
Multiuser/Multitasking Operating System

SYSTEMS GUIDE

[j]] DIGITAL RESEARCH 00

os
SYSTEMS GUIDE

[!Q) DIGITAL RESEARCH"

COPYRIGHT

Copyright © 1987 Digital Research Inc. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of Digital Research Inc., 60 Garden
Court, P.O. Box DRI, Monterey, California 93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Digital
Research Inc. to notify any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the files actually
included on the distribution disk. This manual should not be construed as a
representation or warranty that such files or materials and facilities exist on the
distribution disk as part of the materials and programs distributed. Many software
products include a release note that explains variations from the manual that do
constitute modification of the manual and the items included therewith. If such a
release note exists, be sure to read it before using the software.

TRADEMARKS

Digital Research and its logo, CP/M, and CP/M-86 are registered trademarks of
Digital Research Inc. Cardfile, Concurrent, Concurrent DOS XM, Concurrent DOS
386, DR EDIX, CBASIC, and Personal BASIC are trademarks of Digital Research Inc.
"We Make Computers Work." is a service mark of Digital Research Inc.

All rights reserved.

The following are registered trademarks of the listed companies.

Registered Trademark

IBM
Intel
Lotus
Microsoft
Quadram

Company

International Business Machines
Intel Corporation
Lotus Development Corp.
Microsoft Corporation
Quadram Corporation

The following are trademarks of the listed companies.

Trademark

1-2-3
Ashton-Tate
MS-DOS
Symphony

Company

Lotus Development Corp.
Ashton-Tate Corporation
Microsoft Corporation
Lotus Development Corp.

The Concurrent DOS System Guide was printed in the United Kingdom.

November 1987

FOREWORD

The Concurrent™ DOS System Guide is intended for the original equipment
manufacturer (OEM) and system programmer responsible for implementing
Concurrent DOS XM or Concurrent DOS 386 (hereinafter cited as Concurrent) on a
disk-based microcomputer that uses an Intel(R) 8086, 8088, 80186, 80286 or 80386
microprocessor with a real-time clock. Concurrent is a multitasking, real-time
operating system that can be implemented in single or multiple user
configurations.

Manual Organization

This manual documents the internal, hardware-dependent structures of Concurrent
and is arranged as follows:

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Section 1 introduces the major features of the system and describes its
levels of interface and the responsibilities of the primary modules.

Section 2 describes how to generate a Concurrent system with the GENSYS
utility.

Section 3 provides an overview of the physical interface to Concurrent. the
Extended Input/Output System (XIOS).

Section 4 describes XIOS support for character devices .

Section 5 describes XI OS support for disk devices .

Section 6 describes Concurrent's support for expanded memory .

Section 7 describes the special functions required for DOS program support .

Section 8 details the responsibilities of an interrupt-driven XI OS tick routine .

Section 9 contains suggestions for debugging the XIOS .

Section 10 describes an example bootstrap procedure .

Section 11 offers guidelines for writing hardware-specific utilities for OEM
distribution.

Section 12 outlines the changes required in Concurrent's end-user
documentation when an OEM makes certain modifications to the operating
system.

Appendix A describes removable media support .

Appendix B offers considerations for implementing graphics capabilities .

Appendix C describes specific details for Concurrent 386 .

Example XIOS

Many sections of this manual refer to the example XIOS. Digital Research(R)
provides an example XI OS for the IBM PC, XT, AT and PS2 family of personal
computers. The example XIOS contains all the major features of a multi-user,
hard-disk, paged-memory Concurrent implementation including support of DOS
applications via serial terminals on Concurrent DOS 386 and character windowing
support for a video-mapped display. Source code is included on the Concurrent
distribution disks. We strongly suggest that you assemble the source files
according to the instructions in Section 2 and that you refer often to the assembly
listing while reading this manual.

Concurrent Documentation

The presentation of information in this manual assumes that you are familiar with
the following documents:

*

*

*

*

The Concurrent DOS User's Guide (cited as the User's Guide) describes the
various features of Concurrent's user interface.

The Concurrent DOS Reference Guide (cited as the User's Reference Guide) is
a user reference manual that provides a detailed description of every
Concurrent command.

The Concurrent DOS Programmer's Guide (cited as the Programmer's Guide)
describes the system's application programmer interface.

The Assembler plus Tools Guide manuals document the RASM-86™
relocating assembler, the LlNK-86™ linkage editor, the LlB-86™ software
librarian, XREF-86™ the cross referencer and the SID-86 symbolic instruction
debugger. This manual is cited as the Programmer's Reference Guide.

Digital Research supports the user and software interfaces described in the User's
Guide, User's Reference Guide, and Programmer's Guide; Digital Research does not
support any additions or modifications made to Concurrent by an OEM or
distributor. The OEM or distributor must also support the hardware interface (XI OS)
for a particular hardware environment.

Terminology

Concurrent system functions available through the .Iogically invariant software
interface are called system calls. The names of all data structures internal to the
operating system or XIOS are capitalized. For example, the Concurrent system data
segment is referred to as the SYSDAT Area or simply SYSDAT. Terms that are
particular to a specific section of this manual are defined in that section.

ii

Contents
1 System Overview

1.1 Concurrent Organization ... 1-2
1.2 Memory Layout .. 1-3
1.3 Supervisor .. 1-4
1.4 Real-time Monitor .. 1-5
1.5 Memory Management Module .. 1-7
1.6 Character 1/0 Module ... 1-7
1.7 Basic Disk Operating System .. 1-8
1.8 Extended 1/0 System .. 1-9
1.9 XIOS Reentrancy ... 1-9
1.10 The System Data Area .. 1-10
1.11 Resident System Processes ... 1-17
1.12 DOS Device Driver Support .. 1-17

2 Building the System
2.1 Required Files ... 2-1
2.2 Invoking GENSYS .. 2-2
2.3 The GENSYS Main Menu ... 2-3
2.4 System Parameters Menu .. 2-5
2.5 Memory Allocation Menu .. 2-8
2.6 Disk Buffering Menu .. 2-9
2.7 OSLABEL Menu ... 2-9
2.8 RSP List Menu ... 2-10
2.9 PHASE Option .. 2-10
2.10 GENSYS Option .. 2-10
2.11 GENSYS Input Files ... 2-11

3 XIOS Overview

3.1 XIOS Header .. 3-1
3.2 INIT Entry Point .. 3-7
3.3 XIOS ENTRY ... 3-8
3.4 Polled Devices ... 3-12
3.5 Interrupt Devices ... 3-13
3.6 Numeric Data Processor Exception Handler ... 3-14
3.7 PCIAT ROS Interrupt Support .. 3-17
3.8 XI OS System Calls .. 3-18

4 Character Devices

4.1 Console Control Block .. 4-2
4.2 Console 1/0 Functions .. 4-5
4.3 XI OS Window Support .. 4-9

4.3.1 XIOS Window Functions ... 4-9
4.3.2 Virtual Console Data Structures ... 4-15
4.3.3 Basic Console Output Alogarithms ... 4-16

4.4 List Device Functions ... 4-17
4.5 Auxiliary Device Functions .. 4-19
4.6 Device Block ReadIWrite Function .. 4-23
4.7 10_POLL Function ... 4-24

iii

Contents

5 Disk Devices

5.1 Disk 1/0 Functions .. 5-1
5.2 1/0 Parameter Block .. 5-9
5.3 Multisector Operations on Skewed Disks .. 5-12
5.4 Disk Parameter Header ... 5-15
5.5 Disk Parameter Block ... 5-17

5.5.1 Disk Parameter Block Worksheet ... 5-22
5.5.2 Disk Parameter Control List Worksheet .. 5-25

5.6 Buffer and Hash Control Blocks .. 5-26
5.6.1 Buffer Control Blocks Format .. 5-26
5.6.2 Hash Control Format ... 5-27

5.7 Memory Disk Applications ... 5-28
5.8 Multiple Media Support .. 5-28
5.9 SYSDAYTA Space A"ocation ... 5-29

6 Expanded Memory Support

6.1 Memory Paging Environments ... 6-1
6.1.1 Generic Environment .. 6-2
6.1.2 EMM Environment .. 6-2

6.2 Expanded Memory Data Structure .. 6-3
6.2.1 Memory Window Descriptor ... 6-3
6.2.2 Memory Page Allocation Descriptor ... 6-3

6.3 Expanded Memory Function Calls ... 6-5

7 PC/AT ROS Support

7.1 XIOS Functions for ROS Video Support ... 7-2
7.2 XIOS Functions for ROS Disk Support .. 7-3
7.3 XIOS Functions for ROS Keyboard Support ... 7-4
7.4 XIOS Functions for ROS System Configuration Support 7-6

8 XIOS Tick Interrupt Routine

9 Debugging the XIOS

10 Bootstrap Adaption

10.1 The Bootstrap Loader on Floppy Disks ... 10-1
10.2 The Bootstrap Loader on Hard Disks .. 10-1
10.3 Other Bootsrap Methods .. 10-1
10.4 Organization of CCPM.SYS ... 10-4

11 OEM Disk Utilities

11.1 Direct-Disk Access Precautions ... 11-1

12 End-User Documentation

iv

Contents

Appendix A Removable Media .. A-1
Appendix B Graphics Implementation .. B-1
Appendix C Concurrent DOS 386 Considerations ... C-1
Index ... Index-1

Tables

1-1 Supervisor System Calls ... 1-5
1-2 Real-Time Monitor System Calls .. 1-6
1-3 Memory Management System Calls .. 1-7
1-4 Character 1/0 System Calls ... 1-8
1-5 BDOS System Calls .. 1-8
1-6 SYSDAT Data Field .. 1-12
2-1 System Parameters Menu Options ... 2-5
3-1 XIOS Header Fields .. 3-2
3-2 XIOS Register Usage ... 3-8
3-3 XIOS Functions .. 3-9
4-1 Console Control Blocks ... 4-3
4-2 XIOS Window Functions ... 4-10
4-3 List Control Block Fields ... 4-18
5-1 Disk 1/0 Extended Error Codes ... 5-1
5-2 10PB Data Fields ... 5-10
5-3 Disk Parameter Fields .. 5-16
5-4 Standard Disk Parameter Block Fields ... 5-17
5-5 Extended Disk Parameter Block Fields ... 5-20
5-6 BSH and BlM Values .. 5-22
5-7 EXM Values ... 5-23
5-8 Directory Entries per Block Size ... 5-23
5-9 AlO, Al1 Values ... 5-24
5-10 PSM and PRM Values ... 5-25
6-1 Memory Window Descriptor Fields .. 6-4
6-2 Memory Page Allocation Descriptor Fields .. 6-5
7-1 10 INT13 Status Byte Vales .. 7-4
7-2 Keyboard Shift Status Bit Map ... 7-5
7-3 DOS Equipment Status Bit Map ... 7-6
C-1 V386 PTR Structure Definition ... C-1

Figures

1-1 Concurrent Interfaces ... 1-2
1-2 Memory layout and Files Structure ... 1-4
1-3 SYSDAT .. 1-10
1-4 SYSDAT Format .. 1-11
2-1 GENSYS Main Menu .. 2-3
2-2 GENSYS System Parameters Menu ... 2-5
2-3 GENSYS Memory Allocation Sample Session ... 2-8
2-4 GENSYS Disk Buffering Sample Session ... 2-9
2-5 GENSYS Operating System label Menu .. 2-9
2-6 GENSYS RSP List Menu Sample Session ... 2-10
2-7 GENSYS System Generation Messages .. 2-11
3-1 XI OS Header ... : 3-2

v

Contents

4-1 The CCB Table .. 4-2
4-2 Console Control Block Format ... 4-3
4-3 CCBs for Two Physical Consoles .. 4-4
4-4 The LCB Table ... 4-17
4-5 List Control Block .. 4-18
4-6 Auxiliary Control Block Table ... 4-19
4-7 Auxiliary Control Block .. 4-19
4-8 Stack Contents for 10 DEVIO call ... 4-23
5-1 DMA Address Table for Multisector Operations ... 5-12
5-2 Disk Parameter Header ... 5-15
5-3 Standard Disk Parameter Block Format .. 5-17
5-4 Extended Disk Parameter Block Format .. 5-19
5-5 Buffer Control Block Fields ... 5-26
5-6 Hash Control Block Fields .. 5-27
6-1 Generic EnvironmentMemory Paging Interfaces ... 6-2
6-2 EMM Environment Memory Paging .. 6-3
6-3 Memory Window Descriptor .. 6-3
6-4 Memory Page A"ocation Descriptor .. 6-4
10-1 Section Descriptors - CCPM.SYS Header Record .. 10-2
C-1 V386 PTR Structure ... C-1

Listings

2-1 Example GENSYS Input File .. 2-12
3-1 Process Descriptor Access Routine ... 3-5
3-2 XIOS HEADER Definition .. 3-6
3-3 XIOS Function Table ... 3-11
3-4 NDP Exception Handler ... 3-16
4-1 Virtual Console Structure .. 4-15
4-2 Window Data Block ... 4-16
5-1 10 SELDSK XIOS Function ... 5-3
5-2 Multisector Operations .. 5-5
5-3 FORMAT FLOPPY Routine ... 5-9
5-4 10PB Definition .. 5-10
5-5 Multisector Unskewing ... 5-13
5-6 DPB Definition ... 5-19
5-7 Extended DPB Definition ... 5-21

vi

Section 1

SYSTEM OVERVIEW

Concurrent is a multitasking, real-time operating system. It can be configured to
support one or more user terminals. Each user terminal can run multiple tasks
simultaneously on virtual consoles. Concurrent's extended features include
intercommunication and synchronization of independently running processes and
expanded memory support that allows the system to address up to eight
megabytes of memory. Concurrent is designed to be implemented in a large
variety of hardware environments and as such, you can customize it to fit that
hardware environment and/or user's needs.

Concurrent also supports many IBM Personal Computer Disk Operating System (PC
DOS) and MS-DOS™ programs. The standard disk media type (DOS) is fully
compatible with PC DOS and MS-DOS disks. In this manual, the term DOS refers to
both PC-DOS and MS-DOS. In addition, for compatibility with previous versions of
Concurrent, the XI OS may support CP/M media and a special utility supplied with
Concurrent allows files to be moved easily to and from the CP/M media.

Concurrent consists of three levels of interface: the user interface, the logically
invariant software interface, and the hardware interface. The user interface
distributed by Digital Research is a Resident System Process (RSP) called the
Terminal Message Process (TMP). The TMP accepts commands from the user and
either performs the function itself or passes the command to the operating system
via the Command Line Interpreter (CLI). The Command Line Interpreter in the
operating system kernel either invokes an RSP or loads a disk file to perform the
command.

The logically invariant interface to the operating system consists of the system
calls described in the Programmer's Guide. The logically invariant interface also
connects transient and resident processes with the hardware interface.

The physical interface, or XIOS (extended I/O system), communicates directly with
the particular hardware environment. The XIOS is composed of a set of functions
which are called by processes that need physical I/O. Sections 3 through 7
describe these functions. Figure 1-1 shows the relationships between the three
interfaces.

This section describes the modules that comprise a typical Concurrent system. It is
important that you understand this material before you try to customize the
operating system for a particular application.

1-1

System Overview

'--------'

Supervisor
- (SUP)

-
-
-
-

Concurent DOS 86 System Guide

Character
I/O module

(CIO)

Basic Disk
O.S.

(BOOS)

Memory
Manager
(MEM)

Real-time
monitor
(RTM)

-
-

Extended
Input/Output

System
- (XIOS)

-

Figure 1-1. Concurrent Interfaces

1.1 CONCURRENT ORGANIZATION

Concurrent is composed of seven basic code modules. The Real-time Monitor
(RTM) handles process-related functions, including dispatching, creation, and
termination, as well as the Input/Output system state logic. The Memory module
(MEM) manages memory and handles the Memory Allocate and Memory Free
system calls. The Character I/O module (CIO) handles all console, list, and auxiliary
device functions. The Basic Disk Operating System (BOOS) manages the file
system. These four modules communicate with the Supervisor (SUP), the Extended
Input/Output System (XIOS) and the Dos function support module (PCMOOE).

The SUP and PCMOOE module manage the interaction between transient
processes, such as user programs, and the system modules. All function calls go
through a software interrupt interface to SUP or PCMOOE.

The XIOS handles the physical interface to a particular hardware environment. Any
of the Concurrent modules can call the XI OS to perform specific
hardware-dependent functions.

1-2

Concurent DOS 86 System Guide Concurrent Organization

All operating system code modules, including the SUP and XIOS, share a data
segment called the System Data Area (SYSDAT). The beginning of SYSDAT is the
SYSDAT DATA, a well-defined structure containing public data used by all system
code modules. Following this fixed portion are local data areas that belong to
specific code modules. The XIOS area is the last of these code module areas.
Following the XIOS Area are Table Areas, used for the Process Descriptors, Queue
Descriptors, System Flag Tables, and other operating system tables. These tables
vary in size depending on the options you choose when you use GENSYS during
system generation. See Section 2, "Building the System," for a description of how
to use GENSYS.

The Resident System Processes (RSPs) occupy the area in memory immediately
before the SYSDAT module. The RSPs you select at system generation time
become an integral part of the operating system. For more information on RSPs,
see Section 1.11, "Resident System Processes," and the Programmer's Guide.

Concurrent loads all transient programs into the Transient Program Area (TPA). The
TPA for a given implementation of Concurrent is determined at system generation
time.

1.2 MEMORY LAYOUT

The Concurrent DOS operating system area can exist anywhere in memory except
over the interrupt vector area. To provide complete DOS support, neither the
system nor the TPA should be located below paragraph 60H. You define the exact
location of Concurrent during system generation. The GENSYS program determines
the memory locations of the system modules that make up Concurrent based upon
system generation parameters and the size of the modules. In the case of a system
that runs from Read only memory (ROM) then the image is built in the usual way
except that the location of Concurrent is given as the start of ROM. The image is
then blown into one or more ROMs as required. At "power up" the data part of the
ROM image is first copied by a small routine to its location in Random access
memory (RAM).

The XIOS is written as a small model (8080 model in previous versions).

The CCPM.SYS file is built by GENSYS from some or all of the following files
depending on the requirement.

CDOS.CON
XIOS.CON
CLOCK.RSP -
PIN.RSP
PCTMP.RSP -
INIT.CON
NET.CON

Concurrent Kernel (SUP,PCMODE,MEM,RTM,CIO,BDOS)
Input/output system
Clock process
Physical input process
Terminal process
Initialisation code
Network code

Figure 1-2 shows the memory map of Concurrent and the structure of the
CCPM.SYS file

1-3

Memory Layout

(TOp of Memory)

TPA

Dynamic Buffers

Table Area

XIOS Data

SYSDAT Data

Stat i c Buffers

XIOS Code

RSP Code and Data

DR Net Code and
Data (optional)

COOS Code

Interrupt Vectors

(Start of memory)

End of as
Area

Within 64k

60:0

00:0

Concurent DOS 86 System Guide

(End of File)

INIT
Code and Data

CCPM.SYS
Data Group

CCPM.SYS
Code Group

O:BO
.CMD Header

0:00
(Start of Fi le)

Figure 1-2. Memory Layout and File Structure

1.3 SUPERVISOR and PCMODE

The Concurrent Supervisor (SUP) and (PCMODE) manage the interface between
system and transient processes and the invariant operating system.

The SUP module also contains system calls that invoke other system calls, like
P _LOAD (Program Load) and P _CLI (Command Line Interpreter). Table 1-1 lists the
system calls contained in the SUP module.

1-4

Concurent DOS 86 System Guide Supervisor and PCmode

Table 1-1. Supervisor System Calls

System Call Number Hex

F_PARSE 152 98
P_CHAIN 47 2F

P_CLI 150 96
P_LOAO 59 38
P_RPL 151 97

S_800SVER 12 DC

S_810S 50 32
S_OSVER 163 A3

S_SYSOAT 154 9A

S_SERIAL 107 68

T_SECONOS 155 98

T_GETTIME 83 53

T_SETTIME 84 54
T_GETOATE 85 55

T_SETOATE 86 56

S_MEMORY 89 59

P_PATH 92 5C
P_EXEC 93 50
P_EXITCOOE 94 5E

S_SETCOUNTRY 95 5F

S_GETCOUNTRY 96 60

1.4 REAL-TIME MONITOR

The Real-time Monitor (RTM) is Concurrent's multitasking kernel. It handles process
dispatching, queue and flag management, device polling, system timing tasks, and
the logical interrupt system. The primary function of the RTM is to transfer the CPU
resource from one process to another, a task accomplished by the RTM dispatcher.
At every dispatch operation, the dispatcher stops the currently running process
and stores its state in the Process Descriptor (PO) and User Data Area (UDA)
associated with that process. The dispatcher then selects the highest-priority
process in the ready state and restores it to execution, using the data in its PO and
UDA. A process is in the ready state if it is waiting for the CPU resource only. The
new process continues to execute until it needs an unavailable resource, a
resource needed by another process becomes available, or an external event, such
as an interrupt, occurs. At this time the RTM performs another dispatch operation,
allowing another process to run.

The Concurrent RTM dispatcher also performs device polling. The XIOS waits for a
polled device through the RTM DEV_POLL system call.

1-5

Real-Time Monitor Concurent DOS 86 System Guide

When the XIOS needs to wait for an interrupt, it issues a DEV_WAITFLAG system
call on a logical interrupt device. When the appropriate interrupt actually occurs,
the XIOS calls the DEV_SETFLAG system call to put process in the ready state. The
interrupt routine then performs a Far Jump to the RTM dispatcher, which
reschedules the interrupted process, and all other ready processes that are not yet
on the Ready List. At this point, the dispatcher brings the process with the highest
priority into execution.

The system clock typically generates interrupts, or clock ticks, 50 or 60 times per
second. This allows Concurrent to effect process time slicing. Since the operating
system waits for the tick flag, the XIOS tick interrupt routine must execute a
Concurrent DEV _SETFLAG system call at each tick (see Section 8, "XIOS Tick
Interrupt Routine") and then perform a Far Jump to the RTM dispatcher. Processes
with equal priority are scheduled for the CPU resource in round-robin fashion. If no
process is ready to use the CPU, Concurrent remains in the dispatcher until an
interrupt occurs or a polling process is ready to run.

The RTM also handles queue management. System queues are composed of a
Queue Descriptor, which contains the queue name and other parameters, and a
Queue Buffer, which can contain a specified number of fixed-length messages.
Processes read these messages from the queue on a FIFO basis. A process can
write to or read from a queue either conditionally or unconditionally.

When a process attempts a conditional read from an empty queue, or a conditional
write to a full one, the RTM returns an error code to the calling process. A process
that attempts an unconditional read or write in these situations is suspended until
the requested operation can be accomplished.

Table 1-2 lists the RTM system calls. See the Programmer's Guide for more
complete information about RTM functions.

Table 1-2. Real-time Monitor System Calls

System Call Number Hex System Call Number Hex

DEV_SETFLAG 133 85 P_TERM 143 8F
DEV_WAITFLAG 132 84 P_TERMCPM 0 00
DEV_POLL 131 83 a_CREAT 138 8A
P_A80RT 157 9D a_CWRITE 140 8C
P_CREATE 144 90 a_DELETE 136 88
P_DELAY 141 8D a_MAKE 134 86
P_DISPATCH 142 8E a_OPEN 135 87
P_PDADR 156 9C a_READ 137 89
P_PRIORITY 145 91 a_wRITE 139 88
DEV]LAGFREE 88 58

1-6

Concurent DOS 86 System Guide Memory Management Module

1.5 MEMORY MANAGEMENT MODULE

The Memory Management module (MEM) handles all memory functions for both
conventional (non-banked) and expanded memory (banked). Expanded memory is
defined as memory (up to eight megabytes) that can be enabled or disabled at a
specific address on command by the XI OS. Memory that cannot be changed in this
way is conventional memory. The MEM module uses linked lists to allocate and
deallocate the memory and to allow the dispatcher to ensure that a process always
has its memory in context when it runs. The XIOS creates or trims these lists at
initialisation time depending on the hardware requirement.

Table 1-3. Memory Management System Calls

System Call Number Hex System Call Number HEX

M_ALLOC 128/129 80181 MC_ALLOC

M_FREE 130 82 MC_ABSALLOC 56 38
MC_ABSMAX 54 36 MC]REE 57 39

MC_ALLFREE 58 3A MC_MAX 53 35

Note: The MC_ prefix denotes system calls supported for compatibility with
CP/M-86 and MP/M-86™. These calls internally execute the M_ALLOC and M]REE
system calls. See the Programmer's Guide for descriptions of the memory
management system calls.

1.6 CHARACTER I/O MODULE

The Character Input/Output (CIO) module handles all console, list, and auxiliary
device I/O and provides an interface to the XIOS and the PIN (Physical Input)
process. The PIN process handles keyboard input for each user terminal.

The XIOS associates device control blocks with each of the devices managed by
the CIO. The Console Control Block (CCB), List Control Block (LCB), and Auxiliary
Control Block (ACB) data structures are described in Sections 4.1, 4.4, and 4.5,
respectively.

Table 1-4 lists the CIO system calls.

1-7

Character I/O Module Concurent DOS 86 System Guide

Table 1-4. Character 1/0 System Calls

Svstem Can Number Hex Svstem Cen Number Hex

C_ASSIGN 149 95 C_STAT 11 OB

C_ATTACH 146 92 C_WRITE 02 02

C_CATTACH 162 A2 C_WRITEBLK 111 6F

C_OELIMIT 110 6E C_WRITESTR 09 09

C_OETACH 147 93 L_ATTACH 158 9E

C_GET 153 99 L_CATTACH 161 Al

C_MOOE 109 60 L_OETACH 159 9F

C_RAWIO 06 06 L_GET 164 A4

C_REAO 01 01 L_SET 160 AO

C_REAOSTR 10 OA L_WRITE 05 05

C_SET 148 94 L_WRITEBLK 112 70

The Programmer's Guide presents an overview of the CIO and describes the CIO
system calls in detail. The XIOS character device functions are described in Section
4.

1.7 BASIC DISK OPERATING SYSTEM

Table 1-5 lists the Concurrent Basic Operating System (BOOS) system calls. These
calls handle all file system functions. The Programmer's Guide describes the BOOS
in detail.

Table 1-5. BOOS System Calls

Svstem Can Number Hex Svstem Can Number Hex

ORV_ACCESS 38 26 F_MAKE 22 16

ORV _ALLOCVEC 27 lB F_MULTISEC 44 2C

DRV_OPB 31 IF F_OPEN 15 OF

DRV]LUSH 48 30 F_PASSWD 106 6A

DRV_GET 25 19 F_READ 20 14

DRV_GETLABEL 101 65 F_READRAND 33 21

DRV_LOGINVEC 24 18 F_RANDREC 36 24

DRV_RESET 37 25 F_RENAME 23 17

ORV_ROVEC 29 lD F_SFIRST 17 11

DRV_SET 14 OE F51ZE 35 23

DRV_SETLABEL 100 64 F_SNEXT 18 12

1-8

Concurent DOS 86 System Guide Basic Disk Operating Systems

Table 1-5. (Cont'd)

System Call Number Hex System Call Number Hex

DRV_SETRO 28 lE F_TIMEOATE 102 66

DRV_SPACE 46 2E F_TRUNCATE 99 63

F_ATTRIB 30 lE F_UNLOCK 43 2B

F_CLOSE 16 10 F_USERNUM 32 20

F_OELETE 19 13 F_WRITE 21 15

F_DMASEG 51 33 F _ WRITERANO 34 22

F_OMAGET 52 34 F _ WRITEXFCB 103 67

F_DMAOFF 26 lA F_WRITEZF 40 28

F_ERRMOOE 45 20 T_GET 105 69

F_LOCK 42 2A T_SET 104 68

DEV_LOCK 90 SA OEV_UNLOCK 91 5B

F_DOS 113 71

1.8 EXTENDED I/O SYSTEM

The Extended Input/Output System (XIOS) manages Concurrent's interface to the
hardware. By modifying the XIOS, you can run Concurrent in a large variety of
hardware environments.

The XIOS recognizes two basic types of 1/0 devices: character devices and disk
devices. Character devices are devices that handle one character at a time, while
disk devices handle random blocked 1/0 using data blocks sized from one physical
disk sector to the number of physical sectors in 16K bytes. Devices that vary from
these two models must be implemented within the XIOS so that they appear to the
other operating system modules as standard Concurrent 1/0 devices.

Sections 4, "Character Devices" through 7, "PC Mode Character 1/0" contain
detailed descriptions of the XIOS functions.

1.9 XI OS REENTRANCY

Concurrent allows multiple processes to use certain XIOS functions simultaneously
and guarantees that only one process can use a particular physical device at any
given time. However, some XI OS functions handle more than one physical device,
and thus their interfaces must be reentrant. An example of this is the 10_CONOUT
(2) function to which the calling process passes the virtual console number. There
can be several processes using the function, each writing a character to a different
virtual console or character device; however, only one process is actually sending
a character to a given device at any time.

The 10_STATLINE (8) function is reentrant: the CLOCK process calls it once per
second, and the PIN process calls it on screen switches and on CTRL-S, CTRL-P,
and CTRL-O input.

1-9

XIOS Reentrancy Concurent DOS 86 System Guide

The IO_SELDSK (9), IO_READ (10), IO_WRITE(11), and IO_FLUSH (12) file functions are
assumed to be protected by the BOOS or the DEV_LOCK function so that only one
process may access them at a time. Because of this protection, none of these XIOS
functions need to be reentrant.

1.10 THE SYSTEM DATA AREA

The System Data Area (SYSDAT) is the data segment for all modules of Concurrent.
As shown in Figure 1-3, the SYSDAT segment is composed of four main areas. The
first part is the fixed-format portion, containing global data used by all modules.
This is the SYSDAT DATA. It contains system variables, including values set by
GENSYS and pointers to the various system tables. The Internal Data portion
contains fields of data that belong to individual operating system modules. The
XIOS data begins at the end of this second area of SYSDAT. The fourth portion of
SYSDAT is the System Table Area. The System Table Area is generated and
initialized by the GENSYS system generation utility.

Offset System
Table Area

nnnnh

XIOS
Data

OcOOh

Internal
Data

0100h

SYSDAT
Data

OOOOh

Figure 1-3. SYSDAT

Figure 1-4 shows the format of the SYSDAT DATA. Table 1-6 describes the
SYSDAT DATA fields.

