The

Powerful

New

Pen-Based
Operating System
from

GO Corporation

THE POWER OF v

PENPOINT

Robert Carr Dan Shafer

The Fower of FPenfoint’

The Fower ot FenFoint

Robert Carr
Dan Shafer

A
vv
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts ® Menlo Park, California ¢ New York
Don Mills, Ontario ® Wokingham, England ® Amsterdam
Bonn e Sydney e Singapore e Tokyo e Madrid e San Juan
Paris ® Seoul ¢ Milan e Mexico City e Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters.

ISBN 0-201-57763-1

Copyright © 1991 by Robert Carr and Dan Shafer

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Sponsoring Editor, Carole McClendon

Cover design by Jean Seal
Set in 11-point Helvetica Light by Don Huntington

123456789 -MW- 9594939291
First printing, February, 1991

This book is dedicated to my wife Andrea, and my son Ian.

This one’s for Alicia, whose generation will look back on what

we’ve considered so fantastic...and agree!

R.C.

D.S.

Contents

Preface

Acknowledgments

1

Introduction

Our Friend the Pen

Mobile Pen-Based Computing: An Untapped Market

The Laptop Isn't a Solution

Why Build a New Operating System?
Key Requirements

What Is PenPoint?

Notebook User Interface

Application Framework

Embedded Document Architecture
The Document Model
Live Application Embedding
Hyperlinks

Applications

Mobile Connectivity

Compact and Scalable

A Solid Foundation

Summary

xvii

xxiii

—_—
OO N0 A~WN =

11
12
12
14
14
15
17
18
19

Vii

The l50wer of PenPoint

2 The PenPoint User Interface

Ambitious Goals
PenPoint and Traditional GUls
Windows and Their Frames
Menus and Option Sheets
Basic Controls
Some New ltems
Tabs
Writing Pads :
PenPoint’s Notebook Metaphor
Benefits of the Notebook Metaphor
The Bookshelf
Gestures: The Pen Builds on the Mouse
Gestures as Commands
Ideas in Conflict
Standard Gesture Language
Using the Pen for Data Entry
Keyboard Support
More Differences
Direct Move and Copy
Stationery Notebook
Scrolling
Cork Margin
Embedded Document Architecture
Hyperlink Buttons
Floating Pages :
Integrated Connectivity -
User Interface Consistency
Summary

Developing Applications for PenPoint

Why Develop for PenPoint?

The Learning Process

The Development Process
Thinking about Your Application
Prototyping Your Application
Designing Your Application
Mapping to the PenPoint Class Library

21
21
22
23
23
25
26
26
26
29
33
34
36
36
38
39
40
42
42
43
43
43
44
44
46
46
46
47
48

49
49
50
52
52
53
54
56

5

The SDK
Contents of the SDK
Language and Software Support
Runtime Function Support
General Usage
Hardware Requirements
User Interface Design Guidelines
Summary '

The PenPoint Kernel
Task Management
Memory Management
Multitasking Support Functions
How PenPoint Handles Multitasking
Multitasking within an Application
Reliability
Protection of the Kernel
Survival of Application Crashes
Recovery from Operating System Crashes
The Loader
Date and Time Services
Machine Interface Library
Other Kernel Services
Summary

The Class Manager
Features Supported
Programming Efficiencies
Unique ldentifiers
Major Programming Tasks
Setting Up Message Arguments
Sending Messages
Creating New Instances
Controlling Object Access and Capabilities
Creating New Classes
Setting Up Observer Objects
Summary

Contents

57
57
57
58
58
59
59
60

61
62
63
64
65
66
67
68
68
69
69
70
70
71
72

73
75
7
7
79
79
80
82
82
83
84
85

The Power of PenPoint

6 The Application Framework
Purpose of Layer
Common Functions Handled by Application Framework
Advantages of Application Framework
Architectural Overview
Standard Application Elements
Application Code
Document Directory
Document Process
Application Object
Resource Files
Main Window
Application Framework Standard Behavior and Inheritance
Installation Behavior
Creation of New Application Instances
On-Line Help
Document Properties
Move/Copy
Gesture Recognition
Goto Buttons
Standard Application Menu Support
File Import and Export
Printing Support
Spell Checking
Search and Replace
Application Stationery
PenPoint Application Life Cycle
Instance Creation
Activation
Opening
Closing
Terminating
Destruction
Summary

87
89
89
89
91
96
96
97
98
99
99
100
101
102
102
103
104
104
106
106
107
107
109
109
109
110
111
112
112
113
113
113
114
114

Contents

7 The PenPoint Windowing System 115

Basic Concepts 118
Working with Windows 122
Creating a Window 123
Showing Windows 124
Laying Out a Window 125
Managing Windows 126
Filing Windows 126
Summary 128
8 Recursive Live Embedding of Applications 129
What It Is 129
Why It's Important 131
What the User Sees - 133
How It's Done 134
The Problem of Data Storage 135
Basic Concepts 135
File System Hierarchy 136
Process Space ' , 137
Embedded Windows 137
clsApp 140
Lightweight Embedding with Components 141
What Your Application Must Do 141
Embedded Window Marks : 142
The Problem of Traversal 142
- The Notebook as an Example 144
How You Program for Application Embedding 146
Where to Place Embedded Windows 147
Move/Copy Protocol 147
Traversal Protocol 148
Creating a Traversal Driver 149
Supporting Traversal as a Slave ‘ 151

Summary 151

The Power of PenPoint

9

ImagePoint: Graphics and Imaging System

Overview of Graphics in PenPoint
PenPoint Drawing Primitives
Painting and Repainting Windows

Role and Use of System Drawing Contexts

Creating a Drawing Context
Binding a DC to a Window
Drawing with a DC
Storing DC Drawings
Clipping and Repainting Windows
Clipping the Drawing Area
Repainting a Window
Graphics Primitives
Open Shape Primitives
Closed Shape Primitives
Text Primitive
CopyRect and CopyPixels Operations
Color Graphics Interface
Dealing with Prestored Images
Fonts
Opening a Font
Font Metrics and Character Geometry
Drawing Text
Text Calculations
Printing
Summary

10 The User Interface Toolkit

The Ul Toolkit: An Overview

Automatic Layout

Types of Ul Components

Common Control Behavior
Creating Controls
Responsive Behaviors

Labels

Buttons

Menu Buttons and Menus

153
154
154
155
156
157
158
159
159
160
160
162
163
163
165
167
168
169
170
170
172
173
173
174
174
176

177
177
179
181
182
182
183
184
185
187

11

12

Menu Buttons
Menus
Scrollbars
List Boxes
Window List Boxes
String List Boxes
Font List Box
Fields
Notes
Frames and Frame Decorations
Option Sheets
Icons
Toolkit Tables
Summary

The File System
Traditional File Activities Supported
Unique File Activities Supported
Installation
Application Framework’s Default File System Usage
Interaction with Other File Systems
Files and Compound Documents
File Import and Export

File Import

File Export
Summary

Resources and Their Management
Types of Resources
When Are Resources Created?
Locating Resources
Resource File Formats
Managing Resources
Creating Resources
Compacting Files
Application Instance Data
Summary

Contents

188
189
189
193
193
194
194
195
196
199
200
202
203
204

205
208
208
209
210
211
212
212
213
214
215

217
218
218
219
221
222
222
223
223
224

The Power of PenPoint

13

14

15

16

Input and Handwriting Recognition
Overview of Input
What the User Sees
Terminology ‘
Key Problems and Their PenPoint Solutions
Handwriting Translation in PenPoint
Characteristics of the HWX Engine
How Handwriting Recognition Works
How Input Is Processed
The Processing Pipeline
Events
Filters, Grabbers, and Listeners
Translation
Summary

Text Editing and Related Classes
Basic Approach to Programming

Text Data Objects

Text Views

Text Insertion Pads
Summary

The Service Manager

Layering Services

Standard Service Managers
Installing and Using Services
Connecting and Disconnecting

User Interfaces for Service Managers
Designing Services

Summary

Connectivity
Overview of PenPoint Connectivity Support
Remote File System

Other Types of Remote Connectivity
Remote File Systems

225
227
228
229
229
232
232
233
234
234
235
237
238
239

241
242
243
244
244
244

245
246
247
248
250
250
251
251

253
253 .
254
255
256

Contents

Transport Layer 257

Link Layer : 257
Connectivity-Related Facilities 258
In Box and Out Box . ‘ 258
The Send User Interface 260
Summary 261
Appendix A: Important Data Structures, Classes, and Messages 263
The Class Manager (Ch. 5) 264
The Application Framework (Ch. 6) 266 -
The PenPoint Windowing System (Ch. 7) 272
Recursive Live Embedding Protocol (Ch. 8) 274
ImagePoint: Graphics and Imaging System (Ch. 9) 276
The User Interface Toolkit (Ch 10) 279
The File System (Ch. 11) 285
Resources and Their Management (Ch. 12) 287
Text Editing and Related Classes (Ch. 14) 288
The Service Manager (Ch. 15) 292
Appendix B: Things to Keep in Mind . 295
Memory Is Tight 295
Think Small 295
Modular Components 296
Everything's in Memory 296
There’s Only Memory 296
Your Application Must Recover 297
Object-Oriented or Else 297
Who Runs the Code? Who Owns the Data? 297
Tip 298
User Sees Documents, Not Separate Programs and Program Files 298
File Format Compatibility Is Important 298
Exploit the Pen 299

The Good News 299

The Power of PenPoint

Appendix C: Evaluating Pen-Based Computers and

Handwrltmg Recognition Technology 301
Pen-Based Computing Does Not Equal Handwriting Recognition 301
Applications That Don't Rely on Handwriting Recognition 303
What Dialog between Applications and the Handwriting Recognition

System Is Supported? 304
Is the Handwriting Recognition System Replaceable? 306
What Capabilities or Features of Handwriting Recogmtlon Systems Are
Important? 307
Measuring the Accuracy of Handwrltmg Recognition Systems 311
How Accurate Is GO’s Handwriting Recognition System? 317
Summary ‘ 321
Glossary of PenPoint Terms ' - 323

Index : 335

Preface

This book presents an architectural overview of PenPoint, a new, object-
oriented, preemptive multitasking operating system specifically optimized for
pen-based computing.

Who Should Read This Book?

As we wrote this book, we had in mind three audiences. -

First, we wanted to appeal to technical and engineering managers, who
have to make decisions about where to concentrate their companies’ software
development efforts during the next two or three years. This book contains
enough technical detail and information about development techniques,
environments, and strategies to make it possible for such managers to factor
PenPoint into their thinking.

Second, we knew that as soon as PenPoint was officially announced, there
would be significant interest from programmers wanting to know what this new
operating system is and how it might affect their work. This book provides a
foundation from which such readers can determine their levels of interest in
creating software for the pen-based computers of the 1990s. It also gives
these programmers a technical base from which to delve into the thousands of
pages of documentation about the Software Developer’s Kit (SDK) by pointing
out the important concepts, data structures, classes, and messages on which

XVii

The Power of PenPoint

to focus. (This SDK documentation, incidentally, is being published by
Addison-Wesley in its GO Technical Library series.)

Finally, we are well aware of a vast group of people who are simply techni-
cally curious; we belong to that group. For this group of people who begin
their exposure to PenPoint with no particular thought to using it or program-
ming in it, we have used examples and comparisons with older operating
systems as a way of differentiating PenPoint from those systems. We have also
included a number of commentaries explaining the rationale behind PenPoint’s
design features, which will help such readers understand it better.

What's the Purpose of This Book?

Keeping in mind the three audiences discussed previously, we set ourselves
several goals in writing this book and making it available early in PenPoint’s history.
We wanted to convey something of how it feels to work with a pen-based
computer and to program applications for this new paradigm. It is important to
us that readers of this book gain an appreciation for the gestalt of pen-based
computing and what makes it different for both the user and the application

designer from all forms of computing that have preceded it. A book that
accomplished only that purpose would, we felt, be useful and interesting.

But we wanted to go beyond the gestalt and look under the hood of Pen-
Point. We wanted to take a look at how PenPoint accomplishes the behavior
that makes it a unique operating system. How does its object-oriented nature
influence its design, and vice versa? How are its various pieces organized,
and how do they interact?

Finally, we wanted to give prospective PenPoint programmers a sense of
what programming for PenPoint is like, as well as a way of knowing how to
make best use of the SDK documentation with which they will deal as they
develop PenPoint applications.

It is important to note what this book is not. It is not a programming manual;
you will not find, in fact, a single line of sample code in its pages. It is not a
complete reference guide to PenPoint; such a book occupies many more
pages than this volume. Finally, it is not an end-user manual or even a com-
prehensive overview of the PenPoint user interface.

Preface

How |s This Book Organized?

This book has sixteen chapters, three appendices, and a Glossary.

Chapter 1 is an introduction to PenPoint. It begins with a discussion of the
development of pen-based computing and includes a rationale for the
development of a new operating system to support the new paradigm. It
also provides a top-level view of PenPoint and its organization.

Chapter 2 focuses on the user interface to PenPoint, examining the operating
system from the user’s perspective. It focuses on the two important new ideas
the user sees on a PenPoint-based system: the pen and the notebook metaphor.

Chapter 3 describes the development tools, environment, and approach to
PenPoint programming. It begins with a brief discussion of the reasons you
should consider undertaking PenPoint development, moves to explaining
the learning process you,should follow to master the environment, and
offers some design hints. It also talks specifically about software support
and the development process.

Chapter 4 begins the technical examination of PenPoint that occupies the
rest of the book. It focuses on the kernel layer of the operating system, that
layer closest to the hardware of a PenPoint-based system.

Chapter 5 concentrates on the Class Manager, a significant element of
PenPoint in which the object-oriented behavior of the operating system is
concentrated. Here, you'll learn how to create new classes and subclass
existing ones.

Chapter 6 explains the use of the Application Framework, the portion of
PenPoint with which you will become most familiar as you build your pro-
grams. This collection of classes defines the protocols that make up a
PenPoint application. It is also a complete implementation of a generic
PenPoint application.

Chapter 7 describes the windowing subsystem in PenPoint. Here, you'll see
that PenPoint windows are designed to be memory-efficient, or lightweight,
objects so that you can afford to define a great many of them in an applica-
tion. You'll see how to create and manage the windows that provide the
framework for your application’s interface.

The Power of PenPoint

Chapter 8 discusses an important new concept in PenPoint: recursive live
embedding. PenPoint users can open new documents from within existing
documents even when the new document is created and managed by a
different application from that of the host document. This process can
continue to a theoretically unlimited number of levels of embedding. But this
capability presents special problems for an operating system. You'll see in
this chapter how PenPoint implements this feature and deals with the
problem, as well as how your applications are affected.

Chapter 9 discusses ImagePoint, the graphics subsystem in PenPoint. This
is the part of the system that produces the actual images on the screen in
the windows discussed in Chapter 7. You will learn how windows work, how
to create and manage them, and how multiple overlapping windows from
multiple applications interact with each other.

Chapter 10 describes the User Interface Toolkit, a collection of classes that
makes it easy for you to give your PenPoint applications the look and feel
users will come to expect from pen-based programs. You'll learn about the
various controls, decorations, and other components of the user interface.

Chapter 11 provides an in-depth look at the PenPoint file system. This is a
key component of PenPoint; much of the special functionality of the system
(such as installable objects and PenPoint’s unique connectivity) are based
on the file system. You'll see how the system works, how it cooperates with
existing file systems, and how to use it in your applications.

Chapter 12 explains the concept of resources and how they are used in
PenPoint. You'll learn that you can use the system’s Resource Manager to
help you manage your data and objects in such a way that you don’t have
to spend time designing file formats, or worrying about where files are
located in the hierarchy when your application runs or the precise location
of elements within a file. The Resource Manager can take care of all of
those details for you.

Chapter 13 concentrates on the input subsystem. This is where you learn
about the pen and how it works from a programming perspective. You'll
also gain an understanding of how handwriting translation works and how it
affects your application.

Preface

Chapter 14 presents the key ideas behind the text-editing capabilities of
PenPoint. You'll see how PenPoint’s text editor is built on the view-data
model and how to make use of this editing capability in your application.

Chapter 15 outlines the Service Manager, a unique collection of routines that
permit PenPoint to install and deinstall, connect and disconnect, activate
and deactivate a variety of device drivers and background services. You'll
see that PenPoint is unique in allowing the user to install, deinstall, and
configure services on the fly without shutting down the system or interfering
with other operations.

Chapter 16 describes how a PenPoint-based system’s built-in connectivity is
implemented. Networking takes center stage, but other issues such as
electronic mail, facsimile transmission, and the unique concept of deferred
|/O are also discussed.

Appendix A is a chapter-by-chapter collection of programming information
about the important elements of PenPoint discussed in chapters 4-15. The
important data structures and their key fields are discussed. Tables summa-
rize the most-often-used classes and the messages they define, with which
you will want to become most familiar.

Appendix B offers some design and programming hints for programmers
and in the process gives you a different slant on the gestalt of PenPoint
development.

Appendix C provides insight into how to evaluate pen-based computers and
handwriting recognition technology.

Glossary is a glossary of terms used in this book and in describing PenPoint.

What Are Those Gray Boxes?

Scattered throughout the book, you'll find sections printed on a gray back-
ground. These special boxes contain information of two types.

First, there are notes. These generally point out an important exception or
clarification of information in the main text. They are always labeled NOTE.

