
FORTRAN-10/20
and VAX FORTRAN
Compatibility Manual
Order Number: AA-Y868C-TK

February 1 987

This document describes the similarities and differences
between FORTRAN-10/20 and VAX FORTRAN.

This manual supersedes the FORTRAN-10j20 and VAX
FORTRAN Compatibility Manual, order number AA-Y868B-TK.

Operating System and Version: TOPS-10 V7.03
TOPS-20 V4.1, V6.1
VAX/VMS V4.5

Software Version:

digital equipment corporation
maynard, massachusetts

FORTRAN-10 V 11
"" FORTRAN-20 V 11
VAX FORTRAN V4.5

First Printing, August 1983
Revised, May 1985
Revised, February 1 987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.
Copyright © 1983, 1987 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC PIOS VAX
DECmate Professional VAXBI
DECUS Q-BUS VAXELN
DECwriter Rainbow VMS
DIBOL RSTS VT
MASSBUS RSX Work Processor
MicroVAX RT

~U~UD~U PDP UNIBUS

CONTENTS

CHAPTER 1 INTRODUCTION

CHAPTER 2 EXTENSIONS PROVIDED BY FORTRAN-10/20 AND
VAX FORTRAN

2.1 CHARACTERS AND LINES · · · · · · · · 2-1
2.2 COMPILATION CONTROL STATEMENTS · · · 2-3
2.3 DATA TYPES · · · · · · · · · · · · · 2-3
2.4 SPECIFICATION AND DATA STATEMENTS · 2-8
2.5 EXPRESSIONS · · · · · · · · · · · 2-12
2.6 FUNCTIONS AND SUBROUTINES · · · · 2-15
2.7 CONTROL STATEMENTS · · · · · 2-16
2.8 I/O STATEMENTS · 2-17
2.9 FORMATTING · · · · · · · · 2-21

CHAPTER 3 FORTRAN-10/20 AND VAX FORTRAN
INCOMPATIBILITIES

3.1 PROGRAM FORMAT · · · · · · · · · 3-1
3.2 ARGUMENT PASSING · · · · · · · · 3-2
3.3 LOGICAL TESTS · · · · · · · · 3-4
3.4 THE ASSIGNED GOTO STATEMENT · 3-5
3.5 I/O INCOMPATIBILITIES · · · · · 3-5
3.5.1 Default Filenames Associated with

Units . · · · · · · · · · · · 3-6
3.5.2 Unit 5 for Both Input and Output · 3-6
3.5.3 STATUS='NEW' and File Generation

(Version) Numbers · · · · · · · · 3-7
3.5.4 STATUS='UNKNOWN' and File

Generation (Version) Numbers · · · 3-7
3.5.5 The CARRIAGECONTROL= Specifier · · 3-7
3.5.6 The RECL= Specifier and Formatted

Sequential Files · · · · · · · · · 3-8
3.5.7 ASSOCIATEVARIABLE= Specifier · 3-9
3.5.8 ACCESS='APPEND' and REWIND · · 3-9
3.6 INQUIRE STATEMENT · · · · · · 3-9
3.7 THE OPEN STATEMENT · · · · · · 3-9
3.7.1 Standard OPEN Specifiers · · 3-10

iii

3.7.2

3.7.3

3.7.4

3.7.5
3.8
3.8.1
3.8.2

3.8.3

3.8.4

3.8.5
3.9
3.10
3.10.1

3.10.2

3.10.3
3.10.4
3.10.5
3.11
3.12
3.13
3.13.1

3.13.2

3.13.3

3.13.4

3.13.5

3.13.6
3.13.7

3.13.8

OPEN Specifiers Common to
FORTRAN-10/20 and VAX FORTRAN
OPEN Specifiers Only in
FORTRAN-10/20 •••••••••
OPEN Specifiers Only in VAX
FORTRAN ••• • • • • • • • • •
Conversion of OPEN Statements

THE CLOSE STATEMENT • • • • • • •
Standard CLOSE Specifiers
CLOSE Specifiers Common to
FORTRAN-10/20 and VAX FORTRAN
CLOSE Specifiers Only in
FORTRAN-10/20 •••••
CLOSE Specifiers Only in VAX
FORTRAN ••• • • • • • • •
Conversion of CLOSE Statements •

CARRIAGE CONTROL • • • • • •
FORMAT EDIT DESCRIPTORS

Interaction of the X and $ Edit
Descriptors •••••••• ••
Interaction of the $ Edit
Descriptor and Carriage-Control
Characters • • • • • • • • • • •
F, E, D, and G Edit Descriptors
o and Z Edit Descriptors ••
Default Field Widths ••••

INCLUDE STATEMENT • • • • •
PROGRAM STATEMENT • • • • • •
FORTRAN-SUPPLIED SUBPROGRAMS •

Functions That Are Generic Only
in FORTRAN-10/20 • • • • •
Functions That Are Generic Only
in VAX FORTRAN • • • • • •
Generic Functions Only Available
in VAX FORTRAN • • • • • •
Intrinsic Functions Only
Available in FORTRAN-10/20 •
Intrinsic Functions Only
Available in VAX FORTRAN • •
INTEGER Function Differences
DOUBLE-PRECISION COMPLEX
Functions •• • • • • • • •
Similar Subroutines in
FORTRAN-10/20 and VAX FORTRAN

iv

3-11

3-12

3-13
3-13
3-15
3-15

3-16

3-16

3-17
3-17
3-18
3-19

3-19

3-19
3-20
3-20
3-21
3-23
3-23
3-23

3-24

3-24

3-25

3-25

3-25
3-27

3-28

3-30

3.13.9 Subroutines Only Available in
FORTRAN-10/20 •••••• 3-31

3.13.10 Subroutines Only Available in VAX
FORTRAN •• • • • • • • • 3-33

CHAPTER 4 SOFTWARE AND HARDWARE LIMITS

4.1 SOFTWARE LIMITS · · · · · · 4-1
4.1.1 Number of Continuation Lines · · · 4-1
4.1.2 Other Compiler Limits · 4-2
4.1.3 I/O Limits · · · · 4-3
4.2 HARDWARE LIMITS · · · · · · 4-4
4.2.1 The INTEGER Data Type · 4-4
4.2.2 The LOGICAL Data Type · · · · · · 4-5
4.2.3 The CHARACTER and Hollerith Data

Types . . · · · · · · · · · · · · 4-6
4.2.4 The Floating-Point Data Types 4-8

TABLES

3-1 Default Field Widths for Edit
Descriptors · · · · · · · · · 3-22

3-2 VAX-II FORTRAN INTEGER Function
Names . . . · · · · · · · · · 3-28

4-1 Compiler Imposed Limitations · · · · 4-3
4-2 Maximum Record Lengths · · 4-4
4-3 Integer Number Format · 4-5
4-4 Logical Data Types · · · · .. · · 4-6
4-5 Characters per FORTRAN Data Type · · 4-7
4-6 Floating-Point Number Formats 4-11

v

CHAPTER 1

INTRODUCTION

This manual describes the similarities and differences
between FORTRAN-l0/20 Version 11 and VAX FORTRAN versionl
4.5. This manual is intended for users who may want to
transport FORTRAN-10/20 programs to a VAX computer, or
transport VAX FORTRAN programs to a DECsystem-10/20
computer. This manual describes any incompatibilities
of the implementation of language features between these
FORTRAN versions. It also notes any features provided
by one FORTRAN version and not by the other.

Both FORTRAN-10/20 and VAX FORTRAN are based on American
National Standard FORTRAN (ANSI X3.9-l978), referred to
as FORTRAN-77. Both VAX FORTRAN and FORTRAN-10/20 are
compatible with FORTRAN-77 at the full-language level.
Both compilers provide many extensions and additions to
the FORTRAN-77 standard. This manual describes the
extensions to FORTRAN-77 for both compilers.

Both compilers support a compatibility flagger, invoked
by a compiler switch, which flags features that are
extensions to the FORTRAN-77 standard. The
FORTRAN-l0/20 flagger also flags features that are
incompatible with VAX FORTRAN.

In addition, this manual discusses the differences in
software limits imposed by the two compilers, and
describes how the FORTRAN data types are represented by
the hardware of the DECSYSTEM-l0/20 and VAX computers.

1-1

INTRODUCTION

NOTE

When 'word' is used in this manual, it refers to
either a 32-bit word on VAX systems, or to a
36-bit word on FORTRAN-10/20 systems.

See the following documents for more information on
FORTRAN-10/20:

• TOPS-10/TOPS-20 FORTRAN
(AA-N383B-TK, AD-N383B-Tl)

• TOPS-l0/TOPS-20
(AA-P529C-TK)

FORTRAN

Language Manual

Pocket Guide

See the following documents for more information on VAX
FORTRAN:

• Programming in VAX FORTRAN (AA-D034D-TE)

• VAX FORTRAN User's Guide (AA-D035D-TE)

• VAX FORTRAN Language Summary (AV-M763B-TE)

• VAX FORTRAN Installation Guide/Release Notes

1-2

CHAPTER 2

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

This chapter describes the extensions to the FORTRAN-77
standard provided by FORTRAN-l~/2~ and VAX FORTRAN.

2.1 CHARACTERS AND LINES

• Comment lines

Both FORTRAN-l~/2~ and VAX FORTRAN allow
comment lines to begin with characters other
than C or * (asterisk) in column one. VAX
FORTRAN also allows comment lines to begin with

(exclamation" point) in column one, and
FORTRAN-l~/20 allows comment lines to begin
with!, $ (dollar sign), and / (slash) in
column one.

• Comment on statements

Both FORTRAN-l~/20 and VAX FORTRAN allow any
line of a program to be commented. If a !
(exclamation point) appears in the statement
field of any line (except in a character or
Hollerith constant), then the rest of the line
is considered a comment.

2-1

EXTENSIONS PROVIDED BY FORTRAN-19/29 AND VAX FORTRAN

• DEBUG lines

Supported by FORTRAN-19/29 and VAX FORTRAN. As
an aid to debugging, a 0 in column one of any
line causes that line to be interpreted as a
comment line. However, the /INCLUDE switch to
FORTRAN-19/29 and the /0 LINES' qualifier to VAX
FORTRAN causes the compiler to treat the 0 in
column one as a space, so that the remainder of
the line is compiled as an ordinary
(noncomment) line. This allows the program to
contain statements only useful for debugging,
without sacrificing object program size or
execution time when not debugging.

• Long identifiers

Supported by VAX FORTRAN and
Both allow identifiers to
characters long.

• Multi-Statement lines

FORTRAN-19/29.
be up to 31

Supported by FORTRAN-10/20. Not supported by
VAX FORTRAN. FORTRAN-10/20 allows users to
place more than one statement per line.
Multiple statements on a line are separated by
semicolons. For example:

DIST=RATE*TIME; TIME=TIME+0.5; CALL PRIME

• Special characters in identifiers

Supported by VAX FORTRAN and FORTRAN-10/20.
Identifiers may contain the special characters
$ (dollar sign) and _ (underscore).

2-2

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

2.2 COMPILATION CONTROL STATEMENTS

• INCLUDE statement

Supported by FORTRAN-l~/2~ and VAX FORTRAN.
The INCLUDE statement directs the compiler to
insert the contents of the designated file
immediately following the INCLUDE statement.
This allows programs to share common code or
declarations by placing them in an INCLUDE
file. (See Section 3.11 for the
incompatibilities between the FORTRAN-l~/20 and
VAX FORTRAN INCLUDE statements.)

• OPTIONS statement

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. The OPTIONS statement allows
the programmer to give the compiler directives
controlling the compilation of the program.

2.3 DATA TYPES

• Alternate number format for DOUBLE PRECISION

Both FORTRAN-10/20 and VAX FORTRAN allow the
user to specify, when compiling a program unit,
which floating-point number format (D-floating
or G-floating) is used to store
DOUBLE-PRECISION quantities. You specify which
format with the /DFLOATING and /GFLOATING
switches for FORTRAN-10/20, and with the
/G FLOATING and /NOG FLOATING qualifiers for
VAX FORTRAN. -

2-3

EXTENSIONS PROVIDED BY FORTRAN-le/2e AND VAX FORTRAN

•

•

D-floating has less range, but more preCiSion,
than G-floating (see Section 4.2.4).
FORTRAN-le/2e supports G-floating only on KL10
model B processors. VAX FORTRAN supports
G-floating on all VAX processors. However,
processors without the extended floating-point
feature emulate G-floating instructions in the
software, and thus run slower.

BYTE data type (BYTE is a synonym for
LOGICAL*l)

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/2e.

COMPLEX*16 data type (synonym for DOUBLE
COMPLEX)

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. FORTRAN-le/20 acts differently
if you declare COMPLEX*16 data with the DOUBLE
COMPLEX statement, instead of with a COMPLEX
statement with a length attribute of 16. If
you use the DOUBLE COMPLEX statement, a fatal
error message is issued; if you use the
COMPLEX*16 statement, a warning is given and
the COMPLEX*8 data is used. FORTRAN-10/20 does
provide subroutines that take arguments of
two-element DOUBLE PRECISION arrays, and that
calculate DOUBLE COMPLEX transcendental
functions.

• Hexadecimal constants (typeless)

Supported by VAX FORTRAN.
FORTRAN-10/20.

