€9

PenPoint Application Writing Guide

PenPoint

PenPoint” Application
- Writing Guide

GO CORPORATION

GO TECHNI(:AL LIBRARY

oooooooooooooooooo

PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications, including many coding samples. This is the first book you should
read as a beginning PenPoint applications developer.

PenPoint Architectural Reference Volume I presents the concepts of the
fundamental PenPoint classes. Read this book when you need to understand
the fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need to
understand the supplemental PenPoint subsystems, such as the text subsystem,
the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements, and
describes how PenPoint uses the elements. Read this book before designing your
application’s user interface.

PenPoint Development Tools describes the environment for developing,
debugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

PenPoint

PenPoint” Application
Writing Guide

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company

Reading, Massachusetts ® Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam
Bonn ¢ Sydney e Singapore ¢ Tokyo ¢ Madrid ¢ San Juan
Paris @ Seoul ¢ Milan ¢ Mexico City ¢ Taipei

Warranty Disclaimer
and Limitation of
Liability

U.S. Government
Restricted Rights

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright ©1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, the PenPoint logo, the GO logo, ImagePoint,
PenPoint, GrafPaper, TableServer, BaseStation, EDA, MiniNote, MiniText, and DrawingPaper.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYTHING ELSE.

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the

results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental; or indirect damages (including damages for loss of business profits, business ,
mterruptlon, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation’s total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure

by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software—Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60857—-X
123456789-A1-9695949392
First Printing, March 1992

7 Chapter 1 / Introduction

Intended Audience
- Organization of this Manual

Other Sources of Information

‘7 Chapter 2 / PenPoint
System Overview

Design Considerations

User Interface
The Pen
Notebook Metaphor

Object-Oriented Architecture
Architecture and Functionality
Kernel Layer

System Layer
File System
Resource Manager
Networking -
Windowing
Graphics
Printing :
User Interface Toolkit
Input and Handwriting Translation
Selection Manager and Data Transfer

Component Layer

Application Framework Layer

Application Layer

Software Development Environment
Software Development Kit
Coding Conventions

Extensibility

PenPoint Design Guidelines
Conserve Memory
Think Small
Use a Modular Design
Avoid Duplicating Data
Your Application Must Recover
Take Advantage of Object-Oriented
Programming
Consider Sharing Code and Data
Use Document Orientation
Design for File Format Compatibility
Exploit the Pen
Use the PenPoint User Interface

1.1
1.2
1.3

2.1

2.2
2.2.1
222

2.3

24

2.5

2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.7
2.8
2.9
2.10
2.10.1

2.10.2
2.10.3

2.11

2.11.1
2.11.2
2.11.3
2.11.4
2.11.5

2.11.6
2.11.7
2.11.8
2.11.9
2.11.10
2.11.11

o o 00 000 NN QNN N W W

e
[— -]

11

16
16
17
17
17
17

7 Chapter 3 / Application
Conceptis

PenPoint Programming is Unique
How Applications Work
Installing and Starting Applications
MS-DOS Installation
PenPoint Installation
Installer Responsibilities

Running a PenPoint Application
Life Cycle of a Document
Activating a Document
Not All Active Documents are On-Screen
Application Classes and Instances

PenPoint Drives Your Application

Application Objects
A Descendant of clsApp
An Instance of clsWin
An Instance of clsObject

Understanding the Application Hierarchy
The Notebook’s Own Hierarchy
The Desktop
The Notebook
Page-Level Applications
Sections
Floating Accessories
Embedded Applications
Application Data

Activating and Terminating Documents
Turning a Page and msgAppClose
Restoring Inactive Documents
Page Turning instead of Close
Saving State (No Quit)

Documents, not Files and Applications
No New, No Save As . . .

Stationery

Shutting Down and Terminating Applications
Conserving Memory
Avoiding Duplication
Hot Mode

Components

7 Chapter 4 / PenPoint
Class Manager

Objects Instead of Functions and Data

Messages Instead of Function Calls

Classes Instead of Code Sharing
Handling Messages '

3.1
3.2
3.2.1
3.2.2
3.2.3

3.2.4

3.3
3.3.1
3.3.2

3.3.3,

3.3.4
3.4

3.5

3.5.1
3.5.2
3.5.3
3.6

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8

3.7

37.1
3.7.2
3.7.3
3.7.4
3.8

3.8.1
3.8.2
3.9

3.9.1
3.9.2
3.9.3
3.9.4

4.1
4.2

4.3
4.3.1

41
41
42
43

Sending a Message
Message Arguments
ObjectCall Parameters
Returned Values
How Objects Know How to Respond

Creating an Object
Classes and Instances
An Alternative Explanation
The NEW Structure
Identifying NEW Structure Elements
Code to Create an Object
Identifying the New Object: UIDs

Creating a Class
New Class Message Arguments
Method Tables
Self

Possible Responses to Messages

¥ Chapier 5 / Developing
an Application

Designing Your Application
Designing the User Interface
Designing Classes
Designing Messages
Designing Message Handlers
Designing Program Units

Designing for Internationalization

and Localization
Preparing for PenPoint 2.0
Preparing for Internationalization

Development Strategy
Application Entry Point
Application Instance Data
Creating Stateful Objects
Displaying on Screen
Creating Component Classes
Development Cycles
Compiling and Linking
Installing the Application
Debugging
A Developer’s Checklist
Checklist Of Required Interactions
Checklist of Non-Essential Items
GO’s Coding Conventions
- Typedefs
Variables
Functions
Defines (Macros and Constants)

PPLICATION WHR

4.4

4.4.1
4.42
4.4.3
4.4.4

4.5

4.5.1
4.5.2
453
4.5.4
4.5.5
4.5.6

4.6

4.6.1
4.6.2
4.6.3
4.6.4

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

5.2
5.2.1
52.2

5.3
5.3.1
5.3.2
5.33
5.3.4
5.3.5
5.4
54.1
5.4.2
5.4.3
5.5
5.5.1
- 552
5.6
5.6.1
5.6.2
5.6.3
5.6.4

45
45
46
47
47
48
48
48
49
51
51
52

53
54
55
56
57

59

59
60
60
60
60
61

61
61
63
64
65
65
65
66
66

66
66
67
68
68
68
69
70
70

70

71

71

Class Manager Constants
Exported Names

PenPoint File Structure
File Header Comment
Includes
Defines, Types, Globals
Function Prototypes
Message Headers
Indentation
Comments
Some Coding Suggestions

PenPoint Types and Macros
Data Types
Basic Constants
Legibility
~Compiler Isolation
Data Conversion/Checking
Bit Manipulation
Tags
Return Values
Return Status Debugging Function
Error-Handling Macros
Debugging Assistance
Printing Debugging Strings
Assertions
Debug Flags

Suggestions

The Tutorial Programs
Empty Application
Hello World (Toolkit)
Hello World (Custom Window)
- Counter Application
Tic-TacToe
Template Application
Other Code Available

7 Chapter 6 / A Simple
Application (Empty App)
Files Used
Not the Simplest
Compiling and Linking the Code
Compiling Method Tables
Compiling the Application
Linking the Application
Stamping Your Application
Installing and Running Empty Application

Interesting Things You Can Do
with Empty Application

5.6.5
5.6.6

5.7

5.7.1
5.7.2
5.7.3
5.7.4

5.7.5

5.7.6
5.7.7
5.7.8

5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7
5.8.8
5.8.9
5.8.10

5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
5.10.6
5.10.7

6.1

6.1.1
6.2

6.2.1
6.2.2
6.2.3
6.2.4

6.3

6.4

71
72
72
73
73
74
74
75
75
75
76

76
76
77
77
77

78

79
79
79
81

82

84
84
85
85
87
88
88
89
89
89
90
90
920

91

91
92
92
92
93

.93

95

Code Run-Through
PenPoint Source Code File Organization
Empty Application’s Source Code
Libraries and Header Files
Class UID
Class Creation
Documents, Accessories and Stationery
Where Does the Application Class
Come From?
Installation and Activation

Handling a Message
Method Table
msgDestroy

Message Handler
Parameters -
Parameters in EmptyAppDestroy
Status Return Value
Message Handlers are Private

Using Debug Stream Output

The Debugger Stream
Seeing Debug Output

7 Chapter 7 / Creating Objects
(Hello World: Toolkit)

HelloTK
Compiling and Installing the Application
Interesting Things You Can Do
with HelloTK

Code Run-Through for HELLOTK1.C
Highlights of HELLOTK1
Sending Messages
Creating Toolkit Components
Where the Window Goes
Why msgApplnit?
Why Did the Window Appear?

Possible Enhancements

Highlights of the Second HelloTK
Only One Client Window per Frame
Layout
Possible Enhancements

6.5

6.5.1
652
6.5.3
6.5.4
6.5.5
6.5.6

6.6
6.6.1

6.7
6.7.1
6.7.2

6.8

6.8.1
6.8.2
6.8.3
6.8.4

6.9

6.10
6.10.1

7.1
7.1.1
7.1.2

7.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.3

7.3.1
7.3.2
7.3.3

7 Chapter 8 / Creating A New Class

{Hello World: Custom Window)

Hello World (Custom Window)
Compiling the Code
Interesting Things You Can Do with Hello -
Highlights of clsHelloWorld
Highlights of clsHelloWin

8.1

8.1.1
8.1.2
8.1.3
8.1.4

97
97
99
102
102
103
104

104
104
107
108
109
109
109

110

110
111

111

111
111

113

113
114
114

114
114
115
116
120
120
121
121

122
122
122
123

125

125
125
127
127
127

Graphics Overview
System Drawing Context
Coordinates in Drawing Context
When to Paint

When to Create Things?
Instance Data
Is It msgNew or msglnit?
Window Initialization
Using Instance Data
No Filing Yet
Drawing in a Window
Possible Enhancements

Debugging Hello World
(Custom Window)

7 Chapter 9 / Saving and
Restoring Data (Counter App)

Saving State
Counter Application
Compiling and Installing the Application
Counter Application Highlights
Counter Class Highlights
Instance Data
Getting and Setting Values
Object Filing
Handling msgSave
Handling msgRestore
CounterApp’s Instance Data
Memory-Mapped File
Opening and Closing The File
Filing the Counter Object
Menu Support
Buttons

7 Chapter 10 / Handling
Input (Tic-Tac-Toe)

Tic-Tac-Toe Objects

Application Components

Separate Stateful Data Objects
Tic-Tac-Toe Structure '
Tic-Tac-Toe Window

Coordinate System

Advanced Repainting Strategy
View and Data Interaction

Data Object Design

Instance Data vs. Instance Info

Saving a Data Object

8.2

8.2.1
8.2.2
8.2.3
8.3

8.3.1
8.3.2
8.3.3
8.4

8.4.1

8.5
8.6
8.7

9.1

9.2

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5

9.3
9.3.1
932
9.4
9.4.1
9.4.2
9.4.3
9.5
9.5.1

10.1
10.1.1
10.1.2
10.2

10.3

10.3.1
10.3.2
10.4

10.4.1
10.4.2
10.4.3

128
128
129
129
129
130
130
131
132
132

133
133
133

135

135

135
137
137
138
138
139
140
141
142
142
143
143
145
146
147

149

149
149
150
151
151
152
152
152
152
153
153

Handling Failures During msgImt and
msgRestore

The Selection and Keyboard Input
How Selection Works

More on View and Data Interaction
Handwriting and Gestures

Input Event Handling

Gesture Handling

Keyboard Handling

¥V Chapter 11 / Refining the
Application (Tic-Tac-Toe)

Debugging
“Tracing
Debugf Statements and Debug Flags
Dumping Objects
Symbol Names
Installation Features
Stationery
Creating Stationery
How Tic-Tac-Toe Handles Stationery
Help Notebook
Creating Help Documents
Quick Help
Creating Quick Help Resources
Standard Message Facility
Using StdMsg Facilities
Substituting Text and Defining Buttons
StdMsg and Resource Files or Lists
StdMsg Customization Function
Bitmaps (Icons)
Creating Icons

7 Chapter 12 / Releasing
the Application
Registering Your Classes

-Documenting the Application
Writing Manuals
Screen Shots
Gesture Font

On-Disk Structure
Sharing Your Classes

10.4.4
10.5
10.5.1
10.6
10.7
10.7.1
10.7.2
10.7.3

11.1
11.1.1

1112

11.1.3
11.1.4

11.2

11.3
11.3.1
11.3.2
11.4
11.4.1

11.5

11.5.1
11.6

11.6.1
11.6.2
11.6.3
11.6.4

11.7
11.7.1

12.1

12.2
12.2.1
12.2.2
12.2.3
12.3

12.4

153

153
154
155
156
156
156
158

159

159
159
160
161
162
163
163
164
165
165
165
166
167
168
169
170
170
171
171
172

173

173

173
173
174
174
174

174

7 Appendix / Sample Code

V Glossary

7 Conmtributors

7 Index

P List of Figures

3-1
3-2

3-3

3-4

4-1

4-2
4-3

6-1
7-1
9-1
10-1
11-1
11-2
11-3

Application, View, and Object Classes

The PenPoint Application Framework and
the Notebook Hierarchy

The Notebook Hierarchy as Mirrored by
the File System

The Notebook Hierarchy as Mirrored by
Application Processes

Message Handling by a Class and its
Ancestors

Sending msgListAddItemAt to a List

How Messages to Instances are Processed
by Classes

Empty Application Option Sheet

UI Toolkit Components

CounterApp Objects

Tic-Tac-Toe Classes and Instances
Stationery Notebook & Stationery Menu
Quick Help

Application and Document Icons

P List of Tables

3-1

5-1
5-2
6-1
6-2
10-1

Notebook Organization and the File
System

Generic Status Values

Status Checking Macros

‘WATCOM Compiler and Linker Flags
Common Header Files

Tic-TacToe Files

175

275

285

287

26

30

31

32

44
45

48

96
117
137
150
164
166
171

33 .

81
82
92
102
151

Chapter 1 / Infroduction

‘The PenPoint™ operating system is an object-oriented, multitasking operating
system that is optimized for pen-based computing. Writing applications for the
PenPoint operating system will present you with some new challenges. However,
PenPoint contains many features that make application development far easier
than development in most other environments. ‘

One feature that makes application development easier is the PenPoint
Application Framework, which eliminates the need to write “boilerplate” code. In
other operating systems, programmers must write code to perform housekeeping
functions, such as application installation, input and output file handling, and so
on. These are provided automatically by the PenPoint Application Framework.

As another example, PenPoint provides most of the on-screen objects used by the
PenPoint Notebook User Interface (NUI). By using these objects, your
application can conform to the PenPoint NUI, without a great amount of work
on your part.

In this manual, you will learn about the PenPoint operating system, the PenPoint
development environment, and, of course, how to write applications for the
PenPoint operating system. The PenPoint Software Development Kit (SDK)

“contains several sample applications that you can compile and run. These sample
applications are used throughout this manual to demonstrate concepts and
programming techniques.

intended Audience 1.1

This manual is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C
programming language and related development tools, such as make utilties.

You should also be aware of the information in the companion volume, PenPoint
Development Tools. Pay particular attention to Chapter 2, Roadmap to SDK
Documentation, which describes the organization of the PenPoint SDK
documentation and recommends a path through the manuals.

(] (] [
Organization of This Manval 1.2
Chapter 1, this chapter, introduces the organization of this manual.

~Chapter 2, System Overview, presents an overall look at the PenPoint Operating
System environment. This chapter does not focus on writing applications.

Chapter 3, Application Concepts, presents applications from a conceptual point
of view. This chapter describes most of the parts of an application that you must

PENPOINT APPLICATION WRITING GUIDE

write, along with parts of applications that are provided for you by the PenPoint
Application Framework.

Chapter 4, PenPoint Class Manager, describes the parts of the PenPoint
Operating System that you use to create classes and to create instances of classes.

Chapter 5, Developing an Application, discusses a number of points that you
must consider when creating an application. This chapter presents a checklist that
you can use to ensure that your application is complete; the chapter also and
discusses GO’s coding conventions.

Chapter 6, A Simple Application (Empty App), introduces a minimal application.
By experimenting with this application, you can see just how much the PenPoint

Application Framework does for you. This chapter also describes how to compile

and debug PenPoint applications.

Chapter 7, Creating Objects (Hello World: Toolkit), describes how you create

instances of predefined PenPoint classes and use these objects in your application.

Chapter 8, Creating a New Class (Hello World: Custom Window), describes how
to create custom windows and presents additional information about using
instance data.

Chapter 9, Saving and Restoring Data (Counter App), describes how to save and
restore data from your application.

Chapter 10, Handling Input (Tic-Tac-Toe), describes how to handle input, while
also describing a much larger application: Tic-Tac-Toe.

Chapter 11, Refining the Application (Tic-Tac-Toe), describes how to adc_i polish

to your application.

Chapter 12, Releasing the Application, describes the steps necessary to make your
application available to other PenPoint users.

The appendix contains the complete sample code for the tutorial programs
referred to in the previous chapters, along with descriptions of other sample

programs provided in the SDK.

Other Sources of Information

For conceptual information about the various classes in PenPoint, see the
PenPoint Architectural Reference.

For information on running PenPoint on a PC and using the PenPoint
development tools and utilities, such as the PenPoint source-level debugger, see
PenPoint Development Tools. The volume also contains a master index for all SDK
volumes, except the PenPoint API Reference.

For reference information on the classes, messages, macros, functions, and
structures defined by PenPoint, see the PenPoint API Reference. The information
in the PenPoint API Reference is derived directly from the PenPoint header files (in
\PENPOINT\SDK\INC).

1.3

Chapter 2 / PenPoint
System Overview

When GO Corporation undertook to build a mobile, pen-based computer

system, we quickly recognized that existing standard operating systems were not
adequate for the task. Those systems, designed for the very different needs of
keyboard-based desktop computers, would require such extensive rewriting to
support this new market that they would no longer run the installed base of
applications that made them standard in the first place. We therefore determined
that a new, general-purpose operating system would be needed, designed
specifically for the unique requirements of pen-based computing. The result is the
PenPoint operating system. This document is a brief introduction and overview of
its design goals, architecture, and functionality.

Design Considerations

After extensive research and analysis, GO identified the following key
requirements for pen-based system software:

¢ A direct, natural, intuitive, and flexible graphical user interface
¢ Strong support for handwriting recognition and gesture based commands
¢ A richer organizational metaphor than the traditional file-system model

¢ A high degree of memory conservation through extensive sharing of code,
data, and resources

¢ Ability to run on RAM-only as well as_disk-based computers

¢ Priority-based, preemptive multitasking

¢ Detachable networking and deferred data transfer

¢ Hardware independence (ability to move to new processors quickly)

The PenPoint operating system was developed to satisfy these requirements.

- PenPoint’s most distinctive feature is its innovative user interface. The user
interface is the cornerstone on which the entire system is built; all other design
considerations follow from it. The user interface, in turn, is based on two main
organizing principles:

¢ The use of a pen as the primary input device
¢ A notebook metaphor that is natural and easy to use

The consequences of these two basic design features permeate the entire system.

2.1

2.2

4 PENPOINT APPLICATION WRITING GUIDE

P> The Pen 2.2.1

The pen naturally combines three distinct system control functions: pointing, data
input, and command invocation. Like a mouse, it can point anywhere on the
screen to designate an operand, specify a location, draw a picture, drag an object
or select from a menu. Through sophisticated handwriting recognition software, it
can replace the keyboard as a source of text input. Finally, it can do something
neither 2 mouse nor a keyboard can do: issue commands through graphical
gestures. ’

%7 Gestures 2.2.1.1
Gestures are simple shapes or figures that the user draws directly on the screen to
invoke an action or command. For example, a scratch out X gesture is used to
delete, a circle © to edit, and a caret p to insert. A set of built-in core gestures
form the heart of the PenPoint user interface:

Caret A Check
Circle © Cross out X
Flick left — Flick right —
Flick up | Flick down |
Insert space | Pigtail 7
Press 4 Tap 4

Tap press 4 Undo

To exploit the unique properties of the pen, PenPoint provides strong support for
gestural command invocation. The same handwriting translation subsystem that
recognizes characters for text input also recognizes those shapes that constitute
meaningful gestures. The form, location, and context of the gesture then
determine the action to be performed and the data objects affected. Because a
gesture can be made directly over the target object, it can specify both the operand
and the operation in a single act. This gives the pen-based interface a directness
and simplicity that cannot be achieved with a mouse.

%» “PenPoint” Control . 2.2.1.2

The pen has one more notable property as a control device. Because it draws
directly on the face of the screen (rather than on a physically separate working
surface such as a mouse pad or graphics tablet), it eliminates a major source of
difficulty among new computer users—the relationship between movement of the
and the movement of the cursor on the screen. With a pen, the user’s eye is
focused exactly where his or her hand is working. Most PenPoint applications can
thus dispense with an on-screen cursor for tracking the pen, though it can still be
offered as an optional user preference.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
Object-Oriented Architecture

> Notebook Metaphor 2.2.2

Instead of a traditional file system based on a hierarchy of nested directories and
cryptic file names, PenPoint uses a “notebook” metaphor for information storage
and retrieval. By using familiar models of working with paper-based documents,
the notebook approach provides a rich variety of natural and intuitive techniques
for organizing and accessing information:

¢ A bookshelf upon which multiple user notebooks may reside, as well as
system notebooks for help information and stationery, an inbox and outbox,
and various tools and accessories. A user can have any number of notebooks
open at once; typical use involves one main notebook.

¢ A table of contents offering an overview of all available documents in the
notebook, allowing easy manipulation and navigation at the global level. The
table of contents can be organized in natural page number order, or sorted by
name, size, type or date. :

¢ Sections and subsections for hierarchical organization
¢ Page numbers and notebook tabs for direct random access
¢ Page turning for sequential access

Because the notebook is a familiar, physical, and stable model, a user can employ
spatial memory of layout and juxtaposition to help find and organize their
information.

Object-Oriented Architecture 2.3

To facilitate code sharing and overall memory conservation, PenPoint uses an
object-oriented approach to system architecture. All application programming
interfaces (APIs) above the kernel layer are implemented using object-oriented
programming techniques of subclass inheritance and message passing. This helps
to ensure that PenPoint and its APIs have these characteristics:

¢ Compact, providing a body of shared code that need not be duplicated by all
applications

¢ Consistent, since all applications share the same implementation of common
system and user interface functions

¢ Flexible, allowing applications to modify PenPoint’s behavior by subclassing
its built-in classes

The event-driven, object-oriented nature of the system minimizes the need to
“reinvent the wheel” with each new application. Programmers can “code by
exception,” reusing existing code while altering or adding only the specific
behavior and functionality that their own applications require. Because the
object-oriented architecture is system-wide, these benefits are not restricted to
single applications; in fact, applications can share code with each other just as
readily as with the system itself.

2 / SYSTEM OVERVIEW

PENPOINT APPLICATiON WRITING GUIDE

Architecture and Fuhciionuliiy

PenPoint’s overall software architecture is organized into five layers:

5

The kernel, which provides multitasking process support, memory
management, and access to hardware. The kernel works closely with the
PenPoint class manager, which makes PenPoint object oriented.

The system layer, which provides windowing, graphics, and user interface
support in addition to common operating system services such as filing and
networking ’

The component layer, which consists of general-purpose subsystems offering
significant functionality that can be shared among applications

The Application Framework, which serves as a “head start” for building
applications

The applications themselves

Each of these layers is discussed in detail below.

7 Kernel Layer

The kernel is the portion of the PenPoint operating system that interacts directly

with the hardware. Besides handling such low-level tasks as process scheduling and

synchronization, dynamic memory allocation, and resource management, it also
provides these services, which are needed to support the object-oriented software
architecture:

All hardware dependencies in the kernel are isolated into a library subset (the MIL

L 2

L 2
L 4
L 4
L 4
L 4
L 4

4

Priority-based, preemptive multitasking

Processes and threads (lightweight tasks sharing the same address space)
Interprocess communication and semaphores

Task-based interrupt handling

32-bit flat memory model

Protected memory management and code execution

Heap memory allocation with transparent relocation and compaction (no

fixed-length buffers)

Object-oriented message passing and subclass inheritance

or machine interface layer) to facilitate porting to a wide variety of hardware and
processor architectures. The kernel runs on both PC and pen-based machines. All
of PenPoint’s APIs use full 32-bit addresses.

Other parts of the kernel layer support features that keep PenPoint small and
efficient, such as:

. . . ’ .) . .
Loader Unlike a traditional, disk-based operating system, PenPoint’s loader
does not require multiple copies of system and application code to be
present in the machine at the same time. Instead, it maintains a single

2.4

2.5

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
System Layer

instance of all code and resources, which are shared among all clients.
When installing a new application, the loader reads in only those
components that are not already present in memory.

Power Conservation When running on battery-powered hardware, the
kernel reduces power consumption by shutting down the CPU whenever
there are no tasks awaiting processor time. Subsequent events such as pen
activity or clock-chip alarms generate interrupts that reactivate the CPU.
The kernel also monitors the main battery and will refuse to run if power
is too low, ensuring reliable protection of user data.

Diskless Reboot Hardware memory protection is used to preserve the
integrity of all code, resources, and data. In the event of a crash, the
kernel can restart all processes (including its own), with minimal loss of
user data and without the need to restart the system from disk drives.

C Runtime The kernel includes runtime support for all WATCOM C/386
runtime functions except those DOS- and PC-specific calls that are not
applicable to a pen-based notebook environment.

Class Manager PenPoint’s Class Manager works closely with the kernel to
support object-oriented programming techniques such as single-
inheritance subclassing and message passing. The Class Manager also
provides important protection and multitasking services not found in
C++ or other object-oriented languages. These services safeguard the
operating system against possible corruption arising from the use of
object-oriented techniques. For example, instance data for
system-defined classes is protected so that the data cannot be altered by
any subclasses. Applications thus derive the benefits of subclassing
without jeopardizing the integrity of the system.

System Layer 2.6

PenPoint’s system layer provides a broader range of support services than a
traditional operating system. In addition to the usual system facilities such as filing
and networking, it also provides such high-level services as windowing, graphics,
printing, and user interface support. This helps keep application code compact
and consistent while facilitating application development for the machine.

P> File System 2.6.1

PenPoint’s file system is designed for compatibility with other existing file
systems, particularly MS-DOS, and includes full support for reading and writing
MS-DOS-formatted disks. It provides many of the standard features of traditional
file systems, including hierarchical directories, file handles, paths, and current
working directories, as well as such extended features as 32-character file names,
memory-mapped files, object-oriented APIs, and general, client-specified
attributes for files and directories.

The PenPoint file system is a strict superset of the MS-DOS file system; all
PenPoint-specific information is stored as an MS-DOS file within each MS-DOS

2 / SYSTEM OVERVIEW

8 PENPOINT APPLICATION WRITING GUIDE

directory. This approach is used when mapping to other file systems as well.
Additional, installable volume types are also supported. At present, these include
RAM volumes and remote volumes (for access to PC, Macintosh, and file servers).

P» Resource Manager 2.6.2

PenPoint’s Resource Manager and the resource files that it controls allow
applications to separate data from code in a clean, structured way. The Resource
Manager can store and retrieve both standard PenPoint objects and application-
defined data, in either a specific file or a list of files. Resources can be created
directly by the application or by compiling a separate, text-based resource
definition file.

P> Networking 2.6.3

PenPoint provides native support for smooth connectivity to other computers and
networks. Multiple, “autoconfiguring” network protocol stacks can be installed on
the fly. AppleTalk protocol is built in, enabling connection to other networks
through a variety of AppleTalk-compatible gateways. By purchasing the
appropriate TOPS software, users can configure their systems to connect directly
to DOS or Macintosh computers.

Through the use of these networking facilities, remote services such as printers are
as easily accessible to PenPoint applications as if they were directly connected.

'Remote file systems on desktop computers and network file servers are also
transparently available via a remote-file-system volume. A user can browse PC and
file-server directories, for instance, using PenPoint’s connections notebook.
Several remote volumes can be installed at once: for example, a PenPoint system
can hook directly to a Macintosh and a DOS computer at the same time.

A typical user, while on an airplane, might mark up a FAX, fill out an expense
report to be electronically mailed to the payables department, draft a business
letter to be printed, and edit an existing document to be returned to its “home”
on a PC’s hard disk. Upon connection to the physical devices, conventional
operating systems would require that user to run each application, load each
document and dispense with it. PenPoint’s In Box and Out Box services allow the
user to defer and batch data transfer operations for completion at a later time.
Upon return to the office and establishing the physical connection, the documents
are automatically faxed, printed, and mailed. These services are extensible and can
support a wide variety of transfer operations, including electronic mail, prmt jobs,
fax transmissions, and file transfers

4 Windowing | ‘ 2.6.4

The window system supports nested hierarchies of windows with multiple
coordinate systems, clipping, and protection. Windows are integrated with
PenPoint’s input system, so that incoming pen events are automatically directed
to the correct process and window. Windows use little memory and can therefore
be used freely by applications to construct their user interface.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
System Layer

Usually windows appear on screen, but they can also be created on other,
off-screen image devices, such as printers.

The window system maintains a global, screen-wide display plane called the
acetate plane, which is where ink from the pen is normally “dribbled” by the
pen-tracking software as the user writes on the screen. The acetate plane greatly
improves the system’s visual responsiveness, both in displaying and in erasing pen
marks on the screen.

7> Graphics 2.6.5

PenPoint’s built-in graphics facility, the ImagePoint™ imaging model, unifies text
with other graphics primitives in a single, PostScript-like imaging model.
ImagePoint™ graphics can be arbitrarily scaled, rotated, and translated, and can be
used for both screen display and printing. ImagePoint’s graphics capabilities
include these elements:

Polylines ‘ Bezier curves
Rectangles Ellipses
Rounded rectangles Arcs
Polygons Sectors
Sampled images Chords

Text '

A picture segment facility allows ImagePoint messages to be stored and played
back on demand, facilitating a variety of drawing and imaging applications. For
improved performance, the imaging system dynamically creates machine code
when appropriate for low-level graphics operations such as direct pixel transfer
(“bitblt”). The ImagePoint interface also supports the use of color, (specified in
conventional RGB values) allowing PenPoint to run on grey-scale and color
screens.

