

COPYRIGHT 1978 by EXIDY INCORPORATED
ALL RIGHTS RESERVED
969 W. Maude Avenue

Sunnyvale, California 94086

FIRST EDITION
JULY 1978

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system (e.g., in memory, disk, or core) or be transmitted by any means,
electronic, mechanical, photocopy, recording, or otherwise, without prior written
permission from the publisher.

PRINTED IN U.S.A.

A SHORT TOUR OF BASIC
By

The Sorcerer of Exidy

Computer programming languages are like political parties: each
language has its supporters and detractors, and there is always a lot of
debate over which ones are best. Some people like an older established
one, while others prefer a newer and more progressive one.

The Sorcerer of Exidy makes no judgments on which language is best;
you will decide that for yourself as you gain experience with personal
computing. The Sorcerer's ROM PACTM cartridges make it easy for you
to switch from one language to another - as easy as changing the car
tridge.

Your first ROM PAC is Standard BASIC. The language is simple and
easy to learn, yet it has many applications, and you can use it to write
complex programs.

There are many books and magazines on BASIC, from "how to" in
struction manuals, to collections of useful programs, to computer
games. Use this manual as your tour guide to BASIC language pro
gramming, but don't deprive yourself of further exploration in other
publications.

Happy Touring!

1

TABLE OF CONTENTS

PREFACE............ 5
PASSPORTS AND VISAS
PRELIMINARY INFORMATION

CHAPTER 1: . 9
QUICK TRIPS AND LEISURELY RAMBLES
DIRECT AND INDIRECT MODE

PRINT, RUN, LET, REM
CHAPTER 2: .. 17

CHANGING YOUR ITINERARY
EDITING AND CORRECTING YOUR PROGRAMS

LIST

CHAPTER 3: .. 21
IMPORTS AND EXPORTS
INPUT AND OUTPUT OF INFORMATION

INPUT, PRINT, DATA, READ, RESTORE

CHAPTER 4: " 27
TRAFFIC CIRCLES AND CROSSROADS
LOOPS AND BRANCHES

FOR ... NEXT, IF ... THEN, GO TO, END, STOP

CHAPTER 5: .. 35
CURRENCY CONVERSIONS
NUMERICAL EXPRESSIONS AND OPERATIONS

ON ... GOTO
CHAPTER 6: .. 45

SCHEDULES AND TIMETABLES
NUMERICAL ARRAYS

DIM

CHAPTER 7: .. 51
FOREIGN EXPRESSIONS
LOGIC

NOT, AND, OR, IF ... THEN

2

CHAPTER 8: .. 57
TRADING AT THE BAZAAR
NUMERICAL FUNCTIONS

DEF, ABS, SQR, INT, RND

CHAPTER 9: .. 61
NATIVE PHRASES
STRINGS

LEFT$, RIGHT$, MID$, STR$, LEN

CHAPTER 10: 71
SIDE TRIPS AND EXCURSIONS
SUBROUTINES

GOSUB, RETURN, ON ... GOSUB

CHAPTER 11: 75
PACKAGED TOURS
RECORDING AND REPLAYING PROGRAMS ON

CASSETTE TAPE

CSAVE,CLOAD,CSAVE*,CLOAD*

CHAPTER 12: 79

CUSTOMS CHECK
TIPS ON DEBUGGING

APPENDIXES
A. LIST OF RESERVED WORDS. Al

B. LIST OF COMMANDS AND STATEMENTS. B-1

C. LIST OF INTRINSIC FUNCTIONS. C-l

D. LIST OF ERRORMESSAGES . 0-1

E. USER-DEFINED GRAPHICS. E-l

F. ONE-STROKE INSTRUCTIONS. F-l

G. LIST OF ASCII CHARACTER CODES G-l

3

4

PREFACE:
PASSPORTS
AND VISAS

(Preliminary
Information)

CONVENTIONS AND DEFINITIONS

Welcome aboard! You are about to take a tour of Standard BASIC.
When you finish the tour, you will be able to write complex programs;
yet you will find that BASIC is easy to learn, even if you have no
mathematical or scientific background.

Before the tour starts, we must go through some preliminaries. First,
you should read through A GUIDED TOUR OF PERSONAL
COMPUTING. Don't be discouraged if you find sections you don't
understand. There is some technical information there which you won't
need at first, and some which we will cover in more detail in this
manual.

Second, there are some conventions we will follow:

1. Items enclosed in angle brackets « » must be supplied as ex
plained in the text.

For example, the format for an INPUT statement is:

INPUT < list of variables>

This means that you must supply a list of variables, as ex
plained in the text.

5

2. Items enclosed in square brackets ([]) are optional.

For example, the RUN command has the format:

RUN [< line number>]

This means that you may supply a line number if you wish, but you
don't have to. (Of course, the RUN command won't give you the same
result with the line number as without.)

3. Instructions to the computer are printed in capital letters and must
be typed into the keyboard exactly as shown; this includes all punctua
tion, and proper placement of spaces.

Also, there are some special terms you should know. Here are their
definitions:

CHARACTERS: The letters, numbers, punctuation, mathematical
symbols and graphical symbols, taken together, are called
characters. The letters and numbers, taken together, are called
alphanumeric characters.

COMMAND LEVEL: After Sorcerer prints READY, it is at the
command level. This means it is ready to accept commands.

COMMANDS AND STATEMENTS: Instructions in Standard
BASIC are loosely divided into two classes, Commands and
Statements. Commands are instructions normally used only in direct
mode (see Chapter 1). Some commands, such as CONT, may only be
used in direct mode since they have no meaning as program
statements. Some commands, such as NEW, are not normally used as
program statements because they cause a return to command level.
But most commands will find occasional use as program statements.
Statements are instructions that are normally used in indirect mode.
Some statements, such as DEF, may only be used in indirect mode.

CURSOR: Sorcerer places a small underline (_) on the monitor
screen when it is ready to accept information. This mark is called the
cursor, and it shows where the next character you type will appear.

FORMAT OF AN INSTRUCTION: The correct way to write
the instruction, so that Sorcerer will understand it.

INTEGER: A whole number, positive, negative or O.

6

PROMPT: When Sorcerer expects information from you, it will often
place a special symbol or message in front of or above the
cursor. The symbol or message is called the prompt, and it tells you
what kind of information Sorcerer wants. These are the prompts you
should know about:

READY-means Sorcerer is in Standard BASIC at command level,
and wants a command.

> - means Sorcerer is in the Power-On Monitor, and wants a
Monitor command.

? - means Sorcerer has just read an INPUT statement, and
or ?? wants data (see Chapter 3).

RESERVED WORDS: Some words or combinations of letters
are reserved for use as statements, commands, or intrinsic func
tions. You may not use these as part of the name of any variable, ar
ray, or function name.

SOME SPECIAL BUTTONS ON THE KEYBOARD

C!D - This wipes-off the screen, and puts the cursor in the up
per left comer, but doesn't re-set Sorcerer's memory.

aD .. - Press these two keys simultaneously to stop a program.
You can re-start the program with the command CaNT.

1m - Press this key Simultaneously with the two mD keys to
re-start Standard BASIC without wiping the current pro
gram out of memory.

cr:mJ - This puts the cursor in the upper left comer of the screen,
without wiping the screen display or clearing the
memory.

1;1:,.11;11. - One of the most important keys on the board. Sorcerer
will not execute any command, or put any instruction or
data into its memory, until you press this key. This key
corresponds to the carriage retum on a typewriter.

mD - Press both mD keys Simultaneously to re·start Stan
dard BASIC and wipe the current program out of
memory. Same as the command NEW.

i;iliiMNi - Temporarily stops program execution or screen display,
as long as you depress the key. Release the key, and the
program or display will continue.

7

OTHER VERSIONS OF BASIC

There are many versions of BASIC. Standard BASIC (also called
Microsoft 8K BASIC) is one of the most common, and is becoming the
standard first programming language for home computer owners.

There are many books and magazines for home computer enthusiasts;
in these publications, you will find BASIC programs that you will want
to run on your Sorcerer. However, if they are not written in Standard
BASIC, you will have to translate them.

It is not usually difficult to translate a program into Standard BASIC
from another version of BASIC. Find out which version the program is
written in, and study an instruction manual for that version. After
mastering this manual, you should have no trouble learning the other
version.

The differences between versions are often minor. Some versions use a
backslash (\) instead of a colon (:) to separate two or more statements
on the same line; some versions have different limitations on the names
of variables.

Sometimes you may have to re-write the program slightly. For exam
ple, in most BASICs, the random number functions behave differently
from Standard BASIC's function RND.

SOME SPECIAL FEATURES OF THE SORCERER

User-Defined Graphics - Sorcerer lets you create your own
alphabets and symbols. You can choose which key on the keyboard
you want to store your symbol under, and can call up that character
whenever you wish, by pressing the 'dllAM' AND aD keys, and
your character's key, simultaneously. Appendix E tells you how to do
this.

One-Stroke Instructions - Most of the keys on the Sorcerer's
keyboard have a Standard BASIC instruction or function as an addi
tional meaning. For example, you can enter the command CLOAD by
preSSing the 'd;t@i!1I and D keys simultaneously, or the statement
PRINT by hittingll. This is explained in Appendix F. To avoid confu
sion, we will not use this feature in the text.

8

CHAPTER 1: QUICK TRIPS AND
LEISURELY RAMBLES

Sorcerer uses Standard BASIC in two different ways: The direct
mode and the indirect mode . In the direct mode, Sorcerer executes
each statement or command as you enter it on the keyboard. The
results of arithmetical or logical operations will appear on the screen,
and they are also saved in memory for later use. However, Sorcerer will
forget each instruction after execution.

Example:

You type:

Then hit:

Sorcerer
replies:

PRINT 1+2

3
READY

The number 3 is now stored in memory, but the instruction PRINT
1 + 2 has been forgotten.

In direct mode, you can use Sorcerer like a pocket calculator.

9

Example:

Total this list of household expenses

rent $250.00

food $119.72

gas $ 36.17

electricity $ 8.05

telephone $ 21.30

You type: P R I N T 2 5 0 . DO + 119 . 72 + 3 6 . 17+ 8 . 0 5 + 21 . 3D

Sorcerer
replies: 435.24

READY

When Sorcerer is prepared to accept direct mode commands, we say
that it is at the command level. You can always tell when Sorcerer is
in this condition, because that is the only time you get the READY
prompt.

INDIRECT MODE

In the indirect mode, Sorcerer stores all the commands and statements
of a program in its memory. It will not execute any of these instructions
until you tell it to run the program. Every line of instruction must begin
with a line number, which must be an integer from 0 to 65529. This
number serves five purposes:

1. It tells the Sorcerer that the instruction is in indirect mode, rather
than direct mode.

2. It tells the Sorcerer where to put the instruction in its memory.

3. It gives Sorcerer the sequence in which the instructions are to be ex
ecuted.

4. It enables you to branch or skip from one part of the program to
another.

5. It enables you to call up a given instruction from the memory so that
you can make corrections or changes in the program.

10

When you write your programs, you should not number the lines con
secutively (line 1, line 2, line 3 etc.). Leave an increment of 5 or 10 be
tween the line numbers of successive lines. This will allow you to insert
new lines between the existing ones, if you have to alter the program.

Example:

You type: 10 PRINT 1+2
20 PRINT 3+4

Sorcerer stores these instructions in memory.

Now
type:

Sorcerer
replies:

RUN

3
7
READY

(Note: this is a command
in direct mode)

The program is still in memory. You can run it again, or change it if you
like.

You type: 15 PRINT 2+3

This inserts a new line (line number 15) between lines 10 and 20.

Now
type:

Sorcerer
replies:

RUN

3
5
7
READY

As you have just seen, typing the direct mode command RUN causes
Sorcerer to run the program currently in memory. To clear a program
out of memory, give the command NEW.

11

Example:

You type:

Sorcerer
replies:

NEW

READY

You are now ready to write a new program. First we will introduce a
new instruction, the LET statement (also called an assignment state
ment).

Example:

You type: 10 LET A=l
20 LET 8=2

Here, A and B are variables. You will learn more about variables in
Chapter 5. For now, it is enough to know that a variable is the name of
a storage location in memory. The LET statement tells Sorcerer what
value to aSSign to the variable.

The most general LET statement for numerical variables looks like this:

LET < name of variable> = < numerical expression>

Don't let the = sign confuse you. It does not mean "is the same as." It
is just a shorthand expression for "assigned the value of."

The numerical expression can contain variables as well as numbers -
even the variable whose value is being assigned.

Examples:

The assign
ment
statement

LET A=l

LET A=B+1

means

put the number 1 into storage loca
tion A

find the number in storage location B,
add 1 to it, and store the result in
location A

12

LET A=A+1 find the number currently in location
A, add 1 to it, and stuff the result
back into location A

NOTE: LET A = A + 1 does not
mean "A=A+1"

Now to continue our program:

You type

Sorcerer
replies:

You type:

Sorcerer
replies:

30 LET (=A+8
40 PRINT (
RUN

3
READY

50 PRINT (+1
RUN

3
4
READY

So far, you have seen how to instruct Sorcerer to print the value of a
numerical expression (such as 1 + 2, C, or C + 1). Sorcerer will also
print text and comments. The instruction for this is

PRINT" < text or comment>"

The expression inside the quote marks is called a string. You will learn
more about strings in Chapter 9. For now, it is enough to know the
string can be any combination of letters, numbers, spaces, punctuation
marks, or mathematical symbols, provided that:

1. None of the characters is a quote mark (")
66

2. There are no more than:~haracters in all (including spaces)

Now give the command NEW to clear out the old program. Besides
clearing the old program out of memory, the command NEW resets the
values of all variables to zero.

