ESV Workstation

User’s Manual

EVANS & SUTHERLAND COMPUTER CORPORATION
Salt Lake City, Utah

DOCUMENTATION WARRANTY:

PURPOSE: This documentation is provided to assist an Evans & Sutherland trained BUYER
in using a product purchased from Evans & Sutherland. It may contain errors or omissions
that only a trained individual may recognize. Changes may have occurred to the hardware/
software, to which this documentation refers, which are not included in this documentation
or may be on a separate errata sheet. Use of this documentation in such changed hardware/
software could result in damage to hardware/software. User assumes full respons1b111ty of

all such results of the use of this data.

WARRANTY: This document is provided, and Buyer accepts such documentatlon “AS-IS”
and with “ALL FAULTS, ERRORS, AND OMISSIONS.” BUYER HEREBY WAIVES ALL
IMPLIED AND OTHER WARRANTIES, GUARANTIES, CONDITIONS OR LIABILITIES
EXPRESSED OR IMPLIED ARISING BY LAW OR OTHERWISE, INCLUDING, WITHOUT
LIMITATIONS, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
BUYER FURTHER HOLDS SELLER HARMLESS OF ANY DIRECT OR INDIRECT
DAMAGES, INCLUDING CONSEQUENTIAL DAMAGES.

ESV,ESV Series, ESV Series Workstations, ES/os, ES/Dnet, ES/PEX, ES/PHIGS, ES/PSX,
Clean-Line, Fiber Link, Local Server, CDRS, and Shadowfax are trademarks of
Evans & Sutherland Computer Corporation.

LAT Host Services, DEPICT, and PCONFIG are trademarks of Ki Research.
AVS is a trademark of Stardent Computer, Inc.

VAX, VMS, and DECnet are trademarks of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T.

Ethernet is a registered trademark of Xerox Corporation.

Motif is a trademark of the Open Software Foundation, Inc.

SunPHIGS is a registered trademark of Sun Microsystems, Inc.

CrystalEyes is a trademark of StereoGraphics Corporation.

Spaceball is a trademark of Spatial Systems Pty Limited.

Kodak is a trademark of Eastman Kodak Company.

Part Number: 517940-102 AA
April, 1991

Copyright © 1991 by Evans & Sutherland Computer Corporatlon
All rights reserved.

Printed in the United States of America.

1. Reader’s Guide

Reader’s Guide

Table of Contents

1.

Reader’s Guide
Typographical CONVENtONScoeivcrrniereiteenrentereeceneesaecteneessstsessesnssesesssessessoses

Software and Documentation REIEASES.ccurevveruierieiiireeriereereeenreseeisesecssesneas

ESV Workstation Reference Manual
ESV Workstation Applications and OPLiOnsc.ceceeveevervnsereeeseas 1-3

Software Options DOCUMENEALION.c.ceverererecerrereereresesrerassraeseessesssssssssssssesssans
Development Kit.......cocoiiieecnennnenennninieesrenieneseceenesecesaeessens
RISCOMPIIETS......covruiieeeinrenieentercnneeteeeestesessesessesessenssssasasssns
Documenter’s Workbench

Optional DOCUMENLAtION........ccovvururrereeereireeesrrereseresessensssssesesssessesssesesansens
X Window System Documentation
OSF/Motif DOCUMENLALIONoueeverireeereineneiaeesrensesesseserssesesassssesesseses
INOAUCIOTY TEXIS....coueueerieeiieerereernestenienesteneesensenesestssennessnasessssesessenes

ESV Workstation User's Manual [2.0] 1-i

Reader’s Guide

1. Reader’s Guide

The ESV Workstation documentation is divided into the following catego-
ries.

» ESV Workstation Document Set

» Software Options Documentation

» Optional Documentation
Evans & Sutherland part numbers are shown in parentheses after the docu-
ment title.

Typographical Conventions

Following are the typographical conventions used in the ESV Workstation
Document Set and the documentation for the ESV Workstation Options.

» Times italics indicate a new term that is being defined.
* TIMES SMALL CAPS represent the names of keys on the keyboard.

* Helvetica bold represents any command, function, option, data type,
or filename.

* Helvetica bold italics represent a variable element which must be
filled in with a specific value when actually used.

* Courier normal represents anything a user sees on the screen, the
contents of a file, or sample code.

* Courier boldrepresents anything typed on a command line in re-
sponse to a system prompt.-

Software and Documentation Releases

ESYV Workstation software and documentation releases are numbered X.Y.Z,
where,

* X =major functional changes and bug fixes with a general distribution
~ to customers,

* Y = minor functional changes and/or bug fixes with a general distri-
bution to customers, and

» Z=minor functional changes and/or bug fixes with a limited distribu-
tion to customers (generally through a customer request).

ESV Workstation User's Manual [2.0] 1-1

Reader’s Guide

ESV Workstation Document Set

The ESV Workst&tion Document Set [2.0] (217940-101) consists of the fol-
lowing three volumes and is shipped with all ESV Series Workstations.

o ESV Workstation User’s Manual
¢ ESV Workstation Reference Manual
e ESV Workstation Applications and Options

ESYV Workstation User’s Manual

This volume consists of the following chapters.

“1. Reader’s Guide”

This chapter contains a description of, and part numbers for, all of the
ESV Workstation documentation.

“2. Product Overview”

This chapter contains overviews of the ESV Workstation hardware and
software.

“3. Getting Started”

This chapter contains information about booting the ESV Workstation,
logging on, and the default system configuration.

“4. Customizing the System”

This chapter describes ways the user can change the ESV Workstation
from its default configuration.

“5. Video Output Guide”

This chapter describes the ESV Workstation’s video output. It contains
video output specifications, timing formats, and describes techniques for
recording screen images.

“6. Editors”

This chapter contains an overview of the vi and emacs editors.

“7. Customer Support”

This chapter contains site preparation, installation, and preventative
maintenance information, and describes the warranty and hardware/soft-
ware customer support plans.

“8. Porting Guide”

This chapter contains information for porting programs to the ES/os en-
vironment.

“9. Local Server”

This chapter contains information about the ESV Local Server which
consists of a second CPU card and a shared memory module.

ESV Workstation User’'s Manual [2.0]

Reader’'s Guide

ESYV Workstation Reference Manual

This volume consists of the following chapters.

“1. ES/PEX”

This chapter describes graphics standards, PHIGS and PHIGS PLUS func-
tions, and contains sample PHIGS programs.

“2. X Extensions”

This chapter describes the X Input, X Picking, and E&S extensions to the
X11 server. The E&S extension contains the X Overlay, X Multiscreen,
X Video Timing Formats, and X Miscellaneous Traversal functionality.

“3. X Clients”

This chapter lists the X Clients supported by the ESV Workstation and
contains the manual reference pages for the X, Xesv, xem, csm, and
mwm clients.

ESV Workstation Applications and Options

This volume consists of the following chapters.

L]

“1. Release Notes”

This chapter is reserved for release note documentation which is distrib-
uted with software releases.

“2. Helpful Hints”

This chapter is reserved for “helpful hints” documentation which is dis-
tributed with software releases.
“3, Application Notes”

This chapter is reserved for “application notes” documentation which is
distributed with software releases.

The remainder of this volume is reserved for the following documents which
are provided when you purchase the ESV Workstation option(s).

Stereo User’s Manual [2.0] (217941-101)

Spaceball User’s Manual [2.0] (217941-201)

Fiber Link User’s Manual [2.0] (217941-401) |
ES/Dnet User’s Manual [2.0] (217941-501)

LAT Host Services User’s Manual [2.0] (217941-601)
Diskless Node User’s Manual [2.0] (217941-701)

ESV Workstation User's Manual [2.0] 1-3

Reader’s Guide

Software Options Documentation
Development Kit

The following optional documents are recommended for purchase with the
Development Kit option. A minimum of one copy per site is recommended.

SunPHIGS Document Set (217982-100)
This set consists of the following four volumes, available only as a set.

» Getting Started with SunPHIGS

* SunPHIGS 1.1 Programming Guide

e SunPHIGS 1.1 Reference Manual

e SunPHIGS 1.1 Extensions Reference Manual
ES/PHIGS Reference Manual (217960-100)

RISC/os Document Set (400400-100)

This set consists of the following seven documents, available as a set or indi-
vidually.

* RISClos Programmer’s Reference Manual (400401-100)

¢ RISClos User’s Reference Manual (400402-100)

* RISClos System Administrator’s Reference Manual (400403-100)
e RISClos System Administrator’s Guide (400404-100)

* RISClos Programmer’s Guide (400405-100)

* RISClos User’s Guide (400406-100)

e RISClos Streams Primer and Programmer’s Guide (400407-100)

MIPS Programmer’s Document Set (400410-100)

The set consists of the following three documents, available as a set or indi-
vidually.

* RISCompiler Languages Programmer’s Guide (400411-100)
e MIPS Assembly Language Programmer’ s Guide (400412-100)
* MIPS RISCompiler Porting Guide (400413-100)

1-4 ESV Workstation User’'s Manual [2.0]

Reader’'s Guide

RISCompilers

The following documents are provided with the purchase the RISCompiler
options.

s MIPS-Pascal Programmer’s Guide and Language Reference
(400421-100)

e MIPS-FORTRAN Programmer’s Guide and Language Reference
(400422-100)

* MIPS-Ada 3.0 Programmer’s Guide (400423-102)
Documenter’s Workbench

The following document is provided with the purchase of the Documenter’s
Workbench option.

e MIPS RISC/os Documenter’s Work Bench (400424-100)

ES/PSX
The following document is provided with the purchase of the ES/PSX option.
e ES/PSX Document Set (217950-100)

AVS
The following document is provided with the purchase of the AVS option.
» AVS Document Set (217951-100)

ESV Workstation User's Manual [2.0] 1-5

Reader's Guide

Optional Documentation ('

The following X Window System and OSF/Motif documentation is recom-
mended for graphics program development.

X Window System Documentation

The following books are published by O’Reilly & Associates and are avail-
able individually.

* Xlib Programming Manual (400450-100)
* Xlib Reference Manual (400451-100)
* X Window System User’s Guide, Motif Ed. (400452-101)
* X Toolkit Intrinsics Programming Manual, Motif Ed. (400453-101)
* X Toolkit Intrinsics Reference Manual (400454-100)
OSF/Motif Documentation

The following five books are published by Prentice-Hall, Inc., and are avail-
able individually.

e OSF/Motif User’s Guide, Revision. 1.0 (400460-100)
* OSFIMotif Style Guide, Revision 1.1 (400461-101)

» OSF/Motif Programmer’s Guide, Revision 1.1 (400462-101) (
* OSF/Motif Programmer’s Reference Manual, Revision 1.1
(400463-101)

e AES User Environment Volume, Revision A (400464-100)
Introductory Texts
The following three introductory texts are available individually.

* A Practical Guide to the UNIX System by Mark G. Sobell,
The Benjamin/CummingsPublishing Company, Inc. (400440-100)

» Computer Graphics — Principles and Practice, Second Edition
by Foley, van Dam, Feiner, and Hughes,
Addison-Wesley Publishing Company (400441-100)

* The X Window System, Programming and Applications with Xt
OSF/Motif Edition by Douglas A. Young,
Prentice-Hall, Inc. (400442-100)

1-6 ESV Workstation User’s Manual [2.0]

2. Product Overview

Product Overview

Table of Contents
2. Product Overview 2-1
ESV Series WOTKSIAHONc.cccuevvieiieirieneenreeieereciseeseeereesssessesseessessaessssseessessssnss 2-1
HArdware OVETVIEWcoveeueirieeniientieenesireeesecessseesesssseesssesssesssssssssssssssasssnne 2-3
MOMNILOT ...vvieirieiireeeeeieerireessaeeteessrsersaeenesesssesseesssaesssessasessesssnressessssersnne 2-3
Hard Disks and Tape DIIVEcccccoevinerinrenieinenenreineeneeeesesesessensssenns 2-4
INtETaCtive DEVICES ..ovvvevreeereeirienriieeeientie ettt esreessaessnecabessbessseessenes 2-4
SOFtWATE OVETVIEW ..ottt et et st sabesstess st s snbesnse st ssassssenssnneenn 2-8
OPETAtiNG SYSIEIMN ...eueeieeerereniieiereeneeterereteseseesssesarassesesesessssssssesesesessnsnn 2-8
Software Development Environmentccoueueveererereneeceneeeseressenenenns 2-8
Graphics ENVITONIMENEc.coeiirueiereninirinneneineerenenreseeseseenesseseseesescesessnee 2-10
ES/0S FEALUTES ...c.vveeveeueeeiiiienteeieeieereentieseesseessesssessaesssessassessseessessasssensessasssensonss 2-11
What the ES/0s System DOESccccceeeerinnierenienenenensenseneeseescsseneeseenens 2-11
HOW ES/0S WOTKS ...ccoveiiiierieciieeiecereenteeeiriesete e eesssessaesssesssesssessssnnes 2-12
Window ENVITONMENLcooviiviiiiiiiiieireciecereeeseeesecesssesssesesseesssesssessassssserses 2-15
XUTOOIKIL «veeuvireenreereerieieerteetiereeseereerresssesteesseesesansessesssessessaessessessesnsonss 2-15
MO .ottt bbb st et st s b sseeabesbsenssssensessanssensones 2-16

ESV Workstation User's Manual [2.0] 2-i

Product Overview

2. Product Overview

The ESV Series Workstations are UNIX-based, high-performance, 3D graph-
ics workstations, engineered to support applications in molecular modeling,

industrial/automotive design, and design engineering and analysis. The ESV
Series Workstations support the image quality and performance requirements

of these applications.

The ESV Series Workstations are available in several models that can be
tailored to meet individual customer’s needs. Model numbers reflect various

graphics performance configurations.

ESYV Series Workstations

The ESV Series Workstations are available in several different configura-
tions. Each configuration, defined by a model number, represents both a

physical configuration and a level of performance outlined below:

Model S-pixel vec/sec 10-pixel vec/sec 3-sided poly/sec 4-sided poly
ESV 3/32 & 3/33. 360,000 ..360,000 33,000 19,000
ESV 10/32 & 10/33 28,000
ESV 20/32 & 20/33 45,000
ESV 30/32 & 30/33 62,000
ESV 40/32 & 40/33 78,000
ESV 50/32 & 50/331,100,000 100,000
Model CrPU MFLOPs Model CPU MFLOPs
ESV 3/32....25MHz............. 4 ESV 3/33....33MHz............5.28
ESV 10/32...25MHz............. 4 ESV 10/33 ...33MHz............ 5.28
ESV 20/32..25MHz............. 4 ESV 20/33 ...33MHz............ 5.28
ESV 30/32...25MHz............ 4 ESV 30/33 ...33MHz............5.28
ESV 40/32..25MHz............ 4 ESV 40/33 ...33MHz............5.28
Dhrystone-MIPS/VAX-MIPS Models
24120 ESV 3/32, ESV 10/32, ESV20/32
ESV 30/32, ESV 40/32, ESV 50/32
32/26 woreeeerernene .ESV 3/33, ESV 10/33, ESV 20/33
ESV 30/33, ESV 40/33, ESV 50/33
DHRYSTONES (version 1.1) Models
41,000 ..oernreenreisinesesnsesese e ssaenes ESV 3/32, ESV 10/32, ESV20/32
ESV 30/32, ESV 40/32, ESV 50/32
52,000 ceourirererienersenersanesnensesesssnenesenane ESV 3/33, ESV 10/33, ESV 20/33

ESV 30733, ESV 40/33, ESV 50/33

ESV Workstation User's Manual [2.0]

Product Overview

19" Raster Monitor

Keyboard

Mouse and Pad

CPU

Video

Graphics Executive
Frame Buffer

Frame Buffer 7-card Cabinet

DSP (standard for ESV models 3 and 10)

VME (
BASE SYSTEM

Control Dials w/LEDs
- Data Tablet

/

RDC
Function Buttons Optional Peripherals ~ Spaceball
Figure 2-1. Base system configuration and optional peripherals (

2-2 ESV Workstation User's Manual [2.0]

Product Overview

Hardware Overview

Monitor

The ESV Workstation’s CPU is implemented with a 25 MHz MIPS R3000
RISC microprocessor or a 33 MHz MIPS R3000A RISC microprocessor. The
CPU is central to the system, and it ties together the system’s two global bus-
ses: the VMEDbus and the Gbus (a proprietary bus used by the graphics sub-
system). The CPU is capable of accessing devices on either the Gbus or the
VMEbus. Both the graphics subsystem and the CPU are expandable for per-
formance. ESV models 3 and 10 come standard in the small cabinet (7-slot).
Other models come standard in the large cabinet which has 14 card slots in-
cluding four VME and four graphics expansion slots. Figure 2-1 shows the
base system configuration and optional peripherals.

The three major subsystems in the ESV Workstation (CPU, Graphics, and
VME 1/0) are all clock-independent. There is a total of 128 Kbyte of high-
speed cache memory. System memory ranges from 8 Mbytes up to
128 Mbytes.

The color raster monitor has a viewing format of 1280 x 1024 pixels. The
custom keyboard maintains communication via a synchronous serial link.
The ESV Workstation mouse is a three-button optical mouse.

The standard hardware configuration is listed below:
« MIPS R3000 processor (25 MHz or 33 MHz),

» Ethemet controller with TCP/IP,

» Two additional RS-232 ports,

* One keyboard port,

* One mouse port,

* SCSI support for internal and external peripherals,
* 19-inch raster monitor,

» ESV graphics card set,

e Optical mouse,

» Alphanumeric keyboard,

+ 8 or 16 Mbyte memory,

e VMEDbus.

The ESV Workstation’s monitor has no particular operating instructions oth-
er than turning it on and off, and adjusting the brightness and contrast of the
screen.

The monitor should be turned on before you turn on power to the control
unit. The monitor is turned on using the ON/OFF switch located on the lower

ESV Workstation User's Manual [2.0] 2-3

Product Overview

right-hand side of the monitor front. The ON/OFF switch is the bottom right (
of the two switches. The switch to the left of the ON/OFF switch is the degauss -
switch. The two thumbwheel knobs to the left of the switches are used to con-

trol contrast and brightness to reach a desired intensity. The right thumbwheel

regulates the contrast; the left regulates brightness. Intensity is controlled by

the use of both controls.

The main area of the screen is used for viewing text or graphics. The ter-
minal emulator viewing area is 80 columns wide and 40 lines high. The
screen space used for viewing depends on the application.

Hard Disks and Tape Drive

Several sizes of hard disks and a tape drive are available as options on the
ESV Workstation. Hard disk drives (5-1/4-inch) are available in sizes

180 Mbyte, 380 Mbyte, 760 Mbyte, and 1.2 Gbyte. A system may have up to
two hard disks and one 1/4-inch 150 Mbyte tape drive.

A disk chassis, the “Data Shuttle,” is available to facilitate the removal of
two disk drives without disconnecting any wires or cables. The disk drives are
mounted in individual canisters which slide easily in and out of the chassis.

The ESV Workstation has a SCSI interface permitting the use of CD-ROM
storage devices which are a type of media for read-only mass storage. The
availability of the CD-ROM driver allows ESV Workstation users to access
purchased data bases. (

An external SCSI connection permits the connection of up to seven
internal and external peripheral devices.

Interactive Devices

The following are interactive devices that can be configured with the ESV

Workstation:
» Keyboard,
* Mouse,

¢ Reprogrammable data concentrator (RDC),
» Control dials with LEDs,

¢ Data tablet,

¢ Function buttons,

* Spaceball.

Only the keyboard and the mouse are standard peripherals. Others are
optional.

2-4 ESV Workstation User's Manual [2.0]

Product Overview

Input Protocol

Input from the keyboard and mouse is defined by the core X protocol. The
mouse has two major functions: to generate motion information that applica-
tion programs can detect, and to indicate the current location and focus of the
keyboard.

Input from the other input devices is defined by an extension to the X11
server, which includes functions and events analogous to the core functions
and events. This allows extension devices (dials, tablet buttons, ezc.) to be
individually distinguishable from each other and from the core devices
(mouse and keyboard).

Keyboard

The keyboard has standard alphanumeric keys, plus cursor-control (arrow)
keys and a numeric keypad at the right. It also has a row of function keys
across the top, including six defined function keys, twelve undefined function
keys, and the escape key. The keyboard has three LEDs at its upper-right cor-
ner which indicate the status of the following keys:

* NUMLOCK
« CAPSLOCK
* SCROLLLOCK

The keyboard communicates with the workstation using synchronous
serial protocol. It is activated when the system is booted. The keyboard
connector cable should be plugged into the appropriate port on the control
unit or the RDC if there is one.

The keyboard keys fall into seven categories:

» Keyboard Function Control Keys. These keys are the CTRL, SHIFT,
CAPSLOCK, and ALT keys. They are local control keys that modify the
signal generated by other keys when struck in combination with them.

e Alphabetic Keys, Standard Numeric, and Special Character Keys.
These keys all generate standard ASCII character codes and are used
to display uppercase and lowercase characters. The keys may be
struck alone, or in combination with the keyboard function control
keys.

o Terminal Function Keys. These keys are ESC, TAB, BACKSPACE,
DELETE, ENTER, and the space bar. These keys produce codes used
by a standard terminal.

e Numeric Keypad Keys. The function of these keys is determined by
the X client.

e Function Keys. These keys are interactive keys that are user defined.
They can be used for internal control or for communication to the ap-
plication program.

ESV Workstation User's Manual [2.0] 2-5

Product Overview

Mouse

RDC

The optical mouse consists of a three-button mouse unit with a reflective pad.
The mouse transforms x and y axis position information to a digital form ac-
ceptable to the workstation. The cursor moves around on the screen in re-
sponse to movement of the mouse across the pad.

The mouse uses red and infrared LEDs reflecting off the pad to provide
directional information to the control logic in the mouse. This movement is
translated into absolute x and y position information. This data is transmitted
serially to the workstation.

The RDC consists of a circuit card with six interactive device ports, one debug
port, and one host computer port. It gives you two main advantages:

+ Itallows you to keep your display monitor (and RDC) a large distance
from the control cabinet (for example, in another room) without hav-
ing to run several long cables from each input device to the control
unit. You can run cables from input devices to the RDC and a single
cable from it to the control unit.

» It provides you with an additional RS-232 port.

The RDC receives input data from interactive devices connected to the
interactive device ports and multiplexes the data to the host port. It also
accepts data at the host port and demultiplexes it to the various interactive
devices. It supports one keyboard at port A. Ports B through F support other
RS-232 asynchronous devices.

Control Dials

The control dials unit consists of eight dials with LED displays. The LEDs pro-
vide an 8-character label for each dial. The dials communicate dynamic, in-
crementing, and decrementing data to the workstation. In typical applications,
the control dials can be used to perform the following operations:

« Rotate objects about the x, y, or z axis, each type of rotation typically
using a different dial.

e Zoom in or out.

» Translate objects in x, y, and z, each translation typically using a dif-
ferent dial.

Data Tablet

Four sizes of data tablets are available: 6 x 9 inches, 12 x 12 inches,

15 x 15 inches, and 18 x 25 inches. The data tablet consists of a tablet and a
four-button cursor called a puck which sends position information to the
workstation in digital form that expresses a 2D coordinate value (x.y).

ESV Workstation User's Manual [2.0]

(

Product Overview

Function Buttons

The function buttons unit gives an expanded capability for program selection
by providing 32 programmable function buttons in addition to the 12 function
keys on the keyboard. The function buttons are lighted by incandescent bulbs.
As with the function keys, pressing a function button results in a user-speci-
fied action.

Spaceball

Spaceball is an interactive device consisting of a stationary ball mounted on
a base. By pushing and twisting the ball, Spaceball senses the forces along,
and the torques around, the xyz axes of its coordinate system. Eight program-
mable buttons, located on the upper face of the base, can be used as function
keys; and another programmable button, located on the front of the ball, can
be used as a pick button.

ESV Workstation User's Manual [2.0] 2-7

Product Overview

Software Overview (

The software on the ESV Workstation comes in several major sections. These
include:

* Operating system,
* Software development environment,
e Graphics environment.

Operating System

The ESV’s operating system (ES/os) is UNIX System V with BSD extensions.
The operating system source code is a modified version of MIPS RISC/os.
Binary code compatibility for all non-graphical programs that execute on a
MIPS R3000 system is maintained.

Software Development Environment

The ESV’s software development environment is the typical workstation en-
vironment. It provides the following:

» Standard UNIX shells
The shells offered are sh and csh.
¢ Standard UNIX editors N
Available editors include emacs, vi and ed. (
+ Support for C and other programming languages

Various programming languages are supported. C is the standard
language distributed with the system. Additional compilers, including
FORTRAN, Pascal and Ada, are offered as options. Other compilers
may be supported as they become available.

¢ Source code debugger

dbx is the source code debugger of choice. This is standard on a UNIX
system.

» Utility programs

2-8 ESV Workstation User's Manual [2.0]

Product Overview

......... R R RIRIRIITS

/ Client
7 Server

(XCbmvﬁ.il‘Jhi'cation Layer)

i

PEX Server X Server

Graphics Manager

(o g)
.;‘*E'ﬁ-‘-;ﬁ,‘s‘-y
—
Figure 2-2. Software overview

ESV Workstation User's Manual [2.0] 2-9

Product Overview

Graphics Environment

The ESV’s graphics environment supports PEX (PHIGS Extension to X),

which gives the user access to the X Window System, the PHIGS (Program-
mer’s Hierarchical Interactive Graphics System) standard interface, and the
proposed PHIGS PLUS (PHIGS Plus Lumigre und Surfaces) standard.

The X Window System supports 2D graphics. It consists of a protocol
definition and an implementation of that protocol. The protocol is maintained
by the X Consortium, which consists of members from different areas of
industry and education, and the implementation is maintained by MIT. The
current level of the X Window System is X11R4, and this is the version
currently supported on the ESV Workstation.

The X Window System specification allows for extensions to be added.
There are several extensions that come with the release from MIT, and PEX
is one of these. PEX allows X to support 3D graphics and allows a user
application access to PHIGS and PHIGS PLUS functions. A PEX Consortium
defines its protocol. Its implementation is currently in alpha release to the X
Consortium members.

An application program on the ESV can use the following graphical
libraries:

<. PHIGS
« PHIGSPLUS
+ Xlib

+ Xt (X toolkit)
« Motif (Open Software Foundation’s X toolkit)
Figure 2-2 shows the software layers of the ESV Workstation.

PEX Server

The PEX server is the device-dependent layer of the PHIGS extension to X.
This layer builds and edits the PHIGS structures and maintains all the table
information associated with a PHIGS workstation. The body of the data in the
structures is the PEX protocol data, hence requires no translation.

X Server

The X server is the device dependent layer of the X Window System. This
layer takes advantage of the raster graphic capabilities of the pixel processors,
and it converts basic X graphics operations into graphics commands handled
by hardware. It also has the administrative task of coordinating the use of all
graphics resources by the various application programs. These resources are
the frame buffer, the color lookup tables, and the hardware cursor. The X
server allocates windows and adjusts their visual priority on the screen.

ESV Workstation User's Manual [2.0]

(

Product Overview

ES/os Features

What the ES/os System Does

The ES/os operating system is a set of programs that controls the computer,
acts as the link between you and the computer, and has various tools to help
you do your work. The computing environment is uncomplicated, efficient,
and flexible. It provides the following specific advantages:

o

A general purpose system for performing a wide variety of jobs or ap-
plications;

An interactive environment that allows you to communicate directly
with the computer and receive immediate responses to your requests
and messages;

A multi-tasking environment that enables you to execute more than
one program simultaneously;

A multi-user environment that allows you to share the computer’s re-
sources with other users without sacrificing productivity. This tech-
nique is called timesharing. The ES/os system interacts with users on
a rotating basis, but it appears to be interacting with all users simulta-
neously.

The organization of the ES/os system is based on four major components:

the kernel The kernel is a program that constitutes the nucle-
us of the operating system; it coordinates the func-
tioning of the computer’s internals (such as
. allocating system resources). The kernel works in-
visibly; you need never be aware of it while doing
your work.

the file system The file system provides a method of handling data
that makes it easy to store and access information.

the shell The shell is a program that serves as the command
interpreter. It acts as a liaison between you and the
kernel, interpreting and executing your com-
mands. Because it reads input from you and sends
you messages, it is described as interactive.

commands Commands are the names of programs that you re-
quest the computer to execute. The ES/os system
provides tools for jobs such as creating and chang-
ing text, writing programs and developing soft-
ware tools, and exchanging information with
others via the computer.

ESV Workstation User's Manual [2.0] 2-11

Product Overview

How ES/os Works

Figure 2-3 is a model of the ES/os system. Each circle represents one of the
main components of the ES/os system: the kernel, the shell, and user pro-
grams or commands. The arrows suggest the shell’s role as the medium
through which you and the kernel communicate.

Text
Processing

Additional
Utilities

Information
Management

Figure 2-3. Model of ES/os

The Kernel

The nucleus of ES/os is called the kernel. The kemel controls access to the
computer, manages the computer’s memory, maintains the file system, and
allocates the computer’s resources among users. Figure 2-4 is a functional
view of the kernel.

Allocates
system
resources

Maintains
file system

Controls
access to
computer

Figure 2-4. Functional view of the kernel

2-12 ESV Workstation User's Manual [2.0]

(

Product Overview

The File System

The file system is the cornerstone of ES/os. It provides a logical method of
organizing, retrieving, and managing information. The structure of the file
system is hierarchical; if you could see it, it might look like an organization
chart or an inverted tree.

O = Directories
[] = Ordinary Files
/= Special Files

A%

The file is the basic unit of ES/os, and it can be any one of three types: an
ordinary file, a directory or a special file.

An ordinary file is a collection of characters that is treated as a unit by the
system. Ordinary files are used to store any information you want to save.
They may contain text for letters or reports, code for the programs you write,
or commands to run your programs. Once you have created a file, you can add
material to it, delete material from it, or remove it entirely when it is no longer
needed.

A directory is a super-file that contains a group of related files. You can
create directories, add or remove files from them, or remove directories
themselves at any time.

All the directories that you create and own will be located in your home
directory. This is a directory assigned to you by the system when you receive
arecognized login. You have control over this directory; no one else can read
or write files in it without your explicit permission, and you determine its
structure.

The ES/os system also maintains several directories for its own use. These
directories, which include /unix (the kernel) and several important system
directories, are located directly under the root directory in the file hierarchy.
The root directory (designated by /) is the source of the ES/os file structure;
all directories and files are arranged hierarchically under it.

ESV Workstation User's Manual [2.0] 2-13

Product Overview

Special files constitute the most unusual feature of the file system. A
special file represents a physical device such a terminal, magnetic tape drive,
or communication link. The system reads and writes to special files in the
same way it does to ordinary files. However, the system’s read and write
requests do not activate the normal file access mechanism; instead, they
activate the device handler associated with the file.

Some operating systems require you to define the type of file you have
and to use it in a specified way. In those cases, you must consider how the
files are stored since they might be sequential, random-access, or binary files.
To the ES/os system, however, all files are alike. This makes ES/os file
structure easy to use. For example, you do not need to specify memory
requirements for your files since the system automatically does this for you.
Or if you or a program you write needs to access a certain device, such as a
printer, you specify the device just as you would another one of your files. In
ES/os, there is only one interface for all input from you and output to you; this
simplifies your interaction with the system.

Figure 2-5 shows an example of a typical file system. Notice that the root

directory contains the kernel (/unix) and several important system directories.

O = Dircctories

D = Ordinary Files

@ /- Special Files

console 1ty00 tty01

Figure 2-5. Example of a file system

/bin Contains many executable programs and utilities.

/dev Contains special files that represent peripheral devices such as the
console, the line printer, user terminals, and disks.

letc Contains programs and data files for system administration.

Nib Contains libraries for programs and languages.

tmp Contains temporary files that can be created by any user.

ESV Workstation User's Manual [2.0]

(

Product Overview

lusr Contains other directories including mail, which contains files for
storing electronic mail, and news, which contains files for storing
electronic news articles.

The directories and files you create comprise the portion of the file system
that is controlled by you. Other parts of the file system are provided and
maintained by the operating system, such as /bin, /dev, /etc, /lib, /tmp, and
lusr.

The Shell

The shell is a unique command interpreter that allows you to communicate
with the operating system. The shell reads the commands you enter and inter-
prets them as requests to execute other programs, access files, or provide out-
put. The shell is also a powerful programming language, not unlike the C
programming language, that provides conditional execution and control flow
features. The model of an ES/os system in figure 2-3 shows the two-way flow
of communication between you and the computer via the shell.

Commands

Programs that can be executed by the computer without need for translation
are called executable programs or commands. As a typical user of ES/os, you
have many standard programs and tools available to you.

Window Environment

X Toolkit

The ESV Workstation supports the X Window System. The X Window Sys-
tem is a network-based window system. Several versions of X have been de-
veloped; the most recent is X11.

The X11 architecture has two parts: display servers and clients. Display
servers provide the network with display resources and control user input.
Clients are application programs that control particular operations. Chapter 3
of this manual provides a longer description of the X Window System and
how to use it on your ESV Workstation. The ESV Reference Manual, Chapter
4, describes the X clients which the ESV Workstation supports.

There are commercially available books on the X Window System. You
may order a recommended set which is listed and described in chapter 1,
“Reader’s Guide,” of this manual.

The X Toolkit is a programming library containing predefined components
that ensure a consistent user interface in the creation of complicated applica-
tions.

ESV Workstation User's Manual [2.0] 2-15

Product Overview

Motif

Motif is a user interface containing several development tools, one of which
is a window manager. The window manager is based on the Motif toolkit
which provides it with a standard graphical interface. The Motif window
manager (mwm) provides functions for the following:

e Moving and resizing windows,

¢ Reducing windows to icons,

* Restoring windows from icons, and
* Arranging windows on the screen.

A description of the mwm client is provided in the ESV Workstation
Reference Manual, Chapter 3. There are books by the Open Software
Foundation about Motif and available by order from Evans & Sutherland.
These are listed and described in chapter 1, “Reader’s Guide,” of this manual.