The Power of PenPoint

Second, there are asides and insights. These gray boxes have longer, more
explanatory headings and provide the perspective of PenPoint architect
Robert Carr with regard to such issues as why he and his team decided to
take a certain approach to design, the advantages of a particular design
element, or the trade-offs involved in the decision-making process. These
should give you valuable insight into the minds of the people who designed
PenPoint. '

Becoming a Developer

GO Corporation has an active program underway to train and support
qualified application developers. Excellent documentation, developer tools,
and courses are available. If you are interested in developing software for
PenPoint and would like more information, please call or write:

Developer Marketing, GO Corporation, 950 Tower Lane, Suite 1400, Foster
City, Calif. 94404; (415) 345-7400.

Contacting the Authors

We enjoy hearing from people who have read this book and have insights,
questions, compliments, complaints, or other communication to share with us.
We can both be reached on MCI Mail, as RCARR and DSHAFER, respectively.
Or you can write to Robert at GO Corporation, 950 Tower Lane, Suite 1400,
Foster City, Calif. 94404. Dan is also accessible via CompuServe (71246,402),
CONNECT (DSHAFER), and AppleLink (DSHAFER).

Acknowledgments

PenPoint is the result of a team effort by more than 70 dedicated individuals.
To the degree PenPoint’s design and implementation are successful and
excellent, and to the degree PenPoint is well-received by the market, all credit
and acknowledgment must go to this entire team. | believe PenPoint will be
more than merely successful.

Software engineers, documentation professionals, product marketing per-
sonnel, user interface design experts, testers, software quality assurance
people, and, yes, management and financial backers: every role and every
individual made invaluable contributions. PenPoint is a good product because
of the inspiration, patience, and particularly the hard work of these individuals.

| particularly want to thank those who joined the PenPoint team early, when
we had only our imaginations. It is a rare individual who can confront the
challenge of invention. But as hard as truly original imagining is, building a
working version proved to be ten times harder.

R.C.

Like PenPoint, this book is a collaboration among a number of people. We
wish to express appreciation to Alex Brown, John Zussman, Patty Zussman,
Carol Broadbent, and many other GO Corporation staffers who assisted with
the design, development, and production of this book. Carole McClendon,
Joanne Clapp Fullagar, Rachel Guichard, and Mary Cavaliere of Addison-

XXili

The Power of PenPoint

Wesley believed in the book, nurtured it through its development and publica-
tion, and share in the credit for the finished product. Don and Rae Huntington
of Production Services did their usual wonderful job of being the last ones in
the chain of production and of performing admirably under pressure.

R.C.&D.S.

1
Introduction

PenPoint is a new operating system designed and built from the ground up
by GO Corporation for the unique requirements of mobile, pen-based comput-
ers. It is a 32-bit, object-oriented, multitasking operating system that packs the
power of workstation-class operating systems into a compact implementation
that does not require a hard disk.

Shrinking hardware sizes and the addition of a pen make possible a dra-
matic change in the way computers are used. Instead of controlling the com-
puter through a combination of mouse and keyboard, PenPoint proposes the
use of a single, simple pen. Instead of using computers only at desks or
tables, PenPoint proposes mobile usage throughout the day, wherever the
user is: in meetings, standing, walking, at a desk, in the car, even on the
couch at home.

PenPoint computers are powerful, tabletlike devices that behave much more
like a notebook than traditional computers. Users control PenPoint computers
with special pens that are sensed by the screen. The user writes directly on
the screen, combining the convenience of a notebook with the power of a
computer. Data is entered by handwriting, which PenPoint translates into
standard text. Commands are issued by pointing and by gestures such as
circling and scratching out.

In the early 1980s, the desktop personal computer market was only able to
flourish after the arrival of a standard operating system that allowed many
hardware companies to build systems that all could run the same application

1

The Power of PenPoint .

software. In the 1990s, there is a need for a new, general-purpose, mobile,
pen-based operating system to play a similar role in catalyzing the opportuni-
ties in the high-growth markets for mobile, pen-based computing. PenPoint is
designed to be that catalyst.

Our Friend the Fen

Under PenPoint, the pen is the primary input device. The pen is used for
pointing (by touching the screen), data entry (through handwriting), and
commands (through gestures).

Using a pen, it is easy to make a simple gesture that specifies both what
you want to do (the operation) and what you want to do it to (the operand).
This results in a more natural, direct feel when using the computer. Take the
example of deleting a word. In a mouse-driven interface, you must double-
click the mouse to select the word, then choose Delete from a menu or the
keyboard. In PenPoint, you simply draw an “X” over the word, and it is deleted.
Gesture commands are difficult (at best) with a mouse. In contrast, the pen is
a single unified tool that combines the functions of a mouse and keyboard and
adds the new function of gesture commands.

The pen is the most natural and ergonomic computer input dewce Humans
are capable of incredible precision and deftness with penlike devices: Walk
into any museum and view the artwork created with pencil, pen, and brush.
This deftness is possible because the pen allows the eyes and hand to coordi-
nate closely. Furthermore, the pen does not require an on-screen cursor,
since the pen tip itself indicates the pen’s location on the screen. Users are
freed from learning about the concept of cursors, which accelerates learning
and improves efficiency in using the system.

It is also important to recognize how comfortable meeting attendees are
when other people are writing with pens and how uncomfortable and dis-
tracted they are by typing on keyboard-based computers. In other words, the
pen is socially acceptable in a wide variety of meeting situations. Furthermore,
pen-based computers can be used while standing and walking, while key-
boards always require a table or desk.

Introduction

Mobile Fen-Based Computing:
An Untapped Market

In recent years, the growth rate of sales of desktop computers has slowed
dramatically. Even with a graphical user interface (GUI), computers remain
difficult for most people to learn and, because they are desktop systems, they
cannot meet the needs of the millions of American workers who spend most of
their day away from a desk. Despite the high sales rate of personal computers
throughout the 1980s, today only about one-third of the 78 million white-collar
workers in the United States use desktop systems.

Of those who do not use PCs, there are between 25 million and 35 million
who spend much of their time away from their desk. These users need mobile,
pen-based computers. Examples of these professionals include sales person-
nel, lawyers, doctors, journalists, scientists, lab technicians, managers, execu-
tives, estimators, inspectors, and field engineers. In addition, there are signifi-
cant numbers of blue-collar clipboard users and government workers who are
not served by desktop PC technology.

At the heart of these markets that will benefit from PenPoint is a new set of
tasks — that don't belong at a desk or can't be performed there — as well as
new users. Recognizing that there are new tasks makes it easier to answer the
often-asked question: “Will brand-new customers or users of existing comput-
ers use mobile, pen-based computers?” It will be both. While the dominant
new market opportunity consists of the more than 25 million new users who
spend most of their time away from their desk (if they indeed have one), there
are many users of existing PC technology who will benefit from these devices
as well.

Because they are used for new tasks, and often by new users, pen-based
computing needs new application software suited for these new markets. Entire
new categories of applications such as meeting-aid software, note-taking, and
group document markup and revision will emerge. Applications that are limited in
the current PC market because they are deskbound (for example, calendars,
personal-information managers, and forms-completion systems) will flourish in
the mobile, pen-based market. They are all hampered in their market success
so long as they must be run on a desktop PC or laptop computer.

The Power of PenPoint

Pen-based computers will come in a variety of sizes and shapes. The pen
naturally scales to any paper size, so a variety of screen sizes makes sense.
Contrast this situation with the keyboard, which cannot be shrunk smaller than
typewriter size and still be usable. Depending on the task, users will buy shirt-
pocket, steno pad, notebook (page-sized screens), and desktop.visual tablet
configurations of pen-based computers. Users interested in ultimate portability
for lightweight electronic mail, calendering, and personal-information manage-
ment would choose a pocket-sized device. Steno pads might be most appro-
priate for on-screen forms completion. Users interested in serious document
processing will typically want page-sized screens. Lastly, graphic artists and
CAD/CAM users will probably prefer using a pen on a live screen in the visual
tablet configuration at their desk or drawing table.

The Laptop Isn't a Solution

A common question is “Why aren'’t laptops an appropriate solution for the
mobile market?” They aren’t because they are actually desktop devices, not
mobile devices. Laptops are evolutionary personal computers. Their very premise
is that they are 100 percent compatible with desktop computers (that is, they must
run the same software). They are therefore reduced-sized desktop computers
optimized for transportability (to move from desk to desk), not mobility.

Like their desktop-based predecessors, laptop computers command the
user’s full attention during their operation. They simply cannot be made unobtrusive
the way a mobile, pen-based system can. When a laptop is placed on a table
or desk, the laptop computer must be opened up with the screen folding up
into the air. This intrudes into interpersonal space. Typing on a laptop key-
board is intrusive in many group situations and therefore rarely done. And, of
course, keyboard computers cannot be used while standing or walking.

The real need is not for mobile, pen-based computers to run the same
software as desktop computers, but for them to have access to data files
stored on existing desktop computers and networks. Desktop operating
systems do a poor job of providing access to each other’s data files. In con-
trast, PenPoint excels at providing access to a variety of desktop operating
systems’ data files.

Introduction

Why Build a New Operating System?

GO Corporation was founded in 1987 to pioneer mobile, pen-based com-
puting. Early in its development, GO Corporation determined that there were
three major alternative approaches to developing system software for this market.
The first alternative is to assemble a unique collection from standard pieces.
This is essentially what NeXT, Inc., has done: It took a version of UNIX and
Display PostScript and surrounded them with a variety of less standard pieces.
This alternative has the disadvantage that it does not bring along an installed
base of applications and that existing standard pieces were developed for the
desktop and perform poorly in a pen-based, mobile computing environment.

The second alternative is to add a “pen compatibility box” to an éxisting
standard operating system such as OS/2 or Microsoft Windows. The pen
compatibility box would attempt to run existing mouse-based software by
using the pen to emulate the keyboard and mouse. While technically possible,
this approach misses the point of the pen: The pen can be much simpler to
use than the mouse and keyboard. When the pen is layered above a mouse-
based GUI, a more complex system results, not a simpler one. The user of
such a system must ultimately be fully aware of the underlying keyboard and
mouse system and the mapping between it and the pen.

The third alternative is to design and build a new operating system from the
ground up for the unique requirements of the mobile, pen-based market. This
is the approach that GO Corporation took. Today, PenPoint is available for
applications and hardware development activities.

Key Requirements

There are a number of key requirements for an operating system for the
mobile, pen-based computer market.

The first key requirement is for a user interface designed to require onIy a
fraction of the user’s concentration; it must not presume the user’s full attention
will be focused on running the computer system, as desktop user interfaces
do. The user interface must also provide support for the pen through gestures
and handwriting translation.

The Power of PenPoint

In addition, applications on the pen-based system must be rewritten so they
can, wherever possible, supply context for handwriting translation. Only an
application can understand the meaning (semantics) of various regions of its
screen display. Therefore, when the pen is touched to the screen, the applica-
tion should be able to control the translation and meaning of the pen ink. For
example, only an application can specify whether certain fields it displays are
alpha or numeric. This simple information is vital in performing high-accuracy
handwriting translations.

Mobility brings a number of key requirements, including deferred data
transfer, detachable networking, and low memory and power consumption.

Deferred data transfer refers to users’ need to issue data transfer commands
on their schedule, not the computer’s. With laptop computers, users must wait
until they have an actual connection to a network, telephone line, or printer
before they can give an electronic-mail, print, or facsimile command. Users
must therefore perform the clerical work of keeping lists of file names to send
or print when the appropriate facilities become available. This is burdensome.
It is much more efficient to allow users to “address” the electronic-mail mes-
sage when they've finished composing it; the user can then be free to move on
to the next task, and the computer can perform the clerical task of tracking
pending operations. An operating system for the mobile, pen-based market
must provide mechanisms for deferred data transfer.

Detachable networking refers to the need for users to be able to make and
break networking connections at will. In addition, the operating system must
support multiple network protocol stacks so that the same pen-based machine
can talk to many types of computers and networks (including wireless) in the
course of a single day. When a connection is temporarily broken, the system
should gracefully suspend the connection and be ready to resume it again
when the connection is remade.

An operating system for the mobile, pen-based markets must excel at data
compatibility with many existing personal computer and networking standards.
Interestingly, a new operating system can actually do a better job at this than
an existing one. Existing operating systems tend to be compatible only with
themselves, creating islands of data without bridges. A new operating system
can be designed to be promiscuously compatible and connectable.

Memory and power consumption needs must be minimized, not maximized,
by an operating system. Desktop operating systems and applications are

Introduction

rapidly growing to fill all space available on large hard disks. These large hard
disks are not always small enough or durable enough for small, pen-based
computers that can get knocked about in use. Therefore, pen-based comput-
ers require a system that can minimize total memory requirements, including
disk space. Also, the operating system must include sophisticated power
management because batteries are a significant portion of the weight of pen-
based computers.

Any successful operating system must provide a rich development environ-
ment. While existing systems have a head start on building a collection of tools
and trained programmers, a modern, object-oriented operating system can do
the best job of this. This is because it can provide the most-productive coding
environment for the applications developer, since its application programming
interfaces (APIs) will be consistent, coherent, and provide the right functional-
ity for the new market. In contrast, traditional desktop operating systems are
increasingly burdened with the complexity that stems from piling layer upon
layer of software.

Finally, since the mobile, pen-based computer market is new, any operating
system choice must provide a strong foundation upon which an entire new
market can be built. The operating system must incorporate proven, robust
technology choices such as 32-bit addressing, flat-memory model portability,
and obiject orientation.

What |s PenFoint?

To understand PenPoint, you must grasp the significance of three adjec-
tives: general-purpose, mobile, and pen-based. A general-purpose operating
system is essential because computer markets naturally seek out general-
purpose system software; no one wants to buy a vertically integrated solution
that ties hardware, system software, and applications together into a single-
vendor solution. Mobility is vital for the markets of people who spend most of
their time away from the desk. Pen-based operation means that applications and
system user interfaces are extensively rewritten to take advantage of the pen.

The Power of PenPoint

Notebook User Interface

PenPoint was designed to be driven primarily by a pen. Because of this,
PenPoint includes many new elements not found in traditional GUls. Three of
the most important are the notebook metaphor, gestures, and powerful hand-
writing translation. Together, these constitute the Notebook User Interface (NUI).

The notebook metaphor in PenPoint provides the user with a simple-to-
operate, on-screen Notebook (see Figure 1-1). The user’s information is orga-
nized as a collection of pages and sections. Tabs appear at the right-hand
side of the screen, and there is a Table of Contents at the front of the Note-
book. At the bottom of the screen is the Bookshelf, a repository for systemwide
objects and resources such as In Box, Out Box, and on-line Help. (Chapter 2
describes the notebook metaphor and other aspects of the NUI in detail.)

Introduction

|§_ Note book: Contents [I
Document Edit Create View Show Sort
Name Page
@ Cument Products 2

Ihventory U TR U 3
D Standard OrderFarm &4

New Product!ldeas s e 6
Capers...... 7
] ChiliMixes ..o 8
[T SaEE .. g
i) Sales by Region - 10
H New Hires. ..o 11
@ Customers 12

ChainStores..o i .18
ComplaintstoActon.... 14

{uBisaq ai40g #an l_s,la.u osho lsq‘eslspn poid MmN pasodoig l_spn POid ML l_sw apos]

] Package Designletter.................... 17

] Proposed New Design (3281)......... e 18

Bottle Design Sketch................ o e 19

() Revised Bottle FAR...... ooovvooiooooee o 20

CONTRACT oo oo o e 21

New Product Draft ... 22
—

oYl B A oA = e &L

Help Preferences Tooks Stationery Disks Keyboard Installer In Out

Figure 1-1 The Notebook Table of Contents

The Power of PenPoint

We have already introduced the idea of gesture commands. PenPoint’'s NUI
builds in a standard set of powerful gestures that work consistently across all
applications.

PenPoint’s handwriting recognition system insulates applications from the
need to develop any form of pattern-recognition techniques. Yet it allows those
programs full control over the translation process, which is essential in attain-
ing true pen-based user interfaces. While the user writes, PenPoint performs
the recognition process in the background, so that the resulting text can be
displayed immediately after the user signals that all of the text has been entered.

Application Framework

All applications written for PenPoint must adhere to PenPoint’s Application
Framework (discussed in detail in Chapter 6), which is a set of protocols rigorously
defining the structure and common behavior of a PenPoint application.

Through the Application Framework, applications inherit a wide variety of
standard behaviors, including

® gesture recognition and response
¢ copy and move data transfers

¢ live embedding of other applications
* view-data model

¢ installation and configuration

¢ creation of application instances
¢ on-line help

e document properties

¢ spell-checking

e search and replace

e printing

¢ import/exporting file formats

¢ application life cycle

Introduction

New code is required only to add functionality or to modify or override
specific aspects of the default behavior. Use of the Application Framework
thus yields significant savings in programming time and code space.

The Application Framework defines the standard components of an applica-
tion, including the application’s code, an application object that is the control
- center for the application, a resource file, instance directory, process, and a
main window.

Applications have a well-defined life cycle comprising six phases

e creation (create document state in file system)

e activation (create process)

® opening (turn to page)

¢ closing (turn away from page)

e termination (kill process)

e destruction (delete document state from file system)

In addition to normal applications that run when their page is turned to,
PenPoint provides a Service Manager architecture that supports background
server applications such as databases and network connections. Applications
can interrogate PenPoint as to the presence of services and then establish
message-passing connections to these services. For example, a personal-
information manager application might provide many views onto one large
collection of textual and calendar information. Each view would reside as a
page in the Notebook. Actions in one view (your personal calendar) can thus
be reflected instantly in another view (your project schedule).

Applications save their internal state in a directory in the file system, but this
is invisible to the user, who has no need to save or load the application’s state
explicitly from one session to the next.

