
Language Reference Manual

Order Number: AA-D034E-TE

VAX FORTRAN
Language Reference Manual
Order Number : AA-D034E- TE

June 1988

This manual details the VAX FORTRAN programming language as implemented
for VMS systems .

Revision/Update Information: This revised manual supersedes
Programming in VAX FORTRAN (order
number AA-00340-TE) .

Operating System and Version: VMS Version 5.0 or higher

Software Version :

digital equipment corporation
maynard, massachusetts

VAX FORTRAN Version 5 .0

First Printing, September 1984
Revision, June 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation .
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document .

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1984, 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user' s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation :

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-IO
DECSYSTEM-20
DEC US
DECwriter

DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

~U~UIJ~UTM

ZK-4671

Contents

PREFACE xvii

NEW AND EXPANDED LANGUAGE FEATURES xxi

CHAPTER 1 INTRODUCTION TO VAX FORTRAN 1-1

1.1 ELEMENTS OF FORTRAN SOURCE PROGRAMS 1-2
1 .1 .1 Program Units 1-2
1.1.2 Statements 1-2
1.1.3 Symbolic Names 1-5
1.1.4 Comments 1-7

1.2 CHARACTER SET 1-8

1.3 CODING RULES 1-9
1.3.1 Fixed-Format Lines 1-10
1 .3 .2 Tab-Format Lines 1-11
1.3.3 Statement Label Field 1-13

1.3.3.1 Comment Indicator • 1-13
1.3 .3 .2 Debugging Statement Indicator • 1- 14

1.3.4 Continuation Indicator Field 1-14
1.3.5 Statement Field 1-14
1.3.6 Sequence Number Field 1-15

1 .4 COMPILATION CONTROL STATEMENTS 1-1 5
1.4.1 DICTIONARY Statement 1-1 5
1 .4.2 INCLUDE Statement 1-17
1 .4 .3 OPTIONS Statement 1-18

iii

CHAPTER 2 DATA TYPES, DATA ITEMS, AND EXPRESSIONS 2-1

2.1 DATA TYPES 2-1
2.1.1 Storage Requirements 2-2
2.1.2 VAX Implementations of REAL*S 2-4

2.2 DATA ITEMS 2-4
2.2.1 Constants 2-5

2.2 .1. 1 Integer Constants • 2-5
2.2 .1.2 Real Constants• 2-8
2.2.1.3 Complex Constants • 2-13
2.2. 1.4 Octal and Hexadecimal Constants • 2-15
2.2.1.5 Logical Constants • 2-18
2.2.1 .6 Character Constants • 2-18
2.2.1.7 Hollerith Constants • 2-19

2.2.2 Variables 2-22
2 .2 .2 . 1 Data Type by Specification • 2-23
2 .2.2.2 Data Type by Implication • 2-24

2.2 .3 Arrays 2-24
2.2.3.1 Array Declarators • 2-25
2.2.3.2 Array Subscripts • 2-27
2.2.3.3 Arrangement of Array Elements in Storage• 2-27
2.2 .3 .4 Data Type of an Array • 2-29
2.2.3 .5 Array References without Subscripts • 2-29
2.2.3.6 Adjustable Arrays • 2-29
2.2.3.7 Assumed-Size Arrays • 2-30

2.2.4 Character Substrings 2-30
2.2.5 Records 2-31

2 .2 .5.1 Arrangement of Records in Storage • 2-33
2.2.5.2 References to Record Fields • 2-36

2.2.6 Terminology Used to Refer to Data Items 2-39

2.3 EXPRESSIONS 2-42
2.3.1 Arithmetic Expressions 2-42

2.3.1.1 Using Parentheses• 2-44
2.3.1.2 Data Type of an Arithmetic Expression • 2-45

2.3.2 Character Expressions 2-47
2.3.3 Relational Expressions 2-48
2.3.4 Logical Expressions 2-49

iv

CHAPTER 3 ASSIGNMENT STATEMENTS 3-1

3.1 ARITHMETIC ASSIGNMENT STATEMENT 3-1

3.2 LOGICAL ASSIGNMENT STATEMENT 3-4

3.3 CHARACTER ASSIGNMENT STATEMENT 3-4

,.
3.4 AGGREGATE ASSIGNMENT STATEMENT 3-6

3.5 ASSIGN STATEMENT 3-7

CHAPTER 4 SPECIFICATION STATEMENTS 4-1

4.1 BLOCK DATA STATEMENT 4-2

4.2 COMMON STATEMENT 4-3

4.3 DATA STATEMENT 4-5

4.4 DATA TYPE DECLARATION STATEMENTS 4-8
4.4.1 Numeric Type Declaration Statements 4-8
4.4.2 Character Type Declaration Statements 4-10

