
{

(

(-

(

PDOS ASSEMBLY
PRIMITIVES
REFERENCE

Copyright 1987 by Eyring Research Institute, Inc., 1450 West 820 North, Provo, Utah 84601 USA.
All rights reserved.

The information in this document has been carefully checked and is believed to be reliable.
However, Eyring assumes no responsibility for inaccuracies. Furthermore, Eyring reserves the
right to make changes to any products to improve reliability, function, or design and does not as
sume any liability arising out of the application or use of this document.

PDOS Assembly Primitives Reference

Printed in the United States of America.
Product number 2520-3 (for PDOS revision 3.3)
October, 1987

PDOS is a registered trademark of Eyring Research Institute, Inc.

o

4'-",

\i/i

c

Table of Contents

Introduction

Guidelines For 68000 Assembly Programming .. 1

PDOS Assembly Language Calls .. A

System Calls5

Console I/O Calls .. 6

System support calls .. 6

File Support Calls .. 7

File Management Calls .. 7

Disk Access Calls .. 8

PDOS Errors .. 9

PDOS Assembly Primitives Reference

X881 .. .11

XAPF ..•... 12

XBCP .. 13

XBFL .. 15
XBUG .. .17 c
XCBC , .. 19

XCBD .. 20

XCBH .. 21

XCBM22

XCBP .. 23

XCBX .. 24

XCDB ... 25

XCFA .. 26

XCHF ... , 28

XCHX ... 29

XCLF31

XCLS ·32

XCpy .. .33

XCTB .. 34

XDEV37

XDFL .. 38

XDLF ... , 040

XDMP .. Al

.XDPE .. 42

c XDTV ... 043

c
POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87

o
Table of Contents cont. o

ii

XERR•.•.....••.....•.••..••••.•...•..••...••.........••••.••••.•••..••.••... 45
XEXC •.......••.••..•.....•...•.•.•...•....•.....•.•.••..•....•...................... 46

XEXT ••...•..•..••..•.............••.•••......•.....••..••..•....•.........•..•...•. 48

XEXZ .•......•..••..•.......•.....•..•.•..•..••...••...•...•....•.........•..••...•• 49

XFAC ••..••••••••.••...•••••••••••••••••••••••••••••..•...•••••••••••••••••••••••••• 50

XFBF•... 51

XFFN" •••..•••..•••••....•.•.•••..•.••••••••.••.••••••.....•••....••..•••.•••...••..•• 52

XFTD ..•...••..•..•.......••..........•••.•.•..•••••••....••......•.......•........•. 53

XFUM•.......•.......................•.....•...•....• 54
XGCB•.•....•...•........•.........••......••.•.....•...•...•..•... 55

XGCC•.......•.••....•..........•....•............•.......•.......••....•.. 56

XGCP•..................................•......... 57

XGCR•............•........................•..... 58
XGLB•....•...•...•...•............••...••..........••...•..•...• 59

XGLM•........•.......••............•...•...•..............•....... 61

XGLU•..•.. 62

XGML ...•......... 64

XGMP ... 65

XGNP•...••...•..••..••.•.•.•......•...............•...•.........• 66

XGTM ...•... 68

XGUM•..........................•.•.........•...•....•........ 69

XISE .. ,•.......•...•.....•...................•...•................. 70

XKTB•......................•...........................•..•............. 71

XKTM•...............•...............•......................... 72

XLDF .. 73

XLER••... 75

0:,,· ,.

XLFN" ..•...•...........•................. 76 0
XLKF ...•......••.....................•.......••..••................................. 78

XLKT•..............••...........................•........... 79
XLSR•...•.....•.......••...........•••.........••........•.• 80
XLST•......•.......•... 81
XN"OP ••••••••••••••••••••••••••••••••••••.•••••••••••.•••••••••••••••••••••••••••••• 82

XPAD ...•...•.......................•......... 84

XPBC•... 85
XPCB ..•..••..••...•.••.••••.•.••••••...•.. ~ •••.•..••..........•.•......•.....•...... 86

XPCC•..•....•..........•..... 87

XPCL ..••...........................••... 88
XPCP ...•...•.••.•.•.........••......•••.•.•..•..••....•.••.••••••.•••.•••.•.•••..•.• 89

XPCR ••••.•.•.•••.•••.•••••••••••••••.•••...•...••••.....•.•.•.....•.••.•..•••.•...•. 90

XPDC•...•...•...................•.....•...•........•....•..•...•...••..•..... 91 C

3.3-10/87 PDOS ASSEMBL V PRIMITIVES REFERENCE

('

C:

Table of Contents cont.

XPEL , .. 92

XPEM .. 94

XPLC ... , ... 95

XPMC ... :' ... 96

XPSC .. 97

XPSF .. 99

XPSP .. .100

XRBF ... 101

XRCN ... 102

XRCP ... 103

XRDE ... 104

XRDM .. 105

XRDN .. 106
XRDT ... 107

XRFA ... 108

XRFP ... 109

XRLF ... 110

XRNF ... 111

XROO .. 112

XROP ... 113

XRPS ... 114

XRSE ... 115

XRSR ... 116

XRST ... 117

XRSZ ... 118

XRTE ... 119

XRTM '. ~ .. 120
,

XR1P ... 121

XRTS ... 122

XRWF .. 123

XSEF ... 124

XSEV ... 126

XSMP ... 128

XSOE ... 129

XSOP ... 130

XSPF ... 132

XSTM ... 133

XSTP ... 134

XSUI .. 135

XSUP ... 137

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 iii

-
Table of Contents cont.

iv

XSWP ..•....•... 138

XSZF ...•........•..•... 139

XTAB•••.•...•••••......•.••••.••.••••...•....••..••.•.•.••••..••••••.••..• 141

XTEF•..•••••.••..•••••..•....••••••••••.•.••.•••••••••••••••••••••••••••••••... 142

X1LP ...•.•.•...•..•••..••..•.••..•••••.••••.••••••••••••••••••••••••••••••••••••••• 143

XUAD•........••.......•..•••....••.......•.........•............••.••.•.. 145

XUDT•.............................•.•........•.•••..•••......••..••.•. 146

XULF•......................•....•.......••...•...•.•.••••....••••••..• 141
XULT ...••••.•....•.......••••... 148

XUSP ..•...........•...•••••..........•. 149

XUTM•.•.•..............................•....•......•...•••..•........•.. 150

XVEC••.••...•••.........•••..•.••..••••.••••••••.••••••••••••..••..••••• 151

XWBF•............•..•.••.•...•••....•......•. 152
XWDT .•..•..................•.•••...•••...•...•••••.•.•••••..••.••••.••..•.••••.•.• 153

"XWFA•...••...............••..•.......•...•••••••••••••....•••••.••••••••••.••• 154

"XWFP •••••.•• 155

XWLF•..........................••••.•.•.....••••.••.•••• 156
XWSE ..•..•.•........••...•••••...••.•••••. 151

XWTM•..........••.......•.•.••..•.•.....•..•••... 158

XZFL•.••.....••...•..•..••••.•.••..•..•.••••••.••.•••••••••.•••••••••.•. 159

3.3-10/87 POOSASSEMBLY PRIMITIVES REFERENCE

o
o

c

i'~

(

(.

(

(....
/

INTRODUCTION

This manual is a comprehensive reference to the POOS assembly primitives. It
is intended as a reference guide only, not as an introduction to assembly lan
guage programming. Some guidelines are given in this manual, however, for
68000 assembly programming with POOS.

The POOS assembly primitives are described separately in alphabetic order and
make up the bulk of this manual. Also included in this manual is a list of calls
divided by groups and a table of error codes.

Each assembly primitive description lists the value, the module, the syntax, and
the registers of that call. It also describes how the call works and gives an ex
ample of that call used in an assembly language program. Possible errors,
references to related calls, and other notes are also given. Examples are enclosed
in a box and appear in a different typeface from the rest of the text. User input is
bolded and comments are italicized. Keys are shown as bolded characters; for
example, Ctrl C indicates that the "c" key is pressed while the "Control" key is
being held down. Esc indicates the "Escape" key should be pressed. The.J sym
bol indicates a carriage return and the J, symbol indicates a line feed.

POOS assembly primitives are assembly language system calls to PDOS. They
consist of one word A-line instructions (words with the first fom: bits equal to
hexadecimal "A"). POOS calls return results in the 68000 status register as well
as regular user registers.

Guidelines For 68000 Assembly Programming

The following guidelines should prove useful to you in assembly programming
for the POOS system:

Standard 68000 Assembly Langnage. The PDOS assembler supports the stand
ard Motorola 68000 assembly language instruction set as defined in the M68000
16-132-bit Microprocessor Programmer's Reference Manual. This set includes
register designations, instruction mnemonics, and addressing syntax. For a com
plete discussion of the PDOS assembler and its use, refer to the PDOS As
sembler, Linker Reference Manual.

68000 Register Usage. All 68000 registers are available for user programs.
However, as a convention, the following are recommended register usages:

A4 = User variables base register
AS = SYRAM pointer (initialized by PDOS)
A6 = TCB pointer (initialized by PDOS)
A7 = User stack pointer (EUM$-$IOO).

The XGML primitive may be used to reinitialize registers AS and A6.

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87

Guidelines for PDOS Assembly Programming

2

Position Independent and Re-entrant Coding. PDOS assembly programs
should be position independent and re-entrant coded. This means that base
registers and PC relative variables should be used in the place of absolute ad
dressing and that the stack or registers should be used for parameter passing.

For example:

Use BSRs instead of JSRs.

Good

BSR.L SUBRT

Use (PC) instead of absolute.

LEA.L LAB(PC),AO

LAB EQU *

Set up OFFSET area.

LEA.L VARS(PC),AO
CLR.B PRT_(AO)

VARS EQU *

PRT
OFFSET 0
DS.B 1

Not Good

JSR SUBRT

MOVEA.L #LAB,AO

LAB EQU *

CLR.B PRT

PRT DC.B o

PDOS Primitives. PDOS assembly primitives are fully supported by the PDOS
assembler. These calls to PDOS will assemble to A-line instructions.

XEXT
XSOP

The primitives may also be specified as DC. W constants if you are using as
sembler other than the PDOS assembler.

DC.W $AOOE ;XEXT
DC. W $AOEC ; XSOP

System Variables. The PDOS assembler supplies most system constants you
are likely to require. These constants are supplied on reference after the "OPT
PDOS" directive is executed. The following is the standard convention adopted
for external PDOS symbols:

xxx$ = TCB index (A6)
xxx. = SYRAM constant
xxxx. = SYRAM index (A5)
.xxx = Global system constant
m.xxx = Module constant
m$xxx = Module entry point
m_xxx = Module index
xxx_ = User index

3.3-10/87

MOVE.B UIP$(A6),DO
MULU.W #TBZ.,DO
MOVE.L TICS.(A5),Dl
MOVE.W #.BPS,D7
MOVE.W #B.PTMSK,SR
BSR.L K2$PINT
CLR.W B_TPS(AO)
ADDA.L A VL_(A4),AO

PDOS ASSEMBLY PRIMITIVES REFERENCE

c
CC~ .. ' ••

"

rr~'
\~

c

(

(

(

Guidelines for PDOS Assembly Programming

The following illustrates how some of these constants might be used:

BSET.B
MOVEAL
MOVE.L
ST.B
ST.B
MOVE.B
MOVE.B
ST.B
MOVEAL
MOVE.W

#-118,118/8+EVTB.(A5) Set event 118
MAIL.(A5),AO Point to the MAIL array
TICS.(A5),Dl Read system tics
DFLG.(AS) Set hard partitioned directory
TLCK.(AS) Lock current task
#2,PRT$(A6) Set input port #
#5,FEC$(A6) Set file expansion count
ECF$(A6) Disable console echo
BIOS.(A5),AO Read system ID characters
B_SID(AO),DO

Assembly Format. POOS assembly text has the following conventions:

a. A comment line before any entry address.
b. 2 spaces preceding a conditional branch.
c. Semi-colon with space for comment.

*
LABEL CMPI.W #10,D1

BLT.S LABEL
LESS THAN 10?
Y

Source me documentation. POOS source files have the following conventions:

PDOS ASSEMBLY PRIMITIVES REFERENCE

a. Assembler TTL directive
b. File name followed by last update date

TTL FILE - PDOS PROGRAM FILE
* FILE:SR 07/22/87

* *
* FFFFFF II II LL EEEEEE *
* FF II LL EE *
* FF II LL EE *
* FFFFF II LL EEEEE *
* FF II LL EE *
* FF II LL EE *
* FF IIII LLLLLL EEEEEE *
* *
*=***************************************

c. Company identification with copyright notices

*
*
*
*=

Eyring Research Institute Inc.
Copyright 1983-87
ALL RIGHTS RESERVED

3.3-10/87 3

Guidelines for PDOS Assembly Programming

d. Module identification
e. Author of program
f. Who authorizes any changes
g. Revision history

*= Module Name: FILE
*= Author: John Doe
*= Changes Authorized by:
*= Revision H·istory:
*=
*=
*=

DATE R.V DESCRIPTION

*= 07/08/87 2.36 D$INT called from XCTB
*= 07/18/87 2.37 XLER enables echo ECF$
*= 07/22/87 2.38 Reset event

h. Program ID

FILE IDNT 2.38 M68000 PDOS
*=
*=***************************************

PAGE

PDOS Assembly Language Calls

4

POOS assembly primitives are one word A-line instructions which normally use
the exception vector at memory location $()()()()()()28. Most primitives use 68000
registers to pass parameters to and results from resident POOS routines.
Registers for system calls are generally used from DO up and AO up. Some calls
(xpMC, XT AB, and XDMP) pass the relative address to the call by placing the
address word immediately following the call. Status returns are used after the
call. Some primitives return an error in the status register while other primitives
return a status depending on the state of the primitive. For example, the XGCB
(conditional get character) primitive returns one the following conditions in the
status register: EQ - no character; W - Ctrl C; LT - Esc; MI - Ctrl C or Esc.

LOOP XGCB
BEQ.S NONE
BLO.S QUIT
BLT.S NEXT

CMPI.B i'O' ,DO

; CHARACTER?
;N
;Y, AC, DONE
; CONTINUE
; NUMBER

POOS primitives return error conditions in the processor status register. This
facilitates error processing by allowing your program to do long or short
branches on different error conditions. DO holds the error code and the status is
either NE for no error code or the error code itself. The following example
demonstrates trapping an error after a POOS call:

CALLX LEA.L FILEN(PC),A1 ;GET FILE NAME
XSOP ;OPEN FILE, ERROR?

BNE.S ERROR ;Y
MOVE.W D1,SLTN(A4) ;N, SAVE SLOT i

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c

c

o

c
c

(:"

('

c

Guidelines for PDOS Assembly Programming

The following illustrates how some of these constants might be used:

BSET.B
MOVEAL
MOVEL
ST.B
ST.B
MOVE.B
MOVE.B
ST.B
MOVEAL
MOVE.W

##-118,118/8+EVTB.(A5) Set event 118
MAIL.(AS),AO Point to the MAIL array
TICS.(AS),Dl Read system tics
DFLG.(AS) Set hard partitioned directory
1LCK.(AS) Lock current task
#2,PRT$(A6) Set input port #
#5,FEC$(A6) Setfile expansion count
ECF$(A6) Disable console echo
BIOS.(AS),AO Read system ID characters
B_SID(AO),DO

Assembly Format. PDOS assembly text has the following conventions:

a. A comment line before any entry address.
b. 2 spaces preceding a conditional branch.
c. Semi-colon with space for comment.

*
LABEL CMPI.W #10,D1 LESS THAN 107

BLT.S LABEL ; Y

Source rde documentation. POOS source files have the following conventions:

a. Assembler TIL directive
b. File name followed by last update date

TTL FILE - PDOS PROGRAM FILE

* FILE:SR 07/22/87

* *
* FFFFFF I II I LL EEEEEE *
* FF II LL EE *
* FF II LL EE *
* FFFFF II LL EEEEE *
* FF II LL EE *
* FF II LL EE *
* FF 1111 LLLLLL EEEEEE *
* *
*=***************************************

c. Company identification with copyright notices

* Eyring Research Institute Inc.
* Copyright 1983-87
* ALL RIGHTS RESERVED
*=

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 3

Guidelines for PDOS Assembly Programming

d.~od[deidentification
e. Author of program
f. Who authorizes any changes
g. Revision history

*= Module Name: FILE
*= Author: John Doe
*= Changes Authorized by:
*= Revision History:
*=
*=
*=

DATE R.V DESCRIPTION

*= 07/08/87 2.36 D$INT called from XCTB
*= 07/18/87 2.37 XLER enables echo ECF$
*= 07/22/87 2.38 Reset event

h. Program ID

FILE IDNT 2.38 M68000 PDOS
*=
*=***************************************

PAGE

PDOS Assembly Language Calls

4

POOS assembly primitives are one word A-line instructions which normally use
the exception vector at memory location $()()()()()()28. ~ost primitives use 68000
registers to pass parameters to and results from resident POOS routines.
Registers for system calls are generally used from DO up and AO up. Some calls
(XP~C, XT AB, and XDMP) pass the relative address to the call by placing the
address word immediately following the call. Status returns are used after the
call. Some primitives return an error in the status register while other primitives
return a status depending on the state of the primitive. For example, the XGCB
(conditional get character) primitive returns one the following conditions in the
status register: EQ - no character; LO - Ctrl C; LT - Esc; MI - Ctrl C or Esc.

LOOP XGCB
BEQ.S NONE
BLO.S QUIT
BLT.S NEXT

CMPI.B i'O',DO

; CHARACTER?
;N
;Y, AC, DONE
; CONTINUE
; NUMBER

POOS primitives return error conditions in the processor status register. This
facilitates error processing by allowing your program to do long or short
branches on different error conditions. DO holds the error code and the status is
either NE for no error code or the error code itself. The following example
demonstrates trapping an error after a POOS call:

CALLX LEA.L FILEN(PC),Al ;GET FILE NAME
XSOP ;OPEN FILE, ERROR?

BNE.S ERROR ;Y
MOVE.W Dl,SLTN(A4) ;N, SAVE SLOT i

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

o

o
o

('

PDOS Assembly Language Calls

System Support Calls cont.

XP AD - Pack ASCII date
XUAD - Unpack ASCII Date
XUDT - Unpack date
XUTM - Unpack time
XWDT - Write date
XWTM - Write time
XGNP - Get next parameter

File Support Calls

File support calls augment the file manager. Important functions such as copy
ing files, appending files, sizing disks, and resetting disks are included here.

XFFN - Fix file name
XLFN - Look for name in file slots
XLST - List file directory
XBFL - Build file directory list
XRDE - Read next directory entry
XRDN - Read directory entry by name
XAPF - Append file
Xcpy - Copy file
XCHF - Chain file
XLDF - Load file
XRCN - Reset console inputs
XRST - Reset disk
XSZF - Get disk size

File Management Calls

The file management calls ofPOOS use the file lock (event 120) to prevent con
flicts between multiple tasks. Functions such as defining, deleting, reading, writ
ing, positioning, and locking are supported by the file manager.

PDOS ASSEMBLY PRIMITIVES REFERENCE

XDFL - Derme file
XRNF - Rename file
XRFA - Read file attributes
XWF A - Write file attributes
XWFP - Write file parameters
XDLF - Delete file
XZFL - Zero me
xsop -Open sequential file
XROO - Open random read only me
XROP - Open random file
XNOP - Open shared random file
XLKF - Lock file
XULF - Unlock file
XRFP - Read file position
XRWF - Rewind file

3.3-10/87 7

PDOS Assembly Language Calls

8

File Management Calls cont.

XPSF - Position me
XRBF - Read bytes from me
XRLF - Read line from file
XWBF - Write bytes to file
XWLF - Write line to me
XFBF - Flush buffers
XFAC - File altered check
XCFA - Close file with attribute
XCLF - Close file

Disk Access Calls

Disk access calls use the read/write logical sector routines in the POOS BIOS. A
disk lock (event 121) is used to make these calls autonomous and prevent multi
ple commands from being sent to the disk controller.

XISE - Initialize sector
XRSE - Read sector
XWSE - Write sector
XRSZ - Read sector zero

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

c

c
c

(-

(' PDOS Errors

50 Bad File Name
51 HIe AJready Dermed
52 File Not Open
53 File Not Dermed
54 Bad File Atttibute
55 Too Few Contiguous
56 End of File
57 File Directory Full
58 File Writ/Del Prot
59 Bad File Slot
60 File Space Full
61 File AJready Open
62 Bad Message Ptt Call
63 Bad Object Tag

(~' 64
65 Not Executable
66 Bad Port/Baud Rate
67 Bad Parametez
68 Not POOS Disk
69 Out of File Slots
70 Position> EOF
7I AC File Nesting> 2
72 Too Many Tasks
73 Not Enough Memory

(- 74 Non-existent Task
75 File Locked
76
77 Not Memory Resident
78 Msg Buffer Full
79 Bad Memory Address
80 Bad Driver Call
81
82

(
83 Delay Queue Full
84
85 Task Abort
86 Suspend on Port 0
87 Exception

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 9

PDOS Assembly Primitives Reference

10

The following section describes each assembly call in alphabetical order. The
description includes its syntax, the POOS module in which it is found, possible
errors, and an example demonstrating how the call may be used.

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

tr\.
\U

c

c

{'

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

X881
Save 68881 Enable

$AOO6

MPDOSKI

X881

None

The SA VB 68881 ENABLE sets the BIOS save flag (SVF$(A6» thus signaling
the PDOS BIOS to save and restore 68881 registers and status during context
switches. The save flag is again cleared by exiting to the POOS monitor.

BIOS in PDOS Developer's Reference Manual

None

START X88l
FMOVE.L ilOO,FPO
FDlV.W i3,FPO

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 11

XAPF
Append File

12

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOAA

MPDOSF

XAPF
<status error return>

In (AI) = Source file name
(A2) = Destination file name

A Ctrl C will tenninate this primitive and return error -1 in data register DO.

The APPEND Fll..E primitive is used to append two files together. The source
and destination file names are pointed to by address registers Al and A2, respec
tively. The source file is appended to the end of the destination me. The source
me is not altered.

-1 = Break
50 = Bad File Name
53 = File Not Defmed
60 = File Space Full
61 = File Already Open
68 = Not PDOS Disk
69 = Out of File Slots
Disk errors

APFL LEA.L SF1{PC),Al
LEA.L SF2(PC),A2
XAPF

SFl
SF2

BNE.S ERROR

DC.B
DC.B
EVEN

'FILE1',O
'FILE2',O

;SOURCE FILE NAME
;DESTINATION FILE NAME
; APPEND
; ERROR
; SUCCESS

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

~~\

\.L.-/

c
()

• ';

I
14

(

(

Value:

Module:

Syntax:

Registers:

Description:

XBCP
Baud Console Port

$A070

MPDOSK2

XBCP
<Status error return>

In D2.W = FWPI 8DCS I <port II>
D3.W = Baud rate
D4.W = Port type
D5L = Port base

The BAUD CONSOLE PORT primitive initializes anyone of thePDOS I/O
ports and binds a physical UART to a character buffer. The primitlve sets hand
shaking protocol, receiver and transmitter baud rates, and enables receiver inter
rupts.

FBBT. = FWPI BDCS
\\\\ _ 0 = Ctrl s ctrl Q enable
\\\\ _ 1 = Ignore control character
\\\\ _ 2 = DTR enable
\\\\ _ 3 = B-bit character enable
\\\\ __ 4 = Receiver interrupts disable
\\\ __ 5 = Even parity enable
\\ __ 6 = *Reserved
__ 7 = **Reserved

*Used to clear all bits

Data register D2 selects the port number and sets (or clears) the corresponding
flag bits. If D2.W is negative, then the absolute value is subsequently used and
the port number is stored in U2P$(A6). The right byte of data register D2 (bits 0-
7) selects the console port. The left byte of D2. W (bits 8-15) selects various flag
options including Ctrl S Ctrl Q and/or DTR handshaking, receiver parity and in
terrupt disable, and 8-bit character I/O.

