
(

{

®

Reference·
Manual

Copyright (c) 1987 by Eyring Research Institute. Inc .. 1450 West
820 North. Provo, Utah 84601 USA. All Rights Reserved.

The information in this document has been carefully checked and
is believed to be reliable. However. Eyring assumes no responsi
bility for inaccuracies. Furthermore. Eyring reserves the right
to make changes to any products to improve reliability. function.
or design and does not assume any liability arising out of the
application or use of this document.

Printed in the United States of America.
Product number ER3510/M (for PDOS revision 3.2)
January 1. 1987

PDOS is a registered trademark of Eyring Research Institute, Inc.

':::

C·
/

680xO PODS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

CHAPTER 1 -- INTRODUCTION

1.1 HOW TO USE THIS MANUAL. •.•.••••••••••••••••••••. '" •••.. 1-2

1 .2 PODS SYSTEM FEATURES •.••••.•••.••••.•••••••••....•..•••. 1-5

1.2.1 PDOS DESCRIPTION 1-6

1.2.2 PDOS FUNCTIONAL DESCRIPTION 1-7

1. 3 PODS DEMONSTRATION 1-11

Figure 1.1 PODS memory usage 1-5

Figure 1.2 Multi-tasking PODS •.•••••••••••••••.••••••.••••.• 1-8

C Figure 1.3 Extendable PDOS features 1-1.0

(

(

CHAPTER 2 -- PDOS SYSTEM OVERVIEW

2. 1 PDOS KERNEL .•••...•.........•.•...•.••.•••••••...••..•.. 2-2

2.1.1 PODS TASK ••••••••..••••••.••••••••••.•••.•.••• 2-2

2.1.2 MULTI-TASKING ...•.•••••.••.•.•••.••••••.•.••.. 2-4
2.1.3 SYSTEM SERVICES 2-7

2.1 .4 PODS CHARACTER 110 2-8

2.1.5 EVENTS ••..•..••.•••.••••.....••••.••••.•••.•• 2-12

2.1.6 TASK COMMUNICATION 2-14

2.1.7 TASK SUSPENSION 2-15
2.1.8 HIGH PRIORITY TASKS 2-16

2.2 PDOS FILE MANAGEMENT. 2-16

2.2.1 PDOS FILE STORAGE 2-16
2.2.2 FILE NAMES 2-18

2.2.3 DIRECTORY LEVELS 2-19

2.2.4 DISK NUMBERS ••.••..••..•••.•••.•••.•••••.•.•. 2-19
2.2.5 FILE ATTRIBUTES 2-20

2.2.6 TIME STAMPING 2-22

2.2.7 PORTS, UNITS, AND DISKS 2-22

2.3 PDOS BIOS .•..•......•.......•••....••..•...•...•...•••. 2-24

2.4 PDOS MONITOR ..•.•••••••.••.•••.•.•..•..••.•.••...•.•... 2-24

2.4.1 COMMAND LINE INTERPRETER .••..•..•..•.•.•.•••. 2-25
2.4.2 PROCEDURE FILES 2-26

2.4.3 IMPLIED TASKS 2-27

FIGURE 2.1 TASK CONTROL BLOCK 2-6

FIGURE 2.2 PDOS CHARACTER INPUTS 2-9

FIGURE 2.3 PDOS CHARACTER OUTPUTS 2-11

FIGURE 2.4 PDOS DIRECTORY FORMAT 2-23

PAGE i-1

6BOxO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

(TABLE OF CONTENTS continued)

CHAPTER 3 -- PDOS MONITOR COMMANDS

3.1 COMMAND LINE EDITING 3-3

3.2 PDOS MONITOR COMMANDS •..•........................•...... 3-4

3.2.1 AC - ASSIGN CONSOLE REVIEW 3-5

3.2.2 AF - APPEND FILE 3-6
3.2.3 BP - BAUD PORT .•........•.......•..••..•.......•. 3-7
3.2.4 CF - COPY FILE 3-8

3.2.5 CT - CREATE TASK•.................•........ 3-9
3.2.6 OF - DEFINE FILE 3-10

3.2.7 DL - DELETE FILE•....•.• , ..•.•.•.•..... 3-11
3.2.8 OM - DELETE MULTIPLE FILE 3-12

3.2.9 DN - DOWNLOAD FILE 3-13
3.2.10 DT - DATE AND TIME .•........ , ••.•...•..•........ 3-14

3.2.11 EE - ENABLE ECHO 3-15
3.2.12 ER - LIST ERROR 3-16
3.2.13 EV - SET/RESET EVENT•..•..••...... 3-17

3.2.14 EX - PDOS BASIC 3-18

3.2.15 FE - FOR EVERY 3-19

3.2.16 FM - FREE MEMORy 3-21

3.2.17 FS - FILE SLOT USAGE 3-22
3.2. 18 GM - GET MEMORY•.......•.•.•.•.••..•. 3-23
3.2 . 19 GO - EXECUTE ••.•.•.•......••.....••.....•..•.... 3-24

3.2 .20 GT - GOTO•••..•• ; ..••.•••.....••.•...•...... 3-25

3.2.21 HE - HELP ..•...•.••..•.••..•..••.•..•.•.•••..••. 3-26
3.2.22 IA - IF ALTERED 3-28
3.2.23 10 - SET SYSTEM DATE/TIME 3-29

3.2.24 IF - IF PROCESSOR 3-30

3.2.25 KM - KI LL MESSAGE 3-31

3.2.26 KT - KILL TASK 3-32

3.2.27 LL - LIST LEVEL 3-33
3.2.28 LO - LOAD FILE 3-34

3.2.29 LS - LIST DIRECTORy 3-35

3.2.30 LT - LIST TASKS 3-39

3.2.31 LV - DIRECTORY LEVEL 3-42

3.2.32 MF - MAKE FILE 3-43
3.2 .33 PB - PDOS DEBUGGER ..••••....•....•...•.••.••..•. 3-44

3.2.34 RC - RESET CONSOLE 3-50

3 . 2 • 35 RD - RAM DISK •..•••..••..•..•....••.•••.•.••.... 3-51

3.2.36 RN - RENAME FILE 3-52

3.2.37 RS - RESET DISK 3-53

3.2.38 SA - SET FILE ATTRIBUTES 3-54

3.2.39 SF - SHOW FILE 3-56

3.2.40 SM - SEND MESSAGE 3-57

PAGE i-2

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

f (TABLE OF CONTENTS continued)

{

3.2.41 SP - DISK SPACE 3-58
3.2.42 SU - SPOOL UNIT 3-59
3.2.43 SV - SAVE TO FILE 3-60
3.2.44 SY - SYSTEM DISK 3-61
3.2.45 TF - TRANSFER FILES 3-62
3.2.46 TM - TRANSPARENT MODE 3-63
3.2.47 TP - TASK PRIORITy 3-64
3.2.48 UN - CONSOLE UNIT 3-65
3.2.49 UP - UPLOAD FROM PORT. 3-66
3.2.50 ZM - ZERO MEMORY 3-67

3.3 COMMON PDOS QUESTIONS 3-68

3.3.1 HOW DO
3.3.2 HOW DO
3.3.3 HOW DO

TRANSFER FILES? 3-69
USE THE RAM DISK? 3-70
USE THE EDITOR? 3-71

3.3.4 HOW DO USE PROCEDURE FILES? 3-72
3.3.5 HOW DO GET HARDCOPY? 3-73
3.3.6 HOW DO I WRITE AN ASSEMBLY PROGRAM? 3-74
3.3.7 HOW DO I SET UP VIRTUAL PORTS? 3-75

CHAPTER 4 -- PDOS ASSEMBLY PRIMITIVES

4.1 GUIDELINES FOR 68000 ASSEMBLY PROGRAMMING 4-7

4.2 PDOS ASSEMBLY LANGUAGE CALLS 4-10

4.3 ALPHABETICAL LISTING OF PDOS PRIMITIVES 4-14

4.3.1 X881 - SAVE 68881 ENABLE 4-14
4.3.2 XAPF - APPEND FILE 4-15
4.3.3 XBCP - BAUD CONSOLE PORT 4-16
4.3.4 XBFL - BUILD FILE DIRECTORY LIST '" .4-17
4.3.5 XBUG - DEBUG CALL 4-18
4.3.6 XCBC - CHECK FOR BREAK CHARACTER 4-19
4.3.7 XCBD - CONVERT BINARY TO DECIMAL 4-20
4.3.8 XCBH - CONVERT BINARY TO HEX 4-21
4.3.9 XCBM - CONVERT TO DECIMAL W/MESSAGE 4-22
4.3.10 XCBP - CHECK FOR BREAK OR PAUSE 4-23
4.3.1' XCBX - CONVERT TO DECIMAL IN BUFFER 4-24
4.3.12 XCDB - CONVERT ASCII TO BINARy 4-25
4.3.13 XCFA - CLOSE FILE W/ATTRIBUTE 4-26
4.3.14 XCHF - CHAIN COMMAND 4-27
4.3.15 XCHX - CONVERT BINARY TO HEX IN BUFFER 4-28
4.3.16 XCLF - CLOSE FILE 4-29
4.3.17 XCLS - CLEAR SCREEN. '" 4-30

PAGE ;-3

680xO POOS 3.2 REFERENCE MANUAL TA8LE OF CONTENTS PAGE ;-4

(TABLE OF CONTENTS continued)

4.3.18 XCPY - COpy FILE 4-31
4.3.19 XCTB - CREATE TASK BLOCK 4-32
4.3.20 XOEV - DELAY SET/RESET EVENT 4-34
4.3.21 XDFL - DEFINE FILE 4-35
4.3.22 XDLF - DELETE FILE 4-36
4.3.23 XDMP - DUMP MEMORY FROM STACK 4-37
4.3.24 XDTV - DEFINE TRAP VECTORS , ... 4-38
4.3.25 XERR - RETURN ERROR DO TO MONITOR 4-40
4.3.26 XEXC - EXECUTE PDOS CALL D7.W 4-41
4.3.27 XEXT - EXIT TO MONITOR 4-42
4.3.28 XEXZ - EXIT TO MONITOR W/COMMAND 4-43
4.3.29 XFAC - FILE ALTERED CHECK 4-44
4.3.30 XFBF - FLUSH BUFFERS 4-45
4.3.31 XFFN - FIX FILE NAME 4-46
4.3.32 XFTO - FIX TIME & DATE 4-47
4.3.33 XFUM - FREE USER MEMORy 4-48
4.3.34 XGCB - CONDITIONAL GET CHARACTER 4-49
4.3.35 XGCC - GET CHARACTER CONDITIONAL 4-50
4.3.36 XGCP - GET PORT CHARACTER 4-51
4.3.37 XGCR - GET CHARACTER 4-52
4.3.38 XGLB - GET LINE IN BUFFER 4-53
4.3.39 XGLM - GET LINE IN MONITOR BUFFER 4-54
4.3.40 XGLU - GET LINE IN USER BUFFER 4-55
4.3.41 XGML - GET MEMORY LIMITS 4-56
4.3.42 XGMP - GET MESSAGE POINTER 4-57
4.3.43 XGNP - GET NEXT PARAMETER 4-58
4.3.44 XGTM - GET TASK MESSAGE 4-59
4.3.45 XGUM - GET USER MEMORY 4-60
4.3.46 XISE - INITIALIZE SECTOR 4-61
4.3.47 XKTB - KILL TASK 4-62
4.3.48 XKTM - KILL TASK MESSAGE 4-63
4.3.49 XLDF - LOAD FILE 4-64
4.3.50 XLER - LOAD ERROR REG I STER 4-65
4.3.51 XLFN - LOOK FOR NAME IN FILE SLOTS 4-66
4.3.52 XLKF - LOCK FILE 4-67
4.3.53 XLKT - LOCK TASK 4-68
4.3.54 XLSR - LOAD STATUS REGISTER•............... 4-69
4.3.55 XLST - LIST FILE DIRECTORY 4-70
4.3.56 XNOP - OPEN SHARED RANDOM FILE 4-71
4.3.57 XPAD - PACK ASCII DATE 4-72
4.3.58 XPBC - PUT BUFFER TO CONSOLE 4-73
4.3.59 XPCB - PUSH COMMAND TO BUFFER 4-74
4.3.60 XPCC - PUT CHARACTER(S) TO CONSOLE 4-75
4.3.61 XPCL - PUT CRLF TO CONSOLE 4-76
4.3.62 XPCR - PUT CHARACTER RAW 4-77
4.3.63 XPDC - PUT DATA TO CONSOLE 4-78
4.3.64 XPEL - PUT ENCODED LINE TO CONSOLE 4-79
4.3.65 XPEM - PUT ENCODED MESSAGE TO CONSOLE 4-80
4.3.66 XPLC - PUT LINE TO CONSOLE 4-81
4.3.67 XPMC - PUT MESSAGE TO CONSOLE 4-82

c\

c

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

(TABLE OF CONTENTS continued)

4.3.68 XPSC - POSITION CURSOR ••••••.••••••.••..••••••• 4-83

4.3.69 XPSF - POSITION FILE •••••••••••••••.•••.••••••• 4-84
4.3.70 XPSP - PUT SPACE TO CONSOLE ••••••••••••••••.••. 4-85

4.3.71 XRBF - READ BYTES FROM FILE •••••••.•••••••.••. .4-86
4.3.72 XRCN - RESET CONSOLE INPUTS •••••••••••.•••.•••• 4-87

4.3.73 XRCP - READ PORT CURSOR POSITION .•••.•••••••... 4-88
4.3.74 XRDE - READ NEXT DIRECTORY ENTRY ••••••••••.•••• 4-89
4.3.75 XRDM - DUMP REGISTERS 4-90

4.3.76 XRDN - READ DIRECTORY ENTRY BY NAME •••••••••..• 4-91

4.3.77 XRDT - READ DATE 4-92
4.3.78 XRFA - READ FILE ATTRIBUTES 4-93

4.3.79 XRFP - READ FILE POSITION 4-94
4.3.80 XRLF - READ LINE FROM FILE 4-95
4.3.81 XRNF - RENAME FILE 4-96
4.3.82 XROO -,OPEN RANDOM READ ONLY FILE •••••.••.•.•.• 4-97 '

4.3.83 XROP - OPEN RANDOM 4-98

4.3.84 XRPS - READ PORT STATUS 4-99
4.3.85 XRSE - READ SECTOR 4-100

4.3.86 XRSR- READ STATUS REGISTER ••••••••••••••.•••• 4-101
4.3.87 XRST - RESET DISK 4-102

4.3.88 XRSZ - READ SECTOR ZERO 4-103

4.3.89 XRTE - RETURN FROM INTERRUPT ••••••••••••••••.• 4-104

4.3.90 XRTM - READ TIME 4-105

4.3.91 XRTP - READ TIME PARAMETERS •.••.•••••••••••.•• 4-106

4.3.92 XRTS - READ TASK STATUS 4-107

4.3.93 XRWF - REWIND FILE 4-108

4.3.94 XSEF - SET EVENT FLAG W/SWAP •.••.•.••••••••••• 4-109

4.3.95 XSEV - SET EVENT FLAG .•••••.•••••....••••.••.. 4-110

4.3.96 XSMP - SEND MESSAGE POINTER 4-111
4.3.97 XSOP - OPEN SEQUENTIAL FILE •••••••.•..•••••••. 4-112

4.3.98 XSPF - SET PORT FLAG 4-113

4.3.99 XSTM - SEND TASK MESSAGE 4-114

4.3.100 XSTP - SET/READ TASK PRIORITY ••.••••...••.•.•. 4-115

4.3.101 XSUI - SUSPEND UNTIL INTERRUPT •.•.•.•••••.•.•. 4-1 16

4.3.102 XSUP - ENTER SUPERVISOR MODE ••••••••.••••..... 4-117

4.3.103 XSWP - SWAP TO NEXT TASK 4-118

4.3.104 XSZF - GET DISK SIZE 4-119
4.3.105 XTAB - TAB TO COLUMN .•••••••••••.•••••..••.•.• 4-120

4.3.106 XTEF - TEST EVENT FLAG 4-1 21
4.3.107 XUAD - UNP.ACK ASCII DATE 4-122
4.3.108 XUDT - UNPACK DATE 4-123

4.3.109 XULF - UNLOCK FILE 4-124

4.3.110 XULT - UNLOCK TASK 4-125

4.3.111 XUSP - RETURN TO USER MODE 4-126
4.3.112 XUTM - UNPACK TIME 4-127

4.3.113 XWBF - WRITE BYTES TO FILE 4-128

4.3.114 XWDT - WRITE DATE 4-129

4.3.115 XWFA - WRITE FILE ATTRIBUTES 4-130
4.3.116 XWFP - WRITE FILE PARAMETERS ••.•••••....•••.•. 4-131

4.3.117 XWLF - WRITE LINE TO FILE •.••...•.•.•••.•••••. 4-132

4.3.118 XWSE - WRITE SECTOR 4-133

4.3.119 XWTM - WRITE TIME 4-134

4.3.120 XZFL - ZERO FILE 4-135

PAGE i-5

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

(TABLE OF CONTENTS continued)

CHAPTER 5 -- PDOS SCREEN EDITOR

5.1 INTRODUCTION .•.•....•..•......•.........•...•..•....... 5-2

5.2 GETTING STARTED .. 5-2

5.3 THE CLOCK•....•...•••.•.....••..•.••.... 5-2

5.4 USING MEDIT.•......................•............. 5-3

Buffer Commands (Cut and Paste} .•....................•. 5-4

Cance 1 .•.•••••••••••...•••••...••••••.•••....••.••••.•. 5-6

Clear Editor •............•.•........• , .••............•. 5-7

Comma nd Mode ..•••...................•.................. 5-8

Delete Commands (Chars, Control Chars, Block} 5-9

Fi 1e Insert and Excerpt Commands 5-10

File Save and Retrieve Commands•••••.............• 5-11

Find Commands•.•...••••....•..•..•.•..•........ 5-13

He 1 p .•••.•...•......•.•.••.•••....•.••.....•.......... 5-15

Insert Control Character•.....•.....••...•.•...• 5-16

Insert Tab .. 5-17

Jump •.......•........•.................•.•...........• 5-18

List Files•...••.•..•.•.......•..•.............. 5-20

Macros .. 5-21

Move•..••.••.•••.•.•.••...•......•.•...••.....•..• 5-23

Pointer ..••.•••..•.....•.......•..........••.......... 5-24

Qui t .. 5-25

Recen te r•......••.....••......•.............••• 5-26

Stati sties .. 5-27

Toggle Upper/Lower Case ..••.........•..••.....•....... 5-28

Use Insert/RepJace Mode •••.•••....•....•.•......•...•. 5-29

5.5 CONFIGURING MEDIT 5-30

TABLE 5.1 MEDIT FUNCTIONS : ; ... 5-33

TABLE 5.2 ALPHABETICAL MEDIT COt.t.1AND SUMMARy 5-34

PAGE i-6

I.

('

j

(

{,

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS PAGE i-7

(TABLE OF CONTENTS continued)

CHAPTER 6 -- ASSEMBLE AND LINK

6.1 MASM 68000 ASSEMBLER 6-5

6.1.1 USING THE ASSEMBLER 6-5
6.1.2 ASSEMBLY LANGUAGE FORMAT 6-10
6.1 . 3 CONSTANTS•........................•......... 6-11
6.1.4 SyMBOLS ... 6-12
6.1.5 EXPRESSIONS OR OPERATORS 6-13
6.1.6 PDOS ASSEMBLY OBJECT FORMAT 6-14

6.1.6.1 68000 TAGGED OBJECT 6-14
6.1.6.2 AN EXAMPLE 6-18
6.1.6.3 MASM AND QLINK 6-19

6.1.7 ASSEMBLER ERROR DEFINITIONS 6-21
6.1.8 ASSEMBLER DEFINITIONS AND DEFAULTS 6-22
6.1 .9 ASSEMBLER MACROS 6-23
6.1.10 ASSEMBLER DIRECTIVES 6-27

6.1.10.1 DC - DEFINE CONSTANT 6-29
6.1.10.2 DCB - DEFINE CONSTANT BLOCK 6-29
6.1.10.3 DCE - DEFINE ENCODED STRING 6-29
6.1.10.4 DS - DEFINE STORAGE 6-30
6.1.10.5 END - END ASSEMBLy 6-30
6.1.10.6 ENDC - END CONDITIONAL ASSEMBLY 6-30
6.1.10.7 ENDM - END MACRO DEFINITION 6-30
6.1.10.8 EQU - DEFINE ASSEMBLY CONSTANT 6-31
6.1.10.9 EVEN - SET WORD BOUNDARY•.... 6-31
6.1.10.10 EXTN - EXTERNAL SYMBOL 6-31
6.1.10.11 FAIL - OUTPUT FAIL STRING 6-32
6.1.10.12 FORMAT - FORMAT LISTING 6-32
6.1.10.13 IFDEF - EXECUTE IF DEFINED 6-32
6.1.10.14 IFUDF - EXECUTE IF UNDEFINED 6-32
6.1.10.15 IFxx - CONDITIONAL ASSEMBLY 6-33
6.1.10.16 IDNT - PROGRAM IDENTIFICATION 6-33
6.1.10.17 INCLUDE - INCLUDE FILE 6-34
6.1.10.18 LIST - ENABLE OUTPUT TO LIST FILE 6-34
6.1.10.19 LLEN - SET LIST LINE LENGTH 6-34
6.1.10.20 MACRO - MACRO DEFINITION 6-34
6.1.10.21 MEXIT - EXIT MACRO 6-35

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

(TABLE OF CONTENTS continued)

6.1. 1 0.22 MGOTO - MACRO GOTO 6-35
6.1.10.23 MIFxx - MACRO CONDITIONAL GOTO 6-35
6.1.10.24 MPOP - POP FROM MACRO STACK 6-36
6.1.10.25 MPUSH - PUSH TO MACRO STACK 6-36
6.1.10.26 NO FORMAT - NO LIST FORMATTING •.......... 6-36
6.1.10.27 NOLIST or NOL - NO LIST TO FILE 6-36
6.1.10.28 NOOBJ - NO OUTPUT TO OBJECT FILE 6-36
6.1.10.29 NOPAGE - NO AUTOMATIC PAGING 6-37
6.1.10.30 OBJ - ENABLE OBJECT FILE OUTPUT 6-37
6.1.10.31 OFFSET - OEFINE OFFSETS 6-37
6.1.10.32 OPT -·ASSEMBLER OPTIONS 6-38

6.1.10.32.1 70N/70FF 6-39
6.1.10.32.2 IL/IR 6-39
6.1.10.32.3 ALT/NOALT 6-39
6.1.10.32.4 ARL/ARS 6-40
6.1.10.32.5 BUG/NOBUG 6-40
6.1.10.32.6 CEX/NOCEX 6-40
6.1.10.32.7 CID=#•.................. 6-40
6.1.10.32.8 CL/NOCL 6-40
6.1.10.32.9 CRE/NOCRE 6-41
6.1.10.32.10D/NOD 6-41
6.1.10.32.11 EMSK.# 6-41
6.1.10.32.12 FRL/FRS 6-41
6.1.10.32.13 LF/NOLF ...•.•.....•.•............ 6-41
6.1.10.32.14 M68000/M68010 .•••.....•.......... 6-42
6.1.10.32.15 MB/NOMB 6-42
6.1.10.32.16 MC/NOMe•...••.....••....... 6-42
6.1.10.32.17 MEX/NOMEX : 6-42
6.1.10.32.18 NLP=# 6-42
6.1.10.32.19 OLD/NOOLD ...•..••...••....•...... 6-43
6.1.10.32.20 P=xxxxx 6-43
6.1.10.32.21 PDOS 6-43
6.1.10.32.22 Tx•••.••..•..•.......... 6-44
6.1.10.32.23 WARN/NOWARN 6-44

6.1.10.33 ORG - ABSOLUTE ORIGIN 6-45
6.1.10.34 PAGE - TOP OF PAGE 6-45
6.1.10.35 PRINT - PRINT TO CONSOLE 6-45
6.1.10.36 REG - DEFINE REGISTER LIST 6-46
6.1.10.37 RORG - RELOCATABLE PC ADJUST .•.......... 6-46
6.1.10.38 SECTION - PROGRAM SECTION ••.....•..•.... 6-46
6.1.10.39 SET - REDEFINE ASSEMBLY CONSTANT 6-46
6.1.10.40 SPC - SPACE BETWEEN SOURCE LINES .•..•... 6-47
6.1.10.41 TTL - TITLE 6-47
6.1.10.42 XDEF - EXTERNAL SYMBOL DEFINITION ••.•... 6-47
6.1.10.43 XREF - EXTERNAL SYMBOL REFERENCE•.. 6-47

PAGE i-8

.", ..

'" .j

l/f'--"""',

\,;,---.,~;

(

(

(

680xO PDOS 3.2 REFERENCE MANUAL TA8LE OF CONTENTS

(TABLE OF CONTENTS continued)

6.1 .11 ASSEMBLER RESERVED WORDS ••.•••••.••••.••••••••. 6-48

6.1 .11. 1 ASSEMBLER 68000 OPERATORS •••••••.••••••.• 6-48

6.1 . 11 .2 PDOS PRIMIT IVES •••••••••••••••••.•••••••. 6-49
6.1.11.3 OPT PDOS WORDS ••••••••••••••••••.••.••... 6-49

6.2 MASM20 68D20 ASSEMBLER ••••••••••••••••••.••..•.•••.••. 6-50

6.2.1 AddHional error messages •••••••..••• : •••••••••• 6-50
6.2.2 New OPTions ••.•••••••••••••••••••..••••••.•••••• 6-50

6.2.3 New 68020 addressin9 modes ••••••••••••••••••••.• 6-51

6.2.4 New 68020 instrucHons ••••••••••••.•.•••••••••.• 6-51
6.2.5 New symbol and instrucHon extensions 6-51

6.2.6 68881 co-processor support ••.••.••••••••••••..•. 6-52
6.2.7 Additional macro functions ••..••••••••••.•.•.•.• 6-52

6.3 QLINK ...•.••••••••••••••••••••••••••••••.•••••••••..•• 6-53

6.3.1 QLINK Commands •.••••.•••.••••••.•.••.••••••••••• 6-53

6.3.1 .1 ADD •..•••••.••••••••••••.•••••••••••••••• 6-54

6.3.1.2 ALIAS •••••..••.••••••••••••••••••••.•••.. 6-54

6 .3. 1 . 3 BASE •••••.••.•••••.•.••••••.•••••.••••••. 6-54
6.3.1.4 BITMAP ..•••••••••.•..••..•••..•.••.•••••• 6-54
6.3.1.5 COMMAND .•.•.•••••••••.•••.•.•••••..••.••• 6-56
6.3.1.6 DEFINE •..••••••••••.•.•..••••.••••••.••.• 6-56

6.3.1.7 DISK; •.••.••.•.•••.•••.••.••••.•••••••••• 6-56
6.3.1.8 DUMP •.•..••.•••••••••..•.•.•.•••••••••••. 6-57

6.3.1.9 END .•••.••..•••..•.••••••••.••.•••.••••.• 6-57
6.3.1.10 EVEN .•.••...•.•••..•••••••••••.•••••••••• 6-57

6.3.1 .11 GROUP •.•••••.•••••••••.••.••••..••.•••••• 6-57

6.3.1.12 HELP ••.•••.•.•••••.•••••••••••.••.•...••• 6-58

6.3.1.13 IGNORE. ••..•...••••.•••••.•••..••••...•.• 6-59

6.3.1.14INPUT ••.•.••••.••••••..••••..•....•.....• 6-59
6.3.1.15 LIBRARy 6-59

6 .3. 1 • 16 MAP ••••.•.•••••.••••••••••••••••••••...•. 6-60

6.3. 1 .17 OBJECT .••.•••••..••••••••.••.•.•.••..•... 6-60

6.3.1.180FFSET .•••••••••.•••.••••••••.••••..•••.. 6-60

6.3'.1 .19 OUTPUT •.••••.•••.•••••.••.••••..••.•••.•. 6-60
6.3.1.20 PARTIAL. •••.••••.•.••••••••••••.••••.••.. 6-61

6.3.1.21 QUIT •.••.•..•..•.••.•••.•.•.••.•..•••.... 6-61

6.3.1.22 RELINK ..••..••.••••.•••••••..•.•..•.••... 6-61

6.3.1.23 RENAME •.•....•.••.••.•••••.•.•....••••..• 6-62

6.3.1.24 RESTART ..•.•..•••..•••.••..••...••.•••... 6-62

6.3.1.25 SECTION •••.•..•.••••...•.•.•..••••••••... 6-63

6.3.1.22 SRECORD ••.•••••.•••••.•••••••.••••••..•.• 6-63

6.3.1.27 SyFILE •••.•••.•.•.••••.•.••.•.••.•••.•... 6-63

6.3.1.28 UNDEFINED ••••••••.••.••..•••..••.•.••.•.. 6-64

6.3.1.29 WRITE .•..•.•.•••..•...••.•••.••.......... 6-64

6.3.1.30 XDEF ••••.••••••••.•..•••..••••••••••..... 6-64

6.3.1.31 ZERO ••••.••.••.••••..•••••.••.•..••...•.• 6-64

PAGE i-9

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS

(TABLE OF CONTENTS continued)

6.3.2 QLINK ERROR LIST •.............••........•....... 6-65

6.3.3 LINKER EXAMPLE ..•......•...•••.•....•...•....... 6-66

TABLE 6.1 PDOS 68000 TAGGED OBJECT ••.....•...•....•..•.... 6-17

TABLE 6.2 SAMPLE TAGGED OBJECT •...••.•.......•.•..•....•.. 6-18

TABLE 6.3 QLINK MAP 6-20

CHAPTER 7 -- PDas UTILITIES

USER UTILITIES

7.1 MBACK - Disk Backup 7-3

7.2 MCHATLE - Change Attributes/Level ..•...•...........•.. 7-7

7.3 MDCOMP - Disk File Compare 7-8

7.4 MDDMAP - Disk Map 7-10
7.5 MDDUMP - Disk Dump 7-12

7.6 MDISKS - Disk Name list 7-14

7.7 MDLOOK - Disk Look 7-16

7.8 MDNAME - Disk Name 7-17

7.9 MDSAVE - Recover PDOS Disk 7-18

7.10 MFDUMP - File Dump 7-20
7.11 MFFIND - Find File Across Disks •.•...•.•........•.... 7-21

7.12 MFSAVE - File SlIve 7-22

7.13 MINIT - Initialize PDOS Disk ...•.••..•....•.....••.•. 7-24

7.14 MINST - Memory Install 7-26

7.15 MLDIR - Directory List .•••...••••••..•...••..•....•.. 7-28

7.16 MLEVEL - Level Directory List .•...•...••••....•.••..• 7-30

7.17 MLIB - Library File Manager 7-31

7.18 MLIBGEN - library Generator 7-36

7.19MORDIR - Alphabetize PDOS Directory 7-37

7.20 MPATCH - Apply a Program Upgrade Patch••....•... 7-39

7.21 MSREC - Build S-Records •••....•.•..•...•.•.•..•..•.•. 7-40

7.22 MSYFL - Build SY Object File ; 7-42

7.23 MSYOB - SYfile to OBject 7-43

7.24 MTERM - Set Task Terminal Type 7-45

7.25 MTRANS - File Transfer 7-47

7.26 MUNDL - Undelete File 7-50

PAGE ;-10

c
(

\

(

(,-,

/

{

680xO PDOS 3.2 REFERENCE MANUAL TABLE O~ CONTENTS

(TABLE OF CONTENTS continued)

SYSTEM FACILITIES

7.27 MABORT - Task Aborter 7-52

7.28 WIND1 - Create Virtual Porting Task ••••••••.••••••••• 7-55

7.29 WKILL - Di sable Vi rtual Ports 7-57

7.3D WLOOK - View Virtual Port Parameters •••.•••..•••••••. 7-58

7.31 WTERM - Set Terminal Type for Virtual Ports •••••••.•. 7-59

SYSTEM-SPECIFIC UTILITIES

7.32 MMKBT - Make Disk Boot 7-60

7.33 MTIME - Set PDOS/Battery Clock •••••••••••••••.•••••.• 7-62

7.34 xxFRMT - Disk Hardware Format 7-63

7.35 xxLDGO - Load and/or Go to a New System •.••.•••••.••. 7-66

7.36 xxPARK - Park Drives for Shipping .••••••.•.•.•••..••. 7-67

CHAPTER 8 -- BIOS. UARTs. DISK DSRs

1. MBIOS - PDOS BASIC I/O SYSTEM 8-2

1. 1 - xxBIOS:SR - USER BIOS MODULE 8-3

1.2 - MBIOS:SR - COMMON BIOS MODULE .•••••••.••••.• 8-10

1.3 - MBIOS SWITCHES 8-34

2. xxBIOSU - UART DSRs •.•••••..•••.••••.•••••..•..••••..•. 8-37

3. xxBIOSW - READ/WRITE DISK DSRs 8-43

3.1 - PDOS WINCHESTER STANDARD ••••••.•••.•••.•..•• 8-46

3.1.1 System-Independent Drive Parameters .•.•...•• 8-46

3.1.2 Disk Partitions on Drive Header 8-47

3.1.3 Bad Track Mappin9 8-47

3.1.4 Drive Data Blocks (DDBs) 8-47

3.1.5 PDOS Disk Numbering 8-48

APPENDIX A -- PDOS ERROR DEFINITIONS

A.1 PDOS ERROR SUr.t.1ARY A-2

A.2 PDOS ERROR NUMBERS •••.••.•••••.•••••.•••.•••.••.•••..•• A-3

A.3 PDOS ASSEMBLER ERRORS A-8

A.4 QLINK ERRORS ••••••.•••••..•••.•.••.•.•...•.•.....•••.• A-10

PAGE i-11

680xO PDOS 3.2 REFERENCE MANUAL TABLE OF CONTENTS PAGE ;-12

(TABLE OF CONTENTS continued)

APPENDIX B USER COMMAND SUMMARY

APPENDIX C PRIMITIVE COMMAND SUMMARY

APPENDIX D PDOS DISK LAYOUT

APPENDIX E PDOS 1/0 DRIVERS

E.1 DRIVER ENTRY POINTS ••.•••.••••.••••••••••••••••.••••••. E-2

E.2 DRIVER REGISTER USAGE ••.••••••••••••.••.•••••••••••••.• E-3

E.3 DRIVER GENERATION •••••••••••••••••••••.••••••••••••••.• E-4

E.4 RESTRICTIONS •••••••••••••.••••••.•••••••.•••••••••••••• E-5

E.5 PDOS OUTPUT DRIVER EXAMPLE ••••••••••••••••••••••••••••• E-6

E.6 PDOS INPUT DRIVER EXAMPLE •••••••••••.•••.•••••.••••••• E-13

E.7 EXTENDED DRIVER EXAMPLE E-17

APPENDIX F FLOATING POINT MODULE

APPENDIX G -- GLOSSARY

APPENDIX H -- INTERNALS

(680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 I~TRODUCTION

CHAPTER 1

INTRODUCTION

POOS is a powerful realtime, multi-tasking operating system
developed by Eyring Research Institute, Inc., for the
Motorola 68000 microprocessor family. Chapter 1 is intended
to give you a flavor of the operating system environment.

1.1 HOW TO USE THIS MANUAL. 1-2

1.2 PDOS SYSTEM FEATURES 1-5

1.2.1 POOS DESCRIPTION 1-6
1.2.2 PDOS FUNCTIONAL DESCRIPTION 1-7

1 .3 POOS DEMONSTRATION 1-1 1

Figure 1.1 PDOS memory usage 1-5

Figure 1.2 Multi-tasking POOS 1-8

Figure 1.3 Extendable POOS features 1-10

PAGE 1-1

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

1.1 HOW TO USE THIS MANUAL

This manual is designed to be a comprehensive reference
manual to the PDOS operating system. It covers all monitor
commands, assembly primitives, and utilities. Examples and
a full demonstration session are also provided. This
manual is not a beginner's guide or a tutorial. Other
manuals such as "Getting Started With POOS" or "Installation
and Systems Management" as well as POOS training courses
will help you as a beginning POOS user.

Each chapter is marked by a tab, with a table of contents
for that chapter located at the tab. You may also find, at
some tabs, appropriate summaries of the material in the
chapter. These pages are supplementary to the text itself.
Since they are not numbered, you may remove them from the
binder and use them for reference in any way convenient to
you.

You receive the most benefit from this manual if you first
read through the table of contents for each chapter and then
quickly scan the entire manual for an overview. This would
be followed by a more detailed study of those chapters
pertaining to your system. The examples to the right of the
text are helpful in clarifying various concepts.

This manual is organized in a top down manner -- more
general and less complex material is covered fi rst.
Specific chapter c~ntents are as follows:

Chapter is an introduction to a PO OS system.

Chapter 2 describes the POOS operation system in detail
including the kernel, file manager, monitor, and floating
point module.

Chapter 3 describes the monitor commands.

Chapter 4 examines the assembly primitives of the POOS
kernel and file manager.

Chapter 5 discusses the POOS editor and edito r
configurator.

Chapter 6 is divided into assembler and linker sections.

Chapter 7 provides detailed descriptions of the more common
POOS ut il Hies.

Chapter 8 gives a detailed description of the POOS BIOS
including the UARTs and read/write sector modules.

The appendices give detailed descriptions of POOS errors,
1/0 drivers, command summaries, and the window feature.
They also include an index and a glossary.

PAGE 1-2

This manual

Tabs

Supplementary pages

First, scan entire manual

Organization of manual

Introduction

POOS system

Monitor commands

Assembly primitives

Editor, editor configurator

Assembler and linker

Util ities

Secondary storage OSRs

Appendices

(

(

f

(

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

(1.1 HOW TO USE THIS MANUAL continued)

This manual is written
column functions much
hand column functions as
left hand column and
explanations. Use it
topics.

in two columns. The
as the text of any book.

left hand
The right

an outline of the material in the
provides additional examples and
for quick reference to specific

While much effort has gone into making this manual error
free, some mistakes are still likely to be present. Your
help in making the next edition better than the current one
is appreciated. Please let Eyring know of any major
mistakes or suggestions for chapters that need expansion.

This manual assumes a moderate amount of computer hardware
and software knowledge on your part. It also assumes
familiarity with the MC68000 microprocessor. Such
information is available in one or more of the following
references:

Motorola. 1984. MC68000 16/32-8IT MICROPROCESSOR
PROGRAMMER'S REFERENCE MANUAL. Fourth Edition. Englewood
Cliffs, N.J.: Prentice-Hall Inc.

Zarrella, John. 1981. MICROPROCESSOR OPERATING SYSTEMS.
Suisun City, California: Microcomputer applications.

Page format

Manual errors?

Further reference

PAGE 1-3

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

><- NOTATION

The following notations are used throughout this manual:

$ Hexadecimal number.
dec ima 1 8191.)

(e.g., $lFFF •

Binary number.
decima 1 77.)

(e.g., %1001101 •

< > Parameter used with a PDOS command or
primitive. (e.g., DL <file name>
indicates that the DL command requires a
file name as a parameter.)

{ } Optional. (e.g., SA
{,<attributes>} indicates

<file
that

name>
the

parameter <attributes> is optional.)

(Ax) Indirect assembly addressing. (e.g.,
(A2) • ,Buffer refers to register A2
pointing to a buffer.)

[] Control character or other key cap.
(e.g., [CTRL-C] denotes a hexadecimal
$03 character; [ESC] refers to the
escape key.)

PAGE 1-4

(-

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

~ 1.2 PDOS SYSTEM FEATURES

- Realtime, multi-user, multi-tasking

- Prioritized, round-robin scheduling

- Intertask communication and synchronization

- Full exception processing

- Fast interrupt task response

- Sequential, random, and shared file management

- Hardware independence

- 68000 layered design of kernel, file manager, monitor

- Configurable, modular, ROMable stand-alone support

Full Development System

ROMable Modules

Kernel
File Manager
Monitor
Debugger

Less than 24 KB

Figure 1.1 PDOS memory usage.

PAGE 1-5

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

~ 1.2.1 PDOS DESCRIPTION

PDOS is a powerful multi-user, multi-tasking operating
system developed by Eyring Research Institute, Inc., for the
32-bit Motorola 68000 processor family. You can use PDOS to
design and develop scientific, educational, industrial, and
business applications.

PDOS consists of a small, realtime, multi-tasking kernel
layered by file management, and user monitor modules. The
6K byte kernel handles synchronization and control of events
occurring in a realtime environment using semaphores,
events, messages, mailboxes, and suspension primitives. All
user console 1/0 as well as other useful conversion and
housekeeping routines are included in the PDOS kernel.

The file management module supports named files with
sequential, random, read only random, and shared access.
Mass storage device independence is achieved through read
and write logical sector primitives. The designer is
relieved of realtime and task management problems as well as
user console interaction and file manipulation so that
efforts are concentrated on the application.

POOS is easily configured for any combination of large or
small floppy disks, bubble memory devices, or Winchester
mass storage devices. A wide variety of target system'
configurations are supported for fast development of
memory-efficient, cost-effective end products.

PAGE 1-6

Multi-user, multi-tasking

1 1
1 USER APPLICATION 1
1---------------------------------1
1 MONITOR 1 FILE MANAGER I

1----------------+----------------1
1 BIOS; CPU, UARTS, R/W SECTOR 1

I································ .,
1 PDOS KERNEL 1

File management module

Secondary storage

(

(

{

i(

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

1.2.2 PDOS FUNCTIONAL DESCRIPTION

PO os KERNEL. PDOS is written in Motorola 68000 assembly
language for fast, efficient execution. The small kernel
handles multi-tasking, realtime clock, event processing, and
memory management functions. Ready tasks are scheduled
using a prioritized, round-robin method. The highest
priority task, in the ready state, is always scheduled.
Tasks with the same priority are scheduled in a round-robin
fashion. A suspended task allows lower priority tasks to
execute. The A-line ($AOOO) instruction interfaces over 100
system primitives to a user task.

MULTI-TASKING EXECUTION ENVIRONMENT. Tasks are the
components comprising a realtime application. Each task is
an independent program that shares the processor with other
tasks in the system. Tasks provide a mechanism that allows
a complicated application to be subdivided into several
independent, understandable, and manageable modules.
Realtime, concurrent tasks are allocated in 2K byte
increments. There are no 64k byte boundary restrictions
since the full 32-bit address space is available. Task
system overhead is less than 2.Sk bytes.

ItHERTASK COMMUNICATION and SYNCHRONIZATION. Semaphores
and events provide a low overhead facility for one task to
signal another. Events indicate availability of a shared
resource, timing pulses, or the occurrence of a hardware or
software interrupt. Messages and mailboxes are used in
conjunction with system lock, unlock, suspend, and event
primitives. PDOS provides timing events that can be used in
conjunction with desired events to prevent system lockouts.
Other special system events signal character inputs and
outputs .

EXCEPTION PROCESSING. POOS handles all exception
processing including interrupts, address errors, bus errors,
illegal and unimplemented instructions, and privilege
violations. Each task also has the option to process any or
all 16 TRAP vectors, divide by zero, overflow check (TRAPV),
and register out of bounds (CHK). System interrupts set the
corresponding event and then can initiate a
A high priority task waiting on that
immediately scheduled and begin executing.

context switch.
event would be

PAGE 1-7

PO OS kernel

Multi-tasking execution environment

Intertask communication and synchronization

Exception processing

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

£
Outputs / £

/' D~£
1------1

F C

Ilnpu~

L~ ---I.... Task #3

MULTI-TASKING

Task #4

Task #2

~ Task #1 ' ~ Calculations User Interface. ____ _

Figure 1.2 Multi-tasking PDOS.

PAGE 1-8

" ,

I'

(

(

B80xO POOS 3.2 REFERENCE MANUAL CHAPTER 1 INTROOUCTION

(1.2.2 PODS FUNCTIONAL DESCRIPTION continued)

MEMORY REQUIREMENTS. PODS is very memory efficient. The
PODS kernel, file manager, debuggar, BIOS, and user monitor
utilities require less than 16k bytes of memory plus an
additional 6k bytes for system buffers and stacks. Most
applications are both developed and implemented on the
targat system. Further memory reduction is achieved by
linking the user application to a 6k byte PODS kernel for a
sma", ROMable, stand-alone, multi-tasking module. For
large system configurations, PODS effectively addresses up
to the 32-bit address space of the 68000 pTocessor.

FILE MANAGEMENT. The PODS file management module provides
sequential, random, read only, and shared access to named
files on a secondary storage device. These low overhead
file primitives use a linked, random access file structure
and a logical sector bit map for allocation of secondary
storage. No file compaction is ever required. Files are
time stamped with date of creation and last update. Up to
127 files can be open simultaneously. Complete device
independence is achieved through read and write logical
sector primitives. Supported devices include floppies,
bubble and battery becked-up memories, Winchester drives,
and streaming tape drives.

COMMANO LINE INTERPRETER (ClI). The PODS monitor calls the
command line interpreter. The ClI parses the command line
for mUltiple commands and parameters. Utilities such as
append, define, delete, copy, rename, and show file are
resident and execute without destroying cur.rent memory
contents. Other functions in the PODS monitor include
setting the baud rate of a port; creating tasks; listing
tasks, files and open file status; asking for help; setting
file level, file attributes, interrupt mask, and system
disk; and directing console output.

INTERRUPT MANAGEMENT. The
console, system clock,
interrupts. User consoles
character type-ahead. A

PODS kernel handles user
and other designated hardware

are interrupt-driven with
task can be suspended pending a

hardware or software event.
round-robin scheduling of
millisecond intervals.

Otherwise, a prioritized,
ready tasks occurs at 10

Memory requirements

Fi le management

Command Line Interpreter

Interrupt management

PAGE 1-9

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

(1.2.2 PDOS FUNCTIONAL DESCRIPTION continued)

PORTABILITY. PDOS gives software portability within 68000
systems through hardware independence of the system Basic
Input/Output System (BIOS) module. All hardware functions
such as read/write logical sector, clocks, mappers, and
UARTs are conveniently isolated in this module for minimal
customization to new 68000-based systems.

CUSTOMER SUPPORT. Numerous support utilities including
screen editors, assembler, linker, macroprocessor, EPROMing,
disk diagno'stics and recovery, and disk cataloging are
standard. Single stepping, multiple break points, memory
snap shots debugger, task save and restore commands, and
error trapping primitives in all high level languages are
all provided to aid in program debugging. Upgrades are
available with hotline service to system developers.

F;gure 1.3 Extendable PDOS features.

PAGE 1-10

Portability

Customer support

(~

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION . PAGE 1-11

1.3 PDOS DEMONSTRATION

This section gives a sample PDOS keyboard session. It h
not intended as a start up procedure for new users, but

of the PDOS operating system
probably notice a number of

rather, to give the flavor
environment. You will
differences from your system.

All entries are terminated by a carriage return [CR] unless
otherwise specified. User entries are all underlined and
indicated on those lines with a right bracket (» in the
left column.

SAGE II Startup Test [1.2]

Booting from Floppy

68K POOS Sage II Bootstrap

Oone Reading Header
POOS boot OK. Gooooooooo!
POOS/68000 R3.2 01-Nov-86
ERII, Copyright 1983-86
SAGE II BIOS 31-Jul-8S

> OATE=OO-???-OO 11/10/86

> TIME=00:14:02 10 57

x>HE
For further help, enter 'HE' followed by one of the following:

MONITOR {monitor command}
FILE {file help}
BASIC {help string}
C {help string}
FORTRAN {help string}
PASCAL {help string}

POOS monitor commands
List directory & file types
BASIC language help
C language help
FORTRAN-77 he 1 p
PASCAL language help

Comments

The SAGE boot EPROMs read a bootstrap
program from sectors 0 through 3. These
in turn load PO OS into memory from $800
to $9800. Execution begins at location
$800.

The PDOS banner lists the revision, date
created, and the BIOS type. You then
enter today's date and time. Terminate
all entries with a [CR] unless otherwise
specified. Date and time numbers can be
separated by commas or spaces. Seconds
are optional.

The HE command reads the file called
'HLPTX' from the default disk. This
lists the current help available to you.

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

<1.3 PDOS DEMONSTRATION continued)

x>HE MON ITOR
Current PDOS;resident monitor conmands:

AC - Review procedure
AF - Append file
BP - Baud port
CF - Copy H le
CT - Create task
OF - Define file
DL - Delete file
OM - Delete multiple
ON - Download file
DT - Display time
EE - E nab le echo
ER - List error
EV - Events
EX - Basic
FE - For every
FM - Free memory
FS - File slots

GM - Get memory
GO - Executa
GT - Go to label
HE - Help
IA - If a1 tared
10 - Init date & time
IF - Conditional
KM - Kill message
KT - Kill task
LL - List levels
LO - Load file
LS - List directory
LT - List tasks
LV - Directory level
MF - Make file
PB - Debugger
RC - Reset console

Hit <CR> to continue ..•.. ~

Monitor conmand formats are as follows:

RD - RAM disk
RN - Rename file
RS - Reset
SA - Set file attributes
SF - Show file
SM- Send task message
SP - Disk usage
SU - Spool unit
SV - Save to file
SY - System disk
TF - Transfer files
TM - Transparent mode
TP - Task priority
UN - Output unit
UP - Upload from port.
ZM - Zero memory

AC <file>
AF <file1>.<file2>

Review procedure file
Append file

BP {{-}<prt>.<rt>{.<ty>.<bs>}}
CF <file1>.<file2>
CT <cmd>.<sze>.<pritY>.<prt>
OF <file>{.<size>}
DL <file>
OM <fi lel ist>
ON <file>
DT
EE <O-no echo>
ER <er ror#>
EV {{ - }<event>}
EX
FE <fl> or «s>.<e».<cmd>
FM {<kbytas>}
FS
GM {<kbytes>}
GO {<address>}
GT <label>
HE {<list>}

Hit <CR> to continue •..•• i9[l

Baud par t
Copy fil e
Crea te t.ask
Define file
Delete file
Delete multiple
Download file
Display time
Enable echo
List error
Events
Basic
For every
Free memory
File slots
Get memory
Execute
Go to label'
Help

PAGE 1-12

Further help concerning the PO OS monitor is
listed by entering 'HE MONITOR'. This applies
to all other help parameters.

Some help messages are paged and require
a character from your terminal console
to be entered to continue.

\
/

!~

,t

f'C

,(,

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

(1.3 PDOS DEMONSTRATION continued)

IA <fi1e>.<command>
10
IF <str1>{=#<str2>}
KM <task#>
KT {-}<task#>
LL <file1ist>
LO <fi1e>{.<start addr>}
LS {<fi1e1ist>}{.<fi1e>}
LT
LV {<level>}
MF <file>
PB
RC
RD {{-}<unt>.<sze>.<adr>}
RN <fi1e1>.<fi1e2>
RS {<disk>}

If altered
Init date & time
Conditional
Ki 11 message
Kill task
List level
Load file
List directory
List tasks
Di rectory leve1
Make file
Debugger
Reset console
RAM disk
Rename file
Reset

SA <fi1e>{.<attribute>}
SF {-}<fi1e>

Set file attributes
Show file

SM {<task#>.<message>}
SP {<disk>}
SU <unit>{.<fi1e> or <port#>}

Hit <CR> to continue ~

SV <fi1e>{.<sadr>.<eadr>}
SY {<di sk> ... }

Send task message
Disk usage
Spool unit

Save to'file
System disk

TF <filelist>.<disk#>{.<flag>} Transfer files
1M {{-}<port>}{.<break>} Transparent mode
TP {<task#>.}<priority> Task priority
UN {<unit>} Output unit
UP {<port #>}{.<message>} Upload from port
ZM Zero memory

x>LT
Task Prt Tm Event Map Size PC SR TB EM
1/-1 100 1 127 0 32 0006854A 2000 00068000 00070000
210 255 1 -128 0 2 00067D2E 0004 00067800 00068000
3/0 64 1 100 0 32 0000339A 2004 0005F800 00067800

LT lists

I U 248
o 1 0 0 0 0
o 1 o 000
4 1 4 0 0 0

PAGE 1-13

the currently executing tasks.

6S0xO POOS 3.2 REFERENCE MANUAL

(1.3 PDOS DEMONSTRATION continued)

x>HE MONITOR LT
Command: List tasks
Format: LT

List Task heading explanation:

CHAPTER 1 INTRODUCTION

Task
Prt
Tm
Event
Map
Size
PC
SR

{*=current}Task #/parent task #
Task priority (1-255) (+ indicates SVF$ set)
Task CPU tics (1 tic=10 ms)

x>~

TB
BM
EM
I

2
4

S

Suspended event(s)
Task map constant
Task size (k bytes)
Program Counter
Status Regi ster
Task control Block
Beginning of memory
End of memory
Input port number
Unit 1 port number
Unit 2 port number
Unit 4 port number
Unit S port number

Port Type fwpiSdcs Base Rate
#1 1 00000000 00F20001 9600
#2 2 00000001 00FF1000 9600
#3 2 00000000 00FF1040 9600

x>EV
00000000 00000000 00000000 OOOOFEOO

Event=130 Oelay=S5

x>OT
OATE.10-Nov-86
TIME.11 : 17 : 39

x>RO
Oisk=8
Size .. 255
Addr==00070000

Task

°

PAGE 1-14

'HE MONITOR LT' explains the LT parameters. Help
information is available on all monitor commands
by typing 'HE MONITOR xx' where xx is any monitor
command. Information about that monitor command
will then be displayed.

'BP' lists the currently installed ports.

'EV' lists current event states.

'OT' lists the current date and time.

'RO' lists the RAM disk parameters.

(

(

680xO PDOS 3.2 REFERENCE MANUAL

(1.3 PDOS DEMONSTRATION continued)

x>LKJLKJLHHJKJ
PDOS ERR 50 Illegal name
x>ASDFD
PDOS ERR 53 Not defined

x>LV
Level=1
20.2>SY
Disk=20.2

x>SP
Files=8/48
Free=2490.2490
Used=1/8

x>UN.FM.EV
Unit=3
x>FM.EV
Free=O
x>EV
00000000 00000000 00000000 OOOOFEOO

Event=130

x>[CTRL-A]
UN.FM.EV
Unit=3
x>FM.EV
Free=O
x>EV

Delay=g

00000000 00000000 00000000 OOOOFEOO
Event=128 Delay=58
Event=130 Delay=97

CHAPTE R 1 I N TROD UCTI ON PAGE 1-15

PDOS attempts to explain error numbers.

Other commands are resident in the monitor
and readily available. such as list the
directory level (LV) or default disk (SY).

There are 255 directory levels for each
disk number. The current level is 1.

There are 255 different disk units. The
current disk unit is 20 for working and
file creation and 2 for reference.

The SP command outputs the number of files
used out of those available. the number of
free sectors on a disk. and the number of
sectors used and the file directory size.
The second parameter on 'Free' is the
largest contiguous block of sectors on the
disk. The 'Used' output is divided
between the number of sectors actually
used versus the number of sectors
allocated to files from the disk bit map.

Multiple commands are entered on the same
line by separating the commands (along with
any parameters for the command) with a
period. As each command is executed, the
command line is echoed again.

The command line is saved and can be
recalled by entering a [CTRL-A].

Events are used for task synchronization.
Each event is a single bit. The system
events (112-127) are generally set.

K

680xO PDOS 3.2 REFERENCE MANUAL

(1.3 PDOS DEMONSTRATION continued)

O>LS
Disk=PDOS 3.2/0
Lev Name:ext Type Size

CHAPOO TX C 4/4
1 CHAPOl TX + 1411141

1 CHAP02 TX C 216/216
CHAP03 TX C 326/326
CHAP04 TX C 6221622
CHAP05 TX C 120/120
CHAP06 TX C 363/363
CHAP07 TX C 256/256
DEMO AC C 212
PQ EX C 33/33
TITLE TX C** 4/4
TEMP TX C 111

SEND AC C* 1/1
Files .. 13 Used-2089/2089

x>!:!LE!.!:!

CHAPTER 1 INTRODUCTION

Fil es=13/128
Sect Date created Last update
0012 14:25 08-Aug-85 16:03 21-Aug-85
0016 09:53 09-Aug-85 12:03 10-Feb-86
00A2 12:11 20-Aug-84 10:57 27-Aug-85
017A 12:11 20-Aug-84 14:20 26-Aug-85
02CO 12:12 20-Aug-84 10:09 27-Aug-85
052E 12:31 08-Aug-85 09:12 23-Aug-85
D5A6 11:00 08-Aug-85 12:42 26-Aug-85
0711 15:10 23-Aug-85 18:10 23-Aug-85
0811 09:47 22-Jul-85 09:56 01-Aug-85
0813 12:13 20-Aug-84 13:15 27-Sep-85
0834 08:28 19-Jul-~5 15:40 05-Aug-85
0838 09:51 23-Aug-85 14:10 23-Aug-85
0839 16:06 23-Aug-85 13:16 27-Sep-85

PAGE 1-16

The LS command ~ists a disk directory.
Parameter defaults are the current
disk and directory level. Each file
is time stamped with date of creation
and last update. The file size
indicates the number of sectors
actually used versus the number of
sectors allocated to the file from
the sector bit map. Hitting any key
will pause the output listing.
Pressing another key ~ontinues the
listing. The [ESC] key terminates
the output.

FILE FS Directory header explanation
The 'HE FILE FS' command explains the
heading definitions for the list
directory command. FILE FILELIST

x>HE FILE FS
PDOS file selection list definition

List directory header explanations:

LEV
NAME: EXT
TYPE
SIZE
SECT

File directory level
File name:extension
File attribute (S~e below)
Sectors user/Sectors allocated
Start sector number

DATE CREATED
LAST UPDATE

Time & date file defined
Time & date file was-last altered

Valid file types are as follows:

AC .. Procedure file
OB .. 68000 object
SY = System fil e
TX .. ASCII text
BN ,. Binary file
EX .. BASIC program
BX .. BASIC binary program
DR .. System I/O driver

+ .. Altered
C .. Contiguous
* .. Delete protect

** .. Write protect

The PDOS monitor uses the file type in con
trolling the file processing. A file typed
as 'OB' contains 68000 tagged object and is
loaded into "task memory and executed. 'SY'
or system files are handled similarly. 'EX'
files are directed to the resident BASIC
interpreter, loaded and executed.

I,'

(

(

(

«

t

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION PAGE 1-17

(1.3 PODS DEMONSTRATION continued)

x>HE FILE FILELIST
A PODS file selection list is defined as follows:

<filelist> {file}{:ext}{;level}{/disk}{/select ... }

{file} = 1 to 8 characters (1st alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=all,*=wild)

{;level} directory level (;@=all)
{/disk} = disk number ranging from 0 to 255

{/select} lAC = Assig~~onsole file
IBN = Binary file
IBX = PODS BASIC token file
lEX = PODS BASIC file
lOB = 68000 PODS object file
ISY = System file
ITX = Text file
lOR = System 110 driver
1* = Delete protected
1** = Delete and write protected

'HE FILE FILELIST' explains how to select files
using the PODS file selection list used with
many monitor commands.

IFmm-dy-yr selects files with date of last change
greater than or equal to 'mm-dy-yr'

ITmm-dy-yr selects files with date of last change
less than or equal to <= 'mm-dy-yr'

x>FS
Slot Name ST SM PT SI EOF TN BF

The 'FS' command lists open file slots.
FLGS

32 DOC;1/20 C104 0032 0000CD01 0023 0023/62 0000 OOOOCCAE 00000000

x>HE ·MONITOR FS
Command: File slots

Format: FS

List File Slots heading explanation:

Slot
Name
ST
SM
PT
SI
EOF
TN
BF
FLGS

File slot #
File name; directory level I disk
Channel status
Sector in memory
Channel buffer pointer
Current file sector index
End-of-file sector index number I bytes in last sector
Task number which lockedlopened the file
Channel buffer address+
Channel status flags (lock/shared/error)

+ A zero buffer address indicates the buffer has been
rolled to disk.

Hit <CR> to continue ~

A file is accessed through a file slot or
channel. This memory area contains all
the status and pointers associated with
an open file. The OPEN commands bind a
file slot with a channel buffer where
the file data is actually transferred.

660xO POOS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

(1.3 PO OS DEMONSTRATION continued)

Channel status is defined as follows:

x1xx Sequential xx60 Altered
x2xx Random xx04 Conti guous
x6xx Shared random xx02 Delete protected
xAxx Read only random xx01 Write protected

1xxx Driver in channel
2xxx Buffer locked in memory
4xxx File al tered
8xxx Secto r a lte red

x>SF UPTIME

100 REM UPTIME
110 DIM 0[1].M[2].T[1].W[2]
120 DATE $0[0]: TIME $T[D]: T=TIC 0
130 M=$O[O]: 0=$0[0;4]: Y.$0[D;7]: C=19
140 M1=M-2: Y1.Y: IF M1<1: M1=M1+12: Y1=Y-1: IF Y1<0: C.C-1
150 W=INT[2.6*M1-0.19]+0+Y1+INT[Y1/4]-2*C+INT[C/4]
160 W=INT[W-INT[W/7]*7+0.5]: IF w<o: W.W+7
200 RESTORE W+1: READ $W[O]
210 DATA "Sunday". "Monday" /'Tuesday". "Wednesday"
220 DATA "Thursday","Friday","Saturday"
230 RESTORE M: READ $M[O]
240 DATA "January","February","March","April"
250 DATA "May", "June". "Jul y", "August ... "September"
260 DATA .. October November .. , .. December ..
300 PRINT "Today is ";$W[O];" ... ;$M[0];D; ;C*100+Y;
310 PRINT". The time is ";$T[O];"."
315 DC=86400·SYS[38]: HC=3600*SYS[38]: MC.60*SYS[38]
320 OAY.INT[T/DC]: T.T-OAY*DC
330 HRS-INT[T/HC]: T=T-HRS*HC
340 MIN-INT[T/MC]: T=T-MIN*MC
350 SEC=INT[T/SYS[38]]
360 PRINT "POOS has been up for";·

Strike any key ... ~
370 IF DAY: PRINT DAY;" days,";
380 IF HRS: PRINT HRS;" hours.";
390 IF MIN: PRINT MIN;" minutes, and";
400 PRINT SEC;" seconds.";

PAGE 1-18

From the channel status. you can tell
what type of OPEN was done. whether the
file has been altered. and its protection
codes.

The SF command displays a file.

:.

1'
~

c,

('
/ ..)

(

,C.

("

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 1 INTROOUCTION

(1.3 POOS OEMONSTRATION continued)
If

x>UPTIME
Today is Monday, February 10, 1986. The time is 12:09:04.
POOS has been up for 2 hours, 8 minutes, and 10 seconds.

O>LT
Task Prt Tm
"0/0 64 1

2/0 50

x>CT ,100,,2
"Task #1

x>LT
Task Prt Tm
*0/0 64 1

110 64
210 50

x>CT ,50,50,3
*Task #3

x>LT
Task Prt Tm
*0/0 64 1
110 64
210 50
3/0 50

x>KT 3

x>LT
Task Prt Tm
*0/0 64 1

111 255 1
2/0 50 1

x>FM
Free=50

February 1986
Su Mo Tu We Th Fr Sa

1
234 5 678
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28

Event Map Size PC SR TB EM
0 752 00002004 0000 OOOOCOOO 000C8000

99 0 50 0000101C 2004 000C8000 00004800

Event Map Size PC SR TB EM
0 752 00002004 0000 OOOOCOOO 000C8000
0 100 000019EC 2004 00004800 000E0800

99 0 50 0000101C 2004 000C8000 00004800

Event Map Size PC SR TB EM
0 702 00002004 0000 OOOOCOOO 000BB800
0 100 000019EC 2004 00004800 000E0800

99 0 50 0000101C 2004 000C8000 000D4800
0 50 000019EC 2004 000BB800 000C8000

Event Map Size PC SR TB EM
0 702 00002004 0000 OOOOCOOO 000BB800
0 100 000019EC 2004 00004800 000ED800

99 0 50 0000101C 2004 000C8000 00004800

I U
1
3 1

I U
1 ,

2 1
3 1

I U
1 1
2 1
3 1
o 1

I U
1 1
2 1
3 1

PAGE 1-19

The UPTIME program may be executed
simply by entering the file name.

248
200

3 0 0 0

A new task (or user) is created with the
CT command. The task number is ass.i gned
by POOS. Here, a new task of 100 Kbytes
of memory on port 2 is created.

248
200

2 000
3 0 0 0

Additional tasks can be created. This one
is 50 k bytes in size and.has a priority of
50. Its 1/0 ;s through port 3.

248
200

2 000
3 o 0 0
300 0

Tasks are just as easily removed from
the task list with the KT command.

2 4 8
1 200
200 0
3 0 0 0

After a task is killed, its memory is
allocated in the memory bit map. The
FM command lists any memory available to

the current task.

680xO PDOS 3.2 REFERENCE MANUAL

(1.3 PDOS DEMONSTRATION continued)

x>~

x>FM
Free=10

x>.!:.!.

CHAPTER 1 INTRODUCTION PAGE 1-20

The GM command allows this memory to be re
covered. Any or all memory is easily allo
cated to your task.

Task Prt Tm Event Map Size PC SR TS EM I U 1 2 4 8
"'0/0 64 1 o 702 00002004 0000 OOOOCOOO OOOBEOOO 1 1 1 2 0 0

111 255 1 o 100 000019EC 2004 000D4800 000ED800 2 1 2 0 0 0
210 50 1 99 0 50 00001D1C 2004 000C8000 000D4800 3 1 3 0 0 0

x>GM
x>FM

Free=O
x>LT

Task Prt Tm Event Map Size PC SR TB EM I U 1 2 4 8
"'0/0 64 1 o 702 00002004 0000 OOOOCOOO 000C8000 1 1 1 2 0 0

111 255 1 o 100 000019EC 2004 000D4800 000E0800 2 1 2 0 0 0
210 50 1 99 0 50 00001D1C 2004 000C8000 000D4800 3 1 3 0 0 0

x>MF #PRGM:SR
PRGM:SR

'" -START XPMC MES01
XEXT

'"

09/20/83

;OUTPUT MESSAGE
;DONE

MES01 DC.B $OA,$OD,'IT WORKS!!!!' ,0
END START

x>SF PRGM:SR
START XPMC MES01 ;OUTPUT MESSAGE

XEXT ;DONE
MES01 DC.B $OA,$OD,'IT WORKS!I!!' ,0

END START

O>MASM PRGM:SR,#PRGM,#LIST
68K PDOS Assembler R3.2 01-Nov-86
ERII, CoPyri9ht 1983-86
SRC=PRGM:SR
OSJ=#PRGM
LST.#UST
ERR.
XRF=
END OF PASS 1
END OF ,PASS 2

x>PRGM
IT WORKS! ! ! !

The MF or make file command allows you to
create a file directly from your keyboard
console. Assembly language development is
very easy because all operating system calls
are supported by the assembler. This
program simply prints a message and returns
to the PDOS monitor.

Let's look at it again to check its syntax.

The assembler is called and the object
is directed to a new file called PRGM.
The assembly listing goes to the file
LIST.

Enter the program name to execute the file.

..

, ,

(y'

(

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 1 INTRODUCTION

(1.3 PODS DEMONSTRATION continued)

x>~

PAGE: 1 09:56 08/01/85

1

2
3
4

5

0/DOOOOOOO:A08C0004
0/00000004:AOOE

68K PDOS Assembler 01-Nov-86
FILE: PRGM:SR,PDOS 3.2 SYSTEM

* PRGM:SR 09/20/83

*
START XPMC MES01

XEXT
*

;OUTPUT MESSAGE
;DONE

6
7

0/00000006:0AOD495420574F52 MES01 DC.B $OA,SOD, 'IT WORKS!!!!' ,0
4B532121212100

8 0/00000015 :0/00000000

PAGE: 2 09:56 08/01/85

DEFINED SYMBOLS:

MES01 0/00000006 START

EXTERNAL DEFINITIONS: NONE
Strike any key ...

EXTERNAL REFERENCES: NONE

UNDEFINED SYMBOLS: NONE

UNREFERENCED SYMBOLS: NONE

END START

6SK PODS Assembler 01-Nov-86
FILE: PRGM:SR,POOS 3.2 SYSTEM

0/00000000

PAGE 1-21

18QxOipDOS- 3.2 REFERENCE MANUAL

(1.3 PDOS DEMONSTRATION continued)

X>tS IS
Disk=SY$DSK/S
lev Name: ex t

lOoTF PQ:Q,S,A

Type

Transfer PRGM:SR;1/0
Transfer PRGM;1/0
Transfer PRINTQ:BGR;1/0
Transfer PRINTRX;1/0
Transfer PRINTS:BGR;1/0

lOolS IS
Oisk=SY$DSK/S
lev Name:ext
1 PRGM_:SR
1 PRGM
lPRINTQ:BGR
1 PRINTRX.
1 PRINTS:BGR

lOoDM Q:Q;QI8

Type
C

OB C
EX C
EX C
EX C

Delete PRGM:SR;1/S7 (Y/N/A)~

Delete PRGM;lIS
Delete PRINTQ:BGR;1/8
Delete PRINTRX;1/S
Delete PRINTS:BGR;1/S

lOo

Size

Size
111
1/1

34/34
35/35
34/34

CHAPTER 1 INTRODUCTION

Fil es.0/32
Sect Date created Last update

The TF command transfers multiple
files from one disk to another.

Files:;o5/32
Sect
0005
0006
0007
0029
004C

Date created Last update
14:25 OS-Aug-S5 16:03 21-Aug-S5
09:53 09-Aug-S5 12:03 10-Feb-S6
12:13 20-Aug-S4 10:57 27-Aug-S5
12:13 20-Au9-S4 14:20 26-Aug-S5
12: 13 19-Jul-85 15 :.40 05-Aug-S5

The DM command deletes multiple
files from a disk directory.

PAGE 1-22

" ,/

(

(

OPERATING SYSTEM

/

f·"!\ .
. '<."

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

CHAPTER 2

POOS SYSTEM OVERVIEW

The PO OS operating system is described here in detail.
There are four main sections of POOS; namely. the kernel,
BIOS, file management module, and monitor.

2. 1 PO OS KERNEL .••••.•...•...•.....•.•.•.•..•••.•••.•..•. 2-2

2.1 .1 POOS TASK .••...•.•...•...•.••..••.••.••.••. 2-2

2.1.2 MUL TI-TASKING 2-4
2.1.3 SYSTEM SERVICES 2-7

2.1.4 POOS CHARACTER 1/0 2-8
2.1.5 EVENTS••.••..••..•.•.•.•...•.•••....•• 2-12

2.1.6 TASK COMMUNICATION 2-14

2.1.7 TASK SUSPENSION ..•.•..••••••...•.•.....•.. 2-15

2.1.8 HIGH PRIORITY TASKS •........•..•.......... 2-16

2.2 POOS FILE MANAGEMENT 2-16

2.2.1 POOS FILE STORAGE 2-16

2.2.2 FILE NAMES•.•......•.•••.....••.•.••.. 2-18

2.2.3 DIRECTORY LEVELS•......••..•.•... 2-19

2.2.4 ~ISK NUMBERS•.........•...•..••••..•• 2-19

2.2.5 FILE ATTRIBU.TES 2-20

2.2.6 TIME STAMPING•.•.....•.••.••..•......• 2-22
2.2.7 PORTS, UNITS, AND OISKS 2-22

2.3 PDOS BIOS ...••.•.•.....•.........••.•.......•.••.... 2-24

2.4 PDOS MONITOR •...•...•......•.......•....•.•••.•.•.•• 2-24

2.4.1 COMMAND LINE INTERPRETER ...•......•......•• 2-25
2.4.2 PROCEDURE FILES ...•.....•..•......•..•.... 2-26
2.4.3 IMPLIED TASKS 2-27

FIGURE 2.1 TASK CONTROL BLOCK 2-6

FIGURE 2.2 PDOS CHARACTER INPUTS .•......•...............• 2-9

FIGURE 2.3 POOS CHARACTER OUTPUTS •...........•..•......• 2-11

FIGURE 2.4 PDOS DIRECTORY FORMAT•.•........•.... 2-23

PAGE 2-1

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-2

2.1 PDOS KERNEL

The POOS kernel is the multi-tasking, realtime
the POOS operating system. Tasks are the
c·omp.rising a realtime application. It is
responsibility of the kernel to see that
provided with the support it requires in order
its designated function.

nucleus of
components
the main

each task is
to perform

The main responsibilities of the POOS kernel are the
allocation of memory and the scheduling of tasks. Each task
must share the system processor with other tasks. The
operating system saves the task's context when it is not
executing and restores it again when it is scheduled. Other
responsibilities of the POOS kernel are maintenance of a
24-hour system clock, task suspension and rescheduling,
event processing, character buffering, and other support
functions.

2.1.1 PDOS TASK

A PO os task is defined as a program entity which can
execute independently of any other program if desired. It
is the most basic unit of software within an operating
system. A user task consists of an entry in the POOS task
queue, task list, and a task control block with 'Iser program
space.

The task queue and list are used by the POOS kernel to
schedule tasks. A task queue entry consists of a task
priority and a task number. The list is ordered with the
highest priority entry first. A task list entry consists of
a priority, task time, spawned task number, task control
block pointer, task map constant, and two suspended event
registers. The task number is assigned according to its
entry posi tion.

The first $500 (hex) bytes of a task are the task control
block. This block of memory consists of buffers and
parameters peculiar to the task. The 68000 address register
A6 points to the status block when the user program is first
entered. The task parameters may be referenced by a user
program but care must be taken that POOS is not crashed! The
task control block variables are displacements beyond
register A6 and are defined in FIGURE 2.1.

POOS kernel:

1. Multi-tasking, mul ti-user scheduling
2. System clock
3. Memory allocation
4. Task synchronization
5. Task suspension
6. Event processing
7. Character I/O including bufferi ng
8. Support primitives

Memory
Task Queue Task .List

--------- ------- Task #0
100/#1 Task #0-->-->-->.----.
64/#0 Task #1---v I Task I
64/#2 Task #2 v I Control I

V 1 Block 1
v 1---:.--1
v 1 User 1
v 1 Program 1
v 1 Space 1
v
v 1------1
v 1 1
v
v
v Task #1
,
->--->. -------.

/

c

c

(

(~

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-3

(2.1.1 PO OS TASK continued)

The user program space begins immediately following the
task control block. Position i~dependent 68000 object
programs or BASIC tokens are loaded into this area for
execution. Task memory is allocated in 2k byte increments.
The total task overhead is $500 or 1280 bytes. This leaves
$300 or 768 bytes available for a user program and user
stack in a minimal 2k byte task.

From the time a task is coded by a programmer until the
task is destroyed, it is in one of four task states. Tasks
move among these states as they are created, begin
execution, are interrupted, wait for events, and finally
complete their functions. These states are defined as
follows:

1. Undefined A task is in this state before it is
loaded into the task list. It can be a
block of code in a disk file or stored
in memory.

2. Ready

3. Running

4. Suspended

When a task
entered in
not executing
to be ready.

is loaded in memory and
the task queue and list but
or suspended, it is said

A task is running when scheduled by the
POOS kernel from the task list.

When a task is stopped pending an event
external to the task, it is said to be
suspended. A suspended task moves to
the ready or running state when the
event occurs.

A task remains undefined until it is made known to the
operating system by making an entry in the task queue. Once
entered, a task immediately moves to the ready state which
indicates that it is ready for execution. When the task is
selected for execution by the scheduler, it moves to the run
state. It remains in the run state until the scheduler
se 1 ects another task or the task requires external
information and suspends itse 1f until the information is
available . The suspended state greatly enhances overall
system performance.

Task overhead = $500 (hex) bytes + user stack

4 task states:

1. Undefi ned
2. Ready
3. Running
4. Suspended

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 2 PDOS SYSTEM OVERVIEW PAGE 2-4

2.1.2 MULTI-TASKING

PDOS defaults to allow 32 independent tasks to reside in
memory and share CPU cycles. Each task contains its own
task control block and thus executes independently of any
other task. A task control block consists of buffers,
pointers, and a PDOS scratch area. By changing the 'NT'
parameter in MSYRAM and other parameters, POOS can be
configured to handle up to 128 tasks.

Four parameters are required for any new task generation.
These a.re:

1)

2)

3)

4)

A task priority. The range is from 255
(highest priority) to (lowest
priority).

Tasking memory. Memory is allocated to
a task in 2k byte increments. The first
$500 bytes is assigned the task TCB.

An I/O port. Input ports are unique
while many tasks may share the same
output port for task console
communication.

A task cOlTl1land. This may be in the
form of several monitor cOlTl1lands or a
memory address to begin executing.

Each of the above requirements defaults to a system
parameter. Task priority defaults to the parent task's
priority. Default memory allocation is 32k bytes and
default console port is the phantom port.

If a task cOlTl1land is not specified, the new task reverts to
the PDOS monitor. However, if no input is possible (i.e.
port 0 or input already assigned), then the new task
ilTl1lediately kills itself. This is very useful since tasks
automatically kill themselves as they complete their
assignments (remove themselves from the task list and return
memory to the available memory pool).

A task entry in the task list consists of a task number
designation, parent task number, time interval, task
priority, memory map constant, task control block pointer,
and two event registers. Swapping from one task to the next
is done when the task interval timer decrements to zero,
during an I/O call to PODS, or when an external event causes
a context switch. The task interval timer decrements by one
every ten milliseconds (or as defined in the system BIOS
module) .

Defaults to 32 independent time-shared tasks

128 tasks can be handled.

255 Highest priority
Lowest priority

Task memory

I/O port

COlTl1land

Task defaul ts

Automatic task termination

Task entry in task list

(~\

(

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 2 PDOS SYSTEM OVERVIEW

(2.1.2 MULTI-TASKING continued)

Any task may spawn another task. Memory for the new task
is allocated in 2k by.te blocks from a pool of available
memory. If no memory is free, the spawning task's own
memory is used and the parent task's memory is reduced in
size by the amount of memory allocated to the new task. It
is important to note that some assembly coded programs and
all high level language programs use both the low and high
addresses of the task memory. To prevent memory loss from a
task and program failure, it is necessary to allocate enough
memory to the free memory pool before creating a new task
under program control. Otherwise, the task may give up its
variable space or stack to the spawned task.

POOSmai ntai ns a memory bit map to indicate which segments
of memory are currently in use. Allocation and deallocation
are in 2k byte increments. When a task is terminated, the
task's memory is automatically deallocated in the memory bit
map and made avai lab1e for use by 0 the r tasks.

"Multi-user" refers to spawning new tasks for additional
operators. Each new task executes programs or even spawns
additional tasks. Such tasks are generated or terminated as
needed. Task 0 is referred to as the system task and cannot
be terminated.

Figure 2.1 shows the task control block.

WARNING: Although the locations of the task control
block are made available to the user, you must be cautious
when using these locations. Many POOS primitives use these
locations to perform their functions and any location may
change at any time as a result of these PDOS calls. The
same TCB format has mostly been retained throughout POOS
revisions; however, that may not always be the case and the
TCB may be modified significantly.

Task memory allocation

Memory bit map

Multi-user system

PAGE 2-5

S80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 2 PDOS SYSTEM OVERVIEW

TASK> 1-------1
I I
I T I
I I
I C I
I I
I B I
I I
I I
1-------1
I I
I I

--------- ' \
Task Control\

Block I

---------. I
II

Task Status Control Definitions

O(AS) = 25S byte user buffer
$100(AS) = CLB$ - 82 byte monitor command line
$150(AS) = MWB$ - 32 byte monitor work buffer
$170(AS) = MPB$ - monitor parameter buffer
$3BO(AS) = TSP$.L - task stack pointer
$3B4(AS) = KIL$.L - kill self address
$3B8(AS) - Reserved
$3BC(AS) = SVF$.B - save S8881 registers flag
$3BE(AS) = TRP$ - user TRAP vectors
$3FE(AS) = ZOV$.L - zero divide trap
$402(A6) = CHK$.L - CHCK instruction trap
$40S(AS) = TRV$.L - TRAPV ihstruction trap
$4DA(AS) = TRC$.L - trace vector
$40E(A6) = FPA$.8 - floating point accumulator
$41S(AS) = FPE$.L - fp error processor address
$41A(A6) = CLP$.L - command line pointer
$41E(A6) = BUM$.L - beginning user memory
$422(AS) = EUM$.L - end user memory
$42S(AS) = EAD$.L - entry address

buffer

$42A(A6) = IMP$.L - assigned input message pointer
$42E(AS) = ACI$.W - assigned input file ID
$432(AS) = LEN$.W - last error number
$434(AS) = SFI$.W - spooling unit file ID
$43S(A6) = FLG$.W - task flags
$437(AS) = SLV$.B - directory level
$438(AS) = FEC$.B - file expansion count
$43A(AS) = CSC$.W - clear screen character(s)
$43C(A6) = PSC$.W - position cursor characters
$43E(A6) = SDS$.B - alternate system disk(s)
$441(A6) = SDK$.B - system disk
$442(A6) = EXT$.L - XEXT address
$44S(AS) = ERR$.L - XERR address
$44A(AS) = CMD$.B - command line delimiter
$44B(A6) = TID$.B - task ID
$44C(AS) = ECF$.B - echo flag
$44D(AS) = CHT$.B - output column counter
$44E(AS) = MMF$.B - memory modified flag
$44F(AS) = PRT$.B - input port #
$4S0(A6) = SPU$.B - spooling unit mask
$4S1(A6) = UNT$.B - output unit mask
$4S2(A6) = U1P$.B - unit 1 port #
$4S3(A6) = U2P$.B - unit 2 port #
$4S4(A6) = U4P$.B - unit 4 port #

$4SS(AS) = U8P$.B - unit 8 port #

$4S6(A6) - reserved
$4S8(A6) = TWO$.W - monitor word temps
$4SA(A6) = TW1$.W - TWO-TW2 used by level
$4SC(AS) = TW2$.W - 2 primitives
$4SE(AS) = - reserved
$470(A6) - debugger parameters

««< $SOO(AS) «««< USER PROGRAM

FIGURE 2.1 TASK CONTROL BLOCK

PAGE 2-S

II

c 680xO PODS 3.2 REFERENCE MANUAL CHAPTER 2 PODS SYSTEM OVERVIEW

(:, 2.1.3 SYSTEM SERVICES

(

c

(

System services are those functions that a task requires of
the operating system while entered in the task list. These
requirements range from timing end interrupt handling to
task coordination and resource allocation.

PODS provides many time-oriented functions which key off of
the system hardware interval timer. The current time of day
and date are maintained with fine adjustment parameters. A
32-bit counter is used for various delta time functions such
as task scheduling and event delays.

Hardware interrupts are processed by the kernel BIOS or
passed to user tasks. Tasks can be suspended pending the
occurrence of an interrupt and then ba rescheduled when the
interrupt occurs. Interrupts such as the interval timer and
character input or output are handled by the kernel itself.

Task coordination is an integral part of realtime
applicatiQns since many functions are too large or complex
for any single task. The PODS kernel uses common or shared
data areas, called mailboxes, along with a table of
preassigned bit variables, called events, to synchronize
tasks. A task can place a message in a mailbox and suspend
itself on an event waiting for a reply. The destination
task is signaled by the event, looks in the mailbox,
responds through the mailbox, and resets the event signaling
the reply.

System resources include the processor itself, system
memory, and support peripherals. The PODS kernel provides
primitives to create and delete tasks from the task list.
Memory is allocated and deallocated as required.
Peripherals are generally a function of the file manager but
are assigned and released via system events. Device drivers
coordinate related 110 functions, interrupts, and error
conditions. All of these functions are available to user
tasks and thus tasks may spawn tasks and dynamically control
their operating environment.

Other suppori utilities contained within the POOS kernel
include number conversion, command line decoding, date and
time conversions, and message processing routines.
Facilities are also provided for locking a task in the run
state during critical code execution.

System services

Interrupts

System resources

PAGE 2-7

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 2 PODS SYSTEM OVERVIEW PAGE 2-8

2.1.4 PDOS CHARACTER 1/0

The flow of character data through PODS is the most visible
function of the operating system. Character buffering or
type-ahead assures the user that each keyboard entry is
logged, even when the application is not loo:king for
characters. Character output is normally through; program
control (polled 110).

Inputs and outputs are through logical port numbers. A
logical port is bound to a physical UART (Universal
Asynchronous Receiver I Transmitter) by the baud port
commands. Only one task is assigned to an input port at any
one time while many tasks may share the same output port.
It is then the responsibility of each task to coordinate all
outputs .

POOS CHARACTER INPUT

POOS character inputs come from four sources: 1) user
memory; 2) a POOS file; 3) a polled 1/0 driver; or 4) a
system input port buffer. The source is dictated by input
variables within the task control block. Input variables
are the Input Message Pointer (IMP$(A6», Assigned Console

o Input (ACI$(A6», and input port number (PRT$(A6».

When a request is made by a task for a character and
IMP$(A6) is nonzero, then a character is retrieved from the
memory location pointed to by IMP$(A6). IMP$(A6) is
incremented after each character. This continues until a
null byte is encountered, at which time IMP$(A6) is set to
zero.

If IMP$(A6) is zero and ACI$(A6) is nonzero, then a request
is made to the file manager to read one character from the
file assigned to ACI$(A6). The character then comes from a
disk file or an 1/0 device driver. This continues until an
error occurs (such as an END-Of-fILE) at which time the file
is closed and ACI$(A6) is cleared.

If both IMP$(A6) and ACI$(A6) are zero, then the logical
input port buffer selected by PRT$(A6), is checked for a
character. If the buffer is empty, then the task is
automatically suspended until a character interrupt occurs.

POOS character input flow is summarized by Figure 2.2.

Interrupt driver character type-ahead

Program control output

Inputs and outputs through logical ports

Character inputs:

1. User memory
2. POOS disk file
3. POOS I/O device driver
4. System. input port buffer

OPT PODS
LEA.L CMMO(PC),A1
MOVE.L A1,IMP$(A6)

OC.B 'MESSAGE' ,0
EVEN

;GET TCB VARIABLES
;POINT TO COMMAND
;SET INPUT POINTER

o OPT PODS ;GET TCB VARIABLES
LEA.L FILEN(PC),A1 ;POINT TO fILE NAME
XSOP ;OPEN FILE

BNE.S ERROR
MOVE.W 01,ACI$(A6) ;SET CONSOLE INPUTS

fILEN OC.B 'INDATA',O
EVEN

OPT PODS
MOVEQ.L #3,01
MOVE.B 01,PRT$(A6)

;GET TCB VARIABLES
;REAO CHARACTERS FROM

PORT #3

"-

)

c
(

Ci

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 2 PDOS SYSTEM OVERVIEW

D
A
T

A

F
L

0
W

v

v

Notes:

XPMC
XPLC
XPBC

v

v

v 1. SPOOLing UNIT

I
. ««««««« 7 I UNT$(A6)
v

Y

I
I

v . «««««< 4 I SPU$(A6)
v Y

v Y
I
I

v __ v_v_ I SFI$(A6)
v I I II
v»»»»»»>><IF (UNT$ASPU$»»»»»ISFI$I»»»» [PDOS FILE]
Y \ __ v_Y_1 I I or
v v Y I I [1/0 DRIVER]

I I
I I

v v Y .

I~U$AUNT$I v

v
I _______ V ______ '

I I
Y v I I
v 2. Output UNIT 1 v I I
v __ Y__ I I U1 P$(A6)
v \ I II
v»»»»»»»< IF (unt$A1) »»»»>1 I»»»» [Port #1 UART]
v \ .. v __ 1 I I
v ----'-v I I
v 3. Output UNIT 2 Y I I
v __ v__ I I U2P$(A6)
v I I II
»»»»»»»>< IF (unt$A2) »»»»>1 3 I»»»» [Port #3 UART]
v \ __ Y __ I I I
Y Y I I
Y 4. Output UNIT 4 v I I
v __ v__ I I U4P$(A6)
v I I II
»»»»»»»>< IF (unt$A4) »»»»>1 2 I»»»» [Port #2 UART]
v \ __ v __ 1 I I
v v I I
v 5. Output UNIT 8 v I I

I I U8P$(A6) v v ----
v I I II
»»»»»»»>< IF (unt$A8) »»»»>1 0 I»»»» [Phantom port]

___ I I I
I I

UNIT 1 (-SPU$ " UNT$) " 1
UNIT 2 (-SPU$ " UNT$) " 2
UNIT 4 (-SPU$ " UNT$) " 4
UNIT 8 = (-SPU$ " UNT$) " 8

PDOS FILE = (SPU$ " UNT$)

FIGURE 2.3 POOS CHARACTER OUTPUTS

PAGE 2-11

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-12

2.1.5 EVENTS

Tasks communicate by exchanging data through mailboxes.
Tasks synchronize with each other through events. Events
are single bit flags that are global to all tasks.

There are four types of event flags in POOS: software,
software resetting, system, and local. System events are
further divided into output, input, timing, driver, and
system resource events. System events are predefined
software resetting events that are set during PODS
initialization. Event 128 is local to each task and is used
as a delay event.

1) 1-63

2) 64-80

3) 81-95

Events through 63 are software
events. They are set and reset by tasks
and not changed by POOS task scheduling.
A task can suspend itself pending a
software event and then be rescheduled
when the event is set. One task must
take the responsibility of resetting the
event for the sequence to occur again.

Events 64 through 80 are like the
normal software events except that PODS
resets the event whenever a task
suspended on that event is rescheduled.
Thus, one and only one task is
rescheduled when the event occurs.

These events are set and reset by the
Send Message Pointer (XSMP) and Get
Message Pointer (XGMP) primitives.

Events
output

81 through 95 correspond to
task ports through 15. A

suspends itself on an output event after
transmitting a character through a UART.
When the transmit character complete
interrupt occurs,
the corresponding
continues execution.

the event is set and
suspended task

NOTE: Output port events are only
supported though the xxBIOSU routines.
See your Installation and Systems
Management guide for implementation
details.

Events synchronize tasks

4 types of event flags:

1-63 Software
64-80 Software resetting

81-127 System
128 Local to task

1-63 Software events

64-80 Software resetting events

81-95 Output port events

)

c 680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-9

1. MEMORY MESSAGE TASK CONTROL BLOCK

I
MSG DC.B 'HELLO' ,0 »»»»»»» (MSP) I IMP$(A6)

I \

I
I \

2. PDOS FILE W/TYPE-AC I \

I
DO:AC »> [CHANNEL BUFFER] I \

v I \
v I C) +»»»»» FILlD I ACI$(A6»>+» INPUT
1\ I I

3. PO OS 1/0 DRIVER 1\ I I
1\ I I

TTl »»> [POLLED 1/0 DRIVER] I
I I

4. SYSTEM INPUT PORT BUFFER I I

I I
KEYBOARD INPUT PORT I

v UART.base BUFFERS I I

(v I I
v I~I IBUF #1 I I'

UART »> ladr 2 I » IBUF #21 » 2 I PRT$(A6)
ladr 3 I IBUF #31 I
ladr 4 I IBUF #41 I

ladr 151 IBUF #FI I
I

NOTES: 1) UART.base b;nds a phys;ca1 UART to a 10g;c81
("" port number.

2) UART baud rate, address, and type are def;ned
by the 'BP' and 'BAUD' commands (XBCP pr;m;t;ve).

3) XGCC gets characters from ;nput port buffers only.

FIGURE 2.2 PDOS CHARACTER INPUTS

(~

(

68DxO PODS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-10

(2.1.4 POOS CHARACTER I/O continued)

PO OS CHARACTER OUTPUTS

PODS character outputs are directed to various destinations
according to output variables in the task control block.
Output variables are the output unit (UNT$(A6». spooling
unit (SPU$(A6». spooling file 10 (SFI$(A6». and output
port variables U1P$(A6). U2P$(A6). U4P$(A6). and U8P$(A6).
The output unit selects the different destinations. (This
is NOT to be confused with disk unit numbers.)

When an output primitive is called. the task output unit is
ANOed with the task spooling output unit. If the result is
nonzero, then the character is directed to the file manager
and written to the file specified by SFI$(A6). The output
unit is then masked with the complement of the spooling unit
and passed to the UART character output processor.

Units 1, 2, 4. and 8 are special output numbers. Unit is
the console output port assigned when the task was created.
Units 2, 4. and 8 are an optional output ports that
correspond to TCB variables U2P$. U4P$, and U8P$. They are
assigned by the spool uni t command (.SU) or baud port
command.

If the 1 bit (LSB) is set in the masked output unit
(UNT$(A6», then the character is directed to port U1P$(A6).
Likewise. if bits 2, 3. or 4 are
output unit, then the character
U4P$(A6), or U8P$(A6) ports.

is set in the masked
is output to the U2P$(A6).

In summary, the bit positions of the output unit are used
to direct output to various destinations. More than one
destination can be specified. Bits 1 through 4 are
predefined according to U1P$, U2P$. U4P$ and U2P$ variables
within the task control block. Other unit bits are used for
outputs to files and device drivers. Thus, if SPU$(A6)=4
and UNT$(A6):7, then output would be directed to the file
manager via SFI$(A6) and to two UARTs as specified in
U1P$(A6) and U2P$(A6). (See Figure 2.3.)

SPU$(A6) 0000 0000 0000 0100
UNT$(A6) = 0000 0000 0000 0111

III

III
File SFI$(A6) __ "1

Port U2P$(A6) __ "
Port Ul P$(A6) __ 1

OPT POOS ;GET TCB VARIABLES
LEA.L FILEN(PC).A1 ;GET FILE NAME
XSOP ;OPEN FILE

BNE.S ERROR
MOVE.W o1.SFI$(A6) ;SET SPOOL FILE 10
MOVEQ.L #0.01 ;CLEAR COUNTER
MOVE.B #4.SPU$(A6) ;SET SPOOL UNIT TO 4

LOOP MOVE.B ol,UNT$(A6) ;SELECT UNIT
XCBM MESOl ;CONVERT NUMBER
XPLC ;OUTPUT MESSAGE
AooQ.W #1.01 ;INCREMENT 01
CMPI.W #8.01 ;8 TIMES?

BLT.S LOOP ;N
;Y

FILEN DC.B
MESOl OC.B

EVEN

'OFILE' ,0 ;OUTPUT FILE NAME
'OUTPUT MESSAGE #'.0

UNIT 1

UNIT 2

OFILE =

OUTPUT MESSAGE #1
OUTPUT MESSAGE #3
OUTPUT MESSAGE #5
OUTPUT MESSAGE #7

OUTPUT MESSAGE #2
OUTPUT MESSAGE #3
OUTPUT MESSAGE #6
OUTPUT MESSAGE #7

OUTPUT MESSAGE #4
OUTPUT MESSAGE #5
OUTPUT MESSAGE #6
OUTPUT MESSAGE #7

c

(:

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

(2.1.5 EVENTS continued)

4) 96-'"

5) 112-115

6) 116-127

7) 128

Events 96 through 111 correspond to
input por ts 0 through 15. A task
suspends itself on an input event if a
request is made for a character and the
buffer is empty. Whenever a character
comes into an interrupt drhen input
port buffer, the corresponding event is
set.

Events 112 through 115 are timing
events and are set automatically by the
POOS clock module according to intervals
defined in the POOS Basic 1/0 module
(BIOS). Event 112 is measured in tics,
while events 113, 114, and 115 are in
seconds. The maximum time interval for
event 112 is 497 days. Events 113, 114,
and 115 have a maximum interval of
4,294,967,300 seconds or approximately
136 years. A task suspended on one of
these events is regularly scheduled on a
tic or second boundary.

Events 116 through 127 are for system
resource allocation. Drivers and other
utilities requiring ownership of a
system resource synchronize on these
events. These events are initially set
by POOS, indicating the resource is
available. One and only one task at a
time is allowed access to the resource.
When the task is finished with the
resource, it must reset the event thus
allowing other tasks to gain access.

Event 128 is local to each task.
Unlike other events, it can only be set
by a delay primitive (XOEV). It is
automatically reset by the scheduling of
a task suspended on event 128.

96-111 Input port events

112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event

116 = Reserved
117 = Reserved
118 = Reserved
119 = Reserved
120 = Level 2 lock
121 = Level 3 lock
122 = Batch event
123 = Spooler event
124 = Reserved
125 Reserved
126 Reserved
127 Virtual ports

128 Local to each task

PAGE 2-13

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

2.1.6 TASK COMMUNICATION

Many different methods are available for intertask
communication in POOS. Most involve a mailbox technique
where semaphores are used to control message traffic.
Specially designed memory areas such as MAIL, COM, and event
flags allow high level program communications. poas
currently maintains 32 message buffers for queued message
communications between tasks or
sophisticated methods require
message buffers.

Absolute data movement

console terminals. More
program arbitrators and

Absolute memory locations are
referenced by using the BASIC MEM
functions. The MEM function moves byte
data; MEMW moves words; MEML moves long
words; and MEMP moves 8-byte BASIC
variables. MEMP passes data between
different memory pages in a mapped
environment or to a page external to the
current task.

Event flags

Event flags are global system memory
bits, common to all tasks. They are
used in connection with task suspension
or other mailbox functions. Events 1
through 53 are for software
communication flags. Events 64 through
127 automatically reset when a suspended
task is rescheduled. Events 81 through
95 are output events; 96 through 111 are
input events; 112 through 115 are timing
events; and 115 through 127 are system
events. Event 128 is local to each task
and cannot be used to communicate
between tasks.

Message buffers

poas maintains 32 54-byte message
buffers for intertask communication. A
message consists of up to 54 bytes plus
a destination task number. More than
one message may be sent to any task.
The messages are retrieved and dj.played
on the console terminal whenever the
destination task issue, a poas prompt or
by executing a Get Task Message
primitive (XGTM). The displayed message
indicates the source task number. The
BASIC verbs SENDM and GETM may also be
used to pass data between tasks.

Mailbox communication

MEM[ad r]=da ta
MEMW[ad r]=da ta
MEML [ad r]=da ta
MEMP[adr,page]=data

127 Event flags

EVENT 30

IF EVF[30]

32 54-byte buffers

PAGE 2-14

" I J

c
c

c

c

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 2 PODS SYSTEM OVERVIEW PAGE 2-15

(2.1.6 TASK COMMUNICATION continued)

Message pointers

POOS supports shorter message pointer
transfers between tasks with the Send
Message Pointer (XSMP) and Get Message
Pointer (XGMP) primitives. When a
pointer is sent, event [destination
message slot # + 64] is set. When a
message pointer is retrieved, the
corresponding event is cleared. These
messages are not queued, but are much
faster for intertask message. passing
than the queued 64-byte messages.

Memory Mailbox

The FM monitor command is used to
permanently allocate system memory for
non-tasking data or program storage.
Memory allocated in this way can be used
for mailbox buffers as well as
handshaking semaphores or assembly
programs. (See the >FM monitor
command.)

2.1.7 TASK SUSPENSION

Any task can be suspended pending one or two events.
Software events (1-127) are system memory bits global to all
tasks. Event 128 is local to each task. A suspended task
does not receive any CPU cycles until one of the desired
events occurs. A task is suspended from BASIC by using the
WAIT command, or from an assembly language, C, Fortran, or
PASCAL program by the XSUI primitive. A suspended task is
indicated in the LIST TASK (LT) command by the event
number{s) being listed under the 'Event' heading.

When one of the events occurs, the task is rescheduled and
resumes execution. If the event is sat by the XSEF
primitive, then an immediate context switch occurs. If a
high priority task is waiting for the event, it is
immediately rescheduled, overriding any current task (unless
locked). If the event is set with a XSEV primitive, then
the task begins execution during the normal swapping
function of PODS.

32 4-byte pointers

Memory Mailbox

Task suspended pending event

x>LT
Task Prt Tm Event Map Size PC
*0/0 64 2 0 384 00001008
1/0 64 2 99 0 20 00001B42

x>

Immediate and delayed rescheduling

saoxo PODS 3.2 REFERENCE MANUAL CHAPTER 2 PODS SYSTEM OVERVIEW

2.1.8 HIGH PRIORITY TASKS

A high priority task is defined as a task in the execution
list which is exempt from round robin scheduling. This
means the task will continue to execute until it suspends
itself (due to 110 or if an XSUI command is executed,) or a
higher priority task becomes ready. Task priority is listed
by the LT (List Task) command under the 'PRT' heading. A
task priority can be altered with the 'TP' command.

High priority tasks are useful in writing user interrupt
handlers where immediate and fast response is required.

2.2 POOS FILE MANAGEMENT

The PODS file management module supports sequential,
random, read only, and shared access to named files on a
secondary storage device. These low overhead file
primitives use a linked, random access file structure and a
logical sector bit map for allocation of secondary storage.
No file compaction is ever required. Files are time stamped
with date of creation and last update. Oefau1t PODS
configurations allow up to 32 files to be open
simultaneously; however, PODS may be configured for up to
127 files. Complete device independence is achieved through
read and write logical sector primitives.

2.2.1 POOS FILE STORAGE

A file is a named string of characters on a secondary
storage device. A group of file names is associated
together in a file directory. File directories are
referenced by a disk number. This number is logically
associated with a physical secondary storage device by the
readlwrite sector primitives. All data transfers to and
from a disk number are blocked into 256-byte records called
sectors.

A file directory entry contains the file name, directory
level, the number of sectors allocated, the number of bytes
used, a start sector number, and dates of creation and last
update. A file is opened for sequential, random, shared
random, or read only access. A file type of 'OR' designates
the file to be a system 110 driver. A driver consists of up
to 252 bytes of position independent binary code. It is
loaded into the channel buffer whenever opened. The buffer
then becomes an assembly program that is executed when
referenced by 110 calls.

Task Prt Tm Event

File management module

Sequential, random, read only,
and shared file access

File, file directory

Oisk number

256-byte blocked data transfers

File directory entry

PAGE 2-1S

c
(

c

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 2 PDOS SYSTEM OVERVIEW PAGE 2-17

(2.2.1 PDOS FILE STORAGE continued)

A sector bit map is maintained for each disk number.
Associated with each sector on the logical disk is a bit
which indicates if the sector is allocated or free. Using
this bit map, the file manager allocates (sets to 1) and
deal locates (sets to 0) sectors when creating, expanding,
and deleting files. Sad sectors are permanently allocated.
When a file is first defined, one sector is initially
allocated to that file and hence, the minimum file size is
one sector.

A PDOS file is accessed through an 110 channel called a
file slot. Each file slot consists of a 38-byte status area
and an associated 256-byte sector buffer. Data movement is
always to and from the sector buffer according to a file
pointer maintained in the status area. Any reference to
data outside the sector buffer requires the buffer to be
written to the disk (if it was altered) and the new sector
to be read into the buffer. The file manager maintains
current file information in the file slot status area such
as the file pointer, current sector in memory, END-OF-FILE
sector number, buffer in memory flag, and other critical
disk parameters required for program-file interaction.

PDOS defaults to 32 files that may be open at a time though
it may be configured to allow for up to 127. Keeping all
sector buffers resident would require prohibitive amounts of
system memory. Therefore, only eight sector buffers are
actually memory resident at a time. The file manager
allocates these buffers to the most recently accessed file
slots. Every time a file slot accesses data within its
sector buffer, PDOS checks to see if the sector is currently
in memory. If it is, the file slot number is rolled to the
top of the most recently accessed queue. If the buffer has
been previously rolled out to disk, then the most recently
accessed queue is rolled down and the new file slot number
is placed on top. The file slot number rolled out the
bottom references the fourth last accessed buffer which is
then written out to the disk. The resulting free buffer is
then allocated to the calling file slot and the former data
restored.

Files requ1r1ng frequent access generally have faster
access times than those files which are seldom accessed.
However, all file slots have regular access to buffer data.

PDOS allocates disk storage to files in sector increments.
All sectors are both forward and backward linked. This
facilitates the allocation and deal location of sectors as
well as random or sequential movement through the file.

Sector bit map

PDOS file slots

Sector buffer and status area

Simultaneously OPENed files: default=32
max=127

8 (default) active buffers

Most-recently-accessed resident
buffer allocation

Frequent access fast access

Forward and backward linked sector
file storage

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-18

(2.2.1 POOS FILE STORAGE continued)

POOS files are accessed in either sequential or random
access mode. Essentially, the only difference between the
two modes is how the End-Of-File pointers are handled when
the file is closed. If a file has been altered, sequential
mode updates the EOF pointer in the disk file directory
according to the current file byte pointer, whereas the
random mode only updates the EOF pointer if the file has
been ex tended.

Two additional variations of the random access mode allow
for shared file and read only file access. A file which has
been opened for shared access can be referenced by two or
more different tasks at the same time. Only one file slot
and one file pointer are used no matter how many tasks open
the file. Hence, it is the responsibility of each user task
to ensure data integrity by using the lock file or lock
process commands. The file must be closed by all tasks when
the processing is completed.

A read only random access to a file is independent of any
other access to that file. A new file slot is always
allocated when the file is read only opened and a write to
the file is not permitted.

2.2.2 FILE NAMES

POOS file names consist of an alphabetic character (A-Z or
a-z) followed by up to seven additional characters. An
optional one to three character extension is separated from
the file name by a colon (:). Other optional parameters
include a semi-colon (:) followed by a file directory level
and a slash (I) followed by a disk number. The file
directory level is a number ranging from 0 to 255. The disk
number ranges from 0 to 255.

A file typed as a system 1/0

directly into the channel
WRITE, and POSITION commands.

device driver has entry points
buffer for OPEN, CLOSE, READ,

If the file name is preceded by a '#', the file is created
(if undefined) on all open commands except for read only
open. When passing a file name to a system primitive, the
character string begins on a byte boundary and is terminated
with a null.

Special characters such as a period or a space may be used
in file names. However, such characters may restrict their
access. The command line interpreter uses spaces and
periods for parsing a command line.

Sequential or random access

Shared random, read only random access

Shared random access

Read only random access

Legal file names:

TTO, TTA

FILE
A1234567:890;255/127
PROGRAM/3
FILE2;10

Auto define

x>CF TEMP,#TEMP2/5

FILEN OC.B 'FILE1I4' ,0

J

o

c 680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

(' 2.2.3 DIRECTORY LEVELS

c

Each POOS disk directory is partitioned into 256 directory
levels. Each file
facilitates selected

resides on a specific level, which
directory listin9s. You might put

system commands on level 0, procedure files on level 1,
object files on level 10, listing files on level 11, and
source files on level 20. Level 255 is global and
references all levels.

A current directory level is maintained and used as the
default level in defining a file or listing the directory
when no directory level is specified.

2~2.4 DISK NUMBERS

A disk number is used to reference a physical ,secondary
storage device and facilitates hardware independence. All
data transfers to and from a disk are blocked into 256-byte
records called sectors.

The range of disk numbers is from 0 to 255. Several disk
numbers may share the same secondary storage device. Each
disk can have a maximum of 65280 sectors or 16,711,680
bytes.

(", A default disk number is assigned to each executing task
and stored in the task control block. This disk number is
referred to as the system disk and any file name which does
not specifically reference a disk number defaults to this
parameter.

PO OS supports multiple disk directory searches. Up to four
disk devices can be associated with each task. When a file
is referenced, each directory is searched (in o rde r) until
the file is found.

Some utility programs make use of the system disk for
temporary file storage. By not specifyi ng the disk
parameter, the program becomes device independent and
defaul ts to the current system disk.

When a task is created, the parent task's disk number(s)
and directory level are copied into the task control block
of the new task.

256 directory levels

x>LV
Level=1
x>LV 10
Was 1

O>SY 1,0
Was 0
1,O>~

Oisk=1,O
1.0>_

1>SY 1,2,3,4
Was 1
1,2,3,4>_

PAGE 2-19

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

2.2.5 FILE ATTRIBUTES

Associated with each file is a file attribute. File
attributes consist of a file type, storage method, and
protection flags. These parameters are maintained in the
file directory and used by the POOS monitor and file
manager.

The file type is used by the POOS monitor in processing the
the fila. For instance, a file typed as 'EX' (a POOS BASIC
file), calls the BASIC interpreter which loads the file and
begins execution with the first line number. A file typed
as 'OB' (a 68000 object module), calls the relocating loader
to load the object into memory. If a start address tag is
included at the end of the file, the module is immediately
executed. Otherwise, the system loads the module, prints
"POOS ERR 62 No Start" and returns to the monitor.

The following are legal POOS file types:

AC - Assign console. A file typed 'AC'
specifies to the POOS monitor that all
subsequent requests for console
character inputs are intercepted and the
character obtained from the assigned
file.

BN - Binary file. A 'BN' file type has no
significance to POOS but aids in file
c 1 assifi cati on.

OB - 68000 tag object file. Output from the
MASM 68000 assembler is in tagged object
form. The tag directs the POOS monitor
to load the file into memory (if there
was a startin address tag) and execute
the program.

SY - System file. An 'SY' file is generated
from an 'OS' file. MC68000 object is
condensed into a memory image by the
'SYFILE' utility. The first location of
a system file is the program entry
address.

SX - POOS SASIC binary file. A BASIC
program stored using the 'SAVES' command
is written to a file in pseudo~source

token format. Such a file requires less
memory than the ASCII LIST format and
loads much faster. Subsequent reference
to the file name via the POOS monitor
automatically
the SASIC
execution.

restores the tokens for
interpreter and begins

8 defined file types

Re10catab1e object only

Batch processes

Must be re10catab1e object

Generated from OS file

SAVEB "FILE"

PAGE 2-20

~/

C;
/'

(

(

6BOxO PODS 3.2 REFERENCE MANUAL CHAPTER 2 PODS SYSTEM OVERVIEW

(2.2.5 FILE ATTRIBUTES continued)

EX - PODS BASIC fi leo A BASIC program
stored using the 'SAVE' command is
written to a fi le in ASCII or LIST
forma t. Subsequent file reference via
the PODS monitor automatically causes
the BASIC interpreter to load the file
and begin execution.

TX - ASCII text file. A 'TX' type
classifies a file as one containing
ASCII character text.

DR - 110 driver. A 'DR' file type indicates
that the file data is an 110 driver
program and is executed when referenced.
An 110 driver must be copied with the
>TF monitor command or MTRANS utility.

A PODS file is physically stored in contiguous sectors
whenever possible. A non-contiguous structure results from
file expansions where no contiguous sectors are available.
Contiguous files have random access times far superior to
non-contiguous files. A contiguous file is indicated in the
directory listing by the letter 'e' following the file type.

File protection flags determine which commands are legal
when accessing the file. A file can be delete andlor write
protected.

File storage method and protection flags are summarized as
follows:

C - Contiguous file. A contiguous file is
organized on the disk with all sectors
logically sequential and ordered.
Random access in
much faster than
file since the

a contiguous file is
in a non-contiguous

forwardlbackward links
are not required for positioning.

* - Delete protect. A file which has one
asterisk as an attribute cannot be
deleted from the disk until the
attribute is changed.

** - Delete and write protect. A file which
has two asterisks as an attribute cannot
be deleted nor written to. Hence, READ,
POSITION, REWIND, OPEN, and CLOSE are
the only legal file operations.

+ - File altered. A file which has a plus
sign as an attribute has been altered.

SAVE "FILE"

Contiguous File

Delete protect

Delete and write protect

File Altered

PAGE 2-21

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

2.2.6 TIME STAMPING

When POOS is first initialized, the system prompts for a
date and time. These values are then maintained by the
system clock and are used for time stamping file updates,
assembly listings, and other user defined functions.

When a file is first created or defined, the current date
and time is stored with the disk directory entry. This time
stamping appears in the 'DATE CREATED' section of a
directory listing. From then on, the creation date and time
are not changed.

When a file has been opened, altered, and then closed, the
current date and time are written to the 'lAST UPDATE'
section of the disk directory entry. The time stamp
indicates when the file was last altered by any user.

2.2.7 PORTS, UNITS, AND DISKS

The terms ports, units, and disks are often confused and
hence are explained again:

Ports

Units

Disks

Ports are logical input channels and
are referenced by numbers o through 15.
Associated with each port h an
interrupt driven input buffer. The BAUD
PORT (BP) command binds a physical UART
to a buffer.

A unit is an output gating variable.
Each bit of the variable directs
character output to a different source.
Bit 1 (lSB) is associated with U1P$(A6)
output port. likewise, bit 2 is
associated with U2P$(A6) output port.
The 'SU' and 'SPOOL' commands bind the
other bits to the PDOS file structure.

A disk is a logical reference to a
secondary storage device. Disk numbers
range from 0 to 255. Several disk
numbers may reference the same physical
device. The system BIOS deciphers what
the disk number means.

POOS/68000 R3.2
ERII, Copyright 1983-86
xxxxx BIOS
OATE=OO-?77-00 10-DEC-86
TIME=DO:OO:OO 10:30

Date created

last update

PAGE 2-22

. ./

c

c

(

c

c
(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 2 PODS SYSTEM OVERVIEW

,---,
IF F F F F F F FIE E EILIA Tlssl--Iaaliilbblcccclllll I (each character represents a byte)

o 11 12 14 16 18 20 22 24 28

F = File Name
E = File Extension
L = Directory Level
A = File Attribute

T = File Type

8 characters
3 characters
0-255
$80 = AC - Procedure file
$40 = BN - Binary file
$20 = DB - 68000 object module
$10 = SY - System module
$08 = BX - BASIC Token file
$04 • EX - BASIC ASCII File
$02 = TX - ASCII text file
$01 = OR - Driver
$80 • + - File altered
$04 = IC - Contiguous file
$02 = 1* - Delete protect
$01 = 1** - Write protect

s = Start Sector Number Logical start sector
a = Sectors Allocated to File Sectors allocated
i = Sector Index of EOF Sectors used
b = Bytes in EOF Sector
c = Date/Time Created
1 = Date File Last Changed

0-252
hr*256+sc, (yr*16+mn)*32+dy

FIGURE 2.4 DIRECTORY FORMAT

PAGE 2-23

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

2.3 PDOS BIOS

The POOS Basic I/O Subsystem (BIOS) configures the POOS
environment for different types of hardware peripherals.
This includes UARTs, mappers, system LEOs, read/write sector
primitives, and disk motor control. Other functions of the
BIOS include startup parameters such as auto-start, POOS
prompts, default disk, RAM disk size and location, interrupt
vector generation and processing, and MAIL array size.

For a list of the current configurab1e parameters along
with their defaults for your system, refer to the MBIOS:SR
file or your Installation and Systems Management guide.
Additional information on the BIOS may be found in chapter 8
of this manual.

The BIOS is linked with the PODS kernel and UART module to
form an execution module. The monitor and file manager are
added to complete a POOS system.

2.4 PDOS MONITOR

The PODS monitor is a resident program which handles the
most common POOS commands. After getting a command line,
the monitor calls the command line interpreter to parse the
line for commands and parameters •. A command line is
delimited by a [CR]. If a command line is not complete,
your task is suspended pending character inputs.

A list of current resident commands can be found in chapter
3 of this manual as well as in Appendix B.

(
PAGE 2-24

D

c 680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-25

(: 2.4.' COMMAND LINE INTERPRETER

c

The PO os monitor prompts with the current disk numbers
followed by a right angle bracket.
line (XGLM) primitive. A command

POOS then calls the get
line of up to 78

characters is entered.
to edit the input line.

Various control characters are used
These are summarized as follows:

[ESC]
[CTRL-C]
[CTRL-I]
[CTRL-A]
[CTRL-L]
[CTRL-H]
[CTRL-O]
[RUBOUT]

= Cancel current line
Cancel current lina

K Enter insert mode
Recall last entered line

= Move right 1 character
= Move left 1 charactar
• Oeleta character under cursor
• Oelete 1 character to the left

Input is normally in replace mode. That is, characters are
overwritten in undar the cursor. A [CTRL-I] changes the
input from replace to insert mode. The mode returns to
replace mode when a movement control code is entered. The
cursor need not be at the end of the line when the [CR] is
entered.

A bell signals one of the following: 1) a rubout is entered
and the buffer is empty; 2) an attempt has been made to move
past the last character; or 3) a control character other
than one of the editing characters has been entered.

Numeric parameters are entered as signed decimal, hex, or
binary numbers. All numbers are converted to 2's complement
32-bit integers and range from -2,147,483,648 to
2,147,483,647 (hex $80000000 to $7FFFFFFF). Hex numbers are
preceded by a dollar sign ($) and binary numbers by the
percent sign (%). (Note: Numbers are not checked for
overflow. Hence, 4294967295 is equivalent to -1.)

You can enter more than one POOS command on a line by
separating the commands with a period. Command parameters
immediately follow the command name and ara separated by
commas or spaces. Nested parentheses are used to enclose
parameters within parameters. When multiple commands appear
on the same line, the remainder of the command line is
echoed by the monitor as each command is executed.

When a line is accepted, it is copied to another buffer
from which it can be recalled using the [CTRL-A] character.
It is again echoed to the console after a carriage return.

78-character command buffer

Bell => Buffer underflow
Buffer overflow

x>LS.SY 1.LS 11.LV

x>CT (CT (MASM PRGM: SR .. LIST, ERR). 20 .. 2). 1 0 .. 2

x>SP.LV.SY
FREE=180
USED=1eO/2DO
x>LV.SY
LEVEL=1
x>SY
SYS 01 SK=D
x>

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 PDOS SYSTEM OVERVIEW PAGE 2-26

2.4.2 PROCEDURE FILES

When a procedure file is in e f fec t (i . e . a f i 1 e name has
been entered which is typed as 'AC') , then characters are
drawn from a file rather than the keyboard. When in this
mode, parameter substitution is available. Up to nine
unique parameters are available along with an er ro r string.

A substitution parameter is designated by the ampersand (&)
character followed by a numeric digit. Digits 1 through 9
specify parameters 1 through 9 while digit 0 is replaced
with the last error number (LEN$(A6» converted to a string.
'&#' is replaced by the current task #.

If no parameter was specified, both the ampersand and the
dig; t are deleted (null parameter). Parameters are inserted
at the point they are encountered.

An ampersand without a digit following is deleted with the
exception that a double ampersand is changed to a single
ampersand.

Procedure files can be nested two levels deep. Further
attempts to nest a procedure result in error 71. The nested
procedure may call any other file except an 'AC' type file.

See also monitor commands IF, GT, and EE.

Parameter substitutions:

O>SF DO

&0
&1 .. &9
&#
&&

Last system error (LEN$(A6»
Command line parameters
Current task #
&

MASM &1 :SR,#OBJ&#,&2
IF &O.RC
MSYFL OBJ&#,#&1
RC
0>

0>00 TEST, LI ST
O>MASM TEST:SR,#OBJO,LIST/2
68K PDOS Assembler R3.2 01-Nov-86
ERII, Copyright 1983-86
SRC=TEST:SR
OBJ=#OBJO
LST=LIST
ERR=
XRF=
END OF PASS 1
END OF PASS 2
O>IF .RC
O>MSYFL OBJO,#TEST
68K PODS SY File Maker Utility 10/10/84

Source file = OBJO
Destination File = #TEST

O>RC
0>

I"

(

(

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW

2.4.3 IMPLIED TASKS

If the command line is preceded with the '@' symbol, then a
new task is created and given the rest of the command line
to execute. The task defaults to 4k bytes of memory and
uses the phantom port (port 0). (See 2.3 POOS BIOS for
variable 'B.S21' to change task size.) The implied task
facilitates creating small tasks such as copying files or
deleting files.

If however, the batch processor task is executing, then the
command line is sent to the batch task number via the system
message buffers and event 122 is set. A new task is not
created and you are prompted for another command. The batch
processor will be awakened by event 122 and processes the
command line for you.

A similar capability exists with the spooler task. If the
first command of a command line is a COPY FILE (CF) and the
spooler task is executing, then the command line is sent to
the spooler task via the system message buffers and event
123 is set. As above, the spooler task is awakened by event
123 and processes the copy file for you.

PAGE 2-27

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 2 POOS SYSTEM OVERVIEW PAGE 2-28

'\ . .7

c

f

(

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

CHAPTER 3

PDOS MONITOR COMMANDS

The PDOS monitor is a set of resident routines for handling
the most common PDOS commands such as defining and deleting
files or listing file directories. Commands are passed to

the monitor from the Command line Interpreter (ClI). A list
of memory resident commands is searched followed by the disk

directory using the command as the file name.

3.1 COMMAND LINE EDITING ••.••.•.••••••.••••..•..••••.••.. 3-3

3. 2 PDOS MON ITOR COMMANDS •..........•.•.••••.••••••••.... 3-4

3.2.1 AC - ASSIGN CONSOLE REVIEW ••.•.•••••...•••.••. 3-5

3.2.2 AF - APPEND FILE•.•..•••••••.••••..••.••• 3-6

3.2.3 BP - BAUD PORT •..•.•.•..••••.•••..••.•••••.••• 3-7
3.2.4 CF - COpy FILE •.•....•••••••••.••.••....••.•.. 3-8

3.2.5 CT - CREATE TASK ••.•.••.•.•••.....••••.•••••.• 3-9
3.2.6 DF - DEFINE FILE .••.•••..•••.•••••••••••.•••. 3-10

3.2.7 Dl - DELETE FILE .••.......•...••••••••••.•.•• 3-11

3.2.8 DM - DELETE MULTIPLE FILE ••.•••••.•••••..•.•. 3-12

3.2.9 DN - DOWNLOAD FILE •......•••.•••••.•••••.•••• 3-13
3.2.10 DT - DATE AND TIME. •••••....•••.••••.•••....• 3-14

3.2.1 1 EE - ENABLE ECHO ...••..•..•••.•••.•.•.•••.•.. 3-15
3.2.12 ER - LIST ERROR •..•......•.•••••••.••.•••.•.• 3-16

3.2.13 EV - SET/RESET EVENT ..••..••..• '" .•.••.....• 3-17
3.2.14 EX - PDOS BASIC •...•••.•...•••••••.....••.•.. 3-18

3.2.15 FE - FOR EVERY •.......••...•...•••.•••••..•.• 3-19
3.2.16 FM - FREE MEMORY•••.•.•.•••.•..••••..• 3-21

3.2.17 FS - FILE SLOT USAGE•..•...••..•..•••..•. 3:"22

3.2.18 GM - GET MEMORY ••..•.•.••.•.••••..••.•.••.... 3-23

3.2.19 GO - EXECUTE •..•...•...••.•.••.••.••.•..•...• 3-24

3.2.20 GT - GOTO •.••••.......••••.••.••.•..•..•..•.• 3-25
, 3.2.21 HE - HElP •.•...•...••.••...•...•.•..•..•..••• 3-26

3.2.22 IA - IF ALTERED •..•.•.•.•..•.•.•....•..••••.• 3-28

3.2.23 ID - SET SYSTEM DATE/TIME •.•••••.•.•••.•..••• 3-29

3.2.24 IF - IF PROCESSOR •...•.•.•.•.....•....•••.••• 3-30

3.2.25 KM - KIll MESSAGE ..•.•.••.•.••.••.•...•.•..•. 3-31
3.2.26.KT - KIll TASK .••..•.•.••.••••.••.••...••.... 3-32

3.2.27 II - LIST lEVEL. •.......•..•••.•...•..•••.•.. 3-33
3.2.28 lO - lOAD FILE•••.......•..........• 3-34

· 3.2.29 lS - lIST DIRECTORy•..••••.•..•...•.. 3-35

· 3.2.30 lT - LIST TASKS .•..•.•.••..•.•.•......•.....• 3-39

· 3.2.31 lV - DIRECTORY lEVEL. •.••.•.••..••.•..••.••.• 3-42

3.2.32 MF - MAKE FILE •...•.••..•..•..•••..•...•..••. 3-43

PAGE 3-1

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(PDOS MONITOR COMMANDS cont;nued)

3.2.33 PB - PDOS DEBUGGER ••••••..•.•.••.•.••.••..••• 3-44
3.2.34 RC - RESET CONSOLE 3-50

3.2.35 RD - RAM DISK 3-51
3.2.36 RN - RENAME FILE 3-52

3.2.37 RS - RESET DISK 3-53
3.2.38 SA - SET FILE ATTRIBUTES ••....•...••..•..•... 3-54

3.2.39 SF - SHOW FILE 3-56

3.2.40 SM - SEND MESSAGE 3-57
3.2.41 SP - DISK SPACE ...•••...••••..••..•..••.••... 3-58

3.2.42 SU - SPOOL UNIT •.•.•.•••.•.••.••.•.••••.••... 3-59

3.2.43 SV - SAVE TO FILE 3-60

3.2.44 SY - SYSTEM DISK 3-61

3.2.45 TF - TRANSFER FILES 3-62
3.2.46 TM - TRANSPARENT MODE 3-63

3.2.47 TP - TASK PRIORITy •••••.••.••.•...••.••.••..• 3-64
3.2.48 UN - CONSOLE UNIT 3-65

3.2.49 UP - UPLOAD FROM PORT. 3-66

3.2.50 ZM - ZERO MEMORY 3-67

3.3 COMMON PDOS QUESTIONS 3-68

3.3.1 HOW 00 I TRANSFER FILES? 3-69

3.3.2 HOW 00 I USE THE RAM DISK? 3-70

\(3.3.3 HOW DO I USE THE EDITOR? 3-71

3.3.4 HOW 00 I USE PROCEDURE FILES? •.•.•••••••••••• 3-72

x 3.3.5 HOW 00 I GET HARDCOPy? 3-73
3.3.6 HOW 00 I WRITE AN ASSEMBLY PROGRAM? ••.••••••• 3-74

3.3.7 HOW 00 I SET UP VIRTUAL PORTS? ••.•.•••••••••• 3-75

PAGE 3-2

f
o

i;

I
I

i

I

I

l

(

(

f'·

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.1 COMMAND LINE EDITING

The PDOS monitor prompts with the current disk search list
followed by a right angle bracket. The prompt is defined in
the system BIOS module and can be altered to suit your
system. (See MBIOS:SR module.)

The POOS get line (XGLM) primitive is used to get a command
line of up to 78 characters into the command line buffer
(CLP$). Input is normally in replace mode which means an
incoming character replaces the character at the cursor.
Various control characters are used to edit the input line.
These editing control characters are defined in the system
BIOS module or MBIOS:SR and can be altered to suit your
system. These are summarized as follows:

[ESC]
[CTRL-C]
[CTRL-I]
[CTRL-A]
[CTRL-L]
[CTRL-H]
[CTRL-O]
[RUBOUT]

Cancel current line
Cancel current line
Enter insert mode
Recall last entered line
Move right 1 character
Move left 1 character
Delete character under cursor
Delete 1 character to the left

A [CTRL-I] changes input from replace to insert mode. The
mode returns to replace mode when any other editing control
code is entered. Replace mode overwrites the character
under the cursor. Insert mode inserts a character at the
cursor position.

In either mode, the cursor need not be at the end of the
line when the [CR] is entered. The command line is parsed
as it appears on the screen.

When a line is accepted, it is copied to another buffer
(MPB$) where it can be recalled by using the [CTRL-A]
character. A [CR] and [LF] are output to the console
followed by the recalled line. The cursor is positioned at
the end of the line. This is a circular buffer and commands
will rotate through it as they are recalled.