1-10

Concurent DOS 86 System Guide The System Data Area

OOH

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

58H

60H

68H

70H

78H

SUP ENTRY RESERVED

RESERVED RESERVED

RESERVED RESERVED

RESERVED RESERVED

RESERVED RESERVED

XIOS ENTRY XIOS INIT

RESERVED

DISPATCHER PDISP

CCPMSEG RSPSEG ENDSEG RESER NVCNS

NLCB NCCB N SRCH MMP RESER DAY -
FLAGS DISK FILE

TEMP TICKS LUL CCB FLAGS
DISK /SEC

MDUL MFL PUL QUL

QMAU

RLR DLR DRL PLR

RESERVED THRDRT QLR MAL

VERSION VERNUM CCPMVERNUM TOO_DAY

Figure 1-4a. SYSDAT Format

1-11

The System Data Area Concurent DOS 86 System Guide

SOH

SSH

90H

9SH

AOH

ASH

BOH

BSH

COH

CSH

DOH

DSH

EOH

ESH

FOH

FSH

Field

TOO TOO TOO NeON NLST Nero LeB

-HR _MIN _SEC DEV DEV DEV

OPEN_FILE LOCK_ OPEN_ OWNER - ACB
MAX MAX SOS7

RESERVED

MWDR BCB..,ROOT NACB PSD RESER XPCNS

OFF.,SOS7 SYS_S7_0F

RESERVED DEVHEAD PHASE1R

HASHROOT I NOMA NDRV TTIKS SYSDATMEM

ENVSIZE RESERVED

RESERVED

V3S6_PTR COUNTRY INTL_XLAT

TICK_CNT XIOS_DISP

BUFFERS RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

Figure 1-4b. SYSDAT Format

Table 1-6. SYSDAT Data Fields

Description

SUP ENTRY Double-word address of the Supervisor entry point for intermodule communication.
All internal system calls go through this entry point.

XIOS ENTRY

XIOS INIT

1-12

Double-word address of the XIOS entry point for intermodule communication. All
XIOS function calls go through this entry point.

Double-word address of the XIOS Initialization entry point. System hardware
initialization takes place by a call through this entry point.

Concurent DOS 86 System Guide The System Data Area

Field

DISPATCHER

PDISP

CCPMSEG

RSPSEG

ENDSEG

NVCNS

NLCB

NCCB

NFLAGS

SRCHDISK

MMP

DAY FILE

TEMP DISK

TICKS/SEC

Table 1-6. (Cont'd)

Description

Double-word address of the Dispatcher entry point that handles interrupt returns.
Execute a JMPF instruction to this address instead of using an IRET (Interrupt
Return) instruction. The Dispatcher routine causes a dispatch to occur and then
executes an Interrupt Return. All registers are preserved and one level of stack is
used. Interrupt handlers that make DEV_SETFLAG calls end with a JMPF to the
address stored in the DISPATCHER field. Refer to Sections 3.4, 3.5, 8, and the
example XIOS interrupt routines for more detailed information.

Double-word address of the Dispatcher entry point that causes a dispatch to occur
with all registers preserved. Once the dispatch is done, a RETF instruction is
executed. Executing a JMPF PDISP is equivalent to executing a RETF instruction.
Use this location as the exit point when the XI OS releases a resource that another
process might want.

Starting paragraph of the operating system area. This is also the Code Segment of
the Supervisor.

Paragraph address of the first RSP in a linked list of RSP Data Segments. The first
word of the data segment points to the next RSP in the list. Once the system has
been initialized, this field is zero.

First paragraph beyond the end of the operating system area, including any buffers
consisting of uninitialized RAM allocated to the operating system by GENSYS. These
include the Directory Hashing, Disk Data, and XIOS ALLOC buffers. These buffer
areas, however, are not part of the CCPM.SYS file.

Number of virtual consoles, copied from the XIOS Header by GENSYS.

Number of List Control Blocks, copied from the XI OS Header by GENSYS.

Number of Character Control Blocks, copied from the XIOS Header by GENSYS.

Number of system flags as specified by GENSYS.

Default search disk. The Command Line Interpreter (CLI) looks on this disk if it
cannot open the command file on the user's current (or default) disk. This disk
letter is set by Concurrent to L:. This L: virtual drive points to the sub-directory
from which the application was loaded and this enables overlays to be located.

Maximum memory allowed per process. Set during GENSYS.

Day File option. If this field is OFFH, the operating system displays date and time
information when an RSP or CMD file is invoked. Set by GENSYS.

Default disk for temporary files. Programs that create temporary files should use
this disk. Set by GENSYS.

The number of system ticks per second.

1-13

The System Data Area Concurent DOS 86 System Guide

Field

LUL

Table 1-6. (Cont'd)

Description

Locked Unused List. This is the link list root of unused Lock List Items. Concurrent
uses Lock List Items to manage open files and records locked for executing
processes. Lock List Items are also used to store information on subdirectory paths
and files opened in unlocked mode.

The number of Lock List Items is determined by the value you set for NOPENFILES
during GENSYS. See Section 2.4 for a description of related system parameters and
the Programmer's Guide for information about Concurrent's security mechanisms
for file access.

CCB Address of the Character Control Block Table, copied from the XI OS Header by
GENSYS.

FLAGS Address of the Flag Table.

MDUL Memory Descriptor Unused List. Link list root of unused Memory Descriptors.

MFL Memory Free List. Link list root of free memory partitions.

PUL Process Unused List. Link list root of unused Process Descriptors (PDs).

QUL Queue Unused List. Link list root of unused Queue Descriptors.

QMAU Queue buffer Memory Allocation Unit.

RLR Ready List Root. Linked list of PDs that are ready to run.

DLR Delay List Root. Linked list of PDs that are delaying for a specified number of
system ticks.

DRL Dispatcher Ready List. Temporary holding place for PDs that are in the ready state.

PLR Poll List Root. Linked list of PDs that are polling on devices.

THRDRT Thread List Root. Linked list of all current PDs in the system. The list is threaded
though the THREAD field of the PO instead of the LINK field. See the Programmer's
Guide for a description of the Process Descriptor's fields.

QLR Queue List Root. Linked list of all System Queue Descriptors.

MAL Memory Allocation List. Linked list of active Memory Allocation Units (MAUs). A
MAU is created from one or more memory partitions.

VERSION Address, relative to CCPMSEG, of ASCII version string.

VERNUM Concurrent version number (returned by the S_BDOSVER system call).

CCPMVERNUM Concurrent version number (system call 163, S_OSVER).

TOO_DAY Time of Day. Number of days since 1 Jan, 1978.

TOD_HR Time of Day. Hour of the day.

TOO_MIN Time of Day. Minute of the hour.

1-14

Concurent DOS 86 System Guide The System Data Area

Table 1-6. (Cont'd)

Field Description

TOO_SEC Time of Day. Second of the minute.

NCONDEV Number of XIOS consoles, copied from the XIOS Header by GENSYS.

NLSTDEV Number of XIOS list devices, copied from the XI OS Header by GENSYS.

NCIODEV Total number of character devices (NCONDEV + NLSTDEV).

LCB Offset of the List Control Block Table, copied from the XIOS Header by GENSYS.

OPEN_FILE Open File Drive Vector. Designates drives that have open files on them. Each bit of
the word value represents a disk drive; the least significant bit represents Drive A.
and so on through the most significant bit. Drive P. Bits are set to indicate drives
that contain open files.

LOCK_MAX Maximum number of locked records per process. Set during GENSYS.

OPEN_MAX Maximum number of open disk files per process. Set during GENSYS.

OWNER_8087 Process currently owning the 8087. Set to 0 if 8087 is not owned. Set to OFFFFH if
no 8087 present.

ACB Word-length address of the Auxiliary Control Block Table copied from the XIOS
Header by GENSYS.

MWDR Memory Window Descriptor Root. Linked list of Memory Window Descriptors
(MWDs) that describes the location of available logical address windows for
mapping to physical memory pages. See Section 6 for a description of how
Concurrent uses these structures for expanded memory support.

BCB_ROOT This is the segment of the first Disk Buffer Control Block.

NACB Number of Auxiliary Control Blocks, copied from the XIOS Header by GENSYS.

PSD Physical Search Disk. This is the default system disk as copied from the SYSDISK
field by the SUP INIT routine. The BOOS uses PSD as the initial drive for drives N
and 0 and the system drive, P. Concurrent searches the system drive when it
cannot find a command file on the default disk.

XPCNS Number of physical consoles.

OFF _8087 Double word pointer to the 8087 interrupt vector in low memory.

SYS_87 _OF Double word pointer to the default 8087 exception handler.

DEVHEAD Double word pointer to the first device driver

PHASE1 R Segment of first RSP in Phase 1

HASH ROOT DOS Media Hash Root

INDMA PD of current DMA process

1-15

The System Data Area Concurent DOS 86 System Guide

Field

NDRV

TTIKS

SYSDATMEM

Table 1-6. (Cont'd)

Description

Number of physical drives

Tiks expired in this second

This is the root of a linked list of SYSDAT memory descriptors (SMDs) which
describe the free memory in SYSDAT. The OEM can insert extra SMDs into the
linked list to add free SYSDAT memory to the list. All memory must be allocated
using the S_MEMORY function. The format of an SMD is:

OOH LI _____ L~I:_NK ____ ~ ____ O_F_F~:S_E_T ____ ~ ____ S_I:LZ_E __ ~

ENVSIZE

V386PTR

COUNTRY

Specifies the number of bytes to be allocated to the environment for each TMP.

Offset to XI OS 386 data area

Initial country code. set by GENSYS or INIT.

Double word point to a routine that will convert an international character (ie >
80h) in AL to the corresponding uppercase character for the current country. This
value should only be modified by the S_SETCOUNTRY function.

The TICK_CNT is incremented every tick by the TICK interrupt handler and therefore
contains the total number of ticks for the time the system has been active. This
value is used to generate the hundredths of a second field by Concurrent. This field
can also be used by the XIOS to calculate how long it has been since a drive was
last used.

XIOS_DISP XIOS Dispatch intercept vector

1-16

A far call uses this vector every time a process is brought into context. This allows
the XIOS to remap the Video RAM etc. All segment registers and the SP must be
preserved by the XIOS dispatch code. This vector is called with the following
parameters:

OS SYSOAT

BX PO of new process
ES UOA of new process

BUFFERS Number of disk buffers allocated.

Concurent DOS 86 System Guide Resident System Processes

1.11 RESIDENT SYSTEM PROCESSES

Resident System Processes (RSPs) are an integral part of the operating system. At
system generation, the GENSYS RSP List menu lets you select which RSPs to
include in the operating system. GENSYS then places all selected RSPs in a
contiguous area of RAM starting at the end of the BOOS code. RSPs are
permanently resident within the Operating System Area and do not have to be
loaded from disk when they are needed. Concurrent itself uses three RSPs, PIN,
TMP and CLOCK.

Concurrent automatically allocates a Process Descriptor (PO) and User Data Area
(UDA) for a transient program, but each RSP is responsible for the allocation and
initialization of its own PO, UDA, and Queue Descriptor (QD). Concurrent uses the
PO and QD structures declared within an RSP directly if they fall within 64K of the
SYSDAT segment address. If the RPS's PO and QD are outside of 64K, they are
copied to a PO or QD allocated from the Process Unused List or the Queue Unused
List. In either case, the PO and QD of the RSP lie within 64K of the beginning of the
SYSDAT Segment. This allows RSPs to occupy more area than remains in the 64K
SYSDAT segment.

See the descriptions of the process system calls and the queue management calls
in the Programmer's Guide for definitions of the UDA and QD structures,
respectively. The Programmer's Guide also contains details on creating and using
RSPs.

1.12 DOS DEVICE DRIVER SUPPORT

Concurrent supports DOS installable drivers for device, fixed disks, and expanded
memory.

The Init module checks for the presence of the ASCII file CCONFIG.SYS on the root
of the current disk. If it finds CCONFIG.SYS, it reads the file and executes the
following commands (if present).

DEVICE = f i 1 espec

FIXED-DEVICE = fi lespec

EMM = f i 1 espec

EEMM = f i 1 espec

COUNTRY = nnn

LASTDRIVE = d

ENV-S I ZE = nnnn

BREAK = ON

BUFFERS = nnn

- Loads a dev i ce dr i ver

- Loads a fixed disk device driver

- Loads an expanded memory dr i ver

- Loads an expanded memory driver and the SCEPTER.CMD
program.

- nnn is the requ i red count ry code

- d is the last drive (A - Z)

- environment size in bytes (128-32,750)

- or OFF (set keyboard break)

- defines the number of additional disk buffers

Note: Filespec is a full path and filename.

1-17

Resident System Processes Concurent DOS 86 System Guide

See the Programmer's Guide for detailed explanations on how to construct
CCONFIG.SYS and specifications for writing a DOS device driver.

1-18

Section 2

BUILDING THE SYSTEM

The GENSYS utility allows you to build the Concurrent system image file,
CCPM.SYS. This program combines an assembled XIOS and the system modules
provided on the distribution disks. GENSYS also displays menus that allow you to
define

* certain hardware-dependent variables
* the amount of memory to reserve for system data structures
* the Resident System Processes to be included in CCPM.SYS
* other system parameters.

This section describes how to use the GENSYS utility.

Note: You can generate a Concurrent system by running GENSYS under an
existing DOS Plus or Concurrent system.

See Section 9, "Debugging the XIOS:' for debugging suggestions.

2.1 REQUIRED FILES

GENSYS requires that the following files be present on the current disk:

* INIT.CON
* COOS.CON
* XIOS.CON
* PIN.RSP
* TMP.RSP
* CLOCK.RSP
* FLUSH.RSP

-- Concurrent Initialisation module
-- Concurrent Kernel module
-- Input/Output System module
-- Physical keyboard input process
-- Terminal Message Process
-- CLOCK process
-- DOS terminal flush process (CDOS 386 only)

If GENSYS cannot find these files, it displays the following error message:

Can't f; nd these modu 1 es: <F I LESPEC> ... {<F I LESPEC>}

where FILESPEC is the name of the missing file.

An extension of RSP denotes a Resident System Process file. Concurrent requires
the PIN, TMP, and CLOCK RSPs to run.

All of the modules listed except XIOS.CON are provided on the distribution disk. An
unassembled XIOS is provided as a model. You should write the XI OS as small
model program (separate code and data) originating the data at location OCOOH.

Note: For compatibility the 8080 model is still supported by GENSYS. If the 8080
model is used combine the XIOS headers at OCOOH as before.

2-1

Required Files Concurent DOS 86 System Guide

Use the RASM-86 relocatable assembler and the LlNK-86 linker according to the
following guidelines:

* Include CSEG and OSEG directives in every module to instruct the assembler to
place the code and data in the appropriate group. If the segments are named and
grouped then this will allow alignment of data items on word boundaries.

* The first module named in the LlNK-86 command line that contains code or data
should be the module that defines the XIOS Header. This module should define
the data starting at "ORG OCOOH" and immediately define the header data fields.
It should also define the code starting at "ORG 0" and immediately define the
required code segment fields.

See section 3.1 for a description of the XIOS Header.

* Use the LlNK-86 "DATA[ORIGIN[Oll" option to prevent the linker from
automatically adding a base page.

2.2 INVOKING GENSVS

GENSVS has the following command syntax:

GENSYS [-xm] [-386] [<input file] [>output file]

Both the input and output files are optional. GENSVS reads the input file to set
parameters. See section 2.11 below for instructions on creating input files for
GENSYS. Specify an output file to record the screen displays produced by GENSYS.

Before displaying the Main Menu, GENSVS checks the current drive for the files
necessary to construct the operating system image. If a module is not found,
GENSVS displays the message shown above and terminates operation. Otherwise,
the Main Menu is displayed.

The switch -xm instructs GENSYS to look for the files COOSXM.CON and
XIOSXM.CON rather than COOS.CON and XIOS.CON. The switch -386 operates in
the same way with the modules XIOS386.CON and CDOS386.CON. This allows the
building of either Concurrent XM or Concurrent 386 in the same sub-directory and
avoids confusion.

2-2

Concurent DOS 86 System Guide The GENSYS Main Menu

2.3 THE GENSYS MAIN MENU

Figure 2-1 depicts the GENSYS Main Menu. Default values for an option are
contained in brackets .

••• Concurrent DOS 6.0 GENSYS Main Menu •••

hel p GENSYS Hel p
verbose [Y] More Verbose GENSYS Messages

destdrive [C:] CCPM.SYS Output To (Destination) Drive
deletesys [N] Delete (instead of rename) old CCPM.SYS fi le

sysparams

memory

diskbuffers

oslabel

Di spl ay /Change System Parameters

D i sp 1 ay /Change Memory All ocat i on Part it ions
Display/Change Disk Buffer Allocation

Display/Change Operating System Label
drnet [N] Attaching Networking

rsps Display/Change RSP 1 ist

phase D i sp 1 ay /Change Phase 1 Process 1 i st

gensys I'm finished changing things, go GEN a SYStem

Changes?

Figure 2-1. GENSYS Main Menu

The Main Menu items set general parameters (verbose, destdrive, drnet and
deletesys), provide access to the submenus (sysparams, memory, diskbuffers,
oslabel, phase, and rsps) and initiate system building (gensys).

The general parameters are defined as follows:

verbose

destdrive

deletesys

drnet

GENSYS displays submenu options either with or without an
explanation. Set verbose to Y to get the explanations; set it to N for
the minimum explanations.

GENSYS writes the new CCPM.SYS file on the drive designated by
destdrive. If you do not specify a destination drive, GENSYS uses
the current drive.

GENSYS either deletes or renames the existing CCPM.SYS file
when it creates a new one. Set deletsys to Y to delete the old file;
set it to N to rename it. GENSYS renames the previous copy of
CCPM.SYS as CCPM.OLD.

GENSYS either attaches the NETSYS.CON module to the built
CCPM.SYS or not.

The six submenus allow you to set system operating parameters as follows
(number in parenthesis indicates section in which parameters are described):

2-3

The GENSYS Main Menu

sysparams (2.4)
Command response
FCB compatibility mode
Maximum memory per process

Concurent DOS 86 System Guide

Maximum number of open files.per process
Maximum number of locked records per process
System's starting paragraph
Total number of open file and locked record entries
Number of Process Descriptors and Queue Control Blocks
Total size of queue buffer
Number of system flags

memory (2.5) Memory partitions and their addresses

diskbuffers (2.6)
Maximum number of buffers per process
Use of directory buffer hashing

oslabel (2.7) Virtual console sign-on message.

rsps (2.8) Resident System Processes (RSPs) to be included or excluded

phase (2.9) Specify phase order of the initial process starting.

The gensys option builds the system image file. If an input file is used to specify
system parameters and the GENSYS command is not the last line in the input file,
GENSYS uses its interactive mode to prompt you for any additional changes. See
Section 2.11, "GENSYS Input Files," for more information.

Changes? is the Main Menu prompt. Terminate your entries by typing a carriage
return at the Changes? prompt.

To change the three Main Menu options, enter the option name followed by the
new value. You can use the following abbreviations:

v for verbose
des for destdrive
del for deletesys
dr for drnet

To access one or more of the submenus, enter the submenu name or names at the
Changes? prompt. You can change options and list more than one submenu on a
single line. For example, the following command:

Changes? v=y, des=c: ,sysparams, os label, rsps ,gensys

* sets the verbose mode
* sets the destination drive for the new system image file
* displays the sysparams, oslabel, and rsps submenus
* builds the new system image

The submenus are displayed in the order entered. Enter a response at the
Changes? prompt to proceed to the next menu.

2-4

Concurent DOS 86 System Guide The GENSYS Main Menu

Type HELP at the prompt to display an explanation of Main Menu features and how
to proceed.

The following sections describe the submenu parameters and how to construct an
input file.

2.4 SYSTEM PARAMETERS MENU

The System Parameters Menu is shown in Figure 2-2. Type SYSPARAMS in
response to the Main Menu Change? prompt to select the System Parameters
menu. Note that all numeric values are in hexadecimal notation. The values in
brackets are the default values. Table 2-1 describes the System Parameters menu
items.

Display/Change System Parameters Menu
sysdrive [L:] System Drive
tmpdrive [A:] Temporary Fi Ie Drive

cmdlogging [N] Command Day/Fi Ie Logging at Console
compatmode [Y] CP/M FCB Compatibility Mode

envsize
country

memmax
sysmem

open max
lockmax

osstart
nhandles

nopenfiles
nlocks

npdescs
nqcbs

qbufsize
nflags

Changes?

Parameter

SYSDRIVE

TMPDRIVE

[#512] Command Envi ronment Si ze
[#44] Init ial Country Code
[4000] Maximum Memory per Process (paragraphs)

[100] Extra System Data Page Memory (Bytes)
[20] Open F i I es per Process Max i mum
[20] Locked Records per Process Max i mum

[1008] Starting Paragraph of Operating System
[80] Number of Fi Ie Handle Entries
[40] Number of Open F i I es
[40] Number of Locked Record Ent r i es
[14] Number of Process Descriptors
[20] Number of Queue Cont ro I Blocks
[400] Queue Buffer Total Size in bytes
[20] Number of System Flags

Figure 2-2. GENSYS System Parameters Menu

Table 2-1. System Parameters Menu Options

Description

This is the default drive searched by Concurrent when it cannot locate a file
in the current directory on a P _CLI call. This value is recorded in the
SRCHDISK field of the SYSDAT DATA structure. The default value is L: which
is the virtual drive used to load the current application.

Select the temporary drive. The temporary drive is used for temporary disk
files and should be the fastest drive in the system. This value is recorded in
the TEMP DISK field in the SYSDAT DATA structure.

2-5

System Parameters Menu Concurent DOS 86 System Guide

Parameter

CMDLOGGING

COMPATMODE

ENVSIZE

COUNTRY

MEMMAX

OPENMAX

LOCKMAX

OSSTART

NHANDLES

2-6

Table 2-1. (Cant'd)

Description

Set to Y to display the time and the name of the file executed after each user
command entry. The information is displayed on a single line in the following
form:

hh : mm : ss f i 1 ename

A Y value also enters OFFH in the DAY FILE field of the SYSDAT DATA
structure.

Set to Y to have Concurrent use the CP/M compatibility attributes recorded
with each file; specify N to have Concurrent ignore the file's compatibility
attributes. See the Programmer's Guide for a description of the compatibility
attributes.

Set the default size of the environment to be given to all loaded applications.
This value becomes the value in the ENV_SIZE field of the SYSDAT DATA.

Set the initial country code. 44 is the code for the UK, 01 is the code for USA.
This value is placed in the COUNTRY field of the SYSDAT DATA.

Set to the maximum paragraphs of memory you want allocated to each
process. Although processes make their own memory allocations, this value
represents an upper limit on how much memory each process can obtain.
This value becomes the MMP value in the SYSDAT DATA structure.

Set to the maximum number of open files you allow per process. The range
for this value is 0 to 255 (OFFH). The value must be less than or equal to the
total open files and locked records for the system (see the NOPENFILES
parameter description below). This value becomes the OPEN_MAX value in
SYSDAT DATA.

Set to the maximum number of locked records you allow per process. The
range is 0 to 255 (OFFH), and the value must be less than or equal to the total
open files and locked records for the system (see NOPENFILES parameter
description below). This value is used for LOCK_MAX in SYSDAT DATA.

Set to the operating system's starting paragraph address. Code execution
starts here with register CS set to this value, IP set to 0, and the Data
Segment Register set to the SYSDAT segment address. This value is used for
the CCPMSEG field in SYSDAT DATA.

This value sets the total number of file handle entries in the system. 1 handle
entry is required for each character device opened by a process, 2 handles
are required for the first open of a file and 1 handle entry for each
subsequent open of the same file (file sharing). Each handle entry occupies 2
bytes of SYSDAT DATA.

Concurent DOS 86 System Guide System Parameters Menu

Parameter

NOPENFILES

NLOCKS

NPDESCS

NQCBS

QBUFSIZE

NFLAGS

Table 2-1. (Cont'd)

Description

This value is the total number of files that may be open in the system. Each
entry in this table occupies 2 bytes of SYSDAT DATA.

This entry sets the total number of allowed lock list and HDS items in the
system. An HDS item is required for each sub- directory currently open on
the system. A lock list item is required for each record currently locked on
the system. The size of an item in this list is 10 bytes.

Set to the number of Process Descriptors. A Process Descriptor is required
for each process in the system. every RSP that extends 64K past the
beginning of SYSDAT, and the first time a process changes directories. A
Process Descriptor is 30H bytes long. Note that processes created by other
processes (referred to as child processes) require their own Process
Descriptor. See the description of the PUL (Process Unused List) field in
Section 1.10, "SYSDAT DATA," for related information.

Set to the maximum number of Queue Control Blocks. Queues creeted by
transient programs and those RSPs outside the 64K of the SYSDAT segment
address each require a Queue Control Block. The Physical Keyboard Input
(PIN) RSP also uses one Queue Control Block for each Virtual Input Queue
(VINQ) it creates. The PIN RSP requires a VINQ for each of the system's
virtual consoles.

Determine a value for NQCBS by adding the number of virtual consoles in
your system to the number of Queue Control Blocks you allocate for transient
processes.

Set to the size, in bytes, of the Queue Buffer Area. Allocate enough space for
queues created by transient programs, RSPs outside the SYSDAT segment
addess, and VINQs (see NQCBS, above). The amount of buffer area required
for each queue is the message length times the number of messages. The
PIN RSP creates a VINQ of SOH bytes for each virtual console in a system.

Determine the size of the Queue Buffer Area by adding SOH bytes for each
virtual console to the amount of space required for transient programs'
queue messages.

The maximum size of the Queue Buffer Area is OFFFFH.

Set to the maximum number of flags required by the system. This value is
used for NFLAGS in SYSDAT DATA.

The number of flags is dependent upon the design of the XIOS. Section 3.5
contains information about using flags for interrupt devices. See the
descriptions of the DEV_SETFLAG and DEV_WAITFLAG system calls in the
Programmer's Guide.

2-7

Memory Allocation Menu Concurent DOS 86 System Guide

2.5 MEMORY ALLOCATION MENU

Figure 2-3 depicts the use of the Memory Allocation Menu. Initially, the menu
indicates the current memory partitions. Add and delete partitions by entering ADD
and DELETE commands at the Changes? prompt. The session shown in Figure 2-3
deletes all current partitions and creates 16K (4000H) partitions from address
2400:0 to 4000:0 and 32K (BOOOH) partitions from 4000:0 to 6000:0.

Addresses Part it ions
Start Last Si ze Qty
1. 400h 6000h 400h 17h

Di spl ay/Change Memory All ocat ion Part it ions
add ADD memory partition(s)

delete DELETE memory partition(s)

Changes? delete=· add=2400,4000,400 add=4000, 6000, 800

Addresses Partitions
Start Last S; ze Qty
1. 2400h 4000h 400h 7h

2. 4000h 6000h eOOh 4h

Display/Change Memory Allocation Partitions
add ADD memory partition(s)

delete DELETE memory partition(s)

Changes? <cr>

Figure 2-3. GENSYS Memory Allocation Sample Session

The add and delete partition specifications consist of:

* the beginning address of the memory region to be partitioned
* the ending address of the memory region to be partitioned
* the size, in paragraphs, of the partitions

All values must be in hexadecimal notation and separated by commas. The Start
and Last values on the menu are paragraph addresses; divide the absolute address
by 10H to specify the paragraph address. Partition sizes are also in paragraphs;
divide the actual partition size by 10H to enter the size parameter.

Use an asterisk to delete all memory partitions.

The memory partitions cannot overlap each other or the operating system area.
GENSYS checks and trims memory partitions that overlap the operating system,
but does not trim partitions that overlap each other. GENSYS displays an error
message when the partitions overlap or are incorrectly sized and does not allow
you to exit the Memory Allocation Menu if the memory partition list is not valid.

GENSYS does not check for partitions that refer to nonexistent system memory.

2-8

Concurent DOS 86 System Guide Memory Allocation Menu

Concurrent allocates partitions in whole; a single partition is never divided among
unrelated programs. If a memory request requires a memory segment that is larger
than the available partitions, Concurrent concatenates adjoining partitions to form
a single contiguous area of memory. The MEM module algorithm that determines
the best fit for a given memory allocation request takes into account the number
of partitions requested and the amount of partition space left over.

To determine the appropriate partitions, consider the applications to be run. Where
small programs are run frequently and large programs only occasionally, divide
memory into small partitions. This model simulates dynamic memory management
and is very memory-efficient as long as memory does not become too fragmented.
(When memory is too fragmented, the MEM module cannot find enough contiguous
memory space for programs with large memory requirements even when enough
memory is available.) Use the large partition model when large programs are run
most frequently or programs are run serially. A good general-purpose compromise
is to divide memory into 4K to 16K partitions.

2.6 DISK BUFFERING MENU

Figure 2-4 shows a sample Disk Buffering Menu session. This allows the default
number of disk buffers required on the system to be set. INIT will extend the
number of buffers if the CCONFIG.SYS file requests more buffers than have already
been set up. The XIOS can optionally decide to set the default buffers itself. If this
is the case a flag in the XIOS header is set to indicate to GENSYS that no default
buffers are required. The minimum number of buffers required for the system to
"come up" is 3. The number of directory entries to be hashed is also set by this
menu. Again this may be allocated by the XIOS and it flags in the XIOS header if no
hash entries are to be allocated by GENSYS.

Make changes by entering responses to the prompts displayed by GENSYS.

*** Disk Buffering Information ***
nobuffers [3] The number of default disk buffers to be allocated

hashent r i es [200] The number of hashed directory ent r i es

buffersize [200] Maximum physical sector size

clustersize [0800] Maximum cluster size

Figure 2-4. Disk Buffering Menu Session

2.7 OSLABEL MENU

Figure 2-5 shows the OS LABEL Menu. Select this menu to write a message for
display on all virtual consoles when the system is loaded.

