
GENERAL ELECTRIC
COMPUTERS

GE-625/635
FORTRAN IV

Compiler

~YSTEM
~UPPORT
~ NFORMATION

CPB-1130

ABSTRACT

This manual provides a description of the FORTRAN IV
Compiler for the GE-625/635 computers. Details of the
Compiler are discussed.

GENERAL. ELECTRIC

GE-625 I 635

FORTRAN IV

COMPILER

September 1965

GENERALfj ELECTRIC
COMPUTER DEPARTMENT

PREFACE

The FORTRAN language--resembling the language of mathematics--is used primarily
for writing scientific and engineering programs to be run on a computer. The
GE-625/635 FORTRAN IV Compiler translates FORTRAN programs into machine language
acceptable to a GE-625/635 computer.

This manual describes in detail the design and function of the FORTRAN IV Compiler.
The reader should be experienced in programming and have a good working knowledge
of FORTRAN IV.

~ 1965 by General Electric Company

FORTRAN IV

Compiler

iii

CONTENTS

1. STRUCTURE OF THE COMPILER

The Executive Phase
Phase One
Phase Two • . . .
Storage Map and Overlays
Input/Output Relationships
Table Descriptions

The POOL Table
Introduction • • • .
POOL Table Formats • • • • •

1. The Arithmetic Statement •.•••••.••••
2. Arithmetic Statement Function Definition ••
3. NULL Statement • . • • • • ••••••••
4. BCD Conunent . . . •••.•...
5. ARITHMETIC IF Statement
6. LOGICAL IF Statement ••
7. Unconditional GO TO Statement
8. Assigned GO TO Statement •.•
9. Computed GO TO Statement •••.

10. PUNCH (cards), PRINT, and READ (cards) Statement
11. PAUSE Statement •.••.•••••.
12. DEBUG ARITHMETIC IF Statement
13. DEBUG LOGICAL IF Statement •
14. ASSIGN Statement . • .••••
15. DO Statement ...•••••
16. CONTINUE Statement •
17. STOP Statement ..••.
18. READ or WRITE Tape Statement •
19. END Statement .••.
20. CALL Statement

With Arguments
Without Arguments .

21. RETURN Statement •.
22. DEBUG FOR Statement
23. END FILE, REWIND and BACKSPACE Statements
24. END READ and END WRITE Statements
25. DO Ending Statements ..••.•.

The POOL Table Routine--S.TPOO ••.••

The Buffered Tables (BU Tables)
Introduction
BU Table Formats

1. T.ARGS Table
2. T.COGO Table
3. T.COMO Table
4. T.DATA Table
5. T.DIME Table
6. T.DODO Table

1

2
2
3
4
7
7
7
7

10
10
10
10
10
11
11
11
12
12
13
13
13
14
14
14
14
14
15
15

15
16
16
17
17
18
18
20

21
21
23
23
23
24
24
24
25

@j~a(ID©)@ ~~[ffi~~~ ---------~FORT~RAN~IV
Compiler

iv

7. T. EIFN Table 25
8. T.EQIV Table 25
9. T .FEFN Table . 25

10. T. IMPO Table 25
11. T. INTS Table 26
12. T. IODO Table . . 26
13. T. IOLT Table 26
14. T .JUMP Table 27
15. T. LITR Table . . 27
16. T .RINT Table . 27
17. T.SUBS Table 28
18. T.USUB Table . 28
19. T. IPRO Table . 29
20. T.RANG Table . 29
21. T.BUGS Table . . . 29
22. T.NAMS Table . . 30
23. T .JUNK Table 30
24. T.ARIC Table . 30
25. T.ASUP Table . . 31
26. T. BLOC Table . . 31
27. T. EQCO Table . . 31
28. T. LIST Table . 32
29. T.REQU Table 32
30. T.BASE Table . 33
31. T. LDXR Table . 33
32. T. BGIN Table . . 33
33. T.OUTS Table 34
34. T. PROL Table 34
35. T.ERAS Table . 35
36. T .AFDU Table 35
37. T.NUMB Table . . 35
38. T.SISU Table . 36
39. T .OTIN Table . . . 37
40. T. DBUG Table 37
41. T .COLT Table . 37
42. T. LINE Table 37
43. T .FORT Table 38
44. T. USSR Table . . . 38
45. T. NLIN Table . . 38
46. T.ENTY Table . . . 39
47. T .DORT Table . 39

BU Table Routines . . 40
1. S. TIOO Table Initialization Routine 40
2. S. TAOO Table Allocator Routine 40
3. S. TLOO Table Locator Routine 40
4. S. TKOO Table Kill Routine 41
5. EN. TR Buff er Enter Routine 42
6. PU. LL Buffer Pull Routine 42

The NAME Table . 43
Introduction 43
NAME Table Forrndts 43

S.NAME--The ~AME Table Routine . 44

@~ 0 ®®® ~[g[ffi ~ ~~ ----------------.;,,;FORT~RAN~IV
Compiler

v

2. THE EXECUTIVE PHASE·

The Processor Executive Controller
Option Check
Boundary Check
File Initialization
Initializations .••.

DIAG,WIAG--Diagnostic Output Routine
S.BBOO--Binary Integer to BCD Integer Conversion Routine ..

Buffer Table Routines ••.
GG--GMAP Code Generator ..•..•...•.
MACERR--Machine Error Dump Routine

3. PHASE ONE--FORTRAN IV COMPILER

Introduction
Executive Routines •

1. E.1000--Phase One Executive Routine
2. DC1000--Phase One Initializer

Statement Assembly Routines . . . • . . . •
1. DC0100--Statement Assembly Routine
2. DC0300--Locate Input Card Routine ..•..

Scanning Routines • • • • . • • • . . • . • • • •
1. DC0600--Initial Classification Routine ...•..
2. DC0700--Dictionary Scan Routine .••.
3. NXCHAR--Next Character Macro .•••
4. S.COOO--Scan Routine .••••••
5. S.SAOO--Start Alpha Scan Routine ••
6. S.SNOO--Start Numeric Scan Routine •.
7. S.CAOO--Continue Alpha Scan Routine
8. S.CNOO--Continue Numeric Scan Routine
9. S.NXOO--Next Good Character Scan Routine • • • •••

10. S.NCOO--N Character Scan Routine • . . • • • ••••
11. S.EMKO--Test for Endmark (Scan Statement for Delimiter).
12. S.EMKl--Test for Endmark in Cell .TCH.

Conversion Routines • . • . • • • . • . . • •
1. S.BIOO--BCD Integer to Binary Integer (With Scan)

'. 2. S .BDOO--BCD Integer to Binary Integer
3. S.OBOO--Octal to Binary Conversion Routine ..••.

Processors • • . • • . • • . . • • . . .
1. S.SSOO--Subscript Processor Routine
2. DEBUG--Debugging Statement Tabling Routine
3. DCBUG--Debug Statement Processor .•...

Storage Allocators . • • • . . • • • . . .
1. SA7000--Storage Allocation Name Table Scan Routine .
2. SA9000--Storage Allocator/Formula Number Processor

Routine • . . • . . • . • •
Utility Routines

1. S.TYPO--Implicit Typing Routine (Integer & Real) .
2. S.INFO--Increment IFN Counter Routine .•..
3. S.ADOO--Add a Character Routine•..
4. S.SBOO--Make T.SUBS Table Entry Routine

(Subscripted Variables)••
5. S.INOO--Nake T.INTS Table Entry Routine

(Integer Variable) .•••.•.
6. S.RINO--T.RINT Table Entry Routine ..•.
7. SA0300--Variable Size Computation Routine

vi

47

47
47
47
50
50
50
51
52
52
56

59

59
59
59
62
63
63
64
64
66
67
70
71
72
72
72
72
73
74
74
74
75
75
75
76
77
77
80
80
81
81

81
82
82
83
83

83

84
84
85

.'. l

FORTRAN IV

Campi ler

Literal Collectors . • • • • .
1. S.AHOO--Alphanumeric Collector
2. S.DXOO--Complex Literal Collector •
3. S.DnOO--Decimal Literal Collector (S.DIOO, S.DNOO,

S.DPOO, S.DSOO, S.DNCO) ••••
4. S.DOOO--Octal Literal Collector •

Miscellaneous Routines . . . • . • • . •
1. S.NAME--The NAME Table Routine
2. S.DBOO--DO Beta Assignment Routine .••.
3. S.CBOO--Clear DO Beta Routine •••
4. S.DESO--Duplicate EFN Search Routine •••.
5. ST.000--Symbol Table Generator
6. S.TPOO--POOL Table Entering Routine .

Arithmetic Tables and Routines •
Arithmetic Tables . • . • • • . . • • • •

1. T .ARIT Table . • • • . . • •
2. T.ARIA Table .•••••
3. T.ARIC Table .••••
4. T.RANG Table
5. T.ARLF Table
6. T. LTAG Table
7. AROTST Table
8. AROSUP Table
9. AROTSU Table

10. ARO. TC Table
11. ARO.TB Table
12. ARO.TD Table
13. AROMLV Table
14. ARO.TA Table
15. T.ASUP Table

Arithmetic Routines . . • •
1. ARCNTL--Arithmetic Control Routine
2. S.ARIT--Process Arithmetic Statement Entry Routine
3. ARLFEQ--Left of Equals Processor
4. ARRFEQ--Right of Equals Processor •
5. ARNEXT--The Next Word Routine •••
6. ARLEAN--Level Analysis Routine
7. EN.ART--T.ARIT Table Entering Routine .
8. EN.RNG--T.RANG Table Entering Routine•••
9. ARL.SF--T.ARLF Table Entering Routine .

10. ARREOP--Reordering and Optimization Routine
11. ARO.SE--T.RANG Table Search Routine . • • • . .••
12. ARO.SA--T.ARIT Level Search Routine ••.••..
13. ARO.SB--T.ARIN/T.ASUP Table Entering Routine
14. ARO.SC--T.ARIC Table Search Routine ...•.
15. ARO.SD--T.ARIT Item Mode Determination Routine ...•
16. ARO.SH--Operator/Level Processor Routine .•..
17. ARO.SF--All Real String Routine .•...•..
18. ARO.SI--All Real Level Routine ..•..
19. ARO.SG--AROMLV Table Entering Routine ..•
20. AR.PNT--Two 1 s Complement Computation Routine

Statement Processors • . . . • .
1. IFPlOO--IF Statement Processor •.......••
2. GTOlOO--GOTO Statement Processor
3. S.GTOL--Branch Controller for GO TO Statements Routine.
4. DOPlOO--DO Statement Processor
5. DOPCKl--~umeric Checker Routine

vii

86
86
87

88
89
90
90
90
91
91
92
93
93
93
93
94
95
95
96
96
96
96
96
97
97
97
98
98
98
99
99

100
100
101
102
103
105
106
107
107
109
110
110
111
111
112
112
113
113
113
114
114
116
118
120
122

6. ASN100--ASSIGN Statement Processor 123
7. CALlOO--CALL Statement Processor . . . 124
8. PASlOO--PAUSE Statement Processor . . 127
9. RETlOO--RETURN Statement Processor . . 128

10. ENDlOO--END Statement Processor 128
11. STP100--STOP Statement Processor . 129
12. CNT100--CONTINUE Statement Processor . . . 130
13. DTAlOO--DATA Statement Processor 130
14. DTACKl--Check Variable Names Routine 134
15. S.VAER--Illegal Variable Name Error Routine . . 135
16. S.PCER--Illegal Punctuation Error Routine . . . 136
17. RDOOOO--READ Statement Processor 136
18. PROOOO--PRINT Statement Processor

PNOOOO--PUNCH Statement Processor
RTOOOO--WRITE Statement Processor 137

19. BK1000--BACKSPACE Statement Processor
RWlOOO--REWIND Statement Processor
EN1000--END FILE Statement Processor . . . 138

20. 010000--0n-Line Processor 139
21. TPPROO--File Processor 140
22. S.ENDI--END I/O Routine 142
23. FMOOOO--FORMAT Reference Collector Routine . 143
24. UNTOOO--File Reference Collector Routine 144
25. LISTOO--I/O List Processor 145
26. S.CHEK--Type Variable Routine . . . 149
27. S.IMFG--Check Implicit Flag Routine 149
28. S.AJSO--Variable Check Routine for T.INTS and T.RINT 150
29. CNCOOO--Backward Scan Routine 150
30. S.NTRO--POOL Table Entry Routine 151
31. S.SUBl--Parameter Processor (I/O List and Implied D0 1 s). 151
32. NMLSOO--NAMELIST Processor . . 152
33. FRMTOO- -FORMAT Processor 153
34. FGOOOO--FORMAT Generator Processor 154
35. SEQOOO--Sequence Error Routine 155
36. CMN100--COMMON Statement Processor 155
37. EQV100--EQUIVALENCE Statement Processor . . 157
38. DIM100--DIMENSION Statement Processor 158
39. TP1000--TYPE Statement Processor 160
40. S.SCRP--Dimension Subscript Processor . 160
41. XTNlOO--EXTERNAL Statement Processor . . . 162
42. FNClOO--FUNCTION Statement Processor

SBR100--SUBROUTINE Statement Processor . 162
43. BLD100--BLOCK DATA Statement Processor 164
44. SAOlOO--Storage Allocator for Blank and Block Common . . 164
45. SA1010--Storage Allocator for Equivalenced Variables 166
46. ENTYOO--ENTRY Statement Processor . . . 169

4. PHASE TWO 171

1. S.TPOO--POOL Table Routine . 175
2. CK.EFN--EFN Check Routine 175
3. S.PROL--Prologue Compile Routine . 175
4. PH2BGN--Search, Match, Find and Merge Routine . . . 176
5. PH2KIL--Table Kill Routine 176
6. MC2000--Phase Two Main Compile Routine 177
7. IFBNOO--Operation Compile Routine 177

@j~a(ID(Q)@ ~~[ffi ~ ~~ _________ __..__FORT........,RAN.....__IV

Compiler

viii

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
so.
Sl.
52.

BN.000--T.JUMP Pointer Check Routine .
BCD200--BCD Comment Routine
IFA200--Arithmetic IF Routine
IFL200--Logical IF Routine ••..
GT0200--Unconditional GO TO Routine
GTA200--Assigned GO TO Routine •.....
GTC200--Computed GO TO Routine •...••
ASN200--ASSIGN Routine . • . • . • • • ..••
PAS200--PAUSE Routine
RET200--RETURN Routine .
STP200--STOP Routine •
CAL200--CALL Routine .••..
RC2000--0n-Line Routine
PR2000
PN2000 . . . • . • • •
RDT200--READ and WRITE Routines
WR2000 . • . • • . • • •
RW2000--REWIND, BACKSPACE and END FILE Routines
EF2000
BK2000 • . • . • • • • • •
WR2CNV--File Routine ••••••
SI2000--SETIN and SETOUT Routine •
ER2000--END READ and END WRITE Routines
\.JRCHEK--FORMAT Reference Check Routine ••
WRDIAG--Nearest EFN Diagnostic Routine . • . •••
CMPRLG--Prologue Initialization Routine ...•••
S.PRLO--Determine and Assemble Next IFN Routine
DTA200--DATA Statements Storage Allocator
TDTOOO- -T. USUB Entry Pull Routine • • • •
MDTOOO--Index Match Routine •.••..••
KDTOOO--Subscript/Dimension Check Routine
PDTOOO--T.DORT Entry Pull Routine
CDTOOO--GG Code Setup Routine .•••
CDT500--Type Consistency Check Routine
DBUG20--Debug-Time Test Code Generator •.
DIFAOO--Debug Arithmetic IF Code Generator ••
DIFLOO--Debug Logical IF Code Generator
AR.SYM--Location Symbol Generator ••••
AR.TRC--Logical Expression Check Routine •
SS.ETN--T.ARIT Item Fetch Routine
ARCODA--Arithmetic Statement Entry Routine .
AH.RAS--Erasable Storage Addend Routine
AR.COM--Operation Compile Routine •..•
ARCODE--Arithmetic Expression Coding Generator .
AR.ARG--Argument Compile Routine
AR.IFN--IFN Conversion Routine•..
AR.ALC--Erasable Counts Routine
AR.FUN--Function and Arguments Compile Routine •
AR.CLS--Logical Levels Close Routine
AS.FNC--Arithmetic Statement Function Definition

Compile Routine . . •
S3. SM.OVE--Flag Shift Routine •......•.
S4. SUBCill1--Subscripted Operand Compile Routine ..•••.
SS. CK.DOS--Transfer Check Routine
S6. AR.XPC--Literal Exponents Check Routine
57. BX.000--B,isic Block Indexer
58. DX.000--DCl Indexer Subroutine

178
178
178
179
180
180
181
182
183
184
185
185

186

186

187
188
189
190
191
191
192
192
192
193
194
194
195
196
196
197
198
199
199
199
200
201
201
202
202
203
204
204
205
205

206
206
207
207
208
208
220

@~a@@® ~~[ffi ~ ~~ ------------.-FORT.......,.RAN~IV
Compiler

ix

59. X01000--Addend Compile Subroutine
60. X02000--DO Index Compile Subroutine
61. X03000--DO Parameter N1 Compile Subroutine
62. X04000--DO Parameter N3 Compile Subroutine
63. X05000--Saves and Restores Compile Subroutines
64. X06000--Check Jump Table Subroutine •
65. X07000--Index Register Assignment Subroutine ••••
66. X08000--Index Loading Instructions Subroutine ••••
67. X09000--Constant and Dimension Table Generator Subroutine •
68. XlOOOO--Variable Dimension Prologue Compile Subroutine
69. XllOOO--T.USSR and T.SISU Tables Match Subroutine
70. Xl3000--T.USSR Table Construct Subroutine • • •
71. Xl4000--T.SISU Table Construct Subroutine
72. Xl5000--Find T.SUBS Subroutine •
73. Xl6000--T.SUBS Table Entries Addend Computation Subroutine.
74. Xl7000--DO Index Name Usage Subroutine
75. Xl8000--Find Target Subroutine • • •
76. Xl9000--Indexer T.SISU Table Build Subroutine
77. X20000--Addend Computation Subroutine
78. IX1000--Indexer T.USSR Table Build Subroutine
79. IX3000--T.USSR Table Mark Subroutine
80. IX9000--Table Backup Subroutine
81. IX9020--Name Check Subroutine •
82. IX9040--USUB Entry Check Subroutine •
83. IX9050--Compute Coefficient Subroutine
84. IX9060--Compute Numeric Coefficient Subroutine ••••
85. IX9070--IFN Location Field Compile Subroutine
86. IX9080--B.n Compile and Hold Subroutine •••
87. IX9090--T.BGIN Table Entry Subroutine
88. IX9100--T.SISU Table Push Down Subroutine
89. IX9120--Next DO Entry Subroutine ••
90. IX9140--Last DO Entry Subroutine ••
91. IX9160--Variable Name/Argument Table Subroutine •
92. IX9180--N1/N3 Constant Subroutine • • •
93. IX9200--DO Variable Parameters Compile Subroutine ••
94. IX9220--USUB Entry Replace Subroutine
95. IXSET--Loop Set Subroutine • • •
96. IXTEST--Loop Test Subroutine •••

x

228
229
230
231
231
232
234
234
235
236
243
244
245
245
246
247
247
248
249
249
250
251
251
252
252
253
253
254
254
255
255
256
257
257
258
258
258
259

Figure

1.
2.
3.
4.
5.

6.
7.
8.
9.

10.

I L L U S T R A T I 0 N S

Executive Phase Storage Map ••
Phase One Storage Map •
Phase Two Storage Map .
Type Numbers • . . • • • • • • • • •
I/O POOL Table String Format ••••

Executive Controller Processor Flow Diagram •
Executive Flow Diagram • • • • • • .
Phase Two Flow Diagram . • • • • • •
Basic Block Indexer Flow Diagram
DO Indexer Flow Diagram • • • • • . •

xi

4
5
6
9

19

48
60

173
213
224

1. S T R U C T U R E 0 F T H E C 0 M P I L E R

The FORTRAN IV Compiler for the GE-625/635 computer is composed of three sections:

1. Executive Phase
2. Phase One
3. Phase Two

Each of the three phases consists of a group of relocatable subprograms written
in the Macro Assembly Program (GMAP) assembly language.

When the General Comprehensive Operating Supervisor (GECOS) has determined that
sufficient memory can be allocated for the FORTRAN IV Compiler, a Master Mode
Entry (MME) is made to the System Loader (GECALL). The allocation parameters are
set to ten minutes, 32k memory, and lOk print lines. Allocation is also made for
the following files:

File Name Purpose

Source program input file
Scratch file for POOL Table
Printer listing output file
Output; GMAP coding (used as input to

assembly program)
Output; object deck for loading (used

by FORTRAN IV Compiler and GMAP
assembly program)

Output; object deck for punching
Output; COMDECK output of FORTRAN IV source

statements when requested

- 1 -

The entry to GECALL causes the System Loader to load the Executive Phase
of the FORTRAN IV Compiler from the system library. When loading is
completed, control is transferred to the Executive Phase and the compiler
begins execution as a free-standing slave program.

THE EXECUTIVE PHASE

The Executive Phase of the FORTRAN IV Compiler is composed of six major segments.
Since the Executive Phase remains in memory throughout the entire compilation,
several routines common to Phase One and Phase Two are contained in this portion
of the compiler. In addition, that part of the compiler responsible for overall
control is a major component of the Executive Phase. Briefly, the Executive
Phase performs the following functions:

1. Checks interfaces using the Switch Word.

2. Determines the size of a working storage and performs the necessary
initializations.

3. Calls Phase One of the compiler and receives control when Phase One
is complete.

4. Allocates additional working storage as allowed and calls for Phase
Two loading.

5. Opens and closes files as needed by the compiler.

6. Calls for the GMAP assembler at the end of compilation.

7. Writes diagnostic messages.

8. Manipulates tables.

9. Converts binary integers to a BCD form.

10. Outputs GMAP coding for the FORTRAN IV source statements.

11. Dumps memory when serious compilation errors occur.

Chapter 2 of this manual will describe in detail the functions of the Executive
Phase of the compiler.

PHASE ONE

The primary function of Phase One of the FORTRAN IV Compiler is the translation of
the source program statements into a series of correlated table =ntries.

~. Each statement of the source program is processed using one or more closed sub
routines. In most cases, specific subroutines exist for each type of statement.
Additional subroutines are available to process features common to several types
of statements, such as conversions, etc. Frequently, the statement processor
subroutine may call on one or more other subroutines to accomplish the translation

@~a@@® ~~[ffi ~ ~~ --------~FORT:.::.::,RAN~IV
Compiler

- 2 -

of the statement. This hierarchy of subroutines is characterized by the return
of control through the same linkage path from which control was originally
obtained.

Initially, the first source statement is checked to determine its type. If the
first statement is a comment u~ or c character in column 1)' then columns 2
through 9 are used as a label for the object program deck and columns 13 through
72 are used as a title for the printed output listing. If the second statement
is also a conunent, columns 13 through 72 will be used as a subtitle for the
printed output listing. Non-conunent statements, whether they occur initially or
following the first or second statements, are scanned to determine if they are
arithmetic or nonarithmetic. It should be noted that the entire statement is
scanned including all continuation cards. If it is determined that the state
ment is arithmetic, the Arithmetic Processor will be called. Additional tests
are made on non-ARITHMETIC statements to determine which specific subroutine must
be used. Each statement is translated in turn until the END statement is
processed, at which time the control is returned to the Processor Executive
Controller of the Executive Phase.

Chapter 3 of this document describes in detail the functions of Phase One of the
FORTRAN IV Compiler.

PHASE TWO

The second phase of the FORTRAN IV Compiler is composed of two sections; the
first is the indexer routines and the second is the main compiler. Through the
use of a series of closed subroutines, the following functions are performed:

1. The DATA statements of the source program receive their final
processing and the required GMAP code is generated.

2. The source program is checked to ensure that every statement can be
reached at execution.

3. The indexer routines are called to generate the necessary indexing
instructions.

4. The main compiler portion of Phase Two processes all source statements
except DO, DO-ENDING and END statements.

5. Assembly language coding which has been temporarily stored in tables is
merged.

6. The prologue logic of necessary save and initialization instructions is
compiled including the erasable storage to be used at execution.

- 3 -

Upon completion of the Phase Two functions, control is returned to the Executive
Phase of the compiler. Chapter 4 of this manual describes in detail the
functions of Phase Two of the FORTRAN IV Compiler.

STORAGE :MAP AND OVERLAYS

Figures 1, 2 and 3 illustrate storage maps for the three phases.

000000

000077
000100

GECOS Communication Region
Length = 64(lO)' 100(8)

COMMON Storage

Executive Phase Program
and

GEFRC Routines

(Reserved for Loading)
Phase One

~ag_sel_l__!:lsed_l>y_J>hasg_One ______ r- _____ _
First available cell after Phase One

NAME TABLES }
Initialized

BUFFEREDi TABLES

End of allocated memor_y

Figure 1. Executive Phase Storage Map

@~a(8)(Q)@ ~~[ffi ~ ~~ ____________ Fo~-:~-pil-::

- 4 -

.....-----·---·-------·------------------------,
000000

000077
000100

GECOS Communication Region
Length= 64(lO)' lOO(S)

COMMON Storage
··--·--··-----·------------------------------1

Executive Phase Program
and

GEFRC Routines

First Control Section

-- - - - - - - PHASE ONE - - - - - - - - - - ___,

Second Control Section

• NAME TABLES

BUFFERED TABLES

End of allocated memor_y 1

Figure 2. Phase One Storage Map

- 5 -

000000

000077
000100

GECOS Communication Region
Length= 64(10)' 100(8)

COMMON Storage

Executive Phase Program
and

GEFRC Routines

First Control Section

- - - - - - PHASE TWO - - - - - - - - - - -

Second Control Section

ADDITIONAL BUFFERED TABLES
(Available through overlay Phase One)

NAM] TABLES

BUFFERED TABLES

End of allocated memory 1

Figure 3. Phase Two Storage Map

- 6 -

INPUT/OUTPUT RELATIONSHIPS

The input and output functions of the FORTRAN IV Compiler are handled by the
Generalized File and Record Control (GEFRC) program.

When the System Library is being created, the three phases of the FORTRAN IV
Compiler are combined with the required GEFRC routines which are obtained from
the Subroutine Library tape. The FORTRAN IV Compiler becomes a three link
program in the System Library. For a complete description of the GEFRC system,
the reader should refer to the manual GE-635 File and Record Control, CPB-1003.

GECOS allocates the following files for use by the FORTRAN IV Compiler:

File
s-:.
•'•l
P•'•
G•'•
B-i•
K•'•

Purpose

Source input file
Scratch file for POOL entries
Printer output file
Output; GMAP coding
Output; object deck
Output; COMDECK of FORTRAN IV source statements

Throughout the execution of the FORTRAN IV Compiler, GEFRC is used for the
required manipulation of these files.

TABLE DESCRIPTIONS

There <~re three types of tables generated and used by the FORTRAN IV Compiler.
Each of these tables and the specific formats are described below.

The POOL Table

Introduction. The POOL Table is generated and written on the scratch file
*l during Phase One. Each entry in the POOL Table consists of one or more
words. The first word (entry) is of the general form:

0 2 3 1718 2021 35

L s~ Num_b_e_r_<_o_c_ta_1_) _.l ____ o _ _.._J __ I_F_N_(_b_i_n_a_r_y_) ___ --ll

FORTRAN IV

Compiler

- 7 -

where:

IFN the Internal Formula Number assigned to the statement generating
the POOL Table entry.

TYPE NUMBER ~ a unique numeric code assigned to each different type of
executable statement.

The table shown in Figure 4 lists the Type Numbers assigned to executable
statements in the POOL Table.

- 8 -

STATEMENT TYPE SYMBOL NAME CODE(S)

ARITHMETIC Y.ARIT 01
ARITHMETIC STATEMENT FUNCTION Y.ASFD 02
NULL Y.NULL 03
BCD COMMENT Y.BCDC 04
ARITHMETIC IF Y .ARIF 05
LOGICAL IF Y.LGIF 06
GO TO (Unconditional) Y.UNGO 07
GO TO (Assigned) Y.ASGO 10
GO TO (Computed) Y.COGO 11
PUNCH Y.PRPN 12
PRINT Y.PRPR 13

I READ CARDS Y.PRRC 14 I
! PAUSE Y.PAUS 15

DEBUG ARITHMETIC IF Y.DIFA 16
DEBUG LOGICAL IF Y .DIFL 17
ASSIGN Y.ASSN 20
DO Y .!ODO 21
CONTINUE Y.CONT 22
STOP Y.STOP 23
WRITE TAPE Y.PRWT 24
END Y.END. 25
CALL Y .CALL 26
RETURN Y.RETN 27
DEBUG FOR Y.DBUG 30
READ TAPE Y. PRRT 31
END FILE Y.PREN 32
REWIND Y.PRRW 33
BACKSPACE Y.PRBK 34
Not used ------ 35

t----·

SET IN Y .STIN 36
END READ Y.ENDR 37
END WRITE Y.ENDW 40
SET OUT Y. STOT 41

l--~~- --~-:.~~~-~ Y.DODO 42
·--··--

Figure 4. Type Numbers

- 9 -

POOL Table Formats. The format of each of the possible entries into the POOL
Table is described below for all of the executable statements in the
FORTRAN IV Compiler. In the following descriptions, the notation "T.ARIT
Information" signifies POOL Table entries generated by the Arithmetic State
ment Processor and the notation "NAME'' is the relative pointer to the flag
word of a NAME Table entry.

1. The ARITHMETIC Statement

0--=2~~3~~~~~~~----=1~7_18~2_0~2_1~~~~~~~~----,35

7 l Y.ARIT (Type 1)8 I 0 I IFN

T.ARIT Information

2. Arithmetic Statement Function Definition

0 2 3 1718 2021 35

7 l Y .ASFD (Type 2) 8 l 0 l IFN

T.ARIT Information

3. NULL Statement

0 2 3 1718 2021 35

I 7 (Type 3)8 0 1

4. BCD Conunent

0 2 3 1718 2021 35

7 l Y .BCDC (Type 4) 8 l 0 l 14(8)

Conunent card text, 12(lO) words

- 10 -

5. ARITHMETIC IF Statement

0 2 3 1718 2021 35

7 Y .ARIF (Type 5)8 0 IFN

T.ARIT Information

0 COUNT = 3 0 P(T .JUMP\

l ...
0 P(T .JUMP) 2 0 P(T.JUMP) 3

----·

The parenthesized expression is processed by the Arithmetic Processor,
page 93.

6. LOGICAL IF Statement

0 2 3 1718 2021 35

r-
1 7 Y. LGIF (Type 6) 8 0 IFN
t ··--···--··· ----------~-~----------~

T.ARIT Information

I
I
~----~-·-·1

o I L---L-----------·-··-·· _..__ _ _.:._ __________ ____,
COUNT .::: 1 P(T.JUMP)-False

7. Unconditional GO TO Statement

0 2 3 1718 2021 35

l 7 r·--y. UNGO (Type 7)8 0 IFN

I 0 P(T.JUMP) 0 0 I

I.a. •... ---~------

@J(E 0 @(Q)@ ~~[ffi ~ ~~ ___________ Fo_~:~-pil-::

- 11 -

8. Assigned GO TO Statement

0 2 3 1718 2021 35

7 Y.ASGO (Type 10)8 0 IFN

0 BRANCH COUNT 0 P(T.JUMP) 1
.

0 P(T.JUMP)n-l 0 P(T.JUMP)n

0 (NAMEP)¢ 0 00000

where 0 is the GO TO variable.

9. Computed GO TO Statement

0 2 3 1718 2021 35

7 Y.COGO (Type 11)8 0 IFN

0 BRANCH COUNT 0 P(T.JUMP) 1

0 P(T.JUMP)n-l 0 P(T.JUMP)n

0 (NAMEP)¢ 0 0

where 0 is the GO TO variable.

@(Ea@@@ ~~[ffi ~ ~~ ____________ F_o~-:~-pil-::
- 12 -

10. PUNCH (cards), PRINT. and READ (cards) Statements
I

f) l.d () 0 () () i\""_.,f_.) ··~ •'·
I ~"" .. '') ;.i ~· --

\..\

0 2 3 1718 2021 35

7 Y.PRRC/Y.PRPR/ 0 IFN
Y.PRPN

0 0 f n }

Begin
I/0

where Y.PRRC 14 octal for READ
Y.PRPR 13 octal for PRINT
Y.PRPN 12 octal for PUNCH

and f 4 if n is a constant FORMAT reference
= 0 if n is a variable FORMAT reference

11. PAUSE Statement

0 2 3 1718 2021 35

p~us (Type 15) 8 0

0 0 N

IFN

L ___ - . .L----------~-~

12. DEBUG ARITHMETIC IF Statement

0 2 3 1718 2021 35

~-J2: Dr~(~ype 16) ~-~]- IFN
--1

T. ARIT Information

0 1112 23 24 35
I

Transfer code I Transfer code Transfer code
'---·-------

- 13 -

13. DEBUG LOGICAL IF Statement

0 2 3 1718 2021 35

7 l Y.DIFL (Type 17) 8 l 0 l IFN

T.ARIT Information . .
. .

0 1 O~ l 0 l False Transfer IFN

14. ASSIGN Statement

0 2 3 1718 2021 35

7 Y.ASSN (Type 20)8 0 IFN

0 (NAMEP)(/J 0 EFN

where (/J is the variable appearing in an Assigned GO TO statement.

15. DO Statement

0 2 3 1718 2021 35

7 Y.IODO (Type 21)8 0 IFN

0 P(T. IODO) 0 0

16. CONTINUE Statement

0 2 3 1718 2021 35

7 Y.CONT (Type 22)8 0 IFN

17. STOP Statement

0 2 3 1718 2021 35

~ Y.STOP (Type 23) 8 I 0 IFN

@j~c(ID@@ ~~[ffi~~~ ____________ Fo_~~~-pi-1::

- 14 -

18. READ or WRITE Tape Statement

0 2 3 1718 2021 35

I

7 I y. PRRT /Y. PRWT 0 IFN I }

~~f_l_._~u~~~~~~~~~..___f_2~~~~~-n~~~~~~__.

where Y.PRRT = 31(8) for READ tape
Y.PRWT = 24(8) for WRITE tape

and fl 4 if u is a constant
0 if u is a variable

f 2 4 if n is a constant
0 if n is a variable or zero (binary read-write)

19. END Statement

0 2 3 1718 2021 35

7 Y.END (Type 25) 8 0 IFN

20. CALL Statement

With Arguments

0 2 3 1718 2021 35

7 Y.CALL (Type 26) 8 0 IFN

T.ARIT Information

Begin
I/O

The Subprogram Name as well as the argument list is processed by the
Arithmetic Processor.

@J~ a(©(O)@ ~~[ffi LJ ~~ ___________ Fo_~~:-p~l-~~

- 15 -

Without Arguments

0 2 3 1718 2021 35

7 Y.CALL (Type 26)8 0 IFN

0 00000 0 00000

0 CODE 0 (NAMEP)¢

0 00000 0 00000

where ¢ is the Subprogram Name and CODE is the Function Operator Code
needed by the Arithmetic Processor in Phase 2.

21. RETURN Statement

0 2 3 1718 2021 ·35

[7 I Y .RETN (Type 27)8 0 IFN

A second entry will follow depending on the type of RETURN statement
used in the source program.

0 2 3 1718 35

4 Return Number 0

or, variable RETURN statements will be of the form:

0 2 3 1718 35

I 0 I P(T .NAME) 0

where P(T.NAME) is the pointer to the RETURN variable name.

@~ c@@@ ~~[ffi~~~ ____________ r_o~-::-u-::
- 16 -

22. DEBUG FOR Statement

0 2 3 1718 2021 35

IFN [__ 7_T_y ~ DB~~-z~-~-pe-30-;·~--[-;; I
-··· ----·--·-·-·-····-----···-·- ...••.... -··-- ·------------'

0 2 3

0 l Parameter Count
(1, 2 or 3)

1718 35

Parameter 1 (m1)

··-·····-.J..__ __________ __._ _____________ __j

0 2 3 1718 35

L-~·~_.:__P_a_r_a_m_e_t_e_r_2_<_m_2_)_~_P_a_r_am_e_t_er_3 __ <m_3_)----~

Note that the third word will not be present if the Parameter Count is
equal to one.

23. END FILE, REWIND and BACKSPACE Statements.

0 2

7

f

where

and

3 1718 2021 35

Y. PRBK/Y. PRRW/ ---~------IF-N----~

y .PREN I
u I 0

I
. -1----··

Y.PRBK - 34 octal for BACKSPACE
Y.PRRW 33 octal for REWIND
Y. PREN "" 32 octal for END FILE
f 4 for a constant unit reference

~ 0 for a symbolic unit reference

- 17 -

0

FORTRAN IV

Compiler

24. END READ and END WRITE Statements

0 2 3 1718 2021 35

I
7

I
Y.ENDR/Y.ENDW

I :21
IFN

I
} END I/O

fl u n

where Y.ENDR = 37 octal for END READ
Y.ENDW = 40 octal for END WRITE
fl 4 if u is a constant unit reference

0 if u is a variable unit reference
f 2 4 if n is a constant FORMAT reference

0 if n is a variable or zero (binary read-write)

25. DO Ending Statement

0 2 3 1718 2021 35

I 7 I y .DODO (Type 42) 8 I o I IFN

- 18 -

The format of the general Input/Output POOL Table String is shown in Figure 5.

0 2 3 1718 2021

Variable
String

Implied /
DO l_

DO
Ending

7

fl

7

f 3

f 3

7

0

7

I----

7

fl

where Type 14

TYPE

u

SETIN/SETOUT

NAMEP (var 1)

. . . .
NAMEP (var n)

Y.IODO (Type 21)

P(T. IODO)

Y.DODO (Type 42)
.
.

Y.ENDR (Type 37)/
Y.ENDIN (Type 40)

u

octal for READ
-" 13 octal for PRINT

12 octal for PUNCH
31 octal for READ TAPE
24 octal for WRITE TAPE

fl 4 if u is a constant
0 if u is a variable

f 2 4 if n is a constant

0

f 2

0

0

0

0

0

0
.
.

0

f 2

35

IFN

n

IFN

P(T. SUBS) l -'·

. .
P(T.SUBS) ·'·

n

IFN

0

IFN

. . . .

IFN

n

0 if n is a variable or zero (binary read-write)
f3 3 if the variable is a dimensioned variable

0 if the variable is nondimensioned
SET IN 36 octal \ set depending whether I/O is input or

SET OUT 41 octal) output

1
l

}

Begin
I/O

I/O
List

if any

End
I/O

;':The pointer to the T. SUBS Table is entered when the variable name being pro
cessed is dimensioned and the dimension exists in the list. For a "short list''
notation usage of a dimensioned variable the P(T.SUBS) field is zero.

Figure 5. I/O POOL Table String Format

- 19 -

The POOL Table Routine--S.TPOO

purpose. The FORTRAN IV Compiler contains two routines named S.TPOO. The
routine loaded and used in Phase One performs output functions for
building the POOL Table. The S.TPOO routine loaded and used in Phase Two
performs an input function and pulls entries from the POOL Table. These
routines either make a POOL Table entry or pull an entry from the POOL
Table, depending on whether the call is made in Phase One or Phase Two,
respectively.

Method. These routines use the PUTBK and GET entry points of the I/0
Editor. The buffer size is initialized at 318 words. During Phase One,
it is the responsibility of this routine to append a label word to each
record written. (This label is checked for sequencing in Phase Two when
retrieving records to ensure no lost or out-of-order information.)

Usage.

Phase One--The calling sequence for Phase One includes parameters which
indicate the location and number of words to be accumulated in making the
POOL Table entry. There may be more than one parameter and the routine
will continue to pick up parameters until one is encountered which does
not contain a bit in position 18. Thus, the information to be placed in
the POOL Table may be contained in as many randomly located buffers
within memory as necessary.

TSXl

ZERO

(Normal return)

S.TPOO

LOC,N (Location of entry,
number of words)

Phase Two--In Phase Two, a call to S.TPOO will return with the A-register
(0-17) containing the initial address of the entry and the tally position
(18-29) containing the length of the entry in words.

TSXl S.TPOO
(Normal return)

Error Returns. The following errors will cause the processing to be dis
continued and return made directly to the Processor Executive Controller
of the Executive Phase of ~he compiler.

@J~o(ID@@ ~~[ffi~~~ ___________ Fo-~:~-pil-::

- 20 -

The Buffered Tables (BU Tables)

Introduction. The BU Tables are used extensively in Phase One and Phase Two
of the compiler. The buffer size is initially set to sixty words.

Memory space is allocated for the BU Tables and for the NAME Tables (page 43)
by the Executive Phase of the _compiler in the following way.

The Base Address Register (BAR) is checked to determine the upper bound of
memory as allocated by GECOS. The location TOP. is set to the value of the
highest available memory location allocated and the cell BOT. is initialized
from the location EPHl. The latter specifies the first available location
following Phase One. The area specified by the contents of BOT. and TOP.
will be used for the BU Tables and for the NAME Table during the execution of
Phase One. In Phase Two some additional space is available from the smaller
size of Phase Two after it overlays the larger Phase One. The BU Tables are
assigned from the top of available memory downward; the NAME Table is
assigned upward in available storage.

If an overlap occurs, an immediate exit is made to the control routine of the
Executive Phase.

Buffers of one table are connected via the label word containing the location
of the next buffer and location of the last buffer. When there is no longer
any use for all or part of a table, buffers may be released for reuse by
another table. A table of indexes which contains the location of the initial
buffer and location of the final buffer for each table is maintained. When
this index = 0, the table has not yet been allocated. An index of tally
words for each table is also maintained. The tally words are pointers to
next available buffer word. When the tally word = 0, the table has not been
located.

For table label and index nomenclature the following definitions will hold:

IB Initial Buffer
FB Final Buffer
NB Next Buff er
LB Last Buffer
R Reuse
PTR Pointer to Buff er
Indexes consist of (IB, FB)
Labels consist of (NB, LB)

FORTRAN IV

Compiler

- 21 -

Table of Indexes

S. TL98

+l (IBl,FBl)
+2 (IB2, FB2)

+n (IBn,FBn)

table :/fl
table #2

table 1/=n

Table of TALLY Words

T.TABL -:-·k' ID

+l TALLY A,n table :/fl
+2 TALLY A,n table #2

+n TALLY A,n table 4fon

where: A is address of next available buffer word (buffer + 1 if buffer is
full)
n is number of words remaining in the buff er
A=n~O means table not located yet.

An example of how buffers for a table are strung by labels is as follows:

Buffer :/fl Label
Buffer #2 Label
Buffer 4f3 Label
Buff er 4fon Label
Table Index

(NB2,0)
(NB3,LB1)
(NB4,LB2)
(O,LB(n-1))
(IBl,FBn)

When an entry is made in a table, the last word of the entry is followed by
an end mark (all bits) unless the last word of the entry is made in the last
location of a buffer. Therefore, all buffers that are partially filled will
have an end mark flag. Note: only one end-mark flag will appear in any one
buffer.

Some table entries are constant in length (1, 2, or 3 words) and the entire
entry will always be complete within a buffer. Other entries are variable in
length and may be allowed to overlap the end of a buffer and continue in the
next buffer. The table entries that may continue across buffers are entries
made to the T.COMO, T.ARGS, T.DATA, T.LITR, T.IPRO and T.NUMB tables. All
other variable length entries must be completed in a single buffer, and if
enough room is not available, an end mark is written and a new buffer is
allocated.

A NAME Table pointer (NAMEP) reference in a table entry points to the flag
word of the appropriate NAME entry. Other entries that are pointers will
point to the first word of a table entry.

@fe a~fQ'® ~~ffi)~ ~~ _________ ---.-FORT.......,..RAN-IV

~L£ \QJ\!lj\!!) ~ U\1 ~ Compiler

- 22 -

BU Table Formats. The format of the BU Tables generated in Phase One is as
follows:

1. .T .ARGS Table: An entry is made for each FUNCTION, SUBROUTINE or ENTRY
statement that has an argument list. The number of words in each entry
is l+(n/2) where n is the number of dummy arguments. The first word of
an entry is:

0 5 6 1718 35

[N-=r~~~:--~~~~~--_....l ____ N_AM_E_P_1 _____ __.I

where N 0, if the argument list is for a SUBROUTINE or FUNCTION
statement.

1,2, .•. n, if the argument list is for an ENTRY statement.

The sequential numbering for N matches the successive occurrence of
ENTRY statements.

Successive entries appear as follows:

0 1718 35 t :::::-- -- _·-... -.. -.----------·--··-1-,----~~~-----------::_:_:_:-------.

--------- - ···-·· -···-·- I --·-- ...

I

r--:AMEPn-l NAMEPn

2. T.COGO Table: An entry is made for each assigned and computed GO TO.
The number of words in each entry is 1 + (n/2), where n is the number of
statement numbers (EFN 1 s) in the branch list.

0 2 3 1718 2021 35

0 Branch Count 0 P(T.JUMP)1

I

i 0 P(T .JUMP)n-l 0 P(T.JUMP)n

! ___ ~---·· ---------·-----

- 23 -

3. T.COMO Table: A one-word entry is made for each specification of blank
or labeled COMMON. The BLOCK NAME for a BLANK COMMON appears in the
T.COMO Table as //bbbb. A one-word entry is made for each literal
appearance of variables in a COMMON statement.

BLOCK NAME (BCD)

0 NAMEP1 0

0 NAMEP2 0 .
4 NAMEPn 0

4. T.DATA Table: An entry is made for each DATA statement. The entry size
is n+v+2d where n is the number of lists in the DATA statement, v is the
number of variables, and d is the number of implied D0 1 s.

NON-SS VAR.
SHORT LIST VAR.

.LEFT PAREN.
SS VARIABLE
RIGHT PAREN.

7
0
3
5
1
2

00000
NAMEP
NAMEP
00000
NAMEP
00000

0 00000
0 00000
0 (dimension prod.) -1
0 P(T.IMPO)
0 p'(T .USUB)
0 P(T. DATA)-1~

*This entry points to the corresponding left parenthesis entry.

5. T. DIME Table: An entry is made for each assignment of a~ to an
array. The number of words in each entry is l+(n/2), where n is the
number of dimensions.

0 2 3 1718 2021

n NAMEP (array name) f (Dimension)!

f

where n
f
f

. . .
(Dimension)n-1 f (Dimension)n

Dimensionality
4 if the dimension is a constant
0 if the dimension is a variable

35

(binary).
NAMEP.

