
GENERAL PRECISION LIBRASCOPE GROUP

808 WESTERN AVENUE, GLENDALE 1, CALIFORNIA

HIGH -SPEED, CONTENT SEARCH IN A

LARGE, ROTATING, MASS MEMORY

LIBRASCOPE GROUP

RESEARCH AND SYSTEMS CENTER

Prepared by

Don W.- Warren

HIGH-SPEED, CONTENT SEARCH IN A

LARGE, ROTATING, MASS MEMORY

The Librascope L-1500 Series Inagnetic disc has 120
one-Inillion-bit data bands with individual, fixed,
read/write heads. Transfer and various content­
cOInparison operations can be carried out at speeds
of over two Inillion bits per second, independently
of the central cOITlputer.

Applications of this type of IneInory to large data base
operations for comInand and control systeIns will be
discussed; and SOITle cOInparison with parallel search
facilitie s will be made to indicate SOIne of its advant­
age sand liInitation s.

THE LIBRASCOPE L-lSOO SERIES DISC MEMORY

Librascope's L-lS30 System is a "Search Memory" in the sense of the

Symposium Nomenclature. It is "Content-Addressable", it is primarily

serial, and it is fairly fast for a rotating memory - at least for one of

multi-million-word capacity.

Physically, (See Fig. 1A and 1B) the disc is 48 inches in diameter, 1/2

inch thick, rotates at 900 RPM, and has a fixed-position read/write head

for each data track. Six discs can be mounted in a single module sharing

the same drive shaft and much of the logic circuitry. Further, as many

as seven" slave" module s can be added to one "master" module without

duplicating the search logic - for a total capacity of more than a billion

character s.

The vital statistics are given in Figure 2: those just mentioned toward

the top, and several more in the table. The 420 data Tracks (one­

dimensional, circular strings of bits) are grouped into Track Sets of

three; i. e.: three radial bits are always read in parallel. * Two such

triplets repre sent a character, eight character s a word, etc. The seman­

tic organization stems from the definition of BLOCK AND DATA BAND.

Ideally, the Data Band would correspond to a small File or Sub file , and

the Block to an Entry or Record, though no great inefficiency is entailed

so long as the correspondence can be maintained in multiples: e. g., 11

blocks per entry or 11 entries per block. The 21, OOO-word Data Band

might be termed the "unit of search-area". Once the search criteria are

specified and the program directed to the desired Band, the search can

be completed and all "response" Blocks delivered to core without further

attention from the Central Processor - a parallel, asynchronous opera­

tion which merely notifies the Central Control must step in to initiate

action for each new Band, but this require s only a very few command

executions.

*This number can vary from one to six.

1

The Block is the atomic unit of information within a Data Band. The

search can only select or reject a complete Block; any finer, interior

discriminations must be programmed in the Central Processor. However,

the search operation itself can (for the purpose of selecting or rejecting

the whole Block) refer to any specified bit~locations without re striction.

This is accomplished by placing the appropriate Argument and Mask in

special purpose registers in the Disc's high-speed core buffer.

Two search modes are available. The fastest searches only a special

set of "Tags", 18 Tag-characters to a block, which permits searching an

entire million-bit Data Band in one 70 Ms revolution. The tags for all

Blocks in a Band are stored in a single Track Set as shown in Figure 2.

The corresponding 110-character "data sections" of the Blocks are inter­

leaved on the remaining six Track Sets of the Band. This interleaving

technique staggers the data in such a way that when the Tag search yields

a response, its data section can be read out immediately without requiring

another revolution. There is a qualification, however. If two overlapping

blocks "respond", only one can be read per revolution; the second is

"flagged" * and read out subsequently. The worst possible case is where

six consecutive Blocks respond. One could be read on the first pass and

the other flagged; then five more revolutions are required to read the re­

maining bands. In any ordinary search, where the responses are less

than 110 or so of the Blocks searched, this case is unlikely; but the system

will handle it automatically, scheduling the necessary member of revolu­

tions, whenever it might occur. This worst case defines the maximum

search time per Band: 7 revolutions at 15 rps, or about 1/2 second -

which is also the time required to load or unload a million-bit Band.

If this search mode, relying solely upon Tags, proves inadequate, it is

possible to apply the same Argument-and-Mask technique to the Data

Sections of the Blocks. Due to the interleaved storage, this mode would

usually require a full seven revolutions, but it permits search on any

combination of the 768 bits in a Block or in any selected subsets of these

bits. Conventional random-access is provided also. Given the Data Band

*There are two independent Tracks for flags (and one for addresses
which were not previously mentioned. (See Fig. 2)

2

and Block number, the entire Block is retrieved in an average of one­

half revolution (35M s) and a maximum of one revolution (70 Ms).

Search Types provided include most of the usual comparisons: Equal,

Not Equal, Greater than, Less than, and Between upper and lower bounds.