Embedded Document Architecture

The most innovative aspect of PenPoint’s Application Framework is its
Embedded Document Architecture (EDA), which provides three key user
benefits: the document model, live application embedding, and hyperlinks.

The Power of PenPoint

The Document Model

In PenPoint, the operating system performs the clerical bookkeeping steps
of starting and stopping processes (running applications) and of loading and
saving application data. This is called a “document” model because the user
never deals with application programs and data files or with the need to
associate the two by loading files. Instead, users simply move from page to
page and always see their data just as they last left it: scrolled to exactly the -
same location and with the application apparently still running. Unless the user
is transferring information to other computers, there is no need for the user to
deal with separate files and programs. Instead, to the user’s mind, each
document is itself a live, running piece of the user’s data.

Live Application Embedding

Live application embedding refers to PenPoint’s capability to embed a live
instance of one application inside another application. It is PenPoint’s most
unigue technical innovation.

For example, a text document can, with no special programming on the part
of its creator, embed any other PenPoint application, such as a spreadsheet or
business graphics application, within a text document it creates. Figure 1-2
shows a text document with two embeddees: a live, running drawing program
and a live, running signature pad (which is, by the way, a built-in PenPoint
object), both with their borders turned off. The result is that all PenPoint appli-
cations can provide a true compound document capability in which users are
free to mix and match applications seamlessly.

The pen is an inherently multimedia tool; nothing is more natural than quickly
switching from writing numbers to writing words to drawing a sketch, all on
one piece of paper. PenPoint’s live embedding allows every document in the
PenPoint Notebook to be ‘a compound or multimedia-ready, paperlike surface.

Other operating systems copy “dead” data from one application to another.
This requires the designer of the receiving application to write code to accept
a variety of data formats from the Clipboard and dynamic data exchange
(DDE) transfer mechanisms. While PenPoint supports this mode of transfer of
pure data, the norm is for the receiving application simply to embed an instance of
the application that already knows how to edit and display the data.

7 Proposed New Design (32 /91) 19>

Document Edit |Insett Case Format

Dear Mr. Hopkins:

['ve received our department's most recent proposal for
the New World Foods bottle design. They recommend a
common resin, polyethylene terephthalate (PET), which
- |lis recyclable, lightweight, and achieves your breaking
resistance goal. Switching to this resin also has the
advantage of giving us greater design flexibility.

I faxed your packaging consultant this latest revision and
received his comments by fax yesterday.

We can go over these recommendations when we meet
next Tuesday. In the meantime, don't hesitate to call me
if you've any questions (915-893-9877).

Sincerely,

- |

Elena Huerta

| uBisaq siuog saN lsaa.u ojsho lsape sl spnpoig maN pasodosg]spnpaig pauno lsw apion]

New Product Supervisor 5

i A N R [N . A §

Help Preferences Took Stationery Disks Keyboad Installer In Qut

Figure 1-2 Text Document with an Embedded Document

Introduction

The Power of PenPoint

Hyperlinks

Hyperlinks are a standard element of PenPoint’'s EDA. PenPoint provides a
simple gesture with which a new hyperlink button can be created. The resulting
button will “jlump” (a combination of turning pages and scrolling a document) to the
location selected when the button'was created. Users can rename buttons and
place them anywhere in the Notebook. Since PenPoint supports live embed-
ding, the buttons can be placed inside documents as well as in PenPoint’s
Bookshelf area. The result is a hyperlinking mechanism that is completely
integrated with both the operating system and all applications written for it.

_Applicationa

From what we have said, it should be clear that PenPoint applications and
the operating system have a close relationship with one another. The user
might form the impression that installed applications and the operating system
are simply part of a seamless whole. But the two are, in fact, cleanly sepa-
rated. This allows easy distribution, installation, and deinstallation of PenPoint
applications by third parties.

PenPoint comes with one built-in application, the MiniText editor, which is a
pen-aware formatted-text editor. It is available for all applications to reuse,
saving them the work of coding their own text editors. '

Otherwise, as a general-purpose operating system, PenPoint applications
will typically be bought by end users and added to their PenPoint system, just
as MS-DOS and Macintosh applications are today.

PenPoint’s standard for application distribution is 1.44MB, 3.5-inch MS-DOS
disks. Every PenPoint-capable machine has access to such a drive (either built-in,
via a base station, or through a desktop system). When the user places an
application distribution disk into the drive, PenPoint automatically senses it and
displays an application installation dialog box. If the user confirms a desire to install
or update the application, PenPoint handles the rest. All needed application
code and resources are installed into the PenPoint machine. Application code
is also relocated at this time. PenPoint will also ensure that all classes required
by the application are installed and are of the correct version. ‘

Introduction

Mobile Connectivity

PenPoint excels at connectivity to a variety of computers and networks.
Mobile connectivity requires an operating system to be different from existing
desktop operating systems, which evolved in a world of static connectivity.

PenPoint provides smooth connectivity to other computers and networks
through built-in networking APIs that go well beyond the file transfer utilities
currently used for laptop computers. PenPoint’s networking protocols provide
access to file system volumes, printers, and other remote services provided by
desktop personal computers and networks.

Mobile, pen-based computers are connected and disconnected many times
a day, often to and from different computers and networks. For these reasons,
PenPoint supports multiple, “autoconfiguring” network protocol stacks that can
be dynamically installed without rebooting the operating system. Network
connections can be established and broken at will by the user (in other words,
the user simply plugs cables in and removes them or walks into and out of
receiving range for wireless communications), and the operating system and
applications handle the breaks gracefully, suspending all interruptible opera-
tions until the connection is reestablished.

The Power of PenPoint

PenPoint’s Out Box allows users to initiate file transfers, send electronic mail
and facsimiles, and print documents to any destination, regardless of where
the user is and regardless of whether the pen-based computer is currently
hooked up to a connection that could satisfy the command.

The Out Box is a central, extensible queueing service for all connection-
dependent transfer operations. Transfer agent services that extend the Out
Box to work with specific destinations such as printers, file transfer, specific
electronic-mail protocols (MCI Mail, PROFS, MHS, and so forth), and facsimile
can be installed. The user interface for the Out Box is a small floating Note-
book that provides a section for each Out Box transfer service.

Outgoing information must, of course, be addressed. PenPoint supplies
standard Print and Send commands that allow communication services to be
tightly integrated with PenPoint applications. The Send command brings up
service-extensible addressing mechanisms that allow the user to send a single
document to multiple destinations. PenPoint provides a standard address-
book API so that the user’s favorite address-book application can be used to
store addressing information integrated with the address-book information the
user keeps for all other uses.

Few people have the time to read all their electronic mail at their desk when
they'’re plugged into the network. PenPoint’s In Box supports quick download-
ing of all received mail and facsimiles, so users can disconnect and carry their
mail with them for perusal between meetings or at home in the easy chair. The
In Box architecture is symmetrical to the Qut Box and is similarly extensible by
installable transfer services.

PenPoint’s file system is designed for compatibility with other existing file
systems, particularly MS-DOS, and includes full support for reading and
writing MS-DOS-formatted disks.

The PenPoint file system is tied to the MS-DOS file system; all PenPoint-
specific information is stored as an MS-DOS file in each MS-DOS directory.
This approach is used when mapping to other file systems as well. Additional,
installable volume types are also supported.

Introduction

Compact and Scalable

Desktop operating systems assume large, cheap mass storage and there-
fore run poorly or not at all in one-tier hardware (RAM only, no mass storage)
or require prohibitively expensive amounts of RAM to simulate disk space, or
require difficult-to-update ROM memory. Although small applications exist for
desktop operating systems, most of the best-selling applications typically
require several megabytes of disk space. ~

In contrast, PenPoint is designed to run as a single, standard operating
system on a full range of pen-based hardware, providing the largest possible
market for applications. PenPoint runs well on both one-tier and two-tier (RAM
with mass storage) memory architectures. As a result, PenPoint users will have
a choice between small RAM-only machines and slightly larger machines with
or without hard disks. ' ’

PenPoint’s object-oriented design achieves compactness through a high
degree of code sharing. Furthermore, PenPoint keeps only a single copy of
code in the computer, because it relocates executable code at application
installation time, not at application load time, as is traditionally done. If applica-
tions are relocated into memory at load time, there must be an additional copy
of unrelocated application code on the disk. This, in effect, doubles total
memory requirements. Once PenPoint installs an application, only a single
copy of its code (the relocated executable) resides in the PenPoint machine
until the user deinstalls that application.

PenPoint applications are small compared with their desktop counterparts.
Competitive PenPoint applications often require total storage space of only 100 to
200 KB, rather than the megabytes that existing disk-based applications require.

Because PenPoint hardware will vary in screen size from shirt pocket up to
large desktop visual tablets, PenPoint provides full support for all PenPoint
user interfaces (including applications) to automatically adjust and scale to a
variety of screen sizes. PenPoint’s User Interface Toolkit allows applications to-
specify their user interfaces in the form of a relative constraint language.
PenPoint then calculates the actual size and position of all user interface
elements during program execution. As a result, applications do not hard-wire
screen-size dependencies, as they have in the MS-DOS world.

...

The Power of PenPoint

A Solid Foundation

Combined with its unique support for the pen and mobile computing and its
compact implementation, PenPoint is a platform that can provide a large and
growing market for applications well into the next century.

All of PenPoint’s APIs are 32-bit, and the first commercial version of Pen-
Point will run on the Intel 80386 processor in its native, 32-bit, flat-memory
mode. In addition, because PenPoint is written in C and is designed for port-
ability, it can be ported to a variety of other processor architectures, including
high-performance, low-power RISC (reduced instruction set computing) chips.

PenPoint provides preemptive multitasking similar to OS/2’s, enabling
smooth user interface interactions, background communications, and smooth
background translation of handwriting while the user is writing. Each applica-
tion runs in its own process. Lightweight child threads are supported.

Reliability is crucial to the mobile, pen-based market. PenPoint therefore
takes full advantage of available hardware memory and hardware process
protection to provide a reliable and robust environment. If an individual appli-
cation or process crashes, the rest of the system keeps on running. Even if
PenPoint itself crashes, it provides an on-the-fly diskless “warm boot” that
preserves all user Notebook data and application code and returns control to
the user within one minute. Companies can count on PenPoint for their most
critical field applications.

Although we've seen that PenPoint requires little storage space, it can run equally
well in high-end configurations with large amounts of memory. PenPoint can directly
address up to four gigabytes of physical memory. Furthermore, PenPoint incorpo-
rates paged virtual-memory support, allowing it to work efficiently in architec-
tures that include backing store, such as desktop hard disk machines.

Software developers today are forced to write ever larger applications
because today’s operating systems require every application to be self-
sufficient and monolithic. As a result, small developers are increasingly locked
out of the commercial application marketplace since large, monolithic applica-
tions generally require either large programming teams or long development
cycles. PenPoint changes the equation in favor of smaller development teams
by providing an object-oriented environment in which applications can build
upon each other and share large amounts of functionality.

Introduction

The event-driven, object-oriented nature of the system minimizes the need
to “reinvent the wheel” with each new application. PenPoint's APIs are imple-
mented using object-oriented programming techniques of subclass inherit-
ance and message passing. PenPoint provides more than 250 classes and

1,500 messages for use by the application developer. Programmers can code

by exception, reusing existing code while altering or adding only the specific

behavior and functionality their own applications require. Because the object-
oriented architecture is systemwide, these benefits are not restricted to single

applications; in fact, applications can share code with each other just as
readily as with the system itself.

Summary

This chapter has introduced the key concepts behind the PenPoint Operat-

ing System. As we have seen, this new operating system was created to
respond to the unique needs of pen-based computing. Specifically, these
needs demand a general-purpose, mobile operating system.

PenPoint responds to these unique needs with such features as:

* Notebook User Interface (NUI) — PenPoint's central organizing concept
consisting of pages, tabs and a table of contents. In addition, a new but
familiar language of gestures and powerful handwriting recognition com-
pletes the NUI. :

¢ Embedded Document Architecture (EDA [TM]) — PenPoint’'s EDA lets the
user embed live, editable documents within other documents and create
hyperlink buttons between any two locations in the notebook.

¢ Mobile Connectivity — Instant-on, detachable networking and deferred 1/O

permit truly portable computers for mobile workers.
e Compact and Scalable — While expressly designed for small light-weight,

portable computers, PenPoint is highly hardware independent and scales to

a variety of sizes, from pocket-size to wallboard-size computers.

e Rich OS for the 90s — A true, 32-bit, flat-memory model architecture with
pre-emptive multitasking and a powerful, compact imaging model,
Imagepoint™, '

2
The FPenFoint

User Interface

PenPoint is unique in that it is the first operating system designed to be driven
primarily by a pen. Because of this, PenPoint includes many new elements not
found in traditional GUIs. This chapter will provide you with an understanding
of the PenPoint user interface, its design goals, how it relates to traditional
GUIs, and the unique ways PenPoint works with the pen. It is neither a com-
plete exposition of the interface nor a user manual.

Ambitious Goals

As discussed in Chapter 1, since mobile, pen-based computers are used in
different ways from desktop systems, they have different user interface (Ul)
requirements than desktop PCs. Briefly stated, users of mobile, pen-based
systems require a user interface that is direct and intuitive, yet powerful and
flexible.

Early on, GO Corporation established goals that PenPoint's Ul would have to

* be based on coherent metaphors—the user’s conceptual model is the
single most important element in a good UL.

¢ fully exploit the pen—Uls would have to be rethought from the ground up, if
necessary, for the real potential of the pen to be unleashed.

21

The Power of PenPoint

* balance visual invitation and visual restraint—visual invitation is important to
encourage the user to touch an element on the screen. But it is in tension with
visual restraint: Good design is uncluttered, and PenPoint's users would be
accustomed to using pens on uncluttered territory (blank sheets of paper).

¢ gtrike a balance among simplicity, consistency, and efficiency—that is, “easy at
the beginning, powerful at the end.” Real head room must exist for users to
grow more efficient in their use of PenPoint as they gain experience.

¢ permit a smooth transition for users of existing GUIs—many PenPoint users
would come from a background of using existing GUIs, and they might
continue to switch between the two systems. PenPoint would have to be
“interoperable.” It would therefore build upon and extend GUIs, not gratu-
itously reinvent every Ul technique imaginable.

~ PenPoint’s user interface is the design solution that meets these goals. It is

an immediately graspable user interface, even for the rank novice: Use a pen
for interaction, and organize your information as you would in a notebook. The
simplicity and directness of this user interface are compelling.

Fenfoint and Traditional GUls

If you have used a GUI, you will find many familiar concepts in PenPoint’s
user interface. User interaction techniques such as pointing to a graphics
screen (with a mouse in a traditional GUI, with the pen in PenPoint’s), scrolling
windows, and pull-down menus are all important foundations of PenPoint. On
the inside, application programmers will find that PenPoint has a modern
windowing and graphics subsystem that they must use to render their screen
display and that their applications must be structured in an event-driven
fashion, just as in desktop GUlIs.

There is much that is unique about PenPoint’s user interface; and this chapter’s
purpose is to focus on the unique, not the familiar. We will briefly introduce
PenPoint’'s more traditional elements and then discuss those that are unique.

The PenPoint User Interface

Windows and Their Frames

PenPoint applications run inside of a window and may in fact be sharing the
screen with other applications. These windows are called document frames
and can be resized and repositioned (except when they are a page in the
Notebook, as described later in this chapter). Figure 2-1 shows the standard
elements of a PenPoint document frame. As you can see, the standard ele-
ments of a window are there.

r-' Trip Report {
close__— s i st coe " ~ef T title line
corner ‘r\
\ \ menu bar
title
— scrollbar
body Of/'
document
resize
handles
cork
margin +

Figure 2-1 Document Frame Showing Standard Elements

Menus and Option Sheets

PenPoint uses Option Sheets in addition to pull-down menus. (See Figure 2-2).
Menus are typically used for verblike commands, Option Sheets for setting
adjective-like attributes of an object (such as font size). Option Sheets help
avoid “menu overload.” Furthermore, since attribute settings and commands
are different, placing the two in distinct portions of the user interface permits

The Power of PenPoint

PenPoint to provide optimum behavior for each. Commands should take effect
right away; consequently, menus dismiss (go away) as soon as you choose a
command. Options, however, are often set several at a time, and the same
settings may be applied to several objects in a row; therefore, Option Sheets
allow the user to set as many options as desired. The Apply button applies
settings to the selected object. The user may then change the selection and
continue using the Option Sheet. The Apply and Close button applies the
settings and then dismisses the Option Sheet. The Close button simply closes
the sheet without affecting the selected object.

CONTRACT 21>
Document Edit Insert Case Format

Dear Ms. Huerta: T

This is our agreement conceming your involvementin a
new bottle design for New World Foods, Inc.

1. You agree to supply design services and technical
drawings to New World. The de51gns and drawmgs
become.the.nee o : 2
your se

2. Yout Orientation: » Portrait

€Very Y Paper Size: » US Standard

OU COt} .
¥ Top Margin:

3. New
estimatd Bottomn Mamgin:

4. You
|will notf Left Margin:
contrac

Right Margin:

ng PPINE Our pro
not hold you liable for any losses 1ncurred once we have
approved the design and started production.

|uBsaq aiyog man | sieuogsno [saes] spnpoid meN pasodoid] spnpaig waung [swapoo]™

Please sign a copy of this agreement and fax it back to
me.

