
. GE-625/635 GECOS-III
(--.....,

..) Dispatcher and
~ Peripheral Allocation

SOFTWARE MAINTENANCE DOCUMENT

t:li:J. Information
~ Systems

Information Systems
Equipment

~iJ . GENERAL. ELECTRIC

CP B-1491

CPB-1491

GE-625/635 GECOS-HI
Dispatcher and

Peripheral Allocation

SOFTWARE MAINTENANCE DOCUMENT

March 1968

INFORMATION SYSTEMS

GENERAl. ELECYfiUC

PREFACE

This manual describes the implementation of the Dispatcher and
Allocation modules for the GE-625/635 Comprehensive Operating
(GECOS).

Additional software maintenance documents are as follows:

GE-625/635 GECOS-III Introduction and System Tables, CPB-1488

GE-625/635 GECOS-III Startup, CPB-1489

GE-625/635 GECOS-III System Input, CPB-l490

Peripheral
Supervisor

GE-625-635 GECOS-III Rollcall, Core Allocation, Operator Interface, CPB-1492

GE-625/635 GECOS-III Fault Processing and Service MME's, CPB-1493

GE-625/635 GECOS-III I/O Supervision, CPB-1494

GE-625/635 GECOS-III Error Processing, CPB-1495

GE-625/635 GECOS-III Termination and System Output, CPB-1496

GE-625/635 GECOS-III File System Maintenance, CPB-1497

GE-625/635 GECOS-III Utility Routines, CPB-1498

GE-625/635 GECOS-III Comprehensive Index and Glossary, CPB-1499

GE-625/635 GECOS-III Flowcharts, CPB-1500

GE-625/635 GECOS-III Time-Sharing System, CPB-150l

This manual was produced using the General Electric Remote Access Editing
System (RAES). RAES is a time-shared disc-resident storage and retrieval
system with text-editing and manuscript formatting capabilities. The contents
of the manual were entered into RAES from a remote terminal keyboard, edited
using the system editing language, and formatted by RAES on reproduction
masters.

The index was produced using a
system. This system produces an
manuscript input time.

computer-assisted remote access indexing
index using source strings delimited at

Suggestions and criticisms relative to form, content, purpose, or use of this
manual are invited. Comments may be sent on the Document Review Sheet in the
back of this manual or may be addressed directly to Documentation Standards
and Publications, C-78, Processor Equipment Department, General Electric
Company, 13430 North Black Canyon Highway, Phoenix, Arizona 85029.

~ 1968 by General Electric Company

(lM 5-68)

CPB-1491

CONTENTS

1. ,INTRODUCTION TO DISPATCHER 1

2. DISPATCHING 3

Dispatcher Module (.MDISP).. 3
Satisfying a New Courtesy Call Request....................... 3
Satisfying an Abort Request.................................. 4
Satisfying a Swap/Move Request............................... 5
Satisfying a GEPR Request.................................... 5
Redispatch After Interrupt or Timer Runout DSP (EPl)......... 6
Roadblock GRD (EP2).. 8
Forced Relinquish FRLC (EP3)................................. 10
Relinquish RLC (EP4)... 12
End Courtesy Call ENCC (EP5)................................. 14
Enable Program ENB (EP6}..................................... 16
Program No. at Front of Queue DSPQH (EP7}.................... 18
Program No. at End of Queue DSPOT (EP8}...................... 20
Accumulate Processor Time DACNB (EP9)........................ 22
Restore State After SWAP, NOVE, GEPR DRSTR (EPlO)............ 24
Relinquish Control Until Program Enabled DSCNT (EPII}........ 26
Do Disc I/O Using System I/O Queue DMIOA (EP12}.............. 28
Set Alarm SCK (EP13)................................ ••••••••• 30
Program No. in Queue Following Interrupt DSPQM (EP14) •••••••• 32

3. SYSTEM MACRO, TRACE, AND GATE ROUTINES 35

System Macro Routines... 35
.CALL Macro.. 36 .GOTO Macro.. 39 . EXIT Macro.. 41

System Trace Routine.. 43
System Trace TRACE... 44

System Gate Routines... 47
Open System Gates OPGAT...................................... 48
Close System Gates SHUG...................................... 51

4. INTRODUCTION TO PERIPHERAL ALLOCATION 55

5. ALLOCATION MODULES 57

Peripheral Allocator (.MALCl)..................................... 57
Fault Recovery PANIC... 59
Initialize Program ENTRy..................................... 61
Process Entries in Queue QUE................................. 62
Scan Job Stack LOOP.. 64
Process New Job NEW.. 66
Determine Next Activity Requirement NUACT.................... 68
Make Default File Entries DOACT ••••••••• ~.................... 70
Main Allocation Pass TALC.................................... 72
Peripherals Allocated DONE................................... 74
Test For Tape Ready TAR...................................... 76
Resident Peripheral Dispenser ALC2........................... 78 Read J* File READJ... 81
Fill Queues For Simple I/O QIOS.............................. 83
Type Console Message TyPE.................................... 85
Scan Variable Control Fields FIND............................ 87
Release Files in PAT RELS.................................... 89

CPB-1491

iii

Peripheral Dispenser (.MALC2) •••••••••••••••••••••••••••••••••••••
Process Specific Device Request ENTRY (EP1) ••••••••••••••••••
Process Specific Channel Request ENT2 (EP2) •••••••••••••••••
Process Any Card Punch Request ENT3 (EP3) ••••••••••••••••••••

Peripheral Space Allocator (.MALCS) •••••••••••••••••••••••••••••••
Provide Links for New File CAOl (EP1) ••••••••••••••••••••••••
Return Links DAOl (EP2) ••••••••••••••••••••••••••••••••••••••
Provide Additional Links CQOO (EP3) ••••••••••••••••••••••••••
Provide Contiguous Links CAOO (EP4) ••••••••••••••••••••••••••

LLINK Alloca tor (.MALC6) •••••••••••••••••••••••••••••••••••••• ' ••••
Allocate LLINK Space START (EP1) •••••••••••••••••••••••••••••

Permanent Space Allocator (.MALC7) ••••••••••••••••••••••••••••••••
Make Link Space Permanent Given PAT FSUNPT (EP1) •••••••••••••
Make Link Space Permanent Given Link Strings FSUNLS (EP2) ••••

MME Processors for Allocation •••••••••••••••••••••••••••••••••••••
MME GEMORE Processor MORE ••••••••••••••••••••••••••••••••••••
MME GERELS Processor RELS ••••••••••••••••••••••••••••••••••••

INDEX

91
92
95
96
97
99

101
103
105
107
108
110
111
113
115
116
118

121

CPB-1491

iv

1. INTRODUCTION TO DISPATCHER

Processor dispatching is accomplished by one module .MDISP which contains the
following entry point (EP) routines:

• DSP (EPI) Redispatch After Interrupt or Timer Runout
• GRD (EP2) Roadblock
0 FRLC (EP3) Forced Relinquish
• RLC (EP4) Relinquish
• ENCC (EP5) End Courtesy Call
• ENB (EP6) Enable Program
0 DSPQH (EP7) Program No. At Front of Queue
• DSPOT (EP8) Program No. At End of Queue
• DACNB (EP9) Accumulate Processor Time
0 DRSTR (EPIO) Restore State After Swap, Move, GEPR
0 DSCNT (EPII) Relinquish Control Until Program Enabled
0 DMIOA (EPI2) Do Disc I/O Using System I/O Queue
0 SCK (EPI3) Set Alarm
0 DSPQM (EPI4) Program No. in Queue Following Interrupt
0 TRACF (EPI5) Save Trace Buffer and write Out

During startup, the Dispatcher is initialized by:

o .IDISP Dispatcher Initialization

These routines are described in Chapter 2. In addition to the above routines,
the Dispatcher contains various macro subroutines not logically a part of the
dispatching function but located in the Dispatcher module:

•
o
o

HCL
HGT
HEX

.CALL macro

.COTO macro

.EXIT macro

These macros are described in Chapter 3.

A system trace routine, described in Chapter 3,

• TRACE System Trace

facilitates analysis of system dumps and is assembled as part of the
Dispatcher.

To preserve the integrity of certain tables and
processor executing certain sections of GECOS,
subroutines are implemented in the Dispatcher:

• •
OPGAT
SHUG

Open System Gates
Shut System Gates

These subroutines are described in Chapter 3.

to preven t more than one
the following system gate

A glossary and an index are included for user convenience.

CPB-1491

1

2. DISPATCHING

DISPATCHER MODULE (.MDISP)

Dispatching processors to programs which can make effective and immediate use
of the processor and/or peripheral subsystems (through the I/O Supervisor) is
accomplished by the Dispatcher. A program, whether it is a GECOS module or a
slave program, can be selected for execution only by the Dispatcher. Rules
for selection are as follows:

1. If the first program in the Dispatcher queue was in a courtesy call,
dispatch to that program.

2. Otherwise, examine the courtesy call queue and find the first new
courtesy call that may be paid by this processor. If one can be found and
the request can be satisified (see below), dispatch to that program.

3. If no new courtesy call is found, examine the Dispatcher queue. If a
program is found in the Dispatcher queue, dispatch to that program.

4. Otherwise, go into the Dispatcher wait routine, where the processor is
disabled. The processor will remain disabled until the next IOC interrupt
or the next Connect IOC (CIOC) address to that processor. At that time,
the processor attempts to find a program to dispatch to by passing
through the Dispatcher queue again.

Once a program is selected, the Dispatcher checks to see that processor time
remains for the program. If no time remains, the program is aborted (through
the Termination module, .MBRT). Next, the Dispatcher checks to see if an
Abort, GEPR, or Swap/Move request is outstanding for this program. If no
request is outstanding, the program is dispatched to normally. If a request
for Abort, GEPR, or Swap/Move is present, the request is checked to determine
whether it may be satisified, and the program is dispatched to normally. If
the request can be satisfied, the Dispatcher saves the state of the program
and transfers control to the appropriate GECOS module where the required
action (abort, etc) is taken.

SATISFYING A NEW COURTESY CALL REQUEST

Various conditions determine whether a request for a new courtesy call can be
satisfied. A new courtesy call may be started for a program if:

1. The program is not already executing in another processor.

2. The SSA of the program is not being loaded.

3. GEPR is not in control.

4. Abort is not requested.

CPB-1491

3

5. Swap/Move is not in control.

6. A courtesy call is not in control.

7. The program is not in the GEPOP queue waiting for more memory or for
memory release.

8. SYSOUT is not writing for this program. If SYSOUT is writing for
this program, only courtesy calls belonging to SYSOUT may be paid.
(Thus, two MME GESYOTS are not started for the same program at the
same time.)

9. The I/O queue holding the courtesy call does not have the Stop I/O
bit on.

SATISFYING AN ABORT REQUEST

Two methods are available to request an Abort. First, an operator may have
requested, through the control console typewriter, a TERM or KILL. Second,
GEPR ma~' have requested a program abort. Both methods resul t in turning on
the Abort flag in the .STATE word of the program. Any other abort will not
turn the abort flag on because the program transfers to the abort routine,
FALT (EP3 of .MBRT1) itself.

A request for an Abort is honored under the following conditions:

1. The program is not already executing in another processor.

2. The SSA of the program is not being loaded and no SSA is pushed
down.

3. No Ie and I entry for the program is pushed down in the Ie and I
stack.

4. The Ie and I is in slave mode unless the urgency of the program is
zero.

5. The program is not waiting for GEPR.

6. GEPR, Abort, S\'lap/Move are not in control.

7. SYSOUT is not writing.

CPB-1491

4

SATISFYING A SWAP/MOVE REQUEST

A request to Swap or Move a program is made by the .MPOPM module when memory
compaction or swapping is to be done. This request is honored under the
following conditions:

t 1. The program is not already executing in another processor.

2. The SSA of the program is not being loaded.

3. No Ie and I entry for the program is pushed down in the Ie and I
stack.

4. The Ie and I is in slave mode unless the urgency of the program is
zero.

5. The program is not waiting for GEPR.

6. GEPR and Abort are not in control.

7. SYSOUT is not writing.

SATISFYING A GEPR REQUEST

A request to start GEPR is honored under the following conditions:

1. The program is not already executing in another processor.

2. GEPR is not already in control.

3. The SSA is not being loaded.

4. SYSOUT is not writing. If SYSOUT is writing, a GEPR request may only
be honored if the I/O requiring GEPR action is a SYSOUT-generated
I/O reques~.

CPB-1491

5

DSP (EP1)
. MDISP

REDISPATCH AFTER INTERRUPT OR TIMER RUN OUT

DSP (EP1 of .MDISP) sends control to the
processor after an interrupt, relinquish,
occurred.

PRECALLING SEQUENCE

next program that can use
roadblock, or timer runout

the
has

Prior to entering DSP, the registers listed must contain the data indicated.

X5 LAL for program
X6 Program number
X7 Processor number

CALLING SEQUENCE

DSP is called from the Interrupt Handler (IOTRM) in the .MIOS module and from
various Dispatcher routines.

s

• GOTO
return

16

.MDISP,l

OPERATING SYSTEM INTERACTION

When control is given to DSP, it is assumed that the status of any program
already in execution has been saved. If a program is in execution when this
entry is reached, it is not ordinarily added to the queue of programs in
.CRPRQ. However if a request is outstanding for GEPR, Abort, or Move/Swap and
Move/Swap is not already in control, the program is put in the .CRPRQ so
these requests may be satisfied. (See Chapter 1 for the conditions under
which these requests are satisfied.)

ROUTINE RETURNS

The DSP routine transfers to .SICI within the program SSA. The .SICI
contains the final code to reload the program registers and a return to
program. This code is as follows:

8 16

.SICI LDA • SSA,I
CAN A 1,DL
TZE 3,IC
LREG .SSA+l,AD
RET .SSA,I
LREG 32,5
RET .SSA,I

cell
the

The absolute addresses .SSA and .SSA+l are calculated and stored in the above
code by various core allocation modules.

CPB-1491

6

(

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

DSP is reentrant and written in floatable code.

Interrupts are normally inhibited.

Storage

No internal temporary storage is used.

DSP occupies approximately 385 core storage locations.

Other Routines Used

Enable Program ENB (EP6 of .MDISP)
Set Alarm SCK (EP13 of .MDISP)
Program No. At End of Queue DSPQT (EP8 of .MDISP)
System Trace TRACE (.MDISP)
Dispatch Entry for Abort DISP (EPl of .MBRT1)
Terminate Error Entry FALT (EP3 of .MBRT1)
GEPR Executive GEPRE (EPl of .MGEPR)
Request Job Swap SWAP (EPl of • MSWAP)

Flowchart

See CPB-1500 for the flowchart of DSP (EP1), .MDISP module.

7

DSP (EPl)
.MDISP

CPB-1491

GRD (EP2)
. MDISP

ROADBLOCK

GRD (EP2 of .MDISP) performs a roadblock on the program using it. When a
program is roadblocked, it will not be a candidate for execution again until
all I/O requests made by that program are satisfied. In roadblocking a
program, GRD sets the Roadblock flag in the program status word.

PRECALLING SEQUENCE

All registers are saved by the macro .GROAD when used, and by the Fault
Processor (.MFALT) when MME GEROAD is used.

The calling program must not be in a courtesy call since roadblocks within
courtesy calls are illegal.

CALLING SEQUENCE

GRD is called from any GECOS program by:

a 16

.GROAD

or by a slave program:

8 16

MME GEROAD

OPERATING SYSTEM INTERACTION

Processor time accumulated for the program requesting a roadblock is
determined by DACNB (EP9 of .MDISP). Once all I/O requests are satisfied or
if no I/O requests are present for the program, the DSPQT (EPa of .MDISP)
routine is used to put the program at the end of the Dispatcher queue. If the
program has a request present for Swap/Move, GEPR, or Abort, the Roadblock
flag is still set by GRD. The program is then put into the Dispatcher queue
so that the Swap/Move, GEPR, or Abort action may occur. However, since the
Roadblock flag is set, the program will be dispatched to only to begin
Swap/Move, GEPR, or Abort.

ROUTINE RETURNS

Return is to the next instruction following the call after all outstanding
I/O is completed.

POST CALLING SEQUENCE

None.

CPB-1491

a

SUPPORTING INFORMATION

Programming Method

GRD is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

GRD occupies approximately 30 core storage locations.

Other Routines Used

Redispatch After Interrupt or Timer Runout DSP (EPI of .MDISP)
Program No. At End of Queue DSPQT (EPa of .MDISP)
Accumulate Processor Time DACNB (EP9 of .MDISP)
Terminate Error Entry FALT (EP3 of .MBRTI)

Flowchart

See CPB-1500 for the flowchart of GRD (EP2), .MDISP module.

9

GRD (EP2)
. MDISP

CPB-1491

FRLC (EP3)
. MDISP

FORCED RELINQUISH

FRLC (EP3 of .MDISP) provides a forced relinquish for the calling program.

PRECALLING SEQUENCE

Prior to entering FRLC, all registers must be saved.

CALLING SEQUENCE

FRLC is called from various GECOS programs.

