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The Librascope L-1500 Series Inagnetic disc has 120 
one-Inillion-bit data bands with individual, fixed, 
read/write heads. Transfer and various content­
cOInparison operations can be carried out at speeds 
of over two Inillion bits per second, independently 
of the central cOITlputer. 

Applications of this type of IneInory to large data base 
operations for comInand and control systeIns will be 
discussed; and SOITle cOInparison with parallel search 
facilitie s will be made to indicate SOIne of its advant­
age sand liInitation s. 



THE LIBRASCOPE L-lSOO SERIES DISC MEMORY 

Librascope's L-lS30 System is a "Search Memory" in the sense of the 

Symposium Nomenclature. It is "Content-Addressable", it is primarily 

serial, and it is fairly fast for a rotating memory - at least for one of 

multi-million-word capacity. 

Physically, (See Fig. 1A and 1B) the disc is 48 inches in diameter, 1/2 

inch thick, rotates at 900 RPM, and has a fixed-position read/write head 

for each data track. Six discs can be mounted in a single module sharing 

the same drive shaft and much of the logic circuitry. Further, as many 

as seven" slave" module s can be added to one "master" module without 

duplicating the search logic - for a total capacity of more than a billion 

character s. 

The vital statistics are given in Figure 2: those just mentioned toward 

the top, and several more in the table. The 420 data Tracks (one­

dimensional, circular strings of bits) are grouped into Track Sets of 

three; i. e.: three radial bits are always read in parallel. * Two such 

triplets repre sent a character, eight character s a word, etc. The seman­

tic organization stems from the definition of BLOCK AND DATA BAND. 

Ideally, the Data Band would correspond to a small File or Sub file , and 

the Block to an Entry or Record, though no great inefficiency is entailed 

so long as the correspondence can be maintained in multiples: e. g., 11 

blocks per entry or 11 entries per block. The 21, OOO-word Data Band 

might be termed the "unit of search-area". Once the search criteria are 

specified and the program directed to the desired Band, the search can 

be completed and all "response" Blocks delivered to core without further 

attention from the Central Processor - a parallel, asynchronous opera­

tion which merely notifies the Central Control must step in to initiate 

action for each new Band, but this require s only a very few command 

executions. 

*This number can vary from one to six. 
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The Block is the atomic unit of information within a Data Band. The 

search can only select or reject a complete Block; any finer, interior 

discriminations must be programmed in the Central Processor. However, 

the search operation itself can (for the purpose of selecting or rejecting 

the whole Block) refer to any specified bit~locations without re striction. 

This is accomplished by placing the appropriate Argument and Mask in 

special purpose registers in the Disc's high-speed core buffer. 

Two search modes are available. The fastest searches only a special 

set of "Tags", 18 Tag-characters to a block, which permits searching an 

entire million-bit Data Band in one 70 Ms revolution. The tags for all 

Blocks in a Band are stored in a single Track Set as shown in Figure 2. 

The corresponding 110-character "data sections" of the Blocks are inter­

leaved on the remaining six Track Sets of the Band. This interleaving 

technique staggers the data in such a way that when the Tag search yields 

a response, its data section can be read out immediately without requiring 

another revolution. There is a qualification, however. If two overlapping 

blocks "respond", only one can be read per revolution; the second is 

"flagged" * and read out subsequently. The worst possible case is where 

six consecutive Blocks respond. One could be read on the first pass and 

the other flagged; then five more revolutions are required to read the re­

maining bands. In any ordinary search, where the responses are less 

than 110 or so of the Blocks searched, this case is unlikely; but the system 

will handle it automatically, scheduling the necessary member of revolu­

tions, whenever it might occur. This worst case defines the maximum 

search time per Band: 7 revolutions at 15 rps, or about 1/2 second -

which is also the time required to load or unload a million-bit Band. 