2-16 ESV Workstation User's Manual [2.0]

3. Getting Started

Getting Started

Table of Contents
3. Getting Started 3-1
INITOAUCHION ..vovveuverirrereereaereseseeresseestnacuesestssesssssssessessesssssssessssessasasassessssssssssssssss 3-1
Getting Started as an AAMINISITALOTcoviivirererererenessissssesiesessesesesnsessisesnies 3-1
Preparation for BOOHNE ...ttt sesisssnsesssssesenss 3-1
Debug Terminal ..o ssssssssssssssnes 3-3
General BENAVIOTcccveeenerneenininienininiininienisessesssssssssessssessssessssns 3-3
TESE DESCTIPLONS ...vevvevereecereresciesisisissieissesesssssnessssesssssssassstsssssssnsassssssssessssess 3-4
Non-visible Confidence TESLSccccoeerirrinierriruiieresieressnerssssssesessesesees 3-5
Visible Confidence TESLScoccevereeruiriirrinineiniiniinenieiessessesssassesessenneses 3-5
BOOHNZ UNIX ...coeririenenietrererestsiiniissisisisissssessssssssseassasssssssssssssssssssssssstsssssssssssns 3-7
Getting Started @S @ USETocvevvimriininiiniinissessessssssssssssssssssssscssssesessnsissssissssses 3-9
Logging on Using XAMcocenininininiiniiiiiiiisssssssssssesessesessssseses 3-9
Logging on Without Using XdM.........ccccceimiminiininieisinisenisesesensnssssscnes 3-10
UNIX ENVITONIMENTuveivvieeeeneenrenseesernursisseesssssessesssesisessaesssssasssessessasssssssssssess
C-Shell (CSN)uvevveeerrenreeeneececeecresneieeinne
Bourne Shellccocvvivnininiinnniniennienenns
Directory /usr/src/samples
PAtD oottt e bbb a s st e e s e sesas bt o8
X Window System OVETVIEWccoiiiiiiieimninieniienseiiesrisiesscsessecssssusisnsnsssssnsns
KUSEIVET uveireerrenrenierinesseeeensesseessessesssessesssnesaesssesssesnassaassessassssssosssnsases
WINAOW MANAZETc.coeeenerininiieniiiiniienienersssesssssssssessssesssasssssessssens
X UCHENLS uveveivrereerereereressereeessessesseseeseesssssessesssesssssessessessassessssassssasssness
Running an X SESSIONc.ccvevvrinininriiiinieeinesei e st ssesessenines
Running an X Server with XdM ... 3-17
Running an X Server with StartesVXccocoeerinninnnncncncnenenens 3-17
Default Clients Started at LOZIN ...c.cccovvevcniininiiiiinineeieiessisssscscsesssees 3-18
Ending an X SESSI0Nc.cocoieevvriniiriniiriiieeninrereieissssesesesssesesesesesesssuens 3-21
Customizing Resources and Default CHENtSc.cvvueeeniniiininineeeniiene 3-21
Resource Configurationcoceeiinminieiienenioinnessssesesissesessssesssssasss 3-23
Setting RESOUICESccccvevirirriririiisiererieniseisine st ssesensacsssssssassssssssns 3-23
Customizing Your .Xdefaults File ... 3-24
Emergency TerMinatingc.cocovievemsieierereieisssassenmsesesessessisisisisisisisisssssssns 3-25

ESV Workstation User's Manual [2.0] 3-i

Getting Started

3. Getting Started

Introduction

The first part of this chapter is intended for the ESV manager. It describes the
behavior of the ESV Workstation when it is not running the X Window Sys-
tem. The description covers system behavior from the moment the worksta-
tion is turned on, to the time at which a graphics application takes over the
screen, then after the graphics application exits. The description is organized
with the general behavior first — what you expect when the system is function-
ing normally. Next, each step of the start-up process is described. There is a
description of the debug terminal and how it interfaces to the system.

The second part of this chapter is intended for the ESV user. It describes
the ES/os (UNIX) environment and the X Window System including the win-
dow manager that runs on your ESV Workstation and other X application
programs that are available to you.

Getting Started as an Administrator

Preparation for Booting

Booting the workstation is a simple procedure. Before starting the booting
process, please check the following:

1) Make sure that the control unit and display are turned off.

2) Check that the control unit and display power cords are plugged into ac-
tive wall outlets of adequate capacity.

3) The mouse should be connected to the control unit CPU /O control panel
port 1 or to the RDC. If the system includes an RDC, the RDC connects to
the CPU 1/O control panel on port 1. This port is also used for the debug
terminal.

4) The keyboard and all other peripherals should be connected to the correct
ports. Where the system expects each device to be located is part of the
configuration information in the device file. All peripherals can be con-
figured to work through the CPU’s I/O port or through the RDC. The de-
fault configuration includes keyboard, monitor, and mouse, but does not
include an RDC.

Figure 3-1 shows the default configuration for plugging peripherals into
a system without an RDC. Figure 3-2 shows which RDC ports the periph-
erals use.

Note: In systems with RDCs, the mouse must connect to the port on the
RDC; it cannot plug into the port on the cabinet.

ESV Workstation User's Manual [2.0] 3-1

Getting Started

Slams, port as Dials and Tablet
oo\
Unused,
except for
RDC —
RS232 RS232
Mouse Port — ~
\\ Data Tablet
: ™ Dials
Keyboard —

<71 Ethemnet

S R B
e & S
I N T/

y

—0a

Sync Monitor

Figure 3-1. Default cabinet port configuration (without RDC)

To Cabinet
v
N @::::::/3 —
/i
N I
I E—
]

A B C D
S S S

—

I | I
Keyboard Mouse Tablet Dials

Figure 3-2. RDC port configuration

3-2 ESV Workstation User's Manual [2.0]

Getting Started

5) The display is connected to coax connectors marked RGB on the cabinet. -
Debug Terminal

The debug terminal is an optional port to get diagnostic and bootup messages.
The debug terminal should be handy to use if there is a problem that prevents
the graphics subsystem from being used. Its terminal should be an ASCII ter-
minal that plugs into the mouse/RDC port on the I/O panel. The PROM de-
faults to 1200 baud for the debug terminal.

Normally the system does not print anything to the debug port. It can be
enabled by generating a “break” signal any time after power up as long as
there are no graphics applications running. Also, the debug terminal is auto-
matically enabled if any of the graphic subsystem tests fail.

Once enabled, everything that is printed on the graphics display is also
sent to the debug terminal. The debug terminal can also be used for input as
well as the system keyboard. To disable the debug terminal, you must change
the environment variable console to either | or s. It should be 1 for a machine
with graphics and an s for a machine without graphics (i.e., server).

It is not possible to use the debug terminal while running a graphics ap-
plication. The application needs the mouse or RDC to be hooked up instead of
the debug terminal. The primary use of the debug terminal is for running di-
agnostics on the graphics subsystem.

General Behavior

The start-up process from the console consists of four steps, and the entire
process is complete in approximately two minutes. A slight variance in the
time is due to the number and size of the disks that the program must check.
The steps in the process are:

1) Running non-visible confidence tests,
2) Running visible confidence tests,

3) Booting UNIX, and

4) Starting a graphics application.

Turn on the display, then the control unit. Turning on the workstation’s
power switch begins the non-visible confidence tests. These tests occur
before the graphics subsystem is initialized to print messages. They perform
quick checks for major problems in the graphics subsystem. If these
confidence tests pass, the graphics subsystem is initialized to print out further
messages, and visible confidence tests begin running automatically.

When visible confidence tests begin, a system banner is printed on the
graphics display indicating that the power on confidence tests are being run.
Each test prints out a title on the console terminal and a PASSED or FAILED

ESV Workstation User's Manual [2.0] 3-3

Getting Started

status upon completion. After all the tests are run, memory is cleared and the
boot PROM prompt is displayed as shown:

>>

You can use the following command to see the value of all the PROM
environment variables:

>>printenv

At the boot PROM prompt, you can start UNIX booting by typing auto.
If the PROM environment variable bootmode is set to ¢, typing auto is
unnecessary. In this case, the PROM automatically tries to boot UNIX. The
failure of any confidence test, however, sets bootmode to e, and the
environment variable requires reset to allow automatic booting again. The
variable is reset by entering the following command:

>>setenv bootmode c

Then UNIX is loaded from disk and started. When the UNIX initialization
is complete, a login prompt is displayed. At this point you can login and use
the system as an ANSI terminal. You can also start a graphics application that
controls the display. The terminal emulator remains dormant as long as the
graphics application has control of the display. As soon as the application
exits, the display is cleared and the terminal emulator starts.

The boot time is also the opportunity for the system administrator to load
release tapes and change system configuration information. For detailed
information on system administration, consult the following documents:

* RISClos System Administration Reference Manual
(Part No. 400403-100)

e RISClos System Administrator’ s Guide
(Part No. 400404-100)

If there are failures while this program is running, contact Evans & Suth-
erland.

Test Descriptions

Each confidence test writes a specific LED pattern when the test is entered. If
an error occurs, a specific LED failing pattern is flashed for about six seconds
and a failing message is written to the console (if it’s a visible test). The fail-
ing code is also written to the DIAG byte location in the NVRAM. The tests
proceed regardless of a failure (except an early exception). If another error oc-
curs, the LEDs flash but the NVRAM DIAG location is only written over if the
new error is of a higher priority than the previous error.

ESV Workstation User's Manual [2.0]

(

Getting Started

Non-visible Confidence Tests

The purpose of power-on testing is to provide you with reasonable confidence
that your system functions correctly. An outline of the process is as follows:

1) When you turn the system on, the CPU begins executing at the start of
PROM.

2) Itinitializes status and CPU registers.
3) It calls the memory configuration routine, Imem_config().

The routine Imem_config() performs the “soft” configuration of the
memory boards. As it runs, it calls other routines and writes various LED
patterns to indicate its progress. Successful completion of this routine in-
dicates the following is true:

» The CPU can execute instructions.

o The write buffers are functional.

» Some CPU I/O decode logic is functional.
e The VME bus is communicating.

The following is a list of the non-visible confidence tests that the system
runs:

* Enable Hardware

o Test UART

» Initialize UART

* Register Test of Video Card
+ Initialize Video Card

* Register Test of GSE Card

+ Initialize GSE Card
 Initialize Pixel Processors

+ Initialize Frame Buffer

e LED Test

Visible Confidence Tests

This section contains information about the visible confidence tests which are
the next diagnostic tests run on the system. These are still low-level tests. If
an exception occurs at this level, the system is unusable. Should an exception
occur, the LED value indicates which test was being run at the time of the fail-
ure.

ESV Workstation User's Manual [2.0] 3-5

Getting Started

Each test is followed by the PASSED or FAILED indication. The listing

below shows what is displayed on the screen, beginning with the diagnostic
banner, as these tests are run and passed.

Running Power-On Diagnostics. . .

Cache Test #1. . .PASSED

Cache Test #2. . .PASSED v

Data Cache MATS+ Test. . .PASSED
Instruction Cache MATS+ Test. . .PASSED
Data Cache Block Refill Test. . .PASSED
Instruction Cache Block Refill Test. . .PASSED
Write Buffer Test. . .PASSED

Memory Test . . .PASSED

TBL Test. . .PASSED

Exception Test. . .PASSED

Instruction Streaming Test. . .PASSED
EDC Test. . .PASSED

Battery Check Test. . .PASSED

NVRAM Test. . .PASSED

Timer Test. . .PASSED

Time-of-Day Clock Test. . .PASSED

Duart Port Tests. . .PASSED

FP Test #1. . .PASSED

FP Test #2 . . .PASSED

DPR Test . . .PASSED (for LSC systems only)
Lance Slave Register Test. . .PASSED
Lance Master Test. . .PASSED

These are the names of the confidence tests.

¢ Print Power On Diagnostic Banner
» Cache Test #1

» Cache Test #2

* Data Cache MATS+ Test

¢ Instruction Cache MATS+ Test

+ Data Cache Block Refill Test

¢ Instruction Cache Block Refill Test
¢ Write Buffer Test -

o TLB Test

ESV Workstation User's Manual [2.0]

Getting Started

» Exception Test -

* Streaming Instruction Test
* EDC Test

¢ Battery Chéck Test

* NVRAM Test

e Timer Test

¢ Time-of-day Clock Test

* Duart Port Tests

e FP Test #1

o FPTest#2

» Lance Slave Register Test

« Lance Master Test

Booting UNIX

Booting is the process of reading the UNIX system kernel, usually stored in
/unix on System V, into the system memory and starting it running.

When all the power on confidence tests have executed, the system clears
memory, initializes the system keyboard, and displays the boot prompt. At the
boot prompt (>>) either UNIX begins booting automatically, or you type
auto to start UNIX booting. The listing below is a sample boot prompt.

Autoboot: Waiting to load dkis(0,0,8)sash (CTRL-C
to abort, RETURN to expedite) loading

118400+21680+170416 entry: 0xa0300000

MIPS Standalone Shell Version 4.10 MIPS OPT Sat Jan
20 13:22:32 MST 1990

Optional action that you can take at the boot promipt includes loading and
running programs from disk, tape or Ethernet. In the example above, the pro-
gram, sash, is run. This is the program that boots UNIX. Usually, commands
are issued at the boot prompt only when installing a new system.

All input comes from the system keyboard (or debug terminal) and is dis-
played on the graphics display. The display is treated like a simple ANSI ter-
minal with 80 columns and 40 lines.

The system keyboard can be hooked up in two ways. It can either plug
into the keyboard port on the I/O panel of the system, or plug into the RDC.
When the system inititalizes the keyboard, it first checks on the I/O panel and,
if the keyboard doesn’t respond there, the system checks the RDC. If no key-

ESV Workstation User's Manual [2.0] 3-7

Getting Started

board is found, a message is printed to that effect and the boot PROM does
nothing. Otherwise the keyboard will be initialized and used as the console
input device.

As UNIX is booting, it prints messages, then prints a login prompt at the
completion of booting. :

The listing below is an example of the messages that UNIX prints on the
screen as it boots. Several items in these messages vary from system to sys-
tem, such as addresses, memory sizes, number of files, IDs, and system
names.

Loading dkis(0,0,0) /UNIX
718576+85328+497648 entry: 0x80021000
CPU: MIPS R3000 Processor Chip Revision: 2.0

FPU: MIPS R3010 VLSI Floating Point Chip Revision: 2.0

ES/0OS Release 1_0 ESV Version R_100
Total real memory = 25165824
Available memory = 23425024

root on dev 0x1000 (fstyp is ffs)
Available memory = 22564864

Checking root file system () automatically.
The system is coming up. Please wait.
xxNormally all file systems are fscked.
x****To fsck only dirty ones, type ‘yes’ within 5 seconds:
k*x**A]l]l file systems will be fscked.
mountall: fscking /dev/usr (/usr).

*x*x /dev/usr

** Last Mounted on

** Phase 1 - Check Blocks and Sizes

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference counts

** Phase 5 - Check Cyl groups

5632 files, 58523 used, 23249 free (201 frags, 2881 blocks,
0.2% fragmentation)

ESV Workstation User's Manual [2.0]

Getting Started

x*FILE SYSTEM WAS MODIFIED *%*%%
/dev/usr/mounted on /usr

sadc: Permission denied

Saving system core dump

Internet daemons: routed portmap inetd rwhod.
NFS daemons: nfsd biod.

systemname: /dev/dsk/isc0dls4 mounted on /usrl
systemname: /dev/dsk/isc0dls6é mounted on /usr2

The system is ready

Getting Started as a User

Logging On Using xdm

At this point the system automatically starts the application xdm, the display
manager. xdm performs several tasks:

* Prompts you for a login/password,
» “Authenticates” you as the user,

* Runs a “session,” which is simply defined as the duration of a given
UNIX process.

You will see a window similar to that shown in figure 3-3.

Evans & Sutherland ESV (ALT-F4 to Quit

Username:
Password:

Figure 3-3. xdm Login Window

You enter your login name and password. After the login is authenticated
one of two things happens:

ESV Workstation User's Manual [2.0] 3-9

Getting Started

1) If you have an .xsesslon file in your home directory, xdm starts the ap- (
plications indicated in this file. -

2) Ifyoudo not have an .xsesslon file, xdm starts an xterm, the mwm win-
dow manager, and the xcm client manager by default.

xterm is a terminal emulator. You can run other clients from within the
xterm window.

Logging On Without Using xdm

If you don’t want to use xdm, the key indicated on the xdm banner can be
pressed to terminate xdm, and you can use the console.

You can use the machine as a simple terminal. The console behaves like an
ANSI terminal and can be used with screen based editors.
After you log in, the system banner and prompt shown below is displayed.
ES/os 2.0 your_system’s_name
Copyright 1991, Evans & Sutherland Corporation

s ke sk sk sk sk sk sk sk ke sk 3k e e e sk s e o ok ok sk s o sk ke ok sk sk s s ke sk sk s sk ke ke sk sk kol sk ok ok ckesk

*

*
* Evans & Sutherland *
x ESV Workstation *
sk 3k sk sk 3k o ok ok 3k 3k sk 3k ok sk 3k e s ke 3k ok ok ok sk sk sk sk sk ok ok sk sk sk sk e e ke e e e s sk ke ke sk ok sk ok

console> (

You are now logged in to console mode. You can use UNIX commands
from this prompt in this mode, but screen functionality is limited. For most
purposes other than system management, you will want to start an X applica-
tion to take advantage of the screen versatility that it provides.

When you start X or some other graphics application, the application
takes over the graphics and peripherals. The terminal code remains disabled
until the application exits. When the application exits, the screen is cleared
and reinitialized. You can continue to use it as an ANSI terminal, or you can
log out.

UNIX Environment

Your environment on a UNIX system includes a set of operating system com-
mands, system utilities such as editors, compilers, and mail, and a shell. The
shell is a utility that acts as an interface between you and the operating sys-
tem. It is an interactive command interpreter. The shell interprets what you
type on the command line and translates it to execute the appropriate system
command(s). Each user runs under a separate invocation of the shell. Re-
quests to the shell can be a simple command, such as asking to view a file, or
a complex request to compile a program.

ESV Workstation User's Manual [2.0]

Getting Started

The shell provides a number of convenient features for interactive use.
For example, the shell can be made to keep track of the location of your home
directory, your terminal type, your preferred text editor and preferred printer.
It can remember the correct directory path to search for command programs,
and your invented abbreviations for system commands. The command env
will produce a listing of your current environment variables.

The shell can also process groups of commands in files called shell
scripts. When the shell processes a script file, it executes all the commands in
the file without requiring further input. The most commonly used shells are
the C-shell (csh) and the Bourne shell (sh). For ease of operation and general
friendliness, we encourage users, especially new UNIX users, to run the C-
shell (csh) rather than the Bourne shell (sh) on their ESV Workstation.

C-shell (csh)

The C-shell (csh) interface between you and UNIX is an interactive command
interpreter and a high level programming language. As a programming lan-
guage, its syntax is like that of the C programming language.

The primary purpose of csh is to translate command lines typed at a ter-
minal into system actions, such as invocation of other programs.

An instance of csh begins by executing commands from the file .cshrc
in your home directory. When csh is started by the login process, it also ex-
ecutes commands from the .login file. After login, the shell reads commands
from the terminal or processes a shell script at your request.

Your system manager can set up your /etc/passwd file to execute C-shell
for you by default on login. If this is not done, you can execute the C-shell by
entering the command csh at the prompt.

.cshrc

This is a file that should exist in your home directory. Whenever you start the
C-shell, it performs commands from this file. There are many possible initial
C-shell instructions that may be contained in this file to tell the C-shell how
you want your commands and environment customized.

For example, you might use the command setenv PRINTER Ip2 to set
your default printer to one named Ip2. When you give the command Ipr, your
printing will go to printer Ip2 (if it exists).

You could use the command set path= ($path /usr/newpath) to add the
directory /usr/newpath to the end of your existing command search path.
(The system sets up a basic path for you at login.)

You also might use the command alias lo logout to make the shorthand
command lo to stand for the real command logout. When you type lo, the C-

ESV Workstation User's Manual [2.0] 3-11

Getting Started

Bourne Shell

shell executes the logout command for you. allas can be very useful and is
not available in the Bourne shell.

You may review C-shell options for inclusion in .cshre by looking at the
manual page for csh (type man csh).

Jogin

This file is also used by the C-shell and should exist in your home directory.
The .login file contains commands for the shell program. When the C-shell
starts from a login, it performs the instructions in the .cshrc file, then looks
for the .login file and performs the instructions contained there. This file is
usually used for setting up special variables called environment variables.
These variables are passed to other programs that you may start, such as an-
other C-shell. They do not need to be set each time you run a new program.

You can set an environment variable in the .cshre or .login file or from
the command line using the setenv command. When you set variables from
the command line, they are temporary and their effect disappears when you
logout.

Like the C-shell, the Bourne shell is both a command interpreter and a high-
level programming language. When you use the Bourne shell as a program-
ming language, it processes groups of commands stored in files called shell

scripts. A shell script is a file that contains commands to be executed by the
shell.

profile

In the Bourne shell, this file performs similar functions to the .cshrc and
login files in the C-shell. If you log in under the Bourne shell, you should
have a .profile file in your home directory to set up your own environments.

The Bourne shell executes the commands in the .profile to customize the
environment each time you log in. Each user has a different .profile file. Typ-
ically, it specifies a terminal type, establishes terminal characteristics and per-
forms other housekeeping functions.

You may review Bourne-shell options for inclusion in .profile by looking
at the manual page for sh (type man sh).

Directory /usr/src/samples

The directory /usr/src/samples exists on your ESV Workstation and con-
tains the following sample files among others:

« .cshrc
- .login
» .profile

ESV Workstation User's Manual [2.0]

Getting Started

The sample files should be copied into your home directory. From there,
you can modify them as you wish. Your system manager may copy the files
for you when your user account is created, or you can copy them yourself us-
ing the cp command as follows:

cp /usr/src/samples/.cshrc yourhomedir/.cshrc (C-shell only)
cp /usr/src/samples/.login yourhomedir/.login (C-shell only)
cp /usr/src/samples/.profile yourhomedir/.profile (Bourne only)

The list below shows the contents of your home directory as it will be dis-
played with the Is -al command on your workstation after the sample files
have been copied. Note that the script files (dot files) are hidden, and the Is
command does not list them on the display them unless you use the -a option.

drwxrwxr-x 2 owner Apr 9 13:15
drwxr-xr-x 4 bin Apr 9 13:15 ..
-rwxr-xr-x 1 owner Apr 9 13:15 .cshrc
-rwxr-xr-x 1 owner Apr 9 13:15 .login

Path

The path is a list of directories. It traces a sequential route through the file
structure for the system to follow to locate a particular command or execut-
able program. The first occurrence of a command found along the path is ex-
ecuted.

BSD Extensions

The ESV Workstation is UNIX System V with BSD (Berkeley) extensions.
Commands on the ESV Workstation default to System V commands, unless
the directory specification /bsd43/bin is placed in the path. Placing
/bsd43/bin properly in the path allows the operating system to execute the
BSD extension commands.

Because some System V commands have the same name as BSD exten-
sions, the position of /bsd43/bin in the path determines which one is execut-
ed.

The C-shell and BSD Extensions

The default path is determined at login by the system. An example of the de-
fault path for the csh is set as follows:

set path = (~/bin /usr/net /bsd43/bin /usr/ucb /usr/bin /
bin /usr/new /usr/bin/X11)

Generally, everything in this path except the home directory specification
is necessary for the proper functioning of your account on the ESV Worksta-
tion. The command env shows what is in your current path.

Users of the C-shell will probably prefer to use the BSD extensions, be-
cause many of the extensions have more options than corresponding System

ESV Workstation User's Manual [2.0] 3-13

Getting Started

V commands. In this case, the directory /bsd43/bin should appear before (
/usr/bin in the path.

You can set the path from the command line. Note that setting the path on
the command line is temporary: the effect of variables set on the command
line disappears when you logout. Use the command set path to put in a new
command directory at the front of the command line in the C-shell.

set path = (newcommanddir $path)
To put a new command directory at the end of the current path enter
set path = ($path newcommanddir)
The Bourne Shell and BSD Extensions
The default path for the Bourne shell is as follows:

PATH=$HOME/bin:/usr/net:/usr/bin:/bin:/usr/ucb:/usr/new::/
usr/bin/X11:/bsd43

export PATH
Users of the Bourne shell may not want the operating system to default to
the BSD extensions when duplicate command names exist. As long as the

/usr/bin appears before /bsd43/bin in the path, the operating system will de-
fault to System V commands.

You can set the path from the command line. Note that setting the path on (
the command line is temporary: the effect of variables set on the command

line disappears when you logout. Use the command PATH to put in a new

command directory at the front of the command line in the Bourne shell.

PATH=newcommanddir:$PATH;export PATH
To put a new command directory at the end of the current path enter
PATH=$PATH:newcommanddir;export PATH

3-14 ESV Workstation User’'s Manual [2.0]

Getting Started

X Window System Overview

X Server

The X Window System was developed at MIT and is now accepted as an in-
dustry standard. It allows you to open several windows at once and to run a
different client program in each window. The operations performed in the dif-
ferent windows can vary considerably. For information on the X Window
System, the following five-volume series published by O’Reilly & Associates
is recommended:

* Xlib Programming Manual (Volume 1),

* Xlib Reference Manual (Volume 2),

e X Window System User’s Guide (Volume 3),

e X Toolkit Intrinsics Programming Manual (Volume 4), and
» X Toolkit Intrinsics Reference Manual (Volume 5).

The X server is a program that manages all user input to various client pro-
grams, and accepts output requests from clients. Input from client programs
includes input from devices such as the keyboard, mouse, and control dials.
As the server accepts output requests and distributes input, the X server up-
dates the appropriate window on your display through a variety of communi-
cation channels. Every display is associated with a specific server. Clients
may be run on the same host as the server, or they may be sent to a particular
display from a remote host.

Window Manager

The X window manager is a client program of the X Window System. Most
interactive control of window movement, resizing, stacking order, etc. is con-
centrated in the window manager. The window manager distributed with the
ESV Workstation is called the Motif Window Manager (mwm). It was devel-
oped and is copyrighted by the Open Software Foundation, Inc.

The mwm program allows you to interactively change many window
characteristics and states. The following is a non-inclusive list of examples:

¢ Window size,
"~ Window stacking order,
» Placement on screen,
+ Icon display,
 Input focus ownership, and
e Window frame appearance.

The mwm program also controls some client management functions, such
as stopping a client.

ESV Workstation User’'s Manual [2.0] 3-15

Getting Started

X Clients

An X client is an application program. Clients perform many kinds of tasks

(

from information display, such as a clock showing the time of day on your

screen, to terminal emulation and others.

The X clients supported on the ESV Workstation are listed below.

appres
bitmap
editres
listres
muncher
pexscope
resize
showrgb
startx
xbiff
xclock
xdm
xedit

xfd

xinit
xlock
xIsclients
xmag
xmodmap
xrefresh
xsetroot
xwd
xwud

atobm
bmtoa
esvipc
maze
mwm
plaid
screen
showsnf
uil

xcalc
xcm
xdmshell
xev
xfontsel
xkill
xlogo
xisfonts
xman
xprop
xset
xstdcmap
xwdrle

bdftosnf
csm

ico
mkfontdir
oclock
puzzle
sessreg
startesvx
xauth
xclipboard
xcutsel
xdpyinfo
xeyes
xhost (
xload)
xlsatoms
xiswins
xmh

xrdb
xsetpointer
xterm
xwininfo

Not all of the above clients are loaded onto the system by default. Some are
optional and must be loaded by the system administrator. See the release

notes for more details.

ESV Workstation User's Manual [2.0]

Getting Started

Running an X Session

There are two ways to start the X server. The default is by using xdm. When
xdm is running, the X server has been started. Then, you simply log in and
out without having to start or stop the X server.

If you don’t want to use xdm, you can exit from it by typing ALT F4. Then
you can start the X server by typing the command startesvx.

Your X environment is determined by several files in your home directory. If
these are not there, the system uses system default files. Your system manager
may have copied the default files from /usr/src/samples into your home di-
rectory for you. You can determine if this has been done by using the Is -a
command. You can copy them yourself using the ¢p command.

cp /usr/src/samples/.Xdefaults yourhomedir/.Xdefaults
cp /usr/src/samples/.mwmrc yourhomedir/ .mwmrc

cp /usr/src/samples/.xsession yourhomedir/.xsession
cp /usr/src/samples/.xinitrc yourhomedir/.xinitrc

The .xsession file is used when xdm is running. The .xinitrc file is used
when X is started via the startesvx command.

Once these files are in your home directory, you may modify them to suit
your personal tastes.

Running an X Server with xdm

When you login under the xdm window, the X server has already been start-
ed. The xdm client looks in your home directory for the .xsession file to de-
termine which clients to start.

Running an X Server with startesvx

If xdm is not running, you will have a login prompt from the console. You
can log in when in console mode. After you log in, enter the command

startesvx

This command starts the ESV X server and several X clients. While the server
is starting, a flashing cursor is displayed on the screen. The cursor looks ap-
proximately like this:

E&S

ESV Workstation User’'s Manual [2.0] 3-17

Getting Started

When this cursor disappears, an hourglass is displayed at the center of
your screen. The appearance of the hourglass signifies that the server is fin-
ished loading, and that now the default chents are being started.

Default Cllents Started at Login

Logging in via xdm or the startesvx command causes several default clients
to start. As the default clients are loaded, the background color of the screen
changes from gray to dark gray. The default clients are the following:

° mwm - the Motif window manager
. xterm - the terminal emulator

¢ xcm - the X client manger

* icon manager.

Figure 3-4 shows the default position of the windows.

[E] Name of Machine [=]

xcm [} j@icon boxmE
File XGames XClients PexClients ESVDemos

Figure 3-4. Default window placement

3-18 ESV Workstation User's Manual [2.0]

(

Getting Started

mwm- '

The window manager allows interactive control of window size and place-
ment on the screen. It controls the appearance of the window’s title bar,
whether the window is displayed normally or as an icon, how windows are
stacked, where input focus lies, and other session management functions.

Most windows have a border around them, and a title and control bar at
the top. These are normally light gray, but when the window is active (i.e.,
has the input focus), they change to red. Also, when the window is active, the
client name in the title area changes to yellow, and the block cursor changes
from outline to solid yellow.

The window’s title area displays the client’s name. It is also used to move
the window. To move a window, place the pointer in the title area, hold down
the left button on the mouse (button 1), drag the window to the new location,
then release the button.

You can resize a window by pressing button 1 when the pointer is over
one of the resize handles on the window border. The cursor changes to an ar-
row indicating this. You can also expand the window into its maximum size
by placing the cursor and clicking button 1 on the box at the far right of the
title bar with the large square on it (the maximize button). Clicking on that
box again reduces the window to its original size.

An icon is a small graphic representation of a window. You can turn a
window into an icon by placing the cursor on the frame box with the dot in it
toward the right side of the title bar (the iconify button) and clicking on button
1. There is an icon box window at the top of your screen. Each default win-
dow has its corresponding small flat-looking graphic representation in the
icon box. You may not see all of these at once, because the icon box isn’t large
enough, but you can use the scroll bars at the sides of the icon box to scroll

~ through its contents. Move the scroll bar by placing the cursor on the bar, and
holding down button 1 while you drag the bar. When you turn a window into
an icon, its graphic in the icon box changes to a more 3D appearance. Click
twice on the icon to restore it to a window.

If you have copied the sample .mwmprc file from the sample directory into
your home directory, mwm will display pull-down menus when you press
one of the three mouse buttons.

Pressing button 1 when the cursor is in the root background window pro-
vides a menu with the following selections:

e Screen 0 (default) - Move to the default screen.
» Screen 1 (stereo) - Move to the stereo screen.

¢ Screen 2 (pseudo) - Move to the screen of visual class PseudoColor.

ESV Workstation User's Manual [2.0] 3-19

Getting Started

* Screen 3 (direct) - Move to the screen of visual class PseudoColor.

o Xterms
Large Font Window - Create a new xterm window with a large font.
Small Font Window - Create a new xterm window with a small font.

* Systems - Create a new xterm window and login to selected machines
(by default local only).

For a description of the multiple screens, refer to the ESV Workstation
Reference Manual, chapter 2, “X Extensions.”

Pressing button 2 while the cursor is in one of the window borders pro-
duces a menu with the following selections:

e Refresh screen - Redraw the screen.

* Move window - Resize this window.

* Raise window - Raise this window to be in front of all other windows.
¢ Lower window - Lower this window to be behind all other windows.
* Destroy window - Destroy this window and its processes.

Pressing button 3 while the cursor is in the root background window pro-
duces a menu with the following selections:

« Restart - restart mwm.
+ Kill mwm - kill mwm.
xterm

This X client program is a terminal emulator for the X Window System. It is
important because X itself supports only bitmapped displays. The windows
created by xterm allow you to run applications designed for use in a standard
alphanumeric terminal. You can bring up multiple terminal emulator (xterm)
windows at the same time.

The default background color for xterm windows is blue. The xterms
have a scroll bar at the left edge. When you place the cursor on this area, it
takes on the shape of an arrow with pointers both up and down. If you hold
down the middle mouse button and drag the double-pointed arrow up and
down, it scrolls through text that has moved off the xterm. Release the middle
button to stop the scrolling mode.

The xterm can be used to select and paste text. Position the mouse cursor
at the start of the text you wish to select. Hold down mouse button 1 and drag
the cursor over the text you want selected. Release button 1. The selected text
remains highlighted. Move the mouse cursor to the spot where you want to

ESV Workstation User's Manual [2.0]

(

Getting Started

paste the selected text and click mouse button 2 to place it there. Click button
1 a second time to end the selection mode.

xcm

xcm is an X client program that allows you to find and run X clients through
a menu system. By default, the program has several lists of clients that are se-
lected via four pull-down menus, plus a menu to get help and to quit. These
menu titles are displayed in your default xem window and shown below. An
example of the client names each pulldown menu contains are shown below:

Files XGames XClients PexClients ESVDemos
Help maze xclock pexclock pmv
Quit xtetris xload vrt courses

xeyes xcalc esvcad

ico xbiff

puzzie xedit

xchomp xman

xmines xmag

xlogo csm

xterm

xlock

The menu system is configurable by making changes to your.xcmrc file
in your home directory. If this file does not exist, you can access the file
/ust/lib/X11/system.xemre for menu configuration information. For further
information see the xem man page.

Ending an X Session

To end the session, move the focus to the exit window and type exit. This
window by default is the xterm in the upper left of the screen. This takes you
back to the xdm login window (if you’re in xdm), or back to the console win-
dow from which you may log off the system.

Customizing Resources and Default Clients

When X is started by the startesvx command, the ESV X server starts a set
of default clients. The default set of clients is determined by a file called
xinitre. If there is no .xinitre file in your home directory, the startesvx
command loads the clients specified by the file /usr/lib/X11/system.xinitrc.
However, when you have an .xinitre file in your home directory, the
startesvx command loads the clients specified in your file. This allows you
to determine your own set of default clients.

Displays managed by xdm use the same mechanism but the files are
.xsession and /usr/lib/X11/system.xsession.

The following is taken from the /usr/src/samples/.xinitrc:

ESV Workstation User's Manual [2.0] 3-21

Getting Started

Initialization file to bring up a representative set of
useful clients,in the absence of a $HOME/.xinitrc startup
file. If the user has a $HOME/.Xdefaults file, it will take
precedence over any specifications in /usr/lib/X11/app-
defaults files.

If the user gets here, s/he does not have a .xinitrc file
therefore we start up some useful clients and windows.

H I FH I W ¥ I o

Start up a window manager - Motif
mwm -multiscreen &

sleep 2

Xcm &

Set Mouse Parameters

xset m 2 4

Set Root Window Color
xsetroot -solid Grey5
xsetroot -solid \#093f26 color used prior to release 2.0

X Applications (commented out)
#xbiff -geometry 80x80-105+5 -bw 0 &
#xclock —-geometry 80x80-5+5 &

#xcalc -geometry 186x222+878+5 &

#xman -geometry -5+105 &

XTERMS

Note that the last xterm created is done in the foreground
and is therefore the controlling window. Exiting this window
will close down the entire display.

Commented out xterms used prior to release 2.0

#xterm -rw -T ‘hostname | /bsd43/bin/tr a-z A-Z‘' -fn 9x15 -
geometry 80x40+525+325 &

#xterm -rw -T ‘hostname | /bsd43/bin/tr a-z A-Z‘' -geometry
80x34+2-2 &

only default xterm used in this file. Also an EXIT window

xterm -rw -T "‘hostname | /bsd43/bin/tr a-z A-Z' Exit Window"
-geometry 80x32+2+2

ESV Workstation User's Manual [2.0]

Getting Started

Note: With the exception of the last xterm, all clients are run in the back-
ground (see the ampersand & at the end of the lines). The last xterm
is the exit window and must be run in the foreground.

The placement and appearance of the clients loaded by startesvx or xdm
is controlled by the resources specified for them. When each client starts up,
it takes on the resource characteristics specified in the .Xdefaults file in your
home directory (and any additional resources specified on the start-up line of
the .xinitre or .xsesslon file). A resource specified on the start-up line will
override the specification in the .Xdefaults file.

Resource Configuration

Resources are variables that determine the appearance of various client fea-

tures such as color, geometry, size, font, and so on. Each client running on the
workstation may have resources associated with it that allow you to custom-
ize the way the client looks on your screen. To change a client’s appearance,
you change the value associated with the resource.