13

You can PRINT a blank line by giving the instruction

< line number> PRINT

Example:

RUN this program:

10 PRINT "THIS IS A TEST"
20 PRINT
30 PRINT "I AM STILL TESTING"
40 PRINT
50 PRINT "I AM NOW TIRED OF TESTING"

Sorcerer will reply:

THIS IS A TEST

I AM STILL TESTING

I AM NOW TIRED OF TESTING

Your programs will be easier for you and for others to understand if you
include remarks and explanations. Do this with the REM statement.

< line number> REM < your remarks>

Example:

5 REM THIS PROGRAM SHOWS HOW
10 REM TO PRINT A BLANK LINE
15 PRINT "BELOW THIS LINE IS A BLANK LINE"
20 PRINT
25 PRINT "ABOVE THIS LINE IS A BLANK LINE"

Sorcerer knows that a REM statement doesn't instruct it to do
anything, but just contains your remarks and comments. Whenever it
sees a REM statement, it skips to the next line. However, the REM
statements remain in Sorcerer's memory, and you can call them back
with LIST command. You will see ho"" to do this in the next chapter.

"

Note: You can write more than one statement on a line if you
separate the statements by colons (:). As long as there are no more
than 64 characters in the line all told, it can contain as many
statements as you please. They all have the same line number, and
Sorcerer executes them in order from left to right, when it comes to the
line. But notice that if one of the statements is a REM, any following

14

statements on the same line will just be considered part of the remark,
and won't be executed. To keep things simple, none of the programs in
this book have more than one statement per line.

15

16

CHAPTER 2: CHANGING YOUR
ITINERARY

(Editing & Correcting
Your Programs)

If you make a typing mistake while entering your program, you can cor
rect it easily.

CHARACTER ERASE

Push the mD and _ keys simultaneously, to erase the last
character of the current line. Push aD _ twice to erase the
last two characters. By pushingmm_repeatedly, you can erase as
many characters as you wish from the end of the current line.

Example:

You intend to type: 10 PRINT 1+2

You have actually
typed: 10 PRIMT

17

Press"_
twice. The
result is:

Now continue
typing the
correct
characters:

The result in
Sorcerer's
memory is:

10 PRI

10 PRINT 1+2

10 PRINT 1+2

LINE ERASE OR CORRECTION

Push the .. key to erase the entire current line. (Note: you cannot
delete a line with the" key after you have hit the '{iiI!;!il key,
because hitting i;!:,iiI;!il establishes a new current line.)

To correct a previous line of the program (not the current line), just type
its line number, followed by the corrected instruction. To delete an old
line entirely, type its line number and then press i;i:.iliMI .

Example:

You have entered: 10 PRINT 1+2
20 PRITM 2+3
30 PRINT 3+4

to correct line
20, type:

To delete line
20 entirely,
type:

and enter it
2 0 P R IN T 2 + 3 with the ';1#111;111

key

20 and then push Im!lD

18

LINE INSERTION

To insert a new line between two old lines, just assign it a line number
between the numbers of the old lines.

Example:

You have entered: 10 PRINT 1+2
20 PRINT 2+3
30 PRINT 3+4

If you enter: 15 PRINT
25 PRINT

The result in
Sorcerer's
memory will be: 10 PRINT 1+2

15 PRINT
20 PRINT 2+3
25 PRINT
30 PRINT 3+4

THE LIST COMMAND

Use the command LIST to get a listing of the program currently in
Sorcerer's memory. Sorcerer will list all the instructions in line-number
order, until it reaches the end of the program.

Example:

You enter: 10 PRINT "TEST PROGRAM"
20 PRINT 1+1
30 PRINT 2+2
15 PRINT
25 PRINT
40 PRINT "END OF PROGRAM'!
35 PRINT
LIST

19

Sorcerer's
reply: 10 PRINT "TEST PROGRAM"

15 PRINT
20 PRINT 1+1
25 PRINT
3D PRINT 2+2
35 PRINT
40 PRINT "END OF PROGRAM"

You can make Sorcerer pause in the middle of the listing by pressing
i;liW?iioli . Release i;iiiiMioli, and the listing will continue. To stop
the listing completely, push the Gel and B keys, simultaneously.

20

CHAPTER 3: IMPORTS AND
EXPORTS

(Input and Output
Information) n-------------_____

~

'~ r

r- !/a, .. L--___ ~.

This chapter will teach you how to put information into a program
while it is running, and how to get information out of the program.

THE INPUT STATEMENT

The INPUT statement requests information from the keyboard. When
Sorcerer executes an INPUT instruction, it prints a question mark (?)
on the screen, to tell you it is waiting for information. This question
mark is called the INPUT prompt. Sorcerer will not continue the pro
gram until you give it the data it wants. If you don't give it as much in
formation as requested, Sorcerer will print ?? and wait for more infor
mation. If you give it too much information, it will give the message
"EXTRA IGNORED" and will continue the program. If you give the
wrong kind of data (a string instead of a number) you will get a SN error
message (SYNTAX ERROR) and the program will stop.

The simplest INPUT statements look like this:

INPUT < list of variables>

The variables in the INPUT list must be separated by commas.

21

Example:

10 REM SUM OF TWO NUMBERS
20 PRINT "WHAT ARE THE TWO NUMBERS?"
30 INPUT A,B
40 PRINT
SO PRINT "THE SUM IS"
60 PRINT A+B

Now RUN this program:

Sorcerer's
response

WHAT ARE THE TWO NUMBERS?
? /",cursor

,~--------------------~~
Next type two numbers separated by a comma

You type:

Sorcerer's
response:

3.5, 7.5

THE SUM IS
11

You can make Sorcerer print a message in front of the INPUT prompt.
Use this format for your instruction:

INPUT" < prompt string>"; < variable list>

Replace lines 20 and 30 in the program above with a new line 20:

20 INPUT "WHAT ARE THE TWO NUMBERS"; A,B

Now when you run the program, Sorcerer's response will be

W HAT ARE THE TWO N U M BE R S ? __ cursor

MORE ABOUT PRINT STATEMENTS

You call make Sorcerer print several different things on the same line
of the monitor screen. The instruction is:

PRINT < list of strings or numerical expressions>

You must separate the items in the list by commas (,) or semicolons (;).

22

Examples:

27 PRINT "THE ANSWER IS"; 27.5*X, "NOT"; Y

42 PRINT "3+4" ; 3+4

Sorcerer divides each line of printing into zones 14 characters long. If
you separate two items in the PRINT list by a comma, Sorcerer will
print the first item, and move to the next zone before printing the sec
ond item. If you separate two items by a semicolon, Sorcerer will print
the second immediately after the first.

Examples:

You type:

Sorcerer
replies:

You type:

Sorcerer
replies:

PRINT "A";"8","("

AB (

PRINT "A","B";"("

A B(

If you put a comma or semicolon at the end of a PRINT list, the next
PRINT instruction will print on the same line, either in the next
. 14-character zone (if a comma) or right after the end of the first PRINT
(if a semicolon).

Example:

10 PRINT "A";

20 PRINT "8",

30 PRINT "("

Run this program and Sorcerer will print:

AS (

23

There is a special tabulator function that works like the tab key on a
typewriter.

Examples:

You type:

Sorcerer
replies:

You type:

Sorcerer
replies:

PRINT "ABC"; TAB(10); "DEF"

ABC DEF

PRINT TAB(5); "***,,

If you want Sorcerer to space over to a certain space before printing an
item in a PRINT list, put

TAB « number of the space»

in front of the item in the PRINT instruction. The spaces are numbered
1 through 64, from left to right on the screen. Sorcerer won't backspace
on TAB - if it has already gone past the space you called for, it will
simply ignore the TAB.

DATA, READ, AND RESTORE STATEMENTS

So far, you have fed data into your programs with INPUT statements
(which tell the Sorcerer to ask you for information) and LET statements
(which assign values to variables, one at a time). You can also write
lists of data directly into your programs, and instruct Sorcerer to read
data from the lists.

A DATA statement looks like this:

DATA < list of constants>

The numbers in the list must be separated by commas.

Example:

25 DATA 27.5,3.2,-10

24

When Sorcerer sees a DATA statement, it stores the numbers in
memory. You can retrieve these numbers with a READ statement:

READ < list of variables>

Again, the variables in the list must be separated by commas.

Example:

47 READ X,F,Y

When Sorcerer sees a READ statement, it assigns values from the
DATA lists to the variables in the READ list. The assignments .are
made from left to right until the READ list is exhausted. If there are
more variables in the READ list than numbers in the DATA lists, you
will, get an OD error message (OUT OF DATA). If there are more
numbers in the DATA list than variables in the READ list, then the
next READ instruction will begin at the first unassigned DATA item.

Example:

You type:

10 DATA 1,2,3,4
20 READ A,B,C
30 READ D
RUN

Sorcerer makes these assignments:

A=l B=2 C=3 D=4

A single READ statement may assign numbers from several DATA
lists, and one DATA list may supply values for several READ
statements.

Example:

You type:

Sorcerer
replies:

10 DATA 1,2
20 DATA 3,4
30 READ A,B,C,D
40 PRINT A,B,C,D
RUN

1 2

25
3 4

Sorcerer has assigned variables A and B the values in the first OAT A
list, assigned C and 0 the values in the second DATA list, and printed
the values of A, B, C, and 0 on the same line, in different 14-character
zones.

Use the RESTORE statement to re-set the DATA list. The RESTORE
statement tells Sorcerer that the next READ statement should start at
the fist item of the first DATA list, rather than at the first unused piece
of DATA.

Example:

You type:

10 DATA 1,2,3,4,5
20 READ A,B,C
3D RESTORE
40 READ D,E
RUN

Sorcerer makes these aSSignments:

A=l B=2 C=3 0=1 E=2

26

CHAPTER 4: TRAFFIC
CIRCLES &: CROSSROADS

(Loops &: Branches) ~
~ ~",::\j: 'fo
/~~~r

~ ~~
"? Q/~
ffJ 1:1

II \)1~Jf 1
0' L

A loop is a section of a program that tells Sorcerer to repeat an action
a certain number of times. A branch is a place in a program where
Sorcerer must make a decision, and act according to that decision.

THE FOR •.• NEXT LOOP

The FOR ... NEXT loop starts with a FOR statement and ends with a
NEXT statement. In between, you can write any instructions you like
- even another FOR ... NEXT loop.

The simplest FOR statement has this form:

FOR < variable> = < first value> TO < final value>

The NEXT statement is written;

NEXT < variable>

or more simply,

NEXT

27

Examples:

10 FOR X=l TO 10
20 PRINT X

This loop prints the integers from
1 to 10

30 NEXT

100 FOR Y=l TO 10
110 PRINT "Y"

This loop prints the letter Y
10 times

120 NEXT Y

61 FOR A=-lo TO 5
62 PRINT

This loop prints 16 blank lines

63 NEXT

When Sorcerer sees a FOR instruction, it assigns the first value to the
variable. It then steps through each of the following instructions until it
reaches the last statement of the loop (the NEXT statement). It then
jumps back to the FOR statement, increases the value of the variable
by 1, and compares the result to the final value. If the new value is
more than the final value, Sorcerer skips to the instruction after the
NEXT statement. Otherwise, it goes through the instructions again.
Eventually the variable will become larger than the final value, and the
loop will end.

Example:

Program:

Sorcerer's
actions:

100 FOR X=l TO 3
200 PRINT X
300 NEXT X
400 PRINT "END"

1. Set X to 1
2. PRINT the value of X (X= 1)
3. Go back to line 100
4. Set X to 2
5. 2 is not larger than 3, so PRINT the value

of X (X=2)
6. Go back to line 100
7. Set X to 3
8. 3 is not larger than 3, so PRINT the value

of X (X=3)
9. Go back to line 100

10. Set X to 4
11. 4 is larger than 3, so go to line 400

28

The first and final values do not have to be specific numbers; you can
use numerical expressions if you wish. When Sorcerer first sees the
FOR instruction, it will compute the values of the expressions and use
those values as the first and final values for the loop variable.

Examples:

25 FOR X=C TO 100
30 PRINT X+C
35 NEXT X

105 FOR A=X TO Y
110 PRINT "A"
115 NEXT

You can also have Sorcerer increase the FOR variable by more than 1
unit at a time, or even decrease it. To do so, use this FOR statement:

FOR < variable> = < first value> TO < final value> STEP < step value>

The < step value> can be a number, positive or negative, or a numer
ical expression.

, Examples:

10 FOR Z=l TO 100 STEP 2
20 PRINT Z
30 NEXT

110 FOR A=lo TO 1 STEP -1
120 PRINT A
130 NEXT A

Try running this program:

10 PRINT "COUNTDOWN"
20 PRINT
30 FOR X=lo TO 1 STEP -1
40 PRINT X
50 PRINT
60 NEXT X
70 PRINT "BLASTOFF!"

29

This program prints all
the odd numbers
(skipping the even
ones) from 1 to 100

This prints the
numbers 1 to 10, in
decreasing order

Now insert these lines into the COUNTDOWN program:

52 FOR Y=l TO 130
54 NEXT Y

These instructions force Sorcerer to count from 1 to 130 during each
pass through the FOR X loop - this slows down the program, so that
the printed numbers move more slowly across the screen (about 1 sec
ond between counts).

