TttViewGetDesiredSize

Respond to msgGetDesiredSize.

The desired size is an appropriate minimum size for the drawing.
**1
*define DbgTttViewGetDesiredSize(x) \

TttDbgHelper(U_1("TttViewGetDesiredSize"),tttViewDbgSet,Ox2000,x)

MsgHandlerArgType(TttViewGetDesiredSize, P_WIN_METRICS)
{

pArgs->bounds.size.w = desiredWidth;
pArgs->bounds.size.h = desiredHeight;
DbgTttViewGetDesiredSize ((U _ 1 ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

1* TttViewGetDesiredSize *1

1**
TttViewGesture

1et ancestor handle unrecognized gestures.
**1
*define DbgTttViewGesture(x) \

TttDbgHelper(U_1("TttViewGesture"),tttViewDbgSet,Ox8000,x)

MsgHandlerWithTypes(TttViewGesture, P_GWIN_GESTURE, PP_TTT_VIEW_INST)
{

STATUS s;
I I OBJECT

hfdef DEBUG
{

owner;

P_C1S_SYMBUF mb;
hfdef PP1_O
DbgTttViewGesture«U_1("self=Ox%lx msg=Ox%lx %s"), self, pArgs->msg,

ClsMsgToString(pArgs->msg,mb»)
*else
DbgTttViewGesture«U_1("self=Ox%lx msg=Ox%lx %s") , self, pArgs

>gesture,

*endif

*endif I I DEBUG
hfdef PP1_O

ClsMsgToString(pArgs->gesture,mb»)

switch (pArgs->msg)
*else

switch (pArgs->gesture)
*endif

case xgslTap:
ObjCaIIJmp(msgTttViewToggleSel, self, pNull, s, Error);
break;

case xgsCross:
StsJmp(TttViewGestureSetSquare(self, pArgs, tttX), s, Error);
break;

case xgsCircle:
StsJmp(TttViewGestureSetSquare(self, pArgs, tttO) , s, Error);
break;

case xgsPigtailVert:
StsJmp(TttViewGestureSetSquare(self, pArgs, tttBlank), \

s, Error);
break;

case xgsCheck:
case xgsUGe~ture:

II Make sure there is a selection.
s = ObjectCall(msgSeIIsSelected, self, pNull);
if (s == stsNoMatch) {

ObjCaIIJmp(msgTttViewTakeSel, self, pNull, s, Error);
ObjCaIIJmp(msgWinUpdate, self, pNull, s, Error);

0--I\)

}

// Then call the ancestor.
ObjCallAncestorCtxJmp(ctx, s, Error);
break;

default:
DbgTttViewGesture ((U _1 ("1etting ancestor handle gesture")))
return ObjCallAncestorCtxWarn(ctx);

DbgTttViewGesture((U_1(\\return stsOK")))
return stsOK;
MsgHandlerParametersNoWarningi

Error:
DbgTttViewGesture ((U_1("Errori return Ox%lx"), s))
return s;

/* TttViewGesture */

/**
TttViewSelYield

msgSelYield from selection manager.
**/
*define DbgTttViewSelYield(x) \

TttDbgHelper(U_1("TttViewSeIYield"),tttViewDbgSet,Ox10OOO,x)

MsgHandlerWithTypes(TttViewSelYield, P_ARGS, PP_TTT_VIEW_INST)
{

STATUS s;

DbgTttViewSelYield((U_1("self=Ox%lx"), self))

StsJmp(TttViewNeedRepaint(self) , s, Error)i

DbgTttViewSelYield((U_1("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewSelYield((U_1 ("Error; return Ox%lx"), s))
return Si

/* TttViewSelYield */

/**
TttViewSelDelete

In this particular application, deleting is a poorly defined concept.
Rather than do nothing, though, we clear the board.

**/
*define DbgTttViewSeIDelete(x) \

TttDbgHelper(U_1("TttViewSelDelete"),tttViewDbgSet,Ox8OOOO,x)

MsgHandlerWithTypes(TttViewSeIDelete, P_ARGS, PP_TTT_VIEW_INST)
{

TTT DATA METRICS
OBJECT
U16
U16
STATUS

dm;
dataObjecti
rOWi

COli

Si

DbgTttViewSelDelete ((U _1 ('\\')))

ObjCalIJmp(msgViewGetDataObject, self, &dataObject, s, Error)i
ObjCaIIJmp(msgTttDataGetMetrics, dataObject, &dm, s, Error);
for (row=O; row<3i row++) {

for (col=O; col<3; col++) {
dm. squares [row] [col] = tttBlank;

dm.undoTag = tagTttDataUndoDeletei
ObjCaIIJmp(msgTttDataSetMetrics, dataObject, &dm, s, Error);
DbgTttViewSelDelete ((U _ 1 ("returns stsOK")))
return stsOK;
MsgHandlerParametersNoWarningi

Error:
DbgTttViewSelDelete ((U_1 ("Error; return Ox%lx"), s))
return Si

/* TttViewSelDelete */

/**
TttViewGetMetrics

**/
*define DbgTttViewGetMetrics(x) \

TttDbgHelper (U_1 ("TttViewGetMetrics") ,tttViewDbgSet, Ox 100000,x)

MsgHandlerWithTypes(TttViewGetMetrics, P_TTT_VIEW_METRICS, PP_TTT_VIEW_INST)
{

DbgTttViewGetMetrics ((U _ L ("self=Ox%lx") , self))

*pArgs = (*pData)->metrics;

DbgTttViewGetMetrics ((U _1 ("returns stsOK")))
return stsOK;
MsgHandlerParametersNoWarningi

/* TttViewGetMetrics */

/**
TttViewSetMetrics

**/
*define DbgTttViewSetMetrics(x) \

TttDbgHelper(U_1("TttViewSetMetrics") ,tttViewDbgSet, Ox 200000,x)

MsgHandlerWithTypes(TttViewSetMetrics, P_TTT_VIEW~TRICS, PP_TTT_VIEW_INST)
{

DbgTttViewSetMetrics ((U_1 ("self=Ox%lx") ,self))

(*pData)->metrics = *pArgs;
TttViewNeedRepaint(self)i

DbgTttViewSetMetrics ((U_1 ("returns stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

/* TttViewSetMetrics */

/**
TttViewToggleSel
msgTttViewToggleSel

TIC-TAC-TOE

~
Co»

**1
fdefine DbgTttViewToggleSel(x) \

TttDbgHelper(U_1("TttViewToggleSel"),tttViewDbgSet,Ox4OOOOO,x)

MsgHandlerWithTypes(TttViewToggleSel, P_ARGS, PP_TTT_VIEW_INST)
{

STATUS Si

DbgTttViewToggleSel «U_1 ("self=Ox%lx") ,self»

s = ObjectCall(msgSelIsSelected, self, pNull)i
if (s == stsOK) {

DbgTttViewToggleSel ((U _ 1 ("View is selectedi deselect it"»)
ObjCallJmp(msgSelSetOwner, theSelectionManager, pNull, s, Error)i
if (self == InputGetTarget(» {

StsJmp(InputSetTarget(objNull, inputAllRealEventsFlags), s, Error);

else {
DbgTttViewToggleSel«U_1("View is not selected; select it"»)
ObjCallJmp(msgSelSelect, self, pNull, s, Error)i

StsJmp(TttViewNeedRepaint(self) , s, Error);

DbgTttViewToggleSel «U_1 ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarningi

Error:
DbgTttViewToggleSel«U_1("Error; return Ox%lx"),s»
return Si

1* TttViewToggleSel *1

1**
TttViewTakeSel

**1
fdefine DbgTttViewTakeSel(x) \

TttDbgHelper(U_1("TttViewTakeSel"),tttViewDbgSet,Ox800OOO,x)

MsgHandlerWithTypes(TttViewTakeSel, P_ARGS, PP_TTT_VIEW_INST)
{

STATUS S;

DbgTttViewTakeSel ((U _ 1 (" self=Ox%lx") , self))

s = ObjectCall(msgSelIsSelected, self, pNull);
if (s == stsNoMatch) {

DbgTttViewTakeSel«U_1("self is not selected; taking"»)
ObjCallJmp(msgSelSelect, self, pNull, s, Error);
StsJmp(TttViewNeedRepaint(self) , s, Error);

else {
DbgTttViewTakeSel«U_1("self is already selected; doing nothing"»)

DbgTttViewTakeSel «U_1 ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewTakeSel«U_1("Error; return Ox%lx"),s»
return S;

} 1* TttViewTakeSel *1

1**
TttViewInputEvent
msgInputEvent.

**1
fdefine DbgTttViewInputEvent(x) \

TttDbgHelper (U_1 ("TttViewInputEvent") ,tttViewDbgSet, Ox lOOOOOO,x)

MsgHandlerWithTypes(TttViewInputEvent, P_INPUT_EVENT, PP_TTT_VIEW_INST)
{

STATUS S;

switch (ClsNum(pArgs->devCode»

case ClsNum(clsKey):
s = TttViewKeyInput(self, pArgs);
break;

default:
s = ObjectCallAncestorCtx(ctx);
break;

return S;
MsgHandlerParametersNoWarning;

1* TttViewInputEvent *1

1**
TttViewSelSelect

msgSelSelect.
**1
MsgHandler(TttViewSelSelect)
{

STATUS s;

II
II If the view is not selected, force it to repaint.
II (This code is needed for the move/copy protocol; otherwise,
II tapping or press-tapping on a ttt board does not highlight
II the board's selection properly).
II

s = ObjectCall(msgSelIsSelected, self, pNull);

if (s == stsNoMatch) {
StsWarn(TttViewNeedRepaint(self»;

return stsOK;
MsgHandlerParametersNoWarning;

0--'"

1*
* Installation *
* *1

1**
CIsTttViewlnit

Install the class.
**1
STATUS PASCAL
CIsTttViewlnit (void)
{

CLASS_NEW new;
STATUS s;

ObjCaIIJmp(msgNewDefaults, clsClass, &new, s, Error);
new.object.uid clsTttView;
new.cls.pMsg clsTttViewTable;
new.cls.ancestor clsView;
new.cls.size SizeOf(P_TTT_VIEW_INST);
new.cls.newArgsSize SizeOf(TTT_VIEW_NEW);
ObjCaIIJmp(msgNew, clsClass, &new, s, Error);

return stsOK;

Error:
return s;

} 1* CIsTttViewlnit *1

mv'EW.H
1**
File: tttview.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.
You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.7 $
$Author: kcatlin $
$Date: 13 Jul 1992 10:31:36 $

This file contains the API definition for clsTttView.
clsTttView inherits from clsView.
clsTttView displays a representation of clsTttData as a grid of XS and Os.

**1
#ifndef TTTVIEW_INCLUDED
#define TTTVIEW_INCLUDED

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>
#endif

#ifndef WIN_INCLUDED
#include <win.h>
#endif

#ifndef VIEW_INCLUDED
#include <view.h>
#endif

#ifndef SYSGRAF_INCLUDED
#include <sysgraf.h>
#endif
#ifndef TTTPRIV_INCLUDED
#include "tttpriv.h"
#endif

1*
*

Defines *
* *1

II
II Tags used by the view and its option sheet.
II
#define tagTttView
#define tagTttViewCard
#define tagCardTitle
#define tagCardLineThickness

MakeTag(clsTttView, 0)
MakeTag(clsTttView, 1)

MakeTag(clsTttView, 2)
MakeTag(clsTttView, 3)

II
II The RES_IDs for the resource lists used with the TAGs.
II
#define resTttViewQHelp
#define resTttViewTK

MakeListResld(clsTttView, resGrpQhelp, 0)
MakeListResld(clsTttView, resGrpTK, 0)

1* * *
*

*
Common Typedefs

* *1

typedef OBJECT
TTT_VIEW, * P_TTT_VIEW;

typedef struct {

U32 lineThickness;
U32 spare1;
U32 spare2;

TTT_VIEW_METRICS, * P_TTT_VIEW_METRICS,
TTT_VIEW_NEW_ONLY, * P_TTT_VIEW_NEW_ONLY;

typedef struct TTT_VIEW_INST {

TTT VIEW_METRICS metrics;
SYSDC dc;
II AKN - currentCel1 is used to hold hit row/col
TTT_DATA_SET_SQUARE currentCell;

*

'7 I SAMPLE (ODE TIC-TAC-TOE

0--UI

RECT32 selectedRange;

TTT VIEW_INST,
* P_TTT_VIEW_INST,
* * PP_TTT_VIEW_INST;

1*
* Private Functions
* *1

1**
TttViewOptions returns STATUS

Called in response to msgSelOptions and the "Check" gesture.
*1
STATUS PASCAL
TttViewOptions(

OBJECT
PP TTT VIEW INST - -

self,
pData) ;

1*
* Exported Functions
* *1

1**
ClsTttViewInit returns STATUS

Initializes I installs clsTttView.
This routine is only called during installation of the class.

*1
STATUS PASCAL
ClsTttViewInit (void);

1*
* Messages for clsTttView
* *1

1**
msgNew takes P_TTT_VIEW_NEW, returns STATUS

category: class message
Creates an instance of clsTttView.

*1

idefine tttViewNewFields \
viewNewFields \
TTT_VIEW_NEW_ONLY tttView;

typedef struct TTT_VIEW_NEW

tttViewNewFields

TTT_VIEW_NEW, * P_TTT_VIEW_NEW;

1**
msgNewDefaults takes P_TTT_VIEW_NEW, returns STATUS

category: class message
Initializes the TTT VIEW NEW structure to default values.

pArgs->view.createDataObject true;
pArgs->tttView.lineThickness = 5L;
pArgs->tttView.spare1 = 0;

*

*

*

pArgs->tttView.spare2 0;
*1

1**
msgTttViewGetMetrics takes P_TTT_VIEW_METRICS, returns STATUS

Gets TTT VIEW metrics.
*1
ide fine msgTttViewGetMetrics MakeMsg(clsTttView, 0)

1**
msgTttViewSetMetrics takes P_TTT_VIEW_METRICS, returns STATUS

Sets the TTT VIEW metrics.
*1
idefine msgTttViewSetMetrics MakeMsg(clsTttView, 1)

1**
msgTttViewToggleSel takes nothing, returns STATUS

Causes the view to toggle whether or not it holds the selection.
*1
idefine msgTttViewToggleSel MakeMsg(clsTttView, 2)

1**
msgTttViewTakeSel takes nothing, returns STATUS

Causes the view to toggle whether or not it holds the selection.
*1
idefine msgTttViewTakeSel MakeMsg(clsTttView, 3)

iendif II TTTVIEW_INCLUDED

1*
* AKN - defines for constants (r,w)
*

idefine numberOfRows
idefine numberOfColumns

mvoPT.C

5
5

* *1

1**
File: tttvopt.c
(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.10 $
$Author: aloomis $
$Date: 20 Aug 1992 20:33:10 $

This file contains the implementation of clsTttView's Option Sheets.

0. -0.

*

Notes:

[1] The Option Sheet protocol allows any class of an
object to create an option sheet and/or add cards.
Therefore this code carefully validates that it only
operates on Option Sheets and Cards that it knows about.
This could be overkill.

**1
#ifndef OPTION_INCLUDED
#include <option.h>
#endif

#ifndef TTTVIEW_INCLUDED
#include <tttview.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef OPTTABLE_INCLUDEO
#include <opttable.h>
#endif

#ifndef TTTDATA_INCLUDED
#include <tttdata.h>
#endif

#ifndef OS_INCLUDED
#include <os.h>
#endif

#ifndef SEL_INCLUDED
#include <sel.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef BRIDGE_INCLUDED
#include <bridge.h>
#endif

#ifndef RESUTIL_INCLUDED
#include <resutil.h>
#endif

1* *
*

*
Defines, Types, Globals, Etc *

* *1
II
II The following static maps to the TK_TABLE_ENTRY struct, in tktable.h
II It is short-hand for defining a TkTable.
II Note that the two controls (a label and an integer field) share the
II same quick help id.
II
static const TK_TABLE_ENTRY cardEntries[] = {

{tagCardLineThickness, 0, 0, 0, tkLabelStringId, 0, tagCardLineThickness},

{U_L("l") , 1, 1, tagCardLineThickness, 0, clsIntegerField,
tagCardLineThickness},

{pNull}
};

1* *
*

*
Utility Routines *

* *1

1*
* Message Handlers *
* *1

1**
TttViewOptionAddCards

Handles msgOptionAddCards.

Note on error handling: Once a card has been added to the sheet,
destroying the sheet will destroy the card.

**1
#define DbgTttViewOptionAddCards(x) \

TttDbgHelper(U_L("TttViewOptionAddCards"),tttViewOptsDbgSet,Ox4,x)

MsgHandlerWithTypes(TttViewOptionAddCards, P_OPTION_TAG, PP_TTT_VIEW_INST)
{

OPTION CARD
STATUS

card;
S;

DbgTttViewOptionAddCards ((U_L ("")))

II
II Create the card.
II
card. tag = tagTttViewCard;
card. win = objNull;
card.pName = ResUtiIAllocListString(osProcessHeapId, resGrpTK,

tagCardTitle) ;
card. client = self;
ObjCaIIJmp(msgOptionAddLastCard, pArgs->option, &card, s, Error);

DbgTttViewOptionAddCards ((U_L ("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewOptionAddCards ((U_L ("Error; return Ox%lx"), s))
return S;

1* TttViewOptionAddCards *1
1**

TttViewOptionProvideCard

Handles msgOptionProvideCardWin.
**1
#define DbgTttViewOptionProvideCard(x) \

TttDbgHelper(U_L("TttViewOptionProvideCard"),tttViewOptsDbgSet,Ox8,x)

'7 I SAMPLE CODE TIC-TAC-TOE

~

MsgHandlerWithTypes(TttViewOptionProvideCard, P_OPTION_CARD, P_UNKNOWN)
{

STATUS s;
otn; OPTION TABLE NEW - -

DbgTttViewOptionProvideCard((U_L (""»)

pArgs->win = objNull;
if (pArgs->tag == tagTttViewCard)
{

ObjCaIIJrnp(rnsgNewDefaults, clsOptionTable, &otn, s, Error);
otn.tkTable.client = self;
otn.tkTable.pEntries = cardEntries;
otn.win.tag = pArgs->tag;
otn.gWin.helpId = tagCardLineThickness;
ObjCaIIJrnp(rnsgNew, clsOptionTable, &otn, s, Error);
pArgs->win = otn.object.uid;

return (stsOK) ;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewOptionProvideCard((U_L ("Error; return Ox%lx"), s»
return s;

1* TttViewOptionProvideCard *1
1**

TttViewOptionRefreshCard

Handles rnsgOptionRefreshCard
**1
#define DbgTttViewOptionRefreshCard(x) \

TttDbgHelper(U_L("TttViewOptionRefreshCard"),tttViewOptsDbgSet,Ox10,x)

MsgHandlerWithTypes(TttViewOptionRefreshCard, P_OP T ION_CARD , PP_TTT_VIEW_INST)
{

OBJECT
TTT VIEW METRICS
OBJECT
STATUS

view;
vrn;
.control;
s;

DbgTttViewOptionRefreshCard((U_L(""»)

II
II See note [1] at the beginning of this file.
II
if (pArgs->tag != tagTttViewCard) {

II

DbgTttViewOptionRefreshCard ((U _ L ("unrecognized card; call ancestor"»)
return ObjCaIIAncestorCtxWarn(ctx);

II Collect info needed to refresh card.
II
StsJrnp(TttUtiIGetCornponents(OSThisApp(), tttGetView, \

objNull, &view, objNull), s, Error);
ObjCaIIJrnp(rnsgTttViewGetMetrics, view, &vrn, s, Error);

DbgTttViewOptionRefreshCard ((U _ L ("refreshing card"»)

control = (OBJECT) ObjectCall(rnsgWinFindTag, pArgs->win, \
(P_ARGS)tagCardLineThickness);

ObjCaIIJrnp(rnsgControISetValue, control, (P_ARGS) (vrn.lineThickness), \
s, Error);

II
II The whole card is clean now.
II
ObjCaIIJrnp(rnsgControISetDirty, pArgs->win, (P_ARGS) false, s, Error);

DbgTttViewOptionRefreshCard ((U _ L ("return stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewOptionRefreshCard((U_L ("Error; return Ox%lx"), s»
return s;

1* TttViewOptionRefreshCard *1

1**
TttViewOptionApplyCard

Handles rnsgOptionApplyCard

Note: Perhaps this should be an undoable operation.
**1
#define DbgTttViewOptionApplyCard(x) \

TttDbgHelper(U_L("TttViewOptionApplyCard"),tttViewOptsDbgSet,Ox20,x)

MsgHandlerWithTypes(TttViewOptionApplyCard, P_OPTION_CARD, PP_TTT_VIEW_INST)
{

OBJECT view;
TTT VIEW METRICS vrn;
BOOLEAN dirty;
OBJECT control;
U32 value;
OBJECT owner;
STATUS Si

DbgTttViewOptionApplyCard((U_L(""»)

II
II See note [1] at the beginning of this file.
II
if (pArgs->tag != tagTttViewCard) {

DbgTttViewOptionRefreshCard«U_L("unrecognized card; call ancestor"»)
return ObjCaIIAncestorCtxWarn(ctx);

}

II
II Collect info needed to apply card.
II
StsJrnp(TttUtiIGetCornponents(OSThisApp(), tttGetView, objNull, \

&view, objNull), s, Error);

DbgTttViewOptionApplyCard((U_L("applying card"»)
control = (OBJECT) ObjectCall(rnsgWinFindTag, pArgs->win, \

(P_ARGS)tagCardLineThickness);
ObjCaIIJrnp(rnsgControIGetDirty, control, &dirty, s, Error);
if (dirty) {

~
00

II Promote the view's selection, if it is not already promoted.
ObjCaIIJmp(msgSeIOwner, theSelectionManager, &owner, s, Error);
if (owner != self) {

ObjCaIIJmp(msgSeISetOwnerPreserve, theSelectionManager, \
pNull, s, Error);

ObjCaIIJmp(msgControIGetValue, control, &value, s, Error);
DbgTttViewOptionApplyCard((U_L("\"Line Thickness\" is dirty;

value=%ld"),value))
ObjCaIIJmp(msgTttViewGetMetrics, view, &vm, s, Error);
vm.lineThickness = value;
ObjCaIIJmp(msgTttViewSetMetrics, view, &vm, s, Error);

else {
DbgTttViewOptionApplyCard((U_L("\"Line Thickness\" is not dirty")))

DbgTttViewOptionApplyCard ((U _ L ("return stsOK")))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewOptionApplyCard ((U _ L ("Error; return Ox%lx"), s))
return s;

1* TttViewOptionApplyCard *1

1**
TttViewOptionApplicableCard

Handles msgOptionApplicableCard
**1
*define DbgTttViewOptionApplicableCard(x) \

TttDbgHelper(U_L("TttViewOptionApplicableCard"),tttViewOptsDbgSet,Ox80,x)

MsgHandlerWithTypes(TttViewOptionApplicableCard, P_OPTION_CARD, \
PP_TTT_VIEW_INST)

OBJECT
STATUS

owner;
s;

DbgTttViewOptionApplicableCard((U_L("")))

II
II See note [1] at the beginning of this file. Also, don't use
II0bjCaIIAncestorCtxWarn(); it is not an error for the ancestor to
II return stsFailed, and we don't want to generate a debugging message.
II
if (pArgs->tag != tagTttViewCard)

DbgTttViewOptionApplicableCard ((U _ L ("unrecognized card; call
ancestor")))

}

II

return ObjectCallAncestorCtx(ctx);

II SO it's a ttt card. Decide if it's consistent with the current seln.
II
ObjCallJmp(msgSelOwner, theSelectionManager, &owner, s, Error);
if (owner == self) {

DbgTttViewOptionApplicableCard ((U _ L ("owner is self; return stsOK")))
return stsOK;

else {
DbgTttViewOptionApplicableCard ((U _ L ("owner is not self; return

stsFailed")))
return stsFailed;

MsgHandlerParametersNoWarning;

Error:
DbgTttViewOptionApplicableCard((U_L("Error; return Ox%lx"), s))
return s;

1* TttViewOptionApplicableCard *1

mvXFER.C
1**
File: tttvxfer.c
(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 $
$Author: kcatlin $
$Date: 28 Jul 1992 11:20:14 $

This file contains the implementation of clsTttView's Data Transfer
**1
*ifndef TTTVIEW_INCLUDED
*include <tttview.h>
*endif
*ifndef LIST_INCLUDED
*include <list.h>

-*endif

*ifndef XFER_INCLUDED
*include <xfer.h>
*endif
*ifndef SEL_INCLUDED
*include <sel.h>
*endif
*ifndef TTTDATA_INCLUDED
*include <tttdata.h>
*endif
*ifndef EMBEDWIN_INCLUDED
*include <embedwin.h>

'7 I SAMPU CODE TIC-T AC-TOE

~
-0

*endif
*ifndef DEBUG_INC1UDED
*include <debug.h>
*endif
*ifndef INT1_INC1UDED
*include <intl.h>
*endif
1*

* Defines, Types, Globals, Etc *
* *1

1*

* Utility Routines *
* *1

1*

* Message Handlers *
* *1

1**
TttViewSelBeginMoveAndCopy

Handles both msgSelBeginMove and msgSelBeginCopy
**1
*define DbgTttViewSeIBeginMoveAndCopy(x) \

TttDbgHelper(U_1("TttViewSeIBeginMoveAndCopy"),tttViewXferDbgSet,Ox1,x)

MsgHandlerWithTypes(TttViewSeIBeginMoveAndCopy, P_XY32, PP_TTT_VIEW_INST)
{

EMBEDDED WIN BEGIN MOVE COpy bmc; - - - -
STATUS s;

DbgTttViewSelBeginMoveAndCopy ((U _ 1 (" self=Ox%lx") , self))

II
II If we don't handle this message, the default behavior is to
II draw a marquee around the entire selection. For ttt, the marquee
II would stretch around the entire board, which is too large to be
II be easily dragged into another document. So, we handle this message,
II and set the bounds of the move/copy area to an empty rectangle.
II msgEmbeddedWinBeginMove/Copy will know to display a move/copy icon
II instead of drawing the marquee.
II
if (pArgs) {

bmc . xy = *pArgs;
else {

bmc.xy.x
bmc.xy.y 0;

bmc.bounds.origin.x
bmc.bounds.origin.y
bmc.bounds.size.w =
bmc.bounds.size.h = 0;

ObjCaIIJmp(MsgEqual(msg, msgSelBeginMove) ?
msgEmbeddedWinBeginMove : msgEmbeddedWinBeginCopy,
self, &bmc, s, Error);

DbgTttViewSelBeginMoveAndCopy «U_1 ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewSelBeginMoveAndCopy ((U _ 1 ("Error; return Ox%lx"), s))
return s;

1* TttViewSelBeginMoveAndCopy *1

1**
TttViewXferGet

**1
*define DbgTttViewXferGet(x) \

TttDbgHelper(U_1("TttViewXferGet"),tttViewXferDbgSet,0x2,x)

MsgHandlerWithTypes(TttViewXferGet, P_XFER_FIXED_BUF, PP_TTT_VIEW_INST)
{

STATUS s;

DbgTttViewXferGet ((U _ 1 ("self=Ox%lx") , self))

if (pArgs->id == xferString) {
OBJECT dataObj;
TTT_DATA_METRICS dm;
U16 row;
U16 col;
P_XFER_FIXED_BUF p = (P_XFER_FIXED_BUF)pArgs;
ObjCaIIJmp(msgViewGetDataObject, self, &dataObj, s, Error);
ObjCaIIJmp(msgTttDataGetMetrics, dataObj, &dm, s, Error);

II
II initialize the length to the number of squares (9) plus 1
II to allow for a string termination character (just in case
II the user copies/moves the string into a text processor.
II
p->len = 10;
p->data = 01;
for (row=O; row<3; row++) {

for (col=O; col<3; col++)
p->buf[(row*3)+col] = dm.squares[row] [col];

p->buf[9]
s = stsOK;

else {

U_1('\0');

s = ObjectCaIIAncestorCtx(ctx);

DbgTttViewXferGet «U_1 ("returns Ox%lx"), s»
return s;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewXferGet «U_1 ("Error; return Ox%lx"), s»
return s;

1* TttViewXferGet *1

0-
~ o

1**
TttViewXferList

**1
static TAG
sourceFormats[] = {xferString};

#define N_SOURCE_FORMATS (SizeOf(sourceFormats) I SizeOf(sourceFormats[O]»

#define DbgTttViewXferList(x) \
TttDbgHelper(U_L("TttViewXferList"),tttViewXferDbgSet,Ox4,x)

MsgHandlerWithTypes(TttViewXferList, OBJECT, PP_TTT_VIEW_INST)
{

STATUS S;

DbgTttViewXferList ((U _ L ("self=Ox%lx") ,self))

II
II Don't let ancestor add types. We aren't interested in
II moving/copying the window, which is the only type the
II ancestor supports.
II
StsJmp(XferAddIds(pArgs, sourceFormats, N_SOURCE_FORMATS), s, Error);

DbgTttViewXferList «U_L("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewXferList ((U _ L ("Error; return Ox%lx"), s))
return S;

1* TttViewXferList *1

1**
TttViewSelMoveAndSelCopy

Handles both msgSelMoveSelection and msgSelCopySelection
**1
static TAG
receiverFormats[] = {xferString};

#define N_RECEIVER_FORMATS (SizeOf(receiverFormats) I
SizeOf(receiverFormats[O]»

#define DbgTttViewSelMoveAndSelCopy(x) \
TttDbgHelper(U_L("TttViewSelMoveAndSelCopy"),tttViewXferDbgSet,Ox8,x)

MsgHandlerWithTypes(TttViewSelMoveAndSelCopy, P_XY32, PP_TTT_VIEW_INST)
{

TAG
OBJECT
XFER LIST NEW
STATUS

transferType;
owner;
listNew;
s;

DbgTttViewSelMoveAndSelCopy «U_L ("self=Ox%lx"), self»

II
II Initialize for error recovery
II
listNew.object.uid = NULL;

II
II Get source of move/copy.