4.5 DIMENSION STATEMENT 4-12

4.6 EQUIVALENCE STATEMENT 4-13
4.6.1 Making Arrays Equivalent 4-14
4.6.2 Making Substrings Equivalent 4-17
4.6.3 EQUIVALENCE and COMMON Interaction 4-20

4.7 EXTERNAL STATEMENT 4-21

4.8 IMPLICIT STATEMENT 4-22

v

4.9 INTRINSIC STATEMENT 4-23

4.10 NAMELIST STATEMENT 4-24

4.11 PARAMETER STATEMENT 4-26

4.12 PROGRAM STATEMENT 4-28

4 .13 RECORD STATEMENT 4-29

4.14 SAVE STATEMENT 4-30

4.15 STRUCTURE DECLARATION BLOCK 4-31
4.15.1 Structure Declaration 4-33
4.15.2 Substructure Declarations 4-38
4.15.3 Union Declarations 4-38

4.16 VOLATILE STATEMENT 4-41

CHAPTER 5 CONTROL STATEMENTS 5-1

5.1 CALL STATEMENT 5-2

5.2 CONTINUE STATEMENT 5-3

5.3 DO STATEMENTS 5-3
5.3.1 Indexed DO Statement 5-4

5.3.1.1 DO Iteration Control • 5-5
5.3.1.2 Nested DO Loops • 5-7
5.3.1 .3 Control Transfers in DO Loops• 5-8
5.3 .1.4 Extended Range • 5-9

5.3.2 DO WHILE Statement 5-9

5.4 END DO STATEMENT 5-11

vi

5.5 END STATEMENT 5-12

5.6 GO TO STATEMENTS 5-12
5.6.1 Unconditional GO TO Statement 5-13
5.6.2 Computed GO TO Statement 5-13
5.6.3 Assigned GO TO Statement 5-14

5.7 IF STATEMENTS 5-15
5.7.1 Arithmetic IF Statement 5-16
5.7.2 Logical IF Statement 5-17
5.7 .3 Block IF Statements 5-17

5.7.3.1 Statement Blocks • 5-21
5.7.3.2 Block IF Examples • 5-2 1
5.7.3.3 Nested Block IF Constructs • 5-23

5.8 PAUSE STATEMENT 5-24

5.9 RETURN STATEMENT 5-25

5.10 STOP STATEMENT 5-27

CHAPTER 6 SUBPROGRAMS - SUBROUTINES AND FUNCTIONS 6-1

6.1

6.2

SUBPROGRAM ARGUMENTS
6.1 .1 Actual Argument and Dummy Argument

Association
6. 1. 1. 1 Adjustable Arrays • 6-3
6. 1. 1.2 Assumed-Size Arrays • 6-6
6 . 1. 1.3 Passed-Length Character Arguments • 6-7
6. 1. 1.4 Character and Hollerith Constants as Actual

Arguments • 6-8
6. 1.1 .5 Alternate Return Arguments• 6-9

6.1.2 Built -In Functions
6 . 1.2 . 1 Argument List Built -In Funct ions • 6- 9
6 . 1.2 .2 %LOC Built -In Function • 6-1 1

USER-WRITTEN SUBPROGRAMS
6.2.1 Statement Functions

6-2

6-2

6- 9

6-11
6-12

vii

6.2.2 Function Subprograms 6-1 5
6 .2.2 .1 Logical and Numeric Functions • 6- 15
6.2 .2 .2 Character Functions• 6-15
6.2 .2 .3 Function Reference • 6-16

6.2.3 Subroutine Subprograms - SUBROUTINE
Statement 6-1 8

6.2.4 ENTRY Statement 6-21
6.2.4 . 1 ENTRY Statements in Function Subprograms • 6-22
6.2.4.2 ENTRY Statements in Subroutine Subprograms • 6-24