If you put a FOR ... NEXT loop inside another FOR ... NEXT loop,
you should use the longer form of the NEXT statement:

NEXT < variable>

Otherwise Sorcerer will be· cO'nfused about which NEXT statement
ends which loop.

You can sometimes use a single NEXT statement to end two or more
loops. For example, in the COUNTDOWN program you could replace

with

54 NEXT Y
60 NEXT X

60 NEXT Y,X

However, as a beginning programmer, you should use a separate
NEXT statement to end each FOR ... NEXT loop. That way you will
avoid confusing Sorcerer (and yourself).

THE NUMERICAL IF ... THEN STATEMENT

Let's playa game. You think of an integer from 1 to 10 and Sorcerer
will guess what your number is.

10 REM GUESSING GAME
20 PRINT !tPICK A NUMBER FROM 1 TO lo!t
30 PRINT !tI WILL GUESS YOUR NUMBER!t
40 PRINT !tIF I GUESS CORRECTLY, TYPE 1!t
50 PRINT !tIF I GUESS INCORRECTLY, TYPE 2!t
60 FOR X=l TO 10
70 PRINT !tIS YOUR NUMBER!t;X;!t?!t
80 INPUT Y
90 IF Y-2 THEN 110

30

95 PRINT
100 NEXT X
110 PRINT "I KNEW IT ALL ALONG"

Note: Be careful not to type Y = 2 in line 90.

The IF ... THEN instruction at line 90 tells Sorcerer to decide whether
or not a certain arithmetical expression (Y - 2) has value O. If it does
not, Sorcerer must skip to a certain line (line 110). If the value is 0,
Sorcerer must go to the next line (line 95).

The general format for this kind of numerical IF ... THEN statement
is:

IF < expression> THEN < line number>

When Sorcerer comes to this instruction, it evaluates the numerical ex
pression. If the expression has value 0, Sorcerer just moves on to the
next instruction. But if the expression has any value other than 0, it
skips to the instruction numbered < line number> and continues the
program from that point.

Example:

10 INPUT A,B

20 IF A*A + B*B THEN 40

30 PRINT "BOTH A AND B ARE ZERO"

40 PRINT "END OF PROGRAM"

If you enter a for both A and B, then A * A + B * B will have value 0,
so that Sorcerer will go on to the next instruction (line 30) and print
"BOTH A AND B ARE ZERO," before going on to line 40. Otherwise,
Sorcerer skips past line 30 and prints "END OF PROGRAM."

Another kind of numerical IF . . . THEN statement looks like this:

IF < expression> THEN < statement>

The < statement> can be any Standard BASIC program statement.

When Sorcerer comes to this IF ... THEN instruction, it evaluates
the < expression> , and moves to the next instruction if the value is O.

31

But if the value is not 0, it executes the < statement>, and then goes
on to the following instruction.

Example:

10 INPUT X,Y

20 IF X-Y THEN PRINT "X AND Y ARE DIFFERENT"

30 PRINT "END OF PROGRAM"

If you enter two different numbers for X and Y, Sorcerer will print "X
AND Y ARE DIFFERENT'; otherwise it will not. In either case, it will
then go on to the next instruction, and print "END OF PROGRAM".

Notice that the first kind of numerical IF ... THEN may make Sorcerer
skip over one or more lines of the program, while the second kind never
does.

THE GO TO STATEMENT

This statement tells Sorcerer to go directly to a certain line in the pro
gram (without passing Go, and without collecting $2(0). The format is:

GO TO < line number>

(you can also write it GOTO, without the space between words).

As an example, let's use a GO TO statement to make our guessing
game program more sophisticated. Add these lines:

120 PRINT

130 GO TO 20

When Sorcerer gets to line 130, it jumps right back to line 20 and starts
the guessing game again. It will continue the game forever, on an
endless loop, until you stop the program with ami.. .

You can use IF ... THEN and GO TO statements to make Sorcerer
skip to any line of a program - even to a REM instruction.

32

END AND STOP

Suppose you cheat at the guessing game. You might pick a number
outside the range 1 to 10, or you might lie when Sorcerer guesses your
number. If you cheat, Sorcerer will go through each of the numbers 1 to
10 and not get a 1 response from you on any of them.

Add these lines to the program:

102 PRINT "YOU CHEATED· I DON'T PLAY"

104 PRINT "WITH CHEATERS."

106 STOP

The STOP instruction tells Sorcerer to stop the program, even though
it hasn't come to the last instruction. This is important because when
you write branching instructions into a program, Sorcerer may never _
get to the last instruction.

We could get the same effect by replacing line 106 (the STOP instruc
tion) with

106 GO TO 140

and adding

140 END

The END instruction tells Sorcerer that it has reached the end of the
program and should therefore stop. We don't usually write END
statements in this manual, because Sorcerer always assumes there is
one tacked to the end of your program.

Notice that in the guessing game, the normal branch of the program
(the non-cheater's branch) never reaches the END statement, because
of the GO TO instruction at line 130.

A STOP statement can come anywhere in your program; when
Sorcerer comes to a STOP, it will print a message telling you at what
line it has stopped. The program and all variable values remain in
memory, and you can continue the program with the command CaNT
(see Appendix B). An END statement should occur only as the last line
in a program.

33

34

CHAPTER 5: CURRENCY
CONVERSIONS

(Numerical Expressions and
Operations)

FLOATING POINT NUMBERS

In Standard BASIC, Sorcerer handles all numbers as decimals. Even
the integers (whole numbers) are considered to be decimal numbers
with zero fractional parts.

Example:

The integer

1

o
-3

is handled as

1.0000

0.00000

-3.00000

Ordinary decimal notation is sometimes called fixed point notation
because we consider the decimal point fixed, and place the digits
around the point, according to the size of the number.

35

Examples of numbers in fixed point notation:

1.23456

-1.0506

0.0

238.5

-0.000123

4560.0

Sorcerer handles all decimal numbers in a different way, called floating
point notation. In this notation the digits of a number are written in fix
ed places, and the decimal point is moved around the digits, according
to the size of the number.

Examples:

This fixed point is written this to convert from floating
number way in floating to fixed point, move the

point notation decimal point

1.23 1.23 E 00 zero places

123.0 1.23 E 2 2 places to the right

-74.5 -7.45 E 1 1 place to the right

0.07324 7.324 E -2 2 places to the left

-0.003 -3.0 E -3 3 places to the left

The E notation tells Sorcerer how many places to move the decimal
point to the left or to the right, to covert a floating point number to fixed
point notation. Moving the point to the right is the same as multiplying
by positive powers of 10, and moving the point to the left is the same
as multiplying by negative powers of 10.

36

Examples:

1.23 1.23 E 0 1.23 xl 1.23 x 10°

123.0 1.23 E 2 1.23 x 100 1.23102

-74.5 -7.45 E 1 -7.45 x 10 = -7.45 x 101

0.07324 7.324 E -2 7.324 x 1/100 = 7.324 x 10- 2

-0.003 -3.0 E -3 -3.0 x 1/1000 = -3.0 x 10- 3

The first (left-most) non-zero digit of a fixed point number (which is its
first digit in floating point notation) is called the first significant digit.
Standard BASIC only pays attention to the first six significant digits
(that is, the first non-zero digit, and the next five digits). If you feed in a
number with fewer than six significant digits, Sorcerer will fill in enough
zeros to make six digits. If you feed in a number with more than six
significant digits, Sorcerer will round off to six.

Examples:

You enter this Sorcerer uses
number this number

1.23 1.23000 E 00

91.82736 9.18274 E 01

123.0 1.23000 E 02

-74.5 - 7.45000 E-02

0.07654321 7.65432 E-02

-0.003 - 3. ()()()()() E -03

The largest number that Standard BASIC will accept is 1.70141 E 38.
The smallest positive number is 2.93874 E-39.

Though Sorcerer handles all numbers in floating point notation, it does
not print all numbers that way.

1. Negative numbers are printed with a minus sign (-) before the first
digit. Positive num.bers are printed with a space (not a + sign) before the
first digit.

37

2. Whole numbers (Le. zero fractional part) between - 999999 and
999999 are printed as integers (no decimal point).

3. Non-integer numbers between .1 and 999999 or between -.1 and
- 999999 are printed in fixed point notation (no E notation).

4. All other numbers are printed in floating point notation.

Put this program on the Sorcerer:

10 REM THIS PROGRAM SHOWS HOW SORCERER PRINTS
20 REM NUMBERS IN STANDARD BASIC
30 INPUT "WHAT IS YOUR NUMBER";X
40 PRINT
50 PRINT "I PRINT YOUR NUMBER AS";X
60 PRINT
70 GO TO 20

Now run the program and try as many different numbers as you can
think of.

Example:

Sorcerer: WHAT IS YOUR NUMBER?

You: . 5

Sorcerer: I PRINT YOUR NUMBER AS .5

WHAT IS YOUR NUMBER?

Try these numbers on the program.

+1 -1

6523 -23.460

1 E20 -12.345 E-7

1.234567 E-10 1000000

999999 .1

.01 .000123

38

When you get tired of the program, stop it by pressing ami D

NUMERICAL CONSTANTS AND VARIABLES

A numerical variable is a mathematical quantity which can be as
signed different number values, but has no definite value until one is
assigned. A numerical constant is a definite number, such as 17,
34.5, - 2V2, 3.000000 E -6, and so forth.

When you use a variable in a program, Sorcerer finds an empty storage
location in memory and assigns your variable as a name for that loca
tion. If you use the word OSCAR as a variable, Sorcerer will find a
storage location and call it OSCAR. When you assign a value to the
variable with a LET statement, Sorcerer will put the proper number into
the location named OSCAR.

You can use any combination of letters and numbers as a numerical
variable, provided that:

1. The first character of the name is a letter.

2. No reserved words appear in the name.

Example:

You can use these
as variables

Al

OSCAR

OSCAR 1

RUM

You cannot use
these

lA first character is
a number

TOM contains the reserved
word TO

ATOM contains the reserved
word TO

RUN contains the reserved
word RUN

Sorcerer only pays attention to the first two characters of a variable, so
make certain no two variables in your program have the same first two
characters.

39

Example:

Sorcerer cannot
tell the difference
between

OSCAR

A7

JAB

and

OSWALD

A71

JA2

NUMERICAL OPERATIONS

Standard BASIC uses the ordinary arithmetical operations (addition,
subtraction, multiplication, and division) together with the operations
of negation (changing the sign of a number) and exponentiation
(raising a number to a power).

To add or subtract two numbers, use the + and - signs on the main
keyboard or the 16-key pad. To multiply two numbers, use the x sign
on the 16-key pad or the * sign (asterisk) on the main keyboard. To
divide two numbers, use the -;- sign on the 16-key pad or the / sign
(slash) on the main keyboard.

When you use the division operator in an instruction, be sure that the
divisor (the expression you are dividing by) does not have the value 0 at
the time the instruction is executed. If this happens, your program will
stop, and you will get a /0 error message.

Use parentheses to group your expressions.

Examples:

(1 +A)/2

1+N2

means

means

add 1 to A, then divide by 2

divide A by 2, then add 1

To negate an expression, put a minus sign (-) in front of it. (Negation
just changes the sign of a number from positive to negative, or from
negative to positive.)

40

Examples:

-(-1)

-(A+B)

changes

means:

the -1 to 1

add A and B, and then
change the sign of the result

For exponentiation, use the A sign on the main keyboard.

Examples:

AI. 2 means A2 (that is, A x A)

2 1.0.5 means 2°·5

B A (-A) means B -A

2 A A means 2A

Remember that exponentiation by a positive integer is just repeated
multiplication, while exponentiation by a negative integer is just
repeated division.

Examples:

A A 3 is just AxAxA

(-B) 1.2 is just (-B) x (-B)

B 1.(-2) is just 1I(B x B)

101.(-3) is just 1/(10 x 10 x 10) that is
1/1000 or .001

Standard BASIC interprets exponentiation as the inverse of a
logarithm function. Therefore, Sorcerer will compute exponentiation by
an integer more qUickly than it would compute the equivalent repeated
multiplication.

41

Any number to the power 0 is just 1 (that is, NUMBER A 0 is just 1). If
you try to raise 0 to a negative power (0 A (-1), say) you will get a /0 er
ror message.

ORDER OF PRECEDENCE

Even fairly simple numerical expressions may contain several
operators. When you compute the value of an expression, the result
you get often depends on which operations you perform first.

Example:

Divide 3 by 2 and add 1 3/2 +1

- if you divide 3 by 2 first, and then add 1, the result is
1.5 + 1, or 2.5 i.e. (3/2) + 1

- if you add 2 and 1 first, and then divide into 3, the result is
1 or 3/ (2 + 1) i.e. 3/3

To avoid this kind of confusion, Sorcerer performs numerical opera
tions in a special order of precedence. This insures that each numerical
expression has a single, well-defined value (when values are assigned to
all variables in the expression).

The operations are done in this order:

1. Expressions inside parentheses().

2. A Exponentiation

3. - Negation

4. * and / Multiplication and Division

5. + and - Addition and Subtraction

When two or more operations in an expression have the same
precedence, Sorcerer will do them in order from left to right.