The se comparisons can be applied to any selected field in the Block.

CORE PROGRAMMED CONTENT SEARCH

To search the content, strictly speaking, of a million-bit file in core

storage is not impossible, but is rather inefficient. Consider a file of

I, 000 entrie s of 20 words each, with each entry having fixed length and

identical format so that the de sired attribute can be addre s sed directly.

Now to search the file, even under these ideal conditions, and using a

single key (attribute), require s 1, 000 comparisons. A comparison in­

volving at least a couple of additions and a couple of memory accesses -

say 20 microseconds (~s) - would require 20 milliseconds (Ms). To

search on the conjunction of 10 keys would thus take 200 Ms - about the

same as the average for a comparable search on the Librascope Disc.

Of course, the core operation has a flexibility that allows search pro­

grams to be tailored to special problems with much greater efficiency.

(For example, the set of entries satisfying the first key can be retrieved

and then that set searched on subsequent keys; but this procedure is effi­

cient only if there is a known upper bound on the set resulting from any

key that is small compared to the original file - otherwise, the storage

requirements would double.)

But a somewhat more sophisticated approach is available, based on the

construction of index tables (matrices or trees) which may be entered

with a key value and will yield the set of addresses of file entries satisfy­

ing that value. This requires considerable data preparation and program­

ming, but is quite efficient timewise and imposes moderate storage re­

quirements. The major storage demand is for storing the sets of file­

entry addresses associated with each key value. For one key, the sum

of these sets, for all values of the key, may be estimated at about 1,000

(the number of entries in the file) if there is little redundancy -

3

i. e. , if, on the average an entry is associated with a single key value.

But if, e. g., an entry is associated, on the average, with two key values,

double the storage would be required. For ten keys (with 100 values each)

and no redundancy, the storage required would be, for 1,000 la-bit ad­

dresses, 10
5

bits (with perfect packing of bits into words) or at least 100;0

added to the file store. With a redundancy factor of 2, the extra storage

would double to 200;0. (In addition, program storage would add a percent

or two to these requirements.) See Figure 4.

P ARALLE L SEAR CH MEMOR Y

These memories are not yet on the market, but laboratory results are

promising. It appears possible in these memories to simultaneously test

the entire content of, perhaps, 2, 000 words for all "matches" (=, < , etc.)

with a given key word. There are many variants of this basic technique

in various stages of development and no evaluation" will be attempted here

beyond the following assumption: that such memories are feasible and

will be available in the near future with approximately the parameters

shown in Figure 5.

The major limitation here, in addition to initial high cost, is the small

capacity of about 10
5

bits. While there are many applications for such

a powerful tool (in programming, indexing, etc.) its use for storing large

files does not seem to be on the immediate horizon. Until its size can be

increased by orders of magnitude, its use, other than on small files that

must be searched very frequently, would have to be by reading in sections

from a store of large capacity. But if an economical mass memory is

used, two problems must be faced: fir st, the time lost in loading the

search memory, and second, the problem of locating the required sec­

tion of a large file which must be searched - with a file of only 10
6

bits,

this requires selecting one out of ten sections.

Thus, for the near future, any straightforward use of the parallel search

memory for large file storage seems doubtful. Nevertheless, it is reasonable

to conjecture that its use for storing index table s, similar to those dis­

cussed for core memory searching, might prove very promising, parti­

cularly in "heavy duty" situations where search time is a critical factor.

4

MAGNETIC TAPE STORAGE

Magnetic Tape cannot, conventionally, be searched by content or any

other means, except for one or two levels of "punctuation" marks that

can be inse rted to divide the stored data into file sand subfile s. And

these, of course, can be found only by counting serially along the tape.

Tape can be used, however, in a content search procedure, where very

large files are needed and extreme speed is not necessary. A fairly sim­

ple procedure has been devised, for example, for combining low-cost tape

storage with the medium-cost Librascope Disc for moderate speed

searching.

Only one disc data-band (10
6

bits) is required. One tape might hold a file

of 108 bits - 100 band-sized sections. Now if such a file can be con­

veniently organized into 100 meaningful subfiles, in such a way that a

majority of searche s can be carried out within a single one of the se sub­

files, a simple index table can be stored in core to select the desired sub­

file. This subfile can then be located (by counting markers) and read onto

the disc at continuous tape speeds. Searching the subfile can then proceed

as a standard disc content- search (requiring I /1 a second or so). The

total search, therefore, requires almost exactly the time to move the tape

to the desired section.