@~a@@@ ~~~~~~-------------------------F-0~-o:-il-::
- 24 -

6. T.DODO Table: A one-word entry is made for each DO or implied DO.

0 2 3 1718 2021 35

i 0 ~-:I~~~~------_\ 0 I EFN (destination) I

7. T.EIFN Table: A one-word entry is made for each executable statement
that has a statement number (EFN).

0 1718 35

E _______ --1...--1 __ rFN _____.I
8. T.EQIV Table: An entry is made for each literal appearance of variables

in an EQUIVALENCE statement. The number of words in each entry is
1-f (n/Z)-;-wner·e··-n is the number of dimensions appended to a variable.

0 2 3 1718 2021

1---

N NAMEP 0 (Subscript)l

1
I 0 (Subscript)n-1 0 (Subscript)n

N 2 for every variable in a group except last.
N 6 for last variable of each group.

35

9. T.FEFN Table: A one-word entry is made for each FORMAT that is
encountered.

0 2 3 1718 2021 35

I o 0 I 0 I EFN(Format)

10. T.IMPO Table: A two-word entry is made for each implied DO in a DATA
statement.

0 2 3

0
I 0

NAMEP (index)
Parameter 2

1718 2021

0
0

- 25 -

Parameter 1
Parameter 3

35

11. T.INTS Table: A one-word entry is made for each literal appearance of a
nonsubscripted integer variable on the left side of an ARITHMETIC
statement, in an I/O input list (including NAMELIST), and in the argument
list of a CALL statement. A special T.INTS entry is made for each CALL
statement to indicate that nonsubscripted integer variables in COMMON
have been implicitly redefined.

0 2 3 1718 2021 35

NAMEP IFN

When a special T.INTS entry is made for each CALL statement encountered,
the NAMEP is set equal to zero.

12 •. T.IODO Table: A three-word entry is made for each DO or implied DO.

or

0 2 3

0
4
0
f

where f
f

1718 2021

IFN (origin) 0 EFN (destination)
IFN (origin) 0 IFN (destination)*
NAMEP (index) f Parameter 1
Parameter 2 f Parameter 3

0 if Parameter is a variable
4 if Parameter is a constant

35

~·:The IFN (destination) is placed in the T. IODO Table when the DO terminus
statement is encountered.

13. T.IOLT Table: A one-word entry is made for each left parenthesis that
is not used to contain subscripts in a DATA statement. This table is
used to check the balance of parentheses in a DATA statement, and it
lasts for one statement only.

0 2 3

P(T. DATA) left
paren. entry

1718 2021

- 26 -

35

00000

FORTRAN IV

Compiler.

14. T.JUMP Table: An entry is made for each statement that may result in a
transfer of control (IF's, GO T0 1 s and nonstandard returns from CALL
statements). The number of words entered in the table for each statement
depends on the number of branches specified.

0 2 3 1718 2021 35 r·

I
0 IFN (origin) 0 EFN (destination)
4 IFN (origin) 0 IFN (destination) or

The latter entry is generated by the Logical IF.

15. T.LITR Table: A one-word entry is made for each literal string in a
DATA statement. An entry of 2 + l~I words is also made for each
literal appearing in the literal 'string where n is the number of nonblank
characters in the literal except in an alphanumeric field where the
blanks are retained.

0 2 3 1718 2021 35

p J REPEAT COUNT l T l N

N WORDS OF DATA IN BCD

r--·-
0 00000 l 0 1 00000 flag indicating

-end of string

where p 0 if REAL and T 4 for DEC literal
1 if INTEGER 2 for OCT literal
2 if LOGICAL 1 for BCI literal
3 if OCTAL
4 if COMPLEX
7 if DOUBLE PRECISION

16. T.RINT Table: A one-word entry is made for each literal appearance of
a nonsubscripted integer variable that is in COMMON or EQUIVALENCE and
within a DO loop under the following conditions:

1. When they exist on the right side of an equal sign.

2. In an I/O output list (including NAMELIST).

3. As an argument of a CALL or FUNCTION.

4. As a variable unit assignment in an I/O statement.

FORTRAN IV

Compiler

- 27 -

5. As a computed GO TO parameter.

A special T.RINT entry is made for each CALL or FUNCTION reference to
indicate that nonsubscripted integer variables in COMMON have been
implicitly redefined.

0 2 3 1718 2021 35

IFN

17. T.SUBS Table: A two-word entry is made for each literal appearance of a
subscripted variable in any statement except a DATA statement.

0 2 3 1718 2021 35

0 IFN 0 IFN (Supplemental)
0 NAMEP 0 P(T.USUB)

18. T.USUB Table: An entry is made for each appearance of a unique subscript
combination. Subscripts that are actually the same as others are
considered unique if there is a difference in the size of the dimensions
of the variables that are subscripted. The number of words in each
entry is 2n where n is the dimensionality.

0 2 3 1718 2021 35

n Checksum 0 Cl

0 NAMEP (V1) a1

f x d1 0 C2

0 NAMEP (V2) a2
f dn-1 0 en

0 NAMEP (Vn) an

where n dimensionality
f 4 if dimension parameter, d, is a constant

0 if d parameter is a NAME reference (adjustable dimension)
C coefficient in subscript element
a == (addend in subscript element)-1•'~
x 1 if variable is double precision or complex.

*If a is negative, the 2 1 s complement will exist in the table (18~35).

FORTRAN IV

Compiler

- 28 -

19. T.IPRO Table: This table is composed of fourteen words per entry. Each
entry describes unique index computations. Before each index is
calculated, this table is checked to determine if the computation has
already been done.

0

Zeros

1718

IXICTR (Counter for I.
erasable storage)

(next seven words)

35

[. ___ z_e_r_o_s ______ _J __ r_n_d_e_x_c_o_n_s_t_a_n_t_s _____ -.i

(next six words)

Zeros Dimensions

Unused cells within an entry are zero.

20. T.RANG Table: This table of one-word entries contains information con
cerning the level numbers involved in the evaluation of the arguments of
FUNCTION and CALL statements.

0 1718 2627 35 , ..

I
c

J 1 Zeros B
----··-·-·------··---·----

B lowest level number contained in argument
C highest level number contained in argument.

21. T.BUGS Table: This table contains a variable number of entries. Each
DEBUG statement is stored in this table in BCD form.

0 35

_] I
! DEBUG statement (next n words in BCD)

@~ c(@@@ ~~[ffi ~ ~~ _____________ F_o~-::-~1-:~

- 29 -

22. T.NAMS Table: This table is composed of a variable number of entries.
Any NAMELIST statement which occurs with a DEBUG statement is stored
here.

0 1718 35

Word Count I Zero

STATEMENT (n words as specified in word count)

0 1718 35

Word Count Zero
l_ (next statement, etc) J - - - - - - - - - - - - - - - -

23. T.JUNK Table: This variable length table of entries describes jumps
according to the IFN of the origin of the jump and the IFN of the
destination of the jump. The table .is ordered according to destination.

0 1718 35

IFN (origin) IFN (destination)

24. T.ARIC Table: This table of multiple-word entries contains the number of
T.ARIT items in each level and is used by the re-ordering and optimiza
tion section of Phase One.

0 1718 35

A B

where: A the T.ARIT pointer for the first item of the level.
the number of items in the level.

Note:

B

The Nth entry contains information for level N; for those levels
with no T.ARIT items, the entry will be zero.

- 30 -

25. T.ASUP Table: This table is a supplement to the T.ARIT Table to be
used when the latter overflows. The entries are the same as the T.ARIT
Table described on page 93.

26. T.BLOC Table: The table of two-word entries is used to describe the
name and size of BLOCK COMMON 1 s. The first word of the entry contains
the BCD name of the BLOCK COMMON. The second word contains the size of
the BLOCK COMMON in bits 18-35.

0 35

BLOCK COMMON name in BCD

0 1718 35

'· _________ z~~~----··----·---------J_,__ _______ s_i_z_e ______ _,

27. T.EQCO Table: This is a table of two-word entries. Entries are made
for variables which are equivalent to another variable which appears in
COMMON.

0 1718 35 ,-------·-----···-···------..---------------·-,

i NAME pointer Zero

I
. ··--··--·-···--·--·····--- ·---·---

Relative location in
I T.BLOC pointer BLOCK COMMON of this

l_ _______ ~ ________ _._ __ v_a_r_i_a_b_l_e ________ __.

- 31 -

28. T.LIST Table: This table is composed of a variable number of entries. A
set of entries in this table describes a group of variables which appear
in more than one equivalence group.

0 1718 35
;

T.EQIV pointer Zero

NAME1 pointer Addend1

0 1718 35

NAMEn-l pointer Addendn-l

0 2 3 11 18 35

7 I 0 0

Note that the pref ix of the last word of a set is equal to seven.

29. T.REQU Table: This table is composed of a variable number of entries.
A set of entries is made for equivalence groups containing no COMMON
variable.

0 1718 35

NAME1 pointer Addend1

NAME2 pointer Addend2

0 2 3 1718 35

I 7
I

0 0

Note that the last word of a set has a prefix of seven.

FORTRAN IV

Compiler

- 32 -

30. T.BASE Table: This table is composed of a variable number of entries.
A set of entries is made for any COMMON reference within an equivalence
group.

0 1718 35

T.REQU pointer Zeros

NAME1 pointer Addend1

0 2 3 1718 35

0 0

Note that the last word of a set has a prefix of seven.

31. T.LDXR Table: This single entry table is used in conjunction with ·the
indexer routines of Phase Two. The entries indicate the spill index
register assigned to subscripted variables and when they must be loaded.
Two types of entries may appear; one for the DO Indexer and the other for
the Basic Block Indexer.

(1) DO Indexer Type Entry

0 2 3 1718 35
1 ·-+

I _J._ ____ I_F_N ______ ~l ___ su_P_P_l_e_m_e_n_t_a_r_y_r_F_N ___ ~J

(2) Basic Block Type Entry

0 2 3 1718 35

I- I
Zero IXBGCT

32. T.BGIN Table: This single-entry table indicates where instructions
stored in the I.COLT Table are to be found and where these instructions
are to be merged into the G* file.

0 1718 35
r---------------·-- ------

IFN IXBGCT-1

FORTRAN IV

· Campi l~r

- 33 -

33. T.OUTS Table: This single-entry table describes where index register
reloading must occur because of jumps out of DO loops.

0 1718 35

P(T.JUMP) IXBGCT-1

34. T.PROL Table: This table is composed of a variable number of two-word
entries. The table is used by the S.PROL routine for the generation of
prologue instructions in Phase Two. The first word takes the form:

0 1 2

Ip I NAME

where: P,
P,
P,

P,

pointer

bit 0
bit 0
bit 1

bit 1

1718 35

Addend

O, the IFN is to be compiled in the variable field.
1, the IFN+l is to be compiled in the variable field.
O, word 2 of the entry contains the IFN and the
supplementary IFN.
1, word 2 of the entry contains the IFN and
supplement in BCD form.

The second word may be one of the three forms shown below:

0 2 3 1718 35

IFN I Supplementary IFN

Zero IXBGCT

IFN and supplement (BCD form)

FORTRAN IV·

Compiler

- 34 -

35. T.ERAS Table: This table consists of two-word entries for Arithmetic
Statement Function Definition counts.

0

A. count

P. count

where: A. count
AA. count

1718 35

AA. count

PP. count

argument storage count, single precision.
argument storage count, double precision.

Note: One-half of this word will be used for each entry.

PP. and P. count = Temporary storage count

36. T.AFDU Table: This table is composed of one-word entries. An entry is
made for each Arithmetic Statement Function Definition.

0 1718 35

NAME pointer Argument Count

37. T.NUMB Table: This table is composed of multiple-word entries. Each
entry represents a constant in literal form.

0 1718 35

TYPE CODE J Word Count (n)

Literal constant in BCD form (next n words)

where the Type Codes are defined as follows:

TYPE CODE MEANING

1 Integer
2 Real
3 Double Precision
4 Complex
5 Logical
6 Hollerith

FORTRAN IV
@~0@@@ ~~[ffi~~~ -----------Com-pi-ler

- 35 -

38. T.SISU Table: This variable length entry table handles similar sub
scripts for subscripting involving the Basic Block or DO Indexers. The
format of entries for the DO Indexer are shown below:

0 2 3
!

- XRA

+ XRA

+ XRA

+

where: XRA
Cf
G

5 6

Cf

0

0

0

1718

G

T.USUB pointer1

T.USUB pointer2

T.USUB pointer
n

Assigned index register
Frequency count

35

Calculated coefficient for address addend

Note: The assigned index register remains the same throughout a set
of entries.

The format for the Basic Block Indexer entries follows:

0 2 3 5 6

- XRA

I

+ I XRA
I

+ XRA
L

where:

1718

Cf 7•, T.USUB pointer1

-

Q'i'• T.USUB pointer2

Q7'• T.USUB pointer3

o~·- T.USUB pointern

Assigned index register
Frequency count

35

An IFN may be placed in this position after the initial
entry has been made.

- 36 -

39. T.OTIN Table: The table is composed of a variable number of two-word
entries. Each entry describes jumps in and out of DO loops when saving
and restoring of registers becomes necessary. No entry in this table
indicates that no saving or restoring is required at the jump location.

0 1718 35

IFN (Jump origin) IFN (Jump destination)

Zero IXBGCT

40. T.DBUG Table: This table is composed of a variable number of entries.
Each two-word entry points to a DEBUG statement in the T.BUGS table.

0 1718 35

Word Count (of EFN (binary)
DEBUG Statement)

T.BUGS pointer Zero

41. T.COLT Table: This table is composed of entries consisting of three or
more words. Coding generated b?" Gct::--'.~s stored here for later merging.

0\ -...... , ~,.~:. •, .. '