42

Examples:

first add 1 +4; then multiply by 3

first multiply 3 * 1; then add 4

raise 3 to the power 4; then add - 2

THE CONDITIONAL GO TO

The conditional GO TO statement gives you a way to branch a pro
gram into several different paths, instead of just two (as with the IF ...
THEN statement). The format is:

ON < numerical expression> GO TO,< list of line numbers>

When Sorcerer sees this instruction, it evaluat;s"tnetexpression and
throws away the fractional part (if any) of the result. This produces an
integer, say J. Now Sorcerer skips to the J-th line number on the list. If
J has value 0 or is greater than the number of items on the list, Sorcerer
goes to the next instruction after the ON ... GO TO. If J is less than 0
or greater than 255, you will get an FC error message (ILLEGAL
FUNCTION CALL).

43

44

CHAPTER 6: SCHEDULES AND
TIMETABLES

(Numerical
Arrays)

,

~-------- ----- -~~

Sometimes it is useful to give a single name to an entire list of numbers,
and treat the list as one thing. You do this by using numerical arrays.
A numerical array is the name of a block of storage locations, just as a
numerical variable is the name of a single storage location.

The simplest kind of array is the linear array. Think of a linear array as a
list of numbers arranged in a line. Each element, or position in the line,
has an index number. The first position (element) has index 0, the
second has index 1, and so on. You can refer to a number stored in the
array by giving the array name and the location index.

Example:

Suppose array A consists of the numbers

1.1, 1.2, 1.3, 1.4, 1.5

A{-O) is 1.1, the first element (index number 0)

A(3) is 1.4, the fourth element (index number 3)

45

You can use numerical variables or other numerical expressions as in
dexes for arrays. For instance, when Sorcerer sees OSCAR(I), it first looks
at the number in storage location I; this gives it an index number and
specifies which part of array OSCAR to look at.

Example:

100 FOR X=O TO 10

110 PRINT OSCAR(X)

120 NEXT X

This program prints the first 11 elements of the array OSCAR, in order.

The most general formal for an array element is:

< Array name> (< numerical expression>)

Numerical array names obey the same rules as the names of numerical
variables: the first character must be a letter, and the name cannot con
tain any reserved words.

How does Sorcerer tell the difference between a variable and an array,
if their names are chosen in the same way? When you refer to an ele
ment of the array, you use the array name followed by the element's in
dex in parentheses - variables don't have parentheses. But the best
way to tell Sorcerer that your array really is an array is with a dimen
sion statement. The format is:

DIM <array name> «highest index number»

DE P.t:}UL T '(It> ')
Example:

10 DIM OSCAR (17)

This tells Sorcerer that OSCAR is a linear array with 18 elements, in
dexes 0 through 17.

You can have as many elements in an array as you want, provided
there is enough memory available to store them all. If you try to dimen
sion an array too large, you will get an OM error message (OUT OF
MEMORY).

46

You can also use a variable or other numerical expression to dimension
an array, so that the size of the array will depend on the value of the ex
pression.

Example:

10 DIM OSWALD (2*YEARS + b)

But remember that the value of the expression must be an integer, and
cannot be less than 0, or you will get an FC error message (ILLEGAL
FUNCTION CALL).

You can also dimension two or more arrays with the same DIM state
ment.

Example:

27 DIM A(17), B(X), OSCAR(Y+3)

If Sorcerer sees an array before it sees a DIM statement for that array, it
will assume the array has 11 elements (that is, the index runs from ° to
10). So Sorcerer always knows how large an array is supposed to be
either you tell it (with a DIM statement), or else it assumes 11 elements.

Therefore, you have to be careful about calling for array elements.
Remember that OSCAR(K) is the element of OSCAR whose index is K
(whatever K might happen to be), just as OSCAR(3) is the element with in
dex 3. If you ask for an element that doesn't exist, you are asking for trou
ble.

Example:

10 DIM OSCAR(5)

20 FOR X=O TO 10

30 LET OSCAR(X)=X

40 NEXT X

47

When you run this program, Sorcerer will assign values to the elements
of OSCAR until it gets to X = 6; it will then freak out. You are asking it
to do something to OSCAR(6}, but in line 10 you said that there
weren't any OSCARs past OSCAR(5}. The result is a BS error
message (SUBSCRIPT OUT OF RANGE).

HIGHER DIMENSIONAL ARRAYS

Look at a table of numbers in an almanac. We can think of this table as
an array of elements with two sets of indexes - one index tells which
row of the table an element is in, and the other index tells which
column.

Example:

Table AA

1.2 1.3 1.4 row # 0 (first row)

1.5 1.6 1.7 row # 1 (second row)

column column column
#0 #1 #2

(first (second (third
column) column} column}

If we define the first index to be the number of the row and the second
index to be the number of the column, then the element with index
numbers 0 and 1 (written AA(O,l) } is just 1.3. The element with first
index 1 and second index 0 (written AA(f,O) } is 1.5, and so forth.

This kind of array is called a two-dimensional array, because it has
two indexes. If we stacked several pages of almanac tables, we could
form an array with three sets of indexes - one to tell which rowan ele
ment was in, one to tell which column, and one to tell which page. We
call this a three-dimensional array. Similarly, we could have an array
with as many different indexes as we wished - the number of different
indexes is just the dimension of the array.

In Standard BASIC, you can have as many' as 255 different inde}{ sets
for an array, and each index can run up towhateveryoltplease:'~But
remember that all the elements of an array have to fit somewhere into

48

Sorcerer's memory. If you have too many dimensions, or if the indexes
run to very large values, you will run out of storage locations and get an
OM error message (OUT OF MEMORY).

By the way, you are probably wondering why all the indexes start with
number 0 rather than number 1 (Le., why is the first element of a linear
array given sequence number O?). This is because mathematicians and
scientists are in the habit of numbering arrays in this way. Even though
Standard BASIC was designed so that non-technical people could eas
ily leam it, it was still written by computer scientists - old habits die
hard.

MORE ABOUT DIM

Higher dimensional arrays should have DIM statements, just as linear
arrays should. The DIM statement not only tells Sorcerer that a certain
thing is an array, and what the highest values are for its indexes, but
also how many dimensions it has.

Example:

10 DIM OSWALD (7,4)

This tells Sorcerer that OSWALD is a two-dimensional array whose
first index runs from 0 to 7, and whose second index runs from 0 to 4.

You can use one DIM statement to dimension several arrays. Just
separate the array declarations with commas.

Examples:

44 DIM A(17), 83(2,5), AL(3)

12 DIM X1(5), X2(3,3), OSWALD(1,2,3,4)

If Sorcerer runs across an array that has not been declared in a
previous DIM statement, it will assume that all the indexes run from 0
to 10. If you declare an array to have some dimension (using a DIM
statement) and then use the same name for an array with a different
dimension, you will get a BS or DO error message. You will also get a
BS error if you call for an array element with an index value outside the
declared range.

49

Example:

10 DIM OSWALD(1,2,3,4)

2 0 LET 0 S W A L D (2 , 2 , 2 , 2) = 1 - This gives you a BS
error, because the first

RUN index of OSWALD
only goes up to 1.

50

CHAPTER 7:
FOREIGN EXPRESSIONS

(Logic)

NUMERICAL RELATIONS

A numerical relation is a statement that compares two numerical ex
pressions. The relation is either true or false, and Sorcerer can always
tell which, just by evaluating the expressions and comparing the
resulting numbers.

Examples:

1=1

1=0

X=6

A+B=C

"1 equals 1"

"1 equals 0"

"X equals 6"

"A + B equals C"

51

This is true.

This is false.

This is true if X has
the value of 6.
Otherwise it is false.

This is true if the
value of A plus the
value of B equals
the value of C.
Otherwise it is false.

Numerical relations have this form:

< first expression> Relation Operator < second expression>

The relation operators are:

equal

<> not equal

< less than

> greater than

<= less than or equal l

= > greater than or equal2

l(ThiS is also written = <)

2(ThiS is also written > =)

LOGICAL OPERATORS

(examples: 1 = 1 is true, 1 = a is false)

(examples: 2 < > 3 is true, 2 < > 2 is false

(examples: 2 < 4 is true, 0< - 2 is false

(examples: 1> -1 is true, 2> 3 is false

(examples: 1 < = 1 and 6 < = 7 are true, 1 < = a
is false)

(examples: -1 = > -1 and -1 = > - 2 are
true, 0= > 1 is false)

A numerical expression is a mathematical creature that always has a
number value. Similarly, a logical expression is a creature that always
has a logical value (sometimes called a truth value). Numerical expres
sions can have any number for their values, but logical expressions can
only take on two different logical values: true and false.

Numerical relations are simple examples of logical expressions. Logical
operators let you build more complicated expressions out of simple
ones. There are three of these operators:

NOT < simpler expression>

< first simpler expression> AND < second simpler expression>

< first Simpler expression> OR < second simpler expression>

The NOT expression is always true when the simpler expression is
false, and vice versa.

52

Example:

NOT X= 1 is true if X does not have the value 1,
and is false if X does have value 1.

NOT (it is raining) is true if it is not raining, and is false if it
is raining.

The· AND expression is true in case both of the simpler expressions
are true. If either or both of them are false, then the AND expression is
false.

Examples:

X=l AND A=B is true just in case X has value 1 and A
has the same value as B; otherwise it
is false.

(it is raining) AND (your feet are wet)

is true just in case it is raining and your
feet are wet. If it is not rainil"\.9, or your
feet are dry (or both) the expression is
false.

The OR expression is true if either of the simpler expressions is true, or
if they are both true. It is only false if both of the simpler expressions
are false.

Examples:

X<l OR X=l

X=l OR Y=2

is true if X is less than 1 or if X is equal
to 1. It is false if X is greater than 1. This
is just the same as the relation X < = 1.

is true if X has the value 1, or if Y has
the value 2, or both. Otherwise it is false.

Note: The OR operation is sometimes called inclusive OR, because
it includes as true the case where both Simpler expressions are true.

53

There is another logical operator called exclusive OR, which Standard
BASIC does not recognize. An exclusive OR expression is true if either
of the simpler expressions are true, but not if both are.

Many people think of the English word "or" as an exclusive OR
operator. Don't be confused by this habit; an OR expression in Stan
dard BASIC is true if both of its parts are true.

MORE ABOUT PRECEDENCE

Before Sorcerer can decide whether a logical expression is true or false,
it must decide whether the numerical relations in the expression are
true or false. Before it can decide whether a numerical relation is true or
false, it must compute the values of the numerical expressions in the
relation.

In Chapter 5 you learned the order of precedence for numerical opera
tions. The numerical relations and logical operators are part of this
order of precedence. This is the complete sequence:

1. Expressions inside parentheses ()

2. fI Exponentiation

3. - Negation

4. * and / Multiplication and division·

5. + and - Addition and Subtraction

6. Numerical Relations (all have the same precedence)

= Equal

< > Not Equal

< Less Than

> Greater Than

< = Less Than or Equal

= > Greater Than or Equal

7. NOT
54

8. AND

9. OR

As we said in Chapter 5, whenever two or more operations or relations
have the same precedence, Sorcerer will do them in order from left to
right.

MORE ABOUT BRANCHING INSTRUCTIONS

In Chapter 4 you saw how numerical IF ... THEN statements instruct
Sorcerer to make decisions based on whether or not a numerical ex
pression has value O. Sorcerer can also base its decisions on whether
or not a numerical relation or a logical expression is true. This kind of
IF . . . THEN statement is written just like the numerical IF ... THEN,
except you use a numerical relation or other logical expression instead
of a numerical expression.

Examples:

47 IF X=Y THEN 78

12 IF (A=B OR C<>D+2) THEN PRINT "HELP!"

101 IF (OSCAR(X)=SAM(2» THEN STOP

200 IF (A*2=6 AND X<Y) THEN 17
(if ")

Recall the guessing game program in Chapter 4. We could rewrite line
90 as:

90 IF Y=l THEN 110

and the program would behave exactly as before.

55

56

CHAPTER 8: TRADING AT
THE BAZAAR

(Numerical Functions)

Think of a function as a little trading booth: You give something to the
merchant, and you get something else in exchange.

Examples:

The square function - you supply a number, say X, and you get
back X * X. You give 2, you get back 4;
give - 3, get back 9; give 1.5, get back
2.25, and so on.

The absolute value
function - you supply any positive number (or 0)

and get the same number back. Supply a
negative number, say - X, and get X.
Give 1, get 1; give -10, get 10; give
-1.5, get 1.5 etc. /

The examples above are numerical functions - put in a number, and
out comes a number. This is the only kind of function we will consider
in this chapter. In Chapter 9, you willieam about string functions.

57

FUNCTION NOTATION

The value you feed into a function (its input value) is called the argu
ment; the function value (its output value) is referred to in this way:

< function name> « argument>)

Examples:

- We give the name SQR to the square root function. If X is 0
or positive, SQR(X) is just the number which, multiplied by
itself, equals X. That is:

SQR(X) * SQR(X) equals X

If you try to call SQR(X) for some negative value of X, you
will get an FC error message (ILLEGAL FUNCTION
CALL).

- We give the name ABS to the absolute value function. The
value you get when you plug in X is called ABS(X); ABS(l)
is 1; ABS(2.3) is 2.3; ABS(-17) is 17.

If you specify an exact value for the argument, the function will give you
a definite value. But you can also call a function with a variable or other
numerical expression in the argument; then the function does not have
a specific value until the variable or expression is evaluated.

Examples: PRINT ABS(X*Y)

IF (SQR(A/B»ABS(G)) THEN 32

LET HARRY = ABS(OSCAR)

THE DEF STATEMENT

Certain functions (called intrinsic functions) are built into Standard
BASIC. Sorcerer recognizes their names when it sees them, without
having to be told how the functions work. These names are all reserved
words, so when Sorcerer sees an intrinsic function, it knows it is not
dealing with an array, since no array name can contain a reserved
word.