6.3 FORTRAN INTRINSIC FUNCTIONS 6-25
6.3 .1 Intrinsic Function References 6-25

6.3. 1. 1 Generic References to Intrinsic Functions • 6- 26
6 .3 . 1.2 Using Intrinsic Function Names• 6-28

6.3.2 Character and Lexical Comparison library Functions _ 6-30
6.3.2 . 1 Character Functions • 6-30
6.3.2.2 Lexical Comparison Functions• 6-32

CHAPTER 7 1/0 STATEMENTS 7-1

viii

7.1 COMPONENTS OF 1/0 STATEMENTS 7-1

7.2

7. 1 . 1 Control List 7-2

7.1 .2

7 . 1. 1. 1 Syntax Rules for Control-List Parameters • 7- 3
7 . 1. 1.2 Logical Unit Specifier • 7-3
7 .1.1 .3 Internal File Specifier• 7-4
7 .1.1 .4 Format Specifiers• 7-4
7 . 1 . 1 . 5 Namelist Specifier • 7- 5
7. 1 . 1 . 6 Record Specifier • 7-6
7 . 1 . 1 . 7 Key-Field-Value Specifier • 7-6
7 . 1 . 1 . 8 Key-of-Reference Specifier • 7-9
7.1.1.9 1/0 Status Specifier• 7-9
7 . 1. 1. 10 Transfer-of-Control Specifiers • 7-10
1/0 list
7. 1.2. 1
7 . 1.2 .2

Simple List Elements • 7-12
Implied-DO Lists in 1/0 Statements • 7-13

READ STATEMENTS

7-11

7-15

7.2.1 Sequential READ Statements 7-15
7 . 2 . 1 . 1 Formatted Sequential READ Statement • 7-16
7 .2.1 .2 List-Directed Sequential READ Statement• 7-17
7 .2 .1.3 Namelist-Directed Sequent ial REA D Statement • 7- 20
7 .2 . 1.4 Unformatted Sequential READ Statement • 7-25

7.2.2 Direct Access READ Statements 7-26
7 .2 .2.1 Formatted Direct Access READ Statement • 7-26
7.2.2.2 Unformatted Direct Access READ Statement• 7-27

7. 2.3 Indexed READ Statements 7-28
7 .2 .3 .1 Formatted Indexed READ Statement• 7-29
7 .2 .3.2 Unformatted Indexed REA D Statement • 7- 30

7.2.4 Internal READ Statement 7-31
7 .2.4 .1 Formatted Internal READ Statement • 7-31
7 .2.4.2 List-Directed Internal READ Statement • 7-32

7.3 WRITE STATEMENTS 7-33

7 .4

7 .5

7.6

7.3.1 Sequential WRITE Statements 7-33
7. 3. 1 . 1 Formatted Sequential WRITE Statement • 7-34
7 .3.1.2 List-Directed Sequential WRITE Statement • 7-35
7 .3.1 .3 Namelist-Directed Sequential W RITE Statement • 7- 3 7
7 .3.1.4 Unformatted Sequential WRITE Statement• 7-39

7 .3.2 Direct Access WRITE Statements 7-39
7 .3.2.1 Formatted Direct Access WRITE Statement• 7-40
7 .3.2.2 Unformatted Direct Access WRITE Statement• 7-40

7 .3.3 Indexed WRITE Statements 7- 4 1
7 .3 .3 .1 Formatted Indexed WRITE Statement • 7-42
7 .3 .3 .2 Unformatted Indexed WRITE Statement • 7- 43

7 .3.4 Internal WRITE Statement 7-43
7 .3.4.1 Formatted Internal WRITE Statement• 7-44
7 .3.4 .2 List-Directed Internal WRITE Statement • 7- 44

REWRITE STATEMENT
7.4.1 Formatted REWRITE Statement
7.4 .2 Unformatted REWRITE Statement

ACCEPT STATEMENT

TYPE AND PRINT STATEMENTS

7- 45
7-46
7-46

7- 47

7-48

ix

CHAPTER 8 1/0 FORMATTING

8.1

8.2

8.3

x

GENERAL RULES FOR WRITING FORMAT STATEMENTS
8.1 .1 Input Rules for FORMAT Statements
8.1 .2 Output Rules for FORMAT Statements