The receiver and transmitter baud rates are initialized to the same value accord
ing to register D3. Register D3 ranges from 0 to 8 or the corresponding baud
rates of 19200, 9600,4800, 2400, 1200, 600, 300, 110, 38400. If register D3 is
equal to -I, then only port 2 is set. If data register D4 is non-zero, then it selects
the port type and register D5 selects the port base address. These parameters are
system-defined and correspond to the UART module. If register D4 is zero,
there is no change.

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10187 13

XBCP· Baud Console Port C:

14

See Also:

Possible
Errors:

Example:

D3.W = Baud = 0 = 19200 baud
1 = 9600 baud
2= 4800 baud
3 = 2400 baud
4= 1200 baud
5=600baud
6= 300 baud
7= 110 baud
8 = 38400 baud

Baud rate 38400 is not supported by all BIOSes.

XRPS - Read Port Status
XSPF - Set Port Flag

66 = Bad Port/Baud Rate

START MOVE.W 1$103,02
MOVE.W 119200,03
MOVEQ.L 10,04
XBCP

BNE.S ERROR

;PORT 3 W/"S"Q
19.2K BAUD
NO TYPE CHANGE
BAUD PORT

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c
c

{

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

XBFL
Build File Directory List

$AOB8

MPOOSM

XBFL
<status error return>

In (At) = List specifications
(A2) = Beginning buffer address
(A3) = End buffer address

Out (A3) = Updated buffer end address

The BUILD FILE DIRECTORY LIST primitive builds a serial list of file names
in memory as selected by the list specifications. Address register At points to
the file list specifications.

List specifications:

<file list> = {file}{:ext}{;level}{/disk}{/select ••• }
where {file} = 1 to 8 characters (1st alpha) (@=all,*=wild)

{:ext} = 1 to 3 characters (:@=all,*=wild)
{;level} = directory level (;@=all)
{/disk} = disk number ranging from 0 to 255

{/select} = POOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/OR)
POOS attribute (/*,/**)
Change date (/Fdy-mon-yr,/Tdy-mon-yr)

or (/Fmn/dy/yr,/Tmn/dy/yr)

Address registers A2 and A3 point to the beginning and end of the memory buff
er respectively. Register A3 is updated to a word boundary just after the last file
name null.

Disk errors
67 = Bad Parameter
73 = Not Enough Memory

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 15

XBFL - Build File Directory List

Example: GETL

*
PRNT

*
NEXT

*
DONE
*
ERROR

SPC
BUF
EBUF

16

LEA.L
LEA.L
LEA.L
XBFL

SPC(PC) ,Ai
BUF(PC),A2
EBUF (PC) ,A3

BNE.S ERROR

TST.B (Ai)
BEQ.S DONE

XPCL
XPLC

TST.B (Al)+
BNE.S NEXT

BRA.S PRNT

DC.B
DS.B
EQU

'@:SR;@/O',O
500

*

;POINT TO LIST
;GET BUFFER ADDRESS
;GET END POINTER
;BUILD LIST

; ENTRY?
;N
;Y, OUTPUT CRLF
;OUTPUT ENTRY

;NEXT, DONE?
;N
;Y

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c
" 0',"

o

c
c

(:

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

XBUG
Debug Call

$A038

MPOOSD

XBUG

None

The DEBUG CALL primitive breaks from the user program and enters the
POOS debugger. All registers are saved and you are prompted for additional
commands. The following are legal debugger commands for the resident debug
ger:

AO-7 A-reg AD Disassemble
B{ft,a} Lst/def break Open previous
DO-7 D-reg LF Open next
{i}G Go & break II Mem rAC
H Help message 11,11 Mem dump
M Last dump 11,11+ Disassemble
Nil 0=Wrd,l=Byt,4=Long 1I,II,fI{WL} Find B/W/L

5=Byt, skp,+2=w/o read
0 Offset 11(0-7) d(Ax)
P PC +II i + offset
Q Exit
R Reg dump
S Status
T Trace Itl1SCSil g;Gt1S2D:ii
U Unit
V Control rAC F/R/M Dump
W{s,e} Window G Go
X Set breaks & exit T Running
Z Reset

If you use the SMARTBUG debugger. refer to SMARTBUG Reference Manual
for valid commands.

XDMP - Dump Memory From Stack
XRDM - Dump Registers
PB - POOS Debugger (PDOS Monitor, Editor, Utilities manual)
SMARTBUG Reference Manual

None

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10187 17

XBUG • PDOS Debugger

Example:

*
CONTC

*
ESCAP

*
BRKM

18

XCBC
BLO.S CONTC
BLT.S ESCAP

BRA.S LOOP

BRA.S BEGIN

XPMC BRKM
XEXT

; BREAK?
;Y, "'C
;Y, ESC
;N, CONTINUE

;CONTROL C

; START AGAIN

;OUTPUT '»BREAK'
;EXIT TO PDOS

DC.B
DC.B

$OA,$OD ;BREAK MESSAGE
, »BREAK' , a

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c
c

('

(

(\

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

XCBC
Check For Break Character

$A072

MPOOSK2

XCBC
<Status return>

Out SR = EQNo break
LO Ctrl C, Clear flag & buffer
LTEsc, Clear flag
MI Ctrl C or Esc

If the ignore control character bit ($02) of the port flag is set, then XCBC al
ways returns .EQ. status.

The CHECK FOR BREAK CHARACTER primitive checks the current user
input port break flag (BRKF.(A5» to see if a break character has been entered.
The POOS break characters are Ctrl C and the Esc key. A Ctrl C sets the port
break flag to one, while an Esc character sets the flag to a minus one. The
XCBC primitive samples and clears this flag. The condition of the break flag is
returned in the status register. An ''LO'' condition indicates a Ctrl C has been
entered. The break flag and the input buffer are cleared. All subsequent charac
ters entered after the Ctrl C and before the XCBC call are dropped. All open
procedure files are closed and any system frames are restored. Also, the last
error number flag (LEN$) is set to -1 and a "AC" is output to the port.

An ''L T" condition indicates an Esc character has been entered. Only the break
flag is cleared and not the input buffer. Thus, the Esc character remains in the
buffer. The Ctrl C character is interpreted as a hard break and is used to ter
minate command operations. The Esc character is a soft break and remains in
the input buffer, even though the break flag is cleared by the XCBC primitive.
(This allows an editor to use the Esc key for special functions or command ter
mination.)

None

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 19

XCBD
Convert Binary to Decimal

20

Value: .

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A050

MPOOSK3

XCBD

In
Out

DIL=Number
(AI) = String

The CONVERT BINARY TO DECIMAL primitive converts a 32-bit, 2's com
plement number to a character string. The number to be converted is passed to
XCBD in data register D1. Address register Al is returned with a pointer to the
converted character string located in the monitor work buffer (MWB$). Leading
zeros are suppressed and a negative sign is the first character for negative num
bers. The string is delimited by a null. The string has a maximum length of 11
characters and ranges from -2147483648 to 2147483647. .

XCBX - Convert To Decimal In Buffer

None

MOVE.L 11234,D1 ;GET NUMBER
XCBD ; CONVERT TO PRINT
XPLC ;PRINT

**
* OUTPUT LEFT JUSTIFIED NUMBER

*
*
*
*
LEFT

*

DO.W = I OF PLACES
D1.L = NUMBER

MOVEM.L DO/AO-A1,-(A7)
XCBD ; CONVERT
MOVEA.L A1,AO ;GET POINTER

LEFT02 SUBQ.W 11,DO ;COUNT LENGTH
TST.B (AO)+ ;END?

BNE.S LEFT02 ;N

*
LEFT04 XPSP ;OUTPUT SPACE

SUBQ.W 11,DO ; DONE?
BPL.S LEFT04 ;N

XPLC ;Y, OUTPUT It
MOVEM.L (A7)+,DO/AO-A1
RTS

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
c

c

c'
c

(

(

(

{

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XCBH
Convert Binary to Hex

$A052

MPOOSK3

XCBH

In
Out

DIL = Number
(AI) = String

The CONVERT BINARY TO HEX primitive converts a 32-bit number to its
hexadecimal (base 16) representation. The number is passed in data register DI
and a pointer to the ASCII string is returned in address register AI. The con
verted string is found in the monitor work buffer (MWB$) of the task control
block and consists of eight hexadecimal characters followed by a null.

XCHX - Convert Binary To Hex In Buffer

None

MOVEQ.L #123,D1 ;GET NUMBER
XCBH ;GET HEX CONVERSION
MOVEQ.L #'$',DO ;ADD HEX SIGN
XPCC
XPLC

;PRINT
;PRINT 8 HEX CHARACTERS

**

* DUMP REGISTERS ON USER STACK

*
* USP = A7 = RETURN PC

* DO-D7

* AO-A7

*
DMRG MOVEA.L (A7)+,AO ;GET RETURN ADR

MOVE.L #$0007BCF7,D4
MOVE.W #'OO',DO

*
DMRG02 XPCL ;OUT CRLF

XPCC ;OUT LINE TYPE
MOVE.W #' : ' ,DO

*
DMRG04 XPCC ;OUT DELIMITER

MOVE.L (A7)+,D1 ;GET REGISTER
XCBH ; CONVERT
XPLC ;OUTPUT
MOVEQ.L #' , ,DO ;CHANGE TO , ,
LSR.L #1,D4 ;4 DONE?

BCS.S DMRG04 ;N
XPCC ;Y, OUT SPACE
LSR.L #1,04 ;CRLF?

BCS.S DMRG04 ;N
MOVE.W #'OA',DO ;Y, CHANGE TO ' A'
LSR.L #1,D4 ;MORE?

BCS.S DMRG02 ;Y
JMP (AD) ;N, RETURN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 21

XCBM
Convert to Decimal with Message

22

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A054

MPOOSK3

XCBM <message>

In
Out

D1.L = Number
(AI) = String

The CONVERT TO DECIMAL WITH MESSAGE primitive converts a 32-bit,
signed number to a character string. The output string is preceded by the string
whose PC relative address is in the operand field of the call. The string can be
up to 20 characters in length and is terminated by a null character. The number
to be converted is passed to XCBM in data register D I. Address register Al is
returned with a pointer to the converted character string which is located in the
monitor work buffer (MWB$) of the task control block. Leading zeros.are sup
pressed and the result ranges from -2147483648 to 2147483647. The message
address is a signed 16-bit PC relative address.

None

START

*
LOOP

*
MES1
MES2

x>TEST

MOVE.L #$80000004,D1

XPMC MES1 ; HEADING
XCBH ;CONVERT HEX
XPLC
XCBM MES2 ;CONVERT DECIMAL
XPLC
SUBQ.L n,D1
CMPI.L #$7FFFFFFC,D1

BHS.S LOOP
XEXT

DC.B
DC.B
EVEN

$OA,$OD,'Hex $',0
, = ',0

END START

Hex $80000004 = -2147483644
Hex $80000003 = -2147483645
Hex $80000002 = -2147483646
Hex $80000001 = -2147483647
Hex $80000000 = -2147483648
Hex $7FFFFFFF = 2147483647
Hex $7FFFFFFE = 2147483646
Hex $7FFFFFFD = 2147483645
Hex $7FFFFFFC = 2147483644
x>

3.3-10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

C',:·,' .

o

f··~·

'\-LP'

~

\\....-/

c
c

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A074

MPDOSK2

XCBP
<status retUl'll>

Out SR = EQ •.. No character
LT .. Esc
LO ... CtrIC
NE ... Pause

XCBP
Check for Break or Pause

IT a ''BL 1'" instruction does not immediately follow the XCBP call, then the
primitive exits to PDOS when an Esc character is entered.

If the ignore control character bit ($02) of the port flag is set, then XCBP always
returns .EQ. status.

The CHECK FOR BREAK OR PAUSE primitive looks for a character from
your PRT$(A6) port. Any non-control character will cause XCBP to output a
pause message and wait for another character. The pause message consists of:

.J'Strike any key .. .'.J

A Ctrl C will abort any assigned console file and return the status ''LO". IT a
"BL 1'" instruction follows the XCBP primitive and an Esc character is entered,
then the call returns with status "L 1"'. Otherwise, an Esc will abort your
program to the PDOS monitor. An "EQ" status indicates that no character was
entered. An ''NE'' status indicates a pause has occurred.

None

LOOP

*
EXIT

XCBP
BLT.S EXIT

BRA.S LOOP

iOUTPUT

iLOOK FOR PAUSE
iESC
iCONTINUE

iESC

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 23

XCBX
Convert to Decimal in Buffer

24·

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A06A

MPOOSIo

XCBX

In D1.L = Number
(A1) = Buffer

The CONVERT TO DECIMAL IN BUFFER primitive converts a 32-bit, 2's
complement number to a character string. The number to be converted is passed
to XCBX in data register D 1. Address register A1 points to the buffer where the
converted string is stored. Leading zeros are suppressed and a negative sign is
the frrst character for negative numbers. The string is delimited by a null. The
string has a maximum length of 11 characters and ranges from -2147483648 to
2147483647.

XCBD - Convert Binary To Decimal

None

OUTS

*

MOVEA.L A6,AI
MOVEQ.L i12,DI
BSR.S OUTS
XPBC

XCBX

;POINT TO USER BUF
;GET i
;OUTPUT TO BUFFER
;OUTPUT BUFFER

;CONVERT i

OUTS02 TST.B (AI)+ ;END?
BNE.S OUTS02 ;N

SUBQ.W il,AI ;Y, BACKUP
RTS ; RETURN

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c

c
c

(

(

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XCOB
Convert ASCII to Binary

$A056

MPDOSK3

XCDB
<status return>

In
Out

(AI) = String
DO.B = Delimiter
Dl.L= Number
(AI) = Updated string
SR = LT No number

EQ # w/o null delimiter
GT #

XCDB does not check for overflow.

The CONVERT ASCII TO BINARY primitive converts an ASCII string of
characters to a 32-bit, 2's complement number. The result is returned in data
register D I while the status register reflects the conversion results. XCDB con
verts signed decimal, hexadecimal, or binary numbers. Hexadecimal numbers
are preceded by "$" and binary numbers by "%". A "-" indicates a negative
number. There can be no embedded blanks. An ''L T" status indicates that no
conversion was possible. Data register DO is returned with the frrst character and
address register Al points immediately after it A "GT" status indicates that a
conversion was made with a null delimiter encountered. The result is returned in
data register Dl. Address register Al is returned with an updated pointer and
register DO is set to zero. An "EQ" status indicates that a conversion was made
but the ASCII string was not tenninated with a null character. The result is
returned in register DI and the non-numeric, non-null character is returned in
register DO. Address register Al has the address of the next character.

None

START MOVEQ.L #0,D5 ;GET DEFAULT
XPMC MES1 ;OUTPUT PROMPT
XGLU ;GET REPLY

BLS.S STRT04 ;USE DEFAULT
XCDB ; CONVERT, OK?

BGT.S STRT02 ;y
XPMC ERM1 ;N, REPORT
BRA.S START ;TRY AGAIN

*
STRT02 MOVE.L D1,D5 ;SAVE VALUE

STRT04

MES1 DC.B $OA,$OD,'ANSWER=',O
ERM1 DC.B $OA,$OD,'INVALID!',O

EVEN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 25

XCFA
Close File with Attribute

26

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

$AODO

MPDoSF
"

XCFA
<status error return>

In D1.W = File ID
D2.B = New attribute

The CLOSE FILE WITH ATTRIBU1ES primitive closes the open file specified
by data register D 1. At the same time, the file attributes are updated according to
the byte contents of data register D2.

D2.B =$80 AC or Procedure file
=$40 BN or Binary file
=$20 OB or 68000 object file
=$10 SY or 68000 memory image
=$08 BX or BASIC binary token file
=$04 EX or BASIC ASCII file
=$02 TX or Text file
=$01 DR or System I/O driver
=$00 Clear file attributes

If the file was opened for sequentjal access and the file has been updated, then
the END-OF-FILE marker is set at the current file pointer. If the file was opened
for random or shared access, then the END-OF-FILE marlcer is updated only if
the file has been extended (data was written after the current END-OF-FILE
marker). The LAST UPDATE is updated to the current date and time only if the
file has been altered. All files must be closed when opened! Otherwise, direc
tory information and possibly even the file itself will be lost.

If the file is not altered, then XCF A will not alter the file attributes.

D1.W = File ID = (Disk #) x 256 + (File slot index)

XRF A - Read File Attributes
XWF A - Write File Attributes
XWFP - Write File Parameters

52 = File Not Open
59 = Bad File Slot
75 = File Locked
Disk errors

3.3-10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

c

$---",

\(y

c
c

(

(XCFA - Close File with Attribute

Example: MOVE.W 05,01 GET FILE 10
MOVE.B .$20,02 CLOSE AS OBJECT
XCFA CLOSE FILE

BNE.S ERROR

{

(

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 27

XCHF
Chain File

28

Value:

Module:

Syntax:

Registers:

~

Description:

See Also:

Possible
Errors:

Example:

$AOAC

MPOOSM

XCHF

In AlL = File name

The primitive returns only on error.

The CHAIN mE primitive is used by the POOS monitor to execute program
fIles. The primitive chains from one program to another according to the file
type. Address register Al points to the chain fIle name. The file type determines
how the file is to be executed.

If the file is typed "OB" or "SY", then the 68000 loader is called (XLDF). If the
fIle is typed "BX" or ''EX'', then the POOS BASIC interpreter loads the file and
begins executing at the lowest line number. Likewise, if the file is typed "AC",
then control returns back to the POOS monitor and further requests for console
characters reference the fIle.

The XCHF call returns only if an error occurs during the chain operation. All
other errors, such as those occUlTing in BASIC, return to the POOS monitor.
Parameters may be passed from one program to another through the user TEMP
variables located in the task control block or through the system messages buf
fers.

XEXZ - Exit To Monitor With Command

50 = Bad File Name
53 = File Not Defined
60 = File Space Full
63 = Bad Object Tag
65 = Not Executable
77 = Not Memory Resident
Disk errors

LEA.L
XCHF
XERR

*
FILEN DC.S

EVEN

3.3-10187

FILEN(PC),Al ;GET FILE NAME
;CHAIN FILE
;PROSLEM

' NEXTPRGM' , 0

POOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

c
c

(/

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

$A068

MPDOSK3

XCHX

In DI.L = Number
(AI) = Output buffer

XCHX
Convert Binary to Hex In Buffer

The CONVERT BINARY TO HEX IN BUFFER primitive converts a 32-bit
number to its hexadecimal (base 16) representation. The number is passed in
data register DI and a pointer to a buffer in address register AI. The converted
string consists of eight hexadecimal characters followed by a null.

XCBH - Convert Binary To Hex

None

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 29

XCHX - Convert Binary to Hex in Buffer

Example: START

30

MOVE.L .$80000004,D1
*
LOOP

*

MOVEA.L A6,A1
BSR.S OUTS

De.w MES1-*
XCHX

;USER BUFFER
;OUT HEADING

;CONVERT HEX

LOOP 2 TST.B (A1)+ ;END?
;N BNE.S LOOP 2

SUBQ.W U,A1 ;Y
BSR.S OUTS ;' = ,

DC.W MES2-*
XCBX ;CONVERT DECIMAL

*
LOOP 4 TST.B (A1)+ ;END?

*
OUTS

*

BNE.S LOOP4 ;N
XPBC ;Y, OUTPUT
SUBQ.L U,D1
CMPI.L #$7FFFFFFC,D1

BHS.S LOOP
XEXT

MOVEA.L (A7),AO ;GET ADDRESS
ADDQ.L #2, (A7) ;ADJUST PC
ADDA.W (AO) +,AO

OUTs2 MOVE.B (AO)+, (A1)+
BNE.S OUTS2

SUBQ.W U,A1
RTS

*
MES1 DC.B $OA,$OD,'Hex $',0
MES2 DC.B , = ',0

EVEN
END START

x>DST
Hex $80000004 -2147483644
Hex $80000003 -2147483645
Hex $80000002 -2147483646
Hex $80000001 -2147483647
Hex $80000000 -2147483648
Hex $7FFFFFFF 2147483647
Hex $7FFFFFFE 2147483646
Hex $7FFFFFFD 2147483645
Hex $7FFFFFFC 2147483644
x>

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o

(rr,
~-~

tr·~
,

~/

C.'· , '

c

(

(

(-

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XCLF
Close File

$AOD2

MPOOSF

XCLF
<Status error return>

In Dl.W=FileID

The CLOSE FILE primitive closes the open me as specified by the me ID in
data register Dl. If the me was opened for sequential access and the me was up
dated, then the END-OF-FILE marker is set at the current me pointer.

File ID = (Disk II) x 256 + (File slot index)

If the me was opened for random or shared access, then the END-OF-FILE
marker is updated only if the me was extended (ie. data was written after the cur
rent END-OF-FILE marker). If the me has been altered, the current date and
time is stored in the LAST UPDATE variable of the me directory. All open files
must be closed at or before the completion of a task (or before disks are
removed from the system)! Otherwise, directory information is lost and possib
lyeven the me itself.

52 = File Not Open
59 = Bad File Slot
75 = File Locked
Disk errors

ERROR

ERM1

MOVE.W 05,01 ;GET FILE 10
XCLF ;CLOSE FILE

BNE.S ERROR

CLR.L 01
MOVE.W 00,01 ;GET ERROR i
XCBM ERM1 ; CONVERT
XPLC ;OUTPUT

OC.B $OA,$OO
OC.B 'POOS CLOSE ERR ',0
EVEN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10187 31

XCLS
Clear Screen

32

Value:

Module:

Syntax:

Registers:

~

Description:

See Also:

Possible
Errors:

Example:

$A076

MPOOSK2

XCLS

None

The clear screen characters are located in the user TCB variable CSC$(A6).

The CLEAR SCREEN primitive clears the console screen, homes the cursor,
and clears the column counter. This function is adapted to the type of conS!>le
terminals used in the POOS system. The character sequence to clear the screen
is located in the task control block variable CSC$(A6). These characters are
transferred from the parent task to the spawned task during creation. The initial
characters come from the BIOS module.

CSC$(A6) = E111 1111 E222 2222
\\ \ \\ \-

\ \ \ \ \,___ 2nd character
\\ \ \ 2nd Eac
\\ \
\\ \'---

\ \. _____ 1st character
\ 1st Eac

If CSC$ is nonzero, then the CLEAR SCREEN primitive outputs up to four
characters: one or two characters; an Esc followed by a character; or an Esc,
character, Esc, and a final character. The one-word format allows for two charac
ters. The parity bits cause the Esc character to precede each character.

If CSC$ is zero or if the first byte equals $FF, then POOS makes a call into the
BIOS for custom clear screens. The entry point is B_CLS beyond the BIOS
table. The MIERM utility normally maintains the CSC$ field, although it can
be altered under program control The initial definition of CSC$ is found in the
MBIOS:SR file and Can be modified by doing a new SYSGEN.

XRCP - Read Port Cursor Position
BIOS in PDOS Developer's Reference Manual

None

XCLS iCLEAR SCREEN
XPMC MES01 iOUTPUT MESSAGE

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c
()

(

(

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOAE

MPOOSF

xcpy
<stams error return>

In (AI) = Source fIle name
(A2) = Destination file name

XCpy
Copy File

A Ctrl C tenninates this primitive and returns the error -1 in register 00.

The COpy FILE primitive copies the source file into the destination file. The
source file is pointed to by address register Al and the destination file is pointed
to by register A2. A Ctrl C halts the copy, prints ""C" to the console, and
returns with error -1. The file attributes oCthe source fIle are automatically trans
ferred to the destination file.

-1 = Break File Transfer
50 = Bad File Name
53 = File Not Dermed
60 = File Space Full
61 = File A1ready Open
68 = Not POOS Disk
69 = OutoCFile Slots
Disk errors

LEA.L FILES(PC),Al ;SOURCE FILE NAME
LEA.L FILED(PC),A2 ;DEST. FILE NAME
XCPY ;COPY FILE

BNE. S ERROR ; PROBLEM
; CONTINUE

FILES DC.B
FILED DC.B

EVEN

'TEMP' ,0
'TEMP:BK/l',O

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 33

XCTB
Create Task Block

Value:

Module:

Syntax:

Registers:

Description:

Example:

34

$A026

MPDOSKI

XCI'B
<status error return>

In

Out

DO.W = Task size (Ik byte increments)
D1.W = Task time.B/priority.B
D2.W = I/O port
(AO) = Optional low memory pointer
(AI) = Optional high memory pointer
(A2) = Command line pointer or entry address
DOL = Spawned task number

IfDO.W is positive, AO and Al are undefined. IfDO.W equals zero, then AO and
Al are the new task's memory bomds and A2 contains the task's entry address.

