Pascal/MT+™
Language
Programmer’s Guide
for the
CP/M®Family of Operating Systems

Copyright ©1983

Digital Research
P.O. Box 579
160 Central. Avenue
Pacific Grove, CA 93950
’ (408) 649-3896
TWX 910 360 5001 .

All Rights Reserved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language,. in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. ' Thus,
the reader is granted permlsszon to include the
example programs, either in whole or in part, in his
or her own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the ‘content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
Pascal/MT+, DIS8080, LIBMT+, LINK/MT+, LINK-80,
RMAC, and SID are trademarks of Digital Research.
Intel is a registered trademark of Intel
-~Corporation. Intel SBC-80/10 is a trademark of
Intel Corporation. Microsoft is a registered
trademark of Microsoft Corporation. UCSD Pascal is
a trademark of the Regents of the University Of
California. 280 is a registered trademark of Zilog,
Inc.

The Pascal/MT+ Language Programmer 's Guide for the
CP/MFamily of Operati ng Systems was prepared using
the Digital Research TEX Text Formatter and printed
in the Unlted States of Amerlca.

Ahhhhhhhhhhrhhhhhhhrhhhhrhkhhdhdkhdi

* Pirst Edition: March 1983 *
[T X 2SI XETXIS SIS S22 XR 2222 X222 X

Foreword

The Pascal/MT+™ language is a full implementation of standard
Pascal as set forth in the International Standards Organization
(ISO) standard DPS/7185. Pascal/MT+ also has several additions to
standard Pascal that increase its power to develop high quality,
efficiently maintainable software for microprocessors. Pascal/MT+
is useful for both data processing applications and for real-time
control applications.

The Pascal/MT+ system, which includes a compiler, linker, and
programming tools, is implemented on a variety of operating systems
and microprocessors. Because the language is consistent among the
various implementations, Pascal/MT+ programs are easily
transportable between target processors and operating systems. The
Pascal/MT+ system can dlso generate software for use in a ROM-based
environment, to operate with or without an operating system.

This manual describes the Pascal/MT+ system, which runs under
any of the CP/M® family of operating systems on an 8080, 8085, or
280® -based microcomputer with at least 48K bytes of memory. The
manual tells you how to use the compiler, linker, and the other
Pascal/MT+ programming tools. Also included are topics related to
the operating system for your particular implementation.

For informatioh about the Pascal/MT+ language, refer to the
Pascal/MT+ Language Reference Manual.

iii

1

2

3

4

Table of Contents

Getting Started with Pascal/MT+
l.1 Pascal/MT+ Distribution Disks
1.2 1Installing Pascal/MT+

1.3 Compiling and Linking a Simple

Compiling and Linking

2.1 Compiler Organization

2.2 Invoking the Compiler
2.2.1 Compilation Data . . .
2.2.2 Compiler Errors
2.2.3 Command Line Options .
2.2.4 Source Code Options . .

2.3 Using the Linker

1 Linker Options . .

2.3.
2.3.2 Required Relocatable Flles . .
2.3.3

Linker Error Messages .

2.4 Using Other Linkers

Segmented Programs

3.1 Modules . . . s e e e

3.2 Overlays . « « « « « o o o o

o« e e e

Program

¢ o o o
o o o o
* o o &

e e o

3.2.1 Pascal/MT+ Overlay System . . .

Using Overlays

Overlay Error Messages
Example « .+ &

3.3 Chaining . . « + ¢« +« ¢« o« « + &

Run-time Interface

4.1 Run-time Environment

4.1.1 Stack « + « ¢ 4 o o 4 o
4.1.2 Program Structure . . .

2
3 Linking Programs with Overlays
4
5

a e o e o

s o e s o

o o o o

* o o o

2 s & & @

o s e o

e o o o »

* o o

e ® o o o

1-2
1-7
1-8

Table of Contents

(continued)

Assembly Language Routines . .

AcceSsing Variables and Routines

Data Allocation
Parameter Passing . . .

.

.

Assembly Language Interface Example

Pascal/MT+ Interface Features

Direct Operating System
INLINE . . o« o o e
Absolute Varlables .
Interrupt Procedures
Heap Management . . .

¢ o o

Recursion and Nonrecursion . .

Stand-alone Operation

Error

and Range Checking . . .

Range Checking
Exception Checking . .
User-supplied Handlers
I/0 Error Handling . .

Pascal/MT+ Programming Tools

5.1 - DIS8080,

the Disassembler . .

5.2 The Debugger« . « « . .

5.3

5.2.1

5.2.2

‘Debugging Programs . .
Debugger Commands . . .

LIBMT+, the Software Librarian

5.3.1

Searching a Library . .

Access

.

e o o o

.

e o o o

¢« o e o,

e o o o o

»

« o s o o

e o o o

5.3.2 LIBMT+ as a Converter to L80 Format

vi

e o o o o

e o o o

o o o o

e o o o

e o o & o

e e o 3

[V, 3C LI T]
[! '
N R R

v
-
S}

[C R0
§

Appendixes

Compiler Error Messages .
Library Routines
Sample Disassembly. . . .
Sample Debugging Session .
Interprocessor Portability
Mini-assembler Mnemonics .

Comparison of I/0 Methods

vii

Tables, Figures, and Listings

Tables

1-1. Pascal/MT+ System Filetypes . . « « o o o « o« « » 1-3
1-2. Pascal/MT+ Distribution Disks . « « « ¢« « &« « « + 1-4

2-1. Default Values for Compiler Command Line Options. 2-4

2-2, Compiler Source Code Options . . « ¢« « « & o« o« o« 2=6
2-3. SK Option Values . « « ¢ s o o o s o o o s« « o« o« 2-8
2-4. Linker OptiOnNS . & « & ¢ « o « o o o o o s o o o 2=11
2-5, Linker Error MeSSadeS . + + s+ o o o o o o s o o o 2-16

4-1. Size and Range of Pascal/MT+ Data Types 4-6
4-2. Q@ERR Routine Error Codes . . « « o « o o « « o« o 4=21

5-1. Examples of Parameters . . « + « « « o« o« « « o« +» 5=5
5-2. Debugger Display Commands . + « « o s s o« « o o « 5=5
'5-3. Debugger Control Commands . « « « s « o o« o s + o 5=6
A-1. Compiler Error MessSades . . + « « o« s o « o o o« « A=-1
B-1l. Run-time Library Routines« « « « « « « . . B=1

F-1l. 8080 Mini-assembler Mnemonics . . « « « o« ¢ o « . F=1

G-1. Size and Speed of Transfer Procedures G=2

AFigutes
1-1. Software Development Under Pascal/MT+ 1=2
2-1. Pascal/MT+ Compiler Organization 2-1
4-1. Memory Map: Program Linked Without /D Option
4-2. Memory Map: Program Linked With /D Option .

4-3. Memory Map: Program With Overlays
4-4, Storage for the Set A..2 . ¢ ¢« ¢ & « o o o =

s e o @
o o e o

5-1. DISSOSO Operation .« + ¢ « ¢ « o o o o o o o o o

Listings

3-1. Main Program Example . . « « &+ « « ¢ &« « o« » « « 3-3
3-2. Module EXample . : +: « o« « o o s « o« o« o o« = « o 3-4
3=3. PROG.SRC &« 2 ¢ o o o o o o o s o o o o o s o o o« 3=12
3=4. MODL.SRC v © « o o o o o o o o s o o o.s o o o« o« 3=12
35, MOD2.SRC + ¢ + o « o o « o s o o o s o o o« o o« o 3=13
3-6a. Chain Demonstration Program 1 3=15
3-6b. Chain Demonstration Program 2 . . « « o + « « o

3=15

4-1. 'Accessing External Variables 4-4

viii

Listings

4-2.
4-3.
4-4.
4-5,
4-6.
4-7.
4-8.

c-1.
c-2.

D-1.
D-2.

G-1.
G-2.
G-3.
G-4.
G-5.

Tables, ﬁgures, and Listings
(continued)

Pascal/MT+ PEEK_POKE Program . « « « « « o«
Assembly Language PEEK and POKE Routines .
Calling BDOS Function 6 . « « « « ¢« ¢ « o &
Calling BDOS Function 23. . « « ¢ & o o o o«
Using INLINE in @BDOS
Using INLINE to Construct Compile- 1me Tabl
Using Interrupt Procedures « . . .

o (N e o o s

Compilation of PPRIME « « « .« &
Disassembly of PPRIME « « « .« .

.
. 0

DEBUG.PAS Source File . + « v o o o o o o o &
Sample Debugging Session

Main Program Body for File Transfer Programs
File Transfer with BLOCKREAD and BLOCKWRITE .
File Transfer with GNB and WNR e

:File Transfer with SEEKREAD and SEEKWRITE . .

File Transfer with GET and PUT . . « « « . o«

ix

e o o o @

Section |
Getting Started with Pascal/MT+

The Pascal/MT+ system includes a compiler, a linker, a large
library of run-time subroutines, and other programming tools to help
you build better programs faster. The programming tools are

e DIS8080™, a disassembler
e LIBMT+™, a software library-building utility
e a dynamic debugger

The Pascal/MT+ system runs under any of the CP/M family of
operating systems on an 8080, 8085, or Z80-based computer. The
compiler and linker need at least 48K bytes of memory to run. To
handle larger programs, they both need more memory.

The size of a program developed with Pascal/MT+ depends on the
size of the source code, and on the number of run-time subroutines
it uses. Typically, the minimum size of a simple program is about
8K bytes. .

Figure 1-1 illustrates the software developmeit process using
the Pascal/MT+ system.

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

SOURCE INCLUDE
FILE FILES
MT PLUS - -
COMPILER LISTING
Y
RELOCATABLE v MT PLUS
FILE DISASSEMBLER
MT PLUS
DEBUGGER
\i
RUN-TIME MT PLUS) DISASSEMBLED
LIBRARY > LINKER LISTING
AN 073
OTHER \d
Pascai/Assembler
MODULES
EXECUTABLE
PROGRAM

Figure 1-1. Software Development Under Pascal/MT+

1.1 Pascal/MT+ Distribution Disks

The Pascal/MT+ system is supplied on three separate disks.
These disks contain a number of files of different types. Table 1-1
describes the filetypes used in the Pascal/MT+ system. Table 1-2
briefly describes the contents of each distribution disk.

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-1. Pascal/MT+ System Filetypes

Filetype - Contents

BLD Build file; input file used by LIBMT+

coM Command file; directly executable under CP/M

CMD . Linker input command file

DOC Document file; contains printable text in
ASCII form

ERL Relocatable object file; contains relocatable
object code generated by the compiler

ERR " Error message file output by compiler

LIB Library file; contains subroutines

MAC Assembly language source file for RMAC

PAS Pascal source file; contains source code in

ASCII form (the compiler also accepts SRC as
a source filetype)

PRN : Print file output by compiler
PSY Intermediate symbol file used by linker
SRC Pascal source file; contains source code in

ASCII form (the compiler also accepts SRC as
a source filetype)

- 8sYP Symbol file used by debugger
SYM Symbol file. used by SID

TXT Text file; contains text of messages output
- by compiler - =~ . : ‘

nnn ‘ Hexadecimal n; used for numbering overlays

Pascal/MT+ Programmer's Guide

Table 1-2. Pascal/MT+ Distribution Disks
Disk 1
File Content or Use
LINKMT.COM Pascal/MT+ Linker
MTPLUS.COM Pascal/MT+ Compiler
MTPLUS.000 Compiler Root Program
MTPLUS.001 Compiler Overlay
MTPLUS.002 Compiler Overlay
MTPLUS.003 Compiler Overlay
MTPLUS.004 Compiler Overlay
MTPLUS.005 Compiler Overiay
MTPLUS.006 Overlay used with Debugger
PASLIB.ERL Pascal/MT+ Run-time System Module
ROVLMGR. ERL Relocatable Overlay Manager
MODl.ShC Sample Program
MOD2.SRC Sample Program
DEMOPROG.SRC Sample Program
Disk 2
File Content or Use
IOCHK.BLD LIBMT+ input command file to produce
IOERR.ERL y

DIS8080.COM Pascal/ﬁT+ Disassembler

LIBMT+.COM LIBMT+ Librarian Utility

XREF .COM ‘Pascal cross reference utility

AMD9511.CMD LINK/MT+ input command file for

i linking AMDIO, FPRTNS, REALIO, and
: TRAN9511 : _ .
AMD9511x;CMD LINK/MT+ input command -file fdr

linking just AMDIO and FPRTNS

1-4

l.1 Distribution Disks

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-2. (continued)

Disk 2 (continued)
File Content or Use

STRIP.CMD LINK/MT+ input command file to produce
STRIP.COM

XREF .DOC Document file containing instructions
for XREP, cross reference utility

INDEXER.DOC Document f£ile containing instructions
for INDEXER, source file index
utility

BCDREALS.ERL BCD arithmetic module (does not
include square root or
transcendentals)

DEBUGGER. ERL Debugging module that can be linked to
a program

FPREALS.ERL Software floating-point math module
(contains REALIO.ERL)

FPRTNS.ERL Hardware floating-point transcendental

. math module for AMD9511

FULLHEAP.ERL Heap management and garbage collection
module. PASLIB.ERL contains only
USCD¥style stack/heap routines.

RANDOMIO.ERL Random I/0 file processing module

REALIO.ERL Real arithmetic I/O module used only

‘ with AMD9511

TRAN9511.ERL Transcendental math module for use
with AMD9511

TRANCEND. ERL ‘Transcendental math module (for
software floating-point only)

UTILMOD.ERL Module containing KEYPRESSED, RENAME,
and EXTRACT utilities

FIBDEF.LIB File Information Block definition

‘APUSUB.MAC ' AMD9511 routines for TRANSSll‘

CHN.MAC Source for @CHN; chain routine can be
altered to do bank switching in a
non-CP/M environment

Pascal/MT+ Programmer's Guide

Table 1-2. (continued)

Disk 2 (continued)

File

Content or Use

CWT.MAC

DIVMOD.MAC
OVLMGR.MAC

RST.MAC

AMDIO.SRC

ATWNB.SRC

CALC.SRC

CPMRD .SRC
GET.SRC

HLT.SRC

' INDEXER.PAS
IOERR. SRC

PINi.SRC
_PUT.SRC
RNB: SRC
'RNC.SRC

TRAN9511.SRC

Source for @CWT routine

Source for DIV and MOD routines that
include a direct CP/M call for divide
by 0 error message

Overlay Manager source containing
user-selectable options; unmodified
version already in PASLIB.ERL

Source for @RST routine

Module containing routines to
interface with the AMD9511; must be
customized for specific hardware
Source for @WNB routine '

Sample program for testing floating-
point math useful for testing AMD9511

Source for routine that uses @RST
Source for low-level input routine

Source for a user-defined halt routine
(current routine calls CP/M)

Source program for Pascal indexing
program

Source for a user-defined 1/0 error .
handling routine

Source for @INI initialization routine
Source for low-level output routine
Source for @RNB read next byte routine

Source for @RNC read next character
routine

 Source file for utility program used

with LINK/MT to eliminate unused
entry poxnts in an overlay

;Source for AMDQSll :outlnes

1.1 Distribution Disks

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-2. (continued)

Disk 2 (continued)

File) Content or Use

UTILMOD.SRC Source for module conta'ining-
KEYPRESSED, RENAME, and EXTRACT

WNC.SRC Source for @WNC routine

XBDOS .SRC Source for BDOS routine that calls

: IOERR

XREF.SRC Source for XREF, cross reference
utility

DBUGHELP . TXT Help file for debugger module

MTERRS . TXT Compiler Error Message Text File

1.2_vInsta11ing Pascal/MT+

The first thing you should do when you receive your Pascal/MT+
system is make copies of both the distribution disks.

Note: you have certain responsibilities when making copies of
Digital Research products. Be sure you read your licensing
agreement.

Although you can use the compiler, linker, and other utilities
directly from the distribution disks, it is more convenient if you
copy specific files from the distribution disks to working system
disks. One way to set up your Pascal/MT+ system is to use one disk
for compiling and another disk for linking. You can use other disks
for the programming tools, assorted source code, and examples.

This suggested configuration is just one way of setting up your
disks. The important thing is that all the compiler modules are on
the same disk, and all the linker modules are on one disk. For
simplicity, it is a good idea to put all the related relocatable
files on the same disk as the linker..

Note that the file MTPLUS.006 is only’necessary when using the
debugger, and that the compiler can run without the error message
file MTERRS.TXT. If your compiler disk 1s short of space, you car
eliminate these two files.

Pascal/MT+ Programmer's Guide 1.2 1Installing Pascal/MT+

The following steps describe how to make a compiler disk and a
linker disk:

1) Install both CP/M and the PIP utility on each of two blénk
disks. Label one disk as the comp1ler, and the other as
the linker.

2) Put a text editor on the compiler disk.

3) Copy the following files from the dlstrlbutlon disks to the
compiler disk:

e MTPLUS.COM
e MTPLUS.000 through MTPLUS.006
® MTERRS.TXT

4) Copy the following files to the linker disk:

o LINKMT.COM
e all the ERL files

1.3 Compiling and Linking a Simple Program

If you have never used Pascal/MT+ before, the following step-
by~-step example shows you how to compile, link, and run a simple
program. This example assumes that you are using a CP/M system with
two.disk drives, and that you are familiar with CP/M.

1) Put the compiler disk in drive A and the linker disk in
drive B. '

2) Using the text editor, create a file called TESTL.PAS and
enter the following program. Put the file on drive B using
PIP. '

.. PROGRAM SIMPLE_EXAMPLE;

VAR .
I: INTEGER;

BEGIN i)
WRITELN ('THIS IS JUST A TEST'):
FOR I := 1 TO 10 DO
WRITELN (I);
: WRITELN (' ALL DONE ')
END.

Pascal/MT+ Programmer's Guide 1.3 Compiling and Linking

3) Now, compile the program with the following command:
A>MTPLUS B:TEST1
If you examine your directory, you see a file named
TEST1.ERL that contains the relocatable object code
generated by the compiler. 1If the compiler detects any
errors, correct your source program and try again.

4) Now, log on to drive B, and iink the program using the
following command:

B>LINKMT TEST1,PASLIB/S

Your directory now contains a file named TEST1.COM that is
directly executable under CP/M.

5) To run the program, enter the command:
B>TEST1)

Although the test program shown in the preceding steps is very
simple, it demonstrates the essential steps in the development
process of any program, namely editing, compiling, and linking.

If you want to write other simple programs, follow the same

steps, but use your new program's filename instead of TESTL.

End of Section 1

Section 2
Compiling and Linking

This section tells how to use the compiler with its various
options. It also describes how to link programs using the
Pascal/MT+ linker, as well as different linkers.

2.1 Compiler Organization

The Pascal/MT+ compiler processes source files in three steps
called passes or phases.

e Phase 0 checks the syntax and generates the token file.
e Phase 1 generates the symbol table.
e Phase 2 generates the relocatable object file.

The compiler creates some temporary files on the disk
containing the source file, and under normal conditions it deletes
those files. Make sure there is enough space on the disk, or use
the T option to specify a different disk for the temporary files.
See Section 2.2. 3.

The compiler is segmented into overlays as shown in the
following figure. -

REQUIRED OVERLAYS OPTIONAL OVERLAYS

MT PLUS .001 MT PLUS .002 MT PLUS .003 MT PLUS .004 MT PLUS .005 MT PLUS .006 MTERRS.TXT

I A ' J

ANON

ROOT { MT PLUS .000

MT PLUS COM|

Fijure 2-1. Pascal/MT+ Compiler Organization

2.2 Invoking the Compiler

You invoke the Pascal/MT+ compller with a command llne of the
follow1ng form:. :

MTPLUS <filespec>'{<options>}f
where <filespec> is the source file to be compiled, and <options> is

a list of optional parameters that you can use to control the
compilation process. .

Pascal/MT+ Programmer's Guide 2.2 1Invoking the Compiler

The compiler can read the source file from any disk. The
<filespec> must conform to the standard filespec format, and end
with a carriage return/line-feed, and CTRL-Z. Refer to your
operating system manual for a description of a Digital Research
standard filespec.

If you do not specify a filetype, the compiler searches for the
file with no filetype. If the compiler cannot f£ind the file, it
assumes a SRC filetype, assumes a PAS filetype. If the compiler
still cannot find the file, it displays an error message.

The compiler generates a relocatable object file with the same
filename as the input source program. The relocatable file has the
ERL filetype. ’

2.2.1 Compilation Data

The Pascal/MT+ compiler periodically outputs information during
Phases 0 and 1 to assure you it is running properly.

During Phase 0, the compiler outputs a + (plus sign) to the
console for every 16 lines of source code it scans.

At the beginning of Phase 1, the compiler indicates the amount
of available memory space. The space is shown as a decimal number
of memory bytes available before generation of the the symbol table.
Phase 1 also indicates available memory space following generation
of the symbol table. This second indication is the amount of memory
left for user symbols after the compiler symbols are loaded.