Each client has different resources available to it. Many of these are set
up as defaults in the .Xdefaults file. You can change the client’s default be-
havior by modifying the resource statements in the .Xdefaults file in your
home directory. The following are the resource definitions for the default

xterm.

xterm* jumpScroll on
xterm*Scrollbar on
xterm*savelLines 400
xterm*font 6x13
xterm*TitleBar on
xterm DeiconifyWarp: on
xterm*Background: #00294d
xterm*Foreground: #LEEEEE
xterm*border: #££1493
xterm*cursorColor: $#££££00
xterm*pointerColor: #££0000

Note that the additional resource —fn 9x15 specified on the start-up
line for the first xterm in the .xinitrc file overrides the xterm* font 6x13
in this file.

Setting Resources

A resource is a variable. It has a value attached to it. By changing the value,
you change the behavior or appearance of an X client. Values can be Boolean

xterm*jumpScroll: on

or they can be numbers or strings

ESV Workstation User's Manual [2.0] 3-23

Getting Started

xterm*saveLines: 400
or
xclock*Mode: analog

Resources can be associated with an application’s objects, e.g., window,
scrollbars, buttons. The resource can be associated with a single instance of
the object, or with the class of objects. For example:

xcalc*Buttons: gray
xXcalc*Buttons.enter: yellow
The first resource specification makes all buttons (class Buttons) in the
client xcale gray, and the second resource specification makes a single button
(the enter button) yellow.

Syntax

The most basic resource specification consists of a line with the name of a cli-
ent followed by a period or asterisk, the name of an object, followed by a co-
lon and white space, and a value assigned to this resource. For example,

xcalc*enter: gray

In this example, xcalc is the client; the asterisk is a wildcard representing
any omitted classes (like Buttons); enter is the name of the object; gray is
the value associated with the resource.

By convention, instance names begin with a small letter and class names
begin with a capital letter. Any name (instance or class) that is made of more
than one word (e.g., simpleMenu or SimpleMenu) is written with all suc-
ceeding words capitalized and concatenated without a space.

Because resource names are hierarchical (they become more specific
moving from left to right), they require separators to mark hierarchical divi-
sions. A period is the separator for a fully specified name; an asterisk is a
wildcard separator that stands for intervening classes or objects not written.

Note that trailing spaces at the end of a line can have a disastrous effect
in resource specifications, and note that capitalization is important. Because
of the different capitalization in the two lines below, the first works properly,
but the second does nothing:

xterm*font: 10x20
xterm*Font: 10x20

Customizing Your .Xdefaults File

Your .Xdefaults file must be located in your home directory. It can contain
resources and resource values associated with any of the default clients that
run on the ESV Workstation. If you do not have one (use the Is -a command
to check) copy the example from /usr/src/samples to your home directory.
You can customize the default appearance of your clients by modifying this

ESV Workstation User's Manual [2.0]

Getting Started

file. The /usr/src/samples/.Xdefaults file is meant to provide an easy meth-
od for customizing your own clients. Many alternative configuration resourc-
es are listed in this file, but most are commented out by a pound sign (#) at
the beginning of the line.

You can easily change the default configuration by editing the .Xdefaults
file to uncomment some resource value and comment out what is currently
active. Note that changes to this file may not take effect until you restart
mwm. To become familiar with the possibilities for changing the resource
configuration, you should look at the .Xdefaults file and consult the reference
pages for the particular client. The manual pages supply you with further in-
formation on each client’s resources.

Emergency Terminating

The key sequence discussed here should be used for emergency exits only. It
does not provide a neat or clean exit. If the X server was started from
startesvx, the key sequence will kill the X server. If xdm is running, the key
sequence will kill all the user’s clients and bring the system back to the xdm
login window.

Press the left CONTROL key and the left ALT key simultaneously, then
press the PAUSE/BREAK key (top row, right-most key).

ESV Workstation User's Manual [2.0] 3-25

4. Customizing the System

Customizing the System

Table of Contents
4. Customizing the System 4-1
INETOQUCHON. . ..cecvteeeecnrtrrtsstetesee e e ssesss bt ene e e e s ceesstoses e saeesesssnaens 4-1
Managing SyStem Parameters..........coeeveeuereveininisereeeeeisiecsee e sensesenenesesssessesseens 4-1
Modifying LooKup TabIEscccecceevrrernreeererererererernrsenessressesessssesenssans 4-1
Configuring Graphics MEmOTY...........cceveveveeeiineniniei e sesesssesenecnene 4-5
Example gm_config.dat Filecooveeinieriieneeeeeeeeeeeneeeeesnenenes 4-7

ESV Workstation User's Manual [2.0] 4-i

Customizing the System

4.

Customizing the System

Introduction

This section contains examples of ways that you can customize your worksta-
tion’s system parameters.

For information on setting up your workstation with system administra-
tion tasks, consult the RISC/os System Administration Reference Manual.
System administration tasks include, but are not limited to, the following:

+ Controlling system security,

» Setting up logins and passwords,
» Setting user and group IDs,

« Managing disk device(s),

* Administering the file system,

« Backing up the file system.

Managing System Parameters

When you have successfully logged on to the workstation, you may want to
modify the terminal environment or other system parameters. This section
contains examples of ways in which you may want to manage your system.
The first example is how to modify the workstation’s lookup tables. The sec-
ond example is about configuring the system’s shared global memory.

Modifying Lookup Tables

The file pex_config.dat is a data file you may use to configure the worksta-
tion’s lookup tables at server start-up. It is opened as the file name specified
by your environment variable PEX_CONFIG, or if this variable is not set, the
file is opened from the directory /usr/lib/X11. You may configure the lookup
tables to any size, except for the light table which is constrained internally to
twelve entries, and the view table which is constrained to 32 entries. Only the
number of entries in the lookup tables may be changed by the user. Changing
the other entries has unpredictable results. In order for changes to have an ef-
fect on lookup table size, the server must be restarted after making any mod-
ifications to pex_config.dat.

The format of pex_config.dat is rigid and may not be changed without a
resulting crash of the X/PEX server. The format consists of twelve records of
five fields each. The records define the size and number of predefined entries
for the following tables:

ESV Workstation User's Manual [2.0] 4-1

Customizing the System

LINE_BUNDLE TABLE - -~ - (j
MARKER_BUNDLE_TABLE
TEXT_BUNDLE_TABLE
INTERIOR_BUNDLE_TABLE
EDGE_BUNDLE_TABLE

PATTERN_TABLE

TEXT_FONT_TABLE

COLOUR_TABLE

VIEW_TABLE

LIGHT_TABLE

DEPTH_CUE_TABLE
COLOUR_APPROXIMATION_TABLE

The contents of each of the five fields are given below:

START_INDEX The starting index for the table. Usually
givenas 1 or 0.

MAX_TABLE_ENTRIES The maximum number of entries allowed
. : in the lookup table. This is the only field r
that the user may change. (

NUMBER_PREDEFINED The number of predefined entries in the
lookup table.

FIRST_PREDEFINED_INDEX The starting index of the predefined en-
tries in the lookup table.

LAST_PREDEFINED_INDEX The ending index of the predefined entries
in the lookup table.

The config file must start with a C-style comment (delimited by /*
and */) and, while the comment itself can be multi-lined, there can only be one
set of comment delimiters. Comments can appear in the body of the file (see
the entries for view and light table) either on a new line or at the end of an
existing line. As with the first comment, comments can be multi-lined but
there can only be one set of comment delimiters.

Note: Once the server is running, these table sizes
cannot be changed. , .
The following example shows the contents of the default configuration
file (usr/lib/X11/pex_config.dat)

/* PEX Configuration File:
Only MAX TABLE ENTRIES can be changed by the user. */

4-2 ESV Workstation User’'s Manual [2.0]

Customizing the System

LINE_BUNDLE_TABLE

START_INDEX 1

MAX TABLE_ENTRIES 20

NUMBER_PREDEFINED 1

FIRST_PREDEFINED_INDEX 1

LAST_PREDEFINED_INDEX 1
MARKER_BUNDLE_TABLE

START INDEX 1

MAX TABLE_ENTRIES 20

NUMBER_PREDEFINED 1

FIRST PREDEFINED INDEX 1

LAST_PREDEFINED_INDEX 1
TEXT_BUNDLE_TABLE

START_INDEX 1

MAX TABLE ENTRIES 20

NUMBER_PREDEFINED 1

FIRST_PREDEFINED_INDEX 1

LAST PREDEFINED_ INDEX 1
INTERIOR_BUNDLE_TABLE

START_INDEX 1

MAX TABLE_ENTRIES 20

NUMBER_PREDEFINED 1

FIRST PREDEFINED_INDEX 1

LAST_PREDEFINED_INDEX 1
EDGE_BUNDLE_TABLE

START INDEX 1

MAX TABLE_ENTRIES 20

NUMBER_PREDEFINED 1

FIRST_PREDEFINED_INDEX 1

LAST_PREDEFINED_ INDEX 1
PATTERN_TABLE

START INDEX 1

MAX_TABLE ENTRIES 0

NUMBER_PREDEFINED 0

FIRST_PREDEFINED INDEX 0

LAST PREDEFINED_ INDEX 0
TEXT_FONT_TABLE

START INDEX 1

MAX_TABLE ENTRIES 20

NUMBER_PREDEFINED 2

FIRST PREDEFINED_INDEX 1

LAST_PREDEFINED_INDEX 2
COLOUR_TABLE

START INDEX 0

ESV Workstation User's Manual [2.0] 4-3

Customizing the System

MAX_ TABLE_ENTRIES 256
NUMBER_PREDEFINED §
FIRST_ PREDEFINED_INDEX 0
LAST_PREDEFINED_INDEX 7
VIEW_TABLE
START_INDEX 0
MAX TABLE_ENTRIES 20 /* This size..cannot be set
higher than 32 */
NUMBER_PREDEFINED 6
FIRST_ PREDEFINED_ INDEX 0
LAST_PREDEFINED_INDEX 5
LIGHT TABLE
START_INDEX 1 .
MAX TABLE ENTRIES 12 /* This size cannot be set
higher than 12 */
NUMBER_PREDEFINED 1
FIRST_PREDEFINED_INDEX 1
LAST_PREDEFINED_INDEX 1
DEPTH_CUE_TABLE
START_INDEX 0
MAX_ TABLE_ENTRIES 6
NUMBER_PREDEFINED 2
FIRST_ PREDEFINED_INDEX 0
LAST_PREDEFINED_INDEX 1
COLOUR_APPROXIMATION TABLE
START_INDEX 0
MAX_TABLE_ENTRIES 0
NUMBER_PREDEFINED 0
FIRST_PREDEFINED_INDEX 0
LAST_PREDEFINED_INDEX 0

ESV Workstation User's Manual [2.0]

Customizing the System

Configuring Graphics Memory

When the X server is started, its first task is to establish the shared global
memory, called structure memory. The size of this memory, plus other system
parameters, are kept in a file named gm_config.dat. This file can be changed
for each ESV Workstation, allowing a small amount of tuning to meet
individual needs. The server looks first for the file named by the environment
variable GM_CONFIG. If this is not set, the server looks for
/usr/lib/X11/gm_config.dat.

The gm_config.dat file contains keyword commands and arguments.
The commands do not need to come in any special order. C-style comments
may be included in the file, delimited by /* */, and with a space before and af-
ter each delimiter.

The following key words are allowed in the gm_config.dat file:
¢ SM_SIZE size

This keyword, with its argument size, tells the structure walker how
large in bytes to make structure memory. The default size is

16 Mbytes. For efficiency, sizes should be multiples of 4096. The user
might want to increase size from its default if the system starts return-
ing error messages to the effect that processes are running out of struc-
ture memory. :

e NUM_PROCESSES number

This keyword, with its argument number, tells the structure walker
the maximum number of simultaneously running graphics systems.
The graphics systems that are counted are 1) the ES X/PEX server,
and 2) each ES/PSX application. This number is used to reserve space
for structure memory management data structures. The structure
walker must reserve space for memory management bookkeeping be-
fore any applications can allocate structure memory. Each graphics
application needs 128 words of structure memory for this purpose.
The default number of maximum processes is 20. The smaller the
number entered here, the more structure memory is available for use.

Note that no matter how many PHIGS applications are running, they
count in a group as one with the X server.

s SW_STACK_SIZE number

This keyword, with its argument number, specifies the size of the
structure walker’s traversal stack in long words. This stack is used by
the structure walker as it traverses graphics hierarchical structures.
The stack size limits the number of levels that a graphics structure can
have. The default for this item is 500.

ESV Workstation User's Manual [2.0] 4-5

Customizing the System

SW_ATTR_STACK_SIZE number

This keyword, with its argument number, specifies the size of the
structure walker’s attribute stack in long words. This stack is used by
the structure walker as it traverses graphics hierarchical structures.
Graphical attributes that change in a structure are pushed onto this
stack. The attribute stack size limits the number of levels that a graph-
ics structure can have. The default for this item is 1000.

SW_MATRIX_STACK_SIZE number

This keyword, with its argument number, specifies the size of the
structure walker’s matrix stack in long words. This stack is used by
the structure walker as it traverses graphics hierarchical structures.
The matrix stack size limits the number of levels that a graphics struc-
ture can have. The default for this item is 4000.

DEFAULT_RGB_CLUT table

This keyword, with the 256 color lookup table values listed in

table, specifies a default lookup table for the main RGB color lookup
table. The table is generally gamma-corrected and designed to fit spe-
cific color monitor characteristics. The 256 values should be given in
C-style hex notation and should be separated by spaces or by a new
line.

ESV Workstation User's Manual [2.0]

Customizing the System

Example gm_config.dat File

/* CONFIG file for the Graphics Manager */

2 2 —— */

SM_SIZE 4194304 /* 4 Meg */

NUM_PROCESSES 20 /* 20 processes allowed to alloc structure memory */
/* Structure Walker stack sizes in Longwords */

SW_STACK SIZE 500

SW_ATTR_STACK_SIZE 1000

SW_MATRIX STACK SIZE 4000

/* Default Gamma-corrected RGB table. */

DEFAULT RGB_CLUT

0x000000 0x0d0d4d0d 0x131313 0x181818 0xlclclc 0x202020 0x232323 0x262626
0x292929 0x2b2b2b 0x2e2e2e 0x303030 0x333333 0x353535 0x373737 0x393939
0x3b3b3b 0x3d3d3d Ox3f3f3f 0x414141 0x424242 0x444444 0x464646 0x474747
0x494949 0x4b4b4b Ox4cdcic Oxdedede 0x4f4f4f 0x515151 0x525252 0x545454
0x555555 0x565656 0x585858 0x595959 0x5b5b5b 0x5c5c5c 0x5d5d5d 0x5e5e5e
0x606060 0x616161 0x626262 0x636363 0x656565 0x666666 0x676767 0x686868
0x696969 0x6b6bbb 0x6cbcbc 0x6d6d6d Oxbebebe 0x6£6£6f 0x707070 0x717171
0x727272 0x737373 0x747474 0x767676 0x777777 0x787878 0x797979 Ox7a7a7a
0x7b7b7b 0x7c7c7c 0x7d7d7d 0x7eTe7le 0x7f7£f7f 0x808080 0x818181 0x828282
0x838383 0x848484 0x848484 0x858585 0x868686 0x878787 0x888888 0x898989
Ox8aB8a8a 0x8b8b8b 0x8c8c8c 0x8d8d8d 0xBeBe8e 0x8f8f8f 0x8f8£8f 0x909090
0x919191 0x929292 0x939393 0x949494 0x959595 0x959595 0x969696 0x979797
0x989898 0x999999 0x9%a%a9%a 0x9%a%a9%a 0x9b9b9%b 0x9c9c9c 0x9d9d9d 0x9e9ele
0x9f9f9f 0x9f9f9f Oxalalal Oxalalal Oxa2a2a2 0Oxa3a3a3 Oxa3a3a3 Oxa4adad
0Oxa5a5a5 Oxa6a6a6 Oxab6a6a6 Oxa7a7a7 O0xaBaB8a8 0xa%9a9a9 0Oxa%9a%a9 Oxaaaaaa
Oxababab Oxacacac 0Oxacacac 0Oxadadad Oxaeaecae Oxafafaf Oxafafaf 0xb0ObOb0
0xblblbl 0xb2b2b2 0xb2b2b2 0xb3b3b3 0xb4b4b4 0xb5b5b5 0xb5b5b5 0xb6b6b6
0xb7b7b7 0xb7b7b7 0xb8b8b8 0xb9b9b9 0xb9b9b9 Oxbababa Oxbbbbbb O0xbcbcbe
Oxbcbecbe 0xbdbdbd 0Oxbebebe 0xbebebe 0xbfbfbf 0xcO0c0cO0 0xc0c0cl0 Oxclclcl
0xc2c2c2 0xc2c2c2 0xc3c3c3 0xcdcdcd Oxcdcdcd 0xc5c5c5 0xcbebeb 0xcbebeb
0xc7c7c7 0xc8c8c8 0xc8c8c8 0xc9c9c9 Oxcacaca Oxcacaca Oxcbcbeb 0Oxccccce
Oxccccece 0Oxcdcded 0xcdedced Oxcecece Oxcfcfcf Oxcfcfcf 0xd0d0d0 0xdldldl
0xd1d1dl 0xd2d2d2 0xd3d3d3 0xd3d3d3 0xd4d4d4 0xd4d4d4 0xd5d5d5 0xd6d6dé
0xd6d6d6 0xd7d7d7 0xd7d7d7 0xd8d8d8 0xd9d9d9 0xd9d9d9 Oxdadada Oxdbdbdb
0xdbdbdb 0xdcdcdc 0xdcdcdc 0xdddddd Oxdedede Oxdedede Oxdfdfdf Oxdfdfdf
0xel0elel0 Oxelelel Oxelelel Oxe2e2e2 0Oxe2e2e2 0xe3e3el3 Oxe3e3e3 Oxededed
Oxe5e5e5 OxeS5e5e5 0Oxebebebt Oxebebeb OxeTeTe7 OxeTeTeTl OxeBe8e8 0Oxed%eled
0xe9%e9%e9 Oxeaecaea Oxeaecaea Oxebebeb Oxebebeb Oxececec Oxededed Oxededed
0x 0x Oxefefef Oxefefef Oxf0f0f0 OxfOf0f0 Oxflf1fl Oxf2f2f2
0xf2f2f2 O0xf3f3f3 Oxf3f3f3 Oxf4f4f4 O0xf4f4f4 OxfS5f5f5 OxfS5ES5f5 OxXf6£6£f6
Oxf6£f6£f6 Oxf7f7f7 Oxf8fB8f8 OxfB8f8f8 Oxf9f9f9 O0xfI9f9f9 Oxfafafa Oxfafafa
0xfbfbfb 0xfbfbfb Oxfcfcfc Oxfcfcfc O0xfdfdfd 0xfdfdfd Oxfefefe Oxfefefe

ESV Workstation User's Manual [2.0] 4-7

5. Samo Output Guide

Video Output Guide

Table of Contents

5. Video Output Guide 5-1
INETOQUCHION.....c.veeuirrirerirereesenree st sttt srte sttt s be st b sb e bbb sbebsssbaase s 5-1
RASIET MONILOTSorucivieiiiireerieneeeeseenteeestnteteseessesesnse st sssess ssssssesnessesssssssessenseens 5-1
Video SIZNAISccviivimiiiircniniiiiiinii e b s b s et 5-1
Multiple Video HOOKUPScoeeeerrerrreereniennenicnenesiniinciiie it essssessenss 5-2
Video Output SPECIfiCAtioNSccccovcvrieririniniiniiniiiiniii et nens 5-3
CONNECHONS ...covererreeerentereneecreenireseestssecssessessasessesessersssssssssssssessssssssesns 5-3
VOoltage LEvVELScccvreeverenninieeniniiinciintne s ssssessssaesenaes 5-3

Video Timing FOrmMAtScccoceverviininensnininiiiiiiiie e srsesennes 5-3
Changing Video Timing FOImMatscccccoevmenriinneniineniinincssinseens 5-4

Video Timing Specificationsccocevecererinninicrinreniinncncncenesr s 5-5
NOMENCIALULE ...cuvicverereeereeeereeieneeietetesesiet et ssssassbssse s sasesaens 5-5

Video Output Signals.....c.cceeceeeerereeceneeresenenenieniucinississssesssssens 5-13
Recording Screen IMagesccoccoeeeeeeneneisneninnninineiinisiee e insssesnes 5-15
OVETVIEW ..vieririiriiirierenieeneneeeeseensesscsseseesesstssesssssssssessassssssnsessessesssssessens 5-15

SHIL CAMETA ...veeeeereereeerireereeenreeseesteesreesesseesessbesssssesssssssssssnssnsabesssenis 5-15

Film RECOTALTcoiiiiiiicrieteeenenieceecetesressrestesne e ssssansssessnsssesanesas 5-15

PIOET ..vevieieieiireieeseereneeeseentsetse e et este et sseonestssensesssnsnssnesssssssnasnsens 5-16

Video Camera RecOrdingcccovcveiviiiniinininenineniiineneessseisesssnsenes 5-16
MoOnitor CharaCteriStiCsc.ceveeverrimrmirieruisiiriisiisiiisine e eressesssesessesenns 5-16

ESV Workstation User's Manual [2.0] 5-i

Video Output Guide

5. Video Output Guide

Introduction

This chapter describes the video output from the ESV Workstation. It
contains the following information:

e A discussion of raster video theory,

+ A summary of the video output specifications for the ESV
Workstation, and

» A description of techniques for recording screen images.

Raster Monitors

Raster monitors are either interlaced or non-interlaced. Non-interlaced mon-
itors draw all of the horizontal lines each time they draw from the top to the
bottom of the screen. All the lines drawn on the screen make up a frame. The
default ESV Workstation video timing format is non-interlaced.

Commercial television is an example of an interlaced monitor. Interlaced
monitors draw the first scan line on the top of the screen, then draw the third
scan line, then the fifth, and so on to the bottom of the screen, drawing all the
odd numbered scan lines. The beam then goes back to the top of the screen
and draws all of the even numbered scan lines. The odd numbered scan lines
are called the odd field and the even numbered scan lines are called the even
field. The two fields make up one frame.

Interlaced monitors can have the same resolution as a non-interlaced
monitor with only about 60% of the performance of the non-interlaced mon-
itor because the interlaced monitor draws a given pixel only one-half as often
as the non-interlaced monitor. The field rate is still 60 Hz, so there is not a
problem with flicker. Interlaced monitors produce some peculiarities (arti-
facts) when there is motion in the picture. If the eye follows an object that is
moving vertically, the object can move one scan line per field, and the eye
will see the two fields superimposed on each other. The object appears to
have horizontal black lines drawn through it. This is one of the class of arti-
facts known as temporal aliasing. One familiar example of temporal aliasing
from western movies is a wagon wheel appearing to turn backwards.

Video Signals

The ESV Workstation generates three video signals: red, green, and blue
There is also a composite sync signal at TTL levels

The ESV Workstation controls the monitor by regulating how bright the
electron beam is for each point of the picture and when the beam draws each

ESV Workstation User's Manual [2.0] 5-1

Video Output Guide

scan line. The information that controls the brightness of the beam is called
active video. The information that tells the beam when to go back and forth
in the horizontal direction is called horizontal sync. The information that tells
the beam to go back and forth in the vertical direction is called vertical sync.
Vertical sync and horizontal sync are often combined to form composite sync.
The information is separated in the monitor by special filters.

The composite sync signal does not need to convey any information while
active video information is being sent. This allows the composite sync signal
to be included with one of the video signals. The resulting signal is called
composite video. Most color video terminals have one video signal for each
of the primary colors of light: red, green, and blue (RGB). The composite sync
signal is usually included with the green video signal. The ESV Workstation
uses this RGB video system with composite sync carried on the green video
signal.

The video signal has defined voltage levels which convey information
about brightness, composite sync, and more to the monitor. The Electronic In-
dustries Association (EIA) RS-343-A standard is one common standard. The
signal voltage levels from the ESV Workstation conform to this standard.

Multiple Video Hookups

The RGB video signals are carried on three coaxial cables bundled together in
a large shielded cable. The coaxial cable has a characteristic impedance of 75
ohms. The connectors are standard BNC.

The ESV Workstation generates only one set of video signals, so multiple
output devices, such as monitors and cameras, must be connected in a daisy
chain. The ESV Workstation’s monitor does not have loop-thru capability, so
the first device hooked up to the ESV Workstation must have both inputs and
loop-thru outputs. The next device should have its inputs connected to the
loop-thru outputs of the first device. Each additional device along the chain
works the same way. All devices except the device at the end of the chain
must have termination removed or turned off. The last device in the chain
must terminate the video signals. This is usually done with a built-in 75 ohm
switchable resistor, although termination may be done with BNC caps.
Coax-t connections are not recommended.

Picture quality may degrade if more than one device is connected to the
ESV Workstation. In such cases, Evans & Sutherland recommends the use of
wide-band video distribution amplifiers with a minimum bandwidth of
110 MHz to implement active loop-thru. When using these active loop-thru
devices, all devices should be terminated at 75 ohms.

ESV Workstation User's Manual [2.0]

()

Video Output Guide

Video Output Specifications

Connections

There are four BNC connectors, one each for red, blue, green and TTL com-
posite sync. Composite sync is also on green.

Voltage Levels

Voltage levels are given referenced to earth ground. All video signals must
be terminated in 75 ohms to ground.

Table 5-1. Voltage levels

Value RGB w/o Sync Green with Sync
Reference White 0714V 1.000V
Reference Black 0.054V 0340V
Blanking 0.000 V 0286 V
Sync N/A 0.000V

These levels conform to the EIA RS-343-A standard. All TTL output sig-
nals have the following drive:

* Low level output < 0.1V DC at 24 mA.
» High level output > 4.7V DC at 24 mA.

Video Timing Formats

The ESV Workstation software supports the following seven video timing
formats:

+ 1280 by 1024, 60 Hz, non-interlaced (default)

* 640 by 1024, 56 Hz, interlaced

e 1280 by 1024, 56 Hz, interlaced

* RS-343-A 1280 by 1024, 30 Hz, interlaced

* RS-343-A 1260 by 946, 30 Hz, interlaced

* PAL/SECAM RGB, 768 by 574, 25 Hz, interlaced
e RS-170-A RGB, 640 by 484, 30 Hz, interlaced

The 1280 by 1024 non-interlaced format is the default ESV Workstation
video timing format. This format does not conform to any established stan-
dard video timing format.

Different video timing formats are used to display pictures. Every moni-
tor is configured to work with certain video timing format(s). The important
features of a video timing format are:

ESV Workstation User's Manual [2.0] 5-3

Video Output Guide

* Pixel rate is the rate at which video information can change. The de- (
fault ESV Workstation video timing format has a pixel rate of approx-
imately 107 MHz.

* Horizontal frequency is the number of times a horizontal line is drawn
across the screen each second. The default ESV Workstation video
timing format has a horizontal frequency of 64 KHz.

o Field rate is the rate at which the electron beam goes from the top to
the bottom of the screen. The default ESV Workstation video timing
format has a field rate of 60 Hz.

e Frame rate is the rate at which the entire screen is redrawn. In non-
interlaced monitors, the frame rate is the same as the field rate.

All timing information is conveyed on the composite sync signal. The
ESV Workstation generates only one composite sync signal, so only one
video timing format can be generated at a time. A different video timing
format requires a different composite sync signal.

Monitors with different video timing formats can be hooked up at the
same time, but only monitors that are configured for the video timing format
which is generated by the ESV Workstation at that time will produce a good
picture.

Changing Video Timing Formats (
ES/PSX Option

This section discusses how to accomplish video format changes with the
ES/PSX option. Switching from one video timing format to another is done
by sending values to input <5> of the ES/PSX function PS390ENV. There are
three values which the function will accept on this input:

» Sending 0 to <5> turns on a format that is non-interlaced, single-field,
1024 x 1280 pixels, consecutive memory scanlines. This is the default
monoscopic format.

+ Sending 2 to <5> turns on a stereo format that is interlaced, dual-field,
each 512 x 1280 pixels. The odd field consists of memory scanlines 0
to 511, and the even field consists of memory scanlines 512 to 1023.
This format gives twice the resolution in the x-axis as the stereo
format described in the next paragraph.

+ Sending 3 to <5> turns on a stereo format that is interlaced, dual-field
with each field 512 x 640 pixels. The odd field consists of memory
scanlines 0 to 511, and the even field consists of memory scanlines
512 to 1023. This format does not display pixels 640 to 1279.

The video timing format changes on the subsequent video frame without re-
gard for the structure walker’s position. This can produce momentary visual (

5-4 ESV Workstation User’'s Manual [2.0]

Video Output Guide

oddities. Because the routine does its work by setting bits in sync memory,
graphics must previously be initialized by the application to allow access to
Sync memory.

X Clients

An X client can change the video mode (video output format) of the ESV
workstation by calling the XVideoMode function:

#include <X1ll/extensions/XVideoMode.h>
int XVideoMode (display, mode)
Display * display;
int mode;
display Specifies the connection to the X server.
mode Specifies the video mode to switch to.

Note: In order to include the
X11/extensions/XVideoMode.h file, you
must also include the X11/Xmd.h file to get the
appropriate typedefs.

Possible constants to use for mode:

Monoscopic Normal video for ESV.
RS_343_A_1280x1024 Special video format.
RS_343_A_1260x946 Special video format.
PAL_SECAM_768x574 Special video format.
RS_170_A_640x480 Special video format.
Stereo60KHzIntStor1280x1024 Special video format.
' Stereo60KHzSplitStor1280x1024 Special video format.
Stereo60KHzIntStor640x1024 Special video format.
Stereo60KHzSplitStor640x1024 Special video format.

Video Timing Specifications

Tables 5-2 through 5-8 show the video timing specifications for the video
timing formats supported by the ESV Workstation.

Nomenclature

Figure 5-1 illustrates the timing terms defined below.

» Front Porchrefers to the time interval between the end of active video
and the beginning of sync, during which the video is at Blank level.

* Back porchrefers to the time interval between the end of sync and the
beginning of active video, during which the video is at Blank level.

» The symbol H, when used in the vertical timing specification, means
one horizontal period.

ESV Workstation User's Manual [2.0] 5-5

Video Output Guide

60 HZ NON-INTERLACED

T B, U e o a1

56 HZ INTERLACED

SYNC PULSE

J
-.P,

EQUALIZATION !

TOTAL BLANKING

Vertical blanking intervals

HORZ PERIOD

Horizontal timing key

Figure 5-1. Video timing diagrams

ESV Workstation User's Manual [2.0]

Video Output Guide

Table 5-2. 1280 by 1024, 60 Hz, non-interlaced

Aspect Ratio, H:V:
Horizontal timing:
Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:
Horiz. Period:
Pixels Displayed:
Vertical Timing:
Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:
Total Vertical Time:
Pixel Frequency:
Pixel Period:

ESV Workstation User's Manual [2.0]

5:4

63.96 KHz
4095 ps
1.712 ps
1.601 ps
3.723 ps
1191 ps
15.63 pus
1280

60.00 Hz per field

3H

3H

36H

42H (.6567 ms) per field
1024H (16.01 ms) per field
1066H (16.67 ms)
107.4528 MHz

9.3064 ns

Video Output Guide

Table 5-3. 640 by 1024, 56 Hz, interlaced

Aspect Ratio, H:V: 5:4
Horizontal timing:
Frequency: 60.50 KHz
Front Porch: .8190 ps
Sync Pulse: 1.712 us
Back Porch: 2.085 ps
Total Blanking: 4.616 ps
Active Video: 11.91 ps
Horiz. Period: 16.53 us
Pixels Displayed: 640
Vertical timing:
Frequency: 55.66 Hz
Front Porch: 3H
Sync Pulse: 3H
Back Porch: 25H
Total Blanking: 31H (.5124 ms) per field
Active Video: 512.5H (8.471 ms) per field
Total Vertical Time: 1087H (17.97 ms)
Pixel Frequency: 53.7264 MHz
Pixel Period: : 18.6128 ns

Note: All vertical frequencies denote frame rate, not field rate, and all inter-
laced formats are 2:1 interlaced.

5-8 ESV Workstation User's Manual [2.0]

Video Output Guide

Table 5-4. 1280 by 1024, 56 Hz, interlaced

Aspect Ratio, H:V: 5:4
Horizontal timing:
Frequency: 60.50 KHz
Front Porch: .8190 ps
Sync Pulse: 1.712 ps
Back Porch: 2.085 us
Total Blanking: 4.616 us
Active Video: 1191 ps
Horiz. Period: 16.53 ps
Pixels Displayed: 1280
Vertical timing:
Frequency: 55.66 Hz
Front Porch: 3H
Sync Pulse: 3H
Back Porch: 25H
Total Blanking: 31H (.5124 ms) per field
Active Video: 512.5H (8.471 ms) per field
Total Vertical Time: 1087H (17.97 ms)
Pixel Frequency: 107.4528 MHz
Pixel Period: 9.3064 ns

ESV Workstation User's Manual [2.0] 5-9

Video Output Guide

Table 5-5. RS-343-A 1280 by 1024, 30 Hz, interlaced

Aspect Ratio, H:V:
Horizontal timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:
Horiz. Period:
Pixels Displayed:

Vertical Timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:
Pixel Frequency:
Pixel Period:

54

33.21 KHz
7962 us
2.751 ps
3.402 s
6.949 s
23.16 ps
30.11 ps
1280

60.00 Hz per field

3H

4H

34H

41H (1.235 ms) per field
512.5H (15.43 ms) per field
1107H (33.33 ms)

55.2614 MHz

18.0958 ns

ESV Workstation User's Manual [2.0]

Video Output Guide

Table 5-6. RS-343-A 1260 by 946, 30 Hz, interlaced

Aspect Ratio, H:V:
Horizontal timing:
Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:
Horiz. Period:
Pixels Displayed:
Vertical Timing:
Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:
Total Vertical Time:
Pixel Frequency:
Pixel Period:

ESV Workstation User's Manual [2.0]

4:3

30.69 KHz
.8105 ps
2.756 us
3.485 pis
7.052 ps
25.53 us
32.58 us
1260

60.00 Hz per field

3H

4H

31H

38H (1.238 ms) per field
473.5H (15.43 ms) per field
1023H (33.33 ms)

49.3495 MHz

20.2636 ns

Video Output Guide

Table 5-7. PAL/SECAM RGB, 768 by 574, 25 Hz, interlaced

Aspect Ratio, H:V:

Horizontal timing:
Frequency: -
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:
Horiz. Period:
Pixels Displayed:

Vertical Timing:
Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:

Pixel Frequency:
Pixel Period:

4.3

15.63 KHz
1.627 us
4.610 ps
5.695 pus
11.93 us
52.07 us
64.00 pus
768

50.00 Hz per field

2.5H

2.5H

20H

25H (1.600 ms) per field
287.5H (18.40 ms) per field
625H (40.0 ms)

14.7500 MHz

67.7966 ns

ESV Workstation User's Manual [2.0]

Video Output Guide

Table 5-8. RS-170-A RGB, 640 by 484, 30 Hz, interlaced

Aspect Ratio, H:V: 4:3
Horizontal timing:
Frequency: 15.73 KHz
Front Porch: 1.638 us
Sync Pulse: 4914 ps
Back Porch: 4.586 us
Total Blanking: 11.14 ps
Active Video: 5242 us
Horiz. Period: 63.56 us
Pixels Displayed: 640
Vertical Timing:
Frequency: 59.94 Hz per field
Front Porch: 3H
Sync Pulse: 3H
Back Porch: 14H
Total Blanking: 20H (1.271 ms) per field
Active Video: 242.5H (15.41 ms) per field
Total Vertical Time: 525H (33.36 ms)
Pixel Frequency: 12.2098 MHz
Pixel Period: 81.9014 ns
Video Output Signals
REDVIDEOOUT:

Red video output (analog signal). Signal conforms to RS-343-A standard
voltage levels when terminated in 75 ohms to ground. Signal is intended to
drive a 75 ohm coax and be terminated at the end of the coax with a 75 ohm
resistance to ground. Full brightness is 0.714 V, black is 0.054 V, and blank
is 0.000 V.