58

But you can also define your own functions with a special statement,
the DEF statement. The DEF statement tells Sorcerer that a certain
name is the name of a function, rather than an array, and it also tells
Sorcerer how the function works - what kind of business the mer
chant conducts.

The DEF statement has this format:
~~r~«, ,e(J

~

DEF < function name> « variable» = < expression>

The function name obeys these rules:

1. The name must have at least three characters.

2. The first two characters must be the letters FN.

3. The third character must be a letter.

4. The name cannot contain any reserved words.

The expression can be any numerical expression, but it should not con
tain any variables other than < variable> .

Example:

42 DEF FNJOE(A) = SQR(A)*2.7 + 6
This tells Sorcerer that every time it sees the function FNJOE(< ex
pression>) it must:

1. Evaluate the expression in the argument.

2. Take the square root of the result.

3. Multiply by 2.7.

4. Add 6. /1
IJ/c.,,, t: N _ ~ t<-J-RJ/

THE FUNCTIONS INT AND RND

Here are two intrinsic functions you will find handy. The function INT
is called the greatest integer junction. For any number X, INT(X) is
the biggest integer that doesn't exceed X.1f X is an integer, then INT(X)
is X itself. Otherwise, if X is positive you get INT(X) by throwing away
the fractional part of X, and if X is negative you get INT(X) by adding
- 1, and then throwing away the fractional part.

59

Examples:

INT(l.S)

INT(l)

INT(478'()06)

is 1

is 1

is 478

INT(-17)

INT(-3.S)

INT(-.OOS)

is -17

is -4

is -1

The function RND produces random numbers. Feed RND a-negiMiv~
~r, and Sorcerer will generate a sequence of random numbers,
each one between 0 and 1. You get a different sequence of random
numbers for each different~~~gative number. Now you can pick
numbers out of this sequence by feeding positive numbers - for each
different positive number X, RND(X) gives a different number from the
sequence. RND(O) always gives you the last number that you called out
of RND, whatever it was. To generate a new sequence, just put in a
new negative number.

Example:

We can use RND and INT to s~imulate dice. RND always produces
numbers between 0 and 1, so 6 * RND(X) + 1 will always be between
1 and 7, and INT(6 * RND(X) + 1) will be an integer from 1 to 6.

10 REM SORCERER'S DICE

20 LET R=-1

3D INPUT "DO YOU WANT TO ROLL AGAIN"; Y

35 REM ANSWER 1 IF YOU DO, AND 0 IF YOU DON'T

40 IF Y-1 THEN STOP

50 LET A=RND(R)

55 REM STARTS A NEW SEQUENCE

60 LET B=INT(6*RND(1)+1)

70 LET C=INT(6*RND(2)+1)

80 PRINT "YOU HAVE ROLLED"; B; "AND"; C

90 PRINT "TOTAL"; B+C

100 LET R=R-1 t,-d-""

105 REM CHANGE THE SEQUENCE

110 GO TO 3D

60

CHAPTER 9: NATIVE PHRASES

(Strings)
e:----C<t<l"

{lty\,4 ~"""-' .. ,',

00 Co t'

In Chapter 1 you saw how to print strings of characters, and in Chapter
3 you saw how to print a string before the prompt (?) of an INPUT. A
string is just a series of characters which are stored in Sorcerer's
memory!} YO~jat:l ha~e as many as 255 characters in a string.

Any Pe;f~~~~~b~, ~ ~y~bO~~;~~~~J:~~~be :;~;~f a string
- even the graphic symbols and your own user·defined symbols.
However, you will sometimes have trouble if you try to use the quote
mark (") as a character in a string. This is because quote marks are us
ed to delimit strings. When Sorcerer sees a bunch of characters bet
ween a pair of quote marks, it knows those characters are to be treated
as a string. For instance, if you tried to use" as part of a string, Sorcerer
would see three (or more) quote marks, with other characters scattered
around them, and would become confused about which ones were the
first and last characters. However, the situation is not hopeless; you
will see there are ways to put quote marks into a string without confuSing
the Sorcerer.

Example:

This program uses strings of graphic characters to print a picture on
the screen. Here is how to find the graphics on your keyboard:

61

I is just '3;"'4;"+ D
\ is just 'al'ah" •

is just 'al'4:19 D
is just 13i!·~alnl ..

100 PRINT TAB (10) ; " 1\ II

110 PRINT TAB(lO); "1 I"

120 PRINT TAB(lO);"1 I"

130 PRINT TAB (9) ; " II 1\"

140 FOR Z=l TO 15

150 PRINT TAB(ll); "*"

160 PRINT TAB(lO); "*"

170 NEXT Z

180 FOR W=l TO 30

190 PRINT

200 NEXT W

Run this program and you will see a little rocket fly up the screen. Now
stick this program onto the end of the COUNTDOWN program in
Chapter 4.

STRING CONSTANTS AND VARIABLES

A string of characters surrounded by a pair of quotes is called a string
constant. It is similar to a numerical constant in haVing a definite
value. Just as there are numerical variables, which can take on many
different number values, so there are string variables which can take
on many string values. Like the numerical variable, a string variable is
just a name which Sorcerer can give to a block of memory locations -
but instead of storing number constants in these locations, Sorcerer
stores string constants.

You can use any combination of letters and numbers as a string
Variable, proVided:

1. The first character is a letter.

2. No reserved words appear in the name. ----

3. The last character is a dollar sign ($).

This last part is important; it is the $ at the end which tells Sorcerer it is
working with a string variable, rather than a numerical variable.

PUT AND TAKE WITH STRINGS

You can use string variables and constants in INPUT, PRINT, DATA,
and READ statements, just as you would use numerical variables.

Example:

10 INPUT "WHAT IS YOUR STRING"; A$

20 PRINT "YOUR STRING IS"; A$

30 DATA "A", "8", "("

40 FOR X=l TO 3

50 READ 8$
63

70 NEXT X

80 GO TO 10

When you answer an INPUT prompt (?) with a string constant, you
don't have to put quotes around the string. In the program above, if you
answer

WHAT IS YOUR STRING?

by typing A, Sorcerer will reply

YOUR STRING IS A

and then go on to tell you the contents of the DATA list. If you answer
"A" instead of A, you will get exactly the same result.

You can get Sorcerer to accept strings containing the quote mark if you
feed it the strings through INPUT statements.

Example:

Delete lines 30 through 70 from the last program, and run it. Try as
many different strings as you can think of which contain one or more
quote marks. Here are some suggestions:

A"A "A"A"

A""A A" "A

" " " " "

STRING RELATIONS AND EXPRESSIONS

We can form string expressions from string variables and constants,
just as we form numerical expressions from numerical variables and
constants. However, we only have one string operation, while there are
six numerical operations (addition, subtraction, multiplication, division,
negation, and exponentiation).

64

The string operation is called concatenation, and we use the + sign
as its symbol. The effect of concatenation is to paste the string on the
right side of the + onto the end of the string on the left.

Example:

"ABC" + "DEF" is just "ABCDEF"

The double use of the + sign doesn't confuse Sorcerer. If it sees a +
surrounded by string expressions, it says to itself "Aha!
Concatenation!" If it sees a + surrounded by numerical expressions, it
says "Addition".

There are also a number of useful string functions, which you willieam
about in the next section of this chapter. Many of these functions can
appear in string expressions.

In Chapter 7 you learned to form numerical relations with numerical ex
pressions and numerical relation operators. As you might suspect,
there are also string relation operators. We will only worry about two of
these:

= Equal

and

< > Not equal

String relations are always either true or false, as numerical relations
are; Sorcerer can always decide which, just by evaluating the string ex
pressions and comparing them.

So it's not surprising that you can use string relations in logical expres
sions, and especially, you can use string relations in branching instruc
tions.

Example:

10 INPUT "WHO IS BURIED IN GRANT'S TOMB"; GRANT$

20 PRINT

30 IF GRANT$="GRANT" THEN 70

65

40 PRINT "WRONG, DODO. TRY AGAIN."

50 PRINT

60 GO TO 10

70 PRINT" RIGHT YOU ARE. HAVE A CIGAR."

STRING FUNCTIONS

A string function is any function that involves string expressions,
either as the value of the function, or as arguments. Standard BASIC
has a number of these, but we will only consider the most useful ones.

LEFT$ and RIGHT$ give you the leftmost and rightmost characters of
a string, respectively. LEFT$(A$,3) is just a three-character string con
sisting of the leftmost three characters of A$. If A$ has the value
"ABCDEF", then LEFT$(A$,3) is "ABC". Similarly, RIGHT$(A$,2) is a
string consisting of the rightmost two characters of A$; if A$ has value
"ABCDEF", then RIGHT$(A$,2) is "EF".

The general formats for these functions are:

LEFT$(< string expression>, < numerical expression>)

and

RIGHT$(< string expression>, < numerical expression>)

To evaluate these functions, Sorcerer first evaluates the string expres
sion and the numerical expression, to get a string and a number. It then
takes the leftmost or rightmost characters from the string.

Examples:

RIGHT$(A$ + "G17", 24)

LEFT$("GRANT'S TOMB", X+1)

LEFT$(A$ + B$, 3*X+Y)

66

Run this program and experiment with as many different strings as you
can think of:

10 INPUT I1WHAT IS YOUR STRING I1 ; A$

20 PRINT

30 INPUT I1WHAT IS YOUR NUMBER I1 ; X

40 PRINT

50 PRINT LEFT$(A$,X), RIGHT$(A$,X)

60 PRINT

70 GO TO 10

You can also take characters from the middle of a string using the func
tion MID$. You specify the number of characters you want to take, and
which character you want to start with. For instance, MID$(A$,3,6)
consists of the six characters of A$ starting with the third.

Examples:

MID$("ABCDEF", 3,2) is "CD"

MID$("ABCDEF", 2,3) is "BCD"

MID$("ABCDEF", 3,3) is "CDE"

If you ask for too many characters from the string, MID$ will give you
as many as it can.

Example:

MID$("ABCDEF", 5,4) is "EF"

67

\

You can leave out the third argument of MID$. MID$(A$,I) gives you all
the rightmost characters of A$, starting with I-th one.

Example:

MID$("ABCDEF", 3) is "CDEF"

The most general format for MID$ is:

MID$(< string expression>, < first numerical expression>, < second numerical expression>)

The function STR$ gives the string representation of a number. For in
stance, STR$(999) is just the string of digits "999", and
STR$(-1.23456E-Ol) is the string of letters, digits, and symbols
"-1.23456E-Ol". The difference between 999 and STR$(999) is that
Sorcerer handles the first as a number, and the second as a string.

The general format is:

STR$(< numerical expression>)

Example:

This program illustrates the use of STR$, and also the difference be
tween numerical addition (+) and string concatenation (+).

10 INPUT "WHAT ARE YOUR TWO NUMBERS"; X,Y

20 PRINT

30 PRINT "THE SUM IS"; X+Y

40 PRINT

50 PRINT "THE CONCATENATION IS"; STR$(X) + STR$(y)

60 PRINT

70 GO TO 10

Try this program with as many different numbers as you can think of,
using integer, fixed point, and floating point notation. Notice that the
first character of a positive number is always a blank space.

68

The function LEN tells you how many characters there are in a string.

Examples:

LEN(" ABCDE")

LEN("5")

LEN(STR$(5))

is 5

is 1

is 2 STR$(5) has two
characters: one the digit
five, and one the leading
space.

The general format for LEN is:

LEN(< string expression>)

Examples:

LEN("ABC" + G$)

LEN(MID$(OSCAR$, X,Y»

LEN(A$ + STR$(X) + RIGHT$(B$, 3»

STRING ARRAYS

You can define arrays of strings, just as you defineatTays of numbers.
Each element of a string array can have up to 255 characters, and the
array can have as many dimensions as a numerical array (that is, up to
255LYou specify the dimension and highest index values of a string ar
ray with a DIM statement, just as you do for a numerical array. In fact,
you can use the same DIM statement to simultaneously dimension
numerical arrays and string arrays. Names for string arrays obey the
same rules as names for string variables - the last character of the
name must be a $ sign.

Examples:

76 DIM A(1,7), JOE$(3), SAM(12,3,5), B$(4,4)

12 IF A$(X)="ABC" THEN 23

123 LET A43$(I+1)=B43$
69

70

CHAPTER 10: SIDE TRIPS
AND EXCURSIONS

(Subroutines)

•• • ···of '--~

Let's try another guessing game:

10 REM ANOTHER GUESSING GAME
20 INPUT "WHO IS BURIED IN GRANT'S TOMB";GRANT$
30 IF GRANT$<>"GRANT" THEN 50
40 GOSUB 200
45 GO TO 60
50 PRINT "WRONG, DODO· THE ANSWER IS GRANT·"
60 INPUT "WHAT COLOR IS AN ORANGE"; ORANGE$
70 IF ORANGE$<>"ORANGE" THEN 90
80 GOSUB 200
85 GO TO 100
90 PRINT "THAT WAS DUMB. ORANGES ARE ORANGE·"

100 INPUT "WHO WROTE BEETHOVEN'S FIFTH"; BEETH$
110 IF BEETH$<>"BEETHOVEN" THEN 130
120 GOSUB 200

71

125 GO TO 140
130 PRINT "SUCH TOWERING STUPIDITY!"
135 PRINT "IT WAS BEETHOVEN."
140 STOP
200 REM SUBROUTINE
210 FOR X=l TO 15
220 PRINT "CONGRATULATIONS!"
230 PRINT
240 NEXT X
250 FOR Y=l TO 30
260 PRINT
270 NEXT Y
280 RETURN

Lines 200 to 280 are a subroutine - a subprogram of a larger pro
gram. You should use a subroutine whenever there is a complex action
you want to perform repeatedly during a program. In the program
above, Sorcerer goes to the subroutine as many as three times.

