
Pascal/MT+ ™

Language
Programmer's Guide

for the
CP / M® Family of Operating Systems

Copyr ight ©1983

Digital Research
P.O. Box 579

160 Central. Avenue
Pacific Grove, . CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
,reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
or her own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any ·implied w'lrranties of
merchantability or fitness for any particular
purpose. Further, Dig i tal Research reserves the
right to revise this publication and to make changes
from time to time in the· content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
Pascal/MT+, DIS8080, LIBMT+, LINK/MT+, LINK-80,
RMAC, and SID are trademarks of Digital Research.
Intel is a reg istered trademark of Intel

··Corporation. Intel SBC-80/10 is a trademark of
Intel Corporation. Microsoft is a registered
trademark of Microsoft Corporation. UCSD Pascal is
a trademark of the Regents of the Unive.rsity Of
California. Z80 is a registered trademark of Zilog,
Inc.

The Pascal/MT+ Language Programmer's Guide for the
CP/M Family of Operating Systems was prepared uoing
th~ Digital Research TEX Text Formatter and printed
in the United Stat~s of America. .

* First Edition: March 1983 *
**************~****.********.******

Foreword

The Pascal/MT+™ language is a full implementation of standard
Pascal as set forth in the International Standards Organization
(ISO) standard DPS/7185. Pascal/MT+ also has several additions to
standard Pascal that increase its power to develop high quality,
efficiently maintainable software for microprocessors. Pascal/MT+
is useful for both data processing applications and for real-time
control applications.

The Pascal/MT+ system, which includes a compiler, linker, and
programming tools, is implemented on a variety of operating systems
and microprocessors. Because the language is consistent among the
var ious implementations, Pascal/MT+ programs are easily
transportable between target processors and operating systems. The
Pascal/MT+ system can also generate software for use in a ROM-based
environment, to operate with or without an operating system.

This manual describes the Pascal/MT+ system, which runs under
any of the CP/M® family of operating systems on an 8080, 8085, or
Z80® -based microcomputer with at least 48K bytes of memory. The
manual tells you how to use the compiler, linker, and the other
Pascal/MT+ programming tools. Also included are topics related to
the operating system for your particular implementation.

For information about the Pascal/MT+ language, refer to the
Pascal/MT+ Languag"e Reference Manual.

iii

Table of Contents

1 Getting Started with Pascal/MT+

1.1 Pascal/MT+ Distribution Disks

1.2 Installing Pascal/MT+

1.3 Compiling and Linking a Simple Program.

2 Compiling and Linking

2.1 Compiler Organization

2.2 Invoking the Compiler

2.2.1
2.2.2
2.2.3
2.2.4

Compilation Data
Compiler Errors • •
Command Line Options
Source Code Options •

2.3 Using the Linker •••••••

2.3.1
2.~.2
2.3.3

Linker Options • • • •
Required Relocatable Files
Linker Error Messages •

2.4 Using Other Linkers

3 Seg.ented Prograas

3.1 Modules

3.2 Overlays •

1-2

1-7

1-8

2-1

2-1

2-2
2-3
2-3
2-5

• • 2-10

• 2-11
• ' • 0 2-15

• 2-16

2-16

3-1

3-5

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

Pascal/MT+ Overlay System • • • • . 3-5
3-6
3-7

Using Overlays • • • • • • • • • • • •
Linking Programs with Overlays
Overlay Error Messages
Example

3.3 Chaining ••••

4 Run-tiaelnterface

4.1 Run-time Environment

4.1.1 Stack •
4.1.2 Program Structure

v

o 3-11
. • • 3-11

• • 3-14

4-1

4-2
4-3

4.2

Table of Contents
(continued)

Assembly Language Routines •

Accessing Variab~es and Routines
Data Allocation • •

· .. .
4.2.1
4.2.2
4.2.3
4.2.4

Parameter Passing • • • • •

4-3

4-4
4-4
4-7
4-8 Assembly Language Interface Example

4.3 Pascal/MT+ Interface Features

Direct Operating System Access ••••
INLINE •••••••
Absolute Variables ••••••••

4-9

4-10
• • • 4-12

• 4-14
· 4-15

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

Interrupt Procedures
Heap Management • • •••••• 4-17

4.4 Recursion and Nonrecursion •

4.5

4.6

Stand-alone Operation

Error and Range Checking • •

4.6.1
4.6:2
4.6.3
4.6.4

Range Checking
Exception Checking •
User-supplied Handlers
I/O Error Handling

5 Pascal/MT+ Progra.aing Tools

5.1 DIS8080, the Disassembler

5.2 The Debugger

5.2.1 Debugging Programs
5.2.2 Debugger Commands ••

5.3 LIBMT+, the Software Librarian.

5.3.1 Searching a Library • • • • • • •
5.3.2 LIBMT+ as a Converter to L80 Format

vi

• • • 4-18

• • • 4-19

• 4-20

• • ~ 4-21
• • • 4-21
• • • 4-22

4-22

5-1

5-2

5-3
5:...4

5-7

5-7
5-8

Appendixes

A Compiler Error Messages A-I

B Library Routines • • B-1

C Sample Disassembly. C-l

D Sample Debugging Session • 0-1

B Interprocessor Portability E-l

p Mini-assembler Mnemonics • F-l

G Comparison of I/O Methods G-l

vii

'rabIes

1-1.
1-2.

Tables, Figures, and Listings

Pascal/MT+ System Filetypes • • • •
Pascal/MT+ Distribution Disks •••

1-3
1-4

2-1. Default Values for Compiler Command Line Options. 2-4
2-2. Compiler Source Code Options 2-6
2-3. $K Option Values • • • • • • • • 2-8
2-4. Linker Options • • • • • • • • • • • • • 2·-11
2-5. Linker Error Messaqes • • • • • • • • • 2-16

4-1. Size and Range of Pascal/MT+ Data Types 4-6
4-2. @ERR Routine Error Codes •••••••••• 4-21

5-1.
5-2.

·5-3.

A-l.

B-1.

Examples of Parameters
Debuqger Display Commands •
Debugger Control Commands

Compiler Error Messaqes •

Run-time Library Routines

F-l. 8080 Mini-assembler Mnemonics •

G-l. Size and Speed of Transfer Procedures

Figures

1-1.

2-1.

4-1.
4-2.
4-3.
4-4.

5-1.

Listings

Software Development Under Pascal/MT+ •

Pascal/MT+ Compiler Organization

Memory Map: Program Linked Without /0 Option
Memory Map: Program Linked With /0 Option
Memory Map: Program With Overlays
Storage for the Set A •• Z

D1S8080 Operation . • • • •

Main Proqram Example
Module Example

5-5
5-5
5-6

A-l

B-1

F-l

G-2

1-2

2-1

4-1
4-1
4-2
4-6

5-2

3-3
3-4

3-1.
3-2.
3-3.
3-4.
3-5.
3-6a.
3-6b.

PROO .SRC • • • • • •
M001.SRC ••••••

• • • • 3-12

MOD 2 • SRC • • • • • • • • • • • • • •.
• 3-12
. 3-13

Chain Demonstration Program 1
Chain Demonstration Proqram 2 •

4-1. Accessing External Variables

viii

• • • •• • 3-15
• • • • • 3-15

4-4

Listings

Tables, Figures, and Listings
(continued)

4-2. Pascal/MT+ PEEK POKE Program • • • • • • 4-8
4-3. Assembly Language PEEK and POKE Routines •••• 4-9
4-4. Calling BOOS Function 6 • • • • •• • • 4-10
4-5. Calling BDOS Function 23 ••••••••••••• 4-11
4-6. USing INLINE in @BDOS •••••••••••••• 4-13
4-7. Using INLINE to Construct Compile-time Tables •• 4-14
4-8. Using Interrupt Procedures • -. • • • 4-16

C-l. Compilation of PPRlME
C-2. Disassembly of PPRlME • •

D-l. DEBUG. PAS Source File • • •
0-2. Sample Debugging Session

C-2
C-3

0-1
D-2

G-l. Main Program Body for File Transfer Programs G-l
G-2. File Transfer with BLOCKREAD and BLOCKWRITE • G-3
G-3. File Transfer with GNB and WNR • • • • • G-4
G-4. :- File Transfer with SEEKREAD and SEEKWRITE • • G-5
G-5. File Transfer with GET and PUT • • • • • G-6

ix

Section 1
Getting Started with Pascal/MT+

The Pascal/MT+ system includes a compiler, a linker, a large
library of run-time subroutines, and other programming tools to help
you build better programs faster. The programming tools are

• DIS8080~, a disassembler
• LIBMT+~, a software library-building utility
• a dynamic debugger

The Pascal/MT+ system runs under any of the CP/M family of
operating systems on an 8080, 8085, or Z80-based computer. The
compiler and linker need at least 48K bytes of memory to run. To
handle larg~r programs, they both need more memory.

The size of a program developed with Pascal/MT+ depends on the
size of the source code, and on the number of run-time subroutines
it uses. Typically, the minimum size of a simple program is about
8K bytes.

Figure 1-1 illustrates the software developmellt process using
the Pascal/MT+ system.

1-1

Pascal/MT+ Programmer's Guide

MT PLUS
DEBUGGER

RUN-TIME
LIBRARY

OTHER
Pascali Assembler

MODULES

MT PLUS
COMPILER

MT PLUS
LINKER

EXECUTABLE
PROGRAM

1.1 Distribution Disks

MT PLUS
DISASSEMBLER

AN073

Figure 1-1. Software Development Under Pasca1/MT+

1.1 Pasca1~+ Distribution Disks .

The Pascal/MT+ system is supplied on three separate disks.
These disks contain a number of files of different types. Table 1-1
describes the filetypes used in thePascal/MT+ system. Table 1-2
briefly describes the contents of each di~tribution disk.

1-2

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

~able 1-1. Pascal~+ Syste. Piletypes

Filetype
r

BLD

COM

CMD

DOC

ERL

ERR

LIB

MAC

PAS

PRN

PSY

SRC

Syp

SYM

TXT

nnn

Contents

Build file1 input file used by LIBMT+

Command file 1 direc.tly executable under CP/M

Linker input command file

Document file1 contains printable text in
ASCII form

Relocatable object file 1 contains relocatable
object code generated by the compiler

Error message file output by compiler

Library file1 contains subroutines

Assembly language source file for RMAC

Pascal source file1 contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)

Print file output by compiler

Intermediate symbol file used by linker

Pascal source file1 contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)

Symbol file used by debugger

Symbol file used by SID

Text file1 contains text of messages output
by compiler .

Hexadecimal n1 used for numbering o~erlays

1-3

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-2. Pascal/Mr+ Distribution Disks

File I
LINKMT.COM

MTPLUS.COM

MTPLUS.OOO

MTPLUS.OOI

MTPLUS.OO2

MTPLUS.OO3

MTPLUS.OO4

MTPLUS.OOS

MTPLUS.OO6

PASLIB.ERL

ROVLMGR.ERL

MODl.SRC

MOD2.SRC

DEMOPROG.SRC

File I
IOCHK.BLO

DIS8080.COM

LIBMT+.COM

XREF.COM

AM09Sll.CMD

AMD9S1lX.CMD

Disk 1

Content or Use

Pascal/MT+ Linker

Pascal/MT+ Compiler

Compiler Root Program

Compiler Overlay

Compiler Overlay

Compiler Overlay

Compiler Overlay

Compiler Overlay

Overlay used with Debugger

Pascal/MT+ Run-time System Module

Relocatable Overlay Manager

Sample Program

Sample Program

Sample Program

Disk 2

Content or Use

LIBMT+ input command file to produce
IOERR.ERL

Pascal/MT+ Disassembler

LIBMT+ Librarian Utility

Pascal cross reference utility

LI'NK/MT+ input command file for
linking AMOIO, FPRTNS, REALlO, .and
TRAN9S1l .

LINK/MT+ input command file for
linking justAMOIO and FPRTNS

1-4

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

File

STRIP.CMD

XREF.OOC

INDEXER. DOC

BCDREALS.ERL

DEBUGGER.ERL

FPREALS.ERL

FPRTNS.ERL

FULLHEAP. ERL

RANDOMIO.ERL

REALIO.ERL

TRAN95ll.ERL

TRANCENO.ERL

UTILMOD.ERL

FIBDEF.LIB

APUSUB.MAC

CHN.MAC

I

Table 1-2. (continued)

Disk 2 (continued)

Content or Use

LINK/MT+ inpu t command file to produce
STRIP.COM

Document file containing instructions
for XREF, cross reference utility

Document file containing instructions
for INDEXER, source file index
utility

BCD ar i thmetic module (does not
include square root or
transcendentals)

Debugging module that can be linked to
a program

Software floating-point m~th module
(contains REALIO.ERL)

Hardware floating-point tranQcendenta1
math module for AMD951l

Heap management and garbage collection
module. PASLIB. ERL contains only
USCd~style stack/heap routines.

Random I/O file ·proce.ssing module

Real arithmetic I/O module used only
with AMD95l1

Transcendental math module for use
with AMD95ll

Transcendental math module (for
software floating-point only)

Module containing KEYPRESSED, RENAME,
and EXTRACT utilities

File Information Block definition

AMD9511 routines for TRAN95l1

Source for @CHN; chain routine can be
altered to do bank switching in a
non~CP/M environment

1-5

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

File I
CWT.MAC

DIVMOD.MAC

OVLMGR.MAC

RST.MAC

AMDIO.SRC

ATWNB.SRC

CALC.SRC

CPMRD.SRC

GET.SRC

HLT.SRC

INDEXER. PAS

IOERR.SRC

PINI.SRC

PUT.SRC

RNC.SRC

STRIP " SRC

TRAN951l.SRC

Table 1-2. (continued)

Disk 2 (continued)

Content or Use

Source for @CWT routine

Source for DIV and MOD routines that
include a direct CP/M call for divide
by 0 error message

Over lay Manager source containing
user-selectable options ~ unmodified
version already in PASLIB.ERL

Source for @RST routine

Module containing routines to
interface with the AMD95ll; must be
~ustomized for specific hardware

Source for @WNB routine

Sample program for testing floating­
point math useful for testing AMD95ll

Source for routine that uses @RST

Source for low-level input routine

Source for a user-defined hal t routine
(current routine calls CP/M)

Source program for Pascal indexing
program

Source for a user-defined I/O error
handling routine

Source for@INI initialization routine

Source for low-level output routine

Source for @RNB read next byte routine

Source for @RNC read next character
routine

Source file for utility program used
with LINK/MT to eliminate unused
entry points in an overlay

Source for AMD95ll routines

1-6

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-2. (continued)

Disk 2 (continued)

File I Content or Use

UTILMOD.SRC Source for module con t a i n i n g.
KEYPRESSED, RENAME, and EXTRACT

WNC.SRC Source for @WNC routine

XBDOS.SRC Source for BDOS routine that calls
IOERR

XREF.SRC Source for XREF, cross reference
utility

DBUGHELP.TXT Help file for debugger module

MTERRS.TXT Compiler Error Message Text File

1.2 Installing Pascal/MT+

The first thing you should do when you receive your Pascal/MT+
system is make copies of both the distribution disks.

Rote: you have certain responsibilities when making copies of
Dig i tal Research produc ts. Be sure you read your licensing
agreement.

Although you can use the compiler, linker, and other utilities
directly from the distribution disks, it ·is more convenient if you
copy specific files from the distribution disks to working system
disks. One way to set up your Pascal/MT+ system is to use one disk
for compiling and another disk for linking. You can use other disks
for the programming tools, assorted source code, and examples.

This suggested configuration is just one way of setting up your
disks. The important thing is that all the compiler modules are on
the same disk, and all the linker modules are on one disk e For
simplicity, it is a good idea to put all the related relocatable
files on the same disk as the linker •.

Note that the file MTPLUS.006 is only necessary when using the
debugger, and that the compiler can run without tha error message
file MTERRS.TXT. If your compiler disk is short of space, you car,
eliminate these two files.

1-7

Pascal/MT+ Programmer's Guide 1.·2 Installing Pascal/MT+

The following steps describe how to make a compiler disk and a
linker disk:

1) Install both CP/M and the PIP utility on each of two blank
disks. Label one· disk as the compiler, and the other as
the linker.

2) Put a text editor on ·the compiler disk.

3) .Copy the following files from the distribution disks to the
compiler disk:

• MTPLUS.COM
• MTPLUS.OOO through MTPLUS.006
• MTERRS.TXT

4) Copy the following files to the linker disk:

• LINKMT.COM
• all the ERL files

1.3 Compi1ing and Linking a St.ple Prograa

If you have never used Pascal/MT+ before, the following step­
by-step example shows you how to compile, link, and run a simple
program. This example assumes that you are using a CP/M system wi th
two. disk drives, and that you are familiar with CP/M.

1) Put the compiler disk in drive A and the linker disk in
drive B.

2) Using the text editor, create a file called TEST1.PAS and
enter the following program. Put the file on drive Busing
PIP.

PROGRAM SIMPLE_EXAMPLE;

VAR
I INTEGER;

BEGIN
WRITELN ('THIS IS JUST A TEST');
FOa I:= 1 TO 10 DO

WRITELN· (I) ;
WRITELN (' ALL DONE')

END.

1-8

Pascal/MT+ Programmer's Guide 1.3 Compiling and Linking

3) Now, compile the program with the following command:

A>MTPLUS B:TBSTI

If you examine your directory, you see a file named
TEST1.ERL that contains the relocatable object code
generated by the compiler. If the compiler detects any
errors, correct your source program and.try again.

4) Now, log on to drive B, and link the program using the
following command:

B>LINKMT TBSTl,PASLIB/S

Your directory now contains a file named TEST1.COM that is
directly executable under CP/M.

5) To run the program, enter the command:

B>TBSTl

Although the test program shown in the preceding steps is very
simple, it demonstrates the essential steps in the development
process of any program, namely editing, compiling, and linking. '

If you want to write other simple pcograms, follow the same
steps, but.use your new program's filename instead of TEST1.

End of Section 1

1-9

Section 2
Compiling and Linking

This section tells how to use the compiler with its various
options. It also descr ibes how to link programs using the
Pascal/MT+ linker, as well as different linkers.

2.1 Compiler Organization

The Pascal/MT+ compiler processes source files in three steps
called passes or phases.

• Phase 0 checks the syntax and generates the token file.
• Phase 1 generates the symbol table.
• Phase 2 generates the relocatable object file.

The compiler creates some temporary files on the disk
containing the source file, and under normal conditions it deletes
those files. Make sure there is enough space on the disk, or use
the T option to specify a different disk for the temporary files.
See Section 2.2.3.

The compiler is segmented into overlays as shown in the
following figure.

REQUIRED OVERLAYS OPTIONAL OVERLAYS

Pi-lure 2-1. PascaljM'r+ Co.mpiler Organization

2.2 Invoking the Compiler

You invoke thePascal/MT+ compiler with a command line of the
following form: .

MTPLUS <filespec> {<options>}

where <filespec> is the source file to be compiled f and <options> is
a list of optional parameters that you can use .to control the
compilation process. .

2-1

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

The compiler can read the source file from any disk. The
<filespec> must conform to the standard filespec format, and end
wi th a car r iage return/line-feed, and CTRL-Z. Refer to your
operating system manual for a description of a Digital Research
standard filespec.

If you do not specify a file~ype, the compiler searches for the
file with no filetype. If the compiler cannot find the file, it
assumes a SRC file,type, assumes a PAS filetype. If the compiler
still cannot find the file, i~ displays an error message.

The compiler generates a relocatableobject file with the same
filename as the input source program. The relocatable file has the
ERL filetype.

2.2.1 Caapi1ation Data

The Pascal/MT+ compiler per iodically outputs information dur ing
Phases a and 1 to assure you it is running properly.

During Phase 0, the compiler outputs a + (plus sign) to the
console for every 16 lines of source code it scans.

At the beginning of Phase 1, the compiler indicates the amount
of available memory space. The space is shown as a decimal number
of melOOry bytes available before generation. of the the symbol table.
Phase 1 also indicates available memory space following generation
of the symbol table. This second indi~ation is the amount of memory
left for user symbols after the compiler symbols are loaded.

During Phase 1, the compiler also outputs a t (pound sign) to
the console each time it reads a procedure or function. Symbol
table over flow occurs if too 1i t.tle· symbol table space rtmains for
the current symbol. You can overcome this by using the $Koption
and breaking the program into modules. At completion, Phase 1
indicates the ~otal numb~r of bytes remaining in memory.

Phase 2 g·enerates the relocatable object code. During this
phase, the compiler displays the name of each procedure and function
as it is read. The offset from the beginning of the module and the
size of the procedUre (in decimal) follow the name.