Display/Change Operating System Label
Current message is:
<null>

Add 1 ines to message. Terminate by entering only RETURN:

Figure 2-5. GENSYS Operating System Label Menu

2-9

OSLABEL Menu Concurent DOS 86 System Guide

Enter the message using spaces to format the display. Terminate each line with a
carriage return. To end the message, enter a carriage return at the beginning of the
line. Use the $ character to terminate the display message but continue with
comments. Note that where the XIOS prints its own sign-on message, the XIOS
message appears before the message specified in the GENSYS OSLABEL Menu.

2.8 RSP LIST MENU

Figure 2-6 shows a session with the GENSYS RSP (Resident System Process) List
Menu. GENSYS gets the initial list of RSPs by scanning the current drive's
directory. All files with an extension of RSP are listed. The following session
excludes MY.RSP and COM.RSP:

RSPs to be included are:

PIN.RSP
COM.RSP

TMP.RSP

Display/Change RSP List

include
exclude

Include RSPs
Exc 1 ude RSPs

Changes? ex·com. rsp, my. rsp

RSPs to be included are:

PIN.RSP TMP.RSP

Changes? <cr>

CLOCK. RSP MY. RSP

CLOCK.RSP

Figure 2-6. GENSVS RSP List Menu Sample Session

GENSYS includes all RSPs in the current directory unless instructed to do
otherwise. Use the wildcard *.* with include or exclude to designate all RSPs. Note
that you can abbreviate include to "in" and exclude to "ex".
Terminate the commands with a carriage return. End the RSP List Menu session by
entering a carriage return in response to the Changes? prompt.

Important: You must include PIN.RSP, CLOCK.RSP, and TMP.RSP in the system
image. (In Concurrent 386 with DOS terminal support you must include FLUSH.RSP).

2.9 PHASE OPTION

Select the RSPs to be started in the first phase. This gives priority to processes
that need to run before the rest of the RSPs.

2.10 GENSVS OPTION

Select the gensys option to build the system image. GENSYS displays the
messages shown in Figure 2-7 during system generation.

2-10

Concurent DOS 86 System Guide

Generat i ng new SYS f i 1 e

Append i ng RSPs to SYS f i 1 e

Generat i ng tab 1 es
Doing Fixups

SYS image load map:

Code starts at GGGG
Last RSP starts at JJJJ

Data starts at HHHH

Tables start at 1111
XIOS Buffers start at KKKK

End of OS at LLLL

Trimming memory partitions. New List:

Addresses Partitions (in paragraphs)

Start Last Size Qty

1. AAAAh BBBBh XXXXh Yh

2. MMMMh NNNNh QQQQh Vh
Wrapping up

GENSYS Option

Figure 2-7. GENSVS System Generation Messages

2.11 GENSVS INPUT FILES

GENSYS accepts system generation commands from an input file and allows you
to redirect console output to a disk file. To use these features, invoke GENSYS as
follows:

A>GENSYS < f i lei n > f; leout

filein represents the name of the input file; fileout the name of the file in which
console output is recorded.

In the input file, enter each command on a separate line, followed by a carriage
return, in the exact sequence required during a manually operated GENSYS
session. Be sure to include the carriage return that ends the session with each
menu to proceed with the next. Use a semicolon to make comments.

Enter GENSYS as the last command in your input file to end the command
sequence and generate the system. If the GENSYS command is not present,
GENSYS queries the console for your changes.

Listing 2-1 demonstrates a GENSYS input file. Assuming that the name of the input
file is GENSYS.IN, use the following command to invoke GENSYS:

A>GENSYS < GENSYS. IN [parameter I; st 1

Note: The parameters in the list are substituted for the % 1, %2 etc in the input file.

2-11

GENSYS Input Files Concurent DOS 86 System Guide

2-12

Listing 2-1, Example GENSVS Input File

OSLABEL

Concurrent DOS 101a
102a
102d 108t

SYSPARAMS
sysdrlve=L: cmdlogglng=off osstart=60 nflags=7f qbuf=cOO
nopenf 1 1 es=BO mem=BOOO npd=30 sysmem=#512

MEMORY
delete=· add=2000 , AOOO, 400

RSPS
ex=·.·
In=tmp.rsp,p1n.rsp,clock.rsp

PHASE
del=·.· add=TMP,PINO,PIN1,PIN2,CLOCK

GENSYS

Section 3

XIOS OVERVIEW

All Concurrent DOS 86 hardware dependencies are concentrated in subroutines
collectively referred to as the Extended Input/Output System, or XIOS. You can
modify these subroutines to tailor the system to almost any disk-based operating
environment. This section provides an overview of the XIOS and describes some
important variables and tables referenced within it. While reading this section, you
should refer frequently to the XI OS examples. The XIOS examples are stored in
source code form on the Concurrent distribution disk.

The XIOS is a small model (separate code and data). Concurrent accesses the XIOS
through two entry points in the code segment INIT (offset OH) and ENTRY (offset
3H). The INIT entry point is for system hardware initialization only; ENTRY is for all
other XI OS functions. Because all operating system routines use a CALL FAR
instruction to access the XI OS through these two entry points, the XIOS function
routines must end with a RETURN FAR instruction. Subsequent sections describe
the XIOS entry points and other fixed data fields.

Note: Programs that depend upon the interface to the XIOS must check the version
number of the operating system before trying direct access to the XIOS. Future
versions of Concurrent can have different XIOS interfaces, including changes to
XIOS function numbers and/or parameters passed to XIOS routines. In the sample
XIOS, for compatibility with previous OEM utilities that made a direct call to Oc03h
in the data segment, we have added some code to allow access to the XIOS entry
point in the code segment.

3.1 XIOS HEADER

The XIOS Header contains variables that GENSYS uses when constructing the
CCPM.SYS file and that the operating system uses when executing. Figure 3-1
shows the XIOS Header format. Table 3-1, immediately following the figure, defines
the XIOS Header fields.

3-1

XIOS Header Concurent DOS 86 System Guide

OOOH

008H

COOH

C08H

Cl0H

C18H

C20H

C28H

C30H

C38H

C40H

Field

CODE SEGMENT header fields

SUPERVISOR
~MP ENTR~

DATA SEGMENT header fields

RESERVED RESERVED RESERVED

RESERVED TICK T/SEC DOOR NACB

NPCNS NVCNS NCCB NLCB CCB LCB

DPH(A) DPH(B) DPH(C) DPH(D)

DPH(E) DPH(F) DPH(G) DPH(H)

DPH(I) DPH(J) DPH(K) DPH(L)

DPH(M) DPH(N) DPH(O) DPH(P)

ALLOC ACB OEMPTR CCBLIST

LCBLIST ACBLIST FFLAG

Figure 3-1. XIOS Header

Table 3-1. XI OS Header Fields

Explanation

INIT XI OS Initialization Point. At system boot, the Supervisor module executes a CALL
FAR instruction to this location in the XIOS (XI OS Code Segment: OOOH). This
call transfers control to the XI OS INIT routine, which initializes the XI OS and
hardware, then executes a RETURN FAR instruction.

JMP ENTRY

SYSDAT

3-2

XIOS Entry Point. All access to the XIOS functions goes through the XI OS
Entry Point. The operating system executes a CALL FAR (CALLF) to this
location in the XIOS (XIOS Code Segment: 003H) whenever I/O is needed.
This instruction transfers control to the XIOS ENTRY routine, which calls the
appropriate function within the XIOS. Once the function is complete, ihe
ENTRY routine executes a RETURN FAR (RETF) instruction to the operating
system.

This field is initialized by GENSYS to contain the segment address of SYSDAT.
This address in the XIOS Code Segment gives processes in interrupt routines
and other areas of code where the Data Segment is unknown access to
SYSDAT data. Listing 3-1, immediately following this table, contains an
example routine that accesses the current process's Process Descriptor using
the SYSDAT segment address.

Concurent DOS 86 System Guide XIOS Header

Field

SUPERVISOR FAR

TICK

DOOR

NACB

NPCNS

NVCNS

NCCB

Table 3-1. (Cont'd)

Explanation

Address (double-word pointer) of the Supervisor Module entry point.
Whenever the XIOS makes a system call, it must access the operating system
through this entry point in the code segment. GENSYS initializes this field.
Section 3.8 describes XIOS register usage and restrictions.

Set Tick Flag (Boolean value). The Timer Interrupt routine uses this variable
to determine whether the OEV _SETFLAG system call should be used to set
the TICK_FLAG. Initialize this variable to zero (OOH) in the XIOS.CON file.
Concurrent sets this field to OFFH whenever a process is delaying. The field is
reset to zero (OOH) when all processes finish delaying. See the Programmer's
Guide for details on the DEV _SETFLAG and P _DELAY system calls.

Number of Ticks per Second. In the XIOS.CON file, this field must be
initialized to the number of ticks that make up one second as implemented by
the particular XIOS. GENSYS copies this field into the SYSDAT DATA.
Application programmers can use TICKS_SEC to determine how many ticks to
allow for a delay of one second. See Section 8, "XIOS Tick Interrupt Routine,"
for more information.

Global Door Open Interrupt Flag. This field must be set to OFFH by the drive
door open interrupt handler routine if the XIOS detects that any drive door
has been opened. The BOOS checks this field before every disk operation to
verify that the media is unchanged. If a door has been opened, the XIOS must
also set the Media Flag in the DPH associated with the drive.

Number of Auxiliary Control Blocks. Initialize this field to the number of
auxiliary devices supported by the XIOS. Auxiliary devices can be used for
serial communication. GENSYS copies NACB into the NACB field of the
SYSDAT DATA.

Number of Physical Consoles. Initialize this field to the number of physical
consoles, or user terminals, connected to the system. This number does not
include extra I/O devices. GENSYS uses this value to create a PIN process for
each physical console. It also copies NPCNS into the XPCNS field of the
SYSDAT DATA.

Number of Virtual Consoles. Initialize this field to the number of Virtual
Consoles supported by the XIOS in the XIOS.CON file. GENSYS creates a TMP
process for each Virtual Console. GENSYS copies NVCNS into the NVCNS
field of the SYSDAT DATA. See Section 4 for more information.

Number of Logical Consoles. Initialize this field to the number of Virtual
Consoles plus the number of character I/O devices supported by the XI OS.
Character I/O devices are devices accessed through the console system calls
of Concurrent (functions whose mnemonic begins with C_) but whose
console numbers are beyond the range of the virtual consoles. Application
programs access the character 110 devices by setting their default console
number to the character I/O device's console number and using Concurrent's
regular console system calls. See Section 4 in this guide and the C_SET
system call description in the Programmer's Guide. GENSYS copies this field
into the NCCB field of the SYSDAT DATA.

3-3

XIOS Header

Field

NLCB

CCB

LCB

DPH(A)-DPH(P)

ALLOC

ACB

OEMPTR

CCBLIST

LCBLlST

ACBLIST

3-4

Concurent DOS 86 System Guide

Table 3-1. (Cont'd)

Explanation

Number of List Control Blocks. Initialize this field in the XIOS.CON file to
equal the number of list devices supported by the XIOS. A list device is an
output-only device, typically a printer. GENSYS copies this field into the NLCB
field of the SYSDAT DATA.

Offset of the Console Control Block Table. Initialize this field in the XIOS.CON
file to the address of the CCB Table in the XIOS. A CCB Entry in the Table
must exist for each of the consoles indicated in NCCB. Each entry in the CCB
Table must be initialized as described in Section 4.1, "Console Control Block".
GENSYS copies this field into the CCB field of the SYSDAT DATA.

Offset of the List Control Block. This field is initialized in the XIOS.CON file to
the address of the LCB Table in the XIOS. There must be an LCB Entry for
each of the list devices indicated in NLST. Each entry must be initialized as
described in Section 4.4, "List Device Functions." GENSYS copies this field
into the LCB field of the SYSDAT DATA.

Offset of initial Disk Parameter Header (DPH) for drives A through K.
respectively. L:, N:, 0: and P: are used by the system and are not available for
use as a physical drive. It is mandatory that unused DPH entries are set to 0
and that non-zero entries reference the DPHs of the selected drive.

This value is initialized in the XI OS to the size, in paragraphs, of an
uninitialized RAM buffer area to be reserved for the XI OS by GENSYS.
GENSYS sets this field in the CCPM.SYS file to the starting paragraph
(segment value) of the XIOS uninitialized buffer area. This value may then be
used by the XIOS for based or indexed addressing into the buffer area.
Typically, the XI OS uses this buffer area for the Virtual Console screen maps,
programmable function key buffers, and nondisk-related 1/0 buffering. If the
ALLOC field is initialized to zero in the XIOS.CON file, GENSYS allocates no
buffer RAM and leaves ALLOC set to zero in the system image.

Offset of the first Auxiliary Control Block. Initialize this field to the address of
the first ACB. The number of ACBs must be as specified in the NACB field.
GENSYS copies this field into the ACB field of SYSDAT. See Section 4.5,
"Auxiliary Device Functions."

This word is NOT used by Concurrent and has been reserved for the OEM to
use as a pointer to OEM specific data. By using this pointer further
extensions to the XIOS header will not affect OEM utilities that require
access to data held in SYSDAT.

This WORD gives the offset of an NVCNS entry array of pointers to CCBs.
Therefore in a 6 virtual console system an array of 6 pointers is required.

This WORD gives the offset of an NLCB entry array of pointers to LCBs.

This WORD gives the offset of an NACB entry array of pointers to ACBs.

Concurent DOS 86 System Guide XI OS Header

Field

FFLAG

DSEG

Table 3-1. (Cont'd)

Explanation

This byte specifies the first flag that can be allocated by the DEV_FLAGALLOC
function. All flags from 0 to FFLAG-1 are used by the system or the XI OS.
FFLAG can be used by the XIOS for either dynamic or static flag allocation.

Static allocation.

Initialise the FFLAG variable to the number of flags required by the XI OS + 2
(Flags 0 and 1 are reserved). This reserves all the XI OS flags.

Dynamic allocation.

If the XI OS is self configuring the number of flags required may vary
considerably. The following use of the FFLAG variable will optimise flag
usage.

FFLAG

mov d 1, FFLAG

inc FFLAG

db 2 reserve the syst em flags

get the next available flag

and increment count

Listing 3-1. Process Descriptor Access Routine

RLR EQU WORD PTR .68H

CSEG

PUSHDS

MOV OS, CS : SYSDAT

MOV BX, RLR

POP OS

RLR field of SYSDAT

of XIOS

Save XIOS Data Segment

Move SYSDAT segment address

into OS

Move the current process's PO

address into BX and perform

and perform operation. (See

Sect ion 1.10 for an

explanation of RLR)

Restore the XIOS

Data Segment

Listing 3-2 is an assembly language definition of the XI OS Header.

3-5

XI OS Header Concurent DOS 86 System Guide

Listing 3-2. XI OS HEADER Definition

;***

; *
; * XIOS Header Def i nit ion
; .
;***

CSEG
org Oh

jmp init ;system initial izatton
jmp entry ;xios entry point

sysdat dw

supervisor rw

DSEG
org OcOch

tick
ticks_sec
door

nacb
npcns
nvcns
nccb
nlst
ccb
lcb

alloc

acb
oemptr
ccblist
lcbl ist
acbl ist
fflag

3-6

db
db
db

db
db
db
db
db
dw
dw

dw
dw
dw
dw
dw
dw
dw
dw

dw
dw
dw
dw
dw
dw
db

o ; Sysdat Segment

2

false
60
o

4

8
8

offset ccbO
offset lcbO

;tick enable flag
; ticks per second
;global drive door
;open interrupt flag
; # of aux devices
; # of phys con so 1 es
;# of VCs
;total ccbs
; # of 1 j st dev ices
; offset of 1 st ccb
;offset of 1st lcb

;disk parameter header offset table
offset dphO ;drive A:

offset dph1 ; 8:
0,0,0 ;C:,D:,E:
0,0,0
0,0,0
o
offset dph2

0,0.0

o
offset acbO
o
of f set ccbpt r s
offset 1 cbpt rs
of f set acbpt r s
2

;F: ,G: ,H:

; I:, J:, K:
;L:

;M:

;N:.O:,P: reserved
; for system use

;offset of first acb
not used
pOinter array to ccb's
poi nter array to 1 cb' s
poi nter array to acb' s
2 reserved

Concurent DOS 86 System Guide INIT Entry Point

3.2 INIT ENTRY POINT

As shown in Listing 3-2, the entry pOint to the XIOS Initialization routine, INIT, is at
offset OH from the beginning of the XIOS code module. The INIT process calls the
XIOS Initialization routine during system initialization.

This section describes the events that begin from the time CCPM.SYS is loaded
into memory until the RSPs are created.

1. The loader loads CCPM.SYS into memory at the absolute Code Segment
location contained in the CCPM.SYS file Header and initializes the CS and OS
registers to the Supervisor code segment and the SYSDAT, respectively. At this
point, the loader executes a JMPF to offset 0 of the CCPM.SYS code and begins
the SUP module's initialization code as described below.

2. The first step of SUP initialization is to set up the INIT process. The INIT
process performs the rest of system initialization at a priority equal to 1.

3. The INIT process calls the initialization routines of each of the other modules
with a CALL FAR instruction. The first instruction of each code module is
assumed to be a JMP instruction to its initialization routine. The XIOS
initialization routine is the last of these modules called. Once this call is made,
the XIOS initialization code is never used again. Thus, it can be located in a
directory buffer or other uninitialized data area.

4. As shown in the example XIOS listing, the initialization routine must initialize
all hardware and interrupt vectors.

5. The XIOS initialization routine can optionally print a message to the console
before it executes a RETURN FAR (RETF) instruction upon completion. Note that
each TMP prints out the string addressed by the VERSION variable in the
SYSDAT DATA. You can change this string through the OSLABEL Menu in
GENSYS.

6. Upon return from the XIOS, the SUP Initialization routine, running under the
INIT process, creates some queues and starts up the RSPs in the order dictated
by the PHASE command used in GENSYS.

7. Once this is done, the INIT process terminates.

The XI OS INIT routine should initialize all unused interrupts to vector to an
interrupt trap routine that prevents spurious interrupts from vectoring to an
unknown location. The example XIOS handles uninitialized interrupts by printing the
name of the process that caused the interrupt followed by an uninitialized interrupt
error message. Then the interrupting process is unconditionally terminated.

Concurrent saves Interrupt Vector 224 prior to system initialization and restores it
following execution of the XIOS INIT routine. However, it does not store or alter the
Non-Maskable Interrupt (NMI) vector, INT 2. Setting NMI is also the responsibility of
the XIOS. The example XIOS first initializes all the Interrupt Vectors to the
uninitialized interrupt trap, then initializes specifically used interrupts.

3-7

XIOS Entry Concurent DOS 86 System Guide

3.3 XIOS ENTRY

All access to the XIOS after initialization passes through the ENTRY routine. The
entry point for this routine is at offset 03H from the beginning of the XIOS code
module. The operating system accesses the ENTRY routine with a CALL FAR to the
location offset 03H bytes from the beginninQ of the SYSOAT Segment. When the
XIOS function is complete, the ENTRY routine returns by executing a RETURN FAR
instruction, as in the example XIOS's. On entry, the AL register contains the
function number of the routine being accessed, and registers CX and OX contain
arguments passed to that routine. The XIOS must maintain all segment registers
through the call. This means that the CS, OS, ES, SS, and SP registers must be
preserved.

All the XIOS functions except the disk functions use the register conventions
shown in Table 3-2.

On Entry:

On Return:

Table 3-2. XIOS Register Usage

Register Content

AL Function Number

AH Undefined

BX PC Mode Parameter

CX First Parameter

OX Second Pa ra meter

OS SYSOAT Segment

ES User Oata Area

SI, 01, and BP are undefined

AX
BX

OS

Return or XIOS Error Code

Equal to AX
SYSOAT Segment

ES User Oata Area

SI. 01, BP, OX, and CX are undefined

The segment registers (OS and ES) must be preserved through the ENTRY routine.
When calling the SUP from within the XIOS, however, the ES Register must equal
the UOA of the running process and OS must equal the System Data Segment.
Thus, if the XIOS is going to perform a string move or other code using the ES
register, it must preserve ES. Alternativly the ES and OS registers must be
specifically set to the UOA and SYSDAT before the SUP is called or the function
returns.

In the example XIOS's, the XIOS function routines are accessed through a function
table where the function number is the actual table entry. Table 3-3 lists the XI OS
function numbers and the corresponding XIOS routines; detailed explanations of
the functions appear in the referenced sections of this document. Listing 3-3 is an
example XIOS ENTRY Jump Table.

3-8

Concurent DOS 86 System Guide

Number

0

1

2

7

8
48

49

16
17
18
19
20
21
22
23
24

3
4

5
6

14
37
38

39

13

XIOS Routine

IO_CONST

IO_CONIN

IO_CONOUT

1O_SWITCH

IO_STATLINE

1O_OPEN

1O_CLOSE

WW_POINTER

WW_KEY

WW_STATLINE

WWJM_HERE

WW_NEW_WINDOW

WW_CURSOR_VIEW

WW_WRAP _COLUMN

WW_FULL_WINDOW

Table 3-3. XIOS Functions

Console Functions -- Section 4.2

CONSOLE INPUT STATUS

CONSOLE INPUT

CONSOLE OUTPUT

SWITCH SCREEN

DISPLAY STATUS LINE

CHARACTER DEVICE OPEN

CHARACTER DEVICE CLOSE

Window Functions -- Section 4.3.1

GET WINDOW DATA

GET KEYBOARD INPUT/STATUS

DISPLAY STATUS LINE

SWITCH WINDOW

DEFINE WINDOW

SET CURSOR

SET SCREEN WIDTH

SWITCH WINDOW SIZE

WW_SWITCH_DISPLAY SWITCH MONITOR

IO_LSTST

IO_LSTOUT

IO_AUXIN

IO_AUXOUT

IO_POINTER

IO_AUXSTIN

IO_AUXSTOUT

IO_DEVIO

1O_POLL

List Device Functions -- Section 4.4

LIST STATUS

LIST OUTPUT

Auxiliary Device Support -- Section 4.5

AUXILIARY INPUT

AUXILIARY OUTPUT

GET OFFSET OF MACHINE-SPECIFIC DATA

AUXILIARY STATUS INPUT

AUXILIARY STATUS OUTPUT

Device Block Read/Write Function -- Section 4.6

BLOCK READ/WRITE

Poll Device Function -- Section 4.7

POLL DEVICE

XI OS Entry

3-9

XI OS Header Concurent DOS 86 System Guide

Number

28

44

45

46

50
51

9

10

11

12

15

29

47

30

31

32

33

34

35

40

41

42

43

3-10

Table 3-3. (Cant'd)

XIOS Routine

System Space Allocation Function -- Section 5.9

SYSDAT _ALLOC ALLOCATE SYSDAT SPACE
10_GET _HISTORY_BUFF FOR COMMAND LINE RECALL
10_GET _VECTORS GET VECTOR TABLE

MEM_ALLOC ALLOCATE SEGMENT_SPACE (CDOS 386)

10]ROTECT PROTECT MODE INITIALISATION (CDOS 386)

10_FLUSH_10 FLUSH (386 ONLY)

Disk Functions -- Section 5

10_SELDSK SELECT DISK

1O_READ READ DISK

1O_WRITE WRITE DISK

10]LUSH FLUSH BUFFERS

10]ORMAT FORMAT CPIM DISK

10_NEW]ORMAT VARIABLE DISK FORMAT

1O_VERIFY WRITE WITH VERIFY

ROS support Functions -- Section 7

GET _SET_SCREEN

PC_VIDEO

PC_KBD

PC_SHIFTS

PC_EOUIP

10_INT13

(optional) ALPHA/GRAPHICS SCREEN

(optional) VIDEO 10

KEYBOARD MODE SWITCH

RETURN SHIFT STATUS

EOUIPMENT CHECK

DOS INT 13 DISK 110

Expanded Memory Support Functions -- Section 6

10_MPALLOC

10_MPFREE

10_MPSAVE

10_MPRESTORE

ALLOCATE PAGED MEMORY

RELEASE PAGED MEMORY

SAVE HARDWARE STATE

RESTORE HARDWARE STATE

Concurent DOS 86 System Guide XIOS Entry

Listing 3-3. XI OS Function Table

; XIOS FUNCTION TABLE

function_table:
Funct ions requi red by the kernel:

dw io_const
dw io_conin
dw ;o_conout
dw io_l istst
dw io 1 i st -
dw ;0 auxin -
dw io auxout -
dw io switch -
dw io statline -
dw io seldsk -
dw io read -
dw io write -
dw io flushbuf -
dw io_poll

o console status
1 console input
2 console output
3 list status
4 list output
5 aux i 1 i ary input
6 auxi 1 iary out
7 sw itch screen
8 update/print new status
9 select disk
10 read logical sector
11 wr ite 1 ogi ca 1 sector
12 flush buffers
13 poll device

Misc functions used by system-specific util ities:
dw io_pointer 14 general pOinter return

for machine specific data
dw iO_format 15 CP/M only format entry

This is not a kernel function

Back door window control entry pOints and misc:
(Optional functions unused by the kernel)

dw ww_pointer 16 return data pointers
dw ww_key 17 wa it for a key
dw ww_statl ine 18 char/attib status 1 ine
dw ww im_here 19 window process state
dw ww - new_window 20 redef i ne a window
dw ww - cursor - view 21 track mode, viewpoint
dw ww_wrap_column 22 set wrap around col umn
dw ww - full - window 23 same as full key
dw ww_switCh_display 24 mono/color monitors
dw io - ret 25 dummy ret urn
dw io - ret 26 dummy return
dw io_ret 27 dummy ret urn

Mi sc funct ions used by system-speci f i c ut i 1 it i es:
dw sysdat_alloc 28 allocate sysdat space
dw ; 29 variable format entry

3-11

XIOS Entry Concurent DOS 86 System Guide

Listing 3-3. (Cent'd)

; PC Mode ROM BIOS entry point emulators:
(Funct ions requ i red on 1 y for DOS support)

dw get_set_screen
dw pc_video
dw pC_kbd
dw pc_shifts
dw pc_equip
dw io_int13
dw iOJet

; Auxi 1 iary device support:
(Funct ions requ i red by the kerne 1)

dw
dw
dw

io_auxin_stat
io_auxout_stat
io_devio

; Expanded memory support funct ions:
(Functions required by the kernel in XM)

dw
dw
dw
dw

io_mpalloc
io_mpfree
io_mpsave
io_mprestore

(Functions required by the kernel)
dw io_get_historY_buffer
dw io_get_vector
dw mem_alloc
dw i o_wr ite_vfy
dw io_open
dw io_close
dw io_protect

dw io_flush_io

3.4 POLLED DEVICES

; 30 alpha/graphics screens
; 31 ROM BIOS video IO
; 32 ROM BIOS keyboard sw itch
; 33 ROM BIOS style shift status
; 34 ROM BIOS style equip word
; 35 ROM BIOS disk I/O/Format
; 36 dummy return

; 37 aux input st at us
; 38 aux output status
; 39 device block read/write

; 40 allocate paged memory
; 41 free paged memory
; 42 save paged mem hardware
; 43 restore saved hardware

; 44 for command 1 i ne reca 11
; 45 get interrupt vector table
; 46 allocate system space (386 only)
; 47 write with verify
; 48 open a character device
; 49 close a character device
; 50 protected mode initial ise (386
only)
; 51 dos t ermi na 1 flush (386 on 1 y)

Polled I/O device drivers in single tasking systems typically execute a small
compute-bound instruction loop waiting for a ready status from the I/O device.
This causes the driver routine to spend a significant portion of CPU execution time
looping. To allow other processes use of the CPU resource during hardware wait
periods, the Concurrent XIOS must use the DEV_POLL system call to place the
polling process on the Poll List. After the DEV _POLL call, the dispatcher stops the
process and calls the XI OS 10_POLL function every dispatch until 10_POLL indicates
the hardware is ready. The dispatcher then restores the polling process to
execution and the process returns from the DEV_POLL call. Since the process
calling the DEV_POLL function does not remain in ready state, the CPU resource
becomes available to other processes until the I/O hardware is ready.

3-12

Concurent DOS 86 System Guide Polled Devices

When polling, a process executing an XI OS function calls the Concurrent DEV_POLL
system call with a poll device number. The dispatcher then calls the XI OS 10_POLL
function with the same poll device number. The example XIOS uses the poll device
number as an index into a table of poll routine entry points. It then calls the
appropriate poll function and returns the I/O device status to the dispatcher.

3.5 INTERRUPT DEVICES

As in the case of polled I/O devices, an XIOS driver handling an interrupt-driven
I/O device should not execute a wait loop or halt instruction while waiting for an
interrupt to occur.

The Concurrent XIOS handles interrupt-driven devices with DEV_WAITFLAG and
DEV _SETFLAG system calls. A process that needs to wait for an interrupt to occur
makes a DEV_WAITFLAG system call with a flag number. The system stops this
process until the desired XIOS interrupt handler routine makes a DEV _SETFLAG
system call with the same flag number. The waiting process then continues
execution. The interrupt handler follows the steps outlined below, executing a
JUMP FAR (JMPF) to the Dispatcher entry pOint. The interrupt handler can also
perform an IRET instruction when it needs to return, but jumping directly to the
Dispatcher provides a faster response to the process waiting on the flag and is
logically equivalent to the IRET instruction.

If interrupts are enabled within an interrupt routine, a Tick interrupt can cause the
interrupt handler to be dispatched. This dispatch could make interrupt response
time unacceptable. To avoid this situation, do not re-enable interrupts within the
interrupt handlers or only jump to the Dispatcher when not in another interrupt
handler routine.

Because of machine architecture differences, Concurrent interrupt handlers differ
from those in an 8080, 8085, or Z-80 environment. Study the example XI OS Tick
interrupt handler carefully. During initial debugging, do not implement interrupts
until after the system works in a polled environment.

An XIOS interrupt handler routine must perform the following basic steps:

1. Do a stack switch to a local stack. The interrupted process might not have
enough stack space for a context save.

2. Save the register environment of the interrupted process, or at least the
registers that will be used by the interrupt routine. Usually the registers are
saved on the local stack established by the first step.

3. Satisfy the interrupting condition. This can include resetting the hardware and
performing a DEV_SETFLAG system call to notify a process that the interrupt
for which it was waiting has occurred.