2-4

Not supported by

EXTENSIONS PROVIDED BY FORTRAN-10/2~ AND VAX FORTRAN

• Hollerith constants of the form 'ccc'

Supported by FORTRAN-l~/20 and VAX FORTRAN.
Both FORTRAN-10/20 and VAX FORTRAN use the
context of the expression to determine if a
constant of the form I CCC ' is a Hollerith
constant or a FORTRAN-77 string constant. If
the constant is the actual argument of a
subprogram, both FORTRAN-10/20 and VAX FORTRAN
provide the linker with enough information to
determine the type of the constant at
load-time.

• Hollerith constants of the form nHccc

Supported by FORTRAN-l0/20 and VAX FORTRAN.
Incompatibility: FORTRAN-10/20 right-pads all
Hollerith constants with blanks until they
reach a word boundary. VAX FORTRAN does not
pad Hollerith constants used as actual
arguments to subprograms.

• INTEGER*2 data type

Supported by VAX FORTRAN. FORTRAN-10/20 gives
a warning and uses INTEGER*4.

• LOGICAL*1 data type

Supported by VAX FORTRAN. FORTRAN-10/20 gives
a warning message and uses LOGICAL*4.

• LOGICAL*2 data type

Supported by VAX FORTRAN. FORTRAN-10/20 gives
a warning message and uses LOGICAL*4.

• MIL-Standard-1753
constants

octal and hexadecimal

Supported by FORTRAN-10/20. Not supported by
VAX FORTRAN. These constants are used only in
DATA statements.

2-5

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

• Mixing CHARACTER and non-character data in
COMMON or EQUIVALENCE

Supported by FORTRAN-10/20 and VAX FORTRAN. If
/FLAG:ANSI is in effect, FORTRAN-10/20 produces
a warning message about this nonstandard use of
COMMON or EQUIVALENCE. VAX FORTRAN produces
the warning if /STANDARD is in effect.

• Octal cons~ants (typeless)

Supported by FORTRAN-10/20 and VAX FORTRAN,
although with different syntax. Also, when
assigning a single-word octal constant to a
double-word variable, FORTRAN-10/20 sets the
high-order word to the constant, and sets the
low-order word to zero; VAX FORTRAN sets the
the high-order word to zero, and sets the
low-order word to the constant.

Conversely, if a double-word octal constant is
assigned to a single-word variable,
FORTRAN-l0/20 truncates the constant on the
right, and VAX FORTRAN truncates the number on
the left. Also, VAX FORTRAN does not allow
double-word octal constants as actual arguments
to subprograms.

• Octal constants of type INTEGER

Supported by VAX FORTRAN. FORTRAN-l0/20
typeless octal constants have the same syntax
and will work in most contexts as the VAX
integer octal constants. The most notable
exception is mixed-mode expressions, such as:

R = "1 + 1.0

VAX FORTRAN will assign R the value 2.0.
FORTRAN-10/2~ does not convert the octal
constant, and so adds a very small,
unnormalized floating-point number to 1.0.

2-6

EXTENSIONS PROVIDED BY FORTRAN-10/20 AND VAX FORTRAN

• RADIX-50 constants in DATA statements

Supported by VAX FORTRAN.
FORTRAN-10/20.

• REAL*16 data type

Not supported by

Supported by VAX FORTRAN. FORTRAN-10/20 gives
a warning and uses REAL*8. REAL*16 is the VAX
H-floating number format (see Section 4.2.4),
which is available on all VAX processors.
However, processors without the extended
floating-point feature emulate H-floating
instructions in the software, and thus run
slower.

• RECORD data type

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. RECORD is a data item that can
be composed of multiple fields containing
aggregate and scalar data items with any mix of
the VAX FORTRAN data types.

• Symbolic constant used as real or imaginary
part of COMPLEX constant

Supported by FORTRAN-10/20 and VAX FORTRAN.

2-7

EXTENSIONS PROVIDED BY FORTRAN-lg/2g AND VAX FORTRAN

2.4 SPECIFICATION AND DATA STATEMENTS

• Alternate form of the PARAMETER statement

Both FORTRAN-lg/2g and VAX FORTRAN
PARAMETER statements of the form:

PARAMETER p=c[,p=c •••]

allow

where p is a symbolic name, and c is a
compile-time constant expression. When this
form of the PARAMETER statement is used, the
type of the symbolic name is determined by the
type of constant, rather than the implicit or
explicit type of the name. This feature is for
compatibility with earlier versions of
FORTRAN-lg/2g and VAX FORTRAN.

• Compatibility mode for EXTERNAL statements

Both FORTRAN-lg/2g and VAX FORTRAN allow the
user to specify at compile-time that the
EXTERNAL statements in a program should be
processed as FORTRAN IV EXTERNAL statements.
FORTRAN IV EXTERNAL statements can be used to
declare a symbolic name as being the name of
FORTRAN library routine, as well as the name of
a user-supplied subprogram.

Both FORTRAN-10/20 and VAX FORTRAN extend the
syntax of FORTRAN IV EXTERNAL statements. They
allow a user-supplied subprogram that has the
same name as a FORTRAN library routine to be
declared if its name is preceded by an asterisk
in the EXTERNAL statement.

• DICTIONARY statement

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. This statement incorporates VAX
Common Data Dictionary data definitions into
the current FORTRAN source file during
compilation.

2-8

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

• Easy EQUIVALENCE of multidimensional arrays

Supported by FORTRAN-I 0/20 and VAX FORTRAN.
Multidimensional arrays may be equivalenced by
specifying only one subscript. For example:

DIMENSION TABLE(2,2), TRIPLE(2,2,2)
EQUIVALENCE (TABLE(4) ,TRIPLE(7»

may be used instead of:

DIMENSION TABLE(2,2), TRIPLE(2,2,2)
EQUIVALENCE (TABLE(2,2),TRIPLE(I,2,2»

• IMPLICIT NONE statement

Supported by' VAX FORTRAN and FORTRAN-10/20.
The IMPLICIT NONE statement is used to remove
all default data types, and thus requires that
all identifiers be explicitly declared. Note
that the program listing produced by
FORTRAN-10/20 indicates which identifiers have
not been explicitly declared.

• Implied DO in DATA statements of substring
bounds

Supported by FORTRAN-10/20 and VAX FORTRAN.
For example:

DATA (C(I:I) , 1=6,10) /5*'*'/

• Length specifiers in FUNCTION statements

Supported by FORTRAN-10/20 and VAX FORTRAN.
The length specifier can be either after the
data type in the FUNCTION statement, or after
the function name in the statement. For
example:

REAL*8 FUNCTION SIMPSN(A, B, F)
REAL FUNCTION SIMPSN*8(A, B, F)

2-9

EXTENSIONS PROVIDED BY FORTRAN-l9/2~ AND VAX FORTRAN

• Numeric data type length specifiers

Supported by FORTRAN-l~/2~ and VAX FORTRAN.
You can specify the length of numeric data in
type declaration statements. For example:

REAL*8 X, Y*4, Z{l~)*4, A

• Numeric initialization of CHARACTER variables

Supported by VAX FORTRAN. Not supported by
FORTRAN-l~/20. CHARACTER variables with a
length of one may be initialized using numeric
constants in DATA or type declaration
statements. The character is initialized to
the character whose ASCII code is specified by
the numeric constant.

Both compilers support an alternate way to
initialize CHARACTER variables based on a given
ASCII code. FORTRAN-l~/20 and VAX FORTRAN
support the function CHAR in compile-time
constant expressions. Therefore, CHAR can be
used in a PARAMETER statement to form a
symbolic constant, and the symbolic constant
could be used in a DATA statement to initialize
a CHARACTER variable. For example:

CHARACTER*l LINEFD, CHARI
PARAMETER (LINEFD=CHAR(10»
DATA CHARI/LINEFD/

• RECORD statement

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. The RECORD statement creates a
record of the form specified in a previously
declared structure.

2-10

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

• STRUCTURE and END STRUCTURE statements

Supported by VAX FORTRAN. Not supported by
FORTRAN-l~/2~. These statements define the
structure or form of a record. The STRUCTURE
statement indicates the beginning of a
structure declaration, and the END STRUCTURE
statement indicates the end of a structure
declaration.

• Value initialization
statements

in type declaration

Supported by VAX FORTRAN. Not supported by
FORTRAN-l~/2~. Type declarations and DATA
statements may be combined. For example:

REAL X/-l./, A(10)/5*~.,5*1./

• VIRTUAL statement (synonym for the DIMENSION
statement)

Supported by VAX FORTRAN for compatibility with
PDP-II FORTRAN. Not supported by
FORTRAN-l~/2~.

• VOLATILE statement

Supported by VAX FORTRAN. Not supported by
FORTRAN-l~/20. The VOLATILE statement prevents
all optimization from being performed on the
variables, arrays, or common blocks that it
identifies.

2-11

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

2.5 EXPRESSIONS

• Alternate syntax for relational operators

•

Supported by FORTRAN-1~/2~. Not supported by
VAX FORTRAN. FORTRAN-1~/2~ allows the
relational operators to be specified by the
following special characters:

> for .GT.
>= for .GE.
< for .LT.
<= for .LE.

for .EQ.
i for .NE.

Concatenation of length * operands

Supported by FORTRAN-1~/2~ and VAX FORTRAN.
Except in character assignment statements, the
FORTRAN-77 standard forbids any character
expression that involves the concatenation of
an operand whose length specification is an
asterisk in parentheses, unless the operand is
the symbolic name of a constant. Neither
FORTRAN-1~/20 nor VAX FORTRAN has this
restriction.

• Consecutive arithmetic operators

Supported by FORTRAN-1~/2~ and VAX FORTRAN,
although with different precedence rules. An
example of an expression with two consecutive
ope r a to r sis:

x = A ** -8 * C

This expression is not permitted by the
FORTRAN-77 standard because the exponentiation
operator is adjacent to the negation operator.
FORTRAN-10/20 interprets the above statement
as:

X (A ** (-8» * C

2-12

EXTENSIONS PROVIDED BY FORTRAN-10/20 AND VAX FORTRAN

VAX FORTRAN interprets the statement as:

X = A ** (- (B*C))

• Extended compile-time constant expressions

VAX FORTRAN allows the following functions to
be used to form compile-time constant
expressions: ABS, CHAR, CMPLX, CONJG, DIM,
DPROD, lAND, ICHAR, IEOR, IMAG, lOR, ISHFT,
LGE, LGT, LLE, LLT, MAX, MIN, MOD, NINT, and
NOT.

FORTRAN-10/20 allows the following functions to
be used to form compile-time constant
expressions: CHAR, ICHAR, lAND, and lOR.

• General numeric expressions in contexts where
INTEGER required

Both FORTRAN-10/20 and VAX FORTRAN allow any
type of numeric expression in the following
contexts where the FORTRAN-77 expressions are
standard requires an INTEGER expression:

• The values of I/O statement specifiers

• Subscript expressions

• Substring bounds expressions

• Index of computed GOTO statements

• Index of a RETURN statement

In addition, VAX FORTRAN allows any type of
numeric expressions in the following contexts
where FORTRAN-10/20 requires an INTEGER
expression:

• Implied DO loop bounds in DATA statements

• The upper and lower limits
declarations

2-13

of array

EXTENSIONS PROVIDED BY FORTRAN-19/20 AND VAX FORTRAN

Any noninteger numeric expression in these
contexts is converted to INTEGER before use
(any fractional part is truncated).

• LOGICAL expressions in numeric contexts

Supported by FORTRAN-10/20 and VAX FORTRAN.
However, VAX FORTRAN always treats the LOGICAL
expression as an INTEGER, and FORTRAN-10/20
treats the LOGICAL expression as a typeless
quantity (a bit string).

• Numeric expressions in LOGICAL contexts

Supported by FORTRAN-10/20. Supported to some
extent by VAX FORTRAN. FORTRAN-10/20 treats
any numeric expression in a LOGICAL context as
if it was a LOGICAL value (bit string).

VAX allows any INTEGER expression to appear in
a LOGICAL context and treats the INTEGER
expression as a LOGICAL value. VAX FORTRAN
only allows other types of numeric expressions
to appear in one LOGICAL context: that of a
numeric expression assigned to a LOGICAL
variable. The numeric expression is converted
to INTEGER and assigned to the LOGICAL variable
as if it was a LOGICAL value.

• Numeric scalars or arrays in contexts where
CHARACTER required

For compatibility with older programs, both
FORTRAN-10/20 and VAX FORTRAN allow numeric
scalars and arrays that contain Hollerith data
expressions are to be used in some
contexts where CHARACTER expressions are
required. Examples of such contexts are OPEN
and CLOSE statement keywords and arguments to
FORTRAN-supplied subroutines such as DATE.

2-14

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

• Overlap on CHARACTER assignments

Supported by FORTRAN-l0/20 and VAX FORTRAN.
The FORTRAN-77 standard forbids the right hand
side of a CHARACTER assignment statement from
referencing any of the character positions of
the CHARACTER variable or substring on the left
hand side of the assignment. For example, such
an overlapping assignment statement follows:

C(2:) = C

FORTRAN-l0/20 and VAX FORTRAN allow overlap on
character assignments. They always treat
character assignments as if the right side of
the assignment was assigned to a temporary
variable, and then assigned to the variable or
substring on the left of the assignment
statement.