L

27 vl B A A £ &t

Help Prferences Took Stationery Disks Keyboawd Installer In Out

Figure 2-2 Typical Option Sheet

The PenPoint User Iriterface

Basic Controls

PenPoint includes a wide variety of the basic GUI controls such as buttons,
checklists, and multiple checklists. Of course, to echo the pen-based nature of
the system, PenPoint displays choice settings as check marks (as shown in
Figure 2-3). ‘

B

| CONTRACT 21>

Document Edit Inset Case Format

Dear Ms. Huerta: T

This is our agreement concerning your involvementin a
new bottle design for New World Foods, Inc.

1. You agree to supply design services and technical
drawings to New Wortld. The designs and drawings
become the property of New World upon payment for
your services,

2. Your cost estimates must be submitted §

NN

€¥ELY . TextOptions b Character | Hopkins before
Jou o e .
3 N Font: ¢ Roman (URW) 4
CNet Ol an approve
estima Siwe: » 12 PP
Style: + | Bold |
4. Yo « | ltalic '\ Design are notand
will n SmallCaps {IFoods, Inc. Thisisa
contra : Strike thru o
Undeline |
5.1y ‘Heavy Underline ate to withstand the
stresse i Hidden u have guaranteed
it, yo o charge, New
Worle dequate testing
before ficts. We will thus

not hold you liable for any losses incurred once we have
approved the design and started production.

{“Bsaq a0 /«enls.la.uo;s ho l sayeg| spnpoid maN pasodoid l_s.pn paid p4aund Ls;u 2p100]

Please sign a copy of this agreement and fax it back to
tne. v

(4]

2 vl B oo oW o= e Xt

Help Preferences Took Stationery Disks Keyboawd Installer In Out

Figure 2-3 Choice Settings Displayed as Check Marks

The Power of PenPoint

Some New ltems

PenPoint’s Ul Toolkit includes two items not normally found in other GUIs:
notebook tabs and writing pads.

Tabs

Tabs are a user interface feature that simulates the tabs in a three-ring
binder (as shown in Figure 2-4). In a moment, we’ll describe how these tabs
are used in the notebook metaphor itself. But you can use the same tab code
to create navigational tools in your application (to switch between screens in a
form or sheets in a three-dimensional spreadsheet, for example).

PenPoint’s tabs overlap when there are too many to display in a single
column. In this case, they can be directly manipulated with simple flicks up
and down of the pen tip. A flick left will uncover all the tabs.

Writing Fads

Writing pads (see Figure 2-5) are used to capture handwriting, translate it
into ASClI text, and allow simple editing. The larger writing pad in Figure 2-5 is
an embedded writing pad, while the smaller one is a pop-up edit pad.

Writing pads provide a natural area for handwriting, since they are similar to
lined paper. Because many people handwrite larger than the size of the
translated text on the screen, the user can adjust the dimensions of the writing
pads. A system preference setting allows the user to choose between boxed
and ruled styles of pads. Boxes require separation of characters and may
ensure higher recognition rates; ruled lines are simple lines on which the user
may write characters more closely together.

The user can cause a writing pad to appear in either of two ways. One
command creates an embedded pad, the other a pop-up pad. Embedded
pads are typically used for larger amounts of text. The application opens up
space around the embedded pad so that the preceding and succeeding
context is still visible while the user writes into the pad. Pop-up pads are

The PenPoint User Interface

optimized for small amounts of text. They float at or near the location of the
command, and the application does not shift its display. They are great for
inserting, editing, or replacing up to a few words.

[e_ Note book: Contents 1>

o

Document Edit Create View Show Sort 3
]

3

D? Cument Products ... 2 %’
Inventoryo..... TR TR .3 3

D Standard Order Form -................ T e 4 g

[Proposed New Productso, 5 5
New Product!ideascoooo 5] 'g
CRBPEIS oo eeieiieiniere e IO 7 z
Chili MIKES -+ oo oo 8 2]

N a |3
Sales by Regionc.ocooooii 10 g
New HItes ... 11 z

G? CUStOIMBIS 12 %
Chain SIOMS -+ eooo oo 13 |2

by Q

‘ ComplaintstoActon ... 14 ’2,
[Mew Bottle Design. ... 15 |F
.]
SalsaCondimentso.coovii i 16 3
Packege Designletter............... ... 017 a
Proposed New Design (3281)........................ 18 g
Bottle DESign SKEIH. ... erovereroroe oo 19 B
l.j Revised Bottle FAX......................... R e 20 %
CONTRACT . oo ov oo 24 E;
New Product Draft . . g
Drawing Paper ... §
A

¥

=

=
=
-

2 vl B o od o= &

Help Prwreferences Took Stationery Disks Keyboar Instaler In Out

Figure 2-4 Divider Tab Simulation

The Power of PenPoint

7 CONTRACT 215
Document Edit Insert Case Format

Dear Ms, Huerta:

This is our agreement
new bottle design for

1. You agree to supply design services and technical
drawings to New World.

2. If your design proves to be inadequate to withstand the
stresses, heat, and shock for which you have guaranteed
it, you will complete a new design at no charge.

OK Clear Cangel

3. Your cost estinates must be submitted in advance
every week and approved by Richard Hopkins before
you continue wotk,

| ufisaq a|4og #aN Ls,ua.u osho lsq‘esl_spn poad #3N pasodaid lspn podd jMaunn lsw apoD]

4, New World will pay each invoice from an approved
estimate within thirty (30) days.

Please sign a copy of this agreement and fax it back to
me,

hA

7 v B .0 8 S O &L

Help Prefelences Took Stationerw Diks Keyboand Instaler In Qut

Figure 2-5 Two Types of Writing Pads

The PenPoint User Interface

All writing pads are essentially the same object appearing with various
default sizes in response to user commands. They are resizable. After hand-
writing into the pad, the user presses the OK button. This causes the trans-
lated text to appear in the boxes. The user can write directly into these boxes
to correct any errors. In addition, space can be easily opened up, and charac-
ters can be deleted with a simple gesture. The result is a reliable method of
entering handwriting and correcting it that is easy to learn and use. When the
user presses the OK button again on the translated (and corrected) text, the
pad will empty its text into the underlying application.

Applications can use writing-pad objects as an integral part of their user
interface. They may, for instance, embed pads into on-screen fields so the
user can simply place the pen into the field and begin writing.

Because writing pads provide a rich. and comprehensive set of handwriting
entry styles, the result is that applications can simply reuse these PenPoint
objects for almost all their handwriting input. The user benefits because the
user interface for handwriting is consistent across a wide variety of applications.

Fenfoint’'s Notebook Metaphor

PenPoint’'s notebook metaphor is based on the intuitive organizing principles
of pages in a notebook with sections, tabs, and a Table of Contents (see
Figure 2-6). All user data exists as pages.

Pages are numbered in the top-right corner. The user can turn pages with a
tap or a flick of the pen tip on or near the page number. Page turns include a
special graphical effect that looks much like a real page turn.

Notebook tabs appear on the right-hand side of the Notebook and may be
attached to any page or section; touching a tab turns immediately to its loca-
tion in the Notebook. If there are more tabs than will fit on the screen, they
overlap and collapse together. Their overlapping can be controlled with flicks
of the pen tip.

There are no file load or save commands, nor is there the concept of pro-
grams existing distinct from program data files. Instead, each page of the
Notebook is called a “document” and is viewed by the user as a live applica-
tion instance that is always available just as the user last left it.

The Power of PenPoint

; Note book: Contents <1
Document Edit Create View Show Sort
Name Bage
[T Cument Products ...—.....ccooooo oo 2
] Invenbry PR 3

DStandardOrderForm.,,.,..‘;..A,.A....v,. TR &

O Sales oo)

(4 Bisag ajyog o | siswogsns | saes] sonpoid men pasodoug| spnpoug wauns [spamon]

SalsafCondiments ST R - 1B

] Package Design Letter17

] Proposed New Design (3281)................18

Bottle Design Sketch............................. T 19

() Revised Bottle FAX.20

B CONTRACT - oo 21

New Product Draft.................... B PRSP RS 22
? v B A o\ o= kLA

Help Preferences Took Stationery Disks Keyboad Installer In Out

Figure 2-6 Notebook Table of Contents

Behind the scenes, the PenPoint Application Framework associates data files
with installed application code and operating system processes. To the Pen-
Point user, a page of the Notebook and a document are synonymous. To a Pen-
Point programmer, documents are also synonymous with “application in-
stance.” (In this book, we'll use the latter term since our audience is technical.)

The PenPoint User Interface

Pages may be grouped into sections. Sections may also contain other
sections; arbitrary hierarchies may therefore be created. The first page of the
Notebook is a Table of Contents that looks and operates likes its book equiva-
lent. In the Table of Contents, the pages and sections are displayed as an
indented outline. Sections may be collapsed and expanded as in an outline
processor. Touching a page number in the Table of Contents turns to that
page. All contents of the Notebook are always visible from the Table of Con-
tents, and pages may be easily created, moved, copied, deleted, and other-
wise manipulated from that point. Entire sections may be transferred in and out
of the Notebook just as easily as individual pages.

In Figure 2-7, the user has turned to a text document page. When the page-
turning command was given, PenPoint did the following steps:

¢ cleared the screen and displayed a page-turn effect lasting less than a
second

e created a process and application object for the destination page being
turned to

* sent a message to the destination application object to restore its saved
state from the file system

* sent a message to the destination application object to display itself on the
screen

In the background, now that the user is able to view and interact with data on the
destination page, PenPoint sends messages to the original page’s application
to file its data. PenPoint then terminates the process behind the original application.

As you can see from this sequence of steps, it is the PenPoint operating
system that performs the clerical bookkeeping steps of starting and stopping
processes (running applications) and of loading and saving application data.
Users simply move from page to page and always see their data just as they
last left it: scrolled to exactly the same location and with the application seem-
ing to be still running. In reality, because PenPoint Notebooks can contain
hundreds or thousands of pages, PenPoint automatically starts and stops
processes behind the scenes for the user. Otherwise, if PenPoint actually kept
these off-page processes running, memory would be consumed quickly.

The Power of PenPoint

7 New Product Ideas X3 |

Document Edit Inset Case Format

TO: Dick Hopkins
FROM: Enrique Fabbro
DATE: February 2, 1991
SUBJECT: New Product Ideas
lcc: Test Kitchens, Sara Schwartz
Dick -

I was fiddling around with some of my mother's old
recipes the other day and | came up with several ways we
mighttry to market eggplant which is a good stable
vegetable. It's cheap to grow and it survives well in cold
storage, and various preparations of itseem to hold up
well on the shelf. I think these new products might be
especially popular in the Southwest and in California
where they're rediscovering vegetables. Let me know
what you think. -- Enrique

Eggplant dip

(We'll need a catchy name for this.) This is a variation on
babaganoush that] think will stand up well to long-term
shelf storage. It involves roasting the eggplants (which we
can do in bulk) and then smashing them with garlic,
lemon, olive oil and spices. We currently have some
problems with the oil separating out to the top of the jar,
which is very unappetizing, butI tn sure we can find a
binding agent to solve this.

|uBsaq aiHog meN ls,lau,: oD | sqeslspn poid maN pasodoid lspn podd paawng | spap 0o]

A Southwestern curry sauce
This.is.essaniiallig.sauee.inillias.onhaheciio s
2 v B Ol @ £ [&%

Help Pwefetences Toolk Stationery Disks Keyboaw Installer tn Out

Figure 2-7 Displ‘ay after User Turns to a Text Document Page

The Notebook metaphor is designed for mobile users who are most often
 communicating with other users. Mobile users must be able to focus their
attention elsewhere than on the computer. The Notebook metaphor supports a
quick-reference style of access in which the user must be able to find informa-
tion with just a few taps of the pen.

The PenPoint User Interface

Benefits of the Notebook Metaphor

The notebook metaphor stands in stark contrast to the high level of concen-
tration the desktop metaphor requires. This is not surprising: The desktop
metaphor was designed for desktop users who are alone with the personal
computer and therefore free to concentrate their full attention on the computer.
The user of a desktop system is assumed to be doing nothing else while
operating the computer. The user of a pen-based, mobile system, on the other
hand, may be able to devote only a small portion of conscious attention to the
computer. '

The notebook metaphor provides these benefits

* lItis a physically familiar (like a real notebook) and stable user model (pages
and sections remain in the order and state the user last left them in).

e Users need not learn about the unnecessarily technical.distinction between
programs and data files, because user data in the Notebook simply exists as
live, running documents; there are no file load or save commands to learn.

e Because it is a stable model, users can employ their spatial memory of the
unique ordering of their pages and sections to help find and organize their
information.

¢ The Table of Contents provides an instant overview of Notebook contents;
all organizational tasks (such as create, delete, move, rename, and so forth)
and navigational tasks (page turns) can be performed from the Table of
Contents.

* Tabs on any page or section allow the user to maintain a set of documents
so that they are instantly accessible with a single tap.

* Sections allow hierarchies to be formed: According to the user’s preference
and style, the Notebook may either be a simple flat collection of pages with
no sections or a rich and deep hierarchical collection of sections within sections.

* The user can move sequentially through the Notebook simply by turning pages.

* The user can move in random order through the Notebook either by turning
to a Table of Contents and then turning to any other page or by touching on
an attached tab or using Goto buttons for frequently traveled paths. (Note
that the terms Goto buttons and hyperlinks mean the same thing.)

The Power of PenPoint

The Bookshelf

At the bottom of the PenPoint screen is a Bookshelf area in which
systemwide objects and resources are displayed as icons. You can think of
the Bookshelf as the meta-area in which the Notebook is rooted, or resides.

PenPoint's standard Bookshelf includes icons for these objects

¢ on-line help system

e system preferences

* Tools Palette

e Stationery Notebook

¢ Disk Manager

e software keyboard

e |nstaller

¢ |In Box and Out Box

e the selected Notebook

A tap of the pen on any of these objects opens it on the screen, floating over
the Notebook.

The power of object-oriented programming is evidenced in PenPoint's use
of the notebook metaphor in several of these subsystems: The stationery,
reference help, In Box, and Out Box all use floating instances of small, recur-
sive Notebooks for their user interfaces. The user is able to use the familiar
concepts of a Table of Contents, pages, and sections to browse through these
system services, and PenPoint is able to achieve tremendous code reuse.

The on-line help system provides context-sensitive and reference-style help
screens.

System preferences provide the user with configuration options such as the
choice between writing in all uppercase or mixed upper- and lowercase,
writing-pad styles, system font, portrait or landscape screen orientation, time
and date, and whether to enable sound. The user can also see memory usage
statistics here. :

The PenPoint User Interface

The Tools Palette provides a pop-up window with icons for a variety of
system accessories and tools such as clocks, calculators, and, importantly,
PenPoint's handwriting training program. ‘

The Stationery Notebook provides a place for the user (as well as installed
applications) to store copies of documents they would like to use as tem-
plates. This provides for a standardized form of application templates to be
fully integrated with PenPoint’s creation user interface.

The Disk Manager allows the user to browse and transfer files to and from
external disk volumes. These may be floppy disks, hard disks, desktop PC
and Macintosh computers, or volumes on network servers. The Disk Manager
user interface is based on the same code as the Notebook’s Table of Contents
and provides a similar outline view that uses the identical core gestures for all
transfer and manipulation of external files.

The software keyboard is a small pop-up image of a keyboard that the user
may tap with the pen tip when a physical keyboard is absent and the user
would prefer to not handwrite.

The Installer manages all installed applications, listing them and their
memory consumption for the user.

The In Box and Out Box queue up incoming and outgoing data transfer
operations until a suitable connection is available (see Chapter 16 for more
information on these).

The current Notebook fills the screen but is not the root of the PenPoint world.
Therefore, an icon representing the current Notebook sits on the Bookshelf along-
side the other icons (in the default configuration, it is scrolled out of view).

Because PenPoint ensures that the Notebook contains only user data (and
not system objects), advanced users may want to manage multiple Notebooks
in a single PenPoint machine. These Notebooks would be created by the user
or loaded from disk, and the user would switch between them by choosing
their icons on the Bookshelf. There is nothing to prevent a Notebook from
residing on disk.

Besides adding Notebooks to the Bookshelf the user can also place other
objects such as documents and hyperlink buttons (described later in this
chapter) there. As the Bookshelf fills up, it will automatically wrap the icons to
fill into row order. The bottom of the Notebook has a resize handle so the user
may draw it up to uncover as many rows of icons as the Bookshelf contains.

The Power of PenPoint

Gestures: The Fen Builds on the Mouse

The pen builds upon the heritage of the mouse as a pointing device. As we
discussed earlier in this chapter, PenPoint is based on many traditional GUI
principles, including the principle that much of the GUI screen is responsive to
pointing operations. Pointing is much easier with the pen than with the mouse.
With the mouse, you must position the cursor to the correct location and then
click the mouse button. These are skills that must be learned. With the pen you
simply tap on the screen. ,

But the pen extends well beyond the mouse’s function as a pointing device.
Since people can write and draw well with the pen, it can be used for many more
classes of operations than can the mouse. In fact, PenPoint uses the pen as its
primary input device; it is the only input device the user ever needs to learn or use.

In PenPoint, the pen is used for pointing, data entry, and gesture commands. Of
all input devices, it is the only one that can be used for all three. The mouse
cannot, because it is too difficult to handwrite with a mouse. The keyboard
cannot, because it is difficult to point with cursor keys and you cannot draw
gesture commands with a keyboard. Even when voice recognition is suffi-
ciently perfected for unconstrained high-volume data entry and command
issuance, it will still be a horrible pointing device. (Imagine controlling your
computer through voice commands without a pointing device like the pen in
hand: “Delete that word ... no, not that one, two to the left ... OK, now, see that
word “abject” four lines up? | want you to move it to just before the ...”.)