CATEGORIZATION OF FILE PROBLEMS

Resisting the time-honored approach of touting ones own product as the

solution to any and all problems, I will try to define some problems for

which the Ll530 Disc is not ideal, as well as some for which we believe

it is. In practice, we usually are given a specific file problem and must

show that our memory device provides an efficient solution. This is not

always easy (at least where honesty is one of the ground rules), but it is

usually easier than the present problem. What I have attempted is to

show that memories are best suited to certain types of problems. This

attempt has not succeeded, but perhaps I can offer a few clue s to an ap­

proach to the problem. The difficulty is that we don't seem to have any

standard means of defining problem types. In fact, I have not been able

5

to discover even a procedure for categorizing files. (We usually mention

their size and then give a sample forma.t.) Let me, therefore, suggest

(Figure 6) some factors that might be useful in such categorization.

The list of "File Parameters" (Fig. 6) gives three "static" parameters

exemplified in the table and three "dynamic" parameters concerning

how the file is to be used. The table introduce s some sample file struc­

ture s of various size s. The fir st three rows (E I, E2, E3) define alterna­

tive 'entry' size s - an entry being the basic meaningful word set (element,

unit, or record) defined for a given file. The last four rows (FI-F4) are

some possible subfiles - a subfile being a set of entries or other sub-

file s that are related by a significant semantic concept (e. g., a Military

Equipment file might contain sub file s of Aircraft, Trucks, Ordnance, etc.).

The ramifications of subfile structure deserve further investigation. For

present purposes, however, the important aspect of structure is to allow

most searches to be carried out within one subfile. Admittedly, this is a

very" strong" and restrictive definition of 'subfile' but for a first rough

cut at the problem, it adds great simplification.

The sizes chosen have no special significance other than to offer concrete

examples within a reasonable range. The "F" columns define five file

structures ranging from small to large and with varied depth of structure

- cf: F4A and F4B for two structure s in the same size file. Again,

there is no special significance in these particular files other than to offer

a few varied sample s . (They may, howeve r, sugge st some of the difficul­

ties: Whether or not to call a file "deeply structured" without qualifica­

tion as to size of file and size of entry, for instance).

The details of this little analysis are not worth belaboring beyond the

point of emphasizing that there is a problem of File Categorization here

worthy of further study and some such approach as this might serve as a

start.

The last chart (Figure 7) uses a condensed version of this File Problem

Categorization to indicate six types of File Problems that might be asso­

ciated efficiently with certain memory types. The levels "La, Medium, Hi",

must be assumed intuitively obvious (even if they are not). A blank box

6

indicates that that parameter is not restrictive for the associated Memory

Type. The two parenthetical entries '(Hi)' indicate a restriction in the

special sense that only Hi Usage would justify the high cost of these mem­

ories. The table is obviously incomplete. Even with these condensed

categories and level, 243 Problem Categories could have been defined.

Only a few samples that appear intuitively to be of special interest are

presented. The largest size file, if not highly structured, for example,

is assumed to be a problem for which there is presently no efficient

solution.

Finally, to indicate briefly the rationale behind the assignments in Figure 7,

The Parallel Search Memory can handle only small files and its cost can

be justified only if usage is high.

Requirements for the Core Programmed Search are somewhat similar.

File size can be moderately larger, but efficiency decreases drastically

if many combinations of keys are used since this requires preparation and

storage of many voluminous indexing table s. Lack of subfile structure

has the same effect to a lesser degree, and retrieving many entries per

search, of course, raises the access time linearly, thereby lessening the

speed advantage over Disc Search.

The Librascope Disc is most appropriate for a medium size file with

enough subfile structure (Medium) to permit direct selection of data bands.

With a multiple disc system, large files can be handled, similarly, with

moderately high speed.

Lastly, Magnetic Tape or Drum storage might be combined with the

Librascope Disc (or with a Core Program if problem characteristics

warrant) to permit reading sections (subfiles) into a searchable memory

as described previously. This technique trades speed for economy.

7

FIGURE IA. LlBRASCOPE L-1500 DISC

8

FIGURE lB. LlBRASCOPE L-1500 DISC

9

.....
o

FIGURE 2. LIBRASCOPE L -1500 -SERIES DISC - PARAMETERS

PHYSICAL CHARACTERISTICS
48 IN DIAM. - ro- 500 FIXED-POSITION READ/WRITE HEADS

900 RPM (15RPS) - 6 DISCS PER MODULE (1 SHAFT) - 7 'SLAVE' MODULES PER MASTER

DATA
DATA STRUCTURE

BITS CHARACTERS WORDS TRACKS T-SETS BLOCKS BANDS DISCS

CHARACTER 6

WORD 48 8

TRACK 50 X 103 8.3 X 103

TRACK-SET 150 x 103 25 X 103 3 X 103 3

BLOCK 768 128 16 * *

DATA BAND 167 X 103 21 X 103 21 7 1350

DISC 20 x106 <~ 0.4 X 106 420 140 20

DISC MODULE 120 X 106 20 X 106 2.5 X 106 162 X 103 120 6

*A Block subdivides a Data Band cutting across all 21 Tracks •

.......