Numeric parameters are entered as signed decimal, hex, or
binary numbers. All numbers are converted to 2's complement
32-bit integers and range from -2,147,483,648 to
2,147,483,647 (hex $80000000 to $7FFFFFFF). Hex numbers are
preceded by a dollar sign ($) and binary numbers by the
percent sign (%). (Note: Numbers are not checked for
overflow. Hence, 4294967295 is equivalent to -1.)

A line beginning with an '*' is ignored.

78-character command buffer

Insert and replace mode

Recall last line

x>CONVERT %1100101,10,$FFE2

PAGE 3-3

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-4

(3.1 COMMAND LINE EDITING continued)

If the assigned console flag (ACI$(A6» is set, then the
'&' character is used for character substitutions. '&0' is

replaced with the last system error number. '&1' is
replaced with the first parameter of the command line, '&2'
with the second, and so forth up to '&9'. '&#' is replaced
with the current task #.

3.2 PDOS MONITOR COMMANDS

PDas monitor commands are memory resident and executed by
two character codes. These commands are described in detail
in this chapte r.

x>SF ASM
MASM &1:SR,#OBJ/8
IF &O.RC
MSYFL OBJ/8,#&1
RC
x>ASM MBACK
x>MASM MBACK:SR,#OBJ/8
68K PDOS Assembler R3.2
ERII. Copyright 1983-86
SRC=MBACK:SR
OBJ=#OBJ/8
LST=
ERR=
XRF=
END OF PASS 1
END OF PASS 2
x>IF .RC
x>MSYFL OBJ/8,#MBACK
68K PDOS SY File Maker Utility 04/26/84

Source file = OBJ/8
Destination File = #MBACK

Ident = OAMBACK:SR 2 10426841141
SECTION LENGTH = ED00000340

Entry Address = 00000000
x>RC

I!

" /

o

c
(

f

(

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-5

3.2.1 AC - ASSIGN CONSOLE REVIEW

Format: AC <file>

The ASSIGN CONSOLE REVIEW command allows part or all of a
procedure file to be executed. The <file> parameter selects
the file of commands to be reviewed. As each line is read
from the file, it is displayed and you are prompted with a
No, Yes, or All prompt. An 'N' reply ignores the line and
moves to the next. A 'Y' reply passes the line (and only
the line) to the monitor for execution. Finally, an 'A'
reply passes the line and all subsequent lines in the file
to the monitor for execution.

x>SF DOE
SY 4,5,10,12
MASM MPDOSD:SR,#MPDOSD:OBJ
MASM MSYRAM:SR,#MSYRAM:OBJ
MASM MPDOSF:SR,#MPDOSF:OBJ
MASM MPDOSK1 :SR,#MPDOSK1:0BJ
MASM MPDOSK2:SR,#MPDOSK2:0BJ
MASM MPDOSK3:SR,#MPDOSK3:0BJ
RC
x>AC DOE
x>SY 4,5,10,127 (Y/N/A)N
x>MASM MPDOSD:SR,#MPDOSD:OBJ7 (Y/N/A)~

x>MASM MSYRAM:SR,#MSYRAM:OBJ7 (Y/N/A)r
68K PDOS Assembler R3.2
ERII, Copyright 1983-86
SRC=MSYRAM:SR
OBJ=#MSYRAM:OBJ:100
LST=
ERR=
XRF=
END OF PASS 1
SYZ. = $00002800
END OF PASS 2
x>

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PO OS MONITOR COMMANDS

3.2.2 AF - APPEND FILE

Format: AF <file'>,<file2>

The APPEND FILE command concatenates
<file'> is appended onto the end of

two PO OS fi las. Fil e
fil e <fi le2>. The fi 1e

type attribute of <file1> is transferred to <file2>.
<file'> is not affected by the operation.

A [CTRL-C] interrupts this function on a sector boundary,
closes both files, and returns to the monitor. This action
is reported by the message 'AC'.

The APPEND FILE command uses the PDOS assembly primitive
XAPF.

x>AF PART2I' ,PART1
x>AF PART3/1,PART1
x>AF PART 41' ,PART1
x>

x>AF CHAP04,LIST/2AC
x>

PAGE 3-6

(

{

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS PAGE 3-7

~ 3.2.3 BP - BAUD PORT

Format: BP
BP {-}<port #>
BP {-}<port #>,<baud rate>
BP {-}<port #>,<baud rate>,<type>,<UART base addr>

The BAUO PORT command initializes a POOS 1/0 port and binds
a physical UART to a character buffer. The command sets the
UART character format, receiver and transmitter baud rates,
and enables receiver interrupts.

The first parameter <port #> selects the console port and
ranges from 1 to 15. This corresponds to the character
input buffers defined in POOS system RAM (SYRAM). If a
minus (-) precedes the port number, then the associated port
is stored in the UNIT 2 (U2P$(A6» variable.

The receiver and transmitter baud rates are initialized to
the same value according to the <baud rate> parameter. The
<baud rate> parameter ranges from 0 to 7 or the
corresponding baud rates of 19200, 9600, 4800, 2400, 1200,
600, 300, or 110. Either parameter type is acceptable.

The <type> and <UART base addr> are optional and are
included when binding a logical port to a different UART.
For <type> information, refer to your Installation and
Systems Management 9uide.

The <port #> can also be used to set or reset the port
flags. These are bit positions 8 through 15 of the
resulting integer value and are defined to the right. It is
recommended that the hex format be used when setting these
parameters.

If the BP command has no ar9uments, then a listing of all
currently installed ports is listed to the console. The
'Task' parameter indicates the currently assigned task to
that port.

x>BP 2,1200
x>BP 3,1 ,2,$1F8010
x>

Set port #2 to 1200 baur
Set port 3 to 9600 baud

type 2, and base address
$lF8010

<baud rate> 0 19200 baud
1 9600 baud
2 4800 baud
3 2400 baud
4 1200 baud
5 600 baud
6 300 baud
7 110 baud

x>BP -3,9600 Port 3 as UNIT 2 at 9600 bau

x>BP $102,1 Set port #2 with ASAQ

$100+port ASAQ protocol
$200+port Pass control characters
$400+port OTR protocol
$800+port 8-bit character 1/0

x>BP
Po rt Type fwpi8dcs Base Rate Task
#1 1 00000000 FFFFC071 19200 0
#2 00000001 FFFFC031 9600
x>BP 4,O,3,$FFFFC401
x>BP 5,O,3,$FFFFC441
x>BP 6,O,3,$FFFFC481
x>BP 7,O,3,$FFFFC4C1
x>BP
Port Type fwpi8dcs Base Rate Task
#1 1 00000000 FFFFC071 19200 0
#2 00000001 FFFFC031 9600
#4 3 00000000 FFFFC401 19200
#5 3 00000000 FFFFC441 19200
#6 3 00000000 FFF FC48 1 19200
#7 3 00000000 FFF FC4C1 19200
x>

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.4 CF - COPY FILE

Format: CF <file1>.<file2>

The COPY FILE command copies <file1> into <file2>. The
original <file2> is destroyed and replaced by <file1>. The
file type attribute of <file1> is transferred to <file2>.
<file1> is not affected by the operation.

A [CTRL-C] interrupts this function on a sector boundary.
closes both files. and returns to the monitor. This action
is reported by the message lAC'.

If the spooler task is executing. then the command line is
sent to the spooler via the system message buffers and event
123 is set. The spooler task is awakened by event 123 and
processes the copy file for you.

The COpy FILE command uses the PDOS assembly primitive
XCPY.

x>CF PROGM:SR.PROGM:SR/1
x>CF FILE1.FILE1:BK
x>

x>CF CHAP04.LIST/2[CTRL-C]AC
x>

i ,j\

PAGE 3-8 o

o

«

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-9

3.2.5 CT - CREATE TASK

Format: CT <command>,<size>,<{time-256+}priority>,<port>

The CREATE TASK command places a new task entry in the POOS
task queue and list. Parameters for the new task include a
command line, memory size, task time/priority, and an I/O
port. The new task number is reported after the task is
created.

The <command> parameter is the command line for the new
task. The string is passed to the new task via a message
buffer and hence cannot exceed 64 characters in length. If
the first parameter is omitted, then the task exits to the
PDOS monitor. Multiple commands and parameters may be
passed by using parentheses.

The amount of memory for the new task is given by <size>
and is in 1k byte increments (although rounded to the next
2k byte boundary). The system memory bit map is searched
for a contiguous block of memory equal to <size>. If the
search fails to find a large enough block, then memory is
taken from the parent task and allocated to the new task.
Default is 32k bytes.

The <{time-256+}priority> parameter specifies the task time
and priority. The range of task priority is from 1 to 255
where 255 is the highest priority. The highest priority,
ready task always executes. Tasks on the same priority
level are scheduled in a round robin fashion. A new task
time slice is specified by adding 256 times the value. A
zero time slice defaults to four tics.

The <port> parameter assigns to the new task an I/O port.
Port 0 is the default and is called the phantom port. On
the phantom port, all character outputs and conditional
inputs are ignored while requests for character input result
in the task aborting with PODS error 86. More than one task
may be assigned to an output port. The input port is a
unique assignment and cannot be shared with another task.
Input ports are allocated on a first come basis.

After a task is created. the spawned task number is
reported. This number is used in killing the new task.

(See also 3.2.26 KILL TASK and 3.2.30 LIST TASKS.)

x>CT PRGM,20,40,2
TASK #1

x>CT HELLO,,1,O
TASK #2

Create 20K byte task,
40 priority, port #2

Spawn scheduler

x>CT (MASM PRGM:SR,PRGM),60 Spawn background
TASK #3 assembler

x>CT ,10,,3
TASK #4

x>CT WATCH, ,1
TASK #5
x>CT HIGHP, ,-1
TASK #6

x>CT ,4,,2
TASK #7
x>CT ,4,,2
TASK #8

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PO OS MONITOR COMMANDS PAGE 3-10

3.2.6 DF - DEFINE FILE

Format: OF <fi1e{;leve1}{/disk}>
OF <file{;level}{/disk}>.<sectors>

The DEFINE FILE command creates a new file in a disk
directory. <File> specifies the file name, and if included,
{:level} the file directory level and {/disk} the disk
directory number. Defaults for the latter two parameters
are the current level and disk number.

The <sectors> parameter specifies the number of contiguous
sectors to allocate to the file. One initial sector is
allocated if the <sectors> parameter is not specified. Only
contiguous files can be defined. A contiguous file
facilitates random access to the file data since PDOS can
directly position to any byte within the file without
following sector links.

If a contiguous file is extended past the original
allocation length and a non-contiguous sector is appended to
the file, then the coniiguous file attribute is deleted.
Therefore, even though contiguous files can be extended, you
should allocate enough sectors when the file is first
defined to handle all anticipated data. Otherwise. random
file access slows down.

The length of a contiguous file is specified in sectors.
Each sector contains 252 bytes or characters of data. The
file size is given by the number of sectors times 252. The
maximum PDOS file size is limited by the size of the POOS
logical disk.

x>DF FILE1;3/1
x>DF FILE2
x>DF FILE3;10,20

x>DF FILE4;10/2,35
x>

Define file on level 3, disk
Define "FILE2"
Define contiguous file of

length 20*252 or 5040
bytes on level 10

Bytes = # of sectors x 252

I ~
!"1

o

)

c

()

o
i ~

I

I

(

(

(.

/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.7 DL - DELETE FILE

Format: DL <file>

The DELETE FILE command removes from the disk directory the
file specified by <file>. All sectors associated with that
file are deallocated in the disk's sector bit map and freed
for use by other files on the same disk. A file cannot be
deleted if it has previously been either delete- or
write-protected. These protection flags must be removed
with the 'SA' command before the file can be deleted from
the disk.

A sector bit map is maintained by PDOS on each disk so that
file creation and deletion does not require a disk
compaction routine to recover lost disk space. However,
frequent file definitions, deletions, and extensions do
create small groups of contiguous sectors which tend to
fracture files and make the creation of contiguous files
impossible. This is remedied by periodically transferring
all files to "a newly initialized disk which allocates
sectors sequentially for each file.

x>DL FILE1
x>DL FILE2/3
x>

PAGE 3-11

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

3.2.8 OM - DELETE MULTIPLE FILE

Format: OM <file 1ist>{,A}

The OM command deletes files from a disk directory
according to the <file list>. Each file name to be deleted
is output to your console along with a '(YIN/A)' prompt. If
you answer the prompt with a 'Y', then the file is de1ete~.
An 'N' answer does not delete the file. If your answer is
an 'A', then the file is deleted along wi th all subsequent
files without further prompts.

The <file list> is a file mask that is compared against all
specified disk directory entries. File names which match
are added to a list built in memory. The format for <file
list> is as follows:

<file list> = {fi1e}{:ext}{;leve1}{/disk}{/se1ect ... }

where {file}
{:ext}

{; level}
{I di sk}

{I se 1 ect}

1 to B characters (1st a1 pha) (@=a11,*=wi1d)
1 to 3 characters (:@=all,*=wild)
di rectory level (;@=all)
disk number ranging from 0 to 255
PDaS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
Change date (/Fdy-mon-yr,/Tdy-mon-yr)

or (/Fmn/dy/yr,/Tmn/dy/yr)

Those files containing the attributes '*' (delete protect)
and '**' (delete and write protect) must have those
attributes removed with the SA command before they can be
deleted.

Note that this command does destroy memory in order to
build the file list. Hence, the editor or other last used
program cannot be re-entered.

The DM command defaults to all levels. As a result, unless
you explicitly declare a level in the file list, files on
all levels will be affected.

A second parameter has been added to automatically delete
all files in the generated file list. If' ,A' follows the
file this, then no further prompting occurs and all files
are dehted.

x>DM @:PAS;@
Delete CMAIN:PAS;130/1? (Y/N/A)r
Delete CROSSA:PAS;130/1? (Y/N/A)~

Delete CROSSB:PAS;130/1? (Y/N/A)~

Delete CROSSC:PAS;130/1
Delete FIND:PAS;130/1
x>

Delete all files on level 100
x>DM 100

Delete all files that do not
have an extension, on the
current level of disk 4

x>OM @/4

Delete all files with 2-character
names beginning with the letter
M, any extension, any level on
current disk
x>DM M*:@;@

Delete all files that have not
changed since 1985
x>DM ;@/T31-DEC-84

Delete all files
x>DM ;@,A

PAGE 3-12

I

.~

(-

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

3.2.9 ON - DOWNLOAD FILE

Format: ON <file name>

The DOWNLOAD FILE command outputs the data contained in the
file specified by <file name> to the U2P$(A6) port. There
is no modification of the binary data in the file as it is
passed to the UART routines. This means that tabs are not
expanded and that eight-bit as well as seven-bit data can be
downloaded.

ON uses the PODS assembly primitives read only open (XROO)
and tead block (XRBF) for raading the data from the file.
Data is output to the UART routines via the output date
(XPDC) primitive. A [CTRL-C] on the main console aborts the
command.

x>SU 2,3
x>DN FILE1

Set unit 2 to port 3
Send FILE1 out port 3

PAGE 3-13

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

3.2.10 DT - DATE AND TIME

Format: DT

The DT command outputs the current date
user console.
command.

These values can be
and time

changed by
to the
the 10

x>DT
DATE=12-Feb-86
TIME=09: 03 : 01
x>

PAGE 3-14

(

1.(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-15

3.2.11 EE - ENABLE ECHO

Format: EE
EE <echo flag>

The ENABLE ECHO command loads the PDOS echo flag (ECF$(A6»
which controls terminal output. When the most significant
bit of ECF$ is set. then all output through console port
primitives is disabled. This bit is set when <echo flag> is
nonzero. No parameter is equivalent to 'EE 0' or enable
echo.

The current ECF$ flag is defined as follows:

ECF$ ___ le

\\\\ _ No output
\\\\ _ LS body list only
\\\\ \\ Reserved
\\\\ \ Reserved
\\\\ Reserved
\ \ \ Rese rved
\\ Reserved

Reserved

Console echo is again enabled with the ENABLE ECHO command.
when the PDOS primitive XLER (load error register) is
executed. or when the monitor requests new console commands.
Thus 'EE l' from the console would not disable output.

This command is useful in procedure files for inhibiting
irrelevant console output such as temporary procedures or
skipped portions of the procedure.

x>SF ASM
EE 1
IF &2=OBJ.GT OBJECT
MASM &1:SR.#OBJ/8
IF &O.RC
MSYFL OBJ/8.#&1
RC
OBJECT
MASM &1 :SR.#&1
RC
x>

x>ASM TEST
x>EE
x>

x>ASM TEST1
x>EE 1
1/6u 0/00000000:4AFC L1 ADDi.L #2.AS
END OF PASS 2 [1 ERROR]
x>IF 303.RC
x>RC
x>

x>EE
x>EE 1.SF TEST:SR/6
x>

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.12 ER - LIST ERROR

Format: ER <error#>

The LIST ERROR command displays the PDOS error message
associated with <error#>.

Erro r numbers range as follows:

BASIC errors 1- 49
PDOS errors 50- 99
Disk errors 100-299
MASM errors 300-399
C errors 400-499
QLINK errors 500-599
Pascal errors 600-699

Pascal, BASIC, C, and FORTRAN errors are described in their
respective manuals. Appendix A of this manual contains a
list of POOS, MASM, and QLINK errors. Disk error numbers
are system-specific and are described in the xxBIOS:SR file
and Installation and Systems Management guide.

x>ER 5
PDOS ERR 5 Illegal char
x>ER 53
PDOS ERR 53 Not defined
x>ER 100
PDOS ERR 100 Illegal drive
x>

PAGE 3-16

I':)

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS PAGE 3-17

(-' 3.2. '3 EV - SET IRESET EVENT

C

(

(

c

Format: EV
EV {-}<event>

POOS events are set. reset. or listed with the EV command.
A positive <event> value sets the event (1). while a
negative value resets the event (0). If no parameter
follows the command. then all 128 events are listed to your
console as 4 32-bit hexadecimal numbers followed by any
pending delay events. The first 32 events are shown in the
first constant with event 0 being the most significant bit
and so forth.

Current PODS event definitions are as follows:

1-63 = Softwa re events
64-80 Software resetting
81-95 '" Output port events

96-111 ~ Input port events
112 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event
116 '" Reserved
117 = Reserved
1 1 8 '" Reserved
1 19 = Reserved

events
120 '" Level 2 lock
121 '" Level 3 lock
122 '" Batch event
123 = Spooler event
124 = Reserved
125 '" Reserved
126 = Reserved
127 '" Virtual ports

128+ '" Local event
(128+task#)

x>EV
00000000 00000000 00000000 2000FFOO

Event=129 Oelay=97
x>EV 42
Was 0
x>EV
00000000 00200000 00000000 2000FFOO

Event=129 Oelay=61
x>EV -42
Was 1
x>EV
00000000 00000000 00000000 2000FFOO

Event=129 Oelay",19
x>

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.14 EX - POOS BASIC

Forma t: EX

The PODS BASIC interpreter is entered via the EX command
and exited with the BYE command. A PDOS BASIC program is
not altered even though BASIC has been exited and
re-entered. until another object or BASIC program is
executed.

An error 77 results if the BASIC interpreter is not memory
res i den t.

x>EX
"READY
BYE
x>

PAGE 3-18

i •

If

'f

(~ .. '
/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.15 FE - FOR EVERY

Format: FE <file 1ist>,<command line>
FE «start>,<end»,<command line>

The FOR EVERY command generates a set of command strings
that are passed to the PDOS monitor through the Input
Message Pointer (IMP$(A6». These strings are stored in
upper task memory and EUM$ is reduced during execution of
these commands. EUM$ is restored after all commands are
executed.

The command string can be most any command or set of
commands with the obvious exception of create task or any
other command which might tamper with EUM$. This command
string can have substitutions as well as carriage returns
and even sublists.

If the first parameter begins with an opening parenthesis,
then it is assumed that a start and end number follow. A
new command string is generated for each number beginning
with <start> and ending with <end>.

Otherwise, the first parameter is a <file list> whose
format is defined as follows:

<file list> = {file}{:ext}{;level}{/disk}{/select ... }

where {file} 1 to 8 characters (1st alpha) (Q=all,*=wild)
{:ext} 1 to 3 characters (:Q=all,*=wild)

{; level}
{/disk}

{lse1ect}

directory level (;Q=a11)
disk number ranging from 0 to 255
PODS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/OR)
POOS attribute (/*,1**)

Change date (/Fdy-mon-yr,/Tdy-mon-yr)
or (fFmn/dy/yr,/Tmn/dy/yr)

The <command line> substitution parameters are defined as
follows:

&F Full file name or count number
&N File name
&E Extension
&L Level
&D Disk

\ Carriage return
[Start sublist
] End sublist

x>FE Q:SR/10 SA &F,TX
x>SA TTA:SR;3/10,TX
x>SA TTO:SR;3/10,TX
x>SA MBACK:SR;12/10,TX
x>SA MDCOMP:SR;12/10,TX
x>SA MDDMAP:SR;12/10,TX
x>SA MDDUMP:SR;12/10,TX

x>FE Q:SR;3/10 MASM20 &F,#&N:OBJ/8
x>MASM20 TTA:SR;3/10,#TTA:OBJ/8
68020 POOS Assembler R3.2 01-Nov-86
ERII, Copyright 19S3-86
SRC=TTA:SR;3/10
OBJ=#TTA:OBJ/8
LST=
ERR"
XRF=
END OF PASS 1
END OF PASS 2
x>MASM20 TTO:SR;3/10,#TTO:OBJ/8
68020 PDOS Assembler R3.2 01-Nov-86
ERII, Copyright 1983-86
SRC=TTO:SR;3/10
OBJ=#TTO:OBJ/8
LST=
ERR=
XRF=
END OF PASS 1
END OF PASS 2
x>

x>FE (4,10) EE 2[LS 3/&FJEE
x>EE 2

3 BASIC:OBJ/5 08 +

3 BASIC20:0BJ/5 OB +

3 BASICS1 :OBJ/5 OB +

3 BASIC:LIB/5
3 BMAP/5 TX +

3 MEDIT:OB/6 OB C
3 TTA/l0 OR C
3 TTA:SR/10 TX C
3 TTO/l0 DR C
3 TTO:SR/10 TX C
3 nS/l0 DR C
3 TTS: SRI 1 0 TX C
3 00/10 AC C

x>

PAGE 3-19

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(3.2.15 FE - FOR EVERY continued)

Examples:

x>FE @:SR;4 MASM &F,&N:OBJ

x>FE (4,10) EE 2[LS ;@/&F/F1-Jan-86jEE

Assemble all :SR files into
:OBJ files of the same name

List all files on disks 4-10
altered in 1986

Note: FE destroys user memory and any program existing in
memory before the FE command cannot be reentered.

PAGE 3-20

(

~.-.,

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

"3.2.16 FM FREE MEMORY

Format: FM
FM {-}<size>

The FREE MEMORY command drops memory from your current
task. If the <size> parameter is positive, then the memory
is deallocated and made available to the system for other
task usage. If the <size> parameter is negative, then the
memory is simply dropped from the current task and is not
recoverable except by a special utility.

See Also: MINST - Memory Install Utility

x>FM
FREE=O
x>FM 32
ADR=0016800
x>FM
FREE=32
x>GM
x>FM
FREE=O
x>FM -32
ADR=0016800
x>FM
FREE=O
x>

PAGE 3-21

6BOxO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.17 FS - FILE SLOT USAGE

Format: FS

The FILE SLOT USAGE command lists all files currently open
along with file slot information. When the first file is
opened, it is assigned slot number 32; as successive files
are opened, they are assigned file slots in numerical
sequence down to 1. (Read Only Open allocates slots in the
opposite order, from 1 to 32.) The file slot maintains
information such as the current file pointers and sector
indexes. This data is defined as follows:

Slot File slot #
Name File name;level/disk #
ST File status
SM Current sector in memory
PT Current file pointer
S1 Sector index of SM
EOF Sector index/# of bytes in END-OF-FILE sector
TN Lock Task/Open Task
BF Buffer pointer
FLGS Lock flag/# Shared

File status is defined as:

ST = $Bxxx Sector altered
$4xxx File altered
$lxxx Driver in channel
$xAxx Read only access
$x6xx Shared random access
$x2xx Random access
$xlxx Sequent 18 1 access

Example:

x>FS
Slot Name ST SM

$xxBO Altered
$xx04 Contiguous file
$xx02 Delete protect
$xxOl Write protect

PT S1 EOF

Normally allocated f~om 32 to

Read only allocated from 1 to 32

TN BF FLGS
32 LIST;1/2 Cl00 0048 0000AF13 0000 0000/08 0000 0000AE8A 00000000

x>CT (ASM TEST),100.FS
*Task #1
x>FS
Slot Name
1 ASM; 1 /21
32 LIST;1/2

ST SM PT S1 EOF TN BF FLGS
OAOO 0012 0000ABB9 0000 0000/60 0001 0000AB8A 00000000
C100 OD4A 0000AF37 0002 0002/BC 0000 0000AE8A 00000000

PAGE 3-22

'C',', " " ", ,j

(

f

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

3.2.18 GM - GET MEMORY

Format: GM
GM <size>

The GM command adds memory to the current task. The amount
of memory is specified by <size>. If no parameter follows
GM, then all of the available memory is added. No error is
reported if the memory request cannot be met.

x>FM
FREE=32
x>GM 10
x>FM
FREE=22
x>GM
x>FM
FREE=o
x>

PAGE 3-23

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-24

x3.2.19 GO - EXECUTE

Format: GO {,arguments ... }
GO <address>{,arguments ... }

The GO command executes a program at an absolute memory
address or re-enters an existing program in memory. When
there is no argument or the argument is zero, execution
begins at the last PDOS entry address (EAD$) which is
normally found immediately after the task control block.

If an argument is used, then execution begins at the
specified <address>.

x>MDUMP 100,110
0064-0073 2F9C S9SC 2F9C
x>GO ,100,110
0064-0073 2F9C S95C 2F9C

**

* x>GO {<adr>} PROCESSOR
*
GO MOVEA.l EAD$(A6),A4 ;GET DEFAULT

XGNP ; PARAMETER?
BlS.S @G002 ;N

XCDB ;Y, CONVERT
BlE.S ERR67 ;ERROR

MOVEA.l D1,A4 ;USE NEW ADDRESS
*
@G002 MOVE.l A4,D1 ;01

BNE.S @G004 ;N
lEA. l TBE$(A6),A4 ;Y

*
@G004 JMP (A4) ;GOOD LUCK!!!!

·f"\·
,,~

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-25

(~- 3.2.20 GT - GOTO

(

("

()

Format: GT <string>

The GOTO command is used in procedure files to selectively
process different commands. When the GOTO command is
executed, the procedure file is rewound and all command line
entries are ignored until a match is found with the <string>
parameter and the command line. All preceding command lines
to the match, including the matching command line, are
ignored. Execution continues with the next line.

The PDOS console echo flag (ECF$) is set to disable all
console output until a match is found or the procedure file
is exited. It is again restored after the label is found.
Labels beginning with an asterisk are recommended since the
monitor ignores them.

The example to the right illustrates the use of the GOTO
command .. Here, the procedure file ASM will assemble a SY
file or a DB file depending upon the second parameter.

x>SF ASM
IF &2=OBJ.GT *OBJECT
MASM &1:SR,#OBJ/8
IF &O.RC
MSYFL OBJ/B,#&1
RC

*OBJECT
MASM &1 :SR,#&1
RC

x>ASM DEMO
x>IF =OBJ.GT *OBJECT
x>MASM DEMO:SR,#OBJ/8
68K PDOS Assembler R3.2
ERII, Copyright 1983-86
SRC=DEMO:SR
OBJ .. #OBJ/8
LST ..
ERR=
XRF.
END OF PASS 1
END OF PASS 2
x>IF .RC
x>MSYFL OBJ/8,#DEMO
68K PDOS SY File Maker Utility 04/26/84

Source file = OBJ/8
Destination File = #DEMO

SECTION LENGTH = E000000244
Entry Address = 00000000

x>RC
x>

x>ASM DEMO,OBJ
x>IF OBJ=OBJ.GT *OBJECT
x>GT *OBJECT
x>MASM DEMO:SR,#DEMO
68K PDOS Assembler R3.2
ERII, Copyright 1983-86
SRC=DEMO:SR
OBJ=#DEMO
LST ..
ERR=
XRF=
END OF PASS 1
END OF PASS 2
x>RC
x>

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-26

3.2.21 HE - HELP

Format: HE x>HE
HE <parameter>{,<parameter> ... }

The HELP command provides error number explanations,
tutorial guides to PODS, user command parameter formats or
definitions, utility program listings, disk usage
instructions, or other textual messages associated with
system software. HELP can be executed without destroying a
BASIC or user program.

The user can create his own help files for each individual
disk. This could include information on how to use the
particular application programs on the disk.

POOS searches through a file named 'HLPTX' for the HELP
<parameter>. All lines beginning with a non-blank or
control character are matched against the <parameter>. If
the <parameter> agrees, then all lines immediately following
the keyword line that begin with a blank or control
character are printed. This continues until another line
with a non-blank first character is encountered. If no
match is found, the routine does not print anything and
returns.

If the first character of a line is an exclamation point
(i), then the line is printed and the help list stops to
wait for another character from your console. This allows
multiple page help messages to be in the help file.

If the first character of a line is a
the current help file is closed
opened as specified by the file name

pound sign (#), then
and a new help file is
following the pound

sign. Furthermore, a new parameter is read from the user
command and used for subsequent searches. This continues
i ndefi nite 1 y.

x>HE MON GO
Command: Begin task execution

Format: GO
GO <address>{,<arguments> ... }

Notes: If no address, then executes at last
entry address (EAD$j

(Continued on next page ... j

For further help, enter 'HE'
followed by one of the following:

MONITOR {monitor command}
FILE {file help}
BASIC
C

FORTRAN
PASCAL

x>HE MONITOR
Current PDOS resident monitor commands:

AC - Review procedure
AF - Append file
BP - Baud port
CF - Copy file
CT - Create task
OF - Define file
DL - Delete file
DM - Delete mUltiple
DN - Download file
DT - Display time
EE - Enable echo
ER List error
EV - Events
EX - BASIC
FE - For every
FM - Free memory
FS - File slots
GM Get memory

GO - Execute
GT - Go to 1 abe 1
HE - Help
IA - If altered
ID - Ini t date
IF - Conditional
KM - Kill message
KT - Ki 11 task
LL - List levels
LO - Load file
LS - List directory
LT List tasks
LV - Directory level
MF - Make file
PB - Debugger
RC - Reset console
RD - RAM disk
RN Rename file

Hit <CR> to continue

"

,

c

680xO PODS 3.2 REFERENCE MANUAL

(3.2.21 HE - HELP continued)

x>SF HLPTX
LEVEL 0
Hds is level 0

HE
#L1

x>SF L1
LEVEL 1
This is level 1

HE
#L2

x>SF L2
LEVEL 2
This is level 2

HE
#L3

x>HE
This is level 0

x>HE HE
This is level

x>HE HE HE
This is level 2

x>

CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-27

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.22 IA - IF·ALTERED

format: IA <file name>.<command>

The IF ALTERED command tests and clears the altered file
bit of the directory entry specified by <file name>. If the
file had the alter bit set (indicated in the directory
listing by a '+' under type), then execution of the command
line continues. Otherwise, the rest of the line is ignored.

This command is useful in assembly procedures to update
object modules when many files are involved and only a few
may have changed.

x>MF #P
*THIS IS A NEW fILE
x>LS
Disk=SY$DSK!x
Lev Name:ext

P
Files=1
x>IA P.SF P
x>SF P
THIS IS A NEW FILE
x>IA P.SF P
x>LS
Disk=SY$DSK!x
Lev Name:ext

p

Files=1
x>

Type
+C

Used=1!1

Type
C

Used=1!1

Size
111

Size
1!1

PAGE 3-28
1(-'
'L/

I;

(

{ ~.
/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.23 10 - SET SYSTEM DATE/TIME

Format: ID

The SET SYSTEM DATE/TIME command displays the PDOS header
and prompts for the date and time. The PDOS header shows
the PDOS system type and copyright declaration. The current
BIOS configuration is also displayed.

The date can be entered in either a day, ASCII month, year
form or numeric month, day, year.

Any delimiter can be used to separate date and time
parameters. Pressing [CR] leaves the old date and time.

x>ID
PDOS/B8000 R3.2
ERII, COPYRIGHT 1983-86

BIOS
DATE=00-777-00 11 1 86 ---
TIME=OO:OO:OO 10:30
x>

x>ID
PDOS/68000 R3.2
ERII, COPYRIGHT 1983-86

BIOS
DATE=00-777-00 01-Nov-86
TIME=OO:OO:OO 10:30
x>

PAGE 3-29

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-30

3.2.24 IF - IF PROCESSOR

Format: IF <string>.<command>
IF <string>=<string>.<command>
IF <string>#<string>.<command>

The IF processor allows conditional execution during a
prooedure file. Parameter substitution is active during
procedure files and hence at the completion of a process
(such as an assembly), the error register (&0) can be
checked. If it is nonzero, then the procedure can be
abor ted.

The condition del imi ters are '=' for strings equal, '#' for
string not equal. If no delimiter is used, then the true
condition is non-blank.

The IF processor could also be used to check for additional
parameters from the procedure file header. &1 through &g
have values equal to the parameters through 9 of the
procedure command line.

IF &1=Q.GT "LINK
MASM S4BIOS:SR,#S4BIOS:OBJ;101
IF &O.RC
MASM S4BIOSU:SR,#S4BIOSU:OBJ;101
IF &O.RC
MASM S4BIOSW:SR/NFU=20,#S4BIOSW:OBJ;101
IF &O.RC

"LINK
QLINK
Z
DEFINE B$SRAM,$03FC
DEFINE S$SRAM,$9800
GROUP 14,15
SECT! ON 14, $800
IN S4BIOS:OBJ
IN S4BIOSU:OBJ
IN S4BIOSW:OBJ
IN MPDOS:OBJ
IN MSYRAM:OBJ
MAP GFOSU
MAP GFOSU,#EMAP
SY
OUTPUT #EDOS
END
QUIT
RC

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PO OS MONITOR COMMANDS

3.2.25 KM - KILL MESSAGE

Format: KM
KM <task #>

The KM command removes all task messages associated with
<task #> from the message buffers. If no task is specified,
then all messages associated with the current task are
listed to the console as well as deleted from the message
buffers.

See also 3.2.40 SM - SEND MESSAGE.

x>SM
TASK #1:
TASK #1:
TASK #4:
x>KM 1
x>SM
TASK #4:
x>

PAGE 3-31

REQUEST #1
REQUEST #2
ANOTHER REQUEST

ANOTHER REQUEST

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.26 KT - KILL TASK

Forma t: KT
KT {-}<task #>

The KILL TASK command removes a task from the task list and
returns the task's memory to the free pool for use by other
tasks. Only your current task or a task spawned by your
task can be killed. (Task 0 can kill any task except itself
or a task that is kill protected.)

Each task is assigned a unique task number which is shown
by the LIST TASK command. Only the current task (indicated
by '*') or those spawned by the current task (indicated by
current task number following a "/" character) may be
killed. Task #0 is the system task and cannot be killed.

If a minus sign (-) precedes the task number, then the
task's memory is not deallocated to the memory bit map. If
the task number is Zero, then the current task is killed
without deal locating memory. If no parameter is given, then
the current task is killed and memory is deallocated.

All open files associated with the killed task are closed
by the KT command.

.,

x>KT 2
x>

x>KT -2 Kill task # wlo freeing
memory

x>KT 0 Kill current task wlo
freeing memory

x>KT Kill current task and
free memory

PAGE 3-32 c

\ --"'"

,,..~

(]

o

{' 680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-33

(. l(3.2.27 LL - LIST LEVEL

(

(... "'"
/

c

Format: LL <file list>

The LIST LEVEL command lists files by directory level
according to the <file list> specification. User memory is
destroyed by this command.

The format for the <file list> parameter is as follows:

<file list>. {fi1e}{:ext}{;leve1}{/disk}{/se1ect ... }

where {file}. 1 to 8 characters (1st alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=a11,*~wi1d)

{;leve1} • directory level (;Q:a11)
{/disk} = disk number ranging from 0 to 255 .

{/se1ect} = PDOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
PDOS attribute (/*,1**)

Change date (/Fdy-mon-yr,/Tdy-mon-yr)
or (/Fmn/dylyr,/Tmn/dy/yr)

Examples:

x>LL 15 List all files on disk 5

x>LL ;@/3/F1-Jan-84/T31-Dec-84 List all files on disk 3

x>LL 14

Lev 0 A, DOSYSTEM, LOCK, PROFILE
RECORD, SEARCH, START, UNLOCK

Lev 1 DO:ALL, DO:OBJ, D020:0BJ
DOB:OBJ, DOB20:0BJ, DOB81:0BJ
DOE, FCPU21, MASM20, move

Lev 12 MDCOMP:SR, MPDOSN:SR
Lev 13 DOC31 , R3
Lev 100 MBIOS:SR, MDUMMY:SR, MPDOS:SR

MPDOSD:SR, MPDOSF:SR, MPDOSK1:SR
MPDOSK2:SR, MPDOSK3:SR, MPDOSM:SR
MPDTCB:SR, MPDTST:SR, MSYRAM:SR

x>

that were altered in 1984

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.28 LO - LOAD FILE

Format: LO <file name> x>LO MASM
LO <file name>,<start address>

The LOAD FILE command loads a PDOS object file into memory
but does not begin executing it. The file must be typed
'OS' or 'SY'. The starting load address is optionally
specified by <start address>. Otherwise it defaults to
immediately following the TeB.

This command can be used to debug files, load multiple
files or to load programs outside of known PDOS RAM.

The LOAD FILE command uses the XLDF primitive and loads
'SY' files four bytes at a time. As a result, as many as
three extra bytes may be loaded.

x>PB

x>LO PRGM1,$FOOOOO
x>

PAGE 3-34

C'
{" ' ... ' '. 'j

i ,

c
(

(

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-35

3.2.29 LS - LIST DIRECTORY

Format: LS <file list>
LS <file list>,<file>

The LIST DIRECTORY command displays a selected list of disk
file names including directory level, file name and
extension, file type, file size, start sector address, date
of creation, and date of last update. Files are selectively
listed according to file name, extension, level, disk
number, file attribute, or date of last change. The
optional <file> parameter can direct the directory list to a
PODS file.

The format of the <file list> is defined as follows:

<file list> = {fi1e}{:ext}{;leve1}{/disk}{/se1ect ... }

where: {file} 1 to 8 characters (1st alpha) (@=a11,*=wi1d)
{:ext}

{;leve1}
{/disk}

{/select}

1 to 3 characters (:@=al1,*=wild)
directory level (;@=al1)
disk number ranging from 0 to 255
lAC = Assign Console file
IBN = Binary file
IBX POOS BASIC token file
lEX POOS BASIC file
lOB 68000 PODS object file
ISY System file
ITX Text file
lOR System 110 driver
1* Delete protected
1** Delete and write protected
IFdy-mon-yr = selects files with date of

ITdy-mon-yr

last change greater than
or equal to 'dy-mon-yr'.
IFmn/dy/yr format can also
be used.
selects files with date of
last change less than or
equal to 'dy-mon-yr'.
ITmn/dy/yr format can also
be used.

In the file list specification, the '@' character indicates
all subsequent characters match and the '*' character is a
single character wild card. If you enter 'LS 255', PODS
will display all files on the current disk.

Also displayed with each directory listing is the disk
name, the number of files stored on the disk and the number
of directory entries available. This information is useful
in disk maintenance.

x>LS {file}{:ext}{:level}{/disk}{/select}
{a} {:@} {:@} {/0-255}{/AC}

BN
BX
EX
DB
SY
TX
DR
Fdy-mon-yr
Tdy-mon-yr

68QxQ PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(3.2.29 LIST DIRECTORY continued)

If bit #1 ($02) of the echo flag (ECF$) is set, then the LS
header is suppressed and the disk number is appended to the
file name. Output is also enabled but the old echo flag is
restored after the list file operation.

The directory entries are not necessarily in alphabetical
order but in the order they are stored in the disk
directory. If an alphabetical listing is desired, the
MORDIR utility orders the directory or the MDDMAP utility
provides additional directory information in alphabetical
order.

See also the following utilities:

7.14 MLDIR - DIRECTORY LIST
7.16 MORDIR - ALPHABETIZE PDOS DIRECTORY

Examp1 es:

x>LS
x>LS 2
x>LS ;@

List all fi les on current level & disk

x>LS ;@/EX/TX/5
x>LS M@:@;1/0B--/4

x>lS ****, LI ST

x>LS E**:S@;@

x>LS ;@/T1-Jan-85
x>LS ;@/F1-Jan-86

li st all files on level 2 of curren t
li st all files on current disk
li st all 'EX' and 'TX' type files on
List all wri te protected 'OB' files
beginning with the letter 'M'
on level 1. disk 4

List all 4-character files on current
level & disk to the POOS file LIST

disk

disk

List all 3-character files beginning with
the letter 'E' and with an extension
beginning with'S'. on all levels

list all unaltered files since 1984
List all files changed after 1985

PAGE 3-36
:1
'tj

5

If",

'~
i.

C 680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-37

(~C
(3.2.29 LIST DIRECTORY continued)

Examples:

8>LS ;iil
Disk=SY$DSK/8 Fi 118=20/32
Lev Name:ext Type Size Sect Date created Last update
0 MASM SY C** 76176 OOOF 13:14 16-Jan-85 12:24 18-Dec-85
0 MJEDY SY C** 25/25 005B 21:09 06-Jun-84 13:20 17-Jun-85
0 SY$STRT AC C 8/8 0005 21:04 06-Jun-84 13:17 17-Jun-85

ASM AC C 111 OOOD 21:D9 06-Jun-84 13:39 17-Jun-85
DO AC C 111 DODE 12:36 1D-Oct-85 12:36 1D-Oct-85

1 PRINT EX C 111 0074 21:09 06-Jun-84 13:40 17-Jun-85
2 MBACK SY C 4/4 0075 21:09 06-Jun-B4 13:25 17-Jun-B5
2 MINlT SY C 515 007C 16:31 02-May-B4 12:06 10-0ct-B4

(2 MLDIR SY C 515 0081 16:31 02-May-B4 12:06 10-0ct-B4
2 MLEVEL SY C 3/3 0086 16:31 02-May-B4 12:07 10-0ct-84
3 TTA DR C** 1/1 0089 16:32 02-May-84 16:32 02-May-B4
3 TTA:SR TX +C 11111 008A 11:01 10-0ct-B4 16:20 12-Feb-B6
5 HANGMAN EX C 21/21 00A6 16:31 02-May-B4 12:01 01-Aug-84
5 HANOI EX C 6/6 OOBB 16: 31 02-May-B4 16:38 05-Jul-84
6 CLKADJ EX C* BIB 00C1 16:31 02-May-B4 16:22 05-Jul-84

. 6 UPTIME EX C* 717 00C9 16:32 02-May-B4 21:53 05-Jul-84
10 B01 OB C 2/2 OODO 16:31 02-May-B4 15:27 1B-Oct-B5
10 B01:SR TX C 515 00D2 16:31 02-May-84 15:27 1B-Oct-85

(~
10 B02 OB C 2/2 00D7 16:31 02-May-B4 16:14 11-Apr-85
10 B02:SR TX C 515 00D9 16:31 02-May-84 16:13 11-Apr-85

Files=20 Used=1971197
B>LS
Di sk=SY$DSK/8 Files=20/32
Lev Name:ext Type Size Sect Date created Last update

ASM AC C 1/1 OOOD 21:09 06-Jun-84 13:39 17-Jun-B5
DO AC C 1/1 OODE 12:36 10-0ct-85 12:36 10-0ct-85
PRINT EX C 1/1 0074 21:09 06-Jun-84 13:40 17-Jun-85

Files=3 Used=3/3

C' 8>LS *L@:iil;@
-'" Disk=SY$DSK/B Files=20/32

Lev Name:ext Type Size Sect Date created Last update
2 MLDIR SY C 515 0081 16:31 02-May-B4 12:06 10-0ct-B4
2 MLEVEL SY C 3/3 00B6 16:31 02-May-B4 12:07 10-0ct-B4
6 CLKADJ EX C* BIB 00C1 16: 31 02-May-84 16:22 05-Jul-84

Fil es=3 Used=16/16

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

(3.2.29 LIST DIRECTORY continued)

8>LS ;@/T1-1-85
Oisk=SY$OSK/8
Lev Name:ext Type Size
2 MINIT SY C 5/5
2 MLDIR SY C 5/5
2 MLEVEl SY C 3/3

3 TTA DR C'" 1/1
5 HANGMAN EX C 21 121
5 HANOI EX C 6/6

6 CLKAOJ EX C* 8/8

6 UPTIME EX C* 717

Fi1es=8 Used=56/56
8>LS ;@/Fl-1-85/T6-1-85
Disk=SY$OSK/8
Lev Name:ext
10 602
10 602:SR

Files,.2
8>LS ***;@
Oisk,.SY$OSK/8
Lev Name:ext
1 ASM
3 TTA
10 601
10 602

Fi1es=4
8>LS ;@I**

Disk,.SY$OSK/8
Lev Name:ext
o MASM
o MJEOY
3 TTA

Fi1es=3
8>lS ;@/SY**

Oi sk,.SY$OSK/8
Lev Name:ext
o MASM
o MJEOY

Fi1es,.2
8>lS ;@/SY

Oisk=SY$OSK/8
Lev Name:ext
o MASM
o MJEOY
2 MSACK
2 MINIT
2 MLOIR
2 MLEVEl

Fi1es=6

Type Size
06 C 212
TX C 5/5
Used,.717

Type Size
AC C 1/1
DR C** 1/1
06 C 212
06 C 212
Used,.6/6

Type Size
SY C** 76/76

SY C** 25/25
DR C** 1/1
Used=102/1D2

Type Size
SY C** 76176

SY C** 25/25
Used=1 0111 01

Type Size
SY C** 76176

SY C** 25/25
SY C 4/4

SY C SIS

SY C SIS

SY C 3/3

Used=118/118

Fil e5=20/32

Sect Date created Last update
007C 16: 31 02-May-84 12:06 10-0ct-84
0081 16: 31 02-May-84 12:06 10-0ct-84
0086 16: 31 02-May-84 12:07 10-0ct-84
0089 16:32 02-May-84 16:32 02-May-84
00A6 16: 31 02-May-84 12:01 01-Aug-84
0066 16 :31 02-May-84 16:38 05-Jul-84
OOCl 16: 31 02-May-84 16:22 05-Jul-84
00C9 , 6:32 02-May-84 21:53 05-Jul-84

Files=20/32
Sect Date created Last update
0007 16: 31 02-May-84 16: 14 ll-Ap r-85
0009 16:31 02-May-84 16:13 l1-Apr-85

Fil e5=20/32

Sect Date crea ted Last update
0000 21:09 06-Jun-84 13:39 17-Jun-85
0089 16:32 02-May-84 16:32 02-May-84
0000 16: 31 02-May-84 15:27 18-0ct-85
0007 16:31 02-May-84 16:14 11-Apr-85

Fil e5=20/32

Sect Date created last update
OOOF 13: 14 16-Ja n-85 12:24 18-Dec-85
0056 21:0906-Jun-84 13:20 17-Jun-85
0089 16:32 02-May-84 16:32 02-May-84

Fi1es=20/32
Sect Date created Last update
OOOF 13:14 16-Jan-85 12:24 18-0ec-85
005S 21 :09 06-Jun-84 13:20 17-Jun-85

Fi 1es=20/32
Sect Date created Last update
OOOF 13: 14 16-Jan-85 12:24 18-Dec-85
0056 21:09 06-Jun-84 13:20 17-Jun-85
0075 21:09 06-Jun-84 13:25 17-Jun-85
007C 16:31 02-May-84 12:06 10-0ct-84
0081 16:31 02-May-84 12:06 10-0ct-84
0086 16: 31 02-May-84 12:07 10-0ct-84

PAGE 3-38

4(-

,:f----'
'4 ___ J

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(v 3.2.30 LT - LIST TASKS

(~

()

Format: LT
LT {mode}

The LT command displays all tasks currently in the task
list to the console. Task 0 is the system task and is
created automatically during system initialization. This
task cannot be killed.

Your current task is indicated by an '*' preceding the task
number. Following the task number is a slash and the parent
task number. Subsequent data provides the current status of
each task and is defined as follows:

Task {* .. current}Task #/parent task #
Prt Task priority (1-255)
Tm Task CPU tics (1 tic=10 ms)
Event Suspended event(s)
Map Task map constant
Size Task size (k bytes)
PC Program Counter
SR Status Register
TB Task control Block
EM End of memory

Input port number
U Output unit mask
1 Unit 1 port number
2 Unit 2 port number
4 Unit 4 port number
8 Unit 8 port number

A '+' sign following the task priority indicates that the
save flag (SVF$) is enabled for that task.

Further task information can be requested by including a
numeric parameter (<mode». Available modes are 1-7 and are
defined as follows:

(Continued on next page ...)

Task Hsting

*0/0

110

=> cu r rent task
=> spawned task

PAGE 3-39

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

(3.2.30 LT - LIST TASKS continued)

Mode 1 Selects TCB parameters starting with
CLP$. The TCB parameters are defined as
follows:

TCB=<--l-> <--2-> <--3-> <--4-> <--5-> <--6-> <--7-> <--8->
<--9-> <-10-> <-11-> <-12-> <-13-> <-14-> <-15-> <-16->

l=CLP$ Command Line Pointer
2=BUM$ Be9inning of User Memory
3=EUM$ End-User-Memory
4=EAO$ Entry Address
5.IMP$ Assigned Input Message
6=ACI$ Assigned Console Inputs
7=LEN$/SFI$ Error Register/Spooling Unit File 10
8=FLG$/SLV$/FEC$/0 Task Bit Flags/

Directory Level/
File Expansion Count

9=CSC$/PSC$ Clear Screen/Position Cursor
10=SDS$/SOK$ Alternate Disks/System Disk
11=EXT$ XEXT$ Address
12=ERR$ XERR$ Address
13=CMD$/TID$/ECF$/CNT$ Command Line Delimiter/

Task 10/
Echo Fla9/
Column Counter

14=MMF$/PRT$/SPU$/UNT$ Memory Modified Flag/
Input Port #/

Spoo1in9 Unit Mask/
Output Unit Mask

15=U1P$/U2P$/U4P$/U8P$ Unit 1 Portl
Unit 2 Portl
Unit 4 Portl
Unit 8 Port

16.0/TWO$ Monitor Temps

Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7

Lists current executing monitor command
(MPB$). Lists both modes 1 and 2.
Outputs current contents of floating
point register (FPA$). Lists modes 1
and 4. Lists modes 2 and 4. Lists
modes 1. 2. and 4 (all modes).

Examples:

x>LT 1
Task
0/0

Prt Tm Event Map Size PC SR TB EM I U 1 2 4 8
84 1 971-128 0 548 0000EB44 0000 00000800 00096800 1 1 1 2 0 0

TCB.00000903 0000F59C 00096800 00000000 00000000 00000000 FFFFOOOO 00010000
AA009B30 FFFFOA05 00000000 00000000 00000000 03010001 01020000 00000800

(Continued on next page ...)

PAGE 3-40

o

C

C_/

(

f

(~'

C

6S0xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

(3.2.30 LT - LIST TASKS continued)

x>CT ,20,,3
"Task #1
x>LT
Task Prt Tm Event Map Size PC SR TB EM I U 1 2 4 S
"0/0 64 2 0 3S4 0000100S 2004 OOOOBOOO 00066000 1 1 1 000

110 64 2 99 0 20 00001B42 2000 0006BOOO 00070000 3 1 3 0 0 0
x>TP 1,50
x>LT
Task Prt Tm Event Map Size PC SR TB EM I U 1 2 4 S
"0/0 6~ 2 0 3S4 0000100S 2004 00006000 00066000 1 1 1 000

1/0 50 2 99 0 20 00001642 2000 0006BOOO 00070000 3 1 300 0
x>LT
Task Prt Tm Event Map Size PC SR TB EM I U 1 2 4 S

DID 64 1 97 0 54S 00002052 2004 OOOOOSOO 00096S00 1 1 1 200
1/-1 100 1 127 0 16 000E904A 2000 000E9S00 OOOEOSOO o 1 o 0 0 0
210 64 100 0 32 00002052 2004 000E1S00 000E9S00 4 1 4 2 0 0

"3/0 64 0 100 00002304 2004 OOOCSSOO 000E1S00 535 2 o 0
x>LT 2
Task Prt Tm Event Map Size PC SR T6 EM U 2 4 S

010 64 1 97 0 54S 00002052 2004 OOOOOSOO 00096S00 200
MPB=MEOIT CHAP04/21

1/-1 100 1 127 0 16 000E904A 2000 000E9S00 OOOEOSOO o 1 000 0
MPB=

2/0 64 100 0 32 00002052 2004 000E1S00 000E9S00 4 1 4 2 o 0
MP6=

*3/0 64 0 100 00002E06 2000 OOOCSSOO 000E1S00 535 2 o 0
MPB=LT 2

x>LT 7
Task Prt Tm Event Map Size PC SR TB EM I U 1 2 4 S

0/0 64 1 97 0 54S 00002052 2004 OOOOOSOO 00096S00 1 1 1 200
TCB=00000900 0000F59C 00096BOO 00000000 00000000 00000000 FFFFOOOO 20010000

AA009630 FFFFOA05 00000000 00000000 FF000005 03010001 01020000 00001500
MPB=MEOIT CHAP04/21
FPA=OOOOOOOO 00000000 0000766E

1/-1 100 1 127 0 16 000E904A 2000 000E9S00 OOOEDSOO 0 1 0 0 0 0
TCB=000E9910 000EA250 OOOEOSOO 000E9000 00000000 00000000 00000000 00010000

AA009B30 FFFFOA04 00000000 00000000 00010014 00000001 00000000 00000400
MPB=
FPA=OOOOOOOO 00000000 00000000

2/0 64 1 100 0 32 00002052 2004 000E1S00 000E9S00 4 1 4 2 0 0
TCB=000E1900 000E1000 000E9S00 000E1000 00000000 00000000 00000000 20010000

AA009B30 FFFFOA04 00000000 00000000 FF020005 00040001 04020000 00000000
MPB=
FPA=OOOOOOOO 00000000 00000000

*3/0 64 1 0 100 00002304 2004 OOOCSSOO 000E1S00 5 3 5 2 0 0
TCB=000CS905 OOOCSOOO 000E1S00 OOOCSOOO 00000000 00000000 00000220 00010000

AA009B30 FFFFOA04 00000000 00000000 0003002A 00050203 05020000 00000200
MPB=LT 7
FPA=OOOOOOOO 00000000 00000000

x>

PAGE 3-41

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

:< 3.2.31 LV - DIRECTORY LEVEL

Format: LV
LV <level>

The DIRECTORY LEVEL command displays or
directory level
definitions.

used in dir~ctory

sets the current
listings and file

The DIRECTORY LEVEL command without any argument displays
the current directory level. A file defined without a
specified directory level is defined on the current level.

If an argument is specified, it is converted to a number
and sets the current directory level. The range is from 0
to 255.

The disk directory is soft partitioned into 256 different
groups, facilitating file maintenance. A soft partition
means that any file is accessible from any current level.
It also means that file names must be unique for each disk
number (disk directory).

See also 3.2.27 LL - LIST LEVELS.

10>LV
Leve 1 =1
10>LS
Disk=WDISK #10/10
Lev Name:ext
10>OF PAUL
10>lS
Oisk=WOISK #10/10

Type

Lev Name:ext Type
PAUL C

10>LS 17
Disk=WOISK #10/10
Lev Name:ext Type
17 LIBGEN SY C
17 LI BGEN: SR

10>LS 0
Oisk=WDISK #10/10
Lev Name:ext
o HLPTX
o SY$STRT
o MASM
o MJEOY
o QLINK

10>lS ;@

Disk=WDISK #10/10
Lev Name:ext
o HlPTX
o SY$STRT
o MASM
o MJEDY
o QLINK
2 MBACK
2 MBOBJ
2 MCHATLE
3 TTS
3 TTS:SR
5 AMAZING
5 BEAST

x>

TX C

Type
TX C
SY C
SY C
SY C
SY C

Type
TX C
SY C
SY C
SY C
SY C
SY C
SY C
SY C
DR C
TX C
EX C
EX C

Size

Size
0/1

Size
5/5

43/43

Size
32/39

818
75/81
25/25
43/43

Size
32139

8/8
75/81
25/25
43/43

414
3/3
5/5
1/1
8/8

PAGE 3-42

25/25
36/36

, ,
I

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.32 MF - MAKE FILE

Format: MF <file>

The MF command allows an ASCII file to be created from the
user console. The <file> must be previously defined or
preceded by a '#'. The normal line editing is permitted but
once a return key has been entered, the line is written to
the file.

A [CTRL-C] cancels the line without writing it to the file.
An [ESC] terminates the process, closes the file, and
returns to the POOS monitor.

The MF command uses the XGLU PDOS primitive and hence,
normal editing control characters are available and lines
are limited to 78 characters. Control characters other than
those used for editing cannot be entered (i .e. this includes
a TAB character.)

x>MF #00
MASM &1:SR,#OBJ,&2
IF &O.RC
MSYFL OBJ,#&1
RC[ESC]
x>OO PRGM1
MASM PRGM1:SR,#OBJ,
SRC=PRGM1 :SR
OBJ=#OBJ
LST=
ERR=
XRF=
End pass
End pass 2
x>IF .RC
MSYFL OBJ,#PRGM1
x>

PAGE 3-43

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS PAGE 3-44

3.2.33 PB - PDOS DEBUGGER

Format: PB

The POOS debugger is entered via the PB command or the POOS
assembly
intended

primitive XBUG. It is a single task debugger
to be memory resident and aid in program

development by providing memory inspect and change, single
instruction tracing, and breakpoints.

The debugger is initialized when the task is created. It
will only briefly be explained here.

Once in the debugger, the 'H' command displays the
fo 11 owi ng menu:

x>PB
H
AO-7
B{#,a}
00-7
F

{#}G

A-reg
Lst/def break
O-reg
68881 regs
Go & break

Mem lAC
#,# Mem dump
#,#+ Disassemble
#,#,#{WL} Find B/W/L
#(0-7 d(Ax)

M Last dump #{+-}# Hex +/-
N#
o
P

Q

R

S

0=W,1=8,+2=w/o read
Offset AD
PC
Exit LF
Reg dump +#
Status

Disassemble
Open previous
Open next
+ offset

T Trace
Unit

Trace options:
U

V Control lAC
W{s,e} Window
X Set breaks & exit
Z Rese t

F/RIM
G
T

Dump
Go
Running

1) Inspect and change memory. A memory location is
opened (made ready for change) by entering the address
followed by a return. Once open, the value can be altered
by entering a new hexadecimal number. The location can be
closed by a return, minus sign (which immediately opens the
previous location). or a line feed (which immediately opens
the next location). A [CR] will re-open the address that
was last opened unless a 'Z' (reset) command is entered.

An open location can be disassembled with a [CTRL-D].
Memory can be inspected and changed in word (NO) or byte
(N1) mode as well as write only (N2 and N3) mode. Write
only mode will not read the data when opening a location and
displays as ·xx'.

(Continued on next page)

1000[CR]: 03FC =
DOOOOFFE: 0000 4[CR]
~OOOOOFFE: 0004 ~
~OOOOOFFE: 0000 Ihfl
00001000: 03FC Ihfl
00001002: 2C6D [CTRL-D] MOVE.L $00BO(A5),A6 ~
N1[CR]
~00001002: 2C Ihfl
00001003: 60 ~
N3~

~00001003: xx Ihfl
00001004: xx [CR]
NO~

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-45

(3.2.33 PB - PDOS DEBUGGER continued)

2) Register inspect and change. CPU address and data
register can be examined and changed by entering an 'A' or
'0' followed by the register number. The method of change
and closing protocol is the same as with memory inspect and
change.

3) Memory dumps/disassembly. By entering two numbers
separated by a comma, memory is displayed to the screen in
hexadecimal and ASCII format. If the end memory address is
followed by a plus sign, then the memory is disassembled to
the screen.

All addresses are evenized before beginning. The last
memory dump can be recalled by simply entering the letter
'MI.

4) Register dumps. By entering the character 'R', all
68000 registers are dumped to the screen along with the
program counter, supervisor stack pointer. and status
register.

5) Base register addressing. By entering a displacement
number followed by a left parentheses and an address
register number, a displacement address can be opened. The
debugger then returns to the memory inspect and change mode
and the method of change and closing is the same.

S) Data searching. Memory can be searched for a byte,
word, or long word by entering three numbers; namely, start
address, end address, and value. The end delimiter
determines the type of search. A return does a byte search
while a 'W' does a word (16-bit) and an 'L' does a long word
(32-bit). As each location is found. the address is

displayed. A [CTRL-C] will interrupt this command.

7) Program counter inspect and change. The program
counter is opened by entering the character 'P'. It can be
closed with a return or changed by entering a new value
followed by a return.

(Continued on next page)

AO=OOOOOOOO ~
~=OOOOOOOO 100~

~A2=00000100 ~

A3=0000C562 [CR]
~=OOOOOOOO 100~

~D4=00000100 ~

100,O[CRJ
000100/3COO: 0010 4100 0000 0000
M
000100/3COO: 0010410000000000 ...
100C,1014+
00100C/4BOC: 1000 MOVE.B 00,00
00100E/4BOE: S718 BEQ.S $FFFF4B28
001010/4B10: 4E6E MOVE.L USP,AS
001012/4B12: 2DOC MOVE.L A4,-(AS)

R
REGISTER DUMP: PC=OOOOCSOA SP=0000C32E SR=
DO: 00000020 00000003 00000000 00000000
AO: 00000000 00000000 00000000 00000000

AS=OOOOCOOO ~
10(S)
0000C010: 0000 ~

2300,2400,1[CR]
002307 00232A 002373 002389 002304

2300,2400, 1W
002372 002388

2300,2400,1L
00238S

f,=0000C500 ~
f,=0000C500 DOOO~
f,=OOOODOOO ~

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-46

(3.2.33 PB - POOS DEBUGGER continued)

8) Status register inspect and change. The status
register is opened by entering the character'S'. It can be
closed with a return or changed by entering a new numeric
value followed by a return.

9) Address offset. To facilitate the use of assembly
listings, an offset register is provided. Numbers can be
entered as a displacement from the offset by preceding them
with a plus (+) sign. The offset is inspected and changed
by the '0' character. The offset defau1 ts to $500 beyond
the task TCB.

10) Program breaks. The debugger has four break
registers. These are set and listed with the 'B' character.
If the 'B' is followed by a return, then all current breaks
are listed. A 'B' followed by a '0', '1', '2', or '3' and a
(CR] will clear the specified break register. If a third
parameter follows, then the break is set at that address and
the instruction is disassembled to the screen.

11) Instruction trace. User programs can be entered for
single stepping with the 'T' command. The debugger uses the
trace feature of the 68000. Each instruction is
disassembled to the screen before it is executed. The
absolute instruction address, offset address, value, 68000
assembly mnemonic, and current status register are
displayed.

After each instruction is displayed, a [SPACE] will execute
it and display the next instruction to be executed. An 'M'
character will dump to the screen last memory dump. An 'R'
character will dump the current registers, PC, status, and
supervisor stack pointer. A 'T' character will put the
debugger in a non-stop tracing mode. This is interrupted
with any key. A 'G' character will exit the trace mode and
continue program execution. And finally, an [ESC] will exit
to the debugger command line.

Various anomalies appear when using the trace exception.
First, the next instruction after an A-line exception (POOS
call) does not appear but is executed. This is because the
68000 traces after the instruction is executed and the
debugger lists instructions before they are executed.

(Continued on next page)

S= 0 21E!!l
S= O V. 1E!!l

Q=0000C500 1E!!l
Q=0000C500 DOOO1E!!l
Q=OOOOOOOO C500~
C500,0(CR]
00C500/0000: 6100 179E 4CEE 30EO
+O,O(CR]
00C500/0000: 6100 179E 4CEE 30EO

B1,800(CR] BRA.L $FFFF4536

~
Break #1 000800/4300 BRA.L $FFFF4536

~
B(CR]

f=0000C504 +4[CR]
T
T> 00C504/0004: 7064
T> 00C506/0006: 4298
T> 00C508/0008: 5340
T> 00C50A/000A: 6EFA
T> 00C506/0006: 42gB
T> 00C508/0008: 5340
T> 00C50A/000A: 6EFA

MOVEQ.L #$64,00[SP]
CLR.L (AO}+llli
SUBQ.W #1, D0lif1.
BGT.S $00000006illl
CLR.L (AO)+(SP]
SUBQ.W #1 ,DOlif1.
BGT.S $00000006!!

REGISTER DUMP: PC.0000C50A SR=•.......
DO: 00000062 00000000 00000000 00000000
AO: 0000C518 00000000 00000000 00000000 ... ~
B1,+C(CR] ADD.L 00,01

lli!!l
Break #1 00C50C/000C ADD.L 00,01
G
B> 00C50C/000C: 0280 ADD.L 00,01
T> 00C50E/000E: AOOE Ali ne $AQOE!!
REGISTER DUMP: PC=0000C50E SR •.......... Z ..
DO: 00000000 00000000 00000000 00000000
AO: 0000C6AO 00000000 00000000 00000000

o
" .
{~.

,
(

\..:..... "-

(

«
c'

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(3.2.33 PB - PDOS DEBUGGER continued)

12) Program execution. The 'G' corrmand will either
execute a given number of instructions and then break to the
monitor or simply continue execution of the user program at
the current program counter.

13) Trace windowing. Program tracing can be windowed by
setting trace bounds with the 'W' corrmand. The first
parameter specifies the window base and the second specifies
the window end address. When the PC is outside the range of
the window, the debugger executes the program without
displaying instructions or halting at breakpoints. The
default window is 0 through $FFFFFFFF.

14) Output unit selection. The 'U' command is used to
direct console output to other PDaS ports.

15) Reset debugger. The debugger is reset with the 'Z'
corrmand. The program counter and offset are set to the task
TCB plus $500. All registers including status and breaks
are cleared. The debugging window is set to $00000000
through $FFFFFFFF.

16) Debugger mode. Memory can be inspected and changed
in word (NO) or byte (N1) mode as well as write only (N2 and
N3) mode. Write only mode will not read the data when
opening a location and displays as 'xx'.

17) A r i t hme tic.
subtracted by
sign.

Hexadecimal numbers can be added or
separating two numbers with a plus or minus

1S) Exit debugger.
debugger. The '0'

There are two ways to exit the
command exits the debugger normally

without any adjustment to the object code. The 'X' corrmand
sets all current breaks and then exits.

19) Control registers lAC. The 68010120 control
registers can be examined with the 'V' command. These
include the Destination Function Code (DFC) re9ister, Source
Function Code (SFC) register, Cache Address Register (CAAR) ,
and the Cache Control Register (CACR).

(Continued on next page)

100G
G

Z

W[CR]
Bounds=OOOOOOOO,FFFFFFFF
W O,FOOOOO[CR]
Bounds=OOOOOOOO.OOFOOOOO

Z

1000: 03FC [CR]

~
[CR]00a01000: 03 ~
N2[CR]
~00001000: xxxx [CR]
N3[CR]
~00001000: xx ~
NO[CR]

00001000[CR]: 03FC [CR]
100+456[CR]=00000556
100-457[CR]=FFFFFCA9

o
x>

X

x>

v
DFC=$00000003 0
SFC=$00000005

CAAR=$55E5BB9F
CACR=$00000001

PAGE 3-47

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

(3.2.33 PB - POOS DEBUGGER continued)

20) 68881 floating point registers. The 68881 floating
point registers are displayed with the 'F' command. The 'F'
command can also be used during trace to list the current
68881 register values in extend precision and packed decimal
formats. The floating point control register (FPCR), status
register (FPSR), and instruction address register (FPIAR)
are also displayed. An inspect and change mode is entered
for the 68881 control register and status register after the
list.

Examp1 e:

F

FPO.D=3FE8A3070A3070A4 FPO.P=4001 00077000000000000002
FP1.0=40S9000000000000 FP1.P=0002000AOOOOOOOOOOOOOOOO
FP2.0=7FFFFFFFFFFFFFFF FP2.P=7FFF OOOOFFFFFFFFFFFFFFFF
FP3.0=7FFFFFFFFFFFFFFF FP3.P=7FFF OOOOFFFFFFFFFFFFFFFF
FP4.D=FFFFFFFFFFFFFFFF FP4.P=FFFF OOOOFFFFFFFFFFFFFFFF
FPS.O=FFFFFFFFFFFFFFFF FPS.P=FFFF OOOOFFFFFFFFFFFFFFFF
FP6.0=7FFFOOOOFFFFFFFF FP6.P=7FFF FFFFFFFFFFFFFFFFFFFF
FP7.0=7FFFOOOOFFFFFFFF FP7.P=FFFF FFFFFFFFFFFFFFFFFFFF
FPCR=OOOOOOOO FPSR=00002088 FPIAR=7FFFOOOO
FPCR=$OOOOOOOO
FPSR=$00002088

In addition, the 68020 PO OS disassembler supports 68020
addressing modes:

(bd,zAn,zRi{*s})
(bd,zPC,zRi{*s})
([bd,zAn,zRi{*s}],od)

([bd,zPC,zRi{*s}],od)
([bd,zAn],zRi{*s},od)
([bd,zPC],zRi{*s},od)

the new 68020 instructions:

68881

BKPT
BFSET
CAS
CMP2

floating

FABS
FMOVEM
FASIN
FNOP
FBcc
FSee
FCOSH
FSGlOIV

PACK
MUlx.L
BFTST

BFClR
CAS2
BFEXT

point instructions:

FETOX FMOVECR
FSINCOS FAOO
FGETMAN FNEG
FSUB FATANH
FLOG10 FRESTORE
FTENTOX FCOS
FLOGNP1 FSCAlE
FOIV FMOVE

CHK2
TRAPcc
CHK

FSIN
FGETEXP
FSQRT
FINTRZ
FTANH
FLOGN
FTST
FSGLMUL

and disassembly of POOS A-line primi tives.

(Continued on next page)

CAllM
BFINS
LINK. L

FACOS
FMUL
FATAN
FREM
FCMP
FSAVE
FOBee

UNPK
OIVx.l
BFCHG

FETOXM1
FSINH
FINT
HAN
FLOG2
FTRAPcc
FMOO

PAGE 3-48

!~--~

'~

!,

(

()

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-49

(3.2.33 PB - PDOS DEBUGGER continued)

21) Error exception processin9. One of the first clues
that somethin9 is wrong in a program is the appearance of a
message similar to the following:

ADR ERR QOOB506 30390000 00000123 3031
DO: OOOOOOOA 00000123 0000001C 00000000 00000000 00000005 00000000 00000045
AO: 0000B1B7 0000B1B7 00002304 00000123 00003B3E 00009000 OOOOBOOO 0000B3BO

This cryptic message tells you that some sort of exception
has occurred and provides some details about the state of
the program at the time of the program. The first set of
letters tell which exception happened. A possible list is
shown to the right. For errors other than bus and address
errors, only the program counter, the status register, and
the instruction is reported.

Most of these errors occur when the program is trying to
access memory illegally or when some part of the code has
been overwritten. This can occur especially if stacks
overflow into the program code, or if the code is written
with non-relocatable instructions which paint to undesired
locations in memory.

The format of the error message is dependent upon the
source of the error. The table to the right describes this
format.

In the above message, the first number fallowing the
exception mnemonic is the program counter and is preceded by
an'S' sign. The next number is the instruction register
and the status register merged into one long ward. The
third number is the access address. The fourth number is
the access state.

The error message shawn above describes an address error
which occurred when the PC was at $B506. The instruction
being executed was $3039 (MOVE.W <adr>,DO). The status
register was zero and the invalid address was $00000123.
The cause of the error was an attempt to move a word from an
odd address.

The debugger will allow you to look at the offending code
and help you to evaluate the cause of the difficulty. A
problem line like ADR ERR is spotted easily. If your
problem is mare subtle, you may have to watch it happen.
You can enter an XBUG primitive in your code to place you in
the trace made. Or, while you are in the debugger, set
break points which will stop execution and return the
program to trece mode. When in the trace mode, a 'T'
command will allow the trace to proceed until stopped by
pressing any key or until the exception error occurs. This
will allow you to observe the steps which led to the
failure.

ADR ERR - address error
BUS ERR - bus error
CHCK - register bounds check
ILLG illegal instruction
PRIV - privileged instruction violation
SPUR - spurious interrupt
TRCE - trace trap
TRAP - TRAP, TRAPcc instructions

TRAPV instruction
- zero divide

OVFLW
ZDIF
FLIN - illegal Fxxx instruction

ERROR HANDLER FORMATS
ADD,BUS TRAP,ILL,PRIV,RESV,SPUI,etc.

(MESSAGE) (MESSAGE)
DC.L PROGRAM COUNTER DC.L PROGRAM COUNTER
DC.W STATUS REGISTER DC.W STATUS REGISTER
DC.W INSTRUCTION REG. DC.L 0
DC.L ACCESS ADDRESS DC.W INSTRUCTION
DC.W LADR,R/W,I/N,CODE DC.W 0

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.34 RC - RESET CONSOLE

Format: RC

The RESET CONSOLE command is used in an Assigned Console
(type=AC) file to terminate the procedure and to revert back
to the system console. This allows for a graceful
termination of the file commands by closing the file and
prompting for a new command.

Since procedure files can be nested, only the current
procedure file is closed.

x>SF DO
LV.SY
RC
x>SA DO.AC
x>DO
x>LV.SY
LEVEL=1
x>SY
SYS DISK=D
x>RC
x>

PAGE 3-50

List procedure file

Set Assigned Console attribute
Invoke procedure file

Terminates command file
Waiting for new command

o
if ..
~j

G

{
-~

I \,

.;#/

01
I

(

(

680xO PDOS 3.2 REFERENCE MANUAL

3.2.35 RD - RAM DISK

Format: RO
RO {-}<unit>,<size>,<addr>

CHAPTER 3 PDOS MONITOR COMMANDS

x>RO
Oisk=8
Size=255
Addr=000ED800
x>FM -578 ---
Addr=0005DOOO

PAGE 3-51

List current

Free (2560-255)/4=576.25
or 578 (rounded to 2k)

The RAM DISK command sets or displays the current RAM disk
unit, size, and memory address. When the address is
changed, the RAM disk must be again initialized. This is
easily done by preceding the RAM disk unit by a minus sign.
Otherwise, the MINIT utility can be used to initialize the
disk.

x>RO -8,2560,$50000

The Free Memory (FM) command is used to free memory for
additional RAM disk memory. The minus sign preceding the
size parameter permanently allocates the memory.

Example:

x>LT
Si ze PC SR TB EM

x>SP 8
Files=0/32
Free=2554,2554
Used=O/O
x>

U Task
*0/0
x>RO

Prt Tm Event
64 2

Map
o 906 000019CE 2004 OOOOBOOO 000E0800

248
000

Oisk=8
Size=255
Addr=000ED800
x>FM -100
Addr=00004800
x>RO 8,655,$04800
x>LT
Task Prt Tm Event
*0/0 64 2
x>LS 18
Disk=

Map
o

POOS ERR 68 Not PDOS disk
x>RO -8,655,$04800
x>LS 18
Oisk=SY$OSK/8
Lev Name:ext
x>SP 8
Free=650,650
Used=O/O
x>

Type

Size PC SR TB EM U

806 000019CE 2004 OOOOBOOO 00004800

Files=0/32
Size Sect Date created Last update

248
000

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

3.2.36 RN - RENAME FILE

Format: RN <fi1e1>.<fi1e2>
RN <file1>.<level>

The RENAME FILE command changes the file name stored in the
disk file directory. The RENAME command may also be used to
move a file from one directory level to another. The file
<file1> is renamed to <file2>. A disk specification in the
second parameter is meaningless. If a number <level> is
used instead of <file2>. the <fi1e1> is moved to the new
]evel.

x>RN FILE1.FILE2
x>RN TEMP.PROGRAM2
x>RN PROGRAM2.4
x>RN FILEN/2.FILEN:BK
x>

PAGE 3-52 o

r,
i",j

c

o
I

c
c

(

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.37 RS - RESET DISK

Format: RS
RS <disk #>

Disk files must be closed at the end of any task so that
sector buffers are flushed to the disk, pointers updated in
disk directories, and file slots released for further usage.
The RESET command either closes all open files associated
with your task or closes all open files on a specified disk.
The first mode allows your task to terminate itself without
affecting the files of other tasks, while the second mode is
used before withdrawing a disk from a disk drive.

RESET also clears the assigned console FILE 10 (ACI$(A6».
However, the assigned console file may not be closed if the
RESET disk option is used and the file resides on a
different disk.

x>RS
x>RS 2
x>

Assigned console reset

PAGE 3-53

68DxD PODS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

3.2.38 SA - SET FILE ATTRIBUTES

Format: SA <file>
SA <file>,<attributes>

The SET FILE ATTRIBUTES command associates file attributes
with a file in the disk directory. File attributes include
file types and protection flags.

Examples:

x>~ Clears all attributes (except 'C')
x>SA FILE,OB Sets DB type only
x>SA FILE,** Sets protection only
x>SA FILE,OB** Sets type and protection

File types are defined as follows:

AC - Assign console. A file typed 'AC'
specifies to the PODS monitor that all
subsequent requests
character will be
character obtained
fi leo

for a console
intercepted and the
from the assigned

BN - Binary file. A 'BN' file type has no
significance to PODS but aids in file
classi fication.

OB - 68000 object
user-defined
object files.

fi 1 e.
conmands
When the

All
are
fi 18

assembly
typed as

name is
entered at the monitor prompt, PODS
loads the file into memory and executes
the program.

SY - System file. A 'SY' file is
from an 'DB' file. 68000

generated
object is

condensed into a smaller and faster
loading format by the 'MSYFL' utility.

BX - PODS BASIC binary file. A BASIC
program stored using the 'SAVEB' command
is written to a file in pseudo-source
token format. Such a file requires less
memory than the ASCII LIST format and
loads much faster. Subsequent reference
to the file name via the PODS monitor
automatically restores the tokens for
the BASIC interpreter and begins
execution.

x>SA DO,AC

x>SA OUTPUT,BN

x>SA SPOOL,OB

x>SA CONFIG,SY

SAVES "PR:BIN"

PAGE 3-54

Batch process

Declare as binary data

Must be re10catable object!

Must be condensed object!

File is type "BX"

o

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

(3.2.38 SET FILE ATTRIBUTES continued)

EX - POOS BASIC file. A BASIC program
stored using the 'SAVE' command is
written to a file in ASCII or LIST
format. Subsequent file reference via
the POOS monitor automatically causes
the BASIC interpreter to load the file
and begin execution.

TX - ASCII text file. A 'TX' type
classifies a
character text.

file as containing ASCII

DR - System 1/0 driver. A 'DR' file type is
a PDOS system 1/0 driver. Channel
buffer data is treated as a program and
is used to extend the file system to 1/0
devices.

A file can be delete and lor write protected. These
parameters follow the file type and are defined as follows:

*

**

Delete protect. The file is delete
protected and cannot be deleted from the
disk.

Delete and write protect. The file
cannot be deleted or written to by any
PDOS primitive.

All file attributes are cleared by omitting the attribute
parameter.

SAVE "PRGM1"

x>SA LIST, TX

x>SA PRGM2,DR

x>SA OATA,*

x>SA PROGRAM,**

x>SA FOBJECT

PAGE 3-55

File is typed as "EX"

Declare text file

Clear all attributes

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS PAGE 3-56

x 3. 2 . 39 SF - SHOW F I L E

Format: SF {-}<file name>

The SHOW FILE command displays the disk file as specified
by <file name> on your console. The output is paged and
truncated to 78 characters per line unless the file name is
preceded with a minus sign. The output may be temporarily
interrupted at any time by striking any key. Output
continues when another key is struck. Pressing [ESC]
terminates the command at any time.

If a minus sign precedes the file name, then the file is
displayed without line truncations or paging. Again, [ESC]
terminates the command.

x>SF PRGM1 PRGM1 listed to CRT
10 INPUT "N=";N
20 PRINT" FACTORIAL=";FNFACT[N]
30 GOTO 10
100 OEFN FNFACT[I]
110 IF 1<=1: FNFACT=1: FNENO
120 FNFACT=I*FNFACT[I-1]
130 FNENO

x>

x>SF -UPTIME
100 REM UPTIME
110 DIM 0[1],M[2],T[1],W[2]
120 DATE $0[0]: TIME $T[O]: T=TIC 0
130 M=$O[O]: 0:$0[0;4]: Y=$0[0;7]: C=19

Output continues ...

o
if'1!" 10:

c

(

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-57

3.2.40 SM - SEND MESSAGE

Format: SM
SM <task #>,<message>

The SEND MESSAGE command puts an ASCII text message in a
message buffer. The destination is specified by <task#>.
The message can be up to 63 characters in length.

If no parameters follow the SM command, then all the
current messages in the message buffers are displayed to the
console.

Note: No other commands can be appended to an 'SM' command
with a period, since the <message> parameter takes
everything up to the carriage return.

See also 3.2.25 KM - KILL MESSAGE.

x>SM
x>SM 2,HELLO TASK #2
x>SM 2,ARE YOU THERE TASK #27
x>SM
*Task #2: HELLO TASK #2
*Task #2: ARE YOU THERE TASK #27
x>SM O,THIS MESSAGE COMES BACK TO ME!
*Task #0: THIS MESSAGE COMES BACK TO ME!
x>SM
*Task #2: HELLO TASK #2
*Task #2: ARE YOU THERE TASK #27
x>

680xO PODS 3.2 REfERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

\3.2.41 SP - DISK SPACE

Format: SP
SP <disk #>

The DISK SPACE command displays the current number of
defined files, the total possible directory size, the number
of disk sectors free, the largest possible contiguous file,
the number of disk sectors used, and the number allocated.
All numbers represent decimal sectors. The total size in
bytes is the number of sectors times 252.

The <disk #> specifies the disk number. If no parameter is
used, then the default disk is displayed.

The 'files' parameter lists the current number of defined
files in the disk directory. This is followed by the
maximum number of files definable in the directory.

The 'Free' parameter shows
available for file storage.
number of contiguous sectors.
contiguous files.

the number of sectors still
This is followed by the largest

This is helpful in defining

The 'Used' parameter shows exactly how much of the disk is
truly used versus the amount of disk storage allocated.
Some files may have END-Of-fILE markers pointing within the
file and not at the end. If these files were copied to
another disk. the unused storage would be recovered.

x>SP
files=15/128
F r ee=251 ,1 79
Used=744417749
x>Df PAUL,180
PODS ERR 55
x>Df PAUL, 179
x>SP
files=16/128
Free=72,42
Used=762317928
x>DL PAUL ---
x>SP
Files=16/128
free=251,179
Used=744417749
x>SP 6
Files=20/128

• F ree=39 ,34
Used=1779/1783

x>

PAGE 3-58

i'
i

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-59

(/ 3.2.42 SU - SPOOL UNIT

(/

(~

•

Format: SU
SU <unit>
SU <un;t>,<t; 18>
SU <unit>,<port #>

The SPOOL UNIT commend sets the spool unit and spool
ID variables in the task control block. Whenever the
and spool unit variables have corresponding bits,
output is directed to the file specified by the spool
ID variable.

file
unit
then
file

A 'SU 0' closes any open spool file and resets the spool
unit variable. An 'RS' command will also close the file but
not the spool unit variable.

If the second paramete r is a number, then it is identified
as a port number and is loaded into the output port
variables (U1 P$(A6), U2P$(A6) , U4P$(A6), and U8P$(A6))
according to the unit mask.

x>UN 3
Was 1

x> .. Output to main and aux port
x>UN 1
Was 3
x>SU 2,LIST
x>UN 3
Was 1
x> .. Output to main port and fil. LIST

x>SU D

x>LT
Task Prt Tm ... EM U 1 248
*0/0 64 1 ... OED800 1 1 o 0 0
x>SU 2,2
x>LT
Task Prt Tm ... EM I U 1 248
*0/0 64 1 ... OED800 1 1 1 200
x>SU 6,4
x>LT
Task Prt Tm '" EM U 1 248
*0/0 64 1 ... OEDSOO 1 1 440
x>_

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.43 SV - SAVE TO FILE

Format: SV <file>
SV <file>.<sadr>.<eadr>

The SAVE TO FILE command writes binary memory images to the
file specified by <file>. The parameters <sadr> and <eadr>
specify the start and end memory bounds. These boundary
parameters default to the end of the current TCB (TBE$) and
the last loaded address (BUM$).

x>SV TEMP.$COOO.$OOOO

I ~

PAGE 3-60

o
c

c' 680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

(~ y 3.2.44 SY - SYSTEM DISK

(

()

Format: SY
SY <disk1>{,<disk2>{,<disk3>{,<disk4>)}}

The disk device identifier is contained within the file
name. However, a default or system disks are assigned by
the SY command. On all open and define commands, file names
without the disk identifier follow the system disk
specification order in looking for the file on disk. All
other commands use only the first system disk specification.

x>SY
Disk=2
2>SY 4,5,2
Was 2
4,5,2>ll
Disk .. 4,5,2
4,5,2>ll...!
Was 4,5,2
2>SY
Disk=2
2>

PAGE 3-61

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

3.2.45 TF - TRANSFER FILES

Format: TF <file list>,<disk#>
TF <file list>,<disk#>,A
TF <file list>,<disk#>,O
TF <file li s t> ,<di sk#>, U

The TRANSFER FILE command transfers selected files from one
disk unit to another. This command reads as
possible into memory before writing to the new file
much faster than the COPY FILE (CF) command.
retains all file parameters with the exception that
sectors are not transferred.

much as
and is
It also
unused

Each file name to be transferred is output to your console
along with a '(Y/N/A)' prompt. If you answer the prompt
with a 'Y', then the file is transferred. A 'N' answer does
not transfer the file. If your answer is an 'A', then the
file is transferred along with all subsequent files without
further prompts.

The <file list> is a file mask that is compared against all
specified disk directory entries. File names which match
are added to a list built in memory. The format for <file
1 i s t> f 0 11 ows :

<file list> = {file}{:ext}{;level}{/disk}{/select ... }

where {file} = 1 to 8 characters (1st alpha) (@=all,*=wild)
{:ext} 1 to 3 characters (:@=all.*=wild)

{;level} = directory level (;@=all)
{/disk} disk number ranging from 0 to 255

{/select} POOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
PDOS attribute (/*,I**)

Change date (fFdy-mon-yr,/Tdy-mon-yr)
or (/Fmn/dylyr,/Tmn/dylyr)

The optional third parameter allows you to
files, only defined files, or only undefined
transferred. If the parameter 'A' is included,

select all
files to be

then all
transfers will immediately occur. If the parameter is a
'D', then only those files defined on both the source and
destination disk units are transferred. If a 'U' parameter
is included, then only these files defined on the source
disk and NOT defined on the destination disk are
transferred. Any errors during these transfers will revert
the command back to the prompt mode.

Note that this command does destroy memory in order to
build the file list. Hence, the editor or other last used
program cannot be re-entered.

x>TF 0110,8
Transfer HLPTX;O/10? (Y/N/A)!
Transfer SY$STRT;0/10? (Y/N/A)!
Transfer ASM;0/10? {Y/N/A}!
Transfer DISKOUP;0/10? {Y/N/A}~

Transfer MASM;0/10? (Y/N/A)~

Transfer MJEOY;O/10? (YfN/A)~

Transfer PRINT;0/10
Transfer QLINK;O/10
x>TF 0/10,8,A
Transfer HLPTX;0/10
Transfer SY$STRT;O/10
Transfer ASM;O!10
T ransfe r DISKDUP;0/10
Transfer MASM;0/10
Transfer MJEOY;O/10
Transfer PRINT;O/10
Transfer QLINK;O/10
x>

PAGE 3-62

f
.'lJl

«

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.46 TM - TRANSPARENT MODE

Format: TM
TM {-}<port #>
TM {-}<port #>,<break>

The TRANSPARENT MODE command directs your current input to
<port I>. Input received from <port #> is directed to your
output. This command effectively allows you to access other
systems as if you were II terminal. --if All <pert #> par'lI1shf

~~I'I the IIb"E,lt"tln,f 2 port 1$ and.

This process continues until an [ESC] character is entered.
This Clln be changed to another character by adding the
<break> parameter.

The incoming characters can be stored in memory and later
saved to II file by preceding the port number with a minus
sign.
prompt

When the break character is entered, the command will
you for a file name and then store all recieved

characters in the file.

x>TM 2
$ CREATE FILE.PAS

I.Elli.
x>

x>TM ,$39
» 0123456789
x>

x>TM -2,2

<characters saved>
FILE=#DATA
x>

PAGE 3-63

{other system}

{break on '9'}

{return to PDOS}

{break on AB}

6BOxO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PoOS MONITOR COMMANDS

3.2.47 TP - TASK PRIORITY

Format: TP <{time*256+}priority>
TP <task #>,<{time*256+}priority>

The TASK PRIORITY command allows you to change task
priority of different tasks. The task number is specified
by <task #> and priority by <priority>. If only the
priority parameter is given, then your current task is
affected.

The range of <priority> is 1 to 255, the latter being the
highest priority. The highest priority, ready task always
executes.

Note: The task time slice can be altered with the TP
command by mUltiplying the new time slice by 256 and adding
it to the <priority> parameter.

x>TP 0,$440

Example:

x>CT (BP -3.0.MASM CPoOSB:SR/RZ=255 •• TTA).50
*Task #1
x>LT
Task Prt Tm Event Map Size PC SR TB EM
*0/0 64 2 0 254 00001D24 2004 OOOOBOOO 0004A800

110 64 2 0 50 0000464C 2009 0004A800 00057000
x>~
x>LT
Task Prt Tm Event Map Size PC SR TB EM
*0/0 64 2 0 254 00001D24 2004 OOOOBOOO 0004ABOO

1/0 50 2 0 50 0004C032 0004 0004A800 00057000
x>

I U 1 248
1 1 1 300
o 1 0 3 0 0

I U 1 248
1 1 1 3 00
o 1 0 3 0 0

PAGE 3-64 o
c

Time=4, priority=64

."'-;-~'

"'-

c

c
c

(

(

(

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-65

3.2.48 UN - CONSOLE UNIT

Format: UN
UN <unit #>

The CONSOLE UNIT command sets the console output unit
number. The unit number selects where the ASCII output is
to be directed. Unit 1 is the system console CRT. Unit 2
is the auxiliary output number.

Each bit of the UNIT variable selects a different output
device. Various bits can be assigned to different devices
or files with the SU command.

x>BP -2.9600
x>UN 3

Baud port 2 at 9600 for unit
Output to units 1 and 2 (1+2)

All further ASCII outputs through main port
and AUX port at 9600 baud.

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.2.49 UP - UPLOAD FROM PORT

Format: UP
UP <port #>
UP <port #>,<message>

The UPLOAD FROM PORT command loads characters received from
port <port #> into user task memory. If no port is
specified, then unit 2 port (U2P$) is used. The <message>
parameter is first sent out the same port if included. For
each 256 characters received, a period is output to the
console port. An escape on the user console or from the
input stream of characters, a long timeout, or a memory
overflow will terminate the command. POOS then prompts for
the file name in which to write the received data.

x>UP 2,TYPE FILE.DAT
{COpy FILE $TTO}
Aux load
File=TEMP
x>

PAGE 3-66

Send out port 2

'C'··_"··· i ,i

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(-- 3.2.50 ZM - ZERO MEMORY

c

Format: ZM

The ZERO MEMORY command clears the entire user workspace to
zeros. All flags and pointers are reset.

x>ZM

PAGE 3-67

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

3.3 COMMON PDOS QUESTIONS

The following section deals with some commonly asked
questions about PODS. Although some examples have hardware
specific utilities, most all have a direct replacement for
your specific system.

Hardware specific utilities have the system Io characters
preceding the file name. See your Installation and
Systems Management guide for the Io characters for your
system.

PAGE 3-68

·l·.~ I. ,;

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-69

3.3.1 HOW DO I TRANSFER FILES?

Files can be moved from one disk unit to another with the
copy file command (CF), transfer file command (TF), or the
disk backup utility (MBACK). Each has its advantages and
di sadvantages.

The COPY FILE (CF) command is memory resident in the PDOS
monitor and moves a file a sector at a time. It does not
destroy any existing program in memory but is slower since
the heads must move for each sector.

See 3.2.4 CF - COPY FILE.

The TRANSFER FILE command transfers selected files from one
disk unit to another. This command reads as much as
possible into memory before writing to the new file and is
much faster than the COpy FILE (CF) command. It also
retains all file parameters with the exception that unused
sectors are not transferred.

Each file name to be transferred is output to your console
along wi th a '(YIN/A)' prompt. If you answer the prompt
with a 'Y', then the file is transferred. A 'N' answer does
not transfer the file. If your answer is an 'A', then the
file is transferred along with all subsequent files without
further prompts.

See 3.2.45 TF - TRANSFER FILES.

The disk backup utility (MBACK) uses memory to buffer large
blocks of disk data in backing up a complete disk. It is
the fastest method to back up a complete disk. It can be
used to back up the disk boot. If you use MBACK to backup a
floppy to a larger disk partition, the new disk image will
only be floppy-sized. You should only use MBACK to backup
floppy disks to floppy-sized partitions. MBACK is not a
selective backup. Also, all fractured files remain
fractured, all bad sectors remain bad.

See 7.2 MBACK - DISK BACKUP.

Copy command:

x>CF <fi1e1>,<fi1e2>

Transfer command:

x>TF <file list>,<disk>{,AUD}

Disk backup utility:

x>MBACK
68K PDOS Disk Backup Utility

Source: (Disk # or Disk/Sector) = 0
Destination: (Disk # or Disk/Sector) = 10
Number of sectors (# or 'F') 2528
Ready?!
Backup 'BOOTG .. F&.7_ .. B+'?!

Reading sector 0 ... 2559
Writing sector 0 ... 2559
SUCCESS! Disk Name = BOOTG .. F&.7 .. B+'
x>

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PO OS MONITOR COMMANDS PAGE 3-70

3.3.2 HOW DO I USE THE RAM DISK?

The RAM disk is a portion of memory that can be addressed
just like a disk. Obviously. a RAM disk provides fast
assemblies and disk access.

When the PDOS system first comes up. the RAM disk is
defined with 255 sectors and 32 directory entries. If this
is sufficient. then go ahead and use it. The procedure file
to the right is used to assemble a program and create an
'SY' file using the RAM disk as a scratch pad area.

A more efficient use of the RAM disk might be to copy a
floppy disk to it. use it during your terminal session. and
then transfer the updated copy back to a floppy disk.

In order to do this. the RAM disk must be made as large as
a floppy. This is done as follows:

x>FM -578 {578*4+255+1=2568 sectors}
Addr=<address>
x>RD 8.2560.$<address>
x>MBACK or MINIT

{Declare new RAM base}

See 3.2.35 RD - RAM DISK and MINIT - INITIALIZE PO OS DISK.

x>SF ASM
IF &2=OBJ.GT ·OBJECT
MASM &1 :SR.#OBJ/8
IF &O.RC
MSYFL OBJ/8.#&1
RC
*OBJECT
MASM &1 : SR .#&1
RC

x>RD
Disk=8
Size=255
Addr=000ED800
x>FM -578
Addr=0005DDOO
x>RD 8.2560.$50000
x>RD
Disk=8
Size=2560
Addr=0005DOOO
x>MBACK
68K PDOS ~isk Backup Utility

Source Disk # = 0
Destination Disk # = 8
Number of sectors = 2368
Ready?!
Backup 'DISK #0 , ...• ?!

Reading sector 1300
Writing sector 1300
Reading sector 2367
Writing sector 2367
SUCCESS! Disk Name = DISK #0 •
x>

68DxD PODS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

(~ 3.3.3 HOW DO I USE THE EDITOR?

(

c·
()

The MEDIT editor is a screen oriented, memory editor. You
need only learn a few control characters to quickly become
at home using the editor. Here are the basic editor control
character commands:

hG - File retrieve
hW - Fi 18 save

hT - Jump to top of text
hR - Recenter text

hL - Move cursor right
hH - Move cursor left
hK - Move cursor up
hJ - Move cursor down

hZ - Jump to bottom of file

h8 - Search backwards for string
hF - Search forwards for string.

hp _ Place pointer
[ESC]hP - Position to pointer

hU - Buffer fill
[ESC]hU - Buffer insert

[ESC]hV - Quit and return to PODS

The following illustrates the windowing effect used by
MEDIT to edit a text file:

Computer memory

hT --> Text

v
hW .-+---___ +-_.

I __ ~./I <------------ I
I Floppy I I ----~------> I
I II hG hR ->1

I

Terminal
Window

24 x 80
1 __ + ___ ---+--'

I
I h I
I hJ h I

hp ---> 1 1

I I
hZ ---> '

See CHAPTER 5 - PODS SCREEN EDITOR.

hD

.----> IMacro buffer I
I hE -----------

I

I
hU

--"'----->
<--------- IUp buffer I

[ESC]hU --------

hB = Search backwards
hF = Search forwards

PAGE 3-71

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 POOS MONITOR COMMANDS

3.3.4 HOW DO I USE PROCEDURE FILES?

Procedure files are very handy in storing a series of PDOS
commands for later recall and execution. Such command
sequences might be for disk preparation, assemblies, port
installation, and other startup procedures.

A procedure file may be created with the MEDIT editor or
the MAKE FILE (MF) command. All characters entered in the
file will appear as if they had been typed on the keyboard
when the procedure file is invoked.

The fi le type tells the PDOS Command Li ne Interpreter how
to process the file. The 'AC' or Assign Console type
declares a fil e to be a procedure file. The file type is
set by the 'SA' command.

See 3.2.38 SA - SET FILE ATTRIBUTES.

Procedure ASM:

x>SA ASM,AC
x>SF ASM
IF &2=OBJ.GT *OBJECT
MASM &1:SR,#OBJ/8
IF &O.RC
MSYFL OBJ/8,#&1
RC
*OBJECT
MASM &1 :SR,#&1
RC

Procedure S4BAUD:

x>SF S4BAUD
BP 4,O,3,$FFFFC401
BP 5,O,3,$FFFFC441
BP 6,D,3,$FFFFC481
BP 7,O,3,$FFFFC4C1
BP
RC

PAGE 3-72

('~'

:, -.~~::

c 680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

("-- 3.3.5 HOW DO I GET HARDCOPY?

c

('

There are many ways to get hardcopy of files or terminal
data. Most all involve spooling your unit 2 output to the
correct serial or parallel port that is connected to a
printer. This is essential for the following to work
properly:

1) Use unit 2 output.

Example: x>SU 2,3
x>UN 3
x>SF -LIST
x>UN 1

2) Use PDOS 110 driver.

Example: x>SU 2,3
x>CF LIST, TT A

3) Use PDOS file and print later.

Example: x>SU 4,#TEMP
x>UN 5

{Assign unit 2 as port #3)
{Select units 1 and 2}
{Print file LIST}
{Turn off unit 2}

{Assign unit 2 as port #3)
{Copy file LIST to TTA}

{Assign unit 4 to TEMP file}
{Select units 1 and 4}

{All output goes to file TEMP and console}

x>UN 1 {Select unit 1 aga4n}
x>SU 0 {Close TEMP}
x>&I8P -2,1.CF TEMP,TTA {Saud & copy in background}
x>

PAGE 3-73

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

3.3.6 HOW DO I WRITE AN ASSEMBLY PROGRAM?

Assembly programs are very fast and efficient. Using the
PDOS system, they are also very easy to write. All console
1/0 and file.management primitives are legal opcodes in the
PDOS assembler called MASM or MASM20 (for 68020 systems).

First, use the MEDIT editor to create the assembly program.
Be sure to end the program with the 'END' directive and a
start address.

Example: TEST:SR

START XPMC
XGLU
XCDS
MULS.W
XCBM
XPLC
XEXT

*
MESal DC.B
MES02 DC.S

EVEN
END

MESal

05/08/84

;ASK FOR A NUMBER
;GET NUMBER
;CONVERT TO BINARY

01,01 ;SQUARE NUMBER
MES02 ;CONVERT

;PRINT RESULT
; EXIT TO POOS

$OA,$OD, 'What is your number? ',0
Squared = • ,0

START

Next, use the MASM assembler to assemble the program.

Example: x>MASM TEST:SR,#TEST
68K POOS Assembler 3.2
ERII. Copyright 1983-86
SRC=TEST:SR
OSJ=#TEST
LST=
ERR=
XRF=
XRF=
END OF PASS 1
END OF PASS 2

Finally. if there were no errors, the program can be
executed simply by entering the object module name.

Example: x>TEST
What is your number? 12 Squared = 144
x>

PAGE 3-74

c 680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS PAGE 3-75

(_ 3.3.7 HOW DO I SET UP VIRTUAL PORTS?

{

(

POOS virtual ports (also referred to as "windows") allow
selective switching of physical 1/0 ports to logical task
ports. This means that a single terminal can dynamically
switch between 1/0 ports that may be assigned to different
tasks or updated by a single task with multiple screen
output. Further, a screen image is maintained for all
windowed ports so that the switching process also updates
the terminal with the current display for that port.

Previously, several terminals had to be used or the user
had to write application code to update a single terminal
with information according to which screen was selected.
This process involved flags and locks or a dispatch task
that handled all 1/0. With PDOS windows, the system acts as
if there were more terminals on the system; multiple tasks
are accessible from one terminal.

A high priority window task maintains the virtual screen
buffers and handles screen refreshing and buffer printing.
A special key sequence is used to switch from one virtual
port to another. When a selection is made, PDOS maps your
keyboard to another port and the window task clears and
updates your display to reflect the current screen.

Port #1 <--> Task #0

I

I

User Terminal--<---Port #2 <--> Task #1
\

\

Port #n

Virtual ports allow you to:

1} Easily manage mUltiple screens.
2} Monitor many different processes.
3} More effectively multi-task with

one terminal.
4} Debug screen-intensive programs.
5} Print screen images.

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PO OS MONITOR COMMANDS

(3.3.7 HOW DO I SET UP VIRTUAL PORTS? continued)

The virtual port process is set up by creating a task with
the WIND1 program. The size of the task is equal to the
number of ports times two plus four. No I/O port should be
assigned.

For example, to generate 15 virtual ports, execute:

x>CT (WIND1 { .. parameters .. }),34

If WIND1 encounters an error during its initialization, it
will notify its parent task with the appropriate message
through the message buffers. Possible errors include:

1. Not enough memory allocated.
2. Window process already executing.
3. Illegal parameters specified.

Next, the program WIND1 signals PDOS that virtual porting
is now active by setting the SYRAM variables WIND. and
WADR., and allocates buffers for the virtual screens.
Further, WIND1 sets its execution priority to 100 and
kill-protects itself by setting its parent task to -1. All
interactive tasks should have a priority <100. Finally, it
suspends on event 127.

The four parameters for WIND1 are as follows:

CT (WIND1,<window list>,<port list>,<print>,<append>)

where

<window list> = LOGICAL WINDOWS (Default=1-15)
<port list> = PHYSICAL PORTS ALLOWED TO WINDOW (Default=1)

<print> = Ap OUTPUT FILE OR PORT # (Default=none)
<append> = Ap APPEND OUTPUT FILE (Default=none)

The <window list> parameter specifies the PDOS I/O ports
that are to be windowed. The ports are specified by number
and are separated by slashes (/). Consecutive ports can be
specified by separating the first and last port number with
a hyphen (-). Default is 1-15 or all PDOS ports.

For example:

1/2/3/8/13/14/15 = 7 ports 1, 2. 3, 8, 13, 14, 15
1-318113-15 = Same as above

PAGE 3-76

(.-' ... 1 . _ J

\

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(3.3.7 HOW DO 1 SET UP VIRTUAL PORTS? continued)

The <port list> parameter selects those PO OS 1/0 ports that
are permitted to window. The allows some system security
for selected ports. The format is the same as the <window
list> and the default is for port 1 only.

The third parameter <print> specifies where a screen dump
is sent to. It may be to a file or an 1/0 port. Whenever
the screen dump function is activated ([CTRL-X]P). then the
WIND1 program opens the <print> file. outputs the current
screen image. and then closes the file. A dump header with
the current time and date precedes the output. If a file is
used. it must be pre-defined. If an auto-define symbol (#)
precedes the filename. the file will be created when

(' necessary.

•
C""

"

The forth parameter <append> is similar to the <print>
parameter with the following exceptions: 1) only a file can
be used for output. and 2) the output is appended to the
file. The file must be pre-defined. If an auto-define
symbol (#) precedes the filename. the file will be created
when necessary.

Exampl as:

x>CT (WIND1 1/3-5 •• 2).12

Creates window processing for ports 1.
3. 4. and 5. Only port 1 is allowed to
window and a [CTRL-X]P sends a screen
image to port #2.

x>CT (WIND1 1-15.1-4.PBUF.ABUF).34

Creates windows for all 15 PDOS ports.
Physical ports 1 through 4 can window.
A [CTRL-X]P sends a screen image to file
PBUF and appends the same image onto
file ABUF.

(WIND.).W = FRPM __ D_p pppp
\\\\ \\\\ \\\\ \

\\\\ \\\\ \\\\ 0-4=PORT #
\\\\ \\\\ \\\ 5 = Reserved
\\\\ \\\\ \\ 6. Reserved
\\\\ \\\\ \ 7 = WINDOWING DISABLE
\\\\ \\\\ 8 = Reserved
\\\\ \\\ ___ 9 = Reserved
\\\\ \\ 10 = Reserved
\\\\ \ 11 = Reserved
\\\\ 12 = ALREADY DEFINED
\\\ 13 = PRINT FLAG
\\ 14 = REFRESH FLAG

' ___ 15 '!' LEAD FLAG

PAGE 3-77

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PO OS MONITOR COMMANDS

(3.3.7 HOW DO I SET UP VIRTUAL PORTS? continued)

The task is awakened by event 127. When event 127 is set,
WIN01 checks the WIND. table for various control bits.

If the refresh bit is set (bit #14), then the POOS 1/0 port
corresponding to the index number in the table is sent a
clear screen command and the current contents of the screen
pointed to by the WAOR. table.

If the print bit is set (bit #13), then the POOS 1/0 port
corresponding to the index number in the table is sent a
clear screen command and a message indicating a screen dump
is occurring. The contents of the corresponding screen are
then sent to the print and append files (if specified).
Finally, another clear screen command is output followed by
the current contents of the screen.

VIRTUAL PORT SELECTION

Virtual ports are selected by a leading control character
followed by the port number. (Ports 10 through 15 are
selected by letters A through F.) The default control code
is [CTRL-X] which is also the clear buffer code. This is
alterable at sysgen time by setting B.WNO for MBIOS:SR.

A [CTRL-X]P sets the print
[CTRL-X]s translate to a

bi t (#13). Two consecutive
single [CTRL-X] which is passed

through to the input character processor.

The port number external to POOS is referred to as the
physical. The port number after window translation is
referred to as the logical. It is important to understand
just where various character control functions happen and
which port number is used. These are summarized below:

INPUT OUTPUT
PHYSICAL LOGICAL LOGICAL PHYSICAL
-------- --------
ASAG ASAG
H/L Wa tar HIl Water
a-Bit Mask a-Bit Mask

Cntrl Check
AC,AC,ESC
Get Character Put Character
Set Event Wait on Event

PAGE 3-78

4- , ,j

c

c

c

BBOxO PDOS 3.2 REFERfNCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(3.3.7 HOW DO I SET UP VIRTUAL PORTS? continued)

CURRENT RESTRICTIONS:

,. PDOS output primitives XPCR and XPDC do not update the
row/column counters which are used to store characters in
the virtual screen buffers. Hence, they bypass being saved
but the output port is translated using the WIND. table.

2. Special screen control functions such as underline,
field protect, blink, etc. are not supported by windows.
Any screen control characters/sequences not produced by PDOS
(not through >TM) are not supported.

3. Position cursor and clear screen control codes are not
indivisible when output to the screen. Hence, if a new
screen is selected during a position command, then the
refresh clear screen command may be out of sync and not
work. Simply refresh the screen again.

DISABLING VIRTUAL PORTS (WKILL)

Since the virtual port processor itself (WIND') contains
the screen image buffers, simply killing the task would free
memory to PDOS that would still be written to by the
character interrupt processor. Hence, the WKILL utility is
included to disable virtual port processing.

The WKILL utility allows the virtual port processor to exit
cleanly, disabling virtual port processing and resetting
crucial pointers.

The formet for WKILL is:

WKILL {<task I>}

The optional parameter <task #> selects the virtual port
processor task. WKILL clears the SYRAM variables WIND. and
WADR. and unprotects the virtual port processor. Then, a KT
<task #> follows.

Note: WKILL can only be executed from task O.

PAGE 3-79

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 3 PDOS MONITOR COMMANDS

(3.3.7 HOW DO I SET UP VIRTUAL PORTS? continued)

DIFFERENT TERMINAL TYPES (WTERM)

The virtual port processor initializes its port position
cursor and clear screen codes to those of the parent task.
Hence, refresh uses the same codes for all ports unless this
is altered by the WTERM uti1tity after the window process is
executing. These codes are located immediately following
the address table (WADR.).

The WTERM utility has identical parameter definitions as
the PO OS MTERM utility with the exception that the first
parameter is a windowing port number. WTERM does not permit
parameter passing in user-defined modes. (See the
description of the MTERM utility.)

Example:

x>WTERM 5,S
x>WTERM
68K PODS Change Terminal Type Utility
Terminals:

A-ADDS Regent 25
D=Decscope (VT52)
H=Haze1tine 1520
1=lntertube II
L=Lear Seigler ADM3a
S=Soroc IQ120
M=Data Media Excel 12
V.VT100 I ANSI terminal
U=User Defined

Port #=6
Type .. V
x>

PAGE 3-80 c

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS

~ (3.3.7 HOW DO I SET UP VIRTUAL PORTS? continued)

VIRTUAL PORT PROCESS MONITOR (WLOOK)

The virtual port monitor utility WLOOK displays the screen
buffer addresses, the current refresh clear screen/position
cursor codes, and then dynamically displays the current
window translation table (WIND.).

Example:

x>CT (WIND1 1/3-S,1/4),1S
*TASK #1
x>WLOOK
WINDOW BUFFERS:

('~' #1 =$000EA23C #2=Undef i ned #3.$000EA9BC #4=$000EB13C #5=$000EB8BC
#S=$000EC03C #7=Undefined #8=Undefined #9=Undefined #A=Undefined
#B=Undefined #C=Undefined #D=Undefined #E=Undefined #F=Undefined

PORT CLEAR/POSITION CODES:

#1=$AA009B3D #2=$AA009B3D #3=$AA009B30 #4=$AA009B3D #5=$AA009B3D
#6=$AA009B3D #7=$AA009B3D #8=$AA009B3D #9=$AA009B3D #A=$AA009B3D
#B=$AA009B3D #C=$AA009B3D #D=$AA009B3D #E=$AA009B30 #F=$AA009B3D

~ Enter [ESC] to exit to PDOS

c

()

ODDS 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
800S 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
0001 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
8001 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
ODDS 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080

For more information on how to use virtual
the PDOS utilities WIND1, WKILL, WTERM,

po r ts, consu 1t
and WLOOK (in

chapter 6 of this manual). The internals of the virtual
portin9 process are described in Appendix H of this manual.

PAGE 3-81

Ii

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 3 PODS MONITOR COMMANDS PAGE 3-82

c

C:

(~'

c

(

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

CHAPTER 4

PODS ASSEMBLY PRIMITIVES

PODS assembly primitives are assembly language system calls
to PODS. They consist of one word A-line instructions
(words with the first four bits equal to hexadecimal 'A').
PODS calls return results in the 68000 status register as
well as regular user registers.

PODS calls are divided into three categories: namely, 1)
system, 2) console I/O. and 3) file support primitives.

4.1 GUIDELINES FOR 68000 ASSEMBLY PROGRAMMING 4-7

4.2 PDOS ASSEMBLY LANGUAGE CALLS 4-10

4.3 ALPHABETICAL LISTING OF PODS PRIMITIVES 4-14

4.3.1 X881 - SAVE 68881 ENABLE 4-14
4.3.2 XAPF - APPEND FILE 4-15
4.3.3 XBCP - BAUD CONSOLE PORT 4-16
4.3.4 XBFL - BUILD FILE DIRECTORY LIST 4-17
4.3.5 XBUG - DEBUG CALL 4-18
4.3.6 XCBC - CHECK FOR BREAK CHARACTER 4-19
4.3.7 XCBD - CONVERT BINARY TO DECIMAL 4-20
4.3.8 XCBH - CONVERT BINARY TO HEX 4-21
4.3.9 XCBM - CONVERT TO DECIMAL W/MESSAGE 4-22
4.3.10 XCBP - CHECK FOR BREAK OR PAUSE 4-23
4.3.11 XCBX - CONVERT TO DECIMAL IN BUFFER 4-24
4.3.12 XCDB - CONVERT ASCII TO BINARy 4-25
4.3.13 XCFA - CLOSE FILE W/ATTRIBUTE 4-26
4.3.14 XCHF - CHAIN COMMAND 4-27
4.3.15 XCHX - CONVERT BINARY TO HEX IN BUFFER 4-28
4.3.16 XCLF - CLOSE FILE 4-29
4.3.17 XCLS - CLEAR SCREEN 4-30
4.3.18 XCPY - COPY FILE 4-31
4.3.19 XCTB - CREATE TASK BLOCK 4-32
4.3.20 XDEV - DELAY SET/RESET EVENT 4-34
4.3.21 XDFL - DEFINE FILE 4-35
4.3.22 XDLF - DELETE FILE 4-36
4.3.23 XDMP - DUMP MEMORY FROM STACK 4-37
4.3.24 XDTV - DEFINE TRAP VECTORS 4-38
4.3.25 XERR - RETURN ERROR DO TO MONITOR 4-40
4.3.26 XEXC - EXECUTE POOS CALL 07.W 4-41
4.3.27 XEXT - EXIT TO MONITOR 4-42
4.3.28 XEXZ - EXIT TO MONITOR W/COMMA,NO 4-43
4.3.29 XFAC - FILE ALTERED CHECK 4-44

PAGE 4-1

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-2

(TABLE OF CONTENTS continued)

4.3.30 XFBF - FLUSH BUFFERS , '" ... 4-45
4.3.31 XFFN - FIX FILE NAME 4-46
4.3.32 XFTD - FIX TIME & DATE 4-47
4.3.33 XFUM - FREE USER MEMORy 4-48
4.3.34 XGCB - CONDITIONAL GET CHARACTER 4-49
4.3.35 XGCC - GET CHARACTER CONDITIONAL 4-50
4.3.36 XGCP - GET PORT CHARACTER 4-51
4.3.37 XGCR - GET CHARACTER 4-52
4.3.38 XGLB - GET LINE IN BUFFER 4-53
4.3.39 XGLM - GET LINE IN MONITOR BUFFER 4-54
4.3.40 XGLU - GET LINE IN USER BUFFER 4-55
4.3.41 XGML - GET MEMORY LIMITS 4-56
4.3.42 XGMP - GET MESSAGE POINTER 4-57
4.3.43 XGNP - GET NEXT PARAMETER 4-58
4.3.44 XGTM - GET TASK MESSAGE 4-59
4.3.45 XGUM - GET USER MEMORy 4-60
4.3.46 XISE - INITIALIZE SECTOR 4-61
4.3.47 XKTB - KILL TASK 4-62
4.3.48 XKTM - KILL TASK MESSAGE 4-63
4.3.49 XLOF - LOAD FILE 4-64
4.3.50 XLER - LOAD ERROR REGISTER .. '" , ... 4-65
4.3.51 XLFN - LOOK FOR NAME IN FILE SLOTS 4-66
4.3.52 XLKF - LOCK FILE 4-67
4.3.53 XLKT - LOCK TASK4-68
4.3.54 XLSR - LOAD STATUS REGISTER 4-69
4.3.55 XLST - LIST FILE DIRECTORY 4-70
4.3.56 XNOP - OPEN SHARED RANDOM FILE 4-71
4.3.57 XPAD - PACK ASCII DATE 4-72
4.3.58 XPBC - PUT BUFFER TO CONSOLE 4-73
4.3.59 XPCB - PUSH COMMAND TO BUFFER 4-74
4.3.60 XPCC - PUT CHARACTER(S) TO CONSOLE 4-75
4.3.61 XPCL - PUT CRLF TO CONSOLE 4-76
4.3.62 XPCR - PUT CHARACTER RAW 4-77
4.3.63 XPDC - PUT DATA TO CONSOLE 4-78
4.3.64 XPEL - PUT ENCODED LINE TO CONSOLE 4-79
4.3.65 XPEM - PUT ENCODED MESSAGE TO CONSOLE 4-80
4.3.66 XPLC - PUT LINE TO CONSOLE 4-81
4.3.67 XPMC - PUT MESSAGE TO CONSOLE 4-82
4.3.68 XPSC - POSITION CURSOR 4-83
4.3.69 XPSF - POSITION FILE 4-84
4.3.70 XPSP - PUT SPACE TO CONSOLE 4-85
4.3.71 XRBF - READ BYTES FROM FILE 4-86
4.3.72 XRCN - RESET CONSOLE INPUTS 4-87
4.3.73 XRCP - READ PORT CURSOR POSITION 4-88
4.3.74 XRDE - READ NEXT DIRECTORY ENTRy 4-89
4.3.75 XRDM - DUMP REGISTERS 4-90
4.3.76 XRDN - READ DIRECTORY ENTRY BY NAME 4-91
4.3.77 XRDT - READ DATE 4-92
4.3.78 XRFA - READ FILE ATTRIBUTES 4-93
4.3.79 XRFP - READ FILE POSITION 4-94

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES PAGE 4-3

(TABLE OF CONTENTS cont;nued)

4.3.80 XRLF - READ LINE FROM FILE 4-95
4.3.81 XRNF - RENAME FILE4-96
4.3.82 XROO - OPEN RANDOM READ ONLY FILE 4-97
4.3.83 XROP - OPEN RANDOM4-98
4.3.84 XRPS - READ PORT STATUS 4-99
4.3.85 XRSE - READ SECTOR 4-100
4.3.86 XRSR - READ STATUS REGISTER 4-101
4.3.87 XRST - RESET DISK 4-102
4.3.88 XRSZ - READ SECTOR ZERO 4-103
4.3.89 XRTE - RETURN FROM INTERRUPT 4-104
4.3.90 XRTM - READ TIME 4-105
4.3.91 XRTP - READ TIME PARAMETERS 4-106
4.3.92 XRTS - READ TASK STATUS 4-107

f 4.3.93
4.3.94

XRWF - REWIND FILE 4-108
XSEF - SET EVENT FLAG W/SWAP 4-109

4.3.95 XSEV - SET EVENT FLAG 4-110
4.3.96 XSMP - SEND MESSAGE POINTER 4-111
4.3.97 XSOP - OPEN SEQUENTIAL FILE 4-112
4.3.98 XSPF - SET PORT FLAG 4-113
4.3.99 XSTM - SEND TASK MESSAGE 4-114
4.3.100 XSTP - SET/READ TASK PRIORITY 4-115
4.3.101 XSUI - SUSPEND UNTIL INTERRUPT 4-116
4.3.102 XSUP - ENTER SUPERVISOR MODE 4-117
4.3.103 XSWP - SWAP TO NEXT TASK 4-118
4.3.104 XSZF - GET DISK SIZE 4-119
4.3.105 XTAB - TAB TO COLUMN 4-120
4.3.106 XTEF - TEST EVENT FLAG 4-121
4.3.107 XUAD - UNPACK ASCII DATE 4-122
4.3.108 XUDT - UNPACK DATE 4-123
4.3.109 XULF - UNLOCK FILE 4-124
4.3.110 XULT - UNLOCK TASK 4-125
4.3.111 XUSP - RETURN TO USER MODE 4-126
4.3.112 XUTM - UNPACK TIME 4-127
4.3.113 XWBF - WRITE BYTES TO FILE 4-128
4.3.114 XWDT - WRITE DATE 4-129
4.3.115 XWFA - WRITE FILE ATTRIBUTES 4-130
4.3.116 XWFP - WRITE FILE PARAMETERS 4-131
4.3.117 XWLF - WRITE LINE TO FILE 4-132
4.3.118 XWSE - WRITE SECTOR 4-133
4.3.119 XWTM - WRITE TIME 4-134
4.3.120 XZFL - ZERO FILE 4-135

4.4 SYSTEM CALLS

4.3.1 X881 - SAVE 68881 ENABLE 4-14
4.3.5 XBUG - DEBUG CALL 4-18
4.3.7 XCBO - CONVERT BINARY TO DECIMAL 4-20
4.3.8 XCBH - CONVERT BINARY TO HEX 4-21
4.3.9 XCBM - CONVERT TO DECIMAL W/MESSAGE 4-22

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-4

(TABLE OF CONTENTS continued)

4.3.11 XCBX - CONVERT TO DECIMAL IN BUFFER 4-24
4.3.12 XCDB - CONVERT ASCII TO BINARy 4-25
4.3.15 XCHX - CONVERT BINARY TO HEX IN BUFFER 4-28
4.3.19 XCTB - CREATE TASK BLOCK 4-32
4.3.20 XDEV - DELAY SET/RESET EVENT 4-34
4.3.23 XDMP - DUMP MEMORY FROM STACK 4-37
4.3.24 XDTV - DEFINE TRAP VECTORS 4-38
4.3.25 XERR - RETURN ERROR DO TO MONITOR 4-40
4.3.26 XEXC - EXECUTE PDOS CALL D7.W 4-41
4.3.27 XEXT - EXIT TO MONITOR 4-42
4.3.28 .XEXZ - EXIT TO MONITOR W/COMMAND 4-43
4.3.32 XFTD - FIX TIME & DATE 4-47
4.3.33 XFUM - FREE USER MEMORy 4-48
4.3.42 XGMP - GET MESSAGE POINTER 4-57
4.3.43 XGNP - GET NEXT PARAMETER 4-58
4.3.44 XGTM - GET TASK MESSAGE 4-59
4.3.45 XGUM - GET USER MEMORy 4-60
4.3.47 XKTB - KILL TASK , 4-62
4.3.48 XKTM - KILL TASK MESSAGE 4-63
4.3.50 XLER - LOAD ERROR REGISTER 4-65
4.3.53 XLKT - LOCK TASK 4-68
4.3.54 XLSR - LOAD STATUS REGISTER '" ... 4-69
4.3.57 XPAD - PACK ASCII DATE 4-72
4.3.75 XRDM - DUMP REGISTERS 4-90
4.3.77 XRDT - READ DATE 4-92
4.3.86 XRSR - READ STATUS REGISTER 4-101
4.3.89 XRTE - RETURN FROM INTERRUPT 4-104
4.3.90 XRTM - READ TIME 4-105
4.3.91 XRTP - READ TIME PARAMETERS 4-106
4.3.92 XRTS - READ TASK STATUS 4-107
4.3.94 XSEF - SET EVENT FLAG W/SWAP 4-109
4.3.95 XSEV - SET EVENT FLAG 4-110
4.3.96 XSMP - SEND MESSAGE POINTER 4-111
4.3.99 XSTM - SEND TASK MESSAGE 4-114
4.3.100 XSTP - SET/READ TASK PRIORITy 4-115'
4.3.101 XSUI - SUSPEND UNTIL INTERRUPT•..... 4-116
4.3.102 XSUP - ENTER SUPERVISOR MODE 4-117
4.3.103 XSWP - SWAP TO NEXT TASK 4-118
4.3.106 XiEF - TEST EVENT FLAG 4-121
4.3.107 XUAD - UNPACK ASCII DATE 4-122
4.3.108 XUDT - UNPACK DATE 4-123
4.3.110 XULT - UNLOCK TASK 4-125
4.3.111 XUSP - RETURN TO USER MODE 4-126
4.3.112 XUTM - UNPACK TIME 4-127
4.3.114 XWDT - WRITE DATE 4-129
4.3.119 XWTM - WRITE TIME 4-134

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(:/ (TABLE OF CONTENTS continued)

c

(~

C

4.5 CONSOLE 1/0 PRIMITIVES

4.3.3 XBCP - BAUD CONSOLE PORT •.............•..... 4-16
4.3.6 XCBC - CHECK FOR BREAK CHARACTER•...... 4-19
4.3.10 XCBP - CHECK FOR BREAK OR PAUSE• 4-23
4.3.17 XCLS - CLEAR SCREEN 4-30
4.3.34 XGCB - CONDITIONAL GET CHARACTER 4-49
4.3.35 XGCC - GET CHARACTER CONDITIONAL 4-50
4.3.36 XGCP - GET PORT CHARACTER 4-51
4.3.37 XGCR - GET CHARACTER 4-52
4.3.38 XGLB - GET LINE IN BUFFER 4-53
4.3.39 XGLM - GET. LINE IN MONITOR BUFFER 4-54
4.3.40 XGLU - GET LINE IN USER BUFFER 4-55
4.3.41 XGML - GET MEMORY LIMITS 4-56
4.3.58 XPBC - PUT BUFFER TO CONSOLE 4-73
4.3.59 XPCB - PUSH COMMAND TO BUFFER 4-74
4.3.60 XPCC - PUT CHARACTER(S) TO CONSOLE 4-75
4.3.61 XPCL - PUT CRLF TO CONSOLE 4-76
4.3.62 XPCR - PUT CHARACTER RAW 4-77
4.3.63 XPDC - PUT DATA TO CONSOLE •................. 4-78
4.3.64 XPEL - PUT ENCODED LINE TO CONSOLE 4-79
4.3.65 XPEM - PUT ENCODED MESSAGE TO CONSOLE 4-80
4.3.66 XPLC - PUT LINE TO CONSOLE 4-81
4.3.67 XPMC - PUT MESSAGE TO CONSOLE 4-82
4.3.68 XPSC - POSITION CURSOR•..... 4-83
4.3.70 XPSP - PUT SPACE TO CONSOLE 4-85
4.3.73 XRCP - READ PORT CURSOR POSITION 4-88
4.3.84 XRPS - READ PORT STATUS 4-99
4.3.99 XSPF - SET PORT FLAG 4-113
4.3.105 XTAB - TAB TO COLUMN 4-1 20

PAGE 4-5

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(TABLE OF CONTENTS continued)

4.6 FILE PRIMITIVES

4.3.2 XAPF - APPEND FILE•.................... 4-15
4.3.4 XBFL - BUILD FILE DIRECTORY LIST 4-17
4.3.13 XCFA - CLOSE FILE W/ATTRIBUTE 4-26
4.3.14 XCHF - CHAIN COMMAND 4-27
4.3.16 XCLF - CLOSE FILE 4-29
4.3.18 XCPY - COPY FILE•....................... 4-31
4.3.21 XDFL - DEFINE FILE 4-35
4.3.22 XDLF - DELETE FILE 4-36
4.3.29 XFAC - FILE ALTERED CHECK 4-44
4.3.30 XFBF - FLUSH BUFFERS 4-45
4.3.31 XFFN - FIX FILE NAME 4-46
4.3.46 XISE - INITIALIZE SECTOR 4-61
4.3.49 XLDF - LOAD FILE•............... 4-64
4.3.51 XLFN - LOOK FOR NAME IN FILE SLOTS 4-66
4.3.52 XLKF - LOCK FILE4-67
4.3.55 XLST - LIST FILE DIRECTORy 4-70
4.3.56 XNOP - OPEN SHARED RANDOM FILE•......... 4-71
4.3.69 XPSF - POSITION FILE•................. 4-84
4.3.71 XRBF - READ BYTES FROM FILE•......... 4-86
4.3.72 XRCN - RESET CONSOLE INPUTS 4-87
4.3.74 XRDE - READ NEXT DIRECTORY ENTRY 4-89
4.3.76 XRDN - READ DIRECTORY ENTRY BY NAME•. 4-91
4.3.78 XRFA - READ FILE ATTRIBUTES•. 4-93
4.3.79 XRFP - READ FILE POSITION 4-94
4.3.80 XRLF - READ LINE FROM FILE•............ 4-95
4.3.81 XRNF - RENAME FILE 4-96
4.3.82 XROO - OPEN RANDOM READ ONLY FILE 4-97
4.3.83 XROP - OPEN RANDOM•........ 4-98
4.3.85 XRSE - READ SECTOR 4-100
4.3.87 XRST - RESET DISK 4-102
4.3.88 XRSZ - READ SECTOR ZERO 4-103
4.3.93 XRWF - REWIND FILE 4-108
4.3.97 XSOP - OPEN SEQUENTIAL FILE 4-112
4.3.104 XSZF - GET DISK SIZE 4-119
4.3.109 XULF - UNLOCK FILE 4-124
4.3.113 XWBF - WRITE BYTES TO FILE 4-128
4.3.115 XWFA - WRITE FILE ATTRIBUTES .•............. 4-130
4.3.116 XWFP - WRITE FILE PARAMETERS•....... 4-131
4.3.117 XWLF - WRITE LINE TO FILE 4-132
4.3.118 XWSE - WRITE SECTOR 4-133
4.3.120 XZFL - ZERO FILE 4-135

PAGE 4-6 o
c

c

c

c
o

(

£ ,.