GRNVIDEOOUT:

Green video output (analog signal). Signal conforms to RS-343-A standard
voltage levels when terminated in 75 ohms to ground. Signal is intended to
drive a 75 ohm coax and be terminated at the end of the coax with a 75 ohm
resistance to ground. Composite sync is also carried on this signal, but may
be optionally disabled. If composite sync is enabled, full brightness is

1.000 V, black is 0.340 V, blank is 0.286 V, and sync is 0.000 V. If composite

ESV Workstation User's Manual [2.0] 5-13

Video Output Guide

sync is not enabled, full brightness is 0.714 V, black is 0.054 V, and blank is
0.000 V.

BLUVIDEOOUT:

Blue video output (analog signal). Signal conforms to RS-343-A standard
voltage levels when terminated in 75 ohms to ground. Signal is intended to
drive a 75 ohm coax and be terminated at the end of the coax with a 75 ohm
resistance to ground. Full brightness is 0.714 V, black is 0.054 V, and blank
is 0.000 V.

*CSYNCOUT:

Composite synchronization output (TTL, active low). Composite sync signal
to video peripherals, such as monitors. Its active edge is the falling edge, but
most video peripherals call this same polarity CSYNC.

Recording Screen Images

Overview

There are a variety of ways to capture ESV Workstation screen images, in-
cluding still photography, film recording, hardcopy plotters, and video cam-
era recording.

This section provides an overview of the different methods to generate
photographs, hardcopy plots, film recordings, and video camera recordings of
screen images.

Still Camera

The easiest way to record a workstation image is to take a picture with a still
camera. The workstation takes one sixtieth of a second to draw a complete
picture on the screen, so the exposure must be longer than one sixtieth of a
second. One fifteenth of a second exposure is preferable. If you are filming
both wireframe and rendered images on the same screen, you should use a
double exposure, one for the wireframe, and one for the rendered object. At
slow exposure speeds, mount the camera on a tripod, and use a remote shutter
release.

The face of the system monitor curves out towards the camera, so depth-
of-field may be a problem. Kodachrome 25 or 64 color slide film is recom-
mended for 35 mm cameras. The photography should be done in a totally dark
room. Opaque tape should be placed over the power indicator light on the
monitor. Do not use flash.

Film Recorder

Several companies make special camera systems for filming computer-gen-
erated images. The system consists of a high resolution monochrome (black

5-14 ESV Workstation User's Manual [2.0]

. Video Output Guide

and white) monitor, a set of interchangeable red, green, and blue filters, a
camera back, and control circuitry. The camera system puts the green video
on the black and white monitor, takes a picture through the green filter, then
puts the red video on the black and white monitor, takes a picture through the
red filter, and then repeats the process for blue. Each picture requires three ex-
posures. These camera systems generally accept a high resolution interlaced
format.

This method yields the highest quality image recording. This technique is
not well suited to filming dynamic motion. However, this method can be used
to animate motion sequences. Most cameras offer a movie camera film back
designed for use in animation.

Plotter

Several companies make plotters which connect to the RGB video outputs
from the ESV Workstation. The plotter has a video interface which samples
and digitizes the video signals over about 30 seconds. The plotter then prints
the image onto paper. Unfortunately, these plotters have poor color resolu-
tion, so spatial resolution is usually sacrificed to give better color resolution
using a technique known as dithering. The quality of the hardcopy image will
be inferior to the image quality seen on the monitor.

Video Camera Recording

It is possible to record video directly from the ESV Workstation screen using
a video camera. The recording should be done in a totally dark room. Be sure
to cover the power indicator on the monitor with opaque tape. This direct
method of filming the workstation screen using a video camera may not work
well due to a difference between the screen refresh rate of the workstation and
the television system being used. The workstation refreshes the screen at

60 Hz. NTSC television refreshes the screen at 59.94 Hz. PAL/SECAM televi-
sion refreshes the screen at 50 Hz.

Unfortunately, the NTSC encoding system used for color television in the
U.S.A. gives poor spatial resolution of colors in the horizontal direction. Ver-
tical color boundaries between different colors such as red and blue show a
moving chroma crawl (or zipper) pattern on the recording. The VHS system
of recording has resolution that is even worse, so the zipper pattern will not
be as noticeable.

Pastel colors provide a better quality recording than the saturated RGB
colors used most often in computer graphics applications. The BetaCam sys-
tem provides better color resolution.

ESV Workstation User's Manual [2.0] 5-15

Video Output Guide

Monitor Characteristics L . o (

The'ESV Workstation monitor uses medium-persistence B22 phosphor. The
International Commission on Illumination (Commission Internationale de
I’Elairage, or CIE) standard coordinates of the phosphors are shown in table

5-9.
Table 5-9. CIE phosphor coordinates
Color) X y
Red 0.62 ©0.35
Green 0.29 0.60
Blue 0.15 0.065
For white, the color temperature of the monitor at screen center is:
9300 degrees Kelvin + 7 M.P.C.D.

where, M.P.C.D. = minimum perceptible color difference
The color coordinates are: ‘

x=0.283+0.020

y=0.297 £0.020

(

5-16 ESV Workstation User's Manual [2.0]

6. Editors |

Editors

Table of Contents
6. Editors 6-1
INITOQUCHION ..ttt sesee e seresesesese st sseseresansssssssesssassesnssssesesassssaes 6-1
VEEBQIOT c.oviiiiiiinieninitntntntsentsteseseesese e e e e et st esssetasasssssss s s sesssasesessesessssesens 6-1
Create a File or Edit an Existing Fileccccouevevurenennernnnenenseenserenens 6-1
Command Mode/Input MOEccceveiererenenieerurnenentneeeiesesseesessesesens 6-1
Moving Around the SCTEENccceueuereercrenenirreeeeer e sennetseseesensenes 6-2
TEXt OPETALIONScooiiiiiiiieiiniererenireetesese et ese e e stsessesesesesasaasenes 6-2
Quitting/SavINg FIlesccocvvurveniienenenienienerieresieeiestereeiessssesssssessesenses 6-3
SEATCH TEXL ...vcuiirrruererererireereeeeenteeseseste e te e sestasasse e sessesesasssssssssnnesessens 6-3
GNU EINACS ..veviviiiiiniiniritiniesinesesesserenensssenssssesenssssssssessssssesessssssesssssssssssessnsns 6-4
Starting BIMACSc.cccviviiniereneinininirnineneieseenesesestsseserenssssssesasasesssasesssesens 6-4
Starting the TUtorialccceoeerurireenencresercrentneeer s ssseons 6-4
Getting HEIP ...c.ocoviiiiiiiiiniiiininceeese ettt seeresesen e iassssssss st s ssssans 6-4
Leaving EMACSc.cocveeiiennnenininenestsesseseneseeisesseseeesssssesssssessssssassnns 6-5
FALES ettt et e st e e st bt b st bt ba e ar et et e nenan 6-5
EITOr RECOVETY ...uueiuiiieieiiiee sttt sttt sae e seevts e s sbesassesesaenanes 6-5
Incremental SEArChesocccvieecinenieienereresieseie e sterere s e srans 6-5
CUrsor MOVEIMENTcoceevivererireueneeeneeeertsestssesesesessssnsssssssssssssesesesssans 6-6
SCIEen MOVEIMENL ...c.cuoueuviiireieiriereriesieseieseeesessesesesesesasssssesessssesssnsens 6-6
DEIEHNE.....cviiiiiiiititiitc ettt aeses e e st seesese et ssa s s ene 6-6
FOIMALHNG ..ottt et ettt et st et asse e sa et srasaesesaans 6-7
Changing Caseceviverevererinereeeieeeneresesese st esesereressssserasasetesesesasans 6-7

ESV Workstation User's Manual [2.0] 6-i

Editors

6. Editors

Introduction

vi Editor

There are three editors available on the ESV Workstation: ed, vi, and emacs
(GNU Emacs). The vi editor is more versatile than the ed editor, and is easier
to get started with than the emacs editor. The emacs editor is more versatile
than vi. This chapter discusses basics of vl and emacs.

The vi editor allows you to create, edit and save files.

Create a File or Edit an Existing File

A new file is made by entering: vi [newfilename]
Edit an existing file by entering: vi [oldfilename]

Command Mode/Edit Mode

vi uses a Command Mode and Edit Mode. Command mode accepts key-
strokes as commands, but does not display the characters as you type. Edit
mode accepts keystrokes as text and will display it as it is entered. vi does not
tell you which is the current mode unless showmode is set.

It is advisable to always turn showmode on when using vi. From command
mode enter:

:set showmode
Command Mode

Command mode controls the screen, characters, words and line movement.
To invoke the command mode enter an ESC (The escape key).If you are al-
ready in command mode, the terminal will beep. In command mode, no mode
is displayed on the screen.

Edit Mode

The edit mode is entered by inputting one of the characters listed below under
“Text Operations.” This then allows text to be entered at the specified posi-
tion. With showmode set, the mode will be displayed at the bottom of the
screen. The various modes are:

+ INSERT

+ OPEN

+ APPEND
+ CHANGE

ESV Workstation User’'s Manual [2.0] 6-1

Editors

+ REPLACE
¢ REPLACE 1 CHAR

Moving Around the Screen

From command mode, you can move around the screen with the following:

hor «
jor 4
kor T
lor—
Af
Ab

FE2 T3

Move left one character.
Move down one line.
Move up one line.

Move right one character.
Page forward one page.
Page backward one page.
Move to line ».

Move to last line in file.

Move to top line on screen.
Move to middle line on screen.
Move to last line on screen.

Moving within a line:

$ Move to the end of the line.
A Move to the beginning of the line.
b Move backward one word.
w Move forward one word.
Text Operations
Adding New Text

From command mode, type one of the following to enter edit mode and begin
adding text at the indicated position. Terminate each new line of text with a
carriage return. Note that the current line is the one which contains the cursor.
The mode is shown in parentheses.

a

- - >

O ©

Add text immediately after the cursor. (APPEND)

Add text at the end of the current line. (APPEND

Insert text immediately before the cursor. (INSERT)
Insert text at the beginning of the current line. INSERT)
Open a new line after the current line. (OPEN)

Open a new line above the current line. (OPEN)

ESV Workstation User’s Manual [2.0]

Editors

Adding a Control Character

To add a control character, i.e., a M (PS 390 routing byte), first type Av then
the control character to be added. For example, to add the PS 390 command
interpreter routing byte, you would type: AvA\Q

Editing Text

From command mode, type one of the following to enter an edit mode and
begin editing text. Enter ESC to return to command mode. The mode is shown
in parentheses.

cw Change a single word. A $ will mark the end of the word
being changed. (CHANGE)

C Change from the cursor position to the end of the current
line. A $ will mark the end of the change area. (CHANGE)

r Replace a single character and automatically return to
command mode. (REPLACE 1 CHAR)

R Replace text until command mode is manually reentered.
(REPLACE)

xp Transpose two characters, stay in command mode.
Deleting Text
From the command mode, enter one of the following to delete text.

D Delete from cursor to end of line.

dd Delete the current line.

dw Delete a single word.

X Delete character under cursor. May use #x also.

X Delete character to left of cursor. May use #X also.

Quitting/Saving Files

The following are done from the command mode. After entering the : (colon),
a @ is displayed at the bottom of the screen, after which you enter the desired

letter.

w Write the file to disk using the original filename.

:w new Write the file to disk using the filename new.

q Quits vi and returns to the system prompt. If the file has not been
saved with :w, the system will ask the user to enter q! to discard the
buffer, abandon all edits and return to the system prompt.

:q! Abandons all edits and quits vi.

: set all Display all vi option settings.

ESV Workstation User's Manual [2.0] 6-3

Editors

Search Text Y (

Istring Search forward. stringequals search characters.
?string Search backward. strlng equals search characters.

vi defaults file

The file .exrc in your home directory acts as a personal default option file for

"'vi. Any vi option may be set in this file as a one line entry per option. Show-
mode and automatic line numbering are examples of options that may be set
in .exrc. To set these two options, create a .exrc file in your home directory
‘that contains the following two lines:

set showmode
set number

~ All vi sessions (no matter what directory you are in) will use the options set
in your .exrc file.

6-4 ESV Workstation User's Manual [2.0]

Editors

GNU Emacs

GNU Emacs is another display text editor that runs on the ESV Workstation.
It provides facilities beyond simple text editing functions, and can be easily
customized. :

This section presents a summary of basic Emacs commands. Many com-
mands involve holding the control (CTRL) key and pressing another key si-
multaneously. In this section this operation is indicated by a hyphen between
the two keys, for example:

CTRL-v

Other commands involve pressing first the ESC key followed immediately by
another key. This operation is indicated by a space between the two keys:

ESCt
Starting Emacs
To start the editor after logging on to the system, type
> emacs

Emacs divides the screen into several windows. The largest of these is the
text window in which you see the text you are editing. At the bottom of each
text window is the mode line which describes information about the window,
including the name of the buffer being displayed, the modes in use, and how
far down the buffer you are looking. You can recognize the mode line easily
because it is displayed in inverse video.

The line below the mode line is called the echo area and is used to echo
(print out) the command characters that you type and small amounts of text
for prompts and messages. For example, this line will echo a multi-character
command and prompt you to enter the name of the file.

Starting the Tutorial

Probably the best way to become familiar with the program is by working
through the on-line tutorial. After starting Emacs you can start the tutorial by
placing your pointer in the text window and entering:

CTRL-h t
You can use the key sequence CTRL—x CTRL—c to exit the tutorial.

Leaving Emacs

Key Sequence Function
CTRL-x CTRL-c Exit Emacs permanently.

ESV Workstation User's Manual [2.0] 6-5

Editors

Error Recovery

Key Sequence
CTRL-g

ESC-x revert-buffer
CTRL-

CTRL-x u

ESC-x recover-file

Cursor Movement

Key Sequence
CTRL-b
CTRL-f
ESC-b
ESC-f
CTRL-p
CTRL-n
CTRL-a
CTRL-e
ESC-<
ESC->
Screen Movement
Key Sequence
CTRL-v
ESC-v
CTRL-x <
CTRL-x >

Files

Key Sequence

CTRL-x CTRL-r
CTRL-x CTRL-f
CTRL-x CTRL-s

Function

Abort a partially typed or partially execut-
ed command.

Restore a buffer to its original contents.
Redraw a corrupted screen.

Undo an unwanted change.

Recover a file lost by a system crash.

Function

Backward one character.
Forward one character.
Backward one word.
Forward one word.

Up one line.

Down one line.

Start of line.

End of line.

Go to buffer beginning.
Go to end of buffer.

Function

Scroll to next screen.

Scroll to previous screen.

Scroll left (only if text is wrapping).
Scroll right.

Function

Reads a file into Emacs in single window.
Reads a file into Emacs in split window.
Saves a file to disk.

ESV Workstation User's Manual [2.0]

Editors

CTRL-x i

CTRL-x CTRL-w

Incremental Searches

Deleting

Key Sequence
CTRL-s

CTRL-g
CTRL-r
CTRL-ESC-s
ESC

Key Sequence
DEL

CTRL-d

ESC-d
ESC-DEL
CTRL-k

ESC-0 CTRL-k

Changing Case

Split Screen

ESV Workstation User's Manual [2.0]

Key Sequence
ESC-u
ESC-l
ESC-c

Key Sequence
CTRL-x 2
CTRL-x CTRL-f
CTRL-x CTRL-0
CTRL-x 1

Insert contents of another file into this buff-
er at cursor position.

Write buffer to a specified file.

Function

Search forward. Use a second CTRL-s to
search for the next occurrence.

Abort current search.
Search backward.

Regular expression search.
Exit incremental search.

Function

Delete previous character.

Delete next character.

Delete next word.

Delete previous word.

Delete forward (kill) to end of line.

Delete backward (kill) to beginning of line.

Function

Make word uppercase.
Make word lowercase.
Capitalize word.

Function

Split screen in two windows.

Read a file into the other window.
Move the cursor the other window.
Restore the screen 1o a single window.

Editors

Cut and Paste
Key Sequence Function
CTRL-SPACEBAR Set a mark.
CTRL-xw Delete the text region between the mark
and the cursor.
, . CTRLy |, ‘ Re-paste the deleted text region at cursor.
ESC-w Extract (without deleting) the region be-
tween the mark and the cursor.
CTRL-y Paste the extracted region at the cursor.
Control Characters
Key Sequence : Function
CTRL-q Literal quote of the following character.

Control keys may be typed in by preceeding
them with a CTRL-q.

Getting Additional Information

Key Sequence Function

CTRL-h Enter the help system. (Use the RETURN
key to exit.)

CTRLx1 Get rid of the help window.

ESC CTRL-v Scroll through the help window.

CTRL-hc Show the function a key runs.

CTRL-h f Describe a function.

CTRL-hm Get mode specific information.

6-8 ESV Workstation User's Manual [2.0]

7. Customer Support

Site Preparation and Customer Support

Table of Contents

7. Site Preparation and Customer Support

Site PIEPATAtiONceeveuiieniecnintircrcsiiissseesissesesisssctsseses s sestssssenssansssssssssessssons
SPACE .evirerrinirireniesesresestessessersessessessersessessassassesnsessesenne
LOCAHION eeuineienieneincnineneeretene e seenteeetesce e st cneesasacsas st ensesessosssessnseneasencas
Environmental SUPPOTTc.ocveverveeiererreereesneneeeessensesneeseonsesssnessesesseensssees
POWET .ottt seneeeeeneanst et st et sisnsesaeesesstesesnsesuesnsssansessssessessensos
Temperature and HUmMIditycc.ccceceeererrrninineneencesenteneencenseneersssseneences
Fire and Safety Precautionsc.cccceveeveereereeneereneeesecreesesseenssnsnessessennes
A QUALILY oot ens
WOTK TabIEooviiiiiiieiencce ettt eee e sesssaesae e saens
F10OT COVETINESoviieirinnicniiininiriaciienresetssessessessssesssssssesessessasssesssnens
CABNG oottt ettt ettt et s sa s e
NEIWOTKING ..ottt ettt et e seeseeseeu s sesassa e st st emee s s
Partitions ..c..ocveeverrieiceieinerinteceeneeiesreaeseee e estesessesasesesseesesssssesesassssneas
ACOUSLICS ...ovineeieiniinceiniecet ettt sae e st ensebe st srssaesesesssssnsanes
LAGHHING .eveviiiiieieneetentntre e seessesees e sans e sneesesssessessssnessessessessssansssnses
VIDTAtON .ttt ettt st e sesaesae s seseenses

Static Electricity and ESDcccvvivininnnriinnineiinineieiessesisssssssennes
CorroSive ENVITONMENLScceeieiienrenienreereeerseessesseseseesessessesessessessasnes
ATHIUAE oottt st see e eses st st e sa et e saensesns
CUSLOMET SUPPOIT ...vveurieerreneierrenressenteeestssessessessesssessessesnsssessessessessasassessssassssss
Hardware Support PIansc.cccceevecerencntniencneenenineesiinnsnsesseesessens
Class A Hardware Service FEaturesccccceeeveenienrenrennennseenusessensenns
Class B Hardware Service FEaturescoeeveeverruenerenserseseererassessens
PriCING ZONEScuveeieeieteietreeentetent et ceee e seessessessesaesstsseseensenesesseeses
Software Support PIansccceecvverenienieneeniereenreneeneeneeseseesesseseesessens
Technical Phone Support Service FEaturescccoeevrevueneereereseeeenes
Software and Documentation Update Service Features
WAITANLY .oooiiiiiiiienirreee e ertssreesee s se s sssess st esstssasssassesnnsssens
Educational PrOZIamScccvevcnineinncnrcnienincnionsiinneenesinssscsesssssnes
Safety Precautions
GENETALovivririieneerirseeieeneeesteseseeraeseeseeseesseseessassssssensessonsensosersensesees
CADINEL ...veiiiiiieiieecertent ettt sreceesteesteeseessae s e eessessaessassassaenssssnnns

ESV Workstation User's Manual [2.0] 7-i

Site Preparation and Customer Support

7 -ii

Preventive Maintenancec.cccceveereerieseennesnessssessesesseesessessessessesssesessasssessesns 7-12
Monitor Cleaning INStruCtionsccvviinininninniniineimnisses 7-13
Care of the Keyboardccocveemnincienccninininncnieienesecieececseenennene 7-13
Care Of the MOUSEc..lovecineniinennninininsiinenssessissesssssssssesssssnens 7-13.
Care of the Tape Uitccvvviniririnnieniniiininisisniasionnnis e 1-13
Filter Cleaningc.cccecvvenencninisccancncinnenacsenssensnes
Shutdown and Powering Off

Predelivery Planning and Installationccccoeenccnenenncieneninnnnenecsenuennens 7-15
DElivery CONSITAINLSccccererereererecrereeestesesseseeassesessessesessconssseseesessences 7-15
Equipment Packaging and Handlingcccoiienncnnnnceisd eeeeeeeeeeas 7-15
Receiving ProCeUIeccoeevereeceirenerrnnnionnenniesunnensensueseseesseeseesessasones 7-16
Installation Procedureccooeevieerenecneciecienacnenneeencensennsensessssessnens 7-17
Customer ChECKIiSt.coevvrercneninneneinnncetiiienceinsesiesessosssessesnsssnens 7-17

Frequently Asked Questions and ANSWETSc.eceevieneerennnsennecnacnanns eveeseeesene 7-17

Evans & Sutherland Field Service Organizationceceveeneeneccccerencesnnnes 7-19

WHO t0 Call ...t erreaeseesesree st sseesesrtessossessensissesnesasesessssssessossinas 7-19

ESV Workstation User's Manual [2.0]

Site Preparation and Customer Support

7. Site Preparation and Customer Support

Introduction

This chaipter contains site preparation, customer support, and preventive
maintenance information that you received prior to the installation of your
ESV Workstation. It is included for your reference.

The general information presented here should be tailored to meet indi-
vidual situations. Please contact your Evans & Sutherland Service Center if
you have any questions.)

Site Preparation

Adequate site planning and preparation eases the installation process and pro-
duces efficient system operation. Site planning requirements vary greatly
from site to site. The location and environmental aspects of your system are
as significant as the equipment itself. The system could prove to be unusable
if it is placed in an awkward or inadequately supported location. Space and
location are the primary considerations for site selection. Table 7-1 shows the
component dimensions, and table 7-2 shows the cable lengths.

Table 7-1. Component dimensions

Component Length Width Height Weight
in (cm) in (cm) in (cm) 1b (kg)

Large Cabinet 30.0(76.2) 17.0(43.2) 25.5(64.8) 200.0(90.7)
Small Cabinet 30.0(76.2) 11.0(27.9) 25.5(64.8) 150.0(68.0)

Monitor 20.8(52.8) 19.4(49.3) 17.5(445) 685 (31.1)
RDC 150(38.1) 15.0(38.1) 3.0(7.6) 12.0 (5.4)
Keyboard 8.0 (20.3) 19.0(48.3) 1.6(4.1) 50@2.3)
Mouse 3.8(9.7) 2.8 (7.1) 1.0 2.5) 0.5(0.2)

Control Dials ~ 9.0(229) 120(30.5) 38(9.7) 95(4.3)
Function Buttons 9.6 (244) 9.1 (23.1) 1.6 (4.1) 1.8 (0.8)
Spaceball 126 (320) 65(165) 53(135) 3.3(1.5)
6x9 Tablet 94(239) 129(328) 03(0.7) 2.1 (1.0)
12x12 Tablet ~ 17.0(432) 17.0(432) 13 (3.3) 55(2.5)
15x15 Tablet ~ 20.8(52.8) 20.7(52.6) 3.0 (7.6) 12.2 (5.5)
18x25 Tablet ~ 24.1(612) 307 (78.0) 3.1 (7.9) 232 (10.5)

ESV Workstation User's Manual [2.0] 7-1

Site Preparation and Customer Support

Spacé

Location

Table 7-2. Cable lengths

Cable Length - feet (meters)

Monitor to Cabinet 10, 20, 45, 100, 150 (3.1, 6.1, 13.7)
RDC to Cabinet 10, 20, 45, 100, 150 (3.1, 6.1, 13.7)
Cabinet to AC Power 8 (2.9

RDC to AC Power 8(2.4)

Monitor to AC Power (RDC) 3(1.0)

The ESV Workstation should be positioned out of direct sunlight and away
from all sources of heat, including central heating vents, with a minimum of
2 inches (5 cm) of clearance around the cabinet to allow for air flow and ca-
bling. At least two sides of the cabinet must be left exposed to allow for ade-
quate air flow. The back of the monitor must have at least 6-1/2 inches

(16 cm) of clearance for cabling.

The actual floor space required will depend on the system itself, the
length-to-width ratio of the area, and the locations of walls, partitions,
windows, and doors. To determine the exact area your system requires,
prepare a scaled layout that includes all features of the site location. The area
allotted should provide for the following: future expansion of the system,
storage of related materials, convenient system operation, and easy access for
service and maintenance.

Locate your ESV Workstation site near work-related areas for efficient oper-
ation. The location of the site also depends on existing or planned facilities at
the site. The location must do the following:

* Provide adequate AC power,

« Conform to environmental requirements,

» Conform to safety and fire regulations,

+ Provide easy access for equipment delivery and installation, and

« Provide for the flow of work in the most efficient manner possible
with respect to such considerations as related areas, human factors,
storage, and noise isolation.

Environmental Support

When selecting your site, you must plan for adequate power and for environ-
mental support factors, such as temperature requirements and adequate air
quality.

ESV Workstation User's Manual [2.0]

Site Preparation and Customer Support

Power

You need to provide additional power for any other equipment that will be op-
erated in the area, such as test equipment and calculators.

 For the large cabinet, the USA wall receptacle should be a wall plug,
NEMA 5-20R 20A or equivalent.

+ For the small cabinet, the USA wall receptacle should be a wall plug,
NEMA 5-15R 15A or equivalent.

For the 220 volt option, the ESV Workstation is supplied with an
EE 7/7 (“schuko”) 10A cordset. The power specifications for the components
are shown in table 7-3.

Table 7-3. Power specifications

Component Voltage Max. Current Line Freq. Power
120/220-240V 120V 220V (Hz) (Watts)
Large Cabinet 120/220-240 16A 10A 60/50 1920
Small Cabinet 120/220-240 12A 8A 60/50 1440
Monitor 120/220-240 125A 0.7A 60/50 150
RDC 120/220-240 6A 3A 60/50 720

Following are general notes for table 7-3:
1) The line voltages shown have a tolerance of +6% to —10%.

2) The power consumption for the RDC is divided as follows: 240 Watts for
the RDC and 240 Watts for each of the two convenience receptacles on the
back of the RDC.

3) InJapan, ESV systems are designed to operate at 100 V, with a tolerance
of +6% to —10%, and 50 Hz.

4) The ESV systems are also designed to operate at 220 to 240 V, with a tol-
erance of +6% to —10%, and 60 Hz.

5) The cabinet and the monitor run on two-wire-plus-ground circuits. The
monitor must share a common electrical ground with its supporting cabi-
net.

ESV Workstation User's Manual [2.0] 7-3

Site Preparation and Customer Support

The ESV Workstation requires one dedicated 20 amp service line for the
large cabinet and one 15 amp service line for the small cabinet. The system
may be damaged if adequate service is not provided. The available supply of
AC power must be adequate to handle the power loads represented by the in-
stallation of the ESV Workstation as well as any anticipated future loads. The
electrical system must conform to applicable national and local codes and or-
dinances. Check the electrical service prior to system installation to ensure
that power levels are within the specified limits.

To ensure proper operation of the ESV Workstation, the following limi-
tations are placed on AC power disturbances:

* A maximum of 10% of nominal power for 0.1 seconds occurring no
more than once every 10 seconds,

e Maximum harmonic content of 5% rms, no more than 3% rms for any
single harmonic,

¢ Maximum impulse of 300 V with rise time of 0.1 microseconds or
slower, lasting no longer than 10 microseconds for total duration.

Many unconditioned AC service mains exceed these specifications, espe-
cially during periods of heavy use and/or electrical disturbances. Ensure that
the input power supplied to the ESV Workstation equipment has been ade-
quately conditioned.

Temperature and Humidity

The best way to provide the proper air temperature is to provide a separate
thermostatic control to compensate for the heat dissipated by the ESV Work-
station and any other equipment and personnel in the area. The air condition-
ing system must provide sufficient heating and cooling to maintain the
environment within the limits shown in table 7-4.

Table 7-4. Temperature and humidity limits

Operating Non-Operating
Temperature 50°F to 104°F —40°F to 122°F

(10°C to 40°C) (—40°C to 50°C)
Humidity 20% to 80% 10% to 90%

(non-condensing) (non-condensing)

In table 7-4, the operating temperature is measured at the air intake vents.
The operating temperatures in the table are at sea level. The maximum oper-
ating temperature must be derated linearly 1.8°F per 1640 feet (1°C per 500
meters) increase in altitude.

ESV Workstation User's Manual [2.0]

(.

Site Preparation and Customer Support

Heat dissipation factors can be calculated by using the values given in ta-
ble 7-5. These values should be added to any other heat generated by equip-
ment and personnel located in the same room.

Table 7-5. Heat dissipation factors

Component Heat Dissipated (max.)
Large Cabinet 6566 BTU/hr (1920 Watts)
Small Cabinet 4925 BTU/hr (1443 Watts)
Monitor 512BTU/hr (150 Watts)
RDC 2462 BTU/hr (720 Watts)
One Person 400 BTU/hr (117 Watts)

Fire and Safety Precautions

Air Quality

» Existing building fire and safety codes should be adequate for the
ESV Workstation installation. However, local experts should be con-
sulted about fire prevention and extinguishing devices.

* Do not install the ESV Workstation near the use, storage, or manufac-
turing of flammable or explosive material.

» For safety as well as operational reasons, each interconnected piece of
equipment must be provided with a properly grounded outlet.

» All power circuits must be adequately protected with fuses or circuit
breakers of a suitable size.

* No metal should be exposed on the walking surface of floors.

The ESV Workstation equipment is designed for use in a clean environment,
where air filtration is not always possible. However, the cabinet should be
placed away from high traffic areas because the build-up of potential contam-
inates is more concentrated in these areas. Airborne dust, dirt particles, and
smoke can clog intake air filters and cause damage to the hard disk and tape
drive.

Dust is usually controlled by normal heating, ventilating, and cooling
equipment if adequate filters are used. Keep the system area clean and orderly
to lessen the concentration of airborne particles and help maintain system re-
liability. Where excess dust or airborne particles are present, install an elec-
trostatic filter to prevent damage to the system.

Caution: Never place the ESV Workstation in an area
containing even small concentrations of
corrosive chemicals.

ESV Workstation User's Manual [2.0] 7-5

Site Preparation and Customer Support

Work Table

The ESV Workstation monitor and interactive devices should be installed on
a table or large desk of heavy construction with a durable, non-glare surface.
The minimum recommended surface area is 13 square feet (1.2 square
meters), and the recommended height is 29.5 inches (75 cm).

In areas where ergonomic compliance is required, the table’s height
should be adjustable from approximately 27 inches (68 cm) to 30.5 inches
(76 cm). It is also recommended that the chair’s height be adjustable.

Floor Coverings

Cabling

The most desirable flooring is a raised floor that includes tile-covered panels
supported by a grid system of pedestals. These floors simplify installation and
provide flexibility for subsequent layout changes or expansion. They also
provide an area through which cables connecting various components of the
system can be routed and kept out of the way.

If you are unable to use a raised floor, most floor surfaces are adequate for
installation, with the following considerations:

+ For any high-grade industrial carpeting with short, closed-loop piles,
you should use minimal or no padding. The carpet should have good
anti-static properties and/or a low surface resistivity. Shag rug, deep
pile and other such carpets are not recommended and can cause seri-
ous operational difficulties. These rugs have loose fibers and collect
dust particles which can clog cooling inlet filters and generate unac-
ceptable levels of static electricity.

» Most tiles provide a suitable surface, however, specific attention
should be given to underlay. There is a tendency for some tiles to
build up static charge. This can be minimized by proper application of
low-resistivity sealer and polish. This application will need to be re-
peated at appropriate intervals.

+ Wax is not recommended as a protective coating for floors in a com-
puter area as it tends to build up surface resistivity and increase static
charge.

» Other surfaces should be evaluated for surface resistivity, ease of
cleaning and resistance to decomposition, durability, cost, and ap-
pearance.

Conduits, cable ramps, and any necessary alterations must be implemented
prior to the system delivery. All customer-supplied cables must be shielded.

ESV Workstation User's Manual [2.0]

(

Site Preparation and Customer Support

Networking

Partitions

Acoustics

Lighting

Vibration

If you plan to make your ESV Workstation part of an Ethernet network, you
must have an Ethernet transceiver connection to your Ethernet backbone
ready when the system is installed.

Floor-to-ceiling partitions are an effective way of controlling noise and dust.
Partitions must be positioned to avoid blocking air flow to the equipment and
to allow for equipment access and cabling restraints.

The ESV Workstation is designed to operate with a minimum amount of
noise. Cooling fans within the cabinets are a possible source of audible sound,
but in most environments ambient sound will be louder than the ESV Work-
station.

If several ESV Workstations are to be operated in close proximity, acous-
tical damping of the ceiling, floors, and walls might be considered.

The ESV Workstation is designed to operate in a normal lighting environ-
ment. The optimum lighting for a graphics CRT monitor should be subdued,
indirect incandescent lighting. To reduce operator fatigue, avoid lighting that
produces glare on the face of the CRT.

Vibration can cause slow degradation of mechanical parts and contacts. It
should be avoided whenever possible. In cases where structure-borne vibra-
tion is negligible, no problems should arise. If there is any unusual or pro-
longed vibration anticipated, consult an Evans & Sutherland Technical
Support representative.

ESV Workstation User's Manual [2.0] 7-7

Site Preparation and Customer Support

EMI

The ESV Workstation has been tested and found to comply with the limits for
a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interference
when the ESV Workstation is operated in a commercial environment. The
ESV Workstation generates, uses, and can radiate radio frequency energy
and, if not installed and used in accordance with the ESV Workstation docu-
mentation, may cause harmful interference to radio communications. Opera-
tion of the ESV Workstation in a residential area is likely to cause harmful
interference, in which case users will be required to correct the interference
at their own expense.

EMI sources close to computer systems can affect their operation. It is dif-
ficult to predict whether or not problems will arise at a particular site. Some
common sources of EMI that have been known to cause failures are:

appliances industrial machines relay contactors
arc welders magnetic devices . static electricity
broadcast stations mobile communications thunderstorms
dielectric heaters office machines ultrasonic cleaners
fluorescent lights power tools vehicle ignitions

high voltage power lines radar

Consult an Evans & Sutherland Technical Support representative if po-
tential problems exist at a particular site.

Static Electricity and ESD

Static electricity is the result of physical action. Vibration, friction, and sepa-
ration of materials are common static generators. People and furniture are the
most common static storage collectors. Static may be generated by walking,
rising from chairs, moving objects, or pushing vehicles with nonconductive
wheels. Voltages of 16 KV have been measured on plastic-covered metal
desk chairs as a result of a person standing up. This often occurs at low rela-
tive humidities (0 to 20%).

Do not locate the ESV Workstation in an area where potentially large
charges of static electricity may gather. For information on floor conductivi-
ty, see IEEE Standard 142-1972. Although the ESV Workstation has been en-
gineered to resist the harmful effects of ESD, every effort should be made to
reduce the possibility of ESD directly to the equipment.

ESV Workstation User's Manual [2.0]

Site Preparation and Customer Support

Corrosive Environments

Altitude

Operation of the ESV Workstation in a corrosive environment results in dam-
age to electronic components and circuitry. Some common corrosive sub-
stances are:

ammonia nitrates sodium chloride (table salt)
hydrocarbons nitrogen oxides sulfur dioxide
hydrogen sulfide ozone

Consult an Evans & Sutherland Technical Support representative if any
of these contaminants are present in the intended environment.