During Phase 1, the compiler also outputs a # (pound sign) to
the console each time it reads a procedure or function. Symbol
table overflow occurs if too little symbol table space r®mains for
the current symbol. You can overcome this by using the $K option
and breaking the program into modules. At completion, Phase 1
indicates the ,total number of bytes remaining in memory.

Phase 2 generates the relocatable object code. During this
phase, the compiler displays the name of each procedure and function
as it is read. The offset from the beginning of the module and the -
size of the procedure (in decimal) follow the name.

When the processing is complete, the compiler displays the
following messages: .

" lines of source cede compiled (in decimal)

Lines :

Errors: number of errors detected

"Code : bytes of code generated (in decimal)
Data :’ bytes of data reserved (in decimal)

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

2.2.2 Compiler EBrrors

When the compiler finds a syntax error, it displays the line
containing the error. If you are using the MTERRS.TXT file, the
compiler also displays an error description. If you are not using
the MTERRS.TXT file, or you have a nonsyntax error, the compiler
displays an error identification number.

When all processing is completed, the ERR file generated by the
compiler summarizes all nonsyntactic errcrs.

Note: In Pascal/MT+, the compilation errors have the same sequence
and meaning as in Jensen's and Wirth's Pascal User Manual and
Report. Appendix A contains a complete list of the error messages,
explanations, and causes.

When the compiler encounters an error, it asks if you want to
caontinue or stop, unless you use the command line option C. (See
Section 2.2.3.)

If the compiler cannot find an overlay or a procedure within an
overlay, it displays messages of the following form:

Unable to open ' <filename> <overlay # >
Proc: "<procname>" not found ovl: <filename> <oveclay #>

The compiler displays the following procedure names if it
cannot find an overlay name in the entry point table:

001 INITIALI
002 PHASELl
003 PH2INIT
004 BLK

005 PH2TERM
006 DBGWRITE

The number preceding the name is the group number of the overlay
that contains the procedure.

Usually, you can find a missing overlay by ensuring that. the
name is correct, and that it is on the disk. If you cannot find it,
recopy the overlay from your distribution disk. If you are sure the
overlay is on the disk and you still get an error message, it means
the file is corrupted.

2.2.3 Command Line Options

Compiler command line options control specific actions of the
compiler such as where it writes the output files. All command line
options are single letters that start with a $ or a #. Certain
options require an additional parameter to specify where to send the
output file or where an input file is located. If you specify more
than one option, do not put any blanks between the options.

2-3

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-1 describes the commmand line options. In this table,
d stands for a parameter to specify a disk drive or output device.
The parameters are as follows:

® X sends the output file to the console.
e P sends the output file to . the printer.

® @ specifies the logged-in drive.
® Any letter from A to O specifies a specific drive.

Table 2-1. Default Values for Compiler Command Line Options
Option Meaning Defauit

A Automatically calls the linker Compiler
at the end of compilation. automatically
This option requires a linker chains.
input command file with the
same name as the input file.

The linker must be named
LINKMT.COM.

B Uses BCD rather than binary Binary reals.
for real numbers.

C Continues on error; default Compiler stops
is to pause and let user and asks on
interact and asks on each error.

n each error, one at a time.

D Generates debugger No debugger
information in the information
object code and writes and no PSY
the PSY file to the drive file generated.
specified by the R option. : :

Ed The MTERRS.TXT file is on MTERRS.TXT on
disk d: where d=@,A..0. default disk.

od MTPLUS.000, and MTPLUS.001 Overlays on
through MTPLUS.006 are on default disk.
drive d: where d=@,A..0. ' :

P4 Puts the PRN (listing file) No PRN file.
on disk d: where d=X,P,@,

A..O, :

Q Quiet; suppresses any Compiler
unnecessary console outputs-all
messages. messages.

R4 . Puts the ERL file on disk ERL file on .-

- d: where d=€@,A..0. : ' - default disk.

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-1. (continued)

Option Meaning Default
Td Puts the token file PASTEMP.TOK on
PASTEMP.TOK on disk default disk.
d: where d=@,A..0.
v Prints the name of each Procedure names
procedure and function when not printed.

found in source code as an
aid to determining error
locations during Phase 0.

X Generates an extended ERL ERL file cannot
file, including disassembler be disassembled.
records.

@ Makes the @ character @ not equivalent
equivalent to the ° to ~.

character.

The following is an example of a Pascal/MT+ command line:
A>MTPLUS A:TESTPROG S$RBPXA

This command line tells the compiler to read the source from drive
A, write the ERL file to drive B, display the PRN file on the
console, and call the linker automatically.

2.2.4 Source Code Options

Source code compiler options are special instructions to the,
compiler that you put in the program source code. A source code
option is a single lower- or upper-case letter preceded by a dollar
sign, embedded in a comment. The option must be the first item in
the comment. Certain source code options require additional
parameters.

You can put any number of options in a source program, but only
one option per comment is allowed. You cannot place blanks between
the dollar sign and the option letter. The compiler accepts blanks
. between the option letter and the parameter. o

Pascal/MT+ supports twelve source code compiler options, as
summarized in Table 2-2. -

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-2. Compiler Source Code Options
Option Function Default

Cn Use RST n instructions Use CALL
for REAL operation. instructions

E +/- Controls entry point E+
~generation.

I<filespec> Includes another source file
into the input stream, for
example, {$I XXX.LIB}.

Kn Removes built-in routines to
save space in symbol table
(n=0..15).

L +/~- Controls the listing of source L+
code.

P Enter a form-feed in the PRN
file.

Qn Use RST n instructions for Use CALL
loads and stores in instructions
recursive environments..

R +/;' Controls range checking code. R-

S +/- Controls recursive/static S+
variables.

T +/- Controls strict type T-
checking.

W +/- Generates warning messages. W-

X +/- Controls exception checking X-
code.

2 $nnnnH Initialize hardware stack to Contents of
nnnnH. location 0006

at beginning
of execution

- The following examples show proper source code compiler

options:- :
{sE+}
(*SP*) -

{$1 D:USERFILE.LIB}

h

2-6

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Space Reduction: Real Arithmetic (Cn)

The Cn option reduces the amount of object code generated when
using REAL arithemtic. The Cn option tells the compiler to change
all calls to @XOP (the REAL load and store routine) into a restart
instruction. This reduces all 3-byte CALL instructions to l-byte
CALL instructions.

You specify a restart instruction number in the range 0 to 7
and the compiler generates RST n instructions. Be aware that in a
CP/M environment, restart numbers 0 and 7 are not available. If you
have another operating system, you should consult your hardware
documentation.

You must specify the Cn option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @XOP. You must also specify the Cn
option in any modules that use real numbers so the proper RST n
instructions are generated.

Entry Point Record Generation (E)

The E option generates entry point records in the relocatable
file. You enable the option using a + parameter, and disabie it
using a - parameter. E+ is the default. .

E+ makes global variables and all procedures and functions
available as entry points. For example, EXTERNAL declarations in
separate modules can reference global variables and all procedures
and functions if the E+ option is in effect. E- suppresses the
generation of entry point records, thus making all variables,
procedures, and functions local. .

Include Files (I)

I<filespec> tells the compiler to include a specified file for
compilation in the input stream of the original -program. The
compiler supports only one level of flle inclusion, so you cannot
nest include files. !

The filespec must contain the drive specification, filename,
and filetype in standard format. If you omit the filetype, the
compiler looks for a file with the type of the main file. The file
must end with a carriage return/line-feed, and CTRL-Z. If you omit
the drive specification, the compiler looks on the default drive.

Symbol. Table Space Reduction (Kn)

Predefined 1dent1f1ers normally take about 6K bytes of symbol
table space. The K option removes unreferenced built-in routine
definitions from the symbol table to. make more room for user
symbols. .

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

. The K option uses an integer parameter ranging from 0 to 15.
Each integer corresponds to different groups of routines as defined
in Table 2-3. ‘Enter all K options before the words PROGRAM or
MODULE in the source code. Use as many K options as required, but
place only one integer parameter after each letter K. Note that any
reference in a program to the removed symbols generates an undefined
identifier error message.

Table 2-3. $K Option Values

Group Routines Removed

0 ROUND, TRUNC, EXP, LN, ARCTAN, SQRT, COS,
SIN

1 COPY, INSERT, POS, DELETE, LENGTH, CONCAT

2 GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD,
BLOCKWRITE

3 CLOSE, OPEN, PURGE, CHAIN, CREATE

4 WRD, HI, LO, SWAP, ADDR, SIZEOF, INLINE,

EXIT, PACK, UNPACK
IORESULT, PAGE, NEW, DISPOSE

5

6 SUCC, PRED, EOF, EOLN

7 TSTBIT, CLRBIT, SETBIT, SHR, SHL

8 RESET, REWRITE, GET, PUT, ASSIGN, MOVELEFT,
MOVERIGHT, FILLCHAR .

9 - READ, READLN

10 WRITE, WRITELN

11 ‘ unused))

12 MEMAVAIL, M_AXAVAIL

13 ' SEEKREAD, SEEKWRITE

14 : RIM8S, 'SIM85, WAIT

15 v READHEX, WRITEHEX

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Listing Controls (L,P)

The L option controls the listing that the compiler generates
during Phase 0. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts a new page by placing a form-feed character
in the PRN file.

Space Reduction: Recursion (Qn)

The Qn option operates in a manner analagous to the Cn option.
That is, you specify a restart instruction number in the range 0 to
7, and the compiler generates RST n instructions for every call to
@DYN.

You must specify the Qn option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @DYN. You must also specify the Cn
option in any modules that use recursion so the proper RST n
instructions are generated.

Rua-time Range Checking (R)

The R option controls the generation of run-time code that
performs range checking for array subscripts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the - parameter. Refer to Section 4.6.1 for
information on range checking.

Recursion and Stack Frame Allpcation (S)

The S option controls the stack frame allocation of procedure
and function parameters and local variables. The + parameter causes
recursion. The default parameter is -, and causes nonrecursion.
Pascal/MT+ statically allocates global variables in programs and
modules. You must enable the S option before the reserved words
PROGRAM and MODULE. You cannot disable the S option within a
separately compiled unit, You can link modules that use the S+
option with those that do not.

Strict Type and Portability Checking (T,W)

The T option controls the strict type checking/nonportable
warning facility. The W option controls the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
value for. both options is -. :

2-9

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

When the T option is enabled, the compiler performs only weak
type checking. If the T and W options are enabled, and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when the two options are
enabled, because the STRING data type is not standard.

The T and W options check for compatibility with the ISO Pascal
standard. They do not check for all features listed in - the
Pascal /MT+ Language Reference Manual, because certain features are
implementation-dependent and others are software routines.

Run-time Exception Checking (X)

In the current release of Pascal/MT+, the X option remains in
effect. Normally, the X option controls exception checking.
Exception checking covers integer and real zero division, string
overflow, real number overflow, and underflow. Refer to Section 4.6
for information on run-time error handling.

Setting the Stack Pointer (2)

The Z option initializes the stack pointer to nnnnH in non-CP/M
environments. In a CP/M environment, the compiler initializes the
hardware stack by loading the stack pointer register with the
contents of absolute location 0006H. Using the 2 option suppresses
this initialization. ’

You should enter the option as $Z+ only once before the PROGRAM
line in the main program, and not on the individual modules.

2.3 lUsing,the Linker

LINK/MT+ is the linkage editor that reads relocatable object
modules with filetype ERL and generates an executable command file
with filetype COM. The linker can also generate overlay files.

You invoke LINK/MT+ with a command line of the following:
format: L : . ' ,

LINKMT <main module>{;<module>}{:<library>}

or
LINKMT <new filespec>=<main module>{ ,<module>}{,<library>}

The linker writes the executable file to the same logical disk

as the <main module>, unless you specify a new <filespec> using an
equal sign. . The <main module> and each <module> can be on any

“logical drive. You can specify the drive before each file in the
command line. : :

2-10

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Listing Controls (L,P

The L option controls the listing that the compiler generates
during Phase 0. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts a new page by placing a form-feed character
in the PRN file.

Space Reduction: Recursion (Qn)

The Qn option operates in a manner'analagous to the Cn option.
That is, you specify a restart instruction number in the range 0 to
7, and the compiler generates RST n instructions for every call to
@DYN.

You must specify the Qn option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @DYN. You must also specify the Cn
option in any modules that use recursion so the proper RST n
instructions are generated.

Run—-time Range Checking (R)

The R option controls the generation of run-time code that
per forms «range checking for array subscripts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the - parameter. Refer to Section 4.6.1 for
information on range checking.

Recursion and Stack Frame Allocation (S)

The S option controls the stack frame allocation of procedure
and function parameters and local variables. The + parameter causes
recursion. The default parameter is -, and causes nonrecursion.
Pascal/MT+ statically allocates global variables in programs and
modules. You must enable the S option before the reserved words
PROGRAM and MODULE. You cannot disable the S option within a
separately compiled unit. You. can link modules that use the S+
option with those that do not.

Strict Type and Portability Checking (T,W)

The T option controls the strict type checking/nonportable
warning facility. The W option controls the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
value for both options is -. ’

Pascal/MT+ Programmer's Guide 2.2 1Invoking the Compiler

When the T option is enabled, the compiler performs only weak
type checking. If the T and W options are enabled, and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when the two options are
enabled, because the STRING data type is not standard.

The T and W options check for compatibility with the ISO Pascal
standard. They do not check for all features 1listed in. the
Pascal /MT+ Language Reference Manual, because certain features are
implementation-dependent and others are software routines.

Run-time Exception Checking (X)

. In the current release of Pascal/MT+, the X option remains in
effect. . Normally, the X option controls exception checking.
Exception checking covers integer and real zero division, string
overflow, real number overflow, and underflow. Refer to Section 4.6
for information on run-time error handling.

Setting the Stack Pointer (2)

.

The Z option initializes the stack pointer to nnnnH in non-CP/M:
environments. In a CP/M environment, the compiler initializes the
hardware stack by loading the stack pointer register with the
contents of absolute location 0006H. Using the Z option suppresses
this initialization. ‘

You should enter the option as $Z+ only once before the PROGRAM
. line in the main program, and not on the individual modules.
2.3 Using the Linker
LINK/MT+ is the linkage editor that reads relocatable object
modules with filetype ERL and generates an executable command file

with filetype COM. The linker can also generate overlay files.

You invoke LINK/MT+ with a command line of the following
Vformat:) o o) . .

'LINKMT <main module>{ ,<module>}{,<library>}
or - ' v
LINKMT <new filespec>=<main module>{,<module>}{,<library>}
rhevlinker writes the executable file to the same ‘logical disk
as the <main module>, unless you specify a new <filespec> using an
equal sign. - The <main module> and each <module> can be on any

logical drive. You can specify the drive before each file in the
command line. : : : . .

2-10

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

The linker assumes a ERL filetype for the <main module> and all
<modules> unless you specify a CMD filetype. See the discussion
about the /F option for information about CMD files. LINK/MT+ can
link a maximum of 32 files at one time.

The following examples show valid LINK/MT+ command lines:

A>LINKMT CALC,TRANCEND,FPREALS,PASLIB/S
A>LINKMT B:CALC=CALC,B:TRANCEND,FPREALS,PASLIB/S

A>LINKMT D:NEWPROG=B:CALC,C:TRANCEND,C:PPREALS,C:PASLIB/S/M

2.3.1 Linker Options

Linker options are special instructions to LINK/MT+ that you
specify in the command line. You specify options as a single lower-
or upper-case letter. Each option must be preceded in the command
line with a slash, /. Some options require an additional parameter.
LINK/MT+ supports 13 options, as summarized in Table 2-4.

Table 2-4. Linker Options

Option Function

(od . Line continuatidn flag. Used only in
CMD linker command files.

D:nnnnH Relocate data area to nnnnH.:

E List entry points beginning with §,

?, or @ in addition to other entry
points requiring /M or /W to
operate.

F - Take preceding filename as a CMD
linker command file containing input
filenames, one per line.

Hnnnn Write the output as a HEX file with
nnnnH as the starting location of
the hex format. This option is
independent of the P option. Also,
if you use this option, the compiler
does not génerate a COM file.

L _ " List modules as they are being
linked.
M List all entty points in tabular
) form.
P:nnnn Relocate object code to nnnnH.

2-11

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

Table 2-4. (continued)

Option Function
"8 ‘ Search preceding name as a library,
extracting only the required
routines.

W ‘ Write a SID-compatible SYM file
(written to the same disk as the COM
file).

O:n Number the overlay as n and use the

previous filename as the root
program symbol table. By default,
the range of n is 1 to 50, but you
can extend it to 1 to 256 by
altering the overlay manager.

Vn : mmmm Overlay area starting address.

X:nnnn Overlay static variable starting
address when used with overlays, or
amount of overlay data area when

used with root modules.

Continue Line (/C)

The C option indicates a continued line in a linker input
command (CMD) file. See the discussion of the F option below.

Data Location (/D)

The D:nnnn option tells the linker to start the data area at
the hexadecimal address nnnn. If you do not use the D option, the
code and data are mixed in the object file. By using the D option,
you can solve some memory limitation problems.

However, you should be aware that local f11e operations depend
on the linker to zero the data area. The linker does not zero the
data area when you use the D switch, so. these operatlons cannot be
guaranteed.

Linker Input Command File (/F)

: Normally in a CP/M environment, you must use the. SUBMIT
facility for typing repetitive sequences, such as llnklnq multiple
files together. LINK/MT+ allows you to enter this data into a file
and have the linker process the filenames from the file. You must
specify a file with a filetype of CMD and follow this filename with-
a /F, for example, CFILES/F

2-12

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

The linker reads input from this file and processes the
filenames. Filenames can be on one line, separated by commas, or
each name or group of names can be on a separate line. At the end
of each line except the last, you must place a /C option. The last
line must end with a carriage return or line-feed. :

The input from the file is concatenated logically after the
data on the left of the filename. 1In the command line, additional
options can follow the /F, but not additional object module names.

The following example demonstrates how to use a CMD file to
link the files CALC, TRANCEND, FPREALS, and PASLIB into a CMD file.
Use the following command to link the files:

A>LINKMT CALC/F/L
The file CALC.CMD contains

A:CALC,D:TRANCEND,FPREALS ,B:PASLIB/S
The linker searches PASLIB for the necessary modules and generates a
link map. -

Hex Output (/H)

The H:nnnn option tells the linker to generate a HEX file
instead of a COM file, starting the program at the hexadecimal
address nnnn. The specified address is independent of the default
relocation value of 100H. This means you can relocate the program
to execute at 1D00OH, for example, but have the HEX file addresses
start at 8000H, by using the parameters:

/P:1D00/H:8000

Load Maps (/L), (/E)

The L option tells the linker to display module code and data
locations as they are linked. , ,

When used with the M or W options, the E option tells the
linker to display all routines as they are linked, including
routines that begin with ? or @, which are reserved for run-time
library routine names. The E option does not enable the L, M, or W
option. E does not display module code and data locations if used
alone.

Memory Map (/M)

, The M option generates a map and sends it to the map output
file. Place the M option after the last file named in the parameter
list.

2-13

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

Program Relocation (/P)

The P:nnnn option tells the linker to start the program at the
hexadecimal address nnnn. If you do not use the P option, the
default address is 100H.

. The linker does not generate space-filling code at the
beginning of the program. The first byte of the COM file is the -
byte of code that belongs in the specified starting location.

The syntax of the P option is

/Pinnnn

where nnnn is a hexadecimal number in the range 0 to FFFF.

Run-time Library Search (/S)

The S option tells the linker to search the file whose name the
option follows as a library and to extract only the necessary
modules. The S option must follow the name of the run-time library
in the linker command line. The S option' extracts modules from
libraries only. It does not extract procedures and functions from
separately compiled modules.

The order of modules within a library is important. Each
searchable library must contain routines in the correct order and be.
followed by /S. PASLIB and FPREALS are specially constructed for
searchability. Unless otherwise indicated, the other ERL files
supplied with the Pascal/MT+ system are not searchable. You cannot
search user-created modules unless they are processed by LIBMT+, as
described in Section 5.3.

Generate SYM File (/W)

The W option tells the linker to generate a SID-compatible SYM
file. The file contains information about entry points in the
program. The linker uses the SYM file when it links overlays. The
V option also enables the ‘W option.

Overlay Options

_ The linker uses three options to process an overlay or a root
program in.an overlay scheme. 'The O option numbers the overlay and
indicates that the previous filename is the root program symbol
. table. The Vm option sets the address of the overlay area. The X
option controls how the linker allocates data space for overlays.
Section 3.2 explains these overlay options. :

2-14

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

2.3.2 Required Relocatable Files

You must always link the run-time system PASLIB.ERL with your

compiled program. In addition, you need to link other ERL files
with your program if it makes use of certain features of Pascal/MT+.
The following are such files:

RANDOMIO: SEEKREAD and SEEKWRITE are resolved here.