If this search mode, relying solely upon Tags, proves inadequate, it is 

possible to apply the same Argument-and-Mask technique to the Data 

Sections of the Blocks. Due to the interleaved storage, this mode would 

usually require a full seven revolutions, but it permits search on any 

combination of the 768 bits in a Block or in any selected subsets of these 

bits. Conventional random-access is provided also. Given the Data Band 

*There are two independent Tracks for flags (and one for addresses 
which were not previously mentioned. (See Fig. 2) 
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and Block number, the entire Block is retrieved in an average of one­

half revolution (35M s) and a maximum of one revolution (70 Ms). 

Search Types provided include most of the usual comparisons: Equal, 

Not Equal, Greater than, Less than, and Between upper and lower bounds. 

The se comparisons can be applied to any selected field in the Block. 

CORE PROGRAMMED CONTENT SEARCH 

To search the content, strictly speaking, of a million-bit file in core 

storage is not impossible, but is rather inefficient. Consider a file of 

I, 000 entrie s of 20 words each, with each entry having fixed length and 

identical format so that the de sired attribute can be addre s sed directly. 

Now to search the file, even under these ideal conditions, and using a 

single key (attribute), require s 1, 000 comparisons. A comparison in­

volving at least a couple of additions and a couple of memory accesses -

say 20 microseconds (~s) - would require 20 milliseconds (Ms). To 

search on the conjunction of 10 keys would thus take 200 Ms - about the 

same as the average for a comparable search on the Librascope Disc. 

Of course, the core operation has a flexibility that allows search pro­

grams to be tailored to special problems with much greater efficiency. 

(For example, the set of entries satisfying the first key can be retrieved 

and then that set searched on subsequent keys; but this procedure is effi­

cient only if there is a known upper bound on the set resulting from any 

key that is small compared to the original file - otherwise, the storage 

requirements would double. ) 

But a somewhat more sophisticated approach is available, based on the 

construction of index tables (matrices or trees) which may be entered 

with a key value and will yield the set of addresses of file entries satisfy­

ing that value. This requires considerable data preparation and program­

ming, but is quite efficient timewise and imposes moderate storage re­

quirements. The major storage demand is for storing the sets of file­

entry addresses associated with each key value. For one key, the sum 

of these sets, for all values of the key, may be estimated at about 1,000 

(the number of entries in the file) if there is little redundancy -
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i. e. , if, on the average an entry is associated with a single key value. 

But if, e. g., an entry is associated, on the average, with two key values, 

double the storage would be required. For ten keys (with 100 values each) 

and no redundancy, the storage required would be, for 1,000 la-bit ad­

dresses, 10
5 

bits (with perfect packing of bits into words) or at least 100;0 

added to the file store. With a redundancy factor of 2, the extra storage 

would double to 200;0. (In addition, program storage would add a percent 

or two to these requirements.) See Figure 4. 

P ARALLE L SEAR CH MEMOR Y 

These memories are not yet on the market, but laboratory results are 

promising. It appears possible in these memories to simultaneously test 

the entire content of, perhaps, 2, 000 words for all "matches" (=, < , etc. ) 

with a given key word. There are many variants of this basic technique 

in various stages of development and no evaluation" will be attempted here 

beyond the following assumption: that such memories are feasible and 

will be available in the near future with approximately the parameters 

shown in Figure 5. 

The major limitation here, in addition to initial high cost, is the small 

capacity of about 10
5 

bits. While there are many applications for such 

a powerful tool (in programming, indexing, etc.) its use for storing large 

files does not seem to be on the immediate horizon. Until its size can be 

increased by orders of magnitude, its use, other than on small files that 

must be searched very frequently, would have to be by reading in sections 

from a store of large capacity. But if an economical mass memory is 

used, two problems must be faced: fir st, the time lost in loading the 

search memory, and second, the problem of locating the required sec­

tion of a large file which must be searched - with a file of only 10
6 

bits, 

this requires selecting one out of ten sections. 