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEM8LY PRIMITIVES

4.1 GUIDELINES FOR 68000 ASSEMBLY PROGRAMMING

The following guidelines are to be used in assembly
programming for the PO OS system:

1) Standard 68000 Assembly Language.

The PODS assembler supports the standard Motorola 68000
assembly language instruction set as defined in the M68000
16-/32-bit Microprocessor Programmer's Reference Manual.
This includes register designations, instruction mnemonics,
and addressing syntax.

2) 68000 Register Usage.

All 68000 registers are
However, as a convention,
register usages:

available for user programs.
the following are recommended

A4 = User variables base register
AS = SYRAM pointer (initialized by PODS)
A6 = TCB pointer (initialized by PODS)
A7 = User stack pointer (EUM$-$100).

3) Position Independent and Re-entrant Coding.

PODS assembly programs should be position independent and
re-entrant coded. This means that base registers and PC
relative variables should be used in the place of absolute
addressing and that the stack or registers should be used
for parameter passing.

For example:

GOOO BAO

BSR.L SUBRT JSR SUBRT

Standard 6800Q assembly support

XGML reloads AS & A6

Use BSR's instead of JSR's

Use (PC) instead of absolute

Setup OFFSET area

PAGE 4-7

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

(4.1 GUIDELINES FOR 68000 ASSEMBLY PROGRAMMING continued)

4) POOS Primitives.

POOS assembly primitives are fully supported by the POOS
assembler. These calls to PO OS will assemble to A-line
instructions.

S) System Variables.

The POOS assembler supplies most system constants required
by a user. These constants are supplied on reference after
the 'OPT POOS' directive is executed. The following is the
standard convention adopted for external POOS symbols:

xxx$ = TCB index (AS)
xxx. = SYRAM constant

xxxx. = SYRAM index (AS)
.xxx = Global system constant

m.xxx = Module constant
m$xxx = Module entry point
m xxx = Module index

xxx = User index

The following illustrates how some of these might be used:

BSET.B #-118,118/8+EVTB.(AS)

MOVEA.L MAIL.(AS),AO

MOVE.L TICS.(AS),D1

ST.B DFLG. (AS)

ST.B TLCK. (AS)

MOVE.B #2,PRT$(A6)

MOVE.B #S,FEC$(AS)

ST.B ECF$(AS)

MOVEA.L BIOS.(AS),AO
MOVE.W B_SID(AO),DO

XEXT
XSOP

MOVE.B
MULU.W
MOVE.L
MOVE.W
MOVE.W
BSR.L
CLR.W
AOOA.L

U1 P$(A6). DO
#TBZ .. 00
TICS. (AS) ,01
#.BPS,D7
#B.PTMSK,SR
K2$PINT
B_TPS(AO)
AVL_(A4) ,AO

Set event 118

Point to the MAIL array

Read system tics

Set hard partitioned directory

Lock current task

Set input port #

Set file expansion count

Disable console echo

Read system 10 characters

PAGE 4-8 c

c

('

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-9

(4.1 GUIDELINES FOR 68000 ASSEMBLY PROGRAMMING continued)

6) Assembly Format.

PODS assembly text has the following conventions:

a. A comment line before any entry address.
b. 2 spaces preceding a conditional branch.
c. Semi-colon with space for comment.

7) Source file documentation.

POOS source files have the following conventions:

TTL FILE - POOS PROGRAM FILE .. FILE:SR 07/22/85

..

..

..

..

..

..

..

FFFFFF IIII LL
FF II LL
FF II LL
FFFFF II LL
FF II LL
FF II LL

EEEEEE
EE
EE
EEEEE
EE
EE

FF 1111 LLLLLL EEEEEE

..

..

..

..

..

..

..
*

*=*************************************** ..
..
..
..
*=
.. =
*=
*=
*=
....
.. =
.. =
*=

Eyring Research Institute Inc.
Copyright 1983-86
Proprietary Software
ALL RIGHTS RESERVED

Module Name: FILE
Author: John Doe

Changes Authorized by:
Revision History:

DATE R.V OESCRI PTION

07/08/85 2.36 O$INT called from XCTB
*= 07/18/85 2.37 XLER enables echo ECF$
*=
FILE IoNT 2.37 M68000 PODS
*=
*=***************************************

PAGE

*
LABEL CMPI.W #10,01

BLT.S LABEL

Assembler TTL directive

LESS THAN 107
Y

File name followed by last update date

Company identification
with copyright notices

Module identification
Author of program
Who authorizes any changes

Revision history

Program 10

680xO PoOS 3.2 REFERENCE MANUAL CHAPTER 4 PoOS ASSEMBLY PRIMITIVES

4.2 POOS ASSEMBLY LANGUAGE CALLS

POOS assembly primitives are one word A-line instructions
which use the exception vector at memory location $00000028.
Most primitives use 68000 registers to pass parameters to
and results from resident POOS routines.

Trapping an error after a POOS call:

CALLX LEA.L FILEN(PC),A1 ;GET FILE NAME
XSOP ;OPEN FILE, ERROR?

SNE.S ERROR ;Y
MOVE.W o1,SLTN(A4) ;N, SAVE SLOT #

PoOS primitives return error conditions in the processor
status register. This facilitates error processing by
allowing your program to do long or short branches on
different error conditions.

POOS command primitives can be grouped into six levels
according to their function and calling hierarchy. These
levels are System Calls, System Support Calls, Console I/O
Calls, File Support Calls, File Management Calls, and Disk
Access Calls.

Level 1 PODS primitives consist of system calls that deal
with functions such as swapping, message passing, events,
TRAP vector initialization, etc. The PO OS system calls are
as foll ows:

XGML - Get memory limits
XGUM - Get user memory
XFUM - Free user memory
XRTS - Read task status
XSTP - Set/read task priority
XLKT - Lock task
XULT - Unlock task
XSWP - Swap to next task
XCTB - Create task block
XKTB - Kill task
XSTM - Send task message
XGTM - Get task message
XKTM - Kill task message
XGMP - Get message pointer
XSMP - Send message pointer

XSEV - Set event flag
XSEF - Set event flag w/swap
XTEF - Test event flag
XoEV - Delay set/reset event
XSUI - Suspend until interrupt

Sys tem Ca lls

PAGE 4-10

o

(f -",
\L.J

c

(~:i

e

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

(4.2 PODS ASSEMBLY LANGUAGE CALLS continued)

XDTV - Define trap vectors
XSUP - Enter supervisor mode
XUSP - Return to user mode
XRSR - Read status register
XLSR - Load status register
XRTE - Return from interrupt
X881 - 68881 enable

XDMP - Dump memory from stack
XRDM - Dump registers
XBUG - Debug call
XEXC - Execute PODS call D7.W

XLER - Load error register
XERR - Return error DO to monitor
XEXT - Exit to moni tor.
XEXZ - Exit to monitor with command

Level 2 consists of system support calls. Data conversion
and dataltime propessing are their main functions. They are
as follows:

XCBD - Convert binary to decimal
XCBH - Convert binary to hex
XCBM - Convert to decimal wlmessage
XCDB - Convert decimal to binary
XCBX - Convert to decimal in buffer
XCHX - Convert binary to hex in buffer

XRDT - Read date
XRTM - Read time
XRTP - Read time parameters
XFTD - Fix time & date
XPAD - Pa~k ASCII date
XUAD - Unpack ASCII
XUDT - Unpack date
XUTM - Unpack time
XWDT - Write date
XWTM - Write time

Date

XGNP - Get next parameter

Level 3 primitives deal with console 110. Included are
commands for setting the baud rate and other characteristics
of an 110 port, reading and writing characters or lines,
clearing the screen, positioning the cursor, and monitoring
port status.

XGCB - Conditional get character
XGCC - Get character conditional

System Support calls

Console 110 Calls

PAGE 4-11

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

(4.2 POOS ASSEMBLY LANGUAGE CALLS continued)

XGCR - Get character
XGCP - Get port character
XGLB - Get line in buffer
XGLM - Get li ne in monitor buffe r
XGLU - Get line in user buffer
XPCB - Push command to buffer

XPBC - Put buffer to console
XPCC - Put character(s) to console
XPCL - Put CRLF
XPCR - Put character raw
XPSP - Put space to console

XPLC - Put line to console
XPOC - Put data to console
XPEL - Put encoded line to console
XPMC - Put message to console
XPEM - Put encoded message to console

XCLS - Clear screen
XPSC - Position cursor
XTAB - Tab to column
XRCP - Read port cursor position

XBCP - Baud console port
XSPF - Set port flag
XRPS - Read port status
XCBC - Check for break character
XCBP - Check for break or pause

Level 4 primitives are file support calls for the file
manager. However, important functions such as copying
files, appending files, sizing disks, and resetting disks
are included here.

XFFN - Fix file name
XLFN - Look for name in file slots
XLST - List file directory
XBFL - Build file directory list
XROE - Read next directory entry
XRON - Read directory entry by name

XAPF - Append file
XCPY - Copy file

XCHF - Chain command
XLOF - Load file
XRCN - Reset console inputs
XRST - Reset disk
XSZF - Get disk size

File Support Calls

PAGE 4-12

()

(

{

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(4.2 PDOS ASSEMBLY LANGUAGE CALLS continued)

LevelS primitives are the file management calls of PDOS.
They use the file lock (event 120) to prevent conflicts
between mUltiple tasks. Functions such
deleting. reading. writing. positioning.
supported by the file manager.

XDFL - Define file
XRNF - Rename file
XRFA - Read file attributes
XWFA - Write file attributes
XWFP - Write file parameters
XDLF - Delete file
XZFL - Zero file
XSOP - Open sequenti al
XROO - Open random read only
XROP - Open random

XNOP - Open non-exclusive
XLKF - Lock file
XULF - Unlock file

XRFP - Read file position
XRWF - Rewind file
XPSF - Position file

random

XRBF - Read bytes from file
XRLF - Read line from file

XWBF - Write bytes to file
XWLF - Write line to file

XFBF - Flush buffers
XFAC - File altered check

XCFA - Close file w/attribute
XCLF - Close file

as defining.
and locking are

The final level of primitives is for disk access via the
read/write logical sector routines in the PDOS BIOS. A disk
lock (event 121) is used to make these calls autonomous and
prevent multiple commands from being sent to the disk
controller.

XISE - Initialize sector
XRSE - Read sector
XWSE - Write sector
XRSZ - Read sector zero

File Management Calls

Disk Access Calls

PAGE 4-13

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.1 X881 - SAVE 68881 ENABLE

Mnemonic: X88l
Value: $AOO6

Module: MPOOSK1
Format: X88l

The SAVE 68881 ENABLE sets the BIOS save flag (SVF$(A6»
thus signaling the PODS BIOS to save and restore 68881
registers and status during context switches. The save flag
is again cleared by exiting to the PODS monitor.

See also:

Chapter 8 BIOS

Possible Errors: None

START X881
FMOVE.L #l00,FPO
FOIV.W #3,FPD

PAGE 4-14

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEM8LY PRIMITIVES

4.3.2 XAPF - APPEND FILE

Mnemonic:
Value:

Module:
Format:

XAPF
$AOAA
MPDOSF
XAPF

<status error return>

Registers: In (A1) = Source file name
(A2) = Destination file name

Note: A [CTRL-C] will terminate this primitive and
return error -1 in data register DO.

The APPEND FILE primitive is used to append two files
together. The source and destination file names are pointed
to by address registers A1 and A2, respectively. The source
file is appended to the end of the destination file. The
source file is not altered.

Possible Errors:

-1 = Break
50 = Invalid file name
53 = File not defined
60 = File space full
61 = File already open
68 = Not PDOS disk
69 = Not enough file slots
Disk errors

APFL

SF1
DF2

PAGE 4-15

LEA.L SF1 (PC),A1 ;SOURCE FILE NAME
LEA.L SF2(PC) ,A2 ;DESTINATION FILE NAME
XAPF ;APPEND

BNE.S ERROR ; ERROR
; SUCCESS

DC.B 'FILE1',0
DC.B 'FILE2',0
EVEN

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-16

4.3.3 XBCP - BAUD CONSOLE PORT

Mnemonic:
Value:

Module:
Format:

XBCP
$A070
MPOOSK2
XBCP

<status error return>

Registers: In 02.W = fOP I 8DBS / <port #>
03.W = Baud rate
04.W = Port type
OS.L = Port base

The BAUD CONSOLE PORT primitive initializes anyone of the
PO OS I/O ports and binds a physical UART to a character
buffer. The primitive sets handshaking protocol, receiver
and transmitter baud rates, and enables receiver interrupts.

Data register 02 selects the port number and sets (or
clears) the corresponding flag bits. If 02.W is negative,
then the absolute value is subsequently used and the port
number is stored in U2P${A6).

The right byte of data register 02 (bits 0-7) selects the
console port. The left byte of 02.W (bits 8-1S) selects
various flag options including AS_AQ andlor OTR handshaking,
receiver parity and interrupt enable, and 8-bit character
I/O.

The receiver and transmitter baud rates are initialized to
the same value according to register 03. Register 03 ranges
from 0 to 7 or the corresponding baud rates of 19200, 9600,
4800, 2400, 1200, 600, 300, or 110.

If data register 04 is non-zero, then it selects the
type and register OS selects the port base address.
parameters are system-defined and correspond to the
module. If register 04 is zero, there is no change.

See also:

4.3.84 XRPS - READ PORT STATUS
4.3.98 XSPF - SET PORT FLAG

Possible Errors:

66 .. Invalid port or baud rate

port
These

UART

START MOVE.W #$103,02 ;PORT 3 W/ASAQ
MOVE.W #19200,03 ;19.2K BAUD
MOVEQ.L #0,04
XBCP

;NO TYPE CHANGE
;BAUO PORT

BNE.S ERROR

F8BT. = fOPI 80BS
\\\\ \\\\ o = ASAQ enable -
\\\\ \\\ 1 = Control char disable -
\\\\ \\ 2 = OTR enable -
\\\\ \ 3 = 8-bit character enable -
\\\\ 4 = Receiver interrupt enable
\\\ S = Even parity enable
\\ 6 = *Reserved (High/low water)

\ 7 = **Reserved (ASAQ flag bit)

*Used to clear all bits
**Used to set U2P(A6)$

03.W = Baud = o .. 19200 baud
1 = 9600 baud
2 = 4800 baud
3 = 2400 baud
4 = 1200 baud
S = 600 baud
6 = 300 baud
7 .. 110 baud

o

'n
'LJ

11·

~/

()

o

6BOxO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

~ 4.3.4 XBFL - BUILD FILE DIRECTORY LIST

c\

Mnemonic:
Value:

Module:
Format:

XBFL
$AOBB
MPDOSM
XBFL

<status error return>

Registers: In (A1)
(A2)
(A3)

Out (A3)

List specifications
Beginning buffer address
End buffer address
Updated buffer end address

The BUILD FILE DIRECTORY LIST primitive builds a serial
list of file names in memory as selec1ed by the list
specifications. Address register A1 points to the file list
specifications.

List specifications:

<file list> = {file}{:ext}{;level}{/disk}{Iselect .. _.}

where {file} = 1 to B characters (1st alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=all,*=wild)

{;level} = directory level (;@=all)
{/disk} disk number ranging from 0 to 255

{/select} PDOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
PDOS attribute (/*,1**)

Change date (/Fdy-mon-yr,/Tdy-mon-yr)
or (/Fmn/dylyr,/Tmn/dylyr)

Address registers A2 and A3 point to the beginning and end
of the memory buffer respectively. Register A3 is updated
to a word boundary just after the last file name null.

Possible Errors:

Disk errors
67 = Invalid Parameter
73 = Not Enough Memory

GETL

PRNT

NEXT

DONE
*
ERROR

SPC
BUF
EBUF

PAGE 4-17

LEA.L SPC(PC) ,A1 ; POI NT TO LIST
LEA.L BUF (PC) ,A2 ;GET BUFFER ADDRESS
LEA.L EBUF(PC),A3 ;GET END POINTER
XBFL ;BUILD LIST

BNE.S ERROR

TST.B (A 1) ;ENTRY?
BEQ.S DONE ;N

XPCL ;Y, OUTPUT CRLF
XPLC ;OUTPUT ENTRY

TST.B (A1)+ ;NEXT, DONE?
BNE.S NEXT ;N

BRA.S PRNT ;Y

DC.B '@:SR;@/O' ,0
DS.B 500
EQU *

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEM8LY PRIMITIVES

4.3.5 XBUG - DEBUG CALL

Mnemonic: XBUG
Value: $A038

Module: MPDOSD
Format: XBUG

Registers: None

The DEBUG CALL primitive breaks from the user program and
enters the PDOS debugger. All registers are saved and you
are prompted for additional commands.

The following are legal debugger commands:

A-reg #

#.#
Mem lAC
Mem dump

AO-7
B{#.a}
00-7

Lst/def break
D-reg #,#+ Disassemble

F 68881 regs #.#.#{WL} Find B/W/L
{#}G Go & break #(0-7 d(Ax)
M Last dump #{+-}#
N# 0=W.l=B.+2=w/o read
a Offset AD
P PC
Q Exit LF
R Reg dump +#
S Status

Hex +/-

Disassemble
Open previous
Open next
+ offset

T

U

Trace
Unit

Trace options:

V Control lAC
W{s.e} Window
x
z

See also:

Set breaks & exit
Reset

F/R/M
G
T

4.3.23 XDMP - DUMP MEMORY FROM STACK
4.3.75 XRDM - DUMP REGISTERS
PB - PDOS DEBUGGER (chapter 3)

Possible Errors: None

Dump
Go
Running

PAGE 4-18

',,--/

C'
r", ' . \ , ;

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.6 XCBC - CHECK FOR BREAK CHARACTER

Mnemonic: XCBC
Value: $A072

Module: MPOOSK2
Format: XCBC

<status return>

Registers: Out SR = EQ No break
LO [CTRL-C], Clear flag & buffer
LT [ESC], Clear flag
MI [CTRL-C] or [ESC]

Note: If the ignore control character bit ($02)
of the port flag is set, then XCBC always
returns .EQ. status.

The CHECK FOR BREAK CHARACTER primitive checks the current
user input port break flag (BRKF.(A5» to see if a break
character has been entered. The PODS break characters are
[CTRL-C] and the [ESC] key.

A [CTRL-C] sets the port break flag to one, while an [ESC]
character sets the flag to a minus one. The XCBC primitive
samples and clears this flag. The condition of the break
flag is returned in the status register.

An 'Lo' condition indicates a [CTRL-C] has been entered.
The break flag and the input buffer are cleared. All
subsequent characters entered after the [CTRL-C] and before
the XCBC call are dropped. All open procedure files are
closed and any system frames are restored. Also, the last
error number flag (LEN$) is set to -1 and a '''c' is output
to the port.

An 'LT' condition indicates an [ESC] character has been
entered. Only the break flag is cleared and not the input
buffer. Thus, the [ESC] character remains in the buffer.

The [CTRL-C] character is interpreted as a hard break and
is used to terminate command operations. The [ESC]
character is a soft break and remains in the input buffer,
even though the break flag is cleared by the XCBC primitive.
(This allows an editor to use the [ESC] key for special
functions or command termination.)

Note: If the ignore control character bit ($02) of the port
flag is set, then XCBC always returns .EQ. status.

Possible Errors: None

*
CONTC

*
ESCAP

*
BRKM

PAGE 4-19

XCBC ;BREAK?
BLO.S CONTC ;y, "C
BLT.S ESCAP ;Y, ESC

BRA.S LOOP ; N, CONTINUE

;CONTRoL C

BRA.S BEGIN ;START AGAIN

XPMC BRKM ;oUTPUT'»BREAK'
XEXT ;EXIT TO PODS

OC.B $OA,$OO ;BREAK MESSAGE
OC.B '»BREAK' ,0

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-20

4.3.7 XCBD - CONVERT BINARY TO DECIMAL

Mnemoni c: XCBD
Value: $A050

Module: MPDOSK3
Format: XCBD

Registers: In D1.L Number
Out (Al) String

The CONVERT BINARY TO DECIMAL primitive converts a 32-bit,
2's complement number to a character string. The number to
be converted is passed to XCBD in data register 01. Address
register Al is returned with a pointer to the converted
character string located in the monitor work buffer (MWB$).

Leading zeros are suppressed and a negative sign is the
first character for negative numbers. The string is
delimited by a null. The string has a maximum length of 11
characters and ranges from -2147483648 to 2147483647.

See also:

4.3.11 XCBX - CONVERT TO DECIMAL IN BUFFER.

Possible Errors: None

MOVE.L #1234,01 ;GET NUMBER
XCBD
XPLC

;CONVERT TO PRINT
: PRINT

**

* OUTPUT LEFT JUSTIFIED NUMBER

LEFT

LEFT02

LEFT04

OO.W = # OF PLACES
01.L = NUMBER

MOVEM.L DO/AO-Al,-(A7)
XCBD ;CONVERT
MOVEA.L Al,AO ;GET POINTER

SUBQ.W #1,00 ;COUNT LENGTH
TST.B (AO)+ ;END?

BNE. S LEFT02 ;N

XPSP ;OUTPUT SPACE
SUBQ.W #1,00 ; DONE?

BPL. S LEFT04 :N
XPLC ;Y, OUTPUT #
MOVEM. L (A7)+,OO/AD-Al
RTS

'.' ... '.' ··,"A

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

(- 4.3.8 XCBH - CONVERT BINARY TO HEX

(

Mnemonic:
Value:

Module:
Format:

XCBH
$A052
MPOOSK3
XCBH

Registers: In 01.L = Number
Out (A1) = String

The CONVERT BINARY TO HEX primitive converts a 32-bit
number to its hexadecimal (base 16) representation. The
number is passed in data register 01 and a pointer to the
ASCII string is returned in address register A1. The
converted string is found in the monitor work buffer (MWB$)
of the task control block and consists of eight hexadecimal
characters followed by a null.

See also:

4.3.15 XCHX - CONVERT BINARY TO HEX IN BUFFER.

Possible Errors: None

*

*
OMRG

OMRG02

*
OMRG04

PAGE 4-21

MOVEQ.L #123,01 ;GET NUMBER
XCBH ;GET HEX CONVERSION
MOVEQ.L #'$' ,00 ;AOO HEX SIGN
XPCC
XPLC

;PRINT
;PRINT 8 HEX CHARACTERS

OUMP REGISTERS ON USER STACK

USP = A7 = RETURN PC
00-07
AO-A7

MOVEA.L (A7)+,AO ;GET RETURN AOR
MOVE.L #$0007BCF7,04
MOVE.W #'00' ,00

XPCL ;OUT CRLF
XPCC ;OUT LINE TYPE
MOVE.W #' :' ,00

XPCC ;OUT OELIMITER
MOVE.L (A7)+,01 ;GET REGISTER
XCBH ;CONVERT
XPLC ;OUTPUT
MOVEQ.L #' , ,00 ;CHANGE TO
LSR.L #1,04 ;4 OONE?

BCS.S OMRG04 ;N
XPCC ;Y, OUT SPACE
LSR.L #1,04 ;CRLF?

BCS.S OMRG04 ;N
MOVE.W #'OA' ,00 ;Y, CHANGE TO 'A'
LSR.L #1,04 ;MORE?

BCS.S DMRG02 ;Y
JMP (AO) ;N, RETURN

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-22

4.3.9 XCBM - CONVERT TO DECIMAL W/MESSAGE

Mnemonic: XCBM
Value: $A054

Module: MPDOSK3
Format: XCBM <message>

Registers: In 01. L Number
Out (A1) String

The CONVERT TO DECIMAL WITH MESSAGE primitive converts a
32-bit, signed number to a character string. The output
string is preceded by the string whose PC relative address
is in the operand field of the call.

The string can be up to 20 characters in length and is
terminated by a null character. The number to be converted
is passed to XCBM in data register 01. Address register A1
is returned with a pointer to the converted character string
which is located in the monitor work buffer (MWB$) of the
task control block.

Leading zeros are suppressed and the result ranges from
-2147483648 to 2147483647.

The message address is a signed 16-bit PC relative address.

Possible Errors: None

START MOVE.L #$80000004,Dl

LOOP XPMC MESl ;HEADING
XCBH ;CONVERT HEX
XPLC
XCBM MES2 ;CONVERT DECIMAL
XPLC
SUBQ. L #1,01
CMPI. L #$7FFFFFFC,Dl

BHS.S LOOP
XEXT

MESl OC.B $OA,$Oo, 'Hex $' ,0
MES2 DC.B ,

= ',0
EVEN
ENO START

x>TEST
Hex $80000004 = -2147483644
Hex $80000003 = -2147483645
Hex $80000002 = -2147483646
Hex $80000001 = -2147483647
Hex $80000000 = -2147483648
Hex $7FFFFFFF = 2147483647
Hex $7FFFFFFE = 2147483646
Hex $7FFFFFFO = 2147483645
Hex $7FFFFFFC = 2147483644
x>

c
c

(

f.

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.10 XCBP CHECK FOR BREAK OR PAUSE

Mnemonic: XCBP
Value: $A074

Module: MPOOSK2
Format: XCBP

<status return>

Registers: Out SR = EQ ... No character
LT ... [ESC]
lO ... [CTRl-C]
NE ... Pause

Note: If a 'BlT' instruction does not immediately
follow the XCBP call, then the primitive
exits to POOS when an [ESC] character is
entered.

If the ignore control character bit ($02)
of the port flag is set, then XCBP always
returns .EQ. status.

The CHECK FOR BREAK OR PAUSE primitive looks for a
character from your PRT$(A6) port. Any non-control
character will cause XCBP to output a pause message and wait
for another character.

lOOP

EXIT

,(- The pause message consists of:

[CR]
'Strike any key ... '
[CR]

[CR].

A [CTRl-C] will abort any assigned console file and return
the status 'lO'. If a 'BlT' instruction follows the XCBP
primitive and an [ESC] character is entered, then the call
returns with status 'IT'. Otherwise, an [ESC] will abort
your program to the POOS monitor.

An 'EQ' status indicates that no character was entered. An
'NE' status indicates a pause has occurred.

Possible Errors: None

XCBP
BlT.S EXIT

BRA.S lOOP

PAGE 4-23

; OUTPUT

;lOOK FOR PAUSE
;ESC
; CONTINUE

;ESC

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.11 XCBX

Mnemonic:
Value:

Module:
Format:

CONVERT TO DECIMAL IN BUFFER

XCBX
$A06A
MPoOSK3
XCBX

Registers: In o1.L = Number
(A1) = Buffe r

The CONVERT TO DECIMAL IN BUFFER primitive converts a
32-bit, 2's complement number to a character string. The
number to be converted is passed to XCBX in data register
01. Address register A1 points to the buffer where the
converted string is stored.

Leading zeros are suppressed and a negative sign is the
first character for negative numbers. The string is
delimited by a nUll. The string has a maximum length of 11
characters and ranges from -2147483648 to 2147483647.

See also:

4.3.7 XCBo - CONVERT BINARY TO DECIMAL.

Possible Errors: None

OUTS
*
OUTS02

PAGE 4-24

MOVEA.L A6,A1 ;POINT TO USER BUF
MOVEQ.L #12,01 ;GET #
BSR.S OUTS
XPBC

XCBX

TST.B (A1)+

BNE.S OUTS02
SUBQ.W #1,A1
RTS

;OUTPUT TO BUFFER
;OUTPUT BUFFER

;CONVERT #

;ENO?
;N
;Y, BACKUP
;RETURN

o

('""\
\ ,,---!

c

c
o

c
c

6BOxO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.12 XCDB - CONVERT ASCII TO BINARY

Mnemonic: XCOB
Value: $A056

Module: MPOOSK3
Format: XCOB

<status return>

Registers: In (A1) = String
Out DO.B = Delimiter

D1.L = Number
(A1) c Updated string

SR = LT No number
EQ # wlo null deHmi ter
GT #

Note: XCDB does not check for overflow.

The CONVERT ASCII TO BINARY primitive converts an ASCII
string of characters to a 32-bit, 2's complement number.
The result is returned in data register 01 while the status
register reflects the conversion results.

XC DB converts signed decimal, hexadecimal, or binary
numbers. Hexadecimal numbers are preceded by "$" and binary
numbers by "%". A "-" indicates a negative number. There
can be no embedded blanks.

An 'LT' status indicates that no conversion was possible.
Data register DO is returned with the first character and
address register A1 points immediately after it.

A 'GT' status indicates that a conversion was made with a
null delimiter encountered. The result is returned in data
register D1. Address register A1 is returned with an
updated pointer and register DD is set to zero.

An 'EQ' status indicates that a conversion was made but the
ASCII string was not terminated with a null character. The
result is returned in register D1 and the non-numeric,
non-null character is returned in register DD. Address
register A2 has the address of the next character.

Possible Errors: None

START

*
STRT02

STRT04

MES1
ERM1

PAGE 4-25

MOVEQ.L #0,05 ;GET DEFAULT
XPMC MES1 ; OUT PUT PROMPT
XGLU ;GET REPLY

BLS.S STRT04 ;USE DEFAULT
XCOB ; CONVERT , OK?

BGT.S STRT02 ;Y
XPMC ERM1 ;N, REPORT
BRA.S START ;TRY AGAIN

MOVE.L 01,05 ;SAVE VALUE

OC.B $OA,$OO, 'ANSWER=' ,0
DC.B $OA,$OD,'INVALID!' ,D
EVEN

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.13 XCFA

Mnemonic:
Value:

Module :
Format:

CLOSE FILE W/ATTRIBUTE

XCFA
$AOOO
MPOOSF
XCFA

<status error return>

Registers: In 01.W = File 10
02.B = New attribute

The CLOSE FILE WITH ATTRIBUTES primitive closes the open
file specified by data register 01. At the same time, the
file attributes are updated according to the byte contents
of data register 02.

If the file was opened for sequential access and the file
has been updated, then the ENO-OF-FILE marker is set at the
current file pointer. If the file was opened for random or
shared access, then the ENO-OF-FILE marker is updated only
if the file has been extended (data was written after the
current ENO-OF-FILE-marker).

The LAST UPDATE is updated to the current date and time
only if the file has been altered.

All files must be closed when opened! Otherwise, directory
information and possibly even the file itself will be lost.

*Note: If the file is not altered, then XCFA will not
alter the file attributes.

See also:

4.3.79 XRFA - READ FILE ATTRIBUTES
4.3.115 XWFA - WRITE FILE ATTRIBUTES
4.3.116 XWFP - WRITE FILE PARAMETERS

Possible Errors:

52 = File not open
59 = Invalid file slot
75 = File locked
Disk errors

02.B

01.W =

PAGE 4-26

MOVE.W 05,01 ;GET FILE 10
MOVE.B #$20,02 ;CLOSE AS OBJECT
XCFA ;CLOSE FILE

BNE.S ERROR

r"-

$80 AC or Procedure file
$40 BN or Binary file
$20 OB or 68000 object file
$10 SY or 68000 memory image
$08 BX or BASIC binary token fi le
$04 EX or BASIC ASCII file
$02 TX or Text file
$01 DR or System 1/0 driver
$00 Clear file attributes

Fil e 10 = (Disk #) x 256 + (File slot index)
''<.fJ.. ___ /

c

r,
'"-"

c

c

r,
'-/

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES PAGE 4-27

4.3.14 XCHF

Mnemonic:
Value:

Module:
Format:

CHAIN COMMAND

XCHF
$AOAC
MPOOSM
XCHF

Registers: In A1.L ~ File name

LEA.L FILEN(PC),A1 ;GET FILE NAME
XCHF ;CHAIN FILE
XERR ; PROBLEM

*
FILEN OC.B 'NEXTPRGM' ,0

Note: The primitive returns only on error. EVEN

The CHAIN FILE primitive is used by the POOS monitor to
execute program files. The primitive chains from one
program to another according to the file type.

Address register A1 points to the chain file name. The
file type determines how the file is to be executed. If the
file is typed 'OB' or 'SY', then the 6S000 loader is called
(XLOF). If the file is typed 'BX' or 'EX', then the POOS
SASIC interpreter loads the file and begins executing at the
lowest line number. Likewise, if the file is typed 'AC',
then control returns back to the PO OS monitor and further
requests for console characters reference the file.

The XCHF call returns only if an error occurs during the
chain operation. All other errors, such as those occurring
in BASIC, return to the POOS monitor.

Parameters may be passed from one program to another
through the user TEMP variables located in the task control
block or through the system messeges buffers.

See also:

4.3.28 XEXZ - EXIT TO MONITOR W/COMMANO

Possible Errors:

50 = Invalid file name
53 = File not defined
60 = File space full
62 = No start address
63 = Illegal object tag
64 = Illegal sect ion
65 = File not loadable
71 = Nesting error
77 " Procedure not memory resident
Oisk errors

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-28

4.3.15 XCHX CONVERT BINARY TO HEX IN BUFFER

Mnemonic: XCHX
Value: $A068

Module: MPDOSK3
Format: XCHX

Registers: In D1.L = Number
(A1) = Output buffer

The CONVERT BINARY TO HEX IN BUFFER primitive converts a
32-bit number to its hexadecimal (base 16) representation.
The number is passed in data register 01 and a pointer to a
buffer in address register A1. The converted string
consists of eight hexadecimal characters followed by a null.

See also:

4.3.8 XCBH - CONVERT BINARY TO HEX.

Possible Errors: None

START MOVE.L #$80000004,01

LOOP MOVEA.L A6,A1 ;USER BUFFER
BSR.S OUTS ;OUT HEADING

DC.W MES1-*
XCHX ;CONVERT HEX

LOOP2 TST.B (A1)+ ;END?
BNE.S LOOP2 ;N

SUBQ.W #1,A1 ;Y
BSR.S OUTS

DC.W MES2-*
XCBX ;CONVERT DECIMAL

LOOP4 TST.B (A1)+ ;END?
BNE.S LOOP4 ;N

XPBC ;y, OUTPUT
SUBQ.L #1.01

CMPI.L #$7FFFFFFC,D1
BHS.S LOOP

XEXT
*
OUTS MOVEA.L (A7).AO ;GET ADDRESS

ADDQ.L #2, (A7) ;ADJUST PC
ADDA.W (AO)+.AO

OUTS2 MOVE.B (AO)+. (A1)+
BNE.S OUTS2

SUBQ.W #1,A1
RTS

*
MES1 DC.B $OA, $00 , 'Hex $' ,0
MES2 DC.B ' = ',0

EVEN
END START

x>TEST
Hex $80000004 = -2147483644
Hex $80000003 = -2147483645
Hex $80000002 = -2147483646
Hex $80000001 = -2147483647
Hex $80000000 = -2147483648
Hex $7FFFFFFF = 2147483647
Hex $7FFFFFFE = 2147483646
Hex $7FFFFFFD = 2147483645
Hex $7FFFFFFC = 2147483644
x>

(

(

()

6BOxO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-29

4.3.16 XCLF CLOSE FILE

Mnemonic: XCLF
Value: $A002

Module: MPOOSF
Format: XCLF

<status error return>

Re9isters: In 01.W & File 10

The CLOSE FILE primitive closes the open file as specified
by the file 10 in data register 01. If the file was opened
for sequential access and the file was updated, then the
ENO-OF-FILE marker is set at the current file pointer.

If the file was opened for random or shared access, then
the ENO-OF-FILE marker ·is updated only if the file was
extended (ie. data was written after the current ENO-Of-FILE
marker) .

If the file has been altered, the current date and time is
stored in the LAST UPOATE variable of the file directory.

All open files must be closed at or before the completion
of a task (or before disks are.removed from the system)!
Otherwise, directory information is lost and possibly even
the file itself.

Possible Errors:

52 = File not open
59 = Invalid slot #
75 = File locked
Oisk errors

ERROR

ERM1

MOVE.W 05,01
XCLF

BNE.S ERROR

CLR.L 01
MOVE.W 00,01
XCBM ERM1
XPLC

OC.B $OA,$OO

;GET FILE 10
;CLOSE FILE

;GET ERROR #
; CONVERT
;OUTPUT

OC.B 'POOS CLOSE ERR' ,0
EVEN

File 10 = (Oisk #) x 256 + (file slot index)

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES PAGE 4-30

4.3.17 XCLS

Mnemonic:
Value:

Module:
Format:

CLEAR SCREEN

XCLS
$A076
MPOOSK2
XCLS

Registers: None

Note: The clear screen characters are located in the
user TCB variable CSC$(A6).

The CLEAR SCREEN primitive clears the console screen. homes
the cursor. and clears the column counter. This function is
adapted to the type of console terminals used in the PODS
system.

The character sequence to clear the screen is located in
the task control block variable CSC$(A6). These characters
are transferred from the parent task to the spawned task
during creation. The initial characters come from the BIOS
module.

If CSC$ is nonzero. then the CLEAR SCREEN primitive outputs
up to four characters: one or two characters; an [ESC]
followed by a character; or an [ESC]. character. [ESC]. and
a final character. The one-word format allows for two
characters. The parity bi ts cause the [ESC] character to
precede each character.

If CSC$ is zero. then POOS makes a call into the BIOS for
custom clear screens. The entry point is B_CLS beyond the
BIOS table.

The MTERM utility normally maintains the CSC$ field.
although it can be altered under program control. The
initial definition of CSC$ is found in the MBIOS:SR file and
can be modified by doing a new SYSGEN.

See also:

4.3.73 XRCP - READ PORT CURSOR POSITION
CHAPTER 8 - BIOS

Possible Errors: None

XCLS
XPMC MES01

;CLEAR SCREEN
;OUTPUT MESSAGE

CSC$(A6) = E111 1111 E222 2222
\\

\\
\\
\\

\\
\\

\

MOVE.W CSC$(A6).00
BLT.S &10002
BGT.S &10004

MOVEA.L (AS) .AO
JSR B_CLS(AO)

BNE.S &10008

\ \\
\ \\

\ \

\

\

2nd character
2nd [ESC]

1st character
1st [ESC]

;GET CLEAR CHARACTERS. ESC?
; Y. INSERT ESC
;N
;N. USE BIOS
;CLEAR SCREEN

o
o

[)

c
c

(

(

(\

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-31

4.3.18 XCpy

Mnemonic:
Value:

Module:
Format:

COpy FILE

XCpy
$AOAE
MPDOSF
XCPY

<status error return>

Registers: In (A1) = Source file name
(A2) = Destination file name

Note: A [CTRL-C] terminates this primitive and
returns the error -1 in register DO.

The COPY FILE primitive copies the source file into the
destination file. The source file is pointed to by address
register A1 and the destination file is pointed to by
register A2. A [CTRL-C] halts the copy, prints 'AC' "to the
console, and returns with error -1.

The file attributes of the source file are automatically
transferred to the destination file.

Possible Errors:

-1 = Break file transfer
50 = Invalid file name
53 = File not defined
60 = File space full
61 = File already open
68 = Not PDOS disk
69 = No more file slots
70 = Position error
Disk errors

LEA.L FILES(PC),A1 ;SOURCE FILE NAME
LEA.L FILED(PC) ,A2 ;DEST. FILE NAME
XCPY

BNE.S ERROR

FILES DC.B
FILED DC.B

EVEN

'TEMP' ,0
'TEMP:BK/1' ,D

;COpy FILE
; PROBLEM
; CONTINUE

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMSLY PRIMITIVES PAGE 4-32

4.3.19 XCTB CREATE TASK BLOCK

Mnemonic: XCTS
Value: $A026

Module: MPOOSKl
Format: XCTS

<sta tus error return>

Registers: In OO.W = Task size (1k byte increments)
01.W = Task time.S/priority.S
02.W = I/O port
(AO) = Optional low memory pointer
(Al) = Optional high memory pointer
(A2) = Command line pointer or entry address

Out OO.L = Spawned task number

Note: If OO.W is positive, AD and Al are undefined.

If OO.W equals zero, then AD and Al are the
new task's memory bounds and A2 contains the
task's entry address.

If OO.W is negative, then AD and Al are the
new task's memory bounds and A2 points to the
task's command line.

The CREATE TASK primitive places a new task entry in the
POOS task list. Memory for the new task comes from either
the parent task or the system memory bit map. Data register
DO controls the creation mode of the new task as well as the
task size.

If register OO.W is positive,
contiguous memory block equal

then the first available
to OO.W (in 1K bytes) is

allocated to the new task. If there is not a block big
enough, then the upper memory of the parent task is
allocated to the new task. The parent task's memory is then
reduced by OO.W x lK bytes. Address register A2 points to
the new task command line. If A2 is zero, then the monitor
is invoked.

If register OO.W is zero, then registers AD and Al specify
the new task's memory limits. Register A2 specifies the
task's starting PC. The task control block begins at (AD)
and is immediately followed by an XEXT primitive. The task
user stack pointer is set at (A1). Thus. the new program
should allow $502 bytes at the low end and enough user stack
space at the upper end.

Continued on next page ...

If 00>0 then: OO=Task size
(A2):Task command line

(O=Monitor)

MOVEQ.L #10,00
MOVEQ.L #64,01
MOVEQ.L #1,02
SUSA.L A2.A2
XCTS

SNE.S ERROR

;10 K BYTES
; PRIORITY 64
;PORT 1
; CALL MON ITOR
;CREATE TASK

If 00=0 then: (A2)=Task entry address
AO-Al=New task memory limits

MOVEQ.L #0,00
MOVEQ.L #64,01
MOVEQ.L #1,02

;USE AO-Al SOUNDS
;PRIORITY 64
;PORT 1

LEA.L SRAM.AO ;TCB AOOR (START)
LEA.L
LEA.L
XCTS

ERAM.A1
P(PC) ,A2 ;PC

;CREATE TASK

o
o

o
!J.

(

(

{

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-33

(4.3.19 XCTB - CREATE TASK BLOCK continued)

If data register DO.W is negative, then registers AD and A1
specify the new task's memory limits. Register A2 points to
the new task command line. (If A2=O, then the monitor is
invoked.)

The command line is transferred to the spawned program via
a system message buffer. The maximum length of a command
line is 64 characters. When the task is scheduled for the
first time, the message buffers are searched for a command.
Messages with a source task equal to $FF are considered
commands and moved to the task's monitor buffer. The task
ClI then processes the line. If no command message is
found, then the monitor is called directly.

Data register D1.W specifies the new task's priority.' The
range is from 1 to 255. The larger the number, the higher
the priority.

Data register D2.W specifies the 1/0 port to be used by the
new task. If register D2.W is positive, then the port is
available for both input and output. If register D2.W is
negative, then the port is used only for output. If
register D2.W is zero, then no port is assigned. Only one
task may be assigned to anyone input port while many tasks
may be assigned to an output port. Hence, a port is
allocated for input only if it is available. An invalid
port assignment does not result in an error.

A call is made to D$INT in the debugger module. This
initializes all addresses, registers, breaks, and offsets.

Finally, the spawned task's number is returned in register
DO.l to the parent task. This can be used later to test
task status or to kill the task.

Possible Errors:

72 = Too many tasks
73 = Not enough memory

If DO=<O then: (A2}=Task command line
(O=Monitor)

AO-A1=New task memory limits

MOVEQ.L #O,DO
MOVEQ.L #64,D1
MOVEQ.L #1,02
LEA.L SRAM,AO

;USE AO-A1 BOUNDS
;PRIORITY 64
;PORT 1
;TCB ADDR (START)

LEA.l
LEA.L
XCTB

ERAM,A1
C(PC),A2 ;PC

;CREATE TASK
BNE.S ERROR

C DC.B 'PRGM1' ,0

D1=Task priority

D2=I/0 port

If D2=O, then phantom port (no I/O)

If D2>O, then port is used for 1/0

If D2<O, then port is used for output only

S80xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.20 XOEV

Mnemonic:
Value:

Module:
Format:

DELAY SET/RESET EVENT

XOEV
$A032
MPOOSKl
XOEV

<status error return>

Re9isters: In OO.L = Time
01.B = Event (+=Set, -=Reset)

Note: If OO.L=O, then the 01.B event is cleared.

The DELAY SET/RESET EVENT primitive places a timed event in
a system stack controlled by the system clock. Data
register OO.L specifies the time interval in clock tics.
When it counts to zero, then the event 01.B is set if
positive, or reset if negative.

If the event already exists in the stack, it is replaced by
the new entry. If the time specified in DO equals zero,
then any pending timed event equal to 01.B is deleted from
the stack.

If 01.B is positive, event 01.B is first cleared. If 01.B
is negative, event 01.B is set before exiting the primitive.

See also:

4.3.94 XSEF - SET EVENT FLAG W/SWAP
4.3.95 XSEV - SET EVENT FLAG
4.3.101 XSUI - SUSPEND UNTIL INTERRUPT
4.3.106 XTEF - TEST EVENT FLAG

Possible Errors:

83 = Delay event stack full

GETC XGCC
BNE.S GETC2

MOVEQ.L #100,00
MOVE.L #128,01
XOEV

BNE.S GETC
LSL.W #8,01
MOVE.B #9S,Ol
AOO.B PRT$ (AS), 01
XSUI
CMP.B 00,01

BEQ.S GETC
XRTM
MOVE.B 7(Al),00
CMP.B T(AS) ,DO

BEQ.S GETC
MOVE.L (Al)+,T(AS)
MOVE.L (Al),T+4(AS)
CLR.B T+8(AS)
BSR.S POSIT

~C. W 23*25S+ 11
OC.W 0

BRA.S GETC

PAGE 4-34

; CHARACTER?
;Y
;N, GET DELAY
;USER LOCAL EVENT
;OELAY 128 1 SECOND
;FULL
;GET 128/(PORT+96)

;SUSPENO
;CHARACTER EVENT?
;Y
; N, READ TIME
;GET LAST CHARACTER
;SAME TIME?
;Y, TRY AGAIN
;N, SAVE NEW TIME

;POSITION & OUTPUT TIME

;TRY AGAIN

o

~.

!" I

~

c

o

(

C:

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-35

4.3.21 XDFL DEFINE FILE

Mnemonic: XDFL
Value: $AOD4

Module: MPOOSF
Format: XDFL

<status error return>

Registers: In DO.W = # of contiguous sectors
(A1)=File name

The DEFINE FILE primitive creates a new file entry in a
PODS disk directory, specified by address register A1. A
PODS file nama consists of an alphabetic character followed
by up to 7 additional characters. An optional 3 character
extension can be added if preceded by a colon. Likewise,
the directory level and disk number are optionally specified
by a semicolon and slash respectively. The file name is
terminated with a null.

Oata register DO contains the number of sectors to be
initially allocated at file definition. If register 00 is
nonzero, then a contiguous file is created with DO sectors.
Otherwise, only one sector is allocated. Each sector of
allocation corresponds to 252 bytes of data.

A contiguous file facilitates random access to file data
since PDOS can directly position to any byte within the file
without having to follow sector links. A contiguous file is
automatically changed to a non-contiguous file if it is
extended with non-contiguous sectors.

Possible Errors:

50 = Invalid file name
51 = File already defined
55 = Fragmentation error
57 = File directory full
61 = File already open
68 = Not PO OS disk
Disk errors

FN

CLR.L DO ;SEQUENTIAL FILE
LEA.L FN(PC),A1 ;GET FILE NAME
XOFL ;DEFINE FILE

8NE.S ERROR ; ERROR

MOVEQ.L #100,00 ;RANOOM ACCESS FILE
LEA.L FN(PC),A1 ;GET FILE NAME
XDFL ;DEFINE CONTIGUOUS

BNE.S ERROR

DC.B
EVEN

'FI LENAME : EXT' ,0

DO.W> 0 Contiguous file with 00 sectors

DO.W = 0 Non-contiguous file

680xO PoOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.22 XDLF DELETE FILE

Mnemonic: XoLF
Value: $AOo6

Module: MPoOSF
Format: XoLF

<sta tus error return>

Registers: In (A1) = Fi 1e name

The DELETE FILE primitive removes the file whose name is
pointed to by address register A1 from the disk directory
and releases all sectors associated with that file for use
by other files on that same disk. A file cannot be deleted
if it is delete (*) or write (**) protected.

Possible Errors:

50 a Invalid file name
53 = File not defined
58 = File delete or write protected
61 = File already open
68 = Not PDOS disk
Disk errors

FN

PAGE 4-36

LEA.L FN(PC) .A1 ;GET FILE NAME PTR
XoLF

SNE.S ERROR

DC.S
EVEN

'TEMP/2' ,0

;oELETE FILE
;ERROR
;NORMAL RETURN

o
o

i0:
I.V

(

c

(\

c\

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.23 XDMP DUMP MEMORY FROM STACK

Mnemonic:
Value:

Module:
Format:

XDMP
$A04A
MPDOSK3
XDMP

Registers: In USP.L • <# of bytes>.W
<start address>.L

Out USP.L = USP.L + 6

The DUMP MEMORY FROM STACK primitive dumps a block of
memory to the console as specified by two parameters on the
user stack (USP). The left side of the output is a
hexadecimal dump and the right side is a masked ($7F) ASCII
dump.

To use this primitive, first push a 32-bit address and then
a 16-bit number of the amount of memory to be dumped. The
primitive will automatically clean up the user stack.

See also:

4.3.5 XBUG - DEBUG CALL
4.3.75 XRDM - DUMP REGISTERS
PB - PDOS DEBUGGER (chapter 3)

Possible Errors: None

Example:

O/OOOOOOOO:487AFFFE
2 O/OOOOOO04:3F3COO20
3 O/00000008:A04A
4 O/OOOOOOOA:AOOE
5 O/OOOOOOOC: 0/00000000

x>TEMP

START PEA.L START(PC)
MOVE.W #32,-(A7)
XDMP
XEXT
END START

OOOODDOO: 487A FFFE 3F3C 0020 A04A AOOE 044F 5248 Hz .. ?< .. J ... ORH
00000D10: 20CC 20C9 43EE 068E 4298 B1C9 65FA 2049 .. C ... B ... e.-I
x>

PAGE 4-37

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-38

4.3.24 XDTV

Mnemonic:
Value:

Module:
Format:

Registers: In

Vector table:

DEFINE TRAP VECTORS

XDTV
$A024
MPDOSK1
XDTV

D1.L
(AO)
(A 1)

TVCZ FEDC BAS8 7654 3210
Table base address
Vector table address

DC.L TRAP #O-<BASE ADR>

DC.L TRAP #15-<BASE AOR>
DC.L ZDIV-<BASE ADR>
DC.L CHK-<BASE ADR>
DC.L TRAPV-<BASE ADR>
DC.L TRACE-<BASE ADR>

Note: The vector table size is variable and each
entry corresponds to non-zero bits in the mask
resister (D1.L). Each entry is a long signed
displacement from the base address register.

The DEFINE TRAP VECTORS primitive loads user routine
addresses into the task control block exception vector
variables. Each task has the option to process its own
TRAP, zero divide, CHK, TRAPV, andlor trace exceptions.

Data register 01 selects which vectors are to be loaded
according to individual bits corresponding to vectors in the
vector table pointed to by address register A1. Bits 0
through 1S (right to left) correspond to TRAPs 0 through 15,
zero divide, CHK, TRAPV, and trace exceptions. A 1 bit
moves a vector from the vector table (biased by base address
AO) into the task control block.

When an exception occurs, the task control block is checked
for a corresponding non-zero exception vector. If found.
then the return address is pushed on the user stack (USP)
followed by the exception address and condition codes. PDOS
next moves to user mode and executes a return with condition
codes (RTR). This effectively acts like a jump subroutine
with the return address on the user stack.

Continued on next page ...

VCON
SVECT

VT

EQU
TVCZFEDCBA9876543210

%11111000000000100001
MOVE.L #VCON,D1 ;GET CONTROL VAR
LEA.L VT(PC),AO ;POINT TO TABLE
MOVEA. L AO ,A 1
XDTV

DC.L TRAPOO-VT
DC.L TRAP05-VT
DC.L TRAP15-VT
DC.L ZDIV-VT
DC.L CHKP-VT
DC.L TRPV-VT
DC.L TRCE-VT

;BASE=TABLE
;SET VECTORS

;TRAP #0
;TRAP #5
;TRAP #15
;ZERO DIVIDE
;CHK PROCESSOR
; TRAPV PROCESSOR
; TRACE

D1.L TVCZ FEDCBAS876543210
\\\\ \ \

\\\\ \ TRAPs #0-#15
\\\\ Zero divide
\\\ CHK
\\ ______ TRAPV

\ Trace exception

IF <excp>$(A6) THEN 1) Push return on USP
2) Push xxx$ (AS) on USP
3) Push CCs on USP
4) Move to user mode
5) Exit wi th RTR

ELSE PODS error routine

," I ·c."·'····

A' ,j

(

(:

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(4.3.24 XDTV - DEFINE TRAP VECTORS continued)

The trace processi n9 h handled dHferently. If the
processor h in supervhor mode when e trace exception
occurs, the trace bit is cleared and the excepHon is
dismissed. The processor remains in supervisor mode. If
the processor is in user mode and there is a non-zero trace
variable in the task control block, then the trace is a9ain
disabled, the trace processor address is pushed on the
supervisor stack along with status, and a return from
exception is executed (RTE).

Possible Errors: None

IF <sup>

PAGE 4-39

THEN 1) Disable trace
2) Exit in supervisor mode

ELSE IF TRC$(A6) THEN 1) Disable trace·
2) Leave on stack
3) Push TRC$(A6)
4) Push SR+$2000
5) Exit with RTE

ELSE PDOS error routine

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.25 XERR RETURN ERROR DO TO MONITOR

Mnemoni c:'
Value:

Module:
Format:

XERR
$AOOC
MPOOSK1
XERR

Registers: In OO.W = Error code

The RETURN ERROR 00 TO MONITOR primitive exits to the POOS
monitor and passes an error code in data ragister 00. PODS
prints 'PODS ERR', followed by the dacima1 error number.

The error call can be intercepted by changing the value of
the ERR$ variable in the task TCB. This allows you to
customize your own monitor.

See also:

4.3.27 XEXT - EXIT TO MONITOR
4.3.28 XEXZ - EXIT TO MONITOR W/COMMANO

Possible Errors: None

"

RERR

RERR2

XRSE
BNE.S RERR

CMPI.W #56,00
BNE.S RERR2

XCLF
BNE.S RERR2

RTS

XERR

PAGE 4-40

;REAO SECTOR
;ERROR

;EOF?
;N
;Y, CLOSE FILE

;RETURN ERROR

c
o

~,

i"",)

0
C I,

{/'

C

c

SBOxO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-41

4.3.26 XEXC

Mnemonic:
Value:

Module :
Format:

EXECUTE PDOS CALL D7.W

XEXC
$A030
MPDOSK1
XEXC

Registers: In D7.W = Aline PDOS CAll

The EXECUTE PDOS CAll D7.W primitive executes a variable
PDOS primitive contained in data register D7. Any registers
or error conditions apply to the corresponding PDOS call.

Possible Errors: Call dependent

*
*

*
APDF

APPEND FILE

AF <file1>,<file2>

MOVE.W #XAPF$,D7 ;APPEND COMMAND
BRA. S RNFL02

* COPY FILE
*
*
*
CPYF

*

CF <file1>,<file2>

MOVE.W #XCPY$,D7 ;COPY COMMAND
BRA.S RNFL02

* RENAME FILE

* RN <file1>,<file2>
*
RNFL MOVE.W #XRNF$,D7 ; RENAME COMMAND
*
RNFL02 XGNP ; SOURCE FILE

BLE.S ERRS7
MOVEA.L A1,A2 ; SAVE
XGNP ;DESTINATION FILE

BLE.S ERRS7
EXG.L A1,A2
XEXC ;EXECUTE D7.W

BNE.S RNFL04 ;ERROR
XEXT ;RETURN

*
ERR67 MOVEQ.L #67,DO ;PARAMETER ERROR
*
RNFL04 XERR ;ERROR

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.27 XEXT

Mnemonic:
Value:

Module:
Format:

EXIT TO MONITOR

XEXT
$AOOE
MPOOSK1
XEXT
(Always exits to monitor)

Registers: None

The EXIT TO MONITOR primitive exits a user program and
returns to the PO OS monitor.

The exit can be intercepted by changing the value of the
EXT$ variable in the task TCB. This primitive allows you to
customize your own monitor.

See also:

4.3.25 XERR - RETURN ERROR DO TO MONITOR
4.3.28 XEXZ - EXIT TO MONITOR W/COMMAND

Possible Errors: None

PAGE 4-42 o
c

XCLF ;CLOSE FILE. ERROR?
BNE.S ERROR ;Y. DO ERROR CALL

XEXT ;N. RETURN TO MONITOR

()

(680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-43

(4.3.28 XEXZ - EXIT TO MONITOR W/COMMAND

Mnemonic: XEXZ
Value: $A04C

Module: MPDOSK1
Format: XEXZ

(ex its to monitor)

Registers: In (A1) = Conrnand string

The EXIT TO MONITOR WI COMMAND primitive exi ts a user
program and returns to the PDOS monitor. In addition, the
monitor conrnand buffer is loaded with the string pointed to
by address register A1. This is useful in passing back
parameters to the monitor or to chain to another program.

The exit can be intercepted by changing the value of the
EXT$ variable in the task TCB. This primitivie allows you
to customize your own monitor.

See also:

4.3.25 XERR - RETURN ERROR DO TO MONITOR
4.3.27 XEXT - EXIT TO MONITOR

(~ Possible Errors: None

(~~

(~

EXIT LEA.L CMD(PC),A1 ;GET COMMAND
XEXZ ;EXIT

CMD DC.B 'PRGM2' ,0

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.29 XFAC

Mnemonic:
Value:

Module:
Format:

FILE ALTERED CHECK

XFAC
$AOCE
MPDOSF
XFAC

<status error return>

Registers: In (Al) = FILE NAME
Out CC = File not altered

CS = File altered
NE = Error

The FILE ALTERED CHECK primitive looks at the alter bit
(bit $80) of the file pointed to by address register Al. If
the bit is zero (not altered), then the primitive returns
with the carry status bit clear.

If the alter bit is set (file altered), then it is cleared
and the primitive returns with carry set. If either case,
the bit is always cleared.

Possible Errors: Disk errors

XGNP
XFAC

BNE.S @0002
BCC.S FALSE

BRA.S TRUE

PAGE 4-44

;GET PARAMETER
;CHECK FOR FILE ALTERED
;ERROR
;NOT ALTERED, RETURN FALSE
;ALTERED, TRUE

;f1c.,.,.,
I~/

c

~-,

.~

c
r. ; c····"'·'··

(

c

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.30 XFBF FLUSH BUFFERS

Mnemonic: XFBF
Value: $AOF8

Module: MPDOSF
Format: XFBF

<status error return>

Registers: None

The FLUSH BUFFERS primitive forces all file slots with
active channel buffers to write any updated data to the
disk. It thus does a checkpoint of any open and altered
file.

Possible Errors: Disk errors

LOOP MOVEQ.L #5*TPS.DO
MOVE.W #128.D1
XDEV
XSUI
XFBF
BRA.S LOOP

PAGE 4-45

;DELAY 5 SECS
EVEN 128

; SUSPEND
;CHECK POINT DISK

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.31 XFFN

Mnemonic:
Value:

Module:
Forma t:

FIX FILE NAME

XFFN
$AOAO
MPDOSF
XFFN

<status error return>

Registers: In (A1) = File name
Out DO.L = Disks(4th/3rd/2nd/1st)

(A1) = MWB$, Fixed file name

The FIX FILE NAME primitive parses a character string for
file name, extension, directory level, and disk number. The
results are returned in the 32-character monitor work buffer
(MWB$(A6». Data register DO is also returned with the disk
number. The error return is used for an invalid file name.

The monitor work buffer is cleared and the following
assignments are made:

0(A1)
8(A1)

11 (A 1)

Fil e name
File extension
File directory level

System defaults are used for the disk number and file
directory level when they are not specified in the file
name.

See also:

4.3.76 XRDN - READ DIRECTORY ENTRY BY NAME

Possible Errors:

50 = Invalid file name

(A1) ==>

XGLU
XFFN

BNE.S ERROR

PAGE 4-46

;GET INPUT LINE
;FIX FILE NAME
;ERROR IN NAME

o 2 4 6 8 10 12 14 16
I t I I I I I --- --- --- --- --- --- --- ---

I File name I Ext ILl 00==>
, --------------- ----- - -------

,', 'I

···c·.··'·'·

(~/

("'"

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES

4.3.32 XFTD FIX TIME & DATE

Mnemonic: XFTD
Value: $A058

Module: MPDOSK3
Format: XFTD

Registers: Out DO.W = Hours * 256 + Minutes
D1.W = (Year * 16 + Month) * 32 + Day

The FIX TIME & DATE primitive returns a two-word encoded
time and date generated from the system timers. The
resultant codes include month, day, year, hours, and
minutes. The ordinal codes can be sorted and used as inputs
to the UNPACK DATE (XUDT) and UNPACK TIME (XUTM) primitives.

Data register DO.W
contains the date.
time stamping items.

See also:

contains the time and register D1.W
This format is used throughout PDOS for

4.3.57 XPAD - PACK ASCII DATE
4.3.77 XRDT - READ DATE
4.3.90 XRTM - READ TIME
4.3.107 XUAD - UNPACK ASCII DATE
4.3.108 XUDT - UNPACK DATE
4.3.112 XUTM - UNPACK TIME

Possible Errors: None

TSTP

PAGE 4-47

LEA.L TSTP(PC),AO ;SAVE AREA
XFTD ;GET TIME STAMP
MOVEM.W DO-D1,(AO) ;SAVE TIME & DATE

DS.W 2 ;TIME STAMP SAVE

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.33 XFUM

Mnemonic:
Value:

Module:
Format:

FREE USER MEMORY

XFUM
$A040
MPOOSK1
XFUM

<status error return>

Registers: In OO.W = Number of K bytes
(AO) = Beginning address

The FREE USER MEMORY primitive deal locates user memory to
the system memory bit map. Data register DO.W specifies how
much memory is to be deallocated while address register AO
points to the beginning of the data block.

Memory thus deallocated is available for any task use
including new task creation.

Possible Errors:

79 = Memory error

MOVEQ.L #20,00 ;FREE 20K
MOVEA.L A2,AO ;AT A2

PAGE 4-48

XFUM ;FREE MEMORY
BNE.S ERROR

r", "'",,',\,', ~'.'

I (

(

(

(

6BOxO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.34 XGCB CONDITIONAL GET CHARACTER

Mnemonic:
Value:

Module:
Format:

XGCB
$A04B
MPOOSK2
XGCB

<status return>

Registers: Out DO.L Character in bits 0-7
SR EQ No character

LO [CTRL-C]
LT [ESC]
MI [CTRL-C] or [ESC]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGCB ignores
[CTRL-C] and [ESC].

The CONDITIONAL GET CHARACTER primitive checks for a
character from first, the input message pointer (IMP$(A6»,
second, the assigned input file (ACI$(A6», and then
finally, the interrupt driven input character buffer
(PRT$(A6». If a character is found, it is returned in the
right byte of data re9ister DO.L and the rest of the
register is cleared.

If there is no input message, no assigned console port
character, and the interrupt buffer is empty, the status is
returned as 'EQ'.

The status is returned 'LO' and the break flag cleared if

the returned character is a [CTRL-C]. The input buffer is

also cleared. Thus, all characters entered after the
[CTRL-C] and before the XGCB call are dropped.

The status is returned 'LT' and the break flag cleared if
the returned character is the [ESC] character.

For all other characters, the status is returned 'HI' and
'GT'. The break flag is not affected.

Possible Errors: None

LOOP

PAGE 4-49

XGCB ; CHARACTER?
BEQ.S NONE ;N
BLO.S QUIT :Y t hC, DONE
BL T.S NEXT ; CONTINUE

CMPI.B #' 0' ,DO ; NUMBER?

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.35 XGCC

Mnemonic:
Value:

Module:
Format:

GET CHARACTER CONDITIONAL

XGCC
$A078
MPDOSK2
XGCC

<status return>

Registers: Out DO.L = Character in bits 0-7
SR = EQ No character

LO [CTRL-C]
LT [ESC]
MI [CTRL-C] or [ESC]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGCC ignores
[CTRL-C] and [ESC].

The GET CHARACTER CONDITIONAL primitive checks the
interrupt driven input character buffer and returns the next
character in the right byte of data register DO.L. The rest
of the register is cleared. The input buffer is selected by
the input port variable (PRT$) of the TCB.

If the buffer is empty. the 'EQ' status bit is set. If the
character is a [CTRL-C], then the break flag and input
buffer are cleared, and the status is returned 'LO', If the
character is the [ESC] character, then the break flag is
cleared and the status is returned 'LT'.

If no special character is encountered, the character is
returned in register DO and the status set 'HI' and 'GT'.

If no port has been assigned for input (ie. port 0 or
phantom port), then the routine always returns an 'EQ'
status.

Possible Errors: None

*
WAIT
*
CONT

PAGE 4-50

XGCC ;CHARACTER?
BEQ.S CONT ; N, CONTI NUE
BLO.S QUIT ;Y, AC, QUIT
BLT.S NEXT ;Y, ESC, GOTO NEXT

XGCR ;Y, WAIT CHARACTER

c

c

c

c
c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.36 XGCP

Mnemonic:
Value:

Module:
Format:

GET PORT CHARACTER

XGCP
$A09E
MPOOSK2
XGCP

<status return>

Registers: Out DO.L = Character in bits 0-7
SR = LO [CTRL-C]

LT. ... [ESC]
MI [CTRL-C] or [ESC]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGCP ignores
[CTRL-C] and [ESC].

The GET PORT CHARACTER primitive checks for a character in
the interrupt driven input character buffer. If a character
is found, it is returned in the right byte of data register
DO.L and the rest of the register is cleared. The input
buffer is selected by the input port variable (PRT$) of the
TCB.

If the interrupt buffer is empty, the task is suspended
pending a character interrupt.

The status is returned 'LO' and the break flag cleared if
the returned character is a [CTRL-C]. The input buffer is
also cleared. Thus, all characters entered after the
[CTRL-C] and before the XGCR call are dropped.

The status is returned 'LT' and the break flag cleered if
the returned character is the [ESC] character.

For all other characters, the status is returned 'HI' and
'GT'. The break flag is not affected.

If no port has been assigned for input, (ie.
phantom port), then an error 86 occurs.

Possible Errors: None

port 0 or

LOOP XGCP
BLO.S QUIT
BL loS NEXT

PAGE 4-51

;GET PORT CHARACTER
;AC, DONE
; CONTINUE

CMPI.B #'0' ,DO ;NUMBER7

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.37 XGCR

Mnemonic:
Value:

Module:
Format:

GET CHARACTER

XGCR
$A07A
MPDOSK2
XGCR

<status return>

Registers: Out DO.L Character in bits 0-7
SR LO [CTRL-C]

LT [ESC]
MI [CTRL-C] or [ESC]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGCR ignores
[CTRL-C] and [ESC].

The GET CHARACTER primitive checks for a character from
first, the input message pointer (IMP$(A6»; second, the
assigned input file (ACI$(A6}): and then finally, the
interrupt driven input character buffer (PRT$(A6». If a
character is found, it is returned in the right byte of data
register DO.L and the rest of the register is cleared.

If there is no input message, no assigned console port
character, and the interrupt buffer is empty, the task is
suspended pending a character interrupt.

The status is returned 'LO' and the break flag cleared if
the returned character is a [CTRL-C]. The input buffer is
also cleared. Thus, all characters entered after the
[CTRL-C] and before the XGCR call are dropped.

The status is returned 'LT' and the break flag cleared if
the returned character is the [ESC] character.

For all other characters, the status is returned 'HI' and
'GT'. The break flag is not affected.

If no port has been assigned for input, (ie.
phantom port), then an error B6 occurs.

Possible Errors: None

port 0 or

LOOP XGCR
BLO. S QUIT
BLT. S NEXT

PAGE 4-52

;GET CHARACTER
;"C, DONE
; CONTINUE

CMPI.B #'0' ,DO ;NUMBER?

·c····"'r ... I" '_I

C'· ' .. \ I ~ -'

c

C'I

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEM8LY PRIMITIVES

4.3.38 XGLB

Mnemonic:
Value:

Module:
Format:

GET LINE IN BUFFER

XGLB
$A07C
MPDOSK2
XGLB

{BLT.x ESCAPE} optional
<status return>

Registers: In (Al) = Buffer address
Out Dl.L = Number of characters

SR = EQ ... [CR] only
LT ... [ESC]
LO ... [CTRL-C]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGLB·ignores
[CTRL-C] and [ESC].

The GET LINE IN BUFFER primitive gets a character line into
the buffer pointed to by address register Al. The XGCR
primitive is used by XGLB and hence characters can come from
a memory message, a file, Of the task console port.

The buffer must be at least 80 characters in length. The
line is delimited by a carriage return. The status returns
EQUAL if only a [CR] is entered.

If an [ESC] is entered, the task exits to the PDOS monitor
unless a 'BLT' instruction immediately follows the XGLB
call. If such is the case, then XGLB returns with status
set at 'LT'.

If the assigned console flag (ACI$(A6» is set, then the
'&' character is used for character sUbstitutions. '&0' is

replaced with the last system error number. '&1' is
replaced with the first parameter of the command line, '&2'
with the second, and so forth up to '&9'.

The command line can be edited with various system defined
control characters. A [BACKSPACE] ($08) moves the cursor
one character to the left. A [CTRL-F] ($OC) moves the
cursor one character to the right. A [RUB] ($7F) deletes
one character to the left. A [CTRL-D] ($04) deletes the
character under the cursor. The cursor need not be at the
end of the line when the [CR] is entered.

See also:

4.3.40 XGLU - GET LINE IN USER BUFFER

Possible Errors: None

OPEN

*
OPEN2

OPEN4

*
OPERR
*
OPEN10

MESOl
BUF

PAGE 4-53

XPMC MESOl ; PROMPT
LEA.L BUF (PC).A2 ;GET BUFFER ADDRESS
XGLB ;GET LINE IN BUFFER

BLT.S OPEN ;DO NOT EXIT ON ESC
BEQ.S OPEN10 ; USE DEF AUL T

XSOP ;OPEN FILE
BNE.S OPEN4 ; ERROR

CMPI.W #53,DO ; 'NOT DEFINED' ERROR?
BNE.S OPERR ;N

XDFL ;Y, DEFINE FILE, ERROR
BEQ.S OPEN2 ;N

XERR ;Y, REPORT ERROR

DC.B $OA,$OD,'FILE=',0
DS.B 80

BaoxO POOS 3.2 REFERENCE MANUAL CHAPTER 4 .POOS ASSEMBLY PRIMITIVES

4.3.39 XGLM

Mnemonic:
Value:

Module :
Format:

GET LINE IN MONITOR BUFFER

XGLM
$A07E
MPOOSK2
XGLM

{BLT.x ESCAPE} optional
<status return>

Registers: Out (A1) = String
01.L = Number of characters

SR = EQ ... [CR] only
LT ... [ESC]
LO ... [CTRL-C]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGLM ignores
[CTRL-C] and [ESC].

The GET LINE IN MONITOR BUFFER primitive gets a character
line into the monitor buffer located in the task control
block. The XGCR primitive is used by XGLM and hence,
characters can come from a memory message, a file, or the
task console port.

The buffer his a maximum length
delimited by a carriage return.
only a [CR] is entered.

of 80 characters and is
The status returns EQUAL if

If an [ESC] is entered, the task exits to the POOS monitor
unless a 'BLT' instruction immediately tollows the XGLM
call. If such is the case, then XGLM returns with status
set at' LT' .

If the assigned console flag (ACI$(A6» is set, then the
'&' character is used for character substitutions. '&0' is
replaced with the last system error number. '&1' is
replaced with the first parameter of the command line, '&2'
with the second, and so forth up to '&g'.

The command line can be edited with verious system-defined
control characters. A [BACKSPACE] ($08) moves the cursor
one character to the left. A [CTRL-L] ($OC) moves the
cursor one character to the right. A [RUB] ($7F) deletes one
character to the left. A [CTRL-O] ($04) deletes the
character under the cursor. The cursor need not be at the
end of the line when the [CR] is entered.

The last command line can be recalled to the buffer by
entering a [CTRL-A] ($01). This line can then be edited
using the above control characters.

Possible Errors: None

PAGE 4-54 (}

o

XGLM ;GET LINE
BEQ.S NONE

o

c

c-

c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.40 XGLU

Mnemonic:
Value:

Module:
Format:

GET LINE IN USER BUFFER

XGLU
$AD80
MPDOSK2
XGLU

{BLT.x ESCAPE ;optional}
<status return>

Registers: Out (A1) = String
D1.L = Number of characters

SR = EQ ... [CR] only
LT. .. [ESC]
LO ... [CTRL-C]

Note: If the ignore control character bit ($02)
of the port flag is set, then XGLU ignores
[CTRL-C] and [ESC].

The GET LINE IN USER BUFFER primitive gets a character line
into the user buffer. Address register A6 normally points
to the user buffer. The XGCR primitive is used by XGLU;
hence, characters come from a memory message, a file, or the
task console port. The line is delimited by a carriage
return. The status returns EQUAL if only a [CR] is entered.
Address register A1 is returned with a pointer to the first
character.

The user buffer is located at the beginning of the task
control block and is 256 characters in length. However, the
XGLU routine limits the number of input characters to 78
plus two nulls.

If an [ESC] ($1B) is entered, the task exits to the PDOS
monitor unless a 'BLT' instruction immediately follows the
XGLU call. If such is the case, then XGLU returns with
status set at 'LT'.

If the assigned console flag (ACI$(A6» is set, then the
'&' character is used for character SUbstitutions. '&0' is
replaced with the last system error number. '&1' is
replaced with the first parameter of the command line, '&2'
with the second, and so forth up to '&9'.

The command line can be edited with various system defined
control characters. A [BACKSPACE] ($OB) moves the cursor
one character to the left. A [CTRL-~] ($OC) moves the
cursor one character to the right. A [RUB] ($7F) deletes one
character to the left. A [CTRL-D] ($04) deletes the
character under the cursor. The cursor need not be at the
end of the line when the [CR] is entered.

Possible Errors: None

GETN

*
GETN2

PAGE 4-55

MOVEQ. L #DNUM, D4 ;GET DEFAULT #
XGLU ;GET LINE

BEQ.S GETN2 ;USE DEFAULT
XCBD ;CONVERT #, ERROR?

BLE.S ERROR ;Y
MOVE.L D1,D4 ;N

MOVE.L D4,-(A7) ;SAVE #

680xO PoOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.41 XGML

Mnemonic:
Value:

Module:
Format:

Registers: Out

GET MEMORY LIMITS

XGML
$A010
MPoOSK1
XGML

(AO)
(A1)
(A2)
(AS)
(AS)

= End TCB (TBE$)
= Upper memory limit (EUM$-USZ)

Last loaded address (BUM$)
= System RAM (SYRAM)
.. Task TCB

The GET MEMORY LIMITS subroutine returns the user task
memory limits. These limits are defined as the first usable
location after the task control block ($500 beyond address
register AS) and the end of the user task memory. The task
may use up to but not including the upper memory limit.

Address register AD is returned pointing to the beginning
of user storage (which is the end of the TeB). Register A1
points to the upper task memory limit less $100 hexadecimal
bytes for the user stack pointer (USP). Register A2 is the
last loaded memory address as provided by the PoOS loader.
Address registers AS and AS are returned with the pointers
to system RAM (SYRAM) and the task control block (TCB).

Possible Errors: None

START XGML
*
START2 CLR.B (A2)+

CMPA.L A1.A2
BLO.S START2

PAGE 4-56

;GET MEMORY LIMITS

;CLEAR MEMORY
;oONE?
;N

o

c
c

I'

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.42 XGMP

Mnemonic:
Value:

Module:
Format:

GET MESSAGE POINTER

XGMP
$A004
MPDOSK1
XGMP

<status return>

Registers: In DO.L = Message slot number (0 .. 15)
Out DO.L = Source task # (-1 = no message)

SR = EQ Message (Event[64+Message slot #]=0)
NE No message

DO.L = Error number 83 if no message
(A1) = Message

The GET MESSAGE POINTER primitive looks for a task message
pointer. If no message is ready, then data register DO
returns with a minus one (-1) and status is set to 'Not
Equa 1 ' .

If a message is waiting, then data register DD returns with
the source task number, address register A1 returns with the
message pointer, event (64 + message slot #) is set to zero
indicating message received, and status is returned equal.

See also:

4.3.44 XGTM - GET TASK MESSAGE
4.3.48 XKTM - KILL TASK MESSAGE
4.3.96 XSMP - SEND MESSAGE POINTER
4.3.99 XSTM - SEND TASK MESSAGE

Possible Errors:

83 = Message slot empty

PAGE 4-57

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES PAGE 4-58

4.3.43 XGNP

Mnemonic:
Value:

Module :
Format:

GET NEXT PARAMETER

XGNP
$A05A
MPOOSM
XGNP

<status return>

Registers: Out SR = lO No parameter
[(A1)=0]

EQ Null Parameter
[(A1)=0]

HI Parameter
[(A1)=PARAMETER]

The GET NEXT PARAMETER primitive parses the monitor buffer
for the next command parameter. The routine does this by
maintaining a current pointer into the command line buffer
(ClB$) and a parameter delimiter (CMO$).

The XGNP primitive clears all leading spaces of a
parameter. A parameter is a character string delimited by a
space, comma, period, or nUll. If a parameter begins with a
left parenthesis, then all parsing stops until a matching
right parenthesis or null is found. Hence, spaces, commas,
and periods are passed in a parameter when enclosed in
parentheses. Parentheses may be nested to any depth.

A 'lO' status is returned if the last parameter delimiter
is a null or period. XGNP does not parse past a period. In
this case, address register A1 is returned pointing to a
null string.

An 'EQ' status is returned if the last parameter delimiter
is a comma and no parameter follows. Address register A1 is
returned pointing to a null string.

A 'HI' status is returned if a valid parameter is found.
Address register A1 then points to the parameter.

Possible Errors: None

SPAC MOVE.B SOK$ (A6), DO ;GET SYSTEM DISK #

XGNP ;GET PARAMETER, OK?
BlS.S SPAC02 ;N, USE DEFAULT

XCOB :Y t CONVERT, OK?
BlE.S ERR67 ;N. ERROR

MOVE.l 01,00 ;Y
*
SPAC02 XSZF ;GET DISK SIZE

BNE.S ERROR ;PROBlEM

x>MASM SOURCE,BIN lIST ERR.SP
x>CT (ASM SOURCE,BIN),15,,3
x>OO «DO 00),00)

x>lS.LS

x>MASM SOURCE, "ERR

c
c

o

o
o

!

c

()

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.44 XGTM

Mnemonic:
Value:

Module:
Format:

GET TASK MESSAGE

XGTM
$A01E
MPDOSKl
XGTM

<status return>

Registers: In (Al) = Buffer address
Out DO.L. Source task #

(-1 • no message)
SR = EQ message found

NE no message

The GET TASK MESSAGE primitive searches the POOS message
buffers for a message with a destination equal to the
current task number. If a message is found, it is moved to
the buffer pointed to by address register Al. The message
buffer is then released, and the status is set EQUAL. If no
message is found, status is returned NE.

The buffer must be at least 64 bytes in length. (This is a
configuration parameter.) The message buffers are serviced
on a first in, first out besis (FIFO). Messages are data
independent and pass any type of binary data.

See also:

4.3.42 XGMP - GET MESSAGE POINTER
4.3.48 XKTM - KILL TASK MESSAGE
4.3.96 XSMP - SEND MESSAGE POINTER
4.3.99 XSTM - SEND TASK MESSAGE

Possible Errors: None

LOOP

NONE

BUFFER

LEA.L BUF(PC) ,Al
XGTM

BNE.S NONE
XPCL
XPLC
BRA.S LOOP

OS.B 64

PAGE 4-59

;GET BUFFER ADR
;LOOK FOR MESSAGE
;NONE
;OK, OUT CRLF
;OUT MESSAGE
;LOOK AGAIN

;MESSAGE BUFFER

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.45 XGUM

Mnemonic:
Value:

Module:
Format:

GET USER MEMORY

XGUM
$A03E
MPOOSK1
XGUM

<status error return>

Registers: In OO.W = Number of K bytes
Out (AO) = Beginning memory address

(A1) = End memory address

The GET USER MEMORY primitive searches the system memory
bit map for a contiguous block of memory equal to OO.W k
bytes. If found, the 'EQ' status is set, address registers
AO and A1 are returned the the start and end memory address,
and the memory block is marked as allocated in the bit map.

See also:

4.3.33 XFUM - FREE USER MEMORY

Possible Errors:

73 = Not enough memory

GETM CLR.W -(A7)
MOVEQ.L #10,00
XGUM

BNE.S &lGM02
MOVE.L AO,AV(A6)
AOOQ.W #$04, (A7)

•
&lGM02 RTR

PAGE 4-60

;PUSH .NE.
;GET 10K BYTES

;ERROR
; SAVE
;RETURN .EQ.

;RETURN

o
c

c

c
o

I.
I

I ..

(

c

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.46 XISE INITIALIZE SECTOR

Mnemonic: XISE
Value: $AOCO

Module: MPDOSF
Format: XISE

<status error return>

Registers: In DO.B. Disk number
D1.W c logical sector number
(A2) • Buffer address

The INIT SECTOR primitive is a system-defined,
hardware-dependent program which writes 256 bytes of data
from a buffer (A2) to a logical sector number (01) on disk
(DO). This routine is meant to be used only for disk
initialization and is equivalent to the WRITE SECTOR (XWSE)
primitive for all sectors except O. Sector 0 is not checked
for the PDOS 10 code.

See also:

CHAPTER 8 BIOS
4.3.85 XRSE - READ SECTOR
4.3.88 XRSZ - READ SECTOR ZERO
4.3.118 XWSE - WRITE SECTOR

Possible Errors:

Disk errors

lOOP

PAGE 4-61

MOVEQ.l DSKN,DO ;GET DISK #
MOVEQ.l #0,01 ;START AT SECTOR
lEA.l BUF(PC),A2 ;GET BUFFER PTR

XISE ;WRITE TO DISK
BNE.S ERROR ;ERROR

ADDQ.W #1,01 ;MOVE TO NEXT
CMPI.W #DISKZ,01 ;DONE?

BlO.S lOOP ;N

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES PAGE 4-62

4.3.47 XKTB

Mnemonic:
Value:

Module:
Format:

KILL TASK

XKTB
$AOFA
MPOOSK1
XKTB

<status error return>

Registers: In OO.B = Task number

Note: If OO.B equals zero, then kill current task.
If OO.B is negative, then kill task without
allocating task memory to system bit map.

The KILL TASK primitive removes a task from the POOS task
list and optionally returns the task's memory to the system
memory bit map. Only the current task or a task spawned by
the current task can be killed. Task 0 cannot be killed.

The kill process includes releasing the input port assigned
to the task and closing all files associated with the task.

The task number is specified in data register OO.B. If
register OO.B equals zero, then the current task is killed
and its memory deallocated in the system memory bit map.

If OO.B is positive, theh the selected task is killed and
its memory deallocated. If OO.B is negative, then task
number ABS(OO.B) is killed, but its memory is not
deallocated in the memory bit map.

See also:

4.3.19 XCTB - CREATE TASK BLOCK

Possible Errors:

74 No such task
76 Task locked

PRENO CLR.B DO
XKTB

BNE.S ERROR

If 00=0, then ki 11 self
memory

If 00>0, then ki 11 task
memory

If 00<0, then ki 11 task

;KILL SELF
;CALL CURRENT TASK

& deallocate

DO & deallocate

ABS(OO) & do not
deallocate memory

c

,4

.~-'

I. c .. ·"····'·

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES

4.3.48 XKTM

Mnemonic:
Value:

Module:
Format:

KILL TASK MESSAGE

XKTM
$A028
MPDOSK1
XKTM

<status return>

Registers: In DO.B = Task #
(A1) = Buffer address

Out DO.L = Source task #
(-1 = no message)

SR = EQ message found
NE no message

The KILL TASK MESSAGE primitive allows you to read (and
thus clear) any task's messages from the system message
buffers.

See also:

4.3.42 XGMP - GET MESSAGE POINTER
4.3.44 XGTM - GET TASK MESSAGE
4.3.96 XSMP - SEND MESSAGE POINTER
4.3.99 XSTM - SEND TASK MESSAGE

Possible Errors: None

LOOP

PAGE 4-63

MOVEQ.L #0,00 ;SELECT TASK 0
LEA.L BF(PC),A1
XKTM

BEQ.S LOOP
;ANY MESSAGE?
;Y, DO AGAIN

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-64

4.3.49 XLDF

Mnemonic:
Value:

Module:
Format:

Registers: In

LOAD FILE

XLDF
$AOBO
MPDOSF
XLDF

<status error return>

D1.B = Execution flag
(AO) Start of load memory
(A1) End of load memory
(A3) File name

Out (AD) EAD$ - Lowest loaded address
(A1) BUM$ - Last loaded address

Note: If D1.B=O, then XLDF returns to
program. If D1.B<>O, then
immediately executed.

your calling
the program is

The LOAD FILE primitive reads and loads 68000 object code
into user memory. The file name pointer is passed in
address register A3. Registers AO and A1 specify the memory
bounds for the re10catab1e load. The file must be typed
, OB' 0 r 'SY'.

If data register D1.B is zero.
calling program. Otherwise.
immediately executed.

then XLDF returns to
the loaded program

the
is

The 68000 object should be position-independent section 0
code without any external references or definitions.

A 'SY' fil.e is generated from an 'OB' file by the MSYFL
utility. The condensed object is a direct memory image and
must be position-independent code.

The XLDF primitive uses long word moves and may move up to
three bytes more than contained in an 'SY' file. As such,
you must allow for extra space for data moyes to an existing
program.

Possible Errors:

63 Illegal object tag
64 Illegal section
65 File not 10adab1e
71 Exceeds task size
73 = Not enough memory
Disk errors

XGML ;GET MEMORY LIMITS
CLR.L DO ; RETURN
ADDA.W #$100,AO ;ADD DISPLACEMENT
LEA.L FN(PC) ,A3 ;GET FILE NAME
XLDF ;LOAD FILE

BNE.S ERROR ;ERROR

Lega 1 tags:

OT--LABEL--vvvrrrddddddtttt
1Saaaaaaaa ;ENTRY POINT
2Saaaaaaaa ;ADDRESS
3dd ;SIMPLE DATA BYTE
4dddd ;SIMPLE DATA WORD
5dddddddd ;SIMPLE LONG DATA WORD
6 ; POP BYTE
7 ;POP WORD
8 ;POP LONG WORD
9Snnnnnnnn ;PUSH VALUE
Dccccdddd ;STORE MULTIPLE WORD
ESllll1111 ; SECT! ON LENGTH
Fcc ;END OF RECORD/CHECKSUM

Illegal tags:

AS1<symbo1> ;PUSH SYMBOL
BO ;DO OPERATION
CS1<symbo1>nnnnnnnn ;EXTERNAL DEFINITION

1(:.---
" ~.

«

(-

(-

(.
.•. "
-"

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES

4.3.50 XLER LOAD ERROR REGISTER

Mnemonic: XLER
Value: $A03A

Module: MPOOSK1
Format: XLER

Registers: In DO.W = Error number

The LOAD ERROR REGISTER primitive stores data register OO.W
in the task control block variable LEN$(A6). This variable
will replace the parameter sUbstitution variable '&0' during
a procedure file.

User programs should execute this call when an error
occurs.

The enable echo flag (ECF$(A6» is cleared by this call.

Possible Errors: None

PAGE 4-65

AODI.W #300,00 ;BIAS ERROR #
XLER ;REPORT TO POOS

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-66

4.3.51 XLFN LOOK FOR NAME IN FILE SLOTS

Mnemonic:
Value:

Module:
Format:

XLFN
$AOA2
MPDOSF
XLFN

<status return>

Registers: In DO.B = Disk number
(A1) = Fixed file name

Out D3.W = File 10 (Disk #/Index)
(A3) = Slot entry address

SR = NE ... File name not found
EQ ... File name found

Note: If D3.W=0, then no slots are available.

The LOOK FOR NAME IN FILE SLOTS primitive searches through
the file slot table for the file name as specified by
registers DO.B and A1. If the name is not found, register
D3.W returns with a -1 or O. The latter indicates the file
was not found and there are no more slots available.
Otherwise, register D3.W returns the associated file 10 and
register A3 returns the address of the file slot.

A file slot is a 38-byte buffer where the status of an
file is maintained. There are 32 file slots available.
file 10 consists of the disk # and the file slot index.

File slots assigned to read-only files are skipped and
considered for file match.

Possible Errors: None

open
The

not

XNOP LEA.L FN(PC) ,A1 ;POINT TO FILE NAME
XFFN ; FIX FILE NAME

BNE.S ERR1 ;ERROR
XLFN ;LOOKUP NAME, FOUND?

BEQ.S ERR2 ;Y, FILE ALREADY OPEN

ERR1 XPMC MERR1 ;INVALID FILE NAME
RTS

"
ERR2 XPMC MERR2 ;FILE ALREADY OPEN

RTS

FN DC.S 'FILENAME' ,0
MERR1 DC.B $OA.$OO, 'INVALID FILE NAME' ,0
MERR2 DC.B $OA,$OD, 'FILE ALREADY OPEN' ,0

EVEN

File slot format: (38 bytes)

O(A3) File name.11
11 (A3) = Level.1
12(A3) Status.2
14(A3) Sector # in memory.2
16(A3) = Pointer.4
20(A3) = Sector index in memory.2
22(A3) Sector index of eof.2
24(A3) = # bytes in end sector.2
26(A3) Lock.1/shared flag.1
28(A3) Channel buffer ptr.4
32(A3) = Lock.1/shared flag.1
34(A3) Roll-out error #.2
36(A3) Disk #.2

Status: 01xx Sequential
02xx Random
06xx Shared random
OAxx Read only random
10xx Driver in channel

xx80 Al tered
xx04 Contiguous
xx02 Delete protect
xx01 Write protect

8xxx Sector altered
4xxx File al tered
2xxx Buffer locked in memory

c

{~,

C

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES

4.3.52 XLKF LOCK FILE

Mnemonic: XLKF
Value: $A008

Module: MPOOSF
Format: XLKF

<status e r ro r return>

Registers: In 01.W = File 10

The LOCK FILE primitive locks an opened file so that no
other task can g8in access until an UNLOCK FILE (XULF)
primitive is executed. Only the locking task has access to
the locked file.

A locked file is indicated by a -1 ($FF) in the left byte
of the lock file parameter (LF) of the file slot usage (FS)
command. The locking task number is stored in the left byte
of the task number parameter (TN).

See also:

4.3.109 XULF - UNLOCK FILE

Possible Errors:

52 = File not open
59 = Invalid slot #

75 = Fil e locked
Disk errors

PAGE 4-67

MOVE.W 05,01 ;GET FILE 10
XLKF ;LOCK FILE

BNE.S ERROR ; PROBLEM

68DxD PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.53 XLKT

Mnemoni c:
Value:

Modul e:
Format:

LOCK TASK

XLKT
$AD14
MPDOSK1
XLKT

<status return>

Registers: Out SR = EQ ... Not locked
NE ... Locked

The LOCK TASK primitive locks the requesting task in the
run state by setting the swap lock variable in system RAM to
nonzero. The task remains locked until an UNLOCK TASK
(XULT) is executed. The status of the lock variable BEFORE
the call is returned in the status register.

XLKT waits until all locks (Level 2 and Level 3 locks) are
cleared before the task is locked.

See also:

4.3.110 XULT - UNLOCK TASK

Possible Errors: None

*
WAIT

CONT

XLKT
SNE.B 07

TAS.B SBIT

TST.B SBIT
BMI.S WAIT

TST.B 07
BNE.S CONT

XULT

PAGE 4-68

;LOCK TASK
;SET FLAG
;START CRITICAL PROCESS

;OK?
;N
;Y. LEAVE LOCKED?
;Y
;N. UNLOCK TASK

r'
:~/

(

c

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.54 XLSR

Mnemonic:
Value:

Module:
Format:

LOAD STATUS REGISTER

XLSR
$A02E
MPDOSK1
XLSR

Registers: In D1.W: 68000 status register

The LOAD STATUS REGISTER primitive allows you to directly
load the 68000 status register. Of course, only appropriate
bits (i.e. the interrupt mask too high, supervisor mode,
trace mode, etc.) are to be set so that the system is not
crashed.

See also:

4.3.102 XSUP - ENTER SUPERVISOR MODE

Possible Errors: None

PAGE 4-69

MOVE.W SR,D1 ;READ STATUS
ORI.W #$2000,D1 ;ADD SUPERVISOR
XLSR ;LOAD SR

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.55 XLST

Mnemonic:
Value:

Module:
Format:

LIST FILE DIRECTORY

XLST
$AOA4
MPOOSM
XLST

<status error return>

Registers: In (A1) = List specifications

The LIST FILE DIRECTORY subroutine causes PODS to output a
formatted file directory listing to the console terminal,
according to the select string pointed to by address
register A1. The output may be interrupted at any time by a
character being entered on the console port. An [ESC]
character returns control to the PODS monitor.

The format of the list specifications is defined as
follows:

OC.B '{file}{:ext}{;level}{/disk}{/select ... }' ,0

where: {file} = 1 to 8 characters (1st alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=all ,*=wild)

{;level} = directory level (;@=all)
{/disk} = disk number ranging from 0 to 255

{/select} = lAC = Assign Console file
IBN = Binary file
IBX = PODS BASIC token file
lEX = PODS BASIC file
lOB = 68000 POOS object file
ISY = System file
ITX = Text file
lOR = System liD driver
1* = Delete protected
1** = Delete and write protected
IFdy-mon-yr = selects files with date of

last change greater than
or equal to 'dy-mon-yr'

ITdy-mon-yr selects files with date of
last change less than or
equal to 'dy-mon-yr'

Possible Errors: Disk Errors

MLST XGNP
XLST

PAGE 4-70

;GET SELECT LIST
; CALL FOR LI ST

BNE.S ERROR ;ERROR
XEXT ;EXIT TO MONITOR

{-

(

(

('

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-71

4.3.56 XNOP OPEN SHARED RANDOM FILE

Mnemonic:
Value:

Module:
Format:

XNOP
$AOOA
MPOOSF
XNOP

<status error return>

Registers: In (Al) = File name
Out OO.W = File attribute

01.W = File 10

Notes: Uses multiple directory file search.

You MUST lock and position file before
each multi-task access.

The OPEN SHARED RANDOM FILE primitive opens
shared random access by assigning the file
system memory called a file slot. The file

a file for
to an area of
10 and file

attribute are returned to the calling program in registers
01 and ~O, respectively. Thereafter, the file is referenced
by the file 10 and not by the file name. A new entry in the
file slot table is made only if the file is not already
opened for shared access.

The file 10 (returned in register 01) is a
The left byte is the disk number and the
file slot index. The file attributes
register ~O.

The ENO-OF-FILE marker on a shared file

2-byte number.
right byte is the
are returned in

is changed only
when the file has been extended. All data transfers are
buffered through a channel buffer; data movement to and from
the disk is by full sectors.

An "opened count" is incremented each time the file is
shared-opened and is decremented by each close operation.
The file is only closed by POOS when the count is zero.
This count is saved in the right byte of the locked file
parameter (LF) and is listed by the file slot usage command
(FS).

Possible Errors:

50 Invalid file name
53 File not defined
60 File space full
61 File already open
68 Not POOS disk
69 Not enough file slots
Disk errors

LEA.L FN(PC),Al ;POINT TO NAME
XNOP ;OPEN SHARED

BNE.S ERROR
MOVE.W 00,05 ;SAVE TYPE
SWAP 05
MOVE.W 01,05 ;SAVE FILE 10

FN OC.B ' FILENAME: EXT' ,0
EVEN

OO.W = (ABOS BETU xxxx xCWO)
01.W = (Disk #) x 256 + (file slot index)

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.57 XPAD

Mnemonic:
Value:

Module:
Format:

PACK ASCII DATE

XPAD
$AOOA

MPDOSK3
XPAD

Registers: In (Al) = 'DY-MON-YR'
Out Dl.W = (Year*16+month)*32+day

(YYYY YYYM MMMD DODD)
(Al) = Updated

SR = .EQ. - Conversion ok
.NE. - Error

The PACK ASCII DATE primitive converts an ASCII date string
to an encoded binary number in data register 01. The result
is compatible with other PO OS date primitives such as XUAD.

See Also:

4.3.22 XFTD - FIX TIME & DATE
4.3.77 XRDT - READ DATE
4.3.90 XRTM - READ TIME
4.3.107 XUAD - UNPACK ASCII DATE
4.3.108 XUDT - UNPACK DATE

Possible Errors: Status errors.

STRT XPMC MESl ;DATE=
XGLU ;GET LINE
XPAD ;CONVERT

BNE.S ERR ;ERROR
XPMC MES2 ;Dl.W=
XCBH
ADDQ.W #4,41
XPLC ;OUTPUT
BRA.S STRT

*
ERR XPMC MES3 ;ERROR

BRA.S STRT

MES1 DC.B $OA,$OD,'DATE=' ,0
MES2 DC.B ' Dl.W=$' ,0
MES3 DC.B $OA,$OD,'*ERROR' ,0

EVEN
END STRT

x>TEST
DATE=11-NOV-86 D1.W=$AD6B
DATE=11NOV86 D1.W=$AD6B
DATE= NOV 11 86
*ERROR
DATE=

PAGE 4-72 ·C· '''.','. I "

,C·"" J

,'. ' C·'."·',''

I

(~

c

c

c

B80xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES PAGE 4-73

4.3.58 XPBC

Mnemonic:
Value:

Module:
Format:

PUT BUFFER TO CONSOLE

XPBC
$A084
MPOOSK2
XPBC

Registers: None

The PUT USER BUFFER TO CONSOLE primitive outputs the ASCII
contents of the user buffer to the user console end/or SPOOL
file. The output string is delimited by the null character.
The user buffer is the first 25B bytes of the task control
block and is pointed to by address register AB.

With the exception of control characters and characters
with the parity bit on, each character increments the column
counter by one. A [BACKSPACE] ($08) decrements the counter
while a [CR] ($00) clears the counter. [TAB]s ($09) are
expanded with blanks to MOD 8 character zone fields.

If there are coincidin9 bits in the unit (UNT$(AB» and
spool unit (SPU$(AB» variables of the TCB, then the
processed characters are written to the spool unit file slot
(SPI$(AB» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.38 XGLB - GET LINE IN BUFFER

Possible Errors: None

CLINE MOVEA.L AB,A2 ;GET USER BUFFER PTR

*
CLINE2

MOVE.B 00,(A2)+ ;LOAO BUFFER, DONE?
BNE.S CLINE2

XPBC
RTS

;N
;y, OUTPUT BUFFER
;CONTINUE

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.59 XPCB

Mnemonic:
Value:

Module:
Format:

PUSH COMMAND TO BUFFER

XPCB
$A04E
MPDOSM
XPCB

Registers: In (Al) = Command string

The PUSH COMMAND TO BUFFER primitive pushes the string
pointed to by address register Al into the command recall
buffer. Since there is a limit on the buffer size, older
commands are lost.

See also:

4.3.43 XGNP - GET NEXT PARAMETER

Possible Errors: None

XGLU
XPCB

PAGE 4-74

;GET COMMAND
;PUSH FOR RECALL

C" "', , ,'.,

f

(

(

c

B80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.60 XPCC

Mnemonic:
Value:

Module:
Format:

PUT CHARACTER(S) TO CONSOLE

XPCC
$A08B
MPDOSK2
XPCC

Registers: In DO.W = Character(s)

The PUT CHARACTER TO CONSOLE primitive outputs one or two
ASCII characters in data register DO to the user console
and/or SPOOL file. The right byte (bits 0 through 7) is
first and is followed by the left byte (bits 8 through 15)
if non-zero. If the right byte or both bytes are zero,
nothing is output to the console.

With the exception of control characters and characters
with the parity bit on, each character increments the column
counter by one. A [BACKSPACE] ($08) decrements the counter
while a [CR] ($OD) clears the counter. [TAB]s ($Og) are
expanded with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(AB» and
spool unit (SPU$(AB» variables of the TCB, then the
processed characters are written to the spool unit file slot
(SPI$(AB» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.B2 XPCR - PUT CHARACTER RAW
4.3.B3 XPDC - PUT DATA TO CONSOLE

~ possible Errors: None

c
c

PAGE 4-75

MOVE.W #'CA',DO ;OUTPUT 'AC'
XPCC
MOVEQ.L #$OA,DO ;FOLLOWED BY LF
XPCC

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.61 XPCL

Mnemonic:
Va 1 ue:

Module:

PUT CRLF TO CONSOLE

XPCL
$A088
MPOOSK2

Format: XPCL

Registers: None

The PUT CRLF TO CONSOLE primitive outputs the ASCII
characters carriage return <$OA> and line feed <$00> to the
user console and/or SPOOL file. The column counter is
cleared.

If there are coinciding bits in the unit (UNT$(A6» and
spool unit (SPU$(A6» variables of the TCB, then the
processed characters are written to the spool unit file slot
(SPI$(A6» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

Possible Errors: None

PAGE 4-76 c
o

XPCL ;OUTPUT CRLF

c

o

f

C\
/"

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.62 XPCR

Mnemonic:
Val ue:

Module :
Format:

Registers: In

PUT CHARACTER RAW

XPCR
$AOBA
MPDOSK2
XPCR

DO.B = CHARACTER

The PUT CHARACTER RAW primitive outputs the character in
the lower byte of data register DO to the user console. No
attempt is made by PDOS to interpret control characters.

See also:

4.3.60 XPCC - PUT CHARACTER{S) TO CONSOLE
4.3.63 XPDC - PUT DATA TO CONSOLE

Possible Errors: None

PAGE 4-77

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.63 XPDC PUT DATA TO CONSOLE

Mnemonic: XPDC
Value: $A096

Module: MPDOSK2
Format: XPDC

Registers: In D7.W = LENGTH
(A1) = DATA STRING

The PUT DATA TO CONSOLE primitive outputs data-independent
bytes to the console. Address register A1 points to the
string while data register 07 has the string length.

If there are coinciding bits in the unit (UNT$(A6)) and
spool unit (SPU${A6}) variables of the TCB, then the
processed characters are written to the spool unit file slot
(SPI$(A6» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.60 XPCC - PUT CHARACTER(S} TO CONSOLE
4.3.62 XPCR - PUT CHARACTER RAW

Possible Errors: None

M

PAGE 4-78 C···~.'-' " I

MOVEQ.L #0,D7
LEA.L M(PC) ,A1 ;POINT TO STRING
MOVE.B (A1)+,D7 ;GET LENGTH
XPDC ;OUTPUT

DC.B 10,$OA,$OD
DC.B 'THIS IS A MESSAGE'

,{, ",
J'

c

c
c

(

c

c

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-79

4.3.64 XPEL

Mnemonic:
Value:

Module:
Format:

PUT ENCODED LINE TO CONSOLE

XPEL
$A06E
MPDOSK2
XPEL

Re9isters: In (A1) = Message

The PUT ENCODED LINE TO CONSOLE primitive outputs to the
user console the message pointed to by address register A1.
An encoded message is similar to any other string with the
exception that the parity bit is used to output blanks and
the character $80 outputs a carriage return/line feed.

If the parity bit is set and the masked character ($7F) is
less than or equal to a blank, then the numeric value of the
negated character is used as the number of blanks to be
inserted in the output stream. If the mask character is
greater than a blank, then that character is output followed
by one blank.

With the exception of control characters, each character
increments the column counter by one. A [BACKSPACE] ($08)
decrements the counter while a [CR] ($OD) clears the
counter. [TAB]s ($09) are expanded with blanks to MOD 8
character zone fields.

If there are coinciding bits in the unit (UNT$(A6» and
spool unit (SPU$(A6» variables of the TCB, then the
processed characters are written to tha spool unit file slot
(SPI$(A6» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.65 XPEM - PUT ENCODED MESSAGE TO CONSOLE
4.3.66 XPLC - PUT LINE TO CONSOLE
4.3.67 XPMC - PUT MESSAGE TO CONSOLE

Possible Errors: None

M

LEA.L
XPEL

DC.B
DC.B
DC.B
DC.B

M{PC),A1 ;POINT TO MESSAGE
;OUTPUT MESSAGE

$80, 'Lev' .-2, 'Name:ext'
-6, 'Type' ,-6, 'Size' ,-6
'Dat' ,-'e','created' ,-4
'las',-'t','update' ,0

Note: The above text strings are
equivalent to:

M DCE.B
DCE.B
DCE.B
DCE.B

$80,'lev Name:ext'
Type Size'
Date created'

Last update',O

$80 = Carriage return/line feed

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-80

4.3.65 XPEM

Mnemonic:
Value:

Module:
Format:

PUT ENCODED MESSAGE TO CONSOLE

XPEM
$A09C
MPDOSK2
XPEM <message>

Registers: None

The PUT ENCODED MESSAGE TO CONSOLE primitive outputs to the
user console the PC relative message contained in the word
following the"call. An encoded message is similar to any
other string with the exception that the parity bit is used
to output blanks and the character $80 outputs a carriage
return/line feed.

If the parity bit is set and the masked character ($7F) is
less than or equal to a blank, then the numeric value of the
negated character is used as the number of blanks to be
inserted in the output stream. If the mask character is
greater than a blank, then that character is output followed
by one blank.

With the exception of control characters, each character
increments the column counter by one. A [BACKSPACE] ($08)
decrements the counter while a [CR] ($OD) clears the
counter. [TAB]s ($09) are expanded with blanks to MOD 8
character zone fields.

If there are coinciding bits in the unit (UNT$(A6)) and
spool unit (SPU$(A6)) variables of the TCB, then the
processed characters are written to the spool unit file slot
(SPI$(A6)) and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.64 XPEL - PUT ENCODED LINE TO CONSOLE
4.3.66 XPLC - PUT LINE TO CONSOLE
4.3.67 XPMC - PUT MESSAGE TO CONSOLE

Possible Errors: None

MES01

XPEM

DC.B
DC.B
DC.B
DC.B

MES01 ;OUTPUT MESSAGE

$80, 'Lev' ,-2, 'Name:ext'
-6, 'Type' ,-6, 'Size' ,-6
'Oat' ,-'e', 'created' ,-4

'Las' ,_It', 'update' ,0

$80 Carriage return/line feed

c

f

c

()

B80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.66 XPLC

Mnemonic:
Value:

Module:
Format:

Registers: In

PUT LINE TO CONSOLE

XPLC
$A08A
MPDOSK2
XPLC

(A1) = ASCII string

The PUT LINE TO CONSOLE primitive outputs the ASCII
character string pointed to by address register A1 to the
user console and/or SPOOL file. The string is delimited by
the null character.

With the exception of control characters and characters
with the parity bit on, each character increments the column
counter by one. A [BACKSPACE] ($08) decrements the counter
while a [CR] ($OD) clears the counter. [TAB]s ($09) ere
expanded with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(AB» and
spool unit (SPU$(AB» variables of the TCB, then the
processed characters are written to the spool unit file slot
(SPI${AB» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.B4 XPEL - PUT ENCODED LINE TO CONSOLE
4.3.B5 XPEM - PUT ENCODED MESSAGE TO CONSOLE
4.3.B7 XPMC - PUT MESSAGE TO CONSOLE

Possible Errors: None

NUMB
MES1

PAGE 4-81

LEA.L MES1 (PC),A1 :OUTPUT MESSAGE
XPLC
MOVE.L NUMB(PC), D1 :GET NUMBER
XCBD ;CONVERT TO DECIM
XPLC :OUTPUT

DS.L 1 :NUMBER HOLDER
DC.B $OA,$OD ;MESSAGE #1
DC.B 'ANSWER=' ,0

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.67 XPMC

Mnemonic:
Value:

Module:
Format:

Registers:

PUT MESSAGE TO CONSOLE

XPMC
$A08C
MPDOSK2
XPMC

None

<message>

The PUT MESSAGE TO CONSOLE primitive outputs the ASCII
character string pointed to by the message address word
immediately following the PDOS call to the user console
and/or SPOOL file. The address is a PC relative 16-bit
displacement to the message. The output string is delimited
by the null character.

With the exception of control characters and characters
with the parity bit on, each character increments the column
counter by one. A [BACKSPACE] ($08) decrements the counter
while a [CR] ($00) clears the counter. [TAB]s ($09) are
expanded with blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit (UNT$(A6» and
spool unit (SPU$(A6» variables of the TCS, then the
processed characters are written to the spool unit file slot
(SPI$(A6» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.64 XPEL - PUT ENCODED LINE TO CONSOLE
4.3.65 XPEM - PUT ENCODED MESSAGE TO CONSOLE
4.3.66 XPLC - PUT LINE TO CONSOLE

Possible Errors: None

MES2

PAGE 4-82 o
'C

XPMC MES2 ;OUTPUT HEADER

DC.S $OA,$OD ;HEADER MESSAGE
DC.S 'PDOS REV 3.0' ,0

c

o
I>

f

c'

B80xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEM8LY PRIMITIVES PAGE 4-83

4.3.68 XPSC

Mnemonic:
Value:

Module:
Format:

POSITION CURSOR

XPSC
$A08E
MPOOSK2
XPSC

Registers: In 01.B = Row
02.B = Column

Note: Uses PSC$(AB) as lead characters.

The POSITION CURSOR primitive positions the cursor on the
console terminal according to the row and column values in
data registers 01 and 02. Register 01 specifies the row on
the terminal and generally ranges from 0 to 23, with 0 being
the top row. Register 02 specifies the column of the
terminal and ranges from 0 to 79, with 0 being the left-hand
column. Register 02 is also loaded into the column counter
reflecting the true column of the cursor.

The XPSC primitive outputs either one or two leading
characters followed by the row and column. The leading
characters output by XPSC are located in PSC$(AB) of the
task control block. These characters are transferred from
the parent task to the spawned task during creation. The
initial characters come from the BIOS module.

The row and column characters are biased by $20 if the
parity bit of the first character is set. Likewise, if the
second character's parity bit is set, then row/column order
is reversed. This accommodates most terminal requirements
for positioning the cursor.

If PSC$ is zero, then POOS makes a call into the BIOS for
custom position cursor. The entry point is B_PSC beyond the
BIOS table.

The MTERM utility is used to change the position cursor
codes.

See also:

4.3.17 XCLS - CLEAR SCREEN
4.3.73 XRCP - REAO PORT CURSOR POSITION
CHAPTER 8 - BIOS

Possible Errors: None

OUTM MOVEQ.L #23,01 ;POSITION TO BOTTOM
CLR.L 02 OF SCREEN
XPSC
XPMC MES1

; POSITION
;OUTPUT MESSAGE

CSC$(AB) = E111 1111 E222 2222
\\ \ \\

\\ \ \\

\\ \ \

\\

\\ \

\\

\

MOVE.W PSC$(AB),(A3)
BLT.S Q0002
BGT.S Q0004

MOVEA.L (A5),AO
JSR B_PSC(AO)

BNE.S XCLS10

2nd character
2nd [ESC]

1st character
1st [ESC] I

;GET CHARACTERS, BIAS?
;Y
:N
;N, POINT TO BIOS
;GET BIOS POSITION CODE
:TERMINATE ANO OUTPUT

680xO PoOS 3.2 REFERENCE MANUAL CHAPTER 4 PoOS ASSEMBLY PRIMITIVES

4.3.69 XPSF POSITION FILE

Mnemonic: XPSF
Value: $AODC

Module: MPoOSF
Format: XPSF

<status error return>

Registers: In 01.W = File 10
o2.L = Byte position

Note: A byte position equal to -1 positions to the
end of the file.

The POSITION FILE primitive moves the file byte pointer to
any byte position within a file. The file 10 is given in
register 01 and the long word byte position is specified in
register 02.

An error occurs if the byte position is greater than the
current end-of-fi1e marker.

A contiguous file greatly enhances the speed of the
position primitive since the desired sector is directly
computed. However, the position primitive does work with
non-contiguous files, as POOS follows the sector links to
the desired byte position.

A contiguous file is extended b'y positioning to the
end-of-fi1e marker and writing data. However, PO OS will
alter the file type to non-contiguous if a contiguous sector
is not available. This would result in random access being
much slower.

See also:

4.3.79 XRFP - READ FILE POSITION
4.3.93 XRWF - REWIND FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
70 = Position error
Disk errors

RN

PAGE 4-84 o
o

MOVE.W 05,01 :GET FILE 10
MOVE.W RN(AO),02 :GET RECORD #
MULU.W #36,02 :GET BYTE INDEX
XPSF : POSITION WITHIN FILE

BNE.S ERROR

OS.W :RECORO #

,'<~

' '
~)

c

c
o

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.70 XPSP

Mnemonic:
Value:

Module:
Format:

Registers:

PUT SPACE TO CONSOLE

XPSP
$A098
MPDOSK2
XPSP

None

The PUT SPACE TO CONSOLE outputs a [SP] ($20) character to
the user console. There are no registers or status
involved.

If there are coinciding bits in the unit (UNT$(A6» and
spool unit (SPU$(A6» variables of the TC8, then the
processed characters are written to the spool unit file slot
(SPI$(A6» and are not sent to the corresponding output
ports. If a disk error occurs in the spool file, then all
subsequent output characters echo as a bell until the error
is corrected by selecting a different UNIT or resetting the
SPOOL UNIT.

See also:

4.3.60 XPCC - PUT CHARACTER(S) TO CONSOLE

(,'_ Possible Errors: None

c

(-'

"

()

MOVEQ.L #N,D1
XC8M MES01
XPLC
XPSP

;GET NUMBER
; CONVERT

PAGE 4-85

; OUTPUT LINE
;OUT SPACE

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-86

4.3.71 XRBF

Mnemonic:
Value:

Module:
Format:

READ BYTES FROM FILE

XRBF
$AOOE
MPOOSF
XRBF

<status error return>

Registers: In DO.L = Number of bytes
D1.W = Fi le ID
(A2) = R/W buffer address

Out 03.L = Number of bytes read
(On EOF only.)

The READ BYTES FROM FILE primitive reads the number of
bytes specified in register 00 from the file specified by
the file 10 in register 01 into a memory buffer pointed to
by address register A2. If the channel buffer has been
rolled to disk, the least-used buffer is freed and the
desired buffer is restored to memory. The file slot 10 is
placed on the top of the last-access queue.

If an error occurs during the read operation, the error
return is taken with the error number in register 00 and the
number of bytes actually read in register 03.

The read is independent of the data content. The buffer
pointer in register A2 ;s on any byte boundary. The buffer
is not terminated with a null.

A byte count of zero in register DO results in one byte
being read from the file. This facilitates single byte data
acquisi tion.

See also:

4.3.80 XRLF - READ LINE FROM FILE
4.3.113 XWBF - WRITE BYTES TO FILE
4.3.117 XWLF - WRITE LINE TO FILE

Possible Errors:

52 = File not open
56 = End of file
59 = Invalid slot #
Di sk errors

MOVE.L #256,00 ;REAO 256 BYTES
MOVE.W 05,01
MOVEA.L A6,A2
XRBF

BNE.S ERROR

;GET FILE 10
;REAO INTO USER BUF
;REAO DATA

ERROR CMPI.W #56,00 ;EOF?
BNE.S ERROR2 ;N

MOVE.L 03,00 ;y, GET # OF BYTES READ

I'"

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.72 XRCN

Mnemonic:
Value:

Module:

RESET CONSOLE INPUTS

XRCN
$AOB2
MPDOSF

Format: XRCN

Registers: None

The RESET CONSOLE INPUTS closes the current procedure file.
If there are other procedure files pending (nested), then
they become active again.

See also:

4.3.6 XCBC - CHECK FOR BREAK CHARACTER

Possible Errors: None

DONE

PAGE 4-87

XRCN ;CLOSE FILES

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.73 XRCP

Mnemonic:
Value:

Module:
Format:

READ PORT CURSOR POSITION

XRCP
$A092
MPOOSK2
XRCP

Registers: In OO.W = Port #
Out 01.L = Row

02.L = Column

Note: If OO.W=O. then the current port (PRT$(A6» is
used.

The READ PORT CURSOR POSITION primitive reads the current
cursor position for the port designated by data register
OO.B. The POOS system maintains a column count (0-79) and a
row count (0-23) for each port. When the cursor reaches row
23. the count is not incremented. acting like a screen
scroll.

See also:

4.3.17 XCLS - CLEAR SCREEN
4.3.68 XPSC - POSITION CURSOR

Possible Errors: None

MOVEQ.L #1.00
XRCP
SWAP 01
MOVE.W 02.D1

PAGE 4-88

;LOOK AT PORT 1
;REAO POSITION

;D1.L=X/Y POSITION

c'

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEM8LY PRIMITIVES

4.3.74 XRDE

Mnemon;c:
Value:

Module:
Format:

READ NEXT DIRECTORY ENTRY

XROE
$AOA6
MPDOSF
XRDE

<status error return>

Reg;sters: In OO.B s D;sk number
D1.B = Read flag (0=1st)
(A2) = Last 32 byte d;rectory entry
TW1$ = Sector number
TW2$ = number of directory entr;es

Out 01.W = Sector number
(A2) = Next entry

The REAO NEXT DIRECTORY ENTRY pr;m;t;ve reads sequent;ally
through a disk directory. If reg;ster D1.B ;s zero, then
the rout;ne beg;ns w;th the f;rst d;rectory entry. If
reg;ster D1.B ;s nonzero, then based on the last d;rectory
entry (po;nted to by reg;ster A2), the next entry ;s read.

The calling routine must mainta;n reg;sters DO.B and A2,
the user 1/0 buffer, and temporary var;ables TW1$ and TW2$
of the task control block between calls to XRDE.

(~,: Possible Errors:

53 = F;le not def;ned (End of d;rectory)
68 = Not PODS d;sk
Dhk errors

START

*
LOOP
*
LOOP02

PAGE 4-89

MOVEQ.L #O,D1 ;BEGIN WITH 1ST ENTRY
BRA.S LOOP02

MOVEQ.L #-1,01 ;REAO NEXT ENTRY

MOVE.W 05,RO ;GET DISK #
XROE ;READ DIRECTORY ENTRY

BNE.S ERROR ;ERROR
MOVE.B 12(A2},R4 ;GET FILE TYPE

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.75 XRDM DUMP REGISTERS

Mnemonic: XRDM
Value: $A02A

Module: MPOOSK1
Format: XRDM

Registers: In All

The DUMP REGISTERS primitive formats and outputs all the
current register values of the 68000 to the user console
along with the program counter, status register, and the
supervisor stack.

The registers and status are not affected by this
primitive.

See also:

4.3.5 XBUG - DEBUG CALL
4.3.23 XDMP - DUMP MEMORY FROM STACK
PB - PDOS DEBUGGER (chapter 3)

Possible Errors: None

PAGE 4-90 Ie·····.··! "

MOVEM.L RL,(A7)+ ;RESTORE REGISTERS
XRDM ; DUMP RESULTS

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-91

(4.3.76 XRDN

Mnemonic:
Value:

Module:
Format:

READ DIRECTORY ENTRY BY NAME

XRDN
$ADA8
MPDOSF
XRDN

<status error return>

Registers: In DO.B = Disk number
MWB$ = File name

Out D1.W = Sector number in memory
(A2) = Directory entry
TW2$ = Entry count

The READ DIRECTORY ENTRY BY NAME primitive reads directory
entries by file name. Register DO.B specifies the disk
number. The file name is located in the Monitor Work Buffer
(MW8$) in a fixed format. Several other parameters are
returned in the monitor TEMP storage of the user task
control block. These variables assist in the housekeeping
operations on the disk directory.

See also:

4.3.28 XFFN - FIX FILE NAME

(Possible Errors:

c

53 = File not defined
68 = Not PDOS disk
Disk errors

OPENF LEA.L FN(PC) ,A1 ;GET FILE NAME POINTER
XFFN

BNE.S ERROR
XRDN

BNE.S ERROR

;FIX NAME IN MWB
;ERROR
;READ DIRECTORY ENTRY
;ERROR

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.77 XRDT READ DATE

Mnemoni c: XRDT
Va 1 ue: $A05C

Module: MPDOSK3
Format: XRDT

Registers: Out (A1) = 'MN/DY/YR'<null>

The READ DATE primitive returns the current system
a nine character string. The format is 'MN/DY/YR'

date as
foll owed

by a null. Address register A1 points to the string in the
monitor work buffer.

See a 1s0:

4.3.32 XFTD - FIX TIME & DATE
4.3.57 XPAD - PACK ASCII DATE
4.3.90 XRTM - READ TIME
4.3.107 XUAD - UNPACK ASCII DATE
4.3.108 XUDT - UNPACK DATE
4.3.112 XUTM - UNPACK TIME

Possible Errors: None

GETD

MES1

PAGE 4-92

XPMC MES1 ;OUTPUT PROMPT
XRDT ;GET DATE
XPLC ;OUTPUT TO SCREEN

DC.B 'DATE=' ,0

,,-'"
\~>

C
i
I,'

('

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.78 XRFA READ FILE ATTRIBUTES

Mnemonic:
Value:

Module:
Format:

XRFA
$AOEO
MPDOSF
XRFA

<status error return>

Registers: In (A1) = File name
Out (A2) = Directory entry

DO.L = Disk number
D1.L File size (in bytes)
D2.L = Level/attributes

Note: Uses multiple directory file search.

The READ FILE ATTRIBUTES primitive returns the disk number
of where the file was found in data register DO.L. Data
register D1.L is returned with the size of the file in
bytes. The file directory level is returned in the upper
word of register D2.L and the file attributes are returned
in register D2.W. The file name is pointed to by address
register A1. File attributes are defined as follows:

$80xx AC - Procedure file
$40xx BN - Binary file
$20xx OB - 68DOO object file
$10xx SY - 68000 memory image
$08xx BX - BASIC binary token
$04xx EX - BASIC ASCII file
$02xx TX - Text fil e
$01xx DR - System I/O driver

$xx04 C - Contiguous file
$xx02 * - Delete protect

file

$xx01 ** - Delete and write protect

See also:

4.3.13 XC FA - CLOSE FILE W/ATTRIBUTE
4.3.115 XWFA - WRITE FILE ATTRIBUTES
4.3.116 XWFP - WRITE FILE PARAMETERS

Possible Errors:

5D = Invalid file name
53 = File not defined
60 = File space full
Disk errors

FN

PAGE 4-93

LEA.L FN(PC),A1 ;GET FILE NAME
XRFA ;READ FILE ATTRIBUTES

BNE.S ERROR
LRL.W #2,D2

BCC.S PNO

; PROBLEM
;BINARY FILE?
;N
;Y

DC.B
EVEN

'PRGM:BIN' ,0

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.79 XRFP

Mnemonic:
Value:

Module:
Format:

Registers: In
Out

READ FILE POSITION

XRFP
$AOFE
MPOOSF
XRFP

<status error return>

01.W= File ID
(A3) = File slot address
02.L = Byte position
03.L = EOF byte position

The READ FILE POSITION primitive returns the current file
position, end-of-fi1e position, and file slot address. The
open file is selected by the file 10 in data register D1.W.

Address register A3 is returned pointing to the open file
slot. Data registers D2.L and 03.L are returned with the
current file byte position and the end-of-fi1e position
respectively.

See also:

4.3.69 XPSF - POSITION FILE
4.3.93 XRWF - REWIND FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
Di sk errors

MOVE.W 05,01
XRFP

BNE.S ERROR

PAGE 4-94 c

;GET FILE 10
;REAO FILE POSITION

c

c\

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.80 XRLF

Mnemonic:
Value:

Module:
Forma t:

READ LINE FROM FILE

XRLF
$AOE2
MPDOSF
XRLF

<status error return>

Registers: In D1.W = File ID
(A2) = R/W buffer eddress

Out D3.L E # of bytes read
(On EOF only.)

The READ LINE primitive reads one line. delimited by a
carriage return [CR). from the file specified by the file ID
in register D1. If a [CR) is not encountered after 132
charecters. then the line and primitive are terminated.
Address register A2 points to the buff~r in .ser memory
where the line is to be stored. If the channel buffer has
been rolled to disk. the least-used buffer is freed and the
buffer is restored to memory. The file slot ID is placed on
the top of the last-access queue.