FORMAT STATEMENT SYNTAX

FIELD AND EDIT DESCRIPTORS
8.3.1
8 .3.2
8.3.3

8.3.4

8.3.5

8.3.6

8.3.7
8.3.8
8.3.9

8.3 .10
8.3.11

Repeat Counts and Group Repeat Counts
Variable Format Expressions
Blank Control Editing
8.3.3. 1 BN Edit Descriptor• 8-10
8.3.3.2 BZ Edit Descriptor• 8-11
Sign Control Editing
8.3.4. 1 SP Edit Descriptor • 8-11
8.3.4.2 SS Edit Descriptor • 8-11
8.3.4.3 S Edit Descriptor • 8-12
Integer Editing
8.3.5. 1 I Field Descriptor • 8-12
8 .3 .5.2 0 Field Descriptor• 8- 14
8.3 .5 .3 Z Field Descriptor • 8- 16
Real Editing
8.3.6. 1 F Field Descriptor• 8-17
8.3.6.2 E Field Descriptor• 8-19
8.3.6.3 D Field Descriptor• 8-21
8.3.6.4 G Field Descriptor • 8-22
8.3.6.5 Complex Data Editing • 8-25
Scale Factor Editing-P Edit Descriptor
Logical Editing-L Edit Descriptor
Character Editing
8.3.9. 1 A Field Descriptor • 8-29
8.3 .9.2 H Field Descriptor • 8- 32
8.3 .9.3 Character Constants • 8-32
Default Field Descriptors

Positional Editing
8.3. 11 . 1 X Edit Descriptor• 8-34
8.3 . 11 .2 T Edit Descriptor • 8-35
8.3.11.3 TL Edit Descriptor• 8-36
8.3.11.4 TR Edit Descriptor• 8-36

8-1

8-2
8-3
8-4

8-4

8-7
8-8
P - 9

8-10

8-11

8-12

8-17

8-25
8-28
8-29

8-33
8-34

8.3.12 Additional Editing Operations 8-36
8 .3 . 12 .1 Q Edit Descriptor • 8- 37
8 .3 .12.2 Dollar Sign Descriptor • 8-37
8.3. 12.3 Colon Descriptor • 8-38

8.4 CARRIAGE CONTROL 8-38

8.5 FORMAT SPECIFICATION SEPARATORS 8-39

8.6 EXTERNAL FIELD SEPARATORS 8-40

8.7 RUN-TIME FORMAT 8-41

8.8 FORMAT CONTROL INTERACTION WITH 1/0 LISTS 8-42

CHAPTER 9 AUXILIARY 1/0 STATEMENTS 9-1

9.1 OPEN STATEMENT 9-2
9.1.1 ACCESS Keyword 9-8
9.1.2 ASSOCIATEVARIABLE Keyword 9-8
9.1.3 BLANK Keyword 9-8
9.1.4 BLOCKSIZE Keyword 9-9
9.1 .5 BUFFERCOUNT Keyword 9-9
9.1 .6 CARRIAGECONTROL Keyword 9-10
9.1 .7 DEFAULTFILE Keyword 9-10
9 .1.8 DISPOSE Keyword 9-11
9.1.9 ERR Keyword 9-12
9.1.10 EXTENDSIZE Keyword 9-12
9.1 .11 FILE Keyword 9-13
9.1.12 FORM Keyword 9-13
9.1.13 INITIALSIZE Keyword 9-1 4
9.1.14 IOSTAT Keyword 9-14
9.1.15 KEY Keyword 9- 15
9.1.16 MAXREC Keyword 9-1 6
9.1.17 NAME Keyword 9-17
9.1.18 NOSPANBLOCKS Keyword 9-17
9 .1.19 ORGANIZATION Keyword 9-17
9 .1.20 READONLY Keyword 9-18

xi

9.1.21 RECL Keyword 9-18
9.1 .22 RECORDSIZ E Keyword 9- 20
9.1 .23 RECORDTYPE Keyword 9-20
9.1.24 SHARED Keyword 9-21
9.1.25 STATUS Keyword 9-21
9.1.26 TYPE Keyword 9-22
9.1.27 UNIT Keyword 9-22
9. 1.28 USEROPEN Keyword 9- 23