Use the GOSUB statement to send Sorcerer to a subroutine. The for
mat is:

GOSUB < line number>

where < line number> is the number of the first line of the subroutine.

GOSUB is a lot like GO TO, with one big exception. When you send
Sorcerer somewhere with a GO TO statement, it forgets where it was
when you sent it (that is, it forgets the line number of the GO TO in
struction). But when Sorcerer sees a GOSUB instruction, it remembers
the GO SUB's line number. When it finishes the subroutine, it goes right
back to the next instruction after the GOSUB. If there are several
GOSUBs to the same subroutine, Sorcerer always goes back to the
right one - it can't do that with a GO TO instruction.

The statement RETURN sends Sorcerer out of the subroutine, back to
its proper place in the main program. The last line of your subroutine
should be a RETURN statement, and you can have RETURN
statements elsewhere in the subroutine (as part of an IF ... THEN
branch, for instance).

A subroutine can call other subroutines if you wish; the only limit to
this is the capacity of Sorcerer's memory. But when Sorcerer sees a
RETURN statement, it always goes straight to the instruction after the
most recent GOSUB.

72

Place all your subroutines at the end of your program, so that you can
find them easily when you look for them in a program listing. Then put
a STOP statement at the end of your main program, ahead of your first
subroutine. This will prevent Sorcerer from falling into the subroutine
when it finishes the main program.

THE CONDITIONAL GOSUB

The format for this statement is:

ON < numerical expression> GOSUB < list of line numbers>

Here, the line numbers in the list are all the first line numbers of
subroutines. The ON ... GOSUB statement works the same way as
ON ... GO TO, except that when Sorcerer returns from one of the
subroutines, it goes straight to the instruction following the
ON ... GOSUB.

73

74

CHAPTER 11:
PACKAGED TOURS

(Storing and
Loading Programs
From Cassette
Tape)

You can record your programs on a tape cassette using any cassette
recorder and the recorder cables that come with your Sorcerer. You
can also playa recorded program directly into Sorcerer's memory.

CHECKING YOUR HARDWARE

First check your recorder to see how its controls work. Some recorders
will record when you depress the REC button; with others you must
press the REC and PLAY buttons together. Now take the two cassette
recorder cables that come with your Sorcerer, and plug them into the
MIC and EAR connectors of your recorder; plug the other ends into the
MIC and EAR connectors at the rear of the Sorcerer (these connectors
are next to the power cord). The two recorder cables are identical, so it
doesn't matter which one you hook up to the MIC connectors and
which to the EAR connectors.

Now check your recorder's tone and volume settings. If these settings
are wrong, your programs won't record or load properly. Each recorder
has its own characteristics, and so does each brand of cassette tape. If
you don't know the proper settings, try putting both the tone and
volume on about 1/2 of the way full. Then try recording and loading a
test program, making adjustments to the controls as needed to get
good results.

75

You can use any tape cassette, but note that many cassettes have non
magnetic strips of tape at each end of the magnetic tape, so make sure
there is magnetic tape under the recording head before you try to
record a program. You will get better results with short cassettes (30
minutes or less) than with longer ones - the longer cassettes have
more internal friction, and their tape won't move as uniformly past the
recording head. Low noise, high frequency tape gives better results
than cheaper tape. For best results, we recommend Exidy data cas
settes (Part No. DP300l).

The Sorcerer can handle two cassette recorders, using the Exidy Data
Cable (Part No. DP 4003). Therefore, when you instruct Sorcerer to
play or record a program, you must also tell it whether to use tape unit
1 or tape unit # 2. The instruction sheet which comes with the Data
Cable explains how to tell which tape recorder is unit # 1 and which is
unit # 2. Of course, if you only attach one recorder (using the two
cables that come with the Sorcerer) then that recorder is tape unit # 1,
and there isn't any tape unit # 2.

TO RECORD A PROGRAM

CSAVE is the command to record the program currently in Sorcerer's
memory. The format is:

CSA VE < program name> [< unit number>]

Leave a space between CSA VE and the name of your program and
another space between the name and < unit number>. The
< program name> can be any combination of up to five letters or
numbers, but the first character must be a letter. If you don't include the
< unit number>, Sorcerer will use unit # 1.

Before you give this command, make sure the REC and PLAY buttons
are depressed on your recorder (or the REC button alone, on some
recorders). Wait five seconds, and then pick a name for your program
and give the CSA VE command. When Sorcerer finishes recording, it
gives you a READY prompt; you can then stop the tape.

TO RE-PLAY A PROGRAM

CLOAD is the command to load a program from the cassette tape into
Sorcerer's memory. This command also wipes-out whatever program is
already in memory and re-sets all variables to 0, just like the command
NEW. The format is:

CLOAD < program name> [< unit number> 1
76

Again, leave a space before the < program name> and another before
the < unit number> . If you don't specify the unit, Sorcerer will use unit
#1.

Before giving this command, rewind the tape. Give the CLOAD com
mand and then press the PLAY button on your recorder. When
Sorcerer finishes loading, it will give you a READY prompt; you can
then stop the tape.

Example:

Put this program into memory:

10 REM TEST PROGRAM

20 PRINT "TEST PROGRAM"

30 PRINT

40 GO TO 20

Put this on tape with the command:

CSAVE TEST 1

After Sorcerer records the program, it will reply with a READY prompt.
If this doesn't happen in a reasonable time, check all your electrical con
nections, re-adjust your recorder's tone and volume controls, rewind
the recorder, and try again.

When you get Sorcerer to record your program properly, wipe-out the
version of it in memory, by giving the command NEW. Then give the
RUN command to convince yourself that the program really has been
wiped off the memory.

Now rewind the tape and load the program back into memory with the
command:

CLOAD TEST 1
If you don't get a· READY prompt in a reasonable time, re-adjust your
tone and volume controls and try again. When you finally get the
READY, check your results by giving the command:

LIST

You can use CLOAD as a program statement, but when the new pro
gram is loaded, the one containing the CLOAD statement is
automatically wiped out of memory.

77

SAVING AND LOADING NUMERICAL ARRAYS

The command to save a numerical array is:

CSAVE* <unit number> <array name>

You must include the < unit number> and leave a space before the
< array name>; otherwise, use this command just as you would use
the CSA VE command.

The command to load a numerical array from a cassette recorder is:

CLOAD * < unit number> < array name>

Again, you must include the < unit number> and leave a space before
the < array name> . Y0l! must alsggi~~pI~L~aration fO,!"y..Q!1r ar
ray before you try to loa_djt, Otherwise, use this command as you
wouIa\TSeCtD~

Both CSAVE*
statements.

and CLOAD * can be used as program

78

CHAPTER 12:
CUSTOMS CHECK

(Tips on Debugging)

By now you have probably tried a few programs of your own, and been
disappointed when they wouldn't work. Don't be discouraged; even
professional programmers can rarely get a new program to work on the
first try. Here are some tips to help you ferret out the bugs hiding in
your program.

ERROR MESSAGES

When you run your program, Sorcerer looks for certain especially gross
errors; when it finds one, it stops the program and gives you an error
message. The message gives the line number of the instruction that
caused the problem, and the error code of the error.

The error codes are explained in Appendix D. Be especially watchful of
SN errors. Incorrect punctuation, a space where none should be (or no
space where there should be one) or any other typographical error can
give Sorcerer apoplexy.

79

SIMPLE DATA SETS AND BRANCH TRACES

Once you get your program to run through without sending error
messages, you next have to find out why it won't do what you want it to
do. If your program is supposed to handle some data, try it first on very
simple data - nice round numbers and short simple strings.

Do all the computations by hand and find out what value each variable
should have at each line of the program. Also trace through the logic
and see which branches the program is supposed to take when it has to
make decisions. You might try temporarily replacing INPUT
statements by DATA and READ statements or LET statements. This
may save you having to type-in the same data on each trial run. Alter
natively, you might try temporarily replacing READ or LET statements
by INPUT statements, so that you can change the data more easily on
different runs of the program. These INPUT statements should have
prompt strings telling what their line numbers are and what data they
are asking for. This brings us to our next hint.

DIAGNOSTIC PRINT STATEMENTS

Scatter PRINT statements liberally throughout your program - you
can always delete them later when the bugs are gone. Each diagnostic
PRINT statement should print its line number and the names and
values of any variables being handled in that part of the program.

Be suspicious of any PRINT statement that regularly fails to report as
you run the program, or of any that shows up too often. If this persists
when you try many different sets of INPUT data, you are probably
having problems with your branching statements. Sit down and trace
out the logiC.

There are several special commands and functions you will find helpful
for debugging, once you become familiar with Sorcerer's machine lan
guage and inner workings. These are listed in the back of Appendix B.

No matter how puzzled or frustrated you get, remember that there are
just so many places for the bugs to hide. If you are perSistent enough
you will find them. Good luck, and good hunting!

80

APPENDIX A:
RESERVED WORDS

ABS FOR NEW RUN

AND FRE NEXT SGN

ASC GO NOT SIN

ATN GOSUB NULL SPC

BYE GOTO ON SQR

CHR$ IF OR STOP

CLEAR INP OUT STR$

CaNT INPUT PEEK TAB
TO

cos INT POKE TAN

DATA LEFT$ pas THEN

DEF LEN PRINT USR

DIM LET READ VAL

END LIST REM WAIT

EXP LOG RETURN

FN MID$ RND

Al

APPENDIX B:
COMMANDS AND STATEMENTS

COMMANDS

Commands direct Sorcerer to arrange memory and input/output
facilities, to list and edit programs and to handle other housekeeping
details in support of program execution. Sorcerer accepts commands
after it prints READY and is at command level. The table below lists
the commands in alphabetical order.

BYE

Takes Sorcerer out of Standard BASIC, into the Power-On Monitor.
To get back into BASIC, give the Monitor command PP.

CLEAR

Sets all program variables to zero.

CLEAR [< expression>]

Same as CLEAR but sets string space to the value of the expression. If
no argument is given, string space will remain unchanged. ~,
string space is set to 50 bytes., . '., / . ,
_""' ... __ >._, ,~":~,,>"_." ,,"" ""._,' ,,',*;~"',;;-~"::,'ni(.''"''''''r:,\~~ I,' I.. ;

CLQAD -;:: stting expression> [< unit number>]
',. I' (I t' ,./ "I'~ ~'1 ,.,,, ~ r,_~,.ki !~:'c;:.:;:';·l {O/u {OIL ::>.:1 /'i/;:;.':.>-

Causes the program on cassette tape designated by the < string ex
pression> to be loaded into memory from designated tape unit. A
NEW command is issued before the program is loaded. The string ex
pression cannot contain more than five characters, and the first
character must be a letter. If no tape unit is designated, unit # 1 will be
used.

CLOAD * < unit number> < array name>

Loads the specified array from the designated cassette unit. You must
include the <unit number> (lor 2); leave a space between the ~
number> and the < array name> _ May be used as a program state
ment.

B-1

CONT

Continues program execution after a .. a has been typed or a
STOP statement has been executed. Execution resumes at the state
ment after the break occured unless input from the terminal was inter
rupted. In that case, execution resumes with the reprinting of the
prompt (? or prompt string). CONT is useful in debugging, especially
where an infinite loop is suspected. An infinite loop is a series of
statements from which there is no escape. Typing ami a causes
a break in execution and puts Sorcerer in command level. Direct mode
statements can then be used to print intermediate values, change the
values of variables, etc. Execution can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line number. Execu-

~'\

tion cannot be continued if a direct mode error has occured during the
br'eaK~if:fti~ .. pfogram-was~ffi6mfiecrtlill1n£nhe··l5feaK:~·······~-"

CSAVE < string expression> [< unit number>]

Causes the program currently in memory to be saved on the designated
cassette tape under the name specified by the first five characters of
< string expression> . If no tape unit is specified, the program is saved
on unit # 1.

CSA VE * < unit number> < array name>

Causes the array named to be saved on the designated cassette tape.
You must include the < unit number> (lor 2); leave a space between
the ~<unit number> and the <array name>. May be used as a pro
gram statement.

LIST

Lists the program currently in memory starting with the lowest
numbered line. Listing is terminated either by the end of the program or
by typing ami a .

LIST[< line number>]

Prints the current program beginning at the specified line.

B-2

NEW

Deletes the current program and clears all variables. Used before enter
ing a new program.

NULL < integer expression>

Sets the number of nulls to be printed at the end of each line. For 10
character per second tape punches, < integer expression> should be
> = 3. For 30 cps punches, it should be 2 or 3. When tapes are not be
ing punched, < integer expression> should be > = 3 for Teletypes·
and Teletype compatible CRTs. It should be 2 or 3 for 30 cps hard
copy printers. The default value is O. If Sorcerer is not connected to a
paper tape punch or a line printer, you won't have to worry about this
command.

RUN[< line number>]

Starts execution of the program currently in memory at the line
specified. If the line number is omitted, execution begins at the lowest
line number.

·Teletype Is a registered trademark of the Teletype Cororatlon.

STATEMENTS

In the follOwing table, X and Y stand for any expressions, L stands for
any logical expression, I and J stand for expressions whose values are
truncated to integers, and V and W are any variable names. The format
for a Standard BASIC line is as follows:

< nnnnn > < statement> [: < statement> . . .]

where nnnnn is the line number.