When the processing is· complete, the compiler displays the
following messages:

Lines :
Errors
Code
Data

lines of source code compiled (in decimal)
nUmber of errors detected
bytes of cod~ generated (in decimal)
bytes of data reserved (in decimal)

2-2

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

2.2.2 Coapiler Brrors

When the compiler finds a syntax error, it displays the line
containing the error. If you are using the MTERRS.TXT file, the
compiler also displays an error description. If you are not using
the MTERRS.TXT file, or you have a nonsyntax error, the compiler
displays an error identification number.

When all processing is completed, the ERR file generated by the
compiler summarizes all nonsyntactic errcrs.

Note: In Pascal/MT+, the compilation errors have the same sequence
and meaning as in Jensen's and Wirth's Pascal User Manual and
Report. Appendix A contains a complete list of the er ror' messages,
explanations, and causes.

When the compiler encounters an error, it asks if you want to
continue or stop, unless you use the command line option C. (See
Section 2.2.3.)

If the compiler cannot find an overlay or a procedure within an
overlay, it dispiays messages of the following form:

Unable to open <filename> <overlay # >
Proc: n<procname>" not found ovl: <filename> <oveclay i>

The compiler displays the following procedure names if it
cannot fing an ove~lay name in the entry point table:

001 INITIALI
002 PHASEI
003 PH2INIT
004 BLK
005 PH2TERM
006 DBGWRITE

The number preceding the name is the group number of the overlay
that contains the procedure.

Usually, you can find a missing overlay by ensuring that the
name is correct, and that it is on the disk. If you cannot find it,
recopy the overlay from your distribution disk. If you are sure the
overlay is on the disk and you still get an error message, it means
t~e file is corrupted.

2.2.3 Co.mand Line Options

Compiler command line options contr·ol specific actions of the
compiler such as where it writes the output files. All command line
options are single letters that start with a $ or a i. Certain
options require an additional parameter to specify where to send the
output file or where an input file is located. If you specify more
than one option, do not put any blanks between the options.

2-3

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-1 describes the commmand line options. In this table,
d stands for a parameter to specify a dis~ drive or output device.
The parameters are as follows:

• X sends the output file to the console.
• P sends the output file to the printer.
• @ specifies the logged-in drive.
• Any letter from A to 0 specifies a specific drive.

Table 2-1. Default Values for Compiler Command Line Options

Option I
A

B

C

D

Ed

Od

Pd

Q

Rd

Meaning

Automatically calls the linker
at the end of compilation.
This option requires a linker
input command file with the
same name as the input file.
The linker must be named
LINKMT.COM.

Uses BCD rather than binary
for real numbers.

Continues on error; default
is to pause and let user
interact and asks on
n each error, one at a time.

Generates debugger
information in the
object code and writes
the PSY file to the drive
specified by the R option.

The MTERRS.TXT file is on
,disk d: where d=@,A •• O.

MTPLUS.OOO, and MTPLUS.OOl
through MTPLUS.006 are on
drive d: where d=@,A •• O.

Puts the PRN (listing file)
on disk d: where d=X,P,@,
A •• O~

Quiet; suppresses any
unnecessary console
messages.

puts the ERL file'on disk
d: where d=@~A •• o.

2-4

I Default

Compiler
automatically
chains.

Binary reals.

Compiler stops
and asks on
each error.

No debugger
information
and no PSY
file generated.

MTERRS.TXT on
default disk.

Overlays on
default disk.

No PRN file.

Compiler
outputs all
messages.

ERL file on
, default disk.

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-1. (continued)

Option I
Td

v

x

@

Meaning

Puts the token file
PASTEMP.TOK on disk
d: where d=@,A •• 0.

Prints the name of each
procedure and function when
found in source code as an
aid to. determining error
locatlons during Phase O.

Generates an extended ERL
file, including disassembler
records.

Makes the @ character
equivalent to the A

character.

J
Default

PASTEMP.TOK on
default disk.

Procedure names
not printed.

ERL file cannot
be disassembled.

@ not equivalent
to A

The following is an example of a Pascal/MT+ command line:

A>MTPLUS A:TESTPROG $RBPXA

This command line tells the compiler to read the source from drive·
A, write the ERL file to drive S, display the PRN file on the
console, a·nd call the linker automatically.

2.2.4 Source Code Options

Source code compiler options are special instructions to the,
compiler that you put in the program source code. A source code
option is a single lower- or upper-case letter preceded by a dollar
slgn, embedded in a comment. The option must be the first item in
the comment. Certain source code options require additional
parameters.

You can put any number of options in a source program, but only
one option per comment is allowed. You cannot place blanks between
the dollar sign and the option letter. The compiler accepts blanks
between the option letter and the parameter.

Pascal/MT+ supports twelve source code compiler options, as
summarized in Table 2-2.

2-5

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-2. Coapiler Source Code Options

Option I
Cn

E +/-

I<filespec>

Kn

L +/-

P

On

R +/:..

S +/-

T +/-

W +/-

X +/-

Z $nnnnH

Function

Use RST n instructions
for REAL operation.

Controls entry point
generation.

Includes another source file
into the input stream, for
example, {$I XXX.LIB}.

Removes built-in routines to
save space in symbol table
(n=O •• 15) •

Controls the listing of source
code.

Enter a form-feed in the PRN
file.

Use RST n instructions foro
loads and stores in
recursive environments. \ .

Controls range checking code.

Controls recursive/static
variables.

Controls strict type
checking.

Generates warning messages.

Controls exception checking
code.

Initialize hardware stack to
nnnnH.

I Default

Use CALL
instructions

E+

L+

Use CALL
instructions

R-

5+

T-

w-
X-

Contents of
location 0006
at beginning
of execution

The following examples show proper· sourCE code compiler
options: .

{$E+}
(*$P*)
f$I D:USERFILE.LIB}

2-6

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Space Reduction: Real Arithmetic (Cn)

The Cn option reduces the amount of object code generated when
using REAL arithemtic. The Cn option tells the compiler to change
all calls to @XOP (the REAL load and store routine) into a restart
instruction. This reduces all 3-byte CALL instructions to I-byte
CALL instructions.

You specify a restart instruction number in the range 0 to 7
and the compiler generates RST n instructions. Be aware that in a
CP/M environment, restart numbers 0 and 7 are not available. If you
have another operating system, you should consult your hardware
documentation.

You must specify the Cn option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @XOP. You must also specify the Cn
option in any modules that use real numbers so the proper RST n
instructions are generated.

Entry Point Record Generation (E)

The E option generates entry point records in the reloca~able
file. You enable the option using a + parameter, and disable it
using a - parameter. E+ is the default.

E+ makes global 'variables and all "procedures and functions
available'as entry points. For example, EXTERNAL declarations in
separate modules can reference global variables and all procedures
and functions if the E+ option is in effect. E- suppressed the
generation of entry point records, thus making all var iables,
proced~res, and functions local.

Include Files (I)

I<filespec>·tells the compiler to include a spe~ified file" for
compilation in the input stream of the original ·program.. The
compiler supports only one level of file inclusion, so you cannot
nest include files. .

The filespec must contain the drive specification, filename,
and filetype in standard format. If you omit the filetype, the
compiler looks for a file with the type of the main file.. The file
must end with a carriage return/line-feed, and CTRL-Ze If you omit
the drive specification, the compiler looks on the default drive.

Symbol Table Space Reduction (Kn)

Predefined identifiers normally take about6K bytes of'symbol
table space. The K option removes unre.ferenced built-in routine
definitions from the symbol table to make more room for user
symbols. . .

2-7

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

The K option uses an integer parameter ranging from 0 to 15.
Each integer corresp~nds to different groups of routines as defined
in Table 2-3. Enter all K options before the words PROGRAM or
MODULE in the source code. Use as many K options as required, but
place only one integer parameter after each letter K. Note that any
reference in a 'program to the ,removed symbols generates an undefined
identifier error message.

Group

o

1

2

3

4

S

6

7

8

9

10

11

12

,13

14

15

I
Table 2-3. $K Option Values

Routines Removed

ROUND, TRUNC, EXP, LN, ARCTAN, SQRT, COS,
SIN

COPY, INSERT, POS, DELETE, LENGTH, CONCAT

GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD,
BLOCKWRITE

CLOSE, OPEN, PURGE, CHAIN, CREATE

WRD, HI, LO, SWAP, ADDR, SIZEOF, INLINE,
EXIT, PACK, UNPACK

IORESULT, PAGE, NEW, DISPOSE

SUCC, PRED, EOF, EOLN

TSTBIT, CLRBIT, SETBIT, SHR, SHL

RESET, REWRITE, GET, PUT" ASS IGN, MOVELEFT,
MOVERIGHT, FILLCHAR

READ, REAOLN

WRITE" WRITELN

unused

MEMAVAIL, MAXAVAIL

SEEKREAD, SEEKWRlTE

RIM8S, SIM8S, WAIT

READHEX, WRITEHEX

2-8

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Listing Controls (L,P)

The L option controls the listing that the compiler generates
during Phase O. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts a new page by placing a form-feed character
in the PRN file.

Space Reduction: Recursion (an)

The an option operates in a manner analagous to the Cn option.
That is, you specify a restart instruction number in the range 0 to
7, and the compiler generates RST n instr~ctions for every call to
@DYN.

You must specify the an option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @DYN. You must also specify the en
option in any modules that use recursion so the proper RST n
instructions are generated.

Run-time Range Checking (R)

The R option controls the generati9n of run-time code that
per forms range checking for array subscr ipts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the -parameter. Refer to Section 4.6.1 for
information on range checking.

Recursion and Stack Frame Allocation (5)

The.S option controls the stack frame allocation of procedure
and function parameters and local var iables. The + parameter causes
r~cursion. The default parameter is -, and causes nonrecursion.
Pascal/MT+ statically allocates global variables in programs and
modules. You mlJ,st enable the S option before the reserved words
PROGRAM and MODULE. You cannot disable the 5 option within a
separately compiled unit. You can link modules that use the S+
option with those that do not.

Strict Type and Portability Checking (T,W)

The ~ option controls the strict type checking/nonportable
warning facility. The W option controls "the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
value for both options is -

2-9

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

When the T option is enabled, the compiler performs only weak
type checking. If the T and W options are enabled, and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when- the two options are
enabled, because the STRING data type is not standard.

The T and Woptions check for compatibility with the ISO Pascal
standard. They do not check for all features listed in the
Pascal/MT+ Language Reference Manual, because certain features are
lmplementatlon-dependent and'others are software routines.

Run-time Exce~tion Checking (X)

In the current release of Pascal/MT+, .the X option remains in
effect. Normally, the X option controls exception checking.
Exception checking covers integer and real zero division, string
overflow, real number over flow, and underflow. Refer to Section 4.6
for information on run-time error handling.

Setting the Stack Pointer' (Z)

The Z option ini tializes the stack pointer to nnnnH in non-CP/M
environments. In a CP/M environment, the compiler initializes the
hardware stack by loading the stack pointer register with the
contents of absolute location 0006H. Using the Z option suppresses
this ini tia,lization.

You should enter the option as $Z+ only once before the PROGRAM
line in the main program, and not on the individual modules~

2.3 Using the ~inker

LINK/MT+ is the linkage editor that reads relocatable object
modules with filetype ERL and generates an executable command file
with filetype COM. The linker can also generate overlay files.

You invoke LINK/MT+ wi th a command line of the following
format:

LINKMT <main module>{,<module>}{,<library>}

or

LINKMT <new filespec>=<main module>{ ,<module>}{ ,<library>}

The linker writes the executable file to the same logical disk
as the <main module:>, unless you specify a new <filespec> using an
equal sign. The <main module> and each <module> can be. on any
lOgical drive. You. can specify the drive before each file in the
command line.

2-10

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Listing Controls (L,P)

The L option controls the listing that the compiler generates
during Phase o. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts a new page by placing a form-feed character
in the PRN file.

Space Reduction: Recursion (On)
...

The On option operates in a manner analagou.s to the en option.
That is, you specify a restart instruction number in the range 0 to
7, and the compiler generates RST n instructions for every call to
@DYN.

You must specify the On option in the main program so the
compiler can generate code to load the restart vector and RST n
instructions for any call to @DYN. You must also specify the Cn
option in any modules that use recursion so the proper RST n
instructions are generated.

Run-time Range Checking (R)

The R option controls the generation of run-time code that
per forms --range checking for array subscr ipts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the - parameter. Re~er to Section 4.6.1 for
information on range checking.

Recursion and Stack Frame Allocation (S)

The S option controls the stack frame allocation of procedure
and function parameters and local var iables. The + parameter causes
recursion. The default parameter is -, and causes nonrecursion.
Pascal/MT+ statically allocates global variables in programs and
modules. You must enable the S option before the reserved. words
PROGRAM and MODULE. You c·annot dis.able the S option within a
separately compiled unit. YIJU can link modules that use the S+
option with those that do not.,

Strict Type and Portability Ghecking (T,W)

The T option controls the strict type checking/nonportable
warning facility. The W option controls the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
va~uefor both options is - .

2-9

Pascal/MT+ Programmer's Guide 2 .• 2 Invoking the Compiler

When the T option is enabled, the compiler performs only weak
type checking. If the T and W options are enabled, and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when the two options are
enabled, because the STRING data type is not standard.

The T and W options check for compatibility wi th the ISO Pascal
standard. They do not check for all features listed in· the
Pascal/MT+ Language Reference Manual, because certain features are
implementatIon-dependent and others are software routines.

Run-time Exception Checking (X)

In the current release of Pascal/MT+, the X option remains in
effect. Normally, the X option controls exception checking_
Exception checking covers integer and real zero division, string
overflow, real number over flow, and under flow. Refer to Section 4.6
for information on run-time error handling.

Setting the Stack Pointer (Z)

The Z option ini tializes the stack pointer to nnnnH in non-CP/M
environments. In a CP/M environment, the compiler initializes the
hardware stack by loading the stack pointer reg ister with the
contents of absolute location 0006H. Using the Z option suppresses
this initialization.

You should enter the option as $Z+ only once before the PROGRAM
line in the main program, and not on the individual modules.

2.3 . Using the Linker

LINK/MT+ is the linkage editor that reads relocatable object
modules with filetype ERL and generates an executable command file
with filetype COM. The linker can also generate overlay files.

You invoke LINK/MT+ with a. command line of the following
format:

LINKMT <main module>{,<module>}{ ,<library>}

or

LINKMT <new filespec>=<main module>{ ,<module> H ,<library>}

The linker wr i tes the execu table file to the same logical disk
as the <main module>, unless you specify a new <filespec> using an
equal sign.· . The <maIn· module> and each <module> can be on any
logical drive. You can .specify the drive before each file in the
command line.

2-10

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

The linker assumes a ERL filetype for the <main module> and all
<modules> unless you specify a CMD filetype. See the discussion
about the IF option for information about CMD files. LINK/MT+ can
link a maximum of 32 files at one time.

The following examples show valid LINK/MT+ command lines:

A>LINKMT CALC,TRANCEND,FPREALS,PASLIB/S

A>LINKMT B:CALC=CALC,B:TRANCEND,FPREALS,PAS~IB/S

A>LINKMT D:NEWPROG=B:CALC,C:TRANCEND,C:FPREALS,C:PASLIB/S/M

2.3.1 Linker Options

Linker options are special. instructions to LINK/MT+ that you
specify in the command line. You specify options as a single lower­
or upper-case letter. Each option must be preceded in the command
line with a slash, I. Some options require an additional parameter 0

LINK/MT+ supports 13 options, as summarized in Table 2-4.

Option I
C

D:nnnnH

E

F

Hnnnn

L

P:nnnn

Table 2-4. Linker Options

Function

Line continuation flag. Used only in
CMD linker command files.

Relocate data area to nnnnH.

List entry points beginning with $,
?, or @ in addition to other ~ntry
points requiring 1M or /w to
operate.

Take preceding filename as a CMD
linker command file containing input
filenames, one per line.

Write the output as a HEX file with
nnnnH as the starting location of
the hex format. This option is
independent of the P option. Also,
if you use this option, the compiler
does not generate a COM file.

List modules as they are being
linked.

List all entry points in tabular
form. .

Re1ocateobject code to nnnnH.

2-11

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

~able 2-4. (continued)

Option I Function

S Search preceding name as a library,
extracting only the required
routines.

W Write a SID-compatibte SYM file
(written to the same disk as the COM
file).

O:n Number the overlay as n and use the
previous filename as the root
program symbol table. By default,
the range of n is 1 to 50, but you
can extend it to 1 to 256 by
altering the overlay manager.

Vn:mmmm Overlay area starting address.

X:nnnn Overlay static variable starting

Continue Line (/C)

address when used with overlays, or
amount of overlay data area when

. used with root modules.

The C option indicates a continued line in a linker input
command (CMD) file. See the discussion of the Foption below.

Data Location (/D)

The D:nnnn option tells the linker to start the data area at
the hexadecimal address nnnn. If you do not use the D option-, the
code and data are mixed in the object file. By using the D option,
you .can solve some memory limitation problems.

However, you should be aware that local file operations depend
on the linker to zero the data area. The linker does not zero the
data area when you use the D switch, so. these operations cannot be
guaranteed.

Linker Input Command File (/F)

Normally in a CP/M environment, . you must use the SUBMIT
facility forO typing repetitive sequences, such as linking multiple
files together. LINK/MT+ allows you to enter this data into a file
and havethalinker process the filanamesfromthe file~ You m~st
specify a file with a filetype of CMDandfollow this filename with
a /F,for example,CFILES/F.

2-12

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

The linker reads input from this file and processes the
filenames. Filena,mes can be on one line, separated by commas, or
each name or group of names can be on a separate line. At the end
of each line except the last, you must place a /C option. The last
line must end with a carriage return or line-feed.

The input from the file is concatenated logically af,ter the
data on the left of the filename. In the command line, additional
options can follow the /F, but not additional object module names~

The following example demonstrates how to use a CMD file to
link the files CALC, TRANCEND, FPREALS, and PASLIB into a CMD file~
Use the following command to link the files:

A>LINKMT CALC/F/L

The file CALC.CMD contains

A:CALC,D:TRANCEND,FPREALS,B:PASLIB/S

The linker searches PASLIB for the necessary modules and generates a
link map.

Hex Output (/H)

The H: nnnn option tells the linker to generate a HEX file
instead of a COM file, starting the program at the hexadecimal
address nnnn. The specified address is independent of the default
relocation value of lOOH. This means you can relocate the program
to execute at lDOOH, for example, but have the HEX file add-resses
start at 8000H, by using the parameters:

/P:lDOO/H:8000

Load Maps (/L),(/E)

The L option tells the linker to display module code and data
locations as they are linked.

When used wi th the M or W options, the E. option tells the
linker to display all routines as they are linked, including
routines that beg in wi t'h ? or @, which are reserved for run-time
library routine names. The E option does not enable the L, M, or W
option. E does not display module code and data locations if used
alone.

Memory Map </M)

The M option generates a map and sends it to the map output
file. Place the M option after the last file named in the parameter
list.

2-13

Pascal/MT+ Programmer's Guide 2.3 . Using the Linker

Program Relocation (/P)

The P:nnnn option tells the linker to start the program at the
hexadecimal address nnnn. If you do not use the P option, the
default address is IOOH.

The linker does not generate space-filling code at the
beginning of the program. The first byte of the COM file is the
byte of code that belongs in the specified starting location.

The syntax of the P option is

/P:nnnn

where nnnn is a hexadecimal number in the range a to FFFF.

Run-time Library Search (/S)

The S option tells the linker to search the file whose name the
option follows as a library and to extract only the necessary
modules. The S option must follow the name of the run-time library
in the linker command line. The S option" extracts modules from
libraries only. It does not extract procedures and functions from
separately compiled modules.

, The order of modules within a libr~ry is important. Each
searchable library must contain routines in the correct order and be
followed by IS. PASLIB and FPREALS are specially constructed for
searchabili ty. Unless otherwise indicated, the other ERL files
supplied with the Pascal/MT+ system are not searchable. You cannot
search user-created modules unless they are processed by LIBMT+, as
described in Section 5.3.

Generate SYM File (/W)

The W option tells the linker to generate a SID-compatible SYM
file. The file contains information about entry points in the
program. The linker uses the SYM file when it links overlays. The
V option also enables the W option~

Overlay Options

The linker uses three options to process an overlay or a root
program in an overlay scheme. The 0 option numbers the overlc~y and
indicates that the previous filename is the root program symbol

. table •. The Vmoption sets the address of the overlay area. The X
option controls how the linker allocates data space for overlays.
Section 3.2 explains. these overlay options.

2-14

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

2.3.2 Required Relocatable Files

You must always link the run-time system PASLIB.ERL with your
compiled program. In addition, you need to link other ERL files
with your program if it makes use of certain features of Pascal/MT+.
The following are such files:

• RANDOMIO: SEEKREAD and SEEKWRITE are resolved here.

• DEBUGGER: @NLN, @EXT, @ENT generated when the debugger option
is requested. If @XOP and @WRL are undefined, see Section 5.2.