9.2 CLOSE STATEMENT 9-23

9.3 INQUIRE STATEMENT 9-24
9.3.1 ACCESS Specifier 9-25
9.3.2 BLANK Specifier 9-26
9.3.3 CARRIAGECONTROL Specifier 9-26
9.3.4 DIRECT Specifier 9-27
9.3.5 ERR Specifier 9-27
9.3.6 EXIST Specifier 9-27
9.3.7 FORM Specifier 9-28
9.3.8 FORMATTED Specifier 9-28
9.3.9 IOSTAT Specifier 9-28
9 .3.10 KEYED Specifier 9- 29
9.3.11 NAME Specifier 9-29
9.3.12 NAMED Specifier 9-30
9.3.13 NEXTREC Specifier 9-30
9.3.14 NUMBER Specifier 9-30
9.3.15 OPENED Specifier 9-31
9 .3.16 ORGAN IZATION Specifier 9- 31
9.3.17 RECL Specifier 9-32
9.3.18 RECORDTYPE Specif ier 9-32
9.3.19 SEQUENTIAL Specifier 9-33
9.3.20 UNFORMATTED Specifier 9-33

9.4 REWIND STATEMENT 9-34

9.5 BACKSPACE STATEMENT 9-35

9.6 ENDFILE STATEMENT 9-35

xii

9.7 DELETE STATEMENT 9-36

9.8 UNLOCK STATEMENT 9- 38

CHAPTER 10 COMPILER DIRECTIVES 10-1

10.1 COMPILER DIRECTIVE SYNTAX RULES 10-1

10.2 PARALLEL DIRECTIVES 10-2
10.2.1 CPAR$ CONTEXT_SHARED 10-3
10.2.2 CPAR$ CONTEXT_SHARED_ALL 10-3
10.2.3 CPAR$ DO_PARALLEL 10-4
10.2.4 CPAR$LOCKON,CPAR$LOCKOFF 10-5
10.2.5 CPAR$ PRIVATE 10-6
10.2.6 CPAR$ PRIVATE_ALL 10-7
10.2.7 CPAR$ SHARED 10- 7
10.2.8 CPAR$ SHARED_ALL 10-8
10.2.9 Parallel Directive Examples 10-8

10.3 GENERAL DIRECTIVES 10- 10
10.3.1 CDEC$1DENT 10-10
10.3.2 CDEC$ PSECT 10- 11
10.3.3 CDEC$ TITLE, CDEC$ SUBTITLE 10-13

APPENDIX A ADDITIONAL LANGUAGE FEATURES A-1

A.1 THE ENCODE AND DECODE STATEMENTS A- 1

A.2 DEFINE FILE STATEMENT A-3

A.3 FIND STATEMENT A-5

A .4 PARAMETER STATEMENT A-6

A.5 OCTAL NOTATION FOR INTEGER CONSTANTS A- 7

xiii

A .6 / NOF77 INTERPRETATION OF THE EXTERNAL STATEM ENT A-8

APPENDIX B CHARACTER SETS B-1

B.1 FORTRAN CHARACTER SET B-1

B.2 ASCII CHARACTER SET B-2

B.3 RADIX- 50 CONSTANTS A ND CHARACTER SET B- 4

APPENDIX C FORTRAN DATA REPRESENTATION C-1

C.1 INTEGER*2 REPRESENTATION C-1

C.2 INTEGER*4 REPRESENTATION C-2

C.3 LOGICAL*1 (BYTE) REPRESENTATION C-2

C.4 LOGICAL*2 AND LOGICAL*4 REPRESENTATION C-2

C.5 FLOATING-POINT REPRESENTATIONS C-3
C.5.1 REAL*4 (f _floating) C-4
C.5.2 REAL*8 (D_floating) C-5
C.5 .3 REAL*8 (G_ floating) C-6
C.5.4 REAL*16 (H_floating) C-7
C.5.5 COMPLEX*8 (f _floating) C-8
C.5.6 COMPLEX*16 (D_floating) C-8
C.5.7 COMPLEX*16 (G_floating) C-10

C.6 CHARACTER REPRESENTATION C-11

C.7 HOLLERITH REPRESENTATION C-11

xiv

APPENDIX D

D.1

D.2

D.3

D.4

D.5

INDEX

EXAMPLES
6-1

FIGURES
1-1

1-2

1-3

2-1

4-1

4-2

VAX FORTRAN LANGUAGE SUMMARY

EXPRESSION OPERATORS

STATEMENTS

LIBRARY FUNCTIONS

SYSTEM SUBROUTINE SUMMARY
D.4.1 DA TE Subroutine
0 .4 .2 I DA TE Subroutine
D.4.3 ERRSNS Subroutine
D.4.4 EXIT Subroutine
D.4.5 SECNDS Subroutine
D.4.6 TIME Subroutine
D.4 .7 RAN Subroutine