Thus, for the near future, any straightforward use of the parallel search 

memory for large file storage seems doubtful. Nevertheless, it is reasonable 

to conjecture that its use for storing index table s, similar to those dis­

cussed for core memory searching, might prove very promising, parti­

cularly in "heavy duty" situations where search time is a critical factor. 
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MAGNETIC TAPE STORAGE 

Magnetic Tape cannot, conventionally, be searched by content or any 

other means, except for one or two levels of "punctuation" marks that 

can be inse rted to divide the stored data into file sand subfile s. And 

these, of course, can be found only by counting serially along the tape. 

Tape can be used, however, in a content search procedure, where very 

large files are needed and extreme speed is not necessary. A fairly sim­

ple procedure has been devised, for example, for combining low-cost tape 

storage with the medium-cost Librascope Disc for moderate speed 

searching. 

Only one disc data-band (10
6

bits) is required. One tape might hold a file 

of 108 bits - 100 band-sized sections. Now if such a file can be con­

veniently organized into 100 meaningful subfiles, in such a way that a 

majority of searche s can be carried out within a single one of the se sub­

files, a simple index table can be stored in core to select the desired sub­

file. This subfile can then be located (by counting markers) and read onto 

the disc at continuous tape speeds. Searching the subfile can then proceed 

as a standard disc content- search (requiring I /1 a second or so). The 

total search, therefore, requires almost exactly the time to move the tape 

to the desired section. 

CATEGORIZATION OF FILE PROBLEMS 

Resisting the time-honored approach of touting ones own product as the 

solution to any and all problems, I will try to define some problems for 

which the Ll530 Disc is not ideal, as well as some for which we believe 

it is. In practice, we usually are given a specific file problem and must 

show that our memory device provides an efficient solution. This is not 

always easy (at least where honesty is one of the ground rules), but it is 

usually easier than the present problem. What I have attempted is to 

show that memories are best suited to certain types of problems. This 

attempt has not succeeded, but perhaps I can offer a few clue s to an ap­

proach to the problem. The difficulty is that we don't seem to have any 

standard means of defining problem types. In fact, I have not been able 
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to discover even a procedure for categorizing files. (We usually mention 

their size and then give a sample forma.t.) Let me, therefore, suggest 

(Figure 6) some factors that might be useful in such categorization. 

The list of "File Parameters" (Fig. 6) gives three "static" parameters 

exemplified in the table and three "dynamic" parameters concerning 

how the file is to be used. The table introduce s some sample file struc­

ture s of various size s. The fir st three rows (E I, E2, E3) define alterna­

tive 'entry' size s - an entry being the basic meaningful word set (element, 

unit, or record) defined for a given file. The last four rows (FI-F4) are 

some possible subfiles - a subfile being a set of entries or other sub-

file s that are related by a significant semantic concept (e. g., a Military 

Equipment file might contain sub file s of Aircraft, Trucks, Ordnance, etc.). 

The ramifications of subfile structure deserve further investigation. For 

present purposes, however, the important aspect of structure is to allow 

most searches to be carried out within one subfile. Admittedly, this is a 

very" strong" and restrictive definition of 'subfile' but for a first rough 

cut at the problem, it adds great simplification. 

The sizes chosen have no special significance other than to offer concrete 

examples within a reasonable range. The "F" columns define five file 

structures ranging from small to large and with varied depth of structure 

- cf: F4A and F4B for two structure s in the same size file. Again, 

there is no special significance in these particular files other than to offer 

a few varied sample s . ( They may, howeve r, sugge st some of the difficul­

ties: Whether or not to call a file "deeply structured" without qualifica­

tion as to size of file and size of entry, for instance). 

The details of this little analysis are not worth belaboring beyond the 

point of emphasizing that there is a problem of File Categorization here 

worthy of further study and some such approach as this might serve as a 

start. 

The last chart (Figure 7) uses a condensed version of this File Problem 

Categorization to indicate six types of File Problems that might be asso­

ciated efficiently with certain memory types. The levels "La, Medium, Hi", 

must be assumed intuitively obvious (even if they are not). A blank box 
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indicates that that parameter is not restrictive for the associated Memory 

Type. The two parenthetical entries '(Hi)' indicate a restriction in the 

special sense that only Hi Usage would justify the high cost of these mem­

ories. The table is obviously incomplete. Even with these condensed 

categories and level, 243 Problem Categories could have been defined. 