The following "files contain the real-number routines:

• BCDREALS: BCD real numbers, @XOP, @RRL, and @WRL.

• FPREALS: Binary real numbers @XOP, @RRL, and @WRL.

• TRANCEND: Support for SIN, COS, ARCTAN, SQRT, LN, EXP, SQR.
Use only with FPREALS.

The following files contain real number routines used with the
AMD95ll: "

• AMOIO: Routines for interfacing with the AMD95ll. You must
edlt and recompile these to customize for specific hardware
requirements.

• FPTRNS: AMD95l1 support routines.

• REALIO: Read and Write real number routines necessary only
when using the AMD951l.

• TRAN95Il: Transcendental routines for AMD95ll (replaces
TRANCEND) •

2-15

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

2.3.3 Linker Brror Messages

Table 2-5 shows the linker error messages.

Tab1e"' 2-5. Linker Brror Messages

Message Meaning

Unable to open input file: xxx xxx xx

The linker cannot find the specified input
file.

Incompatible relocatable file format

The ER~ file is corrupted, or it has a format
that is incompatible with the format expected
by LINK/MT+~

Duplicate symbol: xxxxxxx

This usually means a run-time routine or
variable has the same name as a user routine or
variable. .'

SYSMEM not found in SYM file

This means the root program symbol file is
corrupt.

External offset table overflow

This means you have exceeded the 200 externals
plus offset addresses that the linker allows in
its offset table.

Initialization of DSEG not allowed

The linker has encountered a DB or DW
instruction in the Data segment.

2-16

Pascal/MT+ Programmer's Guide 2.4 Using Other Linkers

2.4 Using Other Linkers

When you compile your program using the X option, Pascal/MT+
generates an extended relocatable file containing disassembler
records. If you do not use the X option, 'the ERL file might be
Microsoft e compa tible. However, Oigi tal Research does not
guarantee that an ERL file generated by Pascal/MT+ is compatible
with other linkers such as LSO.

However, using LIBMT+ to'process the ERL files generated by the
canpiler can result in a Microsoft-compatible relocatable files (see
Sec tion 5. 3) •

End of Section 2

2-17

Section 3
Segmented Programs

One of the biggest advantages of Pascal/MT+ is the ability to
write a large, complex program as a series of small, independent
modules. You can code, test, debug, and maintain each module
separately, and thereby greatly simplify the overall task of program
design. The process of breaking- a program into separate units is
called segmenting.

Pascal/MT+ provides three methods for segmenting programs:
modules, overlays, and chaining.

• Modules are separately compiled program sections. You can link
modules together to build entire programs, libraries, or
overlays.

• Overlays are sections of programs that only need to be in
memory when a routine in that overlay is called. Otherwise,
the overlay remains on the disk.

• Chaining allows one program to call an~ther, leaving shared
data for the new program iri memory.-

You can use these three features in any combination to produce
modular programs that are easier to maintain and take up less memory
than monolithic programs.

If you are not an exper ienced Pascal/MT+ programmer I you should
start by writing programs without overlays.

3.1 Modules

The Pascal/MT+ system lets you do modular programming with
little preplanning. You can develop programs until they become too
large to compile and then split them into modules. The $E compiler
option lets you make variables and procedures private. .

Modules are similar in form to progra~s. The ~ifferences are
the following:

• Use the word MODULE instead of the word PROGRAM •

• There is no main statement body in a module •. Inst~ad, ~fter
the definitions and decla-ration section, use the word MODEND,
followed by a period. .

3-1

Pascal/MT+ Programmer's Guide

The following is an example of a module:

MODULE LITTLEMOD~

VAR

MAINFILE EXTERNAL TEXT~

PROCEDURE ECHO (ST: STRING: TIMES: INTEGER);
VAR

I : INTEGER
BEGIN

FOR I := I TO TIMES DO
WRITELN (MAINFILE, ST)

. END:

MODEND.

3.1 Modules

Note that a module must contain at least one procedure or function.

Modules can have free access to procedures and variables in any
·other module. If you want to keep procedures or variables private
within a module, use the $E- compiler option.

Use the EXTERNAL directive to declar~ variables, procedures,
and functions that are allocated in other modules or in the main
program. EXTERNAL tells the compiler not to allocate space in the
module. You can declare externals only at the global (outermost)
level of a module or program.

For variables, put the word EXTERNAL between the colon and the
type in a global declaration. For example,

VAR
I,J,K : EXTERNAL INTEGER; (* in another module *)

R: EXTERNAL RECORD. . (* in another module *)
x,y : integer;
st : string;

END:

Be sure the declarations match with the declarations in the
module where the space is allocated. The compiler and linker do not
check declarations between modules.

For procedures and functions declared in other modules, put the
word EXTERNAL before the word FUNCTION or PROCEDURE •. These external
declarations must come before the first normal procedure or function
declaration in the module or program.

3-2

Pascal/MT+ Programmer's Guide 3.1 Modules

Numbers and types of parameters must match in the Pascal/MT+
system. Returned types must match for functions; the compiler and
linker do not type check across modules. External routines cannot
have procedures and functions as parameters.

In Pascal/MT+,
characters only.
characters.

external names are significant
Internal names are significant

to seven
to eight

In Pascal/MT+, the code generated for main programs and for
modules differs in the following ways:

• Main programs beg in wi th sixteen bytes of header code. Modules
do not •

• Main programs have a main body of code following the procedures
and functions. Modules do not.

Listing 3-1 shows the outline of a main program and Listing 3-2
shows the outline of a module. The main program references
var iables and subprograms in the module; the module references
variables and subprograms in the main program.

PROGRAM EXTERNAL_DEMO;

<label, constant, type declarations>

VAR

I,J INTEGER; (* AVAILABLE IN OTHER MODULES *)

K,L EXTERNAL INTEGER; (* LOCATED ELSEWHERE *)

EXTERNAL PROCEDURE SORT (VAR Q:LIST; LEN: INTEGER) ;

EXTERNAL FUNCTION IOTEST:INTEGER;

PROCEDURE PROC1;
BEGIN

IF IOTEST = 1 THEN
(* CALL AN EXTERNAL FUNC NORMALLY *)

END;

BEGIN
. SORT (e 0 .0)

(* CALL AN EXTERNALPROC NORMALLY *)
END.

Listing 3-1. Main Pt;ogram ExaJiiaple

3-3

Pascal/MT+ Programmer's Guide 3.1 Modules

MODULE MODULE_DEMO; .

< label, const, type declarations>

VAR

I,J EXTERNAL INTEGER; (* USE THOSE FROM MAIN PROGRAM *)

K,L INTEGER; (* DEFINE THESE HERE *)

EXTERNAL PROCEDURE PROCl; (* USE '~HE ONE FROM MAIN PROG *.)

PROCEDURE SORT(•..); (* DEFINE SORT HERE *)

FUNCTION IOTEST:INTEGER; (* DEFINE IOTEST HERE *)

<maybe other procedures and functions here>

MODEND.

Listing 3-2. Module Exa.ple

3.2 OVerlays

Using overlays, you can link programs so that parts of them
automatically load from the disk as they are needed. Thus, a whole
program does not have. to fit in memory simultaneously. Store
infrequently used modules and module groups that need not be co­
resident in overlays.

The following terms are used in this section:

• overlay: a set of modules, linked together as a unit, that
loads into memory from disk when a procedure or function in one
of the modules is referenced from somewhere else in' the
program.' Overlays have hexadecimal filetypes, for example,
PROG.OIF.

• root prograa: the porti"on of the program that is always in
memory. Root programs have the COM filetype. A root program
consists ofa main program, the run-time routines it requires,
and optionally, the run-time routines the ,overlays require.

• overlay area: an area of memory where the overlay manager
loads overlays. You must plan the location and size 6fthe
overlay areas and specify them at link-time.

3-4

Pascal/MT+ Programmer's Guide 3.2 Overlays

• over lay static var iables: global var iables, or var iables local
to a run-time or assembly language routine in the overlay.
When you link the overlay, the linker determines the amount of
data space required for static variables. Recursion reduces
the amount of static data. It does not necessarily eliminate
it because run-time code linked with the overlay might contain
static data. '

3.2.1 Pascal/MT+ Overlay Syste.

The major features of the Pascal/MT+ overlay system are the
following:

• Supports up to 255 overlays.
• Supports up to 15 separate overlay areas.
• Overlays can call other overlays, even in the same overlay

area.
• Overlays can access procedures and variables in the root.
• Overlays load from the disk only when necessary.
• Overlays can contai'n an arbitrary number of modules.
• Linkage to a procedure in an overlay is by name.
• You can specify drives containing individual overlays.

Overlays have an arbitrary number of entry points for the root
program and.other overlays to access. They access the entry points
by name. The linker and relocatable formats limit overlay procedure
and function names to 7 significant characters, as with all
externals.

You assign overlay areas when you link the root module. You
assign overlay~umbers when you link the overlay. If you do not
specify an overlay area when you link the root module, the default
action is to place it in overlay area 1.

Most Pascal/MT+ programs use only one overlay area. You can
devise more extensive schemes using multiple overlay areas. The
overlay number determines the area where LINK/MT+ loads an overlay.

• Overlays 1 to 16 load into overlay area 1.
• Ove,rlays 17 to 32 load into overlay area 2.

• Overlays 241 to 255 load into overlay area 15.

You mu~t determine the size and address of overlay areas and
make sure' the overlays are smaller than the area into which they
load. If you do not specify 'the address for an overlay area, it
defaults to the same address ,as overlay area 1. '

3-5

Pascal/MT+ Programmer's Guide 3.2 Overlays

The overlay manager loads overlays into memory in 128-byte
segments, so consider the extra size when you save space for
over lays. You must specify area 1; the remaining areas are
optional.

Overlays - have one or more modules, written in Pascal or
assembly language. The overlay manager in PASLIB has space in its
drive table for 50 overlays, numbered 1 to 50. If you need more
overlays, you can modify the overlay manager source, reassemble it,
and link it before PASLIB. The source code for the overlay manager
is in the file OVLMGR.MAC on distribution disk #2.

You do not have to number overlays consecutively. For example,
if you want to use three overlays in three~verlay areas, you can
number them 1, 17, 33, or any combination that puts the overlays in
different areas.

You can load more than 15 overlays into overlay area 1 by
explicitly supplying the overlay area number when you link the root
module. Otherwise, the default number is 15.

3.2.2 Osing Overlays

If a procedure or function is in an overlay, the compiler
inserts a call to the overlay manager, @OVL, before the call to the
procedure oc function. @OVL makes sure that the requested overlay
is in memory, loading it from disk if necessary. When the procedure
or function returns, the overlay manager returns control to the
calling procedure.

When part of a program calls an overlay-resident routine, the
program accesses that routine through an entry point table at the
beginning of tha overlay. Onli procedures and functions declared
without the $E- compiler option have _their names in the entry point
table. Use the $E- option to make routines private to an overlay
and to save space in the table.

Calling an Overlay Procedure

TO tell the compiler that a procedure or function is in an
overlay, put-the overlay number in the declaration,- as in the
following examples:

EXTERNAL [3] PROCEDURE CONV SYM;
EXTERNAL [FIXUP] FUNCTION NEW_TOK : INTEGER;

The overlay number must be an integer constant, either literal or
named.

Overlays can access _ procedures, functions, var iables, and run­
time ~outines in the root by using regular external declarations.

3-6

Pascal/MT+ Programmer's Guide 3.2 Overlays

If an overlay is not on the same disk as the root file, use the
@OVS routine to specify the drive. Declare the routine as shown in
the following example:

EXTERNAL PROCEDURE @OVS
(OVERLAY~NUMBER : INTEGER: DRIVE: CHAR):

Call @OVS to define the drive before calling the overlay-resident
procedure or function. The dr i ve must be upper-case, and can be the
@ character or a letter from A through O. The @ represents the
logged-in disk. You must ensure that the specified disk is on-line.

Overlays Calling Other Overlays

The standard overlay manager does not reload a previous overlay
when it returns from an overlay call. If you want to return control
to a previous overlay in the same overlay, you must use the
reloading version of the overlay manager, which is in the file
ROVLMGR.ERL on distribution disk il. If you need the reloading
version, link it before PASLIB.

Over lays can call other overlays under the f<)llowing
conditions:

• You use /X to link overlays if there are static variables in
the overlays. This ensures that no procedure alters the data
of another •

• You must use the reloading overlay manager if an overlay calls
another overlay in the same overlay area. If the overlays are
in different overlay areas, both must. be in memory at the sam.e
time.

Assembly Language Modules

Pascal/MT+ overlays are always pure code,but other modules
written in assembly language might not be. ,The overlay does not
reload if it is already in the overlay area. Do not use DB in the
Code segment for variables that are modified, because they are not
initialized every time the overlay is called.

3.2.3 Linking Prograas with OVer1ays

The linker separately links each part of a program containing
overlays. The linker first builds a SYM file containing the entry

'points for the, root, and then uses that file when it links, the
overlays.

3-7

Pascal/MT+ Programmer's Guide 3.2 Overlays

Before the entry points can be correct, you have to know how
much code and data space the overlays need. The first time that you
link an overlay program, you have to link the entire program twice:
once to determine the sizes, and once to produce the actual program
fil,es. The following steps outline the linking process.

1) Link the root program without reserving space for the
overlay areas and overlay data. This step generates the
first SYM file.

2) Use the SYM file from step 1 to link the overlays. This
step tells you how much space the overlays need.

3) Relink the root, specifying the overlay area addresses and
static data size. This step produces the SYM file with the
correct entry points.

4) Relink the overlays, using the new SYM file.

There are three linker options that control overlay linking:

• The 0 option specifies overlay numbers.
• The V option specifies overlay area addresses.
• The X option specifies data area sizes.

Overlay Group and SYM Option /0:

/O:n tells the linker that the previous file is a SYM file and
that n is the overlay number, in hexadecimal. The linker uses the
overlay .number to make the filename. This option is for overlays
only.

If you make a change in an overlay, you need only to rei ink the
overlay. The exception is when the code size or data size changes
beyond the constraints you gave when you linked the foot. .

Overlay Area Option IV:

/Vn:mmmm tells the linker where to locate the overlay area.
mmmm is the hexadecimal address of the overlay area, and n is the
overlay area number, in hexadecimal.

The V option automatically enables the E and W options, causing
the linker to generate a gYM file. This option is for root programs
only.

You can use the/V option up to 16 times when you link the main
program, once for each of the 16 overlay areas. You must Lise it at
least once to give the default address for overlay area-l.

3-8

Pascal/MT+ Programmer's Guide 3.2 Overlays

To find the value for /V, link the root program wi th the
necessary librar ies. The root program's total code size plus 80H is
the lowest address you can use for an overlay area.

Overlay Local Storage Option IX:

X:nnnn controls how the linker allocates space for data. This
option is for both roots and overlays. To determine the amount of
data used by an overlay, link it and note the total data size put
out by the linker.

Note: when you use this option, give yourself extra space so that
you do not have to reI ink everything when the data areas change
size.

When used to link roots, /X:nnnn tells the linker how much
space to leave for overlay data. nnnn is the hexadecimal number of
bytes.

When linking overlays, /X:nnnn tells the linker how far to
offset a particular overlay's static data area. nnnn is the
hexadecimal number of bytes from the top of the root's data area.
The default value for this option is /X:OOOO.

For example, suppose a program has two overlays with a combined
total of 500 bytes of static data. Ove~lay 1 has 350 bytes, and
overlay 2 h~s 150 bytes. Overlay 1 needs no offset, and overlay 2
needs to have its data area 350 bytes from the end of the root's
data area. The minimum value for overlay 2 is /X:015E, which is 350
in hexadecimal.

Linkins a Root Prosram

Linking
program. The
and you have
static data.
general form:

a root program is similar to linking a nonoverlaid
difference is that you hav~ to generate the SYM file,
to allow room for the overlay areas and for overlay
The command line .for linking a root program has the

LINKMT <modules and libraries> /Vn:mmmm/D:oooo/X:pppp

This command line shows the two required options Vn and D. You can
use any of the other options as needed •

• Use the V option for each separate overlay area. You must at
least specify the location of overlay areal. If you do not
specify a location for any other overlay areas, the linker
assigns them the same location as area 1 •

• The Doption specifies the location of the data area. The
value is the sum of the root I s code size and the sizes of the
overlays' code.. Leave room during development so that the
overlay data areas can grow.

3-9

Pascal/MT+ Programmer's Guide 3.2 Overlays

• Remember to use the X o~tion if your program uses overlay
static variables.

The overlay manager reads in 128 bytes of code at a time. Make
sure you allow room at the end of your overlay areas so that the
garbage bytes that pad out the last sector do not overwr i te the next
area. The minimum size for an overlay area should be the size of

,the largest overlay plus 80H, rounded to the next multiple of 128.

During development, you should leave some extra room in the
overlay areas so that you do not have to reI ink the entire program
if one overlay gets' bigger.

If an overlay calls a library routine that the root does not
call, the linker puts the routine in the over lay. To force a
routine into the root, make a dummy reference to the routine in the
root.

When you link a root program just to generate a SYM file,
either use a dummy value for V or use the E and W options. Either
way generates the symbol file.

Linking ~n Overlay

When linking an overlay, the linker uses the SYM' file to tell
which symbols are in the root. If an external symbol is not in the
SYM file, the linker looks for it in the specified libraries. The
command line' for linking overlays takes the following form:

LINKMT <prog>=<sym file>/O:n,<moduies/libraries>/P:mmmm/X:ssss

Th~ linker generates a file wi~h the'same name as the program,
but with a filetype that is the overla~ number in hexadecimal. If
you do not specify the program name ,the linker uses the name of the
first module after the SYM file.

The command line above s'hows the options that are required for
linking overlays~ Note that the IX option is required only if the
overlay us~s static data.

• The 0 option tells the linker that the file is a SYM file and
that the overlay number is n, in hexadecimal.

• For P, use the starting address of the overlay area. Use the
same value that you use with the V option that sets up the
overlay area.

• Use the X option td sp~cify the offset from the endbf the root
modules's dat'a to the beginning of the overlays's static data.

3-10

Pascal/MT+ Programmer's Guide 3.2 Overlays

You must relink an over lay whenever you relink the root,
because entry points change. Be sure to use the new SYM file.

3.2.4 OVerlay Error Messages

The overlay manager can detect two errors:

• If the overlay manager cannot find the requested overlay, it
displays a messaqe of the form:

Unable to open <filename> <overlay #>

If the overlay is not on the default disk, call @OVS in the
program to tell the overlay manager where to look.

• If the overlay manager cannot find a particular procedure or
function in the specified overlay, it displays a message of the
form:

Proc: "<procname>" not found oV'l: <f ilename> <over lay t>

The problem might be an incorrect EXTERNAL statement or a
misnumbered overlay.

3.2.5 Exam~le

The following example has a root program that asks for a
char ac ter . f rom the console keyboard. I t calls one of two
procedures, depending on the character entered. A large menu-driven
business package could work in a similar way. '

The main program and the two modules ar,e shown in Listings 3-3,
3-4, and 3-5, respectively~ These files are also on distribution
disk #1. You should compile and link them to get a feel for using
overlays. The files are the following:

• PROG.SRC
• MOD1.SRC
• MOD2.SRC

3-11

Pascal/MT+ Programmer's Guide

PROGRAM DEMO_PROG;

VAR
I : INTEGER; (* TO BE ACCESSED BY THE OVERLAYS *)
CH: CHAR;

3.2 Overlays

EXTERNAL [1] PROCEDURE OVL1; . (* COULD HAVE ~AD PARAMETERS *)

EXTERNAL [2] PROCEDURE OVL2; (* ALSO COULD HAVE HAD PARAMETERS *)
2
(* EITHER COULD ALSO HAVE BEEN A FUNCTION IF DESIRED *)

BEGIN
REPEAT

WRITE('Enter character, A/B/O: ');
READ (CH) ;
CASE CH OF

'A', 'a' : BEGIN

'B' ,'b'

ELSE

I : = 1;
OVLl

END;

BEGIN
I : = 2;
OVL2

END

(* TO DEMONSTRATE ACCESS OF GLOBALS *)
(* FROM AN OVERLAY *)

IF NOT(CH '"IN ['0', 'q']) THEN
WRITELN('Enter only A or B')

END (* CASE *)
UNTIL CH IN ['0' ,'q'];
WRITELN('End of program')

END.

Listing 3-3~ PROG.SRC

MODULE OVERLAYl;

VAR
I : EXTERNAL INTEGER; (* LOCATED IN THE ROOT *)

PROCEDURE OVL1; (* ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE *)
BEGIN

WRITELN ('In overlayl, I=',I) END;

MOD END

Listing.3-4. MODI.SRC

3-12

Pascal/MT+. Programmer's Guide 3.2 Overlays

MODULE OVERLAY2;

VAR
I : EXTERNAL INTEGER: (* LOCATED IN THE ROOT *)

. PROCEDURE OVL2: (*ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE *)
BEGIN

WRITELN ('In overlay 2., I=' ,I) END;

MODEND.