To conserve memory, ImagePoint™ uses outline fonts to render text at any point
size. (Bitmap fonts are automatically substituted at low resolutions for improved
visual clarity.) Fonts are heavily compressed and some character styles are
synthesized to minimize memory requirements. If a requested font is not present,
ImagePoint will find the closest available match. Text characters can be scaled and
rotated in the same way as other graphical entities.

% Printing | 2.6.6

The ImagePoint imaging model is used for printing as well as screen display,
allowing applications to use the same image-rendering code for both purposes,
rebinding it to either a screen window or a printer as the occasion demands.
PenPoint handles all printer configuration, and automatically controls margins,
headers, and footers, relieving the application of these details. (As in most other
areas of PenPoint, applications can override the default behavior.)

"2/ SYSTEM OVERVIEW

10 PENPOINT APPLICATION WRITING GUIDE

One key benefit of this approach is that documents to be faxed are rendered
specifically for a 200 DPI output device. The resulting output will be of
sufficiently high quality that mobile users may not require a portable printer at all,
opting instead to use a nearby plain paper FAX machine.

PenPoint supports dot-matrix and HP Laserjet printers. When the printer does
not have a requested font, the ImagePoint imaging model will render and
download one from its own set of outline fonts, ensuring good WYSIWYG
correspondence and shielding the user from the complexities of font management.

P> User Interface Toolkit | 2.6.7
PenPoint’s User Interface Toolkit offers a wide variety of on-screen controls:
Menu bars ' Nonmodal alerts
Pulldown menus Pushbuttons
Section tabs Exclusive choice buttons
Window frames Nonexclusive choice buttons
Title bars Pop-up choice lists
Scroll bars List boxes
Option sheets Editable text fields
Dialog boxes Handwriting pads
Progress bar Grabbers
Modal alerts Busy clock
Trackers

A major innovation in PenPoint’s User Interface Toolkit is automatic layout.
Instead of specifying the exact position and size of controls, the application need
only supply a set of constraints on their relative positions, and the Toolkit will
dynamically calculate their exact horizontal and vertical coordinates. This makes it
easy for programmers or users to resize elements of the user interface, change their
fonts or other visual characteristics, or switch between portrait and landscape
screen orientations, while preserving the correct proportions and positional
relationships. '

P» Input and Handwriting Translation 2.6.8

PenPoint’s input subsystem translates input events received by the hardware into
messages directed to application objects. The low-level pen events include:

In proximity Out of proximity
Tip down Tip up

Move down Move up
Window enter Window exit

These low-level events can be grouped into higher-level aggregates called
scribbles, which are then translated by the handwriting translation (HWX)
subsystem into either text characters or command gestures. These characters or

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 11
System Layer

gestures in turn are dispatched to the appropriate objects via a rich input
distribution model that includes filtering, grabbing, inserting, and routing of
input up and down the window hierarchy.

The portion of the GOWrite handwriting translation engine that matches and
recognizes character shapes is replaceable, allowing PenPoint to improve its HWX
techniques as better algorithms become available. There are two parts to the
handwriting translation engine: the first part matches shapes, the second part uses
context to improve the translation.

The current HWX engine, developed entirely by GO, recognizes hand-printed

characters and has the following characteristics:

¢ Operates in real time (shape matcher operates at 60 characters per second on
33Mhz 80486)

Runs in a background process

4

2

Handles mixed upper- and lowercase letters, numerals, and punctuation
¢ Tolerates characters that overlap or touch

¢ Recognizes characters independently of stroke order, direction, and time
order

¢ Distinguishes non-unique character forms such as the letter “O” and the
numeral "0" (in context)

¢ Tolerates inconsistency by same user (that is, the user may shape the same
character in different ways at different times)

¢ Can accept optional context-sensitive aids (such as word lists, dictionaries,
and character templates) provided by an application. Applications are given
great control over this process; they may issue constraints that merely
influence the result or force a match against a predefined list.

Although PenPoint is designed primarily for pen-based input, it is not limited to
the pen. For high volume data entry, PenPoint is designed to accept input from a

keyboard.

As an alternative, PenPoint also provides a software “virtual keyboard.” Users can
display the keyboard on the screen and input text by tapping on the keys with the
pen.

P7 Selection Manager and Data Transfer 2.6.9

The Selection Manager subsystem maintains a system-wide selection, which is the
target for all editing operations. The Selection Manager also implements a
single-level stack for temporarily saving the current selection. Editing is based on a
move-and-copy model, rather than a “clipboard” (cut-and-paste) model. The
source and destination applications negotiate data transfers from one application
to another. The destination application requests a list of available data formats
from the source application. PenPoint supports a variety of standard transfer

formats, including RTF (Rich Text Format), structured graphics, and TIFF

2 / SYSTEM OVERVIEW

12 | PENPOINT APPLICATION WRITING GUIDE

(Tagged Image File Format); applications can extend this list to include other
formats as well.

PenPoint’s object-oriented architecture also makes possible the PenPoint EDA™
or embedded document architecture. This is a unique form of “live” data transfer
in which the transferred data carries with it an instance of its own source
application. Through object-oriented message passing, this embedded application
instance can then be used to display, edit, or otherwise manipulate the data from
within the destination application. Although more conventional forms of “hot
links” and DDE (Dynamic Data Exchange) linking are still possible in PenPoint,
such live application embedding obviates the need for most of them.

P Component Layer

Above and beyond the traditional kernel and system facilities, PenPoint adds a
rich, powerful, and extensible component layer. Components are general-purpose
code units with application-level functionality that can be shared and reused as
building blocks by multiple client applications. They speed the development of
applications, reduce memory consumption, and provide for more consistent user
interfaces and tighter integration across diverse applications. ‘

PenPoint includes several components, such as a multi-font, WYSIWYG text
editor and a scribble editing window that can be embedded within any application
that needs them. You can include these components in your application without
licensing them from GO.

Third-party developers may market components to other developers. Applications
may also provide their own general-purpose components to be installed and
shared in the PenPoint runtime environment.

p” Application Framework Layer

The Application Framework is a set of protocols rigorously defining the structure
and common behavior of a PenPoint application. Through the Application
Framework, applications inherit a wide variety of standard behavior, including
installation and configuration, creation of new documents, application stationery
(template documents), on-line help, document properties, spell checking, search
and replace, import/export file dialogs, and printing. New code is required only
for added functionality or to modify or override specific aspects of the default
behavior. Use of the Application Framework thus yields significant savings in
programming time and code space.

An application developer creates the application code and any resources needed by
the application. When a user installs an application, the PenPoint Application
Framework takes care of:

¢ Copying the application code and all other auxiliary files to the system
¢ Creating new documents

¢ Creating and terminating tasks

2.7

2.8

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

¢ Storing and retrieving user data in the file system
¢ Creating and destroying a main window for the application.

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application’s state explicitly from one
session to the next. '

The most innovative aspect of PenPoint’s Application Framework is its ability to
create true “live compound documents.” Users and developers can freely embed a
document created by one application inside another document (for example, a
business graphics application within a text document). GO refers to this
architecture as EDA™ (Embedded Document Architecture).

” Application Layer

Using the “live” recursive embedding available through EDA, PenPoint’s .
notebook metaphor and user interface are implemented as a set of bundled system
applications. Although the user simply perceives these collectively as “the
notebook,” they are in fact distinct applications, providing a cleanly delineated
and modular architecture.

The key bundled applications include bookshelf, notebook, and section
applications that together constitute the core notebook metaphor.

¢ The Table of Contents (TOC) application provides a user interface for
specialized organization and retrieval at the front of the notebook.

¢ A bundled text editor provides end users with intuitive, pen-based Rich Text
editing.

¢ A standard Send user interface and an Address List allow for the addressing
of all electronic mail, fax, and file transfers.

¢ A file browser allows the user to point to files and directories and use
standard gesture commands to manipulate them.

Multiple instances of the notebook can be created; in fact, the Create, Help,
Configuration, and InBox/OutBox applications are all instances of the notebook
application. Developers benefit from this code sharing; users benefit from
decreased memory requirements as well as greater consistency in the user interface.
The Help Notebook, for example, consists of help documents ordered by section
(application), and therefore looks just like the standard table of contents. Users
already know how to navigate through this notebook and can even create
hyperlink references to important sections. Developers can simply write ASCII
text to provide on-line documentation. Documents in the help notebook can be
any type of PenPoint application documents. Developers can also leverage
existing application code to build very powerful help systems that can demonstrate
real functionality.

Application Layer

2.9

13

2 / SYSTEM OVERVIEW

14 PENPOINT APPLICATION WRITING GUIDE

J” Software Development Environment 2.10

With the exception of some hardware-dependent code, PenPoint and the
applications it supports are written entirely in ANSI C, using current versions of
leading PC-based development tools. Developers already acquainted with
object-oriented concepts, and with the graphical user interfaces and multitasking
found in operating systems like Macintosh and OS/2 Presentation Manager, will
find the development environment familiar and will quickly be able to do
productive work.

P Software Development Kit 2.10.1

The PenPoint SDK provides developers with the documentation and tools to
develop applications. The kit includes a source-code symbolic debugger, as well as
an outline font editor for creating scalable and rotatable application-specific
glyphs. Because PenPoint runs on DOS 386 machines, the full application
edit-compile-debug cycle can be accomplished solely on a PC, or on a
combination of a PC and a computer running PenPoint. In the former
configuration, you use a pen-driven digitizer tablet to simulate pen input. In the
latter configuration, the PC serves as a debugging monitor, as well as a convenient
repository of the development system libraries, header files, on-line
documentation, and source code.

% Coding Conventions : 2.10.2

All PenPoint code is written in accordance with modern software engineering
standards, including:

¢ Consistent naming conventions for modules, functions, and variables
¢ Carefully designed modularity
~ ¢ Proper commenting and formatting of source code.

- Almost all of the C code is structured using object-oriented programming
techniques. Classes are defined and objects are created and sent messages by
making calls into a library of C routines called the Class Manager. These
techniques are in the mainstream of currently evolving industry practices, but the
details are unique to GO and are well documented in the SDK materials.

%> Extensibility 2103
PenPoint is extensible in a variety of ways, allowing for the addition of new
networking protocols, imaging models, font models, and file-system volumes.
PenPoint can run on computer architectures ranging from RAM-only, pen-based
/
pocket computers to powerful disk-based workstations with pen-tablet screens. -

The operating system is a working whole, with most modules integrated and
tested as part of the full system since early 1988. Through techniques such as
hardware memory protection, object-oriented programming, rigorous

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
PenPoint Design Guidelines

modularization, and extensive sharing of code, PenPoint has the foundations of a
highly reliable operating system.

PenPoint Design Guidelines 2.11

To this point, this chapter has presented concepts that relate to the PenPoint
operating system as a whole. The remainder of the chapter describes important
points that application developers will have to keep in mind while designing and
coding PenPoint applications.

> Conserve Memory 2.11.1

Do not squander memory. Your application should use little memory when
active. It must be able to further reduce its memory usage when off-screen. An
application that is packed with functionality but consumes a lot of memory is less
likely to be successful than one which meets the key needs while requiring very
little memory.

% Think Small | 2.11.2

Most PC programs stand alone as large monolithic programs that attempt to do
everything. In the cooperative, multitasking PenPoint environment with its
Embedded Document Architecture, it makes more sense to provide programs that
present a facet of functionality or that orchestrate other applications and
components. Use existing classes and components where possible rather than
writing your own from scratch.

"> Use a Modular Design 2.11.3

Consider writing your application as a set of separable components. A component
is a separately loadable module (a dynamic link library or DLL) that provides
software functionality. A component has a well-defined programmatic interface so
that other software can reuse it or replace it. With modular design, your
application becomes an organizing structure that ties together other components
in a useful way. For example, an outliner application might use a drawing
component, a charting component, and a table entry component; you could
license these components to or from other developers. GO is working to develop a

market for third-party components, and itself offers several components, including
Text View™ and the TableServer™.

% Avoid Duplicating Data . 2.11.4

In some PenPoint memory configurations (single-tier, RAM volume), everything
is in memory. The RAM volume co-exists with running applications in the same
memory. Usually, computers running PenPoint will not be attached to external
media. You should be aware of the occasions when data in your application’s
memory space needlessly duplicates data or code that is also present in the file
system. One way to avoid duplication is to use memory-mapped files for your
application’s data.

2 / SYSTEM OVERVIEW

16

PENPOINT APPLICATION WRITING GUIDE

When designing for a memory-resident file system, many of the trade-offs
appropriate to traditional software de51gn no longer apply. For example, dec1d1ng
to read a startup file “into memory” makes sense when memory access is several
orders of magnitude faster than file access, but in the case of single-tier memory
configurations, the file system s memory.

Your Application Must Recover 2.11.5

Users may go for weeks or months without backing up their PenPoint computer’s
file system. If your application goes wrong, the PenPoint operating system will try
to halt your application rather than the entire computer, but it is your responsi-
bility to ensure that a new invocation of your application will be able to recover
cleanly using whatever information it finds in the file system. This precept
sometimes conflicts with avoiding data duplication, because the memory file
system is more bullet-proof than the address space of a running application. For
this reason, filed state will usually survive a process crash.

Moreover, most users will not have the PenPoint computer boot disks on hand.
That means you cannot rely on the user being able to press the reset switch in a
jam. PenPoint uses hardware and software protection techniques to secure against
applications unintentionally corrupting the kernel and/or file system, but it is not

foolproof.

Take Advantage of Object-Oriented Programming 2.11.6

You don’t get to vote on using object-oriented techniques. You must write a class
for your application that inherits from clsApp. The windows your application
displays on the screen must be instances of clsWin (or instances of a class that
inherits from clsWin). Of course, there are tremendous payoffs from PenPoint’s
object-oriented approach in program size reduction, code sharing, application ‘
consistency, programmer productivity, and elimination of boilerplate code (those
large chunks of setup or housekeeping code that appear unchanged in every
application). '

Consider Sharing Code and Data | 2.11.7

Think about what other parts of PenPoint need to access your classes, what tasks
need to run the code in them, and who maintains their data. If your application
has a client-server architecture, a separate back-end or a core engine, you’ll need to
have the picture in mind when choosing local or global memory, dynamic or
well-known objects, process or subtask execution, protecting shared data with
semaphores and queued access, and so on.

PenPoint is a rich operating system that makes its kernel features available to
applications. But a straightforward application may not need to concern itself with
any of these decisions. It just interacts with PenPoint subsystems, which make
careful use of these features. For example, none of the tutorial programs use any
advanced kernel features.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 17
PenPoint Design Guidelines

' Use Document Orientation 2.11.8

In the PenPoint operating system, the user sees documents, not separate programs
and program files. Every document on a page is the conjunction of data and a
process running an application. This leads to a document-centered approach to
application design in place of a program-oriented approach. By comparison, on a
Macintosh or IBM-PC compatible computer, the user tends to fire up a program
and work on a succession of files. Under PenPoint, the user turns to a new
document (or taps in a floating document) and the system unobtrusively turns
control over to the right program for that document.

There are many ramifications of this orientation: applications have no Open... or
Save As... commands; the PenPoint operating system, not the user, saves data and
quits programs; you deliver application templates and defaults to the user as
stationery.

"% Design for File Format Compatibility | 2.11.9

The PenPoint application environment differs from that of other operating
systems in that PenPoint saves your application data, along with information
about objects in the document. Because of this filing method, your data formats
within PenPoint will differ from their PC equivalents.

Most PenPoint users, however, will need to read and write application data in
formats that are understood by other non-PenPoint applications. Either your
application should be able to read and write data in other formats, or you should
create an import or export filter for your PenPoint files. PenPoint provides import
and export filters for some common file formats. Because the import-export
mechanism is class based, you or other application developers can create
import-export filters for other file formats.

7 Exploit the Pen | 21110

Graphical user interfaces built around a mouse or other pointing devices lead to
flexible program architectures that respond to the user’s actions instead of
requiring the user to perform certain steps. The pen-oriented notebook interface
of PenPoint is even more free-form. Just as with a mouse, the user can point to
and manipulate (click, drag, stretch, wipe) entities on-screen, but in the PenPoint
operating system the user can also make gestures and handwrite characters “on”
the visual entities. Taking advantage of the pen is a challenge and a tremendous
opportunity.

P> Use the PenPoint User Interface 2.11.11

The Notebook User Interface (NUI) differs from other graphical user interfaces. If
you are porting a DOS or Macintosh-based program to PenPoint, rethink your
user interface so that it takes advantage of the PenPoint UI Toolkit. Do not create
your own interface.

2 / SYSTEM OVERVIEW

PENPOINT APPLICATION WRITING GUIDE

The PenPoint Ul Design Reference describes the PenPoint User Interface, its
rationale, and how and when to use its components. You should have good reason
before you deviate from the PenPoint interface. Remember that a consistent user
interface allows users to learn your application quickly; a bad or inconsistent user
interface will count against your application in product reviews (and acceptance in
the marketplace). ' :

The PenPoint Ul toolkit contains classes that create almost every on-screen object
in the PenPoint NUI. If you use these classes, it is hard to deviate from the
standard. Additionally, it is easier to follow the conventions by using these classes
than to subclass and change their default behavior.

Chapter 3 / Application Concepts

This chapter gives you the big picture of application development for the
PenPoint™ operating system. It introduces the design issues you need to consider
when writing an application for a mobile, pen-based computer, how applications
work under PenPoint, and how you use the PenPoint classes.

This chapter also presents concepts in general terms to provide the fundamental
understanding that puts the balance of this manual in context. You needn’t have
read any of the other documentation before reading this chapter. However, if you
have the SDK software, you might want to read the “Getting Started” document
in the Open Me First packet for detailed instruction on how to compile and run
the tutorial programs.

If you want a basic look at how the PenPoint operating system works, without a
focus on writing applications, read Chapter 2, System Overview. If you need an
introduction to object-oriented programming, read these industry publications:

& Principles of Object Oriented Design, Grady Booch, The Benjamin/Cummins
Publishing Co., 1991

@ Object-Oriented Programming for the Macintosh, Kurt Schmucker, Hayden
Book Company, 1986.

¢ Object-Oriented Programming: An Evolutionary Approach, Second Edition,
Brad J. Cox and Andrew]. Novobilski, Addison-Wesley Publishing
Company, 1991.

However you do it, make sure you come to understand the basics of
object-oriented programming, because in PenPoint every application must be
class-based.

This chapter points out some of the aspects of the PenPoint Operating System
that particularly affect your approach to application design.

As you know, application development takes place at two levels:
¢ At an architectural level, where you design your application
¢ At the line-by-line level of program statements.

At the architectural level, this chapter assumes that you have basic familiarity with
object-oriented programming. In developing a PenPoint application you’ll be
designing different kinds of objects and the interactions between them and
PenPoint. The section “How Applications Work” introduces the PenPoint
Application Framework, which influences and supports the structure of 2/
PenPoint applications. '

PENPOINT APPLICATION WRITING GUIDE

At the programming statement level, this chapter assumes that you are well-versed
in C programming. You’ll be writing C code that makes heavy use of the
PenPoint Class Manager. The section “Understanding Classes” introduces the
Class Manager and shows you what lines of code in PenPoint look like.

With some understanding of the Application Framework and the Class Manager,
you’ll have the tools necessary to understand simple programs both architecturally
and line-by-line. Later chapters in this manual describe the SDK sample programs
in \PENPOINT\SDK\SAMPLE (the installation procedure for the SDK creates the
\PENPOINT directory on your hard disk) .

PenPoint Programming is Unique 3.1

Just as a PenPoint™ computer is used in work environments that differ from other
computers, PenPoint applications execute in an environment that differs from
conventional PC application environments. There are eight key differences:

@ Stylus-based user interaction
Object-oriented programming
Disk storage not necessary

Multitasking

Graphics-intensive user interface

L 2
*
L 2
¢ Cooperating, simultaneously active, embedable applications
L 2
¢ Notebook metaphor

L 4

Document-orientation instead of applications and files orientation.

Dealing with these aspects of PenPoint requires you to observe a number of
guidelines, described in the following sections. The good news is that the software
architecture of PenPoint shoulders much of the load for you.

The Class Manager supports the pervasive use of classes and objects throughout
PenPoint; not only in the user interface area, but also in areas such as the file
system and the imaging model. These classes provide you with ready-made
components which you can use as is or customize in your applications. These
objects already conserve memory, exploit the pen interface, cooperate with other
processes, and so on. In particular, nearly all of the work your application needs to
do to work within the PenPoint Notebook is already implemented by pre-existing
classes which comprise the PenPoint Application Framework.

How Applications Work 3.2

In the PenPoint™ operating system, the environment in which your application
runs and how it starts up are unlike any other operating system.

MS-DOS accepts a command line, executes a single program at a time, and pretty
much gets out of the way while that program is running. The PenPoint
'Application Framework takes an active role in running your application. The
Application Framework is responsible for activating, saving, restoring, and

CHAPTER 3 / APPLICATION CONCEPTS
How Applications Work

terminating your application. Additionally, the Application Framework plays a
part in installing and deinstalling your application.

Because all PenPoint applications use the Application Framework, all applications
behave consistently. Additionally, the Application Framework handles the
housekeeping functions that Macintosh or MS-DOS programs must perform
from boilerplate code. Meanwhile, the PenPoint Application Framework presents
the PenPoint user with multiple small, concurrent documents as part of a
consistent, rich notebook metaphor.

I¢’s difficult to cleanly define the PenPoint Application Framework, because it is
both external to your application and something your application is itself a part
of. But here’s an attempt:

The PenPoint Application Framework is both the protocol for supporting
multiple, embeddable, concurrent applications in PenPoint, and the
support code that implements most of an application’s default response
to the protocol.

To help you understand how an application fits into the PenPoint computing
environment, this section walks through some important stages in the life of an
application. By its end you should understand a little about the PenPoint
Application Framework, some of the classes of objects in PenPoint, and why
classes are so important. The next section explains class-based programming in
PenPoint.

With an understanding of the PenPoint Application Framework and the Class
Manager under your belt, you’ll be able to work through the tutorials on
PenPoint programming that begin in Chapter 6. The tutorial summarizes other
PenPoint subsystems: windows, User Interface (UI) toolkit, filesystem, and
handwriting translation. The tutorial incorporates these subsystems into a set of
increasingly functional sample programs.

P Installing and Starting Applications 3.2.1

After acquiring an application, the user must install the application in the
PenPoint computer. Usually an application distribution disk contains the code
and data that implement the application’s classes, and any other classes required
by the application.

We'll first look at how a user installs and starts a program on a traditional PC
operating system (MS-DOS). Then we’ll compare these operations with installing
and running an application on PenPoint.

%> MS-DOS Installation . 3.2.2

In MS-DOS, the user usually installs a program by copying the program from
distribution disk to a hard disk. Once on the hard disk, the program does nothing
until the user types a command to start the program up.

21

3 / APPLICATION CONCEPTS

22 PENPOINT APPLICATION WRITING GUIDE

Some MS-DOS programs require the user to copy the files from to the hard disk;
others provide their own installation programs, which copy the files to the hard
disk and alter system configuration parameters for their program. Installation
varies tremendously from program to program.

When the user types the startup command for a program, MS-DOS loads the
program into memory from the hard disk and transfers control to the program.
Once the program is running, it controls most of the operations of the CPU until
the user leaves the program.

P> PenPoint Installation 3.2.3

In PenPoint, the user installs a program by opening the Connections or Settings
notebook on the Bookshelf and turning to the installable software sheet (or by
inserting a disk that contains quick installer information).

From the installable software sheet, the user can choose various categories of
installable items, including applications, services, dictionaries, and so on. When
the user turns to a page for an installable item, the Installer shows all the available
applications that can be installed from the currently open volumes. The user
selects an item and taps the Installed? checkbox next to the item. The Installer
copies the program to an area of memory set aside for programs (the loader
database) and copies other files required by the program (such as help files,
application resource files, and stationery files) to the file system.

From this point, running PenPoint applications differs significantly from the
MS-DOS model. Once a program is in the loader database, PenPoint can transfer
control directly to it; there is no intermediate step of loading the program into
memory, because it is there already.

PenPoint transfers control to your program for two different reasons: the user is
installing your program, or the user is opening a document that requires your
program (we will cover this case in the next section).

P> Installer Responsibilities 3.2.4

During installation, the Installer calls a standard entry point in your program
(called main) in such a way that you can tell that your program is being installed.
At this time, most programs create their application class and any other classes
that they need. Some programs initialize files or common data structures such as
dictionaries or stationery.

If your application requires code for other classes (such as a special character-entry
class) and resources (such as a special font), the Installer ensures that these classes
and resources are present in the computer. If they are not present, the Installer
copies and installs them also. In turn, these classes may require additional classes
and resources, and so on.

The installer keeps track of all installed applications. When the Installer initializes
your application, the application specifies whether it should go in the Tools
accessory palette or in the Stationery notebook, or both (or neither). Depending

CHAPTER 3 / APPLICATION CONCEPTS 23
Running a PenPoint Application

how your application initializes itself, the user will now see the application in the
Accessories window, or in the Stationery notebook and Stationery pop-up menu.

After installation, your code is in a similar state to an MS-DOS .EXE or .COM
program that has just been loaded into memory but not yet run. However, when
the MS-DOS program terminates, it removes itself from memory. PenPoint
programs stay in memory until the user removes the application.

Running a PenPoint Application

When running an MS-DOS program, the user has to find a file that contains data

understood by the program. When the user decides to stop using the program, he
or she must save the data to a file and then exit. If the user chooses a file that the
program doesn’t understand, the program might display garbled information, at
best, and at worst the program might crash.

PenPoint takes a fundamentally different approach; the user creates a document
from a list of available applications and, at some later time, tells PenPoint to
activate the document. The user doesn’t have to activate the document
immediately after creating it and, in fact, can create many, many documents
without activating any of them.

Life Cycle of a Document

The standard components of an application include its application code,
application object, resource file, instance directory, process, and main window.
The full life cycle of a document created by an application includes these
operations:

¢ Document creation (create file)
@ Activation (create process)

¢ Opening (open on screen)

¢ Closing (remove from screen)

¢ Termination (terminate process)
¢ Destruction (delete file)

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application’s state explicitly from one
session to the next. ~

Activating a Document

When the user activates the document, PenPoint finds out from the document
what application it requires and creates a process that “runs” the application (the
reason for the quotes is explained below under Application Classes and Instances).
When the user deactivates the document, PenPoint saves all information for the
document and then destroys the application process.

3.3

3.3.1

3.3.2

The important thing in PenPoint
is that the document remains in
the computer from the time it is
created until the time that the
user deletes it, but the
application process exists only
while the document is active.

3 / APPLICATION CONCEPTS

24 PENPOINT APPLICATION WRITING GUIDE

P> Not All Active Documents are On-Screen | 13.3.3

It’s only when the user activates a particular document that the document has a
running application process. When the user activates a document, the PenPoint
Application Framework creates an application process and calls the standard entry
point in your code (main) in such a way that your application can tell that it is
starting an application process (and not being installed).

However, just because a document is running, doesn’t mean that it must be
on-screen; conversely, if a document is not on-screen, its process might still be
running.

The most common example of this is when the user makes a selection in a
document and then turns to another document (perhaps to find a target for a
move or copy). The document that owns the selection must remain active until it
is told to release the selection.

A second example is the user chooses Accelerated Access Speed from the Access
document option sheet (sometimes called hot mode), the application processes
will continue running, even when the user has turned to another page.

For a third example, you might want to create a stock-watcher type program that
runs in the background most of the time. This type of program will also be active
but not on-screen.

P Application Classes and Instances 3.3.4

A PenPoint computer contains only one copy of your application code in
memory, but a user can simultaneously activate several documents that use your
application. PenPoint can do this because your application code is a PenPoint
class and an active document is an instance of your application class.

When the user installs your application, your application creates your application
class. When the user activates a document that uses your application, the
Application Framework creates an instance of your application class.

Accept this as Gospel now. We will spend pages and pages in this and other .
manuals explaining how this works.

.VPenPoinl' Drives Your Application 3.4

Because of all these states that an application can be in, an application can’t take
control and start drawing on the screen and processing input when its main
function is called. Nor can your application find out on its own if it is on-screen
or should terminate. Instead it must be directed what to do by the PenPoint
Application Framework. The Application Framework sends messages to
documents (and hence to your application code) to initialize data, display on
screen, save their state, read their state, shut down, and so on. This is why
applications must be implemented as classes.

For example, when a document needs to be started up to do some work, the -
PenPoint Application Framework sends msgAppActivate (read this as “message

CHAPTER 3 / APPLICATION CONCEPTS 25
Application Objects

app activate”) to the document. When the user turns to a document’s page, the

PenPoint Application Framework sends it msgAppOpen.

A typical MS-DOS program written in C has a main routine that displays a
welcome message, parses its command line, creates a user interface, initializes
structures, and then waits for user input. By contrast, a PenPoint application’s
main routine usually creates the application object and then immediately goes into
a loop waiting for messages to the application object to arrive. Because all
applications enter this loop, there is a routine, AppMain, which enters the loop
for you.

Application Objects
Most PenPoint applications perform three minimum actions:

® Respond to user and system events (including PenPoint Application
Framework messages)

¢ Create one or more windows for user input and to display output
¢ Create one or more objects to maintain their data.

There are object classes already written in PenPoint for each of these actions:
clsApp, clsWin, and clsObject, respectively. These classes do the right kinds of
things for applications themselves, windows, and data. They provide a skeleton of
correct behavior, although obviously GO’s code doesn’t create tic-tac-toe appli-
cations, tic-tac-toe windows, or 3x3 “board” data objects. To get the behavior you
want, you often need to use descendant classes that inherit from existing classes.