0 1718 35

IFN Zeros

0 18 2930 35
Zeros Word Count(n) l Zero

I---· ---

I BCD Coding (next n words)
-----·-- - ------ ------- - - - - - - - - -

42. T.LINE Table: This table is composed of single entries, one for each
line described by the Format Generator.

0 35

~~~--~-~----~------~~T~.F_o_R_T~T_a_1_1_y~w_o_r_d~~~~~~~~-~. 

- 37 -



43. T.FORT Table: This table of variable-length entries contains the BCI 
text produced by the Format Generator. 

0 35 

[ ____ _ BCI Text (next n words) _ _J 
44. T.USSR Table: This table of two-word entries describes the appearances 

of subscripted variables within a defined region (Basic Block). The 
table is used by the indexer routines of Phase Two. The format of the 
entries are described below: 

0 2 3 

u 1 XRA 

5 6 1718 

] cf T.USUB pointer 

(IFN) T .SUBS IFN 

+or -, the Usage Flag 
Assigned Index Register 
Frequency count 

35 

where: U 
XRA 
cf 

(IFN) Location at which the index register value must be re
calculated. 

45. T.NLIN Table: This table is a compilation of pointers of integer 
variables in NAMELIST. 

0 35 

NAME LI ST name in BCD 

p 1718 35 
NAME pointer1 Zero 

NAME pointer2 Zero 

r 
Zero 

Next set of entries 

L--------------------------------1 

- 38 -



46. T.ENTY Table: This table consists of one-word entries made for each 
ENTRY statement. 

0 

where: 

5 6 

n 

1718 35 

Zero 
I 

IFN 
I 

The ENTRY statement number. This number increased by one 
for each ENTRY statement occurring in the subprogram. 

IFN The IFN of the next executable statement. 

47. T.DORT Table: This table is composed of multiple-word entries for nests 
of implied DO statements. 

0 2 3 1718 35 
,----

0 DTALEV P(T.NAME) 

0 INC x 
(1st Subscript) 

0 INC xn 
(nth Subscript) 

All bits present (end of set) 
'---·----

where: . DTALEV 
INC 

DO level of this variable name. 
Increment used to calculate the next addend 
pertaining to this subscript. 

Note: 

x Addend of a previous ORG, updated on each pass 
through the table. 

The first name pointer points to the name of the outermost DO. 
The nth name pointer points to the name of the innermost DO. 

(Q? FORTRAN IV 
@~0 @@@ ~~[ffi~~~ ----------C-ompi-'ler 

- 39 -

\ 



BU TABLE ROUTINES. The following routines are used to process entries in the 
BU Tables. 

1. S.TIOO--Table Initialization Routine 

Purpose. This routine is called at the beginning of Phase One and 
initializes the pointer cells L.BUFF and H.NAME which are the pointers to 
the BU Tables and NAME Tables respectively. The routine also sets the 
table indexes to zero. 

Usage. The calling sequence is: 

TSXl S. TIOO initialize tables 

(Normal Return) 

Error Returns. There are no error returns. 

2. S.TAOO--Table Allocator Routine 

Purpose. This routine is called to allocate buffers which make up the 
BU Tables. A call to this routine is made each time a new buffer is 
needed. 

Usage. The calling sequence is: 

TSXl S.TAOO allocate a buff er 

ARG n Table 1fa 

(Normal Return) Tally word is in the A-register and T.TABL+n 

Error Returns. If an illegal table number is specified in the calling 
sequence or there is an overlap between BU Tables and NAME Tables, a 
diagnostic message will be written and return made directly to the 
executive controller. 

3. S.TLOO--Table Locator Routine 

Purpose. This routine is used to locate the beginning of a BU Table. 

@~a(@@@ ~~[ffi~~~ ___________ ro_~~~-pil-~: 

- 40 -



Usage. The calling sequence is: 

TSXl S.TLOO 

ARG n 

(Error Return) 

(Normal Return) 

locate a table 

Table 4fa 

No table exists, C(A) 0-35 are zero. 

C(A) 0-17 contain location of label of 
first buffer of table, C(A) 18-35 are zero •. 

Error Returns. If an illegal table number is specified a diagnostic 
message is written and return made directly to the executive controller. 
The no-table-error return does not cause a diagnostic and can be used 
when testing for the existence of a particular table. 

4. S.TKOO--Table Kill Routine 

Purpose. When buffers on an entire table are no longer needed, this 
routine will release specified buffers for reuse by other tables. 

Usage. The calling sequence is: 

TSXl S.TKOO release a buff er 

ARG n Table ifo 

z Zero ·k·k •k•k label pointer 

(Normal Return) 

If C(Z) 0, the entire table will be deleted. 

If C(Z) # 0, C(Z)0-17 points to a label in the BU Table label chain. 
C(Z)l8-35 = 0, preceding buffers will be deleted. 
C(Z)l8-35 # O, succeeding buffers will be deleted. 
The buffer pointed to will remain intact. 

If table specified has not been allo·cated, a normal return will be made. 

Error Returns. If an illegal table number is specified, a diagnostic 
message is written and return made direct to the executive controller. 

@~ a(ID(Q)@ ~~[ffi~ ~~ ___________ Fo-~:~-pil-:: 

- 41 -



5. EN.TR--Buffer Enter Routine 

Purpose. This routine is used to make entries in the BU Tables. 

Method. A pointer will be kept in the tally word index (T.TABL+n) which 
will indicate the next available buffer word to be used for storage and 
the number of words remaining in the buffer. 

Usage. The calling sequence is: 

TSXl EN.TR 

ARG n 

TALLY LOC,n 

(Normal Return) 

make an entry into a table 

Table # 

Location of information, number of words 

Buffer location of first word of entry in 
A(0-17) except when an indefinite length 
entry overlaps buffers. 

Restrictions. Upon entering this routine a check is made of the table 
tally word to determine if there is a partially filled buffer available. 
If not, a new buffer is allocated and the entry made. The last word of 
an entry is followed by' an end mark (all bits) unless the last word of 
the entry is placed in the last word of the buffer. Some entries are of 
indefinite length and make up continuous tables (T.COMO, T.ARGS, T.DATA, 
T.LITR, T.IPRO, T.NUMB). These entries overlap the end of a buffer and 
continue in the next buffer. Other entries are of definite length and an 
entry must be completed in a single buffer. A check is made for an entry 
of the latter type and if enough room is not available, an end mark is 
written and a new buffer is allocated. Therefore, all buffers that are 
partially filled will have an end mark flag. 

Error Returns. If an illegal table number is specified_ a diagnostic 
message is written and return made to the executive controller. 

6. PU.LL--Buffer Pull Routine 

Purpose. This routine is called when entries are to be pulled from the 
BU Tables. 

Method. As in routine EN.TR, a pointer will be kept in the tally word 
index indicating the next word to be pulled and the number of words 
remaining in the buffer. 

- 42 -



Usage. The calling sequence is: 

TSXl PU.LL get next entry from table 

ARG n Table 4fa 

TALLY LOC,n Location at which to store entry, number 
of words. 

(End of Table Return) End mark in location (1) and A
register if table is unassigned. 

(Normal Return) 

End mark in location(n+l) if there 
are not enough words in table. 

Last word pulled in A. 

Restrictions. When this routine is entered, a check is made of the table 
tally word (T.TABL+n). If a tally exists, the pull is started at this 
point in the table. If the tally word has been initialized to zero, the 
pull is started at the,beginning of the specified table. When a table has 
not been assigned or there are not enough words in the table to satisfy 
the PU.LL entry, an end-of-table return is made. 

Error Returns. If an illegal table number is specified, a diagnostic 
message is written and return made to the executive controller. 

The NAME Table 

Introduction. The NAME Table is a dictionary of all variables, FUNCTION names 
and SUBROUTINE names in the source program. Storage of items in the NAME 
Table is upward in memory. Available storage for the NAME Table is allocated 
as described on page 21. 

NAME Table Formats. All NAME Table entries are made during Phase One. The 
NAME Table Routine (page 44) is used to make cumulative entries as each new 
name is encountered. All references in the BU Tables and in the POOL Table 
to variable names are made using a relative pointer, R.NAME (page 45). This 
pointer gives the address of word 2, the flag-word, of the two-word entry in 
the NAME Table. 

@ @ ® re re~ FORTRAN IV ~~ 0 @® 0 ~l£[ffi ~ l£~ ------------Co-mpi----ler 

- 43 -



In the description below, the bit position, the Phase One mnemonic for that 
flag, and the meaning when ON, are given. 

Bit 
Position 

Phase 1 
Mnemonic Meaning of Flag when ON 

0 - 17 Address of buffer entry in T.DIME Table, 
if applicable. 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

__ -=;;..,.. 23 
24 

25 
26 
27 
28 
29 
30 
31 

-732 
33 
34 
35 

I. LIB. 
I. INH. 
I.BLT. 
I.NLS. 
I.FNM. 
I.CAL. 
I.XTN. 
I. IMP. 
I.FCN. 
I.RVR. 
I.ASF. 
I.ARA. 
I.ARG. 
I.EXP. 

I. LOG. 
I.CPX. 
I .DBL. 
I.REL. 
I. ITG. 
I.DIM. 
I.ADM. 
I.EQV. 
I.EQR. 
I.COM. 
I.BCM. 

Library function 
Inhibit register linkage 
Built in function--variable length argument 
NAMELIST Table name 
Function name in the FUNCTION statement 
Subroutine reached by a CALL 
External subprogram name 
Implicit variable definition 
Function name used by this program 
True variable (as opposed to function name) 
Arithmetic Statement Function Name 
Argument in A.S.F. (dummy variable) 
Argument t6 this program 
Explicitly typed, that is, none of the bits 25-29 
may be reset · 
Logical type 
Complex type 
Double Precision type 
Real type 
Integer type 
Array name--see bits 0-17 
Name of an adjustable dimension size 
Equivalenced 
Equivalenced more than once 
COMMON variable 
BLANK COMMON variable 

S.NAME--The NAME Table Routine 

Purpose. This routine is entered when a variable name is to be searched 
for or added to the NAME Table. If the name is not found in the NAME 
Table, it is added to the table. 

Method. This routine is entered with the variable name in BCI, left 
adjusted and filled in with blanks, in the A-register. 

The NAME Table is built as a forward-stored array. The location of the 
first word of the table (lowest storage address) is initialized from cell 
BOT. (bottom of available storage). This is done upon the first entry 
to the NAME routine. 

- 44 -



Two cells are used for each entry made to the NAME Table. The NAME Table 
contains all variable names of the source program and all the information 
that can be deduced about them in the form of flag bits. 

The NAME Table stored forward in memory has the following structure: 

BCI Name (1) 
Name1 flags 
BCI Name (2) 
Name2 flags 

BCI Name (n) 
Namen flags 

(See page 44 for a description of the flag bits.) 

Usage. The calling sequence is: 

TSXl S.NAME (name in the A-register) 
RETURN - Name added to table. l Fl . 
RETURN - Name found in table. ( ags in A-register 

On normal return~ 

L.NAME contains the location of the flag word. 
C.NAME contains contents of flag word (zero if name-added return 

is made). 
T.NAME contains the IA of the NAME Table. 
R.NAME = L.NAME - T .NAME (relative pointer). 

Pointers to the NAME Table are always relative because of a size 
restriction. In most cases only 15 bits can be spared for the pointer; 
therefore, the NAME Table cannot safely be greater than 215 words long 
(16384 variable names). 

Error Codes. The last location of the NAME Table (highest in memory) must 
not overlap the buffers reserved for the BU Tables (page 21). Accordingly, 
the last 'entry address is kept in cell H.NAME. It must not be equal to 
or higher than the address of L.BUFF which contains the lowest location 
of the BU Table buffers. 

If this overlap condition is detected, the following diagnostic message 
is given and return is made directly to the Executive Routine~ 

TABLE SPACE EXHAUSTED. SHORTEN PROGRAM. 

FORTRAN IV 

Compiler 

- 45 -





2. T H E E X E C U T I V E P H A S E 

The Executive Phase of the FORTRAN IV Compiler is composed of six major segments. 
Each of the segments is described in detail below. 

THE PROCESSOR EXECUTIVE CONTROLLER 

This segment of the Executive Phase performs the housekeeping and control 
functions for the FORTRAN IV Compiler. It communicates with GEFRC for input and 
output functions and provides the necessary calls to GECOS for the loading of 
Phase One and Phase Two. The Processor Executive Controller also initializes 
tables, routines and constants, as well as checking error indications. The 
flow diagram in Figure 6 details the functions of this segment. 

Option Check 

The system options specified on the $ FORTRAN card are checked using the Switch 
Word as defined below: 

Switch Word 
Bit Position 

6 
7 
8 
9 

10 
11 

Option 
Bit ON Bit OFF 

COMDK NCOMDK 
DECK ND ECK 
LSTOU NLSTOU 

._\:,UPDATE <:, NOUPDATE ) 
LSTIN. 'NLSTIN 
STAB. NSTAB 

(The above options are described in the Comprehensive Operating Supervisor 
Manual, CPB-1002A). 

Boundary Check 

The Base Address Register (BAR) is checked to determine the upper bound of 
allocated memory so that table space may be determined. 

FORTRAN IV 

Compiler 

- 47 -



Initialize 

GELOAD 

Initialize 
for GMAP 

listing and 
deck. 

Clear Debug 
Table Option 

Check Switch 
Word and Check 

Options from 
$ FORTRAN card 

Read Base 
Address Register 
and set upper 
program boundary 

Determine 
Table 

lower limit 

Open Files 
s·k, P*, G*, 

~·(1 

Initialize · 
Buffered Table 

Routines 

Obtain Next 
Buffer 

Figure 6. 

PE.020 

PE.030 

PE.050 

No 

Initialize 
Pool Tally 

Word 

Clear All 
Common Flags 

Set 
Program Name 

Clear Table 
Area (NAME 
Tables and BU 

Tables) 

Call 
Phase One 

Normal Return 

Yes 

Table 
Overflow 
Return 

List 
Remainder 
of Program 

Close Files 

Terminate 

Executive Controller Processor Flow Diagram 

@j~ c(ID(Q)@ ~~[ffiU ~~ _____________ Fo~-~~-pi-1:: 

- 48 -



Output Last 

Partial Buffer 

Set Indicator 
for Phase Two 

Close ~·(1 

Output File 

Attach and 
Clear addition 
al BU Table 

Space 

Open 'l'(l 
Input File 

Clear Buffer 
Tally Word and 
Sequence Word 

I Call Phase Two 

[Normal Return 

~ 

Close *l 
Input File 

Clase G~'(, P"l(, 
and s~·( Files 

Yes 

Open B~'' File, 
Write $ OBJECT 

and $ DKEND 
Records; Close 

B~'' File. 

Return to 
GECOS via 

GE FINI 

No 

all GMAP for 
ssembly of 

Generated Coding 

Figure 6_ Continued 

- 49 -



File Initialization 

The S* file is opened as an input file. The P*, G*, and *l files are opened as 
outputs. 

Initializations 

The Buffered Table routines (see rrTable Descriptions, rr page 7 ) are initialized; 
the buffer pool tally word is set by storing the POOL Table buffer size in the 
tally position of S.TP98. All common flags are cleared and the program name is 
set to all periods ( .••••• ). The area set aside for the Buffered and NAME Tables 
is cleared. 

Upon completion of its initialization functions, the Processor Executive 
Controller calls Phase One of the compiler and transfers control. When Phase One 
is completed, control is returned to the Processor Executive Controller and the 
location F.DIAG. is examined to determine the success of the compilation at this 
point. If a fatal diagnostic has occurred, the files *l, S*, P* and G* are 
closed, $ OBJECT and $ DKEND records are written on file B* and control is 
returned to GECOS through an MME to the location GEFINI. If the location F .DIAG 
indicates a succes~ful compilation at this point, the phase flag location PHASE. 
is set to a nonzero value and the scratch file *l (the POOL Table) is closed as 
an output file and re-opened with a rewind as an input file. Additional memory 
is allocated for the Buffered Tables, the available space being computed as the 
difference between the length of Phase One and the length of Phase Two (Phase Two 
is shorter than Phase One). Phase Two is then loaded and control transferred to 
it. 

At the completion of Phase Two functions, control is returned to the Processor 
Executive Controller. The *l, G*, P* and S* files are closed and the location 
F .DIAG is checked to determine if a fatal diagnostic has occurred. If the.re has 
been a source program err.or which prevented a correct compilation, $ OBJECT and 
$ DKEND records are written on the B·k file and a return to GECOS via GEFINI is 
executed. If the check of the location F.DIAG indicates no errors, the 
Processor Executive calls GMAP for the assembly of the generated code. 

DIAG, WIAG--Diagnostic Output Routine 

Purpose. This routine outputs a diagnostic message in a standard format. 

Method. The routine is entered at one of two entry points dependent upon 
the severity of the diagnostic. An entry to DIAG sets the cell F.DIAG 
to a nonzero value and provides a fatal diagnostic message describing the 
error preventing compilation of the source program. The entry point WIAG 
is used to output a warning diagnostic message. The cell F.DIAG is not 
referenced and source program compilation may be permitted. Errors 
found during Phase One processing produce diagnostic messages on the 
output listing immediately following the improper source statement. 

- 50 -



Messages required by checking performed during Phase Two of the compiler 
will be written on the output listing following the last statement in the 
user's program. 

Usage. The calling sequences are: 

TSXl 
ZERO 

or 

TSXl 
ZERO 

where 

DIAG 
LOC,n 

WIAG 
LOC,n 

For fatal diagnostics 

For nonfatal diagnostics 

LOC the address of the message to be printed, and 
n the number of words in the message. 

The format of the diagnostic message is: 

<> <> <> <> <> <> <> <> <> <> <> <> <> 

The diagnostic message is written here 

Restrictions. Diagnostic messages exceeding nineteen words are 
continued on a second line. 

Error Returns. None 

S.BBOO--Binary Integer to BCD Integer Conversion Routine 

Purpose. 
integer. 

Method. 

This routine converts an 18-bit binary integer to a 6-digit BCD 
Numbers greater than 18 bits are converted modulo 218. 

The binary integer is converted using the special BCD instruction. 

Usage. Two calling sequences are used with this routine depending on 
whether the binary integer to be converted is in the A-register or the 
Q-register. They are: 

TSXl S.BBOO 
(Normal Return) 

or 

TSXl S.BBOO+l 
(Normal Return) 

n is in bits 18-35 of the Q-register 

n is in bits 18-35 of the A-register. 

- 51 -



The BCD integer is returned in the Q-register left justified and filled 
out with blanks. If n=O, the BCD integer returned will be one zero digit 
followed by five blanks. 

Error Returns. None 

Buffer Table Routines 

Six routines associated with the Buffered Tables (see page 21) are 
included as a part of the Executive Phase of the FORTRAN IV Compiler. 
These routines (EN.TR, PU.LL, S.TIOO, S.TLOO, S.TAOO and S.TKOO) are 
described in detail in "BU Table Routines," page 40. 

GG--GMAP Code. Generator 

Purpose. The GMAP Code Generator generates appropriate GMAP code to 
be written on the G* file for compilation by the GMAP assembly program. 

Method. The GMAP Code Generator is a closed subroutine to be used with 
a specified calling sequence. The argument furnished by the call 
specifies the location of a list of operations to be performed by the 
generator. 

Usage. The calling sequence is: 

TSXl 
ARG 

where 

GG 
XLOC 

XLOC = the location of the operation list which is of the 
general form: 

TALL YD 
TALLYD 

TALLYD 

PRTl, FLGS, TYPE 
PRT2, FLGS, TYPE 

PRTn, FLGS, TYPE 

Operation 
List 

The three subfields of the TALLYD operation are examined starting with 
the third subfield. The TYPE (third) subfield is associated with a 
numeric code and is interpreted as shown in the table on the following 
page. 

@j(EaIBJ@@ ~~[ffiO~~ ____________ F_O~-~=-il-:: 
- 52 -



TYPE 
CODE 

0 

1 

2 

3 

4 

5 

6 

7 

I 

I 

TYPE 
NAME 

. LCF. 

• OCF. 

.VAF. 

.CON. 

.HLD. 

.CLF. 

I .TRP. 

.EPL. 

MEANING 

Information is to be placed in the Location field. 

Information is to be placed in the Operation field • 

Information is to be placed in the Variable field. 

Information is to be concatenated to the most 
recently specified Location, Operation or Variable 
field. (For example, the Variable field of a BC! 
instruction might be generated through the use of 
several CONCATENATION-type operations.) 

The information contained in the current line of 
GMAP coding is to be held in readiness (not written 
on the G7'~ file) until another TALLYD operation calls 
for it to be output. (For example, in the generation 
of a series of arguments for the calling sequence to 
a subroutine, a HOLD-type operation might be used 
for each argument until the last argument has been 
generated.) 

This Type Name allows the GMAP coding generator to switch 
output alternately from tables to the G7'~ file. When this 
Type Code is specified, the first subfield of the TALLYD 
operation is examined as follows: 

First subfield = 0 
First subfield I 0 

Output to G* file 
Output to Tables 

(For example, output to tables is required for coding 
generated by the DO Indexer to be merged into the main
stream coding later.) 

The operations to be performed will be found in another 
operation list. The first subfield specifies the location 
of the remote list. Movement through several levels of 
operation lists is permitted. Return linkage must pass 
back through each operation list used. A return to the 
previous operation list is accomplished with a TALLYD 
operation having null first and second subfields and a 
.TRP. as the third subfield. 

This Type Name specifies the end of an operation list. 
The generated code is written as a card image. 

Only the Type Name. EPL. demands output of the generated card image. The 
output control device for all other Type Names is based on a comparison 
of the Type Code. The current Type Code is compared to the previous Type 
Code. If the current Type Code is less than the previous Type Code, the 
previous card image is output. The current operation is then examined 
and construction of the current coding line begins. 

@j~a(ID@® ~~lffia~~ _________ __......_FORT.........,RAN..........,IV 

Compiler 

- 53 -



The second subfield of the TALLYD operation can be used to specify 
punctuation characters to pref ix or suffix the GMAP coding field. The 
options listed below are used. 

FLGS MEANING 

S.PLS. Suffix a 11 PLUS 11 symbol 
P.PLS. Pref ix a "PLUS" symbol 
S.MNS. Suffix a 11MINUS 11 symbol 
P.MNS. Pref ix a "MINUS" symbol 
S.AST. Suffix an 11ASTERISK11 symbol 
P.AST. Pref ix an 11ASTERISK11 symbol 
S.SLH. Suffix a 11 SIASH11 symbol 
P.SLH. Pref ix a 11 SIASH11 symbol 
S.CMA. Suffix a 11 COMMA11 symbol 
P.CMA. Pref ix a 11 COMMA11 symbol 
S.LPN. Suffix a 11 LEFT PARENTHESIS" symbol 
P.LPN. Pref ix a 11 LEFT PARENTHESIS 11 symbol 
S.RPN. Suffix a 11 RIGHT PARENTHESIS" symbol 
P.RPN. Pref ix a TT RIGHT p ARENT HES Is II symbol 
S.PER. Suffix a 11 PERIOD 11 symbol 
P.PER. Pref ix a 11 PERIODTT symbol 
S.APS. Suffix an 11 APOSTROPHE 11 symbol 
P.APS. Pref ix an 11APOSTROPHE 11 symbol 
S.EQS. Suffix an TTEQUALS 11 symbol 
P.EQS. Pref ix an TIEQUALS 11 symbol 
S.DOL. Suffix a 11 DOLIAR SIGN" symbol 
P.DOL. Pref ix a 11 DOLIAR SIGN" symbol 

Also, four additional special codes can be used in the second subfield. 

FIAG NAME 
C. IFN. 

C. INT. 

C.BCD, 

. C.EVN. 

MEANING 
The infonnation is to be·converted by the IFN technique. This 
conversion generates an IFN followed by a letter and possibly 
followed by a supplementary IFN. This converted information 
occupies either the Location field or the Variable field of 
the card image. 

The information is a binary number to be converted to a BCD 
integer and placed in the generated card image~ 

The information to be placed in the card image is a BCD 
character string. The first subfield points to a word 
specifying the location of the string and the number of words 
the string occupies • 

This Flag Name indicates that an E character must be placed in 
column 7 of the generated card image for the EVEN location 
function of the GMAP assembler. 

FORTRAN IV 

Compiler 

- 54 -



Finally, the first subfield of a TALLYD entry is a pointer to the infonna
tion to be placed in the card image. The information specified by the 
pointer may be one of the following. 

1. Internal Fonnula Number encoded with a letter designation, and a 
possible supplementary IFN 

2. An integer 

3. A BCD character string pointer 

4. A BCD word of six characters 

Based on the contents of the third subfield special values may be present 
in the first subfield as shown below: 

FIRST SUBFIELD THIRD SUBFIELD 
SPECIAL VALUE TYPE NAME 

Always Zero .HLD. 

Zero = Output to c~·~ file .CLF. 
Nonzero = Output to tables 

Zero = return to previous 
parameter list 

.TRP. Nonzero = address of remote 
parameter list 

·Always Zero .EPL. 
-

FORTRAN IV 

Compiler 

- 55 -



The following table describes the possible configurations of TALLYD 
operation subfields used with the GMAP Code Generator. 

THIRD SUBFIELD FIRST SUBFIELD 

TYPE-NAME C. IFN· C. INT. BCD Pointer BCD Word Special 

• LCF. Yes Yes Yes Yes No 

.OCF. No No Yes Yes No 

.VAF. Yes Yes Yes Yes No 

.CON. No Yes Yes Yes No 

.HLD. -k 41 Always Zero- t> Yes 

.CLF. •k Ca Zero=output to c~·, ... 
Nonzero=output to tables Yes 

.TRP. •k Zero=Return link 
<l'J Nonzero=Address of I> Yes 

remote operation list 

.EPL. <a Always Zero ... Yes 

~''Flag codes for TALLYD operations having these Type Names are not 
checked. For all other Type Names, the Flag will be checked. 

Restrictions. None 

Error Returns. None 

MACERR--Machine Error Dump Routine 

Purpose. The Machine Error Dump routine dumps memory if a machine error 
'occurs during the compilation of a FORTRAN IV source program. 

- 56 -



Method. This routine is entered using a TSXl instruction to provide a 
traceback to the location where the error occurred. The octal value of 
the error location is stored in a message with the present phase number 
(1 or 2). The message is written using the diagnostic message routine 
which is entered at DIAG, the fatal diagnostic entry point. Upon return, 
the abort code is loaded into the Q-register and a Master Mode Entry is 
executed to GEBORT. 

Usage. The calling sequence is: 

TSXl MACERR 
(No Return) 

Error Returns. None 

@3~ o@@@ ~~[ffiO~~ ___________ Fo_...~~~-pil...._:: 

- 57 -





3. PH A S E 0 N E - - F 0 RT RAN I V C 0 MP I L E R 

INTRODUCTION 

Phase One of the FORTRAN IV Compiler translates the statements of a source pro
gram into a series of correlated table entries. This phase is composed of two 
GMAP assemblies. The first assembly contains Conunon Routines and the Arithmetic 
Routines. The second assembly contains Statement Processors and Storage 
Allocators. The individual routines of Phase One are described in detail below. 

EXECUTIVE ROUTINES 

The following routines perform executive type functions during the first phase 
of the FORTRAN IV Compiler. 

1. E.1000--Phase One Executive Routine 

Purpose. This routine performs the executive co.ntrol functions for Phase 
One of the FORTRAN IV Compiler. It handles initializations, processing 
and correlation of statements for this level and does the final clean-up 
operations required before Phase Two is called. 

Method. The Phase One Executive performs its function through direct 
coding and the calling of subroutines. Figure 7 illustrates the flow 
through the executive. 

Usage. The Phase One Executive routine is a control program and does not 
have a calling sequence. 

- 59 -



Phase One 
Executive 

Arithmetic Yes 

Clear IFN, Statement? 

E.1000 all flags 
and indicators No 

Scan and ----e classify 
Make entry in non-Arithmetic 
Constant Table Statement 

for Logical 
True and False 

Output Statement 
statement executable? 

to ">':l File 
Calculate No E.1020 pointers; 
Allocate 
buffers Output 

statement E.1040 
to c~·: File 

Initialize -----8 source Function input file Yes or E .1070 
Subroutine? 

No 
Assemble a -----8 E.1030 Make sure it source 

is first statement 
statement 

Save Scan 
position; check Test legality of E.1080 
duplicate EFN statement in 

type of program 

-----8 Initial 
E .1035 statement o--- Go to 

classification Statement E.1090 

Processor 

Figure 7. Executive Flow Diagram 

@j~c(@(Q)@ ~~[ffiU(E~ ____________ Fo_~~~-pi-1:: 

- 60 -



E. llOO 

_E. 1200 

E.1600 

Yes 

Check IF, 
LOGICAL IF, 

Executable, 
DATA, END or 

NAMELIST 
statement? 

Yes 

Allocate 
storage 

DO and DO-Ending 
for proper 
sequence 

End of source 
program? 

Final 
clean-up 

Test last 
executable 
statement 

No 

8---

Figure 7 (continued) 

- 61 -

Yes 

Generate l 
Symbol J Table 

Transfer 
type? 

Yes 

Complete 
storage 

allocation 

Check 
program 

type 

Function? 

No 

Symbol 
Table 

required? 

No 

Return to 
Processor 
Executive 
Controller 

No 

Generate a 
transfer type 
instruction 

E.1660 

Yes 

Generate 
F.NAME I 

storage J 
~~-

E.1680 

E.1700 

FORTRAN IV 

Compiler 



Error Returns. There are seven different error messages under the con
trol of the Phase One Executive. In the following cases, an error 
message is printed, the source input is read and listed until the end is 
encountered, at which time control is transferred to the "final clean-up" 
portion of the Phase One Executive. 

E.DOOl 

E.D002 

E.D003 

E.DOOS 

STATEMENT IS EITHER NOT PERMITTED OR MISPLACED IN THE 
PROGRAM. 

TRUE CONDITION STATEMENT MUST BE EXECUTABLE BUT NOT -DO- OR 
-LOGICAL IF-. 

STATEMENT ILLEGAL TO END RANGE OF -DO-. 

FUNCTION NAME DOES NOT APPEAR LEFT OF EQUALS ON INPUT LIST. 

The above error messages are considered fatal diagnostics. Three error 
messages can occur which are warnings only. They are: 

E.D004 

E.D006 

E.D007 

NO END CARD. END CARD SIMULATED. 

PROGRAM MUST END WITH STOP, RETURN OR TRANSFER. RETURN 
STATEMENT SIMULATED. 

END STATEMENT BUT NOT END OF INPUT FILE, WILL LIST AND 
BYPASS TO EOF. 

In the case of the above diagnostic messages, processing will be 
continued. 

2. DClOOO--Phase One Initializer 

Purpose. This routine performs initialization functions at the 
beginning of Phase One. 

Method. The routine reads one or two cards from the source input and 
establishes the title and subtitle for the output listing. Label 
information is accumulated for card output. Alter numbers are assigned 
to the title and comment card images for reference in the GMAP listing. 
The initial USE pseudo"-operations for .PROOO, .MAIN., .TRSH., etc., are 
output to establish their order of assignment. Upon completion of this 
routine, the coding may be overlayed by entries for the D.LIT Table 
which is used in the storage of literals. 

Usage. The calling sequence is: 

TSXl DClOOO 
(Normal Return) 

@J~a{ID@@ ~~[ffiU ~~ _____________ F_o~-~=.....,u-~: 
- 62-



Error Return. If an unexpected End of File is encountered while reading 
the source file, the following diagnostic is printed and control is given 
to the Processor Executive Controller in the Executive Phase: 

DC1310 UNEXPECTED EOF - :MUST TERMINATE 

STATEMENT ASSEMBLY ROUTINES 

The two statement assembly routines locate the next input card image and assemble 
the entire source statement (including continuation cards) for processing. 

1. DCOlOO--Statement Assembly Routine 

Purpose. This routine is called by the Phase One Executive Routine to 
assemble a complete source statement (1 to 20 cards) in the SS-Region. 
It also sets an end mark ( a word of all bits) in the SS Region following 
the last nonblank word and initializes the cell SSWW with the number of 
characters in the statement. 

Method. Input to this routine consists of a twelve-word BCI character 
string received from the input file via the DC0300 routine. Successive 
card images are obtained and appended to the preceding card image in the 
SS-Region until one is encountered that does not contain a continuation 
mark. The continuation mark is a nonzero punch in column six of the 
card, which indicates that the card is logically connected to the 
preceding card. An end-of-input condition also terminates the assembly 
of the current statement. 

A backward scan of the SS-Region is performed in order to locate the last 
nonblank word of the statement. A word of all bits, called the statement 
end mark, is inserted into the SS-Region following the last nonblank word. 
Having located the end mark, the Tally Word SSWW is initialized (SS, TALLY) 
with the number of characters in the statement including the end-mark 
word for use by the scan routines. 

If the statement has an EFN attached to it, it is converted to binary and 
placed in cell F.EFN. The cell will contain a zero if there is no EFN. 

Usage. The calling sequence is: 

TSXl DCOlOO 
(Normal Return) 

- 63 -



Error Returns. The following errors cause diagnostic messages to be given. 
The scan of the statement will continue. 

DC0171 EFN=O IS ILLEGAL. WARNING UNLESS USED. 

DC0175 TOO MANY CONTINUATION CARDS. 

DC0179 UNEXPECTED END OF INPUT. 

2. DC0300--Locate Input Card Routine 

Purpose. This routine is called whenever a next record is required from 
the input file. The alter count will be incremented by one each time a 
card is read. 

_Method. The DC0300 routine uses the .GRDRC entry of the I/O Editor to get 
a line of input. The line of input received represents a 14-word card 
image. When an end-of-file condition is encountered, the flag cell F.EOF. 
is set to a nonzero value. The routine checks the card image for comments 
cards (a C or ·k in column 1) and for blank cards. If either type is 
found, the card image is output to the System Output file, the p7'r file 
and the G7'r file. When a FORMAT GENERATOR statement is recognized, cell 
DC0199 is set to indicate no searching for continuation cards. 

Whenever the DC0300 routine returns to the caller, the next noncornrnent, 
nonblank card image to be processed is in the DC0380 buffer (14 words). 
At this point, the card following (in the input buffer) or an end of file 
will have been read. 

Usage. The calling sequence is: 

TSXl DC0300 
(Normal Return) 

Error Returns. None. 

SCANNING ROUTINES 

Once a source statement has been placed in the region called SS, a scanning pro
cess examines the content of the statement. A tally word (SSWW) is used as the 
scan control word. 

- 64 -



18 12 6 

Number of Character 
ssww Pointer to SS Region Characters Position 

0 1718 2930 35 

The scan control word SSWW is used with SC-type tally modification and is a 
pointer to the next character to be pulled from the SS-Region. 

At the beginning of a statement scan, the address part (0-17) of cell SSWW will 
be set to the value of location SS. The number of characters will be set to the 
total number of characters in the source statement including blanks that may be 
needed to complete the last word of the statement. Also included is the end
mark word of all bits. The character position is set to zero. There are other 
cells used for bookkeeping during the scan. They are: 

.FLD.--The output field word where characters are accumulated as they are 
pulled from the SS-Region • 

. TCH.--The termination character where the punctuation type code is stored 
in bits 12-17. 

S.Cl98--The blank count which indicates the next character position available 
in .FLD. and the number of blanks attached to the left-justified word 
in the .FLD. cell. 

A table of codes and types is stored at location CH.SET and contains all 
characters of the GE standard character set. 

0 

6 

BCD 
Code 

56 

6 

Punctuation 
Type Code 

1112 1718 

Classification Code 

0 
1 
2 
3 
4 

Number 
Alphabetic 
Punctuation 
Illegal 
Blank 

6 

Classif ica
Code 

2930 35 

~ FORTRAN IV 
@~0 (@@@ ~~[ffiO~~ .---------~co-mpi~ler 

- 65 -



Punctuation Type Codes 

ASSIGNED TYPE 
SYMBOL CODE CODE MEANING 

C.PER 1 1 Period 
C.COM 2 2 Comma 
C.PLS 3 3 Plus 
C.MIN 4 4 Minus 
C.LPR 5 5 Left Parenthesis 
C.RPR 6 6 Right Parenthesis 
C.AST 7 7 Asterisk 
C.SLS 8 10 Slash 
C.EQU 9 11 Equals 
C.END 10 12 End-Mark Character 

delimiting end of 
statement 

The individual scanning routines are presented in detail below. 

1. DC0600--Initial Classification Routine 

Purpose. This routine is called by the Phase One Executive routine when
ever a source statement has been collected in the SS-Region. The function 
of this routine is to distinguish arithmetic statements from nonarithmetic 
statements. The general form of an arithmetic statement is a = b. Some 
statements which contain an arithmetic expression such as IF(b) are 
classified as nonarithmetic. When the routine has collected sufficient 
information to classify the statement, it returns control to the Executive 
routine. The Current ~tatement cell F.CUST will contain the address of 
the arithmetic statement processor, S.ARIT, if the statement is classified 
arithmetic or will be set to zero if the classification has been 
nonarithmetic. 

Method. The statement is examined, one character at a time from left to 
right. Significant characters used in classifying the statement are: left 
parenthesis, right parenthesis, comma and equals. Character sequences may 
also provide the desired classification such as: 

, n8 or /ne or (ne 

where 8 = the character H or X 

These specify Hollerith fields or blank fields and may only appear in 
nonarithmetic statements. Another sequence is of the form 

A( ••••• ) S 

FORTRAN IV 

Compiler 

- 66 -



If 3 is not an equal sign, the statement is nonarithmetic. If S is an 
equal sign, the statement may be arithmetic and the scan continues. 

A counter is associated with the occurrence of right and left parentheses. 
The counter is incremented for each left parenthesis, and decremented for 
each right parenthesis. In this way, the scan may determine when a comma 
or equal is enclosed by a pair of parentheses. A comma outside of 
parentheses, or an equal inside of parentheses is characteristic of a non
arithmetic statement. Conversely, an equal outside of parentheses and all 
commas inside parentheses is characteristic of an arithmetic statement. 

As soon as the scan is able to classify a statement as nonarithmetic, it 
returns control to the Executive routine with the cell F.CUST set equal 
to zero. The scan must continue to the end of the statement before the 
statement can be classified as arithmetic. When the statement is classi
fied arithmetic, the cell F.CUST is set with the address of the arithmetic 
statement processor. 

Usage. The calling sequence is: 

TSXl DC0600 
(Error Return) 
(Normal Return) 

Error Codes. Illegal characters and blanks are ignored and no diagnostic 
message is given. 

Since parentheses are significant in classifying the statement, the error 
return will be taken when the parentheses do not balance. The following 
diagnostic will be given: 

DC0639 PARENTHESES DO NOT BALANCE. 

2. DC0700--Dictionary Scan Routine 

Purpose. This routine is called by the Executive routine when the state
ment being processed has been classified as nonarithmetic. The routine 
will scan a dictionary of statement names comparing them with the source 
statement. If a successful comparison is made, the Current Statement cell, 
F.CUST, will be set with the address of the Statement Processor to be 
used in processing the statement (bits 0-17), and the Statement Control 
Flags in bits 18-35. 

Method. The Dictionarv Scan routine calls the S.NCOO routine to obtain N 
characters (l~N~6) fro~ the SS-Region. The characters are right adjusted 
in the A-register with leading zeros where necessary. 

FORTRAN IV 

Compiler 

- 67 -



Two comparison methods are used, a Direct Scan Comparison and a 
Continued Comparison. 

• The Direct Scan Comparison is made starting with the number of 
characters, N, from the SS-Region equal to 2. The Dictionary of 
statement names is scanned for a comparison by incrementing N by 1 
for each subsequent section of the Dictionary. Comparisons are 
made against all statement names of two to six characters. If a 
comparison is not made, the statement is not a legitimate FORTRAN 
statement. 

• After a Direct Scan Comparison has 
if it is necessary to look at more 
Comparison is made. The Continued 
referenced word of BCI characters. 
for a further Continued Comparison. 

been successful, it is determined 
characters. If so, a Continued 
Comparison is made against a 
A successful comparison may call 

There are three distinct items used in the scan: 

• BCI-words. Where there are fewer than six characters, they are 
right adjusted with leading zeros. 

• Key words. There is one Dictionary Control word for each BCI word. 

• PL-words. The Processor Location word is unique for each statement 
processor in the Compiler. It contains the address of the processor, 
as well as certain control information about the statement to be 
processed. 

There are four distinct tables used in the scan. 

• All statement names of six characters or less are kept in a sequential 
table (General Dictionary) beginning with the two character (minimum 
statement) statements. For statements of more than six characters, 
the first six characters are contained in this table. These BCI 
words are subject to the Direct Scan Comparison. 

• The keywords corresponding to each BCI word in the previous table are 
kept in the same sequential order. 

• Statement names of more than six characters will have the first six 
characters in the General Dictionary. The BCI words for the subsequent 
parts of a statement are placed in the Continued Dictionary with their 
corresponding keywords innnediately adjacent to and following them. No 
other sequencing requirements are imposed because these are subject 
to Continued Comparison. 

FORTRAN IV 

Compiler 

- 68 -



• The Processor Location words are kept in a table. There are no 
sequencing requirements imposed on this table. 

The format of the Keyword and PL-word is as follows: 

Processor Location Word 

0 

PL 
SCI -

1718 

PL 

Address of Statement Processor 
Statement Control Information 

SCI 

35 

The Statement Control Information is composed of flags that are used by 
the Phase One Executive routine. 

Keyword 

0 1718 2324 2627 2930 3132 35 

I Location of PL-word 

Location of PL-word 
CDL Continued Dictionary Location Flag 
NC Number of Characters in Continued Dictionary 
T Type Flag 
E End of Statement Flag 
C Continue Statement Flag 
M Multiple Statement Beginning Flag 

The Keyword, one associated with every BCI-word that is compared, contains 
information about the BCI word. 

o End of Statement Flag: This indicates that the characters in the BCI 
word are the ending characters of a legitimate FORTRAN statement. 

o Continue Statement Flag: This occurs when a comparison has been found 
but more characters have to be scanned for the statement name to be 
recognized. 

o Multiple Statement Beginning Flag: The associated BCI word just 
scanned and compared is a legitimate FORTRAN statement but it may be 
the beginning of another statement (for example, END and ENDFILE). 
This is a signal to continue the search by doing a Continued 
Comparison. The technique used is to save the PL Flag in case the 

- 69 -



subsequent Continued Comparison fails. Under these conditions, a 
Continued Comparison failure does not necessarily indicate an 
illegitimate source FORTRAN statement. 

• Type Flag: Records if statement has type associated with it and, 
if so, what type it is. 

• Continued Dictionary Location Flag: Indicates the relative location 
of the BCI word in the Continued Dictionary to be used for the 
Continued Comparison. 

• Number of Characters in Continued Dictionary Flag: When a Continued 
Comparison is called for, this flag tells the number of characters to 
obtain from the source statement for comparison. 

• PL Flag: When a statement is identified, the flag gives the address 
of the word which contains the PL (address of corresponding processor) 
and SCI (Statement Control Information). 

Usage. The calling· sequence is: 

TSXl DC0700 
(Error Return) 
(Normal Return) 

The Processor Location word is returned in the A-register and also cell 
F.CUST. 

Error Codes. In the event that the source statement does not match any of 
the entries in the Statement Dictionary, the following diagnostic will be 
given and the error return taken. 

DC0781 ILLEGAL FORTRAN STATEMENT. 

3. NXCHAR--Next Character Macro 

Purpose. This macro will generate instructions to fetch the next 
character from the source statement (SS-Region). 

Method. The following instructions will be generated 

LDQ 
LDA 
EAXO 

_ SSWW, SC 
CH.SET,QL 
O,AL 

get next character from SS-Region 
corresponding code from table 
put classification code in XRO 

@~a@@@ ~~~~~~--------------------------Fo_~~-7-il-~ 
- 70 -



C(A)0-5 
C(A)l2-17 
C(A)30-35 
C(Q)30-35 
C(XRO) 

BCD code of character 
Punctuation type code 
Classification code 
BCD code of character 
Classification code 

4. S.COOO--Scan Routine 

Purpose. This routine will scan the source statement for a field and 
return 1-6 characters in .FLD. and the A-register with the termination 
code in .TCH. (12-17). 

Method. Input to this routine consists of the scan control word SSWW. 
The first nonblank legal character pulled from the SS-Region determines 
the type of return that will be made (NUMERIC, ALPHA, PUNCTUATION). 
Blank characters are ignored and illegal characters cause an error comment 
to be made. Alpha fields are left adjusted and filled with blanks. If an 
alpha field is greater than six characters, it is truncated to six 
characters, a diagnostic message is written and the scan continues until a 
delimiter is encountered. Numeric fields are left adjusted and filled with 
blanks. If a numeric field is greater than six characters, the scan 
routine will return with the six character field in .FLD. and the termina
tion cell .TCH. will be set to zero. An alpha field can only be 
terminated by a punctuation delimiter but a numeric field can be termi
nated by having more than six characters (.TCH. = O),by a punctuation 
delimiter, or by an alphabetic delimiter, in which case the BCD code is 
returned as the termination code in .TCH. (12-17). 

Usage. The calling sequence is: 

TSXl S.COOO 
(Numeric Return) 
(Alpha Return) 
(Punctuation Return) 

Error Codes. There are no error returns but a diagnostic message is 
given when an illegal character is encountered or an alpha field is 
greater than six characters. 

S.C021 ILLEGAL FORTRAN CHARACTER. 

S. Cl32 THE SYMBOL -:_, __ ~·, IS THE RESULT OF TRUNCATION. 

@~a(ID@@ ~~[ffi~ ~~ ____________ Eo~-:~-pil-~: 

- 71 -



5. S.SAOO--Start Alpha Scan Routine 

6. S.SNOO--Start Numeric Scan Routine 

Purpose. These routines will scan the statement text and take the 
appropriate predetermined return. 

Method. The output field word .FLD. is set to zero. If the A-register 
contains a character C(AR) 0-5, it will be inserted into the leftmost 
character position of .FLD. before the scan is started. If the A-register 
is zero, scanning will proceed in the normal manner. 

Usage. The calling sequence is: 

TSXl S.SAOO 

or 

TSXl S.SNOO 

The returns from either call are: 

(Numeric Return) 
(Alpha Return) 
(Punctuation Return) 

Restrictions. These routines use entry points in the S.COOO routine. 

Error Returns. There are no error returns from this routine, but the 
diagnostic messages S.C021 and S.Cl32 are written from the routine S.COOO. 

7. S.CAOO--Continue Alpha Scan Routine 

8. S.CNOO--Continue Ntmleric Scan Routine 

Purpose. These routines will continue the scan in the alpha or numeric 
mode. 

Method. The blank count word, S.Cl98, determines whether or not there is 
room for additional characters in .FLD., the output field word. If the 
A-register contains a character C(AR) 0-5, it will be inserted into the 
output field word .FLD. before the scan is continued. If room is avail
able, the character will be inserted in the leftmost blank position, 
otherwise, it will be inserted in the leftmost character position (0-5) of 
the .FLD. cell. If the A-register is zero, scanning will proceed in the 
normal manner. 

@~a®@@ ~~~O~~--------------------------F_o~-~:-11-~: 
- 72 -



Usage. The calling sequence is: 

TSXl S.CAOO 

or 

TSXl S.CNOO 

The returns from either call are: 

(Numeric Return) 
(Alpha Return) 
(Punctuation Return) 

Restrictions. These routines use entry points in the S.COOO routine. 

Error Returns. There are no error returns in this routine, but the 
diagnostic messages S.C021 and S.Cl32 may be written from the S.COOO 
routine. 

9. S.NXOO--Next Good Character Scan Routine 

Purpose. This routine will pick up the next legal nonblank character in 
the source statement. 

Method. The source statement is scanned until a legal nonblank character 
is found. Blank characters are bypassed and illegal characters are by
passed after a diagnostic message is written. The character, if it is 
alpha or numeric, is returned in C(AR) 0-5; if it is a punctuation 
character, the termination code is returned in C(AR) 12-17. 

Usage. The calling sequence is: 

TSXl S.NXOO 
(Numeric Return) 
(Alpha Return) 
(Punctuation Return) 

Error Returns. There are no error returns for this routine; however, a 
diagnostic message is written when an illegal character is found. 

S .C021 ILLEGAL FORTRAN CHARACTER. 

@~a®®® ~~[ffi 0 ~~ -------------..-FORT ........ RAN--.....IV 
Compiler 

- 73 -



10. S.NCOO--N Character Scan Routine 

Purpose. This routine will collect six or less characters from the 
source statement. 

Method. The source statement is scanned until N legal nonblank characters 
are found. The N characters are returned in the .FLD. cell and the A
register, right adjusted with leading zeros. 

Usage. The calling sequence is: 

TSXl S.NOOO 
ZERO N where N the number of characters 
(Normal Return) 

Error Returns. There are no error returns but a diagnostic message is 
given when an illegal character is found. 

S.C021 ILLEGAL FORTRAN CHARACTER. 

11. S.EMKO--Test for Endmark (Scan Statement for Delimiter) 

12. S.EMKl--Test for Endmark in Cell .TCH. 

_Purpose. These routines are called when the end of statement is expected. 
Its function is to test a punctuation for the endmark code. 

Method. Input to routine S.EMKl is cell .TCH. which contains the 
punctuation to be tested. Input to S.EMKO is the statement in the SS
Region which will be scanned in order to get the punctuation to be 
tested. This latter punctuation will be returned in cell .TCH. The 
delimiter code in cell .TCH. is tested against the standard endmark code. 
A diagnostic message is given if the codes do not match. 

Usage. The calling sequences are: 

TSXl S.EMKO (Delimiter must be found first by scanning 
statement) 

(Normal Return) 

TSXl S.EMKl (Delimiter code to be checked is in cell 
.TCH.) 

(Normal Return) 

@~a@@® ®~000~~ __________ F_ORT_RAN_rv 

Compiler 

- 74 -



Error Returns. There are no error returns for this routine, but a warning 
diagnostic is given if the delimiter code is not equal to an endmark. 

S.EMK9 EXTRANEOUS CHARACTERS IGNORED. EXPECTED END OF STATEMENT. 

CONVERSION ROUTINES 

Three number conversion subroutines occupy this section of Phase One of the 
FORTRAN IV Compiler. Each is described below. 

1. S.BIOO--BCD Integer to Binary Integer (With Scan) 

Purpose. This routine converts a BCD integer to its binary equivalent. 
Numbers greater than 217-1 are set to zero. 

Method. There are three entries to this routine depending on whether the 
number to be converted is in the A-register, the Q-register, or the .FLD. 
cell. The S.BIOO routine acts as a supervisor by first calling the 
S.BDOO routine to process the original entry and then alternating between 
a scan and S.BDOO until a nonzero delimiter is encountered (end of numeric 
string). 

Usage. The calling sequence is: 

TSXl S.BIOO N is in the .FLD. cell 

or 

TSXl S.BI00+2 N is in the Q-register 

or 

TSXl · S .BI00+3 N is in the A-register 

All of the calling sequences return to the next line. 
binary integer is returned in the A-register (18-35). 
( 0-17) is zero. 

Upon return, the 
The A-register 

Error Returns. There are no error returns but the diagnostic messages 
S.BI82 and S.BI86 are written from the routine S.BDOO. 

2. S.BDOO--BCD Integer to Binary Integer 

Purpose. This routine will convert a six-digit BCD integer to its binary 
equivalent. Blanks are ignored and will return a zero if all six 
characters are blank. Numbers greater than 217-1 are set to zero. 

@j(ga(ID@® ~~[ffiO~~ ----------FORT.._RAN--.IV 
Compiler 

- 75 -



Method. There are two entries to this routine. Entry is made depending 
on whether the number to be converted is in the A-register or the Q
register. The conversion is done by successive multiplications and 
additions. A check is made as each character is collected for illegiti
mate digits. This routine will convert a BCD number containing any 
number of digits. To accomplish this, the flag cell S.BD99 must be set 
nonzero. This flag is used as an indication that this call is a 
continuation of the preceding call. This flag is always reset to zero 
before returning to caller. 

Usage. The calling sequence is: 

TSXl S.BDOO N is in the A-register (0-35) 

or 

TSXl S.BDOO+l N is in the Q-register (0-35) 

Both calls return to the next line. The binary integer is returned in 
the A-register. 

Error Returns. There are no error returns but the following diagnostic 
message is written. 

S.BD82 ILLEGAL CHARACTER IN INTEGER FIELD. 

S.BD86 MAGNITUDE OF DECIMAL INTEGER EXCEEDS 2 TO THE 17TH. 

3. S.OBOO--Octal to Binary Conversion Routine 

Purpose. This routine converts a six-digit BCD octal number to its 
binary integer equivalent. The conversion is stopped by either a numeric 
delimiter or a blank. 

Method. Input to this routine is the contents of the .FLD. cell. The 
input word is processed one character at a time. If the character is 
nonoctal, it is set to zero; a diagnostic is written and the conversion 
continues. Those characters in excess of six will be truncated; if the 
cell .TCH. does not contain a termination character, S.CNOO will be 
called to search for one. 

Usage. The calling sequence is: 

TSXl S.OBOO 
(Normal Return) 

N is in the cell .FLD. 

The binary integer is returned in the A-register (18-35). 

- 76 -



Error Codes. There are no error returns but the following diagnostic 
messages exist. 

S.D060 OCTAL FIELD TOO LONG. 

S.D067 ILLEGAL CHARACTER IN OCTAL FIELD. 

PROCESSORS 

Most of the statement processors are contained in the second part of Phase One, 
however, three important ones make their appearance here. .Two are concerned 
with debugging and the third with the processing of subscripts. 

1. S.SSOO--Subscript Processor Routine 

Purpose. This routine scans subscript combinations, segmenting the 
subscript into its components and makes entries into the T.USUB Table. 
The general form of subscript combination permitted is: 

where C is a constant coefficient 
V is a variable element 
A is a constant addend 
1 to n is the number of elements. 

n must agree with the dimensionality specified for the variable 
to which the subscript is attached, and must also be within 
the limits of the maximum number of subscripts permitted. 
The current maximum number of subscripts permitted is seven. 

It is necessary to permute the subscripts attached to double-precision 
and complex variables. The permutation is required to compensate for 
the storage allocation scheme employed in handling these particular types 
of array~. The permutation is performed on the first element of the 
subscript and may be expressed by the formula: 

where d1 is the leading dimension of the array. 

FORTRAN IV 

Compiler 

- 77 -



The dimension infonnation for each variable is contained in the T.DIME 
Table in the fonn: 

0 2 3 1718 2021 

~-1 I : I 
NAME POINTER 

f 4 if parameter is a constant 
0 if parameter is a NAME reference 

n dimensionality 

35 

The subscript elements and their associated dimension sizes are entered 
into the T.USUB Table in the fonn: 

0 2 3 1718 2021 35 

n Checksum 0 Cl * 
0 NAhE POINTER(Vl) Al 

fx di 0 C;J.. 
0 NAME POINTER(V2) A2 -

-
-

f dn-1 0 en 

0 NAME POINTER(Vn) An 

* C and A values will be twice as large for double precision or complex. 

n dimensionality 
f 4, if d parameter is a constant 

O, if d parameter is a NAME reference 
x 1, if double precision or complex (bit position 2) 

Method. A subscript element may consist of the subelements C, V, and A. 
Pennitted combinations of these subelements are: 

c 
v 
c ,·~ v 
v +A 
c *v +A 

- 78 -



Subscript combinations other than these cause a diagnostic message to be 
written. The variable subelement V must not be an array name and must be 
an integer name. When processing a subscript attached to a double
precision or complex variable, the subelements are permuted as they are 
collected. An implied coefficient of one is supplied for those subscripts 
containing a variable subelement but no explicit coefficient. That is, 
the element V is permuted to li'•V (or 2~·-v for double precision or complex). 
The dimension size d is also permuted for double-precision and complex 
arrays. 

The complete element and its associated dimension size are stored, as they 
are being processed, in a temporary area (S.SS99). A check is made for 
a one-to-one correspondence between the number of dimensions specified 
for the array and the number of subscript elements collected as the 
S.SS99 entry is built. Disagreement of the dimensionality is noted by a 
diagnostic message. 

The routine continues to collect subscript elements until either a right 
parenthesis is encountered or the number of elements exceeds the maximum 
permitted by the Compiler. If an error is encountered in processing, 
the routine always skips to the next right parenthesis, thus allowing the 
calling statement processor to continue its processing. 

When the entire subscript combination has been collected, it is compared 
to all entries in the T.USUB Table. If a duplicate of this entry exists 
in the T.USUB Table, then the previously existing entry is used and a 
new T.USUB entry is not made. However, a new T.USUB entry will be made 
if this entry is unique. In either case, the routine returns the 
location of the T.USUB entry to the caller. 

Error Codes. The routine scans to a right parenthesis or the end of 
statement if a right parenthesis cannot be found. 

S. SS71 ILLEGAL PUNCTUATION IN SUBSCRIPT OF ' 

S.SS74 INCORRECT SUBSCRIPT FOR ' 

S. SS77 ILLEGAL VARIABLE SUBSCRIPT ' 

S.SS81 INCORRECT ADDEND IN SUBSCRIPT OF ' 

S.SS84 NO. OF SUBSCRIPTS VS DIMENSIONS FOR ' ' DO NOT AGREE. 

Usage. The calling sequence is: 

TSXl S.SSOO 
(Normal Return) 

FORTRAN IV 

Compiler 

- 79 -



The A-register is returned as follows: 

A(O) 
A(O) 
A(3-17) 
A(l8-35) 

0 if variable subscript 
1 if constant subscript 
NAME pointer 
T.USUB pointer 

If an error is encountered, a zero is returned in the A-register. 

2. _DEBUG--Debugging Statement Tabling Routine 

Purpose. This routine saves DEBUG and NAMELIST statements and makes 
corresponding entries in the T.NAMS, T.DBUG and T.BUGS tables. 

Method. Upon recogtl._iFion of a DEBUG statement, control is transferred 
to this routine. ~~yJassociated NAMELIST statements are stored in the 
T.NAMS table. The worp count, binary EFN and T.BUGS pointer are 
stored in the T.DBUG taBl:a. The text of the DEBUG statement is stored 
in the T. BUGS table. -.. ~ 

~"-, 

Usage. The calling sequence is: 

TSXl DEBUG 
(Normal Return) 

·-'',,, / /' 

'''·" .. )\ \\ \.:-.., 
·\· .•.. 

Error Returns. Incorrect punctuation within the DEBUG statement produces 
the following fatal diagnostic: 

DEB201 INCORRECT PUNCTUATION IN DEBUG 

3. DCBUG--Debug Statement Processor 

Purpose. This routine is called to process DEBUG statements. 

Method. When it is determined that the EFN of a DEBUG statement 
matches the EFN of a source program statement, this routine is called. 
The first time this routine is called, the debug NAMELIST statements 
(which were saved in the T.NAMS Table by the DEBUG routine) will be 
processed. The DEBUG statement is retrieved from the T.BUGS Table and 
processed. For the IF clause, the main IF statement processor is called; 
either logical or arithmetic as required. Both the IF clauses and the 
FOR clause produce entrie~ iri\the POOL Table. Finally, the LIS~_.£:1,.ause 
is processed by the, READlWRITE\statement processor. --· 
- " \ ) 
---- -- . . ·---"--~""-- . T . (i . 

Usage. The calling sequence is: "--- .-\ hl . ./v:l 

TSXl DCBUG 
(Normal Return) 

- 80 -



Error Returns. There are three fatal diag~ostics produced by this 
routine: 

DCB201 ERROR IN A DEBUG NAMELIST STATEMENT. 

DCB211 ERROR IN THE DEBUG STATEMENT. 

DCB581 ERROR IN THE -IF- FIELD OF A DEBUG STATEMENT. 

STORAGE ALLOCATORS 

The two routines concerned with NAME tabling and EFN/IFN replacement are 
described below. 

1. SA7000--Storage Allocation Name Table Scan Routine 

Purpose. This routine will scan the NAME Table and assign storage to all 
variables except those which have been previously assigned or which should 
not be assigned. 

Method. The routine is called at the end of Phase One. Each NAME Table 
entry flag word is examined to determine if storage should be allocated. 

Usage. The calling sequence is: 

TSXl SA7000 
(Normal Return) 

Error Returns. There are no error returns but a diagnostic message is 
written when a variable is implicitly defined; that is, appears only on 
the right side of 

SA6013 DOES NOT APPEAR IN READ, DATA, COMMON OR LEFT 
OF EQUALS (=). 

2. SA9000--Storage Allocator/Formula Number Processor Routine 

Purpose. This routine will eliminate all destination EFN entries from 
the T.JUMP Table and replace them with their corresponding destination 
IFN. The T.JUNK Table, which is a reordered T.JUMP Table, is created. 

Method. This routine will process the T.JUMP Table, if one exists, in 
order to eliminate all destination EFN entries and change them to their 
corresponding destination IFN. The T.JUNK Table is generated from the 
modified T.JUMP Table entries. The T.JUNK Table is ordered by 
destination IFN. If the user specifies the STAB (symbol table for load
time debugging) option on his $ FORTRAN card, the compiler generates the 
LTAB macro which places the EFN/IFN equivalences in the DEBUG Dictionary. 

FORTRAN IV 
@J~a(ID(Q)@ ~~[ffi~ ~~ ---------~Co-mp1~'ler 

- 81 -



An error comment is given when a destination EFN in the T.JUMP Table does 
not have a corresponding EFN entry in the T.EIFN Table. 

Usage. The calling sequence is: 

TSXl SA9000 
(Normal Return) 

Error Returns. A diagnostic message is written when a destination EFN in 
the T.JUMP Table does not have a corresponding EFN entry in the T.EIFN 
Table. 

SA9090 BRANCH TO NON-EXISTENT EFN ____ _ 

UTILITY ROUTINES 

These routines which perform a utility-type function and which are called from 
several different points in the program are presented here. 

1. S.TYPO--Implicit Typing Routine (Integer & Real) 

Purpose. This routine will implicitly type a variable, either Integer 
or Real, depending on whether the first character is I,J,K,L,M, or N 
(Integer type). Any other character types the variable as Real. This 
typing will only be done when the variable has not appeared in a TYPE 
statement. 

Method. The variable to be typed must exist in the .FLD. cell as input 
to this routine. The leftmost character is tested for falling in the 
range I-N. If it does, the variable is typed as Integer, otherwise it 
is typed as Real. The type is ORed into the flag word (L.NAME~•) of the 
NAME Table and ORed into the cell C.NAME. 

Usage. The calling sequence is: 

TSXl S.TYPO 

(Normal Return) 

(Variable to be typed is in the .FLD. 
cell) 

The type bit is returned in the A-register and is stored in the NAME 
Table and cell C.NAME. 

Error Codes. None. 

@~c(@@@ ~~[ffiO~~ -----------FO-~~~-pil-:: 
- 82 -



2. S.INFO--Increment IFN Counter Routine 

Purpose. When called, this routine will generate a new IFN by 
incrementing the previous IFN by one and make entries into the T.EIFN 
Table as appropriate. IFNs are assigned only to executable statements. 
A statement will have only one EFN but may have multiple IFN's. 

Method. The cell F.IFN is incremented by one. A comparison of cells 
F.EFN and S.IFN8 is made and if they differ a new EFN exists. Therefore, 
an entry will be made into the T.EIFN Table. Only one T.EIFN entry is 
made for each EFN, this being made when the first of its IFN's is 
assigned. 

Usage. The calling sequence is: 

TSXl S.INFO 
(Normal Return) 

The new IFN is returned in bits 0-35 of the A-register. 

Error Returns. None. 

3. S.ADOO--Add a Character Routine 

Purpose. This routine will add a character from the A-register (0-5) to 
the output field word .FLD •• 

Method. The character in the A-register (0-5) is added to the output 
field word .FLD. in the leftmost blank position. If .FLD. is full (no 
blanks), the character is added into the leftmost character position of 
.FLD. . Using this routine, a zero character can be inserted in .FLD. • 
The blank count word S.Cl98 is decremented after an addition is made. 

Usage. The calling sequence is: 

TSXl S.ADOO 
(Normal Return) 

Error Codes. None. 

4. S.SBOO--Make T.SUBS Table Entry Routine (Subscripted Variables) 

Purpose. This routine makes a two-word entry in the T.SUBS Table for 
subscripted variables appearing in executable statements. 

FORTRAN IV 
@~0 @(Q)@ ~(E[ffi0~~ ---------Co-mpi-ler 

- 83 -



Method. The IFN in cell F.IFN is required as input to this routine. Also 
required as input is the Name pointer and the T.USUB pointer. The latter 
two are supplied in the calling sequence as parameters. If the parameter 
in the calling sequence is zero, return will be made without making a 
T.USUB Table entry. 

Usage. The calling sequence is: 

TSXl S.SBOO 
ZERO Name Pointer, T.USUB Pointer 
(Normal Return) 

The T.SUBS pointer is returned in the A-register (0-17). 

Error Return. None. 

5. S.INOO--Make T.INTS Table Entry Routine (Integer Variable) 

Purpose. This routine makes entries into the T.INTS Table. 

Method. Input to this routine consists of the cell F.IFN and the Name 
pointer in the A-register (0-17). The Name pointer and the IFN are 
entered in the T.INTS Table. A one-word entry is made for each literal 
appearance of a nonsubscripted integer variable on the left side of an 
arithmetic statement, in an I/O input list (including NAMELIST), and in 
the argument list of SUBROUTINE subprogram. 

A special T.INTS entry is made for each CALL statement encountered in the 
source program to indicate that integer variables in COMMON may have been 
redefined. 

Usage. The calling sequence is: 

TSXl S.INOO 
(Normal Return) 

The T.INTS pointer is returned in the A-register (0-17). 

Error Returns. None. 

6. S.RINO--T.RINT Table Entry Routine 

Purpose. This routine makes entries into the T.RINT Table. 

FORTRAN IV 

Compiler 

- 84 -



Method. Control is transferred to this subroutine to make entries into 
the T.RINT Table described on page 27. The Name pointer is contained in 
bits 0-17 of the A-register upon entry. This routine places an IFN in 
bits 18-35 of the A-register to complete the entry for the T.RINT Table. 
A one-word entry is made for each appearance of a nonsubscripted integer 
variable on the right side of an arithmetic statement or a call argument 
list. 

Usage. The calling sequence is: 

TSXl S.RINO 
(Normal Return) 

Upon entering the routine, the Name pointer will be in bits 0-17 of the 
A-register. Upon exit from the routine, the T.RINT pointer will be in 
the A-register. 

Error Returns. None. 

7. SA0300--Variable Size Computation Routine 

_Purpose. This routine computes the size required for variables using the 
Dimension Table. 

Method. This size is computed by performing a cumulative multiplication 
of the dimensions. If the variable is double precision, the size is 
doubled. 

Usage. Upon entry to the routine, the Input-Name Flag is contained in 
the A-register; the variable name in the Q-register. The calling sequence 
is: 

TSXl SA0300 
(Normal Return) 

Upon leaving the routine, the computed size is located in bits 18-35 of 
the A-register. 

Restrictions. A computed size greater than zl8 -1 constitutes an error 
and a fatal diagnostic is given. 

SA0379 DIMENSION - -GREATER THAN 2 TO 18TH -1. 

Variable dimensions constitute an error and a fatal diagnostic is given. 

SA0371 ADJUSTABLE DIMENSION ILLEGAL FOR NONARGUMENT -

FORTRAN IV 

Compiler 

- 85 -



_Error Returns. There are two error returns in this routine as described 
in TTRestrictionsTT above. 

LITERAL COLLECTORS 

The routines which process alphameric, complex, decimal and octal literals are 
described here. 

1. S.AHOO--Alphameric Collector 

Purpose. This subroutine will scan the source statement for an alpha
meric field defined by wH where w specifies the number of characters in 
the field. 

Method. The characters are collected using the NXCHAR macro and are 
stored, six to a word, in locations S.LIT.+l through S.LIT.+n. The 
number of characters collected will be returned in cell S.LIT. (0-17) 
and the number of words collected will be returned in the A-register 
(0-17). The last word collected is left justified and filled out with 
blanks. 

Usage. The calling sequence is: 

TSXl S.AHOO 
(End of Statement Return) 
(Normal Return) 

Error Returns. If an endmark is found before w characters have been 
collected, a diagnostic message will be given and the end-of-statement 
return will be made. 

S.AH28 UNEXPECTED END OF STATEMENT. 

If an illegal character is encountered, a diagnostic message will be 
given, the character will be set to zero and the scan continued. 

S.C021 ILLEGAL FORTRAN CHARACTER. 

An alphanumeric field cannot be greater than 1309 characters (DATA 
statement). If more than the maximum number of characters is requested, 
a diagnostic message is given and the end-of-statement return is made. 

S.AH55 HOLLERITH LITERAL TOO LONG. 

FORTRAN IV 

Compiler 

- 86 -



2. S.DXOO--Complex Literal Collector 

_Purpose. This routine is used to scan that portion of the source 
statement which is defined as a complex constant (a pair of decimal 
constants separated by a comma ·and enclosed within parentheses). 

Method. The scan pointer is pointing at the character immediately 
following the left parenthesis enclosing the complex pair. The scan will 
end with the first punctuation character following the right parenthesis 
enclosing the complex pair. The NXCHAR macro is used to scan the source 
statement and the delimiting punctuation is returned in .TCH •• 

Processing con~ists of determining the proper entry point to the decimal 
literal collector for each constant in the pair. The literal is 
collected in a block of storage S.LIT.+l to S.LIT.+n as one continuous 
string. The separating comma is retained making the entire string suit
able for the variable field of a DEC pseudo-operation. The number of 
words collected is returned in S.LIT. (0-17) and the Type Code in 
S.LIT. (18-35). The last word collected is left adjusted and filled out 
with blanks. 

Usage. The calling sequence is: 

TSXl S.DXOO 
(Error Return) 
(Normal Return) 

Error Codes. The following errors stop further scanning of the literal 
and result in a diagnostic message. 

If either constant begins with a punctuation other than (+, -, .), the 
comma separating the complex pair is missing, the ) following the second 
constant is missing, or the next nonblank character following the ) 
enclosing the complex pair is a numeric or alphabetic character, the 
following message is given. 

S.DX76 ILLEGAL PUNCTUATION IN OR NEAR COMPLEX LITERAL. 

Before returning from this routine, a check is made of the type which 
has been returned from the decimal literal collector. If this type indi
cates that either of the complex pair was not a real-type variable, the 
following message is given. 

S.DX79 COMPLEX LITERAL PART IS WRONG TYPE. 

Note that other messages can be given if an error is encountered in the 
decimal literal collector as the constant is being processed. 

FORTRAN IV 

Compiler 

- 87 -



3. S.DnOO--Decimal Literal Collector (S.DIOO, S.DNOO, S.DPOO, S.DSOO, S.DNCO) 

Purpose. This routine will scan the source statement and collect in BCI, 
integers, single- and double-precision literals and store them in the 
area S.LIT.+l to S.LIT.+n. Blanks are ignored and the last word 
collected (S.LIT.+n) is left adjusted and filled out with blanks. On 
return from this routine, S.LIT. will contain the number of words 
collected (0-17) and the type code (18-35). 

Method. There are five entry points to this routine, use of which is 
determined by the context of the literal or by the initial character of 
the constant. Input to this routine is supplied by the output field 
word .FLD. If further scanning is needed, it is done using the 
NXCHAR macro. 

Leading zeros are retained in the literal string but are ignored in the 
significant-digit count. A significant-digit count of ten or greater 
forces double-precision floating point unless the exponent character, E, 