Listing 3-5. MDD2.SRC

After you compile the three modules, you must link them
together. Link the main program using the command:

A>LI~ PROG,PASLIB/S/D:IOOO/Vl:4000/X:40

This creates the files PROG.COM and PROG.SYM with the data located
at 1000 (this is arbitrary). The overlay areas, 1 to 16, are at
4000 (again arbitrary), and the overlay data size is estimated to be
64 (40H).

To link o'Terlay 1, enter this command:

A>LI~ PROG=PROG/O:l,MODl,PASLIB/S/P:4000/L

This creates the overlay file PROG.OOl. The /0:1 option tells the
linker. to read PROG.SYM, and this is overlay '1. 4000 is the
address of the overlay area for this overlay. The lin~er searches
PASLIBto load only those modules required by this overlay, but not
present in PROG .. COM. .

To lin~ overlay 2, enter this command:

A>LINKM'r PROG=PROG/O: 2,MOD2.,PASLIB/S/P:·4000/L

The options are the same as above. Note that IX is not needed when
linking the overlays, becau.e the overlays do not have any local
data.

Now run the program. Notice that if you enter the same letter
more than once in succession, for example, A, A, A, the overlay does
not reload. However, when you enter the letters in alternate order,
for example,A/B, A, ••• , the overlays load for each call.

3-13

Pascal/MT+ Programmer's Guide 3.3 Chaining

3.3 Chaining

Chaining allows one program to call another program into memory
and transfer control to that program. Chaining is an
implementation-dependent feature that might not be available on all
implementations of PascaI/MT+.

When one program chains to another, the run-time routine loads
the new program into the code area and starts execution. Programs
pass information by leaving the information in the data area.

To chain programs, you must declare an untyped file (FILE;) and
use the ASSIGN and RESET procedures to initialize the file to the
name of the new program. You can then execute a call to the CHAIN
procedure, passing the name of the file variable as a single
parameter. The run-time library routine performs the appropriate
functions to load in the file opened with the RESET statement.

There are two ways that chained programs can communica te:
shared global variables, and absolute variables.

With 'the shared global variable method, you must guarantee that
at least the first section of global variables is the communication
area. You must declare the the shared var iables identically so that
they have the same location and size in all the chained programs.
The remainder of the global variables do not need to be the same in
each program. You must use the 10 linker option to place the data
areas at the same location in each program.

Using the absolute var iable method, you typically define a
record that is used as a communication area, and then define this
record at an absolute location in each module.

To maintain the heap when chaining from one progr·am to another,
you must declare the. var iable SYSMEM as an EXTERNAL INTEGER. SYSMEM
contains the address of the top of the heap. The variables:

@EFL : INTEGER
@FRL :. ARRAY [1 •• 4] OF BYTE

contain the information necessary when using FULLHEAP. You can save
this information in the global data area and then restore it at the
beginning of the program you chain to •. You must also use the linker
option to give the same address for the global data area to each of
the programs that are chained together.

Listings 3-6a and 3-6b lists two example programs that
communicate with each other· using absolute variable.s. The first
program chains to the second program, which prints the results of
the first program's execution.

Pasca1/MT+ Programmer's Guide

(* PROGRAM #1 IN CHAIN DEMONSTRATION *)

PROGRAM CHAIN1;
TYPE

COMMAREA RECORD

VAR

I,J,K : INTEGER
END;

GLOBALS : ABSOLUTE [$8000] COMMAREA;

3.3 Chaining

(* this address is arbitrary and might not· work *)
(* on your system *)
CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1 *)
WITH GLOBALS DO

BEGIN
I : = 3;
J : = 3;
K := I * J

END;
ASSIGN(CHAINFIL,'CHAIN2.COM');
RESET (CHAINFIL) ;
IF IORESULT = 255 THEN

BEGIN
WRITELN('UNABLE TO OPEN CHAIN2 .. COM') ;
EXIT

END;
CHAIN (CHAINFIL)

END. (* END CHAINI *)

Listing 3-6a. Chain De.anstratiorJ. Prograa 1

(* PROGRAM #2 IN CHAIN DEMONSTRATION *)

PROGRAM CHAIN2;
TYPE

COMMAREA RECORD
I,J,K : INTEGER

END;
VAR

GLOBALS ABSOLUTE ($8000] COMMAREA;

BEGIN (* PROGRAM #2 *)
WITH GLOBALS DO

WRITELN ('RESULT OF I, I, I TIMES I,J,' IS =', K)

END. (* RETURNS TO OPERATING SYSTEM WHEN COMPLETE *)

Listing 3-6b. Chain Demonstration Prograa 2

End of Section 3

3-15

Section 4
Run-time Interface

This section explains how to interface Pascal/MT+ programs wi th
the run-time environment and the operating system. It also explains
how to write programs that run without an operating system.

4.1 Run-tiae Bnvironaent

Figures 4-1, 4-2, and 4-3 show different the memory maps for a
Pascal/MT+ program that has been compiled, linked, and loaded under
CP/M.

LOW MEMORY

LOW MEMORY

PROGRAM CODE AND DATA HEAP

AREA

SYSMEM

LOCAL
VARIABLE

STACK-

-@SFP

·ONL Y USED IN RECURSIVE ENVIRONMENTS

HEAP

AREA

LOCAL
VARIABLE

STACK·

sysMEM - _ @sFP

·ONL Y USED IN RECURs"IVE ENVI~ONMENTS

4-1

HIGH MEMORY

t
BOOS

HIGH MEMORY

t
BOOS

Pascal/MT+ Programmer's Guide 4.1 Run-Time Environment

LOW MEMORY HIGH MEMORY

SPECIFIED SPECIFIED
BY BY

IV OPTION 10 OPTION

HEAP LOCAL
AREA VARIABLE

IMPLIED
BY

IX OPTION

STACK

Pigure 4-3. Pasca1/MT+ Memory Map at Run-time:
Program with OVerlays

The heap grows toward high memory and the local variable stack
grows toward low memory. The local var iable stack contains
parame·ters and local procedure var iables, and is used only in
programs compiled wi th the $S+ option set for recursion. The
hardware stack contains the procedure return addresses and the
temporary evaluation stack for expressions.

. The external integer SYSMEM points to the top of the heap, and
is initialized to point to the first location following the data
area •. The NEW routine updates SYSMEM.

The external integer @SFP points to the top of the local
variable stack, and is initialized to be the top of the hardware
stack minus '128 bytes. The routines @LNK (allocate stack frame) and
@ULK (deallocate stack frame) update @SFP.

In systems that do not use FULLHEAP, the buil t-in func tion
MEMAVAIL calculates its return value by subtracting SYSMEM from
@SFP.

4.1.1 STACK

Pascal/MT+ initializes the hardware stack to 128 bytes.
However, you can change this value by manipulating the run-time
variable @SFP as an external integer and subtracting the desired
additional space, or adding space if you want to make it smaller.
The following example illustrates how to do this:

4-2

Pascal/MT+ Programmer's Guide 4.1 Run-Time Environment

VAR @SFP:EXTERNAL INTEGER~

(* in main program only!!! *)

For a program on an inter rupt-dr iven system, it is often
necessary to enlarge the hardware stack.'

4.1.2 Program Structure

The Pascal/MT+ compiler generates program modules with simple
structures. A jump table at the beginning of each module has jumps
to each procedure or function in the module. The main module also
has a jump to the beginning of the code.

Programs have 16 bytes of header space for overlay information.
In nonoverlaid programs, these are NOPs.

Onder CP/M, the linker provides code for loading the stack
pointer and segment on the contents of absolute location 6H. With
ROM-based object code, use the $Z compiler option to set the initial
stack pointer for your ROM requirements.· The compiler calls the
@INI routine that initializes INPUT and OUTPUT text files. If you
use ROM, you can rewrite the @INI routine to suit your needs.

4.2 Assembly Language Routines

I f you want. to link Pasc.al modules wi th modules wr i tten in
assembly language, then you must u.se an assembler that generates the
same relocatable format as the compiler. Both RMAC and Microsoft's
MBO assembler generate the proper relocatable format. LINK/MT+ can
handle files generated by compatible assemblers, but otherlinkeru
might not be able to link ERL files generated by the Pascal/MT'·
compiler.

The assemblers and the Pascal/MT+ compiler generate entry point
and external reference records in the same relocatable file format.
These records contain external symbol names. The Pascal/MT+
relocatable format allows up to 7 characters in a name, but most
assemblers generate 6-character names. Therefore,' you must limit
names to 6 characters if you want a var iable in a Pascal/MT+ program
to be accessible by name to an assembly language routine.

The Pascal/MT+ compiler ignores the underscore' character irA
names. For example, AB is the same as AB. Symbols can begin with
$ in MBO and.with? ln RMAC. Neither is a standard character in
Pascal/MT+. Also, MBO considers $ significant~ RMACdc)es not ..
Thus, MBO places A$S in t"he relocatable file as A$B~ in RMAC, the
same symbol goes to the file as AB. RMAC often uses $to simulate
the underscore, which makes it nontransportable to MBO.

4-3

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

4.2.1 Accessing Variables and Routines

To access assembly language var iables or routines from a Pascal
program, you must perform the following steps:

• Declare them PUBLIC in the DATA segment of the assembly
language module.

• Declare them EXTERNAL in the Pascal/MT+ program.

To access Pascal/MT+ global variables and routines from an
assembly language routine, you must perform the following steps:

• Declare the name EXTRN in the DATA segment of an' assembly
language program.

• Declare the variable or routine at the glob~l level in the
Pascal program.

• Compile the program using the $E+ compiler option.

Listing 4-1 shows how an assembly language module references a
variable that is declared in a Pascal/MT+ module.

ASSEMBLY LANGUAGE PROGRAM FRAGMENT

EXTRN PQR

LXI H,PQR ;GET ADDR OF PASCAL VARIABLE

.
END

(* PASCAL PROGRAM FRAGMENT *)

VAR ,(* IN GLOBALS *)
PQR : INTEGER; (* ACCESSIBLE BY ASM ROUTINE *)

Listing 4-1. Accessing External Variables

4.2.2 Data A1location

In the global data area, the compiler allocates variables in
,the order you declare them. The exception is var iables that are in
an identifier list 'before a type. These are allocated in reverse
order. For example, 'given the declaration:

AiB,C: INTEGER

C is allocated fi~st, then"', then A.

4-4

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

In memory, Pascal/MT+ stores variables together with no space
left between one declaration and the next. For example, given the
declaration:

A INTEGER~

B CHAR~
I,J,K BYTE~
L INTEGER~

the following storage layout appears:

byte' contents-

0 A LSB (least significant byte)
1 A MSB (most significant byte)
2 B
3 K
4 J
5 I
6 L. LSB
7 L MSB

Array,s are stored in row-major order.
declaration:

A: ARRAY [1 •• 3, 1 •• 3] OF CHAR

is stored in the following way:

byte. contents

0 A [1,1]
1 A[l,2]
2 A[1,3]
3 A(2,l]
4 A [2,2]
5 A[2,3]
6 A[3,1]
7 A[3,2]
8 A[},3]

For example, the

Logically, this is a one-dimensional array of vectors. In
Pascal/MT+, all arrays are logically one-dimensional arrays of some
type.

4-5

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

Records are stored like global variables. Sets are stored as
follows:

• Sets are stored as 32-byte items.
• Each element of the set uses one bit.
• Sets are byte oriented.
• The low-order bit of each byte is the first bit in that byte of

the set. '

The following figure shows the storage for the set A •• Z:

00 01 02 03 04 05 06 07

00 00 00 00 00 00 00 00

Byte number

08 09 OA OB

FE FF FF 07

OC 00 OE

00 00 00

OF

00

10

00

... fill

... ~
Pigure 4-4. Storage for the Set A •• Z

The first bit, bit 65 ($41), is in byte 8, bit 1. The last
bit, bit 90, is in byte l~, bit 2. Bit 0 is the least significant
bit in the pyte.

Table 4-1 below summarizes the size and range of Pasca1/MT+
data types.

Table 4-1.

Data Type

CHAR

BOOLEAN

INTEGER

INTEGER

BYTE

WORD

BCD REAL

FLOATING REAL

STRING

SET

Size and Range of Pascal/MT+ Data Types

Size

1 8-bit-byte

1 8-bit-byte

1 8-bit-byte

2 8-bit-bytes

1 8-bit-byte

2 8-bi t-bytes

10 8-bi t-bytes

8·8-bit-bytes

1~.~256 bytes.

32 8~ bi t- bytes

4-6

Range

0 •• 255

false •• true

0 •• 255

-32768 •• 32767

0 •• 255

0 •• 6553.5

la digits, 4·decimal

10 -17 •• 10 17

0 •• 255

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

4.2.3 Para.eter Passing

When you call an assembly language routine from Pascal/MT+ or a
Pascal/MT+ routine from assembly language, parameters pass on the
stack.

On entry to the routine, the top of the stack is a single word
containing the return address. The parameters are below the return
address, in reverse order from declaration.

Each parameter requires at least one l6-bit word of stack
space. A character or Boolean passes as a l6-bit word with a high­
order byte of 00.

VAR parameters pass by address. The address represents the
byte of the actual variable with the lowest memory addIess.

Nonscalar parameters, except sets, always pass by address~ If
the parameter is a value parameter, the compiler generates code to
call @MVL to move the data.

The @SS2 routine handles set parameters. If passed by value,
the actual value of the set goes on the stack. Sets are stored on
the stack wi th the least significant byte on top and the most
significant byte on bottom.

The following example shows.- a typical: parameter list on entry
to a procedure:

PROCEDURE DEMO(I,J : INTEGER: VAR Q:STRING: C,D:CHAR):

STACK---> 0 RETURN ADDRESS
+1 RETURN ADDRESS
+2 D
+3 BYTE OF 00
+4 C
+5 BYTE OF 00
+6 . ADDRESS OF ACTUAL STRING
+7 ADDRESS OF ACTUAL STRING
+8 J (LSB)
+9 J (MSB)
+10 I (LSB)
+11 I (MSB)

The assembly language program must remove all parameters from
the stack before returning to the calling routine. This is usually
done with an RET n instruction, where n is the number of bytes of
parameters. In the example above, n is 12.

Function values return on the stack. They are placed below the
return address before the function returns. When the program flow
reenters the calling program, the returned value is on the top of
the stack.

4-7

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

Assembly language functions can only return the simple types
INTEGER, REAL, BOOLEAN, and CHAR. Assembly language functions
cannot return structured types.

4.2.4 Assellbly Language Interface Bxa.ple

Listings 4-2 and 4-3 illustrate the interface between a Pascal
program and some assembly language routines.

The Pascal/MT+ program performs the PEEK and POKE functions
found in BASIC. The assembly language module simulates the PEEK and
POKE. PEEK returns the byte found at the addreSs passed to it, and
POKE puts the byte at the specified address.

PROGRAM PEEK_POKE;

TYPE

VAR

BYTEPTR "'BYTE;

ADDRESS : INTEGER;
CHOICE : INTEGER;
BBB : BYTE;
PPP : BYTEPTR;

EXTERNAL PROCEDURE POKE (B : BYTE; P
EXTERNAL FUNCTION PEEK (P : BYTEPTR)

BYTEPTR) ;
BYTE;

BEGIN
REPEAT

WRITE('Address? (use hex for large numbers) ')1.
READLN(ADDRESS)i
PPP := ADDRESS,; {ONLY ALLOWED IN PASCAL/MT+}
WRITE('l) Peek OR 2) Poke ');
READLN(CHOICE);
IF CHOICE = 1 THEN

WRITELN (ADDRESS,' contains ',PEEK (PPP)).
ELSE

IF CHOICE = 2 THEN
BEGIN

WRITE('Enter byte of data: ');
READLN(BBB)i
POKE (BBB,PPP)

END
. UNTIL FALSE

END •

. Listing 4-2. Pasca1/MT+ PBBK_POD PrOgram

.4-8

Pascal/MT+ Programmer's Guide

PUBLIC PEEK
PUBLIC POKE

4.2 Assembly Routines

iPeek returns the byte found in the address passed on the stack
iIt is declared as an external in a Pascal progra~ as:
iEXTERNAL FUNCTION PEEK(P : BYTEPTR) : BYTE

PEEK:
POP B
POP 0
POP E,M
MVI 0,0
PUSH 0
PUSH B
~T

iRETURN ADDRESS INTO BC
iPOINTER TO BYTE INTO HL
iMOVE CONTENTS OF MEMORY POINTED TO BY HL INTO E
iPUT AOO INTO 0
iRETURN FUNCTION VALUE
iPUT RETURN ADDRESS ON STACK
iRETURN TO CALLER (NO PARAMETERS LEFT ON STACK)

iPoke places a byte into memory
;It is declared as an external in a Pascal program as:
iEXTERNAL PROCEDURE POKE(B : BYTE; P : BYTEPTR)i.

POKE:
POP B ;GET RETURN ADDRESS INTO BC
POP H iTHE BYTE POINTER IS PUT INTO HL
POP D iREGISTER E GETS THE BYTE, D GETS THE EXTRA BYTE OF 00

MOV M,E iPUT E INTO MEMORY POINTED TO BY HL

PUSH B iRETURN ADDRESS ON TOP OF STACK
RET iRETURN TO CALLER (NO PARAMETERS LEFT ON STACK)

END

Listing 4-3. Assembly Language PBBK and POKE Routines

4.3 Pascal/MT+ Interface Features

Pascal/MT+ provides several features that let you control your
program's environment. The following features are explained in this
section:

• direct access to the operating system
• machine code inserted into Pascal source
• variables with absolute addresses
• interrupt procedures
• heap management

4-9

Pascal/MT+ Programmer's Guide 4.3 Interface Features

4.3.1 Direct Operating System.Access

You can make BDOS function calls to the operating system by
using the @BDOS routine. You declare it in a Pascal/MT+ program as
follows:

EXTERNAL ,FUNCTION @BDOS(FUNC:INTEGER: PARM:WORD) : INTEGER:

. The first parameter is the BDOS function number. The use of
the second parameter depends on the specific function number. Refer
to your particular operating system's documentation for the list of
functions.

The following example shows KEYPRESSED, a function that uses
the @BDOS function. KEYPRESSED returns TRUE if a key is pressed,
FALSE if not.

FUNCTION KEYPRESSED : BOOLEAN;

BEGIN
KEYPRESS ED := (@BDOS(ll,O) <> 0)

END;

Listings 4-4 and 4-5 illustrate calls to BDOS function 6 and
23, respectively.

(* DEMO OF USING BOOS FUNCTION CALL 6 FOR CONSOLE 10 *)

. PROGRAM BDOS6:
VAR .

CH : CHAR:

I : INTEGER:

EXTERNAL FUNCTION @BDOS(FUNC:INTEGER: PARM:WORD):INTEGER:

BEGIN (* ECHO ANY INPUT CHARACTER TO THE CONSOLE UNTIL A : IS READ *)
REPEAT

CH: =CHR (@BOOS (6, WRD ($FF))); (* READ CHARACTER *)
IF CH <> ':' THEN

BEGIN
I:=@BDOS(6,WRD(CH»: (* WRITE CHARACTER *)
END:

UNTIL CH= ':':
END.

Listing 4-4. Calling BDOS Function 6

4-10

Pasca1/MT+ Programmer's Guide 4.3 Interface Features

(* DEMO OF USING BOOS FUNCTION CALL 23 TO RENAME FILES *)

PROGRAM BDOS23;
TYPE

FCBLK = PACKED ARRAY [0 •• 36] OF CHAR;
X = FILE;

VAR
Fl :. X;
F2 : FCBLK;
I : INTEGER;
OLDNAME,NEWNAME : STRING;

(* EXTRACT IS A PROCEDURE TO FETCH THE FILE NAME INTO THE STRING *)
(* IT IS A MODIFIED VERSION OF THE PROCEDURE IN UTILMOD .• *)
(* THIS VERSION RETURNS THE FILE NAME FORMATTED FOR CPM *)
EXTERNAL PROCEDURE EXTRACT(VAR F:X; NAME:STRING);

EXTERNAL FUNCTION @BDOS(FUNC:INTEGERj PARM:WORD):INTEGER;

BEGIN
WRITE('ENTER OLD FILE NAME: '); (* GET THE OLD FILE NAME *)
READLN (OLDNAME);
ASSIGN(Fl,OLDNAME);

EXTRACT(Fl,OLDNAME);

(* USE ASSIGN TO CONVERT THE STRING *)
(* TO A VALID CPM FILE NAME *)
(* USE THE UTILITY PROCEDURE EXTRACT *)
(* TO RETRIVE THE FORMATED FILE NAME *)

6 MOVE(OLDNAME,F2,12);
OLDNAME[O) := CHR(12);
CLOSE (Fl, I) ;

(* MOVE IT TO THE FCB USED BY BOOS CALL 23 *)
(* EXTRACT DOES NOT RETURN THE LENGTH *)
(* SO WE CAN USE IT FOR NEWNAM! n)

WRITE('ENTER NEW FILE N~: ') ; (* GET THE NEW FILE NAME *)
READ LN (NEWNAME) ;
ASSIGN(Fl,NEWNAME); (* CONVERT rT TO A CPM FORMATTED FILE NAME
EXTRACT(Fl,NEWNAME);
MOVE(NEWNAME,F2[16],12); (* MOVE IT TO THE FCB FOR BOOS CALL 23 *)
NEWNAME[O] := CHR(12); (* MOVE IN THE LENGTH *)

(* CALL THE RENAME FUNCTION. PASS A POINTER TO THE FCB *)
(* CONTAINING THE OLD AND NEW FILE NAMES *)
IF @BDOS(23,WRD(ADDR(F2») = 255 THEN

WRITELN (' RENAME FAILED. ',OLDNAME,' NOT FOUND.')
ELSE

WRITELN ('FILE ',OLDNAME,' RENAMED TO ',NEWNAME);

END.