• .XOR. logical operator (Synonym for .NEQV.)

Supported by FORTRAN-10/2~ and VAX FORTRAN.

2.6 FUNCTIONS AND SUBROUTINES

• Access to addresses of storage elements

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. The %LOC built-in function
returns the address of its argument. This is
most useful in creating argument blocks for
VAX/VMS system service routines.

• Syntax for alternate return labels

FORTRAN-10/20 allows the characters $ (dollar
sign), & (ampersand), and * (asterisk) to be
used to indicate alternate return labels. VAX
FORTRAN allows the characters & (ampersand) and
* (asterisk).

2-15

EXTENSIONS PROVIDED BY FORTRAN-l9/20 AND VAX FORTRAN

• User controlled argument passing mechanisms

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. By using the functions %VAL,
%REF, or %DESCR, a user can control whether an
argument is passed by value, by reference, or
by descriptor. This allows VAX/VMS system
se~vice routines to be called directly from
FORTRAN.

2.7 CONTROL STATEMENTS

• Compatibility mode for one trip DO loops

Both FORTRAN-10/20 and VAX FORTRAN allow the
user to specify at compile-time that the DO
loops in a program are one trip (FORTRAN IV
style) DO loops instead of zero trip
(FORTRAN-77 style) DO loops.

• DO WHILE statement

Supported by FORTRAN-10/20 and VAX FORTRAN.

• END DO statement

Supported by FORTRAN-l 0/20 and VAX FORTRAN.
This statement terminates a DO loop or DO WHILE
loop without the need for a statement label.

• Extended range DO loops,

Supported by FORTRAN-10/20 and VAX FORTRAN.
Extended range DO loops make it possible to
transfer out of a loop, perform a series of
statements elsewhere in the program, and then
transfer back into the DO loop.

2-16

EXTENSIONS PROVIDED BY FORTRAN-lg/20 AND VAX FORTRAN

• Two-branch LOGICAL IF

Supported by FORTRAN-1.0/20. Not",supported by
VAX FORTRAN. FORTRAN-10/20 allows LOGICAL IF
statements to have both a true and false
branch. For example:

IF (X .GT. Y) 10,20

will branch to ~0 if X is gr~ater than Y,
otherwise it will branch to 20. '

2.8 I/O STATEMENTS

• ACCEPT statement

Supported by FORTRAN-10/20 and VAX FORTRAN.

• Apostrophe form of recor,d specifier
Supported by FORTRAN-10/20 and VAX FORTRAN. An
apostrophe (I) may be used as ari alterriative to
the REC= specifier in I/O statement control
lists.

• DECODE statement

Supported by FORTRAN-l 0/20 and VAX FORTRAN.
DECODE is similar to an internal file READ.

In FORTRAN-10/20, the character count specified
in DECODE statements "is interpreted as an
internal record size in characters; and a /
(slash) format descr'i ptor or indef ini te repeat
causes the record pointer to advance to the
next internal record.

In VAX FORTRAN, the character count is
interpreted as a total string count; and a /
(slash) format descriptor or indefinite repeat,
which for normal files causes a new record to
be read or written, is illegal.

DECODE is considered obsolete.

2-17

EXTENSIONS PROVIDED BY FORTRAN-l~/2~ AND VAX FORTRAN

• DEFINE FILE statement

Supported by VAX FORTRAN. Not supported by
FORTRAN-l0/20. The DEFINE FILE statement is
similar to the OPEN statement. DEFINE FILE is
considered obsolete.

• Default unit in WRITE statements

Supported by FORTRAN-l0/20. Not supported by
VAX FORTRAN. FORTRAN-l~/2~ allows WRITE
statements of the form:

WRITE f[,iolst]

where f is an asterisk, format specifier, or
namelist specifier. This provides symmetry
with the FORTRAN-77 form of the READ statement
with a default unit.

• DELETE statement

Supported by VAX FORTRAN and FORTRAN-10/2~.
The DELETE statement removes a record from a
relative (direct-access) or indexed file.

• ENCODE statement

Supported by FORTRAN-l~/2~ and VAX FORTRAN.
ENCODE is similar to an internal file WRITE.

In FORTRAN-l~/20, the character count in ENCODE
statements is interpreted as an internal record
si ze in characters; a / (slash) format
descriptor or indefinite repeat causes the
record pointer to advance to the next internal
reco rd.

In VAX FORTRAN, the character count is
interpreted as a total string count. A /
(slash) format descriptor or indefinite repeat,
which for normal files causes a new record to
be read or written, is illegal.

ENCODE is considered obsolete.

2-18

EXTENSIONS PROVIDED BY FORTRAN-19/29 AND VAX FORTRAN

• FIND statement

Supported by FORTRAN-10/20 and VAX FORTRAN.
The FIND statement can be used to pre-position
random access relative files to al16w greater
overlap of computation and I/O.

• Indexed I/O

Supported by VAX FORTRAN and FORTRAN-10/20.
Indexed I/O allows records in files to be
selected £or I/O using keys contained in the
records.

• I/O in I/O

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. VAX FORTRAN allows a user
function to do I/O even if the function was
called from an I/O statement. Fo~ example, the
statement:

WRITE (5 , ' (IX, F10. 4) t) F (X)

calls the function F. VAX FORTRAN allows the
function F to do I/O to any unit except the
unit referenced by the I/O statement that
called the function. FORTRAN-10/20 will not
allow a function called by an I/O statement to
do I/O to any unit. The FORTRAN-77 standard
forbids I/O statements from referencing any
function if such a reference would cause
another I/O statement to be executed.

• List-directed interrial file I/O

Supported by VAX FORTRAN.
FORTRAN-10/20.

• NAMELIST statement

Not supported by

Supported by FORTRAN-10/20 and VAX FORTRAN.
However, FORTRAN-10/20 uses either FMT= or NML=
as the optional specifier used to specify the
NAMELIST name in I/O statements. VAX FORTRAN
uses only NML= as the optional specifier.

2-19

EXTENSIONS PROVIDED BY FORTRAN-l0/20 AND VAX FORTRAN

• Prompting during NAMELIST input

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. VAX FORTRAN allows interactive
display of the NAMELIST group and values by
outputting the current group name or the name
of the variables in response to a question mark
(?) or an equal sign and question mark (=?).

• PUNCH statement

Supported by FORTRAN-10/20. Not supported by
VAX FORTRAN.

• REREAD statement

Supported by FORTRAN-10/20. Not supported by
VAX FORTRAN. The REREAD statement allows the
last record read by a formatted READ or ACCEPT
statement to be accessed again and reprocessed.
This statement can be used to recover from
certain types of errors. For example, the user
may be able to recover from an "illegal
character in data" error by reteading the same
record using a different format.

• REWRITE statement

Supported by VAX FORTRAN and FORTRAN-l0/20.
The REWRITE statement is used to update the
record last read in an indexed file.

• TYPE statement

Supported by FORTRAN-10/20 and VAX FORTRAN.

• UNLOCK statement

Supported by VAX FORTRAN and FORTRAN-10/20.
The UNLOCK statement unlocks a record in a
relative or indexed file locked by a previous
READ statement.

2-20

EXTENSIONS PROVIDED BY FORTRAN-le/2e AND VAX FORTRAN

2.9 FORMATTING

• $ format edit descriptor

Supported by FORTRAN-l0/20 and VAX FORTRAN.
The $ (dollar sign) edit descriptor suppresses
the output of a carriage return to end the
current line during output operations.

• Comma as an external field separator during
formatted input

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. ,VAX FORTRAN allows a comma to
be used to' separate numeric data during
formatted data input. For example, if the
following statements:

READ (5,10) I, J, A., B-·
10 FORMAT{216,2F10.2)

read the record:

1,-2,1.0,35

then I=l, J=-2, A=1.0, 8=0.35

• Default widths for format edit descriptors

Supported by FORTRAN-10/20 and VAX FORTRAN.
For FORTRAN-10/20 output and VAX FORTRAN
input or output, if the format edit descriptors
I, 0, -Z, L, F, E, D, G, A, or R (FORTRAN-10/20
only) are used without specifying field width
values, default values are ,supplied based on
the data type of the I/O 1 ist .e1ement.
FORTRAN-10/20 and VAX differ on the default
field widths (see Section 3.10 •. 4).

For FORTRAN-10/20 input, the data is scanned
until a blank, comma, or character illegal for
the specified edit descriptor is encountered
(except for A format).

2-21

EXTENSIONS PROVIDED·BY FORTRAN-19/29 AND VAX FORTRAN

• CHARACTER I/O using the G format edit
descriptor

Supported by FORTRAN-10/20. Not supported by
VAX FORTRAN.

• Numeric array elements to store formats

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20.

• Numeric arrays to store formats

Supported by FORTRAN-10/20 and VAX FORTRAN.
Numeric arrays can contain Hollerith constants,
which can be used as formats.

• 0 (octal) format edit descriptor

Supported by FORTRAN-10/20 and VAX FORTRAN.

• Optional commas in formats

Supported by FORTRAN-10/20 and VAX FORTRAN.
Commas are not needed to separate format field
descriptors if there is no ambiguity in how the
format should be interpreted. For example, the
following format is legal:

10 FORMAT(lX'I is 'IS)

• Q format edit descriptor

Supported by FORTRAN-10/20 and - VAX FORTRAN.
The Q edit descriptor returns the number of
characters left in the current record (valid
only during input operations).

2-22

EXTENSIONS PROVIDED BY FORTRAN-lg/2g AND VAX FORTRAN

• R format edit descriptor

Supported by FORTRAN-l0/20. Not supported by
VAX FORTRAN. The R edit descriptor is used to
edit Hollerith data, and thus is similar to the
A field descriptor. The difference between the
R and A field descriptors is that the A
descriptor works with left-justified Hollerith
data, and the R descriptor works with
right-justified Hollerith data with leading
nulls. The R descriptor allows Hollerith
characters to be stored one per word, and thus
manipulated easily.

• Variable format expressions

Supported by VAX FORTRAN. Not supported by
FORTRAN-10/20. VAX FORTRAN allows formats to
contain an expression inclosed in angle
brackets anywhere an integer constant is needed
(except as the length of a Hollerith constant).
The expression in angle brackets is evaluated
at runtime and used in the format. For
example, if J is 3, the format:

10 FORMAT(I<J+I»

will act as if I4 was specified.

• Z (hexadecimal) format edit descriptor

Supported by FORTRAN-10/20 and VAX FORTRAN.

)ECLIT AA CROSS Y868C

~ORTRAN-l0/20 and VAX
FORTRAN compatability
manual

2-23

CHAPTER 3

FORTRAN-19/20 AND VAX FORTRAN INCOMPATIBILITIES

3.1 PROGRAM FORMAT

FORTRAN-l 0/20 and VAX FORTRAN have
differences in the format of programs.

several minor

The tab character is treated differently by the two
compilers when it appears in the statement field of a
line. For the purpose of determining where the remark
field begins, FORTRAN-10/20 counts the tab as being the
number of spaces it appears to be in the listing. VAX
FORTRAN counts the tab as being one character. Thus,
part of a statement in the statement field as recognized
by VAX FORTRAN may be in the remark field as recognized
by FORTRAN-10/20.

VAX FORTRAN has a /EXTEND_SOURCE qualifier, which
specifies that the compiler is to extend the range of
FORTRAN source text from columns 1 through 72 to columns
1 through 132. FORTRAN-10/20 does not have a similar
qualifier, and always limits statements to columns 1
through 72.

3-1

FORTRAN-IO/20 AND VAX FORTRAN INCOMPATIBILITIES

FORTRAN-10/20 and VAX FORTRAN treat the characters
formfeed (control/L) and vertical tab (control/K)
differently when they appear in source programs.
FORTRAN-l 0/20 uses these characters (along with
linefeed) to determine where the end of line is. VAX
FORTRAN does not use these characters for this purpose
(as it uses RMS to determine where the end of line is).

VAX FORTRAN treats formfeeds as spaces when they appear
outside of CHARACTER and Hollerith constants, and it
gives an error message when it encounters vertical tabs
outside one of those constants. Thus, a source program
that is formatted with formfeeds should only have the
form feeds following lines that have already been
terminated by the normal method of the user typing a
return.

Both FORTRAN-10/20 and VAX FORTRAN allow nonprintable
characters to be included in the source program (this is
only useful in CHARACTER or Hollerith constants) •
FORTRAN-10/20 does not allow the characters null,
linefeed, vertical tab, formfeed, or carriage return to
be entered directly into CHARACTER constants (TOPS-10
and TOPS-20 have system-wide conventions about the
treatment of these characters).

3.2 ARGUMENT PASSING

FORTRAN-10/20 and VAX FORTRAN use different mechanisms
to pass arguments to subprograms. FORTRAN-10/20 passes
scalar numeric arguments by value-result, and VAX
FORTRAN passes scalar numeric arguments by reference.

When arguments are passed by value-result, the
subprogram is passed the values of its actual arguments.
These values are then stored in local copies of the
arguments, which the subprogram then processes. Before
the subprogram returns, the values of the local copies
of the arguments are copied back, into the actual
arguments in the calling program.