DEBUGGER: @NLN, QEXT, @ENT generated when the debugger option
is requested. If @XOP and @WRL are undefined, see Section 5.2.

The following files contain the real-number routines:
BCDREALS: BCD real numbers, @XOP, @RRL, and @WRL.
FPREALS: Binary real numbers @XOP, @RRL, and @WRL.

TRANCEND: Support for SIN, COS, ARCTAN, SQRT, LN, EXP, SQR.
Use only with FPREALS.

The following files contain real number routines used with the

AMDY9511:

AMDIO: Routines for interfacing with the AMD9511. You must
edit and recompile these to customize for specific hardware
requirements.

° ?PTRNS: AMD9511 support routines.

® REALIO: Read and Write real number routines necessary only

when using the AMDS511l.

e TRAN9S511: Transcendental routines for AMD9511 (replaces

TRANCEND) .

2-15

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

2.3.3 Linker Error Messages

Table 2-5 shows the linker error messages.

Table 2-5. Linker Error Messages

Message Meaning

Unable to open input file: XXXXXXXX

The linker cannot find the specified input
file. .

Incompatible relocatable file format

The ERL file is corrupted, or it has a format
that is incompatible with the format expected
by LINK/MT+,

- Duplicate symbol: xxXxxxXxx

This wusually means a run-time routine or
variable has the same name as a user routine or
variable. .

SYéMEM not found .in SYM file

This means the root program symbol file is
corrupt.

External offset table overflow

This means you have exceeded the 200 externals
plus offset addresses that the linker allows in
its offset table.

Initialization of DSEG not allowed

The 1linker has encountered a DB or DW
instruction in the Data segment.

2-16

Pascal/MT+ Programmer's Guide 2.4 hsing Other Linkers

2.4 Using Other Linkers

When you compile your program using the X option, Pascal/MT+
generates an extended relocatable file containing disassembler
records. If you do not use the X option, the ERL file might be
Microsoft® compatible. However, Digital Research does not
guarantee that an ERL file generated by Pascal/MT+ is compatible
with other linkers such as L80.

However, using LIBMT+ to process the ERL files generated by the
compiler can result irn a Microsoft-compatible relocatable files (see
Section 5.3).

End of Section 2

2-17

Section 3
Segmented Programs

One of the biggest advantages of Pascal/MT+ is the ability to
write a large, complex program as a series of small, independent
modules. You can code, test, debug, and maintain each module
separately, and thereby greatly simplify the overall task of program
design. The process of breaking a program into separate units is
called segmenting.

Pascal/MT+ provides three methods for segmenting programs:
modules, overlays, and chaining.

® Modules are separately compiled program sections. You can link
modules together to build entire programs, libraries, or
overlays.

e Overlays are sections of programs that only need to be in
memory when a routine in that overlay is called. Otherwise,
the overlay remains on the disk.

e Chaining allows one program to call another, leaving shared
data for the new program in memory.. ‘

You can use these three features in any combination to produce
modular programs that are easier to maintain and take up less memory
than monolithic programs.

If you are not an experienced Pascal/MT+ programmer, you should
start by writing programs without overlays.
3.1 Modules
The Pascal/MT+ system lets you do modular progrémming with
little preplanning. You can develop programs until they become too
large to compile ‘and then split them into modules. The S$SE’ compller
option lets you make variables and procedures private.
Modules are similar in form to programs. The differences are
the following:
e Use the word MODULE instead of the word PROGRAM.
@ There is no main statement body in a module. Instead, after

the definitions and declaration section, use. the word MODEND,
. followed by a period.

3-1

Pascal/MT+ Programmer's Guide 3.1 Modules
The following is an example of a module:

MODULE LITTLEMOD;
VAR
MAINFILE : EXTERNAL TEXT;

PROCEDURE ECHO (ST: STRING; TIMES: INTEGER);
VAR ’
I : INTEGER
BEGIN
FOR I := 1 TO TIMES DO
WRITELN (MAINFILE, ST)
. END;

MODEND.

Note that a module must contain at least one procedure or function.

Modules can have free access to procedures and variables in any
other module. If you want to keep procedures or variables private
within a module, use the $E- compiler option.

Use the EXTERNAL directive to declare variables, procedures,
and functions that are allocated in other modules or in the main
program. EXTERNAL tells the compiler not to allocate space in the
module. You can declare externals only at the global (outermost)
level of a module or program.

For variables, put the word EXTERNAL between the colon and the
type in a global declaration. For example, .

VAR :
I,J,K : EXTERNAL INTEGER; (* in another module *)

R: EXTERNAL RECORD ‘(* in another module *)
i X;¥ : integer;
st ¢ string;

END;

Be sure the declarations match with the declarations in the
module where the space is allocated. The compiler and linker do not
check declarations between modules. i

For procedures and functions declared in other modules, put the
word EXTERNAL before the word FUNCTION or PROCEDURE. .These external
declarations must come before the first normal procedure or function
declaration in the module or program.-

Pascal/MT+ Programmer's Guide ' 3.1 Modules

Numbers and types of parameters must match in the Pascal/MT+
system. Returned types must match for functions; the compiler and
linker do not type check across modules. External routines cannot
have procedures and functions as parameters.

In Pascal/MT+, externél names are significant to seven
characters only. Internal names are significant to eight
characters. .

In Pascal/MT+, the code generated for main programs and for
modules differs in the following ways:

® Main programs begin with sixteen bytes of header code. Modules
do not.
® Main programs have a main body of code following the procedures

and functions. Modules do not.

Listing 3~1 shows the outline of a main program and Listing 3-2
shows the outline of a module. The main program references
variables and subprograms in the module; the module references
variables and subprograms in the main program.

PROGRAM EXTERNAL_DEMO;
<label, constant, type declarations>
VAR
I,J : INTEGER; - {(* AVAILABLE IN OTHER MODULES *)
K,L : EXTERNAL INTEGER; (* LOCATED ELSEWHERE *)
EXTERNAL‘PROCEDURE'SORT(VAR Q:LIST; LEN:INTEGER);
EXTERNAL FUNCTION IOTEST:INTEGER;
PROCEDURE PROCL; ’
BEGIN

IF IOTEST = 1 THAEN
(* CALL AN EXTERNAL FUNC NORMALLY ¥*)

o e

END;
- BEGIN .
SORT(<...) . .
(* CALL AN EXTERNAL PROC NORMALLY *)

END.
Listing 3-1. Main Program Example

3-3

Pascal/MT+ Programmer's Guide 3.1 Modules

MODULE MODULE_DEMO;
< label, const, type declarations>
VAR ’
I,J : EXTERNAL INTECER; (* USE THOSE FROM MAIN PROGRAM *)

K,L : INTEGER; (* DEFINE THESE HERE *)

EXTERNAL PROCEDURE PROC1l; (* USE-THE ONE FROM MAIN PROG *)

PROCEDURE SORT(...): (* DEFINE SORT HERE *)

FUNCTION IOTEST:INTEGER; (* DEFINE IOTEST HERE ¥*)

<maybe other procedures and functions here>

MODEND.

Listing 3-2. Module Example

3.2 Overlays

Using overlays, you can link programs so that parts of them
automatically load from the disk as they are needed. Thus, a whole
program does not have to fit in memory simultaneously. Store
1nfrequently used modules and module groups that need not be co-
resident in overlays.

The following terms are used in this section:

e overlay: a set of modules, linked together as a unit,. that
loads into memory from disk when a procedure or function in one
‘of the modules is referenced from somewhere else in' the
program. Overlays have hexadecimal filetypes, for example,’
PROG.O1F.

® root program: the portion of the program that is always in
memory. Root programs have the COM filetype. A root program
consists of a main program, the run-time routines it requires,
and optionally, the run-time routines the overlays require.

® overlay area: .an area of memory where the overlay manager
loads overlays. You must plan the location and size of the
overlay areas and specify them at link-time.

Pascal/MT+ Programmer 's Guide 3.2 Overlays

® overlay static variables: global variables, or variables local
to a run-time or assembly language routine in the overlay.
When you link the overlay, the linker determines the amount of
data space required for static variables. Recursion reduces
the amount of static data. It does not necessarily eliminate
it because run-time code linked with the overlay might contain
static data.

3.2.1 Pascal/MT+ Overlay System

The major features of the Pascal/MT+ overlay system are the
following:

Supports up to 255 overlays.

Supports up to 15 separate overlay areas.

Overlays can call other overlays, even in the same overlay
area.

Overlays can access procedures and variables in the root.
Overlays load from the disk only when necessary.

Overlays can contain an arbitrary number of modules.

Linkage to a procedure in an overlay is by name.

You can specify drives containing individual overlays.

Overlays have an arbitrary number of entry points for the root
program and other overlays to access. They access the entry points
by name. The linker and relocatable formats limit overlay procedure
and function names to 7 significant characters, as with all
externals.

You assign overlay areas when you link the root module. You
assign overlay -numbers when you link the overlay. If you do not
specify an overlay area when you link the root module, the default
action is to place it in overlay area 1.

Most Pascal/MT+ programs use only one overlay area. You can
devise more extensive schemes using multiple overlay areas. The
overlay number determines the area where LINK/MT+ loads an overlay.

® Overlays 1 to 16 load into overlay area 1.
e Overlays 17 to 32 load into overlay area 2.

e Overlays 241 to 255 load into overlay area 15.

You must determine the size and address of overlay areas and
make sure- the overlays are smaller than the area into which they
load. 'If you do not specify the address for an overlay area, it
defaults to the same address as overlay area 1. o

3-5

Pascal/MT+ Programmer's Guide 3.2 Overlays

The overlay manager loads overlays into memory in 128-byte
segments, so consider the extra size when you save space for
overlays. You must specify area 1l; the remaining areas are
optional. ,

. Overlays -have one or more modules, written in Pascal or
assembly language. The overlay manager in PASLIB has space in its
drive table for 50 overlays, numbered 1 to 50. If you need more

~ overlays, you can modify the overlay manager source, reassemble it,

and link it before PASLIB. The source code for the overlay manager

is in the file OVLMGR.MAC on distribution disk #2.

You do not have to number overlays consecutively. For example,
if you want to use three overlays in three .overlay areas, you can
number them 1, 17, 33, or any combination that puts the overlays in
different areas.

You can load more than 15 overlays into overlay area 1 by
explicitly supplying the overlay area number when you link the root
module. Otherwise, the default number is 15. .

3.2.2 Using Overlays

If a procedure or function is in an overlay, the compiler
inserts a call to the overlay manager, @OVL, before the call to the
- procedure or function. @OVL makes sure that the requested overlay
is in memory, loading it from disk if necessary. When the procedure
or function returns, the overlay manager returns control to the
calling procedure.

When part of a program calls an overlay-resident routine, the
program accesses that routine through an entry point table at the
- beginning of the overlay. Only procedures and functions declared
without the $E- compiler option have their names in the entry point
table. Use the $E- option to make routines private to an overlay
and to save space in the table.

Calllng an Overlay Procedure

To tell the compller that a procedure or function is in an
overlay, put the overlay number in the declaration, as in the
following examples: '

EXTERNAL [3] PROCEDURE CONV_SYM;
EXTERNAL [FIXUP]»FUNCTION NEW_TOK : INTEGER;

~The overlay number must be an 1nteger constant, either llteral or
named.

Overlays ¢can access procedures, functions, variables, and run-
time routines in the root by using regular external declarations.

' 3-6

Pascal/MT+ Programmer's Guide 3.2 Overlays

If an overlay is not on the same disk as the root file, use the
@OVS routine to specify the drive. Declare the routine as shown in
the following example:

EXTERNAL PROCEDURE @QVS ,
(OVERLAY_NUMBER : INTEGER; DRIVE : CHAR);

Call @OVS to define the drive before calling the overlay-resident
procedure or function. The drive must be upper-case, and can be the
@ character or a letter from A through O. The @ represents the
logged-in disk. You must ensure that the specified disk is on-line.

Overlays Calling Other Overlavs

The standard overlay manager does not reload a previous overlay
when it returns from an overlay call. If you want to return control
to a previous overlay in the same overlay, you must use the
reloading version of the overlay manager, which is in the file
ROVLMGR.ERL on distribution disk #1. If you need the reloading
version, link it before PASLIB.

Overlays can call other overlays under the following
conditions:

® You use /X to link overlays if there are static variables in
the overlays. This ensures that no procedure alters the data
of another.

e You must use the reloading-overlay manager if an overlay calls
another overlay in the same overlay area. If the overlays are
in different overlay areas, both must be in memory at the same
time.

Assembly Language Modules

Pascal/MT+ overlays are always pure code, but other modules
written in assembly language might not be. - The overlay does not
reload if it is already in the overlay area. Do not use DB in the
" Code segment for variables that are modified, because they are not

initialized every time the overlay is called. :

3.2.3 Linking Programs with Overlays

The linker separately links each part of a program containing
overlays. The linker first builds a SYM file containing the entry
" points for ‘the root, and then uses -that file when it links .the
overlays. . .

Pascal/MT+ Programmer's Guide 3.2 Overlays

Before the entry points can be correct, you have to know how
much code and data space the overlays need. The first time that you
link an overlay program, you have to link the entire program twice:
once to determine the sizes, and once to produce the actual program
files. The following steps outline the linking process.

1) Link the root program without reserving space for the
overlay areas and overlay data. This step generates the
first SYM flle.

2) Use the SYM flle from step 1 to link the overlays. This
step tells you how much space the overlays need.

3) Relink the root, specifying the overlay area addresses and
static data size. This step produces the SYM file with the
correct entry points.

4) Relink the overlays, using the new SYM file.

There are three linker options that control overlay linking:
e The O option specifies overlay numbers.

e The V option specifies overlay area addresses.
® The X option specifies data area sizes.

Overlay Group and SYM Option /O:

/0:n tells the linker that the previous file is a SYM file and
that n is the overlay number, in hexadecimal. The linker uses the
overlay number to make the filename. This option is for overlays
only.

If you make a change in an overlay, you need only to relink the

overlay. The exception is when the code size or data size changes
beyond the constraints you gave when you linked the foot.

Overlay Area Option /V:

/Vn mmmm tells the 11nker where to locate the overlay area.
mmmm is the hexadecimal address of the overlay area, and n is the
overlay area number, in hexadecimal. .

The V option automatically enables the E and W options, causing
the linker to generate a SYM file. This option is for root programs
only. . . :

You can use the /V option up to 16 times when you link the main’
program, once for each of the 16 overlay areas. You must use it at
least once to give the default address for overlay area 1.

Pascal/MT+ Programmer's Guide 3.2 Overlays

To find the value for /V, link the root program with the
necessary libraries. The root program's total code size plus 80H is
the lowest address you can use for an overlay area.

Overlay Local Storage Option /X:

X:nnnn controls how the linker allocates space for data. This
option is for both roots and overlays. To determine the amount of
data used by an overlay, link it and note the total data size put
out by the linker.

Note: when you use this option, give yourself extra space so that
you do not have to relink everything when the data areas change
size.

When used to link roots, /X:nnnn tells the linker how much
space to leave for overlay data. nnnn is the hexadecimal number of
bytes.

When linking overlays, /X:nnnn tells the linker how far to
offset a particular overlay's static data area. nnnn is the
hexadecimal number of bytes from the top of the root's data area.
The default value for this option is /X:0000.

For example, suppose a program has two overlays with a combined
total of 500 bytes of static data. Overlay 1 has 350 bytes, and
overlay 2 has 150 bytes. Overlay 1l needs no offset, and overlay 2
needs to have its data area 350 bytes from the end of the root's
data area. The minimum value for overlay 2 is /X:015E, which is 350
in hexadecimal.

Linking a Root Program

Linking a root program is similar to linking a nonoverlaid
program. The difference is that you have to generate the SYM file,
and you have to allow room for the overlay areas and for overlay
static data. The command line for linking a root program has the
general form: .

LINKMT <modules and libraries> /Vn:mmmm/D:dooo/xipppp

This command line shows the two required options Vn and D.i You can
use any of the other options ‘as needed.

e Use the V option for each separate overlay area. You must at
least specify the location of overlay area 1. If you do not
specify a location for any other overlay areas, the linker
assigns them the same location as area 1. ' i

® The D option specifies the location of the data area. The
value is the sum of the root's code size and the sizes of the
overlays' code. Leave room during development so- that the
overlay data areas can grow. ‘

3-9

Pascal/MT+ Programmer's Guide 3.2 Overlays

® Remember to use the X option if your program uses overlay
static variables.

The overlay manager reads in 128 bytes of code at a time. Make
sure you allow room at the eénd of your overlay areas so that the
garbage bytes that pad out the last sector do not overwrite the next
area. The minimum size for an overlay area should be the size of
.the largest overlay plus 80H, rounded to the next multiple of 128.

Duzing development, you should leave some extra room in the
overlay areas so that you do not have to relink the entire program
if one overlay gets bigger.

If an overlay calls a library routine that the root does not
call, the linker puts the routine in the overlay. To force a
routine into the root, make a dummy reference to the routine in the
root.

When you link a root program just to generate a SYM file,

either use a dummy value for V or use the E and W options. Either
way generates the symbol file.

Linking an Overlay

When linking an overlay, the linker uses the SYM file to tell
which symbols are in the root. If an external symbol is not in the
SYM file, the linker looks for it in the specified libraries. The
command line for linking overlays takes the following form:

LINKMT <prog>=<sym file>/O:n,<modules/libraries>/P:mmmm/X:ssss

The linker generates a file wi®h the same name as the program,
but with a filetype that is the overlay number in hexadecimal. If
you do not specify the program name, the linker uses the name of the
first module after the SYM file.

The command line above shows the options that are required for
linking overlays. Note that the /X. optlon is required only if the
~overlay uses static data.

e The O option tells the linker that the file is a SYM file and
“that the overlay number is n, in hexadecimal.

° For'P, use the starting address of the overlay area. Use the
same value that you use with the V option. that sets up the
overlay area. .

® Use the X option to specify the offset from the end of the root
modules's data to the beginning of the overlays's static data.

Pascal/MT+ Programmer's Guide 3.2 Overlays

You must relink an overlay whenever you relink the root,
because entry points change. Be sure to use the new SYM file.

3.2.4 Overlay Error Messages
The overlay manager can Jetect two errors:

e If the overlay manager cannot find the requested overlay, it
displays a message of the form:

Unable to open <filename> <overlay #>

If the overlay is not on the default disk, call @OVS in the
program to tell the overlay manager where to look.

e If the overlay manager cannot find a particular procedure or
function in the specified overlay, it displays a message of the
form:)

Proc: "<procname>" not found ovl: <filename> <overlay #>

The problem might be an incorrect EXTERNAL statement or a
misnumbered overlay.

3.2.5 Example

The following example has a root program that asks for a
character from the console keyboard. It calls one of two
procedures, depending on the character entered. A large menu-driven
business package could work in a similar way.

The main program and the two modules are shown in Listings 3-3,
3-4, and 3-5, respectively. These files are also on distribution
disk #1. You should compile and link them to get a feel for using
overlays. The files are the following:

e PROG.SRC
e MOD1.SRC
e MOD2.SRC

Pascal/MT+ Programmer's Guide 3.2 Overlays

PROGRAM DEMO_PROG;

VAR :
I : INTEGER; (* TO BE ACCESSED BY THE OVERLAYS *)
CH: CHAR;

EXTERNAL [l] PROCEDURE OVL1; (* COULD HAVE HAD PARAMETERS *)
; EXTERNAL [2] PROCEDURE OVL2; (* ALSO COULD HAVE HAD PARAMETERS *)

2
(* EITHER COULD ALSO HAVE BEEN A FUNCTION IF DESIRED *)

BEGIN
REPEAT
WRITE('Enter character, A/B/Q: ');
READ(CH) ;
CASE CH OF
'‘A','a' : BEGIN '
I := 1; (* TO DEMONSTRATE ACCESS OF GLOBALS *)
OVL1 (* FROM AN OVERLAY *)
END;
'‘B','b' : BEGIN
I := 2;
OVL2
END
ELSE

IF NOT(CH IN [fQ','q']) THEN
WRITELN('Enter only A or B')
END (* CASE *)
UNTIL CH IN ['Q','q'];
WRITELN('End of program')
END.

Listing 3-3. PROG.SRC

MODULE OVERLAY1;

VAR i - :
I : EXTERNAL INTEGER; (* LOCATED IN THE ROOT *)

PROCEDURE OVL1; (* ONE OF POSSIBLY: MANY PROCEDURES IN THIS MODULE ¥*)
BEGIN
WRITELN ('In overlayl, I=',I) END;

MODEND

Listing 3-4. MOD1l.SRC

3-12

Pascal/MT+ Programmer's Guide 3.2 Overlays

MODULE OVERLAY2;

VAR '
I : EXTERNAL INTEGER; (* LOCATED IN THE ROOT *)

_PROCEDURE OVL2; (*ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE ¥)
BEGIN
WRITELN ('In overlay 2, I=',I) END;

MODEND.