4. Restore the interrupted process's register environment.

3-13

Interrupt Devices Concurent DOS B6 System Guide

5. Switch back to the original stack.

6. Return from the interrupt routine with either a JUMP FAR (JMPF) to the
dispatcher or an Interrupt Return (IRET). When interrupts are not re-enabled
within the interrupt handler, a JMPF to the dispatcher is executed on each
system tick and after a DEV_SETFLAG call is made. If interrupts are re-enabled,
an IRET instruction is executed.

Note: DEV_SETFLAG is the only Concurrent system call an interrupt routine can
use. This is because DEV_SETFLAG is the only system call the operating system
assumes has no process context associated with it. DEV_SETFLAG must enter the
operating system through the SUP entry point at SYSDAT:OOOOH and cannot use
INT 224.

3.6 Numeric Data Processor EXCEPTION HANDLER

This section explains how to provide support for the NDP chip. This is required to
allow more than one process to use the NDP without conflict and to handle the
NDP exception interrupt. The following discussion applies to the BOB7, B02B7 and
B03B7 Numeric Data Processor (NDP) from Intel. The XIOS initialization code must
initialize five fields in the SYSDAT area to support the NDP. The XI OS must also
contain a default exception handler to handle any interrupts from the NDP. The
system is structured so that a programmer can write an individual exception
handler for the NDP.

The XIOS initialization code must first check for the presence of the NDP chip by
using the FNINIT instruction. If the NDP is present, the XIOS initialization code must
set up the following SYSDAT fields:

SEG_BOB7
OFF_BOB7

SYS_B7_SG
SYS_B7_0F

OWNER_BOB7

Must be set to the segment and
offset of the NDP interrupt vector.

Must be set to the segment and
offset of the XI OS default exception handler.

Must be set to 0 to indicate that there is an NDP present in the
system. The default value is FFFFH which indicates no NDP. FFFFH
is put in this field by the SUP initialization code.

The NDP interrupt vector itself must also be set to the segment and offset of the
XIOS default exception handler.

To guarantee program integrity in a multitasking environment, the NDP exception
handler must perform its functions in a specific order. The following steps outline
the primary functions of the example default NDP exception handler (see Listing
3-4):

1. Save the Processor environment.

2. 'Save the NDP environment.

3. Clear the NDP IR (status word).

3-14

Concurent DOS 86 System Guide Numeric Data Processor Exception Handler

4. Disable NDP interrupts.

5. Acknowledge the interrupt (hardware dependent).

6. Read the OWNER_808? field in SYSDAT and perform the desired action. Note
that processor interrupts are currently disabled. Do not perform any action that
would turn them back on yet. The default exception handler uses the
OWNER_808? field to terminate the process on a severe error.

? Restore the processor environment.

8. Restore the NDP environment with clear status. This enables the NDP
interrupts.

9. Execute an IRET instruction to return and enable the processor interrupts.

If the NDP environment is not restored before processor interrupts are enabled and
an interrupt occurs (for example, Tick), a different NDP process can gain control of
the NDP and swap in its NDP context. On a second interrupt, or on an IRET
instruction, the process that happened to be executing the exception handler code
will be brought back into context and will write over the new NDP context.

All NDP processes are initialized by the system with the address of the default
exception handler. If a process wants to use its own exception handler, it must
initially overwrite the NDP interrupt vector with the address of its own exception
handler. On each context switch, the NDP interrupt vector is saved and restored as
part of the NDP process's environment.

The hardware-dependent address of the NDP interrupt vector is provided in the
SEG_808? and OFF _808? fields of the system data area.

An individual exception handler that does not follow the sequence of events
described for the default handler will have unpredictable results on the system. If
possible, make this default interrupt handler re-entrant.

3-15

Numeric Data Processor Exception Handler Concurent DOS 86 System Guide

Listing 3-4. NDP Exception Handler

;==

; NDP Default Exception Handler
;==

This is the example default exception handler. It is assumed that if the
NDP programmer has enab 1 ed NDP i nt er rupts and has spec i f i ed except ion flags in
the control word, that the programmer has also included an exception handler to
take specific actions in response to these conditions. ThiS handler ignores
non-severe errors (overflow, etc.) and terminates processes with severe errors
(divide by zero, stack violation).

push
mov
mov
mov
mov
mov
push
push
push
push
push
push
push
push
mov
FNSTENV
FWAIT
FNCLEX
xor
FNDISI

mov
out
mov
out
call

mov
mov
pop
pop
pop
pop
pop
pop
pop
pop
mov
mov

3-16

ds
dS,sysdat
ndp_ssreg,ss
ndp_spreg,sp
sS,sysdat
sp,offset ndp_tos
ax
bx
cx
dx
di
si
bp
es
eS,sysdat
env_BOB7

aX,ax

al,020h
060h,al
al,020h
05Bh,al
in_BOB7

bX,offset env_BOB7
byteptr 2[bx] ,0
es
bp
si
di
dx
cx
bx
ax
sS,ndp_ssreg
sp, ndp_spreg

;Save current data seg
Get XIOS data seg
Stack swi tch for processor
envi ronment

; Save processor registers

Now save NDP env
Save NDP Process Info

Clear NDP interrupt

Di sabl e NDP interrupts

; Send int ack's - 1 for slave

- 1 for master PIC

Check NDP er ror cond it i on
if error is severe,
process wi 11 abort

clear NDP st at us word
for env restore

; Restore processor env.

Sw it ch to prey i ous st ack

Concurent DOS 86 System Guide Numeric Data Processor Exception Handler

Listing 3-4. (Cont'd)

FLDENV
FWAIT
pop
iret

mov
test
jz

mov
mov
test
jnz
or

ds

bX,owner_BOB7
bX,bx
end_B7
51 ,offset env_BOB7
aX,statusw[sil
aX,03ah
end_87
p_flag[bxl,OBOh

3.7 PC/AT ROS Interrupt Support

; Restore NDP env
; with good status
; Restore previous data seg

; Get the PD
; Check if owner has
; already terminated
; If severe error, terminate
; If not, return and cont i nue
; 3A = under/overflow, precision,
; and denorma 1 i zed operand
; Must be zero divide or inval id
; operat ion (stack error)
; Turn on terminate flag

Concurrent will intercept some of the ROS interrupts and emulate a limited subset
of functions, the remaining functions will be passed on to the original interrupt
service routines (ISRs). This means that the XIOS INIT routine should set all the
interrupt vectors between 10h and 1 Fh to point to XIOS code. These XIOS service
routines should either handle the function requested or print an error message and
terminate the current process. Obviously on a PC or compatible many of the
functions can be passed on to the ROS.

The following ROS interrupts are intercepted by Concurrent.

INT 11 h System Configuration

This function calls the PC_EQUIP XI OS function.

INT 12h Memory Size
The PCMODE returns the correct memory size based on the memory allocated
to the current process.

INT 13h Disk I/O
Concurrent DOS uses the 10-,NT13 XIOS function to support the Disk I/O ROS
function.

INT 14h Serial I/O
Sub-functions 1 (Send Character), 2 (Get Character) and 3 (Status) are trapped
by Concurrent and passed to the appropriate AUX devices. All other
sub-functions are passed to the original ISR. Check new PS/2 sub-functions.

3-17

PC/AT ROS Interrrupt Support Concurent DOS 86 System Guide

INT 16h Keyboard Services
Sub-functions 0 to 2 and 10h to 12h are emulated by Concurrent. All other
sub-functions are passed to the original ISR. INT 16h is commonly used by
clone manufacturers to access extra facilities provided by their hardware, ie
Processor Speed Switching.

INT 17h Parallel Printer 1/0
Sub-functions 0 (Print Character) and 2 (Status) are emulated by Concurrent.
All other sub-functions are passed to the original ISR.

3.8 XIOS SYSTEM CALLS

Routines in the XIOS cannot make system calls in the conventional manner of
executing an INT 224 instruction. The conventional entry point to the SUP does a
stack switch to the User Data Area (UDA) of the current process. The XI OS is
considered within the operating system and a process entering the XIOS is already
using the UDA stack. A separate entry point is used for internal system calls.

Location 0003H of the SUP code segment is the entry point for internal system
calls. Register usage for system calls through this entry point is similar to the
conventional entry point. They are as follows:

Entry:

Return:

ex = System call number
OX = Parameter
OS = Segment address if OX is an offset to a structure
ES = User Data Area

AX = BX = Return
CX = Error Code
ES = Segment value if system call returns an offset and segment.

Otherwise ES is unaltered and equals the UDA. OX, SI, 01, BP are
not preserved.

The only differences between the internal and user entry points are the contents of
registers CX and ES on entry. CH must always be 0 for the internal call. ES must
always point to the UDA of the current process. You can obtain the UDA segment
address with the following code:

r 1 r equ word pt r .68h ; ready 11 st root

movsi,r1r
moves, 10h[si 1

Note: On entry to the XIOS, the ES register is equal to the UDA segment address.
ES must equal the UDA on return from any XIOS function called by the XI OS ENTRY
routine. Interrupt routines must restore ES and any other altered registers to their
value upon entry to the routine and before performing anlRET instruction or a
JMPF to the dispatcher.

3-18

Section 4

CHARACTER DEVICES

This section describes the XIOS character liD functions. To run DOS programs,
your XI OS must support the functions described in Section 7.

Concurrent calls all serial liD devices consoles at the programmer level. Each
process contains, in its Process Descriptor, the number of its default console. The
default console can be either a Virtual Console (a console from which the user
may run an application and for which a terminal message process (TMP) exists) or
an extra serial liD device. Each Virtual Console is assigned to a specific physical
console (user terminal). The system associates a Console Control Block (CCB) with
each serial liD device (Virtual Console or extra liD device). The serial liD devices
and CCBs are numbered relative to zero.

Concurrent can be configured in a number of different ways by changing the CCB
Table in the XIOS. You may configure the system to support one or more physical
consoles and extra liD devices. The number of Virtual Consoles assigned to each
physical console is set in the CCB Table. Up to 256 serial liD devices can be
implemented, depending on the specific application.

The XIOS Header defines the size and location of the CCB Table. The Headers, CCB
field points to the beginning of the CCB Table; the NCCB field contains the number
of CCB Table entries. The CCBLlST contains a pointer to an ordered array of
pointers to the CCBs. The value of the NVCNS field declares how many of the CCBs
are Virtual Consoles (see Section 3.1, "XIOS Header").

The XIOS might or might not maintain a buffer containing the screen contents and
cursor position for each Virtual Console, depending on how the system is to
appear to the user. Keep in mind that this buffer can be over 4K bytes per Virtual
Console. Practical considerations of memory space might require keeping the
number of Virtual Consoles reasonably small if buffers are maintained. The buffers
are a requirement for DOS terminal support (Concurrent 386).

By convention, the first NVCNS serial liD devices are the Virtual Consoles. The
NVCNS parameter is located in the XI OS Header. The NPCNS field indicates the
number of user terminals. NPCNS must be less than or equal to NVCNS. NPCNS
does not include extra liD Devices. Consoles beyond the last Virtual Console
represent other serial liD devices. When a process makes a console 110 call with a
console number higher than the last Virtual Console, it references the Console
Control Block for the called device number. A CCB for each serial liD device is
absolutely necessary.

List devices are output-only under Concurrent. The XIOS must reserve and initialize
a List Control Block for each list output device. When a process makes a list device
XIOS call, it references the appropriate LCB.

Similarly, the XIOS must reserve and initialize an Auxiliary Control Block (ACB) for
each auxiliary device. The number of ACBs must equal the Ilumber specified in the
NACB field of the XI OS Header. See Section 4.5.

4-1

Character Devices Concurent DOS 86 System Guide

There are two basic methods that Concurrent XIOS drivers use to wait for a
hardware event to occur: noninterrupt-driven devices use the DEV_POLL method;
interrupt-driven devices use the DEV _SETFLAG/DEV _FLAGWAIT method. Both
methods allow a process waiting for an external event to give up the CPU resource
so that other processes can run concurrently. See Section 6 of the Programmer's
Guide for detailed explanations of the DEV_POLL, DEV_FLAGWAIT and DEV_SETFLAG
system calls.

4.1 CONSOLE CONTROL BLOCK

A Console ContrOl Block Table must be defined in the XIOS. There must be one
CCB for each Virtual Console and Character 1/0 device supported by the XI OS, as
indicated by the NCCB variable in the XIOS Header. The table must begin at the
address indicated by the CCB variable in the XIOS Header. Figure 4-1 shows the
format of the CCB Table.

CCB Field

'I CCB 0

1 CCB NVCNS 1

1 CCB NVCNS

1 CCB NCCB 1

Virtual
Consol eO

Last
Vi rtua 1 Consol e

1 st Ext ra Character
I/O Device

Last Extra
Character
I/O Device

Figure 4-1. The CCB Table

The CCBLlST pointer in the XI OS header points to an array of pointers to the CCBs.
This array should be used to access a particular CCB so that future modifications
to the length of a CCB structure can be made.

Example of the CCB array for 6 CCB's

'-1 -CC-B-L-r-S-T"'"

OOH CCB(O) CCB(1) CCB(2) CCB(3)

OSH CCB(4) CCB(5)

4-2

Concurent DOS 86 System Guide Console Control Block

The number of CCBs used for Virtual Consoles equals the NVCNS field in the XIOS
Header. Any additional CCB entries are used for other character devices to be
supported by the XIOS. CCB entries are numbered starting with zero to match their
logical console device numbers. The last CCB in the CCB Table is the (NCCB-1)th
CCB.

Each CCB corresponding to a Virtual Console has several fields which must be
initialized, either when the XIOS is assembled or by the XIOS INIT routine. These
fields allow you to choose the configuration of the Virtual Consoles. The PC field
indicates the physical console to which this Virtual Console is assigned. The VC
field is the Virtual Console number. This number must be unique within the system.
The LINK field points to the CCB of the next Virtual Consoli! assigned to this
physical console. The last Virtual Console assigned to each physical console
should have the LINK field set to zero (OOOOH). For CeBs outside the Virtual Console
range corresponding to extra 1/0 devices, these fields must all be initialized to zero
(OOH), except for the PC field. All fields marked RESERVED in Figure 4-2 must also
be initialized to zero (OOH).

Figure 4-2 shows the format of a Console Control Block. Table 4-1, immediately
following Figure 4-2, defines the Console Control Block fields.

OOH OWNER

OSH MIMIC RES.

10H

2SH LINK

Field

OWNER

MIMIC

PC

RESERVED

PC VC RES. ATTR STATE (0)

RESERVED

RESERVED

Figure 4-2. Console Control Block Format

Table 4-1. Console Control Block Fields

Explanation

Address of the Process Descriptor for the process that currently owns this
Virtual Console or character I/O device. This field is used by the XIOS Status
Line Function (lO_STATLlNE) to find the name of the current owner. Initialize
this field to zero (OOOOH). If the value in this field is zero when Concurrent is
running, no process owns the device.

This field indicates the list device that receives the characters typed on the
Virtual Console when CTRL-P is in effect. MIMIC must be initialized to OFFH.
Note that this list device is not necessarily the same as the default list device
indicated in the Process Descriptor pointed to by the OWNER field.

Physical console number.

4-3

Console Control Block Concurent DOS 86 System Guide

Field

VC

ATTR

STATE

LINK

Table 4-1. (Cont'd)

Explanation

Virtual Console number. Virtual Console numbers must be unique within the
system.

The attribute field specifies which IBM PC characteristics are supported by
this virtual console. The default value 0 corresponds to plain TTY support.

The bits are defined as follows.

CA_251INES

CA_ANSI
CA_ROS

CA_HARDWARE

equ 02h

equ 04h
equ OSh

equ 10h

Other bits are RESERVED.

; Supports 25 1 i ne operat ion

; Supports ANSI control codes
Provides ROS emulation

; PC hardware compatible

Bit 3 in the lower byte of this field is used as a NOSWITCH flag. When set,
this flag disables an attempt to switch Virtual Consoles on this console.
Initialize this field to zero.

Address of the next CCB assigned to the same physical console. This field
contains zero (OOOOH) if this is the last or only Virtual Console for this
physical console.

Figure 4-3 depicts the CCBs for a system with two physical consoles, the first with
three Virtual Consoles and the second with two.

(
(
o

(
o

4-4

cce 0

LINK

cca 1

LINK

cce 2

LINK

cce 3

LINK

cce 4

LINK

PC 0 VC 0

PC 0 VC 1

PC 0 VC 2

PC 1 VC 3

PC 1 VC 4

Figure 4-3. CCBs for Two Physical Consoles

Concurent DOS 86 System Guide

4.2 CONSOLE I/O FUNCTIONS

Return input status of a specified serial I/O device

Entry Parameters:
Register AL: OOH

DL: Device number

Returned Values:
Register AL:

BL:

OFFH if character ready
o if no character ready
Same as AL

ES, OS, SS, SP: preserved

Console 1/0 Functions

The 10_CONST routine returns the input status of the specified character 1/0
device. This function is called by the operating system only for console numbers
greater than NVCNS-1. in other words, only for devices which are not Virtual
Consoles. If the status returned is OFFH, then one or more characters are available
for input from the specified device.

10_CONIN

Return character from console keyboard or serial I/O device

Entry Parameters:
Register AL: 01 H

DL: Device number

Returned Values:
Register AH: OOH if returning character data

AL: Character
AH: OFFH if returning a switch screen request
AL: Virtual Console requested
BX: same as AX in all cases

ES, OS, SS, SP: preserved

Because Concurrent supports the full 8-bit ASCII character set the parity bit must
be masked off from input devices which use it. It should not. however, be masked
off if valid 8-bit characters are being input.

You choose the key or combination of keys that represent the Virtual Consoles by
the implementation of 10_CONIN. One of the example XIOSs uses the function keys
Fl through F3 to represent the Virtual Consoles assigned to each user terminal.

10_CONIN must check for PC Mode. PC Mode is active whenever DOS programs are
running. It is enabled or disabled by the PC_KBD function (32). If PC Mode is
enabled, all function keys are passed through to the calling process. If it is
disabled, function keys that do not have an associated XI OS function are usually
ignored on input. See Section 7.3 "Keyboard Functions" for information on PC_KBD.

4-5

Console 1/0 Functions Concurent DOS 86 System Guide

Display andlor output a character to the specified device

Entry Parameters:
Register AL: 02H

CL: Character to send
DL: VC number

The XIOS might or might not buffer background Virtual Consoles, depending on the
user interface desired, memory constraints, and methods of updating the terminals.
This section describes how the example XIOSs handle Virtual Consoles.

The example XIOSs buffer all Virtual Consoles. All Virtual Consoles have a screen
image area in RAM. This image reflects the current contents of the screen, both
characters and attributes. Each screen image is contained in a separate segment.
Note that PC Mode requires that the screen buffers consist of 25 lines; only 24
lines need to be buffered when not in PC Mode.

Each Virtual Console also has a VC Structure associated with it. This structure
contains the segment address of the screen image, the cursor location (offset in
the segment), and any other information needed for the screen. The VC structure
can be expanded to support additional hardware requirements, such as color CRTs.
See Section 4.3.2 for a description of the VC Structure.

When a process calls this function with a device number higher than the last
Virtual Console number, the character should be sent directly to the serial device
that the CCB represents.

10_DEV10 (27H) is used to output a block of characters to a console device; See
Section 4.6.

Switch the current Virtual Console into the background
and the specified Virtual Console into the foreground

Entry Parameters:
Register AL: 07H

DL: VC number to switch to foreground

10_SWITCH XIOS copies the screen image in memory to the physical screen,
moving the cursor on the physical screen to the proper position for the new
foreground console.

4-6

Concurent DOS 86 System Guide Console 1/0 Function

la_SWITCH is responsible for performing a flagset to restart a background process
that is waiting to go into graphics mode. If the process's screen is to be switched
into the foreground, your flag set should use the flag that was used by
GET _SET_SCREEN (30) to flagwait the process. See Section 7.1 for a description of
GET _SET_SCREEN.

la_SWITCH will be implemented differently for machines with video RAM (such as
the IBM Personal Computer) and serial terminals. For IBM machines, the screen
switch can be accomplished by performing a block move from the screen image to
the video RAM, and a physical cursor positioning. A serial terminal must be
updated by sending a character at a time, inserting escape sequences for the
attribute changes.

Concurrent calls la_SWITCH only when there is no process currently in the XIOS
performing console output to either the foreground Virtual Console being switched
out or the background Virtual Console being switched into the foreground.
Therefore, the XIOS never has to update a screen while simultaneously switching it
from foreground to background, or vice versa.

One of the example la_SWITCH routines performs the following operations:

1. Get the screen structure and image segment for the new Virtual Console.

2. Find the physical console number for this Virtual Console.

3. If this is a video-mapped console, save the current display by doing a block
move. If it is a serial terminal, clear the physical screen and home the cursor.

4. If this is a video-mapped display, do a block move of the new screen image to
the video RAM, and re-position the cursor. If it is a serial terminal, send each
character to the physical screen. Check each character's attribute byte, and
send any escape sequences necessary to display the characters with the
correct attributes.

Display specified text on the status line

Entry Parameters:
Register AL: 08H

CX: OOOOH to continue updating the normal status line
Offset to print the string at DX:CX
OFFFFH to resume normal status line display

DL: physical console to display status line on (CX = 0)
OX: segment address of optional string (CX <> 0)

4-7

Console I/O Functions Concurent DOS 86 System Guide

When 10_STATLINE is called with CX = 0, the normal status information is displayed
by 10_STATLINE on the physical console specified in DL. The normal status line
typically consists of the foreground Virtual Console number, the state of the
foreground Virtual Console, the process that owns the foreground Virtual Console,
the removable-media drives with open files, whether control P, S, or ° are active,
and the default printer number. The 10_STATLINE function in the example XIOSs
display some of the above information. Usually when 10_STATLINE is called, DL is
set to the physical console on which to display the status line. You must translate
this to the current (foreground) Virtual Console before getting the information for
the status line (such as the process owning the console). The status line can be
modified, expanded to any size, or displayed in a different area than the status line
implemented in the example XIOSs. A common addition to the status line is a
time-of-day clock.

Digital Research recommends that you implement a status line. However, if there
are only 24 lines on the display device, you might choose not to implement a
status line. In this case, the 10_STATLINE function should just return when called.

The normal status line is updated once per second by the CLOCK RSP. If there is
more than one user terminal connected to the system, this update occurs once per
second on a round-robin basis among the physical terminals. Thus, if four
terminals are connected, each one is updated every four seconds.

The operating system also requests normal status line updates when screen
switches are made and when control P, S, or 0 change state. The XIOS might call
10_STATLINE from other routines when some value displayed by the status line
changes.

Note: 10_STATLINE's re-entrancy depends in part on having separate buffers for
each physical console.

The 10_STATLINE routine should not display the status line on a user terminal that
is in graphics mode. It should check the same variable as GET _SET_SCREEN
(Function 30). GET _SET _SCREEN is described in Section 7.1, "Screen 1/0 Functions."

10_STATLINE should not display on a console that is in PC Mode. Check the variable
set with PC_KBD (32) to see if a console is in PC Mode. See Section 7.3 for
information on PC_KBD.

Most calls to 10_STATLINE to update the status line have DL set to the physical
terminal that is to be updated. When 10_STATLINE is called with CX not equal to
OOOOH or OFFFFH, then CX is assumed to be the byte offset and DX the paragraph
address of an ASCII string to print on the status line. This special status line
remains on the screen until another special status line is requested, or
10_STATLINE is called with CX=OFFFFH. While a special status line is being
displayed, calls to 10_STATLINE with CX=OOOOH are ignored.

When 10_STATLINE function is called with CX=OFFFFH, the normal status line is
displayed and subsequent calls with CX=OOOOH cause the status line to be updated
with current information.

4-8

Concurent DOS 86 System Guide Console 1/0 Functions

When 10_STATLINE is called to display a special status line, DL does not contain
the physical console number. The physical console number can be obtained by the
following method:

1. Get the address of SYSDAT.

2. Look at the RLR (Ready List Root). The first process on the list is the current
process.

3. Look at the Process Descriptor (pointed to by RLR). The P _CNS field contains
the Virtual Console number of the current process. See the Programmer's
Guide for a description of the Process Descriptor.

4. Look up the CCB for this Virtual Console and find the physical console number
in it.

A process calling IO_STATLINE with a special status line (DX:CX = address of the
string) must call IO_STATLINE before termination with CX=OFFFFH. Otherwise the
normal status line is never shown again. There is no provision for a process to find
out which status line is being displayed.

4.3 XIOS WINDOW SUPPORT

This section describes the XIOS functions and data structures that support Virtual
Console windowing as implemented in the sample XIOS for the IBM PC/XT/AT/PS2.
This section also outlines the algorithms used to perform console output and
screen switching in a system with Virtual Consoles and windows.

Concurrent's window support is implemented exclusively in the XIOS. The
windowing scheme presented in the sample XI OS for the IBM PCIXT/AT/PS2
involves two utilities, WINDOW and WMENU, which run as transient programs, and
nine optional entry pOints used by these utilities. The window utilities perform
XIOS calls under the protocol described in the Programmer's Guide. WINDOW and
WMENU are described in the User's Reference Guide.

4.3.1 XIOS Window Functions

Table 4-2 summarizes the XI OS functions that support window manipulation. These
functions are accessed with a CALL FAR instruction to the XIOS entry point using
the standard XIOS segment register conventions, specifically: DS = SYSDAT and ES
= UDA. At entry, each routine is called with a function code in AL and various
parameters in ex, CX, and DX. Note that where a Virtual Console (VC) number is
specified as a parameter, it is a zero-based value.

4-9

XI OS Window Support Concurent DOS 86 System Guide

Table 4-2. XIOS Window Functions

Function Purpose

This call (10H) returns a pointer to either the VC structure or the Window Data
Block. These data structures. described in Section 4.3.2. indicate the size and
position of a window. a window's position in relation to other windows. and other
useful information.

WW_KEY (11 H) returns keyboard input and status to the WMENU utility.

This call (12H) is used by the window manager to control its status line display. An
application may use this call to write to the status line area of the physical console.

This call (13H) sets the window manager process state and allows an application to
switch a new window to the foreground.

WW_NEW_WINDOW

This call (14H) defines new window boundaries for a Virtual Console.

WW_CURSOR_VIEW

This call (15H) sets the cursor track mode and viewpoint.

WW_WRAP_COLUMN

This call (16H) sets the column for automatic wrap-around to prevent characters
from being lost outside the window during simple console output calls.

WW JULL_ WINDOW

This call (17H) toggles the current Virtual Console between full screen and its
previous definition.

WW _SWITCH_DISPLAY

4-10

This call (18H) switches a Virtual Console from one display monitor to another.
clears both screens. and updates all Virtual Consoles.

Concurent DOS 86 System Guide XIOS Window Support

Each XI OS window function call is described below.

Get window information

Entry Parameters:
Register AL: 10H (16)

DL: VC number or FFH

Returned Values:
Register AX: Address of VC Structure (DL = VC number)

Address of Window Data Block (DL = FFH)

WW_POINTER provides current window information to the windowing utilities or
other calling programs. If this function is called with the Virtual Console number in
register DL, it returns the address of the Virtual Console Structure. If WW_POINTER
is called with FFH in DL, it returns the address of the Window Data Block. Section
4.3.2 defines the VC Structure and the Window Data Block.

Get keyboard Input/Status

Entry Parameters:
Register AL: llH (17)

CL: (1) FFH for keyboard input/status
(2) FEH for keyboard status only
(3) Less than FEH to wait for input

Returned Values:
Register AL:

AH:

(1) Character or OOH if no character ready
(2) FFH if character ready, OOH if no character ready
(3) character

Key type value, OOH for regular key
FFH for special key

The PC XI OS assigns a unique system flag to the window manager. If a character
has not been typed when input is requested by WMENU, the WMENU process
"sleeps" on that flag by performing a DEV_WAITFLAG system call (84H) to take itself
out of context until a key is entered. The keyboard ISR sets that flag with
DEV_SETFLAG (85H) when the next key is typed, awakening WMENU. The
DEV_WAITFLAG and DEV_SETFLAG calls are described in Section 6 of the
Programmer's Guide.

4-11

XIOS Window Support Concurent DOS 86 System Guide

Note that AH returns a key type value only if AL returns a character.

Display status line characters/attributes

Entry Parameters:
Register AL: 12H (18)

CX: 0000 to continue updating normal status line Offset of string to
print FFFFH to resume normal status line

DL: Physical console on which to display status line (when CX
contains 0)

DX: Segment address of optional string (when CX does not contain 0)

Returned Values:
Register AL: o on success

OFFH on failure

WW_STATLINE is a duplicate of IO_STATLINE (08H) with the exception that registers
DX:CX address an 80-word string of characters/attributes instead of an 80-byte
string of characters. This provides more complete control over the status line
display.

Switch window

Entry Parameters:
Register AL: 13H (19)

CL: Window Manager state:
o Manager not resident
1 Resident but not active
2 Resident and active
3 Switch window, do not change state

DL: Number of Virtual Console to switch
If FFH, do not switch console

WW-'M_HERE switches a window by emulating a keyboard interrupt. It does this by
first poking the "key" variables normally set by the keyboard ISR with the codes
that correspond to the proper screen-switch key. It then performs a DEV _SETFLAG
system call (85H) to set the keyboard flag. This function places the Window
Manager state value contained in CL into the im_here field of the Window Control
Block. The Window Control Block is described in Section 4.3.2.

4-12

Concurent DOS 86 System Guide

Define window boundaries

Entry Parameters:
Register AL: 14H (20)

DL: VC number
CH: Top left row
CL: Top left column
BH: Bottom right row
BL: Bottom right column

XI OS Window Support

The XIOS defines a semaphore for each Virtual Console in the system. Before any
XIOS routine attempts to update a window in any way, the semaphore for the
window's Virtual Console is checked. If another process is in the window code, the
XIOS waits until that process is finished before continuing.

Because defining new window boundaries can affect all Virtual Consoles,
WW_NEW_WINDOW gains ownership of all semaphores before proceeding. At the
point when it owns all semaphores, all other processes are locked out of the
console output code. After updating the window variables, erasing the contents of
the video display, and updating all windows, WW_NEW_WINDOW frees all the
semaphores so that other processes may resume console output.