Only a few samples that appear intuitively to be of special interest are 

presented. The largest size file, if not highly structured, for example, 

is assumed to be a problem for which there is presently no efficient 

solution. 

Finally, to indicate briefly the rationale behind the assignments in Figure 7, 

The Parallel Search Memory can handle only small files and its cost can 

be justified only if usage is high. 

Requirements for the Core Programmed Search are somewhat similar. 

File size can be moderately larger, but efficiency decreases drastically 

if many combinations of keys are used since this requires preparation and 

storage of many voluminous indexing table s. Lack of subfile structure 

has the same effect to a lesser degree, and retrieving many entries per 

search, of course, raises the access time linearly, thereby lessening the 

speed advantage over Disc Search. 

The Librascope Disc is most appropriate for a medium size file with 

enough subfile structure (Medium) to permit direct selection of data bands. 

With a multiple disc system, large files can be handled, similarly, with 

moderately high speed. 

Lastly, Magnetic Tape or Drum storage might be combined with the 

Librascope Disc (or with a Core Program if problem characteristics 

warrant) to permit reading sections (subfiles) into a searchable memory 

as described previously. This technique trades speed for economy. 
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FIGURE IA. LlBRASCOPE L-1500 DISC 
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FIGURE lB. LlBRASCOPE L-1500 DISC 
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FIGURE 2. LIBRASCOPE L -1500 -SERIES DISC - PARAMETERS 

PHYSICAL CHARACTERISTICS 
48 IN DIAM. - ro- 500 FIXED-POSITION READ/WRITE HEADS 

900 RPM (15RPS) - 6 DISCS PER MODULE (1 SHAFT) - 7 'SLAVE' MODULES PER MASTER 

DATA 
DATA STRUCTURE 

BITS CHARACTERS WORDS TRACKS T-SETS BLOCKS BANDS DISCS 

CHARACTER 6 

WORD 48 8 

TRACK 50 X 103 8.3 X 103 

TRACK-SET 150 x 103 25 X 103 3 X 103 3 

BLOCK 768 128 16 * * 

DATA BAND 167 X 103 21 X 103 21 7 1350 

DISC 20 x106 <~ 0.4 X 106 420 140 20 

DISC MODULE 120 X 106 20 X 106 2.5 X 106 162 X 103 120 6 

*A Block subdivides a Data Band cutting across all 21 Tracks • 



....... 

....... 

INDEX 
TRACK 
SET 

DATA 
TRACK 
SET I 

DATA 
TRACK 
SET 2 

DATA 
TRACK 
SET "3 

DATA 
TRACK 
SET4 

DATA 
TRACK 
SET 5 

DATA 
TRACK 
SET 6 

FIGURE 3. LIBRASCOPE DISC -ORGANIZATION OF ONE DATA BAND 
18 CHARACTERS 

/ \ 

I 110 CHARACTERS PLUS I HORIZONTAL CHECK CHARACTER 
I~-----------------------------------------'\ 

DATA 192 I ~:~.':~.'.'.~:'.' DATA rJ I r:) _ I ~ 'P (\jjl DATA 1158 

DATA 385 11\\\1 DATA 193 II~t DATA I 

DATA 578 rlt', DATA 386 

• HORIZONTAL CHECK CHARACTER 

DATA 771 11\~\1 DATA 579 

~\\1 DATA 964 III DATA 772 

1349 111\1 DATA 1157 11\' DATA 965 

I I 
FLAG 2 __ r-:%1~1-_0-1~!1 ---------
TRACKS 1 ____________ j~~~~_-_O_-_4_~~l __________________________________________________________________ __ 

FIXED 
ADDRESS 

TRACK 

I (TYPICAL) I 
1 {i1 1 193 I 386 1 579 1 194 
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FIGURE 4. A SIMPLE SCHEME FOR CORE SEARCH BY CONTENT 

VALUES OF K1 o 1 2 3 •• •• •• 

ADDRESSES OF •• •• • •• •• 

FILE ENTRIES •• •• • •• •• 

CORRESPONDING • • • • • • • 

TO K1 VALUES. • • • • • • • 

AVG n i = 10 • • • • • 

FILE HAS 1, 000 ENTRIES; ENTRY ADDRESS HAS !Q. BITS. 