3.5

R

This section overruns with
the terminology of classes.
Descendant, Inheritance, and

3 / APPLICATION CONCEPTS

other terms are explained in the

next section, “How Classes
Interact.”

26 PENPOINT APPLICATION WRITING GUIDE

‘ Figure 3-1 .
Application, View, and Object Classes

PenPoint
provides:

Obsjects in a running
instance of your

application
P» A Descendant of clsApp 3.5.1
The PenPoint Application Framework’s interactions are sophisticated and The EMPTYAPP sample program
complex. You’ll learn more about them in the following sections. Applications In the Tutorlal doee nothing

. .] 1 significant in response to any
need to behave in a standard way to work well in the framework. To simplify life 1260546, yer becpause it inherits

for the application developer, your application class inherits most of this standard ~ from clsApp you can create

. . EmptyApp documents, copy
beha.wo? from the.class clsApp. clsApp h.and.les all the common machlngliy of: Shemm. float them, embed <hetn,
application operation, so that many applications do not need to do anythingin 4450 on.
response to messages like msgAppActivate and msgAppOpen. Applications rely
on clsApp to create their main window, display the main window, save state,

terminate the application instance, and so on.

Lots of stuff is done for youl

You must write a descendant class of clsApp and create it during installation. In
the example shown here, the descendant is clsTttApp. At the appropriate time,

CHAPTER 3 / APPLICATION CONCEPTS 27
Application Objecis

the PenPoint Application Framework sends this class a message to create an
instance of the class (77c-Tac-Toe application instance in the figure). However, you
must decide when to create your application’s other objects (windows and filing
objects).

An Instqncé of clsWin

The PenPoint Application Framework creates a frame for your application by
default. This is a window with many “decorations”: a title bar, a shadow if the
window is floating, optional resize corners, close box, menu bar, tab bar,
command bar, etc. These decorations surround space for a client window. It is up
to you to create the client window. You can also create windows to go into your
frame’s menu bar, tab bar, and command bar, and you can create floating
windows, additional frames, and so on. Most applications create one or more
windows to draw in and allow user input. '

All window classes inherit from clsWin. This class does not paint énything useful

in its window, so you must either create your own window class which draws what

you want or use some of the many window descendant classes in PenPoint.

%7 Some Window Classes
The Tic-Tac-Toe application, shown in Figure 3-1, for example, creates several
kinds of windows based on existing classes in PenPoint:

¢ A scrolling client window (an instance of clsScrollWin), which lets the user
scroll its contents

¢ An option sheet for its options (clsOption)
¢ An option card for the option sheet (clsOptionTable)

@ Various user interface component windows (clsButton, clsLabel,
clsIntegerField) for the option card

¢ Menus
¢ A Tic-Tac-Toe view (clsTttView) to display the grid and Xs and Os.

Like clsTttApp, you have to write the code for clsTttView and create the class at
installation. Your application must create the various windows at the appropriate
times, such as when it receives msgApplInit or msgAppOpen.

%7 Using clsView
Many applications will use clsView, a specialized descendant of clsWin, for their
custom windows. clsView associates its window with the data object it is
displaying; the data object sends the view a message when its data changes. In the
case of Tic-Tac-Toe, clsTttView inherits from clsView, so the Tic-Tac-Toe
window is a view.

In Tic-Tac-Toe, a clsTttView instance observes the data object (an instance of
clsTttData). More than one view can be associated with the same data; in theory

- 3.5.2

Frames support only one
client window, but you
can insert other windows
inside the client window.

3 / APPLICATION CONCEPTS

3.5.2.1

3.5.2.2

28 PENPOINT APPLICATION WRITING GUIDE

two views of the Tic-Tac-Toe board could show their state in different ways.
When the data changes, all the views are notified and can redraw themselves.

P# An Instance of clsObject . 3.5.3

Instead of managing all of the data involved with an application itself, a PenPoint
application typically creates separate objects that maintain and file different parts
of the data. These objects respond to messages like “Save yourself” and “Restore
yourself from a file.”

clsObject is actually the ancestor of all classes in PenPoint, including clsWin and
clsApp. There is no class specifically for objects that must be filed. Filing is such a
general operation that all objects in the PenPoint operating system are given the
opportunity to respond to msgSave and msgRestore messages. PenPoint supplies
various descendant classes, which help in storing structured data, such as a list
class (clsList), a picture segment (clsPicSeg), a block of styled text (clsText), and
so on.

In Figure 3-1, the data for the Tic-Tac-Toe application (the values of the nine
squares) are maintained by a separate object, Tic-Tac-Toe square values, an
instance of the specialized class clsTttData.

P Understanding the Application Hierarchy :s

You may have wondered how PenPoint keeps track of all the sections, documents,
and embedded documents in a notebook if application objects are not
immediately up and running when they are created. The answer is that each
document and section in a notebook is represented in an \application hierarchy
in the PenPoint file system. The Notebook table of contents displays a portion of
this application hierarchy.

The reason it is called an application hierarchy is that the directory structure is the The application hierarchy differs
same as the hierarchy of documents in PenPoint (including embedded documents, from the class hierarchy

. . . . explained in the next chapter,
accessories, and other floating documents not on a page in the Notebook). Each ;1 from the hierarchy of
notebook has a directory in the file system. Within the notebook, each document windows on-screen.
or section has a directory. Within each section, each document or section has a
directory. Within each document, all embedded documents have a directory, and

SO on.

As an example, when the user creates a document in a section of the Notebook,
the PenPoint Application Framework creates a new application directory in that
section’s directory. When the application is told to save its state by the PenPoint
Application Framework, the PenPoint Application Framework gives it a file to
save to in that application directory.

All PC operating systems have a file system, and in most you can store application
data in a similar hierarchy of directories and subdirectories. Some may even
provide a folder or section metaphor for their file system. But they do not directly
weave applications into this file system. The Notebook’s TOC (tap on its

CHAPTER 3 / APPLICATION CONCEPTS
Understanding the Application Hierarchy

Contents tab to move to it) shows the organization of documents in the
Notebook, and #his is the organization of part of PenPoint’s file system.

In PenPoint, the application hierarchy exists in the \PENPOINT\SYS\BOOKSHELF
directory on theSelectedVolume. You can inspect the application hierarchy
yourself. Modify your ENVIRON.INI file so that the DebugSet parameter specifies.
/DB800. Run PenPoint and go to the connections notebook. Using the
directory view, browse through the disk volume. In the \PENPOINT directory,
you should see directories called NOTEBOOK, SECTION, and so on. Compare this
with the Notebook TOC. The browser shows exactly what the file system looks
like, while the Notebook TOC interprets this part of the file system as the
application hierarchy.

If your selected volume is your hard drive, you can also inspect this hierarchy from
DOS. However, to keep path names short, all of the PenPoint directory names
below \PENPOINT use two letter names. For example, the SYS directory is SS in
DOS, the BookShelf directory is BF, the Notebook is NK, and so on.

%> The Notebook’s Own Hierarchy 3.6.1

The PenPoint classes and application hierarchy probably seem obscure and
confusing at this point. So let’s look at how the Notebook itself is written using
this metaphor. Each component of the Notebook is itself a document, with its
own main window, a parent window, and a directory in the file system’s
application hierarchy.

The important concept to grasp is that there is a correspondence among: Strange and important!

¢ PenPoint applications,
¢ The functionality of the parts of the notebook metaphor,
¢ The visual presentation of parts of the Notebook,
The PenPoint file system layout.
Some of these relationships are:

Running documents are instances of application classes.

Functionality of notebooks, sections, and pages is delivered by application
classes.

Visual components of a notebook are these applications’ windows.
Sections and pages in a notebook are these applications’ directories.

Section name and page number location in a notebook combine to form a
location in the file system. ” ‘

3 / APPLICATION CONCEPTS

30

PENPOINT APPLICATION WRITING GUIDE

This figure shows how a typical mix of applications in a running PenPoint system
uses different kinds of classes.

The following figures are

explained in more detail in Part
2: Application Framework of the
FenFoint Architectural Reference

Figure 3-2
book Hierarchy

The PenPoint Application Framework and the Note

CHAPTER 3 / APPLICATION CONCEPTS
Understanding the Application Hierarchy

The next figures indicate how the same visual components exist in the file system,
and as processes and objects.

Figure 3-3
The Notebook Hierarchy as Mirrored by the File System

31

, Bookshelf
et doc.res
i docstate.res
i Notebook
i Edoc.res
&

docstate.res
Contents

i Peckaqe Design Leﬂ:r i
b Decumen! Edt Options. View [nset Case
Canywdcsxmal:ﬂnmnﬂxf,mcyclable,&m ‘? -
| |plastic bottle that wen! tbn:akundetmodcme i
impact?lllbctraveumgnmmek,butym t
he canfaxmesuggemdproposalsa&li&,’
5559833
[7 T

~doc.res
~docstate.res

- browstate

- Read Me First
doc.res
docstate.res

- Samples
doc.res
docstate.res
browstate
New Product Ideas
L etc...
= Package Design Letter
E doc.res

| T ELD s

docstate.res

Suggestion
doc.res
docstate.res

= etc...

3 / APPLICATION CONCEPTS

32 PENPOINT APPLICATION WRITING GUIDE

Here are the same visual components as they exist in the PenPoint file system.

Figure\"3~4
The Notebook Hierarchy as Mirrored by Application Processes

Document Process Process O

NB Application
NB Process Class

Section
Application Class

L

MiniText
Package Design Letter Application Class

.
MiniNote
Application Class

You can use the Disk Viewer accessory to explore the relationship between
documents and the file system yourself. To view the RAM volume in the Disk
Viewer, you need to set the B debug flag to hexadecimal 800 in order to view the
contents of the RAM file system. The easiest way to do this is to modify the
DebugFlag line in ENVIRON.INI.

CHAPTER 3 / APPLICATION CONCEPTS 33
Understanding the Application Hierarchy

v The Deskiop 3.6.2
The highest level of the application hierarchy is the Desktop. This is an

application, but there is only ever one instance of it—you can’t create additional
desktops. The Desktop application manages the bookshelfs and floating
applications. Its parent window is the entire screen of the PenPoint computer. It
draws the white background.

"% The Notebook 3.6.3

Below the Desktop’s directory lies the directory of the main Notebook (and other
documents on the bookshelf). The Notebook application presents the familiar
visual metaphor of a notebook, with pages and tabs. All applications that “live” on
a page have subdirectories in the Notebook. There are usually several notebooks
on a PenPoint computer: the Main notebook, the Stationery notebook, and the
Help notebook. Even the In Box and Out Box are implemented as notebooks.

The Notebook document stores the section tab size, the current page shown in
the Notebook, the page numbering scheme, and so on in its directory.

When the user taps to turn a page in the Notebook, the Notebook traverses the
application hierarchy to the next document directory and sends a PenPoint
Application Framework message to that document’s application to start it up.

The Notebook’s window covers most of the screen except for the Bookshelf at the

bottom.
% Page-Level Applications 3.6.4
The subdirectories in the Notebook’s directory relate directly to the documents Actually, sections are

documents that know how to

and sections in the Notebook. The name of the subdirectory 7s the name of the :
behave in a table of contente.

document or section. Each of these subdirectories contains the filed state of an
instance of a section or document.

This table lists some of the items in the Notebook (shown in Figure 3-4, the
directory in which each of the items are stored, and the class from which each
item is instantiated.

Table 3-1
Notebook Organization and the File System
Document or Section Stored in Directory Tnsfance of Class
Samples : Notebook Contents clsSection
New Product Ideas Samples clsMiniText
Package Design Letter Samples clsMiniText
Suggestion Package Design Letter clsMiniNote

Most applications have a menu bar. The PenPoint Application Framework
supplies a set of standard application menus (SAM:s), to which applications add
their own menu items. The PenPoint Application Framework provides support

3 / APPLICATION CONCEPTS

34 PENPOINT APPLICATION WRITING GUIDE

for the menus (Document, Edit, and Options) and many of the items on the
menus. ‘

Applications draw in the window that the Notebook provides for them. A
page-level applications’s window is the Notebook area; except for the tabs area.

P» Sections 3.6.5

Sections are similar to other applications: they are instances of an application class
(clsSectApp), they appear on a Notebook page, they can have tabs. A section
application displays a table of contents showing the documents that are in that
section: these are simply the application subdirectories in the section’s own
directory. '

One difference between a section and other applications is that a section has a Actually, a section has a special
special flag in its directory entry. When the Notebook is traversing the application 4irectory attribute.

hierarchy (to display its table of contents, or turn to the next page), if it comes

across a section it descends into the section. This enables the Notebook to number

pages correctly.

Section data stored in the section’s directory entry includes the state of its table of
contents view (expanded or compressed).

The Notebook Contents page is an instance of clsSectApp, just like other
sections. To show the TOC for everything in the Notebook, it must have
everything in the Notebook in its directory. This is why the actual file system
organization of the application hierarchy is
\PENPOINT\SYS\MY_NOTEBOOK\NOTEBOOK APPS\... Where NOTEBOOK APPS is
the directory of the “section” for the entire Notebook contents.

P> Floating Accessories 3.6.6

Most PenPoint applications are part of the Notebook. But some applications,
such as the calculator, the disk viewer, and the snapshot tool, don’t “live” on a
page in the Notebook. These accessories “float” on the Desktop when active,
appearing over pages in the Notebook. Their parent window is the Desktop, not
the Notebook page area. They aren’t part of the Notebook’s table of contents and
you can’t turn the page to them. However, a floating application is still part of the
same underlying model: it has a directory (it’s just not a subdirectory of the
Notebook), it is sent messages, and so on.

P» Embedded Applications 3.6.7

It is possible to embed documents in other documents which permit it. For
example, an on-line “electronic newspaper” document might install an instance of
a crossword puzzle application in itself; the crossword puzzle class might allow the
user to embed an instance of a text application in a crossword puzzle document to
let the user jot down notes and guesses. The design of PenPoint makes it easy to
write applications which can embed, and be embedded in, other applications.

CHAPTER 3 / APPLICATION CONCEPTS 35
Understanding the Application Hierarchy

When the user creates a new document in the notebook, PenPoint actually
embeds the application in the Notebook application. This document embedded
in the notebook is called a page-level application.

Only page-level applications appear in the Notebook’s Table of Contents—
applications that are embedded in page-level applications do not. It doesn’t make
sense for a user to turn the page to an application embedded in the current page.

Application embedding is very straightforward. When the user moves or copies an
application, the Desktop application sends a msgAppCreateChild message to the
destination application. If the application permits embedding, the PenPoint
Application Framework handles this message by creating a directory for the
embedded application within the destination application’s directory.

3 / -APPLICATION CONCEPTS

When an application is embedded in another, the embedded application is
inserted into two hierarchies: the file system hierarchy and the window system
hierarchy. In the file system, the application directory for an embedded
application is a subdirectory of the application directory of the application in
which it is embedded. In the window system, the parent application supplies a
window into which the embedded application can insert its main window.

Thus, in our example, the newspaper application uses an application directory for
the newspaper document. Within that directory is an application directory for the
crossword document. Within the crossword application directory is a directory for
the text editor document. The newspaper document window contains a window
which is the main window for the crossword document. The crossword document
window contains a window which is the main window for the text editor.

% Application Data 3.6.8

A document stores data in its directory so that when its running process is
terminated, its state lives on in the file system. The Application Framework can
later create a new process for the document and direct the document’s application
to restore the document from this filed state.

Some information is of interest to this instance only, such as the visible part of the
file, the user’s current selection, and so on. This would probably be saved by the
application itself, that is to say, when the application receives msgSave it writes
this information out.

The application can also tell the Application Framework to send msgSave to other There are many mechanisms
objects to get them to save their data (your application can’t send msgSave that automatically propagate

. ’ . msgSave to related objects.
directly to another object). For example the image in a sketching program might Frames can be set to save child
be implemented as a separate object; when the application is told to save, it tells ~ windows, views save their data

the Application Framework to save the image object. objects, and so on.

By default clsApp saves the information about the document, including its
comments, frame window position, mode, and so on, so you only need to save
those things created by your application class.

36 PENPOINT APPLICATION WRITING GUIDE

Activating and Terminating Documents 3.7

In the section “Application Classes and Instances,” we described how an instance
of the application is created. The previous section should help clarify the
relationship between the file system and an instance of your application. The
location of a document in the file system hierarchy has a one-to-one
correspondence with its location in the Notebook, on a page, within a section,
and so on. See the figure to get a sense of the relationship.

The main determinant of how and when documents blossom from being
directories and data in the file system to being live running processes and objects is
the user’s action of turning the page.

When the user turns to a page, the documents on that page become visible; if they
aren’t already running, the Application Framework activates them.

P> Turning a Page and msgAppClose : 3.7.1

When the user turns to another page, the document on the original page no
longer needs to appear on screen, so the PenPoint Application Framework sends
msgAppClose to the application instance, indicating that it can close down its
user interface.

When it receives msgAppClose, the application might still have some processing
to do or it might be talking to another application. The application can finish its
work before acting in response to msgAppClose.

To respond to msgAppClose, the application should save (to the file system) any
data about on-screen objects that the user moved or changed. The application
should then destroy and remove all windows that it created, thereby reducing
memory usage.

An application instance may receive msgApp Terminate after msgAppClose (if it
isn’t in “hot mode”). When it receives msgAppTerminate, the application must

save all data that will be required to restore the document to the screen exactly as
it was before, because msgAppTerminate kills the document’s process.

P# Restoring Inactive Documents 3.7.2

When the user turns back to the saved document, the Application Framework
looks at that document’s directory. If the process for the document was
terminated, the Application Framework starts a new process, creates a new
instance of the application class, and recreates the document based on information
in the directory. As part of this re-creation, the Application Framework sends the
document msgRestore, which tells it to read its state back in from the file system.

The Application Framework then sends msgAppOpen to the application, telling
it to prepare to draw on the screen. The Application Framework also sends
msgRestore and msgAppOpen to any embedded applications in that document.

Finally the Application Framework inserts the application’s windows into the
screen, and the windows receive messages telling them to paint.

CHAPTER 3 / APPLICATION CONCEPTS 37
Documents, not Files and Applications

From this point the user can interact with the document. When the user makes a
p

gesture within the document, the document’s application controls the resulting

action.

%> Page Turning instead of Close 3.7.3
As described in “Turning a Page and msgAppClose,” most PenPoint applications

don’t need a Close menu item. Most documents are active until the user turns the
page; others may be active even when off-screen (for instance, if they have the
selection or are involved in a copy operation). The user doesn’t know what a
running application is: when the user turns to a page, everything on it appears
exactly as it was when the page was last “open,” and every window responds to the
pen. The fact that some of the applications may have been running all the time
while others were terminated and restarted should be inconsequential to the user.

3 / APPLICATION CONCEPTS

P Saving State (No Quit) : 3.7.4

In an MS-DOS or Macintosh program, the user explicitly Quits the application,
and thus doesn’t expect the application to reappear in exactly the same state.

Because of PenPoint’s notebook and paper paradigm, you must preserve all the
visual state of your application so that when it is restarted it appears the same.
This has strong implications for the kinds of information your application needs
to save when an application receives msgSave.

Documents, not Files and Applications 3.8

It’s important to understand that the application instance and the file it is editing
are conjoined.

The user should rarely, if ever, see “files,” instead she or he sees only documents.
(The exception to this is when importing data from and exporting data to other
computers.) Ordinarily, for every document in the application hierarchy there is
an application.

A user can deinstall an application without deleting the application’s documents
in the file system. If the user tries to turn to one of these documents, there is no
code to activate them. Instead, these orphan applications are handled by a “mask”
application that tells the user that the application has been deinstalled and
prompts the user to reinstall the application.

% No New, No Save As... 3.8.1

On a PC, the user usually starts an application, and then chooses what file to open
with that application. But in the PenPoint operating system, the user can start an
application by:

¢ Turning to the page that contains a document,
¢ Floating a document,

¢ By creating a new embedded document.

38 PENPOINT APPLICATION WRITING GUIDE

The document open on a page (and any floating or embedded documents on that
page) are all applications with open files. You do not open a file from within an
application. Instead, you turn to (or float or embed) another document and
PenPoint starts up the correct application for that document.

Thus, it does not make sense to try to open another document from the current
application, or to save the current document as another document.

The only time that an application needs to actually open a file from disk is when
it is importing data from or exporting data that will be used by a file-oriented
program on a file-oriented operating system. '

P» Stationery

Users often want new instances of an application to start off from a particular
state. Instead of opening a template from within the application, Penpoint
supports application-specific stationery. The default piece of stationery is an
application instance started from scratch. The user can create additional stationery
documents, which are just filed documents kept in a separate notebook.

In the case of Tic-Tac-Toe, each document shows a view of its own board. There
is no new command, because the user can always create a new document. There is
no save command either—the Tic-Tac-Toe state is saved on every page turn.
There’s no open command, because the user can either turn to another
Tic-Tac-Toe’s page to “read it in,” or can start from a desired template by
accessing documents in the Stationery menu or auxiliary notebook.

7 Shutting Down and Terminating Applications

If a document is in the application hierarchy, it always exists as a directory in the
file system, whether it has a running process or not, and whether it is visible or
not. When the user deletes a document (page-level or embedded), PenPoint
deletes its directory from the file system.

The user can also elect to use the installer to deinstall or deactivate an application.
This might be necessary when the user needs more room on the computer for a
different application, or when the user isn’t using an application any more.
Deinstallation removes all application code from the loader database, which
prevents the user from running it. However, the documents still exist in the
application hierarchy, and can spring back to life if and when the user re-installs -
the application. Deactivation also removes the application code, but PenPoint
remembers where the application came from, so that it can prompt the user to
insert the appropriate disk if the user chooses to reactivate the application.

P» Conserving Memory

When a document is active, it is obviously consuming memory, but when it is not
active, it can still consume memory (if the computer is using a RAM-based file
system). The document’s saved state is in the application hierarchy, which can be

3.8.2

While the application is not
available, the mask application
handles the application’s
documents.

3.9.1

CHAPTER 3 / APPLICATION CONCEPTS 39
Shutting Down and Terminating Applications

in the RAM file system; the RAM file system shares RAM with running processes.
This emphasizes how important it is to conserve memory.

You should also try to conserve memory when an instance is running but not
open (for example, if it has the selection but is off-screen). This is an opportunity
to destroy UI controls and other objects which are only needed when your
application is on screen.

"> Avoiding Duplication 3.9.2

Documents receive messages from the Application Framework telling them to save
their state to their directory. When a document starts up, its corresponding
application often reads all of this state back into memory. This means that there
are two copies of the document’s state, the one in its address space and the saved
copy in the file system. This can be quite wasteful of space. There are several
approaches to eliminating this redundancy:

¢ Don’t read state back into memory. Read information in from the file system
when needed. This works well for database-type objects. Because the
application hierarchy is in memory, file I/O is faster than you might think,
but this is still slow. It does prevent the user from reverting to the filed state
of the document, since the filed state is always being updated. Your
application would have to disable Revert, or make its own backup copy of
filed state.

¢ Use memory-mapped files to map filed state into the application’s address
space. This works well for large data files, but it does interfere with Revert.

¢ Read state back into memory, then delete the information from the file
system. This means that if the application instance crashes, there is nothing
in the file system to recover.

¢ Refuse to save state to the file system. This implies that the application
process can’t be terminated. This also means that the application state can’t
be recovered.

7 Hot Mode : 3.9.3

The last alternative above is supported by the PenPoint Application Framework.
An application class or the user (by choosing Accelerated for Access Speed in the
application’s option sheet) can tell the PenPoint Application Framework that an
application instance should not be terminated. This is called “hot mode.” It means
that the document will appear much faster when the user turns to it, because its
process never went away. Ordinarily the Application Framework must start a new
process, create a new application object, tell it to restore its state, then put it
on-screen.

3 / APPLICATION CONCEPTS

40

PENPOINT APPLICATION WRITING GUIDE

P» Components

As we have seen, you can embed applications within other applications. This is the
basis for the Application Framework’s hierarchy. Applications require a good deal .
of overhead: each has its own directory, has code in the loader database, and runs -
as its own process (in addition to the directories and processes used by that
application’s documents).

You can reduce the size of an application by using components. Components are
separate DLL’s that provide a well-defined API to their clients. Most components
can be used as part of an applications, but they don’t require much overhead.

Components don’t run as a separate process, and don’t have a separate directory.
Some components, such as Reference buttons, manifest themselves as visible
objects and let the user embed, move, and copy them. Others, such as text views,
are visible but can be added to applications only programmatically. Others, such
as the Address Book, do not even have a UI; that is, they do not display on screen
(the address book provides information that other applications then format and
display).

3.9.4

Chapter 4 / PenPoint
Class Manager

The previous chapter introduced some of the concepts in the PenPoint™
Application Framework. This section quickly covers the PenPoint operating
system’s object-oriented Class Manager. The Application Framework largely
determines the overall structure of your applications; sending messages to objects
using the Class Manager makes up 80% of the line-by-line structure of your code.
With an understanding of the Application Framework and the Class Manager,
you can start the tutorial.

There are three elements to the PenPoint operating system’s object-oriented
software environment: objects, messages, and classes.

Perhaps the simplest way to introduce the concepts of objects, classes, and
messages is by looking at an example. The example discussed in the next three
sections outlines what must happen to set the title of an icon. A user sets an icon’s
title by making the « gesture over it. When its option sheet appears, the user
enters a new icon title, makes sure the layout style is one that includes the title,
and taps Apply.

If you feel that you understand the concepts of object-oriented, message-passing,
class-based ‘systems, you can sk1p this introduction and go directly to the section
titled “Sending a Message.”

Objects Instead of Functions and Data 4.1

In a non-object-oriented system, the icon and its title would be stored in a data
structure. Any piece of code that gets or sets information pertaining to the icon
must know the exact organization of that data structure. To modify the icon title,
the program would locate the data structure that represented the icon; for
example, it might change the icon’s title string by changing a pTitleString
pointer. This program will break if the internal structure changes or if the string is
later implemented by storing a compact resource identifier.

In an object oriented system, anything in the system can be an object. In our
example, the icon is represented by an object. The object knows about both the
data for an icon and the functions that manipulate it. The object hides, or
encapsulates, the details of its data structures and implementation from clients.
One of the messages understood by the object might be ° Set Your Title String,”
which tells the object to change its title.

Because the object contains the code for the functions that manipulate it, the
object locates its own internal data structures that represent the title, and changes
the title.

42 PENPOiNT APPLICATION WRITING GUIDE

This encapsulation reduces the risk of clients depending, either deliberately or Note “Client” here and
accidentally, on implementation details of a subsystem. If the internal structure ~ élsewhere in the SDK

. . documentation means any
changes, only the object’s code that manipulates the structures must change. Any ;o4c making use of 2 software
client that sends the “Set Your Title String” message can still send that message facility.

and will still get the same effect.

Some objected-oriented systems, including PenPoint, use software and hardware
protection facilities to prevent clients from accessing or altering the internal
structures of objects, whether accidentally or maliciously.

Ideally, in object-oriented operating systems, the objects presented to clients should
model concrete ideas in the application. For example, if your application’s user
interface requires a button, it should create an object for that button; if your
application has a counter, it should create an object to maintain that counter value.

P Messages Instead of Function Calls 4.2

Modular software systems are sometimes object-oriented without being
message-passing. That is to say, they have objects that hide data structures from
clients ¢such as “window”), and you pass these software objects as arguments to
functions which act on them. Using the example of setting an icon’s string, in
such systems you might pass the icon_window object to a routine called

Window_Set_String.

But this approach requires that clients know which function to call, or that the
function handle many different kinds of objects. The implementation of icon
strings might change so that icons need to be handled specially by a new
Icon_Set_String function. Again, all clients would have to change their function
calls.

Message-passing systems flip this control structure so that the object hides the
routines it uses. A client simply sends a message to the object, and the object
figures out what to do. This is known as data encapsulation. In the example we’re
using, clients send the message msgLabelSetString to the icon; the only argument
for the message is a pointer to the new Title string.

Because icons (or other objects) respond to messages, it doesn’t restrict the
implementation of icons: if, in the future, icons handle titles differently than other
labels, they can still respond to msgLabelSetString correctly.

“The object figures out what to do” sounds like black magic, but it is actually not
very complicated. You call a C routine to send a message to an object. Inside the
Class Manager code, the Class Manager looks up that message in a table (created
by the developer of the icon class) that specifies what function to call for different
messages. If the message is in the table, the Class Manager then calls the icon’s
internal function which actually implements the message.

CHAPTER 4 / PENPOINT CLASS MANAGER 43
Classes Instead of Code Sharing

One benefit of using messages instead of function calls is that many different An object can respond to

objects can respond to the same message. All objects that come from a common 21 Message sent to it; the
. message does not have to

ancestor will usually respond to the messages defined by that ancestor. For be defined by the object's

instance, you can send msgLabelSetString to almost any object. (In some systems class or its ancestor class.
this is called “operator overloading.”)

You can send any message to any object. Depending on whether it knows how to
respond to the message, the object chooses what to do:

If the object understands the message and can handle it, the object processes
the message. '

¢ If the object doesn’t understand the message, it gives the message to its
ancestor, to see if its ancestor knows how to handle the message (more on
ancestors later in this section).

If the object understands the message, but doesn’t want to handle it, the
object can ignore the message (by returning a non-error completion status),
reject the message (by returning an error completion status), or give the
message to its ancestor.

Classes Instead of Code Sharing | 4.3

Icons and several other similar objects have titles. Thus, each of those objects that
has a modifiable title must handle the “set string” message in some way or other.

In other programming methodologies, programmers take advantage of functional
overlap by copying function code, trying to make data structures conform so the
same routine can be used, or calling general routines from object-specific routines.
However, whether you copy code or link with general routines, the resulting
executable file contains a static copy of the shared code. The best you can hope for
is shared code implemented by the system, which is rare.