8 16

J .CALL i·MDISP ,3

OPERATING SYSTEM INTERACTION

Processor time that is accumulated for the program is determined by DACNB
(EP9 of .MDISP).

ROUTINE RETURNS

The Ie and I is set to the location to which control is to be returned.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

FRLC is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

FRLC occupies approximately 25 core storage locations.

CPB-1491

10

Other Routines Used

Program No. At End of Queue DSPQT (EPa of .MDISP)
Accumulate Processor Time DACNB (EP9 of .MDISP)

Flowchart

See CPB-lSOO for the flowchart of FRLC (EP3) , .MDISP module.

11

FRLC (EP3)
. MDISP

CPB-1491

RLC (EP4)
. MDISP

RELINQUISH

RLC (EP4 of .MDISP) causes control of a program to be relinquished until such
time that I/O is completed for that program.

PRECALLING SEQUENCE

All registers are saved by the macro .GRELC when used, and the Fault
Processor (.MFALT) saves all registers when MME GERELC is used.

Relinquish may be done while in a courtesy call.

CALLING SEQUENCE

RLC is called from any GECOS program by:

8 16

.GRELC

or by a slave program:

8 16

MME ! GERELC
I

OPERATING SYSTEM INTERACTION

Processor time accumulated for the program requesting a relinquish is
calculated by DACNB (EP9 of .MDISP). When I/O is completed successfully, the
status return portion of .MIOS (STRET) will test the program state word for a
relinquished condition and if present will remove the condition. Then, STRET
will place the program in the Dispatcher queue following any jobs requesting
courtesy calls by calling DSPQM (EP14 of .MDISP).

ROUTINE RETURNS

Return is to the next instruction following the call after outstanding I/O is
completed. If no I/O was outstanding at the time of the call, the return is
done immediately.

POSTCALLING SEQUENCE

None.

CPB-1491

12

SUPPORTING INFORMATION

Progr~rnming Method

RLC is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

RLC occupies approximately 30 core storage locations.

Other Routines Used

Redispatch After Interrupt or Timer Runout DSP (EPI of .MDISP)
Program No. At End of Queue DSPQT (EPa of .MDISP)
Accumulate Processor Time DACNB (EP9 of .MDISP)

Flowchart

See CPB-1500 for the flowchart of RLC (EP4) , .MDISP module.

13

RLC (EP4)
. MDISP

CPB-1491

ENCC (EP5)
. MDISP

END COURTESY CALL (

ENCC (EP5 of .MDISP) restores conditions for a program that has been in a
courtesy call to those that were in effect at the time the courtesy call
started.

PRECALLING SEQUENCE

Prior to starting a courtesy call, all registers for the program are saved.

CALLING SEQUENCE

ENCC is called from any GECOS program by:

a 16

.GENDC

or by any Slave Program:

a 16
i

MME : GEENDC
I

OPERATING SYSTEM INTERACTION

Processor time accumulated by the program in courtesy call is calculated by
DACNB (EP9 of .MDISP). Program status is restored and any roadblock or
relinquish condition existing at the time of the courtesy call is
re-established. If the program urgency is zero or the program is processing a
GEMORE or GEMREL request (dead bit is on) and no GEPR or SWAP request exists,
the program is not a candidate for dispatching. Otherwise the program is
placed at the end of the Dispatcher queue by calling DSPQT (EPa of .MDISP).

ROUTINE RETURNS

Return is to DSP (EPl of .MDISP).

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

ENCC is reentrant and written in floatable code.

Interrupts are inhibited.

CPB-1491

14

\

Storage

No internal temporary storage is used.

ENCC occupies approximately 50 core storage locations.

Other Routines Used

Redispatch After Interrupt or Timer Runout DSP (EPI of .MDISP)
Program No. At End of Queue DSPQT (EPS of .MDISP)
Accumulate Processor Time DACNB (EP9 of .MDISP)
Terminate Error Entry FALT (EP3 of .MBRTI)

Flowchart

See CPB-1500 for the flowchart of ENCC (EP5), .MDISP module.

15

ENCC (EP5)
. MDISP

CPB-1491

ENB (EP6)
. MDISP

ENABLE PROGRAM

ENB (EP6 of .MDISP) causes a program to become a candidate for execution and
to be placed in the Dispatcher queue when the following conditions are met:

1. Program must be in core

2. Not already in execution

3. Not already in Dispatcher queue

4. Not roadblocked or relinquished

5. Not in control of swap routine

PRECALLING SEQUENCE

Prior to entering ENB, the registers listed must contain the data indicated.

QR Program number in QU (bits 12-17)
Urgency in QL (bits 18-23)

CALLING SEQUENCE

ENB may be called from any GECOS-III system program.

8

• CALL
return 0
return 1

16

I .MDISP,6
I
I

OPERATING SYSTEM INTERACTION

System gate .CRLAL-l is shut while interrogating the LAL table to see if the
job to be enabled is known to the system and/or if it is in core. System gate
entries are placed in the Dispatcher queue by routine DSPQT (EP8 of .MDISP)

CPB-1491

16

ROUTINE RETURNS

Return 0 (.EXIT) Cannot Enable Program.

AR Retained in .STEMP8 by .CALL
QR Retained in .STEMP9 by .CALL
All index registers are destroyed.

Registers contain:

ENB (EP6)
. MDISP

Return 1 (.EXIT 1) Successful Enable of Program. Registers contain:

AR Retained in .STEMP8 by .CALL
QR Re tained in • STEMP9 by • CALL
All index registers are destroyed.

POST CALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

ENB is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

ENB occupies approximately 70 core storage locations.

Other Routines Used

Program No. At End of Queue DSPQT (EP8 of .MDISP)

Flowchart

See CPB-1500 for the flowchart of ENB (EP6) , .MDISP module.

17

CPB-1491

DSPQH (EP7)
. MDISP

PROGRAM NO. AT FRONT OF QUEUE

DSPQH (EP7 of .MDISP) places a program in f~nt of all others in the
Dispatcher queue and sends any waiting p~cessor to do the job.

PRECALLING SEQUENCE

Prior to entering DSPQH, the registers listed must contain the data
indicated. System gate .CRDSP must be shut.

XS LAL for Program
X6 Program number
X7 Processor number

Index registers XO and X2 th~ugh X4 are destroyed.

CALLING SEQUENCE

DSPQH is called from the Interrupt Handler (IOTRM) in the .MIOS Module.

8

LDXl
LXLl
TSXl

16

.MDISP,DU

.CRMOD,*l
7,1

OPERATING SYSTEM INTERACTION

Get • MDISP Module No.
Address of .MDISP
EP7

When the Interrupt Handler (IOTRM) has interrupted a job that is in a
courtesy call, it uses this entry to place the job ahead of all others in the
Dispatcher queue.

ROUTINE RETURNS

Return is to the next instruction following the TSX1.

POSTCALLING SEQUENCE

None.

CPB-1491

18

SUPPORTING INFORMATION

Programming Method

DSPQH is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

DSPQH occupies approximately 40 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-lSOO for the flowchart of DSPQH (EP7), .MDISP module.

19

DSPQH (EP7)
.MDISP

CPB-1491

DSPOT (EP8)
.MDISP

PROGRAM NO. AT END OF QUEUE

DSPQT (EP8 of .MDISP) places a program at the end of the Dispatcher queue and
sends any waiting processor to do the job.

PRECALLING SEQUENCE

Prior to entering DSPQT, the registers listed must contain the data
indicated.

System gate .CRDSP must be shut.

X5 LAL for program
X6 Program number
X7 Processor number

Index registers Xo and X2 through X4 are destroyed.

CALLING SEQUENCE

DSPQT is called from the Interrupt Handler (IOTRM) in the .MPOPG and several
other Dispatcher routines by TSX1 DSPQT,$.

8

LDX1
LXLl
TSXl

16

.MDISP,DU

.CRMOD,*l
8,1

OPERATING SYSTEM INTERACTION

When the Interrupt Handler (IOTRM) has interrupted a program, it uses this
routine to replace a job in the Dispatcher queue. When the Core Allocator
(.MPOP4 and .MPOP6) has marked jobs for compaction or swapping, this routine
is used.

Dispatcher routines that use this entry are:

Redispatch After Interrupt or Timer Runout DSP (EPl of .MDISP)
Roadblock GRD (EP2 of .MDISP)
Forced Relinquish FRLC (EP3 of .MDISP)
Relinquish RLC (EP4 of .MDISP)
End Courtesy Call ENCC (EP5 of • MDISP)
Enable Program ENB (EP6 of .MDISP)
Restore State After Swap, Move, GEPR DRSTR (EPIO of .MDISP)

20
CPB-1491

ROUTINE RETURNS

Return is to the next instruction following the TSXl.

POST CALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

DSPQT is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

DSPQT occupies approximately 40 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-1500 for the flowchart of DSPQT (EPa), .MDISP module.

21

DSPOT (EP8)
.MDISP

CPB-1491

DACNB (EP9)
.MDISP

ACCUMULATE PROCESSOR TIME

DACNB (EP9 OF .MDISP) removes a job from execution and from the Dispatcher
queue and accounts for processor time used by the job going out of execution.

PRECALLING SEQUENCE

Prior to entering DACNB, the registers listed must contain the data
indicated.

X5 LAL for program
X6 Program number
X7 Processor number

CALLING SEQUENCE

DACNB is called from various routines located in the .MDISP module

8

TSXI
return

16

DACNB,$

OPERATING SYSTEM INTERACTION

The current timer is compared to the last timer setting stored. The
difference is added to .CRTOD in the communication region and the SSA cell
.SPRT. The remaining processor time cell .SALT in the SSA is decremented by
the same value.

ROUTINE RETURNS

Return is to the location following the TSXI.

CPB-1491

22

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

DACNB is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

DACNB occupies approximately 25 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-lSOO for the flowchart of DACNB(EP9), .MDISP module.

23

DACNB (EP9)
. MDISP

CPB-1491

DRSTR (EP10)
.MDISP

RESTORE STATE AFTER SWAP, MOVE, GEPR

DRSTR (EP10 OF .MDISP) restores job conditions to those in effect before a
Swap/Move or GEPR request was serviced. The program .STATE word is restored
from word 7 of the current register storage area.

PRECALLING SEQUENCE

Prior to entering DRSTR, the registers listed must contain the data
indicated.

X5 LAL for program
X6 Program number
X7 Processor number

CALLING SEQUENCE

DRSTR is called from routines within the .MSWAP and .MGEPR modules.

B

.GOTO
return

16

.MDISP,10

OPERATING SYSTEM INTERACTION

System gate .CRDSP is shut while making entries in the Dispatcher queue.
Processor time accumulated by the program in Swap/Move or GEPR is calculated
by calling DACNB (EP9 OF .MDISP). Any roadblock or relinquish condition that
existed at the time of the Swap/Move or GEPR request is re-established. If
the program urgency is zero or if the program is processing a GEMREL request
and no GEPR or Swap/Move request exists, it is not a candidate for execution.
The program is placed at the end of the Dispatcher queue by calling DSPQT
(EPB of .MDISP).

ROUTINE RETURNS

Return is to DSP (EP1of .MDISP).

POSTCALLING SEQUENCE

None.

CPB-1491

24

SUPPORTING INFORMATION

Programming Method

DRSTR is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

DRSTR occupies approximately 25 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-l500 for the flowchart of DRSTR (EPlO) , .MDISP module.

25

DRSTR (EPI0)
. MDISP

CPB-1491

DSCNT (EPll)
.MDISP

RELINQUISH CONTROL UNTIL PROGRAM ENABLED

DSCNT (EPll of .MDISP) causes a job to relinquish control until it is enabled
again.

PRECALLING SEQUENCE

Prior to entering DSCNT, the registers listed must contain the data
indicated.

X5 LAL for program
X6 Program number
X7 Processor number

CALLING SEQUENCE

DSCNT is called from routines within the .MSWAP, .MBRTl, .MGEPR, •• GEPOP, :MALCl,
and .MGEIN modules.

8 16

.MDISP,ll

OPERATING SYSTEM INTERACTION

System programs that have no function to perform at the moment use
allow themselves to be swapped out of core until such time as
needed again.

ROUTINE RETURNS

DSCNT to
they are

Return is to the address plus one of the .CALL after an enable via ENB (EP6
of .MDISP) has caused the job to be placed in the Dispatcher queue and a
re-dispatch takes place via DSP (EPl of .MDISP). When control is released,
however, DSP is entered immediately to attempt dispatching to other jobs in
the Dispatcher queue.

POSTCALLING SEQUENCE

None.

CPB-1491

26

SUPPORTING INFORMATION

Programming Method

DSCNT is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

DSCNT occupies approximately 5 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-lSOO for the flowchart of DSCNT (EPll), .MDISP module.

27

DSCNT (EPll)
.MDISP

CPB-1491

DMIOA (EP12)
. MDISP

DO DISC I/O USING SYSTEM I/O QUEUE

DMIOA (EP12 OF .MDISP) issues I/O on disc/drum on behalf of slave programs.
The routine is used for (1) swapping jobs in and out of core, (2) loading SSA
modules, (3) pushing down SSA (GEPR) modules, (4) popping up SSA (GEPR)
modules.

PRECALLING SEQUENCE

Prior to entering DMIOA, the registers listed must contain the data
indicated.

X2 Address of I/O entry skeleton
X4 Address of PAT pointer (offset to LAL)
X5 LAL for program
X6 Program number
X7 Processor number

CALLING SEQUENCE

DMIOA is called from the .MSWAP module and from various other Dispatcher
routines.

8 16

TSXl DMIOA,$

or:
LDXO .MDISP,DU
LXlO .CREMDD,*O
TSXl 12, 0

OPERATING SYSTEM INTERACTION

The I/O entry skeleton is moved to the System I/O Entry (.SSYIO) of the slave
program. Remaining entries in the entry are filled and a seek address
calculated by calling the applicable channel module (.MDR20 or .MDS20, at EP
-1). The I/O is linked using LINK (EPI of .MIOS). GEPR Override is used when
issuing the I/O to allow re-issuance of I/O when an end of file fence is
passed over. This is done by calling the applicable channel module at EP4.
Any I/O status other than Channel Ready will be re-issued 10 times, if
necessary, and then the program will be aborted.

ROUTINE RETURNS

Return is to the location following the TSXl after successful termination of
the I/O.

CPB-1491

28

POST CALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

DMIOA is reentrant and written in floatable code.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

DMIOA occupies approximately 140 core storage locations.

Other Routines Used

Link I/O To End Of Queue LINK (EPI of .MIOS)
Relinquish RLC (EP4 of .MDISP)
Terminate Error Entry FALT (EP3 of .MBRT1)

DMIOA (EP 12)
.MDISP

Negative Entry Point (EP -1 of Applicable Channel Module, .MDR20 or .MDS20)
Error and EOF Recovery (EP4 of Applicable Channel Module, .MDR20 or .MDS20)

Flowchart

See CPB-1500 for the flowchart of DMIOA (EP12), .MDISP module.

CPB-1491

29

SCK (EP13)
. MDISP

SET ALARM

SCK (EP 13 OF .MDISP) sets an alarm clock for a job to ring at the end of a
time increment specified by the Q-register. The job will then be enabled with
urgency which is also specified in the Q-register.

QR 0 (to turn off alarm)

Time in milliseconds (bits 0-29)
Urgency of job (bits 30-35)

X5 LAL for program
X6 Program number
X7 Processor number

CALLING SEQUENCE

SCK is called from routines within the .MALCl, .MGEPR, .MGEIN, .MGEOT, and
-.MPOP modules.

8 16

• CALL .MDISP,13

OPERATING SYSTEM INTERACTION

Each time DSP (EPI of .MDISP) is entered, the alarm clock table is scanned
for any jobs having an alarm set. If the specified time has passed, the
alarm is turned off and the job is enabled by calling ENB (EP6 of .MDISP).

System gate .CRACK is shut while making entries in the alarm clock table.

ROUTINE RETURNS

Return is to the location following the .CALL.

CPB-1491

30

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

SCK is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

SCK occupies approximately 110 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-1SOO for the flowchart of SCK (EP13), .MDISP module.

31

SCK (EP13)
.MDISP

CPB-1491

DSPQM (EP14)
.MDISP

PROGRAM NO. IN QUEUE FOLLOWING INTERRUPT

DSPQM (EP14 OF .MDISP) places a job in the Dispatcher queue following any
jobs in the queue that are awaiting courtesy calls.

PRECALLING SEQUENCE

Prior to entering DSPQM, the registers listed must contain the data
indicated.

X5 LAL for program
X6 Program number
X7 Processor number
Index registers XO and X2 through
X4 are destroyed

System gate .CRDSP must be shut.

CALLING SEQUENCE

DSPQM is called from STRET in the .MIOS module.

8

LDXl
LXLI
TSXl

16

.MDISP,DU
• CRMDD , *1
14, 1

OPERATING SYSTEM INTERACTION

When a completed I/O breaks a roadblock or a relinquish condition, DSPQM
allows the program to be dispatched at the earliest possible time.

ROUTINE RETURNS

Return is to the location following the TSX1.

POSTCALLING SEQUENCE

None.