System operation at high altitudes may be affected by low air density. Heat
dissipation problems may occur at altitudes greater than 7,000 feet (2,000
meters). If high altitude operation is anticipated, additional air flow around
the cabinet should be provided.

Customer Support

Hardware Support Plans

Two hardware support plans are available from Evans & Sutherland.

* Class A Hardware Service offers the most complete hardware service
plan. It is designed for customers who require the best response time
for system repairs.

e Class B Hardware Service offers a reduced service, customer-assisted
repair service plan with module exchange.

Class A Hardware Service Features

e Guaranteed next-day response from a qualified Field Service Engi-
neer, Monday through Friday, 8:00 a.m. to 5:00 p.m. (local time).

* On-site repair by Field Service Engineer, with travel, parts, and labor
included.

» System installation cost is included if a Class A Hardware Service
contract is purchased with the ESV Workstation.

» Guaranteed customer site visits at maximum intervals of 180 days.

Class B Hardware Service Features

* Modules are shipped to the customer within one business day. Evans
& Sutherland pays for the freight charges both ways.

» Customers may purchase on-site repair by a Field Service Engineer at
a fixed price.

ESV Workstation User's Manual [2.0] 7-9

Site Preparation and Customer Support

+ DST (Diagnostic System Test) right-to-use license, DST updates, and
DST phone support are included.

Prerequisites
o Customers must complete an Evans & Sutherland training class.

+ Customer contacts are limited to individuals who have completed an
Evans & Sutherland training class (no more than three contacts).

Pricing Zones

Class A Hardware Service is priced by service zone. The optional Class B
Haradware Service on-site repair is also priced by service zone. Distances are
determined from the center of the metropolitan city nearest an Evans & Suth-
erland Service Center. Following are the three zones:

o Zone 1 is within a 100 mile radius from the Evans & Sutherland Ser-
vice Center.

o Zone 2 is within a 200 mile radius from the Evans & Sutherland Ser-
vice Center.

+ Zone 3 is everywhere else. All locations in Canada are zone 3.

Your Sales Representative will assist you in determining your zone.

7-10 ESV Workstation User's Manual [2.0]

Site Preparation and Customer Support

Software Support Plans

Two software support plans are available from Evans & Sutherland.

Technical Phone Support Service gives customers toll-free telephone
access to Evans & Sutherland Technical Support personnel.

Software and Dacumentatzon Update Service enables customers to
maintain their system software and documentation at the most current
revision levels.

’

Technical Phone Support Service Features

Up to three customer contacts may call the Dispatch Hot Line for as-
sistance in resolving problems with the operation of the ESV Work-

station. A one hour call-back is guaranteed during Dispatch Hot Lme
hours of 7:00 a.m. to 5:30 p.m. (Mountain Time).

Customers are provided with periodic updates to both the ESV Work-
station software and documentation.

Update service for software options, and additional copies of media
and documentation, are provided at additional cost to the customer.

Telephone support for software options is provided at additional cost
to the customer.

All systems at a customer site are required to be at the same level of
support for the basic system software.

Software and Documentation Update Service Features

Warranty

Customers are provided with periodic updates to both the ESV Work-
station software and documentation.

Update service for software options, and additional copies of media
and documentation, are provided at additional cost to the customer.

All systems at a customer site are required to be at the same level of
support.

The warranty period for the ESV Workstation is 90 days after installation.
Warranty service is at the Class A Hardware Service and Technical Phone
Support Service levels. After the warranty period has expired, service is de-
livered under the terms specified on the customer’s service contract.

Educational Prograrﬁs

Evans & Sutherland Field Service offers a 25% discount on all service plans
for educational institutions.

ESV Workstation User's Manual [2.0] 7 -11

Site Preparation and Customer Support

Safety Precautions

General

Cabinet

RDC

1y

2)

3)

4)

1)

2)

1

2)

Only Evans & Sutherland Authorized Personnel are permitted to install
and service the ESV Workstation. Customers should not attempt to ser-
vice any equipment, including, but not limited to, the front and back ac-
cess panels on the cabinet, the RDC, and the monitor.

The ESV Workstation cabinet and RDC are designed to meet UL Standard
1950. Formal approval is in progress.

The ESV Workstation cabinet and RDC have the GS safety mark. The vid-
eo card is part of the cabinet.

Changes or modifications to the ESV Workstation that are not expressly
approved by Evans & Sutherland may void the customer’s authority to
operate the equipment.

The lower front panel is not an operator accessible area and can be access-
ed by Evans & Sutherland Authorized Personnel only.

The rear access panel is not an operator accessible area and can be access-
ed by Evans & Sutherland Authorized Personnel only.

The convenience receptacles on the back of the RDC are still energized
when the power switch on the front is set to the OFF position.

The inside of the RDC is not an operator accessible area and can be access-
ed by Evans & Sutherland Authorized Personnel only.

Preventive Maintenance

7-12

Most of the ESV Workstation preventive maintenance will be performed by
your Evans & Sutherland Field Service Engineer during periodic site visits.

However, you should keep the following tips in mind and make periodic

checks.

» Performance and dependability of the ESV Workstation can be
affected by user neglect or a poor choice of operating site.

» Cleaning intervals should be based on the amount of ESV Worksta-
tion use and the quality of the operating environment.

» Check all cables for visible damage and wear.

ESV Workstation User's Manual [2.0]

(

Site Preparation and Customer Support

» Check connectors to ensure that the cables are mounted tightly, that
retaining screws are tight, and that there is no strain on the connector/
cable junctions.

e Make sure your ESV Workstation receives proper air ventilation.

+ Always follow the proper procedure for shutting down and powering
off your ESV Workstation.

Monitor Cleaning Instructions
e Always unplug the monitor before cleaning.
« Wipe the screen and cabinet front and sides with a soft cloth.

 If the screen requires more than dusting, apply a household window
cleaner to a soft cloth to clean the monitor screen.

Caution: Do not use benzene, thinner or any volatile
substances to clean the unit as the finish may
be permanently marked. Never leave the unit
in contact with rubber or vinyl for an
extended period of time.

Care of the Keyboard

The keyboard is a rugged unit that should provide trouble-free service. It may
be damaged if liquids are spilled on it. If an accident should happen and liquid
is spilled on the keyboard, let it dry and then try its operation. If the keyboard
doesn’t operate properly, contact Evans & Sutherland for repair or replace-
ment.

Care of the Mouse

The optical mouse requires little maintenance. The mouse pad should be kept
clean and dry and should be protected from scratches and dents. Clean the pad
occasionally with a damp cloth. If the pad should get wet, dry it thoroughly
before using. The mouse itself requires no maintenance, but can be cleaned
as required with a damp cloth.

Care of the Tape Unit

Optimal recording and readback performance of the tape unit requires proper
head cleaning at frequent intervals. The manufacturer’s recommended equip-
ment for head cleaning is the Tandberg Data “TDC Cleaning Cartridge Kit.”
Cleaning kits other than the Tandberg have also proven satisfactory. The kits
most suitable for the ESV Workstation tape unit are designed to operate by
capstan motion.

ESV Workstation User's Manual [2.0] 7-13

Site Preparation and Customer Support

Caution: Do not use any sharp objects when cleaning

‘ the head. Even small scratches may damage
the head permanently. ‘

The following guidelines can be used to determine cleaning intervals:

Tape Usage Cleaning Intervel

8 hours per day Daily: : f

Daily Weekly .
Weekly ‘ Monthly

Always clean the head 1mmedlately after usmg a new cartridge.

Performance of the tape unit depends on the quahty of the medium used.
For writing,'the ESV 'Workstatlon tape drives need DC600XTD, DC6150 tapes,
or equivalent, to work properly. ‘Do not use worn or audibly noisy cartridges.
Cartridges which repeatedly require rewriting should be discarded.

Tape media are very susceptible to moisture. If exposed to a high
humidity environment, it may take several days to bring a cartridge back to a
normal humidity condition. Runninghigh humidity tapes over a long period
of time may severely reduce the life of the tape drive head. If in doubt, let the
cartridge dry out in a normal humidity environment (less than 50-65%
relative humidity at 20°C) for three to four days prior to use.

Filter Cleaning

The black “sponge-like” material visible through the slots of cabinet side pan-
els are the air filters. The black filter material will slowly turn grey from the
dusi collected. This dust should be periodically removed from the filters so
that the fans can maintain proper operating temperature inside the cabinet.
The filters can be cleaned by vacuuming the exposed areas of the filters.

Caution: The cabinet power must be shut off before
vacuuming the filters.

Shutdown and Powering Off

To avoid corruption of the resident file systems, the ESV Workstation should
never be turned off or unplugged without following this shutdown and pow-
ering off procedure:

ESV Workstation User’'s Manual [2.0]

Site Preparation and Customer Support

* Login as root.
e cd /
+ /etc/shutdown -y -i0 -g60 <cr>

“60” can be replaced with any grace period (in seconds) you decide to
allow users to log off prior to shutdown.

* Wait for the >> prompt.

+ Itis now safe to remove power from the ESV Workstation.

Predelivery Planning and Installation

Predelivery planning is essential for smooth installation and acceptance of
your ESV Workstation. It is important that you prepare a detailed schedule of
installation activity as soon as possible after the equipment has been ordered
and the site selected and prepared.

Once the installation has taken place, you are responsible for the disposal
of the packaging material. Preparations should be made in advance to remove
the empty packaging material from the installation site when installation is
complete.

Delivery Constraints

The largest box fits through a 36-inch (92-cm.) wide doorway. Ensure the
route the equipment is to travel from the receiving area to the installation site
allows the equipment to move freely. The packaged equipment must be able
to fit through any halls, doorways, around any bends, or in elevators.

Equipment Packaging and Handling

It is your responsibility to transport the system from its unloading site to the
actual installation site. This should be done prior to the system installation
date. Do not subject the equipment boxes to any hard bumps or shocks. Keep
the boxes in a vertical position as indicated on the box surface. Do not open
them.

For shipment, the ESV Workstation and peripherals are packed in a rein-
forced cardboard box which is attached to a pallet. The monitor box is banded
to the top of the ESV Workstation box. The dimensions of the shipping box
are as follows:

+ English units: 35.0 in (length) x 23.5 in (width) x 34.0 in (height)
* Metric units: 89 cm (length) x 60 cm (width) x 86 cm (height)

ESV Workstation User's Manual [2.0] 7-15

Site Preparation and Customer Support

Evans & Sutherland has adopted the shockwatch label and the tip-and-tell
label as a way to safeguard the ESV Workstation during shipment. These la-
bels are simple and effective warning devices that tell you if a shipment has
been roughly handled.

The shockwatch and tip-and-tell labels help identify responsibility for
products damaged during shipping. Since mishandling the product activates
the devices, the presence of these labels encourages careful handling for the
ESV Workstation. If the product has been mishandled, the labels indicate the
following: the shockwatch label indicator in the center of the label turns
bright red and cannot be reset; and the tip-and-tell label indicator turns blue
and cannot be reset.

Receiving Procedure

7-16

You must follow this procedure when the ESV Workstation is delivered to
your site:

1) Upon receipt of your shipment, note the color of the shockwatch and tip-
and-tell indicators. If you receive more than one carton, check all of the
labels. Do not refuse shipment.

2) If any of the labels have been triggered, note the cartons that have been
mishandled on the delivery ticket and request that the carrier’s driver sign
a receipt acknowledging that the labels have been activated.

3) If the product is visibly damaged, note this on the delivery ticket receipt
and contact Evans & Sutherland immediately by calling:

+ Inthe USA, 800-582-4375,
» In Europe, your local sales office.

All boxes, with the exception of boxes containing documentation, must be
opened and unpacked only by an authorized Evans & Sutherland Field Ser-
vice Engineer. Unpacking by unauthorized persons may void the warranty on
this equipment.

If you must open the boxes to move the system to the installation site,
please contact the Evans & Sutherland Service Center and request authoriza-
tion to open the boxes.

Should you unpack or inspect any of the equipment without an authorized
Evans & Sutherland Field Service Engineer present, or without authorization
from Evans & Sutherland, you assume all responsibility for any damage or
shortage claims with the carrier.

ESV Workstation User's Manual [2.0]

Site Preparation and Customer Support

Installation Procedure

1) After the ESV Workstation is shipped, a representative from the Evans &
Sutherland Field Service Department will contact the customer to verify
delivery.

2) The customer will call the Field Service Department to initiate the
installation.

3) A representative from the Field Service Department will contact the cus-
tomer to verify that the site preparations have been completed and ade-
quate electrical service is available. An installation appointment will be
scheduled with the customer.

4) The Evans & Sutherland Field Service Engineer will arrive at the custom-
er site and install the workstation.

Customer Checklist
e Have you selected an appropriate site for your ESV Workstation?

» Does the selected site have adequate power and environmental sup-
port?

« Have the work facilities for the selected site been prepared?
» Have all of the predelivery conditions been met?

If the answer to all of the above questions is yes, then you are ready to
schedule the installation of your ESV Workstation. To schedule an
installation, call:

» Inthe USA, 800-582-4375,

+ In Europe, your local sales office.

Frequently Asked Questions and Answers
Q: How many versions of the system software are supported?

Evans & Sutherland supports the current version and previous version of the
system software.

Q: What is the time from the report of a serious problem until a fix is provided?

Evans & Sutherland policy is to resolve a work stoppage situation as soon as
possible. The resolution may be a work around, a patch, or a new version.
Evans & Sutherland has an escalation procedure which ensures that open
problems are resolved.

Q: Can I elect to not upgrade to a new release until it is convenient for me?

Yes, that is why we support the current version and the previous version of
the system software.

ESV Workstation User's Manual [2.0] 7-17

Site Preparation and Customer Support

Q: What is your policy regarding upward and downward compatibility of releases?

Evans & Sutherland tries to make system software releases as compatible as
possible with previous system software and applications. However, providing
new technology and fixing problems means that a new software release some-
times not be completely compatible. If possible, we will try to limit the in-
compatibility to a requirement to recompile and relink.

Q: Will the same Field Service Engineer come to my site for every visit?

Generally, our policy is to assign a primary Field Service Engineer and a
back-up to each customer site. This allows the Field Service Engineer to be-
come well acquainted with the customers needs and communicate those
needs to the rest of Evans & Sutherland.

Q: Are there any restrictions as to the number of support calls or who may call?

The number of customer contacts who may call is limited to three. The
number of calls to the Evans & Sutherland Dispatch Hot Line is unlimited.

Q: Is there a newsletter available to provide the latest information?

Yes, Evans & Sutherland is planning to publish a newsletter at regular inter-
vals.

Q: Is there any provision for on-site help?

Yes, at our option we will send support personnel on site to resolve problems.
Also, we will be happy to discuss consulting contracts to provide help in ap-
plying the system to a customers particular needs.

Q: If I elect to not take a contract, what are my options?

We will provide requested (time and materials) service to all owners of Evans
& Sutherland equipment on an as-available basis. We will be happy to discuss
contracts for systems that have not been on service for a period of time, sub-
ject to a review of the systems status. If the system is not supportable in its
present state, the customer will be required to pay requested rates to restore
the system to serviceable condition.

Q: How long will your company support your product?

Evans & Sutherland will send a letter to all customers announcing the fact that
a product is no longer available for new equipment purchase and listing the
support period. Generally, due to GSA requirements, that support period will
be at least seven years.

Q: Can I buy Technical Phone Support Service for the UNIX operating system and not
buy it for software options?

Yes, but we do not recommend it.

7-18 ESV Workstation User’'s Manual [2.0]

(

Site Preparation and Customer Support

Q: What is your policy regarding third-party hardware installed in an ESV Worksta-
tion?

Customers who install third-party hardware in a ESV Workstation should do
everything they can to assure themselves that a system problem is not the fault
of the third-party hardware. If a Field Service Engineer makes a site visit, and
it is determined that the problem is with the third-party hardware, the custom-
er will be billed for the expenses associated with the visit.

Evans & Sutherland Field Service Organization

Corporate Headquarters, Salt Lake City, Utah 801-582-5847

Dispatch Hot Line 800-582-4375

Gordon Scott, Director of Field Service 801-582-5847

Maurice Smith, Technical Support Manager 801-582-5847

John Wallace, Eastern Field Service Region Manager 513-692-8858

Jim Blatz, Western Field Service Region Manager 916-448-0355
Who to Call

+ For normal Field Service business, call the Dispatch Hot Line.
» To schedule an installation, call the Dispatch Hot Line.

¢ For pricing information, call your local Sales Representative or Cor-
porate Headquarters.

« Ifyou feel you are not being well served, call any person listed above.

Dispatch Hot Line
800-582-4375

ESV Workstation User's Manual [2.0] 7-19

8. Porting Guide

Porting Guide

Table of Contents

8. Porting Guide 8-1
INTOAUCHION ..ecuenireniietrectrteccete et seeseneste e setsresenne e e sesneneesesesnsssssssssnsssssens 8-1
Assembly Language Programsc.ccceeceeecnecenecieninncneeneenesescsceessences 8-1
Making a Program Portablec.ccocvvcvnrerrncneerenierenseneerenesseresesseseenees 8-1
Information You Need to KnOowc.cccocevueneenennnniennseesnenecssenseseeseennes 8-1
Porting a PrOgramcccoccereeincnniniencneieeneniiesestenee e seeteessesesssscssences 8-3
TrOUDIE SHOOLNG ...coverirreriiiirineecreie e creerseetestete st eeeseeesesnnesessnsssesnssnessassasessne 8-5
ES/05 CONSIAETAtIONSccveiverrereireecrneereenersessesessessessessessesssessessessessasssssessssnsses 8-10
ES/OS cevtiieiriieciriesietntcees s tesee st st st esesaste et se s st ebasan et suanastssesestsssnensaens 8-10
Porting from BSD-Derived SYStEmSccccevereereecrenrenresressesersasesassens 8-10
Porting from System V-Derived SyStemsc.coceveeeeeeeennnesescsinsenesens 8-14
Dereferencing Nil POINIETScccocvveieivincnniniiininincncnineneinneennene 8-20

Where Text and Data Lie in MEMOTYcccovviieieinierieneneninninieininsennens 8-20
Changing Internal Compiler Table Sizec.ccccocvecrererereneeecreesuenenenes 8-21
Porting from Other Operating Systemsc.cc.cecevveeverreneene teeernisaeeaens 8-21
Hardware-Related Considerationsc.ccccveceeneneecernneneneneeienesesscsnssescescnns 8-22
Floating Point ATItHMEC ...cccvceevereerrenierieneeiereeienetneseeseeseseeneesesneeense 8-22
ENQIANNESS .ooveveuieieintnreriereereesetsentesenesseseseseesesessesestssesenesasseseneneseses 8-25
ALIZNIMENT ..ottt reteseseesaesrereseesseseesaesressesnsessessesessestaneens 8-26
Uninitialized Variablesccccceverrernnentreenereneeiecencsieseseeneeeseeneesens 8-27
Undefined Language EIEMENtSccccceereeecirerinrentnineneeeereseenessesessenasseessene 8-28
The Value of NI ..ottt teeneenes 8-28

Order of EvAluationccececceererierenrerinenenrereeeseessessensesessesasseseesessenes 8-28
Inter-Language INterfacescocoevcveveninencrncnicnninscnescssesessesesessenes 8-29

C Programming LangUAZEcecereererierercnreieenenteressesterensestonessessesessssesseseosensens 8-29
Supported €€ OPLONS ...cccevivuereriereeienerieneeereereeeseseeeeseseente et eseeseseseeseas 8-30
Supported Id OPHONSco.eoeeuerirreiierinieire sttt et seeeeseeeseaens 8-31

UsSIng the C PIEPIOCESSOTccvirererirrereneneeneeserenneesneesesessensnsssseseseens 8-33

Using the lint Program Checkerccceeeieierienenienienneiecenseressessesens 8-34
MemOTry AIIOCALIONcecurveereereeirrineireerineneeereeeesseeeesaessessessessesssssessesse 8-35
SIZNEd ChAISocvimiieiieiiecnceee sttt enenees 8-36
BItfIEIAS ..coveeveuirireeieerenteieeseetete ettt ettt sree et ents e seens s saebenaene s 8-36

short, int, and 0Ng Variablesccccceveecievierienrireceeceeeeneeeeseeannens 8-36
Lading “_7 oottt sresre et e sresae e st bt sras b e srantesesaesane 8-36
VAFBIUS ...ooviiiieiiieniienreneeiieertessasssensessssesaesassassansesssassensessssssessassssnnes 8-37

ESV Workstation User's Manual [2.0] 8-i

Porting Guide

tyPeAef NAIESc.cocevrrerirnneerneetenetenenseerenenseesseseeseessessessessessassssosesns 8-38
Functions Returning floatcccoceiviiniininnenincicnciccieenes 8-38
CASHNG ...eovevrereniereierinestersssessteesessessestasessessesesestesessssessassesessassesessssassase 8-38
Dollar Sign in Identifier Namescocceveeveneerenrienenreeseeruensenseneessaseones 8-39
Additional KEYWOITSccceverrieereceereereneereereseesisiessssereesessesseessessessesses 8-39
Unsigned POINLETScccocouiceeniniiciieenincniescntenieestencseeseeneenenteresscssenses 8-39
PasCal PrOZIAIMSccccciiiicieeieeieeieeneerucesseersesssessassseessessaessesssesssassessssessssnaens 8-39
Supported €C OPLONSccoreririinenineriniiniieseeseesesrenesessosesessesesaesossses 8-40
Supported Id OPONSc.covevieirineiiieietnieierceetrte e steesaeseeneeveseeneesnens 8-41
RUNtime ChECKIngccccocereeereerenerneenaennenuenensensessessessesesssssnssessessesnnns 8-43
Pascal Dynamic Memory AllOCAtionc...cceeeererereerenennencsseeesesnces 8-43
FORTRAN Programming Languagecccceuun...
Supported f77 Optionsc..ccccceevceveceenene
Supported Id Optionsccccccevevcruinuencnes
Static Versus Automatic Allocation
Retention of Dataccccceeeevvenercnrerenenseneseenns
Variable Length Argument LiStscccooeeeincninncnerennencnceennennnceneenenes
RUNLME ChECKING ...coveveerereniieienreininreieentnreneesteresseessesseseseenesnesseneenes
Alignment of Data TYPESccceeeiveerererireerenerensererereerereneeesensssesesseseseses
Inconsistent Common Block Sizescococviievenninninicenennecnenceenns
Multiple Initializations of Common Blockdatac.ccceceevinieieennnnnnnn. 8-54
Endianness and integer*2 ... ivieeiiienieeneneene e cseesneenaas 8-55
FORTRAN and C INEITACEcovevereeeuriceerierenreteieneesentesteseteensesseseseenseeeseneenes 8-56
INAINES .ooeveeieeieeeeieeeireerestesesststestessessee e saessessassessessessesssenseneensessessess 8-56
INVOCALIONS ...ccverirerrineerereererieentereeneseenestesestenasessssessensonesnsstsseneeseesesens 8-56
ATZUINCIILS ..vevinceireieneeteteretseeststesttsse oo steseeses s seseseeseneensnessssesencons 8-57
ATTAY HanALNg ...cccoeveeeeeeneneenenienireeninnensenesssressessesensssessessesessenseeesessenss 8-59
Accessing Common Blocks 0f Datacccceeeenveceeieneneniennerenereeenenenne 8-60
ES/os Compiler COMPONENLScoeviiniiirniniininisinesiiacssenissessssessessresessoscsenes 8-61
DEDUZZING ...voverereereeentiieeeire et seeretesestsste e st saasssaessasseeseensesesncnnene 8-61
Program CheCKINgcceeerereereneseneneneneneniesseseesessessssssssssescesesaesessens 8-62
OPHMEZAON .voeeeveiieieteiieeesteresteoesestesteestese e sestesteseseeassestonsestssssaane 8-65
The Link BAIOT ...cocevriemieieecerineiitneeseseneeineeeseseseseeseneeseseseseesessssssencs 8-66
HEIPLULHINLS ..covieiiieiiiienrieisenesrerieesressesessessesessesseseessassessessssesessesassessesassessenss 8-70

8 -ii ESV Workstation User's Manual [2.0]

Porting Guide

8. Porting Guide

Introduction

This chapter describes a process to follow when you are porting programs to
the ES/os environment.

Assembly Language Programs

This chapter is a compilation of information that you need to port a C, Pascal,
or FORTRAN program to an ESV Workstation. It does not describe how to
port assembly language programs. If you are thinking about porting an
assembly program and your only reason for coding in assembly language is
speed, seriously consider recoding in a high-level language. The ES/os
compiler reduces the need for assembly language programming because it
produces highly efficient machine language code for all supported high-level
languages.

Making a Program Portable

You can make the task of porting programs easier by following the guidelines
listed below when you create your program.

e Avoid breaking the rules of the source language and avoid using its
non-standard features or extensions.

» Avoid using source language that is machine dependent.
* Avoid relying on anything that is operating system dependent.

» When you have to do any of the things listed above, encapsulate them
in modules marked “system dependent,” use conditional compilation
#ifdef (a cpp function) statements around them, and explain the situ-
ation with plenty of comments.

Information You Need to Know

Before you undertake a porting project, look over the following check list.
Where applicable, cross-references are given for detailed information. Make
sure that you are aware of each topic listed below to save time when porting
your program.

ESV Workstation User's Manual [2.0] 8-1

Porting Guide

All programming languages:

How ES/os Makefiles work (“Overview” section).

Floating point differences (“Hardware-Related Considerations” sec-
tion).

Differences in the address space organization (“Hardware-Related
Considerations” section).

How the #ifdef conditional works (“C Programming Language” sec-
tion).

C programming language:

How to use the lint program (“Using the lint Program Checker” sub-
section of the “C Programming Language” section).

How to use variable arguments (“varargs” subsection of the “C Pro-
gramming Language” section).

How to determine which #defines are appropriate (“Using the C Pre-
processor” subsection of the “C Programming Language” section).
Characters unsigned by default (“Signed chars” subsection of the “C
Programming Language” section).

The different compiler options, especially -std, -std1, -std2, -proto,
-systype.

programming language:

About the precision of type real (“Alignment” subsection of the
“Hardware-Related Considerations” section).

How the ESV Workstation’s single compilation process differs from
yours.

How memory allocation works (“Pascal Dynamic Memory Alloca-
tion” subsection of the “Pascal Programs” section).

No two Pascals are the same, because the language has never been ad-
equately standardized and the basic Pascal package is limited without
adding extensions.

- FORTRAN programming language:

L]

How static variables differ from automatic variables (‘FORTRAN
Programming Language” section).

How the size of your machine’s double precision may differ from
ES/os.

FORTRAN backslash escape sequences.
FORTRAN alignment options.

ESV Workstation User’'s Manual [2.0]

Porting Guide

Porting a Program

The following figure shows the major steps involved in porting an application
to an ESV Workstation.

The following sections describe each of the steps below in detail.

" Build and modify Makefiles

Build executables

Finalize the project

Build/Modify Makefiles

Large applications are accompanied by UNIX Makefiles, which contain the
commands that build an executable program and which are processed by the
ES/os make facility. This facility provides a method for maintaining up-to-
date versions of programs that consist of a number of files that may be gener-
ated in a variety of ways. The Makefile is the description file through which
the make(1) command keeps track of the commands that create files and the
relationship between files. Whenever a change is made in any of the files that
make up a program, the make command creates the finished program by
recompiling only those portions directly or indirectly affected by the change.

For more information on Makefiles, refer to the make(1) manual page
and chapter 13 in the MIPS Languages Programmer’s Guide.

Before you can build your application, you need to modify the following
parts of your Makefile:

¢ Include the path names for your source program and the include files
that it uses.

* Include the path names for the link libraries. See the intro(3) manual
page for a list of ES/os supported libraries.

ESV Workstation User's Manual [2.0] 8-3

Porting Guide

* Include a path name for the directory where the application is to be ac-
" cessed if the Makefile has an Install target.

. » Add compilation and link editor flags. See cc(1), f77(1), pc(1), and
Id(1) manual pages.

Build Executables

To obtain a debugging version of your program that is not stripped or
optimized:

1) Build the executable programs for the application by running the
Makefile to compile and link the programs. Obtaining the correct
compiler option settings may involve modifying the Makefile several
times.

2) Compile and link using the -g debugger option for full symbolic
debugging.

Run the Application

When you run your application, more errors may occur. The trouble shooting
guide in the “Trouble Shooting” section should help solve some of the
runtime errors that you receive. If your program still has errors, then use
debugging tool such as dbx(1). Also, refer to the rest of the sections as
applicable, for additional information on possible causes of errors.

Commercial applications usually include a test suite. This is the time to
run the tests. If no tests are provided, you can write and automate your own
tests with shell scripts sh(1) or csh(1).

Optimize Performance

Once your application is debugged, tested, and working, then you should
recompile the final version with the proper optimization level and link edit
flags. For information on optimization see chapter 4 in the MIPS Language
Programmer’s Guide, and the cc¢ and f77 manual reference pages.

All tests should be rerun at this point to further reduce the chance that ma-
chine, language, or operating system dependencies have slipped through. If
the application fails unexpectedly at this point, you probably still have ma-
chine or language dependencies that the optimizer did not detect. If this is the
case, isolate the area causing the problem and repair it.

Refer to chapter 4 of the MIPS Language Programmer’s Guide for a de-
scription of optimization techniques for your application.

You may wish to profile your code (see prof(1) and pixie(1)) which will
show you where the application is spending most of its time. By fine tuning
the code in these areas, additional performance gains can be made. Another
useful tuning tool is cord(1), which helps you improve cache performance.

ESV Workstation User’'s Manual [2.0]

Porting Guide

Install the Application

Once your application is tested and optimized, install it in the proper
directory. You can install the program either by hand, or with the Makefile
install target.

Finalize the Application

The last step is probably the most tedious, but also the most important. If the
user interface has changed at all, it is important to document the changes, not
only in the code itself, but in the documentation. This is also the time to final-
ize the source code control system to manage the code. See sccs(1) and
res(1).

Trouble Shooting

This section is a composite of information taken from all of the sections in
this chapter. It contains tables that summarize many problems, and their so-
Iutions, that you may encounter when porting a program.

Each of the five columns contains a characteristic of the error. The
column headings and a description of the information they contain is given
below:

e Column 1 — When or how did the error manifest itself.

*Error manifested itself during: B(build), C(compile), L(Link Edit),
E(execution), or O(incorrect output).

¢ Column 2 - The source language(s) of the program most likely to cre-
ate the error.

**Can appear in which languages: A (all), F (FORTRAN),
P (Pascal), and C (C Language).

¢ Column 3 - Symptom (General description of the error.)
* Column 4 — Possible problem source.

* Column 5 — Action (Recommended action to correct the error. Often,
this is a cross-reference to another section in this chapter.)

ESV Workstation User's Manual [2.0] 8-5

Porting Guide

Symptom
Link edit fails

Output
misformatted

Memory
problems

Memory
problems

Invalid answers

Source files/
Library files
missing
Segmentation
violation

Bus error

Bus error/library
routine

Range of errois

Range of errors

Out-of-range
error

Poor perfor-
mance

Program traver-
ses directory tree
and does not
return to original
place

Incorrect results

Possible Problem Source

gp area overflow

VMS format extensions
assumed

Incorrect memory
allocator

Incorrect memory
allocator

Alignment Problems

Library paths not cor-
rectly defined in Makefile

Dereferencing nil pointer

Alignment, data
Alignment I/O

Uninitialized values
Wrong assumption nil
value

Floating point declaration

Not optimized

Use of chdir()

Order of evaluation

ESV Workstation User's Manual [2.0]

Action

Specify link editor -G num option.
See “The -G Option” on page
8-65.

Specify -vms and recompile.

See “Memory Allocation”
on page 8-34.

See “Pascal Dynamic Memory Al-
location” on page 8-42.

Specify -align8 or 16 and recom-
pile. See “Alignment” on page
8-25.

See “Optimization” on page 8-64.

See “Dereferencing nil
Pointers” on page 8-25.

Use dbx to locate, then correct.

Copy data to aligned structure and

recompile; align all data structures.

Initialize-Fix code and recompile.

See “Floating Point Arithmetic”
on page 8-21.

See “Alignment” on page 8-25.

See “Debugging” on page 8-60.

Avoid using relative paths.

See “Order of Evaluation”
on page 8-27.

Porting Guide

* % Symptom

E A

E F

Incorrect results

Incorrect results

High system
time

Bus error

Link edit fails

Incorrect results

Degenerate
unsigned
comparison

$gp area
overflow

Undefined
external,

but external

in library

$gp pointer not
initialized
Unexpected

undefined
externals

Incompatible
common block
length warning

Illegal initializa-
tion error

Possible Problem Source

Uninitialized values

Assuming subroutine
variables hold value
between calls

Uninitialized value
Alignment problems

ap area overflow

Replacing double
precision for extended

Character variables
pointers wrong

Conflicting definitions of
variables; Large numbers
of small variables

Use of external
occurs after scan of
particular library

Use of non-standard
startup code

Use of non-standard or
machine specific library
functions

Program uses subject of
common subroutines.
Different variable types
declared in various
subprograms.

Common data initialized
in two or more locations

ESV Workstation User's Manual [2.0]

Action
See “Uninitialized Variables” on
page 8-26.
Specify -static and recompile.

Specify -static and recompile.

See “Retention of Data” on page
8-49.

See “Optimization” section (general)
on page 8-64 and “Variable Length
Argument Lists” (FORTRAN) on
page 8-50.

Analyze why your program is

using extended precision.

Use a mask or propagate bits. See
“Signed chars” on page 8-35.

Relink using suggested -G num.
See “The -G Option” on page
8-65.

See “Debugging” on page 8-60.

See “Debugging” on page 8-60.

Replace with ES/os equivalent
functions.

Assure full definition occurs in main
routine.

See “Variable Length Argument
Lists” on page 8-50.

See “Runtime Checking” on
page 8-50.

Porting Guide

* % Symptom

CF

Numerous in-
valid/unrecog-
nized statements

Undefined condi-
tional flag

Unexpected
or undefined
externals

Illegal variable
usage

Uninitialized
data warnings

Wrong results

Compute-time
error

Runtime error

$gp area over-
flow
Uninitialized
local variables
Illegal integer
Illegal space
Multiple de-
fined symbols

Cannot put a
large variable
into the gp area

gp register is
not initialized
Link editor fails

to obtain correct
libraries

Possible Problem Source

Program source in card
format or uses over 72
columns

Error in use of -D flag

Assumption compiler
prepends _

Use of typedef Name
as an argument to
function

Not initializing variables

Program assumes that
data types are of equal
length

Casting on the left hand
side of an assignment

Subscripts exceed the
specified range

Uneven block sizes
-static is repeated

Failure to initialize each
named common block
within one subprogram

Inconsistent size
declaration

You use your own
startup code

Did not use the langu-
age’s default library and

did not specify the user’s

library

Action

Use -c0l72 or col120 switches.

See “Using the C Preprocessor”
on page 8-32.

See “Leading ‘_’ ” on page 8-36.

See “typedef Names” on
page 8-37.

See “Uninitialized Variables” on
page 8-26.

Use variable argument macros. See
“varargs” on page 8-36.

Don’t do it. See “Casting” on
page 8-38.

See “Static Versus Automatic
Allocation” on page 8-48.

See “Variable Length Argument
Lists” on page 8-50.

See “Alignment of Data Types”
on page 8-50.

Use the fsplit utility. See “Run-
time Checking” on page 8-50.

See “The -G Option” on page
8-65.

Use runtime startup code. See
“Optimization” on page 8-64.
See “The Link Editor” on page
8-65.

ESV Workstation User's Manual [2.0]

Porting Guide

* %% Symptom

L A Include files
missing or
errors in
include files

Illegal Identifier
Name

Segmentation
or bus error

Very long
runtime

F Incorrect
results, especi-
ally very small
DP floating point
answers

om

Unable to
satisfy exter-
nals when sub-
procedure is in
second language

Indicates that
the internal
compiler tables
are full

Possible Problem Source

BSD sources

Identifier with $ in name

Impropcr assumptions
with malloc

Denormalized FP values.