Because the pen unifies all these input modalities into a single, natural tool,
it is the ideal primary input device for a computer. Keyboards (covered later in
this chapter) and voice recognition become excellent adjuncts to the pen, to
be used in special situations.

Gestures as Commands

The most interesting and useful capability of the pen is not the handwriting
you can perform with it, but the gesture commands you can issue with it.
Gesture commands specify in a single step both a command and the target of
the command. With mouse-based systems, the user must always select the
operand object, then select the command verb. With the pen, users simply
draw the command directly over the intended operand object.

The PenPoint User Interface

The pen is so powerful that intensive editing and data entry tasks can be
performed entirely with it. In Figure 2-8, the user draws a small caret gesture to
request that a “gap” be opened up to write into. In response, the text opens up
a gap and fills it with a writing-pad object (one of many standard PenPoint
support objects). Figure 2-9 shows the resulting writing pad with some typical
hand printing that PenPoint recognizes.

f— New Product Ideas ‘6 >
Document Edit Insert Case Format

Eggplant dip ‘ T
(We'll need a catchy name for this.) This is a variation on
babaganoush that] think will stand up well to long-tetm
shelf storage. It involves roasting the eggplants (which we
can do in bulk) and then smashing them with gatlic,
lemon, olive cil and spices. We currently have some
problems with the oil separating out to the top of the jar,
which is very unappetizing, butI'm sure we can find a
binding agent to solve this,

Southwestern curry sauce

This is essentially ggauce. Grilling or barbecuing
vegetables like eggg;jant and zucchini and other squash
has become very popular in the West lately. You'd spread
this curry sauce over the vegetables as you grill them.,

1d maN pasodoid lspn poid Maunn Ls;.u auon]

Figure 2-8 Caret Gesture to Request Writing Space

While the user handprints, PenPoint performs the recognition process in the
background, so that the resulting text can be displayed nearly instantly after
the user closes the writing pad. Upon closing, the resulting ASCII text is
passed to the application.

Under PenPoint, the location of a gesture controls its intended meaning. For
instance, when the letter “O” is drawn in a handwriting area, it is translated into
ASCII 79 (a capital “O"), but when it's drawn over application data such as a
word, it is translated into the Edit command. When the “O” is drawn into an
object-oriented drawing program, it is translated into the command to create a
circle object (see figures 2-10 and 2-11). Such location-specific gestures provide
an intuitive “do what | mean” style of interface that is free of the confusing
modes that arise when a mouse is used where a pen would be more natural.

The Power of PenPoint

7 New Product Ideas G
Document Edit Insert Case Format

Eggplant dip £
(We'll need a catchy name for this.) This is a variation on
babaganoush that[think will stand up well to long-term

shelf storage. [tinvolves roasting the eggplants (which we
can do in bulk) and then smashing them with gatlic,
lemon, olive oil and spices. We currently have some
problems with the ook
which is very unag
binding agentto s

Southwestern ¢
This is essentially a sauce, Grilling or barbecuing
vegetables like eggplant and zucchini and other squash
has become very popular in the West lately. You'd spread
this curry sauce over the vegetables as you grill them,

1d #aN pasodoid| spnpoig psuno | spapos]

Figure 2-9 Writing Pad Appears in Response to Gesture

B . . Drawing Paper <25 -
Document Edit Grid Order Options

q MSN pasodoid [spnpoid paund | spapos]

Figure 2-10 User Draws a Circle Gesture

ldeas in Conflict

Even though the pen builds on the heritage of the mouse as a pointing
device, it is important to note that the two devices mix together about as well
as oil and water. The mouse requires an on-screen cursor; the pen abhors
this. The mouse does not trail ink on the screen; the pen requires this.

The PenPoint User Interface

4 Drawing Paper 25>
Document Edit Grid Order Options

1d Mo pasodog|spnpaig pauns [spamoo]

Figure 2-11 Drawing Program Creates Circle Shape in Response to Gesture

As a result of these fundamental conflicts, unchanged mouse-based GUI
applications require a mouse cursor. If these applications are running on the
same machine as pen-based applications, the user will be confronted with the
difficult situation of having a pen with a button on it to switch the pen between
mouse mode and pen mode. The user would have to understand the nature of
every window on the screen and ensure the pen was in the correct mode
before touching it to the screen.

Standard Gesture Language

PenPoint provides a standard, rich gestural language based on intuition
about pen editing marks. The heart of the gestural user interface is a set of
core gestures shown in Figure 2-12. These gestures work consistently across
all applications, providing common commands such as Select, Delete, Move,
Copy, Options, and Help. PenPoint provides dozens of additional gestures for
application-specific commands (for example, the same letter “B” that applies a
style of boldface when drawn in a word processor will toggle document bor-
ders on and off if drawn on the title bar of a document).

GO has found that a well-designed gesture is highly mnemonic. The choice
of gestures should be driven by two key factors

~ The Power of PenPoint

e They should leverage our society’s “collective unconscious” regarding
editing marks; for example, scratch-out and pigtail marks are intuitive
deletion gestures.

¢ They must be easy to draw and make; GO’s user research has found that
many multistroke gestures (those in which the pen tip is typically lifted at
least once during drawing) cause users difficulty.

{ N
[Brackei, left I Flick up
] Bracket, right | Flick down
A Caret L nsert space
3 Check q Pigtail
O Circle y Press
X Cross out " Tap
~= Flick left .? Tap press ’
== Flick right
\ J

Figure 2-12 Core Gestures in PenPoint

While virtually all commands and operations in PenPoint are available
through menus and Option Sheets so that users can easily find them, the most
frequently used commands have gesture equivalents. Because these are so
direct and efficient, most users will use them rather than other approaches.

Using the Fen for Data Entry

PenPoint includes a powerful handwriting recognition (HWX) subsystem.
‘This system is available to all applications. In addition, it is used by a number
of PenPoint objects (such as the writing pads mentioned previously) that are in
turn available to all PenPoint applications.

The PenPoint User Interface

The initial version of PenPoint is shipped with a HWX system developed
entirely by GO Corporation that has the following characteristics:

® recognizes neatly printed, mixed upper- and lowercase letters, numerals,
and punctuation

e gives the user the option of writing into character boxes or on ruled lines
e tolerates characters that overlap or touch

® recognizes characters independently of stroke and time order

e accommodates several users with or without training.

PenPoint supports these features on an impressive list of naturally shaped
characters at very high recognition rates, even when the user is writing ran-
dom English text. Typical word accuracy rates are 80 percent or better, which
is equivalent to character accuracy rates of 90 to 97 percent. For more infor-
mation on the HWX system see Chapter 13; for more information on evaluating
HWX systems see Appendix C.

Under PenPoint, the pen is clearly a respectable data entry device. With
time, it will only get better, because PenPoint’'s HWX is replaceable. HWX APls
exist as standard programming interfaces regardiess of what HWX is currently
installed. Therefore, PenPoint’s algorithms can be continuously improved
without disturbing the growing base of applications.

PenPoint’s HWX subsystem is replaceable, allowing replacement of GO
Corporation’s current English-language HWX with engines developed by third
_ parties. This supports placement of PenPoint into foreign markets such as
Japan, but it also guarantees that the world’s best HWX can be available
within PenPoint. Several third-party efforts are already underway to port other
HWX technology into PenPoint.

With time, PenPoint will support HWX systems that deliver accuracy rates
higher than today’s and tolerate messier or cursive handwriting. HWX is a
CPU-intensive task, and a better job can typically be done by expending more
processor time. GO Corporation’s algorithms have been carefully designed to
run in real time on current-generation hardware. As faster processors become
available, more ambitious HWX goals can be set. Furthermore, as the PenPoint
market grows, the market for HWX engines will grow and encourage entrepre-
neurial development.

The Power of PenPoint

Keyboard Support

PenPoint also supports keyboards for high-volume data entry. When users
are working at a table or desk and they know how to type and they have a
physical keyboard available, nothing beats the keyboard. But it's important to
point out that where other operating systems tend to use the keyboard for
everything (for example, all commands must be issuable from the keyboard)
and the mouse for some things, PenPoint inverts this former primacy of the
keyboard; in PenPoint every user action can be done with the pen and the
keyboard is supported chiefly for its excellence at high-volume data entry.
That is, PenPoint’s user interface guidelines do not require the use of Alt key
combinations, function keys, or the ESC key.

More Differences

Besides the notebook metaphor and gestures, PenPoint’s user interface
contains a number of other features not normally found in a traditional GUI.
These include

¢ a non-traditional move/copy model

¢ the Stationery Notebook

¢ scroll margins and scrolling with gestures
e cork margin

e Embedded Document Architecture

¢ hyperlink buttons

¢ floating pages

¢ integrated connectivity

The PenPoint User Interface

Direct Move and Copy

Move and copy operations in traditional GUIs are based on a clipboard
model in which the user must first copy or cut data to an invisible clipboard
and then issue another command to paste the data into the destination appli-
cation. In PenPoint, the user employs gestures that immediately initiate a direct
manipulation drag and drop move/copy user interface. (See Chapter 8 for a
more detailed description of how this portion of the user interface is imple-
mented.) Move and copy work within individual applications, across applica-
tion boundaries, and across pages in the Notebook.

Stationery Notebook

PenPoint’s Stationery Notebook unifies the user interface for creating new
blank instances of applications with the user interface for creating copies of
application template documents. It is extensible by applications, which can
bring templates with them at installation time, and by users, who may add their
own templates at any time. All templates (including a blank one for the cre-
ation of blank application instances) are stored in the Stationery Notebook. An
entry in this Notebook with a check mark next to it will then appear in the
Stationery menu, which is a simple menu that appears in the Table of Contents
in response to the insertion gesture.

Scrolling

PenPoint contains relatively traditional scroll bars with up and down arrows
and a scroll handle that is draggable and indicates your current position in the
file. These scroll bars are called scroll margins because they also contain a
thin margin into which you can draw flick gestures. These are simple up and
down flicks (in a vertical scroll margin) or left and right flicks (in a horizontal
scroll margin).

The Power of PenPoint

The scroll margins are infrequently used, however, because users may draw
the same scroll flicks in the application window itself. The result is direct
manipulation at its best: To scroll a line to the top of the window just place the
pen tip near it and draw a quick little flick up. Scrolling via flick gestures is
much more efficient than scroll bars because the placement of the pen tip can
be very imprecise and casual; with scroll bars, the placement of the pen tip (or
mouse cursor) must be precise.

Cork Margin

The cork margin is a unique standard part of every PenPoint document
frame (although it is turned off by default). It is a simple little border area at the
bottom of the document frame (see Figure 2-13) that can contain any PenPoint
object. It is called the cork margin because you “stick” things there in a fash-
ion similar to a small cork bulletin board. In fact, the cork margin’s capabilities
as a general-purpose repository are.similar to the Bookshelf, which we previ-
ously described. Both cork margins and the Bookshelf can contain hyperlink
buttons, closed documents (appearing as icons), and other PenPoint objects.

Because the cork margin is attached to a document frame, it goes wherever
~ the document goes. You might put several hyperlink buttons in the cork mar-
gin that point to various locations in the document that you want to mark.
Because the Bookshelf is always at the bottom of the screen, it is global. In
essence, the cork margin serves as a local buffer for objects, and the Book-
shelf as a global buffer.

Embedded Document Architecture

One of PenPoint’s most impressive technical capabilities is its Embedded
Document Architecture, in which live applications may be placed inside each
other to produce true compound documents. (This book devotes Chapter 8 to
this topic.) While complex software technology is required to implement this
capability, to the user the embedding user interface is straightforward.

Inventory

~

Document Edit Insert Case Format

CUSTOMER STATUS REPORT

AS OF OCTOBER 30, 19S50

cosT PRODUCT LINE YTD YTD CHANGE

WHOLE FOODS

PREV CORR %

10 Marinara 1,240 1,800 30% +
20 Garlic Bomb 670 640 T% -
25 SW Curxry 8,009 5,340 40% +
30 Loco Ceoconut 400 530 20% +
40 Fieh's Friend 130 106 25% -
50 Outstanding 44 78 90% +
60 Mellow Yellow 120 120 0% -
TOTAL 12,008 12,987 8% +
UNCLE BOB'S GROCERY
20 Garlic Bomb 130 108 25% -
40 Fieh'e Friend 44 79 95% +
50 Outestanding 118 118 %
TOTAL 2,400 2,600 8% t
RED LABEL STORES -
25 EW Curry 105 100 5% +
30 Loco Coconut 40 75 95% +
TOTAL 150 175 20% +
PRESCOTT'S
10 Marinara 1,240 1,800 30% +
20 Garlic Bomb 670 640 % -
25 8W Curry 8,009 5,340 40% +
30.. Loon. Conomat 400 Ran 20%..1 hid

uBsaq siuog man] siauiosno | sares|spapoid maN pasodaid [sonposd paung [spapon]™

(REAL FOODS | (SUPER G ROGERY}

TeDo 2:00 P.M.
{WHOLE FOODE) {UNGCLE BOBS} {RED LABEL)(PRESGOTTS}

7 v B 3 @ & O &

Help Prferences Took Stationety Disks Keyboad Installer In

Figure 2-13 Cork Margin at Bottom of Page

The PenPoint User Interface

To create a document inside of another, the user simply opens the Statio-
nery menu inside of the host document and chooses the new document type,
just as he or she normally would. Embedded documents may be closed to a
small icon (in which case the application is no longer running) or they may be
open. When the document is open, the user has full control through standard
document Option Sheet settings over whether the document menu bar, scroli

bar, and borders are on or off.

The Power of PenPoint

Hyperlink Buttons

PenPoint includes hyperlink buttons as a first-class, integral part of the
operating system. The user creates these links by selecting the target for
navigation and drawing a simple gesture at the location where the hyperlink
button should be placed. PenPoint creates a button that points directly to the
selected destination. Hyperlink buttons can point to any page in the Notebook
or to locations within pages. When a hyperlink button is pressed, PenPoint
creates an automatic page turn to the destination page. The location within the
- destination page is selected and scrolled into view. Hyperlink buttons are
correctly preserved across all filing and other data transfer operations.

Floating Pages

Pages in the Notebook may be floated by the user double-tapping on the
page number in the Table of Contents (or on a tab or hyperlink button pointing
to the page). A single tap on any of these goes to the page while a double tap
floats the page. You can think of floating pages as being temporarily “torn out”
of the Notebook, while remembering their original location, to which they return
when the floater is closed.

Floating gives PenPoint a general overlapping window model for those users
and situations in which this is appropriate. In other GUIs, overlapping windows
are the only organizational style, so users simply must learn to use it. In Pen-
Point, this style is treated as an advanced approach; users can confine their
systems to the more intuitive page-turning model.

Integrated Connectivity

PenPoint includes an extensive set of user interfaces for connectivity. Because
data transfer is so integral to mobile, pen-based computers, PenPoint allows
documents being transferred to queue up in the In Box and Out Box. These
services fill and empty when the appropriate communications connections (for
instance, a connection to a desktop PC or network) are available (see Chapter

The PenPoint User Interface

16 for more information). Both the In Box and Out Box use small floating
Notebooks as their user interfaces, allowing the user to employ the familiar
organizational power of pages, sections, and the Table of Contents.

The Send command in PenPoint is available from within every application to
send a copy of that document as electronic mail or facsimile (if the appropriate
transfer services are installed). The Send command brings up a standard
addressing user interface that works with a systemwide Send List (a form of
address book for addresses and phone numbers), and the pending transfer
operation is then entered into the Out Box.

User Interface Consistency

PenPoint encourages application user interfaces to be consistent with one
another in several areas. In our previous discussion of gestures, we pointed
out the concept of a core set of approximately one dozen gestures that all
applications implement in a consistent fashion. In addition, there is a set of
Standard Application Menus (SAMs), commands, and Option Sheets that all
applications must implement. (As you may have guessed, the Application
Framework provides default implementations of these features that are suffi-
cient for most applications.)

SAMS specifies two required menus: a Document menu and an Edit menu.
The Document menu contains (at least) Checkpoint, Revert, Print, Print Setup,
Send, and About commands. The Edit menu contains (at least) Undo, Select
All, Options, Move, Copy, Delete, Find, and Spell. In addition, SAMS provides
standard document Option Sheets that provide option cards to describe
document title and information, access controls, and application information.

To ensure appropriate application Ul consistency, the PenPoint Software
Developer’s Kit includes Ul Guidelines that specify the full set of consistency
requirements.

The Power of PenPoint

Summary

This chapter has looked at the PenPoint user interface primarily from the
user’s perspective. While this interface shares many features with existing
graphical user interfaces (GUIs), PenPoint incorporates some new ideas,
including notebook tabs for navigation among documents and writing pads for
insertion of handwritten text. '

As we have seen, PenPoint is organized around the concept of a notebook,
including sections, tabs, and a Table of Contents. PenPoint also includes a Book-
shelf area along the bottom of the notebook where system-wide objects can be
stored for easy access regardless of where in the notebook the user is working.

We have looked at the core gestures and handwriting recognition tech-
niques that make up one of PenPoint’s most unique and visible user interface
elements. We have noted that the pen is not intended for high-volume data
entry and that PenPoint therefore also supports keyboard data input.

5 -
Developing Applications
for FenFoint

PenPoint is radically new in many ways. Yet, in other ways, it builds on ideas
that have preceded it, some of which may be familiar to you. As with any new
technology, PenPoint offers some intriguing challenges to programmers who
want to develop applications to take advantage of its new features and capa-
bilities.