Set cursor tracking and update window

Entry Parameters:
Register AL: 15H (21)

DL: VC number
DH: Cursor tracking mode:

00 Fixed window (full 80x25 image)
01 Track scrolling cursor

CH: Top left row
CL: Top left column

After obtaining the semaphore for a given console, WW_CURSOR_VIEW updates the
variables in the Virtual Console Structure. Once it has updated the window on the
screen and displayed the cursor if it falls within the window, this function releases
the semaphore and returns.

When DH contains 01 on entry, WW_CURSOR_VIEW tracks the cursor by
maintaining cursor row inside the window.

4-13

XIOS Window Support Concurent DOS 86 System Guide

WW_WRAP _COLUMN

Entry Parameters:
Register AL: 16H (22)

DL: VC number

Set Screen Width

CL: Wrap column number

WW_WRAP _COLUMN updates the width field of Virtual Console Structure for the
selected Virtual Console with the specified column number. This function sets the
Virtual Console's screen width.

Entry Parameters:
Register AL: 17H (23)

DL: VC number

Switch window size

WW_FULL_WINDOW switches the Virtual Console currently in the foreground
between full screen size and its previously defined size.

The XI OS must check whether the current window is full screen for this function. If
it is, retrieve the previous window boundaries from the Virtual Console Structure
and internally call WW_NEW_WINDOW. If the current window is not full screen, call
WW_NEW_WINDOW to make it full screen.

Switch Virtual Console monitors

Entry Parameters:
Register AL: 18H(24)

DL: VC number
CL: Monitor code:

00 Monochrome
01 Color

WW _SWITCH_DISPLAY updates the Virtual Console Structure to indicate the
monitor (color or monochrome) on which a window is to be displayed. For a
system that has both a color and a monochrome monitor, this function moves a
window from one monitor to the other. Both displays are then cleared and all
windows are updated.

4-14

Concurent DOS 86 System Guide XI OS Window Support

4.3.2 Virtual Console Data Structures

The Concurrent XIOS maintains a Virtual Console Structure for each Virtual Console
in the system. WW_POINTER (10H) returns a pointer to the VC Structure that
corresponds to the VC number passed as an entry parameter. Structure members
include cursor position, window position, current attribute, and cursor tracking
mode. Do not confuse the VC Structure with the Console Control Block (CCB).

Listing 4-1 shows a VC Structure as implemented in the XIOS for the IBM
machines. NOTE this structure is not the same on the example XIOS for serial DOS
consoles. These do not support character windows.

cur_col
cur_row
1 eft
top
right
bottom
old_tl
old_br
crt_size
win_size
view_point
rows
cols
correct
vc_seg
crt_seg
1 ist_ptr
attrib
mode
cur_track
width
number
bit
save_curs
vector
x1at
crt_rows
pc_shift

rb 1
rb 1
rb 1
rb 1
rb 1
rb 1
rw 1
rw
rw
rw
rw
rw
rw
rw
rw 1
rw 1
rw 1
rb 1

rb 1
rb 1
rb 1
rb 1
rb 1
rw 1
rw 1
rw 1
rb 1
rb 1

true_view rw 1
cur_type rw 1
(funct ion-key info.)

Listing 4-1. Virtual Console Structure

;cursor column
;cursor row
;window left column
;window top row
;window right column
; window bot tom row
;old top-left
;old bottom-right
; rows/col umns of full screen
; rows/col umns of window
; row/col umn of current vi ew poi nt
;window row count
;window column count
;character position factor
; segment base of conso 1 e image
; segment base of CRT screen area
; used for updat i ng t he screen by rows
;current character attribute
; current screen mode
;current tracking mode (ROW/NO)
; col umn where character wrap occurs
;vc number
;vc number as a bit position
;cursor save location
;ptr to current output routine
;address of priority-translate table
; =25 for PCDOS screen. 24 for CP /M
;current PCMODE shi ft state
;true view point for row tracking
;mono or color

mxsemaphore rb 1 ; mut ua 1 -exc 1 us i on semaphore
(reg. save area for back-door funct ions)
screen_mode rb 1 ; a 1 pha/graphi cs mode
screen_save rb 1 ;save the old mode

Listing 4-2 defines a Window Data Block as implemented in the example XIOS for
the IBM machines. WW_POINTER returns a pointer to this data structure when DL =
FFH on entry.

4-15

XI OS Window Support

pr ior ity
top_screen

rb 1

rb 1

rb Hw-1
rb 1

Concurent DOS 86 System Guide

Listing 4-2. Window Data Block

;If non-zero. the Window Manager is
;present--see WW_IM_HERE (13H).
; Number of VCs (w i ndows)
;supported in the system.
;A list of window numbers from lowest
;priority (back) to highest priority
; ("top" or front).

4.3.3 Basic Console Output Algorithms

To support the four Virtual Consoles on the IBM machines, four full-screen-image
RAM buffers are maintained, each 2000 (25 x 80) words (character plus attribute) in
length. In a non-windowed Virtual Console system with a memory-mapped video
display, character output in the XIOS consists of the following steps:

1. Check whether the current Virtual Console is switched-in.

2. If it is, put the character and attribute directly in the video display RAM.

3. If the current Virtual Console is not switched-in, put the character and attribute
into the appropriate screen-image buffer.

4. Handle escape sequences (to position cursor, clear screen, set attribute, and so
forth) properly.

Here are the steps required to switch Virtual Consoles in the system described
above:

1. Copy the contents of the video display RAM to the screen-image buffer for
that Virtual Console.

2. Copy the screen-image buffer for the newly switched-in Virtual Console into
the video display RAM.

In a windowed system, the algorithms become more complex. To support windows
in addition to the full-screen buffers for each Virtual Console, there must also exist
a 2000-byte (80 x 25) "ownership" map in which each byte corresponds to a unique
character position on the physical screen. The value of the byte indicates which
window owns that character position. The priority of ownership changes according
to the screen-switch history. Take the following steps to output characters in such
a system:

1. If the current Virtual Console is full screen size and on top, place the character
and attribute directly into the video display RAM, handle all escape sequences,
and return.

2 .. If the current Virtual Console is not full screen and ali top, put the character
and attribute into the appropriate screen-image buffer.

4-16

Concurent DOS 86 System Guide XIOS Window Support

3. If the current character position is not within the defined window for the Virtual
Console, simply update the virtual cursor information and return.

4. If the current character position is within the window, check the ownership
map. If the Virtual Console owns the current character position, place the
character and attribute directly in the video display RAM.

5. Update the virtual cursor information and return.

The console-switch steps for the windowed Virtual Console system are as follows:

1. Draw a single-line frame around the old window in the video display RAM.

2. Update the ownership map described above.

3. Draw a double-line frame around the new window in the video display RAM.

4. Update the current window from the screen-image buffer.

5. Set the physical cursor from the virtual cursor information and return.

4.4 LIST DEVICE FUNCTIONS

This section describes the data structures and functions that the XI OS uses to
support list devices.

Concurrent uses two data structures to manage list devices: List Control Blocks
(LCBs) and the LCB Table. One LCB, similar to the CCB, must be defined in the XIOS
for each list output device supported. The number of LCBs must equal the NLCB
variable in the XIOS Header. The LCB Table, shown in Figure 4-4, begins with LCB
zero, and ends with LCB NLCB-1, according to their logical list device names.

LCB 0

LCB NLCB 1

Figure 4-4. The LCa Table

List
Device 0

Last

List
Device

In addition there is an LCBLlST pointer in the XIOS header to an array of pointers to
the LCBs. This is to be used for all access to any LCB.

Because the operating system uses the LCBs to manage processes that make list
device calls, each LCB Table entry must be properly initialized, either by the XIOS
INIT routine or at XIOS assembly time. Table 4-3 lists the initialization values for
the LCB fields ..

4-17

List Device Functions Concurent DOS 86 System Guide

DOH OWNER RESERVED

OSH RE- M-

SERVED SOURCE

Field

OWNER

MSOURCE

Figure 4-5. List Control Block

Table 4-3. List Control Block Fields

Explanation

Address of the PD for the process that currently owns the list Device. If no
process currently owns the list device. then OWNER=O. If OWNER=OFFFFH.
this list device is mimicking a console device that is in CTRL-P mode.

If OWNER=OFFFFH. MSOURCE contains the number of the console device that
this list device is mimicking; otherwise MSOURCE = OFFH.

Note: MSOURCE must be initialized to OFFH. All other LCB fields must be
initialized to O.

Return list status

Entry Parameters:
Register AL: 03H

DL: List device number

Returned Values:
Register AL: OFFH if device ready

o if device not ready
AH: 90H if device ready

10H if device not ready
BL: Same as AL
BH: Same as AH

ES. OS. SS. SP:preserved

IO_LSTST returns the output status of the specified list device.

Output character to specified list device

Entry Parameters:
Reg'ister AL: 04H

CL: Character
DL: List device number

4-18

Concurent DOS 86 System Guide List Device Functions

IO_LSTOUT sends a character to the specified list device. List device numbers are
zero-based. It is the responsibility of the XIOS device driver to zero the parity bit
for list devices that require it.

IO_DEVIO (27H) is used to output a block of characters to a list device; see Section
4.6.

4.5 AUXILIARY DEVICE FUNCTIONS

This section describes the data structures and functions that the XIOS uses to
support auxiliary devices.

There are two data structures that the XIOS uses to manage auxiliary device
access, Auxiliary Control Blocks (ACBs) and the ACB Table. The XI OS must define
an ACB for each auxiliary device it supports. The number of ACBs must equal the
number specified in the NACB field of the XIOS Header (offset COFH). The ACB field
of the XIOS Header (offset C3AH) contains the offset (relative to SYSDAT) of the
first ACB. The ACB Table begins with ACB (0) and ends with ACB (NACB-1). As
shown in Figure 4-6, the ACB Table must immediately follow the LCB Table in your
XIOS.

Last

Lca (NLCa 1) List Device

ACB (0) 1st Aux Device

I ACB (NACB 1)

Last
Aux Device

Figure 4-6. Auxiliary Control Block Table

In addition there is a ACBLlST pointer in the XIOS header to an array of pointers to
the ACBs. This is to be used for all access to any LCB.

Figure 4-7 shows the ACB format.

OOH

OSH

Figure 4-7. Auxiliary Control Block

The OWNER field of the ACB contains the address of the PD of the process that
currently owns the auxiliary device. If no process currently owns the device,
OWNER equals zero.

4-19

Auxiliary Device Functions Concurent DOS 86 System Guide

The XIOS auxiliary device functions described below are accessible through
device-related BDOS calls. Processes use these functions by placing a zero-based
number in register DL to refer both to .the physical device that is to be read or
written to and to other parameters as appropriate.

Return a character from an auxiliary device

Entry Parameters:
Register AL: OSH

DL: Aux device number

Returned Values:
Register AL: Character
ES, OS, SS, SP:preserved

IO.-AUXIN returns a character from the auxiliary device whose number is specified
in register DL. Auxiliary device numbers are zero-based.

IO_DEVIO (27H) is used to return a block of characters from an auxiliary device; see
Section 4.6.

Output a character to an auxiliary device

Entry Parameters:
Register AL: 06H

CL: Character
DL: Aux device number

IO_AUXOUT sends a character to the auxiliary device whose number is specified in
DL. Auxiliary device numbers are zero-based. The XI OS device driver is responsible
for clearing the parity bit for the auxiliary devices that so require.

IO_DEVIO (27H) is used to output a block of characters from an auxiliary device; see
Section 4.6.

Return auxiliary device input status

Entry Parameters:
Register AL: 2SH (37)

DL: Aux device number

Returned Values:
Register AL: FF if character ready

00 if no input character available

4-20

Concurent DOS 86 System Guide Auxiliary Device Functions

10 _AUXSTOUT

Return auxiliary device output status

Entry Parameters:
Register AL: 26H (38)

DL: Aux device number

Returned Values:
Register AL: FF if device ready

00 if device not ready

Return address of machine-specific data

Entry Parameters:
Register AL: OEH (14)

CL: Data value:

Returned Values:
Register AX:

a Equipment configuration
1 Setup data
2 VC switch bits
3 Auxiliary protocol
4 Color monitor scroll mode
5 Offset of auxiliary port 0 interrupt routine
6 Offset of auxiliary port 1 interrupt routine
7 Offset of internal vector table [code segment]

Datalinterrupt routine offset
00 Data value out of range

10_POINTER is called by the auxiliary 110 functions, 10_CONIN (01), 10_SWITCH (07),
and the XIOS-specific disk utilities distributed with Concurrent. This function
returns the offset, relative to the SYSDAT segment, of data that describe a
machine's equipment configuration, setup information, Virtual Console switch bits,
auxiliary port protocol, monitor scroll mode, and the auxiliary port interrupt
routines.

The format of the data blocks whose offsets are returned by 10_POINTER are
shown below.

4-21

Auxiliary Device Functions Concurent DOS 86 System Guide

Equipment configuration data block:

Offset
OOH
02H
04H
06H
08H
OAH
OCH
OEH
10H
12H

Data
Number of floppy drives (1-4)
Number of hard drives (0-2)
Number of parallel printers (0-3)
Number of serial ports (0-2)
Number of monochrome monitors (0-1)
Number of color monitors (0-1)
Number of 8087 processors (0-1)
Main memory in kilobytes (256-640)
Memory disk in kilobytes (0-384)
Number of floppy designators (2-4)

Setup data block:

Offset
OOH
02H
04H
06H
08H
OAH
OCH
OEH
10H

Data
Offset of disk interrupt routine
Segment of disk interrupt routine
Table of function key assignments for Virtual Console 0
Table of function key assignments for Virtual Console 1
Table of function key assignments for Virtual Console 2
Table of function key assignments for Virtual Console 3
Last segment of main memory (4000H - AOOOH)
Beginning segment of high memory (COOO - EOOOH)
Last segment of high memory (DOOOH - FOOOH)

Auxiliary 1/0 protocol byte:

Bit Assignment
00 Ready, no protocol
01 DTR/DSR
02 RTS/CTS
04 XON/XOFF
80 Receive inhibited

Scroll mode byte:

4-22

Value
00
01
02

Meaning
Disable video around buffer update
Update only around vertical and horizontal retrace
No check for retrace occuring

Concurent DOS 86 System Guide Device Block ReadlWrite Function

4.6 DEVICE BLOCK READ/WRITE FUNCTION

Device Block ReadlWrite

Entry Parameters:
Register AL: 27H (39)

DH: Device type:
o Console output
1 Printer output
2 Aux input
3 Aux output

DL: Device number
CX: Number of characters

Return Values:
Register AX: Number of characters transferred

(if Aux device) or
-1 on device type range error

ES, OS, SS, SP:preserved

IO_DEVIO reads or writes a block of characters to the device whose type and
number is specified in registers DH and DL, respectively.

Before calling IO_DEVIO, a process must PUSH registers OX, CX, and the segment
and offset of the character buffer on the stack. See Figure 4-8. The calling process
must also clear the stack on return from IO_DEVIO.

SP + 6 Buf f er Off set

SP + B Buf fer Segment

SP + 10 ex

SP + 12 DX

Figure 4-8. Stack Contents for IO_DEVIO Call

If an auxiliary device is specified, IO_DEVIO returns a count of the characters
transferred. IO_DEVIO returns -1 in AX if the device type value specified in DH is
greater than 4.

IO_DEVIO updates two fields of the parameter block on return: Buffer Offset (SP +
6) is updated to address the last character read or written, plus one; the CX field
(SP + 10) is updated to contain the number of characters remaining in the block.

4-23

10]011 Function Concurent DOS 86 System Guide

4.7 IO_POLL FUNCTION

Poll device and return status

Entry Parameters:
Register AL: ODH (13)

DL: Poll device number

Returned Values:
Register AL:

BL:

OFFH if ready
00 if not ready
Same as AL

ES, OS, SS, SP:preserved

10_POLL interrogates the status of the device specified by the poll device number
and returns its current status. This function is called by the Dispatcher.

A process polls a device only in response to Concurrent's DEV_POLL system call.
The poll device number used as an argument for DEV_POLL is the same number
that IO_POLL receives as a parameter. The mapping of poll device numbers to
actual physical devices is maintained by the XIOS. Each polling routine must have a
unique poll device number. For instance, if the console is polled, it must have
different poll device numbers for console input and console output.

The sample XIOSs show IO_POLL taking the poll device number as an index to a
table of poll functions. Once the address of the poll routine is determined, it is
called and the return values are used directly for the return of the IO_POLL
function.

4-24

Section 5

DISK DEVICES

Under Concurrent, a disk drive is any I/O device that has a directory and is capable
of reading and writing data in logical sectors. The XIOS can therefore treat a wide
variety of peripherals as disk drives. The logical structure of a Concurrent disk
drive is described in Section 11, "OEM Utilities." Concurrent's native media is fully
compatible with PC-DOS, and MS-DOS (DOS media). The extensions used by
Concurrent for password support is transparent to PC-DOS and MS-DOS.
Concurrent supports CP/M media at the XIOS level only. This allows a utility
supplied with Concurrent to access a CP/M floppy disk and perform all the basic
functions on that disk (COPY, REN, ERA etc.).

This section describes the Concurrent XIOS disk functions, their input and output
parameters, associated data structures, and how to calculate values for the XIOS
disk tables. Also described in this section is Concurrent's support for DOS device
drivers.

5.1 DISK I/O FUNCTIONS

Concurrent performs disk I/O with a single XIOS call to the 10_READ, 10_WRITE or
10_WRITE_VFY functions. These functions reference disk parameters contained in
the Input/Output Parameter Block (lOPB) to determine which disk drive to access,
the number of physical sectors to transfer, the track and sector to read or write
and the offset and segment of the DMA involved in the I/O operation. The BOOS
initializes and places the 10PB on the stack before each call. The XI OS may modify
the 10PB during the call as it is discarded by the BOOS.

If a physical error occurs during a disk I/O function, the call should perform at least
10 recovery attempts before returning an error condition to the BOOS. Table 5-1
lists the extended error codes returned by disk I/O functions. Register al for
10_SELDSK, Register ah for 10_READ, 10_WRITE and 10_WRITE_VERIFY.

Table 5-1 Disk I/O Extended Error Codes

Code Meaning Code Meaning

80H Attachment failed to respond 7H Drive setup error

40H Seek operation failed 5H Cannot reset disk

20H Controller has failed 4H Sector not found

10H Bad CRC 3H Write protect disk
error

BH Bad track flag set 2H Address mark not
found

9H DMA address error lH Bad command

8H DMA overrun

5-1

Disk liD Functions Concurent DOS 86 System Guide

Select the specified disk drive

Entry Parameters:
Register AL: 09H (09)

CL: Disk Drive number
OL(Bit 0): o if first select

Returned Values:
Register AX: Offset of OPH if no error

AH: 0 if Error and
AL: Error code
BX: Same as AX

ES, OS, SS, SP: preserved

If it is the first select then 10_SELOSK checks if the specified disk drive is valid.

If the drive is valid this function returns the offset of the corresponding OPH. If
more than one media type is possible on that drive, then 10_SELOSK should read a
sector to determine the disk type and set the OPB field in the OPH for this media
type. The OPB may be dynamically calculated at this time, but it must not require
larger memory table space (CSV, OOSC) than was originally allowed. If the media is
CPIM (function called from utility rather than from the BOOS) then use a standard
DPB, otherwise it will be an extended OPB. If a physical error occurs or the media is
unknown, the return AH will be zero and AL is set to the error code (if appropriate).

If it is not the first select then the function returns the current DPH.

5-2

Concurent DOS 86 System Guide Disk I/O Functions

Listing 5-1. IO_SELDSK XI OS Function

;***

; • DISK 10 CODE AREA
;***

; Function 7: Select Disk

entry: CL= disk to be selected
DL= OOh for first sel ect

= 01h if previously selected
exit: AH= 0 if illegal disk, AL = error code.

= offset of DPH from XIOS Data Segment

xor bx, bx Get ready for er ror
cmp cl , 15

ja selJet
mov bl ,cl

shl bx, 1

mov bX,dph_tbl [bx]

or dl ,dl

jnz selJet
mov ch,O

mov si ,cx

shl si , 1

call word ptr sel_tbl [si]

sel ret:

mov ax, bx

ret

Is it a val id drive

I f not just ex it

Index into the Dph's
get DPH address from table

in XIOS Header
First time select?

No, exit
Yes, set up DPH

Read sector(s) defined by the 10PB

Entry Parameters: Initialized IOPB (on stack)
Register AL: OAH (10)

Returned Values:
AL: 0 Success

1 Physical Error
OFF Media density changed

AH: Extended error code (see Table 5-1)
BL: Same as AL
BH: Same as AH

ES, OS, SS, SP: preserved

5-3

Disk I/O Functions Concurent DOS 86 System Guide

10_READ transfers data from disk to memory according to the parameters specified
in the Input/Output Parameter Block (lOPB). The 10PB, which is located on the stack,
indicates the drive, multisector count, track, sector, and DMA offset and segment.
See Section 5.2, "IOPB Data Structure."

If the multisector count is equal to 1, the function should attempt a single physical
sector read based upon the parameters in the 10PB. If a physical error occurs, the
read function should return 1 in AL and BL and the appropriate extended error code
in AH and BH. The XIOS should perform several retry attempts (10 are
recommended) before returning an error condition.

If the hardware detects a media density change (for disk drivers with auto density
select) 10_READ should immediately return OFFH. To reinitialize the drive's
parameter tables and avoid writing erroneous data to disk, the BDOS then performs
an IO_SELDSK call for that drive.

If the multisector count is greater than 1, 10_READ must read the specified number
of physical sectors before returning to the BDOS. 10_READ should read as many
physical sectors as the specified drive's disk controller can handle in one
operation.

If the disk controller hardware can handle only single physical sector operations,
the function must read the number of single sectors defined by the multisector
count. In any case, when more than one call is made to the controller, the function
must increment the sector number and add the number of bytes in each physical
sector to the DMA address for each successive read. If the sector number exceeds
the last physical sector of the current track, the function must increment the track
number and reset the sector number to zero. This operation is illustrated in the
portion of a hard disk driver routine contained in Listing 5-2.

The BOOS will issue an 10_READ with a multisector count of 0 after a door open
interrupt has been signalled on this drive (removable media only). The XI OS should
return the following values in AL

5-4

OOL Disk may have changed
01 L Disk has not changed
FFL Disk has changed

Concurent DOS 86 System Guide Disk I/O Functions

Listing 5-2. Multisector Operations

;***
;* Common code for hard disk read and write
;***

hdiol :

push es
cmp mcnt, 0
j e hd_err

call iohost
moval,retcode
or al ,al
j nz hd_err
dec mcnt
jz return_rw

mov ax, sector
inc ax

;save UDA
;if multisector count ~ 0
;return error

; read/wr it e phys i ca 1 sector
;get return code
; if not 0
;return error
;decrement mul t isector count
; if mcnt ~ 0 ret urn

; nex t sect or
cmp ax, maxsec! j b same_t rak ; is sector < max

inc track
xor aX,ax

mov sector,ax
add dmaoff, secsi z

jmps hdiol

mov al, 1

pop es
ret

no - next track
; initial ize sector to 0

; save sector #

; increment dma off set by
; sector size
; read/wr i te next sector

;return with error

;restore UDA
; ret urn w/ error code in AL

;***
;* IOHOST performs the physical reads and writes to
; * the phys i ca 1 disk.
;***

iohost:

ret

5-5

Disk I/O Functions Concurent DOS 86 System Guide

In Listing 5-2, the routine returns with an error if the multisector count is zero.
Otherwise, it immediately calls the read/write routine for the present sector, puts
the return code passed from it into AL, and, if there is no error, decrements the
multisector count. When the multisector count equals zero, the read or write is
finished and the routine returns. If the multisector count is not zero, the sector to
read or write is incremented. If the sector number exceeds the number of sectors
on a track (MAXSEC) the track number is incremented and the sector number is set
to zero. The routine then performs the number of reads or writes remaining to
equal the multisector count. Each time a sector is read or written, the size of a
physical sector is added to the DMA offset passed to the disk controller hardware.

Write (writelverify) sector(s) defined by the lOPS

Entry Parameters: Initialized lOPS (on stack)
Register AL: OSH (11)

CL: 0 Deferred write
1 Nondeferred write
2 Deferred write, first sector unallocated block

Returned Values:
Register AL: 0 Success

1 Physical error
2 Read/only disk

OFF Media density changed
AH: Extended error code (Table 5-1)
SL: Same as AL
SH: Same as AH

ES, OS, SS, SP: preserved

la_WRITE transfers data from memory to disk according to the parameters
specified in the lOPS. This function works in much the same way as the read
function, with the addition of a read/only disk return code and an entry parameter
that specifies whether a deferred write is to be performed.

la_WRITE should return the read/only code when the specified disk controller
detects a write-protected disk.

If your XIOS performs disk cacheing, check CL for the type of write operation to be
performed by la_WRITE. There is no need to check the contents of CL if your XIOS
does not perform disk cacheing.

5-6

Concurent DOS 86 System Guide

Write pending 110 system buffers to disk

Entry Parameters:
Register AL: OCH (12)

Returned Values:
Register AL: 0 Success

1 Physical Error
2 Read/only disk

AH: Extended error code (Table 5-1)
BL: Same as AL
BH: Same as AH

ES, OS, SS, SP: preserved

Disk I/O Functions

10JLUSH is called when a process terminates, a file is closed, or a disk drive is
reset to indicate that all disk-cacheing buffers should be written to disk. The XIOS
should perform 10 recovery attempts before returning the error codes for this
function.

Format a CP/M disk

Entry Parameters:
Register AL: OFH (15)

Returned Values:
Register AL:

AH:
BL:
BH:

o Success
1 Physical error
2 Read/only disk
Extended error code (Table 5-1)
Same as AL
Same as AH

ES, OS, SS, SP: preserved

10JORMAT formats the current track of the current drive with eight sectors per
track using the standard gap and CP/M fill character (E5H). This function adds the
gap and fill values to the I/O Parameter Block on the stack (offset 16). See Section
5.2.

In the example XIOS, 10JORMAT shares the FORMAT_FLOPPY routine with
10_NEW_FORMAT (lDH). The FORMAT_FLOPPY routine is shown in Listing 5-3 (see
the 10_NEW_FORMAT function below). This function is not called by the kernel and
is used only by system-specific utilities.

5-7

Disk 1/0 Functions Concurent DOS 86 System Guide

Variable disk format

Entry Parameters: Initialized 10PB (on stack)
Register AL: 1DH (29)

Returned Values:
Register AL: 0 Success

1 Physical error
2 Readlonly disk

AH: Extended error code (Table 5-1)
BL: Same as AL
BH: Same as AH

ES, DS, SS, SP: preserved

10_NEWfORMAT writes either the CPIM or DOS format on the current track of the
disk in the current drive as specified by the 110 Parameter Block.

The referenced 10PB is extended to include a word at offset 16 that contains the
gap value in the low order byte and the fill character in the high order byte. See
Section 5.2 for a description of the 10PB. This function is not called by the kernel
and is used only by system-specific utilities.

10_NEW_FORMAT shares the FORMAT_FLOPPY routine shown in Listing 5-3 with
10_FORMAT (OFH).

5-8

Concurent DOS 86 System Guide Disk 1/0 Functions

Listing 5-3. FORMAT_FLOPPY Routine

Floppy disk track format entry:

format_floppy:

mov dma_mode_storage,DMA_MODE_WRITE_FDC
mov fdc_command,FDC_CMND_FORMAT

call comp_dma_param
mov aX,TRACK
mov cur_trk,ax
mov bl,DRIVE
mov cur_disk$,bl

sub bh,bh
cmp drive_tYPe$[bxl,SLOW_DRIVE
jz format _flop_go

mov ax, gap_f i 11
cmp al, F _GAP _96
jz format _flop_hyper

mov data_rate$[bxl,RATE_HYPER_48
jmps format _flop_go

format_flop_hyper:
mov data_rate$[bxl,RATE_HYPER_96

mov
call
call
call
cmp
jz

jmp

med i a_ret ry, 1

set_drive_type
disk_init
check_disk_Op
al, 'R'

format_floppy

5.2 I/O PARAMETER BLOCK

; set up dma poi nters
; current track (on stack)

; current drive (on stack)
; save for seek

; Skip for older drives

; if we're using a 96 tpi gap
; then set data rate fast

; do not change data rate
; to allow for hyper drive
; this does it
; did it work?
if ret ry requested
then loop up

handl es extended errors

This section presents the tables and data structures within the XIOS that define the
characteristics of the Concurrent disk system. You must code the XIOS DPHs and
DPBs by hand, using values calculated from the information presented below.

The disk Input/Output Parameter Block (lOPB) contains the parameters required for
the disk 1/0 functions. These parameters are located on the stack, and appear at
the example XIOS 10_READ and 10_WRITE function entry points as described below.
The 10PB example in this section assumes that the ENTRY routine calls the read or
write routines through only one level of indirection; the XIOS has therefore placed
only one word on the stack. RET _ADR is reserved for this local return address to
the XIOS ENTRY routine.

5-9

Disk I/O Functions Concurent DOS 86 System Guide

Since the lOPS parameters are removed by the SDOS when the function call
returns, the disk drivers may index or modify them directly on the stack. The lOPS
fields are usually defined relative to the SP and SS registers. One of the first
instructions of the 10_READ and 10_WRITE routines sets the SP register equal to
the SP register for indexing into the lOPS.

Listing 5-4 contains a definition of the lOPS and shows how it is used in 10_WRITE.
See Table 5-2 for descriptions of the lOPS fields.

Listing 5-4. IOPB Definition

;***
I/O PARAMETER BLOCK FORMAT

;***

; Equates for paramet er pass i ng for read and wr it e f rom BOOS.

;At the disk read and write function entries, all disk I/O ;parameters are on the
stack. The stack at these entries appears as follows:

al ah

;[+16 GAP FILL

+14 ORV MCNT Dr i ve no. and mu 1 t i sector count

+12 TRACK Track number

+10 SECTOR Physical sector number

+8 OMA_SEG OMA segment

+6 OMA_OFF OMA offset

+4 RET _SEG BOOS ret urn segment

+2 RET_OFF BOOS ret urn offset

SP+O RET_AOR Ret urn address to ENTRY rout i ne

;These parameters may be indexed and modified directly on the stack by the read and
write routines. They are removed by the BOOS when the function completes.