Name Format

DATA DATA < list>

SpeCifies data to be read by a READ statement. List elements can be
numbers.or strings. List elements are separated by commas.

B-3

DEF DEF FNV«W»= <x>

Defines a user-defined numerical function. Function name is FN follow
ed by a legal variable name. Definitions are restricted to one line (64
characters). -

DIM DIM < V > (< I > [,J ...])[, ...]

Allocates space for array variables. More than one variable may be
dimensioned by one DIM statement up to the limit of the line. The value
of each expression gives the maximum subscript possible. The
smallest subscript is 0. Without a DIM statement, an array is assumed
to have maximum subSCript of 10 for each dimension referenced. For
example, A(I,J) is assumed to have 121 elements, from A(O,O) to
A(10,10) unless otherwise dimensioned in a DIM statement.

END END

Terminates execution of a program.

FOR FOR<V> = <X>TO<Y>[STEP<Z>]

Allows repeated execution of the same statements. First execution sets
V = X. Execution proceeds normally until NEXT is encountered. Z is
added to V, then IF Z<O and V> = Y, or if Z>O and V < = Y,
Sorcerer branches back to the statement after FOR. Otherwise, execu
tion continues with the statement after NEXT.

11.- GOTO GOTO < nnnnn >

Unconditional branch to line number nnnnn.

GOSUB GOSUB < nnnnn >

Unconditional branch to subroutine beginning at line nnnnn.

IF ... GOTO IF < X > GOTO < nnnnn >

Same as IF .. THEN except GOTO can only be followed by a line
number and not another statement.

B-4

'!>O /
IF ... THEN fS)~ ,;'

c),

IF<X>THEN < line number>

or IF<X>THEN < statement> [: < statement> . . .]

or IF<L>THEN < line number>

or IF<L> THEN < statement> [: < statement> . . .]

If value of X is not 0, or if L is true, Sorcerer branches to line number or
~Jft statement(S) after 'mEN. If x is 0 or L is false, ,g?es, to the ~) after

IF ... THEN. . <, '. "',' :', 'J: ""'''; ::'.,,'j" v: .~

l-1 ... /INPUT t, I' INPUT<V>[,<W> ...]
G'?> (~;t;;Ir) Dift'\ {J·G·-R TCJ$ ~ ~\ Uer----·Jrfl '

Causes Sorcerer to request input from terminal. Values typed on the
terminal are assigned to the variables in the list.

LET LET<V>=<X>

NEXT NEXT[<V>,<W> ...]

Last statement of a FOR loop. V is the variable of the most recent loop,
W of the next most recent and so on. NEXT without a variable ter
minates the most recent FOR loop.

It> ON ... GOTO ON < I> GOTO < list of line numbers>

Branches to line whose number is Ith in the list. List elements are
separated by commas. If 1=0 or > number of elements in the list, ex
ecution continues at next statement. If 1<0 or > 255, an error results.

/Ii ON . . . GOSUB ON < I > GOSUB < list>

Same as ON .. GOTO except list elements are initial line numbers
of subroutines.

"j,''''' PRINT PRINT<X> [,<Y> ...]

Causes values of expressions in the list to be printed on the terminal.
Spacing is determined by punctuation.

B-5

Punctuation

,
other or none

Spacing - next printing begins:
at beginning of next 14 column zone
immediately
at beginning of next line.

String literals may be printed if enclosed by quote marks.
String expressions may also be printed.

READ READ<V>[,<W> ...]

Assigns values in DATA statements to variables. Values are assigned
in sequence starting with the first value in the first DATA statement.

REM REM[< remark>]

Allows insertion of remarks. Not executed, but may be branched into.

RESTORE RESTORE ['-< t?l/Yl/Jtrlt ~7
Allows data from DATA statements to be reread. Next READ state
ment, after ~STORE begins with ,first data of fir~JPATA statement. ..
(T\- ci,;~ k(\6 .. V ~,.., I...l-d:t..- ,~""- ~""'/)'\""MV\ [SA- 1(6}'i(/ ,k",,:?!
RETURN RETURN

Terminates a subroutine. Branches to the statement after the most re
cent GOSUB.

STOP STOP

Stops program execution. Sorcerer enters command level and prints
BREAK IN LINE nnnnn.

SPECIAL DIAGNOSTIC INSTRUCTIONS
AND FUNCTIONS

You won't find these very useful in writing simple programs in Standard
BASIC, but if you become familiar with Sorcerer's machine language,
you will find them helpful in debugging programs.

WAIT

The status of input ports can be monitored by the WAIT command
which has the follOWing format:

B-6

WAIT <I,J>[,<K>]

where I is the number of the port being monitored and J and K are in
teger expressions. The port status is exclusive ORd with K and the
result is ANDed with J. Execution is suspended until a non-zero value
results. J picks the bits of port I to be tested and execution is sus
pended until those bits differ from the corresponding bits of K. Execu
tion resumes at the next statement after the WAIT. If K is omitted, it is
assumed to be zero. I, J and K must be in the range 0 to 255.
Examples:

WAIT 20,6

WAIT 10,255,7

POKE, PEEK

Execution stops until either bit 1 or bit 2
of port 20 are equal to 1. (Bit 0 is least
significant bit, 7 is the most significant.)
Execution resumes at the next statement.

Execution stops until any of the most
significant 5 bits of port 10 are one, or any
of the least significant 3 bits are zero. Ex
ecution resumes at the next statement.

Data may be entered into memory in binary form with the POKE state
ment whose format is as follows:

POKE<I,J>

where I and J are integer expressions. POKE stores the b~te J into the
location specified by the value of I. I must be less than 32768. J must
be in the range 0 to 255. Data may be POKEd into memory above loca
tion 32768 by making I a negative number. In that case, I is computed
by subtracting 65536 from the desired address. To POKE data into
location 45000, for example, I is 45000 - 65536 = - 20536. Care
must be taken not to POKE data into the storage area occupied by
Standard BASIC (addresses 0100 to BFFF), or the system may be
POKEd to death, and you will have to hit ImD and start again.

The complementary function to POKE is PEEK. The format for a
PEEK call is as follows:

PEEK«I>)

B-7

where 1 is an integer expression specifying the address from which a
byte is read. 1 is chosen in the same way as in the POKE statement.
The value returned is an integer between 0 and 255. A major use of
PEEK and POKE is to pass arguments and results to and from
machine language subroutines.

OUT,INP

The format of the OUT statement is as follows:

OUT<I,J>

where 1 and J are integer expressions. OUT sends the byte signified by
J to output port I. 1 and J must be in the range 0 to 255.

The INP function is called as follows:

INP(<I»

INP reads a byte from port 1 where 1 is an integer expression in the
range 0 to 255. Example:

20 IF INP(J)=16 THEN PRINl "ON"

8-8

APPENDIX C:
INTRINSIC FUNCTIONS

Standard BASIC provides several commonly used algebraic and string
functions which may be called from any program without further defini
tion. In the following list, X and Y stand for any numerical expressions,
I and J stand for integers (or expressions whose values are always in
tegers), and X$ and Y$ stand for string expressions.

Function Call Format

ABS ABS(X)

Returns absolute value of expression X. ABS(X) = X if X> = 0, - X if
X<O.

ASC ASC(X$)

Returns the ASCII code of the first character of the string X$. ASCII
codes are in Appendix G.

ATN ATN(X)

Returns arctangent (X). Result is in radians in range -7r/2 to 7r/2.

CHR$ CHR$(I)

Returns a string whose one element has ASCII code I. ASCII codes are
in Appendix G.

COS COS (X)

The cosine function: returns cos(X). X is in radians.

EXP EXP(X)

Returns e to the power X. X must be < = 87.3365.

FRE FRE(O)

Returns number of bytes in memory not being used by Standard
BASIC. If argument is a string, returns number of free bytes in string
space.

C-l

INP INP(I)

Reads a byte from port I.

INT INT(X)

Returns the largest integer < = x.
LEFT$ LEFT$(X$,I)

Returns leftmost 1 characters of string X$.

LEN LEN(X$)

Returns length of string X$. Non-printing characters and blanks are
counted.

LOG LOG(X)

Returns natural log of X; X> O.

MID$ MID$(X$,I [,J])

Without J, returns rightmost characters from X$ beginning with the Ith
character. If I>LEN(X$), MID$ returns the null string. 0<1<255.
With 3 arguments, returns a string of length J of characters from X$
beginning with the Ith character. If J is greater than the number of
characters in X$ to the right of I, MID$ returns the rest of the string.
0< =J< =255.

[c·r'
RND RND(X) f7 to

0{ SUIt 1~9 7-23 .- ,',

Returns a random number between a and 1. X < O/starts-'a- new s~~
quence of random numbers. X> a gives the next randdm number in se
quence. X = a gives the last number returned. Sequences started with
the same negative number will be the same.

POS POS(I)

Returns present column position of terminal's print head. Leftmost
position =0.

RIGHT$ RIGHT$(X$,I)

Returns rightmost 1 characters of string X$. If 1 = LEN(X$), returns X$.

C-2

SGN SGN(X)

If X> 0, returns 1, if X = 0 returns 0, if X < 0, returns - 1. For example,
ON SGN(X) + 2 GOTO 100,200,300 branches to 100 if X is negative,
200 if X is 0 and 300 if X is positive.

SIN SIN(X)

Returns the sine of the value of X in radians.
COS(X) = SIN(X + 3.14159/2).

SPC SPC(I)

Prints 1 blanks on terminal. 0 < = 1 < = 255.

SQR SQR(X)

, Returns square root of X. X must be > = 0

(g/ STR$ STR$(X)

Returns string representation of value of X.

TAB TAB (I)

Spaces to position 1 on the terminal. Space 0 is the leftmost space, 64
the rightmost. If the carriage is already beyond space I, TAB has no ef
fect. 0< =1< =255. May only be used in PRINT statements.

/.'/ TAN TAN(X)

Returns tangent (X); X is in radians.
~ (!

S-e--E.. I £Y(/,:, "
USR USR(X) ~/.-£ {) "

D 6-'6 0
Calls the user's machine l~guage subroutine with argument X.

VAL VAL{X$)

Returns numerical value of string X$. If first character of X$ is not
+, -, or a digit, VAL(X$) = O.

C-3

APPENDIX D:
ERROR MESSAGES
After an error occurs, Sorcerer prints an error message, returns to
direct mode, and then gives the READY prompt. The program instruc
tions and all variables and arrays remain in memory, but the program
cannot be continued by the CONT command. All GOSUB and FOR
context is lost, but you can continue the program with a direct mode
GO TO command. When an error occurs in a direct mode command,
no line number is printed in the error message. The format for error
messages is:

Direct mode error ?XX ERROR

Indirect mode error ?XX ERROR IN YYYYY

Here, XX is the error code, and YYYYY is the line number where the
error occurred. -

These are the error codes and their meanings:
('

BS SUBSCRIPT OUT OF RANGE

An attempt was made to reference an array element which is outside
the dimensions of the array. This error can occur if the wrong number
of dimensions are used in an array reference. For example:

LET A(l,l,l) = z
when A has already been dimensioned by DIM A(10,l0).

CN CAN'T CONTINUE

Attempt to continue a program when none exists, an error occurred, or
after a modification was made to the program.

DD REDIMENSIONED ARRAY

After an array was dimensioned, another dimension statement for the
same array was encountered. This error often occurs if an array has
been given the default dimension of 10 and later in the program a DIM
statement is found for the same array.

FC ILLEGAL FUNCTION CALL

0-1

The parameter passed to a math or string function was out of range.
FC errors can occur due to:

1. a negative array subscript (LET A(- 1) = 0)

2. an unreasonably large array subscript (> 32767)

3. LOG with negative or zero argument

4. SQR with negative argument

5. A"B with A negative and B not an integer

6. a call to USR before the address of a machine language subroutine
has been entered.

7. calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STR$, or ON ... GOTO with an improper argument.

ID ILLEGAL DIRECT

INPUT and DEF are illegal in the direct mode.
,~

! 1

I I
Cj

i

L.
,I I

:'---

NF NEXT WITHOUT FOR

The variable in a NEXT statement corresponds to no previously ex
ecuted FOR statement.

LS STRING TOO LONG

An attempt was made to create a string more than 255 characters long.
It\(i ,(
OD OUT OF DATA

A READ statement was executed but all of the DATA. statements in
the program have already been read. The program tried to read too
much data or insufficient data was included in the program.

OM OUT OF MEMORY

Program is too large, has too many Variables, too many FOR loops, too
many GOSUBs or too complicated expressions.

OS OUT OF STRING SPACE

D-2

String variables exceed amount of string space allocated for them. Use
the CLEAR command to allocate more string space or use smaller
strings or fewer string variables.

OV OVERFLOW

The result of a calculation was too large to be represented in Standard
BASIC's number format. If an underflow occurs, zero is given as the
result and execution continues without any error message being
printed.

RG RETURN WITHOUT GOSUB

A RETURN statement was encountered before a previous GOSUB
statement was executed.

SN SYNTAX ERROR

Missing parenthesis in an expression, illegal character in a line, incor
rect punctuation, etc.

ST STRING FORUMULA TOO COMPLEX

A string expression was too long or too complex. Break it into two or
more shorter ones.

TM TYPE MISMATCH

The left hand side of an assignment statement was a numeric variable
and the right hand side was a string, or vice-versa; or a function which
expected a string argument was given a numeric one or vice-versa.