Mindful of this challenge, GO Corporation provides a significant amount of
support for your programming efforts. From training to a Software Developer’s
Kit (SDK) that contains all of the class libraries, source code, development
tools, and sample applications you'll need to build PenPoint applications,
PenPoint’s developers offer you a range of help and encouragement as you
~ embark on your programming effort.

Why Develop for Fenfoint?

At the outset, you may still be unconvinced that you should spend your valuable
time and resources developing applications for the PenPoint platform. There are at
least four reasons you should seriously consider doing just that.

First, many, if not most, of the major computer hardware vendors will be
producing systems that run PenPoint. GO Corporation’s strategy is to license
the PenPoint operating system and support software to as broad a range of
hardware manufacturers as possible. To that end, GO has made a conscious

49

The Power of PenPoint

decision not to become a hardware company itself. When it formally announced
PenPoint, significant industry support was also announced. For you, that means
that there will be many sales representatives, retailers, OEMs, and others selling
PenPoint-based computer systems, resulting in widespread knowledge and
acceptance of the operating system as an emerging standard.

Second, the market for pen-based computers will grow very rapidly over the
next few years. By the end of the 1990s, the pen-based market will be just as
large as the desktop PC market was at the end of the 1980s. This large market
will use pen-based computers for new tasks for which it will require new
software; existing desktop PC-based applications will, for the most part, not
simply be ported to PenPoint. As you will see throughout this book, a pen-
based system creates a new set of expectations and affords a host of opportu-
nities for rethinking application design. New software companies will be
founded; new software companies will flourish.

Third, the fact that you are reading this book means you have a chance to
get into this emerging and potentially huge market early. There are no estab-
lished, dominant players in this arena. You can enter the software market with
a product that has as good a chance as any of becoming a success.

Finally, the fundamental paradigm shift from desktop to pen-based note-
book computing opens many new opportunities for creative products and
designs. The old rules are no longer valid. This will be an exciting platform for
which to develop software simply because it will give you an opportunity to
stretch your creativity and your mind to envision and implement new kinds of
software that were heretofore either unheard of or not feasible because of the
limitations of desktop computing.

The Learning Process

Obviously, all of this potential requires you to invest some time and effort in
learning the new paradigm and in mastering some new tools.

Before you begin your approach to PenPoint, you should already be a C
programmer. In its first release, PenPoint supports ANSI (American National
Standards Institute) C. (Chapter 4 describes the C support in PenPoint in more
detail.) You should also have some familiarity with object-oriented program-

Developing Applications for PenPoint

ming (OOP) since PenPoint is strongly oriented toward OOP development with
class libraries, messages, and inheritance. Note that it is not necessary that |
you learn a new OOP language. PenPoint uses only standard ANSI C, not
C++. The object-oriented aspects of PenPoint are concentrated largely in the
Class Manager (see Chapter 5), which you will need to learn. Thus the learn-
ing curve for this aspect of PenPoint development is less steep than for under-
taking a transition to a fully object-oriented language like C++.

Once your background includes C and OOP programming, you should learn
the PenPoint Application Framework (see Chapter 6). This is the most impor-
tant and often-used portion of the PenPoint class library. A working understand-
ing of this aspect of PenPoint is essential to success in developing PenPoint
applications.

Next, you'll want to learn some additional material about PenPoint’s class
library and development support. Of particular importance are portions of the
windowing system (see Chapter 7), the graphics interface (see Chapter 9), the
file and resource systems (see chapters 11 and 12), and the User Interface
Toolkit (see Chapter 10). This book furnishes an overview of how those activi-
ties are organized and implemented, providing you some background that will
prove valuable when you tackle the SDK documentation, which covers these
subjects in greater detail.

The Power of PenPoint

After you have a reading knowledge of the main classes and functions in
PenPoint, you should study and modify the sample problems that come with
the SDK. These applications are well-commented and are explained in SDK
documentation so that you can grasp how and why they work. By making
judicious modifications in them, you will begin to get a feel not only for how
PenPoint programs work, but also how programming for PenPoint feels.

With this background, you're ready to design and build your application.

The Development Frocess

Object-oriented design and development require different approaches from
those you may have used with procedural languages and designs. One key
difference to keep in mind is that rapid prototyping is so easy in PenPoint that
you can afford to spend some time building multiple prototypes before you
write much code.

Even before you prototype, though, you should think seriously about your
application design in the context of the pen-based computing paradigm.

Thinking about Your Application

You should think of your application as a specialized building block dealing
with a single data type. It may, in fact, turn out to be a collection of such
components, but if you begin thinking of it in terms of this key idea, you'll find
that it is easier to design, prototype, build, test, and sell.

With PenPoint’s capability to embed applications inside other applications
dynamically (a subject covered in detail in Chapter 8), you can often create
sophisticated applications by relying on other applications’ capabilities. For
example, you may be able to create an application that integrates an existing
text editor and an existing spreadsheet program into a problem-solving tool
such as a business plan generator.

Prototyping Your Application

The PenPoint SDK comes equipped with prototyping tools that enable you to
craft an empty shell of a program and demonstrate how it would work on the
PenPoint system without having to write any C code. This makes it possible for
you to prototype your application with several different interfaces or approaches
and then get feedback from potential users about its design.

Market testing of this kind is important, but it is often difficult in traditional
development environments because the only way to show how a program will
work is to build it. By the time that’s done, the cost and time involved in chang-
ing it may be prohibitive. With PenPoint’s object-oriented approach and its
prototyping tools, however, you can take advantage of early market feedback
to modify a design so that it will sell better after you have invested all of the
time and energy you put into coding it.

Even if you are building a PenPoint application for a captive market, such as
an in-house department or work team, this kind of market testing and user
feedback is important to its success. You can let users participate in the
design process; in fact, some of the PenPoint prototyping tools are easy
enough to use that you can even teach your potential users how to create the
interface the way they want to see it. Then you can help them fine-tune it
before you begin coding. The benefit of this early user buy-in and ownership
lies in the degree to which users will not only accept but embrace the finished
product and make extensive use of it.

The Power of PenPoint

Designing Your Application

Object-oriented design is an important subject that is beyond the scope of
this book. One piece of advice that you'll find most useful in this regard,
however, is that you should decompose your design into objects defined by
their behaviors. In other words, you should examine your design for bits of
behavior that can be used as the basis for constructing individual objects.
One way to approach this problem, suggested by software designer and
consultant David A. Wilson, is to write a narrative description of your program.
The nouns in the description become candidates for objects and the verbs
become candidates for messages those objects need to understand.

As you design an application for PenPoint, try to keep in mind the need to
be as thoroughly pen-oriented as possible. This requires you to think about the
appropriate uses of ink, gestures, and data entry techniques.

As with any object-oriented environment, the real efficiency and power of
PenPoint derives from maximum reuse of PenPoint components. Don't reinvent
the wheel where you don’t have to do so. You will find that it will almost always
pay off to spend more time looking through the PenPoint class library for an
object that matches or nearly matches the behavior you need than starting
from scratch writing a new object.

Taking the idea of reusing code a step farther, you should design code so
that it creates reusable components. This will result, over time, in a library of
reusable objects dealing with behaviors you often need. Over time, you should
find that the amount of new code you have to write for each new application is
reduced. You might even come up with such interesting reusable components
that you'll find you can market them as well.

Exploit the Application Framework (see Chapter 6), the view-data model
(see Chapter 8) and the observer model (see Chapter 5) in PenPoint to make
your application behavior efficient and predictable. Using the view-data and
observer models permits you to create multiple views of the same data ele-
ment and benefit from automatic updating of the view when the value of the
data changes. This can be a powerful technique.

Consider using the Service Architecture (see Chapter 15) to create some or
all of the parts of your application. Any element of your program that does not
require a user interface might be a candidate for implementation via the

Developing Applications for PenPoint

Service architecture. For example, if you have a database engine in your
application, you can create it using the Service architecture, make it a sepa-
rate component, and gain not only efficiency but, potentially, another market-
able product.

The Power of PenPoint

PenPoint supports memory-mapped files, which allow you to address data
in a file as if it were in main memory. You should consider using this approach
to data access in your application because of its efficiency.

In designing your PenPoint application, be sure to provide data connectivity
to desktop PCs and Macintoshes, particularly to the most popular file formats
with which you wish your application to be data-compatible. The PenPoint remote
file system (see Chapter 16) and Import/Export support (see Chapter 11) make
it easy to provide this support. ,

Make your user interface scalable so that its size and aspect ratio can be
adjusted to the hardware environment in which it is run. The automatic layout
feature in PenPoint’s User Interface Toolkit provides excellent support for this;
use it. Particularly in view of the number of hardware manufacturers who will
build PenPoint-based systems, it is important that you not lock your application
into a particular assumption about screen size and orientation.

Mapping to the FenFoint Class Library

You will want to map all of your objects to the PenPoint class library to the
maximum possible extent. Before you can do this, you need to learn enough
about the class library that each new search for an object need not start from
scratch. This book is designed to introduce you to and summarize the opera-
tions of the important classes and groups of classes in PenPoint.

When you've studied and become somewhat familiar with the class library,
then you can search for objects that have some or all-of the behavior you've
defined for your application’s objects. By understanding what the PenPoint
classes do, you can quickly narrow your search. The SDK documentation then
enables you to focus quickly on the likely candidate objects.

Having identified an object to work with as the basic behavior definition for
your application object, you will then either subclass that class, customizing
your newly created object class, or create an instance of the original object if
its behavior exactly matches that required by your object. Resist the tempta-
tion to create new objects at the root level of the object hierarchy; more often
than not, you'll find that this means some reinventing of the wheel.

Developing Applications for PenPoint

The SDK

We strongly encourage you to take the Application Developer's Course
(ADC) from GO Corporation as part of your training in PenPoint. This class is
offered frequently and includes a great deal of hands-on laboratory experi-
ence building applications. If you take this program, an SDK is included as
part of the course materials. Otherwise, you can purchase the SDK documen-
tation separately.

Contents of the SDK

The SDK contains the software and documentation you need to build Pen-
Point applications. The main elements of the SDK are

e a set of application developer’s guides that focus on broad issues and the
use of development tools

¢ a comprehensive architectural reference that describes in detail all classes
and messages in the PenPoint class library

¢ an API reference that reproduces all header files, formal message and
parameter definitions, and data structures

¢ all necessary header and include files

* an object-aware, source-code debugger

® a database-driven class browser

® prototyping tools

¢ a special version of PenPoint that runs on PCs

Language and Software Support

PenPoint development requires an ANSI C compiler. The PenPoint Class
Manager provides all the object functionality developers have come to expect
from environments such as Smalltalk and Object Pascal. Because the Class
Manager is a subsystem of PenPoint rather than a language extension, its

The Power of PenPoint

capabilities are available via standard C syntax. In addition, these same capabili-
ties can be made available to other languages such as Pascal and C++.

Virtually all PenPoint APls are based on Class Manager messages and
objects. This means you can reuse and modify system code at many levels in
the system.

A comprehensive set of debugging capabilities is an inherent part of the
SDK. Not only can you set and monitor debug flags in a separate debugging
window in the PC-based development environment, you can also use a
source-level symbolic debugger. it allows the programmer to examine clsMgr
objects and messages, set break points in the source code, manage multiple
threads, and execute sophisticated debugging scripts.

Runtime Function Support

PenPoint supports most standard C runtime functions. Because of differ-
ences between pen-based and other kinds of user interfaces and due to the
special needs of an object-oriented operating system, some of these functions
are modified and a few are not relevant.

Chapter 4 describes C runtime function support in more detail..

General Usage

The general development process for a PenPoint application involves
creating the original source code files on an MS-DOS-based machine, prefer-
ably one with an 80386 CPU. You can undertake some testing and debugging
in the PC environment, though it is obviously difficult to test fully the pen-based
aspects of your user interface without a pen.

Ultimately, you download your application to a PenPoint-based computer.
You might do this either by physically creating and reading a disk with the
application or via a fast communications link between the PC and the PenPoint-
based computer. The GO debugger will function in a remote debugging mode
in this case, with the debugger user interface and symbol table on the PC
while it debugs your application in the target hardware.

Developing Applications for PenPoint

As you undoubtedly know, the development process then becomes iterative
until you have a debugged application working as you want it to work. At that
point, you create the distributable product. We recommend you distribute your
product on a 1.4MB disk with an MS-DOS format and that you follow certain
directory structure requirements discussed in Chapter 11 to ensure maximum
compatibility with the PenPoint-based hardware system on which the user will
install your program. '

Hardware Requirements

To develop PenPoint applications, you need a development platform and a run-
and-test platform. The development platform must be an MS-DOS-compatible
computer system. The run-and-test platform can be either a 80386-based PC
with an EGA or VGA display and a mouse or digitizing tablet to simulate pen
activity or a PenPoint-based system if you want to run PenPoint on the target
hardware. We recommend the latter, but it is not required.

GO Corporation maintains a list of supported computer systems; you can
obtain the latest list from the company.

With either a mouse or a digitizing tablet, you can simulate at least portions
of the pen-based user interface in your application. However, you cannot get
the true feeling of using a pen on the display any other way than with actual
PenPoint target hardware; we recommend every development team have
access to at least one. ,

If you want to connect your desktop development platform directly to a
PenPoint-based system, you can do so through one of the high-speed point-
to-point network interfaces supported by GO Corporation. Chapter 16 pro-
vides more details on this point.

User Interface Design Guidelines

GO Corporation puts a great deal of emphasis on the consistency of the
user interface in PenPoint applications. Experience has shown that this is
important to the adoption and efficient use of any graphical user interface.

The Power of PenPoint

Users come to expect certain kinds of behavior from applications running in a
particular environment. Applications that meet these expectations are aimost
always more successful than those that do not.

To facilitate your program’s user interface design, GO Corporation publishes
the PenPoint User Interface Style Guide. The SDK contains a copy of this
document.

We strongly encourage you to obtain and study these interface guidelines
and to comply with them. You should deviate from the guidelines only when
there is an overwhelmingly compelling reason to do so.

Summary

This chapter has briefly examined some global issues surrounding the
development of applications for PenPoint-based computer systems. There are
at least four good reasons to develop such applications.

As we have seen, there is a learning curve for programmers interested in
developing applications for this new operating system, but the object-oriented
nature of the system makes it possible to learn development techniques
efficiently. This object orientation also requires that you think differently about
your application and its design from traditional procedural approaches.

Finally, we have examined the contents of the SDK with which you will work
as a PenPoint developer.

4
The FPenFoint Kernel

A robust, multitasking kernel is the foundation of any modern operating
system. PenPoint is built on just such a foundation: a 32-bit, preemptive
multitasking kernel with functionality similar to both OS/2 and UNIX. PenPoint’s
kernel is responsible for the orderly operation of the hardware on which Pen-
Point is running. You will rarely need to access the kernel directly except for
memory allocation and deallocation, but understanding how the kernel works
will assist you in dealing with the rest of the system with which you have more-
frequent programming contact and also satisfies your natural curiosity about
what's “under the hood.”

The basic role of the kernel layer is the adjudication of resource ownership
and allocation. The resources the kernel arbitrates are of two primary types:
time and space. Time refers to execution time on the CPU; space encom-
passes not only memory but also such space-constrained entities as 1/O ports.
The kernel uses the two basic concepts of privileges (for space access) and
priorities (for CPU allocation) to manage these resources.

Because the kernel is the foundation of the system, it is the least object-
oriented element in the PenPoint operating system. A specialized adjunct to
the kernel is PenPoint’'s Class Manager, which we discuss in detail in Chapter 5.
Taken together, the kernel and Class Manager include a well-defined API
(application programming interface), but the kernel’s interface consists exclu-
sively of functions rather than messages. The Class Manager provides the
object and class technology that the rest of PenPoint uses to behave in an

object-oriented manner.
61

The Power of PenPoint

Even though most of your interaction with the kernel involves memory alloca-
tion and deallocation, we will look first at time management because you need
to understand how the kernel handles tasks and processes before you can
understand how that management process affects memory allocation and
utilization.

Task Management

A task in PenPoint is defined as any executing thread of control. It is the
basic executing entity in the system. You can think of tasks as consisting of
hardware tasks and software tasks. The latter can be further subdivided into
processes and subtasks. These processes and subtasks are scheduled and
run by a software scheduler based on a priority scheme that determines which
task should run at any given time. The only kind of hardware tasks available in
PenPoint are interrupts.

A process is the first task that runs when an application is instantiated. A
new process requests local memory. Processes own all the resources used by
the application instance, including memory, subtasks, and the semaphores
that are used in locking and interrupt management schemes. When a process
is terminated, all resources owned by it are returned to the system.

You can envision a process as a single address space unit. Everything
inside any process is accessible to the rest of the process. In other words,
inside a process, everything is shared as in a family. In fact, we will referto a !
process and all of its subtasks together as a task family. Other processes,
however, cannot access any of the resources owned by a process without
specific permission and knowledge.

A subtask is a thread of execution started by either a process or a subtask.
Subtasks created by other subtasks are called sibling subtasks. The process
that creates a subtask owns that subtask in a parent-child relationship. A
subtask has the following characteristics:

¢ |t shares local memory with its parent process as well as any sibling
processes. ‘

® |t owns no resources.

The PenPoint Kernel

¢ It has its own registers and stack.
¢ |t can lock semaphores as well as send and receive messages.

The PenPoint software task scheduler handles the initiation and execution of
processes and subtasks. To start a process, the kernel creates a new execu-
tion context consisting of local memory, a local instance pointer to the execut-
able code, and a new stack; it then initializes data values.