II
ObjCallJmp(msgSelOwner, theSelectionManager, &owner, s, Error);
if (! owner) {

}

II

DbgTttViewSelMoveAndSelCopy ((U _ L ("no owner!"»)
s = stsFailed;
goto Error;

II Don't bother doing move/copy to self. Use the Error exit out of
II this routine even though this really isn't really an error.
II
if (owner == self) {

DbgTttViewSelMoveAndSelCopy«U_L("owner
s = stsOK;

}

II

goto Error;

II Get list of available types.
II

self"»)

ObjCallJmp(msgNewDefaults, clsXferList, &listNew, s, Error);
ObjCallJmp(msgNew, clsXferList, &listNew, s, Error);
ObjCallJmp(msgXferList, owner, listNew.object.uid, s, Error);
StsJmp (XferListSearch (listNew.object.uid, receiverFormats,

N_RECEIVER_FORMATS, &transferType), s, Error);

II
II This only handles one transfer type now, but we expect to handle
II more in the future. So code it in that style.
II
if (transferType == xferString)

TTT_DATA_METRICS metrics;
OBJECT dataObj;
XFER_FIXED_BUF xfer;
U16 i;
DbgTttViewSelMoveAndSelCopy«U_L("transferType is xferString"»)
ObjCallJmp(msgViewGetDataObject, self, &dataObj, s, Error);
ObjCallJmp(msgTttDataGetMetrics, dataObj, &metrics, s, Error);
xfer.id = xferString;
ObjSendUpdateJmp(msgXferGet, owner, &xfer, SizeOf(xfer), s, Error);
DbgTttViewSelMoveAndSelCopy ((U _ L ("data=%ld len=%ld"),

(U32) (xfer. data), (U32) (xfer .len)))
for (i=O; i < (U16)Min(xfer.len,9L); i++) {

metrics.squares[i/3] [i%3] =
TttUtilSquareValueForChar(xfer.buf[i]);

metrics.undoTag = tagTttDataUndoMoveCopy;
ObjCallJmp(msgTttDataSetMetrics, dataObj, &metrics, s, Error);

else {

goto Error;

TIC-TAC-TOE

0-
~ -

II
II If this was a move, delete the source.
II
if (MsgEqual(msgSeIMoveSelection, msg» {

ObjSendU32Jmp(msgSeIDelete, owner, (P_ARGS)SeIDeleteNoSelect, s,
Error);

}

II
II Take the selection. Be sure to do this AFTER deleting the
II selection because the source may "forget" what to delete when
II the selection is pulled from it.
II
ObjCaIIJmp(msgTttViewTakeSel, self, pNull, s, Error);
ObjCaIIWarn(msgDestroy, listNew.object.uid, pNull);
DbgTttViewSelMoveAndSelCopy «U_L ("returns stsOK"»)
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (listNew.object.uid) {

ObjCaIIWarn(msgDestroy, listNew.object.uid, pNull);

DbgTttViewSelMoveAndSelCopy ((U _ L ("Error; return Ox%lx"), s))
return Si

1* TttViewSelMoveAndSelCopy *1

USA.RC
1**
File: usa.rc
(C) Copyright 1992 by GO Corporation, All Rights Reserved.

$Revision: 1.8 $
$Author: ehoogerb $
$Date: 22 Oct 1992 16:47:08 $

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS"), WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

***1
#ifndef RESCMPLR_INCLUDED
#include <rescmplr.h>
#endif

#ifndef APPTAG INCLUDED
#include <apptag.h>
#endif

II Resource ID & TAGs for app framework

#ifndef INTL INCLUDED
#include <intl.h>
#endif

#ifndef BRIDGE_INCLUDED
#include <bridge.h>
#endif

#ifndef TTTPRIV_INCLUDED
#include "tttpriv.h"
#endif

#ifndef TTTVIEW_INCLUDED
#include "tttview.h"
#endif

#ifndef TTTDATA_INCLUDED
#include "tttdata.h"
#endif

1**
A P P F ram e w 0 r k S t r i n g s

***1
II Define the strings for use with the AppFramework resource for TTT.
static RC_TAGGED_STRING appStrings[] = {

} ;

II The company that produced the program.
tagAppMgrAppCompany, U _ L ("GO Corporation"),

II The copyright string.
tagAppMgrAppCopyright,
U_L("\xOOA9 Copyright 1992 by GO Corporation, All Rights Reserved."),

II User-visible filename. 32 chars or less.
tagAppMgrAppFilename,
U_L ("Tic-Tac-Toe") ,

II User-visible file type. 32 chars or less.
tagAppMgrAppClassName,
U _ L ("Application") ,

Nil (TAG) II end of list marker

static RC_INPUT app =

};

resAppMgrAppStrings,
appStrings,
0,
resTaggedStringArrayResAgent

1**
Too I kit S t r i n g s

***1
II Define the strings for use with the Toolkit resource for clsTttView
static RC_TAGGED_STRING tttViewTKStrings[] = {

II The title of the TTT option card
tagCardTitle, U_L("TTT Card"),

II The label on the TTT option card for the line thickness control
tagCardLineThickness, U_L("Line Thickness:"),

Nil (TAG)

~
~

} ;

static RC INPUT tttViewTK

} ;

resTttViewTK,
tttViewTKStrings,
0,
resTaggedStringArrayResAgent

II Define the strings for use with the Toolkit resource for clsTttData
static RC_TAGGED_STRING tttDataTKStrings[]

} ;

II Undo menu string to undo a delete
tagTttDataUndoDelete, U_L ("Undo Delete"),

II Undo menu string to undo a move or copy
tagTttDataUndoMoveCopy, U_L("Undo Move/Copy"),

Nil (TAG)

static RC INPUT tttDataTK

};

resTttDataTK,
tttDataTKStrings,
0,
resTaggedStringArrayResAgent

1**
Qui c k H e 1 pSt r i n g s

***1
II Define the quick help resource for TTT.
static RC_TAGGED_STRING tttViewQHelpStrings[] = {

};

II Quick help for TTT's option card to change the line thickness.
tagTttViewCard,
U_L ("TTT Cardll")
U_L("Use this option card to change the thickness of the lines ")
U_L("on the Tic-Tac-Toe board."),

II Quick help for the line thickness control in TTT's option card.
tagCardLineThickness,
U_L("Line Thickness I I")
U_L("Change the line thickness by writing in a number from 1-9."),

II Quick Help for the TTT window.
tagTttView,
U_L ("Tic-Tac-Toe II")
U_L("The Tic-Tac-Toe window lets you to make X's and O's in a Tic-Tac-Toe ")
U_L("grid. You can write X's and O's and make move, copy")
U L ("and pigtail delete gestures. \n\n")
U=L("It does not recognize a completed game, either tied or won.\n\n")
U_L("To clear the game and start again, tap Select All in the Edit menu, ")
U_L("then tap Delete."),
Nil (TAG)

static RC_INPUT tttViewQHelp
resTttViewQHelp,
tttViewQHelpStrings,

0,
resTaggedStringArrayResAgent

};

1**
Strings for pstamp to use

***1
II Define the strings for use with the AppFramework resource for TTT.
static RC TAGGED STRING stampStrings[] = {

};

II Us;r-visible file name of Stationery already filled in. 32 chars or less
tagTttStationery1,
U_L("Tic-Tac-Toe (filled)"),

II User-visible file name of Stationery with X's. 32 chars or less
tagTttStationery2,
U_L("Tic-Tac-Toe (X's)"),

II User-visible file name of the strategy help file. 32 chars or less
tagStrategyHelp,
U _ L ("Tic-Tac-Toe Strategy"),

II User-visible file name of the rules help file. 32 chars or less
tagRulesHelp,
U_L("Tic-Tac-Toe Rules"),

Nil (TAG) II end of list marker

static RC_INPUT pstamp
MakeListResId(clsTttApp, resGrpMisc, 0),
stampStrings,
0,
resTaggedStringArrayResAgent

} ;

1**
Lis t 0 f Res 0 u r c e s

***1
II List all of
P RC INPUT

the resources so that RC can find them.
resInput [] = {

} ;

&app,
&tttViewQHelp,
&tttViewTK,
&tttDataTK,
&pstamp,
pNull

FILLED. TXT

II the Application Framework strings
II the Quick Help for clsTttView
II the Toolkit Strings for clsTttView
II the Toolkit Strings for clsTttData
II strings for pstamp to use
II End of list.

xoxoxoxox stationery for tttapp

I 7 f SAMPLE (ODE TIC-TAC-TOE

0-
~
Co)

RULES. TXT
Tic-Tac-Toe is a simple game for two players. The players take turns writing
X's and O's in the grid.
The player that gets three X's or three O's in a row (across, down, or
diagonally) wins.

STRAtTXT
The first player should put her X (or 0) in the center square. By doing so, she
increases the
possibility of getting three X's (or O's) in a row.

XSONLY.TXT
x x x x x stationery for tttapp

~

Template Application

As its name implies, Template Application is a template, "cookie cutter" application.

As such, it does not exhibit much functionality beyond the default actions per

formed by the Application Framework. However, it does handle many "typical"

application messages. This aspect makes Template Application a good starting point

for building a real application.

PenPoint applications rely on clsApp to create and display their main window, save

state, terminate the application instance, and so on. There are seventy-some mes

sages that clsApp responds to. You will never have to worry about handling most of

these, however, every application developer needs to create a descendant of clsApp

and have the descendant handle several important messages. Template Application

illustrates the messages that most applications will need to be concerned with. You

will find a description of these messages and how to handle them in the block com

ments for each of the methods. In addition, these messages are fully documented in

the PenPoint Architectural Reference, and the APP.H header file.

The PenPoint Application Framework defines a number of flags that you can use to

explore the classes that it contains and the messages that they respond to. These flags

are documented in the header comment for TEMPLTAP.C.

Objectives

Template Application serves as a shell of an application and can be used as the start

ing point for a real application.

This sample application also shows how to:

• File instance data.

• Create the standard menu bar and add application-specific menus.

• Create an icon window as a client window.

• Associate a resource file with your application.

• Use resource files to define the standard application resources.

• Define tags and lists for the strings used as resources.

Class overview

Template Application defines two classes: clsTemplateApp and clsFoo. It makes use

of the following classes:

clsApp

clsAppMgr

clsClass

clslconWin

clsMenu

clsObject

Files used

The code for Template Application is in PENPOINT\SDK\SAMPLE\TEMPLTAP. The

files are:

METHODS.TBL the list of messages that the classes respond to, and the

associated message handlers to call.

FOO.C the source code for clsFoo.

FOO.H the header file for clsFoo.

TEMPLTAP.C the source code for the application class.

TEMPLTAP.H the header file for the application class

JPN.RC strings for the Japanese version (not listed here for typographical rea
sons).

USA.RC strings for the USA version.

METHODS. T8L
/**
File: methods.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.6 $
$Author: aloomis $

TEMPLATE APPLICATION

0-
~
UI

$Date: 16 Sep 1992 16:06:08 $

This file contains the method table definitions for templtap.exe.
**1
#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef TEMPLTAP_INCLUDED
#include <templtap.h>
#endif

#ifndef FOO_INCLUDED
#include <foo.h>
#endif
MSG_INFO clsTemplateAppMethods[]

#ifdef DEBUG
{msgDump,
#endif

"TemplateAppDump" , objCallAncestorBefore

{msgInit, "TemplateAppInit", objCallAncestorBefore
{msgFree, "TemplateAppFree", objCallAncestorAfter
{msgSave, "TemplateAppSave" , objCallAncestorBefore
{msgRestore, "TemplateAppRestore" , objCallAncestorBefore
{msgAppInit, "TemplateAppAppInit", objCallAncestorBefore
{msgAppOpen, "TemplateAppOpen", objCallAncestorAfter
{msgAppClose, "TemplateAppClose" , objCallAncestorBefore
{msgAppCreateClientWin, "TemplateAppCreateClientWin",
{msgAppCreateMenuBar, "TemplateAppCreateMenuBar",
{msgAppRevert, "TemplateAppRevert", objCallAncestorBefore
{msgAppSelectAll, "TemplateAppSelectAll" ,
{msgTemplateAppGetMetrics, "TemplateAppGetMetrics",

{OJ
} i

MSG_INFO clsFooMethods[]

{msgNewDefaults,

#ifdef DEBUG
{msgDump,
#endif

{msgInit,
{msgFree,
{msgSave,
{msgRestore,
{msgFooGetStyle,
{msgFooSetStyle,
{msgFooGetMetrics,

{OJ
} i

CLASS_INFO classInfo[] =
{"clsTemplateAppTable",
{"clsFooTable",

"FooNewDefaults", objCallAncestorBefore

"FooDump" , objCallAncestorBefore

"FooInit", objCallAncestorBefore
"FooFree", objCallAncestorAfter
"FooSave", objCallAncestorBefore
"FooRestore", objCallAncestorBefore
"FooGetStyle",
"FooSetStyle",
"FooGetMetrics",

clsTemplateAppMethods
clsFooMethods

} ,
} ,

},

},

},

},
} ,
},

} ,
} ,
},

},
} ,
},

} ,

},

} ,

},
},
},

},

},
} ,
},

{OJ
}i

FOO.C
1**
File: foo.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Author:

$Date:

1. 9· $
aloomis $
09 Oct 1992 19:44:34 $

This file contains the class definition and methods for clsFoo.
**1
#ifndef FOO_INCLUDED
#include <foo.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif
#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef _STRING_H_INCLUDED
#include <string.h>
#endif

#include <methods.h>
1*
* Defines, Types, Globals, Etc *
* *1

typedef struct FOO_INST {

FOO_METRICS metrics;

} FOO_INST, *P_FOO_INSTi

typedef struct FILED_DATA

II Your filed instance data here ...
FOO_STYLE style;
U32 reserved1;

0.
~
0.

U16 reserved2 :16; II Reserved.
FILED_DATA, *P_FILED_DATA;

1*

* Message Handlers *
* *1

1**
FooNewDefaults

Respond to msgNewDefaults.
**1
MsgHandlerArgType(FooNewDefaults, P_FOO_NEW)
{

memset(&(pArgs->foo), 0, SizeOf(FOO_NEW_ONLY));

pArgs->foo. style. style1 false;
pArgs->foo.style.style2 false;
pArgs->foo.reserved 0;

return stsOK;
MsgHandlerParametersNoWarning;

II FooNewDefaults
hfdef DEBUG
1**

FooDump

Respond to msgDump.
**1
MsgHandlerArgType(FooDump, P_ARGS)
{

Debugf (U_L ("foo: msgDump"));

return stsOK;
MsgHandlerParametersNoWarningi

II FooDump
:/tendif

1**
FooInit

Respond to msgInit. Create a new object.
**1
MsgHandlerArgType(FooInit, P_FOO_NEW)
{

FOO INST inst;

memset(&inst, 0, SizeOf(inst));

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

II FooNew

1**

FooFree

Destroy an object.
**1
MsgHandlerArgType(FooFree, P_ARGS)
{

return stsOK;
MsgHandlerParametersNoWarning;

II FooFree

1**
FooSave

Save self to a file.
**1
MsgHandlerWithTypes(FooSave, P_OBJ_SAVE, P_FOO_INST)
{

STREAM READ WRITE
FILED DATA
STATUS

fsWrite;
filed;
s;

memset(&filed, 0, SizeOf(filed));

filed. style = pData->metrics.style;

II Write filed instance data to the file.
fsWrite.numBytes = SizeOf(FILED_DATA);
fsWrite.pBuf = &filed;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return StSOKi
MsgHandlerParametersNoWarning;

II FooSave

1**
FooRestore

Restore self from a file.
**1
MsgHandlerArgType(FooRestore, P_OBJ~STORE)
{

STREAM READ WRITE
FOO INST
FILED DATA
STATUS

fsRead;
inst;
filed;
s;

memset(&inst, 0, SizeOf(inst));

II Read instance data from the file.
fsRead.numBytes = SizeOf(FILED_DATA);
fsRead.pBuf = &filed;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, s);

inst.metrics.style = filed. style;

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;

'7 I SAMPLE CODE TEMPLATE APPLICATION

0-
h)
'l

MsgHandlerParametersNoWarning;

II FooRestore

1**
FooGetStyle

Get foo style.
**1
MsgHandlerWithTypes (FooGetStyle, P_FOO_STYLE, P_FOO_INST)
{

*pArgs = pData->metrics.style;

return stsOK;
MsgHandlerParametersNoWarning;

II FooGetStyle
1**

FooSetStyle

Set foo style.
**1
MsgHandlerWithTypes (FooSetStyle, P_FOO_STYLE, P_FOO_INST)
{

P FOO INST

pInst = pData;

pInst;

II Update instance data.
pInst->metrics.style = *pArgs;
ObjectWrite(self, ctx, pInst);

return stsOK;
MsgHandlerParametersNoWarning;

II FooSetStyle

I********************~***
FooGetMetrics

Get foo metrics.
**1
MsgHandlerWithTypes (FooGetMetrics, P_FOO_METRICS, P_FOO_INST)
{

*pArgs = pData->metrics;

return stsOK;
MsgHandIerParametersNoWarning;

II FooGetMetrics

1**
CIsFooInit

Install the class.
**1
STATUS CIsFoolnit (void)
{

CLASS_NEW new;
STATUS s;

II Create the class.
ObjectCall(msgNewDefaults, clsClass, &new);
new.object.uid clsFoo;
new.cls.pMsg clsFooTable;
new.cls.ancestor clsObject;
new.cls.size SizeOf(FOO_INST);
new.cls.newArgsSize SizeOf(FOO_NEW);
ObjCaIIRet(msgNew, clsClass, &new, s);

return stsOK;

II CIsFoolnit

FOO.H
1**
File: foo.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.9 $
$Author: aloomis $

$Date: 16 Sep 1992 16:06:34 $

This file contains the API definition for clsFoo.
**1
#ifndef FOO INCLUDED
#define FOO_INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

typedef OBJECT FOO, *P_FOO;

#define clsFoo

II RES_IDs for the resource
#define resFooQHelp
#define resFooStdMsgError
#define resFooStdMsgWarning

II Quick Help codes.
#define qhFooQuickHelp1

MakePrivateWKN(l,l)

lists used with the TAGs.
MakeListResld(clsFoo, resGrpQhelp, 0)
MakeListResld(clsFoo, resGrpStdMsg, 0)
MakeListResld(clsFoo, resGrpStdMsg, 1)

MakeTag(clsFoo, 1)

II The error status codes for TEMPLTAP.
#define stsFooError1 MakeStatus(clsFoo, 1)

II The warning and informational status codes for TEMPLTAP.
#define stsFooWarning1 MakeWarning(clsFoo, 1)

typedef struct FOO_STYLE

0-
I\,)
00

U16
U16
U16

style1
style2
reserved

:1;
:1;
:14;

FOO_STYLE, *P_FOO_STYLE;

typedef struct FOO_METRICS

FOO_STYLE style;
U32 reserved1[2];
U16 reserved2 :16;

// Reserved.
// Reserved.

FOO_METRICS, *P_FOO_METRICS;

/**
msgNew takes P_FOO_NEW, returns STATUS

Create a new object.
*/
typedef struct FOO_NEW_ONLY

// Your new parameters here ...
FOO_STYLE style;
U32 reserved;

FOO_NEW_ONLY, *P_FOO_NEW_ONLY;

#define fooNewFields \
objectNewFields \
FOO_NEW_ONLY foo;

typedef struct FOO_NEW

fooNewFields

} FOO_NEW, *P_FOO_NEW;

/**
msgFooGetMetrics takes P_FOO_METRICS, returns STATUS

Get foo metrics.
*/
#define msgFooGetMetrics MakeMsg(clsFoo, 1)

/**
msgFooGetStyle takes P_FOO_STYLE, returns STATUS

Get foo style.
*/
#define msgFooGetStyle MakeMsg(clsFoo, 2)

/**
msgFooSetStyle takes P_FOO_STYLE, returns STATUS

Set foo style.
*/
#define msgFooSetStyle MakeMsg(clsFoo, 3)

#endif // FOO_INCLUDED

TEMPLTAP.C
/**
File: templtap.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you do not resell

the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.14 $
$Author: aloomis $

$Date: 09 Oct 1992 19:44:22 $

This file contains the templtap application. Template Application serves
as a shell of an application, and can be used as a starting point for a
real application.

PenPoint applications rely on clsApp to create and display their main
window, save state, terminate the application instance, and so on.
There are seventy-some messages that clsApp responds to. You will never
have to worry about handling most of these, however, every application
developer needs to create a descendant of clsApp and have the descendant
handle several important messages. Template App illustrates the messages
that most applications will need to be concerned with. You will find a
description of these messages and how to handle them in the block comments
for each of the methods. In addition, these messages are fully documented
in the Architectural Reference, and the app.h header file.

The PenPoint Application Framework defines a number of flags that you can
use to explore the classes that it contains and the messages that they
respond to:

Flag Description Context

2
4

8
20

40'
80

400
800

1000
2000
10000
20000

AppWin & AppLink debug messages
General App Framework debug messages
move/copy debug messages
dump filesystem on move/copy/delete
goto button debug messages
traverse debug messages
trace document lifecycle
option sheet protocol
clsApp performance debug output
clsAppMgr performance debug output
Search & Replace
Memory Cop

Traversal
Document Lifecycle
Move/Copy
Move/Copy
Traversal
Traversal
Document Lifecycle
Option Sheets
Document Lifecycle
Document Lifecycle
Traversal
Memory

(See the Application Writing Guide for information on how to turn on a flag.)

You can try setting the various flag values and exploring the system, or you
can turn on specific flags to isolate a problem that you are having with your
application. Those flags that you will probably find most useful have been
marked with the asterixes. In particular, you may want to trace the document
lifecycle by setting R to 400. Turn a page, and you will see the places where
msgInit, msgAppActivate, msgAppOpen, msgAppClose, msgAppTerminate, msgAppSave,
etc. are received by clsApp and Template App.

**/

(ODE TEMPLATE APPLICATION

0-
h)
-0

#ifndef APP_INCLUDED
#include <app.h>
#endif

#ifndef FRAME_INCLUDED
#include <frame.h>
#endif
#ifndef TEMPLTAP INCLUDED
#include <templt~p.h>
#endif

#ifndef APPMGR INCLDUDED
#include <appmgr.h>
#endif

#ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

#ifndef ICONWIN_INCLUDED
#include <iconwin.h>
#endif

#ifndef INTL_INCLUDED
#include <intl.h>
#endif

#ifndef BRIDGE INCLUDED
#include <bridge.h>
#endif

#ifndef RESFILE INCLUDED
#include <resfile.h>
#endif

#ifndef OS_INCLUDED
#include <os.h>
#endif
#ifndef _STRING_H_INCLUDED
#include <string.h>
#endif

#include <methods.h>

1*

* Defines, Types, Globals, Etc *
* *1

typedef struct TEMPLATE_APP_INST

TEMPLATE_APP_METRICS metrics;

TEMPLATE_APP_INST, *P_TEMPLATE_APP_INST;

typedef struct FILED_DATA {

TEMPLATE_APP_METRICS metrics;

FILED_DATA, *P_FILED_DATA;

1*

* Message Handlers *
* *1

Hfdef DEBUG
1**
*
*
*
*
*
*
*
*
*
*
*
*1

TemplateAppDump

Respond to msgDump.

msgDump requests an object to format its instance data and send it to
the debugger stream. While developing your application, you can send
msgDump to any object whose state is questionable. From the PenPoint
source debugger, you can use the od command to send msgDump to an
object. It is not a good idea to send msgDump in production code.

MsgHandlerArgType (TemplateAppDump, P_ARGS)
{

Dbg(Debugf(U_L("Template App received: msgDump")));

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppDump

#endif II DEBUG

1***

*
* TemplateApplnit

*
* Respond to msgInit.

*
* Msglnit is the first message sent to the activated instance of your
* application. When your application recieves msgInit, it should
* initialize its instance data and use the function ObjectWrite to save
* the initialized instance data to protected memory.

*
* The method table calls the ancestor before handling msgInit. In
* response to msgInit, clsApp allocates storage for the application's
* instance data in protected memory. Included in the instance data are
* the document's directory handle, resource file list, floating window
* list, and embedded document list.

*
*1

MsgHandlerArgType (TemplateAppInit, P_APP_NEW)
{

Dbg(Debugf(U_L("Template App received: msgInit")));

return stsOKi
MsgHandlerParametersNoWarning;

II TemplateApplnit

0-
W o

1**

*
*
*
*
*
*
*
*
*
*
*
*
*
*1

TemplateAppFree

Respond to msgFree.

When your application receieves msgFree, it should destroy any perma
nent objects that it created and free any allocated memory. (The
application receives msgSave before it receives msgFree.)

The method table should call the application's ancestor *after* it
handles msgFree; the application's ancestors will in turn destroy
objects and free memory that they allocated.

MsgHandlerArgType (TemplateAppFree, P_ARGS)
{

Dbg(Debugf(U_L("Template App received: msgFree"»);

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppFree

1**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*1

TemplateAppSave

Respond to msgSave.

When your application receives msgSave, it should: (1) Write data
that isn't maintained in objects to the resource file. (2) Save any
permanent objects. (This will involve sending msgSave to your in
stance data.)

The method table calls the application's ancestor before handling
msgSave. In response, the ancestors save data and objects that they
created. clsApp saves your main window, any data objects observed
by views, and, optionally, its client window.

MsgHandlerWithTypes (TemplateAppSave, P_OBJ_SAVE, P_TEMPLATE_APP_INST)
{

STREAM READ WRITE
FILED DATA
STATUS

fsWrite;
filed;
s;

Dbg(Debugf(U_L("Template App received: msgSave"»);

memset (&filed, 0, SizeOf (filed»;

filed.metrics = pData->metrics;

II Write filed data to the file.
fsWrite.numBytes = SizeOf(FILED_DATA);
fsWrite.pBuf = &filed;
ObjCaIIRet(msgStreamWrite, pArgs->file, &fsWrite, s);

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppSave

1**

*
*
*
*
*
*
*
*
*
*
*
*
*
*1

TemplateAppRestore

Respond to msgRestore.

In the message handler for msgRestore, you should restore any data
that you saved in msgSave.

Your application's method table should call the application's ancestor
before handling msgRestore. In response to msgRestore, the ancestors
will restore data and objects that they saved earlier. clsApp restores
your main window and its client window.

MsgHandlerArgType (TemplateAppRestore, P_OBJ_RESTORE)
{

STREAM READ WRITE
TEMPLATE APP INST
FILED DATA

fsRead;
inst;
filed;

STATUS s;
Dbg(Debugf (U_L("Template App received: msgRestore"»);

memset(&inst, 0, SizeOf (inst»;

II Read instance data from the file.
fsRead.numBytes = SizeOf(FILED_DATA);
fsRead.pBuf = &filed;
ObjCaIIRet(msgStreamRead, pArgs->file, &fsRead, s);

inst.metrics = filed.metrics;

II Update instance data.
ObjectWrite(self, ctx, &inst);

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppRestore

1**

*
*
*
*
*
*
*
*
*
*
*
*

TemplateAppAppInit

Respond to msgAppInit.

MsgAppInit is only sent to each instance *once* during its lifetime.
The document receives this message the first time it is activated.
(Your document will receive msgRestore on all subsequent activations,
where it will restore the objects that are created here, and filed
when the document is saved.) The ancestor should be called before your
message handler for msgApp Init is invoked. In response, clsApp will
create your document's main window and object resource file.

TEMPLATE APPLICATION

0-
Co» -

*
*
*
*
*
*
*
*
*
*
*1

In msgAppInit you should handle the one-time initializations of stateful
objects that wil later be filed. This includes initializing your
instance data. Use the function ObjectWrite to save the initialized
instance data to protected memory.

Here we create and install the client window in the application's
main window. For a more robust example of handling msgAppInit, see
CNTRAPP/cntrapp.c

MsgHandlerArgType (TemplateAppAppInit, DIR_HANDLE)
{

APP_METRICS am;
OBJECT win;
STATUS S;

Dbg(Debugf(U_L("Template App received: msgAppInit"»);

II Create the client win.
win = objNul1;
ObjCaIIRet(msgAppCreateClientWin, self, &win, s);

II Get the main window.
ObjCaIIRet(msgAppGetMetrics, self, &am, s);

II Set the client win.
ObjCaIIRet(msgFrameSetClientWin, am.mainWin, (P_ARGS) win, s);

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppAppInit

1**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*1

TemplateAppOpen

Respond to msgAppOpen.

msgAppOpen is where you should create the windows to display data,
and any other non-stateful user interface or control objects. You
should also fill in childAppParentWin - normally with the document's
client window. The menu bar is also typically created here. Self
send msgAppCreateMenuBar to create the menu bar, and then send
msgFrameSetMetrics to your main window to insert the menu bar in the
window. If you can't open the document, you should return stsFailed.
However, if you have alr~ady displayed an error message to the user,
then return stsAppOpenFailedSupressError.

The method table calls the application's ancestor *after* the appli
cation handles msgAppOpen. In response to msgAppOpen, clsApp then
inserts the document's frame into the main window, which displays
the document on screen.

MsgHandlerArgType (TemplateAppOpen, P_APP_OPEN)

WIN
APP METRICS
OBJECT
STATUS

client Win;
am;
menuBar;
s;

Dbg(Debugf (U_L("Template App received: msgAppOpen"»);

II Create the menu bar.
menuBar = objNull;
ObjCaIIRet(msgAppCreateMenuBar, self, &menuBar, s);

II Get the main window.
ObjCaIIRet(msgAppGetMetrics, self, &am, s);

II Insert the menu bar.
ObjCaIIRet(msgFrameSetMenuBar, am.mainWin, (P_ARGS)menuBar, s);

II Set the childAppParentWin.
ObjCallRet(msgFrameGetClientWin, am.mainWin, (P_ARGS) &clientWin, s);

pArgs->childAppParentWin = clientWin;

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppOpen

1**
*
*
*
*
*
*
*
*

TemplateAppClose

Respond to msgAppClose.

In msgAppClose, you should destroy the windows and control objects
that you created in msgAppOpen. If you created the menu bar in your
msgAppOpen handler, then you should send msgFrameDestroyMenuBar to your

* main window.

*
*
*
*
*
*
*
*
*
*
*
*1

This message is not an indication to terminate the document; it may be
followed by other requests for services such as searching or reopening.
However, you will save memory (always desirable for PenPoint applica
tions!) if you destroy the user-interface objects while your applica
tion is off screen.

The method table should (and does!) call the application's ancestor
before handling msgAppClose. In response to msgAppClose, clsApp ex
tracts the frame from the main window.

MsgHandlerArgType (TemplateAppClose, P_ARGS)
{

APP_METRICS am;
STATUS Si

Dbg(Debugf(U_L("Template App received: msgAppClose"»);

ObjCaIIRet(msgAppGetMetrics, self, &am, s);

ObjCaIIRet(msgFrameDestroyMenuBar, am.rnainWin, pNull, s);

return stsOK;

0-
Co»
~

MsgHandlerParametersNoWarning;

II TemplateAppClose

1**

*
* TemplateAppCreateClientWin

*
*
*
*
*
*
*
*
*
*
*
*
*1

Respond to msgAppCreateClientWin.

This is the place to create your application specific client window.
The Application Framework does not send this message by default.
Instead, you should self send it at the appropriate time (typically
during msgAppInit, since the client window is usually stateful) .
Usually you will not need to call your ancestor.

The document creates a default client window of class clsErnbeddedWin
and passes back its uid.

MsgHandlerArgType(TemplateAppCreateClientWin, P_OBJECT)
{

ICON_WIN_NEW iwn;

Dbg(Debugf(U_L("Template App received: msgAppCreateClientWin"»);

II If the client win has already been provided, return.
if (*pArgs != objNull) {

return stsOK;
}

II Create an iconwin.
ObjectCall(msgNewDefaults, clsIconWin, &iwn);
iwn.iconWin.style.showOptions true;
iwn.iconWin.style.allowOpenInPlace = true;
iwn.iconWin.style.constrainedLayout = false;
ObjCaIIWarn(msgNew, clsIconWin, &iwn);

II Return the client win.
*pArgs = iwn.object.uid;
return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppCreateClientWin

1**

*
*
*
*
*
*
*
*
*
*
*
*

TemplateAppCreateMenuBar

Respond to msgAppCreateMenuBar.

You should handle this message by creating the document's menu bar.
If pArgs is non-null when the ancestor is called, clsApp will pre-pend
the Document, Edit, and Option menus to the provided menu bar. So,
the ancestor should be called after you make the menu bar. After the
ancestor returns, you can fix up the Document and Edit menus to
remove any buttons that you don't support or to add any new buttons.