In a class-based system, an object is an instance of a specific class. The class
defines the data structures that are used by its instances, but doesn’t necessarily
describe the data in the structures (it is the data stored in these structures that
differentiates each instance). The class also contains the functions that manipulate
the object’s data.

Each instance of a class contains the data for the specific thing being described
(such as an icon). Each instance also knows to which class it belongs. Thus, there
can be many instances of a class (and data for each instance), but the code for that
class exists in only one place in the entire system.

If an existing class does almost everything you want, but not quite, you can create
a new class that inherits its behavior from the existing class. The new class is said

to be a subclass or descendant of its ancestor class. The subclass contains unique
functionality that was not previously available in its ancestor.

The subclass should not reproduce anything that was defined by its ancestor. The
subclass only defines the additional data structures required to describe the new
thing and the functions required to handle messages for the new thing.

4 / PENPOINT CLASS MANAGER

a4 PENPOINT APPLICATION WRITING GUIDE

Of course, subclassing does not stop at one generation. The icon window class, for
example, has eight ancestors between it and clsObject, which is the fundamental
class for all classes in PenPoint.

Take a look at the PenPoint Class Hierarchy in the class hierarchy poster. Find
the relationship between clsIcon and clsLabel (they’re near the lower right edge).

’» Handling Messages 4.3.1

An object can send a message to its ancestor class either when it doesn’t recognize ~Remember that even when the

the message or when it chooses to allow its ancestor class to handle the message, ~ 2ncestor handies the meseage,
it uses the data for the object

Because the icon window class inherits from the window class, the icon window that initially received the
automatically responds to all the messages that a window responds to (such as meseage.
msgWinDelta to move it or msgWinSetVisible to hide it) in addition to all the
messages specific to an icon window (such as msglconSetPictureSize). A class can
override or change some of its ancestors’ messages; for example, the icon window
responds to msgWinRepaint by letting its ancestor label paint the string, then it
draws its picture.
Figure 4-1
Message Handling by a Class and its Ancestors

msgListAddltem

By making it very easy to inherit behavior from existing classes, class-based
systems encourage programmers to extend existing classes instead of having to
write their own software subsystems from scratch. If you create a new kind of
window, say an icon with a contrast knob, you can make it a descendant of

CHAPTER 4 / PENPOINT CLASS MANAGER
Sending a Message

another class, and it will inherit all the behavior of that class, or as much behavior
as you choose.

You may find it easier to understand class-based programming by viewing code
instead of reading abstract explanations. The next few pages give some simple
examples of using messages and classes, and even the very simplest program in the
tutorial is—has to bel—fully class-based.

” Sending a Message | a4
In PenPoint, you usually send a message to an object using the ObjectCall
function (if the object is owned by another process you use ObjectSend). The

differences between ObjectCall and ObjectSend are detailed in Part 1: Class
Manager, of the PenPoint Architectural Reference.

Here’s a real-life example of sending a message. PenPoint provides a utility class,
clsList, which maintains a list object. The messages that clsList responds to are
documented in Part 9: Utility Classes, of the PenPoint Architectural Reference and
in the clsList header file \PENPOINT\SDK\INC\LIST.H). This is the definition of
msgListAddItemAt from LIST.H:

/**
msgListAddItemAt takes P_LIST ENTRY, returns STATUS

Adds an item to a list by position.
**/

#define msglistAddItemAt MakeMsg (clsList, 10)

Don’t worry about the details of the definition right now; this just tells us that

msgListAddItemArt is defined by clsList, that the message uses a P_LIST_ENTRY

structure to convey its arguments, and that the message returns a value of type _—
STATUS when it completes. o

We want to send msgListAddItemAt to a list object, telling it to add the value ’G’
to itself at position three in the list.

Figure 4-2 ‘
Sending msglistAdditemAt fo a List

45

MsgListAddltem

Message Arguments 4.4.1

Now, in order for a list object to respond appropriately to msgListAddItem, it’s
going to need some additional information. In this case the additional
information is the item to add to the list (‘G’), and where to add it (third
postion). Most messages need certain information for objects to respond correctly

4 / PENPOINT CLASS MANAGER

46

PENPOINT APPLICATION WRITING GUIDE

to them. The information, called message arguments, you pass to the recipient
along with the message.

In this case, the header file informs us that msgListAddItemAt takes a
P_LIST_ENTRY. In PenPoint’s C dialect, this means “a pointer to a LIST_ENTRY”
structure. Here’s the structure:

typedef struct LIST ENTRY {

Ulé
LIST ITEM

position;
item;

} LIST ENTRY, *P_LIST ENTRY;
typedef P_UNKNOWN LIST ITEM, *P_LIST ITEM;

U16 is an unsigned 16-bit number, P_UNKNOWN means a 32-bit pointer to an
unknown. (Chapter 5 of this manual describes the rest of PenPoint’s ubiquitous
typedefs and #defines.)

When you can deliver the message and its arguments to a list object, you're set.
Here’s the C code to do it:

LIST list; // the object
LIST _ENTRY add; // structure for message arguments
STATUS s; // most functions return a STATUS value

// Add an item to the list:

// 1. BAssemble the message arguments;

add.position = 3;

add.item = (P_LIST ITEM)'G’;

// 2. Now send the message and message arguments to the object.

if ((s = ObjectCall (msgListAddItemAt, list, &add)) !'= stsOK) {
Debugf ("add item failed: status is: 0x%1X", s);

}

P> ObjectCall Parameters

The code fragment above assumes that the list object (list) has already been
created; object creation is covered later in this chapter. As you can see, ObjectCall
takes three parameters:

¢ The message (msgListAddItem). Messages are just 32-bit constants defined
by a class in its header file. You can send an object a message defined by any
of the classes from which it inherits. (Some objects even respond to messages
defined by classes that are not their ancestors.)

¢ The object (list). Objects are referenced by UID’s, unique 32-bit ID
numbers. UID’s are discussed in more detail later.

¢ The arguments for the message (add). Not all messages take arguments
(msgFrameClose, for example, takes none), but others do
(msglconSetPictureSize, for example, takes a width and height). The
PenPoint Architectural Reference manual and the header files (in this case,
\PENPOINT\SDK\INC\LIST.H) document each message’s arguments.

The use of a weak word like
“takes” is deliberate. Although a
class usually requires a specific
message argument structure,
there is ho mechanism available
to detect when you pass it the

- wrong structure.

4.4.2

The term “parameters” is used
in function calls; the term
“arguments” is used for data
required for a specific message.

We use bold face to indicate
itets defined by PenPoint and
other symbols used in examples.

CHAPTER 4 / PENPOINT CLASS MANAGER 47
’ Sending a Message

ObjectCall has one 32-bit parameter for all the message’s arguments; if a message
takes more arguments than can fit in 32 bits, you must assemble the arguments in
a structure and pass ObjectCall a pointer to the structure. In this case, '
msgListAddItem takes a P_LIST_ENTRY, a pointer to a LIST_ENTRY structure.
(The PenPoint convention is that a type that begins with P_ is a pointer to a type.)
Hence the address of the add structure (&add) is passed to ObjectCall.

"% Returned Values 4.4.3

The result of sending a message is returned as a status value (type STATUS). stsOK
(“status OK?”) is zero. All status values that represent error conditions are less than
zero. Note that STATUS is a 32-bit quantity, hence the %IX in the Debugf
statement to print out a long hexadecimal.

4 / PENPOINT CLASS MANAGER

Some messages are designed to return errors that you should test for. For example,
the status returned by sending msglsA to an object is stsOK if the object inherits
from the specified class, and stsBadAncestor if the object does not.

Some objects respond to messages by returning a positive value (which is not a
status value, but an actual number). Others return more complex information by
filling in fields of the message argument structure supplied by the caller (or buffers
indicated by ‘pointers in the message argument structure) and passing back the
structure.

"% How Objects Know How to Respond | 4.4.4

The list object responds to msgListAddItem because it is an instance of clsList.
But what does that mean?

The list object has several attributes. Among them are the class that created the
object and the instance data for that object. As described above, when you define a
class, you must also create a table of the messages handled by your class.

The Class Manager finds out which class created the object and looks for the The Class Manager gives the

method table for that class. The method table tells the Class Manager that the object a pointer to the object’s
f . it for th he Class M Ils th instance data. This is one

class has a function entry point for that message, so the Class Manager calls that aspect of PenPoint’s data

function entry point, passing in the message and the message argument structure. ~ integrity.

Although the object receives the message, its class has the code to handle the

message.

If the class decides to give the message to its ancestor, it passes the message and the
message arguments to the ancestor (but the instance data is still the instance data
for the object that received the message).

48 PENPOINT APPLICATION WRITING GUIDE .

Figure 4-3
How Messages to Instances are Processed by Classes

' MsgLi:iAdd]tem

Creating an Object 4.5
Where did the list object in the example above come from?

The short answer is that a client asked clsList to create an instance of itself by
sending msgNew to clsList. In many ways this is no different than when we sent
msgListAddItem to the list object in the previous example.

Classes and Instances 4.5.1

The longer answer involves understanding the relationship among classes and
instances. In the section “Sending a Message” we discussed the fact that you send
messages to objects and those objects respond to the messages. We also discussed
how a class describes the data structures and the code used by its instances.

A class responds to msgNew by manufacturing an instance of itself. What is an
instance? It is merely an identifier and the data structures that represent an object.
Thus, the class asks the Class Manager to allocate the data structure and assign an
identifier to the structure. ’

How can a class respond to a message? This is a fundamental concept and one that In other words, all classes are

is hard to understand at first: a class is an object, just like any other PenPoint objects, but not all objects are
.o . classes.

object. And just like any other PenPoint object, an object is an instance of a class.

In the case of classes, all classes are instances of clsClass.

You can think of classes as objects that know how to create instances.

When a client sends a message to a class, the class behaves like any other object ~ When the object created by
and allows the class that created it (clsClass) to handle the message. clsClass clsClass is an instance of

R . clsClass, the new object is a
contains the code that creates new objects.

class.
Thus, in answer to our original question about how did the list object come into
being: a client sent msgNew to the object named clsList. clsList is an instance of
clsClass, so the code in clsClass created a new object that is an instance of clsList.
P An Alternative Explanation - 4.5.2

At an implementation level, here’s what actually happens.

The PenPoint Class Manager maintains a database of data structures; each data
structure represents an object. The PenPoint Class Manager locates these objects

CHAPTER 4 / PENPOINT CLASS MANAGER 49
Creating an Object

by 32-bit values, called UIDs (unique identifiers); UIDs are explained later in this
chapter in “Identifying the New Object: UIDs.” The data structure for each
object contains some consistent information (defined by clsObject) that indicates
the class to which the object belongs and other attributes for the object. Other
information in the data structure varies from object to object, depending on
which class created the object.

When a client sends a message to an object, the Class Manager uses the UID to
locate the object. The Class Manager then uses the object’s data structure to find
the class that created the object. The Class Manager finds the class and uses the
class’s method table to find the entry point for the function that handles the
message. '

To create an object, the process works the same way. A client sends msgNew to a
class object. The Class Manager locates the object, finds the class that created the
object (clsClass), and calls the function in clsClass that creates new objects.

% The _NEW Structure 4.5.3

You send msgNew to nearly every class to create a new instance of that class. In ~ The exceptions are pseudo

the case of msgNew, the message argument value is always a pointer to a structure /3998 and abstract clasces
. (see the Glossary).

that defines characteristics for the new object. This structure is commonly called

the class’s _NEW structure because the name of the structure is a variation of the For many classes, the _NEW

class name, followed by _NEW. For clsList, the "NEW structure is LIST_NEW. structure is identical to the
- : structure that contains the

. object’s metrics.
The _NEW structure is mainly used to initialize the new instance. For example,

when creating a new window you can give it a size and specify its visibility.

The _NEW structure differs depending on the class to which you send it. You can
find the specific _NEW structure to use when creating an instance of a class by
looking in the PenPoint API Reference manual or in the class’s header file. For
clsList, messages and message arguments are defined in
\PENPOINT\SDK\INC\LIST.H. The _NEW structure is LIST_NEW. This excerpt
comes from the LIST.H file:

typedef struct LIST NEW ONLY {

LIST STYLE style;
LIST FILE MODE fileMode; // Filing mode.
U32 reserved[4]; // Reserved
} LIST NEW ONLY, *P LIST NEW ONLY;
#define listNewFields \
objectNewFields \
LIST NEW ONLY list;

typedef struct LiST_NEW {
listNewFields
} LIST NEW, *P_LIST NEW;

4 / PENPOINT CLASS MANAGER

50 PENPOINT APPLICATION WRITING GUIDE

%7 Reading the _NEW Structure Definition 4.5.3.1
To read the _NEW structure definition, you need to perform the work that the
compiler does in its preprocessor phase, expanding the macro definitions. The
_NEW structures in the PenPoint API Reference have all been expanded for your
convenience.

Start by looking for the typedef for the _NEW struct (typedef struct
LIST_NEW) at the end of the example. The structure is represented by a #define
name (in this case listNewFields).

Here’s where it gets tricky; start thinking about inheritance. The #define name
(listNewFields) has two parts: ‘

¢ The #define name for the NewFields structure of the class’s immediate
ancestor (in this case, objectNewFields, which defines the arguments
required by clsObject).

¢ A _NEW_ONLY structure for the class being defined (LIST_NEW_ONLY). The
LIST_NEW_ONLY structure contains the actual msgNew arguments required
for clsList.

Each subclass of a class adds its own _NEW_ONLY structure to the NewFields
#define used by its immediate ancestor. This is how the _"NEW structure for a class
contains the arguments required by that class, by its ancestor class, by that class’s
ancestor, by that class’s ancestor, and so on.

In this case, however, there is only one ancestor, clsObject. objectNewFields is
defined in \PENPOINT\SDK\INC\CLSMGR.H:

#define objectNewFields OBJECT NEW ONLY object;
OBJECT_NEW_ONLY is defined in the same file. It has many fields:

typedef struct OBJECT NEW {

U32 newStructVersion; // Out: [msgNewDefaults] Validate msgNew
// In: [msgNew] Valid version
OBJ_KEY key; // In: [msgNew] Lock for the object
OBJECT uid; // In: [msgNew] Well-known uid
// Out: [msgNew] Dynamic or Well-known uid
OBJ_CAPABILITY cap; // In: [msgNew] Initial capabilities
CLASS objClass; // Out: [msgNewDefaults] Set to self

// In: [msgObjectNew] Class of instance
// In: [msg*] Used by toolkit components
OS_HEAP_ID heap; // Out: [msgNewDefaults] Heap to use for
~ // additional storage. If capCall then
// -0SProcessSharedHeap else OSProcessHeap
U32 . sparel; // Unused (reserved)
U32 spare2; // Unused (reserved)

} OBJECT NEW ONLY, OBJECT NEW, * P_OBJECT NEW ONLY, * P_OBJECT NEW;

Most elements in an argument structure are passed In to messages—you’re
specifying what you want the message to do. Out indicates that an element is set
during message processing and passed back to you. In:Out means that you pass in
an element and the message processing sets the field and passes it back to you.

CHAPTER 4 / PENPOINT CLASS MANAGER 51
Creating an Object

%7 A _NEW_ONLY for Each Class 4,5.3.2

Why such a complicated set of types? Thanks to class inheritance, when you create
an instance of a class, you are also creating an instance of that class’s immediate
ancestor class, and that ancestor’s ancestor class, and so on up the inheritance
hierarchy to the root Object class. Each ancestor class typically allows the client to
initialize some of its instance data. Many classes allow you to supply the msgNew
arguments of their ancestor(s) along with their own arguments.

This is true for clsList: it inherits from clsObject (as do all objects) and part of
its msgNew argument structure is the OBJECT_NEW argument structure for
clsObject. clsList has three msgNew arguments of its own: how it should file the
entries in the list, a list style, and a reserved U32.

These large message arguments structures are intimidating, but the good news is
that by sending msgNewDefaults, you get classes to do the work of filling in
appropriate default values. You then only need to change a few fields to get the
new object to do what you want. ’

Identifying _NEW Structure Elements 4.5.4

As a class adds a _NEW_ONLY structure to a_NEW structure, it also gives a
name to the _NEW_ONLY structure. From the clsList example, we can expand
the LIST_NEW definition as:

_typedef struct LIST NEW {
objectNewFields
LIST NEW ONLY list;
} LIST NEW, *P_LIST NEW;

The name list identifies the LIST_NEW_ONLY structure within the LIST_NEW
structure with the name list. We can carry on the expansion to apply the
definition of objectNewFields:
typedef struct LIST NEW {
OBJECT NEW_ONLY object;
LIST NEW ONLY list;
} LIST NEW, *P_LIST NEW;
You can see now, when you create an identifier of type LIST_NEW, you can specify
the _NEW_ONLY structures by specifying their names. For example, if your code
contains:

LIST NEW myList;

You can refer to the LIST_NEW_ONLY structure by myList.list, and the
OBJECT_NEW_ONLY structure by myList.object.

7> Code to Create an Object 4.5.5

This example code creates the list object to which we sent a message in the first
code fragment. Later code will show how the list class is itself created.

The preceding discussion mentioned that the client sends msgNew to a class to
create an instance of the class. The function parameters used in ObjectCall for

4 / PENPOINT CLASS MANAGER

52 PENPOINT APPLICATION WRITING GUIDE

msgNew are the same as before (the object to which you send the message, the
message, and the message argument value).

As we have seen, the _NEW structure can get quite large (because most subclasses
add their own data fields to the _"NEW structure). Many classes have default values
for fields in the _NEW structure, yet clients must be able to override these defaults,
if they want. »

To initialize the _NEW structure to its defaults, clients must send msgNewDefaults
to a class before sending msgNew. msgNewDefaults tells a class to initialize the
defaults in the _NEW structure for that class. After msgNewDefaults returns, the
client can modify any fields in the _"NEW structure and then can call msgNew.

LIST list; // Object we are creating. */
LIST NEW new; // Structure for msgNew arguments sent to clsList.

STATUS s;

// Initialize _NEW structure (in new).
ObjCallRet (msgNewDefaults, clsList, &new, s);

// Modify defaults as necessary...
new.list.fileMode = listFileItemsAsData;

// Now create the object by sending msgNew to the class.
ObjCallRet (msgNew, clsList, &new, s);

// The UID of the new object is passed back in the _NEW structure.
list = new.object.uid;

Because almost every message returns a status value (to say nothing of most Status values less than stsOK
function calls), your code tends to become littered with status checking. Hence ~ indicate errors.
\PENPOINT\SDK\INC\CLSMGR.H defines several macros to check for bad status

values. This fragment uses one of those macros, ObjCallRet. ObjCallRet does a

standard ObjectCall with its first three parameters, and assigns the return value to

its fourth. If the returned value is less than stsOK, ObjCallRet prints a warning

(when compiled with the DEBUG flag) and returns the value to the caller of the

function. There are many other macros of a similar nature; they are documented

in Part 1: Class Manager of the PenPoint Architectural Reference.

% Identifying the New Object: UIDs . 4.5.6
When you send msgNew to a class, the message needs to give you an identifier for
the new object (so your code can use it). As mentioned above, messages often pass
back values in the structure that contains the message arguments. In this case,

clsObject passes back the UID of the newly created object in its OBJECT_NEW
structure (in object.uid).

In our code example, the UID for the new object was passed back in

new.object.uid. The sample copied the value to the object named list, and
henceforth uses list when refering to the new list object.

You refer to objects using UIDs. A UID is a 32-bit number used by the Class
Manager to indicate a specific PenPoint object. An object’s UID is noza C
pointer; it consists of information used by the Class Manager to find an object

CHAPTER 4 / PENPOINT CLASS MANAGER 53

and information about the object’s class and other things. The symbol list in this
example is the UID of our list object; clsList is the UID of the list class.

‘PenPoint defines many classes that clients can use to create instances for their own
use (such as the list class, the window class, and so on). All of these built-in classes
are depicted in the class hierarchy poster.

When a client sends msgNew to a class to create a new object, the class is
identified by a unique value. If an application knows this value and the class is

loaded in PenPoint, the application can create an instance of the class. This value
is called a global well-known UID.

The global well-known UIDs of all the public PenPoint classes, including clsList,
are defined in \PENPOINT\SDK\INC\UID.H. Because all PenPoint programs
include this header file when they are compiled, all programs know about these
classes.

clsList is defined with this line in UID.H:
#define clsList MakeWKN (10, 1, wknGlobal)

MakeWKN (pronounced “Make well-known”) is a macro that returns a 32-bit
constant. Here the parameters to MakeWKN mean “create a well-known UID in
global memory for version 1 of administered ID 10.” No other well-known UID
uses the number 10.

Eventually, when you finalize your application, you will need to define your own
well-known UIDs. To get the administered number, contact GO Developer
Technical Support; they will assign you a specific administered value.

Unitil that time, you can use some spare UIDs, defined in
\PENPOINT\SDK\INC\UID.H, for this purpose. These UIDs have the values
wknGDTa through wknGDTg,.

Creating a Class

You have seen how to send a message to an object and how to send msgNew to a
class to create a new object. You use the same procedure to create any object and
send it messages, so you can send messages to any instance of any class in
PenPoint.

The last step is to create your own classes for your application. At the very least
you must create a class for your own application; frequently, you will also create
special window classes and data objects that draw and store what you want.

Creating a class is similar to creating an instance, because in both cases you send
msgNew to a class. When you create a class, you send msgNew to clsClass. This
is the class of classes. Remember that a class is just an object that knows how to
create instances of itself; in this case clsClass knows how to create objects which
themselves can create objects.

Creating a Class

There are other types of UIDs:
local well-known UIDs and local
private UIDs. There are no global,
private UIDs.

4 / PENPOINT CLASS MANAGER

54

PENPOINT APPLICATION WRITING GUIDE

In short, to create a class, you send msgNew to clsClass, and it creates your new
class object. A routine much like this in the PenPoint source files creates clsList; it
is executed when the user boots PenPoint (when the SYSUTIL.DLL is loaded).

Some classes, such as clslList
are created at boot time; other
classes are created later, such
as at application installation.

/**

ClsListInit

‘Install clsList

**/

STATUS ClsListInit (void)

{
CLASS NEW new;

STATUS s;

ObjCallRet (msgNewDefaults, clsClass, &new, s);

new.object.uid = clsList;
new.class.pMsg = (P_MSG) ListMethodTable;
new.class.ancestor = clsObject; '

new.class.size SizeOf (P_UNKNOWN) ;
new.class.newArgsSize SizeOf (LIST_NEW);
ObjCallRet (msgNew, clsClass, &new, s);

return stsOK;

} // ClsListInit

’» New Class Message Arguments

The important thing, as always, is the group of message arguments. Here the
message is msgNew, just as when we created the list object; because we are
sending it to a different class, the message arguments are different. When sent to
clsClass, msgNew takes a pointer to a CLASS_NEW structure. Like LIST_NEW,
CLASS_NEW includes the arguments to OBJECT_NEW as part of its message
arguments. Briefly, the CLASS_NEW message arguments are:

¢ The same OBJECT_NEW arguments used by other objects—a lock, capabilities,

a heap to use (and a UID field in which the Class Manager returns the UID
of the object).

The method table (new.class.pMsg) which is where you tell the class which
functions handle which messages. You must write the method table. This is
the core of a class, and is discussed in great detail in the next section.

The ancestor of this class (new.class.ancestor). The Class Manager has to
know what the class’s ancestor is so that your class can inherit behavior from
it, that is, let the ancestor class handle some messages. In this case, clsList is
an immediate descendant of clsObject.

The size of the data needed by instances of the class (new.class.size). The
Class Manager needs the information to know how much room to allocate in
memory when it creates a new instance of this class.

The size of the structure that contains information used to create a a new
instance of the class (new.class.newArgsSize)

4.6.1

CHAPTER 4 / PENPOINT CLASS MANAGER 55

For a list, the instance data is just a pointer to the heap where it stores the list
information, hence the size is (SIZEOF) sizeof(P_UNKNOWN). For other objects,
the instance data may include a lot of things, such as window height and width,
title, current font, etc. Note that an object has instance data for each of the classes
it is an instance of—not just its immediate class, but that class’s ancestor, and that
ancestor’s ancestor, and so on.

The instance data size must be a constant! If, say, a title string is associated with
each instance of your class, then you need either to have a (small) fixed-size title or
to keep the string separate and have a pointer to it in the instance data.

7> Method Tables

Nearly all classes respond to messages differently than their ancestors
do—otherwise, why create a new class? As a class implementer, you have to write
methods to do whatever it is you want to accomplish (such as maintain a list,
draw an icon, and so on) in response to a particular message.

In PenPoint, a method is a C function, called a message handler. The terms
message handler and method are used interchangably.

When a client sends a message to an instance of your class, you want the Class
Manager to call the message handler that is appropriate for that message. You tell
the Class Manager what to do with each message through a method table.

A method table is simply a mapping that says “for message msgSomeMsg, call my
message handler MyFunction.” You specify the table as a C array in a file that is
separate from your code (you must compile it with the method table compiler,
described below). A method table file has the extension .TBL. Each class has its
own method table; however, a single method table file can have method tables for
several classes. At the end of the file is a class info table that maps a class to the

method table for that class. There must be an entry in the class info table for each
method table in the file. The file looks something like this:

MSG_INFO clsYourClassMethods[] = {

msgNewDefaults, "myClassNewDefaults", objCallAncestorBefore,
msgSomeMsg, "MyFunction", flags,
0,

Vi
CLASS_INFO classInfo[] = {
"clsYourClass", clsYourClassMethods, 0,
0
}i
The quotation marks around the messages and classes are required. You can tell
the Class Manager to call your ancestor class with the same message before or after
calling your function by setting flags in the third field in the method table (the
third field in the CLASS_INFO table is not currently used and should always
contain 0).

Creating a Class

P_UNKNOWN is the typedef used in
PenPoint for a pointer
to an unknown type.

Important! Instance data size
must be a constant.

4.6.2

Some classes exist just to
define a set of messages; the
implementation of those
messages is up to its
descendants.

4 / PENPOINT CLASS MANAGER

56 PENPOINT APPLICATION WRITING GUIDE

%7 Identifying a Class’s Message Table
To convert the method table file into a form the Class Manager can use, you
"compile the table file with the C compiler, then run the resulting object through
the Method Table compiler \PENPOINT\SDK\UTIL\CLSMGR\MT.EXE). This turns
it into a .OBJ file which you link into your application.

The most important argument you have to pass to msgNew when creating a class
is a pointer to this method table (new.class.pMsg in the code fragment above).
When you create the class, you set new.class.pMsg to clsYourClass.

When an object is sent a message, the Class Manager looks in its class’s method
table to see if there is a method for that message. If not, the Class Manager looks
in the class’s ancestor’s method table, and so on. If the Class Manager finds a
method for the message, it transfers execution to the function named in the
method table.

When the Class Manager calls the function named in the method table, it passes
the function several parameters:

¢ The message sent (msg)
¢ The UID of the object that originally received the message (self)

¢ The message arguments (pArgs). The Class Manager assumes that the
message arguments are a pointer to a separate message arguments structure).

¢ Internal context the Class Manager uses to keep track of classes (ctx)

¢ A pointer to the instance data of the instance.

P> Self
~ Selfis the UID of the object that received the message.

- As we discussed before, when an object receives a message, the class manager first
sees if the object’s class can handle the message, then it passes the message to its
ancestor, which passes the message to its ancestor, and so on. However, the data
that each of those classes work on is the data in the object that first received the
message (which is identified by self). This is fundamental to understanding
object-oriented programming in PenPoint: calling ancestor makes more methods
available to the data in an object, it doesn’t add any new data.

A second fundamental concept is that an ancestor may need to make a change to
the data in the object. However, rather than making the change immediately by
calling a function, the ancestor sends a message to self to make the change. Be
careful not to get pulled into the semantic pit here, self means the object that
received the original message, not the ancestor class handling the message.
(Remember that the ancestors only make more functions available; not more data.)

Because the message is sent to self, self’s class can inspect the message and choose
whether it wants to override the message or allow its ancestor to handle it. Each

ancestor inspects the message and can either override the message or pass it to its
ancestor. This continues until the ancestor that sent the original message receives

4.6.2.1

4.6.3

Of couree, each ancestor deals
with only the parts of the object
data that it knows about; an
ancestor can’t modify a
structure defined by its
descendant.

CHAPTER 4 / PENPOINT CLASS MANAGER 57
Creating a Class

the message itself and, having given all of its decendents the opportunity to
override the message, now handles the message itself (or even passes the message
to its ancestor!).

7> Possible Responses to Messages - 4.6.4

- Here are some of the flavors of responses you can make to a message in a message

handler:

Do something before and/or after passing it to the ancestor class. This might
include modifying the message arguments, sending self some other message,
calling some routine, and so on. This means that the class will respond to the
message differently than its ancestor.

¢ Do something with the message, but don pass the message to the ancestor
class. This is appropriate if the message is one you defined, because it will be
unknown to any ancestor classes. If the message is one defined by an
ancestor, this response means that you're blocking inheritance, which is
occasionally appropriate.

¢ Do nothing but return some status value. This blocks inheritance, and means When such a message is new to
that it’s up to descendant classes to implement the message. This is not as a class (no ancestor), it s called
Rk an abstract message.
rare as it sounds; many classes send out advisory messages informing their
instances or other objects that something has happened. For example,
clsWindow sends self the message msgWinSized if a window changes size.
This is useful for descendant classes which need to know about size changes,
but clsWin itself doesn’t care.

What messages does your message handler have to respond to? It usually ought
to respond to all the messages specific to your class which you define—no other
ancestor class willl Ordinarily an instance of each class has its own data, so most
classes intercept msgNew to execute a special initialization routine; if there are
defaults for an instance’s data, the class will also respond to msgNewDefaults.
Most classes should also respond to msgFree to clean up when an instance is
destroyed.

Here is clsList’s method table.