DRIVE equ byte pt r 14[bp]
MCNT equ byte pt r 15[bp]
TRACK equ word pt r 12[bp]
SECTOR equ word ptr 10[bp]
OMA_SEG equ word pt r 8 [bp]
OMA_OFF equ word ptr 6[bp]

GPJL equ word ptr 16[bp] ; gap & fill used by format

;***

5-10

Concurent DOS 86 System Guide Disk I/O Functions

Field

DRV

MCNT

TRACK

SECTOR

Table 5-2. lOPS Data Fields

Description

This field specifies the logical disk drive for the function. Drive numbers
range from 0 to 15 for drives A through p, respectively.

This field contains the multisector count. To transfer logically consecutive
disk sectors to or from contiguous memory locations, the BDOS issues an
10_READ or 10_WRITE function call with the multisector count greater than
one. The maximum value of the multisector count is 255. This is further
limited by the maximum transfer size of 64 kbytes.

This field defines the logical track for the specified drive to seek. The BDOS
defines the track number relative to O. If your disk hardware defines physical
track numbers relative to 1, increment the track number befor passing it to
the disk controller.

This field defines the logical sector for a read or write operation on the
specified drive. The sector size is determined by the PSH and PHM
parameters in the Disk Parameter Block. See Section 5.5.

The BDOS defines the sector number relative to O. If your disk hardware
defines sector numbers relative to 1, increment the sector number before
passing it to the disk controller. If the drive uses a skewed-sector format,
your XIOS must translate the sector number according to the translation
table specified in the Disk Parameter Header. See Section 5.4.

The DMA segment and offset define the address of the data buffer. The DMA
address may reside anywhere within the address space of the
microprocessor. If the disk controller for the specified drive can only transfer
data to and from a restricted address area, 10_READ and 10_WRITE must
block move the data between the DMA address and this restricted area
before a write or following a read operation.

The BDOS return segment and offset define the RETURN FAR address from
the XIOS to the BDOS.

The local return address returns to the ENTRY routine in the example XIOS.

5-11

Multisector Operations on Skewed Disks Concurent DOS 86 System Guide

5.3 MULTISECTOR OPERATIONS ON SKEWED DISKS

This section describes how to optimize performance on skewed disks with
multisector 1/0 requests. Sector skewing is a method of logically numbering the
sectors on a track so that they are not sequential. The example 8-inch disk format
skews the sectors by a factor of 6. The S.2S-inch disk format has no skew.

For a disk format that uses a skew table, optimize multi sector transfer times by
first translating each logical sector number into its physical sector number. Next,
create a table of each sector's DMA address. The physical sector provides the
index to the sector's DMA address (see Figure 5-1). In this way, the DMA address
table sorts the requested sectors according to their physical locations on the track
allowing them to be transferred in as few disk rotations as possible. The data from
each sector must be separately transferred to or from its proper DMA address.

Sector Associated Physical
Indexes DMA Address

00

01

N

DMA_ADDR_O

DMA_ADDR_1

Figure 5-1. DMA Address Table for Multisector Operations

When the sector number exceeds the last physical sector of the current track
during a multisector data transfer, increment the track number and reset the sector
number to O. You can then complete the operation for the balance of sectors
specified in the 10_READ or 10_WRITE function call. See Listing 5-2 in the
description of 10_READ.

If an error occurs during a multisector transfer, the XIOS should return the error
immediately to terminate the read or write BDOS function call.

Listing 5-5 contains a coding example for multisector unskewing. The routine
begins by calling 10_SELDSK for the DPH address. If the address is invalid (equal to
zero), the routine returns with an error.

Next, the routine gets the translation table address, the number of sectors per
track, and the physical shift factor from the Disk Parameter Header (DPH) and Disk
Parameter Block (DPB) and stores them in local variables. This information is used
to compute the physical record size and initialize the DMA address table with
OFFFFH word values. Notice that the DMA table is one word greater than the
number of sectors per track, in case the sectors index is relative to 1 for that
particular drive. If the multisector count is zero, the routine returns an error,
Otherwise, the sector number is compared to the number of sectors per track to
determine if the track number should be incremented and the sector number set to
zero. If this is the case, the sectors for the current track lire transferred, and the
DM'A address table is reinitialized before the next tracks are read or written.

5-12

Concurent DOS 86 System Guide Multisector Operations on Skewed Disks

The current sector number is moved into AX and same_trk checks the offset of
translation table's address. If the offset value is zero, no translation table exists and
translation is not performed. no_trans translates the sector number for use as an
index into the DMA address table. The current DMA address, incremented by the
physical sector size for multisector operations, is stored in the table for use by the
rw_sects routine. Local values, beginning with i, are initialized for the various
parameters needed by the disk hardware and the disk driver routine is called.

Listing 5-5. Multisector Unskewing

;***
;. DISK I/O EQUATES
;***

xlt
dpb
spt
psh

equ
equ
equ
equ

o
8
o
15

;translation table offset in DPH
;disk parameter block offset in DPH
; sectors per t rack offset in DPB
;physical shift factor offset in DPB

;***
;. DISK I/O CODE AREA
;***

input:
out put:

; unskews and reads or wr i t es mu 1 t i sector s
SI = read or write routine address
AX = ret urn code

mov cl ,drive
mov dl, 1
call seldsk
or bx, bx! j nz dsk_ok

mov al, 1
ret

mov ax, xl t [bx]
mov xltbl,ax
mov bX,dpb[bx]
mov aX,spt [bx]
mov maxsec, ax
mov cl ,psh[bx]
mov ax, 128
shl aX,cl
mov secs i z , ax
call initdmatbl
cmp mcnt ,0
j e ret_error

; get DPH address
;check 1f val id

; ret urn er ror if not

;save trans table address

; save max i mum sector It rack

; comput e phys record size
; and save it
; initial ize dma offset table

5-13

Multisector Operations on Skewed Disks Concurent DOS 86 System Guide

Listing 5-5. (Cont'd)

5-14

movax,sector
cmp ax, maxsec ! jb same_trk

call rw_sects
ca 11 i n1tdmatb1
1 nc track
xor aX,ax
mov sector, ax

mov bX,x1tb1
or bX,bx! jz no_trans

x1at a1

xor bh,bh
mov b1 ,al
sh1 bX,l
movax,dmaoff
mov dmatb1 [bxl,ax
add aX,secslz
mov dmaoff, ax
inc sector
dec mcnt
jnz rw_l

mova1,l
xor bX,bx

mov dl,bx
sh1 di,l
cmp word ptr dmatb1 [dll,Offffh
je no_rw

push bx! push s 1
movax,track
mov it rack, ax
mov 1 sector, b 1
mov aX,dmatb1 [di 1
mov idmaoff ,ax
mov ax, dmaseg
mov 1 dmaseg , ax
call si
pop si ! pop bx
oral,a1! jnzerr_ret

;sector < max sector/track?

; no, r/w sectors on track
;re1nit dma offset table
; next track

;1nitla11zesector toO

;get trans table address
; if xl t <> 0
; trans 1 ate sector number

; sector # used as the 1 ndex
; into the dma offset tab1 e

;save dma offset in table
; increment dma offset by the
; phys 1 ca' sector size
;next sector
; decrement mu' t i se.ctor count
; if mcnt <> 0, store next
; sector dma

;r/w sectors in dma table

; preset error code
; 1 nit 1a11 ze sector 1ndex

;compute index Into DMA table

;nop if inva11d entry
; save 1 ndex and rout 1 ne addr
;get track # from rOPB

;sector # 1s Index value
;get dma offset from table

;get dma segment from IOPS

;call read/write routine
; restore rout 1 ne addr, 1 ndex
; if error occurred return

Concurent DOS 86 System Guide Multisector Operations on Skewed Disks

err_ret:

inc bx
cmp bx, max sec
j be rw_s 1

ret

Listing 5-5. (Cont'd)

;next sector index
; if not end of tab 1 e
; go read/wr i te next sector

;return with ercode in AL

i ni tdmatbl : ; initial ize DMA offset table

mov di ,offset dmatbl
mov cx, maxsec
inc cx
mov ax, Offffh
push es
push ds! pop es
rep stosw
pop es
ret

; 1 engt h = maxsec+ 1 sect no.
; may be relative to 0 or 1

;save UDA

;initialize table toOffffh
; restore UDA

;***
; * DISK I/O DATA AREA
;***

xltbl dw 0 ;translation table address
maxsec dw 0 ; max sectors per track
secsiz dw 0 ; sector size
dmatbl rw 50 ; dma address tab 1 e

5.4 DISK PARAMETER HEADER

It is recommended that disk structures (DPH, DPB, CSV and DDSC) are initialized
and allocated at run time rather than at generation time. This permits BOOS more
economic use of memory.

Each disk in the system must have a Disk Parameter Header (DPH). The DPH
contains information about the drive and provides a scratch pad for certain kernel
data. Figure 5.2 shows the DPH format; Table 5-3 describes the DPH fields.

OOH XLT RESERVED MF RESERVED

08H DPB esv RESERVED RESERVED

10H RESERVED DDse

Figure 5-2. Disk Parameter Header

5-15

Disk Parameter Header Concurent DOS 86 System Guide

Field

RESERVED

XLT

MF

OPB

CSV

OOSC

5-16

Table 5-3. Disk Parameter Header Fields

Description

All reserved fields must be initielized to Os in the XIOS source (for static
OPHs) or during OPH creation (for dynamic OPHs).

Translation Table Address: Set with the address of the vector for
logical-to-physical sector translation. Set to OOOOH if the physical and logical
sector numbers are the same (no sector translation). Disk drives with
identical sactor skew factors can share the same translation tables. This
address is not referenced by the BOOS. It is intended for use only by XI OS
routines.

The translation table usually contains one byte per physical sector. If the disk
has more than 256 sectors per track, the sector translation must consist of
two bytes per physical sector. Use the track address to compute the head
number for disks with multiple heads.

Media Flag: This field indicates whether the drive's door is closed (OOH) or
has been opened since the last access (OFFH). The Media Flag is set to zero
by the BOOS when the drive is logged in. The XI OS must set this flag to OFFH
if it detects that the drive door has been opened. It must also set the global
door open flag in the XIOS Header at the same time. If the flag is set to OFFH,
the BOOS checks for a media change before performing the next file
operation on that drive. Note that the BOOS checks this flag when first
making a system call and never during an operation. If the BOOS determines
that the drive contains a new disk, it logs out the drive and resets the MF
field to OOH.

Note: The use of door open interrupts is mandatory on Concurrent. If your
disk hardware does not produce interrupts on disk changes then use a
simple-time out of about 2 or 3 seconds following any disk access before
setting the door open flag.

This can enhance a removable disk's performance to that of a permanent
drive.

Disk Parameter Block: Set to the address of the drive's Disk Parameter Block.
Section 5.5 describes the Disk Parameter Block. See Section 5.B and the
10_SELOSK function in Section 5.1 for related information.

Checksum Vector: Set with the segment address of a scratch area used to
detect a medie change. Concurrent checksums the root directory and FAT to
detect a disk change. The size of this table has to be at least (OPB_CKS +
(OPB_NFATRECS • 2)) bytes. This area is not required for permanent media
where (OPB_CKS = BOOOh). Place FFFFH in here if it is required for GENSYS to
pre-allocate this area. NOTE: in this case the OPB field must point to the
largest possible media requirement.

The address of a segment that is used internally by the BOOS to keep track
of disk space allocation. Its size has to be at least (3 + (OPB_NFATRECS/8)))
paragraphs for 16- bit FAT media and (3 + (OPB_NCLSTRS » (OPB_PSH+6)))
paragraphs for 12-bit FAT media. This entry must be zero filled if allocated
dynamically by the XIOS. Place FFFFh in here if it is required for GENSYS to
preallocate this area. NOTE: in this case the OPB field must point to the
largest possible media requirement.

Concurent DOS 86 System Guide Disk Parameter Block

5.5 DISK PARAMETER BLOCK

Disk Parameter Blocks (DPBs) define the characteristics of disk drives. A Disk
Parameter Header (DPH) pOints to a DPB to give the BOOS information on how to
access a particular disk drive. Drives with the same characteristics can have the
same DPB.

Note: When a drive supports both CP/M and DOS media, the IO_SELDSK routine
must determine the type of media currently in the drive and return a OPH with a
pointer to a DPB with the correct values. For CP/M media, use the standard OPB
shown in Figure 5-3. For DOS media, use the extended DPB shown in Figure 5-4.
Standard OPB fields are described in Table 5-4; extended DPB fields in Table 5-5.
Use the worksheet in Section 5.5.1 to calculate a value for each OPB field.

OOH

OSH

10H

Field

SPT

BSH

BLM

EXM

DSM

DRM

DRM

PRM

SPT BSH BlM EXM DSM DRM

AlO Al1 CKS OFF PSH

Figure 5-3. Standard Disk Parameter Block Format

Table 5-4. Standard Disk Parameter Block Fields

Description

Sectors Per Track: Set to the total number of physical sectors per track.

Block Shift Factor: Set to the value appropriate to your allocation block size.
The BOOS used BSH to calculate a block number from a given logical record
number by shifting the record number BSH bits to the right.

Block Mask Factor: Set to the value appropriate to your allocation block size.
The BOOS uses BLM to calculate a logical record offset within a given block
by masking the logical record number with BLM.

Extent Mask: Set to the the maximum number of 16K logical extents
contained in a single directory entry. This value is a function of the allocation
block size and the number of blocks.

Disk Storage Maximum: Set to the total number of allocation blocks for the
drive, minus 1. This value times the allocation block size equals the total
storage capacity of the drive. DSM must be less than or equal to 7FFFH. If the
disk uses 1024-byte blocks, DSM must be less than or equal to 255.

Directory Maximum: Set to the total number of directory entries that can be
kept in the allocation blocks reserved for the directory, minus 1. Each
directory entry is 32 bytes long. The maximum number of blocks that can be
allocated to the directory is 16, which determines the maximum number of
directory entries allowed on the disk drive.

5-17

Disk Parameter Block Concurent DOS 86 System Guide

Field

ALO, ALl

CKS

OFF

PSH

PRM

Table 5-4. (Cont'd)

Description

Directory Allocation Vector: Set a bit, starting with the high order bit of ALO
and working successively to the low order bit of AL 1, for each directory
allocation block. This value is used to initialize the first 16 bits of the
allocation vector built when a disk drive is logged in.

Checksum Vector Size: Set to the length, in bytes, of the directory checksum
vector (CSV) addressed in the Disk Parameter Header. As open door detection
is now mandatory the value should be 8000H plus one byte for each 4
directory entries (or 128 bytes) on the drive.

A checksum vector is required for removable media only. Set CKS to 8000H
for permanent drives. This indicates to the BOOS that no checksumming is
necessary for this drive.

Track Offset: Set to the number of reserved tracks at the beginning of the
disk. OFF is equal to the zero-relative track number on which the directory
starts. It is through this field that more than one logical disk drive can be
mapped onto a single physical drive. Each logical drive has a different Track
Offset and all drives can use the same physical disk drivers.

Physical Record Shift factor: Set to the value appropriate to the drive's
physical record size. The BOOS uses PSH to calculate the physical record
number from the logical record number. The logical record number is shifted
PSH bits to the right to calculate the physical record. Note that in this
context, physical record and physical sector are equivalent terms.

Physical Record Mask: Set to the value appropriate to the drive's physical
record size. The BOOS uses PRM to calculate the logical record offset within
a physical record by masking the logical record number with the PRM value.

Listing 5-6 contains an assembly language definition of a OPB. Note that the
parameter values in this listing are for a doubled-sided diskette.

5-18

Concurent DOS 86 System Guide Disk Parameter Block

Listing 5-6. DPB Definition

;***
; * DPB Def; n it ion
;***

perm equ 8000h
spt equ word ptr 0
bsh equ byte pt r 2
blm equ byte pt r 3
exm equ byte ptr 4
dsm equ word ptr 5
drm equ word ptr 7
alO equ byte pt r 9
all equ byte pt r 10
cks equ word pt r 11
off equ word pt r 13
psh equ byte ptr 15
prm equ byte pt r 16

; Double-sided floppy parameter block:

dpbd$

OOH

08H

10H

18H

dw sectors per track

db 4 block shift

db 15 block mask

db extnt mask

dw 157 disk size in 2k blocks
1 ess offset track(s)

dw 63 directory max

db 10000000b allocO

db 0 alloc1

dw 16 + perm eheek size and
door-open s; mu 1 ator

dw 1 ; offset

db 2 phys ree shi ft

db 3 ; phys ree mask

Figure 5-4 shows the extended DPB; Table 5-5 describes its fields.

EXTFLAG NFATS NFATRECS NCLSTRS

CLSIZE FATADD SPT 8SH BLM

EXM DSM DRM ALO ALl CKS

CKS OFF PSH PHM

Figure 5-4. Extended Disk Parameter Block Format

5-19

Disk Parameter Block Concurent DOS 86 System Guide

Field

EXTFLAG

NFATS

NFATRECS

NCLSTRS

CLSIZE

FATAOO

Table 5-5. Extended Disk Parameter Block Fields

Description

Extended OPB Flag: Set to OFFFFH for DOS media with a 12-bit File Allocation
Table (FAT). Set to OFFFEH for DOS media with a 16-bit FAT. For CP/M media,
the first field in the OPB is SPT indicating that the OPB is not extended.

Number of FATs: Set to the number of FATs contained on the DOS disk.
Multiple copies of the FAT can be kept on the disk as a backup if a read or
write error occurs.

Number of FAT Records: Set to the number of physical sectors in the FAT.

Number of Clusters: Set to the number of clusters on the DOS disk. Cluster 2
is the first data cluster to be allocated following the directory; cluster
NCLSTRS-1 is the last available cluster on the disk.

Cluster Size: Set to the number of bytes per data cluster. This value must be
a multiple of the physical sector size.

FAT Address: Set to the physical record number of the first FAT on the DOS
disk.

The remainder of the fields in the extended OPB are the same as their standard
DPB equivalent. Note, however, that for DOS media, the EXM value must be OOH,
and ALO and AL 1 are not used.

Listing 5-7 contains an assembly language definition of an extended DPB. Note that
the parameter values in this listing are for a double-sided, nine sector DOS
diskette.

5-20

Concurent DOS 86 System Guide Disk Parameter Block

Listing 5-7. Extended DPB Definition

;***

; * Extended DPB Def i n it ion
;***

perm equ 8000h
extflag equ word pt r 0
nfats equ word pt r 2
nfatrecs equ word pt r 4
nclstrs equ word pt r 6
clsize equ word ptr 8
fat add equ word pt r 10
spt equ word pt r 12
bsh equ byte pt r 14
blm equ byte ptr 15
exm equ byteptr 16
dsm equ word pt r 17
drm equ word pt r 19
alO equ byte pt r 21
all equ byte pt r 22
cks equ word pt r 23
off equ word pt r 25
psh equ byte pt r 27
prm equ byte pt r 28

;FAT ID = FD, double-sided, 9 sector format (DOS 2.0 ONLY):
pcdpb9D dw OFFFFh extended DPB flag

dw 2 NFATS

dw 2
dw 356
dw 512*2
dw 1
dw 9

db 3

db 7

db 0

dw 359

dw 111

db 0

db 0
dw 28 + perm

dw 0

db 2

db 3

NFATRECS

NCLSTRS
CLSIZE

FAT ADD

sectors per track

CP/M block shift
CP /M block mask

CP /M ext nt mask

CP/M disk size in lk blocks

less offset track(s)
di r max (ROOT DIR SIZE)

CP/M allocO

CP/M allocl

check size and
door-open s i mu 1 ator

offset
phys rec shift

phys rec mask

5-21

Disk Parameter Block Concurent DOS 86 System Guide

5.5.1 Disk Parameter Block Worksheet

The worksheet below is provided to help you create a Disk Parameter Block for
your disk hardware. Instructions for calculating the fields common to both DPBs
are presented first. The instructions for the extended DPB fields follow.

<A> Allocation Block Size
Concurrent allocates disk space in a unit referred to as an Allocation
Block. The Allocation Block is the minimum allocation of disk space given
to a file. legal values are 1024 (400H), 2048 (800H), 4096 (1000H), 8192
(2000H), and 16384 (4000H) decimal bytes. Note that disks larger than
256K bytes require at least 2048-byte Allocation Blocks.

Note: For DOS media, use the Cluster Size (ClSIZE), <V>, instead of the'
Allocation Block size in the calculations below.

< B > BSH -- Block Shift Factor

< C > BlM -- Block Mask Factor

<0>

<E>

5-22

Table 5-6 lists values for BSH and BLM for each value of <A>.

Table 5-6. BSH and BlM Values

<A>

1,024

2,048
4,096
8,192

16,384

BSH

3
4

5
6
7

BLM

7
15
31

63
127

Note: For clusters of 512 and 1024, use a BSH value of 3 and a BlM value
of 7.

Total Allocation Blocks
To determine the total number of Allocation Blocks on the disk drive,
divide the total data storage capacity of the disk by the Allocation Block
Size. To get the total data storage capacity, multiply the total number of
tracks on the disk minus those reserved for the operating system by the
number of sectors per track and then physical sector size. If the result is
not a whole number, round down to the next lowest integer.

DSM -- Disk Storage Max field
The value of DSM is the total number of Allocation Blocks relative to zero
or<D>-1.

Note: The product of <A>*(DSM+ 1) is the total number of data bytes the
drive holds. This value plus the amount of space' in the tracks reserved
for the operating system must be within the capacity of the physical disk.

Concurent DOS 86 System Guide Disk Parameter Block

< F > EXM -- Extent Mask field

*

For CP/M media, obtain the value of EXM from the values listed for <A>
and <E> in Table 5-7. EXM must be zero for DOS media.

<A>

1,024

2,048
4,096

8,192

16,384

Table 5-7. EXM Values

If < E > is

less than 256

o
1

3
7

15

If < E > is greater than or

equal to 256

N/A
o

3

7

N/A = not applicable

<G>

<H>

Directory Blocks
The number of Allocation Blocks reserved for the directory must be
between 1 and 16.

Directory Entries per Block
Given the Allocation Block size, <A>, use Table 5-8 to determine the
number of directory entries per Directory Block,

Table 5-8. Directory Entries per Block Size

<A> Number of Entries

1,024 32
2,048 64
4,096 128
8,192 256
16,384 512

< I > Total Directory Entries
Multiply <G> by <H> to determine the total number of Directory Entries.

< J > DRM -- Directory Max field
Determine DRM by subtracting 1 from <I>; the DRM field must contain
this value at run time.

5-23

Disk Parameter Block Concurent DOS 86 System Guide

< K> ALO, AL 1 -- Directory Allocation vector 0, 1 fields

<G>

1
2
3
4
5
6
7

8

Determine values for ALO and AL 1 according to the number of Directory
Blocks, <G>, as listed in Table 5-9.

Note that DOS disks do not use these fields.

Table 5-9. ALO, AL 1 Values

ALO AL1 <G> ALO AL1

SOH OOH 9 OFFH SOH
OCOH OOH 10 OFFH OCOH
OEOH OOH 11 OFFH OEOH
OFOH OOH 12 OFFH OFOH
OFSH OOH 13 OFFH OFSH
OFCH OOH 14 OFFH OFCH
OFEH OOH 15 OFFH OFEH
OFFH OOH 16 OFFH OFFH

< L> CKS -- Checksum vector size

<M>

<0>

<P>

5-24

Set the size of the Checksum Vector with one of the following values:

* If the drive media is permanent, set CKS to 8000H.

* If the drive media is removable and the Media Flag is implemented
(open door can be detected through interrupt), set CKS to:
((«1>-1)/4)+1)+ 8000H.

OFF -- Offset field
Set to the number of tracks that are reserved at the beginning of the
physical disk. The BOOS automatically adds this number to the value of
TRACK in the 10PB. Set OFF to skip reserved operating system tracks and
to partition a large disk into smaller logical drives.

Physical Sector Size
Specify the disk drive's physical sector size. Note that the physical sector
size must be greater than or equal to 128 and less than 4096 or the
Allocation Block Size, <A>, whichever is smaller. Typically, this value is
the smallest unit that can be transferred to or from the disk.

PSH -- Physical Record Shift Factor < Q >
PRM -- Physical Record Mask
Set the values of PSH and PRM according to the physical sector size,
<0>, as listed in Table 5-10.

Concurent DOS 86 System Guide Disk Parameter Block

Table 5-10. PSH and PRM Values

<0> PSH PRM

128 0 0
256 1 1
512 2 3

1024 3 7

2048 4 15
4096 5 31

< R > EXTFLAG -- Extended DPB Flag
Set EXTFLAG to OFFFFH for DOS media with 12-bit FATs; to OFFFEH for
DOS media with 16-bit FATs.

< S > NFATS -- Number of File Allocation Tables
Set to the number of FATs on the disk currently in the drive.

<T> NFATRECS -- Number of FAT Records
Set to the number of physical sectors in the FAT. Calculate this value
from the number of clusters, <U>, and the physical sector size, <0>,
using the following formula:

<T> := «U>*1.5)+«O>-1)/<o>

<U> NCLSTRS -- Number of Clusters
Set to the number of clusters on the DOS disk.

<V> CLSIZE -- Cluster Size
Set to the number of bytes per cluster.

<w> FATADD -- File Allocation Table Address
Set to the physical sector number of the first FAT on the DOS disk.

5.5.2 Disk Parameter List Worksheet

< A > Allocation Block Size

< B > BSH field

<c> BlM field

< D > Total Allocation Blocks

< E > DSM field

<F> EXM field

< G > Directory Blocks

< H > Directory Entries per Block

5-25

Disk Parameter Block Concurent DOS 86 System Guide

<I> Total Directory Entries

<J> ORM field

<K> ALO,AL 1 fields

<L> CKS field

<M> OFF field

<0> Physical Sector Size

<p> PSH field

<0> PRM field

<R> EXTFLAG field (extended OPB)

<5> NFATS field (extended OPB)

<T> NFATRECS field (extended OPB)

<u> NCLSTRS field (extended OPB)

<v> CLSIZE field (extended OPB)

<w> FATADO field (extended OPB)

5.6 Buffer and Hash Control Blocks

5.6.1 Buffer Control Blocks (BCBs)

The disk buffering algorithm in Concurrent DOS 6.0 and Concurrent 386 2.0 is
different from that of previous versions.

These BCBs consist of 16 bytes immediately preceding the actual data buffers.
BCBs are always shared for all drives and therefore must be big enough for the
largest sector size of all drives. For example, if the largest sector size supported is
512 bytes (32120h paragraphs), then 33/21 h paragraphs have to be allocated for
each buffer. The segment address of the first BCB is stored in BCB_ROOT
(SYSOAT:009Ah). There have to be at least three buffers in the system for the
BOOS to work correctly. More buffers are recommended for better performance.
Buffers are used for storing data, directory and FAT sectors. Figure 5-5 shows the
Buffer Control Block format.

OOH LINK DRV RESERVED

08H RESERVED

10H DATA ...

. ..

Figure 5-5 Buffer Control Block format

5-26

Concurent DOS 86 System Guide Disk Parameter Block

BCB_LlNK contains the segment address of the next BCB in the list or OOOOh for the
last BCB.

BCB_DRV has to be initialized to OFFh for all BCBs in the list.

BCB_RESRVD is used internally by the BOOS and should be initialized to all zeroes
(13 bytes).

BCB_DATA is where the actual data for the sector starts.

5.6.2 Hash Control Blocks (HCB)

Concurrent DOS 6.0 and Concurrent 386 2.0 uses directory hashing to speed up
directory operations. By storing information about file names in the most recently
used directories, slow disk accesses and memory consuming buffers can be saved.
Concurrent uses a list of Hash Control Blocks (HCBs) which are maintained in a
linked list. The root of this list called HASHROOT and is located in SYSDAT at offset
OOBOh. HASH ROOT contains OOOOh if hashing is not supported or the offset of the
first HCB.

The number of directory entries hashed by one HCB is up to HCB_CLS*8 (if the
cluster size is the maximum supported). As a general rule, about 512 to 1024
directory entries should be hashed for optimal performance (4-8 HCBs with 4 K
clusters, 8-16 HCBs with 2 K clusters). This will consume 1-2 K of memory plus the
space taken up by the HCBs. Figure 5-6 shows the Hash Control Block format.

OOH CLS DRV

OSH

Figure 5-6 Hash Control Block format

HCB_LlNK contains the offset of the next HCB in SYSDAT or OOOOh for the last HCB.

HCB_CLS contains the maximum cluster size supported, divided by 256. For
example, if hashing is to be supported on disks with block sizes up to 4 Kb (1000h),
HCB_CLS has to be set to 16 (10h). This field has to be set to the same value for all
HCBs. If the BOOS finds that the cluster size of a drive is larger than the maximum
indicated by HCB_CLS, it will not use hashing on that drive.

HCB_DRV is used by the BDOS to keep track of which drive this HCB is currently
used for. This field has to be initialized to OFFh for all HCBs.

HCB_RESRVD is used internally by the BOOS and doesn't need to be initialized.

HCB_SEG contains the segment address of a memory block that is used by the
BOOS to keep track of the file name information. The size ·of this block has to be
HCB_CLS paragraphs.

5-27

Disk Parameter Block Concurent DOS 86 System Guide

5.7 MEMORY DISK APPLICATION

A memory disk may be implemented if sufficient memory is available. Usually this
will be I/O addressed, extended or expanded memory. In some cases a load able
DOS driver is available for specific hardware add-on boards. If a memory disk
driver is required in the XIOS then it should be implemented as a simple DOS hard
disk. In this case the sectors are simulated by areas of memory. The initialization
code must clear the directory and FAT sectors and create a DPH and extended DPB
for the drive. Drive M: is reserved for use as a memory disk. To simplify
calculations it is usual to have 512 byte sectors and clusters. For a 1 Mbyte disk
there would be 2048 sectors on a single track. A 12 bit FAT would be sufficient.

5.8 MULTIPLE MEDIA SUPPORT

Disk access is controlled by a number of data structures that describe various disk
parameters. Some of these parameters are set in the code of the XIOS; others are
supplied by GENSYS. When a particular disk drive supports more than one type of
media, some of these parameters must be set at run time. This section explains
how these parameters are set up and which ones must be changed at run time.