is found in source statement. 

Usage. If the literal is an integer and a decimal point, if found, is 
not part of the literal, then the calling sequence is: 

TSXl S.DIOO 
(Error Return) 
(Normal Return) 

The .TCH. cell contains the code for the following punctuation. 

If the first character of the literal is numeric and a decimal point, if 
found, is included as part of the literal, then the calling sequence is: 

TSXl S.DNOO 
(Error Return) 
(Normal Return) 

The .TCH. cell contains the following punctuation code or alphabetic 
character. 

If the first character of the literal is a decimal point, then the 
calling sequence is: 

TSXl S.DPOO 
(Error Return) 
(Normal Return) 

The .TCH. cell contains the following punctuation code. 

@~0®®® ~~~O~~---------------------------F-~:-7-u-~: 
- 88 -



If the plus or minus sign is the first character of the literal, then 
the calling sequence is: 

LDA WORD 
TSXl S.DSOO 
(Error Return) 
(Normal Return) 

where WORD BCI l,,:t 

The .TCH. cell contains the following punctuation code. 

If the latter half of a complex literal is to be processed with the first 
character being numeric, a special entry exists with the following 
calling sequence: 

TSXl S.DNCO 
(Error Return) 
(Normal Return) 

The .TCH. cell contains the following punctuation code. 

Error Codes. The following errors stop further scanning of the literal 
and result in a diagnostic message. 

S.DN77 :MAGNITUDE OF INTEGER EXCEEDS 2 TO 35. 

S.DN79 ILLEGAL CHARACTER IN DECIMAL LITERAL. 

S.DN81 NO NUMERIC CHARACTERS IN EXPONENT FIELD (DORE). 

S.DN85 :MAGNITUDE OF EXPONENT FIELD EXCEEDS 38. 

S.DN87 ONE PART OF COMPLEX LITERAL IS DOUBLE PRECISION TYPE. 

S.DN89 NO DIGIT IN DECIMAL LITERAL--IMPOSSIBLE. 

Control returns to the caller of the literal routine through the error 
return. 

4. S.DOOO--Octal Literal Collector 

Purpose. This routine is used to scan that portion of a source statement 
which is an octal field in a DATA·statement. 

Method. The scan pointer is pointing at the character immediately 
following the field definition character, 0. The scan will be continued 
until a punctuation character is found following the octal field. If 
more than 12 octal digits exist, the literal will be truncated to 12. As 
each character is collected,it is checked to be a legal octal digit. The 

@~a(ID(Q)@ ~~[ffi~~~ ________ .......,FORiiiiiOliiiiTRAN.....,..IV 

Compiler 

- 89 "." 



literal is stored in BCI in a block of storage S.LIT.+l to S.LIT.+3 
depending on the length of the character string. The number of words 
collected is returned in S.LIT. (0-17). The following punctuation code 
is returned in .TCH •• 

Usage. The calling sequence is: 

TSXl S.DOOO 
(Error Return) 
(Normal Return) 

Error Codes. If the octal field is greater than 12 octal digits, the 
literal is truncated to 12 characters, the scan continues until 
punctuation is encountered and the following diagnostic message is 
written. 

S.D060 OCTAL FIELD TOO LONG. 

The following errors stop further scanning and a diagnostic message is 
given. Return will be to the error return. 

S.D042 EMPI'Y OCTAL FIELD. 

S.D067 ILLEGAL CHARACTER IN OCTAL FIELD. 

MISCELLANEOUS ROUTINES 

Those routines of part 1 of Phase One which do not fit into a well-defined 
category or those which have been described in another section of this document 
are presented here. 

1. .s .NAME--The NAME Table Routine 

This routine is described on page 44 of this publication. 

2. S.DBOO--DO Beta Assignment Routine 

Purpose. This routine is called once for each statement in the source 
program. IFN entries will be made in the appropriate T.IODO table to 
replace the EFN. 

Method. The routine will test the current EFN against the EFN from the 
T.DODO Table. When a match is found, it indicates that this statement 
is the ending for a .DO statement. If it is, this routine assigns an 
IFN to this statement and using the T.IODO pointer from the T.DODO Table 

- 90 -



replaces the EFN with an IFN. The DO Beta entry is then removed from the 
T.DODO Table. The search is continued over the entire T.DODO Table 
because the statement being processed may be the ending for a DO nest. 

Usage. The calling sequence is: 

TSXl S.DBOO 
(Normal Return) 

There are no error returns but a flag, F.DOEN, is set for the Phase One 
control program if the statement is a DO Ending. 

Error Returns. The T.DODO Table is searched from the end backwards and 
if the entries are out of sequence, a probable error in DO nest exists. 
The message is written as follows: 

S. DBOC ERROR IN DO NESTING FOR DO 11 EFN 11 ON INDEX __ . 

3. S.CBOO--Clear DO Beta Routine 

Purpose. This routine is called at the end of Phase One by the Control 
routine to check if any DO Beta's (T.DODO Table entries) exist that were 
not referenced by a DO statement. 

Method. Routine S.DBOO removes entries from the T.DODO Table when a 
statement that is a DO Ending is being processed. At the end of Phase 
One, all entries should have been processed and removed from the T.DODO 
Table. If any entries remain, the statement designated by the DO 
statement does not exist and an error message is given. 

_Usage. The calling sequence is: 

TSXl S.CBOO 
(Normal Return) 

Error Codes. There are no error returns but a diagnostic message is 
given when an entry is found in the T.DODO Table. 

S.CBOB THERE IS NO STATEMENT NUMBER '~~~' WHICH WAS INDICATED 
AS A DO ENDING. 

4. S.DESO--Duplicate EFN Search Routine 

Purpose. This routine is called by the Control routine once for each 
source statement to check for duplicate EFN's. 

- 91 -



Method. Using the current statement's EFN, a search is made of the 
T.EIFN Table. If a match is found, a diagnostic message is written. 

Usage. The calling sequence is: 

TSXl S.DESO 
(Normal Return) 

_Error Codes. There are no error returns but a diagnostic message is 
written when a duplicate EFN is found in the T.EIFN Table. 

S.DESC FORMULA NUMBER IS DUPLICATED IN PROGRAM. 

5. ST.000--Symbol Table Generator 

Purpose. This routine generates a symbol table of variable names. 
(Note: This routine is used only if the source program has a $ FORTRAN 
control card with the STAB (symbol table) option for load-time debugging.) 

Method. This routine scans the NAME Table searching for variable names. 
Only true variable names are acceptable; SUBROUTINE names, FUNCTION 
names, DIMENSION variable names, ARGUMENT or Dummy ARGUMENT names are not 
used. For each true variable name found, a VTAB macro call with 
appropriate arguments is generated and GG is called to write it on the 
G7': file. The VTAB macro skeleton is: 

VTAB 

where 

MACRO 
IRPT 
BCI 
VFD 
IRPT 
ENDM 

ARGl 

ARG2 
l,ARG2 
18/ARG2, 12/,06/ARGl 
ARG2 
VTAB 

octal code for variable 
(20 is octal) 
(21 is integer) 
(22 is real) 
(23 is double precision) 
(24 is complex) 
(25 is logical) 

type. 

ARG2 variable name in BCD form. 

Usage. The calling sequence is: 

TSXl ST.000 
(Normal Return) 

- 92 -



.Error Returns. None 

6. S.TPOO--POOL Table Entering Routine 

This routine is described on page 20 of this publication. 

ARITHMETIC TABLES AND ROUTINES 

Arithmetic Tables 

There are a large number of tables associated with the Arithmetic Scan, Level 
Analysis and Optimization section of Phase One of the FORTRAN IV Compiler. A 
description of these tables is presented here to familiarize the reader with 
the terminology used in the description of the arithmetic routines which follow. 

1. T.ARIT Table 

Purpose. This table contains all of the information needed by Phase 
Two of the FORTRAN IV Compiler to generate the proper code for the 
arithmetic portion of a statement. 

Format. The first word of the table is zero. All other words, except 
the last word, have the following form: 

0 1 56 1415 1718 2021 35 

I Al B 
I 

c 
I 

D 
I 

E 

I 
F 

I 
I I I 

I I 

:21 23 24 
I 

2930 
351 

~ero I G I H 

where: A Level-Save Indicator 
1, results of level must be saved. 
0, results of level need not be saved. 

B Operator Code 
1, operator is .OR. 
2, operator is .OR •• NOT. 
3, operator is .AND. 
4, operator is .AND .. NOT. 
5, operator is .GT. 
6, operator is .GE. 
7' operator is .EQ. 

@~ a(ID@(Q) ~~[ffi~ ~~ __________ F_ORT-MN-IV 

Compiler 

- 93 -



B = 10, operator is .NE. 
11, operator is . LT. 
12, operator is . LE. 
13, operator is ADD 
14, operator is SUBTRACT 
15, operator is MULTIPLY 
16, operator is DIVIDE 
17, operator is EXPONENTIATION 

--:~~··= 20' operator is FUNCTION 
26' operator is DIVIDE INVERTED 

C Level Number Associated with this Operation 

D Operand Mode Indicator 
O, Logical 
1, Complex 
2, Double Precision 
3, Real 
4, Integer 
5, Real, Expand to Double Precision 
6, Logical and Last of Level 

E Operand Indicator for F, Last 15 Bits of Word 
0, T.NAME Table Pointer 
1, T.NUMB (Constant) Table Pointer 
2, T.SUBS (Subscripts) Table Pointer 

.:;, 3, F is a Level Number 
4, Denotes an ASF Dummy Argument and F is: 

Bits 21-23: Zero 
Bits 24-29: G, where 

G=Ol, Argument is floating point single-
precision real. 

=02, Argument is an integer. 
=04, Argument is double precision. 
=10, Argument is complex. 
=20, Argument is logical. 

Bits 30-35: H= the argument number (1,2,3, etc.) 

F An Operand, Either a Level Number or Pointer as 
described above. 

The last word in the table contains information about the variable on the 
left of equals and fields D, E and F will be filled as required. If 
there is no left of equals, the last word is zero. 

2. T.ARIA Table 

This table is set up in the Level Analysis portion of the Arithmetic 
section. It is used in determining the level numbers and ordering of 
the T.ARIT Table. The table format is: 

VFD l/A, 17/B, 3/C, 15/D 

@~ a@(Q)@ ~~lffiO [g~ _________ ......,.FoR.....,.TBAN ....... 1V 

Compiler 

- 94 -



where: 
B 

------? 

An operator level number assigned as fol~~-~s: 
1 

.(' < 1 .. f ·-(' ''')"{' 
1, Operators .OR., .OR •. NOT. .,,,. ... · L,. L ... l. {v·."j:'.1 r 1···1( . ,. 7 
2, Operators .AND., .AND •• NOT. __ ,., .... ,,....~ {\Lt, ~ 
3, Operators .GT., .GE., .EQ-.;··--:·~m., .LT., .LE. (j 
4, Operators add (+) and subtract (-). 
5, Operators multiply ("k) and divide (/). 
6, Operator exponen~iation (**); 
7, . Operator function·\ ~t..<./l'··C:Cv-r··. ,~,·1 .• .., ........ ,.,.,,,.,.,__. •.. , ·n 

o;:,',J 

D A number for the level of the current T.ARIT item. 

A An indicator as follows: 
1, The T.ARIA item (Operator level and level) have 

been used in the T.ARIT table. 
0, Otherwise. 

C An indicator as follows: 
1, A left parenthesis has been encountered. 
O, Otherwise. 

If C = 1, the table entry will have the following 
format: 

where: 

VFD 18/E, 3/C, 15/F 

E A pointer to the T.ARIT item preceding the 
left parenthesis. 

F Is the Operator level of the operator for 
the T.ARIT item. 

Unless this operator is .OR .. NOT. or .AND .. NOT., 
then F = 11 or 12 respectively. 

3. T.ARIC Table 

This table contains the number of T.ARIT items in each level and is used 
by the Reordering and Optimization routine (ARREOP). This table is a 
Buffered Table and its complete description appears on page 30 of this 
document. 

4. T.RANG Table 

This table contains information concerning the range of levels involved 
in the evaluation of the arguments of functions and CALL statements. 
This Buffered Table is described in detail on page 29 of this document. 

~--·~---·- -- -- _ XL-\1~iw r;,, rLw !'/,. tf \ ' 7 fl It; flt'!r u'V?£!]·( 
k2;--- tcc~z~,~-~:::::~~7"3:>-1, -'~ lhCG1 us7 1

1

. ;_~ A~<? --:~L~J __ 
·~----···· .... -·-··----··~-·-· 

FORTRAN IV 

Compiler 

- 95 -



5. T.ARLF Table 

This table is used in the construction of the T.LTAG Table described 
below. An entry is made each time a function is encountered in the 
level analysis of a statement. The table format is: 

where: 

VFD 18/A, 18/B 

B Zero (always) 

A A pointer to the T.ARIT Table if the operator preceding 
the function is .OR •• NOT.; if not, this portion will be 
zero. 

6. T. LTAG Table 

This table is similar to the T.RANG Table except that entries are made 
only for arguments which are logical. The table format is: 

VFD 18/A, 18/B 

where: A The lowest level in the argument 

B The highest level in the argument 

7. _AROTST Table 

This table is used in the reordering section of the Reordering and 
Optimization routine (ARREOP). Its entries of a T.ARIT item whose 
level is the lowest of all levels within the arithmetic string being 
reordered. The table format is the same as that for entries in the 
T.ARIT Table described earlier. 

8. AROSUP Table 

This table is used by the reordering section of the Reordering and 
Optimization routine (ARREOP). The table is designed for reordering 
of logical levels. A T.ARIT item whose operator is logical, and whose 
operand is a level number yet to be reordered, is placed in the AROSUP 
Table. The format of entries is the same as that for T.ARIT Table 
entries described earlier. 

9. AROTSU Table 

This table is used by the reordering section of the Reordering and 
Optimization routine (ARREOF) to construct the AROSUP Table described 
earlier. The AROTSU Table contains all of those T.ARIT items of a 
given level whose operator is logical and whose operand is a level 

·@~ c(ID@@ ~~[ffi~ ~~ _____________ F_o~-~=-u-:: 
- 96 -



number. When the end of a level is reached in the T.ARIT Table, the 
items of the AROTSU Table are relocated to the AROSUP Table in reverse 
order. The format of the AROTSU entries is the same as T.ARIT Table 
entries. 

10. ARO.TC Table 

This table is one of three tables used in the optimization of logical 
strings in the Reordering and Optimization routine (ARREOP). The other 
two tables are called ARO.TB and ARO.TD and are described below. The ' 
entries of the ARO.TC Table consist of a series of pointers. A pointer 
points to the T.ARIT Table item which is the first item of a logical 
string. When it has been determined that this string is the argument 
of a function or a call, a "store bit" is placed in the first item. 
The table format is: 

VFD 18/A, 18/B 

where: A The T.ARIT Table pointer 

B Zero (always) 

11. ARO.TB Table 

This table is used in the construction of the ARO.TC Table described 
earlier. When a T.ARIT item of a new logical level is encountered, the 
first item of this level is placed in the ARO.TB Table. When the last 
item of the level is encountered, the entry for the level is removed 
from the ARO.TB Table. The format of this table is the same as the 
T.ARIT Table described earlier. 

12. ARO.TD Table 

This table is used to determine the legality of combined arithmetic/ 
logical expressions. During the processing of a logical level, a T.ARIT 
item with a level number for an operand causes the next item to be 
examined. If the level of the next item is not the same as the level/ 
operand, then the level/operand is entered into the ARO.TD Table. 
During the processing of arithmetic strings, the levels encountered are 
compared with those in ARO.TD. If a match is found, the operators for 
that level must be relational or a function with a logical result. The 
format of the table is: 

VFD 6/A, 9/B, 21/C 

where: 

A Zero 

B The level number 

c Zero 

FORTRAN IV 

Compiler 

- 97 -



13. AROMLV Table 

This table is used by the optimization section of the Reordering and 
Optimization routine (ARREOP) to detennine the modes of level number 
operands and the over-all statement. If the result of a level is 
arithmetic, then the mode and the level will be entered into this table. 
The fonnat of this table is: 

VFD 6/0, 9/C, 3/D, 18/0 

where: 
C The level number 

D The mode. 

14. ARO.TA Table 

This table is constructed from the T.RANG Table (described earlier) and 
is used in the processing of arguments. The fonnat of the table is: 

where: 

15. T.ASUP Table 

VFD l/D, 17/E, 9/B, 9/C 
~.' v 

E A pointer to the first item of an all real level that 
occurs in an argument. E will be zero if there is none. 

D 1, The argument is double precision 
O, Otherwise 

B Lowest level number contained in the argument. 

C Highest level number contained in the argument. 

This table is used to hold the reordered T.ARIT items if the T.ARIT 
Table is over one-half full. This Buffered Table is described in detail 
on page 31. 

FORTRAN IV 

Compiler 

- 98 -



Arithmetic Routines 

1. ARCNTL--Arithmetic Control Routine 

Purpose. This routine controls the processing of arithmetic strings. 

Method. Entry to this routine is achieved in two ways: 

o When an arithmetic expression within another statement must be pro
cessed, the relevant statement processor transfers control to this 
routine. 

o All other arithmetic expressions are handled by this routine when 
control is transferred here from the Statement Classification routine, 
DC0600, through the entry routine, S.ARIT. 

If the arithmetic expression is contained within another statement, 
no call is made to the subroutine, ARLFEQ, for "left of equals" 
processing. All other arithmetic expressions call the following 
subroutines: 

(1) ARLFEQ--Process 11 left of equals" , 
(2) ARRFEQ--Process 11 right of equals" 
(3) ARREOP--Reorder and optimize 

When optimization of the T.ARIT Table has been completed, it is 
written in the POOL Table on the *l file, except in the case of 
arithmetic expressions contained in other types of statements. In 
the latter, the T.ARIT information will be used by the statement 
processor originally in control. Before return from this routine, 
the T.ASUP, T.ARIC and the T.RANG Tables are cleared. If an 
Arithmetic Statement Function was being processed, the T.AFDU Table 
is also cleared. Prior to exit, the fatal diagnostic flag is 
checked to determine if a serious error was found by one of the 
subroutines called. If yes, an error return is taken; if not, the 
normal return is taken. 

Usage. The calling sequence is: 

TSXl ARCNTL 
(Error Return) 
(Normal Return) 

Error Returns. There are no error messages directly associated with 
this routine; only those produced by subroutines called by this program. 

- 99 -



2. S.ARIT--Process Arithmetic Statement Entry Routine 

Purpose. This routine serves as an entry routine to the subroutine 
ARCNTL. 

Method. Upon entry to this routine, the 11 left of equals 11 indicator is 
turned on and control is transferred to the subroutine ARCNTL. Upon 
return from this subroutine, the 11 left of equals 11 indicator is turned 
off and control returned to the calling program. 

Usage. The calling sequence is: 

TSXl S.ARIT 
(Normal Return) 

Error Returns. None. 

3. ARLFEQ--Left of Equals Processor 

Purpose. This subroutine processes information to the left of the 
equals character in an arithmetic statement or an Arithmetic Statement 
Function. 

Method. Information to the left of the 11 equals 11 character may be one 
of the following: 

o A nonsubscripted name (a simple variable). 
(-:;:'( .\·:.\.·',:; .vj'(;~ [\ 

• A :tl.imens.t'2.~~d variable. 

o Name and arguments of an Arithmetic Statement Function. 

For the first two types of information an IFN is assigned. If the 
nbnsubscripted name is an integer, an ~ntry is made in the T.INTS Table 
through the subroutine.S.tNOO. If not an integer, no action is taken 
at this time. ~tifiu~£.r(ffi:ga variables requ~re a call to the subroutine 
S.SSOO for subscript processing and a call to the subroutine S.SBOO to 
make appropriate entries in the T. SUBS Table·. Arithmetic Statement 
Functions are handled by subroutine calls to S.NAME (and S.TYPO, if 
required) to ensure that all names are entered in the NAME Table. 
Entries are made for the arguments in the Buffered Table T.AFDU by the 
subroutine EN.TR. 

Usage. The calling sequence is: 

TSXl ARLFEQ 
(Normal Return) 

- 100 -

FORTRAN IV 

Compiler 



Error Returns. The following error messages are written as fatal 
diagnostics in this subroutine. ~~~--

AR LE CA 

AR LE CB 

AR LE CC 

AR LE CD 

ARLECE 

AR LE CF 

AR LE CG 

INVALID CHARACTERS LEFT OF EQUALS. 

VARIABLE DIMENSION SYMBOL ____ IS USED IN WRONG CONTEXT. 

SUBPROGRAM NAME --- IS USED IN WRONG CONTEXT. 

FORTRAN EXPECTS LEFT PARENTHESES OR EQUALS. 

AN ARITHMETIC STATEMENT FUNCTION APPEARS AFTER AN 
EXECUTABLE STATEMENT. 

THE ARITHMETIC STATEMENT FUNCTION --- HAS THE SAME 
NAME AS A SUBPROGRAM. 

INVALID CHARACTERS IN ARITHMETIC STATEMENT FUNCTION 
ARGUMENT LIST. 

4. ARRFEQ--Right of Equals Processor 

Purpose. This subroutine processes information to the righ€-of the 
equals character in an arithmetic expression. 

Method. This routine initializes appropriate constants and sets 
indicators, then calls the subroutine ARNEXT to obtain ARNWRD (the next 
operator/operand pair). A call to ARLEAN performs the level analysis. 
This .process is repeated for the entire arithmetic expression. If a 
function is· present in the expression it is checked for a valid name. 
Except for functions in the FORTRAN Library,external functions, 
functions in DO loops or having a DO index not in COMMON or 
EQUIVALENCE, an entry will be made in the T.RINT Table. The 
parentheses of the expression are checked. 

Usage. The calling sequence is: 

TSXl ARRFEQ 
(Normal Return) 

Error Returns. Only one error message is directly produced by this 
subroutine. However, the subroutines called by this program may print 
error messages. If the latter occurs, an error return to this routine 
is performed and an error count accumulated for the expression. When 
the error count reaches 3, processing ~J~~~es. (Deeper analysis--of 
errors is not"'"'T'easi5re--Oecause-or-cne-'difficulty·in determining the 
proper restart position when an error has occurred.) 

FORTRAN IV 

Compiler 

- 101 -



This error message for this routine is: 

ARRFCA STATEMENT CONTAINS TOO MANY NESTED FUNCTIONS. 

5. ARNEXT--The Next Word Routine 

Purpose. This subroutine is used to fill in the next word (ARNWRD) 
from a source statement. 

Method. The next word (ARNWRD) is composed of an operator/operand pair. 
This routine obtains the next field in an arithmetic expression in 
preparation of the next word. Not only is it necessary to obtain the 
next field, but it must be examined to determine its type--alphabetic, 
numeric or a punctuati~n-character. Each type of field is further 
tested to ensure that it is valid, properly used and that it fits within 
the context of its surroundings. 

In addition, this routine also examines the termination character; 
that is, the character following the next field. Frequently, the type 
of termination character determines the extent to which the next field 
must be examined. In general, the field beginning with the termination 
character will become the operator of the operator/operand pair when 
the routine is next entered. However, this is not always the case and 
is mentioned here only for clarity in a simple example. 

Depending on the type of the next field and its additional character
istics, entries will be made to specific tables. For example, if the 
next field is a nonsubscripted integer variable, entries are made in the 
T.INTS table. Though extensive and complex in its examination, the 
sole purpose of the next word (ARNWRD) is to subsequently provide 
information from which the T.ARIT Table is constructed. 

Usage. The calling sequence is: 

-TSXl ARNEXT 
(Error Return) 
(Normal Return) 

Error Returns. Due to the extensive analysis performed by this routine, 
there are many~ diagnostic messages which may o.ccur. They are: 

ARNCAA MISSING OPERATOR BEFORE THE SYMBOL __ _ 

ARNCAB SUBPROGRAM NAME ____ ,INCORRECTLY USED. 

ARNCAC SUBSCRIPTS ARE NOT PERMITTED IN AN ARITHMETIC STATEMENT 
FUNCTION DEFINITION. 

ARNCAD THE SUBROUTINE NAME---- IS USED AS A FUNCTION. 

- 102 -



ARNCAE THE SYMBOL ____ IS USED AS A FUNCTION. 

ARNCAF FUNCTION ____ CALLS ITSELF. 

ARNCAI ILLEGAL PUNCTUATION FOLLOWING THE SYMBOL----

ARNCAJ TOO MANY EQUALS. 

ARNCAK STATEMENT ENDS WITH AN OPERATOR. 

ARNCAL PARENTHESES DO NOT BALANCE. 

ARNCRL TOO MANY RIGHT PARENTHESES. 

ARNCLL TOO MANY LEFT PARENTHESES. 

ARNCAM MISSING OPERATOR BEFORE OR AFTER SYMBOL----

ARNCAN ILLEGAL USE OF A COMMA. 

ARNCAO DOUBLE OPERATOR BEFORE OR AFTER THE SYMBOL ___ _ 

ARNCAS NO PERIOD AFTER THE REL/LOGICAL OPERATOR ___ _ 

ARNCAU ILLEGAL REL/LOGICAL OPERATOR. 

ARNCAV HOLLERITH ILLEGAL EXCEPT AS ARGUMENTS. 

ARNCAX EFN IS ZERO IN A NONSTANDARD RETURN. 

ARNCAY IMPROPER SYMBOL. 

There is one warning diagnostic written by this routine. 

ARNCAH SUBPROGRAM ____ HAS SAME NAME AS BUILT IN FUNCTION-
WARNING ONLY. 

6. ARLEAN--Level Analysis Routine 

Purpose. This routine performs the level analysis for that portion of 
an arithmetic or logical expression to the right of the equals character. 

Method. This routine utilizes the operator/operand pairs in the current 
word (ARCWRD) and in the next word (ARNWRD) to perform the level 
analysis an~ build the T.ARIT Table entries. After the reordering 
process (described later in this section as the ARREOP routine) is 
performed, the information of the T.ARIT Table is used to generate the 
necessary coding for arithmetic and logical expressions. 

To translate an arithmetic or logical expression into information ready 
for reordering, the structure of the expression must be analyzed and 
associated with its corresponding levels. The relationship of these 

- 103 -



levels is hierarchical; the higher levels must be processed first and 
the lower levels last. The chart below shows the relative order of 
levels for the FORTRAN IV Compiler operations: 

RELATIVE LEVEL O~P_E_RA~T_O_R~~~~~~~~~~~~~~~~~~~ 

(Lowest) 

(Highest) 

1 .OR. 

2 .AND. 

3 Relational Operators (.GT., .GE., .LT., .LE., .EQ., and 
.NE.) 

4 + and - (Add and subtract) 

5 * and / (Multiply and divide) 

6 ** (Exponentiation) 

7 FUNCTION 

The concept of levels is best illustrated by an example: 

Given the expression: A-C+B*E/F*D 

In the above expression there are two levels; the first is for the + 
and - operators and the second is for the * and / operators. If we 
arrange the expression in tabular form, we have: 

Operator Operand 

+ A 

c 

+ z 

where Z is a level within this expression. (Note that it is the highest 
level in this expression also.) The level Z can be broken down and 
illustrated in tabular form as shown below: 

OEerator 0Eerand 

* B 

* E 

I F 

* D 

@~a®@® ~~OO~~~----------------------------F-o~-~:-u-:: 
- 104 -



To attach some meaningful cross-reference to levels within an expression, 
let us assign a number, N, and substitute it for the level intended. If 
N is used for the first level encountered (not necessarily the highest. 
or lowest), then the other levels within the' expression may be expressed 
as N+i and N-i as necessary. The combined tables would appear as 
follows: 

Level Operator 02erand 

'1 N + A 7 + Cnif't \' 

.. 1 N c 

/i N + --N+l :> 

B ,-·· N+l !> 
./ N+l E 

N+l I F 

N+l D. 

By assigning levels to arithmetic or logical expressions, the T.ARIT 
Table entries may later be reordered to ensure that the processing will 
be done in the proper sequence for the generation of coding to evaluate 
the expression. 

Usage. The calling sequence is: 

TSXl ARLEAN 
(Error Return) 
(Normal Return) 

Error Returns. There are four fatal diagnostics written by this routine 
as follows: 

ARL820 

ARL821 

ARL822 

ARL823 

ARITHMETIC STATEMENT IS TOO LONG. 

TOO MANY SUBEXPRESSIONS IN AN ARITHMETIC STATEMENT. 

TOO MANY ARGUMENTS OR SUBEXPRESSIONS IN AN ARITHMETIC 
STATEMENT. 

TOO MANY FUNCTIONS IN AN ARITHMETIC STATEMENT. 

7. EN.ART--T.ARIT Table Entering Routine 

Purpose. This subroutine is called by the Level Analysis routine 
(ARLEAN) to place entries in the T.ARIT and T.ARIC Tables. 

FORTRAN IV 

Compiler 

- 105 -



Method. After the level analysis of the operator/operand pairs of 
current word and next word have been completed, this subroutine is 
called to make appropriate entries in the T.ARIT Table. Entries are 
also made by this subroutine in the T.ARIC Table. The T.ARIC Table 
contains a count of the number of T.ARIT items at each level. 

Usage. The calling sequence is: 

TSXl EN.ART 
(Normal Return) 

Error Returns. Two error conditions are detected in this routine; 
however, control is returned to the ARLEAN routine for the actual 
writing of error messages. The messages written are described as 
ARL820 and ARL822 in the ARLEAN ,routine. 

8. EN.RNG--T.RANG Table Entering Routine 

Purpose. This subroutine makes entries into the T.RANG and T.LTAG 
Tables. (The T.LTAG Table is the same as the T.RANG Table except 
entries are made only for logical arguments.) 

Method. During the level analysis routine (~1~~), the occurrence of 
a FUNCTION or CALL with arguments will require entries to be made to 
the T.RANG/T.LTAG Tables concerning levels. The T.RANG Table contains 
the range of levels for the arguments of FUNCTIONS and SUBROUTINES. If 
the FUNCTION is logical, the range of levels for the arguments are 
placed in the T.LTAG Table. This subroutine has two entry points: 

1st Entry Point: EN.RNl 

2nd Entry Point: EN.RN2 

Entries will be made to both tables if 
necessary. 

Entries will be made in the T.RANG Table, 
only. 

Usage. The calling sequence is: 

TSXl EN.RNl 

or 

TSXl EN.RN2 

Return is to the next line. 

Error Returns. None. 

FORTRAN IV 

Compiler 

- 106 -



9. ARL.SF--T.ARLF Table Entering Routine 

Purpose. This routine is used to make entries into the T.ARLF Table 
during the level analysis. 

Method. The table entries this routine makes are used in the 
construction of the T.LTAG Table. An entry is made to the T.ARLF Table 
each time a FUNCTION is encountered during the level analysis of a 
statement. 

Usage. The calling sequence is: 

TSXl ARL.SF 
(Normal Return) 

Error Returns. There is no error return for this routine, however, if 
the T.ARLF Table becomes too large, control will be returned to the 
Level Analysis routine (ARLEAN) where the error message ARL823 is 
written. 

10. ARREOP--Reordering and Optimization Routine 

Purpose. This subroutine reorders and optimizes the information 
contained in the T.ARIT Table. 

J 

Method. This subroutine is called from the Arithmetic Control routine 
(ARCNTL) after the level analysis of an arithmetic or logical expression 
has been completed. Three phases comprise this subroutine. 

The first_Bhase reorders the T.ARIT Table and eliminates redundant 
entries. Arithmetic strings are reordered by level in descending 
sequence; logi.cal strings are reordered by level in ascending sequence. 

The reordered T.ARIT Table information may be stored in one of two 
places. If less than one-half of the T.ARIT Table has been used, then 
the next available location is defined as the beginning of the T.ARIN 
Table and the reordered information is stored there. If more than one
half of the T.ARIT Table has been used, then a Buffered Table, T.ASUP, 
is used for the storage of the reordered information. Upon the 
completion of the reordering process, the reordered information is 
placed back into the T.ARIT Table. 

In the second phase, common arithmetic subexpressions are eliminated. 
~common suoexpressfi)rfs are defined as having the same number of elements 
with the same operator/operand combination in the same order; such as, 
X=(M•B/C) - (B1'•A/C) - (M•B/C). The first and last subexpressions 
(M•B/C) are common. This process requires the examination of the levels 

FORTRAN IV 

Compiler 

- 107 -



contained· in the T.ARIT Table information against, a given level; that 
is, find two levels that have the same number of entries. Those levels 
found equal to the given level are further compared item-for-item. For 
those levels which satisfy this matching test, the expression will be 
deleted, but the level will be saved so that other operands which 
reference this deleted level may be changed to reference the given level. 

The third Ehase of the reordering subroutine assigns a mode to each item. 
!he codes are--represented by coded numbers as follows: 

Logical 

Complex 

Double Precision 

Real (Floating) 

Integer 

Real/Double (Single precision 
must be expanded to double.) 

Last logical 

Code Number 

0 

1'" 

2 

4 

5 

6 

It should be noted that if the operand is primitive, the mode can be 
determined from the Name Table (variables) or the Number Table 
(constants). The subroutine ARO.SD described later in this section is 
used for the mode.determinations.· Nonprimitives (levels) are 
determined by searching the Mode Level Table. If the level number at 
hand is the same as the level of an item in the Mode Level Table, then 
the table level is used for mode determination. If the level number at 
hand is not in the Mode Level Table, it is assumed to be logical. Upon 
determination of modes, the legality of combined modes is checked. The 
codes described earlier were chosen such that the logical and combina
tion of codes for illegal mode combinations will be zero. 

Also in the third phase, a determination is made as to which levels must 
be saved in erasable storage. For those levels that must be saved, a 
"store bit" (item A as· described in the T.ARIT Table diagram) is 
inserted into the first T.ARIT item of the level. 

For example: 

The level M•B must be saved in erasable storage while the expression 
C*D is evaluated. In addition, single-precision operations are 
reordered within a level so that they will be processed first. 

@~a®@® ~~~O~~-------------------------F_o~-~=-u-~: 
- 108 -



The final portion of the third phase searches· the.·T .ARIT. Table for items 
having store bits. A count is incremented for each reference to the. 
level by an operand. ·If this count is 1 at the complet.ion of. the search, 
then the store bit can be eliminated since the result will ·be used 
immediately and need not be stored (linkage by ·registers)·. 

Usage. The calling sequence· is: ·--~ ....... ---· ----···· 

TSXl ARREOP 
(Error Return) 
(Normal Return) 

Error Returns. The following diagnostics are written by this' rotit'in~: 
, ·. '' ,•,,: 

RO. 701 ARITHMETIC EXPRESSION - LOGICAL OPERATOR. 

R0.702 ARITHMETIC EXPRESSION SHOULD HAVE A RELATIONAL OPERATb~·~:· .. 

RO. 704 ARITHMETIC OPERATOR - LOGICAL 'OPERAND. 

R0.705 TYPES ILLEGALLY COMBINED. 

R0.706 ILLEGAL USE BY EXPONENTIATION OR RELATIONAL OPERATOR. 

RO. 707 TYPE ILLEGALLY COMBINED BY EXPONENTIATION. 

·'. 

R0.708 TYPES ILLEGALLY COMBINED BY A RELATIONAL OPERATOR. ~~ , I 

LEFT oF EQUALs AND RIGHT oF EQUALS ARE rncoMPATIBLE. ):: '.···) ·lw Y~.'/)U )l1-_ . l , ,. ;~~J~~;~v .. 
·~ I) ''lt COMPLEX TYPE ILLEGAL. 

R0.711 

RO. 713 

11. ARO.SE--T.RANG Table Search Routine 

Purpose. This subroutine searches the T.RANG Table to determine if a 
given T.ARIT item level falls within the range of levels of any item in 
the T.RANG Table. 

Method. This subroutine is called by the Reordering and Optimization 
routine (ARREOP) during the third phase of its operation. Sequential 
entries in the T .RANG Table are tested against the it.em level. in th~ 
T .ARIT Table. Separate returns are made if there .is or is. not· an item 
in the T.RANG Table with the proper range of levels. 

Usage. The calling sequence is: 

TSXl ARO.SE 
(First Return, level is in T.RANG Table) 
(Second Return, level is not in T.RANG Table) 

- 109 -

-··---

I ~ , 



The subroutine is entered with the T.ARIT pointer in index register 5. 
Upon return, if the level is in the T.RANG Table, the T.RANG Table 
pointer will be in index register 0. 

Error Returns. None. 

12. ARO.SA--T.ARIT Level Search Routine 

Purpose. This subroutine searches the T.ARIT Table for the next entry 
with the same level as a given levei. 

Method. This subroutine is called by the Reordering and Optimization 
routine (ARREOP) during Phase O~~_of ,its operation. The corresponding 
level search is part of tfie-'F"eordering process. 

Usage. The calling sequence is: 

·TSXl ARO.SA 
(Normal Return) 

Upon entry to the subroutine, the given level is specified as a count in 
index register.4. 

Error Returns. None. 

13. ARO.SB--T.ARIN/T.ASUP Table Entering Routine 

Purpose. This subroutine makes entries into the T.ARIN or T.ASUP Tables. 

Method. This routine is called by the Reordering and Optimization 
routine (ARREOP) during the first phase of its operation. As described 
in the ARREOP routine, T .ARIT ifems"'·are reordered by level and placed 
in the T.ARIN or T.ASUP Table. If the T.ARIN Table is used, entries are 
made directly. If the T.ASUP Table is used, the subroutine EN.TR is 
called to make the entry to the Buffered Table T.ASUP. 

Usage. The calling sequence is: 

TSXl ARO.SB 
(Normal Return) 

Upon entering and leaving this subroutine, the entry to be placed in the 
T.ARIN/T.ASUP Table is contained in the A-register. 

@~ 0 (ID@@ ~~[ffi ~ ~~ ____________ Fo~-:RAN-pil-:: 

- 110 -



Error Returns. None. 

14. ARO.SC--T.ARIC Table Search Routine 

Purpose. This subroutine searches the Buffered Table T.ARIC for items 
corresponding to a given level. 

. f' c,.r;t ./ (;; (LJ,,..)(. ... ' /,,,......,.a.. .. 

Method. This subroutine is called by the Reordering and Optimization 
routine (ARREOP).__.'A given level is specified in the upper Q-register. 
The T.ARIC Table is searched for an entry having a corresponding level. 
When found, the T.ARIC Table entry specifies the number of T.ARIT items 
for that level. 

Usage. The calling sequence is: 

TSXl ARO.SC 
(Normal Return) 

Upon entering this subroutine, the given level is specified in the upper 
Q-register. Upon leaving the subroutine, the T.ARIC item found is 
contained in the A-register. 

Error Return. None. 

15. ARO.SD--T.ARIT Item Mode Determination Routine 

Purpose. This subroutine determines the mode (Logical, Complex, 
Double Precision, Real/Floating, Integer, Real/Double or Last Logical) 
of a T.ARIT Table item. 

Method. This subroutine is called by the Reordering and Optimization 
routine (ARREOP) during the third phase of its operation. If the 
operand of the T.ARIT Table entryl.s primitive, that is, a variable or 
constant, the mode can be determined from the Name Table or the Number 
Table. However, if the operand is ·a level, then the Mode Level Table 
(AROMLV) must be searched. 'rf the operand level is the same as the level 
of an item in the AROMLV Table, then the operand level is assumed to be 
the same. If no comparison is found, the mode of the operand level is 
assumed to be logical. 

Usage. The calling sequence is: 

TSXl ARO. SD 
(Normal Return) 

@~a(ID@@ ~IE[ffi~ IE~ ___________ Fo~-:~-pil-:: 

- 111 -



Upon entry the item to be typed is contained in the A-register. Upon 
return, the mode is placed in the item in the A-register. The mode is 
also in the upper Q-register. 

Error Returns. None. 

16. ARO.SH--Operator/Level Processor Routine 

Purpose. To process a level containing the operators + (plus) and 
- (minus) or?'~ (multiply) and/ (divide). 

Method. This subroutine is called to process levels which are not all 
real (single precision) and contain no logical operations. The items 
of a level are examined so that proper modes can be established and 
items reordered as required. Reordering is performed within a level 
containing real and double-precision operations so that the real (single
precision) operations are compiled first. 

In addition, divide operations are replaced by divide-inverted where 
appropriate. 

Usage. The calling sequence is: 

TSXl ARO.SH 

or 

TSXl RO.SHA 

or 

TSXl RO.SHB 

The first entry is used when the level is not all real. The second entry 
is used when the level is real/double. The third entry is used when a 
level is all of one type. Return for all entries is always to the next 
line. 

Error Returns. None. 

17. ARO.SF--All Real String Routine 

Purpose. This subroutine is used to process an all real string. 

Method. The T.ARIT information is examined to determine the presence of 
an all real level that is not in the T.RANG Table. When a level is found, 
the subroutine ARO.SI (described on page 113) is called to process it. 

- 112 -



Usage. The calling sequence is: 

TSXl ARO.SF 
(Normal Return) 

Error Returns. None. 

18. ARO.SI--All Real Level Routine 

Purpose. This subroutine is called to process all real levels. 

Method. The modes for this level are set. If the first operator is 
functional, exponential or relational, the mode is set to either real 
or real/double. (Double-precision requires the use of the real/double 
mode.) If the first operator is arithmetic, then the mode of the last 
item in the previous level is found to be used later with the ARO.SH 
routine. 

Usage. The calling sequence is: 

TSXl ARO.SI 
(Normal Return) 

Error Returns. None. 

19. ARO.SG--AROMLV Table Entering Routine 

Purpose. This subroutine makes entries into the Mode Level Table 
(AROMLV). 

Method. The routine is entered with the AROMLV entry in the A-register. 
The entry count'is increased and the entry stored in the table. 

Usage. The calling sequence is: 

TSXl ARO.SG 
(Normal Return) 

Error Returns. None. 

20. AR.PNT--Two's Complement Computation Routine 

Purpose. This subroutine is used to compute the two's complement of the 
Buffered Table pointer in an item stored in the T.ARIT Table. 

FORTRAN IV 

Compiler 

- 113 -



Method. The pointer is placed in the upper A-register, the NEG 
instruction is executed and return is made to the calling routine. 

Usage. The calling sequence is: 

TSXl AR.PNT 
(Normal Return) 

Upon entry, the T.ARIT item is in the A-register. Upon return the two's 
complement of the pointer is in the upper A-register. 

Error Returns. None. 

STATEMENT PROCESSORS 

1. IFP100--IF Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as an IF statement. Both Arithmetic and Logical IF 
statements are processed by this routine. The actual processing of the 
parenthesized expression is done by the Arithmetic Processor which 
returns a flag, F.LOGL, indicating whether the expression is Arithmetic 
or Logical and a parameter describing the length of the T.ARIT Table. 
After control is returned, the routine continues to process the state
ment according to the information returned. 

Method. The general form of the statement is: 

IF(A)B 

The IF processor does not process the expression within parentheses, but 
calls the Arithmetic processor to treat the expression A. If-A is 
Arithmetic, then B must be three branch EFN 1 s. If A is a logical, the 
B must be a statement other than another Logical IF or a DO. The BCD 
text is made available via the scanning routines. For the Arithmetic 
IF, the three branches are collected, entered into the T.JUMP Table, 
and the appropriate POOL Table entry is made. The T.JUMP Table entries 
for the destination are EFNs. 

For the Logical IF, a partial T.JUMP Table entry is made for the false 
condition. A pointer to this T.JUMP Table entry is saved in cell 
LGIF.P (bits 0-17) so that the Executive Routine can complete the T.JUMP 
Table entry with a destination IFN after the True statement has been 
processed. The appropriate POOL Table entry is made. 

@J~ a@(ID(Q) ~~fffiO ~~ ----------F-ORT-MN-IV 
Compiler 

- 114 -



Table Entries 

T.JUMP Table 

Arithmetic IF 

Q_ _2 3 1118 2021 35 

0 IFN Origin 0 Destination EFN1 

0 IFN Origin 0 Destination EFN2 

0 IFN Origin 0 Destination EFN3 

Logical IF 

0 2 3 1718 2021 35 

_i_o__..l __ I_F_N __ o_r_i_g_in ________ __.l __ o __ ~l ___ D_e_s_t_in_a_t_i_o_n __ I_F_N ____ ~'· 
POOL Table 

Arithmetic.IF 

0 2 3 1718 2021 35 

7 58 0 IFN 

T.ARIT 
String 

. 

. 
0 3(count) 0 P(T .• JUMP) 1 

0 P(T.JUMP) 2 0 P(T.JUMP) 3 

Logical IF 

0 2 3 1718 2021 35 

7 6s 0 IFN 

T.ARIT 
String 

. 

. 
0 l(count) 0 P(T.JUMP) False 

FORTRAN IV 

Compiler 

- 115 -



Usage. The calling sequence is: 

TSXl IFPOOO 
(Normal Return) 

Error Returns. There are no error returns but the following diagnostic 
messages are written~ 

IFIERl AN IF STATEMENT WITH NO LEFT PARENTHESIS WAS ENCOUNTERED. 

IFIER3 A STATEMENT NUMBER IN N, N, N IS NOT NUMERIC. 

IFIER4 NO COMMA EXISTS BETWEEN STATEMENT NUMBERS. 

IFIERS CHARACTER FOLLOWING LOGICAL IF IS NOT VALID. 

Additional error messages may be written by the Arithmetic Processor. 

2. GTOlOO--GOTO Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a GO TO statement. The routine will process un
conditional GO TO and the conditional computed and assigned GO TO state
ments. The three statement forms are: 

GO TO ~ Unconditional 

GO TO (Au ..••.. •) 'B Computed 

GO TO z <Au •••••• ) Assigned 

Method. The BCD text is made available via the scanning routines. The 
routine determines the type of GO TO by analysis of the character 
following the words GO TO. The typing is done according to the following 
logic. If the character is numeric, then the type is nunconditional.TT 
If it is alphabetic, then the type is nassigned.TT If it is punctuation, 
then the type is TTcomputed.TT 

For unconditional GO TO statements, the routine collects the destination 
EFN and makes an entry in the T.JUMP Table and a two-word entry is placed 
in the POOL Table. 

For assigned GO TO statements, the routine collects Z and places it in the 
NAME Table (if it is not already there) and places the Assigned GO TO 
control word in the POOL Table prototype. The routine then calls the 
S.GTOL routine to process the branch list. It completes processing by 
entering the NAMEP for this branch symbol, Z, in the POOL Table prototype 
and making the POOL Table entry. 

- 116 -



For Computed GO TO statements, the routine places the Computed GO TO 
control word in the POOL Table prototype and then calls the S.GTOL 
routine to process the branch list. Upon successful return from S.GTOL, 
it collects the branch symbol, B, and enters it into the NAME Table if it 
has not already been entered. The NAMEP is placed in the POOL Table 
prototype. Processing is completed by making the POOL Table entry. 

The POOL Table entry for Assigned and Computed GO TO statements is 
variable in length (3 + n/2) where n is the number of statement numbers 
in the branch list. 

Table Entries 

T.JUMP Table 

IFN (origin) 

POOL Table 

Unconditional GO TO 

78 

P(T.JUMP) 

Conditional GO TO 

0 2 3 

7 

0 

0 

0 

where T 
T 

~ 

1718 2021 

T 0 

BRANCH COUNT 0 

. 

. 
P(T.JUMP)n-l 0 

(NAMEP) <f> 0 

108 for assigned GO TO 
118 for computed GO TO 
branch symbol 

IFN 

0 

IFN 

P(T.JUMP) 1 . 
. 

P(T.JUMP)n 

0 

- 117 -

35 

35 



Usage. The calling sequence is: 

TSXl GTOlOO 
(Normal Return) 

Error Returns. The following errors stop further scanning of the state
ment and result in fatal diagnostic messages: 

GTOERl 

GTOER3 

GTOER4 

GTOERS 

GTOER7 

GTOER8 

GTOER9 

Illegal punctuation.;'<· 

COMPILER EXPECTS A LEFT PARENrHESIS TO OPEN BRANCH LIST. 

EXTRANEOUS INFORMATION FOLLOWING END OF STATEMENT HAS BEEN 
FOUND. 

___ FOLLOWING RIGHT PARENTHESIS IS ILLEGAL. COMPILER 
EXPECTS A BRANCH NAME. 

THE BRANCH NAME ____ MUST BE AN INTEGER VARIABLE. 

THE BRANCH NAME HAS APPEARED AS A DIMENSIONED VARIABLE OR 
FUNCTION/SUBROUTINE NAME. 

THE EFN IS ZERO. 

The following errors cause only a warning message and the scan is 
continued: 

GTOER2 

GTOER6 

A COMMA IS MISSING IN FRONT OF LIST OF STATEMENT NUMBERS. 
WARNING ONLY. 

COMMA IS MISSING FOLLOWING THE RIGHT PARENTHESIS. 

*One of the following fatal diagnostics will be written when illegal 
punctuation is encountered: 

S.PC30 ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE 
SYMBOL ___ _ 

S.PC35 THE PUNCTUATION MARK ____ WAS USED INCORRECTLY. 

S.PC40 MISSING PUNCTUATION AT THE END OF STATEMENT. 

3. S.GTOL--Branch Collector for GO TO Statements Routine 

Purpose. This routine is called by the GTOlOO routine to process the 
branch list when the source statement is determined to be a conditional 
GO TO. 

Method. The BCD text is made available via the scanning routines. The 
scan begins with the first character following the left parenthesis 

- 118 -



that encloses the branch list and terminates when a right parenthesis is 
encountered. 

For each EFN encountered, an entry is made in the T.JUMP Table and also 
the T.COGO Table. The T.COGO Table is used as erasable storage to 
collect the entries that will be placed in the POOL Table string. 

When returning to the caller, the A-register will contain a word 
describing the POOL routine parameter to be used for making the POOL 
Table entry. 

Bits 
Bit 
Bits 

0-17 
18 
19-35 

Location of first word in T.COGO 
1 indicating intermediate parameter to S.TPOO 
Number of words in T.COGO 

Each word except the first in the T.COGO Table will contain pointers to 
the T.JUMP Table for two EFN 1 s in the branch list. 

Table Entries 

T.JUMP Table 

1718 

IFN (origin) EFN (definition) 

T.COGO Table 

0 2 3 1718 2021 

0 BRANCH COUNT 0 P(T .JUMP\ . . . 
. 

0 P(T.JUMP)n-l P(T.JUMP)n 

Usage. The calling sequence is: 

TSXl S.GTOL 
(Error Return) 
(Normal Return) 

- 119 -

35 



Error Returns. The following errors stop further scanning of the state
ment and result in a diagnostic message being given. 

S.GTER 

S .GTR2 

S.PCER 

S.PC30 

S.PC35 

S.PC40 

ALPHABETIC CHARACTERS OR ILLEGAL PUNCTUATION FOUND IN 
BRANCH LIST. 

AN EXTERNAL FORMULA NUMBER IN THE BRANCH LIST IS ZERO. 

Illegal punctuation results in one of the following 
diagnostics: 

ILLEGAL OR MISSING PUNCTUATIO~ AFTER OR NEAR THE 
SYMBOL ___ _ 

THE PUNCTUATION MARK ____ WAS USED INCORRECTLY. 

MISSING PUNCTUATION AT THE END OF STATEMENT. 

4. DOPlOO--DO Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a DO statement. The statement will be tested for 
errors and if none are found, the statement will be broken down into 
various table entries. 

Method. The routine will scan the source statement commencing with the 
first character following the letter 0 in the word DO and terminating 
at the end mark. The BCD text is made available through the scanning 
routines. The DO statement is of the form: 

where: 

DO n i 

n the EFN of the statement that is the terminus of the DO loop. 

i a nonsubscripted integer variable index. 

m are three p_arameters which may be integer constants or non
subscripted integer variables describing the control of 
indexing within the DO loop. 

The first two parameters, m1 and mz, must be present and separated by a 
comma. If the third parameter, m3, is not given, an implied m3 with a 
value of 1 is supplied. 

This routine will process the statement by collecting the terminating 
EFN, the index i, and the parameters, m. An entry will be made in the 
T.IODO Table. A POOL Table entry will be constructed using the T.IODO 
Table pointer. 

FORTRAN IV 
@~0 (ID@@ ~~000~~ ----------co-mp1-1er 

- 120 -



An entry consisting of the tenninating EFN and the pointer to the T.IODO 
Table will be made in the T.DODO Table. This latter entry will be 
processed by the DO Beta Assignment routine, S.DBOO, to detennine when a 
statement is the end of a DO loop. This provides a means of completing 
the T.IODO entry by replacing the tenninating EFN with a terminating IFN. 

Table Entries 

T.DODO Table 1 word entry 

1718 2021 35 

P(T. IODO) I 0 I EFN (DO termination) I 
T. IODO Table 3 word entry 

0 2 3 

0 

or 0 

0 

N 

where: 

POOL Table 

Q_ 2 3 

7 

0 

1718 2021 35 

IFN (origin) 0 EFN (destination) 

IFN (origin) 0 IFN (destination)"I'• 

NAMEP (index) N m1 

m2 N m3 

N 0, if m is the NAME Table pointer 

N 4, if m is a binary constant 

?'•The IFN (destination) is placed in the T. IODO Table by 
the S.DBOO routine. 

1718 2021 35 

213 0 IFN 

P(T. IODO) 0 0 

Usage. The calling sequence is: 

TSXl DOPlOO 
(Nonnal Return) 

@~ o(ij}@@ ~~[ffiU~~ ____________ F_o~-~~-il-~: 
- 121 -



Error Returns. The following errors stop further scanning of the state
ment and result in a diagnostic message being given. 

DOPERl 

DOPER2 

DOPER4 

DOPERS 

DOPER6 

DOPER7 

DOPERS 

DOPER9 

S.PC30 

S.PC35 

S.PC40 

THE EFN, _____ IS ILLEGAL. 

ILLEGAL PUNCTUATION EXISTS FOLLOWING THE EFN. 

THE INDEX NAME OR PARAMETER IS NOT AN INTEGER VARIABLE. 

AN INDEX NAME OR PAR.Af-.1ETER MAY NOT BE DIMENSIONED. 

THE INDEX NAME OR PARAMETER HAS PREVIOUSLY APPEARED AS 
A FUNCTION/SUBROUTINE NAME. , 

COMPILER EXPECTS AN EQUAL SIGN FOLLOWING INDEX NAME. 

ONE OF THE PARAMETERS Nl, N2, N3 IS ZERO. 

Punctuation error causes one of the following diagnostics: 

ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE SYMBOL 

THE PUNCTUATION MARK ___ WAS USED INCORRECTLY. 

MISSING PUNCTUATION AT THE END OF STATEMENT. 

5. DOPCKl--Numeric Checker Routine 

Purpose. This routine checks the numeric values assigned to a DO index. 

Method. The numeric values assigned as a DO (or implied DO) index are 
checked for the following: 

o Numerics greater than 6 characters. 

o Numerics greater than 217 • 

o Numerics equal to zero. 

If one of the above conditions is found, a fatal diagnostic is written 
and an appropriate exit is taken from the routine. 

Usage. The calling sequence is: 

where: 

TSXl DOPCKl 
(Error Return 1) 
(Error Return 2) 
(Normal Return) 

Error Return 1 
Error Return 2 

Numeric greater than 6 characters. 
Numeric equal to 217 or O. 

FORTRAN IV 

Compiler 

- 122 -



Error Returns. The following fatal diagnostics are written: 

DOPCK7 NUMERIC VALUE ASSIGNED TO DO INDEX OR IMPLIED DO HAS MORE 
THAN 6 CHARACTERS. 

DOPCK8 A NUMBER IN K Kl, K2, K3 IS ZERO. 

DOPCK9 A NUMBER IN K Kl, K2, K3 IS BIGGER THAN 2 TO 17TH. 

6. ASN100--ASSIGN Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as an ASSIGN statement. The statement will be 
tested for errors and, if none are found, the statement will be broken 
down into various table entries. The form of the ASSIGN statement is: 

ASSIGN i TO n 

where: 
i is an EFN 
n is a nonsubscripted integer variable 

Method. The BCD text is made available via the scanning routines. The 
scan will begin with the first character following the N in the word 
ASSIGN and terminate with the end mark. 

The routine collects the EFN, i, and converts it to binary for entry in 
the POOL Table prototype. It then checks for the two characters TO 
following i. The assign parameter, n, is then collected and entered into 
the NAME Table if it is not already there. The NAMEP is entered in the 
POOL Table prototype and then a two-word POOL Table entry is made. 

Table Entries 

POOL Table 

0 2 3 1718 2021 

7 208 0 IFN 

0 (NAMEP)n 0 EFN 

Usage. The calling sequence is: 

TSXl ASNlOO 
(Normal Return) 

- 123 -

35 

(Binary) 

(Binary) 

FORTRAN IV 
Compiler 



Error Returns. The following errors stop further scanning of the state
ment and result in fatal diagnostic messages being written: 

ASNERl 

ASNER2 

ASNER3 

ASNER4 

ASNERS 

THE FORMULA NUMBER FOLLOWING THE WORD, ASSIGN, rs MISSING. 

COMPILER EXPECTS THE WORD -TO- FOLLOWING THE STATEMENT 
NUMBER. 

THE STATEMENT MUST HAVE AN INTEGER NAME FOLLOWING THE WORD 
TO. 

THE VARIABLE NAME FOLLOWING T~E WORD -TO- HAS BEEN USED AS 
A SUBPROGRAM NAME. 

THE VARIABLE NAME FOLLOWING THE WORD -TO- MAY NOT BE A 
SUBSCRIPTED VARIABLE. 

7. CAL100--CALL Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a CALL statement. If an argument list exists, 
it is processed by the Arithmetic Processor. Otherwise, processing of 
the statement is confined to this routine. 

Method. The BCD text in the SSWW region is made available via the 
scanning routines. The routine will save the Scan position in case it 
is necessary to rescan the first part of the statement as is the case 
when an argument list is present •. Since a subroutine may redefine 
integer variables in COMMON, special T.INTS and T.RINT Table entries are 
made to indicate that this statement is a possible redefinition of 
COMMON nonsubscripted integer variables. The subroutine name flags are 
checked for proper usage. If not already set, the subroutine-reached-by
CALL flag, I.CAL, and the external-subprogram-name flag, I.XTN, are set 
ON. 

At this point, determination is made whether or not the statement 
contains an argument list. If it does not have an argument list, the 
CALlOO routine sets up the appropriate T.ARIT string and entry is made 
into the POOL Table. An entry is also made in the T.RINT Table if the 
following conditions are met: 

• The statement being processed exists within a DO loop. 

• The current DO index name is in COMMON or EQUIVALENCE. 

The cell, F.DONM, contains a pointer to the current index name and is 
used in making the two previous tests. The T.RINT entry is made to 
indicate that this statement is a possible redefinition of the non
subscripted integer variable that exist in COMMON. 

FORTRAN IV 
Compiler 

- 124 -



If an argument list exists, the Scan position is restored to the 
beginning of the subprogram name and the Arithmetic Processor is called. 
Flag words are passed to the Arithmetic Processor to indicate that it 
should treat the statement as a function with an argument list. The 
Arithmetic Processor stops processing when it encounters the closing 
right parenthesis of the argument list and returns a parameter word, 
ARITCT (bits 0-17), describing the length of the T.ARIT string. The POOL 
Table parameter list is set up, a POOL Table entry is made, and control 
is returned to the caller. 

Processing the argument list may give rise ~o NAME Table entries and 
additional T.INTS and T.RINT entries. If the subprogram NAME has not 
previously appeared in the source program, it will also be entered into 
the NAME Table. If the statement has an EFN, it will be entered into the 
T.EIFN Table. An argument which is a nonstandard return is treated as a 
special constant with the statement number of the return entered in the 
T.NUMB Table. An entry is also made in the T.JUMP Table. 

Table Entries 

T.RINT Table 

IFN 

T.NUMB Table 

0 5 1718 35 

1
13 

1 

I 

1 

I 
0 EFN 

EFN Statement number of a nonstandard return. 

T.JUMP Table 

0 2 3 1718 35 

IFN EFN 

EFN Statement number of a nonstandard return. 
1 A bit in position 2 indicates that a transfer to the next IFN 

is not necessary. 

@~a(ID@® ~~[ffi~~~ ________ ___.FOR ....... TRAN.......,.IV 

Compiler 

- 125 -



T.INTS Table 

0 2 3 

00000 IFN 

Where zero NAMEP indicates CALL statement with no argument list. 

POOL Table 

CALL (with arguments) 

0 2 3 1718 2021 35 

7 268 0 IFN 

T.ARIT information 

CALL (without arguments) 

0 2 3 1718 2021 35 . 

7 268 0 IFN 

0 00000 0 00000 

0 CODE 0 NAMEP (subroutine) 

0 00000 0 00000 

Where CODE is the Function Operator code needed by the Arithmetic 
Processor in Phase Two. 

Usage. The calling sequence is: 

TSXl CALlOO 
(Normal Return) 

Error Returns. The following error will interrupt the scan to give a 
diagnostic message. The scan then continues in the normal manner: 

CALER3 THE SUBROUTINE NAME WAS PREVIOUSLY DEFINED AS A FUNCTION 
SUBPROGRAM. 

The following errors stop further scanning of the statement and result in 
a diagnostic message being given: 

CALERl THE SUBROUTINE NAME SHOULD FOLLOW THE WORD CALL. 
PUNCTUATION OR NUMERICS FOUND INSTEAD. 

- 126 -



CALER2 

CALER4 

CALER6 

CALERS 

S.PC30 

S.PC35 

S.PC40 

THE SUBROUTINE NAME WAS USED AS A VARIABLE PREVIOUSLY. 

THE SUBROUTINE NAME WAS PREVIOUSLY DEFINED AS AN 
ARITHMETIC STATEMENT FUNCTION OR A BUILT-IN FUNCTION. 

SUBROUTINE CALLS---- ITSELF. 

Punctuation errors cause one of the following diagnostics 
and the scan to be discontinued. 

ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE SYMBOL 

THE PUNCTUATION MARK ____ WAS USED INCORRECTLY. 

MISSING PUNCTUATION AT THE END OF STATEMENT. 

8. PAS100--PAUSE Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a PAUSE statement. An entry is made in the POOL 
Table. 

Method. The routine makes a two word entry into the POOL Table, then 
checks for an end mark. 

POOL Table 

where: N 

Table Entry 

15g IFN 

0 N 

An octal integer constant, 1-5 digits. (If N is 
nonexistent, a zero is entered for N.) 

Usage. The calling sequence is: 

TSXl PASlOO 
(Normal Return) 

Error Returns. There are no error returns, but the following diagnostic 
is written: 

PASBDl ILLEGAL CHARACTER(S) FOLLOWING PAUSE. 

@J~a®@@ ~~[ffiO~~ ___________ Fo_;:~-pil-~: 

- 127 -



9. RET100--RETURN Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a RETURN statement. The return number will be 
processed and a POOL Table entry made. 

Method. The BCD text is made available via the Scanning routines. The 
routine collects the return number, if any, and if it is numeric, then it 
will be converted to binary form. If the return number is a variable, 
it is entered in the NAME Table if it has not been previously entered. 
The NAMEP or the return number is entered in the POOL Table prototype. 
A two-word POOL Table entry is made. Return to the calling program is 
made upon completing the POOL Table entry. 

Table Entries 

POOL Table 

0 2 3 1718 35 

I: I 
278 

I 
IFN 

I 
y 0 

where: x 0, the return is an integer variable, and Y = NAMEP. 

x 4, the return is a constant, and Y = the return number. 

Usage. The calling sequence is: 

TSXl RETlOO 
(Normal Return) 

Error Returns. There is no error return for this processor, but the 
following diagnostic messages are written: 

RETBDl A MAIN PROGRAM SHOULD NOT CONTAIN A RETURN STATEMENT. 

RETBD2 RETURN IS NOT AN INTEGER VARIABLE. 

RETBD4 NONSTANDARD RETURNS NOT ALLOWED. 

10. END100--END Statement Processor 

Purpose. This routine will set the flag, F.END., on. 

- 128 -



Method. The F.END. flag is set to indicate that an END card has been 
encountered. A check is made for an end mark and control returned to 
the caller. The Executive Routine makes a one-word POOL Table entry for 
the END statement. 

Table Entries 

POOL Table 

0 2 3 1718 2021 

25g 

Usage. The calling sequence is: 

TSXl ENDlOO 
(Normal Return) 

Error Returns. None. 

11. STPlOO--STOP Statement Processor 

35 

IFN 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a STOP statement. The sole purpose of this 
routine is to make a POOL Table entry. 

Method. The routine makes a one word POOL Table entry. 

Table Entries 

POOL Table 

23g 

Usage. The calling sequence is: 

Error Returns. 

TSXl STPlOO 
(Normal Return) 

None. 

- 129 -

IFN 



12. CNTlOO--CONTINUE Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a CONTINUE statement. The sole purpose of this 
routine is to make a one-word POOL Table entry. 

Method. The routine makes a one-word POOL Table entry and then checks 
for an end mark. 

Table Entries 

POOL Table 

22g 

Usage. The calling sequence is: 

TSXl CNTlOO 
(Normal Return) 

Error Returns. None. 

13. DTA100--DATA Statement Processor 

IFN 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a DATA statement. The statement will be tested 
for errors and, if none are found, the statement will be broken down into 
various table entries. 

Method. This routine will scan the source statement commencing with the 
first character following the final letter A in the word DATA and 
terminating at the end mark. The BCD text is made available via the 
Scanning routines. The DATA statement is processed in sections: 

• The List Processor which scans the list portions of the statement is 
logically divided into two sections. One section processes a list 
within implied DO parentheses, making entries in the T.IOLT, T.IMPO 
and T.DATA Tables. The other section of the List Processor will 
handle lists containing only nonsubscripted variables, variables with 
constant subscripts and array variables, using the short list notation 
(an array name with no subscripts). This latter section will make 
entries into the T.DATA Table. 

FORTRAN IV 

Compiler 

- 130 -



o The Literal String Processor scans the literal strings and makes 
entries into the T.LITR Table. 

The List Processor recognizes and ignores redundant parentheses. When
ever a right parenthesis is encountered an entry is made in the temporary 
T.IOLT Table and a partial entry is made in the T.DATA Table. When the 
matching right parenthesis is encountered, the incomplete T.DATA entry 
can be completed and the last entry in the T.IOLT Table is deleted. The 
T.IOLT Table entry is essentially a parentheses count that will reduce 
to zero if no parenthetical errors have occurred in processing a list. 

Table Entry 

T. IOLT Table 

0 2 3 1718 2021 35 

0 P(T.DATA) 0 00000 
Left parenthesis 
entry 

The List Processor uses the S.SSOO routine to scan the subscripts of each 
dimensioned variable in the list. 

The variable name is added to the NAME Table (if not already there) with 
the Type flag (I.REL or I.ITG) set ON implicitly. For each variable in 
the statement, proper usage is checked and true variable usage flag, 
I.RVR, and the explicit type flag, I.EXP, are set ON in the NAME Table 
flag word. Thus, usage of a variable name in a DATA statement has the 
same binding strength as usage in an arithmetic statement. 

In processing dimensioned variables, the subscript processor, S.SSOO, 
ensures that there is a unique T.USUB Table entry for each appearance 
of a subscripted variable. 

In addition to the NAME Table and T.USUB Table entries, the DATA 
statement information is broken down into three other buffer tables for 
use at the end of Phase One to allocate storage. 

Table Entry 

T.DATA Table. The list part of the DATA statement will cause a T.DATA 
Table entry string to be generated. One entry is made to identify the 
beginning of the string. An entry is made for each variable name with a 
parameter in bits 0-2 defining the appearance of subscripted, non
subscripted and short list notation variables. An entry is made for each 
left parenthesis encountered and each nonredundant right parenthesis. 

FORTRAN IV 

Compiler 

- 131 -



The left parenthesis entries are incomplete at the time they are entered 
in T.DATA. They are completed with a pointer to the T.IMPO Table when a 
right parenthesis is encountered following indexing information. 

T .DATA Table 

0 2 3 1718 2021 35 

7 00000 0 00000 

NON-SS VAR. 0 NAMEP 0 00000 

SH. LIST VAR. 3 NAMEP 0 (dimension product) - 1 

LEFT PAREN. 5 00000 0 P(T.IMPO) 

SS VARIABLE 1 NAMEP 0 P(T.USUB) 
--

RIGHT PAREN. 2 00000 0 P(T.DATA) 

N 

'T.IMPO Table. 
encountered. 
is generated. 

T. IMPO Table 

Corresponding left 
parenthesis entry 

Table Entry 

This table is generated when implied DO indexing is 
A two-word entry describing the index range information 

35 

Nl,N2,N3 (NAMEP) index Nl 

N2 N3 

Table Entry 

T.LITR Table. The literal string part of the DATA statement will cause a 
T.LITR Table entry string to be generated. An entry of 

2 + 
n - 1 

6 

words is made for each literal in the string, where n is the number of 
nonblank characters in the literal except in an alphanumeric field where 
the blanks are retained. An entry of all zeros is made as a flag that 
~he literal string entry is complete. There is a one-to-one correspon
dence between T.DATA and T.LITR Table entry strings. The literal collector 
;outines are used in processing the literal string. 

- 132 -



T. LITR Table 

0 2 3 1718 2021 35 

p REPEAT COUNT T N = WORD COUNT 

N WORDS OF DATA IN BCD 

0 00000 0 00000 

Where p 0 if REAL p 3 if OCTAL 
p 1 if INTEGER p 4 if COMPLEX 
p 2 if LOGICAL p 7 if DOUBLE PRECISION 

and T 4 for DEC literal 
T 2 for OCT literal 
T 1 for BCI literal 

Usage. The calling sequence is: 

TSXl DTAlOO 
(Normal Return) 

Error Returns. The following errors stop further scanning of the 
statement and result in a diagnostic message: 

DTAERl 

DTAER3 

DTAER4 

DTAERS 

DTAER6 

DTAER8 

DTAER9 

DTAE13 

DTAE14 

DTAE15 

DTAE16 

THE VARIABLE NAME ____ BEGINS WITH A NUMERIC 
CHARACTER. 

NO LITERAL LIST WAS FOUND IN THE DATA STATEMENT. 

Illegal Punctuation·k 

TOO MANY RIGHT PARENTHESES IN DATA STATEMENT. 

TOO MANY LEFT PARENTHESES IN DATA STATEMENT. 

AN ARRAY NAME WITH VARIABLE DIMENSIONS IS OUTSIDE THE 
RANGE OF AN IMPLIED DO. 

PUNCTUATION FOLLOWING A RIGHT PARENTHESIS IS MISSING. 

THE SYMBOL ____ IS USED INCORRECTLY FOLLOWING AN 
SIGN. 

A LITERAL BEGINS WITH AN ILLEGAL CHARACTER. 

MISSING PUNCTUATION FOLLOWING A LITERAL. 

THE ALPHANUMERIC FIELD COUNT IS TOO BIG. 

@~ c(ID@@ ~~[ffi~ ~~ ____________ F_o~-::-il-:: 

- 133 -



The following errors interrupt the scan, output a diagnostic message and 
then continue the scan of the statement: 

DTAER7 

DTAElO 

DTAEll 

DTAE12 

DTAE18 

DTACE6 

DTACE7 

DTACE8 

DTACE9 

DOPCK7 

DOPCK8 

DOPCK9 

S.PC30 

S.PC35 

S.PC40 

A VARIABLE, ___ CONTAINS ADJUSTABLE DIMENSION(S). 

A VARIABLE, ___ WITH SHORT LIST NOTATION IS WITHIN AN 
IMPLIED DO. 

THE NONDIMENSIONED VARIABLE,~~~~-IS WITHIN AN 
IMPLIED DO. 

THE ARRAY, WITHIN AN IMPLIED DO SEQUENCE HAS 
CONSTANT DIMENSIONS. 

A LITERAL IS TOO LONG. 

A VARIABLE, ____ IS A SUBPROGRAM NAME OR ARGUMENT. 

A VARIABLE,---- IN THE DATA STATEMENT IS IN BLANK 
COMMON. 

A VARIABLE,---- NOT IN COMMON IS IN A BLOCK-DATA 
SUBPROGRAM. 

A VARIABLE, ____ IN COMMON IS IN A NONBLOCK DATA 
SUBPROGRAM. 

NUMERIC VALUE ASSIGNED TO DO INDEX OR IMPLIED DO HAS MORE 
THAN 6 CHARACTERS. 

A NUMBER IN K = Kl, K2, K3 IS ZERO. 

A NUMBER IN K = Kl, K2, K3 IS BIGGER THAN 2 TO 17TH. 

*One of the following diagnostics will be given when 
illegal punctuation is encountered: 

ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE SYMBOL 

THE PUNCTUATION MARK---- WAS USED INCORRECTLY. 

MISSING PUNCTUATION AT THE END OF STATEMENT. 

14. DTACKl--Check Variable Names Routine 

Purpose. This routine is called by the DATA Statement Processor whenever 
the riame of a variable is encountered. 

Method. This routine calls the NAME Table Routine, S.NAME, to enter the 
variable name in the NAME Table if it has not yet been entered. If a 
new entry is made, the Variable Typing Routine, S.TYPO, is called to 
type the variable. Upon return from the S.NAME Routine the variable type 
is checked to be sure it is consistent with its usage in the DATA 

@~ a(ID@@ ~~[ffi ~ ~~ ___________ ro_~~~-pil-~: 

- 134 -



statement. Three returns are made from this routine; one for non
subscripted variables, one for subscripted variables and one for short 
list notation. 

Usage. The calling sequence is: 

Where: 

TSXl DTACKl 
(Return 1) 
(Return 2) 
(Return 3) 

Return 1 
Return 2 
Return 3 

Nonsubscripted variable 
Subscripted variable 
Short list notation 

Error Returns. There are no error returns but the following fatal 
diagnostics are written: 

DTACE6 A VARIABLE, IS A SUBPROGRAM NAME OR ARGUMENT. 

DTACE7 A VARIABLE, IN THE DATA STATEMENT IS IN BLANK 
COMMON. 

DTACE8 A VARIABLE, , NOT IN COMMON IS IN A BLOCK-DATA 
SUBPROGRAM. 

DTACE9 A VARIABLE, , IN BLOCK COMMON IS IN A NONBLOCK DATA 
SUBPROGRAM. 

15. S.VAER--Illegal Variable Name Error Routine 

Purpose. This routine prints a diagnostic message to identify illegal 
variable names. 

Method. Upon entering this routine, the illegal variable name is 
contained in the A-register. The name is stored in a message line and 
the routine DIAG is called to write the message. Return is then given 
to the calling program. 

Usage. The calling sequence is: 

TSXl S.VAER 
(Normal Return) 

Error Returns. There are no error returns, but a fatal diagnostic 
message is written: 

S .VAE5 THE NUMERAL ----- PRECEDES A VARI AB LE NAME. 

- 135 -



16. S.PCER--Illegal Punctuation Error Routine 

Purpose. This routine writes a fatal diagnostic message concerning 
illegal or omitted punctuation. 

Method. This routine attempts to determine the symbol nearest the 
the punctuation error and place it in a diagnostic message line. If the 
cell .FLD. does not contain a symbol, another message line is selected 
containing the termination character except when it is an end mark. An 
end of statement error message is written if the termination character 
is an end mark. 

Usage. The calling sequence is: 

TSXl S.PCER 
(Normal Return) 

Error Returns. There are no error returns but three fatal diagnostic 
messages are written: 

S.PC30 ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE SYMBOL 

S.PC35 THE PUNCTUATION MARK ____ WAS USED INCORRECTLY. 

S.PC40 MISSING PUNCTUATION AT END OF STATEMENT. 

17. RDOOOO--READ Statement Processor 

Purpose. This routine is called after the Dictionary Scan has classified 
the source statement as a READ statement. The form of the statement is: 

READ n, list Read on-line (standard file assignment) 

READ (u, n) list Read BCD file 

READ (u) list Read Binary file 

where u is an unsigned integer constant or an integer variable 
referencing a file, and n is a FORMAT statement reference. 

A classification will be made as to whether the statement is READ on-line 
or READ file. The routine will call either the On-Line Statement 
Processor OLOOOO, or the File Processor, TPPROO. --~·-·- ····-··-·---··---...................... _. __ _ 
-------- ~~-,,;~{\ 

Method. The cell IINOUT is reset to zero to indicate the mode of I/O is 
input. 

- 136 -



The BCD text in the SSWW region is made available via the Scanning 
routines. The routine scans the source statement following the word 
READ in order to determine the type of the statement. If punctuation 
is found, the statement is assumed to be REAP file. If a numeric or 