If an error occurs during the read operation. the error
return is taken with the error number in register DO and the
number of bytes actually read in register D3.

The line read is dependent upon the data content. All line
feeds ([LF]) are dropped from the data stream and the [CR]
is replaced with a null. The buffer pointer in register A2
may be on any byta boundary. The buffer is not terminated
with a null on an error return.

See also:

4.3.71 XRBF - READ BYTES FROM FILE
4.3.113 XWBF - WRITE BYTES TO FILE
4.3.117 XWLF - WRITE LINE TO FILE

Possible Errors:

52 = Fi le not opan
56 = End of file
59 = Invalid slot #

Disk errors

BF

PAGE 4-95

MOVE.W D5.D1 ;GET FILE ID
LEA.L BF(PC).A2 ;GET BUFFER POINTER
XRLF ;READ LINE

BNE.S ERROR

DS.B 132 ;MAXIMUM BUFFER NEEDED

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.81 XRNF RENAME FILE

Mnemonic: XRNF
Value: $AOE4

Module: MPDOSF
Format: XRNF

<status er ror return>

Registers: In (A1) Old file name
(A2) New file name

The RENAME FILE primitive renames a file in a PDOS disk
directory. The old file name is pointed to by address
register A1. The new file name is pointed to by address
register A2.

The XRNF primitive is used to change the directory level
for any file by letting the new file name be a numeric
string equivalent to the new di rectory level. XRNF fi rst
attempts a conversion on the second parameter before
renaming the file. If the string converts to a number
without error, then only the level of the file is changed.

See also:

4.3.21 XDFL - DEFINE FILE
4.3.22 XDLF - DELETE FILE

Possible Errors:

50 = Invalid file name
51 = File already defined
Disk errors

LV
Fl
F2

PAGE 4-96

lEA.L Fl (PC) ,Al ;GET OLD FILE NAME
LEA.L F2(PC),A2 ;GET NEW FILE NAME
XRNF ;RENAME FILE

BNE.S ERROR ; PROBLEM
MOVEA.L A2,Al ;POINT TO NEW NAME
LEA.L LV(PC),A2 ;GET NEW LEVEL
XRNF ;CHANGE DIRECTORY LEVEL

BNE.S ERROR

DC.B
DC.B
DC.B
EVEN

'10' ,0
'OBJECT:OLD' ,0

'OBJECT:NEW' ,0

"r">,

V

c
C"
i' ...

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-S7

4.3.82 XROO

Mnemonic:
Value:

Module:
Format:

OPEN RANDOM READ ONLY FILE

XROO
$AOE6
MPDOSF
XROO

<status error return>

Resisters: In (Al) = File name
Out DO.W = File attribute

Dl.W = File ID

Note: Uses multiple directory file search.

The OPEN RANDOM READ ONLY FILE primitive opens a file for
random access by assigning the file to an area of system
memory called a file slot. and returning a file ID and file
attribute to the calling program. Thereafter, the ffle is
referenced by the file ID and not by the file name. This
type of file open provides read only access.

The file ID (returned in register Rl) is a 2-byte number.
The left byte is the disk number and the right byte is the
channel buffer index. The file attribute is returned in
register DO.

Since the file cannot be altered, it cannot be extended nor
is the LAST UPDATE parameter changed when it is closed. All
data transfers are buffered through a channel buffer and
data movement to and from the disk is by full sectors.

A new file slot is allocated for each XROO call even if the
file is already open. The file slot is allocated beginning
wi th slot 1 to 32.

Possible Errors:

50 Invalid file name
53 File not defined
61 File already open
68 Not PDOS disk
69 = Not enough file slots
Disk errors

LEA.L HLPFN(PC},Al ;POINT TO FILE NAME
XROO ;OPEN FILE

BNE.S ERROR

HELP02 MOVEA.L A6,A2
XRLF

BNE.S SHWF22

HLPFN DC. B 'HLPTX' ,0

;GET BUFFER
;READ LINE

D1.W = (Disk #) x 256 + (File slot index)
DO.W = (ABOS BETD xxxx xCWD)

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-98

4.3.83 XROP

Mnemonic:
Value:

Module:
Format:

OPEN RANDOM

XROP
$AOE8
MPDOSF
XROP

<status error return>

Registers: In (Al) = File name
Out DO.W = File attribute

0l.W = File 10

Note: Uses multiple directory file search.

The OPEN RANDOM FILE primitive opens a file for random
access by assigning the file to an area of system memory
called a file slot, and returning a file 10 and file
attribute to the calling program. Thereafter, the file is
referenced by the file 10 and not by the file name.

The file 10 (returned in register 01) is a 2-byte number.
The left byte is the disk number and the right byte is the
channel buffer index. The file attribute is returned in
register DO.

The END-OF-FILE marker on a random file is changed only
when the file has been extended. All data transfers are
buffered through a channel buffer and data movement to and
from the disk is by full sectors.

The file slot is allocated beginning with slot 32 to slot
1. If the file is already open, then the file slot is
shared.

Possible Errors:

50 Invalid file name
53 File not defined
61 File already open
68 Not PDOS disk
69 Not enough file slots
Disk errors

LEA.L FN(PC) ,Al ;GET FILE NAME
XROP ;OPEN RANDOM FILE

BNE.S ERROR ;ERROR
MOVE.W DO ,OS ;SAVE TYPE
SWAP 05
MOVE.W 01,05 ;SAVE FILE 10

FN DC.B 'FILENAME:EXT' ,a
EVEN

OO.W = (ABOS BETU xxxx xCWD)
01.W = (Disk #) x 256 + (File slot index)

i~'·.'
'~/

c\

(,

c

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-99

4.3.84 XRPS READ PORT STATUS

Mnemonic:
Value:

Module:
Format:

XRPS
$A094
MPOOSK2
XRPS

<status error return>

Registers: In DO.W = Port number
Out 01.L = ACI$.W I portflag.B I Status.B

Note: If OD.W=O, then the current port (PRT$(A6» is
used.

the
word
file

The READ PORT STATUS primitive reads the current status of
port specified by data register OO.W. The hi9h order
of data register 01.L is returned zero if no procedure
is open. Otherwise, it is returned with ACI$.

The
the
bi ts

low order word is returned with the port fla9 bits and
status as returned for the port UART routine. The flag
indicate if eight bit 1/0 is occurring, if OTR or AS AQ

protocol is in effect, and other flags.

See also:

4.3.3 XBCP - BAUD CONSOLE PORT
4.3.98 XSPF - SET PORT FLAG

Possible Errors:

66 = Invalid port Dr baud rate

MOVEQ.L #0,00 ;LOOK AT CURRENT PORT
XRPS

BNE.S ERROR
BTST.B #0,01 ;ASAQ?

BNE. S CSCQ ; Y

portflag. = fwpi 8dcs
\\\\ \\\\ 0 = ASAQ enable
\\\\ \\\ 1 = Control character disable
\\\\ \\ 2 = OTR enable
\\\\ \ 3 = 8-bit character enable
\\\\ __ 4 = Receiver interrupt enable
\\\ 5 = Even parity enable
\\ __ 6 = High water set
\ 7 = AS set

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.85 XRSE

Mnemonic:
Value:

Module:
Format:

READ SECTOR

XRSE
$AOC2
MPDOSF
XRSE

<status error return>

Registers: In DO.B = Disk number
D1.W = Sector number
(A2) = Buffer pointer

The READ SECTOR primitive calls a system-defined.
hardware-dependent program which reads 256 bytes of data
into a memory buffer pointed to by address register A2. The
disk is selected by data register DO. Register 01 specifies
the logical sector number to be read.

See also:

CHAPTER 8 BIOS
4.3.46 XISE - INITIALIZE SECTOR
4.3.88 XRSZ - READ SECTOR ZERO
4.3.118 XWSE - WRITE SECTOR

Possible Errors:

Disk errors

CLR.W DO
MOVEQ.L #2.D1
LEA.L BUFF(PC).A2
XRSE

BNE.S XERR

XERR XERR
BUFFER DS.B 256

PAGE 4-100

;SELECT DISK #0
;SELECT SECTOR 2
;POINT TO BUFFER
;READ INTO BUFFER
;ERROR

;DISK ERROR
;BUFFER

c

(

:C

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.86 XRSR

Mnemonic:
Value:

Module:
Format:

READ STATUS REGISTER

XRSR
$A042
MPDOSKl
XRSR

Registers: Out DO.W = 68000 status register

The READ STATUS REGISTER primitive allows you to read the
68000 status register. Of course, this is equivalent to the
'MOVE.W SR,Dx' instruction on the 68000. However, this
instruction is privileged on the 68010 and 68020. Hence, it
is advisable to use the XRSR primitive to read the status
register to make software upward compatible.

(_.. Possible Errors: None

()

PAGE 4-101

XRSR ;READ SR
ANDI.W #$0700,DO

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-102

4.3.87 XRST RESET DISK

Mnemonic: XRST
Value: $AOB4

Module: MPOOSF
Format: XRST

Registers: In D1.W = -1 Reset by task
>=0 ... Reset by disk

The RESET DISK primitive closes all open files either by
task or disk number. The primitive also clears the assigned
input file 10. If register D1 equals -1, then all files
associated with the current task are closed. Otherwise,
register D1 specifies a disk and all files opened on that
disk are closed.

XRST has no error return and as such, closes all files even
though errors occur in the close process. This is necessary
to allow for recovery from previous errors.

See also:

4.3.13 XCFA - CLOSE FILE W/ATTRIBUTE
4.3.16 XCLF - CLOSE FILE

Possible Errors: None

DONE MOVEQ.L #-1,01 ;CLOSE ALL TASK FILES
XRST

MOVE.W 05,01
XRST

;PREPARE TO REMOVE DISK
;CLOSE ALL FILES
;REMOVE DISK

j("

'l/

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.88 XRSZ

Mnemonic:
Value:

Module:
Format:

READ SECTOR ZERO

XRSZ
$AOC4
MPDOSF
XRSZ

<status error return>

Registers: In DO.B = Disk number
Out D1.l = 0

(A2) = User buffer pointer (A6)

The READ SECTOR ZERO primitive is a system-defined,
hardware-dependent program which reads 256 bytes of data
into the user memory buffer (usually pointed to by address
register A6). The disk is selected by data register DO.W.
Register D1.l is cleared and logical sector zero is read.

See also:

CHAPTER B BIOS
4.3.46 XISE - INITIALIZE SECTOR
4.3.85 XRSE - READ SECTOR
4.3.118 XWSE - WRITE SECTOR

Possible Errors:

Disk errors

PAGE 4-103

MOVEQ.l #1,00 ;SElECT DRIVE
XRSZ ;READ HEADER

BNE.S ERROR
XPBC ;PRINT DISK NAME

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.89 XRTE

Mnemonic:
Value:

Module :
Format:

RETURN FROM INTERRUPT

XRTE
$A044
MPOOSK1
XRTE

Registers: In SSP = Status register.W
Program counter.L

The RETURN FROM INTERRUPT primitive is used to return from
an interrupt process routine with a context switch. This
allows an immediate rescheduling of the highest priority
ready task which may be suspended pending the occurrence of
an event set b~ the interrupt routine.

If the interrupted system is locked when the XRTE primitive
is executed, then the reschedule flag (RFLG.(A5» is cleared
and a return from exception instruction (RTE) is executed.
When the system clears the task lock, RFLG. is tested and
set (TAS) and a rescheduling occurs at that time.

Possible Errors: None

MOVEQ.L #66,01
XSEV
XRTE

PAGE 4-104 c

;PROCESS INTERRUPT

;SET EVENT 66
;RETURN FROM INTERRUPT

c

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.90 XRTM

Mnemonic:
Value:

Module:
Format:

READ TIME

XRTM
$AOSE
MPDOSK3
XRTM

Registers: Out (A1) = 'HR:MN:SC'<null>
10(A1).W = Tics/second (B.TPS)
12(A1).L = Tics (TICS.)

The READ TIME primitive returns the current time as a
nine-character string. The format is 'HR:MN:SC' followed by
a null. Address register A1 points to the string in the
monitor work buffer.

See also:

4.3.32 XFTD - FIX TIME & DATE
4.3.S7 XPAD - PACK ASCII DATE
4.3.77 XRDT - READ DATE
4.3.107 XUAD - UNPACK ASCII DATE
4.3.108 XUDT - UNPACK DATE
4.3.112 XUTM - UNPACK TIME

Possible Errors: None

GETD

MES1

XPMC
XRTM
XPLC

DC.B

•

MES1

PAGE 4-10S

;OUTPUT PROMPT
;GET TIME
;OUTPUT TO SCREEN

'TIME=' ,0

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.91 XRTP READ TIME PARAMETERS

Mnemonic: XRTP
Value: $A034

Module: MPDOSK1
Format: XRTP

Registers: Out DO.L = TICS.
D1.L = MONTH/DAY/YEAR/O
D2.L HOURS/MINUTES/SECONDS/O
D3.L = B.TPS

The READ TIME PARAMETERS primitive returns the current time
parameters. Data register DO returns with the current tic
count (TICS.(A5». Register D1.L returns with the current
date and register D2.L the current time. Both are three
bytes that are left-justified. Finally, data register D3.L
returns with the number of clock tics per second.

See also:

4.3.32 XFTD - FIX TIME & DATE
4.3.57 XPAD - PACK ASCII DATE
4.3.77 XRDT - READ DATE
4 .. 3. gO XRTM - READ TIME
4.3.107 XUAD - UNPACK ASCII DATE
4.3.108 XUDT - UNPACK DATE
4.3.112 XUTM - UNPACK TIME

Possible Errors: None

PAGE 4-106 c
c

c'

(

(

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.92 XRTS

Mnemonic:
Value:

Module:
Format:

Registers: In
Out

READ TASK STATUS

XRTS
$A012
MPOOSK1
XRTS

<status return>

OO.W = Task number
01.L = 0 - Not executing

= +N - Time slice
= -N - (Event #1/Event #2)

AO.L TLST entry (IF -~O: AO=TLST.)
SR Status of 01.L

Note: If 00.W=-1, then the current task number is
returned in 01.L.

The READ TASK STATUS primitive returns in register 01 and
the status register returns the time parameter of the task
specified by register ~O. The time reflects the execution
mode of the task. If 01 returns zero, then the task is not
in the task list. If 01 returns a value greater than zero,
then the task is in the run state (executing). If 01
returns a negative value, then the task is suspended pending
event -(01).

The task number is returned from the CREATE TASK BLOCK
(XCTB) primitive. It can also be obtained by setting data
register DO equal to a minus one. In this case, register
D1.L is returned with the current task number.

See also:

4.3.100 XSTP - SET/READ TASK PRIORITY

Possible Errors: None

WAIT MOVEQ.L #2,00
XRST

BNE.S WAIT

•

PAGE 4-107

;WAIT TO TASK 0
; TO DIE
;STILL GOING
;DONE

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-108

4.3.93 XRWF REWIND FILE

Mnemonic: XRWF
Value: $AOEA

Module : MPoOSF
Format: XRWF

<status er ror return>

Registers: In 01.W = File ID

The REWIND FILE primitive positions the file specified by
the file 10 in register 01. to byte position zero.

See also:

4.3.69 XPSF - POSITION FILE
4.3.79 XRFP - READ FILE POSITION

Possible Errors:

52 = File not open
59 = Invalid slot #

70 = Position error
Disk errors

REWIND MOVE.W 05.01 ;GET FILE 10
XRWF ;REWINO FILE

BNE.S ERROR ;PROBLEM

o
o

c
I,:

(

c

()

()

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-109

4.3.94 XSEF SET EVENT FLAG W/SWAP

Mnemonic:
Value:

Module:
Format:

XSEF
$A018
MPOOSKl
XSEF

<stetus return>

Registers: In 01.B = Event (+=Set, -=Reset)
Out SR = NE Set

EQ Reset

Note: An XSWP is automatically executed after the
event is set or reset. Event 128 is local
to each task.

If 01.B is positive, then the event is set.
If 01.B is negative, then the event is reset.

The SET EVENT FLAG WITH SWAP primitive sets or resets an
event flag bit. The event number is specified in data
register 01.B and is modulo 128. If the content of register
01.B is positive, then the event bit is set to 1.
Otherwise, the bit is reset to O. Event 128 can only be
set. (It is cleared by the task scheduler.)

The status of the event bit prior to changing the event is
returned in the status register. If the event was 0, then
the 'EQ' status is returned. Also, an immediate context
switch occurs thus scheduling any higher priority task
pending on that event.

Events are summarized as follows:

See also:

1-63 = Software events
64-80 = Software resetting events
81-95 = Output port events

96-111 = Input port events
112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event
116 = TTA active
117 = LPT active

4.3.20 XOEV - DELAY SET/RESET EVENT
4.3.95 XSEV - SET EVENT FLAG
4.3.101 XSUI SUSPENO UNTIL INTERRUPT
4.3.106 XTEF - TEST EVENT FLAG

Possible Errors: None

118 =
119 =
120 =
121 =
122 =
123
124 =
125 =
126 =
127 =
128 =

MOVEQ.L #30,01 ;SET EVENT 30
XSEF ;SET EVENT

MOVEQ.L #-35,01 ;RESET EVENT 35
XSEF ;SET EVENT

•

4 types of event flags:

Level
Level
Batch

1-63 = Software
64-80 = Software resetting

81-127 = System
12B = Local to task

2 lock
3 lock
event

Spooler event

Error message disable
System util ity
Local

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-110

4.3.95 XSEV

Mnemonic:
Value:

Module:
Format:

SET EVENT FLAG

XSEV
$A046
MPOOSK1
XSEV

<status return>

Registers: In 01.B m Event (+mSet, - .. Reset)
Out SR .. NE Set

EQ Reset

Note: Event 128 is local to each task.

If 01.B is positive, then the event is set.
If 01.B is negative, then the event is reset.

The SET EVENT FLAG prim; ti ve sets or resets an event flag
bit. The event number is specified in data register 01.B
and is modulo 128. If the content of register 01.B is
positive, then the event bit is set to 1. Otherwise, the
bit is reset to O. Event 128 can only be set. (It is
cleared by the task scheduler.)

The status of the event bit prior to changing the event is
returned in the status register. If the event was 0, then
the 'EQ' status is returned. A context switch DOES NOT
occur with this call making it useful for interrupt routines
outside the PO OS system.

Events are summarized·as follows:

See also:

1-63 = Software events
64-80 m Software resetting events
81-95 a Output port events

96-111 .. Input port events
112 .. 1/5 second event
113 .. 1 second event
114 .. 10 second event
115 .. 20 second event
116 .. TTA active
117 .. LPT active

4.3.20 XOEV - DELAY SET/RESET EVENT
4.3.95 XSEV - SET EVENT FLAG
4.3.101 XSUI - SUSPEND UNTIL INTERRUPT
4.3.106 XTEF - TEST EVENT FLAG

Possible Errors: None

MOVEQ.L #30,01 ;SET EVENT 30
XSEV ;SET EVENT

MOVEQ.L #-35,01 ;RESET EVENT 35
XSEV ;SET EVENT

118 ..
119 ..

4 types of event

1-63 =
64-80 =

81-127
128 =

120 = Level 2 lock
121 .. Level 3 lock
122 .. Batch event
123 = Spooler event
124 =
125 =

flags:

Software
Softwa re
System
Local to

126 = Error message disable
127 .. System utility
128 .. Local

resetti ng

task

()

c

c

(--

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES

4.3.96 XSMP

Mnemonic:
Value:

Module:
Format:

SEND MESSAGE POINTER

XSMP
$A002
MPOOSK1
XSMP

<status return>

Registers: In OO.B = Message slot number (0 .. 15)
(A1) = Message

Out SR = EQ Message sent (Event[64+s10t #]=1)
NE No message sent

The SEND MESSAGE POINTER primitive sends a 32-bit message
to the message slot specified by data register OO.B.
Address register A1 contains the message.

If there is still a message pending, then the primitive
immediately returns with status set 'Not Equal' and OO.L
equal to 83. Otherwise, the message is taken by POOS event
(64 + message slot number) is set to one indicating a
message is ready, and status is returned 'Equal'.

The primitive XSMP is only valid for message slots 0
through 15. (This is because of current event limitations.)

4l:~ See also:

c

4.3.42 XGMP - GET MESSAGE POINTER
4.3.44 XGTM - GET TASK MESSAGE
4.3.48 XKTM - KILL TASK MESSAGE
4.3.99 XSTM - SEND TASK MESSAGE

Possible Errors:

83 • Message buffer pending

PAGE 4-111

•

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-112

4.3.97 XSOP

Mnemonic:
Value:

Module:
Format:

Registers: In
Out

OPEN SEQUENTIAL FILE

XSOP
$AOEC
MPOOSF
XSOP

<status error return>

(A1) = File name
OO.W = File attribute
01.W = File 10

Note: Uses multiple directory file search.

The OPEN SEQUENTIAL FILE primitive opens a file for
sequential access by assigning the file to an area of system
memory called a file slot and returning a file 10 and file
type to the calling program. Thereafter, the file is
referenced by the file 10 and not by the file name.

The file 10 (returned in register 01) is a 2-byte number.
The left byte is the disk number and the right byte is the
file slot index. The file attribute is returned in 00.

The ENO-OF-FILE marker on a sequential file is changed
whenever data is written to the file. All data transfers
are buffered through a channel buffer; data movement to and
from the disk is by full sectors.

The file slots are allocated beginning with slot 32 down to
slot 1.

Possible Errors:

50 = Invalid file name
53 = File not defined
61 • File already open
68 = Not POOS disk
69 = Not enough file slots
Oisk errors

LEA.L FN(PC) ,A1 ;GET FILE NAME
XSOP ;OPEN SEQUENTIAL FILE

BNE.S ERROR ;ERROR
MOVE.W 00,05 ;SAVE TYPE
SWAP 05
MOVE.W 01,05 ;SAVE FILE 10

FN OC.B 'FILENAME:EXT' ,0
EVEN

OO.W = (ABOS BETO xxxx xCWO)
01.W = (Oisk #) x 256 + (File slot index)

o

c
j,

(~

c

c

c'
()

6S0xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEMBLY PRIMITIVES

4.3.98 XSPF

Mnemonic:
Value:

Module:
Format:

SET PORT FLAG

XSPF
$A09A
MPOOSK2
XSPF

<status error return>

Registers: In OO.W = Port number
01.B = Port flag (fwpiSdcs)

Out 01.B = Old port flag

Note: If OO.W=O, then the current port (PRT$(A6» is
used.

The SET PORT FLAG primitive stores the port flag passed in
data register 01.B in the port flag register as specified by
register OO.W.

If flag bits 'p', 'i', or'S' change, the BIOS baud port
routine is called.

See also:

4.3.3 XBCP - BAUO CONSOLE PORT
4.3.S4 XRPS - REAO PORT STATUS

Possible Errors:

66 = Invalid port or baud rate

PAGE 4-113

MOVEQ.L #0,00 ;SELECT CURRENT
MOVEQ.L #1,01 ;ASAQ
XSPF

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-114

4.3.99 XSTM

Mnemonic:
Value:

Module:
Format:

SEND TASK MESSAGE

XSTM
$A020
MPOOSK1
XSTM

<status error return>

Registers: In OO.B = TASK NUMBER
(A1) = MESSAGE

The SEND TASK MESSAGE primitive places a 54-character
message into a POOS system message buffer. The message is
data-independent and is pointed to by address register A1.

Data register DO specifies the destination of the message.
If register DO is negative, and there is no input port
(phantom port), then the message is sent to the parent task.
If there is a port, then the message is sent to itself and
will appear at the next command line. Otherwise, register
DO specifies the destination task.

The ability to direct a message to a parent task is very
useful in background tasking. An assembler need not know
from which task it was spawned and can merely direct any
diagnostics to the parent task.

If the destination task number equals -1, the task message
is moved to the monitor input buffer and parsed as a command
line. This feature is used by the CREATE TASK BLOCK
primitive to spawn a new task.

See also:

4.3.42 XGMP - GET MESSAGE POINTER
4.3.44 XGTM - GET TASK MESSAGE
4.3.48 XKTM - KILL TASK MESSAGE
4.3.95 XSMP - SEND MESSAGE POINTER
4.3.99 XSTM - SEND TASK MESSAGE

Possible Errors:

78 = Message buffer full

TERR LEA.L ERRM(PC) ,A1 ;RETURN MESSAGE
ST.B DO ;SENO TO PARENT
XSTM ;SENO, ERROR?

BNE.S ERROR ;Y
XEXT ;N, QUIT

DO = -1 sends message to parent task

c
c

c
c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

c= 4.3.100 XSTP - SET/READ TASK PRIORITY

(

c

()

Mnemonic:
Value:

Module:
Format:

XSTP
$A03C
MPOOSK1
XSTP

<status error return>

Registers: In OO.B = Task #
01.W = Task time/Task priority

Out 01.B = Task priority (If 01.B was 0)

Note: If 00.B=-1, then select current task.
If 01.B=O, then read task priority into 01.B.

The SET/READ TASK PRIORITY primitive either sets or reads
the tesk priority selected by data register OO.B. If 01.B
is nonzero, then the priority is set. Otherwise, it is read
and returned in 01.B. If the upper byte of 01.W is nonzero,
then the corresponding task time slice is also set.

See also:

4.3.92 XRTS - READ TASK STATUS

Possible Errors:

74 = No such task

PAGE 4-115

MOVEQ.L #-1,00 ;CURRENT TASK
MOVEQ.L #0,01 ;SET TO READ
XSTP ;REAO TASK PRIORITY

BNE.S ERROR
MOVE.B 01,SV(A2)

MOVEQ.L #-1,00 ;SELECT CURRENT
MOVEQ.L #100,01 ;SET TO WRITE
XSTP ;SET TASK PRIORITY

BNE.S ERROR

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.101 XSUI - SUSPEND UNTIL INTERRUPT

Mnemonic:
Va 1 ue :

Module:
Format:

Registers: In
Out

XSUI
$A01C
MPDOSK1
XSUI

01.W = EV1/EV2
DO.L = Event

The SUSPEND UNTIL INTERRUPT primitive suspends the user
task until one of the events specified in data register D1
occurs. A task can suspend until an event sets (positive
event) or until it resets (negative event).

A task can suspend pending two different events. This is
useful when combined with timeout counters to prevent system
lockups. Data register DO.L is returned with the event
which caused the task to be scheduled.

A suspended task does not receive any CPU cycles until one
of the event conditions is met. When the event bit is set
(or reset), the task begins executing at the next
instruction after the XSUI call. The task is scheduled
during the normal swapping functions of PO OS according to
its priority. Register OO.L is used to determined which
event scheduled the task.

A suspended task is indicated in the LIST TASK (LT) command
under the 'Event' parameter. Multiple events are separated
by a slash.

Events 64 through 128 toggle when they cause a task to move
from the suspended state to the ready state. All others
must be reset by the event routine.

If a locked task attempts to suspend itself, the call polls
the events until a successful return condition is met.

See also:

4.3.20 XDEV - DELAY SET/RESET EVENT
4.3.94 XSEF - SET EVENT FLAG W/SWAP
4.3.95 XSEV - SET EVENT FLAG
4.3.106 XTEF - TEST EVENT FLAG

Possible Errors: None

GETC

PAGE 4-116 c

XGCC ; CHARACTER?
BNE.S GETC2 ;Y

MOVEQ.L #100,DO ;N, GET DELAY
MOVEQ.L #128,D1 ;USER LOCAL EVENT
XDEV ;DELAY 128 1 SECOND

BNE.S GETC ;FULL
LSL.W #8,D1 ;GET 128/(PORT+96)
MOVE.B #96.D1
ADD.B PRT$(A6) ,D1
XSUI ;SUSPEND
CMP .B OO,Dl ;CHARACTER EVENT?

BEQ.S GETC ;Y

",,-..

(680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(~ 4.3.102 XSUP - ENTER SUPERVISOR MODE

Mnemonic: XSUP
Value: $AD2C

Module: MPDOSK1
Format: XSUP

Regi sters: None

The ENTER SUPERVISOR MODE primitive moves your current task
from user mode to supervisor mode. Care should be taken not
to crash the system since you would then be executing off
the supervisor stack!

This primitive enables programs to access 1/0 addresses and
use privileged instructions.

(-- You exit to user mode by executing a 'ANDI.W #$DFFF,SR'
instruction or the XUSP primitive.

See also:

4.3.54 XLSR - LOAD STATUS REGISTER
4.3.112 XUSP - RETURN TO USER MODE

Possible Errors: None

P1

OUT

PAGE 4-117

EQU $FFFFCE01 ; 1/0 PORT

XSUP ;ENTER SUPERVISOR
MOVE.B DO, P1 ;OUTPUT
ANDI.W #$DFFF,SR ;MOVE TO USER
RTS ; RETURN

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.103 XSWP - SWAP TO NEXT TASK

Mnemonic:
Value:

Module:
Format:

Registers:

XSWP
$AOOO
MPOOSK1
XSWP

None

The SWAP TO NEXT TASK primitive relinquishes control to the
POOS task scheduler. The next ready task with the highest
priority begins executing. (This may be to the same task if
there is only one task or the task is the highest priority
ready task.)

Possible Errors: None

LOOP

*
LOOP02

PAGE 4-118 'c"" I·" "

TST.B TMEM ;CONOITION MET?
SEQ.S LOOP02 ;Y

XSWP ;N, SWAP WHILE WAITING
BRA.S LOOP

(

(/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.104 XSZF - GET DISK SIZE

Mnemonic:
Value:

Module:
Format:

XSZF
$AOB6
MPDOSF
XSZF

<status error return>

Registers: In OO.B = Disk number
Out OS.L = Directory size/I of files

D6.L = Allotted/Used
D7.L = Largest/Free

The GET DISK SIZE primitive returns disk size parameters in
data registers 05 through 07. Data register 05 returns the
number of currently defined files in the low word along with
the maximum number of files available in the directory in
the high word.

The low order 16 bits of data register 06 (0-1S) returns
the total number of sectors used by all files. The high
order 16 bits of 06 (16-31) returns the number of sectors
allocated for file storage.

The low order 16 bits of data register 07 (0-15) is
calculated from the disk sector bit map and reflects the
number of sectors available for file allocation. The high
order 16 bits of 07 (16-31) is returned with the size of the
largest block of contiguous sectors. This is useful in
defining large files.

Possible Errors:

68 = Not PDOS disk
~isk errors

SPM1
SPM2
SPM3
SPM4

PAGE 4-119

CLR.L DO ;SELECT DISK #0
XSZF ;GET DISK SIZE

BNE.S ERROR ;ERROR
CLR.L 01
MOVE.W 07,01
XCBM SPM1 ;OUTPUT FREE
XPLC ;PRINT
SWAP 07
MOVE.W 07,01
XCBM SPM2 ;OUTPUT LARGEST
XPLC CONTI GUOUS BLOCK
XTAB 20 ;TAB TO COLUMN 20
MOVE.W 06,01
XCBM SPM3 ;OUTPUT USED
XPLC ;PRINT
SWAP 06
MOVE.W 06,01
XCBM SPM4 ;OUTPUT ALLOCATED
XPLC ; PRI NT
XEXT

DC.B $OA,$OD, 'FREE:' ,0
OC.B , ,1,0

DC.B 'USED: ' ,0
DC.B '/' ,0
EVEN

680xD PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.105 XTAB - TAB TO COLUMN

Mnemonic: XTAB
Value: $A09D

Module: MPDOSK2
Format: XTAB <column>

Regi stars: None

The TAB TO COLUMN primitive positions the cursor to the
column specified by the number following the call. Spaces
are output until the column counter is greater than or equal
to the parameter.

The first print column is zero. At least one space
character will always be output.

Possible Errors: None

XPMC
XTAB

MES1
30

PAGE 4-120

;OUTPUT HEADER
;MOVE TO COLUMN 3D

1("
~j

C\

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

f 4.3.106 XTEF - TEST EVENT FLAG

(

c'

Mnemonic:
Value:

Module:
Format:

Registers: In
Out

XTEF
$A01A
MPOOSK1
XTEF

<status return>

01.B = Event number (+=0-127, -=128)
SR = NE Event set (1l

EQ Event clear (0)

The TEST EVENT FLAG primitive sets the 68000 status word
EQUAL or NOT-EQUAL depending upon the zero or nonzero state
of the specified event flag. The flag is not altered by
this primitive.

The event number is specified in data register 01 and is
modulo 128. Event 128 is local to each task.

See also:

4.3.20 XOEV - DELAY SET/RESET EVENT
4.3.94 XSEF - SET EVENT FLAG W/SWAP
4.3.95 XSEV - SET EVENT FLAG
4.3.101 XSUI - SUSPEND UNTIL INTERRUPT

Possible Errors: None

PAGE 4-121

MOVEQ.L #30,01 ;EVENT 30
XTEF ;TEST EVENT FLAG

BNE.S EVENT ;EVENT .TRUE.
;EVENT = .FALSE.

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.107 XUAD - UNPACK ASCII DATE

Mnemonic:
Value:

Module:
Format:

Registers: In

Out

XUAD
$A036
MPDOSK3
XUAD

01.W = (Year*16+Month)*32+0ay
(YYYY YYYM MMMO DODD)

(Al) = 'DY-MON-YR'<null>
(Outputs 77? for invalid months)

The UNPACK ASCII DATE primitive returns a pointer in
address register Al to an ASCII date string. Data register
Dl.W contains the binary date [(Year*16+Month}*32+Day]. The
format of the string is more exact than simple numbers
separated by slashed.

Note: XUAD does not check for a valid date and hence, funny
looking strings could result. Invalid months are replaced
by '777.'

See also:

4.3.32 XFTD - FIX TIME & DATE
4.3.57 XPAD - PACK ASCII DATE
4.3.77 XRDT - READ DATE
4.3.90 XRTM - READ TIME
4.3.108 XUDT - UNPACK DATE
4.3.112 XUTM - UNPACK TIME

Possible Errors: None

PAGE 4-122 c

c

6BOxO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(~ 4.3.108 XUDT - UNPACK DATE

Mnemonic:
Value:

Module:
Format:

XUDT
$A060
MPDOSK3
XUDT

Registers: In D1.W = (Year * 16 + Month) * 32 + Day
Out (A1) = 'MN/DY/YR'<null>

The UNPACK DATE primitive converts a one-word encoded date
into an eight-character string terminated by a null (nine
characters total). Data register D1 contains the encoded
date and returns with a pointer to the formatted string in
address register A1. The output of the FIX TIME & DATE
(XFTD) primitive is valid input to this primitive.

See a1 so:

4.3.32 XFTD - FIX TIME & DATE
4.3.57 XPAD - PACK ASCII DATE
4.3.77 XRDT - READ DATE
4.3.90 XRTM - READ TIME
4.3.107 XUAD - UNPACK ASCII DATE
4.3.112 XUTM - UNPACK TIME

~ Possible Errors: None

c

()

XFTD
XUDT
XPLC

PAGE 4-123

;FIX TIME & DATE
;UNPACK DATE
;PRINT 'MN/DY/YR'

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.109 XULF - UNLOCK FILE

Mnemonic: XULF
Value: $AOEE

Module : MPOOSF
Format: XULF

<status error return>

Registers: In 01.W = File 10

The UNLOCK FILE primitive unlocks a locked file for access
by any other task. The file is specified by the file 10 in
data register 01.

See also:

4.3.52 XLKF - LOCK FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
Disk errors

MOVE.W 05,01
XULF

BNE.S ERROR

PAGE 4-124

;GET FILE 10
;UNLOCK FILE

o
o

c

c
I,
1-

!\

(680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(4.3.110 XULT - UNLOCK TASK

(

(

(~

Mnemonic: XULT
Value: $A016

Module: MPDOSK1
Format: XULT

Registers: None

The UNLOCK TASK primitive unlocks the current task by
clearing the swap lock variable in system RAM. This allows
other tasks to be scheduled and receive CPU time.

See also:

4.3.53 XLKT - LOCK TASK

Possible Errors: None

LOOP

XLKT

TST.B LMEM
BNE.S LOOP

CLR.B OMEM
XULT

PAGE 4-125

;LOCK TASK WHILE WAITING

; CONDITION MET?
;N. WAIT
;Y. RESET
;UNLOCK TASK NOW

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.111 XUSP - RETURN TO USER MODE

Mnemonic:
Value:

Module:
Format:

Registers: None

XUSP
$A008
MPOOSK1
XUSP

The RETURN TO USER MODE primitive moves your current task
from supervisor mode to user mode. Executing an 'ANDI.W
#$DFFF,SR" instruction also returns you to user mode, but
must be executed in supervisor mode. The XUSP primitive can
be executed in either mode.

See also:

4.3.54 XLSR - LOAD STATUS REGISTER
4.3.103 XSUP - ENTER SUPERVISOR MODE

Possible errors: None

P1
*
OUT

PAGE 4-126 o

EQU $FFFFCE01 ;1/0 PORT

XSUP ;ENTER SUPERVISOR
MOVE.S OO,P1 ;OUTPUT
XUSP ;RETURN TO USER
RTS ;RETURN

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(' 4.3.112 XUTM - UNPACK TIME

c

c

c

Mnemon-ic:
Value:

Module:
Format:

XUTM
$A062
MPDOSK3
XUTM

Registers: In D1.W = HOUR*256+MINUTE
(HHHH HHHH MMMM MMMM)

Out (A1) = HR:MN<null>

The UNPACK TIME primitive converts a one word encoded date
into a five character string terminated by a null (six
characters total). Data register D1 contains the encoded
time and returns a pointer to the formatted string in
address register A1. The output of the FIX TIME & DATE
(XFTD) primitive is valid input to this primitive.

See also:

4.3.32 XFTD - FIX TIME & DATE
4.3.57 XPAD - PACK ASCII DATE
4.3.77 XRDT - READ DATE
4.3.90 XRTM - READ TIME
4.3.107 XUAD - UNPACK ASCII DATE
4.3.108 XUDT - UNPACK DATE

Possible Errors: None

XFTD
MOVE DO,D1
XUTM
XPLC

PAGE 4-127

; GET SYSTEM TIME

;CONVERT TO STRING
; PRINT TIME

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-128

4.3.113 XWBF - WRITE BYTES TO FILE

Mnemonic:
Value:

Module :
Format:

Registers: In

XWBF
$AOFO
MPDOSF
XWBF

<status error return>

DO.L = Byte count - must be positive
D1.W = File ID
(A2) = Buffer address

The WRITE BYTES TO FILE primitive writes from a memory
buffer, pointed to by address register A2, to a disk file
specified by the file ID in register D1. Register DO
specifies the number of bytes to be written. If the channel
buffer has been rolled to disk, the least-used buffer is
freed and the buffer is restored to memory. The file slot
ID is placed on the top of the last-access queue.

The write is independent of the data content. The buffer
pointer in register A2 may be on any byte boundary. The
write operation is not terminated with a null character.

A byte count of zero in register DO results in no data
being written to the file.

If it is necessary for the file to be extended, PDOS first
uses sectors already linked to the file. If a null or end
link is found, a new sector obtained from the disk sector
bit map is linked to the end of the file. If this makes the
file non-contiguous, it is retyped as a non-contiguous file.

See also:

4.3.71 XRBF - READ BYTES FROM FILE
4.3.80 XRLF - READ LINE FROM FILE
4.3.117 XWLF - WRITE LINE TO FILE

Possible Errors:

52 '" File not open
58 = File delete or write protected

59 '" Invalid slot #
60 .. Fil e space full
Disk errors

MOVE.L #252,DO ;WRITE FULL SECTOR
MOVE.W D5,D1 ;GET ID
LEA.L BF(PC),A2 ;GET BUFFER ADDRESS
XWBF ;WRITE TO FILE

BNE. S ERROR

BF DS.B 256 ;SECTOR BUFFER

DO '" 0 Write no data

Extended file

Contiguous changes to non-contiguous

o
c

(' '

. ?

c

c

(

(

(

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PO OS ASSEM8LY PRIMITIVES

4.3.114 XWDT - WRITE DATE

Mnemonic:
Value:

Module:
Format:

XWOT
$A064
MPOOSK3
XWOT

Resisters: In 00.8 = Month (1-12)
01.8 = Oay (1-31)
02.8 = Year (0-9S)

The WRITE OATE primitive sets the system date counters.
Register 00 specifies the month and ranses from 1 to 12.
Register 01 specifies the day of month and ranges from to
31. Register 02 is the last 2 digits of the year.

No check is made for a valid date.

Possible Errors: None

PAGE 4-129

MOVEQ.L #12,00 ;SET OATE TO 12/25/80
MOVEQ. L #25,01
MOVEQ.L #83,02
XWOT ;SET DATE

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 4 PODS ASSEMBLY PRIMITIVES

4.3.114 XWFA - WRITE FILE ATTRIBUTES

Mnemonic:
Value:

Module:
Format:

YMFA
$AOF2
MPDOSF
YMFA

<status error return>

Registers: In (A1) = File name
(A2) = ASCII file attributes

Note: (A2)=0 clears all attributes.

The WRITE FILE ATTRIBUTES primitive sets the attributes of
the file specified by the file name pointed to by register
A1. Register A2 points to an ASCII string containing the
new file attributes followed by a null character. The
format is:

(A2) = {file type}{protection}

{file type} = AC - Procedure file
BN - Binary file
DB - 68000 object file
SY - 68000 memory image
8X - BASIC binary token file
EX - BASIC ASCII file
TX - Text file
DR - System I/O driver

{protection} = * - Delete protect
** - Delete and Write protect

If register A2 points to a zero byte, then all flags, with
the exception of the contiguous flag. are cleared.

FN
PF

PAGE 4-130

LEA.L FN(PC) ,A1 ;GET FILE NAME
LEA.L PF(PC),A2 ;SET BINARY & PROTECTED
YMFA ;SET

BNE.S ERROR

DC.B
DC.B
EVEN

, OAT A: BIN' ,0
I BN** I ,0

See also: /If,

4.3.13 XCFA - CLOSE FILE W/ATTRIBUTE
4.3.78 XRFA - READ FILE ATTRIBUTES
4.3.116 XWFP - WRITE FILE PARAMETERS

Possible Errors:

50 Invalid file name
53 File not defined
54 Invalid file type
Disk errors

"~.

c
c

I'

{ B80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

(4.3.116 XWFP - WRITE FILE PARAMETERS

(

{

Mnemonic:
Value:

Module:
Format:

XWFP
$AOFC
MPDOSF
XWFP

<status error return>

Registers: In (A1) = File name
DO.L = Sector index of EOF/Bytes in last sector
D1.L = Time/Date created
D2.L = Time/Date last accessed
D3.W = OR'd status (less contiguous bit)

The WRITE FILE PARAMETERS primitive updates the end-of-file
and date parameters of the file specified by the name
pointed to by address register A1 in the disk directory.

See also:

4.3.13 XCFA - CLOSE FILE W/ATTRIBUTE
4.3.78 XRFA - READ FILE ATTRIBUTES
4.3.115 XWFA - WRITE FILE ATTRIBUTES

Possible Errors:

50 = Invalid file name
53 = File not defined
Disk errors

FN

PAGE 4-131

LEA.L FN(PC),A1 ;GET FILE NAME
XRFA ;READ FILE ATTRIBUTES

BNE.S ERROR ; ERROR
ADDA.W #20,A2 ;POINT TO
MOVEM.L (A2),D5-D7 ;SAVE PARAMETERS

MOVE.L
MOVE.L
MOVE.L
LEA.L
XWFP

BNE.S

DC.B
EVEN

D5,DO
DB,D1
D7,D2
FN(PC) ,A1 ; GET FILE NAME

;UPDATE FILE PARAMETER
ERROR

'DATA:BIN' ,0

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES PAGE 4-132

4.3.117 XWLF

Mnemonic:
Value:

Module:
Format:

WRITE LINE TO FILE

XWLF
$AOF4
MPOOSF
XWLF

<status error return>

Registers: In 01.W = File 10
(A2) = Buffer address

The WRITE LINE TO FILE primitive writes a line delimited by
a null character to the disk file specified by the file 10
in register 01. Address register A2 points to the string to
be written. If the channel buffer has been rolled to disk,
the least-used buffer is freed and the buffer is restored to
memory. The file slot 10 is placed on the top of the
last-access queue.

The write line primitive is independent of the data
content, with the exception that a null character terminates
the string. The buffer pointer in register A2 may be on any
byte boundary. A single write operation continues until a
null character is found.

If it is necessary for the file to be extended, POOS first
uses sectors already linked to the file. If a null link is
found, a new sector obtained from the disk sector bit map is
linked to the end of the file. If this makes the file
non-contiguous, it is retyped as a non-contiguous file.

See also:

4.3.71 XRBF - READ BYTES FROM FILE
4.3.80 XRLF - READ LINE FROM FILE
4.3.113 XWBF - WRITE BYTES TO FILE

Possible Errors:

52 File not open
58 File delete or write protected
59 Invalid slot #

60 Fil e space full
Disk errors

LB

MOVE.W 05,01 ;GET FILE 10
LEA.L LB(PC),A2 ;GET LINE
XWLF

BNE.S ERROR
;WRITE LINE
;ERROR

OC.B
EVEN

$OA,$OO, 'NO DIAGNOSTICS' ,0

Null delimiter

Extended file

Contiguous changes to non-contiguous

" C-~.'·

(

(/

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.118 XWSE - WRITE SECTOR

Mnemonic: XWSE
Value: $AOC6

Module: MPOOSF
Format: XWSE

<status error return>

Registers: In OO.B = Disk number
01.W = Sector number
(A2) = Buffer address

The WRITE SECTOR primitive is a system-defined.
hardware-dependent program which writes 256 bytes of data
from a buffer. pointed to by address register A2. to the
logical sector and disk device specified by data registers
01 and DO respectively.

See also:

CHAPTER 8 BIOS
4.3.46 XISE - INITIALIZE SECTOR
4.3.85 XRSE - READ SECTOR
4.3.88 XRSZ - READ SECTOR ZERO

Possible Errors:

Disk errors

BUF

PAGE 4-133

CLR.L DO ;WRITE TO DISK #0
MOVEQ.L #10.02 ;WRITE TO SECTOR #10
LEA.L BUF(PC).A2 ;GET BUFFER ADDRESS
XWSE ;WRITE

BNE.S ERROR ; PROBLEM

DS.B 256 ;DATA BUFFER

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.119 XWTM - WRITE TIME

Mnemonic: XWTM
Value: $A066

Module: MPOOSK3
Format: XWTM

Registers: In OO.B = Hours (0-23)
01.B. Minutes (0-59)
02.B = Seconds (0-60)

The WRITE TIME primitive sets the system clock time.
Register 00 specifies the hour and ranges from 0 to 23.
Register 01 specifies the minutes and register 02, the
seconds. The latter two range from 0 to 59.

There is no check made for a valid time.

Possible Errors: None

MOVEQ. L #23, DO
MOVEQ.L #59,01
MOVEQ. L #59,02
XWTM

PAGE 4-134

;SET TIME TO 23:59:59

; SET SYSTEM TIME

c

c

c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.120 XZFL - ZERO FILE

Mnemonic:
Value:

Module:
Format:

XZFL
$AOF6
MPDOSF
XZFL

<status error return>

Registers: In (A1) = File name

The ZERO FILE primitive clears a file of any data. If the
file is defined, then the end-of-file marker is placed at
the beginning of the file. If the file is not defined, it
is defined with no data.

See a 150:

4.3.21 XDFL - DEFINE FILE
4.3.22 XDLF - DELETE FILE

Possible errors:

50 = Invalid file name
61 = File already open
68 = Not PDOS disk
Disk errors

FN

PAGE 4-135

LEA.L FN(PC),A1 ;POINT TO FILE
XZFL ;ZERO FILE

BNE.S ERROR

DC.B 'FILE:SR' ,0
EVEN

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-136

('1-

(

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 5 PODS SCREEN EDITOR

CHAPTER 5

PODS SCREEN EDITOR

The MEDIT editor is a screen oriented, memory editor.

5.1 INTRODUCTION•..•........................... 5-2

5.2 GETTING STARTED• 5-2

5 . 3 THE CLOCK•........•.......................• 5-2

5.4 USING MEDIT ..•...........•.....................•.... 5-3

Buffer Commands (Cut and Paste)•................ 5-4

Cancel •.............•............................•.. 5-6

Clear Editor•............•........... 5-7

Command Mode .. 5-8

Delete Commands (Chars, Control Chars, Block) 5-9

File Insert and Excerpt Commands• 5-10

File Save and Retrieve Commands 5-11

Find Commands 5-13

He 1 p ... 5-15

Insert Control Character•....•............... 5-16

Insert Tab .•.......•.............................•. 5-17

Jump•..•......•..................... 5-1B

List Files '" 5-20

Mac ros ... 5-21

Move•.....•.......•......................... 5-23

Po in te r•........•.....•..•........ 5-24

Quit•...........•............ , 5-25

Recenter ... 5-26

Statistics ... 5-27

Toggle Upper/Lower Case•............... 5-28

Use Insert/Replace Mode 5-29

5.5 CONF IGURING MEDIT•.......... 5-30

TABLE 5.1 MEDIT FUNCTIONS 5-33

TABLE 5.2 ALPHABETICAL MEDIT COMMAND SUMMARy 5-34

PAGE 5-1

580xO PODS 3.2 REFERENCE MANUAL CHAPTER 5 PODS SCREEN EDITOR PAGE 5-2

5.1 INTRODUCTION

MEDIT is a screen oriented editor designed for editing
files on a CRT terminal. And because MEDIT is a screen
editor. what you see is what you get when you print it out.
The screen is constantly updated to reflect the current
image of the text that you are editing. Since you can
always see what your file looks like. you are less likely to
become lost or confused than with 1ine- or
character-oriented editors.

By just learning a few of the basic
proficiently edit files. There are
features that can cut your editing time

commands. you can
also many advanced

considerably.

MEDIT may be configured to allow you to use your function
and arrow keys. You may configure the editor for your
terminal using the MEDITCON utility described in section
5.5.

5.2 GETTING STARTED

Before you can enter the editor. you must make sure that
your terminal characteristics are set properly. MEDIT only
requires that the terminal be able to clear the screen and
position the cursor. The MTERM utility sets the position
cursor (PSC$) and clear screen (CSC$) variables in the task
control block (TCB). This utility facilitates using various
types of terminals on the same PDOS system. Each task has
its own characters for these two functions. which are
initialized. when the task is started. to the parent task
control set. MTERM provides an easy way for a task to
change its function characters while the system is running.

If your terminal is not listed. enter a 'U' and enter the
hexadecimal representation of the sequences used by your
terminal (see the MTERM utility for more details).
Terminals which send character sequences 10ngsr than four
characters require special BIOS support.

Because the editor functions are configurab1e. this section
only refers to the name of the function and the default key
sequence in pa rentheses . An examp 1 e is QUIT
([ESC][CTRL-V]). You can substitute the key sequence for
the function keys you select later.

5.3 THE CLOCK

During editing. the current time is kept in the lower right
hand corner of your screen (on the status line). It is only
updated when no other processing is occurring and serves as
an indicator that the system is alive. When the editor is
performing a lengthy process such as writing out a large
file. you can watch the clock to see when the process is
complete. When it starts ticking again. the editor will
accept new commands.

Screen Editor

MEDITCON configures MEDIT for function
keys. (See section 5.5)

x>MTERM
58K PDOS Change Terminal Type Utility
Terminals:

A=ADDS Regent 25
D=Decscope (VT52)
H=Haze1tine 1520
1=1 nte rtube I I
L=Lear Seigler ADM3a
S=Soroc IQ120
M=Data Media Excel 12
V=VT100 / ANSI terminal
U=User Defined

Type = H
x>

c
;(-

iL/·

."r·,
.. ~/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR PAGE 5-3

(~ 5.4 USING MEDIT

(:

From the PDOS monitor, you can enter the editor by typing
'MEDIT <filename>[CR], . If you wish to enter new text, just
type 'MEDIT[CR]'. To edit an existing file, you may enter
the filename directly on the PDOS command line. If you
forget to enter the filename, you may also retrieve the file
from MEDIT by using the FILE RETRIEVE ([CTRL-G]) command.

Following is a description of the MEDIT commands in
alphabetical order. These descriptions are intended as a
reference guide. To learn to use MEDIT, consult Getting
Started With PDDS. The diagram below illustrates the
windowing effect of MEDIT.

Computer memory

"T ---> Text "D
,----> IMacro bufferl

"K y I "E -----------
v

loW • __ + ____ -+ __ .

I __ ~./I <----------- I Terminal
I Floppy I I -----------> I Window
I II "G "R ->1

I

I

"U
-------->
<-------- IUp buffer I

I 24 x 80 [ESC]"U ---------
'--+------+--'

I
I "I
I "J" I

lop ---> 1 1

I I
"Z ---> '

"B = Search backwards
"F = Search forwards

Some PDOS users have terminals which allow up to 132
characters on the screen and/or more than 24 lines per
screen. MEDIT allows you to select row and column size.
The default is 80 columns and 24 lines per screen. To
utilize this feature, you can use the two optional row and
column arguments:

x>MEDIT ,132 for 132 columns
x>MEDIT FILENAME:SR,,49 for 80 columns and 49 lines

You can also specify the name of a macro on the command
line. This will load the macro into the buffer and execute
it once.

>MEDIT {<filename>}

>MEDIT [CR]
FILE RETRIEVE -- [CTRL-G]<filename>[CR]

MEDIT <filename>{<,col><.row>}{<,macro>}

x>MEDIT FILENAME:SR .. ,FILE:MAC

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 5 PODS SCREEN EDITOR

BUFFER COMMANDS (CUT AND PASTE)

MEDIT maintains a 4K buffer for moving text from one part
of a file to another. Two commands make use of this buffer

BUFFER FILL ([CTRL-U]) and BUFFER RETRIEVE
([ESC][CTRL-U]). Once text has been copied into the buffer.
it may be retrieved any number of times. Copying data into
the buffer does not remove it from its original location in
the text. To delete text once it has been copied into the
buffer. use the DELETE TO POINTER ([ESC][CTRL-\]) command.

BUFFER FILL ([CTRL-U])

This command works in conjunction with the PLACE POINTER
([CTRL-P]) command. To fill the user buffer. place the
pointer at the end of the text which is to be placed into
the buffer. Position the cursor at the beginning of the
text and type [CTRL-U]. MEDIT will respond with either "I
got it" which means that the text has been placed
successfully into the buffer. or "Overflow" which means that
the amount of text was too large to fit into the buffer. If
the amount of text was too large. you can either divide the
text and place each portion into the buffer in turn
(remember that when you place something into the buffer. it
overwrites the text that was already there). or you can
place the text into a file using the FILE EXCERPT ([CTRL-O])
command.

The text you have placed into the buffer will remain in the
buffer until you exit MEDIT or place something else into the
buffer.

The pointer is not deleted when you fill the buffer. It
should be deleted, however, when not required. The pointer
will automatically be deleted when you write the text to a
file using the FILE SAVE ([CTRL-W]) command.

Commands used with BUFFER FILL:
BUFFER RETRIEVE ([ESC][CTRL-U])
DELETE TO POINTER ([CTRL-\])
PLACE POINTER ([CTRL-P])

PAGE 5-4

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PO OS SCREEN EDITOR

(BUFFER COMMANDS continued)

BUFFER RETRIEVE ([ESC)[CTRL-U)

The BUFFER RETRIEVE command inserts the contents of the
buffer into the text et the cursor. To use this command,
you should have already placed the text you wish to place
into the buffer with the BUFFER FILL ([CTRL-U) command.
Then position your cursor at the location in your file where
you wish the text to be inserted and type [ESC)[CTRL-U).
The text will appear in your file. It does not write over
existing text. The cursor remains at the same position that
you placed it, not at the end of the inserted text.

Commands used with BUFFER RETRIEVE: f BUFFER FILL ([CTRL-U))

(

c

()

PAGE 5-5

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

CANCEL ([CTRL-C])

The CANCEL command aborts the current function. Pressing
[CTRL-C) does not cause you to exit MEDIT. This command is
generally used as cancel in PDOS as well and as such, is
best left as [CTRL-C) when configuring MEDIT with the
MEDITCON utility.

The CANCEL([CTRL-C) function is allowed at various points
in the editor to let you back out of a function. Generally,
anywhere the editor prompts for an argument for a command, a
CANCEL([CTRL-C]) will abort the command. CANCEL([CTRL-C)
will also stop a long macro. The PDOS monitor checks
specifically for the [CTRL-C) character and clears the
type-ahead buffer when it is found, so the [CTRL-C) can
break through other commands that might be queued up.

WARNING! CANCEL will abort a FILE SAVE ([CTRL-W]) with
the file only partly written. If you then perform a FILE
RETRIEVE ([CTRL-G]), you may lose data.

PAGE 5-6 c

~-

I
.~

(6BOxO POOS 3.2 REFERENCE MANUAL CHAPTER 5 PO OS SCREEN EDITOR

4[CLEAR EDITOR ([CTRL-N])

(

('
'~.

r.~
~/

The CLEAR EDITOR command clears the buffers and memory so
that you have a clean screen to begin editing again.
Remember that using this command will erase everything you
have on the screen. If you wish to save your current file
before you begin with a new file, use the FILE SAVE
([CTRL-W]) command.

After you type [CTRL-N], the editor asks you to verify the
command with a 'V'.

The CLEAR EDITOR command does NOT clear the user buffer.
As such, you may store text with the BUFFER FILL ([CTRL-U])
command, clear the editor, then using the BUFFER RETRIEVE
([ESC][CTRL-U]) command, retrieve the saved text on a new
screen.

Commands used with CLEAR EDITOR:
FILE SAVE ([CTRL-W])
BUFFER FILL ([CTRL-U])
BUFFER RETRIEVE ([ESC][CTRL-U])
FILE EXCERPT ([CTRL-O])

PAGE 5-7

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 POOS SCREEN EDITOR

COMMAND MODE ([ESC][CTRL-C])

This command is not currently implemented; however, if you
type [ESC][CTRL-C], MEDIT responds as if a QUIT were typed
in. Do not, however, use this command as an exit
immediately after saving a file, because the [CTRL-C] will
abort the FILE SAVE (if it is still in progress) and you
will be left with only part of the text written out.

PAGE 5-8 o

(~J

(

J

68DxD PDDS 3.2 REFERENCE MANUAL CHAPTER 5 PDDS SCREEN EDITOR

DELETE COMMANDS

MEDIT provides several ways to remove text from your
workspace. Of course, to delete all the text, use the CLEAR
EDITOR ([CTRL-N]) command. Otherwise, use one of the
following:

DELETE CONTROL CHARACTERS ([ESC][CTRL-N])

DELETE CONTROL CHARACTERS eliminates all control characters
(except for [TAB] and [CR]) and clears the eighth bit on all
characters. The pointer, if present, will not be affected
by this command.

DELETE LEFT [RUB]

DELETE LEFT deletes the character to the left of your
cursor, or the character you just typed. You will probably
use it the most. If you do not have a key called "rubout"
on your terminal, it may be called "delete" or "del".

DELETE RIGHT ([CTRL-UNDERSCORE])

DELETE RIGHT (CTRL-_) deletes the character which is under
the cursor, moving the text on the right of the cursor one
space to the left.

DELETE LINE ([CTRL-UPARROW])

DELETE LINE (CTRL-A) deletes all the characters to the
right of the cursor up to and including the [CR].

(0, DELETE TO EOL ([CTRL-RIGHT SQUARE BRACKET])

I

DELETE TO EOL (CTRL-]) deletes all the characters to the
right of the cursor up to, but not including the next [CR].

DELETE TO POINTER ([CTRL-\])

DELETE TO POINTER deletes all the text from the cursor
position either backwards or forwards to the pointer. It is
often used in conjunction with other cut and paste commands
such as BUFFER FILL ([CTRL-U]). You must position the
pointer with the PLACE POINTER ([CTRL-P]) command. MEDIT
asks you to verify the command with a 'V.'

PAGE 5-9

aaoxo POOS 3.2 REFERENCE MANUAL CHAPTER 5 POOS SCREEN EDITOR

FILE INSERT AND EXCERPT COMMANDS

MEDII allows you to break files up and recombine them into
different files by letting you cut sections out of one file
and merge them into others. The following describes this
pair of cOllll1ands:

FILE EXCERPT ([CTRL-O))

The FILE EXCERPT command places the text between the
pointer and your cursor into a POOS file. You must first
place the pointer wi th the PLACE POINTER ([CTRL-P]) command
at the end of the text you wish to copy to a new file.
then, position your cursor at the beginning of the block of
text and type [CTRL-O]. MEOIT will ask you for the name of
the file you wish to place the text into. You must name the
file a legal POOS filename. Be sure that you do not name
this new file the name of the file you are currently editing
or any other file which you wish to keep as it will write
lI·ver existing files. Terminate the name with a [CR].

MEEHl then asks you to verify the function. If your file
was a new one, the moni tor cOllll1and 1 ine wi 11 say "Create
Verify." If you selected a name that was a1 ready a file, it
will say "Verify." If you just see "Verify," then you are
warned that you are about to write over that file. If you
wan.t to go ahead wi th the cOllll1and, type 'V.' Press i ng any
other key aborts the function.

POOS errors such as an illegal filename may appear on the
status line if you incorrectly name a file.

Commands used with FILE EXCERPT:
DELETE TO POINTER ([CTRL-\])
PLACE POINTER ([CTRL-P])

FILE INSERT ((CTRL-Y])

The FILE INSERT cOllll1and allows you to insert a file
directly into the text which you are currently editing.
Simply place your cursor where you want the text to be
inserted and type [CTRL-Y]. The editor will prompt you for
the name of the file. Type in the filename which you wish
to insert and terminate with a [CR]. If you typed in a
filename which does not exist, the editor will display "PDOS
error #53".

You will be asked to verify the cOllll1and.
continue with the file insertion, type 'V'
appear in your file. Press any other key
abort the FILE INSERT.

If you wish to
and the text will
if you wish to

A FILE INSERT operation does not delete the file which you
copied into your text.

PAGE 5-10 'r '. C·"

('

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PO OS SCREEN EDITOR

FILE SAVE AND RETRIEVE COMMANDS

MEDIT automatically reads in a file during initialization
if the filename is specified on the command line. However,
it does NOT automatically save the file when you exit the
editor. For your changes to be effective, you must save the
file explici tly.

MEDIT saves the name of the last file retrieved or saved in
a special buffer. This name can be recalled when MEDIT
prompts for a filename by simply pressing FILE SAVE
([CTRL-W]) or FILE RETRIEVE ([CTRL-G]) a second time.

FILE RETRIEVE ([CTRL-G])

The FILE RETRIEVE command allows you to place files onto
your screen for editing. When entering MEDIT, you can
specify the name of the file you wish to edit right on the
command line:

x>MEDIT MYFI LE/D

Or, you can simply type 'MEDIT' and when you are in the
editor, request a file with the FILE RETRIEVE command. When
you type [CTRL-G], the editor asks you for the name of the
file you wish to retrieve. Terminate your selection with a
[CR]. You must verify the command by typing a 'V.'

The FILE RETRIEVE command clears the editor before loading
a new file. To merge text from a new file with the file
currently in the editor, use the FILE INSERT ([CTRL-Y])
command.

The FILE RETRIEVE command is useful when you want to edit
many files without exiting the editor.

Commands used with FILE RETRIEVE:
CLEAR EDITOR ([CTRL-N])
FILE INSERT ([CTRL-Y])
FILE SAVE ([CTRL-W])

PAGE 5-11

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

(FILE SAVE AND RETRIEVE COMMANDS continued)

FILE SAVE ([CTRL-W])

The FILE SAVE command allows you to save your work to a
file. It is always a good idea to save your files
periodically while you are editing. To use this command,
type [CTRL-W]. The editor will prompt you for the name of
the file with "Write file'''. Type in the filename and
terminate it with a [CR]. The editor will then prompt you
with "Verify" if the file has already been defined or
"Create Verify" if the file is a new one. Press 'V' to
verify the command. MEDIT automatically creates new files
with the FILE SAVE command if the file has not yet been
defined, so there is no need to predefine files or precede
the filename with a pound sign (I).

The FILE SAVE command automatically deletes the pointer and
centers the screen on the cursor before writing the file out
to the disk. The pointer is deleted because it occupies
space in memory and, if saved to a file, would show up as
garbage in the file.

If the file you wish to save has either been previously
saved or was the last file entered, typing [CTRL-W][CTRL-W]
will retrieve the filename. Then, you need only type a [CR]
and 'V' to save the file.

Commands used with FILE SAVE:
CLEAR EDITOR ([CTRL-N])
QUIT ([ESC][CTRL-V])

PAGE 5-12 o

/

c

(

(

(

(

c

{

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

FIND COMMANDS

You may search for strings forwards or backwards from your
cursor with MEDIT. In either case, MEDIT saves the last
string sought in a special buffer. This string can be
recalled when MEDIT prompts for a search string by simply
pressing ([CTRL-F]) or ([CTRL-B]) a SECOND TIME. Then hit a
[CR] to complete the command.

There are a few things to keep in mind with FIND commands:

1. A [CTRL-Z] which is specified as part of the search
string will be interpreted 8S 8 single-letter wild card.
So, "F[CTRL-Z][CTRL-Z]D" would match both FEED and FIND.

2. A [CR] (which usually delimits the string) may be
inserted in a search string by preceding it with INSERT
CONTROL CHAR ([CTRL-V]). Other control characters may be
inserted that same way.

3. If you want to quit in the middle of a FIND or FIND
BEFORE function, type CANCEL ([CTRL-C]). You will return to
normal editing mode.

FIND ([CTRL-F])

When you type FIND ([CTRL-F]), the editor will prompt you
with "Find string Type in the text you wish to search
for and end it with a [CR].

The editor will then search for the string from the point
you were in your file to the end of the file. When it finds
the string, the cursor will be repositioned at the end of
the string.

If the string is not in the file, MEDIT prints "Not found"
and the string you requested will appear on the command
line. Your cursor will remain where it was.

You may also store text in the buffer with the BUFFER FILE
([CTRL-U]) command and then search for that text by entering
'[CTRL-F]' (FIND), and '[ESC][CTRL-U]' (BUFFER RETRIEVE).

PAGE 5-13

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

(FIND COMMANDS continued)

FIND BEFORE ([CTRL-B])

If you wish to search from the cursor back to the top of
your file, use the FIND BEFORE ([CTRL-B]) function. It
operates the same as the FINO function only in a reverse
direction. The editor prompts you to type in your string
with "- Find string

FIND AGAIN ([CTRL-A])

If you want to call up al' instances of the string one by
one, first use either the FINO or FINO BEFORE commands.
Then, use the FIND AGAIN ([CTRL-A]) function for a'l
successive searches. You have to do either a FINO or FIND
BEFORE command before you can use FINO AGAIN.

PAGE 5-14

.(C.~.'
"

c

(

(

(

('

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

HELP ([ESC][CTRl-A])

When you first enter the editor, the status line contains
the version number of the editor and the advice "For help,
enter [ESC][CTRL-A]." Simply type [ESC][CTRL-A].

Displaying the help table will not affect the file that is
on your screen. When you have configured MEDIT, your
commands will appear in place of the default commands. This
same table also appears at the end of this section. Return
to your file by pressing any key.

If your terminal screen is garbled for whatever reason, the
HELP function provides a way to restore normalcy. Just
press HELP ([ESC][CTRL-A]), then any key to dismiss the help
screen. MEDIT will repaint the text the way it should
appear.

PAGE 5-15

68DxD PDDS 3.2 REFERENCE MANUAL CHAPTER 5 PDDS SCREEN EDITOR

INSERT CONTROL CHARACTER ([CTRl-V])

If you need to insert other control characters (as printer
commands. etc.). you must first tell the editor to be ready
to accept them or they will be ignored. The INSERT CONTROL
CHARACTER function should always precede any control
character that you want to place in the text. The editor
will then ignore any significance that the control character
may have and insert it into the file.

Inserted control characters are displayed as a single
character -- the value of the character plus 32. So. a line
feed or [CTRL-J] (10) is displayed as an asterisk (42) and
an [ESC] or [CTRL-[] (27) is displayed as a semi-colon (59).
This is only apparent on the screen display and the actual
control character is stored in the file. The following
table shows which characters app~ar on the screen to
represent its control character.

CONTROL CHARACTER DISPLAY

[CTRL-A] [CTRL-I] = [TAB] [CTRL-Q] [CTRL-Y] 9
[CTRL-B] [CTRl-J] = * [CTRl-R] 2 [CTRL-Z]
[CTRl-C] # [CTRl-K] = + [CTRl-S] 3 [CTRl-[]
[CTRL-D] $ [CTRL-L] [CTRL-T] 4 [CTRL-\] <
[CTRL-E] = % [CTRL-M] [CR] [CTRL-U] = 5 [CTRl-]]
[CTRL-F] & [CTRL-N] [CTRL-V] 6 [CTRL-A] = >
[CTRL-G] [CTRL-O] .. I [CTRl-W] = 7 [CTRL-_] = 1
[CTRL-H] [CTRL-P] 0 [CTRL-X] = 8

It is not possible to set the ei ghth bit on characters or
to insert a null character.

Commands used with INSERT CONTROL CHARACTER:
DELETE CONTROL CHARACTERS ([ESC][CTRL-N])

PAGE 5-16

'~_//

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

(-' INSERT TAB ([CTRL-I])

c·

c

c

The INSERT TAB command allows you to insert a tab character
(tabs are set every eight spaces) into the text. You will
probably want to configure MEDIT so that the INSERT TAB
command will coincide with your tab key.

There is no way to configure MEOIT to anything but eight
spaces per tab stop.

PAGE 5-17

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

JUMP

The JUMP commands are like the MOVE commands except that
they cover more distance. JUMP DOWN moves the cursor
multiple lines, where MOVE DOWN only moves the cursor one
line, and so on.

JUMP COUNT SET ([ESC][CTRL-W])

The JUMP COUNT SET command allows you to set the jump count
(the number of lines that the cursor will jump when you
execute a JUMP UP OR JUMP DOWN command). The default is
half of a screenful or 11 lines.

To set the jump count, type [ESC][CTRL-W]. MEDIT will
display the current number of lines and allow you to enter a
new number.

JUMP RIGHT ([ESC][CTRL-L])
JUMP LEFT ([ESC][CTRL-H])

To move the cursor to the end or the beginning of the line
you are on, just press the escape key before selecting right
or left: JUMP RIGHT ([ESC][CTRL-L]) and JUMP LEFT
([ESC][CTRL-H]).

JUMP DOWN ([ESC][CTRL-J])
JUMP UP ([ESC][CTRL-K])

JUMP DOWN ([ESC][CTRL-J]) and JUMP UP ([ESC][CTRl-K]) move
the cursor down or up a certain number of lines. This
number of lines can be set by you with the JUMP COUNT SET
command.

When you want to move rapidly through your file by using a
series of jump commands, you only need to press the escape
key. Subsequent MOVE UP ([CTRL-K]) or MOVE DOWN ([CTRL-J])
commands will be interpreted as jump commands. To cancel
this operation, type any key or command except MOVE UP or
MOVE DOWN.

PAGE 5-18 c

~,
/. .
Vi

c I
j,

(

(

680xO POOS 3.2 REFERENCE MANUAL

(JUMP continued)

JUMP TO TOP OF FILE ([CTRL-T])
JUMP TO BOTTOM OF FILE ([CTRL-Z])

CHAPTER 5 PO OS SCREEN EDITOR

To jump to the beginning of your file, use the JUMP TO TOP
OF FILE [CTRL-T] command. To get to the end of your file,
use the JUMP TO BOTTOM OF FILE [CTRL-Z] command.

JUMP TO LINE ([ESC][CTRL-G])

You can go to a particular line in the file with the JUMP
TO LINE [ESC][CTRL-G] command. Enter the line number in
response to the prompt "Goto line on the status line and
terminate with a [CR]. The cursor will then move to that
1 i ne.

PAGE 5-19

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 POOS SCREEN EDITOR

LIST FILES ([ESC][CTRL-F])

Listing the files on your disk while you are in MEDIT is
easy. When you use the LIST FILES ([ESC][CTRL-F]) command,
the editor will prompt you with "List files You may
then enter a file specification just as you would with the
>LS POOS monitor command. If you just enter a [CR], the
editor will list out the directory of the current disk and
level.

The directory appears on your screen just as it would from
the POOS monitor. Pressing any key except CANCEL ([CTRL-C])
or [ESC] during the listing will stop the screen. Pressing
a second key will continue the listing to your screen.
Pressing [CTRL-C] or [ESC] during the listing will interrupt
the listing and allow you to return to your text. After
you are through examining the files, you can press any key
to return to the screen just as it was before.

PAGE 5-20

('

(

(~'\

(

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 5 PODS SCREEN EDITOR

MACROS

Macros are a series of commands that the editor performs
repeatedly for you. If you want to change all instances of
some text to some other text, a macro will save you a lot of
work.

MACRO DEFINE ([CTRL-D])

Defining a macro with MEDIT is really very simple. First,
you must decide exactly what it is you want to do and how
you will achieve it. Then, type [CTRL-D]. You will know
that MEOn is recording your steps because the word "MACRO"
appears in place of the clock.

Now, you can type the sequence of commands you wish to use.
The editor will show you exactly what you are doing by
actually performing the functions. When you have finished
the sequence, press [CTRL-D] again.

A macro may have any MEDIT command in it except the
following:

MACRO DEFINE [CTRL-D]
MACRO EXECUTE [CTRL-E]
MACRO MULTIPLE EXECUTE [ESC][CTRL-Z]
CANCEL [CTRL-C]
PDOS TYPE-AHEAD CLEAR [CTRL-X]
NULL [CTRL-!il]

A macro may contain a MACRO RETRIEVE ([ESC][CTRL-Y)
command, but the results are unpredictable.

It is possible it define a macro that makes a modification
to the file, writes it out, and exits the editor. To define
this macro, you must perform all the steps (including the
QUIT ([ESC][CTRL-V]». This will put you at the PO OS
monitor prompt. Re-enter the editor with the >GO monitor
command. Now the macro will be defined: just type MACRO
SAVE ([ESC][CTRL-O]) and save it away. Such a macro allows
for hands-off editing, especially if it is invoked from the
PDOS monitor as shown below:

x>MEDIT FILENAME",MACRO

PAGE 5-21

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 POOS SCREEN EDITOR

(MACROS continued)

MACRO EXECUTE ([CTRL-E])

To perform your macro again. press [CTRL-E]. The sequence
of events will be displayed very rapidly on the status line.
but the screen will not be updated until the macro has
finished executing. Many terminals have repeating keys. and
as such. you can repeatedly execute the macro by holding the
[CTRL-E] keys down.

MACRO MULTIPLE EXECUTE ([ESC][CTRL-Z])

To execute your macro a number of times. press
[ESC][CTRL-Z]. The editor wi 11 prompt you with "Execute
macro Type in the number of times you wish to perform
the macro and terminate the number with a [CR]. If you
type in "-1." the macro will execute until the operation
fails. To stop the macro after it has begun executing. type
CANCEL ([CTRL-C]).

MACRO SAVE ([ESC][CTRL-O])

If you want to save the macro that you just defined to edit
other files. you can write it out to a file with the MACRO
SAVE ([ESC]AO) function. After you type [ESC]AO. the status
li ne wi 11 prompt you with "Macro to fil e You type ina
valid POOS file name that you wish to call your macro and
terminate your entry with a [CR]. If the filename has not
been used before. the status line will then read "CREATE
VERIFY." Type 'V' to complete the save.

MACRO RETRIEVE ([ESC)[CTRL-Y])

To recall the macro that you have previously saved to a
file. use the MACRO RETRIEVE ([ESC][CTRL~Y]) function by
typi ng [ESC][CTRL-Y]. The editor wi 11 prompt you wi th "Get
macro file '''. All you do is type in the name of the macro
you wish to retrieve. terminate with a [CR]. and verify the
action. If you typed in the file name of a file that does
not exist, the status line will give you the message "PDOS
ERROR #53." Begin the MACRO RETRIEVE function again and
type in the correct name.

You may also retrieve a macro directly on the monitor
command line by entering 'MEDIT FILENAME.,.MACRO[CR]'. If
you retrieve the macro with that method. the macro will
execute once immediately.

PAGE 5-22 o

(. ,
, I

, "

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

(-' MOVE

The cursor will be at the top left hand corner of your
screen when you first arrive in MEDIT. To move in any
direction one character at a time, you can use the arrows on
your keyboard, or you can use the MEDIT commands. To move
the cursor ~ one character at a time, press MOVE DOWN
([CTRL-J]). To move the cursor ~ one character at a
time, use MOVE UP ([CTRL-K]). The MOVE RIGHT ([CTRL-L]) and
MOVE LEFT ([CTRL-H]) keys are on the right and left of the
MOVE UP and MOVE DOWN keys. On some terminals, the arrow
keys may also work to perform the MOVE commands. If they
don't, it is easy to configure the editor so that you may
use your arrow keys for the MOVE commands (see 5.5
Configuring MEDIT).

c~\ See also the JUMP commands for traveling greater distances.

c

"K
"H <---------> "L

"J
v

MOVE LEFT -- [CTRL-H]
MOVE DOWN -- [CTRL-J]
MOVE UP -- [CTRL-K]
MOVE RIGHT -- [CTRL-L]

PAGE 5-23

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

POINTER

The cursor always gives you one reference point in your
text, but there are times when you need to have another.
The pointer is another reference point that you can place
anywhere in your text. Once placed in your text, the
pointer is a character like any other. Just delete it with
one of the DELETE commands when you no longer need it. The
pointer will be deleted when you write text to a file with
the FILE SAVE [(CTRl-W]) command. The screen will be
updated and the text will be recentered on the cursor.

Only one pointer can be placed in the text at a time. You
may wish, however, to mark multiple locations in the text;
for example, when you wish to mark a position in the text,
move elsewhere to mark and save a block of text, and return
to the first location and insert the text you just saved.
In that case, you may use any character or sequence of
characters that does not normally occur in the text. For
instance, you might use a [CTRl-A] as a marker by using the
INSERT CONTROL CHARACTER ([CTRl-V]) command followed by
[CTRl-A]. This marker appears as an exclamation point which
can be found by using the FIND ([CTRl-F]) or FIND BEFORE
([CTRl-B]) command followed by [CTRl-V][CTRL-A][CR]. You
must be careful to delete this marker when you are through
using it.

PLACE POINTER ([CTRL-P])

The PLACE POINTER ([CTRL-P]) command is used to mark a
certain spot in your text. You can then position the cursor
elsewhere in the text and the pointer will not move.
Deletions and insertions only affect the pointer if you
delete the pointer itself.

The PLACE POINTER ([CTRL-P]) command is also used to
delimit a block of text for the BUFFER SAVE ([CTRL-U]),
DELETE TO POINTER ([CTRL-\]), TOGGLE UPPER/lOWER CASE
([ESC][CTRl-T]) and FILE EXCERPT ([CTRL-O]) commands.

POSITION TO POINTER ([ESC][CTRL-P])

If you would like to temporarily move to another location
in your file but return to your current location, mark your
present location with the PLACE POINTER ([CTRL_P]) command.
Then, after you have moved elsewhere
can find your place with the
([ESC][CTRl-P]) function.

and want to return, you
POSITION TO POINTER

PAGE 5-24 c

c
C·i , ,

(

(

(

{

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PO OS SCREEN EDITOR

QUIT ([ESC][CTRL-V])

To exit MEDIT and return to the PDOS monitor, type
[ESC][CTRL-V].

MEDIT does not automatically save files when you exit. So,
you must always remember to save your file before you leave
the editor. If you forgot to save your file, you can get
back to where you were from the PDOS monitor by typing 'GO'.
You will be right back to where you were editing and then
you can save the file. Don't call up MEDIT.

x>GO
Re-enters MEDIT from PDOS monitor.
The file will still be in memory.

PAGE 5-25

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 5 PODS SCREEN EDITOR

RECENTER ([CTRL-R])

The RECENTER ([CTRL-R]) function will cause the editor to
rewrite the screen so that the cursor is centered on the
screen. This command is useful when you need to see text
before and after the location you are editing.

PAGE 5-26 C'."·"
'. i

"
.(, ''',

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

(STATISTICS ([ESC][CTRL-B])

(.

c

c

c

If you ask for STATISTICS ([ESC][CTRL-B]), the editor will
display the number of free bytes, the total number of lines,
and the line number on which the cursor is located. The
information appears on the status line of the screen.

PAGE 5-27

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 5 POOS SCREEN EDITOR

TOGGLE UPPER/LOWER CASE {[ESC][CTRL-T]}

TOGGLE UPPER/LOWER CASE ([ESC][CTRL-T]) will switch all
lower case characters to upper case and all upper case
characters to lower case. Mark one end of a block of text
with the PLACE POINTER ([CTRL-P]) function, move the cursor
to the beginning of the block, and press [ESC][CTRL-T]. The
editor will ask you to verify the command with a 'V'.

PAGE 5-28 o
o

c

c
c

" .

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

USE INSERT/REPLACE MODE

Normally MEDIT operates in INSERT MODE; i.e. text is
inserted at the cursor and any existing text under and to
the right of the cursor moves over. An alternate mode is
REPLACE MODE where text entered from the keyboard overwrites
(i .e. replaces) text under and to the right of the cursor.
The letter 'R' appears by the clock when you are in replace
mode. Switch back and forth between these two modes with
the following commands:

USE INSERT MODE ([ESC)[CTRL-I)

When you are in INSERT MODE, text entered will displace
other text, pushing it to the right.

USE REPLACE MODE ([ESC)[CTRL-R])

When you are in REPLACE MODE, text entered will overwrite
other text. The letter 'R' appears by the clock to remind
you that you are in REPLACE MODE. Replacement only occurs
on the current line. Text entered on one line will not
overwrite text on the following line.

PAGE 5-29

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

5.5 CONFIGURING MEDIT

Configuring the editor allows you customize MEDIT to use
function and arrow keys on your terminal. This is done by
running the PDOS utility "MEDITCON" that you will find on
your utility disk.

Before you run MEDITCON, it is a good idea to think out
what cOllYllands you want for each function. Keep in mind
which
which

functions you use the most. A couple of things
you should be aware are:

1. CANCEL is best left as [CTRL-C] because
of its general use in PDOS as CANCEL.

2. [CTRL-X] cannot be used as it is used
to clear the type-ahead buffer.

3. [CTRL-S] and [CTRL-Q] are used for
handshaking on some terminals. Because
PDOS supports this convention as an
option, do not use these control
characters as editor functions unless
you will not use [CTRL-S] [CTRL-Q]
handshaking.

4. One cOllYlland cannot be both a command
prefix and a cOllYlland. For instance, if

your F1 key produces [CTRL-A][ESC] , then
you can't use [CTRL-A] as a cOllYlland by
itself .

Table 5.1 should be 1illed in before you begin.

Now, you are ready to begin by running the configurator.
This is done typing MEDITCON at the PDOS monitor level.

of

PAGE 5-30

>MEDITCON",,-j

The following message should appear on your screen though
the revision number and dates may be different:

68000 PDOS 1.1 MEDIT Configurator
Copyright 1986 Eyring Research Institute, Inc.

The MEDITCON utility generates a new version of MEDIT which
you configure for your terminal. Each function will appear
along with the default cOllYlland for that function. If you
want to retain the default cOllYlland, enter a [CR].

Continued on next page ...

Ie· '\ ,
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

I'
~ (5.5 CONFIGURING MEDIT continued)

c

c

To change the command, press the key or series of keys you
wish to use. A few seconds after your last character,
MEDITCON will ask for the name of the keys you pressed. You
type the name followed by a [CR]. This name will be used in
the MEDIT help menu.

If you make a mistake, you can step back to the previous
function by using [CTRL-C]. The [ESC] key returns you to
the PDOS monitor only if pressed when naming the key.

ENTER NAME OF NEW EDITOR:
([CR] will name the new editor MEDIT)

ENTER PROCEDURE FILE NAME:
([CR] will use the name MEDIT:DO)

The configurator will now step you through a list of
commands like the table you have already filled out. Your
cursor is located at the beginning of the default command.
If you wish to continue to use the default commands, simply
press the carriage return. For instance the following will
appear on your screen with your cursor located where the
underline appears:

Buffer Fill lESC]AU (You type a [CR] to use the default)

After you have typed a [CR] the next command will appear as
you move through the list.

Move Down AJ

If you wish to change MOVE DOWN to your down arrow key,
simply press your down arrow key. The command sequence used
by that key will then appear in place of the default command
sequence. .DO NOT PRESS THE CARRIAGE RETURN or MEDITCON
will interpret a [CR] as part of the command sequence.

Move Down [ESC]P (Output from the arrow key)

Within a few seconds, MEDITCON will ask you the name of the
function key. This is the name of the key(s) that you just
pressed. This information will be displayed in the MEDIT
help menu.

Move Down [ESC]P Function key name?Down Arrow[CR]

Just type a description of the key (F1, Shift F1, Up Arrow,
etc.) and terminate the entry with a carriage return. The
next command in the list will then appear.

Continued on next page ...

PAGE 5-31

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 5 PDOS SCREEN EDITOR

(5.5 CONFIGURING MEDIT continued)

If you wish to return to the previous command, press
[CTRL-C) and you can step backwards through the command
list. After you have gone through the entire list, the
configurator will ask you the following question:

BUILD NEW EDITOR (Y/[N)?

If you answer 'Y', MEDITCON will chain to the procedure
file it has just created (named MEDIT:DO or whatever you
called it). This procedure file will run the MASM assembler
on the MEDIT:DO temporary file and create a temporary object
file named MEDIT:TMP. This object file will be linked to
the main part of the editor, called MEDIT:OB by the PDOS
linker, QLINK. The resulting program will be output as
MEDIT or whatever you chose to call it.

If you answer 'N', MEDITCON will simply exit, closing the
file MEDIT:DO. If you wish to create the new editor later
(after, perhaps, having modified the file MEDIT:DO) you may
do so by simply typing the procedure filename at the monitor
prompt.

PAGE 5-32 c

c
c

(

()

6S0xO PDOS 3.2 REfERENCE MANUAL

FUNCTION

Suffer Fi 11
Buffer Retrieve
Cancel
Clear Editor
Conmand Mode
Delete Control Chars
Delete Left
Delete Line
Delete Right
Delete to EOL
Delete to Pointer
File Excerpt
File Insert
File Retrieve
File Save
Find
Find Again
Find Before
Help
Insert Control Char
Insert Tab
Jump Count Set
Jump Down
Jump Left
Jump Right
Jump to Bottom of File
Jump to Li ne
Jump to Top of File
Jump Up
List Files
Macro Define
Macro Execute
Macro Multiple Execute
Macro Retrieve
Macro Save
Move Down
Move Left
Move Right
Move Up
Place Pointer
Position to Pointer
Quit
Recente r
Statistics
Toggle Upper/Lower Case
Use Insert Mode
Use Replace Mode

DEFAULT

[CTRL-U]
[ESC] [CTRL-U]
[CTRL-C]
[CTRL-N]
[ESC] [CTRL-C]
[ESC][CTRL-N]
[RUB]
[CTRL-II]
[CTRL-_]
[CTRL-]]
[CTRL-\]
[CTRL-O]
[CTRL-Y]
[CTRL-G]
[CTRL-W]
[CTRL-F]
[CTRL-A]
[CTRL-B]
[ESC] [CTRL-A]
[CTRL-V]
[CTRL-I]
[ESC] [CTRL-W]
[ESC] [CTRL-J]
[ESC] [CTRL-H]
[ESC][CTRL-L]
[CTRL-Z]
[ESC][CTRL-G]
[CTRL-T]
[ESC] [CTRL-K]
[ESC][CTRL-F]
[CTRL-D]
[CTRL-E]
[ESC][CTRL-Z]
[ESC] [CTRL-Y]
[ESC] [CTRL-O]
[CTRL-J]
[CTRL-H]
[CTRL-L]
[CTRL-K]
[CTRL-P]
[ESC][CTRL-P]
[ESC][CTRL-V]
[CTRL-R]
[ESC)[CTRL-B]
[ESC](CTRL-T]
[ESC][CTRL-I]
[ESC)[CTRL-R]

TABLE 5.1 MEDIT FUNCTIONS

CHAPTER 5 PDOS SCREEN EDITOR PAGE 5-33

CONFIGURED

680xO POOS 3.2 REFERENCE MANUAL

BUFFER FILL([CTRL-U])
BUFFER RETRIEVE([ESC][CTRL-U])
CANCEL([CTRL-C])
CLEAR EDITOR([CTRL-N])
COMMAND MODE([ESC][CTRL-C])
DELETE CONTROL CHARS([ESC][CTRL-N])
DELETE LEFT([RUB])
DELETE LINE([CTRL-A])
DELETE RIGHT([CTRL-_])
DELETE TO EOL([CTRL-]])
DELETE TO POINTER([CTRL-\])
FILE EXCERPT([CTRL-O])
FILE INSERT([CTRL-Y])
FILE RETRIEVE([CTRL-G])
FILE SAVE([CTRL-W])
FIND([CTRL-F])
FIND AGAIN([CTRL-A])
FIND BEFORE([CTRL-B])
HELP([ESC][CTRL-A])
INSERT CONTROL CHAR([CTRL-V])
INSERT TAB([CTRL-I])
JUMP COUNT SET([ESC][CTRL-W])
JUMP DOWN([ESC][CTRL-J])
JUMP LEFT([ESC][CTRL-H])
JUMP RIGHT([ESC][CTRL-L])
JUMP TO BOTTOM OF FILE([CTRL-Z])
JUMP TO LINE([ESC][CTRL-G])
JUMP TO TOP OF FILE([CTRL-T])
JUMP UP([ESC][CTRL-K])
LIST FILES([ESC][CTRL-F])
MACRO DEFINE([CTRL-D])
MACRO EXECUTE([CTRL-E])
MACRO MULTIPLE EXECUTE([ESC][CTRL-Z])
MACRO RETRIEVE([ESC][CTRL-Y])
MACRO SAVE([ESC][CTRL-Q])
MOVE DOWN([CTRL-J])
MOVE LEFT([CTRL-H])
MOVE RIGHT([CTRL-L])
MOVE UP([CTRL-K])
PLACE POINTER([CTRL-P])
POSITION TO POINTER([ESC][CT8.L-P])
QUIT([ESC][CTRL-V])
RECENTER([CTRL-R])
STATISTICS([ESC][CTRL-B])
TOGGLE UPPER/LOWER CASE([ESC][CTRL-T])

USE INSERT MODE([ESC][CTRL-I])
USE REPLACE MODE([ESC][CTRL-R])

CHAPTER 5 PDOS SCREEN EDITOR

Store from cursor to pointer in buffer
Insert contents of buffer at cursor
Abort current function
Clear editor workspace and all buffers
Future feeture. Currently a QUIT
Delete all ctrl chars & clear bit 8
Delete char to left of cursor
Delete right up to & including return
Delete char to right of cursoi
Delete right up to return
Delete back or ahead to pointer
Save from cursor to pointer to file
Insert file at cursor
Overwrite editor workspace with file
Write editor workspace to file
Search forward for string
Repeat previous FIND or FIND BEFORE
Search backward for string
Display editor functs/key assignments
Ignore next char's special meaning
Insert tab character at cursor
Define how many lines a JUMP is
Advance N lines forward
Position cursor to beginning of line
Position cursor to end of line
Position cursor to end of file
Position cursor to line N
Position cursor to beginning of file
Move cursor back N lines
Display file directory on screen
Define sequence of commands as MACRO
Execute previously defined MACRO
Execute MACRO N times
Read MACRO definition from file
Save MACRO definition to file
Move cursor down in same column
Move cursor left in same row
Move cursor right in same row
Move cursor up in same column
Mark cursor position for future use
Move to previously marked position
Leave the editor
Show wC!rks",age wHh cursor cente red
Show free bytes, total & current line
Conv.rt upper to lower & lower to
upper case
Move da.ta over wheh adding text
Overwrite old data"when adding text

TABLE 5.2 ALPHABETICAL MEDIT COMMAND SUMMARY

*~ "~.,

\

PAGE 5-34 o

I

C! I

I
!

0
I.

(--

(

r
c

6BOxO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

CHAPTER 6

ASSEMBLE AND LINK

This chapter explains the use of the PDOS assembly
development software tools. These include the 68000
assembler (MASM). 68020 assembler (MASM20). and module
1 i nker (QLINK).

6.1 MASM 68000 ASSEMBLER. .. 6-5

6.1.1 USING THE ASSEMBLER 6-5
6.1.2 ASSEMBLY LANGUAGE FORMAT 6-10
6.1 . 3 CONSTANTS 6-11
6.1 .4 SyMBOLS 6-12
6.1.5 EXPRESSIONS OR OPERATORS 6-13
6.1.6 PDOS ASSEMBLY OBJECT FORMAT 6-14

6.1.6.1 68000 TAGGED OBJECT. 6-14
6.1.6.2 AN EXAMPLE · 6-18
6.1. 6.3 MASM AND QLINK 6-19

6.1~7 ASSEMBLER ERROR DEFINITIONS 6-21
6.1.8 ASSEMBLER DEFINITIONS AND DEFAULTS 6-22
6.1 .9 ASSEMBLER MACROS 6-23
6.1.10 ASSEMBLER DIRECTIVES 6-27

6.1.10.1 DC - DEFINE CONSTANT 6-29
6.1.10.2 DCB - DEFINE CONSTANT BLOCK 6-29
6.1.10.3 DCE - DEFINE ENCODED STRING 6-29
6.1.10.4 DS - DEFINE STORAGE 6-30
6.1.10.5 END - END ASSEMBLy 6-30
6.1.10.6 ENDC - END CONDITIONAL ASSEMBLY 6-30
6.1.10.7 ENDM - END MACRO DEFINITION 6-30
6.1.10.S EQU - DEFINE ASSEMBLY CONSTANT 6-31
6.1.10.9 EVEN - SET WORD BOUNDARY 6-31
6.1.10.10 EXTN - EXTERNAL SyMBOL 6-31
6.1.10.11 FAIL - OUTPUT FAIL STRING 6-32
6.1.10.12 FORMAT - FORMAT LISTING 6-32
6.1.10.13 IFDEF - EXECUTE IF DEFINED 6-32
6.1.10.14 IFUDF - EXECUTE IF UNDEFINED 6-32
6.1.10.15 IFxx - CONDITIONAL ASSEMBLy 6-33
6.1.10.16 IDNT - PROGRAM IDENTIFICATION 6-33
6.1.10.17 INCLUDE - INCLUDE FILE 6-34
6.1.10.1S LIST - ENABLE OUTPUT TO LIST FILE 6-34
6.1.10.19 LLEN - SET LIST LINE LENGTH 6-34
6.1.10.20 MACRO - MACRO DEFINITION ; 6-34
6.1.10.21 MEXIT - EXIT MACRO 6-35

PAGE 6-1

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND lINK

(CHAPTER 11 ASSEMBLE AND lINK continued)

6.1 .10.22 MGOTO - MACRO GOTO 6-35
6.1.10.23 MIFxx - MACRO CONDITIONAL GOTO 6-35
6.1.10.24 MPOP - POP FROM MACRO STACK 6-36
6.1.10.25 MPUSH - PUSH TO MACRO STACK 6-36
6.1.10.26 NO FORMAT - NO lIST FORMATTING 6-36
6.1.10.27 NOlIST or NOl - NO lIST TO FIlE 6-36
6.1.10.28 NOOBJ - NO OUTPUT TO OBJECT FIlE 6-36
6.1.10.29 NO PAGE - NO AUTOMATIC PAGING 6-37
6.1.10.30 OBJ - ENABLE OBJECT FILE OUTPUT 6-37
6.1.10.31 OFFSET - DEFINE OFFSETS 6-37
6.1.10.32 OPT - ASSEMBLER OPTIONS 6-38

6.1.10.32.1 ?ONI70FF 6-39
6.1.10.32.2 Il/IR •........................ 6-39
6.1.10.32.3 Al T/NOAl T. 6-39
6.1.10.32.4 ARLIARS 6-40
6.1.10.32.5 BUG/NOBUG 6-40
6.1.10.32.6 CEX/NOCEX 6-40
6.1.10.32.7 CID=# 6-40
6.1.10.32.8 Cl/NOCl .•..................... 6-40
6.1.10.32.9 CRE/NOCRE 6-41
6.1.10.32.10D/NOD 6-41
6.1.10.32.11 EMSK='•................... 6-41
6.1.10.32.12 FRl/FRS •...................... 6-41
6.1.10.32.13 IF/NOlF•......•.... 6-41
6.1.10.32.14 M68000/M68010•.......... 6-42
6.1.10.32.15 MB/NOMB •.......•.............. 6-42
6.1.10.32.16 MC/NOMC .•....•................ 6-42
6.1.10.32.17 MEX/NOMEX •..•................. 6-42
6.1.10.32.18 NlP=#•............ 6-42
6.1.10.32.19 OlD/NOOlD 6-43
6.1.10.32.20 p.xxxxx 6-43
6.1.10.32.21 PDOS •...........•............. 6-43
6.1.10.32.22 Tx •.........................•. 8-44
8.1.10.32.23 WARN/NOWARN , ... 8-44

6.1.10.33 ORG - ABSOLUTE ORIGIN•.......... 6-45
6.1.10.34 PAGE - TOP OF PAGE •..........•....... 6-45
6.1.10.35 PRINT - PRINT TO CONSOlE •............ 6-45
6.1.10.36 REG - DEFINE REGISTER lIST •.......... 6-46
6.1.10.37 RORG - RElOCATABlE PC ADJUST •..•..... 6-46
6.1.10.38 SECTION - PROGRAM SECTION ...•........ 6-46
6.1.10.39 SET - REDEFINE ASSEMBLY CONSTANT 6-46
6.1.10.40 SPC - SPACE BETWEEN SOURCE lINES •.... 6-47
6.1.10.41 TTL - TITLE ...•••.....•........•..... 6-47
6.1.10.42 XDEF - EXTERNAL SYMBOL DEFINITION 6-47
6.1.10.43 XREF - EXTERNAL SYMBOL REFERENCE 6-47

PAGE 6-2 o

c

(

(

c

£;

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(CHAPTER 11 ASSEMBLE AND LINK continued)

6.1.11 ASSEMBLER RESERVED WORDS .••.......•......... 6-48

6.1.11.1 ASSEMBLER 68000 OPERATORS .•........... 6-48

6.1.11.2 PDOS PRIMITIVES •..•...............•... 6-49

6.1.11.3 OPT PDOS WORDS•..............•... 6-49

6.2 MASM20 68020 ASSEMBLER .•..•...•..••....•...•••..... 6-50

6.2.1 Additional error messages•...•. 6-50

6.2.2 New OPTions•....• 6-50

6.2.3 New 68020 addressing modes•.......... 6-51

6.2.4 New 68020 instructions •..••.••..........•.... 6-51

6.2.5 New symbol and instruction extensions 6-51

6.2.6 68881 co-processor suppor t. 6-52

6.2.7 Additional macro functions•..... 6-52

6.3 QLINK •.........•....•.........•...•.....•.......... 6-53

6.3.1 QLINK Commands•........•........... 6-53

6.3.1.1 ADD••.•.....•........... 6-54

6.3.1.2 ALIAS•.......•....•.•..•.•..... S-54

6.3.1.3 BASE•.•.•..•.......... 6-54

6.3. 1 .4 BITMAP•.•...•.... 6-54

6.3.1.5 COMMAND•.............. 6-56

6.3.1.6 DEFINE 6-56

6.3.1 .7 DISK•................•.... 6-56

6.3.1.8 DUMP 6-57

6.3.1.9 END•....•.........•....... 6-57

6.3. 1 .10 EVEN•...•............. 6-57

6.3. 1 .11 GROUP•........••....••...... S-5 7

6.3.1.12 HELP ..•............................... 6-58

6.3.1.13 IGNORE•........... 6-59

6.3.1.14 INPUT ..•...•.................••....... 6-59

6.3.1.15 LIBRARY•... 6-59

6.3.1 .16 MAP•.......•....•............... 6-60

6.3.1 .17 OBJECT•....•.......•....... 6-60

6.3.1.18 OFFSET 6-S0

6.3.1.19 OUTPUT 6-60

6.3.1.20 PARTIAL.•................ 6-61

6.3.1.21 QUIT 6-61

6.3.1.22 RELINK 6-61

6.3.1.23 RENAME 6-62

6.3.1.24 RESTART•.......•...... 6-62

6.3.1.25 SECTION : 6-63

6.3.1.22 SRECORD•............•.•... 6-63

6.3.1.27 SYFILE. 6-63

6.3.1.28 UNDEFINED 6-64

6.3.1.29 WRITE•................ 6-64

6.3.1.30 XDEF 6-64

6.3.1.31 ZERO•............................ 6-64

PAGE 6-3

68DxD PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-4

(CHAPTER 11 ASSEMBLE AND LINK continued)

6.3.2 QUNK ERROR LIST 6-65

6.3.3 LINKER EXAMPLE 6-66

TABLE 6.1 PODS 68000 TAGGED OBJECT 6-17

TABLE 6.2 SAMPLE TAGGED OBJECT 6-18

TABLE 6.3 QUNK MAP 6-20

c

c 680xO PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1 MASM 68000 ASSEMBLER

('

c

MASM is a PDOS Motorola 68000/10 assembler which runs on
any 68000/10 or 68020 PDOS system. It accepts 68000/10
assembly mnemonics and directives, and outputs PDOS tagged
object code and various listing files.

The assembler is a two-pass assembler. The first pass
resolves all symbols. The second pass generates the object,
listing, and cross reference, if selected.

MASM can execute equally well as a background task allowing
other processes, such as editing, to continue in the
foreground. The assembler will notify the parent task of
any errors through the message buffers when it is done.

Input and optional output files are specified by a list of
file names following the MASM command or from keyboard
prompts. These options are, in order:

SRC=
OBJ=
LST=
ERR=
XRF=

Assembly source file (required)
68000 object output file
Assembly listing file
Assembly error file
Symbol cross reference file

If n object output file is specified, MASM does not output
an executable or linkable file.

6.1.1 USING THE ASSEMBLER

To use the assembler from the keyboard, insert a disk with
the MASM file and enter 'MASM'. The program prompts as
follows:

SRC=

The 'SRC=' prompt is for the source file name. The source
file assembler symbols can be defined directly from the
command line in one of two ways. First, a slash (/)
following the source file name begins a symbol definition.
The slash is followed by the symbol, an equal sign (=), and
finally the value. This can be repeated as many times as
the line length allows (80 characters).

Second, if a 'Q' follows the slash, then the assembler
prompts on the next line for a symbol, equal sign, and
value. This continues until an 'ENDQ' or [ESC] is entered.

The source file must end with an INCLUDE or END directive.
The argument of the END directive is an expression whose
value is output to the object file with an entry tag.

Two-pass assembler

x>MASM TEMP:SR,T,LIST, ,XREF
68000 PDOS Assembler R3.2
ERII, Copyright 1983-86
SRC=TEMP:SR
OBJ=T
LST=LIST
ERR=
XRF=XREF
END OF PASS 1
END OF PASS 2 [4 WARNINGS]

x>MASM
68000 PDOS Assembler R3.2
ERII, Copyright 1983-86
SRC=MPBIOS:SR/RDZ=255/DEMO=0
OBJ=

x>MASM
68000 PODS Assembler R3.2
ERII, Copyright 1983-86
SRC=MBIOS:SR/Q

QUERY
:RDZ=255
:DEMO=O
:ENDQ

OBJ=

PAGE 6-5

680xO PoOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1.1 USING THE ASSEMBLER continued)

OBJ=

The 'OSJ=' prompts for the object output file name.
Assembler object is written to this file during pass 2 as it
is assembled. This file is closed as an 'OS' file. POOS
tagged object consists of ASCII characters terminated with
the character 'F' and two checksum characters. The symbol
table can also be optionally output to the object file for
debugging purposes using the 'OPT 0' assembler directive.

LST=

The 'LST=' prompts for a list file name. The list file is
generated on pass 2 and contains paged results of the
assembly process. The assembly listing is followed by a
symbol table dump unless the CRE option is enabled. If CRE
or cross reference has been set, then the symbol table is
replaced with a cross reference of all symbols found during
the assembly.

The list output is gene rated as foll ows:

Heading: Columns

7-S Page number
16-20 Assembly time
23-30 Assembly date
46-120 Assembly file

Program: Columns

1-2 Line number
3-4 Error codes
5 Section
7-14 Address
16-31 Data
32 Macro id
33-40 Label field
41-48 Operation field
49-64 Operand field
65-120 Corrment field

OBJ=OBJ:OS

LST=LIST:TX

PAGE 6-6 C:

;!, ,; C-~"·\·

(

(

()

c

68DxD PDDS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1.1 USING THE ASSEMBLER continued)

ERR=

The 'ERR=' prompts for a error file name. If an error
occurs during the assembly, the assembly line end en error
message are output to this file. If no error file is
specified, ell errors are printed on your console.

XRF=

The 'XRF=' prompts for a cross reference file name. After
the second pass, a cross reference is output to this file.

After the second pass, the error and warning count, if any,
are reported. The symbol table dump consists of five parts,
namely:

DEFINED SYMBOLS:
EXTERNAL DEFINITIONS:
EXTERNAL REFERENCES:
UNDEFINED SYMBOLS:
UNREFERENCED SYMBOLS:

The symbol is followed by letter codes indicating how the
symbol was generated and used. These letters are defined as
follows:

U = Undefined
M = Multiply defined
E = EGU variable
S = SET variable
X = XREF symbol

D .. XDEF symbol
L " REG list
R = Referenced symbol

MACRO = Macro symbol
I = Indirect

ERR=ERR:TX

XRF=XREF:TX

END OF PASS 1
END OF PASS 2 [1 ERROR, 4 WARNINGS)

PAGE 6-7

680xO PDOS 302 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(60101 USING THE ASSEMBLER continued)

An example of a program listing follows:

x>MASM EXAMPLE:SR"LIST
68000 PDOS Assembler R302
ERII, Copyright 1983-86
SRC=EXAMPLE:SR
OBJ=OBJ
LST=LIST
ERR=
XRF=
ENO OF PASS 1
1/8S 00000CF9 RL REG DO/D3-D7/A2-A3,A7
1/22w 0/0000000C:6600FFFC BNEoL @LOOP
1/24u 0/00000012: END STRT
END OF PASS 2 [2 ERRORS, WARNING]
x>SF LIST

PAGE: 11:2410-Nov-86
68000 PDOS Assembler 06-Nov-86
FILE: EXAMPLE:SR,PDOS 302 SYSTEM

* EXAMPLE:SR 12113/83
2
3
4
5

6

7
8S

*
00000000 XDEF START

XREF.l MESOl
00000038 LINES EQU 56
00000050 COLN SET 80
00000CF9 RL

ERROR 14 Syntax error
REG DO/D3-D7/A2-A3,A7

9

10
11
12
13
14
15 0/00000000:48E79F30
16 0/00000004:3448

00000000 MES EQU
*
OUTPUT MACRO

XPMC
ENDM

MES01

&1

START MOVEMoL RL,-(A7)
MOVEa.w AO,A2

17 0/00000006: m OUTPUT MES ;OUTPUT MESSAGE
18 0/00000006:A08C**** a XPMC MES
19 0/0000000A:4240 CLRow DO
20 *
21 0/0000000C:5340 @LOOP SUBQ.W #1,00 ; PAUSE
22w 0/0000000E:6600FFFC
**** WARNING 23 Branch could be short
23 0/00000012:AOOE
24u 0/00000014:
**** ERROR 04 Undefined symbol [1/22]

BNE.L OILOOP
[1/8]
XEXT
END STRT

;DONE, EXIT TO PDOS

PAGE 6-8 c···· 'J

()

C' "' •
. '

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEM8LE AND LINK PAGE 6-9

(6.1.1 USING THE ASSEMBLER continued)

68000 PDOS Assembler 06-Nov-86
PAGE: 2 11: 29 10-Nov-86 FILE: EXAMPLE:SR,PDOS 3.2 SYSTEM

DEFINED SYMBOLS:

COLN SR 00000050 LINES ER 00000038 MES MES01
MES01 X X/OOOOOOOO OUTPUT MACRO RL SL 00000CF9
START D 0/00000000

EXTERNAL DEFINITIONS:

START D 0/00000000

EXTERNAL REFERENCES:

MES01 X X/OOOOOOOO

UNDEFINED SYMBOLS:

STRT UR 00000000

UNREFERENCED SYMBOLS:

COLN SR 00000050 LINES ER 00000038

c

c

680xO PoOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.2 ASSEMBLY LANGUAGE FORMAT

Assembly language source
following four fields:

statements consist of

LABEL OPERATION OPERANDS COMMENT

the

The source line must be less than 120 characters long, and
at least one blank or TAB must be inserted between fields.
It may also contain special first characters such as a
question mark (yes or no conditional assembly --
6.1.10.32.1), an up1ine (left or right conditional assembly

6.1.10.32.2), or a minus (inhibits listing in macro
definition -- 6.1.9).

NOTE: is
MASM

fami 1 iar with
uses a syntax

It is assumed that the user
assembly language syntax.

after that of Motorola, but
Motorola
modeled the two are not
completely compatible. One description of the Motorola
syntax can be found in "M68000 Family Resident Structured
Assembler Reference Manual" from Motorola.

LABEL FIELD

The label is a symbol consisting of one to nine characters.
beginning with an alphabetic character or period in position
one of the source line. The label field is terminated with
a blank, TAB, colon, or carriage return. If a label is not
used, character position one must be a blank or TAB
character. An asterisk in position one defines a comment
1 i ne.

OPERATION FIELD

This field contains 1) an instruction mnemonic, 2) a
directive mnemonic. 3) a macro call, or 4) a PoOS primitive.
Usually this field is positioned in the second tab field,
beginning eight characters from the left. Almost all
four-character POOS primitives are legal opcodes. (See
Section 6.1.11.2 POOS Primitives for a list of MASM
opcodes) .

68000 assembly allows extensions to the opcode mnemonics to
select the instruction length. If the user does not provide
the opcode length extension. MASM substitutes a lower case
default extension when appropriate.

OPERAND FIELD

The operand field contains all operands of the instruction
or the parameters of a macro call. When two or more operand
subfie1ds appear within a statement. they must be separated
by a comma, but may not contain embedded spaces. The
operands specify the addressing mode, registers. memory
locations, or immediate data used by the instruction.
Constants. symbols. literals, and expressions are legal
operands.

LABEL Aoo.L A1,A2

LABEL
L23456789
COLON:

18 0/00000008:4240

PAGE 6-10

; COMMENT

I

~

CLR.w DO

C··.:,"
'"

c
! '

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-11

4l - (6.1.2 ASSEMBLY LANGUAGE FORMAT continued)

(

c

(

c

COMMENT FIELD

Comments follow the operand field. Usually, the comment
field is positioned in the fifth tab field. The use of a
semicolon as the first character in the comment field helps
to set off comments for clarity and insure correct
positioning with the FORMAT directive. If the first
character of a source line is an asterisk (*), then the
entire line is a comment. There must be a space between the
operand field and the comment field.

6.1.3 CONSTANTS

Constants can be signed decimal, hexadecimal, or binary
integers, ASCII constants, or 4- or 6-byte floating point
numbers.

Decimal integers are written as a string of numerals in the
range of -2,147,483,648 to 2,147,483,647.

Hexadecimal constants consist of a string of one to eight
hexadecimal digits, preceded by a dollar sign ($) and range
from $00000000 to $FFFFFFFF.

Binary constants consist of a string of 1's and O's,
preceded by a percent sign (~).

ASCII character constants consist of a string of from one
to four characters enclosed by single quotation marks (ASCII
$27). MASM generates an individual single quotation mark
when two consecutive marks are encountered -- (' ') -> ($27).
ASCII constants are right justified. (The Motorola
assembler left justifies ASCII constants.)

00BC614EFFFFA48B DC.L 12345678,-23413

BOOOOOOOFFFFFFE1 DC.L $80000000,-$1F

0000B425 DC.L ~1011010000100101

4142434400000046 DC.L 'ABCD' ,'F'

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.4 SYMBOLS

Symbols begin with an alphabetic character or a period and
can be up to nine characters in length. There can be no
embedded blanks. Legal characters for positions 2 through g
are A-Z, 0-9, _, and $. Lower case letters are also
legal but are changed to upper case for symbol table usage.

A symbol in the operand field may be immediately followed
with a '.W' or '.L' extension when using the 68000 absolute
address modes. It forces either absolute short (.W) or
absolute long (.L) addressing for that one operand. A
global default is set with the ARS or ARL option for
absolute short or long ad~ressing, respectively.

A local symbol consists of the'S' character followed by
one to four additional characters. All local symbols lose
their uniqueness after a non-local label is encountered in
the label field.

The assembler uses the asterisk (*) to represent the
current location counter.

A particular symbol can be used in the label field only
once with the exception of symbols such as SET (temporary
equate) or REG (register list) variables.

The POOS assembler supplies most system symbols required by
a user. These constants are supplied on reference after the
'OPT POOS' directive is executed and are listed in section
6.1.11.3. The following is the convention adopted for
external POOS symbols:

xxx$:or TCB index (A6)
xxx. • SYRAM constant

xxxx. '"' SYRAM index (AS)
.xxx .. Global system constant

m.xxx .. Module constant
m$xxx .. Module entry point
m xxx .. Module index

xxx = User index

MOVE.B
MULU.W
MOVE.L
MOVE.W
MOVE.W
BSR.L
CLR.W
AOOA.L

PAGE 6-12 c
c

U1 P$(A6), DO
#TBZ. ,DO
TICS. (AS) ,01
#.BPS,07 I

~,

#B.PTMSK,SR ~
K2$PINT
B_TPS(AO)
AVL_CA4) ,AO

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(

C'

(

6.1.5 EXPRESSIONS OR OPERATORS

Expressions are made up of symbols and constants, each of
which may be immediately preceded by a unary plus (+), 1 's
complement (-), or minus (-). Symbols and constants are
separated by binary operators.

The binary operators interpreted by MASM for expressions
are defined as follows:

Relational equal
< Re la ti ona 1 less than
<= Relational less than or equal
> Relational greater than
>= Relational greater than or equal
<> Relational not equal

Modulo
+ Add

Subtract
* Multiply
/ Divide
& Logical AND

Logical inclusive OR
« Shift left
» Shift right

Unary minus
Unary 1's complement

The minus sign and plus sign can be unary or binary. The
tilde (-) is always unary. Expressions are evaluated using
operator precedence. Parentheses can be used to change
precedence. Operators of equal precedence are evaluated
from left to right. Precedence is defined as follows from
highest to lowest:

Parentheses
Unary
Shifts
Logical AND and OR
Multiply and Divide
Add and Subtract
Not equal and modulo
Greater than
Less than
Equa 1

All operations are done in 32-bit, signed arithmetic. The
final results are truncated for word and byte values. Rules
governing addition and subtraction of
determine the type of the result.

relocatable operands
If the result of the

expression is either absolute or simple relocatable, then
MASM puts out a single value to the object file. If the
result cannot be resolved to either of the above cases, MASM
puts out tags and values to the object file which represent

(-~ the expression in reduced form.

000000000001
000100000000
000100000001
000000010000
000000010001
000100010000
000100000000
000300030004
FFFFOO010000
000200020004
000000020001
000000000002
000300030002
000400040008
000000010000
FFFFFFFEFFFD
FFFEFFFDFFFC

00000008

PAGE 6-13

DC.W 1 =2,2=1 ,2=2
DC.W 1<2,2<1,2<2
DC.W 1<=2,2<=1,2<=2
DC.W 1 >2 , 2> 1 , 2>2
DC.W 1>=2,2>=1,2>=2
OC.W 1<>2,2<>1,2<>2
DC.W 1\2,2\1,2\2
DC.W 1+2,2+1,2+2
DC.W 1-2,2-1,2-2
DC.W 1*2,2*1,2*2
DC.W 1/2,211,212
DC.W 1 &2,2&1 ,2&2
DC.W 1 !2,2!1 ,2!2
DC.W 1«2,2«1,2«2
DC.W 1»2,2»1,2»2
OC.W -1,-2,-3
DC.W -1,-2,-3

DC.L 4*(5+1)/8»2!3

68DxD PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.6 PDOS ASSEMBLY OBJECT FORMAT

The advantages of modular program development are often
offset by the restrictions and weaknesses found in the
relocatable object code format. In general, programs that
do not require linkage are not a problem. However,
subprograms that are tightly bound to other modules must
follow restrictive rules dictated by the ability of the
linker to resolve external references. A greater
flexibility would be nice for system generation programs and
libraries which involve complex object modules.

Typically,
information:

object modules
machine language

contain three kinds of
code and constants, address

and relocation information, and external definitions and
references. The problems occur in byte relocation, PC
(program counter) relative addressing, external references
in arithmetic expressions, large constant blocks, split
instructions, program identification, and object code
transportability.

The PODS 68000 tagged object format is very powerful and
gives added flexibility to 68000 modular programming. The
assembler and linker work together in the development of the
final execution module.

The PODS linker is a stack-oriented program which maintains
not only a symbol table, but also expression operation lists
that are used to do Reverse Polish operations at link time.
Constants, symbol values, and section addresses are pushed
and popped from the stack and used to build the desired
object.

This means that complex, relocatable expressions can be
resolved at link time. For instance, it is possible to
define a constant that consists of the difference between
two externally defined symbols and have the linker calculate
the value.

6.1.6.1 68000 TAGGED OBJECT

Table 6.1 defines the object codes. The first character of
each item is the key and indicates how the linker is to
process subsequent characters. Items are of fixed length,
except for variable length symbol names. Items are
concatenated into lines of ASCII characters with a
terminating checksum, to aid in transporting object files.

Tag 0 is the module identification item. It specifies how
the object was generated (i.e. assembler, PASCAL, C, etc.)
and gives the version and revision of the source file. The
source module name or some other character identification
symbol and the assembly date and time are also included.

C

PRGMl

XREF A,B
OC.L A-B

IONT 3.0 PODS PRGM1

PAGE 6-14

:, I

C·'·

< ... , C·~··

·c~ \., ,.

(

C:

c
()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1.6.1 68000 TAGGED OBJECT continued)

Tag 1 specifies the object entry address. This item is
generated by the 'END' di rective of the assembler. Its
value is the directive operand and i ndi cates the section and
address of the module entry point.

Tag 2 sets the current linker program counter to a specific
section and address. This can be any absolute or
relocatable section and any 32-bit address.

Tags 3, 4, and 5 store absolute data in the linked output
stream. The tags correspond to bytes, words, and long
words, respectively.

The linker maintains a stack which is used for all
arithmetic and shift operations. The top item on the stack
can be popped, when required, into the output stream. Tags
6, 7, and 8 pop a byte, word, or long word respectively.

Tag 9 pushes an absolute or relocatable constant on the
stack. A space character following the 9 tag indicates that
the 32-bit value is an absolute constant. Likewise, hex
characters 0 through F are for sections 0 through 15.

Tag A pushes a symbol value on the stack. The tag is
followed by the symbol section. If the section is.a space
character, then the first symbol match in the linker symbol
table is used. The variable length symbol name follows. A
length character precedes the symbol. These items are
generated by the 'XREF' directive of the assembler.

Tag B directs the linker to do some operation using stack
values. The binary operations available are add, subtract,
multiply, divide; AND, OR, shift right, and shift left. The
unary negate operator is also available. All operations pop
the long word operands, perform the operation, and push the
long word result back on the stack.

Tag C places an external definition in the linker
table. The tag is followed by the symbol section.

symbol
If the

section is a space character, then the symbol is absolute.
The variable length symbol name follows with a length
character preceding the symbol. The final parameter is the
32-bit symbol value. These items are generated by the
'XDEF' directive of the assembler.

Tag D is for multiple word stores. Up to 65536 2-byte
constants are stored with a single item.

Tag E informs the linker of the length of each section
contained within the module. This information allows the
linker to group sections together as one section.

SYM

SYM

END START

SECTION 0
RORG $1000

DC.B 3
DC.W 4

DC.L 5

XREF B,W,L
MOVE.B B(AO,DO:W},DO
LEA.L W(A5),AO
MOVE.L #L,DO

XREF X
MOVE.W #X-10,DO

XREF X
MOVE.W #X-SYM,DO

XREF
DC.W

XDEF
EQU

X
(X-10}«3+$10

SYM

DCB.W 20,'

PAGE 6-15

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1.6.1 68000 TAGGED OBJECT continued)

Finally, tag F is the end-of-record tag and is followed by
two 2's complement checksum characters. This helps maintain
data integrity and object transportation through RS232
networks. The checksum is calculated such that when added
to the sum of the preceding characters in the line (included
the 'F' tag), the result is zero.

A sample code to generate
register A3 is pointing

the checksum follows. Address
to the end of the object while

address register A2 points to the beginning of the record.

CKSM MOVE.S #'F' ,(A3)+
CLR.B (A3)
CLR.L 01
MOVEA. L A2,Al

*
@0002 ADD.B (Al)+,Dl

TST.S (Al)
SNE.S @0002

NEG.B 01
XCSH
ADDQ.W #6,Al
MOVE.S (Al)+, (A3)+
MOVE.S (Al), (A3)+
MOVE.S #$OA, (A3)+
MOVE.S #$00, (A3)+
CLR.B (A3)
RTS

;TERMINATE LINE

;CLEAR CHECKSUM
; POINT TO LIST

;CHECKSUM LINE
;DONE?
;N
iY, NEGATE CHECKSUM
;CONVERT

;INSERT CHECKSUM CHARACTERS

; TERMINATE LINE

The IDNT and E tags are output to the object file after the
first pass of the assembler. When the 'END' is encountered
on the second pass, a final record is output to the object
file that includes the assembler revision and the current
date and time.

Example:

C 4SEC.00000022C 4YRS.0000001AC 5CKSM.000000C4FB6
:MASM R3.2 27-0ct-86 13:53:16

PAGE 6-16 c
c

c
1 "

1-

(

{

C:

c

c
c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

Definition Tag/Syntax

Module identification - OT--LABEL--rrrvvvddddddtttt
Entry point - 1Saaaaaaaa

Address - 2Saaaaaaaa
Simple data byte - 3nn
Simple data word - 4nnnn

Simple long data word - 5nnnnnnnn
Pop byte - 6
Pop word - 7

Pop long word - 8
Push value - 9Snnnnnnnn

Push symbol - AS1<symbol>
Link operation - BO

External definition - CS1<symbol>nnnnnnnn
Store multiple word - occccnnnn

Section length - ESnnnnnnnn
End of record - Fcc

Where: r=Revisi on a=Address
v-Version n=Hex data
d=oate l=Length
t=Time c=Count
S=Section cc=Checksum

O=Operations: O=Add 5=OR
1=Subtract 6=Shi ft
2=Mu1tiply 7.Shift
3=ohi de 8=Negate
4=ANo 9=NOT

left
right

T=Type: A=Assembler F=Fortran
B=BASIC P .. Pascal
C='C'

POOS 68000 tagged object uses a stack at link time
to resolve external references and perform external
calculations.

TABLE 6.1 PDOS 68000 TAGGED OBJECT.

PAGE 6-17

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.6.2 AN EXAMPLE

Consider the assembly example in table 6.2. To correctly
resolve these assembly statements requires byte relocation,
external arithmetic and shifts, and program counter relative
resolution. All are easily and efficiently handled by the
tagged object format .

. --

Source 1i stl ng:

XREF.l TBL,Y,2:Z
MOVE.B TBL(PC,D1.W),(Y+Z»>2(A2)
END

Assembler listing:

XREF . 1 TBL, Y ,2: Z
2 0/00000000:157B10****** MOVE.B TBL(PC,D1.W),(Y+Z»>2(A2)
3 0/00000006: END

Object 1i sti ng:

E0000000064157BA 3TBL9000000002B13106A 1YA21ZB09 00000002B77F28
:MASM R3.2 11/1/86 15:51:57

A 68000 assembly example shows the resulting tagged object
from PC relative, byte relocation, and external displacement
arithmetic.

TABLE 6.2 SAMPLE TAGGED OBJECT

Assuming the following values, the link process proceeds as
foll ows:

Section 0 base = $000001000
Section 2 base = $000002000

O:TBL • $000000040
Y = $000000064

2:Z • $000000300

Continued on next page ...

PAGE 6-18 o
o

c
o

!~

(

(

(

(

(",

"

6BOxO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE ANO LINK

(6.1.6.2 AN EXAMPLE continued)

1.
2.
3.
4.
5.
6.
7.
B.
9.

10.
11 .
12.
13.
14.

E000000006 .. Oeclare section 0 to be 6 bytes long.
4157B K Output simple data word $157B.

A 3TBL = Lookup "TBL", add section 0, and push value.
g000000002 • Push section 0 + $00000002.

g

B1 = Pop operands, subtract, and push result.
310 .. Output simple data byte $10.

6 .. Pop byte ($3E) and output.
A 1Y = Lookup "V" and push value.
A21Z .. Lookup "2:Z", add section 2, and push value.

BO = Pop operands, add, and push result.
00000002 .. Push absolute constant $00000002.

B7 .. Pop operands, shift right, and push result.
7 = Pop word ($OB09) and output.

F2B • End of line, check checksum.

The resulting output object stream:

157B 10 3E OB09

would be loaded at memory location $00001000.

6.1.6.3 MASM AND QLINK

QLINK is the POOS linker utility. When used i~ conjunction
with the POOS assembler, program modules are bound together
into an executable module.

Table 6.3 is a listing of the QLINK map a~ter linking the
object from the example program listed in Table 6.2 and the
object resulting from the following short program:

Y

Z

XOEF Y,Z
EQU 100
SECTION. 2
OS.B $300
EQU
ENO

*

;Y = ABSOLUTE 100

;Z .. $300 BIASEO BY SECTION 2

Where possible, all external references have been resolved.
All external definitions are listed with their value,
section value, and references. The Reverse Polish equations
required to resolve a particular reference are listed along
with the resolved values. Other information includes
grouped and ignored sections, references that overflow, and
a list of all unresolved references.

Top of Stack

($00001040)
($00001002)
($0000003E)
($0000003E)

($00000064)
($00002300)
($00002364)
($00000002)
($00000B09)

PAGE 6-19

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

.--.