CPB-1491

32

SUPPORTING INFORMATION

Programming Method

DSPQM is reentrant and written in floatable code.

Interrupts are inhibited.

Storage

No internal temporary storage is used.

DSPQM occupies approximately 40 core storage locations.

Other Routines Used

None.

Flowchart

See CPB-1SOO for the flowchart of DSPQM (EP14), .MDISP module.

33

DSPQM (EP14)
• MDISP

CPB-1491

3. SYSTEM MACRO, TRACE, AND GATE ROUTINES

This chapter describes certain routines that are not logically part of .MDISP
but are assembled with it.

SYSTEM MACRO ROUTINES

System macro routines comprise the following •

o HCL
• HGT
o HEX

• CALL macro
.GOTO macro
.EXIT macro

These are described in the following pages.

35
/

CPB-1491

HCL
.MDISP

.CALL MACRO

HCL (.MDISP), the .CALL macro, manages all routine and subroutine calls
within GECOS-III hard core and SSA modules. It reads SSA modules into the
slave service area, pushing down the programming already there if necessary.
It transfers control to those modules in hard core.

PRE CALLING SEQUENCE

The .CALL macro itself does not destroy any index registers. In processing
through the .CALL, the original contents of A-register and Q-register are
saved in .STEMP+8 and .STEMP+9, respectively. The subroutine .CALL must
recover the A- and Q-registers from those locations before it leaves the
inhibited state. The .CALL does not save the index registers, and the index
registers are not restored through the .EXIT routine. However, certain
currently used system routines, such as LINK (EPl of .MIOS) save registers
within themselves when called. Reference must be made to the appropriate
routine documentation to determine whether the registers are preserved.

CALLING SEQUENCE

The .CALL macro may be called from either an HCM or SSA module.

8 16

I .CALL .MDXXX,Y

where .MDXXX is the symbolic name of any GECOS-III hard core or SSA module,
and Y is any entry point number defined for the module. This macro expands in
line to:

8

XED
ZERO

16

.CRCAL

.MDXXX, Y

The .CALL routine obtains control through the pair of words at .CRCAL which
contain the instructions:

1

.CRCAL

8

STCl
TRA

16

.SSTAK+2, 5*
HCL

OPERATING SYSTEM INTERACTION

The information in the .CRMDD and .CRDIT tables (see CPB-1488) is used to
locate any modules in core or on secondary system storage. Some modules are
gated. This means that not more than one user can be executing the module at
any time. The .CALL routine, by refering to the .CRMDD table and the entry
word in the SSA module, enforces this rule ,if the module is gated. When .CALL
transfers into an SSA module, it always marks the SSA module "busy."

CPB-1491

36

HCL
.MDISP

Since the .CALL is used as a subroutine call, it always leaves the IC and I
of the .CALL itself in the IC and I stack when control passes to the module
called. This IC and I is removed from the stack at the .EXIT corresponding to
the call itself. The IC and I is the address of the location following the

8 16

XED .CRCAL

in the in-line expansion of the .CALL Macro.

ROUTINE RETURNS

Control passes to the module named at the entry point indicated
arguments in the .CALL. All modules have an entry word containing the
number, length etc. The nth entry point is always located exactly n
after this entry word.

POSTCALLING SEQUENCE

by the
module

words

The module called must obtain the A- and Q-registers from .STEMP+8 and
.STEMP+9 before the inhibit bit is turned off.

SUPPORTING INFORMATION

If the SSA is busy when a SSA module is called, or if the length of the IC
and I stack exceeds three entries, the SSA is pushed down into the pushdown
file of the program before the new module is read into the SSA. This routine
is part of the .CALL routine. The low order three bits of an IC and I entry
are used to indicate register storage and/or SSA pushdowns. The encoding is
as follows:

1. If bit 35=1, slave registers are stored in the register stack,
when the IC and I entry was made.

2. If bit 34=1, a pushdown is made at the time the IC and I entry
was put into the stack. The type of pushdown is indicated by
bit 33.

CPB-1491

37

HCL
.MDISP

3. If bit 33=0, all of the SSA program area was pushed down to
bring in an ordinary SSA module. If bit 33=1, only the first
half of the SSA program area is pushed down to bring in a GEPR
module.

When a module is loaded into the SSA it is checksummed. If the checksum fails
or an I/O error prevents the successful completion of the pushdown module
load, ten re-tries are made. If these fail, the program is aborted. One link
is assigned to each program in execution as a pushdown file. This allows six
successive pushdowns. If a system error of more .than this number of
successive pushdowns is called for, the program is aborted. This type of
abort is, of necessity, a GECOS system error not a user-caused error. The
pushdown file is defined in the PAT at .SPDPA. It is also used by the system
for a swap-out file in case the program must be swapped from core.

If .CALL finds the module called is already present in the SSA, it will
reload the module only if the checksum is incorrect. If the module does
checksum or if the checksum has been set to zero, the module will not be
reloaded.

Other Routines Used

Do Disc I/O Using System I/O Queue DMIOA (EPl2 of .MDISP) issues the actual
commands when .CALL must push down and/or load a module from secondary
storage.

Flowcharts

See CPB-l500 for the flowchart of HCL, .MDISP module.

CPB-1491

38

HGT
.MDISP

.GOTO MACRO

HGT (.MDISP), the .GOTO macro, like • CALL, is used to transfer control
between modules. It executes a transfer of control from one module to another
when a return to the original module is not required.

PRECALLING SEQUENCE

The .GOTO routine does not destroy index registers. The A- and Q-registers
are saved in .STEMP+8 and .STEMP+9, respectively.

CALLING SEQUENCE

The .GOTO macro may be called from either an HCM or SSA module.

8 16

.GOTO .MDXXX,Y

where .MDXXX is the symbolic module name of any GECOS-III SSA or HCM
and Y is any defined entry point to the module. This macro expands
to:

8

XED
ZERO
ZERO

16

.CRGTO

.MDXXX,Y

.SMDNO,O

module,
in line

The .GOTO routine obtains control through the pair of instructions at .CRGTO
which con tain:

1

.CRGTO

8

STCl
TRA

16

.SSTAK+2,5*
HGT

OPERATING SYSTEM INTERACTION

The .GOTO macro operates in a manner similar to .CALL except that no entry is
made into the IC and I stack.

When a .GOTO occurs, the system module passes from a busy to an idle state.
Thus, the .Cru-IDD entry for that module is marked to show the module idle.
This is significant for gated modules. These are modules that may not be
multi-processed because they alter contents of communication region locations
without data gating. Thus, if one program is executing such a module, all
others are inhibited from entering that module by the .CALL routine. When
a .GOTO sets this busy bit off, another program may gain entry to the module.

CPB-1491

39

HGT
.MDISP

ROUTINE RETURNS

Control passes to the module named at the entry point indicated
arguments in the .GOTO. All modules have an entry word containing the
number, length, etc. The nth entry point is always located exactly n
after this entry word.

POSTCALLING SEQUENCE

by the
module

words

The module called must obtain the A- and Q-registers from
and .STEMP+9.

.STEMP+8

SUPPORTING INFORMATION

The .GOTO routine like .CALL, may push down the SSA. The discussion presented
previously in .CALL is equally true here.

Other Routines Used

Do Disc I/O Using System I/O Queue DMIOA (EPl2 of .MDISP) issues actual
command when .GOTO must push down an SSA module.

Flowchart

See CPB-lSOO for the flowchart of HGT (.MDISP).

CPB-1491

40

.EXIT MACRO

HEX
.MDISP

HEX (.MDISP), the .EXIT macro, returns control to the IC and I at the top of
the IC and I stack.

PRECALLING SEQUENCE

When an .EXIT occurs, a return is made to the location specified in the IC
and I stack (.SSTAK). An entry is placed in that stack by either a .CALL or a
fault (such as a MME). If the IC and I is from a • CALL, it points to the
location following the XEO .CRCAL. If the IC and I is from a fault, the IC
and I points at the faulting cell; that is, in the case of a MME, the
location containing the MME instruction. Thus, in both cases a 1 must be
added to the IC address before a return can be made.

The .EXIT routine restores slave registers if they were saved in the register
stack (.SREGS) at the time of the IC and I entry. If saved, bit 35 of .SSTAK
entry is equal to 1. If the returning routine wishes to reset the registers
before they are reloaded, the new values must be stored in .SREGS. This may
be done as follows. If X4 is to be reset upon exit:

8

INHIB
LOA
LOA
CANA
TZE
LOA
STX4
INHIB

16

ON
.SSA,5
-l,AU
1,DL
3,IC
.SSA+l,5
-8+2,AU
OFF

Get stack pointer
Get IC and I
Is bit 35 = 1
No,X4 OK
Get register stack
Store it

If the register save bit is not on, all index registers are preserved through
the .EXIT. Thus, in the example above, when bit 35 is zero, there is no need
to store an X4 value. Note that the instruction LREG must be avoided sinc~, it
destroys XS, X6, and X7.

As in the .CALL and .GOTO routines, the A- and Q-register are stored in
.STEMP+8 and .STEMP+9, respectively, during the .EXIT. If registers are not
·restored during the exit, then the routine which gets control must retrieve
the A- and Q-registers from .STEMP+8 and .STEMP+9 before the inhibit bit is
turned off.

CALLING SEQUENCE

The .EXIT macro may be called from either an HCM or an SSA module.

8 16
I

.EXIT : n
I

where n is the number of instructions
following the calling sequence to the
normal case; it is assumed when n is

8

XED
ZERO

16

.CREXT

.SMDNO,l+n

to be skipped when return is
.CALL. A value of zero for n is
not given. This macro expands into:

made
the

CPB-1491

41

HEX
.MDISP

The .EXIT routine obtains control through the pair of cells at .CREXT which
contain the instructions:

.CREXT

B

STCl
TRA

16

.SSTAK+2,5*
HGT

OPERATING SYSTEM INTERACTION

The .EXIT routine marks, in the .CRMDD tables, the module
"idle." If the module is gated, another program may begin
module. Under some circumstances, a program passing through
relinquished at the IC and I of the exit point. This is done
is a GEPR, SWAP/MOVE, ABORT, or courtesy call request in the
program (.STATE), and the program is returning to the
execution.

POSTCALLING SEQUENCE

that it leaves
to execu te the

.EXIT will be
in case there
state of the

main level of

When the .EXIT routine passes control to the returning module, the registers
are restored if they were saved in .SREGS. Otherwise, they contain the values
before the .EXIT routine was entered, except for the A- and Q-registers. The
A- and Q-registers must be restored from .STEMP+B and .STEMP+9.

SUPPORTING INFORMATION

The SSA may have been pushed down into the file in .SPDPA where the IC and I
was made. If SSA is pushed down, the .EX~T routine pops the SSA back up
before the return is made. When the SSA ~s read back, the IC and I stack and
pointer which were pushed down are read back into core in the first five
locations following the PATs. The stack is then transferred back to position
with inhibited code after the I/O has completed.

Other Routines Used

Do Disc I/O Using System I/O Queue DMIOA (EP12 of .MDISP) issues the actual
command when .EXIT must push down an SSA module.

Flowchart

See CPB-1500 for the flowchart of HEX, .MDISP module.

CPB-1491

42

SYSTEM TRACE ROUTINE

The capability of tracing events occurring within tne computer system is
provided by the routine:

• TRACE System Trace

which is described in the following pages.

CPB-1491

43

TRACE
. MDISP

SYSTEM TRACE

TRACE (.MDISP), the System Trace routine, provides a record of system events
in the form of a circular table. This circular table is useful in analyzing
system dumps. Provision may also be made to dump this table on a tape file so
that a record of system behavior may be made.

PRECALLING SEQUENCE

An entry may be made into the trace table at any convenient point. A trace
entry is always two words in length. Bits 30-35 of the first word must be a
code identifying the entry type. The rest of the data may be as desired. The
format of the trace entries is described in GE-625/635 GECOS-III Introduction
and System Tables, CPB-l488. The trace rout1ne allows any set of trace
entr1es to be turned on or off. Alternately, for maximum efficiency, all
tracing may be turned off. Thus, when a trace entry is to be made, an in-line
test must be made to determine if the trace is on or off. This test is as
follows:

8 16

XED .CRTRC

If the trace is off, control passes to the following location. This location
ordinarily contains a transfer to the continuation of the user coding. If the
trace is on, control passes to the second location beyond the XED. The coding
for making the trace entry must be here. When control passes here, the
following conditions exit:

1. The registers have- been saved for restoration after the trace entry
is made. Thus, registers (except index 0) may be modified when the
trace entry is being constructed.

2. Only register Xl has been modified and must be used to enter the
trace entry into the trace table.

An alternate method may be used to test if the trace is on or off. This
method is:

8 16

XED .CRTRC+l

In this case, registers are not saved, nor are any registers reloaded. This
method is used when processing speed is of great importance. Control passes
to the next location if the trace is off and skips one location if the trace
is on.

CPB-1491

44

TRACE
.MDISP

In either case above, the user must construct the 2-word trace entry in A­
and Q-registers. This may be done in any convenient manner. Many of the trace
entries contain processor number and program number in bits 18-26 of the
second word. Provision is made in the trace routine to add these fields to
the Q-register, if desired. After the trace entry has been constructed in the
A- and Q-registers, the trace entry is actually entered. The entry method
depends upon the test made. For the case of the XED .CRTRC, the trace entry
is made by TRA X,O. The value chosen for X determines if the processor and
program number are to be put in the Q-register. If X = 0, they are; if X
1, they are not. When the TRA X,O control passes to the cell following the
XED .CRTRC. When control passes to that location, all registers are restored
to the value they had at the time of the XED .CRTRC.

If the XEC .CRTRC+2 test was used, X,O is not set to return control to the
trace entry routine. In order to make the trace entry, the following
instructions are used:

8

LDXO
TSXl

16

.CRTRC+3
1,0*

If the processor and program number are to be put into bits 18-26 of the
Q-register; the following is executed:

8

LDXO
TSXl
TSXl

16

.CRTRC+3
0,0*
1,0*

In contrast to the XED .CRTRC case, control passes to the instructions
following the TSXl 1,0*. Registers are not restored.

CALLING SEQUENCE

TRACE is entered from any GECOS HCM or SSA module by one of two methods:

8 16

XED .CRTRC
return

or:

8 16

TSXl_ 1,0*
return

OPERATING SYSTEM INTERACTION

The trace gate is used to sequence entries into the trace table.

CPB-1491

45

TRACE
.MDISP

ROUTINE RETURNS

After the trace entry is made, return is made to the location following the
XED .CRTRC. At this time, all registers have been restored to the condition
they held at the XED .CRTRC. If the trace was tested with a XEC .CRTRC,
registers are not saved or restored. Registers XO, Xl, X2, and the A- and
Q-registers are destroyed when the trace is made.

SUPPORTING INFORMATION

Other Routines Used

None.

Flowchart

See CPB-lSOO for the flowchart of TRACE .MDISP module.

CPB-1491

4G

SYSTEM GATE ROUTINES

The system gates are used to inhibit more than one processor executing
certain sections of GECOS. This must be done to preserve the integrity of
certain tables in the communication region or to execute non-reentrant
procedures in the Hard Core Monitor. Two gate routines are used:

• OPGAT
• SHUG

Open System Gate
Shut System Gate

These routines are described on the following pages.

47

CPB-1491

OPGAT
. MDISP

OPEN SYSTEM GATES

OPGAT (.MDISP), the .OPEN macro, opens a gate which has been previously shut
with the .SHUT macro (see accompanying description, "Shut System Gates").
Opening a system gate allows a processor to execute a block of coding which
may only be executed by one processor at a time. A gate is opened by the same
processor which previously shut the gate.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

Three calling sequences are available to open system gates.

OPGAT is entered by an HCM or SSA module operating under a program number by:

8 16

.OPEN GATE

which expands to the following:

8

I NOP
XED

16

GATE+l,SD
.CROGT

OPGAT is entered by the Dispatcher (.MDISP) and the Interrupt Handler IOTRM
(.MIOS), both of which operate under a program number of their own by:

8 16

"I .OPENS GATE

which expands to the following:

8 16

EAX5 • CRGTC-. SGATE
NOP GATE+l,SD
XED .CROGT

The EAXS instruction forces the system gate counters at .CRGTC to be used
rather than those in .SGATE.

OPGAT i:. en tered by an S SA module by:

8 16

.OPENP GATE

.. ;PB-14Bl

The .OPENP call expands to the following:

8

EAXO
STXO
NOP
XED

16

GATE+l,$
1,IC
**,SD
.CROGT

OPERATING SYSTEM INTERACTION

OPGAT
. MDISP

When a user shuts a gate, he inhibits any other processor from shutting the
gate. If another processor were to attempt to do so, it will be delayed in a
DIS instruction. A processor that has been held up because of an attempt to
shut an already shut gate will be released to continue only when the other
processor passes through the .OPEN routine.

When the contents of a table in the communication region are changed, that
table generally must be protected from concurrent reference by another
processor. Thus, the critical tables in the communication region are gated. A
gate consists of a tally word of the form:

TALLYD .CRGAT,O,2

This word is generally placed one location past the location
table. For instance, the gated table .CRJOB has the above
address assembled to compensate for this.