Listing 3-5. MOD2.SRC

After you compile the three modules, you must link them
together. Link the main program using the command:

A>LINKMT PROG,PASLIB/S/D:1000/V1:4000/X:40

This creates the files PROG.COM and PROG.SYM with the data located
at 1000 (this is arbitrary). The overlay areas, 1 to 16, are at
4000 (again arbitrary), and the overlay data size is estimated to be
64 (40H).

To link overlay 1, enter this command:
A>LINKMT PROG=PROG/O:1,MODl,PASLIB/S/P:4000/L

This creates the overlay file PROG.00l. The /O:1 option tells the
linker . to read PROG.SYM, and this is overlay - #1. 4000 is the
address of the overlay area for this overlay. The linker searches
- PASLIB to load only those modules required by this overlay, but not
present in PROG.COM.

To link overlay 2, enter this command:
A>LINKMT PROG=PROG/0:2,MOD2,PASLIB/S/P:4000/L

The options are the same as above. Note that /X is not needed when
linking the overlays, because the overlays dc not have any local
data.

Now run the program. Notice that if you enter the same letter
more than once in succession, for example, A, A, A, the overlay does
not reload. However, when you enter the letters in alternate order,
for example, A, B, A, ..., the overlays load for each call.

Pascal/MT+ Programmer's Guide 3.3 Chéining

3.3 Chaining

Chaining allows one program to call another program into memory
and transfer control to that program. Chaining is an
implementation-dependent feature that might not be available on all
implementations of Pascal/MT+.

When one program chains to another, the run-time routine loads
the new program into the code area and starts execution. Programs
pass information by leaving the information in the data area.

To chain programs, you must declare an untyped file (FILE;) and
use the ASSIGN and RESET procedures to initialize the file to the
name of the new program. You can then execute a call to the CHAIN
procedure, passing the name of the file variable as a single
parameter. The run-time library routine performs the appropriate

functions to load in the file opened with the RESET statement.

There are two ways that chained programs can communicate:
shared global variables, and absolute variables,

With the shared global variable method, you must guarantee that
at least the first section of global variables is the communication
area. You must declare the the shared variables identically so that
they have the same location and size in all the chained programs.
The remainder of the global variables do not need to be the same in
each program. You must use the /D linker option to place the data
areas at the same location in each program.

Using the absolute variable method, you typically define a
record that is used as a communication area, and then define this
record at an absolute location in each module.

‘To maintain the heap when chaining from one program to another,
you must declare the variable SYSMEM as an EXTERNAL INTEGER. SYSMEM
contains the address of the top of the heap. The variables:

@EFL : INTEGER
@FRL :. ARRAY[1l..4] OF BYTE

contain the information necessary when using FULLHEAP. You can save
this information in the global data area and then restore it at the
beginning of the program you chain to. .Yéu must also use the linker
option to give the same address for the global data area to each of
the programs that are chained together. .

Listings 3-6a and 3-6b lists two example programs that
communicate with each other using absolute variables. The first
program chains to the second program, which prints the results of
the first program's execution.

Pascal/MT+ Programmer's Guide 3.3 Chaining

(* PROGRAM #1 IN CHAIN DEMONSTRATION *)

PROGRAM CHAINL:;
TYPE .
COMMAREA = RECORD
I,J,K : INTEGER
) END;
VAR
GLOBALS : ABSOLUTE [$8000] COMMAREA;
(* this address is arbitrary and might not work *)
(* on your system ¥*)
CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1 *)
WITH GLOBALS DO
BEGIN

~s e

I 3
J 3
K I

e ee oo

*J
END;
ASSIGN (CHAINFIL, 'CHAIN2.COM');
RESET (CHAINFIL) ;
IF IORESULT = 255 THEN
BEGIN
WRITELN ('UNABLE TO OPEN CHAIN2.COM');
EXIT .
~ END;
CHAIN (CHAINFIL)
END. - (* END CHAIN1l *)

Listing 3-6a. Chain Demonstration Program 1

(* PROGRAM #2 IN CHAIN DEMONSTRATION *)

PROGRAM CHAIN2;
TYPE
COMMAREA = RECORD
1,J3,K : INTEGER

END;
VAR
GLOBALS : ABSOLUTE [$8000] COMMAREA;
BEGIN (* PROGRAM #2 *)
WITH GLOBALS DO . .
WRITELN('RESULT OF ',I,' TIMES ',J,' IS =', K)

"END. (* RETURNS TO OPERATING SYSTEM WHEN COMPLETE f)
Listing 3-6b. Chain Demonstration Program 2
End of Section 3

3-15

the run-time environment and the operating system.

Section 4
Run-time Interface

This section explains how to interface Pascal/MT+ programs with
It also explains

how to write programs that run without an operating system.

4.1

Run~time Environment

Figures 4-1, 4-2, and 4-3 show different the memory maps for a

Pascal/MT+ program that has been compiled, linked, and loaded under

CP/M. !
LOW MEMORY L, HIGH MEMORY
£4 — -
PROGRAM CODE AND DATA HEAP v::uggts HARDWARE cPm
(INCLUDING PASLIB ROUTINES) AREA . STACK
STACK
L L B oy
0 100H L -
SYSMEM — <— @SFP 8D0S
*ONLY USED IN RECURSIVE ENVIRONMENTS
anors
LOW MEMORY HIGH MEMORY
L & - Ve P4 o —y
PROGR)AM)CODE 22 T LocaL
HEAP HARDW.
(INCLUDING PASLIB PROGRAM DATA VARIABLE DWARE | o
ROUTINES) AREA STACK® STACK
{ ¢ ¢ > -
0 100H [y $$) -~
' SYSMEM —» @—— @SFP BDOS

*ONLY USED IN RECURSIVE ENVIRONMENTS

. ANOTS

Pascal/MT+ Programmer's Guide 4.1 Run-Time Environment

LOW MEMORY HIGH MEMORY
ROOT OVERLAY | ROOT | OVERLAY | HEAP LOCAL | HARDWARE
PROGRAM | AREA (S) | DATA DATA AREA VARIABLE| STACK CP/M
(CODE ONLY} AREA AREA STACK
0 100H ? f ?
SPECIFIED SPECIFIED IMPLIED
8y By 8Y
/V OPTION /D OPTION /X OPTION

ANoTS

Figure 4-3. Pascal/MT+ Memory Map at Run-time:
Program with Overlays

The heap grows toward high memory and- the local variable stack
grows toward low memory. The 1local variable stack contains
parameters and local procedure variables, and is used only in
programs compiled with the $S+ option set for recursion. The
hardware stack contains the procedure return addresses and the
temporary evaluation stack for expressions.

‘ The external integer SYSMEM points to the top of the heap, and
is initialized to point to the first location following the data
area. . The NEW routine updates SYSMEM.

The external integer @SFP points to the top of the 1local
variable stack, and is initialized to be ‘the top of the hardware
stack minus 128 bytes. The routines @LNK (allocate stack frame) and
@QULK (deallocate stack frame) update @SFP.

In systems that do not use FULLHEAP, the built-in function
MEMAVAIL calculates its return value by subtractlng SYSMEM from
@SFP.

4.1.1 STACK

Pascal/MT+ initializes the hardware stack to 128 bytes.
However, you can change this value by manipulating the run-time
"variable @SFP as an external integer and subtracting the desired
additional space, or adding space if you want to make it smaller..
The following example illustrates how to do this: .

Pascal/MT+ Programmer's Guide 4.1 Run-Time Environment

VAR @SFP:EXTERNAL INTEGER;

(* in main program only!!! *)

@SFP := @SFP - MORE_HW_STACK_SPACE_IN_BYTES;

For a program on an interrupt-driven system, it is often
necessary to enlarge the hardware stack.

4.1.2 Program Structure

The Pascal/MT+ compiler generates program modules with simple
structures. A jump table at the beginning of each module has jumps
to each procedure or function in the module. The main module also
has a jump to the beginning of the code.

Programs have 16 bytes of header space for overlay information.
In nonoverlaid programs, these are NOPs.

Under CP/M, the linker provides code for loading the stack
pointer and segment on the contents of absolute location 6H. With
ROM-based object code, use the $2 compiler option to set the initial
stack pointer for your ROM requirements.- The compiler calls the
@INI routine that initializes INPUT and OUTPUT text files. If you
use ROM, you can rewrite the QINI routine to suit your needs.

4.2 Assembly Languége Routines

If you want to link Pascal modules with modules written in
assembly language, then you must use an assembler that generates the
same relocatable format as the compiler. Both RMAC and Microsoft's
M80 assembler generate the proper relocatable format. LINK/MT+ can
handle files generated by compatible assemblers, but other linkers
might not be able to link ERL files generated by the Pascal/MT+
compiler.

The assemblers and the Pascal/MT+ compiler generate entxy point
and external reference records in the same relocatable file format.
These records contain external symbol names. The Pascal/MT+
relocatable format allows up to 7 characters in a name, but most
assemblers generate 6-character names. Therefore, you must limit
names to 6 characters if you want a variable in a Pascal/MT+ program
to be accessible by name to an assembly language routine.

The Pascal/MT+ compiler ignores the underscore character in
names. For example, A_B is the same as AB. Symbols can begin with
$ in M80 and with ? 1In RMAC. Neither is a standard character in
Pascal/MT+. Also, MBO0 considers $ significant; RMAC does not.
Thus, M80 places A$B in the relocatable file as A$B; in RMAC, the
same symbol goes to the file as AB., RMAC often uses $ to simulate
the underscore, which makes it nontransportable to M80.

4-3

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

4.2.1 Accessing Variables and Routines

To access assembly language variables or routines from a Pascal
program, you must perform the following steps:

® Declare them PUBLIC in the DATA‘segment of the assembly
language module.

® Declare them EXTERNAL in the Pascal/MT+ program.

To access Pascal/MT+ global variables and routines from an
assembly language routine, you must perform the following steps-

® Declare the name EXTRN in the DATA segment of an’ assembly
language program.

e Declare the variable or routine at the global level in the
Pascal program.

e Compile the program using the $E+ compiler option.
Listing 4-1 shows how an assembly language module references a
variable that is declared in a Pascal/MT+ module.
; ASSEMBLY LANGUAGE PROGRAM FRAGMENT
EXTRN PQR

LXI H,PQR ;GET ADDR OF PASCAL VARIABLE

END

- (* PASCAL PROGRAM FRAGMENT *)

VAR (* IN GLOBALS *) :
PQR : INTEGER; (* ACCESSIBLE BY ASM ROUTINE *)

Listing 4-1. Accessing External Variables

. 4.2.2 Data Allocation

In the global data area, the compiler allocates variables in
‘the order you declare them. The exception is variables that are in
an identifier list before a type. These are allocated in reverse
-order. For example, given the declaration:

A,B,C : INTEGER . _

C is allocated'first, thenég} then A.

4-4

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

In memory, Pascal/MT+ stores variables together with no space
left between one declaration and the next. For example, given the
declaration:

A : INTEGER;
B : CHAR;
I1,J,K : BYTE;
L : INTEGER;

the following storage layout appears:

byte# contents -
0 A LSB (least significant byte)
1 A MSB (most significant byte)
2 B .
3 K
4 J
5 I
6 L LSB
7 L MSB

Arrays are stored in row-major order. For example, the
declaration:

A: ARRAY [l1..3, 1..3] OF CHAR

is stored in the following way:

byte# contents

A(l,1]
af1,2]
A[1,3]
A[2,1]
A[2,2]
a[2,3]
A[3,1]
A[3,2]
A[3,3]

TNV eWNDHO

Logically, this is a one-dimensional array of vectors. 1In
Pascal/MT+, all arrays are logically one-dimensional arrays of some
type. o '

4-5

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

Records are stored like global variables. Sets are stored as
follows:

® Sets are stored as 32-byte items.

o Each element of the set uses one bit.

® Sets are byte oriented.

® The low-order bit of each byte is the first blt in that byte of
the set. .

The following figure shows the storage for the set A..Z:

Byte number

00{01{02;03{04)05/06{07{08}{09{0A|0B|O0C|OD|OE[OF|10|...|1F

00100{00{00|00|00|00|00|FE|FF|FF{07{00|/00(00{00{00}...]00

Pigure 4-4. Storage for the Set A..Z

The first bit, bit 65 ($41), is in byte 8, bit 1. The last
bit, bit 90, is in byte 11, bit 2. Bit 0 is the least significant
bit in the byte.

Table 4-1 below summarizes the size and range of Pascal/MT+
data types. :

_Table 4-1. Size and Range of Pascal/MT+ Datavapes

‘Data Type Size ’ Range’
CHAR 1 8-bit-byte 0..255
BOOLEAN o 1 8-bit-byte - false..true
INTEGER 1 8-bit-byte | 0..255
INTEGER B 8-bit-bytes -32768..32767
BYTE .1 8-bit-byte 0..255
WORD 2 8-bit-bytes - 0..65535
BCD~REAL‘,> 10 8-bit-bytes 18 digits, 4 decimal
'FLOA?INGiﬁEAL_'V 8 8-bit-bytes ”J--lo‘”v;.lolf,f o
STRiNGAv S 1...256 Bytesv [
sEr 3z'gfbit-bycés 7 ' 0..255

4-6

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

4.2.3 Parameter Passing

When you call an assembly language routine from Pascal/MT+ or a
Pascal/MT+ routine from assembly language, parameters pass on the
stack.

On entry to the routine,'the top of the stack is a single word
containing the return address. The parameters are below the return
address, in reverse order from declaration.

Each parameter requires at least one 16-bit word of stack
space. A character or Boolean passes as a l6-bit word with a high-
order byte of 00.

VAR parameters pass by address. The address represents the
byte of the actual variable with the lowest memory address.

Nonscalar parameters, except sets, always pass by address. If
the parameter is a value parameter, the compiler generates code to
call @MVL to move the data.

The @SS2 routine handles set parameters. If passed by value,
the actual value of the set goes on the stack. Sets are stored on
the stack with the least significant byte on top and the most
significant byte on bottom.

The following example shows.a typical parameter list on entry
to a procedure:

PROCEDURE DEMO(I,J : INTEGER; VAR Q:STRING; C,D:CHAR);

STACK---> 0 RETURN ADDRESS
+1 RETURN ADDRESS

+2 D
+3 BYTE OF 00
+4 c

+5 BYTE OF 00

+6 - ADDRESS OF ACTUAL STRING
+7 ADDRESS OF ACTUAL STRING
+8 J (LSB)

+9 J (MSB)

+#10 I (LSB)

+11 I (MSB)

The assembly language program must remove all parameters from
the stack before returning to the calling routine. This is usually
done with an RET n instruction, where n is the number of bytes of
parameters. In the example above, n is 12.

‘Function values return on the stack. They are placed below the
return address before the function returns. When the program flow
reenters the calling program, the returned value is on the top of
the stack. ' : o : '

4-7

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

Assembly language functions can only return the simple types
INTEGER, REAL, BOOLEAN, and CHAR. Assembly language functions
cannot return structured types.

4.2.4 Assembly Language Interface Example

Listings 4-2 and 4-3 illustrate the interface between a Pascal
program and some assembly language routines.

The Pascal/MT+ program performs the PEEK and POKE functions
found in BASIC. The assembly language module simulates the PEEK and
POKE. PEEK returns the byte found at the address passed to 1t, and
POKE puts the byte at the specified address.

PROGRAM PEEK_POKE;

TYPE
BYTEPTR = “BYTE;

VAR
ADDRESS : INTEGER;
CHOICE : INTEGER;
BBB : BYTE;
PPP : BYTEPTR;

EXTERNAL PROCEDURE POKE (B : BYTE; P

¢+ BYTEPTR);
EXTERNAL FUNCTION PEEK (P : BYTEPTR) : BYTE;
BEGIN
REPEAT

WRITE ('Address? (use hex for large numbers) !
READLN (ADDRESS) ;
PPP := ADDRESS; {ONLY ALLOWED IN PASCAL/MT+}
WRITE('l) Peek OR 2) Poke ');
READLN (CHOICE) ;
IF CHOICE = 1 THEN

WRITELN (ADDRESS,' contains ',PEEK (PPP))

ELSE
IF CHOICE = 2 THEN

BEGIN
WRITE('Enter byte of data: ');
READLN (BBB) ;
POKE (BBB, PPP)

END

" UNTIL FALSE
END.

Listing 4-2. Pascal/MT+ PEEK_POKE Program

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

PUBLIC PEEK
PUBLIC POKE

;Peek returns the byte found in the address passed on the stack
;It is declared as an external in a Pascal program as:
;EXTERNAL FUNCTION PEEK (P : BYTEPTR) : BYTE

PEEK:
POP B ;RETURN ADDRESS INTO BC
POP D ;POINTER TO BYTE INTO HL
POP E,M ;MOVE CONTENTS OF MEMORY POINTED TO BY HL INTO E
MVI D,0 ;PUT A 00 INTO D
PUSH D sRETURN FUNCTION VALUE
PUSH B ;PUT RETURN ADDRESS ON STACK
RET ,RETURN TO CALLER (NO PARAMETERS LEFT ON STACK)

;Poke places a byte into memory
;It is declared as an external in a Pascal program as:
;EXTERNAL PROCEDURE POKE(B : BYTE; P : BYTEPTR);

POKE:
POP B ;GET RETURN ADDRESS INTO BC
POP H ;THE BYTE POINTER IS PUT INTO HL
POP D ;REGISTER E GETS THE BYTE, D GETS THE EXTRA BYTE OF 00

MOV M,E ;PUT E INTO MEMORY POINTED TO BY HL

PUSH B ;RETURN ADDRESS ON TOP OF STACK
RET ;RETURN TO CALLER (NO PARAMETERS LEFT ON STACK)

END

Listing 4-3. Assembly Language PEEK and POKE Routines

4.3 ?ascal/MT+ Interface Features

Pascal/MT+ provides several features that let you control your
program's environment. The following features are explained in this
section:

direct access to the operating system
machine code inserted into Pascal source
variables with absolute addresses
interrupt procedures

heap management

Pascal/MT+ Programmer's Guide ; 4.3 Interface Features

4.3.1 Direct Operating System Access

You can make BDOS function calls to the operating system by
using the @BDOS routine. You declare it in a Pascal/MT+ program as
follows:

EXTERNAL FUNCTION @BDOS (FUNC:INTEGER; PARM:WORD):INTEGER;

The first parameter is the BDOS function number. The use of
the second parameter depends on the specxflc function number. Refer
to your particular operating system's documentation for the list of
functions.

The following example shows KEYPRESSED, a function that uses
" the @BDOS function. KEYPRESSED returns TRUE if a key is pressed,
FALSE if not.

FUNCTION KEYPRESSED : BOOLEAN;

BEGIN
KEYPRESSED := (@BDOS(11,0) <> 0)
END;

Listings 4-4 and 4-5 illustrate calls to BDOS function 6 and
23, :espectlvely.

* (* DEMO OF USING BDOS FUNCTION CALL 6 FOR CONSOLE IO *)

- PROGRAM BDOS6;
VAR '

" CH : CHAR;
I : INTEGER;
EXTERNAL FUNCTION @BDOS (FUNC:INTEGER; PARM:WORD) :INTEGER;

BEGIN (* ECHO ANY INPUT CHARACTER TO THE CONSOLE UNTIL A : IS READ *)
REPEAT

CH:=CHR (@BDOS (6, WRD(SPF))), (* READ CHARACTER *)
IF CH <> ':' THEN
BEGIN ’
I:=@BDOS (6, WRD(CH)), (* WRITE CHARACTER *)
END;
UNTIL CH= ':';
END.