*1
MsgHandlerArgType (TemplateAppCreateMenuBar, P_OBJECT)
{

STATUS S;
lIMENU_NEW rnni

Dbg(Debugf(U_L("Template App received: msgAppCreateMenuBar"»)i

II Create your menu bar here ...
IIObjectCall(msgNewDefaults, clsMenu, &rnn)i
Ilrnn.win. flags. style &= -wsSendFilei
Ilrnn.tkTable.pEntries = menuBar;
Ilrnn.tkTable.client = selfi
IIObjCaIIRet(msgNew, clsMenu, &rnn, S)i

II*pArgs = rnn.object.uidi

II Pass message to ancestor - Add SAMs.
ObjCallAncestorCtxRet (ctx, S)i

II Fixup the menu bar here ...

return stsOKi
MsgHandlerParametersNoWarningi
II TemplateAppCreateMenuBar

1**

*
* TemplateAppRevert

*
* Respond to msgAppRevert

*
* The document reverts to its previously saved state. If true is passed
* in, the document displays a note, asking the user to confirm the action
* first. If false is passed in, the document just does the action. This
* is handled by an ancestor's (clsApp's) message handler, which needs to
* be called *before* your handler.

*
* If you do not support revert, you should handle this message by return
* ing stsAppRefused. On the other hand, if you support revert, but
* manage your own data files, or use memory mapped files, then it may be
* necessary to handle this message by appropriately undoing all data and
* modifications since the last save.

*
*1

MsgHandlerArgType (TemplateAppRevert, P_ARGS)
{

Dbg(Debugf (U_L("Template App received: msgAppRevert"»)i

return stsAppRefusedi
MsgHandlerParametersNoWarningi

II TemplateAppRevert

1**

*
* TemplateAppSelectAl1

*

I 7 I SAMPLE CODE TEMPLATE APPLICATION

0-
Co)
Co)

* Respond to msgAppSelectAl1

*
* When the user taps on Select All in the Standard Application Menu, the
* document self sends this message.

*
* clsApp does not do anything in its message handler for this message.
* You should handle this message, and select everything in the document.
* (You tend not to call the ancestor.)

*
*1

MsgHandler (TemplateAppSelectAII)
{

Dbg(Debugf(U_L("Template App received: msgAppSelectAll"»);

return stsOK;
MsgHandlerParametersNoWarningi

II TemplateAppSelectAl1

1**

*
* TemplateAppGetMetrics

*
*
*
*
*
*
*
*1

Respond to msgTemplateAppGetMetrics

This is a message defined for Template App. It returns information
specific to the Template Application, in this case the metrics field
of the Template App instance data.

MsgHandlerWithTypes (TemplateAppGetMetrics, P_TEMPLATE_APP_METRICS,
P_TEMPLATE_APP_INST)

Dbg(Debugf(U_L("Template App received: msgTemplateAppGetMetrics"»);

*pArgs = pData->metrics;

return stsOK;
MsgHandlerParametersNoWarning;

II TemplateAppGetMetrics

1*

* Installation *
* *1

1**

*
* ClsTemplateAppInit

*
* The initialization routine ClsTemplateAppInit creates the clsTemplate
* App class when the application is installed. Application classes are
* created by sending msgNew to clsAppMgr.

*
* Your application will need a similar routine.
*1

STATUS PASCAL
ClsTemplateAppInit (void)

APP_MGR_NEW new;
STATUS S;

ObjectCall(msgNewDefaults, clsAppMgr, &new);
new.object.uid clsTemplateApp;
new.cls.pMsg = clsTemplateAppTable;
new.cls.ancestor
new.cls.size
new.cls.newArgsSize

clsApp;
SizeOf (TEMPLATE_APP_INST);
SizeOf (APP _NEW) ;

hfdef PP1_0
Ustrcpy(new.appMgr.defaultDocName, "Template Document");
Ustrcpy(new.appMgr.company, "GO Corporation");
II 00A9 is the circle-c copyright symbol
new.appMgr.copyright = "\xOOA9 1992 GO Corporation, All Rights Reserved";

4f:endif II PP1 0

1*

RectInit(&new.appMgr.defaultRect, 0, 0, 216, 108);
ObjCaIIRet(msgNew, clsAppMgr, &new, s);

return stsOK;

* Here we declare a function prototype so we can create clsFoo when
* Template Application is installed below. ClsFooInit is defined
* in the foo.c file.
*1

STATUS ClsFooInit (void);

1**
* main

*
* The function main() is the entry point to your application. An
* application executable file must have a main() function.

*
* main has two primary purposes: (1) Installing your application class,
* and (2) Starting the dispatch loop for each document, or application
* instance.

*
* The processCount parameter to main() indicates how many other processes
* are currently running this application program. When process count is
* zero, the application is being installed, so you call a routine to
* install your application class, and then call AppMonitorMain(), a
* PenPoint function that starts the application monitor for your appli
* cation class.

*
* When processCount is greater than zero, the user is opening a document
* so you call AppMain(), a PenPoint function that creates an instance of
* application class, passes it messages to initialize its data, and
* enters a dispatch loop to receive messages.

*
*1

void CDECL
main (

t
oIiIt

S32 argc,
CHAR *argv[],
U32 processCount)

if (processCount == 0)

II Create the (global) application class.
StsWarn (ClsTemplateAppInit ());

II Start msg dispatching.
AppMonitorMain (clsTemplateApp, objNull);

else {

II Create private classes.
StsWarn (ClsFooInit());

II Start msg dispatching.
AppMain();

Unused(argc); Unused(argv);

II main

TEMPLTAP.H
1**
File: templtap. h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.9 $
$Author: aloomis $

$Date: 09 Oct 1992 19:44:12 $

This file contains the templateapp application API.
**1
#ifndef TEMPLTAP_INCLUDED
#define TEMPLTAP INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#define clsTemplateApp

II Resource Identifiers
#define resTemplateAppQHelp

MakeListResId(clsTemplateApp,
#define resTemplateAppStdMsgError

MakeListResId(clsTemplateApp,

MakeGlobalWKN (3513, 1)

\
resGrpQhelp, 0)

\
resGrpStdMsg, 0)

#define resTemplateAppStdMsgWarning
MakeListResId(clsTemplateApp,

II Quick Help tags
#define qhTempiateAppQuickHelp1
#define qhTempiateAppQuickHelp2

II Status codes.
#define stsTempiateAppError1
#define stsTempiateAppError2

II Warning codes.

\
resGrpStdMsg, 1)

MakeTag(clsTemplateApp, 1)
MakeTag(clsTemplateApp, 2)

MakeStatus(clsTemplateApp, 1)
MakeStatus(clsTemplateApp, 2)

#define stsTempiateAppWarning1 MakeWarning(clsTemplateApp, 1)
#define stsTempiateAppWarning2 MakeWarning(clsTemplateApp, 2)

typedef OBJECT TEMPLATE_APP, *P_TEMPLATE_APP;

typedef struct TEMPLATE_APP_METRICS {

U32 dummy;
U32 reserved;

TEMPLATE_APP_METRICS, *P_TEMPLATE_APP_METRICS;

1**
msgTemplateAppGetMetrics takes P_TEMPLATE_APP_METRICS, returns STATUS

Get TemplateApp metrics.
*1
#define msgTemplateAppGetMetrics MakeMsg(clsTemplateApp, 1)

#endif II TEMPLTAP INCLUDED

USA.RC
1**
File: usa.rc

You may use this Sample Code any way you please provided you do not resell
the code and that this notice (including the above copyright notice) is
reproduced on all copies. THIS SAMPLE CODE IS PROVIDED "AS IS"), WITHOUT
WARRANTY OF ANY KIND, AND GO CORPORATION EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL GO
CORPORATION BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.8 $
$Author: bldmstr $

$Date: 19 Aug 1992 22:42:52 $

usa.rc is the English language resource file for the Template App.
Template App does not actually use any resources besides the standard
application resources, however we have included resource strings for
QuickHelp, standard messages and standard warnings to serve as a template
for your application.

**1
#ifndef RESCMPLR_INCLUDED
#include <rescmplr.h>
#endif

#ifndef APPTAG_INCLUDED

II MUST be included in any resource files

TEMPLATE APPLICATION

0-
W
(,II

*include <apptag.h>
*endif

II Resource IDs & TAGs for app framework

*ifndef INTL_INCLUDED
*include <intl.h>
*endif

*ifndef BRIDGE_INCLUDED
*include <bridge.h>
*endif

II Bridge from 1 0 to future releases.

*ifndef TEMPLTAP_INCLUDED
*include <templtap.h>
*endif

II Resource IDs & TAGs for this project.

*ifndef Faa_INCLUDED
*include <foo.h>
4I=endif

II Resource IDs & TAGs for sub-class

1**
A P P F ram e w 0 r k S t r i n g s

***1
II Define the strings for use with the AppFramework resource for TEMPLTAP.
static RC_TAGGED_STRING appStrings[] = {

} ;

II The default document name for instances of TEMPLTAP documents. This
II should normally match the name the user sees for the application.
tagAppMgrAppDefaultDocName, U_L("Template Document"),

II The company that produced the program.
tagAppMgrAppCompany, U _ L ("GO Corporation"),

II The copyright string. A9 (hex) is the "circle-c" copyright symbol
tagAppMgrAppCopyright,
U_L("\xOOA9 Copyright 1991-1992 by GO Corporation, All Rights Reserved."),

II User-visible filename. 32 chars or less.
tagAppMgrAppFilename,
U_L("Template Application"),

II User-visible file type. 32 chars or less.
tagAppMgrAppClassName,
U _ L ("Application") ,

Nil (TAG) II end of list marker

static RC_INPUT app =

} ;

resAppMgrAppStrings,
appStrings,
0,
resTaggedStringArrayResAgent

II resource id, in this case pre-defined
II pointer to data, a string array
II data length, ignored for strings
II how to interpret data pointer

1**
Too 1 kit S t r i n g s

***1
1**

Qui c k H e 1 pSt r i n g s
***1
II Define the quick help resource for TEMPLTAP.
static RC_TAGGED_STRING templateAppQHelpStrings[] = {

} ;

II First Quick Help string for TEMPLTAP
qhTemplateAppQuickHelp1,
U_L ("Sample Quick Help Title II")
U_L("This is the text for the Sample quick help message."),

II Second Quick Help string for TEMPLTAP
qhTemplateAppQuickHelp2,
U _ L (" Sample Main window Quick Help I I")
U_L("This is the text for the main window quick help message. Note ")
U_L("that we can continue the text on another line using string ")
U_L("concatenation."),

Nil (TAG)

static RC_INPUT templateAppQHelp

} ;

resTemplateAppQHelp,
templateAppQHelpStrings,
0,
resTaggedStringArrayResAgent

II Quick Help for clsFoo
static RC TAGGED STRING fooQHelpStrings[]

} ;

- -
II class foo's only quick help item
qhFooQuickHelp1,
U_L("Sample Quick Help Title I I Sample quick help body."),

Nil (TAG)

static RC INPUT fooQHelp

} ;

resFooQHelp,
fooQHelpStrings,
0,
resTaggedStringArrayResAgent

0-
W
0-

1**
Mis c e I I a n e 0 u sSt r in g s

***1
1**

S tan dar d M e s sag eSt r i n g s
***1
II Define the error message resource for TEMP1TAP.
static RC_TAGGED_STRING stdMsgTemplateAppErrorStrings[] = {

};

II Error message when user does XXXXX.
stsTemplateAppError1, U_1 ("Error 1"),

II Error message when user does YYYYY.
stsTemplateAppError2, U_1("Error 2"),

Nil (TAG)

static RC_INPUT stdMsgTemplateAppError

} ;

resTemplateAppStdMsgError,
stdMsgTemplateAppErrorStrings,
0,
resTaggedStringArrayResAgent

II Define the error message resource for FOO.
static RC_TAGGED_STRING stdMsgFooErrorStrings[]

II Error message when user does ZZZZZ.
stsFooError1, U _ 1 ("Foo Error"),

Nil (TAG)
};

static RC_INPUT stdMsgFooError

};

resFooStdMsgError,
stdMsgFooErrorStrings,
0,
resTaggedStringArrayResAgent

static RC TAGGED STRING stdMsgTemplateAppWarningStrings[]

};

II Warning message when user does xxx.
stsTemplateAppWarning1, U_1("First Warning"),

II Warning message when user does YYY.
stsTemplateAppWarning2, U_1("Second Warning"),

Nil (TAG)

static RC_INPUT stdMsgTemplateAppWarning

} ;

resTemplateAppStdMsgWarning,
stdMsgTemplateAppWarningStrings,
0,
resTaggedStringArrayResAgent

static RC_TAGGED_STRING stdMsgFooWarningStrings[]
II Warning messgae when user does ZZZ.
stsFooWarning1, U_1 ("Foo Warning"),

Nil (TAG)

} ;

static RC_INPUT stdMsgFooWarning

};

resFooStdMsgWarning,
stdMsgFooWarningStrings,
0,
resTaggedStringArrayResAgent

1**
1 i s t 0 f Res 0 u r c e s

***1
II 1ist all of the resources so that RC can find them.
P RC INPUT resInput [] = {

} ;

&app,
&templateAppQHelp,
& fooQHelp ,
&stdMsgTemplateAppError,
&stdMsgFooError,
&stdMsgTemplateAppWarning,
&stdMsgFooWarning,
pNull

II the Application Framework strings
II the Quick Help for TEMP1TAP
II the Quick Help for FOO
II the Error Messages for TEMP1TAP
II the Error Messages for FOO
II the Warning Messages for TEMP1TAP
II the Warning Messages for FOO

II End of list.

I 7 I SAMPLE CODE TEMPLATE APPLICATION

t
"

Adder

Adder is a simple pen-centric calculator, limited to addition and subtraction.
The user can write "4 + 5" and Adder will print "4 + 5 = 9" at the top of its

window. In addition, Adder can handle slightly more complicated expressions;

"42\~ -8 + 3 -2.5" for example.

Objectives

This sample application shows how to:

.. Create an insertion pad for handwritten input.

.. Create a translator and a custom tmplate for the insertion pad.

.. Translate the insertion pad ink when the user lifts the pen out of proximity.

.. Disable some of the handwriting engine's assumptions to improve arithmetic

recognition.

.. Create a custom layout window.

.. Construct a simple parser.

Class overview

Adder defines two classes: clsAdderApp and clsAdderEvaluator. It makes use of the

following classes:

clsApp

clsAppMgr

clsClass

clsCustomLayout

clsIP

clsLabel

clsObject

clsXText

Files used

The code for Adder is in PENPOINT\SDK\SAMPLE\ADDER. The files are:

METHODS.TBL the method tables for the adder classes.

ADDERAPP.C the source code for the application class.

ADDEREVL.C the source code for the adder evaluator engine class.

ADDEREVL.H the header file for the evaluator class.

JPN.RC strings for the Japanese version.

USA.RC strings for the USA version.

0-
W co

Calculator

The Calculator application implements a typical push-button calculator. This pro
gram is split into an application, which handles the user interface, and a calculator
engine, which performs the computations.

Objectives

This sample application shows how to:

• Separate out part of an application into a reusable dynamic link library.

• Have an application be an accessory.

• Use ClsSymbolslnitO.

• Use table layout and custom layout.

• Use labels.

• Use TK_ TABLE_ENTRY struct to create a collection of buttons in a single
operation.

• Handle button notification messages.

• Change the default window size.

• File data.

• Use ResUtilGetListStringO to load a string from a resource file.

• Reference Unicode characters in a TK_TABLE_ENTRY.

Class overview

Calc defines two classes: clsCalcApp and clsCalcEngine. It makes use of the

following classes:

clsAppMgr

clsClass

clsCustomLayout

clsLabe1

clsObject

clsTkTable

When clsCalcApp receives msgAppOpen, it creates a set of windows (all of which

are standard UI components):

• A table of buttons (clsTkTable) for the calculator's push buttons.

• A label (clsLabe1) for the calculator's display.

• A window (clsCustomLayout) to hold the label and the button table.

The application destroys these windows when it receives msgAppClose.

In its msgApplnit handler, the application creates an instance of clsCalcEngine, the
calculator engine. This class performs arithmetic operations.

Although clsCalcApp does not file any of its views, it does file the string that is dis
played in its label. It also files the calculator engine object by sending it msgResPut
Object (in response to msgSave) and msgResGetObject (in response to
msgRestore) .

Files used

The code for Calc is in PENPOINT\SDK\SAMPLE\CALC. The files are:

CAPPMETH.TBL method table for the application class.

CENGMETH.TBL method table for the calculator engine.

CALCAPP.C clsCalcApp's code and initialization.

CALCAPP.H header file for the application class.

CALCENG.C clsCalcEng's code and initialization.

CALCENG.H header file for the calculator engine.

S_CALC.C symbol name definitions and call to ClsSymbolsInitO (this file is
generated automatically).

JPN.RC strings for the Japanese version.

USA.RC strings for the USA version.

I "7 I SAMPLE CODe CALCULATOR

0-
Co»
-0

Clock

Clock is an application that serves two purposes; it is both a digital alarm clock dis
tributed as a part of Pen Point, and a sample application. The end-user can configure
the clock's display by changing the placement of the time and date and by specifying
things like whether the time should include seconds. The end-user can also set up
an alarm. Depending on how the user configures an alarm, it might beep at a cer
tain time on a certain day or display a note every day at the same time.

Clock uses the Bridging Package in order to maintain a single code base for both

PenPoint 1.0 and PenPoint 2.0 Japanese.

Objectives

This sample application shows how to:

.. Observe the system preferences for changes to date and time formats.

.. Observe the power switch to refresh on power-up.

.. Provide option cards for an application.

.. Destroy unneeded controls on a default application option card.

.. Disable inappropriate controls on a default application option card.

.. Respond to msgGWinForwardedGesture (including handling, forwarding, and

ignoring gestures).

.. Provide quick help.

.. Make use of cls Timer.

.. Use StdErrorO to display application-level error messages.

.. Use the international routines for formatting.

.. Use theSystemLocale to do different behavior for different locales.

.. Use the Bridging Package to maintain a single code base under PenPoint 1.0
and PenPoint 2.0 Japanese.

Class overview

Clock defines four classes: clsClockLabel, clsClockApp, clsClockWin, and clsNo

teCorkBoardWin.

It makes use of the following classes:

clsApp

clsAppMgr

clsAppWin

clsClass

clsCommandBar

clsDateField

clsGotoButton

clslconWin

clslntegerField

clsLabel

clsNote

clsOption Table

clsPopupChoice

clsPreferences

clsString

cls TableLayout

clsTextField

clsTimer

dsTkTable

clsToggleTable

Clock uses a table layout of several windows. There can be up to four child windows
(time digits, a.m'!p.m. indicator, alarm indicator, and the date). AIl of these are
labels. clsLabel only repaints the right-most characters that change. So, to minimize
flashing as time ticks away, Clock displays the time digits in a separate window from
the a.m.! p.m. indicator. The text for the clock labels is created using SCompose
TextO and international routines for formatting the date and time (Prefslntl

DateToStringO and PrefslntlTimeToStringO) in GetDateTimeStrO rather than
assuming English formats. These routines query preferences to find the appropriate

date and time formats for a given locale. In addition, clock calls theSystem to deter
mine the locale and uses a different default format depending on the locale (time
followed by date for USA, and date followed by time for JPN).

8

The labels can be of varying font sizes. In some cases, because of the way that the

clock window grows and shrinks, it is possible for the clock window to be off-screen

when it comes time to display. To prevent that, code is added in the Create Clock

WindowO routine to ensure that part of the clock window is always on screen.

clsNoteCorkBoardWin appears as a corkboard on the pop-up note that Clock dis

plays when an alarm goes off. The note needs to be dismissed when the user opens

one of the icons in the window. To provide this functionality, clsNoteCorkBoard

Win observes objects inserted into its window. clsClockApp does not file its labels

or client window. It does, however, file most of the settings of the controls in its

Display and Alarm option cards. It also files its clsNoteCorkBoardWin corkboard

window.

Files used

The code for Clock is in PENPOINT\SDK\SAMPLE\CLOCK. The files are:

METHODS.TBL The method tables for the four classes.

CLABEL.C Source code for clsClockLabel.

CLABEL.H Header file for clsClockLabel.

CLOCKAPP.C Source for clsClockApp, the application class.

CLOCKAPP.H Header file for the application class.

CWIN.C Source code for clsClockWin.

CWIN.H Header file for clsClockWin.

NCBWIN.C Source code for clsNoteCorkBoardWin.

NCBWIN.H Header file for clsNoteCorkBoardWin.

BITMAP. RES Resource file (compiled) for the clock accessory icon.

JPN.RC strings for the Japanese version.

USA.RC strings for the USA version.

BRIDGERC strings that emulate PenPoint 2.0 Japanese functionality in

PenPoint 1.0

t -
(ODE CLOCK

Notepaper Application

Notepaper Application is a simple note-taking application. It relies on the Note
paper DLL for most of its functionality.

Objectives

This sample application shows how to use the NotePaper DLL.

Class overview

Notepaper Application defines one class: clsNotePaperApp. It makes use of the
following classes:

clsApp

clsAppMgr

clsGestureMargin

clsNotePaper

Files used

The code for Notepaper Application is in PENPOINT\SDK\SAMPLE\NPAPP. The files

are:

METHODS.TBL method table for the notepaper application class.

BITMAP. RES resource file for the document bitmap.

NPAPP.C source code for the notepaper application.

JPN.RC strings for the Japanese version.

USA.RC strings for the USA version.

t
~

Paint

Paint is a simple painting application. The user can choose different nibs (square,

circle, or italic) and different paint colors (white, light gray, dark gray, and black)

with which to paint. The user can easily clear the window to start painting allover

agaIn.

Objectives

This sample application shows how to:

.. Read and write data and strings to a file.

.. Provide a totally application-specific menu bar (no SAMs).

..

..

..

..

..

Place a button on a menu bar .

Use resources for text in toolkit tables .

Create a scroll win, and have a gray border displayed around its client window.

Use pixelmaps, drawing contexts, and image devices .

Handle pen input events .

While Paint does demonstrate these topics, it is far from being a perfect sample

application, for these reasons:

.. Pixelmaps are inherently device dependent, so Paint docurnents are also device
dependent.

.. When the user changes the screen orientation, Paint does not flush and rebuild

its pixelmaps.

.. Paint's pixelmaps cannot be printed (which is why the Print menu item and the

"P" gesture are not supported).

Within the field of sampled image programming, there are well-understood ways to

overcome these problems~ However, Paint does not implement them.

Class overview

Paint defines three classes: clsPaintApp, clsPaintWin, and clsPixWm. It makes use

of the following classes:

clsApp

clsAppMgr

clsChoice

clsClass·

clsFileHandle

clsImgDev

clsMenu

clsScrollWin

clsSysDrwCtx

cls Toggle Table

clsWin

Files used

The code for Paint is in PENPOINT\SDK\SAMPLE\PAINT. The files are:

CODE

METHODS.TBL method table for the paint classes.

BITMAP.RES resource file for the document icon.

CUTIL.C utility routines for reading and writing data and strings.

CUTIL.H header file for reading and writing utility routines.

PAPP.H header file for application and its resource.s

PAPP.C source code for the paint application class.

PIXELMAP.C utility routines for using pixel maps.

PIXELMAP.H header file for pixel map utility routines.

PIXWIN.C source code for the clsPixWin class.

PIXWIN.H header file for the clsPixWin class.

PWIN.C source code for the clsPaintWin class.

PWIN.H header file for the clsPaintWin clas.s

JPN.RC strings for the Japanese version.

USARC strings for the USA version.

PAINT

0-
~
Co»

Toolkit Demo

Toolkit Demo shows how to use many of the classes in PenPoint's UI Toolkit.
Although it is not exhaustive, it does provide many examples of using the Toolkit's
APIs and setting fields to get different functionality and visual effects.

Toolkit Demo does not show how to use trackers, grab boxes, or progress bars.

Objectives

This sample application shows how to:

• Use most of the classes in the PenPoint VI Toolkit.

• Create a table layout.

• Create a custom layout.

• Provide multiple option cards for an application subclass.

• Determine if an option card should be applicable, based on the current selec
tion.

• Provide a bitmap for clslcon.

• Create a clsScrollWin instance as the application's frame client window.

• Specify an application version number.

• Implement string literals as resources.

Class overview

Toolkit Demo defines one class: clsTkDemo. It makes use of the following classes:

clsApp

clsAppMgr

clsBitmap

clsBorder

clsButton

clsChoice

clsCustomLayout

clsDateField

clsField

clsFixedField

clsFontListBox

clslcon

clslntegerField

clsLabel

clsListBox

clsMenu

clsMenuButton

clsNote

clsOption Table

clsPopupChoice

clsScrollWin

clsStringListBox

clsTabBar

clsTabButton

cls TableLayout

clsTextField

clsTkTable

clsToggleTable

clsTkDemo creates an instance of clsScrollWin as its frame client window. This lets
the demonstration's windows be larger than the frame. A clsScrollWin window can
have many client windows, but it shows only one at a time. So, Toolkit Demo cre
ates several child windows, one for each of the topics it demonstrates. clsTkDemo
also creates a tab that corresponds to each window. The tab buttons are set up so
that their instance data includes the UID of the associated window. "When the user
taps on the tab, the tab sends msgTkDemoShowCard to the application. Toolkit
Demo then switches to that window by sending msgScrollWinShowClintWin to .
the clsScrollWin window.

An interesting point is that, to avoid receiving messages while it is creating win
dows, Toolkit Demo only sets itself as the client of its tab bar after it has created all
the windows.

clsTkDemo's instance data is the tag of the current selection and the UIDs of its
option sheets. It files all of this in response to msgSave.

I:
0l:Io

files used

The code for Toolkit Demo is in PENPOINT\SDK\SAMPLE\TKDEMO. The
files are:

METHODS.TBL the method table for the Toolkit Demo application.

BORDERS.C code for creating different kinds of borders.

BUTTONS.C code for creating different kinds of buttons.

CUSTOMS.C code for creating c1sCustomLayout instances.

FIELDS.C code for handwriting fields of c1sField and its descendants c1sDate
Field, c1sFixedField, c1sIntegerField, and c1sTextField.

GOLOGO.INC include file containing a hand-coded GO logo bitmap.

ICON. RES resource file for a smiling face icon, created with PenPoint's bitmap
editor.

ICONS.C code for creating different kinds of icons.

LABELS.C code for creating c1sLabel instances with different fonts, rows, col
umns, and so on.

LBOXES.C code for making list boxes (clsListBox, clsStringListBox, and c1s-
FontListBox) .

NOTES.C creates different kinds of instances of clsNote.

OPTABLES.C creates a sample option table.

OPTIONS.C demonstrates option cards and their protocol, and also creates an
instance of clsPopUpChoice.

TABLES.C creates various tables (instances of c1sTableLayout).

TKDEMO.C code for the overall Toolkit Demo application.

TKDEMO.H header file for the application class.

TKTABLES.C code for creating several subclasses of clsTkTable, including
c1sMenu, c1sChoice, and c1sTabBar.

JPN.RC strings for Japanese version.

USA.RC strings for USA version.

I SAMPLE CODE

t
UI

TOOLKIT DEMO

Input Application

Input Application is a simple application that demonstrates pen-based input event

handling. As the user drags the pen around, Input Application draws a small square
in the window. To provide this functionality, it creates a descendant of clsWin

(clsInWin), which looks for pen input events.

Input Application's window tracks the pen by drawing a small box at the X-Y loca

tion provided by the event. It also erases theprevious box by first setting its DC's ras

ter op to sysDcRopXOR. Then it redraws the box at the previous location, thereby

erasing it.

Note: If you want your windows to respond to gestures or handwriting, you usually
do not look for input events yoursel£ Instead, you use specialized window classes
such as clsGWin and elsIP, which "hide" low-level input event processing from
their descendants. These classes send higher-level notifications such as msgG

WinGesture and msgIPDataAvailable.

Objectives

This sample application shows how to:

.. Create a drawing context in a window.

.. Set a window's input flags to get pen tip and move events.

.. Handle pen events (msgPenUp, msgPenDown, and so on) in a window.

.. Use msgBeginPaint and msgEndPaint messages.

.. Turn on message tracing for a class.

.. Use resource files to associate application-specific strings with the tags provided

for standard application resources.

Class overview

Input Application defines two classes: clsInputApp and clsIn Win. It makes use of

the following classes:

clsApp

clsAppMgr

clsClass

clsSysDrwCtx

elsWin

The only function of clslnputApp is to create clsIn Win as its client window. It does
this in its msgAppInit handler.

clslnWin is a descendant of clsWin. Because clsWin does not turn on any window

input flags, clsln Win must set window flags to get certain pen events.

Since clslnputApp recreates the input window from scratch and has no other

instance data, it does not need to file itsel£ The input window does not need to

save state either. "When called upon to restore its state (msgRestore), it simply
reinitializes.

Files used

The code for Input Application is in PENPOINT\SDK\SAMPLE\INPUTAPP. The

files are:

METHODS.TBL the method tables for the classes.

INPUTAPP.C the source code for the Input Application classes.

USA.RC strings for the USA version.

t
0.

Writer Application

Writer Application provides a ruled sheet for the user to write on. When the user

lifts the pen out of proximity, Writer Application translates what the user has writ

ten, and places the translated text on the line below the ink. The user can change

the translation algorithm from word-based, to text- or number-based.

Objectives

This sample application shows how to:

.. Use dsSPaper and translation classes.

.. Make a translator for words, text, or numbers only.

.. Use the dsXList instance returned by the translation objects and how to inter

pret its data.

.. Put a choice control in a menu.

.. Implement all text strings as resources.

Class overview

Writer Application defines two classes: dsWriter and dsWriterApp. It makes use of

the following classes:

dsApp

dsAppMgr

dsChoice

dsClass

dsMenu

dsSPaper

dsSysDrwCtx

dsXText

dsXWord

Files used

The code for Writer Application is in PENPOINT\SDK\SAMPLE\WRITERAP. The files

are:

METHODS.TBL the method table for the classes.

WRITERAP.C the source code for the classes.

WRITERAP.H the header file for the classes.

JPN.RC strings for the Japanese version.

USA.RC strings for the USA version.

I "}' J SAMPLE (ODE WRITER APPLICATION

t
'I

Keisen Table Application

Keisen Table Application demonstrates the creation of a complex layout using tool

kit tables, instances of clsTkTable. clsTableLayout (hence its subclass clsTkTable)

positions items according to a grid, with rows and columns. However, Japanese

keisen tables do not have a uniform, global structure. So, the table is broken up into
a one column, eight row table representing the horizontal lines across the whole

table. These rows are nested horizontal tables, each cell representing a line that
divides the row. This nesting continues until the nested table has only clsLabel

descendants as its children.

clsTkTable will create a default instance of a class. As this would be very limiting, it

also provides style flags in the TK_ TABLE_ENTRY structure to provide anticipated

style settings, such as bold labels or word wrapping. However, not all circumstances
can be meet with these flags, and so this application does not use them. Instead,
subclasses which handle msgNewDefaults are created, so their default instance is

exactly the style desired.

As well, to prevent having to make a new subclass for every style, msg Tk Tablelnit is
handled by some of these subclasses. This message is sent by a toolkit table when it

is creating an object from a TK_TABLE_ENTRY. It is sent after all other processing

(msgNewDefaults, altering styles, and so on), but before msgNew is sent to the

class being created. Subclasses can handle this message by using previously unused

fields of the TK_ TABLE_ENTRY for their own custom style flags.