When arguments are passed by reference, the
is passed the addresses of its actual
Whenever the subprogram processes one of the

3-2

subprogram
arguments.
arguments,

FORTRAN-IB/2~ AND VAX FORTRAN INCOMPATIBILITIES

it uses the address of the argument to process the
argument directly. Since the arguments are acted upon
directly, local copies of the arguments do not exist.

These different mechanisms for passing arguments usually
do not concern the FORTRAN programmer, since there are
only three situations where call by value-result differs
from call by reference. The three situations are the
following:

• When multiple copies of the same variable are
passed to a subprogram

• When a variable is passed to a subprogram and
the subprogram also references the variable by
COMMON

• When one entry point of a subprogram with
multiple entry points refers to an argument
passed to a previous entry point, and that
argument was modified between the two calls.

All three of these cases are prohibited
FORTRAN-77 standard.

by the

The following program illustrates the different results
that can be obtained when a subprogram accesses a
variable both as an argument and by COMMON:

l~

2~

1~00

l~

2~

30
1000

COMMON I
1=1
WRITE(5,1000) 10, I
CALL SUB(I)
WRITE(5,1000) 20, I
FORMAT(' Line', 13, , of Main Program, 1=', II)
END
SUBROUTINE SUB(I)
COMMON J
WRITE(5,1000) 10, I, J
1=2
WRITE(5,1000) 20, I, J
J = 3
WRITE(5,1000) 30, I, J
FORMAT(' Line', 13, , of SUB, 1=', II, , and J=', II)
END

3-3

FORTRAN-19/29 AND VAX FORTRAN INCOMPATIBILITIES

If this program is compiled by FORTRAN-10/20, it prints:

Line 10 of Main Program, 1=1
Line 10 of SUB, 1=1 and J=l
Line 20 of SUB, 1=2 and J=l
Line 30 of SUB, 1=2 and J=3
Line 20 of Main Program, 1=2

If this program is compiled by VAX FORTRAN, it prints:

Line 10 of Main Program, 1=1
Line 10 of SUB, 1=1 and J=l
Line 20 of SUB, 1=2 and J=2
Line 30 of SUB, 1=3 and J=3
Line 20 of Main Program, 1=3

The difference in the
FORTRAN-10/20 program
argument, while the VAX
argument directly.

program output is
modifies a local

FORTRAN program

because the
copy of its

modifies its

3.3 LOGICAL TESTS

The logical constants .TRUE. and .FALSE. are
respectively, as all ones and all zeros
FORTRAN-10/20 and VAX FORTRAN. However, the
true and false differs.

defined,
by both

test for

FORTRAN-10/20 tests the left-most bit (the sign bit) of
a LOGICAL value to determine if the value is true or
false.

VAX FORTRAN tests the right-most bit (the low-order bit)
of a LOGICAL value to determine if the value is true or
false.

In most cases, this difference is not apparent
FORTRAN programmer. It is only significant
following cases:

to the
in the

• A program EQUIVALENCEs a LOGICAL variable and a
numeric variable.

3-4

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

• A program performs numeric
LOGICAL values.

operations on

• A program assigns octal or numeric constants to
a LOGICAL variable, or uses octal or numeric
values as LOGICAL values.

The following program illustrates this incompatibility:

LOGICAL L
L = 1
IF (L) THEN

WRITE{5,' (lX,A)') 'L is true.'
ELSE

WR I T E {5 , , (I X , A) ') 'L is fa 1 s e • '
END IF
END

If this program is compiled by FORTRAN-10/20, it prints:

L is false.

If this program is compiled by VAX FORTRAN, it prints:

L is true.

3.4 THE ASSIGNED GOTO STATEMENT

VAX FORTRAN ignores the optional list of labels in an
assigned GOTO statement. FORTRAN-10/20 checks at
runtime to make sure that the assigned variable matches
one of the labels in the list, and proceeds to the next
statement if there is no match.

3.5 I/O INCOMPATIBILITIES

There are
FORTRAN-10/20
capabilities.
differences.

several incompatibilities between
and VAX FORTRAN for input/output

The following sections describe these

3-5

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

3.5.1 Default Filenames Associated with Units

The unit number assignments differ between FORTRAN-l0/20
and VAX FORTRAN. The default unit number assignments
are important because programs that do not open their
files explicitly using the OPEN statement get a file
with a default name on the default device associated
with that unit number.

FORTRAN-l0/20 associates a different device with each
unit number. For example, unit 1 is disk, unit 2 is the
card reader, unit 3 is line printer, unit 5 is the
terminal, and so on. The filename that FORTRAN-l0/20
associates with each unit is of the form "FORxx.DAT",
where xx is the two digit unit number with leading
zeros.

VAX FORTRAN associates disk with all units except 5 and
6. VAX FORTRAN associates unitS with the terminal for
input, and unit 6 with the terminal for output. The
default filename that VAX FORTRAN associates with each
unit is "FORxxx.DAT", where xxx is the three digit unit
number with leading zeros. The default unit device
assignments affect how the OPEN statement works as well.
When a NAME= (or FILE=) specifier does not specify a
device name, the default device associated with the unit
is used.

3.5.2 Unit 5 for Both Input and Output

On the VAX, unit 5 may be used for both input and output
to the terminal for interactive jobs; however, under
batch unit 5 must be used for input and unit 6 for
output. On the DECSYSTEM-l0/20, unit 5 may always be
used for both input and output.

3-6

FORTRAN-l0/20 AND VAX FORTRAN INCOMPATIBILITIES

3.5.3 STATUS='NEW' and
Numbers

File Generation (Version)

If a VAX FORTRAN or FORTRAN-20 program opens a file with
STATUS='NEW' and no "version" (VAX/VMS) or "generation"
(TOPS-20) number is specified, a new generation of the
file will be created. If a FORTRAN-l0 program attempts
to open a file with STATUS='NEW' and that file exists,
an error message is given. Note that the generation
number does not apply to TOPS-l0.

3.5.4 STATUS='UNKNOWN' and File Generation (Version)
Numbers

If a file is opened for output with STATUS='UNKNOWN' and
no "version" (VAX/VMS) number is specified by a VAX
FORTRAN program, the highest existing version number is
written. If a FORTRAN-20 program attempts to open a
file for output with STATUS='UNKNOWN', and does not
specify a "generation" (TOPS-20) number, then a new
generation of the file is always written.

3.5.5 The CARRIAGECONTROL= Specifier

The meanings of CARRIAGECONTROL=' FORTRAN'. and
CARRIAGECONTROL='LIST' on a VAX and a DECSYSTEM-l0/20
are similar, but there are differences which the user
should be aware of.

There is a slight difference between DECSYSTEM-l0/20 and
VAX with regard to CARRIAGECONTROL='FORTRAN'. On the
VAX, a file whose attribute is CARRIAGECONTROL=
'FORTRAN' will have the first character of each record
translated to one or more vertical motion characters
when the file is either printed or typed. On the
DECSYSTEM-l0/20 , this action occurs only when the file
is pr inted.

3-7

FORTRAN-I~/2~ AND VAX FORTRAN INCOMPATIBILITIES

In addition, FORTRAN-I 0/20
'TRANSLATED', which forces
character of each record
specified file.

supports CARRIAGECONTROL=
translation of the first

as it is output to the

There is an interaction of the PRINT command under the
TOPS-10 and TOPS-20 operating systems and files with the
extension of "DAT" that is of interest to users of
FORTRAN. When one of these two operating systems prints
a file with the extension of "OAT", it strips off the
first character of every line and uses it to control the
vertical spacing of the printer using FORTRAN
carriage-control rules.

3.5.6 The RECL= Specifier and Formatted Sequential
Files

The RECL= specifier has a meaning for formatted
sequential access files on the VAX that it does not have
on the DECSYSTEM~10/20.

On the VAX, formatted sequential access files have by
default variable-length records (RECORDTYPE='VARIABLE').
For this type of file organization, the RECL= ~pecifier
gives the maximum length of any, 'record., If the RECL=
specifier is not specified for a new formatted
sequential access file, a default of RECL=133 is
assumed. If an attempt is made to write a record
greater than the RECL value, an error occurs. Thus, if
a program writes a 200 character record to a new,
formatted sequential access file without giving a RECL=
specifier in a OPEN statement, it will get a run-time
error on a VAX processor. The program will not have any
problems on a DECSYSTEM-10/20 processor.

On the DECSYSTEM-10/20, RECL= specifies that the file
has fixed-length records. If no RECL= specifier is
given, the records are assumed to be variable length,
and the maximum record size is 655360 characters.

3-8

FORTRAN-IB/2B AND VAX FORTRAN INCOMPATIBILITIES

3.5.7 ASSOCIATEVARIABLE= Specifier

The execution of an OPEN statement with an
ASSOCIATEVARIABLE= specifier in FORTRAN-10/20 has the
effect of setting the associate variable to 1. The
execution of such an OPEN statement in VAX FORTRAN does
not affect the value of the associate variable at all.

3.5.8 ACCESS='APPEND' and REWIND

VAX FORTRAN allows a program to REWIND a file that has
been opened ACCESS='APPEND'. FORTRAN-10/20 allows this
feature on TOPS-10, but not on TOPS-20.

3.6 INQUIRE STATEMENT

FORTRAN-10/20 and VAX FORTRAN differ on the action taken
when an error occurs in an INQUIRE. FORTRAN-10/2B takes
an error branch if file the being inquired about is an
illegal file specification, or if the logical unit
number being inquired about is out of range. VAX
FORTRAN reports that the file or unit does not exist.

The following INQUIRE statement specifiers are supported
by VAX FORTRAN only:

1. RECORDTYPE='SEGMENTED' ,'STREAM_CR' ,'STREAM_LF'

The BYTESIZE specifier
only.

3.7 THE OPEN STATEMENT

is supported by FORTRAN-10/20I

This section lists the OPEN statement specifiers in
several categories •

• Section 3.7.1 lists the specifiers allowed by
the FORTRAN-77 standard.

3-9

FORTRAN-IB/2B AND VAX FORTRAN INCOMPATIBILITIES

• Section 3.7.2 lists the specifiers supported by
both FORTRAN-10/20 and VAX FORTRAN.

• Section 3.7.3 lists the specifiers supported
only by FORTRAN-10/20.

• Section 3.7.4 ~ists the specifiers supported
only by VAX FORTRAN.

• Section 3.7.5 lists suggestions on converting
OPEN statements so that they can be used with
either FORTRAN-10/20 or VAX FORTRAN.

3.7.1 Standard OPEN Specifiers

The following OPEN statement specifiers are allowed by
the FORTRAN-77 standard:

1. ACCESS='DIRECT' and ACCESS='SEQUENTIAL'

2. BLANK='ZERO' and BLANK='NULL'

3. ERR=

4. FILE=

5. FORM='FORMATTED' and FORM='UNFORMATTED'

6. IOSTAT=

7. RECL=

8. STATUS='NEW', STATUS='OLD', STATUS='SCRATCH',
STATUS='UNKNOWN'

9. UNIT=

3-10

FORTRAN-10/2~ AND VAX FORTRAN INCOMPATIBILITIES

3.7.2 OPEN Specifiers Common to FORTRAN-10/20 and VAX
FORTRAN

The following OPEN statement specifiers are supported by
both FORTRAN-10/2~ and VAX FORTRAN in addition to the
specifiers in Section 3.7.1:

1. ACCESS='APPEND' and ACCESS='KEYED'

2. ASSOCIATEVARIABLE=

3. BLOCKSIZE=

4. BUFFERCOUNT=

5. CARRIAGECONTROL='FORTRAN',
CARRIAGECONTROL='LIST', and
CARRIAGECONTROL='NONE'

6. DEFAULTFILE=

7. DISPOSE='DELETE', DISPOSE='KEEP',
DISPOSE='PRINT', and DISPOSE='SAVE'

8. KEY=

9. MAXREC=

10. NAME=

11. NOSPANBLOCKS

12. ORGANIZATION=

13. READONLY

14. RECORDSIZE=

15. SHARED

16. TYPE='NEW', TYPE='OLD', TYPE='SCRATCH',
TYPE='UNKNOWN'

17. RECORDTYPE='FIXED', RECORDTYPE='STREAM', and
RECORDTYPE='VARIABLE'

3-11

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

18. USEROPEN=

3.7.3 OPEN Specifiers Only in FORTRAN-lg/2~

The following OPEN statement specifiers are supported
only by FORTRAN-1~/2~:

1. ACCESS='SEQIN', ACCESS='SEQOUT',
ACCESS='SEQINOUT', ACCESS='RANDOM' and
ACCESS='RANDIN'

2. BYTESIZE=

3. CARRIAGECONTROL='DEVICE',
CARRIAGECONTROL='TRANSLATED'

4. DENSITY=

5. DEVICE=

6. DIALOG and DIALOG=

7. DIRECTORY=

8. DISPOSE='EXPUNGE', DISPOSE='LIST',
DISPOSE='PUNCH'

9. FILESIZE=

1~. INITIALIZE=

11. MODE=

12. ORGANIZATION=' UNKNOWN'

13. PADCHAR=

14. PARITY=

15. PROTECTION=

16. RECORDTYPE='UNKNOWN'

3-12

FORTRAN-10/20 AND VAX FORTRAN INCOMPATIBILITIES

17. STATUS='DELETE', STATUS='EXPUNGE',
STATUS='KEEP'

18. TAPEFORMAT=

19. TYPE='DELETE', TYPE='EXPUNGE', TYPE='KEEP'

20. VERSION=

FORTRAN'-10!/20' che.cKs only the- firrs,t six: 'characters of
OPEN specifiers for correct spelling. Therefore, it
accepts a six letter abbreviation of any Qf its
specifi~rs or ~ny mi5spelling of_its ~eywo_r.dsJfthe
first six characters are correct. _ FUture versions of
FORTRAN-l0/2~l may not. allow this" so it should not be:
reI ied upo,n •.