USER ALIASES: NONE
MEMORY BUFFER BASE ADDRESS=OOOOOOOO

EXTERNALLY DEFINED SYMBOLS:
MODULE VALUE S/DISPL REFERENCES

U 00000000 #1 0/00000002
NAME
TBl
Y OBJl

OBJl
00000064 #1 0/00000004

Z 00002300 2100000300 #1 0/00000004'

INPUT FILE MAP:
INDEX FILE NAME TYP IONT R V DATE TIME SECTION ADDRESSES

1 OBJ/8
2 OBJ1/8

SECTION GROUPS: NONE
IGNOREO SECTIONS: NONE
OVERFLOW REFERENCE VALUES: NONE

XREF OPERATION LIST:
AODRESS VALUE
0/00000003.B := TBl 0/00000002 -
0/00000004.W:= Y 2/Z + 00000002 »

SECTION
o
2

BASE
00001000
00002000

LOWEST
00001000
00002000

UNRESOLVED EXTERNAL DEFINITIONS:
NAME
TBL U

MODULE VALUE
00000000

UNRESOLVED EXTERNAL REFERENCES:
ADDRESS VALUE
0/00000003.B:= TBl 0/00000002 -

RESOLVED REFERENCE VALUES:
ADDRESS VALUE

0/00000000 00000005
2/00000000 000002FF

HIGHEST
00001006
00002300

SIDISPL REFERENCES

00001003.B := UNRESOLVED 00001004.W:= 00000809

The QLINK link map lists all input obje~t modules, how each
external reference was resolved, the resulting section
addresses, and all unresolved references.

TABLE 6.3 QLINK MAP

PAGE 6-20

c

(

(

{

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.7 ASSEMBLER ERROR DEFINITIONS

Assembler diagnostics are divided into warnings and errors.
Errors cause the assembler to replace the object with
illegal object code and notify PDOS through the error
register (LEN$(A6» with the error number (300-399).
Warnings simply indicate that something might be amiss but
do not affect the object and can be disabled with the NOWARN
parameter in an OPT directive.

Code Warning Number/Description

c

s
M
m
u
p

x
e
b
0

U

o
S
A

W

Ves

Ves

Ves

300 Modified instruction

301 Illegal symbol
302 Multiply defined symbol
303 Multiply defined symbol
304 Undefined symbol
305 Phase error

306 Illegal ope ode
307 Illegal opcode extensi on
308 Was on odd byte boundary
309 Missing operand
310 Illegal operand mode

311 Unary operator error
312 Stack underflow
313 Stack overflow
314 Syntax error

referenced

315 Absolute expression required
316 Illegal complex expression

aVes 317 Arithmetic overflow
n Ves 318 Numeric overflow
d

z

B

319 Displacement field overflow
320 Division by zero

Ves 321 Unmatched quotes or parens

322 Branch to odd address
w Ves 323 Branch could be shorter

324 Parameter out of range
L 325 Illegal re9ister list
t Ves 326 String truncated
X 327 Illegal section specification
P 328 Illegal OPTION

C

f

329 Label not allowed
330 IF/ENDC or MACRO/ENDM error
331 Floating point error

Altered warning

Symbol e r ro r s

Opcode and operand errors

Evaluation errors

Parameter errors

Assembler context errors

PAGE 6-21

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1.7 ASSEMBLER ERROR DEFINITIONS continued)

After the assembly, if errors occurred and there is no
input port assigned to the task, then the error report is
sent to the parent task through the message buffers.

Auxiliary errors are additional information for diagnosing
an assembler error. They are generally associated with
conditional assembly or macros.

Er ror Oescription

332 ENDC w/out matching IFxx
333 ENDM w/out MACRO header
334 Legal only in body of macro
335 Macro label not found
336 Must be symbol
337 Label required
338 Macro definitions cannot be nested
339 Infinite parameter substitution

6.1.8 ASSEMBLER DEFINITIONS AND DEFAULTS

The following are predefined mnemonic symbols that are
recognized by the assembler:

00-07 Data registers
AO-A7 Address registers
A7, SP Stack pointer
USP User stack pointer
CCR Condition code register
SR Status regi ster
PC Program counter

* Current location counter

The standard version of MASM uses the following default
values. Contact Eyring for pricing and delivery of custom
versions of MASM with different parameters from those
listed. Only the number of lines per page (NLP) can be
dynamically altered by the user. Use the OPT directive
NLP.' (section 6.1.10.32.18).

NLP = 56 Number of lines/page
NMC = 8 Number of nested macros
LLN '" 120 Maximum for LLEN
ITZ = 80 Maximum item size
OBS = 60 Output object line size
BLN = 3*8 Output object debug length
ELZ = 80 Error 1 i s t si ze
OBZ = 80 Debug buffer size

PAGE 6-22 ,.r~ ... ' .. '
'~'

(

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-23

6.1.9 ASSEMBLER MACROS

Assembler macros provide line replacement with parameter
sUbstitution. The macro is defined with the MACRO directive
in the operation field; the symbol in the label field is
the macro name. The body of the macro follows and is
terminated with the ENDM directive. All lines between the
MACRO and ENDM directives are saved.

A macro is called whenever the macro name appears in the
operation field. The subfields of the operand field are
assigned as the parameters used during the macro expansion.
These parameters are referenced as numbers one through nine
and are global when calling macros within macros (nesting).

Note: This is the major difference between the PDOS and
Motorola macros. Motorola keeps parameters local when
nesting them.

Parameter substitution is
character followed by
are replaced by operands
operand was specified
nothing is substituted.

signaled by the ampersand (&)
a number. Parameters &, through &g

through 9 respectively. If no
for a particular parameter, then

The parameter
equivalent of

&# is replaced with the ASCII decima 1

a macro counter. The counter starts at zero
a macro is expanded. and is incremented by one whenever

This means that the counter is equal to if it is
referenced in the first macro call.

The macro parameter &0 is replaced by the macro extension
characters appended to the macro name if any. This includes
the period. Legal extensions are ".S", ".B", ".W". and
JI.Lt!.

2
3

4

5

6

7
8
9 0/00000000:

* PARAMETER SUBSTITUTION

MAC' MACRO
DC.B
ENDM

m

&1 ,&2

'0 0/00000000:14FF a
MAC1
DC.B

10*2,-1
10*2,-1

,
2

3
4

5

6

7
8
9 0/00000002:

* MACRO COUNTER

MAC2 MACRO
LB&# DC.B

ENDM

m MAC2

&1 ,&2

3,2
10 0/00000002:0302 aLB2 DC.B 3,2

2

3

4

5
6

7

8

9 0/00000004: m
10 0/00000004:000A a

* MACRO EXTENSION

MAC3 MACRO
DC&O
ENDM

&1

MAC3.W 10
OC.W 10

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-24

(6.1.9 ASSEMBLER MACROS continued)

The characters &* are replaced within
by the complete macro call line.
reporting during macro expansion.

the macro expansion
This is useful in error

The characters &S are replaced with the number of
parameters passed to the macro in the parameter list. The
value may be used to conditionalize macros where different
numbers of parameters are passed. It corresponds to the
NARG symbol of the Motorola assembler.

An ampersand in a macro body is inserted by a double
ampersand (&&). Otherwise, the expansion looks for some
other character substitution.

Symbol values are substituted in a program line by
enclosing the symbol between ampersands. The decimal
equivalent of the symbol value replaces the ampersands and
symbol name.

1

2
3
4

5
6

7
8

* MACRO HEADER

*
MAC4 MACRO

DC.B
ENDM

*

'&'IIr'

9 0/00000006: m MAC4 1,2
10 0/00000006:2040 a DC.B , MAC4 1,2'
12
13
14
15

2
3

4

12
13
14
15
16
17

2
3
4
5
6
7
8
9 O/OOOOOOOF:

4143 a
3420 a
312C a
32 a

* MACRO CONDITIONALIZE

*

IFEQ
DC.L
MEXIT
ENOC

&S-2
&1,&2

* AMPERSAND

*
MAC5 MACRO

DC.B &1&&&2
ENDM

*
m MAC5 10,$OF

10 O/OOOOOOOF:OA a DC.B 10&$OF

2 * SYMBOL SUBSTITUTION
3 ************************

4 *
5 MAC6 MACRO
6 -I SET 10
7 DC.W &1&*&1
8 EN OM
9 *

10 O/OOOOOOOF: m
11 0/0000000F:0032 a

MAC6
DC.W

5
10*5

C·· ,

o

r
~7

c
c

(

(

(~

C:

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEM8LE AND LINK PAGE 6-25

(6.1.9 ASSEMBLER MACROS continued)

Parameter substrings are inserted by selecting a
character and character count within braces.
followed by the parameter number.

starti ng
These are

Parameters may be dynamically selected
expansion by enclosing a symbol within
symbol is evaluated and the result used
desired parameter.

during macro
&(and)&. The
to select the

1

2
3
4

5
6

7

8
9 0/00000011:

* PARAMETER SUBSTRING

*
MAC7 MACRO

DC.B
ENDM

*
m

'&{4,2}1'

10 0/00000011:4445 a
MAC 7
DC.B

ABCDEFGHIJK
'DE'

2
3
4

5

6

7
8
9

* PARAMETER SELECTION

MAC8 MACRO
-I SET

DC.W
ENDM

*

2
&(I)&

10 0/00000013: m MAC8
DC.W

10,20,30,40
20 11 0/00000013:0014 a

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-26

(6.1.9 ASSEMBLER MACROS continued)

Loops in a macro expansion are done with the MIF, MIFxx,
and MGOTO directives. MGOTO has only a label argument while
MIF and MIFxx have two arguments. The first argument is an
expression and the second is a macro label. A macro label
is any character string. A macro label is placed in the
code by preceding the label with an asterisk (thus making it
a comment to the assembler).

Expressions can be pushed on a macro parameter stack with
the MPUSH directive. Likewise, values are popped from the
stack into symbols with the MPOP directive. A macro
expansion can be aborted with the MEXIT directive.

Macro lines will not be printed in the expansion if the
line is preceded with a minus sign.

The macro header is indicated by an 'm' character in column
32 of the list line. The body of the macro is likewise
indicated with an 'a' character.

Macros may be nested 8 deep.

1

2
3
4

5
6
7

8
9

10
11

12
13
14

* CONDITIONAL LOOPING

*
MAC9 MACRO
-I SET 0
-*NXT
-I SET I+1

MIF I>&ii1,END
DC.W &(I)&
MGOTO NXT

-*END
ENDM

*
15 0/00000015: m MAC9 10,20,30,40
16 D/00000015:000A a
17 0/00000017:0014 a
18 0/00000019:001E a
19 0/0000001B:0028 a

DC.W
DC.W
DC.W
DC.W

10
20
30
40

1 ************************

2 * RECURSIVE MACROS
3 ************************

4
5 FACT MACRO
6 MIFNE &1>1,NXT
7 -I SET 1
8 DC&O &1&
9 MEXIT

10 -*NXT
11 MPUSH &1
12 -I SEJ &1-1
13 FACT&O &1&
14 MPOP II
15 -I SET &I&*II
16 DC&O &1&
17 ENDM
18 *
19 0/00000010: m FACT .B 2
20 0/00000010:01 b DC.B
21 0/0000001E:02 a DC.B 2
22 0/0000001F: m FACT.W 6
23 0/0000001F:0001 f DC.W 1
24 0/00000021:0002 e DC.W 2
25 0/00000023:0006 d DC.W 6
26 0/00000025:0018 c DC.W 24
27 0/00000027:0078 b DC.W 120
28 0/00000029:0200 a DC.W 720

o
o

C

C
C

i
I·'

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(- 6.1.10 ASSEMBLER DIRECTIVES

(\

()

The PDOS MASM assembler supports the following directives:

ASSEMBLY CONTROL

END
ENOC
ENDM
IFxx
IFDEF
IFUDF
INCLUDE
MACRO
MEXIT
MGOTO
MIFxx
MPOP
MPUSH
OFFSET
ORG
RORG
SECTION

End assembly
End conditional assembly
End macro definition
Conditional assembly
Execute if defined
Execute if undefined
Inc 1 ude file
Macro definition
Exit macro
Macro GOTO
Macro conditional GOTO
Macro pop from stack
Macro push to stack
Defi ne offsets
Absolute origin
Relocatable PC adjust
Relocatable program section

SYMBOL DEFINITION

EQU
REG
SET

Define assembly constant
Define register list
Redefine assembly constant

DATA DEFINITION

DC Define constant
DCB Define cons tan t block
DCE Define encoded string constant
OS Define storage
EVEN Set word boundary

PAGE 6-27

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND lINK

(6.1.10 ASSEMBLER DIRECTIVES continued)

LISTING CONTROL AND OPTIONS

FAIL
FORMAT
LIST
llEN
NO FORMAT
NOLIST or NOl
NOOBJ
NOPAGE
OBJ
OPT
PAGE
PRINT
SPC
TTL

LINKER CONTROL

EXTN
IDNT
XDEF
XREF

Output fail string
Format 1 isti ng
Enable output to list file
Set list output line length
No list formatting
No output to list file
No output to object file
No automatic paging
Enable output to object file
Assembler options
Top of page
Print to console
Space between source lines
Title

External symbol
Program identification
External symbol definition
External symbol reference

PAGE 6-28 o
o

c
c

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMSLE AND LINK

6.1.10.1 DC - DEFINE CONSTANT

Format: [<label>] DC[.qualifier] <expression>[, ...] [<comment>]

The DC directive defines a constant in memory. It may have
one or more operands which are separated by commas. The
qualifier specifies the storage type, where ".S", ".W", and
".L defines a byte, word, or long word. The default size
i s wo r d (. W) .

If the operand is a string enclosed by single quotation
marks, then a byte ASCII memory allocation results.

The reserved words $DATE and $TIME are translated to ASCII
strings of the system date and system time.

*Note: The DC directive does not align word and long word
constants on even addresses.

6.1.10.2 DCB - DEFINE CONSTANT BLOCK

Format: [<label>] DCB[.qualifier] <length>,<value> [<comment>]

The DCB directive causes the assembler to allocate a block
of bytes (.B), words (.W), or long words (.L), depending
upon the qualifier. If the qualifier is omitted, word (.W)
is the default size. The block length is specified by the
absolute expression <length> and the value by <value>.
<Length> can range from 0 to 32767.

6.1.10.3 DCE - DEFINE ENCODED STRING

Format: [<label>] DCE.B <string or expression>[, ... J [<comment>]

The DCE directive is similar to the DC.S directive.
However, whenever possible, string constants have single
spaces encoded by negating the previous character and
multiple spaces replaced with a negative space count. Such
strings are compatible with the PDOS· primitives XPEL (put
encoded line) and XPEM (put encoded message).

PAGE 6-29

DC.L ',2,3,4

DC.S $OA,$OD, 'HELLO',O

DC.B 'DATE=' ,$DATE,O

DC.B 'TIME=' ,$TIME, 0

DCB.B 20,"

DCE.B $80, 'ENCODED STRING' ,0

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-30 o
<.

6.1.10.4 OS - DEFINE STORAGE C
Format: [<label>] OS[.qualifier] <expression>[•...] [<comment>]

The OS directive reserves memory location. The contents of
the memory reserved are not initialized in any way. The
<label> references the lowest address of the defined storage
area. The number of bytes. words. or long words is
specified in <expressions> which must be absolute and
contain no forward. undefined. or external references. The
qualifier specifies the storage type. where ".B". ".W". and
".L defines a byte. word. or long word. The default size
is wo rd (. W) .

6.1.10.5 END - END ASSEMBLY

Format: [<label>] END [<start address>] [<comment>]

The END directive informs the assembler that the source is
finished. Subsequent source statements are ignored. The
value of <start address>. if given. is output with a start
tag in the object.

At te r the second pass. the assemble r name. revis i on.,
version. date. and time are output to the object file.

6.1.10.6 ENDC - END CONDITIONAL ASSEMBLY

Format: ENDC

The ENDC directive terminates a conditional assembly block.
Since blocks may be nested. the ENDC applies only to the
last IFxx directive header.

6.1.10.7 ENDM - END MACRO DEFINITION

Format: ENDM

The ENDM directive terminates a macro definition.

TEMP OS.L
DS.W

RTS

END

o ;EVEN

;RETURN

START ;END-OF-PROGRAM

:MASM R3.2 27-0ct-86 13:53:16

NODE

IFNE
OS.L
ENDC

MACRO

DFLG
DFLG

MOVEA.L AVAIL(A6).AO
SUBA.W #&1.AO
MOVEA.L AO.AVAIL(A6)
ENDM

c
c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.8 EQU - DEFINE ASSEMBLY CONSTANT

Format: [<label>] EQU <expression> [<comments>]

The EQU directive assigns the value of the expression in
the operand field to the symbol in the label field. The
<label> is optional. A well-defined expression is not
required on the first pass.

r <Label> may be equatecl to an external symbol thus assuming
all its attributes. This is termed an indirect symbol.

6.1.10.9 EVEN - SET WORD BOUNDARY

Format: [<label>] EVEN [<comment>]

The EVEN directive forces a word alignment. A single byte
of storage is allocated if the current program counter is
odd.

{ 6.1.10.10 EXTN - EXTERNAL SYMBOL

Format: [<label>] EXTN <symbol>[,<symbol>

The EXTN directive declares the specified symbols to be
either externally defined or referenced depending upon how
they were defined by the assembler.

If the EXTN symbol is defined on the second pass, then the
symbol and value are passed on to the linker as symbols
which may be referenced by other modules linked to the
current module. (See XDEF.)

If the EXTN symbol is undefined at the end of the first
pass, then at the start of pass two, the symbol is declared
as an external reference to be defined later by the linker
in another module. (See XREF.)

TPS

TEMP

EQU

OS.L
EVEN

EXTN

PAGE 6-31

100

K$MASK

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.11 FAIL - OUTPUT FAIL STRING

Format: [<label>] FAIL <string>

The FAIL directive outputs the <string> to your console
each time it is encountered. The entire source line from
the operand field is printed. The assembler loads the error
register with error 67, parameter error.

6.1.10.12 FORMAT - FORMAT LISTING

Format: FORMAT {<c#1>},{<c#2>},{<c#3>},{<c#4>} [<comment>]

The FORMAT directive formats the source list to column
alignments as specified by the four parameters. Columns are
numbered with 0 signifying the leftmost column of the source
code area of the listing line.

<c#1> specifies the column number of the first character of
the label field, <c#2> the first column of the operation
field, <c#3> the operand field, and <c#4> the comment field.
The columns must be increesing (you cen't swap field
positions). The defaults are 0,8,16, and 32. The NOFORMAT
directive disables source field formatting. (See NOFORMAT.)

6.1.10.13 IFDEF - EXECUTE IF DEFINED

Format: IFoEF <symbol> :<statement>

The IFoEF directive assembles the <statement> following the
colon only if the <symbol> is defined. The <symbol> must be
separated from the colon (:) by either a blank or tab.

6.1.10.14 IFUDF - EXECUTE IF UNDEFINED

Format: IFUoF <symbol> :<statement>

The IFUoF directive assembles the <statement> following the
colon only if the <symbol> is undefined. The <symbol> must
be separated from the colon (:) by either a blank or tab.

PAGE 6-32

PTMSK<SYMSK IFLT
FAIL
ENoC

**ERROR - PTMSK < SYMSK

FORMAT 0,12,20,36 ;allow long labels

NO FORMAT
or

FORMAT 0,8,16,32 ;return to defaults

IFoEF B$MAP BSR.L B$MAP

IFUoF TPS :TPS EQU 100

o

c
c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(

c

6.1.10.15 IFxx - CONDITIONAL ASSEMBLY

Format: IFxx <absolute expression>
IFC '<string'>' ,'<string2>'
IFNC '<string'>' ,'<string2>'

The IFxx directives conditionally select blocks of source
code to be assembled. If the condition is TRUE, then the
block is assembled. If the condition is FALSE, the block is
skipped and the assembly process continues after the
corresponding ENDC statement.

Valid directives for expressions are defined as follows:

IFEQ If <expression> = 0
IFGE If <expression> >- 0
IFGT If <expressi on> > 0
IFLE If <expression> <= 0
IFLT If <expressi on> < 0
IFNE If <expression> <> 0

Valid directives for string comparisons are defined as
follows:

IFC
IFNC

If <string'> = <string2>
If <string'> <> <string2>

If strings are not enclosed in single quotation marks. then
macro parameters are changed to upper case. Quotation marks
are included in the string comparison. Conditional assembly
blocks can be nested up to 4 deep.

6.1.10.16 IDNT - PROGRAM IDENTIFICATION

Format: [<label>] IDNT <revision>.<version> [<comment>]

The IONT directive outputs a program identification object
record to the object file. This includes a label. revision
and version number. as well as the current date and time.

The resulting object record is defined as follows:

OT--LABEL--rrrvyvddddddtttt
\\ \ \ \ \ \

\\ \ \ \ Time
\\ \ ____ Date
\\ , , _____ Version

\\ \ Revision
\\ Label of file name ------------__________ Object type

If no <label> is given. then the field value is the source
name. The object type is declared in the 'OPT Tx' option.

{ The default is 'A' for assembly.

c

IFLT
FAIL
ENDC

IFC 'CHAIN' ,&'
(do CHAIN)

ENDC
IFNC 'CHAIN' .&,

(do NOCHAIN)
ENOC

MPOOSK IONT

PAGE 6-33

PTMSK<SYMSK
**ERROR - PTMSK < SYMSK

3.2 PODS KERNEL

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.17 INCLUDE - INCLUDE FILE

Format: INCLUDE <filename>

The INCLUDE directive inserts a new source file specified
by <filename>, into the assembly list. Includes may be
nested up to 4 levels. Lower case file names are allowed if
the file name is enclosed in single quotation marks.

6.1.10.18 LIST - ENABLE OUTPUT TO LIST FILE

Format: LIST

The LIST directive enables assembly listing to the output
file. This option is selected by default. Source text
continues to be printed until a NOLIST or END directive is
encountered. (See NOLIST.)

6.1.10.19 LLEN - SET LIST LINE LENGTH

Forma t: LLEN <expression>

The LLEN directive sets the number of columns output for
each line to the LIST file. The maximum is 120 columns.

6.1.10.20 MACRO - MACRO DEFINITION

Format: <label> MACRO [<comment>]

The MACRO directive begins the deHnition of an assembler
macro. The <label> becomes the name of the macro. The body
of the macro is terminated with the EN OM statement.

Macros may be nested 8 deep.

DECA

INCLUDE MASM1:SR
INCLUDE MASM2:SR
END MASM

LIST

LLEN 80

PAGE 6-34

MACRO ;DECREMENT ADDRESS
SUBA.W #&1,&2
ENDM

DECA 10,AO

c
c

'c' I I Ji"

c I
I

"

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.21 MEXIT - EXIT MACRO

Format: MEXIT [<comments>]

The MEXIT directive terminates expansion of the current
macro call. It is legal only within a macro definition.

6.1.10.22 MGOTO - MACRO GOTO

Format: MGOTO <macro label>

The MGOTO directive transfers macro expansion to a new
point within the macro as specified by <label>. A macro
label can be any symbol and is preceded by an asterisk (*)
at the destination line.

6.1.10.23 MIFxx - MACRO CONDITIONAL GOTO

Format: MIF <abs expression>,<macro label>
MIFEQ <abs expression>,<macro label>
MIFNE <abs expression>,<macro label>

TABLE MACRO
1 SET
*AGAIN

MIFNE
MEXIT

*NEXT

DC.W
SET
MIFEQ
ENDM

DATA MACRO
-I SET
-*NXT
-1 SET

MIF
DC.W
MGOTO

-*END
ENDM

&1

I, NEXT

1+1
O,AGAIN

0

1+1
I>&@,ENO
&(1)&
NXT

The MIFxx directives are used within macro expansions to
transfer to a new point within the macro. A macro label can
be any symbol and is preceded by an asterisk (*) at the
destination line. MIF and MIFNE make the transfer if <abs
expression> is nonzero; MIFEQ transfers if <abs expression>
is zero.

TAB1 MACRO
I SET &1
*LOOP

DC. L
SET 1-1

MIFNE I>O,LOOP
ENDM

PAGE 6-35

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.24 MPOP - POP FROM MACRO STACK

Format: MPOP <symbo1>[.<symbo1> ...]

The MPOP directive pops a 32-bit long value from the macro
stack into a symbol.

6.1.10.25 MPUSH - PUSH TO MACRO STACK

Format: MPUSH <exp>[.<exp> ...]

The MPUSH directive pushes the results of each operand
expression to the macro stack.

6.1.10.26 NOFORMAT - NO LIST FORMATTING

Format: NOFORMAT

The NO FORMAT option disables any further automatic
formatting of source lines. (See FORMAT.)

6.1.10.27 NOLIST or NOL - NO LIST TO FILE

Format: NOLIST
NOL

The NOLIST directive disables output to the LIST file until
a LIST directive is encountered.

6.1.10.28 NOOBJ - NO OUTPUT TO OBJECT FILE

Format: NOOBJ

The NOOBJ directive suppresses any further object code
output to the object file until an OBJ directive is
encountered.

MPUSH 1.2.3
MPOP
ENOM

A.B.C

MPUSH 10*2.1.&2
ENOM

NOFORMAT

NOL

NOOBJ

PAGE 6-36

c

(

c

c

c
c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.29 NOPAGE - NO AUTOMATIC PAGING

Format: NOPAGE

The NOPAGE directive discontinues any further paging of the
listing output. Lines are printed continuously with no page
headings or top and bottom margins. No label or operand is
allowed. and no machine code results. Normal paging is
re-enabled if a PAGE directive is encountered.

6.1.10.30 OBJ - ENABLE OBJECT FILE OUTPUT

Format: OBJ

The 08J directive enables object output to the object file.
This is the default option and continues until a NOOBJ or
END statement ;s encountered.

6.1.10.31 OFFSET - DEFINE OFFSETS

Format: [<label>] OFFSET [<expression>] [<comments>]

The OFFSET directive is used to define a table of offsets
via the Define Storage (OS) directive without passing these
storage definitions to the linker. Symbols defined in an
,OFFSET table are kept internally. but no object is produced.

<Expression> is the value at which the offset table begins.
The expression must be absolute and not contain forward.
undefined. or external references.

If no <expression> is given. the last OFFSET address is
used.

TSM'

PAGE 6-37

NO PAGE

OBJ

OFFSET *-START+$500
DS.L ,

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.32 OPT - ASSEMBLER OPTIONS

Format: [<label>] OPT [<option>][.<option>]

The OPT directive selects various assembly options during
the assembly process. These are defined as follows:

Default Opti on Bit Description
0 1

------- ------ ---------------------------
NOOlD OLD 24 Branch format (68020)
IF NOLF 23 Output line feeds
70N ?OFF 15 ? Conditional assembly
Il IR 14 I Conditional assembly
NOALT ALT 13 Alter source

PDOS 12 PDOS reserved symbols
NOCRE CRE 10 Cross reference
WARN NOWARN 9 Output warnings
NOBUG BUG 8 list debug object
ARl ARS 7 Absolute long/short
CEX NOCEX 6 DC expansions
CL NOCL 5 Conditional assembly 1i st
FRL FRS 4 Forward reference
MC NOMC 3 Macro calls Hst
MEX NOMEX 2 Macro expansion list
NOD D{==m} Dump symbol table
MB NOMB 0 Print macro body
Tx Assembly type

EMSK=# Error mask
NLP=# Number of lineslpage
CID=# Coprocessor 10 (68881)

30 Processor option selected
P=68010 29 68010 instructions enable (68010)
P=68020 28 68020 instructions enable (68020)
P=68881 27 68881 instructions enable (68881)
M68000 M68010 68000/68010 select

Note that Motorola assembler options MD and NOMD are
included in MEX and NOMEX; and SRL and BRS are included in
FRL and FRS.

If a label is included with the OPT directive. it is first
loaded with the current options value and declared a 'SET'
variable. This allows programs to capture the current
option status. set new status. and then restore the old
status when done.

PAGE 6-38 o
c

OPT CRE.PDOS.NOLF

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-39

(6.1 .10.32. 1 ?ON/?OFF

c\

()

c

1 Conditional assembly. An assembly source line can be
preceded by a question mark for line by line conditional
assembly. The ?OFF option directs the assembler to change
all lines beginning with a question mark to a comment line.

6.1.10.32.2 IL/IR

Conditional assembly. Two di fferent assembly
instructions can be put on one line. The line must begin
with a "I" character and the two instructions must be
separated with another up-line (I) character. The IR option
causes the instruction on the right to be assembled. The IL
option or no option causes the instruction on the left to be
assembled. In either case, the label field begins at the
first character following the corresponding "I" character.

6.1.10.32.3 ALT/NOALT

Alter source. The ALT option directs the assembler to
change the user-specified 68000 instructin opcode in order
to optimize instructions whenever possible. This includes
changing zero displacements to indirect register addressing
and altering certain address registers and immediate
instructions to avoid errors.

Example:

1i 0/000DOOOO:4AFC
**** ERROR 10 Illegal operand mode

2i 0/00000006:4AFC
**** ERROR 10 Illegal operand mode

3i 0/00000010:4AFC4AFC
**** ERROR 10 Illegal operand mode
4i 0/00000014:4AFC4AFC

**** ERROR 10 Illegal operand mode
5i 0/0000001C:4AFC

**** ERROR 10 Illegal operand mode
6 0/0000001E:31400000
7
8 00002000
9 0/00000022:B549

10 0/00000028:0A4000FF
11 0/00000034:D1FCOOOOOO08
12 0/0000003A:06500002
13 0/00000042:3E40
14c 0/00000044:3080
15 0/00000046:

*

CMP.w (A1)+, (A2)+

EOR.w #$FF ,DO
[111]

ADD.w #8,AO
[1/3]

ADD.w #2,(AO)
[1/6]

MOVE.w 00,A7
[1/8]

MOVE.w DO,O(AO)

OPT ALT
CMPm.w (A1)+, (A2)+
EOR; .w #$FF,DO
ADD •. 1 #8,AO
ADD; .w #2, (AD)
MOVEa.w DO,A7
MOVE.w OO,O(AO)
END

1 010000:7000
2 00008000
3 0/0002:
4 0/0002:

1 O/OOOOOO:OOOA

1 MOVEQ.L #O.DO
OPT 10FF

? MOVEQ.L #1,00
END

DC.W 10 DC.W -10
2 00004000 OPT IR
3 0/000002:FFF6 DC.W 10 DC.W -10
4 00000000 OPT I L
5 D/000004:000A DC.W 10 DC.W -10
6 0/000006: END

OPT ALT

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-40

6.1.10.32.4 ARL/ARS

Absolute long/short. The ARS option directs the assembler
to resolve all instructions using absolute addressing mode
into the absolute short (16-bit) addressing mode whenever
possible. The ARL option (the MASM default) causes all into
absolute long addressing mode.

6.1.10.32.5 BUG/NOBUG

List debug object. The BUG option directs the assembler to
insert the actual object characters generated at the
beginning of each source line in the list file.

6.1.10.32.6 CEX/NOCEX

DC expansions. The NOCEX option directs the assembler to
expand only the first line of a defined constant directive
in the list file.

6.1.10.32.7 CID=#

The CID option sets the 68020 coprocessor identification
field for F-line instructions. Default is 1.

6.1.10.32.8 CL/NOCL

Conditional assembly list. The NOCl option causes all
unassembled source (because of conditional assembly) not to
be listed in the list file.

1 0/0000:13C000000300 MOVE.B 00,$300
2 00000080 OPT ARS
3 0/0006:11C00300
4 O/OOOA:

MOVE.B 00,$300
END

00000100 OPT 8UG
47008
460FC

2 0/0000:7008 Ll MOVEQ.L #8,00
30/0002:60FC BRA.S Ll

4010240304 4 0/0004:01020304
1000000000 5 0/0008:0/0000

DC.B 1,2,3,4
END LPl

1 0/0000:0000000100000002 DC.ll,2,3,4,5,6
2 0000000300000004
3 0000000500000006
4 00000040 OPT NOCEX
5 0/0018:0000000100000002 OC.L 1,2,3,4,5,6
6 0/0030: END

48000000 OPT P=68881
2 0/00000000:F23C5000000A FMOVE.W #10,FPO
3 000DF40048000000 OPT CIO=2
4 0/00000006:F43C5000000A
5 O/OOOOOOOC:

1 0/0000: IFEQ 0
2 ,. ASSEMBLE
3 ENOC
4 0/0000: IFNE 0

FMOVE.W #10,FPO
END

THIS

5 .. DON'T ASSEMBLE
6 ENDC
7 00000020 OPT NOCL
8 0/0000: IFEQ a
9 .. ASSEMBLE THIS

10 ENDC
11 ENDC
12 0/0000: END

C'"'" i ~ , ' ," \ "./

C"',' "

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-41

6.1.10.32.9 CRE/NOCRE

Cross reference.
output a symbol
specif i ed).

The CRE option directs
cross reference to

6.1.10.32.10D/NOD

the assembler to
the 'LST=' file (if

Dump symbol table. The 0 option directs the assembler to
dump all symbols to the object module as if they had been
XDEFed. An optional mask can be included to selectively
output symbols. The '*' character specifies a single wild
card character while '@' specifies all match to end of
symbol.

6.1.10.32.11 EMSK=#

Error mask. The EMSK option directs the assembler to
ignore any errors with corresponding bits in the 'I' number.
Bits are numbered from left to right with the sign bit
being o.

6.1.10.32.12 FRL/FRS

Forward reference. The FRS option directs the assembler to
resolve all unspecified forward references on first pass as
short references.

6.1.10.32.13 LF/NOLF

Output line feeds. The NOLF option eliminates line feeds
($OA) from the list and object output files. This reduces
the file sizes.

OPT CRE

OPT D=L@

1z 0/0000:4A DC.B 10/0

*** ERROR 20 Division by zero
2 0000080000000000 OPT EMSK=$00000800
3z 0/0001 :OA
4 0/0002:

DC.B 10/0

END

1w 0/0000:60000006 BRA L
*** WARNING 23 Branch could be short
2 00000010 OPT FRS
3 0/0004:6002 BRA L

4 0/0006:4E71
5 0/0008:

OPT NOLF

NOP
LEND

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-42

6.1.10.32.14 M68000/M68010

M68010 instructions. The M68010 option allows all 68010
instructions to be assembled.

6.1.10.32.15 MB/NOMB

The MB/NOMB options select the listing of macro expansions.
The MB option, where possible, will only list the macro
header along with any code generated by the macro expansion.

6.1.10.32.16 MC/NOMC

Macro calls list. The NOMC option causes the macro header
not to be listed in the list file.

6.1.10.32.17 MEX/NOMEX

Macro expansion list. The NOMEX option causes the expanded
body of a macro not to be listed in the list file. Listing
of individual lines of the macro expansion can be inhibited
by inserting a minus sign as the first character of the
1 i ne.

6.1.10.32.18 NLP=#

Number of lines/page. The NLP option selects the number of
lines per page in the list file before an automatic page
throw is generated.

1 20000000 OPT M68010
2 0/00000000:42CO MOVE.W CCR,DO
3 0/00000002:4E7A8000 MOVEC.L SFC,AO
40/00000006:4E7B1001 MOVEC.L D1,DFC
50/0000000A:OE501800 MOVES.W D1,(AO)
6 0/0000000E:4E74FFEC RTD #-4*5
7 0/00000012: END

1 DATA MACRO
2 DC&O &1 ,&2
3 ENDM
4 *
5 0/00000000: m DATA.B 1,2,3
6 0/00000000:0102 a DC.B 1,2
7 00000001 OPT NOMB
8 0/00000002:0102
9 0/00000004:

a DATA.B 1,2,3
END

M MACRO

*

DC.B &1,&2
ENDM

2
3
4

5 00000008 OPT NOMC
6 0/0000:0102
7 0/0002:

1
2
3
4
5 00000004
6 0/0000
7 0/0002

OPT NLP=30

a DC.B 1,2
END

M MACRO
DC.B &1,&2
EN OM

*
OPT NOMEX

m M 1,2
END

o

d~
I' "

\,<-,j

rF"
~/

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK PAGE 6-43

(6.1.10.32.190LD/NOOLD

The OLD/NOOLD options determine how the '.L' extension for
branch instructions is handled. For 68000 and 68010, '.L'
branch instructions are four bytes. For 68020, '.L'
extensions are six bytes. The OLD option allows 68020 '.L'
instructions to remain four bytes long. (It is advisable to
use' .X' extensions to remove any confusion.)

6.1.10.32.20 P=xxxxx

The P= option selects the type of Motorola processor for
code generation. Currently the options are:

P=68010 68010 instructions enable (68010)
P=68020 68020 instructions enable (68020)
P=68881 68881 instructions enable (68881)

(~' 6.1.10.32.21 PDOS

c

PODS reserved symbols. PODS system constants are available
by reference with the PDOS option. Only those symbols
referenced are resolved at the beginning of the second pass.

2
50000000
50000200

3 0/00000000:60FE
4 0/00000002:60FC
5w 0/00000004:60FFFFFFFFFA
6 0/0000000A:60F4
7w 0/0000000C:60FFFFFFFFF2
8 51000200
9 0/00000012:60EC

10 0/00000014:60EA
11w 0/00000016:6000FFE8
12 0/0000001A:60E4
13w 0/0000001C:60FFFFFFFFE2

OPT P=68020
OPT NOWARN

START BRA.B START
BRA.S START
BRA.L START
BRA.S START
BRA.X START
OPT OLD
BRA.B START
BRA.S START
BRA.L START
BRA.S START
BRA.X START

1 00001000 OPT PODS
2 0/0000:1D7C0002044F MOVE.B #2,PRT$(A6)
3 0/0006: END

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE ANO LINK PAGE 6-44

6.1.10.32.22 Tx

Assembly type.
following the

The Tx option inserts the
'T' in the IONT or 0 object record.

character
Oehul t

is 'TA' for assembler. 'TP' is used in Pascal; 'TC' is used
in C.

6.1.10.32.23 WARN/NOWARN

Output warnings. The NOWARN. option disables any warning
messages. However, the warning character will still appear
at the beginning of the source line listing.

OPT TP

1a 0/0000:7080 LP1 MOVEQ.L #128,00
**** WARNING 17 Arithmetic overflow
2w 0/0002:6000FFFC BRA.L LP1
**** WARNING 23 Branch could be short [1/1]

3 00000200 OPT NOWARN
4a 0/0006:7080
5w 0/0008:6000FFFC
6 O/OOOC:

LP2 MOVEQ.L #128,00
BRA.L LP2
ENO

o

c

("

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.1.10.33 ORG - ABSOLUTE ORIGIN

Format: [<label>] ORG[.qualifier] [<expression>] [<comments>]

The ORG directive changes the program counter to
of the expression in the operand field.

the value
Subsequent

statements are assigned absolute memory locations starting
with the new program counter. <Expression> must be absolute
and may not contain any forward, undefined, or external
references.

If no operand <expression> is supplied, then the last
absolute program counter is used.

The <qual ifier> may be ei ther an'S' or 'L'.
interpreted as both 'ORG' and 'OPT FRS'.
interpreted as both 'ORG' and 'OPT FRL'.

6.1.10.34 PAGE - TOP OF PAGE

Format: PAGE

'ORG.S' is
'ORG. L ' ; s

The PAGE directive advances the paper to the top of the
next page. It does not appear in the program listing. No

,(~ label or operand is allowed, and no machine code results.

('

6.1.10.35 PRINT - PRINT TO CONSOLE

Format: PRINT {'<string>'},{{$}<exp>} ...

The PRINT directive allows the output of both strings and
expression values during the assembly process to the
console. If the expression begins with a dollar sign ($),
then the value is output in hexadecimal.

ERROR
ORG
DS.L

PAGE

PRINT 'I ' ,I

PRINT 'I $' ,$1

PAGE 6-45

$200

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.10.36 REG - DEFINE REGISTER LIST

Format: [<label>] REG <register list> [<comments>]

The REG directive assigns a value to <label> that can be
translated into the register list mask format used by the
MOVEM instruction. The REG directive acts like a SET
directive and the label may be reassigned later.

6.1.10.37 RORG - RELOCATABLE PC ADJUST

Format: [<label>] RORG[.qualifier] [<expression>] [<comments>]

The RORG directive adjusts the program counter within the
current section.

If the <expression> is not given. then the last relocatable
section and section address is selected.

The <qualifier> may be either an'S' or 'L'.
interpreted as both 'RORG' and 'OPT FRS'.
interpreted as both 'RORG' and 'OPT FRL'.

'RORG.S' is
'RORG.L' is

6.1.10.38 SECTION - PROGRAM SECTION

Format: [<label>] SECTION[.S] <expression>

The section directive causes the program counter to be
restored to the address following the last location
allocated in the section indicated by <expression> (or to
zero if used for the first time).

<Expression> must range from 0 to 15. By default. the
assembler begins with section O. address O.

6.1.10.39 SET - REDEFINE ASSEMBLY CONSTANT

Format: [<label>] SET <expression> [<comments>]

The SET directive temporarily assigns the value of the
expression in the operand field to the symbol in the label
field. This symbol may be reassigned many times. The
<label> is optional. A well-defined expression is not
required on the first pass.

DRL

START

RL
t.t.1RL

PAGE 6-46

REG DO-D2IAO/A4

VALUE
VALUE

XREF
DC.L
RORG
DC.L

*-4 ;BACKUP
10

SECTION 0
XPMC MESO'

SET
REG

6*4
DO-D4/A5

;DEFAULT TO '0

;OUTPUT START

o

c

c:

1,1\

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE ANO LINK

(6.1.10.40 SPC - SPACE BETWEEN SOURCE LINES

(

Format: SPC <expression>

The SPC directive outputs <expression> blank lines to the
assembly listing.

6.1.10.41 TTL - TITLE

Format: TTL <title string>

The TTL directive uses the string argument as the heading
for each page thereafter in the list file.

6.1.10.42 XDEF - EXTERNAL SYMBOL DEFINITION

Format: [<label>] XOEF <symbol>[.<symbol> .. :.

The XOEF directive outputs to the object file symbols and
addresses to be used by the linker. For another way to
externally define a symbol. see the EXTN directive.

6.1.10.43 XREF - EXTERNAL SYMBOL REFERENCE

Format: [<label>] XREF[.S] [<section>:]<symbol>[•....

The XREF directive specifies symbols referenced in the
current module but defined in other modules. If a <section>
is specified. then only that section and symbol will resolve
the reference. Otherwise. any matching symbol from any
section will resolve the reference.

The' .S· qualifier indicates that the XREF symbols will be
linked into low address memory so that direct addressing of
these symbols may be accomplished through absolute short
mode. For another way to reference an external symbol. see
the EXTN directive.

PAGE 6-47

SPC 10

TTL MASM ASSEMBLER 10/27/86

XDEF K$MASK

XREF B$MAP
XREF.S ERROR

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.1.11 ASSEMBLER RESERVED WORDS

The MASM assembler has various types of reserved words.
These include 68000 instructions. such as the 68010 or 68020
instruction set and the PO OS assembly primitives. Other
reserved words include predefined assembler symbols.

6.1.11.1 ASSEMBLER 68000 OPERATORS

ABCD ADO ADDA ADDI ADOQ
ADDX AND ANDI ASL ASR
BCC BCHG BCLR BCS BEQ
BGE BGT BHI BHS BLE
BLO BLS BLT BMI BNE
BPL BRA BSET BSR BTST
BVC BVS CHK CLR CMP
CMPA CMPI CMPM DBCC DBCS
DBEQ DBF DBGE DBGT DBHI
DBHS DBLE DBLO DBLS DBLT
DBMI DBNE DBPL DBRA DBT
DBVC DBVS DIVS DIVU EOR
EORI EXG EXT JMP JSR
LEA LINK LSL LSR MOVE
MCVEA MOVEM MOVEP MOVEQ MULS
MULU NBCD NEG NEGX NOP
NOT OR ORI PEA RESET
ROL ROR ROXL ROXR RTE
RTR RTS SBCD SCC SCS
SEQ SF SGE SGT SHI
SHS SLE SLO SLS SLT
8MI SNE SPL ST STOP
SUB SUBA SUBI SUBQ SUBX
SVC SVS SWAP TAS TRAP
TRAPV TST UNLK

MCVEC MOVES RTD M6B010 instructions

PAGE 6-48 o
c

C

,~
i
~

C

(

(680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE ANO LINK

(6.1.11.2 POOS PRIMITIVES

!(

(

('

The POOS primitives described in chapter 4 of this manual
are legal opcodes for the MASM assembler and may appear in
the operation field

6.1.11.3 OPT POOS WORDS

The following symbols are added to the MASM symbol table as
referenced with the 'OPT POOS' directive. Those ending in a
dollar sign ($) are displacements into the Task Control
Block (A6).

ACI$ EUM$ MWB$ TL1 $ U1P$
BUM$ EXT$ PRT$ TL2$ U2P$
CHK$ FEC$ PSC$ TL3$ U4P$
CLB$ FLG$ SOK$ TRC$ U8P$
CLP$ FPA$ SOS$ TRP$ UNT$
CMO$ FPE$ SFI$ TRV$ ZOV$
CNT$ IMP$ SLV$ TSP$
CSC$ KIL$ SPU$ TWO $
EAD$ LEN$ TBE$ TW1$
ECF$ MMF$ TIO$ TW2$
ERR$ MPB$ TLO$ TW3$

Those ending in a period (.) are di splacements into the
system RAM (A5).

BCLK. EVTM. RL1. TLTP.
BFLG. EVTO. RL2. TPRY.
BIOS. EVTS. RL3. TSKN.
BRKF. F8BT. RWCL. UART.
CCNT. FCNT. SOAY. URAl.
CHIN. IORO. SHRS. USIM.
CHOT. MAIL. SMIN. UTCS.
OFLG. MAPS. SMON. UTIM.
E122. OPIP. SPTN. UTYP.
E123. PATB. SSEC. WAOR.
E124. PNOO. SUIM. WINO.
E1 25. ROKA. SYRS.
EVTB. ROKN. TICS.
EVTI . ROKS. TLCK.

PAGE 6-49

OPT POOS

xxxx$(A6)

xxxx. (A5)

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.2 MASM20 68020 ASSEMBLER

MASM20 is a POOS Motorola &8000/10/20 assembler. It
accepts 68000 assembly mnemonics and directives, and outputs
POOS tagged or system object code. In addition, it supports
the new 68020 addressing modes, new instructions, and 68881
floating point co-processor instructions.

The assembler is a two-pass assembler. The first pass
resolves all symbols. The second pass generates the object,
listing, errors, and cross reference, if selected.

MASM20 is identical to MASM with the following additions:

1. Additional error messages.
2. Additional OPTions.
3. 68020 addressing modes.
4. Additional 68020 instructions.
S. Symbol and instruction extensions.
6. 68881 co-processor support.
7. Additional macro functions.

6.2.1 Additional error messages.

ERROR 340 = 68020 instruction or address mod.
ERROR 341 = Illegal ISII memory indirection
ERROR 342 = Expecting closing parentheses
ERROR 343 • Expecting comma
ERROR 344 • Illegal sca1. factor
ERROR 345 • Illegal {offset:width} format
ERROR 346 = Illegal register specification

6.2.2 Additional OPTions.

OLD
MB
CID=#
P=68010
P=68020
P=68881

NOLO
NOMS

68000 branch extensions
Print macro body
Co-processor ID
68010 Processor
68020 Processor
68881 Co-processor

Two-pass assembler

PAGE 6-S0 c
c

c

6BOxO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(6.2.3 68020 addressing modes.

(;

C

MODE 6 = d(An,Ri)
([bd,An,Ri{*scl}],od)
([bd,An],Ri{*scl},od)
(bd,An,Ri{*scl})

MODE 73 = d(PC,Xi)
([bd,PC,Ri{*scl}],od)
([bd,PC],Ri{*scl},od)
(bd,PC,Ri{*scl})
MSP
ISP
VBR
SFC
DFC
CACR
CAAR
FPn

6.2.4 Additional 68020 instructions.

Bcc
BFxxxx
BKPT
CALLM
CAS
CAS2
CHK
CHK2
CMP2
DIVS/DIVU
DIVSL/DIVUL
EXTB
ILLEGAL
LINK.L
MOVEC
MULS/MULU

Supports 32-bit displacement
Bit Field Instructions
New Instruction Functionality
New Instruction
New Instruction
New Instruction
Supports 32-bit Operands
New Instruction
New Instruction
Supports 32-bit and 64-bit Operands
New Instruction
New Instruction
New Instruction
Supports 32-bit displacements
Supports new control registers
Supports 32-bit operands

PACK New Instruction
RTM New Instruction
TRAPcc New Instruction
TST PC relative addressing
UNPK New Instruction

6.2.5 Symbol and instruction extensions.

«exp».W and «exp».L supported.
New extensions of .X, .D, and .P.

PAGE 6-51

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.2.6 68881 co-processor support.

Co-processor default set to 1.

FABS FMOVECR
FACOS FMOVEM
FADD FMUL
FASIN FNEG
FATAN FNOP
FATANH FREM
FBcc FRESTORE
FCMP FScc
FCOS FSAVE
FCOSH FSCALE.
FDBcc FSGlDIV
FDIV FSGlMUl
FETOX FSIN
FE TOXM1 FSINCOS
FGETEXP FSINH
FGETMAN FSQRT
FINT FSUB
FINTRZ FTAN
FlOG10 FTANH
FLOG2 FTENTOX
FlOGN FTRAPcc
FlOGNP1 FTST
FMOD FTWOTOX
FMOVE

DC/DS Floating point Constants

6.2.7 Additional macro functions.

New MACRO parameters: &*, &S, and &{s,e}n.

&&. &
&S • NUMBER OF ARGUMENTS
&# .. MCT_(A6)
&* • MACRO HEADER (MSV_)
&0 = MACRO EXTENSION (MEX_)

&1-&9 .. PARAMETER
&{s,e}n • PARAMETER EXTRACT

&<symbol>& .. SYMBOL VALUE

PAGE 6-52 c
c

(

C

(

c

c

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3 QLINK

The QLINK linker is a
accepts POOS tagged
system files, or POOS

single-pass, in-memory linker which
object and outputs S-records, PO OS

tagged object.

The following are the syntax definitions used in describing
the linker commands:

< > • string argument
[] number (hex must be preceded by $)
{ } • optional argument

All haxadecimal numeric inputs require a dollar sign ($) to
precede the number.

Section high and low addresses are available as parameters
to linker commands. The low addresses are named 'Q$LO'
through 'Q$LF' for section 0 through section 15
respectively. Likewise, 'Q$HO' through 'Q$HF' are replaced
by section 0 through section 15 high addresses respectively.
These high section addresses are equal to the address that
would be loaded next with data in that section. In other
words, Q$HO is equal to the last address of section zero
that was loaded plus ~

The QLINK linker supports arithmetic statements
command line expressions. This includes the
assembler operators plus QLINK defined symbols.

6.3.1 QLINK COMMANDS

in all
standard

Following is an explanation of the commands available with
the QLINK linker.

QLINK - single-pass memory linker

Q$LO - Q$LF

OUTPUT QLO,QHO

PAGE 6-53

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.1 ADD

Definition: Write data to QLINK buffer
Aliases: AD

Format: ADD{.W or L} [sec]{ .. ,[value]}

The ADD command writes either a word or long word of data
to a QLINK section.

6.3.1.2 ALIAS

Definition:
Aliases:

Format:

Equate symbols
A, AL
ALIAS <symbo11>,<symbo12>

The ALIAS command equates two symbols to the same value.
<symbo11> is equated to <symbo12>.

6.3.1.3 BASE

Definition:
Aliases:

Format:

Set memory buffer base
B, BA
BASE [addr]

The BASE command sets the memory buffer base address. This
allows you to window into the target logical address space.
This is essential since your task memory space may not be
large enough to buffer the complete object or more commonly,
the link addresses are way beyond the end of your buffer
(such as object for addresses $FFFFFFOO to $FFFFFFFF).

6.3.1.4 BITMAP

Definition:
Aliases:

Format:

Create relocation bitmap
BI. BIT
BITMAP <S or E>

The BITMAP command outputs relocation code and bitmap to
section zero to transform positon dependent to position
independent code. The S or start option is first executed
to output relocation code. After the load process, the E
option must be executed to output a bitmap for relocating
long words within the program.

ADD.W O,$A038 ; insert XBUG

ALIAS SYRAM,SYSRAM

BASE $FOOOO

PAGE 6-54 I. i C..,.,'

(f-
'",~/

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

('" (6.3.1.4 BITMAP continued)

(

c

C"
J

c

The relocation code is as follows:

**

RELOCATION CODE
**

*
XREF.l S$OSZE
SECTION 0

S$START IDNT 1.0
*
BSTART MOVEA.L #S$OSZE,AO

LEA.L BSTART (PC) ,A1
MOVE.W #$6026,(A1)
ADDA.L A1,AO
MOVE.L A1,D3
MOVE.L (AO)+,D2

*
ii10002 MOVE.L (AO)+,DO

MOVEQ.L #32-1,D1
*
ii10004 LSL.L #1,DO

BCC.S 1110006
ADD.L D3,(A1)

1110006 ADDQ.W #2,A1
DBF D1,II10004

SUBQ.L #1,D2
BNE.S ii10002

*

;GET CODE SIZE
; PROGRAM START
;MODIFY ENTRY
;BIT MAP PTR
;SAVE BASE
;BIT MAP WORDS

;WORD OF BITMAP
;32 BITS/WORD

;RELOCATE7
;N
;y, ADD BASE

;NEXT
;INNER LOOP
;DONE7
;N

* BEGIN PROGRAM EXECUTION

The end relocation bit map is defined as follows:

**

* BITMAP CODE
**

*
BITMAP DC.B ' OAS$BITMAP 00702861456'

DC.B 'C 6S$OSZE'
BM1 DC.B '000000005' ;SECTION 0 SIZE
BM2 DC.B '0000000020' ;# OF BIT MAP LONG WORDS
BM3 DC.B '00000000' ;DEFINE BIT MAP STORAGE

DC.B ' 1000000000' ;END
DC.B I:' ,0

*
**

* END BITMAP CODE
**

PAGE 6-55

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.5 COMMAND

Definition:
Aliases:

Format:

Execute command file
C, CO, COM
COMMAND <filename>

The COMMAND command executes a procedure file from the
linker.

6.3.1.6 DEFINE

Defi nition:
Aliases:

Format:

Define symbol
0, DE, DEF
DEFINE <symbol>,[value]

The DEFINE command defines a symbol in the linker
dictionary. The symbol will be absolute unless preceded by
a decimal section number and colon.

6.3.1. 7 DISK

Defi nitian:
Aliases:

Format:

Load di sk image
01

DISK [dsk]

The DISK command loads the PODS disk image specified by
[dsk] into section O. The number of sectors loaded is the_
same as the disk size.

COMMAND LI NK2

DEFINE SYRAM,$9000

PAGE 6-56

,4(

\",,-/

1(' "
,#

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.8 DUMP

Definition:
Al iases:

Format:

Oump buffer memory
DU
DUMP {[adr1],[adr2]}

The DUMP command displays a hexadecimal and ASCII memory
dump from the link buffer to your console.

6.3.1.9 END

Definition:
Aliases:

Format:

Finish link & output results
E, EN
END {[address] or <symbol>}

The END command causes the linker to finally
linked object in the object type selected.

output the
The start

address is optionally specified by an address number or a
1 i nke r symbo 1.

6.3.1.10 EVEN

Definition:
Aliases:

Format:

Put section data on even word boundary
EV
EVEN {<section>,<mask>}

The EVEN command causes the linker to put the current
highest address and all subsequent section addresses on an
even word boundary.

Selective sections can be put on powers of two boundaries
by including a section parameter followed by a mask. The
mask is added to the highest loaded address and then the
address is masked with the 1's complement of the mask.

6.3.1.11 GROUP

Definition:
Aliases:

Format:

Group contiguous sections
G, GR
GROUP [gsec]{ .. ,[sec]}

The GROUP command groups together two or more sections as
if they were from the same section. The first section
[gsec] is the base section and other following sections are
changed to that section number.

DUMP $1000,$2000

END
END $1000
END .START

IN FILE1
EVEN

GROUP 0,1,2

PAGE 6-57

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.12 HELP

Definition:
Aliases:

Format:

List QLINK commands
H, HE
HELP

The HELP command outputs the linker commands and their
parameter formats to your console.

*HE
ADD{.W or L} [sec]{ .. ,[va1ue]}
ALIAS <symbo11>,<symbo12>
BASE [addr] ~

BITMAP <BEGIN or END>
COMMAND <filename>
DEFINE <symbo1>,[va1ue]
DUMP {[adr1],[adr2]}
END {[address] or <symbol>}
EVEN {<section>,<mask>}
GROUP [gsec]{ .. ,[sec]}
IGNORE [sec]{ .. ,[sec]}
INPUT <filename>
LIBRARY <filename>
MAP <options>{,<fi1ename>}
OBJECT {[sadr],[eadr]}

Add to section
Equate symbols
Set memory buffer base
Create relocation bitmap
Command file
Define symbol
Dump buffer memory
Finish link
Even module boundaries
Group contiguous sections
Ignore section data
Link file
Link 1 ibrary
Output link map
Output OB object

OFFSET [section],[addr] Set section offset PC
OUTPUT <filename> Link object output file
PARTIAL {<section list>{.XDEF}} Output partial link
QUIT Exit linker

Strike any key

RELINK <section>.<base>
RENAME <sym1>.<sym2>
RESTART

Relink to new base
Rename symbol
Reset linker

SECTION [section].[addr]
SRECORD {[sadr],[eadr]{,[adr]}}
SYFILE {[sadr],[eadr]}
UNDEFINED {<filename>}

Set section address
Output S-records
Output SY object
List unresolved symbols
Write memory image
Partial external define
Zero buffer

WRITE [dskl,[sec],[ad11,[ad21
XDEF <symbol>
ZERO

MAP options: A=Aliases
B=Memory base
D=Symbols
F=File 1 ist

G=Groups
I=Ignores

M=Multiply defined
O=Overflows
R=Referancas
S=Sections
U=Undefinad
V=Resolvad

HELP

PAGE 6-58

·C·~.··
.,

I, ._'

c

c

(\

('

c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.13 IGNORE

Defini tion:
Aliases:

Format:

Ignore section data
IG
IGNORE [sec]{ .. ,[sec]}

The IGNORE command tells the linker to define all symbols
in the ignored sections but not to store or load any object
from those sections.

6.3.1.14 INPUT

Definition:
Aliases:

Format:

Input file to linker
I, IN
INPUT <f il ename>

The INPUT command loads a POOS tagged object file into the
memory buffer. All symbols are defined and resolved if
possible. For each file input, a new entry in the file link
map is made.

6.3.1.15 LIBRARY

Definition:
Aliases:

Format:

Input link library
L, LI, LIB
LIBRARY <filename>

The LIBRARY command loads files from a library file
generated by the MLIB or MLIBGEN programs. A file is loaded
when it contains an unresolved XOEF entry. For each file
loaded, the library file is rewound and the process
repeated. The command terminates after it has made a pass
and no file was loaded.

IGNORE 1,2,3

INPUT FILE1 :OBJ

LIBRARY PASCAL:LIB

PAGE 6-59

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.16 MAP

Definition:
Aliases:

Format:

Output link map
M, MA
MAP <options>{,<filename>}

The MAP command outputs the current linker symbols,
definitions, addresses, and other information. The
<options> parameter selects the information to be displayed.
These options are defined as follows:

A = Aliases
B Base
D Definitions
F Files
G Groups
I Ignored sections
M = Multiply defined
o Resolving overflows
R References
S Sections
U Undefined references
V Resolved reference values

If no <option> is given, the default is 'FGOSU'. The 'ALL'
option will output all data.

6.3.1.17 OBJECT

Definition:
Aliases:

Format:

Output OB object
OB, OBJ
OBJECT {[sadrJ,[eadr]}

The OBJECT command sets the linker to output POOS tagged
object when the END command ;s executed. It optionally sets
the start [sadr] and end [eadr] addresses of the buffer that
will be output. These addresses are the actual QLINK
resolved addresses and NOT buffer or section offsets. The
last byte output will be from address [eadr]-1.

6.3.1.18 OFFSET

Definition:
Aliases:

Format:

Set section offset PC address
OF, OFF
OFFSET [section].[addr]

The OFFSET command sets a new section PC address.

MAP ALL
MAP UFRS

OBJECT $1000,$9000

OFFSET 0,$9000

PAGE 6-60

C'-,~' "

\

{

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.19 OUTPUT

Definition:
Aliases:

Format:

Select link output file
0, OU, OUT
OUTPUT <filename>

The OUTPUT command selects the output file for the linked
object.

6.3.1.20 PARTIAL

Definition:
Aliases:

Format:

Output partial link
p, PA, PAR
PARTIAL {<section list>{,XDEF}}

The PARTIAL command outputs all code from the specified
<section list> to the object file along with external
definitions and resolving information for unresolved
references. If the ',XDEF' parameter follows the section
list, then only the associated externally defined symbols
are output.

The format of the section list calls for individual
sections separated by a slash (/l andlor consecutive
sections reduced to the start and end section separated by a
minus sign (-).

See also the XOEF command, section 6.3.1.30.

6.3.1.21 QUIT

Definition: Exit linker
Aliases:

Fo rma t:
Q, QU
QUIT

The QUIT command exits from the linker back to PDOS.

OUTPUT #OBJECT

PARTIAL 0-2/6

PARTIAL 0, XDEF

QUIT

PAGE 6-61

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.22 RELINK

Definition:
Aliases:

Re1ink section addresses to new base
REL

Format: RELINK [section].[addr]

The RELINK command unreso1ves all resolving equations
involving a section [section] and then again resolves the
variables to the new base address [addr]. This allows the
moving of a section dynamically during the link process. It
is used mainly by the C compiler to locate the data section
at the end of the code section.

See also IGNORED. section 6.3.1.13.

6.3.1.23 RENAME

Definition:
Aliases:

Format:

Rename linker symbol
RE. REN
RENAME <symbo11>.<symbo12>

The RENAME command renames a linker symbol. The new symbol
name would apply for all subsequent inputs. The old symbol
is subsequently undefined.

6.3.1.24 RESTART

Definition:
Aliases:

Format:

Reset linker
R, RE, RES
RESTART

The RESTART command restarts
addresses. clears any grouping.
and closes all open files.

the linker. resets all
ignores. and section bases.

RELINK 2,Q$HO

RENAME .MAIN,PRGM1

RESTART

PAGE 6-62

c

(

(•... ~.
/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.25 SECTION

Definition:
Aliases:

Format:

Set section base address
S, SE, SEC
SECTION (section},[addr]

The SECTION command sets the absolute base [addr] for a
(section) .

6.3.1.26 SRECORD

Definition:
Aliases:

Output S-record object
SR, SREC

Format: SRECORD {[sadr],[eadr]{,[adr]}}

The SRECORD command selects the S-record format for output.
The object is output when the 'END' command is executed.
It optionally sets the start [sadr] and end [eadr] addresses
of the buffer that will be output. These addresses are the
actual QLINK resolved addresses and NOT buffer or section
offsets. The last byte output will be from address
[eadrJ-1.

6.3.1.27 SYFILE

Definition:
Aliases:

Format:

Output SY object
SY, SYF
SYFILE {[sadr],[eadr]}

The SYFILE command selects the PDOS system format for
output. The object should be position independent but QLINK
does not check this first. The object is output when the
'END' command is executed. It optionally sets the start
[sadr] and end [eadr] addresses of the buffer that will be
output. These addresses are the actual
addresses and NOT buffer or section offsets.
output will be from address [eadr]-1.

QUNK resol ved
The last byte

SECTION 0, $800

SRECORD $1000,$9000,$FOOOOO

SYFILE $1000,$9000

PAGE 6-63

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

6.3.1.28 UNDEFINED

Defi nition:
Aliases:

Format:

List unresolved symbols
U. UN. UNO
UNDEFINED {<filename>}

The UNDEFINED command outputs any unresolved references and
any undefined symbols to your console.

6.3.1.29 WRITE

Definition:
Aliases:

Format:

Write memory image to disk
W. WR
WRITE {[dsk).[sec].[adl].[ad2]}

The WRITE command uses the read/write primitives of PDOS to
output a memory image for the link buffer to a disk.

6.3.1.30 XOEF

Definition:
Aliases:

Format:

Define symbol external
X. XD
XDEF <symbol>

The XDEF command declares a linker symbol to be externally
defined. When the XDEF command is used in conjunction with
the PARTIAL command. only the specified symbols are written
to the object file. Without the XDEF command. PARTIAL saves
all external symbols in the output file.

XDEF also causes PARTIAL to output all symbols and code as
section zero.

6.3.1.31 ZERO

Defi nit ion:
Aliases:

Format:

Zero buffer
Z. ZE
ZERO

The ZERO command zeros the linker buffer and resets the
li nker.

UNDEFINED #UNDLIST

·WRITE 0.2368.$800.$9800
VERIFY (Y/N)?Y
·WRITE

Disk=O
Sector=2368

Star t addr=$800
End addr=$9800

VERIFY (Y/N)?Y

ZERO

PAGE 6-64

c

c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 6 ASSEMBLE AND LINK

(- 6.3.2 QLINK ERROR DEFINITIONS:

c

c

c
c

ERROR #501 = ILLEGAL COMMAND
ERROR #502 = ILLEGAL NUMBER
ERROR #503 = ILLEGAL SECTION SPECIFICATION
ERROR #504 = ILLEGAL SYMBOL
ERROR #505 • TOO MANY COMMAND FILES
ERROR #506 = PDOS CLOSE ERROR
ERROR #507 • PDOS OPEN ERROR
ERROR #508 = PDOS LOAD ERROR
ERROR #509 • 'OB' or 'SY' FILE REQUIRED
ERROR #510 • MEMORY SIZE EXCEEDED
ERROR #511 = ILLEGAL OBJECT TAG
ERROR #512 = INVALID ADDRESS RANGE
ERROR #513 = PDOS READ ERR
ERROR #514 • ILLEGAL OPTION
ERROR #515 • ARITHMETIC OVERFLOW
ERROR #516 = DIVISION BY ZERO
ERROR #517 = PDOS WRITE ERROR
ERROR #518 = ILLEGAL SECTION GROUPING
ERROR #519 = NESTING ERROR
ERROR #520 = FIELD OVERFLOW
ERROR #521 = SYMBOL NOT FOUND
ERROR #522 = SYMBOL ALREADY DEFINED
ERROR #523 • UNDEFINED SYMBOL
ERROR #524 = MEMORY OVERFLOW

PAGE 6-65

680xO PDOS 3.2 REFERENCE MANUAL

6.3.3 LINKER EXAMPLE

x>QLINK
PDOS 68k Quick Linker
ERII, Copyright 1983-86
*ZERO
*SECTION 0,0
*GROUP 0,1
*INPUT PMAIN:OBJ
ENTRY ADDRESS=OOOOOOOO
*INPUT T:POB
*LIBRARY LIB1:LIB
*LIBRARY LIB2:LIB

INPUT MPEND:OBJ
INPUT MPUNLNK:OBJ
INPUT MPERROR:OBJ
INPUT MPLINK:OBJ
INPUT MPRDLNF:OBJ
INPUT MPGETCH:OBJ
INPUT MPIOOK:OBJ
INPUT MPWRLNF:OBJ
INPUT MPPUTCH:OBJ
INPUT MPWRSTF:OBJ
INPUT MPFPUTL:OBJ

*MAP SFU

INPUT FILE MAP:
INDEX FILE NAME TYP IDNT

1 PMAIN:OBJ A M.AIN
2 T:POB P PTEMP:PSR
3 MPEND:OBJ A P.END
4 MPUNLNK:OBJ A U.NLNK
5 MPERROR:OBJ A P.ERROR
6 MPLINK:OBJ A L.INK
7 MPRDLNF:OBJ A R.DLNF
8 MPGETCH:OBJ A G.ETCH
9 MPIOOK:OBJ A LOOK
10 MPWRLNF:OBJ A W.RLNF
11 MPPUTCH:OBJ A P.UTCH
12 MPWRSTF:OBJ A W.RSTF
13 MPFPUTL:OBJ A F.PUTL

SECTION BASE LOWEST
0 00000000 00000000

R

UNRESOLVED EXTERNAL DEFINITIONS: NONE

UNRESOLVED EXTERNAL REFERENCES: NONE

*MAP ALL.#MAP
*SYFILE
*OUTPUT IT
*END
*QUIT
x>RC

CHAPTER 6 ASSEMBLE ANO LINK PAGE 6-66

V DATE TIME
0 16-Sep-83 14:15
0 17-0ct-83 10:02
0 16-Sap-83 15:39
0 16-Sep-83 14:28
0 21-Sep-83 11 :43
0 16-Se p-83 14: 14
0 16-Sap-8311:58
0 21-Sep-83 11 :58
0 16-Sep-83 14:13
0 16-Sep-83 14: 21
0 16-Se p-83 14: 16
0 16-Sep-83 14:22
0 16-Sep-83 14:22

HIGHEST
000005AO

Execute PDOS linker

Zero load area
Set Section 0 at address $00000000
Group Section 1 into Section 0
Input linking modules

Input libraries. Only modules
XREFed are loaded.
{Module names list as loaded}

Look at map options Sections,
Files, and Undefined

SECTION ADDRESSES
0/00000000 0000008B
0/0000008C 00000120
0/0000012E 00000181
0/00000182 00000187
0/00000188 000001E9
0lD00001EA 000001F7
0/D00001F8 00000233
0/00000234 00000323
0/00000324 0000034F
0/00000350 00000381
0/00000382 000003BF
0/000003CO 00000425
0/00000426 0000059F

Output all map options to file 'MAP'
Generate SY fne
Specify output file
Linker outputs now
Exit linker

c

(,

C

c'

c

('

()

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES

CHAPTER 7

PODS UTILITIES

This chapter describes the user and system-specific
utilities of POOS, along with the abort and virtual port
facilities. A POOS utility is an auxiliary program that
resides on the disk. It is invoked by specifying the name
of the utility along with any desired command line
parameters. If no command line parameters are given and the
utility requires a parameter, it will prompt for the
information it needs. PODS facility files are not user
programs, but files which are run as background tasks.
Refer to their appropriate sections for proper usage.

POOS utility programs are distributed on the UTILITY disk
of the distribution set in both executable and source file
format. The knowledgeable user can thus refer to the code
to gain additional understanding of how the utility works.
You may customize any of these utilities to suit your
individual needs; however, your modifications are not
supported by Eyring.

USER UTILITIES

7.1 MBACK - Oisk Backup 7-3
7.2 MCHATLE - Change Attributes/Leve1 7-7
7.3 MOCOMP - Oisk File Compare 7-8
7.4 MODMAP - Oisk Map 7-10
7.5 MDDUMP - Disk Oump 7-12
7.6 MOISKS - Disk Name List 7-14
7.7 MOLOOK - Disk Look 7-16
7.8 MONAME - Disk Name 7-17
7.9 MDSAVE - Recover POOS Oisk 7-18
7.10 MFDUMP - File Dump 7-20
7.11 MFFIND - Find File Across Disks ...•.................. 7-21
7.12 MFSAVE - Fi 1e Save 7-22
7.13 MINIT - Initialize POOS Disk 7-24
7.14 MINST - Memory Install 7-26
7.15 MLDIR - Di rectory List 7-28
7.16 MLEVEL - Level Directory List 7-30
7.17 MLIB - Library File Manager '" 7-31
7.18 MLIBGEN - Library Generator 7-36
7.19 MORDIR - Alphabetize PO OS Oirectory 7-37
7.20 MPATCH - Apply a Program Upgrade Patch 7-39
7.21 MSREC - Build S-Records•.......... 7-40
7.22 MSYFL - Build SY Object File : 7-42
7.23 MSYOB - SYfi1e to OBject 7-43
7.24 MTERM - Set Task Terminal Type 7-45
7.25 MTRANS - File Transfer 7-47
7.26 MUNDL - Undelete File 7-50

Continued on next page ...

PAGE 7-1

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

(TABLE OF CONTENTS cant.)

SYSTEM FACILITIES

7.27 MABORT - Task Aborter 7-52
7.28 WIN01 - Create Virtual Porting Task 7-55
7.29 WKILL - Disable Vi rtual Ports 7-57
7.30 WLOOK - View Virtual Port Parameters 7-58
7.31 WTERM - Set Terminal Type for Virtual Ports 7-59

SYSTEM-SPECIFIC UTILITIES

7.32 MMKBT - Make Disk Boot 7-60
7.33 MTIME - Set POOS/Battery Clock 7-62
7.34 xxFRMT - Disk Hardware Format 7-63
7.35 xxLOGO - Load and/or Go to a New System 7-66
7.36 xxPARK - Park Drives for Shipping 7-67

Other system-specific utilities are described in the
Installation and Systems Management guide for your system.

The following utilities are not covered in this chapter:

MASM - Assembler
QLINK - Quick Linker
MEOIT - Screen Editor
MEDITCON - Editor Configurator

Covered

Covered

PAGE 7-2 c

in.detail in chapter 6 - '~

(
\ "'--,

in detail in chapter 5

c

c

(

{

680xO PODS 3.2 REFERENCE MANUAL

7.1 MBACK - DISK BACKUP

Name: MBACK
Function: Back up or copy disk

Format: >MBACK

CHAPTER 7 PODS UTILITIES

>MBACK <source disk>,<dest. disk>,<# of sectors>,<Y>
>MBACK <source disk{/start sector}>,<dest disk{/start sector}>,<{# of sectors or F}>{,Y}

Restrictions:

NOTE: Upon receipt of the PODS package, the PDOS system
disk should be copied to another disk, the original stored
as a master, and the copy used for actual system operation.
To back up your disks using MBACK, consult the PODS
Installation and Systems Management guide for your
hardware system.

In the following discussion, "disk number" refers to the
PODS disk unit or device number. For example, disk numbers
0-1 usually refer to floppy drives, disk number 8 is
generally a RAM disk, and other disk numbers are typically
hard disk parititions. If 100 is added to the floppy disk
number, it means the unbiased disk rather than the logical
disk unit. A PDOS logical floppy disk usually skips track
0, leaving that space for system-specific boot information.
In the following examples, if the disk number is greater
than 100, MBACK will copy the floppy disk starting with
track O. Otherwise, it will copy the floppy starting with
track 1 (excluding the manufacturer's track).

The MBACK utility performs a sector~by-sector disk copy
using one or two disk drives. MBACK first asks for the
source disk number and the destination disk number. If only
one drive is in the system, then enter the same number for
both source and destination. The original and backup disks
are swapped in and out until the entire source disk is
copied. If two drives are in the system, then be sure to
put the original in the drive corresponding to the source
disk number.

The 'start sector' paremeter permits you to back up an
image of a large hard disk onto floppy-sized disks. You can
thus restore the hard disk image from the floppy disks.

Continued on next page ...

PAGE 7-3

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PO OS UTILITIES

(7.1 MBACK - DISK BACKUP continued)

Next, the program prompts for the number of sectors to be
copied. This number varies from system to system. For 5
1/4" double density, double sided 96 TPI floppies, the total
number of sectors is 2560 (or 2552 if using a Motorola disk
card). Since poas reserves track 0 for hardware-specific
information, only 2560-32 sectors are usable for a POOS data
disk. If there is a POOS boot on a floppy, only 2336
sectors are available for data storage. Thus, to back up a
5 1/4" floppy (let's assume drive 0), you need to know if
you are backing up the entire disk, including hardware
specific track 0 (use 2560 on disk 100), or just the PODS
portion of a disk including boot (use 2528 on disk D), just
the data without the boot (use 2336 on disk 0) or a data
disk with no boot (use 2528 on disk 0). Before MBACK
prompts for this information it reads the directory of the
source disk and calculates a default number of sectors.
Generally, this number is correct and you can simply type a
[CR] to use it.

MBACK then prints a "READY" prompt. If you have not
already done so, insert the original disk in the specified
source drive and, if using two drives, insert the target
disk in the destination drive. When you are ready, type
'y' .

MBACK reads and displays the name of the source disk disk
so that you can verify the transfer. (If you are backing up
the disk including track 0, the name displayed will not make
sense. This is normal.) When you enter a 'Y' to this last
question, the disk duplication begins. As many sectors as
possible are read into the task's memory from the source
disk and then written to the destination disk. As each
block is completed, the number of the last sector copied is
printed. Disk swapping prompts are output if only one drive
is used.

WARNING! MBACK should only be used to copy to a disk of
the same size as tQe original unless the image backup mode
is being used. If you should, for instance, copy a floppy
disk onto a large hard disk unit, the hard disk unit will
assume the directory and storage capacity of a floppy disk.
The best way to move files from floppy to hard disk is to
backup (using MBACK) to a floppy-sized hard disk unit and
then copy file by file from the floppy-sized hard disk unit
to the large hard disk unit. The MTRANS ut;lity or TF
monitor command are useful for file-by-file transfers.

Continued on next page ...

PAGE 7-4 o

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(, (7.1 MBACK - DISK BACKUP continued)

(

(

Examples:

Copy all tracks (including 0) of a 5 1/4" floppy disk using
only drive O. (When using track 0, the disk name may be
changed or destroyed.)

x>MBACK
6BK PDOS Disk Backup Utility

Source: (Disk# or Disk/Sector) = 100
Destination: (Disk# or Disk/Sector) = 100
Insert source disk in drive 100. Hit <CR>
Number of sectors (# or 'F') • 2560
Ready?Y
Backup ' .•.............. ' 7Y
Insert source disk in drive 100. Hit <CR> ..•.

Reading sector 0 .. 2483
Insert destination disk in drive 100. Hit <CR>

Writing sector 0 .. 2483
Insert source disk in drive 100. Hit <CR>

Reading sector 2496 .. 2559
Insert destination disk in drive 100. Hit <CR>

Writing sector 2496 .. 2559
SUCCESS! Di sk Name = '

Back PDOS disk 13 (a floppy image) onto floppy disk 0
letting MBACK calculate the size of the transfer. Specify
all necessary parameters on the command line.

x>MBACK 13, 0 , ,
68K PDOS Disk Backup Utility

Source: (Disk# or Disk/Sector) • 13
Destination: (Disk# or Disk/Sector) • 0
Number of sectors (# or 'F') = 2528
Ready?Y
Backup 'C COMPILER 1.0 .. '?Y

Reading sec to r O .• 2483
Writing sector O .. 2483
Readi ng sector 2496 .. 2527
Writing sector 2496 .. 2527

SUCCESS! Disk Name = C COMPILER 1.0 .. ,

Continued on next page ...

PAGE 7-5

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

(7.1 MBACK - DISK BACKUP continued)

Back POOS disk 2 (on Winchester) onto multiple floppy disks
(POOS disk 0).

x>MBACK 2,O,2500,Y
x>MBACK 2/2500,O,2500,Y
x>MBACK 2/2500,O,2S00,Y
... etc. until disk is transferred.

Restore PO OS disk 2 (on Winchester) from floppy disks (POOS
disk 0).

x>MBACK O,2,2S00,Y
x>MBACK O,2/2S00,2S00,Y
x>MBACK O,2/S000,2S00,Y
... etc. until disk is restored.

PAGE 7-6 o
c

c

(-

('

{~

C:

68DxD PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES PAGE 7-7

7.2 MCHATLE - CHANGE ATTRIBUTES/LEVEL

Name: MCHATLE
Function: Change attributes and levels of selected files

Format: >MCHATLE
>MCHATLE @:Q:@/<disk #>,{<attribute>},{<level I>}

Restrictions: Cannot use level 255.

Description:

The MCHATLE utility changes the attributes and/or the
directory level of a selected group of files to the
specified value. The file descriptor string is the same as
that used in MTRANS and MLOIR. An 'a' indicates a wild card
of all possible selections and a '*' is a single character
wild card.

The attribute parameter must either be one of the PODS
defined file types (AC, EX, BX, DB, SY, BN, DR, or TX), a
protection flag (* or **), a pound sign (#), or an at-sign
(@). If a POOS attribute is specified (file type and/or
protection flag), then all files matching the selection list
are given those attributes. If a 'I' is specified, the
files' contiguous flags are cleared. If an 'Q' is
specified, then the protection flags are cleared.

The level parameter, if present, must be a number from 0 to
254. All files matching the selection list are assigned to
the specified level. The parameters can either be passed to
MCHATLE in the command line or by prompts from the utility.

Examples:

x>MCHATLE @:SR:@,TX
68K Change File Attributes
File mask. @:SR:@

Type = TX
Level =

PNETS:SR;1 TX
PSPELL:SR:1 TX
MPOOSK:SR:1
MPODSB:SR;1 TX

x>MCHATLE
68K Change File Att ributes
Fi 1e mask = Q:SR;@

Type = TX
Level = 2

PNETS:SR;1 TX
PSPELL:SR;1 TX
MPODSK:SR;1 TX
MPODSB : SR ; 1 TX
x>

MPOOSK: SR; 1

PNETS:SR;2
PSPELL:SR;2
MPOOSK:SR;2
MPODSB:SR;2

TX

TX
TX
TX
TX

Set all files with an 'SR' extension to have
a file attribute of 'TX'.
Specify all options on the command line.

Set all files with an 'SR' extension to have
a file attribute of 'TX' and rename them to
level 2.
Run the program and set the options interactively.

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.3 MDCOMP - DISK FILE COMPARE

Name: MOCOMP
Function: Compare disk files

Forma t: >MOCOMP

PAGE 7-8

>MOCOMP <disk #1>,<disk #2>,<fi1e mask>,<outfi1e>{/<options>}

Restrictions: To compare driver files, you must first
change the file attributes. Restore the
'DR' attribute after the compare is made.

Description:

The MOCOMP utility compares multiple ASCII files from
different disk units according to a file mask. The
differences are noted in the output file along with a list
of all files not compared. This utility is useful in
documenting updates to source programs.

MOCOMP begins by building a directory list from each disk
unit. It then compares files whose names match in the two
lists. As many lines as possible are read from each file.
Lines are compared until a difference is found at which time
further searching looks for a match again. The utility
prints the differences to a list file, or to the screen if
no output file is specified.

Three parameters may be specified following the output
filename. These are line length, sync length, and maximum
difference block length. The line length parameter defines
the maximum number of characters in a "line" for purposes of
comparison. The default is 78 characters. The sync length
defines how many lines in a row have to match in the two
files before the data can be considered be considered
equivalent. The default is that three (3) lines have to
match for the two lines to be synchronized. The maximum
difference block length defines the size of the largest
difference to consider before aborting the comparison
because the two files are hopelessly different. The default
is 50 lines, meaning that if MOCOMP goes for 50 lines
without synchronizing the .. files, it will stop comparing
those two files.

Two blank lines follow after each difference block. After
comparing each pair of files, MOCOMP prints the number of
differences to the screen.

Continued on next page ...

68K POOS Disk File Compare Utility
First Disk # <disk #1>

Second Disk # <disk #2>
Directory Mask <file mask>

Options:

Output <out filename> {/<options>}

IL=XX Line length
IS=XX Sync Length
IB=XX Max difference block length

."f'"
I.
'\.j

c

(

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

(7.3 MDCOMP - DISK FILE COMPARE continued)

All compare utility parameters can be specified from the
conmand line. The file mask uses '@' for all match, '*' for
wild card character, and 'lxx' for file type specification.
Control parameters follow the output file name and are
delimited by a backslash.

Example:

x>MOCOMP 7,10,@:SR;@"
68K POOS Disk File Compare Utility 07/22/85

First Disk # = 7
Second Disk # = 10

Directory Mask @:SR;@
Output =

FILE 1: EXIT:SR;99/7 FILE 2: EXIT:SR;199/10
===================================== =====================================

****** BEGINNING OF FILE ****** ****** BEGINNING OF FILE ******

* EXIT:SR * THIS IS FOR STOPPING THE AC FILE AND
EXIT XRCN

EXIT XEXT
RTS
END EXIT

1 Difference.

RTS
END

FILE 1: ARGS:SR;21717 FILE 2: ARGS:SR;2/10
===================================== =====================================

converted to PODS * 19 Dc t 84 converted to PODS
*

19 Oct 84
15 Feb 85 changed mnemonics move *

AOOA.L D2,A3
MOVEA. L 4{A7) ,A2
AOOQ.L #1,03

2 Oi fferences.

ADOA.L 02.A3
MOVEA.L 4{A7),A2
AOOQ.L #1,03

FILE 1: OATE:SR;21717 FILE 2: DATE:SR;2/10
===================================== =====================================

o Differences.

Files Not Compared:

RESUME: SR; 9917

SUSP:SR;99/7
ERRMSG:SR;217/7
HELLO: SR; 21717

PAGE 7-9

•

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PO OS UTILITIES

7.4 MDDMAP - DISK MAP

Name: MDDMAP
Function: Disk diagnostic -- read files by links

Format: >MDDMAP

Restrictions: None.

Description:

The MDDMAP utility provides a comprehensive PDOS disk map
for disk diagnostics and file repair. File links are
displayed as well as damag.d s.ctors and spoiled bit maps.

The program displays the disk name, the number of directory
entries, date initialized, the number of PO OS sectors and
the disk density. A table is created from the disk sector
bit map which will be compared with the sectors allocated as
indicated by the file links.

Next, the files from the disk directory are proc.ssed. Th.
file directory entry is listed followed by the secto~ maps.
The starting s.ctor of a contiguous block of s.ctors is
listed followed by the ending s.ctor numb.r. Fi1. links are
followed until a null link is .ncountered. As each sector
is read, a new bit map is creat.d as w.ll as the old map
checked. If the s.ctor has alr.ady b.en allocated, th.n the
s.ctor is 1ist.d in brack.ts indicating a spoi1.d fi1. (mor.
than one file claiming that s.ctor.) If the sector is not
allocated in the old map, then it is indicat.d in a similar
fashion. Any fi1. I/O errors are also listed.

In this manner, the whole disk is proc.ssed and checked for
possible file contaminations. The information is useful in
physically locating where files begin and end according to
sector numbers.

Continued on next pag •...

PAGE 7-10 c

c
C··' . ,

{

C

(

(

('

680xO POOS 3.2 REFERENCE MANUAL

(7.4 MOOMAP - DISK MAP continued)

Example:

x>MOOMAP
68K POOS Oisk Diagnostic Mapper

Disk # = 20[CR]
Output File Name =~

*Disk Diagnostic Map

Disk Name = WOISK #20
Files = 78/160

Boot sector = 0
PO OS Sectors = 2368
Disk Density = 0

10 BOO OB
22-23

10 B01 OB
24-25

2 B01:SR TX
26-30

10 B02 OB
31-32

2 B02:SR TX
33-37

10 B03 OB
38-39

2 B03:SR TX
40-44

10 B04 OB
45-46

2 B04:SR TX
47-51

10 B05 OB
52-53

Total Spoiled Files = 0
Total Bad Sectors = 0
x>

2/2

2/2

5/5

212

5/5

212

5/5

212

515

212

CHAPTER 7 POOS UTILITIES PAGE 7 -11

Utility

16:37 25-Apr-84 16: 37 25-Apr-84

16:37 25-Apr-84 16: 37 25-Apr-84

16:37 25-Apr-84 16:37 25-Apr-84

16:37 25-Apr-84 16: 37 25-Apr-84

16:37 25-Apr-84 16:37 25-Apr-84

16:37 25-Apr-84 16:37 25-Apr-84

16:37 25-Apr-84 16: 37 25-Ap r-84

16:37 25-Apr-84 16: 37 25-Apr-84

16:37 25-Apr-84 16: 37 25-Apr-84

16:37 25-Apr-84 16:37 25-Apr-84

68DxD PODS 3.2 REFERENCE MANUAL

7.5 MDDUMP - DISK DUMP

Name: MDDUMP
Function: Dump and alter ·disk sector

Format: >MDDUMP

CHAPTER 7 PODS UTILITIES

Restrictions: Can re-write sectors external to PDOS.

Description:

The MDDUMP utility dumps sectors from a disk in hex and
ASCII format to the screen. A sector alter mode allows
reading and writing individual sectors. The program prompts
for disk unit, start sector, and end sector number. The
sector number is displayed in both hex and (decimal)
representation as well as the unit number at the beginning
of each sector display.

The next sector can immediately be selected with a
[CTRL-N], thus aborting the display of the whole sector.
Use a [CTRL-D] to revert back to the start sector prompt.
To temporarily stop the list, strike the space bar. Another
space will start the list again. An [ESC] will exit MDDUMP.

If the letter A is entered for the starting seotor prompt,
the sector alter mode is initiated. Alter mode asks for the
sector number to alter. A [CTRL-C] will return to the main
MDDUMP program, asking for start sector. After entering the
alter sector number, the seotor is read into the alter
buffer, the buffer is displayed, and the oursor is placed
over the first byte of the seotor. The same characters used
to move the oursor in MEDIT also work in alter mode: i.e.,
left=backspace (AH), right=formfeed (AL), up=vertioal tab
(AK), downQlinefeed (AJ). Change the buffer data by
entering the new values in hex. To write the seotor to the
disk, enter [CTRL-W]. MDDUMP then asks for the seotor
number to write the alter buffer to. A carriage return here
writes the buffer to the same seotor number th.t was read in
last. The answer to the verify prompt is 'V'. The utility
then prompts again for a sector number to read.

See also MFDUMP - FILE DUMP.

Continued on next page .•.

PAGE 7-12

AN select next sector
AD abort dump, prompt for new sector
[ESC] exit to PO OS monitor

Alter mode
AC to exit
AW to write out sector
[CR] get existing sector number
'V' verify write

Cursor control
AH backspace
AL move right
AJ move down
AK move up

c
" C·"·

(680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

4f (7.5 MDDUMP - DISK DUMP continued)

(~

(

{

c

Example:

x>MDDUMP
68K PDOS Disk Dump/Alter Utility

Disk # .. 0
To alter sector, enter "A"; to exit, enter "Z"
Start Sector = 0
End Sector = 0

Sector/Disk=$OOOO (0)/0
OOO-OOF 53 41 47 45 205044 4F 53 20 32 2E 36 64 00 00 FORCE PDOS 3.1 ..
010-01F 09 40 00 6D 88 00 08 00 00 80 09 40 A5 5A FF FF . a.m iiI%Z ..
020-02F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ·
030-D3F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ·
040-04F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OSO-OSF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
060-06F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
070-07F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
080-08F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
090-09F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ·
DA~-OAF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OBO-OBF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OCO-OCF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
ODO-ODF FF FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .p
OEO-OEF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OFO-OFF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

To alter sector, enter "A"; to exit, enter "Z"
Start Sector = 18
End Sector .. 18

Sector/Disk=$0012 (18)/0
OOO-OOF 00 13 00 00 FF FF FF FF 0000 OD DE 00 00 04 DC \
010-01F
020-02F
030-03F
040-04F
050-0SF
060-06F
070-07F
080-08F
090-09F
DA~-OAF

OBO-OBF
OCO-OCF
ODO-ODF
OEO-OEF
OFO-OFF

00 00 00 54 00 00 00 68 23 14 41 4D 41 5A 49 4E ... T ... h#.AMAZIN
47 20 SO 52 4F 47 5241 4D 00 00 00 1C 14 53 45 G PROGRAM SE
45 44 3D 00 DB 63 07 1A 63 SC 00 2E 07 08 5C OD ED= .. c .. c\ \.
17 4E 06 63 00 00 08 63 06 5C OD 17 4E 00 1C 14 .N.c ... c.\ .. N .. .
57 48 41 54 20 41 52 45 20 59 4F 55 52 20 57 49 WHAT ARE YOUR WI
4454 48 20 41 4E 44 20 4C 45 4E 47 54 48 00 OA DTH AND LENGTH ..
64 OA 65 00 23 14 SO 4C 45 41 53 45 20 57 41 49 d.e.#.PLEASE WAI
54 2E 2E 2E 2E 00 DB 00 10 64 5C 01 30 65 5C 01 T d\.Oe\.
30 18 66 OA 64 5C 01 30 65 5C 01 30 18 67 OA 64 0.f.d\.Oe\.0.9.d
65 32 17 6800000869 06 SC 00 07 08 6A 06 SC e2.h ... i.\ ... j.\
00 07 08 6B 06 60 64 32 5C 01 3017 40 00 08 6C ... k.'d2\.0.1i1 .. l
06 5C 01 07 08 6B 5C 01 1867 06 6C 07 08 6C 06 .\ ... k\ .. 9.l .. l.
6C SC 01 30 07 08 6D 06 6B 07 08 6E 06 SC 01 OOl\.O .. m.k .. n.\ ..
06 6F 06 5C 01 01 6407 06 70 06 5C 01 01 65 00 .o.\ .. d .. p.\ .. e.
08 6F 70 186606 SC 01 00 00 1f 7007 1F 6F 00 .op.f.\ p .. o.

To alter sector, enter "A"; to exit, enter "Z"
Start Sector =

PAGE 7-13

680xO PDOS 3.2 REFERENCE MANUAL

7.6 MDISKS - DISK NAME LIST

Name: MDISKS
Function: List available disks

Format: >MOISKS
>MDISKS {/}<listtype>

CHAPTER 7 PDOS UTILITIES

Restrictions: PDOS Winchester standard must be implemented.

Description:

The MDISKS utility gives a list of disks that are on-line
and their locations. One of three types of lists can be
selected by specifying the optional <listtype> parameter.
Legal parameters are 'LABEL', 'FILES', or 'BOOT'. The
<listtype> parameter can be preceded by a slash (I), in
which case only the first character is checked. For
example, to select the 'FILE' type of listing you can type
'MDISKS IFILE[CR]', 'MOISKS IF[CR]', or 'MDISKS F[CR]'. If
you type MOISKS without a parameter, it will default to the
LABEL parameter which provides a short list of disks
on-line.

x>MDISKS
PO OS 68000 Disk Name Lister
2 WINI #2 3 SKY WARR/CPU-20 4 Stride 400 3.0b 5 MVME130 POOS 3.1
6 MVME133 PDOS 3.1

10 FS TERST
7 F77 2.2a 8 SY$OSK 9 Force CPU-2 FS

12 7120 MPOOS20/81
16 ¥ME/10 3.0b

13 EMS CPU-2RT 3.0b 14 Mizr 9100 3.0b
15 Mizr 7100 3.0b 17 MVME117 3.0b 18 M¥ME 120 3.0b
x>

The FILES parameter displays disk file and space as well as
a bad sector count for each disk on-line.

x>MOISKS IFILES
POOS 68000 Oisk Name Lister
Oisk Labe 1 # of Files Sectors Free

Cur rlTotal Used/Alloc TotallCont
2 WINI #2 121411536 36798/39659 7521752
3 SKY WARR/CPU-20 13/64 2148/2148 2021202

19 FORCE CPU-4 3.0a 75/128 203212063 287/250
x>

Continued on next page ...

Bad # of POOS
Sectors Sectors

0 40623
0 2360

0 2368

PAGE 7-14 c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.6 MDISKS - DISK NAME LIST continued)

The BOOT option displays boot information on each disk.

x>MDISKS IBOOT
PDOS 68000 Disk Nama Lister
Disk Label

o »Disk error 116
1 »Disk error 116
2 WINI #2

3 SKY WARR/CPU-20

19 FORCE CPU-4 3.0a

x>

Boot
Sector

Load
Address

Boot
Size

SYID BIOS
Chars Date

bs=40623 la=$000800 sz=150 id=F2 03/07/86
"FORCE CPU-2(FS) BIOS: Clock=PI/l. 03/07/86"
bs=2360 la=$000800 sz=157 id-F2 07/10/86
"FORCE CPU-20/21 BIOS 07/10186"

bs=2368 la=$000800 sz=140 id=F4 12/06/85
"FORCE CPU-4 BIOS: Clock=PI/T. 12/06/85"

PAGE 7-15

bs=boot sector
la=load address

id=system ID
sz=boot size

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.7 MDLOOK - DISK LOOK

Name: MDLOOK
Function: Look for possible file beginnings

Format: >MDLOOK

Restrictions: None.

Description:

The MDLOOK utility scans a disk for possible first sectors
of PDOS files. A first sector would be possible if the
second word ;s null. This sector is the back link. If

found, a single line is displayed to your console as a hex
and ASCII dump. The [ESC] key returns you to the PDOS
monitor.

Note: It is worthwhile to have a line of header
information on the first line of your text files so that
they can be found with this utility.

This information could be used to recover a disk with the
MFSAVE util ity.

Example:

x>MDLOOK
68K POOS Disk Look Utility

Disk # = 0
Start Sector = 0
End Sector = 100

Sector 1 :0000 0000 0000 0000
Sector 16 :0000 0000 0000 0000
Sector 17 :0000 0000 0000 0000
Sector 18 :0013 0000 FFFF FFFF
Sector 37 :0000 0000 4D41 534D
Sector 38 :0027 0000 4530 3030
Sector 40 :0029 0000 2A09 4230
Sector 45 :002E 0000 4530 3030
Sector 47 :0030 0000 2A09 4230
Sector 52 :0035 0000 4530 3030
Sector 54 :0037 0000 2A09 4230
Sector 59 :003C 0000 4530 3030
Sector 61 :003E 0000 2A09 4230
Sector 66 :0043 0000 4530 3030
Sector 68 :0045 0000 2A09 4230
Sector 73 :004A 0000 4530 3030
Sector 75 :004C 0000 2A09 4230
Sector 80 :0051 0000 4530 3030
Sector 82 :0053 0000 2A09 4230
Sector 87 :0058 0000 4530 3030
Sector 89 :005A 0000 2A09 4230
Sector 97 :0062 0000 4530 3030
Sector 99 :0064 0000 2A09 4230
x>

••••••••••••••••••••••••••••••••••••• D

••••••••••••••••••••••••••••••••• 0 ••••••••••• •

................... T ... h#.AMAZING PROGRAM

.... MASM &1:SR,#OBJ/8.IF &0.RC.MSYFL,OBJ/8,#&1

.' .. EOOOOOO0765A08C004042C3C5000186A052E2DOO14

.) .. *.B01 :SR.03/26/84.************************

.... EOOOOOO0785A08C003842C3C5000186A052E2DOO14

.0 .. *.B02:SR.D3/26/84.************************

.5 .. EOOOOOO0785A08C003842C3C5000186A052E2D0014

.7 .. *.B03:SR.03/26/84.************************

.< .. EOOOOOO07E5A08C003A42C3C5000186A052E2D0014

.> .. *.B04:SR.03/26/84.************************

.C .. EOOOOOO07E5A08C003A42C3C5000186A052E2DOO14

.E .. *.B05:SR.03/26/84.************************

.J .. EOOOOOO0805A08C003C42C3C5000186A052E2DOO14

.L .. *.B06:SR.03/26/84.************************

.Q .. EOOOOOO0865A08C004042C3C5000186A052E2DOO14

.S .. *.B07:SR.03/26/84.************************

.X .. EOOOO010AA5A08C006442C3C5000186A052E2D0014

.Z .. *.B08:SR.03/26/84.************************

.b .. EOOOOOO0885A08C004242C3C5000186A052E2DOO14

.d .. *.B09:SR.03/26/84.************************

PAGE 7-16

(

r·.·

(

(',
/'

S80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.8 MDNAME - DISK NAME

Name: MDNAME
Function: Rename PDOS disks

Format: >MDNAME
>MDNAME <disk #>,<new name>

Restrictions: None.

Description:

The MDNAME utility renames PDOS disks by altering the
header sector (sector 0) of the disk. MDNAME prompts for
the disk number, reads the header sector of the desired
disk, and reports the old name. MDNAME then prompts for the
new name and writes out the header sector again with the new
name.

An alternate way to rename a disk with this utility is to
follow the MDNAME call with two parameters in the command
line. The first parameter is the disk number and the second
is the desired new disk name. MDNAME outputs the old name
and renames the disk with no other action. Notice that the
alternate method does not allow the use of commas in the new
name, since the command line interpreter uses the comma to
delimit parameters (blanks are okay). The new name consists
of only those characters preceding the comma.

Examples:

x>LS
Disk=PDOS DISK OLD/O Files=271128
Lev Name:ext Type Size Sect Date created

Di sk #=

Old Name=PDOS DISK OLD
New Name=

MONAME O,NEW NAME

Last update

MASM

x>MDNAME
SY C 88/88 DOSE 21:51 1S-Sep-8S 21:52 1S-Sep-8S

S8K PDOS Disk Name Utility
Disk # =0
Old Name=PDOS DISK OLD
New Name=PDOS DISK NEW

x>LS
Disk=PDOS DISK NEW/O Fi 1es=2711 28
Lev Name:ext Type Size Sect Date created Last update

MASM SY C 88/88 OOSE 21:51 1S-Sep-8S 21:52 1S-Sep-8S
x>MDNAME O,NEWER NAME
WAS PDOS DISK NEW
x>LS
Disk=NEWER NAME/O F il 85=271128
Lev Name:ext Type Size Sect Date created Last update

MASM SY C 88/88 OOSE 21:51 1S-Sep-8S 21:52 1S-Sep-8S
x>

PAGE 7-17

680xO PDaS 3.2 REFERENCE MANUAL CHAPTER 7 poas UTILITIES

7.9 MDSAVE - RECOVER PDOS DISK

Name: MDSAVE
Function: Recover poas disk

Format: >MDSAVE

Restrictions: None.

Description:

The MDSAVE utility is used to recover a disk that might
have directory problems. The disk is scanned for possible
start sectors of PDaS files. This is indicated by a back
link (second word) beginning null.

When the start of a file is found, the sectors are read
using the forward links until a null forward link is found.
As the sectors are read, they are transferred to the
destination disk.

The name mask dictates what the new files will be called.
The mask must have asterisks (*) which are replaced by a
number that starts at a for the first file. Each subsequent
file gets a new name.

After the process, these files can be examined to determine
if they really are PDaS files.

See also MFSAVE - FILE SAVE

Example:

x>MDSAVE
68K PO as Disk File Recovery Utility

Source Disk = a
Start,End Sectors = 0,80
Destination Disk = 3

File Name Mask = M***:SR
File=#M 0:SR/3 Sector=18
Fil e=#M 1:SR/3 Sector=37
File=#M 2:SR/3 Sector=38
File=#M 3:SR/3 Sector=40
File=#M 4:SR/3 Sector=45
File=#M 5:SR/3 Sector=47
Fi 1e=#M 6:SR/3 Sector=52
Fi1e=#M 7:SR/3 Sector=54
File=#M 8:SR/3 Sector=59
Fi 1e=#M 9:SR/3 Sector=61
Fi 1e=#M 10:SR/3 Sector=66

Continued on next page ...

PAGE 7-18 C:

.{ ... " ,'"

\ .-/,1

c
c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES PAGE 7-19

(7.9 MOSAVE - RECOVER PODS DISK continued)

File=#M 11 :SR/3 Sector=68
File=#M 12:SR/3 Sector=73
File=#M 13:SR/3 Sector=75
File=#M 14: SR/3 Sector=80
x>LS 13

Disk=WDISK #3/3 Files=20/1024
Lev Name:ext Type Size Sect Date created Last update

M O:SR 19/19 0085 11:34 11-May-86 11:34 11-May-86
M 1:SR 1/1 0098 11:34 11-May-86 11:34 11-May-86
M 2:SR 2/2 0099 11:34 11-May-86 11:34 11-May-86
M 3:SR 5/5 o09B 11:34 11-May-86 11:34 11-May-86
M 4:SR 212 oOAO 11:34 11-May-86 11:34 11-May-86

(M 5:SR 5/5 00A2 11:34 11-May-86 11:34 11-May-86
M 6:SR 212 00A7 11:34 11-May-88 11:34 11-May-86
M 7:SR 5/5 00A9 11:34 11-May-86 11:34 11-May-86
M 8:SR 212 OOAE 11:34 11-May-86 11:34 11-May-86
M 9:SR 5/5 OOBO 11:34 11-May-86 11:34 11-May-86
M 10:SR 212 00B5 11:34 11-May-86 11:34 11-May-86
M 11:SR 5/5 00B7 11:34 11-May-86 11:34 11-May-86
M 12:SR 2/2 OOBC 11:34 11-May-86 11:34 11-May-86
M 13:SR 5/5 00 BE 11:34 11-May-86 11:34 11-May-86
M 14:SR 2/2 00C3 11:34 11-May-86 11:34 11-May-86

x>

(

c

6S0xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PO OS UTILITIES

7.10 MFDUMP - FILE DUMP

Name: MFDUMP
Function: Output logical dump of PDOS files

Format: >MFDUMP
>MFDUMP <infi1e>{,<outfi1e>}{,<increment>}

Restrictions: None.

Description:

The MFOUMP utility outputs a hex and ASCII dump of a PDOS
file. If no output file is specified, the console terminal
is used. The prompt, "INCREMENT," specifies how many bytes
are to be listed per line. The default is lS. With
132-co1umn output, the increment could be set to 32 to save
pape r .

The format of MFDUMP is the file displacement, two hex
characters per byte, and the ASCII characters. If an ASCII
character is unprintable, then a period is used. The last
line will have Fs after the end-of-fi1e is reached.

An alternate method of invoking the MFDUMP utility is to
pass the parameters in the command line. Follow the MFDUMP
call with the input file name and, optionally, the name of
the output file and the increment. The dump proceeds
without any further inputs.

See also MDDUMP - DISK DUMP.

Example:

x>MFDUMP[CR]
SSK PO OS File Dump Utility

File = PSPELL:DrC[CR]
Output = 1£Ill
Increment = 1£Ill

MFDUMP DROPEX,LIST/S,32
MFOUMP MFOUMP

OOOO-OOOF 0000 1505 0000 0000 0000 0001 0000 0048 K
0010-001F 0000 0135 0000 01CS 0000 01C9 0000 01Fl
0020-002F 0000 0211 0000 021S 0000 0221 0000 0222
0030-003F 0000 0223 8000 02F9 8000 0330 0000 0385
0040-004F 0000 0386 0000 0448 0000 044C 8000 0484
OOSO-OOSF 8000 0570 0000 OS8A 0000 OSF3 0000 OSOD
OOSO-OOSF 0000 OS24 0000 OS2A 0000 OS28 0000 OS2C
0070-007F 0000 OSCS 0000 OSC7 0000 OSC8 8000 OSC9
0080-008F 0000 0785 0000 078S 0000 0787 0000 0788

x>

••• 5 ... H ... I. .. q

........... ! ...

.. . # ... y .•• = ... 5

... S ... K ... L. .. 4

... p ... : ... s

... $... * ... + ... ,

... F ... G ... H ... r

PAGE 7-20 'C'·· 'I .. !

,. ,

c·
'.'.\ ...

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

c

(

7.11 MFFIND - FIND FILE ACROSS DISKS

Name: MFFIND
Function: Find files on mUltiple disks

Format: >MFFIND
>MFFIND <mask>{.<outfile>}

Restrictions: None.

Description:

The MFFIND utility lets you search for files across
multiple disk units.

Mask format: <file>{/<disks>}{/F<date>}{/D<date>}

Where: <file> = TEMP:E**;@
<disks> = 0-5/24
<date> = MN/DY/YR

See also:

Monitor command LS
MLDIR - DIRECTORY LIST
MLEVEL - LEVEL DIRECTORY LIST
MORDIR - ALPHABETIZE PDOS DIRECTORY

,(Example:

(

x>MFFIND
68K PDOS Find File Utility
Mask = CHAP@:@
Output = [CR]

**** Disk Name = WINI 2/2
LEV NAME:EXT TYPE

21 CHAPOl TX C
21 CHAP02 C

**** Disk Name = WINI 6/6
LEV NAME:EXT TYPE

21 CHAPOl TX C
21 CHAP02 C

Disk Name = TEMP/ll
LEV NAME: EXT TYPE

CHAP13 TX

SIZE DATE CREATED

211/211 12: 10 20-Aug-84
269/269 12: 11 20-Aug-84

SIZE DATE CREATED

211/211 12: 1 0 20-Aug-84
269/269 12: 11 20-Aug-84

SIZE DATE CREATED

248/248 12:2il 20-Aug-84

Files=16211024
LAST UPDATE

12:29 08-May-85
12: 11 20-Aug-84

Files=84/1024
LAST UPDATE

12: 29 08-May-85
12: 11 20-Aug-8A

F il es=l 0/128
LAST UPDATE

09:02 23-Jul-85

PAGE 7-21

680xO PDOS 3.2 REFERENCE MANUAL

7.12 MFSAVE - FILE SAVE

Name: MFSAVE
Function: Restore files from links

Format: >MFSAVE

Restrictions: None.

Description:

CHAPTER 7 PDOS UTILITIES

The MFSAVE utility can be used to recover a file from a
disk with a bad directory. MFSAVE uses the forward/backward
PDOS links to reconstruct a file.

The first prompt, 'Source <Disk #,Start Sector> = asks
for the disk where the recoverable file resides, and its
starting sector number. Separate the two numbers with a
comma. The starting sector number may be entered in decimal
if you know it, or you may type it in hexadecimal by
preceding the number with a dollar sign. The starting
sector number may have been obtained by a previous directory
listing (>LS) or MDDMAP when the directory was good, or by
MDLOOK if the directory has gone bad. If you don't have the
starting sector number, any sector within the file will do,
since MFSAVE can scan backwards to the beginning of the file
if the sector given starts in the middle of the file.

The second prompt, "Output <Filename> = asks for where
the new file is to be stored. Generally, it is a good idea
to store the new file on a different disk unit than the old
file to avoid corrupting the data before it is recovered.

If the 'Start Sector' has a valid backward link, then
MFSAVE asks if an attempt should be made to find the
beginning of the file. If you type 'Y', then the backward
links are followed until a null link is found. If you type
'N', then MFSAVE begins with the specified sector. One
sector at a time is read from the source disk and written to
the new file. As each sector is transferred, the "LINK"
value is printed out.

The final link should be a O. MFSAVE cannot determine how
many bytes are valid in the last sector. As a reSUlt, some
unexpected characters may be added at the end of the file.
You must clean up the text with the editor.

MFSAVE is exited with an (ESC].

See also MDSAVE - RECOVER PDOS DISK.

Continued on next page ...

PAGE 7-22 c

Get start sector

Save on different disk

(

c

(

(

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.12 MFSAVE - FILE SAVE continued)

Exemple:

x>LS HLPTX;0/2
Di sk .. WINI #212

Lev Name:ext
0 HLPTX

x>SF HLPTX/2
HELP

Type Size
TX 46/46

Files=683/1024
Sect Date created Last
OOAS 14:43 23-Apr-84 11: 27

For further help, enter 'HE' followed by one of the following:

MONITOR PDOS monitor commands
FILES List di rectory
BP Baud port
CT Create task
FS Fi le slots

x>MFSAVE
68K PDOS File Recovery Utility

Source <Disk #,Start Sector> = 2,$AS
Output <Filename> • ~
Link Forward 170
Link Forward .. 171

Link Forward .. 22712
Link Forward 22713
Link Forward = 0

x>LS ;@/8

& file types

Files=1I32

The help file is located on dhk 2,
starting at sector $00A9.

update
05-Apr-85

This is what the first part of
the file looks like.

Now, suppose for some reason you couldn't
get the file by conventional methods.
Using MFSAVE you can recover the
file to a scratch disk.

If you had specified a sector address
in the middle of the file, MFSAVE
would have asked if it should go back and
pick up the rest, as well as go on.

Now, the 'destroyed' file is
recovered and safe in TEST/8. Disk=SY$DSK/8

Lev Name:ext Type
C

Size
46/46

Sect Date created Last update
TEST

x>SF TEST/8
HELP

0005 13:49 23-Aug-85 13:49 23-Aug-85

For further help, enter 'HE' followed by one of the following:

MONITOR
FILES
BP
CT
FS

PDOS monitor commands
List directory & file types
Baud port
Cree te task
File slots

You still will need to edit the file
and get rid of any garbage at the end
of the file, since MFSAVE does not know
where the real end of file was.

PAGE 7-23

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.13 MINIT - INITIALIZE PDOS DISK

Name: MINIT
Function: Initialize disks for PDOS file storage

Format: >MINIT

Restrictions: Destroys all data on the disk.

Description:

Once a disk has been formatted, it must be initialized with
a header sector, a sector bit map. and a file directory.
Unlike the format utilities, MINIT is independent of the
disk controller.

MINIT verifies that all specified
writing a null sector to each
essentially cleared of data.

The parameters for MINIT are:

1) disk number {fQ}.

2) number of sides.
3) media density,

sectors are usable by
one. Hence. the disk is

4) maximum number of directory entries or files,
5) total number of sectors available on the disk.
6) and a 16-character disk name.

Most default to system standard values. The number of PDOS
sectors can be set smaller than the actual total available
thus allowing room for user-defined storage. The maximum
number of sectors for anyone disk is 2A16 - 224 or 65312.
A [CTRL-C] aborts the initialization process and returns to
the PDOS monitor.

First, a sector allocation bit map image is constructed in
memory. with all the sectors allocated. Each sector is then
written to, and if an error is not returned, that sector is
deallocated, or set as 'FREE', in the sector allocation bit
map. Errors are reported to the console and those sectors
remain allocated. After all sector numbers up to, but not
including the number of POOS Sectors, then the header sector
and other bit ma~ sectors are written to the disk. If no
errors occur, then the 'SUCCESS!!' message is printed to the
console.

If a '/Q' follows the disk number, MINIT only writes every
32nd sector, instead of every sector. (Hence, it executes
much faster.)

Continued on next page ...

Ranges from 0 to 255.
Either or 2.
Either S or D.

-- Multiple of 8.
-- {"MAX". "BOOT" .#}

-- You name it!

PAGE 7-24 c'
,(.... ~~."
I~

.C

c

(

c

{
('

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.13 MINIT - INITIALIZE PDOS DISK continued)

Total Number of PDOS Sectors (on a 5 1/4 floppy disk)

2528 if the disk will be used only for data.
2336 if the disk has a bootstrap on it.

Total Number of PDOS Sectors (on a hard disk)

Depends on the system configuration. Run xxFRMT
according to the directions in the Installation
and Systems Management guide for your hardware.
Select the 'W' option from the first menu, and
'Disp/A1t PDOS partitions' from the second. The
numbers in the rightmost column tell the number
of sectors with and without a boot. (To exit
xxFRMT ent.r [ESC] to all queries except the
'Update Param RAM' to which you should answer
'N' .)

If you enter 'MAX' for the sector size. MINIT
will determine the maximum number of sectors for
a data-only disk and allow you to verify the
number. If you enter 'BOOT', MINIT will deter
mine the maximum number af sectors for a boot
disk.

Examples:

x>MINIT
6BK PDOS Disk Initialize Utility

Disk # = 17
Sides = 2
Density = Q
Maximum Directory Size = ~

Total Number of PDOS Sectors (MAX/BOOT/#) = MAX
Total Number of PDOS Sectors (MAX/BOOT/#) = 252B
Disk Name = SCRATCH DISK

INIT: Disk #17
Double Sided
Double Density
128 Files
2568 Sectors

DESTROY DISK NAMED 'WORK'? Y
Writing sector 0 ... 2496
INITIALIZATION Successful!
x>

PAGE 7-25

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PO as UTILITIES

7.14 MINST - MEMORY INSTALL

Name: MINST
Function: Make POOS aware of additional memory

Format: >MINST
>MINST <low address>,<high address>

Restrictions: Should only be used by system manager, since
it is possible to corrupt RAM disks and crash
other tasks.

Description:

When POOS boots, it looks for memory in certain addresses.
These locations can be modified by re-bui1ding POOS, but
sometimes it is convenient to just plug in additional memory
without re-assemb1ing and so forth. If the new memory is
not contiguous with the old, PDOS will not see it and the
memory cannot be used in the normal fashion. MINST provides
a way around this problem.

MINST is also a quick way to recover memory lost with the
Free Memory monitor command (>FM -nn). "FM -lOa" tells POOS
to deallocate lOOK of memory from the top of your task area.
It is a convenient instruction for setting up a RAM disk,
but occasionally you may want to recover the memory for
tasking again. You can always re-boot, but MINST provides a
way to do it with fewer repercussions.

You may invoke MINST with no parameters, in which case it
will scan the memory from address $180000 to $800000 for
RAM. It may take a while, so if you know the actual address
of the memory you want to reclaim, or if you went restrict
MINST to a particular area, specify the starting and ending
addresses on the command line. MINST does not prompt
interactively for missing commands. The addresses may be
given in decimal, or in hex, whichever is more convenient.
Specify hex by preceding the number with a dollar sign ($).

Before MINST actually does anything, it displays the
starting and ending address it has and asks, "Should I start
looking?" to allow you to check for mistakes. If you enter
"Y" it will begin searching the address space for RAM. It

scans the address space given and if it finds memory, it
adds it to the memory allocation bit map. It reports the
amount of memory actually found in "pages" where a page is
2048 bytes -- the amount of memory represented by one bit in
the memory allocation bit map.

Continued on next page ..•

PAGE 7-26 0", "

c
c

{

(

c

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.14 MINST - MEMORY INSTALL continued)

This free memory is then available for use by PDOS and can
be allocated through XGUM calls, XCTS calls, and with the
Create Task monitor command (>CT). If the memory is
adjacent to the end of current task, that task may extend
itself into the newly allocated memory with the Get Memory
monitor command (>GM). Just make sure that the memory MINST
finds really IS free, and not occupied by any active tasks
or RAM disks.

One final note: Some memory cards require additional
initialization in order to clear any parity errors that they
might have at startup. MINST does not perform any
hardware-specific work, and cannot reset a memory board if
it has flagged an error. In such a case, refer to the
specific hardware manual for the board -- it may be
necessary to write additional code of your own to properly
initialize the memory for use.

Example:

x>MINST $100000,$200000
Start address = $100000

End address = $200000
Should I start looking?!

Found RAM block starting at $100000
512 pages added.
x>

Verify search range

PAGE 7-27

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PO OS UTILITIES

7.15 MLDIR - DIRECTORY LIST

Name: MLDIR
Function: List selected directories with wild cards

Format: >MLDIR
>MLDIR {N}<file name mask>.<outfile>

Restrictions: None.

Description:

The MLDIR utility lists selected files from the disk
directory. If the program is invoked without parameters. it
prompts for the file name mask and the output file name;
otherwise it uses the command line parameters.

MLDIR performs essentially the same function as the List
Directory monitor command (>LS) with the following
di fferences:

1. If the file name mask is preceded by a pound sign
(N). the list of file names is abbreviated to
just name and size.

2. MLDIR prints a summary at the end of the listing
to tell you the total number of files displayed
and their cumulative size.

3. MLDIR allows you to specify a "From" and/or "To"
date by appending dates in the form "/Fmm/dd/yy"
and/or "/Tmm/dd/yy" to the end of the file speci
fication. This feature lets you look at just
those files with modification dates in a certain
range.

4. The source code to MLDIR is provided to the user.
So. you can customize this program for your needs.

With the exception of the optional pound sign (N) at the
beginning and the optional "From" and "To" date fields at
the end. the file specification mask is the same as that
used elsewhere in PDOS utilities. Either a multiple
character wild-card (Q) or a single-character wild-card (*)

may be used in either the filename or extension fields.
Unless specified. the level automatically defaults to all
levels. The disk is the current disk. unless specified.

Examples:

Find all files with a ":C" extension on disk 12 with modification
dates in the range From 1-Jun-85 To 1~Jul-85. Create the list in
short format and output it to LIST/S.

>MlDIR NQ:C/12/F6/1/85/T7/1/85.lIST/6

Continued on next page ...

PAGE 7-28 c

c

«

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.15 MLDIR - DIRECTORY LIST continued)

>SF LISTl6

Disk Name C 1.2B/12
LEV NAME:EXT TYPE

LOCATE: C; 12 , 17
FOIFF:C;152,28
GREP:C;152,52
HANOI:C;152,11
SORTC:C;152,34
WC:C;152,10

SIZE DATE CREATED
Files=63/64
LAST UPDATE

Total for Files Retrieved: Files=6, Used/Alloc=152/152

Run MLDIR without parameters. Request a short-form list of all
files with ":C" extension in level 12 on disk 12. Let the list
come to the console.

>MLOIR
68K PDOS List Directory Utility

Mask = #@:C;12/12
Output =
Disk Name = C 1.2B/12

LEV NAME:EXT TYPE

CC:C;12,29
CLINK:C;12,22
LOCATE:C;12,17
ROMLINK:C;12,22
TESTXLIB:C;12,91

SIZE DATE CREATED
Files=63/64
LAST UPDATE

Total for Files Retrieved: Files=5, Used/Alloc=181/181

Get a long form list of all the files in level 12, disk 12 with ":C"
extensions. Let the list come to the console.

>MLDIR @:C;12/12"
Disk Name = C 1.2B/12

LEV NAME:EXT TYPE

12 CC:C TX C
12 CLINK:C TX C
12 LOCATE:C TX C
12 ROMLINK :C TX C
12 TESTXLIB:C TX C

SIZE

29/29
22/22
17/17

22/22
91/91

DATE CREATED

13:17 22-May-85
16:08 20-May-85
13:05 24-Jun-85
13: 17 10-Jul-85
09:21 21-Jun-85

Fil es=63/64

LAST UPDATE

14:32 08-Jul-85
14:38 08-Jul-85
13:26 24-Jun-85
13: 17 10-Jul-85
13:33 08-Jul-85

Total for Fil es Retrieved: Fil es=5, Used/Alloc=181/181

See al so:

List Directory monitor command (>LS)
MLDIR - DIRECTORY LIST
MLEVEL - LEVEL DIRECTORY LIST
MFFIND - FIND FILE ACROSS DISKS
MORDIR - ALPHABETIZE PDOS DIRECTORY

PAGE 7-29

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.16 MLEVEL - LEVEL DIRECTORY LIST

Name: MLEVEL
Function: Give a short listing of directories sorted by level

Format: >MLEVEL
>MLEVEL <disk #>{,<outfile>}

Restrictions: None.

Description:

The MLEVEL utility produces a short listing of a disk
directory sorted by levels, and outputs it either to the
console or to a file. The disk number and the optional
output file can be passed to MLEVEL in the command line.
Otherwise, the utility prompts you for the disk number and
the output file name (a carriage-return directs the output
to the console).

Examples:

x>MLEVEL[CR]
68K PDOS List Directory by Level Utility

Disk # = ~

Output = ~
Disk name = WORK DISK #2D/0[CR]
Files = 78/160~
Leve 1 Fil es

o BOOT ,MASM,MEDIT ,NEW.SDOS1000, SMAP10DO

BENCH:TX,BUG,DO,D01 ,DOB,JUNK,PLIST1,PNETR.PNETS,PROJECT,PSPELL
PSPELL:DIC,SCHEDULE,SNOW,SPRINT2,SURVEY,TEMP,WARD73D

2 B01 :SR,B02:SR,B03:SR.B04:SR,B05:SR.B06:SR,B07:SR,B08:SR,B09:SR
B10:SR.BDV:SR,MPDOSB:SR.MPDOSK:SR,MPDOSL:SR,MPNETR:SR,MPNETS:SR
MROB:SR,MROBX:SR,PNETR:SR,PNETS:SR,PSPELL:SR,TASK1 :SR,TASK2:SR
TASK3:SR,TASK4:SR

10 BOO,B01,B02,B03,B04,B05,B06,B07,B08,B09,B10

18 MBROB,MOVE,MOVEX,MROBX,PDEMO,RDEMO

50 TASK1,TASK2.TASK3,TASK4

73 CAL:M84,ELECTRIC:MB,MBASE,MDATA1.MDATA2,MERIT,SCOUTS,SPRINT
x>

See also:

List Levels monitor command (>LL)
List Directory monitor command (>LS)
MLDIR - DIRECTORY LIST
MFFIND - FIND FILE ACROSS DISKS
MORDIR - ALPHABETIZE PDOS DIRECTORY

PAGE 7-30 '{-.'" I, "

"
(-~

~.

'''..,.''--_/'

. '

c·
···"·

f

t

(

(

c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.17 MLIB - LIBRARY FILE MANAGER

Name: MLIB
Function: Manage object modules within library files

Format: >MLIB {fi1ename}{,#sect}

Restrictions: Uses large temporary disk file called MLI8:TMP.

Description:

MLIB is a complete library file manager which facilitates
the creation of new QLINK library files, just like MLIBGEN.
In addition, MLIB handles the merging of library files,
along with adding, deleting and replacing of object modules
within a library file. MLIB can list the names and XDEF
labels of the object modules in a library, either to the
screen or to a file. Finally, MLIB allows you to extract
modules from a library to a POOS object file.

MLIB is invoked with two optional parameters, {filename}
and {#sect}. {filename} is the name of a new or existing
library file that you want to work on. {#sect} is the size
of the temporary file that MLIB needs to define, namely
MLIB:TMP. The default size is either 100 sectors or the
size of the input library file, whichever is larger. The
label header portion of the library is kept in memory while
the object code portion of the library is written to the
MLIB:TMP file. If MLIB:TMP is defined too small for your
library, the library setup will fail on PDOS error 56.

If you don't specify a library file name, MLIB prompts you
for an input file. To create a library from scratch, just
enter [CR), for no input file. After defining the temporary
file and processing the input library file, MLIB enters the
command menu.

The command line entry is similar to other PDOS utilities,
where there is a command character or word, a blank, and the
parameters separated by commas. MLIB accepts either the
entire command word, the first character, or the first four
characters of the command. If you don't specify required
parameters, MLIB will prompt you for them one at a time.
After manipulating the library file you must write out the
changed file using the OUT command, or the session will be
lost. If you try to QUIT before writing OUT the last
changes, MLIB warns you and requests verification. Enter a
carriage return to see the help message describing the MLIB
commands and syntax.

Continued on next page ...

Calling sequence:
MLIB {fi1ename}{.#sect}

PAGE 7-31

where filename is new or
existing library

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PO OS UTILITIES PAGE 7-32

(7.17 MLIB - LIBRARY FILE MANAGER continued)

The commands of MLIB are described below:

L,LIST {outfile} Short list of files in library {to file}

The LIST command prints the original file names of the
object modules in the library, in the actual order they are
stored. Just the names are printed, with no 10 information
or dates. The names are listed in columns and the list can
be paused for viewing by hitting any key. To direct the
file list to a printer or file, enter 'TTA' or <filename> as
the {outfile} parameter.

Commands:
L,LIST {outfile}

Short list of files in library {to file}
X,XDEF {outfi1e}

List of all XDEF labels in library {to file}
A,ADD file1

Add file1 to library at end
D,DELETE file

Delete file from library
R,REPLACE file1,file2

X,XDEF {outfile} List of all XDEF labels in library {to file} Replace file1 with disk file2

The XDEF command prints the original file name for each
object module in the library as well as any IDNT
information in the file, followed by a condensed list of all
of the XDEF external labels. The labels are listed as a
decimal section number and colon (if any), label name (up to
nine characters), and are separated by commas. The list can
be paused for viewing by hitting a key. To direct the file
list to a printer or file, just enter 'TTA' or <filename> as
the {outfile} parameter.

A ,ADD fil e1 Add file1 to library at end

The ADD command processes an existing object file from disk
onto the end of the working library. MLIB reports if there
are no XDEF labels in the ADD file and ignores the ADD
command. ADD does not check to see if there is another
module with the same name already in the library, so be
careful. A successful ADD sets the altered flag for QUIT.