-Listing 4-4. Calling BDOS Function 6

4-10

Pascal/MT+ Programmer's Guide 4.3 Interface Features

(* DEMO OF USING BDOS FUNCTION CALL 23 TO RENAME FILES *)

PROGRAM BDOS23;

TYPE
FCBLK = PACKED ARRAY [0..36] OF CHAR;
X = FILE;
VAR
Fl : X;
F2 : FCBLK;
I : INTEGER;

OLDNAME ,NEWNAME : STRING;

(* EXTRACT IS A PROCEDURE TO FETCH THE FILE NAME INTO THE STRING *)
(* IT IS A MODIFIED VERSION OF THE PROCEDURE IN UTILMOD. *)

(* THIS VERSION RETURNS THE FILE NAME FORMATTED FOR CPM *)

EXTERNAL PROCEDURE EXTRACT (VAR F:X; NAME:STRING);

EXTERNAL FUNCTION @BDOS (FUNC:INTEGER; PARM:WORD):INTEGER;
BEGIN

WRITE ('ENTER OLD FILE NAME: '); (* GET THE OLD FILE NAME *)
READLN (OLDNAME) ;

ASSIGN (F1,0LDNAME) ; (* USE ASSIGN TO CONVERT THE STRING *)
(* TO A VALID CPM FILE NAME *)

EXTRACT (F1,0LDNAME) ; (* USE THE UTILITY PROCEDURE EXTRACT *)
(* TO RETRIVE THE FORMATED FILE NAME *)

6 MOVE (OLDNAME,F2,12); (* MOVE IT TO THE FCB USED BY BDOS CALL 23 *)
OLDNAME (0] := CHR(12); (* EXTRACT DOES NOT RETURN THE LENGTH *)
CLOSE(F1,I); (* SO WE CAN USE IT FOR NEWNAME v)

WRITE ('ENTER NEW FILE NAME: '); (* GET THE NEW FILE NAME *)

READLN (NEWNAME) ;)

ASSIGN (F1,NEWNAME) ; (* CONVERT IT TO A CPM FORMATTED FILE NAME *)
EXTRACT (F1,NEWNAME) ; .
MOVE (NEWNAME ,F2(16],12); (* MOVE IT TO THE FCB FOR BDOS CALL 23 *)
NEWNAME (0] := CHR(12); (* MOVE IN THE LENGTH *)

(* CALL THE RENAME FUNCTION. PASS A POINTER TO THE FCB *)
(* CONTAINING THE OLD AND NEW FILE NAMES *)
IF @BDOS (23,WRD (ADDR(F2))) = 255 THEN .
WRITELN ('RENAME FAILED. ',OLDNAME,' NOT FOUND.')
ELSE ’ .
WRITELN ('FILE ',OLDNAME,' RENAMED TO ',NEWNAME);

END.

Listing 4-5. - Calling BDOS Function 23

Pascal/MT+ Programmer's Guide 4.3 1Interface Features

4.3.2 INLINE

INLINE is a built-in feature that lets you insert data in the
niddle of a Pascal/MT+ procedure or function. You can insert small
machine code sequences and constant tables into a Pascal/MT+ program
without using externally-assembled routines.

INLINE syntax is similar to that of a procedure call:

® The word INLINE is followed by a left parenthesis.
e After the parenthesis come any number of arguments.

® Arguments must be constants, or variable references that
evaluate to constants. :

e Arguments can be of types CHAR, STRING, BOOLEAN, INTEGER, or
REAL.

e Separate the arguments with slashes.

® The arguments end with a right parenthesis.

Note that a string in single apostrophes does not generate a
. length byte, but simply the data for the string.

The address of a variable evaluates to the absolute data
address, unless the program is set up to run with recursion. Then
the address is the offset into the appropriate stack frame.

. Literal constants of type integer are allocated one byte if the
value falls in the range 0 to 255. Named integer constants always
get two bytes. '

The Pascal/MT+ system features a built-in mini-assembler for
8080/8085 CPUs. The compiler translates a double quote followed by
an assembly langquage mnemonic into a hexadecimal wvalue. For
example,)

"MOV A,M

translates as $7E. Appendix E contains a complete list of the valid
opcodes for the mini-assembler. The following example illustrates
INLINE: . E

INLINE("LHD (*LHD OPCODE FOR 8080*%*)

/
VARL / T 7{*REFERENCE VARIABLEY*)

"SHLD / = (*SHLD OPCODE FOR 8080%)
VAR2 / (*REFERENCE VARIABLE¥) -

4-12

.Pascal/MT+ Programmer's Guide 4.3 1Interface Features

To facilitate branching, the syntax *+n and *-n, (where n is an
integer), is included as legal operand to INLINE. For example,

INLINE("IN / $03/
"ANI/ $02/
"INZ/ *-4);

The location that the * references is the prev1ous opcode, not the
address of the * character.

The following listing uses INLINE in a procedure that calls
CP/M and returns a value. This routine is @BDOS in the run-time
library PSALIB. :

FUNCTION @BDOS (FUNC:INTEGER; PARM:WORD) : INTEGER;

CONST
CPMENTRYPOINT = 5; (* SO IT ALLOCATES 2 BYTES *)
VAR
RESULT : INTEGER; (* SO WE CAN STORE IT HERE *)
BEGIN
INLINE($2A / FUNC / (* LHLD FUNC *)
$4D / (* MOV C,L *)
$2A / PARM / (* LELD PARM *)
$EB / (* XCHG L *)
$CD / CPMENTRYPOINT / (* CALL BDOS *)
$6F / (* MOV L,A *)
$26 / $00 / (* MVI H,0 *)
$22 / RESULT); (* SHLD RESULT *)
@BDOS := RESULT, (* SET FUNCTION VALUE *)
END; .

Listing 4-6. Using INLINE in @BDOS

. The following listing uses INLINE to construct a compile-time
table. The table is the entire body of a procedure. By getting the
address of the procedure, the program can access the table. . Notice
that the dummy procedure is not intended to be an executable
procedure, and that the table is treated as code.

4-13

‘Pascal/MT+ Programmer's Guide 4.3 Interface Peatures

PROGRAM DEMO_INLINE;

TYPE
IDFIELD = ARRAY [l1..4] OF ARRAY [1..10] OF CHAR;

VAR
TPTR : “IDFIELD;

PROCEDURE TABLE;

BEGIN
INLINE('DIGITAL v/
'RESEARCH ' /
'SOFTWARE ' /
'TOOLS....."')
END;

BEGIN (* MAIN PROGRAM *)

TPTR := ADDR(TABLE);

WRITELN (TPTR" [3]) (* SHOULD WRITE 'SOFTWARE ' *)
END.

Listing 4-7. Using INLINE to Construct a Compile-~time Table

The address of the procedure is the address of the table only
in a static environment. If you compile the program with the $Q+
option for recursion, the compiler generates extra code at the
beginning of the procedure for recursion management. The compiler
generates six extra bytes if the $Q optlon is set, and five extra
‘bytes if the option is not set.

Note: the table must be in the same module as the statement that
calls ADDR.

4.3.3 Absolute Variables

You can declare ABSOLUTE variables if you know the address at
compile~-time. The following examples show the special syntax for
declaring absolute varlables'

I : ABSOLUTE [$8000] INTEGER;
SCREEN: ABSOLUTE [SCRN_AD] ARRAY[0..15, 0..63] OF CHAR;

Note that you must put the address of the variable in brackets
{...]. The address must be a constant, either named or lite:al.

The compiler .does not allocate space in the data area for

-ABSOLUTE variables. Make sure no compiler- allocated varlables
conflict W1th the absolute varxables.»

4-14

Pascal/MT+ Programmer's Guide 4.3 Interface Features

. String variables cannot be stored at all locations. On the
8080, strings must be between 100H and FFFFH, so that the run-time
routines can distinguish between a string address and a character on
top of the stack.

4.3.4 Interrupt Procedures '

Pascal/MT+ has a special procedure type to handle interrupts.
When an interrupt occurs, the procedure associated with that
particular interrupt is invoked; you do not call interrupt
procedures from the program. When the interrupt procedure finishes,
control returns to where it was interrupted. You select the vector
to be associated with each interrupt.

You declare an interrupt procedure as follows:
PROCEDURE INTERRUPT [<vec num>] <prochame> ;

Interrupt procedures can exist only in the main program, so
that the interrupt vectors can load correctly. At the beginning of
the program, the compiler generates code to load the vector with the
procedure address.

For 8080/280 systems, the vector number range is 0 to 7. For
Z80 mode 2 interrupts, allocate an interrupt table by declaring an
ABSOLUTE variable, and use the ADDR function to f£ill in the table.
Use INLINE .in a Z80 environment to initialize the I register.

The compiler generates code to push the registers on entering
an interrupt procedure, and to pop the registers and reenable
interrupts on exiting the procedure. Because many interrupt modes
are possible on the 280, the 2 option does not generate the 280
'RET1' instruction. . ’

Note: you must initialize the interrupt vectors. The compiler does
not generate code to store in the absolute locations occupled by the
interrupt vector table.

Interrupt procedures cannot have parameter lists, but can have
local variables and can access global varlables.

The Pascal/MT+ system does not generate reentrant code.
Typically, interrupt procedures set global variables hut do not
‘perform other procedure calls or 1/0. For this reason, you should
avoid sets, strings, procedure calls, and file I/0. You should also
avoid calling CP/M and routines in the run-time packages that
include data. If you use CP/M, notice that I/O through the CP/M
BDOS typically reenables interrupts.

‘To disable interrupts around sections of Pascal code, use

- INLINE and the mini-assembler to place EI.(enable 1nterrupt) and DI
(disable interrupt) lnstructlons around the code.

4-15

Pascal/MT+ Programmer's Guide 4.3 Interface Features

The following program illustrates interrupt procedures. The
program waits for one of four switches to interrupt and then toggles
the state of a light attached to the switch. The I/0 ports for the
lights are 0 to 3, and the switches use interrupt restarts 2, 3, 4,
and 5. :

PROGRAM INT_DEMO;

CONST
LIGHT1
LIGHT2
LIGHT3
LIGHT4

0; (* DEFINE I/0 PORT CONSTANTS *)

[T '}
-
~
14

SWITCH1
SWITCH2
SWITCH3
SWITCH4

(* DEFINE INTERRUPT VECTORS *)

~ e wo wo

VAR

LIGHT_STATE : ARRAY [LIGHT1l..LIGHT4] OF BOOLEAN;
SWITCH_PUSH : ARRAY [LIGHT1l..LIGHT4] OF BOOLEAN;

I : LIGHT1 .. LIGHT4;

PROCEDURE INTERRUPT (. SWITCH1] INTI1;

BEGIN -
SWITCH_PUSH([LIGHT1]. := TRUE
END;
PROCEDURE ' INTERRUPT { SWITCH2] INT2;
BEGIN .
SWITCH_PUSH[LIGHT2] := TRUE
END; .
PROCEDURE INTERRUPT [SWITCH3] INT3;
BEGIN)
SWITCH_PUSH|[LIGHT3] := TRUE
END;)) :
PROCEDURE INTERRUPT [SWITCH4] INT4;
BEGIN
SWITCH_PUSH[LIGHT4] := TRUE
END; '

Listing 4-8, Using Interrupt Procedures

4-16

Pascal/MT+ Programmer's Guide 4.3 Interface Features

BEGIN (* MAIN PROGRAM *)
(* INITIALIZE BOTH ARRAYS *)

FOR I := LIGHT1l TO LIGHT4 DO
BEGIN
LIGHT_STATE([I] :
SWITCH_PUSH[I] :
END;

= FALSE; (* ALL LIGHTS OFF *)
= FALSE; (* NO INTERRUPTS YET ¥*)

REPEAT
REPEAT (* UNTIL INTERRUPT *)
UNTIL SWITCH PUSH[LIGHT1] OR SWITCH_PUSH[LIGHT2] OR
SWITCH PUSH[LIGHT3] OF SWITCH PUSH[LIGHT4];
FOR I := LIGHTL TO LIGHT4 DO (* SWITCH LIGHTS *)
IF SWITCH PUSH([I] THEN
BEGIN
SWITCH PUSH([I] := FALSE;
LIGHT STATE[I] := NOT LIGHT STATE[I|; (* TOGGLE IT *)
OUT(IT := LIGHT STATE(I]
END
UNTIL FALSE; (* FOREVER DO THIS LOOP *)

END. (* OF.PROGRAM *)

Listing 4-8. (continued)

4.3.5 Heap Management
You can manage the heap two ways:
1) Use the ISO standard routines as they are implemented in
. PULLHEAP.ERL. ' When you use this method:
e the NEW routine uses a standard heap.

¢ dynamic data goes tcfthe smallest space that can hold the
requested item.

® the DISPOSE routine disposes the item passed to it.
e when necessary, MAXAVAIL, or NEW gathers free memory into
- a free list, combinhes adjacent hlocks, and reports the
largest available block of memory.
e MEMAVAIL returns the largest neve:-allocated memory
. space..

4-17

Pascal/MT+ Programmer's Guide 4.3 Interface Features

2) Use NEW, DISPOSE, and MEMAVAIL, which are part of the
PASLIB.ERL run—-time library. When you use this method:

the heap is treated as a stack.

e NEW puts the dynamic data on top of the stack.

® the stack grows from the end of the statlc data towards
the hardware stack.

DISPOSE performs no function, but is included for symbol
table use.

® you can simulate the MARK and RELEASE. routines of UCSD
Pascal™ by using the system integer SYSMEM, which points
to the top of the heap, as shown in the following
example:

MODULE UCSDHEAP;

VAR
SYSMEM : EXTERNAL INTEGER;

PROCEDURE MARK (VAR P:INTEGER);
BEGIN

P := SYSMEM
END;

PROCEDURE RELEASE (P: INTEGER) ;
BEGIN

SYSMEM := P
END;

'MODEND.

4.4 Recursion and Nonrecursion

Pascal/MT+ doces not automatically produce recursive code,
because recursion increases overall code size and decreases
execution speed. You can generate recursive code with the S
compiler source code option (see Section 2.2.4).

When using recursion, return addresses for all procedures are
stored on the hardware stack. If recursion is deeply nested, the
default stack size of 128 bytes might be too small. If so, the
program can overwrite local or global data as recursion continues.
You can solve this pitoblem by modlfylng @SFP, as described in
Section 4.1.

4-18

Pascal/MT+ Programmer's Guide 4.5 Stand-alone Operation

4.5 Stand-alone Operation

If you want ﬁo run Pascal/MT+ programs in a ROM-based system,
perform the following steps:

1) Use the $Z compiler option to tell the Compiler where to
initialize the hardware stack pointer.

2) If the program performs I/0 you have three choices:

® Use redirected I/0 for all READ and WRITE statements.
This replaces the run-time character I/0 routines with
user-written I/0 routines. Refer to the Pascal/MT+
Language Reference Manual.

® Rewrite GET and the run-time routines @RNC and @WNC. @RNC
is the read-next-character routine; @WNC is the write-
next-character routine. You must rewrite GET because the
read-integer and read-real routines call it.

e Build a simulated CP/M BDOS in your PROM. If you are
constructing your program to run in a totally stand-alone
environment, such as an Intel SBC-80/10 board, you can
write an assembly language module to link in front ¢f your
program. .

This routine can jump around the standard code that
simulates the BDOS, and can simulate the CP/M BDOS for
functions 1l: Console Input, 2: Console Output, and 5: List
Output.

The function number is 'in the C register; the data for
output is in ‘E. PFor input (Function 1), return the data
in the A register. All registers are free to use, and the
stack contains nothing but the return address.

Note: this is just a suggestion; Digital Research does
not give detailed application support for this method.

3) You can shorten or eliminate the INPUT and OUTPJIT FIB
storage in the @INI module. You need this storage for TEXT
file 1/0 compatlblllty, but you mlght not need it Jn a ROM-
based environment.

Make sure any changes to-INPUT and OUTPUT are also handled
in @RST (read a string from a file) and @CWT (read untll
EOLN is true on a f11e)

The distribuition disk includes three skeletons for the

@INI, @RNC, GET,. and GWNC routines that you can use in ROM
envx:onments._ .

4-19

Pascal/MT+ Programmer's Guide 4.5 Stand—-alone Operation

If your program does any reads or writes and does not use
the heap or overlays, you can rewrite the QINI procedure in
your program as follows:

PROCEDURE @INI,
BEGIN
END;

4) In ROM environment, you cannot use the PROCEDURE INTERRUPT
[vector] construct to handle interrupts. You must
construct an assembly language module and link it as the
main program (first file). This module must contain JMP
instructions at the interrupt vector locations to jump to
the Pascal/MT+ interrupt routines.

Note: find the interrupt routines with the /M linker
option. .

5) The integer- and real-divide routines contain a direct call
to CP/M for the divide by 0 error message. If there is a
possibility of that error ocurring in your program, modify
the routine in DIVMOD.MAC, which is on your distribution
disk #2.

6) Link any changed run-time routines before linking the run-
time library to resolve the references, making sure to use
the /S option, as in the following example:

A>LINKMT USERPROG,MYWNC,MYRNC,GET,MYIHI,PASLIB/S

7) Strings cannot reside below 100H. If you have any constant
strings, named or literal, at the beginning of your
program, fill out the remaining space in the first PROM
with a table, or with a DS to get the Pascal/MT+ program to
exist at locations greater 100H. Remember, if you put
tables or data first, you must jump around them to begin
execution of the Pascal/MT+ program, starting with its
first byte. . . '

4.6 Brror and Range Checkxng

The Pascal/MT+ system supports two types of run-time checking:
range checking and exception checking. The default state of the
compxlet dzsables range checking and enables exceptxon checking.

Error checks and routines set Boolean flags.--These flags,
along with an error code; load onto the stack and call the built-in
routine @ERR, which tests the Boolean flag. :

If no error’ occurs, the flag is FALSE, so @ERR exits to the

compiled code and continues execution. If an error occurs, @ERR
acts appropriately, as described in Table 4-2.

4-20

Pascal/MT+ Programmer's Guide 4.6 Error and Range Checking

Table 4-2. @ERR Routine Errors

Value Meaning
1 Divide by 0 check
2 Heap overflow check (unused, see below)
3 String overflow check (unused, see below)
4 Array and subrange check
5 Floating point underflow
6 Floating point overflow
7 9511 transcendental error

4.6.1 Range Checking

Range checking monitors array subscripts énd subrange
assignments. It does not check when you read into a subrange
variable.

When range checking is enabled, the compiler generates calls to
@CHK for each array subscript and subrande assignment. The @CHK
routine leaves a Boolean value on the stack and the error code
number 4. The compiler generates calls to QERR after the @CHK call.
If an error occurs, @ERR asks you whether it should continue or
abort.

wWhen range checking is disabled, and an array subscript falls
outside the valid range, you get unpredictable results. For
subrange assignments, the value truncates at the byte level. '
4.6.2 BException Checking
; . Exception checking is enabled by default. In the current
release, the $X- compiler option does not disable exception
checking. The conditions checked for are the following:
® integer and real numbers divided by 0
® real number underflow and overflow
e string overflow
The various exceptions produce the following results:

e Floating-point underflow: @ERR does not print a message. The
" ‘result of the operation is 0.0. _ :

® FPloating-point over flow: the result of the operation is a
large number.

4-21

Pascal/MT+ Programmer's Guide 4.6 Error and Range Checking

® Division by zero: the result is the largest possible number.
o Heap overflow: the error processor takes no action.

e String overflow: the string is truncated.

4.6.3 User-supplied Handlers

You can write your own @ERR routine instead of using the system
routine. Declare the routine as follows:

PROCEDURE @ERR(ERROR:BOOLEAN; ERRNUM:INTEGER) ;

Your version of @ERR should check the ERROR variable and exit
if it is FALSE. If the value is TRUE, you can decide what action to
take.

To use @ERR instead of the routine in PASLIB, link your routine
ahead of PASLIB to resolve the references to @ERR. The values of
ERRNUM are in Table 4-2. :

4.6.4 I/0 Error Handling

The run-time routine, @BDOS, does not handle I/0 errors.
However, it returns the CP/M error code in IORESULT. You can
rewrite @BDOS, as described below, to check further for disk I1I/0
errors.

XBDOS .SRC on distribution disk #2 contains an alternative @BDOS
routine. When XBDOS calls the BDOS with the CP/M I/O functicns
OPEN, RESET, CLOSE, WRITE, and REWRITE, it generates a call to
IOERR, and passes the CP/M function call number. You can then
modify the IOERR routine, found in IOERR.SRC on distribution disk
$#2, to handle these I/0 errrors.

To use the I/O error handling code, compile both IOERR.SRC and
XBDOS.SRC. Then use the file named IOCHK.BLD on distribution disk
#2 as input to LIBMT+. IOCHK.BLD uses the relocatable files and
creates a library called IOCHK.ERL. You must link this library -
before PASLIB. .You cannot search IOCHK.ERL because all references
to @BDOS are generated by PASLIB.

You do not have to declare @BDOS of IOERR external, because all

the references to @BDOS come from PASLIB, and all the references to
IOERR come from @BDOS.

4-22

Section 5
Pascal/MT+ Programming Tools

Pascal/MT+ provides three programming tools designed to
increase programming productivity: a disassembler, a symbolic
debugger, and a librarian.

e DIS8080 is a disassembler that combines a relocatable file with
a corresponding PRN file to produce a file showing the assembly
code for each Pascal/MT+ source line.

® The debugger is a relocatable file that you link into a
program, enabling you to step through the program as it runs.

e LIBMT+ is a librarian utility that concatenates relocatable
files into a searchable library file.

5.1 DIS8080, the Disassembler

The disassembler DIS8080 consists of one executable file,
DIS8080.COM, which is on your Pascal/MT+ distribution disk #2.