If DO.W is negative, then AO and Al are the new task's memory bounds and A2
points to the task's command line.

The CREAm TASK primitive places a new task entry in the PDOS task list.
Memory for the new task comes from either the parent task or the system
memory bit map. Data register DO controls the creation mode of the new task as
well as the task size. If register DO.W is positive, then the first available con
tiguous memory block: equal to DO.W (in IK bytes) is allocated to the new task.
If there is not a block: big enough, then the upper memory of the parent task is al
located to the new task. The parent task's memory is then reduced by DO.W x
IK bytes. Address register A2 points to the new task command line. If A2 is
zero, then the monitor is invoked.

If DO>O then: DO=Task size
(A2)=Task command line

(O=Monitor)

MOVEQ.L nO,DO
MOVEQ.L *64,D1
MOVEQ.L n,D2
SUBA.L A2,A2
XCTB

BNE.S ERROR

;10 K BYTES
;PRIORITY 64
;PORT 1
;CALL MONITOR
;CREATE TASK

If register DO.W is zero, then registers AO and Al specify the new task's
memory limits. Register A2 specifies the task's starting PC. The task control
block begins at (AO) and is immediately followed by an XEXT primitive. The
task user stack pointer is set at (AI). Thus, the new program should allow $502
bytes at the low end and enough user stack space at the upper end.

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

IV

c
c

(

c

Example:

Example:

XCTB - Create Task Block

If 00=0 then: (A2)=Task entry address
AO-Al=New task memory limits

MOVEQ.L *0,00 ;USE AO-Al BOUNOS
MOVEQ.L *64,01 ;PRIORITY 64
MOVEQ.L 11,02 ;PORT 1
LEA.L SRAM,AO ;TCB AOOR (START)
LEA.L ERAM,Al
LEA.L P(PC),A2 ;PC
XCTB ;CREATE TASK

BNE.S ERROR

If data register DO.W is negative, then registers AO and Al specify the new
task's memory limits. Register A2 points to the new task command line. (If
A2=0, then the monitor is invoked.) The command line is transferred to the
spawned program via a system message buffer. The maximum length of a com
mand line is 64 characters. When the task is scheduled for the [rrst time, the mes
sage buffers are searched for a command. Messages with a source task equal to
$FF are considered commands and moved to the task's monitor buffer. The task
eLi then processes the line. If no command message is found, then the monitor
is called directly.

If 00=<0 then: (A2)=Task command line
(O=Monitor)

C

AO-Al=New task memory limits

MOVEQ.L 10,00
MOVEQ.L i64,01
MOVEQ.L n,02

;USE AO-Al BOUNOS
;PRIORITY 64
;PORT 1
;TCB AOOR (START) LEA.L SRAM,AO

LEA.L ERAM,Al
LEA.L C(PC),A2 ;PC
XCTB ;CREATE TASK

BNE.S ERROR

OC.B 'PRGMl',O

Data register Dl.W specifies the new task's priority. The range is from 1 to 255.
The larger the number, the higher the priority.

Dl=Task priority

Data register D2.W specifies the I/O port to be used by the new task. If register
D2.W is positive, then the port is available for both input and output. If register
D2.W is negative, then the port is used only for output. If register D2.W is zero,
then no port is assigned. Only one task may be assigned to anyone input port
while many tasks may be assigned to an output port. Hence, a port is allocated
for input only if it is available. An invalid port assignment does not result in an
error. A call is made to D$INT in the debugger module. This initializes all ad
dresses, registers, breaks, and offsets. Finally, the spawned task's number is
returned in register DOL to the parent task. This can be used later to test task
status or to kill the task.

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 35

XCTB - Create Task Block

36

Possible
Errors:

D2=I/Oport

If 02=0, then phantom port (no I/O)

If 02>0, then port is used for I/O

If 02<0, then port is used for output only

If you specify the address as a fIle parameter, the system does not check to see if
the memory is already allocated to another task. Use caution or it may crash
your system.

72 = Too Many Tasks
73 = Not Enough Memory

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c
o

C~ ": .)
."-

o
o ",

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XDEV
Delay Set/Clear Event

$A032

MPOOSKI

XDEV
<status error return>

In DO.L = Time
Dl.B = Logical Event (+=Set(1), -=Clear(O))

IT DO.L=O, then the D l.B event is removed from the delay list.

The DELAY SET/CLEAR EVENT primitive places a logical timed event in a
system delay list controlled by the system clock. Data register DO.L specifies the
time interval in clock tics. When it counts to zero, then the event Dl.B is set if
positive, or cleared if negative. If the event already exists in the delay list, it is
replaced by the new entry. IT the time specified in DO equals zero, then the event
equal to Dl.B is removed from the delay list ITDl.B is positive,~vent D1.B is
fIrSt cleared. IT D I.B is negative, event D I.B is set before placing the event in
the delay list and exiting the primitive.

XSEF - Set Event Flag With Swap
XSEV - Set Event Flag
XSUI - Suspend Until Interrupt
XTEF - Test Event Flag
XDPE - Delay on Physical Event

83 = Delay Queue Full

GETC XGCC
BNE.S GETC2

MOVEQ.L nOO,DO
MOVE.L n28,D1
XDEV

; CHARACTER?
;Y
;N, GET DELAY
;USER LOCAL EVENT
;DELAY 128 1 SECOND

BNE.S GETC ;FULL
LSL.W #B,D1 ;GET 128/(PORT+96)
MOVE.B #96,D1
ADD.B PRT$(A6),D1
XSUI ; SUSPEND
CMP.B DO,D1 ;CHARACTER EVENT?

BEQ.S GETC ;Y
XRTM ;N, READ TIME
MOVE.B 7(A1),DO ;GET LAST CHARACTER
CMP.B T(A6),DO ;SAME TIME?

BEQ.S GETC ;Y, TRY AGAIN
MOVE.L (A1)+,T(A6) ;N, SAVE NEW TIME
MOVE.L (A1),T+4(A6)
CLR. B T+8 (A6)
BSR.S POSIT ;POSITION & OUTPUT TIME

DC.W 23*256+11
DC.W 0

BRA.S GETC ;TRY AGAIN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 37

XDFL
Define File

38

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$AOD4

MPOOSF

XDFL
<status error return>

In DO.W = # of contiguous sectors
(AI) = File name

The DEFINE FILE primitive creates a new file entry in a POOS disk directory,
specified by address register AI. A POOS file name consists of an alphabetic
character followed by up to 7 additional characters. An optional 3 character ex
tension can be added if preceded by a colon. Likewise, the directory level and
disk number are optionally specified by a semicolon and slash respectively. The
file name is terminated with a null.

The filename convention is as follows where upper and lower case are unique.:

APPPPPPP:PPP;NNN/NNN

-- Auto-create flag may prefix filename
A -- Alpha characters A-Z or a-z
P -- Printable characters except ":", ";", "f'. The "." character may be used, but

will conflict with the monitor command separator unless the filename
is enclosed within parentheses

N -- Number in the range of 0-255

Data register DO contains the number of sectors to be initially allocated at file
definition. If register DO is nonzero, then a contiguous file is created with DO
sectors. Otherwise, the value stored in the SYRAM variable "FECT." + 1 is
used to defme the number of sectors that will be allocated. Each sector of alloca
tion corresponds to 252 bytes of data. A contiguous fIle facilitates random ac
cess to fIle data since POOS can directly position to any byte within the fIle
without having to follow sector links. A contiguous file is automatically
changed to a non-contiguous fIle if it is extended with non-contiguous sectors.

If the register DO is non-zero, then the EOF pointer will be set to point at the end
of the last allocated sector; otherwise, the EOF pointer will point at the begin
ning of the fIrst allocated sector.

50 = Bad File Name
51 = File Already Defined
55 = Too Few Contiguous Sectors
57 = File Directory Full
61 = File Already Open
68 = Not POOS Disk
Disk errors

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

C·
.""".'" ·1

1("

I~"~,v'

/r--~"

'V

i~~

'~,;;/

c

('

Example:

FN

(

c
c

PDOS ASSEMBLY PRIMITIVES REFERENCE

XDFL • Define File

CLR.L
LEA.L
XDFL

DO ;DEFAULT SIZE
FN(PC),A1 ;GET FILE NAME

;DEFINE FILE
BNE.S ERROR ; ERROR

MOVEQ.L nOO,DO ;100 SECTORS ALLOCATED
LEA.L FN(PC),A1 ;GET FILE NAME
XDFL ;DEFINE CONTIGUOUS

BNE.S ERROR

DC.B
EVEN

3.3-10/87

'FILENAME:EXT',O

39

XDLF
Delete File

40

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOD6

MPOOSF

XDLF
<status error return>

In (AI) = File name

The DELETE FILE primitive removes the ftle whose name is pointed to by ad
dress register Al from the disk directory and releases all sectors associated with
that file for use by other ftles on that same disk. A ftle cannot be deleted if it is
delete (*) or write (**) protected.

50 = Bad File Name
53 = File Not Defined
58 = File Delete or Write Protected
61 = File Already Open
68 = Not PDQS Disk
Disk errors

LEA.L FN(PC),Al ;GET FILE NAME PTR

FN

XDLF ;DELETE FILE
BNE.S ERROR ; ERROR

;NORMAL RETURN

DC.B
EVEN

'TEMP/2',O

3.3 -10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

o
o

.4'"'"

"'"-'

.f""·
V

c
, ,

(

(

(

c

XDMP
Dump Memory From Stack

Value: $A04A

Module: MPDOSK3

Syntax: XDMP

Registers: In USP.L=<# ofbytes>.W
<start address>.L

USP.L = USP.L + 6 Out

Description: The DUMP MEMORY FROM STACK primitive dumps a block of memory to
the console as specified by two parameters on the user stack (USP). The left side
of the output is a hexadecimal dump and the right side is a masked ($7F) ASCII
dump. To use this primitive, ftrst push a 32-bit address and then a 16-bit number
of the amount of memory to be dumped. The primitive will automatically clean
up the user stack.

See Also: XBUG - Debug Call
XRDM - Dump Registers

Possible
Errors:

PB - PDOS Debugger (PDOS Monitor, Editor, Utilities manual)

None

Example:

START PEA.L START (PC)
MOVE.W #32,-(A7)
XDMP
XEXT
END START

x>MASM20 TEMP: SR, 'TEMP
x>TEMI?
OOOODDOO: 487A FFFE 3F3C 0020 A04A AOOE D44F 5248 Hz .. ?< .. J ... ORH
0000DD10: 20cc 20C9 43EE 068E 4298 B1C9 65FA 2D49 .. C ... B ... e.-I
x>

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 41

XDPE
Delay Physical Event

Value:

Module:

Syntax:

Registers:

Restrictions:

Description:

See Also:

Example:

42

$A114

MPDOSKI

XDPE

In AO = Event address
DOL = Time in TICs for delay (O=clear entry)
D l.W = Event descriptor

XDPE does not initialize the event like XDEV. You must initialize the event
before using this call. If the event does not time out. clear it by setting the time
toO.

XDPE causes the specified event to be set/cleared after the specified time has
elapsed. Each event can have only one delayed action pending. Successive calls
will supersede pending requests. Only the lower eight bits of the descriptor are
used To cancel pending actions. specify a delay time of O.

The event descriptor is a 16-bit word that defines both the bit number at the
specified AO address and the action to take on the bit. The following bits are
defined:

/ Bit number -- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T x x x x x x x S X,x x x B B B

T = Should the bit be toggled on scheduling?
l=Yes (toggle), O=No (do not toggle)

S = Suspend on event bit clear or set
l=Suspend on SET, O=Suspend on CLEAR

BBB = The 680xO bit number t'o use as an event
x = Reserved, should be 0

Since the bit number is specified in the lower three bits of the descriptor. you
may use the descriptor with the 68OXO BTST. BCLR. BSET instructions.

XDEV - Delay Set/Clear Event
XSOE - Suspend on Physical Event
XTLP - Translate Logical to Physical Event

MOVE.L *$80800081,01
LEA.L PEV(PC),AO
MOVEA.L AO,A1
MOVE.L nOO,DO
BCLR.B 01, (AO)
XDPE
XSOE

PEV DC.W 0

SET DESCRIPTORS
GET PEV ADDRESS
COPY FOR EV1
SET TIMEOUT
CLEAR TIMEOUT EVO
START DELAY TIMER
SUSPEND ON EITHER
BIT 0 SET OR BIT 1
SET VIA DELAY TIMER

3.3-10/87 PDes ASSEMBLY PRIMITIVES REFERENCE

o
o

o

0 ..

0

c

(

Value:

Module:

Syntax:

Registers:

Description:

XDTV
Define Trap Vectors

$A024

MPOOSKI

XDTV

In DIL = TVCZ PEDC BA98 7654 3210
(AO) = Table base address
(AI) = Vector table address

Vector table:
DCL TRAP #O-<BASE ADR>

DCL TRAP #15 .. <BASE ADR>
DCL ZDIV -<BASE ADR>
DCL CHK.-<BASE ADR>
DCL TRAPV-<BASE ADR>
DCL TRACE-<BASE ADR>

The vector table size is variable and each entry corresponds to non-zero bits in
the mask register (OIL). Each entry is a long signed displacement from the
base address register.

The DEFINE TRAP VECTORS primitive loads user routine addresses into the
task control block exception vector variables. Each task has the option to
process its own TRAP, zero divide, CHK, TRAPV, and/or trace exceptions.
Data register D 1 selects which vectors are to be loaded according to individual
bits corresponding to vectors in the vector table pointed to by address register
AI. Bits 0 through 19 (right to left) correspond to TRAPs 0 through 15, zero
divide, CHK., TRAPV, and trace exceptions. A 1 bit moves a vector from the
vector table (biased by base address AO) into the task control block.

D1.L = TVCZ FEDCBA9876543210
\\ \\ \
\\\\ \ TRAPs #0-#15
\\\\ Zero divide
\\\ CHK
\\ TRAPV

\ Trace exception

When an exception occurs, the task control block is checked for a corresponding
non-zero exception vector. If found, then the return address is pushed on the
user stack (USP) followed by the exception address and condition codes. PDOS
next moves to user mode and executes a return with condition codes (RTR).
This effectively acts like a jump subroutine with the return address on the user
stack.

PDes ASSEMBLY PRIMITIVES REFERENCE 3.3- 10187 43

XDTV - Define Trap Vectors

44

Possible
Errors:

See Also:

Example:

IF <excp>$(A6) THEN 1) Push return on USP
2) Push xxx$(A6) on USP
3) Push CCs on USP
4) Move to user mode
5) Exit with RTR
ELSE PDOS error routine

The trace processing is handled differently. If the processor is in supervisor
mode when a trace exception occurs, the trace bit is cleared and the exception is
dismissed. The processor remains in supervisor mode. If the processor is in user
mode and there is a non-zero trace variable in the task control block, .then the
trace is again disabled, the trace processor address is pushed on the supervisor
stack along with status, and a return from exception is executed (RTE).

IF <sup>

None

THEN 1) Disable trace
2) Exit in supervisor mode

ELSE IF TRC$(A6) THEN 1) Disable trace
2) Leave on stack
3) Push TRC$(A6)
4) Push SR+$2000
5) Exit with RTE

ELSE PDOS error routine

XVEC - Set/Read Exception Vector

* TVCZFEDCBA9876S43210
VCON EQU %11111000000000100001
SVECT MOVE.L #VCON,Dl ;GET CONTROL VAR

LEA.L VT (PC) ,AD ;POINT TO TABLE
MOVEA. L AO,Al ;BASE=TABLE
XDTV ;SET VECTORS

VT DC.L TRAPOO-VT ;TRAP #0
DC.L TRAPOS-VT ; TRAP #5
DC.L TRAPIS-VT ; TRAP US
DC.L ZDIV-VT ;ZERO DIVIDE
DC.L CHKP-VT ;CHK PROCESSOR
DC.L TRPV-VT ;TRAPV PROCESSOR
DC.L TRCE-VT ; TRACE

3.3- 10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

4-

"j

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XERR
Return Error DO to Monitor

$AOOC

MPOOSKI

XERR

In DO.W = Error code

The RETURN ERROR DO TO MONITOR primitive exits to the POOS monitor
and passes an error code in data register DO. POOS prints "POOS ERR", fol
lowed by the decimal error number. The error call can be intercepted by chang
ing the value of the ERR$ variable in the task TCB. This allows you to
customize your own monitor.

XEXT - Exit To Monitor
XEXZ - Exit To Monitor With Command

None

XRSE
BNE.S RERR

;READ SECTOR
; ERROR

RERR CMPI.W #56,DO ;EOF?
BNE. S RERR2 ;N

XCLF ;Y, CLOSE FILE
BNE.S RERR2

RTS

*
RERR2 XERR ;RETURN ERROR

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10187 45

XEXC
Execute PDOS Call D7.W

46

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$A030

MPDOSKI

XEXC

In D7.W = Aline POOS CALL

The EXECU1E POOS CALL D7.W primitive executes a variable POOS primi
tive contained in data register D7. Any registers or error conditions apply to the
corresponding POOS call.

Call dependent

3.3- 10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

C"·' "

'e""" I,

Example:

f'·

(~

c
POOS ASSEMBLY PRIMITIVES REFERENCE

XEXC - Execute PDOS Call D7.W

* APPEND FILE

*
* AF <filel>,<file2>

*
APDF MOVE.W iXAPF$,D7 iAPPEND COMMAND

BRA.S RNFL02

*

* COPY FILE

*
* CF <filel>,<file2>

*
CPYF MOVE.W iXCPY$,D7 iCOPY COMMAND

BRA.S RNFL02

*

* RENAME FILE
*
* RN <filel>,<file2>
*
RNFL MOVE.W iXRNF$,D7 iRENAME COMMAND
*
RNFL02 XGNP iSOURCE FILE

BLE.S ERR67
MOVEA.L Al,A2 iSAVE
XGNP iDESTINATION FILE

BLE.S ERR67
EXG.L Al,A2
XEXC iEXECUTE D7.W

BNE.S RNFL04 iERROR
XEXT iRETURN

*
ERR67 MOVEQ~L 1167,DO iPARAMETER ERROR
*
RNFL04 XERR iERROR

3.3-10/87 47

XEXT
Exit to Monitor

48

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOOE

MPOOSKI

XEXT
(Always exits to monitor)

None

The EXIT TO MONITOR primitive exits a user program and returns to the
POOS monitor. The exit can be intercepted by changing the value of the EXT$
variable in the task TCB. This primitive allows you to customize your own
monitor.

XERR - Return Error DO To Monitor
XEXZ - Exit To Monitor With Command

None

XCLF ;CLOSE FILE, ERROR?
BNE.S ERROR ;Y, DO ERROR CALL

XEXT ;N, RETURN TO MONITOR

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o

r\
'".~

()

c

o

(-

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XEXZ
Exit to Monitor with Command

$A04C

MPOOSKI

XEXZ
(exits to monitor)

In (AI) = Command string

The EXIT TO MONITOR WI1H COMMAND primitive exits a user program
and returns to the POOS monitor. In addition, the monitor command buffer is
loaded with the string pointed to by address register AI. This is useful in passing
back parameters to the monitor or to chain to another program. The exit can be
intercepted by changing the value of the EXT$ varlable-in the task TCB. This
primitive allows you to customize your own monitor.

XERR - Return Error DO To Monitor
XEXT - Exit To Monitor

None

EXIT LEA.L CMD(PC),Al ;GET COMMAND
XEXZ ;EXIT

*
CMD DC.B 'PRGM2',0

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 49

XFAC
"File Altered Check

50

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOCE

MPOOSF

XFAC
<status error return>

In
Out

(AI) = FILE NAME
CC = File not altered
CS = File altered
NE=Error

The FILE AL1ERED CHECK primitive 100ks at the alter bit (bit $80) of the ftle
pointed to by address register AI. If the bit is zero (not altered), then the primi
tive returns with the carry status bit clear. If the alter bit is set (file altered), then
it is cleared and the primitive returns with carry set. If either case, the bit is al
ways cleared.

Disk errors

XGNP
XFAC

BNE.S @0002
BCC.S FALSE

BRA.S TRUE

3.3-10/87

;GET PARAMETER
;CHECK FOR FILE ALTERED
; ERROR
;NOT ALTERED, RETURN FALSE
;ALTERED, TRUE

PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

c·

c

(

(

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XFBF
Flush Buffers

$AOF8

MPDOSF

XFBF
<status error return>

None

The FLUSH BUFFERS primitive forces all fIle slots with active channel buffers
to write any updated data to the disk. It thus does a checkpoint of any open and
altered fIle.

Disk errors

LOOP MOVEQ.L #5*TPS,DO ;DELAY 5 SECS
MOVE.W #128,D1 ; EVEN 128
XDEV
XSUI ; SUSPEND
XFBF ;CHECK POIN.T DISK
BRA.S LOOP

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 51

XFFN
Fix File Name

52

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOAO

MPDOSF

XFFN
<status error return>

In
Out

(AI) = File name
DOL = Disks(4th/3rd/2nd/lst)
TWO$ = Disk
(AI) = MWB$, Fixed file name

The FIX FILE NAME primitive parses and verifies a character string for file
name, extension, directory level, and disk number. The results are returned in
the 32-character monitor work buffer (MWB$(A6)). Data register DO is also
returned with the disk numbers in the disk path. The ftrst disk number in the
disk path is returned in the monitor word temp (TWO(A6). The error return is
used for an invalid file name.

The filename convention is as follows where upper and lower case are unique:

APPPPPPP:PPP;NNN/NNN

-- Auto-create flag may preftx filename
A -- Alpha characters A-Z or a-z
P -- Printable characters except ":", ";", "t'. The "." character may be used, but

will conflict with the monitor command separator unless the filename
is enclosed within parentheses

N -- Number in the range of 0-255

The monitor work buffer is cleared and the following assignments are made:

O(Al) =
8(Al) =
11(Al) =

Filename
File extension
File directory level

System defaults are used for the disk number and file directory level when they
are not specified in the fIle name.

XRDN - Read Directory Entry By Name

50 = Bad File Name

XGLU
XFFN

;GET INPUT LINE
;FIX FILE NAME

BNE.S ERROR ;ERROR IN NAME

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o

~-~. ,y

/,,--'"
\~

c
c

-'I

c
c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XFTD
Fix Time and Date

$A058

MPOOSK3

XFI'D

Out DO.W = Hours * 256 + Minutes
D1.W = (Year * 16 + Month) * 32 + Day

The FIX TIME & DA 1E primitive returns a two-word encoded time and date
generated from the system timers. The resultant codes include month, day, year,
hours, and minutes. The ordinal codes can be sorted and used as inputs to the
UNPACK DA1E (XUDT) and UNPACK TIME (XUTM) primitives.

Data register DO.W contains the time and register D1.W contains the date. This
fonnat is used throughout POOS for time stamping items.

XP AD - Pack ASCII Date
XRDT - Read Date
XRTM - Read Time
XUAD - Unpack ASCII Date
XUDT - Unpack Date
XUTM - Unpack Time

None

LEA.L TSTP(PC),AO ;SAVE AREA
XFTD ;GET TIME STAMP
MOVEM.W 00-01, (AO) ;SAVE TIME & DATE

TSTP DS.W 2 ;TIME STAMP SAVE

POOS ASSE~BL Y PRIMITIVES REFERENCE 3.3-10187 53

XFUM
Free User Memory

54

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A040

MPDOSKI

XFUM
<status error return>

In DO.W = Number of K bytes
(AO) = Beginning address

The FREE USER MEMORY primitive deallocates user memory to the system
memory bit map. Data register DO.W specifies how much memory is to be deal
located while address register AO points to the beginning of the data block.

Memory thus deallocated is available for any task use including new task crea
tion.

The number passed to DO.W must be an even number since memory that is allo
cated or deallocated must be in 2K increments. If the number is odd, it will be to
rounded up to a 2K boundary. IfDO=O, no action is taken. IfDO<O then error 79
will occur.