~~~~-ir11~·~~~c~~f ~~-~%i:5·~·hf~~E~~-n~·~~5-~~~~~~m~~J;;·~~§.t,~·:J?·~1-~0t;1~·~ e 
type--:ETag"·r~~···~et in the POOL Table prototype. Control is then trans
ferred to the On-line Processor if the statement has been classified as
such. Otherwise, control is transferred to the File Processor. The
routine called will complete the processing of the statement making the
appropriate POOL Table entries. After the statement is processed,
control is returned through the READ routine to the Executive routine.

Usage. The calling sequence is:

TSXl RDOOOO
(Normal Return)

Error Returns. None. Errors are noted by the routines which scan the
statement.

18. PROOOO--PRINT Statement Processor
PNOOOO--PUNCH Statement Processor
RTOOOO--WRITE Statement Processor

Purpose. This routine is called after the Dictionary Scan has classi
fied the source statement as a PRINT, PUNCH or WRITE statement. The
form of the statement is:

PRINT
PUNCH
WRITE
WRITE

n, list
n, list
(u,n) list
(u)" list

Print on-line
Punch cards on-line
Write BCD file
Write Binary file

where u is an unsigned integer constant or an integer variable
referencing an output file, and n is a FORMAT statement reference.

The routine will classify the statement and call the appropriate routines
to do the processing.

Method. The cell IINOUT will be set nonzero to indicate that the I/O
mode is output.

There are three entry points to this routine which will set the appro
priate type flag in the first word of the POOL Table prototype. If the

(entry to this routine was PRINT. or PUNCH,. control will be. transfe~"i--ecC-to
. tfi_e_ .. bn':.'ffoe'' Pro~~~.~g:r, .. 9._hQ.9.QQ_: Th~ 'viRrrE···~~t;_::y· wi.Ti" t:;a~~fer co~t-roi" to
·tneri'Te···p:ro-ce'ssor, TP,PROO. The routine called will process the statement

· making the appropriate POOL Table entries. After the statement is

- 137 -

processed, control is returned through the PRINT, PUNCH or WRITE routine
to the Executive routine.

Usage. The calling sequences are:

TSXl PROOOO

or

TSXl PNOOOO

or

TSXl RTOOOO

(Control is returned to the next line.)

Error Returns. None. Errors are noted by the routines which scan the
statement.

19. BKlOOO--BACKSPACE Statement Processor
RW1000--REWIND Statement Processor
EN1000--END FILE Statement Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as a BACKSPACE, REWIND or END FILE statement. This
routine will make a two-word entry in the POOL Table. The form of the
statement is:

BACKSPACE u
REWIND u
END FILE u

where u is an unsigned integer constant or an integer variable.

Method. There are three entry points to this routine which will set the
proper type flag in the first word of the POOL Table prototype. The
routine then calls the UNTOOO routine to process the file reference, u,
and complete the POOL Table prototype. The two-word POOL Table entry is
made and control returned to the Executive routine.

- 138 -

Table Entries

POOL Table

0 2 3 1718 2021 35

I : I

Type

I

0

I

IFN

I u 0 0

where Type 34g for BACKSPACE
33g for REWIND
32g for END FILE

and f 4 for a constant file reference
0 for a symbolic file reference

Usage. The calling sequences are:

TSXl BKlOOO

or

TSXl RWlOOO

or

TSXl ENlOOO

(Return is to the next line of coding.)

Error Returns. None. For an illegal file reference, an error message
is written by the UNTOOO !outine.

20. OLOOOO--On-Line Processor

Purpose. This routine is called by the READ, PRINT, and PUNCH Statement
Processors. The routine will call the appropriate routines to process
the FORMAT reference, the list, if one exists, and the routine to end
I/O, S.ENDI. The On-line Processor makes a two-word POOL Table entry
(Begin I/O) which are the first two words of the I/O POOL Table entry
string.

The general form of the statement processed by this routine is:

s n t

where: S is either READ, PRINT or PUNCH
n is the FORMAT reference ·-·~;
t is either a comma \,-·an e~ci~ ~~~-.... _) .

.......... ,_.,. , " .. ,,.···

@~a{S)(Q)@ ~~[ffi~~~ ___________ Fo-~:~-pil-~:

- 139 -

If t is a comma, then the expected fonn of the statement is:

S n, L

where: L is a list of elements to be transmitted.

Method. This routine is entered with the POOL Table type flag in the
A-register and the scan pointer positioned at the FORMAT reference n.
An IFN is generated and_the first word of the POOL Table prototype is set
up. It then calls the _FMOOOO routine to process the fonnat reference n.
A two-word POOL Table entry is made at the beginning of an I/O string.
If t _is a comma, the _LISTOO routine is called to process the list.
Whether or not the statement contained a list, the S.ENDI routine is
called to end the POOL Table string for the I/O statement. Control is
returned to the caller.

Table Entries

POOL Table

0 2 3 1718 2021

I: I
Type

I
0

I 0 f

Type 148 for READ
138 for PRINT
128 for PUNCH

f 4· if n is a constant
0 if n is a variable

Usage. The calling sequence is:

Error Returns.

TSXl OLOOOO
(Nonnal return)

FORMAT
FORMAT

35

IFN

I n

reference
reference

OLDIAG COMMA OR END EXPECTED AFTER FORMAT REFERENCE.

Begin I/O

Other error messages may be given by the routines which scan and process
the statement.

21. TPPROO--File Processor

Purpose. This routine is called by the READ Processor when the statement
is classified as READ File, and by the WRITE Processor. The File
Processor will call the appropriate routines to process the file

@~a®@@ ~~OOU~~----------------------------F-0~-~:-u-~
- 140 -

reference, to process the FORMAT reference and list if they exist. A
call is also made to the S.ENDI routine to end the I/O POOL Table string.
The routine makes a two-word POOL Table entry (BEGIN I/O) which is the
first two words of the I/O POOL Table entry string. The forms of the
statements which refer to file input or output are:

where:

READ or WRITE
READ or WRITE

(u, n) t
(u) L

u is the file reference
n is the format reference

If t is not an end mark, then the expected form is:

READ or WRITE (u,n) L

where: L is a list of elements to be transmitted.

Method. This routine is entered with the POOL Table type flag in the
A-register and the scan pointer positioned at the left parenthesis
preceding the file reference. An IFN is generated and the first word
of the POOL Table prototype is set up. It then calls the UNTOOO routine
to process the file reference u. If the file reference is followed by
a conuna, it calls the FMOOOO routine to process the FORMAT reference or
NAMELIST name, n. A two-word POOL Table entry is then made as the
beginning of an I/O string.

If the t following the right parenthesis of the u,n specification is not
an end mark, the list processor LISTOO is called. Whether or not the
statement contained a list, the S.ENDI routine is called to end the POOL
Table string for the I/0 statement. Control is then returned to the
caller.

POOL Table

0 2 3

Type

Table Entries

Type

u

3lg for READ
24g for WRITE

1718 2021

4 if u is a constant
0 if u is a variable
4 if n is a constant

35

IFN

n

0 if n is a variable or zero (binary read/write)

- 141 -

FORTRAN IV
Compiler

Usage. The calling sequence is:

TSXl TPPROO
(Normal Return)

Error Returns.

NLPDIG

NRPDIG

LEFT PARENTHESIS IS EXPECTED AFTER THE WORD READ OR WRITE.

THERE SHOULD BE A COMMA OR RIGHT PARENTHESIS AFTER THE
FILE, OR A RIGHT PARENTHESIS AFTER THE FORMAT.

The following diagnostic gives a warning message:

EX COMA UNNECESSARY COMMA. CORRECT FORM IS (FILE, FORMAT) LIST.

Other error messages may be given by the routines which scan and process
the statements.

22. S.ENDI--END I/O Routine

Purpose. This routine is called by the On-line Processor and the File
Processor routines to make a POOL Table entry which terminates the I/O
POOL Table string.

Method. The condition of cell IINOUT is checked to determine whether the
I/0 statement being processed is input or output (zero if input, nonzero
if output). The first word of the POOL Table prototype is set up for
either END READ or END WRITE depending upon the condition of the cell
IINOUT. The second word of the POOL Table prototype is identical to the
second word of the BEGIN I/0 POOL entry. The routine then makes a two
word END I/0 POOL Table entry terminating the I/O string for the source
statement being processed.

Table Entries

POOL Table

0 2 3 1718 2021 35

I :1 I

Type

I

0

I

IFN

I
END I/0

u f 2 n

where Type 373 for END READ
403 for END WRITE

f 1 4 if u is a constant file reference
0 if u is a variable file reference

f 2 4 if n is a constant FORMAT reference
0 if n is a variable FORMAT reference

- 142 -

Usage. The calling sequence is:

TSXl S.ENDI
(Nonnal Return)

Error Return. None.

23. FMOOOO--FORMAT Reference Collector Routine

Purpose. This routine is called by the I/O Statement Processors when a
FORMAT reference is to be processed. The FORMAT reference infonnation
will be placed in the second word of the BEGIN I/O POOL Table prototype.

Method. The scan of the statement will begin with the first character
of the FORMAT reference. The BCD text of the source statement is made
available via the Scanning routines. A FORMAT reference that is a
constant (EFN) will be converted to binary and set in the POOL Table
prototype. If the FORMAT reference is a variable name, the name will
be entered in the NAME Table (if it is not already there) and the
Implicit flag, I.IMP, will be set ON in the flag word. A check is made
as to whether or not the variable is a NAMELIST name. A check is then
made for legal usage of the FORMAT reference name, and if legal, it is
placed in the second word of the BEGIN I/O POOL Table prototype. Return
is·then made to the caller. The second word of the POOL Table prototype
is as follows upon return:

reference n

0 n

depending on whether or not there is a file reference in the source
statement.

4 if the FORMAT reference n is a constant
0 if the FORMAT reference n is a variable or a NAMELIST
name

Usage. The calling sequence is:

Error Returns.

EM0060

TSXl FMOOOO
(Error Return)
(Nonnal Return)

A NAMELIST NAME HAS BEEN DEFINED ELSEWHERE.

- 143 -

DIMDIG FORMAT VARIABLE IS NOT DIMENSIONED.

FMTDIG PUNCTUATION OR ILLEGAL FORMAT REFERENCE HAS BEEN FOUND
INSTEAD OF FORMAT REFERENCE.

24. UNTOOO--File Reference Collector Routine

Purpose. This routine is called by the I/O Statement Processors when a
file reference is to be processed. The file reference information will
be placed in the second word of the BEGIN I/O POOL Table prototype.

Method. The BCD text of the source statement is made available via the
Scanning routines. The scan will begin with the first character of the
file reference.

A constant file reference will be converted to binary and placed in the
second word of the BEGIN I/O POOL Table prototype. If the file
reference is a variable, the name will be entered in the NAME Table (if
not already there) and the implicit flag, I.IMP, will be set ON in the
flag word. A check is made of cell F.DONM which will indicate whether
or not a DO is active at the present time. If a DO is active, the I/0
statement being processed is contained within the DO, and a check has
to be made as to whether a T.RINT Table entry must be made. A T.RINT
Table entry will be made if either of the following conditions exist.

o The DO index and the file reference are equal.

o The DO index and the file reference are both equivalenced variables
(equivalence flag, I.EQV, is set in flag word of both variables).

The variable name is then checked for proper usage and placed in the
second word of the BEGIN I/O POOL Table prototype.

The second word of the POOL Table prototype is as follows upon return
to the calling routine:

0 2 3 1718 2021

I
f

I
u

I
0

I
where: f 4 if u is a constant

0 if u is a variable

Usage. The calling sequence is:

TSXl UNTlOO
(Error Return)
(Normal Return)

35

0
I

.. @~0®®® ~~OOU~~ _____________ r_o~-:7-u-::
- 144 -

Error Returns.

UN DI AG PUNCTUATION OR ILLEGAL FILE REFERENCE HAS BEEN FOUND
INSTEAD OF FILE REFERENCE.

25. LISTOO--I/O List Processor

Purpose. This routine is called by the On-line Processor and the File
Processor when it is determined that a I/O list exists. The list will be
scanned and checked for errors, and if none exist, the list will be
broken down into various table entries.

Method. The I/O List Processor will scan from left to right until a left
parenthesis is found which is not a subscript parenthesis, building as it
proceeds various tables: POOL, T.IODO, T.USUB, T.SUBS, T.INTS, T.RINT.
Upon finding such a left parenthesis (which may be a DO-implying paren
thesis), a right to left scan will be performed, beginning with the end
mark, and continuing until the initiating left parenthesis is again found.
The Backward Scan establishes which left parentheses are DO-implying, and
which are redundant and are to be disregarded. The Forward Scan then
resumes.

Each item in the I/O list is associated with an IFN, which is either the
same or higher by one than that of the preceding item. Each time the IFN
is incremented, an entry is made in the I/O POOL Table string. The entry
will consist of a list of one word entries preceded by a one-word label.
The label word will contain the IFN and a flag (SETIN or SETOUT)
depending on whether an input statement (READ) or an output statement
(WRITE, PUNCH) is being processed. The list following the label will
contain the NAME Table pointers, a flag to indicate whether the variable
is subscripted or not (if subscripted, a pointer to the T.SUBS Table will
be included), and an indication of whether or not the short-list notation
was used.

The following conditions result in the IFN being incremented:

1. The first item in the list increases the IFN, where item is
either a variable name or a DO-implying left parenthesis.

2. A DO-implying parenthesis produces a higher IFN, a T.IODO POOL
entry, and an incomplete entry (with the IFN (origin) in it) in
the T.IODO Table.

3. The variable following the DO-implying left parenthesis produces
a higher IFN and thus a new SETIN/SETOUT POOL entry list.

4. When the indexing parameters of .the implied DO are encountered,
the IFN is incremented, and the indexing parameters and the
newly created IFN are used to complete the T.IODO Table entry
that was generated in 2 above. Since the IFN has been increased,
an (END DO) POOL Table entry is also made.

@ rm re n re@ FORTRAN IV @~0@®& ~l£[ffiUl£&> ---------C-ompi.-·ler

- 145 -

5. The item following the right parenthesis of the implied DO
produces a higher IFN. Thus if the next item is a variable, a
new SETIN/SETOUT POOL list is begun; if it is a DO-implying
left parenthesis, procedure 2 is followed; if the next item is
the index of an implied DO (making it a nested DO), procedure 4
is followed.

6. A nonsubscripted integer variable which is not dimensioned in an
input list produces a T.INTS Table entry. At this point the
POOL Table entry string (including the entry for the variable
that caused the T.INTS entry) is entered in the POOL Table.
This in effect causes the item following to receive a higher IFN.

A buffer area, beginning with PTTEMP, is used to accumulate the SETIN and
SETOUT lists before they are transferred to the POOL Table.

At the conclusion of the Backward Scan, LPRCNT (left parenthesis count)
has the number of the last left parenthesis encountered in the scan;
namely,the left parenthesis that initiated the Backward Scan. As the
Forward Scan continues, the LPRCNT is decremented by 1 each time a left
parenthesis is encountered (except for initiating left parenthesis). For
all nonsubscript left parentheses, it compares its LPRCNT number ,against
the last item in the CN.IDT Table (implied DO Table). If the numbers
match, a DO-implying left parenthesis has been found. The cell TBLCNT,
which is a count of the number of entries in the CN.IDT Table, is reduced
by 1.

The Backward Scan is entered when a left parenthesis which is not a
subscripting parenthesis is encountered. The Scan then begins at the
end mark, looking only for left and right parentheses, and equal signs.
The statement is scanned backwards to and including the parenthesis that
initiated the Scan.

The counter, PARBAL, is increased by 1 for each right parenthesis
encountered and decreased by 1 for each left parenthesis. At the con
clusion of the Scan, PARBAL should be zero, and if not, an error message
will be given indicating the left and right parenthesis do not balance.

The left parentheses, as they are encountered are numbered from 1
(LPRCNT). When an equal sign is encountered, DOCNTR (DO counter) is
increased by 1. This incremented value is the number of remaining DO
implying left parenthesis that must be found.

If the routine, as explained below, decides that a given left parenthesis
is a DO-implying parenthesis, it stores the number of that parenthesis
(LPRCNT) in CN.IDT (implied DO Table). A count of the number of entries
in CN.IDT is kept in TBLCNT (table counter). DOCNTR (DO counter) is also
reduced by 1, thus, DOCNTR indicates the balance between equal signs and
DO-implying left parenthesis.

@~a(ij)(Q)@ ~{g[ffi0~~ ____________ Fo~-:RAN-pu-::

- 146 -

An equal sign is taken as signifying an implied DO. However, if PARBAL
has a value of zero, the equal sign was not preceded (in the Backward
Scan) by a right parenthesis and an error message is given. What is
wanted when the equal sign is found is to find the left parenthesis which
is the mate of the right parenthesis which immediately preceded the equal
sign. To accomplish this, PARBAL is given a value of l; when this
counter falls to zero, we have found its mate. However, when that left
mate is found we wish to restore PARBAL and to continue the scan. The
restored value will be 1 less than it had been when the equal sign was
found. This will set PARBAL to the parenthesis twice removed from the
equal sign. This can be done because scanning from the right parenthesis
preceding the equal sign up to and including the DO-implying left
parenthesis cancel each other out, and so add nothing to PARBAL.

When a left parenthesis is found, PARBAL is decreased by 1. If the
result is not zero, and if DOCNTR (DO counter) is not zero, indicating
that an implied DO has not been accounted for, a DO-implying left
parenthesis has been found. This causes an entry (LPRCNT) to be made in
the CN.IDT Table (implied DO) and the CN.IDT Table counter, TBLCNT, to
be increased by 1. PARBAL is then restored to the value it had just
prior to the implied DO, and the Scan continues.

Up to 8 nested DO's are handled by this routine. More than 8 nested DO's
yield an error message.

Example (Backward Scan)

All numbers represent condition of cell after character has been scanned.
PARBAL that are crossed out represent setting PARBAL to 1 when equal sign
is encountered.

1
0 0001 2 i 1 2 i 1 2 ll PARBAL
(A, ((((B), I=l,3), (C), J=l,3), (D), K=l,3)) SCAN
7 6543 2 1 LP RC NT

012 3 2 1 DOCNTR
321 TBLCNT

1 1 1 CNSAVE
654 CN. IDT

At 1st equal sign, PARBAL is set to 1, and 2-1 1 goes into CNSAVE
At 2nd equal sign, PARBAL is set to 1, and 2-1 1 goes into CNSAVE+l
At 3rd equal sign, PARBAL is set to 1, and 2-1 1 goes into CNSAVE+2

At LPRCNT4, PARBAL is 0 and DOCNTR is 3, therefore 4(LPRCNT) goes into
CN.IDT and PARBAL is restored to CNSAVE+2, or 1.

At LPRCNT5, PARBAL is 0 and DOCNTR is 2, therefore, 5(LPRCNT) goes
into CN.IDT+l and PARBAL is restored to CNSAVE+l, or 1.

- 147 -

At LPRCNT6, PARBAL is 0 and DOCNTR is 1, therefore, 6(LPRCNT) goes into
CN.IDT+2 and PARBAL is restored to CNSAVE, or 1.

At LPRCNTl, PARBAL is 0 and DOCNTR is 0 (indicating implied DO's are
satisfied), therefore, LPRCNT is merely a redundant parenthesis.

Usage. The calling sequence is:

TSXl LISTOO
(Error Return)
(Normal Return)

Error Returns. The following errors cause the Forward Scan to be
discontinued, a diagnostic message given and return made to the calling
program:

E.ERRl ____ SHOULD BE AN ALPHABETIC VARIABLE.

E.ERlO TOO MANY NESTED IMPLIED DOS.

E.ERll PUNCTUATION USED IMPROPERLY AFTER

E.ER12 AT LEAST 2 PARAMETERS MUST FOLLOW = IN AN IMPLIED DO.

E.ER13 IMPROPER PUNCTUATION AFTER----

The following errors will cause a diagnostic message to be given and the
forward scan will continue:

E.ERR2

E.ERR3

E.ERR4

E.ERRS

E.ERR6

E.ERR7

E.ERR8

E.ERR9

E.ER17

E.ER18

E.RR19

E.RR22

----SHOULD BE PRECEDED BY A COMMA.

ILLEGAL PUNCTUATION AFTER----

LEFT PAREN AFTER---- SHOULD BE PRECEDED BY A COMMA.

EXTRA COMMA AFTER----

____ rs A SUBSCRIPTED VARIABLE AND NOT DIMENSIONED.

AN EQUAL SIGN IS NOT ENCLOSED BY PARENS.

IMPROPER USE OF RIGHT FAREN AFTER----

AN EQUAL SIGN IS NOT PRECEDED BY AN INDEX.

----IS AN ADJUSTABLE DIMENSION AND SHOULD NOT BE
REDEFINED.

---- IS A FUNCTION OR SUBROUTINE NAME.

---- IS AN INDEX AND SHOULD BE AN INTEGER.

LEFT AND RIGHT PARENS DO NOT BALANCE.

- 148 -

E.RR23 ----MUST BE AN INTEGER IN AN IMPLIED DO.

E.RR24 A PARAMETER OF ZERO HAS BEEN USED IN AN IMPLIED DO.

The following errors are possible when processing the DO indexing
parameters. The first two will allow the Scan to continue; the third
one will cause a return to the calling routine.

E.ER14 A RIGHT FAREN MUST FOLLOW ___ _

E.ER15 ANOTHER PARAMETER IS NEEDED AFTER----

E.ER16 COMMA OR RIGHT FAREN MUST FOLLOW.

The following errors are possible when the statement is being scanned
backwards. The error message is given and the Backward Scan will
continue:

RTPDIG

LFPDIG

A RIGHT PAREN MUST FOLLOW AN EQUAL SIGN.

A LEFT PAREN HAS NO MATE.

26. S.CHEK--Type Variable Routine

Purpose. This routine determines the type of variable which appears
in the list of an INPUT/OUTPUT statement.

Method. This subroutine is called by the list of I/O Statements Processor,
LISTOO, to determine the type of variable. The actual typing is done by
the S.TYPO routine. Upon return from S.TYPO the type is checked for
input or output. If an input type, control is irrnnediately returned to
the calling routine, LISTOO. If an output type, the implicit flag is
turned ON in the flag word and control returned to LISTOO.

Usage. The calling sequence is:

TSXl S.CHEK
(Normal Return)

Error Returns. None.

27. S.IMFG--Check Implicit Flag Routine

_Purpose. This routine types a variable and adds the implicit flag.

Method. This routine is called by the list of I/O Statements Processor,
LISTOO, irrnnediately following a call to the NAME Table routine, S.NAME.
The variable is typed by the routine, S.TYPO, the implicit flag is
added to the flag word and control returned to the calling program.

FORTRAN IV

Compiler

- 149 -

Usage. The calling sequence is:

TSXl S.IMFG
(Normal Return)

Error Returns. None.

28. S.AJSO--Variable Check Routine for T.INTS and T.RINT

Purpose. This routine examines the variables in the list of an I/O
statement and makes appropriate table entries.

Method. The variable is examined and if it is an output integer, an
entry is made in the T.RINT Table. If the variable is a FUNCTION name,
the cell F.FUNM is set ON. All integer variables will cause an entry
to be made to the T.INTS Table. If the short-list notation is used, a
POOL Table flag is set. Control is returned to the calling program,
LISTOO.

Usage. The calling sequence is:

TSXl S.AJSO
(Normal Return)

Error Returns. None.

29. CNOOOO--Backward Scan Routine

Purpose. This routine is called to perform a Backward (right-to-left)
Scan of the list of an I/O statement.

Method. This routine scans the list of an I/O statement backwards and
checks for implied D0 1 s and a balance of parentheses.

Usage. The calling sequence is:

TSXl CNOOOO
(Normal Return)

Error Returns. There are no error returns for this routine, but the
following fatal diagnostics are written:

RTPDIG

LFPDIG

A RIGHT PAREN MUST FOLLOW AN EQUAL SIGN.

A LEFT PAREN HAS NO MATE.

@~a®@® ~~~~~~-------------------------F-c:-::-il-~
- 150 -

30. S.NTRO--POOL Table Entry Routine

Purpose. This subroutine makes entries into the POOL Table as required
during the processing of a list of an I/0 statement.

Method. Variable length I/O string entries are made in the POOL Table
using S.TPOO, the POOL Table routine. (Refer to Figure 5, page 19).
Return is made to the calling program.

Usage. The calling sequence is:

TSXl S.NTRO
(Normal Return)

The call LISTNO contains the number of entries.

Error Returns. None.

31. S.SUBl--Parameter Processor (I/O List and Implied DO's)

Purpose. This subroutine checks the parameters of an implied DO in an
r/o list.

Method. The parameters of an implied DO in the I/O list are checked. If
there is a third parameter, the T.IODO Table entry is completed. If no
error ~s encountered in examination of the parameters, the IFN and the
end number type are placed in word 1 of the POOL Table entry. Control is
returned to the calling program.