A process can be started by another process or by a subtask, but there is
no hierarchical relationship between processes. In other words, a process that
creates another process does not therefore own the created process. This
also means that there is no special impact on a created process by its creator.
The created process will not terminate when the creator does (or even be
notified of its termination unless specific instructions exist to do so), and the
created process can decide to associate itself with other processes any time
and in any way.

Memory Management

Since PenPoint-based computer systems are by nature strongly focused on
memory as a storage medium and less reliant on alternative media such as
disk drives than are traditional operating systems, memory residence and
memory allocation have somewhat different meanings than you may be accus-
tomed to. All components of the operating system, all applications, and all
application data are kept in RAM.

The PenPoint kernel uses privilege settings to determine which of the vari-
ous tasks and processes (see next section) running in the system has access
to which memory and other space-related resources.

Memory can be private to a process, although there is also global memory.
We will look at how processes deal with their private memory in the next
section. Global memory is shared by all processes, and any task can allocate
memory in the global area of RAM. The memory manager keeps track of

The Power of PenPoint

global memory usage through identifiers and counters that track how many
instances of which application processes are sharing a given piece of global
data. It will not free the data area, even though a specific instance may
~ attempt to do so, until all of the processes have finished using it.

PenPoint memory management uses a flat-memory model in which you can
create heaps and allocate memory within those heaps.

Multitasking Support Functions

There are, as you may know, two major approaches to multitasking: pre-
emptive and yield-based. In a preemptive multitasking environment, the
operating system is able to preempt an executing task and regain control of
the processor. In a yield-based approach, applications must follow a rigorous
set of rules that define a “well-behaved” program. These rules typically require
the application to “call back” into the operating system periodically so that the
system can regain CPU control if needed.

PenPoint uses a preemptive approach to multitasking.

The PenPoint Kernel

How FenPoint Handles Multitasking

Relating this approach to multitasking to the discussion earlier in this chap-
ter about tasks and processes, you can see how PenPoint deals with
multitasking.

A process is the first task run when an application is instantiated. Therefore,
all processes are owned by their application instances. This gives processes a
kind of schizophrenic perspective. Seen from the kernel level, a process is
exactly the same as an application instance. In other words, the kernel sees
only the process. Seen from the top level of the system, including from the
viewpoint of your application, an application instance has other items besides
the process associated with it. These other items include memory and resources.

Processes generate subtasks, which are then managed by the software task
scheduler as previously described.

The scheduler uses priority levels to determine which subtask to execute. All
software tasks have a priority associated with them. Those with higher priority

The Power of PenPoint

values execute before those with lower priority values. These values are
defined at two levels. They have a priority class (high, medium high, medium
low, and low) and, within each class, a priority rating of 1 to 50. One rule of
prioritization in PenPoint is that all on-screen applications always have a higher
priority than off-screen pages and applications. Tasks of the same priority
share (time-slice) the processor.

Multitasking within an Application

Most applications are a single process. They do not contain separate
subtasks. Therefore, they will not typically use the kernel’s task management
or its other task-related functionality. This is in part because PenPoint single-
threads all of your application’s interactions with the operating system, the
input system, and other executing applications.

Some applications, however, may want to create separate subtasks. For
exanple, a spreadsheet might create a subtask to handle calculation in the
background, asynchronously with the user interface’s view of the data. Any
application that wants to create its own subtasks must use the kernel’s task
management as well as the kernel’s intertask communication routines. If you
do create an application that consists of multiple subtasks, you must be
extremely careful to avoid deadlock. PenPoint supplies a semaphore architec-
ture to support this requirement, but since it is rarely necessary for you to
delve into this area, we do not discuss this process here.

Reliability

The kernel of PenPoint is essential to the operation of the entire system.
Therefore, it is important that it be designed to be as reliable and crash-proof
as possible. Reliability in PenPoint involves three key issues

e a protection model for the kernel's contents
e enabling the operating system to survive an application crash

¢ enabling the operating system to recover quickly from a crash in the operat-
ing system itself

The Power of PenPoint

Protection of the Kernel

The kernel’'s protection model must protect the system in ways that are far
different from those of object-oriented systems that do not attempt to perform
operating system functions. In an object-oriented environment (as you'll see
shortly), programmers spend most of their time subclassing existing classes in
the hierarchy to give them slightly different behavior.

In an environment such as Smalltalk, it is virtually impossible to separate your
application code from the system code. You are frequently called on to exam-
ine system source code, understand what it does, and then either use it or sub-
class it to achieve some specific behavior omitted by the system designers.

The problem with allowing such rampant object access in PenPoint, of
course, is that here the class library is in large part also the operating system
that holds things together in the environment. It could be disastrous to permit
any programmer to make a modification that could in turn alter how any other
application runs.

PenPoint uses hardware-level protection schemes to protect its core objects
from accidental alteration.

Survival of Application Crashes

As we have pointed out, PenPoint uses a preemptive multitasking model. As
a result, the system will always retake control even from an application that
crashes. It will regain this control within a few milliseconds of the occurrence
of the application crash. '

Once the operating system has regained control, it can follow an orderly
application shutdown procedure to keep the rest of the system intact. This
means that if one of several executing applications enters an infinite loop, the
problem will not propagate to the other executing processes in the system.
Instead, within a short time of the occurrence of the crash, PenPoint will be
operational again.

The PenPoint Kernel

Recovery from Operating System Crashes

If the PenPoint operating system itself crashes, the user warm-boots to
recover.

Warm booting involves scrapping all running processes, including those
running at the kernel level. All applications and installed code resources, as
well as data files, are carefully preserved, and dynamic memory is cleared.

The system then shuts down all of the processes that were running when the
crash occurred and clears their resources, including dynamic memory. Each
process is started from a clean slate. With the probable exception of the page
to which the user was turned when the crash occurred, everything in the
system should be restored to its precrash condition. Depending on exactly what
was happening and on its stage of development when the crash occurred,
even the active page may be preserved.

PenPoint is designed to handle this entire crash recovery process in less
than a minute. It is, in essence, an on-the-fly diskless reboot process.

The Loader

Traditional operating systems always have two copies of the code for the
system and for any executing applications. One of these copies exists in its
unrelocated form on disk and one in its relocated form in the system’s
memory. In PenPoint, of course, this executable code can exist only in the
system’s memory since it has no guarantee that an external storage medium
will be available.

PenPoint loads a single, relocated copy of binary code into memory. This
single copy is shared by all instances of an application and is preserved even
across operating system crashes. This obviates the need for the unrelocated
form of the code to be anywhere but on application distribution disks. If you
write a word processing application and your user has thirty-five documents
stored on his or her computer system, each of which uses your application,
there is still only one copy of your executable code. Each of these documents
is an instance of your application and owns a pointer to the executable code

The Power of PenPoint

as well as some data that helps it keep track of where in the execution process
it last stopped.

This is clearly a major gain over traditional operating systems in terms of
memory utilization as well as overall efficiency.

Date and Time Services

The kernel, since it lives closest to the hardware, is of necessity closest to
the clock chip in the system on which PenPoint is running. As a result, Pen-
Point places some useful date and time services in the kernel.

The most interesting of these services is the alarm subsystem. It keeps track
of a queue of alarm dates and times. As each alarm time arrives, even if the
machine is turned off, action dictated by the alarm when it was set will be
taken. PenPoint systems need this capability because to conserve batteries
they need to be powered down when not in use. With the clock on a separate
chip and this alarm system, we can permit application designers to build such
applications as calendar-based alarms. It is possible, for example, to build an
application that will wake up the system and carry out a telecommunications
task when rates are favorable or traffic is low.

More-traditional timer interrupts as well as setting and getting the date and
time are also supported by PenPoint.

Machine Interface Library

Part of the kernel layer of PenPoint is known as the Machine Interface Library
(MIL). This library supports the efficient porting of PenPoint to new hardware
environments and is of interest only to developers with that assignment.

The MIL is an extensible part of the PenPoint Adaptation Kit (PAK), about
which you should contact GO Corporation if you want to deploy PenPoint in an
environment in which it is not now implemented. -

The PenPoint Kernel

Other Kernel Services

Floating-point math is supported through a library of C routines. These
routines are relatively standard and include functions to handle

addition and subtraction

multiplication and division

¢ trigonometric functions

logarithmic functions

e conversion between floating-point and fixed numbers

The PenPoint C runtime library provides as much of the functionality of
leading C libraries as is reasonable in view of hardware and operating system
requirements and differences. Functions specific to the MS-DOS or IBM BIOS
environments are not implemented. Functions that make calls to those omitted
functions have been modified accordingly.

All functions are reentrant, including some that were not designed to be so
in the Microsoft library. Some time-related functions were completely replaced
with newly named functions to avoid problems involving differences in param-
eter list sizes.

For the most part, however, you will find that PenPoint’s C runtime library
closely resembles the Microsoft library.

An ANSI (American National Standards Institute) C compatible stream 1/O
library is also part of the PenPoint kernel layer. This library is a robust and
flexible architecture for file and serial 1/O support.

The Power of PenPoint

Summary

This chapter has examined the kernel layer of the PenPoint operating sys-
tem, the layer that is closest to the hardware on which PenPoint is imple-
mented. The kernel handles task and process management, memory manage-
ment, and multitasking support.

As we have seen, the kernel is designed to ensure reliability of the operating
system from alteration by programming or by system or program crashes.

The kernel also includes other functions such as a loader, date and time
services, and a Machine Interface Library.

5 |
The Class Manager

PenPoint is an extensible, object-oriented operating system. It uses a Class
Manager to support object-oriented programming (OOP) concepts. The Class
Manager provides all the object functionality that developers have come to
expect from environments such as Smalitalk and Object Pascal. Developers
can use calls to the Class Manager to create classes and class hierarchies, to
create and destroy objects or class instances, to inherit functionality from other
objects, and to define and send messages between objects.

Virtually all PenPoint application programming interfaces (APIs) are based
on Class Manager messages and objects. This means you can reuse and
modify system code at many levels. As a result, applications are smaller and
provide a more consistent user interface (see Chapter 2) because they share
standard functionality provided by PenPoint subsystems. Traditional operating
systems, of course, are not object-oriented at all. These facts lead to some obser-
vations about the differences between PenPoint and earlier operating systems.

One of the most intriguing of these relates to the intimacy between applica-
tions and the operating system. In a traditional operating system, most appli-
cations interact with the operating system relatively infrequently, for specific
reasons and at widely spaced intervals. These interactions are generally calls
from the application to the operating system requesting access to facilities
managed by the system. The application can only call the surface (public)
APls, not the operating system’s internal building blocks. Applications must

73

The Power of PenPoint

“take it or leave it” in regard to the way the operating system carries out its
core tasks. This situation is depicted in Figure 5-1.

] ~ Application |

_Service {
Requirements Yy Y Y v

| Operating System]

Figure 5-1 Typical OS/Application Interaction Model

In PenPoint, on the other hand, there is a close working relationship between
the operating system and applications. As we will see in great detail throughout
the rest of this book, the development process can be viewed as extending
the operating system to encompass your application. Many of the functional
elements of your application may in fact turn out to be instances of facilities
furnished by PenPoint, perhaps with a bit of customization. Because all of
PenPoint above the kernel layer (see Chapter 4) is object-oriented, your
application can “reach” into PenPoint’s class hierarchy and call ancestor
classes as well as surface classes (leaf nodes). The result is a system that
provides many more entry points than a traditional operating system and
therefore supports a much greater degree of code sharing. (For example,
PenPoint has more than 1,500 messages compared with about 600 function
calls in Microsoft Windows 3.0.) This situation is depicted by Figure 5-2.

Application

Message-passing A
between application
and PenPoint OS

PenPoint

Figure 5-2 PenPoint OS/Application Interaction Model

The Class Manager

Features Supported

To function as an object-oriented operating system, PenPoint has a number
of fundamental capabilities that traditional operating systems do not provide.
Among these are

e user-controlled installation/deinstallation of classes, including sharing of
classes between applications and message sending across process
boundaries

e versioning support so that new releases of application and system code
can work correctly with objects created by earlier versions

e support for objects that are global to the system and therefore shareable
between the system and applications

e means for protecting the operating system from being damaged as a result
of the subclassing that is an inherent part of object-oriented programming

e support for prohibited or controlled access to objects that are either private
or protected (for example, operating system file objects that must be pro-
tected) '

¢ unique IDs for all objects in the environment so that message passing can
be handled efficiently and correctly, even when data objects are transferred
from one PenPoint machine to another (which means that PenPoint objects
are persistent)

We will examine many of these facilities in this chapter, though many will be
dealt with in greater detail later in the book.

By providing these capabilities, PenPoint brings object-oriented technology
right to the foundation level of the operating system, enabling everything that
happens in a PenPoint-based system to have all the intuitiveness, efficiency,
ease of learning, and other characteristics of good object-oriented systems.

The Power of PenPoint

PenPoint’s solution is to provide a subsystem called Class Manager. You will
interact a great deal with this subsystem and its important messages as you
create PenPoint applications. The Class Manager is an integral part of the
PenPoint kernel (see Chapter 4 for other elements that share the PenPoint
kernel with the Class Manager). Because the Class Manager is part of the .
kernel, all the rest of PenPoint can use the Class Manager; this permits those
other elements of the system to package their functionality as classes. When-
ever you build a PenPoint application, two of your main tasks will be to define
new classes and create new objects. This process involves the Class Manager
interaction.

In PenPoint, classes are used to package all public APls. You can think of

" this as a way to describe and encapsulate highly flexible code modules.
However, these code modules typically use traditional C code with function
calls and pointers to implement their public APIs. The result is a system that
combines the efficiency of C in its internal implementation with the power of
object-oriented programming in its external programmatic interface.

The Class Manager

Programming Efficiencies

Message handling does not require any special language constructs. A
message is constructed with standard C function calls, except that message
arguments must be stored in data structures before making the C function
calls. The resulting C code looks a little unusual but this implementation style
is efficient and implementable in ANSI C.

Object creation in PenPoint is also straightforward. Typically, you send the
message msgNew to a class you wish to instantiate. For example, to create a
new list object, you would send msgNew to clsList. You must always precede
msgNew with msgNewDefaults to initialize a data structure to default values
before you override some or all of those default values and then send
msgNew. In either case, the process is simple and standard.

Unique ldentifiers

PenPoint uses 32-bit unique identifiers (UIDs) to help the system keep track
of all classes and objects. A UID encodes information indicating whether the
object it references is global or local, and well-known (that is, permanently
defined at compile time) or dynamic (that is, created by the Class Manager at
runtime). Global well-known UIDs are assigned and administered by GO
Corporation to avoid conflicts. Because applications can embed other appli-
cations (see Chapter 8), it is important that any well-known UID you plan to
use in your program be assigned by GO Corporation and therefore guaran-
teed to be unique among assigned UIDs.

PenPoint also supports the use of UIDs within filed data. These UIDs must
be persistent (that is, unique across all time and space). PenPoint accom-
plishes this with Universal UIDs (UUIDs), which are 64-bit quantities that
include a unique machine ID from the hardware on which PenPoint is running.
UUIDs can be used to point to PenPoint objects even when they've been filed
to external media and then loaded back into PenPoint, regardless of which
machine they are loaded into.

The Power of PenPoint

PenPoint has two root classes in its class hierarchy. All objects descend
from clsObject, but classes additionally descend from clsClass. Note that
clsClass is a meta-class, so that for each class in the system there is a corre-
sponding object that stores information about the class as a whole (including
the code that implements its methods) and implements class-level operations.
In an idealized sense, objects encapsulate data and behavior (with behavior, -
of course, expressed as code). But you obviously would not want to duplicate
the code with every object instance. To avoid this, clsClass supports classes
as a special kind of object that provides the shared behavior (code) and
information for a type, or class, of objects. '

The Class Manager

Major Programming Tasks

As you create PenPoint applications, you are likely to find yourself involved
with the following activities that fall within the province of the Class Manager:

¢ setting up message arguments

e sending messages

® creating new instances

e controlling object access and capabilities
e creating new classes

e setting up observer objects

We will take a look at each of these functions so that you can get some of
the flavor of programming with PenPoint’'s Class Manager.

Setting Up Message Arguments

For all practical purposes, you can think of all processing in PenPoint taking
place as a result of one object sending another object a message. Conversely,
all objects in PenPoint respond to messages. So whenever you build an
application, you will find yourself spending a good deal of time designing and
creating messages and their arguments for your objects to respond to so they
can perform their function in the application.

Each message takes a single 32-bit parameter when it is sent. If you need to
pass more information than fits in 32 bits, you can use this parameter to pass a
pointer to a structure containing argument data.

Obijects can respond to messages in one of two ways: by returning a status
token indicating success or failure of the operation requested in the message
or by returning data in the argument structure supplied by the message
sender.

The Power of PenPoint

Sending Messages

You send messages to objects to elicit from them behavior that they know
how to carry out. This behavior is either part of their class’s definition or con-
tained in a parent class. You need not know the details; all you have to know is
that a particular object is able to respond to a specific message you send to it.

Message passing in most object-oriented systems is purely local and syn-
chronous. Objects can only send messages to objects that reside in the same
application instance. When an object sends a message to another object, all
processing halts until the receiving object responds. In PenPoint, message
passing can be synchronous or asynchronous. This feature is obviously
essential to a multitasking operating system.

Table 5-1 lists the four functions provided by PenPomt s Class Manager for
the sending of messages. In choosing which Class Manager function to call,
you must understand whether the destination object resides in a separate
task. You must also determine if you want synchronous (application code
execution is blocked) or asynchronous (application code continues executing
concurrently with the called code) tasking semantics.