Once a processor has shut a gate, it must not be
opened the gate. Thus, all coding executed while
inhibited.

ROUTINE RETURNS

interrupted
gates are

symbol of the
tally word at

until
shut

it has
must be

User registers are not modified by .OPEN. Index register XO is destroyed by
.OPENP1 index register X5 is destroyed by .OPENS. If a processor is waiting
to shut a gate when another processor opens the gate, a CIOC is issued to all
processors. The resulting connect fault in all processors is used to start
the waiting processor. The connect fault vector in all processors has two
NOP's in it. Thus, for a processor that is running, the fault is ignored.
However, if the processor is in a DIS, that processor proceeds to the next
instruction (XED) when the fault occurs. In this way, a processor that is
waiting for a gate to open is started back up.

POSTCALLING SEQUENCE

None.

CPB-1491

49

OPGAT
. MDISP

SUPPORTING INFORMATION

Other Routines Used

None.

Flowchart

See CPB-l500 for the flowchart of OPGAT, .MDISP module.

50

CPB-1491

SHUG
. MDISP

CLOSE SYSTEM GATES

SHUG (.MDISP), the .SHUT macro, shuts a gate which has been previously opened
with the .OPEN macro (see accompanying description, "Open System Gates").
Closing a system gate allows only one processor to execute a block of coding
which may only be executed by one processor at a time. A gate is shut by the
same processor which previously opened the gate.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

Three calling sequences are available to close system gates.

SHUG is entered by an HCM or SSA module operating under a program number by:

8 16
i

• SHUT I GATE

which expands to the following:

8

XED
Nap
XED

16

I I GATE+l,AD
I GATE+l,SD
I .CRGAT+10

SHUG is entered by the Dispatcher (.MDISP) and the Interrupt Handler IOTRM
(.MIOS), both of which operate under a program number of their own, by:

8

• SHUTS

16
I
I GATE
I

which expands to the following:

8 16

EAX5 : .CRGTC-.SGATE
Nap I GATE+l,SD
XED I .GROGT

The EAXS instruction forces the system gate cOWlters at .CRGTC to be used
rather than those in .SGATE.

SHUG is entered by an SSA module by:

8 16

.SHUTP
I
I GATE
I

CPB-1491

51

SHUG
. MDISP

The .SHUTP call expands to the following:

8

EAXO
STXO
STXO
XED
NOP
XED

16

I GATE+l,$
I 2,IC
I 2,IC
I ** ,AD
I ** ,SD I .CRGAT+lO

OPERATING SYSTEM INTERACTION

When user shuts a gate, he inhibits any other processor from shutting the
same gate. If another processor were to attempt to do so, it will be delayed
in a DIS instruction. A pDDcessor who has been held up because of an attempt
to shut an already shut gate will be released to continue only when the other
processor passes through the OPEN routine.

When the contents of a table in the communication region are changed, that
table generally must be protected from concurrent reference by another
processor. Thus, the critical tables in the communication region are gated. A
gate consists of a tally word of the form.

TALLYD .CRGAT,O,2

This word is generally placed one cell past the location symbol of the table.
For instance, the gated table .CRJOB has the above tally word at .CRJOB+l.
The various gating macros automatically add 1 to the address assembled to
compensate for this.

Once a processor has shut a gate, it must not be
opened the gate. Thus, all coding executed while
inhibited.

ROUTINE RETURNS

interrupted
gates are

until
shut

it
must

has
be

User registers are not modified by .SHUT. Register xo is destroyed by
.SHUTP. Register X5 is destroyed by .SHUTS. If a processor is waiting to shut
a ga te \vhen another processor opens the gate, a CIOC is issued to all
processors. The resulting connect fault in all processors is used to start
the waiting processor. The connect fault vector in all processors has two
NOPS in it. Thus, for a processor that is running, the fault is ignored.
However, if the processor is in a DIS, that processor will proceed to the
next instruction, XED, when the fault occurs. In this way, a processor that
is waiting for a gate to open is started back up.

CPB-1491

52

SHUG
• MDISP

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Other Routines Used

None.

Flowchart

See CPB-l500 for the flowchart of SHUG, .MDISP. module.

CPB-1491

53

4. INTRODUCTION TO PERIPHERAL ALLOCATION

The Peripheral Allocator schedules and allocates all peripherals used by a
slave program, an Input Media Conversion (IMCV) tape, a time-sharing program,
and GEPR to exchange magnetic tape units. The following modules perform these
functions:

o
o
o
o
o

.MALCI

.MALC2

.MALC5

.MALC6
• MALe 7

Peripheral Allocator
Peripheral Dispenser
Peripheral Space Allocator
LLINK Allocator
Permanent File Allocator

Also included are two MME processors used to request additional peripherals
and release peripherals and/or memory:

o
o

.MMORE

.MRELS
MME GEMORE
MME GERELS

When a new job is received, the job control file (J*) is scanned to determine
whether the job deck was made up correctly and which, if any, magnetic tape
reels should be retrieved. During this scan, the number of executions and
number of $ BREAK cards are accumulated for later decision making. The worst
case is determined for memory requirements and magnetic tape needs, and
process time and output line limits are accumulated. These values are then
optionally used to set urgency and to gauge job length.

At the end of the initial scan of the job control file, the job is deleted if
any errors were found, is put in limbo if special resources need retrieval,
or is made a candidate for allocation if neither of the above is true. If the
job is a lengthy one and is not an urgent job, it is bypassed (sieve status),
and the operator informed. If a RUN request is not received within five
minutes, the operator is reminded of the job status.

The first time an activity is considered for allocation, the J* file is
scanned from its current position to the next activity delimiter to
accumulate exact memory and peripheral requirements. The file control card
information is extracted and condensed into a peripheral requirement summary
by type of device. In addition, a peripheral detail entry is constructed for
each file specified by a control card or implied because of the type of
activity. The peripheral summary is used to perform a gross resource test
before any detailed allocation is attempted; the detail entries are used to
eliminate the need for performing a character scan of variable fields each
time allocation is tried. Keeping a queue of jobs waiting for resources and
attempting allocation more than once for each activity prevents hardware
delays and maintains a high level of throughput.

Actual allocation is done by matching the details of peripherals needed to
the resources available as described in the System Configuration Tables (SCT)
until all needs are satisifed. During this process a Peripheral Assignment
Table (PAT) is generated. The PAT allows .MIOS to associate a user-specified
file code with an entry in the SCT and, at I/O time, a specific piece of
peripheral hardware.

CPB-1491

55

When allocation is successfully completed, an SSA image is written to
first 640 words of the job data file (*J) , and an entry is made in the
allocation queue so the activity can be loaded and executed. At that
the job status is set to "allocation complete" and is not considered
for allocation until the current activity has terminated.

the
core

time,
again

In allocating files to devices that permit a choice of unit, such as magnetic
tape and mass storage, the choices are based on channel of least usage for
magnetic tape, and file unit of least usage for mass storage. Usage is
defined as the number of files (regardless of size) currently allocated to
the channel or unit being considered.

If a file serial number (FSN) is present on the $ TAPE control card, the scan
is for a unit in Standby status on which the specified reel may be mounted.
If a FSN is not present, the scan is for a unit in Ready status (scratch tape
mounted and write-permit ring in) so that no operator action is necessary.

When a tape unit of proper status is not available, a second scan is made to
pick a device which can be used. In this scan RDY/STBY is not considered, but
the device must be on line with power on and be logically assignable but not
already assigned as determined by the SeT. If a named device is designated at
startup time and is specified as being dedicated, it is only allocated when
requested by name.

CPB-1491

56

5. ALLOCATION MODULES

PERIPHERAL ALLOCATOR (.MALC1)

The Peripheral Allocator (.MALCl) performs job scheduling. It scans the job
control file (J*) and the job data file (*J) which have been prepared as
described in the Introduction to Peripheral Allocation and in CPB-1490,
GE-625/635 GECOS-III System Input.

The following routines comprise .MALCl:

• PANIC Fault Recovery

• ENTRY Initialize Program

• QUE Process Entries in Queue

• LOOP Scan Job Stack
0 NEW Process New Jobs

• NUACT Determine Next Activity Requirement

• DOACT Make Default File Entries

• TALC Main Allocation Pass
0 DONE Peripherals Allocated
0 TAR Test for Tape Ready
0 ALC2 Resident Peripheral Dispenser
0 READJ Read J* File

• QIOS Fill Queues for Simple I/O
0 TYPE Type Console Message
0 FIND Scan Variable Control Field
0 RELS Release Files in PAT

The SSA image is produced as the first two records (640 words) of the file.
System configuration tables .CRCTi, .CRIOi, and various other communication
cells, .CRxxx, are used to schedule and allocate jobs. The .CRSCT, .CRPOQ, and
the.CRQGT gates are used.

Example

Requests are placed in the allocation input queue table and .MALCl is enabled
as shown below:

1 8 16

INHIB ON
ALPHA • SHUT .CRJOB Shut gate

NOP .CRJOB+4,DI Is there' room in queue
TTF BETA, $ Yes
NOP .CRJOB No, back up tally
• OPEN .CRJOB Open gate
.GRELC Wait
TRA ALPHA, $

BETA LDAQ ARGUMENT, $ Ge t a rgurnen t
STAQ .CroOB,AD Make queue entry (see new job entry

below)
TTF 3,IC Test tally runout
LDA .CRJOB+3 Cycle tally
STA .CroOB
• OPEN .CroOB Open gate
INHIB OFF
EAQ .PNALC Program no.
ORQ .CRPAU Urgency value
• CALL .MDISP,6 Enable .MALCl
DRL Disaster return
Continue Normal Return

CPB-1491

57

The format of the 2-word input queue entry (pointed to by .CRJOB) is:

WORD 1

WORD 2

ACTION CODE

o
1
2
3
4
5
6
7

SNUMB

SCT Pointer
Of J* I LINK"No.

Of J*

Iprog •
No.

NEW JOB ENTRY

SNUMB

ACTION CODE PARAMETER

SUBSEQUENT ENTRIES

ACTION

None
New Activity

" ENDJOB
KILL/TERM
Hold Job
Run Job
New Urgency
Not Used

58

PARAMETER

Reason Code and Prog. No.
Reason Code and Prog. No.

Urgency

CPB-1491

FAULT RECOVERY

PANIC
.MALCl

PANIC (.MALC1) provides wrapup and restart of the Peripheral Allocator when a
program fault occurs.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

PANIC is called from the Fault Processor if the fault is hardware. It is
called from the Activity Termination Initiation module (.MBRT1) if it is a
GECOS-detected fault.

Hardware Fault·

8 16
I

TRA :.SICI,5

GECOS-Detected Fault

8

LDXO
TZE
TSS

16

:23,5
12,IC
:0,0

OPERATING SYSTEM INTERACTION

The top entry in the stack is the location of the fault/error.

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The exit is to location REENT in the Initialize Program routine, ENTRY
(.MALCl) •

POSTCALLING SEQUENCE

None.

CPB-1491

59

PANIC
. MALC1

SUPPORTING INFORMATION

PANIC is nonreentrant.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

PANIC occupies approximately 110 core storage locations.

Other Routines Used

Print Lines Prior to Snapshot BINPT (EP2 of • MSNP1)
Type Console Message TYPE (.MALC1)
Take Dump for System Abort FSB (EPl of .MFALT)
Fill Queues for Simple I/O QIOS (.MALC1)
Process Entries in Queue QUE (.MALC1)

60

CPB-1491

ENTRY
• MALe 1

INITIALIZE PROGRAM

ENTRY (.MALCI) initializes PAT entries and counts to .accumulate peripheral
resources by type of device for gross allocation tests.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

Entry is called from the Dispatcher when a peripheral may possibly be
allocated.

8 16

RET .SICI,5

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The last instruction in ENTRY is a transfer to .the Process Entries in Queue
routine, QUE (.MALCI).

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

ENTRY is nonreentrant.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

ENTRY occupies approximately 128 core storage locations.

Other Routines Used

None.

CPB-1491

61

QUE
.MALel

PROCESS ENTRIES IN QUEUE

QUE (.MALC1) removes entries from the .CRJOB queue and takes appropriate
action depending on type of entry found. It also maintains a job First-In
First-Out (FIFO) status list for peripheral allocation scheduling.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

QUE is called from within the .MALC1 module when there are unprocessed
entries in the .CRJOB queue.

8 16

TRA QUE

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

The .CRTSQ gate is used when a job is terminated from Time-Sharing.

ROUTINE RETURNS

The exit is to the Scan Job Stack LOOP (.MALC1) when all entries have been
processed.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

QUE is nonreentrant.

Interrupts are inhibited while the .CRTSQ gate is shut.

CPB-1491

62

QUE
. MALCl

Storage

No internal temporary storage is used.

QUE occupies approximately 350 core storage locations.

other Routines Used

Type Console Message TYPE (.MALCl)
Write Execution Report Message EXCA (EP5 of .MYSOT)

CPB-1491

63

LOOP
. MALCl

SCAN JOB STACK

LOOP (.MALC1) scans the FIFO list in order of urgency to determine which jobs
to try to allocate. It is the primary job scheduler portion of GECOS-III.

PRECALLING SEQUENCE

Prior to entering LOOP, the registers listed must contain the data indicated.

X2 Index into FIFO list

CALLING SEQUENCE

LOOP is called from within the .MALCl module when the queue is empty.

8 16
I

TNZ I LOOP
I

or:

8 16
i

TNC J LOOP

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The exit is to the Relinquish Control Until Program Enabled
.MDISP) when all jobs have been processed. A 2-minute alarm
giving up control.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

LOOP is nonreentrant.

DSCNT (EPll of
is set before

Interrupts are inhibited when making entries for the Core Allocator and
setting the alarm.

CPB-1491

64

Storage

No internal temporary storage is used.

LOOP occupies approximately 220 core storage locations.

Other Routines Used

Type Console Message TYPE (.MALC1)
Enable Program ENB (EP6 of .MDISP)
Relinquish Control Until Program Enabled DSCNT (EPll of .MDISP)
Set Alarm SCK (EP13 of .MDISP)

65

LOOP
.MALC1

CPB-1491

NEW
. MALC1

PROCESS NEW JOB

NEW (.MALCl) scans the job control file (J*) to check for format errors and
job consistency, to determine worst tape case and presence of other
peripherals required, to look for tapes to be retrieved from the tape
library, and to examine maximum job core needs, total job time, and total job
output for selective job scheduling.

PRECALLING SEQUENCE

Prior to entering NEW, the registers listed must contain the data indicated.

X4 Pointer to 5-word job control entry

CAJ~LING SEQUENCE

NEW is called from within the .MALCI module when a new job is encountered.

8 16

OPERATING SYSTEM INTERACTION

No • STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The exit from NEW is to location NEXT in the Scan Job Stack routine, LOOP
(.MALCl) •

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

NEW is nonreentrant.

Interrupts are not inhibited.

CPB-1491

66

Storage

NEW
.MALC1

Internal temporary storage is used for maintaining comprehensive information
regarding job parameters.

NEW occupies approximately 770 core storage locations.

other Routines Used

Type Console Message TYPE (.MALCl)
Scan Variable Control Fields FIND (.MALCl)
BCD to Binary Conversion BCD (.MALCl)
READ J* File READJ (.MALC1)
Process End of Job EOJ (EP4 of .MYSOT)
Write Execution Report Message EXCA (EP5 of .MSYOT)
MME GEINOS Processor INOS (EP5 of .MIOS)

67

CPB-1491

NUACT
.MALC1

DETERMINE NEXT ACTIVITY REQUIREMENT

NUACT (.MALC1) makes a one-time scan of the control file for the current
activity of a job to determine memory and peripheral requirements for that
activity. Variable field formats are scanned and converted into fixed field
peripheral detail entries in the control stack record.

PRECALLING SEQUENCE

Prior to entering NUACT, the registers listed must contain the data
indicated.

X4 Pointer to the 5-word job control entry

CALLING SEQUENCE

NUACT is called from within the LOOP routine of the .MALCl module when an
activity is examined for the first time.

8 16

TNZ NUACT

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

The .CRPOQ gate is used when a job is deleted.

ROUTINE RETURNS

The exit from NUACT is to the Make Default File Entries, DOACT (.MALC1) when
an activity delimiter is found.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

NUACT is nonreentrant.

Interrupts are not inhibited.

CPB-1491

68

Storage

NUACT
.MALC1

Internal temporary storage is used for the job control file data and for the
control stack and SSA image.

NUCAT occupies approximately 1520 core storage locations.

other Routines Used

Read J* File READJ (.MALCl)
Scan Variable Control Fields FIND (.MALCl)
BCD to Binary Conversion BCD (.MALCl)
Process End of Job EOJ (EP4 of .MYSOT)
Enable Program ENB (EP6 of .MDISP)

69

CPB-1491

DOACT
.MALCl

MAKE DEFAULT FILE ENTRIES

DOACT (.MALC1) makes peripheral detail entries for implicit files1 that
files which are necessary for an activity but are not specified by
control cards. It also summarizes peripheral needs by type of device
gross allocation checks.