D,DELETE file Delete file from library

The DELETE command removes the XDEF labels from the working
library and deletes the object code of the module from the
temporary file. MLIB alerts you if the module requested is
not in the library. A successful DELETE sets the altered
flag for QUIT.

R,REPLACE fi1e1.fi1e2 Replace fi1e1 with disk file2

The REPLACE command looks for both the module {file1} in
the library and the disk file {file2} on the disk. If MLIB
finds both, the the original module is deleted and the new
object file is added to the end of the working library file.
If one or both are not found, then the REPLACE command is

ignored. This command differs from a DELETE and ADD
sequence because BOTH file names are checked first before
the library is altered. A successful REPLACE sets the
altered flag for QUIT.

Continued on next page.

C, COPY file 1 , file 2
Write object from file1 to disk file2

M,MERGE library
Add modules and labels from library

O,OUT {outfile}
Build and write out altered library file

Q,QUIT

Exit without writing

c
.. '(.' ... , '~~.
'~

\",,- .

c

(
/

(-~

C

6BOxO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.17 MLIB - LIBRARY FILE MANAGER continued)

C,COPY file' ,file2 Write object from file' to disk file2

The COPY command writes out a module from the working
library to a disk object file. This extraction process is
the complement of the build library process. MLIB tells you
if either the library module name or disk file name cannot
be found.

M,MERGE library Add modules and labels from library

The MERGE command adds all the object code and labels from
another library file into the working library. The object
is added to the end of the current library. A successful
MERGE sets the altered flag for QUIT.

O,OUT {outfile} Build and write out altered library file

The OUT command builds the label header portion (required
by QLINK) of the working library, writes it to the
{outfile}, and then copies the object code from the
temporary file to {outfile}. This command may take some
time for large libraries, since the bulk of the code must be
read from MLIB:TMP and then written to {outfile}. A
successful OUT resets the altered flag for QUIT.

Exit without writing

The QUIT command exits the MLIB program and warns you if
the working file has been altered but not written out. It
closes the working file, MLIB:TMP.

Examples:
x>SF LO' : SR

" LOl :SR

XOEF L01,L01A,L01B
XREF L04

L01 OC.L "-L04
LOlA EQU $'OA
LO'B EQU $10B

END

x>SF L02 :SR

L02:SR

"
XDEF L02
XREF LO'

L02 OC.L *.-LOl
END

Continued on next page.

PAGE 7-33

680xO PDOS 3.2 REFERENCE MANUAL

(7.17 MLIB - LIBRARY FILE MANAGER continued)

x>SF L03:SR

* L03:SR
*

XDEF L03
XREF L02

L03 DC.L
END

x>SF L04:SR

* L04:SR
*

*-L02

XDEF L04,L04AXXXXX01
XREF LD3

L04 DC.L *-L03
SECTION 15

L04AXXXXX23 NOP
NOP
NOP
END

x>MLIB
68K LIBRARY GENERATOR

Defining workfile MLIB:TMP;199,100
LIBRARY Filename=~

Lib>ADD L01 :OBJ
Lib>ADD L02 :OBJ
Lib>ADD L03:0BJ
Li b>ADD L04 :OBJ
Lib>LIST

CHAPTER 7 PDOS UTILITIES

68K Library Generator 3.01 15:06 05/13/86
of Modules=4 # of Labelsa7 Workfile size -$00000194
Modules in Library

L01:0BJ L02:0BJ L03:0BJ L04:0BJ
Lib>XDEF

68K Library Generator 3.01 15:06 05/13/86
of Modules=4 # of Labels=7 Workfile size =$OD000194
XDEF Labels in Library

Fi hname
L01:0BJ
L02:0BJ
L03:0BJ
L04:0BJ

Continued on next page.

XDEF'd labels
0:L01,L01A,L01B
0:L02
0:L03
0:L04,15:L04AXXXXX

PAGE 7-34 o

c

(

c

6BOxO POOS 3.2 REFERENCE MANUAL

(7.17 MLIB - LIBRARY FILE MANAGER continued)

Lib>DELETE L02:0BJ
Lib>X

6SK Library Generator

CHAPTER 7 POOS UTILITIES

of Modules=3 # of Labels=6 Workfile size =$00000146
XOEF Labels in Library

Filename XOEF'd labels
L01:0BJ 0:L01,L01A,L01B
L03:0BJ
L04:0BJ
Lib>AOO L02:0BJ
Lib>X

0:L03
0:L04,15:L04AXXXXX

6SK Library Generator
of Modules=4 # of Labels-7 Workfile size =$00000194
XDEF Labels in Library

Filename XOEF'd labels
L01:0BJ D:L01,L01A,LD1B
L03:0BJ 0:LD3
L04:0BJ
L02:0BJ
Lib>OUT LIB ---Lib>QUIT

x>MLIB LIB

O:L04,15:L04AXXXXX
0:L02

6SK LIBRARY GENERATOR
Defining workfile MLIB:TMP;199,1DO
MLIB:TMP already defined. May not be large enough.
Processing Library file LIB

Lib>XOEF
6SK Library Generator

of Modules=4 # of Labels=7 Workfile size =$00000194
XDEF Labels in Library LIB

Filename XOEF'd labels
L01:0BJ O:L01,L01A,L01B
L03:0BJ
L04:0BJ
L02:0BJ

0:L03
0:LD4,15:L04AXXXXX
0:L02

Lib>DELETE L04:0BJ
Lib>QUIT

** WARNING ** Library is altered, but not written.
Quit anyway (YIN)? N

Lib>OUT LIB ---L ib>QUIT
x>

See also:
MLIBGEN - LIBRARY GENERATOR
QLINK - POOS QUICK LINKER (Chapter 6)

PAGE 7-35

•

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

7.18 MLIBGEN - LIBRARY GENERATOR

Name: MLIBGEN
Function: Combine object files into a single library file

Forma t: >MLl BGEN

Restrictions: MLIBGEN only builds new libraries. Existing
libraries can be edited with MLIB.

Oescri pti on:

MLIBGEN allows object files to be combined into a single
library file. The entry (XOEF) labels for each library
object are stored in the header of the library file along
with the originating object file name and position of the
library object within the library file.

When you specify a library load with the LIBRARY command
during QLINK. POOS will scan your files for any entry
symbols that match any unresolved external (XREF) symbols in
the link map. If a match occurs, then only the code
corresponding to the XOEF label of the single library object
is loaded. Thus. only those objects which resolve external
symbols will be loaded.

Every time a library object is loaded. the LIBRARY command
will start from the beginning of library header and scan for
new entries. It continues until no additional matches are
found in the link map and library header.

Example:

x>MLIBGEN
6BK LIBRARY GENERATOR
Copyright 1983-1986, ERII
LIBRARY FILE=YOURLIB:LIB
INPUT FILE=SUB1:0BJ
INPUT FILE=SUB2:0BJ
INPUT FILE=lE!!l
ANY MORE FILES (Y/N)?~

See also:
MLIB - LIBRARY FILE MANAGER
QLINK - POOS QUICK LINKER (Chapter 6)

The name of your library file
Origination object files to

become library objects
Type [CR] to end input files

PAGE 7-36

Enter 'Y' to continue; 'N' to quit.

c
l' iU

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.19 MORDIR - ALPHABETIZE PDOS DIRECTORY

Name: MORDIR
Function: Alphabetize and compress disk directory

Format: >MORDIR
>MORDIR <disk #>{/L}

Restrictions: MORDIR rewrites directory sectors; errors
may destroy file information!

Description:

The MORDIR utility reorganizes and alphabetizes a disk
directory. All directory sectors are scanned, ordered, and
then rewritten to the disk. If errors occur while trying to
write out the directory sectors, MORDIR prompts you for an
alternate sector number to write the directory to. then
using the alter mode of MDDMAP, you can reconstruct the
directory later (possibly after reformatting the header
track).

Normally, MORDIR sorts the directory entries by name only.
However, if you wish to sort them only within levels, and
sort the levels as well (use the level as a major sort key
and the name as a minor sort key) then specify "/L" after
the disk number. MORDIR will then arrange the files to be
ordered within their levels and the levels themselves to be
ordered.

There are two reasons to order the directory. One is to
simply organize things so that the file names are more
easily read. The second is to speed access to important
files. When PDOS needs to find a file, it searches the
directory sequentially. If a filename is at the beginning
of a directory with 1000 names, it will be found faster than
a file at the end of the directory. Good practice is to put
frequently accessed files in low-numbered levels and then
sort the directory using the 'IL' switch.

Example:

x>MORDIR
68K PDOS Order Disk Directory Utility

Disk # = 0

Rewrite Directory
x>

Continued on next page ...

PAGE 7-37

S80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.19 MORDIR - ALPHABETIZE PDOS DIRECTORY continued)

x>LS ; aJl8
Disk=SY$DSK/8
Lev Name:ext
2 COS8
2 C168
3 CEND:O
2 CPP
3 CSTART:O
2 LOCATE
1 MASMC
1 QLlNKC
3 STDLlB
2 T RAN S6B
3 XLlB
99 CTEMP1:0
99 CTEMP1:SR2
99 CTEMP1: SRl
99 CTEMP1:L

x>MORDIR 8/l

x>LS ;818
Disk .. SY$DSK/8
lev Name:ext

MASMC
1 QLlNKC
2 COS8
2 C1S8
2 CPP
2 lOCATE
2 TRANS88
3 CEND:O
3 CSTART:O
3 STOLlB
3 XLlB
99 CTEMP1:l
99 CTEMP1:0
99 CTEMP1: SRl
99 CTEMP1:SR2

x>

See also:

Type
SY C
SY C
OB C
SY C

OB C
SY C
SY C
SY C

C
SY C

C

C

C

C
C

Type
SY C
SY C
SY C

SY C
SY C

SY C

SY C
OB C
OB C

C
C

C

C
C
C

Size
226/226
200/200

111
74174

515
15/15
73/73
43/43

152/152
46146
57/57

100/100
100/100
10/10
10/10

Size
73/73
43/43

226/226
200/200
74174
15/15
46/46

111
515

Files=15/64
Sect Date created Last update
0009 14:40 20-May-85 14:40 20-May-85
OOES 15:08 20-May-85 15:08 20-May-85
01B3 12:46 14-Jun-85 12:46 14-Jun-85
01 B4 12: 29 20-May-85 14:'08 20-May-85
01FE 12:49 26-Jun-85 14:38 16-Jul-85
0203 07:43 16-Jun-85 07:43 16-Jun-85
0212 14:46 15-May-85 14:59 15-May-85
025B 16:18 14-May-85 11 :06 17-May-85
0286 15:56 10-Jul-85 16:09 10-Jul-85
031E 12:04 026-Jun-85 12:50 26-Jun-85
034C 09:27 10-Jul-85 09:28 10-Jul-85
0385 22:10 25-Jul-85 22:10 25-Jul-85
03E9 22:10 25-Jul-85 22:10 25-Jul-85
0440 22:10 25-Jul-85 22:10 25-Jul-85
0457 22:10 25-Jul-85 22:10 25-Jul-85

Fi 1es .. 15/64
Sect Date created Last update
0212 14:46 15-May-85 14:59 15-May-85
025B 16:18 14-May-85 11 :06 17-May-85
0009 14:40 20-May-85 14:40 20-May-85
OOEB 15:08 20-May-85 15:08 20-May-85
01B4 12:29 20-May-85 14:08 20-May-85
0203 07:43 16-Jun-85 07:43 16-Jun-85
031E 12:04 26-Jun-85 12:50 26-Jun-85
01B3 12:46 14-Jun-85 12:46 14-Jun-85
01FE 12:49 26-Jun-85 14:38 16-Jul-85

152/152 0286 15:56 10-Jul-85 16:09 10-Jul-85
57/57 034C 09:27 10-Jul-85 09:28 10-Jul-85
10/10 0457 22:10 25-Jul-85 22:10 25-Jul-85

100/100 0385 22:10 25-Jul-85 22:10 25-Jul-85
10/10 0440 22:10 25-Jul-85 22:10 25-Jul-85

100/100 03E9 22:10 25-Jul-85 22:10 25-Jul-85

list Directory monitor command (>lS)
MLDIR - DIRECTORY lIST
MlEVEl - LEVEL DIRECTORY LIST
MFFIND - FIND FILE ACROSS DISKS

PAGE 7-38 c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(- 7.20 MPATCH - APPLY A PROGRAM UPGRADE PATCH

{

c

Name: MPATCH
Function: Apply a program patch to OB or SY files not distributed

in source
Format: >MPATCH

>MPATCH <oldfile>,<newfile>,<patchfile>

Restrictions: None.

Description:

The MPATCH utility provides a mechanism where PDOS object
modules and utilities which are not distributed in source
(SRC) form can be easily upgraded in the field. The
<patchfile> is typed in by the user from written
instructions supplied by the manufacturer. MPATCH will
perform CRC-16 checks on both old and new versions to insure
that the patch is applied properly.

Example:

(MPATCH instructions are put into the file "PATCH1" using
MEDIT) .

x>RN QLINK,QLINK:OLD
x>MPATCH QLINK:OLD,QLINK,PATCH1
OLDFILE=QLINK:OLD
NEWFILE=QLINK
PATCHFI LE=PATCH2
x>

PAGE 7-39

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES

7.21 MSREC - BUILD S-RECORDS

Name: MSREC
Function: Build S-Records from SY or DB file

Format: >MSREC
>MSREC <parameters>

Restrictions: Entire file image must fit in task's memory.
May not be re-entered with >GO command.

Description:
The MSREC utility creates Motorola S-record files from PODS
'DB' object or 'SY' binary files. You must first enter the
file name of the 'DB' or 'SY' input file, and then the file
name of the S-record output file. Finally, enter the
hexadecimal load and entry address for the S-record file.
MSREC then converts the PODS input file data to S1, S2, or
S3 records with checksums.
S8, or S7 entry address,
address that you entered.

The last record is either an S9,
which is set equal to the load

<Parameters> are 'NULL' or 'N', 'QUAD' or 'Q', and 'SPLIT'
or'S'. If more than one parameter is used, they should be
separated with a slash (/) and may be entered in any order.

The S-record lines are terminated with a [LF][CR], so they
are compatible with the normal PODS file utilities.
However, some third party downloading software or firmware
REQUIRES that S-records be terminated with [CR][LF][NULL].
To create S-record files that can be downloaded to those
systems, MSREC will terminate lines with [CR][LF][NULL] if
you pass the parameter 'NULL' when invoking MSREC (MSREC
NULL). Don't assume that you need this feature; only try it

if the normal S-record output does not download properly.

The 'SPLIT' parameter causes MSREC to output even and odd
files with :MXE and :MXO extensions. The 'QUAD' parameter
causes MSREC to output four files--upper, upper mid, lower
mid and lower byte--with the following extensions
respectively: :MX3, :MX2, :MX1, :MXO. It is inconsistent
to use the 'QUAO' and 'SPLIT' parameters at the same time.

Examples:
Input file is DB type, output address is 0, lines are
terminated with $OAOD, or [LF][CRJ, normally.

x>MSREC
68K PoOS Build S-Record File

SY or DB Input file=~
S-record Output file=~
S-record base address & entrY=Q

x>SF TEMP
S1210000A08C0010A07CA056A08C002253816EF8AOOEOAOD456E7465722068656C6C80
S'1A001E6F277320746F207072696E743A00202048656C6C6F2EOO02
S9030000FC

Continued on next page ...

PAGE 7-40

Output null line terminated S-records
split into four files:

x>MSREC NULL/QUAO
x>MSREC Q/N

Output PODS terminated lines into even
and odd split files:

x>MSREC SPLIT
x>MSREC S

·fl:
1"---,,,

c

(

(

(

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES

(7.21 MSREC - BUILD S-RECOROS continued)

x>MFOUMP TEMP
OOOO-OOOF 5331 3231 3030 3030 4130 3843 3030 3130 S1210000A08C0010
0010-001F 4130 3743 4130 3536 4130 3843 3030 3232 A07CA056A08C0022
0020-002F 3533 3831 3645 4638 4130 3045 3041 3044 53816EF8AOOEOAOO
0030-003F 3435 3645 3734 3635 3732 3230 3638 3635 456E746572206865
0040-004F 3643 3643 3830 DADO 5331 3141 3030 3145 6C6C80 .. S11A001E
0050-005F 3646 3237 3733 3230 3734 3646 3230 3730 6F277320746F2070
0060-006F 3732 3639 3645 3734 3341 3030 3230 3230 72696E743A002020
0070-007F 3438 3635 3643 3643 3646 3245 3030 4432 48656C6C6F2E0002
0080-008F OAOO 53393033 3030 3030 4643 DADO FFFF .. S9030000FC

Input file is SY type, base address ;s $1000, and lines are
terminated with $000A80, which PODS outputs as [CR], [LF].
[NUL] .

x>MSREC NULL
68K PODS Build S-Record File (w/nulls)

SY or DB Input file=I
S-record Output file=TEMP
S-record base address & entry=1000

x>SF TEMP ---
S1211000A08C0010A07CA056A08C002253816EF8AOOEOA00456E7465722068656C6C70
S11A101E6F277320746F207072696E743A00202048656C6C6F2EOOC2
S9031000EC

x>MFOUMP TEMP
OOOO-OOOF 5331 3231 3130 3030 4130 3843 3030 3130 S1211000A08C0010
0010-001F 4130 3743 4130 3536 4130 3843 3030 3232 A07CA056A08C0022
0020-002F 3533 3831 3645 4638 4130 3045 3041 3044 53816EF8AOOEOAOO
0030-003F 3435 3645 3734 3635 3732 3230 3638 3635 456E746572206865
0040-004F 3643 3643 3730 OOOA 8053 3131 4131 3031 6C6C70 ... S11A101
0050-005F 4536 4632 3737 3332 3037 3436 4632 3037 E6F277320746F207
0060-006F 3037 3236 3936 4537 3433 4130 3032 3032 072696E743A00202
0070-007F 3034 3836 3536 4336 4336 4632 4530 3043 048656C6C6F2EOOC
0080-008F 3200 OA80 5339 3033 3130 3030 4543 OOOA 2 ... S9031000EC .. ---
0090-009F 80FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Input file is SY type, base address is $300800, which
causes an S2 type data record and an S8 type entry record.

x>MSREC
68K POOS Build S-Record File

SY or DB Input file=I
S-record Output file=TEMP
S-record base address & entry=300800

x>SF TEMP ---
S222300800A08C0010A07CA056A08C002253816EF8AOOEOA00456E7465722068656C6C47
S21E30081E6F277320746F207072696E743A00202048656C6C6F2E00E9000AA3
SB04300800C3
x>

PAGE 7-41

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES

7.22 MSYFL - BUILD SY OBJECT FILE

Name: MSYFL
Function: Build PODS SY object file

Format: >MSYFL
>MSYFL <src file>,<SY file>

Restrictions: Reads entire file into memory.

Description:

The MSYFL utility builds an 'SY' type object file from
either a PODS 'DB' file or a Motorola S-record text file.
'SY' files are position independent, memory image files.

Example:

x>ASM PSPElL
x>MASM PSPELL:SR.#OBJ/8
68000 PODS Assembler
ERII, Copyright 1983-1986
SRC=PSPELL:SR
OBJ=#OBJ/8
LST=
ERR=
XRF=

END OF PASS 1
END OF PASS 2
x>IF .RC
x>MSYFL OBJ/8.#PSPELL
6SK PODS SY File Maker Utility

Source file = OBJ/8
Destination File = #PSPELL

SECTION LENGTH = EDOOOOOCE2
Entry Address = 00000000

x>RC
x>

PAGE 7-42 Ie··.,,· , . .JV

c

£/

6BOxO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.23 MSYOB - SYFILE TO OBJECT

Name: MSYOB
Function: Convert SYfile to PDOS tagged object format

Format: >MSYOB
>MSYOB <src file>,<obj file>

Restrictions: Does not restore any relocatability to the file.

Description:

MSYOB takes a 68000 program in memory image format (SYfile)
and converts it to a PDOS tagged object format file. This
might be necessary to merge an existing program in with
other code via the linker. Another possible use is when
transferring a binary file over serial lines between two
PDOS computers. If the two lines are set to 7 bits of data,
the binary information may not transfer properly. A way
around the problem is to convert the binary data to an
"object" file with MSYOB, send the resulting ASCII file over
the serial line, and then convert the object file back to
binary with MSYFL.

Example:

The program DC is a small calculator type program in
SYf il e format.

x>LS DC;@
Disk=WINI 212
Lev Name:ext

S8 DC

x>MFDUMP DC

Type
SY

Size
1/1

Files=164/1024
Sect Date created Last update
OF17 16:13 28-May-B5 17:57 26-Jul-B5

OOOO-OOOF A05A 6206 A08C 0066 AOOE A056 2E01 A05A Zb ... f . V .. Z
0010-001 F 621 E 4A2E 042E 6612 2207 A054 007B A08A b . J ... f. ". T. x
0020-002F A08C 007D A052 AOBA AOOE 2007 A03A AOOE .. } R ,
0030-003F 7COO OC11 002B 6718 5846 OC11 0020 6710 I +g.XF ... -g.
0040-004F 5846 OC11 002A 670B 5846 OC11 002F 66B4 XF ... *g.XF ... /f4
0050-005F A05A 63BO A056 4EFB 6002 DE81 600C SEB1 ZcO VN{' .A.' ...

0060-006F 6008 CFC1 60048FC1 4SC7 60A2 OAOO 4443 '.OA' .. AHG'" .. DC
0070-007F 3A20 3C4E 313E 2C3C 2B2D 2A2F 3E2C 3C4E : <N1>,<+-*/>,<N
OOSO-OOSF 323E 2C3C 2B20 2A2F 3E2C 2E2E 2E2C 3C4E 2>,<+-*/>, ... ,<N
OOSO-OOSF 6E3E 2EOO OOOA 414E 5357 4552 3A20 0020 n> ANSWER:
OOAO-OOAF 4F52 2024 OOFF FFFF FFFF FFFF FFFF FFFF OR $

Continued on next page ...

PAGE 7-43

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.23 MSYOB - SYFILE TO OBJECT continued)

x>MSYOB
68K PDOS OB File Maker Utility

Source fil e '" DC
Destination File = DC:OB

x>LS DC:OB
Di sk=WINI 212
Lev Name:ext

DC:OB
Type
OB

Size
212

Files=164/1024
Sect Date created Last update
ODC7 17:51 26-Jul-85 18:02 26-Jul-85

x>SF DC:OB
EOOOOOOOA520000000005A05A620B5A08C006B5AOOEA05B52E01AO5A5B21E4A2E5042EBB12F2D
52207A05450078A08A5A08C007D5A052A08A5AOOE20075A03AAOOE57COOOC115002BB718F58
5584BOC115002D67105584BOC115002A6708558460C115002FBBB45A05AB3B05A05B4EFBFB9
56002DE815600C9E8156008CFC1560048FC1548C760A250A00444353A203C4E5313E2C3CF12
52B2D2A2F53E2C3C4E5323E2C3C52B202A2F53E2C2E2E52E2C3C4E56E3E2E0050DOA414EF81
55357455253A20002054F522024300FA3
1000000000
:MSYOB 07/2B/85 18:02:51

Note that OB fi les are di rectly executable under POOS, since the
loader knows how to make a memory image from an OB file.

x>DC
OC: <N1>,<+-*/>,<N2>,<+-*/>, ... ,<Nn>.
x>DC:OB
DC: <N1>,<+-*/>,<N2>,<+-*/>, ... ,<Nn>.

PAGE 7-44 o
o

o

c
c

('

6BOxO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.24 MTERM - SET TASK TERMINAL TYPE

Name: MTERM
Function: Set terminal cursor functions for task only

Format: >MTERM
>MTERM <type>
>MTERM U,<clear screen>,<cursor pos>,<bias>,<sequence>
>MTERM U,<clear screen>"

Restrictions: None.

Description:

The MTERM utility sets the position cursor (PSC$) and clear
screen (CSC$) variables in the task control block (TCB).
This utility makes it easy to use various types of terminals
on the same PDOS system. Each task has its own characters
for these two functions, which are initialized, when the
task is started, to the parent task control set. MTERM
provides an easy way for a task to change its function
characters while the system is running.

If a legal <type> is passed in the command line, then MTERM
simply enters the corresponding sequences into the user
status block. If type 'U' is selected on the command line,
you may define the terminal control sequences in the same
order and format as they are entered from the menu.
Otherwise, the utility prints the following table of
options:

6BK POOS Change Terminal Type Utility
Termi na ls:

A=AOOS Regent 25
O=Decscope (VT52)
H=Hazeltine 1520
I=Intertube II
L=Lear Seigler AOM3a
S=Soroc IQ120
M=Data Media Excel 12
V=VT100 I ANSI terminal
U=User Defined

Type ..

and prompts the user for an input. Enter the letter
representing the type of terminal you are using, if listed.
If your terminal is not listed, enter a 'U'. Then simply
enter the hexadecimal representation of the sequences used
by your peculiar terminal, surrounding each with angle
brackets. One or two characters are acceptable.

Continued on next page ...

PAGE 7-45

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES

(7.24 MTERM - SET TASK TERMINAL TYPE continued)

Examples:

x>MTERM
68K PODS Change Terminal Type Utility
Terminals:

A=ADDS Regent 25
D=Decscope (VT52)
H=Hazeltine 1520
I=Intertube II
L=Lear Seigler AOM3a
S=Soroc IQ120
M=Data Media Excel 12
V=VT1DO / ANSI terminal
U=User Defined

Type = !i
x>MTERM
68K PODS Change Terminal Type Utility
Terminals :

A=ADOS Regent 25
O=Decscope (VT52)
H=Hazeltine 1520
I=Intertube II
L=Lear Seigler ADM3a
S=Soroc IQ12D
M=Oata Media Excel 12
V=VT100 / ANSI terminal
U=User Defined

Type = Q

Enter characters as follows:
Printable characters:
Control chars preceded with a "A":

#Y = 2359
AAAS = 0'13

ASCII names in brackets: <ESC><BEL> = lB07
ASCII Literals in HEX in brackets: <1B>Y = lB59
BIOS Handler for clear or position: <0><0>

Clear Screen Characters <ESC><5C> New =
Position Cursor Prefix Characters ... <ESC><11> New =

PAGE 7-46

Invoke interactively

Try Hazeltine

Le t 's look a t them now ...

Reset to Soroc

i{."· l"p

c

f

(

(

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.25 MTRANS - FILE TRANSFER

Name: MTRANS
Function: Transfer selected files with wild cards

Format: >MTRANS @:@;@I<source disk #>,<dest. disk #>{select string}

Restrictions: None.

Description:

The MTRANS utility transfers one or more files from one
disk to another. Wild cards, date limits, and query are
provided for greater flexibility. This utility requires the
system to have at least two disk drives. MTRANS is useful
in in reconstructing a fractured disk into a disk where all
files are contiguous and any unused sectors are recovered.

Files are transferred according to a source selection list,
which is the first prompt or parameter. This list consists
of five fields: <file name> : <file extension>; <directory
level> I <disk #> I <options>. The <file name> consists of
characters, single character wild cards (*), or multiple
character wild cards (@). The <file extension> is specified
the same way. The <directory level> is either a number from
o to 254 or an (@), indicating all file levels. If no
<directory level> option is specified, then it defaults to
an (@). If a number is selected, then only files on that
level are considered for a transfer. Note that level 255 is
illegal.

The <disk #> specifies the PODS disk of the source
directory. <Disk #> defaults to the system disk. The
<option> field is optional and selects the FROM date, the TO
date, or the QUERY options. The format of FROM is
'/FMN/DY/YR', where 'MN' is a month, 'DY' is a day, and 'YR'
is the year. Only source files whose date of last update is
newer, or more recent, are considered in the transfer. In a
similar fashion, the TO date option is specified by
'/TMN/DY/YR', and limits the transfer to those files whose
last update occurred before or on MN/DY/YR. The QUERY
option is specified in the source selection list by '/Q' and
causes MTRANS to ask whether you want each eligible file
transferred or not. Answer 'Y' for yes and 'N' for no.
These options can be entered in any order.

Continued on next page ...

PAGE 7-47

680xO PDaS 3.2 REFERENCE MANUAL CHAPTER 7 PO as UTILITIES

(7.25 MTRANS - FILE TRANSFER continued)

The second prompt or parameter is the destination list,
consisting of a <disk #> and <options>. The <disk #> is
required and tells MTRANS where files are going to. The
<options> are optional and consist of single letters,
separated by '/' characters. Legal destination option
characters and their meanings are as follows:

o ~ Transfer files that are defined on the destination disk.
F = Don't delete files before transferring to them.
N = anly transfer files that are newer.
o = Override protection flags on destination files.
U = Transfer files that are undefined on the destination disk.

The default options are equivalent to 'IDIU' (i. e. ,
transfer all files, regardless of whether they are defined
on the target disk), but if any destination options are
specified, the defaults are reset. This means that for a
FAST transfer with some files already defined, you need to
use the '/D/U/F' options. These options can be mixed in any
order.

The files in the directory of the source disk is read and
compared to the entire selection specification. If the file
qualifies on all counts, then the file name, level, and size
is printed to the console. The operator is prompted for 'Y'
or 'N' if the QUERY option was selected. Files to be
transferred are first deleted from the destination disk.
unless the F (fast) option was selected. Next, a new file
is defined. If the new file cannot be defined contiguously
then the message '** FRACTURED FILE' is printed and MTRANS
sizes the destination disk to see if there is enough space
there for the whole file. If there is enough room, then the
transfer continues. If not, an error message is printed and
you are asked whether or not to continue transferring other
files.

Finally, the file and its attributes are transferred to the
destination disk. If an error occurs during the transfer,
MTRANS asks if the transfer should continue wrth the other
files. For instance, there might be an error in
transferring a large file because there is not enough room
to receive it, but you might want MTRANS to continue
transferring the smaller files that will fit.

Continued on next page ...

PAGE 7-48 o

c

c
c

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES PAGE 7-49

(7.25 MTRANS - FILE TRANSFER continued)

A file with the driver attribute "OR" is transferred by
modifying the attribute, transferring the file, and
restoring the attribute for both the original and the copy.
If this were not done, an attempt to read or write the
driver file would only access the driver's device instead of
copying the driver file itself. A [CTRL-C] stops the
transferring of programs after the current transfer is
completed.

See also:
MBACK
Transfer File monitor command (>TF)

Examples:

x>MTRANS
68K POOS File Transfer Utility
Source=r£!U

SOURCE = FILE:EXT;LEVEL/OISK{/OPTIONS}
IQ => QUERY

IFROM 10/01/81 => BEGINNING DATE
ITO 10/31/81 => END DATE

DESTINATION = DISK{/OPTIONS}
ID => DEFINED
IF => FAST
IN => NEWER UPDATE
10 => OVERRIDE FLAGS
IU => UNDEFINED

Source=[ESC]
x>MTRANS T@:@/0/Q,1/D/F/U

TEMP; 1
TEMP1 ; 1
TRANS;1

WRITE ERROR=106
CONTINUE?Y
x>

SY

2
8

** 15

TRANSFER?Y
TRANSFER?N
TRANSFER?Y

[CTRL-C] stops transfer

sector by sector copy instead of file by file
memory resident, truncates file to EOF

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.26 MUNDL - UN-DELETE FILE

Name: MUNDL
Function: Reverses previous delete file process

Format: >MUNDL

Restrictions: Recovery must be made immediately after deletion.
No other users should be accessing the disk.

Description:

When a PODS file is deleted using XLDF, >DL, or >DM, the
first two bytes of the file name in the directory entry is
zeroed out. All the sectors allocated to that file are
re-a110cated (freed up). The MUNDL utility reverses this
process to immediately recover mistakenly deleted files
right after they are deleted. If you extend or define other
files, the newly-freed sectors may be taken from the deleted
file's sectors, making it impossible for MUNDL to recover
them.

MUNDL prompts for the PODS disk number where the deleted
files were (and still are) located. It then reads in the
header sector, the bitmap sectors, and all the directory
sectors into memory and operates on them there. Only after
you have made all the changes you want and entered a
verifying 'Y' reply, does MUNDL write to the disk.

No other users should access the disk during the recover
process during the recover process. MUNDL looks at each
directory entry for un-de1etab1e candidates. These entries
have a null word at the beginning of the file name, a
non-null first sector, and the first sector is 'FREE' in the
bitmap. If any un-delete entries are found, MUNDL shows you
the file name, with 'zz' substituted for the zeroed file
name bytes, and asks if you want to un-delete the file.
Enter one of two characters of the file name to recover it.
Enter a carriage return to skip it.

MUNDL inserts the character(s) into the directory entry,
then allocates the sectors in the bitmap, setting their bits
to one, meaning 'ALLOCATED.' When the directory has been
exhausted, then if any files were un-deleted, MUNDL asks if
you want to write the changes to the disk. MUNDL then
writes out the header, bitmap, and directory sectors back to
the disk.

Continued on next page ...

PAGE 7-50 ' , c···.·,'·······,

c

(

(~,

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.26 MUNDL - UN-DELETE FILE continued)

Example:

5>LS
Disk=FORCE CPU-1 3.2x/5 Files=78/96
Lev Name:ext Type Size

87/87
26/26

Sect Date created Last update
MASM
MEDIT

SY C
SY C

0026 13:14 16-Jan-85 16:28 17-0ct-86
0070 11 :38 17-0ct-85 12:44 22-0ct-86

QLINK SY C
5>MUNDL
68K PDOS FILE UN-DELETER

Enter Disk # 5
Disk Name: FORCE CPU-1 3.2x

Reading in sector bi t-map & di rectory Done
Found File zzART1;1

Enter 1st 2 chars OR [cr] to skip :ST
Un-deletin9: resetting sectors as allocated .. Done

With NO ruined files, you added 1 files back to the disk.
Would you like to write updated directory to disk ?Y
Writing out sector bit-map & directory Done

5>LS
Disk=FORCE CPU-1 3.2x/5 Files=79/96
Lev Name:ext Type Size Sect Date created Last update

MASM SY C 87/87 0026 13: 1 4 16-Jan-85 16:28 17-0ct-86
MEDIT SY C 26/26 0070 11:38 17-0ct-85 12: 44 22-0c t-86
QLINK SY C 53/53 0097 15:48 25-Apr-84 16:36 17-0ct-86
STARn +C 1/1 00F5 15:13 02-Dec-86 15:14 02-Dec-86

Files=4 Used=1671167

PAGE 7-51

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

7.27 MABORT - TASK ABORTER

Name: MABORT
Function: Aborts task back to the POOS monitor

Format: >CT MABORT,2
>CT (MABORT <count»,2

Restrictions: This is a background task and NOT a user utility.

Description:

Only one MABORT task should be running in a system.
Aborted tasks may leave files opened.

The MABORT program is a background task that implements an
"ABORT TASK" function in POOS. This function is started by
creating the MABORT program as a task using the Create Task
(>CT) monitor command. Only 2k bytes are required for the
task. MABORT converts the optional parameter «count» into
the trigger count that is used in breaking tasks. The
default value is 2.

Once the MABORT task is running, any user that gets "locked
up" can enter successive break characters ([CTRL-C]) on the
terminal. The user will be returned to the PO OS monitor by
MABORT. Some situations which commonly occur in development
from which MABORT can break out include the following:

1. trying to send output to a printer that is non-
existent or off-line,

2. endless loops in programs,
3. errors in transparent mode, or
4. bus errors while debugging EXT$(A6) menus.

While monitoring the incoming characters, PO OS looks for
certain characters, one of which is called the break
character, usually a [CTRL-C]. POOS keeps track of how many
successive break characters are received on each port in a
table in SYRAM, CCNT.(A5). The MABORT task, when created,
places its task number in the E124.(A5) byte of SYRAM, so
that others may know which task is the MABORT task. It
raises its own execution priority to 255 and then enters a
periodic loop which executes only once a second.

Continued on next page ...

PAGE 7-52

Example:
First, create a task with the default

2-character trigger.

x>CT MABORT,2
Task #1
x>LOOP

POOS ERR 85 Aborted task
x>

x>CT (MABORT 4),2

Task #2
x>

(create MABORT)

(run endless loop program)
(hit 2 [CTRL-C] characters)

(create MABORT with 4
character trigger)

·c~··· I· '

(.. C'
' .. ~

c

{

(

(

(.... ~
-'/

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES

(7.27 MABORT - TASK A80RTER continued)

When awakened, MABORT sets the task lock (XLKT) and checks
the break character counters for all the ports. If any of
the ports have a count higher than the trigger number,
MABORT looks for the task with that port assigned for input.
If found, MABORT sets a flag in the task list that tells
the PODS kernel to exit to the monitor with error 85 (XERR).
It also resets some TCB parameters that may have locked up
the task:

PRT$.B port # Reset input port to task's
originally allocated

U1P$.B = port # Reset uni t lout put port to
original

UNT$.B 1 Set to unit 1
ACI$.L 0 Reset AC file IDs
IMP$.L = 0 Reset input memory poi nte r
SFI$.W = 0 Set for no spool unit fi le
ECF$.W = 0 Reset echo flag
SPU$.B 0 Reset spool unit mask
EXT$.L 0 Reset XEXT trap pointer
ERR$.L 0 Reset XERR trap pointer

MABORT then goes back to sleep for anDther second. The
monito r reports error 85 to the aborted task. On most PODS
3.2 standard systems, an MABORT task is created by the
SY$STRT autostart file on the BOOT disk.

Some POOS systems have a 'SOFTWARE ABORT' switch which
usually causes a level 7 interrupt. These systems can
implement an interrupt service routine in the BIOS which
works in conjunction with MABORT to break all tasks. The
interrupt service routine loads the break character counters
of all the ports to a big number (larger that MABORT trigger
count), and then sets the priority of each task (except for
the MABORT task) equal to 64.

Continued on next page ...

PAGE 7-53

680xO PO OS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

(7.27 MABORT - TASK ABORTER continued)

Example:

The following code is an example of a software abort switch
interrupt service routine that could be included in the
xxBIOS:SR file to implement a system break function. A
corresponding entry should be included in the BINTB table to
point the abort switch vector to this routine.

*
*
*
*
*
*
RL
*
ABSW

*
@010

*
@015

*
@020

SOFTWARE ABORT SWITCH:
Set all port's break counters to 10 so that
if a MABORT task is installed, they will all
be aborted to the monitor. Also set all tasks'
priorities to 64.

REG 00/AO/A1

MOVEM. L RL, -(Al)
MOVEA.L B$SRAM,A1
LEA. L CCNT. (A1) ,AO
MOVEQ.L #16-1,00

MOVE.B #10,(AO)+
OBF 00,@010

LEA.L TQUE.(A1),AO

TST. W (AO)
BEQ.S @020

MOVE.W (AO)+,OO
CMP.B E124.(A1),OO

BEQ.S @015
MOVE.B #$40,-2(AO)
BRA.S @015

MOVEM.L (A7)+,RL
RTE

;SAVE SOME REGS
;POINT AT SYRAM
;POINT AT hC COUNTER TABLE

;SET ALL TO BREAK

;POINT TO TASK QUEUE

;MORE?
;N, QUIT
;y, GET PRIORITY I TASK #
;IS THIS WATCH TASK?
;y, SKIP PRIORITY SETTING
;N, SET TO PRIORITY 64
;LOOP

;RESTORE
;ANO RTE

PAGE 7-54 C'
\ , .. ,

(~/

C

(

('

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.28 WIND' CREATE VIRTUAL PORTING TASK

Name: WIND1
Function: Initialize virtual porting

Format: >CT (WIND1, ,,),<size>
>CT (WIND1,<window list>,<port list>,<print>,<append»,<size>

Restrictions: If print or append file is used, it must be pre
defined. Only a file can be used for append
output. <size> is equal to number of windows
times two plus four. No 110 port should be
assigned. XPCR and XPDC bypass window processor -
no character update. Special terminal functions
not supported by virtual ports. Position cursor
and clear screen may require screen refresh.

Description:

PODS virtual ports (sometimes referred to as "windows")
allow selective switching of physical 110 ports to logical
task ports. This means that a single terminal can
dynamically switch between 110 ports that may be assigned to
different tesks or updated by a single task with multiple
screen output. A screen image is maintained for all active
ports and the switching process updates the terminal with
the current display for the selected port.

With PODS virtual ports, the system acts as if there were
more terminals on the system. As a result, multiple tasks
are accessible from one terminal.

A high priority virtual port task maintains the screen
buffers and handles screen refreshing and buffer printing.
A special key sequence is used to switch from one virtual
port to another. When a selection is made, PDOS maps your
keyboard to another port and the virtual port task clears
and updates your display to reflect the current screen.

CT (WIND1,<window list>,<port list>,<print>,<append»,<size>

The virtual port process is set up by creating a task with
the WIND1 program. The size of the task is equal to the
number of virtual ports times two plus four. No 110 port
should be assigned.

If WIND1 encounters an error during its initialization, it
will notify its parent task with the appropriate message
through the message buffers. Possible errors include:

1. Not enough memory allocated.
2. Virtual port process alreadY executing.
3. Illegal parameters specified.

Continued on next page ...

PAGE 7-55

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES PAGE 7-56

(7.28 WINOl - CREATE VIRTUAL PORTING TASK continued)

WINOl signals POOS that virtual porting is now active by
setting the SYRAM variables WIND. and WAOR., and allocates
buffers for the virtual screens. WINol sets its execution
priority to 100 and kill-protects itself by setting its
parent task to -1. The task suspends on event 127.

Virtual ports are selected with a leading control character
followed by the port number. (Ports 10 through 15 are
selected by letters A through F.) The default control
character is [CTRL-X] which is also the clear buffer code.
This is alterable at sysgen time by setting B.WNo for
MBIOS:SR.

[CTRL-X]P sets the print bit (#13) which enables printing.
Two consecutive [CTRL-X]s translate to a single [CTRL-X]
which is passed through to the input character processor.

The port number external to POOS is referred to as the
physical port. The port number after virtual port
translation is referred to as the logical port.

The <window list> parameter specifies the PO OS I/O ports
that are to accept virtual access. The ports are specified
by number and are separated by slashes (/). Consecutive
ports can be specified by separating the first and last port
number with a hyphen (-). Default is 1-15 or all POOS
ports.

The <port list> parameter selects those POOS I/O ports that
are permitted to access other ports. This allows some
system security for selected ports. The format is the same
as the <window list> and the default is for port 1 only.

The third parameter <print> specifies where a screen dump
is sent. It may be to a file or an I/O port. Whenever the
screen dump function is activated with ([CTRL_X]P), then the
WIN01 program opens the <print> file. outputs the current
screen image, and closes the file. A dump header with the
current time and date precedes the output. If a file is
used, it must be pre-defined or defined using the '#'
symbol.

The forth parameter <append> is similar to the <print>
parameter with the following exceptions:

1) Only a file can be used for output
2) The output is appended to the file which

must be pre-defined or auto-defined (I).

See also:
Appendix H - VIRTUAL PORT INTERNALS
Chapter 3 - HOW 00 I SET UP VIRTUAL PORTS?

The four parameters for WIN01 are as follows:

<window list> = LOGICAL VIRTUAL PORTS (Oefau1t=1-15)
<port list> = PHYSICAL PORTS ALLOWED TO WINDOW

(oefaul t=l)
<print> = OUTPUT FILE OR PORT # (Default=none)

<append> = APPEND OUTPUT FILE (Oefault=none)

1/2/3/8/13/14/15 7 ports 1,2,3,8,13,14,15
1-3/8/13-15 Same as above

The following example creates window
processing for ports 1, 3, 4, and 5.
Only port 1 is allowed to window and
a [CTRL-X]P sends a screen image to
port #2.

x>CT (WIND1 1/3-5, ,2),12

This example creates windows for all
15 POOS ports. Physical ports 1-4
can window. A [CNTRL-X]P sends a
screen image to file PBUF and appends
the same image onto file ABUF.

x>CT (WIND1 1-15,l-4,PBUF,ABUF),34

.("::
'0

c

(

(

{

(

c

(

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

7.29 WKILL - DISABLE VIRTUAL PORTS

Name: WKILl
Function: disables virtual port task

Format: >WKILL {<task I>}

Restrictions: WKILL can only be executed from task O.

Description:

The window processor (WIND1) contains the screen image
buffers and, as such, simply killing the task frees memory
to PDOS that would still be written to by the character
interrupt processor. The WKILL utility is included to
disable virtual port processing.

The optional parameter <task #> selects the window
processor task if it is not task one. WKILL clears the
SYRAM variables WIND. and WADR., unprotects the virtual port
processor and executes a KT <task #> to kill the task.

See also:
WIND1 - CREATE VIRTUAL PORTING TASK

WKILL {<task I>}

PAGE 7-57

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PO OS UTILITIES

7.30 WLOOK - VIEW VIRTUAL PORT PARAMETERS

Name: WLOOK
Function: Displays virtual port parameters

Format: >WLOOK

Restrictions: None.

Description:

The virtual port monitor utility WLOOK displays the screen
buffer addresses, the current refresh clear screen/position
cursor codes, and then dynamically displays the current port
translation table (WIND.). An [ESC] returns to the PDOS
monitor.

Example:

x>CT (WIND1 1/3-6,1/4),16
*TASK #1
x>WLOOK
WINDOW BUFFERS:

#1=$000EA23C #2=Undefined #3=$000EA9BC #4=$000EB13C #5=$000EB8BC
#6=$000EC03C #7=Undefined #8=Undefined #9=Undefined #A=Undefined
#B=Undefined #C=Undefined #O=Undefined #E=Undefined #F=Undefined

PORT CLEAR/POSITION CODES:

#1=$AA009B3D #2=$AA009B3D #3=$AA009B3D #4=$AA009B3D #5=$AA009B3D
#6=$AA009B3D #7=$AA009B3D #8=$AA009B3D #9=$AA009B3D #A=$AA009B3D
#B=$AA009B3D #C=$AA009B3D #D=$AA009B3D #E=$AA009B3D #F=$AA009B3D

Enter [ESC] to exit to PDOS

0006 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
8006 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
0001 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
8001 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080
0006 0080 0080 0004 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080 0080

See also:
WIND1 - CREATE VIRTUAL PORTING TASK

PAGE 7-58 c."' .. ·· \," ,!

("
I ,'."

_,.v'

(C'
x

6SDxD PDDS 3.2 REFERENCE MANUAL CHAPTER 7 PDDS UTILITIES

7.31 WTERM - SET TERMINAL TYPE FOR VIRTUAL PORTS

Name: WTERM
Function: Displays windowing parameters

Format: >WTERM <port #>,<type cher>

Restrictions: None.

Description:

The virtual port processor initializes its port position
cursor and clear screen codes to those of the parent task.
Hence, refresh uses the same codes for all ports unless it
is altered by the WTERM uti1tity after the window process is
executing. These codes are located immediately following
the address table (WADR.).

(The WTERM utiltity has identical parameter definitions as
the PODS MTERM utility with the exception that the first
parameter is a windowing port number. (See 7.24 MTERM - SET
TASK TERMINAL TYPE)

c

c

Example:

x>WTERM 5,5

x>~
6SK PDDS Change Terminal Type Utility
Termi na 1s:

A-ADDS Regent 25
D=Decscope (VT52)
H=Hazeltine 1520
I .. Intertube II
L=Lear Seigler ADM3a
S=Soroc IQ120
M=Data Media Excel 12
V=VT1DD I ANSI terminal
U=User Defined

Port #=6
Type = V
x>

See also:
WIND1 - CREATE VIRTUAL PORTING TASK

PAGE 7-59

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PODS UTILITIES PAGE 7-60

7.32 MMKBT - MAKE DISK BOOT

Name: MMKBT
Function: Installs PODS system and bootstrap onto disks

Format: >MMKBT

Restrictions: May not be re-entered with >GO monitor command.

Description:

The MMKBT utility is used to install bootab1e PODS files
onto disks. The disk should first be prepared for use with
the PODS system.

MMKBT offers three options. The first option is (F)i1e for
creating a new boot disk from a file. The second is
(M)emory for creating a new boot disk from a memory area.
The last option is (B)ootstrap for putting out special
sector information onto physical track 0 of the disk. Some
systems may not use the bootstrap option. To select any
option, type the letter followed by a [CR].

This utility provides defaults which are the correct
parameters in most cases. The defaults shown below may not
correspond to your hardware system. Consult your
Installation and Systems Management guide for specific
information about your system.

(F)ILE OPTION

When the (F)ile option is selected, you can install a boot
from a file on your disk. You are prompted for the
filename. The filename will be read in and sized. You are
then asked for the boot size, the load address, the disk
number, and the boot sector number. You must confirm the
installation before any data is written to the disk.

Continued on next page ...

>MMKBT
68K PODS Make Boot Disk Utility
(F)ile, (M)emory, or (B)ootstrap? F

Filename = xxDOS
Boot size $00000800

Load address $00000800
Disk 0

Sector = 2336

Write 120 sector boot beginning at address
$00000800 with load address $00000800 to disk
0, sector 2336. Ready (YIN)?!

One moment, Please ...
Wrote out header information.
PODS written successfully!!

c

c
'e' I, ,

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES PAGE 7-61

(

(

(7.32 MMK8T - MAKE DISK BOOT continued)

(M)EMORY OPTION

The (M)emory option allows you to copy memory onto the boot
area of a disk. This is typically done to build a boot
image of the currently executing system. After executing
the MMKBT program, select the memory option by typing
'M[CR] . '

You are asked for the memory start address and end address
for the boot. The defaults are determined by your standard
system setup. You may select the defaults by typing a [CR]
or you may enter new addresses followed by a [CR].
(Remember to use the '$' to prefix hexadecimal numbers).
The rest of the questions are the same as the file option.

(B)OOTSTRAP OPTION

The (B)ootstrap option writes out an IPL file to a physical
sector of the floppy or Winchester disk. The POOS IPL file
comes from the SY file, xxBOOT, which is generated by the
xxBOOT:GEN procedure file.

THE BOOTSTRAP OPTION IS NOT APPLICABLE ON SOME HARDWARE
SYSTEMS. Consult your Installation and Systems Management

4[- guide for specific information about the bootstrap option.

>MMKBT
68K POOS Make Boot Disk Utility
(F)ile, (M)emory, or (B)ootstrap? M

Start address $00001000
End address $00000800

Load address $00000800
Disk = 0

Sector 2336

Write 112 sector boot beginning at address
$00001000 with load address $00000800 to disk
0, sector 2336. Ready (YIN)?!

One moment, Please ...
Wrote out header information.
POOS written successfully!!

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 PO as UTILITIES

7.33 MTIME - SET PDaS/BATTERY CLOCK

Name: MTIME
Function: Set the poas and/or battery clocks

Forma t: >MTIME
>MTIME {P / B /}{,<yr>}

Restrictions: The battery clock may only be set if there is a battery
clock chip present in the system.

Oescription:

MTIME sets the poas clock from the battery clock and the
battery clock from the poas clock. It also allows you to
set the year if the battery clock chip doesn't maintain the
year. Consult the Installation and Systems Management
guide for your specific hardware system.

Either the letter 'P' or the letter 'B' may be omitted from
the first parameter. If only the letter 'P' is specified,
then the poas clock is set from the battery clock.

When the first parameter is the letter 'B,' the battery
clock is set to the current poas clock values. This is
usually done after the POOS clock has been set with the "10"
monitor command.

x>ID
POOS/68020 R3.2
ERII, Copyright 1983-1986
xxxBlaS
OATE=OO-7?7-00 i6-0ec-86
TIME=Oa:OO:01 12:52
x>MTIME B, 86

When no parameters are specified, the values of both the
battery and PO as clocks are specified.

x>MTIME
POOS CLOCK 12:55:24 16-0ec-86
BATT CLOCK = 12:55:26 16-0ec-86 Tuesday

Some errors may occur if you attempt to run MTIME without a
battery clock chip present. Consult your Installation and
Systems Management guide.

PAGE 7-62 C':··
i,.,," ,;

"

.,-'., ",'

o

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES PAGE 7-63

(/ 7.34 xxFRMT - DISK HARDWARE FORMAT

c

c

Name: xxFRMT (where xx is the system 10)
Function: Hardware format disks and set up PDOS partitions

Format: >xxFRMT

Restrictions: xxFRMT may be run only when no other tasks are
running except MABORT.

Description:

NOTE: For a more complete description of this utility,
consult your Installation and Systems Management guide.

xxFRMT allows you to define dr;ves and to format and
partition disk drives. This utility is hardware dependent
and will support up to four drives on one or two
controllers. This utility is menu driven.

When you run xxFRMT, you select a drive with a letter and a
select number character: 'F' or 'FO' selects floppy drive
0, or the lowest floppy drive select as defined for the
system's disk controller; 'Fl' for the second floppy drive;
'W' or 'WO for the first Winchster drive; and 'Wl,' 'W2', or
'W3' for the other possible system Winchester drives. Some
systems may allow more floppies, and other systems may not
allow up to four Winchester drives, but these six drives are
the PDOS Winchester standard.

xxFRMT outputs a header message for the system, the names
of the various controllers defined for that system, and the
current P$PARM table entries with their controller numbers
and select bytes. It then enters the Select Drive Menu.

x>xxFRMT
68K xxx Format Drive Utility

If you select either a flopp~ drive or a Winchester drive
that is already defined, xxFRMT directly enters the Drive
Command Menu. If you are installing a new Winchester drive
which is currently undefined, then you must enter the
controller number and drive select jumpering (0-3). The
Drive Command Menu tells you which drive you are currently
dealing with and has the following commands:

Select Menu: W,WO,Wl,W2,W3=Winch; F,FO,FlcFloppy; Q=Quit

Possible Disk Controllers in System are:
Controller #1 is a xxx
Controller #2 is a xxx

Drives currently defined in system are:
FO is controller #1, drive select byte $00
Fl is undef i ned.
WO is controller #1, drive select byte $00
Wl is undef i ned.
W2 is undefined.
W3 is undef i ned.

Select Menu: W,WO,Wl,W2,W3=Winch;
F,FO,Fl=Floppy; Q=Quit

Select Drive: WO Select Drive:
WO Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5) Part 6)Writ P)Togl Q)Quit

Command: 1£!U.

Winchester Drive 0 Menu:
l)Display/Alter Drive Parameters. 5)Disp/Alt PDOS Disk Partitions.
2)Display/Alter Bad Track List. 6)Write out Header info to disk.
3)Format tracks. P)Toggle Unit 2.
4)Verify tracks Q)Quit & Select another Drive.
WO Main Menu: l)Parm 2)BadT 3)Form 4)Ver; 5) Part 6)Writ P)Togl Q)Quit

Command:

Continued on next page ...

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

(7.34 xxFRMT - DISK HARDWARE FORMAT continued)

When dealing wih a floppy drive, the display/alter commands
do not allow you to alter the drive parameters, the bad
track table, or the disk partitions, and you do not write
out the header information to a floppy disk. To exit to
POOS, you must first return to the Select Drive Menu with
the Q) command.

Following is a brief description of the Drive Command Menu
commands:

1)Disp1ay/A1ter Drive Parameters

This option is used to reconfigure your drive. It allows
you to D)isp1ay the currently defined drive parameters,
A)lter them, R)ead them in from a file, or Q)uit and exit to
the Select Drive Menu. The parameters that can be
displayed/altered include the following:

number of heads on drive,
number of cylinders on drive,
physical blocks per track,
physical bytes per physical block,
shipping cylinder,
step rate,
reduced write current cylinder,
write precompensate cylinder.

2)Disp1ay/A1ter Bad Track List

The Display/Alter Bad Track Menu allows you to D)isp1ay the
currently defined bad tracks on the drive (if any), add or
delete tracks, C)lear the bad track table, get a H)e1p
message, or Q)uit and exit to the Drive Command Menu.

3)Format Drive/Tracks

The Format Drive/Tracks option allows you to select the
sector interleave and the physical tracks to format
(defaults are provided). It then verifies that you want to
format the drive and performs the format.

{CTRL-C] will abort the format. The track just formatted
is printed on the screen. If there are errors, you can
select either R)etry, Y)es (add the track to the bad track
list), or N)o (ignore the error and go on).

PAGE 7-64 o
o

c

o
c

(

(

(

c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES

(7.34 xxFRMT - DISK HARDWARE FORMAT continued)

4)Verify Tracks

The Verify Tracks option reads every sector on each track
specified. [CTRL-C] will abort the verification. The track
just verified is printed on the screen. If there are
errors. you can select either R)etry. Y)es (add the track to
the bad track list). or N)o (ignore the error and go on).

5)Display/Alter Disk Partitions

The Display/Alter Disk Partitions Menu allows you to
D)isplay the currently defined disk partitions. A)lter them.
R)ecalculate them from the current values. or Q)uit and exit
to the Drive Command Menu.

6)Write Header Information to Drive

The Write Header Information to Drive Menu allows you to
write the information to the drive header. abort the command
and return to the Drive Command Menu. 'or write the drive
information to a file. After assigning the correct
parameters to a drive. entering the bad tracks, formatting
it. and partitioning it into PDOS disk numbers. you still
need to write this information to the drive's header. This
information must reside on the disk for the BOOT ROMs and
PODS to assemble and use it.

P)Toggle Unit 2

The Toggle Unit 2 option allows you to print or send your
output to some other device that is spooled to unit 2.

Q)Select Another Drive

If you are working with a floppy drive. the Q)uit command
simply returns you to the Drive Select Menu. If you are
working with a Winchester, it asks you whether or not to
write the new drive data block down to low parameter RAM
then returns you to the Drive Select Menu.

PAGE 7-65

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

7.35 xxLDGO - LOAD AND/OR GO TO A NEW SYSTEM

Name: xxLOGO (where xx is the system 10)
Function: Load into memory and/or execute new system

Forma t: >xxLOGO
>xxLOGO {<load address>}{.<filename>}

Restrictions: xxLOGO will replace your current POOS operating
system and execute a new system .• terminating
all tasks.

Description:

xxLOGO is used to load and execute new POOS systems.

The <load address> is the location in memory where the
program is to be located. A default is assumed for the
hardware system.

The <filename> is the name of your system file. If a
filename is not given. xxLOGO will look for a POOS system in
your task space. xxLOGO will only load a file in which the
POOS 10 characters are found. After xx LOGO has loaded your
new system. it will jump to the load address and begin
execution.

xxLOGO allows you to try a new version of POOS without
modifying your boot image. Consult your Installation and
Systems Management guide for details.

To make your new system into a disk boot. you need to
follow the instructions for the MMKBT utility.

x>xxLOGO .xxOOS
DOS File Loaded: xxOOS

Found POOS at address $OOOOAEB6
DOS size is $000070CB

PAGE 7-66

'C··"·' , '

(

(

(

(-
/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 POOS UTILITIES

7.36 xxPARK - PARK DRIVES FOR SHIPPING

Name: xxPARK (where xx is the system ID)
Function: Flush buffers and park drives for shipping

Format: >xxPARK

Restrictions: Its use is system-dependent.

Description:

xxPARK parks the heads of drives that must be parked before
shipping. On some systems. it is ineffective.

This utility also flushes the disk buffer so that disk data
integrity is insured if disk buffering is enabled. It is
only necessary to flush buffers with some controllers.
Consult your Installation and Systems Management guide
for specific information.

PAGE 7-67

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 7 PDOS UTILITIES PAGE 7-68

(

('

c

6BOxO PDOS 3.2 REFERENCE MANUAL CHAPTER B BIOS, UARTs, DISK DSRs

CHAPTER B

BIOS, UARTs, DISK DSRs

All PDOS hardware dependence is confined to three modules,
namely: 1) xxBIOS, which contains CPU-related parameters
such as cold startup code, exception vector table,
exception vector setup, DIP switches, memory mapper, clock
acknowledgment, etc.; 2} xxBIOSU, which has all terminal 110
routines interfacing to various UARTs; and 3} xxBIOSW, which
has the read and write logical sector routines. Another
file, xxPARM:SR, is closely associated with the BIOS, is
included when assembling the three BIOS modules, and defines
various hardware addresses, offsets, and low parameter RAM
locations used by the BIOS.

1. MBIOS - PDOS BASIC 110 SySTEM 8-2

1.1 - xxBIOS:SR - USER BIOS MODULE B-3
1.2 - MBIOS:SR - COMMON BIOS MODULE 8-10
1.3 - MBIOS SWITCHES 8-34

2. xxBIOSU - UART DSRs 8-37

3. xxBIOSW - READ/WRITE DISK DSRs 8-43

3.1 - PDOS WINCHESTER STANDARO 8-46
3.1.1 System-Independent Drive Parameters 8-46
3.1.2 Disk Partitions on Drive Header 8-47
3.1.3 Bad Track Mappi ng 8-47
3.1.4 Drive Data Blocks (DDBs} 8-47
3.1.5 PODS Disk Numbering 8-48

PAGE 8-1

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs

1. MBIOS - PDOS BASIC I/O SYSTEM

The poas BIOS module (MBIOS) is composed of the user BIOS
module (xxBIOS:SR) and a common POOS BIOS module (MBIOS:SR).
The user BIOS module is composed of the task startup table
(R$TASK) and various routines called by the POOS common BIOS
module and the PO OS kernel. These routines are optional and
are only included when needed.

The user BIOS module is organized as follows:

B$STRT - Cold start entry address & constants
B$SRAM - System RAM address
R$TASK - Task startup table

B$CPU - Set CPU dependent parameters
B$RAM - Fix top of RAM
B$RSW - Read system switches

B$ACK - Acknowledge clock interrupt
B$LEO - Blink LED & adjust clock
B$MAP - Load system map constant
B$SAV - Save hardware registers
B$RES - Restore hardware registers

BINTB - Interrupt vector table

SCRNTB - BASIC screen table

Text from the generic BIOS file MBIOS:SR is then included
at the end of this user BIOS module.

PAGE 8-2 Ie· .. , ':' I

·C"""'·, ') ,:

c

(

(

{~

C

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

1.1 - xxBIOS:SR - USER BIOS MODULE

The user BIOS module (xxBIOS:SR) consists of tables and
routines specific to the system hardware. The following is
an annotated boiler plate of a user BIOS module.

TTL xxBIOS:SR - 68K xxBIOS
* xxBIOS:SR 11/17/86
**

* *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* xxxx xxxx xxxx xxxx xxxx xxxx *
* , xx xx xx xx xx xx *
* xxxx xxxx xxxx xxxx xxxx xxxx *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* *
* BBBBBBBB IIIIll 0000000 SSSSSS *
* BB BB II 00 00 SS *
* BB BB II 00 00 SS *
* BBBBBBBB II 00 00 SSSSSS *
* BB BB II 00 00 SS *
* BB BB II 00 00 SS *

BBBBBBBB IIlIIl 0000000 SSSSSSS *
* *
*=**

*= REVISION SCHEDULE MODULE: xxBIOS
*=
xxBIOS IDNT 3.2 BIOS IDNT label appears in QLINK map
*=
*=**

*
IFUDF RF
IFUDF TPS
IFUDF CLKADJ

*
OPT ARS,CRE
SECTION 14
PAGE

:RF EQU 0
:TPS EQU 100
:CLKADJ EQU 0

;RUN MODULE FLAG
; TI CS/SECOND
;CLOCK ADJUST

RF Run Module flag
TPS System tics per second

CLKADJ = Clock adjustment factor

MASM options for short absolute
references and cross reference

BlOSs are SECTION 14 code

PAGE 8-3

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-4

(1.1 - xxBIOS:SR - USER BIOS MODULE continued)

*
*

*

RUN MODULE SECTION

IFNE
XREF
DC.L
DC.L
EN DC

RF
R$TASK,S$PROM
SYZ.+S$SRAM ;SUPERVISOR STACK POINTER
BSTRT ;STARTUP VECTOR

* PDOS ENTRY POINT
*

XDEF B$STRT ;BIOS STARTUP ENTRY POINT
XREF B$SRAM ;ADDRESS OF SYRAM POINTER
XREF S$SRAM ;SYSTEM RAM

*
B$STRT BRA.L BSTRT ;BOOT EPROM START

DC.L PDID ;PDOS BOOT IDENTIFICATION
DC.W SYID ;SYSTEM ID

B.SRAM DC.L S$SRAM ;SYRAM ADDRESS
XREF U. 1ADR, U .1TYP
XREF U.2ADR,U.2TYP

*

* TASK STARTUP TABLE (NON-RUN MODULE)
*

IFEQ RF
XDEF R$TASK

*
R$TASK DC.B 1,U.1TYP,BIBR,%OOOO ;PORT #1

*
*
*

DC.L U.1ADR
DC.B 2 ,U. 2TYP ,BIBR, %0000. ;PORT #2
DC.L U.2ADR
DC.W 0 ;END-Of~TABLE

TASK #0

DC.B 64 ; PRIORITY
DC.B TT ;TASK TIME
DC.L 0 ;DSEG SIZE
DC.W 0 ; MAP
DC.L *-* ;PSEG START (O...MBEGN)
DC.W ;PORT #

<Insert other startup tasks here>

DC.W
ENDC

o ;END OF TABLE

Define Task Startup Table External
for Run Module assembly

, Also add EPROM 68000 startup vector

B$STRT = PDOS cold start entry addr
B$SRAM = System RAM variable
S$SRAM = System RAM (Defined at link time)

PDID = 'PDOS'
SYID = System identification

U.xADR = UART base address
U.xTYP = UART type

R$TASK = Task Startup Table

Task priority (1-255)
Task time slice
RAM size (O-use all)
Mapper constant
Task entry address (O=Monitor)
Task po rt #

o
G

()

C'· , i

c

(

("

S80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.1 - xxBIOS:SR - USER BIOS MODULE continued)

BMES01 DC.B
EVEN

$OA,$OD, 'xxBIOS ',$DATE,O

* CPU DEPENDENT PARAMETERS
*
B.PTMSK
SYID EQU

EQU
'xx'

$2S00 ;PORT DISABLE INTERRUPT MASK
;SYSTEM 10 WORD

*

* CPU DEPENDENT SETUP ROUTINES
*
B$CPU EQU * ;CPU SETUP

The B$CPU routine initializes the system. This may include
the system clock, memory mapper, interrupts, controllers, or
any other CPU dependent parameters.

RTS

FIX TOP OF RAM

B$RAM EQU ;RAM FIX

The B$RAM routine is called after memory has been sized.
It is here that the top of memory (A7) can be adjusted for
special buffers.

RTS

READ SWITCHES
*
B$RSW EQU ; READ SWITCHES

The B$RSW routine is called just before entering the POOS
kernel. It is here that system switches can be read and the
initial baud rate (OS.W), auto-start flag (ASF.B), or system
disk (SOK$.B) adjusted.

RTS
PAGE

BMES01

B.PTMSK

B$RAM In:

B$RSW In:

PAGE 8-S

BIOS startup message

Disable all port interrupts

(A2) Top of RAM
(A4) BIOS table
(AS) SYRAM
(A7) = (Top of RAM)-4 (RTS)

D4.L SYRAM (B.BAS) bit map base (=0)
DS.W Baud rate (-1=none)
DS.L B.VEC=vector base register (=0)
D7.L $OO/ASF.B/FLG$.B/SDK$.B
(A3) Interrupt vector table (8INTB)
(A4) BIOS table (B$BIOS)
(AS) Start of tasking memory
(A7) End of tasking memory

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.1 - xxBIOS:SR - USER BIOS MODULE continued)

* ACKNOWLEDGE CLOCK INTERRUPT

B$ACK EQU * ;ACKNOWLEOGE CLOCK

The B$ACK routine is called by the POOS kernel every clock
interrupt. B$ACK is to acknowledge the interrupt. Address
register AS points to SYRAM.

RTS
*

BLINK LED & ADJUST CLOCK

B$LEO EQU ; BLINK LED

The B$LED routine is called by the PDOS kernel once every
second. If there is a system LED, it is toggled to indicate
that PDOS is up and tasking properly. The BCLK variable is
also examined to determine if the system clock needs fine
tuning.

MOVE.L B_CLK(AO} ,DO ;ADJUST CLOCK?
BEQ.S iilOO02 ;N

AOD.L DO,BCLK. (AS) ;Y, ADJUST COUNT, CARRY?
BCC.S iilOOO2 ;N

ADDQ.W #1 ,FCNT. (AS) ;Y, UP COUNTER
*
iilOO02 RTS ; RETURN
*

LOAD SYSTEM MAP CONSTANT
*
B$MAP EQU ;LOAD MAP CONSTANT

The B$MAP routine is called by the POOS kernel every time a
task is scheduled or when a task's memory is referenced by
another task using system primitives. Data register DO.W
has the map constant, address register AS points to SYRAM,
and address register AO poi n·ts to the BIOS table.

RTS

B$ACK Acknowledge clock interrupt

B$LED Blink LED & adjust clock

B$MAP Load system map constant

PAGE 8-6

7(-',

'lj

c

f

(

(

c

c

c
c

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs

(1.1 - xxBIOS:SR - USER BIOS MODULE continued)

*
**********************.**************************

* SAVE 68881 REGISTERS ON USER STACK
*

OPT P=68020 , P.68881 ,OLD
*
B$SAV FSAVE -(A1)

FMOVEM.X FPO-FP7,-(A1) ;SAVE 68881 REGISTERS FPO-FP1
FMOVE.L FPCR/FPSR,-(A1) ;SAVE STATUS REGISTER
RTS :RETURN

The B$SAV routine is called by the PDOS kernel before every
task context switch if the task save flag (SVF$) is set.
Address register A1 contains the User Stack Pointer (USP)
which is saved on the Supervisor Stack
return. Address register AS points to SYRAM,
AO points to the BIOS table.

*

immediately on
and register

**

* RESTORE FROM STACK
*
B$RES FMOVE.L (A1)+,FPCR/FPSR

FMDVEM.X (A1)+,FPO-FP7
FRESTORE (A1)+
RTS ;RETURN
PAGE

The B$RES routine is called by the POOS kernel after every
task context switch if the task save flag (SVF$) is set.
Address register A1 contains the User Stack Pointer (USP)
which is restored to the 68000 USP register immediately on
return. Address register AS points to SYRAM, and register
AO points to the BIOS table.

PAGE 8-7

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, 01 SK DSRs

(1.1 - xxBIOS:SR - USER BIOS MODULE continued)

*

*

*

*
*

*
*
*

*
*
*
*

*
*
*

*

INTERRUPT VECTOR GENERATION:

The MC68000 interrupt vectors are built during PDOS
initialization according to the 'BINTB' table. Each
exception vector entry consists of a word address
for the vector and a long word, B$BIOS relative entry
for the exception processing routine.

SOFT ENTRIES INTO THE PDOS KERNEL ARE DEFINED AS FOLLOWS:

PAGE

K1$STRT = PDOS INITIALIZATION

K2$CHRI = CHARACTER IN PROCESSOR
1} DISABLE INTERRUPTS
2) DO-D7/AO-A6 ON SYSTEM STACK
3} AO.L=UART BASE AODRESS
4} DO.B=CHARACTER
5) 'MOVEA.L B$SRAM,A5'
6) 'BRA.L K2$CHRI'
7) ROUTINE WILL EXIT WITH CONTEXT SWITCH

K1$CLKI = SYSTEM CLOCK PROCESSOR
1) ONLY SR & PC ON SUPERVISOR STACK

(CLOCK PROCESSOR WILL STACK REGISTERS.)
2) 'BRA.L K1$CLKI'

K1$SERR = SYSTEM ERROR PROCESSOR
1} SUPERVISOR STACK SHOULD LOOK AS FOLLOWS:

(A7) = DC.L (MESSAGE)
DC.W LADR,R/W.I/N,CODE
DC.L ACCESS ADDRESS
DC.W INSTRUCTION REGISTER
DC.W STATUS REGISTER
DC.L PROGRAM COUNTER

2) 'BRA.L K1$SERR'

PAGE 8-8

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.1 - xxBIOS:SR - USER BIOS MODULE continued)

xxBIOS INTERRUPT STRUCTURE

BINTB EQU
DC.W
DC.L

*
$007C
BINT7-B$BIOS

;INTERRUPT TABLE
;INTERRUPT LEVEL 7 PROCESSOR

All system-dependent exception vectors are built from
three-word entries of the following format:

DC.W <address>
DC.L <routine>-B$BIOS ;ADDITIONAL VECTORS

DC.W o ;END-OF-TABLE

* INTERRUPT LEVEL 7 PROCESSOR

BINT7 EQU * ;INTERRUPT LEVEL 7

Interrupt level 7 must be processed in the system BIOS.
This may be for parity errors, abort switches, or system
memory refresh.

RTE
PAGE

;RETURN FROM INTERRUPT

SCREEN COMMAND TABLE

SFLG EQU o ;SCREEN TABLE FLAG
*
SCRNTB DC.B <code>,<letter>

DC.B 0

Finally, the common MBIOS:SR module is included to complete
the BIOS module.

INCLUDE MBIOS:SR
END

;INCLUDE COMMON BIOS MODULE

Interrupt 7 in BIOS!

If SFLG=O, Include SCRNTB
If SFLG=1, Use MBIOS screen table

PAGE 8-9

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

1.2 - MBIOS:SR - COMMON BIOS MODULE

The common BIOS module (MBIOS:SR) is included at the end of
the user BIOS module. It has many default equates that also
can be adjusted at assembly time. The BIOS configuration
table (B$BIOS) drives the PODS system and is pointed to by
the first long word of SYRAM.

In addition, MBIOS:SR contains some user-alterable, cold
start-up code which initializes the hardware, sizes memory,
sets up the RAM disk, and loads registers, then branches to
the generic PODS kernel startup entry point.

PAGE 8-10 .-", "-.,c.

c····'l;'· I .. I

c

(

(

(

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-11

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 1

2
3
4

5

6

7

8

9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41

15:03 30-Nov-86

*=

68020 PDOS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

MBIOS:SR 1D/31/86

*

* PPPPPP DDDDDD 0000 SSSS BBBBBB I! I I 0000 SSSS
* PP PP DD DD 00 00 SS SS BB BB I! 00 00 SS SS

PP PP DD DD 00 00 SS BB BB II 00 00 SS
PPPPPP DD DD 00 00 SSS BBBBBB II 00 00 SSS *

* PP DD DO 00 00 SS BB BB II 00 00 SS
* PP DD DO 00 00 SS SS BB BB II 00 00 SS SS *

* PP DDDDDD 0000 SSSS BBBBBB I II! 0000 SSSS

*
*
*
*
*

Copyright 1983-1986 Eyring Research Institute, Inc.
1450 West 820 North
Provo, UT USA
All Rights Reserved.

..

*=***

*=

*=

*=

*=

*=

*=

*=

*=

*=

*=

*=

*=

"=
"=
*=

*=

*=

"=
*=

*=

*=

*=

REVISION SCHEDULE MODULE: MBIOS

10/31/863.10

10/27186 3.9

10/08/86 3.8
09/29/86 3.7

08/07/86 3.6

05/02186 3.5
03/27/86 3.4

B_SYS with system parameters
8 megabyte BUS ERR sizing fixed
B.SLV added for default file directory level
B.WND added for window control character
TT defaults to 1
B$AXRT replaced by B_CMD
B.RDA references fixed
Port # prompt when windowing
B.CMD for command delimiter ('. ')
B.EXT for fne extension (':')
B.LEV for file level (' ;')
B.DSK for file disk ('I')

B.WC1 for character wild card ('*')

B.WC2 for field wild card ('@')
IRD anded with RZ
A6 placed on 2k boundary
K1$STRT entry w/B.BAS=Memory base, B.VEC=Vector base
B.TEV - Toggle event number
B.BRK & B.CLR - break & clear buffer characters
B.SZ1 & B.SZ2 - default create task sizes

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 2

1

2
3
4

5
6

7
8
9

15:04 30-Nov-86

"=
"=
"=
"=
"=
"=
"'=
*=

*=

*=

*=

*=

*=

*=

*=

*=

*=

*=

*=

*=
*:

*=

*=

*=

*=
*:

*=
*:

*=

*=

*=

*=

*=

*=

*=

68020 POOS Assembler 06-Nov-86
FILE: MBIOS:SR,WOISK #4

B.TTM - default task time
02/04/86 3.3 B_SAV,B_RES added
09/05/85 3.2 B$AXRT added
08/23/85 3.1 Release 3.0a -- OGF

-- Improve EQU on B.AOD ..
-- Fix ANSI terminal support

07/25/85 3.0 Release 3.0 B.RGT CHANGED TO AL __ dgf
06/03/85 2.15 R.xx values eliminated
05/14/85 2.14 BI8R -> BR

Prompt altered to handle SDS$=-l
04/19/85 2.13 Eliminated B.SYMSK
04/16/85 2.12 BINTC eliminated
04/05/84 2.11 Check for 68010
02/28/85 2.10 EPROM check on BUS error

B068 Flags
B$MPT moved to MBIOS

01/17/84 2.9 OIVU.W #2048,01 » LSR.L #11,01
JSR B$IRO(A4} » BSR.S B$IRO

01/08/84 2.8
12120184 2.7

07/16/84 2.6
04/12184 2.5

04/04/84 2.4
01/20/84 2.3
01/05/84 2.2

10/18/83 2.1

09/15/B3
06/29/83
06/23/83

HR = High RAM Address
B TPS added to BIOS table
B_PSC,B_CLS & BPSC,BCLS
B_IRO & B$IRD for init RAM disk
B_IVC.W, B$MPT FOR POOS MONITOR PROMPT
CHECK FOR RAM DISK INITIALIZED
CLEAR RAM DISK
B.PTMSK/B.SYMSK CHECK
BINTB W/O

PINT FORCES CONTEXT SWITCH
IRMDK - INITIALIZE RAM DISK
READ SWITCHES FOR BAUD RATE
RAM OISK=8
SYSRAM
SYID = SYSTEM 10
B ClK = CLOCK ADJUST FACTOR

PAGE 8-12

10
11

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
2B
29
30
31
32
33
34
35
36 *=*************-***

c···· " .-,.,:

~-'.

~/

/f

~_/

c

(680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-13

((1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

68020 PDOS Assembler 06-Nov-86
PAGE: 3 15:04 30-Nov-86 FILE: MBIOS:SR,WDISK #4

2 * EXTERNAL DEFINITIONS
3
4 00000004 XDEF B SID ;SYSTEM 10 WORD
5 00000006 XDEF B TPS ;SYSTEM TICS/SECOND
6 OOOOOOOB XDEF B CLK ;CLOCK ADJUST FACTOR
7 OOOOOOOC XDEF B TEV ;EVENTS 112-115
B 0000001C XDEF B OAF ; SYSTEM FLAGS
9 0000001E XDEF BURT ;UART DSR ROUTINES

10 0000002B XDEF B CPC ;CSC$/PSC$ = CLEAR & POSITION CODES

f 11 0000002C XDEF B MSZ ;MAIL ARRAY SIZE
12 0000002E XDEF B PDM . ;PDOS MONITOR PROMPT
13 00000034 XDEF B RDK ;RAM DISK PARAMETERS
14 0000003E XDEF BACK ;SYSTEM CLOCK ACKNOWLEDGE
15 00000042 XDEF B CTB ;SYSTEM CREATE TASK
16 00000046 XDEF B KTB ;SYSTEM KILL TASK
17 0000004A XDEF BLED ;SYSTEM LED
18 0000004E XDEF B MAP ;SYSTEM SCHEDULE TASK (LOAD MAP)
19 00000052 XDEF B PRT ;SYSTEM PROTECT
20 00000056 XDEF B PSC ;POSITION CURSOR

f.
21 0000005A XDEF B CLS ;CLEAR SCREEN
22 0000005E XDEF BIRD ; INIT RAM DISK
23 00000062 XDEF BDIT ;DISK INITIALIZATION (EXTERNAL ABSOLUTE)
24 00000066 XDEF B DOF ;DISK MOTORS OFF (EXTERNAL ABSOLUTE)
25 0000006A XDEF B RSE ;READ SECTOR (EXTERNAL ABSOLUTE)
26 0000006E XDEF B WSE ;WRITE SECTOR (EXTERNAL ABSOLUTE)
27 00000072 XDEF B SFN ;AUTO START FILE NAME
28 00000074 XDEF B SCT ;BASIC SCREEN TABLE
29 00000076 XDEF B MES ;BIOS MESSAGE
30 00000078 XDEF B SAY ;SAVE ON STACK

(' 31 0000007C XDEF B RES ;RESTORE FROM STACK
32 00000080 XDEF B CMD ;MONTIOR COMMAND
33 OOOOOOAO XDEF B SYS ;SYSTEM PARAMETERS
34
35 00000000 XDEF B.PTMSK ;DISABLE PORT INTERRUPT MASK
36 00000000 XDEF B$BIOS ;BIOS CONFIGURATION TABLE
37 00000020 XDEF B.RDE ;# OF RAM DISK DIRECTORY ENTRIES
38 00000008 XDEF B.RDU ;RAM DISK UNIT #

39 OOOOOOFF XDEF B.RDZ ;RAM DISK SIZE
40 00000064 XDEF B.TPS ;SYSTEM TICS/SECOND
41 00000001 XDEF B.ADD ;RECALL LINE CHARACTER
42 00000008 XDEF B.LFT ;MOVE CURSOR LEFT CHARACTER
43 OOOOOOOC XDEF B.RGT ;MOVE CURSOR RIGHT CHARACTER
44 00000004 XDEF B.ORT ;DELETE RIGHT CHARACTER
45 0000007F XDEF B.DLT ;DELETE LEFT CHARACTER
46 00000003 XDEF B.BRK ;PDOS BREAK CHARACTER
47 00000018 XDEF B.CLR ;PDOS CLEAR BUFFER CHARACTER

(" 48 00000018 XDEF B.WND ;PDOS WINDOW CONTROL CHARACTER

(=

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 4

2
3
4
5
6
7
8
9

10
11

15:04 30-Nov-86

00000004
00000020
00000001
00000040
0000002E
0000003A
0000003B
0000002F
0000002A
00000040
00000001

68020 PDOS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

XDEF B.SZ1 ;DEFAULT Q TASK SIZE
XDEF B.SZ2 ;DEFAULT CT TASK SIZE
XDEF B. TTM ;DEFAU~T CT TASK TIME
XDEF B.TEV ;TOGGLE EVENT #
XDEF B.CMD ;COMMAND DELIMITER ('. ')
XDEF B.EXT ;FILE EXTENSION (':')
XDEF B.LEV ;FILE LEVEL ('; ')
XDEF B.DSK ;FILE DISK ('/')
XDEF B.WCl ;CHARACTER WILD CARD ('*')

XDEF B.WC2 ;FIELD WILD CARD ('Q')
XDEF B.SLV ;FILE DIRECTORY LEVEL

PAGE 8-14 0':··' , .

G

c

c
c

{

(

(

(

c

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 5

2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

15:04 30-Nov-86
68020 PDOS Assembler 06-Nov-S6
FILE: MBIOS:SR,WDISK #4

*
*
*

*
*

*

*
*

*

EXTERNAL REFERENCES

LINKS TO KERNEL MODULES

XREF.l Kl$STRT
XREF.l Kl$CLKI
XREF.l K1$SERR
XREF.l K2$PINT
XREF.l K2$CHRI
XREF.l K2$CHAR

;PDOS KERNEL ENTRY POINT
;CLOCK ENTRY
;EXTERNAL SYSTEM ERROR
;PORT INTERRUPT SERVICE ROUTINE
;EXTERNAL CHARACTER IN
;INSERT CHARACTER

LINKS TO SYRAM & SYSTEM CONSTANTS

XREF.1 SYZ. ,MBZ.
XREF.l FCNT. ,BCLK.
XREF.l BFLG. ,F681.
XREF.1 MAPB. ,NMB.
XREF.l PORT. ,NPS.
XREF.l NCP., lOUT.
XREF.l TQUE., nST.
XREF.l NTB.,TBZ.
XREF .1 TMTF. ,TMBF.
XREF.l NTM., TMZ.
XREF.1 TMSP. ,NTP.
XREF.l DEVT. ,NEV.
XREF.l XCHB. ,NCB.
XREF.l XFSL. ,NFS.
XREF .1 TBE$

LINKS TO UART MODULE

XREF.l U$lDSR,U$2DSR
XREF.l U$3DSR,U$4DSR

LINKS TO R/W SECTOR MODULE

XREF.l W$XWSE,W$XRSE
XREF.l W$XDIT,W$XDOF

*
ODOOA55A XPID
50444F53 PDID

EQU
EQU

$A55A
'POOS'

;PDOS ID

PAGE 8-15

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-16

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued) c
68020 PDOS Assembler 06-Nov-B6

PAGE: 6 15:04 30-Nov-86 FILE: MBIOS:SR,WDISK #4

1 ***

2 SYSTEM DEFAULT PARAMETERS
3 ***

4
5 IFUDF TPS :TPS EQU 100 ; TICS/SECOND
6 IFUDF BPS :BPS EQU 256 ;BYTES/SECTOR
7 IFUDF AS :AS EQU 1 ;AUTO START FLAG
8 IFUDF MZ :MZ EQU 256 ;MAIL ARRAY SIZE
9 IFUDF TT :TT EQU 1 ;TASK TIME

10 IFUDF HR :HR EQU 0 ;HIGHEST MEMORY ADR
11
12 IFUDF B.ADD :B.AOD EQU 'AI-I@I ;RECALL LAST LINE
13 IFUDF B.LFT :B.LFT EQU 'HI-I@' ;MOVE LEFT
14 IFUDF B.RGT :B.RGT EQU I L '-'01' ;MOVE RIGHT
15 IFUDF B.DRT :B.DRT EQU 10'-101' ;DELETE RIGHT
16 IFUDF B.DLT :B.DLT EQU $7F ;DELETE LEFT
17 IFUDF B.BRK :B.BRK EQU 'c'-Ia' ;PDOS BREAK
18 IFUDF B.CLR :B.CLR EQU 'X'-'@' ;CLEAR BUFFER
19 IFUDF B.WND :B.WND EQU 'XI_ I @' ;PDOS WINDOW CONTROL CHARACTER
20 IFUDF B.CMD :B.CMD EQU , , ;COMMAND DELIMITER
21 IFUDF B.EXT :B.EXT EQU ': I ;FILE EXTENSION q'
22 IFUDF B.LEV :B.LEV EGU I; I ;FILE LEVEL \~

23 IFUDF B.DSK :B.DSK EGU ' /' ;FILE DISK
24 IFUDF B.WCl :B.WCl EQU ' .. , ;CHARACTER WILD CARD
25 IFUDF B.WC2 :B.WC2 EGU '@' ;FIELD WILD CARD
26 IFUDF SO :SD EGU 0 ;DEFAULT DISK #
27 IFUDF SF :SF EGU 0 ;SYSTEM FLAGS
28 IFUDF BR :BR EQU 0 ;INITIAL BAUD RATE
29 IFUDF LV :LV EQU 1 ;FILE DIRECTORY LEVEL
30 IFUDF CPSC :CPSC EQU $M009B3D ;CLEAR & POSITION CODES
31 IFUDF EV112 :EVl12 EQU TPS/5 ;EVENT 112
32 IFUDF EV113 :EV113 EGU 1 ;EVENT 113
33 IFUDF EV114 :EV114 EGU 10 ;EVENT 114
34 IFUDF EV115 :EV115 EQU 20 ;EVENT 115
35 IFUDF B. SZ1 :B. SZ1 EQU 4 ;DEFAULT @ TAS~ SIZE
36 IFUDF B.SZ2 :B.SZ2 EQU 32 ;DEFAULT CT TASK SIZE
37 IFUDF B.TEV :B.TEV EGU 64 ;DEFAULT TOGGLE EVENT #
38 IFUDF B.BAS :B.BAS EGU 0 ;DEFAULT MEMORY MAP BASE
39 IFUDF B.vec :B.VEC EQU 0 ;DEFAULT VECTOR BASE
40 ..
41 00000064 B.TPS EQU TPS ;EXTERNAL TICS/SECOND
42 00000001 B.TTM EGU TT ;TASK TIME SLICE
43 00000001 B.SLV EQU LV ;FILE DIRECTORY LEVEL

c

(

(

(

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - M8IOS:SR - COMMON BIOS MODULE continued)

PAGE: 7

1

2

3
4

5

6

7

8

9

10
11

12
13
14 0/00000000:
15
16

15:04 30-Nov-86
68020 PO OS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

RAM DISK PARAMETERS

*

00000008 B.RDU
OOOOOOFF B.RDZ
00000020 B.RDE

*

IFUDF
IFUDF
IFUDF
IFUDF

EQU
EQU
EQU

IFNE
XREF
ENDC

RU :RU EQU 8
RZ : RZ EQU 255

;RAM DISK UNIT
;RAM DISK SIZE

RE :RE EQU (RZ/8}!7+1
RA :RA EQU 0

;# OF DIRECTORY ENTRIES
;RAM DISK ADDRESS

RU
RZ
RE

(RA>O}&(RA<128)
B.RDA

;RAM DISK UNIT
;RAM DISK SIZE
;# OF DIRECTORY ENTRIES

;EXTERNAL RAM DISK (0<RA<128)

17 0/00000000: IFNE (RA<=O}!(RA>127)
18 00000000 XDEF B.RDA ;RAM DISK ADDRESS
19 00000000 B.RDA EQU RA ;RAM DISK ADDRESS (RA>127)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

ENDC

* DEFAULT FLAGS

*

*

IFUDF
IFUDF

FBA
FOR

:FBA EQU 0

:FDR EQU 0
;BASIC
;DIRECTORY FLAG

MBIOS SUBROUTINE FLAGS

*
IFUDF
IFUDF

IRD
ANS

: I RD EQU 1 * R Z
:ANS EQU 1

;RAM DISK INITIALIZATION
;ANSI 3.64 PSC/CSC

PAGE 8-17

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs. DISK DSRs PAGE 8-18 o
(1.2 - MBIOS:SR - COMMON 8IOS MODULE continued)

68020 PDOS Assembler 06-Nov-86
PAGE: 8 15:04 30-Nov-86 FILE: MBIOS:SR,WDISK #4

2 * MBIOS SUBROUTINES
3 **************************************~******************

4 *
5 IFDEF B$ACK : I BACK SET $600DOOOD+(B$ACK-B$BIOS-B_ACK-2)&$FFFF
6 4E75DOOO IFUDF B$ACK : I BACK SET $4E75000D
7 IFDEF B$CTB : IBCTB SET $60000000+(B$CTB-B$BIOS-B_CTB-2)&$FFFF
8 4E750000 IFUDF B$CTB : IBCTB SET $4E750000
9 IFDEF B$KTB : IBKTB SET $60000000+(B$KTB-B$BIOS-B_KTB-2)&$FFFF

10 4E750000 IFUDF B$KTB : IBKTB SET $4E750000
11 IFDEF B$LED :IBLED SET $60000000+(B$LED-B$BIOS-B_LED-2)&$FFFF ()
12 4E750000 IFUDF B$LED :IBLED SET $4E750000
13 IFDEF B$MAP :IBMAP SET $60000000+(B$MAP-B$BIOS-BJMAP-2)&$FFFF
14 4E750000 IFUDF B$MAP :IBMAP SET $4E750000
15 IFDEF B$PRT : IBPRT SET $60000000+(B$PRT-B$BIOS-B_PRT-2)&$FFFF
16 4E750000 IFUDF B$PRT : IBPRT SET $4E750000
17 600001F4 IFDEF B$PSC : IBPSC SET $60000000+(B$PSC-B$BIOS-B_PSC-2)&$FFFF
18 IFUDF B$PSC : IBPSC SET $4E750000
19 60000236 IFDEF B$CLS : IBCLS SET $60000000+(B$CLS-B$BIOS-B_CLS-2)&$FFFF
20 IFUDF B$CLS :IBCLS SET $4E750000
21 60D0015C IFDEF B$IRD : IBIRD SET $60000000+(B$IRD-B$BIOS-B_IRD-2)&$FFFF
22 IFUDF B$IRD :IBIRD SET $4E7500DO
23 IFDEF B$SAV :IBSAV SET $60000000+(B$SAV-B$BIOS-B_SAV-2)&$FFFF
24 4E750000 IFUDF B$SAV : I BSAV SET $4E750000
25 IFDEF B$RES : IBRES SET $60000000+(B$RES-B$BIOS-B_RES-2)&$FFFF
26 4E750000 IFUDF B$RES :IBRES SET $4E750000
27 IFDEF B$CMD :IBCMD SET $6DOOOOOO+(B$CMD-B$BIOS-B_CMD-2)&$FFFF
28 4E750000 IFUDF B$CMD : IBCMD SET $4E750000

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-19

c (1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

68020 PODS Assembler 06-Nov-86
PAGE: 9 15:04 30-Nov-86 FILE: MBIOS:SR,WDISK #4

1 ***

2 BIOS CONFIGURATION TABLE
3 *
4 * *NOTE: PRESERVE THE ORDER OF THIS TABLE!
5 *
6 0/00000000:00000000 B$BIOS DC.L R$TASK-B$BIOS ;TASK STARTUP TABLES (EXTERNAL ABSOLUTE)
7 00000004 B SID EQU *-B$BIOS ;SYSTEM 10 WORD
8 0/00000004:0000 DC.W SYID
9 00000006 B TPS EQU *-B$BIOS ;SYSTEM TICS/SECOND

10 0/00000006:0064 DC.W TPS
11 00000008 B CLK EQU *-B$BIOS ;CLOCK ADJUST FACTOR
12 0/00000008:00000000 DC.L CLKADJ
13 OOOOOOOC B TEV EQU *-B$BIOS ;EVENTS 112-115
14 0/0000000C:00000014 DC.L EV112
15 0/00000010:00000001 DC.L EV113
16 0/00000014:0000000A DC.L EV114
17 0/00000018:00000014 DC.L EV11S
18 0000001C B OAF EQU *-B$BIOS ;SYSTEM FLAGS
19 0/0000001C:00 DC.B 0
20 0/00000010: 01 DC.B AS ;AUTO-START FLAG

(
21 0/0000001E:00 DC.B SF ;SYSTEM FLAGS
22 0/0000001F:DO oC.B SO ;SYSTEM DISK
23 0000001E BURT EQU *-B$BIOS-2 ;UART DSR ROUTINES
24 0/00000020:**** OC.W U$1oSR-B$BIOS
25 0/00000022:**** OC.W U$2DSR-B$BIOS
26 0/00000024:**** DC.W U$3DSR-B$BIOS
27 0/00000026:**** DC.W U$4DSR-B$BIOS
28 00000028 B CPC EQU *-B$BIOS ;CSC$/PSC$ = CLEAR & POSITION CODES
29 0/00000028:AA009B3D DC.L CPSC
30 0000002C B MSZ EQU *-B$BIOS ;MAIL ARRAY SIZE
31 0/0000002C:0100 DC.W MZ
32 0000002E B PDM EQU *-B$BIOS ; PODS MONITOR PROMPT
33 0/0000002E:600001F6 BRA.L B$MPT
34 00000032 EQU *-B$BIOS ; SPARE
35 0/00000032:0000 DC.W 0
36 00000034 B RDK EQU *-B$BIOS ;RAM DISK PARAMETERS
37 0/00000034:0008 DC.W B.RDU ;RAM DISK UNIT
38 0/00000036: DOFF DC.W B.RDZ ;RAM DISK SIZE
39 0/00000038:00000000 DC.L B.RDA ;RAM DISK ADDRESS
40 0/0000003C:0020 DC.W B.RDE ;# OF DIRECTORY ENTRIES

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs PAGE 8-20 o
(1.2 - MBIOS:SR - COMMON BIOS MODULE continued) o

68020 POOS Assembler 06-Nov-86
PAGE: 10 15:04 30-Nov-86 FILE: MBIOS:SR,WDISK #4

1 ***

2 * BIOS CONFIGURATION TABLE (continued)
3 *
4 0000003E BACK EQU *-B$BI0S ;SYSTEM CLOCK ACKNOWLEDGE
5 0/0000003E:4E750000 DC.L IBACK
6 00000042 B CTB EQU *-B$BI0S ;SYSTEM CREATE TASK
7 0/00000042:4E750000 DC.L IBCTB
8 00000046 B KTB EQU *-B$BIOS ;SYSTEM KILL TASK
9 0/00000046:4E75DOOO DC.L IBKTB

10 0000004A BLED EQU *-B$BI0S ;SYSTEM LED
11 0/0000004A:4E750000 DC.L IBLED
12 0000004E B MAP EQU *-B$BIOS ;SYSTEM SCHEDULE TASK (LOAD MAP)
13 D/0000004E:4E750000 DC.L IBMAP
14 00000052 B PRT EQU *-B$BIOS ;SYSTEM PROTECT
15 0/00DOO052:4E750000 DC.L IBPRT
16 00000056 B PSC EQU *-B$BIOS ;POSITION CURSOR
17 0/00000056:600001F4 DC.L IBPSC
1B 0000005A B CLS EQU *-8$BIOS ;CLEAR SCREEN
19 0/0000005A:60D00236 DC.L IBCLS
20 0000005E BIRD EQU *-8$8IOS ;INIT RAM DISK
21 0/0000005E:6000015C DC.L IBIRD
22 00000062 B DIT EQU *-8$BIOS ;DISK INITIALIZATION (EXTERNAL ABSOLUTE)
23 0/00000062:******** DC.L W$XDIT-8$BIOS
24 00000066 B DOF EQU *-8$BI0S ;DISK MOTORS OFF (EXTERNAL ABSOLUTE)
25 0/00000066:******** DC.L W$XDOF-8$BIOS
26 0000006A 8 RSE EQU *-B$BI0S ;READ SECTOR (EXTERNAL A8S0LUTE)
27 0/0000006A:******** DC.L W$XRSE-B$BIOS
28 0000006E 8 WSE EQU *-8$8IOS ;WRITE SECTOR (EXTERNAL ABSOLUTE)
29 0/0000006E:******** DC.L W$XWSE-B$8IOS
30 00000072 8 SFN EQU *-8$BIOS ;AUTO START FILE NAME
31 0/00000072:00CE DC.W STRTFL-B$BIOS
32 00000074 B SCT EQU *-B$BIOS ;BASIC SCREEN TABLE
33 0/00000074:02A6 DC.W SCRNTB-B$BIOS
34 00000076 B MES EQU *-B$BIOS ;BIOS MESSAGE
35 0/00000076:0000 DC.W BMES01-B$BIOS
36 00000078 B SAY EQU *-B$BI08 ;SAVE ON STACK
37 0/00000078:4E750000 DC.L I BSAV
38 0000007C B RES EQU *-B$BI08 ;RESTORE FROM STACK
39 0/0000007C:4E7500DO DC.L IBRES
40 00000080 B CMD EQU *-B$8IOS ;MONITOR COMMANDS
41 0/00000080:4E750000 DC.L IBCMD
42 0/00000084:000EOOOO DCB.B $AO+B$BIOS-*,O ;SPARES

c
c

«

(

(-

(

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 8IOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 11 15:04 30-Nov-86
68020 PDOS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

2
3
4

5

6
7

8

9

O/OOOOOOAO:****
0/000000A2:****
0/000000A4:****
0/000000A6:****
0/000000A8:****
O/OOOOOOAA:****
O/OOOOOOAC:****
O/OOOOOOAE:****
O/OOOOOOBO:****
0/000000B2:****
0/000000B4:****
0/000000B6:****
0/000000B8:****
O/OOOOOOBA:****
O/OOOOOOBC:****
O/OOOOOOBE:****
O/OOOOOOCO:****
0/000000C2:****
0/000000C4:****
0/000000C6:****
0/000000C8:****
O/OOOOOOCA:****
O/OOOOOOCC:****

*
OOOOOOAO B SYS

PO OS SYSTEM PARAMETERS

EQU *-B$BIOS
DC.W TBE$
DC.W MAPB.
DC.W NMB.
DC.W PORT.
DC.W NPS.
DC.W NCP.
DC.W lOUT.
DC.W TQUE.
DC.W TLST.
DC.W NTB.
DC.W TBZ.
DC.W TMTF .
DC.W TMBF.
DC.W NTM.
DC.W TMZ.
DC.W TMSP.
DC.W NTP.
DC.W DEVT.
DC.W NEV.
DC.W XCHB.
DC.W NCB.
DC.W XFSL.
DC.W NFS.

;SYSTEM PARAMETERS
;$AO = TASK CONTROL BLOCK SIZE
;$A2 = SYSTEM MEMORY BIT MAP
;$A4 • MAP SIZE
;$A6 = INPUT CHARACTER BUFFERS
;$A8 = # OF I/O PORTS
;$AA = # OF CHARACTERS/PORT
;$AC = OUTPUT CHARACTER BUFFERS
;$AE = TASK QUEUE
;$BO = TASK LIST
;$B2 = MAX # OF TASKS
;$B4 = TASK LIST ENTRY SIZE
;$B6 = TO/FROM INDEX TABLE
;$B8 = TASK MESSAGE BUFFERS
;$BA = # TASK MESSAGES
;$BC = TASK MESSAGE SIZE
;$BE = TASK MESSAGE POINTERS
;$CO = # OF TASK MESSAGE POINTERS
;$C2 = DELAY EVENT LIST
;$C4 = # OF DELAY EVENTS
;$C6 = CHANNEL BUFFERS
;$C8 = # OF BUFFERS
;$CA = FILE SLOTS
;$CC = # OF FILE SLOTS

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

MISCELLANEOUS STRING CONSTANTS
*

32 0/000000CE:5359245354525400 STRTFL DC.B 'SY$STRT' ,0 :FILE START NAME
33 *
34 0/000000D6:53592444534BOO RDNM
35 O/DOOOOODD: O/OOOOOODE

DC.B
EVEN

'SY$DSK' ,0 ;RAM DISK NAME

PAGE 8-21

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 12 1S:04 30-Nov-86

2
3
4
S
6
7
8
9 0/000000DE:2A7AFF20

10 0/000000E2:23CDOOOOOOOO
11 0/000000E8:4FED****
12 0/000000EC:2C4F
13 0/000000EE:41FA0026
14 0/000000F2:23C800000010
1S 0/000000F8:B1F900000010
16 0/000000FE:670C
17 0/00000100:227900000010
18 0/00000106:32FC4EF9
19 0/0000010A:2288
20
21 0/0000010C:42S0***·
22 0/00000110:42CO
23 0/00000112:S4S0****
24
2S 0/0000011S:200E
2S 0/00000118:0680000007FF
27 0/0000011E:0280FFFFF800
28 0/00000124:2C40
29 0/0000012S:2E4E
30
31 0/00000128:49FAFEOS
32 0/0000012C:
33
34

68020 PDOS Assembler OS-Nov-8S
FILE: MBIOS:SR,WOISK #4

PDOS STARTUP CODE

*
1. Set map registers

* 2. Start system clock
3. Return parameters

*
BSTRT MOVEA.L B.SRAM(PC),AS

MOVE.L AS,B$SRAM
LEA.L SYZ.(AS),A7
MOVEA. L A7,AS

*
BSTR02

*
BSTR04

LEA.L BSTR04(PC),AO
MOVE.L AO,lS
CMPA.L lS,AO

BEQ.S BSTR02
MOVEA.L lS,Al
MOVE.W #$4EF9,(Al)+
MOVE.L AO,(Al)

CLR.W FS8l . (AS)
DC.W $42CO
ADOQ.W #2,F681.(AS)

MOVE.L AS,DO
ADD!. L #2048-1,00
AND!. L #-2048,00
MOVEA.L DO,A6

;POINT TO SYRAM
;SAVE IN RAM
;SET SUPERVISOR STACK POINTER
;POINT TO START OF TASKING MEMORY

;SET ILLEGAL ERROR
; CHANGED?
;Y
;N
;OUTPUT 'JMP.L <AO>'

;DEFAULT TO S8000
; 'MOVE.W CCR.DO'
;MUST BE S8010 IF THIS IS EXECUTED

;PUT TASKING MEMORY ON 2K BOUNDARY

MOVEA.L AS,A7 ;RESTORE STACK POINTER
IFOEF B$CPU BSR.L B$CPU ;00 HARDWARE DEPENDENT SETUPS
LEA.L B$BIOS(PC),A4 ;POINT TO BIOS
IFNE
LEA.L
ENDC

HR
HR.A2
HR

;POINT TO TOP OF RAM

PAGE 8-22

1(--'

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, OISK OSRs

4(-' (1.2 - MBIOS:SR - COMMON BIOS MOOULE continued)

c

PAGE: 13

2
3
4 0/0000012C:

15:04 30-Nov-86

5 0/0000012C:203C""""""""
6 0/00000132:220E
7 0/00000134:E089
8 0/00000136:E689
9 0/00000138:9081

10 0/0000013A:244E
11 0/0000013C:41FA0028
12 0/00000140: 23C800000008
13 0/00000146:B1F900000008
14 0/0000014C:670C
15 0/0000014E:227900000008
16 0/00000154:32FC4EF9
17 0/00000158:2288
18
19 0/0000015A:4A52
20 0/0000015C:5380
21 0/0000015E:6706
22 0/00000160:04FC0800
23 0/00000164:60F4
24

68020 PO OS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

* ..

..

SIZE MEMORY

IFEQ HR
MOVE.L #MBZ.,DO
MOVE.L A6,D1
LSR.L #8,D1
LSR.L #3,D1
SUB.L D1,DO
MOVEA.L A6,A2
LEA.L BSTR10(PC),AO
MOVE.L AO,8
CMPA.L 8,AO

BEQ.S BSTR06
MOVEA.L 8,A1
MOVE.W #$4EF9,(A1)+
MOVE. LAO, (A1)

BSTR06 TST.W (A2)
SUBQ. L #1, DO

BEQ.S BSTR08
AOOA.W #$800,A2
BRA.S BSTR06 ..

;GET # OF MAP 2K BLOCKS

;01/2048

;POINT TO BEGINNING OF TASKING MEMORY

;SET NEW BUS ERROR
; CHANGED?
;Y
;N
;OUTPUT 'JMP.L <AO>'

;BUS ERROR?
;N, TRY MORE?
;Y
;N, MOVE TO NEXT

25
26

0/00000166 BSTR08 EQU
ENDC

*
HR

27
28
29
30
31
32 0/00000166:2E4A
33
34 0/00000168:2240
35 0/0000016A:22CC
36 0/0000016C:9EEC002C
37 0/00000170:22CF
38 0/00000172:22EC0034
39 0/00000176:4291

*
*** ..
* ..

BUS ERROR OR 00=0
START SYSTEM CLOCK

BSTR10 MOVEA.L A2,A7
IFDEF B$RAM

;A7 = TOP OF RAM
BSR.L B$RAM ;FIX TOP OFF RAM

MOVEA. L AS ,A1
MOVE. L A4, (A1)+
SUBA.W BJMSZ(A4),A7

;POINT TO PDOS SYSTEM RAM
;BI0S. = A4
;MAKE ROOM FOR MAIL ARRAY

MOVE.L A7,(A1)+ ;MAIL. = MAIL ARRAY POINTER
MOVE.L B_RDK(A4),{A1)+ ;RDKN. = RAM DISK UNIT/SIZE
CLR.L (A1) ;RDKA. = RAM DISK ADDRESS

PAGE 8-23

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 14 15:04 30-Nov-86

2 *
3 *
4 0100000178:3E2C0036
5 0/0000017C:671E
6 0/0000017E:3007
7 0100000180:COFC0100
8 0/00000184:222C0038
9 0/00000188:6604

10 0/0000018A:9FCO
11 0/0000018C:220F
12
13 0/0000018E: 2281 BSTR12
14 0/00000190:
15 0/00000190:2041
16 0/00000192:0C68A55A001C
17 0/00000198:6702
18 0/0000019A:6120
19
20 *
21
22 *
23
24 *
25 *
26 *
27 *
28 *
29 *
30 *
31 *
32 0/0000019C:7AFF BSTR14
33 0/0000019E:2E2C001C
34 0/000D01A2:47FAFESC
3S 0/000001A6:3B7COOOO****
36
37 0/000001AC:283COOOOOOOO
38 0/000001B2:2C3COOOOOOOO
39 0/000001B8:6000****

68020 PDOS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

FIX RAM DISK

MOVE.W B_RDK+2(A4} ,07 ;RAM DISK?
BEQ.S BSTR14 ;N

MOVE.W 07,00 ;Y
MULU.W #BPS,DO ;GET SIZE
MOVE.L B_RDK+4(A4} ,01 ;ADDRESS DEFINED?

BNE.S BSTR12 ;Y
SUBA.L DO,A7 ;N, MAKE ROOM FOR RAM DISK
MOVE.L A7,Dl

MOVE.L D1,(Al) ;STORE RAM DISK ADDRESS
IFNE IRD
MOVEA.L Dl,AO ;GET ADDRESS
CMPLW #XPID,28(AO) ;ALREADY INITIALIZED?

BEQ.S BSTR14 ;Y
BSR.S B$IRD ;N, INIT RAM DISK (Dl.L = DISK ADR)
ENDC

SETUP FINAL REGISTERS & ENTER PO OS

D4.L = MEMORY BIT MAP BASE ADDRESS
DS.W = BAUD RATE (-l=NONE)
D6.L = EXCEPTION VECTOR BASE ADDRESS
D7.L = $00 1 AUTO.B 1 FLG$.B 1 SDK$.B
(A3) = VECTOR TABLE
(A4) = BIOS TABLE
(A6) = START OF TASKING MEMORY
(A7) = END OF TASKING MEMORY

MOVEQ.L #-1 ,OS ;USE START TABLE FOR BAUD RATES
MOVE.L B_DAFCA4).07 ;SET D7.L
LEA.L BINTB(PC) ,A3 ;POINT TO INTERRUPT TABLE
MOVE.W #FBA«8+FDR,BFLG.(A5) ;BFLG.B, DFLG.B
IFDEF B$RSW : BSR.L B$RSW ;GET SWITCHES
MOVE.L #B.BAS,D4 ;MEMORY BASE
MOVE.L #B.VEC,D6 ;VECTOR BASE

. BRA.L Kl$STRT ;GOOOOO!!! !

PAGE 8-24 C· .~.'. : ' • .j

c

c
c

(680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-25

((1.2 - MBIOS:SR - COMMON BIOS MOOULE continued)

68020 POOS Assembler 06-Nov-86
PAGE: 15 15:04 30-Nov-8S FILE: MBIOS:SR,WDISK #4

2 INITIALIZE RAM DISK
3
4 * 01.L = RAM DISK ADDRESS
5 D7.W = NPS
6 * (A4) = BIOS
7 *

8 O/OOOOOlBC: IFNE IRD
9 0/000001BC:2041 B$IRD MOVEA. L 01,AO ;POINT TO RAM DISK

10 0/000001BE:3007 MOVE.W 07,00 ;GET SIZE
11 0/000001CO:COFC0100 MULU.W #BPS,DO ;GET # OF BYTES
12 *

13 0/000001C4:4298 iilIR02 CLR.L (AO)+ ;CLEAR RAM DISK
14 0/000001C6:5980 SUBQ.L #4,00 ;DONE?
15 0/000001C8:6EFA BGT.S iilIR02 ;N
16 0/000001CA:2441 MOVEA.L 01,A2 ;Y, POINT TO RAM DISK
17 0/000001CC:3C2C003C MOVE.W B_ROK+8(A4) ,06 ;OS.W = NDE
18 0/0DOO01DO:41EA0018 LEA.L 24(A2) ,AO ;POINT TO HEADER INFORMATION
19 0/00000104:43FAFFOO LEA.L RONM(PC) ,A1 ;POINT TO NAME
20 *

21 0/00000108:1409 iilIR04 MOVE.B (Al)+. (A2)+ ;MOVE IN NAME, DONE?
22 0/000001DA:S6FC BNE.S iilIR04 ;N
23 0/000001DC:30C6 MOVE.W OS, (AO)+ ;Y, 24 = SAVE NOE
24 0/000001DE:30C7 MOVE.W 07, (AO)+ 26 = SAVE NPS
25 0/000001EO:20BCA55AOOOO MOVE.L #XPID«16, (AO) ;28/30 = ID/SIDES-DENSITY
2S 0/0DOO01E6:5S48 ADDQ.W #3,AO ;POINT TO 31
27 0/000001E8:343CFFOO MOVE.W #-32*8,02 ;224 MAP BYTES IN HEADER
28 0/DOOO01EC:3S0S MOVE.W 06,03 ;CALCULATE # OF DIRECTORY SECTORS
29 0/000001EE:E64E LSR.W #3,06 ;8 ENTRIES/SECTOR
30 01 OOOOOlFO: EBDB LSL.B #8-3,03 ;PARTIAL SECTOR?

('
31 0/DOOO01F2:S702 BEQ.S alIR06 ;N
32 0/0OOOO1F4:524S AOOQ.W #1,DS ;Y, ALLOCATE WHOLE SECTOR
33 *
34 0/00OOO1F6:5246 iilIROS ADDQ.W #1,DS ; BIT MAP SECTORS
35 0/00OO01F8:0S420800 ADDI.W #BPS*8,02
36 0/OOOOO1FC:B447 CMP.W 07,02 ;ENOUGH SECTORS?
37 0/000001FE:S5F6 BLO.S iilIROS ;N
38 0/00000200:7S01 MOVEQ.L #1,03 ;Y, GET MASK
39 0/00000202:7200 MOVEQ.L #0,01 ;START WITH SECTOR ZERO

(

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 16 15:04 30-Nov-86

1
2
3
4 0/00000204:E21B
5 0/00000206:6404
6 0/0000020B:5248
7 0/0000020A:5000
8
9 0/0000020C:B246

10 0/0000020E:6502
11 0/00000210:B710
12
13 0/00000212:5241
14 0/00000214:B247
15 0/00000216:65EC
16 0/00000218:5248
17
18 0/0000021A:2008
19 0/0000021C:4AOO
20 0/0000021E:6704
21 0/00000220:5008
22 0/00000222:60F6
23
24 0/00000224:4E75
25

68020 POOS Assembler 06-Nov-86
FILE: MBIOS:SR,WOISK #4

***********************-*************************

CREATE RAM DISK DIRECTORY
*
CilIR08 ROR.B #1 ,03 ;MOVE TO NEXT SECTOR, WRAP AROUND?

BCC.S CilIR10 ;N
AOOQ.W #l,AO ;Y, MOVE TO NEXT BYTE
ST.B (AO) ;ALLOCATE 8 SECTORS

*
CilIR10 CMP.W 06,01 ;Y I ALLOCATE SECTOR?

BLO.S CilIR12 ;N. CLEAR BUFFER
EOR.B 03,(AO) ;Y

*
CilIR12 AOOQ.W #1,01 ;MOVE TO NEXT SECTOR

CMP.W 07,01 ;OONE?
BLO.S CilIR08 ;N

AOOQ.W #1 ,AO ;Y, USE LAST WORD

CilIR14 MOVE.L AO,OO ;GET ADDRESS
TST.B 00 ;OONE (256 BYTE BOUNDARY)?

BEQ.S CilIR16 ;Y
ST.B (AO)+ ;N, FINISH ALLOCATING SECTOR
BRA.S iilIR14

*
CilIR16 RTS ;RETURN

ENOC

PAGE 8-26

c····· ..

()

()

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

4[(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

(

(~'

PAGE: 17

2
3
4
5 0/00000226:
6
7
8

15:04 30-Nov-86

9 0/00000226: 242E****
10 0/0000022A:7604
11 0/0000022C:A088
12 0/0000022E:7000
13
14 0/00000230:7200
15 0/00000232:1202
16 0/00000234:5202
17 0/00000236:6708
18 0/00000238:A086
19 0/0000023A:702C
20 0/0000023C:A050
21 0/0000023E:A08A
22
23 0/00000240:E08A
24 0/00000242:5303
25 0/00000244:6EEA
26 0/00000246:703E
27 0/00000248:A086
28 0/0000024A:4E75
29

•

68020 PDOS Assembler 06-Nov-86
fILE: MBIOS:SR,WDISK #4

* PDOS MONITOR PROMPT
*

IFUDF B$MPT :B$MPT EQU *
IFEQ B$MPT-*
XREF .1 SDS$,SLV$

*
MOVE.L SDS$(A6) ,D2 ;GET DISK(S)
MOVEQ.L #4,D3 ;GET COUNTER
XPCL ;OUTPUT CRLF
MOVEQ.L #O,DO ;1ST DELIMITER=O

*
iOO04 MOVEQ.L #O,D1

MOVE.B D2,D1 ;GET DISK #
ADDQ.B #1,D2 ;OK7

BEQ.S aOO06 :N
XPCC ;Y, OUTPUT 1ST CHARACTER
MOVEQ.L #',' ,DO ;CHANGE TO COMMA
XCBD
XPLC ;OUTPUT DISK #

iOO06 LSR.L #8,D2 ;ADJUST D2
SUBQ.B #1,D3 :DONE?

BGT.S aOO04 :N
MOVEQ.L #'>' ,DO ;Y
XPCC
RTS ; RETURN
ENDC

PAGE 8-27

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-28 Ct,'
" .I

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued) C!",', ' ,!

68020 PDOS Assembler 06-Nov-86
PAGE: 18 15:04 30-Nov-86 FILE: MBIOS:SR,WDISK #4

2 ANSI 3.64 (VT100) - POSITION CURSOR
3 *
4 * IN: 01 .B = ROW POSITION
5 * D2.B = COLUMN POSITION
6 (A3) = CBO$(A6)
7 OUT: SR = .NE.
8
9 * ANSI MODE = <esc>[xxx;yyyH

10 *
11 0/0000024C: IFNE ANS
12 0/0000024C:36FC9BDB B$PSC MOVE.W #$9BOO+$80+'[' ,(A3)+
13 0/00000250:7000 MOVEQ.L #0,00 ;CONVERT TO 32 BIT UNSIGNED
14 0/00000252:1001 MOVE.B 01,00 ;GET ROW POSITION
15 0/00000254:6114 BSR.S @00D2 ;ROUTINE TO COMPUTE OCTAL POSITIONING
16 0/00000256: 16FCOOBB MOVE.B #$80+' ; , ,(A3)+
17 0/0000025A:7000 MOVEQ.L #0,00 ;CONVERT TO 32 BIT UNSIGNED
18 0/0000025C: 1002 MOVLB 02,00 ;GET COLUMN POSITION
19 0/0000025E:610A BSR.S @0002 ;ROUTINE TO COMPUTE OCTAL POSITIONING
20 0/00000260:16FCOOC8 MOVE.B #$80+'H' ,(A3)+
21 0/00000264:421B CLR.B (A3)+
22 0/00000266:4267 CLR.W -(SP)
23 0/00000268:4E77 RTR ; RETURN . NE.
24 *
25 0/0000026A:5280 @0002 ADDQ.L #1,00 ;BIAS ROW/COL BY 1
26 0/0000026C:80FC0064 DIVU.W #100,00 ;GET NUMBER OF 100S
27 0/00000~70:4A40 TST .W DO
28 0/00000272:6706 BEQ.S @0004 ;NONE
29 0/00000274:060000BO ADDI.B #$80+'0' ,DO ;OUTPUT NUMBER
30 0/00000278:16CO MOVE.B DO, (A3)+
31 * ..r'
32 0/0000027A:4840 @0004 SWAP DO :GET lO'S

1\,, __ ./

33 0/0000027C:48CO EXT.L DO
34 0/0000027E:80FCOOOA DIVU.W #10,00
35 0/00000282:060000BO ADDI.B #$80+'0' ,DO ;OUTPUT 10'S
36 0/00000286: 16CO MOVE.B DO,(A3)+
37 0/00000288:4840 SWAP DO
38 0/0000028A:060000BO ADDl.B #$80+'0' .00 ;OUTPUT l' S
39 0/0000028E:16CO MOVE.B DO,(A3)+
40 0/00000290:4E75 RTS :RETURN TO CALLER

c
c

c

(~.

c

B80xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 19

2

3
4
5
B
7

8

15:04 30-Nov-8B

9 0/00000292:45FAOOOA
10
11 0/0000029B:1BDA
12 0/0000029B:&BFC
13 0/0000029A:42B7
14 0/0000029C:4E77
15
16 0/0000029E:9BDBB2CA
17 0/000002A2:9BDBC800
18 0/000002A6:
19
20
21
22
23
24
25 0/000002AB:
26
27 0/000002A6:0B55
28 0/000002A8:0A44
29 0/000002AA:OC52
30 0/000002AC:084C
31 0/000002AE:OD42
32 0/000002BO:1E48
33 0/000002B2:D953
34 0/000002B4:D445
35 0/000002BB:A757
36 0/000002B8:A650
37 0/000002BA:A928
38 0/000002BC:A829
39 0/000002BE:AB5A
40 0/000002CO:094E
41 0/000002C2:0000
42

68020 PDOS Assembler 06-Nov-86
FILE: MBIOS:SR,WOISK #4

* ANSI 3.64 (VT100) - CLEAR SCREEN
* .. ANSI 3.64 MODE = <esc>[2J<esc>[H ..
.. IN: .. OUT: SR = .NE. ..
B$CLS LEA.L ANSCLR(PC),A2 ;POINT TO CLEAR SCREEN SEQUENCE ..
a0002 MOVE.B (A2)+,(A3)+

BNE.S a0002
CLR.W -(A7)
RTR ..

;OUTPUT, DONE?
;N
;Y, PUSH .NE.
;RETURN

ANSCLR DC.B
DC.B
EVEN
ENDC

$9B,$80+'[' ,$80+'2' ,$80+'J'
$9B,$80+'[' ,$80+'H' ,0

;ANSI CLEAR DISPLAY
;ANSI MOVE CURSOR HOME

..

*

..

SCREEN COMMAND TABLE

IFUDF SCRNTB :SCRNTB EQU ..
IFEQ SCRNTB-"

DC.B SOB, 'U' ;U " UP
DC.B $OA, 'D' ;D = DOWN
DC.B SOC, 'R' ;R = RIGHT
DC.B $08, 'L' ;L = LEFT
DC.B SOD, 'B' ;B " BEGINNING
DC.B $1E, 'H' ;H = HOME
DC.B $D9, 'S' ;S = CLEAR TO END OF SCREEN
DC.B $D4, 'E' ;E = CLEAR TO END OF LINE
DC.B $A7, 'W' ;W = RESET WRITE PROTECT
DC.B $AB, 'P' ;P = SET WRITE PROTECT
DC.B $A9,' (' ;(= START WRITE PROTECT
DC.B $A8,') , ;) = END WRITE PROTECT
DC.B $AB, 'Z' ;Z = CLEAR UNPROTECTED
DC.B $09, 'N' ;N = SKIP TO NEXT FIELD
DC.W 0 ;END-OF-TABLE
EN DC

PAGE 8-29

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs

<1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 20 15:04 30-Nov-86
68020 POOS Assembler 06-Nov-86
FILE: MBIOS:SR,WOISK #4

PAGE 8-30

1 ***

2 DISPLAY ASSEMBLY RESULTS
3 *
4 0/000002C4: IFNE MZ<>(MZl2)*2
5 FAIL ERROR» 'MZ' MUST BE EVEN!
6 ENOC
7

8 00000064 PRINT '» Tics/second TPS ' ,TPS
9 00000001 PRINT '» Auto start flag AS ' ,AS

10 00000100 PRINT '» Mail array MZ ' ,MZ
11 00000000 PRINT '» System disk SO ' ,SO
12 00000000 PRINT '» System flags SF ' ,SF
13 00000000 PRINT '» Baud rate BR ' ,BR
14 00000000 PRINT '» BASIC flag FBA = ' ,FBA
15 00000000 PRINT '» Directory flag FOR = ' ,FOR
16
17 0/000002C4: IFEQ RZ
18 PRINT '» No RAM disk'
19 ENOC RZ
20 0/000002C4: IFNE RZ
21 00000008 PRINT '» RAM disk unit RU ' ,RU
22 OOOOOOFF PRINT '» RAM disk size RZ ' ,RZ
23 0/000002C4: IFEQ RA
24 PRINT '» RAM disk allocated from top of memory'
25 ENDC RA
26 0/000002C4: IFNE RA
27 PRINT '» RAM di sk addr RA = $' ,$RA
28 ENDC RA
29 ENDC RZ
30
31 0/000002C4: IFEQ HR
32 PRINT '» Size memory'
33 ENDC HR
34 0/000002C4: IFNE HR
35 PRINT '» High memory address = $' ,HR
36 ENDC HR

~ ...

~-

c
c

(6S0xO PDOS 3.2 REFERENCE MANUAL CHAPTER S BIOS, UARTs, DISK DSRs PAGE 8-31

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

68020 POOS Assembler 06-Nov-S6
PAGE: 21 15:04 30-Nov-S6 FILE: MBIOS:SR,WOISK #4

1 IFDEF B$ACK PRINT '» Use r system routine B$ACK included. ,

2 IFDEF B$CPU PRINT '» User system routine B$CPU included. '
3 IFDEF B$RAM PRINT '» User system routine B$RAM included. ,

4 IFDEF B$RSW PRINT '» User system routine B$RSW included. '
5 IFDEF B$CTB PRINT '» User system routine B$CTB included. ,

6 IFDEF B$KTB PRINT '» User system routine B$KTB included. ,

7 IFDEF B$LED PRINT '» User system routine B$LED included. '
S IFDEF B$MAP PRINT '» User system routine B$MAP included.
9 IFDEF B$PRT PRINT '» User system routine B$PRT inc 1 uded . ,

10 IFDEF B$PSC PRINT '» PDOS system routine B$PSC included. '
11 IFDEF B$CLS PRINT '» PDOS system routine B$CLS included. '

(12 IFDEF B$IRD PRINT '» PDOS system routine B$IRO inc 1 uded . '
13 • IFDEF B$SAV PRINT '» PDOS system routine B$SAV included. ,

14 IFDEF B$RES PRINT '» PDOS system routine B$RES included. '
15 0/000002C4: IFNE ANS
16 PRINT '» ANSI 3.64 position and clear screen rou tine ; nc 1 uded . '
17 ENDC
1S
19 ·1Ir*****1IrEND OF FILE********************************·_·***

20 0/000002C4: END

(

{/

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

PAGE: 22 15:04 30-Nov-86

DEFINED SYMBOLS:

ANS
B$BIOS
B$MPT
B.ADD
B.CLR
B.DRT
B.LEV
B.RDA
B.RDZ
B.SRAM
B. TEV
B.VEC
B.WND
BINTB
BR
BSTR06
BSTR12
BACK
B CMD
B OAF
BIRD
B MAP
B PDM
B RDK
B SAV
B SID
B TPS
CLKAOJ
EV112
EV115
FCNT.
IBACK
IBCTB
IBLEO
IBPSC
lOUT.
K1$SERR
K2$CHRI
LV
MZ
NEV.
NPS.
NTP.