BIT FUNCTIONS
D.5.1 Bit Position
D.5 .2 Bit Function Arguments
D.5. 3 MVBITS Subroutine

Using Multiple Function Names

Required Order of Statements and lines

FORTRAN Coding Form

line Formatting Example

Array Storage

Equivalence of Substrings

Equivalence of Character Arrays

D-1

0-1

0-2

0-32

D-45
D- 46
D-47
D-47
D-48
D-48
D- 49
D-50

0-50
D-51
D-51
D- 53

6-28

1-3

1-10

1-12

2-28

4-18

4-19

xv

5-1

5-2

TABLES
1-1

2-1

3-1

4-1

4-2
5-1

6-1

6-2

6-3
7-1

8-1
8-2

8-3
8-4
8-5

9-1

9-2

9-3

10- 1

B-1

B-2
0-1

D-2
D-3

xvi

Control Transfers and Extended Range

Examples of Block IF Constructs

Entities Identified by Symbolic Names

Data Type Storage Requirements

Conversion Rules for Assignment Statements

Equivalence of Array Storage

Equivalence of Arrays with Nonunity Lower Bounds

Nested DO Loops

Argument List Built- In Functions and Defaults

Types of User-Written Subprograms

Summary of Generic Intrinsic Function Names

List-Directed Default Output Formats

FORMAT Code Summary

Effect of Data Magnitude on G Format Conversions

Size Limit of Numeric Elements Using the A Field Descriptor

Default Field Descriptor Values

Carriage Control Characters

OPEN Statement Keyword Values

Record Size (RECL) Limits

Record Size (RECL) Default Values

Common Block Default Attributes and PSECT Modification

ASCII Character Set

RADIX-50 Character Set with Comparative Values

Expression Operators

VAX FORTRAN Language

VAX FORTRAN Intrinsic Functions

5-10

5-20

1-7

2-3

3-3

4-15

4-16

5-7

6- 10

6-12

6-27

7-36

8-6

8-23

8-30

8-33

8-39

9-4
9-19

9-19

10- 12

B-3
B-4
D-1

D-3
D-33

Preface

This manual presents a complete description of the VAX FORTRAN
language for VMS systems. It is designed as a reference manual, not as a
tutorial document.

For detailed instructions on the features of the VAX FORTRAN compiler
and its use, see the VAX FORTRAN User Manual.

Intended Audience

This manual is intended for programmers and students who have a basic
understanding of the FORTRAN language. Readers do not need a detailed
understanding of the VMS operating system, but some familiarity is
helpful. For detailed information about the VMS system, refer to the VMS
documentation set.

Structure of this Document

The documentation for VAX FORTRAN Version 5.0 is a major revision
of the Version 4.0 documentation. The material is reorganized into two
manuals. The VAX FORTRAN User Manual describes how to compile, link,
execute, and debug VAX FORTRAN programs on the VMS system. It also
describes special VAX FORTRAN features and system resources of interest
to VAX FORTRAN programmers.

xvii

xviii

This manual presents the language-specific information. It is divided into
ten chapters and four appendixes:

• Chapter 1 discusses VAX FORTRAN's relationship with FORTRAN
standards, the elements of a source program, the character set, general
coding rules, and compiler control statements.

• Chapter 2 describes the data types, data items, and expressions that
can be used in VAX FORTRAN programs.

• Chapter 3 describes the assignment statement, which defines the
values of data items.

• Chapter 4 describes specification statements, which are nonexe
cutable statements. Specification statements allocate and initialize data
items and define various characteristics of symbolic names used in a
program.

• Chapter 5 describes control statements, which specify when and
where control transfers from one point in a program to another.

• Chapter 6 discusses subprograms (subroutines and functions), both
those written by users and those supplied by VAX FORTRAN.

• Chapter 7 describes 1/0 (input/output) statements, which physically
transfer data, both internally within memory and to and from output
storage devices.

• Chapter 8 describes formatting statements, which are used together
with formatted 1/0 statements.