Each disk drive is described by a Disk Parameter Header (DPH). The DPH contains
the addresses of several data structures required for disk access, including the
Disk Parameter Block (DPB). The DPB describes the disk in detail, and includes such
information as the size of the directory and the total storage capacity of the drive.
The information in the DPB varies according to the density and/or format of the
disk currently in the drive.

The DPH is located by the DPH pointers in the XIOS Header (see Section 3.1, "XIOS
Header"). Values for the DPH fields may be hard-coded in the XIOS or calculated at
run time.

GENSYS can supply those that are dependant on the allocation of memory (CSV,
DDSC) if they are set to OFFFFH in the DPH.

Auto Density Support describes the ability to use different types of media on the
same drive. Some floppy disk drives can read many different disk formats. Auto
Density Support enables the XIOS to determine the density of the disk when the
10_SELDSK function is called, and to detect a change in density when the 10_READ
or 10_WRITE functions are called.

To implement Auto Density Support or support for both CP/M and DOS media, the
XIOS disk driver must include a DPB for each disk format or routines that generate
proper DPB values automatically in real time. The disk driver must also determine
the type and format of the disk when 10_SELDSK is called for the first time, set the
DPH to address the DPB that describes the media, and return the address of the
DPH to the BOOS. If 10_SELDSK is unable to determine the disk format it can return
a zero to indicate that the select operation was not successful. On all subsequent
10_SELDSK calls, the XIOS must continue to return the address of the same DPH. A
return value of zero is allowed only on the initial 10_SELDSK call.

Once 10_SELDSK has determined the format of the disk, 10_READ and 10_WRITE
assume the format is correct until an error is detected. If an XIOS function

5-28

Concurent DOS 86 System Guide Disk Parameter Block

encounters an error and determines that the media has been changed to another
format, it must abandon the operation and return OFFH to the BDOS. This prompts
the BDOS to make another initial IO_SELDSK call to reestablish the media format.
XIOS routines must not modify the drive's DPH or DPB until the IO_SELDSK call is
made. BDOS can also determine that the media has changed and make an initial
IO_SELDSK call even though the XIOS routines have not detected any change.

5.9 SVSDAT DATA SPACE ALLOCATION

If your XIOS is to provide support for DOS drivers as described in Section 1.12, you
must implement the SVSDAT_ALLOe XI OS function.

Allocate buffer space from SYSDAT

Entry Parameters:
Register AL: 1 e(28)

ex: Number of bytes to allocate

Returned Values:
Register AX: Buffer offset

o If requested number of bytes unavailable
DX: Number of bytes available

(If AX returns 00)
ex: Preserved

SYSDAT _ALLOe is an optional XIOS function that allocates buffer space in the
SYSDAT area to DOS drivers loaded at boot time.

This function first attempts to use the area of SYSDAT occupied by the XI OS INIT
routine. SYSDAT _ALLOC then attempts to satisfy the request by using the memory
space reserved by the user with the SETUP utility. See the User's Reference Guide
for a description of SETUP.

If both areas of memory have been previously allocated or not enough space
remains to satisfy the number of bytes requested, SYSDAT _ALLOC returns zero in
AX. and the amount of space remaining in these areas in DX.

5-29

Section 6

EXPANDED MEMORY SUPPORT

Concurrent provides generic, hardware-independent support for expanded memory.
This support is provided through the Memory Manager (MEM), Real-time Monitor
(RTM), and Interceptor modules and four XIOS functions. Note that the support
provided through MEM and RTM is not hardware or driver software specific.

This section describes the data structures and XIOS function calls associated with
Concurrent's support for expanded memory.

Expanded Memory Terminology

* Expanded memory is memory not enabled on the machine's motherboard or
add-on board. Expanded memory is not recognized by the processor.

* Memory paging is the technique of managing and swapping pages of physical
memory in and out of logical address windows within the 1 M byte address space
to effectively increase the usable memory of the machine.

* Pages are regions (usually 16K bytes) of the physical memory on the board that
can be dynamically readdressed by the memory paging hardware.

* Logical address windows are the areas in the address space of the processor
into which pages can be mapped. This document sometimes refers to these
areas as windows.

6.1 MEMORY PAGING ENVIRONMENTS

Concurrent's support of expanded memory accounts for two dissimilar
environments.

The first environment is generic. In this environment, the XI OS is responsible for
managing the memory mapping hardware and allocating physical pages of
memory. A special case of the generic environment is the Concurrent 386 system
where the MEM module directly sets the 386 memory management registers so the
XIOS functions are not required. In addition Concurrent 386 implements LIM (int 67)
support directly and supports applications making LIM memory calls.

The second environment is that of an IBM personal computer (or compatible) with
a memory board that conforms to the AST™ superset of the InteIIR)/Lotus
above-board standard, such as the RAMpage!TM board. In this environment, certain
applications may call the Expanded Memory Management (EMM) Driver to perform
their own memory management tasks completely outside of the operating system.
This second environment is referred to as the "EMM environment."

6-1

Memory Paging Environments Concurent DOS 86 System Guide

6.1.1 Generic Environment

In the generic environment, the Supervisor and applications call the Memory
Manager (MEM) for all memory requests. MEM passes these calls to the XIOS as
memory page allocation and release requests. During process dispatching, the
Real-time Monitor (RTM) generates XIOS calls to save the current state of the
memory mapping hardware and to restore the previously saved hardware to its
original state. (Concurrent 386 does not pass on the XIOS calls.)

Figure 6-1 illustrates the generic environment's interfaces.

Not in
the

Concurrent
386

System

I Appl icat ion I:
I Supervi sor j ,

r-----~ ~~----~
RTM I I MEM I

XIOS

I
Expanded Memory

Hardware

Figure 6-1. Generic Environment Memory Paging Interfaces

6.1.2 EMM Environment

In the EMM environment, the XIOS passes all of its memory page allocation and
release requests along to the EMM Driver, which handles the page mapping
hardware. Calls into the XIOS are translated to EMM Driver calls, and the EMM
Driver is invoked with an Interrupt 67H.

An application running in the EMM environment may be making calls directly to the
EMM Driver. The Interceptor module intercepts all calls to the EMM Driver so that
the system can handle context switching and memory deallocation for aborted
processes. To reserve some memory for system use, the Interceptor might not let
an application know the total number of available memory pages.

6-2

Concurent DOS 86 System Guide Memory Paging Environments

The Interceptor's primary functions are creating and linking new Memory Page
Allocation Descriptors (MPADs) as an application performs EMM Allocate calls. The
Interceptor destroys these MPADs when the application performs an EMM Close
call. These functions allow the Interceptor to track an application's calls to the
EMM Driver for the system. The MPAD data structure is described below in Section
6.2.

Figure 6-2 illustrates the interfaces within the EMM environment.

IAPPlication 1

1 superVisor. 1 1
"I -R-TM-"""11 IL......,..-M_EM_--,I

+ •
XIOS 1

1 Interceptor 1

• 1 EMM Driver 1 ,
Expanded Memory

Hardware

Figure 6-2. EMM Environment Memory Paging

6.2 EXPANDED MEMORY DATA STRUCTURES

Expanded memory support adds two new data structures to Concurrent. These are
the Memory Window Descriptor and the Memory Page Allocation Descriptor. Both
are structured as elements of linked lists, and both are five words long.

6.2.1 Memory Window Descriptor

The XIOS maintains one Memory Window Descriptor (MWD) for each logical
address window of paged memory in the system. MWDs are arranged as a linked
list pointed to by the Memory Window Descriptor Root (MWDR) located at offset
98H in the System Data Area (SYSDAT).

The MWD List is a static structure that can be initialized by GENSYS. It is used by
the Memory Manager to locate memory for paged allocation. Figure 6-3 illustrates
the format of an MWD. Table 6-1 lists and defines the MWD fields.

o 2 3 4 5 6 7 8 9

COU~T

Figure 6-3. Memory Window Descriptor

6-3

Expanded Memory Data Structures Concurent DOS 86 System Guide

MWD

LINK

START

LENGTH

FLAGS

COUNT

Table 6-1. Memory Window Descriptor Fields

Field Description

Offset to next MWO; zero indicates end of list

Starting segment address of logical address window

Length of window in paragraphs (16 bytes)

Memory page attributes (to be defined)

Number of processes currently using this window; OFFFH if window is locked
by a process

The MWD List describes the location of logical address windows that can be
mapped to physical memory pages. If the MWD List has not been set up by
GENSYS, the XIOS INIT routine must create it during system initialization. To create
a complete MWD List, INIT first obtains Memory Descriptors from the linked list of
unused Memory Descriptors pointed to by the MDUL field at offset 58H in SYSDAT
DATA. It then links the newly created MWD's to the MWD List in address order.

If a default MWD List has been created by GENSYS, the INIT routine modifies the
list to match the existing hardware configuration. It does this by unlinking
unnecessary MWDs and returning them to the list of unused Memory Descriptors
according to a procedure similar to that shown in the example XIOS for trimming
the memory partition list.

6.2.2 Memory Page Allocation Descriptor

The Memory Page Allocation Descriptor (MPAD) is a dynamic structure created by
MEM whenever paged memory is allocated to a process. MEM destroys the MPAD
when the process frees the paged memory. MPADs are arranged as a linked list
pointed to by the Memory Page Allocation Root (P _MPAR) field in the Process
Descriptor of the process that owns this unit of paged memory. The P _MPAR field
is located at offset 34H in the Process Descriptor. The Process Descriptor is
defined in the Programmer's Guide.

The Interceptor creates and links a new MPAD when an application performs a
successful allocation call directly to the EMM Driver. When the application makes a
corresponding EMM Driver Close call, the Interceptor destroys the MPAD it had
previously created.

Figure 6-4 shows the MPAD format. Table 6-2 describes the MPAD fields.

o 2 3 4 5 6 7 B 9

RESE~VED

Figure 6-4. Memory Page Allocation Descriptor

6-4

Concurent DOS 86 System Guide Expanded Memory Data Structures

Table 6-2. Memory Page Allocation Descriptor Fields

MPAD Field Description

LINK Offset address of next MPAD; zero indicates end of list

START Starting segment address of allocation unit

LENGTH Length of allocation in paragraphs (16 bytes)

XI OS In the EMM Environment. this field stores the Process 10 (PID) returned by the
EMM Driver. In the generic environment, this field can be used as a pointer to
a local XI OS data structure such as a linked list of words in which each word
represents one physical page of expanded memory.

Note: Both the START and LENGTH fields of new MPADs created by the Interceptor
contain zero values (the Interceptor has no knowledge of where the application will
place its memory pages).

6.3 EXPANDED MEMORY FUNCTION CALLS

This section describes the four function calls that the XIOS uses to manage
expanded memory. The MEM module calls two of these functions, 10_MPALLOC and
10_MPFREE, when a process allocates or releases pages of memory. The other two
functions, 10_MPSAVE and 10_MPRESTORE, are called by the Real-time Monitor
(RTM) when it suspends or returns a process to context.

All of the expanded memory function calls preserve registers DS, ES, SS and SP.

Allocate a bank of paged memory

Entry Parameters:
Register AL: 28H (40)

DX: Address of MPAD

Returned Values:
Register AL: 0 On Success

Error code on failure

MEM calls this function to allocate the physical pages of memory described in the
referenced Memory Page Allocation Descriptor (MPAD). The MPAD's START field
indicates where the memory pages are to be mapped within the logical address
space; the LENGTH field indicates how many pages are to be mapped.

6-5

Expanded Memory Function Calls Concurent DOS 86 System Guide

The XIOS should use the XIOS field of the MPAO to keep track of the physical
pages associated with the allocation.

In the EMM environment, the XI OS must translate this function into two EMM calls,
Allocate and Map, the first to acquire the necessary pages of physical memory, the
second to map them into the appropriate logical address windows.

For an EMM Close call, the Interceptor deletes the MPAO only if it finds the START
and LENGTH fields equal to zero (the MPAO is therefore one that it created).

If the allocation is unsuccessful for any reason, this function must return a nonzero
value in AL.

Free a bank of paged memory

Entry Parameters:
Register AL: 29H (41)

OX: Address of MPAO

MEM calls this function to release the physical pages of memory previously
allocated through IO_MPALLOC. IO_MPFREE should use the MPAO_XIOS field to
identify the physical pages involved.

In the EMM Environment, this call translates into an EMM Close call.

Save current state of paged memory hardware

Entry Parameters:
Register AL: 2AH (42)

OX: Address of MPAO List

The RTM calls IO_MPSAVE when it suspends the currently running process. This
function causes the XIOS to preserve the current state of the memory mapping
hardware for later restoration (IO_MPRESTORE).

If the memory mapping scheme involves restoring specific pages rather than the
entire hardware state, this call may simply return without action.

6-6

Concurent DOS 86 System Guide Expanded Memory Function Calls

Restore previously saved hardware state

Entry Parameters:
Register AL: 2BH (43)

OX: Address of MPAD List

The RTM calls IO_MPRESTORE to return the memory mapping hardware to the state
it was in when the process that owns the referenced MPAD List was last in context.

The XIOS can perform this function by restoring the entire hardware state as saved
by a previous IO_MPSAVE call, or by restoring the specific pages in each of the
linked MPADs.

6-7

Section 7

SECTION 7

PC/AT ROS Support

In order to improve performance and compatibility ROS interrupt support has been
changed from previous revisions to give the XI OS greater control over handling the
various functions.

Concurrent will intercept some of the ROS interrupts and emulate a limited sub-set
of functions, the remaining functions will be passed onto the original interrupt
service routines (ISRs). This means that the XIOS INIT routine should set all the
interrupt vectors between 10h and 1Fh to point to XIOS code. These XI OS services
routines should either handle the function requested or print an error message and
terminate the current process. Obviously on a PC or compatible many of the
functions can be passed on to the ROS.

The following ROS interrupts are intercepted by Concurrent.

INT 11 h System Configuration
This function calls the PC_EQUIP XIOS function.

INT 12h Memory Size
The PCMODE returns the correct memory size based on the memory allocated
to the current process.

INT 13h Disk I/O
Concurrent DOS uses the 10-,NT13XIOS function to support the Disk I/O ROS
function.

INT 14h Serial I/O
Sub-functions 1 (Send Character), 2 (Get Character) and 3 (Status) are trapped
by Concurrent and passed to the appropriate AUX devices. All other
sub-functions are passed to the original ISA.

INT 16h Keyboard Services
Sub-functions 0 to 2 and 10h to 12h are emulated by Concurrent. All other
sub-functions are passed to the original ISA. INT 16h is commonly used by
clone manufacturers to access extra facilities provided by their hardware, ie
Processor Speed Switching.

INT 17h Parallel Printer I/O
Sub-functions 0 (Print Character) and 2 (Status) are emulated by Concurrent all
other sub-functions are passed to the original ISA.

7-1

XIOS Functions for ROS Video Support Concurent DOS 86 System Guide

7.1 XIOS Functions for ROS Video Support

10_SCREEN (30) (not used by kernel)
10_VIDEO (31) (not used by kernel)
10_KEYBD (32) Used to indicate to XIOS the application requirements.

On Entry:- AL: 020h (32)
CL:

DL:

Bit 0: PC-Mode Keyboard
Bit 1: 25 Line Support
Bit 2: ANSI Support
Bit 3: ROS Support
Bit 4: Hardware Access
Virtual Console Number

On Exit:- AX: 0000

7-2

BX: Same as AX

Bit 0: PC-Mode Keyboard
This bit is set when a DOS process begins execution and is reset when it
terminates. The XI OS uses this bit to control the keyboard decoding, ie.
function key support is disabled when this bit is set.

Bit 1: 25 Line Support
When set this bit signifies that the current process requires a 25 line screen to
function correctly. This bit is used by the example XIOS to disable the status
line when a DOS application requiring all 25 lines is loaded.

Bit 2: ANSI Support
When set this bit signifies that the current process uses ANSI escape
sequences. This bit can be used to select ANSI support in a serial terminal that
supports several emulation modes.

Bit 3: ROS Support
When set this bit signifies that the current process uses the ROS video
services software interrupt (INT 10).

Bit 4: Hardware Access
When set this bit signifies that the current process accesses the video
hardware directly.

The PCMODE checks the ATTRIBUTES field in the CCB before loading a DOS
process to check that the Virtual Console provides all the video services
required by the DOS process.

Concurent DOS 86 System Guide XIOS Functions for ROS Disk Support

7.2 XIOS Functions for ROS Disk Support

IOJNT13 (35) provides support for DOS interrupt 13 functions.

IOJNT13

DOS INT 13 Disk 1/0

Entry Parameters:
Register AL: 23H (35)

OX: Offset of parameter structure

Returned Values:
Register AH: 00 Operation successful Status byte (if Carry Flag set, see Table

7-1)
AL: Number of sectors (on read, write, and verify operations) Status

byte (on read disk status)
OS, BX, OX, CX: preserved

Parameter Structure: Offset

o Number of sectors (BYTE)
1 Select byte

o Reset disk system
1 Read disk system status into AL
2 Read sectors
3 Write sectors
4 Verify sectors
5 Format track

2 Offset of DMA buffer (WORD)
4 Sector number (1-17)
5 Track number (0 relative)
6 Physical drive number (0 relative)
7 Head number (0-1)
8 Segment of DMA buffer (WORD)

10 Reserved on entry, Flags on return

The DMA address may reside anywhere in the one megabyte address space of the
processor. If the disk controller transfers data only to and from a restricted address
area, the read or write functions must block-move the data between the DMA
address and this restricted area after a read or before a write operation.

If the byte at offset 00 of the parameter structure contains 5 (format track), offsets
02 and 08 must point to a format block. The format block consists of one four-byte
address field for every sector on the track to be formatted. The address field bytes
contain the track number, head number. sector number, and the number of bytes
per sector, respectively.

If IOJNT13 returns with the Carry Flag set, the status byte in AH indicates an error
according to the values listed in Table 7-1.

7-3

XIOS Functions for ROS Disk Support Concurent DOS 86 System Guide

Table 7-1. IOJNT13 Status Byte Values

Hex Value

01 Bad command

02 Address mark not found

03 Disk write protected

04 Sector not found

08 DMA overrun

09 DMA crosses 64K boundary

10 CRC read error

20 Controller failure

40 Seek failure

80 Time out error

Note that IOJNT13 must update the parameter structure before returning.

7.3 XIOS Functions for ROS Keyboard Support

There are two functions described in this section: PC_KBD indicates whether or not
PC Mode is active; PC_SHIFTS returns the keyboard shift status of a console
operating in PC Mode.

PC Mode Keyboard Switch

Entry Parameters:
Register AL: 20H (32)

CL: 1 Enable PC Mode
2 Disable PC Mode

DL: VC number

Returned Values:
Register AX: 0 on success

FFFFH on error
ES, OS, SS, SP: preserved

PC_KBD controls a variable that indicates when PC Mode is active. When PC_KBD is
enabled, the console is running a PC DOS program and the keyboard's function
keys and the 25th line on the screen must behave differently.

When PC_KBD is disabled, all non-ASCII keys are either ignored, initiate a screen
switch, or return a string of characters (as does the sample XI OS). If PC KBD is
enabled, IO_CONIN must pass all 16-bit function key codes to the caller. -

7-4

Concurent DOS 86 System Guide XIOS Functions for ROS Keyboard Support

Many PC DOS applications use the 25th line of the display. The 10_STATLINE
function (8) must not display the status line on a console that is in PC Mode. See
Section 4.2, "Console 1/0 Functions:' for information on 10_STATLINE.

The PC_KBD variable can also be used in the XI OS for any other functions that need
to know if a console is in PC Mode.

When a Virtual Console is in PC Mode 10_CONIN (1) must return the full ROS
character and scan code. IO_CONIN returns the ASCII code for characters in AL, and
the scan code in AH.

Entry Parameters:
Register AL: 21 H (33)

DL: VC number

Returned Values:

Return Shift Status

Register AL: Shift status bit map
ES, OS, SS, SP: preserved

PC_SHIFTS emulates subfunction 2 of DOS's interrupt 16. It returns a bit map that
indicates the status of certain keys. This bit map is shown in Table 7-2.

Table 7-2. Keyboard Shift Status Bit Map

Bit Meaning

7 Insert state active

6 Caps lock state toggled

5 Num lock state toggled

4 Scroll lock state toggled

3 Alternate shift key depressed

2 Control shift key depressed

1 Left shift key depressed

0 Right shift key depressed

7-5

XlOS Functions for ROS System Configuration Support

7.4 XIOS Functions for ROS System Configuration Support

Return Equipment Status

Entry Parameters:
Register AL:22H (34)

Returned Values:
Register AX: PC equipment bit map
ES, OS, SS, SP: preserved

PC_EQUIP emulates DOS interrupt 11 by returning the standard PC bit map that
describes attached I/O devices. The bit meanings, from low to high order, are listed
in Table 7-3. Note which values are to be interpreted as bit pairs or triplets.

7-6

Table 7-3. DOS Equipment Status Bit Map

Bit Meaning

o IPL from floppy - Set when system has floppy drives

1 Not used

3, 2 RAM size on system board:

00 16K

01 32K

1048K

11 64K

5, 4 Initial video mode:

01 40 x 25 color

1080 x 25 color

11 80 x 25 monochrome

7, 6 Number of floppy disk drives:

00 1 drive

01 2 drives

103 drives

11 4 drives

8 Not used

11- 9 Number of RS232 ports

12 Game I/O attached

13 Not used

14,15 Number of parallel printers

Section 8

XIOS TICK INTERRUPT ROUTINE

The XIOS Tick Interrupt routine forces process dispatches and "wakes up" the
CLOCK RSP. To perform these functions, the routine continually sets (makes
DEV _SETFLAG calls on) two reserved flags:

* On every interrupt, the routine sets the Flag #1, the system tick flag, if the TICK
flag in the XIOS Header is OFFH.

* Once every second, the routine sets Flag #2, the second flag.

If necessary, the routine must also reset the hardware timer interrupt.

After setting the flags, the Tick Interrupt routine must make a Jump Far call to the
dispatcher entry point. This forces a dispatch. The double-word pointer to the
dispatcher entry point is located at 0038H in the SYSDAT DATA. See Section 3.5,
"Interrupt Devices," for more information on writing XIOS interrupt routines.

The system tick frequency determines the dispatch rate for compute-bound
processes. If the frequency is too high, the system overhead required with each
dispatch slows down system performance. If the frequency is too low,
compute-bound processes monopolize the CPU resource for longer periods. The
recommended time period for the system tick on systems with a power frequency
of 60 Hz is 16.67 milliseconds. When operating on 50 Hz power, use a
20-millisecond period.

The CLOCK RSP calls DEV_WAITFLAG on Flag #2 (the second flag) to maintain the
system time and day in the TaD structure in SYSDAT. When CLOCK "wakes up," it
updates the TaD structure and calls the 10_STATlINE XI as function to update the
status line. If the system has more than one physical console, one physical console
is updated each second. Thus if your system has four physical consoles, each one
is updated once every four seconds.

8-1

Section 9

DEBUGGING THE XIOS

The distributed source for Concurrent is based on the PCIXT/AT/PS2 hardware and
clones of that hardware. Debugging techniques will vary depending on the extent
of your modifications to this source and hardware differences.

In all cases it is recommended that you use an AT/PS2 or clone to generate the
system. First it is most important to check that you can generate the distributed
system. Copy all the source files and tools to your hard disk maintaining the
sub-directory structure. It is advisable to check that there is no name conflict with
any files that may already exist on your hard disk. Follow any instructions provided
on the README file if it is present. This file reflects any special version dependant
instructions or corrections to this guide.

Re-assemble the XIOS and link it using the batch and makefiles provided. Generate
the system using GENSYS. Compare this new CCPM.SYS file with the distributed
file. They should be the same. If there is a difference in length check again that no
errors occurred during the build. Check that you are comparing the bootable
CCPM.SYS supplied with the sources and not another version or release. If the files
are the same length but have a difference it may be due to a field installable patch.
Check the README file for details of patches.

The appropriate technique for debugging the XIOS depends on the extent of your
modifications. We will take 3 possible scenarios.

1) Hardware compatible with PC/XT/AT/PS2, modification to GENSYS parameters
required.

This system should not require debugging. Test to see that the requested changes
have been made. The SYSTAT utility is useful for this. Use SID-86 to check
SYSDAT and CCPM.SYS values if there is a problem.

2) Hardware compatible with PC/AT/PS2 or Clone hardware, Alteration required to
XIOS to improve performance, fix bug or adapt for addon hardware.

Restrict the changes to one area/module at a time. Ensure that the changes will
not prohibit rebooting the system. If necessary use a flag in the XIOS to switch in
the modified code. The system can then be rebooted and the code enabled after
SID-86 etc are loaded. Check the changes by examination of the XIOS variables
using SID-86 and your XIOS symbols. Use debug code in your source to store
intermediate results. It is possible to step through portions of the XIOS code either
by calling directly from a test programme to the XIOS or by setting the SID-86
registers directly. REMEMBER that the XI OS is being used for all processes so
confine yourself to specific code areas that do not affect the basic operating
system. If this is insufficient then you will need to use an ICE or ROM Monitor or
ROM dump facility.

3) Hardware incompatible with PC/XT/AT/PS2. New XIOS req~ired.

9-1

Debugging the XIOS Concurent DOS 86 System Guide

In this case it will be necessary to build the XIOS incrementally as previously
described. Use code from the example XI OS but enable the simple features first.
Begin testing with all 1/0 devices in polled mode, all interrupts, including the
system Tick, disabled. NOTE: the PIN processes calls the 10_CONIN and runs at
higher priority than the TMP. It will be necessary to reduce PIN priority to enable
console output from the TMP until the CONIN is changed from polling to flag_wait.
Once the XIOS functions are implemented using device polling, change them to
interrupt-driven 1/0 devices and test them one at a time.

Debug the Tick Interrupt routine last. The initial system can run without a Tick
Interrupt, and console and disk 1/0 routines are much easier to debug. Disable the
Tick Interrupt by changing the routine to execute an IRET instead of a JMPF to the
dispatcher and not allowing it to set Flags #1 (system tick) and #2 (second tick). As
long as the Tick Interrupt is disabled, you have no way to force CPU-bound tasks
to dispatch. In fact, if problems arise after the Tick Interrupt is implemented, it is
often helpful to simplify the environment by disabling the effects of the Tick
Interrupt.

Notli: Until the Tick interrupt is implemented, P _DELAY cannot be called. Instead,
you must use an assembly language time-out loop for each instance of P _DELAY.
Be sure to replace these time-outs with P _DELAY system calls after the tick routine
is implemented and debugged. See the MOTOR_ON routine in the example XI OS for
more details.

To debug this system it will probably be necessary to have hardware assistance in
the form of an In Circuit Emulator. This can be used to trap Concurrent after it
boots as the XIOS is initialised and as each function is called. Most ICE systems
allow the CCPM.SYS file to be loaded directly into the target memory from the host
system.

9-2

Section 10

BOOTSTRAP ADAPTATION

This section describes an example bootstrap procedure for Concurrent
implemented on the IBM PCIXT/AT/PS2 personal computers. You can customize
this example for different hardware environments.

10.1 The Bootstrap Loader on Floppy disks.

Sector 0 of the floppy disk is used as a bootstrap loader. It contains enough code
to read the directory and FAT information on the disk and read the CCPM.SYS file
into the correct memory area and jump to it.

The Boot Sector is brought into memory on reset or power-on by the PC's ROM
monitor. The Boot Sector then reads in Sector 0 and transfers control to the
Loader.

The Loader depends on software interrupt 13 to the ROS to perform the physical
disk 1/0 and hence is machine independent. The Loader is written to the disk when
the floppy disk is formatted using the Concurrent FORMAT utilities.

OEMs may use the DR FORMAT utility to prepare disks with this loader but will
need to provide support for interrupt 13 in their ROM.

10.2 The Bootstrap Loader on Hard disks.

In the case of hard disks the utility FDISK prepares the disk partition table and the
logical partitions of the disk. One of these partitions is usually designated bootable.
In the case of the hard disk a multi-stage bootstrap loader is used. Again it uses
interrupt 13 to perform the physical I/O.

10.3 OTHER BOOTSTRAP METHODS

Many departures from the previously described methods of bootstrap loader
operation and construction are possible. All are dependent upon the hardware
environment and goals of the system implementor.

The Boot Sector can be eliminated if the system ROM (or PROM) can read in the
CCPM.SYS file at reset.

Concurrent may be placed in ROM and executed from ROM itself as discussed
previously in section 2.

Another possibility is that the CCPM.SYS file is read by the ROM over a network
from another server.

10-1

Organization of CCPM.SYS Concurent DOS 86 System Guide

10.4 ORGANIZATION OF CCPM.SYS

The CCPM.SYS file generated by GENSYS and read by the Loader consists of the
required .CON files and any included .RSP files (see Section 2). CCPM.SYS is
prefixed by a 128-byte CMD Header Record, which contains the two Section
Descriptors shown in Figure 10-1.

01H xxxxx SSSSH xxxxx xxxxx

02H xxxxx DDDDH xxxxx xxxxx

Figure 10-1. Section Descriptors - CCPM.SYS Header Record

The first Section Descriptor (S_TYPE 01H) represents the CCPM.SYS Code Group; (
it also contains RSP and Network Data). The second Section Descriptor (S_TYPE
02H) represents the SYSTEM Data Group. The Code Section Descriptor has an
A-Base load address at paragraph SSSSH, or Nparagraph:byteN address of
OSSSS:OOOOH. The A-Base value in the Data Group Descriptor is 00000:0000.

CCPM.SYS is read into memory by the Loader beginning at the address given by
Code Section A-Base (in the example shown above, paragraph address SSSSH),
and control is passed to the Supervisor INIT routine when the Loader Program
executes a Jump Far (JMPF) instruction to SSSS:OOOOH. The Supervisor INIT must
be entered with CS set to the value of S_A-BASE in the Code Section Descriptor, IP
equal to 0, and OS equal to the value of S_A-BASE in the Data Section Descriptor.

10-2

Section 11

OEM DISK UTILITIES

A commercially viable Concurrent system requires OEM-implemented and
supported utilities. Fundamental services provided by such utilities are disk
formatting and verbatim copying. The code that performs these functions is
hardware-specific and typically uses direct XIOS calls or goes directly to the
hardware. This section lists the precautions you should observe when making
direct XIOS calls and describes DOS-media directory contents.