E 00000001 ANSCLR
o 0/00000000 B$CLS
E 0/00000226 B$PSC
ED
ED
ED
ED
E

E

00000001 B.BAS
00000018 B.CMO
00000004 B.OSK
0000003B B.LFT
00000000 B.ROE
OOOOOOFF B.RGT

0/00000000
ED 00000040
E 00000000
ED 00000018

E

0/00000000
00000000

0/0000015A
0/0000018E

ED 0000003E
ED 00000080
ED 0000001C
ED OOOOOOSE
ED 0000004E
ED 0000002E
ED 00000034
ED 00000078
ED 00000004
ED 00000006
E 00000000
E 00000014
E 00000014
XR X/OOOOOOOO

B.SZ1
B.TPS
B.WC1
BCLK.
BMES01
BSTR02
BSTR08
BSTR14
B CLK
B CPC
BOIT
B KTB
B MES
B PRT
B RES
B SCT
B SYS
BURT
CPSC
EV113
F681.
FOR

S

S

4E750000 IBCLS
4E750000 IBIRO

S 4E750000
S 600001F4
X X/OOOOOODO
XR X/OOOOOOOO
XR X/OOOOOOOO
E 00000001

IBMAP
lBRES
IRO
K1$STRT
K2$PINT
MAPB.

E 00000100 NCB.
X X/OOOOOOOO NFS.
X X/OOOOOOOO NTB.
X X/OOOOOOOO POlO

68020 PDOS Assembler D6-Nov-86
FILE: MBIOS:SR,WOISK #4

0/0000029E AS
0/00000292 B$IRO
0/0000024C B$SRAM

E 00000001
0/000001BC

E 00000000
E
ED
ED
ED
E
ED

00000000 B.BRK ED 00000003
0000007F
0000003A
00000000
OOOOOOOB
00000001

0000002E B.DLT ED
0000002F B.EXT ED
00000008 B.PTMSK ED
00000020 B.ROU E
OOOOOOOC B.SLV E

ED 00000004
E 00000064
ED 0000002A
XR X/OOOOOOOO

E

0/00000000
0/0000010C
0/00000166
0/0000019C

ED 00000008
ED 00000028
ED 00000062
ED 00000046
ED 00000076
ED 00000052
ED 0000007C
ED 00000074
ED OOOOOOAO
ED 0000001E
E AA009B3D
E 00000001
X X/OOOOOOOO
E 00000000

B.SZ2
B.TTM
B.WC2
BFLG.
BPS
BSTR04
BSTR10
BSTRT
B CLS
B CTB
B OOF
BLED
B MSZ
B PSC
B RSE
B SFN
B TEV
B WSE
DEVT.
EV114
FBA
HR

S
S

60000236 rBCMD
6000015C IBKTB

S 4E750000
S 4E750000
E OOOOOOFF
X X/OOOOOOOO
XR X/OOOOOOOO
X X/OOOOOOOO

IBPRT
lBSAV
K1$CLKl
K2$CHAR
LF
MBZ.

X X/OOOOOOOO NCP.
X X/OOOOOOOO NMB.
X X/OOOOOOOO NTM.
ER S0444F53 PORT.

ED 00000020
E 00000001
ED 00000040
X X/OOOOOOOO
E 00000100

0/00000116
0/00000166

R O/OOOOOODE
ED 0000005A
ED 00000042
EO 00000066
ED 0000004A
ED 0000002C
ED 00000056
ED 0000006A
ED 00000072
ED OOOOOOOC
ED 0000006E
X X/OOOOOOOO
E
E

E

S

S

OOOOOOOA
00000000
00000000
4E750000
4E750000

S 4E7S0000
S 4E750000
XR X/OOOOOOOO
XR X/OOOOOOOO
E 00000000
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO

PAGE 8-32 'c··'·\ ,,: " .,

'C"'\ "', :'

·C'(\··· \

c

(680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 8IOS, UARTs, DISK DSRs

4[- <1.2 - MBIOS:SR - COMMON BIOS MODULE continued)

(

c

PAGE: 23

R$TASK
RE
SCRNTB
SF
SYID
TBZ.
TMSP.
TPS
U$1DSR
U$4DSR
W$XRSE
XCHB.

15:04 30-Nov-86

0/00000000 RA
E 00000020 RU
E 0/000002A6 SO
E 00000000 SLV$
E 00000000 SYZ.
X X/OOOOOOOO TLST.
X X/OOOOOOOO TMTF.
E 00000064 TQUE.
X X/OOOOOOOO U$2DSR
X X/OOOOOOOO W$XDIT
X X/OOOOOOOO W$XWSE
X X/OOOOOOOO XFSL.

EXTERNAL OEFINITIONS:

B$BIOS
B.CLR
B.ORT
B.LEV
B.RGT
B.TEV
B.WNO
B CLS
B CTB
B DOF
BLED
B MSZ
B PSC
B RSE
B SFN
B TEV
B WSE

D 0/00000000 B.ADD
ED 00000018 B.CMD
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED

00000004 B.DSK
0000003B B.LFT
OOOOOOOC B.SZ1
00000040 B . WC1
00000018 BACK
0000005A B CMD
00000042 B DAF
00000066 BIRO
0000004A B MAP
0000002C B PDM
00000056 B ROK
0000006A B SAY
00000072 B SID
OOOOOOOC B TPS
0000006E

EXTERNAL REFERENCES:

BCLK.
F6B1.

XR X/OOOOOOOO BFLG.
X X/OOOOOOOO FCNT.

K1$CLKI XR X/OOOOOOOO
K2$CHAR XR X/OOOOOOOO

K1$SERR
K2$CHRI
MBZ.
NEV.

MAPB. X X/OOOOOOOO
NCP. X X/OOOOOOOO
NMB.
NTM.
SDS$
TBE$
TMBF.
TMZ.
U$20SR
W$XDIT
W$XWSE

X X/OOOOOOOO NPS.
X X/OOOOOOOO NTP.
X X/OOOOOOOO SLV$
X X/OOOOOOOO TBZ.
X X/OOOOOOOO TMSP.
X X/OOOOOOOO TQUE.
X X/OOOOOOOO U$3DSR
X X/OOOOOOOO W$XDOF
X X/OOOOOOOO XCHB.

68020 PDOS Assembler 06-Nov-86
FILE: MBIOS:SR,WDISK #4

E
E

00000000 RDNM
00000008 RZ

E 00000000 SOS$
XR X/OOOOOOOO STRTFL
X X/OOOOOOOO TBE$
X X/OOOOOOOO TMBF.
X X/OOOOOOOO TMZ.
X X/OOOOOOOO TT
X X/OOOOOOOO U$3DSR
X X/OOOOOOOO W$XDOF
X X/OOOOOOOO WF
X X/OOOOOOOO XPID

00000001 B.BRK
0000002E B.DLT

0/000000D6
E OOOOOOFF
X X/OOOOOOOO

O/OOOOOOCE
X X/OOOOOOOO
X X/DOOOOOOO
X X/OOOOOOOO
E 00000001
X X/OOOOOOOO
X X/OOOOOOOO
E 00000000
E 0000A55A

ED
ED

ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED

0000002F B.EXT ED
OODOOOOB B.PTMSK ED

00000003
0000007F
0000003A
00000000
00000020
00000040
00000008
00000028
00000062

0000D004 B.SZ2 ED
0000002A B.WC2 ED
D000003E B CLK ED
00000080 B CPC ED
0000001C B DIT ED
0000005E B KTB
0000004E B MES
0000002E B PRT
00000034 B RES
00000078 B SCT
00000004 B SYS
00000006 BURT

X X/OOOOOOOO DEVT.
XR X/OOODOOOO lOUT.
XR X/OOOOOOOO
XR X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO

K1$STRT
K2$PINT
NCB.
NFS.

X X/OOOOOOOD NTB.
X X/ODOOOOOO PORT.
XR X/OOOOOOOO SYZ.
X X/OOOOOOOO TLST.
X X/OOOOOOOO TMTF.
X X/OOOOOOOO U$1DSR
X X/OOOOOOOO U$4DSR
X X/OOOOOOOO W$XRSE
X X/OOOOOOOO XFSL.

ED .00000046
ED 00000076
ED 00000052
ED 0000007C
ED 00000074
ED OOOOOOAO
ED 0000001E

X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
XR X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO
X X/OOOOOOOO

PAGE 8-33

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(1.2 - MBIOS:SR - COMMON BIOS MOOULE continued)

PAGE: 24 15:04 30-Nov-86

UNDEFINED SYMBOLS:

B$ACK UR 00000000 B$CMO
B$CTB UR 00000000 B$KTB
B$MAP UR 00000000 B$PRT
B$RES UR 00000000 B$RSW

UNREFERENCEO SYMBOLS:

BCLK. XR X/OOOOOOOO BSTRT
K1$CLKI XR X/OOOOOOOO K1$SERR
K2$CHRI XR X/OOOOOOOO K2$PINT
SLV$ XR x/oooooooo

1.3 MBIOS SWITCHES

Execute SY$STRT on boot up
Initial baud rate
Highest memory address
ANSI 3.64 PSC/CSC
Oi rectory flag

UR
UR
UR
UR

R
XR
XR

Tics/second (system dependent)
Default disk number
Sys tam flags
Cl ear screen and position

cursor code
Event 112
Event 113
Event 114
Event 115
Mail array size
RAM disk unit
RAM disk size
Number of directory entries
RAM disk address
RAM disk initialization

68020 POOS Assembler 06-Nov-86
FILE: MBIOS:SR,WOISK #4

00000000 B$CPU
00000000 B$LEO
00000000 B$RAM
00000000 B$SAV

O/OOOOOOOE FCNT.
X/OOOOOOOO K2$CHAR
X/OOOOOOOO POlO

UR 00000000
UR 00000000
UR 00000000
UR 00000000

XR X/OOOOOOOO
XR X/OOOOOOOO
ER 50444F53

AS=Auto Start
BR
HR undefined
ANS=1
FOR=O
TPS .. 100
SO=O
SF=O
CPSP Long=$AAOO

=$9B30
EV112.TPS/5
EVll3=l
EV114=10
EVl15=20
MZ=256
RU=8
RZ=255
RE=8
RA=O
IRD=l

PAGE 8-34 o
o

c

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

« (1.3 MBIOS SWITCHES continued)

The switches are described in detail following. Most of
them have default values.

AS

BR

HR

ANS

FDR

TPS

SD

AUTO START. This switch determines
whether or not the SY$STRT (auto start)
file is to be executed on startup. If
AS=O, then the SY$STRT file is not
executed. If it is non-zero, it is
executed. Defau1t=1.

INITIAL BAUD RATE. This is a number
from 0 to 7 which represents the initial
baud rate for the character I/O ports.
The default is O.

HIGHEST MEMORY ADDRESS. The high
memory address variable determines
whether memory is sized (HR undefined)
or fixed (HR=top address). Default is
undefined.

ANSI 3.64 PSC/CSC. If this switch is
equal to 1, then the BIOS subroutine for
clear screen and position cursor for
ANSI 3.64 terminal support is included.
Defau 1 t=1 .

DIRECTORY FLAG. The directory flag
determines the mode of access for the
file manager. When the flag is zero
(plus byte), all levels are global.
When the flag is set to $80 (minus
byte), then files are unique to each
di rectory level. The only exception is
level 0 which is global to all. Default
is 0, for soft level partitioning.

TICS/SECOND. The tics/second variable
sets the number of clock interrupts that
are equivalent to one second. Default
is system dependent. You cannot vary
this switch without altering B$CPU clock
chip initialization.

DEFAULT DISK #. The default disk
number determines which disk number is
selected when no disk is specified by a
filename. Defau1t=0 and may be altered
by the B$RSW routine.

(~ Continued on next page ...

0=19200
1=9600
2=4800
3=2400

4=1200
5=600
6=300
7=110

/FDR=O global levels
/FDR=$80 unique levels

PAGE 8-35

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs

(3.1 MBIOS SWITCHES continued)

SF

CPSC
LONG

EV112

EV1 1 3

EV'14

EV115

MZ

RU

RZ

RE

RA

IRD

SYSTEM FLAGS. The system flags are
used by POOS to control various output
formats. Oefau1t=O.

CLEAR SCREEN AND POSITION CURSOR CODE.
The clear screen codes are used by the
XCLS primitive. Defau1t=$AAOD. The
position cursor
XPSC primitive.
CPSC=$AAOOD93D.

codes are used by the
Oefau1t=$093D. Set

EVENT 112. The event 112 variable is
decremented every clock interrupt.
Defau1 t=TPS/2D.

EVENT 113. The event 113 variable is
decremented every second. Default=1.

EVENT 114. The event 114 variable is
decremented every second. Default=10.

EVENT 115. The event 1'5 variable is
decremented every second. Default=20.

MAIL ARRAY SIZE. The MAIL array size
is in bytes. Default=256 and is best as
a multiple of 256.

RAM DISK UNIT. The RAM disk unit is
selected by 'RU= ' Default=8.

RAM DISK SIZE. The size of the RAM
disk determines how much memory to
allocate. If RZ=O, then no RAM disk is
selected. Default=255.

OF DIRECTORY ENTRIES. The number of
directory entries in the RAM disk is
selected by 'RE= '. Default=32.

RAM DISK ADDRESS. The ADDRESS variable
determines where the RAM disk is
located. If RA=O, then the RAM disk is
allocated off the top
Otherwise, the parameter
memory address of a
Defau1t=0.

of memory.
indicates the

RAM disk.

RAM DISK INITIALIZATION. The RAM disk
will be initialized by the PDaS SIOS by
setting IRD=1 (default).

PAGE 8-36
£":' ..
'~

(

(:

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 8IOS, UARTs, DISK OSRs

2. xxBIOSU - UART DSRs

The UART Device Service Routines are supplied in the
xxBIOSU:SR module. Up to four different types of UARTs can
be used in anyone PDOS system. Each UART type is called
via a branch table. An entry is provide for get character,
put character, baud UART, reset UART, read UART status,
high, and low water.

The table is as follows:

U$xDSR BRA.S
BRA.S
BRA.S
BRA.S
BRA.S
BRA.S
BRA.S

UxDG
UxDP
UxDB
UxDR
UxDS
UxHW
UxLW

;GET CHARACTER
;PUT CHARACTER
;BAUD UART
;RESET UART
;READ UART STATUS
;HIGH WATER
;LOW WATER

An annotated boiler plate follows for a single UART type.
Other types follow the same pattern.

TTL xxBIOSU:SR - 68K UARTS BIOS
* xxBIOSU:SR 04/12/84
**

* UU UU AA RRRRRRRR HTHHT SSSSSS
* UU UU AAAA RR RR H SS
* UU UU AA AA RR RR TT SS

UU UU AAAAAAAA RRRRRRRR TT SSSSSS
UU UU AA AA RR RR TT SS

* UU UU AA AA RR RR TT SS
* UUUUUUU AA AA RR RR TT SSSSSSS
*
*=**

*= REVISION SCHEDULE MODULE: xxBIOSU
*=
*=
xxBIOSU IONT 3.0 M68000 PDOS
* ..

XDEF U$1DSR
XDEF U.1ADR,U.1TYP

*
OPT CRE,ALT
PAGE
INCLUDE xxPARM:SR
TTL xxBIOSU:SR - 68K UARTS BIOS
SECTION 14

PAGE 8-37

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs PAGE 8-38 c
(2. xxBIOSU - UART DSRs continued) c

* PO as CHARACTER 1/0 ROUTINES

*
* EACH UA&T ENTRY IS DEFINED AS FOLLOWS:
*
* U$xDSR BRA.S UxDG ;GET CHARACTER
* BRA.S UxDP ;PUT CHARACTER
* BRA.S UxDB ;BAUD UART

BRA.S UxOR ;RESET UART
* BRA.S UxDS ;READ UART STATUS

BRA.S UxHW ;HIGH WATER
* BRA.S UxLW ; LOW WATER
*

UARTS: O(A2) = GET A CHARACTER OUT: AO.BASE, DO.CHAR
* 2(A2) • PUT A CHARACTER IN: AO=BASE, DO-CHAR, SR .. ASAQ
* 4(A2) = BAUD THE PORT IN: AO.BASE, DO.BAUDRATE
* 6(A2) = RESET THE PORT IN: AO .. BASE
* a(A2) = READ PORT STATUS IN: AO.BASE

1 O(A2) .. HIGH WATER IN: AO.BASE, D1 .. FLAGS
* 12(A2) .. LOW WATER IN: AO.BASE, Dl=FLAGS
*

F8BT. .. FHPI 8DCS
BCSQ EQU 0 ;\\\\ \\\\ o = ASAQ ENABLE C BINC EQU 1 \\\\ \\\ 1 .. CONTROL CHARACTER DISABLE
BDTR EQU 2 \\\\ \\ 2 .. DTR ENABLE
BaCH EQU 3 \\\\ \ 3 = a BIT CHARACTER ENABLE
BRIN EQU 4 \\ \ \ 4 = RECEIVER INTERRUPTS DISABLE
BEVP EQU 5 \\\ 5 .. EVEN PARITY ENABLE
BHLW EQU 6 \\ 6 .. HIGH/LOW WATER (RESERVED)
BFSQ EQU 7 \ 7 .. ASAQ FLAG BIT (RESERVED)

PAGE

r
~,

c
c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

((2. xxBIOSU - UART DSRs continued)

(

c

c

**************************************~**********

* UART ENTRIES ARE DEFINED AS FOLLOWS:
*
*

*

*
*
*
*
*
*

*

*
*
*
* ..

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

UxDG - GET CHARACTER

OUT: DO.B & CHARACTER
AO.L = UART BASE ADDRESS

SR. EQ CHARACTER FOUND
NE NO CHARACTER FOUND
CS CHARACTER FOUND BUT IGNORE

NOTE: 1) ALL UARTS OF THE SAME TYPE MUST BE CHECKED
FOR A CHARACTER.

2) PRESERVE & RESTORE ALL REGISTERS USED.

UxDP - PUT CHARACTER

IN: DO.B = CHARACTER
D1.B = PORT FLAG (xxPI SDBS)
AO.L = UART BASE ADDRESS

OUT: SR = .EQ. SENT

NOTE: PRESERVE & RESTORE ALL REGISTERS.

UxDB - BAUD'UART

IN: DO.W = BAUD RATE (0-7)
D1.B = PORT FLAG (xxPI 8DBS)
AO.L = UART BASE ADDRESS

OUT: SR = EQ UART SUCCESSFULLY BAUDED
NE UART NOT SUCCESSFULLY BAUDED

NOTE: PRESERVE & RESTORE ALL REGISTERS.

UxDR - RESET UART

IN: AO.L = UART BASE ADDRESS
OUT: SR = EQ UART SUCCESSFULLY RESET

NE UART NOT SUCCESSFULLY RESET

NOTE: PRESERVE & RESTORE ALL REGISTERS.

* UxDS - READ UART STATUS

.. IN: AO.L = UART BASE ADDRESS
* OUT: DO.W = UART STATUS
*
* NOTE: PRESERVE & RESTORE ALL REGISTERS.

PAGE 8-39

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(2. xxBIOSU - UART DSRs continued)

.**

U .1ADR EQU <address>

"
U1HW MOVE.L DO,-(A7)

MOVEQ.L #' S' -' @' ,DO
BRA.S WOUT

"
U1LW MOVE.L DO,-(A7)

MOVEQ.L #'Q'-'@' ,DO

WOUT BTST.L #BCSQ,D1
BEQ.S @0004

@0002 BSR.S U1DP
BNE.S @0002

"
@0004 MOVE.L (A7)+,DO

RTS
*
U$1DSR BRA.S U1DG

BRA.S U1DP
BRA.S U1DB
BRA.S U1DR
BRA.S U1DS
BRA.S U1HW
BRA.S U1LW

"

;UART BASE ADDRESS

;SAVE DO

; "S"Q?
;N

;Y, SEND CHARACTER

;Y, RESTORE DO

;GET A CHARACTER
;PUT A CHARACTER
;BAUD THE PORT
;RESET THE PORT
;READ PORT STATUS
;HIGH WATER
; LOW WATER

" RESET UART

"
U1DR EQU " ;RESET UART

AO=BASE DO=CHAR
AO=BASE DO=CHAR
AO=BASE DO=S/BAUDRATE
AO=BASE
AO=BASE DO=STATUS

This routine is called to disable a UART from interrupting.

BRA.S U1 EQ ;GOOD RETURN

PAGE 8-40

1,("
~

{

(

('

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(2. xxBIOSU - UART DSRs continued)

PUT CHARACTER

U1DP BTST.B #BDTR,D1
BNE.S U1DP02 ;NO DTR CHECK

If the UART has a DTR input signal, it should be checked
here indicating if the device wants the output stream to
stop temporarily (such as with a buffer full condition).

BNE.S U1 NE

U1DP02 BTST.B <Busy>
BEQ.S U1 NE

;NO DTR

;Y, CAN WE OUTPUT A CHAR?
;N, SEND .NE.

The character in data register DO.B is output to the UART.

BRA.S U1 EQ ;RETURN .EQ.
*

GET CHARACTER & RESET INTERRUPT

U1DG LEA.L U.1ADR,AO
BTST.B <Character>

BEQ.S U1 NE

;GET PORT 1 BASE
;IS CHARACTER THERE?
;N, SEND .NE.

All UARTs of the same type should be checked here for a
character. If found, the UART base address is returned in
address register AO and the character in data register DO.B.
The status register returns the results of the character
po 11 .

*
U1 EQ CMP.B 00,00 ;SET .EQ.

RTS ; RETURN

U1 NE CLR.W -(A7) ;SET .NE.
RTR

PAGE 8-41

680xO POOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(2. xxBIOSU - UART DSRs continued)

* READ PORT STATUS
* ,
U1DS EQU ;READ PORT STATUS

The UART status is return in data register DO.W and 68000
status register.

RTS ; RETURN
*

* BAUD PORT

IN: DO=RATE (0-7)
* D1.L=(OUT EVENT #(80-95) I PORT FLAGS.B
* AO.L=Base

OUT: SR=.NE. » bad base
SR=.EQ. » baud OK

*
U1DB EQU * ;BAUD UART

The UART is bauded according to data register DO.W.
Interrupts are enabled for receive only. The eight bit flag
should be observed in deciding whether to send and receive 7
or 8 bit characters.

BRA.S U1 EQ ;GOOD RETURN (SR=EQ)

END

PAGE 8-42 'C.·~·' \ "

c

(

C

c

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

3. xxBIOSW - READ/WRITE DISK DSRs

The Read/Wri te sector routines are supplied in the
xxBIOSW:SR module. Four entries are suppli ed for read,
write, i niti.1 i ze, and check for floppy motoT off. An
additional entry is for an error message list used by the
PDOS monitor module to repo r t disk

The entry points are as follows:

W$XWSE - Write sector
W$XRSE - Read sector
W$XDIT - Initialize disks
W$XDOF - Check for disk off

W$ERM - Error message list

errors.

An annotated boiler plate follows for the xxBIOSW module.

TTL xxBIOSW:SR - 68K R/W SECTOR BIOS
* xxBIOSW:SR 05/07/84
--***--************** •• *****

*
* DDDDDDD IIII SSSSSS KK KK RRRRRRRR \\ WW WW

* DD DD II SS KK KK RR RR \\ WW WW

* DD DD II SS KK KK RR RR \\ WW WW
* DD DD II SSSSSS KKKKK RRRRRRRR \\ WW WWW WW

* DD DO II SS KK KK RR RR \\ WW WWWW WW

* DD DD II SS KK KK RR RR \\ WWWW WWWW
* DDDDDDD IIII SSSSSSS KK KK RR RR \\ WW WW

*
*E*************-*-****-*-******************-***-*******-**********-***********

*= REVISION SCHEDULE MODULE: SBIOSW
*=
*=
xxBIOSW IDNT 3.0 M68000 PDOS
*=
*=**-****--**-******-*.*

* PDOS R/W SECTOR MODULE

XDEF W$XWSE,W$XRSE
XDEF W$XDIT,W$XDOF
XDEF W$ERM

PAGE 8-43

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(3. xxBIOSW - READ/WRITE DISK DSRs continued)

INITIALIZE DISKS
*
W$XDIT EQU ;INITIALIZE DISKS

The disk controllers are initialized. Any memory tables or
communication variables are also set to a known state.

RTS

DISK OFF ROUTINE
*
W$XDOF EQU *

This routine is called once
kernel. It is intended for
where the motor is turned off
with no access.

RTS

;DISK OFF

every second from the PDOS
controllers of 5 1/4" floppies
after a certain length of time

*

*

WRITE SECTOR

IN: DO.W = DISK #

OUT:

01 .W = LOGICAL SECTOR #
(A2) BUFFER ADDRESS

SR = EQ ... WRITE COMPLETE
NE ... DO.L = ERROR

W$XWSE EQU * ;WRITE SECTOR

The write sector routine outputs the logical 256-byte
sector pointed to by address register A2 to the disk. Data
register DO.W selects the disk number and register D1.W is
the logical sector number. The status is returned EQUAL if
the operation completed with no error. Otherwise, a NOT
EQUAL status is returned with DO.L containing the error
number.

MOVEQ.L #0,00
RTS

;SET STATUS .EQ.

PAGE 8-44 Ie··,·'·".,,: "'j

c

c
c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK OSRs

(3. xxBIOSW - READ/WRITE DISK OSRs continued)

* READ SECTOR
*
* IN: DO.W = DISK UNIT #

*
01.L = LOGICAL SECTOR #
(A2) = BUFFER ADDRESS

OUT: SR. EQ ... WRITE COMPLETE
* NE ... DO.L. ERROR
*
W$XRSE EQU * ;READ SECTOR

The read sector routine reads the logical 256-byte sector
from a disk into the memory buffer pointed to by address
register A2. Data register DO.W selects the disk number and
register D1.W is the logical sector number. The status is
returned EQUAL if the operation completed with no error.
Otherwise, a NOT EQUAL status is returned with DO.L
containing the error number.

*

MOVEQ. L #0, DO
RTS

;SET STATUS .EQ.

* COMMON ERROR NUMBERS
*
ERR100 MOVEQ.L #100,00

RTS
*
ERR101 MOVEQ.L #101,00

RTS
*

;ILLEGAL DISK #
;RETURN .NE.

;SECTOR TOO LARGE
;RETURN .NE.

PAGE 8-45

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(3. xxBIOSW - READ/WRITE DISK DSRs continued)

ERROR MESSAGE LIST
*
W$ERM DC.W

DC.B
DC.B

100 ;Error list bias
'Illega' ,-'1', 'drive' ,0 ;100 Common errors
'Secto',-'r','to',-'o','big',O :101

DC.B -1 ;End

3.1 PDaS WINCHESTER STANDARD

The PDOS Winchester standard keeps all the information
about the Winchester drive on the Winchester drive. This
allows you to 1) use a drive with any number of heads and
cylinders, 2) divide up the drive into any combination of
large and small partitions, and 3) automatically skip all
tracks with manufacturing defects. The PDOS Winchester
standard information is contained in a block of data that
resides in one or two sectors (usually sector 0) of physical
track 0 on each Winchester drive in the system. The Drive
Data Block (DDB) consists of three parts:

1) the drive parameters,
2) a variable length partition definition table, and
3) a variable length bad track list.

These tables are built and written to the drive by the
xxFRMT utility. They are then read into the parameter RAM
area.by the xxBIOSW disk initialize subroutine. W$XDIT, and
subsequently used by the read/write sector code, W$XRSE and
W$XWSE, in the xxBIOSW disk module.

The following discussion of the PDOS Winchester standard
uses a strict definition of terms. These definitions are
found in the glossary (Appendix G) of this manual.

3.1.1 SYSTEM INDEPENDENT DRIVE PARAMETERS

To allow the use of any size Winchester drive in the PDOS
system. the drive parameters are read in from the drive
itself. These include the number of heads and cylinders.
During disk initialization, if a SCSI (SASI) controller is
used in the system, either a 'Set Drive Parameters' or an
'Initialize Drive Characteristics' command is sent to the
SCSI controller using the number of heads and oylinders
specified in the disk's header sector. Thus, any drive in
any PDOS system could actually have any number of heads or
cylinders, limited only by the controller or hardware.

PAGE 8-46

c

c

(

c

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

3.1.2 DISK PARTITIONS ON DRIVE HEADER

Each PODS Winchester standard drive has all the
disk partition information in the header data.

necessary
There is a

three-word entry for eech partition of the drive, consisting
of a PODS disk number, a logicel base track, and a logical
top track number. The PODS read/write sector routines in
xxBIOSW try to match the requested logical disk number to
the disk number associated
installed Winchester drive.

with a disk partition on an
The partition's associated base

and top tracks are used to bias the requested PODS sector
number to an actual physical or SCSI logical block number.
The number of partitions possible on anyone drive or system
may be limited by: 1) the amount of data read in by W$XDIT;
2) the data written out by xxFRMT; or 3) the amount of room
in low parameter RAM. See the source code or the
Installation and Systems Management guide for effective
limi ts.

3.1.3 BAD TRACK MAPPING

Following the partition information in the drive's header
is an optional bad track list. This table consists of word
entries in increasing order of physical track numbers that
should not be accessed (skip them). The logical track
number is incremented one for each bad track that is
numbered lower than or equal to the requested track. The
result is a mapped physical track that corresponds to the
requested logical track number, where the physical track
number is greater then or equal to the 10g;cal track number.

3.1.4 DRIVE DATA BLOCKS (DDBs)

Each PODS system allocates, in its system parameter RAM, a
table of six Drive Data Block addresses -- two for floppy
drives and four for Winchester drives. The addresses of the
Drive Data Blocks are stored by the xxBIOSW disk initialize
routine, W$XDIT, when PODS first starts up. The actual DDBs
are usually stored in the system's parameter RAM area by
W$XDIT immediately following the six addresses of the P$PARM
table.

If more than one type of disk contro11ef is possible in a
particular system, then the general W$XDIT routine calls the
individual XDIT routines for each oontro1ler installed.
These routines usually initialize the controller, and then
loop through all possible drive select codes, looking for
drives (floppy or Winchester) that may be attached.

PAGE 8-47

680xO PDOS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS, UARTs, DISK DSRs

(3.1.4 DRIVE DATA BLOCKS continued)

As a floppy disk drive is found, its DDB is stored in one
of the first two addresses. Each floppy Drive Data Block is
buift without accessing the drive, using default parameters,
since the floppy drives are common to each system, have only
one partition, and don't have bad tracks. If there is only
one floppy controller in a system, the only difference
between the Fa and F1 tables is usually the drive select
byte and the disk number, which is set to a and 1,
respectively.

As Winchesters are found installed (no read error), then
W$XDIT determines if the header data is actually PDOS
Winchester standard information. The test for this is that
the first four bytes of the header information are 'ME4U'
and the next word, signifying the number of heads on the
drive, is from one through 16. If it is okay, then the data
is moved into a DoB in system parameter RAM and the address
is saved in the next available P$PARM table location. If
the drive is installed but the header data is not PoOS
Winchester standard information, then W$XoIT moves down some
default drive data into the DDB in P$PARM.

The four Winchester Drive Data Blocks are filled as W$XDIT
finds them in the system, altering the controller number and
drive select bytes to match where the drive is found. The
first Winchester's Drive Data Block is usually read into the
system's parameter RAM area by W$XoIT immediately following
the two floppy oDBs. It is referred to as drive 'WO', but
it may be attached to any controller with any drive select
jumper. The Drive Data Block for drive 'W1' would follow
the 'WO' bad track table, and so on. You must be sure that
the parameter RAM definition file, xx$PARM:SR, and the
syste~ memory map allocate enough room for all the drives
that may be installed in the system.

3.1.5 PDOS DISK NUMBERING

POOS disk numbers a and 1 are reserved for floppy drives;
disk numbers 2 and above are for Winchester partitions.
These Winchester partitions, numbered 2-99, are biased by
one track worth of sectors (e.g. 32, 33, 34, 38, or 64). To
access sectors in the first track, or base track, of the
partition, you use the POOS disk number plus 100. For
example, reading from disk 102 accesses the unbiased disk 2
sectors. If there are 32 sectors per track, then disk 2,
sector a accesses the same sector as disk 102, sector 32.
All of the disk accesses for disks 2-99 and 102-199 use the
bad track table of the corresponding drive to offset
requested tracks.

PAGE 8-48 1(: ... : Ji/

(

(

c

c

c

c
c

68oxo PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIDS, UARTs, DISK DSRs

(3.1.5 PODS DISK NUMBERING continued)

The PODS Winchester standard also defines a way to access
all the sectors on a drive, ignoring the bad track table
remapping feature. This is needed by the "verify" process
in the xxFRMT utility -- to check all the sectors on a track
to find new bad tracks. PODS disk numbers 200-209 are
mapped to the physical sectors of drive WO, numbers 210-219
are mapped to drive W1, and so on. Disk 200, sectors 0
through 65535 (0 to $FFFF) access Winchester drive WO
physicel sectors 0 through 65535. Disk 201, sectors 0
through 65535 access Winchester drive WO physical sectors
65536 through 131071 ($10000 to $1FFFF). This pattern
continues until disk 209 maps to sectors $90000 to $9FFFF.
This will accommodate drives up to 168 Mbytes, formatted.
If larger disks must be accessed, then you must alter the
xxBIOSW:SR code so that the xxFRMT utility can verify the
entire drive. This could be done by consolidating drives:
200-219 are drive WO, 22o-239 are drive W1.

Currently disk numbers and partitions for each drive are
defined by the format utility, xxFRMT. The partitions on
each drive get consecutive disk numbers, startin9 at a
specified number, and skipping the standard RAM disk number,
8. Normally the first partition on drive WO is assigned
PODS disk number 2. The first partition on drive S1 would
normally be assigned the next PODS disk number higher than
the last disk number on drive WO, etc.

PAGE 8-49

680xO PODS 3.2 REFERENCE MANUAL CHAPTER 8 BIOS. UARTs. DISK DSRs PAGE 8-50 'C,.·" '/
,J

c

(

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS

APPENDIX A

PDOS ERROR DEFINITIONS

Only PDOS system errors (50-99), assembler errors
(300-399), and QLINK errors (500-599) are discussed in this
appendix. The BIOS errors can be found in the
Installation and Systems Management guide for your
hardware system.
reference manual
returned through
pr imit i ves.

Language errors are discussed in the
for each specific language. Errors are
data register DO on all assembly

A.1 PDOS ERROR SUtlMARY A-2

A.2 POOS ERROR NUMBERS A-3

A.3 PDOS ASSEMBLER ERRORS A-8

A.4 QLINK ERRORS A-10

PAGE A-1

680xO PODS 3.2 REFERENCE MANUAL APPENDIX A PODS ERRDR OEFINITIDNS PAGE A-2

A.1 PDOS ERROR SUMMARY

PODS ERRDR NUMBERS

PODS ERR 5D = Illegal name
PODS ERR 51 = Defined
PODS ERR 52 = Not open
PODS ERR 53 = Not defined
PODS ERR 54 = Type err
PODS ERR 55 = Fragment
PODS ERR 56 = EDF
PODS ERR 57 = Oir full
PODS ERR 58 = Protected
PODS ERR 59 = Invalid slot
PODS ERR 60 = Disk full
PODS ERR 61 = Already open
PODS ERR 62 = No start
PODS ERR 63 = Dbj err
PODS ERR 64 = Section err
PODS ERR 65 = Un1oadab1e
PODS ERR 66 = Illegal port
PODS ERR 67 = Parameter err
PODS ERR 68 = Not PODS disk
PODS ERR 69 = No slot
PODS ERR 70 = Position err
PODS ERR 71 = Nesting err
PODS ERR 72 = Too many tasks
PODS ERR 73 = No memory
PODS ERR 74 = No task
PODS ERR 75 = File locked
PODS ERR 76 = Task locked
PODS ERR 77 = Not resident
PODS ERR 78 = Msg buf full
PODS ERR 79 = Mem err
PODS ERR 8D = liD err
PODS ERR 81 =
PODS ERR 82 =
PODS ERR 83 =

PODS ERR 84 =

PODS ERR 85 = Aborted task
PODS ERR 86 = Phantom port
PODS ERR 87 =
PODS ERR 88 =
PODS ERR 89 =

PODS ERR 90 = Illegal K2 module primitive
PODS ERR 91 = Illegal K3 module primitive
PODS ERR 92 = I 1lega 1 F module primi tive
PODS ERR 93 = Illegal W module primi tive
PODS ERR 94 = Illegal N module primi tive
PODS ERR 95 = Illegal o module primi tive
PODS ERR 96 = Illegal M module primi tive
PODS ERR 97 Illegal B module primi tive
PODS ERR 98
PODS ERR 99

PODS ERRDR RANGES

1- 49 BASIC error numbers
50- 99 PODS system error numbers

100-200 BIDS error numbers (disk)
300-399 MASM error numbers
4DO-499 C error numbers
50D-599 QLINK error numbers
600-699 Pascal error numbers

4.· ·-.11'\
~i

c

(

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PODS ERROR DEFINITIONS

A.2 PDOS ERROR NUMBERS

ERROR 50

ERROR 51

ERROR 52

ERROR 53

ERROR 54

ERROR 55

ERROR 56

ERROR 57

ERROR 58

ILLEGAL FILE NAME. Valid file names
consist of an alpha character followed
by up to 7 alpha-numeric characters. An
optional extension and disk number may
follow. An extension consists of a
colon followed by 1 to 3 characters. A
disk number consists of a slash and a
number ranging from 0 to 127.

FILE ALREADY DEFINED. Each file name
is unique to a disk file directory.
There is one directory per disk number.

FILE NOT OPEN. An attempt to access a
file which has not been opened, res~lts

in error 52.

FILE NOT DEFINED. If the file name
does not exist in the disk directory, an
error 53 occurs.

INVALID FILE TYPE. Valid file types
are AC, BN, OB, SY, BX, EX, TX, DR, -
and u. All others result in error.

FRAGMENTED.
a ttempti ng
on a disk

Error 55 results from
to define a contiguous file
unit which does not have

enough room or is fragmented such that
there is not a big enough contiguous
block of sectors.

END-OF-FILE. Error 56 comes from an
attempt to read past the END-OF-FILE
index of a file.

DIRECTORY FULL.
size is set

The
when

file
the

directory
file is

initialized. Any attempt to define
another file after the directory has
been filled, results in error 57.

FILE DELETE PROTECTED. An a ttempt to
delete a file with a delete or write
protect flag results in error 58.

>DKDKDKDKF
PDOS ERR 50 Illegal name
>

>DF FI LE1
>DF FILE1
PDOS ERR 51 Defined
>

>EX
FILE 1,1 ;3,1
-ERROR 52 Not open

>SF FILE2
PDOS ERR 53 Not defined
>

>SA FILE1 ,TR
PDOS ERR 54 Type err
>

>DF FI LE2, 1 0000
PDOS ERR 55 Fragment
>

>EX
-READY
OPEN "#PAUL",F
FILE 1 ,F;3,I
-ERROR 56 EOF

>DF FILE3
PDOS ERR 57 Dir full
>

>SA TEMP,
>DL TEMP
PDOS ERR 58 Protected
>

PAGE A-3

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS

(A.2 PDOS ERROR NUMBERS continued)

ERROR 59

ERROR 60

ERROR 61

ERROR 62

ERROR 63

ERROR 64

ERROR 65

ERROR 66

ERROR 67

INVALID SLOT #. A valid file slot
number is returned from PDOS on all open
commands. A file slot consists of the
the disk number in the left byte and the
slot index in the right byte.

DISK SPACE FULL. An attempt to extend
a file or define a file after the disk
space is filled results in error 60.

FILE ALREADY OPEN. A file can be
opened only once in sequential (XSOP)
and random (XROP) modes. Read only open
(XROO) and shared random open (XNOP) can
be executed more than once on the same
fil e.

NO START ADDRESS. An object (OB) file
must have a start address. This is
generated by an address parameter for
the 'END' statement in the assembly
source.

ILLEGAL OBJECT TAG. Only hex object
ta9 characters are legal.

ILLEGAL SECTION. Only section 0 is
executable under POOS.

FILE NOT LOADABLE. Only files typed
'OB'. 'SY', 'EX', and 'BX' are loadable
by the monitor loader.

ILLEGAL PORT NUMBER OR BAUD RATE.
through 15 are legal ports.

baud rates are 110, 300, 600,
2400, 4800, 9600, and 19200.

Only
VaH d
1200,

INVALID PARAMETER. Most
commands check parameters
ranges and types.

monitor
for valid

>EX
*READY
FI LE 1, F; 3, I
*ERROR 59 Invalid slot

>CF TEMP, LIST
PO OS ERR 60 Oisk full
>

>EX
*READY
OPEN "LIST",F
OPEN "UST",F
*ERROR 61 Already open

>TEMP
POOS ERR 62 No start
>

>SA TEST:SR,OB
>TEST:SR
PO OS ERR 63 Obj err
>

>TEMP
PDOS ERR 64 Section err

>SA ASM,BN
>ASM
PDOS ERR 65 Unloadable
>

>BP 2,1250
PDOS ERR 66 Illegal port
>BP 20,9600
PDOS ERR 66 Ille9al port
>

>IM 0
PDOS ERR 67 Parameter err
>

PAGE A-4 ,r'
\~I

(

(

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS

(A.2 PDOS ERROR NUMBERS continued)

ERROR 68

ERROR 69

ERROR 70

ERROR 71

ERROR 72

ERROR 73

ERROR 74

ERROR 75

ERROR 76

ERROR 77

NOT A PDOS DISK. An initialized PDOS
disk has the constant >A55A at location
>0028 of the header sector (sector 0).
If the constant is not found on a disk
read, error 68 results.

NOT ENOUGH FILE SLOTS. A maximum of 32
files can be open at a time. These
correspond to the 32 file slots.

POSITION ERROR. Error 70
a position command
end-of-file index.

resul ts

beyond
from

the

NESTING ERROR. Error 71 results for
nesting procedure files too deep.

TOO MANY TASKS. The task list is
defined when the PDOS system is
generated.

NOT ENOUGH MEMORY. An attempt to
create a task with more memory than the
current task or available memory in the
system memory bit maps, results in error
73.

NO SUCH TASK. Error 74 occurs when
referencing a task not in the task list
or task O.

FILE LOCKED. Once a file has been
locked (XLKF), it cannot be accessed
until unlocked (XULF).

TASK LOCKED. Once a task has been
locked (XLKT), it cannot be killed until
unlocked (XULT).

NOT RESIDENT. If PDOS BASIC is not
resident in the system, all 'BX' and
'EX' fi les wi 11 not execute. Also, the
interpreter cannot be entered with the
'EX' command.

>LS 12

PDOS ERR 68 Not PDOS disk
>

>CF TEMP, TEMP1
PDOS ERR 69 No slot
>

>EX
*READY
OPEN u#PAULu,F
FILE 1,F:4,O
*ERROR 70 Position err

>GlCF LI ST ,$TT A
PDOS ERR 72 Too many tasks
>

>CT ,40,,1
PDOS ERR 73 No memory
>

>KT 5
PDOS ERR 74 No task
>

>CF FDATA,TEMP
PDOS ERR 75 File locked
>

>KT 5
PDOS ERR 76 Task locked
>

>EX
PDOS ERR 77 Not resident

PAGE A-5

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS

(A.2 PDOS ERROR NUMBERS continued)

ERROR 78

ERROR 79

ERROR 80

ERROR 81

ERROR 82

ERROR 83

ERROR 84

ERROR 85

ERROR 86

MESSAGE BUFFER FULL. There are 32
message buffers in the PDOS system. Too
many messages results in error 78.

MEMORY ERROR. Error results from a
XFUM primitive with invalid arguments.

I/O DRIVER ERROR. Driver dependent.

UNIMPLEMENTED PDOS PRIMITIVE. A

defined PODS primitive is not currently
implemented.

ILLEGAL PODS PRIMITIVE. An invalid
A-line primitive has been executed.

DELAY EVENT STACK FULL. Too many
delayed events have been requested.

CHECKSUM ERROR. Not implemented.

ABORTED TASK. If a task is aborted by
the scheduler. error 85 results.

PHANTOM PORT. A task has made a call
to get character without any possibility
of getting a character.

>SM 4.ANOTHER MESSAGE
PO OS ERR 78 Msg buf full
>

PAGE A-6 (',~.'
',j/

'G'~l!'·, i" ',!

4'"

(, 'C"

{

f

(

c

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS

(A.2 PDOS ERROR NUMBERS continued)

ERROR 90

ERROR 91

ERROR 92

ERROR 93

ERROR 94

ERROR 95

ERROR 96

ERROR 97

ILLEGAL K2 MODULE PRIMITIVE. Run
module error where a kernel #2 primitive
hes been executed and the module was not
generated in the PDOS system.

ILLEGAL K3 MODULE PRIMITIVE. Run
module error where a kernel #3 primitive
has been executed and the module was not
generated in the PDOS system.

ILLEGAL F MODULE PRIMITIVE. Run module
error where a file manager primitive has
been executed and the module was not
generated in the PDOS system.

ILLEGAL W MODULE PRIMITIVE. Run module
error where a R/W module primitive has
been executed and the module was not
generated in the PDOS system.

ILLEGAL N MODULE PRIMITIVE. Run module
error where a floating point module
primitive has been executed and the
module was not generated in the PDOS
system.

ILLEGAL D MODULE PRIMITIVE. Run module
error where a debugger module primitive
has been executed and the module was not
generated in the PDOS system.

ILLEGAL M MODULE PRIMITIVE. Run module
error where a monitor module primitive
has been executed and the module was not
generated in the PDOS system.

ILLEGAL B MODULE PRIMITIVE. Run module
error where a BASIC module primitive hes
been executed and the module was not
generated in the PDOS system.

PAGE A-7

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS PAGE A-a

A.3 MASM ERROR NUMBERS

ERROR 301 ILLEGAL SYMBOL.

ERROR 302 MULTIPLY DEFINED SYMBOL.

ERROR 304 UNDEFINED SYMBOL.

ERROR 305 PHASE ERROR.

ERROR 306 ILLEGAL OPCODE.

ERROR 307 ILLEGAL OPCODE EXTENSION.

ERROR 309 MISSING OPERAND.

ERROR 310 ILLEGAL OPERAND MODE.

ERROR 311 UNARY OPERATOR ERROR.

ERROR 312 STACK UNDERFLOW.

ERROR 313 STACK OVERFLOW.

ERROR 314 SYNTAX ERROR.

ERROR 315 ,ABSOLUTE EXPRESSION REQUIRED.

ERROR 316 ILLEGAL COMPLEX EXPRESSION.

ERROR 319 DISPLACEMENT FIELD OVERFLOW.

ERROR 320 DIVISION BY ZERO.

ERROR 322 BRANCH TO ODD ADDRESS.

ERROR 324 PARAMETER OUT OF RANGE.

ERROR 325 ILLEGAL REGISTER LIST.

ERROR 327 ILLEGAL SECTION SPECIFICATION.

ERROR 328 ILLEGAL ·OPTION.

ERROR 329 LABEL NOT ALLOWED.

ERROR 330 IF/ENOC OR MACRO/ENDM ERROR.

ERROR 331 FLOATING POINT ERROR.

WARNINGS

300 Modified instruction
303 Multiply defined symbol referenced
308 Was on odd byte boundary
317 Arithmetic overflow
318 Numeric overflow
321 Unmatched quotes or parens
323 Branch could be shorter
326 String truncated

o
c

rf,\,
\-~-./'

c
c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS

~ (A.3 MASM ERRORS continued)

f-

(~

Auxiliary errors are additional information for diagnosing
an assembler error. They are generally associated with
conditional assembly or macros.

ERROR 332 ENDC WITHOUT MATCHING IFxx.

ERROR 333 ENDM WITHOUT MACRO HEADER.

ERROR 334 LEGAL ONLY IN BODY OF MACRO.

ERROR 335 MACRO LABEL NOT FOUND.

ERROR 336 MUST BE SYMBOL.

ERROR 337 LABEL REQUIRED.

ERROR 338 MACRO DEFINITIONS CANNOT BE NESTED.

ERROR 339 INFINITE PARAMETER SUBSTITUTION.

ERROR 340 68020 INSTRUCTION OR ADDRESS MODE.

ERROR 341 ILLEGAL ISII MEMORY INDIRECTION.

ERROR 342 EXPECTING CLOSING PARENTHESES.

ERROR 343 EXPECTI NG Cot.'MA.

ERROR 344 ILLEGAL SCALE FACTOR.

ERROR 345 ILLEGAL {OFFSET:WIDTH} FORMAT.

ERROR 346 ILLEGAL REGISTER SPECIFICATION.

Auxiliary errors

68020 errors

PAGE A-9

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX A PDOS ERROR DEFINITIONS PAGE A-10 c
A.4 QLINK ERROR DEFINITIONS Ci

ERROR 501 ILLEGAL COMMAND.

ERROR 502 ILLEGAL NUMBER.

ERROR 503 ILLEGAL SECTION SPECIFICATION.

ERROR 504 ILLEGAL SYMBOL.

ERROR 505 TOO MANY COt.'MAND FILES.

ERROR 506 POOS CLOSE ERROR.

ERROR 507 PDOS OPEN ERROR.

ERROR 508 PDOS LOAD ERROR.

ERROR 509 'OB' or 'SY' FILE REQUIRED.

ERROR 510 MEMORY SIZE EXCEEDED.

ERROR 511 ILLEGAL OBJECT TAG.

ERROR 512 INVALID ADDRESS RANGE.

ERROR 513 PDOS READ ERR.

ERROR 514 ILLEGAL OPTION.

ERROR 515 ARITHMETIC OVERFLOW.

ERROR 516 DIVISION BY ZERO.

ERROR 517 PDOS WRITE ERROR.

ERROR 518 ILLEGAL SECTION GROUPING.

ERROR 519 NESTING ERROR.

ERROR 520 FIELD OVERFLOW.

ERROR 521 SYMBOL NOT FOUND.

ERROR 522 SYMBOL ALREADY DEFINED.

ERROR 523 UNDEFINED SYMBOL.

ERROR 524 MEMORY OVERFLOW.

,', , C·".··

(

68DxD PODS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

APPENDIX B

USER COMMAND SUMMARY

Current PODS resident monitor commands:

AC - Review procedure
AF - Append file
8P - Baud port
CF - Copy file
CT - Create task
OF - DeHne file
DL - Delete fi le

GM - Get memory
GO - Execute
GT - Go to label
HE - Help
IA - If altered
10 - Init date & time
IF - Conditional

OM - Delete multiple KM - Kill message
ON - Download file KT - Kill task
DT - Display time LL - List levels
EE - Enable echo LO - Load file
ER - List error
EV - Events
EX - Basic
FE - For every
FM - Free memory
FS - File slots

LS - List directory
LT - List tasks
LV - Directory level
MF - Make file
PB - Debugger
RC - Reset console

Monitor command formats are as follows:

RD - RAM disk
RN - Rename file
RS - Reset
SA - Set file attributes
SF - Show file
SM - Send task message
SP - Disk usage
SU - Spool unit
SV - Save to file
SY - System disk
TF - Transfer files
TM - Transparent mode
TP - Task priority
UN - Output unit
UP - Upload from port
ZM - Zero memory

AC <file> Review procedure file
AF <file1>.<file2> Append file
BP {{-}<prt>.<rt>{.<ty>.<bs>}} Baud port
CF <file1>.<file2> Copy file
CT <cmd>.<sze>.<pritY>.<prt> Create task
OF <file>{.<size>} Define file
DL <file> Delete file
OM <filelist>{.A} Delete multiple
ON <file>
DT
EE <echo fl ag>

Continued on next page ...

Download file
Display time
Enable echo

PAGE 8-1

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

ER <er ror#>
EV {{-}<event>}
EX
FE <fl> or «s>.<e».<cmd>
FM {{-}<kbytes>}
FS
GM {<kbytes>}
GO {<address>}{.<arguments>}
GT <label>
HE {<l ist>{.<list> ... }
IA <file>.<command>
ID
IF <strl>{=#<str2>}.<cmd>
KM <task#>
KT {-}<task#>
LL <fi 1 eli st>
LO <file>{.<start addr>}
LS {<filelist>}{.<file>}
LT
LV
MF
PB
RC

{<mode>}
{<level>}
<file>

RD {{-}<unt>.<sze>.<adr>}
RN <filel>.<file2>
RS {<disk#>}
SA <file>{.<attribute>}
SF {-}<file>
SM {<task#>.<message>}
SP {<disk#>J
SU <unit>{.<file> or <port#>}
SV <file>{.<sadr>,<eadr>}
SY {<disk#> ... }
TF <filelist>.<disk#>{.<flag>}
TM {{-}<port#>}{.<break>}
TP {<task#>.}<priority>
UN {<unit#>}
UP {<port#>}{.<message>}
ZM

List error
Events
Basic
For every
Free memory
File slots
Get memory
Execute
Go to label
Help
If altered
Init date & time
Conditional
Kill message
Kill task
List level
Load file
List directory
List tasks
Directory level
Make fil e
Debugger
Reset console
RAM disk
Rename file
Reset
Set file attributes
Show fi le

Send task message
Disk usage
Spool unit
Save to file
System disk
Transfer files
Transparent mode
Task priority
Output unit
Upload from port
Zero memory

PAGE B-2 C1c\ ,. i

(

«

(

(•.. ,
'-/

680xO PDOS 3.2 REFERENCE MANUAL

(B. USER COMMAND SUMMARY continued)

AC
Command: Review procedure file

Format: AC <file name>
Notes: (Y/N/A) Y=Execute line only

N=Don't execute

APPENDIX B USER COMMAND SUMMARY

A=Execute the rest of the AC file
AF

Command: Append file1 to the end of file2
Format: AF <file1>.<file2>

Notes: <file1> is not altered
AC interrupts transfer

BP
Command: Baud port

Format: BP
BP {-}<port #>
BP {-}<port #>,<baud rate>
BP {-}<port #>,<baud rate>,<type>,<UART base addr>

Notes: If <port #> ;s negative, U2P$ is set
If no parameters, then list current configured ports

<port #> Port (1-15)
Port + $100
Port + $200
Port + $400
Port + $800

<baud rate> 0 19200 baud
1 9600 baud
2 4800 baud
3 2400 baud
4 1200 baud
5 600 baud
6 300 baud
7 110 baud

<type> Optional (See

<UART addr> Optional (See

Example: BP 2,9600
BP -$402,1200

BP 4,O,3,$FFFFC4C1

ASAQ protocol
Pass control characters
DTR protocol
8-bit character 110

PDOS UART module)

PDOS UART module)

Baud port 2 at 9600 baud
Baud port 2 at 1200 baud with
DTR handshaking & set U2P$
Baud port 4 at 19200 baud &
bind to type 3 UART at $FFFFC4C1

PAGE B-3

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX 8 USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

CF
Command: Copy <file1> into <file2>

Format: CF.<file1>,<file2>
Notes: <file1> is not altered

hC interrupts transfer
CT

Command: Create task
Format: CT <task>,<size>,<time*256+priority>,<port>
Notes: All parameters are optional

<task> Task command line
<size> Size of new task in K bytes
<time> Time slice constant
<priority> Task priority (1-255)
<por t> Task I/O port

Monitor
32 K
4

64
o

Example: CT (MASM FILE:SR,FILE), 100
CT ,300,$540,2

Background assembly
New user on port 2

OF
Command: Define file in disk directory
Format: OF <file>{;<level>}{/<disk>}

DL

OF <file>{;<level>}{/<disk>},<size>
Notes: Defines contiguous file of <size> sectors

<size> defaults to 1 sector
252 bytes/sector

Command: Delete file from disk directory
Format: DL <file>

OM
Command: Delete multiple files from disk directory

Format: OM <filelist>{,A}
Notes: Memory is destroyed by this command

(Y/N/A) Y=Delete file
N=Don't delete
A=Oelete file and all subsequent files

Files containing the attribute '*' or '**' must have these attributes
removed by the SA command before they can be deleted.

<filelist> = {file}{:ext}{;level}{/disk}{/select ... }

{file}
{:ext}

{;level} =
{Idi sk}

{lsel ect}

1 to 8 characters (1st alpha) (@=all,*=wild)
1 to 3 characters (:@=all, "''''wild)
directory level (:@=al1)
disk number ranging from 0 to 255
PO OS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
Change date (JFmm-dy-yr,/Tmm-dy-yr)
or (!Fdy-mon-yr,/Tdy-mon-yr)

Example: OM M*:@:7/3/F1-1-84/T12-31-84 Delete all 2 character files beginning
with M. any extension, level 7, disk
3. that were altered in 1984

PAGE 8-4

,4~"
~ .

f 680xO PDOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

4[- (B. USER COMMAND SUMMARY continued)

{'

(~

('

ON
Command: Download file to U2P port

Format: ON <file>

DT

Notes: Data independent, binary transfer
AC aborts command

Command: Display date and time
Format: DT

EE
Command: Enable echo

Format: EE <ECF$ flag>

ER

Notes: <echo>.O Enable all consol. output
Disable all console output

2 Disable LS header console output

Command: List error message
Format: ER <error#>

EV
Command: Set/reset or list events

Format: EV

EX

EV {-}<event>
Notes: No parameters lists current events

+ event sets
- event clears

Command: Enter BASIC environment
Format: EX {<parameters> ... }
Notes: If no BASIC resident, error 77

PAGE B-5

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX 8 USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

FE
Command: For Every processor

Format: FE <filelist>,<command line>
FE «start>,<end»,<command line>

Notes: Generates IMP$ commands in upper memory and reduces EUM$
Memory is destroyed by this command

<filelist> = {file}{:ext}{;level}{/disk}{/select ... }

{file}
{:ext}

{;level}
{/disk}

{/select}

1 to 8 characters (1st alpha) (@=all,*=wild)
1 to 3 characters (:@=all, *=wi ld)
directory level (;@=all)
disk number ranging from 0 to 255
PDOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
PODS attribute (/*,1**)

Change date (/Fmm-dy-yr,/Tmm-dy-yr)
or (/Fdy-mon-yr,/Tdy-mon-yr)

<command line> substitution parameters:

&F Full file name
&N Fil e name
&E Extension
&L Level
&0 Disk

Carriage return
Start sublist
End sublist

Example: FE (4,10) EE 2[LS ;@I&F/F1-1-86]EE 0 list all files on disks 4-10
that have been altered in 1986

FM

FE @:SR;4 MASM &F,&N:OBJ Assemble all :SR files into
:OBJ files of the same name

Command: Free memory from current task
Format: FM

FM {-}<k bytes>
Notes: If +, memory is deallocated

If -, memory is dropped and not recoverable

PAGE 8-6 'C"'I ': ',r'

("" , ' ,.
.v

(

c

680xO PDOS 3.2 REFERENCE MANUAL

(B. USER COMMAND SUMMARY continued)

FS
Command: File slots

Format: FS

List File Slots heading explanation:

Slot File slot #

APPENDIX B USER COMMAND SUMMARY

Name File name; directory level/disk
ST Channel status
SM Sector in memory
PT Channel buffer pointer
SI Current file sector index
EOF
TN
BF
FLGS

End-of-file sector index number / bytes in last sector
Task number which locked/opened the file
Channel buffer address+
Chennel status flags (lock/shared/error)

+ A zero buffer address indicates the buffer has been
rolled to disk.

Channel status is defined as follows:

aM

x1xx
x2xx
x6xx
xAxx

Sequential
Random
Shared random
Read only random

1xxx Driver in channel
4xxx File altered
8xxx Sector altered

Command: Get task memory
Format: GM

GM <k bytes>

xx80
xx04
xx02
xx01

Altered
Contiguous
De 1 ete protected
Wri te protected

Notes: If no parameter, then all available memory is recDvered
GO

Command: Begin task execution
Formet: GO

GO {,<arguments> ... }
GO <address>{,<arguments> ... }

Notes: If no address, then execute at last entry address (EAD$)

PAGE B-7

680xO PDOS 3.2 REFERENCE MANUAL

(B. USER COMMAND SUMMARY continued)

GT
Command: Go to label

Format: GT <label>

APPENDIX B USER COMMAND SUMMARY

Notes: Echo flag (ECF$) is disabled during search (& restored)
Search begins at beginning of procedure file
Labels beginning with '*' are recommended

HE
Command: He 1 p

Format: HE {<list>{,<list> ... }}
Notes: Help file name: HLPTX

IA
Command: If altered

Format: IA <fi1e>.<command>

rIl

Notes: If <file> has the altered bit set ($0080 of status word)
then Clear altered bit

Continue command line processing
else Get next command line

Command: Init date & time
Format: 10
Notes: The current system & BIOS IDs are displayed

IF
Command: Conditional execution in procedure file

Format: IF <stringl>.<command>

I<M

IF <stringl>=<string2>.<command>
IF <stringl>#<string2>.<command>

Command: Kill message
Format: KM <task#>
Notes: Removes ALL messages directed to <task #>

KT
Command: Kill task

Format: KT {-}<task#>
Notes: Only current or spawned task can be killed

If -, then task memory is not deallocated

PAGE B-8 C·' ~'.\
, ,,'

C".'.' (", ::'':

(

(

(

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

LL
Command: List files by directory level

Format: LL <fi1e1ist>
Notes: Files are sorted according to level

Memory is destroyed by this command

<fi1e1ist> = {fi1e}{:ext}{;leve1}{/disk}{/se1ect ... }

{f i le}

{ :ext}
{; 1 eve 1}
{Idi sk}

{/se1ect}

1 to 8 characters (1st alpha) (@=all,*=wild)
1 to 3 characters (:@=a1l,*=wi1d)

= directory level (;@=all)
disk number ranging from 0 to 255
PDOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/DR)
PDOS attribute (/*,1**)
Change date (/Fmm-dy-yr,/Tmm-dy-yr)
or (/Fdy-mon-yr,/Tdy-mon-yr)

Example: LL 15 List all files on disk 5
List all files on disk 3
that were altered in 1984

LL ;@/3/F1-1-84/T12-31-84

LO
Command: Load file into memory

Format: LO <file>

LS

LO <file>,<start addr>
Notes: Loads SY or OB files into memory at <start addr>

<start addr> defaults to end of TCB
Objects can be loaded anywhere in memory

Command: List directory
Format: LS <filelist>

LS <fi1elist>,<file>
Notes: <file> parameter forces output to POOS file

EE 2 disables header and appends disk # to file name
of files listed and corresponding disk storage follow list

<filelist> = {fi1e}{:ext}{;level}{/disk}{/se1ect ... }

{file}
{:ext}

{;level}
{Idisk}

{lselect}

Example: LS ***;@/4/EX/TX/F1-1-86

, to 8 characters (1st alpha) (@=all,*=wild)
1 to 3 characters (:@=all,*=wild)
di rectory level (;@=all)
disk number ranging from 0 to 255
PDOS type (/AC,/BN,/BX,/EX,/OB,/SY,/TX,/OR)
PDOS attribute (/*,1**)
Change date (/Fmm-dy-yr,/Tmm-dy-yr)
or (/Fdy-mon-yr,/Tdy-mon-yr)

List all files with a 3 character
name, no extension, on any level.
on disk 4, of type EX or TX. that
have been altered since 1985

PAGE B-9

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

LT
Command: List tasks
Format: LT

LT <mode>

List Task heading explanation:

Task
Prt
Tm
Event
Map
Size
PC

{*=current}Task I/parent task I

SR
TB

Task priority (1-255) (+ indicates SVF$ set)
Task CPU tics (~ tic=10 ms)
Suspended event(s)
Task map constant
Task size (k bytes)
Program Counter
Status Register
Task control Block

EM End of memory
I Input port number
U Output unit mask

Unit 1 port number
2 Unit 2 port number
4 Unit 4 port number
8 Unit 8 port number

Mode information can be requested by including a numeric parameter.
Available modes are 1-7.

Mode parameters:

Mode 1: Selects TCB parameters starting with CLP$. The TCB parameters
are defined as follows:

TCB = <--1-> <--2-> <--3-> <--4-> <--5-> <--8-> <--7-> <--8->
<--g-> <-10-> <-11-> <-12-> <-13-> <-14-> <-15-> <-18->

1 ClP$ Command Line Pointer
2 BUM$ Beginning of User Memory
~ EUM$ End of User Memory
4 EAD$ Entry Address
5 IMP$ Assigned Input Message
6 ACI$ Assigned Console Inputs
7 LEN$/SFI$ Error Register/Spooling Unit File 10
8 FLG$/SLV$/FEC$/O Task Bit Flags/Directory Level/

File Expansion Count

Continued on next page ...

PAGE B-10 o
(}

o

r
~J

()

c\

(

(

(-

(

(

(

680xO PODS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

Mode 1: Selects TCB parameters startins with CLP$. The TCB parameters
are defined as follows (continued):

TCB

9
10
11
12
13

14

15
16

Mode 2 :
Mode 3:
Mode 4:
Mode 5 :
Mode 6:
Mode 7 :

= <--1-> <--2-> <--3-> <--4-> <--5-> <--6-> <--7-> <--8->
<--9-> <-10-> <-11-> <-12-> <-13-> <-14-> <-15-> <-16->

CSC$/PSC$ Clear Screen/Position Cursor
SoS$/SDK$ Alternate Disks/System Disk
EXT$ XEXT$ Address
ERR$ XERR$ Address
CMD$/TID$/ECF$/CNT$ Command Line Delimiter/Task 10/

Echo F1a9/ Column Counter
MMF$/PRT$/SPU$/UNT$ Memory Modified Flas/lnput Port #/

Spoo1ins Unit Mask/Output Unit Mask
U1P$/U2P$/U4P$/U8P$ Unit 1/Unit 2/Unit 4/Unit 8 Ports
O/TWO$ Monitor Temps

Lists current executing monitor command (MPB$) .
List both modes 1 and 2.
Outputs current contents of f10atins point register (FPA$)
Lists modes 1 and 4.
Lists modes 2 and 4.
Lists modes 1 • 2. and 4 (all modes).

Example:
x>LT 1

LV

Task
0/0

Prt Tm
64 1

Event Map Size PC SR TB EM I U , 2 4 8
97/-128 a 548 0000EB44 0000 00000800 000S6800 1 1 1 2 0 0

TCB=00000S03 0000F5SC 000S6800 00000000 00000000 00000000 FFFFOOOO 00010000
AA009B30 FFFFOA05 00000000 00000000 00000000 03010001 01020000 00000800

x>LT
Task
*0/0
1/0

Prt Tm Event
64 2
64 2 99

Map
a
a

Size PC SR TB EM I U 1 248
384 00001008 2004 OOOOBOOO 0006BOOO 1 1 1 a 0 a
20 00001B42 2000 0006BOOO 00070000 3 1 3 a a 0

Command: Directory level
Format: LV

MF

LV <level>
Notes: LV without parameter lists current user level

Level 255 selects all levels

Command: Make file
Format: MF <file>
Notes: A [CR] writes line to file

Only current line can be edited
An [ESC] terminates command and closes file

PAGE B-11

680xO PDOS 3.2 REFERENCE MANUAL

(B. USER COMMAND SUMMARY continued)

PB
Command: Enter PDOS debugger

Format: PB {<parameters> ... }

APPENDIX B USER COMMAND SUMMARY

Notes: Debugger executes in supervisor mode

AO-7 A-reg I Mem lAC
B{I,a} lst/def break 1,1 Mem dump
DO-7 D-reg 1,1+ Disassemble
F 68881 regs 1,#,#{Wl} Find B/W/l
{#}G Go & break #(0-7 d(Ax)
M last dump #{+-}# Hex +1-
N# 0=W,1=B,+2=w/o read
0 Offset AD Disassemb 1&
P PC Open previous
Q Exit IF Open next
R Reg dump +# # + offset
S Status
T Trace Trace options:
U Unit ------------
V Control lAC F/R/M Dump
W{s,e} Window G Go
X Set breaks & exit T Running
Z Reset

RC
Command: Reset consol.
Format: RC
Notes: Only the current procedure file is terminated

RD
Command: RAM disk

Format: RD
RD {-}<unit>,<size>,<address>

Notes: No parameter lists current RAM disk configuration
-<unit> will automatically initialize with 32 file directory size
Each 1 K of memory equals 4 RAM disk sectors

Example: x>RD
Disk.8
Si"ze=255
Addr=OOOED800
x>FM -578
Addr=0005DOOO
x>RD -8,2560,$50000
x>SP 8
Fi1es=0/32
Free=2554,2554
Used=O/O
x>

list current RAM disk parameters

RAM disk size = 255 sectors

Fre. (2580-255)/4 • 578.25 sectors

Create and init floppy image RAM disk

PAGE B-12 o

o
c

(

(

680xO PDOS 3.2 REFERENCE MANUAL

(B. USER COMMAND SUMMARY continued)

RN
Command: Rename file

Format: RN <file1>.<file2>
RN <file>.<level>

APPENDIX 8 USER COMMAND SUMMARY

Notes: A number for the second parameter is a new directory level
RS

Command: Reset
Format: RS

RS <disk #>
SA

Command: Set file attributes
Format: SA <file>

SA <file>.<attribute>
Notes: Valid file attributes are as follows:

AC Procedure file
DB 68000 object
SY System file
TX ASCI I text
BN Binary file
EX BASIC program
BX = BASIC binary program
DR System 110 driver

Delete protect
= Write protect

SF
Command: Show file

Format: SF <file>
SF -<file>

SM

Notes: File listing flow controlled with space bar
File listing automatically pauses after 23 lines
Lines are clipped to 78 characters
A minus sign before line supresses clipping and auto pause

Command: Send task message
Format: SM

SM <task#>.<message>
Notes: No parameter lists current queued messages

SP
Command: Disk usage

Format: SP
SP <disk>

Notes: The disk usage is defined as follows:

Files=<files>l<directory size>
Free=<free sectors>.<largest contiguous block>
Used=<sectors used>l<sectors allocated>

PAGE B-13

680xO POOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

SU
Command: Spool unit
Format: SU <unit>

SU <unit>,<file>
SU <unit>,<port#>

Notes: Spool file is closed and SPU$ reset with 'SU 0'
<port #> is loaded into corresponding output variables of <unit>

Example: x>LT
Task Prt Tm
*OfO 64 1

x>SU 2,2

x>UN 3
x>LT
Task Prt Tm
*OfO 64
x>UN
x>SU 6,4
x>LT
Task Prt Tm
*OfO 64 ,
x>

SV

EM
... DODEDSDO

EM
... OOOEOSOO

EM
... OOOEDSOO

U 2 4 S

000

U 1 2 4 S

3 1 200

U 1 2 4 S

1 1 4 4 0

Command: Save to file
Format: SV <file>

SY

SV <file>,<sadr>,<eadr>
Notes: A binary memory image is written to file

Default memory bounds are TBE$ and BUM$

Command: System disk
Fo rma t: SY

SY <disk>{,<disk>}{,<disk>}{,<disk>}
TF

Command: Transfer files
Format: TF <filelist>.<disk #>

TF <filelist>.<disk #>,<f1ag>
Notes: Memory is destroyed by this command

<fi1elist> = {file}{:ext}{;le~e1}{fdisk}{fse1ect ... }

{file} = , to S characters (1st alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=al1,*=wi1d)

{;leve1} = directory level (;@=a11)
{fdisk} = disk number ranging from 0 to 255

{/se1ect} = PO OS type (fAC,fBN,fBX,fEX,fOB,fSY,fTX,fDR)
POOS attribute (f*,f**)
Change date (fFmm-dy-yr,fTmm-dy-yr)
or (/Fdy-mon-yr,fTdy-mon-yr)

Continued on next page ...

PAGE B-14

c

(

(

(','
/

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY

(B. USER COMMAND SUMMARY continued)

TF (continued)

TM

<flag> = A,D,U

A = Transfer all the files in the filelist.
D Transfer those files in the filelist that are

defined on the destination disk.
U Transfer those files in the filelist that are

undefined on the destination disk.

Command: Transparent mode
Format: TM

TM {-}<port>
TM {-}<port>,<break>

Notes: No parameters defaults to U2P$ and [ESC] for break
Memory is destroyed by this command with the - option
If negative port, then on break, prompt for file

Example: x>TM 4,2
x>TM -4

Transparent on port 2 with AB break
Capture data from port 2

TP
Command: Task priority

Format: TP <time*256+priority>
TP <task#>,<time*256+priority>

Notes: One parameter defaults to current task
If time is omitted (ie. time=O) then task time is unaltered

Example: x>TP 2,100
x>TP 0,$440

Task 2 priority set to 100
Task 0 time=4, priority=64

UN
Command: Output unit

Format: UN
UN <unit>

Notes: Each bit of UNT$ selects an output path
UP

Command: Upload from port
Format: UP

ZM

UP <port #>
UP <port #>,<message>

Notes: The <message> is first sent out port if included
Data is loaded into user memory from port
Default port is U2P$
After each 256 characters, a period is output
An [ESC] from console or input or timeout terminates transfer
Memory is destroyed by this command

Command: Zero memory
Format: ZM
Notes: EAD$ & BUM$ are reset to TBE$

t.t.1F$ is cleared

PAGE B-15

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX B USER COMMAND SUMMARY PAGE B-16 c
C" y

o

c

c
c

(680xO PDOS 3.2 REFERENCE MANUAL APPENDIX C PRIMITIVE COMMAND SUMMARY PAGE C-1

«
APPENDIX C

PRIMITIVE COMMAND SUMMARY

1 ***

2 PDOS CALL DEFINITIONS
3 ***

4
5 O/OOOOOOOO:AOOO S XSWP ;SWAP TO NEXT PROCESS
6 0/00000002:A002 XSMP ;SEND MESSAGE POINTER
7 0/00000004:A004 XGMP ;GET MESSAGE POINTER
8 0/00000006:A006 X881 ;68881 ENABLE
9 0/0000000B:A008 DC.W $A008 ;XUSP$ = RETURN TO USER MODE

10 O/OOOOOOOA:AOOA DC.W $AOOA ;XPAD$ = PACK ASCII DATE

« 11 O/OOOOOOOC:AOOC XERR ;MONITOR ERROR CALL
12 O/OOOOOOOE:AOOE XEXT ;EXIT TO MONITOR
13 0/00000010:A010 XGML ;GET MEMORY LIMITS
14 0/00000012:A012 XRTS ;READ TASK STATUS
15 0/00000014:A014 XLKT ;LOCK TASK
16 0/00000016:A016 XULT ;UNLOCK TASK
17 0/00000018:A018 XSEF ;SET EVENT FLAG
18 0/0000001A:A01A XTEF ;TEST EVENT FLAG
19 0/0000001C:A01C XSUI ;SUSPEND UNTIL INTERRUPT
20 0/0000001E:A01E XGTM ;GET TASK MESSAGE
21 0/00000020:A020 XSTM ;SEND TASK MESSAGE
22 0/00000022:A022 XGTP ;GET TASK PARAMETERS
23 0/00000024:A024 XDTV ;DEFINE TRAP VECTORS
24 0/00000026:A026 XCTB ;CREATE TASK
25 0/00000028:A028 XKTM ;KILL TASK MESSAGE
26 0/0000002A:A02A XRDM ;DUMP REGISTERS
27 0/0000002C:A02C XSUP ;MOVE TO SUPERVISOR MODE
28 0/0000002E:A02E XLSR ;LOAD STATUS REGISTER
29 0/00000030:A030 XEXC ;EXECUTE POOS CALL D7.W
30 0/00000032:A032 XDEV ;DELAY EVENT

« 31 0/00000034:A034 XRTP ;READ TIME PARAMETERS
32 0/00000036:A036 XUAD ;UNPACK ASCII DATE
33 0/0DOOO038:A038 XBUG ;CALL DEBUGGER
34 0/0000003A:A03A XLER ;LOAD ERROR REGISTER
35 0/0000003C:A03C XSTP ;SET/READ TASK PRIORITY
36 0/000D003E:A03E XGUM ;GET USER MEMORY
37 0/OOOOOO40:A040 XFUM ;FREE USER MEMORY
38 0/00000042:A042 XRSR ;READ STATUS REGISTER
39 O/OOOOO044:A044 XRTE ;INTERRUPT RETURN FROM EXCEPTION
40 O/OOOOOO46:A046 XSEV ;SET/RESET EVENT W/O SWAP
41 0/OOOOOO48:A048 XGCB ;CONDITIONAL GET CHARACTER
42 0/OOOOOO4A:A04A XDMP ;*DUMP MEMORY F/STACK
43 0/0000004C:A04C XEXZ ;EXIT TO MONITOR W/COMMAND
44 O/00OOO04E:A04E XPCB ;PUSH COMMAND TO 8UFFER

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX C PRIMITIVE COMMAND SUMMARY PAGE C-2

{APPENDIX C PRIMITIVE COMMAND SUMMARY continued}

1 ***

2 SUPPORT CALLS
3 *
4 D/OOOOO050:A050 XCBD ;CONVERT BINARY TO DECIMAL
5 0/00000052:A052 XCBH ;CONVERT BINARY TO HEX
6 0/00000054:A054FFAA XCBM S ;CONVERT BINA~Y TO DECIMAL WITH MESSAGE
7 0/00000058:A056 XCDB ;CONVERT DECIMAL TO BINARY
8 D/OOOOO05A:A058 XFTD ;FIX TIME & DATE INTO RO,R1
9 0/0000005C:A05A XGNP ;GET NEXT PARAMETER

10 0/0000005E:A05C XRDT ;READ DATE
11 0/00000060:A05E XRTM ;READ TIME
12 0/00000062:A060 XUDT ;UNPACK DATE
13 0/00000064:A062 XUTM ; UNPACK TIME
14 0/0000D066:A064 XWDT ;WRITE DATE
15 0/00000068:A066 XWTM ;WRITE TIME
16 0/0000006A:A068 XCHX ;CONVERT HEX TO BUFFER
17 0/QOOOO06C:A06A XCBX ;CONVERT DECIMAL TO BUFFER
18 0/0000006E:A06CFF90 XAIM S ;ADD INDEXED MESSAGE
19 0/00000072:A06E XPEL ;PUT ENCODED LINE
20
21 ***

22 * CONSOLE I/O CALLS
23
24 0/00000074:A070 XBCP ;BAUD CONSOLE PORT
25 0/00000076 :A072 XCBC ;CHECK FOR BREAK CHARACTER
26 0/00000078:A074 XCBP ;CHECK FOR BREAK OR PAUSE
27 0/0000007A:A076 XCLS ;CLEAR SCREEN
28 0/0000007C:A078 XGCC ;GET CONSOLE CHARACTER CONDITIONAL
29 0/0000007E:A07A XGCR ;GET CONSOLE CHARACTER
30 0/00000080:A07C XGLB ;GET LINE IN BUFFER
31 0/DOOOD082:A07E XGLM ;GET LINE IN MONITOR BUFFER
32 0/00000084:A080 XGLU ;GET LINE IN USER BUFFER
33 0/00000086:A082 XGLX ;GET LINE IN BUFFER W/CONTROL CODES
34 0/00000088:A084 XPBC ;PUT USER BUFFER TO CONSOLE (*R9) ,4-'

35 0/0000008A:A086 XPCC ;PUT CHARACTER TO CONSOLE ''<ll''/
36 0/0000008C:A088 XPCL ;PUT CRLF TO CONSOLE
37 0/0000008E:A08A XPLC ;PUT LINE TO CONSOLE
38 0/00000090:A08CFF6E XPMC S ;PUT MESSAGE TO CONSOLE
39 0/00000094:A08E XPSC ; POSITION CURSOR
40 0/00000096:A0900000 XTAB 0 ;TAB
41 0/0000009A:A092 XRCP ;READ CURSOR POSITION
42 0/0000009C:A094 XRPS ;READ PORT STATUS
43 0/0000009E:A096 XPDC ;PUT DATA TO CONSOLE
44 0/000000AO:A098 XPSP ;PUT SPACE TO CONSOLE
45 0/000000A2:A09A XSPF ;SET PORT FLAG
46 0/000000A4:A09CFF5A XPEM S ;PUT ENCODED MESSAGE TO CONSOLE
47 0/000000A8:A09E XGCP :GET CHARACTER FROM PORT

(680xO PDOS 3.2 REFERENCE MANUAL APPENDIX C PRIMITIVE COMMAND SUMMARY PAGE C-3

« (APPENDIX C PRIMITIVE COMMAND SUMMARY conti nued)

1 **W**K***_***** __ ***_* __ ******_***_***** __ * __ **_*

2 FILE SUPPORT 1/0 CALLS
3
4 O/OOOOOOAA:AOAO XFFN ;FIX FILE NAME
5 0/000000AC:AOA2 XLFN ;LOOK FOR NAME IN FILE SLOTS
6 0/000000AE:AOA4 XLST ;LIST FILE DIRECTORY
7 0/000000BO:AOA6 XRDE ;READ DIRECTORY ENTRY
8 0/000000B2:AOA8 XRDN ;READ DIRECTORY NAME
9 O/000OOOB4:AOAA XAPF ;APPEND FILE

10 O/000OOOB6:AOAC XCHF ;CHAIN FILE
11 0/0OOOOOB8:AOAE XCPY ;COPY FILE
12 O/OOOOOOBA:AOBO XLDF ;LOAD FILE
13 0/00OOOOBC:AOB2 XRCN ;RESET CONSOLE FILE

(
14 0/000OOOBE:AOB4 XRST ;RESET FILES
15 O/000000CO:AOB6 XSZF ;SIZE DISK
16 O/OOOOOOC2:AOB8 XBFL ;BUILD FILE LIST
17

18 O/000OOOC4:AOBA XPCR ;PUT CHARACTER RAW
119 0/000000C6:AOBC DC.W $AOBC ;XPCP$ = PUT CHARACTER TO PORT
20 0/00000OC8:AOBE DC.W $AOBE ;XBER$ = BASIC ERROR CALL
21 *
22 *****w****************************_**_.**_**_* ___

23 * DISK SUPPORT 1/0 CALLS
24

(25 O/OOOOOOCA:AOCO XISE ; INIT SECTOR
26 0/000000CC:AOC2 XRSE ;READ SECTOR
27 0/000000CE:AOC4 XRSZ ;READ SECTOR ZERO
28 0/000000DO:AOC6 XWSE ;WRITE SECTOR

(

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX C PRIMITIVE COMMAND SUMMARY PAGE C-4

(APPENDIX C PRIMITIVE COMMAND SUMMARY continued)

1 ***

2 FILE MANAGER CALLS
3
4 0/0DOOOOD2:AOC8 DC.W $AOC8
5 01000000D4:AOCA DC.W $AOCA
6 0/000000D6:AOCC DC.W $AOCC
7 0/000DOOD8:AOCE XFAC ;FILE ALTERED CHECK
8 O/OOOOOODA:AODO XC FA ;CLOSE FILE WITH NEW ATTRIBUTES
9 0/000000DC:AOD2 XCLF ;CLOSE FILE

10 0/000000DE:AOD4 XDFL ;DEFINE FILE
11 0/000000EO:AOD6 XDLF ;DELETE FILE
12 0/000000E2:AOD8 XLKF ;LOCK FILE
13 0/0000DOE4:AODA XNOP ;OPEN NON-EXCLUSIVE RANDOM
14 0/0000DOE6:AODC XPSF ; POSITION FILE
15 0/000000E8:AODE XRBF ;READ BLOCK
16 O/OOODOOEA:AOED XRFA ;READ FILE ATTRIBUTES
17 0/00DOOOEC:AOE2 XRLF ; READ LINE
18 0/000000EE:AOE4 XRNF ;RENAME FILE
19 0/000000FO:AOE6 XROO ;OPEN READ ONLY RANDOM
20 0/000000F2:AOE8 XROP ;OPEN RANDOM FILE
21 0/000000F4:AOEA XRWF ;REWIND FILE
22 0/0000DOF6:AOEC XSOP ; OPEN SEQUENTIAL FILE
23 0/000000F8:AOEE XULF ;UNLOCK FILE
24 O/OOOOOOFA:AOFO XWBF ;WRITE BLOCK
25 0/00OOOOFC:AOF2 XWFA ;WRITE FILE ATTRIBUTES
26 0/00000DFE:AOF4 XWLF ;WRITE LINE
27 0/0000OlDO:AOF6 XZFL ;ZERO FILE
28 0/OOOOO102:AOF8 XFBF ;FLUSH BUFFERS
29 O/OOOOO104:AOFA XKTB ;KILL TASK
30 O/00000106:AOFC XWFP ;WRITE FILE PARAMETERS
31 0/000OO108:AOFE XRFP ;READ FILE POSITION
32 *
33 ***

34 RESERVED SYSTEM CALLS 4'

35 ~/

36 0/OOD001DA:A100 DC.W $A100 ;XSER$ = SR=NE. DO=ERROR RETURN
37 O/OOOD010C:A102 DC.W $Al02 ;XSYS$ = GET SYRAM POINTER
38 O/OOOOO10E:A104 DC.W $Al04 ;XCLH$ = SYSTEM CONVERT LONG TO HEX
39 D/OOOOO110:Al06 DC.W $Al06 ;XCWH$ = SYSTEM CONVERT WORD TO HEX
40 0/0OOOOl12:A108 DC.W $Al08 ;XCLD$ = SYSTEM CONVERT LONG TO DECIMAL
41 O/OOOOOl14:A10A DC.W $Al0A ;XSSP$ = GET SUPERVISOR STACK POINTER
42 O/00OOOl16:A10C DC.W $A10C ;XL2E$ = LEVEL 2 SR=NE. DO=ERROR RETURN

DC.W $A1DE ;XSPT$ = SET PARENT TASK

c
c

(

(

SBOxO PDOS 3.2 REFERENCE MANUAL APPENDIX D PDOS DISK LAYOUT

APPENDIX 0

PODS DISK LAYOUT

The following disk sector listings define the PODS disk
formats including the header sector. directory entries. and
data storage.

x>MDDUMP
SBK PO OS Disk Dump/Alter Utility 05/02/B4

Disk # = 0
To alter sector. enter "A"; to exit. enter "Z"
Start Sector = 0
End Sector = 2

Sector/Disk=$OOOO (0)/0
OOO-OOF 53 41 47 45 20 50 44 4F 53 20 32 2E 3S S4 00 00 SAGE PODS 3.2 ..
010-01F 09 40 00 SO BB 00 DB 00 00 BO 09 40 AS SA FF FF .@.m ~kZ ..
020-02F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
030-03F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
040-04F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
050-05F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OSO-OSF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
070-07F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OBO-OBF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
090-09F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
DA~-OAF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OBO-OBF
OCO-OCF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

ODO-ODF FF FO 00 00 00 00 00 00 00 000000000000 00 .p
OEO-OEF
OFO-OFF

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Sector/Disk=$0002 (2)/0
OOO-OOF 41 40 41 SA 49 4E 47 00 00 00 00 05 DB 00 00 12 AMAZING
010-01F 0000001200 12 00 9A 10 IF AB A2 10 1F A8 A2 (.... (..
020-02F 41 5340 00 00 00 00 00 00 00 0000 BO 00 00 25 ASM %
030-03F 00000000000000 2E 10 1F A8 A2 10 IF A8 A2 (" .. (..
040-04F 42 30 31 00 00 00 00 0000 0000 OA 20 00 00 26 BDl &
050-05F 000000 01 00 01 00 58 10 IF AB A2 10 IF A8 A2 X .. (.... ("
OSO-OSF 42 30 31 00 00 00 00 00 53 52 00 OA 02 00 00 28 BDl SR .. : .. (
070-07F
080-08F
090-09F
DA~-OAF

OBO-OBF
OCO-OCF
ODO-ODF
OED-Off
OFO-OFF

000000 04 00 04 00 55 10 IF A8 A2 10 IF A8 A2 U .. (" .. ("
42 30 32 0000 00 00 00 00 00 00 OA 20 00 00 20 B02 -
000000 01 0001 00 5B 10 IF A8 A2 10 1F A8 A2 [.. (" .. ("
42 30 32 0000 00 00 00 53 52 00 OA 020000 2F B02 SR !
000000 04 00 04 00 3D 10 IF A8 A2 10 '1F A8 A2 = .. (" .. ("
423033 00 00 00 00 00 00 0000 OA 20 00 00 34 B03 4
000000 01 00 01 00 5B 10 IF A8 A2 10 1F A8 A2 [.. (" .. ("
42 30 33 00 00 0000 00 535200 OA 02 0000 36 B03 SR 6
000000 04 00 04 00 3F 10 1F A8 A2 10 1F A8 A2 1 .. (" .. ("

Disk name
0940 = Boot sector
OOSD = # of files

PAGE D-l

BB = # of boot sectors
000800 = Boot address

0940 = # of POOS sectors
A55A = PODS ID
FFFF = Sides/Density

1 = Allocated
o = Free

41 00 = File name
00 00 00 = File extension

05 = Directory level
0800 = Type
0012 = Start sector
0000 = Free
0012 = Sectors allocated
0012 = EOF sector index
009A = # of bytes in last sec

101FA8A2 = Date created
101FA8A2 = Date last updated

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX D PDOS DISK LAYOUT

(APPENDIX D PDOS DISK LAYOUT continued)

To alter sector, enter "A"; to exit, enter HZ"
Start Sector = $12
End Sector = $13

Sector/Disk=$0012 (1S)/0

OOO-OOF 00 13 00 00 FF FF FF FF 00 00 OD DE 00 00 04 OC \
010-01F 00 00 00 54 00 00 00 6S 23 14 41 40 41 5A 49 4E ... T ... h#.AMAZIN
020-02F
030-03F
040-04F
050-05F
060-06F
070-07F
OSO-08F
090-09F
OAO-OAF
OBO-OBF
OCO-OCF
OOO-OOF
OEO-OEF
OFO-OFF

47 20 50 52 4F 47 52 41 4D 00 00 00 1C 14 53 45 G PROGRAM SE
45 44 30 00 086307 1A 63 5C 00 2E 07 OS 5C OD EO= .. c .. c\ \.
17 4E 06 63 0000086306 5C 00 17 4E 00 1C 14 .N.c ... c.\ .. N .. .
57 48 41 54 20 41 52 45 20 59 4F 55 52 20 57 49 WHAT ARE YOUR WI
44 54 48 20 41 4E 44 20 4C 45 4E 47 54 48 00 OA DTH AND LENGTH ..
64 OA 65 00 23 14 50 4C 45 41 53 45 20 57 41 49 d.e.#.PLEASE WAI
54 2E 2E 2E 2E 00 08 00 1064 5C 01 30 65 5C 01 T d\.Oe\.
30 1S 66 OA 64 5C 01 30 65 5C 01 30 1S 67 OA 64 O.f.d\.Oe\.O.g.d
65 32 17 68 00 00 08 69 06 5C 00 07 OS 6A 06 5C e2.h ... i.\ ... j.\
0007 08 68 06 60 64 32 5C 01 30 17 400008 6C ... k.'d2\.0.@ .. 1
06 5C 01 07 0868 5C 01 1867 06 6C 07 OS 6C 06 .\ ... k\ .. g.l .. 1.
6C 5C 01 30 07 08 6D 06 68 07 08 6E 06 5C 01 OOl\.O .. m.k .. n.\ ..
06 6F 06 5C 0101 6407067006 5C 01 01 65 00 .o.\ .. d .. p.\ .. e.
OS 6F 70 186606 5C 01 0000 1F 70 07 1F 6F 00 .op.f.\ p .. o.

Sector/Disk=$0013 (19)/0 •

OOO-OOF 00 1400 12 0150 0000010400 00 10 71 0000] q ..
010-01F
020-02F
030-03F
040-04F
050-05F
060-06F
070-07F
080-08F
090-09F
DA~-OAF

OBO-08F
OCO-OCF
OOO-OOF
OEO-OEF
OFO-OFF

1A 60 64 2E 07 OS 60 0660 5C 01 3007 01 50 00 .md ... m.m\.O ..].
00 00 FA 00 08 60 06 5C 0107 08 6E 06 6E 5C 01 .. z .. m.\ ... n.n\.
3007 1A 6E 65 2C 07 08 6E 06 5C 01 0000 1A 60 O .. ne •.. n.\ m
6E 18 67 5C 00 29 07 01 5000 00 00 C8 00 1A 60 n.g\.) ..] ... H .. m
5C 01 31 5C 00 29 07 01 5D 00 00 02 12 00 1A 6D \.1\.) ..] m
5C 01 31 6E 1S 67 5C 00 2E 07 01 50000002 12 \.1n.g\]
00 00 1A 6E 5C 01 31 5C 00 29 07 01 50 00 00 01 ... n\.1\.) ..] .. .
8600 1A 60 6E 5C 01 31 1867 5C 00 2E 07 01 50 ... mn\.1.g\]
0000 01 860000 1A 6064 29 07 01 50 000001 md) ..] .. .
4A 00 1A 60 5C 01 30 6E 18 67 5C 00 2E 07 01 50 J .. m\.On.g\]
000001 4A 00 00 2160 5C 03 32 5C 01 300701 ... J .. ,'\.2\.0 ..
50 00 00 03 16 OA 5D 000003 34 OA 5D 00 00 03]] ... 4.] ...
5C 00 1A 6E 65 2E 07 0150000001 54 00 1A 6A \ .. ne ...] ... T .. j
5C 01 29 07 01 50 000001 72 00 00 08 69 06 5C \.} ..] ... r ... i.\
01 07 01 50 00 0001 6800 00 1A 60 6E 5C 01 30 ...] ... h ... mn\.O

To alter sector, enter "A": to exit, enter "Z"
Start Sector =

PAGE D-2 o
c

0013 = Forward link
0000 = Backward link (null)

0014 = Forward link
0012 = 8ackward link (null)

c
c

{

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

APPENDIX E

PODS 1/0 DRIVERS

PO OS 110 drivers are an extension of the PDOS file system.
If a file's attribute is 'OR', then the PDOS file manager
expects the file to be an 110 driver program instead of
data.

E.l DRIVER ENTRY POINTS E-2

E.2 DRIVER REGISTER USAGE•................. E-3

E.3 DRIVER GENERATION E-4

E.4 RESTRICTIONS .. E-5

E. 5 PO OS OUTPUT DRIVER EXAMPLE E-6

E.6 PODS INPUT DRIVER EXAMPLE. E-l 3

E . 7 EXTENDED DR IVER EXAMPLE E-1 7

PAGE E-l

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS PAGE E-2

E.1 DRIVER ENTRY POINTS

PDOS 1/0 drivers are an extension of the PDOS file system.
An 1/0 driver is designated by the 'DR' file type. 1/0
driver files contain position independent (self-relocating)
code rather than data.

When an I/O driver is opened, closed, read from, written
to, or positioned, the PDOS file manager branches into the
channel buffer at specific entry points. This requires that
the first twelve bytes of the file be reserved for branch
instructions and that the driver code and variables be no
more than 240 bytes in length.

The following driver entry points must be at the beginning
of each driver module:

SECTION 0
DC.W $A55A

DROP BRA.S OPEN
DRCL BRA.S CLOS
DRRD BRA.S READ
DRWR BRA.S WRIT
DRPS BRS.S POST

:DRIVER 10
2 OPEN
4 CLOSE
6 READ
8 WRITE

;10 POSITION

The driver must be written in position independent or
self-relocating 68000 assembly code. This simply means that
while the code is relocatab1e, there can be no relocatable
tags within the object file.

A common way to make the code self-relocating is to
generate a base address and then reference each constant
within the program as a displacement beyond the base
address. PDOS passes the base address of the driver buffer
in address register A2. This can be conveniently used as
the base register for variables defined as the label minus
the start address plus four. The former makes the label
absolute (relocatable-relocatable=absolute) and the latter
skips the file links.

Extension of POOS file system

'DR' fi 1e type

Maximum length 240+12 bytes

Driver entry points

Position independent code

DTTX
SECTION 0
DC.W $A55A

ADDQ.W
LEA.L
MOVE.L

#1,CNT{A2)
BUF(A2) ,AO
AO,VAR(A2)

VAR EQU *-DTTX+4
DC.L 0

OFFSET *-DTTX+4
CNT DC.W 0
BUF DS.B 10

;BEGINNING OF DRIVER

; INCREMENT COUNT
;POINT TO BUFFER

('" i .••.
" '

P'

.<r".·,
'''"'

",

'\L/

(:

('

(

C

SSOxO PDOS 3.2 REfERENCE MANUAL APPENDIX E PDOS 110 DRIVERS PAGE E-3

E.2 DRIVER REGISTER USAGE

The PDOS file manager passes all parameters in registers to
110 drivers. All registers are available for use by the
driver except address registers A4 through A7.

The driver executes in supervisor mode. The return address
is already on the system stack. The status register passes
the error conditions back to the PDOS file manager. An 'EQ'
status indicates that no error occurred. A 'NE' status
specifies an error with the error number returned in data
register DO.

The data and address registers of the file manager call are
located on the stack immediately following the return
address, where DO is 4(A7), D1 is S(A7), and so on. This is
useful for passing the number of bytes on the end of file to
the D3.L of the file manager call. See the input driver
example E.S.

If the driver alters constants within the buffer, then the
file altered bit must be set in the file slot so that the
buffer is correctly restored when rolled to the disk. This
is done by executing the instruction 'ORI.W #$SOOO,12(A4)'
or 'TAS.S 12 (A4)'.

The following table describes the register usage for each
driver entry point:

OPEN: D7.W = Channel status
(A2) Driver base + 4
(A4) file slot
(AS) SYSRAM
(AS) Task TCS
(A7) Return address

CLOSE: D7.W = Channel status
(A2) Driver base + 4
(A4) file slot
(AS) SYSRAM
(AS) Task TCB
(A7) Return address

READ: DS.L Character count (-1 Line operation)
D7.W = Channel status
(A2) Driver base + 4
(A3) Memory buffer
(A4) File slot
(AS) SYSRAM
(AS) Task TCB
(A7) Return address

3*4+4 (A7) Return EOF bytes to D3.L

Parameters in registers

Preserve registers A4 through A7

Supervisor mode

Status register returns driver results

EQ = ok
NE = Error, DO=error #

Driver altered

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E POOS I/O DRIVERS PAGE E-4

(E.2 DRIVER REGISTER USAGE continued)

WRITE: DS.L = Character count (-1 Line operation)
07.W = Channel status
(A2) Driver base + 4
(A3) = Memory buffer
(A4) File slot
(AS) = SYSRAM
(A6) = Task TCB
(Al) = Return address

POSITION: DS.L Character position
D7.W = Channel status
(A2) Driver base + 4
(A4) File slot
(AS) SYSRAM
(A6) Task TCB
(Al) Return address

E.3 DRIVER GENERATION

A POOS driver is generated using conventional
utilities. The procedure is as follows:

1) Assemble the source file using MASM assembler.

POOS

2) Change the old driver file type to 'SY' (if defined).

3) Use the MSYFL utility to create a binary image. The
section 0 length (E tag) must not exceed $OOFC.'

4) Set the new driver file type as 'DR'.

>MASM TTO:SR,TTO:RB
68K POOS Assembler R3.2
ERII, Copyright 1986
SRC=TTO:SR
08J=TTO:RB
LST=
ERR=
XRF=
END OF PASS 1
END OF PASS 2
>SA TTO,SY
>MSYFL TTO:RB,TTO
68K POOS SY File Maker Utility 10/27/83

Source file = TTO:RB
Destination File = TTO

SECTION LENGTH = EOOOOOOOCA
Entry Address = 00000000

>SA TTO ,DR
>CF LIST, TTO

c·····'·\
I" ','

(

(

c

(
c

680xO PODS 3.2 REFERENCE MANUAL APPENDIX E PODS 110 DRIVERS

E.4 RESTRICTIONS

The following summarizes the restrictions when adding an
1/0 driver to PDOS:

1) Drivers must be written in self-relocating, address
independent 68000 assembly language.

2) The driver identification constant $A5SA must be the
first word of the driver.

3) Driver entry points must immediately follow the driver
identification word.

4) An 1/0 driver code and variables cannot exceed the
sector size less four link bytes. This results in a maximum
length of 2S2 bytes.

5) A driver MUST NOT make any console or file 1/0 system
calls.

B) A driver is exited via an 'RTS' instruction. A 'NE'
status condition indicates a driver error with data register
DO passing the error number.

7) Larger drivers can be written, but the excess code must
be located elsewhere in memory. See E.7 for an extended
driver example.

8) Drivers execute in supervisor mode.

9) Address registers A4, AS, AB, and A7 must be preserved.

PAGE E-5

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E POOS 1/0 DRIVERS

E.5 PDOS OUTPUT DRIVER EXAMPLE

The following program is an example of a POOS 1/0 driver.
The output is to the logical port number found in the TCB
variable U1P$.

TTO:SR - 68K poas TTO DRIVER
PAGE: 1 14:44 17-0ec-86

68020 POOS Assembler 10-0ec-86
FILE: TTO:SR,WINI #2

2 .. TTO:SR 10/03/86
3
4
5 .. 66 888 K K PPPP
6 .. 6 8 8 K K P P
7 .. 6 8 8 K K P P
8 6666 888 KK PPPP
9 6 6 8 8 K K P

10 .. 6 6 8 8 K K P
11 * 666 888 K K P
12 *
13 TTTTT TTTTT 000 DODD RRRR
14 T T a a 0 0 R
15 T T a a 0 0 R
16 T T a 0 0 o RRRR
17 .. T T a 0 0 0 R R
18 T T a a D 0 R R
19 * T T 000 DODD R
20 ..

0000
0
0
0
0
0

0000

III
R I

R I

I

R III

o a
o a
o a
o a
o a

v
v

000 SSS
0 S S
o S
a SSS
0 S
o S S

000 SSS

V EEEEE RRRR
V E R R

v V ERR
V V EEEE RRRR
V V ERR
V ERR
v EEEEE R R

..

21 *=***

22
23
24 *=
25 *=
26 *=
27 .. =

28 *=
29 *=
30 *=
31 *:

32 0/00000000: TTO
33 .. =

Eyrin9 Research Inst. Copyright 1983,1986.
ALL RIGHTS RESERVED.

Module Name: TTO
Author: Paul Roper

Revision History:

02111186 2.0
06120/86 3.0

IONT 3.0

Fixed XON/XOFF look before calling put
Fixed for upper 01.L=output event # for printers

68K poas TTO DRIVER

PAGE E-6

c

(

(

(

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

(E.5 PDOS OUTPUT DRIVER EXAMPLE continued)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 0/00000000:

*=***

*
*

*

*
*
*

*
*

*
00001400
0000001E BURT

*
0/00000000

This driver is intended to output files to the terminal. It outputs
the file data to the Unit 1 Port (U1P$) of the task that opened
it. It filters the output stream by ignoring <LF>, converting
<CR> characters to <CR><LF> pairs, keeping an independent column
counter and expanding <TAB> to column positions (multiples of 8),
using blanks. <BS> backspace characters decrement the counter.
Output events, XON/XOFF, and DTR line checks are all supported.

D5.L = Character count (-1
D7.W = Channel status
(A2) Driver base + 4
(A3) = Memory buffer
(A4) File slot
(AS) SYSRAM
(A6) Task TCB
(A7) = Return address

Line)

OPT
EQU

PDOS,CRE
$001E ;BIOS UART TBL

SECTION 0

PAGE E-7

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E POOS 1/0 DRIVERS PAGE E-8 0

(E.5 PO OS OUTPUT DRIVER EXAMPLE continued) 0
TTO:SR - 68K POOS TTO DRIVER 68020 POOS Assembler 10-0ec-86
PAGE: 2 14:44 17-0ec-86 FILE: TTO:SR,WINI #2

1 0/00000000:A55A OTTO OC.W $A55A ;ORIVER 10
2 0/00000002:600E DROP BRA.S OPEN 2 OPEN
3 0/00000004:6050 ORCL BRA.S CLOS 4 C~OSE
4 0/00000006:6006 ORRO BRA.S READ 6 READ
5 0/00000008:6050 ORWR BRA.S WRIT 8 WRITE
6 0/0000000A:7046 ORPS MOVEQ.L #70,00 ;10 POSITION ERROR
7 0/0000000C:4E75 RTS
8 *
9 0/0000000E:7050 READ MOVEQ.L #80,00 ;ERROR 80, DRIVER ERROR

10 0/00000010:4E75 RTS
11 *
12 0/00000012:006C8000000C OPEN ORI.W #$8000,12 (A4) ;FILE ALTERED
13 0/00000018:422AOOEA CLR.S CCNT(A2} ;CLEAR COUNTER
14 0/0000001C:4241 CLR.W 01 ;01=PORT #
15 0/0000001E:122E0452 MOVE.B U1 P$(A6),01 ;01=PORT #
16 0/00000022:7650 MOVEQ.L #80,03
17 0/00000024:0601 AOO.S 01 ,03
18 0/00000026:354300E8 MOVE.W 03,OUTE(A2} ;03=OUTPUT EVENT #
19 0/0000002A:16351058 MOVE.B UTYP.(A5,01.W),03 ;03=UART TYPE
20 0/0000002E:154300EB MOVE.8 03,TYPE(A2) ;SAVE FOR FUTURE
21 0/00000032:0643 AOO.W 03,03 ;POINT TO OSR C 22 0/00000034:2055 MOVEA. L (A5) ,AD
23 0/00000036:00F0301E AOOA.W BURT(AO,03.W},AO
24 0/0000003A:5448 AOOQ.W #2,AO ;AO=PUTC ENTRY
25 0/0000003C:25480000 MOVE.L AO,PUTC(A2) ;SAVE PUTC AOR
26 0/00000040:E549 LSL.W #2,01 ;SAVE BASE AOR
27 0/00000042:41ED0158 LEA.L UART. (A5) ,AO
28 0/00000046:2570100000EO MOVE.L 0(AO,01.W),PAOR(A2)
29 0/0000004C:E449 LSR.W #2,01 ;SAVE FLAGS
30 0/0000004E:48751048 PEA.l F8BT. (A5 ,01 .W) ;PUSH POINTER TO FLAGS
31 0/00000052: 255FOOE4 MOVE.L (A7)+, FAOR(A2) ;SAVE PTR .~

32 *
~,

33 0/00000056:4240 CLOS CLR.W DO ;RETURN .EQ.
34 0/00000058:4E75 RTS
35 *

c
c

6S0xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS PAGE E-9

((E.5 PDOS OUTPUT DRIVER EXAMPLE continued)

36 ***

37 * WRITE CHARACTERS
3S *
39 0/0DOOO05A:006CSOOOOOOC WRIT ORI.W #$SOOO, 12(A4) :N, ALTERED
40
41 0/00000060:7000 WRIT02 MOVEQ.L #0,00 :GET CHARACTER
42 0/00000062:101B MOVE.B (A3)+,DO :DONE7
43 0/00000064:6604 BNE.S WRIT04 :N
44 0/00000066:4AS5 TST.L 05 ;Y. WRITE LINE?
45 0/00000068:6BEC BMI.S CLOS ;Y, DONE
46 *
47 0/0000006A:OCOOOOOS WRIT04 CMPI.B #$08,00 :BACKSPACE7
4S 0/0000006E:6604 SNE.S WRIT06 :N
49 0/00000070: 532AOOEA SUBQ.B #1,CCNT(A2) ;Y
50
51 0/0000D074:0COOOO09 WRIT06 CMPI.B #$09,00 :OK, TAB?
52 0/00000078:6614 BNE . S WRITOS :N
53 0/0000007A:7020 MOVEQ.L #' , ,DO :Y
54 0/0000007C:7207 MOVEQ.L #7,01 :GET MASK
55 0/0000007E:C22AOOEA AND.B CCNT (A2) ,D1 :GET COUNTER
56 0/000000S2:5F01 SUBQ.B #7,01 ;TAB BOUNDARY?

(

{ -

/'

680xO PODS 3.2 REFERENCE MANUAL APPENDIX E PODS 110 DRIVERS

(E.5 PODS OUTPUT DRIVER EXAMPLE continued)

TTO:SR - 68K PODS TTO DRIVER
PAGE: 3 14:44 17-0ec-86

0100000084:6708
2 0/00000086:534B
3 0100000088:4A85
4 010000008A:6B02
5 010000008C:5285
6 *
7 0/0000008E:OCOOOOOA WRIT08
8 0/00000092:6742
9 0/00000094:0COOOOOO

10 0/00000098:6608
11 0/0000009A:422AOOEA
12 0/0000009E:303COAOD
13 *
14 0/000000A2:0COOO020 WRIT10
15 0/000000A6:6D04
16 0/000000A8:522AOOEA
17 *
18 0/0000OOAC:4A2AOOEB WRIT12
19 0/000000BO:67A4
20 0/000000B2:222AOOE8
21 0/000000B6:206AOOE4
22 O/OOOOOOBA: 121 0
23 0/000000BC:08010000
24 0/000000CO:6704
25 0/000000C2:4A01
26 0/000000C4:6BE6
27 *
'28 0/000000C6:206AOOEO WRIT14
29 0/000000CA:4EB900000000
30 00000000 PUTC
31 0/00000000:660A
32 0/00000002:E048
33 0/00000004:6606
34 *
35 0/00000006:5385 WRIT16
36 0/00000008:6686
37 *
38 0/0000000A:4E75
39 *

68020 POOS Assembler 10-0ec-86
FILE: TTO:SR,WINI #2

BEQ.S WRIT08 ;Y
SUBQ.W #1 ,A3 :N, DO AGAIN
TST.L 05 ;WRITE, LINE?

BMI. S WRIT08 ;Y
AOOQ.L #1,05 ;N, BACKUP

CMPI. B #$OA,OO ;LF?
BEQ.S WRIT16 ;y, IGNORE

CMPI.B #$00,00 ;N. CR?
BNE.S WRIT10 ;N

CLR.B CCNT(A2) ;Y, CLEAR CCNT
MOVE .W #$OAOO,DO ;CHANGE TO CRLF

CMPI.B #' ',DO ;CONTROL?
BL T. S WRIT12 ;Y

AOOQ.B #1,CCNT(A2) ;N, UP COUNT

TST.B TYPE(A2) ;DEFINEO TYPE?
BEQ.S CLOS ;N, SKIP IT

MOVE.L OUTE(A2) ,01 ;GET OUT EFVENT TO UPPER WORD OF 01
MOVEA.L FAOR(A2},AO ;GET PTR TO FLGS
MOVE.B (AO},D1 ;TEST FLAG EACH TIME
BTST.L #0,01 ;"S"Q CHECK?

BEQ.S WRIT14 ;N
TST.B 01 ;Y, "S STOP SET?

BMI. S WR IT12 ; Y, WAIT HERE

MOVEA.L PAOR(A2},AO ; UART BASE AOR
OC.W $4EB9,O,O ;JSR PUTC.L
EQU *-OTTO ;RETRY7

BNE.S WRIT12 ;Y
LSR.W #8,00 ;N, 2 CHARS?

BNE. S WRIT12 ;Y

SUBQ.L #1,05 ;OONE1
BNE.S WRIT02 ;N

BRA CLOS2 ;Y
RTS ;V, RETURN .EQ.

PAGE E-10 o

c
c

(-

c

(

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

(E.5 PDOS OUTPUT DRIVER EXAMPLE cont;nued)

40
41
42
43 O/OOOOOODC: OOOOOOEO
44 OOOOOOEO:OOOOOOOO
45 000000E4:00000000
46 000000E8:0000
47 OOOOOOEA:OO
48 OOOOOOEB:OO
49 OOOOOOEC:
50
51
52
53
54 OOOOOOEC:
55
56

TTO:SR - 68K PDOS TTO DRIVER
PAGE: 4

1

2 OOOOOOEC:

14:44 17-Dec-86

0/00000000

--*-----*-**._._._--_._._**-**-**********
* DRIVER VARIABLES
*

OFFSET *-DTTO+4
PADR DC.L 0 ;BASE ADR
FADR DC.L 0 ;UART FLAGS ADDRESS
OUTE DC.W 0 ;OUTPUT EVENT #
CCNT DC.B 0 ;COLUMN COUNT
TYPE DC.B 0 ;PORT TYPE

EVEN
*

-*-**--**-*-*--**---*---***---*--*--*-*-*
* DRIVER LENGTH CHECK
*

*

IFLT 256-(TYPE+1)
FAIL ** DRIVER LENGTH ERROR!
ENDC

68020 PDOS Assembler 10-Dec-86
FILE: TTO:SR,WINI #2

END DTTO

PAGE E-11

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 110 DRIVERS PAGE E-12
!f~
'L.J

(E.5 PDOS OUTPUT DRIVER EXAMPLE continued) {}
TTO:SR - 68K PDOS TTO DRIVER 68020 PDOS Assembler 10-Dee-86
PAGE: 5 14:44 17-Dee-86 FILE: TTO:SR,WINI #2

SYMBOL CROSS REFERENCE:

BURT E 0000001E *1/54 2123
CCNT ODOOOOEA 2/13 2/49 2/55 3/11 3/16 *3/47
CLOS D/00000056 213 *2/33 2145 3/19
DRCL R 0/00000004 *2/3
DROP R 0/00000002 *212
DRPS R O/OOOOOOOA *2/6
DRRD R 0/00000006 *2/4
DRWR R O/OOOOOOOB *2/5
DTTO 0/00000000 *1/1 3/30 3/43 4/2
F8BT. E 00000048 2130
FADR 000000E4 2131 3/21 *3/45
OPEN 0/00000012 212 *2/12
OUTE 000000E8 2118 3/20 *3/46
PAOR OOOOOOEO 2128 3/28 *3/44
PUTC E 00000000 2125 *3/30
READ O/OOOOOOOE 214 *2/9
TTO R 0/00000000 *1/32
TYPE OOOOOOEB 2120 3/18 *3/48 3/54
U1P$ E 00000452 2115
UART. E 00000158 2127
UTYP. E 00000058 2/19
WRIT 0/0000005A 215 *2/39
WRIT02 O/OOOOOOSO *2141 3/3S
WRIT04 O/OOOOOOSA 2143 *2/47
WRITOS 0/00000074 2148 *2151
WRIT08 0/0000008E 2152 2/1 3/4 *3/7
WRIT10 0/000000A2 3/10 *3/14
WRIT 1 2 O/OOOOOOAC 3/15 *3/18 3/2S 3/31 3/33
WRIT14 O/OOOOOOCS 3/24 *3/28

.,r ..

WRIT1S O/OOOOOOOS 3/8 *3/35 ~/

UNREFERENCEO SYMBOLS:

DRCl R 0/00000004 DROP R 0/00000002 DRPS R O/OOOOOOOA
DRRD R O/OOOOOOOS DRWR R 0/00000008 TTO R 0/00000000

(

(

(/

c

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E POOS 1/0 DRIVERS

E.6 PDOS INPUT DRIVER EXAMPLE

TTI:SR - 68K POOS TTl DRIVER
PAGE: 1 14:45 17-0ec-86

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 0/00000000:
32
33

68020 PDOS Assembler 10-Dec-86
FILE: TTI:SR,WINI #2

TTl :SR 10/06/86
_.************************-**

* *
* 66 888 K K PPPP ODDD 000 SSS *
* 6 8 8 K K P P 0 D 0 o S S *
* 6 8 8 K K P P 0 D 0 o S
* 6666 888 KK PPPP 0 o 0 0 SSS *
* 6 6 8 8 K K P 0 o 0 0 S *
* 6 6 8 8 K K P 0 o 0 o S S *
* 666 888 K K P DODD 000 SSS *

*
* TTTTT TTTTT I I I 0000 RRRR III V V EEEEE RRRR *
* T T I 0 o R R I V V E R R *
* T T 0 o R R V V E R R *
* T T 0 o RRRR V V EEEE RRRR *
* T T D ORR V V E R R *
* T T 0 o R R V E R R *
* T T III DODD R R III V EEEEE R R
* *
*=**._*--************-*

*
*=

Eyring Research Inst. Copyright 1983,1986.
ALL RIGHTS RESERVED.

*= Module Name: TTl
*= Author: Richard Adams
*= Revision History:
*=
*= 10/03/86 3.0 Initial release
*=
TTl IONT 3.0 68K POOS TTl DRIVER
*=
*c*******--*******-**-*-****-**·***-****·*-***************-*****-******-*

PAGE E-13

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E POOS I/O DRIVERS

(E.6 POOS INPUT DRIVER EXAMPLE continued)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

00001000

54 0/00000000: 0/00000000

* This driver is intended to input files from the terminal. It gets
* characters from the input port (PRT$) of the task that opened it,
* stores them in the buffer (A3), and echoes them to active ouput port(s).
* It supports both XRLF read line and XRBF read block primitives. OPEN
* call simply makes sure that there is an input port assi9ned to the task.
* Close does nothing. EOF errors are returned, along with the byte count,
* if an escape is entered.
*
*
*
*
*
*
*

*
*

*

Character count (-1
Channel status
Driver base + 4

05.L =
07.W =
(A2)
(A3)
(A4)
(A5) =
(A6)
(A7)

= Memory buffer
File slot
SYSRAM

OPT

Task TCB
Return address

POOS

SECTION 0

Line)

55 0/00000000:A55A OTTI OC.W $A55A ;ORIVER 10
; 2 OPEN 56 0/00000002:600E DROP BRA.S OPEN

PAGE E-14 c

c
c

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

4[_ (E.6 PDOS INPUT DRIVER EXAMPLE continued)

TTI:SR - 68K PO OS TTl DRIVER
PAGE: 2 14:45 17-Dec-86

0/00000004:6012
2 0/00000006:6014
3 0/00000008:6004
4 0/0000000A:7046
5 0/0000000C:4E75
6

7 0/0000000E:7050
8 0/00000010:4E75
9

10 0/00000012:4A2E044F
11 0/00000016:67F6
12
13 0/00000018:4240
14 0/0000001A:4E75
15
16
17
18
19 0/0000001C:7200
20
21
22
23 0/0000001E:A07A
24 0/00000020:6D1E
25 0/00000022:4A85
26 0/00000024:6AOA
27 0/00000026:0COOOOOD
28 0/0000002A:6604
29 0/0000002C:4213
30 0/0000002E:60E8
31
32 0/00000030:A086
33 0/00000032:16CO
34 0/00000034:5281
35 0/00000036:4A85
36 0/00000038:6BE4
37 0/0000003A:B285
38 0/0000003C:6DEO
39 0/0000003E:60D8
40
41 0/00000040:2F410010
42 0/00000044:7038
43 0/00000046:4E75
44

DRCL
ORRO
DRWR
DRPS

WRIT

OPEN

*
CLOS

68020 PO OS Assembler 10-Dec-86
FILE: TTI:SR.WINI #2

BRA.S CLOS
8RA.S READ
BRA.S WRIT
MOVEQ.L #70.00
RTS

MOVEQ.L #80.00
RTS

TST.B PRT$(A6)
BEQ.S WRIT

CLR.W DO
RTS

4 CLOSE
6 READ
8 WRITE

;10 POSITION ERROR

;ERROR 80. DRIVER ERROR

;IS THERE INPUT PORT?
;N. SEND ERROR 80

;RETURN .EQ.

*
*
READ
*

LINE

*
iil010

*
ESC

READ CHARACTERS. BLOCK OR LINE

MOVEQ.L #0.01

DO LINE/BLOCK READ

XGCR
BLT.S ESC

TST.L 05
BPL.S iil010

CMPI.B #13,00
BNE.S iil010

CLR.B (A3)
BRA CLOS

XPCC
MOVE.B DO.(A3)+
ADDQ.L #1.01
TST.L 05

BMI.S LINE
CMP.L 05.01

BlT.S LINE
BRA.S CLOS

MOVE.l D1.3*4+4(A7)
MOVEQ. L #56. DO
RTS

;GET COUNT, EOF FOR ECSAPE

;GET A CHARACTER
;ESCAPE OUT
;LINE?
;N. SKIP [CR] CHECK
;Y. CR?
;N. ECHO AND STORE
;Y. TERMINATE lINE
;GET BAT OUT

; ECHO TO SCREEN
;SAVE IN BUFFER
;UP COUNT
; LINE?
;Y. SKIP COUNT CHECK
;N. DONE BLOCK COUNT?
;N. GET ANOTHER
;Y. RETURN .EQ.

;RETURN COUNT IN OLD 03
;EOF ERROR RETURN

PAGE E-15

680xO POOS 3.2 REFERENCE MANUAL APPENDIX E PDOS I/O DRIVERS

(E.6 PO as INPUT DRIVER EXAMPLE continued)

45
46
47
48 0/00000048:
49
50
51
52 0/00000048: 0/00000000

TTI:SR - 68K PDOS TTl ORIVER
PAGE: 3 14:45 17-Dec-86

DEFINED SYMBOLS:

CLOS 0/00000018 DRCL
DRPS R O/OOOOOOOA DRRD
DTTI 0/00000000 ESC
OPEN 0/00000012 PRT$
TTl R 0/00000000 WRIT

EXTERNAL DEFINITIONS: NONE

EXTERNAL REFERENCES: NONE

UNDEFINED SYMBOLS: NONE

UNREFERENCED SYMBOLS:

DRCL R 0/00000004 DROP
DRRD R 0/00000006 DRWR

* DRIVER LENGTH CHECK
*

*

R
R

E

R
R

256-(*-DTTI+4) IFLT
FAIL
ENDC

** DRIVER LENGTH ERROR! **

END DTTI

68020 POOS Assembler 10-Dec-86
FILE: TTI:SR,WINI #2

0/00000004 DROP R 0/00000002
0/00000006 DRWR R 0/00000008
0/00000040 LINE O/OOOOOOlE .

0000044F READ O/OOOOOOlC
O/OOOOOOOE

0/00000002 DRPS R O/OOOOOOOA
0/00000008 TTl R 0/00000000

PAGE E-16 o
o

()

:1'
~

c
c'

(

{/

()

(~

c

68oxo PODS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

E.7 EXTENDED DRIVER EXAMPLE

PDOS 1/0 drivers must reside in the channel buffer. which
is only 256 bytes long. The forward and backward file links
take 4 bytes and the dedicated BRA.S table takes 6*2 more
bytes. leaving only 240 bytes (=256-4-12) to work with. You
can expand 1/0 drivers beyond this limit. by having code
resident with POOS.

The following working example shows e multiple expanded
driver file called EXT:SR. The idea is that you add as many
large drivers as you want to the xxBIoS:SR file for your
system. using the structure described below. Then to access
them. you create some new disk resident drivers from the
EXT:SR file. differentiating them by oNUM=0.1.2 •...

For example. to create files to access extended drivers 10
• and 11 you would do the following:

o>SA oRVo.SY
o>MASM EXT:SR/DNUM=o.loRVo
o>MSYFL DRVo.DRVo
O>SA DRVO.OR
o>SA DRV1.SY
o>MASM EXT:SR/DNUM=1.IDRV1
o>MSYFL DRV1.DRV1
o>SA DRV1.DR
0>

Now there are two drivers. DRVo and DRV1.
extended dri ve r 10 and 11. This EXT:SR
length. which is important if you are
variables within the driver channel.

to access each
driver ha fixed
going to store

PAGE E-17

680xO PODS 3.2 REFERENCE MANUAL APPENDIX E PODS 110 DRIVERS

(E.7 EXTENDED DRIVER EXAMPLE continued)

The only interesting call to EXT is OPEN, when it looks for
the R$TASK table and a special EXT driver 10 word ($SAAS).
If you don't have any expanded driver code in the BIOS you
booted. then EXT returns all calls with an error #99, but
will not crash your system. If EXT finds the 10 word, then
it stores the address of the specified BRA.L instruction IN
THE DRIVER at $10(A2). All the other entries to EXT just
load up DO.L with the driver # (0,2,4, ...) and an entry
offset (O=open 4=c1ose, 8=read, ...) before branching (with
an RTS) into the BIOS extended code entry point (stored in
$10(A2».

This keeps things all position independent, re1ocatab1e and
re-entrant.
the BIOS:

*

Let's look at the EXT code before diving into

TTL EXT:SR - 68K PDOS 68K PDOS EXT DRIVER
EXT:SR 06/27/86

-

66 888 K K PPPP DODD 000 SSS *

* 6 8 8 K K P P 0 o 0 o S S ,.
* 6 8 8 K K P P 0 o 0 o S

6666 888 KK PPPP 0 o 0 0 SSS *
,. 6 6 8 8 K K P 0 o 0 0 S *

6 6 8 8 K K P 0 o 0 o S S
666 888 K K P DODD 000 SSS

*

* EEEEE X X TTTTT DODD RRRR III V V EEEEE RRRR
E X X T 0 0 R R I V V E R R

,. E X X T 0 o R R V V E R R
* EEEE X T 0 o RRRR V V EEEE RRRR
* E X X T 0 ORR V V E R R *

* E X X T 0 o R R V E R R *

* EEEEE X X T DODD R R I II V EEEEE R R *

*

*=***

*
*
*=

Eyring Research Inst. Copyright 1983,1986.
ALL RIGHTS RESERVED.

*: Module Name: EXT
*= Author: Richard Adams
*= Revision History:
*=
*= 06/27186 3.0 Initial version of extended driver
*=
EXT IONT 3.0 68K POOS EXT DRIVER
*=
*=***

PAGE E-18 C""'·· I'. "
\ ;)

.~

'<L/

c

(-

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

(E.7 EXTENDED DRIVER EXAMPLE continued)

*

*
*

*
*
*

*
*
*
*
*

DEXT
DROP
DRCL
DRRD
DRWR
DRPS

CODE
*
OPEN

This driver is a general extended 1/0 driver, that
can be adapted for expanded driver code over the
252 byte 1 imi t.

DS.L = Character count (-1 = Line)
D7.W = Channel status
(A2) = Driver base + 4
(A3) = Memory buffer
(A4) = File slot
(AS) = SYSRAM
(A6) = Task TC8
(A7) = Return address

IFUDF
PRINT
IFGT

DNUM :DNUM EQU o ;DEFAULT TO DRIVER #0
** Extended driver # ',DNUM

DNUM-5
PRINT ** ERROR, Driver numbers only 0-5'
ENDC
PAGE
SECTION 0

DC.W $A55A ;DRIVER ID
BRA.S OPEN 2 OPEN
BRA.S CLOS 4 CLOSE
BRA.S READ 6 READ
BRA.S WRIT 8 WRITE
BRA.S POSI ;10 POSITION
DC.L 0 ;Location of expanded code
EQU $10 ;CODE is channel offset of

ORI.W #$8000.12 (A4) ;FILE ALTERED
MOVEA.L (A5) ,A1 ;GET ADDR OF B$BIOS

in BIOS
this saver

ADDA.L (A1) ,A1 ;GET ADDRESS OF R$TASK TABLE
CMPI.W #$5AA5,-(A1) ;IS ID THERE?

BNE.S ERROR ;N, DRIVER ERROR
SUBQ.W #4,A1 ;Y, POINT TO XTENDED CODE 'BRA.L'
MOVE.L A1,CODE(A2) ;SAVE ENTRY

MOVEQ.L #O,DO ;O=open

PAGE E-19

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

(E.7 EXTENDED DRIVER EXAMPLE continued)

*
*
*
*
*
*
*
*

*

*

CALL EXTENDED CODE WITH ENTRY OFFSET:
DO.L = <minor offset> I <major offset>

Where <major offset> = 0 driver #0
= 2 driver #1
= 4 driver #2, etc.