PRECALLING SEQUENCE

is,
file
for

Prior to entering DOACT, the registers listed must contain the data
indicated.

AR BCD mnemonic of next activity (activity delimiter)

CALLING SEQUENCE

DOACT is called from within the .MALCl module after scanning the control
cards for a given activity.

8 16
I

TRA : DOACT

SUPPORTING INFORMATION

Programming Method

DOACT is nonreentrant.

Interrupts are not inhibited.

ROUTINE RETURNS

The exit from DOACT is to the Main Allocation Pass routine, TALC (.MALCl) if
allocation is to be attempted. The exit is to the Scan Job Stack routine,
LOOP (.MALCl) if allocation is damped.

SUPPORTING INFORMATION

Programming Method

DOACT is nonreentrant.

Interrupt are not inhibited.

CPB-l491

70

Storage

DOACT
.MALCl

Internal temporary storage is used for the job control file data and for the
peripheral detail entries and SSA image.

DOACT occupies approximately 190 core storage locations~

Other Routines Used

None.

CPB-1491

71

TALC
.MALC1

MAIN ALLOCATION PASS

TALC (.MALC1) performs detail allocation of peripherals to the specific file
codes defined in the activity. It allocates new devices to new files and
relates saved files to new file codes where possible.

PRECALLING SEQUENCE

Prior to entering TALC, the registers listed must contain the data indicated.

X2 First-in, first-out (FIFO) index
X4 Pointer to 5-word job control entry

CALLING SEQUENCE

TALC is called from within the .MALCl module when an activity is a candidate
for allocation.

8

TRA
TMI

16

TALC If not new activity
TALC If job is super critical

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The exit from TALC is to the Scan Job Stack routine, LOOP (.MALC1) when
allocation has failed because of lack of resources. Exit is to the Peripheral
Allocated routine, DONE (.MALC1) when allocation is successful.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

TALC is nonreentrant.

Interrupts are not inhibited.

CPB-1491

72

Storage

Internal temporary storage is used for a tentative PAT.

TALC occupies approximately 400 core storage locations.,

Other Routines Used

Resident peripheral Dispenser ALC2 (.MALC1)
Type Console Message TYPE (.MALC1)
Release Files in PAT RELS (.MALC1)

73

TALC
. MALCl

CPB-1491

DONE
.MALCl

PERIPHERALS ALLOCATED

DONE (.MALCl) assigns pushdown space, does housekeeping regarding card
reader, makes L* PAT entry, captures initial accounting data, prints or
punches banners, and passes activity to the Core Allocator.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

DONE is called from the Main Allocation Pass routine TALC (.MALC1) when TALC
has successfully completed"peripheral allocation.

8 16

TRA DONE

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

The .CRQCT gate is used when a card reader is allocated. The .CRPOQ gate is
used when an entry is made for core allocation.

ROUTINE RETURNS

DONE exits to the Scan Job Stack routine, LOOP (.MALC1) when processing is
complete.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

DONE is nonreentrant.

Interrupts are inhibited when gates are shut.

74

CPB-l491

Storage

DONE
.MALC1

Internal temporary storage is used for the slave PAT and SSA image and for
initial accounting data.

DONE occupies approximately 520 core storage locations.

other Routines Used

Resident Peripheral Dispenser ALC2 (.MALCl)
Type Console Message TYPE (.MALCl)
Fill Queues for Simple I/O QIOS (.MALCl)
Enable Program ENB (EP6 of .MDISP)
write Execution Report Message EXCA (EP5 of .MYSOT)

75

CPB-1491

TAR
. MALe1

TEST FOR TAPE READY

TAR(.MALC1) examines the PAT for tapes which required operator action
(MNT/RDY) and determines if the requested action has been done. The Fill
Queues for Simple I/O routine QIOS (.MALC1) is used to rewind tape units for
status determination.

PRECALLING SEQUENCE

Prior to entering TAR, the registers listed must contain the data indicated.

X2 Index into FIFO list
X4 Pointer to 5-word job control entry

CALLING SEQUENCE

TAR is called from within the Scan Job Stack routine, LOOP (.MALC1) when a
job is examined which has operator action pending.

8 16

TNZ TAR

OPERATING SYSTEM INTERACTION

No .STEMP storage is used

No gates are used.

ROUTINE RETURNS

The exit is to location CORE in the Peripherals Allocated
(.MALC1) if all tapes are ready. The exit is to the Scan Job

LOOP (.MALC1) if tapes are not ready.

SUPPORTING INFORMATION

Programming Method

TAR is nonreentrant.

Interrupts are not inhibited.

76

routine, DONE
Stack routine,

CPB-1491

TAR
. MALC1

Storage

Internal temporary storage is used for preparation of operator reminder
instructions when needed.

TAR occupies approximately 200 core storage locations.

other Routines Used

BCD to Binary Conversion BCD (.MALCl)
Type Console Message TYPE (.MALCI)
Fill Queues for Simple I/O QIOS (.MALCI)

77

CPB-1491

ALC2
. MALC1

RESIDENT PERIPHERAL DISPENSER

ALC2(.MALCl) is a reasonable facimile of the GECOS module .MALC2. ALC2 is
used very often and would require excessive pushdown and popups of the SSA if
it were not included as a resident subroutine. ALC2 is identical in function
to .MALC2 except that tape unit allocation is done cyclically rather than
linearly.

PRECALLING SEQUENCE

Prior to entering ENTRY, the A-register must contain a parameter word. The
parameter word .is of the form:

Magnetic Tape

8 16
I

VFD 16/type,5/02/status,3/0,2/N,18/name

Unit Record Devices

8 16
i

VFD 16/type,12/0,18/name
I

Mass Storase Links

8 16
I

VFD l6/type,12/N,18/name

where:

type is a 6-bit device type code in bits 0-5, values as shown below:

01
03
08
09
10
16
17
18
19
20
22
23
24

Bits 6-10 must be zero.

Disc Storage Subsystem (DSU200)
Magnetic Drum Subsystem (MDS200)
Magnetic Tape
7-Track ASA Magnetic Tape
9-Track ASA Magnetic Tape
Card Reader
Dual-Stacker Reader
CPZlOO Card Punch (100 cpm)
CPZ200 Card Punch (300 cpm)
CPZ201 Card Punch (300 cpm, flat-bed)
Printer
Paper Tape
Console

78

CPB-1491

ALC2
. MALC1

status is a 2-bit code in bits 11 and 12, applying only to magnetic tape:

o
1

Causes a search for a unit which is ready,
Looks for a unit in sta~dby,

2 or 3 Implies either status is acceptable.

Bits 13-15 must be zero.

N bits (bits 16 and 17) is the number of devices requested. For mass
allocation, n is the number of links desired. If the request is for
tape and

n = 2 or 1
n = 2 or 3

The request is for a single unit
The request is for a dual unit.

storage
magnetic

Bits 18 through 35 contain the name, a 3-character logical unit designator,
which has a non-numeric second character. In case a name is present, the type
field is not necessary.

CALLING SEQUENCE

ALC2 is called from within the .MALCI module either from the Main
Pass routine, TALC, or from the Peripherals Allocated routine,
detail allocation of specific peripherals is wanted.

8

LDA
STC2
TRA
return

16

Argument
RETU,$
ALC2,$

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

Set exit
Enter routine

The .CRSCT gate is used when manipulating system tables.

ROUTINE RETURNS

Allocation
DONE, when

The return is to the first instruction following the calling sequence.
Registers contain:

Xl SCT pointer of primary device assigned, Xl=O not assigned

Xo SCT pointer of secondary device assigned, Xo=o not assigned

If request was for mass storage:

AR ZERO FIRST LINK, iLINKS

QR ZERO -1,-1 if single string sufficient or
ZERO FIRST LINK,iLINKS of second string

79

CPB-1491

ALC2
. MALC1

POSTCALLING SEQUENCE

To test for allocation:

8 16 ,
I 0,1 EAXl

TZE
success

: denial
ro.utine

I
I
I
I
I
I

TRA

SUPPORTING INFORMATION

Programming Method

ALC2 is nonreentrant

routine

Interrupts are inhibited when the .CRSCT gate is shut.

Storage

Internal temporary storage is used for a preference list of devices to be
examined for availability.

ALC2 occupies approximately 330 core storage locations.

Other Routines Used

None.

CPB-1491

80

READ J* FILE

READJ
.MALCl

READJ(.MALC1) reads the current J* block of 320 words into the J* buffer
area (BUFF) and checks for I/O errors.

PRECALLING SEQUENCE

Prior to entering READJ, the core storage cells listed must contain the data
indicated.

RELB relative block number of the J* block to be read

JPOS SCT pointer and link number of the J* file

CALLING SEQUENCE

READSJ is called from within the .MALCl module only when the allocator needs
to read another block from J*.

8 16

TSXl l READJ
End-of-file return
Normal return

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

An end-of-file return is to the first instruction following the TSX. The
normal return is to the second instruction following the TSX. If an
unrecoverable I/O error occurs, a DRL is executed.

POSTCALLING SEQUENCE

None.

CPB-1491

81

READJ
.MALCl

SUPPORTING INFORMATION

Programming Method

READJ is nonreentrant.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

READJ occupies approximately 32 core storage locations.

Other Routines Used

None.

82

CPB-1491

FILL QUEUES FOR SIMPLE I/O

'QIOS
.MALCl

QIOS (.MALCl) gets an I/O queue using QUEUE (EP4 of .MIOS) and fills it in
accordance with lOS rules so that I/O can be initiated by means of LINK (EPI
of .MIOS). GEPR override is used.

PRECALLING SEQUENCE

Prior to entering QIOS, the registers listed must contain the data indicated.

QR I/O command to be executed
XO SCT Pointer of device

CALLING SEQUENCE

QIOS is called from within the .MALCI module to perform simple I/O.

8

TSXl
return

16

: QIOS
I

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

If I/O has been done, the return is to first instruction following the TSX.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programmdng Method

QIOS is nonreentrant.

Interrupts are inhibited while filling the I/O queue entry.

GEPR override is used and all error statuses are the responsibility of the
caller. The cells QSTAT, QSTAT+l will contain such statuses upon return.

CPB-1491

83

QIOS
. MALel

storage

No internal temporary storage is used.

QIOS occupies approximately 32 core storage locations.

other Routines Used

Assign an I/O Entry QUEUE (EP4 of .MIOS)
Relinquish RLC (EP4 of .MDISP)
Link I/O to End of Queue LINK (EPl of .MIOS)

84

CPB-1491

TYPE CONSOLE MESSAGE

TYPE
.MALC1

TYPE (.MALCl) types a specified message on one of the system consoles by
using the Master Message Processor ITYM (EP7 of .MIOS).

PRECALLING SEQUENCE

Prior to entering TYPE, the registers listed must contain the data indicated.

AR DCW of message to be typed (GITYM format)
XO Message type for ITYM (EP7 of .MIOS)

The status return must be provided immediately in front of message.

CALLING SEQUENCE

TYPE is called from within the .MALCI module only when the Allocator has a
message for the operator.

8

TSXl
return

16

TYPE

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The return is to the first instruction following the TSX when the message has
been queued.

POSTCALLING SEQUENCE

TYPE does not wait for I/O to be completed. Therefore a roadblock
used or the status return words tested for completion of the
needed.

SUPPORTING INFORMATION

Programming Me thod

TYPE is nonreentrant.

Interrupts are not inhibited.

85

should be
I/O where

CPB-1491

TYPE
. MALel

storage

No internal temporary storage is used.

TYPE occupies approximately 25 core storage locations.

other Routines Used

Assign an I/O Entry QUEUE (EP4 of • MIaS)
Relinquish RLC (EP4 of .MDISP)
Master Message Processor ITYM (EP7 of .MIOS)

86

CPB-1491

FIND
• MALe 1

SCAN VARIABLE CONTROL FIELDS

FIND (.MALC1) scans the variable field (cols 16-72) of $ control cards to
find either 1) a specified field, or 2) the ~ field.

PRECALLING SEQUENCE

Prior to entering FIND, the registers listed must contain the data indicated.

Xl Index to beginning of card image to be scanned (Col 1)

CALLING SEQUENCE

FIND is called from within the .MALCl module when a new control card is
encountered with information in the variable field pertinent to Allocation.

To find a specific field:

8 16

: L (CARD)
I FIND
I Field Number

null return

LDXl
TSXl
ZERO

normal retum
I

To find the next field:

8 16
I

TSXl I LOAF
null return
normal return

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The retum is to the instruction following the calling sequence if the field
is null or blank.

If the field is found (normal retum), the return' is to the second
instruction following the calling sequence.

Content of the variable field is left-justified in IMAG, IMAG+l; the first 6
characters are also in the Q-register. The A-register (bits 30-35) contains
delimiting character of field.

CPB-1491

87

FIND
. MALC1

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

FIND is nonreentrant.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

FIND occupies approximately 135 core storage locations.

Other Routines Used

None.

88

CPB-1491

RELEASE FILES IN PAT

RELS
.MALCl

RELS (.MALC1) releases part or all of the resources described in the SSA PAT
image area when an activity cannot be completely allocated or a job is being
deleted.

PRECALLING SEQUENCE

Prior to entering RELS, the core storage location listed must contain the
da ta indicated.

RELSW = 0 if only new files are to be released

RELSW ~ 0 if all files are to be released

CALLING SEQUENCE

RELS is called only from within the .MALCl module when allocation has been
denied or the job has been deleted.

8

TSXl
return

16

RELS

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

The .CRSCT gate is used when testing and altering the system
tables.

ROUTINE RETURNS

configuration

The return is to the first instruction following the TSX when deallocation
has been done.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

RELS is nonreentrant.

Interrupts are inhibited when gates are shut.

89

CPB-l491

RELS
.MALCl

Storage

No internal temporary storage is used.

RELS occupies approximately 160 core storage locations.

Other Routines Used

Return Links DAOl (EP2 of • MALeS) is used for release of mass storage space.

CPB-1491

90

PERIPHERAL DISPENSER (.MALC2)

The Peripheral Dispenser module (.MALC2) is used by GECOS-III functions that
require allocation of peripheral devices. It will, on option, select a
specifically named device, select a device on a designated channel, or select
a device on the channel of least use for a specified type of device. The
channel or device status is tested for assignability, availability and, if
magnetic tape, device status. If the specified conditions are met, the
channel or device is marked assigned. To facilitate channel load balancing, a
usage count is kept of the number of files allocated to multiple use channels
such as magnetic tape or mass storage. Operator messages such as RDY/MNT and
peripheral preparation such as REW/REWS are the responsibility of the user.

The routines listed below comprise the Peripheral Dispenser module:

o ENTRY
o ENT2
o ENT3

(EP1)
(EP2)
(EP3)

Process Specific Device Request
Process Specific Channel Request
Process Any Card Punch Request

91

CPB-1491

ENTRY (EP1)
.MALC2

PROCESS SPECIFIC DEVICE REQUEST

ENTRY (EP1 of .MALC2) processes requests for a device specified by name or
type.

PRECALLING SEQUENCE

Prior to entering ENTRY, the A-register must contain a parameter word of the
form:

Magnetic Tape

a 16

VFD I 6/type,S/0,2/status,3/0,2/N,la/name

Unit Record Devices

a 16

I VFD
I I 6/type, 12/0, la/name

Mass Storase Links

a 16

I VFD I 6/type,12/N,la/name

where:

type is a 6-bit type code in bits 0-5; values are shown below:

01
03
08
09
10
16
17
18
19
20
22
23
24

Bits 6-10 must be zero.

Disc Storage Subsystem (DSU200)
Magnetic Drum Subsystem (MDS200)
Magnetic Tape
7-Track ASA Magnetic Tape
9-Track ASA Magnetic Tape
Card Reader
Dual-Stacker Reader
CPZlOO Card Punch (100 cpm)
CPZ200 Card Punch (300 cpm)
CPZ201 Card Punch (300 cpm, flat-bed)
Printer
Paper Tape
Console

status is a 2-bit code in bits 11 and 12, applying only to magnetic tape:

o
1
2 or 3

Bits 13-15 must be zero.

Causes a search for a unit which is ready,
Looks for a unit in standby,
implies either status is acceptable.

CPB-1491

92

ENTRY (EP1)
.MALC2

N (bits 16 and 17) is the number of devices requested. For mass storage
allocation, n is the number of links desired. If the request is for magnetic
tape and

n = 0 or 1
n = 2 or 3

The request is for a single unit.
The request is for a dual unit.

Bits lS-35 contain the name, a 3-character logical unit designator which has
a non-numeric second character. In case a name is present, the type field is
not necessary.

CALLING SEQUENCE

ENTRY is called from any module requiring device allocation.

S 16

I·CALL return
.MALC2,1

OPERATING SYSTEM INTERACTION

At time of call, the contents of the A- and Q-registers are placed in
• STEMP+S and .STEMP+9.

The .CRSCT gate is used when manipulating the system configuration tables.

ROUTINE RETURNS

The return is to the first instruction following the .CALL.

Responses to requests for peripherals are given in index registers Xo and Xl,
and .STEMP+S and .STEMP+9.