79 = Bad Memory Address

MOVEQ.L #20,00
MOVEA.L A2,AO
XFUM

BNE.S ERROR

3.3-10/87

;FREE 20K
;AT A2
; FREE MEMORY

POOS ASSEMBLY PRIMITIVES REFERENCE

c
o

c
c

(

(

(

(~

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XGCB
Conditional Get Character

$A048

MPDOSK2

XGCB
<status return>

Out DO.L = Character in bits 0-7
SR = EQ No character

LO CtrlC
LT Esc
MI Ctrl C or Esc

If the ignore control character bit ($02) of the port flag is set, then XGCB ig
nores Ctrl C and Esc.

The CONDmONAL GET CHARACTER primitive checks for a character from
fIrSt, the input message pointer (IMP$(A6», second, the assigned input file
(ACI$(A6», and then finally, the interrupt driven input character buffer
(pRT$(A6». If a character is found, it is returned in the right byte of data
register DO.L and the rest of the register is cleared.

If there is no input message, no assigned console port character, and the inter
rupt buffer is empty, the status is returned as "EQ".

The status is returned "LO" and the break flag cleared if the returned character
is a Ctrl C. The input buffer is also cleared. Thus, all characters entered after
the Ctrl C and before the XGCB call are dropped.

The status is returned "LT' and the break flag cleared if the returned character is
the Esc character.

For all other characters, the status is returned "HI" and "GT". The break flag is
not affected.

None

LOOP XGCB ; CHARACTER?
BEQ.S NONE ;N
BLO.S QUIT ;Y, AC, DONE
BLT.S NEXT ; CONTINUE

CMPI.B #'O',DO ;NUMBER?

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 55

XGCC
Get Character Conditional

56

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A078

MPOOSK2

XGCC
<status return>

Out DO.L = Character in bits 0-7
SR = EQ No character

LO Ctrl C
LT...Esc
MI Ctrl C or Esc

If the ignore control character bit ($02) of the port flag is set, then XGCC ig
nores Ctrl C and Esc.

The GET CHARAClER CONDITIONAL primitive checks the interrupt driven
input character buffer and returns the next character in the right byte of data
register DO.L. The rest of the register is cleared. The input buffer is selected by
the input port variable (PRT$) of the TCB.

If the buffer is empty, the "EQ" status bit is set. If the character is a Ctrl C, then
the break flag and input buffer are cleared, and the status is returned "LO". If
the character is the Esc character, then the break flag is cleared and the status is
returned "L r'.

If no special character is encountered, the character is returned in register DO
and the status set "HI" and "Gr'.

If no port has been assigned for input (ie. port 0 or phantom port), then the
routine always returns an "EQ" status.

None

*
WAIT
*
CONT

XGCC
BEQ.S CaNT
BLO.S QUIT
BLT.S NEXT

XGCR

3.3-10/87

; CHARACTER?
;N, CONTINUE
;Y, AC, QUIT
;Y, ESC, GOTO NEXT

;Y, WAIT CHARACTER

PDOS ASSEMBLY PRIMITIVES REFERENCE

c

",
\lJ

c

(

(

(~

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XGCP
Get Port Character

$A09E

MPOOSK2

XGCP
<status return>

Out DO.L = Character in bits 0-7
SR = LO Ctrl C

LTEsc
MI Ctrl C or Esc

IT the ignore control character bit ($02) of the port flag is set, then XGCP ig
nores Ctrl C and Esc.

The GET PORT CHARACTER primitive checks for a character in the interrupt
driven input character buffer. IT a character is found, it is returned in the right
byte of data register DO.L and the rest of the register is cleared. The input buffer
is selected by the input port variable (PRT$) of the TCB.

IT the interrupt buffer is empty, the task is suspended pending a character inter
rupt

The status is returned ''LO'' and the break flag cleared if the returned character
is a Ctrl C. The input buffer is also cleared. Thus, all characters entered after
the Ctrl C and before the XGCR call are dropped.

The status is returned ''L T' and the break flag cleared if the returned character is
the Esc character.

For all other characters, the status is returned "Ill" and ''GT''. The break flag is
not affected.

IT no port has been assigned for input, (ie. port 0 or phantom port), then an error
86 occurs.

86 = Suspend on Port 0

LOOP XGCP ;GET PORT CHARACTER
BLO.S QUIT ;AC, DONE
BLT.S NEXT ; CONTINUE

CMPI.B i'O',DO ;NUMBER?

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 57

XGCR
Get Character

58

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A07A

MPOOSK2

XGCR
<status return>

Out DOL = Character in bits 0-7
SR = LO Ctrl C

LT ... Esc
MI Ctrl C or Esc

If the ignore control character bit ($02) of the port flag is set, then XGCR ig
nores Ctrl C and Esc.

The GET CHARAC1ER primitive checks for a character from first, the input
message pointer (IMP$(A6»; second, the assigned input file (ACI$(A6»; and
then finally, the interrupt driven input character buffer (PRT$(A6». If a charac
ter is found, it is returned in the right byte of data register DOL and the rest of
the register is cleared.

o
o

If there is no input message, no assigned console port character, and the inter- r!)
rupt buffer is empty, the task is suspended pending a character interrupt. \oL;i
However, if the "receiver interrupt disable" bit is set on the port, the UART type
is polled for a character. If there is a character from the UART, then it is placed
in the type ahead buffer.

The status is returned ''LO'' and the break flag cleared if the returned character
is a Ctrl C. The input buffer is also cleared. Thus, all characters entered after
the Ctrl C and before the XGCR call are dropped.

The status is returned ''L T" and the break flag cleared if the returned character is C
the Esc character.

For all other characters, the status is returned "m" and "GT". The break flag is
not affected.

If no port has been assigned for input, (ie. port 0 or phantom port), then an error
86 occurs.

86 = Suspend on Port 0

LOOP XGCR
BLO.S QUIT
BLT.S NEXT

;GET CHARACTER
; "C, DONE
; CONTINUE

CMPI.B i'O',DO ;NUMBER?

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c
c

-,

(

(

(

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

$A07C

MPOOSK2

XGLB

In
Out

(BLT.x ESCAPE) optional
<status return>

(AI) = Buffer address
D I.L = Number of characters
SR = EQJ only

LT ... Esc
W ... CtrIC

XGLB
Get Line in Buffer

If the ignore control character bit ($02) of the port flag is set, then XGLB ig
nores Ctrl C and Esc.

The GET LINE IN BUFFER primitive gets a character line into the buffer
pointed to by address register AI. The XGCR primitive is used by XGLB and
hence characters can come from a memory message, a file, or the task console
port.

The buffer must be at least 80 characters in length. The line is delimited by a car
riage return. The status returns EQUAL if only a .J is entered.

If an Esc is entered, the task exits to the POOS monitor unless a "BL T' instruc
tion immediately follows the XGLB call. If such is the case, then XGLB returns
with status set at ''L T'.

If the assigned console flag (ACI$(A6» is set, then the "&" character is used for
character substitutions. "&0" is replaced with the last system error number.
"&1" is replaced with the fIrst parameter of the command line, "&2" with the
second, and so forth up to "&9".

The command line can be edited with various system defIned control characters.
A Backspace ($08) moves the cursor one character to the left. A Ctrl F ($OC)
moves the cursor one character to the right. A Del ($7F) deletes one character to
the left. A Ctrl D ($04) deletes the character under the cursor. The cursor need
not be at the end of the line when the .J is entered.

XGLU - Get Line In User Buffer

None

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10/87 59

c
XGLB - Get Line in Buffer o

Example: OPEN XPMC MESOI iPROMPT
LEA.L BUF (PC) ,A2 iGET BUFFER ADDRESS
XGLB iGET LINE IN BUFFER

BLT.S OPEN iDO NOT EXIT ON ESC
BEQ.S OPENIO iUSE DEFAULT

*
OPEN2 XSOP iOPEN FILE

BNE.S OPEN4 iERROR

OPEN4 CMPLW lI53,DO i'NOT DEFINED' ERROR?
BNE.S OPERR iN

XDFL iY, DEFINE FILE, ERROR?
BEQ.S OPEN2 iN

*
OPERR XERR ;Y, REPORT ERROR
*
OPENIO

MESOI DC.B $OA,$OD,'FILE=',O
BUF DS.B 80

G

c
c

60 3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

(~

(

(

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

SA07E

MPOOSK2

XGLM

Out

{BLT.xESCAPE}
<status return>

(AI) = String

XGLM
Get Line In Monitor Buffer

optional

DlL = Number of characters
SR = EQl only

LT .. .Esc
LO ... CtrIC

If the ignore control character bit (S02) of the port flag is set, then XGLM ig
nores Ctrl C and Esc.

The GET LINE IN MONITOR BUFFER primitive gets a character line into the
monitor buffer located in the task control block. The XGCR primitive is used by
XGLM and hence, characters can come from a memory message, a file, or the
task console port.

The buffer has a maximum length of 80 characters and is delimited by a carriage
return. The status returns EQUAL if only a.J is entered.

If an Esc is entered, the task exits to the POOS monitor unless a "BL 1'" instruc
tion immediately follows the XGLM call. If such is the case, then XGLM
returns with status set at ''L T".

If the assigned console flag (ACIS(A6» is set, then the "&" character is used for
character substitutions. "&0" is replaced with the last system error number.
"&1" is replaced with the ftrst parameter of the command line, "&2" with the
second, and so forth up to "&9".

The command line can be edited with various system-dermed control chamcters.
A Backspace ($08) moves the cursor one character to the left. A Ctrl L (SOC)
moves the cursor one chamcter to the right. A Del (S7F) deletes one character to
the left A Ctrl D ($04) deletes the chamcter under the cursor. The cursor need
not be at the end of the line when the .J is entered.

The last command line can be recalled to the buffer by entering a Ctrl A (SOl).
This line can then be edited using the above control chamcters.

None

XGLM ;GET LINE
BEQ.S NONE

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 61

XGLU
Get Line in User Buffer

62

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$A080

MPDOSK2

XGLU
{BLT.x ESCAPE}
<status return>

optional

Out (AI) = String
Dl.L = Number of characters
SR = EQJ only

LT ... Esc
LO ... Ctrl C

If the ignore control character bit ($02) of the port flag is set, then XGLU ig
nores Ctrl C and Esc.

The GET LINE IN USER BUFFER primitive gets a character line into the user
buffer. Address register A6 normally points to the user buffer. The XGCR primi
tive is used by XGLU; hence, characters come from a memory message, a file,
or the task console port. The line is delimited by a carriage return. The status
returns EQUAL if only a.J is entered. Address register Al is returned with a
pointer to the first character.

The user buffer is located at the beginning of the task control block and is 256
characters in length. However, the XGLU routine limits the number of input
characters to 78 plus two nulls.

If an Esc ($IB) is entered, the task exits to the POOS monitor unless a "BLT" in
struction immediately follows the XGLU call. If such is the case, then XGLU
returns with status set at "L T".

If the assigned console flag (ACI$(A6)) is set, then the "&" character is used for
character substitutions. "&0" is replaced with the last system error number.
"& I" is replaced with the fIrst parameter of the command line, "&2" with the
second, and so forth up to "&9".

The command line can be edited with various system defined control characters.
A Backspace ($08) moves the cursor one character to the left. A Ctrl L ($OC)
moves the cursor one character to the right. A Del ($7F) deletes one character to
the left. A Ctrl D ($04) deletes the character under the cursor. The cursor need
not be at the end of the line when the .J is entered.

None

3.3 - 10/87 poos ASSEMBLY PRIMITIVES REFERENCE

iI!" '\

V

c

(-

(
Example:

(

c
PDOS ASSEMBLY PRIMITIVES REFERENCE

GETN

*

XGLU - Get Line In User Buffer

MOVEQ.L iDNUM,D4
XGLU

BEQ.S GETN2
XCBD

BLE.S ERROR
MOVE.L D1,D4

;GET DEFAULT i
;GET LINE
;USE DEFAULT
;CONVERT i, ERROR?
;Y
;N

GETN2 MOVE.L D4,-(A7) ;SAVE i

3.3-10/87 63

XGML
Get Memory Limits

64

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOI0

MPOOSKI

XGML

Out (AO) = End TCB (TBE$)
(AI) = Upper memory limit (EUM$-USZ)
(A2) = Last loaded address (BUM$)
(A5) = System RAM (SYRAM)
(A6) = Task TCB

The GET MEMORY LIMITS subroutine returns the user task memory limits.
These limits are defined as the first usable location after the task control block
($500 beyond address register A6) and the end of the user task memory. The
task may use up to but not including the upper memory limit.

Address register AO is returned pointing to the beginning of user storage (which
is the end of the TCB). Register Al points to the upper task memory limit less
$100 hexadecimal bytes for the user stack pointer (USP). Register A2 is the last
loaded memory address as provided by the POOS loader. Address registers A5
and A6 are returned with the pointers to system RAM (SYRAM) and the task
control block (TCB).

None

START XGML iGET MEMORY LIMITS

*
START2 CLR.B (A2)+ iCLEAR MEMORY

CMPA.L Al,A2 iDONE?
BLO. S START2 iN

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

G

c

(

<-

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

NOMESS

MESS

MOVE.W
XSUI
MOVE.B
XGMP

BNE.S
XPMC

XPMC

DC.B

XGMP
Get Message Pointer

$AOO4

MPOOSKI

XGMP
<status return>

In
Out

DO.B = Message slot number (0 .. 15)
DOL = Source task # (-1 = no message)
SR = EQ Message (Event[64+Message slot #]=0)

NE No message
DOL = Error number 62 if message pointer error
(AI) = Message

The GET MESSAGE POINTER primitive looks for a task message pointer. If
no message is ready, then data register DO returns the error number 62 and
status is set to "Not Equal".

If a message is waiting, then data register DO returns with the source task num
ber, address register Al returns with the message pointer, event (64 + message
slot #) is set to zero indicating message received, and status is returned equal.

XGTM - Get Task Message
XKTM - Kill Task Message
XSMP - Send Message Pointer
XSTM - Send Task Message

62 = Bad Message Ptr Call

#69, D1

itD,DO iCheck message slot itS

NOMESS iNo message
iPrint message to console

MESS

$OA,$OD,'NO MESSAGE POINTER',O

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 65

XGNP
Get Next Parameter

66

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$AOSA

MPOOSM

XGNP
, <Status return>

Out SR = LO .. .No parameter
[(AI)=O]

EQ .. .Null Parameter
[(A 1)=0]

In .. .Pararneter
[(AI)=PARAMETER]

The GET NEXT PARAMETER primitive parses the monitor buffer for the next
command parameter. The routine does this by maintaining a current pointer into
the command line buffer (CLB$) and a parameter delimiter (CMD$).

x>MASH SOURCE, BIN LIST ERR.SP
x>CT (ASH SOURCE,BIN),15,,3
x>DO «DO 00),00)

The XGNP primitive clears all leading spaces of a parameter. A parameter is a
character string delimited by a space, comma, period, or null. If a parameter
begins with a left parenthesis, then all parsing stops until a matching right paren
thesis or null is found. Hence, spaces, commas, and periods are passed in a
parameter when enclosed in parentheses. Parentheses may be nested to any
depth.

x>LS.LS

An "LO" status is returned if the last parameter delimiter is a null or period.
XGNP does not parse past a period. In this case, address register Al is returned
pointing to a null string.

x>MASH SOURCE",ERR

An ''EQ'' status is returned if the last parameter delimiter is a comma and no
parameter follows. Address register Al is retmned pointing to a null string.

A "HI" status is returned if a valid parameter is found. Address register Al then
points to the parameter.

None

3.3-10/87 PDOSASSEMBL V PRIMfTIveSREFERENCE

o
o

c
c

(-
Example:

{

c--~ -.

PDOS ASSEMBLY PRIMITIVES REFERENCE

XGNP • Get Next Parameter

SPAC MOVE.B SDK$(A6),DO ;GET SYSTEM DISK i

*

XGNP
BLS.S SPAC02

XCDB
BLE.S ERR67

MOVE.L D1,DO

SPAC02 XSZF
BNE.S ERROR

3.3-10/87

;GET PARAMETER, OK?
;N, USE DEFAULT
;Y, CONVERT, OK?
;N, ERROR
;Y

;GET DISK SIZE
; PROBLEM

67

XGTM
Get Task Message

68

Value:

ModOle:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOIE

MPOOSKI

XGTM
<status return>

In
Out

(AI) = Buffer address
DOL = Source task #

(-1 = no message)
SR = EQ message found

NE no message

The GET TASK MESSAGE primitive searches the POOS message buffers for a
message with a destination equal to the current task number. IT a message is
found, it is moved to the buffer pointed to by address register AI. The message
buffer is then released, and the status is set EQUAL. IT no message is found,
status is returned NE.

The buffer must be at least 64 bytes in length. (This is a configuration
parameter.) The message buffers are serviced on a fIrst in, flI'St out basis
(FIFO). Messages are data independent and pass any type of binary data.

XGMP - Get Message Pointer
XKTM - Kill Task Message
XSMP - Send Message Pointer
XSTM - Send Task Message

None

LOOP

*
NONE

LEA.L BUF(PC),Al
XGTM

BNE.S NONE
XPCL
XPLC
BRA.S LOOP

BUFFER DS.B 64

;GET BUFFER ADR
;LOOK FOR MESSAGE
; NONE
;OK, OUT CRLF
;OUT MESSAGE
;LOOK AGAIN

;MESSAGE BUFFER

3.3-10187 PDOS ASSEMBLY PRIMITIVES REFERENCE

0 ,' 'f!,.

o

c

c
c

(-

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A03E

MPOOSKI

XGUM
<status error return>

In
Out

DO.W = Number ofK bytes
(AO) = Beginning memory address
(AI) = End memory address

XGUM
Get User Memory

The GET USER MEMORY primitive searches the system memory bit map for a
contiguous block of memory equal to DO.W Kbytes. If found, the "EQ" status is
set, address registers AO and Al are returned the the start and end memory ad
dress, and the memory block is marked as allocated in the bit map.

The number in register DO must be an even number. Memory is both allocated
anddea110cated in 2K blocks.

XFUM - Free User Memory

73 = Not Enough Memory

GETM CLR.W - (A1) ;PUSH .NE.
MOVEQ.L nO,DO ;GET 10K BYTES
XGUM

BNE.S @GM02 ; ERROR
MOVE.L AO,AV(A6) ; SAVE
ADDQ.W lI$04, (A1) ; RETURN .EQ.

*
@GM02 RTR ; RETURN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 69

XISE
Initialize Sector

70

. Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOCO

MPOOSF

XISE
<status error return>

In DO.B = Disk number
D1.W = Logical sector number
(A2) = Buffer address

The INIT SECTOR primitive is a system-defmed, hardware-dependent program
which writes 256 bytes of data from a buffer (A2) to a logical sector number
(Dl) on disk (DO). This routine is meant to be used only for disk initialization
and is equivalent to the WRITE SECTOR (XWSE) primitive for all sectors ex
cept O. Sector 0 is not checked for the POOS ID code.

BIOS in PDOS Developer's Reference Manual
XRSE - Read Sector
XRSZ - Read Sector Zero
XWSE - Write Sector

Disk errors

*
LOOP

MOVEQ.L DSKN,DO
MOVEQ.L #O,Dl
LEA.L BUF(PC),A2

XISE
BNE.S ERROR

ADDQ.W n,Dl
CMPI.W #DISKZ,Dl

BLO.S LOOP

;GET DISK #
;START AT SECTOR 0
;GET BUFFER PTR

;WRITE TO DISK
; ERROR
;MOVE TO NEXT
;DONE?
;N

3.3" 10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c

;1(- .,

\'-...r

c
c

(

(

(

Value:

Module:

Syntax:

Registers:

~

Description:

See Also:

Possible
Errors:

Example:

XKTB
Kill Task

$AOFA

MPOOSKI

XKTB
<status error return>

In DO.B = Task number

If DO.B equals zero, then kill current task. If DO.B is negative, then kill task
without allocating task memory to system bit map.

The KllL TASK primitive removes a task from the POOS task list and optional
ly returns the task's memory to the system memory bit map. Only the current
task or a task spawned by the current task can be killed. Task 0 cannot be killed.

The kill process includes releasing the input port assigned to the task and clos
ing all files associated with the task.

If 00=0, then kill self & deallocate memory

The task number is specified in data register DO.B. If register OO.B equals zero,
then the current task is killed and its memory deallocated in the system memory
bitmap.

If 00>0, then kill task 00 & deallocate memory

If 00<0, then kill task ABS(DO) & do not deallocate memory

If DO.B is positive, then the selected task is killed and its memory deallocated. If
OO.B is negative, then task number ABS(OO.B) is killed, but its memory is not
deallocated in the memory bit map.

XCTB - Create Task Block

74 = Non-existent Task

PREND CLR.B DO ;KILL SELF
XKTB ;CALL CURRENT TASK

BNE.S ERROR

PDOSASSEMBLY PRIMITIVES REFERENCE 3.3- 10/87 71

XKTM
Kill Task Message

72

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A028

MPDOSKI

XK.TM
<status return>

In

Out

DO.B=Task#
(AI) = Buffer address
DOL = Source task #

(-1 = no message)
SR = EQ message found

NE .•.. no message

The Kll.L TASK MESSAGE primitive allows you to read (and thus clear) any
task's messages from the system message buffers.

XGMP - Get Message Pointer
XGTM - Get Task Message
XSMP - Send Message Pointer
XSTM - Send Task Message

None

LOOP MOVEQ.L iO,DO iSELECT TASK 0
LEA.L BF(PC),Al
XKTM iANY MESSAGE?

BEQ.S LOOP iY, DO AGAIN

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c

o
c

(

Value:

Module:

Syntax:

Registers:

Description:

$AOBO

MPOOSF

XLDF
<status error return>

In D1.B = Execution flag
(AO) = Start ofload memory
(AI) = End ofload memory
(A3) = File name

XLDF
Load File

Out (AO) = EAD$ - Lowest loaded address or "OB" entry address
(AI) = BUM$ - Last loaded address

If DI.B=O, then XLDF returns to your calling program. If D l.BoO, then the
program is immediately executed.

The WAD FILE primitive reads and loads 68000 object or binary code into
user memory. The fIle name pointer is passed in address register A3. Registers
AO and Al specify the memory bounds for the relocatable load. Any type of fIle
may be loaded if the execution flag is clear. If D I.BoO, then the fIle must be
typed "OB" or "SY".

If data register D1.B is zero, then XLDF returns to the calling program. Other
wise, the loaded program is immediately executed.

For "OB" type fIles, section 0 code is loaded fIrst followed by section I and so
forth to section 15. All simple references among sections are resolved but no
operations are allowed. The loader also sets the task entry address EAD$(AS)
and register AO to the address specifIed by the start tag, or to the start of the fIle
if no start address is given. All object fIles must be assembled with the 3.3 as
sembler in order to load.

A "SY" fIle is generated from an "OB" fIle by the MSYFL utility. The con
densed object is a direct memory image and must be position-independent code.

The XLDF primitive uses long word moves and may move up to three bytes
more than contained in an "SY" fIle. As such, you must allow for extra space for
data moves to an existing program.

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 73

XLDF • Load File

74

Possible
Errors:

Example:

Legal tags:
OT--LABEL--vvvrrrddddddtttt
lSaaaaaaaa ;ENTRY POINT
2Saaaaaaaa
3dd
4dddd
5dddddddd
6
7
8
9Snnnnnnnn
Dccccdddd
Esllllllll
Fcc

Illegal tags:

; ADDRESS
;SIMPLE DATA BYTE
;SIMPLE DATA WORD
;SIMPLE LONG DATA WORD
;POP BYTE
;POP WORD
;POP LONG WORD
;PUSH VALUE
;STORE MULTIPLE WORD
;SECTION LENGTH
;END OF RECORD/CHECKSUM

ASl<symbol> ;PUSH SYMBOL
BO ;DO OPERATION

'-________ C_S_l_<s~ymb~_o_l_>_n_n_n_nn_n_n_n __ ~;_E_X_T_ER_N_A_L __ D_E_F_I_N_I_TI_O_N ____ -'~ -

63 = Bad Object Tag
65 = Not Executable
73 = Not Enough Memory
Disk errors

XGML
CLR.L
ADDA.W
LEA.L
XLDF

DO
H100,AO
FN(PC),A3

;GET MEMORY LIMITS
; RETURN
;ADD DISPLACEMENT
;GET FILE NAME
;LOAD FILE

BNE.S ERROR ; ERROR

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

()

o

.~\
\)
~,.~

c

c

(

(

(

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XLER
Load Error Register

$A03A

MPOOSKI

XLER

In DO.W = Error number

The WAD ERROR REGISTER primitive stores data register DO.W in the task
control block variable LEN$(A6). This variable will replace the parameter sub
stitution variable" &0" during a procedure file.