The grid around each cell in the table is another special feature. All leaf windows
in the window tree-the nested table windows are containers which form nodes in
the Keisen Table window tree and the labels and fields are windows which are leaves
in the window tree-turn their borders on, and all tables turn their borders off.

By growing these leaf windows to the size of their cell, these borders merge to make

a grid.

To have the grid lines be a single line unit thick, the gap width is set to be -1 line

units. This causes the borders of adjacent cells to overlap, forming a single line

instead of one to either side of the cell division.

Objectives

Keisen Table Application demonstrates one way to use existing PenPoint layout
facilities (clsTableLayout and its subclass clsTkTable) to build a very complex table.

This sample application also shows how to:

.. Create a grid around table cells by overlapping children borders.

.. Change default (new) style of a class by subclassing to handle
msgNewDefaults.

.. Have private style flags in TK_ TABLE_ENTRYs for subclasses.

.. Nest toolkit tables.

.. Have a scroll window as the application frame's client window.

.. Create private subclasses.

.. Set compiler options to allow for Japanese characters in source code.

Class overview

Keisen Table defines several classes:

clsBoxedField private subclass of clsField. Handles only msgNewDefaults to

set edges to bsEdgeAlI.

clsBoxedKatakanaField private subclass of clsBoxedField. Handles only msg

FieldCreate Translator to disable translation of Hiragana, Kanji, Romaji,

and numerals.

clsBoxedIntegerField private subclass of clsIntegerField. Handles only

msgNewDefaults to set edges to bsEdgeAll.

clsHorizontalTable private subclass of clsTkTable. Sets default styles to be a

single row table with children that grow to their cells and overlap by exactly
one line unit so their border edges overlap. Handles msgTkTablelnit
(when being created from a toolkit table) to use arg3 for private style flags.

clsKeisenTable clsApp subclass. Basically the same as Template Application,

except it responds to fewer messages and handles msgAppCreateClientWm
differently, creating a table in a scroll window as the client window instead

of an icon window.

clsBoxedLabel private subclass of clsLabel. Handles msgNewDefaults to set

edges to bsEdgeAll and center text in both dimensions. Handles msgTkTa

bielnit (when being created from a toolkit table) to use arg2 for private

style flags.

clsVerticalTable private subclass of clsTkTable. Sets default styles to be a sin
gle column table with children that grow to their cells and overlap by

0-
~
00

exactly one line unit so their border edges overlap. Handles msgTkTa

bleInit (when being created from a toolkit table) to use arg3 for private
style flags.

It makes use of the following classes:

dsApp

dsAppMgr

clsClass

clsFie1d

dsIntegerFie1d

dsLabe1

clsScrollWin

dsTkTable

Files used

The code for Keisen Table is in PENPOINT\SDK\SAMPLE\KEISEN. The files are:

METHODS.TBL the list of messages that the classes respond to, and the
associated message handlers to call.

BFIELD.C the source code for the boxed field class.

BFIELD.H the header file for the boxed field class.

BINTFLD.C the source code for the boxed integer field class.

BINTFLD.H the header file for the boxed integer field class.

BKFIELD.C the source code for the boxed katakana field class.

BKFIELD.H the header file for the boxed katakana field class.

BLABEL.C the source code for the boxed label class.

BLABEL.H the header file for the boxed label class.

KEISEN.C the source code for the application class.

KEISEN.H the header file for the application class.

TABLES.C the source code for all table subclasses.

TABLES.H the header file for all table subclasses.

., I SAMPLE CODE

~
KEISEN TABLE APPLICATION

List Box Demo

List Box Demo is yet another sample application meant to help developers learn
how to use some of the features of PenPoint. This demo does not implement a

whole application. Instead, it shows, in an clear way, how to organize and program
an application incrementally. In fact, List Box Demo was the starting point for a
richer sample application called Video Player.

List Box Demo does not show lots of excess functionality, which makes it hard for
developers to reuse and learn from the sample code. This release shows how to set
up a window using UI toolkit components. The menu bar supports standard menus.
The more interesting code is related to the list box. The list box window supports
the copy/move protocol to move (shuffle) and copy rows within itself or any other
window that supports the transfer of text. The list box also handles some gestures
such as the caret gesture to insert a row and the scratch out or cross gesture to delete
a row from the list box.

List Box Demo has the Unicode support required to run under PenPoint 2.0. How
ever, to simplifY things, strings are not stored in a resource file.

Objectives

This sample application shows how to:

.. Embed data in the list box such as list contents and row state.

.. Save and restore the list contents (filing).

.. Handle gestures in a list box.

.. Support the move and copy protocol.

.. Deal with theSelectionManager.

.. Create a graphical interface with the UI toolkit, including a list box.

.. Add application-specific menus to the standard menus.

Class overview

List Box Demo defines two classes: clsLBdemo and clsLBList. It makes use of the
following classes:

clsApp

clsAppMgr

clsClass

clsLabel

clsListBox

clsMenu

clsObject

clsXferList

Files used

The code for List Box Demo is in PENPOINT\SDK\SAMPLE\LBDEMO. The files are:

METHODS.TBL the method tables for the two classes used in List Box Demo.

LBDEMO.C the List Box Demo application class and the code to build the
interface from the UI Toolkit.

LBDEMO.H header file for the application class.

LBLIST.C the definition of clsLBList and support methods for gesture process
ing and list manipulation.

LBLIST.H header file for clsLBList.

LBXFER.C code for moving and copying rows.

0-
gw
o

Sample Application Monitor

This sample application shows how to implement a reasonably sophisticated appli
cation monitor. The monitor allows for installing and deinstalling optional DLLs,

selecting which stationery to load, and saving global options.

This sample looks for a DLL directory in the application directory for the optional
DLLs, and looks in the normal STATNRY directory for stationery. It will not create
option cards for DLLs or stationery if it doesn't find anything in these directories.

The same global option cards are used in the popup when the application is

installed and in the document's option sheet.

This sample's makefile does not create the DLL or STATNRY directories. You can try
out the optional DLL and stationery functionality by making these directories in
PENPOINT\APP\SAMPLMON, and then putting any DLL or stationery document in
the directories.

Objective

This sample application shows how to create a descendant of clsAppMon.

Class overview

Sample Application Monitor defines two classes: clsSampleApp and clsSampleApp
Monitor. It makes use of the following classes:

clsApp

clsAppMgr

clsAppMonitor

clsButton

clsDirHandle

clsFileHandle

clsOption Table

cls Toggle Table

files used

The code for Sample Application Monitor is in PENPOINT\SDK\SAMPLE\

SAMPLMON. The files are:

METHODS.TBL the method tables for the two classes.

SAMPLMON.C source for the classes.

SAMPLMON.H header file for the classes.

SAMPLE APPLICATION MONITOR

0-u. ...

Serial Transmission Demo

Serial Transmission Demo demonstrates the use of simple serial 1/0 from within
PenPoint. Serial input is read by a semaphore-controlled subtask which places the

received characters in a text view. The user enters text through an insertion pad; the

output is then sent by the main task.

Objectives

This sample application shows how to:

.. Query a service manager for available instances.

.. Open and close a serial service instance.

.. Read from and write to a serial service instance.

.. Get and set serial metrics.

.. Respond to connection messages from the service manager.

.. Handle serial service events.

.. Create a sub task.

.. Create and use a semaphore.

.. Create and use a list.

.. Create an option sheet and interpret its values.

Class overview

Serial Transmission Demo defines two classes: clsSX and clsSXView (a subclass of
clsTextView). It makes use of the following classes:

clsApp

clsAppMgr

clsButton

clsChoice

clsClass

clsCommandBar

clsIP

clsLabel

clsList

clsNote

clsObject

clsOption Table

clsPopupChoice

clsString

cls Tablelayout

Files used

The code for Serial Transmission Demo is in PENPOINT\SDK\SAMPLE\SXDEMO. The
files are:

METHODS.TBL the method tables for clsSX and clsSXView.

SXAPP.C the source code for the application class.

SXAPP.H header file containing all definitions for Serial Transmission Demo;
tags, messages, structures, handlers for clsTextView messages, and so on.

SXIP.C source code for handlers for clsIP messages.

SXOPT.C source code handlers for clsOption message.s

SXSER.C source code for all serial I/O handlers.

SXVIEW.C the source code for the clsTextView subclas.s

USA.RC strings for the USA version.

Note that you need to enable one or more serial ports in MIL.INI to be able to select
a serial port. In the SDK, the spooler is available. When Serial Transmission Demo is
started for the first time, it opens the first available service instance. If no serial ser
vice instance is available, the spooler service will be used. If no service instance is
available at all, the application will exit.

0-
UI
~

User Interface Companion

The User Interface Companion (brings to life many of the diagrams in the PenPoint
User Interface Design Reference manual. These diagrams show the various compo
nents that you can use to build the user interface for your applications: buttons,
lists, menus, pop-up lists, text fields, and other controls. The User Interface Com
panion sample application focuses specifically on some of the more challenging
controls.

The User Interface Companion consists of the application class, clsUICompApp,
an initialization DLL, and the class definitions and methods for several classes.

Objectives

The UI Companion demonstrates how to:

+- Build a multi-page application within the notebook.

+- Create your interface objects ahead of time and file them via an INIT.DLL.

+- Use the UI toolkit classes to implement some of the more complicated user
interface controls available.

+- Subclass a UI toolkit class to get specialized behavior.

+- Extend the functionality of existing UI Toolkit classes.

Class overview

The UI Companion creates five classes:

clsUICompApp the UI Companion application class. The application is
derived from Template Application, and handles many typical messages
sent by the application framework. In addition, it implements a multi-page
application. The UI Companion application creates an option sheet as its
main window; this way the user can select different pages from the option
sheet's built in title bar. It also creates its own sub-page control, and dis
plays it at the far right of the application menu bar. The user can navigate
through different pages in the application using this control. (See
UICOMP.C for more information.)

clsUICompPage defines the behavior for a page in the UI Companion. It is a
subclass of clsTableLayout which provides the specialized layout used in
the UI Companion application. clsUICompPage is not intended to be a

general-purpose class; it has a small set of rigidly defined behaviors and per
forms the minimum amount of work necessary to accomplish page layout
for the UI Companion. It also isolates the layout code from the files which
demonstrate how to create the specific toolkit components discussed in the
User Interface Design Reference.

clsEdStrListBox a subclass of clsStringListBox which allows a user to edit the
strings displayed in a string list box by making the standard circle gesture to
pop up an edit pad. A user can also delete items from the string list box by
making the X gesture over an item.

clsOptionCmdBar is a subclass of clsOption that allows a client to associate a
custom, non-standard command bar with each card that is added to the
option sheet.

clsScrollPopup a subclass of dsPopupChoice which implements a scrolling
popup choice. The client can specify the maximum number of items to dis
play. If the number of items in the choice is greater than the number of
items to display, the items will appear in a scrolling window inside of the
popup choice. This results in a substantial savings of screen real estate for
choices with many options.

The UI Companion also makes use of the following classes:

dsApp

dslconChoice

dsOption Table

dsAppMgr

dslconTable

dsPopupChoice

dsBorder

dslcon Toggle

dsScrollWin

dsButton

dslntegerField

dsStringListBox

dsChoice

dsIP

'7 I SAMPLE (ODE USER INTERFACE COMPANION

0-
UI
W

cls TableLayout

clsCommandBar

clsLabel

clsTextField

clsCounter

clsListBox

clsTkTable

clsField

clsMenu

cls Toggle Table

clsFrame

clsMenuButton

clsIcon

clsOption

Files used

The code for the UI Companion is in PENPOINT\SDK\SAMPLE\UICOMP. The files

are:

METHODS.TBL the method tables for the UI Companion application and cls
UIPage, clsEditStrListBox, clsOpCmdBar and clsScrollPopup.

INIT.C function containing InitMainO entry point, which creates and files the
user interface elements before the application is run, so they can be restored

quickly at run-time.

UICOMP.C class definition and methods for clsUICompApp, the UI Compan

ion application class.

UICOMP.H global defines, resource lists and tags used in the UI Companion

application.

EDSTRLB.C class definition and methods for clsEditStrListBox.

EDSTRLB.H API definition for clsEditStrListBox.

OPCMDBAR.C class definition and methods for clsOptionCmdBar.

OPCMDBAR.H API definition for clsOptionCmdBar.

SCRPOPUP.C class definition and methods for clsScrollPopup.

SCRPOPUP.H API definition for clsScrollPopup.

UIPAGE.C class definition and methods for clsUICompPage.

UIPAGE.H API definition for clsUICompPage.

BUTTONS.C creates tools palette with different styles of buttons, square but
tons, command buttons.

LISTS.C creates checklist, boxed lists, toggle switch, editable scrolling list.

MENUS.C creates menu with fill-in fields, multi-column menu, and a menu
with a white gap between controls.

pOPUPs.c creates popup with pictures as choices and a scrolling popup list.

TEXT.C creates overwrite field, scrolling field and insertion pad.

ALIGN.RES bitmaps illustrating different alignment options (used in popup
choice variations).

ICONS.RES bitmaps for tool icons, and line and fill styles.

MISC.RES frog and prince bitmaps (used in toggle switch).

PATTERNS. RES different fill patterns (used in boxed list).

USA.RC United States English strings for USA version.

0-
UI
~

Basic Service

Basic Service is the absolute minimum code required to implement a service. This is

the "Hello World" for service writers. Basic Service handles only one message:

msgNewDefaults. Modifying Basic Service will help to get your service up and run

ning in the shortest possible time.

For more complex services, see the Test Service and MIL Service samples.

Objectives

This sample service shows how to make a service (the makefile differs from applica

tion makefiles).

Class Overview

Basic Service defines one class: clsBasicService. It makes use of the following classes:

clsClass

clsService

Files Used

The code for Basic Service is in PENPOINT\SDK\SAMPLE\BASICSVC. The files are:

METHOD.TBL method table for clsBasicSvc.

BASICSVC.C clsBasicSvc's code and initialization.

BASICSVC.H header file for clsBasicSvc.

'7 I SAMPLE (ODE BASIC SERVICE

0-
UI
UI

Test Service

Test Service is a starter kit for most service writers. It has message handler stubs for

the most common service messages.

For other examples of services, see the Basic Service and MIL Service samples.

Objectives

This sample service shows how to:

• Make a service (the makefile differs from application makefiles).

• Define handlers for messages sent to a class.

Class Overview

Test Service defines two classes: clsTestService and clsTestOpenObject. It makes

use of the following classes:

clsButton

clsClass

clsFileHandle

clsOpenServiceObject

clsOption Table

clsService

Files Used

The code for Test Service is in PENPOINT\SDK\SAMPLE\TESTSVC. The files are:

METHOD.TBL method table for the classes defined in Test Service.

OPENOB].C clsTestOpenObject's code and initialization.

OPENOB].H header file for clsTestOpenObject.

TESTSVC.C clsTestService's code and initialization.

TESTSVC.H header file for cls TestService.

USA.RC strings for USA version.

~
\II
~

MIL Service

MIL Service is a full implementation of a MIL (Machine Interface Layer) service.

This MIL service implementation shows how a client will interface with the MIL ser

vice, how to create and use a ring 0 DLL to interface with a MIL device used, and

how to perform connection detection. The MIL device used is the parallel printer

MIL device. This sample code is a version of the PPORT MIL service code shipped

with PenPoint.

For other examples of services, see the Basic Service and Test Service samples.

Objectives

This sample service shows how to make a service (the makefile differs from applica

tion makefiles).

Class Overview

MIL Service defines one class: clsTestMILService. It makes use of the following

classes:

clsClass

clsMILService

clsStream

Files Used

The code for Test MIL Service is in PENPOINT\SDK\SAMPLE\MILSVC. The files are:

METHOD.TBL method table for clsTestMILService.

MILSVC.C clsTestMILService's ring 3 code and initialization.

MILSVC.H header file for clsTestMILService.

MILSVC.BAT batch file used to build both ring 0 and ring 3 DLLs.

MILSVCO.C clsTestMILService's ring 0 code.

MILSVCO.H private header file for clsTestMILService.

l' I SAMPLE (ODE MIL SERVICE

0-
Ut

In addition to page references within this
book, this index also contain references
to files and directories in the sample code
(in \ ... \PENPOINT\SDK\SAMPLE). These
are identified by the directory, or in some
cases, the directory and file where you
will find the information. The sample
code for the While You Were Out
(WYWO) application is not shipped
with the SDK, but is available on
CompuServe. We remind you of this
by adding CS: before WYWO.

#define directive, 96
name, 51
use of, 77

#endif directive, 388

#ifdef directive, 153, 396

#ifndef directive, 388

#include directive, 95, 388
see also Include directives

%append command, 383

%create command, 383

_NEW_ONLY structure, 51
for each class, 52
name to, 52

_NEW structure, 50-52
for class, 51
for clsList, 50
contents, 116
identifying, elements, 52-53
initializing, 53
reading, definition, 51-52
use of, 51

AbsO macro, 79

Accelerated access speed, 28, 42

Accessing services, SXDEMO, VIDPLAY

Accessories
floating, 37
palette, 101

Accessories, CALC, SXDEMO

Activating documents, 27
Address List, 17

Alphabets, 183
Unicode architecture, 185

Ancestor
classes, 45, 56
messages, 62

ANSI,238
C,17

APIs
changing,229

documentation corrections and errata,
500-502

installation, 499-502
KKC engine, 499-500

tips and clarifications, 500

AppGetMetrics, 118

AppleTalk protocol, 12

Application classes, 28, 101-104
activating application and, 104
illustrated, 30
see also Classes

Application data, 38

Application development levels, 23

Application directory, 389
building,393
copying files to, 390
getting attributes for, 438-439

Application Framework, 16
default behavior, EMPTYAPp,

TEMPLTAP
defined,16,25
documentation corrections and

errata, 438-439
documentation typos, 439
document recovery message, 435
Empty Application and, 91
function of, 16
illustrated, 33
initialization DLL, 435-436
installing/ deinstalling application, 25
messages, 104
tags, new/obsolete, 436-437
tips and clarifications, 437-438
what's new with, 435-437

Application hierarchy, 31-38
application data, 38
Bookshelf, 34
embedded applications, 37
floating accessories, 37
location of, 32
Notebook,34-36
page-level applications, 36
sections, 36
see also Applications

Application icons, TTT, UICOMp,
VI D PLAY

Application Installer, 92

Application layer, 17
defined, 10

Application Manager
predefined tags, 193-194,219-220

example, 220
prerequisite information, 219
procedure, 219-220
related information, 220

Application menus (SAMs), 36

Application monitor, SAMPLMON

Application objects, 29-31

clsApp,29
clsObject, 31
clsWin, 29-31
see also Objects

Applications, 12
Application Framework and, 25
bundled,17
classes for, 19
creating PenPoint, 377-379

illustrated, 379
one time only tasks, 377
preliminary design, 377
steps for, 378

deinstalling, 505
designing, 61-63

classes, 62
for internationalization/

localization, 63-66
message handlers, 62
messages, 62
program units, 63
user interface, 62
see also Design guidelines

developing,61-90
documenting, 169-170
embedded,37
entry point, 66
functioning of, 24-27
icons for, 167
installing, 25, 68-69, 101-102,

103-104
in application directory, 389
automatically, 388-389
from connected disk, 389
using Settings notebook, 389-390

instance data, 66-67
linker name of, 385
localized, 235
main window, inserting custom

window as, UICOMP
minimum actions of, 29
on-disk structure of, 170
page-level, 36
preliminary design of, 377
preparing, for distribution, 378
recovery of, 19
releasing, 169-170
running,26,27-28

application classes and instances, 28
document activation, 27
document life cycle, 27
documents appearing on screen,

27-28
shutting down, 41-42
starting, 25, 40
state, saving and restoring, CNTRAPP
terminating, 41-42
version number of, 385
version number, specifying, TKDEMO,

TTT
see also Japanese applications

660 INDEX

AppMainO routine, 29, 102-103, 104
APP _MGR_NEW structure, 219

AppMonitorMainO, 102
calling, 103

app Version, 434

Architectural Reference Supplement, 229
Architecture

functionality and, 9-10
level of application development, 23
object-oriented, 9
Unicode, 185

Arguments, 48
structures, 50-53

ASCII code point, 183

ASSERTO macro, 85
Attributes

for application directories, 438-439
stamped

file system, 467-468
on documents, 406
on installable items, 406
PenPoint 2.0 documents, 467-468
PenPoint 2.0 installable items, 467

Attribute utilities, 404-407
list of, 404
PCOPY, 407
PDIR,407
PENPOINT.DIR and, 404
PSTAMp, 405

Automatic layout, 14
Autozoom setting, 417

Auxiliary notebook, 40

Backgrounds, custom, 449
Baseline alignment, UICOMP, CS:WYWO

Binding, to service, SXDEMO, VIDPLAY

Bit manipulation, 79

Bitmap
for icons, UICOMP
providing, TKDEMO, VIDPLAY

Bitmap Editor, 232, 412-413
gray pixel manipulation and, 232
location of, 412
saving, resources, 496

Bitmap fonts, 13
Bitmaps, 166-167

creating, 412
documentation correction, 443
exporting,412
local,232
scaling,233
working with,412
see also Icons

BkShelfPath variable, 417

Bookshelf, 9, 17,26, 523-534
accessories, 533-534
defined,34
Help,523

parent window, 34
sending msgAppCreateChild, 103
settings, 523-532

see also Settings notebook
BOOT.DLC, 418

BRIDGE.LIB, 388, 429

Bridging package, 228
Bunsetsu, 263

locating, 263
rules, 465
text with selected, 263

Buttons, 143-144
command, non-standard, UICOMP
creating, CALC, TKDEMO, UICOMp,

VIDPLAY
defining, 165-166
styles for, square, UICOMP

Calculator, 37
Caret gesture, 8
CHAR8,64

Unicode and, 186-187
CHAR16,64

Unicode and, 186-187
CHAR,64

data types, 77
related,78

in PenPoint 2.0 Japanese, 210
Unicode and, 186-187

Character alternative list, 546
Character constants, 64

Unicode and, 188

Character flags, 514
Characters

16-bit characters, 428
alternatives request, 260
code spaces, 253
conversion of, 265
entering unrecognized, 256
gaiji,254

defined,248
hiragana, 246
Japanese

encoding,247-249
listing of, 303-371
sorting and comparing, 264-265

kanji,246
katakana, 246
mixing ASCII/Japanese, 251
multi-byte, 183-184
recognition of, 256
romaji,246
Roman, 249
special,231-233
Unicode, 184
wide, 183-184

Character sets
code spaces, 253
in control files, 278
conversion routines, 511

debugging,416
double-byte, 185
international, 183-189
Japanese, 247-248
specifying with UCONVERT, 409
Unicode, 185

illustrated, 185
see also Characters

Character translator
classes, 453-457
class, messages, 456-457
KKC, 454-456

Character types, 64
Unicode and, 187

Character variants, converting between,
287-289

example, 287-288
notes, 288
prerequisite information, 287
procedure, 287
related information, 289

CHARSET variable, 403
setting,403
valid values for, 403

CHA~TRANS_GET_BUF
structure, 298

CHAR_ TRANS_HIGHLIGHT
structure, 298

CHAR_ TRANS_LIST_XY
structure, 298

CHAR_TRANS_MODIFY
structure, 298

CHARTYPE, 197
macros, 512-513

Check gesture, 8
option sheets response to, TKDEMO

Checklists
alternative

boxed lists, UICOMP
toggle switch, UICOMP

with fields, UICOMP
menus with, UICOMP
scrolling, UICOMP

Child windows, toolkit tables, creating,
UICOMP

CHKDSK utility, 420
with /F flag, 420

Circle gesture, 8
for opening edit pads, 543

CJK,249
ideographs, 250

ClAlign, 120
Classes, 24, 43

ancestor, 45, 56
application, 101-104
character translator, 453-457
creating, 55-59, 100-101

component, 67
descendant, 29, 45
designing, 62

functions and, 45
hierarchy of, 116
identifying, message table, 57
inheriting from, 29, 45
instances and, 49-50
instances of, 45

size of data needed by, 56
instead of code sharing, 45-46
kana-kanji conversion, 451-453
KKC, 499
KKCCT,499
layout, 120
learning about, 114
letter practice, 459
message handling by, 46
message tracing, how to turn on,

IN PUTAPP
method tables and, 104-105
names of, 72
object, 30
quotation marks around, 57
registering, 169
responding to search messages, 482
sharing, 170
subclass of, 45
Tic-Tac-Toe, 146
UI Toolkit, 114
utility,479-482
view, 30
window, 30
see also specific classes

Class Manager, 24, 43-59
constants, 72-73

class names, 72
messages, 73
status values, 73
well-known objects, 72

defined,ll
documentation corrections and

errata, 434
message handlers and, 106
messages and, 44
msgDestroyand, 105
tips and clarifications, 433
typos, 434
UIDs and, 50
what's new for, 433

CLASS_NEW structure, 55
message arguments, 55-56

Client, 44
window, 29

Client window, positioning scroll window,
UICOMP

Clipping region, sharing parent's, KEISEN,
UICOMp, CS:WYWO

CLOCK sample application, 228
code from, 228
error notes for, 164-165

clsAcetateLayout, 446-447
with clsMarkup, 446
defined, 446
synchronization messages, 447

clsAdderApp, ADDER

clsAdderEvaluator, ADDER

clsAnimSPaper, 460

clsApp, 19
defined,29
descendant of, 29
Empty Application and, 91
function of, 29
main window and, 117
msgAppRecover and, 435
see also code for all sample applications

clsAppMgr, 100
appMgr.flags and, 101
explained, 100-101
see also code for all sample applications

clsAppMon, 435
creating subclasses for, 438

clsAppMonitor, 103, SAMPLMON
class defaults for, 437-438
sub classing, 103

clsApp Win, CLOCK

clsBasicService, BASICSVC

clsBitmap, TKDEMO

clsBitmap, 232

clsBorder, 447, TKDEMO

clsBoxedField, KEISEN

clsBoxedInteger Field, KEISEN

clsBoxedKatakanaField, KEISEN

clsBoxedLabel, KEISEN

clsBrowser, 468

clsButton, SAMPLMON, SXDEMO,
TESTSVC, TKDEMO, UICOMP

clsCalcApp, CALC

clsCalcEng, CALC

clsCalcEngine, CALC

clsCharTrans, 296
clsCharTranslator, 258, 451, 453

clsKKCCharTranslator and, 453
messages, 456-457

clsChoice, PAINT, SXDEMO, TKDEMO,
UICOMp, WRITERAP

clsClass, 50
see also all sample code

clsClockApp, CLOCK

clsClockLabel, CLOCK

clsClock Win, CLOCK

clsCntr, 130, CNTRAPP
highlights, 135
instance data, 136
method table, 135

clsCntrApp, 124, CNTRAPP
data storage, 140

INDEX 661

instance data, 140
method table for, 134
msgAppOpen/msgAppClose and, 135
receiving msgSave, 138

clsCommandBar, CLOCK, SXDEMO,
UICOMP

clsControl, 121, 468

clsCounter, 134, UICOMp, VIDPLAY
in response to msgInit, 136

clsCustomLayout, 120, 447, ADDER,
CALC, HELLOTK, TKDEMO,
VI DPLAY

clsDateField, CLOCK, TKDEMO

clsDirHandle, SAMPLMON

clsEditStrListBox, UICOMP

clsEdStrListBox, UICOMP

clsEmbeddedWin, 151
input event handling, 152
selection message handling, 151

clsEmptyApp, 92, 93, 95, 118,
EMPTYAPP

creating, 100

ClsEmptyAppInitO routine, 100
sample code, 105

clsEmptyAppMethods,95

clsEmptyAppTable, 105
clsField, 120, KEISEN, TKDEMO,

UICOMP
KKC support, 258
MIL.INI keyboard variable and, 278

clsFileHandle, CNTRAPp, PAINT,
SAMPLMON, TESTSVC, TTT

clsFixedField, TKDEMO

clsFontListBox, TKDEMO

clsFoo, TEMPLTAP

clsFrame, UICOMP

clsFrame, 119
subclass, 119

clsGestureMargin, NPAPP

clsGO,81

clsGO Math, 81

clsGotoButton, CLOCK

clsGWin, 152,296,297,454
character translator and, 258
help gesture and, 161

clsHello, 127

ClsHelloInitO, 125

clsHelloWin, 123, HELLO
creating DC, 130
destroying DC, 130
DLLMainO for, 125
highlights, 125
method table for, 123, 125
msgInit and, 128
msgWinRepaint and, 125
painting and, 127