Listing 4-5. Calling8DOS l'unction23

4-11

*)

Pascal/MT+ Programmer's Guide 4.3 Interface Features

4.3.2 IRLIRB

INLINE is a built-in feature that lets you insert data in the
middle of a Pascal/MT+ procedure or function. lou can insert small
machine code sequences and constant tables into a Pascal/MT+ program
without using externally-assembled routines.

INLINE syntax is similar to that of a procedure call:

• The word INLINE is followed by a left parenthesis.

• After the parenthesis come any number of arguments.

• Arguments must be constants, or var iable references that
evaluate to constants.

• Arguments can be of types CHAR, STRING, BOOLEAN, INTEGER, or
REAL.

• Separate the arguments with slashes.

• The arguments end wi th aright parenthesis .•

Note that a string in single apostrophes does not generate a
length byte, but simply the data for the s<tr ing.

The address of a var iable evaluates to the absolute data
address, unless the program is set up to run with recursion. Then
the address is the offset into the appropriate stack frame.

Li teral constants of type integer are allocated one byte .if the
value falls in the range a to 255. Named integer constants always
get two bytes.

The Pascal/MT+ system features a built-in mini-assembler for
8080/8085 CPUs. The compiler translates a double quote followed by
an assembly language mnemonic into a hexadecimal value. For
example,

"MOV A,M

translates as $7E. Appendix E contains a complete list of the valid
opcocles for the mini-assembler. The fo'llowing example illustrates
INLINE:

INLINE("LHO /
VARl/

"SHLO /
VAR2 /

(*LHO OPCOOE FOR 8080*)
(*REFEP~NCE VARIABLE*)
(*SHLD OPCODE FOR 8080*)
(*REFERENCEVARIABLE*)

4-12

.Pascal/MT+ Programmer's Guide 4.3 Interface Features

To facilitate branching, the syntax ~+n and *-n, (where n is an
integer), is included as legal operand to INLINE. For example,

INLINE(·IN / $03/
"ANI/ $02/
"JNZ/ *-4);

The location that the * references is the previous opcode, not the
address of the * character.

The following listing uses INLINE in a procedure that calls
CP/M and returns a val.ue. This routine is @BDOS in the run-time
library PSALIB.

FUNCTION @BDOS(FUNC:INTEGER; PARM:WORD} : INTEGER;
CONST

CPMENTRYPOINT = 5:
VAR

RESULT : INTEGER:

BEGIN
INLINE($2A / FUNC /

$4D /
$2A / PARM /
$EB /

(* SO IT ALLOCATES 2 BYTES *)

(* SO WE CAN STORE IT HERE *)

(* LHLD FUNC *)
(* MOV C,L *)
(* LHLD PARM *)
(* XCHG *)

$CD / CPMENTRYPOINT / (* CALL BOOS *)
$6F / (* MOV L,A *)
$26 / $00 / (* MVI H,O *)
$22 / RESULT) ; (* SHLO RESULT *)

@BOOS := RESULT: (* SET FUNCTION VALUE *)
END;

Listing 4-6. Using INLlNE in @BDOS

The following listing uses INLINE to construct a compile~time
table. The table is the entire body of a: procedureo By getting the
address of the procedure, the program can access the tableo . Notice
that the dummy procedure is not intended to be an executable
procedure, and that the table is treated as code.

4-13

Pascal/MT+ Programmer's Guide

PROGRAM DEMO_INLINE~

TYPE

4.3 Interface Features

IDFIELD = ARRAY [1 •• 4] OF ARRAY [1 •• 10] OF CHAR;

VAR
TPTR : "IDFIELD;

PROCEDURE TABLE;
BEGIN

INLINE('DIGITAL I /

'RESEARCH '/
'SOFTWARE '/
'TOOLS •.•.. ');

END~

BEGIN (* MAIN PROGRAM *)
TPTR := ADDR(TABLE);
WRITELN(TPTR"[3]) (* SHOULD WRITE 'SOFTWARE '*)

END.

Listing 4-7. Using IRLINE to Construct a Compi1e-tiae Table

The address of the procedure is the address of the table only
in a static environment. If you compile the program with the $Q+
option for recursion, the compiler gefterates extra code at the
beginning o·f the procedure for recursion management. The compiler
generates six extra bytes if the $Q option is set, and five extra
'bytes if the option is not set. .

Rote: the table must be in the same module as the statement that
calls ADDR.

4.3.3 Absolute Variables

You can declare ABSOLUTE variables if you know the address at
compile-time. The following examples show the special syntax for
declaring absolute variables:

I : ~BSOLUTE [$8000] INTEGER;
SCREEN: ABSOLUTE [SCRN_AD] ARRAY[O •• lS, 0 •• 63] OF CHAR;

Note that you must put the address of the variable in brackets
[... 1. The address must be a constant, either named or literal.

The c.ompiler does not allocate space in the data area for
·ABSOLUTE var iables. Make sure rio compiler-allocated var iables
conflict with the absolute variables. .

4-14

Pascal/MT+ Programmer's Guide 4.3 Interface Features

String variables cannot be stored at all locations. On the
8080, strings must be between 100H and FFFFH, so that the run-time
routines can distinguish between a string address and a character on
top of the stack.

4.3.4 Interrupt Procedures

Pascal/MT+ has a special procedure type to handle interrupts.
When an interrupt occurs, the procedure associated with that
par t icular in ter r upt is invoked 1 you do not call inter rupt
procedures from the program. When the interrupt procedure finishes,
control returns to where it was interrupted. You select the vector
to be associated with each interrupt.

You declare an interrupt procedure as follows:

PROCEDURE INTERRUPT [<vec num>] <procname>

Interrupt procedures can exist only in the main program, so
that the interrupt vectors can load correctly. At the beginning of
the pr,ogram, the compiler generates code to load the vector with the
procedure address.

For 8080/Z80 systems, the vector number range is 0 to 7. For
zao mode 2 interrupts, allocate an interrupt t~ble by declaring an
ABSOLUTE variable, and use the ADOR function to fill in the table.
Use INLINE .in a Z80 environment to initialize the I registere

The compiler generates code to push the registers on entering
an interrupt procedure, and to pop the registers and reenable
interrupts on exiting the procedure. Because many interrupt modes
are possible on the zao, the Z option does not generate the Z80
'RETl' instruction.

Hate: you must initialize the inter rupt vector s. The compiler does
not generate code to store in the absolute locations occupied by the
interrupt vector table.

Interrupt procedures cannot have parameter lists, but can have
local variables and can access global variables.

The Pascal/MT+ system does not generate reentrant code.
Typically, interrupt procedures set global vv.r iables hut do not
perform other procedure calls or I/O. For this reason, you should
avoid sets, strings, procedure calls, and file I/O. You should also
avoid calling CP/M and routines in the run-time packages that
'include data. If you use CP/M, notice th3t I/O through the CP/M
BOOS typically reenables inteJ:'rupts.

To disable interrupts around, sections 'of Pascal code, use
INLINE and the mini-assembler to place EI ,(enable interrupt) and OI
(disable interrupt) instructions around the code.

4-15

Pascal/MT+ Programmer's Guide 4.3 Interface Features

The follow~n9 program illustrates interrupt procedures. The
program waits for one of four switches to interrupt and then toggles
the state of a light attached to the switch. The Ilo ports for the
lights are 0 to 3, and the switches USe interrupt restarts 2, 3, 4,
and S.

PROGRAM INT DEMO;
CONST' -

LIGHT1 0;
LIGHT2 1;
LIGHT3 = 2;
LIGHT4 3;

(* DEFINE I/O PORT CONSTANTS *)

SWITCH1
SWITCH2
SWITCH3
SWITCH4

2;
3;
4;
5·

(* DEFINE INTERRUPT VECTORS *)

f

VAR

LIGHT STATE
SWITCH_PUSH

ARRAY [LIGHT1 •• LIGHT4] OF BOOLEAN;
ARRAY [LIGHT1 •• LIGHT4] OF BOOLEAN;

I : LIGHT1 •• LIGHT4;

PROCEDURE INTERRUPT [SWITCH1] IN~l;
BEGIN

SWITCH PUSH [LIGHT1]. := TRUE
END; -

P~OCEDURE INTERRUPT [SWITCH2] INT2;
BEGIN

SWITCH PUSH [LIGHT2] := TRUE
END; -

PROCEDURE INTERRUPT [SWITCH3] INT3;·
BEGIN

SWITCH PUSH[LIGHT3] := TRUE
END; -

PROCEDURE INTERRUPT [SWITCH4] INT4;
BEGIN

SWITCH PUSH ['LIGHT4] : = TRUE
END; .-

ListiD94-8~ Using Interrupt Procedures

4-16

Pascal/MT+ Programmer's Guide

BEGIN (* MAIN PROGRAM *)

(* INITIALIZE BOTH ARRAYS *)

FOR I := LIGHTl TO LIGHT4 DO
BEGIN

4.3 Interface Features

LIGHT STATE[I] := FALSE;
SWITCH PUSH[I] := FALSE;

(* ALL LIGHTS OFF *)
(* NO INTERRUPTS YET *)

END; -

REPEAT

REPEAT (* UNTIL INTERRUPT *)
UNTIL SWITCH PUSH[LIGHTl] OR SWITCH PUSH[LIGHT2] OR

SWITCH:PUSH[LIGHT3] OF SWITCH:PUSH[LIGHT4];

FOR I := LIGHTl TO LIGHT4 DO (* SWITCH LIGHTS *)
IF SWITCH PUSH[I] THEN

BEGIN -
SWITCH PUSH[I] := FALSE;
LIGHT STATE [I] := NOT LIGHT STATE[Ij; (* TOGGLE IT *)
OUT [IT := LIGHT STATE [I] -

END -

UNTIL FALSE; (* FOREVER DO THIS LOOP *)

END. (* OF, PROGRAM *)

Listing 4-8. (continued)

" .. 3. 5 BeapManageaent

You can manage the heap two ways:

1) Use the ISO standard routines as they are implemented in
FULLHEAP.ERL~ When you use this method:

• the NEW routine uses a standard heap •

• dynamic data goes to' the smallest space that can hold the
requested item. .

• the DISPOSE routine disposes the item passed to it.

• when necessary, MAXAVAIL, or NEW gathers free memory into
a free list, combines adjacent blocks, and reports the
largest available block of memory_

• MEMAVAIL returns the largest never-allocated memory
space.·

4-17

Pascal/MT+ Programmer's Guide 4.3 Interface Features

2) Use NEW, DISPOSE, and MEMAVAIL, which are part of the
PASLIB.ERL run-time library. When you use this method:

• the heap is 'treated as a stack.

• NEW puts the dynamic data on top'of the stack.

• the stack grows from the end of the static data towards
the hardware stack.

• DISPOSE performs no function, but is included for symbol
table use.

• you can simulate the MARK and RELEASE· routines of UCSD
PascalTi

' by using the system integer SYSMEM, which points
to the top. of the heap, as shown in the following
example:

MODULE UCSDHEAP~

VAR
SYSMEM: EXTERNAL INTEGER;

PROCEDURE MARK(VAR P:INTEGER);
BEGIN

P := SYSMEM
~D;

PROCEDURE RELEASE(P:INTEGER);
BEGIN

SYSMEM := P
END;

. MODEND.

4.4 Recursion and Ronrecursion

Pascal/MT+ does not automatically produce recursive code,
because recursion increases overall code size and decreases
execution speed. You can generate recursive code with the S
compiler source code option (see Section 2.2.4).

When using recursion, return addresses for all procedures are
stored on the hardware stack. If recursion is deeply nested, the
default stack size of 128 bytes might be too small. If so, the
program can overwrite local or global data as recursion continues.
You can solve this problem by modifying @SFP, as descr ibed in
Section 4.1.

4-18

Pascal/MT+ Programmer's Guide 4.5 Stand-alone Operation

4.5 Stand-alone Operation

If you want to run Pascal/MT+ programs in a ROM-based system,
perform the following steps:

1) Use the $Z compiler option to tell the compiler whe~e to
initialize the hardware stack pointer.

2) If the program performs I/O you have three choices:

• Use redirected I/O for all READ and WRITE statements.
This replaces the run-time character I/O routines with
user-wr i tten I/O routines. Refer to the Pascal/MT+
Language Reference Manual.

• Rewrite GET and the run-time routines @RNC and @WNC. @RNC
is the read-next-character routine~ @WNC is the write­
next-character routine. You must rewrite GET because the
read-integer and read-real routines call it.

• Build a simulated CP/M BOOS in your PROM. If you are
constructing your program to run in a totally stand-alone
environment, such as an Intel SBC-SO/10 board, you can
write an assembly language module to link in front c·f your
program~

Th is rou tine can jump around the standard code that
simulates the BOOS, and can simulate the CP/M BOOS for
functions 1: Console Input, 2: Console Output, and 5: List
Output.

The function number is'in the C register: the data for
output is in~. For input (Function 1), return the data
in the A register. All registers are free to use, and the
stack contains nothing but the return address.

Rotel this is just a suggestion: Digital Research does
not give detailed application support for this method.

3) You can shorten or eliminate the INPUT and OUTP<JT FIB
storage in,the @INI module. YOu need this storage for TEXT
file I/O compatibility, but you might not need it In a ROM~
based environment~

Make sure any changes to-INPUT and OUTPUT are also handled
in @RST (read a string from a file) and @CWT (read until
EOLN is true on a file).

The distribution disk includes three skeletons for the
@INI, ·@RNC,GET, and @WNC routines that you can use in ROM
environments •.

4-19

Pascal/MT+ Programmer's Guide 4.5 Stand-alone Operation

If your program does any reads or writes and does not use
the heap or overlays, you can rewrite the @INI procedure in
your program as follows:

PROCEDURE @INI;
BEGIN
END;

4) In ROM environment, you cannot use the PROCEDURE INTERRUPT
[vector] construct to handle interr"upts. You must
construct an assembly language module and link it as the
main program (first file). This module must cont:ain JMP
instructions at the interrupt vector locations to jump to
the Pascal/MT+ interrupt routines.

Note: find the interrupt routines with the /M linker
option.

S) The integer- and real-divide routines contain a direct call
to CP/M for the divide by a error message. If there ~s a
possiQility of that error ocurring in your program, modify
the routine in DIVMOD.MAC, which is on your distribution
disk '2.

6) Link any changed run-time routines before linking the run­
time library to resolve the references, making sure to use
the, /S option, as in the following example:

A>LINKMT OSBRPROG ,MYWNC,MYRNC,GBT , MYIHI ,PAS"LIB/S

7) Strings cannot reside below 100H. If you have any constant
str ings, named or li teral, at the beginning of your
program, fill out the remaining space in the first PROM
with a table, or with a DS to get the Pascal/MT+ program to
exist at locations greater 100H. Rememher, if you put
tables or data first, you must jump around them to begin
execution of the Pasca1/MT+ program, starting with its
fitst byte. "

4.6 Brror and Range Cbecking

The Pascal/MT+ system supports two types of run-time checking:
range checking and exception checking. The default state of the
compiler disables range checking and enables exception checking.

Error checks and routines set Boolean flags. "" These flags,
along with anerrorcodej load onto the stack and call the built-in
routine @ERR, which tests the Boolean flag.

If no error occurs, the flag is. FALSE, so @ERR exits to the
compiled code and continue.s execution. If an error occurs, @ERR
acts appropriately, as" described in Table4~2.

4-20

Pascal/MT+ Programmer's Guide 4.6 Error and Range Checking

Value

1

2

3

4

5

6

7

I
~ab1e 4-2. @BaR Routine Errors

Meaning

Divide by 0 check

Heap overflow check (unused, see below)

String overflow check (unused, see below)

Array and subrange check

Floating point underflow

Floating point overflow

9511 transcendental error

4.6.1 Range Checking

Range checking monitors array subscripts and subrange
assignments. It does not check when you read into a subrange
variable.

When range checking is enabled, the compiler generates calls to
@~HK for each array subscript and 3ubrange assignment. The @CHK
routine leaves a Boolean value on the stack and the error code
number 4. The compiler generates calls to @ERR after the @CHK call.
If an error occurs, @ERR asks you whether it should continue or
abort.

When range checking is disabled, and an array subscript falls
out.sidethe valid range, you get unpredictable results., For
subrange assignments, the value truncates at the byte level.

4.6.2 Exception Checking

Exception checking is enabled by default. In the current
release, the $X- compiler option does not disable exception
checking_ The conditions checked for are the following:

• integer and real numbers divided by 0
• .real number underflow and overflow
• string overflow

The various exceptions produce the following results:

• Floating-point underflow: @ERR does not print a message ., The
result of the operation is 0.0.

• Floating-point overflow:
large number e.

the result of the operation is a

4-21

Pascal/MT+ Programmer's Guide 4.6 Error and Range Checking

• Division by zero: the result is the largest ,possible number.

• Heap overflow: the error processor takes no action.

• String overflow: the string is truncated.

4.6.3 User-supplied Handlers

You can write your own @ERR routine instead of using the system
routine. Declare the routine as follows:

PROCEDURE @ERR(ERROR:BOOLEAN~ ERRNUM:INTEGER);

Your version of @ERR~should check the ERROR variable and exit
if it is FALSE. If the value is TRUE, you can decide what action to
take.

To use @ERR instead of the routine in PASLIB, link your routine
ahead of PASLIB to resolve the references to @ERR. The values of
ERRNUM are in Table 4-2.

4.6.4 I/O Error Handling

The run-time routine, @BDOS, does not handle I/O errors.
However, it returns the CP/M error code' in IORESULT. Yqu can
rewrite @BDOS, as described below, to check further for disk I/O
errors.

XBDOS.SRC on distribution disk 12 contains an alternative @BOOS
routine. When XBDOS calls the BOOS with the CP/M I/O functions
OPEN, RESET. CLOSE, WRITE, and REWRITE, it generates a call to
IOERR, and pass.esthe CP/M function call number. You can. then
modify the IOERR routine, found in IOERR.SRC on distribution disk
12, to handle these I/O errrors.

To use the I/O error handling code, compile both IOERR.SRC and
XBDOS;SRC. Then use the file named IOCHK.BLD on distribution disk
12 as input toLIBMT+. IOCHK.BLD uses the relocatable files and
creates a library called IOCHK .ERL. You must link this library
be·fore PASLIB. You cannot search IOCHK .ERL because all references
to @BDOS are generated by PASLIB.

You do not have to declare @BOOS of IOERR external, because all
the references to @BDOS come fromPASLIB, and all the references to
IOERR come from @BDOS.

End of Section 4

4-22

Section 5
Pascal/MT+ Programming Tools

Pascal/MT+ provides three programming tools designed to
increase programming productivity: a disassembler, a symbolic
debugger, and a librarian.

• DIS8080 is a disassembler that combines a relocatable file wi th
a corresponding PRN file to produce a file showing the assembly
code for each Pascal/MT+ source line.

• The debugger is a relocatable file that you link into a
program, enabling you to step through the program as it runs.

• LIBMT+ is a librarian utility that concatenates relocatable
files into a searchable library file.

5.1 0188080, the oisasseabler

The disassembler DIS8080 consists of one executable file,
DIS8080.COM, which is on your Pascal/MT+ distribution disk #2.

DIS8080 generates a file showing the assembly language for each
Pascal/MT+ source line. When you compile a program using th·e X
option, the compiler generates an extended relocatable file with
filetype ERL containing assembly" language coding interspersed with
Pascal/MT+ statements.

When you eompile a program using the P option, the compiler
generates pr int files wi th filetype PRN. Used together, these files
enable the disassembler to investigate code the compiler produces.
The files provide the information necessary to debug the program at
the machine code level.

Rote: because most of the compiler code is 8080 code, a
disassembler for 8080 mnemonics comes only with CP/M releases.