User programs should execute this call when an error occurs.

The enable echo flag (ECF$(A6» is cleared by this call.

None

ADDI.W #300,DO ;BIAS ERROR #
XLER ;REPORT TO PDOS

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 75

XLFN
Look for Name in File Slots

Value:

Module:

Syntax:

Registers:

Description:

76

$AOA2

MPOOSF

XLFN
<status return>

In

Out

DO.B = Disk number
(AI) = Fixed file name
D3.W = File ID (Disk #/lndex)
(A3) = Slot entry address
SR = NE .. .File name not found

EQ .. .File name found

If D3.W=O, then no slots are available.

The LOOK FOR NAME IN FILE SLOTS primitive searches through the file
slot table for the file name as specified by registers DO.B and AI. If the name is
not found, register D3.W returns with a -1 or O. The latter indicates the file was
not found and there are no more slots available. Otherwise, register D3.W
returns the associated file ID and register A3 returns the address of the file slot.

A file slot is a 38-byte buffer where the status of an open fIle is maintained.
There are 32 file slots available. The file ID consists of the disk # and the file
slot index.

File slots assigned to read-only files are skipped and not considered for file
match.

File slot format: (38 bytes)
O(A3) = File name.ll

11 (A3) = Level.l
l2(A3) = Status.2
l4(A3) = Sector # in memory.2
l6(A3) = Pointer.4
20(A3) = Sector index in memory.2
22 (A3) = Sector index of eof.2
24 (A3) = # bytes in end sector.2
26(A3) = Lock.l/shared flag.l
28(A3) = Channel buffer ptr.4
32 (A3) = Lock.l/shared flag.l
34 (A3) = Roll-out error #.2
36(A3) = Disk #.2

3.3-10/87 POOSASSEMBLY PRIMITIVES REFERENCE

o
o

o

o
c

i~

c

Possible
Errors:

Example:

None

PDOS ASSEMBLY PRIMITIVES REFERENCE

XLFN - Look for Name in File Slots

Status: $Olxx
$02xx
$06xx
$OAxx
$lOxx

$xx80
$xx04
$xx02
$xxOl

$8xxx
$4xxx
$2xxx

Sequential
Random
Shared random
Read only random
Driver in channel

Altered
Contiguous
Delete protect
Write protect

Sector altered
File altered
Buffer locked in memory

XNOP LEA.L FN(PC),Al ;POINT TO FILE NAME

ERRl

*
ERR2

*
FN
MERRl
MERR2

XFFN ;FIX FILE NAME
BNE.S ERRl

XLFN
; ERROR
;LOOKUP NAME, FOUND?
;Y, FILE ALREADY OPEN BEQ.S ERR2

XPMC
RTS

XPMC
RTS

DC.B
DC.B
DC.B
EVEN

3.3-10/87

MERRl ;INVALID FILE NAME

MERR2 ;FILE ALREADY OPEN

'FILENAME',O
$OA,$OD,'INVALID FILE NAME',O
$OA,$OD,'FILE ALREADY OPEN',O

77

XLKF
Lock File

78

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOD8

MPOOSF

XLKF
<status error return>

In D1.W =FileID

The LOCK FILE primitive locks an opened fIle so that no other task can gain ac
cess until an UNLOCK FILE (XULF) primitive is executed. Only the locking
task has access to the locked fIle.

A locked file is indicated by a -1 ($FF) in the left byte of the lock file parameter
(LF) of the file slot usage (FS) command. The locking task number is stored in
the left byte of the task number parameter (TN).

XULF - Unlock File

52 = File Not Open
59 = Bad File Slot
75 = File Locked
Disk errors

MOVE.W 05,01
XLKF

BNE.S ERROR

3.3-10187

;GET FILE IO
;LOCK FILE
; PROBLEM

PDOS ASSEMBlY PRIMITIVES REFERENCE

o

(""
l ~J

c
£", .. ,
~

(

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XLKT
Lock Task

$A014

MPOOSKI

XLKT
<status return>

Out SR = EQ ... Notlocked
NE ... Locked

The LOCK TASK primitive locks the requesting task in the run state by setting
the swap lock variable in system RAM to nonzero. The task remains locked
until an UNLOCK TASK (XUL1) is executed. The status of the lock variable
BEFORE the call is returned in the status register.

XLKT waits until all locks (Level 2 and Level 3 locks) are cleared before the
task is locked.

XULT - UNLOCK TASK

None

*
WAIT

*
CONT

XLKT
SNE.B D7

TAS.B SBIT

TST.B SBIT
BMI.S WAIT

TST.B D7
BNE.S CONT

XULT

;LOCK TASK
;SET FLAG
;START CRITICAL PROCESS

; OK'?
;N
;Y, LEAVE LOCKED'?
;Y
;N, UNLOCK TASK

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 79

XLSR
Load Status Register

80

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A02E

MPOOSKI

XLSR

In D1.W = 68000 status register

The LOAD STATUS REGIS1ER primitive allows you to direcdy load the
68000 status register. Of course, only appropriate bits (i.e. the interrupt mask too
high, supervisor mode, trace mode, etc.) are to be set so that the system is not
crashed.

XRSR - Read Status Register
XSUP - Enter Supervisor Mode

None

MOVE.W SR,D1 ;READ STATUS
ORI.W #$2000,D1 ;ADD SUPERVISOR
XLSR ; LOAD SR

3.3-10/87 PDOSASSEMBLY PRIMITIVES REFERENCE

o
o

o

c
c

"

(

(

c
c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XLST
List File Directory

$AOA4

MPOOSM

XLST
<status error return>

In (AI) = List specifications

The LIST FILE DIRECTORY subroutine causes POOS to output a fonnatted
fIle directory listing to the console tenninal, according to the select string
pointed to by address register AI. The output may be interrupted at any time by
a character being entered on the console port. An Esc character returns control
to the POOS monitor.

The format of the list specifications is defmed as follows:

DC.B '{file}{:ext}{;level}{/disk}{/select •.. }',O
where: {file} = 1. to 8 characters (1st alpha) (@=all, *=wild)

{:ext} = 1 to 3 characters (:@=all,*=wild)
{;leve1} = directory level (;@=all)
{/disk} = disk number ranging from 0 to 255

{/select} lAC = Assign Console file
IBN = Binary file

Disk Errors

MLST

IBX = POOS BASIC token file
lEX = PDOS BASIC file
lOB = 68000 PDOS object file
ISY = System file
ITX = Text file
lOR = System IIO driver
1*·· = Delete protected
1** = Delete and write protected
IFdy-mon-yr = selects files with date of

last change greater than
or equal to ~dy-mon-yr"

ITdy-mon-yr = selects files with date of
last change less than or
equal to ~dy-mon-yr"

XGNP
XLST

BNE.S ERROR
XEXT

;GET SELECT LIST
CALL FOR LIST
ERROR
EXIT TO MONITOR

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10187 81

XNOP
Open Shared Random File

82

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$AODA

MPOOSF

XNOP
<status error return>

In
Out

(AI) = File name
DO.W = File attribute
Dl.W=FileID

Uses multiple directory ftle search.

You MUST lock and position ftle before each multi-task access.

The OPEN SHARED RANDOM FILE primitive opens a ftle for shared random
access by assigning the ftle to an area ofsystem memory called a file slot. The
ftle ID and ftle attribute are returned to the calling program in registers D 1 and
DO, respectively. Thereafter, the ftle is referenced by the ftle ID and not by the
ftle name. A new entry in the file slot table is made only if the ftle is not already
opened for shared access.

The ftle ID (returned in register Dl) is a 2-byte number. The left byte is the disk
number and the right byte is the ftle slot index. The ftle attributes are returned in
register DO.

DO.W = (ABOS BETU xxxx xCWD)
Dl.W = (Disk II) x 256 + (ftle slot index)

The END-OF-FILE marker on a shared ftle is--ehanged only when the f1le has
been extended. All data transfers are buffered through a channel buffer; data
movement to and from the disk is by full sectors.

An "opened count" is incremented each time the ftle is shared-opened and is
decremented by each close operation. The ftle is only closed by POOS when the
count is zero. This count is saved in the right byte of the locked ftle parameter
(LF) and is listed by the ftle slot usage command (FS).

50 = Bad File Name
53 = File Not Defined
60 = File Space Full
61 = File Already Open
68 = Not POOS Disk
69 = Out of File Slots
Disk errors

3.3-10187 PDOSASSEMBLY PRIMITIVES REFERENCE

o
o

c

c
: .,~

Example:

FN

c
PDas ASSEMBLY PRIMITIVES REFERENCE

XNOP - Open Shared Random File

LEA.L FN(PC),A1 ;POINT TO NAME
XNOP ;OPEN SHARED

BNE.S ERROR
MOVE.W 00,05 ;SAVE TYPE
SWAP 05
MOVE.W 01,05 ;SAVE FILE ID

DC.B
EVEN

'FILENAME:EXT',O

3.3-10/87 83

XPAD
Pack ASCII Date

84

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOOA

MPOOSK3

XPAD

In
Out

(AI) = 'DY-MON-YR'
D1.W = (year*I6+month)*32+day

(YYYY YYYM MMMD DDDD)
(AI) = Updated
SR = .EQ. - Conversion okay

.NE. -Error

The PACK ASCII DATE primitive converts an ASCII date string to an encoded
binary number in data register D 1. The result is compatible with other POOS
date primitives such as XUAD.

XFTD - Fix Time And Date
XRDT - Read Date
XRTM - Read Time
XUAD - Unpack ASCII Date
XUDT - Unpack Date

Status errors

STRT XPMC
XGLU
XPAD

MES1 ;DATE=
;GET LINE
; CONVERT

BNE.S ERR ; ERROR
XPMC MES2 ;D1.W=
XCBH
ADDQ.W #4,41
XPLC ; OUTPUT
BRA.S STRT

*
ERR XPMC MES3 ; ERROR

BRA.S STRT

*
MES1 DC.B $OA,$OD,'DATE=',O
MES2 DC.B' D1.W=$',O
MES3 DC.B $OA,$OD,'*ERROR',O

EVEN
END STRT

x>TBST
DATE=11-NOV-86 D1.W=$AD6B
DATE=11NOV86 D1.W=$AD6B
DATE= NOV 11 86
*ERROR
DATE=

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c;

o

('

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XPBC
Put Buffer to Console

$A084

MPOOSK2

XPBC

None

The PUT USER BUFFER TO CONSOLE primitive outputs the ASCII contents
of the user buffer to the user console and/or SPOOL me. The output string is
delimited by the null character. The user buffer is the ftrst 256 bytes of the task
control block and is pointed to by address register A6.

With the exception of control characters and characters with the parity bit on,
each character increments the column counter by one. A Backspace ($08) decre
ments the counter while a.J ($00) clears the counter. Tabs ($09) are expanded
with blanks to MOD 8 character zone ftelds.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
me slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk
error occurs in the spool me, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

XGLB - Get Line In Buffer

None

CLINE MOVEA.L A6,A2 ;GET USER BUFFER PTR

*
CLINE2

MOVE.B DO, (A2)+ ;LOAD BUFFER, DONE?
BNE.S CLINE2 ;N

XPBC ;Y, OUTPUT BUFFER
RTS ; CONTINUE

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 85

XPCB
Push Command to Buffer

86

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A04E

MPDOSM

XPCB

In (AI) = Command string

The PUSH COMMAND TO BUFFER primitive pushes the string pointed to by
address register Al into the command recall buffer. Since there is a limit on the
buffer size. older commands are lost

XGNP - Get Next Parameter

None

XGLU
XPCB

.3.3-10/87

;GET COMMAND
;PUSH FOR RECALL

PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c

o
C I~

I~

(-

(

(/

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XPCC
Put Character(s) to Console

$A086

MPDOSK2

XPCC

In DO.W = Character(s)

The PUT CHARACfER TO CONSOLE primitive outputs one or two ASCn
characters in data register DO to the user console and/or SPOOL fIle. The right
byte (bits 0 through 7) is first and is followed by the left byte (bits 8 through 15)
if non-zero. If the right byte or both bytes are zero, nothing is output to the con
sole.

With the exception of control characters and characters with the parity bit on,
each character increments the column counter by one. A Backspace ($08) decre
ments the counter while a.J ($00) clears the counter. Tabs ($09) are expanded
with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
fIle slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk
error occurs in the spool fIle, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

~-PmCharacterRaw
XPDC - Put Data To Console

None

MOVE.W i'CA',DO ;OUTPUT ,AC'
xpcc
MOVEQ.L #$OA,DO ;FOLLOWED BY LF
XPCC

poas ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 87

XPCL
Put CRLF to Console

88

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A088

MPOOSK2

XPCL

None

The PUT CRLF TO CONSOLE primitive outputs the ASCII characters line
feed <$00> and carriage return <$OA> to the user console and/or SPOOL file.
The column counter is cleared.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6))
variables of the TCB, then the processed characters are written to the spool unit
file slot (SPI$(A6)) and are not sent to the corresponding output ports. If a disk
error occurs in the spool file, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

None

XPCL ;OUTPUT CRLF

3.3 - 10/87 poos ASSEMBLY PRIMITIVES REFERENCE

(}

o

,""~"-,

'V

c
c

(.

(

XPCP
Place Character In Port Buffer

Value: $AOBC

Module: MPOOSK2

Syntax:

Registers:

Description:

Example:

XPCP

In DO.B = Character to insert
Dl.W = Input port number (1 to 15)

Out SR = .EQ. = High water (character is inserted)
.NE. = Character is inserted

XPCP allows a character to be placed into the input buffer of any POOS port
from a task or program.

START LEA. L STRING (PC) , AO ; ADDRESS OF STRING
MOVE.W '3,D1 ;PLACE IN PORT 3 INPUT BUFFER

*
LOOP MOVE.B (AO)+,DO

*

BEQ.S DONE
XPCP
BRA.S LOOP

DONE XEXT

*
STRING DC.B 'HELLO PORT 3!',0

EVEN

*
END START

>MaSN ~ST:SR,~ST~
>~ST~

>TN 3,2BELLO PORT 3 !ctrl B.J
>

;GET CHAR, TEST FOR 07
;Y
;PUT INTO PORT 3 INPUT

Once the status returns EQ (high water), subsequent XPCP calls will return a
status ofNE as if everything were normal, but the data is discarded. Once the
status of EQ is detected, the transmitting task should monitor the status of the
port with the XRPS (read port status) call until bit 6 is cleared.

The port specified in the XPCP call is independent of windowing - it refers to
the physical port, not the logical port.

PDes ASSEMBLY PRIMITIVES REFERENCE 3.3-10187 89

XPCR
Put Character Raw

90

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

$AOBA

MPDOSK2

XPCR

In DO.B = CHARACTER

The PUT CHARAC1ER RAW primitive oulputs the character in the lower byte
of data register DO to the user console. No attempt is made by PDOS to interpret
control characters.

XPCC - Put Character(s) To Console
XPDC - Put Data To Console

None

3.3-10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

c
c

.~.

~/:

()

()

o

c

(/

(\

./

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XPDC
Put Data to Console

$A096

MPOOSK2

XPDC

In D7.W = LENGTH
(AI) = DATA S1RING

The PUT DATA TO CONSOLE primitive outputs data-independent bytes to the
console. Address register Al points to the string while data register D7 has the
string length.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
fIle slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk:
error occurs in the spool fIle, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

XPCC - Put Character(s) To Console
XPCR - Put Character Raw

None

M

MOVEQ.L 1I0,D7
LEA.L M(PC),Al ;POINT TO STRING
MOVE.B (Al)+,D7 ;GET LENGTH
XPDC

DC.B
DC.B

;OUTPUT

10,$OA,$OD
'THIS IS A MESSAGE'

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 91

XPEL
Put Encoded Line to Console

92

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A06E

MPOOSK2

XPEL

In (AI) = Message

The PUT ENCODED LINE TO CONSOLE primitive outputs to the user con
sole the message pointed to by address register AI. An encoded message is
similar to any other stting with the exception that the parity bit is used to output
blanks and the character $80 outputs a carriage return/line feed.

If the parity bit is set and the masked character ($7F) is less than or equal to a
blank, then the numeric value of the negated character is used as the number of
blanks to be inserted in the output stream. If the mask character is greater than a
blank, then that character is output followed by one blank.

With the exception of control characters, each character increments the column
counter by one. A Backspace ($08) decrements the counter while a.J ($OD)
clears the counter. Tabs ($09) are expanded with blanks to MOD 8 character
zone fields.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
file slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk
error occurs in the spool file, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

XPEM - Put Encoded Message To Console
XPLC - Put Line To Console
XPMC - Put Message To Console

None

LEA.L M(PC),Al ;POINT TO MESSAGE
XPEL ;OUTPUT MESSAGE

M DC.B $80,'Lev',-2,'Name:ext'
DC.B -6,'Type',-6,'Size',-6
DC.B 'Dat',-'e','created',-4
DC.B 'Las' ,-'t' ,·'update',O

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

(}

o

(XPEL - Put Encoded Line to Console

The above text strings are equivalent to:

M DCE.B $80,'Lev Name: ext'
DCE.B Type Size'
DCE.B Date created'
DCE.B Last update',O

($80 is equal to a CR/LF)

c
PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10187 93

XPEM
Put Encoded Message to Console

94

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A09C

MPOOSK2

JOPE~ <lOess age>

None

The PUT ENCODED ~SSAGE TO CONSOLE primitive oulputs the PC rela
tive message contained in the word following the call to the user console. An en
coded message is similar to any other string with the exception that the parity bit
is used to oUlput blanks and the character $80 outputs a carriage return/line feed.

If the parity bit is set and the masked character ($7F) is less than or equal to a
blank, then the numeric value of the negated character is used as the number of
blanks to be inserted in the oulput stream. If the mask character is greater than a
blank, then that character is oulput followed by one blank.

With the exception of control characters, each character increments the column
counter by one. A Backspace ($08) decrements the counter while a..J ($OD)
clears the counter. Tabs ($09) are expanded with blanks to ~OD 8 character
zone fields.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
me slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk
error occurs in the spool me, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

JOPEL - Put Encoded Line To Console
JOPLC - Put Line To Console
JOP~C - Put ~essage To Console

None

XPEM MESOl ;OUTPUT MESSAGE

MESOl DC.B $80,'Lev',-2,'Name:ext'
DC.B -6,'Type',-6,'Size',-6
DC.B 'Dat',-'e','created',-4
DC.B 'Las',-'t','update',O

$80 = Carriage return/line feed

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c
c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XPLC
Put Line to Console

$A08A

MPOOSK2

XPLC

In (AI) = ASCIl string

The PUT LINE TO CONSOLE primitive outputs the ASCII character string
pointed to by address register Al to the user console and/or SPOOL file. The
string is delimited by the null character.

With the exception of control characters and characters with the parity bit on,
each character increments the column counter by one. A Backspace ($08) decre
ments the counter while a.J ($OD) clears the counter. Tabs ($09) are expanded
with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and spool unit (SPU$(A6))
variables of the TCB, then the processed characters are written to the spool unit
file slot (SPI$(A6)) and are not sent to the corresponding output ports. If a disk
error occurs in the spool file, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

XPEL - Put Encoded Line To Console
XPEM - Put Encoded Message To Console
XPMC - Put Message To Console

None

LEA.L MES1(PC),Al
XPLC
MOVE.L NUMB(PC),Dl
XCBD
XPLC

NUMB DS.L 1
MESl DC.B $OA,$OD

DC.B 'ANSWER=',0

;OUTPUT MESSAGE

;GET NUMBER
;CONVERT TO DECIMAL
;OUTPUT

;NUMBER HOLDER
;MESSAGE U

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 95

XPMC
Put Message to Console

96

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A08C

MPOOSK2

XPMC <message>

None

The PUT MESSAGE TO CONSOLE primitive outputs the ASCII character
string pointed to by the message address word immediately following the POOS
call to the user console and/or SPOOL file. The address is a PC relative 16-bit
displacement to the message. The output string is delimited by the null character.

With the exception of control characters and characters with the parity bit on,
each character increments the column counter by one. A Backspace ($08) decre
ments the counter while a .J ($00) clears the counter. Tabs ($09) are expanded
with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
file slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk
error occurs in the spool file, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

XPEL - Put Encoded Line To Console
XPEM - Put Encoded Message To Console
XPLC - Put Line To Console

None

XPMC

MES2

MES2

DC.B
DC.B

3.3- 10/87

;OUTPUT HEADER

$OA,$OD ;HEADER MESSAGE
'PDOS REV 3.0',0

PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

I~\

~.""'"

c

o
c

(

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

$A08E

MPOOSK2

XPSC

In Dl.B = Row
D2.B = Column

Uses PSC$(A6) as lead characters.

XPSC
Position Cursor

The POSITION CURSOR primitive positions the cursor on the console terminal
according to the row and column values in data registers Dl and D2. Register
Dl specifies the rowan the terminal and generally ranges from 0 to 23, with 0
being the top row. Register D2 specifies the column of the terminal and ranges
from 0 to 79, with 0 being the left-hand column. Register D2 is also loaded into
the column counter reflecting the true column of the cursor.

PSC$(A6)= BIll 1111 0222 2222
B = 0 then $00 bias; = 1 then $20 bias
o = 0 send row first then column

1 send column then row
1 = 7 bits for first ASCII lead in character
2 = 7 bits for second ASCII lead in character

The XPSC primitive outputs either one or two leading characters followed by
the row and column. The leading characters output by XPSC are located in
PSC$(A6) of the task: control block. These characters are transferred from the
parent task to the spawned task during creation. The initial characters come
from the BIOS module.

If the high bit is set in the PSC$. W then the row and column characters are
biased by $20; otherwise, they have a zero bias. If the parity bit in the low order
byte is zero, then the sending order is row/column; otherwise, it is reversed.

If PSC$ is zero or if the frrst byte equals $FF, then POOS makes a call into the
BIOS for custom position cursor with a $20 bias. The entry point is B_PSC
beyond the BIOS table. If the high order byte of PSC$ is -1, PDOS makes a call
into the BIOS at B_PSC beyond byte ofPSC$ and executes the proper code
depending on the value found in the low order byte.

The MlERM utility is used to change the position cursor codes. MlERM will
not handle calls to the BIOS for custom position cursor.

XCLS - Clear Screen
XRCP - Read Port Cursor Position
BIOS in PDOS Developer's Reference Manual

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 97

XPSC - Position Cursor

98

Possible
Errors:

Example:

None

OUTM MOVEQ.L it23,Dl
CLR.L D2
XPSC
XPMC MESl

3.3-10187

iPOSITION TO BOTTOM
i OF SCREEN
iPOSITION
iOUTPUT MESSAGE

POOS ASSEMBLY PRIMITIVES REFERENCE

o

r('\ ...
V

o
()

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AODC

MPDOSF

XPSF
<status error return>

In 01.W = File ID
02L = Byte position

A byte position equal to -1 positions to the end of the fIle.

XPSF
Position File

The POSITION FILE primitive moves the fIle byte pointer to any byte position
within a fIle. The file ID is given in register 01 and the long word byte position
is specified in register 02.

An error occurs if the byte position is greater than the current end-of-file marker.

A contiguous fIle greatly enhances the speed of the position primitive since the
desired sector is directly computed. However, the position primitive does work
with non-contiguous files, as PDOS follows the sector links to the desired byte
position.

A contiguous file is extended by positioning to the end-of-file marker and writ
ing data. However, PDOS will alter the file type to non-contiguous if a con
tiguous sector is not available. This would result in random access being much
slower.