662 INDEX

ClsHelloWinInitO, 128

clsHelloWorld, 123, HELLO, HELLOTK
highlights, 125
method table for, 125

clsHorizontalTable, KEISEN

clslcon, 223, 232, 412, TKDEMO,
UICOMP

clsIconChoice, UICOMp, vrDPLAY

clsIconTable, UICOMP

clsIconToggle, 412, UICOMP
creating instance of, 413

clsIcon Win, CLOCK, TEMPLTAP

clsImgDev, PAINT

clsInputApp, INPUTAPP

clsIntegerField, 134, CLOCK, KEISEN,
TKDEMO, TTT, UICOMp,
vrDPLAY

clsIn Win, INPUTAPP

clsIP, 181, 296, 543, ADDER, SXDEMO,
TTT, UICOMP

KKC support, 258-259

clsKbdFrame, 446

clsKeisen Table, KEISEN

clsKey, TTT

clsKKC, 258, 451
function of, 451
messages, 452-453

clsKKCCharTranslator, 451
clsCharTranslator and, 453

clsKKCCT, 259, 297

clsKKCInstallMgr, 499

clsKKCT, 258
MIL.INI keyboard variable and, 278

clsLabel, 88, 114, ADDER, CALC,
CLOCK, CNTRAPp, HELLOTK,
KEISEN, LBDEMO, SXDEMO,
TKDEMO, UICOMp, vrDPLAY

bug in, 448
hierarchy, 116
msgNew arguments for, 114-117
style settings, 117
tags and, 193

clsLBdemo, LBDEMO

clsLBList, LBDEMO

clsList, SXDEMO

clsList,31
header file, 47
messages, 47
method table, 58-59
sending msgNew to, 50

clsListBox, LBDEMO, TKDEMO,
UICOMp, vrDPLAY

clsMarkup, 447
with clsAcetateLayout, 446
defined,446
window, scrolling, 446

clsMenu, CNTRAPp, LBDEMO, PAINT,
TEMPLTAp, TKDEMO, TTT,
UICOMp, vrDPLAY, WRITERAP

clsMenuButton, CNTRAPp, TKDEMO,
UICOMP

clsMILAsyncSIO, 481

clsMILAsyncSIODevice, 485

clsMILService, MILSVC

clsModem, 483
messages, 490-491

clsNote, 166, CLOCK, SXDEMO,
TKDEMO,TTT

clsNoteCorkBoardWin, CLOCK

dsNotePaper, 447, NPAPP
API changes and, 480
file format changes, 480
in Japan locale, 480

clsNotePaperApp, NPAPP

clsNPData, 480
subclassing, 480

clsNPScribbleItem, 480

clsNPTextltem, 480

clsObject, 30, ADDER, CALC, CNTRAPP,
LBDEMO, SXDEMO,
TEMPLTAp, TTT, vrDPLAY

defined,29
instance of, 31

ClsObjectToStringO, 159

clsOpenServiceObject, TESTSVC

clsOption, 30, SXDEMO, UICOMP
messages, 504

clsOptionTable, 30, CLOCK,
SAMPLMON, SXDEMO,
TESTSVC, TKDEMO, TTT,
UICOMP

clsOS,81

clsPageNum, 134

clsPaintApp, PAINT

clsPaintWin, PAINT

clsPen, TTT

clsPicSeg, 31

clsPixWin, PAINT

clsPopUpChoice, TKDEMO

clsPopUpChoice, 295, 296, CLOCK,
SXDEMO, TKDEMO, UICOMP

clsPreferences, CLOCK

clsResFile, 94, 142, 496

clsSampleApp, SAMPLMON

clsSampleAppMonitor, SAMPLMON

clsScrollPopup, UICOMP

clsScrollWin, 30, KEISEN, PAINT,
TKDEMO, TTT, UICOMP

clsSectApp, 36, 519

clsSelection, vrDPLAY

clsService, 258, 505, BASICSVC,
TESTSVC

clsServiceInstallMgr, 499

clsServiceMgr, 483
messages, 483-484

clsSio, vrDPLAY

clsSPaper, WRITERAP

clsStream, MILSVC

clsString, CLOCK, SXDEMO

clsStringListBox, TKDEMO, UICOMP

clsSX, SXDEMO

clsSXView, SXDEMO

ClsSymbolsInitO routine, 155, 158
calling, 158

clsSysDrwCrx, 126, HELLO, INPUTAPP,
PAINT, TTT, WRITERAP

clsTabBar, TKDEMO

clsTabButton, TKDEMO

clsTable, 481
bug,481

clsTableLayout, 120, 147, CLOCK,
SXDEMO, TKDEMO, UICOMP

cls TemplateApp, TEMPLTAP

cls TestMILService, MILSVC

cls TestOpenObject, TESTSVC

clsTestService, TESTSVC

clsText,31
messages, 254

clsTextField, CLOCK, TKDEMO,
UICOMp, vrDPLAY

clsTextView, SXDEMO
Japanese and, 245
for supporting string conversion, 287

clsTimer, CLOCK, vrDPLAY

clsTkDemo, TKDEMO

clsTkTable, 133, 143, CALC, CLOCK,
KEISEN, TKDEMO, UICOMP

msgNew to, 143
tags and, 193

clsToggleTable, 448, CLOCK, PAINT,
SAMPLMON, TKDEMO,
UICOMP

bugin,448

clsTttApp, 29, 145, TTT

clsTttData, 31, 145, TTT
client tasks performed, 148
errors and, 149
getting/setting metrics, 148-149

clsTttView, 31, 145, 150, TTT
msgNewDefaults and, 161

clsUICompApp, UICOMP

clsUICompPage, UICOMP

clsUndo, vrDPLAY

cls VerticalTable, KEISEN

clsVideoPlayer, vrDPLAY

clsView, 30,149, TTT
using,31

clsVPIntegerField, VIDPLAY

clsVPList, VIDPLAY

clsVPTextField, VIDPLAY

clsWin, 19, HELLO, INPUTAPp, PAINT
defined,29
descendants, 114
instance of, 29-31

cls Window, 58

cls Writer, WRITERAP

cls WriterApp, WRITERAP

clsXfer, VIDPLAY

clsXferList, LBDEMO, TTT

clsXGesture, 152, TTT

clsXlate, 458
clsXText, 458, ADDER, TTT, WRITERAP

clsXtract, 458

clsXWord, 458, WRITERAP

CMPSTEXT.H, 198

CntrAppMenuBarO,144

CntrAppRestoreO, 141
CNTR_NEW_ONLY structure, 136

Code
character manipulation, 184
compiling and linking, 92
Empty Application, 94-101

class creation, 100-101
class UID, 99
documents, accessories, stationary,

101
libraries and header files, 99
source code, 96-98
source code file organization, 94-96

gesture handling, 230-231
examples, 230-231
prerequisite information, 230
procedure, 230

international, writing, 209-228
INTLSCAN flagging, 211
Japanese version of, 280
locale-independent, 180-181,

196-197
writing, 225-227

points, 183, 249
Shift-JIS, 253
Unicode, 253

sharing, 17, 19-20
single, base, 233
Unicode supporting, 186-189
wide, 184
see also Source code

Coding conventions, 18, 71-73
Class Manager constants, 72-73
defines, 72
exported names, 73
functions, 72
suggestions for, 76-77
typedefs,71
variables, 72

Command bars, 117

Command buttons, non-standard,
UICOMP

Command line, buttons for, UICOMP

Comments, 76

Comm Version variable, 416

Compatibility Zone, 250

Compiler
16-bit character flag and, 387
details, 387
DOS environment variables and, 387
flag,274
isolation, 78-79

enumerated values, 79
function qualifiers, 78-79

Japanese application, 274
method table, 387
WATCOM C, 274

Compiling, 68
code, 92
commands for, 382
Counter Application, 134
deleting object files during, 382
Hello World (custom window),

123-124
Hello World (toolkit), 112
makefiles, 382
method tables, 92
resource definitions, 163
speeding up, 75
see also Linking

Component classes, 67

Component layer, 16
defined, 10
included components, 16

Components, 42
application, 145
defined, 19
UI Toolkit, UICOMP
UI Toolkit, filing, TKDEMO, UICOMP
using,42

ComposeTextO functions, 66, 198
arguments, 472-473
definitions, 473
explained, 471
format codes, 471-472

types, 472
using,223-224

example, 223-224
prerequisite information, 223
procedure, 223
related information, 224

Configuration application, 17

Connections notebook, 12,26
for application installation, 69, 389

from connected disk, 389
Printers page, 419
viewing running file system with, 34
see also Notebook

INDEX 663

Connectivity, 483-493
documentation corrections and errata,

492-493
what's new in, 483-491

Constants, 72
basic, 78
character, 188
Class Manager, 72-73
string, 188

Constraining translation to letters,
numbers, punctuation, symbols,
ADDER, WRITERAP

Constraints
custom layout, CS:WYWO
table layout, UICOMP

CONTEXT b~tch file, 387,410
actions performed by, 410

Control, on-screen, 14

Controls
in menus, UICOMP
text fields, UICOMP
toggle switches, UICOMP

Converting
between character variants, 265
between Shift-JIS and Unicode, 266

Convert menu (MiniText), 249
To Hankaku, 249
To Zenkaku, 249

Coordinate system, 148

Copy protocol, LBDEMO, VIDPLAY

Copyright variable, 417

Counter Application, 89, 133-138
compiling, 134
function of, 133
getting/setting values, 137-138
highlights, 134-135
instance data, 140-143
linking, 134
menu bar, 144
menu buttons, 144
objects, 135
predefined tags and, 194
resource file, 191

Counter objects
filing, 142-143
restoring, 142-143
saving,142

C programming, 24
see also ANSI, C

Create menu (Notebook), 521

Create pop-up menu, 26

Creating
application main window, UICOMP
bitmaps, 412
buttons, CALC, TKDEMO, UICOMp,

VIDPLAY
choice, UICOMP
classes, 55-59, 100-101

component, 67
client window, TKDEMO, UICOMP

664 INDEX

clsSPaper instance of, WRITERAP
custom layout, ADDER, CALC,

HELLOTK, TKDEMO,
CS:WYWO

drawing contexts, 127, INPUTAPP
edit pads, 543
field, TKDEMO, UICOMp, VIDPLAY
help documents, 161
icons, 167,412, UICOMP
icon window as client window,

TEMPLTAP
insertion pads, ADDER, UICOMP
menus, UICOMP
objects, 49-54

Hello World (toolkit), 111
stateful, 67
timing for, 127

option card, TTT, UICOMP
option sheets, SXDEMO, TKDEMO,

UICOMp, CS:WYWO
PenPoint application, 377-379
pop-up choices, UICOMP
Quick Help resources, 161-163
scroll win, TKDEMO, UICOMP
stationary, 159
string list boxes, TKDEMO, UICOMP
table layout, CALC, KEISEN,

TKDEMO, UICOMP
tags in header files, 191
toolkit table, KEISEN, TKDEMO,

UICOMP
translator, ADDER
UI toolkit components, 114-117
Unicode strings, 215-216

Cross out gesture, 8

C source code. see Source code

ctx parameter, 96, 106

Current selection, VIDPLAY

Custom Layout, HELLOTK, TKDEMO,
CS:WYWO

Data
application, 38
checking, 79
conversion, 79
displayed in view, sample code, TTT
file version, 233
filing, 140
input, TTT
objects, 148

design, 148-149
saving, 149

object, sample code, TTT
restoring, 133-144
saving, 133-144
section, 36
sharing, 19-20
transmitting/receiving,489
types, 77-78
see also Instance data

Data transfer, 15
formats supported, 15
"live," 15

Dates, Japanese formatting and, 268-269
Dateltime services, CLOCK, CS:WYWO

DbgFlagGetO, 86, 156

DbgFlagSetO,86

DbgO macro, 86, 87

DbgTttAppCheckStationaryO, 156

DDE (Dynamic Data Exchange), 15

DEBUG, 85, 87

DebugCharSet variable, 274, 278, 398
default value of, 275, 398
displaying characters in, 398
function of, 274
at invalid value, 275
permissible values, 398
values, 274
viewing debugger stream and, 397

DebugfO function
with #ifdef DEBUG/#endif

statements, EMPTYAPp,
TEMPLTAP

use, EMPTYAPP

DebugfO statement, 48, 69, 84, 108,395
compared to printfO, 108
literal strings in, 398
in mainO, 102
Tic-Tac-Toe, 156-157
for writing debug info, 396
see also DPrintf() statement

Debuggers, for Japanese applications,
274-275

Debugger stream, 85, 108-109
Japanese strings in, 274
sending text to, 396-397
using, output, 108
viewing, 85, 108-109,397

as file, 397
on PenPoint screen, 397
on second monitor, 397
using serial port, 397
using System Log application, 397

viewing kanji in, 274

Debugging, 69, 113-114, 395-402
assistance, 84-87

assertions, 85
debugging flags, 85-86
printing debugging strings, 84-85
suggestions, 86-87

character sets, 416
facilities for, 155

debug flags, 156-157
Debugf statements, 156-157
dumping objects, 157
symbol names, 158-159
tracing, 155-156

flags, 85-86
DebugSetand, 417-418
Tic-Tac-Toe, 156-157

flag sets, 86, 157
setting,86

Hello World (custom window), 131
messages, 86-87
methods of, 108
modes, 277
return status, function, 82
strategies, 395
strings, printing, 84-85
Tic-Tac-Toe, 155-159
see also Mini-debugger; Source-level

debugger (DB)

Debug modes, 398-401
choosing,398
DebugRAM, 399
DebugTablet, 399
running PenPoint 1.0/2.0 and, 399
warm booting and, 399-401

DebugRAM, 399
warm booting and, 399-401

DebugSet variable, 417-418

Debug Tablet, 399
warm booting and, 399-401

Debug version, PenPoint, 395-396
drawbacks to using, 396
files, 396

Decorations, 29

Default PenPoint application, EMTPYAPp,
TEMPLTAP

Defines, 72
in file structure, 75

Delimiting sentences, 264
example, 291
function, 509
notes, 291
prerequisite information, 290
procedure, 291
related information, 291

Delimiting words, 263
example, 289-290
function, 509
notes, 299
prerequisite information, 289
procedure, 289
related information, 290

Design guidelines, 18-21
application recovery, 19
code/ data sharing, 19-20
document orientation, 20
exploiting pen, 20
file format compatibility, 20
memory conservation, 18
modular design, 19
object-oriented programming, 19
thinking small, 18~19
using user interface, 21
see also Applications, designing

Development checklist, 69-71
of non-essential items, 70-71
of required interactions, 70

Development cycles, 67-69
compiling and linking, 68
debugging,69
installing application, 68-69

Development strategy, 66-67
application entry point, 66
application instance data, 66-67
creating component classes, 67
creating stateful objects, 67
displaying on screen, 67

Development tools, Japanese application,
273-277

compilers, 274
debuggers, 274-275
DOS utilities, 275-276
makefiles, 275
running PenPoint and, 277
text editors, 273

Digital Guide to Developing International
Software, 238

Disk viewer, 37

Displaying, on screen, 67

Distribution disks, 390
preparing, 390-391
sample structure for, 390

DLC files, 124, CALC, HELLO, UICOMP

DLL files, CALC, HELLO, UICOMP

DLL.LBC file, UICOMP

DLLMainO, 67,124, CALC
for clsHelloWin, 125
documentation correction, 448

DLLs, CALC, HELLO, UICOMP
Notepaper, used in sample code,

NPAPP

DLLs (Dynamic Link Libraries)
deinstallation, 501
distributed,433
dll-ids and, 501
documentation corrections, 501-502
entry point for, 124
initialization, 435-436

using,436
international software and, 178
keys and, 433
linking, 124

code for, 383
minimum operating system version,

502
minor version numbers, 501
naming conventions, 501-502
warm booting and, 400

Documentation, 169-170
corrections to previous, 422
localization and, 236

manuals, 169
on-line, 17

Document menu (Notebook), 520

Document orientation, 20

Documents, 27
activating, 27, 38-39, 101-102
attributes stamped on, 406
avoiding duplication of, 41-42
defined, 101
Empty Application, 29
help, 161
icons for, 167

application, CALC, TTT, UICOMp,
VI D PLAY

instead of files/ applications, 40
life cycle of, 27
life cycles, TEMPLTAP
on-screen, active, 27-28
Quick Start, 392
reactivating,438
restoring inactive, 39
saving internal state and, 27
supporting, 392
terminating, 38-39,439
turning pages and, 38-39

DOS, 24
installation, 25-26

Do's and Taboos, 237, 301

Do's and Taboos Around the World, 237,
301

DOS environment variables, 276, 387
CONTEXT batch file and, 387

DOS file names
long,420
short, 391-392

DOS path names, 391-392

DOS utilities, 207, 275-276
list of, 276
see also specific DOS utilities

DPrintfO statement, 69, 84, 108, 395
literal strings in, 398
Tic-Tac-Toe, 157
for writing debug info, 396
see also DebugfO statement

Drawing
bezier curve, HELLO
text, sample code, HELLO

Drawing contexts, 125
coordinates in, 126
creating, 127
system, 126
types of, 125

Drawing contexts, (DC)
creating, HELLO, INPUTAPP
creating in a window, HELLO,

INPUTAPP

Drawing, in windows, 130

Dumping objects, 157

INDEX 665

EDA,15
recursive embedding, 17

Editing, 15
Edit menu (Notebook), 520

Edit pads, 543-547
boxed, 543
change notes, 543
creating, 543
defined, 543
English, 543-544

standard elements, 543-544
gestures used in, 544
Japanese, 545-547

character alternative list, 546
choice list, 545
gestures used in, 547
standard elements, 545-546
strong highlight, 545
Unicode to character

conversion, 547
weak highlight, 545
weak selection, 546

opening, 543
operational model, 543
ruled, 543, 544
ruled/boxed, 543, 544
styles of, 543
translating text in, 544-545

Electronic Handling of Japanese Text, 301

Embedded applications, 37

Embedding, recursive, 17

EmptyAppDestroyO, 97, 105
parameters in, 107

Empty Application, 88, 91-109
additional code in, 91
Application Framework and, 91
choosing, 93
code, 94-101
displaying, document properties, 93
file used for, 91
handling messages and, 104-105
installing, 92
method table, 97

sample code, 105
multiple instances of, 93
option sheet, 94
running,92

document, 104
uses, 92-94

Encoding
ASCII-based, 186
gestures, 429
Japanese character, 247-249
JIS, 184,251-254
multi-byte, 184
Shift-JIS, 251-254
Unicode, 249-250
wide character, 184

Enumerated values, 79

666 INDEX

ENVIRON.lNI,278
Autozoom, 417
BkShelfPath variable, 417
BOOT.DLC and, 418
DebugCharSet variable, 398, 416
debugger stream to file and, 397
DebugSet variable, 417-418
Locale User variable, 428
Locale variable, 416
shutdown and standby buttons, 416
StartApp variable, 417
versions and trademarks, 416-417

Error status, 164-165

EvenO macro, 79

Event data, INPUTAPp, PAINT, SXDEMO

Exported names, 73

Exporting data, CS:WYWO

Facilities, clsSpaper, WRITERAP

FIELD_NEW structure, 120

File browser, 17

File formats
clsNotePaper changes, 480
compatibility of, 20
import/export filters for, 20

File header comment, 74

File pointer, 468
Files

.LBC
CALC, HELLO, UICOMP

batch, 276-277
closing, 141-142
for compiling and linking, 68
control, 278
copying, to application directory, 390
C source, 68, 95
.DLC, 124

CALC, HELLO, UICOMP
DLL,

CALC, HELLO, UICOMP
DOS names of, 391-392
for Empty Application, 91
header, 68
Japanese font, 251
Japanese names, 418
memory-mapped, 140, CNTRAPP

problem, 468
method table, 68, 95
open handles on, 468
opening, 140-141

for first time, 140-141
to restore, 141

resource, 11, 138
RTF,279
SDK,68
Shift-JIS, 285
source, for multiple localizations, 179
supporting, 390-393
system preferences, 495-496
Tic-Tac-Toe, 147

Unicode, 279
converting,285

where to put, 382
see also Documents

File structure, 74-77
coding suggestions, 76-77
comments, 76
defines, types, globals, 75
file header comment, 74
function prototypes, 75
include directives, 74-75
indentation, 76
message headers, 76

File system, 11
documentation corrections and errata,

468-469
stamped, attributes, 467-468
tips and clarification, 468
what's new in, 467-468

Filing, 31, CALC, LBDEMO, PAINT,
TEMPLTAp, UICOMp, VIDPLAY

counter object, 142-143
list boxes, LBDEMO, VIDPLAY
object, 138-139
see also Saving

Fill-in fields
checklists with, UICOMP
menus with, UICOMP

Fill patterns, UICOMP

Filter, adding, 460-461

FlagClrO macro, 290
Flags

character, 514
checking, 109
debugging, 85-86

DebugSetand,417-418
Tic-Tac-Toe, 156-157

paginationMethod,437
setting, 109
tkLabelStringId, 193
translation, 457

setting, 458
window, setting input flags, INPUTAPP
ws Visible, 442

FlagSetO macro, 290
Flick gestures, 8

Font Editor, 413

Fonts
bitmap, 13
gesture, 170, 482
Heisei Gothic, 250, 464
Heisei Mincho, 250, 464
Japanese, 250-251
outline, 13

PenPoint 1.0,231

Font substitution algorithm, 464
Formatting

conventions, 196
default Japanese, 267

differences between countries, 196
functions, 198, 510
Japanese text, 266-271
routines, 510

Frame decorations
command bar, UICOMP
page number, UICOMP

Frames, 29, III
client windows and, 29, TKDEMO,

UICOMP
defined, 117

FSMake* AttrO function, 405

Function qualifiers, 78-79
Functions, 72

character set conversion, 511
compare, 511
Compose Text, 205

arguments for, 472-473
definitions, 473
format codes for, 471-472

conversion, 198
counted string, renamed, 474
counted version, 198-199
external, 77
formatting, 198, 510
header file descriptions of, 75
international, 187-188, 196, 197-205

converting to, 226-227
Japanese behavior of, 262-263
list of, 197-198
structures, 201-202

missing,207
parsing, 5 10
prototypes, 75
renamed, 474-476
resource utility, 220-221
sort, 511
string compression, 512
string conversion, 265
uncounted versions, 199
WATCOM, renamed, 475-476
see also specific functions

Gaiji,254
defined,248
exporting documents and, 254

German, character restrictions, 202
Gestures (book), 238

Gesture font, 170, 482

Gesture margin (MiniNote), 540

Gesture names
changed, 459
obsolete, 460

Gestures, 152-154
adding, to Quick Help strings,

479-480
code handling, 230-231
edit pad, 544

Japanese, 547

encoding,429
font for, 170
handling, 152-153, TTT, UICOMp,

VIDPLAY
Insertion, 463
KKC, handling, 259
Like-Type, 463
MiniNote, 541-542
MiniText, 537
Notebook TOC, 520
Selection, 463
symbols, 203-204
targeting,463
Unicode values for, 441
see also specific gestures

Gesture tags, 482
Gesture targets, 463

GetSpanBufO,289
GIR utility, see PDIR utility

Globals, in file structure, 75
Global well-known UID, TEMPLTAP, TTT

GLPYH.H, 198
Glyphs

hankaku, 464
Unicode, 202-204
zenkaku, 464

GO.BAT file, 276, 277, 410-411
LOCALE.BAT and, 411
parameters, 410
specifying locale with, 411
using,411

GO Customer Service, 54, 169
GOLOCALE.H, 197
GO Technical Services, 232

Graphics, 13
documentation corrections and

errata, 442-443
overview, 125-127
structured, 15
what's new for, 441
see also ImagePoint

Guide to Macintosh Software
Localization, 238

GWIN_ GESTURE data structure, 230

HandleAnyKeyO function, 299
Handwriting, 152-154

changes, 458-459
engine, 256

entering characters not recognized
by, 256

processing, using translators and,
ADDER, WRITERAP

recognition, 255-257
character, 256
punctuation, 257

recognizer, 256

translation, 14-15
documentation corrections,

460-461
Handwriting recognition engine, 248

Japanese, 421
Handwriting translation (HWX)

engine, 14
characteristics, 15

subsystem, 14

Hankaku, 249
glyphs, 464
implementation, 464
Unicode and, 265

HashCompareString80,476

HashFunctionString80, 476
HASH.H,476

Header files, 54
changed for resource strings, 430
common, 75, 99
creating tags in, 191
C source and, 68
Empty Application, 99
function prototypes in, 75
indentation, 76
international, 507-508
INTL.H,64
library linking and, 388
message headers and, 76
multiple inclusion and, 74-75
new, 430
PenPoint 2.0 Japanese, 430
structure of, 74

HelloApplnitO, 112, 115-116
changing class of window in, 119
main window, 118

HELLOTK1. C, 112
code run-through for, 112-119
highlights, 112-113
toolkit components and, 114-117
well-known UID, 112

HELLOTK2.C, 119-121
component additions, 120
enhancements, 120-121
field additions, 120
HELLOTKl.C vs., 119
layout, 120
only one client per window frame,

119-120
Hello World (custom window), 89

compiling, 123-124
coordinate system and, 126
creating new class and, 123-131
debugging, 131
default units and, 126
defined, 123
enhancements, 131
linking, 123-124
page turn and, 130
parts of, 123

INDEX 667

Hello World (toolkit), 88
compiling, 112
creating objects and, 111-121
installing, 112
method table, 112
response to msgApplnit, 112
sending messages and, 113-114
uses, 112
versions of, 111

Help, Quick Help, CLOCK, TTT

Help application, 17
Help notebook, 17,35,160-161

documents in, 17
creating, 161

see also Notebook; Quick Help
HELP subdirectory, 161

Hex quad, 251
Hiragana symbol set, 246

matching, text, 479

Hoover's Handbook of World Business, 237
Hot links, 15

Hot mode, 28, 42

Icon bitmap, UICOMP

ICON_NEW structure, 412

Icons, 166-167
application/document, 167
creating, 167, 412
setting string, 44
setting title of, 43
see also Bitmaps

Ideographic period, 264

Ideographs, 183
Chinese, 183
CJK,250
Japanese, 183

ImagePoint, 13
conserving memory and, 13
functions performed by, 13
messages, 13
for printing, 13
see also Graphics

In box, 12, 17, 35
changes, 505-506

Include directives, 74-75
common header files, 75
multiple inclusion, 74-75

Indentation, header file, 76
Initialization DLL, UICOMP

InitMainO, UICOMP

InitMain entry point, 436

Input
event handling, 152
translation, 14

documentatio corrections, 460-461
transparent, 460

InputFilterAddO function, 460
arguments, 460-461

668 INDEX

Input pad
Japanese version, 181
see also Edit pads

InputSetTargetO, 150
Input subsystem filters, ADDER

InRangeO macro, 79

Insertion pads
creating, UICOMP
deleting, UICOMP
displaying, UICOMP

Insert space gesture, 8

Installation, application, 25, 101-102,
103-104

as development cycle, 68-69
features, 159
methods of, 69
MS-DOS, 25-26
PenPoint, 26
see also Applications

Installed Software section (Settings
notebook),529-531

Applications page, 529
Dictionaries page, 530
Fonts page, 530
Installed Handwriting page, 530
Services page, 529
User Profiles page, 531

Installer, 26, 69
application resource file and, 163
identifying code modules, 124
responsibilities, 26-27

Installing
applications, 388-390

in application directory, 389
from connected disk, 389
using Settings notebook, 389-390

automatically, 388-389
Empty Application, 92
Hello World (toolkit), 112

Instance data, 56, 127-128
application, 66-67
by value vs. by reference, 149
for clsCntr, 136
Counter Application, 140-143
local, structure, 139
size, 56
specifying, 128
uses of, 66-67
using, 129-130

INSTANCE_DATA structure, 128

Instances, 45
of application classes, 28
of classes, 45

size of data needed by, 56
classes and, 49-50
of clsObject, 31
cls T tt View, 31
of clsWin, 29-31
Tic-Tac-Toe, 146

International character sets, 181-189
multi-byte characters, 183-184
Unicode, 184-189
wide characters, 183-184

International functions, 187-188, 196,
197-205

composed strings and, 205
converting to, 226-227
in ISR.H, 198-199
Japanese behavior of, 262-263
list of, 197-198
locales and, 199
predefined locale identifiers and,

199-200
query capability and, 201
structures of, 201-202
styles and, 200-201
Unicode glyphs and, 202-204

International header files, 507-508

Internationalization, 63, 175
checklist, 182
goal of, 177
handbook, 171-238

audience, 175-176
structure, 176
using,176

preparing for, 65-66
modularize locale sensitive code,

65-66
move strings into resource files, 65
text composition routines, 66

steps for, 178
creating application, 181
locale-independent code, 180-181
resource file use, 181
support Unicode, 180

see also Localization

International routines, 508-512

International services, 507-514

International software, 177-178
PenPoint support for, 183-207
writing, 178-181

IntlBreakLineO function, 202, 267, 393
prototype, 294

INTL_BREAK_LINE structure, 201,
202,393

IntlCharlsAlphabetic, called in,
ADDER\ADDEREVL.C

IntlCharlsAlphanumeric, called in,
ADDER\ADDEREVL.C

IntlCharlsDecimalDigit, called in,
ADDER\ADDEREVL.C

IntlCharIsUpperO function, 187,209

IntlCharToUpperO function, 265

INTL_ CNTD _STR structure, 201

IntlCompareO function, 264, 291
defined, 511

prototype, 292
returns, 292

IntlCompressUnicodeO function, 189,
266

defined, 512

IntlConvertUnitsO function, 512

IntlDateToString, called in,
CLOCK\CLOCKAPP.C

IntlDelimitSentenceO function, 263
defined, 509

IntlDelimitWordO function, 201
defined, 509

intlFmtDateZeroFill, 200

IntlFormatDateO function, 180, 198,
226,268

defined, 510

IntlFormatNumberO function, 270
defined, 510

IntlFormatS320 function, 197,209,226,
270

defined, 510

IntlFormatTimeO function, 269
defined,510

INTL.H,197
macros in, 508

IntlIntlTimeToOSDateTime, called in,
CLOCK\CLOCKAPP.C

IntlIntlTimeToOSDateTimeO function,
509,510

INTL.LIB, 388, 429

IntlLIDMakeLocaleldO routine, 508
INTL_LINE_BREAK structure, 267

IntlMBToUnicodeO function, 198,254,
266,286,474

defined,511

IntlNFormatDateO function, 200

IntlNFormatNumberO function, 270

IntlNFormatS320 function, 270

IntlNStrConvertO function, 265

IntlNUnicodeToMBO function, 286

IntlOSDateTimeToIntlTimeO function,
509,510

IntlParseDateO function, 510

IntlParseNumberO function, 510

IntlParseS320 function, 510

IntlParse TimeO function, 510

INTLSCAN DOS utility, 181, 186
choosing flag code, 211
flagged functions, 226-227
flagged lines from, 206
function of, 207
for identifying locale-independent

code, 225
interpreting messages, 211-215

examples, 212-215

prerequisite information, 211
procedure, 212
related information, 215

location of, 187
messages, 211

CHAR *: fixed 8-bit type, 215
ISR: USA function, 215
resources: literal character, 214-215
resources: literal string, 214
Unicode 8-bit function, 212-213
Unicode: 8-bit type, 212
Unicode: check mem size for

sizeof(CHAR) !=1, 213-214
using, 206-207, 210-211

prerequisite information, 210
procedure, 210-211
related information, 211

IntlSecToTimeStructO function, 268,
509,510

called in, CLOCK\CLOCKAPP.C

IntlSortO function, 245, 264, 292
defined,511
prototype, 265, 293

IntlStrConvertO function, 187,249,265,
287,511

prototype, 288
styles, 288

intlStyleDefault, 201
IntlTimeStructToSecO function, 509, 510

called in, CLOCK\CLOCKAPP.C

INTL_ TIME structure, 201, 268

IntlTimeToString, called in,
CLOCK\CLOCKAPP.C

IntlUncompress UnicodeO function, 266
defined,512

IntlUnicodeToMBO function, 254,
266,474

defined,511

I/O port state
default, settings, 485
options, 485

ISR.H,197
international functions in, 198-199

ISRSTYLE.H, 197
displaying dates in, 200

Japanese, 245-247
character restrictions, 202
characters, 245-254

encoding in Unicode, 249-250
listing of, 303-371
sorting, 245
sorting and comparing, 264-265

character set, 247-248
date formats, 268

development tools, 273-277
compilers, 273
debuggers, 275-276
DOS utilities, 275-276
makefiles, 275
running PenPoint and, 277
text editors, 273

edit pads, 545-547
eras supported, 268
file names, interpreting, 418
fonts, 250-251, 295-296

examples, 295-296
prerequisite information, 295
procedure, 295
related information, 296

handwriting recognition engine, 421
ideographs, 183
international functions and, 262-263
international functions version, 197
keyboard, 261

virtual, 279, 281, 414
localization, 243-372
number formatting, 269-271
punctuation marks, 257
symbol sets, 246-247

hiragana, 246
kanji,246
katakana, 246
romaji, 246-247

text
in MiniText, 180
processing rules for, 465

time formats, 269
word processor version, 179
writing,247

code, 245
see also Japanese text; PenPoint 2.0

Japanese

Japanese applications
ENVIRON.INI and, 278
initialization files and, 278
MIL.INI and, 278
procedures for writing, 283-300
see also Applications

Japanese Industrial Standards Committee
(JISC),238

Japanese text, 255
editing,273
entry, 255-262

handwriting recognition, 255-257
kana-kanji conversion, 257-258
KKC/RKC support, 258-261
romaji-kanji conversion, 258
using keyboards and, 261-262

formatting,266-271
dates, 268-269
line breaks, 267
numbers, 269-271
times, 269

INDEX 669

handling, 262-266
comparing and sorting, 264-265
compressing Unicode, 266
converting between character

variants, 265
converting between Shift-JIS and

Unicode, 266
delimiting sentences, 264
delimiting words, 263

processing,255-271
see also Japanese

JIS, 183
1990 standard, 248
character list, 251, 264
character set, 247-248
encoding, 251-254

details, 251-252
see also Shift-JIS

JPN.RC file, 191,205,273
makefiles and, 275

JPN.RES file, 100

Kana-kanji conversion (KKC), 257-258
character translator, 453

creating client of, 454-456
class, 451-453
defined,256
enabling, 421
engine installation, 499-500

install manager class, 499
KKC class, 499
KKCCT class, 499
routing via appAttrClass, 500

explained, 257
handling, gestures, 259
Japanese edit pads and, 545

strong highlight, 545
weak highlight, 545
weak selection, 546

supporting, 258, 261, 296-300
examples, 299-300
notes, 298
prerequisite information, 297
procedure, 297