Algorithm terminates
based on inappropriate
FP values.

Equivalence making
invalid assumption on
storage size of variables

Assumption about com-
piler external names; for
example, _prefix,
_postfix

Internal compiler tables
are too small.

ESV Workstation User's Manual [2.0]

Action

Use -systype bsd43 or use
-l/usr/include -l/usr/include/bsd
-lbsd

See “Dollar Sign in Identifier
Names” on page 8-38.

See “Additional Keywords” on
page 8-38.

Check for uninitialized values or
reference of DP by SP.
See “Alignment” on page 8-25.

See “Retention of Data” on
page 8-49.

See appropriate language user’s
guide.

Pass the following arguments
with cc command to increase
table size:

-Wif, XNd50000

-Wf, XNp50000

Porting Guide

ES/os Considerations

This section briefly describes ES/os and the operating system dependencies
that you need to be aware of when you are porting an application program
from

¢ BSD 4.3 to ES/os BSD mode,

¢ BSD 4.3 to ES/os System V mode,

¢ System V to ES/os BSD mode,

¢ System V to ES/os System V mode.

ES/os

ES/os is an AT&T System V 3.2-based kernel with BSD enhancements, in-
cluding all BSD 4.3 system calls, BSD 4.3 library functions, most BSD 4.3
commands, TCP/IP networking, the NFS 4.0 remote file system, and the Ber-
keley Fast File System.

In addition, ES/os includes support for the IEEE Standard Portable Oper-
ating System Interface for computer environments (POSIX). Programs can be
compiled using the POSIX interface by specifying -systype posix on the
compile line. Only the library routines specified by IEEE standard 1003.1 are
implemented, so a restricted set of programs will compile in this environment.

ES/os is packaged so that you can concurrently access either BSD or Sys-
tem V commands. System V programs are permitted to use some BSD system
calls. These system calls, as noted in “ES/os Differences” (below), plus a few
more are still available in ES/os for System V programmers.

Note: Programmers are restricted to programming in either
BSD or System V environments; mixed mode
programming is not fully supported.

Porting from BSD-Derived Systems

ES/os compiles programs under System V or BSD depending on the follow-
ing:

» The setting of the PATH variable in your environment,
* Use of the -systype option to the compile command.

In order to successfully compile programs for BSD functionality, you must do
one of two things:

1) Use the compile time switch -systype bsd43 which prepends /bsd43 to
the path for include files and libraries:

% cc —-systype bsd43 -g -o sample sample.c

8-10 ESV Workstation User's Manual [2.0]

(

Porting Guide

2) Place /bsd43/bin before /bin in the PATH variable in your .cshrc,
.profile, or .login file. When you compile, your system goes to the
/bsd43 command directory and uses the BSD ¢¢ command which
contains the switch -systype bsd43.

If you want to compile a program for System V functionality and you
have placed /bsd43 in your path prior to /bin, you must use the
-systype sysv switch, as in:

% cc —-systype sysv —-g -o sample sample.c
The default compile time switch for /bin/cc is -systype sysv and the de-
fault compile time switch for /bsd43/bin/cc is -systype bsd43.

Porting from 4.3 BSD to ES/os (BSD based)

Several areas must be considered when converting a program from a regular
BSD system to an ES/os BSD system.

« Include files

Though textually different, the 4.3 BSD compilation environment in-
clude files are functionally equivalent to the 4.3 BSD include files.

The only differences between the two are in areas where the system
cannot be made compatible. For example, the file /etc/utmp does not
contain the field ut_host and the include file that describes the utmp
file (/bsda3/usr/include/utmp.h) contains a special marker that
gives an error when compiling code using the ut_host field. Such
code must be changed.

o Libraries

All standard 4.3 BSD libraries are provided. In some cases, the librar-
ies use the corresponding System V code. For example, the libe rou-
tines which get password and group file entries are from System V.

In the case of curses, the System V.3 curses (based on terminfo) is
used. Except where the programs try to use the value of the buffer re-
turned by the tgetent() function, this version of curses provides the
entire 4.3 BSD interface.

« termcap

Only terminfo is supported. In general, programs that use termcap
and/or curses work as expected. The features of termcap that are
missing are:

- The ability to modify the termcap on the fly. This is often done to
set the terminal size. This can be done by setting the window size
with winsize(1) or by setting the environment variables LINES
and COLUMNS. The former is the preferred method.

ESV Workstation User's Manual [2.0] 8-11

Porting Guide

- The ability to add new capabilities to the database. This cannot be
emulated without changing the code.

¢ JOCTL commands

Virtually all 4.3 BSD IOCTLs are supported on ES/os when using the
4.3 BSD compilation environment. The only time you need to make
any changes to your code is if your program does extensive tty manip-
ulation. If this is the case, you should convert the tty handling to Sys-
tem V. For more information, see termio(7).

¢ Command functionality

If a program execs a BSD command, then you should verify that the
command exists as a BSD command; that is, it can be found in
/bsd43/bin and the exec command path should be changed accord-
ingly. Otherwise, you should make sure that System V functionality
is sufficient.

For a complete description of ES/os (RISC/os) system functionality,
please see the MIPS RISC 4.0 Release Notes and check with your system ad-
ministrator to verify that the BSD subpackage has been installed on your sys-
tem.

Porting from 4.3 BSD to ES/os (System V based)

Many programs written in C can be ported from BSD systems without chang-
ing any code by specifying compiler and link editor compiler options as fol-
lows:

* During the compilation step, use the -l/usr/include/bsd and
-signed options. The -l/usr/include/bsd option causes include files
to be searched for in /usr/include/bsd before /usr/inciude, so BSD
values take precedence. The -signed option causes all char-typed
data to be signed.

* During the link editor step, use the -Isun, -lbsd, and -Irpcsvec compil-
er options to link in routines that are not part of the standard C library
for System V, but which are needed by BSD and NFS programs.

Note: Use only the -Isun and -Irpcsve compiler option
for programs requiring RPC and/or XDR.

8-12 ESV Workstation User's Manual [2.0]

(

Porting Guide

Differences Between ES/os System V and BSD

This section describes some of the differences between ES/os and 4.3 BSD
UNIX.

- math.h

Programs that use libm should be modified to include the library
math.h. You cannot assume that the type of these functions under
ES/os is the same as on other systems.

+ longjmp()

If your program calls the function longjmp() from the signal handlers,
it may need special work before being optimized with -02 (use of -02
is not recommended). Global variables may be placed in the registers
and the values may not be restored properly. You may either explicitly
declare the appropriate variable as volatile or use the -volatile com-
pile option. Using this option significantly reduces the amount of op-
timization that is done. For a complete description of the -volatile
option, see the MIPS Language Programmer’s Guide.

* Variable Arguments

The typical mechanism for passing variable argument lists on BSD
systems assumes that a parameter is a pointer to an array of pointers;
this does not work on ES/os. Instead you must use the vararg.h or
stdarg.h macros. For a description of these macros, see appendix A
of the MIPS Language Programmer’s Guide.

* System Administration Files

System administration files, such as /etc/passwd, /etc/inetd.conf,
and the utmp file may differ from what is expected by some applica-
tions. Some other files, such as /etc/ttys, may be missing.

* Dereferencing a Pointer

Address 0 is an invalid address. On many BSD systems, this address
is addressable; C programs may depend on being able to dereference
pointers with this address. Dereferencing a pointer with a value of 0
is incorrect according to all C standards.

* Pseudo-ttys
Pseudo-ttys use a “clone device” instead of having pairs of pty/tty.
* COFF Format

The ESV’s object file format (COFF) is a modified UNIX System V
COFF and differs markedly from the BSD object file format. There-
fore, BSD programs that process object file programs as input must be
modified to access information correctly from the ESV COFF.

ESV Workstation User's Manual [2.0] 8-13

Porting Guide

o tty Interface : (

The tty driver interface does not have a complete emulation. Programs
that rely heavily on the tty loctls are difficult to port.

e Load Average

The “avenrun” (load average) kernel symbol contains items of type
FIX, as defined in sys/fixpoint.h, not doubles.

« malloc()

On Apollo systems, there is a system call to pre-allocate memory for
malloc(). This call is not supported and is not needed on ESV
Workstations. For more information on additional malloc() library
calls, see the “FORTRAN and C Interface” section in this chapter.

Porting from System V-Derived Systems

A program that runs on System V will port more easily to ES/os if you include
math.h for math library functions. Do not assume that the type of these func-
tions is the same as on other systems.

libbsd.a

The library /usr/lib/libbsd.a is a System V library provided by Evans & Suth-

erland which contains some 4.3 BSD system calls and library routines. Be-

cause of file sizes when the library was introduced, the routines in this library (
have been renamed to approximate their 4.3 BSD routine names. For example,

the getdomnm in libbsd.a is getdomainname in the 4.3 BSD libc.a library.

Table 8-1 lists the libbsd.a routines, the BSD libc.a names, and gives an
explanation of the routine.

8-14 ESV Workstation User's Manual [2.0]

Porting Guide

Table 8-1. libbsd.a routines

libbsd.a file name 4.3 BSD libe.a file name Description

accept (2-BSD)

bcopy, bemp,
bzero, ffs (3-BSD)

bind (2-BSD)
bindresvport

connect (2-BSD)
ctype

dbm_open,
dbm_close,
dbm_fetch,
dbm_store,
dbm_delete,
dbm_firstkey,
dbm_nextkey,
dbm_error,
dbm_clearerr

ether_addr
exportent

flock

getdomnm (2-BSD)

getdtabsz (2-BSD)

getgroups,
setgroups

gethostid,
sethostid (2-BSD)

gethostnamadr
(3N-BSD)

gethostname,

getdomainname,
setdomainname

getdtablesize

gethostbyname,
gethostbyaddr,
gethostent, sethostent,
endhostent

ESV Workstation User's Manual [2.0]

Accepts a connection on a socket.

Bit and byte string operations.

Bind a name to a socket.

Bind a socket to a privileged IP
port.

Initiate a connection on a socket.
Character type routines.

Data base subroutines.

Ethernet mapping operation.
Get exported file system info.
File locking.

Get/set name of current domain.

Get descriptor table size.

Get/set group access lists.
Get/set unique identifier of

current host.

Get network host entry.

Get/set name of current host.

Porting Guide

Table 8-1. libbsd.a routines continued

libbsd.a file name 4.3 BSD libe.a file name Description
getnetent, getnetbyaddr, Get network entry.
getnetbya, getnetbyname,
getnetbynm setnetent,
endnetent (3N-BSD)
getnetgrent Get network group entry.
getpeernm (2-BSD) getpeername Get name of connected peer.
getprotoe (3N-BSD) getprotoent, Get protocol entry.
getproatobynumber,
getprotobyname,
setprotoent, entprotoent
getrlimit, setrlimit Control maximum system
(2-BSD) resource consumption.
getrpcent Get RPC entry.
getrusage (2-BSD) Get information about resource
utilization.
getservent, Get service entry.
getsocknm (2-BSD) getsockname Get socket name.
getsockopt, » Get and set options on sockets.
setsockopt (2-BSD)
gettimeofday, Get/set date and time.
getwd (3-BSD) Get current working directory
path name.
htonl, htons, ntohl, Convert values between host and
ntohs (3N-BSD) network byte order.
in_addr (3N-BSD) inet_addr Internet address manipulation
routines.
in_Inaif (3N-BSD) inet_Inalf Internet address manipulation
routines.
in_mkaddr (3N-BSD) inet_mkaddr Internet address manipulation
routines.

8-16 ESV Workstation User’'s Manual [2.0]

Porting Guide

Table 8-1. libbsd.a routines continued

libbsd.a file name

in_netof (3N-BSD) inet_netof

in_network (3N-BSD) Inet_network

in_ntoa (3N-BSD) inet_ntoa

index

initgroups

innetgr

insque, remque (3-BSD)

listen (2-BSD)

mktemp
ndmb
ovfork

opendir, readdir,
seekdir,
closedir (3-BSD)

random, srandom,

recmd,

recv, recvfrom,
recvmsg (2-BSD)

res_comp, res_debug
res_init, res_mkquery
res_query, res_send

rexec (3-BSD)

rindex (3-BSD)
ruserpass

ESV Workstation User's Manual [2.0]

4.3 BSD libc.a file name

Description

Internet address manipulation
routines.

Internet address manipulation
routines.

Internet address manipulation
routines.

Similar to rindex.
Initialize group access list.
Get network group entry.

Insert/remove element from a
queue.

Listen for connections on a
socket.

Make a unique filename.
Data base routines.
Virtual forking routine.

Directory operations.

Better random number generator;
routines for changing generators.

Routines for returning a stream
to a remote command.

Receive a message from a
socket.

Resolver functions.

Return stream to a remote
command.

String operations.

Return remote user password.

Porting Guide

libbsd.a file name
scandir(3-BSD)

select (2-BSD)

send, sendto,
sendmsg (2-BSD)

setdomnm

setegid (2-BSD)
sethostent

setreuid (2-BSD)
setrgegid, setreuid
setsockopt

setuid, seteuid, setruid,

setgid, setegid, setrgid,
(3-BSD)

shutdown (2-BSD)
socket (2-BSD)

syslog (3-BSD)

yp_bind, yp_enum

Table 8-1. libbsd.a routines continued

4.3 BSD libe.a file name Description

Scan a directory.

Synchronous I/O multiplexing.

Send a message from a socket.

Set domain name.

Set real and effective group ID.
Set network host entry.

Set real and effective user IDs.
Set user and group IDs.

Set socket options.

Set user and group ID.

Shut down part of a full-duplex
connection.

Create an endpoint for communi-
cation.

Control system log;

NIS (yellow pages) routines.

yp_master, yp_match, yp_order
yp_update, yperr_string,
ypmaint_xdr, ypprot_err,
ypv1_xdr, ypxdr, ypupdate_xdr
yp_getgrent, yp_gethostent
yp_getpent, yp_getpwent
yp_getrpcent, yp_getservent
yp_gnetent, yp_gnetgr,
yp_innetgr, yp_service, yp_all

8-18 ESV Workstation User's Manual [2.0]

Porting Guide

ES/os Differences

This section describes some differences between ES/os and regular System V
UNIX.

e Symbolic Links

The presence of symbolic links can cause problems if you use the
UNIX function chdir(). Programs should avoid using relative paths to
change directories, because the sequence:

chdir("./subdir"); chdir("..")
may not set the directory back to the original place.

¢ File Name Size

The maximum size of a file name is 255 characters, not 14. This caus-
es problems when programs expect truncation. For example, a pro-
gram could reject a user-supplied filename that is larger than 14
characters because it assumes that 14 characters is the limit. In addi-
tion, if a program declares an array to hold a filename, the array may
be too small, especially if it is declared to be 15 characters long.
MAXNAMLEN in /usr/include/dirent.h and MAXPATHLEN in
usr/include/sys/namil.h are appropriate to use instead.

* Directory Access

The ESV file system does not allow your program to directly read a
directory. Programs that do this are considered to be nonportable to
ES/os even though they may work on many versions of System V
UNIX.

* longjmp()

Programs that call the function longjmp() from the signal handlers
may need special work before being optimized with -02 and use of
-02 is not recommended. Global variables may be placed in the regis-
ters and the values may not be restored properly, but declaring appro-
priate variables as volatile solves this problem. Use the -volatile
compiler option, which causes all objects to be treated as volatile. Re-
member that using this option significantly reduces the amount of op-
timization that is done.

¢ COFF Format

Programs that work with object and executable files need some work,
as the ESV COFF format is not completely compatible with System V.

ESV Workstation User's Manual [2.0] 8-19

Porting Guide

* Dereferencing a Pointer

Address 0 is an invalid address. On many SYSV systems, this address
contains a 0, and C programs may depend on being able to dereference
pointers with this value. Dereferencing a pointer with O is incorrect
according to all C standards.

Dereferencing nil Pointers

Programs that contain errors sometimes go undetected on machines where
dereferencing a zero pointer yields zero. Typically, the programmer meant to
write:

int *c;
if (c !'= 0 && *c) ...;
but actually wrote:
int *c;
if (*c)
On most VAX UNIX systems, the error goes undetected; on most

MC68000 implementations and on the ESV Workstations, this causes a seg-
mentation violation.

Where Text and Data Lie in Memory

Figure 8-1 illustrates how text and data are arranged in memory on ESV ma-
chines and VAX machines. Refer to this figure as you read the paragraphs
that follow it.

VAX ESV
2G stack 2G stack
hole
hole
data
256Mb
bss hole
data text
0 text 4Mb hole

Figure 8-1. A comparison of VAX and ESV address space

You may encounter problems when you port a program if you assume that
the link editor-defined symbol etext indicates the beginning of the data sec-
tion as well as the end of the text section. As illustrated in figure 8-1, etext
works on a VAX because data and text are located next to each other. This is
not the case on an ESV Workstation. To solve this problem, the ESV link ed-

ESV Workstation User's Manual [2.0]

Porting Guide

itor provides other symbols for the beginning and end of each text section; for
more information see the end(3) manual page.

Some sophisticated UNIX programs such as GNU’s emacs assume that the
program text (that is, the executable code) or data starts at a low address in
memory. The program can, for example, store tag information in the high-or-
der bits of a pointer and mask out the tag just before dereferencing the pointer.
Unless you specify otherwise with the link editor -T and -D options, program
text on ESV Workstations starts at approximately 0x400000, program data
approximately 0x10000000, and the program stack at approximately
0x80000000.

Changing Internal Compiler Table Size

The ES/os c¢ command uses several different internal tables. Their sizes
seem to be too small for large applications. ES/os provides an undocumented
method of expanding the table sizes by passing a special argument with the
cc command. The following arguments may resolve the problem.
: -Wf, -XNd50000
-WE, -XNp50000

Porting from Other Operating Systems

This section discusses the issues that you need to be aware of when porting
programs from systems other than UNIX.

General

In general, if you are porting from operating systems other than UNIX, you
need a working knowledge of both ES/os and the operating system that you
are porting from.

Programs written with no operating system dependencies should port eas-
ily. Such programs use the standard I/O routines for the language in which
they are written rather than using UNIX system calls are more likely to port
with little or no modification. C programs that follow the ANSI C Standard
should work as expected.

Porting FORTRAN Programs from VAX

Library functions that provide an interface to ES/os (similar to those provided
by the C library) are available to ESV-FORTRAN programs. Also, intrinsic
subroutine and functions used to interface VAX systems are available to pro-
vide the same functional interface to ES/os from ESV-FORTRAN programs.
Chapter 4, part I, of the MIPS-FORTRAN Programmer’s Guide and Language
Reference describes these system functions and subroutines.

It will greatly facilitate porting from a VAX environment if your program
was not written to take advantage of VMS extensions to FORTRAN. While the

ESV Workstation User's Manual [2.0] 8-21

Porting Guide

ES/os compiler suite follows ANSI standards, the sophistication of the com- (
pilers mandates a stricter interpretation of the standard.

Hardware-Related Considerations

This section discusses specific ES/os implementation that you need to consid-
er when porting programs.

Floating Point Arithmetic

In 1985, ANSV/IEEE 754-1985 defined a standard floating point representa-
tion and arithmetic. ESV Workstations conform to this standard. While you
might expect conformance to this standard to eliminate problems with porting
floating point programs, there are still significant differences that can hinder
an implementation’s portability.

Floating point differences manifest themselves in the following ways:
* Producing slightly different results,
* Producing incorrect results,
* Slow execution,
* Faulting.
General IEEE 754 (

Table 8-2 lists the IEEE floating point format. The explicit use of extended
precision formats available on some IEEE 754 floating point implementations
makes programs nonportable, because there is no simple or efficient way to
get the range or accuracy of IEEE extended on a machine whose highest pre-
cision is double. To avoid this problem, try using double precision, but be
aware that this may yield incorrect results. Therefore, before you substitute
double for extended, analyze the reasons your program uses the extended for-
mat.

Some compilers use extended precision even when your program does not
specify it. This may be the case with certain hardware such as Motorola
68881, 68882, and Intel 80387, where it is the only efficient thing to do.
When an expression is evaluated using extended precision, you may get a
slightly different answer than if it were evaluated in double precision.

The implementation of library math functions differs from machine to
machine, so you will see slightly different results when you run programs on
ES/os. :

8-22 ESV Workstation User's Manual [2.0]

Porting Guide

Table 8-2. IEEE floating point format

Format Size Radix Approximate Range Rounding Exceptions
ingle format | 32bit | 2 with 24 bits 1043 10 1038 round to nearest | for overflows,
of precision round .5 to even | divide by zero,
and so on, do not
fault, but instead
return special
symbols.
double format | 64 bit | 2 with 53 bits 10324 (o 10308 same as above same as above
of precision
extended 80 + bit| 2 with 64 bits 1074951 4 107931 same as above same as above
of precision
DEC VAX

ESV Workstation User's Manual [2.0]

Table 8-3 lists the DEC VAX floating point format. If you port a program that
uses VAX floating point to ES/os, which uses IEEE floating point, remember
that the IEEE floating point format is much more likely to cause problems be-
tween single and double precision in loosely typed languages like FORTRAN,

For example, the two VAX single and double precision formats are iden-
tical except that the double-precision format provides additional precision. If
you reference something as single precision that is really double, your mis-
take has little effect on the value. Because IEEE 32-bit and 64-bit formats are
different, the same mistake made on ES/os, can produce data that does not
even resemble the data produced on the original machine.

Use of H-format (REAL*16) is not portable to ES/os, because its floating
point does not have the range or accuracy of H-format. Using IEEE double
precision will likely give incorrect answers.

The default, double precision, D-format has more precision but less expo-
nent range than IEEE double, thus precision-sensitive programs may give dif-
ferent results.

Porting Guide

Table 8-3. VMS floating point format

Format Size Radix Approximate Range Rounding Exceptions

F-format 32bit | 2 with 24 bits 10738 (o 1038 round to nearest | for overflows,
of precision round .5and up | divide by zero,

D-format* | 64bit | 2 with 56 bits 10-38 (o 1038 same as above same as above,
of precision

G-format* 64 bit | 2 with 53 bits 107308 {5 10307 same as above same as above
of precision

H-format 128 bit | 2 with 112 bits | ;44933 ;) 14931 same as above same as above
of precision

* F-format is similar to IEEE single format and G-format is similar to IEEE double format.

IBM 370

Table 8-4 lists the IBM 370 floating point formats. Programs that depend on
the larger single-precision exponent range are nonportable. ESV Worksta-
tions generally provide better accuracy, and therefore different results.

Table 8-4. IBM 370 floating point format

Format Size Radix Approximate Range Rounding

16 with 6
radix-16 digits
precision

16 with 14
radix-16

digits
precision

16 with 30
radix-16 digits
precision
implemented in
software

32 bit chopped

single format 1073 t0 1073

double format | 64 bit 1073101075 same as above

Real *16 128 bit

10-73 to 1075 same as above

Cray

Table 8-5 lists the Cray floating point format. Because Cray’s single-preci-
sion is a 64-bit format, it is generally necessary to switch to ES/os double pre-
cision to get the same results. Also, if your program depends on a large
exponent range or 128-bit precision, program modifications are required.

ESV Workstation User's Manual [2.0]

Porting Guide

ES/os provides better accuracy than Cray’s 64-bit format, and therefore dif-
ferent results occur.

Table 8-5. Cray floating point format

Endianness

Format Size Radix Approximate Range Rounding
single format | 64 bit 48 bits of 102460 1) 102460 chopped or worse
precision

double format | 128 bit | 95 bits of 10-2460 1, 102460 same as above
precision
implemented in
software

Math Library Accuracy

Besides basic floating point format and accuracy issues, each implementation
typically differs in the algorithms and characteristics of its math library. Even
IEEE 754-1985 machines that are otherwise identical may produce different
results due to differences in math libraries. See math(3M) for additional in-

formation on the ES/os math library. The algorithms are generally from Cody
and Waite with some additions and replacements from 4.3 BSD.

ESV Workstations use the byte ordering scheme called big-endian. Machines
that number the bytes from left to right and the least significant byte is 3 are
called big-endian; machines that number the bytes from right to left and the
least significant byte is zero, within a 32-bit integer, are called little-endian.
See appendix D and “Byte Ordering” options in chapter 1 of the MIPS Lan-
guage Programmer’s Guide for more information on these byte ordering
schemes. The MIPS R2000 and R3000 chip can operate either way.

You may create porting problems by placing small objects side by side to
make a bigger object, or splitting a big object into small objects. For example,
the following code that reads and compares a pair of shorts is machine-depen-
dent, because on some machines the 0 element of the array represents the
high-order half of the word rather than the low-order half:

char carray[BUFSIZ];

err = read(0, carray, 4):

if ((carray([0] | (carray[l] << 8)) >
(carray[2] | (carrayl[3] << 8)))

ESV Workstation User's Manual [2.0] 8-25

Porting Guide

Alignment

There is never a problem if you use the correct data type and let the com-
piler deal with the order of the bytes:

short sarray[BUFSIZ];
err = read(0, (char *) sarray, 2 * sizeof (short));
if (sarray[0] >sarray[1])
Similarly, the following code to print four characters stored within an in-
teger is machine-dependent because it assumes the first character is at the
low-order end of the integer:

unsigned i;
printf("%c%c%c%c\n", i & Oxff, (i >>8) & Oxff,
(i >>16) & Oxff, (i >>24) & O0xff);
A better solution is the following:

unsigned i;
printf("%.4s\en", (char *) &i);

ES/os architecture requires that each piece of data in memory be aligned on a
boundary appropriate to its size. For example, an nbyte integer can be aligned
on a boundary whose address is a multiple of n bytes, up to a maximum of 8
bytes. This restriction permits the memory system to run much faster.

Ordinarily alignment has no effect on correctly written programs, because
the compiler inserts unused space (“padding”) between variables wherever
necessary to conform to the rules. Language standards almost always permit
such padding, and in the rare cases where the language forbids it, the compiler
conforms to the language requirements by loading and storing objects in spe-
cial ways (see the “FORTRAN Programming Language” section in this chap-
ter for information on how this applies to FORTRAN programs).

A program that follows the rules of its language usually doesn’t encounter
problems. To avoid alignment problems, declare the fields of a structure in
descending order by size.

Even a program that follows the rules given above may have trouble when
writing data on one machine and reading it on another. In fact, padding is only
one of many problems: machines differ with regard to endianness, floating
point formats, the size of the integer, and the width of a character or word.
There are two collective solutions to these problems: if I/O speed is not
important, use ASCII files rather than binary ones; otherwise, consider using
the xdr(3N) subroutine package for external data representation.

See the “FORTRAN Programming Language” section in this chapter for a
discussion of the extensions to the compiler system for dealing with mis-
aligned data as they apply to FORTRAN programs.

ESV Workstation User's Manual [2.0]

Porting Guide

You may choose one of the following three command-line arguments to
deal with various degrees of misalignment:

+ -align8

Permits objects larger than 8 bits to be aligned on 8-bit boundaries.
This option requires the greatest amount of space; however, it is the
most complete solution; 16-bit padding is not inserted for integer*2
objects within common blocks.

- -aligni6

Permits objects larger than 16 bits to be aligned on 16-bit boundaries;
16-bit objects must still be aligned on 16-bit boundaries (MC68000-
like alignment rules); 16-bit padding is not inserted for integer*2 ob-
jects within common blocks.

- -align32

Permits objects larger than 32 bits to be aligned on 32-bit boundaries;
16-bit objects must still be aligned on 16-bit boundaries, and 32-bit
objects must still be aligned on 32-bit boundaries. This option re-
quires the least amount of space, but isn’t a complete solution; 16-bit
padding is inserted for integer*2 objects within common blocks.

Uninitialized Variables

Whenever possible, initialize local variables. The lint(1) C program checker
and ES/os compilers issue warning messages about uninitialized data in cer-
tain instances. However, because the system can see only the static character-
istics of a program, it cannot warn about all instances of uninitialized data.

If your program’s failures vary with the input data, but the variances are
not logically related to the failing code, look for uninitialized variables.

In addition, if your program works when compiled with the default -O1
optimization, but fails when compiled with -O2 optimization, then the fault
may be caused by uninitialized variables rather than the optimizer. In an -O2
optimization, the optimizer may allocate an uninitialized variable to a regis-
ter, creating an error that would not have occurred in an -O1 optimization.

On an ESV Workstation, uninitialized variables can degrade the
performance of a program that otherwise runs correctly. The hardware
performs most IEEE operations, but software is invoked for operations on
denormalized numbers. If, in performing computations on an uninitialized
floating point variable, an uninitialized variable happens to be a denormalized
IEEE value, then the algorithm in your program could continue to function
properly even with a non-zero variable, provided it remains close to zero.
This situation could deteriorate the performance and accuracy of your
program.

ESV Workstation User’'s Manual [2.0] 8-27

Porting Guide

If you suspect this problem, use the time(1) command. For most
programs, the system CPU time is small compared to the user CPU time. If the
system time is unexpectedly high but not high enough to account for the
overall slowdown, that’s a good indication of denormalized arithmetic. The
system time does not account for the entire slowdown, because not all of the
emulation time is charged against your program.

Another aid in diagnosing these problems is the fpi(3) floating point in-
terrupt analyzer. The fpl routines count the instances of floating-point emula-
tion and print a summary.

Undefined Language Elements

Language standards deliberately avoid defining certain language constructs,
thus causing inconsistencies among different implementations of the same
language. This section explains how the ES/os compiler defines some of these
constructs, which you may need to alter in the program being ported.

The Value of nil

C and Pascal do not specify the value that the compiler must use to represent
a nil (or null) pointer. However, C does dictate that the compiler must recog-
nize a zero in the source program as the notation for a nil pointer and convert
it into whatever value does represent nil.

The ES/os compiler uses zero to represent nil. Few UNIX programs
encounter any difficulty with this, but other operating systems use other
values like “-1” or “- maxint - 1.” A portable program should not depend on
this value.

Order of Evaluation

The order in which program statements are evaluated can cause problems.

For example, the expression in the following Pascal statement can cause
trouble if the programmer hoped that it would invoke the decrement function
on both variable x and variable y:

if (decrement(x) < 0) and (decrement(y) < 0) then ...
As another example of the side effects, neither language specifies the or-
der in which the compiler evaluates an actual argument list:
foo (decrement (x), x+ y);
Another example is the C statement:
foo (*p++, *pt++);
The best way to control the order of evaluation in a program being ported
to an ESV Workstation is to introduce temporary variables. Because of global
optimization, this usually costs nothing (apart from forcing the intended order

8-28 ESV Workstation User's Manual [2.0]

Porting Guide

and degree of evaluation). The compiler attempts to allocate all of the objects
to registers. See the code example below.

templ = decrement (x);
temp2 = decrement (y);
if (templ < 0 and temp2 < 0) then ...

templ = decrement (x) ;
call foo(templ, x+ y);:

Inter-Language Interfaces

The allocation of variables in memory, the rules of argument passing, and the
mapping of source language identifiers onto assembly level symbols all pose
problems that appear when you stop programming entirely within one lan-
guage and start calling routines written in another language.

For example, Pascal specifies that the ord function must return zero for a
Boolean false and one for a Boolean true; but Pascal does not specify whether
a Boolean value is stored in memory as a single bit, a byte, or a full word. In
fact, Pascal permits a compiler to implement true by setting the sign bit of a
word, or even by setting all bits to 1, provided the ord function performs the
appropriate conversion. As long as you program entirely in Pascal, you need
never know these details, but when Pascal code passes a Boolean to a C sub-
routine, the latter must know whether to expect a char, a short, or an int, and
what value constitutes true.

For information on interfaces between C and Pascal programs, see chap-
ter 4 in the MIPS Language Programmer’s Manual. For information on the
interfaces between FORTRAN and C programs, and FORTRAN and Pascal
programs, see the MIPS-FORTRAN Programmer’s Guide.

C Programming Language

ES/os C conforms to the de facto standard established by the Kernighan and
Ritchie text and the AT&T portable C compiler. It provides certain exten-
sions, such as prototype declarations, suggested by the draft ANSI C standard.
See appendix A in the MIPS Language Programmer’s Guide for more infor-
mation on C extensions.

ESV Workstation User's Manual [2.0] 8-29

Porting Guide

Supported cc Options

The ES/os e¢¢ command supports the following options among others:

Option

-C
-C
-cord

-cpp

-Dname =def
-Dname

-feedback file
-g[0-3]

-G num

-ko output
-k

-Ldirectory

Description
Suppresses linking with Id and produces a .0 file
for each source file.

Prevents the C preprocessor from removing com-
ments.

Runs the procedure-rearranger on the resulting file
after linking.

Runs the C macro preprocessor on C and assembly
source files before compiling.

Defines the name to the C preprocessor, as if by
#define. If no definition is given, the name is de-
fined as 1.

Runs the source file through the C preprocessor
only.

Specifies file to be used as a feedback file.
Produces additional symbol table information for

dbx to enable bugging. 0 is none, 3 is for opti-
mized code.

Specifies the maximum size of a data item to be ac-
cessed from the global pointer.

The standard directory is never searched for
#include files.

#include files whose names do not begin with “/”
are always sought first in the directory of the file
argument, then in directories specified in -1 op-
tions, finally in the standard directory.

Links with object library, libx.a.

Compiles the specified source programs, and
leaves the ucode object file output in correspond-
ing files suffixed with .u.

Names the output file created by the ucode loader
as output.

Passes options that start with a -k to the ucode
loader.

Prepends directoryto list of directories containing

ESV Workstation User's Manual [2.0]

Porting Guide

-M
-nocpp

-0 outputfile
-Olimit num

-Ollevel]
-p[0-1]
-P

-systype name
-S

-std

-Uname
-V

-V

-W

Supported Id Options

object-library routines (for linking using Id).
Runs only the macro preprocessor on the named C
programs.

Does not run the C macro preprocessor on C and
assembly source files before compiling.

Names the output file outputfile.

Specifies the maximum size of a routine that will
be optimized by the global optimizer.

Optimizes the object code where level is from 0 to
3.

‘Compiles for profiling with prof. 0 is no profiling

(default), and 1 is profiling turned on.

Runs the source code through the C preprocessor
only.

Uses the named compilation environment name.

Assembles the program and produces an assembly
source file, suffixed with .s.

Has the compiler produce warnings for things that
are not standard in the language.

Removes a symbol name from the C preprocessor.

Prints verbose compiler information about each
pass as it is executed.

Prints the version of the compiler and the versions
of all passes.

Suppresses warning messages.

The ES/os Id command supports the following options among others. For
more information on Id, consult the Id reference manual page.

Option
-A file

Description
Specifies incremental loading.

Does not merge the symbolic information for a file
into one entry for that file.

Sets the bss segment origin.

Forces common storage for uninitialized variables
and other common symbols.

ESV Workstation User's Manual [2.0] 8 - 31

Porting Guide

-D hex

-e entry
-f fill
-G num

-kix
-Kdir

-N
-0 name
-p file

-r

Performs -d and copies initialized data referenced
by program from shared objects.

Forces an alias definition of undefined procedure
entry points.

Pads the data segment with zero-valued bytcs' to
make it hex bytes long.

Defines the entry point.
Sets the fill pattern.

Sets the maximum size of a variable to be allocated
in the small bss section or small data section.

Searches a library libx.b where x is a string.

Changes the default directories to the single direc-
tory dir.

Abbreviates library name libx.a.

Changes search algorithm to never look in the de-
fault directories.

Adds dirto the list of directories in which to search
for libraries.

Produces a map of the input/output sections on the
standard output.

Produces a primitive load map.

Makes the text portion read-only and shared
among all users executing the file when the output
file is executed. '

Does not make the text portion read-only or shar-
able.

Uses name as the name of the Id output file, in-
stead of a.out.

Preserves the symbol names listed in file when
loading ucode object files.

Generates relocation bits in the output file so that
it can be the subject of another Id run.