Appendix C contains a listing of a sample disassembly. Figure
5-1 illustrates the operation of DIS8080.

5-1

Pascal/MT+ Programmer's Guide

EXTENDED AELOCATABLE
OBJECT FILE
FILENAME.EAL

5.1 The Disassembler 0188080

DISASSEMBLED
t.ISTING FILE

PAINT FILE AN 072

FILENAME.PAN

Figure 5-1. oIS8080 Operation

You invoke the disassembler wi th a command line of the
following form:

DI88080<filename>[<destination name>] [,L=nnnj

You do not have to specify a filetyp~. 0188080 searches for
both the ERL' and PRN file .wi th the specified <filename>. Both files
must be on one logical disk drive. The <destination name> can be a
filename or a Pascal/MT+ log ical device, CON: or L8T:. The default
destination is CON:. The L=nnn parameter enables you to specify the
number of lines per page for the output device. The nnn stands for
an integer value. The L=nnn parameter requires that you specify a
destin~tion name.

When the disassembler finds something unexpected in the ERL
file, it generates an error message. Continuing at this point
produces more errors because the sequence is off. An ERL file
should have no errors. To correct errors, recompile the program
using the X compiler option, and be sure you are disassembling
Pascal/MT+ code only.

5.2 The Debugger

The Pascal/MT+ debugger simplifies program maintainance.· The
debugger consists of one relocatable object file, DEBUGGER. ERL ,
which is on distribution disk 12.

To use the debugger, you must link the DEBUGGER.ERL file into a
source program along with the run-time support library, PASLIB.ERL.
The debugger then takes charge of the source program execution.

5-2

Pascal/MT+ Programmer's Guide 5.2 The Debugger

The debugger can perform the following tasks:

• display variables by name or address
• set symbolic breakpoints
• step through the· program one statement at a time
• display symbol tables
• display entry and exit points for procedures and functions

The debugger displays line numbers in trace mode. However, in
programs consisting of modules, line numbers repeat in each module.
The debugger wo·rks only on programs wi thout overlays.

You can use the debugger in a stand-alone environment. When
the debugger requests the filename of the symbol table, press RETURN
to disable the symbolic facilities. The display-by-address
facilities remain in effect.

Appendix D shows a sample debugging session.

5.2.1 Debugging Programs

When you compile a program with the D option, the compiler
gene~ates a PSY file containing debugger information. You must
compile all modules that you want to debug with the D option. The
compiler wr.ites the PSY file onto the disk containing the
corresponding ERL file.

The PSY file contains records for each procedure, function, and
var iable in the program. The compiler generates code at the
beginning .and end of each item for debugger breakpoint logic.
Address fields for each item are module relative.

The linker uses the ERL and PSY f ileto create a SYP file
containing absolute addresses foi each prodedure, function, and
variable. The debugger uses the gyp file to perform the various
debugging tasks.

You must place the DEBUGGER.ERL file first in the list of files
in ·the LINK/MT+ command line.. The following example links the
debugger, user program, and run-time library into an executable file
named PROG 1. COM. .

A> LDnQIT PROGl=DEBUGGBR, PROGI ,PASLIS/S

The preceding example generates two undefined symbols, @XOP and
@WRL. These are required only ifPROG. uses real numbers. If so,
you must link the real number run-time library FPP.EALS. ERL with the
other files in the command line.

5-3

Pascal/MT+ Programmer's Guide 5.2 The Debugger

To start the debugging session, run the program. The debugger
takes control, and requests the name of the symbol table file. You
must enter the user program SYP file. You must enter both the
filename and filetype.· Press RETURN if there is no symbol table.
The debugger then prompts you for the BEgin or TRace command. You
can then proceed to debug the program using breakpoints and other
.debugger commands.

5.2.2 Debugger Ca.aands

Debugger commands use the following rules and syntax elements:

• <name> refers to a variable name, a procedure or function name,
or a prefixed variable name. A prefixed variable name is a
variable identifier prefixed wi th a procedure or function name.
Names are from one to eight characters long and follow the
syntax of the compiler.

• <num> refers to a decimal or hexadecimal number. Hexadecimal
numbers are prefixed with a $ and range from 0 to FFFF G

Decimal numbers range from 0 to 32767.

• <parm> refers to a parameter.

• Specify an offset from the primary address with a + or -. The
debugger assumes + if not specified in the command.

• The '" is an indirection character used with pointer variables.
The ,.. tells the debugger to display the data pointed to, not
the contents of the pointer itself.

• The debugger ignores underscores,
commands easier to read.

Use underscores to make

Several commands require an additional parameter. Parameters
have the following syntax:

<parm> ::= [<name> !<num>! t,.,} {[+ 1-] <num>}

Table 5-1 shows examples of parameters, given the following
declarations:

TYPE
PAOC = ARRAY [1 •• 40] OF CHAR:

VAR
ABC •
PTR

INTEGER;
"'PAOC;

5-4

Pascal/MT+ Programmer's Guide 5.2 The Debugger

Table 5-1. Bza.ples of Para.eters

Parameter

ABC
PTR
PTR
ABC+lO
PTR +lO
ASC-3
PTR -3
$3FFD
$ 423S
$ 3FFD+$5S
$423S +49

PROCl:I
PROC2:J"'+9

J Meaning

the value of variable ASC
the value of PTR
the array pointed to by PTR
10 bytes past ABC location
PTR'" [ll]
3 bytes before ABC
3 bytes before the array, PAOC
Absolute location
32 bytes pointed to by $ 423S,
32 bytes at $4058
32 bytes pointed to by contents
of $4238 + 49
local variable in PROCl
offset from local pointer

The following displays a variable by <name>:

DV <parm>! }

If <name> is a pointer variable, DV displays the contents of the
pointer. If you use <name>"', DV displays the contents of the
location addressed by the pointer.

Table 5-2 shows commands used when symbols are not available or
when you want to display fields wi thin record or array elements. If
symbols are available, you can use the the commands, bli t DV is
easier to use.

Table 5-2. Debugger Display Commands

Command Syntax

DV <symbol>
DI <parm>
DC <;parm>
DL <parm>
DR <parm>
DB <parm>
OW <parm>
OS <parm>
OX <parm> {,num}

1 Meaning

Display Variable
Display Integer
Display Character
Display Logical (Soolean)
Display Real
Display Byte
Display Word
Display String
Display extended
(structures). This is
always displayed in

.HEX/ASCII format. Num is
the size, in bytes, for
memory dump. The defaul t
value is 320 bytes.

5-5

Pascal/MT+ Programmer's Guide 5.2 The Debugger

The following command alters the contents of a memory address:

SE<parm>

The SE command displays the byte at the specified address in
decimal. Enter a new value in either decimal or hexadecimal, then
press RETURN. The new value replaces the displayed value, and the
debugger displays the next byte of memory. If you enter a value
that does not fit in two bytes, the debugger uses the last two
digits. To end the SE<parm"> command, enter a period and press
RETURN.

Table 5-3· describes the other commands that. enable control of
your program in a debugging session.

~ab1e 5-3. Debugger Control C~aDds

Command
Syntax

BE

DV <name>

E+

E-

GO

PN

RB <name>

SB <name>

SE <parm>

TR" or "T

T<num>

VN<name>

?1

I
begins execution
beginning) •

Meaning

(start program from

displays the contents of . the named
variable.

enables display entry and exit of each
procedure or function during execution
(defaul ton) •

disables entry / exit display.

continues execution from a breakpoint.

displays procedure names from SYP file.

removes breakpoint at procedure <name>.

sets breakpoint at beginning of procedure
<name>.

modifies contents of memory at <parm>. A
period terminates this command.

Trace -" executes one line and returns.

traces <num> lines and return.

displays vat iables associated wi th
procedure <name>.

HELP 1 List of commands is found in
DBUGHELP.TXT.

5-6

Pascal/MT+ Programmer's Guide 5.3 The LIBNT+ Librarian

5.3 LI~+, the Software Librarian

LIBNT+ is a software librarian program that performs two
functions:

• It can logically concatenate ERL files together to construct a
searchable library, such as PASLIB •

• It can also convert Pas'cal/MT+ ERL files. that are compatible
with Microsoft-compatible linkers, such as LSO and LINK-SON e

You invoke LIBMT+ with a command line of the form:

LIBMT <filename>

where the <filename> contains only the name, not the type of the
file. LIBMT+ accepts an input file of type BLD. A filetype of BLD
contains an output filename followed by a list of input filenames,
with each name on a separate line.

Pascal/MT+ modules, libraries, and appropriate assembly
language modules are all valid as input files ~ You must specify the
filetype but it need not be ERL. If the output file is to be
processed by LINK/MT+, it must be of type ERL.

Rote: LIBMT+ cannot process a Pascal/M~+ module compiled with the X
(Extended Relocatable file) option. To process such a module, you
must recompile it without the X option.

The following is an example of a BLD file for" creating .a
LINK(MT+ compatible library:

MYLIB.ERL
MYMOD1.ERL
MYMOD2.ERL
MYMOD3.ERL

Th is file deletes any existing copy of. MYLIB. ERL. It. then
concatenates the files MY MODl.ERL, MYMOD2.ERL, and MYM003.ERL and
places the output in MYLIB.ERL.

5.3.1 Searching a Library

The LINK/MT+ linker is a one-pass linker, so when you use the
/S option to' signify that a file is a library, the linker loads only
those modules that have been referenced by previous modules ~
Therefore, the order of modules in your library is important. If
the modules are concatenated as A, S, C, then modules Band C cannot
contain' references to module A unless they are guaranteed that
module A is loaded. Module A, however, can contain ref.er'ences to B
or Cbecause this causes the linker to load them.

5-7

Pascal/MT+ Programmer's Guide 5.3 The LIBMT+ Librarian

Remember that the linker can only extract entire modules fran a
library. Single procedures from a modules cannot be extracted. All
entry points, both code and data, are used as a basis for searching
when you use the /S option. Only one entry point in a module need
be referenced to force loading that entire module.

You cannot use LIBMT+ to-alter PASLIB because of its special
construction. If you want to replace modules in PASLIB.ERL, link
the replacement modules before linking PASLIB. This resolves
~eferences to those routines before PASLIB is searched. If th~

. replacement routines are in a library, it is a good idea not to
search the new library, because the references to the replacement
routines sometimes are not made until PASLIB is searched.

5.3.2 LIBMT+ as a Converter to L80 Por.at

If the first line of the BLO file contains only LaO (or laO),
the output file is LBO-compatible; otherwise, it is compatible with
LINK/MT+.

An LBO-compati ble file does not wor k with LINK/MT+. The
foliowingis a sample BLO file for converting a library or module to
LaO format:

Lao
MYLI]3.ERL
MYMOO.ERL
MYM002.ERL
MYM003.E~

LIBMT+ creates a file called MYLIB.ERL, which contains the
converted MYMOOl, MYM002, and MYM003. The conversion process
truncates all public names to six characters. This can cause
duplicate symbol errors when using Lao that did not occur when using
LINK/MT+. LINK/MT+ allows public names up to seven characters long.

The features gained by using this program and LBO are

• the ability to use multiple origins of code and data
• the ability to have initialized 'data in the OSEG
• the ability to use COMMON

The features of the Pascal/MT+ system lost when using this
program and LaO are

• Overlays

• The ability to generate a HEX file

• The /0. option of LaO reserves space in memory and wr i tes
unintialized data to the disk, which can result ina very large
COM file.

5-a

Pascal/MT+ Programmer's Guide 5.3 The LIBMT+ Librarian

• Seven-character significance in public names.

• The disassembler does not work with REL files.

• The /F option (CMD files) cannot be used.

• Programs that link properly with LINK/MT+ might not link with
LBO because they are too large to fit into memory at link-time.

• Unlike LINK/MT+, if you specify /P:4000 when using LBO, the
area from 100H through 3FFF is also saved in t~e COM file.
LINK/MT+ sav.es the byte that is loaded at 4000H as the first
byte in the COM file. This has both advantages and
disadvantages.

• The Pascal feature, temporary files, does not operate wi th LBO.

• Programs that work with LINK/MT+ might suddenly stop working
wi th L80. If the /0 option is not used, then all data is
initialized to 00 by LINK/MT+. Therefore, you must watch out
for uninitialized variables.

End of Section 5

·5-9

Appendix A
Compiler Error Messages

Table A-I. Compiler Error Messages

Message Meaning

Recursion stack overflow

Error i 1

Evalua tion stack collision wi th symbol
table. Correct by reducing symbol table
size, simplifying expressions~

Error in simple type

Self-explanatory.

Error i 2
Identifier expected

Self-explanatory.

Error i 3
'PROGRAM' expected

Error i 4
')' expected

Error i 5
':.' expected

Errori 6

Self-explanatory.

Self-explanatory.

possibly a = used in a VAR declaration.

Illegal symbol (possibly __ m-issing ';' on line above)

Symbol encount~red is not allowed in the
syntax at this point.

A-I

Pascal/MT+ Programmer's Guide A Compiler Error Messages

~able A-I. (continaed)

Message Meaning

Error i 7
Error in parameter list

Error i 8
'OF' expected

Error i 9
'(' expected

Error i 10
Error in type

Error i 11
'[' expected

Error t 12
'1' expected

Error t 13
'END' expected

Error t 14

.

Syntactic error in parameter list
declaration.

Self-explanatory.

Self-explanatory.

Syntactic error in TYPE declaration.

Self-explanatory •

Self-explanatory.

All procedures, functions, and blocks of
statements must have an 'END'. Chec·k for
mismatched BEGIN/ENDs •

..

';' expected (possibly on line· above)

5.tatement sepaJ;'ator required here.

A-2

Pascal/MT+ Programmer's Guide A Compiler Error Messages

~able A-I.. (continued)

Message Meaning

Error i 15
Integer expected

Error i 16
'=' expected

Self-explanatory.

Poss ibly a : used in a TYPE or CaNST
declaration.

Error i 17
'BEGIN' expected

Self-explanatory.

Error i 18
Error in declaration part

Error i 19

Typically an illegal backward reference to
a type in a pointet declaration.

error in <field-list>

Error • 20
'.' expected

Error i 21
'*' expected

Error • 50

Syntactic error in a record declaration.

Self-explanatory.

Self-explanatory.

Error in constant

Syntactic error in a literal constant;
also when using recursion and improperly
using INP and OUT.

A-3

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Message

Error i 51
, =' expected

Error • 52
'THEN' expected

Table A-I. (continued)

Meaning

Self-explanatory.

Self-explanatory.

Error • 53
'UNTIL' expected

Error • 54
'DO' expected

Error i 55

Can resul t from misma"tched BEGIN/END
sequences.

Syntactic error.

'TO' or 'DOWNTO' expected in FOR statement

Error i 56
'IF' expected

Error i 57
'FILE' expected

Error • 58

Self-explanatory.

Self-explanatory.

Probably an error in a TYPE declaration.

Error in <factor> (bad expression)

Syntactic error in expression at factor
level.

A-4 "

Pascal/MT+ Programmer I s Guid"e A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error t 59
Error in variable

Syntactic error in expression at variable"
level.

Error i 99
MODEND expected

Each MODULE must end with MODEND.

Error i 101"
Identifier declared twice

Name already in visible symbol table.

Error i 102
Low bound exceeds high bound

Error i 103

For subranges, the lower bound must be <=
high bound.

Identifier is not of the appropriate class

A variable name used as a type, or a type
used as a variable, can cause this error.

Error i 104
Undeclared identifier

Error t 105

The specified identifier is not in the
visible symbol table.

Sign not allowed

Signs are not allowed on
noninteger/nonreal constants.

A-s

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Message

Error i 106
Number. expected

Error i 107

Table A-I. (continued)

Meaning

This error often occurs from making the
compiler totally confused in an expression
as it checks for numbers after all other
possibilities have been exhausted.

Incompatible subrange types

Error t 108

For example, 'A' .• ' Z' is not compatible
with 0 .• 9.

File not allowed here

Error t 109

File compar ison and assignment is not
allowed.

Type must not be real

Self-explanatory.

Error t 110
<tagfield> type must be scalar or subrange

Self-explanatory.

Error t 111
Incompatible with <tagfleld> part

Error t 112

Selector in a CASE-variant record is not
compatible with the <tagfield> type.

Index type must not be real

An ar ray cannot be declared wi th real
dimensions.

A-6

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-I. (continued)

Message Meaning

Error i 113
Index type must be a scalar or a subrange

Self-explanatory.

Error i 114
Base type must not be real

Error i 115

Base type of a se t can be scalar or
subrange.

Base type must be a scalar or a subrange

Self-explanatory.

Error i 116
Error in type of standard procedure parameter

Self-exp'lanatory.

Error i 117
Unsatisfied forward reference

Error i 118

A forwardly declared pointer was never
defined.

Forward reference type identifier in variable declaration

Error t 119

You attempted to declare a variable as a
pointer to a type that was not yet
declared.

Respecified params not OK for a forward declared
procedure

Self-explanatory.

A-7

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error i 120
Function result type must be scalar, subrange or pointer

Error i 121

A function was declared with a string or
other nonscalar type as its value. This
is not allowed.

F.ile value parameter not allowed

Files must be passed as VAR parameters.

Error i 122
A forward declared function IS resul t type cannot be
respecified

Self-explanatory.

Error i 123
Missing result type in function declaration

Self-explanatory.

Error i 125
Error in type of standard procedure parameter

Error i 126

This is often caused by not having the
parameters in the proper order foi built­
in procedures or by attempting to
read/wr i te pointers, enumerated types, and
so on.

Number of parameters does not agree with declaration

Self-explanatory.

Error i 127
Illegal parameter substitution

Type of parameter does not exactl~ match
the corresponding formal parameter.

A-a

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-I. (continued)

Message Meaning

Error i 128
Result type does not agree with declaration

Error t 129

When assigning to a function result, the
types must be compatible.

Type conflict of operands

Self-explanatory.

Error t 130
Expression is not of set type

Self-explanatory.

Error t 131
Tests on equality allowed only

Error t 133

Occ~rs when comparing .sets for other than
equality.

File comparison not allowed

Error t 134

File control blocks cannot be compared
because they contain multiple fields that
are not available to the user.

Illegal type of operand(s)

Error t 135

The operands do not match those required
for this operator.

Type of operand must be boolean

The operands to AND, OR, and NOTIliust be
BOOLEAN.

A-9

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (coDtinued)

Message Meaning

Error t 136
Set element type must be scalar or subrange

Self-explanatory.

Error t 137
Set element types must be compatible

Self-explanatory.

Error t.138
Type of variable is not array

Error i 139

A subscript was specified on a nonarray
variable.

Index type is not compatible with the declarat~on

Error t 140

Occurs when indexing .into an array wi th
the wrong type of indexing expr~ssion.

Type of variable is not record

Error t 141

Att~mpting to access a nonrecord data
structure with the dot for. or the with
statement.

type of variable must be file or pointer

Error t 142

Occurs when an up arrow follows a variable
that is not of type pointer or file.

Illegal parameter solution

Self-explanatory.

A-IO

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error # 143
Illegal type of loop control variable

Error # 144

Loop control variables can be only local
nonreal scalars.

Illegal type of expression

Error t 145
Type conflict

Error # 146

The expression used as a selecting
expression in a CASE statement must be a
nonreal scalar.

Case selector is not the same type as the
selecting expression.

Assignment of files not allowed

Self-explanatory.

Error # 147
Label type incompatible with selecting ,expression

Error # 148

Case selector is not the same type as the
selecting expression.

Subrange bounds must be scalar

. Self-explanatory.

Error i 149'
Index type must be integer

Self-explanatory.

Error i 150
Assignment to standard function is not allowed

Self-explanatory.

A-ll

Pascal!MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)

Message Meaning

Error • 151
Assignment to formal function is not allowed

Self-explanatory.

~Error i 152
No such field in this record

Self-explanatory.

Error i 153
Type error in read

Self-explanatory.

Error i 154
Actual parameter must be a variable

Error i 155

Occurs when attempting to pass an
expression as a VAR parameter.

Control variable cannot be formal or nonlocal

The control var iable in a FOR loop must be
LOCAL.

Error i 156
Multidefined case label

Self-explanatory.

Error i 157
Too many cases in case statement

Error i 158

Occurs when jump table generated for case
overflows its bounds.

No such variant in this record

Self-explanatory.

A-12

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-I. (continued)

Message Meaning

Error # 159
Real or string tagfields not allowed

Self-explanatory.

Error # 160
Previous declaration was not forward

Error # 162
Parameter size must be constant

Error # 163
Missing variant in declaration

Occurs when using NEW/DISPOSE and a
variant does not exist.

Error # 165
Multidefined label

Label more than one statement with same
label.

Error # 166
Multideclared label

Declare same label more than once.

Error # 167
Undeclared label

Label on statement was not declared.

Error # 168
Undefined label

A declared label was not used to label a
statement.