Kana symbol sets, 246
sorting, 264

Kanji and Kana, 301
Kanji symbol set, 246

listing of, 303-371
radical and, 248
sorting,264
two-levels, 248
viewing, in debugger stream, 274

KanjiTalk, 251
Katakana symbol set, 246

half/full-width distinction in, 250
hankaku, 249
matching, text, 479
zenkaku, 249

670 INDEX

Keisen Table application, 281

Kernallayer, 10-11
Class Manager, 11
defined, 10
loader, 10
power conservation, 11
services, 10

Keyboard, 15
American, using, 261
handling, 154
input, 150-151
Japanese, using, 261
MIL.INI variable, 278, 415
PenPoint 2.0 Japanese and, 261-262
types supported, 415
variable, 261
virtual, 262, 534

Japanese, 279, 281, 414

keyCode, 154

Keys, using, 433

Knowledge source, translation template,
ADDER, WRITERAP

Ku-ten, 303

LABEL_NEW structure, 115, 119

Labels, CALC, HELLOTK, TKDEMO,
UICOMP

creating, 111, 117
icon, UICOMP
scaling, 147
in table layout window, 147

LABEL_STYLE structure, 117
infoType field, 193
scale Units field, 117
style fields, 117

Layout, 120
classes, 120
custom, HELLOTK, TKDEMO,

CS:WYWO
table, KEISEN, UICOMP

constraints, KEISEN, UICOMP
flags, KEISEN, UICOMP
using tlAlignBaseline for, UICOMP

toolkit table, TKDEMO, UICOMP

Layout classes
custom layout, creating, ADDER,

CALC, HELLOTK, TKDEMO,
CS:WYWO

table layout, CALC, TKDEMO,
UICOMP

Letter practice, 459

Libraries, 388
PenPoint 2.0 Japanese changes in, 429

Line breaks
example, 293-294
handling, 293-294
Japanese formatting and, 267
notes, 294

prerequisite information, 293
procedure, 293
related information, 294

Linking,68
code, 92
Counter Application, 134
DLLs, 124
Hello World (custom window),

123-124
makefiles, 383
see also Compiling

List boxes, LBDEMO, VIDPLAY
string, TKDEMO, UICOMP

LIST_ENTRY structure, 47

LIST_NEW_ONLY structure, 53

LIST_New structure, 51, 52

Lists, LBDEMO, SXDEMO
boxed, UICOMP
checklists

with fields, UICOMP
multiple, UICOMP

editable, UICOMP
multiple choice, TKDEMO, UICOMP
pop-up variations of, UICOMP
scrolling

checklists, UICOMP
of selectable items, UICOMP

lname, 124

Loader, 10

Loanwords, 246

LOCALE.BAT file, 276, 277, 411
GO.BAT and, 411
specifying locale with, 411

Locale-independent code, 180-181,
196-197

writing, 225-227
example, 226-227
prerequisite information, 225
procedure, 225

see also Code

Locales, 177, 199
composed strings and, 204-205
formatting and, 196
getting current, 473
packaging and, 236
predefined identifiers for, 199-200
specifying, 386-387
supported, 277
USA user, 421
working with, 421

LocaleUser variable, 416

LOCALE variable, 386
clefined,403
setting,403

Localization, 63, 175
goal of, 235
guidelines, 235-236
Japanese, 243-372
makefiles and, 206

modularizing code and, 65-66
multiple, 178
see also Internationalization

Localization for Japan, 301

Locators, 468
flat, 468

LocDelimitSentenceO macro, 264, 291

LocDelimitWordO macro, 199,289,290
calling, in PenPoint 2.0 Japanese, 262
for locating bunsetsu, 263

LocNBreakLineO macro, 393

LocNDelimitSentenceO macro, 291

LocNDelimitWordO macro, 289

Low-level events, 14

IseekO, 469

Macros, 72, 82-84
CHAR TYPE, 512-513
error-handling,82-84
status-checking, 82

using,87
see also specific macros

mainO, 26, 66
DebugfO statement in, 102
for EMPTYAPP.C, 97
entry point, 27-28
explained, 102-103
function, 28, 101
routine, 28-29, 95

Main notebook, 34

Main window
application, inserting custom window

as, ADDERAp, UICOMP
initializing clsSPaper-based,

WRITERAP

Makefiles, 181,206, 382-386
attributes stamped by, 385
building resource file, 385-386
compiling, 382
for different localizations, 206
Japanese applications and, 275
linking,383
NotePaper App, 224-225
stamping, 384-385
three standard, 381
updating,224-225

example, 224-225
prerequisite information, 224
procedure, 224
related information, 225

using,381
variables, 206, 275, 386
warm booting and, 400-401

MakeListResIdO macro, 217, 221

MakeStatusO, 80-81

MakeTagO macro, 217, 221
for bitmap tag, 412

Make WarningO macro, 81

MakeWKNO, 54

Mapping, file to memory, CNTRAPP

Mark, supporting, VIDPLAY

Maru, 264

maxNameLength, 78

Memory, 468
conservation, 18

in running documents, 41
ImagePoint and, 13
map,468
required for Unicode, 188-189
see also Files, memory-mapped

Menu bar, 111, 117
in Counter Application, 144
creating application specific,

CNTRAPP, PAINT, TEMPLTAP

Menu buttons, 111, PAINT
in Counter Application, 144
displaying submenus with, TKDEMO,

UICOMP

Menu line, placing button in, PAINT

Menus
adding application specific, CNTRAPp,

LBDEMO, TTT, TEMPLTAP
change notes, 547
MiniNote, 542-543
MiniText, 538-539
supporting SAMS, TTT, TEMPLTAP

Menu support, 143-144

Message arguments, 47
CLASS_NEW, 55-56
delivering to list object, 48
msgNewand, 115

Message handlers, 56, 96
Class Manager and, 106
defined, 105
designing, 62
for msgDestroy, 97, 98
names for, 105
parameters for, 96, 106
privacy, 107
status return values, 107
TttViewGesture, 230-231

Message handling, 46

Message headers, 76
format, 76
In, Out, In-Out, 76

Messages, 43
advisory, 58
ancestor, 62
Application Framework, 104
class character translator, 456-457
client/observer notification, 491
clsKKC, 452-453
clsOption, 504
clsServiceMgr, 483-484
clsText, 254
debugging,86-87
delivering to list objects, 48
designing, 62

export, 480
handling, 46, 104-105
instead of function calls, 44-45
INTLSCAN, 211
modem initialization, 487
modem service creation/

initialization, 490
modem service request, 490-491
not taking arguments, 48
posting,433
quotation marks around, 57
responses to, 58-59
search,482
sending, 47-49, 113-114
style of, 73
tracing, EMPTYAPp, INPUTAPP
see also specific messages

Message table, 57

Message tracing, 155
turning on, EMPTYAPp, INPUTAPP

Methods, 56, 105
see also Message handlers

Method Table Compiler, 106
working with, 387

Method tables, 55, 56-57
clsCntr, 135
for clsCntrApp, 134
for clsHelloWin, 123, 125
clsHelloWorld, 125
clsList, 58-59
compiling, 92

commands for, 382
defined, 56
Empty Application, 97
files, 68, 95
function of, 94
in handling messages, 104-105
Hello World (toolkit), 112
names for, 95
suffix, 92

Metrics, 118
clsAnimSPaper, 460
clsTttData, 148-149
specifying, 121

MIL.INI, 278, 415
keyboard variable, 278
MonoDebug variable, 416
in seeing low-level output, 415
SerialDebugPort variable, 397
in specifying keyboard, 415

MIL (machine interface layer), 10
services, 503

minApp Version, 434

Mini-debugger, 84
commands, 401
controls, 402
disabling,402
uses for, 108
using, 87, 401-402

displaying Unicode, 401-402

INDEX 671

getting help and, 402
turning flag bits off/on, 402

see also Debugging
MiniNote, 161

bugs in, 481
gesture margin, 540
gestures, 541-542
input modes, 539

gesture mode, 539
ink mode, 539

Japanese files and, 279
menus, 542-543

Arrange, 542
Edit, 542
Options, 542
Pen, 543

option sheets, 540-541
Paper, 540
Pen, 541

MiniText, 161,413
change notes, 535
DOS file, importing, 273
function of, 535
gestures, 537
Japanese text in, 180
menus, 538-539

Convert, 265, 539
Edit, 538
Insert, 538-539
Options, 538
View, 538

options sheets, 536
Character, 536
Display, 536
Paragraph, 536
Tab Stops, 536

as Shift-JIS and Unicode editor,
273,279

uses of, 413

MODEM_METRICS fields, 486

Modems, 483
binding, 483
establishing connection with, 488
finding,483
firmware

default settings, 484-485
resetting, 484

initialization, 484-488
applying default settings, 484-485
discrete, messages, 487
procedure for, 486-487
response mode, 487-488
setting 110 port state options, 485

opening, 484
terminating service, 489
transmitting/receiving data, 489
waiting for connection, 489

Mode switch, UICOMP

MonoDebug, 416

I
I ~

i
1,,-

L:

672 INDEX

Move protocol, LBDEMO, VIDPLAY

MS-DOS. see DOS

msgAdderEvaluatorEval
handled in, ADDER
sent in, ADDER\ADDERAPP.C

msgAddObserver, sent in,
CLOCK\CLOCKAPP.C

msgAMGetlnstallDir, sent in,
SAMPLMON\SAMPLMON.C

msgAMLoadInitDll,436

msgAMLoadOptionalDlls, handled in,
SAMPLMON

msgAMPopupOptions, handled in,
SAMPLMON

msgAMTerminate, handled in,
SAMPLMON

msgAppAbout, 104

msgAppActivate, 28

msgAppActivateChild, 104

msgAppAddFloatingWin, sent in,
UICOMP\EDSTRLB.C

msgAppClose, 38-39, 67, 112
Counter Application and, 135
handled in, ADDER, CALC, CLOCK,

CNTRAPp, HELLO, HELLOTK,
KEISEN, LBDEMO, NPAPp,
SAMPLMON, SXDEMO,
TEMPLTAp, TKDEMO, TTT,
UICOMp, VIDPLAY

Hello World (custom window) and,
125

msgAppCloseTo, sent in,
CLOCK\CLOCKAPP.C

msgAppCreateChild, 37, 103

msgAppCreateClient Win
handled in, KEISEN, TEMPLTAP
sent in, KEISEN\KEISEN.C,

TEMPLTAP\TEMPLTAP.C

msgAppCreateMenuBar
handled in, LBDEMO, TEMPLTAp,

UICOMp, VIDPLAY
sent in, CNTRAPP\CNTRAPP.C,

KEISEN\KEISEN .C,
LBDEMO\LBDEMO.C,
NPAPP\NPAPP.C,
SAMPLMON\SAMPLMON.C,
TEMPLTAP\TEMPLTAP.C,
TKDEMO\TKDEMO.C,
TTT\TTTAPP.C,
UICOMP\UICOMP.C,
VIDPLAy\VIDPLAY.C

msgAppDirGetNext, 438-439

msgAppDirGetNextlnit, 438-439

msgAppDirGetUID, sent in,
CLOCK\CLOCKAPP.C

msgAppExecuteGesture
handled in, PAINT, SXDEMO
sent in, CLOCK\CLOCKAPP.C

msgAppGetApp Win, handled in, CLOCK

msgAppGetMetrics, sent in. see all sample
applications except EMPTYAPP

msgAppInit, 67, 112, 135
handled in, CALC, CNTRAPP,

HELLOTK, KEISEN, NPAPp,
PAINT, SAMPLMON,
TEMPLTAp, TKDEMO, TTT,
VIDPLAY, WRITERAP

using, 118

msgAppMgrCreate, page sequencing and,
438

msgAppMgrGetMetrics, sent in,
SAMPLMON\SAMPLMON.C,
TKDEMO\TKDEMO.C,
UICOMP\BUTTONS.C,
UICOMP\LISTS.C,
UICOMP\MENUS.C,
UICOMP\POPUPS.C,
UICOMP\TEXT.C

msgAppOpen, 28, 39, 67, 105, 112
Counter Application and, 135
handled in, ADDER, CALC, CLOCK,

CNTRAPp, HELLO, HELLOTK,
INPUTAPp, KEISEN, LBDEMO,
NPAPp, PAINT, SAMPLMON,
SXDEMO, TEMPLTAp,
TKDEMO, TTT, UICOMp,
VIDPLAY

Hello World (custom window) and,
125

msgSave and, 437

msgAppPrint, 104

msgAppPrintSetup, 104

msgAppProvideMain Win, handled in,
UICOMP

msgAppRecover, 435
handling,435

msgAppRemoveFloatingWin, sent in,
UICOMP\EDSTRLB.C

msgAppRestore, 435
msgAppRevert, handled in, TEMPLTAP

msgAppSave, 94, 439

msgAppSelectAll, handled in, NPAPp,
TEMPLTAp, TTT

msgAppTerminate, 39, 439
handling, 439

msgApp WinGetMetrics, sent in,
CLOCK\CLOCKAPP.C

msgBitmapCacheImageDefaults, 443
msgBlahBlah, sent in,

TESTSVC\TESTSVC.C

msgBorderConvertUnits, sent in,
CLOCK\CLOCKAPP.C,
CLOCK\NCBWIN.C

msgBorderGetStyle, sent in,
CLOCK\CLABEL.C,
CLOCK\CLOCKAPP.C,
LBDEMO\LBDEMO.C,

PAINT\PAPP.C,
UICOMP\BUTTONS.C,
UICOMP\LISTS.C,
UICOMP\MENUS.C,
UICOMP\ UICOMP.C,
VIDPLAy\ VIDPLAY.C,
VIDPLAy\ VPFIELDS.C

msgBorderSetSelected
handled in, CLOCK, VIDPLAY
sent in, CLOCK\CWIN.C,

LBDEMO\LBLIST.C,
VIDPLAY\VPLIST.C

msgBorderSetStyle, sent in,
CLOCK\CLABEL.C,
CLOCK\CLOCKAPP.C,
LBDEMO\LBDEMO.C,
PAINT\PAPP.C,
UICOMP\BUTTONS.C,
UICOMP\LISTS.C,
UICOMP\MENUS.C,
UICOMP\UICOMP.C,
VIDPLAy\VIDPLAY.C,
VIDPLAy\ VPFIELDS.C

msgBrowserSelection, 482

msgBrowserSelectionDir, 482

msgButtonGetStyle, sent in,
TKDEMO\OPTIONS.C

msgButtonNotify, handled in, CALC

msgCalcEngineEnterNumber
handled in, CALC
sent in, CALC\CALCENG.C

msgCalcEngineEnterOperator
handled in, CALC
sent in, CALC\CALCENG.C

msgCalcEngineProcessKey
handled in, CALC
sent in, CALC\CALCAPP.C

msgCharTransChar, 260,297,299,455
clsCharTranslator and, 457
sending to self, 299

msgCharTransGesture, 259, 260, 297,
454-455

msgCharTransGetClientBuffer, 259, 261,
297,298,454,456

clsCharTranslator and, 457
handler for, 300

msgCharTransGoQuiescent, 260, 297,
. 455

msgCharTransKey, 260, 455

msgCharTransKeyEvent, 297, 299
clsCharTranslator and, 456

msgChar TransListActivate, 457

msgCharTransModifyBuffer, 259, 260,
261,297,298,456

clsCharTranslator and, 457
highlighting information and, 456

msgChar TransProvideListXY, 260, 261,
297,298,455,456

clsCharTranslator and, 457

INDEX 673

msgCharTransSetMark,297 HELLOTK\HELLOTK2.C, PAINT\PWIN .C,
clsCharTranslator and, 457 LBDEMO\LBDEMO.C, TTT\TTTVIEW.C,

msgClockAppGetDisplayString TKDEMO\CUSTOMS.C, WRITERAP\WRITERAP.C

handled in, CLOCK VIDPLAy\VIDPLAY.C, msgDcSetFillPat, sent in,
sent in, CLOCK\CWIN.C VIDPLAy\ VPLIST.C INPUTAPP\INPUTAPP.C,

msgClockDisplayNote msgCstmLayoutSetStyle, sent in, TTT\TTTVIEW.C

handled in, CLOCK CLOCK\CLOCKAPP.C msgDCSetFontDesc, 441
sent in, CLOCK\CLOCKAPP.C msgDcCachelmage, 443 msgDcSetForegroundColor, sent in,

msgClockNewFormat msgDcCopylmage, 443 PAINT\PIXELMAP.C
handled in, CLOCK msgDcCopyPixels, sent in, msgDcSetForegroundRGB, sent in, .
sent in, CLOCK\CLOCKAPP.C PAINT\PlXELMAP. C, HELLO\HELLOWIN .C,

msgCntrAppChangeFormat, 135, 144 PAINT\PWIN.C PAINT\PWIN .C,
handled in, CNTRAPP msgDcDrawBezier, sent in, WRITERAP\ WRITERAP.C

msgCntrGetValue, 136, 137 HELLO\HELLOWIN.C msgDcSetLine, sent in, PAINT\PWIN.C
handled in, CNTRAPP msgDcDrawEllipse, sent in, msgDcSetLineThickness, sent in,
sent in, CNTRAPP\CNTRAPP.C HELLO\HELLOWIN .C, HELLO\HELLOWIN.C,

msgCntrIncr, 137 PAINT\PlXELMAP.C PAINT\PWIN .C,
handled in, CNTRAPP msgDcDrawPolygon, sent in, TTT\TTTVIEW.C
sent in, CNTRAPP\CNTRAPP.C PAINT\PWIN .C msgDcSetMode, sent in,

msgControlGetDirty, 448 msgDcDrawPolyline, sent in, INPUTAPP\INPUTAPP.C,
sent in, CLOCK\CLOCKAPP.C, PAINT\PWIN.C PAINT\PWIN.C

SAMPLMON\SAMPLMON.C, msgDcDrawRectangle, sent in, msgDcSetWindow, 126
SXDEMO\SXOPT.C, INPUTAPP\INPUTAPP.C, sent in, HELLO\HELLOWIN.C,
TKDEMO\OPTIONS.C, TTT\TTTVIEW.C INPUTAPP\INPUTAPP.C,
TTT\TTTVO PT. C

msgDcDrawText NPAPP\NPAPP.C,
msgControlGetEnable, 448 sent in, HELLO\HELLOWIN.C PAINT\PlXELMAP.C,

msgControlGetValue, sent in, sent in, TTT\TTTVIEW.C, PAINT\PWIN.C,

CLOCK\CLOCKAPP.C, WRITERAP\ WRITERAP.C TTT\TTTVIEW.C,

SAMPLMON\SAMPLMON.C, msgDcFillWindow, sent in,
WRITERAP\WRITERAP.C

SXDEMO\SXOPT.C, HELLO\HELLOWIN .C, msgDcUnitsDevice, sent in,
TKDEMO\OPTIONS.C, PAINT\PWIN .C INPUTAPP\INPUTAPP. C,
TTT\TTTVOPT.C

msgDCGetFontDesc, 441
PAINT\PlXELMAP. C,

msgControlProvideEnable, handled in, PAINT\PWIN .C,

NPAPp, TKDEMO, TTT msgDcGetFontMetrics, sent in, WRITERAP\ WRITERAP.C ><
HELLO\HELLOWIN .C

i.IJ

msgControlSetClient, 121 msgDcUnitsMil, sent in, 0

msgDcGetLine, sent in, PAINT\PWIN.C
~

msgControlSetDirty, 448 NPAPP\NPAPP.C,
msgDcGetMode, sent in, PAINT\PWIN.C PAINT\PlXELMAP.C «

sent in, CLOCK\CLOCKAPP.C,
SXDEMO\SXOPT.C, msgDddentityFont, sent in, msgDcUnitsPoints, sent in,

TKDEMO\OPTIONS.C, TTT\TTTVIEW.C WRITERAP\WRITERAP.C

TTT\TTTVOPT.C msgDcLUCtoLWCmsgDddentityFont, msgDestroy, 104

msgControlSetValue, sent in, sent in, Class Manager and, 105

CLOCK\CLOCKAPP.C, TTT\TTTVIEW.CSIZE32, sent in, in Empty Application, 97

SAMPLMON\SAMPLMON.C, WRITERAP\WRITERAP.C handled in, EMPTYAPP

SXDEMO\SXOPT.C, msgDcMeasureText, sent in, message handler for, 97, 98

TKDEMO\FIELDS.C, HELLO\HELLOWIN .c, posting,433

TKDEMO\OPTIONS.C, TTT\TTTVIEW.C sent in, see also code for all sample
TTT\TTTVOPT.C msgDCOpenFont, 441 applications

msgCounterGetValue, sent in, sent in, HELLO\HELLOWIN.C, msgDump, 69,157

UICOMP\UICOMP.C, TTT\TTTVIEW.C, handled in, CALC, TEMPLTAp, TTT

VI DPLAy\ VPLIST.C WRITERAP\ WRITERAP.C handling, 395, 396

msgCounterNotify, handled in, UICOMp, msgDcScaleFont, sent in, sent in, CLOCK\CLOCKAPP.C,

VIDPLAY HELLO\HELLOWIN.C,
TTT\TTTDBG.C

msgCounterSetValue, sent in, TTT\TTTVIEW.C, msgEmbeddedWinBeginCopy, sent in,

UICOMP\UICOMP.C, WRITERAP\WRITERAP.C CLOCK\CWIN.C

VIDPLAy\VIDPLAY.C msgDcScale, sent in, msgEmbeddedWinGetDest, handled in,

msgCstmLayoutGetStyle, sent in, HELLO\HELLOWIN.C CLOCK

CLOCK\CLOCKAPP.C msgDcSetBackgroundColor, sent in, msgEmbeddedWinSetUUID, sent in,

msgCstmLayoutSetChildSpec, sent in, PAINT\PIXELMAP. C VI DPLAy\ VIDPLAY.C

ADDER\ADDERAPP.C, msgDcSetBackgroundRGB, sent in, msgFieldCreateTranslator, handled in,

CALC\CALCAPP.C, HELLO\HELLOWIN.C, KEISEN

674 INDEX

msgField, sent in, CLOCK\CLOCKAPP.C

msgFooGetMetrics, handled in,
TEMPLTAP

msgFooGetStyle, handled in, TEMPLTAP

msgFooSetStyle, handled in, TEMPLTAP

msgFrameClose, 48

msgFrameDestroyMenuBar, sent in,
CNTRAPP\CNTRAPP.C,
KEISEN\KEISEN .c,
LBDEMO\LBDEMO.C,
NPAPP\NPAPP.C,
SAMPLMON\SAMPLMON.C,
TEMPLTAP\TEMPLTAP.C,
TTT\TTTAPP.C,
UICOMP\UICOMP.C,
VIDPLAy\ VIDPLAY.C

msgFrameGetClientWin, sent in,
CNTRAPP\CNTRAPP.C,
HELLOTK\HELLOTK2.C,
HELLO\HELLO.C,
KEISEN\KEISEN .c,
LBDEMO\LBDEMO.C,
SAMPLMON\SAMPLMON.C,
SXDEMO\SXOPT.C,
TEMPLTAP\TEMPLTAP.C,
TKDEMO\OPTIONS.C,
TTT\TTTUTIL.C,
VI DPLAy\ VIDPLAY.C,
WRITERAP\ WRITERAP.C

msgFrameGetMetrics, sent in,
ADDER\ADDERAPP.C,
CLOCK\CLOCKAPP.C,
TKDEMO\TKDEMO.C,
UICOMP\OPCMDBAR.C,
UICOMP\UICOMP.C,
VIDPLAy\VIDPLAY.C,
WRITERAP\ WRITERAP.C

msgFrameGetStyle, sent in,
UICOMP\OPCMDBAR.C

msgFrameResizeEnable, sent in,
CLOCK\CLOCKAPP.C

msgFrameSetClientWin, 117, 118
see also code for sample applications

msgFrameSetMenuBar, sent in,
CNTRAPP\CNTRAPP.C,
KEISEN\KEISEN .c,
LBDEMO\LBDEMO.C,
NPAPP\NPAPP.C,PAINT\PAPP.C,
SAMPLMON\SAMPLMON.C,
TEMPLTAP\TEMPLTAP.C,
TTT\TTTAPP.C,
UICOMP\UICOMP.C,
WRITERAP\ WRITERAP.C

msgFrameSetMetrics, sent in,
ADDER\ADDERAPP.C,
CLOCK\CLOCKAPP.C,
TKDEMO\TKDEMO.C,
UICOMP\OPCMDBAR.C,
VIDPLAy\VIDPLAY.C

msgFrameSetStyle, sent in,
UICOMP\OPCMDBAR.C

msgFree, 58, 105,439
closing on, 141-142
handled in, ADDER, CALC, CALC,

CLOCK, CNTRAPp, HELLO,
INPUTAPp, LBDEMO, MILSVC,
NPAPp, PAINT, SXDEMO,
TEMPLTAP, TESTSVC, TTT,
UICOMp, VIDPLAY

sent in, PAINT\PIXWIN.C,
SXDEMO\SXAPP.C

msgFreeSubtask, 433

msgFSDelete, sent in, TTT\TTTAPP.C

msgFSFlush, handled in, MILSVC

msgFSGetPath, sent in,
SAMPLMON\SAMPLMON.C

msgFSGetSize, sent in,
SAMPLMON\SAMPLMON.C

msgFSMemoryMapFree, 141
sent in, CNTRAPP\CNTRAPP.C

msgFSMemoryMap, sent in,
CNTRAPP\CNTRAPP.C,
PAINT\PIXWIN.C,
SAMPLMON\SAMPLMON.C

msgFSMemoryMapSetSize, sent in,
CNTRAPP\CNTRAPP.C

msgFSNodeExists, sent in,
SAMPLMON\SAMPLMON.C

msgFSReadDirFull, sent in,
SAMPLMON\SAMPLMON.C

msgFSSeek, 469

msgFSSetAttr, sent in, TTT\TTTAPP.C

msgFSSetSize, 468, 469
sent in, PAINT\PIXWIN.C,

SAMPLMON\SAMPLMON.C

msgFSSetTarget, sent in,
SAMPLMON\SAMPLMON.C

msgGetConnectionInfo, 488

msgGetScribbleClass, 480

msgGetSys Version, 502

msgGetTextClass, 480
msgGotoButtonGetLabel, handled in,

VIDPLAY

msgGWinForwardedGesture, handled in,
CLOCK, SXDEMO, VIDPLAY

msgGWinForwardGesture, sent in,
VIDPLAY\VPFIELDS.C

msgGWinGesture, 152
API,153
handled in, SXDEMO, TTT, UICOMP,

VIDPLAY
sent in, UICOMP\SCRPOPUP.C
XList handlers and, 447

msgGWinGetStyle, sent in,
CLOCK\CLOCKAPP.C,
CLOCK\CLOCKAPP.C

msgGWinTransformGesture, sent in,
SXDEMO\SXVIEW.C

MsgHandlerO macro, 96, 106, 129

MsgHandlerParametersNo Warning, 107

MsgHandlerWithTypesO macro, 96, 130,
137-138

msgIconProvideBitmap,232
handled in, TKDEMO, UICOMP

msgIconSetPictureSize, 46, 48
sent in, UICOMP\LISTS.C

msgIMFind, 483
sent in, VIDPLAY\VPSIO.C

msgIMGetList, 483
sent in, MILSVC\MILSVC.C,

MILSVC\MILSVCO.C,
SXDEMO\SXAPP.C,
VIDPLAY\VPSIO.C

msgIMGetName, 483
sent in, SXDEMO\SXAPP.C,

VIDPLAY\VPSIO.C

msgImportQuery, 480

msgInit, 125
clsHelloWin and, 128
failures during, 149
handled in, see also all sample

applications except EMPTYAPP
sent in, PAINT\PIXWIN.C

msgInputEvent, 152
handled in, INPUTAPP, PAINT, TTT,

VIDPLAY

msgIOBXSvcEnableService, 506

msgIPClear, sent in, SXDEMO\SXIP.C

msgIPDataAvailable
handled in, ADDER, SXDEMO,

UICOMP
sent in, SXDEMO\SXIP.C

msgIPGetXlateString, sent in,
ADDER\ADDERAPP.C,
SXDEMO\SXIP.C,
UICOMP\EDSTRLB.C

msgIsA,48
sent in, CLOCK\CLOCKAPP.C,

CLOCK\CWIN.C

msgKey, 152

msgKeyMulti, 154

msgKKC messages, 452-453

msgLabelGetFontSpec, sent in,
CLOCK\CLOCKAPP.C,
TKDEMO\OPTIONS.C

msgLabelGetString, sent in,
CLOCK\CLOCKAPP.C,
LBDEMO\LBLIST.C,
LBDEMO\LBXFER.C,
SAMPLMON\SAMPLMON.C,
TKDEMO\TKDEMO.C,
UICOMP\EDSTRLB.C,
VIDPLAY\VPLIST.C

msgLabelGetStyle, sent in,
CLOCK\CLOCKAPP.C,
SXDEMO\SXOPT.C,
TKDEMO\OPTIONS.C

msgLabelGetWin, sent in,
TKDEMO\TKTABLES.C

msgLabelSetCols, sent in,
CLOCK\CLOCKAPP.C

msgLabelSetFontSpec, sent in,
CLOCK\CLOCKAPP.C,
TKDEMO\OPTIONS.C

msgLabelSetScale, sent in,
CLOCK\CLOCKAPP.C

msgLabelSetString, 44
sent in, ADDER\ADDERAPP.C,

CALC\CALCAPP.C,
CLOCK\CLOCKAPP.C,
CNTRAPP\CNTRAPP.C,
TKDEMO\TKDEMO.C,
UICOMP\EDSTRLB.C,
VIDPLAY\VPLIST.C

msgLabelSetStringId, 448
sent in, SXDEMO\SXOPT.C,

UICOMP\TEXT.C

msgLabelSetStyle, sent in,
CLOCK\CLOCKAPP.C,
SXDEMO\SXOPT.C,
TKDEMO\OPTIONS.C

msgListAddltem, 48
sent in, CLOCK\CWIN.C,

SXDEMO\SXAPP.C

msgListAddltemAt, 47
sending, to list, 47

msgListBoxAppendEntry
handled in, VIDPLAY
sent in, LBDEMO\LBLIST.C,

LBDEMO\LBXFER.C,
VIDPLAy\ VPXFER.C

msgListBoxEntryGesture, handled in,
LBDEMO, TKDEMO, UICOMp,
VIDPLAY

msgListBoxFindEntry, sent in,
VIDPLAy\ VIDPLAY.C,
VIDPLAY\VPGOTO.C,
VIDPLAy\ VPLIST.C

msgListBoxGetEntry, sent in,
LBDEMO\LBLIST.C,
UICOMP\EDSTRLB.C,
VIDPLAY\VPGOTO.C,
VIDPLAY\VPLIST.C

msgListBoxGetMetrics, sent in,
LBDEMO\LBLIST.C,
LBDEMO\LBXFER.C,
TKDEMO\LBOXES.C,
UICOMP\EDSTRLB.C,
VIDPLAy\ VPGOTO.C,
VIDPLAy\ VPLIST. C,
VIDPLAy\ VPXFER.C

msgListBoxlnsertEn try, in,
LBDEMO\LBLIST.C,
LBDEMO\LBXFER.C,
VIDPLAy\ VPLIST. C,
VIDPLAy\ VPXFER.C

msgListBoxlnsertEntry, led in, VIDPLAY

msgListBoxMakeEntryVisible, in,
VIDPLAY\VPGOTO.C

msgListBoxProvideEntry, led in,
LBDEMO, TKDEMO, UICOMp,
VI D PLAY

msgListBoxRemoveEntry, in,
LBDEMO\LBLIST.C,
UICOMP\EDSTRLB.C,
VID PLAy\ VPLIST.C

msgListBoxRemoveEntry, led in,
VI D PLAY

msgListBoxRemoveSel
handled in, LBDEMO
sent in, LBDEMO\LBXFER.C

msgListBoxSetEntry, in,
LBDEMO\LBLIST.C

msgListBoxXYToPosition, in,
LBDEMO\LBXFER.C,
VIDPLAY\VPXFER.C

msgListFree, in, SXDEMO\SXAPP.C

msgListGedtem
sent in, MILSVC\MILSVC. C
sent in, SXDEMO\SXAPP.C,

SXDEMO\SXOPT.C,
VIDPLAY\VPSIO.C

msgListNotifyAddition, 504

msgListNumltems, in,
MILSVC\MILSVC.C,
MILSVC\MILSVCO.C,
SXDEMO\SXAPP.C,
SXDEMO\SXOPT.C,
VIDPLAY\VPSIO.C

msgListRestore
handled in, LBDEMO
sent in, LBDEMO\LBDEMO.C

msgListSave
handled in, LBDEMO
sent in, LBDEMO\LBDEMO.C

msgMarkCreateToken, led in, VIDPLAY

msgMarkSelectTarget, led in, VIDPLAY

msgMarkShowTarget, led in, VIDPLAY

msgMenuAdjustSections, led in,
TTT\TTTUTIL.C

msgMenuButtonGetMenu, led in,
UICOMP\SCRPOPUP.C

msgMenuButtonGetStyle, sent in,
CLOCK\CLOCKAPP.C

msgMenuButtonPlaceMenu, handled in,
UICOMP

msgMenuButtonProvide Width, handled
in, UICOMP

msgMenuButtonSetStyle, sent in,
CLOCK\CLOCKAPP.C

msgMILSvcAre YouConnected, handled
in, MILSVC

msgMILSvcConnectionStateResolved,
handled in, MILSVC

INDEX 675

msgMILSvcGetDevice, sent in,
MILSVC\MILSVC.C

msgMILSvcPowerOff, handled in,
MILSVC

msgMILSvcStartConnectionProcessing,
handled in, MILSVC

msgModemActivity, 491

msgModemConnected,489

msgModemDial, 488

msgModemDisconnected, 489

msgModemGetResponseBehavior, 488

msgModemHangUp, 488

msgModemReset, 484

msgModemRingDetected, 489

msgModemSetAutoAnswer, 489

msgModemSetResponseBehavior, 487,
488,491

msgNew, 49, 58
for ancestors, 52
arguments for clsLabel, 114-117
clsCharTranslator and, 456
clsCounter and, 136
cls.pMsg argument to, 101
in creating classes, 55, 100
in creating objects, 50
message arguments, 115
sent in, see also all sample code
using,50

msgNewDefaults, 52, 53, 58
clsCharTranslator and, 456
clsCntr and, 136
handled in, BASICSVC, CLOCK,