//
// Include files
//

#include <LIST.H> // where the msgs are defined

MSG_INFO ListMethods [] =

{
/* clsObject methods */
msgNewDefaults, "ListNewDefaults", 0,
msgInit, "ListInit", objCallAncestorBefore,
msgFree, "ListMFree", 0,
msgSave, "ListSave", objCallAncestorBefore,
msgRestore, "ListRestore", objCallAncestorBefore,

4 / PENPOINT CLASS MANAGER

58 PENPOINT APPLICATION WRITING GUIDE

/* clsList methods */

msglListFree, "ListMFree", O,
msgListAddItem, "ListAddItem", O,

// Functions for the rest of clsList’s messages.

.«

« oy

}i
CLASS_INFO classInfo[] =

{
"ListMethodTable", ListMethods, 0,

0
i
Note that clsList responds to most intercepted messages by calling an appropriate
function (ListInit, ListMFree, and so on). The functions that implement the
various list messages are not printed here; indeed, external code should never call
routines internal to a class. One of the goals of object-oriented programming is to
hide the implementation of a class from clients using the class.

Chapter 5 / Developing
an Application |

Thus far, we have described PenPoint and PenPoint applications from a
conceptual point of view. By now you should understand how PenPoint differs
from most other operating systems and what the PenPoint Application
Framework and class manager do for you.

With this chapter we start to address what you, as a PenPoint application
developer, have to do when writing PenPoint applications.

¢ The first section describes many of the things that you have to think about
when designing an application.

¢ The second section describes some of the things that you have to consider
when designing an application for an international market.

¢ The third section describes the functions and data structures that you will
create when you write an application.

¢ The fourth section describes the cycle of compiling, and linking that you will
follow when developing an application.

¢ The fifth section provides a checklist of things that you must do to ensure
that your application is complete.

¢ The sixth and following sections describe the coding standards and naming
conventions used by GO. Included in these sections is a discussion of some
of the debugging assistance provided by PenPoint.

¢ The last section describes the tutorial programs provided with the SDK.

° °) ® °
Designing Your Application 5.1
When you design a PenPoint application, there are several separate elements that
you need to design:

The user interface

¢ The classes

¢ The messages

¢ The message handlers
¢ The program units

This section points out some of the questions you must ask yourself when
designing an application. This section does not attempt to answer any of the
questions; many answers require a good deal of explanation, and many decisions
involve your own needs.

60 PENPOINT APPLICATION WRITING GUIDE

Just read this section and keep these questions in mind as you read the rest of the
manual.

P Designing the User Interface 5.1.1

The most obvious part of a PenPoint application is the user interface. Almost as
soon as you determine what your application will do, you should begin to
consider your user interface.

Your user application should be consistent with the PenPoint user interface,
which is described in detail in the PenPoint User Interface Design Guidelines.

P> Designing Classes : 5.1.2

PenPoint provides a rich set of classes that can do much of the work for your
application. Your task is to decide which of these classes will serve you best. The
PenPoint Architectural Reference describes the PenPoint classes and what they can
provide for you.

If the classes provided by PenPoint don’t do exactly what you need, you should
look for the class that comes closest to your needs, then create your own class that
inherits behavior from that class.

P» Designing Messages 5.1.3

After determining that you need to create your own class, you need to decide what
messages you need. Usually you add new messages to those already defined by
your class’s ancestors.

However, the real trick to subclassing comes when you decide how to handle the
messages provided by your class’s ancestors. If you do not specify how your class
will handle your ancestors’ messages, the PenPoint class manager sends the
messages to your immediate ancestor, automatically. If you decide to handle an
ancestor message, you then need to decide when your ancestors handle the
message, if at all. Do you:

¢ Call the ancestor before you handle the message?
@ Call the ancestor after you handle the message?

¢ Handle the message without passing it to your ancestor at all (thereby
overriding ancestor behavior)?

P» Designing Message Handlers 5.1.4

After determining the messages that you will handle, you then need to design the
methods that will do the work for each of the messages. In considering the
methods and the information they need, you will probably start to get an idea of
the instance data that your class needs to maintain.

CHAPTER 5: DEVELOPING AN APPLICATION 61
Designing for Internationalization and Localization

7% Designing Program Units 5.1.5

When you understand the classes that you require, you should consider how to
organize your classes and their methods into program units. The common
approach used in our sample code is to place the source for each class into a
separate file.

You should consider whether a class will be used by a number of different
applications or used by a single application. If the class can be used by more than
one application (such as a calculator engine), you should compile and link it into a
separate DLL (dynamic link library). Each application tells the installer which
DLLs it needs at install time. The installer then determines whether the DLL is
present or not. If not, it installs the DLL.

Designing for Internationalization 5.2
and Localization |

PenPoint 2.0 will contain support for applications that are written for more than
one language or region. The process of generalizing an application so that it is
suitable for use in more than one country is called internationalization.
Modifying an application so that it is usable in a specific language or region is
called localization.

5 / DEVELOPING AN APPLICATION

PenPoint 1.0 already includes many features that will be used to support
internationalization. For example, PenPoint 1.0 uses PenPoint resource files to
store its text strings. When localizing to a specific language, a different resource
file will be created that contains text strings in that language.

There are two aspects to the changes implied by PenPoint 2.0. The first is making
your application port easily to PenPoint 2.0. The second is internationalizing your
~ application. V

P Prepafing for PenPoint 2.0 5.2.1

PenPoint 2.0 will incorporate some major changes that will cause applications
compiled for PenPoint 1.0 to be incompatible with PenPoint 2.0. The data
created by 1.0 applications should still work under 2.0, and properly writtern 1.0
applications should be portable to PenPoint 2.0 with nothing more than a
recompilation. '

This section describes how to write your PenPoint 1.0 application so that it will
be portable to PenPoint 2.0. Using these guidelines does 70f mean that you will
have internationalized your application! Internationalization and Localization are
much larger issues, and are dealt with elsewhere. These instructions are intended
only to make it easier for you to port your American English application to
PenPoint 2.0.

The biggest change is that PenPoint 1.0 uses the ASCII character set, while
PenPoint 2.0 uses Unicode. ASCII is an 8-bit character set; Unicode is a 16-bit
character set. This affects character types, string routines, quoted strings,

62

PENPOINT APPLICATION WRITING GUIDE

%7 Character Types

PenPoint provides three character types: CHARS, CHAR16, and CHAR. The first
two provide eight and sixteen bit characters, respectively. In PenPoint 1.0, the -
plain CHAR type is 8 bits long; in PenPoint 2.0, CHAR is 16 bits long. You need
to convert all of your character data to use the CHAR type, except where you know
the size you’ll need will be the same under PenPoint 1.0 and PenPoint 2.0 (for
example, in the code that saves and restores data).

Any places where you depend on a CHAR having a small value, you should rethink
the problem. For example, if you currently translate a character by indexing
256-element array (CHAR array[sizeof (CHAR)]), you probably won’t want to
use the same strategy when sizeof (CHAR), and therefore the size of your array, is

65,536.

Any places where you depend on sizeof (CHAR) being one byte, you need to
change the value.

%7 String Routines

All of the familiar C string routines (st rcmp, strcpy, and so on) will still exist in
PenPoint 2.0, and they will still work on 8-bit characters. The INTL.H header file
in PenPoint 1.0 defines a new set of string routines (named Ustrcmp, Ustrcpy,
and so on) that perform the equivalent functions on 16-bit Unicode characters.

In PenPoint 1.0, the U... functions are identical to their 8-bit namesakes. In
PenPoint 2.0, they will be true 16-bit routines. In other words, the old routines
only work on CHARS strings, the U... routines in 1.0 work on CHARS strings, in
2.0 the U... routines will work on CHAR16 strings. If you use the U... versions and
CHAR strings now, you will not have to change anything at 2.0.

You should convert all your string routines to the U... version wherever you are
converting to CHAR strings.

%¥ Character and String Constants

When you use CHARS, you can use standard C conventions for forming character
and string constants. That is:

CHAR8 *s = "string";

CHAR8 c = 'c’;
When you use the CHAR16 type, you must preceed the character or string
constant with the letter L, which tells the compiler you are using a 16-bit (or
long) character, as in:

CHAR16 *s = L"string"
CHAR16 ¢ = L'c’

5.2.1.1

5.2.1.2

5.2.1.3

CHAPTER 5: DEVELOPING AN APPLICATION 63
Designing for Internationalization and Localization

When you use the CHAR type, you must preceed the character or string constant
with the identifier “U_L”, which means UNICODE, long. In PenPoint 1.0, this
tells the compiler to use 8-bit characters; in PenPoint 2.0, this tells the compiler to
use 16-bit characters.

CHAR *s = U _L"string";
CHAR ¢ = U L'c’;

%7 Debugging 5.2.1.4
Debugf() and related routines will continue to take ordinary 8-bit strings. This
means that all debugging output will continue to be ASCII based.

% Versioning Data 5.2.1.5

Under PenPoint 2.0, you will still want your application to be able to unfile any
data it filed under 1.0. That is, although your users will have to install a new
version of your product, you don’t want them to have to throw away anything
they created with it!

When you respond to msgRestore, check the filed version. If the version number
is less than the defined value penpointRev2_0, read it into a structure that uses
explicit CHARS where required, then copy it into your instance data. If the version
number is greater than or equal to penpointRev2_0, your saving and restoring

code should remain the same (and use CHAR types).

% Preparing for Internationalization 5.2.2

PenPoint 1.0 does not contain all the messages, functions, and tools that you will
need to internationalize your application. However, there are several facilities
available in PenPoint 1.0 that you can use right now to reduce the work needed to
internationalize. This section lists these facilities.

%»7 Move Strings into Resource Files 5.2.2.1

You should move as many of your text strings into resource files as possible.

When text strings are hard-coded into your application, they are very difficult to
translate and do not allow users to change language dynamically.

However, if you move your application’s text strings into resource files they are
easy to translate and allow users to change language simply by substituting one
resource file for another.

If you use the StdMsg facility for displaying dialog boxes, error messages, and
progress notes, your text strings are already in resource files. The positional
parameter facility provided with StdMsg and the compose text string routines do
not depend on the order of replaceable values in the function parameters. These
functions are unlike print £, where the order of the function parameters is
directly related to the order of replaceable values in the string. When you use
StdMsg or compose text, the function parameters are always in the same order,

5 / DEVELOPING AN APPLICATION

64 PENPOINT APPLICATION WRITING GUIDE

but your string can use them in the order dictated by the national language in
which you are writing.

%7 Identify and Modularize Code that Varies with Locale 5.2.2.2

When internationalizing an application, moving its text strings to resource files
allows users to change the language, but in order to support another language,
parts of your application code must be equally replaceable. For example, when
sorting characters in another language, you must be prepared to handle different
sort sequences.

In 2.0, GO will provide a number of services to perform functions that vary by
language. Under consideration are routines that provide sorting, number
formatting, number scanning, numbers with units, times, and dates (input and
output), character comparisons, character conversions, spell checking and so on.

The PenPoint Services Architecture enables you to create functions that users can
install and activate whenever they choose. For instance, users can install several
different printer drivers, but they only make one driver current at a time.
Similarly, users will be able to install several different sort engines and choose one
to use with the current language. ’

Right now, you can start to identify language-dependent routines, such as text
manipulation, of your own. You can flag these routines and move them into
separate modules.

Part 13: Writing PenPoint Services in the PenPoint Architectural Reference describes
how to create your own services. If you make your language-dependent functions
into services in PenPoint 1.0, the change to 2.0 will be much easier.

%7 New Text Composition Routines 5.2.2.3

The file CMPSTEXT.H contains ComposeText routines for assembling a composite
string out of other pieces. Use these routines to create strings in your Ul — don
use sprint £! The ComposeText routines will also save you effort because you can
specify the resId of a format string and the code will read it from the resfile for
you. You can, of course, give the format string directly to the routines.

Development Strategy | 5.3
Where do you start writing an application?

The PenPoint Application Framework provides so much boilerplate work for you,
it is very easy to create applications through incremental implementation. You
start with an empty application, that is, one that allows the Application
.Framework to provide default handling of most messages. Then, one by one, you
add new objects and classes to the application, testing and debugging as you go.

As we shall see in Chapter 6, the PenPoint SDK includes sources for an empty
application, Empty App. You can copy, compile, install, and run Empty App.

CHAPTER 5: DEVELOPING AN APPLICATION 65
Development Strategy

This section describes the fundamental parts of PenPoint applications. These are
the parts that you will probably work on first. They are also the parts you will
return to many times to modify.

¥ Applicaﬁbn Entry Point 5.3.1

All PenPoint applications must have a function named main, which is the entry
point for an application. When the application is installed, main creates the
application class and can create any other private classes required by all instances
of the application.

V> Application Instance Data 5.3.2

In PenPoint, objects that are instances of the same class share the same code.
For example, if there are two insertion pads visible on the screen, they are both
running same copy of the insertion pad class code, but each instance of the
insertion pad has different instance data.

As soon as your application has data that can be different for each of its
documents, your application needs to maintain instance data.

What do you save in instance data?

The most common use of instance data is to save identifiers for objects created by
your application. The PenPoint object-data model suggests that any time you have
data, you should use a class to maintain that data.

When your application class has instance data, it must be prepared to respond to Any class with instance data

msglnit by initializing values in the instance data (if needed). must respond to meglnit in the
same way.
P Creating Stateful Objects ‘ 5.3.3
Stateful objects contain data that must be preserved when a document is
not active.

You can do some interesting things with an application that uses only the
behavior provided by the Application Framework. However, soon after you start
developing an application, you will want the application to be able to save and
restore data when the user turns away from and turns back to its documents. To
save and restore documents, you need to create, save, and restore stateful objects.

Usually an application’s instance data contains some stateful objects and some
non-stateful objects.

If your application class has stateful objects, you must be prepared to handle:

msgApplnit by creating and initializing the stateful objects required by
a new document. Your application can create additional stateful
objects later.

msgSave by saving all stateful objects to a resource file.

msgRestore by restoring all stateful objects from a resource file.

5 / DEVELOPING AN APPLICATION

66 PENPOINT APPLICATION WRITING GUIDE

P Displaying on Screen 5.3.4

Most applications need to display themselves on screen. The PenPoint
Application Framework provides access to the screen by creating a frame object.

When your application receives msgAppOpen, it should create the remaining
non-stateful objects that it needs to display on screen, and then should display
itself in the frame provided by the application framework.

When your application receives msgAppClose, it should remove itself from the
frame and destroy all of its non-stateful objects.

P> Creating Component Classes 5.3.5

If you create new component classes that can be shared by a number of different
applications (or other components), you usually define the component classes in a

DLL file.

As an application executable file must have a function named main, a DLL file
must have a function named DLLMain. DLLMain creates the component classes

defined in the DLL.

” Development Cycles 54

The compile, install, test, and debug cycle in PenPoint is similar to the
development cycle for most other operating systems. This section briefly describes
the steps involved in the development cycle. Later sections cover these steps in
greater detail.

P» Compiling and Linking 5.4.1

There are several types of files used to compile and link PenPoint applications.
These files include:

¢ The WATCOM make file
¢ The application’s method table files
¢ The application’s C source and header files

¢ The linker command file for the application
¢ The PenPoint SDK header and library files.

%7 Method Table Files 5.4.1.1

You create a method table file to equate the messages handled by your class to a
function defined in your source. You create one method table per class, but one
method table file can contain several method tables.

You compile the method table and then compile the resulting intermediate object
file with the PenPoint method table compiler, MT. This produces: ’

¢ A header file that you use when you compile your C source

¢ An object file that you use when you link your application.

CHAPTER 5: DEVELOPING AN APPLICATION 67
Development Cycles

%7 € Source and Header Files 5.4.1.2

PenPoint applications are written in the C language; the object oriented
extensions are provided through standard C function calls. The source for each
class (application or component) is maintained in a separate file.

Following normal C programming practice, it is advisable to define your symbols,
structures, macros, and external declarations in one or more header (.H) files.

% Linker Command Files 5.4.1.3

PenPoint applications compiled for the Intel 80386 processor use the protected
mode features of the chip. To produce a protected mode object file, you must link
your application with the WATCOM OS/2 linker. The OS/2 linker requires
additional commands that specify internal names and memory requirements for
the resulting executable (.EXE) or dynamic link library (.DLL) files.

These commands are placed in the command files used by the linker. You can
either build the command files separately or you can build the command files
dynamically in your application’s makefile. The sample applications in
\PENPOINT\SDK\SAMPLE all build their linker command files dynamically.

%7 PenPoint SDK Files 5.4.1.4

The PenPoint SDK header and library files are in the directories
\PENPOINT\SDK\INC and \PENPOINT\SDK\LIB, respectively.

You should include these directories in your compiler and linker search paths.

% Installing the Application 5.4.2

One difference between PenPoint and most other operating systems is that once
you have compiled an application, you must install the application into PenPoint
before you can use it. There is no “run” command in PenPoint, so you must use
the Notebook to transfer control to the application. '

~ Additionally, all application code in PenPoint is shared. PenPoint must know
where your application code is installed so that all instances of your application
use the same code.

There are two ways to install an application into PenPoint:
¢ Install when you boot PenPoint
¢ Install explicitly with the PenPoint application installer

You can install an application when you boot PenPoint by adding your
application’s PenPoint name to your APP.INI file.

You can explicitly install a PenPoint application by running the PenPoint
application installer (found in the Connections and Settings notebooks).

You can use the connections notebook to tell PenPoint to display the installable
applications (or any other installable items) whenever a volume becomes available.

5 / DEVELOPING AN APPLICATION

68 PENPOINT APPLICATION WRITING GUIDE

P> Debugging 5.4.3
There are a number of tools available to you to aid in debugging. Among them are:

¢ Using Debugf or DPrintf statements to send text to the debugger stream.
You can use a second monitor or the system log application to view the
debugger stream. You can also save the debugger stream in a log file. The

Debugf and DPrintf statements are described later in this Chapter. The
system log application is described in PenPoint Development Tools.

¢ Using the PenPoint source debugger (DB) to debug your application. The
debugger is described in PenPoint Development Tools.

¢ Handling msgDump. msgDump requests an object to format its instance
data and send it to the debugger stream. While developing an application,
you can send msgDump to any object whose state is questionable. From the
PenPoint source debugger, you can use the od command to send msgDump
to an object. It is not a good idea to send msgDump in production code.

A Developer’s Checklist 5.5

When your PenPoint application does what you want it to, you can stop and
move on to your next project. However, PenPoint applications are far more
useable when they can interact with the PenPoint operating system and other
applications. There is such a wealth of interaction that it is easy to omit some
behavior from your application.

This section presents two checklists. The first checklist details all the interactions
that you should include in your PenPoint application, starting at the fundamental
Application Framework interactions. The second checklist lists the interactions
that you should consider adding to your application to improve its appearance or

usability.

P» Checklist Of Required Interactions 5.5.1

You should use this checklist to ensure that your application is complete. The
items in the checklist point to parts of this manual and the PenPoint Architectural
Reference where the item is described in detail.
[] Handle application class installation (in main when processCount equals 0)
O create the application class
O create any private classes used by the application class
[J Handle application object instantiation (in main when processCount is
greater than 0)
O create an instance of your class

O create any private classes required by an instance of your application
class

O create any other objects required at the time

0

O

0

CHAPTER 5: DEVELOPING AN APPLICATION
A Developer’s Checklist

Create and display windows
O insert yourself into frame on msgAppOpen

O remove yourself from frame on msgAppClose.
Handle application termination.

O respond to msgFree protocol
Handle application deactivation or deinstallation (msgAppTerminate).
Handle msgDump
Handle msgSave

O save data

O save objects
Handle msgRestore

O restore data

O restore objects

O observe objects
Handle input

O handle selection protocol

Respond to Printing messages

P> Checklist of Non-Essential ltems 5.5.2

Use this checklist to ensure that you have considered all possible non-essential
additions to your application. The items in the checklist point to parts of this

manual and the PenPoint Architectural Reference where the item is described in
detail.

0
O

T A O O O B

Add menus to SAMs

Handle Option sheet protocols
O Create an option sheet

O Create application-specific option cards
Allow Application Embedding
Respond to move/copy protocol
Handle document import and export
Handle Undo
Respond to traversal protocols
Define document icons
Create Stationery
Create Help notebook files
Create Quick Help Resources

69

5 / DEVELOPING AN APPLICATION

70 PENPOINT APPLICATION WRITING GUIDE

P GO’s Coding Conventions 5.6

At GO, we have developed techniques to make PenPoint code easier to write,
understand, debug, and port. Some of our techniques are stylistic conventions,
such as how variable and function names should be capitalized. Others fall under
the category of extensions to C, including a suite of basic data types that are
compiler and architecture independent. This section describes:

The conventions that GO code follows
¢ The global types, macros, constants, and constructions provided in PenPoint

¢ PenPoint’s global debugging macros and other functions that we have found
useful to diagnose program errors.

While we would be delighted for you to follow all of our conventions, we
obviously do not expect every developer to do so. Conventions are a matter of
taste, and you should follow a style that is comfortable to you. However, we do
recommend that you make use of our extensions. They will help make your code
easier to debug and port. Also, by describing our style, we hope to make it easier
for you to understand our header files and sample code.

Py Typedefs 5.6.1

All typedefs are CAPITALIZED and use the underscore character to separate
words.

typedef unsigned short Ul6;
typedef Ul6 TBL_ROW_COUNT;

Pointer types have the prefix P_.

typedef' unsigned short Ul6, * P_Ul6;
typedef TBL ROW_COUNT *P_TBL_ROW_COUNT;

In structure definitions, the name of the structure type is also the structure tag.

typedef struct LIST_ENTRY {

Ul6 position;
LIST ITEM item;

} LIST ENTRY, *P_LIST ENTRY;

The tag name is used by the PenPoint Source-level Debugger.

P» Variables 5.6.2

Variable names are mixed case, always starting with a lowercase letter, with
capitialization used to distinguish words. Variable names do not normally include
underscore characters.

Ulé numButtons;

Pointer variables are prefixed the name with a lowercase p. The letter following
the p is capitalized.

P_Ulé6 pColorMap;

CHAPTER 5: DEVELOPING AN APPLICATION
GO’s Coding Conventions

7, Funclions 5.6.3

Functions are mixed case, always starting with a capital letter, with capitialization
used to distinguish words. Function names do not normally include underscore
characters. ‘

Function names often use a Noun-Verb style. The verb is what the function does,
the noun is the target of the function’s action.

TilePopUp():
PenStrokeRetrace();

However, the main function is simply main.

7> Defines (Macros and Constants) 5.6.4

Defines follow the same capitalization rules as variables and functions. Macros
follow the rules for function names (mixed-case, first letter uppercase) and
constants follow the rules for variable names (mixed-case, first letter lowercase).

#define OutRange(v,1,h) ((v)<(1)|](v)>(h))

#define maxNameLength 32
#define nameBufLength (maxNameLength+1)
% Class Manager Constants . 5.6.5

You use several special kinds of constants when writing Class Manager code:
¢ Class names
¢ Well-known objects
¢ Messages

¢ Status values.

%7 Class Names 5.6.5.1
Class names start with cls followed by the name of the class: clsList, clsScrollBar,
and so on.

%7 Well-Known Objects 5.6.5.2

Pre-existing objects in PenPoint to which you can send messages have the prefix
“the”: theRootWindow, theSystemPreferences, and so on.

7 Messages 5.6.5.3

Messages follow the standard style for constants, but have special prefix “msg”.
This is followed by the name of the class that defines the message (possibly
abbreviated) and finally by the action requested by the message:
msglistRemoveltem, msgAddrBookChanged, and so on.

The exceptions to this rule are the basic clsObject messages, including msgNew,
msgSave, and msgFree, which apply to all classes. These basic messages do not
identify their class.

5 / DEVELOPING AN APPLICATION

72 PENPOINT APPLICATION WRITING GUIDE

%»7 Status Values 5.6.5.4
Like messages, status values follow the standard style for constants. However, all
status values start with the prefix sts. This is followed by the name of the class that
defines the status value (possibly abbreviated) and finally by a description of the
status: stsListEmpty and stsListFull.

For more information on the way unique messages and status values are
constructed for a class, please refer to Part 1: Class Manager.

P» Exported Names | 5.6.6

At GO, we use prefixes to indicate the architectural subsystem or component that
defines an exported variable, define, type, or function. Prefixes help lower the
possibility of name conflicts across PenPoint. They also help developers find
which files contain the relevant source code.

Note that fields within exported structures are not prefixed, and locals within
sample code source files are generally not prefixed either.

For example, exported System Service names are all prefaced with OS:

#define osNumPriorities 51
#define osDefaultPriority 0
typedef Ulé6 0S_INTERRUPT_ID; // logical interrupt ID

STATUS EXPORTEDO OSProgramInstall (

P_CHAR pCommandLine, // dlc or exe name (and arguments)
P_CHAR pWorkingDir, . // working dir of the program
'P_0S_PROG_HANDLE pProgHandle, // Out: program handle

P_CHAR pBadName, // out: If error, dll/exe that was bad
P_CHAR pBadRef // Out: If error, reference that was bad

)i

The file \PENPOINT\SDK\UTIL\TAGS\TAGS lists most of the exported names in
PenPoint. You can scan it to see if a particular prefix is used.

The standard global include file \PENPOINT\SDK\INC\GO.H does 70t prefix its
identifiers—if something is common across PenPoint, such as the U16 type, it is
not prefixed in any way.

7 PenPoint File Structure 5.7
At GO, we follow a similar structure for both header files and source code files.
The general structure of a header file is shown below:

file header comments
#includes

#defines

typedefs

global variables
function prototypes
message headers

CHAPTER 5: DEVELOPING AN APPLICATION 73
PenPoint File Structure

Here is the general format of the source code file for a class implementation:

file header comment

#includes

#defines

typedefs

global variables

internal functions

exported functions

"methods” implementing messages
class initialization function

main function (in an app class file)

% File Header Comment 5.7.1

The file header comment contains a brief description of the contents of the file. It
also includes the revision number of the header file. If you have a problem using a
PenPoint AP, the revision level of the software is important information.

% Includes ‘ | 5.7.2
The include directives all follow the file header and are of the form:

#include <incfile.h>

Note that the filename for the include file does 7ot contain any directory
information. To locate include files, you specify an include path externally (either
“in the INCLUDE system variable or as a compiler flag.

%7 Multiple Inclusion . 5.7.2.1

PenPoint has many subsystems, each linked to other subsystems. Each element
tends to have its own header file(s). Consequently, including the header file for
one subsystem leads to it including dozens of other subsystems. Often the same
header files are included by other header files. This can slow down compiling and
may lead to errors if header files are compiled in more than once.

All PenPoint header files guard against being included multiple times by defining
a unique string (FILENAME_INCLUDED) and checking to see if this string has
been defined:

/*'k*)r'k**kkk***'*"kk*k**k****'kk****k***k'k'k**?&'**k'k*‘k*'k*k‘k;kkwvw'c’k")ck**
filename.h
(C) Copyright 1991, GO Corpeoration, ALl Rights Reserved.

Include file format.

$Revision$
$Author$
$hate$
‘k‘;kfc'k‘k'k’k‘k‘k9\"k*‘k‘k“k'k‘k*"k‘*‘k‘k**‘k*‘k***‘k‘**7\':‘(X‘Jk*‘k*k*ﬁ'*i"k*k**'k*‘k*k*}\'**'k*/
#ifndef FILENAME INCLUDED
#define FILENAME INCLUDED
// defines, types, and so on of header file

#endif // FILENAME INCLUDED
_where FILENAME is the name of the include file itself.

5/ DEVELOPING AN APPLICATION

74

PENPOINT APPLICATION WRITING GUIDE

You can speed up compiling by putting the same checks in your files to avoid even
reading in a header file:
#ifndef LIST INCLUDED

#include <list.h>
#endif // LIST_INCLUDED

’»» Common Header Files 5.7.2.2

In a class implementation, if you include the header file of your immediate
ancestor, this will usually include the header files of all your ancestors.

If you include any header file at all, you will not need to include <GO.H>.

P Defines, Types, Globals 5.7.3

This section of a file holds all of the #defines, typedefs, and global and static
declarations used only in this file. By grouping these items in one place, you will
be able to find them more easily.

P> Function Prototypes | 5.7.4

Function prototypes in header files indicate the parameters and format of
PenPoint functions. Each is preceded by a comment header:

/**

Function returns TYPE
Brief description.

Comments, remarks.
*/
function declaration;

For example:

/**

OSHeapBlockSize returns STATUS
Passes back the size of the heap block.

The size of the heap block is the actual size of the block. This may
be slightly larger than the requested size.

See Also
OSHeapBlockAlloc
OSHeapBlockResize
*/ .
STATUS EXPORTED OSHeapBlockSize (
P UNKNOWN pHeapBlock, // pointer to the heap block
P_SIZEOF pSize // Out: size of the heap block

)i

The header file descriptions of functions provide a “reminder” facility, not a
tutorial.

CHAPTER 5: DEVELOPING AN APPLICATION
PenPoint File Structure

"> Message Headers 5.7.5

Many header files contain message headers, which are where messages are
described and where their constants and related data structures are defined.
Message headers have the following format:

/***
msgXxxAction takes STRUC TURE, returns STATUS

category: message use

Brief description.

Comments, remarks.

*/
#define msgXxxAction MakeMsqg (clsXxxAction, 1)
typedef struct STRUC TURE (

} STRUC_TURE, *P_STRUC_TURE;

For example:

/**

msgAddrBookGetMetrics takes P_ADDR BOOK METRICS, returns STATUS.
" Passes back the metrics for the address book. ‘

*/
#define msgAddrBookGetMetrics MakeMsg (clsAddressBook, 8)
typedef struct ADDR BOOK METRICS {
Ul6 numEntries; // Total number of entries
Ulé numServices; // Number of known services
Ulé numGroups; // Number of groups in the address book
U32 sparel;
U32 ’ spare2;

} ADDR_BOOK METRICS, *P_ADDR BOOK METRICS;

We relied on the regular format of message descriptions in header files to generate
the datasheets for messages in the PenPoint API Reference.