Index register Xl contains the SCT pointer to the primary allocated device if
the request was successful. If the request was not successful, index register
Xl contains zero. Index register Xo contains identical information on the
alternate tape unit if one was requested.

If a magnetic tape request was denied, .STEMP+9 indicates whether the denial
was because of device unavailability (zero) or a result of incorrect unit
status (nonzero).

For successful mass storage requests, .STEMP+S and .STEMP+9 contain the link
strings assigned. If a single string was sufficient, .STEMP+9 contains -1.

CPB-1491

93

ENTRY (EP1)
.MALC2

POSTCALLING SEQUENCE

The following instructions should be executed immediately upon return to
prevent the .STEMP cells from being destroyed by an interrupt.

8 16
i

LDAQ I.STEMP+8,S
I

To test for successful allocation:

8

EAXI
T
success

SUPPORTING INFORMATION

Programming Method

16

0,1
denial routine
routine

ENTRY is nonreentrant and written in floatable code.

Interrupts are inhibited when gates are shut.

Storage

Internal temporary storage is used for sorting of channels or units of like
devices for load balancing.

ENTRY occupies approximately 390 core storage locations.

Other Routines Used

Peripheral Space Allocator (.MALCS)
received.

when requests for mass storage are

CPB-1491

94

PROCESS SPECIFIC CHANNEL REQUEST

ENT2 (EP2)
.MALC2

ENT2 (EP2 of .MALC2) processes requests for a device on a specific channel.

PRECALLING SEQUENCE

Prior to entering ENT2, the A-register must contain a parameter word as shown
in ENTRY (EPl of .MALC2) except that NAME is replaced by the SeT pointer.

CALLING SEQUENCE

ENT2 is called from any module requesting a specific channel.

8

• CALL
return

16

I
I .MALC2, 2
I

For further information on ENT2, refer to the description of ENTRY
.MALC2).

95

(EPl of

CPB-1491

ENT3 (EP3)
.MALC2

PROCESS ANY CARD PUNCH REQUEST

ENT3 (EP3 of .MALC2) processes requests for a card punch. The card punch can
be either a CPZ100, CPZ200, or CPZ20l.

PRECALLING SEQUENCE

Prior to entering ENT3, the A-register must contain a parameter word as shown
in ENTRY (EPl of .MALC2) except that name is replaced by the SCT pointer.

ENT3 is called from any module requesting a card punch.

a

• CALL
return

16

.MALC2,3

For further information on ENT3, refer to the description of ENTRY (EPl of
.MALC2).

CPB-1491

96

PERIPHERAL SPACE ALLOCATOR (.MALC5)

.MALCS is a slave service area module with four entry points used to maintain
a 64-word in-memory table. The in-memory table is initialized by .MPOPM and
describes available links for all mass random access devices in the system
configuration. Maintenance includes providing links when requested and
returning unused links to the available pool. The four entry points are:

o CAOl
o DAOl
o CQOO
o CAOO

(EP1)
(EP1)
(EP3)
(EP4)

Provide Links for New File
Return Links
Provide Additional Links
Provide Contiguous Links

Only a single copy of .MALCS may be in execution at
ensures that two processors are not simultaneously
in-memory table.

anyone time.
looking at the

This
same

When a request to obtain links is received, the following steps are taken:

1. A check is made to ensure that the links are available on the device
requested. If not, an error return is made to the user.

2. A check is made to ensure that the number of links requested will
not reduce the available space below threshold level. If it will,
another check is made to ensure that the links are for an extension
to an existing file. If not, an error return is made to the user.

3. A search is made of the in-memory available link table for an entry
equal to the requested number of links. If found, it is deleted from
the table and returned to the user. This is the most desirable case
since it reduces the active size of the in-memory table.

4. A search is made of the in-memory table for the first entry (by
position from the top of the table) describing more than the
requested number of links. If found, the requested links are deleted
from this entry. This is the next most desirable case since it still
gives contiguous allocation to the user. If the requests in steps 3
or 4 are not satisfied and contiguous allocation is requested, an
error return is made to the user.

5. A search is made of the in-memory table for its largest entry (which
by this step is still less than the requested number of links). It
is set aside and deleted from the table and steps 3 and 4 are
repeated for a reduced number of links. If 3 and 4 fail, the set
aside entry is reentered into the table by simulating a call to
return links to the available pool and then making an error return
to the user.

CPB-1491

97

When returning links to the available space pool, the following steps are
taken:

1. The in-memory table is searched to see if the returned links
concatenate with any present entry. If the¥ do, they are properly
attached and the adjacent entry 1S tested for possible
concatenation. If it also fits, table size is reduced by one.

2. If the table has at least one available location, the table expands
by one cell and the returned links are entered into the proper place
in the table to maintain order by ascending link number.

3. If the table is full, the first entry describing the smallest number
of links is eliminated from the table and the returned entry (unless
it is smallest) is entered into the appropriate position. In this
mode, space is actually eliminated from the available pool. This
space is reclaimed at startup or reboot time since it is still
accurately described on the device from which the in-memory table is
initialized.

If a catastrophe occurs, the in-memory table is reinitialized, this
effectively reclaims any lost temporary storage •

• MALes requires approximately 290 core storage locations.

CPB-1491

98

)

PROVIDE LINKS FOR NEW FILE

CAOl (EPl of .MALCS) allocates links to build a new file.

PRECALLING SEQUENCE

CADI (EPI)
.MALC5

I

Prior to entering CA01, the registers listed must contain the data indicated.

AU Pointer to SCT Table
QL Number of links requested

For example:

8 16

LOA :PAT Table Word 1
LDQ ,N,DL

The upper half of the PAT table word contains the absolute address of the
secondary System Configuration Table.

N is equal to the number of links desired.

CALLING SEQUENCE

CAOl can be called from any GECOS-III module.

8 16

.CALL I.MALCS,l
Error return
Normal return

I

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

If the request for space was satisfied by two link strings, their description
appears in the A- and Q-registers. In addition, bits 0 and 2 in the
A-register are on indicating that the file is in the rewound position and
that the A-register does not contain the last descriptor of the file. The
link strings in the A- and Q-registers are ready for immediate storage in the
PAT. The return is to .CALL+2.

When the request cannot be filled, a return is made to .CALL+l. The data in
the A- and Q-registers is meaningless.

POSTCALLING SEQUENCE

None.

CPB-1491

99

CAD1 (EP1)
.MALC5

SUPPORTING INFORMATION

Programming Method

CADI is nonreentrant and written in floatable code.

Interrupts are inhibited while checksumming the link table.

Storage

No internal temporary storage is used.

Other Routines Used

Take Dump for System Abort FSB (EPI of .MFALT) if a checksum error occurs in
the link table.

CPB-1491

100

RETURN LINKS

DAD! (EP2)
.MALC5

DAOI (EP2 of .MALCS) releases and returns unused links to an available pool.

PRECALLING SEQUENCE

Prior to entering DAOl, the registers listed must contain the data indicated:

For example:

1

AU Pointer to SCT Table
QU Address of start of STRING
QL Count of elements in STRING

where STRING is of the form:

8 16

LDA PAT Table word
LDQ PARAM

PARAM ZERO LST,N

LST ZERO LINK#,#LINKS

(LST+N-l) ZERO LINK # , .#LINKS

Link Number, Number of Links

The upper half of the PAT table word contains the absolute address of the
secondary System Configuration Table.

The link strings in table LST may be PAT table words, therefore, bits 0, 1,
and 2 are used. Bit 1 is checked to ensure that this description is not part
of another file. If Bit 1 is on, the return to the available pool is ignored.

CALLING SEQUENCE

DAOI can be called from any GECOS module.

8

• CALL
return

16

.MALCS,2

101

CPB-1491

DAOl (EP2)
.MALC5

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

The return is to the first instruction following the .CALL.

POSTCALLING SEQUENCE

None.

SUPPORTING INFORMATION

Programming Method

DA01 is nonreentrant and written in floatable code.

Interrupts are inhibited while checksumming the link table.

Storage

No internal temporary storage is used.

Other Routines Used

Take Dump for System Abort FSB (EPl of .MFALT) if a checksum error occurs in
the 1 ink table.

CPB-1491

102

PROVIDE ADDITIONAL LINKS

CQOO (EP3 of .MALCS) allocates links to extend an existing file.

PRECALLING SEQUENCE

CQOO (EP3)
.MALC5

Prior to entering CQOO, the registers listed must contain the data indicated.

AU Pointer to SCT table
QL Number of links requested

CALLING SEQUENCE

CQOO is called from the .MMORE module.

8 16
I

• CALL l .MALCS, 3
Error return
Normal return

I

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

If the request for space was satisfied by two link strings, they appear in
the A- and Q-registers. In addition, bits 0 and 2 in the A-register are on
indicating that the file is in rewound position and that the A-register does
not contain the last descriptor of the file. The link strings in the A- and
Q-registers are ready for immediate use in the PAT table. The return is to
.CALL+2.

When the request cannot be filled, a return is made to .CALL+l. The data in
the A- and Q-registers is meaningless.

POSTCALLING SEQUENCE

None.

CPB-1491

103

CQOO (EP3)
.MALC5

SUPPORTING INFORMATION

Programming Method

CA01 is nonreentrant and written in floatable code.

Interrupts are inhibited while checksumming the link table.

Storage

No internal temporary storage is used.

Other Routines Used

Take Dump for System Abort FSB (EP1 of .MFALT) if a checksum error occurs in
the link table.

CPB-1491

104

PROVIDE CONTIGUOUS LINKS

CAOO (EP4 of .MALCS) allocates contiguous links for a new file.

PRECALLING SEQUENCE

CAOO (EP4)
.MALC5

Prior to entering CAOO, the registers listed must contain the data indicated.

AU Pointer to SCT Table
QL Number of links requested

CALLING SEQUENCE

CAOO is called from the .MFSIO module.

8 16
I

.CALL I .MALCS,4
Error return
Normal.return

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

A link string in the form LINK number, number of LINKS is returned in the
A-register with bit 2 on indicating that the file is in rewound position.
This bit is turned on so that the link string is prepared for immediate use
in the PAT table. The Q-register contains all bits. For an error return, the
data in the A- and Q-registers is meaningless. An error return can be caused
three ways:

1. No t enough available space on the device

2. Not enough available contiguous space on the device

3. Not enough available space for the creation of a new file (space on
the file is reserved for the extension of existing files)

POSTCALLING SEQUENCE

None.

CPB-1491

105

CAOO (EP4)
.MALC5

SUPPORTING INFORMATION

Programming Method

CAOO is nonreentrant and written in floatable code.

Interrupts are inhibited when checksumming the link table.

Storage

No internal temporary storage is used.

Other Routines Used

Take Dump for System Abort FSB (EPl of .MFALT) if a checksum error occurs in
the link table.

CPB-1491

106

LLINK ALLOCATOR (.MALC6)

.MALC6 is an SSA module with one entry point. It is used to allocate LLINKs
(320-word links).

When a request to obtain LLINK space is received, the bit table which
describes the LLINK is read into core, checksummed, and searched for an
available LLINK. If one is found, the absolute block number of the LLINK is
calculated and returned to the calling program. The bit table is altered,
rechecksumrned, and written to the appropriate device.

If no LLINK space is available, the block number is set to zero and control
is returned to the calling program.

Only a single copy of .MALC6 may be in execution at anyone time. This
ensures that two processors are not simultaneously trying to allocate LLINK
space.

CPB-1491

107

START (EP1)
.MALC6

ALLOCATE LLINK SPACE

START (EPl of .MALC6) reads the available LLINK table from the appropriate
device and allocates the next available LLINK.

PRECALLING SEQUENCE

Prior to entering START, the SCT of the appropriate device should be placed
in .SGCPA,5.

CALLING SEQUENCE

START is called from .MFSOI, MFS02, and .MFS07 modules.

8

LDXO
STXO
• CALL
LDQ

16

SCT address
.SGCPA,5
.MALC6,1
.STEMP+9,5

OPERATING SYSTEM INTERACTION

.STEMP+9 is used.

No gates are used.

ROUTINE RETURNS

Return is to the calling program.

.STEMP+9 will contain the absolute block number of
space is available; otherwise, it will contain all
space on this device is not available.

POSTCALLING SEQUENCE

the allocated LLINK if
zeros to indicate that

Upon return .STEMP+9 should be examined immediately to prevent destruction by
an interrupt.

CPB-1491

108

SUPPORTING INFORMATION

Programming Method

START is nonreentrant and written in floatable code.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

START occupies approximately 378 core storage locations.

Other Routines Used

Link I/O to End of Queue LINK (EPl of .MIOS)
Assign an I/O Entry QUEUE (EP4 of .MIOS)
Relinquish Control RLC (EP4 of .MDISP)

109

START (EP1)
.MALC6

CPB-1491

PERMANENT SPACE ALLOCATOR (.MALC7)

.MALe7 is an SSA module with two entry points:

• FSUNDT
• FSUNLS

(EP1)
(EP2)

Make Link Space Permanent Given PAT
Make Link Space Permanent Given Link

When returning a LINK to the available space pool, the bit table which
describes LINK space is read into core, checksummed, and modified to reflect
the available block. It is then rechecksummed and written on the appropriate
device.

CPB-1491

110

MAKE LINK SPACE PERMANENT GIVEN PAT

FSUNPT (EPl)
.MALC7

FSUNPT (EPI of .MALC7) makes allocated space permanent by taking space
description out of the available link table. The contents of the A-register
point to start of a PAT entry.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

FSUNPT is called from the .MFS04, .MFS05, and .MFSIO modules.

8 16

EAA
• CALL

I Absolute PAT address
I .MALC7, 1

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

Return is to the calling program.

POSTCALLING SEQUENCE

None.

111

CPB-l491

FSUNPT (EP1)
.MALC7

SUPPORTING INFORMATION

Programming Method

FSUNPT is nonreentrant and written in floatable code.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

FSUNPT occupies approximately 368 core storage locations.

Other Routines Used

Link I/O to End of Queue LINK (EPl of .MIOS)
Assign an I/O entry QUEUE (EP4 of .MIOS)
Relinquish Control RLC (EP4 of .MDISP)
Obtain Normal Snapshot GESNIP (EPl of .MSNP1)

112

CPB-1491

MAKE LINK SPACE PERMANENT GIVEN LINK STRINGS

FSUNLS (EP2)
.MALC7

FSUNLS (EP2 of .MALC7) makes allocated space
description out of the available link table. The
start of a link string.

permanent by taking space
A-register points to the

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

FSUNLS is called from the .MFS04, .MFS05, and .MFS10 modules.

8 16

EAQ
EAA
• CALL

I SCT pointer I Absolute address of link string
I .MALC7,2

OPERATING SYSTEM INTERACTION

No .STEMP storage is used.

No gates are used.

ROUTINE RETURNS

Return is to the calling pzogram.

POSTCALLING SEQUENCE

None.

113

CPB-1491

FSUNLS (EP2)
.MALC7

SUPPORTING INFORMATION

Programming Method

FSUNLS is nonreentrant and written in floatable code.

Interrupts are not inhibited.

Storage

No internal temporary storage is used.

FSUNLS occupies approximately 368 core storage locations.

Other Routines Used

Link I/O to End of Queue LINK (EP2 of .MIOS)
Assign an I/O Entry QUEUE (EP4 of .MIOS)
Relinquish Control RLC (EP4 of .MDISP)
Obtain Normal Snapshot GESNIP (EPl of .MSNPl)

114

(
CPB-1491

MME PROCESSORS FOR ALLOCATION

During execution of an activity the user may wish to release or alter the
disposition of a peripheral file, increase the size of a mass storage file,
or obtain an additional magnetic tape or mass storage file. The release of
files is effected by a MME GERELS; the allocation of additional space or
files is done by a MME GEMORE. The actual work of processing these requests
is done by two SSA modules, .MRELS and .MMORE, which are called by the .MFALT
module when these MME's are executed.

CPB-1491

115

MORE
.MMORE

MME GEMORE PROCESSOR

MORE (.MMORE) is an SSA module with one entry point. It services a MME GEMORE
request for additional mass storage space or for magnetic tape handlers.
Requests for more core storage are relayed to GEPOP.

PRECALLING SEQUENCE

Bits 24-35 of the Q-register must contain the file code.

If request is for magnetic tape, bits 0-17 of the Q-register must either be
zeros or a pointer to the core storage location that contains the file serial
number (BCI) of the reel to be mounted.

CALLING SEQUENCE

MORE is called from the Fault Processor in response to a slave MME GEMORE.

8 16
I

.GOTO I .MMORE,l

OPERATING SYSTEM INTERACTION

The top entry in the control stack (.SSA) must contain the address of the MME
GEMORE.

No .STEMP storage is used.

The .CRPOQ gate is shut while a core storage request is being relayed.

ROUTINE RETURNS

Return is made using the top entry in the stack by a .EXIT 2 if a peripheral
request is satisfied and a .EXIT 1 if it is denied. If the .EXIT 2 is taken,
the Peripheral Assignment Table contains the requested resource description.

If a memory request is received, MORE executes a .GOTO .MDISP,l after
relaying the request to GEPOP.