CNTRAPp, KEISEN, MILSVC,
PAINT, TEMPLTAp, TESTSVC,
TTT, UICOMp, VIDPLAY

sent in, see also all sample code
using, 116

msgNewWithDefaults, 129

msgNoteCancel, sent in,
CLOCK\CLOCKAPP.C

msgNoteCorkBoardWinGetDirName
handled in, CLOCK
sent in, CLOCK\NCBWIN.C

msgNoteDone, handled in, CLOCK

msgNotePaperAddMenus, sent in,
NPAPP\NPAPP. C

msgNotePaperAddModeCtrl, sent in,
NPAPP\NPAPP.C

msgNoteShow, sent in,
CLOCK\CLOCKAPP.C,
SXDEMO\SXAPP.C,
SXDEMO\SXSER.C,
TKDEMO\NOTES.C

msgNotifyObservers, sent in,
TTT\TTTDATAC

msgObjectNew, sent in, CLOCK\CWIN.C

676 INDEX

msgObjectValid, 504

msgOpCmdBarAddCard
handled in, UICOMP
sent in, UICOMP\BUTTONS.C

msgOpCmdBarProvideCmdBar, sent in,
UICOMP\OPCMDBARC

msgOptionAddCards
handled in, CLOCK, SAMPLMON,

SXDEMO, TESTSVC, TKDEMO,
TTT, UICOMP

sent in, CLOCK\CLOCKAPP.C,
SAMPLMON\SAMPLMON.C,
SXDEMO\SXOPT.C,
TESTSVC\TESTSVC.C,
TKDEMO\OPTIONS.C,
UICOMP\OPCMDBAR.C,
UICOMP\ UICOMP.C

sent in, SXDEMO\SXOPT.C,
UICOMP\ UICOMP.C

msgOptionAddLastCard, sent in,
CLOCK\CLOCKAPP.C,
TKDEMO\OPTIONS.C,
TTT\TTTVOPT.C

msgOptionApplicableCar, handled in,
TKDEMO,TTT

msgOptionApplyCard, handled in,
CLOCK, SAMPLMON,
SXDEMO, TESTSVC, TKDEMO,
TTT

msgOptionDirtyCard, handled in,
TKDEMO

msgOptionEnumCards, sent in,
UICOMP\OPCMDBAR.C

msgOptionGetCard, sent in,
UICOMP\OPCMDBAR.C

msgOptionGetstyle, sent in,
CLOCK\CLOCKAPP.C

msgOption, handled in, TESTSVC

msgOptionProvideCardWin, handled in,
CLOCK, SAMPLMON,
SXDEMO, TESTSVC, TKDEMO,
TTT, UICOMP

msgOptionRefreshCard, handled in,
CLOCK, TESTSVC, TKDEMO,
TTT

msgOptionRefresh, sent in,
CLOCK\CLOCKAPP.C

msgOptionsetCard, sent in,
UICOMP\OPCMDBAR.C

msgOptionsetstyle, sent in,
CLOCK\CLOCKAPP.C

msgOptionshowCard
handled in, UICOMP
sent in, UICOMP\UICOMP.C

msgOptionUpdateCard, handled in,
SXDEMO, UICOMP

msgOwner, sent in, MILsVC\MILsVC.C

msgPaintWinClear, handled in, PAINT

msgPaintWinCommand
handled in, PAINT
sent in, PAINT\PWIN.C

msgPaintWinPaintOffscreen
handled in, PAINT
sent in, PAINT\PWIN.C

msgPaintWinsetColor, handled in,
PAINT

msgPaint Win Set Thickness
handled in, PAINT
sent in, PAINT\PWIN.C

msgPaint Win Update
handled in, PAINT
sent in, PAINT\PWIN.C

msg parameter, 96, 106

msgPBMachinePoweringUp, handled in,
CLOCK

msgPen, 152

msgPenDown, 447

msgPenHoldTimeout, 151

msgPicsegRedraw, 442

msgPixDevGetMetrics, sent in,
PAINT\PIXWIN .C

msgPix WinPixelmap
handled in, PAINT
sent in, PAINT\PWIN.C

msgPopupChoiceGetChoice
handled in, UICOMP
sent in, SXDEMO\SXOPT.C,

UICOMP\SCRPOPUP.C

msgPrefsPreferenceChanged, handled in,
CLOCK

msgPrintGetProtocols, handled in, NPAPP

msgPrintGetProtocol, unimplemeted flag
for, 437

msgPrintPaperArea, sent in,
NPAPP\NPAPP.C

msgRemoveObserver, sent in,
CLOCK\CLOCKAPP.C

msgResFlush, sent in,
UICOMP\UIPAGE.C

msgResGetObject, 142
sent in, CALC\CALCAPP.C
sent in, CLOCK\CLOCKAPP.C,

CNTRAPP\CNTRAPP.C,
NPAPP\NPAPP.C,
UICOMP\OPCMDBAR.C

msgResPutObject, 142, 161,438,441
sent in, CALC\CALCAPP.C,

CLOCK\CLOCKAPP.C,
CNTRAPP\CNTRAPP.C,
NPAPP\NPAPP.C,
UICOMP\OPCMDBAR.C

msgResReadData, 221
sent in, CLOCK\CLOCKAPP.C,

SXDEMO\SXOPT.C,
TTT\TTTVIEW.C

msgResReadObject, 221, 438
sent in, UICOMP\UICOMP.C

msgRestore, 31, 39, 67, 138
failures during, 149
handled in, CALC, CALC, CLOCK,

CNTRAPp, INPUTAPp,
LBDEMO, NPAPp, PAINT,
SAMPLMON, SXDEMO,
TEMPLTAP, TTT, UICOMp,
VIDPLAY

handling, 139
in restoring counter object, 142-143
sent in, PAINT\PIXWIN.C

msgResWriteData, 496

msgResWriteObject, 438
sent in, UICOMP\UIPAGE.C

msgsave, 31, 38, 39, 67, 138
closing files and, 140
correction, 438
handled in, CALC, CALC, CLOCK,

CNTRAPP, LBD:"':MO, NPAPp,
PAINT, SXDEMO, TEMPLTAp,
TTT, UICOMp, VIDPLAY

handling, 138-139
printed document and, 437
in saving counter object, 142
sent in, PAINT\PIXWIN.C

msgscavenged,433

msgscrollWinAddClientWin, sent in,
TKDEMO

msgscrollWinGetClientWin, sent in,
TTT\TTTUTIL.C,
UICOMP\SCRPOPUP.C,
VIDPLAy\ VPXFER.C

msgscrollWinGetInnerWin, sent in,
PAINT\PAPP.C

msgscrollWinGetstyle, se~t in,
SXDEMO\SXAPP.C

msgscrollWinsetstyle, sent in,
SXDEMO\SXAPP.C

msgscrollWinshowClient Win, sent in,
TKDEMO\TKDEMO.C

msgselBeginCopy
handled in, LBDEMO, TTT, VIDPLAY
sent in, LBDEMO\LBLIST.C,

LBDEMO\LBXFERC,
VIDPLAy\ VPLIST.C,
VIDPLAy\ VPXFER.C

msgselBeginMove
handled in, LBDEMO, TTT, VIDPLAY
sent in, TTT\TTTVXFER.C

msgselBeginMoveCopy, 152

msgselCopyselection, handled in,
LBDEMO, TTT, VIDPLAY

msgselDelete
handled in, LBDEMO, TTT, VIDPLAY
sent in, TTT\TTTVXFERC,

VIDPLAY\VPXFER.C

msgSelIsSelected, 150
sent in, CLOCK\CLOCKAPP.C,

CLOCK\CWIN.C,
LBDEMO\LBXFER.C,
TTT\TTTVIEW,C

msgSelMoveSelection, handled in,
LBDEMO, TTT, VIDPLAY

msgSelOwner, sent in, CLOCK\CWIN.C,
LBDEMO\LBXFER.C,
TTT\TTTVOPT.C,
TTT\TTTVXFER.C,
VIDPLAy\VPXFER.C

msgSelSelect, 152
handled in, CLOCK, LBDEMO, TTT
sent in, CLOCK\CWIN.C,

TTT\TTTVIEW,C

msgSelSetOwner, 150
sent in, CLOCK\CLOCKAPP.C,

CLOCK\CWIN.C,
LBDEMO\LBDEMO.C,
LBDEMO\LBLIST.C,
TKDEMO\OPTIONS.C,
TTT\TTTVIEW,C,
VIDPLAy\VIDPLAY.C,
VIDPLAY\VPLIST.C

msgSelSetOwnerPreserve, sent in,
TTT\TTTVOPT.C

msgSelYield, 151
handled in, CLOCK, LBDEMO,

TKDEMO, TTT, VIDPLAY

msgSioBaudSet, sent in,
SXDEMO\SXSER.C

msgSioControlOutSet, sent in,
SXDEMO\SXSER.C

msgSioEventHappened, handled in,
SXDEMO

msgSioEventSet, sent in,
SXDEMO\SXSER.C

msgSioFlowControlSet, sent in,
SXDEMO\SXSER.C

msgSioGetMetrics,485
sent in, SXDEMO\SXSER.C,

VIDPLAy\ VPSIO.C

msgSiolnit, sent in, SXDEMO\SXSER.C

msgSiolnputBufferFlushc, sent in,
VIDPLAY\VPSIO.C

msgSioLineControlSet, sent in,
SXDEMO\SXSER.C

msgSioSetMetrics, 485
sent in, SXDEMO\SXSER.C,

VIDPLAY\VPSIO.C
typical use of, 485

msgSMAccess, 484, 489
sent in, SXDEMO\SXSER.C

msgSMAccessDefaults, sent in,
SXDEMO\SXSER.C

msgSMBind, 483
sent in, VIDPLAY\VPSIO.C

msgSMClose, 489
sent in, VIDPLAY\VPSIO.C

msgSMConnectedChanged, handled in,
SXDEMO

msgSMGetState, sent in,
SXDEMO\SXSER.C

msgSMlnstal1ing
handled in, SAMPLMON
sent in, SAMPLMON\SAMPLMON.C

msgSMlnstallVolConnected
handled in, SAMPLMON
sent in, SAMPLMON\SAMPLMON.C

msgSMOpen, 484
sent in, VIDPLAY\VPSIO.C

msgSMQuery, sent in,
MILSVC\MILSVC.C

msgSMRelease, 484, 489
sent in, SXDEMO\SXSER.C

msgSMSetOwner, sent in,
VIDPLAY\VPSIO.C

msgSMUnbind, 489
sent in, VIDPLAY\VPSIO.C

msgSPaperClear, sent in,
WRITERAP\WRITERAP.C

msgSPaperComplete, sent in,
WRITERAP\ WRlTERAP.C

msgSPaperGet Translator, sent in,
WRITERAP\WRlTERAP.C

msgSPaperGetXlateData, sent in,
WRITERAP\WRITERAP.C

msgSPaperSetTranslator, sent in,
WRlTERAP\ WRlTERAP.C

msgSPaperXlateCompleted, handled in,
WRITERAP

msgSRInvokeSearch, 479

msgSRRememberMetrics,479

msgStreamFlush, sent in,
SXDEMO\SXSER.C,
VIDPLAY\VPSIO.C

msgStreamRead, 139,482,492
sent in, CALC, CLOCK, CNTRAPp,

LBDEMO, PAINT, SXDEMO

msgStreamReadTimeOut, 482, 489
sent in, SXDEMO\SXSER.C

msgStreamWrite, 138, 139
handled in, MILSVC
sent in, CALC, CLOCK, CNTRAPp,

LBDEMO, PAINT

msgStream WriteTimeOut, 489
sent in, SXDEMO\SXSER.C

msgStrListBoxGetDirty, sent in,
TKDEMO\OPTIONS.C

msgStrListBoxGetValue, sent in,
TKDEMO\OPTIONS.C

msgStrListBoxProvideString, handled in,
TKDEMO, UICOMP

INDEX 677

msgStrListBoxSetDirty, sent in,
TKDEMO\OPTIONS.C

msgStrListBoxSetValue, sent in,
TKDEMO\OPTIONS.C

msgStrObjGetStr, sent in,
SXDEMO\SXOPT.C

msgSvcClassGetMetrics, 499

msgSvcClasslnitService, sent in, see all
sample services

msgSvcClassTerminate, handled in,
TESTSVC

msgSvcCloseRequested, handled in,
MILSVC, TESTSVC

msgSvcCloseTarget, sent in,
TESTSVC\TESTSVC.C

msgSvcGetConnected, sent in,
MILSVC\MILSVC.C

msgSvcGetFunctions, 505

msgSvcGetHandle, sent in,
TESTSVC\TESTSVC.C

msgSvcGetMetrics, 486
handled in, MILSVC, TESTSVC

msgSvcGetTarget, sent in,
TESTSVC\TESTSVC.C

msgSvcOpenDefaultsRequested, 505
handled in, TESTSVC

msgSvcOpenRequested, handled in,
MILSVC, TESTSVC

msgSvcOpenTarget, sent in,
TESTSVC\TESTSVC.C

msgSvcQueryLockRequested, handled in,
MILSVC

msgSvcQueryUnlockRequested, handled
in, MILSVC

msgSvcSetConnected, sent in,
MILSVC\MILSVCO.C

msgSvcSetMetrics, 486
handled in, MILSVC, TESTSVC
initializing modem and, 486

msgSvc Terminate, 499

msgSXCloseSerial
handled in, SXDEMO
sent in, SXDEMO\SXAPP.C,

SXDEMO\SXOPT.C

msgSXIPCommand, handled in,
SXDEMO

msgSXOpenSerial
handled in, SXDEMO
sent in, SXDEMO\SXAPP.C,

SXDEMO\SXOPT.C

msgSXResizeCard
handled in, SXDEMO
sent in, SXDEMO\SXOPT.C,

SXDEMO\SXSER.C

msgSXSendSerial
handled in, SXDEMO
sent in, SXDEMO\SXIP.C

678 INDEX

msgSXSetConnectStatusld
handled in, SXDEMO
sent in, SXDEMO\SXOPT.C,

SXDEMO\SXSERC

msgSXSetSerialMetrics
handled in, SXDEMO
sent in, SXDEMO\SXOPT.C,

SXDEMO\SXSER.C

msgSysGetBootState, sent in,
MILSVC\MILSVC.C

msgSysGetLocale, 473
sent in, CLOCK\CLOCKAPP.C

msgTabButtonGetMetrics, sent in,
TKDEMO\TKDEMO.C

msgTableWin, sent in,
CLOCK\CLOCKAPP.C

msgTblColGetData, 481

msg TblLayoutGetMetrics, sent in,
TKDEMO\OPTABLES.C,
TKDEMO\TKTABLES.C,
UICOMP\LISTS.C,
UICOMP\MENUS.C

msg TblLayoutGetStyle, sent in,
NPAPP\NPAPP.C,
UICOMP\UICOMP.C

msg TblLayoutSetMetrics, sent in,
TKDEMO\OPTABLES.C,
TKDEMO\TKTABLES.C,
UICOMP\LISTS.C,
UICOMP\MENUS.C

msg TblLayoutSetStyle, sent in,
NPAPP\NPAPP.C,
UICOMP\UICOMP.C

msg TblRowGetData, 481

msg TemplateAppGetMetrics, handled in,
TEMPLTAP

msg TestMILSvcAutoLineFeedOff,
handled in, MILSVC

msg TestMILSvcAutoLineFeedOn,
handled in, MILSVC

msg TestMILSvcCancelPrint, handled in,
MILSVC

msg TestMILSvcDoConnection
handled in, MILSVC
sent in, MILSVC\MILSVC.C

msg TestMILSvcGet TimeDelays, handled
in, MILSVC

msg TestMILSvclnitialize, handled in,
MILSVC

msg TestMILSvcSet TimeDelays
handled in, MILSVC
sent in, MILSVC\MILSVC.C

msg TestMILSvcStatus, handled in,
MILSVC

msg TextModify, 465

msgTextRead,254

msgTextWrite, 254

msg TimerAlarmNotify
handled in, CLOCK
sent in, CLOCK\CLOCKAPP.C

msgTimerAlarmRegister, sent in,
CLOCK\CLOCKAPP.C

msg TimerAlarmStop, sent in,
CLOCK\CLOCKAPP.C

msgTimerNotify, handled in, CLOCK,
VIDPLAY

msg Timer Registerlnterval
sent in, CLOCK\CLOCKAPP.C
sent in, VIDPLAy\VIDPLAY.C

msgTimerRegister, sent in,
CLOCK\CLOCKAPP.C

msgTimerStop, sent in,
CLOCK\CLOCKAPP.C

msg TkDemoGetMetrics, handled in,
TKDEMO

msg TkDemoShowAppNote, handled in,
TKDEMO

msg TkDemoShowCard, handled in,
TKDEMO

msg TkDemoShowLiteNote, handled in,
TKDEMO

msg TkDemoShowNote, handled in,
TKDEMO

msgTkDemoShowSysNote, handled in,
TKDEMO

msg TkDemo UIButtonHit, handled in,
TKDEMO

msgTkTableAddAsFirst, sent in,
TKDEMO\TKDEMO.C,
UICOMP\POPUPS.C,
UICOMP\TEXT.C

msgTkTableAddAsLast, sent in,
CLOCK\CLOCKAPP.C,
TKDEMO\TKDEMO.C,
UICOMP\BUTTONS.C,
UICOMP\POPUPS.C,
UICOMP\TEXT.C,
UICOMP\UICOMP.C,
VIDPLAy\VIDPLAY.C

msg Tk TableChildDefaults, sent in,
SAMPLMON, SXDEMO,
TKDEMO

msgTkTablelnit, handled in, KEISEN

msg Tk TableSetClient, sent in,
TKDEMO\TKDEMO.C

msg Trace, 156
sent in, EMPTYAPp, HELLOTK,

HELLO, INPUTAPP, LBDEMO,
TTT

msg TrackProvideMetrics, 504

msg T ttAppChange Tracing, 155-156
handled in, TTT

msgTttAppDumpData, 157

msg TttAppDumpDataObject
handled in, TTT
sent in, TTT\S_TTT.C

msgTttAppDumpView, 157
handled in, TTT

msgTttAppDumpWindowTree, handled
in, TTT

msgTttAppForceRepaint, handled in,
TTT

msgTttDataChanged, 151
handled in, TTT

msg T ttDataGetMetrics
handled in, TTT
sent in, TTT\TTTVIEWC
sent in, TTT\TTTVXFERC

msg T ttDataRead, 159
handled in, TTT
sent in, TTT\TTTAPP.C

msg T ttDataSetMetrics
handled in, TTT
sent in, TTT\TTTVIEWC
sent in, TTT\TTTVXFER.C

msg T ttDataSetSquare, 151
handled in, TTT
sent in, TTT\TTTVIEWC

msg T tt ViewGetMetrics
handled in, TTT
sent in, TTT\TTTVOPT.C

msg T tt ViewSetMetrics
handled in, TTT
sent in, TTT\TTTVOPT.C

msgTttViewTakeSel, 151
handled in, TTT
sent in, TTT\TTTAPP.C
sent in, TTT\TTTVIEWC
sent in, TTT\TTTVXFERC

msg T tt View ToggleSel
handled in, TTT
sent in, TTT\TTTVIEWC

msgUICompPageAddEntry
handled in, UICOMP\UIPAGE.C
sent in, UICOMP\BUTTONS.C,

UICOMP\LISTS.C,
UICOMP\MENUS.C,
UICOMP\POPUPS.c,
UICOMP\TEXT.C

msgUICompPageCreateSection
handled in, UICOMP\UIPAGE.C
sent in, UICOMP\BUTTONS.C,

UICOMP\LISTS.C,
UICOMP\MENUS.C,
UICOMP\POPUPS.c,
UICOMP\TEXT.C

msgUICompPageFile
handled in, UICOMP\UIPAGE.C
sent in, UICOMP\BUTTONS.C,

UICOMP\LISTS.C,
UICOMP\MENUS.C,
UICOMP\POPUPS.C,
UICOMP\TEXT.C

msgUndoAddltem, sent in,
TTT\TTTDATA.C,
VIDPLAY\VPLIST.C

msgUndoBegin, sent in,
TTT\TTTDATA.C,
VI DPLAy\ VPLI ST. C,
VI DPLAy\ VPXFER.C

msgUndoCurrent, sent in,
VIDPLAY\VPLIST.C

msgUndoEnd, sent in, TTT\TTTDATA.C,
VIDPLAy\ VPLIST.C,
VIDPLAY\VPXFER.C

msgUndoltem, handled in, TTT,
VI D PLAY

msgUndoLimit, sent in,
VIDPLAy\VIDPLAY.C

msgViewGetDataObject, sent in,
TTT\TTTAPP.C,
TTT\TTTUTIL.C,
TTT\TTTVIEWC,
TTT\TTTVXFER.C

msgViewSetDataObject, sent in,
TTT\TTTVIEWC

msgVPButtonOn
handled in, VIDPLAY
sent in, VIDPLAY\VPGOTO.C

msgVPListEntry
handled in, VIDPLAY
sent in, VIDPLAY\VPLIST.C

msg VPListRestore
handled in, VIDPLAY
sent in, VIDPLAy\VIDPLAY.C

msg VPListSave
handled in, VIDPLAY
sent in, VIDPLAy\VIDPLAY.C

msgWinBeginPaint, sent in,
INPUTAPP\INPUTAPP.C,
PAINT\PWIN.C,
WRITERAP\WRITERAP.C

msgWinBeginRepaint, 148
sent in, HELLO\HELLOWIN.C,

PAINT\PIXWIN.C,
TTT\TTTVIEWC

msg WinDelta, 46, 120
sent in, CLOCK\CLOCKAPP.C,

NP APP\NPAPP.C, PAINT\PAPP. C,
UICOMP\EDSTRLB.C,
UICOMP\POPUPS.C,
UICOMP\TEXT.C

msgWinDevBindPixelmap, sent in,
PAINT\PIXELMAP.C

msgWinDevGetRootWindow, sent in,
PAINT\PIXELMAP.C

msgWinDevSizePixelmap, sent in,
PAINT\PIXELMAP.C

msgWinDirtyRect, sent in,
LBDEMO\LBXFER.C,
PAINT\PWIN .c,
TKDEMO\OPTIONS.C,

TTTUTTDBG.C,
TTT\TTTVIEWC,
WRITERAP\ WRITERAP.C

msgWinDumpTree, sent in,
CLOCK\CLOCKAPP.C,
TTT\TTTDBG.C

msgWinEndPaint, sent in,
INPUTAPP\INPUTAPP.C,
PAINT\PWIN.C,
WRITERAP\ WRITERAP.C

msgWinEndRepaint, sent in,
HELLO\HELLOWIN .c,
PAINT\PIXWIN.C,
TTT\TTTVIEWC

msgWinEnum, sent in,
CLOCK\CLOCKAPP.C,
CLOCK\CWIN.C,
TKDEMO\TKDEMO.C

msgWinExtracted,442

msgWinExtractOK, handled in, CLOCK

msgWinExtract, sent in,
CLOCK\CLOCKAPP.C,
LBDEMO\LBDEMO.C,
SXDEMO\SXAPP.C,
VIDPLAy\ VIDPLAY.C

msgWinFindTag, sent in, CLOCK,
SAMPLMON, SXDEMO,
TKDEMO, TTT, UICOMP

msgWinFreeOK, handled in, CLOCK

msgWinGetDesiredSize
handled in, PAINT, TTT
sent in, UICOMP\SCRPOPUP.C

msgWinGetFlags, sent in,
CLOCK\CLOCKAPP.C,
CLOCK\NCBWIN.C,
PAINT\PWIN .C,
TKDEMO\TKDEMO.C,
UICOMP\LISTS.C,
UICOMP\OPCMDBAR.C

msgWinGetMetrics, sent in, CLOCK,
HELLO, LBDEMO, NPAPp,
PAINT

msgWinGetTag, sent in,
TKDEMO\OPTIONS.C,
UICOMP\UIPAGE.C,
VIDPLAY\VPGOTO.C,
VIDPLAy\ VPLIST.C

msgWinInsertOK, handled in, CLOCK

msgWinInsert, sent in, ADDER, CALC,
CLOCK, HELLOTK, LBDEMO

msgWinIsVisible, 442

msgWinLayoutSelf, handled in, CLOCK

msgWinLayout, sent in,
CLOCK\CLOCKAPP.C,
INPUTAPP\INPUTAPP.C,
SXDEMO\SXOPT.C,
TKDEMO\OPTIONS.C,
UICOMP\EDSTRLB.C,
UICOMP\OPCMDBAR.C,
UICOMP\POPUPS.C,UICOMP\

INDEX 679

TEXT.C, UICOMP\UIPAGE.C,
WRITERAP\ WRITERAP.C

msgWinRepaint,46,127
clsHelloWin and, 125
handled in, HELLO, PAINT, TTT
painting windows and, 130

msgWinSetFlags, sent in,
CLOCK\CLOCKAPP.C,
PAINT\PWIN.C,
TKDEMO\TKDEMO.C,
UICOMP\LISTS.C,
UICOMP\OPCMDBAR.C

msg WinSetLayoutDirty Recursive, sent in,
CLOCK\CLOCKAPP.C

msgWinSetLayoutDirty, sent in,
CLOCK\CLOCKAPP.C,
TKDEMO\OPTIONS.C,
UICOMP\EDSTRLB. C,
UICOMP\OPCMDBAR.C

msgWinSetTag, sent in,
VIDPLAY\VPLIST.C

msgWinSetVisible,46
msgWinSized,58

msgWinTransformBounds, sent in,
LBDEMO\LBXFER.C,
PAINT\PWIN .c,
UICOMP\EDSTRLB.C,
VIDPLAy\ VPXFER.C

msgWinUpdate, 151
sent in, TTT\TTTDBG.C,

TTT\TTTVIEWC,
VI DPLAy\ VPLIST. C,
WRITERAP\ WRITERAP.C

msgWin VisibilityChanged, 442

msgWriterAppClear, handled in,
WRITERAP

msgWriterApp Translator
handled in, WRITERAP
sent in, WRITERAP\WRITERAP.C

msgXferGet
handled in, CLOCK, LBDEMO, TTT,

VI D PLAY
sent in, LBDEMO\LBXFER.C,

TTT\TTTVXFER.C,
VIDPLAY\VPXFER.C

msgXferList
handled in, CLOCK, LBDEMO, TTT,

VI D PLAY
sent in, LBDEMO\LBXFER.C,

TTT\TTTVXFER.C,
VIDPLAY\VPXFER.C

msgXIateCharConstraintsGet, sent in,
KEISEN\BKFIELD.C

msgXIateCharConstraintsSet, sent in,
KEISEN\BKFIELD.C

msgXIateClearFlags, 458
msgXIateDate, 459

msgXIateGetFlags, 458
sent in, ADDER\ADDERAPP.C

680 INDEX

sent in, ADDER\ADDERAPP.C

Multi-font, 16

National Language Information and Design
Guide, 238

Networking, 12

Notebook, 8-9, 519-522
application hierarchy in, 31
directory, 34

subdirectories, 36
hierarchy, 32-34

illustrated, 33
as mirrored by application

processes, 35
as mirrored by file system, 34

menus, 520-521
Create, 521
Document, 520
Edit,520
Options, 520
View, 520

metaphor, 17
multiple instances of, 17
option sheets, 521-522

Controls, 522
Document, 521
Layout, 522
Section, 521

organization and file system, 36
relationship of elements of, 33
section pages, 519
sending msgAppCreateChild, 103
standard elements, 519-522
tabs, 522
TOC, 32, 519

applications in, 37
gestures, 520
operational model, 519

see also specific notebooks
Notebook User Interface (NUl), 21, 519

NotePaper, bugs in, 481

Notification, 31

NPAPP.DLC, 418

null, 78

Numbers, Japanese formatting
and,269-271

ObjCallChkO macro, 113
ObjCallWarnO and, 114

ObjCall]mpO macro, 113
ObjCallWarnO and, 114

ObjCallOKO macro, 113
ObjCallWarnO and, 114

ObjCallRetO macro, 113

ObjCallWarnO, 53-54, 113
compiled with DEBUG set, 116
ObjCallRetO and, 113
return value, 113