3.7.4 OPEN Specifiers Only in VAX FORTRAN

The following OPEN statement specifiers are supported
only by VAX FORTRAN:

1. DISP=

2. DISPOSE='PRINT/DELETE', DISPOSE='SUBMIT " , and
DISPOSE='SUBMIT/OELETE'

3. EXTENDSIZE=

4. INITIALSIZE=

5. RECORDTYPE='SEGMENTEO', RECORDTYPE='STREAM_CR',
RECORDTYPE='STREAM LF'

3.7.5 Conversion of OPEN Statements

Many OPEN statement specifiers that are unique to
FORTRAN-10/20 or VAX FORTRAN have synonyms that are
acceptable to either compiler. This section gives
suggestions on converting OPEN statements so that they
can be used with either FORTRAN-10/20 or VAX FORTRAN.

3-13

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

This section also lists which specifiers unique to the
two compilers are synonyms. However, these specifiers
cannot be put in a form that is acceptable to both
compilers.

The VAX FORTRAN only specifier DISP= can be made
acceptable to either compiler (provided its value is
supported by both compilers) if it is converted to
DISPOSE=.

Several FORTRAN-l~/20 values of the ACCESS= specifier
can be rewritten as g series of other specifiers, which
ar~ ~ccept~ble to either comp~ler:

ACCESS='SEQIN' can be written as
ACCESS='SEQUENTIAL' ,STATUS='OLD' ,READONLY

ACCESS='RANDIN' can be written as
ACCESS='DIREC,T' ,STATUS='OLO' ,READONLY

ACCESS='SEQOUT' can be written as
ACCESS='SEQUENTIAL',STATUS='UNKNOWN'

ACCESS='SEQINOUT' can be written as
ACCESS='SEQUENTIAL' ,STATUS=' UNKNOWN ,

ACCESS='RANDOM' can be written as
ACCESS='OIRECT' ,STATUS='UNKNOWN'

NOTE

The OPEN specifier STATUS='UNKNOWN' has
different effects on the generation or version
numbers for FORTRAN-20 and VAX FORTRAN (see
Section 3.5.4).

The FORTRAN-10/20 specifier OISPOSE='LIST' is a
to the VAX FORTRAN DISPOSE='PRINT/OELETE'.
these specifiers cannot be put in a form
acceptable to both compil~rs.

3-14

synonym
However,
that is

FORTRAN-10/20 AND VAX FORTRAN INCOMPATIBILITIES

The FORTRAN-10/20 INITIALIZE= specifier is a synonym for
the VAX FORTRAN INITIALSIZE= specifier. FORTRAN-IO/20
will recognize the INITIALSIZE specifier because
FORTRAN-IO/20 checks only the first six characters of
OPEN specifiers for correct spelling.

3.8 THE CLOSE STATEMENT

This section lists the CLOSE statement specifiers in
several categories.

• Section 3.8.1 lists the specifiers· allowed by
the FORTRAN-77 standard.

• Section 3.8.2 lists the specifiers supported by
both FORTRAN-10/20 and VAX FORTRAN.

• Section 3.8.3 lists the specifiers supported
only by FORTRAN-10/20.

• Section 3.8.4 lists the specifiers supported
only by VAX FORTRAN.

• Section 3.8.5 lists suggestions on converting
CLOSE statements so that they can be used with
either FORTRAN-10/20 or VAX FORTRAN.

3.8.1 Standard CLOSE Specifiers

The following CLOSE statement specifiers are allowed by
the FORTRAN-77 standard:

1. ERR=

2. IOSTAT=

3. STATUS='KEEP' and STATUS='DELETE'

4. UNIT=

3-15

FORTRAN-19/2~ AND VAX FORTRAN INCOMPATIBILITIES

3.8.2 CLOSE Specifiers Common to FORTRAN-19/2~ and VAX
FORTRAN

The following CLOSE statement specifier is supported by
both FORTRAN-10/20 and VAX FORTRAN in addition to the
specifiers in Section 3.8.1:

1. DISPOSE='PRINT' and DISPOSE='SAVE'

3.8.3 CLOSE Specifiers Only in FORTRAN-19/2~

The following CLOSE statement spe~ifiers are supported
only by FORTRAN-10/20:

1. DEVICE=

2. DIALOG and DIALOG=

3. DIRECTORY=

4. DISPOSE='EXPUNGE', DISPOSE='LIST',
DISPOSE='PUNCH', and DISPOSE='RENAME'

5. FILE=

6. NAME=

7. PROTECTION=

8. STATUS='EXPUNGE'

9. TYPE=

FORTRAN-10/20 only checks the first six characters of
CLOSE specifiers for correct spelling. Therefore, it
accepts any six letter abbreviation of any of its
specifiers or any misspelling of its keywords if the
first six characters are correct. Future versions of
FORTRAN-10/20 may not allow this, so it should not be
relied upon.

3-16

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

3.8.4 CLOSE Specifiers Only in VAX FORTRAN

The following CLOSE statement specifiers are supported
only by VAX FORTRAN:

1. DISP=

2. DISPOSE='PRINT/DELETE ' , DISPOSE='SUBMIT ' , and
DISPOSE='SUBMIT/DELETE '

3. STATUS='PRINT ' , STATUS= I PRINT/DELETE I ,

STATUS='SAVE ' , STATUS='SUBMIT ' , and
STATUS= I SUBMIT/DELETE I

3.8.5 Conversion of CLOSE Statements

As is the case with OPEN statement specifiers, many
CLOSE statement specifiers that are unique to
FORTRAN-l~/2~ and VAX FORTRAN have synonyms, which are
acceptable to either compiler. This section gives
suggestions on converting CLOSE specifiers into a form
that is acceptable to either FORTRAN~1~/2~ or VAX
FORTRAN.

This section also lists which specifiers unique to the
two compilers are synonyms. However, these specifiers
cannot be put in a form that is acceptable to both
compilers.

The VAX FORTRAN only specifier DISP= can be made
acceptable to either compiler (provided its value is
supported by both compilers) if it is converted to
DISPOSE= •. ' .~. ,.':'

The VAX FORTRAN only specifier
acceptable to both compilers if
DISPOSE='pRINT ' •

The VAX FORTRAN only specifier
acceptable to both compilers if
STATUS='KEEP ' •

3-17

STATUS='pRINT ' is
it is converted to

STATUS='SAVE ' is
it is converted to

FORTRAN-19/29 AND VAX FORTRAN INCOMPATIBILITIES

The FORTRAN-19/20 specifier DISPOSE=' LIST' is a synonym
for the VAX FORTRAN specifier STATUS='PRINT/DELETE'.
However, the specifiers cannot be put in a form that is
acceptable to both compilers.

3.9 CARRIAGE CONTROL

FORTRAN-10/20 and VAX FORTRAN have
carriage-control characters in common:

the following

'+' , ,
'0 '
, 1 '
'$,

Overprinting
Single Spacing
Double Spacing
Skip to next top of page
Single space, leaving cursor at end of line

FORTRAN-10/20 has the following carriage-control
characters not supported by VAX FORTRAN:

'2 '
, 3 '
,_ I

I *'
I I .
I , ,

I I'

Skip to next half of page
Skip to next third of page
Triple spacing
Single space; suppress automatic formfeed
Triple space with automatic formfeed after
every 20 lines
Double space with automatic formfeed after
every 30 lines
Space to next sixth of page

VAX FORTRAN bas the foll-owing carriage~contr-ol character
not supported by FORTRAN-l0/20:

-null Over-pr in-t, leaving cursor at end of line

3-18

FORTRAN-I~/2~ AND VAX FORTRAN INCOMPATIBILITIES

3.1~ FORMAT EDIT DESCRIPTORS

3.1~.1 Interaction of the X and $ Edit Descriptors

Normally, the X formated'it descriptor cannot be used to
write blanks at the end of a line. Thus, the following
program:

WRITE(5,10)
l~ FORMAT(' Hello', l~X)

END

will not write ten blanks after the word "Hello".

FORTRAN-l~/2~ has a single exception to this rule. If
the line was written with $ (dollar sign) carriage
control, or the $ edit descriptor was used to end the
line, then the X edit descriptor can be used to write
blanks at the end of the line. VAX FORTRAN does not
have this exception.

Both FORTRAN-10/20 and VAX FORTRAN provide a way to
write blanks at the end of a line, regardless of the
exc~ption for $ carriage control or the $ edit
descriptor. If blanks are to be written at the end of a
line, a literal containing blanks should be used. For
example, the above format could be rewritten as:

10 FORMAT(' Hello', 10(' I))

3.1~.2 Interaction of the $ Edit
Carriage-Control Characters

Descrip~or and

Both FORTRAN-10/20 and VAX FORTRAN allow the use ot: ,- !the'
$ (dollar sign) edit descriptor on output to modify the
carriage control specified b~ the firsi chara6ter of the
record.

For FORTRAN-10/2~, the $ edit descriptor suppresses all
carriage control at the end of the current record (for
CARRIAGECONTROL='LIST') or at the beginning of the next
record (for CARRIAGECONTROL='FORTRAN' or 'TRANSLATED').

3-19

FORTRAN-10/20 AND VAX FORTRAN INCOMPATIBILITIES

For VAX FORTRAN, the $ edit descriptor is ignored if the
first charcter of the record is "0" or "1". If the
first character is a plus sign (+), the $ descriptor
causes the output to begin at the end of the previous
line and leaves the print position at the end of the
line.

3.10.3 F, E, D, and G Edit Descriptors

FORTRAN-10/20 allows an alternate form of the E, F, D,
and G edit descriptors:

Fw
Ew
Dw
Gw

for
for
for
for

Fw.0
Ew.0
Dw.0
Gw.0

VAX FORTRAN does not support this alternate form of the
descriptors.

I

FORTRAN-10/20 allows the use of the G edit descriptor
with character data. VAX FORTRAN does not support this
use. .

3.~0.4 0 and Z Edit Descriptors

The forms of the 0 and Z edit descriptors are:

O[w[.m]]
Z[wt-.mll

Where:

w is the length of the field.

m is the number of digits guaranteed to be
output to the field.

3-20

FORTRAN-10/20 A~D VAX: FORTRAN INCOMPA'.l'.IBILITIES'

If m is not specified for the 0 and Z edit descriptors"
FORTRAN-10/20 assumes a default value equal to w, while
VAX FORTRAN assumes a default value of 1. Thus,
FORTRAN-10/20 prints leading zeros for the 0 and Z edit
descriptors, and VAX prints leading spaces.

FORTRAN-10/20 allows octal and hexadecimal numbers to
have an optional sign when input. A plus sign has no
effect, and a minus sign causes the negative (two's
complement) of the number to be input. VAX FORTRAN does
not allow octal and hexadecimal numbers to have a sign.

<

3.10.5 Default Field Widths

Both FORTRAN-10/20 and VAX FORTRAN allow format edit
descriptors to be ,used without spec~fying field width
values. If an edit descriptor is used without
specifying, a field width, then a default width is
supplied based "on the data ,type of the I/O list element
(see Table 3-l).

Note that for the purposes
field widths, the FORTRAN
distinct classes:

of assigning the default
data types fall into four

Half-Word Data Types:
INTEGER*2 (VAX FORTRAN)

Single-Word Data
LOGICAL*4, REAL*4

Types:

Double-Word; Data Types:
REAL*8

LOGICAL*2 (VAX

COMPLEX*8,

COMPLEX*16 (VAX

Quad-Word Data Type: REAL*16 (VAX FORTRAN)

The CHARACTER Data type

3-21

FORTRAN) ,

INTEGER*4,

FORTRAN) ,

FORTRAH-lfJ/2" AND VAX FORTRAN INCOMPATIBILITIES

Table 3-1: Default Field Widths for Edit Descriptors

Descriptor

I
I
F
F

" F

Notes:

E
E
E
D
D
D
G
G
G
G
o
o
L
Z
Z
A
A
A

Data Type

Half"';Word
Single-Word
S i ngl e-Word.
Double-Word
'Quad-Word
Single-Word
Double-Word
Quad-Word
Single-Word
Double-Word
Quad-Word
Single-Word
Double-Word
Quad-Word
Character*n
Single-Word
Double-Word
Single-Word
Single-Word
Do ubI e-Wo rd
Single-Word
Double-Word
Character*n

19/29

115
115
FlS.7
F2S.l8

ElS.7E2
E2S.l8E2

ElS.7E2
E2S.l8E2

GlS.7E2
G2S.l8E2

Gn
015
025
LIS
ZIS
Z2S
AS
A10
An

VAX

17 (*)
112
FlS.7 (&)
F2S.l6 (&)

-- F42.33 (i) .
ElS.7E2
E2S.16E2
E42.33E3 (.j:)
ElS.7E2
E2S.16E2
E42.33-£3 (.j: r
GlS.7E2 (%) ,.
G2S.l6E2
G42.33E3 (i)
(%)
012 .
023
L2
Z12
Z23
A4
A8
An

* FORTRAN-10/20 treats INTEGER*2 and LOGICAL*l
variables as if they were INTEGER*4 and
LOGICAL*4 variables, respectively.