Where <minor offset> = 0 open
= 4 close
= 8 read
=12 write
=16 position

CALL MOVE.L CODE(A2),-(A7) ;GET ADDRESS
BEQ.S EXTER ;NO CODE, RETURN .NE.

SWAP DO
MOVE.W #DNUM*2,DO
RTS

;GET DRIVER NUMBER OFFSET
;GO TO CODE IN BIOS

CLOS MOVEQ.L #4,DO ;4=close
BRA.S CALL

*
READ MOVEQ.L #8,DO ;8=read

BRA.S CALL
*
WRIT MOVEQ.L #12,DO ; 12=wr i te

BRA.S CALL
*
POSI MOVEQ.L #16,DO ; 1 B=po s it ion

BRA.S CALL
*
EXTER ADDQ.W #4,A7 ;POP CODE ADDRESS
*
ERROR MOVEQ.L #99,DO ;if no extended driver

RTS
END DEXT

Note that from SYRAM (A5), you get the address of B$BIOS
table and then calculate the address of R$TASK table. Place
your $5AA5 EXT ID word right before R$TASK and the 'BRA.L
XCODE' right before that.

To look at the xxBIOS:SR changes that let you add code
there, let's get the example. The EXT example uses the TTA
driver, adding it to the MVME117 V7BIOS:SR file. Just
before the R$TASK table in the xxBIOS:SR file, you insert a
BRA.L XCODE and en $5AA5 data word. as follows:

code, err 99

PAGE E-20

... (; .. '1.> ' 'I ,

(

(

680xO PDOS 3.2 REFERENCE MANUAL

(E.7 EXTENDED DRIVER EXAMPLE continued)

B$STRT BRA.L BSTRT
DC.L PDID
DC.W SYID

B.SRAM DC.L S$SRAM
*

BRA.L XCODE
DC.W $5AA5

*

APPENDIX E PDOS 1/0 DRIVERS

;BOOT EPROM START
;PDOS BOOT IDENTIFICATION
:SYSTEM ID
:SYRAM ADDRESS

:GO TO DRIVER CODE
;EXTENDED DRIVER 1D WORD

TASK STARTUP TABLE (NON-RUN MODULE)
*

IFEQ RF
XDEF R$TASK

R$TASK DC.B l,U.1TYP,BR,%0000 :PORT #1

Now, insert the driver code following the BIOS interrupt
routines, but preceding the INCLUDE MBIOS:SR command. This
could be done using an INCLUDE command, or even
conditionally on an assembly flag. Define NDRV equal to the
number of extended drivers in the xxBIOS (NDRV=1 in the
example). You then have your major switchboard routine,
XCODE, which checks the driver #, returning error 99 if it
is tao big. If DO.W is in range, then XCODE jumps to the
particular driver code called by DRVO,DRV1, etc., with a
JMP:

PAGE E-21

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 1/0 DRIVERS

(E.7 EXTENDED DRIVER EXAMPLE continued)

**

* EXTENDED DRIVER MAJOR ENTRY
* IN: DO.L,. MINOR (0,4,8,12,16) I MAJOR (0,2,4, ...)
*
NDRV EQU ;NUMBER OF DRIVERS RESIDENT
*
XCODE CMPI.W #NDRV*2,DO

BLO.S &1010
MOVEQ.L #99,00

;IS MAJOR BRA.L IN TABLE?
;Y, GO TO IT
;N, THEN ILLEGAL

*
Q010
*
*
*
*
*
MAJOR
*

*
*

RTS

JMP MAJOR(PC,DO.W) ;GO TO DRIVER ENTRY

Main multiple driver switchboard table has each mejor
device entry is 4 bytes long, for a 'BRA.L DRVx' instruction.
The range is checked using NORV~ the number of drivers in BIOS.

BRA.L
BRA.L

DRVO
DRV1

BRA.L DRV2

;DRIVER #0 (TTA)
;DRIVER #1
;DRIVER #2

In the example, only the standard TTA driver code has been
added as DRVO. Since the driver entry points are now O. 4,
8, 12, 16, you can have long jumps to the driver entry
points, not limited to the 128 byte range. Another bonus is
that for entries that are to return an error, such as read
and position, you can handle the error RIGHT IN THE BRANCH
TABLE! This is done by loading the error with aMOVEQ.L
and RTS.

Variables within the driver (offset from A2) are very easy
to define in the BIOS. Since you know the size of EXT:SR to
be $4C, then by taking links into account you just use an
OFFSET $50 directive, followed by DS.L, DS.W, and OS.B
commands to yield the proper (A2) driver offsets. Remember
to exit the OFFSET mode with a SECTION 14 command, for the
11 nker:

PAGE E-22 o
c

;r .
I;
"Lj

c
c

(

(

c

c

6S0xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS 110 DRIVERS

(E.7 EXTENDED DRIVER EXAMPLE continued)

-********

* Extended Driver #0: TTA
*
*
*

Driver variables go here, starting at (A2) offset = $50
Use OFFSET and then return to section 14.

*
OFFSET $50 ;end of EXT driver code in buffer

PADR DS.L ;DC.L SASE ADR
FADR DS.L ;DC.L UART FLAGS ADDRESS

OUTE DS.W ;DC.W OUTPUT EVENT #
CCNT DS.S ;DC.S COLUMN COUNT
TYPE DS.S ;DC.S PORT TYPE
PUTC DS.L ;DC.L PUT CHAR ADDRESS FOR JSR

SECTION 14 ;back to SIOS secHon

The next requirement is to reference in any external
offsets or addresses:

*
*
*
BURT

Next define and XREF any needed offsets for SYRAM, etc.

EQU
XREF

$001E ;BIOS UART TBL
U2P$,UTYP.,UART. ,FSBT.

Now, go to the specific driver code, which sweps DO to get
the open, close, read, write, or position offset and
branches into the fixed entry table to perform the driver
function:

PAGE E-23

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX E PDOS I/O DRIVERS

(E.7 EXTENDED DRIVER EXAMPLE continued)

*
*
*
*
*
*
*
*

Here is the minor entry switchboard, with JMP offset in
upper word of DO.L. Minor entry offsets are O,4,8,$C,$10
for open, close, read, write and position. This allows
errors in BRA.L table, with sequences like:

MOVEQ.L #ERR,DO
RTS

DRVO - SWAP DO ;MINOR OFFSET IN DO.W LOWER

*
*
*
*
*
*
*
DRVOTB
*

*

* '

*

*
OPEN

JMP DRVOTB(PC,DO.W) ;GO TO SPECIFIC MINOR ENTRY ...

DRVOTB BRA.L OPEN
BRA.L CLOS
BRA.L READ
BRA.L WRIT
BRA.L POSIT

BRA.L OPEN

BRA.L CLOS

MOVEQ.L #80,DO
RTS

BRA.L WRIT

MOVEQ.L #70,DO
RTS

ORI.W #$8000,12(A4)
CLR.B CCNT(A2)
CLR.W D1
MOVE.B U2P$(A6), D1
MOVEQ.L #80,D3

01.03

;O .. OPEN

;4=CLOSE

;8=REAO: ERROR 80, DRIVER ERROR

; 12=WRITE

;16.POSITION: ERROR 70, POSITION ERR

;FILE ALTERED
;CLEAR COUNTER
;01 .. PORT #
;01=PORT #

ADD.B
MOVE.W
MOVE.B
MOVE.B
ADO.W

03.0UTE(A2) ;D3 .. 0UTPUT EVENT #
UTYP. (AS .01.W) .03 ; D3=UART TYPE
03.TYPE(A2) ;SAVE FOR FUTURE
03.03 ;POINT TO OSR

MOVEA.L (AS).AO
AOOA.W BURT(AO.03.W) .AO
ADDQ.W #2.AO
MOVE.L AO.PUTC(A2)
LSL.W #2,01

;AO .. PUTC ENTRY
;SAVE PUTC ADR
;SAVE BASE ADR

LEA.L UART.(AS).AO
MOVE.L 0(AO,D1.W).PAOR(A2)
LSR.W #2,01 ;SAVE FLAGS
PEA F8BT.(AS.01.W) ;PUSH POINTER TO FLAGS
MOVE.L (A7)+.FADR(A2) ;SAVE PTR
BRA.S CLOS2

PAGE E-24 c

c
c

(

680xO PDOS 3.2 REFERENCE MANUAL

(E.7 EXTENDED DRIVER EXAMPLE continued)

*
CLOS MOVEQ. L #$OC, DO

MOVEQ.L #1,05
BRA. S WRIT12

CLOS2 CLR.W DO
RTS

*

WRITE CHARACTERS
*
WRIT ORI.W #$8000,1 2 (A4)
*
WRIT02 MOVEQ.L #0,00

MOVE.S (A3)+,DO
BNE. S WRIT04

TST.L 05
BMI.S CLOS2

*
WRIT04 CMP!. B #$08,00

BNE. S WRIT06
SUBQ.B #1 ,CCNT (A2)

WRIT06 CMPI.B #$09,00
BNE. S WRIT08

MOVEQ. L #' , ,DO
MOVE.B CCNT (A2) ,01
LSL.B #5,01
CMPI. S #7«5,01

BEQ.S WRIT08
SUBQ.W #1,A3
TST.L 05

BMI. S WRIT08
ADDQ.L #1,05

*
WRIT08 CMPI.B #$OA,DO

BEQ.S WRIT16
CMPI.B #$00, DO

BNE.S WRIT10
CLR.B CCNT(A2)
MOVE.W #$OAOD,DO

WRIT10 CMPI.B #' , ,DO
BLT.S WRIT12

ADDQ.B #1,CCNT(A2)

APPENDIX E PDOS 1/0 DRIVERS

;GET FF
;00 1 CHAR
;OUT IT

;RETURN .EQ.

;N, ALTERED

;GET CHARACTER
;DONE?
;N
;Y, WRITE LINE?
;Y, DONE

; BACKSPACE?
;N
;Y

;OK, TAB?
;N
;Y
;GET COUNTER
;$CCCO 0000
;TAB BOUNDARY?
;Y
;N, DO AGAIN
;WRITE LINE?
:Y
:N, BACKUP

:LF7
:Y, IGNORE
;N I CR?
;N
;Y, CLEAR CCNT
;CHANGE TO CRLF

;CONTROL?
;Y
;N, UP COUNT

PAGE E-25

680xO PDOS 3.2 REFERENCE MANUAL

(E.7 EXTENDED DRIVER EXAMPLE continued)

*
WRIT12 TST.B TYPE(A2)

BEQ.S CLOS2
MOVE.L OUTE(A2),D1
MOVEA.L FADR(A2).AO
MOVE.B (AO), 01
BTST.L #0.01

BEQ.S WRIT14
TST.B 01

8MI. S WRIT12
*
WRIT14 MOVEA.L PADR(A2).AO

MOVEA.L PUTC(A2).A1
JSR (A1)

BNE.S WRIT12
LSR.W #8.00

BNE.S WRIT12
*
WRIT16 SUBQ.L #1.05

BNE.S WRIT02
RTS

APPENDIX E PDOS 1/0 DRIVERS

:DEFINED TYPE?
:N. SKIP IT
:GET OUT EFVENT TO UPPER WORD OF 01
:GET PTR TO FLGS
:TEST FLAG EACH TIME
:"S"Q CHECK?
:N
:Y. "S STOP SET?
:Y. WAIT HERE

:UART BASE ADR
:POINT TO PUTC
:CALL PUT CHAR
:Y
:N. 2 CHARS?
:Y

:DONE?
:N
:Y. RETURN .EQ.

You would add other drivers here. calling them DRV1. DRV2.
and so on. If you need more RAM storage than $100-$50 (176
bytes). then you would have to handle it separately. Also.
you are limited to PO OS booting only up to 255 sectors. or
less than 66k bytes for the BIOS. driver code and PDOS.
This means that huge drivers must be accommodated
differently. Now all that remains is to finish up by
including MBIOS:SR.

*
NOL
PAGE
INCLUDE MBIOS:SR
END

PAGE E-26 o
()

~.
I I
',,- ./

c
c

(

SBOxO PDOS 3.2 REFERENCE MANUAL APPENDIX F FLOATING POINT MODULE

APPENDIX F

PDOS FLOATING POINT MODULE

Floating point is supported through the SBBBl co-processor.
The following instructions may be found in the MASM20 PO OS
assembler:

SBBBl co-processor support.

Co-processor default set to 1.

FABS FMOVECR
FACOS FMOVEM
FADD FMUL
FASIN FNEG
FATAN FNOP
FATANH FREM
FBcc FRESTORE
FCMP FScc
FCOS FSAVE
FCOSH FSCALE
FDBcc FSGLDIV
FDIV FSGLMUL
FETOX FSIN
FETOXMl FSINCOS
FGETEXP FSINH
FGETMAN FSQRT
FINT FSUB
FINTRZ FTAN
FLOG10 FTANH
FLOG2 FTENTOX
FLOGN FTRAPcc
FLOGNPl FTST
FMOD FTWOTOX
FMOVE

DC/DS Floating point Constants

PAGE F-l

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX F FLOATING POINT MODULE PAGE F-2
,(;11.i\ I· ,
, '

(

(/

(

680xO PODS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

APPENDIX G

GLOSSARY

ASCII Literal ASCII literals are special characters

Assembler

Bad Track

Bad Track
Mapping

Bias

BIOS

Bit Map

within strings
represen ted by

that normally cannot be
a single pri ntable

character. An ASCII literal is composed
of two hex characters within
brackets.

angle

A language translator that translates
ASCII text into machine code.

Any physical track that contains one or
more manufacturing defect{s) which
causes either hard or soft data errors
in at least one block on the track.

A method of "removing" bad tracks from
a disk by skipping the bad tracks when
mapping the logical tracks to the
physical.

A logical sector offset used by disk
partitions to allow system-dependent
data to be stored in the first sectors
of a partition. For Winchesters, the
bias is usually one track of sectors,
and for floppies, it is two tracks (32
sectors, normally).

Basic 110 Subsystem. The PODS BIOS
contains the readlwrite primitives,
prompts, map and LEO controls, setup
paramaters, and other hardware related
variables.

A data structure utilized by PODS for
both memory and file space allocation.
A separate bit in the memory bit map is
associated with each block of memory in
the system. Likewise, each sector on . a
logical disk device is associated with a
single bit in the sector bit map in the
disk header. A 'one' indicates the
corresponding sector is allocated ~nd a
'zero' indicates that the correspohding
sector is free.

PAGE G-1

ASCII Literal

Assembler

Bad Track

Bad Track Mapping

Bias

BIOS

Bit Map

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Block

Blocked

A block is the smallest amount of data
that can be requested by PODS from a
controller. The number of bytes per
PODS block is usually 256, but it may
also be 512.

Another term for the suspended task
state.

Buffer A temporary block of memory, usually
used for message and lID transfers.

Command Line The Command Line Interpreter is a small
Interpreter system software module which parses a

line for commands and parameters. The
ClI is called by the PDOS monitor.

Compil e r

Concurrency

Content i on

Create

Critical
Code

A language
the text

translator that translates
of a high level language into

assembly or machine code.

Processes or tasks whose execution
overlaps in time. They may be
i nteracti ng or independent.

A situation that occurs when more than
one task vi es for a si ngle resource.

A sys tem service that initializes a
structure by entering information such
as its name, size, etc. into system
tables. Specifically, PDOS supports
task and file creation.

(Also Critical Sect ion). A portion of
software that accesses a shared resource
and must be protected so that while one
task is performing the access (executing
the software), no other task is

permitted to access the same resource.
In most cases, ei ther interrupts are
disabled during the execution of this
code or the task is locked.

Block

Blocked

Buff e r

Command Line Interpreter

Compi ler

Concurrency

Contention

Create

Critical Code

PAGE G-2 i(... t,
Y

,n
\,'~

.4-

\~/

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Cylinder

Deadlock

Debugger

Device

That portion of the drive media that is
defined by one position of the head
assembly. The number of cylinders is
the number of stepper positions that the
head assembly can read or write data
from or to, or that places the head
assembly over a data area on the media.

A situation
more tasks

that occurs
wi thin a

when one
system

or
are

suspended, waiting for resources that
have already been assigned to
tasks that are also waiting
additional resources.

other
for

A system software utility that aids a
programmer in locating errors in his
software. Functions usually include
breakpoints, single stepping, memory
inspect and change, disassembly, and
assembly.

A unit of peripheral hardware such as a
printer, terminal, or disk drive.

Device Driver A system software module that directly
controls the data transfer to and from
an 1/0 peripheral. PDOS device drivers
are an extension of the file system.

Directory

Disk

A data structure containing entries for
each file in the file system of a
storage device. Each directory entry
contains information about the file
name, access rights, size, date of
creation, and last update.

A logical division or portion of a
drive, defined and referenced in PDOS
with a legal disk number and, possibly,
a sector offset. PDOS equates a PDOS
disk to either a floppy drive or a
Winchester partition. Usage: It. makes
sense to refer to a "PDOS disk," but it
makes no sense to refer to a "Winchester
disk."

PAGE G-3

Cyli nder

Deadlock

Debugger

Device

Device Driver

Directory

Disk

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Disk number

DMA

Drive

Drive Data
Block

Editor

A disk number is
reference a disk
hardware device may
several disk numbers.

used by PDOS to
device. A single

be referenced by

An I/O processor memory access
technique whereby the system processor
is placed in a hold state while the I/O
processor transfers data
memory, independent of
processor and usually at
memory data rate.

to or from
the system
the maximum

A single Winchester or floppy hardware
device, usua lly addressed directly by a
controller using a unique device select
code (sometimes denotes the LUN for
logical unit number). Usage: It makes
sense to refer to a "Winchester drive,"
but it makes no sense to refer to a
"PDOS drive."

A RAM data area that contains the
parameters, partitions, and bad track
list of a drive.

A sY,stem utility designed to facilitate
the entry and maintenance of text.
Typical facilities include file
creation, modification, concatenation,
or deletion. The PDOS editor is MEDIT,
a full-screen editor.

End-of-File A soft pointer to the end of "known"
data within a file (EOF).

Entry Point The programmer-defined address at which
a task begins executing.

Event A condition used to synchronize task
execution. An event may have a hardware
or software origin. Hardware events
result from
Software events
system-defined

processor interrupts.
are either user- or
and are used to

coordi nate
resources.

system/user tasks or

PAGE G-4 o

Disk number

Direct Memory Access

Drive I
r-
"'-J'

Drive Data Block

Editor

End-of-Fi 1 e

Entry Point

Event

()

f

(/

(-

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

ExecuUon
Module

An execution module consists of the
PDOS kernel plus other non-file oriented
primitives. This object module is
linked with user application tasks to
form a ROMable, stand-alone program for
the target processor. Other execution
modules are also linked in for high
level language support.

A collection of data, normally stored
on a storage device such as a disk or
tape.

File File attributes are file status bits
Attributes indicating the file type, disk storage

method, and protection flags.

File Slot A file slot is a logical I/O channel
through which data transfers from a user
application
other I/O

to secondary storage or
device. The file slot

maintains file status, pointers, and
buffers.

File System System software modules that manage
files on storage media. Functions
include create, delete, rename, read,
write, position, protect, etc.

Fi le Type

First Fit

File type is an attribute used by the
PODS monitor in determining how a file
is processed.

An algorithm for memory allocation that
searches the free list (bit map) only
long enough to find an unused memory
block that is large enough to satisfy
the memory request.

Foreground/ A condition within a multi-tasking
Background operating system where critical programs

operate in the foreground and execute
with high priority while background
assemblies,
also going
priority.

edits, listings,
on at the same

etc., are
or lower

PAGE G-5

ExecuUon Module

Fi 1e

File Attributes

File Slot

File System

Fi 1e Type

Fi rst Fit

Foreground/Background

680xO POOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Format The process of a disk controller which
places the ID address marks, the sector
header information, the data fields, and
gaps onto the drive media. The PODS
format utility not only formats the
drive or diskette, but also performs
sector interleaving, bad track
detection, disk partition definition,
and drive parameter definition.

Fragmentation A condition where
secondary storage

main memory or
is segmented due to

dynamic memory allocation and
deallocation.

Friendly A software environment in which all
Environment software is adequately tes ted and

Hard Er ror

Head

High Level
Language

therefore one task does not interfere
with or cause errors in the execution of
another task. The operating system
cannot prevent intertask conflicts.

An error which is repeatable.

A device which reads and writes data
from and to one surface of a drive. The
number of heads is the physical number
of data surfaces of a drive, or the
number of different head select codes a
controller can use with a drive and
still get unique data.

A more sophisticated coding language
than assembly language. One high level
instruction may generate many machine
instructions. (e.g. FORTRAN, BASIC,
PASCAL. etc.)

Hostile A system software environment in which
Environment it is assumed that both hardware and

software may fail in any way, and the
system is required either to continue
running or shut itself down in an
orderly manner.

PAGE G-6 c

Format

Fragmentation

Friendly Environment

Hard Error

Head

High Level Language

Hostile Environment

c

(

c

(\

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Initialize A disk is initialized such that PDOS
parameters are available to the file
manager. These include disk name,
number of directory entries, total
number of sectors available, date of
initialization, density and sides flags,
directory, and sector bit map. Any bad
sectors are deallocated from user
storage.

Interleaving A track formatting technique whereby
multiple sectors may be read or written
sequentially with a minimum of disk
latency. This is possible by placing
logical sectors on a track in such a way
that the time required by the system
service routine to process a single
sector is less than the time required
for the disk to rotate to the start of
the next logical sector.

Interleave
Factor

The number of physical
a given sector and
sector on a disk track.

sectors between
the next logical

Interpreter A translation program used to carry out
statements expressed in a high-level
language. Usually its intermediate code
cannot be directly executed on a general
purpose processor.

Interrupt

Interrupt
Mask

Interval
Timer

1/0 Channel

A signal from an external source that
causes the processor to stop execution
of the current task, save current task
status, and begin executing a system
service routine or another user task.

A processor defined variable which
limits interrupt levels.

A hardware clock which generates an
interrupt after a specified period of
time has elapsed.

See File Slot.

PAGE G-7

Initialize

Interleaving

Interleave Factor

Interpreter

Interrupt

Interrupt Mask

Interval Timer

1/0 Channel

680xO POOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Kernel The most basic portion of an operating
system. usually supporting only task
scheduling. communication. coordination.
and memory allocation.

Linked List A data structure in which each element

Li nker

Loader

Logical
Device

Logical
Sector

Logical
Track

Mailbox

Memory Bit
Map

Memory
Mapped

Monitor

contains a pointer
successor (singly
(doub 1 Y li nked) •

to its predecessor or
linked) or both

A system software utility that connects
previously assembled/compiled tasks or
subroutines into a single object module
that can be loaded into memory for
execution.

A system software utility that moves
object code from secondary storage into
memory. performing relocation as
required.

A reference to an I/O device by name or
number without regard to the exact
nature of the 110 devica.

A sector within a disk partition.

A software address on the drive that
appears to the operating system as good
track data. which mayor may not be the
same as the physical track.

A system data structure that handles
task communication through global memory
buffers.

PDOS uses a memory bit map for memory
allocation and deal location in 2k byte
increments. See Bit Map.

A method of implementing system I/O
through memory locstions.

A monitor is a set of resident commands
for handling the most common functions
of the operating system.

PAGE G-8 0'"
"

o
Kernel

Linked List

Li nker

Loader

Logical Device

c
Logical Sector

Logical Track

Mail box

Memo ry Bit Map

Memory Mapped

Monitor

c

. ~.

C

(

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Multi-tasking The ability of an operating
tasks

system
to

to
run

Multi-use r

Non
preemptive
Scheduling

Object Code

Open

Operating
System

Overhead

Overlay

Page

Parameter
List

permit multiple
concurrently.

The ability of an
multi-task and

operating system to
allow mUltiple users

complete system access.

A scheduling algorithm where a task
does not stop executing until it is
complete.

The output of an assembler or compiler
that can be loaded and executed on the
target processor .

A system service which allocates a file
or resource to a task.

A collection of system software that
permits user written tasks to interface
to the machine hardware and interact
with other tasks in a straightforward,
efficient, and safe manner.

The amount of processing time required
by the operating system to perform
housekeeping such as pagi ng , swapping,
and scheduling. Or, the amount of memory
required by the operating system to
maintain tasks.

A technique used to execute programs
which are larger than the available
memory size in systems without paging or
segmentation capabilities. In PDOS,
FORTRAN permits overlays and PO OS BASIC
can simulate overlays.

An indivisible segment of memory which
facilitates memory management.

A parameter list refers to parameters
or variables used to pass information to
a command.

PAGE G-g

Mu lt i -tas ki ng

Multi-user

Non-preemptive Scheduling

Object Code

Open

Operating System

Overhead

Overlay

Page

Parameter List

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Partition

PDOS
Sector

Phantom
Port

Physical
Device

Physical
Track

Position
Independent
Code

Preemptive
Scheduling

Program
Counter

Queue

A logical division or portion of a mass
storage device which can be addressed by
PDOS using a disk number. Winchester
drives are usually divided into some
large and some small partitions. on
track boundaries.

A logical sector to PO OS on a
particular disk and ranges from 0 to
65535 ($FFFF). Only 65280 ($FFOO) total
sectors may be used for a POOS file
system.

A user port that has no physical device
associated with it (port 0).

A physical device is a hardware unit
such as a disk or tape drive. The
operating system binds a physical device
to a logical device. User routines
reference logical devices rather than
physical devices.

An actual combination of one heed and
one cylinder on the drive.

Executable code which runs independent
of the physical memory location at which
it is loaded.

A scheduling technique where task
scheduling is independent of task
completion. Round-robin swapping or
high priority tasks can interrupt task
execution at any time.

A register within the processing
element of a computer that contains the
address of the next instruction to be
executed. It is automatically
incremented by the processor and
modified by transfer instructions.

A data structure in which the first
element in is the first element out.

PAGE G-10 o
o

Partition

POOS Sector

Phan tom Po r t

Physical Device

Phys i ca 1 Track c
Position Independent Code

Preemptive Scheduling

Program Counter

Queue

c
c

(

(

680xO PODS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Random Access A type of file access in which data may

Realtime

Realtime
Clock

Record

Reentrant
Code

Resource

be accessed in
regardless of its
file.

a random manner,
position within the

An action or system capable of action
at a speed commensurate with the time
of occurrence of an actual process.
Events must be handled promptly (i.e.,
within set timing limits).

A system clock that indicates actual
elapsed time from some reference time.

A set of data elements that
logically accessed together.

are

Code that may be executed
simultaneously by more than one task.
The code cannot be modified during
execution and each task must maintain
its own data area.

Assets of a computer system that the
operating system uses and/or allocates
to tasks for their use. These include
memory, disk storage, printers, and
terminals. as well as processors.

Response Time The elapsed time from the entry of a
command until its acknowledgement or
completion.

Retry

Roll in/
Roll out

An attempt to provide automatic error
recovery by executing the failed
operation a second time.

Roll in / Roll out functions refer to
moving buffers or tasks to and from
secondary storage when limited resources
are avai lable.

PAGE G-ll

Random Access

Realtime

Realtime Clock

Record

Reentrant Code

Resource

Response Time

Retry

Roll in/Roll out

680xO POOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

ROMable Code Object code that is not self-modifying,
will execute properly when placed in
ROM, and which uses scratch pad RAM
external to the code.

Round-Robin
Scheduling

Scheduler

SCSI

Sector

Sector Bit
Map

A scheduling method where tasks in the
task list are executed in order, and
entries into the list are always put at
the end. Each task is given a time
limit for execution and executes the
full time unless blocked or a swap call
is made to the operating system.

A system service that determines which
task within the system should be run
next.

Small Computer Systems Interface.

The smallest contiguous storage area on
a secondary storage medium. PDOS uses
256-byte logical sectors.

POOS uses
secondary
deallocate
Map.

a sector
storage
1 ogi cal

bit map on each
unit to allocate and
sectors. See Bit

Sector Buffer A buffer associated with a file' slot
for 110 transfers to and from secondary
storage.

Semaphore A "gating"
synchronize
data. (See

variable that is
task operations

cd tical code.)

used to
on shared

Sequential A type of file access where data may
File Access only be read or written sequentially,

one record at a time.

Soft Er ror A dynamic error normally caused by some
transient condition. Retrying the
failed operation often results in
successful completion.

I:
I

PAGE G-12 0'··
"

0 .. . ,
ROMable Code

Round-Robin Scheduling

Scheduler

SCSI

Sector

Sector Bit Map

c
Sector Buffer

Semaphore

Sequential File Access

Soft Er ror

c
c

(-

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Source Code

Spawn

Static
Priority

Status
Register

Suspended

Swapping

Synchron
ization

System
Generation

System
Service

System
Software

System
Suppa r t

Source code is ASCII text which is
passed through a compiler or assembler
to produce object code.

The spawn process generates a new task
or entity. The new task is referred to
as the spawned task.

A task's execution priority is fixed
either when the task is loaded or at
time of system generation.

A processor register containing
current executing conditions.

the

A task state in which task execution is
discontinued pending the occurrence of
an event.

The movement from one task to the next
via the scheduler.

The process
execution of
system.

of coordinating the
tasks within an operating

The process of generating, linking, and
loading all required system modules
together in order to build a new
operating system or to update tables in
an existing system.

Functions such as timekeeping, memory
allocation, and console 110 that the
operating system performs for user tasks
upon request.

Software that is part of or closely
associated with the operating system.

Functions or utilities such as
translators, debugging
diagnostics, and libraries which

language
too ls,
enable

a system user or programmer to write and
test tasks in an efficient manner.

PAGE G-13

Source Code

Spawn

Static Priority

Status Register

Suspended

Swapping

Synchronization

System Generation

System Service

System Software

System Suppa rt

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX G GLOSSARY

(APPENDIX G GLOSSARY continued)

Target The final machine on which a program is
Machine run.

Task Control
Block

Task List

Task Lock

Task State

Throughput

Time Slice

Trace

Unit

Util ity

Wait

Wakeup

A task control block (TCB) is a block
of memory containing the information
needed by the operating system to
schedule, suspend, and support a task.
This includes scratch pad areas,
buffers, port assignments, and other
information necessary for the operating
system to be reentrant.

A system
list of

data structure containing a
tasks within the system. This

information includes the minimal amount
of data required to suspend and resume
task execution.

The process of locking a task in the
run state such that no other task
executes until an unlock task is done.

The status of a task (i .e., ready,
executing, suspended or undefined).

The quantity of information processed
by a computer system in a unit time.

The smallest time quantity available to
the operating system for use in task
scheduling.

A trailing record
execution.

of a program's

A logical gating variable which
characters to various
destinations.

directs
output

A software program supplied with the
operating system which supports program
development.

A system service that causes a task to
be suspended for a specified time or
pending the occurrence of an event.

The act of making a task ready to run
after a period of suspension.

PAGE G-14

Target Machine

Task Control Block

Task List

Task Lock

Task State

Throughput

Time Sl ice

Trace

Unit

Utility

Wait

Wakeup

r,;
'-/

()
c)

66oxo PDoS 3.2 REFERENCE MANUAL APPENDIX H INTERNALS

VIRTUAL PORT INTERNALS

MSYRAM:SR

$0340 WIND. DS.L 1 --------->�~I
$D344 WADR. DS.L 1 #11 I

\ #21 1
\ #31 1 -->1 I

\

\

\

#14 1
#15 1

-->1
#11

o.L
I

II

I

I

I

I I Screen #11
I I 24 x 80 I

I I I

---->1 I
I IScreen #21

#21 1---1 1 24 x 80 1
#31

#14 1

#15 1

I

'----'\
I o.L

#11 C/P
#21
#31

#141
#15 1 ,

\

I I , , --------

------->1 I
IScreen #151
I 24 x 80 I
1 I

(WIND.).W = FRPM ____ D __ p pppp
\\\\ \\\\ \\\\ \

\\\\ \\\\ \\\\ o-4=PoRT #
\\\\ \\\\ \\\ 5 = Reserved
\\ \\ \\ \\ \\

\\\\ \\\\ \

\\ \\ \\ \\
\\\\ \\\

\\ \\ \\

6 = Reserved
7 = WINDOWING DISABLE
8 = Reserved
9 = Reserved
10 = Reserved

\\\\ , 11 = Reserved
\\\\ 12 = ALREADY DEFINED
\\\ 13 = PRINT FLAG
\\ 14 = REFRESH FLAG

15 = LEAD FLAG

PAGE H-1

680xO POOS 3.2 REFERENCE MANUAL APPENDIX H INTERNALS

(H. VIRTUAL PORT INTERNALS continued)

POOS Interrupt Input Processor

Normal:

Input Buffers
Port #2

1 #1 1
v 1-------1

K2$CHIN --------------->1 #2 1
1-------1
1 #3 1
1-------1
1 #4 1

1-------1

1-------1
1 #15 1
, ,

Windowing:
(WIND.)

1-=-1 Input Buffers
Port #2 1---1

1 1 1 #1 1
v 1---1 1-------1

K2$CHIN -->1 4 1-- I #2 1
1---1 \ 1-------1
1 1 \ I #3 1
1---1 \ 1-------1
1 1 -->1 #4 1
1---1 1------1

1---1 1-------1
1 1 1 #15 1 , ,

PAGE H-2 C""',',',"','
\' ,,,j

c

(~,

C'

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX H INTERNALS

4["- (H. VIRTUAL PORT INTERNALS cont;nued)

PDOS Output Processor:

Normal:

UxP$
Clear 4
Pos;t;on --->I~I--------------------------------> xBIOSU
Put char

W;ndow;ng:

(WIND.)

UxP$ 1-1#1
Clear _ 1---1 2
Pos;t;on --->1 4 1---------------+---->1 4 1#2 ---> xBIOSU
Put char 1\ 1---1

I I 1#3
I 1---1
I I 1#4
I 1---1
1
I 1---1
I I 1#15

4 (WADR.) I

I
1-=-1 I
1---1 I Event 127
1#1 I I +
1---1 I B;t #13
1#2 I I
1---1 . I .
1#31 1--1
1--,..1 IW;ndow I

--->1#4 1--->IImage 41
1---1 I I
1#5 I' ,
1---1

PAGE H-3

680xO PDaS 3.2 REFERENCE MANUAL APPENDIX H INTERNALS PAGE H-4 o
c

c

c
c

{

(

(

(/

£,

680xO PDeS 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE 1-1

- A -

AC 1-12, 1-(16-17), 2-9,2-20,2-
23, 2-26, 3-1, 3-5, 3-12, 3-19,
3-26, 3-33, 3-35, 3-(37-38), 3-
50, 3-54, 3-62, 3-72, 4-17, 4-
(26-27), 4-70, 4-93, 4-130, 7-7,
7-9, 7-53, 8-21, 8-24, 8-29, A-
3, B-1, B-(3-4), B-6, B-9, B
(13-14), C-3, E-10, E-12,

ACI 2-6, 2-(8-9), 3-4, 3-40, 3-53,
4-49, 4-(52-55), 4-99, 7-53, B-
10

ACK 8-2, 8-6, 8-13, 8-18, 8-20, 8-
(31-34)

ADR 1-13, 2-9, 2-14, 3-21, 3-24, 3-
49, 4-21, 4-38, 4-59, 8-4, 8-16,
8-24, 8-37, 8-(40-41), B-2, E-8,
E-(10-11), E-(23-24), E-26

AF 1-12, 3-1, 3-6, 3-22, 3-26, 4-
41, 7-13, 7-43, B-1, B-3, 0-(1-
2)

ALIAS 6-3
ALINE 3-46, 4-41
ALT 6-2, 7-25, 7-63, 8-37
AMPERSAND 2-26
ANSI 3-80, 5-2, 7-(45-46), 7-59,

8-12, 8-17, 8-(28-29), 8-31,
8-(34-35)

APPEND 1-9, 1-12, 3-1, 3-6, 3-26,
3-(76-78), 4-1, 4-6, 4-12,
4-15, 4-41, 7-(55-56), B-1,
B-3, C-3

ASCII 1-16, 2-(20-21), 2-23, 3-29,
3-43, 3-45, 3-(54-55), 3-57,
3-65, 4-(1-4), 4-11, 4-21,
4-(25-26), 4-37, 4-47, 4-
(72-73), 4-(75-76), 4-(81-
82), 4-(92-93), 4-(105-106),
4-(122-123), 4...,127, 4-130,
7-8, 7-12, 7-16, 7-20, 7-43,
7-46, B-13, C-1, G-1, G-13

ATTRIBUTES 1-4, 1-9, 1-{12-13), 2-
1, 2-20, 2-21, 3-2, 3-
12, 3-(54-55), 3-72, 4-
(2-3), 4-6, 4-13, 4-26,
4-31, 4-71, 4-93, 4-130,
4-131, 7-1, 7-7, 7-!, 7-
48, B-(1-2), B-4, B-13,
C-4, G-5

AUTO 2-18, 2-24, 3-77, 7-56, 8-5,
8-13, 8-16, ~-19, 8-20, 8-
24, 8-30, 8-(34-35), B-13

AUX 3-59, 3-(65-66)

- B -

BACKS LASH 7-9
BACKSPACE 4-(53-55), 4-73, 4-75,

4-(79-82), 7-12, E-7,
E-9, E-25

BACKUP 3-(69-70), 4-24, 7-1, 7-(3-
6), E-10, E-25

BANNER 1-11
BASIC 1-(10-12), 1-(16-17), 2-(2-

3), 2-(13-15), 2-(20-21), 2-
(23-24), 3-1, 3-16, 3-(18-
19), 3-26, 3-35, 3-(54-55),
3-71, 4-(26-27), 4-70, 4-93,
4-130, 5-2, 8-(1-2), 8-13,
8-17, 8-20, 8-30, A-2, A-5,
A-7, B-(1-2), B-5, B-13, C-

BAUD
3, G-1, G-6, G-(8-9)
1-9, 1-12, 2-(8-10), 2-22,
3-1, 3-7, 3-26, 3-65, 3-(72-
73). 4-1, 4-5, 4-11, 4-12,
4-16, 4-99, 4-113, 7-23, 8-
5, 8-12, 8-16, 8-24, 8-30,
8-(34-35), 8-(37-40), 8-42,
A-4, B-1, B-3, C-2

·BAUDED 8-39, 8-42
BAUDRATE 8-38, 8-40
BELL 2-25, 4-73, 4-(75-76), 4-

BIAS

BIASED
BIBR
BINARY

BINT

(78-82), 4-85
4-65, 4-83, 7-45, 8-28, 8-
46, 8-47, G-1
4-38, 4-83, 8-48
8-4, 8-12
1-4 , 1 - (1 6 -17) , 2 -1 6, 2 - 20 ,
2-23, 2-25, 3-3, 3-13, 3-35,
3-54, 3-60,3-74, 4-1, 4-(3-
4), 4-11,4-(20-21),4-(24-
26), 4-28, 4-59, 4-70, 4-72,
4-93, 4-122, 4-130, 7-40, 7-
43, B-5, B-(13-14), C-2, E-4
8-9

_ ren=w"'td'r"f"'1jf

680xO poas 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE 1-2

BIOS

BIOSU
;BIOSW
BITMAP

.BLINK
BOOT

1-2, 1-6, 1-(9-11), 2-1, 2-
4, 2-7, 2-13, 2-22, 2-24, 2-
27, 3-3, 3-(29-30), 4-8, 4-
(13-14), 4-30. 4-61. 4-83.
4-100, 4-103. 4-113, 4-133.
5-2, 7-15, 7-46. 7-53. 8-(1-
50), A-(1-2). 8-8. E-7. E-
(18-23). E-26. G-1
3-30
3-30
6-3. 7-50
3-79, 8-2, 8-6
1-11. 3-69. 7-(2-4), 7-11.
7-·(14-15), 7-(24-26), 7-30,
7-53, 7-(60-61). 7-(65-66),
8-4. 8-34, 0-1, E-21

BOOTG 3-69
BOOTING 1-11, E-26
BOOTS 7-26

,·":BOOTSTRAP 1-11. 7-25. 7-60, 7-61
BP 1-12, 1-14. 2-9, 2-22, 3-1, 3-7,

3-26, 3-64, 3-(72-73), 7-23,A-
4, B-1. 8-3

BREAK 1-10. 1-13, 3-44. 3-(46-47).
3-49. 3-63. 4-1, 4-5. 4-12.
4-15. 4-(18-19), 4-23, 4-31.
4-(49-52) . 4--87.5-6. 5-10,
7-(52-54), 8-11. 8-13. 8-16,
B-2. B-12. B-15, C-2

BREAKPOINTS 3-44, 3-47, G-3
BREAKS 3-44. 3-46, 3-47. 4-18, 4-

33. B-12
BRKF 4-19
BUG 6-2. 7-30
BUM 2-6. 3-40, 3-60. 4-56, 4-64. B-

10. B- (14-15)
:SURT E-7. E-8, E-12. E-(23-24)

- C -

CCNT 7-52, 7-54, E-(8-12), E-(23-
25)

-;CF 1-12, 2-27, 3-1, 3-8, 3-26, 3-
62, 3-69, 3-73, 4-41, 7-13, 7-
44, 8-23, A-4, A-5, B~1, B-4,
D-(1-2), E-4

CHAINS 4-27
CHECKPOINT 4-45
CHECKSUM 4-64, A-6
CHRI 8-8, 8-15, 8-(32-34)
CIRCULAR 3-3
CLB 2-6, 4-58
CLK 8-6, 8-(12-13), 8-19, 8-(32-33)
CLKADJ 3-37, 3-38, 8-3, 8-19, 8-32

CLKI 8-8,8-15, 8-(32-33), 8-34
CLOCK 1-7. 1-9, 2-2, 2-13, 2-22,

4-34, 4-106, 4-134, 5-(1-2),
5-21, 5-29, 7-2, 7-15, 7-62,
8- (1-3) , 8- (5-6) . 8-8, 8-
(12-13), 8-15, 8-(19-20),
8-22, 8-23. 8-(35-36), G-7.
G-11

CLO'CKS 1-10. 7-62
CLP 2-6. 3-3, 3-40, B-10, B-11
CLS 4-30, 8-(12-13), 8-18, 8-20, 8-

29, 8-(31-33)
CMD 1-12, 2-6, 3-40, 4-43, 4-58, 8-

11, 8-(13-14), 8-16, 8-18, 8-20,
8-(32-33), 8-34, B-(1-2), B-11

CNT 2-6, 3-40, B-11, E-2
COLON 2-18, 4-9. 4-35, 5-16, 7-32.

A-3
COLUMN 1-3, 1-11, 2-6, 3-40, 3-79,

4-3, 4-5, 4-12, 4-30, 4-73,
4-(75-76), 4-(79-83), 4-88,
4-(119-120), 5-3, 5-34, 7-
20, 7-25, 8-28, B-11, E-7,
E-11, E-23

COLUMNS 1-3, 5-3, 7-32
COM 2-14
COMPACTION 1-9, 2-16, 3-11
CONCURRENT 1-7
CONCURRENCY G-2
CONCURRENTLY G-9
CONDENSED 2-20, 3-54, 4-64, 7-32
CONFIG 3-54
CONFIGURABLE 1-5, 2-24, 5-2
CONFIGURATOR 1-2, 5-(30-32), 7-2
CONFIGURE 5-2, 5-17, 5-23, 5-30
CONFIGURED 1-6, 2-4, 2-(16-17), 5-

2. 5-15, 5-33, B-3
CONFIGURES 2-24, 5-2
CONFIGURING 5-1, 5-6, 5-23, 5-(30-

32)
CONTIGUOUS 1-(15-16), 1-18, 2-21,

2-23, 3-(9-11) , 3-22,
3-58, 4-32, 4-35, 4-60,
4-66, 4-84, 4-93, 4-119,
4-128, 4-(130-132), 7-7,
7-10, 7-26, 7-47, A-3,
B-4, B-7, B-13, G-12

CONTIGUOUSLY 7-48

(.'."' •.
-/

c
I

I,
I
I

I

{/

c

(~

c

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX I INDEX . PAGE 1-3 ._

---------------------------------~"..,.

COpy 1-9,
3-26,
3-73,
4-41,
33).
C-3

1-12, 2-27, 3-1. 3-8,
3-62, 3-66, 3-(69-70),
4-1, 4-6, 4-12, 4-31,
5-10, 7-(3-5), 7-(32-

7-49. 7-61, B-1, B-4,

CPC 8-13, 8-19, 8-(32-33)
CPSC 8-16, 8-19, 8-32, 8-36
CRASH 4-117, 7-26, E-18
CRASHED 2-2, 4-69
CRC 7-39
CRE 6-2, 8-3, 8-37, E-7
CREATE 1-12, 1-20, 2-7, 3-1, 3-9,

3-11, 3-19, 3-26, 3-63, 3-
70, 3-74, 4-1, 4-4, 4-10, 4-
(32-33), 4-62, 4-107, 4-114,
5-10, 5-12, 5-22, 5-32, 7-2,
7-23, 7-(27-28), 7-31, 7-40,
7-52, 7-(55-59), 8-11, 8-13,
8-20, 8-26, A-5, B-1, B-4,
B-12, C-1, E-4, E-17, G-2,
G-5

CT 1-12, 1-19, 2-25, 3-1, 3-9, 3-
26, 3-(76-77). 3-81, 4-58, 7-23,
7-27. 7-52. 7-55. 8-14, 8-16. A-
5, B-1. B-4

- 0 -

DATE 1-9, 1-{11-14), 1-(1.6-18),
1-22, 2-7. 2-16, 2-(22-23),
3-1, 3-(12-14), 3-19. 3-26,
3-29, 3-33, 3-35, 3-(37-38),
3-51, 3-56, 3-62, 3-77. 4-
(2-4), 4-9, 4-11, 4-17, 4-
26, 4-29. 4-47. 4-70; 4-72,
4-79, 4-92, 4-(105-106). 4-
(122-123), 4-127, 4-129, 4-
131. 7-(9-10). 7-15,7-17,
7-19. 7-21, 7-2S, 7-(28-29),
7-38. 7-(43-44), 7-47, 7-49,
7-51. 7-56, 7-62. 8-5, B-(1-
2), B-(4-6}, 8-(8-9). B-14,
C-(1-2). 0-1, G-3, G-7

DEADLOCK G-3
DEBUG 3-34, 3-75, 4-1. 4-3. 4-11,

4-18, 4-37. 4-90 ,
DEBUGGER 1-(9-10), 1-(12·13}~ 2-

6, 3-2. 3-26, 3-(44-49),
4-18, 4-33, 4-37, 4-90,
A-7. B-(1-2). B-12. C-1,
G-3

DEBUGGING 1-10. 3-47, 7-52, G-13
DEFINE 1-9, 1-12. 2-18. 3-1, 3-10,

3-26. 3-30. 3-61, 3-77. 4-1.
4-4. 4-6. 4-11. 4-13. 4-35,
4-(38-39). 4-53. 4-96, 4-
135. 5-21. 5-(33-34), 6-(1-
3). 7-31. 7-45. 7-50. 7-63,
8-4, A-(3-4). B-1. B-4. C-1,
C-4, 0-1, E-(21-23)

DELETE 1-9.1-12. 1-(16-18).1-22,
2-7. 2-21. 2-23, 2-25. 3-1.
3-3. 3-11. 3-12, 3-22 ;.3-26,
3-35. 3-55. 4-1. 4-6~~~13,
4-36. 4-66. 4-70, 4~g3~-4-
96. 4-128. 4-130, 4":;132,
4-135. 5-1. 5-4, 5-(9-101,
5-16, 5-24, 5-(33~34), 7-32,
7-48, 7-(50-51), 7-64, 8-13,
8-16, A-3, B-1. B-A, B';7';>::B-
13, C-4, G-5 :., ",' ,:·::;C

DELTA 2-7 ?~~0f

Of 1-12, 3-1, 3-10, 3-26 .,.~4·~15';_";7-
13. A-3, B-1. B-4. 0- (1:-2)' ,_

·DFLG· 4~8. 8-24
DIAGNOSTIC 7-(10-11). G-13
DIAGNOSTICS 1-10, 4-114, 4-132'i'7-410

'DIRECTORIES 2-16, 3-1.' 3-53, 7-28,
7-30

.DlRECTORY 1--(11-13), 1-(15-17), 1-
22; 2-1, 2-6, 2-16, 2-
(18-23), 3-1, 3-(10-12},
3-19. 3-26. 3-28. 3-33,
3-(35-38), 3-40,3..;)4.2,
3-52. 3-54. 3-58, 3-62,
3-70. 4-(1-'2}, 4-6; ;4-8,
4-12. 4-17, 4-26; 4~29,
4-(35-36}, 4-46,4-(70-
71). 4-89~ 4-91; 4-93,
4-(96-98}. 4-112. 4' ... 119,
4-131. 5-20. 5-34, 7-1.
7-4. 7-(7-10}. 7-18, 7-
(21-25). 7-(28-30}, 7-
(37-38), 7~{47-48r.::_7-
(50-51), 8-11.8-(13-
17}, 8-19, 8-(25-26}~J8-
30, 8-34-36}, A-3. B-(1-

.. ",'. 2}, B-4. B-(6-7), B-(9-
14}. C-3. 0-1. G-3, G-7

DISASSEMBLE 3-44. 4-18. B-12 '.r
DISASSEMBLED 3-(44-46}" ., ,·:i 3i·lJ
DISASSEMBLY 3-45. 3-48. G-3;~~21H)

SOxO PDOS 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE 1-4

Dl 1 4. 1-12, 3-1,3-11,3-26,7-
50, A-3, 6-1, 8-4

,OM 1-12, 1-22, 3-1,3-12, 3-26, 7-
50, 8-1, 8-4

-ON 1-12, 3-1, 3-13, 3-26, 8-1, 8-5
DOWNLOAD 1-12, 3-1, 3-13, 3-26,

7-40, 8-1, 8-5
"':DRIVER 1-(16-18), 2-(8-9), 2-(11-

12), 2-16, 2-18, 2-21, 2-23,
3-22, 3-35, 3-55, 3-73, 4-
26, 4-66, 4-70, 4-93, 4-130,
7-8, 7-49, A-6, 8-7, 8-13,
E-(1-26), G-3

DRIVERS 1-2, 2-7, 2-10, 2-13, E-(1-
26), G-3

DT 1-12. 1-14, 3-1, 3-14,3-26, B-
1, 8-5

DTR 3-7, 4-16, 4-99, 8-38, 8-41, 8-
3, E~7

DUMP 3-(44-46), 3-(77-78),4-1,
,,~.;! 4-2,4-4, 4-11,4-18,4-21,
r - 4-37, 4-90, 6-3, 7-1, 7-(12-

- 13), 7-16, 7-20, 7-56, B-12,
C-1, 0-1

- E -

EAD 2-6, 3-24, 3-26, 3-40, 4-64, 7-
64, 8-7, 8-10, 8-15

ECF 2-6, 3-15, 3-25, 3-36, 3-40, 4-
(8-9), 4-65, 7-53, 8-5, 8-8, B-
11

ECHO 1-12, 2-6, 3-1, 3-15, 3-(25-
26), 3-36, 3-40, 4-(8-9),
4-65, 4-73, 4-(75-76), 4-
(78-82), 4-85, 7-53, B-1,
8-5, 8-8, 8-11, E-15

EE 1-12, 2-26, 3-1, 3-15, 3-(19-
20), 3-26, 4-9, 4-37, 4-124,
~-22, 8-25, 8-1, 8-(5-6), 8-9,
C...;4

E'MBEDOED 4-25
END 1-6, 1-14, 1-17, 1-(20-21), 2-6,

. 2-8, 2-(17-18), 2-20, 2w(25-26),
3-(3-6), 3-15, 3-19, 3-22, 3-25,
3-30, 3-(39-40), 3-43, 3-45, 3~
47, 3~53, 3-58, 3-60, 3-74, 4-
15, 4-17, 4-20, 4-22, 4-24, 4-
26, 4-(28-29), 4~32, 4-37, 4-
(53-56), 4-60, 4~64, 4-66, 4-
(71-72), 4-84, 4-86, 4-89, 4-
(94-95). 4-98, 4-112, 4-128,
4-{131-,-132J, 4-135, 5-(4-5),
5-10; 5-13,5-15, 5~(18-19),

END 5-28, 5-34, 6-1, 6-3, 6-5, 7-(9-
10), 7-(12-13), 7-16, 7-18, 7-
20, 7-(22-23), 7-(27-28), 7-(32-
34), 7-(36-37), 7-42, 7-49, 7-
61, 8-2, 8-(4-5), 8-(9-10), 8-
24, 8-29, 8-31, 8-42, 8-46, A
(3-5) , 8-3 , 8- (6-1 0), D- (1-2) ,
E-(3-4), E-11, E-16, E-20, E-23,

. E-26, G-4, G-12
ENDC 6-1, 8-4, 8-17, 8-(22-24),

8-(26-27), 8-(29-31), A-(8-
9). E-11, E-16, E-19

ENDM 6-1, A-(8-9)
EOF 1-17, 2-18, 2-23, 3-22, 4-40,

4-66, 4-86, 4-(94-95). 4-131,
7-49, A-(2-3), 8-7, 0-1, E-3, E
(14-15), G-4

EOl 5-9, 5-33, 5-34
EPROM 8-4, 8-12, E-21
EPROMING 1-10
EPROMS 1-11
ER 1-12, 3-1, 3-16, 3-26, 5-34, 8-

32, 8-34, 8-(1-2), 8-5
ERROR 1-3, 1-10, 1-12, 1-15, 1-17,

2-(6-8), 2-10, 2-26, 3-1, 3-
4, 3-9, 3- (1 5-16), 3-18, 3-
(23-24), 3-25, 3-30, 3-40,
3-49. 3-76, 4-(1-2), 4-4, 4-
(10-11), 4-(15-17), 4-19, 4-
(26-27), 4-29, 4-(31-36), 4-
(38-46), 4-48, 4-(51-55), 4-
(57-58), 4-(60-62), 4-(64-
67), 4-(70-76), 4-(78-82),
4-(84-86), 4-(89-91), 4-(93-
100), 4-(102-103), 4-(108-
110), 4-(112-115), 4-119, 4-
124, 4-128, 4-(130-133), 4-
135, 5-10, 5-22, 6-1, 6-(3-
5), 7-15, 7-24, 7-27, 7-31,
7-(48-49), 7-53, 7-55, 7-
(54-65), 8-8, 8-12, 8-15, 8-
(22-23), 8-30, 8-(43-46), 8-
48, A-(1-10), B-1, 8-2, 8-5,
8-7, B-10, C-1, C-(3-4), E
(1-24), G-5, G-(11-12)

EUM 2-6, 3-19, 3-40, 4-7, 4-56, B-6,
B-10

1(:

(" ".'
;';'

(

(',

(~\

680xO PODS 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE 1-5

EVENT 1-7, 1-9, 1-(12-15), 1-(19-
2 0) , 2 - (2 -4) , 2 - 7 , 2 - (1 2-
16), 2-27, 3-1, 3-8, 3-17,
3-(39-41), 3-51, 3-64, 3-76,
3-78, 4-1, 4-(3-4), 4-8, 4-
10, 4-13, 4-34, 4-57, 4-104,
4-107, 4-(109-111). 4-116,
4-121, 7-56, 8-11, 8-14, 8-
16, 8-21, 8-34, 8-36, 8-42,
A-6, B-2, B-5, B-(10-11), C- .
1, E-6, E-8, E-11, E-(23-
24), G-4, G-(13-14), H-3

EVENTS 1-(6-7), 1-12, 1-15, 2-1,
2-3, 2-7, 2-(12-15), 3-17,
3-26, 4-10, 4-(109-110),4-
116, 5-22, 8-13, 8-19, 8-21,
A-6, B-(1-2), B-5, E-7, G-4,
G-11

EXT 1-(16-17), 1-22, 2-6, 3-12,
3-19, 3-28, 3-33, 3-35, 3-(37-
38), 3-40, 3-42, 3-51, 3-62, 4-
17, 4-35, 4-(42-43), 4-46, 4-
(70-71), 4-(79-80), 4-98, 4-112,
7-17, 7-19, 7-21, 7-23, 7-29, 7-
38,7-(43-44), 7-49,7-(51-53),
8-11, 8-14, 8-16, 8-28, 8-(32-
33), 8-4, B-6, B-9, B-11, B-
14, E-(17-18), E-20, E-(22-23)

EXTENSIONS 3-11, 6-3, 7-29, 7-40

- F -

FADD 3-48, F-1
FAIL 6-1, 7-31, 8-30, E-11, E-16,

G-6
FDIV 3-48, 4-14, F-1
FE 1-12, 1-(14-15), 2-6, 3-1,3-

(19-20), 3-26, 3-48, 4-94, 7-38,
8-22, 8-25, B-(1-2), B-6, C-4

FEC 2-6, 3-40, 4-8, B-10
FILELIST 1-(12-13), 1-(16-17), B-

1, B-2, B-4, B-6, B-9,
8-(14-15)

FILENAME 3-77, 4-35, 4-66, 4-71,
4-98, 4-112, 5-3, 5-10,
5-(11-12), 5-(21-22), 5-
32, 7-8, 7-(22-23), 7-
28, 7-(31-32), 7-'(34-
35), 7-37, 7-60, 7-66,
8-35

FLOPPIES 1-9, 7-4, 7-63, 8-44, G-
1

FLOPPY 1-6, 1-11, 3-(69-71), 5-3,
7-(3-6), 7-25, 7-61, 7-(63-
65), 8-43, 8-(47-48), a-12,
G-3, G-4

FLUSH 4-2, 4-6, 4-13, 4-45,7-67,
C-4

FLUSHED 3-53
FM 1-12, 1-15, 1-19, 2 15;:3-1,

3-21, 3-26, 3-51, 7-26, B-(1-2),
B-6, B-12

FMUL 3-48, F-1
FNEG 3-48, F-1
FORCE 7-(13-15), 7-51
FORMFEED 7-12
FORTRAN 1-11, 2-15, 3-16, 3-26, G-6,

G-9
FPA 2-6, 3-40, 3-41, B-11
FPE 2-6·
FRAGMENTATION 4-35, G-6

.FRAGMENTED A-3
FREE 1-3, 1-12, 1-15, 1-(19-211'),

2-5, 2-17, 2-25, 3-1, 3-21,
3-23, 3-26, 3-32, 3-51, 3-
58, 3-79, 4-2, 4-4, 4-10, 4-
48, 4-60, 4-119, 5-27. 5-34,
7-14, 7-24, 7-(26-27), 7-50.
B- (1-2) , B-6, B- (12-13), C-
1, 0-1, G-1, G-5

FS 1-12, 1-(16-17), 3-1, 3-22, 3-
26, 4-67, 4-71, 7-(14-15), 7-20,
7-23, B-(1-2), B-7

FSUB 3-48, F-1

- G -

GARBAGE 5-12, 7-23
GLOBAL 2-12, 2-(14-15~, 2-19, 4-8,

8-35, G-8
GLOSSARY 1-2, 8-46. G-(1-14)
GM 1-12. 1-20. 3-1, 3-23, 3-26,

4-60, 7-27, B-(1-2), B~t
GO 1-12, 3-1, 3-24, 3-26 .• 3-44,

3-70. 4-18. 5-10, 5-19-,. ·5-2A, 5-
25, 7-2. 7-23, 7-40~7-6~, 7-
(64-66), B-(1-2), B,...(7-:8) , B-12.
E-(20-24) .

GOTO 3-1, 3-25, 3-56 .. 4-50. 5-19.
6-2

GROUP 2-16. 3-30, 4-10. 6~3. 7-7
GROUPING A-10 .. ' ".
GROUPS 3::11, 3_42
GT 1-12, 2-26 .. 3-1.' .3,::15. 3-(25-

26), 3-30, 3-70·.f,~-72" .~4-25. 4-
(4 9-~2), B- (1-i)., ,. ~B-8;' .<,

68oxopo'as 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE 1-6

- H -

-'HANDSHAKING 2-,15. 4-16. 5-30. B-3
HARPCOPY '3~2 ,3-73
HAZELTINE 3,~80. 5-2. 7-(45-46) •

·7-59 '
,.HE 1..;'(11-12l. 1~14. 1-(16-17).

,3-,1. 3-(26~27). 7-23. B-(1-2).
, . 8-8
HELP ,-1-(2-3) .1-9. 1-(11-12').

1-14. 3-1. 3-(26-27). 3-49.
4-97. 5-1. 5-15, 5-31, 5-

-(33-·34). 6-3, 7-23. 7-31,-8-
'(1-2),B-8

:HEXADECIMAL 1-4. 3-17.3-(44-45),
3-47. 4-1, 4~21. 4~25.
4-28, 4-37.4-56. 5-2,
7-22. 7-40. 7-45. 7-61

--'Hl,fX;r:X; 1: 11. 3-{26-27). 3-42. 3-62.
A~9T.7-23. 6--8

,~QjTUNE 1-10

- I -

ilA '.'- 1--(12-13), 3-1. 3-26. 3.....:28. 6-
. (1-2) . B-8
lAC 3-44. 3-47. 4-18. B-fa
ID 1-(12-13), 2-6. 2":':10. '3":'1.

3-14. 3-26. 3-29. 3-40. 3-53. '3-
59. 3-68. 4- (8-9). 4-26,4-29.
4-61. 4-(66-67)r 4-71. 4-84. A-
86. 4-(94-95). 4-(97-98) .4-Ht2.
4-108. 4-112. 4-124. 4-128. 4-
132. 7-15. 7-32.7-(62-63)i·~
(66-67). 8-(4-5), 8-(12-13). 8-
15, 8-19. 8-25, 6-(1-2). 8-8.B
(10-11), 0-1. £-2, E-S. E-14, E
(18-21). G-6

10NT 4-9. 6-1, 7-32.8-3. 8-37.
8-43, E-6, E-13, E-18

IFDEFS-1, 8-18, 8-(22-24), 8-31
IFUOF 6-1. 8-3, 8-(16-18). 8-27,

8-29. E-19
IMP 2-6. 2-8. 2-9. 3-19. 3-40,

4-49. 4-52. 7-53. B-6. B-10
INT 1-18. 4-9. 4-33
INTERLEAVE 7-64, G-7
INTERLEAVING G-(6-7)

- K -

KERNEL 1-2. 1-(5-7). 1-9. 2-(1-3).
2-7. 2-24. 7-53. 8-2. 8-(5-
8).8-10. 8-15. 8-44. A-7.
G-5. G-8

KHl 1-(12-13). 2-4. 2-6. 3-1.
3-9, 3-26. 3-(31-32). 3-57.
3-76. 4-2. 4-4. 4-10. 4-33.
4-57. 4-59. 4-(62-63). 4-
111. 4-114. 7-(56-57). 8-13.
8-20. B-(1-2). B-8. C-1, C-4

KM 1-(12-13). 3-1, 3-26. 3-31. 3-
57. B-(1-2). 6-8

KT 1-(12-13). 1-19. 3-1. 3-26. 3-
32. 3-79. 7-57, A-5. 6-(1-2). 6-
8

- L -

LATENCYG-7
LED 3-49. 8-2. 8-6. 8-13. 8-18. 8-

20. 8-(31-34). G-1
LEVEL 1-(9-10), 1-{12-13). 1-(15-

17).2-(5-6). 2-(13-14).2-
16. 2-(18-19). 2-23. 2-25.
3-1. 3-(9-10). 3-12.3-17.
3-19. 3-22.3-(25-27). 3-33.
3-(35-36). 3-40, 3-42. 3-50,
3-52. 3-62. 4-(10-13). 4-17.
4-35. 4-46. 4-66. 4-68. 4-
70. 4-93. 4-96. 4-(109-110).
5-20, 5-30. 7-1. 7-7. 7-21.
7-(28-30). 7-(37-38). 7-(47-
49). 7-53. 8-9, 8-11. 8-14.
8-16, 8-35, B-{1-2). B-4. B
(6-7), B-(9-11). 8-(13-14).

LIST .
C-4. 0-1, G-2. G-(5-7)
1-(11-17). 1-(19-21), 2-{2-
4). 2-7. 2-(15-16). 2-(20-
21). 2-(24-26), 3-1. 3-3. 3-
~. 3-(8-9). 3-12. 3-(15-16).
~-(19-20). 3-22. 3-26, 3-
(32-33), 3-(35-42). 3-(48-
51), 3-(54-55). 3-59. 3-62.
3-69, 3-73. 3-(76-77). 4-(1-
2). 4-6. 4-12. 4-17. 4-32.
4-58, 4-62, 4-70. 4-107, 4-
116. 5-1, 5-20. 5-(31-34).
6-(1-2), 6-(4-5). 7-1, 7-7.
7-8, 7-12. 7-(14-15). 7-(20-
21). 7-23, 7-(28-32). 7-38.
7-(47-48), 7-53, 7-(55-56). :(,

i(

(-

(

{

(

(.....•

/

(

(~

-----------------------------_ ... ".'
6BOxO PDOS 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE .1-:7 "

LIST 7-(63-65), 8-21, 8-43, 8-
{46-47), A-(4-5), A-8, B-(1-
3), B-(5-12), C-3, E-4, G-4,
G-5, G-(8-9)~ G-12, G-14

LL 1-(12-13); 3-1, ~-26, 3-33, 3-
42,4-9, 7-30,B-(1-2). B-9

LO 1-(12-13), 3-1/ 3-26,3--34,
4-19, 4-23, 4-(49-55J, 4-58, B
(1-2), B-9

LOAD 1-(11-13), 2-(20-21), 3-1,
3-15, 3-26. 3-34, 3-55, 3-
66, 4-2, 4-4, 4-6, 4-(11-
12) , 4-(64-65), 4 ... 69, 4-73,
4-117, 4-126, 5-~, 7-2, 7-
15, 7-36, 7-40, 7-(60-61) ,
7-66, , 8-2; 8-6~ 8~13, 8-
20, A-10, B-(1-2), B-9, C-1,
C-3, E-18

LOADER 2-20, 4-27, 4-56, 7-44, A-4,
G-8

LOCK 1-7, 1-17, 2-13, 2-1&~ 3-17,
3-22, 3-33, 4-2, 4-4" 4-6,
4-8, 4-10, 4-13, 4-(66-68),
4-71, 4-104, 4-(109~11~),
4-(124-125), 7-53, B-7, C-1,
C-4, G-14

LOCKOUTS 1-: .. 7
LOCKS 3-75,4-(67~68)
LOCKUPS 4-116 .
LPT 4-(109-110)
LS 1-(12-13), 1-16, 2-25, 3-1,

3-15, 3-(19-20), 3~26, 3-(35-
36), 4-58, 5~20, 7-(21-22), 7-
(28-30), 7-38, A-5, B-(1-2), B
(5-6), B-9

LV 1-(12-13), t-15, 2-25, 3-1, 3-
26, 3-42, .3-50, 4~96; 8-16, 8-
32, B-(1-2). B-11

- M -

MABORT 7-2, 7-(52-54): 7 63
MACRO 3-71, 5-3;·5-6;;5-(21-22),

5-33; 5~34, 6..;(t~3), A-(8-9)
MAIL 2-14, -:2-24,4-8,8-13, 8-16,

8-19. 8-23,-,8...,30,8-34, 8-36
MAILBOX 2-7, ,2-(14-15).G~8
MAILBOXES 1-(6-7), 2-7, ,,2-12

MAP 1-9, 1-(13-16).1-(19-20).2-2.
2-(4-5), 2-(15-17). 3-9. 3-11,

- 3-30, 3-32, 3- (39'-41).'3-51' .3-
64, 4-32, 4-48, 4-60. 4-62:':4-

,,119, 4-128. 4-132. 6- (3-4 l,"7,i.,;-1 •
7-10, 7-11. 7.;....24,7-26, 7-36, 7-
51, 8-(2-6)", 8-13,£-'1'6, 8"':.18,

,. 8-(20-25). 8"...,(3'1 34.),8-48, B-
(10-11), G-1, G-5, G-(7--SY, G-12

MAPPED 2-14, 8-47 ,8-49,,-G-8;'!
MAPPER 7-1" 8-1, 8-(,4-'5)
MAPPERS 1-"10, 2-24'

,MAPS 3,...75, 7,-10, 7-55:8-49, A-5
MASM 2-20. 2-(25-26.1,-3-(4-5), 3-

,g ,3- (1 5- t 6}, 3-'.(1g:;";Z0}, :',3-
25, ~30,3-(.33-34), 3-(37-

d, .,·.38) , ',' 3- (42";'43), 3-62, 3-64,
;3";;'70,' 3-:72," 3-74, 4-58, 5-
32 ,6~1 ,,6-3., :6-5. ~c.,Jf;-7-

16, 7 :17. 7-30.:·7'-42, 7-51.
8-3, A-2, A- (8-9),~ [tI."4f,..'s.;:.,.s,
E-4, F-1

MBACK 3-4, 3-19, ,·3-(37-38), 3-42,
3-69, 7-1, 7-(3-6), 7-49

-MBlQS Z"'i2A, 3-3; 3 33. 3-780' 4 30,
7 -56, 8- (1-2),:. 8- (9,-'36), E-
21/.E-26 .

MSOBJ ,. 3 42
,:MB aOB , 7 ~3 0,
~MCHATlE -3-42 i 7..;.1, 7-7'
,MDCOM~ 3-'19., 3-33,;,,7-1, 7-(,8-"9)
.MDDMAP:!3-19, ,;3-36 r~1..,..1, 7-('10-11),

7-22" 7-37.- ~j'
.,':MDDUMP·3-19,:7-1, 7-'(12-13}, 7-20,

.MDISKS
. MDLOOK

MDNAME
MDSAV[
MEOIT

:0-1
'7-1, .. 7-(1'4-15) ".,j-

7-1, ,7-16, 7...,22
7-1, 7-17
7-1.,·7-(18-19) , ,7~22
3-19., 3-4f;3-(71-72), 3-74,
-5-~1-34') ,7":2, , ·7-12,'7.;";'3'0,

,'",7~39 ,··~7-5t ;:G-4
MEOITCON 5-2,.5-6, 5-:{30-32); 7-2

6&~x03eDas 3.2 REFERENCE MANUAL APPENDIX I 1NDEK- PAGE 1-8

MONITOR 7-21~ .1~(23-24), 7-(26-30),
7-38, 7-49, 7-(52-54), 7-58,
7-6-0,,: 7-:62, ·8-4, 8-(12-13),
8-(19-i0), 8-27, 8-43, A-4,
A-7., :8-1, 8-4, 8-11, C-1, C-
2, G-2, G-5, G-8

MORDIR 3-36, 7-1, 7-21, 7-(29-30),
7-(37-38)

MOT.OROlA 1-1, 1-3, 1-(6-7), 4-7,
6-5, 7-4, 7-40, 7-42

MPATCH 7-1, 7-39
MPDOS 2-8, 2-10, 3-30, 3-33, 7-14,

MPDOS8
MPDOSD
MPDOSF

7-17, A-2
7-7, 7-30
3-5, 3-33, 4-18
3-5, 3-33, 4-15, 4-26, 4-29,
4-31, 4-(35-36), 4-(44-46),
4-61, 4-64, 4-(66-67), 4-71,
4-84, 4-(86-87), 4-89, 4-91,
4-(93-98), 4-100, 4-(102-

: 103), , 4-108, 4-112, 4-119,
4-124, 4-128. 4-(130-133),
4-135.

MPDOSK 3-5, 3-33, 4-14, 4-16, 4-
-, (19.;..25),·.4-28. 4-30,4-32,

4"..34"; ·4-(37-38). 4-(40-43),
,,;4-(47~57);·4~(59-60). 4-(62-

63),~4~65~-4-(68-69), 4-(72-
73),-4-(75~830. 4-85, 4-88.
4-90, 4-92~ 4-99, 4-101, 4-

~ (104~107), 4.;..(109-111), 4-
(113-123)", 4-{125-126), 4-
127, 4-129, 4-134, 7-7. 7-30

MPDOSl 7-30
MPDOSM 3-33. 4-17, 4-27, 4-58. 4-

MPDOSN
MS6EC.'
MSYFl

70. 4 ... 74 :
3-33
7-1, 7-40,7.41
2-26. 3-4. 3-15. 3-25. 3-43.
3-54. 3-70. 3-72. 4-64, 7-1.
7-16. 7-42. 7-43. E-4

MSY08 7-1. 7-43.7~44
~\MSYRA~ 2-4. 3~5. 3-30. 3-33. H-1

MSZ 8~13.·:8 ... 19. '8,...23. 8-(32-33)
MTERM 3-80, 4-30, 4-83, 5-2. 7-1.

7-45. 7.;..46, 7-59
MTIME 7-2. 7-62
MTRAN$ '\ 2-21,.7-1." 7-4. 7-7. 7-(47-

49) . ,.
MUNDl 7-1. 7-(50 51) :,

,MW8Z:,~. 4-{20-;-a2): 4-46. 4-91

'"

c

(:

(,

c

{

('

68DxD PODS 3.2 REFERENCE MANUAL APPEND IX I INDEX, PAGE 1 .. 9

-N -

NESTED 2-(25-26), 3~!0, 4-58, 4-87.
A-9

NESTING 4-27, A-2, A-5, A-10
NOAlT 6-2
NOBUG 6-2
NOCEX 6-2
NOCl 6-2
NOCRE 6-2
NOFORMAT 6-2
NOl 6-2, E-26
NOlF 6-2
NOLlST 6-2
NOMC 6-2
NOMEX 6-2
NOOBJ 6-2
NOP 7-34
NOPAGE 6-2
NOWARN 6-2
NPS 8-15. 8-21~-8~25~ 8-(32-33)

OFFSET 3-44. 3-(46-4f)~ 4-7, 4-18.
6- (-2-'3), 8-48-. A"'9. B-12, E-
2;' -E-11 , E--(18'-20). E-(22-
24). G-1; - 6 ... 3 ,' •.

OFFSETS 4-33~;6~2. 8-1,' E-(22-24)
OPCODES 3-74, A~8

PB 1-(12-13), 3~2, 3-26, 3-(44-49).
. 4~1!, 4-37, 4-90, B~(1-2). B-12

fERIPHERAL 2-7, 2-24,G-3
. .. PHAN'TOM 2-4, 2-11, 2-27., 3-9, 4-33,

" 4- (50-52),4-114, A-2. A-6.

PHASE
PNETR

". PNETS
PO~L -- :.
POLLED
PORTS

G:"'10 '
A-8
7-30
7-7. 7-30
8-41
2-(8-9)
1-14.2-1. 2-.4'. 2-8. 2-10.
2-(12":13). 2":'22,. 3-2. 3-7,
3-9 •. 3~11. 3-47. 3-75. 3-
(76-81),: 4-i6." 4~73, 4~(75-
16J. 4-j78~82). 4"';:85~ t-2.

." .. ' 7":53.:7-(55~57), 7-59, 8-21.
. 8-35; FA~4. B-3. B-11

PDSlTItYN 2;';(2-3)'. 2-6. 2-16. 2-
18. 2-21 3-3 3-10 3-
40~ 3-11:' 3~t~9~81i: 4-

-2~ 4-(5-7):. 4~I12~~3).
4:-{30-3:1). . 4':'(34.,..35).
4~64~ 4-71,_ 4-183':'l4) •

. ' 4-88,,=4~94.4-1~~. '~-2.
5-{4-5)~ 5-{~-10),5:24.
5~{33~34): 7-36, 7-42.
?·(45~46), 7-55.7~(58-
59); 8":13. 8-16. 8-(19-

OPT 2-8. 2..:10. 4~8~S~(2-3), 8-3, 8- -
.,', ;

~ 20). 8-28 •. a-31. 8-L34-
36). ,A..:2. A-5. B-11. C-
2, . C-'4, E-2. E-4. J-8. 7. 8~37, E-7,E-14

ORDINAL 4-47
ORIGIN 6-2, G-4
OVERFLOW 1-7., 2-25, 3-3~; 3'-49.

3-66,~~25, 5-4, A-S. A-
10 ';

OVERHEAD ~1-7, 1-9, 2~~, 2l16~~G-9
, I

E:,,"15,'~-n8-20), E":(22-
24),' G~3,-G-5.- G~(10-
11) '·'H::..3 ,,-.

~ ! " ~

-i POS1TIONED '3-3~ E-2
PO~IT~ONING ~-21. 4~11. 4-13. 4-83.
, . i .. > ('- L 4';;"84 8:.;.28 '.

,. ~ , ;f'-~ ,..,~' ,"

-i;POSITIONS 2.:..10·; '3-7~' 4-(83-84).
: " , -' ,. -; I,' ' •. 4-108~ 4-120 i E-7. G-3

:~ PREC1S'ION· B-48 f ' .>"

PARAllEL 3:'73' ,(~/" f-PRIORITiZED .:t:'5~ 1:7.,1-9
PARITY 4-16(, 4;;;'30, ;'4-73;,.1'4:':75. ". PRIOR'1TV .-"~;:;.7. '':'(12':'''4), 1-19.2-

4-(79;"83). 4""99,' '7:"27j8-9. B, ."" 1,;'2..:2; 2 ... ~: 2-(15-16).
8-38,' : -: " .1 3;"2 3 9 3;"39.,3-64. 3-

PARSE 2-l4: 4~58' (7~;7b).· ~-'3;4i~~~~10.
PARSED 3-3, 4-n4' ". i' 4:::'\S2:"33L4":104~ 4":'~('07,
PARSES 1-9,4-46;4-58, G-2' :;:.j ~. ~"-:. ~"'10~, 4"'-("'05-116), 4-
PARSING 2-18, 4-58 ;-~ -118,-"~7-(52..:.56), 8-4.
PARTIAL 6-3, 8-25 " a~(j-2}: ~B":4, B-10. B-
PASCAL 1-11. 2-15; 3-16, 3..:26 i;\A-2,"; 15;Ct.1, G 5. G-10. G-13

G-6PRIVltEG~6- 3-49(4£10i~4-117
PAUSE 1-16, 4-1, 4-5, 4-12, 4-23.' < .,;~. 'J'::';.

B-13, C-2 ~-' ,

; Ii&@lJi .t . ;

i~nko;~t~s 3.2 REFERENCE MANUAL

PROMPT 2-14, 3-3, 3;;,,5, 3"'12,<S-54,.
", ::,- ,! <3-~,2"., '3-~,63, 3r-69 I t1'.~·25, 4-
;'_;.; .. 53, A.'" 9-2 , 4-105, 5-10, 5-

(12-13),5-(19·-:22),5-32,6-
5 ,:7";:.-1 ,fZ,,",~, 7-'12 ,,7'l,..,2::0, 7-·"'
22, 7-26, 7-3td: 7-,..,(47::"'48),
8- (,1'1"..",13 } ,-.. 8-19 "a.:-'27/ ,.8-15

PROTECTI:ON. 1_~i8,::2:-(2.0~2t:}'i; ;3-11,
... 3:"..54, ,t1::-13'0, 'I, 7 ~ 7; r 7-48 ,

G-5" ii .. 'i.

PROTOCOl :3""'1:7 , :3",..45, 4-16, 4-99,
8 3, "

PS£UDO;2-2:0.,., 3~.~:4 '

: \ M» / .: _~ :.~

QLINK

QUERY

3-16, 3-30, 3~42. 3-62, 5- .
,32,6-1. 6:-{3-4J" 7-2 ,'.i,,7-31 ,

.. 7-3.3 1 7~(35:-36 ..)(;. 7i-39 , 7-51,
8-3, A-(1-2), A-10:;
7-(47-'4~J'

- R -

::;? ~ '~AM' J:-.(12:--14), 2-24,:, ~""2, 3~7, 3-26,
. 3t34 , 3,,;"51,3-;-70:, 4-;-56, 4-68. 4- .'
125~~7:-3, 7~(25~27). 7-65, 8-(1-
2}. 8-(4:-5)" 8."..10 ~ 8-12, 8-13,

.,8~11, 8-(19-261. 8-(30-31), 8-
34. 8-3Q~ 8-(46·4~). 8-(1-2), B-

i' .,,12, E-26; G_4, G_12'
RANDOM 1'::'(5-9), 1-9 •... 1-18, 2-(16-

18), 2-21, 3-10i 3 22~ 4-(2-
. ~), 4."..6, 4-13,_ 4-26. §-29.

. ~ 4_35; 4_66. 4 ... 71. 04-84. 4-
97. 4·98, A-4. B~7; C-4. G-

". ,11
,RD1_{12-14). 3-2 •. 3~26. 3-51. 3-

,70. 4 ... 46, 8-(1-2), 8-12
'~RDY 8:-13; 8"..17, 8~j$;:8-32

RgZ 6-5,~8~13.i8.j7. 8~19, 8-32
"~ H~CAll. :2-25. 3~~;-3-72~ 4-74. 5-22.

. 8-13. 8-16
"REC~llED i 1-15,:.2-25, 3-3, 3-45.

, -4-54. 5-11, 5-13
37 71; 5-1,;5-26; 5-(33- .
34) .. , - ,

8EF~iSH 3-{'1~81») 7~55. 7-(58-59),
e-9, H t:

RENAME 1-9. 1-(.12 ... 13),,3-2, 3-26,
3-52, 4-3. 4~6. 4-13,4-41,
4-96, 6-3. .7~7, 7",,17, B-(1-
2}. 8-13. C-.4, G-5

RENAMES 4-96, 7-17

PAGE I-10

RE·N:AMING'···.', -4.,...96
REP'OS HION·EO. 5-1r3

. RESCH${).ULEDZ;"'7, '2·";:12, 2-(14-15)
·RE-SCH;EDULING2-2, .. :2-15. 4-104

:RESE1: -, 1-f;12-13r. 2-(12-14), 3-(1-
,'. '2).3:":7,3-17. 3-26, 3-44.

'. ' ,'~3:'~'7, ;'3--50-\ 3-53, 3-67, 4-
. (H-A-)', ,4-6, 4-10. 4-12, 4-

"<-" 0 t:8,·/~, 4'-:34.-, 4'~87 , 4-102 I 4-
:10R:, 4:",1-10, 4-116, 4-121, 4-
12-5'. 7:"2·7, 7-46, 7-48, 7-53,

., 8-29.8-(37-41), 8-(1-2). B-
_ 5.8-(12,..15), C-1. C-3
RESOl VE7~36;

.. 'RESOLVES :6,..5
.i RE,START 6-3,

. RESTORE 1':"10., 1"';18. 4-14.
.15.:7:"'3,7-6,7-8,

43. 7-54, 8"';2, 8-7,
20,8-22, 8-(39-40)

4-90, 5-
7-22, 7-
8-13, 8-

RESTORED' 2-17, -3-19, 3-25. 3-36,
i .• 4:-"'9, 4-86, 4-95. 4-128,
;. '4-132. 7-6. 8-7, B-8. E-

3
R·ESTORES . 2-2, 2-20 I 3-54
RESTORING 1-49'
RETRY E~10i:G-11
REWIND, 2~21~ A-3,· 4-6. 4-13, 4-84,

. f-94, 4-108; C-4
REWOUND 3-25

, ·RN 1-(12;;'13), 3-2, 3-26, 3-52. 4-
41; 4-84, 7~39, 8-(1-2), 8-13

ROMABlE 1-5. 1-9, G-5. G-12
RS 1-(12-13), 3~2,. 3-53. 3-59, 8-

(1-2), B-13

SAVE

-'s-
1-1 0, :1.;;. (1 2 -13), 2 - 6, 2 - 21 ,
3-2; a·39. 3-55, 3-60, 3-71.

. _ 4";'1, 4 ... 3,-4-10, 4-14. 4-25.
4-34 .. -4-41. -4-47, 4-55. 4-
60,' 4-71. 4-98, 4-112. 4-
131, 5-1;' 5-4, 5-(6-8), 5-

·'(11,...12). 5.;..(21':"22). 5-(24-
25), 5-{33-34}, 7-1, 7-18.
1.20, 7~{2~-23), 7-54. 8-2,
8-7. 8-13, 8~20J 8-22, 8-25.

i -8-40; B-{1~2). 8-14, E-8. E-
15. E-19. E-24i G-7

SCHEDULE .2-2. 7-30, 8-3. 8-11. 8-
13~ 8~20. 8':"37, 8-43, G

·14

.~"""

'~

(

(~

(~

?J'- 5 T

680xO PDOS 3.2 REFERENCE MANUAL APPENDIX. I INDEX

SCHEDULED 1-7,"·2-(2-3), 2...,.13, 3-SHARES 1-7
9,4-33,4 116,4-.125 'SHOW ; 1-9,1-(12-13-), 3-2, 3-56,

SCHEDULER _ '2-,:3, . 3-9, 4:"'(109~~110), '. 5:"12,5' ... '2'1, 5:"'34, B-(1-2),
A...,ll8" A-6, G·:"'4'12...,.13)B--13

SCHEDULING 1-50"·1...,9" 2-2,'Z--7, 2-SlGNAL 1-7,&":41,' G''':; 7. ,
(12-'1-,3) ,2-16, 4-109, G- . ,SIGNALED' 2-7·····
(8:"'1·0) ,G-l2, G-14SI.GN.AL".ING ~2-7, 4-':":14" ' ..

SCRNTB 8 2, 8...,9, 840, 8-29, 8-33 :'SIGNALS-:2-2S'" 3":76, 7-"56
SECOND 1-1'5, 2~13" 3.":4, 3-12, 3-17, ~:. SIMULTANfOU'SlY1"-9, 2-(16-17), G-11

3-25, .3-47, $,;·,(:52-53), 3-59, SLICE 3-9, 3-64,' 4-107, 4-115, 8-
4' .. 34:--, 449~, 4:~5'2, 4-(53-55), r.. ~--. 4, -'8~'16" 8"-4, G-f4': "
4-83, 4..;96 ,4-0'{ 105-106), 4- SLOTS 1-12, 1-17. 2-17. 3-22. 3-
(109":110):, ,::4-t:16, 5-13, 5- 26, 3-'53',: 4-t.·4-6, 4-1'2, 4-
20, 6-5, 7--.(8:"'9:'}, 7;';.16,7- 15,4-31, 4-45,4-66,4-71,
(17-18) ,1.,..22, ."7-25:,.7-37, 4-97,A-"98, 4-(111-112), 7-
7-48,7-(52-53),7 ... ·60,;7-63, 23,8-21, A-5, B-(1-2),B-7,
8-3, ~6, .8~'13·, B:~l6··~--,,> ·:8-19 , '~< .' ~ "C:'3 .. .' " ". "
8-30,· 8-1'(34-36), 8-44, B- ··SM. 1- (12""'1~), 1-"17 ,3-2, 3-22. 3-
13, G-11 "31', 3~57·;~A""6·, B:-(1-2), B-7. B-

SECONDS 1-.11 ,1"".{·1.£-1:B), 2-13, 4- 13' .
10:6,,4-134,' 5-31. SORT 3-49, 7-37'

SECTION 1-t1" 2-'22, 3-4, 3-25. 3-30. SORTED 4-47, 7-30, B-9
3...;68, 4<:-2:7," 4-64, 5-2, 5-15, SORTS 7-37-
6-(2-3), 7';;"32, 7-34, 7-42, SOURCE 2-8, 2-14. 2-(19-20),?...,22.
8-("3""'4:) , '8-37, A;;;2"1 A..,;4, A- 2--26. i 3~4 ,3 25, 3;;..47;<3-49.
8, A-10 . .E-·2, ,E...;4, E..,;~, E- :'$;"S4, 3':...62.'·'3....,69,3-70, 4-9,
14, E-.19 .. ,:. E-l22':'23) " G:.i.2 4';"'Hj';~ 4--'3'1 ,4:"33:,' 4-41, 4-

SECTIONS .. 1-2:,2-1 ~ \ 5;'10; 7",-~r ('57:o..'S9) ,4...;63;6-2, 6-5. 7-
SEMAPHORE' 1 16-lf)J2-~14-15), G-12 f"'1,7-{3--S)',t7-8','7-18,7-
SEMICOLON 4-3S ']A.. (22 23'). 7-28;i' 7:"'39. 7-42,
SEND 1-(12';;"·13), ~';"Hl;' 2-12,;·2-1S. 7i:.4f, 7;;"(47~49). 8-47.. A-4,

3-2, 3;~3\ 3-34; 3--57, 3-66, E-4~- G-7~G--'3
4-(3-~).t'-4-10·, 4-57t(4-S9,SouACES 2:£'8, '-'
4..;,.63,4':"'111', .. : 4~114; 5.,..2, 7- SP~"'-(12-13r; 1:::'15.3-2. 3-4S, 3-
43, 7-S2t -7-6S,-8~(40-42), '~"46,' 5~S8,l 4~S8~ 4~8S, 8-28, B-
B-(1-2), B-13, C-1. E-15 (1~~),~Bl(12~13~

SEQUENTIAL .1-{S-6). 1-9, 1-18,2- SPACE ,1-7. 1-:-9, .2 ... (2-3).2-5,
(16-18), 2-21, 3-22, 4- -~ .'2~~8, I~t, 3~11~;3:a6.~3-58,

-3,)4~6,j4-13, 4-26, 4- :'-4-2,?'4~5~ .4~~; 4i~2, 4-15,
-·29,i::t.4&35:;-ZA-66. 4-112, :,'4:'(20':'2~), 4 i 27\'·4--(31:l32).

A-4,:.8 .. 7,C':"4, G-12>;~ .'~'4=58, 4,,,-64. '43.71'4:'85,4-
SERIAL 3"73,'4-~7, J;"43 \::.~ ~., 93':"4-12t, ,4-'128,-4;2.132. 5-
SETUP 4-7~ 7-3'~~ 7~6n. 8-1, 8-S, 9, S-1~:-~6-2,-~-3, 7-12. 7-

8-;-24~ G-:-1, ~) L_ 1 ~:; .. '-26; '1-48 .. ;: 7 --66:i hA-4 ,
SF 1-(12-1~); 1':"'18;1 '3-2, 3-15, 3-:B-13-/:C-2';'G-1

28, 3-56,84':"-15, ,81"-:16. 8-19, 8- <~;;'S:PAWN~·':2-5,·~-7:;3C.9, 4s:.·114FGa13
30, 8':";:(33=-34i~,8;'36, A-3, B-(1- SPAWNED 2-2, 2-S,":3-9,3-32,3-39,
2), B 1.32 .' . i'.~.i:',.' .4;'3'0, 4':'" r3"2':"33j t, >1:'Sf;:14-83.

SHAR E 2-2., '.;2':"4~J 2-8', 2-19 4-114, B-'8"; G'::"13
SHARED 1-(5-7), ~-9, 1-(17-18), 2- (SPAWNilNG, '::"2;"5'

i4, '2i-7 i 2-'16, 2*,18;'3':'9, 3- SPAWNS'" 2';;'5;' i:, .:: .<. ::::

22, 4i:r-2~ 4~6, 4-26, 4-29, 4- ",$PC 4 ... 17,'6:'2>';' -
66, 4-71, 4.:..98, A-4, B-7, G- SPI 4-73:: 4 ... ·(75-ql5·)C; 4-{78:-82)! 4-85
2. G-12 SPOILED 7-(10::'11')

""'577'snrnm ympS. nwrme C"TXP ~- z· %,''735 t

68g~~ P~g;~3.2 REFERENCE MANUAL APp~~6tx I't~6~x PAGE I-12

SPOOL 1-(12"'-13.:." 2-10. 2-22. 3-2.
3-54. 3-59. 4-73. 4-(75-76).

':.h'S ;, .;. i 4 - (7:8-';.8 2) .4'-8.5.' 7' - 5 3 , • :B:':' (1-
'c ... l ~"';~ 2:r::·· B-14.: " - .' :-
. ;S·p:aOLER·:2-f3..... 2~27'., 3i-8', 3-17. 4-

. • "... , . '-,:.(109,-:11 0.)" .
SPOOLING ',. -~;;"'6'5 :2~("10-;11) . 3-40,
.' ;. ·3-73 . 'B'",,(1~ 11)
SRECORD 6-3
STACK 2-3. 2-(5-6).:3"-'(45-46').',4-

1. 4.J4'·,A 4";'7::."4-11,'4:-'18 '., 4-
. ,;.~ 1.:':4-32/ " '4"':34. 4- (3'7 39) •
.. ;; 4~M. 4..::g,~··' 4-1'17, 6-2. A-6.

.' 'o"A-8'/'·C:'1,. ;,·C....:4:..'S· ... 3. 8-4, 8-
, ., ;~'<"" (,7,-:S'l'.; i'S'.:f.3. g;:.;...2~. 8-22
.. :c S;rA'C-K'.:s . ~1':"'g'~. 3"';4'9' .:: .' :,'

,. ST.~RD .' ·<'1-~t0'. 4'-._(,'t:J8:). 7-14. 7-
::: -"': ,,·24.2'r-53.;7:.o.S1. 7-63. E-

'~-3'22, 8..;'f;-S-(46-49)
., g S:T;~R=r.u P.f~11;. 2·:.i24>"'3'..;. 72. 7-27. 8-

s-, -2(1":2-)\ 8":('4~5). '8-10. 8-19.
~ -? ' ;:8'---22)8':"'35 .E-211

S T R"'!'O'E: ."(,-..\ 141, : ' ." .
. ' ::SUB S l':i:'ftJT E ' .. ~5""::2
SUBSTt:H.fTED!"'f<-5~ ". i

- t. S,U:&S'THIJ1'l'Ott"'2J;2&, 3' 19,3:...30. 4-
,"; '., 65.>·A-9, ~B-6

SUBSTI'TUTiIOtfS" 2-'2'6 •.. ,. ,3-4, 3-19.
4-(:53-55)

SUBSYSTEM 2-24'. '(3-'""1·' , "
SUPERVISOR 3-(45";;46 f .. '4:...(3'''';4'), 4-

11. 4.]3:9. 4';;69' ,~4;,:;g0. 4-
, 111 .• ' 4-1 2"6 :'8~'4> '~8:"(7-
8),S-22. B-12. C-1, C-
4. E-3·.,e:"5 .. ,

SUSPEND 1-7. 2-7. ~2:"12, 4:"(3:"4).: 4-
10. 4-34.4..;:45. 4-'(10'9":"'110).

~ ;,; .. :'4-1;-1'6,. 4...:.f21·,C..;:1. G-014 '
SUSPENDED 1-7. 1-9;' 1-1·4. 2-(2-3}.

'" '2'-' (7-";'8).~- (12 f5 f.:' 2-
24, 3-39. 4-(51''-''52); 4-
104. 4-107. 4-116. B-10.
G (2'-3), G- (13-14)

SUSPENDS 2-3. 2-(12-13). 2-16. 3-
, '" 76. 4-tf6.,:7';56 ' ,.

tsusPEm:ION ·~·'1 6. 2...:.{:1--2t 2-(14-15).
G-14'

"SVF 1:...1'4.2:":6'. 3"::39'. 4":::1'4 .~8:..t. :8;"'10
SWAP'4-(ti-4) ,'4..;:f(rh' '~4-34 •. 4-68.

j'. 4'-:1t.: 4';';88~ 4-98\ '~-HJ9.', 4-
", "":112" 4-t164-(118-119)!4-
, ;, ,::'" ,j '.~ ", '......., " ' " ' -' , " ' " .. -1'~2;t ;':;4.;;'125.8"':28. C .. 1, E-20,

E-24. G-12 .,
SWAPPED 7-3

- 'SWAPP It·m:; '2';"4,'2-15. '4;"10. 4-116,
, . '1;"4,'\ "G-.-:'(9-10'). G-13

, :"SWIT(CH' r 1·...:.~. 2,4.)2"-~15.> 3-75. 4-104,
... ;' • ·4~·{;;1:r'H~:.o.:1113,» '5-{28-29), 7-

,~ - .3-7~. ~r":' (53-50).. . 8- (7 -8), 8-
,." 12.' ·8235' ;'

SWITCHES 4-14.8":('1-:"'2). 8-5. 8-9.
l·'~ .' ~-" :. 8-t~):8-24, 8-(34-36)

,,' JSYMBOl>, '2-27' '3-77' . 4-64 6-(1-3)
"J ,~~'~5.:-7~";;~s-6>,:~ A, .. 2(8-1'0), E-12 '

:"SYMBOlS 1-21,. '4''':8,'' 6-1. 6-5, 7-36.
, . "8:";32 .:8-34 ,(:'E~12, E-16
SV-NCHFfONIZATIOtf 1.t(5:i7). 1-15. 2-2 .

~ ~. : ,"1 ',.,- ',," i ' ·-:(;'~'1,,3'

.' SYt4CtllfONI'Z~~'2"'7, 2-(12-13), G-4. G-
": c: ' ". "12 ":

,.,\. SvNCHlROtUcED . 7-8
SYNCHRON I ZUiG 7-8

... S Y;NtAX:t~2 0 • :4 .. 4. 7 ~31 ,A-8
.: SYSGE'N3-T8.·:4-30: 7-56

SYSRAM 8-12. E-(3-4).· E-7. E-14,
""E-19 ' .

-TAg 1":'2'; 3~43. "4..53.:4-5, 4-12.
4-73. 4-7S.4-(7S~82), 4-(119-
120) .5-1. S-9 •.. '5-(16-17), 5-

:'(33-34}:.'7.i12'.' C..:.t; E-7. E-9. E-
.-, ... ····S' " ' ~,c (;;. .-, • _ ;" ~" .;;

.-iTAG 2-2·0, 4---27,'4-64 .A-'4. A-113. E-4
TAGGED 1-16. 2~20, 6-1. 6-(4-5).

7-4:3" ,
, :~tAG'S"4'-64:,'e-2

TASK 1-(5-"~) •..•. ~ 1-(9,.;.:113). 1-(12-
1'],). "'1"::{19-213), 2-(1-10).
2-(12-16) ,2..:.'(18-19), 2-24.
:)2L(26~27j',3";;(1~2), 3-4. 3-
(1-9), ,'3-17. 3-19. 3- (21-
24). 3-26. 3-(31-32). 3-(39-

\".f1'}';;'3-44';' 3-('46-47). 3-51,
'3-53;'3-57,-"3-59, 3-64. 3-

66, 3-{75-76),3":(78-81). 4-
(1-4), 4-8.· .. 4-10. 4-(21-22).

. . 4-27., 4":'(29-30). 4-(32-33) •
• :' "4"",,(,38''';'413) ,::,'4- (42-43). 4-48,

4..;'(5·1 -57). -'4-59. 4-(62-65).
,'4'-(67-6S}.'4-71. 4-73. 4-83,

';4'-"89,, ;:4~'g1 • ~4-1132. 4-104. 4-
-107.' '4''':'('10'9-11'1-), 4-(114-

,~~ 118), "4i...12'1;".4-(124-126), 5-
2. 6-5, 7-(1-2). 7-4. 7-23,
7-(26-27), 7-30, 7-40. 7-
(45-46), 7-(52-59). 7-66

i(i.-. .

\,,-, -

(

(~

(~

(

(

£
C

6BOxO POOS 3.2 REFERENCE MANUAL APPENDIX I.INDEX PAGE 1-13

TASK 8,...2,:8'-4 •.. 8.- (6-7), 'S- (11-
14) •.. ~ 8,...16.-.8":"(19-21), 8-33.
A-2.· .A,... (5..,,6.t.B- (1-2:), E3-4,
B-(6-8)" 'B-tt10 ... t1), B-(13-
15) •. G-t·; C 4 ,E"'(3-4}, E-7,
E-14, E- (:1.'&-21 }~., G-2, G-4,
G- (6,...14) .

TASKING 1-1,.1-(5-'9}. 2 (1-2}, 2-(4-
5), 2-1-5- 0'.4-1 1"4., ~7 -26),:8.;.,:(5-
6>-. S.,,(2~-:2.4:) , :G-~5, G-9

TERMINAL 1-(11.,...12) ,,': c-t4;,.3~15 •
.. 3--63.; r3-p·0 71). 3-73.
3.-75, 3-80, ... 4-70,.;,4-83.
5T(2~3}. 5-9. 5-15. 5-
30.. 7 ... (1:-2J .,7"'2;0. 7-
(45-46};,7-52. 7-55. 7-
59 ;.8-1 :8-:-12;:8-::35. E-
7. E--:14 , ·G 3 >(.... .

TF 1-(12-13). 1,...22,'2-21. "3--2.,, 3-
62. 3-69..: 7-:-4, 7-4·9~. ::B-(.'t-2'l. B-
(14-15)_ _

TIC 1-14. 1-18. 2-13.,3-39. 3-56.
4-106. B-10

TICS 1-14. 2·13, 3-9, 3-39. 4-8.
4-34. 4-(105-106). 8-3, 8-
.13. a~16. 8-19. 8-:-~0j ~; .. (34-
·35}. -B-;-10

TLCK 4-8.: .
TM 1-(1?-14l.; 1-(19-20}f .. 2 (15-16).

3-2, 3-(39-41). 3-51. ~~-59. 3-
(63-64) • 3.,.,.19 .;8-(1 ~)., Q-::(10-
11). B-:- (14 151 -' :: .. ~

TOKEN 1-17. 2-20. ~.2,...23. 3-35. 3-
54. 4-26. 4-70 •. 4-93. ·4..,130

TOKENS 2,...3 •.. 2-20. 3,...54
TP 1-(12-1~). 2.-16. 3..,.2. 3-64, B-

(1-2) i' . B-:.15 .~. ~
TPS 4-8 .4.-45,:: 4""'l10;5;-~6). 8-3. 8-

(12-13). ~8."t6 • . 8',...·1'9, 8-30. 8-
(32-:3.6 t . --;, " L . .

TRACE 2..,.6 r':' 3-44,.. :~3-:~46-49). 4-18.
4"7'(.3,;8-39 r .. :.4-Q:~ •. ::B-12. G-14

TRACES3~A6: '>oi.,;'

TRAC I NG 3..;'(4.4-4 (J : (, ..
TRANSFER: ·h,t1,2."t.13) ,:'_ +1-22. 3-2.

3.-62 .i:; ~3.-etSQ"";' 7 0) • 4-31 •
~>.1-1 •. 7'1_(4. ... 5.)'. 7-4~, 7-

. ~7-4S),..':B:.,;.(.1-5). B-(14-

.. 1.5) " ,;:(2-3. '1",1.0
TRANSPARENT t"7f12.~13}.· '3-2. 3-63.

7-52.'. B-(1,...~L B-15

'. - U-:

UART' 2-(8 ... 12) •. 2 . ..;22,. 2-24. 3-7.
3-13, 4-16. A-sa. 8-1. 8-4.
8-a. 8-13. 8-tS.8-'t9. 8 37.
8-(38-42). .B-3:. £-(7-8). E
(10-1.2). E-:(2.3-24) .,'E-26,

UARTS 1-,2, 1-,6. '1 . .-10, 2-10. 2-24,
Chapter 8

. UNARY-· . A-8 .
UNDERFLOW 2-2:5 A-8.

-UN 1'1. 1 (1.2-1S Y •.. 2-2. .2-6. 2- (10-
1.1)" 2-:22, 3-:-2, 3-7, 3-13,

. ~-(3Q-:40),·.3-44.,,3-47. 3-51,
(,3:-:·5.~·. ,3'~ . .-e62~63)~,.: 3-(65-66),

3-69, 3-:;7:,3. . .:.. 4..,18 ,;4~JS" .. 4-
t'ZS.-7.6,), 4::"' (.78-82 h;· ;4~8$... '. 7-
J3"...4).: '7..:8" .,7-12. 7-22, 7-
~3 }-63, 7'""'65. 8-13, 8-17,
8..,.1.9, 8-: 23.., 8-30,'~ •. 8:-'~:4:.;: 8-

;::36,8-:45.,:: A 3",B-(1-2), B-
00""12).~,,,~~(14-,t5), E-7, G
(3-4), G-10, G-t2, G:;-,,14~

UNITS 1-15, 2-1.:,2",:10;'2.~2.2;':~:-:62,
3-65. 3-73.,: .7-S . .;'(;,;:2t ... :

U~~OCK ··'t-e7, 3-:3.3., 4"'-:(3.;;4')',. ~4--:6, 4-
.;.;'10.~.4-13; 4-(67-68). 4-(124-

·:.·12S),2C-1.. C-'"4',; ;G'"':"l4' ..•.
UNLOCKED,~:. ~-..:S.",
UNLOCKS 4-(124-125)_.;

, ". UN?R.IN1ABLE7:-:20?,., ..
m. ,: U~~B.QTEClED ~T29,
,,' Ut;!REEE.ijENCE[):' ~. 1-21, E-12. E-16. 8-

'''':' .34
UNRESOLVED ~.~-36_"

,UNSIGNED ,8..:28"
;LjPGR:ADESJ, ,,' .1.~t0
UPL:OA~ 't-b12-t3).,{ .3-2,.3-66.8-(1-

. '" ' - ~ . ",2'}.,: ~-+t5: U· ,;;']
s: USP !.;3-..,,-4,.5.-t--21., r4·-,t3."f,,...38), 4-56, 8-7

US~,::4"7~6, ~':"" '., .

" ",'

~':. ~.~. ~ :,:'"

VECTOR: ::2 6 .~2"'f2.4, 4-10. 4-38, 7-54 I

.; 8-t1,2,) ,: ~"'(4-S L_)~",;,·8'i~,",,11 •
8-16, 8-24 w

'r .~V:ECrQR:S t~"l,~:. 2~6,,~:, ,4l~~,,'!:', ~.:4-:,>4', ;4/'":':,;11.
: ,- A-(~8-::,39),'S,~t~~s ..), C ,t.;,

V ERS lQ,N $",.1.S. 5 -e3,0 i- 7..,.66-" E -1 8
VIR1iUAL 2...,1.3., .3-2~, 3-:1,7;, 3-(75-81).

7-e'(,1-.,2) ;~ :7:-,(S 5-r5~), H- (2 -3)
VME 7-14 ,., '." .'

" .

~soko;)'tn'6s 3.2 REFERENCE MANUAL

':, ";,\ ... ~ >~:'~ - ~ . \~ r ... ~ ~ t - f:. ,~-" ,
_~. ,~~IttG.:];.r-35. ('.:: _:. . -;-.
. ~; S t W,ARtt.J~G.S. ,:~~:-.5,: ,~. S .. "· ,

WIND 3-(76-81). 7-r'2;. 7-(55-59).
.', ,:~" " .' 1· ~. 1+-{.1::-3) ~. ~ ~ i, ~ ~;

WINDOW 1:"'2. 3:.":.4~" r,~'147. 3-71. 3-
· ~ ii·"\ ;,?-~(:rj5..-t81).3 :..4-:f.:fi..1! 5-J;:.:~s7:H55-

59). SrJfl. ~~" 8-16. B-12.
· ·~3 ... · .. ~ . ,; .:\'.' t) H~· .. :· ~ ~~\.:.. 1;;. •.. ~ (: 'i'

WINDOWED 3-47. 3-(q'5~76)
j~ .. Y/IN!lO,W>1NG: ,,', 3-4~7....,:. ~~l.t·'. 3-7l79o';1 '3-80.

· ,.', r "' ?~ .~. ; - 4. 5'r';3, ,1-59:. ,;8-11. H- (1-3)
WKILL 3-79, 3-81. 7-2;;, 7-57

· 'i-i W~-o~K~ ~~l·. 7..,2.,,>. 7""S~ ',' :" ..
WTERM 3-(80-81), 7~', 7-59

· rot d .-. .p. "t f: ". ~ y ;... .- ~ ; ,: > ';. .., "... ~; :: •• ;:~ ~~

'~~ .. ·X ~3~; .. ~> :~\
e-~ .~~:-,,~, ~;.:~ .,J~.~~ \ ~ ".,.:.t~,~

: .. {; ..)(Arfi":! 3;-:6.,~ 4-1,. •. i.J 4...i6." 4-1,a~:·~ :4-15,
4-41. C-3~ 23-~

· ~ 8"J~B~ft.-;. 2;:.9 ;; 4-)1..:, 4~5\ 4-t2,~;,4-16,
4-99. 4-113.C""i2

r,(,: __ ;l(B F"l" . ., t 4-1_,:; 4-6;, -- ..4-12·. " 4-17';:. ,Ct:-3
.,' ' .. XB~G'::3-4:4i ',. 3.~9, .' ~ ... 1. 4-3, 4-11.

'~"'f18 ,. ," '44'7. 4~'9;0. C-1
::~"XCBC. ;: .. 4~h 4...:.5 .• ~ 4:-:~1Z~ 4-19·~;·~.4-87.
;, ',' ". '7 .. ," ~ ," C;...2,·: .:, . ",," " .. t'

;. ;:. XCBO:; ;;. 4;-1.\ 4-3·;\ :' 4-.;J.~(:. 4-20:~;:4-24.
4·~.55 .,4,-8.1:,.:: ,8-..2-7. C-2

'.,,, XCBJ:i~ .. ;, :4:-,-1...,::, 4-a.. 4~U. 4-r2'~-22).
4-28. J4 12 .~: 'C-2f

, ... XCBM· ~~!10. 3-14. 4 ... '1. 4-"3;.~4-11.
. :! ~ \ "'~ ::: :' :4--12" 4'-.2\9, 4'·&5, 4-119, C-2

XCBP 4-1. 4-5. 4-12.;.4-23. C-2
,:XCBX\",~ 4~t,c 4-4'."", 4 1-1:··. 4-2B,!' 4-24,

4-28. C-2
.> XCOB.~ 3~"'2'4. 3:"'7:4 •. :4--.1. 4-4;.," .4-11.

4-25. 4-..58 .• C0-2:
· h. "A XCf;A..-C. 4:-1 .• ; 4-,S:~ ... ' 4~13;., 4-26\~ :4-93.

4-102. 4-130.;,,4"'131. C-4
, >- .. ,XCHf·· ~ :4:-:1..,- 4-6;:, .. ;4-1'2'1" 4-27',' ,C-3

XCHX 4-1. 4 .. ~4:~4,>-1~;,. 4-21. 4-28.
r :,:; '.- ::. .1, . ., C::i-'2 , ::~ ._i' ' , . ' .. "

, :; r "'~C LJ' .. ;,. 4-1:., 4 ... 6. . ,'4 1.3:. 4 29. 4-40,
, (3 !L .. ;:; "";)' $ 4~ " '4'~t02.'1 .C ... A

XCLS 4-1. 4-5. 4-.:.1,2:. 4-38. 4-83.
!' "':1 . r.;;' , .. 4-~:8 • ~ ,8-,3;6',)" .:C:-2,·~'? '. :'

- ,:, . X'C:P)(~, ~....a~\ 4-j..,.:, 4-t6-;. 4-1~.'i'4-31.
4-41 • C-3; .. ~' .' :i ;'

~:0: ~ XCT~i>; 4-1;.- ':, 4~~·.<; 4F'-{,9-1"),,4, (32-
';:.33),e ·4 6;2. ;4'!""1·07. 7,..27. C-1

PAGE I-14

':-.·:.)(08'f·.~ 6-(;2-3 y., . .,.,. 7.~C:31:-36, 8-4, 8-
~.< !;. ~ S(1-3-14\} ,.." &·.,:1.7·" 8-37, 8-43.

, '::-t- < ~;;lo .E-Z,1 ,: .,. ",' -:'?
.,t ,·.JtDEF'·O ·.~7..-(34:~) ,';.~ .•

XDEV 2-13. 4-1. ~-~. 4-10, 4-34,
.. ~ \.- '; . ;;1. . .t,-r-45-., 4--+·1>09~11'>0). 4-116. 4-

121. C-1 ~.

': \\ t XDFL ~.,. '" 4-t:1t ,-:.4-:& ... '. 4.-£:1-3. 4-35, 4-53,
>-4".1-9 a:;,2: '4,-:>.135.:;; l'C-4

~ .)(pL.P: :; 4,-~1i .. >4-&.- ,4"'::.1·3" 4-36. 4-96,
.;-; ,'" 4~1.35. ,C ... 4·~· ",:,

X-DMP ,; r4..:,1, 4~'4"l' ,4:'-":'1·1" 4-18. 4-37,
• ~,~,,, • :;~. .. .>, ~4::- 9":0. Ie ~ ... 1i\ ~ ~;"~,.,;'" -

XDTV 4';-1.;" i~:. 4;,....1;·1, 4- (38-39) ,
. ~ -.. ~- ~ .. :t~,,1"" .. , r'

XERR 2-6. 3-40. ':14:;"1,. 4-4. 4-11.
f .. '":; .:,:2 .. ··1·4...i27." 4;,..(40,:43:». 4-53, 4-

100. 7-53. B~,1 r. C-1
£'.x£XC': :j ... ;' 4-:1', ·i4-4:.--4-1~'1-',"· 4-41. C-1

XEXT 1-(2"-21+ •. i~-6. 3-40, 3-74,
';:,~~-;·L-·;'4.,.1i~-,4;..,· 4.-8.' 4-11,4-19,

4-'2·2:, 4:"'28.,: 14-32, 4-37, 4-
! }:, -:::-> (4~a)"4:;"7$,-4-114, 4-119,

7-9. 7~3 ,S";'11'. C-1
, X"EXZ:, ' .. ',4-4.,,:4-4" " 4..,1·'1'. 4-27, 4-40,

i . ,"' "': t. 4:';(4'2-43).) C-::t .j.
XFAC 4-1. 4-6 ;-~-.. 1:a·/ 4-44. C-4

; "', XFBF,·o 4,-2 .. ,' 4-Ir-,-- i4-.f3.: 4-45. C-4
.':.~'~ X.FfN .'''4':-2~.~; 4'-6,. 4'~'2--. 4-46. 4-66.

,4..,91.- c-a,~:; ,.'
"~·~XFT-o "'I:' 4";2;\ 4~.4, 4.-11'. 4-47. 4-72.

i. '~:...e:2 .,:4-·(105';""1,06) • 4-(122-
, " ',;.. 12~ h~ 4 1-2'7. C"'2

" ···XFUM. 4;"2·,'" 4-4.' ',4-:1-0\ 4-48. 4-6" •
: ",~; ~.:..&. C-1:.:. " '" c

XGCB 4-2. 4-5. 4-:11 i .. 4-49. C-1
: ;" ,XGCC ,,', ,2~g.,o' 4-2,' 4,-5'. 4-11. 4-34.

" '"4:"'5-0.4:"'-V'16.fd:-'2
' .. ': · .. XG.cP,'·_· 4,,1-.2. 4-,;~.· 4~\2-.<: 4-51. C-2

XGCR .. ·· ,4"';;'2,:' 4~~,·>4;-1~. 4- (50-55) •
, \ ,···~2. £;:';',1-5: ,:'.:
::,·XG LB' '. '. 4,"';2.'~ ·Af~5'·.·4':'1a" 4-53. 4-73.
: :;;,~; ~'-.. .:0:...·2:,'" .' >'

XGLM 2 ... 25. 3-3. :A"';2. 4-5. 4-12.
~:~ ,w.. q: A--54. ·C~·2" ;; ;:

XGLU 3-43. 3-74. '~-2. 4-5, 4-12,
.. :'-" ,::>" :4~2:5., 14'>;...,"4&\/: 4'r53. 4-55. 4-

~)'".' :~:~-"L12· • .l. 4 ... 74 .. /, C,-2" .. ,;
.. g-.,XGML>,.-·,?"4)-2~ :~"';;-5 ... ,'4; ... 7.; 4-10. 4-56.
'~ ~ -.. <;; ; t "i"4-64~>,i C~1 .:. :' -:

XGMP~-,:,j 2. <: '2-~ 5; '~4-2. 4-4. 4-10,
4-57. 4-59. 4-63. 4-111. 4-
114. C-1

(

f
(

('

('

C:

680xO PODS 3.2 REFERENCE MANUAL APP,ENO IXI I NOE,X ,PAGE I~1~

XGNP

XGTM

XGUM

XISE

XKTB
XKTM

XLOF

XLER

XLFN
XLIB
XLKF

XLKT

XLSR

XLST
XNOP

XPAO

XPBC

XPCB
XPCC

XPCL

XPCR

XPOC

XPEL

XPEM

XPLC

3-24,,4-2,4-4,4-11',,4-41,
4-44. 4-58, 4~70, 4-74, C-2
2-14, 4-2, 4-4, 4-10, 4-57,
4-59, 4";'&3,;" 4-111,' ::4:"'114,
C-1 " ,,'

"4-2-;:4...;4, 4";'1'0, 4-60, 7-27,
C-1
4'-2-/ 4-&, ,4-13, 4-61, 4-100,
4";'1 03.;4";' 133\:C-3
4..:2,: 4-4;"4-10, 4-6l,C-4
4-2, 4-4,4,...10, 4-57, 4-59,
4-630, 4-1-11,4";'114, C-1
3-34, 4-1, ~-6, 4-12, 4-27,
4-64, 7 50, C-3
3-15, 4-2, 4-4, 4-9, 4-11,
4-65, C...;1 ' '
'4-2·,' 4-6, 4-12,,' 4-66, C-3
7--38'~"

, 4-2" 14-6 ,A-13, 4-67,':4-124,
A-5, C-4
4-2,c 4-4·, ,4-10, 4-68, 4-125,
7-53, A...;5" Q,..1 .
.4-2, .4-4" (:4-11, 4-69, 4-117,
4-1 2:6 ,0;-.1:
4-a." 4-&,.4-12,,> 4-70, 'C-3
4-2: 4-0',' ,4-1.3-, 4-66, 4-71,
A...:4" ,C-4
4-{2, '4-,4', :., 4,-,11.;, 4-4'TJ,i4-72,
4,-,92., 4-(,105-,1:06), 4-(122-
123), 4:..t27 , ~C-1
2-11, 4-;:2,:, 4:"'-5, 4-12', 4-24,
4-28"(,4..:73,,,4;...103, C-2
4-2, 4~5,c 4,- t2, 4-74, C-1
4~2", 4-,5, 4,~12, 4-21' ,'4-75,
4-(77-78}~ 4-8-5, 8-27, C-2,
E-1'-'5, . :":;' t

4-2, 4";',5/ 4,-:'1--2;, 4-1'7,':,' ~-21 ,
:~-:5 9i i'4-fi,6, ~8';...2:7, C-2
3 709-,; 4-2·,~, 4:""5-, 4-re,. ,4-75 ,
:4-(q7-r:s,~;, 7-"5,5, C-~"

3-13. 3;':7-11:, ::4..::2, 4-5, 4-12,
4"';1-8-, 44'(~7-78l, 7-5'5.,:.'>0-2
4-2, 4-5, (-f2,4-(79-82),
:e-,:2 ~" .. '." ~. :::~~< ~"f. ,,'"; >~

4-2, 4~5, !4.~1'2, 4- (79-82) ,
C-'2 :" ", "X

XPMC

XPSC

1-(20'::21), 2-11, 3-74, 4-2,
4-5, 4-12, 4~19, 4-22, 4-25,
4-30, 4-53,"4-66,4-'12, 4-
(79-83),4-92,4-"10;5',4::'..120,
C--2 i ,'-

4-2, 4-5,'4-12 '; 4-83, 4-88,
"~":3 6, 'Coo::2 "

")(PSF; 4-'1,'4-6, ':4;;.:f3, 4-84, 4-94,
~' . C 4":108,C·..;;4 ,: ~

XPSP ,ri=~:, 4-5". 4-1'2:" ,4:-20, 4-85,

~"'XRB'f" ,. St.'t3; 4":'2", . 4-&'; 4';;.13,' '~-86 ,
14-95','4-128', 4-132, E-14, C-

XRCN

XRCP

,XRON

4',,·' .' '"

4:;.;2, 4"':6",' 4-1'2; 4l;.;Sf,; , 7-9,
"C-3)'" ,'i"·", ' ..

4-2, 4-5, 4-12, 4-30, 4-83,
4-88, C-'2
4-2, 4-6, 4-12, 4-89, C-3
4-2',' 4-4,' 4-!t1;; 4-rSc;"l4-3 7 ,
4-90, C-1
41;"'2, 4-6," 4-12'; 4-4'S:;:~'14-91,
C-3"

C XROT " 4..;2;,14-4;; 4-11', 4-47~S4-72,
4-92, 4"':'(105-106) ,4iY(122-
tt:l31 ,4'-'1~ 7, '0 ... '2

~/·XREF· S'~2. 6...:5', 7-{33-34)::i7-36,
8-4, 8-15, 8-1~; 8-27, E-23

. XRf.A·;~ 4::""2, 4-&~, 4-1'3, 4-2Er\: i4-93 ,
,,, '4'-(:130';,,:1"3-1)" t':':4

:"XRFP4'-~, 4J 6',' 4,...13", 4-8:4€;;' :4-94,
.(.-1;~ 8 " '00014

:XRLFl '4"':3, 4'-'6,~ 4';';'1'3'", 4-EW;:"<4-95 ,
,4-97,'4-1-28,::4"'£132, E-14, C-

",;, 4 : '::i ,i

,~> ~XR~f\', 4-3/' 4-&, ,4-1-8; 4-4"f~),:"4-96,
C-4 ,~" i·

,i,,;XROO,:3....;'13, 74 ... ·3,·4:,;..,6·:. 4-1;:a:;,':~-97,
k-It " C·:':4'" i';~ ." -

,': c;;";")(Ro?~ 4...'3,/ 4-,&,.,: 4, .. '1'3", 4-'9'S/ A-4 ,
'.,,' -? '~4. t.;.~- ~,,~ ,:-:':;: %,~;,

rXRPSC "".' 4-'3l';·'4-.S', . 4 1·2", 4-1'6rJ '4-99,
>.::i ,~." .4'-1'1~3 ,C;..2: '.,: ",

XRSE 4-3, 4-6, 4-1~~, 4-40, 4-61,
, ,.f-'1-0'e, ~4"';103 4-133,:"8-15,

:.s-=20,,:;"8:""-38 , '8-43, 8-(45-46),
'''-2- (10'.-;.1,1,.,), 1$-7,4, 4-2,,4-5, --:,8

4-1:2,:, 4-47-;\ 4-{20-22), 4-29,
4-5,9,4' ... 7;2 ,4:-{,,79-82,}·r' '4-85,
4-92, 4"::105,,' ''4-119. 4-123,
4-127,' 8'''':27,: U-,'2

.' -- 0-3" ',:0 ? " j
XRSR 4~-{:3-4),~;,~:-4-f:l\i;,"'f4-101. C-1
:X R s::r ,.;, 4-3' " 4.-6", '4"-1,2 , 4',:,,:1U~'2, 4-

107, C-3"
XRSZL; ;4;...3;, 4-6, 4-13, 4-61i:;:4 100,

'" ,- 4-103, '4-133" :t>-3
XRTE 4-(3-4), 4-11, 4-104, C-1

680xO PDaS 3.2 REFERENCE MANUAL APPENDIX I INDEX PAGE 1-16 __________________ ,-c __________ _

XRTM 4-(3-4), 4-11, 4-34, 4-47,
4-72, 4-92, 4-(105-106), 4-
(122-123), 4-127, C-2

XRTP 4-(3-4), 4-11, 4-106, C-1
XRTS 4-(3-4), 4-10, 4-107, 4-115,

C-1
XRWF 4-3, 4-6, 4-13, 4-84, 4-94,

4-108, C-4
XSEF 2-15, 4-(3-4), 4-10, 4-34,

4-109, 4-116, 4-121, C-1
XSEV 2-15, 4-(3-4), 4-10, 4-34,

4-104, 4-109, 4-110, 4-116,
4-121, C-1

XSMP 2-12, 2-15, 4-(3-4), 4-10,
4-57, 4-59, 4-63, 4-111, 4-
114, C-1

XSOP 2-8, 2-10, 4-3, 4-6. 4-8,
4-10, 4-13, 4-53, 4-112, A-
4, C-4

XSPF 4-3, 4-5, 4-12, 4-16, 4-99,
4-113, C-2

XSTM 4-(3-4), 4-10, 4-57, 4-59,
4-63, 4-111, 4-114, C-1

XSTP 4-(3-4), 4-10, 4-107, 4-115
XSUI 2-(15-16), 4-(3-4), 4-10, 4-

34, 4-45, 4-(109-110), 4-
116, 4-121, C,,:,,1

XSUP 4-(3-4), 4-11, 4-69, 4-117.
4-126. C-1

XSWP 4-(3-4), 4-10, 4-109, 4-118,
C-1

XSZF 4-3, 4-6. 4-12. 4-58. 4-119.
C-3

XTAB 4-3. 4-5. 4-12. 4-(119-120).
C-2

XTEF 4-(3-4). 4-10, 4-34, 4-(109-
110). 4-116, 4-121. C-1

XUAO 4-(3-4). 4-11. 4-47. 4-72,
4-92. 4-(105-106). 4-(122-
123), 4-127. C-1

XUOT 4-(3-4). 4-11. 4-47. 4-72,
4-92. 4-(105-106). 4-(122-
123). 4-127. C-2

XUlF 4-3. 4-6. 4-13. 4-67. 4-124,
A-5. C-4

XUlT 4-(3-4). 4-10. 4-68. 4-125,
A-5. C-1

XUSP 4-(3-4). 4-11. 4-117. 4-126,
C-1

XUTM 4-(3-4). 4-11. 4-41, 4-92,
4-(105-106). 4-(122~123), 4-
127. C-2

XWBF 4-3. 4-6. 4-13. 4-86. 4-95,
4-128. 4-132, C-4

XWOT
XWFA

XWFP

XWlF

XWSE

4-(3-4), 4-11, 4-129, C-2
4-3, 4-6, 4-13, 4-26, 4-93,
4-(130-131). C-4
4-3, 4-5, 4-13, 4-26, 4-93,
4-(130-131), C-4
4-3, 4-6, 4-13, 4-86, 4-95,
4-128, 4-132, C-4
4-3, 4-5~ 4-13, 4-61, 4-100,
4-103, 4-133, 8-15, 8-20, 8-
33, 8-(43-44), 8-46, C-3

XWTM 4-(3-4), 4-11, 4-134, C-2
XXBIOS 3-16, 7-54, 8-(1-9), E-17,

E-(20-21)
XXBIOSU 2-12, 8-1, 8-(38-42), H-3
XXBIOSW 8-1, 8-(43-49)
XXFRMT 7-2, 7-25, 7-(63-65), 8-(46-

XX lOGO
XX PARK
XZFL

47), 8-49
7-2, 7-66
7-2, 7-67
4-3, 4-6, 4-13, 4-135, C-4

- Z -

ZERO 1-7, 1-(12-13), 1-17, 2-4,
2-6, 2-8, 3-2, 3-9, 3-24, 3-
32, 3-49, 3-57, 4-3, 4-6, 4-
13, 4-16, 4-25, 4-30, 4-(32-
34}, 4-(38-39), 4-44, 4-57,
4-(61-62}, 4-64, 4-71. 4-75,
4-83, 4-86, 4-89, 4-(99-
100), 4-103, 4-(107-108), 4-
(120-121), 4-128, 4-130, 4-
133, 4-135, 6-3, 8-25, 8-35,
A-8, A-10, B-(1-2), B-7, B-
15, C-(3-4), G-1

ZM 1-(12-13), 3-2, 3-67, B-(1-2),
B-15

c
(