Usage. The calling sequence is:

TSXl S.SUBl
(Normal Return)

Error Return. There is no error return in the calling sequence, but if
an error is encountered, one of the following fatal diagnostic messages
is written and control is transferred to location LIST04 in the calling
program LISTOO.

E.ER14 A RIGHT PAREN MUST FOLLOW ___ _

E.ER15 ANOTHER PARAMETER IS NEEDED AFTER ___ _

E.ER16 COMMA OR RIGHT PAREN MUST FOLLOW ___ _

@j~o(ID@@ ~~[ffi~~~ ___________ Fo_~~~-pil-~:

- 151 -

32. NMLSOO--NAMELIST Processor

Purpose. This routine processes and compiles NAMELIST statements.

Method. The NAMELIST statement is examined and the required code
generated as shown below:

Generated Code

l ,NAME }
l,VNAME
VNAME,D,FT}
SIZE, Dl
O, Dl'"'D2

1st Entry

2nd Entry

Set

NAME BCI
BCI
TALL YD
ZERO
ZERO
BCI
TALL YD
ZERO
ZERO

l,VNAME2 }
VNAME2,D,FT

where:
D

SIZE
FT

NAME
VNAME

ZERO

SIZE, Dl
O,Dl"'D2

0)

7777, for single cell variables

Additional Entry

After Last Entry

1, for 1- or 2-dimension variables
2, for 3-dimension variables
the product of all of the dimensions
O, not applicable
1, integer type
2, real type
2, double-precision type
4, complex type
5, logical type
the name of the NAMELIST
the name of the variable

A set of generated coding is produced for each NAMELIST name appearing
in a NAMELIST statement. The last word in a set is zero. The first word
in a set specifies the NAMELIST name as the location symbol and as the
variable field of a BCI instruction. Within a set, there may be one or
more entries. Each entry consists of two, three or four words. Only the
first two words are used if the variable generating the entry is a single
cell variable. Line 4 is omitted if 1- or 2-dimension variables generate
the entry. There will be one entry for each variable in the list.

Usage. The calling sequence is:

TSXl NMLSOO
(Normal Return)

@~a®@® ~~~O~~--------------------------F-C:-::-u-~:
- 152 -

Error Returns. There are no error returns in the calling sequence but
the following fatal diagnostics are written:

E.NMOl ILLEGAL PUNCTUATION.

E.NM02 ----IS AN ILLEGAL SYMBOL.

E.NM03 SLASHES MUST ENCLOSE NAMELIST NAME.

E.NM04 A NAMELIST NAME,~~--' HAS BEEN PREVIOUSLY DEFINED.

E.NMOS COMPILER EXPECTS LIST BEFORE END OF STATEMENT .•

E.NM06 THE NAMELIST VARIABLE,~ ___ , HAS ADJUSTABLE DIMENSIONS.

33. FRMTOO--FORMAT Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as a FORMAT statement. The statement will be
tested for errors and if none are found, a call of the GG routine will be
made to output a card image to the G* file.

Method. The scan of the statement will begin with the first character
following the T in FORMAT and terminate at an end mark. The FORMAT EFN
is placed in the T.FEFN Table; this table will be utilized when
processing the FORMAT reference in an I/O statement to determine whether
or not the FORMAT exists.

The scan of the statement essentially consists of transferring the format
in BCI into a buffer region of six words, which when full, is placed on
the G* file by the GG routine. The location field of the first card
image contains the FORMAT EFN which is suffixed with the period character.
Blanks, not in alphanumeric fields, are deleted from the text.

Example:
28 FORMAT (12Abb6) FORTRAN source card

28. BCI l,(12A6) GMAP card image

Usage. The calling sequence is:

TSXl FRMTOO
(Normal Return)

.
Error Returns. There are no error returns but the following error
conditions stop further scanning of the statement and result in a
diagnostic message being given:

E.FM02 NO OPENING LEFT PAREN IN FORMAT.

E.FM03 ILLEGAL FORTRAN CHARACTER.

FORTRAN IV

Compiler

- 153 -

E.FM04 ILLEGAL FIELD CONVERSION CHARACTER.

E.FM05 THE CHARACTER X IN OR PRECEDING ____ IS WRONG.

E.FM06 AN H FIELD IS TOO WIDE.

E.FM07 END OF STATEMENT FOUND BEFORE H FIELD EXHAUSTED.

E.FMlO ERROR IN A FW.D TYPE FIELD.

E.FMll END OF FORMAT DOES NOT FOLLOW PAREN BALANCE.

E.FM12 RIGHT AND LEFT PARENS DO NOT BALANCE.

The following errors will interrupt the scan to give a diagnostic
message. The scan then continues in the normal manner:

E.FMOl NO EXTERNAL FORMULA NUMBER ON FORMAT.

E.FM08 ILLEGAL CHARACTER IN H

E.FM09 MORE THAN 3 NESTED LEFT PARENS.

34. FGOOOO--FORMAT Generator Processor

Purpose. This routine processes FORMAT Generator statements, produces
the necessary FORMAT statements and compiles the FORMAT statements into
GMAP coding.

Method. Statements are moved to the SS-Region for scanning. (Since
cards of this type represent a special case, the collecting of cards
normally done by the routine DCOlOO is done directly by this subroutine.)
FORMAT statements are generated from parameter cards and control-type
cards (SPACE, REPEAT, RESTORE and END OF FORMAT) are processed.

Usage. The calling sequence is:

TSXl FGOOOO
(Normal Return)

Error Return. There are no error returns in the calling sequence but the
following fatal diagnostics are written:

FG0301

FG0311

FG0316

FG0319

FG0321

ILLEGAL CONVERSION CHARACTER IN FORMAT.

ERROR IN LOCATING TABLE AT LOC ----. _

NO EXTERNAL FORMULA NUMBER ON FORMAT.

IN REPEAT N, THE N IS MISSING.

IN REPEAT N,A THE A CONTAINS AN ILLEGAL CHARACTER.

- 154 -

35. SEQOOO--Sequence Error Routine

Purpose. This subroutine writes a fatal diagnostic error message when
statements of the source program are out of sequence.

Method. If a TYPE, COMMON, DIMENSION, EQUIVALENCE, EXTERNAL, FUNCTION,
SUBROUTINE or BLOCK DATA statement occurs after the first EXECUTABLE
(or DATA and/or NAMELIST) statement of the FORTRAN source program, con
trol is transferred to this subroutine. An error message is written and
control is returned to the calling routi~e.

Usage. The calling sequence is:

TSXl SEQOOO
(Normal Return)

Error Returns. There are no error returns, but the following fatal
diagnostic message is written:

SEQ090 STATEMENT IS OUT OF SEQUENCE, PLACE BEFORE EXECUTABLE,
DATA AND NAMELIST STATEMENTS.

36. CMNlOO--CO:MMON Statement Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as a CO:MMON statement. The statement will be tested
for errors and, if none are found, the statement will be broken down into
various table entries.

Method. This routine will scan the source statement commencing with the
first character following the N in CO:MMON and terminating at an end mark.
The BCD text is made available via the Scanning routines. If any
variables are dimensioned, the CO:MMON Processor will call the Dimension
Subscript Processor routine to process the actual array dimensions. As
the scan progresses, a check for errors is made and appropriate table
entries are made.

Variable names are added to the NAME Table (if not already there) with
the Type flag (I.REL or I.ITG) set ON implicitly. For each variable in
the statement, a conimon flag, I.COM, is set ON. If the variable is in
BLANK CO:MMON, the I.BCM flag is set ON. If the variable is dimensioned,
the I.DIM flag is set ON and a pointer to the T.DIME Table entry is
entered in the NAME Table flag word (0-17).

Entries are made in the T.DIME Table for each variable that is
dimensioned. The subscripts defining the dimension of an array are
restricted to unsigned integer constants.

FORTRAN IV

Compiler

- 155 -

The C01'1MON block name is isolated or if no block name exists, C01'1MON is
established to be BLANK C01'1MON. The block name in BCI (//bbbb for
BLANK C01'1MON) is inserted in the T.COMO Table. For each C01'1MON variable,
the NAME Table pointer is entered in a separate, successive word of the
table.

Table Entries

T.COMO Table

0 2 3 1718 2021 35
BLOCK NAME BCI}

0 NAMEP (var 1) 0 00000

0 NAMEP (var 2) 0 00000
.

4 NAMEP (var n) 0 00000

Usage. The calling sequence is:

TSXl CMNlOO
(Error Return)
(Normal Return)

Error Returns. The following error conditions stop further scanning of
the statement and result in a diagnostic message being given~

CMNERl

CMNER2

THE VARIABLE NAME---- BEGINS WITH A NUMERIC
CHARACTER.

Illegal punctuation.?'(

The following errors will interrupt the scan to give a diagnostic message.
The scan then continues in the normal manner:

CMNER5

CMNER6

CMNER8

SEQ090

THE VARIABLE NAME ____ HAS PREVIOUSLY APPEARED AS A
SUBPROGRAM NAME.

THE VARIABLE NAME----· HAS PREVIOUSLY APPEARED IN C01'1MON.

THE VARIABLE NAME ____ HAS PREVIOUSLY BEEN DIMENSIONED.

STATEMENT IS OUT OF SEQUENCE. PLACE BEFORE EXECUTABLE,
DATA AND NAMELIST STATEMENTS.

The following errors cause a warning message to be given:

CMNER3 THE C01'1MON BLOCK NAME/----/HAS NO VARIABLE NAMES.
BLOCK NAME WAS IGNORED. WARNING ONLY.

THE

FORIMN IV

Compiler

- 156 -

CMNER7 ONE OR MORE REDUNDANT COMMAS EXIST. WARNING ONLY.

·kOne of the following diagnostics will be given when illegal punctuation
is encountered.

S.PC30 ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE
SYMBOL ___ _

S.PC35 THE PUNCTUATION MARK ____ WAS USED INCORRECTLY.

S.PC40 MISSING PUNCTUATION AT THE END OF STATEMENT.

37. EQVlOO-~EQUIVALENCE Statement Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as an EQUIVALENCE statement. The statement will be
tested for errors and, if none are found, the statement will be broken
down into various table entries.

Method. This routine will scan the source statement conunencing with first
character following the final E in EQUIVALENCE and terminating at an end
mark. The BCD text is made available via the Scanning routines. As the
scan progresses, a check for errors is made and appropriate table entries
are made.

The variable name being equivalenced is added to the NAME Table (if not
already there) with the Type flag (I.REL or I.ITG) set ON implicitly. If
the Equivalence flag, I.EQV, is OFF, it is set ON. If the Equivalence
flag is ON, the Repeatedly Equivalenced flag, I.EQR, is set ON.

Entries are made in the T.EQIV Table for each variable and its associated
subscripts. The T.EQIV prototype is:

Q 2 3

N

0

Where:

1718 2021

NAMEP 0 Subscript-11
. . .

Subscript-ln-l Subscript-ln

N
N

2 for each variable except last
6 for last variable of each group

Usage. The calling sequence is:

TSXl EQVlOO
(Error Return)
(Normal Return)

35

@j~a(ID@® ~~rffiO~~ -------------.-FORTiiioioiioiORAN..........,IV
Compiler

- 157 -

Error Returns. The following error conditions stop further scanning of
the statement and result in a diagnostic message being given.

EQVERl

EQVER2

EQVER7

AN EQUIVALENCE GROUP WITH NO LEFT PARENTHESIS WAS
ENCOUNTERED.

THE VARIABLE NAME ____ BEGINS WITH A NUMERIC CHARACTER.

Illegal punctuation. "i'

The following errors will interrupt the scan to give a diagnostic
message; the scan then continues in the normal manner:

EQVER3

EQVER4

EQVERS

EQVER6

EQVER8

SEQ090

A VARIABLE, ____ HAS APPEARED AS A SUBPROGRAM NAME OR
ARGUMENT.

SUBSCRIPT IN EQUIVALENCE BEGINS WITH ALPHABETIC
CHARACTER, ____ _

SUBSCRIPT IS LARGER THAN 17 BITS.

TOO MANY SUBSCRIPTS ON ONE OR MORE VARIABLES.

ONLY 1 VARIABLE EXISTS IN EQUIVALENCE GROUP.

STATEMENT IS OUT OF SEQUENCE. PLACE BEFORE EXECUTABLE,
DATA AND NAMELIST STATEMENTS.

The following error causes only a warning message:

EQVER9 COMMA MISSING BETWEEN EQUIVALENCE GROUPS. WARNING ONLY.

*One of the following diagnostics will be given when illegal punctuation
is encountered:

S.PC30

S.PC35

S.PC40

ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE
SYMBOL -----

THE PUNCTUATION MARK ----WAS USED INCORRECTLY.

MISSING PUNCTUATION AT THE END OF STATEMENT.

38. DIMlOO--DIMENSION Statement Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as a DIMENSION statement. The statement will be
tested for errors and, if none are found, the statement will be broken
down into various table entries.

Method. This routine will scan the source statement commencing with the
first character following the final N in DIMENSION and terminating at an
end mark. The BCD text is made available via the Scanning routines. The
DIMENSION Processor uses the DIMENSION Subscript Processor routine to
process the actual array dimensions. As the scan progresses, a check for
errors is made and appropriate table entries are made.

FORTMN IV

Compiler

- 158 -

The variable being dimensioned is added to the NAME Table (if not
already there) with the Type flag (I.REL or I.ITG). set ON implicitly.
A pointer to the T.DIME Table entry is set in the flag word of the
NAME Table entry (0-17).

Entries are made in the T.DIME Table for each variable and its associated
subscripts. The T.DIME prototype is:

0 2 3

N .

f

Where:

1718 2021 35

NAMEP f DIM1
DIMn-1 f DI~

N Dimensionality
f 0 if dimension is a variable name pointer
f 4 if dimension is a constant

Usage. The calling sequence is:

TSXl DIMlOO
(Error Return)
(Normal Return)

Error Returns. The following error conditions stop further scanning of
the statement and result in a diagnostic message being given:

DIMERl THE VARIABLE NAME ____ BEGINS WITH A NUMERIC CHARACTER.

DIMER2 Illegal punctuation. ·k

The following errors will interrupt the scan to give a diagnostic message.
The scan then continues in the normal manner:

DIMER3

DIMER4

SEQ090

THE VARIABLE NAME ____ HAS ALREADY APPEARED AS AN ARRAY
NAME.

THE VARIABLE NAME HAS PREVIOUSLY APPEARED AS A
FUNCTION OR SUBROUTINE NAME.

STATEMENT IS OUT OF SEQUENCE. PLACE BEFORE EXECUTABLE,
DATA AND NAMELIST STATEMENTS.

~\·One of the following diagnostics will be given when illegal punctuation
is encountered.

S.PC30 ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE
SYMBOL ___ _

@J~o(ID@@ ~~[ffiU~~ __________ Fo_~~~-pi-1::

- 159 -

S.PC35 THE PUNCTUATION MARK ____ WAS USED INCORRECTLY.

S.PC40 MISSING PUNCTUATION AT THE END OF STATEMENT.

39. TP1000--TYPE Statement Processor

Purpose. This subroutine processes and compiles the TYPE statement.

Method. The next BCI group is obtained via a call to the S.COOO routine.
Upon return, numerics and punctuation are treated as errors. Alphabetics
are checked to be sure the name is entered in the NAME Table. The type
code (REAL, INTEGER, DOUBLE PRECISION, COMPLEX or LOGICAL) is obtained
from the cell .TYPE. (lower 3 bits) and the type in the NAME Table is set
accordingly. The remainder qf the statement is scanned until the
termination character is recognized.

Usage. The calling sequence is:

TSXl TPlOOO
(Normal Return)

Error Returns. There are no error returns. The following fatal
diagnostics are written:

TP1046 THE SYMBOL ____ APPEARS IN SEVERAL TYPE STATEMENTS.

TP1050 COMMA OR END EXPECTED INSTEAD OF ___ _

TP1054 _________ HAS BEEN PREVIOUSLY DIMENSIONED.

TP1060 --------- IS A SUBROUTINE NAME.

TP1066 ILLEGAL USE OF PUNCTUATION OR NUMERIC CHARACTER.

40. S.SCRP--Dimension Subscript Processor

Purpose. This routine is called by the Type, CO:MMON and DIMENSION
Statement Processors to scan the subscript combinations that exist within
these statements. The subscript will be tested for errors and, if none
are found, a T.DIME Table entry will be made.

Method~ This routine will scan the BCD text beginning with the first
character following a left parenthesis and ending in a right parenthesis.
The BCD text is made available via the Scanning routines. As the scan
progresses, a check for errors is made and appropriate table entries are
made.

@~a@@® ~~~O~~----------------------------F-~-=-11-~
- 160 -

The NAME Table pointer for the array name is entered in the T.DIME Table.
If the dimension size is a constant, it is converted to a binary integer
and entered, with an appropriate flag, in the T.DIME Table. If the
dimension size is specified by a variable, the following takes place:

1. The adjustable dimension flag, I.ADM, is set ON in the
NAME Table flag word.

2. The NAME Table pointer of the variable dimension is entered
. in the T.DIME Table.

Variable dimensions are not allowed in a COMMON statement. The flag cell
F.COMO is set when a COMMON statement is processed and, if on when the
Subscript Processor encounters an adjustable dimension, a diagnostic
message will be given.

Usage. The calling sequence is:

TSXl S.SCRP
(Error Return)
(Normal Return)

Error Returns. The following error conditions stop further scanning of
the statement and result in a diagnostic message being given:

S.PC30 ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE
SYMBOL ___ _

S.PC35 THE PUNCTUATION MARK ____ WAS USED INCORRECTLY.

S.PC40 MISSING PUNCTUATION AT THE END OF A STATEMENT.

The following errors will interrupt the scan to give a diagnostic message;
the scan then continues in the normal manner:

SCRERl THE COMMON ARRAY----- HAS VARIABLE DIMENSIONS.

SCRER2 THE ARRAY NAME ____ MUST BE AN ARGUMENT IN THE FUNCTION/
SUBROUTINE STATEMENT.

SCRER3 THE ADJUSTABLE DIMENSION MUST BE AN ARGUMENT
IN THE FUNCTION/SUBROUTINE STATEMENT.

SCRER4 THE ADJUSTABLE DIMENSION---- IS NOT AN INTEGER TYPE.

SCRERS THE ARRAY ____ HAS TOO MANY DIMENSIONS.

SCRER6 THE ARRAY ____ HAS A DIMENSION OF ZERO.

SCRER7 SUBSCRIPT IS LARGER THAN 17 BITS.

- 161 -

41. XTNlOO--EXTERNAL Statement Processor

Purpose. This subroutine processes the EXTERNAL statement.

Method. The statement is scanned, symbols are checked for inconsistent
usage and if none, the external flag is set. A call is made to the GG
routine to generate the appropriate code.

Usage. The calling sequence is:

TSXl XTNlOO
(Normal Return)

Error Returns. There are no error returns. The following fatal
diagnostic is written:

XTN138 _____ WAS PREVIOUSLY USED IN A CONFLICTING WAY.

42. FNC100--FUNCTION Statement Processor
SBRlOO--SUBROUTINE Statement Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as a FUNCTION or SUBROUTINE statement. This routine
also processes FUNCTION statements which are Typed (REAL FUNCTION,
INTEGER FUNCTION, LOGICAL FUNCTION, COMPLEX FUNCTION and DOUBLE PRECISION
FUNCTION). Testing for syntax errors in the source statement will be
done and, if none are found, the -statement will be broken down into
various table entries. If a Type FUNCTION is being processed, the cell,
.TYPE., will contain the appropriate type flag.

Method. This routine will scan the source statement commencing with the
first character following the final N in FUNCTION or the final E in
SUBROUTINE, and terminating at an end mark. The BCD text is made avail
able via the Scanning routines. As the scan progresses, a check for
errors is made and appropriate table entries are made.

The Subprogram name is entered in the NAME Table with the Function Name
flag, I.FNM, set ON. If it is a Type FUNCTION statement, the Explicit
flag, I.EXP, and the appropriate Type flag are set ON; otherwise the Type
flag, I.REL or I.ITG, is set ON by the implicit rule. Any arguments
found are entered in the NAME Table with a Type flag set by the implicit
rule. The Program Argument flag, I.ARG is also set ON.

When there are arguments to the subprogram, an entry is made in the
T.ARGS Table. In that these arguments are dummy arguments, the T.ARGS
Table will be used to generate the program prologue. The number of
asterisks (*) that are used to indicate nonstandard returns is counted
for reference later when compiling RETURN statements.

FORTRAN IV

Compiler

- 162 -

0

Arg. Count

NAMEPz

NAMEPn-l

Table Entries

1718

NAMEP1

NAMEP3

NAMEPn

35

The BCD name of the FUNCTION or SUBROUTINE is placed in the cell PR.NAM
as the source program name. The cell PR.TYP which was initialized to
zero is set with the NAMEP (Name Table pointer) of the subprogram name
in bits 18-35. If the subprogram is a FUNCTION subprogram, a 1 is
placed in bit position 0.

Usage. The calling sequences are:

TSXl FNClOO
or TSXl SBRlOO

process a FUNCTION statement
process a SUBROUTINE statement

(Error Return)
(Normal Return)

Error Returns. When an error is encountered, scanning of the statement
is terminated and the error return is taken. The following diagnostic
messages exist.

FNCERl

FNCER2

FNCER3

FNCER4

FNCERS

FNCER6
S.VAER

FNCER7
S.PCER

FNCER8

MORE THAN ONE FUNCTION/SUBROUTINE STATEMENT APPEARS IN
PROGRAM.

THE FUNCTION/SUBROUTINE NAME BEGINS WITH A NUMERIC
CHARACTER.

Illegal punctuation.,.,

THE FUNCTION/SUBROUTINE STATEMENT IS NOT FIRST IN THE
PROGRAM.

A FUNCTION STATEMENT MUST HAVE AN ARGUMENT LIST.

THE VARIABLE NAME ____ BEGINS WITH A NUMERIC CHARACTER.

Illegal punctuation.,.,

AN ARGUMENT APPEARS PREVIOUSLY IN THE PROGRAM OR
IN AN ARGUMENT LIST.

1'•0ne of the following diagnostics will be given when illegal punctuation
is encountered.

FORTRAN IV

Compiler

- 163 -

S.PC30 ILLEGAL OR MISSING PUNCTUATION AFTER OR NEAR THE
SYMBOL ___ _

S.PC35 THE PUNCTUATION MARK ____ WAS USED INCORRECTLY.

S.PC40 MISSING PUNCTUATION AT END OF STATEMENT.

43. BLDlOO--BLOCK DATA Statement Processor

Purpose. This routine is called after the Dictionary Scan has
determined that this BLOCK DATA statement is the first statement of the
program.

Method. Processing consists of turning on a switch, F.BLOC, to indicate
that the program is a BLOCK DATA subprogram. The cell PR.TYP (bit 2) is
set to 1. Control is then returned to the calling program.

The status of the F.BLOC switch is recognized by the Dictionary Scan in
Phase One as allowing only the following statements in a BLOCK DATA
subprogram~ COM.MON, EQUIVALENCE, DIMENSION, DATA, END and TYPE. The
appearance of any others will cause a diagnostic message. The F.BLOC
switch is initialized to off by the Phase One Initialization section. It
is located in the Phase One COMMON block.

In the Storage Allocator section of Phase One, the status of the PR.TYP
cell is tested as follows:

1. PR.TYP cell (0-2) is zero, DATA variables may not be in any
COMMON.

2. PR.TYP cell (bit 2) is a one, DATA variables ~ be in labeled
COMMON.

Phase Two is called to complete the compilation of DATA.

Usage. The calling sequence is:

TSXl BLDlOO
(Normal Return)

Error Returns. None.

44. SA0100--Storage Allocator for Blank and Block Common

Purpose. This subroutine and the subroutine SA0200 process the COMMON
Tables and compile the required code.

FORTRAN IV

Compiler

- 164 -

Method. The COMMON Table (T.COMO) contains the information to be pro
cessed. An entry in this table consists of block names in BCI form and
pointers to the variable list. The pointer is contained in bits 3-17; the
last pointer in a variable list is prefixed by a bit in position 0. The
block name and size is entered in the T.BLOC Table. Equivalenced
variable names with the T.BLOC pointer and the relative T.BLOC pointer are
entered in the T.EQCO Table. If the fatal diagnostic flag is OFF, the
appropriate instructions are generated.

The list of variables in the COMMON statement are processed by the routine
SA0200 which is a separate portion of this routine. Each variable name
is checked for legality. An entry is made in the T.EQCO Table if the
variable is equivalenced. The size of the variable is computed and the
appropriate instructions are compiled.

Sample COMMON Statements

COMMON SHRTl, SHRT2, SHRT3, VFORM, DIAG

The above statement specifies that the list of variables shall reside in
BLANK COMMON. The variables are either nondimensioned or dimensioned as
follows:

DIMENSION SHRT3 (2,2,2), VFORM (20)
DOUBLE PRECISION SHRTl (2,2)
COMPLEX SHRT2 (3)
INTEGER DIAG

The generated code for the list of variables in the BLANK COMMON statement
above would be:

1 8 16
BLOCK

SHRTl BSS 8
SHRT2 BSS 6
SHRT3 BSS 8
VF ORM BSS 20
DIAG BSS 1

A BLOCK COMMON statement might appear as follows:

COMMON /BLDAT/ CPVAR, XA, SSVAR(4)

FORTRAN IV

Compiler

- 165 -

The name of this BLOCK COMMON area is BLDAT. The variables in the list
are dimensioned as follows:

CPVAR(3,2)
XA(3)
SSVAR(4)

- Complex
Double precision

- Real

The generated code would appear as follows:

1 8 16
BLOCK BLDAT

CPVAR BSS 12
XA BSS 6
SSVAR BSS 4

Usage. The calling sequence is:

TSXl SAOlOO
(Normal Return)

Error Returns. There are no error returns in the calling sequence. The
following fatal diagnostic messages are written:

SA0183 II COMMON ASSIGNMENT ILLEGAL IN BLOCK DATA SUBPROGRAM.

The following messages are written by the subroutine SA0200:

SA0276 ILLEGAL VARIABLE TYPE IN COMMON.

SA0279 ODD LOCATION FOR DP OR COMPX IN COMMON.

45. SA1010--Storage Allocator for Equivalenced Variables

Purpose. This subroutine processes EQUIVALENCE Tables and generates the
required coding. The subroutines SA2010, SA3010 and SA4010 are component
parts of this subroutine.

Method. The EQUIVALENCE statement has the general form:

EQUIVALENCE (a,b,c), (d,e,f), ..•...

The list of variables within a set of parentheses, for example (a,b,c)
is called a group. The EQUIVALENCE Table, T.EQIV is examined by groups.
During this scan, another table, T.LIST, is constructed. The T.LIST Table
contains entries for those variables which appear in more than one
equivalence group. An entry is composed of a T.EQIV Table pointer, the
NAME Table pointers and an addend locating the variables within their
arrays.

FORTBAN IV

Compiler

- 166 -

EQUIVALENCE (A,B,C), (A,X,Y), (B(2),Q,W)

T. LIST Table l --:.~ c~

{ T .EQIV Table Pointer to first group
T.NAME Table Pointer to variable A

Entry 1 T.NAME Table Pointer to variable B
Addend for A = 0
Addend for B = 0

11~:. ., \\I

(T.EQIV Table Pointer to second group
Entry 2 T.NAME Table Pointer to variable A

Addend for A = 0

(T.EQIV Table Pointer to third group
Entry 3 T.NAME Table Pointer to variable B

Addend for B = 1

The T.LIST Table is used to construct another table, T.REQU, which is a
reordered or reorganized T.EQIV Table. All groups which can be linked
by a variable appearing in both groups are consolidated into a single
group. During this process, redundant and inconsistent equivalences are
detected. The redundancies produce warning diagnostic messages; the
inconsistencies produce fatal diagnostic messages. While the T.REQU
Table is being constructed, the T.BASE Table is also being fonned. For
each group, a base variable and addend are stored. The base variable may
be:

o A COMMON variable which appears in the group

o The last variable of the group

A check is made for redundancies and/or inconsistencies during creation of
the T.BASE Table. Finally, using the T.BASE and T.REQU Table infonnation,
the necessary code is generated for storage assignment.

Sample EQUIVALENCE Statements

COMMON CPVAR
COMPLEX CPVAR(3,2)
EQUIVALENCE (EDATA,CPVAR)

Generated code: (for EQUIVALENCE only)

1 8 16
EDATA EQU CPVAR

@~
0
®®® ~~[ffi ~ ~~ _________ _..........FORT.....,.RAN IV

Compiler

- 167 -

The entire code for the above 4 statements would be:

1 8 16
BLOCK

CPVAR BSS 12
EDATA EQU CPVAR

Given this source card sequence,

DIMENSION EREAD(48)
EQUIVALENCE (EREAD, CPVRX), (EREAD(l3),XAX)

this code.will result:

8
EREAD BSS 48
CPVRX EQU EREAD
XAX EQU EREAD+l2

Usage. The calling sequence is:

TSXl SA1010
(Normal Return)

Error.Returns. There are no error returns in the.calling sequence. The
following diagnostics are written:

SA1082 ----INCONSISTENCY IN EQUIVALENCE.

·kSA1084 ----REDUNDANCY IN EQUIVALENCE. WARNING ONLY.

~··A warning message. Compilation continues.

The following messages originate in routine SA3010:

SA3062 VARIABLE ___ OF ADJUSTABLE DIMENSIONS MAY NOT BE
EQUIVALENCED.

SA3065 A SINGLE VARIABLE ____ MAY NOT BE REFERENCED AS AN
ARRAY IN EQUIVALENCE.

SA3068 EQUIVALENCE AND DIMENSION STATEMENTS DO NOT AGREE
FOR ____ _

The following messages originate in routine SA4010:

SA4521 ---- AND IN DIFFERENT COMMON BLOCKS
ILLEGALLY EQUIVALENCED.

FORTRAH IV
Compiler

- 168 -

SA4531 ---- AND IN SAME COMMON BLOCK INCONSISTENTLY
EQUIVALENCED.

°l'>SA4531 ---- AND IN SAME COMMON BLOCK REDUNDANTLY
EQUIVALENCED. WARNING ONLY.

SA4551 NONCOMMON ILLEGAL FOR EQUIVALENCE IN BLOCK DATA
SUBPROGRAM.

SA4561 ----EXTENDS COMMON BLOCK BEYOND ORIGIN.

SA4571 ---- (DP OR CX) REQUIRES EVEN ADDEND WITH BASE.

46. ENTYOO--ENTRY Statement Processor

Purpose. This routine is called after the Dictionary Scan has classified
the source statement as an ENTRY statement.

Method. If ther_...e..'.'.",i,~--~n argument list with
is made in the(r .ARG

1
S/Table.

\._____/'

Table Entries

T.ARGS Table

0 56 1718

No. of Ar uments x
/, ;~::..~~·-"")'

i:{T .NAME Ar

P(T.NAME)Ar 2

1

3

3s .BU1 P -c6.lI· tll29_
---- . ' VI i,h\.r (?!x 2 ·~J) fld.- cJ 1- ' .,, ,, a· - .
~ 1 • - ,,, c,,.Lvv-l1<-. ~ lrL..,.

etc. etc. ~-t.V K.> .,c Ot) - - - - - - - - -- - - - -- -- - - - -- - - J• ~&\} ({,Nt·sz) f"e,;i .. : fJtl.

where X /Y') ,t dL11.. ..,? the number of this argument list. This number is increased ('
by 1 for each ENTRY statement.

Entries are also made in two other tables.

T.ENTY Table

x

where X
IFN

Table Entries

0 T IFN

the number of this entry.
the IFN of the next statement.

FORTRAN IV

Compiler
- 169 -

T.JUMP Table

5 J IFN T IFN

Usage. The calling sequence is:

TSXl ENTYOO
(Normal Return)

Error Returns. There are no error returns in the calling sequence but
the following fatal diagnostic messages are written:

ENTYMl ENTRY IS MISPLACED.

ENTYM2 ENTRY IS WITHIN A DO.

ENTYM3 ENTRY NAME BEGINS WITH A NUMERIC.

ENTYM4 ENTRY NAME IS MISSING.

ENTYMS ENTRY NAME USED PREVIOUSLY.

ENTYM7 FUNCTION ENTRY MUST HAVE AN ARGUMENT LIST.

1~·· - 11--'- I2 O u cJ \~ L C?l\J c ~ pcvJ.,;=:l

(

') i .JI. ,,.,-· ,.V (L,r.1 ~,., /?. i(I I
(.).le_)rv~ ,:, S tV •v &"-'.:'-• ~ S · 1

\

@~a®@® ~~OOU~~-------------------------F_o~-~-u-~
- 170 -

4. P H A S E T W 0

Phase Two of the FORTRAN IV Compiler uses the information contained in the
Buffered, POOL and NAME Tables and generates the required GMAP code. The table
information is the actual source program statements in a form which can be
processed by the compiler.

After Phase One has been completed, control is returned to the Executive Phase for
loading of Phase Two. When the two assemblies which comprise Phase Two are
loaded, control is transferred to the Phase Two Executive Routine, PH2000. This
Executive Routine controls the processing of the table information through calls
to various subroutines.

Initially, the Phase Two Executive Routine checks the source program flow to
ensure that every statement can be reached at execution time. This verification
is performed by comparing the IFN+l of each transfer-type statement in the pro
gram with a table of destination IFNs for each transfer-type statement in the
program. If there is no match, an inaccessible statement is indicated and the
compiler writes a diagnostic message indicating the nearest EFN.

A second function is performed as GMAP coding is generated for DATA statements
contained in the source program. The subroutine CK.DOS is called to check the
legality of transfers into the range of DO statements. An error sensed during
this check causes a diagnostic message and control is returned to the Executive
Phase.

The required initializations are performed and the main compiler begins pro
cessing each statement as it is retrieved from the POOL Table. If a statement
is a comment, it is simply written on the G* file and the next statement is
obtained. Noncomment statements are tested for the following:

1. Beginning of a DO loop?

2. An END statement?

3. A DO-ending?

4. Beginning of a Basic Block?

The DO Indexer routine analyzes and generates all coding for DO statements. As
each DO statement is encountered, whether it occurs singly or in a nest, the DO
indexer generates the required coding for the beginning and end of each DO

@~a@@@ ~~~~~~------------------------F-0~-~=-u-::
- .171. -

statement. The instructions generated by the beginning of the outermost DO
statement are written directly on the G* file. The coding for the end of a DO
statement is written.into the T.COLT Table for use later. In the case of nested
DO statements, the coding for both the beginning and the end of a DO statement is
also written into the T.COLT Table. All subscripted variables in the DO range
are noted and coding is generated for the initialization and incrementation of
the indexes. It should be noted that the DO Indexer does not return control to
the main compiler until the entire range of a DO statement has been processed.
If intermediate statements occur within the range of a DO, they are not
processed until all of the DO statement is finished. When the DO statement, or
nest of DO statements, is completed, the main compiler will process the inter
mediate statements and merge the required DO statement instructions from the
T.COLT Table into the program.

The END statement causes control to pass to the final section of the main
compiler.

The Basic Block Indexer is called to examine a Basic Block and to generate the
necessary indexing instructions. A Basic Block is defined as a linear stretch
of code having only one entry and one exit and not within the range of a DO
loop. If the indexer finds subscripts in the Basic Block during its examination,
the generation of indexing instructions is required; the absence of subscripts
reduces the function of the indexer to a simple process.

All statements other than DO, DO-ending or END are processed by the main compiler.
In most cases individual subroutines will be called as required to process the
table information which constitutes the source statement. The GMAP Code
Generator Routine (GG) is frequently called to build and output lines of GMAP
coding.

Finally the prologue logic of necessary save and initialization instructions is
compiled including the erasable storage to be used at execution time. The
linkages will be restored and control is returned to location PE.070 in the
Executive Phase. The following figure shows the flow of Phase Two of the
FORTRAN IV Compiler.

- 172 -

PH2000

PH2010

No

PH2040

PH2045

PH2050

Figure 8.

Start

Save
Linkage

Get a
Statement

Can it be
reached?

Yes

All finished?

Statements

Check DO
Branches

Any errors?

No

Perform
Initializa

tions

Get a Statemen
from the

POOL Table

No Write
Fatal

Diagnostic

Yes Output Card
Comment Card.? 1------1>1 Image to

G7': File

Phase Two Flow Diagram

- 173 -

PH2070

PH2125

PH2220

PH2260

PH2410

Yes
Start of Call DO

a DO? Indexer
No

END Yes

Statement?

Set Basic
1---~ Block begin-._ _ __.....,

ning to next
IF

----Z.----Yes
Start a Call Basic

1-----t!J!MBlock Indexe Basic Block?
No

r-;:\ Call Main
~i-----11>..-.• Compiler

Compile
Prologue

Logic

Compile
Erasable
Storage

Return to
r-----1..-tExecutive Phase

Routine at PE.070

Figure 8. (continued)

@~a@@@ ~~[ffi~~~ ____________ F_o~-~~-u-~:
- 174 -

1. S.TPOO--POOL Table Routine

Purpose. This subroutine retrieves entries from the POOL Table.

Method. This routine is described in Chapter 1 of this manual.

Usage. The calling sequence is:

TSXl S.TPOO
(Normal Return)

Upon return the tally word (TA,CT) is in the A-register.

Error Returns. If an error is encountered in the POOL Table, return is
made directly to location PE.070 in the Executive Phase. The following
fatal diagnostics are written:

S.TP61 UNEXPECTED EOF READING T.POOL TABLE.

S.TP63 T.POOL TABLE SEQUENCE ERROR.

2. CK.EFN--EFN Check Routine

Purpose. This routine checks the EFN on a FORMAT statement to see if
the same EFN appears on an executable statement.

Method. Entries from the T.FEFN Table are compared with entries from
the T.EIFN Table. If the same EFN appears on an executable statement
and a FORMAT statement, a warning diagnostic message is written.

Usage. The calling sequence is:

TSXl CK.EFN
(Normal Return)

Error Return. A warning diagnostic message is written.

CK.F40 THE EFN APPEARS ON A FORMAT STATEMENT AND AN
EXECUTABLE STATEMENT.

3. S.PROL--Prologue Compile Routine

Purpose. This subroutine compiles the pro~ogue instructions for the
source program.

FORTRAN IV

Compiler

- 175 -

Method. The subroutine is entered once for each FUNCTION, SUBROUTINE
and ENTRY statement with arguments in the T.ARGS Table. The Argument
Name Pointer is in index register 4. The subroutine matches the AN
pointer with T.NAME Table pointers retrieved from the T.PROL Table.
Instructions are compiled as indicated by the T.PROL entry.

Usage. The calling sequence is:

TSXl S.PROL
(Normal Return)

Error Returns. None.

4. PH2BGN--Search, Match, Find and Merge Routine

Purpose. This subroutine is used to determine if coding is to be
merged into the G"k file; the coding to. 'Q.e merged is also located by this
routine in the T.COLT Table.

Method. The subroutine searches the T.BGIN Table for an IFN equal to
the current IFN. If a match is found, the T.COLT Table is searched to
find a block of coding to be merged into the GMAP coding being generated.

Usage. The calling sequence is.:

TSXl PH2BGN
(Normal Return)

Error Returns. None.

5. PH2KIL--Table Kill Routine

Purpose. This subroutine releases Buffered Tables.

Method. This subroutine calls the Buffered Table Kill Routine, S.TKOO,
to kill the T.BGIN, T.OUTS, T.LDXR and T.COLT Buffered Tables.

Usage. The calling sequence is:

TSXl PH2KIL
(Normal Return)

Error Returns. None.

- 176 -

6. MC2000--Phase Two Main Compile Routine

Purpose. This subroutine examines the type number of a POOL Table entry
and transfers control to the appropriate routine which will compile the
executable statement.

Method. The POOL Table entry is obtained; all information is masked out
except the type number which is placed in the upper Q-register. Control
is then given to a table of transfer instructions; one for each type of
statement. The appropriate transfer instruction in the table is selected
by the type number in QU modifying the basic address of the transfer
table. For executable statements, control will be given to the appropri
ate statement processor. For nonexecutable statements, control returns
normally to the calling program.

Usage. The calling sequence is:

TSXl MC2000
TALLY L(T.POOL) ENTRY, WORD COUNT
ZERO L(IFN)
(Normal Return)

Error Returns. None.

7. IFBNOO--Operation Compile Routine

Purpose. This subroutine·compiles a transfer-type instruction with an
address of an IFN or a B.N where N is an integer.

Method. This subroutine is called when compiling instructions for an
Arithmetic or Logical IF, a Computed GO TO or for an Unconditional GO TO
statement. The T.OUTS Table is examined. If there is an entry in the
T.OUTS Table corresponding to the transfer-type instruction to be
compiled, the B.N symbol will be used for the address. If there is not
an entry in the T.OUTS Table, the IFN will be used. Entries in the
T.OUTS Table are dependent upon entries in and out of DO loops.

Usage. Upon entry to this routine the T.JUMP pointer is contained in
the A-register. The calling sequence is:

TSXl IFBNOO
ZERO L(Operation in BCD)
(Normal Return)

Error Returns. None.

FORTRAN IV

Compiler

- 177 -

8. BN.000--T.JUMP Pointer Check Routine

Purpose. This subroutine checks the T.OUTS Table to see if the T.JUMP
pointer is there.

Method. Upon entering this routine the T.JUMP pointer is contained in
the A-register. Consecutive entries are obtained from the T.OUTS Table
and compared. If the T.JUMP pointer is found, return is made with a bit
in position zero of the Q-register, N of B.N is in QL and the IFN is in
QU. If the T.JUMP pointer is not found, return is made with only the
IFN in the upper half of the Q-register.

Usage. The calling sequence is:

TSXl BN.000
(Normal Return)

Error Return. None.

9. BCD200--BCD Corrnnent Routine

Purpose. This subroutine is called to process a BCD corrnnent from the
POOL Table.

Method. The GG routine is called to generate the coding to assemble the
BCD corrnnent as a GMAP card image. Corrnnent cards of less than 72
characters are appended with blanks. All cards are appended with blanks
in columns 72-83 and an asterisk is placed in column 84.

Usage. The calling sequence is:

TSXl BCD200
(Normal Return)

Error Returns. None.

10. IFA200--Arithmetic IF Routine

Purpose. This subroutine compiles the necessary transfer instructions
for an Arithmetic IF statement after the coding for the arithmetic
expression has been generated.

Method. The general form of the IF statement is:

IF(---) Ml, M2, M3

FORTRAN IV

Compiler

- 178 -

The expression within the parentheses is compiled by the Arithmetic
Processor, ARCODE. The symbols Ml, M2 and M3 represent the branches
of the statement. This routine checks to determine if any of the branch
EFNs are the same or if any branch is the same as the EFN of the next
statement. The appropriate transfer instructions are compiled as needed.

The subroutine IFBNOO is used to compile the code when it is given a
destination IFN and the transfer type operation.

Usage. The calling sequence is:

TRA IFA200
(Return to routine PH2000 at 2,1)

Upon entering the routine the A-register contains the POOL Table tally
word.

Error Returns. None.

11. IFL200--Logical IF Routine

Purpose. The subroutine compiles the necessary code for Logical IF
statements.

Method. The logical expression within the parentheses is compiled by
the Arithmetic Processor, ARCODE. Then this subroutine compiles one
instruction. The location field contains the current IFN with a suffix
of 11 F. 11 for the false condition; the operation field contains 11 FEQU 11

and the variable field contains the IFN obtained from the T.JUMP Table,
which is the IFN of the statement following the Logical IF. A suffix
of 11T. 11 is prepared by this routine for use in the location field of the
GMAP code for the true side of the Logical IF statement. The sequence
of code will be similar to the following:

T-- nF.

nF. FEQU IFN

nT. NULL

Usage. The calling sequence is:

TRA IFL200
(Return to PH2000 at 2, 1)

FORTRAN IV

Compiler

- 179 -

Upon entering this routine the A-register contains the POOL Table tally
word.

Error Returns. None.

12. GT0200--Unconditional GO TO Routine

Purpose. This subroutine calls the IFBNOO routine to compile a transfer
instruction for the GO TO statement.

Method. The POOL Table entry contains the T.JUMP pointer. The sub
routine IFBNOO is then called to compile a TRA instruction to the
destination using the information from the T.JUMP Table. Either of the
two following instructions will be generated:

TRA IFN

or

TRA B.N

Usage. The calling sequence is:

TRA GT0200
(Return to PH2000 at 2,1)

When entering this routine, the A-register contains in bits 0-17 the
pointer to the first word of the T.POOL Table entry.

Error Returns. None.

13. GTA200--Assigned GO TO Routine

Purpose. This routine sets up coding to cause a transfer to the state
ment number last assigned to the GO TO variable.

Method. Prior to setting up the transfer coding, this routine checks
to determine if any statement number or numbers are in the T.OUTS Table.
If so, coding must be set up to transfer to the appropriate B.N IFN
instead of the IFN of the statement number assigned.

The generated code for a simple case will be:

TRA v,I

FORTRAN IV
·@~ 0 (ID@@ ~~[ffi~~~ ---------~C-omp~iler

- 180 -

For the case where the transfer IFNs appear in the T.OUTS Table (loading
and restoring of index registers will be required) the generated code
will appear as follows:

LDA v
LDXl O,DU
RPT m,2,TZE
CMPA ;'1"+3' 1
TTF -1, 11'1"

TRA v,I
ZERO IFN
ZERO B.nl
ZERO IFN
ZERO B.n2

ZERO IFN
ZERO B.~

Usage. The calling sequence is:

TRA GTA200
(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table pointer.

Error Returns. None.

14. GTC200--Computed GO TO Routine

Purpose. This routine compiles the necessary code for a Computed GO TO
statement.

Method. The following code is generated by this routine:

LDQ (VAR) (Name of variable)
LDA (IFN), DL (IFN of Current Statement)
EAXl O,QL
TZE .CGTE. Call Error Trace
CMPXl (BRC+l), DU (Branch Count)+l
TRC .CGTE. Call Error Trace
XEC ,., '1
TRA (IFN) (One TRA for each branch)
TRA (IFN)

- 181 -

If the variable name is an argument, an entry is made in the T.PROL
Table and the variable field is compiled as **· The routine IFBNOO is
called to compile the TRA instructions at the end of the list.

A flag, location .CGTE., is set to tell the controlling routine that the
sequence of instructions for the error trace call must be generated at
the end of the compilation.

Usage. The calling sequence is:

TRA GTC200
(Return to PH2000 at 2,1)

Upon entry the A-register (0-17) contains the T.POOL Table pointer.

Error Returns. None.

15. ASN200--ASSIGN Routine .•.

Purpose. This routine compiles the required code for the ASSIGN state
ment from its POOL Table entry.