& FORTRAN-10/20 expands the default field width
for the F edit descriptor if the default field
width is too small for the data.

% VAX FORTRAN does not allow INTEGER
CHARACTER I/O with the G edit descriptor.

i FORTRAN-10/2g does not support REAL*16.

3-22

or

FORT~~~18/20 i\ND VAX. FORTR~N INCOMPATI.BILITI~_S

3.11 INCLUDE STATEMENT

The FORTRAN-10/20 and VAX FORTRAN INCLUDE statements
have the following incompatibilities:

• The VAX FORTRAN INCLUDE statement does not have
a /NOCREF switch.

• FORTRAN~10/20 lists the text from the INCLUDEd
file by default. VAX FORTRAN requires that the
/LIST switch be specified to list the included
file, or that the /SHOW=INCLUDE qualifier be
given. when the program unit is compiled.

• FORTRAN-10/20 does not support the inclusion of
text from a text library. VAX FORTRAN allows a
name in parentheses to follow the name of the
file in the INCLUDE statement. The name in
parentheses designates a module (section) of a
text library file that is to be included.,

3.12 PROGRAM STATEMENT

Both FORTRAN-10/20 and VAX FORTRAN prohibit the name of
the main program, as given by the PROGRAM statement,
from. being the same as the name of any subprogram,· entry
point, or COMMON block in the executable program. VAX
F0RTRAN, further restricts the program, name . from being
the same as the name of.any.variable,.:?ARAMETER, or
NAMELIST in the main program.

3.13 FORTRAN-SUPPLIED SUBPROGRAMS.

This section describes the differences in the
FORTRAN-supplied subprograms between FORTRAN-10/20 and
VAX FORTRAN.

3-23

EORTRAN-18/28 AND VAX FORTRAN INCOMPATIBILITIES

3.13.1 Functions That Are Generic Only in FORTRAN-l~/2~

The following functions are gener ic in FORTRAN-10/20,
but do not have the generic property in VAX FORTRAN:

1. ALOG synonym for the standard generic
function LOG

2. ALOG10 synonym ' for the standard generic
function LOG10

3. At1AXI - . syriohym -for -the' standard '; generic
furiction ':'MAX ; <

.-:(.. '" .1.;"'; :

4. AMINI synonym for the standard " generic
function 'MIN

3.13.2 Functions That Are Generic Only in VAX FORTRAN

The following functions are generic in VAX FORTRAN, but
do not have the generic property in FORTRAN-10/20:

1. ACOSD - arc cosine with angle measured in
degrees

2. ASIND - arc sine with angle measured in degrees

3. ATAN20 - arc tangent of quotient with angle
measured in degrees

4. ATANO - arc tangent with angle measured in
degrees

5. COSO - cosine of angle in degrees

6. SIND - sine of angle in degrees

7. TANO - tangent of angle in degrees

3-24

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

3.13.3 Generic Functions Only Available in VAX FORTRAN

VAX FORTRAN has the following generic routines not
available in FORTRAN-l~/2~:

1. DCMPLX - conversion to DOUBLE COMPLEX

2. QEXT - conversion to REAL*16

Note that most of the VAX FORTRAN generic functions can
result in calls to intrinsic functions to process
INTEGER*2, DOUBLE COMPLEX, or REAL*16 data. The
corresponding FORTRAN-l~/2~ generic functions can never
do this because FORTRAN-10/20 lacks those data types.

3.13.4 Intrinsic Functions
FORTRAN-10/2~

Only Available in

FORTRAN-10/20 has the following intrinsic functions not
available in VAX FORTRAN:

1. COTAN - REAL cotangent of an angle

2. DCOTAN - DOUBLE PRECISION cotoangent of an angle

3.13.5 Intrinsic Functions Only Available
FORTRAN

in VAX

VAX FORTRAN has the following intrinsic functions not
available in FORTRAN-10/2~:

1. ACOSD, DACOSD, QACOSD
REAL*16 arc cosine
degrees

The REAL*4, REAL*8,
with angle measured in

2. ASIND, DASIND, QASIND The REAL*4, REAL*8,
REAL*16 arc sine with angle measured in degrees

3. ATAN2D, DATAN2D, QATAN2D - The REAL*4, REAL*8,
REAL*16 arc tangent of quotient with angle
measured in degrees

3-25

FORTRAN-IO/20 AND VAX FORTRAN INCOMPATIBILITIES

4. ATAND, DATAND, QATAND
REAL*16 arc tangent
degrees

The REAL*4, REAL*B,
with angle measured in

5. DBLEQ - Convert REAL*16 to REAL*B

6. QACOS - REAL*16 arc cosine

7. QASIN - REAL*16 arc sine

B. QATAN - REAL*16 arc tangent

9. QATAN2 - REAL*16 arc tangent of a quotient

10. QCOS - REAL*16 cosine

11. QCOSD - REAL*16 cosine with angle measured in
degrees

12. QCOSH - REAL*16 hyperbolic cosine

13. QDIM positive difference of two REAL*16
numbers

14. QEXP - REAL*16 exponential function

15. QEXT - Generic conversion to REAL*16

16. QEXTD - Convert REAL*B to REAL*16

17. QLOG - REAL*16 natural logarithm

lB. QLOG10 - REAL*16 common logarithm

19. QMAX1 Finds the maximum of its REAL*16
arguments

20. QMINI Finds the minimum of its REAL*16
arguments

21. QMOD - Remainder of two REAL*16 arguments

22. QSIGN - REAL*16 transfer of sign

3-26

FORTRAN-l~/2~ AND VAX FORTRAN INCOMPATIBILITIES

23. QSIN - REAL*16 sine

24. QSIND - REAL*16 sine with angle measured in
degrees

25. QSINH - REAL*16 hyperbolic sine

26. QSQRT - REAL*16 square root

27. QTAN - REAL*16 tangent

28. QTANH - REAL*16 hyperbolic tangent

29. SNGLQ - Convert REAL*16 to REAL*4

30. TAND, DTAND, QTAND - REAL*4, REAL*8, REAL*16
tangent of an angle measured in degrees

31. ZEXT, IZEXT, JZEXT - Zero extend a LOGICAL or
INTEGER value giving an INTEGER

3.13.6 INTEGER Function Differences

The presence of both the INTEGER*2 and INTEGER*4 data
types in VAX FORTRAN has caused VAX FORTRAN to treat the
standard names of the intrinsic functions that take
INTEGERs as arguments as generic names. These generic
names select between the intrinsic functions that take
the appropriate type of INTEGER argument. Table 3-2
shows which VAX INTEGER functions are selected by these
names.

Since FORTRAN-10/20 has only one INTEGER data type,
programs that are to be transported between the two
machines generally should not refer to INTEGER functions
using VAX INTRINSIC names, such as IIABS or JIINT.
Instead, the INTEGER functions should be referred to by
using the FORTRAN-77 standard name for the INTEGER
functions, such as lABS or INT. However, the
FORTRAN-10/20 runtime library does define the VAX
intrinsic integer function names as synonyms for
FORTRAN-10/20 integer function names. Note that these
functions are not considered to be intrinsic by the
FORTRAN-10/20 compiler.

3-27

FORTRAN-18/2~ AND VAX FORTRAN INCOMPATIBILITIES

Table 3-2: VAX-II FORTRAN INTEGER Function Names

VAX FORTRAN Function of an Function of an
Generic Name INTEGER*2 INTEGER*4

Argument Argument

lABS IIABS JIABS
INT lINT JIINT
IDINT IIDINT JIDINT
NINT ININT JNINT
IDNINT IIDNNT JIDNNT
FLOAT FLOATI FLOATJ
IFIX IIFIX JIFIX
DFLOAT DFLOTI DFLOTJ
MAX~ IMAX~ JMAX~

MAXI IMAXI JMAXI
AMAX~ AIMAX~ AJMAX~

MIN0 IMIN0 JMIN0
MINI IMINI JMINI
AMIN0 AIMIN0 AJMIN0
IDIM IIDIM JIDIM
MOD IMOD JMOD
ISIGN IISIGN JISING

3.13.7 DOUBLE-PRECISION COMPLEX Functions

FORTRAN-I~/20 does not support the DOUBLE COMPLEX data
type. However, it does supply subprograms to calculate
many of the same functions as the VAX FORTRAN DOUBLE
COMPLEX functions. The FORTRAN-10/2~ subprograms to do
these calculations are subroutines that take arguments
of two-element DOUBLE PRECISION arrays, which are
manipulated as if they were DOUBLE COMPLEX variables.
The remainder of this section describes the
correspondence between the VAX FORTRAN functions of
DOUBLE COMPLEX numbers and the appropriate FORTRAN-10/20
subprograms.

3-28

FORTRAN-lg/2~ AND VAX FORTRAN INCOMPATIBILITIES

The following are DOUBLE COMPLEX functions of DOUBLE
COMPLEX arguments in VAX FORTRAN, but in FORTRAN-l~/2~
they are subroutines of two DOUBLE PRECISION two-element
arrays (the second argument is the result): CDSQRT,
CDLOG, CDEXP, CDSIN.

The VAX FORTRAN function DCMPLX has no corresponding
subprogram in FORTRAN-10/20. However, a similar effect
could be obtained by assigning values to the elements of
the two-element DOUBLE PRECISION array that is being
used as a DOUBLE COMPLEX variable.

The VAX FORTRAN functions DREAL and DIMAG have no
corresponding subprograms in FORTRAN-10/20. However,
their effects could be obtained by referring to the
first element (for the real part) or the second element
(for the imaginary part) of the DOUBLE PRECISION array
being used as a DOUBLE COMPLEX variable.

The VAX FORTRAN function DCONJG has no corresponding
subprogram in FORTRAN-10/20. However, in FORTRAN-10/20,
the complex conjugate can be formed by negating the
second element of the DOUBLE PRECISION array being used
as the DOUBLE COMPLEX variable.

The DOUBLE PRECISION function CDABS is a function in
both VAX FORTRAN and FORTRAN-10/20. However, in VAX
FORTRAN its argument is a DOUBLE COMPLEX variable, and
in FORTRAN-10/20 it is a two-element DOUBLE PRECISION
array, which is treated as if it is a DOUBLE COMPLEX
variable. Note that the generic function ABS in VAX
FORTRAN may result in a call to the function CDABS.
This can never happen in FORTRAN-10/20.

3-29

FORTRAN-10/20 AND VAX FOR"TRAN INCOMPATIBILITIES

3.13.8 Similar Subroutines in FORTRAN-10/20 and VAX
FORTRAN

The following subroutines exist in both FORTRAN-10/20
and VAX FORTRAN. However, they have various differences
that are described below:

1. DATE On both compilers, this subroutine
returns the date in the form 'dd-mmm-yy'.
However, when a numeric variable is used as the
argument, VAX FORTRAN returns only those 9
characters, while FORTRAN-10/20. ends the date
with a trailing blank, and thus returns 10
characters.

2. ERRSET - Allows the user to control the actions
taken when an error occurs. This subroutine
has different arguments in FORTRAN-10/20 than
in VAX FORTRAN, and VAX FORTRAN ERRSET provides
somewhat less capabilities than FORTRAN-l 0/20
ERRSET. The VAX Condition Handling Facility
provides a more general method of defining the
actions that are to be taken on error than VAX
FORTRAN ERRSET, and is recommended over ERRSET.

3. ERRSNS - Determines the error number of the
last error that occurred. The FORTRAN-10/20
ERRSNS has a different number of arguments than
the VAX FORTRAN ERRSNS, and the error numbers
on the two runtime systems are different.

4. EXIT - Terminates execution of the program. In
VAX FORTRAN, EXIT optionally accepts one
argument. The FORTRAN-10/20 EXIT does not take
any arguments.

5. RAN - Returns a random number. This subroutine
is similar to the RAN function in both
FORTRAN-10/20 and VAX FORTRAN. Note that the
FORTRAN-10/20 RAN and the VAX RAN use different
algorithms, and thus return different sequences
of random numbers.

3-30

FORTRAN-le/2~ AND VAX FORTRAN INCOMPATIBILITIES

6. MVBITS - Transfers a bit field from one storage
location (source) to a field in a second
storage location (destination).

7. TIME - Returns the time of day as a character
string. In VAX FORTRAN, this subroutine takes
one argument and returns the time of day in the
form "hh:mm:ss". The FORTRAN-10/20 TIME
subroutine takes either one or two arguments
and returns the time in the form "hh:mm" in the
first argument and "ss.t" in the second
argument. (Where "hh" is hours, "mm" is
minutes, "ss" is seconds, and "t" is tenths of
seconds.)