DIS8080 generates a file showing the assembly language for each
Pascal/MT+ source line. When you compile a program using the X
option, the compiler generates an extended relocatable file with
filetype ERL containing assembly language coding interspersed with
Pascal/MT+ statements.

When you Compile a program using the P option, the compiler
generates print files with filetype PRN. Used together, these files
enable the disassembler to investigate codé the compiler produces.
The files provide the information necessary to debug the program at
the machine code level.

Note: because most of the compiler code is 8080 code, a
disassembler for 8080 mnemonics comes only with CP/M releases.

Appendix C contains a listing of a sample disassembly. Figure
5-1 illustrates the operation of DI1S8080.

Pascal/MT+ Programmer's Guide 5.1 The Disassembler DIS8080

EXTENDED RELOCATABLE
OBJECT FILE -
FILENAME.ERL

DISASSEMBLED

—| DIS-8080 LISTING FILE

PRINT FILE
FILENAME.PRN

— . AN 072

Figure 5-1. DIS8080 Operation

You invoke the disassembler with a command line of the
following form:

DIS8080<filename> [<destination name>] [,L=nnn]

You do not have to specify a filetype. DIS8082 searches for
both the ERL- and PRN file with the specified <filename>. Both files
must be on one logical disk drive. The <destination name> can be a
filename or a Pascal/MT+ logical device, CON: or LST:. The default
destination is CON:. The L=nnn parameter enables you to specify the
number of lines per page for the output device. The nnn stands for
an integer value. The L=nnn parameter requires that you specify a
destination name. : :

When the disassembler finds something unexpected in the ERL
file, it generates an error message. Continuing at this point
produces more errors because the sequence is off. An ERL file
should have no errors. To correct errors, recompile the program
using the X compiler option, and be suré you are disassembling
Pascal/MT+ code only. : ' '

5.2 The Debugger

The Pascal/Mf% debugger simplifies program maintainance. The
debugger consists of one relocatable object flle, DEBUGGER.ERL,
which is on distribution dlsk $2. .

To use the debugger, you must link the DEBUGGER.ERL file lntoia
source program along with the run-time support library, PASLIB.ERL.
The debuggez then takes chazge of the source program execution.

Pascal/MT+ Programmer's Guide 5.2 The Debugger

The debugger can perform the following tasks:

display variables by name or address

set symbolic breakpoints

step through the program one statement at a time

display symbol tables

display entry and exit points for procedures and functlons

The debugger displays line numbers in trace mode. However, in
programs consisting of modules, line numbers repeat in each module.
The debugger works only on programs. without overlays.

You can use the debugger in a stand-alone environment. When
the debugger requests the filename of the symbol table, press RETURN
to disable the symbolic facilities. The display-by-address
facilities remain in effect.

Appendix D shows a sample debugéing session.

5.2.1 Debugging Programs

When you compile a program with the D option, the compiler
generates a PSY file containing debugger information. You must
compile all modules that you want to cdebug with the D option. The
compiler writes the PSY file onto the disk containing the
corresponding ERL file.

The PSY file contains records for each procedure, function, aad
variable in the program. The compiler generates code at the
beginning .and end of each item for debugger breakpoint 1logic.
Address fields for each item are module relative. :

The linker uses the ERL and PSY file to create a SYP file
containing absolute addresses for each procedure, function, and
variable. The debugger uses the SYP file to perform the various
debugglng tasks.

You must place the DEBUGGER ERL file first in the llst of files
in 'the LINK/MT+ command line.. The following example links the
debugger, user program, and run-time library into an executable file
named PROG1l.COM. .

A>LINKMT PROGl=DUGGER .PROG1,PASLIB/S

The preceding example generates two - undeflned symbols, @XOP and
@WRL. These are required only if PROG uses real numbers. If so,
you must link the real number run-time library FPREALS.ERL with the
other files in the command line.

Pascal/MT+ Programmer's Guide ‘5.2 The Debugger

To start the debugging session, run the program. The debugger
takes control, and requests the name of the symbol table file. You
must enter the user program SYP file. You must enter both the
filename and filetype.. Press RETURN if there is no symbol table.
The debugger then prompts you for the Bngn or TRace command. You
can then proceed to debug the program using breakpo1nts and other
.debugger commands:;

' 5.2.2 Debugger Commands
Debugger commands use the following rules and syntax elements:

® <name> refers to a variable name, a procedure or function name,
or a prefixed variable name. A prefixed variable name is a
variable identifier prefixed with a procedure or function name.
Names are from one to eight characters long and follow the
syntax of the compiler.

e <num> refers to a decimal or hexadecimal number. Hexadecimal

" numbers are prefixed with a § and range from 0 to FFFF.
Decimal numbers range from 0 to 32767.

® <parm> refers to a parameter.

o Specify an offset from the primary address with a + or -. The
debugger assumes + if not specified in the command.

e The " is an indirection character used with pointer variables.
The " tells the debugger to display the data pointed to, not
the contents of the pointer itself.

o The debugger ignores underscores, _. Use underscores to make
commands easier to read. '
Several commands require an additional parameter. Parameters

have the followlng syntax:
<parm> ::= [<name>|<num>|{ } {[+|—] <num>}

Table 5-1 ‘shows examples of parameters, given the following
declaratxons.

TYPE ' .
PAOC = ARRAY [1..40] OF CHAR;
VAR '
ABC : INTEGER;
PTR : “PAOC;

Pascal/MT+ Programmer's Guide

5.2

Table 5-1. Examples of Parameters

Parameter Meaning

ABC the value of variable ABC

PTR the value of PTR

PTR" the array pointed to by PTR
ABC+10 10 bytes past ABC location
PTR™+10 PTR" [11]

ABC-3 3 bytes before ABC

PTR"-3 3 bytes before the array, PAOC
$3FFD Absolute location :
$4238" 32 bytes pointed to by $423B
$3FFD+$5B 32 bytes at $4058

$423B"+49 32 bytes pointed to by contents

of $423B + 49

PROC1:I local variable in PROC1
PROC2:J"+9 offset from local pointer

The Debugger

The following displays a variable by <name>:
DV <parm>{~}
If <name> is a pointer variable, DV displays the contents of the
pointer. If you use <name>”, DV displays the contents of the
location addressed by the pointer. :

Table 5-2 shows commands used when symbols are not available or
If

when you want to display fields within record or array elements.
you can use the the commands,

symbols are available,
easier to use.

Table 5-2. Debugger Display Commands
Command Syntax Meaning
DV <symbol> Display Variable
DI <parm> Display Integer
DC <parm> Display Character
- DL <parm> Display Logical (Boolean)
DR <parm> Display Real
DB <parm> Display Byte
DW <parm> Display Word
DS <parm> Display String
DX <parm> {,num} Display extended
' (structures). This is
always displayed in
.HEX/ASCII format. Num is
the size, in bytes, for
.memory dump. The default
value is 320 bytes.

but DV is.

Pascal/MT+ Programmer's Guide 5.2 The Debugger

The following command alters the contents of a memory address:
SE<parm>

The SE command displays the byte at the specified address in
decimal. Enter a new value in either decimal or hexadecimal, then
press RETURN. The new value replaces the displayed value, and the
debugger displays the next byte of memory. If you enter a value
that does not fit in two bytes, the debugger uses the last two
digits. To end the SE<parm> command, enter a period and press
RETURN.

Table 5-3- describes the other commands that enable control of
your program in a debugging session.

Table 5-3. Debugger Control Commands

Command » Meaning
Syntax
BE begins execution (start program from

beginning).

DV <name> displays the contents of the named
variable.

E+ . enables display entry ond exit of each
procedure or function during execution
(default on).

E- disables entry / exit display.

GO v continues execution from a breakpoint.
PN ' displays procedure names from SYP file.

RB <name> removes breakpoint at procedure <name>.

SB <name> sets break901nt at beginning of procedure
- <name>.

SE <parm> modifies contents of memory at <parm>. A
period terminates this command.

TR or 'T. Trace - executes one line and returns.
T<num> . traces <num> lines and return.

VN <name> displays varlables assocxated with
o procedure <name>. -

S22 HELP! List of commands is found. in
' , . DBUGHELP.TXT. S

Pascal/MT+ Programmer's Guide 5.3 The LIBMT+ Librarian

5.3 LIBMT+, the Software Librarian

LIBMT+ is a software librarian program that performs two
functions:

e It can logically concatenate ERL files together to construct a
searchable library, such as PASLIB.

o It can also convert Pascal/MT+ ERL files that are compatible
with Microsoft-compatible linkers, such as L80 and LINK-80™ .

You invoke LIBMT+ with a command line of the form:
LIBMT <filename>

where the <filename> contains only the name, not the type of the
file. LIBMT+ accepts an input file of type BLD. A filetype of BLD
contains an output filename followed by a list of input filenames,
with each name on a separate line.

Pascal/MT+ modules, libraries, and appropriate assembly
language modules are all valid as input files. You must specify the
filetype but it need not be ERL. If the output file is to be
processed by LINK/MT+, it must be of type ERL.

Note: LIBMT+ cannot process a Pascal/MT+ module compiled with the X
(Extended Relocatable file) option. To process such a module, you
must recompile it without the X option.

The following is an example of a BLD file for- creating a
LINK/MT+ compatible library:

MYLIB.ERL

MYMODL1.ERL
MYMOD2.ERL
MYMOD3.ERL

This file deletes any existing copy of MYLIB.ERL. - It then
concatenates the files MYMODl.ERL, MYMOD2.ERL, and MYMODB ERL and
places the output in MYLIB.ERL.

5.3.1 Searching a Library

The LINK/MT+ linker is a one-pass linker, so when you use the
/S option to signify that a file is a library, the linker loads only
those modules that have been referenced by previous modules.
Therefore, the order of modules in your library is important. If
the modules are concatenated as A, B, C, then modules B and C cannot
_contain references to module A unless they are guaranteed that -
-module A is loaded. Module A, howéver, can contain references to B
or C because this causes the linker to load them.

Pascal/MT+ Programmer's Guide 5.3 The LIBMT+ Librarian

Remember that the linker can only extract entire modules from a
library. Single procedures from a modules cannot be extracted. All
entry points, both code and data, are used as a basis for searching
when you use the /S option. Only one entry point in a module need
be referenced to force loading that entire module.

You cannot use LIBMT+ to alter PASLIB because of its special
construction. If you want to replace modules in PASLIB.ERL, link
the replacement modules before linking PASLIB. This resolves
references to those routines before PASLIB is searched. If the

‘replacement routines are in a library, it is a good idea not to
search the new library, because the references to the replacement
routines sometimes are not made until PASLIB is searched.

5.3.2 LIBMT+ as a Converter to L80 Format

If the first line of the BLD file contains only L80 (or 180),
the output file is L80-compatible; otherwise, it is compatible with
LINK/MT+.

~ An L80-compatible file does not work with LINK/MT+. The
following is a sample BLD file for converting a library or module to
L80 format:

L80
MYLIB.ERL
MYMOD.ERL
MYMOD2.ERL
MYMOD3 . ERL

LIBMT+ creates a file called MYLIB.ERL, which contains the
converted MYMODl, MYMOD2, and MYMOD3. The conversion process
truncates all public names to six characters. This ‘can cause
.duplicate symbol errors when using L80 that did not occur when using
LINK/MT+. LINK/MT+ allows public names up to seven characters long.

The features gained by using this program and L80 are
e the ability to use multiple origins of code and data
® the ability to have initialized data in the DSEG
e the ability to use COMMON

The features of the Pascal/MT+ system lost when using this
program and L80 are .

. Overlays :
‘@ The ablllty to generate a HEX file -
e The /D option of L80 reserves spaceAln memory and writes

unintialized data to the disk, whlch can result in a very la:ge
CoM file. - .

5-8

Pascal/MT+ Programmer's Guide 5.3 The LIBMT+ Librarian

® Seven-character significance in public names.
® The disassembler does not work with REL files.
® The /F option (CMD files) cannot be used.

® Programs that link properly with LINK/MT+ might not link with
L80 because they are too large to fit into memory at link-time..

® Unlike LINK/MT+, if you specify /P:4000 when using L80, the
area from 100H through 3FFF is also saved in tie COM file.
LINK/MT+ saves the byte that is loaded at 4000H as the first
byte in the COM file. This has both advantages and
disadvantages.

® The Pascal feature, temporary files, does not operate with L80.
® Programs that work with LINK/MT+ might suddenly stop working
with L8O0. If the /D option is not used, then all data is

initialized to 00 by LINK/MT+. Therefore, you must watch out
for uninitialized variables.

End of Section 5

‘5-9

Appendix A
Compiler Error Messages

Table A-1l. Compiler Error Messages

Message Meaning

Recursién stack overflow

Evaluation stack collision with symbol
table. Correct by reducing symbol table
size, simplifying expressions.

Error # 1
Error in simple type

Self-explanatory.

Error # 2
Identifier expected

Self-explanatory.

Error # 3
'PROGRAM' expected

Self-explanatory.

Error # 4
') ' expected

Self-explanatory.

Error # 5
‘s expected

Possibly a = used

in a VAR declaration.

Error # 6
Illegal symbol (possxblyﬁmL551ng

[
7

on line above)

Symbol encountered is not allowed in the
syntax at this point.

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. (continued)

Message Meaning

Error # 7
Error in parameter list

Syntactic error in parameter 1list
declaration.

Error ¢ 8
'OF' expected

Self-explanatory.

Error # 9
' (' expected

Self-explanatory.

Error # 10
Error in type

Syntactic error in TYPE declaration.

Error # 11
‘[' expected

Self-explanatory.
Ertor $ 12
']' expected

Self-explanatory.
E;ror $# 13

“END’' expected"

'All procedures, functions, and blocks of
statements must have an 'END'. Check for
mismatched BEGIN/ENDs.

Error # 14 : S .
';' expected (possibly on line-above)

‘ Statement separator required here.

Pascal/MT+ Programmer's Guide

Table A-1l. (continued)

Message Meaning

Error # 15
Integer expected

Self-explanatory.

Error # 16

'=! expected
Possibly a : used in a TYPE or CONST
declaration.

Error # 17

'BEGIN' expected

Self-explanatory.

Error # 18
Error in declaration part

Typically an illegal backward reference to
a type in a pointer declaration.

Error # 19
error in <field=list>

Syntactic error in a record declaration.

Error # 20
'.,' expected

Self-explanatory.

Error # 21
'*! expected

Self-explanatory.

Error # 50
Error in constant

Syntactic error in a literal constant,
also when using recursion and lmproperly
using INP and OUT.

A Compiler Error Messages

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. {continued)

Message Meaning

Error # 51
' =' expected

Self-explanatory.

Error # 52
'THEN' expected

Self-explanatory.

Error # 53
'UNTIL' expected

Can result from mismatched BEGIN/END
sequences.

Error # 54
'DO' expected

Syntactic error.

Error # 55
'TO' or 'DOWNTO' expected in FOR statement

Self-explanatory.

Error # 56
'IF' expected

Self-explanatory.

Error # 57
'FILE' expected

Probably an error in a TYPE declaration.

Error # 58
Error in <factor> (bad expression)

Syntactic error in expression at factor
level. T

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. (continued)

Message Meaning

Error # 59
Error in variable

Syntactic error in expression at variable -
level.

Error # 99
MODEND expected

Each MODULE must end with MODEND.

Error # 101
Identifier declared twice

Name already in visible symbol table.

Error # 102
Low bound exceeds high bound

For subranges, the lower bound must be <=
high bound.

Error # 103
Identifier is not of the appropriate class

A variable name used as a type, or a type
used as a variable, can cause this error.

Error # 104
Undeclared identifier

The specified identifier is not in the
visible symbol table.

Error § 105
Sign not allowed

Signs are not allowed on
noninteger/nonreal constants.

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. (continued)

Message Meaning

Error # 106 _
Number. expected

This error often occurs from making the
compiler totally confused in an expression
as it checks for numbers after all other
possibilities have been exhausted.

Error # 107
Incompatible subrange types

For example, 'A'..'Z' is not compatible
with 0..9.

Error # 108
File not allowed here

File comparison and assignment is not
allowed.

Error # 109
Type must not be real

Self-explanatory.

Error # 110
<tagfield> type must be scalar or subrange

Self-explanatory.

Error # 111
Incompatible with <tagfield> part

Selector in a CASE-variant record is not
compatible with the <tagfield> type.

Error # 112
Index type must not be real

An array cannot be declared with real
dimensions.

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. (continued)

Message Meaning

Error # 113
Index type must be a scalar or a subrange

Self-explanatory.

Error # 114
Base type must not be real

Base type of a set can be scalar or
subrange.

Error # 115
Base type must be a scalar or a subrange

Self-explanatory.

Error # 116 ,
Error in type of standard procedure parameter

Self-explanatory.

Error # 117
Unsatisfied forward reference

A forwardly declared pointer was never
defined.

Error § 118
Forward reference type identifier in variable declaration

You attempted to déclare a variable as a
.pointer to a type that. was not yet

declared.
Error # 119)
Respecified params- not OK for a forward declared

procedure

Self-explanatory.

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. (continued)

Message Meaning

Error # 120 .
Function result type must be scalar, subrange or pointer

A function was declared with a string or
other nonscalar type as its value. This
is not allowed.

Error # 121
File value parameter not allowed

Files must be passed as VAR parameters.

Error # 122
A forward declared function's result type cannot be
respecified

Self-explanatory.

Error # 123
Missing result type in function declaration

Self-explanatory.

Error § 125
Error in type of standard procedure parameter

This is often caused by not having the
parameters in the proper order for built-
in procedures or by attempting to
read/write pointers, enumerated types, and
so on.

Error § 126
Number of parameters ‘does not agree with declaratlon

Self-explanatory.

Error # 127
Illegal parameter fubstltutlon

Type of pa:ameter does not exaetly‘match
the corresponding formal parameter.

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error # 128
Result type does not agree with declaration

When assigning to a function result, the
types must be compatible.

Error # 129
Type conflict of operands

Self-explanatory.

Error # 130
Expression is not of set type

Self-explanatory.

Error # 131
Tests on equality allowed only

Occurs when comparing sets for other than
equality.

" Error # 133
File comparison not allowed

File control blocks cannot be compared
because they contain multiple fields that
are not available to the user.

Error # 134
Illegal type of operand(s)

The operands do not match those required
for this operator. :

Error # 135
Type of operand must be boolean

The operands to AND, OR, and NOT must be
BOOLEAN. - o

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1l. (continued)

Message Meaning

Error # 136
Set element type must be scalar or subrange

Self-explanatory.

Error # 137
Set element types must be compatible

Self-explanatory.

Error #. 138
Type of variable is not array

A subscript was specified on a nonarray
variable.

Error # 139
Index type is not compatible with the declarat:ion

Occurs when indexing .into an array with
the wrong type of indexing expression.

Error # 140
Type of variable is not record

Attempting to access a nonrecord data
structure with the dot form or the with
statement.

Error # 141 .
Type of variable must be file or pointer

Occurs when an-up arrow followé a variable
that is not of type pointer or file. ‘

Error # 142
Illegal parameter solution

Self-ekplanatory.

A-10

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error # 143
Illegal type of loop control variable

Loop control variables can be only local
nonreal scalars.

Error # 144
Illegal type of expression

The expression used as a Sselecting
expression in a CASE statement must be a
nonreal scalar.

Error # 145
Type conflict

Case selector is not the same type as the
selecting expression.

Error # 146
Assignment of files not allowed

Self-explanatory.

Error § 147 .
Label type incompatible with selecting expression

Case selector is not the same type as the
selecting expression.

Error # 148
Subrange bounds must be scalar

.Self-explanatory.

Error # 149
Index type must be integer

Self-explanatory.

Error # 150) . :
Assignment to standard function is not. allowed

Self-explanatory.

A-11

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error # 151
Assignment to formal function is not allowed

Self-explanatory.

Error $# 152
No such field in this record

Self-explanatory.

Error # 153
Type error in read

Self-explanatory.

Error # 154 :
Actual parameter must be a variable

Occurs when attempting to pass an
expression as a VAR parameter.

Error # 155
Control variable cannot be formal or nonlocal

The control variable in a FOR loop must be
LOCAL.

Error # 156
Multidefined case label

Self-explanatory.

Error # 157 :
Too many cases in case statement

Occurs when jump table generated for case
overflows its bounds.

Error # 158
No such variant in this record.

Self-explanatory.

a-12

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error # 159
Real or string tagfields not allowed

Self-explanatory.

Error # 160
Previous declaration was not forward

Error # 162
Parameter size must be constant

Error # 163
Missing variant in declaration

Occurs when using NEW/DISPOSE and a
variant does not exist.

Error # 165
Multidefined label

Label more than one statement with same
label.

Error # 166
Multideclared label

Declare same label more than once.

Error # 167
Undeclared label

Label on statement was not declared.