ObjectCallO, 47

function parameters for msgNew, 53
parameters, 48
using, 113

Object classes, illustrated, 30

OBJECT_NEW_ONLY structure, 52

Object-Oriented Programming: An
Evolutionary Approach, 23

Object-Oriented Programmingfor the
Macintosh, 23

ObjectPeekO function, 148

ObjectPostO function, 433

Objects, 43
Counter Application, 134, 142-143
creating, 49-54

code for, 53-54
Hello World (toolkit), 111-121
stateful, 67
timing for, 127

data, 148
design, 148-149
saving, 149

drawing context, 125
dumping, 157
filing, 138-139
filter, ADDER
instead of functions/data, 43-44
messages sent to, 44-45
PenPoint defined, 181
Tic-Tac-Toe, 145-146

data, 146
dumping, 157

translator, ADDER
UID references, 48
well-known, 72

ObjectSendO, 47
events responded to, 434
sending message with, 434

ObjectWriteO, 129, 130, 137
for updating instance data, 139

OBJ_RESTORE structure, 139

OBJ_SAVE structure, 138

ObjWknKey, 433
Observation, 31

OddO macro, 79

Operating System, 5
application framework layer, 16
application layer, 17
component layer, 16
design, 7
designing guidelines, 18-21
elements of, 43
functionality,9-10
kernallayer, 10-11
object-oriented architecture, 9
software development environment,

17-18
system layer, 11-15
user interface, 7-9

Option cards

adding application specific, TTT
customizing default, CLOCK
providing multiple cards for

application subclass, TKDEMO

Option sheets, 111, SXDEMO, TKDEMO,
TTT, UICOMp, VIDPLAY,
CS:WYWO

changes, 535
Empty Application, 94
MiniNote, 540-541

Paper, 540
Pen, 541

MiniText, 536
Character, 536
Display, 536
Paragraph, 536
Tab Stops, 536

Notebook,521-522
Controls, 522
Document, 521
Layout, 522
Section, 521

Options menu (Notebook), 520
OR operator, 200-201

OS_DATE_ TIME structure, 201

OSHeapBlockAllocO routine, 149

OSHeapBlockFreeO routine, 442
OSMemAvailableO routine, 476

OSMemlnfoO routine, 476

OSMemUselnfoO routine, 476

osProcessHeapld, 442

OSProgramlnstallO routine, 103

OSProgramlnstantiateO routine, 104

Out box, 12, 17,35
changes, 505-506
services, 419

Outline foms, 13

OutRangeO macro, 79

Page
control, UICOMP
numbers, 9, 438
sequencing,438
turning,9

PanoseFromXDR,441

PANOSE_MEM structure, 441

PanoseToXDR,441

PANOSE Typeface Matching System, 441

pArgs parameter, 96, 106
Parsing functions, 510

P_CHAR,78

PCOPYutility,407
defined, 404

pData parameter, 96, 106
msgRes WriteData and, 496

PDEL utility, 404

PDIR utility, 401, 407

defined,404
differences from GDIR, 407

Pen, 8
control,8
designing and, 20
gestures, 8

Pen events, handling, INPUTAPp, PAINT

PenPoint 2.0 Japanese, 63
16-bit characters, 428
API changes in, 429-431
changes from earlier versions, 428
character and string constants, 64
character types, 64
CHAR in, 210
code changes in, 429-431
handwriting engine, 255
input pad, 181
PenPoint 1.0 to, 63-64
porting to, 229-233

changed APIs, 229
file version data, 233
gesture handling code, 230-231
single code base, 233
special characters, 231-233
steps for, 229

predefined tags in, 193
resource compiler, 274
resource files in, 190

text strings moved to, 428
sample applications, 429
string routines, 64
Unicode and, 180
UNicode value gestures, 429
version and trademark info, 417
white space correction in, 464
see also Japanese; Unicode

PenPoint
ANSI C and, 17
applications

installing, 388-390
running,26,27-28

attribute utilities, 404-407
bridging package, 228
coding conventions, 18
creating, applications, 377-379
debug modes and, 399
debug version of, 395-396
design guidelines, 18-21
extensibility, 18
installation, 26

clarifications for, 500
international software support, 183-

207
libraries, 388
production version of, 395
running,277
stamping, names, 384
tools, 279, 413-414
vs. conventional programming, 24

PenPoint API Reference, 6
PenPoint Application Writing Guide:

Expanded Edition, 237

PenPoint Architectural Reference, 6, 427

PenPoint Architectural Reference
Supplement, 229, 237

document structure, 427
intended audience, 427

PenPoint Bridging Handbook, 233, 260

PenPoint Design Reference, 21
PenPoint Development Tools, 5,6,375

PenPoint Development Tools Supplement,
237,373-422

organization of, 375
PENPOINT directory, 170

in PenPoint 2.0 Japanese, 404

PenPoint Japanese Localization Handbook,
176,237,243-372

introduction to, 243
organization of, 243-244

PenPoint User Interface Design Reference
Supplement, 259

Picture segment facility, 13

Pigtail gesture, 8

Pixel maps, using, PAINT

Pixels, 126
painting over, 126

Pointers
file, repositioning, 468
null, 78
prefix, 71
variables, 72

Pop-up lists, UICOMP
scrolling, UICOMP

Power consumption, 11

PP_CHAR,78

P _RC_INPUT structure, 192
Preferences section (Settings notebook),

250, 524-528
date, 527
float & zoom, 525
fonts & layout, 525
pen & keyboard, 524
power, 528
sound, 528
time, 526-527
writing, 526

Preferences, time and date, CLOCK

PrefIndDateToStringO function, 496

PrefIndTimeToStringO function, 496

PrefsIndDateToStringO function, 269

Press gesture, 8

Principles of Object Oriented Design, 23
Printers

configuration of, 13
supported, 13

printfO function, 204

Printing, 13

INDEX 681

debugging strings, 84-85
to spooler, 419

Procedures, 209-228
changed APIs, 229
character variants, converting between,

287-289
comparing strings, 291-292
ComposeText functions, using, 233
delimiting sentences, 290-291
delimiting words, 289-290
gesture handling code, 230
INTLSCAN messages,

interpreting, 212
INTLSCAN, using, 210-211
Japanese fonts, using, 295-296
kana-kanji conversion, supporting,

. 296-300
line breaks, handling, 293-294
locale-independent code, writing, 225
makefile, updating, 224
moving strings to resource files,

216-217
predefined AppMgr tags, using,

219-220
resource utility functions, using, 221
Shift-JIS in text files, 283
sorting strings, 292-293
special characters, 232
system locale, checking, 227
tags in source code, using, 222
Unicode in source code, 284
UnicodelShift-JIS files, converting,

285
UnicodelShift-JIS strings, converting,

Unicode strings, creating, 215-216 -oo~ 285-287 ~
Unicode, supporting, 209-210 ::

processCount parameter, 95-96, 102, 103

Program units, designing, 63

Progress bars, 447

Project
managing,205-206
organization, 205-206

Protocol stacks, 12

PRSPOOL service, 419

PSTAMP utility, 384, 405
changes from STAMP, 405
defined,404
using,385

PSYNC utility, 404

Punctuation
Japanese, marks, 257
recognition, 257

P_UNKNOWN,56

Quick Help, 161-163
changes to, 421
illustrated, 162
providing, CLOCK, TTT
resources, 162

682 INDEX

creating, 161-163
strings, 163

adding gestures to, 479-480
window, 161
see also Help application; Help

notebook

Radical, 248

rasterOp, 126

RC.EXE,274

RC_INPUT structure, 162, 192

RC_TAGGED_STRING structure, 192,
194

RC utility, 408

Recursive embedding, 17

Repainting, 126-127
advanced strategy for, 148
documentation correction, 442

RESAPPEND utility, 408

resAppMgrAppStrings, 437
resCntrTK macro, 192

RESDEL utility, 408-409
specifying resource with, 408

RESDUMP utility, 408

resGrpMisc, 496
RES_ID,191

Resource agents, 496

Resource files, 11
building, 385-386
commands for compiling, 382
Counter Application and, 191
international software and, 177,

189-195
international uses, 189-190
moving strings into, 65
naming,190
object filing and, 138
in PenPoint 2.0 Japanese, 190
PenPoint 2.0 Japanese changes for, 430
predefined tags and, 193-194
source code tags and, 193
StdMsgO and, 166
strings in, 190

advantages, 190
defining, 191-193
disadvantages, 190

strings, moving, 216-219
example, 217-219
prerequisite information, 216
procedure, 216-217
related information, 219

structure of, 191-193
tags in header files, 191

tags, defining, 191-193
text strings moved to, 428
using for internationalization, 181
utility routines, 495
working with, 194-195

Resource file utilities, 408-409

RES DEL, 409

Resource groups, 496
Resource lists, 166

Resource Manager, 11
defined, 11

Resources, 495-497
bitmap editor, 496
documentation corrections and errata,

497
new/renamed string resource agents

and,496
new resource group and, 496
new system preferences and, 495-496
Quick Help, 161-163
resource file utility routines and, 495
specifying, 408
tips and clarifications, 496
utilities for working with, 190
what's new, 495-496

Resource utility functions, 220-222
example, 221-222
prerequisite information, 221
procedure, 221
related information, 222

RES_STAMp, 385

resString8ResAgent, 496

resStringArrayResAgent, 496
resStringResAgent, 496

Restoring, counter object, 142-; 143

ResUtilAllocListString, called in,
CLOCK\CLOCKAPP.C,
SXDEMO\SXOPT.C,
TESTSVC\TESTSVC.C,
TTT\TTTVOPT.C,
UICOMP\UICOMP.C

ResUtilGetListStringO function, 193
called in, ADDER\ADDEREVL.C,

CALC\CALCAPP.C,
CLOCK\CLOCKAPP.C,
CNTRAPP\CNTRAPP.C,
TKDEMO\LBOXES.C,
TKDEMO\OPTIONS.C,
UICOMP\BUTTONS.C,
UICOMP\EDSTRLB.C,
UICOMP\ UICOMP.C

ResUtilLoadListStringO utility, 221

ResUtilLoadObjectO utility, 221

Return values, 48-49, 80-82
Obj CallWarn 0 , 113
testing, 81-82, 113-114
see also Status values

Romaji-kanji conversion (RKC), 258
defined, 256
enabling, 421
explained, 258
initiating, 258
supporting,258-261

Romaji symbol set, 246-247

Routines

character set, 511
collation, 511
delimiting, 509
formatting, 510
hyphenation, 509
international, 508-512
parsing, 510
string compression, 512
string conversion, 511
time conversion, 509-510
units conversion, 512
see also specific routines

RTF (Rich Text Format), 15
formatting commands, 479
importing, files, 279

RTFTRIM utility, 279, 409-410
using, 409-410

Running
Empty Application, 92
PenPoint, 277

Running PenPoint on a pc, 6

Saving
counter object, 142
data objects, 149
state, 39, 133
see also Filing

Screen shots, 170

Scribbles, 14
editing window, 16

Scroll windows, creating scrollwin, PAINT,
UICOMP

SDEFINES.MIF makefile, 381
MODE line and, 397
variables, 382

Sections, 9
application, 17
defined,36
differences from other applications, 36

Selection, move/copy protocol, VIDPLAY

Selection Manager, 15
function of, 15

Selections, 150-151
cause of, 150-151
explained, 150-151
supporting, 151
tracking, 150

self parameter, 96, 106

SelfUID, 57-58

Semaphores, SXDEMO

Send user interface, 17

Serial I/O Demo, 429

Serial I/O interface, SXDEMO, VIDPLAY

Serial port, reading and writing with, 492

Service class, 505

Service instances, BASICSVC, MILSVC,
TESTSVC

using, SXDEMO, VIDPLAY

Service manager
accessing service and, SXDEMO,

VIDPLAY
binding to service and, SXDEMO,

VIDPLAY

Service managers, predefined, 492

Services, 65, BASICSVC, MILSVC,
TESTSVC

accessing, SXDEMO, VIDPLAY
deinstalling, 505
documentation corrections and errata,

505-506
international, 507-514
MIL, 503
msg TrackProvideMetrics and, 504
theServiceManagers and, 503-504
tips and clarifications, 503-505
what's new in, 503
writing, 503-506

SetLabelFontO function, 296

Settings notebook, 26
data notebook vs., 523
Installed Handwriting page, 458

Customize button, 458
Practice button, 459

Installed Software section, 529-531
Applications page, 529
Dictionaries page, 530
Fonts page, 530
Installed Handwriting page, 530
Services page, 529
User Profiles page, 531

for installing applications, 389-390
Preferences section, 250, 524-528

date, 527
float & zoom, 525
fonts & layout, 525
pen and keyboard, 524
power, 528
sound, 528
time, 526-527
writing, 526

Status section, 531-532
PenPoint page, 532
Storage Details page, 532
Storage Summary page, 531

see also Notebook

Shift-JIS, 257
code points, 253
converting between Unicode and, 266
converting to/from, 254
editor, 273
encoding, 251-254

details, 252
file conversion, 285

examples, 285
prerequisite information, 285
procedure, 285
related information, 285

ku-ten,303
string conversion, 286-287

example, 286
prerequisite information, 286
procedure, 286
related information, 287

in text files, 283-284
prerequisite information, 283
procedure for, 283
related information, 284

see also JIS
ShutDownButton, 416

SM_BIND structure, 489

Snapshot tool, 37

Software Development Kit (SDK), 5
2.0 Release Notes, 229
contents, 17-18
files, 68
Japanese, 186

DOS utilities, 207
sample code, 279-281

trees, 382

Sorting
Japanese characters, 264
strings, 292-293

Source code, 90
C,95

application file, 95-96
organization of, 95-96

commands for compiling, 382
file format, 74
file organization, 94-96
for multiple localizations, 178
scanning, 206-207
tags in, 193

examples, 222-223
prerequisite information, 222
procedure, 222

see also Code

Source-level debugger (DB), 69, 84
using, 87
see also Debugging

Special characters, 231-233
example, 232
notes, 232-233
prerequisite information, 231-232
procedure, 232

Spooler, printing to, 419

sprintfO function, 204

S~FLAGS structure, 479

SRULES.MIF makefile, 381, 382
PenPoint 1.0, changes since, 386-387

S-Shot utility, 170

Stamping, 384-385
changes since PenPoint 1.0, 386
PenPoint names, 384
stationary with different names, 392

Standard application menus (SAMs), 104
menu support and, 143

Standard message facility, 164-166

Standards organizations, 238

StandByButton, 416

StartApp variable, 417

State, 39, 133
filing rule, 133
saving, 133

Stationary, 40, 159-160
creating, 159

INDEX 683

stamping, with different names,
392-393

Tic-Tac-Toe and, 159-160

Stationary menu, 40
illustrated, 160

Stationary notebook, 26, 34
auxiliary, 159
illustrated, 160
NUl and, 519
see also Notebook

STATNRY subdirectory, 159

Status section (Settings notebook),
531-532

PenPoint page, 532
Storage Details page, 532
Storage Summary page, 531

STATUS value, 78

Status values, 53
defining, 80-81
for disconnected stream, 481
generic, 81
human-readable, 82
message handlers and, 107
pseudoclasses for, 81
style of, 73
see also specific status values

StdErrorO, 164
buttons and, 166

StdErrorResO, 166
StdioStreamUnbind,468

StdMsgO, 65,164
buttons and, 165-166
customization function, 166
function of, 164
resource files and, 166
resource lists and, 166
using, 164-165

StdMsgCustomO, 166

StdMsgResO, 166

StdProgressUpO, 164

StdSystemErrorO, 164
buttons and, 166

StdUnknownErrorO, 164
STREAM_READ _ WRITE structure,

138-139
Streams, reading and writing, 482

String composition functions, 471-473
format codes, 471-472
function arguments, 472-473
function definitions, 473
memory management, 472-473

684 INDEX

String list boxes, TKDEMO, UICOMP

String(s)
array resources, 164
comparing,291-292

example, 291
notes, 292
prerequisite information, 291
procedure, 291
related information, 292

composed, 204-205
compression routines, 512
constants, 64

Unicode and, 188
conversion routines, 511
debug,109
debugging, printing, 84-85
error status for, 165
formatting, 188
functions, 187-188
moving into resource file, 65, 216-219

example, 217-219
prerequisite information, 216
procedure, 216-217
related information, 219

quick help, 163
in resource files, 190

advantages, 190
defining, 191-193
disadvantages, 190

routines, 64
Shift-JIS, converting, 286-287
sorting, 292-293

example, 292
notes, 293
prerequisite information, 292
procedure, 292
related information, 293

substitution, 165
tag for, 165
Unicode

converting, 286-287
creating,215-216

working with, 186

strlenO function, 188

Structure
definitions, 71
exported, 73
file, 74-77
names, 77
tag,71

stsBadAncestor, 48

StsChkO macro, 82, 83

StsFailedO macro, 82, 83

stsFSVolCorrupt, 420

StsJmpO macro, 82, 83

stsListEmpty,73

stsListFull, 73

stsMessageIgnored, 504

stsNoMatch, 483

stsOK, 48, 53, 80

StsOKO macro, 82, 84

StsRetO macro, 82, 84

stsStreamDisconnected, 481

stsSvcTargetNotOpen, 504

stsTimeout, 487

StsWarnO macro, 82
Styles, 200-201

defined, 200

Subclasses, 45

Subpage controls, UICOMP

Subsections, 9

Subtasks, creating, SXDEMO

SVCRULES.MIF makefile, 381

Switch mode, UICOMP

switch statement, 153

Syllabaries, 246

Symbols
generating, 158
names of, 158-159

printing, manually, 158-159

Symbol Sourcebook, 237
sysDcDrawDynamic, 126

SYSDC_FONT _ATTR structure, 295

SYSDC_FONT_DESC structure, 441

SysDcFontIDO function, 295

sysDcGroupUserInput, 295

System changes, 535-547
edit pads, 543-547
menus, 547
MiniNote, 539-543
MiniText, 535-539
option sheets, 535

System drawing context, 126
abbreviation, 126
color and, 126
used in sample code, HELLO,

INPUTAPP
see also Drawing contexts

SYSTEM.H, 476

System layer, 11-15
data transfer, 15
defined, 10
file system, 11
graphics, 13
input/handwriting translation, 14-15
networking, 12
printing, 13
Resource Manager, 11
Selection Manager, 15
User Interface Toolkit, 14
windowing, 12

systemLocale, 199, 227
System locale, checking, 227-228

example, 228
prerequisite information, 227

procedure, 227
related procedures, 228

System Log application, 108-109,274
Device List command, 398
flags and, 109
PenPoint 2.0 Japanese, 398
for viewing debugger stream, 397

System preferences, time and date,
CLOCK

System services, 471-477
documentation corrections and errata,

474-477
getting current locale and, 473
multi-byte/Unicode conversion

routines, 474
string composition functions, 471-473

Tab bars, 117

Table layout, CALC, KEISEN, TKDEMO,
UICOMP

Table of contents, 9

Table of Contents (TOC) application, 17

TableServer, 19

tagAppMgrAppClassName, 275, 384,
437

tagAppMgrAppCompany, 437

tagAppMgrAppCopyright, 437

tagAppMgrAppDefaultDocName, 436

tagAppMgrAppFilename, 275, 384, 405,
437

tagAppMgrDefaultDocName, 437

tagAppMgrDisplayedAppName, 437

tagBSAppAutoZoomDocument, 496

Tags, 80
creating, in header files, 191
defined,80
defined in APPTAG.H, 436-437
defining, in resource files, 191-193
gesture, 482
PenPoint 2.0 Japanese changes for, 430
in place of literal strings, 223
predefined, 193-194
resource utilities and, 223
in source code, 193,222-223

examples, 222-223
prerequisite information, 222
procedure, 222

in toolkit tables, 222
using in TK_ TABLE_ENTRY, 222

Tap gesture, 8
Unicode Browser and, 533

Tap press gesture, 8

Template Application, 90

TEMPLATE.RC file, 205

Terminate-and-stay-resident (TSR)
programs, 277

Text, 463-465
documentation typos, 465
fields, fill-in, UICOMP
insertion pads, UICOMP
strings moved to resource files, 428
substituting, 165-166
what's new for, 463-465

Text editor, 17
Japanese application, 273

Text View, 19

theBootVolume, 108

theInstalledKKCEngines, 499
theModems, 483

theSearchManager, 479

theSelectedVolume, 32, 500

theSelectionManager, 150, LBDEMO,
VIDPLAY

theSerialDevice, 481

theServiceManagers, 503-504

The Standard C Library, 238
The Unicode Standard 1.0: Worldwide

Character Encoding, 237, 301

Tic-Tac-Toe, 89
classes, 146
clsTttView instance, 31
components, 145
debugging, 155-159
DprintfO statement, 157
files, 147
handling input and, 145-154
Help information, 160
instances, 146
makefile, 160, 161
objects, 145-146

data, 146
dumping, 157

refining, 155-167
selection and keyboard input, 150-151
stationary, 40
Stationary and, 159-160
structure, 146-147
supporting files and, 391
view, 148

data interaction and, 148-149
tracking selections, 150

window, 147-148
coordinate system, 148
repainting strategy, 148

TIFF (Tagged Image File Format), 15
capturing, images, 170

Time conversion routines, 509-510
Times

current, CLOCK, CS:WYWO
Japanese formatting and, 269

TK_ TABLE_ENTRY structure, 143-144
using tags in, 222

TK_ TABLE_ENTRY, CALC, TKDEMO,
UICOMP

Toggle

switches, UICOM
tables, UICOMP

Tokens (mark), VIDPLAY

Toolkit Demo, 232

Toolkit tables, CALC, KEISEN, TKDEMO,
UICOMP

Tools accessory palette, 26
TOPS software, 12

Tracing, 155-156

Trademark variable, 416, 417

Translation
edit pad text, 544-545
flags, 457

setting, 458
handwriting, 14-15
input, 14
messages

creating translator, ADDER,
WRITERAP

initialization messages, sent in,
ADDER

templates, ADDER
object XList elements, 458
return of, alternatives, 457-458

illustrated, 459
see also Character translator

Translation classes, translation templates,
ADDER, WRITERAP

Translation template, ADDER,
WRITERAP

Translation, using translator, ADDERAp,
WRITERAP

Translator
clsSPaper, creating, WRITERAP
creating, WRITERAP

Transparent input, 460

TttAppCheckStationaryO routine, 159

tttAppDbgSet, 156-157

TttDbgChangeTracingO routine, 156

TttDbgHelperO routine, 156, 157
TttSymbolsInitO, 158

TttViewGesture message handler,
230-231

TttViewInputEventO routine, 152
TttViewRepaintO routine, 150

typedefs, 71,95
in file structure, 75

Types, 77-82
BOOLEAN,78
data, 77-78
in file structure, 75

UCONVERT DOS utility, 207, 285, 409
defined, 409
specifying character set with, 409
using, 285, 409

Ugetc bugs, 474

INDEX 685

UICOMp, 436

UI Companion, 429
see also User interface

UIDs, 48,54
Class Manager and, 50
defined,54
global well-known, 54
local-private, 54
local well-known, 54
Self, 57-58
spare, 54
well-known, 99

UisupperO macro, 209

UI Toolkit, HELLOTK, TKDEMO,
UICOMP

creating graphical interface with,
LBDEMO, TKDEMO, UICOMp,
VIDPLAY, CSWYWO

see also User Interface Toolkit
U_L macro, 186,210,217

for indicating character/string lengths,
284

using,216

Undo gesture, 8

Unicode, 180
alphabets and, 185
architecture, 185
Browser, 256, 279, 413-414

first row of characters in, 533
sample use illustration, 280
uses, 413
using, 413-414, 533

character conversion, 547
character encoding scheme, 180
code points, 253
code supporting, 186-189

character/string constants, 188
character types, 187
memory/file space, 188-189
string formatting, 188
string functions, 187-188

Compatibility Zone, 265
compressing, 189,266
converting between Shift-JIS and, 266
displaying, using mini-debugger,

401-402
editor, 273
encoding,249-250

of Japanese characters, 250
file conversion

examples, 285
prerequisite information, 285
procedure, 285
related information, 285

files, 279
extension, 279

glyphs, 202-204
hankaku representation, 265
import type, 464
introduction to, 184

686 INDEX

Private Use Area, 254
Private Use Zone, 250
in source code, 284

examples, 284
prerequisite information, 284
procedure, 284
related information, 284

strings conversion, 286-287
example, 286
prerequisite information, 286
procedure, 286
related information, 287

strings, creating, 215-216
examples, 216
prerequisite information, 215
procedure, 215-216
related procedures, 216

supporting,209-210
examples, 210
prerequisite information, 209
procedure, 209-210
related procedures, 210

tables, 514
values

for gestures and system UI, 441
for GO gesture glyphs, 410

zenkaku representation, 265

Unicode Consortium, 184
Unicode Incorporated, 238

Unicode Standard, 184

Update region, window, 148

USA.RC file, 191, 205

USA. RES file, 100
code from, 217-219

User interface, 7-9, 21
designing, 62
notebook metaphor, 8-9
pen, 8
Send,17

User Interface Toolkit, 14, 21
acetate layout class, 446-447
automatic layout, 14
classes, 114
clsKbdFrame and, 446
components, 88

creating, 114-117
illustrated, 115

documentation corrections and errata,
448-449

for label creation, 111
markup class, 446-447
on-screen controls, 14
programming details, 448

. standard strings, 446
text highlighting, 445
tips and clarifications, 447-448
UI components with built-in KKC

translation, 445
using, 111
what's new in, 445-447

UstrcmpO macro, 187

UstrcypO macro, 209
UstrlenO macro, 187

Utility classes, 479-482
adding gestures to Quick Help strings

and,479-480
clsNotePaper changes and, 480
documentation corrections and errata,

482
matching Hiragana/Katakana text and,

479
tips and clarifications,480-481

UungetG...bugs, 474

Values
getting, 137
incrementing, 137-13S
key, 154
return, 48-49,80-82, 113-114
setting, 137-138
~53,80

defining, 80-8 I
generic, 81
human-readable, 82
pseudo classes, 81
style of, 73

Variables, 72

Version number, application, how to
specify, TKDEMO, TTT

Version variable, 416

Video Player, 429

View classes, 30

View menu (Notebook), 520

Views, 148-149, TTT
data interaction and, 151-152

Virtual keyboard, 15, 534
Japanese, 279

illustrated, 281
uses, 414

Warm booting, 399-401
makefile, 400-401

WATCOM
C compiler, 274, 387
functions, 475-476
Ugetc and Uungetc bugs, 474
WMAKE application, 206, 381

specifying locales in, 386

Window
changing default size, CALC
flags, setting input, flags, INPUTAPp,

UICOMP
table layout, CALC, TKDEMO,

UICOMP

Window classes, 30
examples of, 30-31

Windowing, 12

Windows, 117-118
appearance of, 119
client, 29
custom, 123-131
documentation corrections and errata,

442-443
drawing in, 130
floating,29
initialization of, 128-129
layout, 120
Quick Help, 161-162
repainting, 126-127
resource, filing, 441-442
Tic-Tac-Toe, 147-148
update region, 148
what's new for, 441
WKNsand,442

Window system, 12

win.input.flags field, setting, INPUTAPP,
UICOMP

wknGDTa through wknGDTg, 99, 169

WLINK file, 383
WYSIWYG text editor, 16

XJIS, see Shift-JIS
XLists, 447

xltReturnAltChars, 458

xltReturnAltWords, 458

xltReturnStrokelds, 458

Zenkaku,249
glyphs, 464
implementation, 464
Unicode and, 265

Your comments on our software documentation are important to us. Is this
manual useful to you? Does it meet your needs? If not, how can we make it better?
Is there something we're doing right and you want to see more of?

Make a copy of this form and let us know how you feel. You can also send us
marked up pages. Along with your comments, please specify the name of the book
and the page numbers of any specific comments.

Please indicate your previous programming experience:

o Mainframe o Minicomputer OMS-DOS

o Macintosh o None o Other __________________ __

Please rate your answers to the following questions on a scale of 1 to 5:

1 :2 3 4 5
P()()r Average Excellent

How useful was this book? 0 0 0 0 0
Was information easy to find? 0 0 0 0 0
Was the organization clear? 0 0 0 0 0
Was the book technically accurate? 0 0 0 0 0
Were topics covered in enough detail? 0 0 0 0 0

Additional comments:

Your name and address:

Name

Company __ __

Address __ _

City _________________________ State ____________ __

Mail this form to:

Team Manager, Developer Documentation
GO Corporation
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404-2128

Or fax it to: (415) 345-9833

Zip ____________ _

~&t""'111 2 n
J§:.(j - ·&l! III 'R.litll

"··liiA:~-;;~·?i-::::;::;-';HI.-f;.---·;-

,? IF-I': ,_>j -r7' ;';,1 :' ~ if _ \ 7.'"
l: tt~ .. -':\ > * i l3J\,n~l~:: «rJr.:it~.f -\U .:. In. U!:

~1M ;'~T i~;~;: !iL ~,tt:dl.~'" ;..···;·' .£71:' ··
fmr'll:W·.rr~i l 'I!" !. .

L. ::£"'II". .- tL t.~. flt1~'·);1:m)HI'"t' t-. I')\' :
l ~·-:- J\Jt.l1'.~i'E ·!.H .. '- ·- ~ ' ~",,_

·,··· • .• 1.,»'1'.;.
~ f]~tltrl'll 1f~ lt.I~; ;t~I::ot:*l~ -r~ '
;~.
l - A' /* ; : .m. ~> . , ;)I .. ;E.'n." " 'Y f :l."J
: t- "'-:-l ':, ,, -(/) f ~.- :..:.~~ -t -!> . lfi!:tt:
, i~ I .: .tq_ .. \ ... t j lll,; !t 1- f6.: IIAn :;':' . ..iI

A " 4:jJ!:-ii!i. -.:. ~~I."I': H~ i : /f tl -6.?\ti@&
L -;:'i' ';.,.11 ----1'. !i~ l tltl~''',:;.,.€:_..., -7''.J ...
1:.:-t';,tlJ·r,~t<. t'.ff.-.'f-'II :': ' , !1.~r~) t I. 1' 1 '.f.t
Wi a;I-\-;'Jd'll(' l r.ft 1t€m'ilf,·"· *',

tJ--~T- * d t
1!: Jbrl)~.:::f1':"')OCtll:rtJ\:L-t..:Wii I-'Jt1:',t;4:
iJF ·i'tT{..·7'1· -"1'. :::'",:,.'\",,~,iijJAI':J;· ,

.or. -~ a. l . • I\:::' 1 7-~" 1 111:./t1 .• A.J\ditJ'
.) 5- ,J~;:t 'J .':. ill", tr-:";! Q::',~ t: I t iJ .~ ;r~ .

OCI:::I.nIent Edit Options Vi_ Insert Case

Can)'Ql desiJPl' li~twod~~ =ydable, 8 oz. Y
plastic bottle Ihat wm't~undet mcdcratJ!
impact? I 'Ubetn.~Uingnext~bJtyw

can fume suggested proposals .t213{
555-11!33. ,

i

!

CLu :
1'-----.---.J11
~Smm"c~~ly~. ____ • ______ ~

53295

9 780201 622997

ISBN 0-201-62299-8

USA $32.95
CANADA $42.95