%7 In, Out, and In-Out 5.7.5.1
In a message header, you can assume that all parameters and message arguments
are input-only (In) unless otherwise specified (Out or In-Out).

% Indentation 5.7.6

Most PenPoint header files use four spaces per tab for indentation. Most
programmer’s editors allow you to adjust tab spacing; setting it to four will make
it easier to read GO files.

P» Comments , 5.7.7

In general, slash-asterisk C comments (/* and */) indicate the start and end of
functional areas, and slash C (//) comments are used for in-line comments within -
functions.

75

5 / DEVELOPING AN APPLICATION

76 PENPOINT APPLICATION WRITING GUIDE

% Some Coding Suggestions 5.7.8
Here are some of the other conventions that GO code follows (more or less).

¢ Always include the default case in your switch statements to explicitly show
that you are aware of what happens when the switch fails.

¢ Don’t use load-time initializations, except for constant values. Since
PenPoint restarts code without reloading it, your code should explicitly
initialize your variables. '

¢ Use #defines for constants and put the defines in an include file (if it is
used across multiple files) or at the beginning of the source file with a
comment to indicate its use.

¢ When defining an external function, use prototype declarations to describe
the parameters and types it requires.

@ Make calls to external functions as specified by the include file of the
subsystem exporting the function.

¢ Ifyour files fully declare the types of their functions, this will help them to
be independent of any flags that may be set during compilation.

@ A source file should compile without warnings. PenPoint code compiles
without any warnings at warning level 3 using the Watcom C compiler.

¢ Structure names must not be used as exported names. Use the type name to
export a structure type. Structure names should be used only for
self-referencing pointers.

¢ Code for a single function should not exceed a few pages. Break it up (but
don’t go overboard!).

¢ Use GO’s Class Manager to support standard object-oriented programming
methodologies.

¢ The most important parameter to a function should be the first parameter,
for example, WindowDrag(pWin, newx, newy). This is usually the object on
which the function acts.

P PenPoint Types and Macros | 5.8

In developing PenPoint, we found it useful to establish a “base” environment
which goes beyond the structures and macros provided by the C language. This
section describes many of these extensions. For a complete list, please look at
\PENPOINT\SDK\INC\GO.H, where all of our extensions are defined.

"> Data Types | 5.8.1

To allow for portability between different C compilers and processors, we define
six basic data types that directly indicate their size in bits. Three are signed: S8,
$16, and $32. The others are unsigned: U8, U16, and U32. We also define
corresponding pointers for each, prefixed with P_, and pointers to pointers, which
are prefixed with PP_.

CHAPTER 5: DEVELOPING AN APPLICATION
PenPoint Types and Macros

To plan for internationalization efforts, we provide the CHAR data type. CHAR is

functionally equivalent to char and is defined to be a U8 in PenPoint 1.0. In our
2.0 release, which will include support for international character sets, we will
change CHAR to U16. Simply stated, you should use CHAR instead of char to
ensure an easier transition to PenPoint 2.0.

CHAR has two related data types: P_CHAR, which represents a pointer to a
character (char *), and PP_CHAR, which is a pointer to a string (char **).

P_UNKNOWN is for uninterpreted pointers, that is, pointers that you do not
dereference and about which code makes no assumptions.

P_PROC is for pointers to functions. It assumes the Pascal calling convention.

The SIZEOF type is for the sizes of C structures returned by sizeof.

The status values returned by many functions are of type STATUS. This is a signed

32-bit value, although most subsystems encode status values to indicate the class

defining the error to avoid status value conflicts. Section 2.8 describes status values

in greater detail.

"> Basic Constants

Use the enumerated type BOOLEAN for logical values true and false. The
BOOLEAN type also defines the values True, False, TRUE, and FALSE to preempt
any discussion about capitalization rules.

Similarly, null is the preferred spelling for null (0), but NULL is also defined.
pNull is a null pointer.

minS8, maxS8, minS16, maxS16, minS32, and maxS32 are the minimum and
maximum integer values for the three signed types. maxU8, maxU16, and
maxU32 are the maximum values of the three unsigned types. Obviously, the
minimum unsigned value is zero.

Names in many PenPoint subsystems can be no longer than 32 characters. This
limit is defined as maxNameLength. Since strings are normally null-terminated,
we define nameBufLength to be maxNameLength + 1.

% Legibility
GO.H defines AND, OR, NOT, and MOD to be the corresponding C logical
“punctuation;” this avoids confusion with the double-character bit operators &&

and | |.

%> Compiler Isolation

GO.H provides macros and other #defines that you can use to ensure compiler
independence.

5.8.2

5.8.3

5.8.4

77

5 / DEVELOPING AN APPLICATION

78 PENPOINT APPLICATION WRITING GUIDE

’%» Function Qualifiers

GO.H introduces a layer in between the pascal, cdecl, and so on keywords of
the Watcom C compiler by providing uppercase versions of all these keywords.

Using the uppercase versions allow you to easily remove or redefine these
keywords in source code if necessary. This allows you to experiment with
changing the segmentation or calling sequences of your code to check for errors or
changes.

It’s important to explicitly specify calling conventions in your function prototypes
so that code can compile with a different set of compiler switches from GO’s
defaults, yet still observe the protocol requirements.

STATIC, LOCAL, and GLOBAL are compiler #defines that support the appearance
(if not the reality) of modular programming,..

Instead of using these detailed qualifiers, you can use higher-level constructs. If
you want to make a function available to other modules, EXPORTED says that it is
a PASCAL function.

There are other qualifiers that are only used by specialized kernel code or drivers.
EXPORTEDO means that a function is a call gate. RINGCHELPER identifies
functions which can be called by code at lower privilege levels.

%»#» Enumerated Values
Some compilers base the size of an enum value on the fields in that enum. This has
unfortunate side effects if an enum is saved as instance data; programs compiled
under different compilers might read or write different amounts of data, based on
the size of the enum as they perceive it.

To guarantee that an enum is a fixed size, use the Enum16 and Enum32 macros.
These macros create enums that are 16 and 32 bits long, respectively. The macros
expect a single argument—the name of the enum to be defined..

Within an Enum16 or Enum32, use the bit flags (flag0 through flag31, also
deﬁned in GO.H) to define enumerated bits.

Most PenPoint header files indicate when bits in an enum can be ORed to specify
several flags. If a PenPoint header file uses the flag0-style bit flags, assume that you
can OR these flags.

P» Data Conversion/Checking

Abs, Even, and Odd are macros that perform comparisons, returning a boolean.
Max and Min return the larger and lesser of two numbers, respectively.

OutRange and InRange check whether a value falls within a specified range. They
work with any numeric data type.

Be careful when using the Abs, Min, Max, OutRange, and InRange macros
because their parameters are evaluated multiple times. If a function call is used as
an argument, multiple calls to the function will be made to evaluate the macro.

5.8.4.1

5.8.4.2

5.8.5

CHAPTER 5: DEVELOPING AN APPLICATION 79
PenPoint Types and Macros

"% Bit Manipulation 5.8.6

GO.H defines each bit as flag0 through flag31, with flag0 being the
least-significant (rightmost) bit.

LowU16, HighU16, LowU8, and HighU8 extract words and bytes by casting
and logical shifts. MakeU16 and MakeU32 assemble words and 32-bit quantities
out of 8-bit and 16-bit quantities.

FlagOn and FlagOff check whether a particular flag (bit) is set or reset. FlagSet
and FlagClr set a particular flag. All four can take a combination of flags ORed
together. You can use these bit manipulation macros with U8, U16, or U32

data types.

¥ Tags , 5.8.7

There are several types of values passed around or otherwise shared among
subsystems and applications in PenPoint:

¢ Class names
¢ Messages

¢ Return values
¢ Window tags.

All of these are 32-bit constants (U32). As you develop code and classes, you will
define your own. It is vital that they not conflict, so GO provides a tag ‘
mechanism to guarantee unique names for them. GO administers a number space
in which every developer can reserve a unique set of numbers. A tag is simply a
32-bit constant associated with an adminstered number. With each administered
number you can define 256 different tags: because the administered numbers are
unique, so will be the tags.

You usually use your classes’ administered number to define messages, status
values, and window tags, since these are all usually associated with a particular
class. See Part 1: Class Manager for an explanation of how classes, tags, and
administered numbers relate to each other.

P Return Values 5.8.8

Most PenPoint code returns error and feedback information by returning special
values from functions rather than generating exceptions. PenPoint still uses
exceptions for certain types of errors: GP fault, divide by 0, and so on. Otherwise,
functions that return success or failure must return a status value. Status values are
32-bit tags, defined in GO.H:

typedef S32 STATUS, * P_STATUS;

The universal status value defined to mean “All is well” is stsOK. By convention,
return values less than stsOK denote errors, while return values greater than
stsOK indicate that the function did not fail, but may not have completed in the
usual way.

5 / DEVELOPING AN APPLICATION

80 PENPOINT APPLICATION WRITING GUIDE

There is a set of GO standard status values that you can use in different situations
(described below), but usually each subsystem needs to define its own specific
status values. To guarantee uniqueness among status values returned by
third-party software, group your status values by class, even if the status does not
come from a class-based component. GO administers well-known numbers for
classes, as explained above in “Tags.”

% Defining Status Values 5.8.8.1
GO.H defines 2 macro, MakeStatus(wkn,sts), to make a 32-bit error status value
from a well-known 32-bit identifier and an error number. Usually, the
well-known number is the class that defines the error.

To make a status value that does not indicate an error, use MakeWarning(cls,
msg), which creates a positive tag.

So, if you want to define status values, all you need is a reserved class. GO can
allocate one for you. You can then define up to 256 error status values and 255
success status values, using MakeStatus and MakeWarning with numbers in the
-range 0-255. If you need more status values, you can request another class UID.

77 Pseudoclasses for Status Values 5.8.8.2

Since not everything in the PenPoint API is a message-based interface to an
object-oriented class, there are several pseudoclasses defined solely to provide
“classes” for status values from some subsystems: clsGO, clsOS, clsGoMath, and
so on. You can ask GO for your own pseudoclasses for error codes if necessary.

%7 Testing Returned Status Values 5.8.8.3
To test a STATUS value for the occurrence of an error, just test whether the value
is less than stsOK. To test for one specific error, compare the value to the full
error code from the appropriate header file. There are macros to assist in this,
described in Section 3.11, “Error Handling Macros.”

There are a small number of system-wide error/status conditions. You can return a
generic status value instead of defining your own, so long as you use it consistently
with its definition. If you need to convey a slightly different sense, define your own
context-specific status value.

Here are the generic status values. Their “class” identifier is the pseudo-
class stsGO.

CHAPTER 5: DEVELOPING AN APPLICATION 81
PenPoint Types and Macros

stsRequestNotS upported
stsReadOnly

stslncompatibleVersions

Table 5-1

Generic Status Values

Status Value Description
- stsOK Everything’s fine.
Errors

stsBadParam - One or more parameters to a function call or message are invalid.
stsNoMatch A lookup function or message was unable to locate the desired item.
stsEndOfData Reached the end of the data.
stsFailed Generic failure.
stsTimeOut A time-out occurred before the requested operation completed.

As it sounds.
The target can’t be modified.

The message has a different version than the recipient.

5 / DEVELOPING AN APPLICATION

stsNotYetImplemented The message is not yet fully implemented.
stsOutOfMem The system has run out of memory.

‘ Non-Error Status Values
stsRequestDenied The recipient decided not to perform the operation.
stsRequestForward The recipient asks the caller to forward the request to some other object.
stsTruncatedData

The request was satisfied, but not all the expected data has been passed back.

The macro StsOK returns true if the status returned by an expression is greater

than or equal to stsOK. If you want to check for any status other than stsOK, use
StsFailed. See “Error-Handling Macros,” below.

% Return Status Debugging Function 5.8.9

The function StsWarn evaluates any expression that returns a STATUS. If you do
not set the DEBUG preprocessor variable during compilation, StsWarn is defined
to be the expression itself—a no-op. This means that whenever you call a function
that returns a status value, you can use StsWarn.

If DEBUG is defined, and the expression evaluates to an error (less than stsOK),
then StsWarn prints the status value returned by the expression together with the
file and line number where StsWarn was called (the special compiler keywords
__FILE__and LINE).

%7 Human-Readable Status Values _ 5.8.9.1

You can load tables of symbol names in the Class Manager so that if you have set
DEBUG, the above functions will print out a string for status return values,
instead of a number. For an example of this, see the S_TTT.C file of the
Tic-Tac-Toe sample program (\PENPOINT\SDK\SAMPLE\TTT), explained in the
PenPoint Application Writing Guide.

82

4

.PENPOINT APPLICATION WRITING GUIDE

Error-Handling Macros 5.8.10

Every PenPoint function or message returns a STATUS which you should check.
The following status macros make function checking much easier by handling
typical approaches to handling errors.

Table 5-2

Status Checking Macros
Error Handling Approach Macro ')
check for an error (no warning) StsChk
check for an error and warn StsFailed
return if result is an error StsRet
jump to an error handler if result is an error StsJmp
check that the result is not an error StsOK

The Class Manager defines similar macros for checking the status values returned
when sending a message. '

Each status value checker works with any expression that evaluates to a STATUS.
Each takes the expression and a variable to assign the status to. All of these macros
(except StsChk) call StsWarn, so that they print out a warning message if you set
the DEBUG preprocessor variable during compilation.

Since often one function calls another which also returns STATUS, using these
macros consistently will give a “stack trace” indicating the site of the error and the
nested set of functions which produced the error.

The examples below assume that MyFunc() returns STATUS.

StsChk(se,)

Checks for an error.

Description Sets the STATUS s to the result of evaluating se. If s is less than stsOK, returns true, otherwise returns

false. Does not print out a warning message.

Example STATUS s;

if (StsChk (MyFunc(paraml, param2), s)) {
// MyFunc() failed
}

Description

Example

Remarks

Description

Example

CHAPTER 5: DEVELOPING AN APPLICATION 83
PenPoint Types and Macros

StsFailed(se, s)

Checks for an error.

Sets the STATUS s to the result of evaluating se. If s is anything other than stsOK, returns true and prints
an error if DEBUG is set. If s is stsOK, returns false.

STATUS s;

if (StsFailed (MyFunc(paraml, param2), s)) {
// MyFunc() returned other than stsOK, so check status
switch (Cls(s)) {

} else {
// MyFunc() did the expected thing, so continue

) .

This is analogous to StsOK, but it reverses the sense of the test in order to be more consistent with other
checking macros.

StsJmp(se, s, label)

Jump to label on error.

Sets the STATUS s to se. If s is less than stsOK, it prints an error if DEBUG is set and does a goto to
label. This is useful when you have a sequence of operations, any of which can fail, each having its own
clean-up code.

STATUS s;

pMeml = allocate some memory;

StsJmp (MyFunc (paraml, param2), s, Errorl);
pMem2 = allocate some more memory;

StsJdmp (MyFunc (paraml, param2), s, Error2);

return stsOK;

Error2:
// Handle error 2.
OSHeapBlockFree (pMem2) ;
Errorl:
// Handle error 1.
OSHeapBlockFree (pMeml) ;

return s;

5 / DEVELOPING AN APPLICATION

84 PENPOINT APPLICATION WRITING GUIDE

StsOK(se, s)

Checks that things are OK.

Description Sets the STATUS s to the result of evaluating se. If s is greater than stsOK, returns true. Otherwise, prints
an error if DEBUG is set and returns.

Example . STATUS s;

if (StsOK(MyFunc(paraml, param2), s)) {
// MyFunc() succeeded, continue.

} else {
// MyFunc() failed, check status.
switch (Cls(s)) {

}

Remarks This is analogous to StsFailed, but reverses the sense of the test and returns true for any status value that
is not an error. In other words, this could return true but the status might be some other value than

stsOK, such as stsNoMatch.

StsRet(se, s)

Returns status on error.

Description Sets the STATUS s to se. If s is less than stsOK, prints an error if DEBUG is set and returns s. This is
useful if one function calls another and should immediately fail if the second function fails.

Example STATUS s;

// If MyFunc has problems, return.
StsRet (MyFunc (paraml, param2), s);

V Debugging Assistance 5.9

GO has developed a set of useful functions and macros to assist in debugging
PenPoint applications. They are no substitute for. DB, the PenPoint Source-level
debugger, or the PenPoint mini-debugger (both these debuggers are documented
in PenPoint Developement Tools). However, they help you trace the operation of a
program without using a debugger. They are an elaboration of the time-honored
technique of inserting print£s in your code.

% Printing Debugging Strings 5.9.1
DPrintf and Debugf print text to the debugger stream. They take a formatting
string and optional parameters to display, in the same manner as as the standard C
function print£. The only difference between DPrintf and Debugf is that
Debugf supplies a trailing newline (if you want a newline at the end of DPrintf-
output, end it with \n).

Debugf ("Entering init method for clsApp");
Debugf ("main: process count = %d", processCount);

CHAPTER 5: DEVELOPING AN APPLICATION 85
Debugging Assistance

v Debugger Stream 5.9.1.1

The debugger stream is a pseudo device to which programs (including PenPoint)
can write debugging information. There are several ways to view the debugger
stream.

¢ If you have a single screen, you can see the most recent lines written to the

debugger stream when you press (Pause].

¢ If you have a second (monochrome) monitor, serial terminal, or PC running
communications software, you can constantly watch the debugger stream on
this monitor while you run PenPoint on the main (VGA) monitor.

¢ You can send the debugger stream to a log file, by setting the D debugger
flag to the hexadecimal value 8000. Usually you do this in the
ENVIRONL.INI file, but you can also do it from the PenPoint symbolic
debugger, or from the mini-debugger.

DebugSet=/DD8000
DebugLog=\\boot \tmp\run3.log

¢ You can use the System Log application to view the debugger stream while
running a PenPoint appliction.

None of these destinations are mutually exclusive.

%> Assertions 5.9.2

Often when working on functions called by other functions, you assume that the
software is in a certain state. The ASSERT macro lets you state these assumptions,
and if DEBUG is set, it checks to see that they are in fact the case. If they are not
satisfied, it will print an error. For example, a square root function might rely on
never being called with a negative number:

void MySqRoot (int num)

{
ASSERT (num >= 0, "MySqRoot: input parameter is negative!");

// Calculate square root...
The test is only performed if DEBUG is defined.

P> Debug Flags 5.9.3

At different times you want to print different debugging information, or you want
your program to work a certain way. DEBUG is the common #define used by
PenPoint to include debugging output; if you set DEBUG when compiling, the
status-checking macros print out additional information, the ASSERT macro is
enabled, and so on. You can use your own C preprocessor directives to get finer
control over program behavior, for example

OBJECT myDc

#ifdef MYDEBUG1
// Dump DC state

ObjectCall (msgDump, myDc, Nil(P_ARGS));
#endif

5 / DEVELOPING AN APPLICATION

86 PENPOINT APPLICATION WRITING GUIDE

The disadvantage of this technique is that you must recompile your program to
enable or disable this code.

Another approach is to check the value of a flag in your code. PenPoint supports
256 global debugging flag sets. Each flag set is a 32-bit value, which means that
you can assign at least 32-different meanings to each debugging flag set.

Because there are 256 debug flags sets, they can be indexed by an 8-bit character.
Commonly, we refer to a specific debugging flag set by the character that indexes
that flag. GO has reserved all the uppercase character debug flags sets (A through
Z), and has reserved some of the lowercase characters also. To find which debug
flags set are available, see the file \PENPOINT\SDK\INC\DEBUG.H.

You can set the value of a flag set, and retrieve it. The typical way you use
debugging flag sets is to set the value of a flag set before running a program, and
in the program check to see which bits in the flag set are on. The function
DbgFlagGet returns the state of a flag set ANDed with a mask.

For example, if you were using the flag F in your program and were checking the
third bit in it to see whether or not to dump an object, the code above would look

like:

if (DbgFlagGet (‘F’, 0x0004)) {
// Dump DC state
ObjectCall (msgDump, mydc, Nil(P_ARGS));
}
You only need to compile your program once, and you can turn on object
dumping by changing the F flag set to 0x4 (or 0x8, or 0xF004, and so on). The
disadvantage of this is that the flag-testing code is compiled into your program,
increasing its size slightly. Often programmers bracket the entire DbgFlagGet test
inside an #ifdef DEBUG/#endif pair so that the flag-testing code is only compiled
while in the testing version of their program.

%7 Setting Debugging Flag Sets 5.9.3.1
There are several ways to set debugging flag sets. Note that there is a single set of
these flags shared by all processes. '
¢ In \PENPOINT\BOOT\ENVIRON.INJ, set the flag to the desired bit pattern with:
DebugSet=/DFnnnn /Dfmmmm ...,
where Fand fare letters that identify a particular flag set and #nnz and
mmmm are a hexadecimal values. For example, DebugSet=/DFE004.

¢ By typing £s F nnnn in either the PenPoint source-level debugger or the
PenPoint mini debugger.

¢ By using DbgFlagSet() in a program, for example:
DbgFlagSet ('F’,0xE004) .

CHAPTER 5: DEVELOPING AN APPLICATION 87
Debugging Assistance

V7 Suggestioris 5.9.4

% Isolate Debugging Messages 5.9.4.1
In general, always isolate all debugging code using
#ifdef DEBUG

/* Debugging */
#endif

DEBUG is the conventional flag for debugging code, used by much of PenPoint.

%7 Use the Status-Checking Macros 5.9.4.2

Using the status-checking macros StsOK, StsJump, and so on, and their
counterparts for sending messages may seem cumbersome, but they provide useful
debugging information if DEBUG is defined. Also, since most functions and
message sends return the error status if they encounter an error, the “stack” of
status prints provides a traceback showing where the error first occurred and who
called it.

This status error listing shows the result of sending msgDrwCxSetWindow to

objNull:
C> ObjectCall: sts=stsBadObject "tttview.c".@232 task=0x05d8
C> object=objNull
C> msg=msgDrwCtxSetWindow, pArgs=26ec0438
>> StatusWarn: sts=stsBadObject "tttview.c".@330 task=0x05d8
>> StatusWarn: sts=stsBadObject "tttview.c".@743 task=0x05d8
Page fault in task 05D8 at 1B:440CCD52. Error code = 0004.
EAX=00000000 EBX=04000002 ECX=E002E5CF EDX=440CCD05 ESI=41BC8EF0 EDI=4401EC38
EIP=440CCD52 EBP=004329E0 ESP=004329CC FLG=00010246 CR2=0000000C CR3=00077000
CS=001B DS=002B SS=002B ES=002B FS=0000 GS=0000 TSS=05D8 TNAME=TIC1

%7 Use the Debuggers 5.9.4.3
If your code crashes unexpectedly, you can use the PenPoint mini-debugger to get
a stack trace at the assembly-language level (type st at its > prompt). The linker’s
MAP files enable you to translate assembly language addresses to functions and
line numbers. ’

If you suspect that your code is going to crash or behave impfoperly, run it from
the PenPoint Source-level Debugger. This lets you step through your code, query
and set values, and evaluate simple C expressions.

Both debuggers are described in PenPoint Development Tools.

5 / DEVELOPING AN APPLICATION

88 PENPOINT APPLICATION WRITING GUIDE

The Tutorial Programs ~ 5.0

Now that you’ve read the broad overview of PenPoint and its class-based
applications, views, and objects, you are ready to get down to some of the nuts
and bolts of writing an application. This section describes the remaining chapters
in this book and the sample programs used in those chapters. The programs are:

Empty Application

Hello World (toolkit)

Hello World (custom window)

Counter Application

Tic-Tac-Toe

Template Application

Chapter 6 explains how to compile and run programs using Empty Application.
The chapter is quite long because it teaches the general development cycle:

¢ How to compile an application

¢ How to install an application on a PC or PenPoint computer

¢ How to run an application

¢ Some interesting things to look for when running any application
¢ How to use some of the PenPoint debugging tools.

The Empty Application is used to illustrate these steps, but the comments are
applicable to all the other sample applications.

"> Empty Application

The tutorial starts off with an extremely simple application, Empty Application.
Chapter 6 explains how to build and run it and how the application works.
Empty Application has no view, no data, and no application-specific behavior
(apart from printing a debugging message). It only responds to one message from
the Application Framework. However, it does create an application class (as all
PenPoint applications must), and through inheritance from clsApp, you can
create, open, float, zoom, close, rename, file, embed, and destroy Empty
Application documents.

CHAPTER 5: DEVELOPING AN APPLICATION 89
The Tutorial Programs

% Hello World (Toolkit) 5.10.2

The next application is the traditional “Hello World” application. This prints T e e
Hello World! in its window. Rather than creating a window from scratch, this ‘
uses the existing User Interface Toolkit components. One of these is clsLabel,
which displays a string. Hello World (toolkit) uses this existing class instead of
creating its own. The components in the UI Toolkit are rich in features; for

example, labels can scale their text to fit. If you can use a toolkit class, do so. H el Io WO rldl
Hello World (toolkit) is described in Chapter 7. -

g Y e e

ook o .
2 4 © 3 B L o0
e Sethas Comectons Shinery Acchiotes Kejgound ok v

"> Hello World (Custom Window) 5.10.3

Of course it is possible to draw text and graphics yourself. Hello World (custom [% —— o)
window) draws the text Hello World in its window, and draws a stylized -) - - .
exclamation mark beside it. To do this, the application must create a separate o -
window class and create a system drawing context to draw in its window, which is
substantially harder than using toolkit components. |

EST T ETE e T

Hello World (custom window) is described in Chapter 8.

2 4 @ g B = L9
[Meh Sefings Comations Shflonery Acessorier Keybous Ibox Odbor

%> Counter Application

Counter Application displays the value of a counter object in a label. It creates a e
separate counter class and interacts with it. The application has a menu created V =
from UI Toolkit components which lets the user choose whether to display the

counter value in decimal, hexadecimal, or octal.

Both the application and the counter object must file state. The tutorial programs
presented before Counter Application are not stateful, that is, they don’t have data
that the user can change permanently. Realistic applications must allow users to

- change things, so they must file their state.

The application object uses a memory-mapped file to keep track of its state. Using
a memory-mapped file avoids duplicating data in both the memory file system in
program memory. By contrast, the counter object writes its value to a file when it
is saved.

The counter application is described in Chapter 9.

5 / DEVELOPING AN APPLICATION

20 PENPOINT APPLICATION WRITING GUIDE

P Tic-Tac-Toe | 5.10.5

The rest of the tutorial develops a “real” working application, Tic-Tac-Toe. This
application is covered in Chapters 10 and 11.

Tic-TacToe presents a tic-tac-toe board and lets the user write Xs and Os on it. It
is not a true computerized game—the user does not play tic-tac-toe against the
computer. Instead, it assumes that that there are two users who want to play the
game against each other.

Although a tic-tac-toe game is not exactly a typical notebook application,
Tic-Tac-Toe has many of the characteristics of a full-blown PenPoint application.
It has a graphical interface, handwritten input, keyboard input, gesture support,
use of the notebook metaphor, versioning of filed data, selection, import/export,
option cards, undo support, stationery, help text, and so on.

Template Application 5.10.6

As its name implies, Template Application is a template, “cookie cutter”
application. As such, it does not exhibit much functionality. However, it does
handle many “typical” application messages. This aspect makes Template
Application a good startirig point for building a real application.

P> Other Code Available 5.10.7

Other source code is provided in the SDK in addition to the tutorial code.

All the source to sample programs is on-disk in \PENPOINT\SDK\SAMPLE. Some of
the other sample programs are described in Appendix A of this manual. Excerpts
from sample programs also appear and are described in those parts of the
Architectural Reference that cover related subsystems.

Chapter 6 / A Simple
Application (Empty App)

Applications written for many operating systems have to perform housekeeping
functions by implementing their own boilerplate code, that is, code that is
essentially the same from one application to the next. In PenPoint, the PenPoint
Application Framework performs most of these housekeeping functions. By using
the Application Framework, you can create an application that can be installed,
that can create multiple instances of itself, that can handle page turns, floats and
zooms, and that can display an option sheet, all without writing an additional line
of code.

Empty Application is a very simple application that does all of these things. The
only additional code in Empty Application is a method that responds to
msgDestroy by sending a message to the debug stream (when the program is
compiled with the DEBUG preprocessor #define name).

The PenPoint Application Framework is responsible for everything else Empty
Application does. Because the Application Framework handles so much of an
application’s interaction with the system, even such an insubstantial application

has substantial functionality.

Files Used | 6.1

The code for Empty Application is in \PENPOINT\SDK\SAMPLE\EMPTYAPP. There
are three files in the directory:

EMPTYAPP.C Contains the application class’s code and initialization routine

METHODS.TBL Contains the list of messages that the application class
responds to and the associated message handlers to call

MAKEFILE Contains the WATCOM Make file for EMPTYAPP. The make
file also defines information required by the OS/2 linker.

Not the Simplest , 6.1.1

The name Empty Application is not quite accurate, because it isn’t totally empty.
You could create an application with no method table at all, that is, one that
responds to no messages at all and relies entirely on clsApp to do the right thing.
Empty Application handles one message by printing a string to the debug stream,
so it needs a method table.

o2 PENPOINT APPLICATION WRITING GUIDE

Compiling and Linking the Code 6.2

The source code for sample applications is in subdirectories of
\PENPOINT\SDK\SAMPLE. The subdirectory contains a “makefile” that tells
WATCOM Make how to build the application. Thus to compile and link Empty
Application, just change directory to \PENPOINT\SDK\SAMPLE\EMPTYAPP and
type wmake.

However, you do need to understand what the files are doing, so that you can
later modify the makefiles to fit your needs.

These sections describe the actual commands used to compile, link, and stamp

EMPTYAPP.

P> Compiling Method Tables 6.2.1

- You compile method tables into an object file by running them through the
PenPoint method table compiler (in \PENPOINT\SDK\UTIL\CLSMGR\MT.EXE).