• Chapter 9 describes auxiliary 1/0 statements that manage files.

• Chapter 10 describes compiler directives, which support directed
decomposition and general-purpose functions.

• Appendix A describes some statements and language features that
support programs written in older versions of FORTRAN.

• Appendix B summarizes the character sets supported by VAX
FORTRAN.

• Appendix C shows how VAX FORTRAN data types are stored in
memory.

• Appendix D summarizes VAX FORTRAN features: operators used in
exoressions, statements, intrinsic functions and their arguments, and
system subroutines and bit manipulation functions.

Associated Documents

The following documents contain information directly related to the topic
of this manual:

• VAX FORTRAN User Manual

This manual describes how to perform basic operations using the
VMS system and screen-display editor. The information about the
VMS system and the editor should enable a programmer who is not
acquainted with VMS to begin productive work on it.

• The VMS documentation set

This set provides detailed information about features of the VMS
operating system.

Conventions Used in this Document

The following syntactic conventions are used in this manual:

• Uppercase type is used in text to indicate VMS commands and com
mand options.

• Lowercase letters are used in syntax specifications and examples
to indicate variables; anything that is not a variable (for example,
statement names and keywords) appears in uppercase.

• Brackets ([]) indicate optional elements within statements.

• Braces ({}) are used to enclose lists from which one element is to be
chosen.

• Horizontal ellipses (.. .) indicate that the preceding items can be
repeated one or more times.

• "Real" (lowercase) is used to refer to the REAL•4 (REAL), REAL•8,
and REAL•16 data types as a group; likewise, "complex" (lowercase)
is used to refer to the COMPLEX•8 (COMPLEX) and COMPLEX•16
(DOUBLE COMPLEX) data types as a group; "logical" (lowercase)
is used to refer to the LOGICAL*2 and LOGICAL•4 data types as a
group; and "integer" (lowercase) is used to refer to the INTEGER•2
and INTEGER•4 data types as a group.

• VAX FORTRAN extensions to the FORTRAN-77 standard are printed
in blue ..

xix

In addition, the following notations denote special nonprinting characters:

Tab character < TAB >

Space character

xx

New and Expanded Language Features

VAX FORTRAN Version 5.0 provides the following new and expanded
language features:

• Directed decomposition of DO-loops for parallel processing. Parallel
processing is mediated by a group of compiler directives that are
specifically called parallel directives. See Section 10.2.

• Several general-purpose functions: specifying the identifica tion stnng
in object modules, modifying some common block attributes, and
listing title and subtitle. These functions are mediated by a group of
compiler directives that are specifically called general directives. See
Section 10.3 .

• Support for descending ISAM (Indexed Sequential Access Mode)
keys:

Expanded syntax for the KEY parameter in the OPEN statement.
See Section 9 .1.15.

Additional keywords in the key-field-value specifier in input
/output statements. See Section 7.1.1. 7.

• SIZEOF intrinsic function. This new function returns the number of
bytes of storage used in a specified argument. See Table D-3.

• NWORKERS intrinsic function. This new function returns the number
of processes executing a routine. See Table D-3 .

• REWRITE operations on files that are open for direct access. See
Section 7.4.

• UNLOCK operations of files with sequential organization. See
Section 9.8.

See the VAX FORTRAN User Manual for a description of new compiler
features available in VAX FORTRAN Version 5.0.

xxi

Chapter 1

Introduction to VAX FORTRAN

This chapter discusses VAX FORTRAN's relationship to FORTRAN stan
dards, the elements of a VAX FORTRAN program, the character set, and
general coding rules. It also presents compiler control statements.

VAX FORTRAN is based on the American National Standard
FORTRAN-77 (ANSI X3.9-1978). It includes support for programs that
conform to the previous standard (ANSI X3.9-1966). VAX FORTRAN
also supports programs that conform to the International Standards
Organization FORTRAN standard (ISO 1539-1980 (E)) because the ISO
standard is the same as the ANSI standard.

VAX FORTRAN provides a number of extensions to the ANSI Standard:

• Compiler directives tha t support directed decomposition for parallel
processing

• Compiler directives that perform several general-purpose functions

• Relative file organization

• Indexed file organization with two-directional keys

• Conformance with the VAX procedure-calling standard

• Records and structures

• DO WHILE statement

• Additional data types

• Namelist-directed input/output

• Hexadecimal constants and field descriptors

• Symbolic debugging facility

Extensions to the FORTRAN-77 standard appear in blue print in this
manual.