Error # 168
Undefined label

A declared label was not used to label a
statement.

" Error # 169
Error in base set

A-13

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1. (continued)

Message Meaning

Error # 170
Value parameter expected

Error # 174
Pascal function or procedure expected

Self-explanatory.

Error # 183
External declaration not allowed at this nesting level

Self-explanatory.

Error # 201
Error in real number - digit expected

Self-explanatory.

Error # 202 :
String constant must not exceed source line

Error # 203
Integer constant exceeds range

Range on the integer constants are
-32768..32767

Error # 250
Too many scopes of nested identifiers

There is a limit of 15 nesting levels at
compile time. This includes WITH and
procedure nesting.

Error # 251
Too many nested procedures or functions

There is a limit of 15 nesting levels at.
execution time. Also occurs when more
than 200 routines are in one compiled
module. ' o S

A-14

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error # 253
Procedure (or program body) too long

A procedure generated code that overflowed
the internal procedure buffer. Reduce the
size of the procedure and try again. The
limit is 4096 bytes.

Error # 259 .
Expression too complicated

Your expressionm is too complicated (that
is, too many recursive calls are needed to
compile it). You should reduce the
complication using temporary variable.

Error # 397
Too many FOR or WITH statements in a jrocedure

Only 16 FOR or WITH statements are allowed
in a single procedure.

Error # 398
Implementation restriction

Normally used for arrays and sets that are
too .big to be manipulated or allocated.

Error # 407
Symbol Table Overflow

Error # 496
Invalid operand to INLINE

Usually due to reference that requires
address calculation at run-time.

Error # 497

Error in closing code file. N
An error occurred when the ERL. file was
closed. Make more room on the destination
disk ‘and try '‘again.

A-15

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table Arl. (continued)

Message Meaning

Error # 500
Non-ISO Standard feature. Not fatal.

Error # 999
Compiler confused due to previous errors.

Make some corrections and try again. It
is also possible that while your program
is syntactically correct, it can confuse
the compiler if semantic errors exist.
The compiler aborts early with this error
number. Look carefully at the line on
which the compilation halts.

End of Appendix A

A-16

Appendix B
Library Routines

The Pascal/MT+ compiler generates native machine code. Each
processor requires a library of run-time routines to support files
and any other features that are not supported by the native
hardware, but that are required to implement the entire Pascal
language. The following information is specific to the 8080/Z80
CP/M implementations of Pascal/MT+. .

In Pascal/MT+, all I/0 is performed and set variables are
manipulated with library routines. Only the run-time routines
needed for a particular program are actually loaded when you link
the program with LINK/MT+ and use the /S option.

Note that console 1/0 is assumed by the initialization routine,
@INI. This causes the input/output routines to be loaded even when
you are not using them. If you want to avoid this, you can write a
replacement QINI routine and link it before linking the run-time
library to resolve the @INI reference.

The table below lists the names of the run-time library
routines and their purposes. This table clarifies what these
routines do, so that when you disassemble a program you have some
information about what is happening in your program. They are not
here so that you can call these routines from your program. Digital
Research does not guarantee parameter list compatibility between
releases.

Table B-l. Run—time Library Routines

Routine Purpose
@CHN Program chaining routine
eMUL Long Integer multiply
@EQD String ‘comparison routine for =
@NED String comparison routine for <>
@GTD String comparison routine for >
eLTD String comparison routine for <
@GED String comparison routine for >=
QLED . String comparison routine for <=
QEQS) Set equality
@NES Set inequality
* @GES Set superset
QLES , Set subset

Pascal/MT+ Programmer's Guide B .Library Routines

Table B-1l. (continued)

Routine - . Purpose

@HLT End of program halt routine;

return to operating system

@SAD Set union

@SSB Set difference

QsML , Set intersection

@SIN Set membership

@BST Build singleton set

@BSR Build subrange set

@EQA Array comparison routine for =
@NEA Array comparison routine for <>
QGTA Array comparison routine for >
@LTA Array comparison routine for <
@GEA Array comparison routine for >=
QLEA Array comparison routine for <=
@xXJP Table case jump routine

@LBA Load concat string buffer address
@ISB Initialize string buffer

@CNC Concatenate a string to the buffer
€CCH Concatenate a character to the buffer
@RCH Read a character from a file

@CRL Write a newline (CR) to a file
QCWT Read until EOLN is TRUE on a file
@WIN Write an integer to a file

@RST Read a string from a file

TSTBIT Test for a bit on

SETBIT Turn a bit on

CLRBIT ~ Turn a bit off

SHL , ’ Shift a word left

SHR - . Shift a word right

@SFB ' Set global FIB address

@DWD Set default width and decimal places
@SIA Reset input vector

@soa . Reset output vector

@DIo Set I/0 vectors to default addresses
QINI ' Run-time initialization

@sSTR _ String store

ewCH . ‘ Write a string to a file

@pvL " 32~bit DIV software routine

B-2

Pascal/MT+ Programmer's Guide

B Library Routines

Table B-1. (continued)

Routine Purpose

@MDL 32-bit MOD software routine
MOVELE Block move left end to left end
MOVERI Block move right end to right end
QCHW Write a character to a file
QEQR Real comparison for =

@NER Real comparison for <>

@GTR Real comparison for >

@LTR Real comparison for <

@GER Real comparison for »>=

@LER Real compasison for <=

@RRL Read a real from a file

@WRL Write a real to a file

@RAD Real add’

@RSB Real subtract

@RML Real multiply

@RDV Real divide

@RNG Real negate .

@RAB | Real absolute valu

@RDL Read a‘long integer from a file
QRTL Write a long integer to a file
SQRT Real square root

TRUNC Pascal built-in truncate function
ROUND Pascal built-in round function
CHAIN Pascal interface for @CHN

 OPEN File handling routine

BLOCKR ‘File handling routine

" BLOCKW File handling routine

CREATE File handling routine

CLOSE File handling routine

CLOSED File handling routine

GNB File handling routine

WNB File handling routine

-PAGE File handling routine

EOLN File handling routine

EOF File handling routine

RESET File handling routine

- REWRIT "File handling routine
~'GET B . FPile handling routine

Pascal/MT+ Programmer's Guide

Table B-1. (continued)

B Library Routines

Routine Purpose

PUT File handling routine

ASSIGN File handling routine

PURGE File handling routine

IORESU File handling routine

CorPY ‘File handling routine

INSERT File handling routine

DELETE ~ File handling routine

POS Run-time support for strings

@WNC Write next character to a file
@RNC Read next character from a file
@RIN Read integer from a file

@RNB Read n bytes from a file

@WNB Write n bytes to a file

@BDOS86 Call operating system directly
@NEW Allocate memory for NEW procedure
@DSP Deallocate memory for DISPOSE procedure
MEMAVA MEMAVAIL function

MAXAVA MAXAVAIL function-

End of Appendix B

Appendix C
Sample Disassembly

This appendix contains the Pascal/MT+ program, PPRIME, which is
compiled with /X and /P options and then dlsassembled, producing the
following output. .

References to program locations are followed by a single
apostrophe (1000'), and references to data locations are followed by
a quotation mark (0000").

The operand of instructions that reference external variables
points to the previous reference and the final reference contains
absolute 0000. The list of external chains follows the disassembly
of the program.

Note: the object code generated in this example does not
necessarily indicate the level of optimization present in the
current release of the Pascal/MT+ compiler. To determine the level
of optimization, compile programs yourself and use the disassembler
to examine the output.

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 Copyright (c) 1982 Digital Research
Page # 1
Compilation of: PPRIME

sStmt Nest Source Statement

1 0

2 0 PROGRAM PPRIME;

3 Q (* USES SIEVE OF ERATOSTHENES *)
4 "] CONST

5 1 SIZE=8190;

6 1 VAR

7 1 FLAGS: ARRAY(0..SIZE] OF BOOLEAN;
8 1 I1,PRIME,K,ITER: INTEGER;
9 1 COUNT: : INTEGER;
10 1

11 1 BEGIN

12 1 COUNT := 0;
13 1 writeln('l0 iterations');

14 1 FOR ITER := 1 TO 10 DO
15 1 BEGIN

16 2 COUNT:=0;

17 2

18 2 FILLCHAR(FLAGS,SIZEOF (FLAGS) ,CHR(TRUE));
19 2

20 2 FOR I:=0 TO SIZE DO

21 2 IF FLAGS(I| THEN

22 2 BEGIN

23 3 PRIME:=I+I+3;

24 3 K:=I+PRIME;

25 3 WHILE K<=SIZE DO

26 3 BEGIN

27 4 FLAGS (K] : =FALSE;
28 4 K:=K+PRIME;
29 4 X END:

30 3 COUNT:=COUNT + 1;

31 3 END

32 3 END;

33 1 writeln(count,' primes');

34 1 END.

34 0 -

34 0 Normal End of Input Reached

Listing C-1. Compilation of PPRIME

Pascal/MT+ Programmer's Guide’ C Sample

OQutput from disassembler:

Pascal/MT+
Disassembly of: PPRIME

Stmt Nest

FLAGS
ITER

K

PRIME
I

COUNT

0000
Qo008
oolo

WSOV EWN

10

0013
0016
0017

11

001Aa
001D

12

0020
0023
0024
0027
002A
0032
0038
oo3B
003E

13

0041
0044
0045
0048
0049
004A
004B
004C

0

e e e =X

Release 5.5 Copyright (c) 1981 by MT MicroSYSTEMS Page #§

Source Statement / Symbolic Object Code

EQU . 0000
EQU 2000
EQU 2002
EQU 2004
EQU 2006
EQU 2008
PROGRAM PPRIME;
OB 00,00,00,00,00,00,00,00
DB 0¢0,00,00,00,00,0G,00,00
JMP 0000
(* USES SIEVE OF ERATOSTHENES *)
CONST
SIZE=8190;
VAR
FLAGS: ARRAY [0..SIZE] OF BOOLEAN;
I,PRIME,K,ITER: INTEGER;
COUNT: INTEGER;
BEGIN .

LELD 0006
SPHL
CALL 0000

COUNT := 0; .

LXI #,0000
SHLD 2008"

writeln('1l0 iterations');

LXI H,0000

PUSH H

CALL 0000

CALL 0038*

DB 0p,31,30,20,69,74,65,72
DB 61,74,69,6F,6E,73

CALL 0000

CALL 0000

CALL 0000

FOR ITER := 1 TO 10 DO -

LXI H,0001
PUSH H

LXI H,000A
PUSH H

FOP D

j0)4 H

DCX H

SHLD 2000"

‘Listing C-2. 'Disassembly of PPRIME -

Disassembly

Pascal/MT+ Programmer's Guide C Sample

Pascal/MT+ Release 5.5 Copyright (c) 1981 by MT MicroSYSTEMS Page
Disassembly of: PPRIME

sStmt Nest Source Statement / Symbolic Object Code
004P INX B
0050 PUSH H
0051 PUSH D
0052 CALL 0000
0055 SHLD 200A"
0058 LHLD 2000"
00sB INX H
005C SHLD 2000*"
Q00SF LELD 200a"
0062 DCX H
0063 SHLD 200A"
0066 MOV A,H
0067 . ORA L .
0068 Jz 0llp*
14 1 BEGIN
15 2 COUNT:=0;
006B LXI H,0000
006E SHLD 2008"
16 2
17 2 FILLCHAR (FLAGS ,SIZEOF (FLAGS) ,CHR(TRUE)) ;
0071 LXI H,0000"
0074 PUSH H
0075 LXI H,lFFF
0078 PUSH H
0079 - LXI H,0001
007¢C . PUSH H
Q07D CALL 0000
18 2
19 2 FOR 1:=0 TO SIZE DO
0080 LXI H,0000
0083 PUSH g -
0084 - . LXI H,lFFE
0087 . PUSH H
0088 POP D
0089 POP H
008A DCX H
008B SHLD 2006"
008E INX H
008F PUSH H
0090 PUSH D ’

. 0091 CALL . 0053
0094 SHLD 200c"
0097 LHLD 2006"
009%a- INX H
Q098 SHLD 2006"
009E LHLD 200C"
00Al DCX H

Listing C-2. (continued).

Disassembly

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 Copyright (c) 198l by MT MicroSYSTEMS Page # 3
Disassembly of: PPRIME

sStmt Nest Source Statement / Symbolic Object Code
00A2 SHLD 200¢c*

00AS MOV aA,H

00A6 ORA L

00A7 Jz 0llA'

20 2 IF FLAGS(I] THEN
00AA LXI H,0000"
00AD XCHG
00AE LELD 2006"
00B1 DAD D
00B2 MOV AM
00B3 RAR
00B4 JNC 0117'

21 2 'BEGIN

22 3 PRIME:=I+I+3;
0087 LHLD 2006"
00BA XCHG
00BB LHLD - 2006"
00BE DAD D
00BF INX H
ooco INX H
0ocl INX N
00C2 SHLD 2004"

23 3 K:=I+PRIME;
00CS - LHBLD 20086"
00Cs XCHG
00C9 LHLD 2004"
00CC DAD s}
00CD SHLD 2002"

24 -3 WRITELN (PRIME) ;
oobg " LELD 2004" '
00D3 PUSH H
00D4 LXI H,0021'
00D7 PUSH H
00D8 CALL 0025’
00DB CALL 0039
00DE CALL 0000
00El CALL 003F’

25 3 : WHILE K<=SIZE DO
00E4 LHLD 2002"
00E7 PUSH H
00ES8 LXI H,lFFE

. Q0EB PUSH H
- Q0EC CALL 0000

Listing C-2. (continued)

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 Copyright (c) 1981 by MT MicroSYSTEMS Page ¢ 4
Disassembly of: PPRIME

Stmt Nest Source Statement / Symbolic Object Code
O00EF POP PSW
00F0 JNC 0110"
26 3 BEGIN
27 4 . PLAGS (K] : =FALSE;
00F3 LXI #,0000"
00F6 XCHG
- 00F7 LELD 2002"
00FA DAD D
00FB PUSH H
00FC LXI H,0000
00FF XCHG
0100 POP H
0101 MOV M,E
28 4 K:=K+PRIME;
0102 LELD 2002"
0105 XCHG
0106 LHLD 2004"
0109 DAD D
010Aa SHLD 2002"
29 4 ’ END;
010D JMP 00E4"
30 3 COUNT :=COUNT + 1; ’
0l1l0 LHLD 2008"
0113 INX H
0114 SHLD 2008"
31 3 END
32 3 END;
0LL7 . Jup® 0097"
011A . JMP 0058
33 1 writeln(count,' primes');
011D LHLD 2008"
0120 ~ PUSH H
g121 - LXI H,00D5'
0124 PUSH H
0125 CALL 00D9!
0128 - CALL gooc'!
012B CALL "00DF*
012E CALL 0139°
0131 DB 07,20,70,72,69,6D,65,73
0139 CALL 0129 :
013C CALL 003cC!

Listing C-2. (continued)

Pascal/MT+ Programmer's Guide

Pascal/MT+
Disassembly of:

Stmt Nest

013F
4
0142

External
External
External
External
External
External
External
External
External
External
External

CALL

1 END.

Release 5.5
PPRIME

CALL

reference
reference
reference
reference
reference
reference
reference
reference
reference
reference
reference

chain
chain
chain
chain
chain
chain
chain
chain
chain
chain
chain

C Sample Disassembly

Copyright (c) 1981 by MT MicroSYSTEMS Page # 5

Source Statement / Symbolic Object Code

00E2'
0000
QWIN --> 012¢C
@CRL -=> 0140
QLEI --> 00ED
@FIN -=> 0092
@SFB --> 0126
@DWD -=> Ql3A
QINI -=> 0018
@WRS --> 013D
@HLT --> 0143

OUTPUT =-~> 0122
FILLCH --> 007E

Listing C-2. (continued)

End of Appendix C

Appendix D
Sample Debugging Session

This appendix supplies a sample debugging session that uses the
source file DEBUG.PAS, shown below.

Stmt Nest Source Statement

1 0 :

2 0 (* EXAMPLE TO ILLUSTRATE DEBUGGER *)

3 0

4 0 PROGRAM DEBUG;

5 0 VAR

6 1 HEXARR : STRINGI[16];

7 1 CH : CHAR;

8 1 I : INTEGER;

9 1
10 1 (* DUMMY PROC TO ALLOW SETTING BREAKPOINT *)
11 1
12 1 PROCEDURE BREAK; -
13 1 BEGIN
14 2 END;
15 1
16 1 (* FUNCTION TO CONVERT FROM INTEGER TO HEX CHARACTER *)
17 1

18 1 FUNCTION CONVERT(I : INTEGER) : CHAR; -

19 1 BEGIN

20 2 CONVERT := HEXARRI[1l]:;

21 2 END;
22 1 ’

23 1 BEGIN

24 1 HEXARR:= '0123456789ABCDEF';

25 1
26 1 REPEAT

27 2 BEGIN , '
28 3 WRITELN ('ENTER INTEGER TO CONVERT: '); READ(I):
29 3 CH:=CONVERT (I);)

30 3 - BREAK; (* BREAK ON RETURN FROM CONVERT *)
31 3 WRITELN ('HEX DIGIT IS: ',CH);)
32 3 END

33 3 UNTIL FALSE;

34 1

35 1

END.

Listing D-1. DEBUG.PAS Source File

Pascal/MT+ Programmer's Guide D Sample Debugging Session

In the following sample session, you interactively debug a
simple program. Your input is shown in boldface print; the column
on the right provides an explanation of each step.

A>MTPLUS B:DEBUG $O

Pascal MT+ Release 5.5
(€) 1981 MT MicroSYSTEMS, Inc.

A>LINKMT B:DEBUG=DEBUGGER,B:DEBUG,PASLIB/S

Link/MT+ Reiease 5.5

A>B:DEBUG
Pascai MT+ Symbolic Dedugger, Release 5.5
Symbo. tabie filename .-retutn: only focr nonei? B:DEBUG.SYP

Use BEJin ot TRaCe to start a program
+>SB BREAK
+BE

ENTER INTEGER TO CONVERT:
s
Aceanpois

teacned

OV T
Addzress: 3272 Jontains: 3

..oV cH
Address: 0273 tontalns: 0 =3 30

+>DC HEXARR+S
Address: 0263 Clontains: 4 2= 34

+>DX HEXARR

Address: 025E Contains:

GISE= 10 30 31 32 33 34 S 36 37 3B 39 41 42 43 44 45 .0123456783ABCDE
026E= 46 00 30 00 05 90 00. 00 Q0. 00 00 00 00 00 00 00 Fodoooiiiennnnns

rc) . .

Cowpile the program with the Debug option.

System displays banner.

Link the object file with the debugger.

System displays banner.

Wote: the linker aight display @WRL as an
undefined symbol, If your program does not
use ceal numbers, you can ignoce it.

Run program.
System displays banner.
Load the symbols.

Set breakpoint, then
start the progr.

Enter data.

2xamine I. [t is correct.

Examine CH. [t is wrong. Why? Because
convert is not returning the correct value.
Reviewing the soucce shows that a 1 was typed
when an I was intended on line 16. Before
recompiling check for other errors.

Examine HEXARR[S5]. It is not S.

Examine all of HEXARR. All the digits ace
off by 1. Note that HEXARR is a string and
therefore HEXARR[O] is the length field. The
code for convert does not allow for this.

Now that you have determined the problem,
exit DEBUGGER, and go back to the source and
fix it. .

Appendix E -
Interprocessor Portability

This appendix describes the features of Pascal/MT+ that are not
portable to versions for other microprocessors and operating
systems. A program without the following features should compile
with another Pascal/MT+ compiler with little or no changes to the
source code.

This does not mean that all of the features listed below are
not implemented on any other target processors. It only indicates
that they are hardware-dependent, and if implemented, are
implemented differently in different versions of the compiler. If
you use any of these hardware-dependent features, isolate them so
that they are easy to modify when you port the program.

While every effort is made to support compatibility, Digital
Research does not guarantee complete portability to all
implementations. The guidelines that follow are subject to change
without notice. There is no additional information concerning
portability to other Pascal/MT+ compilers.

If you want to write portable programs, avoid the following
features:

e Avoid INLINE.

'@ Avoid I/O ports (hardware-dependent).

® Avoid redirected 1/0 (hardware-dependent).
® Avoid device names such as CON:, RDR:, etc.

® Avoid scattering calls to IORESULT throughout the program.
Isolate the calls. IORESULT values depend on the operating
system. .

e Avoid ABSOLUTE addressing (hardware-dependent).

e Avoid INTERRUPT procedures (hardware-dependent).

® Avoid the use of variant records that circumvent type checking.

® Avoid chaining. Chaining is implementation-dependent.

e Avoid having overlays call other overlays. This is not
possible on other operating systems.