POSTCALLING SEQUENCE

None.

CPB-1491

116

SUPPORTING INFORMATION

Programming Method

MORE
.MMORE

MORE is nonreentrant but multiple copies may exist in core simultaneously. It
is written in floatable code.

Interrupts are inhibited when the .CRPOQ gate is shut.

Storage

Internal temporary storage is used for preparation of operator instructions.

MORE occupies approximately 375 core storage locations in the lower half of
the caller's SSA.

Other Routines Used

Process Specific Device Request ENTRY (EPI of .MALC2)
Provide Additional Links CQOO (EP3 of .MALCS)
Terminate Error Entry FALT (EP3 of .MBRTI)
MME GEINOS Processor INOS (EPS of .MIOS)
Master Message Processor ITYM (EP7 of .MIOS)
Enable Program ENB (EP6 of .MDISP)
Relinquish Control Until Program Enabled DSCNT (EPII of .MDISP)
Set Alarm SCK (EPI3 of .MDISP)

117

CPB-1491

RELS
.MRELS

MME GERELS PROCESSOR

RELS (.MRELS) is an SSA module with one entry point. It services a MME GERELS
request for peripheral release or alteration of peripheral disposition.

PRECALLING SEQUENCE

None.

CALLING SEQUENCE

RELS is called from the Fault Processor module in response to a slave MME
GERELS.

8 16

• GO TO .MRELS,l

OPERATING SYSTEM INTERACTION

The top entry in the control stack (.SSA) must contain the slave address of
the MME GERELS.

No .STEMP storage is used.

The .CRQGT gate is shut while resetting the GESPEC status of a released card
reader.

The .CRSCT gate is shut while altering the configuration table.

ROUTINE RETURNS

Return is made to the top entry in the stack by a .EXIT after the stack entry
has been adjusted by the length of the calling sequence.

POSTCALLING SEQUENCE

None.

CPB-1491

118

SUPPORTING INFORMATION

Programming Method

RELS
.MRELS

RELS is nonreentrant but multiple copies may be in core simultaneously. It is
written in floatable code.

Interrupts are inhibited when the .CRQGT and .CRSCT gates are shut.

Storage

No internal temporary storage is used.

RELS occupies approximately 450 core storage locations in the lower half of
the caller's SSA.

Other Routines Used

MME GEINOS Processor INOS (EPs of .MIOS)
Master Message Processor ITYM (EP7 of MIOS)
Return Links DAOl (EP2 of .MALCs)

119

CPB-1491

INDEX

ABORT
SATISFYING AN ABORT REQUEST
Dispatch Entry for Abort DISP
Take Dump for System Abort FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB
Take Dump for System ~ort FSB
Take Dump for System Abort FSB

ACCUMULATE
Accumulate Processor Time DACNB
Accumulate Processor Time DACNB
Accumulate Processor Time DACNB
ACCUMULATE PROCESSOR TIME

ACTIVITY
DETERMINE NEXT ACTIVITY REQUIREMENT

ALARM
Set Alarm SCK
SET ALARM
Set Alarm SCK
Set Alarm SCK

ALC2
Resident Peripheral Dispenser ALC2
Resident Peripheral Dispenser ALC2
ALC2 (.MALCl)

ALLOCATE
ALLOCATE LLINK SPACE

ALLOCATED
PERIPHERALS ALLOCATED

ALLOCATION
MAIN ALLOCATION PASS
tape unit allocation

ALLOCATOR
Peripheral Space Allocator (.MALC5)
LLINK ALLOCATOR (.MALC6)
PERMANENT SPACE ALLOCATOR (.MALC7)

ASSIGN
Assign an I/O Entry QUEUE
Assign an I/O Entry QUEUE
Assign an I/O Entry QUEUE
Assign an I/O Entry QUEUE
Assign an I/O Entry QUEUE

BCD
BCD to Binary Conversion BCD
BCD to Binary Conversion BCD
BCD to Binary Conversion BCD

121

4
7

60
100
102
104
106

11
13
15
22

68

7
30
65

117

73
75
78

108

74

72
78

94
107
110

84
86

109
112
114

67
69
77

CPB-1491

BINARY
BCD to Binary Conversion BCD
BCD to Binary Conversion BCD
BCD to Binary Conversion BCD

BINPT
Print Lines Prior to Snapshot BINPT

BLOCK
RELB relative block number of the J* block

BREAK
$ BREAK

CAOO
CAOO (EP4 of .MALC5)

CAOI
CAOI (EPI of .MALC5)

CARD
PROCESS ANY CARD PUNCH REQUEST

CHANNEL
PROCESS SPECIFIC CHANNEL REQUEST

CLOSE
CLOSE SYSTEM GATES

CONSOLE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
TYPE CONSOLE MESSAGE

CONVERSION
BCD to Binary Conversion BCD
BCD to Binary Conversion BCD
BCD to Binary Conversion BCD

COURTESY
SATISFYING A NEW COURTESY CALL REQUEST
END COURTESY CALL

CQOO
CQOO (EP3 of .MALC5)
Provide Additional Links CQOO

DAOI
Return Links DAOI
DAOI (EP2 of .MALCS)
Return Links DAOI

DACNB
Accumulate Processor Time DACNB
DACNB (EP9 of .MDISP)
Accumulate Processor Time DACNB
DACNB (EP9 of .MDISP)
Accumulate Processor Time DACNB
DACNB (EP9 OF .MDISP)
DACNB (EP9 OF .MDISP)

122

67
69
77

60

81

55

105

99

96

95

51

60
63
65
67
73
75
77
85

67
69
77

3
14

103
117

90
101
119

11
12
13
14
15
22
24

CPB-1491

DEFAULT
MAKE DEFAULT FILE ENTRIES

DETErulINE
DETEru1INE NEXT ACTIVITY REQUIREMENT

DEVICE
PROCESS SPECIFIC DEVICE REQUEST
Process Specific Device Request ENTRY

DISC
DO DISC I/O USING SYSTEM I/O QUEUE
Do Disc I/O Using System I/O Queue
Do Disc I/O Using System I/O Queue
Do Disc I/O Using System I/O Queue

DISP
Dispatch Entry for Abort DISP

DISPATCH
Dispatch Entry for Abort DISP

DISPATCHER
Dispatcher (.MDISP)
Dispatcher (.MDISP)

DISPENSER
Resident Peripheral Dispenser ALC2
Resident Peripheral Dispenser ALC2
RESIDENT PERIPHERAL DISPENSER
PERIPHERAL DISPENSER (.MALC2)

DMIOA
DMIOA (EP12 OF .MDISP)
Do Disc I/O Using System I/O Queue
Do Disc I/O Using System I/O Queue
Do Disc I/O Using System I/O Queue

DO
DO DISC I/O USING SYSTEM I/O QUEUE
Do Disc I/O Using System I/O Queue
Do Disc I/O Using System I/O Queue
Do Disc I/O Using System I/O Queue

DOACT
DOACT (.MALCl)

DONE
DONE (.MALC1)

DRSTR
DRSTR (EP10 OF .MDISP)

DSCNT
DSCNT (EP11 of .MDISP)

DMIOA
DMIOA
DMIOA

DMIOA
DMIOA
DMIOA

DMIOA
DMIOA
DMIOA

Relinquish Control Until Program .Enab1ed DSCNT
Relinquish Control Until Program Enabled DSCNT

DSP
DSP (EP1 of .MDISP)
Redispatch After Interrupt or Timer Runout nsp
Redispatch After Interrupt or Timer Runout DSP
Redispatch After Interrupt or Time'r Runout nsp
DSP (EP1 of .MDISP)

123

70

68

92
117

28
38
40
42

7

7

48
51

73
75
78
91

28
38
40
42

28
38
40
42

70

74

24

26
65

117

6
9

13
15
30

CPB-1491

DSPQH
DSPQH (EP7 of .MDISP)

DSPQM
DSPQM (EP14 of .MDISP)
DSPQM (EP14 OF .MDISP)

DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
DSPQT (EP8 of .MDISP)
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
DSPQT (EP8 of .MDISP)
DSPQT (EP8 of .MDISP)

DUMP
Take Dump for Sys tem Abort FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB

ENABLE

ENB

Enable Program ENB
ENABLE PROGRAM
Enable Program ENB
Enable Program ENB
Enable Program ENB
Enable Program ENB

Enable Program ENB
ENB (EP6 of .MDISP)
ENB (EP6 of .MDISP)
Enable Program ENB
Enable Program ENB
Enable Program ENB
Enable Program ENB

ENCC
ENCC (EP5 of .MDISP)

ENT2
ENT2 (EP2 of .MALC2)

ENTRIES
Process Entries in Queue QUE
PROCESS ENTRIES IN QUEUE
MAKE DEFAULT FILE ENTRIES

ENTRY
Dispatch Entry for Abort DISP
Terminate Error Entry FALT
Terminate Error Entry FALT
Terminate Error Entry FALT
System I/O Entry (.SSYIO)
Terminate Error Entry FALT
ENTRY (.MALC1)
Assign an I/O Entry QUEUE
Assign an I/O Entry QUEUE
ENTRY (EPI of .MALC2)
Assign an I/O Entry QUEUE
l~ssign an I/O entry QUEUE
Assign an I/O Entry QUEUE

124

18

12
32

7
9

11
13
14
15
17
20
24

60
100
102
104
106

7
16
65
69
75

117

7
16
30
65
69
75

117

14

95

60
62
70

7
7
9

15
28
29
61
84
86
92

109
112
114

CPB-1491

ENTHY (continued)
Process Specific Device Request ENTRY
Termina te Error En try F ALT

EOJ
Process End of Job EOJ
Process End of Job EOJ

ERROR
Terminate Error Entry FALT
'rermina te Error Entry FALT
Terminate Error Entry FALT
Terminate Error Entry FALT
Terminate Error Entry FALT

EXCA
Write Execution Report Nessage
Write Execution Report Message
Write Execution Report Hessage

EXECUTION
\']rite Execution Report Message
livrite Execution Report llessage
~vrite Execution Report Message

EXECUTIVE
GEPR Executive GEPRE

Pl~T

FALT (EP3 of • MBR'l'l)
Terminate Error Entry FAI,T
Terminate Error Entry FALT
Terminate Error Entry FAI.T
Terminate Error Entry FALT
Terminate Error Entry FALT

FAULT
FAULT RECOVERY

FIFO
First-in, first-out (FIFO)

FILE
READ J* File READJ
Read J* File READJ
~mKE DEFAULT FILE ENTRIES
READ J* FILE
PROVIDE LINKS FOR NEW FILE

FILES
Release Files in PAT RELS
RELEASE FILES IN PAT

EXCA
EXCA
EXC~

EXCA
EXCA
EXCA

RELSW 0 if only new files are to be released
RELSW =/ 0 if all files are to be released

FILL
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
FILL QUEUES FOR SIMPLE I/O

FIND
Scan Variable Control Fields FIND
Scan Variable Control Fields FIND
FIND (.MALCl)

125

117
117

67
69

7
9

15
29

117

63
67
75

63
67
75

7

4
7
9

15
29

117

59

72

67
69
70
81
99

73
89
89
89

60
75
77
83

67
69
87

CPB-1491

FORCED
FORCED RELINQUISH

FRLC
FRLC (EP3 of .MDISP)

FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB
Take Dump -for System Abort FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB

FSUNLS
FSUNLS (EP2 of .MALC7)

FSUNPT
FSUNPT (EP1 of .MALC7)

GATE
.CRTSQ gate
.CRPOQ gate
.CRQCT gate
.CRSCT gate
.CRSCT gate
.CRSCT gate
.CRPOQ gate
.CRPOQ gate
.CRSCT gate

GATES
OPEN SYSTEM GATES
CLOSE SYSTEM GATES

GEINOS
MME GEINOS Processor
MME GEINOS Processor
MME GEINOS Processor

GEMORE
MME GEMORE PROCESSOR

GEPR

INOS
INOS
INOS

SATISFYING A GEPR REQUEST
GEPR Executive GEPRE
RESTORE STATE AFTER SWAP, MOVE, GEPR

GEPRE
GEPR Executive GEPRE

GERELS
MME GERELS PROCESSOR

GESNIP

GRD

Obtain Normal Snapshot GESNIP
Obtain Normal Snapshot GESNIP

GRD (EP2 of .MDISP)

HANDLER
Interrupt Handler (IOTRM)
Interrupt Handler (IOTRM)

126

10

10

60
100
102
104
106

113

111

62
68
74
79
80
89

116
117
118

48
51

67
117
119

116

5
7

24

7

118

112
114

8

6
20

CPB-1491

HCL
HCL (.MDISP)

HEX
HEX (.MDISP)

HGT
HGT (.MDISP)

INITIALIZE
INITIALIZE PROGRAM

INOS
MME GEINOS Processor INOS
MME GEINOS Processor INOS
MME GEINOS Processor INOS

INTERRUPT
REDISPATCH AFTER INTERRUPT OR TIMER RUN OUT
Interrupt Handler (IOTRM)
'Redispatch After Interrupt or Timer Runout
Redispatch After Interrupt or Timer Runout
Redispatch After Interrupt or Timer Runout
Interrupt Handler (IOTRM)
PROGRAM NO. IN QUEUE FOLLOWING INTERRUPT

IOTRM
Interrupt Handler (IOTRM)
(IOTRM)
Interrupt Handler (IOTRM)
IOTRM (. MIOS)
IOTRM (. MIOS)

ITYM
Master Message Processor ITYM
Master Message Processor ITYN
Master Message Processor ITYM

I/O

JOB

DO DISC I/O USING SYSTEM I/O QUEUE
System I/O Entry (.SSYIO)
Link I/O To End Of Queue LINK
Do Disc I/O Using System I/O Queue DMIOA
Do Disc I/O Using System I/O Queue DMIOA
Do Disc I/O Using System I/O Queue DMIOA
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
FILL QUEUES FOR SIMPLE I/O
Assign an I/O Entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O Entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O Entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O Entry QUEUE

Request Job Swap SWAP
SCAN JOB STACK

127

36

41

39

61

67
117
119

6
6

DSP 9
DSP 13
DSP 15

20
32

6
18
20
48
51

86
117
119

28
28
29
38
40
42
60
75
77
83
84
84
86

109
109
112
112
114
114

7
64

CPB-1491

JOB (con tinued)
PROCESS NEW JOB
Process End of Job EOJ
Process End of Job EOJ

JPOS

J*

JPOS SCT pointer and link number of the J*

J*
READ J* File READJ
Read J* File READJ
READ J* FILE
RELB relative block number of the J* block
JPOS SCT pointer and link number of the J*

LINES
Print Lines Prior to Snapshot BINPT

LINK
LINK (EPI of .1-1IOS)
Link I/O To End Of Queue LINK
JPOS SCT pointer and link number of the J*
LINK (EPI of .MIOS)
Link I/O to End of Queue LINK
Link I/O to End of Queue LINK
MAKE LINK SPACE PERMANENT GIVEN PAT
Link I/O to End of Queue LINK
MAKE LINK SPACE PERMANENT GIVEN LINK STRINGS
Link I/O to End of Queue LINK

LINKS
Return Links DA01
PROVIDE LINKS FOR NEW FILE
RETURN LINKS
PROVIDE ADDITIONAL LINKS
PROVIDE CONTIGUOUS LINKS
Provide Additional Links CQOO
Return Links DA01

LLINK
LLINK ALLOCATOR (. MALC6)
ALLOCATE LLINK SPACE

LOOP
LOOP (.MALCl)

MACRO
.CALL MACRO
.GOTO MACRO
.EXIT MACRO
.OPEN macro
.SHUT macro

MAIN
MAIN ALLOCATION PASS

128

66
67
69

81

55
67
69
81
81
81

60

28
29
81
83
84

109
III
112
113
114

90
99

101
103
105
117
119

107
108

64

36
39
41
48
51

72

CPB-1491

MAKE
MAKE DEFAULT FILE ENTRIES
MAKE LINK SPACE PERMANENT GIVEN PAT
MAKE LINK SPACE PERMANENT GIVEN LINK STRINGS

MASTER
Master Message Processor ITYM
Master Message Processor ITYM
Master Message Processor ITYM

MESSAGE

MME

Type Console Message TYPE
Type Console Message TYPE
Write Execution Report Message EXCA
Type Console Message TYPE
Type Console Message TYPE
Write Execution Report Message EXCA
Type Console Message TYPE
Type Console Message TYPE
Write Execution Report Message EXCA
Type Console Message TYPE
TYPE CONSOLE MESSAGE
Master Message Processor ITYM
Master Message Processor ITYM
Master Message Processor ITYM

MME GEINOS P roces sor INOS
MME GEMORE PROCESSOR
MME GEINOS Processor INOS
MME GERELS PROCESSOR
MME GEINOS Processor INOS

MORE
MORE (.MMORE)

MOVE

NEW

RESTORE STATE AFTER SWAP, MOVE, GEPR

SATISFYING A NEW COURTESY CALL REQUEST
PROCESS NEW JOB
NEW (.MALC1)
RELSW = 0 if only new files are to be released
PROVIDE LINKS FOR NEW FILE