By convention, method tables have the suffix .TBL. The control files used by
WATCOM Make have a default rule for compiling a method table.

MT produces an object file and a header file for the method table. You use these
files when you compile and link the application.

> cd \penpoint\sdk\sample\emptyapp

> mkdir \penpoint\app\emptyapp

> set WCC386=/3s /Oif+ /s /W3 /We /Zc /Zq /fpc /zff /D2 /En /DDEBUG
> \penpoint\sdk\util\clsmgr\mt methods.tbl -Fo=$methods.obj > $methods.err

Compiling the Application 16.2.2

To compile the application, use the WATCOM C/386 compiler for
protected-mode applications (WCC386P.EXE).

> set WCC386=/3s /Oif+ /s /W3 /We /Zc /2q /fpc /zff /D2 /En /DDEBUG
> wce386p /Foemptyapp.obj emptyapp.c > emptyapp.err

%»» Compiler and Linker Flags 6.2.2.1

The meanings of the various flags are listed in Table 6-1 (for more information,
consult the WATCOM C/386 documentation):

Table 6-1
WATCOM Compiler and Linker Flags
Flag Description :
/3s ~ Generate 80386 instructions, pass arguments using stack.
/D2 Include full symbolic debugging information
/DDEBUG Create the preprocessor #define name DEBUG
/En Emit routine name before prolog
/Epc Generate calls to floating-point library
/Oif+ Optimization flags
/s Remove stack overflow checks

continued

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 93
Compiling and Linking the Code

Table 6-1 {continued)

W3 Set warning level to 3

We Treat all warnings as errors

/Zc Place literal strings in code segment

[zft Makes the FS register floating (required for PenPoint)
IZq Suppress compiler informational messages.

Linking the Application

You link the application with the WATCOM OS/2 linker for protected mode
applications (WLINKP.EXE).

Because PenPoint applications run in protected mode, you must tell the linker to
produce a protected-mode executable file. The Makefile does this by creating a
WLINK command file (the Make script deletes this command file before exiting).

The command file specifies what routines your code imports from DLL (dynamic
link library) files, the memory model, privilege levels, access attributes, and
protection.

If you created the file by hand, it would contain:

SYSTEM PenPoint
NAME \386\PENPOINT\app\emptyapp\emptyapp.exe
DEBUG ALL
FILE METHODS.OBJ
FILE EMPTYAPP.OBJ
. LIBRARY PENPOINT
LIBRARY APP

6.2.3

Caution This is only true for
WLINKP! If you have trouble
compiling, make sure you are
using the correct linker.

OPTION Quiet, Map=emptyapp.mpe, NOD, Verbose, Stack=15000, MODNAME='GO-EMPTYAPP EXE-V1(0)’

To tell the linker that it should get its options from a command file, precede the
name of the command file with an at sign (@). In this case, which was drawn
directly from WMAKE output, the command file is called EMPTYAPP.ELN.

> wlinkp Qemptyapp.eln

MODNAME is the name that PenPoirit attaches to the process. It can be longer than
the DOS eight-character file length limitation. In PenPoint, it contains important
versioning information. It should be composed of your company’s name
followed by a dash, the project name followed by a dash, and a version string.

If your application has a separate DLL, it will need its own command file.

If the compile and link is successful, these commands create an EMPTYAPP EXE file
in \PENPOINT\APP\EMPTYAPP.

%> Stamping Your Application

The last thing you must do in compiling an application is to give specific
PenPoint attributes to the executable. To do this, you use the STAMP command,
which creates an entry for your application in the PENPOINT.DIR file in the

The process name is not the
application hame. The process
name only shows up in the
debugger; the application name
(the name of the directory in
\PENPOINT\APP) appears in the
Installer.

6.2.4

6 / A SIMPLE APPLICATION

o4

PENPOINT APPLICATION WRITING GUIDE

directory that contains the your application executable. You use STAMP to
specify:
¢ A long PenPoint file name for your application. PenPoint applications can

have longer names than in DOS, just as PenPoint documents can have long
names.

¢ The PenPoint name of the application executable file. The .EXE name must
match the directory name. Thus the second STAMP command below gives the
file EMPTYAPP.EXE the PenPoint name Empty Application.EXE.

¢ The version of PenPoint for which your application was compiled

® A text string that describes the file for the Browser (APPLICATION,
FONT, SERVICE, and so on)

o A special identifier that tells the Installer that the file is an application (the
value 10001A0)

For EMPTYAPP, the stamp commands are:

> \penpoint\sdk\util\dos\stamp \penpoint\app\emptyapp\.. /g "Empty Application" /D emptyapp

> \penpoint\sdk\util\dos\stamp \penpoint\app\emptyapp /g "Empty Application.exe" /D emptyapp.exe
> \penpoint\sdk\util\dos\stamp \penpoint\app\emptyapp\.. /g "Empty Application" /a 01E00208 "1.0"
> \penpoint\sdk\util\dos\stamp \penpoint\app\emptyapp\.. /g "Empty Application" /a 0660013a
"Application”

> \penpoint\sdk\util\dos\stamp \penpoint\app\emptyapp\.. /g "Empty Application" /a 0080013a
10001a0

installing and Running Empty Application ¢

As described in the section “How Applications Work” in Chapter 3, you must
install an application in PenPoint before you can run it. To install Empty
Application, install it either at boot time or use the Application Installer on a
running PenPoint system. The Application Installer is described in Using
PenPoint.

To install the application at boot time:

Add a line that says \BOOT\PENPOINT\SDK\SAMPLE\Empty Application t0
\PENPOINT\BOOT\APP.INI.

¢ Boot PenPoint on your PC.

¢ When the Notebook appears, draw a caret A in the TOC to insert an Empty
Application document in the Notebook.

When you create an Empty Application document in the Notebook, PenPoint The section “Installation and

creates a directory for the document in the application hierarchy (that’s why it Activation,” below, explains the
. . , difference between Installation

shows up in the table of contents), but it’s only when you turn to the document’s 4 Activation, and the

page that a process for the document is activated. Until then the document isn’t relationship between PenPoint

running and doesn’t have a process or a valid cIsEmptyApp object. P ans and application

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP)
: Interesting Things You Can Do

7 imteresting Thimgs Youw Coam Be
with Empty Application
Although Empty Application doesn’t perform any work, you can learn a lot about

the operation of PenPoint by studying it. PenPoint provides a host of features and
support to even the simplest application. You can try the following:

¢ Create multiple instances (documents) of it. The PenPoint file system
appends a number to each document to guarantee a unique application

directory name in the application hierarchy. You create documents by
performing one of these actions:

L4

Choose Empty Application from the Create menu in the Notebook
contents page.

Choose Empty Application from the pop-up menu that appears when
you draw a caret A on the contents page.

Use the Stationery notebook to create Empty Application documents
in the Notebook

Tap and hold on the title bar or name of an Empty Application
document in the TOC to make a copy an existing document. Drag the
icon that appears to where you want it to go, such as on the icon

bookshelf, or elsewhere in the TOC.

Tap the Accessories icon in the bookshelf below the Notebook and tap
the Empty Application icon in its window.

¢ Float a Notebook Empty Application document by turning to the
Notebook’s table of contents and double-tapping on its page number (you
must first enable floating in the Float & Zoom section of PenPoint
Preferences). Compare the difference between an accessory and a floating
document—accessories have no page number.

¢ Zoom a floating Empty Application by flicking upwards on its title bar (you
must first enable zooming in the Float & Zoom section of PenPoint
Preferences).

¢ Display the properties of an Empty Application document by drawing a
checkmark + in its title bar. An option sheet for the document appears, with

several cards in it for the document’s appearance.

6.4

6 / A SIMPLE APPLICATION

26

PENPOINT APPLICATION WRITING GUIDE

Figure 6-1

Empty Application Option Sheet

= s R

mecions. Stafionery Accessories. K

card Inbod Oubos

¢ In the table of contents, press and hold on a Empty Application title until a
dashed line appears around it. You can now move the document around. Try
moving it to another place in the Notebook.

¢ Set the B debug flag to 800 hexadecimal in \PENPOINT\BOOT\ENVIRON.INI by
adding or modifying a DebugSet line. As documented in \PENPOINT\SDK\
INC\DEBUGH, this flag enables the connections notebook to display the
contents of the file system. Boot PenPoint and start up the disk viewer by
tapping on the connections notebook icon below the Notebook. Open up
the boot volume by double-tapping on it. Select Directory on the View
menu. By repeated double-tapping, open the \PENPOINT\SYS\Notebook
directory. Its subdirectories should reflect the hierarchy of accessories and the
hierarchy of documents and sections in the Notebook.

¢ Give the Empty Application document a tab in the notebook by writing a

“T” in its title bar. You can use the tab to navigate to the Empty Application
document quickly.

Ordinarily, you aren’t able to
open the active file system from
the Disk Browser. This prevents
users from accidentally
modifying the application
hierarchy.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 27
’ Code Run-Through

¢ Give the Empty Application document a corkboard margin by writing a “C”.
in its title bar. A thick strip appears at the bottom of its window.

Before you install Empty Application, set the F debug flag to 1. You can
either set this in \PENPOINT\BOOT\ENVIRON.INI by adding or modifying a line
like DebugSet = /DF1, or by pressing to go to the mini-debugger,
entering £s F 1, then entering g to continue. When PenPoint initializes
cIsEmptyApp, cIsEmptyApp checks this flag to see if it should trace

messages. You can also use the System Log application to do this.

¢ Asyou turn the pages, note the sequence of messages sent to each instance of
cIsEmptyApp by the PenPoint Application Framework.

¢ On a PC, modify the VOLSEL line in ENVIRON.INI to use a hard disk. Run
PenPoint, create a document, turn to it, then quit PenPoint. Look at the
PenPoint Application Framework directory structure in \PENPOINT\SS\NK.

¢ Select an Empty Application document in the table of contents, then use the
disk viewer to open a directory on your hard disk. Copy the document to the
hard disk. Then delete the document by drawing an X over it.

1 6 / A SIMPLE APPLICATION

¢ Set the G debugger flag to 1000 in \PENPOINT\BOOT\ENVIRON.INI (or set the
flag with the fs mini-debugger command). This turns on debugging info for
reading and writing resources in clsResFile. This is the class that files objects
during msgAppSave processing.

¢ Select an Empty App document in the TOC and move it by pressing and
holding on its title. Move it inside another open document. If the other
application supports it, the PenPoint Application Framework will embed the
Empty Application document inside the other.

¢ With the F1 debugging flag set, select an Empty App document in the TOC,
then turn the page. Note how the document doesn’t receive some messages.
Now select something else, and see the Empty Application document receive
the “missing” messages.

Code Run-Through 6.5

Enough details of running Empty Application; now let’s look at its C code. First
we'll look at the layout of PenPoint source files.

"> PenPoint Source Code File Organization _ 6.5.1

Most source code in PenPoint has a similar structure. Although Empty
Application is a very simple application, it has a similar layout to other
applications.

Remember that application programs have at least one class (the application class
itself), so an application program is composed of at least these two files:

¢ The method table that specifies the messages to which this class responds
and the functions that handle those messages

98 PENPOINT APPLICATION WRITING GUIDE

¢ The C source code for the class. The C source code for applications is usually
organized in the following way:

¢ #defines and typedefs

L

Message handlers

L 4

Class initialization routine

* main entry point.

The method table file always has the suffix .TBL. It looks like C code, but you
process it with the method compiler MT before linking it into your program.

%7 Method Table File 6.5.1.1

The method table file lists all the messages that the class handles. The PenPoint
Class Manager sends any messages not listed in the method table to the class’s
ancestor for handling (and possibly to the ancestor’s ancestor). Looking at a class’s
method table gives you a good feel for what the class does.

A single method table file can have method tables for several different classes. The
names of the method tables are usually pretty self-explanatory, for example,
cIsEmptyAppMethods is Empty Application’s method table.

You can still have one function that handles several different messages, by using
the wild-card capabilities of method tables. Method table wild cards match any

message within a given set of messages and call the associated method. Method

table wild cards are described in Part 1: Class Manager of PenPoint Architectural
Reference, Volume 1.

%7 Application C Code File 6.5.1.2

The application’s main routine is at the end of the source file. The operating
system calls the application’s main routine under two circumstances:

¢ When installing the application (this happens only once)

¢ When activating individual documents (this happens each time the user
turns to or floats a document that uses the application).

The C files for non-application classes don’t have main routines, because only
applications actually start C processes. The declaration for the main routine is:

main(argc, argv, processCount)

The argc and argv parameters are not used in PenPoint. PenPoint uses the
processCount parameter to pass in the number of processes running this
application. When processCount is 0, there are no other processes running this
application; this indicates that PenPoint is installing the application. Once an
application is installed, the process that has a processCount of 0 stays in memory
until the application is deinstalled.

On installation, main initializes the application class, by calling an initialization
routine. This routine precedes main in the source file. Standard practice is to
name this routine using the name of the application class (with an initial capital

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) ‘ 9¢
: Code Run-Through

letter), followed by “Init”. For example, the initialization routine for

cIsEmptyApp is CIsEmptyApplnit.

When the initialization routine creates the application class, it specifies the
method table used by the application class.

In the method table, you establish a relationship between the messages that your
class handles and the name of a function in your C code file that handles each
message. These functions are called message handlers and are similar to the
“methods” of other object-oriented systems. Message handlers should be local
static routines that recurn STATUS. If your class does handle a message, the
method table also indicates whether the Class Manager should call your class’s
ancestor before or after (if at all).

%7 Message Handler Parameters ' - 6.5.1.3
Because the Class Manager calls your message handlers, you don’t get to choose
message handler parameters. The arguments passed to all message handlers are:
msg The message itself.
self The object that received the message.

pArgs The message argument. This 32-bit value can be either a single
argument or a pointer to a structure containing a number of arguments.

ctx A context maintained by the Class Manager.

pData The instance data of self.
Because the parameters to message handlers are always the same,
\PENPOINT\SDK\INC\CLSMGR.H defines several macros to generate standard

message handler functions, given only the function name (MsgHandler), or given
the function name and types to cast its arguments to (msgHandlerWithTypes).

At the beginning of an application source file are these items:
¢ #include directives for the header files required by the application
¢ The i_ntefnal routines used by your application’s methods

¢ Internal #defines, and so on.

%> Empty Application’s Source Code 652
Here’s an abstract of the Empty Application’s C code and method table file:

%7 Method Table 6.5.2.1

The method table file, METHODS.TBL, specifies that Empty Application has one
message handler; cIsSEmptyApp handles msgDestroy in a function called
EmptyAppDestroy.

MSG_INFO clsEmptyAppMethods [] = {
#ifdef DEBUG
msgDestroy, "EmptyAppDestroy", objCallAncestorAfter,
#endif ‘
0
}i

6 / A SIMPLE APPLICATION

100 PENPOINT APPLICATION WRITING GUIDE

The #ifdef and #endif statements cause the message handler to be defined only
when you specify /DDEBUG in the compiler options.

%7 C Source Code 6.5.2.2
There are three significant parts of EMPTYAPP.C:

¢ The main routine, which handles application installation and application
startup

¢ The initialization routine, which is invoked by main at installation time

¢ The message handler for msgDestroy, which was specified in the method
table.

This section presents this code without further comment. Subsequent sections in
this chapter examine the code in detail.

The main routine for EMPTYAPP.C is:
/**
main

Main application entry point (as a PROCESS -- the app’s MsgProc

is where messages show up once an instance is running).
**/

void CDECL
main (
int argc,
char * argvl[l],
Ule processCount)

Dbg(Debugf("main:vstarting emptyapp.exe[%d]", processCount);)
if (processCount == 0) {

// Create application class.
ClsEmptyAppInit();

// Invoke app monitor to install this application.
AppMonitorMain (c1sEmptyApp, objNull);

} else {

// Create an application instance and dispatch messages.
AppMain () ;
}
// Suppress compiler’s "unused parameter" warnings
Unused (argc); Unused(argv);
} /* main */

The initialization routine invoked by main on installation is:

/**
ClsEmptyApplInit

Install the EmptyApp application class as a well-known UID.
**/

STATUS
ClsEmptyAppInit (void)
{

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP)
Code Run-Through

APP_MGR_NEW new;

STATUS s;

//

// Install the Empty App class as a descendant of clsApp.
//

ObjCallRet (msgNewDefaults, clsAppMgr, &new, s);
new.object.uid = clsEmptyApp;
new.object.key - = (OBJ_KEY) clsEmptyAppTable;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

1/

// This class has no instance data, so its size is zero.
!/

new.cls.size = Nil (SIZEOF) ;

//

// This class has no msgNew arguments of its own.

//

new.cls.newArgsSize SizeOf (APP_NEW) ;
new.appMgr.flags.accessory = true;

strcpy (new.appMgr.company, "GO Corporation");

strcpy (new.appMgr.defaultDocName, "Empty App Document");
ObjCallJmp (msgNew, clsAppMgr, &new, s, Error);

//
// Turn on message tracing if flag is set.
//
if (DbgFlagGet ('F’, 0x1L)) {
Debugf ("Turning on message tracing for clsEmptyApp");
(void)ObjCallWarn (msgTrace, clsEmptyApp, (P_ARGS) true);
}

return stsOK;
Error:

return s;
} /* ClsEmptyAppInit */

Finally, the message handler for msgDestroy is:

/**
EmptyAppDestroy

Respond to msgDestroy by printing a simple message if in DEBUG mode.
**/
MsgHandler (EmptyAppDestroy)

{

#ifdef DEBUG
Debugf ("EmptyApp: app instance %p about to die!", self);
#endif

//

// The Class Manager will pass the message onto the ancestor

// if we return a non-error status value.

//

return stsOK;

MsgHandlerParametersNoWarning; // suppress compiler warnings
} /* EmptyAppDestroy */

6 / A SIMPLE APPLICATION

102 PENPOINT APPLICATION WRITING GUIDE

% Libraries and Header Files 6.5.3

You interact with most of PenPoint by sending messages to objects. Thus a
typical application only uses a few functions and only needs to be linked with
APP LIB and PENPOINT.LIB. However, you need to pick up the definitions of all
the messages you send, status values you check, and objects to which you send
messages from their respective header files.

Because Empty Application only looks for CLSMGR.H and APP.H messages, it only
needs to include a few header files from \PENPOINT\SDK\INC:

Table 6-2
Common Header Files
Header File Purpose
GO.H Fundamental constants and utility macros in PenPoint.
OS.H _ Operating System constants and macros.
DEBUG.H Functions and macros to put debugging statements in your code.
APP.H Messages defined by clsApp.
APPMGRH msgNew arguments of clsAppMgr used when an application class is created.
CLSMGR.H Functions and macros that provide PenPoint’s object oriented extensions to C.
P> Class UID 6.5.4

To write even the simplest application you must create your own application class,
so that’s primarily what Empty Application does.

Your application needs to have a well-known UID (Unique IDentifier, the
“handle” on a Class Manager object) so the system can start it. All well-known
UIDs contain a value that is administered by GO—this keeps them unique.
When you finalize your application, you must contact GO Developer Technical
Support for your own administered values. Until you register your application,
you can use the predefined well-known UIDs that are set aside for testing. These
test UIDs, wknGDTa through wknGDTg, are defined in \PENPOINT\SDK\
INC\UID.H for this purpose. Just define your class to be one of them:

#define clsMyClass wknGDTa

This is the approach that Empty Application takes. However, most other sample
applications use well-known UIDs assigned to them by GO. Because most
applications aren’t part of the PenPoint API, these well-known UIDs don’t show
up in \PENPOINT\SDK\INC\UID.H.

You can use local well-known UIDs instead of global well-known UIDs for classes
that your application uses internally. These do not contain an administered value;
however, you must ensure that they remain unique within your application. (One
bit in the UID indicates whether it is local or global, another indicates whether it
is well-known or private—making essentially 2 to the 30th possible local
well-known UlIDs.)

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 103
Code Run-Through

Be on the lookout for conflicts with other test software when using the
well-known testing UIDs (wknGDTa through wknGDTyg). If another
application should use the same well-known testing. UID for one of its classes, you
will have problems installing your application.

¥ Class Creation

The initialization routine ClsEmptyApplnit creates the cIsEmptyApp class. It also
should look familiar to you from the discussion of classes in Chapter 3, Application
Concepts. However, application classes are slightly different from other classes. You
create most classes by sending msgNew to clsClass, whereas you create application
classes by sending msgNew to clsAppMegr.
" STATUS v
ClsEmptyAppInit (void)
{

APP MGR NEW new;
STATUS s

// Install the Empty App class as a descendant of clsApp.

/
ObjCallRet (msgNewDefaults, clsApngr, &new, s);
new.object.uid = clsEmptyApp:

strepy (new.appMgr.defaultDocName, "Empty App Document”);
ObjCallJdmp (msgNew, clsAppMgr, &new, s, Error);

%7 clsAppMgr Explained

The PenPoint Application Framework needs to know a lot of things about an
application before it can set in motion the machinery to create an instance of the
application. It needs to know

¢ Whether the application supports embedding child applications

¢ Whether the application saves its data or runs continuously (“hot mode”)
¢ Whether the application’s documents appear as stationery or accessories
¢ The icon to use for the application’s documents.

¢ The default name for the application’s documents.

Instances of the application class can’t provide this information because the
PenPoint Application Framework needs this information before it creates an

~ application instance. To solve this cleanly, application classes are not instances of
clsClass, but instead are instances of clsAppMgr, the application manager class.
When an application is installed, its clsAppMgr instance is initialized, and this
instance can supply the needed information.

new.cls.newArgsSize = SizeOf (APP_NEW) ;
new.appMgr.flags.accessory = true;

strcpy (new.appMgr.company, "GO Corporation");

strepy (new.appMgr.defaultDocName, "Empty App Document");
ObjCallJdmp (msgNew, clsAppMgr, &new, s, Error);

6.5.5

6.5.5.1

Tip Actually it is better to
specify the default document
name in the APP.RES file. This
makes your application
internationalizable.

6 / A SIMPLE APPLICATION

104 PENPOINT APPLICATION WRITING GUIDE

Application classes should be well known so that other processes can send
messages to them. Otherwise, the Notebook would not be able to send messages
to your application class to create new documents when the user chooses it from
the Create menu. You supply the UID for your application class in the msgNew
arguments.

ObjCallRet (msgNewDefaults, clsAppMgr, &new, S);

new.object.uid = clsEmptyApp;
new.object.key = (OBJ_KEY)clsEmptyAppTable;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

The key field is a way of protecting your application from accidental
deinstallation. Only clients that know the key value that you used in the msgNew
arguments will be able to deinstall your application.

The class.pMsg argument to msgNew establishes the connection between the new
class and its method table. More on this later.

P> Documents, Accessories and Stationery 6.5.6

We have been referring to all copies of an application as documents. Not all
documents in the system live on a page in the Notebook. Tools such as the clock
and the personal dictionary float above the Notebook.

If you set appMgr.flags.accessory to true, clsAppMgr will put your application in Tip For debugging purposes, it's

the Accessories palette. When the user taps on your application’s document icon, ¢envenient to be able to create
. . documents both as floating

clsApp will insert the new document on screen as a floating document. If you set _ eos0ries and Notebook pages.

appMgr.flags.stationery to true, clsAppMgr will put a blank instance of your

application in the Stationery notebook (whether or not your application has

custom stationery). When the user selects and copies the stationery document

from the Stationery palette, clsApp will insert the new document in the Notebook.

p Where Does the Application Class 6.6
- Come From?

The connection between a process running in PenPoint and an application class is
not immediately obvious. You’re probably wondering who calls the initialization
routine for cIsEmptyApp, who sends msgNew to create a new Empty Application
instance, what process corresponds to this application instance, and why the
familiar-looking C main routine doesn’t do very much.

P> Installation and Activation 6.6.1

The connection between an application class and a PenPoint process is an
application’s main routine. Every executable must have a main routine; it is the
routine that PenPoint calls when it creates a new process running your
application’s executable image.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 105
Where Does the Application Class Come From?

void CDECL
main (
int argc,
char * argvl[],
Ule processCount)

Dbg (Debugf ("main: starting emptyapp.exe[%d]", processCount);)

The kernel keeps track of the number of processes running a particular program,

- and passes this to main as a parameter (processCount). For applications, there are
two points at which PenPoint executes does this: application installation and
document activation.

Application installation occurs when the user or APP.INI installs the application,
that is, when PenPoint loads the application from disk into memory. No
application documents are active at this point, but the code is present on the
PenPoint computer.

Document activation occurs every time the user starts up a document that uses the
application, typically by turning to its page.

When the user creates a document in the Notebook’s TOC, PenPoint does noz
execute the application code, it merely creates a directory for the document in the
application hierarchy. Try it: while turned to the TOC, create a new Empty
Application document. The Debugf() statement in main does not print out
anything until you turn to the document.

In MS-DOS, loading and executing code are part of the same operation; on a
PenPoint computer, installing an application, creating documents for that
application, and executing application code are three separate operations.

On MS-DOS, quitting an application is an action under the control of the user.
In PenPoint, when the user turns away from a document, PenPoint determines
whether it should destroy the application process or not. PenPoint does not keep
running processes around for every application on every page, so it destroys
processes that aren’t active (thereby destroying application objects).

PenPoint starts and destroys application processes without the user’s knowledge
and, ideally, without any effect apparent to the user.

%> A Simple Discussion of main ' : 6.6.1.1

When an application is installed, PenPoint creates a process and calls the
application’s main to run in the process. At this time, this is the only copy of the .
application running on the machine; thus, processCount contains the value 0.
During installation, you should create your application class and any other classes
you need. You then call AppMonitorMain, which handles application
installation, import, copying stationery and resources, and so on. Empty
Application doesn’t take explicit advantage of any of these features, but other
programs do.

6 / A SIMPLE APPLICATION

106 PENPOINT APPLICATION WRITING GUIDE

if (processCount == 0) {

// Create application class.
ClsEmptyAppInit();

// Invoke app monitor to install this application.
AppMonitorMain (c1sEmptyApp, objNull);

} else {

The process that PenPoint created at application installation keeps on running
until PenPoint deactivates or deinstalls the application. Therefore, all subsequent

processes that run the application’s code will have processCount values greater
than 0.

When a document is activated (typically by the user turning to its page), PenPoint
calls main (processCount is greater than zero). At this point you should call the
PenPoint Application Framework routine AppMain. This creates an instance of
your application class and starts dispatching messages to it (and other objects
created by the application) so that the new instance can receive Class Manager
messages:

if (processCount == 0) {
} else {

// Create an application instance and dispatch messages.
AppMain() ;
}
} /* main */
Most applications follow these simple steps and have a main routine similar to the
one in EMPTYAPP.C.

%7 A Complex Explanation of main 6.6.1.2

The following paragraphs explain the process interactions taking place around
main. Read on if you really want to understand how application start-up works.

Installation occurs when PenPoint reads \PENPOINT\BOOT\APP.INI (and
SYSAPP.INI) and when the user installs applications using the Installer. PenPoint or
the Installer calls the System Setvices routine OSProgramInstall, which loads the
executable code for your application (EMPTYAPP.EXE) into a special area of
PenPoint memory called the loader database. OSProgramInstall also creates a new
PenPoint process and calls the function main with processCount equal to 0. At
this point your code should initialize any information that all instances will need,
such as its application class and any other non-system classes required by your
application. The one thing every Empty Application instance needs is
cIsEmptyApp itself, hence when the main routine in EMPTYAPP.C is called with
processCount of 0, it creates cIsEmptyApp.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 107
Handling a Message

%7 Application Instailation 6.6.1.3

The process that PenPoint creates when processCount equals 0 also manages
other application functions that are not specific to an individual document.
These functions include copying stationery during installation, de-installation,
file import, and so on. Rather than saddle your application with all these
responsibilities, the PenPoint Application Framework provides a class,
clsAppMonitor, which provides the correct default behavior for all these
functions. When you call AppMonitorMain it creates one of these objects and
dispatches messages to it. If your application needs to do more sophisticated
installation (shared dictionaries, configuration, and so on), or can support file
import, you can subclass clsAppMonitor and have a custom application
installation manager.

Activation occurs when the user chooses Empty Application from the Tools

notebook or the Stationery notebook, but in a roundabout fashion. The

Notebook or bookshelf application sends msgAppCreateChild to the current

selection. When clsApp receives this message, it creates a new slot in the

application hierarchy for the new document. But a process and an application

object aren’t created until needed. The document may not be activated until the
- user turns to the document’s page, or otherwise needs to interact with it.

% Activating an Application 6.6.1.4

At or before the point where a live application instance is needed, the PenPoint
Application Framework sends the application’s parent msgAppActivateChild. While
processing this, clsApp calls the System Services routine OSProgramInstantiate.
OSProgramInstantiate creates a new PenPoint process, and in the context of that
process it calls the function main with processCount set to a 7on-zero number.

Finally there is a running process for an Empty Application document! In theory,
you could put any code you want in main, just like a vanilla C program.
However, the only way a PenPoint application knows what to do—when to
initialize, when it’s about to go on-screen, when to file, etc.—is by messages sent
to its application object. So, the first and only thing you need to do in main when
processCount is non-zero is to create an instance of your application class and
then go into a dispatch loop to receive messages. This is what the AppMain call
does. From here on until the user turns away from the document and the
application instance can be terminated, AppMain does not return.

7 Handling a Message 6.7

cIsEmptyApp only responds to one message. That doesn’t mean that Empty
Application documents don’t receive messages—if you turned on tracing while
running Empty Application, you’ll have seen the dozens of messages that an
Empty Application application instance receives during a page turn. It means only
that cIsEmptyApp lets its ancestor take care of all messages, and it turns out that
clsApp does an excellent job of handling PenPoint Application Framework
messages.