Table 5-1 Message-Sending Functions in the CIaSs Manager

Function Usable across Usable
task boundaries? asynchronously?
ObjCall No No
ObjSend Yes No
ObjPostAsync Yes - Yes

Use ObjCall for objects local to (that is, owned by) your task. To send
messages to objects in other tasks, you must use ObjSend or ObjPostAsync.
This is because processes have separate memory address spaces, which
means that argument data structures must be copied by the Class Manager
from the caller’s task space into the address space of the called task.

ObjSend is synchronous. Most application developers will use ObjCall and
ObjSend.

The Class Manager

If your application-requires true concurrent multitasking between its tasks,
use ObjPostAsync. The caller and the responder will then execute concur-
rently. This is a valuable technique for applications such as a spreadsheet that
wants to perform recalculations in the background while allowing the user to
continue to interact with the program’s user interface.

Because most PenPoint programs test the returned status codes after sending
a message (just as they would if they were calling a C function), the Class
Manager defines a number of macros to assist you in message-passing tasks.

An Exampie

Figure 5-3 is a stylized example of sending a message in PenPoint. Three
pieces of information are essential

¢ the message to be sent
¢ the object to which the message is to be sent
¢ the argument values required by the message

position.x = 1;
position.y = 2;
ObjCall (msg, object, position);

Figure 5-3 Stylized Message-Sending Example

As we said earlier, the argument value is 32 bits; to pass more data, you use
some or all of the 32-bit argument to pass a pointer to a data structure whose
values you first initialize (in this example, the structure is called “position”).

As you can see, ObjCall is a normal C function that takes these three param-
eters; it then uses the Class Manager’s internal method table machinery to
pass the argument and object to the appropriate method (C code) where the
message is implemented. ObjSend and ObjPostAsync work identically, except
that they may copy their arguments.

The Power of PenPoint

Creating New Instances

Because msgNew takes many detailed arguments that many programmers
will not need to initialize, all PenPoint classes respond to msgNewDefaults by
supplying default values in the P_ARGS block for msgNew. You should there-
fore always precede a msgNew with a msgNewDefaults.

To create an instance of an existing class, you will generally follow this
process

1. Send the class you wish to instantiate msgNewDefaults, passing a pointer
to an appropriate argument structure.

2. The class initializes the new argument structure appropriate for this class.
3. Change fields you want to override.
4. Send msgNew to the class. This is where the actual instantiation occurs.

Controlling Object Access and Capabilities

One of the main issues in an object-oriented operating system, as we have
indicated several times, is the need to protect objects from unintentional
modification. Not all objects, of course, require such protection. But, clearly,
any object that the system depends on must be able to be protected from
alteration. -

PenPoint implements this capability by using keys and locks. All objects can
have a key associated with them. This key limits access to certain kinds of
operations to applications that have the key. Several messages that request
basic object operations like freeing (removing) the object require the use of a
key unless the object has set certain of its capability flags to allow the opera-
tion without a key. You can also require keys for messages you define.

Capability flags include those that permit a sending object to change the
class of an object, free it, use an object as an ancestor for a new class, make
an object observable, and control the messages that this object honors. Each
of these flags is a binary value that has different default settings depending on
whether the object is an instance or a class. Capability flags can be changed
dynamically by code with the appropriate key.

The Class Manager

Keys and locks, along with the Kernel's usage of hardware-protected
memory and process protection, are good examples of PenPoint’s defensive
efforts to protect against misbehaved or buggy applications. These features
also support rapid application development because many bugs are caught
immediately by the PenPoint Kernel and the Class Manager. A highly reliable
operating system and applications are the result.

Creating New Classes

There are two stages to creating a class. First, you write code that defines
the new behavior the class will exhibit. The only reason you ever design and
create a new class in PenPoint is because your application requires some
behavior that is not defined in an existing PenPoint class, so behavior defini-
tion is the key design step. Once you've coded this behavior, you compile the
new class and install it into a running PenPoint-based system.

The second stage takes place at runtime in PenPoint. There, the new class
is created by PenPoint sending msgNew to clsClass. The message arguments
are passed to clsClass in a structure called CLASS_NEW, which contains,
among other things, the name of the parent class, the name of a compiled
method table (see following section) to associate with the class, and the
amount of memory required for instance data.

Method Tables

How does a message to an object actually “look up” and call the appropri-
ate C function? PenPoint’s Class Manager maintains a method table for each
class in which message UIDs index into the table that contains the memory
addresses of the associated C routine. During development, the programmer
creates a table that associates each message’s UID with a C function call,
then compiles this table using the special Method Table Compiler that comes
with the PenPoint SDK. This results in an object file. At runtime, when you »
create your new class by sending a msgNew to clsClass, you pass it a compile-
time symbolic reference to the method table and the Class Manager binds the
class to its method table.

The Power of PenPoint

Setting Up Observer Objects

A-unique capability of clsObject (and therefore of all PenPoint objects) is its
observer capability. Any object may register itself as an “observer” of any
other object that is capable of being observed. Objects may have multiple
observers. Subsequently, the observer will be notified whenever there is a
change in the state of the observed object. This allows an efficient, data-driven
style of programming, rather than forcing objects to continuously poll or invent
ad hoc protocols just to coordinate among themselves.

The benefits of the observer architecture are significant. It is used as the
foundation of a variety of automatic notifications and updates in PenPoint,
ranging from applications being notified that a new service has been installed
to PenPoint’s Application Framework views observing their data objects.

The Class Manager

To be able to notify observers of state changes, an object must have its
appropriate capability flag set, contain a list of objects to be notified (though
the list is maintained by the Class Manager in response to messages), and an
argument structure pointer if data is to be passed with the notification.

Once an object is set up so that it is observable, any notifications it posts
will automatically notify any dependent or interested objects of a state change;
you need do nothing to make this happen.

Summary

This chapter has examined the Class Manager in PenPoint, the repository of
the object-oriented behavior in the system. As we have seen, the Class Man-
ager supports such features as

e user-controlled installation and deinstallation
e versioning

¢ global, sharable objects

e operating system protection

e controlled access to critical objects

e unique IDs for all objects

We have seen that application development through the Class Manager -
involves setting up and dealing with messages and objects as well as creating
new classes of objects.

We have also seen that observer objects are essential to the nature of
PenPoint.

O
The Application
Framework

As you can tell, applications written for the PenPoint Operating System
interact far more intimately with the system than do applications written for
more traditional operating systems. In older-style applications, the user had to
be aware of details of the system, including such issues as which application
to open to work with a specific document, the name and location of the data
file, and a host of other details. These users must explicitly save their data or
run the risk of losing it when the machine on which the operating system is
running is turned off. This is in stark contrast to a PenPoint application where
the user simply turns to a page in a notebook and the system locates the
appropriate document, identifies the application to run, and sets things up for
the user. When the user turns away from a page, the system saves the closed
document without user intervention.

This level of intimacy between the operating system and the application
would be an all but impossible feat if the operating system didn’t provide
significant tool support for the designer. The Application Framework is the
home of the tools that enable you to handie this close-knit interaction between
what you build and the environment in which the user will work.

In windowing environments on other operating systems, you generally have
the choice of using the support framework supplied by the operating system
designer or going your own way. This is not the case with PenPoint applica-
tions: Using the Application Framework as the basis for your application is not

87

The Power of PenPoint

an option, it is the only way you can get your application to install in and run on
a computer system using PenPoint.

Every PenPoint application, no matter how trivial or complex, must respond to
certain messages sent by the Application Framework. As we'll see in this chapter,
these messages are provided so that the user can install your application neatly
into PenPoint, create new instances of your application (by creating an associated
document as a new page in the Notebook), and intermingle your application and its
documents with other documents on the same machine.

The Application Framework also makes it easy for you to build your applica-
tion so that it follows the life cycle pattern of all PenPoint applications. As we’ll
see later in this chapter, all PenPoint applications have life cycles. Most of the
programming necessary to support this paradigm is included in the Applica-
tion Framework.

The Application Framework

Purpose of Layer

Essentially, the Application Framework layer of PenPoint serves two pur-
poses. First, it is a collection of classes that define the protocols that make up
a PenPoint application. Second, it is a complete implementation in its own right
of a generic PenPoint application.

Common Functions Handled by Application Framework

Architecturally, the Application Framework is a set of classes that define proto-
cols to implement common application behavior. These behaviors include

* installation via the Installer

e creation of application instances

* activation of an instance of your application (typically by tuming to a page
in the Notebook)

e saving and restoration of application data

* deactivation and deletion of application instances

e deinstallation of applications

The Application} Framework layer also provides the class and message
support needed to facilitate the use of the standard elements present in all
PenPoint applications. '

Advantages of Application Framework

As we have said, you must use the Application Framework layer in building
a PenPoint application. But this is neither an arbitrary requirement nor an
onerous burden. In fact, you'll find that a number of advantages arise from
your full use of this layer's functionality.

First, like all of the other classes in PenPoint, the Application Framework
layer’s classes make extensive use of inheritance to save code. By grouping
common behaviors and support for standard elements in a single collection of

The Power of PenPoint

tightly integrated classes, PenPoint makes it possible for you to focus on your
application’s objectives rather than on its presentation to the user.

Second, because the Application Framework structures all applications in a
well-defined, standard way, they all can be manipulated by common software.
For example, the operating system can install, deinstall, and perform other
operations for all applications rather than each application being required to
reinvent this wheel.

Third, applications can even manipulate one another in a standard way. The
concept of applications interacting closely with other applications is probably
foreign to you. In most traditional operating systems, interaction between
applications is an arm’s-length situation. You may be able to share data with
other applications or perhaps even launch them. But in PenPoint, the user can
create arbitrarily complex documents that embed multiple applications in a
single page of the Notebook. For example, for users to place an illustration in
the text of a word processing document, they create an instance of a drawing
program. PenPoint provides full support for all actions on the outer document
(in our example, the text document) to be applied to contained documents
(such as the illustration) as well. Furthermore, the PenPoint concept of applica-
tion development will almost certainly lead to a plethora of small, independent
programs that serve highly specialized purposes. These applications may be
accessible to all other programs running in the Notebook, and thus be subject
to control by those programs. This complexity would be a nightmare if the
operating system didn’t provide strong support for it. Fortunately, as you’ll see
in this chapter, PenPoint does. :

Fourth, you can implement a family of related applications extremely effi-
ciently. Since the Application Framework, like the rest of PenPoint, is class-
based, it can be extended. For example, you might write a family of related
applications so that they share a common subclass of the Application Frame-
work. This would link them together more intimately than possible with other
operating systems, and it would do so efficiently.

In short, the idea of the Application Framework is one you'll come to appre-
ciate as you develop PenPoint programs.

The Application Framework

Architectural Overview

Figure 6-1 is a class hierarchy diagram of the Application Framework layer’s
principal classes. Viewed in its entirety, the Application Framework layer
makes use of approximately sixteen classes. Of these, you will find yourself
most often using eight

e cisClass

¢ clsAppMgr

e clsApp

e clsAppDir

e clsEmbeddedWin
e clsView

* cIsAppWin

¢ clsAppMonitor

1 — e 1 1
[oo | [oesvn | [oo |
| [T

l cIsApngr‘I IclsContainenWl IcIsROO'CfmlainerAppl LclsEmbeddedWinJ L cIsFiIeHandleJ | clsAppDir I

L clsBorder H clsResFile |

clsCustomLayout

clsAppWin

Figure 6-1 Application Framework Class Hierarchy

The Power of PenPoint

In Appendix A, we take a closer look at each of these classes, including the
messages defined by each that you will need to know and use most often. For
now, we are interested in taking a bird’s eye view of the layer’s architecture, so
we'll save the details until later.

As you saw in Chapter 1, all named classes in PenPoint are instances of
clsClass. They are also descendants of clsObject. We briefly touched on this
dual-inheritance structure in Chapter 1; now it is time to take a closer look at it
in the context of your application.

All applications are instances of clsAppMgr and descendants of clsClass.
This means that a user-created instance of an application, while obviously an
instance of the application’s class itself, is a descendant of clsApp. This-rather
complex interrelationship of classes is shown in Figure 6-2.

cisObject
I 1

LcIsApngrl..LcIsCaIcApp -m

Figure 6-2 Typical Application Class Hierarchy

In Figure 6-2, the dashed lines indicate instances the solid line descend-
ancy. Your application would, of course, occupy the position in the diagram
where the class clsCalcApp appears. When the user creates an instance of
your application, that instance occupies the final leaf in the tree diagram in
Figure 6-2, labeled myCalcApp. As you know, the user can create multiple in-
stances of any application.

To make sense of what seem to be parallel structures, you should recognize
that PenPoint is supporting two parallel dimensions here: The obvious dimen-
sion is instantiating application instance objects; the less obvious is instantiat-
ing clsAppMgr itself (that is, application installation). For application classes to
be installable and efficient in memory use, PenPoint extracts all code resources
and behavior that are common across all application instances and places this
in clsAppMgr. In other object-oriented systems, class hierarchies tend to be
static; they do not support the grafting of new classes into the hierarchical tree
structure. PenPoint’s class hierarchy, by contrast, is dynamic. In PenPoint, not

The Application Framework

only is it possible to graft new classes onto the tree, it is even possible to do
this under user installation and deinstallation control.

This capability requires architectural and user interface support for grace-
fully handling the application’s dependency tree. If an operating system is truly
designed to encourage code sharing, it must handle the case in which some
of an application’s dependencies are not present. This is what the “meta level”
of clsAppMgr is about.

The messages defined by clsAppMgr deal with maintaining common instance
data about an application as well as with creating, activating, and deleting
instances of applications. On the other hand, the messages defined by clsApp
deal with application instances while they are activated. (We'll have much
more to say about these and other phases of a PenPoint application’s life
cycle shortly.)

The class hierarchy is not the only way to look architecturally at PenPoint
applications and their interaction with the Application Framework. Any applica-
tion that is running (typically those that are currently visible on the display) can
be viewed from any of four separate but closely related aspects: its display,
its file directory, its process, and its object.

Figure 6-3 shows the screen of a computer system running PenPoint with
five applications open: the Bookshelf, the Notebook, the Notebook Contents, a
text-editing application called New Product |deas, and a charting application
called Charting Paper.

You can see how this display of five applications relates to the file system’s
handling of these applications and their elements by examining Figure 6-4.

As you can see, the Notebook that serves as the fundamental metaphor for
PenPoint applications uses the file system to organize its documents so that
they parallel the structure of the Notebook Table of Contents. Each document
and section has its own directory in the file system. If a document is contained
in a section, its file entry is a subdirectory of the section’s directory. Similarly, if
a document has an embedded document, the embedded document’s direc-
tory is a subdirectory of its enclosing document'’s directory. The Bookshelf acts
much like a section, providing a “home” for all of the other top-level
subdirectories and documents in the Notebook.

The Power of PenPoint

Notebook: Contents <1
Document Edit Create View Show Sonrt
MNarme Page
First EXPEIBNGCE - o oo e 2
[j? SamPIES .. 3
MNew Productideas 4
Package Design Letter.. T 5
D Charting Paper. ... 3]
sy 7
New Prod uctldeas 4
Document Edit Insert Case Format
Southwestem curry sance 5

This is essentially a barbecue sauce. Grilling or batbecuing vege
and other squash has become very popular in the West lately. Y«
. | vegetables as you grill them. Pete in the test Kitchens came up w.
sauce is thick enough to stay on the vegetables yet thin enough &

i

Charting Paper

Document Edit View Tiling

1sa|dwvssl 30U MIad K3 4s4 ;|l SpaM 0914 adey Burpeys |

Eggplant paste
e really heed a new name for this one, but it's actually a great) i
(e &

@15} {steaks]

- |
2 vl ®» 0 & = D &4

Help Prfernces Took Statonery Disks Keyboad Instaler In Out

Figure 6-3 Screen Display of Five Typical Applications

The Application Framework

Notebaok: Contents 1y Bookshelf
Document Edit Create View Show Sont
e : S doc.res
FimExm’km‘ 2 doc.state.res
Samples - - 3
) New Productideas 4 N,Otebook
o B Packege DesignLeter B doc.res
Chanting Paper B
B 2 docstate.res
New Prod uct ke as 4
Document Edit Insert Cese Format NOtebOOK Contents
Sostirwostem cacry sance . _doc.res
Tris Gilling or vege
and other squash the We .
mm’i";..’;’mmpﬁ? nm‘;m“;::;‘:r‘ —docstate.res
sauoe is thick o stay on the bles yet thitt enough b
Charting Paper P Samples
Document Edit View Tiling doc.res
docstate.res
New Product Ideas
doc.res
docstate.res
Charting Paper
We really : for this one, but it's actually » great doc.res
e really | 2 new nams for this one, 's A]
docstate.res
e i)
~ - —Memo
; <
szlo Pnﬁ{-’i‘m Tooks Statonery o% Klyi?ud Ins%“ﬁv % o&m —etc....

Figure 6-4 File System Entries for Five Typical Applications

A process is associated with each running application in PenPoint. Much of
the work performed by the Application Framework involves the management of
this process in accordance with the application life cycle. The Application
Framework creates the process and sets up its application object to receive
messages. When the user turns away from the application, the Application
Framework destroys the process and saves its data (although you can design
your application to run in “hot mode” so that this behavior is not applied to
instances of it).

As we saw earlier in this chapter, an open document is an instance of an
application class, which is always a descendant of clsApp. Therefore, an open
document is an object capable of receiving and responding to messages

~defined in its own class and in clsApp.

The Power of PenPoint

Standard Application Elements

All PenPoint applications consist of a number of standard elements. The six
most important from the viewpoint of the software designer are

e application code

e document directory
* document process
e application