NUACT
NUACT (. MALC1)

NUMBER
RELB relative block number of the J* block
JPOS SCT pointer and link number of the J*

OBTAIN
Obtain Normal Snapshot GESNIP
Obtain Normal Snapshot GESNIP

OPEN
OPEN SYSTEM GATES

OPGAT
OPGAT (.MDISP)

129

70
111
113

86
117
119

60
63
63
65
67
67
73
75
75
77
85
86

117
119

67
116
117
118
119

116

24

3
66
66
89
99

68

81
81

112
114

48

48

CPB-1491

PANIC

PAT

PANIC (.MALC1)

Release Files in PAT RELS
RELEASE FILES IN PAT
MAKE LINK SPACE PERMANENT GIVEN PAT

PERIPHERAL
Resident Peripheral Dispenser ALC2
Resident Peripheral Dispenser ALC2
RESIDENT PERIPHERAL DISPENSER
PERIPHERAL DISPENSER (.MALe2)
Peripheral Space Allocator (.MALC5)

PERIPHERALS
PERIPHERALS ALLOCATED

PERMANENT
PERMANENT SPACE ALLOCATOR (.MALe7)
MAKE LINK SPACE PERMANENT GIVEN PAT
MAKE LINK SPACE PERMANENT GIVEN LINK STRINGS

PRINT
Print Lines Prior to Snapshot BINPT

PROCESS
Process Entries in Queue QUE
PROCESS ENTRIES IN QUEUE
PROCESS NEW JOB
Process End of Job EOJ
Process End of Job EOJ
PROCESS SPECIFIC DEVICE REQUEST
PROCESS SPECIFIC CHANNEL REQUEST
PROCESS ANY CARD PUNCH REQUEST
Process Specific Device Request ENTRY

PROCESSOR
Accumulate Processor Time DACNB
Accumulate Processor Time DACNB
Accumulate Processor Time DACNB
ACCUMULATE PROCESSOR TIME
MME GEINOS Processor INOS
Master Message Processor ITYM
MME GEMORE PROCESSOR
MME GEINOS Processor INOS
Master Message Processor ITYM
MME GERELS PROCESSOR
~~ GEINOS Processor INOS
Master Message Processor ITYM

PROGRAM
Enable Program ENB
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
ENABLE PROGRAM
Program No. At End of Queue DSPQT
PROGRAM NO. AT FRONT OF QUEUE
PROGRAM NO. AT END OF QUEUE
RELINQUISH CONTROL UNTIL PROGRAM ENABLED
PROGRAM NO. IN QUEUE FOLLOWING INTERRUPT
INITIALIZE PROGRAM
Enable Program ENB
Relinquish Control Until Program Enabled DSCNT

130

59

73
89

111

73
75
78
91
94

74

110
111
113

60

60
62
66
67
69
92
95
96

117

11
13
15
22
'67
86

116
117
117
118
119
119

7
7
9

11
13
15
16
17
18
20
26
32
61
65
65

CPB-1491

\ PROGRAM (continued)
Enable Program ENB
Enable Program ENB
Enable Program ENB
Relinquish_Control Until Program Enabled DSCNT

PROVIDE
PROVIDE LINKS FOR NEW FILE
PROVIDE ADDITIONAL LINKS
PROVIDE CONTIGUOUS LINKS
Provide Additional Links CQOO

PUNCH
PROCESS ANY CARD PUNCH REQUEST

QIOS
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
QIOS (.MALCl)

QSTAT
QSTAT

QSTAT+l
QSTAT+l

QUE
Process Entries in Queue QUE
QUE (.MALCl)

QUEUE
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
Program No. At End of Queue DSPQT
PROGRAM NO. AT FRONT OF QUEUE
PROGRAM NO. AT END OF QUEUE
DO DISC I/O USING SYSTEM I/O QUEUE
Link I/O To End Of Queue LINK
PROGRAM NO. IN QUEUE FOLLOWING INTERRUPT
Do Disc I/O Using System I/O Queue DMIOA
Do Disc I/O Using System I/O Queue DMIOA
Do Disc I/O Using System I/O Queue DMIOA
Process Entries in Queue QUE
PROCESS ENTRIES IN QUEUE
.CRJOB queue
QUEUE (EP4 of .MIOS)
Assign an I/O Entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O Entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O Entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O entry QUEUE
Link I/O to End of Queue LINK
Assign an I/O Entry QUEUE

QUEUES
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
Fill Queues for Simple I/O QIOS
FILL QUEUES FOR SIMPLE I/O

131

69
75

117
117

99
103
105
117

96

60
75
77
83

83

83

60
62

7
9

11
13
15
17
18
20
28
29
32
38
40
42
60
62
62
83
84
84
86

109
109
112
112
114
114

60
75
77
83

CPB-1491

READ
READ J* File READJ
Read J* File READJ
READ J* FILE

READJ
READ J* File READJ
Read J* File READJ
READJ (. Ml\LCl)

READY
Ready status
TEST FOR TAPE READY

RECOVERY
FAULT RECOVERY

REDISPATCH
REDISPATCH AFTER INTERRUPT OR TIMER RUNOUT
Redispatch After Interrupt or Timer Runout DSP
Redispatch After Interrupt or Timer Runout DSP
Redispatch After Interrupt or Timer Runout DSP

RELATIVE
RELB relative block number of the J* block

RELB
RELB relative block number of the J* block

RELEASE
Release Files in PAT RELS
RELEASE FILES IN PAT

RELEASED
RELSW 0 if only new files are to be released
RELSW =/ 0 if all files are to be released

RELINQUISH
FORCED RELINQUISH
RELINQUISH
RELINQUISH CONTROL UNTIL PROGRAM ENABLED
Relinquish RLC
Relinquish Control Until Program Enabled DSCNT
Relinquish RLC
Relinquish RLC
Relinquish Control RLC
Relinquish Control RLC
Relinquish Control RLC
Relinquish Control Until Program Enabled DSCNT

RELS
Release Files in PAT RELS
RELS (.MALCl)
RELS (. MRELS)

RELSW
RELSW = 0 if only new files are to be released
RELSW =/ 0 if all files are to be released

REQUEST
SATISFYING A NEW COURTESY CALL REQUEST
SATISFYING AN ABORT REQUEST
SATISFYING A SWAP/MOVE REQUEST
SATISFYING A GEPR REQUEST
Request Job Swap SWAP
PROCESS SPECIFIC DEVICE REQUEST
PROCESS SPECIFIC CHANNEL REQUEST

132

67
69
81

67
69
81

56
76

59

6
9

13
15

81

81

73
89

89
89

10
12
26
29
65
84
86

109
112
114
117

73
89

118

89
89

3
4
5
5
7

92
95

CPB-1491

REQUEST (continued)
PROCESS ANY CARD PUNCH REQUEST
Process Specific Device Request ENTRY

REQUIREMENT .
DETERMINE NEXT ACTIVITY REQUIREMENT

RESIDENT
Resident Peripheral Dispenser ALC2
Resident Peripheral Dispenser ALC2
RESIDENT PERIPHERAL DISPENSER

RESTORE
RESTORE STATE AFTER SWAP, MOVE, GEPR

RETURN

RLC

Return Links DAOl
RETURN LINKS
Return Links DAOI

RLC (EP4 of .MDISP)
Relinquish RLC
Relinquish RLC
Relinquish'RLC
Relinquish Control RLC
Relinquish Control RLC
Relinquish Control RLC

ROADBLOCK
ROADBLOCK

RUNOUT
REDISPATCH AFTER INTERRUPT OR TIMER RUNOUT
Redispatch After Interrupt or Timer Runout DSP
Redispatch After Interrupt or Timer Runout DSP
Redispatch After Interrupt or Timer Runout DSP

SCAN

SCK

SCT

SCAN JOB STACK
Scan Variable Control Fields FIND
Scan Variable Control Fields FIND
SCAN VARIABLE CONTROL FIELDS

Set Alarm SCK
SCK (EP13 OF .MDISP)
Set Alarm SCK
Set Alarm SCK

JPOS SCT pointer and link number of the J*

SET
Set Alarm SCK
SET ALARM
Set Alarm SCK
Set Alarm SCK

SHUG
SHUG (.MDISP)

SIEVE
sieve status

133

96
117

68

73
75
78

24

90
101
119

12
29
84
86

109
112
114

8

6
9

13
15

64
67
69
87

7
30
65

117

81

7
30
65

117

5i

55

CPB-1491

SNAPSHOT
Print Lines Prior to Snapshot BINPT
Obtain Normal Snapshot GESNIP
Obtain Normal Snapshot GESNIP

SPACE
Peripheral Space Allocator (.MALC5)
ALLOCATE LLINK SPACE
PERMANENT SPACE ALLOCATOR (.MALC7)
MAKE LINK-SPACE PERMANENT GIVEN PAT
MAKE LINK SPACE PERMANENT GIVEN LINK STRINGS

SPECIFIC
PROCESS SPECIFIC DEVICE REQUEST
PROCESS SPECIFIC CHANNEL REQUEST
Process Specific Device Request ENTRY

STACK
SCAN JOB STACK

STANDBY
Standby status

START
START (EP1 of .MALC6)

STATE
RESTORE STATE AFTER SWAP, MOVE, GEPR

STATUS
sieve status
Standby status
Ready status

STRET
• MIOS (STRET)

STRINGS
MAKE LINK SPACE PERMANENT GIVEN LINK STRINGS

SWAP
Request Job Swap SWAP
Request Job Swap SWAP
RESTORE STATE AFTER SWAP, MOVE, GEPR

SWAP/MOVE
SATISFYING A SWAP/MOVE REQUEST

SYSTEM
System Trace TRACE
DO DISC I/O USING SYSTEM I/O QUEUE
System I/O Entry (.SSYIO)
Do Disc I/O Using System I/O Queue DMIOA
Do Disc I/O Using System I/O Queue DMIOA
Do Disc I/O Using System I/O Queue DMIOA
SYSTEM TRACE
OPEN SYSTEM GATES
CLOSE SYSTEM GATES
Take Dump for System Abort FSB
Take Dump for System Abort FSB
Take Dump for System Abort FSB
'rake Dump for System Abort FSB
Take Dump for System Abort FSB

TALC
TALC (.MALC1)

134

60
112
114

94
108
110
111
113

92
95

117

64

56

108

24

55
56
56

12

113

7
7

24

5

7
28
28
38
40
42
44
48
51
60

100
102
104
106

72

CPB-1491

TAPE
$ TAPE
TEST FOR TAPE READY
tape unit allocation

TAR
TAR (. MALC1)

TERMINATE
Terminate Error Entry FALT
Terminate Error Entry FALT
Terminate Error Entry FALT
Terminate Error Entry FALT
Terminate Error Entry FALT

TEST
TEST FOR TAPE READY

THE
RELB relative block number of the J* block
JPOS SCT pointer and link number of the J*

TIME
Accumulate Processor Time DACNB
Accumulate Processor Time DACNB
Accumulate Processor Time DACNB
ACCUMULATE PROCESSOR TIME

TIMER
REDISPATCH AFTER INTERRUPT OR TIMER RUNOUT
Redispatch After Interrupt or Timer Runout
Redispatch After Interrupt or Timer Runout
Redispatch After Interrupt or Timer Runout

TRACE
System Trace TRACE
System Trace TRACE
SYSTEM TRACE
TRACE (.MDISP)

TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
Type Console Message TYPE
TYPE CONSOLE MESSAGE
TYPE (. MALC1)

WRITE

$

Write Execution Report Message EXCA
write Execution Report Message EXCA
Write Execution Report Message EXCA

$ BREAK
$ TAPE

135

DSP
DSP
DSP

56
76
78

76

7
9

15
29

117

76

81
81

11
13
15
22

6
9

13
15

7
7

44
44

60
63
65
67
73
75
77
85·
85

63
67
75

55
56

CPB-1491

• CALL
• CALL MACRO 36

• CRACK
• CRACK 30

.CRCTI
.CRCTi 57

.CRDSP
.CRDSP 18
.CRDSP 20

.CRIOI
.CRIOi 57

.CRJOB
.CRJOB 58
.CRJOB queue 62

.CRLAL-l
.CRLAL-1 16

.CRPOQ
.CRPOQ 57
.CRPOQ gate 68
.CRPOQ gate 74
.CRPOQ gate 116
.CRPOQ gate 117

.CRPRQ
.CRPRQ 6

.CRQCT
.CRQCT gate 74

.CRQGT
.CRQGT 57
.CRQGT gate 118
.CRQGT 119

.CRSCT
.CRSCT 57
.CRSCT gate 79
.CRSCT gate 80
.CRSCT gate 89
.CRSCT 93
.CRSCT gate 118
.CRSCT 119

.CRTOD
.CRTOD 22

.CRTSQ
.CRTSQ gate 62

.EXIT
.EXIT MACRO 41

.GOTO
• GO TO MACRO 39

CPB-1491

136

·MALCI
PANIC (.MALCl)
ENTRY (.MALCl)
QUE (.MALCl)
LOOP (. MALCl)
NEW (.MALCl)
NUACT (.MALCl)
DOACT (.MALCl)
TALC (.MALCl)
DONE (.MALCl)
TAR (. MALCl)
ALC2 (.MALCl)
READJ (.MALC1)
QIOS (.MALCl)
TYPE (. MALCl)
FIND (.MALCl)
RELS (. MALC1)

.MALC2
PERIPHERAL DISPENSER (.MALC2)
ENTRY (EPI of .MALC2)
ENT2 (EP2 of .MALC2)

.MALCS
Peripheral ·Space Allocator (.MALCS)
CAOI (EPI of .MALCS)
DA01 (EP2 of .MALCS)
CQOO (EP3 of .l-1ALCS)
CAOO (EP4 of .MALCS)

.MALC6
LLINK ALLOCATOR (. NALC6)
START (EP1 of .MALC6)

• r-1ALC7
PERMANENT SPACE ALLOCATOR (. MALC7)
FSUNPT (EPI of .MALC7)
FSUNLS (EP2 of .MALC7)

.MBRT1
FALT (EP3 of .MBRT1)

.MDISP
DSP (EP1 of .MDISP)
GRD (EP2 of .MDISP)
FRLC (EP3 of .MDISP)
RLC (EP4 of .MDISP)
DACNB (EP9 of .MDISP)
DSPQM (EP14 of .MDISP)
ENCC (EPS of .MDISP)
DACNB (EP9 of .MDISP)
DSPQT (EP8 of .MDISP)
ENB (EP6 of .MDISP)
DSPQH (EP7 of .MDISP)
DSPQT (EP8 of .MDISP)
DACNB (EP9 OF .MDISP)
DRSTR (EP10 OF .MDISP)
DACNB (EP9 OF .MDISP)
DSPQT (EP8 of .MDISP)
DSCNT (EP11 of .MDISP)
DMIOA (EP12 OF .MDISP)
SCK (EP13 OF .MDISP)
DSP (EPI of .MDISP)
ENB (EP6 of .MDISP)
DSPQM (EP14 OF .MDISP)
HCL (.MDISP)
HGT (. MDISP)
HEX (. MDISP)

137

59
61
62
64
66
68
70
72
74
76
78
81
83
85
87
89

91
92
95

94
99

101
103
105

107
108

110
111
113

4

6
8

10
12
12
12
14
14
14
16
18
20
22
24
24
24
26
28
30
30
30
32
36
39
41

CPB-1491

.MDISP (continued)
TRACE (.MDISP)
OPGAT (.MDISP)
Dispatcher (.MDISP)
SHUG (.MDISP)
Dispatcher (.MDISP)
EP11 of .MDISP

.MFS10
.MFS10

.MIOS
.MIOS (STRET)
LINK (EP1 of .MIOS)
IOTRM (.MIOS)
IOTRM (.MIOS)
QUEUE (EP4 of .MIOS)
LINK (EP1 of • MIOS)

.MMORE
.MMORE
MORE (.MMORE)

.MPOPG
.11POPG

.MRELS
RELS (.MRELS)

• OPEN
.OPEN macro

• SALT
• SALT

.SGCPA
.SGCPA

.SHUT
.SHUT macro

.SICI
.SICI

.SPRT
.SPRT

.SSYIO
System I/O Entry (.SSYIO)

138

44
48
48
51
51
64

105

12
28
48
51
83
83

103
116

20

118

48

22

108

51

6

22

28

CPB-1491

DOCUMENT REVIEW SHEET

TITLE: GE-625/635 GECOS-III Dispatcher and Peripheral Allocation

CPB #: _14_9_1 __ _

from:
Name: __________________________________ __
Position: _________________ _
Address: ______________________________ __

Comments concerning this publication are solicited for use in improving future
editions. ,Please provide any recommended additions, deletions, corrections, or
other information you deem necessary for improving this manual. The following
space is provided for your comments.

a COMMENTS:
c:

~
c:
o -

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

STAPLE

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY
PROCESSOR EQUIPMENT DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA 85029

ATTENTION: Program Documentation C·78
Systems and Processors Operation

FOLD

STAPLE

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

INFORMATION SYSTEMS

GENERAL. ELECTRIC

UTHO u.s