UF UNDEFINED USER FUNCTION

Reference was made to a user defined function which had never been
defined.

UL UNDEFINED UNE

The line reference in a GOTO, GOSUB, or IF ... THEN was to a line
which does not exist.

/0 DIVISION BY ZERO

o to a negative power also causes DMSION BY ZERO error.
0-3

APPENDIX E:
USER-DEFINED GRAPHICS

You can program Sorcerer to use special graphic characters that you
design yourself. If you want to store or print information in Russian,
Arabic, Hebrew, or Greek, you can train Sorcerer to use those alpha
bets; if you just want to use a graphic symbol that is not in the standard
keyboard graphic set, you can do that, too.

Each character is stored in eight successive memory addresses in the
memory block FEOO to FFFF (hexadecimal). For example, the first key
(the a key on the main keyboard) uses FEOO to FE07. So first you
have to figure out which eight addresses go with the key in which you
want to store your new character.

Your character will be represented as an 8 x 8 array of dots and blanks,
so get out a pencil and paper, and work out the representation.
Quarter-inch grid graph paper is useful here. Each eight-place row of
this array will fit in one of the eight addresses of your character's key;
the top line goes into the first address, the next line goes into the sec
ond, and so on.

Example:

One way to represent the Greek letter omega is:

•••••••• •• 000 •••
• 0 ••• 0 ••
0 ••••• 0.
0 ••••• 0 •
• 0 ••• 0 ••
•• 0.0 •••
000.000.

Now take each line of your array, and change it into a two-character
code in this way: First split the eight-place line in two. Then convert
each of these two four-place lines into code with the following table:

E-l

Four-Place Line Code

•••• = 0 D ••• = 8

••• 0 = 1 0 •• 0 = 9

•• 0. = 2 D.O • = A

•• 00 = 3 0.00 = B

• 0 •• = 4 DO •• = C

.0.0 = 5 00.0 = 0

• 00. = 6 000 • = E

.000 = 7 0000 = F

Examples: The eight-place line:

00 •• 0.0. is coded as CA

The eight lines of our letter omega are:

•••••••• 00
•• 000 ••• 38
.0 ••• 0 •• 44
0 ••••• 0.82
0 ••••• 0.82
.0 ••• 0 •• 44
•• 0.0 ••• 28
000.000. EE

What you have just done is to consider each eight-place line of your
character as an eight-digit binary number (white dots are Is and blanks
are Os), and to re-write that number in hexadecimal notation. So you
now have a two digit hexadecimal number for each of the eight lines of
your new character; you must now get these numbers into the eight
memory locations that belong to your character's key.

Get into the Power-On Monitor by giving the command BYE (leave the
ROM PAC in place). Then give the Monitor command EN XXXX
where XXXX is the first memory address of the desired key. For exam
ple, the first address of the D key on the main keyboard is FE08, so

E-2

the proper command for that key is EN FE08. Sorcerer will respond
with the address you gave it, followed by a colon.

Example:

You type:

Sorcerer
replies:

EN FE08

FE08: __ cursor

Type in the two-digit hexadecimal code of your character's first line,
and hit i;i=,Iiwl . Sorcerer will reply with the next address in memory,
and wait for more data. Type in the hex-code for your character's sec
ond line, and repeat this process until you have entered all eight lines of
your character into memory. Sorcerer will then give you the address of
the first memory location for the next key on the keyboard. Type in a
slash (I) and hit iji:,iii;iii .

Your new character is now stored in the Sorcerer. Just press 'diWm,
and ED, and your character's key, and your new graphic will appear
on the screen.

Note: Your special graphic characters normally live in memory ad
dresses FEOO to FFFF. Addresses FCOO to FDFF contain the standard
graphic characters; these are the characters you get using the '#9*'
key, but not the ED. You can put your own characters into these ad
dresses if you wish; the procedure is the same as above. Sorcerer will
still respond to the one-key BASIC command for your character's key
(see Appendix F).

You can get back into Standard BASIC with the Monitor command
PP. When you tum off Sorcerer's power, or hit 1mD, all your user
defined characters will be lost. To save them for future use, pass to the
Power-On Monitor and save the contents of the character's memory
addresses on cassette, using the Monitor command SA. You can load
the characters back into memory from the tape, using the Monitor com
mandLO.

E-3

APPENDIX F:
ONE-STROKE INSTRUCTIONS

Most of Sorcerer's keys have a Standard BASIC instruction or intrinsic
function as an additional meaning. For example, you can use the a
key on the main keyboard to enter an INPUT statement, or the B key
to enter the statement RETURN.

To use this feature, press the key for your function or instruction,
simultaneously with the i3;!@ii' key. A graphic symbol will appear on
the screen. But that symbol is not necessarily what goes into Sorcerer's
memory. If Sorcerer expects an instruction or function when you hit the
keys, it will interpret what you gave it as an instruction or function. The
figure on page F-2 shows the additional meanings of the keys.

Examples:

You type: 10

Then hit: '3;t.jQ: iti and a
Then hit: i;i;iii;i~i

The screen shows: 10-

Now type: i3;!@iij and II

Then hit:

Sorcerer replies:

Now try again:

You type:

Then hit:

10 PRINT

10

idMam. and a
F-1

Note: If you have
stored your own
graphic symbol under
key a, it will appear
here instead of-.

This gives the LIST
command.

sill Fr I (3{t.IlP# Ie.
$'''In_$ '" ot

," iffH-. -: <::/ ...
'3 /}sC ~ (,7.-
:,- C /llL;'j :: <:3 ,- /..f3FT$::: ci.f J;

" il.,/f:.H" .: Cd"
7 JYlID#' :: c.b

ABS USR FRE INP - -/ c· 9

pos SQR 5 RND
-.'!'-- .' ,-, " :~ -'

LOG EXP COS SIN
7- I 7_- :;::

T~ ATN PEEK LEN
,(') ~ ==

One-Stroke BASIC Instractions
~r'l{J!qf

Then type:

Then hit:

And type:

And hit:

The screen shows:

Now press:

And hit:

Sorcerer replies:

Next hit:

And hit:

"

'al'4ii[ti D

"

10-"-"

10 PRINT "-"

This gives the RUN
command.

Sorcerer replies by printing --, or whatever graphic you have stored
under the D key.

Note: The i;i:,Ii@' key does not give the instruction RETURN. It ter
minates a line of typed instructions or data, and feeds the line into
Sorcerer's memory. '9b4m. 1:1 gives the instruction RETURN (part
of a subroutine) but does not give a carriage return.

The keys for intrinsic functions work the same way as the keys for in
structions. Some of these keys supply a left parenthesis for the function
argument, and some do not. You still have to type in the argument and
any needed parentheses.

The. key's additional meaning is INT, the greatest integer function.
This key also has a second additional meaning: ED • gives a
PRINT instruction in the same way that 'MP!!!' D does.

F-3

APPENDIX G:
ASCII CHARACTER CODE

ASCII stands for American Standard Code for Information Exchange.

Table 1. Decimal Designations of the
Standard Characters

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

000 NUL 031 US 062 >
001 SOH 032 SPACE 063 ?
002 STX 033 064 @

003 ETX 034 " 065 A
004 EOT 035 # 066 B
005 ENQ 036 $ 067 C
006 ACK 037 % 068 0
007 BEL 038 & 069 E
008 BS 039 070 F
009 HT 040 071 G
010 LF 041 072 H
011 VT 042 * 073 I
012 FF 043 + 074 J
013 CR 044 075 K
014 SO 045 076 L
015 S1 046 077 M
016 OLE 047 I 078 N
017 DC1 048 0 079 0
018 DC2 049 1 080 P

1,Svo("r:019 DC3 050 2 081 Q
020 DC4 051 3 082 R
021 NAK 052 4 083 S
022 SYN 053 5 084 T
023 ETB 054 6 085 U
024 CAN 055 7 086 V
025 EM 056 8 087 W
026 SUB 057 9 088 X
027 ESC 058 089 y

028 FS 059 090 Z
029 GS 060 < 091 [
030 RS 061 = 092 \

G-l

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

093 105 117 u
094 A 106 j 118 v
095 < .107 k 119 w

096 108 120 x

097 a 109 m 121 y

098 b 110 n 122 z
099 c 111 0 123 {
100 d 112 p 124 1

J

101 e 113 q 125 }
102 114 r 126
103 9 115 s 127 DELETE
104 h 116 (Rubout)

Table 2. Standard Abbreviations for ASCII characters
o through 31

ACK = Acknowledge

BELL = Bell

BS = Backspace

CAN = Cancel

CR = Carriage Return

DCl = Direct Control 1

DC2 = Direct Control 2

DC3 = Direct Control 3
DC4 = Direct Control 4

OLE = Data Link Escape

EM = End of Medium

ENQ = Enquiry
EOT = End Of Transmission

ESC = Escape

FF = Form Feed

FS = Form Separator

GS = Group Separator

HT = Horizontal Tab

LF = Line Feed
NAK = Negative Acknowledge

NUL = Null
RS = Record Separator

SI = Shift In

SO = Shift Out

SOH = Start of Heading
STX = Start Text

SUB = Substitute

SYN = Synchronous Idle

ETB = End Transmission Block US = Unit Separator
ETX = End Text VT = Vertical Tab

G-2

Exidy Accessory Order Form

DetJClrDptRGB Catalog No. Pi'ace Ea. Qiiaiitaty

MANUALS

Sorcerer Operation Manual DP 5001 9.95
Standard BASIC Manual DP 5002 11.95
Sorcerer Technical Manual DP 5003 11.95
Expansion Unit Manual DP 5004 9.95
Video Display Manual DP 5005 9.95
Development Tour Manual DP 5006 11.95

ROM PACTM CARTRIDGES AND DATA CASSETTE

Blank PAC DP 2001 49.00
Standard BASIC PAC DP 2002 99.00
Development PAC DP 2003 99.00
Data Cassettes DP 3001 4.95

CABLES

Cassette Recorder Cable (6') DP 4001 2.95
Video Display Cable (6') DP 4002 4.95
Data Cable (25 conductor 6') DP 4003 24.95
Bus Expansion Kit DP4Q04 149.00

FOR ADDED DIMENSION

Exidy Expansion Unit DP 1004 299.00
Exidy Video Display DP 1005 299.00

Total Merchandise

Enclose $3.00 Handling + Postage for Total Merchandise under $200.00.

Sales Tax (if applicable)

Amount Enclosed in Check or Money Order

Tota;

$--

$-

$--

Name __ _

Admess __ __

City State Zip

NOTE: Please allow 30 days for delivery. Prices subject to change without notice .. New Ac
cessory Order Form will be returned with every order.

FIRST CLASS
Permit #1096

Sunnyvale, CA

BUSINESS REPLY MAIL
No Postage Stamp Necessary if Mailed in the U.S.

Postage will be Paid by

EXIDY INCORPORATED
Data Products Division
969 W. Maude Avenue
Sunnyvale, California 94086

~.~~ .. ~_QtQtQ~iQ~tQ&&&lQ&&Q&&Q£M&(MI~&&ilik(:&&~Q&~W~&Q~'i~
~ LIMITED WARRANTY
a
~ EXIDY warrants to the registered owner for a period of 90 days from the date .
~ of purchase that the computer components described herein shall be free from ~
--:::;:; defects in material and workmanship under normal use and service. This war- ~
~ ranty shall be void if the computer enclosure is opened or if the unit is altered or ~

--:::;:; returned as outlined in Customer Service Information. (Refer to A GUIDED ~
----: >-=

:::: TOUR OF PERSONAL COMPUTING, p. 5.) Customer's sole and exclusive R::o
:=2i remedy in the event of defect is expressly limited to the correction of the defect ~
:::3 by adjustment, repair or replacement at EXIDY's election and there shall be no ~
~ obligation to replace or repair items which by their nature are expendable. No ~_
'--;::;:: representation or other affirmation of fact, including but not limited to
::::::: statements regarding capacity, suitability for use, or performance of the equip-
~: ment, shall be deemed to be a warranty or representation by EXIDY, for any
::::s:: purpose, nor give rise to any liability or obligation of EXIDY what-50-ever.
~: EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREE- ~
~:: MENT, THERE ARE NO OTHER WARRANTIES, EXPRESS ~
-:=:: OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY IM- ~

::: PLIED WARRANTIES OR MERCHANTABILITY OR ~
-:::: FITNESS FOR A PARTICULAR PURPOS~ AND liN NO g

:: EVENT SHALL EXIDY BE LIABLE FOR LOSS OF PROFITS ~
:::::: OR BENEFITS, INDIRECT, SPECIAL, CONSEQUENTIAL ~
~i OR OTHER SIMILAR DAMAGES ARISING OUT OF ANY g
~: BREACH OF THIS WARANTY OR OTHERWISE. :<=--
~: ~

-;)))O~~l\J)\)~J~~~W0~0W01~J~1))J1J)0~0~~~)i1I)O~0)0W-)W~WliJ)0JJ~! (' i ~

NOTICE

ALL EXIDY SOFTWARE IS DISTRIBUTED ON AN "AS IS"
BASIS WITHOUT WARRANTY

EXIDY shall have no liability or responsibility to customers or any
other person or entity with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by computer
equipment or software sold or distributed by EXIDY, including but not
limited to any interruption of services, loss of business or anticipatory
profits or consequential damages resulting from the use or operation
of such computer or software.

$9.95

REORDER DP 5002

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	G-01
	G-02
	replyA
	replyB
	xBackA
	xBackB