XRFP - Read File Position
XRWF - Rewind File

52 = File Not Open
59 = Bad File Slot
70 = Position EOF
Oiskerrors

RN

MOVE.W D5,D1 ;GET FILE ID
MOVE.W RN(AO),D2 ;GET RECORD #
MULU.W #36,D2 ;GET BYTE INDEX
XPSF ;POSITION WITHIN FILE

BNE.S ERROR

DS.W 1 ;RECORD #

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 99

XPSP
Put Space to Console

100

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A098

MPOOSK2

XPSP

None

The PUT SPACE TO CONSOLE outputs a Space ($20) character to the user
console. There are no registers or status involved.

If there are coinciding bits in the unit (UNT$(A6» and spool unit (SPU$(A6»
variables of the TCB, then the processed characters are written to the spool unit
fIle slot (SPI$(A6» and are not sent to the corresponding output ports. If a disk
error occurs in the spool fIle, then all subsequent output characters echo as a bell
until the error is corrected by selecting a different UNIT or resetting the SPOOL
UNIT.

XPCC - Put Character(s) To Console

None

MOVEQ.L *N,Dl ;GET NUMBER
XCBM MESOl ; CONVERT
XPLC ;OUTPUT LINE
XPSP ;OUT SPACE

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

c

o
c

(

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XRBF
Read Bytes From File

$AODE

MPOOSF

XRBF
<status error return>

In

Out

DOL = Number of bytes
D1.W = File ID
(A2) = R/W buffer address
D3.L = Number of bytes read

(On EOF only)

The READ BYTES FROM FILE primitive reads the number of bytes specified
in register DO from the fIle specified by the fIle ID in register D 1 into a memory
buffer pointed to by address register A2. If the channel buffer has been rolled to
disk, the least-used buffer is freed and the desired buffer is restored to memory.
The fIle slot ID is placed on the top of the last-access queue.

If an error occurs during the read operation, the error return is taken with the
error number in register DO and the number of bytes actually read in register D3.

The read is independent of the data content. The buffer pointer in register A2 is
on any byte boundary. The buffer is not terminated with a null.

A byte count of zero in register DO results in one byte being read from the file.
This facilitates single byte data acquisition.

XRLF - Read Line From File
XWBF - Write Bytes To File
XWLF - Write Line To File

52 = File Not Open
56 = End Of File
59 = Bad File Slot
Disk errors

MOVE.L #256,DO ;READ 256 BYTES
MOVE.W D5,Dl ;GET FILE ID
MOVEA.L A6,A2 ;READ INTO USER BUF
XRBF ;READ DATA

BNE.S ERROR

ERROR CMPI.W #56,DO ;EOF?
BNE.S ERROR2 ;N

MOVE.L D3,DO ;Y, GET # OF BYTES READ

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 101

XRCN
Reset Console Inputs

102

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOB2

MPOOSF

XRCN

None

The RESET CONSOLE INPUTS closes the current procedure flIe. If there are
other procedure flies pending (nested), then they become active again.

XCBC - Check For Break Character

None

DONE XRCN ;CLOSE FILES

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o

c

C· ,
.~

o
c

(

(~

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XRCP
Read Port Cursor Position

$A092

MPOOSK2

XRCP

In
Out

DO.W = Port #
D1.L=Row
D2.L = Column

If DO.W=O, then the current port (PRT$(A6» is used.

The READ PORT CURSOR POSITION primitive reads the current cursor posi
tion for the port designated by data register DO.B. The POOS system maintains
a column count (0-79) and a row count (0-23) for each port. When the cursor
reaches row 23, the count is not incremented, acting like a screen scroll.

XCLS - Clear Screen
XPSC - Position Cursor

None

MOVEQ.L #1,00 ;LOOK AT PORT 1
XRCP ;REAO POSITION
SWAP 01
MOVE.W 02,01 ;Ol.L=Y/X POSITION

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 103

XRDE
Read Next Directory Entry

104

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOA6

MPDOSF

XRDE
<status error return>

In DO.B = Disk number
Dl.B = Read flag (O=lst)
(A2) = Last 32 byte directory entry
TWl$ = Sector number

Out
TW2$ = number of directory entries
Dl.W = Sector number
(A2) = Next entry

The READ NEXT DIRECTORY ENTRY primitive reads sequentially through
a disk directory. If register D 1.B is zero, then the routine begins with the ftrst
directory entry. If register D 1.B is nonzero, then based on the last directory
entry (pointed to by register A2), the next entry is read.

The calling routine must maintain registers DO.B and A2, the user I/O buffer,
and temporary variables TWl$ and TW2$ of the task control block between
calls to XRDE.

53 = File Not Defined (end of directory)
68 = Not PDOS Disk
Disk errors

START MOVEQ.L 1t0,D1
BRA.S LOOP02

*
LOOP MOVEQ.L 1t-1,D1
*
LOOP 02 MOVE.W D5,RO

XRDE
BNE.S ERROR

MOVE.B 12(A2),R4

;BEGIN WITH 1ST ENTRY

;READ NEXT ENTRY

;GET DISK It
;READ DIRECTORY ENTRY
; ERROR
;GET FILE TYPE

3.3-10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

c

(

(

(

(

(

c/

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XRDM
Dump Registers

$A02A

MPOOSKI

XRDM

In All

The DUMP REGISTERS primitive formats and outputs all the current register
values of the 68000 to the user console along with the program counter, status
register, and the supervisor stack. It also outputs the VBR register on 68010/20
systems.

The registers and status are not affected by this primitive.

XBUG - Debug Call
XDMP - Dump Memory From Stack
PDOS Monitor, Editor, Utilities manual

None

MOVEM.L RL, (A7)+ ;RESTORE REGISTERS
XRDM ;DUMP RESULTS

PDDS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 105

XRDN
Read Directory Entry by Name

106

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOA8

MPOOSF

XRDN
<status error return>

In DO.B = Disk number
MWB$ = File name

Out D1.W = Sector number in memory
(A2) = Directory entry
TW2$ = Entry count

The READ DIRECfORY ENTRY BY NAME primitive reads directory entries
by file name. Register DO.B specifies the disk number. The me name is located
in the Monitor Work Buffer (MWB$) in a fIXed formal Several other
parameters are returned in the monitor lEMP storage of the user task control
block. These variables assist in the housekeeping operations on the disk direc
tory.

XFFN - Fix File Name

53 = File Not Defined
68 = Not POOS Disk
Disk errors

OPENF LEA.L FN(PC),Al ;GET FILE NAME POINTER
XFFN

BNE.S ERROR
XRDN

BNE.S ERROR

3.3-10/87

;FIX NAME IN MWB
; ERROR
;READ DIRECTORY ENTRY
; ERROR

PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

0'·'
"

"

(

(--

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XRDT
Read Date

$A05C

MPOOSK3

XRDT

Out (AI) = 'MN/DY/YR'<null>

The READ DA 1E primitive returns the current system date as a nine character
string. The format is"MN/DY /YR" followed by a null. Address register Al
points to the string in the monitor work buffer.

XFrD - Fix Time And Date
XPAD - Pack ASCn Date
XRTM - Read Time
XUAD - Unpack ASCn Date
XUDT - Unpack Date
XUTM - Unpack Time

None

GETD XPMC
XRDT
XPLC

MESl ;OUTPUT PROMPT
;GET DATE
;OUTPUT TO SCREEN

MESl DC.B 'DATE=',O

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 107

XRFA
Read File Attributes

108

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOEO

MPOOSF

XRFA
<status error return>

In
Out

(AI) = File name
(A2) = Directory entry
OO.L = Disk number
DIL = File size (in bytes)
D2L = Level/attributes

Uses multiple directory file search.

The READ FILE ATIRIBUTES primitive returns the disk number of where the
fIle was found in data register OO.L. Data register DI L is returned with the size
of the fIle in bytes. The file directory level is returned in the upper word of
register D2L and the file attributes are returned in register D2.W. The file name
is pointed to by address register AI. File attributes are defined as follows:

$80xx AC - Procedure file
$40xx BN -Binary file
$20xx OB - 68000 object file
$lOxx SY - 68000 memory image
$08xx BX -.BASIC binary token file
$04xx EX - BASIC ASCII file
$02xx TX - Text file
$Olxx DR - System I/O driver

$xx04 C - Contiguous file
$xx02 * - Delete protect
$xxOl ** - Delete and write protect

XCFA - Close File With Attribute
XWF A - Write File Attributes
XWFP - Write File Parameters

50 = Bad File Name
53 = File Not Defined
60 = File Space Full
Disk errors

LEA.L FN(PC),Al ;GET FILE NAME

FN

XRFA
BNE.S ERROR

LRL.W 12,02
BCC.S PNO

;READ FILE ATTRIBUTES
; PROBLEM
;BINARY FILE?
;N
;Y

DC.B
EVEN

'PRGM:BIN',O

3.3-10/87 POOS ASSEMBL V PRIMITIVES REFERENCE

o
o

()

c

o

('

(

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOFE

MPOOSF

XRFP
<status error return>

In
Out

Dl,W = File ID
(A3) = File slot address
D2L = Byte position
D3.L = EOF byte position

XRFP
Read File Position

The READ FILE POSITION primitive returns the current fIle position, end-of
fIle position, and fIle slot address. The open fIle is selected by the fIle ID in data
register D I.W.

Address register A3 is returned pointing to the open file slot Data registers
D2.L and D3.L are returned with the current file byte position and the end-of
fIle position respectively.

XPSF - Position File
XRWF - Rewind File

52 = File Not Open
59 = Bad File Slot
Disk errors

MOVE.W D5,D1
XRFP

BNE.S ERROR

;GET FILE ID
;READ FILE POSITION

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10/87 109

XRLF
Read Line From File

110

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOE2

MPOOSF

XRLF
<status error return>

In

Out

D1.W = FileID
(A2) = R/W buffer address
D3L = #I of bytes read

(On BOF only)

The READ LINE primitive reads one line, delimited by a carriage return ..1,
from the me specified by the file ID in register D 1. If a ..1 is not encountered
after 132 characters, then the line and primitive are terminated. Address register
A2points to the buffer in user memory where the line is to be stored. If the chan
nel buffer has been rolled to disk, the least-used buffer is freed and the buffer is
restored to memory. The ftle slot ID is placed on the top of the last-access queue.

If an error occurs during the read operation; the error return is taken with the
error number in register DO and the number of bytes actually read in register D3.

The line read is dependent upon the data content All line feeds (J..) are dropped
from the data stream and the ..1 is replaced with a null. The buffer pointer in
register A2 may be on any byte boundary. The buffer is not tenninated with a
null on an error return.

XRBF - Read Bytes From File
XWBF - Write Bytes To File
XWLF - Write Line To FIle --

52 = File Not Open
56 = End of File
59 = Bad File Slot
Disk errors

MOVE.W D5,D1 ;GET FILE ID
LEA.L BF(PC),A2 ;GET BUFFER POINTER
XRLF ; READ LINE

BNE. S- -ERROR

BF DS.B 132 ;MAXIMUM BUFFER NEEDED

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o

o
c

(

C i
1]. __ ~

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XRNF
Rename File

$AOE4

MPOOSF

XRNF
<status error return>

In (AI) = Old fIle name
(A2) = New fIle name or level number

The RENAME Fll..E primitive renames a fIle in a PDOS disk: directory. The old
fIle name is pointed to by address register AI. The new file name or level is
pointed to by address register A2.

The XRNF primitive is used to change the directory level for any file by letting
the new fIle name be a numeric string equivalent to the new directory level.
XRNF first attempts a conversion on the second parameter before renaming the
fIle. If the string converts to a number without error, then only the level of the
fIle is changed.

XDFL - Defme File
XDLF - Delete File

50 = Bad File Name
51 = File Already Defined
Disk: errors

LV
Fl
F2

LEA.L F1(PC),A1 iGET OLD FILE NAME
LEA.L F2(PC),A2 iGET NEW FILE NAME
XRNF iRENAME FILE

BNE.S ERROR iPROBLEM
MOVEA.L A2,A1 iPOINT TO NEW NAME
LEA.L LV(PC),A2 iGET NEW LEVEL
XRNF iCHANGE DIRECTORY LEVEL

BNE.S ERROR

DC.B
DC.B
DC.B
EVEN

'10',0
'OBJECT:OLD',O
, OBJECT: NEW' , 0

PDas ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 111

XROO
Open Random Read Only File

112

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOE6

MPOOSF

XROO
<status error return>

In
Out

(AI) = File name
DO.W = File attribute
D1.W = File ID

Uses multiple directory file search.

The OPEN RANDOM READ ONLY FILE primitive opens a file for random ac
cess by assigning the file to an area of system memory called a file slot, and
returning a file ID and file attribute to the calling program. Thereafter, the file is
referenced by the file ID and not by the file name. This type of file open
provides read only access.

The file ID (returned in register RI) is a2-byte number. The left byte is the disk
number and the right byte is the channel buffer index. The file attribute is
returned in register DO.

D1.W = (Disk #) x 256 + (File slot index)
DO.W = (ABOS BETD xxxx xCWD)

Since the file cannot be altered, it cannot be extended nor is the LAST UPDATE
parameter changed when it is closed. All data ttansfers are buffered through a
channel buffer and data movement to and from the disk is by full sectors.

A new file slot is allocated for each XROO call even if the file is already open.
The file slot is allocated beginning with slot I to 32.

50 = Bad File Name
53 = File Not Defined
61 = File Already Open
68 = Not POOS-DiSk.
69 = Out of File Slots
Disk errors

LEA.L HLPFN(PC),Al iPOINT TO FILE NAME
XROO

BNE'. S ERROR
*
HELP02 MOVEA.L A6,A2

XRLF
BNE.S SHWF22

iOPEN FILE

iGET BUFFER
iREAD LINE

HLPFN DC.B 'HLPTX',O

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

o
o

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XROP
Open Random File

$AOE8

MPOOSF

XROP
<status error return>

In
Out

(AI) = File name
DO.W = File attribute
D1.W = File ID

Uses multiple directory file search.

The OPEN RANDOM FILE primitive opens a file for random access by assign
ing the file to an area of system memory called a file slot, and returning a file ID
and file attribute to the calling program. Thereafter, the fIle is referenced by the
fIle ID and not by the fIle name.

DO.W = (ABOS BETU xxxx xCWD)
D1.W = (Disk #) x 256 + (File slot index)

The fIle ID (returned in register D 1) is a 2-byte number. The left byte is the disk
number and the right byte is the channel buffer index. The file attribute is
returned in register DO.

The END-OF-FILE marker on a random fIle is changed only when the fIle has
been extended. All data transfers are buffered through a channel buffer and data
movement to and from the disk is by full sectors.

The ftle slot is allocated beginning with slot 32 to slot 1. If the file is already
open, then the file slot is shared.

50 = Bad File Name
53 = File Not Deftned
61 = File Already Open
68 = Not POOS Disk
69 = Out of File Slots
Disk errors

LEA.L FN(PC),A1 ;GET FILE NAME

FN

XROP ;OPEN RANDOM FILE
BNE.S ERROR

MOVE.W DO,D5
SWAP D5
MOVE.W D1,D5

; ERROR
;SAVE TYPE

;SAVE FILE ID

DC.B
EVEN

'FILENAME:EXT',O

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10187 113

XRPS
Read Port Status

114

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A094

MPDOSK2

XRPS
<status error return>

In
Out

DO.W = Port number
DIL = ACI$.W I portflag.B I Status.B

If DO.W=O, then the current port (PRT$(A6» is used.

The READ PORT STATUS primitive reads the current status of the port
specified by data register DO.W. The high order word of data register DIL is
returned zero if no procedure file is open. Otherwise, it is returned with ACI$.

The low order word is returned with the port flag bits and the status as returned
for the port UART routine. The flag bits indicate if eight bit 110 is occurring, if
DTR or Ctrl S Ctrl Q protocol is in effect, and other flags.

portflag. = fwpi adcs
\\\\ _ a = Ctrl s Ctrl Q enable
\\\\ _ 1 = Ignore control character
\\\\ _ 2 = DTR enable

XBCP - Baud Console Port
XSPF - Set Port Flag

\\\\ _ 3 = a-bit character enable
\\\\ __ 4 = Receiver interrupt disable
\\\ __ 5 = Even parity enable
\\ __ 6 = (Reserved)
__ 7 = (Reserved)

o
o

(~,

"----,,)

o

rf~

66 = Bad Port/Baud Rate V

MOVEQ.L '0,00 iLOOK AT CURRENT PORT
XRPS

BNE.S ERROR
BTST.B #0,01 iASAQ?

BNE.S CSCQ iY

3.3- 10187 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

(

(~

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOC2

MPOOSF

XRSE
<status error return>

In DO.B = Disk number
01.W = Sector number
(A2) = Buffer pointer

XRSE
Read Sector

The READ SECTOR primitive calls a system-defined, hardware-dependent
program which reads 256 bytes of data into a memory buffer pointed to by ad
dress register A2. The disk is selected by data register DO. Register 01 specifies
the logical sector number to be read.

BIOS in PDOS Developer's Reference Manual
XISE - Initialize Sector
XRSZ - Read Sector Zero
XWSE - Write Sector

Oiskerrors

CLR.W DO
MOVEQ.L 1I2,Dl
LEA.L BUFF(PC),A2
XRSE

BNE.S XERR

XERR XERR
BUFFER DS.B 256

;SELECT DISK 1I0
;SELECT SECTOR 2
;POINT TO BUFFER
;READ INTO BUFFER
; ERROR

;DISK ERROR
; BUFFER

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 115

XRSR
R~ad Status Register

116

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A042

MPOOSKI

XRSR

Out DO.W = 68000 status register

The READ STATUS REGISTER primitive allows you to read the 68000 status
register. Of course, this is equivalent to the"MOVE.W SR,Dx" instruction on
the 68000. However, this instruction is privileged on the 68010 and 68020.
Hence, it is advisable to use the XRSR primitive to read the status register to
make software upward compatible.

XLSR - Load Status Register
XSUP - Enter Supervisor Mode
XUSP - Return to User Mode

None

XRSR i READ SR
ANDI.W i$0700,DO

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

0,
:"

o

o

c

(

('\

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOB4

MPDOSF

XRST

In D1.W =-1.. .. Reset by task
>=0 ... Reset by disk

XRST
Reset Disk

The RESET DISK primitive closes all open files either by task or disk number.
The primitive also clears the assigned input file !D. If register Dl equals -1, then
all files associated with the current task are closed. Otherwise, register D 1
specifies a disk and all files opened on that disk are closed.

XRST has no error return and as such, closes all files even though errors occur
in the close process. This is necessary to allow for recovery from previous errors.

XCFA - Close File With Attribute
XCLF - Close File

None

DONE MOVEQ.L #-l,Dl ;CLOSE ALL TASK FILES
XRST

MOVE.W D5,Dl ;PREPARE TO REMOVE DISK
XRST ;CLOSE ALL FILES

;REMOVE DISK

PODS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 117

XRSZ
Read Sector Zero

118

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOC4

MPDOSF

XRSZ
<status error return>

In
Out

DO.B = Disk number
D1.L=O
(A2) = User buffer pointer (A6)

The READ SECTOR ZERO primitive is a system-defined, hardware-dependent
program which reads 256 bytes of data into the user memory buffer (usually
pointed to by address register A6). The disk is selected by data register DO.W.
Register D 1.L is cleared and logical sector zero is read.

BIOS in PDOS Developer's Reference Manual
XISE - Initialize Sector
XRSE - Read Sector
XWSE - Write Sector

cf"'.·.\\. iU)

/::--~,

Disk errors "1lY

MOVEQ.L #l,DO ;SELECT DRIVE 1
XRSZ ;READ HEADER

BNE.S ERROR
XPBC ;PRINT DISK NAME

·c··\ I' ,

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

(-

(

(-

(

(- ..

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$A044

MPOOSKI

XRlE

In SSP = Status register.W
Program counter.L

XRTE
Return From Interrupt

The RETIJRN FROM INTERRUPT primitive is used to return from an interrupt
process routine with a context switch. This allows an immediate rescheduling of
the highest priority ready task which may be suspended pending the occurrence
of an event set by the interrupt routine. It also allows a return from an interrupt
to awaken a specific task regardless of higher priority tasks. To signal XRlE to
return to a specific task, the interrupt routine sets the task number into byte
TQUX.(AS) in the system SYRAM.

If the interrupted system is locked when the XRlE primitive is executed, then
the reschedule flag (RFLG.(AS» is cleared and a return from exception instruc
tion (RlE) is executed. When the system clears the task lock, RFLG. is tested
and set (T AS) and a rescheduling occurs at that time.

None

Example: ;PROCESS INTERRUPT
MOVEQ.L #66,Dl
XSEV ;SET EVENT 66
XRTE ;RETURN FROM INTERRUPT

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 119

XRTM
Read Time

120

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A05E

MPDOSK3

XRTM

Out (AI) = 'HR:MN:SC'<null>
lO(AI).W = Tics/second (B.TPS)
I2(AI).L = Tics (TICS.)

The READ TIME primitive returns the current time as a nine-character string.
The format is"HR:MN:SC" followed by a null. Address register Al points to the
string in the monitor work buffer.

XFfD -Fix Time And Date
XP AD - Pack ASCII Date
XRDT - Read Date
XUAD - Unpack ASCII Date
XUDT - Unpack Date
XUTM - Unpack Time

None

GETD XPMC
XRTM
XPLC

MESl ;OUTPUT PROMPT
;GET TIME
;OUTPUT TO SCREEN

MESl DC.B 'TIME=',O

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

,0,"
I ,~"_'

".~

,~

(

('

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

XRTP
Read Time Parameters

$A034

MPOOSKI

XR1P

Out DO.L = TICS.
Dl.L = MONTH/DAY /YEARIO
D2.L = HOURS/MINUTES/SECONDS/O
D3.L= B.1PS

The READ TIME PARAMETERS primitive returns the current time
parameters. Data register DO returns with the current tic count (TICS.(AS».
Register D 1.L returns with the current date and register D2.L the current time.
Both are three bytes that are left-justified. Finally, data register D3.L returns
with the number of clock tics per second.

XFfD - Fix Time And Date
XP AD - Pack ASCII Date
XRDT - Read Date
XRTM - Read Time
XUAD - Unpack ASCII Date
XUDT - Unpack Date
XUTM - Unpack Time

None

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 121

XRTS
Read Task Status

122

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A012

MPOOSKl

XRTS
<status return>

In
Out

DO.W = Task number
D l.L = 0 - Not executing

= +N - Time slice
= -N - (Event #l/Event #2)

AO.L = 1LST entry (IF -DO: AO=TLST.)
SR = Status ofD1.L

IfDO.W=-l, then the current task number is returned in D1.L.

The READ TASK STATUS primitive returns in register Dl and the status
register returns the time parameter of the task specified by register DO. The time
reflects the execution mode of the task. If D 1 returns zero, then the task is not in
the task list. If D 1 returns a value greater than zero, then the task is in the run
state (executing). If Dl returns a negative value, then the task is suspended pend
ing event -(Dl).

The task number is returned from the CREATE TASK BLOCK (XCTB) primi
tive. It can also be obtained by setting data register DO equal to a minus one. In
this case, register D1.L is returned with the current task number.

XSTP - Set/Read Task Priority

None

WAIT MOVEQ.L 12,00 ;WAIT TO TASK 0
XRST ; TO DIE

BNE.S WAIT ;STILL GOING
; DONE

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o
o

I,j'

(

(

(~

(/

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XRWF
Rewind File

$AOEA

MPOOSF

XRWF
<status error return>

In Ol.W= FileID

The REWIND FILE primitive positions the file specified by the file ID in
register 01, to byte position zero.

XPSF - Position File
XRFP - Read File Position

52 = File Not Open
59 = Bad File Slot
Oiskerrors

REWIND MOVE.W D5,D1 ;GET FILE ID
XRWF ;REWIND FILE

BNE.S ERROR ; PROBLEM

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 123

XSEF
Set Event Flag With Swap

Value:

Module:

Syntax:

Registers:

Description:

124

$A018

MPOOSK1

XSEF
<status return>

In
Out

Dl.B = Event (+=Set(1), -=Clear(O))
SR= NE Set

EQ Clear

An XSWP is automatically executed after the event is set or cleared. Event 128
is local to each task.

If D l.B is positive, then the event is set.

If D l.B is negative, then the event is cleared.