8. SECNDS - Returns the number of seconds since
midnight, minus the argument to this
subroutine.

3.13.9 Subroutines Only Available in FORTRAN-10/20

The following subroutines are
FORTRAN-10/20:

available only in

1. ALCCHR - Allocates space on the character stack
for dynamic character operations.

2. CHKDIV - Returns the number ~f the unit to
which error messages are written.

3. CLRFMT - Discards a FORMAT statement saved by
the execution of the SAVFMT routine.

4. DIVERT - Enables you to redirect error messages
from the current device to an open file on a
specified device.

5. DTOGA - Converts elements of DOUBLE-PRECISION
arrays from D-floating format to G-floating
format. (Available as Runtime Library Routine
on VAX/VMS.)

3-31

FORTRAN-19/29 AND VAX FORTRAN INCOMPATIBILITIES

6. DUMP - Causes specified portions of memory to
be dumped to the line printer.

7. FFUNIT - Returns the unit number of the first
available FORTRAN logical unit.

8. GTODA - Converts elements of DOUBLE-PRECISION
arrays from G-floating format to D-floating
format. (Available as Runtime Library Routine
on VAX/VMS.)

9. ILL - Sets the ILLEG flag. The ILLEG flag, if
set, allows illegal characters to appear in
floating-point input. If such an illegal
character is encountered, no error message is
produced and the corresponding value is set to
zero.

10. LEGAL - Clears the ILLEG flag, and thus causes
illegal characters in floating-point input to
produce an error.

11. OVERFL - Returns information about the last
overflow, underflow, or divide check.

12. PDUMP - Like the DUMP subroutine except that
control returns to the calling program after
the dump has been executed.

13. QUIETX - Suppresses all summary type-out when
the program exits.

14. SAVFMT Causes a format specification
contained in the specified array or character
variable to be encoded into an internal form
that allows more efficient processing. (In VAX
FORTRAN, the use of Variable Format Expressions
(VFEs) provide most of the capability of
SAVFMT.)

15. SAVRAN - Saves the last internal seed value
generated by the RAN function.

16. SETRAN - Sets the internal seed value for the
RAN function.

3-32

FORTRAN-le/2g AND VAX FORTRAN INCOMPATIBILITIES

17. SORT - Sorts one or more files using the SORT
program. (FORTRAN-lg/20 SORT and VAX SORT use
different arguments.)

18. SRTINI - Directs FOROTS to start allocating
memory from top downward to account for large
overlay programs and preallocates pages 600:677
for SORT.

19. TOPMEM - Directs FOROTS to start allocating
memory from top downward to account for large
overlay programs.

20. TRACE Generates a list of the active
subprograms on the terminal.

3.l3.lg Subroutines Only Available in VAX FORTRAN

The following subroutines are only available in VAX
FORTRAN:

1. ASSIGN - Associates a filename with a logical
unit number. ASSIGN provides a subset of the
capabilities of the OPEN statement.

2. CLOSE - Closes a file. The CLOSE subroutine
provides a subset of the capabilities of the
CLOSE statement.

3. ERRTST - Checks if a particular error occurred.

4. FDBSET Specifies
provides a subset
OPEN statement.

I/O options. FDBSET
of the capabilities of the

5. IDATE - Returns the date as three integers (the
number of the month, day, year).

6. IRAD50 - Converts Hollerith data to Radix-50
and counts the number of characters.

7. R50ASC - Converts Radix-50 data to Hollerith.

3-33

FORTRAN-l"/2°0 AND VAX FORTRAN INCOMPATIBILITIES

8. HADS0 - Converts Hollerith to Radix-50.

9. RANDU - Returns a random number with a uniform
distribution.

10. USEREX - Sets the name of a subroutine to call
as part of the program termination process.

3-34

CHAPTER 4

SOFTWARE AND HARDWARE LIMITS

4.1 SOFTWARE LIMITS

FORTRAN-10/20 and VAX FORTRAN apply different limits on
the size and complexity of programs. This section
describes different limits imposed by the two compilers
and the associated run-time systems.

4.1.1 Number of Continuation Lines

Both FORTRAN-10/20 and VAX FORTRAN accept at least 19
continuation lines, but the differences in the two
compilers may cause a statement that contains more than
19 continuations to be acceptable to one compiler and
not the other.

VAX FORTRAN allows the continuation limit to be set from
o to 99 lines using the /CONTINUATIONS qualifier (the
default value is 19). Although the /CONTINUATIONS
qualifier takes a value measured in lines, the number of
continuations allowed by VAX FORTRAN is actually based
on the number of characters in the statement field of
the lines. Thus, VAX FORTRAN allows more continuation
lines than the value of /CONTINUATIONS implies if the
continuation lines are short. (The /EXTEND SOURCE
qualifier increases the length of lines; therefore, it
increases the total number of characters to be processed
for the /CONTINUATIONS value.)

4-1

SOFTWARE AND HARDWARE LIMITS

The continuation line limit of FORTRAN-10/20 (like VAX
FORTRAN) also is actually based on characters instead of
lines. But unlike VAX FORTRAN, FORTRAN-10/20 does not
require that all the lines that make up the statement
fit into the character buffer. FORTRAN-10/20 only
requires that the type of the statement be able to be
determined from the number of characters that fit into
the buffer. Thus, if FORTRAN-10/20 can determine from
the first 19 lines of a statement that the statement is
an assignment, then it places no actual limit on the
number of lines that make up the statement.

4.1.2 Other Compiler Limits

Table 4-1 lists other limits that FORTRAN-10/20 and VAX
FORTRAN place on the complexity of programs. Where
"Memory" is entered in the FORTRAN-10/20 - column, it
means that FORTRAN-10/20 imposes no real limit on the
complexity of the user subprogram being compiled other
than that all the compiler's tables and work areas must
be able to fit into memory. FORTRAN-l 0/20 has about
100K words available for this purpose.

Currently, FORTRAN-20 does produce code that can run in
the extended memory sections available under TOPS-20.
However, FORTRAN~10 programs plus the run-time system on
the DECsystem-10 must fit into 256K words. This is a
much more severe restriction on the size of user
programs than is made on a VAX.

4-2

SOFTWARE AND HARDWARE LIMITS

Table 4-1: Compiler Imposed Limitations

Item VAX FORTRAN FORTRAN-l~/2f3

of DO loops 213 79
that can be nested

--
Length of character 2131313 Memory
constants characters

Length of character 65535 Memory
variables characters

Number of array 7 128
subscripts

Number of arguments 255 127
to subprograms

1--.----- ! Number of named 2513 Memory
COMMON blocks

t--.-----

Number of NAMELIST 2513 Memory
elements

-
Length of PAUSE 255 characters Memory
messages

of INCLUDE 113 12
statements that can
be nested

4.1.3 I/O Limits

Table 4-2 lists the limits in the maximum record length
imposed by the run-time systems of FORTRAN-1f3/2f3 and VAX
FORTRAN. Where "Memory" is entered in the FORTRAN-1f3/2f3
column, it means that FORTRAN-10/2f3 imposes no real
limit on the maximum record length.

4-3

SOFTWARE AND HARDWARE LIMITS

Table 4-2: Maximum Record Lengths

VAX UJ/20
Formatted Unformatted Formatted Unformatted
(Bytes) (Longwords) (Bytes) (Words)

Sequential 32766 8191 655360 Memory

Sequential, 9999 2499 9999 8192
Variable
records of
ASCII tape

Indexed 16380 4095 17985 3579

Relative 16380 4g95 262143 52428

4.2 HARDWARE LIMITS

This section describes how the FORTRAN data types are
represented by the hardware of the DECSYSTEM-10/20 and
VAX processors, and the implications that this has for
the FORTRAN programmer.

4.2.1 The INTEGER Data Type

Both the DECSYSTEM-10/20 and the VAX processors store
integers using two's complement representation with the
left-most bit being the sign bit. VAX FORTRAN has two
integer data types: INTEGER*2 and INTEGER*4. INTEGER
variables that do not have a specified length are
treated as INTEGER*4 variables by default. The
programmer can cause these variables to be treated as
INTEGER*2 by specifying the /NOI4 qualifier.

FORTRAN-10/20 has only one integer data type:
INTEGER*4. If an attempt is made to declare a variable
as INTEGER*2, a warning is issued and INTEGER*4 is .used.

4-4

SOFTWARE AND HARDWARE LIMITS

Table 4-3 compares the different INTEGER data types.

Table 4-3: Integer Number Format

Data Type Bits Range

10/20 INTEGER*4 36 -34359738368 to 34359738367

VAX INTEGER*2 16 -32768 to 32767

~X INTEGER*4 32 -2147483648 to 2147483647

4.2.2 The LOGICAL Data Type

FORTRAN-10/20 has only one LOGICAL data type:
LOGICAL*4. It is stored as a word with the high-order
bit (the sign bit) determining whether the word is true
or false. If an attempt is made to declare LOGICAL*1
variables, FORTRAN-10/20 issues a warning and uses
LOGICAL*4. If an attempt is made to declare LOGICAL*2
variables, an error is given.

VAX FORTRAN has three LOGICAL data types: LOGICAL*1,
LOGICAL*2, and LOGICAL*4. They are implemented as a
single byte, two bytes, or a long word, respectively.
VAX FORTRAN tests the low-order bit to determine whether
a LOGICAL variable is true or false.

Note that FORTRAN-10/20 and VAX FORTRAN test different
bits to determine whether the value contained in a
logical variable is 'true or false. (Section 3.4
explains the impact that this can have on programs.)

Table 4-4 summarizes the LOGICAL data types.

4-5

SOFTWARE AND HARDWARE LIMITS

Table 4-4: Logical Data Types

Data Type Bits Range (if used to store
an INTEGER)

10/20 LOGICAL 36 34359738368 to 34359738367

VAX LOGICAL*l 8 -128 to 127

VAX LOGICAL*2 16 -32768 to 32767

VAX LOGICAL*4 32 -2147483648 to 2147483647

4.2.3 The CHARACTER and Hollerith Data Types

Both FORTRAN-10/20 and VAX FORTRAN represent CHARACTER
and Hollerith data as ASCII characters packed into
contiguous locations. However, two important
differences make the maximum number of characters that
can be packed into the FORTRAN data types different on
the two machines:

• Characters on a DECSYSTEM-10/20 are represented
by 7 bits, and characters on a VAX are
represented by 8 bits.

• The number of bits used to store the FORTRAN
data types on a DECSYSTEM-10/20 differs from
the number of bits used to store the FORTRAN
data types on a VAX.

These differences do not affect the FORTRAN programmer
who uses the CHARACTER data type, because all the
operations on CHARACTER data are carried out
transportably by the compiler and run-time system.
However, these differences greatly affect programs that
use Hollerith data. Single-word variables and constants
can hold up to five characters on a DECSYSTEM-10/20, but
only four characters on a VAX.

4-6

SOFTWARE AND HARDWARE LIMITS

Table 4-5 lists the maximum number of characters that
can be packed into the various FORTRAN data types.

Table 4-5: Characters per FORTRAN Data Type

Data Type Number of Number of
Characters Characters

on a VAX on a DECSYSTEM-l~/2e

BYTE 1 Not Available

COMPLEX 8 l~

COMPLEX*16 16 Not Available

INTEGER*2 2 Not Available

INTEGER*4 4 5

LOGICAL*l 1 Not Available

LOGICAL*2 2 Not Available

LOGICAL*4 4 5

REAL*4 4 5

REAL*8 8 l~

REAL*16 16 Not Available

Another incompatibility is that VAX programs can
manipulate individual characters in Hollerith data by
storing the Hollerith string in a LOGICAL*l or BYTE
array. Since FORTRAN-l~/2~ does not support these data
types, this cannot be done on a DECSYSTEM-l~/2~
processor.

The best way to avoid the system dependent aspects of
Hollerith data is not to use it; the CHARACTER data type
is superior and is transportable.

4-7

SOFTWARE AND HARDWARE LIMITS

4.2.4 The Floating-Point Data Types

Both the DECSYSTEM-10/20 and VAX processors have several
floating-point formats that allow the programmer a great
deal of flexibility in solving numerical problems.
These formats are the following:

• F-floating format minimizes storage space and
execution time at the expense of both range and
precision.

• D-floating format requires twice as much space
and has the same range as F-floating, but
provides more than twice the precision.

• G-floating format requires the same space as
D-floating, but trades a little precision for
greatly increased range.

• H-floating format (only available on the VAX)
requires much more storage space and execution
time, but greatly increases the precIslon and
range of numbers that can be represented.

The corresponding number formats on the two different
machines have many similarities including:

• Floating-point numbers are represented as a
signed fraction multiplied by two raised to the
power of some exponent.

• The exponent field is stored in excess 1024
notation for G-floating, and in excess 128
notation for F-floating and D-floating.

• The fraction
po int is to
bit.

is normalized, and its binary
the left of the most significant

However, there are several important differences that
must be taken into consideration when moving an
application from one processor to the other.

4-8

SOFTWARE AND HARDWARE LIMITS

Unlike the DECSYSTEM-10/20 , which stores the most
significant bit of the mantissa, the VAX floating-point
number formats use hidden bit normalization. Hidden bit
normalization means that the high-order bit of the
mantissa, which is always one because numbers are
normalized, is not stored.