THERE ARE 12. SEARCH KEYS, K1·•• K10, EACH WITH !2.2. VALUES. 

EACH KEY VALUE YIELDS (av.) SET OF!!:! FILE ENTRY ADDRESSES. 

••• 10 BITS X 10 ADDRESSES X 100 SETS PER KEY X 10 KEYS = 105 BITS 

THIS ADDS 10% TO STORAGE OF A 106 -BIT FILE. 

(PROGRAM WOULD ADD ANOTHER 1 OR 2%. ) 

•• 

• • 

•• 

• 

• 

• 

•• • • •• •• •• • • • • 99 100 

• • •• •• •• •• • • • • •• A199 

•• •• •• •• •• • • • • 

• • • • • • • • • • 

• • • • • • • • • • 

• • • • • • • • An99 

SAMPLE KEY VALUE-FILE ENTRY ADDRESS TABLE 



FIGURE 5. MEMORY TYPES 

(VALUES ARE APPROX. ORDER OF MAGNITUDE ESTIMATES) 

PARAMETERS LIBRASCOPE CORE PARALLEL MAGNETIC 
L-1530 DISC SEARCH TAPE 

SIZE 120 {5, 6'(0) 1 (3) O. 1 120 (5, 000) 
MILLIONS OF BITS 

COST ~ PER BIT O. 2 10 ?>100 0.05 

SERIAL READ 1 sec 0.1 sec O. 2 sec. 3 sec 

SINGLE WORD 35 m sec 5Ils/word* lOlls/word 3+ sec* 

n WORDS 70 ms to 5Ils/word* lOlls/word ?> 3 sec 
1/2 sec 

*Not including search time which is widely variable (",100Ils) increasing, probably, 
as log n. 



FIGURE 6. FACTORS IN CATEGORIZING FILE TYPES 

FILE PARAME TERS 

S 
T 
A 
T 
I 
C 

D 
Y 
N 
A 
M 
I 
C 

Total Size 

Entry Size 

Subfile Structure 

NO. OF ENTRIES FOUND 
PER SEARCH 

NO. OF SEARCH KEYS 
AND COMBINATIONS USED 

USAGE: FREQUENCY OF 
SEARCH AND UPDATE 

S 
U 
B 
F 
I 
L 
E 

Fl 

F2 

F3 

F4 

SAMPLE FILE STRUCTURES 

BITS WORDS Fl 

105 

106 20K 

108 2M 

1010 200 M 

~~mfm~m~m~m ....................... ....................... 
1 

........................ ....................... ...................... . .............................................. .:.:. :.:.:.:. :.:.:.:.: .. :.:.:.: .:.: .:.:.: .:.:. 
:::::::::: ::::::::::::: ::::::::::::::: :::::=:: 

100 

1 

100 10,000 

100 

1 1 



FIGURE 7. ASSIGNMENT OF FILE PROBLEMS TO MEMORY TYPES 

FILE SUB FILE 
ENTRIES 

KEY PER USAGE MEMORY TYPES 
SIZE STRUCTURE SEARCH COMBINA TIONS 

LO (HI) PARALLEL SEARCH 

MED MED MED LO (m) CORE PROGRAM 

MED MED MED+ L-1530 DISC 

MED+ L-1530 DISC - MULTIPLE 

HI HI LO L-1530 DISC AND TAPES 

MED LO MED CORE PROGRAM AND TAPES OR DRUMS 
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