Error # 169
Err,or in base set

A-13

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-1. (continued)

Message Meaning

Error i 170
Value parameter expected

Error i 174
Pascal function or procedure expected

Self-explanatory.

Error i 183
External declaration not allowed at this nesting level

Self-explanatory.

Error # 201
Error in real number - digit expected

Self-explanatory.

Error # 202
String constant must not exceed source line

Error it 203
Integer constant exceeds range

Error it 250

Range on the integer· constants are
- 32768 •• 32767

Too many scopes of nested identifiers

Error it 251

There is a limit of 15 nesting levels at
compile time. This includes WITH and
procedure nesting.

Too many nested procedures or functions

The~e is a limit of 15 nesting levels at
execution time. Also occurs when more
than 200 routines are in one compiled
module.

A-14

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-I. (continued)

Message Meaning

Error i 253
Procedure (or program body) too long

Error i 259

A procedure generated code that overflowed
the internal procedure buffer. Reduce the
size of the procedure and try again. The
limit is 4096 bytes.

Expression too complicated

Error #; 397

Your expression is too complicated (that
is, too many recursive calls are needed to
compile it). You should reduce the
complication using temporary variable.

Too many FOR or WITH statements in a r·rocedure

Error # 398

Only 16 FOR or WITH statements are allowed
in a single procedure.

Implementation restriction

Error # 407

Normally used for arrays and sets that are
too .big to be manipulated or allocated.

Symbol Table Overflow

Error #; 496
Invalid operand to INLINE

Error i 497

Usually due to reference that requires
address calculation at run-time._

Eiror in closing code file.

An error occurred when the ERL file was
closed;o Make more room on the destination
disk and ttyagain~

A-IS

Pascal/MT+ Programmer's Guide A Compiler Error Messages

!'able A-l. (continued)

Message Meaning

Error i 500
Non-ISO Standard feature. Not fatal.

Error i 999
Compiler confused due to previous errors.

Make some corrections and try again. It
is also possible that while your program
is syntactically correct, it can confuse
the compiler if semantic errors exist.
The compiler aborts early witrr this error
number. Look carefully at the line on
which the compilation halts.

En4 of Appendix A

A-l6

Appendix B
Library Routines

The Pascal/MT+ compiler generates native machine code. Each
processor requires a library of run-time routines to support files
and any other features that are not supported by the native
hardware, but that are required to implement the entire Pascal
language. The following information is specific to th~ 8080/Z80
CP/M implementations of Pascal/MT+.

In Pascal/MT+, all I/O is performed and. set var'iables are
manipulated with library routines. Only the run-time routines
needed for a particular program are actually loaded when you link
the program with LINK/MT+ and use the /S option.

Note 'that console I/O is assumed by the initialization routine,
@INI. This causes the input/output routines to be loaded even when
you are not using them. If you want to avoid this, you can write a
replacement @INI routine and link it before linking the. run-time
library to resolve the @INI reference.

The table below lists the names of the run-time library
routines and their purposes. This table clarifies what these
routines do, so that when you disassembl~ a program you have some
information about what is happening in your program. They are not
here so that you can call these routines from your program. Digital
Research does not guarantee parameter list compatibility between
releases.

Routine

@CHN

@MUL

@EQD
@NED
@GTD
@LTD
@GED
@LED

@EQS
@NES
@GES
@LES

'lable B-1. Run-tiae Library Routines

I Purpose

Program chaining routine

Long Integer multiply

String 'comparison routine for
String comparison routine for <>
String comparison routine for>
String comparison routine for <
String comparison routine for >=
String comparison routine for <=

Set equality
Set inequality
Set superset
Set subset

B-1

Pascal/MT+ Programmer's Guide B Libra,ry Routines

Routine

@HLT

@SAD
@SSB
@SML
@SIN
@BST
@BSR

@EQA
@NEA
@GTA
@LTA
@GEA
@LEA

@XJP

@LBA
@ISB
@CNC
@CCH

@RCH
@CRL
@CWT

@WIN
@RST

TSTBIT
SETBIT
CLRBIT

SHL
SHR

@SFB
@DWD
@SIA
@SOA
@DIO

@INI

@STR

@WCH

@DVL

I
~able ~l. (continued)

Purpose

End of program halt routine;
return to operating system

Set union
Set difference
Set intersection
Set membership
Build singleton set
Build subrange set

Array comparison routine
Array comparison routine
Array comparison routine
Array comparison routine
Array comparison routine
Array comparison routine

Table case jump routine

for
for
for
for
for
for

=
<>

>
<
>=
<=

Load concat string buffer address
Initialize string buffer
Concatenate a string to the buffer
Concatenate a character to the buffer

Read a character from a file
Write a newline (CR) to a file
Read until EOLN is TRUE on a file

Write an integer to a file
Read a string from a file

Test for a bit on
Turn a bit on
Turn a bit off

Shift a word left
Shift a word right

Set global FIB address .
Set default width and decimal places
Reset input vector
Reset output vector
Set I/O vectors to default addresses

Run-time initialization

S tr ing store

Write a. string to a file

32-bi t DIV software routine

B-2

Pascal/MT+ Programmer's Guide B Library Routines

Routine

@MDL

MOVELE

MOVERI

@CHW

@EQR
@NER
@GTR
@LTR
@GER
@LER

@RRL
@WRL

@RAD
@RSB
@RML
@RDV
@RNG
@RAB ,

@RDL
@RTL

SQRT

TRUNC
ROUND

CHAIN

OPEN
BLOCKR
BLOCKW
CREATE
CLOSE
CLOSED
GNB
WNB

. PAGE
EOLN
EOF
RESET
REWRIT
GET

I
Table 8-1. (continued)

Purpose

32-bit MOD software routine

Block move left end to left end

Blocl~ move right end to right end

Write a character to a file

Real comparison for =
Real comparison for <>
Real comparison for >
Real comparison for <
Real comparison for >=
Real compasison for <=

Read a real from a file
Write a real to a file

Real add'
Real. subtract
Real multiply
Real divide
Real negate
Real absolute value

Read a long integer from a file
Write a long integer to a file

Real square root

Pascal built-in truncate function
Pascal built-in round function

Pascal interface for @CHN

File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
Fiie handling routine
File handling routine
File handlirig routine
File handling routine
File handling routine
File handling routine
File handling routine

B-3

Pascal/MT+ Programmer's Guide B Library Routines

Routine I
PUT
ASSIGN
PURGE
IORESU

COpy
INSERT
DELETE

POS

@WNC
@RNC
@RIN
@RNB
@WNB

@BDOS86

@NEW
@DSP
MEMAVA
MAXAVA

Table B-1. (continued)

Purpose

File handling routine
File handling routine
File handling routine
File handling routine

File handling routine
File handling routine
File handling routine

Run-time support for strings

Write next character to a file
Read next character from a file
Read integer from a file
Read n bytes from a file
Write n bytes to a file

Call operating system directly

Allocate memory for NEW procedure
Deallocate memory for DISPOSE procedure
MEMAVAIL function
MAXAVAIL function-

End of Appendix B

B-4

Appendix C
Sample Disassembly

This appendix contains the Pascal/MT+ program, PPRlME, whic~ is
compiled wi th /X and /P options and then disassembled, produc.Lng the
following output.

References to program locations are followed by a single
apostrophe (1000'), and references to data locations are followed by
a quotation mark (0000").

The operand of instructions that reference external variables
points to the previous reference and the final reference contains
absolute 0000. The list of external chains follows the disassembly
of the program.

Note: the object code generated in this example does not
necessar ily indicate the level of optimization present in the
current release of the Pascal/MT+ compiler. To determine the level
of optimization, compile programs yourself and use the disassembler
to examine the output.

c-i

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal!MT+ Release 5.5 Copyright (c) 1982 Digital Research
Page t 1
Compilation of: PPRIME

Stmt Nest

1 0
2 0
3 0
4 0
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 2
17 2
18 2
19 2
20 2
21 2
22 2
23 3
24 3
25 3
26 3
27 4
28 4
29 4
30 3
31 3
32 3
33 1
34 1
34 0
34 0

Source Statement

PROGRAM PPRlME;
(* USES SIEVE OF ERATOSTHENES *)

CONST
SIZE=8190;

VAR
FLAGS:
I,PRlME,K,ITER:

ARRAY(O •. SIZE] OF BOOLEAN;
INTEGER;

COUNT: INTEGER;

BEGIN
COUNT := 0;
writeln('10 iterations');
FOR ITER := 1 TO 10 DO

BEGIN
COUNT:=O;

FILLCHAR(FLAGS,SIZEOF(FLAGS) ,CHR(TRUE»;

FOR 1:=0 TO SIZE DO
IF FLAGS (I] THEN

BEGIN
PRIME: =1+1+3;
K:=I+PRIME;
WHILE K<=SIZE DO

BEGIN
FLAGS[Kj :=FALSE;
K:=K+PRIME;

END;
COUNT:=COUNT + 1;

END
END;

writeln(count,' primes');
END.

Normal End of Input Reached

Listing C-l. Compilation of PPRIMB

C-2

Pascal/MT+ Programmer's Guide" C Sample Disassembly

Output from disassembler:

Pascal/MT+ Release 5.5 Copyright (c) 1981 by MT MicroSYSTEMS Page 1
Disassembly of: PPRlME

Stmt Nest

1

0000
0008
0010

2
3
4
5
6
7
8
9

10

0013
0016
0017

11

OOlA
0010

12

0020
0023
0024
0027
002A
0032
0038
003B
003E

13

0041
0044
0045
0048
0049
004A
004B
004C

FLAGS
ITER
K
PRIME
I
COUNT

o

o
o
1
1
1
1
1
1
1

1

1

1

Source Statement / Symbolic Object Code

EQU
EQU
EQU
EQU
EQU
EQU

PROGRAM

DB
DB
JMP

0000
2000
2002
2004
2006
2008

PPRlME;

00,00,00,00,00,00,00,00
00,00,00,00,00,00,00,00
0000

(* USES SIEVE OF ERATOSTHENES *)
CONST

SIZE=8190;
VAR

FLAGS:
I, PRIME, K, ITER:
COUNT:

BEGIN

LHLO
SPHL
CALL

0006

0000

COUNT := 0;

LXI
SHLO

a,oooo
2008-

ARRAY(O .. SIZE] OF BOOLEAN;
INTEGER;
INTEGER;

writeln('10 iterations');

LXI
PUSH
CALL
CALL
DB
DB
CALL
CALL
CALL

R,OOOO
Ii
0000
0038'
00,31,30,20,69,74,65,72
61,74,69,6F,6E,73
0000
0000
0000

FOR ITER := 1 TO 10 DO

LXI
PUSH
LXI
PUSH
FOP
POP
DCX
SHLO

H,OOOl
a
a,OOOA
a
o
a
H
2000"

Listing C-2. Disassemblyof"PPRIMB

C-3

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 Copyright (c) 1981 by MT MicroSYSTEMS Page t
Disassembly of: PPRIME

Stmt Nest Source Statement / Symbolic Object Code

0041" INX H
0050 PUSH 8
0051 PUS8 0
0052 CALL 0000
0055 SHLD 200A·
0058 LHLD 2000"
005B INX H
OOSC SHLD 2000·
0051" LHLD 200A"
0062 DCX H
0063 SHLD 200A"
0066 MOV A,H
0067 ORA L
0068 JZ 0110'

14 1 BEGIN
15 2 COUNT:=O:

006B LXI H,OOOO
006E SHLD 2008"

16 2
17 2 FILLCHAR(FLAGS,SIZE01"(1"LAGS) ,C8R(TRUE»:

0071 LXI 8,0000"
0074 PUSH H
0075 LXI H,lF1"F
0078 PUSH H
0079 LXI H,OOOl
007C PUSH H
007D CALL 0000

18
19 FOR I:=O TO SIZE DO

0080 LXI H,OOOO
0083 PUSH H
0084 LXI H,lF,FE
0087 PUSH 8
0088 POP 0
0089 POP H
008A DCX H
008B SHLD 2006"
008E INX H
0081" PUSH H
0090 PUSH D
0091 CALL 0053'
0094 SHLD 200C"
0097 LHLD 2006"
009A' INX H
009B SHLD 2006"
009E LHLD 200C·
OOAl DCX H

Listing C...;2. (continued)

C-4

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 Copyright (c) 1981 by MT MicroSYSTEMS Page I
Disassembly of: PPRlME

Stmt Nest Source Statement / Symbolic Object Code

00A2 SHLD 200C·
00A5 MOV A,a
00A6 ORA L
00A7 JZ OllA'

20 2 IF FLAGS [I] TBEN

OOM LXI a,oooo·
OOAD XCBG
OOAE LHLD 200P
OOBl DAD 0
00B2 MOV A,M
00B3 RAR
00B4 JNC 0117'

21 BEGIN
22 PRlME::aI+I+3;

00B7 LHLO 2006"
OOBA XCHG
OOBB LHLD- 2006"
008E DAD 0
OOBF INX a
OOCO INX a
00C1 INX _Ei
00C2 SHLO 2004"

23 K:=I+PRlME;

OOCS LHLD 2006"
OOCS XCBG
00C9 LHLO 2004"
OOCC DAD D
OOCD SHLD 2002"

24 WRITELN (PRIME) ;

0000 LHLD 2004"
0003 PUSH H
0004 LXI H,0021'
0007 PUSH a
0008 CALL 0025'
0008 CALL 0039'
OODE CALL 0000
00E1 CALL 003F'

25 3 WHILE K<=SIZE DO

00E4 LHLD 2002"
00E7 PUSH a
OOES LXI H,lFFE

. OOEB PUSH B
·OOEC CALL 0000

Listing C-2. (continued)

C-s

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 Copyright (cl 1981 by MT MicroSYSTEMS Page t" 4
Disassembly of: PPRlME

Stmt Nest

OOEF
OOFO

26
27

00F3
00F6

• 00F7
OOFA
OOFB
OOFC
OOFF
0100
0101

28

0102
0105
0106
0109
OlOA

29

0100

30

0110
0113
0114

31
32

0117
OllA

33

0110
0120
0121
0124
0125
0128

012B
012E
0131
0139
013C

3
4

3
3

1

Source Statement / Symbolic Object Code

POP
JNC

LXI
XCHG
LHLD
OAD
PUSH
LXI
XCHG
POP
MOV

LHLO
XCaG
LHLD
DAD
SHLO

JMP

LHLO
INX
SHLO

ENO;

JMP­
JMP

PSW
0110 '

BEGIN

a,oooo-

2002-
o
a
a,oooo

a
M,E

2002-

2004-
o
2002-

FLAGS[K] :=FALSE;

K:=K+PRIME;

ENO;

00E4'

COUNT:=COUNT + 1;

2008"
a
200S-

ENO

0097'
OOSS'

writeln(count,' primes');

LHLO
PUSH
LXI
PUSH
CALL
CALL

CALL
CALL
DB
CALL
CALL

200S"
H
B,OOOS'
a
0009'
OOOC'

OOOF'
0139 '
07,20,70,72,69,6D,65,73
0129'
003C'

Listing C-2. (continued)

C-6

Pascal/MT+ Programmer's Guide C Sample Disassembly

Pascal/MT+ Release 5.5 copyright (cl 1981 by MT MicroSYSTEMS Page t
Disassembly of: PPRIME

Stmt Nest Source Statement I Symbolic Object Code

013F

34

0142

External
External
External
External
External
External
External
External
External
External
External

CALL

1 END.

CALL

reference chain
reference chain
reference chain
reference chain
reference chain
reference chain
reference chain
reference chain
reference chain
reference chain
reference chain

00E2'

0000

@WIN --> OllC
@CRL --> 0140
@LEI OOEO
@FIN --> 0092
@SFB --> 0126
@DWD --> Ol3A
@INI --> 0018
@WRS --> 0130
@HLT --> 0143
OUTPUT --> 0122
FULCH --> 007E

Listing C-2. (continued)

End of Appendix C

C-7

Appendix D
Sample Debugging Session

This appendix supplies a sample debugging session that uses the
source file DEBUG.PAS, shown below.

Stmt Nest

1 0
2 0
3 0
4 0
5 0
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 2
15 1
16 1
17 1
18 1
19 1
20 2
21 2
22 1
23 1
24 1
25 1
26 1
27 2
28 3
29 3
30 3
31 3
32 3
33 3
34 1
35 1

Source Statement

(* EXAMPLE TO ILLUSTRATE DEBUGGER *)

PROGRAM DEBUG1
VAR

HEXARR: STRING[16];
CH : CHAR;
I : INTEGER;

(* DUMMY PROC TO ALLOW SETTING BREAKPOINT *)

PROCEDURE BREAK;
BEGIN
END;

(* FUNCTION TO CONVERT FROM INTEGER TO HEX CHARACTER *)

FUNCTION CONVERT(I : INTEGER) : CHAR;
BEGIN

CONVERT : = HEXARR [1] ;
END~

BEGIN
HEXARR:= '0123456789ABCDEF';

REPEAT
BEGIN
WRITELN ('ENTER INTEGER TO CONVERT: '); READ (I} ~
CH:=CONVERT (I);
BREAK; (*. BREAK ON RETURN FROM CONVERT *)
WRITELN ('HEX DIGIT IS: ',CH);
END

UNTIL FALSE;

END.

Listing 0-1. ·DEBUG.PAS Source Pile

0-1

Pascal/MT+ p'rogrammer 1 s Guide D Sample Debugging Session

In the following sample session, you interactively debug a
simple program. Your input is shown in boldface print; the column
on the right provides an explanation of each step.
A>MTPLIIS 8:DBBIIG $0

Pa.scal MT'" Release S.5
IC} 1981)<IT)<IlcroSYSTEMS, Inc.

A>!.X_DI'!' B: OBBIIG-DIIIIIJGGIIR,8:0BBIIG,PAS!.IB/S

A>B:OEBUG

Pasca~. !"IT+ .symboLic Oetiuqqer. ReLease '5. S

Sy:nbO~ t~bi.e f l ~en.lme ." return' .::>01y foe nonel? 8:DBBUG.SY'P

Use BE·:p.n we TRace to !>tart a pcoqr.1m
.,SB BREAK
• 'BK

ENTE ~ : V:-;:CER ;:) CJNVERT!
5
~=Cal(e.I\)~t.t :eac!ied

--ov I
"dd::~ss: :::72 <:ontalns:

··ov CB
Address: 0270 C,Jntalf,S: J == 30

• > DC BEXARlI+ 5
Adjres.s: 0263 ":ontaLOS: 4 :n 34

.,ox BEXo\RR
Address: 025E ~ontaLn.s:
OZSE= to JO Jl J2 J3 J4 35 36 3) JB J9 4l 42 43 44 45 .n234567B9A8CDE
026£- 46 00 30 00 05 00 00 00 00.00 00 00 00 DD DD 00 F.O >

D-2

Coapile tn. proqra. witn tne Debuq option.

SyatH display. banne,.

!.ink tn. object file with the debuqqer.

Syot •• displays banne,.
IIOte. the linker eiqht display @WRL as &n
undefined sY'Obol. If your proqca. does not
u •• te.l numbera, you can ignoce it.

Run proqra ••

Syst .. displays banner.

!.oad tne sY'Obols.

Set breakpoint, then
start tne progu ••

Enter data.

Examine I. It is correct.

Exa.ine CH. It is wrong. Why? Because
convert is not returning the corceet val.ue.
Reviewing the source shows that a. 1 was typed
when an I was intended on line 16. Before
reco.pilinq check foe other errors.

eXalllne KEXARR(51. It is not 5 •

En.ine all of KEXARR. All tne dlglts ace
off by l. Note that HEXARlI is a stong and
tneeefore HEXARlI[DI is the length fleld. The
code for convert does not allow foe th 15.

Now that you have determined the proble~,
eXlt DEBUGGER, and 90 back to the source and
fix it.

Appendix E·
Interprocessor Portability

This appendix describes the features of Pascal/MT+ that are not
portable to versions for other microprocessors and opera.ting
systems. A program without the following features should compile
with another Pascal/MT+ compiler with little or no changes to the
source code.

This does not mean that all of the features listed below are
not. implemented on any other target processors. It only ·indicates
tha t they are hardware-dependen t, and if implemen ted, are
implemented differently in different versions of the compiler. If
you use any of these hardware-dependent features, isolate them so
that they are easy to modify when you port the program.

While every effort is made to support compatibility, Digital
Research does not guarantee complete portability to all
implementations. The guidelines that follow are subject to change
without notice. There is no additional information concerning
portability to other Pascal/MT+ compilers.

If you want to write portable programs, avoid the following
features:

• Avoid INLINE.

• Avoid I/O ports (hardware-dependent).

• Avoid redirected I/O (hardware-dependent).

• Avoid device names such as CON:, RDR:, etc.

• Avoid scattering calls to IORESULT throughout the programc
Isolate the calls. IORESULT values depend on the operating
system.