.......

INDEX
TRACK
SET

DATA
TRACK
SET I

DATA
TRACK
SET 2

DATA
TRACK
SET "3

DATA
TRACK
SET4

DATA
TRACK
SET 5

DATA
TRACK
SET 6

FIGURE 3. LIBRASCOPE DISC -ORGANIZATION OF ONE DATA BAND
18 CHARACTERS

/ \

I 110 CHARACTERS PLUS I HORIZONTAL CHECK CHARACTER
I~---'\

DATA 192 I ~:~.':~.'.'.~:'.' DATA rJ I r:) _ I ~ 'P (\jjl DATA 1158

DATA 385 11\\\1 DATA 193 II~t DATA I

DATA 578 rlt', DATA 386

• HORIZONTAL CHECK CHARACTER

DATA 771 11\~\1 DATA 579

~\\1 DATA 964 III DATA 772

1349 111\1 DATA 1157 11\' DATA 965

I I
FLAG 2 __ r-:%1~1-_0-1~!1 ---------
TRACKS 1 ____________ j~~~~_-_O_-_4_~~l __ __

FIXED
ADDRESS

TRACK

I (TYPICAL) I
1 {i1 1 193 I 386 1 579 1 194

I-'
N

FIGURE 4. A SIMPLE SCHEME FOR CORE SEARCH BY CONTENT

VALUES OF K1 o 1 2 3 •• •• ••

ADDRESSES OF •• •• • •• ••

FILE ENTRIES •• •• • •• ••

CORRESPONDING • • • • • • •

TO K1 VALUES. • • • • • • •

AVG n i = 10 • • • • •

FILE HAS 1, 000 ENTRIES; ENTRY ADDRESS HAS !Q. BITS.

THERE ARE 12. SEARCH KEYS, K1·•• K10, EACH WITH !2.2. VALUES.

EACH KEY VALUE YIELDS (av.) SET OF!!:! FILE ENTRY ADDRESSES.

••• 10 BITS X 10 ADDRESSES X 100 SETS PER KEY X 10 KEYS = 105 BITS

THIS ADDS 10% TO STORAGE OF A 106 -BIT FILE.

(PROGRAM WOULD ADD ANOTHER 1 OR 2%.)

••

• •

••

•

•

•

•• • • •• •• •• • • • • 99 100

• • •• •• •• •• • • • • •• A199

•• •• •• •• •• • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • An99

SAMPLE KEY VALUE-FILE ENTRY ADDRESS TABLE

FIGURE 5. MEMORY TYPES

(VALUES ARE APPROX. ORDER OF MAGNITUDE ESTIMATES)

PARAMETERS LIBRASCOPE CORE PARALLEL MAGNETIC
L-1530 DISC SEARCH TAPE

SIZE 120 {5, 6'(0) 1 (3) O. 1 120 (5, 000)
MILLIONS OF BITS

COST ~ PER BIT O. 2 10 ?>100 0.05

SERIAL READ 1 sec 0.1 sec O. 2 sec. 3 sec

SINGLE WORD 35 m sec 5Ils/word* lOlls/word 3+ sec*

n WORDS 70 ms to 5Ils/word* lOlls/word ?> 3 sec
1/2 sec

*Not including search time which is widely variable (",100Ils) increasing, probably,
as log n.

FIGURE 6. FACTORS IN CATEGORIZING FILE TYPES

FILE PARAME TERS

S
T
A
T
I
C

D
Y
N
A
M
I
C

Total Size

Entry Size

Subfile Structure

NO. OF ENTRIES FOUND
PER SEARCH

NO. OF SEARCH KEYS
AND COMBINATIONS USED

USAGE: FREQUENCY OF
SEARCH AND UPDATE

S
U
B
F
I
L
E

Fl

F2

F3

F4

SAMPLE FILE STRUCTURES

BITS WORDS Fl

105

106 20K

108 2M

1010 200 M

~~mfm~m~m~m
1

........................:.:. :.:.:.:. :.:.:.:.: .. :.:.:.: .:.: .:.:.: .:.:.
:::::::::: ::::::::::::: ::::::::::::::: :::::=::

100

1

100 10,000

100

1 1

FIGURE 7. ASSIGNMENT OF FILE PROBLEMS TO MEMORY TYPES

FILE SUB FILE
ENTRIES

KEY PER USAGE MEMORY TYPES
SIZE STRUCTURE SEARCH COMBINA TIONS

LO (HI) PARALLEL SEARCH

MED MED MED LO (m) CORE PROGRAM

MED MED MED+ L-1530 DISC

MED+ L-1530 DISC - MULTIPLE

HI HI LO L-1530 DISC AND TAPES

MED LO MED CORE PROGRAM AND TAPES OR DRUMS

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