Strips the output by removing the symbol table and
relocation sections to save space.

Strips the output by removing all symbols except
locals and globals.

ESV Workstation User's Manual [2.0]

Porting Guide

-T [text] hex Starts the text segment at location hex.

-Tdata hex Starts the data segment at location hex.

-u name Enters name as an undefined symbol.

-X Preserves only global (non-.globl) symbols in the
output symbol table.

-ysym Indicates each file in which sym appears, its type,
and whether the file defines or references it.

-v Sets verbose mode.

-V Prints the version of Id being used.

-z Arranges for the process demand paged from the

resulting executable file.
Using the C Preprocessor

To maintain your program on both an old system and on an ESV Workstation,
consider using the #ifdef conditional-compilation facility provided by the
cpp preprocessor. The C and Pascal compilers provide this feature by default;
the FORTRAN compiler provides it if you either use the -cpp compiler option,
or give your source file a name ending in .F rather than .f. Using cpp, you can
include the following conditional statements in your program:

#ifdef MY OLD_ MACHINE

x := #ff5a;

#endif /* MY OLD_MACHINE */

#ifdef MIPS

x := l6#ff5a;

#endif /* MIPS */

Then, you can use the -D option to select the appropriate version. For ex-
ample, to generate an ES/os-specific version of a Pascal program, you would
specify

pc -DMIPS myprog.p -0 myprog

To translate myprog.p into a source file myprog.i suitable for compila-

tion on your old machine, you would use the -P option as follows:

pc -P -DMY_OLD MACHINE myprog.p
rcp myprog.i my old machine:myprog.p
On most machines, including ESV Workstations, the -D option is unnec-
essary if you use a name that is automatically defined for you. ESV compilers
predefine the following automatically.

ESV Workstation User's Manual [2.0] 8-33

Porting Guide

mips
host_mips
MIPSEB
MIPSEL
LANGUAGE_C
LANGUAGE_PASCAL
LANGUAGE_FORTRAN
LANGUAGE_ASSEMBLY
LANGUAGE_PL1
LANGUAGE_COBOL
unix
SYSTYPE_BSD
SYSTYPE_SYSV
Note: Typically, you use #ifdef mips for differences that are
hardware related or os related and #ifdef MIPS for
differences due to other programs or preferences.

Using the lint Program Checker

The lint program checker tries to find areas in the source code of C programs
that are nonportable or that are hkely to cause errors. See the lint(1) manual

page for reference information. Here are some guidelines to follow when us-
ing lint.

» Instead of running lint on your source files one by one, run it a single
time, specifying the names of all the source files. The lint command
detects such problems as argument-list mismatches more thoroughly
when it processes the entire source program at once.

« Use the same -D and -l options (if any) as when you compile.

» Analyze lint error or warning messages carefully before changing
your code; make sure you understand why lint is creating the errors.
For example, suppose lint indicates that a function result is incompat-
ible with its use.

double d;

d = atof("1.23");
You could satisfy lint by putting a cast in front of the function call

d = (double) atof("1.23");
but in fact you would be masking the problem rather than fixing it.
The correct solutions are to either include math.h in your program or
declare atof so that the compiler knows that it returns a double value
rather than an Int as follows:

double d;
extern double atof():;

d = atof("1.23");

ESV Workstation User's Manual [2.0]

Porting Guide

Memory Allocation

The interface to the C library memory allocator malloc is standard, but the
implementation varies. ES/os uses the 4.3 BSD malloc, rather than the Sys-
tem V.3 malloc, because the former is significantly faster.

BSD malloc allows for allocation errors in that it rounds up the requested
block size to a power of two, thus making programs still work that write more
than they allocate. This allocation is fast, but it is inappropriate for large data
block sizes.

Note that UNIX memory allocators use more memory than the programs
request. If you plan to allocate memory in large chunks and never free them
during execution, consider using sbrk(2).

If you suspect a problem caused by memory allocation, try a different
allocator and see if the problem disappears or changes. The following
memory allocators are available in addition to the standard malloc version:

» Anoptional malloe, which you can obtain by specifying the -Imalloc
option during compile/link edit.

» An additional allocator with routines xmalloc, xfree, and xrealloc
resides in /usr/lib/libp.a. You can reference the routines using the -Ip
option during compile/link edit. This allocator’s interface is identical
with that of malloc, free, and realloc.

Even if using a different memory allocator solves the problem, you should
still fix it to prevent a recurrence. Here are some approaches you can take.

1) Replace all calls to malloc and realloc with a wrapper routine that initial-
izes the newly-allocated block (or the yet-unused portion of the reallocat-
ed block) to zero. If the problem disappears, look for code that
erroneously assumes that newly allocated memory is initialized to zero.

2) Replace all calls to malloc and realloc with a wrapper that calls those
routines, allocating one more byte than you ask for. If the problem disap-
pears, this experiment may hide the problem by altering the order of
blocks in memory. It is also likely that (in Pascal or FORTRAN) the pro-
gram is confused about whether a character array originates at 0 or 1, or
that (in C) the program did not leave space for the null byte that terminates
a string.

3) Replace all calls to malloc and realloc with a wrapper that calls those
routines, allocating four or eight more bytes than you ask for. If the prob-
lem disappears, then a zero-origin problem with an integer, real, or dou-
ble-precision array may exist.

ESV Workstation User's Manual [2.0] 8-35

Porting Guide

Signed chars

Bitfields

short, int, and long Variables

Leading «_”

4) Experimentally replace all calls to free with an empty routine. If the prob-
lem disappears, the experiment may have masked the true problem by re-
arranging blocks in memory. However, dangling pointers to reused space
may be causing the problem. Make sure that the program does not retain
pointers to any data structure whose address may change due to a call on
realloc.

Like AT&T 3B compilers, but unlike most VAX and MC68000 compilers,
the ES/os compilers interpret char to mean unsigned char. The -signed
command-line option, however, reverses this.

To understand the consequences of unsigned characters, consider that the
character 0x £ f is not the same as —1; and a loop like
char c;
for (c ="'\ "; ¢c > 0; c=--) ...;
never terminates because the variable ¢ can never be negative.

The ES/os C compiler, and others that have adopted features of the pro-
posed ANSI draft standard, permit you to specify either signed char or
unsigned char explicitly in a declaration. Alternatively, you can use masks
or shifting to eliminate or propagate bits.

lint detects such problems by printing the diagnostic message
degenerate unsigned comparison.

For a bit field declaration within a structure, the ES/os C compiler uses signed
or unsigned bitfields depending on your declaration. The Kernighan and
Ritchie definition of the language permits a compiler to ignore these attributes
and always use signed arithmetic or always use unsigned arithmetic; some
compilers take advantage of this.

i

On an ESV Workstation, a short variable is 16 bits wide; an int variable is
32 bits wide; and a long variable is also 32 bits wide. Some microcomputer
compilers allocate only 16 bits for Int and 8 bits for short, and some
programs may rely on this. In general, manipulating 32-bit objects with the
ESV architecture is as fast as or faster than manipulating 16-bit objects.

Like AT&T 3B compilers, and unlike the BSD UNIX VAX compiler, the ESV
C compiler doesn’t prepend an underscore to the name of a C-compiled sym-
bol.

ESV Workstation User's Manual [2.0]

Porting Guide

varargs

To improve performance, ES/os compilers pass certain procedure arguments
in registers. This process is normally transparent to you, except for functions
that use variable length argument lists. These lists must use the macros pro-
vided in /usr/include/varargs.h or /usr/include/stdarg.h. The functions
must not assume that the arguments all appear in memory and can be accessed
by taking the address of the first argument and incrementing it. Both the ANSI
draft standard and the Kernighan and Ritchie definition of the language warn
that programs attempting to implement variable argument lists without using
varargs may not be portable.

Even varargs cannot deal with a situation where the argument list varies
in type as well as length. Consider the following rather common practice of
assuming that all C data types are equivalent for purposes of parameter-pass-
ing:

error(s, a, b, c, 4, e)

char *s;

int a, b, ¢, 4, e;

{

fprintf (stderr, s, a, b, ¢, d, e);
}

double d;

error ("Value %g should be between %g and %g\en",
d, 1.2, 6.5);

The problem with this routine isn’t that the variable argument list is vari-
able, but rather that the routine declares arguments a through e as integers
when in fact the routine plans to supply floating point numbers. This violates
both the Kernighan and Ritchie definition of the language and the ANSI draft
standard. In addition, it has dire consequences, because ESV architecture uses
two separate sets of registers to pass integer and floating point arguments, and
also because it imposes rules on the alignment of data types. The fprintf can
accept variably typed arguments because it determines the types at execution
time and references them appropriately; but the routine in the above example
tells the compiler to emit a single version of “error” that always references
them all as type int.

The following code fragment is the best method to use for a program be-
ing ported to ESV C. Any other system that implements fprintf using a rou-
tine called vprintf can also use this routine system.

ESV Workstation User's Manual [2.0] 8-37

Porting Guide

typedef Names

/* VARARGS 1 */

void

error(s, va_alist)
char *s; S
va_dcl

{

va_list ap;
va_start (ap) ;
vprintf (s, ap, stderr);
fputs("\en", stderr);
exit (1) ;

}

error("Value %g should be between %g and %g\en",
d, 1.2, 6.5);

However, a solution using a macro makes this foutine more portable.
#define error(_s,_a,_b,_c,_d,_e) \
fprintf (stderr, _s, _a, _b, _c, _d, _e); \
exit (1) ;

error("Value %g should be between %g and %g\n",
d, 1.2, 6.5, 0, 0);

ANSI C provides prototypes that in one instance conflict with Kernighan and
Ritchie usage. ANSI C makes it illegal for a typedef name to appear in the
argument list for a function definition. For example, in the following code:

typedef int P;
function (P);

{

}

the occurrence of P in the argument list is illegal since the compiler expects
an identifier after the type “P.” ESV C conforms to the ANSI standard in this
case.

Functions Returning float

Functions that are declared as returning float actually return float rather than
double as in some older implementations of C. If the result is then used in a
context requiring promotion to double, it is promoted after returning from the
function call. o

Casting

Casting is not permitted on the left hand side of an assignment. If you are port-
ing a program that currently runs on a Sun Workstation, you may have prob-
lems with this because Sun allows casting on the left hand side.

ESV Workstation User's Manual [2.0]

Porting Guide

Dollar Sign in Identifier Names

The dollar sign ($) is not a legal character in an identifier name. Because
VAX and Sun compilers allow you to use $ as a legal character, ES/os pro-
vides the command line argument

-Wf, -Xdollar

Additional Keywords

ESV Workstations will eventually conform to the ANSI C standard; therefore,
the compiler treats const, signed, and volatile as keywords.

Unsigned Pointers

The ES/os compilers treat pointers as unsigned rather than signed integers.
For example, the following code,

extern char * sbrk();

char *p
p = sbrk(4090)

if (p < 0) error("out of memory"):
does not work as expected because ES/os compilers use unsigned pointer
comparisons, and nothing unsigned is less than zero. The sbrk routine does
not work because it returns -1 if it fails. The proper way to test for failure is

if (p == (char *) -1) error("out of memory");
Pascal Programs

ESV Pascal conforms to the IEEE standard, which is similar to the original
Wirth-Jensen report, rather than to the ISO standard. It also provides a number
of extensions, but not UCSD string support or ISO conforming arrays. See ap-

pendix B in the MIPS Language Programmer’s Guide for more information
on Pascal extensions.

If you wish to maintain your program on both an old system and on an
ESV Workstation, refer to the “Using the C Preprocessor” subsection in the
“C Programming Language” section of this chapter.

ESV Workstation User's Manual [2.0] 8-39

Porting Guide

Supported pc Options

The ES/os pc command supports the following options among others:

Option
-C

-C
-cord

-cpp

-Dname =def
-Dname

-E

-feedback file
-9[0-3]

-G num

-ko output
-k

-Ldirectory

Description

Suppresses linking with Id and produces a .0 file
for each source file.

Generates code for runtime range checking.

Runs the procedure rearranger on the resulting file
after linking.

Runs the C macro preprocessor on Pascal and as-
sembly source files before compiling.

Defines the name to the C preprocessor, as if by
#define. If no definition is given, the name is de-
fined as 1.

Runs the source file through the C preprocessor
only.

Specifies file to be used as a feedback file.
Produces additional symbol table information for
dbx where 0 is no debug info, 1 and 2 are interme-

diate info, and 3 is the maximum information and
compiler optimization.

Specifies the maximum size of a data item to be ac-
cessed from the global pointer.

The standard directory is never searched for
#include files. '

#include files whose names do not begin with /”
are always sought first in the directory of the file
argument, then in directories specified in -l op-
tions, finally in the standard directory.

Links with object library libx.a.

Compiles the specified source programs, and
leaves the ucode object file output in correspond-
ing files suffixed with .u.

Names the output file created by the ucode loader
as output.

Passes options that start with a -k to the ucode
loader.

Adds directory to list of directories containing ob-

ESV Workstation User's Manual [2.0]

Porting Guide

-nocpp

-0 outputfile
-Olimit num

-0[0-3]

-p [0-1]

P

-systype name
-S

-std

-Uname

-v

v

W

Supported Id Options

ject-library routines (for linking using Id).

Does not run the C macro preprocessor on Pascal
and assembly source files before compiling.
Names the output file outpuifile.

Specifies the maximum size of a routine that will
be optimized by the global optimizer.

Optimizes the object code. Level 0 is no optimiza-
tion, 1 is the default, and 3 is the maximum.

Compiles for profiling with prof. 0 is no profiling,
1 is profiling.

Runs the source code through the C preprocessor
only.

Uses the named compilation environment name.
Legal names are bsd43, sysv, and posix.

Assembles the program and produces an assembly
source file with a .s suffix.

Has the compiler produce warnings for things that
are not standard in the language.

Removes a symbol name from the C preprocessor.
Prints the passes as they execute.

Prints the version of the driver and the versions of
all passes.

Suppresses warning messages.

The ES/os Id command supports the following options among others. For
more information on Id, consult the Id reference manual page.

Option
-A file

Description
Specifies incremental loading.

Does not merge the symbolic information for afile
into one entry for that file.

Sets the bss segment origin.

Forces common storage for uninitialized variables
and other common symbols.

Performs -d and copies initialized data referenced
by program from shared objects.

ESV Workstation User’s Manual [2.0] 8 -41

Porting Guide

-D hex

-e entry
-f fill

-G num

KIx

-Kdir

-0 name

-p file

-r

-S

-T [text] hex

Forces an alias definition of undefined procedure
entry points.

Pads the data segment with zero-valued bytes to
make it hex bytes long.

Defines the entry point.
Sets the fill pattern.

Sets the maximum size of a .comm item or literal
to be allocated in the small bss section.

Searches a library libx.b where x is a string.

Changes the default directories to the single direc-
tory dir.

Abbreviates library name libx.a.

Changes search algorithm so it never looks in the
default directories.

Adds dirto the list of directories in which to search
for libraries.

Produces a map of the input/output sections on the
standard output.

Produces a primitive load map.

Makes the text portion read-only and shared
among all users executing the file when the output
file is executed.

Does not make the text portion rea{d-only or shar-
able.

Uses name as the name of the Id output file, in-
stead of a.out.

Preserves the symbol names listed in file when
loading ucode object files.

Generates relocation bits in the output file so that
it can be the subject of another Id run.

Strips the output by removing the symbol table and
relocation bits to save space.

Strips the output by removing all symbols except
locals and globals.

Starts the text segment at location hex.

ESV Workstation User’'s Manual [2.0]

Porting Guide

-Tdata hex Starts the data segment at location hex.

-u hame Enters name as an undefined symbol.

-X Preserves only global (non-.globl) symbols in the
output symbol table.

-ysym Indicates each file in which sym appears, its type,
and whether the file defines or references it.

-v Sets verbose mode.

-V Prints the version of Id being used.

-z Arranges for the process demand paged from the

resulting executable file.
Runtime Checking

When possible, compile your program with runtime-checking using the -C
option. This generates code which checks that subscripts don’t exceed the
range specified for them in the program. Storing one byte past the end of an
array of characters may be harmless on one system if the compiler decides not
to use the byte for anything but may cause an execution error on another
system if a compiler decides to store something such as a subroutine return
address there.

Pascal Dynamic Memory Allocation

The ESV Pascal compiler responds to the much-requested dynamic allocation
extensions to IEEE Pascal. The compiler provides a new generic data type,
pointer, which is type-compatible with any standard Pascal pointer type.

The new capability does not allow you to directly take the address of an
arbitrary variable or directly dereference a generic pointer. However, you can
take the address of any object in the Pascal heap, or you can use the C library
function malloc to return a generic pointer. Once you have a generic pointer
containing the desired address, you can use any Pascal pointer type as a tem-
plate to dereference that pointer.

Here is an example of one approach that uses malloc:
/* Declare interface to C library function for

dynamic allocation */

function malloc (number_of bytes: integer): pointer;
extern;

/* Declare interface to C library function for rapidly
setting a block of memory to a fixed value */
procedure memset (destination: pointer; value: char;
number_of bytes: integer); extern;

ESV Workstation User’'s Manual [2.0] 8-43

Porting Guide

/*Two examples:a string, and an array of real numbers*/
type
big_char_array = packed array [0 .. maxint] of char;
string = record
length: integer;
data: “big_char_array;
end;
big real_array = packed array [0 .. maxint] of real;
matrix2d = record
rows, columns: integer;
data: “~big_real_array;
end;

var
s: string;
m: matrix2d;
i, j: integer;
Begin

/* To read a string of length "i" from the input: */

s.length = i;
s.data = malloc(i * sizeof(char));
if s.data = nil then
...handle allocation error here...
for j := 0 to i - 1do
begin;

s.data”[j] := input”®;

get (input) ;

end;

m.rows := 5;
m.columns := 7;
m.data := malloc(m.rows * m.columns *
sizeof (real));
if m.data = nil then
...handle allocation error here...
/* Clear the array */
memset (m.data, chr(0), m.rows * m.columns *
)) sizeof (real));
for i := 0 to m.rows - 1 do

for j := 0 to m.columns - 1 do
m.data”[i * m.columns+ j] := 1.0;

You should refrain from using the generic-pointer facility with variables
which lie in local or global memory rather than in the heap or the malloc area.

8-44 ESV Workstation User's Manual [2.0]

Porting Guide

For example, while the following trick does permit you to take the address of
any character array, it is unsafe when used with ordinary local or global
variables.

In one module:
function char_addr(p: pointer): pointer;
begin

char_addr := p;
end;

In other modules:

function char_addr(var c: char): pointer; extern;
function mung_strings(p, q: pointer); extern;

var
x: packed array [1 .. 10] of char;
y: packed array [1 .. 100] of char;

p, g: pointer;

Begin
P char_addr(x[1]);
q := char_addr(yl[1l]):
mung_strings(p, q);
end

FORTRAN Programming Language

This section describes ESV-FORTRAN, which contains full American Na-
tional Standard (ANSI) Programming Language FORTRAN (X6.9-1978) plus
ESV extensions that provide partial VMS FORTRAN compatibility. ESV-
FORTRAN also contains extensions that provide partial compatibility with
programs written in SVS FORTRAN and FORTRAN 66.

See the MIPS-FORTRAN Language Reference and the MIPS-FORTRAN
User's Guide for more information on language extensions.

If you wish to maintain your program on both an old system and on an
ESV Workstation, read the “Using the C Preprocessor” subsection in the “C
Programming Language” section of this chapter.

Supported f77 Options
The ES/os 77 command supports the following options among others:
Option Description
-66 Reports non-FORTRAN 66 constructs as errors.
-automatic Places local variables on the runtime stack.

ESV Workstation User's Manual [2.0] 8-45

Porting Guide

-cord

-cpp

-C

-Dname=def
-Dname

-feedback file

-ko ouiput

-Ldir

-m

-nocpp

-N[cdingsx] nnn
-0 output

Suppresses linking with Id and produces a .0
file for each source file.

Runs the procedure-rearranger on the resulting
file after linking.

Runs the C macro preprocessor on any
FORTRAN source files before compiling.

Generates code for runtime subscript range
checking.

Defines the name to the C preprocessor, as if
by #define. If no definition is given, the name
is defined as 1.

Runs only the C macro preprocessor on the
files, and sends the result to the standard output.

Produces object files targeted for big-endian
byte ordering.

Specifies file to be used for feedback.
Applies the C preprocessor to relevant files.

Produces additional symbol table information
for dbx.

Makes the default size of integer and logical
constants and variables short (two bytes).

Makes the default size of integer and logical
constants and variables four bytes.

Passes options that start with a -k to the ucode
loader.

Names the output file created by the ucode
loader as output.

Adds dir to the list of directories containing
object-library routines.

Applies the M4 preprocessor to each EFL or
RATFOR source file.

Does not run the C macro preprocessor on any
FORTRAN source files before compiling.

Makes static tables in the compiler bigger.

Names the final output file oufput instead of

ESV Workstation User's Manual [2.0]

(

Porting Guide

-00
-01

-02,-03
-Olimit num

-po .
-p1

P

-static;
-std

-systype name

a.out.
Turns off all optimizations.

Turns on all optimizations that can be done

. quickly.

Turns on more optimizations.

- Specifies the maximum size of basic blocks

that will be optimized by the global optimizer.

- Does not permit any profiling.

Sets up for profiling by periodically sampling
the value of the program counter.

. Runs only the C macro preprocessor and puts

the result for each source file in a correspond-
ing .I file after being processed by appropriate

Preprocessors.

Causes all local variables to be statically allo-

" cated.

Produces warnings (from the compiler) for
things that are not standard in the language.

Uses the named compilation environment

name. This has the effect of changing the stan-
dard directory for #include files, the runtime
libraries, and where runtime libraries are
searched for.

Compiles the named programs.
Makes the default type of variables undefined.

Does not convert upper-case letters to lower-
case.

Removes any initial definition of name.

Prints the name of each pass as the compiler
executes.

. Suppresses all warning messages.

Suppress warnings about unused variables.

ESV Workstation User's Manual [2.0] 8 -47

Porting Guide

Supported Id Options

The ES/os.I1d command-supports the following options among others. For
more information on Id, consult the Id reference manual page.

Option
-A file

-D hex

-e entry
-f fill
-G num

-klx
-Kdir

Description
Specifies incremental loading.

Does not merge the symbolic information for a file

- into one entry for that file.

Sets the bss segment origin.

Forces common storage for uninitialized variables
and other common symbols.

Performs -d and copies initialized data referenced
by program from shared objects.

Forces an alias definition of undefined procedure
entry points.

" Pads the data segment with zero-valued bytes to

make it hex bytes long.
Defines the entry point.
Sets the fill pattern.

Sets the maximum size of a .comm item or literal
to be allocated in the small bss section.

#include files are never searched for in the stan-
dard directory.

Compiles the specified source programs and
leaves the ucode object file output in correspond-
ing files suffixed with .u.

Searches a ucode library libx.b where x is a string.

Changes the default directories to the single direc-
tory dir.

Abbreviates library name libx.a.

Changes search algorithm so it never looks in the
default directories.

Adds dirto the list of directories in which to search
for libraries.

Produces a map of the input/output sections on the
standard output.

ESV Workstation User's Manual [2.0]

Porting Guide

-M Produces a primitive load map.

-n Makes the text portion read-only and shared
among all users executing the file when the output
file is executed.

-N Does not make the text portion read-only or shar-
able.

-0 name Uses name as the name of the Id output file, in-
stead of a.out.

-p file Preserves the symbol names listed in file when
loading ucode object files.

-r Generates relocation bits in the output file so that
it can be the subject of another Id run.

-s Strips the output by removing the symbol table and
relocation bits to save space.

-S Strips the output by rémoving all symbols except

-T [text] hex

locals and globals.
Starts the text segment at location hex.

-Tdata hex Starts the data segment at location hex.

-u-name Enters name as an undefined symbol.

-X Preserves only global (non-.globl) symbols in the
output symbol table.

-ysym Indicates each file in which sym appears, its type,
and whether the file defines or references it.

-v Sets verbose mode. ‘

-V Prints the ‘vcrsibn of Id being used.

-z Arranges for the process demand paged from the

resulting executable file.

Static Versus Automatic Allocation

For fastest program execution, the FORTRAN compiler uses -automatic allo-
cation by default. If your program requires static allocation, you could use the
-static driver option when you compile, however, program execution speed
is sacrificed in most cases. A better solution is to use the ANSIFORTRAN 77
SAVE statement to specify the particular variables that must be statically al-
located to-make the program work correctly.

One symptom of a program that needs to use the -static option is repeated
program failures because uninitialized local variables are used.

ESV Workstation User's Manual [2.0]

Porting Guide

Neither ANSI FORTRAN 66 nor FORTRAN 77 permits a program to
assume that local variables are automatically initialized to zero, or that local

‘ variables retam their values from the time a subroutine returns until the next

time that subroutine is 1nvokcd

Many older compilers use static allocation; that is, they allocate a location
in global memory for each local variable in each subroutine. Because each
local variable has its own fixed location, it starts out with a value of zero and

' . retains its value even when the subroutine that declared it is not active.

Applications on various systems often make use of this inadvertently.

Automatic allocatlon uses a'stack to implement local variables. It has sev-
eral advantages.

+ First, because current local variables reside near the current stack pointer,
the compiler can address them with short-offset load and store instructions,

- which execute more rapidly than large-offset instructions.

Second, local variables get popped from the stack when a subroutine re-
turns, the total memory required for the program is less, and subroutines
which are never active simultaneously can share memory for their local vari-
ables.

Third, automatic allocation permits the global optimizer to more effec-
tively allocate local variables to registers within a subroutine. This is because
the optimizer does not need to do either of the following:

« load the initial values of the variables from global memory at the start
of the subroutine,

 restore their final values to. memory when the subroutine returns.

Retention of Data

ESV-FORTRAN does not support the retention of data passed as parameters
in previous calls to different entry points of a subroutine. This effect is not
allowed by the FORTRAN standard and is error prone. However it is
supported by some FORTRAN implementations and is required by some
FORTRAN programs. Consider this example: your program calls an entry
point to a subprogram with certain arguments, it then calls the subprogram
again to a different entry point or the subprogram itself, the second call
assumes that the arguments to the first call remain valid. ESV-FORTRAN
does not support this usage. However, you can do one of the following to
retain the data.

o set the arguments to local variables in the subprogram and use the
=static switch to retain the values of the local variables,

o place the variable in a global common.

ESV Workstation User's Manual [2.0]

Porting Guide

Variable Length Argument Lists

ESV-FORTRAN does not support variable length argument lists, so your pro-
gram can’t call a routine the first time with fifteen arguments and a second
time with two arguments.

Runtime Checking

Compile your program with runtime-checking using the -C option. The -C
option generates code to check that subscripts do not exceed the range
specified in the program. Performance is adversely affected. Once the
program is debugged, removing the -C option solves this problem. Storing
one byte past the end of an array of characters may be harmless on one system
if the compiler decided not to use the byte for anything. However, an
execution error may occur on another system if the compiler tries to store
something such as a subroutine address. This does not work if array
parameters are declared as one element, which is common in older programs.
To get around this, use the FORTRAN 77 “*” declaration.

Alignment of Data Types

ESV Workstation architecture imposes certain rules governing how data may
be aligned in memory. Basically, a variable of size n bytes must be aligned
on a boundary whose address is a multiple of n bytes, up to a maximum of 8
bytes. For example, because a half-word occupies two bytes, its address must
be a multiple of two.

High-level languages also impose rules about where you can assume data
appears in memory. In most cases, the language rules forbid the same things
that the architecture forbids.

Occasionally, the rules conflict. For example, the ANSI X6.9-1978 stan-
dard for FORTRAN explicitly permits certain double-precision (8-byte) vari-
ables to lie on the same boundary as any real (4-byte) variable; but the ESV
Workstation architecture requires the double-precision variable to be aligned
on an 8-byte boundary.

The ESV compiler system supports the alignment rules imposed by each
of its languages, even when they are more permissive than the architecture.
FORTRAN, for example, deliberately avoids performing double-word load or
store operations on certain double-precision variables.

Some extensions such as integer*2, which are not part of any language

standard, cause problems. For example, consider the following common
block:

common /x/i, j, k, 1
integer*2 j, 1, q(6)

ESV Workstation User's Manual [2.0] 8 - 51

Porting Guide

integer*4 i, k
equivalence (q(l), i)
The compiler normally inserts a half-word of padding between jand k to
conform to alignment rules, but that prevents q(6) from lying atop /.

Modifying your programs to align data according to the rules of the ESV
architecture improves their performance. In the previous example, reversing
the order of Jand k within the common block eliminates the need for padding
at the cost of changing the relationship between the array g and the scalar
variables.

Rearranging the order of variables within a common block is not practi-
cal. However, you can use certain “hidden” options of the compiler system to
generate code which tolerates misalignment but degrades performance. When
uncertain if an object will be misaligned, the compiler generates slower code
sequences.

You may choose one of the following three options to deal with various
degrees of misalignment:

« -align8

Permits objects larger than 8 bits to be aligned on 8-bit boundaries.
This option requires the greatest amount of space; however, it is the
most complete solution; 16-bit padding is not inserted for integer*2
objects within common blocks.

+ -align16

Permits objects larger than 16 bits to be aligned on 16-bit boundaries;

16-bit objects must still be aligned on 16-bit boundaries (MC68000-

like alignment rules); 16-bit padding is not inserted for integer*2 ob-
jects within common blocks.

¢ -align32

Permits objects larger than 32 bits to be aligned on 32-bit boundaries;
16-bit objects must still be aligned on 16-bit boundaries, and 32-bit
objects must still be aligned on 32-bit boundaries. This option re-
quires the least amount of space, but isn’t a complete solution; 16-bit
padding is inserted for integer*2 objects within common blocks.

You should also use the following option no matter which above option
you choose, unless experimentation proves this impossible:

-align_common Assumes that all common blocks are aligned properly,
even though objects within the common blocks may be
misaligned. This option generates better code. Without
it, the assembler assumes that all global objects in lan-

ESV Workstation User’'s Manual [2.0]

Porting Guide

guages like C and FORTRAN may be misaligned, even
though they appear to be aligned, because they might
be aliased against initialized objects in other modules
to force the link editor to misalign them.

Pass these options specifically to the FORTRAN and assembly phases of
the compiler system, by preceding them with -Wfb, as shown:

£77 -Wfb,-align_common,-alignl6 ...

There are problems which are not solved by these options. For example,
your program must not perform I/O directly on misaligned objects or perform
any other operation which requires passing them by reference to runtime li-
brary routines, that have not been compiled with the -align flags.

You can circumvent this problem by copying misaligned objects to or
from aligned temporaries before performing I/O. If the misaligned data is ac-
cessed only within libraries, and not by the kernel, you can circumvent the
problem by using a runtime fix-up package which traps unaligned references
and repairs them dynamically. See the unaligned(3) manual page for more
information. V

Keep in mind that trapping is expensive in terms of execution time.

Inconsistent Common Block Sizes

ANSIFORTRAN requires that a named common block has the same size but
not necessarily the same constituent variable each time it occurs in a program.
However, programs often declare only the amount needed, thus making the
length of the common block vary. For example:

subroutine foo
common /gdata/ theta

end
subroutine bar
common /gdata/ theta, omega, radius

end

The FORTRAN compiler allows uneven block sizes when possible by
allocating the space required by the largest instance of the common block. If,
however, the varying size causes one instance of a common block to fall
below the -G threshold while another instance of the same common block is
too big to fit into the $gp area, a problem results. At best the link editor prints
error messages and the compiler system makes less than optimal use of the
$gp area. At worst, a falsely small instance of the common block causes the
compiler to overflow the $gp area.

Use the link editor to report conflicting common block sizes by taking the
name of each common block, converting it to lower case, prepending a -y, and

ESV Workstation User's Manual [2.0] 8-53

Porting Guide

appending an underscore(_). When you link your program, pass the above (
names to the link editor. The names must precede the first object file specified -
in the command line. For example, if the common blocks are named gdata,

rsb31, and xtrnls, then type in

£77 -ygdata_ -yrsb3l_ -yxtrnls_ *.o -o myprog
The link editor reports the size that each common block has every time it
occurs in an object file. The link editor also reports additional information
about each common block; however, for common block problems, only size
matters:

stdrfl.o: definition of common rsbg3l_size 1012
arstdr.o: definition of common rsbg3l_ size 4

Multiple Initializations of Common Blockdata

ANSIFORTRAN 77 requires that you use a DATA statement on a named com-
mon block only within a block data subprogram. An ordinary subroutine may
initialize only local variables, not common variables; the ESV compiler sys-
tem does not enforce this restriction.

The ESV compiler does enforce the ANSI FORTRAN 77 restriction which
requires that you initialize each common block within exactly one
subprogram. A variety of messages appear when you violate this restriction,
including error messages from the link editor citing multiply defined symbols
or messages from earlier phases of the compiler citing il1legal init or (
illegal space. For example:

ugen: internal : line 6345 : ../symbol.p, line 270
illegal inits
To diagnose such problems, use the utility fsplit to split your program
into many small files, with one subprogram per file. Then link the program
and collect the multiply defined messages in a file. For each multiply-defined
symbol, prepend a -y, and relink the program with these options preceding the
list of object files in the command line. For example, if the link editor issues
error messages for gdata_ and rsb31_, then relink with:

£77 -ygdata_ -yrsb3l_ *.o -o myprog

The link editor uses the phrase definition of external data
every time an object file initializes a symbol:

bstimr.o: definition of external data gdata_
zuxeng.o: definition of external data rsb31l_
stdrfl.o: definition of common rsbg3l_ size 1012
cmflol.o: definition of external data rsb31l_
cmflow.o: definition of external data gdata_
arstdr.o: definition of common gdata_ size 4032_

(

.

8-54 ' ESV Workstation User’'s Manual [2.0]

Porting Guide

The phrase definition of common canappear repeatedly for a par-
ticular common block, but the phrase definition of external data
must appear only once for each common block.

Once you realize that two .0 files are initializing the same common block,
transfer the appropriate DATA statements from one to the other (or, prefera-
bly, to a blockdata subprogram), then recompile and relink.

Endianness and integer*2

Special problems exist for porting FORTRAN programs between big- and
little-endian machines in addition to those discussed in the “Uninitialized
Variables” section of the “Hardware-Related Considerations™ section.
Although FORTRAN programs pass arguments by reference (they pass the
address of the argument rather than the argument itself), they cannot declare
the formal arguments of a subroutine. Consider the following call:

call foo(0.314159el, 0.628318d1, 1234, 2468)

Clearly the first argument is type real or real*4, and the second argument
is type double precision or real*8. But the types of the third and fourth argu-
ment, which can be either integer*2 or integer*4, are unknown to the com-
piler. Thus, the compiler allocates four bytes for each of these variables.

On a big-endian machine such as the ESV Workstation, where the address
of an integer is the address of its high-order byte, this code fails: if a four-byte
integer is passed to a subroutine which expects a two-byte integer, then the
subroutine recognizes only the two upper bytes of the four-byte integer. On a
little-endian machine, where the address of an integer is the address of its
low-order byte, this code works correctly even if subroutine foo expects the
arguments to be integer*2, because the address is the same in either case.

There are two solutions:

+ If all of the formal arguments in your program are two-byte integers,
and you also wish the compiler to use two-byte integers wherever you
have declared variables as integer rather than integer*4, then you can
use the -I2 option when you compile your program, and all literal in-
tegers will use only two bytes.

o Ifitis not possible to use -i2, then you must use temporary variables
of type integer*2 to pass literal numbers to two-byte arguments:

integer*2 templ, temp2
templ = 1234

temp2 = 2468
call foo(0.314159%el, 0.628318d1, templ, temp2)

ESV Workstation User's Manual [2.0] 8-55

Porting Guide

FORTRAN and C Interface

Names

Invocations

This section discusses items you should consider before writing a call be-
tween FORTRAN and C.