Method. The routine compiles either

or

LDA (IFN),DU
STA (VAR. NAME)

(SYM) LDA
STA

(IFN) ,DU

The latter form is used when the variable name is an argument.

The statement number (EFN) assigned to the variable is in the POOL Table.
This EFN is matched against the EFNs in the T.EIFN Table to obtain the
corresponding IFN to be compiled. If the EFN is not in the T.EIFN Table
a fatal diagnostic message is written.

Usage. The calling sequence is:

TRA ASN200
(Return to PH2000 at 2,1)

Upon entry the A-register (0-17) contains the T.POOL Table pointer.

- 182 -

Error Returns. There are no error returns, but the following fatal
diagnostic message may be written.

ASN298 THE ASSIGN STATEMENT AT IFN ____ REFERS TO A NON-
EXISTENT EFN.

16. PAS200--PAUSE Routine

Purpose. This subroutine generates code to handle the PAUSE statement.

Method. This subroutine generates code to perform two functions.

1. Type the message:

.-PAUSE. N r_HIT EOM TO. QONTINUE-:- ,,--
;, -

,/,'J. 3
where N = the integer number on the PAUSE,"source statement.

2. Delay (with no message) until the operator hits _the EOM key.

The generated code is as follows:

:;;: (IFNl) MME
/ OCT

I

ZERO
RTYP
ZERO
ZERO

l MME
1 LDA

L'··-·--~--- ? (CNAA~., · -·- ... fz:e-··

,_. -

TRA
(IFN2) IOTD
(IFN3) OCT

BCI
OCT

(IFN4) IOTD
(IFNS) BCI
(IFN6) ZERO

ZERO_,
(IFN7) BCI

... --,
--~·~ ------- - - ,.. .

GEINOS
130000000002
(IFN7),(IFN2)

0, (IFN4.)
(IFN6)',
GE~OAD - I ' . I ' I
"/((31000' DU .. J,, .. J.: .~ E- ,,r;{f(\ µ (V--tt- (/'· -
(IFN6) nJ,1PU-)-.1? ,l)o1't\,l.fv\ ,Y..l I '

(IFNl) I ~--~--- ' ~-
(IFN7)-H /~ ~ ri f~'\11 /-rJ)
(IFN3),8 ((' -;~· 1 • .?/l .. C-·t:..-r'/ 1

• !_J
770017171717 - -- --- "-, :.? C 'I
6 ;PAUSE /HIT . EOM ro-·CONT:rNlJE;-
776017171717 .
(IFNS); 1
1,.

1, OOOOT·k

Usage. The calling sequence is:

TRA PAS200
(Return to PH2000 at 2,1)

Upon entry to this subroutine the A-register contains the POOL Table
tally word.

- 183 -

Error Returns. None.

17. RET200--RETURN Routine

Purpose. This routine compiles the required code for a RETURN statement.

Method. Two sets of code can be compiled by this routine. If the
return is from a subroutine program:

RETURN

or

RETURN

or

LDQ
EAXl
LDA
CMPXl
TRC
STXl
RETURN

(PR.NAM) Standard return

(PR.NAM),K Nonstandard return

(VAR) Variable nonstandard return
O,QL
(IFN), DL
(MAX. RET. NO.+l),DU
.CGTE.
·k+2
(PR.NAM),O

If the return is from a function program:

DFLD F.NAME Double Precision

or

LDAQ F.NAME Complex

or

FLD F.NAME Real

or

LDQ F.NAME Integer/Logical

Each of the above items is followed by:

RETURN (PR.NAM)

The cell PR.NAM contains the BCD name of the subprogram. The cell
PR.TYP contains the T.NAME pointer in bits 18-35; bit position zero is a
1 for functions; a 0 for subroutines.

@~a(@@(Q) ~~[ffi~ ~~ ___________ Fo_~~~-pil-::

- 184 -

Usage. The calling sequence is:

TRA RET200
(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table tally
word.

Error Returns. None.

18. STP200--STOP Routine

Purpose. This routine generates the code required for a STOP statement.

Method. The code generated is:

CALL .FEXIT

Usage. The calling sequence is:

TRA STP200
(Return to PH2000 at 2,1)

Error Returns. None.

19. CAL200--CALL Routine

Purpose. This subroutine calls the Arithmetic Processor, ARCODE, to
generate the required code for the CALL statement.

Method. Control is transferred inunediately to the ARCODE routine.

Usage. The calling sequence is:

TRA CAL200
(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table tally
word.

Error Returns. None.

@~ 0 ®®® ~~[ffi ~ ~~ -----------------.FORT---.RAN.....__IV
Compiler

- 185 -

20. RC2000--0n-Line Routine
PR2000
PN2000

Purpose. This routine compiles the required coding for READ (cards),
PRINT and/or PUNCH statements.

Method. This subroutine checks for a format or namelist reference; if
one is found the flag at cell WR2BNF is set for a BCD indication. A
CALL to the appropriate library routine with the arguments designating
the file code and the format reference is generated. The generated code
will appear as follows: . . 'V

,<('{2-k\<_ j~ ~·! . .-.._.:. .• t) I
CALL %~ For READ cards

or
l.11--·

~-('. CALL .FPRN. (For PRINT J

or tO' :-. cj's CALL .FPUN. (For PUNCH

and ETC file code, format)'IFN'

There are three entry points to this routine; RC2000 for READ (cards),
PR2000 for PRINT and PN2000 for PUNCH.

Usage. The calling sequence is:

TRA
{

RC2000
PR2000
PN2000

(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table tally
word.

Error Returns. There are no error returns for this routine in the
calling sequence, but the following fatal diagnostic message may be
written.

PH2021 THE NAMELIST NAME _____ MAY NOT BE USED IN AN ON-LINE
INPUT/OUTPUT STATEMENT.

21. RDT200--READ and WRITE Routines
WR2000

Purpose. This subroutine generates the required code for READ and WRITE
statements addressing input and output files.

@~o®@@ ~~~~~~-------------------------F-0~-~=-il-::
- 186 -

Method. The input/output status is determined. The linkage and T.POOL
Table pointer are saved. The file designation is examined to determine
if it is a variable or constant. A check is made for FORMAT reference.
The mode, BCD or binary, is also analyzed. The appropriate code is
generated by calls to the GG routine.

The generated code for the decimal read or write will be:

CALL .FRDD. (For READ
or

CALL .FWRD. (For WRITE

and ETC file code, format) ' IFN'

The generated code for a binary read or write will be:

CALL .FRDB. (For READ
or

CALL .FWRB. (For WRITE

and ETC file code) 1 IFN'

Usage. The calling sequence is:

TRA)RDT200
)WR20'00

(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table tally
word.

Error Returns. None.

22.RW2000--REWIND, BACKSPACE and END FILE Routines
EF2000
BK2000

Purpose. This subroutine compiles the necessary code for REWIND,
BACKSPACE and END FILE statements.

Method. There are three entry points to this routine, RW2000 for REWIND
statements, EF2000 for END FILE statements and BK2000 for BACKSPACE
statements. Upon entry the appropriate I/O subroutine name is retrieved
and stored for later use. The linkage is then saved and it is determined
if the file reference is a constant or a variable. The routine GG is
called to write the compiled coding on the G·k file.

- 187 -

The generated coding will be:

REWIND

CALL .FRWT. (
ETC file code)' IFN'

END FILE

CALL .FEFT. (
ETC file code) 1 IFN'

BACKSPACE

CALL .FBST. (
ETC file code)' IFN 1

Usage. The calling sequence is:

TRA {

EF2000
RW2000
BK2000

(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table tally
word.

Error Returns. None.

23. WR2CNV--File Routine

Purpose. This subroutine checks the number of the file assigned in an
I/O statement.

Method. The file number is checked; if it is greater than 40, a
diagnostic is given. A correct number is converted to BCD, prefixed
with an "equals" character and returned in the Q-register.

Usage. The calling sequence is:

TSXl WR2CNV
(Error Return)
(Normal Return)

Upon entry the file number is contained in the upper Q-register in binary
form.

FORTRAN IV

Compiler

- 188 -

/

Error Returns. If an error is encountered in the file number (greater
than 40), a fatal diagnostic is written and the error exit in the
calling sequence is taken.

WR2CER THE FILE NUMBER MUST BE LESS THAN 41.

24. SI2000--SETIN and SETOUT Routine

Purpose. This routine removes the input/output list from the POOL Table
and generates the required GMAP coding.

Method. This routine is entered at either of its two entry points
dependent upon whether an input or an output function is to be performed.
The type of variable is determined and special coding for indexing may be
required for short list notation. Finally, the coding is generated to
call the proper routine for input or output at execution time.

The generated code for the short list notation for decimal input/output
is:

CALL .FSLI. (var, For input

or

CALL .FSLO. (var, For output

and ETC =n) 'IFN'

where n is the size of the array.

The generated code for the short list notation for binary input/output is:

CALL .FBLI. (var, For input

or

CALL .FBLO. (var, For output

and
ETC =n)'IFN'

where n is the size of the array.

The generated code for other list variables is basically (aside from the
indexing instructions) as follows:

LD- var For output
TSXl .FCNV.

or
TSXl .FCNV. For input
ST- var

FORTRAN IV

Compiler

- 189 -

Usage. The calling sequence is:

TRA)SI2000
lso2000

(Return to PH2000 at 2,1)

Error Returns. None.

25. ER2000--END READ and END WRITE Routines

Purpose. This subroutine generates the code required for the compila
tion of input and output.

Method. Upon entry to the appropriate entry point (ER2000 or EW2000) in
this routine, index register 0 is set to 0 or 1 to indicate a READ or
WRITE condition respectively.

Also, depending on whether binary or BCD READ or WRITE, a CALL to the
appropriate library subroutine is generated.

The generated code for binary input/output is:

CALL .FRLR. For input
or

CALL .FNLR. For output

The generated code for decimal input/output is:

CALL .FRTN. For input
or

CALL .FFIL. For output

Input/output using NAMELIST does not require an END call.

Usage. The calling sequence is:

TRA)ER2000
")EW2000

(Return to PH2000 at 2,1)

Error Returns. None.

@)~ c (ID@@ ~~[ffi ~ ~~ _____________ r_o~-~=-u-~:

- 190 -

26. WRCHEK--FORMAT Reference Check Routine

Purpose. This subroutine checks for nonexistent FORMAT statements being
referenced.

Method. The T.FEFN Table is examined to determine if the FORMAT state
ment referenced exists. If not, a fatal diagnostic message is written.
At entry, the EFN is in the A-register.

Usage. The calling sequence is:

TSXl WRCHEK
(Error Return)
(Normal Return)

Upon leaving this routine on the error return, the A-register contains
the EFN.

Error Returns. A fatal diagnostic is written and the error return of the
calling sequence is taken when a nonexistent FORMAT statement is referenced.

WRCKlO THE NONEXISTENT FORMAT STATEMENT ____ , IS REFERRED TO.

27. WRDIAG--Nearest EFN Diagnostic Routine

Purpose. This routine finds the nearest EFN and writes a diagnostic
message.

Method. This routine takes the IFN in cell F.IFN and searches the
T.EIFN Table to find the nearest EFN. When found it is converted to BCD
and stored in a diagnostic message.

Usage. The calling sequence is:

TSXl WRDIAG
(Normal Return)

Error Returns. The following diagnostic comment is written to complete
some previous message.

WRD122 AT OR NEAR EXTERNAL FORMULA NUMBER ___ _

@~ a(ID@(O) ~~[ffi 0 ~~ ___________ Fo_~~~-pil-::

- 191 -

28. CMPRLG--Prologue Initialization Routine

Purpose. This subroutine generates coding for prologue initialization
of variables which will appear in a CALL instruction and are arguments
to the subprogram.

Method. Upon entry to this routine the NAME pointer is contained in
index register 3. If the variable is found to be an argument to the sub
program, an entry to the prologue table is made and an EQU instruction is
generated to establish a location symbol.

Usage. The calling sequence is:

TSXl CMPRLG
ZERO P
(Normal Return)

where P = * + P initialization. Upon return from this routine, the Name
or 1'•·k (argument) is returned in the A-register.

Error Returns. None.

29. S.PRLO--Determine and Assemble Next IFN Routine

Purpose. This subroutine determines and assembles the next supplementary
IFN for this statement.

Method. The subroutines AR.SYM and AR.IFN are used to determine and
assemble the next IFN for this statement. The subroutine then enters
this symbol and the NAME pointer into the prologue table. The NAME
pointer is in bits 0-17 of the A-register upon entry to this ~outine.
At exit, the A-register contains the IFN symbol, left adjusted with
trailing blanks. This routine is called by ASN200, GTA200 and CMPRLG.

Usage. The calling sequence is:

TSXl S.PRLO
(Normal Return)

Error Returns. None.

30. DTA200--DATA Statements Storage Allocator

Purpose. This routine assigns the values in DATA statements to the
proper variable or relative location of an array.

@J(g 0 (ID@@ $)~[ffi u ~$) ___________ Fo_~:~-pil-~:

- 192 -

Method. This routine utilizes information stacked in the T.DATA,
T.LITR, T.IMPO and T.USUB Tables during Phase One. Another table,
T.DORT, is constructed during Phase Two but killed before final return
to Phase Two control. The entire storage assignment logic includes
the subroutines TDTOOO, KDTOOO, MDTOOO, PDTOOO and CDTOOO which are
described later in the section. There is only one return from DTA200
to the calling program; namely 0,1. If an error occurs such that the
source program cannot be compiled, the F.DIAG flag cell is set by the
diagnostic routine so that the controlling routine will know when a
fatal error has occurred.

Usage. The calling sequence is:

TSXl DTA200
(Normal Return)

Error Returns. There is no error return in the calling sequence, but
the following fatal diagnostics may be written:

DT2BD1

DT2BD2

DT2BD3

DT2BD4

DT2BD6

DATA STATEMENT. LITERAL LIST IS LONGER THAN VARIABLE LIST.

DATA STATEMENT. NO SUBSCRIPT CORRESPONDING TO THE DO INDEX
_____ FOR THE VARIABLE-----

DATA STATEMENT. NO DO INDEX CORRESPONDING TO THE SUBSCRIPT
FOR THE VARIABLE -----

DATA STATEMENT. A BC! LITERAL EXCEEDS THE DIMENSION OF A
SHORT LIST VARIABLE.

A VARIABLE, _____ , IN A DATA STATEMENT IS IN BLANK
COMMON.

31. TDTOOO--T.USUB Entry Pull Routine

Purpose. This routine extracts information from the T.USUB Table.

Method. The routine pulls from the T.USUB Table all information from a
single entry. An entry includes the coefficient, addend, name and
dimension of all subscripts of a variable. The routine handles
variables with constant subscripts or with variable subscripts. Each
subscript of an entry puts a word in each of the following arrays:

TDTDIM,3 - Product of dimensions, so far.

TDTADD,3 - The addend -1

TDTCOF,3 - Coefficient

TDTNAM,3 - Pointer to T.NAME and the Name of Index.
be zero for constant subscripts.)

(This will

@~a@@@ ~~[ffi~ (g~ __________ Fo_~:~-pil-~:
- 193 -

Usage. The calling sequence is:

TSXl TDTOOO
(Normal Return)

The routine is called from the DTA200 routine.

The dimensionality is returned in bits 0-17 of the cell DTADIM upon exit.

Error Returns. None.

32. MDTOOO--Index Match Routine

Purpose. This routine is called by the DTA200 routine to match index
names and calculate addend information.

Method. This routine is used only when implied DOs occur. It matches
the index names found in the T.IMPO Table (DTADON,5) with the index
names from the T.USUB Table (TDTNAM,3). If there is not a one-to-one
correspondence, an error message is printed, but processing is continued
to find more possible errors. For each subscript where a match is found
the routine calculates the following:

DTALl.M,3 - Lower limit for subscript.

DTAUl.M,3 - Upper limit for subscript.

DTAINC,3 - Increment for successive addends.

This routine returns control to location DTAOOO when the information for
all subscripts of a single variable name are calculated. The routine
is entered once for each variable name within an implied DO.

Usage. The calling sequence is:

TSXl MDTOOO
(Normal Return)

Error Returns. Error messages required by this routine are written from
the DTA200 routine.

33. KDTOOO--Subscript/Dimension Check Routine

Purpose. This subroutine ensures that subscript notation for a variable
does not violate the dimensions of the variable.

- 194 -

Method. This subroutine compares all of the subscripts of a variable
against the corresponding dimensions from entries in the T.DIME Table.
If any value of the subscript (C*I+A) for any I defined by the implied
DO is less than zero or greater than the dimension, a diagnostic
is printed. Note that the dimension is doubled for complex or double
precision variables. The remaining subscripts are checked even though
an error has occurred.

Usage. The calling sequence is:

TSXl KDTOOO
(Normal Return)

Error Returns. There is no error return in the calling sequence, but the
following diagnostic message may be written:

KDTBlA DATA STATEMENT, SUBSCRIPT OF THE VARIABLE,
____ , IS OUTSIDE THE RANGE OF THE DIMENSION.

34. PDTOOO--T.DORT Entry Pull Routine

Purpose. This routine compiles the ORG, DEC and similar type operations
for all variables and addends within an implied DO statement or a nest
of implied nos.

Method. The CDTOOO subroutine (described later in this Chapter) is
called for every variable/addend combination to set up the actual GMAP
code. The variable name and its addend are determined from information
saved in the T.DORT Table. One pass is made through the T.DORT Table
for each variable/addend combination to be compiled. Each pass also
updates the table for future passes. The logical flow through the
T.DORT Table is controlled by the DO-ending information stored in the
DTADO(X) buffers.

The T.DORT Table is built up in Phase Two for each nest of implied DO
statements. It is killed when the routine PDTOOO reaches completion
before control is returned to the DTA200 routine.

Usage. The calling sequence is:

TSXl PDTOOO
(Error Return)
(Normal Return)

Error Returns. The error return is in the calling sequence.
messages are written by this routine.

No error

@3~ a(ID@@ ~~[ffi~ ~~ ____________ F_o~-~~-pil-::
- 195 -

35. CDTOOO--GG Code Setup Routine

Purpose. This routine compiles instructions for the DATA statement.

Method. The compiled code appears as follows:

ORG A+N

OPR LIST

where: A Input to the routine as DATNAM.
N Input to the routine as DTAFAD.

OPR DEC, BCI or OCT.
LIST A string of BCI literal information pulled from the

T. LITR Table.

Before compiling 11 0RG A+N, 11 the routine checks the previous name and
addend to see if another ORG is needed.

If a literal is to be repeated (indicated by the CDTRPT flag on), no
entries are pulled from the T.LITR Table since the previous entry is to
be used again.

Usage. The calling sequence is:

TSXl CDTOOO
(Error Return)
(Normal Return)

Error Returns. The error return in the calling sequence is taken when
the literal list is too long. The following error messages are written.

CDTB32

CDTBOA

CDTBDO

A NONDIMENSIONED VARIABLE CONTAINS TOO MANY WORDS OF
HOLLERITH INFORMATION.

THE ENTIRE ARRAY OF A SHORT LIST VARIABLE MUST BE FILLED.

DATA STATEMENT, VARIABLE LIST IS LONGER THAN LITERAL LIST.

36. CDT500--Type Consistency Check Routine

Purpose. This subroutine checks the variable name being compiled
against the type of literal assigned to the name.

Method. The variable name being compiled is checked against the type of
literal assigned to the name as indicated in the T.LITR Table. The
check is performed by comparing the flags I.LOG, I.CPX, I.DBL, I.REL,

FORTRAN IV

Compiler

- 196 -

and I.ITG with the code in the first 3 bits of the T.LITR control word.

The bits are assigned as follows:

Pref ix o, Real
1, Integer
2' Logical
3, Octal ~·,

4, Complex
7' Double Precision

~··Flags not checked further.

The routine also checks if the variable/literal combination has been
checked before. This procedure prevents duplication of error messages
if in a DO loop or if a short list and the literal is being repeated.

Usage. The calling sequence is:

TSXl CDTSOO
(Normal Return)

Error Returns. There are no error returns in the calling sequence, but
the following messages are written.

CDTS85 A VARIABLE, _____ IS INCONSISTENT WITH A LOGICAL LITERAL.

CDT595 A VARIABLE,----- IS INCONSISTENT WITH THE LITERAL

37. DBUG20--Debug-Time Test Code Generator

Purpose. This routine generates the required coding for the FOR clause
of the DEBUG statement.

Method. The general form of the FOR clause is:

FOR m1 , mz, m3

where mz and m3 are optional. These parameters are obtained from the
POOL Table. The following code is generated if only m1 is present:

(IFN) LDXO
ADLXO
STXO
CMPXO
TNZ

O,DU
l,DU
(IFN)
m1,DU
(IFN+3)

- 197 -

If m1, mz, and m3 are present, the following code will be generated:

(IFN) LDXO O,DU
ADLXO l,DU
STXO (IFN)

(IFN/l) CMPXO m1, DU
TNC (IFN+3)
CMPXO. m2+1,DU
TRC (IFN+3)
LDXO (IFN/l)
ADLXO m3,DU
STXO (IFN/l)

Usage. The calling sequence is:

TRA DBUG20
(Return to PH2000 at 2,1)

Upon entry to this routine, the A-register contains the POOL Table tally
word.

Error Returns. None.

38. DIFAOO--Debug Arithmetic IF Code Generator

Purpose. This routine generates coding for the DEBUG Arithmetic IF
clause.

Method. The subroutine ARCODE is called to generate the code for the
arithmetic expression. The conditions which may be indicated by YES, NO,
EXIT, or DUMP are analyzed and the appropriate transfers or calls are
generated.

Usage. The calling sequence is:

TRA DIAFOO
(Return to PH2000 at 2,1)

Upon entry to this routine, the A-register contains the POOL Table tally
word.

Error Returns. None.

@~a@@@ ~~~~~~-----------------------------F_o~-::-u-::
- 198 -

39. DIFLOO--Debug Logical IF Code Generator

Purpose. This routine generates the required coding for the DEBUG
Logical IF statement.

Method. The subroutine ARCODE is called to generate the code required
for the logical expression. An FEQU instruction is generated to define
the "False" location symbol.

Usage. The calling sequence is:

TRA DIFLOO
(Return to PH2000 at 2,1)

Upon entry to this routine the A-register contains the POOL Table tally
word.

Error Returns. None.

40. AR.SYM--Location Symbol Generator

Purpose. This subroutine generates a two character BCD symbol.

Method. The two character BCD symbol is appended to the IFN. The entire
symbol then becomes the location field (columns 1-6) of a GMAP operation.
A new symbol is generated with each call to this subroutine.

Usage. The calling sequence is:

TSXl AR.SYM
(Normal Return)

Error Returns. There are no error returns, but the following diagnostic
message is written:

AR.S70 FORTRAN STATEMENT IS TOO LONG.

41. AR.TRC--Logical Expression Check Routine

Purpose. This subroutine makes entries in the ARLO.T Table (the logical
operation table). Upon entry to this routine, a 11 look-back11 over the
logical statement up to this point is performed to determine what type of
transfer (true or false) should be compiled at this time. A branch
symbol is also provided as the address of the chosen type of transfer
operation.

FORTRAN IV

Compiler

- 199 -

Method. This subroutine performs a true/false traceback to the lower
level of logical operation for optimization of testing instructions.
The Logical Operator Table (ARLO.T) is examined. The format of this
table is:

VFD l/X,5/0perator+Y,12/Level,18/Symbol

where:
x 1, if the level is closed out.

O, if the level is not closed out.
y 4, if the item is the last of the level.

O, if the item is not the last of the level.
Symbol a two character symbol provided for the level.

Another table, the Level and Logical Store Table (ARLS.T) is also used.
The format of this table is:

VFD 18/Level,18/000000
VFD 18/Symbol F,18/Symbol T

where:

Symbol F A created two character symbol associated with the false
point of level.

Symbol T A created two character symbol associated with the true
point of level.

The subroutine is entered with the ARLO.T Table item for the current
operator/operand (primitive) in the A-register. Output from the sub
routine is contained in the cells AR.TZE, AR.TFS, AR.TSM. If the cell
AR.TZE is equal to zero, then the TZE operation should be used after a
SZN. Otherwise, the TNZ operation should be used. The cell AR.TFS
contains either nT.n or nf.n or the created symbol.

Usage. The calling sequence is:

TSXl AR. TRC
(Normal Return)

Error Returns. None.

42. SS.ETN--T.ARIT Item Fetch Routine

Purpose. This subroutine fetches items from the T.ARIT Table.

@~a(ID@@ ~~rm~~® ________,FOR---TRAN-......IV

Compiler

- 200 -

Method. After the T.ARIT Table item is retrieved, the set of flags are
turned ON as follows:

Flag Name

AR.NOP
AR.NOD
AR.NID
AR.NST
AR.NTP
AR.NLV

Definition

Operator Flag
Operand Flag ·
ID Flag
Store Bit Flag .
Type (Mode) Flag ·
Level Flag

Usage. The calling sequence is:

TSXl SS.ETN
(Normal Return)

Error Returns. None.

43. ARCODA--Arithmetic Statement Entry Routine

Purpose. This subroutine provides an entry to the Arithmetic Statement
Processor, ARCODE.

Method. Upon entry to this routine, control is transferred to the
routine ARCODE. Control from ARCODE is returned to this routine and then
back to routine PH2000 at location 2,1.

Usage. The calling sequence is:

TRA ARCO DA
(Return is to PH2000 at 2,1)

Error Returns. None.

44. AH.RAS--Erasable Storage Addend Routine

Purpose. This subroutine is used to compute the addend for erasable
storage.

Method. This routine is called by the Phase Two Arithmetic Processor,
ARCODE. There are two entry points for this routine; one for single
precision (AR.RAS) and one for double precision (AR.RAD) erasable
storage.

FORTRAN IV

Compiler

- 201 -

Usage. The calling sequence is:

TSXl AH.RAS
(Nonnal Return)

The subroutine is entered with the level in the A-register. Upon exit
~he addend is in the Q-register.

Error Returns. None.

45. AR.COM--Operation Compile Routine

Purpose. This subroutine is used to compile a GMAP line of code from an
operator/operand combination.

Method. Upon entry to this subroutine the operator is in the A-register.
The operand is described by the flags set by the routine SS.ETN described
earlier. If index register zero is a zero, the current flags are used.
If it is a one, the next flags are used.

Usage. The calling sequence is:

TSXl AR.COM
(Nonnal Return)

Error Returns. None.

46. ARCODE--Arithmetic Expression Coding Generator

Purpose. This subroutine is called to generate the GMAP coding for
arithmetic expressions.

Method. The arithmetic expressions of the source program are broken
down into a series of table entries during Phase One of the FORTRAN IV
Compiler. This routine retrieves that infonnation from the POOL Table
and compiles the required coding.

The subroutine SS.ETN is called to retrieve arithmetic expression
information from the POOL Table. This infonnation is distributed to the
flag words as shown in the description of the routine SM.OVE later in
this Chapter.

Initially the routine detennines if the expression is logical or
arithmetic. If arithmetic, the initial level is taken and processed.
For the first item of a level, load-type instructions must be generated

FORTRAN IV
Compiler

- 202 -

according to the mode of the operand. It should be noted that all
elements of a given level are completely processed before passing to the
next level.

Tests are made for the mode; that is, double precision, real, integer,
complex or real double. For each of these the necessary instructions
are compiled for addition, subtraction, multiplication or division. If
the exponentiation operator is present, the mode of the operand
determines whether a call to a subroutine, a series of multiply
instructions or a repeat-multiply sequence will be generated. For the
function operator, a call is made to the AR.FUN subroutine for pro
cessing. At the end of a given level, the store bit is tested to
determine whether store-type instructions will be required or whether
linkage by registers will be used.

Logical expressions are processed according to the type of operator;
logical or relational. For the logical operator, testing instructions
are compiled followed by either a transfer-zero or a transfer-nonzero
type instruction to the true or false side of the equation.

For relational operators, the two operands require generation of
comparison instructions (which are determined by the mode of the
operands) followed by test and transfer-type instructions to complete
the sequence.

For the left side of the equals in an arithmetic expression, the mode is
tested again and the proper store-type instructions will be generated.
For the left side of the equals in a logical expression, the generated
coding will be terminated with store-type instructions. The instructions
provide for storing, either a zero or a one, to indicate either a false
or a true condition, respectively.

Usage. The calling sequence is:

TSXl ARCODE
(Normal Return)

Error Returns. None.

47. AR.ARG--Argument Compile Routine

Purpose. This subroutine is called to compile the required code for
a CALL statement.

Method. There are two entries to this subroutine, AR.ARG and AR.ARH.
The former compiles an ETC in the operation field and the argument in
the variable field. The AR.ARH entry concatenates the argument onto
the variable field. The argument will be prefixed from the location

- 203 -

AR.PFX and suffixed from the location AR.SFX. If index register zero is
a zero, then the next flags are used. Otherwise, the current flags are'
used.

Usage. The calling sequence is:

TSXl { AR.ARG
AR.ARH

(Normal Return)

Error Returns. None.

48. AR.IFN--IFN Conversion Routine

Purpose. This routine converts the IFN to BCD and adds a suffix of a
two character symbol for use as the location symbol in a GMAP coding
line.

Method. This routine calls the conversion routine S.BBOO to convert the
IFN. Upon entering the routine, the two character symbol is contained
in the A-register right adjusted with zeros.

Usage. The calling sequence is:

TSXl AR.IFN
(Normal Return)

Upon exit, the entire symbol is in the Q-register, left adjusted with
blanks.

Error Returns. None.

49. AR.ALC--Erasable Counts Routine

Purpose. This subroutine computes the erasable counts for the Storage
Allocator.

Method. The following erasables:

N.
NN.
x.

xx.

@~a(ID®f(p ~~ffi)~~~ _________ FoR_TRAN_rv

\gJ \W\W ~ LIU ~ Compiler

- 204 -

and the Arithmetic Statement Function erasables:

P.N
PP.N
A.N

M.N

where N is the level number for the ASF, comprise the erasables for
which counts are computed.

There are three entry points to this routine as follows:

Entry Point

AR.ALC
AR.ALP
AR.ALX

Usage. The calling sequence is:

TSXl {

AR.ALC
AR.ALP
AR.ALX

(Normal Return)

Error Returns. None.

Definition

For A.N and M.N
For P.N and PP.N or N. and NN.
For X. and XX.

50. AR.FUN--Function and Arguments Compile Routine

Purpose. This subroutine is called to compile FUNCTION statements and
their arguments.

Method. This subroutine compiles the required GMAP code for FUNCTION
statements and their arguments· including linkages, calls to appropriate
routines and returns.

Usage. The calling sequence is:

TSXl AR.FUN
(Normal Return)

Error Returns. None.

51. AR.CLS--Logical Levels Close Routine

Purpose. This subroutine is called to close out intermediate logical
levels.

- 205 -

Method. This subroutine generates the required coding to set true or
false indicators for variables as required by logical operations.

Usage. The calling sequence is:

TSXl AR.CLS
(Normal Return)

Error Returns. None.

52. AS.FNC--Arithmetic Statement Function Definition Compile Routine

Purpose. This routine is called to compile the required instructions for
an Arithmetic Statement Function Definition.

Method. The information for the ASF definition is taken from the POOL
Table and examined by this routine. The GG routine is called to
generate the require.ct GMAP coding.

Usage. The calling sequence is:

TSXl AS.FNC
(Normal Return)

Error Returns. None.

53. SM.OVE--Flag Shift Routine

Purpose. This subroutine shifts the flags described in the SS.ETN
routine description.

Method. ' The Current Flags are shifted to the Previous Flags. The Next
Flags are moved to the Current Flags. The Next Flags are set by the
SS.ETN routine. The flag names are:

1. Next Flags

AR.NOP
AR.NOD
AR.NID
AR.NST
AR.NTP
AR.NLV
AR.NLK

Operator
Operand
ID
Store Bit
Mode
Level
Linkage

- 206 -

2. Current Flags

AR.COP Operator
AR.COD Operand
AR.CID ID
AR.CST Store Bit
AR.CTP Mode
AR.CLV Level
AR.CLK Linkage

3. Previous Flags

AR.POP Operator
AR.POD Operand
AR.PID ID
AR.PST Store Bit
AR.PTP Mode
AR.PLV Level
AR.PLK Linkage

Usage. The calling sequence is:

TSXl SM.OVE
(Normal Return)

Error Returns. None.

54. SUBCOM--Subscripted Operand Compile Routine

Purpose. The subroutine compiles GMAP coding for subscripted operands.

Method. This subroutine is entered with the operation to be compiled in
the A-register. The Q-register contains the T.SUBS pointer for the sub
scripted operand. The subroutine uses the T.SUBS Table and the T.LDXR
Table.

Usage. The calling sequence is:

TSXl SUBCOM
(Normal Return)

Error Returns. None.

55. CK.DOS--Transfer Check Routine

Purpose. This subroutine checks the legality of transfers into and out
of DO loops and creates a table for those jumps which must pass through
the save/restore sequences.

@~a(ID@@ ~~[ffiO~~ __________ Fo_;:~-pil-~~

- 207 -

Method. This subroutine uses the information contained in the Buffered
Table T.IODO, T.JUMP and T.JUNK. The table T.OTIN may be generated by
this routine.

Usage. The calling sequence is:

TSXl CK.DOS
(Normal Return)

Error Returns. There are no error returns in the calling sequence, but
the following fatal diagnostic message may be written:

CK.875 ILLEGAL TRANSFER INTO THE RANGE OF A DO.

56. AR.XPC--Literal Exponents Check Routine

Purpose. This subroutine is called to check for literals in
exponentiation.

Method. If literals are found, ETC operations are compiled for the
arguments.

Usage. The calling sequence is:

TSXl AR.XPC
(Return 1)
(Return 2)

Error Returns. None.

57. BX.000--Basic Block Indexer

Literals present
No literals present

Purpose. The Basic Block Indexer is called at the beginning of a basic
block; that is, a linear stretch of code with only one entry, one exit
and not in the range of a DO.

Method. Initially, the basic block is checked for subscripted variables.
If none exist; indexing will not be required and the indexer is bypassed.

The Basic Block Indexer uses several tables and they are described in
detail below for ready reference. It should be noted that the T.INTS
and T.SUBS Tables are created in Phase One and remain throughout the
duration of the compile. The T.USSR and T.SISU Tables are created and
used only for the duration of a basic block.

FORTRAN IV

Compiler

- 208 -

1. T.USSR Table--A table of appearances of subscripted variables within
a defined region; that is, a basic block.

0 1

-
5 6

XR F

(IFN)

where: XR
F

(IFN)

1718

USUB Pointer

T.SUBS IFN

the assigned index register.
frequency of appearance.

35

location at which XR must be recalculated.
usage flag.

2. T.INTS Table--A table of each literal appearance of a nonsubscripted
integer variable on the left side of an Arithmetic Statement or in
an I/O list.

NAME Pointer IFN

3. T.SISU Table--A table of T.USSR Table entries grouped according to
similar USUB entries or calculated coefficients.

Q_

-

5 _6__ 1718 35

XR () F USUB Pointer

XR () USUB Pointer

(Additional entries may be included in this group. The entry
having a minus sign always marks the beginning of a group.)

where:
XR
F

signal for first word of a similar group.
assigned index register.
frequency of use for entire group.
later an IFN placed here.

@~ a(ID@® ~~[ffi ~ ~~ -------------FORT.......,RAN.......,IV
Compiler

- 209 -

4. T.SUBS Table--A table of each literal appearance of a subscripted
variable.

0 1718 35

IFN Supplementary IFN

NAME Pointer USUB Pointer

After replacements are performed this table appears as shown below:

0 1718 35

LDXR Pointer Supplementary IFN

5 6
XR NAME Pointer Addend

The Basic Block Indexer performs its functions in several distinct steps
and calls additional subroutines as needed. These subroutines which are
mentioned below will be described in detail later in this Chapter. The
general flow of the Basic Block Indexer is as follows:

1. The T.SUBS Table is examined for subscript usage within the basic
block. Through the use of the subroutine IXlOOO the T.USSR Table is
constructed. When a subscript integer appears in the T.INTS Table,
within the range of the basic block and the T.INTS IFN precedes the
T.SUBS IFN, then the IFN+l for the occurrence is also placed in the
T.USSR Table. Duplicate entries in the T.USSR Table are eliminated
and accounted for by incrementing a frequency count in the first word
of an entry. The frequency count is later used in determining the
priority for index register assignment.

2. The T.USSR Table is used to construct the T.SISU Table (similar
subscripts). The first word of a T.USSR entry is placed in the
T.SISU Table and set minus. The subroutine Xl9000 is then used to
find all T.USSR entries which contain a variable subscript. When
found, the USUB pointer of the T.USSR entry is compared to the T.SISU
entry. If a match is found, the frequency count in the applicable
T.SISU entry is incremented.

If no match is found, the simple coefficient for the T.USSR entry is
computed and compared again with the calculated coefficient of the
T.SISU Table entry. If a match is found on this second compare, the
frequencies are added and stored back into the first word of the
T.SISU entry and the USUB pointer from the T.USSR Table is entered

@(Ea@@® ~~[ffi~~~ __________ F_ORT_RAN_IV

Compiler

- 210 -

into the sequence. If there is no match on the second compare, a
new entry is made in the T.SISU Table and the subroutine returns for
the next T.USSR entry.

3. The entries in the T.SISU are examined for frequency counts and
index register assignments are made accordingly. The subroutine
X07000 is called to perform this function. The T.SISU Table is
examined to determine the most frequently used group of similar
subscripts. This group will be assigned the next available index
register. The process is repeated until all of the available index
registers have been used. Remaining groups, if any, are assigned to
the spill register and the Overflow-Spill Flag is set. Additional
information on the subroutine X07000 appears later in this Chapter.

4. The T.SISU and T.USSR Table entries are compared by USUB pointer and
the index register assignments of the T.SISU entries are transferred
to the matching T.USSR entries.

S. The T.SUBS Table is examined to find subscripted variables within
the basic block. When one is found, the T.USSR Table is searched
for a match on the USUB pointer. The T.SUBS IFN is then compared
with the T.USSR 1 s IFN (the point to recalculate the index value).
If the T.SUBS occurrence is earlier than that indicated by T.USSR,
then the next T.USSR Table entry is obtained and tested. If there
is a successful match the T.SUBS IFN is compared to the T.SUBS IFN
stored in the T.USSR entry.

If this subscripted variable is not within the range of this unique
subscript, the subroutine returns to process the next T.USSR Table
entry. If the T.USSR entry has already been done, control passes to
step 7 described below. If the T.USSR subscript is a constant,
control passes to step 8 described below.

The assigned index register and the T.SUBS (or Basic Block origin)
IFN are saved. The subroutine IX9070 is called to compile the IFN
in the location field position. The subroutine IX9050 is called to
compute the indexing coefficient. The subroutine X08000 is called
to compile the computation instructions for index register loading.
These subroutines are described in detail later in this Chapter.

6. The assigned index register is then tested to determine if it is the
spill register. If not, the GG routine is called to compile the code
for the load instruction (EAXn O,QL). If the spill register is
required, additional instructions such as

where

EAXO
STXO

B.BGCT

O,QL
B.BGCT

LDXO 7'd~' DU

- 211 -

FORTRAN IV
Compiler

are compiled. Upon return from the GG subroutine, the XllOOO sub
routine is called to mark the T.USSR and T.SISU Table entries used.

7. The assigned index register number is placed in the T.SUBS Table. If
the assigned index register is the spill register, then an entry is
made in the T.LDXR Table and the T.LDXR pointer is placed in the
T.SUBS Table entry replacing the IFN.

8. The addend is computed through a call to the subroutine X20000 and
placed in the T.SUBS Table entry replacing the USUB pointer. Control
is then returned to step 5 above for examination of the next T.SUBS
Table entry.

9. If the subscript contained adjustable dimensions, the subroutine
XOlOOO is called to compile instructions to build a simple USUB
Table of dimensions and constants, to compute coefficients and to
compile prologue instructions for the computation of the addend. A
loop is set up within this subroutine so that prologue instructions
will be compiled for all ENTRY points that have adjustable dimensions
as arguments. On return from the XOlOOO subroutine, completion of
this loop is tested before control is returned to step 5 above.

@~a(ID@(Q) ~~[ffi~~~ _________,.FORTiiliiiiiiiiRAN...__IV

Compiler

- 212 -

The following diagram outlines the general flow through the Basic Block
Indexer.

BX.ODO
Save

Linkage

Store
Parameters

Get T.SUBS
Entry

S. TLOO

Save XRs
3 through 7

Initialize
T. INTS and

T.SUBS

Clear DO
Index Name

Clear IFN
Compiled
Fla

Clear
Spill Flag

Build
T .USSR Tabl

214

No
T.SUBS
Table

Figure 9. Basic Block Indexer Flow Diagram

BX.206

Restore
Linkage

Return

@~a(ID@® ~~[ffi~~~ _________ -----.FORT~RANo...;:;,p,.IV
Compiler

- 213 -

IXlOOO

Build
T.SISU

Table

Xl9000

Make Index
Register

Assi nments

X07000

BX.020
Get T.USSR

Table

PU.LL

Get T.SISU
Table
Entry

PU.LL

BX.035
Compare

USUB
Pointers

215

No
Subscripted
Variables in

No Variable
Subscripts
Occurred

End of
Table

End of
Table

Figure 9. (continued)

- 214 -

0

T.SUBS Entry
Used

or Before
Region

Match?

Yes

Put T.SISU
XR into

T.USSR

BX.050
Prepare to
Compile Compu
tations and
Index Loading
Instructions

BX.055
Get

T.SUBS
Entry

PU.LL

T.SUBS Yes
Entry

Re

BX.060
No

Get
T.USSR

216

Yes

Figure 9.

Get Next
Word of
Buff er

End of

End of
Table

(continued)

BX.200

Compile
.CLF. 0
Use .MAIN.

@j~ a(ID@® ~~[ffi~ [g~ _________ _..__FORT~RAN~IV
Compiler

- 215 -

PU.LL

Compare USUB
of T.SUBS
and T.USSR

Match?

Yes

Compare IFN
of T.SUBS
and T.USSR

Match?

Range?

Yes

Get XR
Assigned

Constant
Subscript?

No

Save XR
Assigned fo

Compile

Use T.USSR IF
If Not Zero;
If Zero Use
Origin IFN of
Basic Block

217

No

C0
No

'(£)

Figure 9. (continued)

- 216 -

[

····Compile __ _
EAXN, O,DU

IX9070

IX9050

XOBOOO

Compile IFN
in Location
Position

Compute
Indexing
Coefficients

Compile XR
---- Computing

Instructions

No Is Assigned
,._~~~~-I XR = Spill

GG

XllOOO

Re ister?
Yes

GG

Compile Code
EAX O,QL
STX B.BGCT

B . BGCT LDXO -id~ D

Mark T.USSR
XllOOO --- - and T. SISU

Put Assigned
XR into

T.SUBS

Used

Make T .BGIN
Table
Entry

Was it
Spill
Re ister?

No
~(0

Yes

Construct and
Make Entry i

T. LDXR

218

Figure 9. (continued)

@~a(ID(Q)@ ~~[ffi~~~ _________ ___.._....FORT......,..RAN........_IV

Compiler

- 217 -

Load Index
0 With a

Zero

EN.TR

Mark T.SUBS
Used

BX.120
Compute
Addend
Address

No

X20000

Variable
Dimensions?

Yes

Compile
Prologue
Instructions

XOlOOO

Compile
STXO IFN

219

Yes

Figure 9. (continued)

- 218 -

6

Compile
STXO IFN+l

IXTEST

Reenter the
Subroutine
XOlOOO Within
the Subroutin

IX SET

Yes

Figure 9. (continued)

Test for End
of Loop Over
Entry Argu
ment Lists

@j~ a(ID@® ~~(ffi~~~ ------------...-FORTiioiioiioiiRAN IV
Compiler

- 219 -

Usage. The calling sequence is:

TSXl BX.000
ARG L (BB Origin)
ARG L (BB End)
(Normal Return)

The following subroutines related to indexing are called by this
subroutine:

IXlOOO
Xl9000
X07000
IX9070
IX9050
X08000
XllOOO
IX9090
X20000
XOlOOO

Each of these subroutines is described in detail later in this Chapter.

Error Returns. None. (There is one transfer to the machine error
routine, MACERR, at symbolic location BX.060+1.)

58. DX.000--DO Indexer Subroutine

Purpose. This subroutine is called from the Phase Two Executive Routine
(PH2000) whenever a new DO nest is encountered. All of the instructions
for the computation and initialization of all DO indexing and sub
scripting of variables within the DO nest are generated by this
subroutine.

Method. For the processing of a DO nest there are three DO pointers
maintained at all times. They are:

IXDOOP, Basic DO Pointer--Points to the outermost DO.

IXDOCP, Current DO Pointer--Points to the current DO being processed.

IXDOWP, Working DO Pointer--Points within the current DO being
processed.

The processing done in this subroutine is performed in a series of steps,
some of which are repeated until all of a particular type of information
has been completed. In line with this design, the method of the DO
indexer subroutine is presented in step form below:

@~a®@® ~~[ffi~~~ -------------.-FORTiioioiioiiRAN.........,.IV
Compiler

- 220 -

1. Upon entry to this subroutine, the linkage is saved from index
register 1. The "IFN Compiled" flag is cleared as well as the 11 XR
Overflow" flag, the 11 XR Assign" flag and the 11 DO-XR Overflow" flag.
The Basic DO pointer is retrieved from the calling sequence and
saved. This pointer is also established as the working DO pointer.

2. The basic DO entry is retrieved from the T.IODO Table using the
PU.LL subroutine and the origin and destination of the DO are saved.

3. The tables, T.SUBS, T.INTS, T.JUNK, T.JUMP and T.RINT are set to
their respective beginnings. Any previous T.SISU Table is cleared
and the first entry is made in the new T.SISU Table for the DO
index. The format of the T.SISU Table as used by the DO Indexer is
shown below:

T.SISU Table--DO Indexer

0 2 3

-XR F

XR

XR

where:
F

1718 35

G

USUB Pointer1

USUB Pointer2

• • • • • etc • .

the first word of a group of entries.
the frequency of appearance; later replaced by an
IFN.

G the calculated coefficient.

The format of the entry made in the T.SISU Table for the DO index is:

0

I-
The subroutine Xl4000 is then called to construct the T.SISU Table for
all of the variables on the DO index only. When completed, the frequency
count of the T.SISU entry for the DO index is replaced with the high
value of octal sevens so that it will take first priority in the assign
ment of index registers. Upon completion of the T.SISU Table, initiali
zation is performed for the assignment of index registers. The actual
assignment of index registers is performed through a call to the
subroutine X07000; values are placed in the T.SISU Table.