The SET EVENT FLAG WITH SWAP primitive sets or clears an event flag bit.
The event number is specified in data register D 1.B and is modulo 128. If the
content of register D l.B is positive (1 to 127, $01 to $7F), then the event bit is
set (1). IfDl.B is negative (-1 to -127, $FF to $81), the bit is cleared (=0). Event
128 can only be cleared. (It is set by the delay event list.)

If the event is 128 ($80) then the task's local event is cleared. Event zero ($00)
is illegal to use. The status of the event bit prior to changing the event is
returned in the status register. If the event was cleared, then the"EQ" status is
returned; otherwise, if the event was set, then a "NE" status is returned Also, an
immediate context switch occurs thus scheduling any higher priority task pend
ing on that event.

Four types of event flags:
1-63 = Software

64-80 = Software self clearing
81-127 = System

128 = Local to task

3.3-10/87 PDOS ASSEMBL V PRIMITIVES REFERENCE

G

c
c'

(

(

C:

See Also:

Possible
Errors:

Example:

XSEF - Set Event Flag with Swap

Events are summarized as follows:
1-63= Software events

64-80= Software self clearing events
81-95= Output port events

96-111= Input port events
112= 1/5 second event
li3= 1 second event
114= 10 second event
115= 20 second event
116= TTA active
117=
118= Printer
119= Disk
120= Level 2 lock
121= Level 3 lock
122= Batch event
123= Spooler event
124=
125=
126= Error message disable
127= System utility
128= Local

XDEV - Delay Set/Oear Event
XSEV - Set Event Flag
XSUI - Suspend Until Interrupt
XTEF - Test Event Flag

None

MOVEQ.L #30,01 ;SET EVENT 30
XSEF ;SET EVENT

MOVEQ.L #-35,01 ;CLEAR EVENT 35
XSEF ; SET EVENT

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 125

XSEV
Set Event Flag

Value:

Module:

Syntax:

Registers:

Description:

126

$A046

MPDOSKI

XSEV
<status retUlll>

In
Out

Dl.B = Event (+=Set(l), -=Clear(O»
SR= NE Set

EQReset

Event 128 is local to each task.

If D 1.B is positive, then the event is set.

If D 1.B is negative, then the event is reset.

The SET EVENT FLAG primitive sets or clears an event flag bit. The event
number is specified in data register Dl.B and is modulo 128. If the content of
register Dl.B is positive (1 to 127, $01 to $7F), then the event bit is set (=1). If
D1.B is negative (-1 to -127, $FF to $811), the bit is cleared (=0). Event 128 can
only be cleared. (It is set by the delay event list.) Event zero ($00) is illegal to
use. If the event is 128 ($80) then the task's local event is cleared. The status of
the event bit prior to changing the event is returned in the status register. If the
event was cleared, then the"EQ" status is returned.; otherwise, if the event was
set, then a "NE" status is returned. A context switch DOES NOT occur with this
call making it useful for interrupt routines outside the PDOS system.

Four types of event flags:
1-63 = Software

64-BO = Software self clearing
Bl-127 = System

12B= Local to task

Events are summarized as follows:
1-63= Software events

64-BO= Software self clearing events
Bl-95= Output port events

96-111= Input port events
112-115= Timer events
116-127= System control events

12B= Local

3.3-10/87 PDOSASSEMBL Y PRIMITIVES REFERENCE

G

r'c
\~

c'
c

(

(

See Also:

Possible
Errors:

Example:

XDEV - Delay Set/Reset Event
XSEV - Set Event Flag
XSUI - Suspend Until Interrupt
XTEF - Test Event Flag

None

XSEV - Set Event Flag

MOVEQ.L #30,D1 ;SET EVENT 30
XSEV ;SET EVENT

MOVEQ.L #-35,D1 ;CLEAR EVENT 35
XSEV ;SET EVENT

POOS ASSEMBLY PRIMITIVES REFERENCE· 3.3-10/87 127

XSMP
Send Message Pointer

128

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

LEA.L
AGAIN MOVE.B

XSMP
BEQ.S

XWSP
BRA.S

AROUND
MESS DC.B

$AOO2

MPOOSKI

XSMP
<status return>

In

Out

DO.B = Message slot number (0 .. 15)
(AI) = Message
SR = EQ Message sent (Event[64+s1ot #]=1)

NENo message sent
DO.L = Error number62 if message pointer error

The SEND MESSAGE POINTER primitive sends a 32-bit message to the mes
sage slot specified by data register DO.B. Address register Al contains the mes
sage.

If there is still a message pending, then the primitive immediately returns with
status set"Not Equal" and DO.L returns the error number 62. Otherwise, the mes
sage is taken by POOS event (64 + message slot number) is set (=1) indicating a
message is ready, and status is retumed"Equal".

The primitive XSMP is only valid for message slots 0 through IS. (This is be
cause of current event limitations.)

XGMP - Get Message Pointer
XGTM - Get Task Message
XKTM - Kill Task Message
XSTM - Send Task Message

62 = Bad Message Ptr Call

MESS (PC) , Al ;LOAD ADDRESS OF MESS INTO Al
i5,DO ;POINT TO MESSAGE SLOT is

;SEND MESSAGE TO SLOT 5
AROUND ;MESSAGE SENT

;MESSAGE PENDING, SO WAIT AWHILE
AGAIN ; RETRY

$OA,$OD,'HELLO PDOS USERS',O

3.3-10/87 PDOS ASSEMBL V PRIMITIVES REFERENCE

o
c

o
c

i
I'

c

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Example:

XSOE
Suspend on Physical Event

$A112

MPOOSKI

XSOE

In

Out

OIL = Event 1 D~riptor.w,Event 0 Descriptor.w
AO = Event 0 address (0=00 event 0 to suspend on)
Al = Event 1 address (O=no event 1 to suspend on)
DOL = -1 if awaken on event 0; 1 if awaken on event 1

This call is the same as XSUI but with physical events.

XSOE allows a task to suspend on one or two events within the system. Tasks
that suspend on physical events are listed as suspended on events -1/1. If event 0
is the scheduling event, a -1 is retmned; otherwise, a 1 is returned.

The event descriptor is a 16-bit word that defines both the bit number at the
specified AO,Al address and the action to take on the bit The following bits are
defined:

Bit number -- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T x x x x x x x S x x x x B B B

T = Should the bit be toggled on scheduling?
l=Yes (toggle), O=No (do not toggle)

S = Suspend on event bit clear or set
l=Suspend on SET, O=Suspend on CLEAR

BBB = The 680xO bit number to use as an event
x = Reserved, should be O.

Since the bit number is specified in the lower three bits of the descriptor, you
may use the descriptor with the 68OXO BTST, BCLR, BSET instructions.

XDPE - Delay On Physical Event
XTLP - Translate Logical To Physical Event

MOVE.L i$80800081,D1 ;SET DESCRIPTORS
LEA.L PEV(PC),AO ;GET PEV ADDRESS
MOVEA.L AO,A1 ;COPY FOR EV1
MOVE.L nOO,DO ;SET TIMEOUT
BCLR.B DO, (A1) ;CLEAR TIMEOUT EVO
XDPE ;START TIMER
XSOE ; SUSPEND

PEV DC.W 0

poes ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 129

XSOP
Open Sequential File

130

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$AOEC

MPOOSF

XSOP
<status error return>

In
Out

(AI) = File name
DO.W = File attribute
D1.W = File ID

Uses multiple directory file search.

The OPEN SEQUENTIAL Fll..E primitive opens a ftle for sequential access by
assigning the ftle to an area of system memory called a file slot and returning a
ftle ID and ftle type to the calling program. Thereafter, the ftle is referenced by
the ftle ID and not by the ftle name.

The ftle ID (returned in register Dl) is a 2-byte number. The left byte is the disk
number and the right byte is the ftle slot index. The file attribute is returned in
DO.

DO.W = (ABOS BETD xxxx xCDW)
Dl;W = (Disk #) x 256 + (File slot index)

ABOS BETD Axxx xCDW
\ \ \\ \ \ \ \ \ \ \ _$01 - Write Protect
\\\\ \\\\ \ _$02 - Delete Protect

\ \ \ \ \ \ \ \ \ _$04 - Contiguous File
\\\\ \\\\ \ ___ $80 - File Altered
\\\\ \\\\ $01 - Driver
\\\\ \\\ $02 - ASCII Text File
\\\\ \\ $04 - BASIC ASCII File
\\\\ \ $08 - BASIC Token File
\\\\ $10 - System Module
\\\ $20 - Object Module
\\ $40 - Binary File

\ $80 - Procedure File

The END-OF-Fll..E marker on a sequential ftle is changed whenever data is writ
ten to the ftle. All data transfers are buffered through a channel buffer; data
movement to and from the disk is by full sectors.

The ftle slots are allocated beginning with slot 32 down to slot 1.

50 = Bad File Name
53 = File Not Defined
61 = File Already Open
68 = Not POOS Disk
69 = Out of File Slots
Disk errors

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o

OJ

o

(
Example:

FN

(

(

(

PDOS ASSEMBLY PRIMITIVES REFERENCE

LEA.L
XSOP

BNE.S
MOVE.W
SWAP
MOVE.W

DC.B
EVEN

3.3 - 10/87

xsoP - Open Seguential File

FN(PC) ,Al ;GET FILE NAME
;OPEN SEQUENTIAL FILE

ERROR ; ERROR
DO,DS ;SAVE TYPE
DS
Dl,DS ;SAVE FILE ID

'FILENAME:EXT',O

131

XSPF
Set Port Flag

132

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A09A

MPOOSK2

XSPF
<status error return>

In

Out

DO.W = Port number
D1.B = Port flag (fwpiSdcs)
D l.B = Old port flag

IfDO.W=O, then the current port (PRT$(A6» is used.

The SET PORT FLAG primitive stores the port flag passed in data register
Dl.B in the port flag register as specified by register DO.W.

If flag bits"p","i", or"S" change, the BIOS baud port routine is called.

XBCP - Baud Console Port
XRPS - Read Port Status

66 = Bad Port/Baud Rate

MOVEQ.L #O,DO ;SELECT CURRENT
MOVEQ.L #l,Dl ;ASAQ
XSPF

3.3- 10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

ie, .;
, "'f

c

c
c

(

('

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A020

MPOOSKI

XSTM
<status error return>

In DO.B = TASK NUMBER
(AI) = MESSAGE

XSTM
Send Task Message

The SEND TASK MESSAGE primitive places a 64-character message into a
POOS system message buffer. The message is data-independent and is pointed
to by address register AI.

Data register DO specifies the destination of the message. If register DO is nega
tive, and there is no input port (phantom port), then the message is sent to the
parent task. If there is a port, then the message is sent to itself and will appear at
the next command line. Otherwise, register DO specifies the destination task.

DO = -1 sends message to parent task

The ability to direct a message to a parent task is very useful in background task
ing. An assembler need not know from which task it was spawned and can mere
ly direct any diagnostics to the parent task.

If the destination task number equals -1, the task message is moved to the
monitor input buffer and parsed as a command line. This feature is used by the
CREATE TASK BLOCK primitive to spawn a new task.

XGMP - Get Message Pointer
XGTM - Get Task Message
XKTM - Kill Task Message
XSMP - Send Message Pointer
XSTM - Send Task Message

78 = Msg Buffer Full

TERR LEA.L ERRM(PC) ,AI
ST.B DO
XSTM

BNE.S ERROR
XEXT

;RETURN MESSAGE
;SEND TO PARENT
;SEND, ERROR?
;Y
tN, QUIT

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 133

XSTP
Set/Read Task Priority

134

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A03C

MPOOSKI

XSTP
<status error return>

In

Out

DO.B = Task. #
D1.W = Task. time/faskpriority
Dl.B = Task priority (If Dl.B was 0)

If DO.B=-l, then select current task. If D 1.B=O, then read task priority into D 1.B.

The SET/READ TASK PRIORITY primitive either sets or reads the task
priority selected by data register DO.B. If D I.B is nonzero, then the priority is
set. Otherwise, it is read and returned in D1.B. If the upper byte ofD1.W is non
zero, then the corresponding task time slice is also set.

XRTS - Read Task Status

74 = Non-existent Task

MOVEQ.L i1-l,DO
MOVEQ.L i10,Dl
XSTP

;CURRENT TASK
;SET TO READ
;READ TASK PRIORITY

BNE.S ERROR
MOVE.B Dl,SV(A2)

MOVEQ.L i1-l,DO ;SELECT CURRENT
MOVEQ.L i1l00,Dl ;SET TO WRITE
XSTP ;SET TASK PRIORITY

BNE.S ERROR

3.3-10/87 POOS ASSEMBLY PRIMITIVES REFERENCE

c
'c···~·· , .

c
c

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

$AOIC

MPDOSK1

XSUI

In
Out

D1.W = EVl/EV2
DO.L=Event

XSUI
Suspend Until Interrupt

The SUSPEND UNTIL IN1ERRUPT primitive suspends the user task until one
of the events specified in data register D 1 occurs. A task can suspend until an
event sets (positive event) or until it clears (negative event).

A task can suspend pending two different events. This is useful when combined
with timeout counters to prevent system lockups. Data register DO.L is returned
with the event which caused the task to be scheduled.

A suspended task does not receive any CPU cycles until one of the event condi
tions is met When the event bit is set (or cleared), the task begins executing at
the next instruction after the XSUI call. The task is scheduled during the normal
swapping functions ofPDOS according to its priority. Register DO.L is used to
determined which event scheduled the task.

A suspended taslds indicated in the LIST TASK (L T) command under
the"Event" parameter. Multiple events are separated by a slash.

Events 64 through 128 toggle when they cause a task to move from the
suspended state to the ready state. All others must be cleared by the event
routine.

If a locked task attempts to suspend itself, the call polls the events until a suc
cessful return condition is met.

XDEV - Delay Set/Clear Event
XDPE - Delay on Physical Event
XSEF - Set Event Flag With Swap
XSEV - Set Event Flag
XSOE - Suspend on Physical Event
XTEF - Test Event Flag

None

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 135

XSUI - Suspend Until Interrupt

Example: GETC XGCC
BNE.S

MOVEQ.L
MOVEQ.L
XDEV

BNE.S
LSL.W
MOVE.B
ADD.B
XSUI
CMP.B

BEQ.S

136 3.3-10/87

GETC2
11100, DO
1I128,D1

GETC
#8,D1
#96,D1
PRT$(A6),D1

DO,D1
GETC

; CHARACTER?
;Y
;N, GET DELAY
;USER LOCAL EVENT
;DELAY 128 1 SECOND
;FULL
;GET 128/(PORT+96)

; SUSPEND
;CHARACTER EVENT?
;Y

PDOS ASSEMBLY PRIMITIVES REFERENCE

c
c

('

(

(

(

(...• ",

/

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XSUP
Enter Supervisor Mode

$A02C

MPDOSKI

XSUP

None

The ENTER SUPERVISOR MODE primitive moves your current task from
user mode to supervisor mode. Take care not to crash the system since you
would then be executing off the supervisor stack!

This primitive enables programs to access I/O addresses and use privileged in
structions.

Exit to user mode by executing a"ANDI.W #$DFFF,SR" instruction or the
XUSP primitive.

XLSR - Load Status Register
XRSR - Read Status Register
XUSP - Return To User Mode

None

PI EQU $FFFFCEOI ;1/0 PORT

*
OUT XSUP ;ENTER SUPERVISOR

MOVE.B DO,PI ;OUTPUT
ANDI.W ~$DFFF,SR ;MOVE TO USER
RTS ;RETURN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 137

XSWP
Swap to Next Task

138

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$AOOO

MPDOSKI

XSWP

None

The SWAP TO NEXT TASK primitive relinquishes control to the PDOS task
scheduler. The next ready task with the highest priority begins executing. (This
may be to the same task if there is only one task or the task is the highest
priority ready task.)

None

LOOP TST.B TMEM ;CONDITION MET?
BEQ.S LOOP02 ;Y

XSWP ;N, SWAP WHILE WAITING
BRA.S LOOP

*
LOOP02

3.3-10/87 poos ASSEMBLY PRIMITIVES REFERENCE

'~

c

(

(

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

$AOB6

MPDOSF

XSZF
<status error return>

In DO.B = Disk number
Out DS.L = Directory size/# of files

D6.L = AllottedlUsed
D7.L = Largest/Free

XSZF
Get Disk Size

The GET DISK SIZE primitive returns disk size parameters in data registers DS
through D7. Data register DS returns the number of currently defined files in the
low word along with the maximum number of files available in the directory in
the high word.

The low order 16 bits of data register D6 (0-15) returns the total number of sec
tors used by all fIles. The high order 16 bits of D6 (16-31) returns the number of
sectors allocated for fIle storage.

The low order 16 bits of data register D7 (0-15) is calculated from the disk sec
tor bit map and reflects the number of sectors available for file allocation. The
high order 16 bits of D7 (16-31) is returned with the size of the largest block of
contiguous sectors. This is useful in defining large files.

68 = Not PDOS Disk
Disk errors

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 139

c
XSZF - Get Disk Size C'

','.' _ ":',,'.1

Example: CLR.L DO ;SELECT DISK itO
XSZF ;GET DISK SIZE

BNE.S ERROR ; ERROR
CLR.L Dl
MOVE.W D7,Dl
XCBM SPMl ;OUTPUT FREE
XPLC ;PRINT
SWAP D7
MOVE.W D7,Dl
XCBM SPM2 ;OUTPUT LARGEST
XPLC ;CONTIGUOUS BLOCK
XTAB 20 ;TAB TO COLUMN 20
MOVE.W D6,Dl
XCBM SPM3 ;OUTPUT USED
XPLC ;PRINT
SWAP D6
MOVE.W D6,Dl
XCBM SPM4 ;OUTPUT ALLOCATED
XPLC ;PRINT
XEXT

*
SPMl DC.B $OA,$OD,'FREE:',O
SPM2 DC.B ' , , , 0
SPM3 DC.B 'USED:',O
SPM4 DC.B ' /' , 0

EVEN

CC,"", 'I

140 3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

c

c

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

XTAB
Tab to Column

$A090

MPDOSK2

XTAB <column>

None

The TAB TO COLUMN primitive positions the cursor to the column specified
by the number following the call. Spaces are output until the column counter is
greater than or equal to the parameter.

The ftrst print column is zero. At least one space character will always be output.

None

XPMC
XTAB

MESl
30

;OUTPUT HEADER
;MOVE TO COLUMN 30

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3" 10/87 141

XTEF
Test Event Flag

142

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOIA

MPDOSKI

XTEF
<status return>

In
Out

D1.B = Event number (+=1-127, -=128)
SR = NE Event set (1)

EQEvent clear (0)

The TEST EVENT FLAG primitive sets the 68000 status word EQUAL or
NOT -EQUAL depending upon the zero or nonzero state of the specified event
flag. The flag is not altered by this primitive.

The event number is specified in data register Dl and is modulo 128. Event 128
is local to each task.

XDEV - Delay Set/Clear Event
XSEF - Set Event Flag With Swap
XSEV - Set Event Flag
XSUl - Suspend Until Interrupt

None

MOVEQ.L #30,Dl EVENT 30
XTEF TEST EVENT FLAG

BNE.S EVENT

3.3 - 10/87

EVENT = . TRUE.
;EVENT = .FALSE.

PDOS ASSEMBLY PRIMITIVES REFERENCE

G
0.·)c \ I .',.

(C··'1»·,··

(

(

Value:

Module:

Syntax:

Registers:

Description:

XTLP
Translate Logical to Physical Event

$A110

MPDOSKI

XTLP

In
Out

D1.W = Event l.E,.Event O.B
AO = Event 0 address (O=no event 0 to suspend on)
Al = Event I address (O=no event I to suspend on)
D I = Event I Descriptor. w.Event 0 Descriptor. w

XTLP takes a POOS logical event number and translates the event into a physi
cal event. This call is used when a program needs to suspend on both a logical
and a physical event The logical event is first translated; then the XSOE call is
used to suspend it.

A POOS logical event is one of the 128 events maintained by the PDOS system
inSYRAM.

Events are summarized as follows:
1-63= Software events

64-80= Software self clearing events
81-95= Output port events

96-111= Input port events
112-115= Timer events
116-127= System control events

128= Local

The event descriptor is a 16-bit word that defines both the bit number at the
specified AO,AI address and the action to take on the bit. The following bits are
defined:

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T x x x x x x x S x x x x B B B

T Should the bit be toggled on scheduling?
l=Yes (toggle), O=No (do not toggle)

S = Suspend on event bit clear or set
1=Suspend on SET, O=Suspend on CLEAR

BBB = The 680xO bit number to use as an event
x = Reserved, should be O.

Since the bit number is specified in the lower three bits of the descriptor, you
may use the descriptor with the 680xO BTST, BCLR, BSET instructions. You
may also use the following physical manipulation calls which are macros for
single assembly instructions. They are optimal as long as the values have al
ready been placed in the correct registers. Physical events may need
synchronization via the XTAS macro to avoid corruption. The macros are
defined in the file PESMACS:SR.

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 143

XTLP - Translate Logical to Physical Event

See Also:

Example:

144

XTST - Test Physical Event (replaces BTST Dl,(AO»
XSET - Test and Set Physical Event (replaces BSET Dl,(AO»
XCLR - Test and Clear Physical Event (replaces BCLR Dl,(AO»

Input: D1.W - Event descriptor
AO - Event address

Output: None
Status: EQ - the bit was clear (0)

NE - the bit was set (1)

The bottom three bits are evaluated as a bit number. The bit at the address is set
and the previous value is returned in the Z bit of the status register.

XT AS - Test and Set Physical Event (Bit 7 atomic)

This macro replaces T AS (AO). The seventh bit at the address is set and the pre
vious value is returned in the N bit of the status register.

Input: AO - Event address
Output: None
Status: EQ - the bit was clear (0)

NE - the bit was set (1)

XDPE - Delay On Physical Event
XSOE - Suspend On Physical Event

MOVE.L n28,D1
MOVE.L nOO,DO
XDEV
LSL.W #8,D1
XTLP
MOVE.W #$8080,D1
LEA.L PEV (PC) ,AO
XSOE

PEV DC.W 0

3.3 - 10/87

;GET LOGICAL EVENT
;SET TIMEOUT
;START TIMER
;MAKE EVENT 1
;TRANSLATE TO PHYSICAL
;BIT 0 SET AND TOGGLE
;GET PEV ADDRESS
;SUSPEND UNTIL BIT o OF
;PEV IS A 1

POOS ASSEMBLY PRIMITIVES REFERENCE

()

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

$A036

MPOOSK3

XUAD

In

Out

D1.W = (Year*16+Month)*32+Day
(YYYY YYYM MMMD DDDD)

(AI) = 'DY-MON-YR'<null>
(Outputs ??? for invalid months)

XUAD
Unpack ASCII Date

The UNPACK ASCII DATE primitive returns a pointer in address register Al
to an ASCII date string. Data register D1.W contains the binary date
[(Year*16+Month)*32+Day]. The format of the string is more exact than simple
numbers separated by slashes.

XUAD does not check for a valid date and hence, strange strings could result. In
valid months are replaced by"???"

XFTD - Fix Time and Date
XP AD - Pack ASCII Date
XRDT - Read Date
XRTM - Read Time
XUDT - Unpack Date
XUTM - Unpack Time

None

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 145

XUDT
Unpack Date

146

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A06O

MPDOSK3

XUDT

In
Out

Dl.W = (Year *16 + Month) * 32 + Day
(AI) = 'MN/DY/YR'<null>

The UNP ACK DATE primitive converts a one-word encoded date into an eight
character string terminated by a null (nine characters total). Data register D I con
tains the encoded date and returns with a pointer to the formatted string in
address register AI. The output of the FIX TIME & DATE (XFfD) primitive is
valid input to this primitive.

XFfD - Fix Time and Date
XP AD - Pack ASCII Date
XRDT - Read Date
XRTM - Read Time
XUAD - Unpack ASCII Date
XUTM - Unpack Time

None

XFTD
XUDT
XPLC

3.3 -10/87

;FIX TIME & DATE
;UNPACK DATE
;PRINT 'MN/DY/YR'

PDOS ASSEMBLY PRIMITIVES REFERENCE

c
i; :::1 0·'·

("':
j

C'
'.,' I

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XULF
Unlock File

$AOEE

MPDOSF

XULF
<status error return>

In DI.W = File ID

The UNLOCK FILE primitive unlocks a locked me for access by any other
task. The me is specified by the me ID in data register D 1.