In calling a FORTRAN subprogram from C, the C program must append an
underscore (_) to the name of the FORTRAN subprogram. For example, if
the name of the subprogram is matrix, then call it by the name matrix_. When
FORTRAN is calling a C function, the name of the C function must end with
an underscore.

Note that only one main routine is allowed per program. The main routine
can be written in either C or FORTRAN. Following is an example of a C and
a FORTRAN main routine:

C FORTRAN
main() { write(6,10)
printf ("hi!\n"); 10 format (‘hi!’)
} end

Invoke a FORTRAN subprogram as if it were an integer-valued function
whaose value specifies which alternate return to use. Alternate return argu-
ments (statement labels) are not passed to the subprogram but cause an in-
dexed branch in the calling subprogram. If the subprogram is not a function
and has no entry points with alternate return arguments, the returned value is
undefined. The FORTRAN statement

call nret(*11,*2,*3)
is treated exactly as if it were the computed goto

goto (1,2,3), nret()

A C function that calls a FORTRAN subprogram can usually ignore the re-
turn value of a FORTRAN subroutine; however, the C function should not ig-
nore the return value of a FORTRAN function. The table below shows
equivalent function and subprogram declarations in C and FORTRAN pro-
grams:

ESV Workstation User's Manual [2.0]

(

Porting Guide

C Function Declaration FORTRAN Declaration

double dfort_ () double precision function dfort ()
double rfort_() real function rfort()

int ifort_() integer function ifort ()

int 1fort_() logical function lfort()

Note the following:

e Avoid calling FORTRAN functions of the following types from C:
float complex character

* You cannot return complex types between C and FORTRAN.

¢ A character-valued FORTRAN subprogram is equivalent to a C lan-
guage routine with two extra initial arguments: a data address and a
length.

Thus:
character*15 function g(...)
is equivalent to:

char result[];
long int length;
g_(result, length, ...)

and could be invoked in C by:

char chars[15];
g_(chars, 15);

Arguments
The following rules apply to arguments passed between FORTRAN and C:

1) All arguments must be passed by reference. That is, the argument must
specify an address rather than a value. Thus, to pass constants or expres-
sions, their values must be first stored into variables and then the address
of the variable passed.

2) When passing the address of a variable, the data representations of the
variable in the calling and called routines must correspond, as shown in
the following table. Note that FORTRAN requires that each integer,
logical, and real variable occupy 32 bits of memory.

ESV Workstation User’'s Manual [2.0] 8-57

Porting Guide

FORTRAN - C

integer*2 x short int x;

integer x long int x; orjust int x;
logical x long int x;

real x float x;

double precision x double x;

complex x struct{float real,imagl}x;
double complex x struct{double dreal,dimag; }x;
character*6 x char x[6];

3) The FORTRAN compiler may add items not explicitly specified in the
source code to the argument list. The compiler adds the following items
under the conditions specified:

+ Destination address for character functions, when called.

* Length of a character string, when an argument is the address of a
character string.

When a C program calls a FORTRAN subprogram, the C program must
explicitly specify these items in its argument list in the following order:

1) Destination address for character function return value (if appropriate).
2) Normal arguments (addresses of arguments or functions).

3) Length of character strings. The length must be specified as an absolute
value or integer variable. The next two examples illustrate these rules.

Example 1 shows how a C routine must specify the length of a character
string (which is only implied in a FORTRAN call). sam__is a routine written
in FORTRAN.

FORTRAN call to sam_

external £
character*7 s
integer b(3)

call sam(f, b(2), s):
C call to sam_

int £();
char s[7];
long int b[3];

sam f(f, &b[l]l, s, 7);

ESV Workstation User's Manual [2.0]

Porting Guide

Example 2 shows how a C routine can specify the destination address of
a FORTRAN function (which is only implied in a FORTRAN program). f* is a
function written in FORTRAN.

FORTRAN Call to f_
external £
character*10 f,g
g =f()

C Call to f_
char s[10]
£ (&s,10);

Function f_
character*10 function f()
£f = 0123456789/
return
end

Array Handling

FORTRAN stores arrays in column-major order with the furthest left subscript
varying the fastest. C, however, stores arrays in the opposite arrangement,
with the furthest right subscripts varying the fastest, which is called row-ma-
jor order. Here is how the layout of FORTRAN arrays and C arrays look.
FORTRAN

integer t(2,3)
t(1,1), t(2,1), t(1,2), t(2,2), t(1,3), t(2,30)

C

int t([2]1[3];
t[01101, t[ro0j[11, tfojr2y, t[(13[ol, trill1l, t([1l[2]

Note that the default for the lower bound of an array in FORTRAN is 1,
whereas in Cit is 0.

When a C routine uses an array passed by a FORTRAN subprogram, the
dimensions of the array and the use of the subscripts must be interchanged, as
shown in the following example.

ESV Workstation User's Manual [2.0] 8-59

Porting Guide

FORTRAN caller C Called Routine
integer a(2,3) void
call p(a, 1, 3) p (a, i,)
write(6,10)a(1,3) int *i, *j, a[3]1([2];
10 format (1x,19) {
stop al[*j-1]1[*i-1] = 99;
end }

The FORTRAN caller prints out the value 99. Note the following:

Because arrays are stored in column-major order in FORTRAN and
row-major order in C, the dimension and subscript specifications are
reversed.

In FORTRAN, the lower-bound default is 1, whereas in C it is O; there-
fore, 1 must be subtracted from the indices in the C routine. Also, be-
cause FORTRAN passes parameters by reference, the *j and *I pointers
are used in the C routine.

Accessing Common Blocks of Data

The following rules apply to accessing common blocks of data:

.

.

FORTRAN common blocks must be declared by common statements;
C can use any global variable. Note that the common block name in C
(sam_) must end with an underscore.

Data types in the FORTRAN and C programs must match unless you
desire equivalencing. If so, you must adhere to the alignment restric-
tions for the data types.

If the same common block is of unequal length, the largest of the sizes
is used to allocate space.

Unnamed common blocks are given the name _BLNK_.

The following gives examples of C and FORTRAN routines that access
common blocks of data.

C FORTRAN
struct S {int i; float j;}r_; subroutine sam()
main() { common /r/i,r
sam_() ;) i = 786
printf("%d %f\n", r_ .i, r .3); r = 3.2
return

The C routine prints out 786 and 3. 2.

ESV Workstation User's Manual [2.0]

Porting Guide

ES/os Compiler Components

Debugging

This section discusses considerations for debugging, programming checking,
compiling, and link editing your programs; the following topics are included:

L]

Debugging Procedures

You compile programs for debugging using the -g option of the driver
command that compiles your program for full symbolic debugging
when qucuted with the dbx debugger.

Programming Checking

Several program checking tools are available to check the correctness
of your program.

Optimization

The optimizer can significantly improve the performance of your ob-
ject program. The optimizer is invoked using one of the several -O
options of the driver command. You should consider levels of optimi-
zation higher than the standard default once your program is success-
fully debugged.

Link Editor Features

Several link editor options and techniques should be considered.
These options are invoked by either a driver command (cc, pc, 77,
pl1, cob) or the link editor Id command.

In addition to the information provided in this section, you may need to
refer to the Languages Programmer’s Guide and the manual page for the
driver, dbx, or Id in the RISC/os User’s Reference Manual.

This section gives a suggested procedure to follow when debugging your
ported program. For a complete description of the debugger dbx, refer to the
Languages Programmer’s Guide.

If a program fails and you wish to use dbx to debug the failed program,
do the following:

1. Recompile the program using the following compiler options:

the -g debugging option, which causes the compiler system to gener-
ate the symbol table required by dbx.

the -O1 optimizing options (the default), which causes the compiler
system to minimally optimize the resulting object. (Once the program
is successfully debugged, you may want to recompile it using a higher
level of optimization.)

ESV Workstation User's Manual [2.0] 8 -61

Porting Guide

2.
3.

+ the -signed and -varargs options (for C programs only).
 the -static option (for FORTRAN programs only).
Execute the program.

If a segmentation fault, bus error, or other error causes the program to de-
fault, use dbx to isolate the problem. Do a stack trace using the dbx
where command to locate the point of failure.

If you know the approximate location of the problem, then do the follow-

ing:

* Use the dbx stop command to set a breakpoint just before the sus-
pected problem location.

* Use the dbx where command to display the current values contained
in the pertinent variables.

» Use the dbx next or step command to incrementally execute the in-
structions after the breakpoint. Display and check the values of the
variables as you execute each instruction.

Use binary search techniques, as discussed in step 4, when you are trying
to track down the source of corrupted data. You can also make a change
to data or code to see what happens, but understand the code before you
do this. For example, sometimes all you need to do is to check for the
symptom that results in a problem, and bypass the code that would be ex-
ecuted. A classic example of this is programs that get segmentation faults
for doing the following:

if (*sp=='a’) {
}
If sp is 0, then a segmentation fault occurs, but the code works as expect-
ed if it is changed to: '

if(sp && *sp == ’a’){

}

Program Checking

A correct program is not necessarily a portable program as it may run
successfully on one system, but not another. Debugging alone does not
guarantee correctness. In fact, no tool can completely guarantee the
correctness of a program; however, a few tools can help check whether a
program is operating correctly. These tools are appropriate to use either when
porting a program from another system to an ESV Workstation, or when
writing a program on an ESV Workstation intended to be portable to other
systems.

ESV Workstation User's Manual [2.0]

Porting Guide

lint

One such tool is lint, a static program checker for the C programming lan-
guage. lint provides the sort of checking that is typically performed by com-
pilers in other programming languages. Its use for C programs is highly
recommended. See the Language Programmer’s Reference for more infor-
mation.

Subscript Range Checks

Another tool is subscript range checking. It is not uncommon for a program

to reference an array outside of the declared bounds. An error of this sort may
go undetected if, for example, the location referenced exists, but is otherwise
unused. When the program is ported to another system the incorrect reference
may instead access a critical location, and the program will fail to operate cor-
rectly.

To detect subscript range errors, your program may be compiled with a
special option that generates extra code to verify that the indexes to array ref-
erences are within the declared bounds of the array. This option is available
in Pascal and FORTRAN. It is the default in Ada. For C, the language and its
style of use does not make subscript range checking useful, so no compiler
option is provided.

A Pascal program compiled without subscript range checking would run:
% pc -q -o example example.p
However, if you compiled the same program with subscript checks, you
would receive a subscript error during run time.
% pc -C -qg -o example
% ./example
Trace/BPT trap (core dumped)
At this point, you could use dbx(1) to locate the source line with the sub-
script range error.

The -C compile option also works for a FORTRAN program. Older FOR-
TRAN programs require some modification to work with subscript range
checking turned on. It was once common in FORTRAN to declare array pa--
rameters to have dimension 1 when the actual size was passed as a separate
parameter:

subroutine zero(a, n)
real a(1l)

do 10 i =1, n

10 a(i) =0

end

ESV Workstation User's Manual [2.0] 8-63

Porting Guide

In FORTRAN 77 the declaration could correctly be written as:
real a(n)
or
real a(¥*)

Dynamic Storage Allocation

Just as programs sometimes reference outside the bounds of an array, another
common error is to call a dynamic storage allocator and reference outside of
the allocated block. Since the compiler often does not know the size of the
block when a pointer based reference is made, it cannot generate code to
verify the access, as with subscript range checking. However, a special
version of the standard dynamic storage allocation routines malloc(), free(),
and realloc() called malloccheck(1) is available to check for incorrect uses
of dynamic storage. Add -Imalloccheck to your link command line to use this
version. It checks for the following:

* Writing beyond an allocated block.

A common error is to write beyond the end of an allocated block. The
malloccheck allocator allocates extra space both before and after the
block it returns to you and initializes this space to special bit patterns.
A write outside the block will usually affect these pattern words.
When the block is freed, the pattern words are checked, and if modi-
fied a warning is given.

» Freeing a block twice.

Another error is to free a block twice. malloccheck does not reuse
storage after it is freed, but instead simply marks it as such. A second
free to the same block generates a warning.

» Referencing a block after it is freed.

Another error is to reference a block after it is freed. This often works
because the freed storage is not immediately re-used. malloccheck’s
free routine overwrites the data when it is free, which usually causes
subsequent references to return unexpected results, leading to a de-
tectable program failure later.

+ Initializing allocated storage to zero.

Some programs inadvertently assume the allocated storage is initial-
ized to zero, even though the standard malloc() and free() routines do
not guarantee this. malloccheck initializes the allocated storage to
non-zero so that such assumptions lead to program failure.

Malloccheck’s primary checking is done when blocks are freed. An error
may go undetected if a block is never freed, or if the error occurs after it is
freed. Also, an inconsistency detected by free may be difficult to trace to an

ESV Workstation User's Manual [2.0]

Porting Guide

Optimization

error made long before. For all of these reasons, malioccheck provides the
malloc_status() subroutine, which checks the entire dynamic storage
allocation area. Calls to malloc_status() can be inserted in the program as
necessary to locate the source of an error. During program development a
single call to malloc_status() at the end of the program is useful. The
argument to malloc_status() specifies the level of checking.

malloc_status(0);
checks for errors and prints some summary statistics. A level of 1
malloc_status(l);
checks for errors, prints some summary statistics, and lists all blocks that re-
main in use. This is useful for finding blocks that the program failed to free.
Failure to free storage can lead to eventual memory exhaustion and program
failure on a large run.

The optimizer is vulnerable to human error. For example, incorrectly speci-
fying the size of a variable or the nature of a formal argument can cause prob-
lems. In the following Pascal code, the optimizer may move the if statement
to precede the loop, since name_changer is declared to receive only one
character, therefore name[5] cannot change during the loop.
type
array5 = packed array [1 .. 5] of char;
var
i: integer;
name: array5;
procedure name_changer(var c: char); extern;

for i := 1 to 10 do
begin
if name([5] >’9’ then goto 5;
name_changer (name[1]) ;
writeln (name) ;
end;

This assumption is true if name_changer is coded in Pascal and the for-
mal argument agrees with the actual argument. If it is coded in C, and the for-
mal argument is char *c, then name_changer may alter name[5] during the
loop. To solve this problem be specific. Don’t specify var c¢: char if it is ac-
tually var c: array5 from the point of view of the external procedure.

Similar problems arise in FORTRAN programs that assume declaring a
formal argument or common block to be an array of one element is the same
as declaring it specifically.

common /x/ ary (1)
call matset (ary)

ESV Workstation User's Manual [2.0] 8-65

Porting Guide

If a common declaration in another program unit specifies ary(100), then
the variable ary becomes 100 elements large when you link the program; but
in this particular section, the optimizer behaves as if the variable had only one
element. This problem can be solved as follows:

¢ Use consistent common declarations.

* Use an ANSIFORTRAN 77 declaration in the form of integer parm(*)
rather than the traditional trick of Integer parm(1) when the size of a
formal parameter may vary.

The Link Editor

This section describes the special features of the link editor that you should
be aware of when porting a program. For information on the link editor and
its libraries, refer to the Id(1) manual page.

The -G option

The ESV Workstation compiler system sets up one register called gp to point
to a 64 Kbyte block of global memory that can be addressed in half the num-
ber of instructions required for a normal global access.

It allocates by default to the gp area any global variable up to a maximum size
of eight bytes. You can change the default size using the driver -G option.

There are three kinds of gp-related problems.

1) The gp area overflows because gp-relative data doesn’t fit into its allo-
cated 64 Kbytes of memory.

If this problem occurs, the link editor prints a prediction of the best value
to use as a maximum size in the -G option. The best value places as many
global variables as possible into the 64 Kbyte area to improve perfor-
mance, but excludes enough variables to prevent the area from overflow-
ing.

However, the best value is merely a prediction and may not produce suc-
cessful results. To make sure that no gp area overflow occurs, and to pro-
duce an executable object immediately, note the best value provided by
the link editor, and then recompile and relink your program using the

-G 0 option. You can then move that copy to a safe place and recompile
and relink using the recommended best value.

If your program does not fail, but you want to improve performance, then
use the -bestGnum option. This option causes the link editor to predict a
best value. Recompile and relink with the new value. However, you
should first debug the program at the default setting, save a working copy,
and then experiment with the best number prediction.

ESV Workstation User's Manual [2.0]

-

Porting Guide

2) A variable larger than the maximum specified size is in the gp area.

This problem can happen when two program modules disagree about the
data type of an object. For example, one program sees the data as a small
variable and addresses it within the gp area, and the other sees it as a large
variable.

The link editor retains the larger size of the variable, when possible, and
places it into the gp area with a warning error message. This may cause
the gp area to overflow. If the gp area overflows, then use the -G 0 option
or (preferably) reconcile the conflicting declarations so as to retain the ad-
vantages of using the gp area for other variables.

Sometimes the link editor cannot put the large variable into the gp area
because it is a synonym for some other object that cannot be addressed
relative to the gp register. If this is the case, you must reconcile the con-
flicting declarations. For example, suppose one module defines an object
as a function, which cannot be addressed relative to the gp register

int foo():;
bar(foo);
and another defines it as a small data item.

int foo, *ptr;

ptr = &foo;
Most inconsistently sized declarations are caused by a violation of the
ANSI standard with regard to FORTRAN common blocks. See the “FOR-
TRAN Programming Language” section in this chapter for details.

3) The link editor believes that the gp register isn’t initialized.

This problem can occur when you use your own start-up code, rather than
the runtime start-up code in crt0.0 or crt1.0 provided when a compiler
driver (cc, 177, pc, cobol, or pl1) links your program.

The runtime start-up code loads a link editor-defined symbol called _gp
into the gp register. If you use your own start-up code instead, load _gp
into some register ($0 is acceptable) even if you load gp with some other
value that you have calculated yourself; otherwise, the link editor issues
an error message.

Two details may help you in reconciling inconsistently sized declarations:

+ If acommon variable is declared but not referenced in a module, then
the compiler allocates it outside the gp area regardless of its size. This
allocation reduces possible problems. Therefore, you should explicit-
ly initialize unreferenced variables to zero, to ensure that they are
placed within the gp area. '

ESV Workstation User's Manual [2.0] 8-67

Porting Guide

* InC, you can force a scalar variable to be referenced as if it lay outside
the gp area by declaring it to be an array of unspecified size and ref-
erencing the first element (for example, int J[]; and J[0] rather than
int] and }).

Forcing Library Extractions
The ESV Workstation compiler system link editor opens and searches only
one library at a time in the order you specify. This can cause problems as the

following example shows. Suppose you try to link a program p.o with two li-
braries, I11.a and 12.a, as follows:

cc -o p p.o 1ll.a 12.a
The components that the program and libraries contain or need are:

File/Library Contain Imports/Exports
p.o imports 12proc
I1.a 1.0 export I1proc, import I3proc
12.a 2.0 export 12proc, import I1proc
12.a 16.0 exports I3proc

‘When the program is compiled the following steps occur:
1) The link editor sees that it needs to import 12proc for p.o.
2) It searches I1.a for 12proc, and does not find it.
3) The link editor closes I1a and opens 12a.
4) Tt finds the I2proc but cannot find the 11proc because I1.a is closed.

If you specify I1.a and 12.a in the opposite order, the link editor fails to
obtain I3proc.

The standard UNIX solution to this problem in which you assemble a file
kludge.s containing

.globl llproc
and link kludge.o prior to I1.a to import I1proc does not work on the ESV
Workstation compiler system. The ESV compiler assembler notices that
kludge.s does not really use I1proc, and as an optimization removes the re-
quest to import it. To solve this problem, edit kludge.s so that it defines
I1proc.

.extern llproc
.data
.word llproc

Simpler solutions are to

ESV Workstation User's Manual [2.0]

Porting Guide

1) Correct the problem on the command line by having the link editor search
the I1.a library twice:

cc -o p p.o ll.a 12.a 1ll.a
2) Extract the object file and directly include it in the command line.

ar x ll.a 1l.o0
cc -o p p.o 1ll.0 1l1l.a 12.a

The Semantics of a Library Search

Some programs assume that the link editor searches linearly within a library
for symbols that it wishes to import. The ESV compiler link editor libraries
use a hashed symbol table for faster linking, so the order in which .o files are
added to a .a file is insignificant.

The link editor does not consider a common declaration to be a request to
import every module that issues an identical common declaration. For exam-
ple, a declaration of int errno in a C-coded main program does not cause
the link editor to import every module that similarly declares int errno;
those modules are imported only if they specifically export some symbol that
your program specifically imports using a function definition or initialized
data definition.

However, a “common” in the library can satisfy an import request without
actually adding the library module to the program. For example, if your main
program declares extern int errno, the occurrence of int errnoin
a module f00.0 in the library would create a common int errno in the
linked program, without necessarily adding f00.0 to the linked program. This
rather exotic behavior makes our link editor compatible with the one provided
by the standard BSD UNIX distribution.

Libraries Versus Object Files

If you want to bundle together a group of infrequently-changed object files
because it is more convenient to specify a single name when you link, it is
faster to use Id -r to bundle them into a .0 file than to use ar -r to add them to
a .a file.

ESV Workstation User's Manual [2.0] 8-69

Porting Guide

Helpful Hints

1. Enumerated Types

ES/os is restrictive in the uses ofvenumeréted type variables. They should
not be used as indices.

2. types.h

Source code that needs the #include file types h should specify
<sys/types.h> for ES/os.

3. Internal Compiler Tables

The ES/os ce command uses several different internal tables. Their sizes
seem to be too small for large applications. ES/os provides an undocumented
method of expanding the table sizes by passing a special argument with the
cc command. The following arguments may resolve the problem:

-WE, -XNd50000
-WE, -XNp50000

4. ESY Workstation Input

Allinput to the ESV Workstation is handled through the Evans & Sutherland
X Input and the X Picking Extensions, which are documented in the ESV
Workstation Reference Manual.

If you want to program low-level graphics, you can use the Xlib routines,
which are supplied with the X Window System. High-level graphics can be
programmed with Xt toolkit, available with the X Window System, or the
Motif toolkit, available from the Open Software Foundation.

5. Separate and Map Graphics Model

For graphics applications, you should separate the graphics application code
from the more general purpose application code, and map the existing graph-
ics code in your application to the PHIGS model.

6. Compiling at -O2 Level

Compiling at the -O2 level involves several sophisticated optimization algo-
rithms. These algorithms must make certain assumptions with regard to your
source code. Sometimes these assumptions are incorrect, and as a result, the
compiler may generate incorrect code. Compile at this level or at-O3 at your
own risk.

8-70 ESV Workstation User's Manual [2.0]

Porting Guide

7. BSD Enhancements to ES/os
The BSD enhancements added to ES/os fall into three main categories:
1) BSD user commands,
2) BSD or BSD-like system calls,

3) BSD or BSD-like kernel enhancements that are not reflected in either user
commands or system calls. These include TCP/IP networking, the NFS re-
mote file system, and the Berkeley FFS.

ESV Workstation User's Manual [2.0] 8-71

9. Local Server

Local Server

Table of Contents
9. Local Server 9-1
OVETVIEWceenirrinririeienreresensessesessssessssessssessssessasesssessensossostsssssessonessensasessssasentosene 9-1
SCPU Card......cccreereiererieereerereesereeressesesssssssessessesessessessessosessssesssssessossseen 9-1
DPR CaI.....ccceecueerieieieecrieteeresetesseeesesessesseessessesssessensessassssonsssesseseenes 9-1
LoCal Server Capabilities.......cceueuereieerueesererereeeanissssersssessssssesssesesssesesesssssesssenee 9-1
Power-on, Boot Sequence, and ShutdOWn............cveveeeevieeerienenriineenesssesesnens 9-2
POWET-0N DIagnOSHCSc.covunririrrrinnnreencneneeeeesesteresesesssseseassssssesesssssanns 9-2
BOOt SEQUEICEcccoveeeuirrurreenintnterenieieeesteseaesessesssesesessesssesesessssnsnsenes 9-3
Server Console SWICH.......cccerieeieeerierenrirreeereeresressessesesessssesssssessosssens 9-4
ShutdOWn ProCeAUTEcoeeeeererreeeerecrrer ettt et esses s sessessensonees 9-5
Effective System AdminiStration..........cceceeevereeererereseereiesersesesesseseressssessssseresesens 9-7
Network Interface Addresses and NamEScovevveeeereeeerineerereereenennes 9-8
ES/PSX ..ottt steste e se e esse e saesaebe st srse st enne e sn s senssnsssensaeseenensanen 9-8

ESV Workstation User's Manual [2.0] 9-i

Local Server

9. Local Server

Overview

SCPU Card

DPR Card

The Local Server consists of the following two cards:
e SCPU card
* DPRcard

The Local Server provides the ESV Workstation user with a second, fully-
functional CPU card called the Server CPU, or SCPU. The SCPU supports all
ESV Workstation hardware and software products supported by the standard
CPU (called the Graphics CPU, or GCPU), with the exception of products that
require the CPU to be directly connected to the ESV Workstation graphics
hardware. The Local Server offers the ESV Workstation user a way to pur-
chase an inexpensive network compute/file server.

The Local Server also provides a shared memory module called the dual-
ported RAM card (DPR card) that is accessible from the GCPU and the SCPU
simultaneously. The DPR card is configured as a network device and is used
as a high speed point-to-point network between the two CPUs. This high
speed point-to-point network is called the LCS network.

The GCPU and SCPU can both be configured for full Ethernet network ac-
cess. Access to the LCS network is similar to that of an Ethernet network. Any
properly written X or PEX application that can be run over Ethernet can also
be run using the LCS network.

Use of the LCS network requires no application source code modification.
The LCS network supports all ES/os standard networking facilities, including
all applications that use network protocols TCP/IP and UDP. Additionally, the
LCS network supports diskless booting for the GCPU so that it may run disk-
less using the SCPU as its file server.

ESV Workstation User's Manual [2.0] 9-1

Local Server

Local Server Capabilities

Viewed from a network perspective, the SCPU can be thought of as a compute
server, or a file server, or both. Its use is no different from any other compute
or file server on the network, and its use does not detract from the perfor-
mance of the GCPU.

The same view also applies to the user of the GCPU. However, the GCPU
user has the option of using the LCS network, which is much faster than Ether-
net. Consequently, the GCPU user may run applications over the network that
might otherwise have been considered too slow.

The SCPU may be used to off-load compute- or I/O-intensive tasks that
would otherwise cut down interactive performance on the user’s CPU, or to
improve GCPU display performance. In situations where the graphics server
is consuming more than half of the GCPU time, it may be an advantage to run
the client side of the application on the SCPU.

Power-on, Boot Sequence, and Shutdown

This section describes the function/sequencing necessary to boot both CPUs
(GCPU and SCPU) in a dual-CPU system. It also describes the proper method
for shutting down such a system.

There are several issues that the PROMs must deal with, including:
* What happens after power-on,

* What to do with power on test failures,

* How to handle system administration problems, and

* How to get the system booted.

Power-on Diagnostics

At this point the system is running the power-on (PON) confidence tests and
must be made aware of the other CPU. The PON confidence tests run to com-
pletion on one board and then the other. First, the GCPU runs the tests. When
successfully completed, the GCPU tells the SCPU to start its tests.

The output indicates exactly what happens for both CPUs in the PON se-
quence including any failure(s) that may have occurred. The text from the
SCPU is communicated to the GCPU via the VMEbus.

If there is an error, the FAILED message is printed, and the auto boot se-
quence is disabled if it was previously enabled. This is the same behavior that
currently happens when a PON confidence test fails.

ESV Workstation User's Manual [2.0]

Local Server

Boot Sequence

After the PON confidence tests are complete, the boot prompt is displayed.
For a dual-CPU system, the prompt contains the CPU name as a prefix fol-
lowed by the usual “>>” so the CPU executing the commands is always
known.

The system is left (if not set to autoboot) with control going to the SCPU.
Normally, you need to boot the SCPU first.

MIPS Monitor 4.10

SCPU>>

All the PROM commands plus one new command are available from the
PROM prompt. This new command, scpu or gcpu, allows you to switch the

command stream between the two CPUs. This is necessary since you must
boot the SCPU first and then boot the GCPU.

For a normal boot (i.e., not doing system administration tasks and not set-
ting the system to autoboot), follow this procedure:

SCPU>> auto
loading sash

loading unix

The system is ready

GCPU>> auto
loading unix

The system is ready

Console login:

The above sequence consists of booting the SCPU and then the GCPU. If
the GCPU is a diskless node, it boots from some server CPU, probably the
SCPU. Otherwise, it could boot from its own disk. Booting the SCPU first is
necessary since the SCPU cannot be accessed from the login prompt, except
by using rlogin. To use rlogin, UNIX must be running. Also note that control
automatically goes back to the GCPU after the SCPU is booted. For a system
set to autoboot, all of this happens automatically after power-on.

For system administration tasks, it is necessary to load files from the tape.
The tape is only accessible from the CPU to which it is attached by its SCSI
cable (by default the SCPU). This may make it difficult to use a system with
two drives, one for each CPU, since only one of the CPUs can access the tape
drive. You must switch to the proper CPU to use the tape drive. The install

ESV Workstation User's Manual [2.0] 9-3

Local Server

scripts work so control doesn’t go back to the other CPU until UNIX is shut
down. This allows you to do a complete scratch installation on the SCPU from
the console.

Once UNIX is running on both CPUs, you log into the GCPU and start X.
From here, you can rlogin to the SCPU and run X clients that use the GCPU
as the display. Because of the DPR interface, X clients running on the SCPU
should run faster than those displaying on the GCPU but connected via Ether-
net. For more information, refer to the section “Effective System Administra-
tion”.

The Local Server interface in the PROM code allows you to boot across
the LCS network interface instead of Ethernet. This takes advantage of the
much faster interface provided by the LCS network interface.

Server Console Switch

If for any reason the SCPU is required to be booted to multi-user level, the
console will switch to the GCPU upon completion of the boot. This may be
undesirable under curtain circumstances. The end of the startup file /etc/rc2
on the SCPU contains a statement that causes console control to be switched
from the SCPU to the GCPU. The recommended procedure for disabling the
switchover is to search for the following:

This should cause CPUS to give control back to CPUG
if /etc/netstat -i | /usr/bin/fgrep lcs0 > /dev/null ;
then

echo “Ready” > /dev/kbd

else

echo “\c¢”

fi

and comment it out:

This should cause CPUS to give control back to CPUG
#if /etc/netstat -i | /usr/bin/fgrep lcs0 > /dev/null ;
#then
echo “Ready” > /dev/kbd
#else
echo “\c¢”
#£i

From the boot prompt, the system is booted single-user. At the single user
prompt, the /usr file system may be checked and mounted on /usr. The text
editors vi and emacs can then be used to modify /ete/rc2. You should apply
the changes to /etc/rc2 and issue the telinit command telinit 2 to bring the
system up to multi-user.

Once the SCPU is up, the console is available to the SCPU, but graphics
may not be started up from the SCPU console. When you are ready to boot the

ESV Workstation User's Manual [2.0]

(

Local Server

GCPU (be sure to change /etc/rc2 back to its original condition), you may is-
sue the following command:

echo “Ready” > /dev/kbd
There is no way to go back to the SCPU console once you have issued this
command.

Shutdown Procedure

Once the GCPU is given control of the console, your only access to the SCPU
is via the network. An alternate terminal may be connected to the SCPU and
used as a console. The terminal should be connected to the SCPU debug port,
which is set up for 9600 baud. The console mode of the PROMs must be set
to r for the terminal to be used.

Any alternate terminal that is supported by the termcap/terminfo facility
may be used for the SCPU console. In this case, both CPUs may be booted and
shut down independently.

If your SCPU does not have an alternate terminal console (one is not pro-
vided with the ESV Workstation), there are several console dependencies that
have to be honored.

« For a diskless GCPU, or situations where the GCPU has file systems
mounted from the SCPU, it is important not to shut down the SCPU be-
fore the GCPU. The GCPU is dependent on the SCPU. If the SCPU is
shut down before the GCPU, the GCPU hangs and you have to reset
both CPUs in order to reboot.

» You are strongly advised not to mount GCPU disks on the SCPU. Con-
sole dependencies during shutdown and reboot may cause conflicts.

» The GCPU can be shutdown and rebooted independently of the SCPU.
Since the SCPU depends on the GCPU console, the SCPU may not be
shut down unless the GCPU is also shut down. This restriction does
not apply to systems where the SCPU is attached to an alternate termi-
nal console.

Note: You should not use the shell command init 6
on the SCPU.

To shut down the SCPU of a Local Server, you first execute a delayed
shutdown on the SCPU, log out of the SCPU, and immediately shut down the
GCPU. Once the GCPU is down, you must direct the console to attach to the
SCPU and wait for the SCPU prompt. The SCPU prompt is displayed when the
SCPU completes its shutdown.

ESV Workstation User's Manual [2.0] 9-5

Local Server

Following is an example of the shutdown sequence for an LS system:
Login to SCPU.

SCPU#
SCPU#
SCPU#
SCPU#
SCPU#

GCPU#

cd /
csh
shutdown -y -i0 -g300 &
exit
exit

shutdown -y -i0 -g0

Several GCPU shutdown messages are printed here.

GCPU>> scpu Switch to wait for SCPU to shut down.

SCPU>>

ESV Workstation User's Manual [2.0]

Local Server

Effective System Administration

The Local Server gives you a second fully-functional CPU within your ESV
Workstation, and the LCS network improves the communication speed be-
tween the CPUs. Since there are two CPUs, system administration tasks are re-
quired for each CPU.

The LCS network is faster than Ethernet, and it should be used whenever
possible. However, there may be some applications that will not make use of
the LCS network interface, and in these cases the programs need to be modi-
fied or you have to use Ethernet.

Consider the following example:

» frack — GCPU Ethernet name

¢ gcpu — GCPU LCS network name
+ frick — SCPU Ethernet name

» scpu - SCPU LCS network name

If you are logged into the GCPU (frack), there are two paths to the SCPU
(frick). To login to the SCPU, you can either:

frack> rlogin scpu (through the LCS network)
or
frack> rlogin frick (through Ethernet)

If you are on another machine and the Local Server is configured with the
defaults, the only usable system names are frick and frack because the LCS
network is not being advertised on Ethernet.

If you have added a new disk to the SCPU, and you want the whole net-
work to be able to mount the new disk over NFS, but you want the GCPU to
mount the new disk through the LCS network, the GCPU mount command
would be:

frack> mount scpu:/newdisk /newdisk
The mount command for other systems on the network would be:
hostname> mount frick:/newdisk /newdisk

If you want to start an X application on the SCPU and have it display on
the GCPU, you can either set your DISPLAY environment variable to gcpu or
use the -display option with your X application, as follows:

frick> setenv DISPLAY gcpu:0.0
frick> /usr/bin/X1l1l/xterm
or

frick> /usr/bin/X11/xterm -display gcpu:0.0

ESV Workstation User’'s Manual [2.0] 9-7

Local Server

To go over Ethemnet, the -display option would be:
frick> /usr/bin/X11/xterm -display frack:0.0

Network Interface Addresses and Names

ES/PSX

The Local Server introduces a new network interface to the system. The
SCPU and GCPU are configured to assign a unique network address to their
LCS network interfaces. You should use the addresses and interface names
(gepu and scpu) provided in /etc/hosts. The only exception to this is if you
want to use the Local Server to act as a gateway between two networks. In
this case, addresses and interface names are assigned as they are for any other
point-to-point network gateway.

By default, the system is configured so that the network router does not
broadcast its routes onto the network. (There is no need to configure the rout-
er otherwise unless it is acting as a network gateway). Therefore, the LCS net-
work is not visible to the other hosts on your network, but access is available
via Ethernet.

Note: - If your Local Server system is not being used as a
network gateway, you should not allow the router
process to broadcast routes unless you first assign a
site-specific network address to your Local Server
network interfaces. »
The system comes configured so that you need not
worry about this configuration issue, and you should
leave it as it is. However, be aware that your network
routers may become confused if duplicate network
addresses are presented to them.

Users with the ES/PSX option should note that ES/PSX must be installed on
the GCPU.

ESV Workstation User's Manual [2.0]