FORTRAN IV

Compiler

- 221 -

4. The subroutine X02000 is called to compile instructions for the
initialization, incrementation and testing of the DO index register.
This subroutine also compiles the instructions necessary for the
initialization and incrementation of the other index registers used
inside the DO loop. The next DO pointer is obtained from the T.IODO
Table by a call to the PU .LL subroutine. The origin and end of this
new DO are saved. A check is performed for duplicate DO names. If
found, a warning diagnostic message will be written. It should be
noted that within the DO nest, all nested DOs of the same level will
have the same DO index assigned to provide the most efficient use of
index registers.

5. A call to the subroutine X06000 is made to check for branches into
and out of the range of the DO. When present, coding must be
generated for the saving and restoring of the indexes. Again within
the DO nest, the subroutine IX9120 is called to locate the next DO
loop on the same level.

6. The T.SUBS Table is examined in order to find all the variables with
in the range of the DO which are subscripted on the DO index and the
index register assignment will be transferred from the T.SISU Table
to the corresponding entry in the T.SUBS Table. The subroutine
Xl5000 is called to perform this function. The next DO is obtained
from the information in the T.IODO Table; this becomes the current
DO and steps 3 through 6 above are repeated until all DO indexes are
compiled and all variables subscripted on the DO index are processed.

7. At this point in the DX.000 subroutine, all of the DO indexing has
been completed. All pointers and indicators are reset to the
beginning of the basic DO.

8. The T.USSR Table is now constructed through a call to the Xl3000 sub
routine. This table is composed of all of the subscripted variables
using the DO index. The T.USSR Table information is then used to
construct a new T.SISU Table. The subroutine Xl9000 is called to
perform this function. Using the subroutine PU.LL, entries from the
T.USSR Table are processed against the T.SISU Table entries. All
similar regions are marked through a call to the subroutine XllOOO.

9. The subroutine IX9010 is called to compile the IFN in the location
field of the GMAP instruction. The subroutine IX9050 is called to
compute the coefficient and the subroutine X08000 is called to com
pile the instructions to compute the constant part of the addresses
of the subscripted variables. In the case of a subscripted variable
in which there is no DO index involved; then the entire reference
address is computed. Additional information on computed values is
described in a later paragraph.

10. Entries in the T.SUBS Table are examined to find subscripted
variables within the range of this DO. These entries are matched
against entries in the T.SISU Table. The names within these entries

- 222 -

are also matched as well as the IFNs. Successful matches on all of
these conditions result in a call to the subroutine X20000 for
computation of the addend. This addend is then compared to a pre
viously computed one; if there is an unsuccessful compare, control
returns to obtain the next T.SUBS entry. If the compare is
successful, then the T.SUBS entry will be marked used and the
generated code completed with either a nsTXO IFN 11 or a 11 STXO IFN+l 11

instruction. Processing is contained through the T.SISU, T.USSR and
T.SUBS Tables until all of the subscripted variables within the range
of the DO have been completed. The next DO is then obtained and the
process repeated.

11. When all of the DOs have been finished, the subroutine Xl6000 is
called to compute the addends for all of the subscripted variables.
The T.LDXR Table is examined and the pointers are transferred to the
T.SUBS Table. The remote compile is turned off; the coding

USE .MAIN.

is compiled and control is returned to the Phase Two Executive
Routine (PH2000).

The total address is expressed as:

and so forth for up to seven dimensions where:

V the location of the variable
A the subscript addend
C the subscript constant
D the dimension
I the.index value

All of the constant parts are computed and placed in the address at
compile time or held as a constant, if necessary, to compute the rest.
All parts which vary in the program, but not in the loop, are computed
and added to the constant part and stored in the address at execution
time. All parts which vary in the loop are placed in the index
register. For example:

A three dimensioned variable in a nested DO on all three indexes.
The variable appears in the innermost DO on the third index.

V+(A1-l)+D1(A2-l)+D1D2(A3-l) is computed in the compiler and used as
a constant in address computation (Format V+n).

c1r1+c2r2D1 is computed immediately prior to the DO, added to the
above constant and stored as the address of the variable.

FORTRAN IV

Compiler

- 223 -

DX.000

nitialization

Initialize
for the
DO range

Make entry in
T. SISU for the

DO index

Build T.SISU
for variables

nd DO index

Initialize
XR

assignment

Assign same DO
XR for a 11 DOs
on the same
level

Another D07

Figure 10. DO Indexer Flow Diagram

- 224 -

Make T.LDXR
Table entries

DX.200
Initialize to
beginning of
the DO nest

Set T.USSR
and T.SISU
to beginning

,_N_o_Ta_b_l_e _ _,•-O

No Table ~

~u

Figure 10. (continued)

@~a@@@ ~~[ffi~~~ __________ Fo_~:~-pil-~:

- 225 -

.. ··-----

Find Match
T.SUBS
T.USSR
T.SISU

First Match?

Mark
T.SUBS
used

Compile
STXO IFN

or
STXO IFN+l

Compile
EAXO O,QL
ADXO ()

Figure 10.

Done

~()

No ·8

No f::\
-------i·-~

(continued)

- 226 -

Place T.LDXR
pointers in

T. SUBS

Compile

USE .MAIN.

Figure 10. (continued)

- 227 -

Usage. The calling sequence is:

TSXl DX.000
(DO Pointer)
(No Return)

Error Returns. There are no error returns in the calling sequence of
this subroutine, but the following warning diagnostic message may be
written when duplicate DO names are found.

DX.850 WARNING.
DO NEST.

DO INDEX NAME ---

59. X01000--Addend Compile Subroutine

APPEARS MORE THAN ONCE IN A

Purpose. This subroutine is called to compile instructions for the
computation of the addend of a data address when arguments for adjustable
dimensions are involved.

Method. Input to this subroutine consists of the USUB pointer and the
NAME pointer for this subscripted variable.

Initially, this subroutine constructs a simple USUB Table having the
dimension and the addend of the index. A loop is initialized in sub
routine IXSET so that prologue instructions will be compiled for all
ENTRY points that have adjustable dimensions as arguments. The end
of the loop is tested at various points outside of this subroutine.
The simple USUB Table is then used by a call to the X09000 subroutine
which builds a Coefficient or Dimension Table which will be used for the
prologue computations. Upon return from X09000, the coefficients are
tested for zero or nonzero values.

If the coefficient is not zero, the subroutine XlOOO is called to compile
the prologue computations. When completed, there are two possible
returns from the XlOOOO subroutine. The first return is taken when the
prologue computations were already performed. In this case the following
coding will be compiled.

USE
LDQ

.PROXX
I.+ICTR

where XX is the prologue number assigned to the ENTRY point being pro
cessed. Processing then continues at the same point entered when the
second return from the subroutine XlOOO is taken, which is also the
processing path for coefficients which are zero. The instruction:

LDXO ARGPOS,l

or, if there were previous instructions compiled to compute the addend,

@~a@@® ~~fffiO~~ --------..;.;;.:.:FOR;:.:;.::,TRAN~IV
Compiler

- 228 -

the instructions:

EAXO
ADLXO

are generated.

O,QL
ARGPOS,l

Usage. The calling sequence is:

TSXl XOlOOO
(Normal Return)

Error Returns. None.

60. X02000--DO Index Compile Subroutine

Purpose. This subroutine is called by the DO indexer, DX.000, to
compile the instructions required to initialize the start and to test
the end of a DO.

Method. Input to this routine consists of the DO origin, destination,
name, and the parameters N1 , N2 , and N3 • The assigned index register is
examined to compile either:

LDXn G,DU

or

B.n LDXn -Jd~, DU

where G = Ni or a computed value

Store instructions are generated when the assigned index register is
the spill register. This process is repeated for eacn group of entries
in the T.SISU Table.

Next, the DO index value is checked to see if it must be stored for
future use. If not, this section is bypassed; otherwise an

EAQ
QRL

and

o,x
18

STQ Name
or

STQ ·-,·d~

coding sequence is generated.

(X=the DO index)

@~ o(ID@® ~~[ffi 0 ~~ --------------.;FORT~RAN.;...,;,.mIV
Compiler

- 229 -

Instructions are generated to increment all index registers loaded for
the DO and for all other indexing required. Prologue instructions may
be compiled if arguments exist. Generally the compiled instruction is:

ADXn DELTA, DU
or

ADXn ~·0·~, DU
where

DELTA parameter N3 or a computed value.

The above instruction is compiled at the end of the DO loop.

The instructions compiled for the DO loop test are:

CMPXj Nz+l,DU
or

CMPXj id~' DU
followed by

TNC IXIFN,l

where j = the DO index number
Nz= parameter Nz of the DO statement.

Prologue instructions may be required.

Usage. The calling sequence is:

TSXl X02000
(Normal Return)

Error Returns. None.

61. X03000--DO Parameter Ni Compile Subroutine

Purpose. This subroutine is called by the subroutine X02000 to compile
the DO indexing instructions associated with the parameter Ni•

Method. Upon entry to this subroutine, the parameter Ni is tested to
·determine if it is a constant. If it is, then a test is performed to
determine if prologue instructions are required. If no prologue is
required, then the subroutine IX9180 is called to compile the prologue
instructions. Next the subroutine IXTEST is called to determine if all
of the required prologue instructions have been compiled for all of the
sets of arguments. When compilation for the arguments has been
completed, a USE .MAIN. instruction is compiled and the remote compile
indicator is set. Return is then given to the calling program.

@~a®@® ~~[ffi~ [g~ ------------F-0~-~:-il-~:
- 230 -

If the parameter N1 is a variable, then the prologue instructions are
compiled followed by the instruction EAXN O,QL and return is made to the
calling program.

Usage. The calling sequence is:

TSXl X03000
(Return 1)
(Return 2)

N1 is a variable
N1 is a constant

When Return 2 is taken the A-register contains zero if a prologue was
compiled; otherwise, the A-register will be nonzero.

Error Returns. None.

62. X04000--DO Parameter N3 Compile Subroutine

Purpose. This subroutine is called by the subroutine X02000 to compile
the DO indexing instructions involving parameter N3.

Method. If the parameter N3 is a constant, return is immediately made
to the calling program. If N3 is a variable, the prologue instructions
will be compiled, followed by:

EAXO O,QL

and

STXO DIFN+l (For the spill register)

or

STXO B.n (Not the spill register)

Usage. The calling sequence is:

TSXl X04000
(Return 1) N3 is constant
(Return 2) N3 is variable

Error Returns. None.

63. X05000--Saves and Restores Compile Subroutine

Purpose. This subroutine is called by the X02000 subroutine to compile
save and restore instructions for index registers in nested DO loops
when index register assignments overflow.

·@~o®@® ~~mi~~~ ----------....-FOR~TRAN~IV
Compiler

- 231 -

Method. Upon first call to this subroutine, the flag X05900 is set for
the subroutine X02000. Later, this flag will be checked in the
subroutine X02000 and a transfer will be made to location XOSSOO to
compile the corresponding restore instructions.

The location XXXR specifies the number of index registers to be saved
(restored) and the number of the first index register. These quantities
are located in the right and left halves of location XXXR respectively.
Save (restore) instructions are generated for all of the required
registers starting with the initial register as specified in location
XXXR.

Usage. The calling sequence is:

TSXl xosooo Generate save instructions
(Normal Return)

or

TSXl xossoo Generate restore instructions
(Normal Return)

Error Returns. None.

64. X06000--Check Jump Table Subroutine

Purpose. This subroutine is called by the DO indexer, DX.000, to check
the T.JUMP Table for transfers into and out of DOs and to compile save
and restore instructions where necessary.

Method. Entries are retrieved from the T.JUMP Table using the PU.LL
subroutine. If the jump origin and destination are in the range of the
basic DO further tests are made. If the jump is from an inner DO to an
outer DO of the same nest, then instructions to save the appropriate
index registers will be generated. The following diagram illustrates
some transfers in a DO nest.

- 232 -

DO Nest

)
)

This type of transfer does not apply
to this subroutine.

This type of transfer does not apply
to this subroutine.

This type of transfer is illegal.

This is the type of transfer handled
by this subroutine.

Outermost DO

The following instructions are generated:

STXn B.n+m

and
LDQ (DO Name)
EAXn O,QL

or

B.n LDQ i'~·k For arguments
EAXn O,QL

followed by
LDXn ,.,.,.,,DU

and
TRA XXJUMP The destination

It should be noted that instructions to save the DO index are not
generated.

Entries are made in the T.OUTS Table so that a transfer statement causes
an instruction to be compiled to go to the index register save
instructions.

Usage. The calling sequence is:

TSXl X06000
(Normal Return)

@j~a(ID@@ ~~[PdO ~~ __________ Fo_~:~-pil-~:

- 233 -

Error Returns. None.

65. X07000--Index Register Assignment Subroutine

Purpose. This subroutine is used to assign index registers to T.SISU
Table information.

Method. The subroutine examines the T.SISU Table information. The,most
frequently used group of similar subscripts, as determined by the count
in the first word of a group of T.SISU Table entries, will be assigned
the next available index register. The index register designation is
stored into each word (bits 3-5) of the group. This index register
assignment process is repeated until each T.SISU Table group has been
assigned or until the number of available index registers has been
exhausted.

Initially there are six index registers available, numbers 2 through 7
in that order. For a given basic block each register in sequence is
used as required. If all six are used and another is needed, then
special index register instructions for loading an index register each
time its use is called for must be generated by the compiler. This
register is termed the Spill Register.

If less than six index registers are used within a basic block, then for
a subsequent basic block the next available index register will be the
first one used. Additional required index registers will be used until
a total of six have been exhausted. For example, if index register 5
was the first to be assigned for a given basic block, then the subsequent
assigned index registers would be 6, 7, 2, 3, and 4 in that order.

Usage. The calling sequence is:

TSXl X07000
(Normal Return)

Error Returns. None.

66. X08000--Index Loading Instructions Subroutine

Purpose. This subroutine is called to compile computing instructions
for index register loading. If arguments are present, a prologue may
be required.

Method. Input to this subroutine consists of the table, IXCOEF, con
structed by the XOlOOO subroutine. For a simple case where all of the
coefficients are equal to 1, the following coding is generated:

@J~a(ID©)® ~~lffiO ~~ ------------:F;..:;.;,;,:ORT:.:.:.::.:RAN~IV
Compiler

- 234 -

LDQ Name
or

LDQ ;'~~k For arguments. Prologue required.
and

ADLQ Name
or

ADLQ ~·o'(For arguments.

This process is repeated until all of the dimensions have been completed.

If the coefficients are not equal to 1, then each coefficient will be
checked individually. For each that is greater than 1, this subroutine
will generate an Address Macro call through a call to the subroutine
XlOOOO. A complete description of the Address Macro is given in the
XlOOOO subroutine writeup. Depending on which dimension is being pro
cessed (2nd or larger), the following code will be generated:

ADLQ E.
and

STQ E. This instruction is not generated for
the last dimension processed.

This process is repeated until all of the dimensions have been processed.
When complete, the code:

or
ADLQ

ADLQ

Name

For arguments

is generated for as many dimensions as required. Control is then
returned to the calling program.

Usage. The calling sequence is:

TSXl XOSOOO
(Normal Return)

Error Returns. None.

67. X09000--Constant and Dimension Table Generator Subroutine

Purpose. This subroutine is called by the three subroutines XOlOOO,
XOSOOO and IX9180 to build a constant and dimension table in preparation
for prologue compilation.

Method. A subscript is composed of three elements as follows:

S=C~'-·I+A

- 235 -

where:
C the constant
I the index
A the addend

The table of constants, IXCON, consists of up to seven entries, Cl
through C7. An entry is made if the index name matches the input name;
otherwise a zero is entered.

The table of dimensions, IXDIM, consists of up to six entries (no entry
is made for the seventh dimension). If the dimension is constant, then
Dn is placed in the respective entry. For adjustable dimensions, the
argument number is placed in the entry. These entries are marked with a
bit in bit position O.

Usage. The calling sequence is:

TSXl X09000
(Normal Return)

Error Returns. None.

68. XlOOOO--Variable Dimension Prologue Compile Subroutine

Purpose. This subroutine is called by the three subroutines XOlOOO,
X08000 and IX9180 to compile prologue instructions for the computation
of indexes when adjustable dimensions may be involved.

Method. Input to this subroutine consists of the Constant and Dimension
Tables, IXCON and IXDIM, which are generated by the subroutine X09000.
The indicator for double precision/complex is checked, and if on, C2
through C7 of the Constant Table will be doubled. The T.IPRO Table is
checked to see if computation has already been made. If it has, then a
return is made to the calling program with the location IXICTR
containing the I storage counter for the value. No USE .PROXX
instruction is generated.

If the computation has not already been made, then IXCON and IXDIM are
placed in the T.IPRO Table with the respective IXICTR. The subroutine
then computes the values and constructs the arguments for the ADRES
macro (described later). The generated macro will be preceded by a
USE .PROXX instruction and followed by a STQ I.ICTR instruction. The
second return in the calling sequence is then taken to return to the
calling program.

- 236 -

The ADRES macro is described in detail below:

Address Macro
Compute: Cl + (Dl * C2) + (Dl * D2 ~ C3) •••

Macro Arguments:

1fal 0 or Cl
#2 0, or C2, or Dl*C2
#3 0, if constant Dl; Argument number if variable Dl
#4 O, C3, Dl*C3, D2*C3, or Dl*D2*C3
#5 0 if constant D2; Argument number if variable D2
#6 0, C4, Dl*C4, D3*C4, Dl*D2*C4, D2*D3*C4, or D1*D2*D3*C4
#7 O, if constant D3; Argument number if variable D3
.•• and so forth for all 13 arguments (seven dimensions)

FORTRAN IV

Compiler

- 237 -

The following flow diagram illustrates the Address Macro. (There are
two additional flow paths for the 6th and 7th dimensions which are not
shown, but are indicated by a series of dots ••••• These additional
paths are symmetrical to the paths for the 4th and 5th dimensions.)

Five Dimensions

Yes

---~#-9~=0-~-o~- ~
ifa 8+!fa1O+ifal2 =O?

No

LDQ ifa9, l·k
MPY #8+#10+#12,DL

Yes
ifa7=0?

No

Yes
ifa6=0?

No

ADLQ ifa6,DL

MPY ifa5, l·k

No

ADLQ ifa6,DL

@J~0 (ID@@ ~~oou~~ ________,.FOR.....,.TRAN IV

.Compiler

- 238 -

Four Dimensions

Yes ~

:_-: __ i_~_7_=~0=~=o=== ,_1-Y~e~s~~-_-~J..------.• '2_V

~6+:/fo8+:/fal0ifal2=0? -

No

MPY #6+#8+#10+#12,DL

@1-----V'j
Yes

#5=0?

No

Yes
=lfa4=0?

No

ADLQ :/fo4,DL

. MPY :/fa5, l·k

Yes
=lfa4=0?

No

ADLQ ifa4, DL

- 239 -

Three Dimensions

Yes r-:\ 1-r-----tiP\3:_)
'----------.---

#5=0?

Yes
#4+1fa6+1fa8+#10+#12=0?

No

LDQ :/fa 5, l~''"

:/fa3=0?
No

:/f2=0?
Yes

No

1
ADLQ :/f2,DL

MPY :/fa 3' i·k G)

:/f2+:/fl=O?
Yes

No

ADLQ :/f2+1fal, DL

EXIT

- 240 -

Yes
4fa3=0?

No

#2+=/fa4+#6+=/fa8+#10+#12=0?
Yes

No

LDQ 4fa3 , l ""

MPY #2+#4+#6+#8+#10+#12,DL

Q~-----it>
Yes

H=O?

No

ADLQ #1,DL EXIT

LDQ #1+#2+#4+#6+=/fa8+=/fal0+#12,DL

EXIT

@~ c (ID(Q)(Q) ~~[ffi ~ ~~ ------------FO~-~~-pil-::
- 241 -

A listing of the Address Macro is shown below:

ADRES MACRO
INE
INE
LDQ
MPY
INE
INE
ADLQ
MPY
INE
INE
ADLQ
INE
INE
INE
LDQ
MPY
INE
INE
ADLQ
MPY
INE
INE
ADLQ
INE
INE
INE
LDQ
MPY
INE
INE
ADLQ
MPY
INE
INE
ADLQ
INE
INE
INE
LDQ
MPY
INE
INE
ADLQ
MPY
INE
INE
ADLQ
INE
INE
INE
LDQ
MPY

:ffal3' 0' ll
4fol2' 0' 10
4Fl2, DL
4F13' l?\·
{fall, 0' 4
no,0,1
no,n1
{fall, l?'\
0,0,7
ifalO' 0' 6
no,n1
0,0,4
{foll, 0' ll
no+nz,0,10
no+nz, 01
{fall, l?'\
4fa9' 0' 4
4fa8' 0' 1
4fa8, DL
4fa9' l"k
0,0,7
4fa8' 0' 6
4fa8, DL
0,0,4
4fa9, O, ll
4fa8+4Fl0+4Fl2' 0' 10
4f8+4flO+fi2,DL
4fa9' l""'
4f7,0,4
4fa6' 0' 1
#6,DL
4fa7' l?'\
0,0,7
#6,0,6
4fa6, DL
0,0,4
4fa7,0,ll
4f6+4fa8+4fal0+4fl2,0,10
4f6+4fa8+4fl0+4fl2,DL
4fa7' 1 ?'\

ifaS, 0, 4
4fa4, 0' 1
4fa4,DL
ifa 5' 17'
0,0,7
4fa4, 0' 6
4fa4, DL
0,0,4
ifaS, 0, 11
4f4+4fa6+4f8+4fal0+4fl2,0,10
if4+4fa6+4fa8+4fl0+4fl2,DL
ifaS, l?''

@~a@@® ~~000~~ ________,...FOR...,...TRAN-IV
Compiler

- 242 -

INE
INE
ADLQ
MPY
INE
INE
ADLQ
INE
INE
INE
LDQ
MPY
INE
ADLQ
INE
LDQ
ENDM

:/fa3' 0,4
:/f2,0,l
:/f2,DL
:/fa 3' l?'•
0,0,7
:/fa l+:fn ' 0 ' 10
:/fal+:/f2, DL
0,0,8
:/fa 3' 0' 6
#2+#4+#6+:/fa8+#10+#12,0,5
#2+#4+#6+:/fa8+:/fal0+#12,DL
:/fa3' l?'•
:/Fl,0,3
:/Fl,DL
0,0,1
#l+:/fa2+:/fa4+:/fa6+:/fa8+:/fal0+#12,DL
AD RES

Usage. The calling sequence is:

TSXl XlOOOO
(Return 1)
(Return 2)

Prologue compilation previously performed.
Prologue compilation not previously per
formed.

Upon leaving this subroutine at either return, the location IXICTR
contains the I storage counter.

Error Returns. None.

69. Xll000--T.USSR and T.SISU Tables Match Subroutine

Purpose. This subroutine is called to match the T.USSR and T.SISU
Table entries and mark them used. The T.SISU group to which the T.USSR
belongs is determined. Each and every T.USSR entry is then compared
with the T.SISU group and when a match occurs the T.USSR entry is marked
used.

Method. Upon calling this subroutine, a T.USSR entry is furnished as
input. A T.SISU entry is obtained and the USUB pointer of the T.SISU
entry is compared with the USUB pointer of the T.USSR entry. If a
match does not occur when using the first entry of a group within the
T.SISU Table, the next entry of the group is examined. When a match
occurs, the subroutine will reposition itself to the beginning of the
T.SISU Table group. (The beginning of a group in the T.SISU Table is
indicated by a word with a 1 in bit position 0.) Then, starting with
the first entry in the T.SISU Table group, each T.USSR entry is tested
for a match on the USUB pointer. Whenever a match is found, the T.USSR
entry will be marked used with a 1 in bit position 0 of the first word.
In addition, the frequency flag is removed from the T.USSR entry and
replaced with the IXBGCT. Also the IFN is removed from the T.USSR entry

FORTRAN IV

Compiler

- 243 -

and transferred into the T.SISU Table entry, but only if it is greater
than the IFN which is already there. When the end of the T.USSR Table
is reached, the next T.SISU Table entry in the T.SISU Table group will
be used in a similar way. This process continues until every entry in
the T.SISU Table group has been compared with the T.USSR entries.
Control is then returned to the calling routine.

Usage. The calling sequence is:

TSXl XllOOO
(Normal Return)

Error Returns. None.

70. Xl3000--T.USSR Table Construct Subroutine

Purpose. This subroutine is called by the DO Indexer, DX.ODO, to con
struct the T.USSR Table for all subscripted variables in a given basic
DO.

Method. This subroutine computes the points at which initialization
must take place for subscripts using the information contained in the
T.INTS, T.JUNK, T.JUMP or T.IODO Tables. The initialization point
information is stored in the T.USSR Table.

The subroutine finds the last entry in each of the T.SUBS, T.INTS and
T.JUNK Tables located just beyond the end of the basic DO. Working
backwards, and always in combination based on the IFN, the subroutine
finds the subscripts which belong in the T.USSR Table. When the
initialization point is found, an entry is made in the T.USSR Table and
marked used (-). The entry is made with the basic DO origin and end.

For example:

2

11
4

DO 4, I = 1,12,3

A(I)= ••••••••
J = •• ~ •••
B (I,J) = ••••••
IF (X) 11,2,11
J = ••••..
B(I,J) •.•••
A(I) ••••••
B(I,J) ••••.

(T. INTS)

(T.INTS) (T.JUNK)

(T.JUNK)

The T.USSR Table will have one entry for A(I) with a frequency of 2, but
there must be three separate entries of B(I,J), each with a different
IFN-at-which-to recalculate the index because of the T.INTS Table and
T.JUNK Table entries.

@~a(ID(ID@ ~~000~~ ---------FOR-TRAN-IV
Compiler

- 244 -

Usage. The calling sequence is:

TSXl Xl3000
(Nonnal Return)

Error Returns. None.

71. Xl4000--T.SISU Table Construct Subroutine

Purpose. This subroutine is called by the DO Indexer, DX.000, to
construct the T.SISU Table (similar subscripts) for all subscripts
involving the DO index.

Method. This subroutine locates the subscripts in the range of the DO
and examines the DO name. When found, the previous entries into the
T.SISU Table are examined for a match on the USUB pointers. If there is
a match, the frequency in the first word of the T.SISU Table entry is
incremented and the subroutine returns to get the next subscript. If
there is no match on the USUB pointers, then the subroutine computes the
coefficient G of the subscript and compares it with the entries in the
T.SISU Table~ A match on the coefficient G causes the subroutine to put
the USUB pointer into the appropriate T.SISU Table group and to increment
the frequency count. If the coefficient G cannot be matched, then a new
group entry is made in the T.SISU Table containing the coefficient G and
the USUB pointer.

Usage. The calling sequence is:

TSXl Xl4000
(Nonnal Return)

Error Returns. None.

72. Xl5000--Find T.SUBS Subroutine

Purpose. This subroutine is called by the DO Indexer, DX.000, to find
all T.SUBS Table entries in a DO region.

Method. For all of the T .SUBS Table entries within the D·o region, the
index register assignment is taken from the corresponding T.SISU Table
entry and placed in the appropriate T.SUBS Table entry. If the assigned
index register is the spill register, then an entry is also made in the
T. LDXR Table.

This subroutine processes nested DOs. The locations BBORG and BBEND
define the range of the basic DO. NDORG and NDEND specify a nested DO.
All subscripts must be found which fall between BBORG and NDORG. When

FORTRAN IV

Compiler

- 245 -

that range is covered, the next DO on the same level and within the
basic DO is found and the procedure is repeated. In this way all of
the subscripts under the direct influence of the basic DO are
located.

Usage. The calling sequence is:

TSXl Xl5000
(Normal Return)

Error Returns. None.

73. Xl6000--T.SUBS Table Entries Addend Computation Subroutine

Purpose. This subroutine is called by the DO Indexer, DX.000, to compute
addends for all T.SUBS Table entries in the DO area.

Method. This subroutine calls the subroutine IX9040 to scan the unique
subscripts (USUBs). If the subroutine IX9040 returns to the first line
of the calling sequence, then the subscript is a constant or the DO
index. In this case, the subroutine X20000 is called to compute the
addend. There are two possible returns from the X20000 subroutine. The
first return results in a prologue compilation (subroutine XOlOOO) if
the addend has variable dimensions. However, if a prologue was already
compiled, then a

STXO IFN (Not Spill Register)

or

STXO IFN+l (Spill Register)

instruction will be generated.

The second return from the X20000 subroutine results in placement of the
addend in the right half of the second T.SUBS Table entry word and the
entry is marked used.

A return by the subroutine IX9040 to the second line of the calling
sequence indicates a variable subscript and a value of zero is used
for the addend and the entry is marked used.

Usage. The calling sequence is:

TSXl Xl6000
(Normal Return)

Error Returns. None.

- 246 -

FORTRAN IV
Compiler

74. Xl7000--DO Index Name Usage Subroutine

Purpose. This subroutine is called by the X02000 subroutine to check
the DO index name to see if it is used in a calculation.

Method. If the DO index value is required in a calculation or for
reinitialization of the index, then it is necessary to store it each
time it is changed. The T.RINT and T.JUMP Tables are used to check the
usage of the DO index name.

The DO is tested for the following:

1. The DO index is used in a calculation in the range of the DO.

2. DO name is in COMMON.

3. There is a transfer out of the range of the DO.

4. Inner DOs are present.

A return is made to the calling program to indicate whether or not
instructions must be generated to save the DO index.

Usage. The calling sequence is:

TSXl Xl7000
(Return 1)
(Return 2)

Error Returns. None.

75. Xl8000--Find Target Subroutine

Save instructions needed.
Save instructions not needed.

Purpose. This subroutine is called by the X02000 and IX3000 subroutines
to find the point in an area bounding or beyond the DO basic block at
which address modification must occur for a subscripted variable. This
point is referred to as the target point.

Method. If required, the target is located at the beginning of the
lowest level DO bounding or beyond the DO basic block, containing no
definition of the index variable between that DO and the DO basic
block.

- 247 -

For example:

DO Nest

ca-~~~~~~~~~~~- Address A(L) may be initialized here.

I
e1-~~~~~~~~~~Index I may be initialized here.

ct-~~~~~~~~Address A(I) may be initialized here.

J
~~~~~~~-Index J may be initialized here. 

~~~~~~- Address A(J) may be initialized here. 

K
<1-----

A(I)
A(J)
A(K)
A(L)

Index K may be initialized here.

The initialization of addresses is always performed as far as possible
outside of the DO nest in order to reduce the number of times the
initialization instructions will be executed.

Usage. The calling sequence is:

TSXl Xl8000
(Normal Return)

Error Returns. None.

76. Xl9000--Indexer T.SISU Table Build Subroutine

Purpose. This subroutine is called by the Basic Block Indexer and the
DO Indexer to build the T.SISU Table from the information contained in
the T.USSR Table.

Method. This subroutine groups entries from the T.USSR Table by similar
USUB pointers. For T.USSR entries having identical subscripts the
frequency count in the corresponding T.SISU entry is incremented. If an
identical subscript is not found, the subscript values are evaluated and
compared again. If a match occurs, the USUB pointer is inserted into
the T.SISU group and the frequency counts are incremented. If a match
does not occur, a new entry is made into the T.SISU Table and the sub
routine returns for the next T.USSR entry.

@J~ c(ID@(Q) ~~[ffiU~~ ___________ Fo_~~~-pu-::

- 248 -

Additional information on this routine is included in the descriptions
of the Basic Block Indexer and the DO Indexer described in this Chapter.

Usage. The calling sequence is:

TSXl Xl9000
(Return 1)
(Normal Return)

Return 1 is taken when there are no variable subscripts; hence no
T.SISU Table.

Error Returns. None.

77. X20000--Addend Computation Subroutine

Purpose. This subroutine is called to compute an addend or a given USUB
entry.

Method. The USUB dimension is examined. Depending on its value, 1 to 7,
the calculated addend will be:

(Al-1)
(Al-l)+Dl(A2-l)
(Al-l)+Dl(A2-l)+DlD2(A3-l)

etc

Single Dimension
Two Dimensions
Three Dimensions

(Continued up to a maximum of seven dimensions)

Usage. The calling sequence is:

TSXl X20000
(Return 1)
(Return 2)

Return 1 is taken for variable dimensions, no addend. Return 2 is taken for
constant dimensions with the addend in the A-register and in the location
XXADND.

Error Returns. None.

78. IX1000--Indexer T.USSR Table Build Subroutine

Purpose. This subroutine is called by the Basic Block Indexer to build
the T.USSR Table.

- 249 -

Method. Given the origin and end of a basic block, this subroutine
collects all unique subscript usage for the region from the T.SUBS Table.
Each is identified as to its IFN and if and where an integer variable
may have been evaluated. This latter information comes from the T.INTS
Table. Duplicate entries are eliminated from the T.USSR Table in this
subroutine and are indicated by the frequency count in the T.USSR Table
entry. This frequency count is also used as a basis for the assignment
of index registers.

Usage. The calling sequence is:

TSXl IXlOOO
(Return 1)
(Normal Return)

Return 1 of the calling sequence is taken when the basic block is such
that no T.USSR Table is constructed.

Error Returns. None.

79. IX3000--T.USSR Table Mark Subroutine

Purpose. This subroutine is called by the Xl3000 subroutine to check
and mark the T.USSR Table entries.

Method. This subroutine performs four distinct functions:

1. For all integers in the basic DO, the T.USSR Table is checked
for the appearance of the integer name in the USUB entry and
the T.USSR Table entry is marked used.

2. For all jumps from an inner DO to an outer DO, all T.USSR Table
entries are marked used.

3. For all T.USSR Table entries not initialized so far, the point
of initialization (target) is found and the T.USSR Table entry
is marked used.

4. All tables referenced by this subroutine are properly
repositioned before exit occurs. The T.JUNK Table is positioned
so that the destination just precedes the origin of the next DO.
The T.INTS Table is positioned so that the IFN just precedes
the origin of the next DO. The T.SUBS Table is positioned at
the next unused subscript just preceding the next DO origin.

Usage. The calling sequence is:

TSXl IX3000
(Normal Return)

- 250 -

Error Returns. There are no error returns in the calling sequence, but
the following fatal diagnostic may be written.

IX3890 ILLEGAL NESTED DO NAME -

80. IX9000--Table Backup Subroutine

Purpose. This subroutine is called by the three subroutines Xl3000,
IXlOOO and IX9140 to obtain the previous entry from a Buffered Table.

Method. There are two entry points to this subroutine, IX9000 and
IX9010. The first entry assumes the table pointer is at the current
entry and the user wants the previous entry. This subroutine will move
the pointer backwards N words, then call the subroutine PU.LL to obtain
the previous entry. If the entry point IX9010 is used, the subroutine
assumes the table pointer is located at the next entry and that the user
wishes to obtain the entry previous to the current one. In this case
the subroutine backs the pointer up by N*2 words and then calls the
subroutine PU.LL to obtain the desired entry.

Usage. The calling sequence is:

or

followed by

TSXl IX9000

TSXl IX9010

ARG T.XXXX
TALLY LOC,N
(Return 1)
(Return 2)

Pointer at current entry.

Pointer at next entry.

Name of table
where N = number of words

Return 1 is taken if there is no table or if the table is empty. Return
2 is the normal return.

Error Returns .. None.

81. IX9020--Name Check Subroutine

Purpose. This subroutine is called by the subroutines Xl3000, Xl8000,
IX3000 and IXlOOO to perform a check if a given name is contained in a
particular USUB entry.

Method. Upon entry to this routine the USUB pointer is contained in
location XXUSUB and the given name is in location SXNAME. If the .
contents of SXNAME are zero, then a CALL statement is indicated, and an

- 251 -

additional check is performed to determine if the USUB contains names in
COMMON., If the name is in COMMON, the second return is taken in the
calling sequence.

Usage. The calling sequence is:

TSXl IX9020
(Return 1)
(Return 2)

Error Returns. None.

Name not found
Name was found

82. IX9040--USUB Entry Check Subroutine

Purpose. This subroutine is called by the Xl6000 and IXlOOO subroutines
to examine a USUB entry and determine the type of subscript.

Method. Upon entry to this subroutine, the USUB pointer is contained in
location XXUSUB. The USUB entry is examined to determine if the sub
script is constant (including the DO index name) or if the subscript is
variable (other than the DO index name). Two returns are provided in the
calling sequence for either case.

Usage. The calling sequence is:

TSXl IX9040
(Return 1)
(Return 2)

Error Returns. None.

Constant subscript (including DO name)
Variable subscript (other than DO name)

83. IX9050--Compute Coefficient Subroutine

Purpose. This subroutine is called to build a table of coefficients.

Method. Input to this subroutine consists of the USUB pointer and the
DO name. The Index name is compared to the DO name. It should be noted
that the DO name for a Basic Block is equal to zero. If the comparison
produces a match, then this dimension will be bypassed. If the
comparison does not produce a match (as is always the case in a basic
block), then the Index name will be stored and the subroutine IX9060
is called to compute the numeric coefficient. Upon return the
coefficient and the Index name are placed in the simple table IXCOEF.
This process is repeated for as many dimensions as are present.

@~a(ID@@ ~~[ffi~~~ ___________ Fo_~~~-pil-~:

- 252 -

Usage. The calling sequence is:

TSXl IX9050
(Normal Return)

Error Returns. None.

84. IX9060--Compute Numeric Coefficient Subroutine

Purpose. This subroutine is called by the Xl4000 and IX9050 subroutines
to compute the numeric coefficient for a given USUB and Name.

Method. Upon entry to this subroutine, the USUB pointer is contained in
location XXUSUB and the Name is contained in location SXNAME. If the
dimension is variable, an immediate return to the calling program is
taken.

Usage. The calling sequence is:

TSXl IX9060
(Normal Return)

Upon return from the subroutine, the numeric coefficient is contained
in the location XXGAMA and in the A-register; if a variable dimension,
the A-register is zero.

Error Returns. None.

85. IX9070--IFN Location Field Compile Subroutine

Purpose. This subroutine is called to set the IFN for compilation in
the location field of a GMAP symbolic instruction.

Method. The input IFN is located in cell IXIFN. It is compared to the
current IFN. If they are equivalent, the remote compile is turned off.
A test is then performed to determine if the IFN has already appeared
in the location field. If it has, the subroutine returns control to the
calling program. If not, the IFN is compiled into the location field of
a GMAP instruction and held. The ncompiled IFN Flagn is then set, the
remote compile is turned on and control is transferred to the calling
program.

- 253 -

Usage. The calling sequence is:

TSXl IX9070
(Nonnal Return)

Error Returns. None.

86. IX9080--B.n Compile and Hold Subroutine .

Purpose. This subroutine is called by the subroutines DX.000, X02000,
X03000, X04000, X06000 and X08000 to compile and hold the B.n for the
location field of a GMAP instruction.

Method. This subroutine calls the GG subroutine to place B.n in the
location field for the next instruction being generated.

Usage. The calling sequence is:

TSXl IX9080
(Nonnal Return)

Error Returns. None.

87. IX9090--T.BGIN Table Entry Subroutine

Purpose. This subroutine is called to make an entry in the T.BGIN Table
to indicate where to collate instructions from the remote compile table
(T.COLT) into the GMAP code being written on the G* file.

Method. Upon entry to this subroutine, the input IFN (in location IXIFN)
is compared with entries already in the table. If there is a match, the
compile flag is cleared and begin count (BGCT) is moved into the entry
in the T.BGIN Table. When there is no match, an entry will be made in
the T.BGIN Table. This new entry will consist of the IFN and the BGCT.
When the input IFN (IXIFN) is equal to the current IFN, the entry in the
T.BGIN Table will be marked with a 1 in bit position O. The equality
of the IFNs indicates the beginning of a basic block.

Usage. The calling sequence is:

TSXl IX9090
(Nonnal Return)

Error Returns. None.

@J~c (ID@@ ~~[ffi u ~~ _____________ F_o~-~:-u-~:

- 254 -

88. IX9100--T.SISU Table Push Down Subroutine

Purpose. The subroutine is called by the Xl4000 and Xl9000 subroutines
to place an entry in the T.SISU Table.

Method. The T.USSR Table is searched to build the T.SISU Table. The
T.SISU Table consists of groups of entries of similar subscripts. The
first word of a T.SISU Table group is indicated by a minus sign. As
additional words of the T.USSR Table are examined, it may be necessary
to add words to a group in the T.SISU Table. This requires that the
rest of the entries in the T •. SISU Table be pushed down.

Usage. The calling sequence is:

TSXl IX9100
(Normal Return)

Error Returns.· None.

89. IX9120--Next DO Entry Subroutine

Purpose. This subroutine is called by the DX.000, Xl3000, Xl4000,
Xl5000 and Xl6000 subroutines to find the next DO entry.

Method. This subroutine searches the T.IODO Table for the next DO
entry with an origin greater than the current DO end. When the entry
is located, the origin and destination are stored in NDORG (next DO
origin) and NDEND (next DO end) respectively. If the end of table is
encountered during the search before an entry is found, then the origin
and destination will be set to all bits (octal 777777777777).

1
2

[3A<1--- Pointer located here

DO Nest
[3B<l-- This DO would be found as the next one

[3C

-1255 -

Usage. The calling sequence is:

TSXl IX9120
(Normal Return)

Error Returns. None.

90. IX9140--Last DO Entry Subroutine

Purpose. This subroutine is called by the Xl3000 and IX3000 subroutines
to find the last DO entry.

Method. This subroutine searches backwards within the DO nest looking
for the last DO entry with a destination less than the current DO origin
and greater than the previous DO nest. When found, the DO origin and
destination will be saved in NDORG (next DO origin) and NDEND (next
DO end) respectively. If the table runs out, the beginning is
encountered since this is a backwards search, a value of zero will be
used for the origin and destination.

1

DO Nest
[3B4--This DO would be found as the last one

[

~ Pointer located here

3C

Usage. The calling sequence is:

TSXl IX9140
(Normal Return)

Error Returns. None.

- 256 -

91. IX9160--Variable Name/Argument Table Subroutine

Purpose. This subroutine is called by the XOlOOO and X09000 subroutines
to find the position of the variable name (location ARGNAM) in the
Argument Table (T.ARGS).

Method. Upon entry to this subroutine the T.ARGS Table is searched for
the argument list that is indicated in location IXALN. If this list is
not found, then the first return is taken. Within the proper list a
search is made for the variable name. If the variable name is not found,
a return is made to the first line of the calling sequence. If the
variable name is found, then the second line of the calling sequence is
taken with the relative table position contained in the A-register. The
relative table position is actually the relative position plus one to
account for the TRA instruction and the error linkage in the calling
sequence.

Usage. The calling sequence is:

TSXl IX9060
(Return 1)
(Return 2)

where:
Return 1 variable name not found.
Return 2 variable name was found.

Error Returns. None.

92. IX9180--N1/N3 Constant Subroutine

Purpose. This subroutine is called by the subroutines X03000 and X04000
when parameters N1 or NJ of a DO are constant to construct a simple
coefficient table and to compile any prologue instructions required by
the DO.

Method. The subroutine PU.LL is called to obtain an entry from the
T.SISU Table. The USUB pointer and DO name are saved. The subroutine
IXSET is called to set up a loop to go over the argument lists. The
X09000 subroutine is called to construct the Coefficient and Dimension
Table. Upon return the subscript coefficient value is multiplied by N.
Finally the subroutine XlOOOO is called to compile the prologue if
required and return is given to the calling program.

Usage. The calling sequence is:

TSXl IX9180
(Normal Return)

Error Returns. None.

@~ a(@(Q)@ ~~[ffi o ~~ ___________ Fo_~~~-pil-::

- 257 -

93. IX9200--DO Variable Parameters Compile Subroutine

Purpose. This subroutine is called by the subroutines X03000 and
X04000 to process the parameters N1 or N3 of a DO, if they are variable.

Method. This subroutine compiles any prologue instructions which may be
necessary because the parameters of the DO are variable.

Usage. The calling sequence is:

TSXl IX9200
'(Normal Return)

Error Returns. None.

94. IX9220--USUB Entry Replace Subroutine

Purpose. This subroutine is called by the IX9200 subroutine to examine
the USUB entry.

Method. This subroutine contains two separate entry points. Each entry
point enables the subroutine to perform a different function.

The entry point IX9220 causes the subroutine to examine the USUB entry
and replace any given N name (contained in location IXNN) with the
current DO name.

The entry point IX9225 causes the subroutine to examine the USUB entry
and replace the current DO name with the N name.

Usage. The calling sequence is:

TSXl IX9220
(Normal Return)

or
TSXl IX9225
(Normal Return)

Error Returns. None.

95. IXSET--Loop Set Subroutine

Purpose. This subroutine is called by the subroutines XOlOOO, X08000
and IX9180 to initialize a loop to compile prologues for all argument
lists.

@~a@@@ ~~~~~~--------------------------F-~-~=-il-::
- 258 -

Method. Upon entering this subroutine the indicator (location IXCNTR)
for incrementing the "n" part of B.n is reset. In preparation for an
error check the count of noncompiles is set to zero. The count of
prologue compiles is set to zero initially. Subsequent entries to this
subroutine store new values as the XX portion of a USE .PROXX
instruction. Return is given to the calling program.

Usage. The calling sequence is:

TSXl I XS ET
(Normal Return)

Error Returns. None.

96. IXTEST--Loop Test Subroutine

Purpose. This subroutine is called by the subroutines BX.GOO, DX.GOO,
X03000, X04000, X08000 and Xl6000 to test for the end of the loop when
compiling prologues for argument lists.

Method. Upon entering this subroutine, a test is made to see if all of
the prologues for ENTRY statements have been done for all argument lists
by comparing the number of ENTRYs (location NO.ENT) against the count of
prologues compiled (location IXALN). If all of them have not been done,
a one is added to location IXALN and the subroutine IXSET is reentered
at symbolic location IXSETl.

If all of them have been done, then a check on the number of prologues
compiled is performed. If none have been compiled, a fatal diagnostic
message is written and control returns to the calling program. If one
or more prologues have been compiled, the location IXCNTR is checked
to see if the "n" part of B.n needs incrementation. If stepping is
required, it is done and return is made to the calling program. If no
stepping is required, control is immediately given to the calling program.

Usage. The calling sequence is:

TSXl IXTEST
(Normal Return)

Error Returns. There are no error returns in the calling sequence, but
the following fatal diagnostic may be written.

IXTST2 ARGUMENT LISTS ARE IMPROPER.

- 259 -

c

Progress Is Our Mosf lmporlanf Prot/vt;f

GENERAL fl ELECTRIC
Computer Department • Phoenix, Arizona