This has two effects: First, since there is no way to
have a zero mantissa (since there is always that hidden
bit, which is one), the zero exponent field is reserved
to mean that the number represented is zero. Thus, VAX
floating-point numbers do not have as great a range as
floating-point numbers of the corresponding
DECSYSTEM-10/20 floating-point number format. Second,
since the most significant mantissa bit is not stored,
VAX makes more effective use of its mantissa bits. This
causes VAX floating-point number formats to be slightly
more precise than the word size of the VAX would imply.

The two machine architectures use different
representations for negative floating-point numbers.
The VAX processor simply has a sign bitj if the bit is
zero, then the number is positive. If the bit is one,
then the number is negative. The sign bit for VAX
floating-point numbers is not in the same bit position
in a long word as the sign bit for VAX integer numbers.
Thus, if an INTEGER and a REAL variable are
equivalenced, the same bit pattern could test negative
as the REAL variable and positive as the INTEGER
variable. The DECSYSTEM-10/20 processor represents
negative floating-point numbers as the two's complement
of the positive floating-point numbers. This
representation of negative numbers means that a
DOUBLE-PRECISION variable cannot be equivalenced to a
REAL variable in order to truncate the double-precision
number to single precisionj that operation can result in
unnormalized numbers.

The F-floating number format is used to store the REAL*4
and COMPLEX*8 data types. Table 4-6 compares the
F-floating number format on the DECSYSTEM-10/20 and VAX
processors.

4-9

SOFTWARE AND HARDWARE LIMITS

The D-floating number format is used to store the REAL*8
and COMPLEX*16 (VAX FORTRAN only) data types. Table 4-6
compares the D-floating number format on the
DECSYSTEM-10/20 and VAX processors.

The G-floating number format is used to store the REAL*8
and COMPLEX*l6 (VAX FORTRAN only) data types if the
/GFLOATING switch is given to FORTRAN-10/20, or the
/G FLOATING qualifier is given to VAX FORTRAN. Not all
DECSYSTEM-10/20 or VAX processors support G-floating.
On VAX processors without G-floating, the runtime
library may be used to provide software emulation of
G-floating. Table 4-6 compares the G-floating number
formats on the two machines.

The H-floating number format is available only on the
VAX. The REAL*l6 data type in VAX FORTRAN uses the
H-floating format. Table 4-6 compares H-floating to the
other floating-point number formats. Not all VAX
processors support H-floating. On VAX processors
without H-floating, the runtime library may be used to
provide software emulation of H-floating.

4-10

SOFTWARE AND HARDWARE LIMITS

Table 4-6: Floating-Point Number Formats

Bits of Bits of Range Digits of
Exponent Mantissa Precision

F·FLOATING NUMBER FORMAT

10/20 8 27 1. 47 x 10**·39 8.1
to 1.70 x 10**+38

VAX 8 24 2.94 x 10**·39 7.2
to 1.70 x 10**+38

D·FLOATING NUMBER FORMAT

10/20 8 62 1. 47 x 10**·39 18.7
to 1.70 x 10**+38

VAX 8 56 2.94 x 10**·39 16.9
to 1.70 x 10**+38

G·FLOATING NUMBER FORMAT

10/20 11 59 27.78 x 10**-309 17.8
to 8.99 x 10**+307

VAX 11 53 5.56 x 10**-309 16.0
to 8.99 x 10**+307

H·FLOATING NUMBER FORMAT

VAX 15 113 8.4 x 10**-4933 34.0
to 5.9 x 10**+4931

NOTE

There is a symmetric (mirror-image) negative
range, as well as a unique representation for
zero.

4-11

INDEX

-A-

ACCEPT statement, 2-17
Access

to storage element
addresses, 2-15

ACCESS='APPEND'
and REWIND, 3-9

Alternate return labels,
2-15-

Argument passing
user-controlled,:2-16

Arguments
passed by reference,

3-2
passed by value-result,

3-2
Arithmetic operators

consecutive, "2-12
Array elements

numer ic to store
formats, 2-22

Arrays
numeric to store

formats, 2-22
Assigned GOTO statement,

3-5
ASSOCIATEVARIABLE=

specifier, 3-9

-B-

BYTE data type, 2-4

-C-

Carriage-control
characters, 3-18

CARRIAGECONTROL specifier,
3-7

CHARACTER assignment
statements

overlap on, 2-15'
CHARACTER data type, 4~6
CHARACTER expressions,

2-14
CHARACTER.variables

numeric initialization,
2-10

Characters per data type,
4-7

CLOSE statement, 3-15
CLOSE statement

specifiers, 3-15 to
3-17

CLOSE statements
conversion of, 3-17

Comment
lines, 2-1
on statements, 2-1

Compile-time.constant
expressions

extended, 2-13
Compiler imposed

limitations, 4-3
COMPLEX16 data type, 2-4
Concatenation of length *

operands, 2-12
Constants

hexadecimal, 2-4
hollerith, 2-5
octal, 2-6
RADIX-50, 2-7

Continuation lines, 4-1

Index-1

-D-

D format edit descriptor,
3-2"

D-f10ating number format,
2-3, 4-1"

DATA statements
implied DO in, 2-9

Data types, 3-21
BYTE, .2-4
CHARACTER, 4-6
COMPLEX16, 2-4
floating-point, 4-8
Hollerith, 4-6
INTEGER, 4-4
INTEGER2, 2-5
LOGICAL, 4-5
LOGICAL*l, 2-5
LOGICAL*2, 2-5
number of characters,

4-7
REAL*16, 2-7
RECORD, 2-7

DEBUG lines, 2-2
DECODE statement, 2-17
Default filenames for

units, 3-6
DEFINE FILE statement,

2-18
DELETE statement, 2-18
DICTIONARY statement, 2-8
DO loops

extended range, 2-16
one trip, 2-16

DO WHILE statement, 2-16
$ dollar sign format edit

descriptor, 2-21,
3-19

DOUBLE COMPLEX statement,
2-4

DOUBLE PRECISION number
fo rmats, 2-3

DOUBLE-PRECISION COMPLEX
functions, 3-28

-E-

E format edit descriptor,
3-2"

ENCODE statement, 2-18
END DO statement, 2-16
END STRUCTURE Statement,

2-11
EQUIVALENCE

of multidimensional
arrays, 2-9

Expressions
CHARACTER, 2-14
compile-time constant,

2-13
LOGICAL in numeric

contexts, 2-14
numeric in LOGICAL

contexts, 2-14
EXTEND SOURCE qualifier,

3-1
EXTERNAL statement, 2-8

-F-

F format edit descriptor,
3-2"

F-f10ating number format,
4-9

File generation numbers,
3-7

File version numbers, 3-7
FIND statement, 2-19
Floating-point data types,

4-8
Floating-point number

formats
D-floating, 4-10
F-floating, 4-9
G-f10ating, 4-10

Index-2

Floating-point number
formats (Cont.)

H-floating., 4-10-··
Format edit descriptors

D, 3-20
default field widths,

2-21, 3-21
$ dollar sign, 2-21,

3-19
E, 3-20
F, 3-20
G, 2-22, 3-20
0, 2-22, 3-20
Q, 2-22
R, 2-23
X, 3-19
Z, 2-23, 3-20

Format expressions
variable, 2-23

Formats
optional commas in,

2-22
Fo rmatted input

comma in, 2-21
Formatted sequential

files, 3-8
Formfeed, 3-2
FORTRAN-77 standard, 1-1

extensions, 2..;..1
FORTRAN-supplied

subprograms, 3-23 to
3-34

FUNCTION statement
length specifiers in,

2-9
Functions

double-precision
COMPLEX, 3-28

generic, 3-24
INTEGER, 3-27
intrinsic, 3-25

-G-

G format edit descriptor,
2-22, 3-20

G-floating number format,
2-3, 4-10

Generic functions, 3-24
GOTO statement

assigned, 3-5

-H-

H-floating number format,
4-10

Hardware limits, 4-4
Hexadecimal constants,

2-4
MIL standard, 2-5

Hollerith constants, 2-5
Hollerith data type, 4-6

-I-

I/O
in I/O, 2-19
incompatibilites, 3-5
indexed, 2-19
limits, 4-3

Identifiers
long, 2-2
special characters in,

2-2
IMPLICIT NONE statement,

2-9
INCLUDE statement, 2-3,

3-23
Input

unit 5 for, 3-6
INQUIRE statement, 3-9
INTEGER data type, 4-4
INTEGER functions, 3-27
INTEGER2 data type, 2-5

Index-3

Internal file I/O
1 ist-di rected ,2-1-g

Intrinsic functions, 3-25

-L-

Labels
alternate return, 2-15

Length specifiers
in FUNCTION statements,

2-9
numeric data type, 2-10

Lines
comment, 2-1
continuation, 4-1
DEBUG, 2-2
multi-statement, 2-2

List-directed internal
file I/O, 2-19

LOGICAL data type, 4-5
LOGICAL expressions

in numeric contexts,
2-14

LOGICAL IF statement
two-branch, 2-17

Logical operator
.NEQV., 2-15
.XOR., 2-15

Logical tests, 3-4
LOGICAL*l data type, 2-5
LOGICAL*2 data type, 2-5

-M-

MIL standard hexadecimal
constants, 2-5

MIL standard octal
constants, 2-5

Multi-statement lines,
2-2

Multidimensional arrays
easy EQUIVALENCE of,

2-9

-N-

NAMELIST input
prompting during, 2-20

NAMELIST statement, 2-19
.NEQV. logical operator,

2-15
Nonprintab1e characters,

3-2
Numeric expressions

in LOGICAL contexts,
2-14

where INTEGER required,
2-13

-0-

o format edit descriptor,
2-22, 3-20

Octal constants
MIL standard, 2-5
of type INTEGER, 2-6
type1ess, 2-6

OPEN statement, 3-9
OPEN statement specifiers,

3-10 to 3-13
OPEN statements

conversion of, 3-13
OPTIONS statement, 2-3
Output

unit 5 for, 3-6

-p-

PARAMETER statement
alternate form, 2-8

PROGRAM statement, 3-23
PUNCH statement, 2-20

-Q-

Q format edit descriptor,
2-22

Index-4

-R-

R format edit descriptor,
2-23

RADIX-50 constants
in DATA statements, 2-7

REAL*16 data type, 2-7
RECL= specifier, 3-8
RECORD data type, 2-7
Record specifier

apostrophe form, 2-17
RECORD statement, 2-10
Relational operators

alternate syntax for,
2-12

Remark field, 3-1
REREAD statement, 2-20
REWRITE statement, 2-20

-S-

Software limits, 4-1
Specifiers

ASSOCIATEVARIABLE=, 3-9
CARRIAGECONTROL, 3-7
CLOSE statement, 3-15

to 3-17
OPEN statement, 3-10 to

3-13
RECL=, 3-8

Statement field, 3-1
Statements

ACCEPT, 2-17
assigned GOTO, 3-5
CHARACTER assignment,

2-15
CLOSE, 3-15
DATA, 2-9
DECODE, 2-17
DEFINE FILE, 2-18
DELETE, 2-18
DICTIONARY, 2-8
DO WHILE, 2-16

Statements (Cont.)
DOUBLE COMPLEX, 2-4
ENCODE, 2-18
END DO, 2-16
END STRUCTURE, 2-11
EXTERNAL, 2-8
FIND, 2-19
IMPLICIT NONE, 2-9
INCLUDE, 2-3, 3-23
INQUIRE, 3-9
NAMELIST, 2-19
OPEN, 3-9
OPTIONS, 2-3
PARAMETER, 2-8
PROGRAM, 3-23
PUNCH, 2-20
RECORD, 2-10
REREAD, 2-20
REWRITE, 2-20
STRUCTURE, 2-11
two-branch LOGICAL IF,

2-17
TYPE, 2-20
type declaration, 2-11
UNLOCK, 2-20
VIRTUAL, 2-11
VOLATILE, 2-11
WRITE, 2-18

STRUCTURE statement, 2-11
Subprograms

FORTRAN-supplied, 3-23
to 3-34

Subroutines, 3-30 to 3-34
Symbolic constant

used as COMPLEX
constant, 2-7

-T-

Type declaration
statements

value initialization,
2-11

Index-5

TYPE statement, 2-20

-u-

UNLOCK statement, 2-20

-V-

Variable format
expressions, 2-23

vertical tab, 3-2
VIRTUAL statement, 2-11
VOLATILE statement, 2-11

-W-

WRITE statement
default unit in, 2-18

-X-

X format edit descriptor,
3-19

.XOR. logical operator,
2-15

-z-

Z format edit descriptor,
2-23, 3-20

Index-6

READER'S COMMENTS

FORTRAN-1 0/20
and V AX FORTRAN
Compatibility Manual

AA-Y868C-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
o Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify) ____________________ _

Name ____________ _ Date ____________________ _

Organization _______ _ Telephone ________________ _

Street __________________________________ _

City ________ State __ Zip Code ______________ _

or Country

I
I
I
I
I
I
I
I

m

---000

mN.oto Tear t" "'Om': HDe~ and Ta~-- -- - -- - - -- -- - - -- --- --r~ -111-- ---- --~~;,;;---'
.. if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

Do Not Tear - Fold Here and Tape -

1
\ ,

II
I:

:::3

;
0

Q
tall
I:
0
;(
:;
U