• Avoid ABSOLUTE addressing (hardware-dependent).

• Avoid INTERRUPT procedures (hardware-dependent).

• Avoid the u.se of var iant records that circumvent type checking ..

• Avoid chaining. Chaining is implementation-dependent.

• Avoid having overlays call other overlays.
possible on othexoperating systems.

E-l

This is not

Pascal/MT+ Programmer's Guide E Interprocessor Portability

• Avoid dependence upon EOF for non-TEXT files because it is
implementation dependent. Some operating systems keep track of
how much information is in the file to the exact byte, while
others only keep track to the sector/block level, and the last
sector/block contains garbage information.

• Avoid using temporary files.

• Avoid BLOCKREAO/BLOCKWRITE because these migh t not be
implemented on all operating systems. Use SEEKREAD/SEEKWRITE
instead.

End of Appendix E

E-2

Appendix F
Mini-assembler Mnemonics

The following table lists the valid 8080 mini-assembler
mnemonics for .the INL1NE construct of the Pascal/MT+ compiler.
Spaces and commas are ignored when mnemonics appear in an 1NLINE
construct. For example, "MOV A,M/ is the same as "MOVAM/.

Table F-l. 8080 Mini-assembler Mnemonics·,

Mnemonic J Value 1 Mnemonic I Value

NOP OOOH DADH 029H
LXIB OOlH LHLD 02AH
STAXB 002H DCXH 02BH
1NXB 003H 1NRL 02CH
1NRB 004H DCRL 02DH
DCRB 005H MVIL 02EH
MVIB 006H CMA 02FH
RLC 007H S1M 030H

LXISP 031H
DADB 009H STA 032H
LDAXB OOAH INXSP 033H
DCXB OOBH 1NRM 034H
INRC OOCH DCRM 035H
DCRC OODH MVIM 036H
MVIC OOEH STC 037H
RRC OOFH

DADS:e.. 039
LXID OllH LDA 03AH
STAXD 012H DCXSP 03BH
INXD 013H 1NRA 03CH

e INRD 014H DCRA 03DH
DCRD 015H MVIA 03EH

. MVID 016H CMC 03FH -

. RAL 017H MOVBB 040H
MOVBC 041H

DADO 019H MOVBD 042H
LDAXD OlAH MOVBE 043H
DCXD OlBH MOVBH 044H
INRE Olca MOVBL 045H
DCRE OlDH MOVBM 046H
MVIE OlEH MOVBA 047H
RAR OlFH MOVCB 048H
RIM 020H MOVCC 049H
LXIH 02lH MOVCD 04AH
SHLD 022H . MOVCE 04BH
INXH 023H MOVCH 04CH'
INRH 024H MOVCL 04DH
DCRH 025H MOVCM 04EH

F-l

Pascal/MT+ Programmer's Guide F Mini-Assembler Mnemonics

Table F-l. (continued)

Mnemonic I Value I Mnemonic I Value

MVIH 026H MOVCA 04FH
DAA 027H MOVDB OSOH
MOVDC OSlH ADDH. OS4H
MOVDD OS2H ADDL OSSH
MOVDE OS3H ADDM OS6H
MOVDH 054H ADDA OS7H
MOVDL 055H ADCB OSSH
MOVDM OS6H ADCC OS9H
MOVDA OS7H ADCD· OSAH
MOVEB OSSH ADCE OSBH
MOVEC 059H ADCH OSCH
MOVED 05AH ADCL OSDH
MOVEE 05BH ADCM 08EH
MOVEH OSCH ADCA OSFH
MOVEL OSDH SUBB 090H
MOVEM 05EH SUBC 09lH
MOVEA OSFH SUBD 092H
MOVHB 060H SUBE 093H
MovIic 061H SUBH 094H
MOVHD 062H SUBL 095Ii
MOVHE 063H SUBM 096H
MOVHH 064H SUBA 097H
MOVHL 06SH SBBB 09SH

'MOVHM 066H SBBC 099H
MOVHA 067H SBBD 09AH
MOVLB 06SH SBBE 09BH
MOVLC 069H SBBH 09CH
MOVLD 06AH SBBL 09DH
MOVLE 06BH SBBM 09EH
MOVLH 06CH SBBA 09FH
MOVLL 06DH ANAB OAOH
MOVLM 06EH ANAC OAIH
MOVLA 06FH ANAD OA2H
MOVMB 070H ANAE OA3H
MOVMC 07lH ANAH OA4H
MOVMD 072H ANAL OASH
MOVME 073H ANAM OA6H
MOVMH 074H ANAA OA7H
MOVML 07SH XRAB OASH
HLT 076H XRAC OA9H -MOVMA 077H XRAD OAAH
MOVAB 07SH X RAE .OABH
MOVAC 079H XRAH OACH
MOVAD 07AH XRAL ·OADH
MOVAE 07BH XRAM OAEH
MOVAH 07CH XRAA OAFH
MOVAL 07DH ORAB OBOH
MOVAM 07EH ORAC. OBIH
MOVAA 07FH ORAD OB2H

Pascal/MT+ Programmer's Guide F Mini-Assembler Mnemonics

~able F-l. (continued)

Mnemonic I Value I Mnemonic I V~lue

ADDS 080H ORAE 'OB3H
ADDC 081H ORAB ·OB4H
ADoo 082H ORAL OBSH
ADoE 083H ORAM OB6H
ORAA OB7H IN OoBH
CMPB OB8H CC OoCH
CMPC OB9H
CMPo OBAH SBI OoEH
CMPE OBBH RST3 OoFH
CMPH OBCH RPO OEOH
CMPL OBoH POPH OE1H
CMPM OBEH JPO OE2H
CMPA OBFH XTHL OE3H
RNZ OCOH CPO OE4H
POPB OC1H PUSHH OESH
JNZ OC2H ANI OE6H
JMP OC3H RST4 OE7H
CNZ OC4H RPE OE8H
PUSHB OCSH PCHL OE9H
AOI OC6H JPE OEAH
RSTO OC7H XCHG OEBH
RZ OC8H CPE OECH
RET OC9H
JZ' OCAH XRI OEEH

RSTS OEFH
CZ OCCH RP OFOH
CALL OCoH POPPS OF1H
ACI OCEH JP OF2H
RSTl OCFH oI OF3H
RNC OoOH CP OF4H
POPO OOlH PUSHP OFSH
JNC 002H ORI OF6f1
OUT 003H RST6 OF7H
CNC 004H RM OF8H
PUSHO OOSH SPHL OF9H
SUI 006H JM OFAH
RST2 007H EI OFBH
RC 008H CM OFCH

JC OOAH CPI OFEH
RST7 OFFH

End of Appendix F

F-3

Appendix G
Comparison of I/O Methods

This appendix illustrates four different ways to implement a
single file procedure named TRANSFER. Listing G-l shows the main
statement body that calls the transfer routine in each of four
separate programs.

BEGIN
WRITE('Source? '}~
READLN (NAME) ~
ASSIGN (A,NAME) ;
RESET (A) ~
IF IORESULT = 255 THEN

BEGIN
WRITELN('Cannot open ',NAME};
EXIT

END;

WRITE('Destination? f);
READLN (NAME) ~
ASSIGN(B,NAME);

. REWRITE (B) ~
IF IORESULT = 255 THEN

BEGIN
WRITELN('Cannot open' ,NAME);
EXIT

END~

TRANSFER(A,B)
END.

Listing G-l. Main Program Body for Pile Transfer Programs

Listing G-2 shows a transfer program using the BLOCKREAD and
BLOCKWRITE procedures. This program uses untyped files, and a large
2K buffer to transfer data. Note that the program only works for
files whose size is an even multiple of 2K bytes. Thus, if the size
of the source file is 9K, the last lK is not written because the
variable RESULT is nonzero after the call to BLOCKREAD on.line 25.
Using a 128-byte buffer guarantees that all the data is transferred~

The program shown in Listing G:-3 uses the GNB and WNB routines
fot byte-lev~l access to t~e file.

G-l

Pascal/MT+ Programmer's Guide G I/O Comparison

The program shown in Listing G-4 performs the file transfer
using the SEEKREAD and SEEKWRITE procedures. Notice that IORESULT
returns a 1 to indicate end-of-file if the last portion of data from
the source file does not fill the sector, just as in BLOCK I/O. In
this case, the 2K bytes that are the window variable for file
variable A do not fill the sector. However, the end portion of code
that Qoes not fill up the 2K buffer is never written to the
destination file.

Listing G-5 uses GET and PUT to transfer files. This method is
slower than the buffered methods.

Table G-l shows the code, data size, and execution speed for
each of the file transfer procedures when run on a 4MHz Z80
processor with no wait states, and a single-density, single-sided,
8-inch floppy disk. The sizes are in decimal bytes, the speed is in
seconds, and the size of the file is 8K bytes.

Hote: these numbers are not identical for all releases of the
compiler. Your version might not produce the same size and speed.
However, the relative size and speed differences should be roughly
the same.

Table G-l. Size and Speed of Transfer Procedures

Transfer Method I BLOCK I/O I GNB/WNB 1 SEEK I/O I GET/PUT

Compiled Code 520 519 530 477'
Compiled Data 2532 2534 4584 482

Total Code 7317 7161 9243 6764
Total Data 3576 3577 5697 1494

Total Size 10893 10738 14940 8258

Speed 7.8 18.4 8.6 35.1

G-2

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Nest

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
3
3
3
4
4
4
4

-3
3
2
2
2
2
1

Source Statement

PROGRAM FILE~TRANSFER;

(*--*) (* Transfer A to Busing BLOCKREAD and BLOCKWRITE *)
(*--*)

CONST
BUFSZ = 2047;

TYPE
PAOC = ARRAY[l •• BUFSZ] OF CHAR;
FYLE = FILE;

VAR
A,B : FYLE;
NAME : STRING:
BUF : PAOC;

PROCEDURE TRANSFER(VAR SRC: FYLE; VAR DEST FYLE);
VAR

RESULT,I : INTEGER;
QUIT BOOLEAN;

BEGIN
I : = 0:
REPEAT

BLOCKREAD (SRC,BUF,RESULT,SIZEOF (BUF) ,I):
IF RESULT = 0 THEN

BEGIN
'BLOCKWRITE(DEST,BUF,RESULT,SIZEOF(BUF) ,I);
I := I + SIZEOF(BUF) DIV 128

END
ELSE

·QUIT := TRUE;
UNTIL QUIT;
CLOSE(DEST,RESULT):
IF RESULT = 255 THEN

WRITELN('Error closing destination file')
END:

(* MAIN PROGRAM IN LISTING G-1 *)

Listing G-2. File Transfer with BLOCKRBAD and BLOCKWRITB

G-3

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20. 2
21 2
22 2
23 2
24 2
25 2
26 2
27 3
28 3
29 3
30 4
31 4
32 4
33 3
34 2
35 2
36 2
37 2
38 1

Source Statement

PROGRAM FILE_TRANSFER;
(* ____________________________ c ___________________ *)
(* Transfer file A to file Busing GNB and WNB *)
(*-----------~-----------------------------------*)

CONST
BUFSZ = 2047;

TYPE
PAOC = ARRAY[l •. BUFSZ] OF CHARi
TFILE = FILE OF PAOC;
CHFILE = FILE OF CHAR;

VAR
A : TFILEi
B : CHFILE;
NAME : STRING;

PROCEDURE TRANSFER(VAR SRC: TFILE;' VAR DEST CHFILE};
VAR

CH : CHAR;
RESULT INTEGER;
ABORT : BOOLEAN;

BEGIN
ABORT := FALSE;
WHILE (NOT EOF(SRC)) AND (NOT ABORT) DO

BEGIN
CH : = GNB O(S RC) ;
IF WNB(DEST,CH) THEN

BEGIN
WRITELN('Error writing character'};
ABORT : = TRUE;

END;
END;

CLOSE(DEST,RESULT)i
IF RESULT = 255 THEN

WRITELN('Error closing ')
END;

(* MAIN PROGRAM IN LISTING G-l *)

Listing G-3. File Transfer with GNB and WHB

G-4

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest

1 0
2 0
3 0
4 0

"5 0
6 0
7 0
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 2
21 2
22 2
23 2
24 2
25 2
26 2 .
27 2
28 2
29 3
30 3
31 3
32 3
33 4
34 4
35 4
36 3
37 3
38 2
39 2
40 :2
41 2
42 2
43 1

Source Statement

PROGRAM FILE_TRANSFER:

(*--~--*)
(* Transfer A to Busing SEEKREAD and SEEKWRITE*)
(*-----------_ .. _-------------------------------*)

CONST
BUFSZ = 2047;

TYPE
PAOC = ARRAY[O •• BUFSZ] OF CHAR;
TFILE = FILE OF PAOC;
CHFILE = FILE OF PAOC;

VAR
A : TFILE;
B : TFILE;
NAME : STRING;

PROCEDURE TRANSFER(VAR SRC: TFILE; VAR DEST
VAR

CH : CHAR;
RESULT2,RESULT,I INTEGER;
ABORT : BOOLEAN;

BEGIN
CH := 'A';
RESULT := 0;
I : = 0;
WHILE RESULT <>1 DO

BEGIN
SEEKREAD(SRC,I} ;
RESULT := IORESULT;
IF RESULT = 0 THEN

BEGIN
DEST'" := SRC"';
SEEKWRITE(DEST,I};

END;
1:="-1+1;

END;

CLOSE (DEST,RESULT) ;
IF RESULT = 255 THEN

WRITELN('Error closing destination file')
END;

(* MAIN PROGRAM IN LISTING G-l *)

TFILE) ;

Listing G-4. Pile ~ransfer with SBBKRBAD and SBBKWRITB

G-s

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 2
16 2
17 2
18 2
19 3
20 3
21 3
22 3
23 2
24 2
25 2
26 2
27 2
28 1

Source Statement

PROGRAM FILE_TRANSFER~

(*---*) (* Transfer file A to file B using GET and PUT *)
(*--------------~------------------------------*)

TYPE
CHFILE = FILE OF CHAR~

VAR
A,B : CHFILE;
NAME : STRING;

PROCEDURE TRANSFER(VAR SRC: CHFILE~ VAR DEST
VAR

RESULT : INTEGER;
BEGIN

WHILE NOT EOF(SRC) DO
BEGIN

DEST'" := SRC ;
PUT (DEST) ;
GET (SRC) ;

END;

CLOSE(DEST,RESULT);
IF RESULT. = 255 THEN

WRITELN('Error closing destination file')
END;

(* MAIN PROGRAM IN LISTING G-1 *)

Listing G-S. File Transfer witb GET and POT

End of Appendix G

G-6

CHFILE) ;

Index

A

assembler, 1-1
assembly language modules, 4-7

c

C, linker command line option,
2-12

CALL instruction, 2-7, 2-9
chained programs, 3-14
chaining, 3-1, 3-14
CMD, linker input command file,

2-12
Cn, source code compiler option,

2-7
COM file, 2-13
command line options

compiler, 2-3
linker, 2-11

command line
compiler, 2-1
LINK/MT+", " 2-10, 3-9
compilation data, 2-2

compiler errors, 2-3
compiler overlays, 2-3
compiler passes, 2-1
compiler

command line, 2-1
command line options,

2-3
controlling the listing,

2-9
invocation of, 2-1 "
object file, 2-2
organization of, 2-1
overlays, 2-1
source code options, 2-5
source file, 2-1

CP/M BOOS, 4-19
@CWT, 4-19

D

0, linker command line option,
2-12

data area, 2-12
data size

root program, 3-9

data storage
memory layout, 4-1

debugger, 1-1
DIS8080 disassembler, 1-1

output, C-2
@DYN, 2-9
dynamic debugger, 1-1

B

E,
compiler source code option,

3-6
linker command line option,

2-13
source code compiler op~ion,

2-7
entry pOint records,
ERL file

relocatable format
error identification
EXTERNAL "directive,

F

2-7

of, 4-3
number, 2-3
3-2

F, linker command line option,
2-12

file buffer, G-l, G-2
file variab1ef G-2
filespec, 2-7
FUNCTION GNB, G-l
FUNCTION IOPESULT, G-2
FUNCTION WNB, G-l

G

GNB, G-l

B

H, linker command line option,"
~-13

hardware stack, 4-18
header code, 3-3
heap, 3-14

size of, 3-14
root program, 3-10

HEX file, 2-13
hexadecimal fi1etype f 3-4

Index-l

I

I, source code compiler option
2-7

include files, 2-7
@INI, 4-19
interrupt handling, 4-20
interrupt vector, 4-20
Interrupt

hardware stack, 4-3
IORESULT, G-l

K, source code compiler option
2-7

L

L,
linker command line option,

2-13
source code compiler option,

2-9
LIBMT+, 1-1, 2-14
librarian, 1-1

LINK/MTt, 2-10
command line, 2-10
command line options,

2-11
error messages, 2-16

linker disk, 1-8
linker options, 2-11
linker, 2-10, 3-5

input command file, 2-12
overlay options, 2-14, 3-8

load maps, 2-13
local variable stack, 4-2

M

M, linker command line option,
2-13

M80 assembler, 4-3
MEMAVAIL, 4-2
memory map, 2-13
memory space, 2-2
module header code, 3-3
modules., 3-1
multiple overlay areas, 3-5
@MVL, 4-7

o

overlay manager, 3-4, 3-6, 3-7,
3-10

error messages, 3-11
overlays, 3-1, 3-4, 3-6

as assembly language modules,
3-7

@OVL, overlay manager routine,
3-6

OVLMGR3 • MAC , 3-6
@OVS, 3-7, 3-11

p

P,
linker command line option,

2-14
source code compiler option,

2-9
parameter passing, 4-7
PAS, 2-7

source filetype, 2-2
Pascal/MT+ system

distribution disks, 1-2, 1-7
filetypes, 1-2
suggested configuration, 1-7

PASLIB, 2-13, 2-14, 2-15, 3-6,
3-7, 3-13

Phase 0, 2-1, 2-2, 2-9
Phase 1, 2-1
Phase 2, 2-1, 2-2
PIP, 1-8
PROCEDURE BLOCKREAD, G-1
PROCEDURE BLOCKWRITE, G-l
PROCEDURE GET, G-2
PROCEDURE PUT, G-2
PROCEDURE SEEKREAD, G-2
PROCEDURE SEEKWRITE, G- 2
Program sample

PPRIME, C-l
program size~ 1-1
programming tools, 1-1

Q

Qn, source code compiler opt~on,
2-9

Index-2

R

R, source code compiler option,
2-9

range checking, 2-9
recursion, 4-18
relocatable object file, 2-1
RET n instruction, 4-7
RMAC assembler, 4-3
@RNC, 4-19
root program, 2-14, 3-4, 3-5,

3-8, 310, 3-11
RST n instruction, 2-7, 2-9
@RST, 4-19
run-time exception checking,

2-10
run-time library, 1-1, 2-14
run-time range checking, 2-9

s
S,

compiler option, 4-18
linker command line option,

2-14
@SFP, 4-2, 4-18
source code compiler option,

2-9 '
segmented programs, 3-1
software development process,

1-1
source filetypes

SRC, PAS, 2-2
SRC, 2-2, 2-7
@SS2, 4-7
stack frame allocation, 2-9
stack pointer, 2-10

initialization, 4-3
stack, 4-2
stand-alone programs, 4-19
static data, 3-5, 3-9, 3-10
static variables, 3-5
SYM file, 2-14, 2-16, 3-8,

3-9, 3-10
symbol table, 2-1, 2-2" 2-7
SYSMEM, 4-2

T, source code compiler option,
2-9

text edi tor, 1-8
type checking, 3-3

strict, weak, 2-9

w

W,
linker command line option,

2-14
source code compiler option,

2-9
window variable, G-2
WNB Function, G-l
@WNC, 4-19
X

X, source code compiler option,
2-10

@XOP, 2-7

z

Z,
compiler option, 4-3, 4-19
source code compiler option,

2-10

Index-3

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ____________ Edition ____ ,

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What inforn:.1tion
is missing or incomplete? Where are exa~ples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

- ----- --- ------------------- ---- -- - - -- - -- -----------~ - - -.----~-

Attn: Publications Production

BUSINESS REPLY MA,IL
FIRST CLASS / PERMIT NO 182 / PACIFIC GROVE. CA

POSTAGE WILL BE PAID BY ADDRESSEE

l!ID DIGITAL RESEARCH'"
P.o. Box 579
Pacific Grove, California

. 93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

[j]]
DIGITAL

RESEARCH~

IMPORTANT NOTICE

THANK YOU FOR BUYING OUR PRODUCT. YOU

MAY HAVE A READ.ME FILE ON YOUR DISK.

PLEASE LOCATE THE FILE AND READ IT.

Post Office Box 579 _ 160 Central Avenue _ Pacific Grove, California 93950 _ (408) 649-3SCJ6 _ TWX 910 360 5001