Note: The DSKMAINT, FORMAT and DISKCOPY utility provided with Concurrent
formats DOS media in several sector sizes and copies disks with the same format.
DISKMAINT retains CP/M media formatting for the CP/M utility. Separate modules
are provided for target machines with 5.25" and 3.5" drives. If you have different
media to those already supported and cannot use DSKMAINT, use its source
modules as models for your own format and copy utilities. Concurrent Sources are
not included in this kit but are available separately.

11.1 DIRECT-DISK ACCESS PRECAUTIONS

Programs that bypass the BDOS to make direct hardware calls circumvent
Concurrent's normal disk control mechanisms. In a multiuser or multitasking
environment, this can have disastrous consequences. The format program must
include procedures that protect the user from formatting while a background
process is using the disk and ensure that other users do not get access to the disk
during the operation.

The following list contains the procedures required to provide safeguards under
Concurrent.

1. Confirm that the Operating system BDOS version is 6.0 or later. (Use the
S_OSVER function.) The following steps apply only to this version of
Concurrent.

2. Lock the disk drive using the DRV_LOCK function.
The program can now safely perform the format and copy operations on the
disk system, independent of the BDOS. Only exit from the program according
to the sequence of tasks outlined in steps 3 through 4.

3. Set the login sequence number in each affected DPH to a to allow the disk
system to be reset. When the disk system is reset, these drives are reset even
if they are permanent. The login sequence field is 06h bytes from the beginning
of the DPH.

4. Unlock the drive with the DRV_UNLOCK function.

5. Reset the Disk System with the DRV _ALLRESET function.

6. Terminate.

11-1

Section 12

END-USER DOCUMENTATION

OEMs must be aware that the documentation supplied by Digital Research for the
generic release of Concurrent describes only the example XIOS implementations. If
you decide to change, enhance, or eliminate a function that impacts the Concurrent
operator interface, you must also issue documentation describing the new
implementation. This is best done by purchasing reprint rights to the Concurrent
DOS system publications, rewriting them to reflect the changes, and distributing
them along with the OEM-modified system.

One area that is highly susceptible to modification by the OEM is the Status Line
XI OS function. Depending upon the implementation, it might be desirable to display
different, more, or even no status parameters. The documentation supplied with
Concurrent assumes that the Status Line function is implemented exactly like the
example XIOS presented in this document.

Another area that you might want to change is the default or current login disk. At
system boot time, the default system disk, as specified in the system GENSYS
session, is automatically logged-in and displayed in the first system prompt.
However, a startup command file, STARTNN.BAT, where NN is the Virtual Console
number, can be implemented for each Virtual Console. This file can switch the
default logged-in disk drive to any drive desired. However, the User's Guide and
the User's Reference Guide assume that the prompt will show the system disk. For
more information on startup files, see the User's Guide, User's Reference Guide,
and Programmer's Guide.

12-1

Appendix A

REMOVABLE MEDIA

All disk drives are classified under Concurrent as having either permanent or
removable media. Removable-media drives support media changes; permanent
drives do not. Setting the high-order bit of the CKS field in the drive's OPB marks
the drive as a permanent-media drive.

The BOOS file system makes two important distinctions between permanent and
removable-media drives. If a drive is permanent, the BOOS always accepts the
contents of physical record buffers as valid. It also accepts the results of hash
table searches on the drive.

BOOS handling of removable-media drives is more complex. Because the disk
media can be changed at any time, the BOOS discards directory buffers before
performing most system calls involving directory searches. By rereading the disk
directory, the BOOS can detect media changes. When the BOOS reads a directory
record, it computes a checksum for the record and compares it to the current
value in the drive's checksum vector. If the values do not match, the BOOS
assumes the media has been changed, aborts the system call routine, and returns
an error code to the calling process. Similarly, the BOOS must verify an
unsuccessful hash table search for a removable-media drive by accessing the
directory. The BOOS can detect a media change only by reading the directory.

Because of the frequent necessity of directory access on removable-media drives,
there is a considerable performance overhead on these drives compared to
permanent drives. Another disadvantage is that since the BOOS can detect media
removal only by a directory access, inadvertantly changing media during a disk
write operation results in writing erroneous data onto the disk.

If, however, the disk drive and controller hardware can generate an interrupt when
the drive door is opened, another option for preventing media change errors
becomes available. By using the following procedure, the performance penalty for
removable-media drives is practically eliminated.

1. Mark the drive as permanent by setting the value of the CKS field in the drive's
OPB to 8000H plus the total number of directory entries divided by four. For
example, you would set the CKS to 80l8H for a disk with 96 directory entries.

2. Write an Open Ooor Interrupt routine that sets the OOOR field in the XI OS
Header and the MF (Media Flag) field in the OPH for any drive that signals an
open door condition.

The BOOS checks the XIOS Header OOOR flag on entry to all disk-related XIOS
function calls. If the DOOR flag is not set, the BOOS assumes that the removable
media has not been changed. If the OOOR flag is set (OFFH), the BOOS checks the
Media Flag in the DPH of each currently logged-in drive. It then reads the entire
directory of the drive to determine whether the media has been changed before
performing any operations on the drive. The BOOS also temporarily reclassifies the
drive as a removable-media drive, and discards all directory buffers to force all
subsequent directory- related operations to access the drive.

A-l

Removable Media Concurent DOS 86 System Guide

In summary, using the DOOR and Media Flag facilities with removable-media drives
offers two important benefits. First, performance of removable-media drives is
enhanced. Second, the integrity of the disk system is greatly improved because
changing media can at no time result in a write error.

A-2

Appendix B

GRAPHICS IMPLEMENTATION

Concurrent can support graphics on any Virtual Console assigned to a physical
console that has graphics capabilities. Graphics support is provided in the sample
XIOS for GEM.

GEM drivers may perform their own hardware initialization to put a physical
console in graphics mode. A graphics process that is in graphics mode can not run
on a background console, because this causes the foreground console to change
to graphics mode. Keep the following points in mind when writing an XIOS for a
system that is to support graphics:

* The GEM driver will send an escape sequence (PC Clones: use a Software
interrupt 10) when it wants to change a Virtual Console to graphics or
alphanumeric mode. If the Virtual Console is in the background and graphics is
requested, the XIOS must flagwait the process. If the Virtual Console is in the
foreground, change the screen_mode field in the XIOS VC Structure and allow the
process to continue. You must reserve at least one flag for each Virtual Console
for this purpose. The VC Structure is described in Section 4.3.2.

* IO_SWITCH (7) must flagset any process that was flagwaited by when its Virtual
Console is switched to the foreground.

* IO_STATLINE (8) must not display the status line on a console that is in graphics
mode. This can be done by checking the screen_mode varible in the screen
structure.

* GEM drivers should detect if they are running under Concurrent and attach to the
appropriate auxiliary device for MOUSE input from a serial device. The GEM
driver sources demonstrate the use of this technique.

B-1

Appendix C

80386 SPECIFIC INFORMATION

Figure C-1 V386PTR Structure Definition

o lOT SEGMENT lOT LIMIT

+4 TSS SEGMENT TSS LIMIT

+8 MP TABLE NPAGES

+12 PTBL SEGMENT V386 LIM

+16 LIM BASE LIM MAXSIZE

+20 EXCEP OFFSET EXCEP SEGMENT

+24 PAGE FAULT OFFSET PAGE FAULT SEGMENT

+28 HI MEM ROOT READ ONLY MEM ROOT

lOT SEGMENT: Segment base address of Interrupt descriptor table (inserted by
XIOS INIT). XIOS must allocate enough table space for all interrupt descriptprs.
Hardware specific interrupt descriptors must be inserted into the table. The 80386
interrupt descriptors will be allocated by the DIS.

lOT LIMIT - Total length in bytes of Interrupt descriptor table (inserted by XIOS
INIT).

TSS SEG - Segment base address of Task state segment descriptor + liD map if
exception interrupts are required from certain liD operations. The required bit must
be set in the liD map by the XIOS, and the rest of the TSS and liD map cleared.

If the XIOS does not require a trap on any I/O operations then this field can be set
to 0000. The DIS will subsequently build a TSS descriptor with an liD bit map
length of 1024 and no bits defined.

TSS LIMIT - Total length in bytes of Task state segment descriptor + liD
permission bit map (inserted by XIOS INIT).

MP TABLE - Segment base address of memory free space table initialised by XIOS
INIT and segment address inserted.

C-1

Appendix C

The XIOS must allocate a table with one word per 16k page pf total system
memory. All O/S reserved pages and I/O and ROM space pages must have their
memory areas protected by mapping them out with OFFFFh in their repsective
locations in the MP TABLE (see V386.A86 module in example PCXIOS).

NPAGES - Total memory size in 16k pages. Inserted by XIOS.

PTBL SEGMENT - Master page table segment base address (inserted by O/S).

V386 - COOS 386 flag

Bit

7

6 - 1
o

Description

1= Allows the MEM module to attempt to move SYSDAT above
video memory (PC Clones)

Reserved (set to 0)
0= Processor is in real mode.
1 = Processor is in virtual 8086 mode or protected mode.

LIM - Lotus/Intel/Microsoft expanded memory emulator flag

OFF
OOH

Emulation required
Emulation not required
(can be changed by XIOS INIT routine).

LIM BASE - LIM spec page frame base address. (Default = ODOOh - can be modified
by XIOS INIT.)

LIM MAXSIZE - Maximum memory pages allocated per LIM application. (Default = 1
megabyte (10?4/16).)

EXCEP OFFSET - Offset address of exception handler in XIOS (inserted by XIOS
INIT). If 0000 the O/S will pass any underfined protection errors to INT 6 handler in
XIOS, via interrupt vector page address.

EXCEP SEGMENT - Segment address of exception handler in XIOS (inserted by
XIOS INIT). If 0000 the O/S will pass any underfined protection errors to INT 6
handler in XIOS, via interrupt vector page address.

PAGE FAULT OFFSET - offset address of exception handler in XIOS for all Page
Faults. (Inserted by XI OS INIT.)

PAGE FAULT SEGMENT - Segment address of exception handler in XIOS for all
Page Faults.

HI-MEM ROOT - Pointer to linked of available high memory. XIOS to initialise this
list if it requires memory mapping in unused memory. This memory is available for
use in the 10-protect function. The structure of the linked list is the same as the
memory descriptor structure (MD).

READ ONLY MEM ROOT - Pointer to a linked list to be initialized by the XIOS INIT.
The list contains the blocks of memory to be write-protected. The structure of the
items in the list is the same as the memory descriptor structure (MD).

C-2

INDEX
8087 exception handler, 3-14

(A)

A-Base load address, 10-2
ACB,4-19
ACB Table, 4-19
Adding memory partitions, 2-8
Allocation Block, 5-22, 5-23
Allocation Block Size, 5-22
Allocation vector, 5-24
Auto Density Support, 5-28
Auxiliary block input, 4-23
Auxiliary block output, 4-23
Auxiliary Control Block, 4-19
Auxiliary Control Block fields

OWNER,4-19
Auxiliary Control Block Table,
4-19
Auxiliary device data structures,
4-19
Auxiliary device functions, 4-19
Auxiliary device functions

10_AUXIN, 4-20
10_AUXOUT, 4-20
10_AUXSTIN, 4-20
10_AUXSTOUT, 4-21

Auxiliary device input, 4-20
Auxiliary device number, 4-20
Auxiliary device output, 4-20
Auxiliary device status, 4-21
Auxiliary port interrupt routines,
4-21
Auxiliary port protocol, 4-22

(B)

Banked memory, 1-7
Basic Disk Operating System,
1-2, 1-8
BCB, 5-26
BOOS, 1-2, 1-8
BOOS system calls, 1-8, 1-9
Block Mask Factor, 5-17
Block read, 4-23
Block Shift Factor, 5-1, 5-17,
5-22
Boot Sector, 10-1
Bootstrap adaptation, 10-1
Bootstrap process, 10-1
Buffer Control Block, 5-26

Buffer Control Block fields
DRV,5-26
UK,5-26

(C)

CCB, 4-1, 4-2
CCB Table, 4-1
CCONFIG.SYS, 1-17
CCONFIG.SYS commands

BREAK, 1-17
BUFFERS, 1-17
COUNTRY, 1-17
LASTDRIVE, 1-17
DEVICE, 1-17
EEMM, 1-17
EMM, 1-17
FIXED-DEVICE, 1-17
LASTDRIVE, 1-17

CCPM.SYS, 1-3, 2-1, 2-6, 10-1
CCPMSEG, 2-6
CDOS.COM, 2-1
Character devices, 4-1
Character 1/0 module, 1-2, 1-7
Checksum Vector, 5-16
Checksum Vector Size, 5-24
CIO, 1-2, 1-7
CIO system calls, 1-8
CLOCK.RSP, 2-10, 4-8, 8-1
Cluster Size, 5-20, 5"'"28
Clusters

number of, 5-20
size of, 5-20, 5-22

CMDLOGGING, 2-6
Command Line Interpreter, 1-13
COMPATMODE,2-6
Concurrent modules, 1-2
Console algorithms, 4-16
Console block output, 4-23
Console Control Block, 4-1, 4-2
Console Control Block fields

ATTR, 4-3
LINK, 4-3
MIMIC, 4-3
OWNER,4-3
PC, 4-3
STATE, 4-3
VG,4-3

Console Control Block Table,
4-1,4-2

Index-l

Index

Console functions
10_CONIN, 4-5
10_CONOUT,4-6
10_CONST,4-5
10_STATLlNE, 4-7
10_SWITCH, 4-6

Console I/O functions, 4-5
Console RAM buffers, 4-16
Console status line, 4-0
Console functions

0, 4-8
P,4-8
S,4-8

COUNTRY, 2-6
CP/M format, 5-7
CP/M media, 5-28
CS register, 10-2

(0)

Debugging the XIOS, 9-1
Default message terminator,
2-10
Deferred write, 5-6
Delay List Root, 1-14
Deleting memory partitions,
2-9
Determining disk density, 5-28
DEV_FLAGWAIT,4-2
DEV_POLL, 1-6, 3-12,4-2,4-24
DEV _SETFLAG, 1-6, 3-3, 3-13,
4-2,4-12,4-13,8-1
DEV_WAITFLAG, 1-6, 3-13,
4-11, 8-1
Device block read/write, 4-23
Device control blocks, 1-7
Device polling, 9-2
DEVSETFLAG, 1-6
Direct disk-access, 11-1
Directory Allocation Vector,
5-24
Directory blocks, 5-23
Directory buffer space, 2-12
Directory Entries per Block,
5-23
Directory entry length, 5-24
Directory hashing, 5-27
Directory hashing space, 2-12
Directory Maximum, 5-17, 5-23
DISKCOPY command, 11-1
Disk cluster, 5-20, 5-25
Disk devices, 5-1
Disk I/O functions, 5-1

Index-2

Concurrent DOS System Guide

Disk 1/0 functions
10_FLUSH, 5-7
10_FORMAT,5-7
10_NEW-FORMAT, 5-8
10_READ, 5-3
10_SELDSK, 5-2
10_WRITE, 5-6

Disk 1/0 recovery attempts, 5-1
Disk Parameter Block, 5-17,
5-15
Disk Parameter Block definition,
5-19
Disk Parameter Block fields

ALO, 5-18, 5-24
BLM, 5-1, 5-15, 5-15
BSH, 5-1, 5-1~ 5-22
CKS, 5-17, 5-24, 10-4, A-1
DRM, 5-17, 5-23
DSM, 5-17, 5-22
EXM, 5-17, 5-23
OFF, 5-17, 5-24
PRM, 5-17, 5-25
PSH, 5-11, 5-17, 5-25
SPT,5-17

Disk Parameter Block values,
5-22
Disk Parameter Header, 5-25,
5-17
Disk Parameter Header fields

CSV, 5-27
DDSC, 5-15
DPB, 5-25
MF, 5-15, A-2
XLT, 5-23

Disk Select, 5-2
Disk Storage Maximum, 5-22
Disk utilities, 11-1
Dispatch rate, 8-1
Dispatcher, 3-13
Dispatcher entry point, 8-1
DMA address, 5-11, 7-3
DMA address table, 5-11
DOS device drivers, 1-17,5-29
DOS equipment status bit map,
7-6
DOS File Allocation Table, 5-16,
5-20, 5-28
DOS interrupt 10, 7-2
DOS interrupt 11,7-21
DOS interrupt 12, 7-1
DOS interrupt 13; 7-1
DOS interrupt 14,7-1

Concurrent DOS System Guide

DOS interrupt 16,7-1
DOS interrupt 17, 7-1
DOS media, 5-24, 5-25, 5-28
DPB, 5-15, 5-17, 5-28
DPB definition, 5-19
DPB values, 5-22
DPB worksheet, 5-22, 5-25
DPH, 5-15, 5-17, 5-28, 11-1
Drive numbers, 5-11
DRV _ALLRESET, 11-1
o RV_LOCK, 11-1
DRV_UNLOCK, 11-1
DSKMAINT utility, 11-1

(E)

EMM driver, 6-2
End-user documentation, 12-1
ENTRY, 3-1
ENVSIZE, 2-6
Equipment check, 7-6
Equipment configuration data,
4-22
Example bootstrap, 10-1
Expanded memory, 1-7, 6-1
Expanded memory data
structures, 6-3
Expanded memory functions

10_MPALLOC, 6-5
10_MPFREE, 6-6
10_MPRESTORE, 6-7
10_MPSAVE, 6-6

Expanded Memory Management
Driver, 6-2
Expanded Memory Support, 6-1
Extended Disk Parameter Block,
5-19
Extended DPB, 5-19
Extended DPB definition, 5-21
Extended DPB fields

. CLSIZE, 5-19, 5-25
EXTFLAG, 5-19, 5-25
FATADD, 5-19, 5-25
NCLSTRS, 5-19, 5-25
NFATRECS, 5-19, 5-25
NFATS, 5-19, 5-25

Extended DPB Flag, 5-41, 5-54
Extended I/O System, 1-1
Extent Mask, 5-17
Extent Mask values, 5-23
Extra I/O devices, 4-1

(F)

FAT, 5-16, 5-20, 5-25
FAT address, 5-20
Files required by GENSYS, 2-1
FORMAT command, 11-1
Format block, 7-3
Function key codes, 7-4
Function keys, 7-4

(G)

GEM, B-1
GENSYS, 1-13, 1-15, 1-16,
1-17, 1-18, 1-19,2-1
GENSYS, 3-1, 5-28, 6-4, 5-30

command line syntax, 2-2
Deletesys option, 2-3
Destdrive option, 2-3
Disk Buffering Menu, 2-9
GENSYS command, 2-4
GENSYS option, 2-4
Help command, 205
input files, 2-11
Main Menu, 2-3
Memory Allocation Menu,
2-8
OSLABEL Menu, 2-9
RSP List Menu, 2-10
System Parameters, 2-5
System Parameters Menu,
2-5
Verbose option, 2-4

GENSYS required files, 2-1
Graphics implementation, B-1
Graphics mode, 4-8

(H)

HCB,2-27
Hash Control Block, 2-27

(I)

I/O Parameter Block, 5-10
INIT, 3-1
INIT Entry point, 3-7
Input/Output Parameter Block,
5-1
INT 224, 1-7,3-18
Interceptor, 6-1
Internal Data, 1-13

Index

Index-3

Index

Internal system call register
conventions, 3-18
Interrupt 224, 3-7
Interrupt 67H, 6-2
Interrupt-driven devices, 3-13
10_AUXIN, 4-20
10_AUXOUT, 4-20
10_AUXSTIN, 4-20
10_AUXSTOUT, 4-21
10_CONIN, 4-5, 7-5
10_CONOUT, 1-9, 4-6
10_CONST, 4-5
10 .. PEVI0, 4-23
10_FLUSH, 1-10, 5-7
10_FORMAT, 5-7
IOJNT13, 7-4
10_LSTOUT, 4-18
10_LSTST,4-18
10_MPALLOC, 6-5
10_MPFREE, 6-6
10_MPRESTORE, 6-7
10_MPSAVE, 6-6
10_NEW_FORMAT,5-8
10_POINTER,4-21
10_POLL, 3-12,4-24
10_READ, 1-10,5-1,5-3, 5-9,
5-10,5-11,5-12,5-28
10_SELDSK, 1-12, 5-1, 5-2, 5-3,
5-12, 5-28
I O_STATLINE, 1-9,4-3,4-7,
4-12,7-5,8-1
10_WRITE, 1-10,5-1,5-6,5-9,
5-10, 5-11, 5-12, 5-28
10PB, 5-1, 5-10
10PB fields

DMA_OFF, 5-11
DMA_SEG, 5-11
DRV, 5-11
MCNT, 5-11
RET _ADR, 5-11
RET_OFF, 5-11
RET _SEG, 5-11
SECTOR, 5-11
TRACK,5-11

10PB format, 5-10
IP register, 10-2

(J)

Jump Far Call, 8-1

Index-4

Concurrent DOS System Guide

(K)

Keyboard ISR, 4-11
Keyboard shift status bit map,
7-5

(L)

LCB,4-7
LCB Table, 4-17
LlNK-86, 2-2
List block output, 4-23
List Control Block, 4-17
List Control Block fields

initial values, 4-18
MSOURCE,4-18
OWNER,4-18

List Control Block Table, 1-13,
4-17
List device data structures,
4-18
List device functions, 4-18
List device functions

10 _LSTOUT, 4-18
10 _LSTST, 4-18

List device output, 4-18
Loader, 10-1
Local return address, 5-11
Lock List Item, 1-14,2-7
LOCK_MAX, 2-6
Locked Unused List, 1-14
Logical address windows, 6-1
Logical extents, 5-17

(M)

Machine-specific data, 4-22
Media density change, 5-4
Media Flag, 5-16, 5-29
MEM, 1-2, 1-7,6-1
MEM system calls, 1-7
MEMMAX,2-6
Memory allocation, 2-8
Memory Allocation List, 1-14
Memory Allocation Unit, 1-14
Memory Descriptor Unused List,
1-14
Memory Descriptors, 6-4
Memory disk, 5-28
Memory fragmentation, 2-9
Memory Free List, 1-14

Index

Process Descriptor P _MAR field,
6-4
Process ID, 6-5
Process memory allocation, 1-7
Process priority, 1-5
Process Unused List, 1-14
Processor Descriptor access,
3-5

(Q)

QBUFSIZE, 2-7
Queue Buffer, 1-6
Queue Buffer Area, 2-7
Queue Buffer Memory
Allocation Unit, 1-14
Queue Control Blocks, 2-7
Queue Descriptor, 1-6
Queue List Root, 1-14
Queue management, 1-6
Queue Unused List 1-14

(R)

RASM-S6, 2-2
Read block, 4-23
Ready List, 1-5
Ready List Root, 1-S, 1-14
Real-time Monitor, 1-2, 1-5,
6-1
Reentrancy, 1-9
Register conventions

XIOS,3-S
Register conventions for
internal calls, 3-1S
Register conventions for
window functions, 4-9
Removable media, A-1
Required RSPs, 2-1, 2-10
Reserved tracks, 5-29
Resident System Processes,
1-3, 1-17
ROM monitor, 10-1
ROS configuration support, 7-6
ROS disk support, 7-3
ROS interrupts 3-17
ROS keyboard support, 7-6
ROS video support, 7-2
RSPs, 1-17
RTM, 1-2, 1-5,6-1
RTM system calls, 1-6

Index-6

Concurrent DOS System Guide

(S)

Screen switch, 4-7
Scroll mode, 4-22
Sector skewing, 5-12
Sector translation table, 5-15
Sectors per Track, 5-17
Serial devices, 4-1
Setup data block, 4-22
Setup information, 4-22
SETUP utility, 5-29
SID-S6, 2-1, 2-7
Skewed disks, 5-12
S-OSVER, 11-1
Special status line, 4-S
SRCHDISK, 2-5
Standard Disk Parameter Block,
5-17
Status line, 4-12
Status line string, 4-S
SUP, 1-2, 1-4
Supervisor, 1-2, 1-4
Supervisor system calls, 1-5
Symbol table

XI OS, 9-1
SYSDAT buffer space, 5-29
SYSDAT DATA, 1-10, 1-11,
1-12
SYSDAT DATA

setting ???CODMCDC,???? 2-6
setting LOCK_MAX, 2-6
setting MMP, 2-6
setting NFLAGS, 2-7
setting OPEN_MAX, 2-6
setting SRCHDISK, 2-5
setting TEMP DISK, 2-5

SYSDAT DATA space allocation,
5-29
SYSDAT Fields, 1-12
SYSDAT fields

TOD_MIN, 1-14
ACB, 1-15
CCB, 1-14
CCPMSEG, 1-13
CCPMVERNUM, 1-14
COUNTRY, 1-16
DAY FILE, 1-13
DEVHEAD, 1-15
DISPATCHER, 1-13

Concurrent DOS System Guide

DLR, 1-14
DRL, 1-14
ENDSEG, 1-13
ENVSIZE, 1-16
FLAGS, 1-14
HASHROOT, 1-15
INDMA, 1-15
INTL-XLAT, 1-16
LCB, 1-15
LOCK_MAX, 1-15
LUL, 1-14
MAL, 1-14
MDUL, 1-14
MFL, 1-14
MMP, 1-13
MWDR. 1-15
NACB, 1-15
NCCB, 1-13
NCIODEV, 1-15
NCONDEV, 1-15
NDRV, 1-16
NFLAGS, 1-13
NLCB, 1-13
NLSTDEV, 1-15
NVCNS, 1-13
OFF _8087, 1-15,3-14
OPENJILE, 1-15
OPEN_MAX, 1-16
OWNER_8087, 1-15,3-14
PDISP,1-13
PHASE1R. 1-15
PLR, 1-14
PSD, 1-15
PUL, 1-14
OLR, 1-14
QMAU, 1-14
QUL, 1-14
RLR, 1-14
RSPSEG, 1-15
SRCHDISK, 1-15
SUP ENTRY, 1-12
SYS_87_0F, 1-15,3-14
SYS_87 _SG, 1-18, 3-14
SYSDATMEM, 1-16
THRDRT, 1-14
TICK_CNT, 1-16
TICKS/SEC, 1-13
TOD,8-1
TO D_DAY, 1-14
TOD_HR. 1-14
TOD_SEC, 1-14
TTIKS, 1-16

V386PTR, 1-16
VERNUM, 1-14
VERSION, 1-14
XIOS-DISP, 1-16
XI OS ENTRY, 1-12, 9-3
XIOS INIT, 1-12,9-3
XPCNS, 1-15

SYSDAT segment. 1-13
SYSDRIVE, 205
System calls

XIOS, 3-18
System clock, 1-6
System Data Area, 1-3
System Data segment. 1-13
System generation, 2-1
System image, 1-3
System Table Area, 1-13
System tick flag, 8-1
System tick frequency, 8-1

(T)

TEMP DISK, 2-5
Terminal Message Process, 1-1
Thread List Root. 1-14
Tick interrupt. 3-13, 9-1
TICK_FLAG, 3-3
Timer Interrupt routine, 3-3
TMP, 1-1
TMPDRIVE, 2-5
TMP.RSP, 2-1
Total Directory Entries, 5-23
Track Offset. 5-18
Types of media supported, 5-1

(U)

UDA 1-5
UDA segment address, 3-18
Uninitialized interrupts, 3-7
User Data Area, 1-5

(V)

VC Structure, 4-15
Video RAM, 4-7
VINQ, 2-7
Virtual Console, 4-1, 4-6, 4-10
Virtual Console data structures,
4-16
Virtual Console o"utput. 4-16

Index

Index-7

Index

Virtual Console Semaphore,
4-07
Virtual Console Structure, 4-11,
4-15
Virtual Console Switch bits,
4-21
Virtual Input Queue (VINQ), 2-7

(W)

Window boundaries, 4-13
Window Data Block, 4-15, 4-16
Window functions, 4-9
Window functions

WW_CURSOR_VIEW, 4-13
WW_FULL_WINDOW, 4-14
WWJM_HERE,4-12
WW_KEY, 4-11
WW_NEW_WINDOW, 4-13
WW_POINTER 4-11
WW_STATLlNE, 4-12
WW_SWITCH_DISPLAY, 4-14
WW_WRAP_COLUMN,4-14

Window manager, 4-11
Window monitor, 4-14
Window support, 4-9
WINDOW utility, 4-9
Windowed systems, 4-16
Windows, 4-9
WMENU utility, 4-9
Write block, 4-23
WW_CURSOR_VIEW, 4-13
WW_FULL_WINDOW, 4-14
WWJIII_HERE, 4-12
WW_KEY, 4-11
WW_NEW_WINDOW, 4-13
WW_POINTER, 4-11, 4-15
WW_STATLlNE, 4-12
WW_SWITCH_DISPLAY, 4-14
WW_WRAP_COLUMN,4-14

(X)

XIOS, 1-1, 1-9,3-1
XIOS

debugging, 9-1
symbol table, 9-1

XIOS character 1/0 functions,
4-1
XIOS Code Segment, 3-3
XIOS ENTRY, 3-8

Index-8

Concurrent DOS System Guide

XI OS entry points, 3-1
XIOS ENTRY routine, 3-2
XIOS Function Table, 3-12
XIOS functions, 3-9
XIOS Header, 3-2, 3-6
XIOS Header fields

ACB,3-4
ACBLlST, 3-4
ALLOC, 3-4
CCB,3-4
CCBLlST, 3-4
DOOR, 3-3, A-2
DPH,3-5
INIT XIOS PTR 3-2
JMP ENTRY, 3-2
LCB,3-4
LCBLlST, 3-4
NACB, 3-3,4-1, 4-19
NCCB, 3-3, 4-2
NLCB, 3-4, 4-17
NPCNS, 3-3, 4-1
NVCNS, 3-3, 4-1, 4-5
OEMPTR,3-4
SUPERVISOR, 3-3
SYSDAT, 3-3
TICK, 3-2, 8-1
TICKS_SEC, 3-3

XIOS INIT, 4-17
Initialization Point 3-2
Interrupt Handler, 3-13
Register Conventions, 3-8
System Calis, 3-18
XIOS tick interrupt, 8-1
XIOS.CON, 2-1. 3-3

(Y)

(Z)