6 / A SIMPLE APPLICATION

108 PENPOINT APPLICATION WRITING GUIDE

A real application or other class has to intercept some messages, otherwise it has
the same behavior as its parent class. In the case of an application class, the
application needs to respond to PenPoint Application Framework messages that
tell documents when to start up, when to restore themselves from the file system,
when they are about to go on-screen, and so on. If the application has standard
application menus (SAMs), it will receive messages such as msgAppPrint,
msgAppPrintSetup, and msgAppAbout, from the buttons in the menus.

Often, the class responds to these messages by creating, destroying, or filing other
objects used by the application. EMPTYAPP.C doesn’t do any of this; all it does is
print a string when it receives one particular message, msgDestroy.

"> Method Table 6.7.1

Objects of your classes (especially application instances) receive lots of messages
regardless of whether or not you want your class to deal with those messages. Your
class’ method table tells the Class Manager which messages your class intercepts.

This code sample is from Empty Application’s method table file (METHODS.TBL):

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

MSG_INFO clsEmptyAppMethods [] = {
#ifdef DEBUG
msgDestroy, "EmptyAppDestroy", objCallAncestorAfter,
#endif
0.
}i
CLASS_INFO classInfo[] = { .
"clsEmptyAppTable", clsEmptyAppMethods, 0,
0
}i
This basically says “If an instance of clsEmptyApp receives msgDestroy, call
EmptyAppDestroy, then pass the message to clsEmptyApp’s ancestor.”

The link between the functions in a method table and a particular class is
established by one of the msgNew arguments when you create the class
(new.class.pMsg). This is the name you associate with the class’s MSG_INFO array
in the CLASS_INFO array; in this example, the pMsg is clsEmptyAppTable. This
code sample is from CIsEmptyApplnit in EMPTYAPP.C:

// Install the Empty App class as a descendant of clsApp.

7/

ObjCallRet (msgNewDefaults, clsAppMgr, &new, s);
new.cobject.uid = clsEmptyApp;

new.cbject . key = (OBJ _KEY)clsEmptyAppTable;
new.cls.pMsg = clsEmptyAppTable;

new.cls.ancestor = clsApp,

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 109
Message Handler

7 msgDestroy 6.7.2

The names of most messages identify the class that defined them: for example,

msgAppOpen is defined by clsApp. Messages defined by the Class Manager

itself are the exception to this convention. msgDestroy is defined by the Class

Manager in \PENPOINT\SDK\INC\CLSMGR.H; this is why Empty Application’s The Class Manager actually
. . turns around and sends the

METHODS.TBL #includes this header file. The Class Manager responds to

. . . object another message,
msgDestroy by destroying the object that received msgDestroy. msgFree, to free the object.

Message Handler 6.8

The message handler (also known as method) is just a C routine you write that
does something in response to the message. Empty Application’s message handler
for msgDestroy is EmptyAppDestroy, which just prints a string to the debugger

stream.

The name you give the message handler must match the name you specified in the

“method table (EmptyAppDestroy).

¥ Parameters 6.8.1
The parameters that the Class Manager passes to a message handler are:

msg The message received by the instance

self The UID of the instance that received the message

pArgs The message arguments passed along with the message by the sender
of the message

ctx A context that helps the Class Manager keep track of the class in the
instance’s hierarchy that is currently processing the message

pData A pointer to the instance data, information specific to the instance
whose format is defined by the class.

Here’s the definition from CLSMGR.H:

// Definition of a pointer to a method.
typedef STATUS (CDECL * P_MSG_HANDLER) (
MESSAGE msgq,

OBJECT self,
P_ARGS pPArgs,
CONTEXT ctx,
P. IDATA pData

)i

You never call your message handlers, the Class Manager does, and always with
the same set of parameters. The PenPoint Method Table Compiler generates a
header file containing function prototypes for all the message handlers specified in
the message table; you can guard against accidentally leaving out a parameter by
including these files in your class implementation C files:

#include <debug.h> // for debugging stat

#include <app.h> /7 3] n)
#include <appmgr.h> // for AppMgr s

finclude <string.n> /7 for strepy().

#include <method.h> // method function prototypes generated by MT

6 / A SIMPLE APPLICATION

110 PENPOINT APPLICATION WRITING GUIDE

MsgHandler is a macro that expands into the correct definition of a pointer toa
message handler. It saves you typing all these parameters.

/******************k***************************k*******************k*********
EmptyAppDestroy

Respond to msgDestroy by printing a simple message if in DEBUG mode.
**/

MsgHandler (EmptyAppDestroy)
{

P> Parameters in EmptyAppDestroy 6.8.2

It turns out that Empty Application’s EmptyAppDestroy routine doesn’t need
most of the parameters. The informative string prints out the UID of self (the
Empty Application document that received the message) and doesn’t use the rest
of the parameters.

#ifdef DEBUG -

Debugf ("EmptyApp: app instance %p about to die!", self);
#endif

We aren’t interested in the msg, since the Class Manager should only call this
function with msgDestroy. cIsEmptyApp has no instance data, so we don’t need
pData. (Remember, we speciﬁed that class.size is 0 when we created
cIsEmptyApp.) Although we don’t need these parameters, there is no way to tell
the class manager not to send them.

The C compiler will warn about unused parameters in functions. Since many
message handlers won’t use all their parameters, CLSMGR.H defines a fragment of
code, MsgHandlerParametersNoWarning, which mentions each parameter. You
can stick this in your message handler at any point.

MsgHandlerParametersNoWarning; // suppress compiler warnings
} /* EmptyAppDestroy */

Py Status Return Value | ‘ 6.8.3

Message handlers are supposed to return a status value. This is important both to
indicate to the sender of the message that the message was handled successfully,
and to control how the Class Manager passes the message up the class ancestry
chain. Empty Application’s method table directed the Class Manager to pass
msgDestroy to cIsEmptyApp’s ancestor after calling Empty Application’s handler:

msgDestroy, "EmptyAppDestroy", objCallAncestorAfter,

If EmptyAppDestroy were to return an error status value, the Class Manager
would not call the ancestor, and the normal result of sending msgDestroy would
be pre-empted (the application object would not go away). Sometimes this is what
you want, but not in this case, so we return stsOK.

// The Class Manager will pass the message onto the ancestor

// if we return a non-error status value.
return stsOK;

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APP) 111
The Debugger Stream

" Message Handlers are Private 6.8.4

Although message handlers are just regular C functions, you normally do 7ot want
other code to call your message handlers. One of the goals of object-oriented
programming is to hide the implementation of functionality from clients of that
functionality. Clients should communicate with your objects by sending them
messages, not by calling your functions. That way you can change the names and
implementation of a message handler without affecting clients of your APL

Using Debug Stream Output 6.9
There are two main ways to debug programs in PenPoint:

¢ Send data to the debugger stream

¢ Use the PenPoint Source-Level Debugger

Additionally, you can use the PenPoint mini-debugger, which is part of PenPoint,
but is most useful when debugging kernel and device-interface code.

Note that you can’t use standard DOS-type debugging tools (such as WATCOM

Debugger or Microsoft CodeView) because these packages require your executable
file to be runnable under DOS.

This section discusses sending data to the debugger stream. For a complete tutorial
on how to use the PenPoint Source-Level Debugger (DB) and mini-debugger
(mini-DB), see the part on debugging in PenPoint Development Tools.

The Debugger Stream 6.10

You can send data to the debugger stream with Debugf and DPrintf statements in
your code. This is much like debugging a DOS application by adding print £

statements to the code.

EMPTYAPP.C uses the system debugging output function Debugf to print strings
to the debug stream (Empty Application doesn’t use its PenPoint windows to

display anything).

Debugf is much like the standard C function printf. The $p formatting
code in the format string means “print this out as a 32-bit hexadecimal pointer.”
Because UIDs such as self are 32 bits, this is a quick and dirty way to print a UID
value. The Class Manager defines routines that convert UIDs to more meaningful
values which this application could have used instead; the message tracing and
status warning debugging facilities use these fancier output formats.

7% Seeing Debug Output 6.10.1
There are several ways to view the information sent to the debugger stream:

¢ Ifyou press while running PenPoint, your screen will switch from
graphics to text display and you will see strings that have been written to the
debugger stream.

6 / A SIMPLE APPLICATION

PENPOINT APPLICATION WRITING GUIDE

¢ If you have a second monitor and do not set monodebug=off in your
MIL.INI file, debugger stream data is displayed on the second monitor.

¢ Ifyou turn on the 8000 bit in the D debug flag, debugging strings will be
copied to the file \PENPOINT.LOG on theBootVolume (the volume specified
with VOLSEL in ENVIRON.INI). '

¢ You car run the System Log application.

The System Log application is a PenPoint application that allows you to review
data sent to the debugger stream. To use it, install it by uncommenting it in
SYSAPP.INI or by installing from disk (just as you install any other application in
PenPoint). When the System Log application is installed, it adds its icon to the
Accessories window. Tap on the icon to open the application.

Debug strings appear in the System Log application. You can scroll up and down
to see its contents.

You can also check flags, see available memory, and set flags from the System Log
application. To learn more about the System Log application, see the Part on
debugging in PenPoint Developer Tools.

; ing Objects

Cha»pier 7 / Creatin
leii#)

(Helle Worid: Tool

Although Empty App shows that the Application Framework can do many things
for an application, Empty App is still rather boring, in that it doesn’t contain
anything or show anything on screen. This chapter describes how to create
objects. It so happens that these objects also display things on screen.

A standard, simple test program is one that prints “Hello World.” In PenPoint,
there are two different ways to approach this:

@ Use PenPoint’s UI Toolkit to create a standard label that contains the text.

¢ Create a window and draw text in it using text and drawing services provided
by the ImagePoint imaging model.

These two styles mirror two general classes of program. Programs such as database
programs and forms can use standard user interface components to create dialogs
with the user. Programs such as presentation packages and graphics editors do a
lot of their own drawing. They need to create a special kind of window and draw
in it. o

This chapter shows the first approach; the application clsHelloWorld calls on the
UI Toolkit to create a label object. The next chapter describes how to create a
window and draw in it (and also discusses how to create a new class).

Even programs that do use custom windows will make heavy use of the Ul An application can choose not
Toolkit. Every application has a menu bar with standard menu buttons, a frame, 0 use these, but doing so

. . . involves extra work and goes
and at least one option sheet, and most programs will add to these to implement gainst-GO's User Interface

other controls and dialogs with the user. guidelines.

Moreover, using the UI Toolkit is much simpler than using a window. The
toolkit component classes are #// descendants of clsWin, the class which supports
overlapping windows on the screen (and printer). But they know how and when
to draw themselves and file themselves, so there’s very little you need to do besides
create them and put them in your application’s frame.

HelloTiK | - 7.1
Hello World (toolkit) uses UI Toolkit components to display the words “Hello

World!” These components know how to draw themselves and position
themselves. Consequently, it’s extremely simple to create the application.

The directory \PENPOINT\SDK\SAMPLE\HELLOTK actually contains two different
versions of Hello World (toolkit). The first version, HELLOTKI1.C, creates a single
label in its frame. Usually you want to put several windows in a frame; this is more
complex and is handled by HELLOTK2.C.

114 PENPOINT APPLICATION WRITING GUIDE

%> Compiling and Installing the Application 7.1.1

Both versions of Hello World (toolkit) (HELLOTK1.C and HELLOTK2.C)
have a single C file. Consequently, compiling, downloading, and running it are
the same as for Empty Application. Because there are multiple versions of the
code, copy the version you want to run to HELLOTK.C before running WMAKE:

> copy hellotkl.c hellotk.c
> wmake

This creates a \PENPOINT\APP\HELLOTK directory and compiles a HELLOTK.EXE
file in it. It uses STAMP to give the directory the long name “Hello World
(toolkit)” and the .EXE the long name “Hello World (toolkit).exe.”

Install Hello World (toolkit) either by adding \BOOT\PENPOINT\APP\Hello World
(toolkit) to \PENPOINT\BOOT\APP.INI before starting PenPoint or by installing the
application using the Installer.

Create Hello World (toolkit) application instances from the Stationery notebook,
from the stationery quick menu, or from the Accessory palette.

P Interesting Things You Can Do with HelloTK 7.1.2

Alas, Hello World (toolkit) doesn’t do much more than Empty Application
besides display a label. It doesn’t do anything /ess, so you can create multiple
instances of it as accessories or as pages in the Notebook, you can trace messages
to it (by setting the F flag to 0x20), and so on.

The only new thing to do is to notice how the label draws itself. Try zooming or
resizing a Hello World (toolkit) document.

p” Code Run-'l'hrough for HELLOTK1.C 7.2

HELLOTKI1.C creates a single label in its frame.

’% Highlights of HELLOTK1 720

The method table for Hello World (toolkit) only responds to one message,
msgApplnit.
msgAppInit, "HelloAppInit", objCallAncestorBefore,

In order to avoid clashing with other Hello World applications, HELLOTK1.C uses
a different testing well-known UID.

#define clsHelloWorld wknGDTb // avoids clashing with other HelloWorlds

Most of the work is done in the message handler HelloApplnit, which responds
to msgApplnit by creating the client window (a label).

So that it can use the same method table as HELLOTK2.C, HELLOTKI1.C responds
to msgAppOpen and msgAppClose as well as msgApplnit; however, it does
nothing with these messages but return stsOK.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT)
Code Run-Through for HELLOTK1.C

The only significant thing that happens in Hello World (toolkit) is that it
responds to msgApplnit by creating a label. The code to do this is very simple,
about 35 lines, but deciding what to do in those few lines introduces several key
concepts in PenPoint application development: ’

¢ Choosing what classes to use
¢ Deciding when to create objects.

It also involves some common programming techniques:
¢ Creating an instance of a class

¢ Sending messages to self.

7> Sending Messages 7.2.2

Empty Application receives messages, but does not send messages. Often in
responding to a message, your application must send other messages. It might
send messages to other objects, or even send itself messages to get its ancestor
classes to do things. Hello World (toolkit) shows how to send a few simple
messages.

%7 ObjectCall o 7.2.2.1
Use ObjectCall to pass a message to another object in your process. This works
like a function call: the thread of control in your application’s process continues in
the message handler of the other object’s class, and returns to your code when the
other object’s class returns a status value to your code.

‘There are other ways to send a message:
¢ Asynchronously
¢ Using the input queue
¢ Between processes.

In a simple application, stick to ObjectCall.

%7 Testing Return Values and Debugging 7.2.2.2

Because messages return a status value, you should usually check their return
values. This would ordinarily lead to lots and lots of constructs such as the
following in your code:
if ((s = ObjectCall (msgXxx, someObject, &args) < stsOK) {
// Print standard warning if DEBUG set
// Handle error. ..

}

To save typing and code complexity, for every Class Manager function that
returns a status value, there are macro versions of the function that jump to an
error handler, or return true if there’s an error, etc. For ObjectCall, these are

ObjCallWarn, ObjCallRet, ObjCalljmp, ObjCallChk, and ObjCallOK.

7 / CREATING OBJECTS

116 'PENPOINT APPLICATION WRITING GUIDE

ObjCallWarn’s value is the status value returned by ObjectCall. If compiled with
the DEBUG flag set, then ObjCallWarn prints out an error string if the status value
is an error (that is, less than stsOK).

The other macros incorporate ObjCallWarn into their behavior:
ObjCallRet calls ObjCallWarn and then returns the status value if it is an .

€rror

ObjCallJmp calls ObjCallWarn and then jumps to a error label (where you
can handle the error) if the status value is an error

ObjCallChk calls ObjCallWarn and then returns the value true if the status

value is an error

ObjCallOK calls ObjCallWarn and then returns the value true if the status

value is not an error (that is, greater than or equal to stsOK).

P Creating Toolkit Components 7.2.3

HELLOTKI1.C responds to msgApplnit by creating a label. Labels are one of the
many components provided by the UI Toolkit. But why does it create this
particular kind of component?

%7 What Kind of Component? 7.2.3.1

It’s worth taking a close look at the class hierarchy poster to see all the toolkit
classes.

Most of the UI Toolkit classes are windows. There’s only one class in the system Tip Some of the key decisions
that knows how to do windows (multiple overlapping regions on a pixel device), ~ You make in any object-oriented

. . 1 rogramming system are
and that’s cIsWin. But it’s the descendants of clsWin that know how to draw Ehooam g what built-in classes to

something interesting in themselves. The toolkit components inherit from use and which built-in classes to
clsBorder, a special kind of window which knows how to draw a border. You'll subclase.

find the toolkit classes “under” clsBorder in the class list, class diagram, and class

browser.

Part 4: UI Toolkit of the PenPoint Architectural Reference explains the UI Toolkit
in all its multi-level glory. For a hint of what it can do, here’s a screen shot
indicating all the different kinds of UI Toolkit components present:

i

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT)
Code Run-Through for HELLOTK1.C

Figure 7-1
Ul Toolkit Components

117

Mew Product ldeas ~_

‘ : Bt ; o 80 FPage Number
Edlt Options Vlew Insert Case \\ -

| ‘iCh e-::kpon nt le;i; Hopkms 1| Frame
' e Title Bar
EnnquFa P~ - . TN .
2 Feh ar_-,rmz L e Menu Bar
i ’och.lctIdeaS - G]I : Pull-down Menu
Menu Button

Tab Bars

Vertical Scrollbar
Option Sheet
Option Table
Labels

Shadow

Fopup Choice
Toggle Table

Command Bar

Bookshelf -

There are many other classes in the UI Toolkit. There are several base classes that
provide lower-level functionality. And there are many specialized components
classes, such as date handwriting input fields.

For Hello World (toolkit), all we need is a class that can display a strlng, such as
clsLabel.

7 / CREATING OBJECTS

118 PENPOINT APPLICATION WRITING GUIDE

To learn more about a class, you can try to
Use the class browser to get a brief description of it and all its messages
¢ Read about it in its subsystem’s Part of the PenPoint Architectural Reference
¢ Look up its “datasheets” in the PenPoint API Reference
¢ Look at its header file in \PENPOINT\SDK\INC.

The class browser, the header, and the documentation all give you the
information you need to create an instance of the class.

»# msgNew Arguments for clsLabel 7.2.3.2

As you learned in Chapter 3, PenPoint Application Concepts, you create objects by
sending msgNew to their class. Different classes allow different kinds of
initialization, so you pass different arguments to different classes. The
documentation states what message arguments a given class needs for msgNew.
In the header file the information is expressed as follows:

msgNew takes P_LABEL NEW, returns STATUS

This says that you should pass in a pointer to a LABEL_NEW structure when you
send msgNew to clsLabel. What you typically do is declare a LABEL_NEW
structure in the routine which sends msgNew. You can give this any variable
name you want; Hello World (toolkit) calls it 1n (the first letter of each part of
the structure name). At the top of HelloApplInit:

HelloAppInit

Respond to msgApplnit by creating the client window (a label)}.
******%******"}(ﬁ***k****‘ki‘k*%k*‘k***k“k*k‘k’k*****)c‘k*;‘:**k***‘k*******ik*****k****f(**/

MsgHandler (HelloAppInit).
{

APP METRICS am;
LABEL NEW In;
STATUS s;

Before you send msgNew to a class, you must a/ways send msgNewDefaults to
that class. This takes the same message arguments as msgNew (a pointer to a
LABEL_NEW structure in this case). This gives the class and its ancestors a chance
to initialize the structure to the appropriate default values. It saves your code from
initializing the dozens of fields in a _NEW structure.

// Create the Hello label window.
ObjCallWarn (msgNewDefaults, clsLabel, &ln);

Now you’re ready to give values to those fields in the structure which you care Tip If you have a programmable
about. Figuring out what’s in a _NEW structure is not easy. It contains editor, you can use tags to
nitialization inf ion for the dl .. th quickly jump to structure
initialization information for the class you are sending it to, along wit definitions. See \PENFOINTSDKL
initialization information for that class’s ancestor, and for its ancestor’s ancestor, UTIL\TAGS\TAGS.DOC for more

all the way to initialization arguments for clsObject. Sometimes the only information.

initializations you’re interested in are the ones for the class you’ve chosen, but in

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT)
Code Run-Through for HELLOTK1.C

the case of the UI Toolkit, you often have to reach back and initialize fields for
several of the ancestor classes as well.

In.label.style.scaleUnits = bsUnitsFitWindowProper;
In.label.style.xAlignment = lsAlignCenter;
1n.label.style.yAlignment = lsAlignCenter;

1n.label.pString "Hello World!";

You can look up the hierarchy for a class by looking in the API Reference for that
class. The description of the _NEW structure for msgNew always gives the
_NEW_ONLY structures that make up the _NEW structure. Thus, the hierarchy for
clsLabel expands to:

LABEL_NEW (
OBJECT NEW_ONLY object;
WIN NEW ONLY win;
GWIN NEW_ONLY gWin;
EMBEDDED WIN NEW ONLY embeddedWin;
BORDER_NEW_ONLY border;
CONTROL_NEW_ONLY control;
LABEL NEW ONLY label;

}

When in doubt, rely on msgNewDefaults to set up the appropriate initialization,
and modify as little as possible.

All you need do to create a label is pass clsLabel a pointer to a string to give the
string a label. However, the LABEL_STYLE structure contains various style fields
which also let you change the way the label looks.

We want the text to fill the entire window, so the scaleUnits field looks
promising. This is a bit field in LABEL_STYLE, but rather than hard-code numeric
values for these in your code, LABEL.H defines the possible values it can take. One
of these is IsScaleFitWindowProper. This tells clsLabel to paint the label so that it
fills the window, but keeping the horizontal and vertical scaling the same. Other
style fields control the alignment of the text string within the label. In this
example, we’d like to center the label.

By the way, one reason that clsLabel has so many style settings and other msgNew
arguments is that many other toolkit components use it to draw their text, either
by creating lots of labels or by inheriting from clsLabel. Thus clsLabel draws the
text in tab bars, in fields, in notes, and so on:

// Create the Hello label window.

ObjCallRet (msgNewDefaults, clsLabel, &ln, s};
I1n.label.style.scaleUnits bsUnitsFitWindowProper;
1n.label.style.xAlignment 1sAlignCenter;
1n.label.style.yAlignment 1sAlignCenter;
1n.label.pString = "Hello World!";
ObjCallRet (msgNew, clsLabel, &ln, s);

Now the label window object exists. The Class Manager passes back its UID in
1n.object.uid. But at this point it doesn’t have a parent, so it won’t ever show
up on-screen.

7 / CREATING OBJECTS

120 PENPOINT APPLICATION WRITING GUIDE

" Where the Window Goes 7.2.4

Empty Application appeared on-screen even though it didn’t create any windows
itself. The Application Framework creates a frame for a document. Frames are a
UI Toolkit component. A frame can include other windows. Empty Application’s
frame has a title bar, page number, and resize boxes; you’ve seen other applications
whose frames also include tab bars, command bars, and menu bars.

Most importantly, a frame can contain a client window, the large central area in a
frame. Empty Application didn’t supply a client window (hence it looked pretty
dull).

Hello World (toolkit) wants the label it creates to be the client window. The
message msgFrameSetClientWin sets a frame’s client window. But the label must
have its frame’s UID to send a message to its frame. Hello World (toolkit) didn’t
create the frame, its ancestor clsApp did.

clsApp does not define a message to get the main window. Instead, it provides a
message to get diverse information about application instances, including the
main window of that application. (An application can have a different main
window for itself other than a frame.

Information made public about instances of a class is often called metrics, and the
message to get this information for an application is msgAppGetMetrics.
msgAppGetMetrics takes a pointer to an APP_METRICS structure, one of the
fields in the structure is mainWin. Here is how HelloApplInit gets its main
window: '

APP_METRICS am;

// Get the app’s main window (its frame).
ObjCallJmp (msgAppGetMetrics, self, &am, s, error);

// Insert the label in the frame as its client window.
ObjCallJmp (msgFrameSetClientWin, am.mainWin, \
(P_ARGS) 1n.object.uid, s, error);
Note that the code sends msgAppGetMetrics to self. We have been talking
loosely about Hello World (toolkit) doing this and that, but remember that this
~code is run as a result of an instance of clsHelloWorld receiving a message, and

that clsHelloWorld is a descendant of clsApp. Thus the document is the
application object to which we want to send msgAppGetMetrics. In the middle of
responding to one message (msgApplnit), we need to send a message to the same
object which received the message. This is actually very common. The Class
Manager provides a parameter to methods, self, which identifies the object which
received the message.

P> Why msgApplnit? | 7.2.5
Earlier you turned on message tracing to Empty Application. What this does is
cause the class manager to dump out every message received by instances of

clsEmptyApp. You should have noticed that each Empty Application document

receives dozens of messages during the course of a page turn to or from itself.

CHAPTER 7 / CREATING OBJECTS (HELLO WORLD: TOOLKIT) 121
Code Run-Through for HELLOTK1.C

These messages are sent to documents (application instances) by the PenPoint
- Application Framework.

If you want your application to do something, you must figure out when to do it.
Your process can’t take over the machine and do whatever it wants, it must do
what it wants in response to the appropriate messages.

One of the hardest things in PenPoint programming is figuring out when to do
things.
So, when should Hello World (toolkit) create its label? Because it inserts the label

in its frame (using msgFrameSetClientWin), it can’t create the label before it has a
frame. But it should have a label in its frame before it goes on screen.

It turns out that clsApp creates the document’s frame in response to msgApplnit.
Thus Hello World (toolkit) can get its frame and insert the label in its
msgApplnit handler, but it must do so affer clsApp has responded to the message.
This is why its method table tells the Class Manager to first send the message to its

ancestor:
MSG_INFO clsHelloMethods [] = {
msgAppInit, "HelloAppInit", objCallAncestorBefore,
msgAppOpen, "HelloOpen”, objCallAncestorAfter,

Note that doing this relies on knowing what the ancestor class does. You’ll spend
a lot of time reading Part 2: Application Framework of the PenPoint Architectural
Reference to learn about the PenPoint Application Framework messages and how
clsApp responds to them.

% Why Did the Window Appear? | 7.2.6

If you’re familiar with other window systems, you may be wondering how the
label gets sized, positioned, and made visible on screen. These will be explained
during the development of other tutorial programs. But here’s a summary.

When the application is about to go on screen it receives msgAppOpen. clsApp
inserts the main window (the frame) in the Notebook’s window and tells it to lay
out. clsFrame takes care of sizing and positioning its title bar, page number, move
box, and client window (the label). Each of these windows is sent a message by the
window system to repaint itself when it is exposed on screen. clsLabel responds to
the repaint message by painting its label string. Thus all you need to do is put a
toolkit window inside your frame, and the system takes care of the rest for you.

’# Possible Enhancements 7.2.7

~ You can change the class of the window created in HelloApplInit to be some other Warning Passing the wrong

kind of window class by changing the class to which Hello World (toolkit) sends = Me92ge arguments with a

. . message is one of the more

msgNewDefaults and msgNew. But different classes take different message common errors in PenPoint
arguments when they are created. You need to replace the declaration of a programming. The C compiler will

LABEL_NEW structure with the msgNew arguments of the new class. ot catch the error.

7 / CREATING OBJECTS

122 PENPOINT APPLICATION WRITING GUIDE

If the class handling the message expects different arguments, it will blindly read
past the end of the structure you passed it, and if it passes back values, it will
overwrite random memory. A given class receiving a given messsage /as to be given
a pointer to the appropriate structure, otherwise unpredictable results will occur:
but it can’t enforce this.

There are many classes which inherit from clsLabel, consequently, if you used one
of these, you wouldn’t even have to change the initialization of the structure. For
example, clsField inherits from clsLabel, and FIELD_NEW includes the same
NEW_ONLY structures as LABEL_NEW, so it takes the same border and label
specifications.

Highlights of the Second HelloTK 7.3

HELLOTK2.C is much like HELLOTK1.C. The big difference is that it supports
more than one window. Most applications have many windows within their frame.

You compile and run it the same way. Just copy HELLOTK2.C to HELLOTK.C and
follow the steps outlined above.

’» Only One Client Window per Frame 7.3.1

Frames only support a single client window. But usually you’ll want several
windows in your application. You have two alternatives:

¢ Subclass clsFrame (which is very difficulr)

¢ Create a client window that is another window, then insert all the windows
you want into that client window (which is quite easy).

The toolkit provides two window classes that help you organize the windows
within the client window. These are called layout windows. To understand why
they’re needed, you need to know a little bit about layout.

7% Layout 7.3.2

When you’re using several windows, something is responsible for positioning
them on the screen. You can set a window’s position and size to some value with
msgWinDelta. However, if the user changes the system font size, or resizes the
frame, or changes from portrait to landscape mode, the numbers you pick are
unlikely to still be appropriate. It’s more convenient to specify window locations
at an abstract level:

¢ “] want this window below that one, and extending to the edge of that other

»

one.
¢ “Position these windows in two columns of equal width.”

The UI toolkit provides two layout classes which support these styles,
clsCustomLayout and clsTableLayout. Both are packed with features. Both lay
out their own child windows according to the constraints (for custom layout) or
algorithm (for table layout) which you specify. The general way of using layout
windows is to create one, specify the layout you want, and insert the windows in it.

CHAPTER 7 / CREATING OBIJECTS (HELLO WORLD: TOOLKIT)
Highlights of the Second HelloTK

 HELLOTK2.C uses a custom layout window and positions a single label in its
center using ClAlign(clCenter, clSameAs, clCenter).

// Specify how the custom layout window should position the label.
CstmLayoutSpecInit (& (cs.metrics));

cs.child = ln.object.uid;

cs.metrics.x.constraint = ClAlign(clCenterEdge, clSameAs, clCenterEdge);
cs.metrics.y.constraint = ClAlign(clCenterEdge, clSameAs, clCenterEdge);
cs.metrics.w.constraint = clAsIs;

cs.metrics.h.constraint = clAsIs;

ObjCallJdmp (msgCstmLayoutSetChildSpec, cn.object.uid, &cs, s, error2);

7> Possible Enhancements 7.3.3
You might consider trying to add one of these to HELLOTK2.C:

%7 Fields 7.3.3.1

Change the label to be an editable field. There are several ways of handling
handwriting in PenPoint. One way is to use a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>