XLKF - Lock File

52 = File Not Open
59 = Bad File Slot
Disk errors

MOVE.W 05,01 ;GET FILE 10
XULF ;UNLOCK FILE

BNE.S ERROR

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 147

XULT
Unlock Task

148

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A016

MPDOSKI

XULT

None

The UNLOCK TASK primitive unlocks the current task by clearing the swap
lock variable in system RAM. This allows other tasks to be scheduled and
receive CPU time.

XLKT - Lock Task

None

*
LOOP

XLKT

TST.B LMEM
BNE.S LOOP

CLR.B OMEM
XULT

3.3 - 10/87

;LOCK TASK WHILE WAITING

;CONDITION MET?
;N, WAIT
;Y, RESET
;UNLOCK TASK NOW

PDOS ASSEMBLY PRIMITIVES REFERENCE

C:

c

,4<-----~,

~"'/

C''''' , '!'}

c

(

c

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XUSP
Return to User Mode

$AOO8

MPOOSKI

XUSP

None

The REruRN TO USER MODE primitive moves your current task from super
visor mode to user mode. Executing an "ANDI.W #$DFFF,SR" instruction also
returns you to user mode, but must be executed in supervisor mode. The XUSP
primitive can be executed in either mode.

XLSR - Load Status Register
XSUP - Enter Supervisor Mode

None

PI EQU $FFFFCEOI

*
OUT XSUP

MOVE.B DO,Pl
XUSP
RTS

;1/0 PORT

;ENTER SUPERVISOR
;OUTPUT
;RETURN TO USER
; RETURN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 149

XUTM
Unpack Time

150

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$A062

MPOOSK3

XUTM

In DI.W = HOUR*256+MINUTE

Out
(HHHH HHHH MMMM MMMM)

(AI) = HR:MN<null>

The UNPACK TIME primitive converts a one word encoded date into a five
character string terminated by a null (six characters total). Data register Dl con
tains the encoded time and returns a pointer to the formatted string in address
register AI. The output of the FIX TIME & DATE (XFTD) primitive is valid
input to this primitive.

XFfD - Fix Time and Date
XP AD - Pack ASCII Date
XRDT - Read Date
XRTM - Read Time
XUAD - Unpack ASCII Date
XUDT - Unpack Date

None

XFTD
MOVE 00,01
XUTM
XPLC

3.3-10/87

;GET SYSTEM TIME

;CONVERT TO STRING
;PRINT TIME

PDOS ASSEMBLY PRIMITIVES REFERENCE

c.··· , :.)

c

c··········· . ,

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XVEC
Set/Read Exception Vector

$A116

MPOOSKI

XVEC

In

Out

DO.W = Exception number (#2-255)
(AO) = New exception service routine (<>=read only)
(AO) = Old service routine

XVEC sets and/or reads the execution vector for the system. The old service
routine address is returned so that you may change a routine and then restore the
former routine under program control.

XDTV - Define Trap Vectors

None

START MOVEQ.L #5,DO ;ZERO DIVIDE ERROR VECTOR
LEA.L ZDIV(PC),AO ;GET NEW SYSTEM ZERO DIV VEC
XVEC ;SET A RETURN OLD VEC IN AO
DIVU.W #O,DO ;ZERO DIV ERROR
XEXT ;WILL EXECUTE AFTER ZDIV EXCEP

*
* ZDIV EXCEPTION HANDLER

*
ZDIV XPMC Ml

*

MOVEQ.L #5,DO
XVEC
RTE

;ZERO DIV EXCEPTION

;RESET TO OLD HANDLER
;RETURN FROM EXCEPTION

Ml DC.B $OA,$OD,'ZERO DIVIDE EXCEPTION',O

*
END START

Refer to the Installation and Systems Management guide for a list of user vec
tors that are implemented on your hardware. Changing vectors that are in use
may cause the system to crash.

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 151

XWBF
Write Bytes to File

152

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOFO

MPDOSF

XWBF
<status error return>

In DO.L:;: Byte count - must be positive
D1.W :;: File ID
(A2) :;: Buffer address

The WRITE BYlES TO FILE primitive writes from a memory buffer, pointed
to by address register A2, to a disk fIle specified by the fIle ID in register D 1.
Register DO specifies the number of bytes to be written. If the channel buffer
has been rolled to disk, the least-used buffer is freed and the buffer is restored to
memory. The fIle slot ID is placed on the top of the last-access queue.

The write is independent of the data content. The buffer pointer in register A2
may be on any byte boundary. The write operation is not terminated with a null
character.

A byte count of zero in register DO results in no data being written to the file.

If it is necessary for the fIle to be extended, POOS fIrst uses sectors already
linked to the fIle. If a null or end link is found, a new sector obtained from the
disk sector bit map is linked to the end of the fIle. If this makes the fIle non-con
tiguous, it is retyped as a non-contiguous file.

XRBF - Read Bytes From File
XRLF - Read Line From File
XWLF - Write Line To File

52 = File Not Open
55 = Too Few Contiguous Sectors
58 = File Delete or Write Protected
59 = Bad File Slot
60 = File Space Full
Disk errors

MOVE.L #252,DO ;WRITE FULL SECTOR
MOVE.W D5,D1 ;GET ID
LEA.L BF(PC),A2 ;GET BUFFER ADDRESS
XWBF ;WRITE TO FILE

BNE.S ERROR

BF DS.B 256 ;SECTOR BUFFER

3.3 - 10/87 poos ASSEMBLY PRIMITIVES REFERENCE

o

n
U j

(

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A064

MPDOSK3

XWDT

In DO.B = Month (1-12)
D1.B = Day (1-31)
D2.B = Year (0-99)

XWDT
Write Date

The WRITE DATE primitive sets the system date counters. Register DO
specifies the month and ranges from 1 to 12. Register Dl specifies the day of
month and ranges from 1 to 31. Register D2 is the last 2 digits of the year.

No check is made for a valid date.

None

MOVEQ.L ~12,DO ;SET DATE TO 12/25/80
MOVEQ.L ~25,D1
MOVEQ.L ~83,D2
XWDT ;SET DATE

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 153

XWFA
Write File Attributes

154

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOF2

:rvtPDOSF

XWFA
<status error return>

In (AI) = File name
(A2) = ASCII file attributes

(A2)=O clears all attributes.

The WRITE FILE A TrRIBUTES primitive sets the attributes of the file
specified by the file name pointed to by register AI. Register A2 points to an
ASCII string containing the new file attributes followed by a null character. The
fonnatis:

(A2) = {file type} {protection}

{file type) = AC - Procedure file
BN - Binary file
OB - 68000 object file
SY - 68000 memory image
BX - BASIC binary token file
EX - BASIC ASCII file

- TX - Text file
DR - System I/O driver

{protection) * - Delete protect
** - Delete and Write protect

If register A2 points to a zero byte, then all flags, with the exception of the con
tiguous flag, are cleared.

XCFA - Close File With Attribute
XRF A - Read File Attributes
XWFP - Write File Parameters

50 = Bad File Name
53 = File Not Defined
54 = Bad File Attribute
Disk errors

LEA.L F~(PC),Al ;GET FILE NAME

FN
PF

_LEA.L PF(PC),A2 ;SET BINARY & PROTECTED
XWFA ;SET

BNE.SERROR

DC.B
DC.B
EVEN

3.3 - 10/87

'DATA:BIN',O
'BN**',O

POOS ASSEMBLY PRIMITIVES REFERENCE

c
o

c

()

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XWFP
Write File Parameters

$AOFC

MPDOSF

XWFP
<status error return>

In (AI) = File name
DOL = Sector index ofEOF/Bytes in last sector
DIL = Time/Date created
D2L = Time/Date last accessed
D3.W = ORed status (less contiguous bit)

The WRITE FILE PARAMETERS primitive updates the end-of-file and date
parameters of the ftle specified by the name pointed to by address register Al in
the disk directory.

XCFA - Close File With Attribute
XRFA - Read File Attributes
XWF A - Write File Attributes

50 = Bad File Name
53 = File Not Defined
Disk errors

LEA.L FN(PC),Al ;GET FILE NAME

FN

XRFA ;READ FILE ATTRIBUTES
BNE . S ERROR ; ERROR

ADDA.W #20,A2 ;POINT TO
MOVEM.L (A2),D5-D7 ;SAVE PARAMETERS

MOVE.L D5,DO
MOVE.L D6,Dl
MOVE.L D7,D2
LEA.L FN(PC),Al ;GET FILE NAME
XWFP ;UPDATE FILE PARAMETERS

BNE.S ERROR

DC.B
EVEN

'DATA:BIN',O

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10187 155

XWLF
Write Line to File

156

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

$AOF4

MPOOSF

XWLF
<status error return>

In D1.W = File ID
(A2) = Buffer address

The WRITE LINE TO FILE primitive writes a line delimited by a null character
to the disk file specified by the file ID in register D1. Address register A2 points
to the string to be written. If the channel buffer has been rolled to disk, the least
used buffer is freed and the buffer is restored to memory. The ftle slot ID is
placed on the top of the last-access queue.

The write line primitive is independent of the data content, with the exception
that a null character terminates the string. The buffer pointer in register A2 may
be on any byte boundary. A single write operation continues until a null charac
ter is found.

If it is necessary for the file to be extended, PDOS first uses sectors already
linked to the file. If a null link is found, a new sector obtained from the disk sec
tor bit map is linked to the end of the file. If this makes the ftle non-contiguous,
it is retyped as a non-contiguous ftle.

XRBF - Read Bytes From File
XRLF - Read Line From File
XWBF - Write Bytes To File

52 = File Not Open
55 = Too Few Contiguous Sectors
58 = File Writ/Del Prot
59 = Bad File Slot
60 = File Space Full
Disk errors

MOVE.W D5,D1 iGET FILE ID

LB

LEA.L LB(PC),A2 iGET LINE
XWLF iWRITE LINE

BNE.S ERROR iERROR

DC.B
EVEN

$OA,$OD,'NO DIAGNOSTICS',O

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

(-

(-

(

(-

Value:

Module:

Syntax:

RegIsters:

DescriptIon:

See Also:

Possible
Errors:

Example:

XWSE
Write Sector

$AOC6

MPOOSF

XWSE
<status error return>

In DO.B = Disk number
Dl.W = Sector number
(A2) = Buffer address

The WRITE SECTOR primitive is a system-defined, hardware-dependent
program which writes 256 bytes of data from a buffer, pointed to by address
register A2, to the logical sector and disk device specified by data registers D 1
and DO respectively.

BIOS in PDOS Developer's Reference Manual
XISE - Initialize Sector
XRSE - Read Sector
XRSZ - Read Sector Zero

Disk errors

CLR.L DO ;WRITE TO DISK #0
MOVEQ.L #10,D2 ;WRITE TO SECTOR #10
LEA.L BUF(PC),A2 ;GET BUFFER ADDRESS
XWSE ;WRITE

BNE.S ERROR ; PROBLEM

BUF DS.B 256 ;DATA BUFFER

POOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 157

XWTM
Write Time

158

Value:

Module:

Syntax:

Registers:

Description:

Possible
Errors:

Example:

$A066

MPOOSK3

XWTM

In DO.B = Hours (0-23)
D1.B = Minutes (0-59)
D2.B = Seconds (0-60)

The WRI1E TIME primitive sets the system clock time. Register DO specifies
the hour and ranges from 0 to 23. Register Dl specifies the minutes and register
D2, the seconds. The latter two range from 0 to 59.

There is no check made for a valid time.

None

MOVEQ.L #23,00 ;SET TIME TO 23:59:59
MOVEQ.L #59,01
MOVEQ.L #59,02
XWTM ;SET SYSTEM TIME

3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

o
o

o

o
c

(

(

Value:

Module:

Syntax:

Registers:

Description:

See Also:

Possible
Errors:

Example:

XZFL
Zero File

$AOF6

MPDOSF

XZFL
<status error return>

In (AI) = File name

The ZERO FILE primitive clears a file of any data. If the fIle is defined, then the
end-of-file marker is placed at the beginning of the file. If the file is not dermed,
it is defined with no data.

XDFL - Define File
XDLF - Delete File

50 = Bad File Name
61 = File Already Open
68 = Not PDOS Disk
Disk errors

LEA.L FN(PC),Al ;POINT TO FILE
XZFL ;ZERO FILE

BNE.S ERROR

FN DC.B 'FILE:SR',O
EVEN

PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3 - 10/87 159

o
G

o I

i
I

o
160 3.3 - 10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

I'

f

(Index

! Character
get C., 58

68881 get c. conditional, 55 - 56
save enable, 11 get port C., 57

place c. in port buffer, 89
A putC. raw, 90

put C. to console, 87
Altered Check

file A. check, 51 for break character, 19
Append for break or pause, 23

fIle, 12 for fIle altered, 51
ASCII Clear

(convert A. to binary, 25 delay C. event, 37
pack A. date, 84 fIle, 159
unpack A. date, 145 screen, 32

Attributes Close
read file A., 108 fIle, 31
write file A., 154 fIle with attribute, 26

Column
B tab to C., 141

Command

Baud push C. to buffer, 86

(console port, 13 Conditional

Binary get character, 55

convert ASCII to B., 25 get character C., 56

convert B. to decimal, 20 Console

convert B. to hex, 21 baud C. port, 13

convert B. to hex in buffer, 29 I/O calls, 6

Break put buffer to C., 85

check for B., 23 put character to C., 87

check for B. character, 19 put CRLF to console, 88

Buffer put data to C., 91

(: flush B., 51 put encoded line to C., 92

get line in B., 59 put encoded message to C., 94

get line in monitor B., 61 put line to C., 95

get line in user B., 62 put message to C., 96

place character in port B., 89 put space to C., 100

push command to B., 86 reset C. inputs, 102

put B. to console, 85 Constants

Build system c., 2

file directory list, 15 Convert

Bytes ASCII to binary, 25

read B. from fIle, 10 1 binary to decimal, 20

write B. to fIle, 152 binary to hex, 21
binary to hex in buffer, 29

C to decimal in buffer, 24
to decimal with message, 22

Carriage Return Copy

C
put CR to console, 88 fIle, 33

Chain Create

fIle, 28 task block, 34

c:
POOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10/87 Index - 1

,
I i:

Index - cont'd.
0

Cursor Errors 0 position C., 97 POOS E.listing, 9
read port C. position, 103 Event

delay on physical E., 42
0 delay set/clear E., 37

suspend on physical E., 129
Data ttans1ate logical E. to physical E., 143

conversion calls, 6 Event Flag
put D. to console, 91 set E.F., 126

Date set E.F. with swap, 124
fix D., 53 testE.F., 142
pack ASCII D., 84 Exception
read D., 107 set/readE. vector, 151
unpack ASCII D., 145 Execute
unpack D., 146 POOS call D7.W, 47
write D., 153 Exit

Debug to monitor, 49 ,r'"
call, 17 to monitor with command, 50

(. \!

"",,,,,'
Decimal External

convert binary to D., 20 POOS symbols, 2
convert to D. in buffer, 24
convert to D. with message, 22 F

Define
file, 38 File
trap vectors, 44 altered check, 51

Delay append F., 12
on physical event, 42 build F. directory list, 15 ~

set/clear event, 37 chain F., 28 U
Delete close, 31

file, 40 close F. with attribute, 26
Directory copy, 33

build file D.list, 15 define F., 38
list file D., 81 delete, 40
read D. entry by name, 106 list F. directory, 81
readnextD. entry, 104 load F., 73

Disk lock F., 78
I access calls, 8 look for name in file slots, 76 ~,

get D. size, 139 management calls, 7 ~./
reset D., 117 open random F., 113

Dump open random read only F., 112
memory from stack,41 open sequential F., 130
registers, 105 open shared random F., 82

position F., 99
E read bytes from P., 101

readP. attributes, 108
Encoded read F. position, 109

put E. line to console, 92 read line from F., 110
put E. message to console, 94 rename P., 111

Enter rewind F., 123
supervisor mode, 137 support calls, 7

Error unlock, 147
load E. register, 75 write bytes to F., 152
return E. DO to monitor, 46 write F. attributes, 154
return status E., 4 write P. parameters, 155 C trapping, 4 write line to F., 156

C I
I

Index - 2 3.3-10/87 POOS ASSEMBLY PRIMITIVES REFERENCE I,'

(" Index - cont'd

(zeroF.,159 L
Filename

ftx F., 52 Limits
Fix get memory L., 64

ftlename,52 Line
time and date, 53 get L. in buffer, 59

Flag getL. in monitor buffer, 61
set port F., 132 get L. in user buffer, 62

Flush put encoded L. to console, 92
buffers, 51 put L. to console, 95

Format readL. from ftle, 110
assembly F., 3 write L. to ftle, 156
of source files, 3 Line Feed

Free put LF to console, 88
user memory, 54 List

ftle directory, 81

(": G Load
error register, 75

Get file, 73
character, 58 status register, 80
character conditional, 55 - 56 Lock
disk size, 139 ftle,78
line in buffer, 59 task, 79
line in monitor buffer, 61 Logical
line in user buffer, 62 translate L. event to physical, 143
memory limits, 64 Look

(~' message pointer, 65 for name in file slots, 76
next parameter, 66
port character, 57 M
task message, 68
user memory, 69 Manual

conventions of this M., 1
H Memory

dump M. from stack, 41
Hex free user M., 54

('
convert binary to H., 21 get M. limits, 64
convert binary to H. in buffer, 29 get user M., 69

Message
I get M. pointer, 65

get task M., 68
I/O kill task M., 72

console I/O calls, 6 put encoded M. to console, 94
Initialize put M. to console, 96

sector, 70 send M. pointer, 128
Input send task M., 133

reset console I., 102 Monitor
Interrupt exit to M., 49

return from I., 119 exit to M. with command, 50
suspend until 1.,135 get line in M. buffer, 61

K N

C
Kill Name

task, 71 look for N. in file slots, 76
task message, 72

C
PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3-10/87 Index-3

Index - cont'd.
0

Next R 0 get N. parameter, 66
Random

0 open R. fIle, 113
open R. read only fIle, 112

Open open shared R. file, 82
random fIle, 113 Raw
random read only fIle, 112 put character R., 90
sequential fIle, 130 Read
shared random file, 82 bytes from fIle, 10 1

date, 107
p directory entry by name, 106

exception vector,151
Pack fIle attributes, 108

ASCII date, 84 fIle position, 109
Parameter line from fIle, 110

get next P., 66 next directory entry, 104 ~

Parameters open random R. only fIle, 112 0
write fIle P., 155 port cursor position, 103

Pause port stat08,114
check for P., 23 sector, 115

Physical sector zero, 118
translate logical to P. event, 143 status register, 116

Pointer task priority, 134
get message P., 65 task status, 122
send message P., 128 time,120

Port time parameters, 121 ~ , \

baud console P., 13 Register ~J,;i
get P. character, 57 load error R., 75
place character in P. buffer, 89 load status R., 80
read P. cursor position, 103 read status R., 116
readP. status,114 usage,l
set P. flag, 132 Registers

Position dumpR.,105
cursor, 97 using assembly R., 4
fIle, 99 Rename
read file P., 109 fIle, 111 C Priority Reset
set/read task P.,134 console inputs, 102

Push disk, 117
command to buffer, 86 Return

Put error DO to monitor, 46
buffer to console, 85 from interrupt, 119
character raw, 90 to user mode, 149
character to console, 87 Rewind
CRLF to console, 88 fIle, 123
data to console, 91
encoded line to console, 92 S
encoded message to console, 94
line to console, 95 Save
message to console, 96 68881 enable, 11
space to console, 100 Screen

clear, 32
Sector 0 initialize S., 70

()
Index-4 3.3-10/87 PDOS ASSEMBLY PRIMITIVES REFERENCE

(' Index - cont'd

(, read S.,115 read T. status, 122
read S. zero, 118 send T. message, 133
write S.,157 set/read T. priority, 134

Send swap to next T., 138
message pointer,128 unlock T., 148
task message, 133 Test

Sequential event flag, 142
open S. file, 130 Time

Set fIx T., 53
delay S. event, 37 readT., 120
event flag, 126 read T. parameters, 121
event flag with swap, 124 unpack T., 150
exception vector, 151 write T.,158
port flag, 132 Translate
task priority, 134 logical to physical event, 143

Shared Trap

(' open S. random file, 82 defIne T. vectors, 44
Size

get disk S., 139 U
Slot

look for name in file S., 76 Unlock
Source file,147

file format, 3 task,I48
Space Unpack

put S. to console, 100 ASCII date, 145
Stack date, 146

('" dump memory from S., 41 time, 150
Status User

load S. register, 80 free U. memory, 54
read port S., 114 get line in U. buffer, 62
read S. register, 116 get U. memory, 69
read task S., 122 return to U. mode, 149
registers, 4

Supervisor V
enter S. mode, 137

Suspend Variables
(' on physical event, 129 system V.,2

until interrupt, 135 Vector
Swap set/read exception V., 151

to next task, 138 Vectors
System define trap V., 44

calls, 5
support calls, 6 W
variables, 2

Write
T bytes to file, 152

date,153
Tab file attributes, 154

to column,141 file parameters, 155
Task line to file, 156

create T. block, 34 sector, 157
get T. message, 68 time, 158
kill T., 71

CI kill T. message, 72
lockT.,79

C')
PDOS ASSEMBLY PRIMITIVES REFERENCE 3.3- 10/87 Index- 5

Index - cont'd. e jJ

x XLKT,79 C XLSR,80
., :;,,\:,

X881,11 XLST,81
XAPF,12 XNOP,82
XBCP,13 XPAD,84
XBFL,15 XPBC,85
XBUG,17 XPCB,86
XCBC,19 XPCC,87
XCBD,20 XPCL,88
XCBH,21 XPCP,89
XCBM,22 XPCR,90
XCBP,23 XPDC,91
XCBX,24 XPEL,92
XCDB,25 XPEM,94
XCFA,26 XPLC,95
XCHF,28 XPMC,96
XCHX,29 XPSC,97
XCLF,31 XPSF,99
XCLS,32 XPSP,loo
XCPY,33 XRBF,101
XCTB,34 XRCN,102
XDEV,37 XRCP,103
XDFL,38 XRDE,104
XDLF,40 XRDM,105
XDMP,41 XRDN,105
XDPE,42 XRDT,107
XDTV,44 XRFA,108 /<---~,

XERR,46 XRFP,109
I

"'-#
XEXC,47 XRLF,110
XEXT,49 XRNF,111
XEXZ,50 XROO,112
XFAC,51 XROP,113
XFBF,51 XRPS,114
XFFN,52 XRSE,115
XFTD,53 XRSR,116
XFUM,54 XRST,117
XGCB,55 XRSZ,118
XGCC,56 XRTE,119
XGCP,57 XRTM, 120
XGCR,58 XRTP,121
XGLB,59 XRTS,122
XGLM,61 XRWF,123
XGLU,62 XSEF,124
XGML,64 XSEV,126
XGMP,65 XSMP,128
XGNP,66 XSOE,129
XGTM,68 XSOP,130
XGUM,69 XSPF,132
XISE,70 XSTM,133
XKTB,71 XSTP,134
XKTM,n XSUI,135
XLDF,73 XSUP,137
XLER,75 XSWP,138
XLFN,76 XSZF,139 0 XLKF,78 XTAB,141

C ' ,
Index -6 3.3-10/87 PODS ASSEMBLY PRIMITIVES REFERENCE I'

{

(

(

(.~

c

z

XTEF,142
XTLP,143
XUAD,145
XUDT,146
XULF,147
XULT,148
XUSP,149
XUTM,150
XVEC,151
XWBF,152
XWDT,153
XWFA,154
XWFP,155
XWLF,156
XWSE,157
XWTM,158
XZFL,159

Zero
fIle, 159

PDOS ASSEMBLY PRIMITIVES REFERENCE

Index - cont'd

3.3 - 10/87 Index-7

o
0,
I l-,'

/~

'~.J,'

'If'"
'·tJl!l{J

G

c