E-1

Pascal/MT+ Programmer's Guide E Interprocessor Portability

® Avoid dependence upon EOF for non-TEXT files because it is
implementation dependent. Some operating systems keep track of
how much information is in the file to the exact byte, while
others only keep track to the sector/block level, and the last
sector/block contains garbage information.

® Avoid using temporary files.
® Avoid BLOCKREAD/BLOCKWRITE because these might not be

implemented on all operating systems. Use SEEKREAD/SEEKWRITE
instead.

»End of Appendix E

Appendix F
Mini-assembler Mnemonics

The following table lists the valid 8080 mini-assembler
mnemonics for the INLINE construct of the Pascal/MT+ compiler.
Spaces and commas are ignored when mnemonics appear in an INLINE
construct. For example, "MOV A,M/ is the same as "MOVAM/.

Table F-1. 8080 Mini-assembler Mnemonics-

Mnemonic Value Mnemonic Value
NOP 000H DADH 029H
LXIB 001H LHLD 02AH
STAXB 002H DCXH 02BH
INXB 003H INRL 02CH
INRB 004H DCRL 02DH
DCRB 005SH MVIL 02EH
MVIB 006H CMA 02FH
RLC 007H SIM 030H

LXISP 031H
DADB 009H STA 032H
LDAXB 00aH INXSP 033H
DCXB 00BH INRM 034H
INRC 00CH DCRM 035H
DCRC 00DH MVIM 036H
MVIC 00EH STC 0374
RRC 00FH
. . ~ DADSPEw 039
LXID - 011R LDA : 03AH
STAXD 012H DCXSP 03BH
INXD 013H INRA 03CH
° INRD . 014H DCRA 03DH
DCRD 015H ' . MVIA 03EH
MVID 016H . CcMC 03FH
- RAL) - 0l1l7H) MOVBB 040H
. : MOVBC : 041H
DADD - 019H MOVBD 042H
LDAXD - - 01AaH MOVBE 043H

" DCXD 01BH MOVBH 044H
INRE - - 01CH MOVBL 045H
DCRE : 01DH MOVBM 046H
MVIE . 0lEH MOVBA 047H
‘RAR : OlFH) MOVCB) 048H
RIM . 020H : . Movee . 049H
-LXIH 021H : MOVCD ’ 04AH

~ SHLD 022H . e .MOVCE 04BH .

- INXH F 0238 : . MOVCH 04CH -
INRH -~ =~ 024H : - MOVCL - . . 04DH
DCRH - -025H . ‘MOVCM 04EH

Pascal/MT+ Programmer's Guide F Mini-Assembler Mnemonics

Table F-1. (continued)

Mnemonic Value Mnemonic Value
MVIH 026H MOVCA 04FH
DAA 027H MOVDB 050H
MOVDC 051H ADDH . 084H
MOVDD 052H ADDL 085H
MOVDE 0S3H ADDM 086H
MOVDH - 054H ’ ADDA 087H
MOVDL 055H ADCB 088H
MOVDM 056H . ADCC 089H
MOVDA 0578 ADCD 08AH
MOVEB 058H ADCE 08BH
MOVEC 059H ADCH 08CH
MOVED 05AH ADCL 08DH
MOVEE 05BH ADCM 08EH
MOVEH 05CH ADCA 08FH
MOVEL 05DH SUBB 090H
MOVEM 0SEH SUBC 091H
MOVEA 05FH SUBD 092H
MOVHB 060H - SUBE 093H
MOVHC 061H SUBH 094H
MOVHD 062H SUBL 095H
MOVHE 063H SUBM 096H
MOVHH - 064H SUBA | 097H
MOVHL 065H .) SBBB 098H
"MOVHM 066H ’ SBBC 099H
MOVHA 067H SBBD 09AH
MOVLB 068H SBBE 09BH
MOVLC . 069H SBBH 09CH
MOVLD 06AH SBBL 09DH
" MOVLE 06BH SBBM 09EH
MOVLH 06CH SBBA . 09FH
MOVLL) . 06DH . ANAB OAQOH
MOVLM 06EH ANAC 0AlH
MOVLA 06FH ANAD 0A2H
MOVMB 070H : ANAE : 0A3H
MOVMC 071H ANAH 0A4H
MOVMD 072H ANAL OASH .
MOVME . 0738 . - ANAM 0A6H
MOVMH 074H . ANAA 0A7H |
MOVML Q075H - . XRAB 0A8H
HLT . .. _076H . XRAC 0A9H
MOVMA 0770 XRAD 0AAH
MOVAB 078H XRAE - .OABH
MOVAC- 079 XRAH 0ACH
MOVAD 07AH _ XRAL " OADH
MOVAE 07BH) . XRAM 0AEH
MOVAH 07CH XRAA " OAFH
MOVAL - . 07DH i S : ORAB " OBOH
MOVAM 07EH . ORAC.. . OB1lH
 MOVAA 07FH - ORAD . 0B2H.

Pascal/MT+ Programmer's Guide F Mini-Assembler Mnemonics

Table F-1. (continued)

Mnemonic Value Mnemonic Value
ADDB - 080H ORAE ‘0B3H
ADDC 081H ORAH - 0B4H
ADDD 082H ORAL 0BSH
ADDE 083H ORAM 0B6H
ORAA 0B7H IN 0DBH
CMPB 0B8H . ccC 0DCH
CMPC 0B9H
CMPD O0BAH SBI ODEH
CMPE 0BBH RST3 ODFH
CMPH OBCH RPO OEOH
CMPL 0BDH POPH O0E1lH
CMPM OBEH JPO 0E2H
CMPA OBFH XTHL OE3H
RNZ 0COH CPO 0E4H
POPB 0ClH PUSHH 0ESH
JNZ 0C2H ANI OE6H
JMP 0C3H RST4 O0E7H
CNZ 0C4H RPE QE8H
PUSHB 0C5H PCHL 0ESH
ADI 0Cé6H JPE 0EAH
RSTO 0C7H XCHG O0EBH
RZ 0C8H CPE 0ECH
RET 0C9H) ’

JZ - 0CAH XRI OEEH
: RSTS Q0EFH
CZ 0CCH RP QFOB
CALL O0CDH POPPS OFlH
ACI 0CEH JP QF2H
RST1 " OCFH DI OF3H
RNC - ODOH A CP " OF4H
POPD OD1lH PUSHP OFSH
JNC 0D2H ; ORI OF6H
our OD3H RST6 OF7H
CNC 0D4H RM OF8H
PUSHD ODSH SPHL QF9H
SUI 0OD6H JM OFAH -
RST2 0D7H) EI OFBH
RC 0D8H . CM OFCH-
JC 0DAH ~ CPI OFEH
RST7 OFFH -

End of Appendix F

Appendix G
Comparison of /O Methods

This appendix illustrates four different ways to implement a
single file procedure named TRANSFER. Listing G-1 shows the main
statement body that calls the transfer routine in each of four
separate programs.

BEGIN
WRITE ('Source? ');
READLN (NAME) ;
ASSIGN (A,NAME) ;
RESET (A) ;
IF IORESULT = 255 THEN
BEGIN
WRITELN('Cannot open ',NAME);
EXIT
END;

WRITE ('Destination? ');
READLN (NAME) ;
ASSIGN (B,NAME) ;
_REWRITE (B) ;
IF IORESULT = 255 THEN
BEGIN i
WRITELN ('Cannot open ',NAME);
EXIT *
END;

TRANSFER (A,B)
END. '

Listing G-1l. Main Program Body for File Transfer Programs

Listing G-2 shows a transfer program using the BLOCKREAD and
BLOCKWRITE procedures. This program uses untyped files, and a large
2K buffer to transfer data. Note that the program only works for
files whose size is an even multiple of 2K bytes. Thus, if the size
of the source file is 9K, the last 1K is not written because the
variable RESULT is nonzero after the call to BLOCKREAD on .line 25.
Using a 128-byte buffer guarantees that all'the data is transferred.

The program shown in Listing G-3 uses the GNB and WNB routlnes
for byte-level access to the file.

Pascal/MT+ Programmer's Guide G I/0 Comparison

The program shown in Listing G-4 performs the file transfer
using the SEEKREAD and SEEKWRITE procedures. Notice that IORESULT
returns a 1 to indicate end-of-file if the last portion of data from
the source file does not fill the sector, just as in BLOCK I/0. 1In
this case, the 2K bytes that are the window variable for file
variable A do not fill the sector. However, the end portion of code
that does not fill up the 2K buffer is never written to the
destination file. .

Listing G-5 uses GET and PUT to transfer files. This method is
slower than the buffered methods.)

Table G-1 shows the code, data size, and execution speed for
each of the file transfer procedures when run on a 4MHz Z80
processor with no wait states, and a single-density, single-sided,
8-inch floppy disk. The sizes are in decimal bytes, the speed is in
seconds, and the size of the file is 8K bytes.

Note: these numbers are not identical for all releases of the
compiler. Your version might not produce the same size and speed.
However, the relative size and speed differences should be roughly
the same. ‘ . .

Table G-1. Size and Speed of Transfer Procedures

Transfer Method BLéCK‘I/O GNB/WNB SEEK 1/0 GET/PUT
Compiled Code 520 519" 530 477
Compiled Data 2532 2534 4584 482
Total Code 7317 7161 9243 6764
Total Data 3576 3577 5697 1494
Total Size 10893 10738 . 14940 8258
Speed 7.8 18.4 8.6 35.1

Pascal/MT+ Programmer's Guide G I/0 Comparison

Stmt Nest

Source Statement

PROGRAM FILE_.TRANSFER;

(* ___________ - ——— - — — - o *)
(* Transfer A to B using BLOCKREAD and BLOCKWRITE *)
(* ————— - - - —— " > — — - - *)
CONST

BUFSZ = 2047;
TYPE

PAOC = ARRAY[1l..BUFSZ] OF CHAR;

FYLE = FILE;
VAR

A,B : FYLE;

NAME : STRING;

BUF : PAOC;

PROCEDURE TRANSFER (VAR SRC: FYLE; VAR DEST : FYLE);
VAR

RESULT,I : INTEGER;

QUIT : BOOLEAN;

BEGIN
I :=0;
REPEAT

BLOCKREAD (SRC,BUF,RESULT ,SIZEOF (BUF) ,I);
IF RESULT = 0 THEN

BEGIN
- BLOCKWRITE (DEST,BUF ,RESULT,SIZEOF (BUF) ,I);
I := I + SIZEOF(BUF) DIV 128
END
ELSE

-QUIT := TRUE;
UNTIL QUIT;
CLOSE (DEST,RESULT) ;
IF RESULT = 255 THEN
WRITELN('Error closing destination. file')
END;
(* MAIN PROGRAM IN LISTING G-1 *).

"Listing G~2. File Transfer with BLOCKREAD and BLOCKWRITE

Pascal/MT+ Programmer's Guide G I/0 Comparison

Stmt Nest

1

FRORDNONNWEBEBEWWWIONNIONNNNNNNNH R HEHHRHEFOO0000 0

Source Statement

PROGRAM FILE_TRANSFER;

(* ___ *)
(* Transfer file A to file B u51ng GNB and WNB *)
(* ___ *)
CONST

BUFSZ = 2047;
TYPE

PAOC = ARRAY(1l..BUFSZ] OF CHAR:
TFILE = FILE OF PAOC; .
CHFILE = FILE OF CHAR;

VAR
A : TFILE;
B : CHFILE;

NAME : STRING;

PROCEDURE TRANSFER (VAR SRC: TFILE; VAR DEST : CHFILE);
VAR
CH : CHAR;
RESULT : INTEGER;
ABORT : BOOLEAN;
BEGIN
ABORT := FALSE;
WHILE (NOT EOF(SRC)) AND (NOT ABORT) DO
’ BEGIN
CH := GNB(SRC);
IF WNB (DEST,CH) THEN
BEGIN
WRITELN('Error wrltlng character');
ABORT := TRUE;
END;
END;
CLOSE (DEST, RESULT),
IF RESULT = 255 THEN
WRITELN ('Error closing ')
END;
(* MAIN PROGRAM IN LISTING G-1 *)

Listing G-3. PFile Transfer with GNB and WNB

Pascal/MT+ Programmer's Guide

Stmt Nest

0

Source Statement

PROGRAM FILE_TRANSFER;

(*-_‘_... ———————— - ..*)
(* Transfer A to B using SEEKREAD and SEEKWRITE¥)
(* ___________________________ *)
CONST

BUFSZ = 2047;

TYPE
PAOC = ARRAY[0..BUFSZ] OF CHAR;
TFILE = FILE OF PAOC;
CHFILE = FILE OF PAOC;

VAR -
A : TFILE;
B : TFILE;

NAME : STRING:;

PROCEDURE TRANSFER (VAR SRC: TFILE; VAR DEST : TFILE);

VAR
CH : CHAR;
RESULT2,RESULT,I : INTEGER;
ABORT : BOOLEAN;

BEGIN
CH := 'A';
RESULT := 0;
I :=0;
WHILE RESULT <> ‘1 DO
BEGIN
SEEKREAD (SRC,1I);
RESULT := IORESULT;
IF RESULT = 0 THEN
BEGIN T
DEST" := SRC";
SEEKWRITE (DEST,I);
END;
I := 1+ 1;
END;

CLOSE(DEST,RESULT);‘

IF RESULT = 255 THEN

WRITELN('Error closing destination file')

END; :
(* MAIN PROGRAM IN LISTING G-1 *)

’ Listing G-4. PFile Transfer with SEEKREAD and SEEKWRITE

G I/O Comparison

Pascal/MT+ Programmer's Guide G I/0 Comparison

Stmt Nest Source Statement
1 0 PROGRAM FILE_TRANSFER;
2 0
3 0 (* - - -- -=*)
4 0 (* Transfer file A to file B using GET and PUT *)
5 0 (* - - e e *)
6 0
7 0 TYPE
8 1 "CHFILE = FILE OF CHAR;
9 1 VAR
10 1 A,B : CHFILE;
11 1 NAME : STRING;
12 1 -
13 1 PROCEDURE TRANSFER (VAR SRC: CHFILE; VAR DEST : CHFILE);
14 1 VAR
15 2 RESULT : INTEGER;
16 2 BEGIN
17 2 WHILE NOT EOF (SRC) DO
18 2 BEGIN
1 3 DEST" := SRC";
20 3 PUT (DEST) ;
21 3 GET (SRC) ;
22 3 END;
23 2
24 2 CLOSE (DEST ,RESULT) ;
25 2 IF RESULT. = 255 THEN
26 2 WRITELN('Error closing destination file')
27 2 END;
28 1 (* MAIN PROGRAM IN LISTING G-1 *)

Listing G-5. File Transfer with GET and PUT

End of Appéndix G

Index

A

assembler, 1-1
assembly language modules, 4-7

c

C, linker command line option,
2-12

CALL instruction, 2-7,

chained programs, 3-14

chaining, 3-1, 3-14

CMD, linker input command file,
2-12

2-9

Cn, source code compiler option,

2-7
COM file, 2-13
command line options
compiler, 2-3
linker, 2-11
command line
compiler, 2-1
LINK/MT+, 2-10, 3-9
compilation data, 2-2
compiler errors, 2-3
compiler overlays, 2-3
compiler passes, 2-1
compiler .
command line, 2-1
command line options,
2-3
controlling the listing,
2-9
invocation of, 2-1 -
object file, 2-2
organization of, 2-1
overlays, 2-1 .
source code options, 2-5
source file, 2-1
CP/M BDOS, 4-19
QCWT, 4-19

D

D, linker command line option,
2-12 '
data area, 2-12
data size- o
root program, 3-9

‘HEX file,
- hexadecimal filetype, 3-4

data storage
memory layout,
debugger, 1-1

4-1

DIS8080 disassembler, 1-1
output, C-2
@DYN, 2-9
dynamic debugger, 1-1
E,
compiler source code option,
3-6
linker command line option,
2-13
source code compiler option,
2-7
entry point records, 2-7
ERL file

relocatable format of, 4-3

error identification number, 2-3

EXTERNAL directive, 3-2

F

F, linker command line option,
2-12

file buffer, G-1, G-2

file variable, G-~2

filespec, 2-7

FUNCTION GNB, G-1

FUNCTION IORESULT, G-2

FUNCTION WNB, G-1

G
GNB, G-1
H

H, linker command line option,
2-13
hardware stack,
header code, 3-3
heap, 3-14
size of, 3-14
‘root program, 3-10
2-13

4-18

Index-1

I

I, source code compiler option
2-7 :

include files, 2-7

@INI, 4-19

interrupt handling, 4-20

interrupt vector, 4-20

Interrupt
hardware stack, 4-3
IORESULT, G-1
K
K, source code compiler option
2-7
L
L,
linker command line option,
2-13
source code compiler option,
2-9
LIBMT+, 1-1, 2-14
librarian, 1l-1
LINK/MT+, 2-10

command line, 2-10
command line options,
2-11
error messages,
linker disk, 1-8
linker options,

2-16
2-11

linker, 2-10, 3-5
input command file, 2-12
overlay options, 2-14, 3-8

load maps, 2-13
local variable stack, 4-2

M, linker command line option,

2-13
M80 assembler, 4-3
MEMAVAIL, 4-2
memory map, 2-13
. memory space; 2-2
module header code, 3-3
modules, 3-1
multiple overlay areas, 3-5
@MVL, 4-7 . :

o

overlay manager, 3-4, 3-6, 3-7,
3-10
error messages, 3-11
overlays, 3-1, 3-4, 3-6
as assembly language modules,
3-7 .
@OVL, overlay manager routine,
3-6
OVLMGR3.MAC, 3-6
Qovs, 3-7, 3-11

P

P,
linker command line option,
2-14
source code compiler option,
2-9
parameter passing, 4-7
PAS, 2-7
source filetype, 2-2
Pascal/MT+ system
distribution disks,
filetypes, 1-2
suggested configuration, 1-7
PASLIB, 2-13, 2-14, 2-15, 3-6,
3-7, 3-13
Phase 0, 2-1,
Phase 1, 2-1
Phase 2, 2-1, 2-2
PIPI 1-8 .
PROCEDURE BLOCKREAD, G-1
PROCEDURE BLOCKWRITE, G-1
PROCEDURE GET, G~2
PROCEDURE PUT, G-2
PROCEDURE SEEKREAD, G-2
PROCEDURE SEEKWRITE, G-2
Program sample)
PPRIME, C-1.

1-2, 1-7

2-2, 2-9

‘program size, 1l-1

programming tools, 1l-1

Q

Qn, source code compiler option,
2-9 .

Index-2

R

R, source code compiler option,
2-9

range checking, 2-9

recursion, 4-18 :

relocatable object file, 2-1

RET n instruction, 4-7

RMAC assembler, 4-3

@RNC, 4-19

root program, 2-14,
3-8, 310, 3-11

RST n instruction,

@RST, 4-19

run-time exception checking,
2-10

run-time library, 1-1, 2-14

run-time range checking, 2-9

3-4, 3-5,

2-7, 2-9

s r .
compiler option, 4-18
linker command line option,

2-14

@SFP, 4-2, 4-18

source code compiler option,
2-9

segmented programs, 3-1
software development process,
1-1
source filetypes
SRC, PAS, 2-2
SRC' 2‘2' 2"7
@ss2, 4-7
stack frame allocation,
stack pointer, 2-10
initialization, 4-3
stack, 4~2
stand-alone programs,
static data, 3-5, 3-9,
static variables, 3-5
SYM file, 2-14, 2-16, 3-8,
3-9, 3-10
symbol table, 2-1, 2-2, 2-7
SYSMEM, 4-2 .

2-9

4-19
3-10

T

T, source code compiler option,

2-9
text editor, 1-8
type checking, 3-3
- strict, weak, 2-9

W,
linker command line option,
2-14
source code compiler option,
2-9

window variable, G-2
WNB Function, G-1
@WNC, 4-19

X

X, source code compiler option,
2-10
@xop, 2-7

Z,
compiler option, 4-3, 4-19
source code compiler option,
2-10

Index-3

Reader Comment Form

We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date ——___ Manual Title ' Edition

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

. 3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEA_RCH-.

é

Attn: Publications Production

BUSINESS REPLY MAIL

FIRST CLASS / PERMITNO. 182 / PACIFICGROVE,CA

O R
POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL RESEARCH"

P.O. Box 579
Pacific Grove, California
93950

. .] c
: . Zz

: £

- . -] m
. L . o
. =

>

: . R B) =

. m
: 7]

NO POSTAGE
NECESSARY
IF MAILED IN'THE

DIGITAL
RESEARCH'

¥ IMPORTANT NOTICE ¥

THANK YOU FOR BUYING OUR PRODUCT. YOU
MAY HAVE A READ.ME FILE ON YOUR DISK.
PLEASE LOCATE THE FILE AND READ IT.

Post Office Box 579 ® 160 Central Avenue s Pacific Grove, California 93950 » (408) 649-3896 8 TWX 910 360 5001