Introduction to VAX FORTRAN 1-1

VAX FORTRAN is also a compatible superset of PDP-11 FORTRAN-77.
This means that existing PDP-11 FORTRAN-77 source programs will
compile properly on the VAX FORTRAN compiler (see the VAX FORTRAN
User Manual).

1.1 Elements of FORTRAN Source Programs

This section provides an overview of the makeup of a FORTRAN source
program. It describes the concept of a program unit and the rules gov
erning the use of statements and symbols within a program unit. It also
describes the use of comments within programs.

1. 1.1 Program Units

A program unit is a sequence of statements that defines a computing
procedure and is terminated by an END statement. A program unit can be
either a main program or a subprogram. An executable program consists
of one main program and, optionally, one or more subprograms.

A subprogram is a program unit that is separate from the main program.
Subprograms are invoked from the main program or another subpro
gram. There are two types of subprograms: function subprograms and
subroutine subprograms. See Chapter 6 for detailed information on
subprograms.

1. 1.2 Statements

Statements are grouped into two general classes: executable and nonex
ecutable. Executable statements describe the action of the program.
Nonexecutable statements describe data arrangement and characteristics,
and provide editing and data-conversion information .

Statements are divided into physical sections called lines. A line is a
string of up to 72 characters (optionally, 132; see Section 1.3 .5) . If a
statement is too long to fit on one line, it can continue on one or more
additional lines called continuation lines. A continuation line is identified
by a continuation character in the sixth column of that line. (For further
information on continuation characters, see Section 1.3.4.)

1-2 Introduction to VAX FORTRAN

A statement label can identify a statement so that other statements can
refer to it, either to get information or to transfer control. A statement
label must be an integer, and it must appear in the first five columns of
a statement's initial line. Any statement can have a label. However, you
can only refer to labels on executable statements and FORMAT statements.

Order of Statements in a Program Unit

Figure 1-1 shows the required order of statements in a FORTRAN pro
gram unit. In this figure, vertical lines separate statement types that can be
interspersed. For example, you can intersperse DATA statements with exe
cutable statements. On the other hand, horizontal lines indicate statement
types that cannot be interspersed. For example, you cannot intersperse
type declaration statements with executable statements.

Figure 1-1: Required Order of Statements and Lines

OPTI ONS Statement

PROGRAM,FUNCTION,SUBROUTINE, or BLOCK DATA Statements

IMPLICIT NONE Statement

IMPLICIT
Statements

Comment PARAMETER
Lines, Other Statements

INCLUDE Specification
Statements,

NAMELIST Statements
and

FORMAT
Genera l

Directives and
ENTRY Statement Function

Statements
DATA Definitions

Statements

Executable
Statements

END Statement

ZK-615-82

Introduction to VAX FORTRAN 1-3

The following statements are the general directives that are included in
the category with comment lines and INCLUDE statements in Figure 1-1:

CDEC$IDENT

CDEC$ TITLE

CDEC$ SUBTITLE

CDEC$ PSECT

The following statements are included in the category of executable
statements in Figure 1-1:

ACCEPT

ASSIGN

Assignment statements

BACKSPACE

CALL

CLOSE

CONTINUE

CPAR$ DO_PARALLEL

CPAR$ LOCKO FF

CPAR$ LOCKON

DELETE

DO and END DO

ELSE

END

END FILE

FIND

IF (arithmetic, logical, block) and END IF

INQUIRE

OPEN

PAUSE

PRINT

READ

RETURN

REWIND

REWRITE

STOP

TYPE

UNLOCK

WRITE

GO TO (normal, computed, assigned)

1-4 Introduction to VAX FORTRAN

The following statements are included in the category of "other specifica
tion statements" in Figure 1-1:

COMMON

er AR$ CONTEXT_SHARED

CPAR$ CONTEXT_SHARED_ALL

CPAR$ PRIVATE

CPAR$ PRIVATE _ALL

CPAR$ SHARED

CPAR$ SHARED_ALL

DICTIONARY

DIMENSION

EQUIVALENCE

EXTERNAL

INTRINSIC

RECORD

SAVE

Structure declarations1

Type declarations

VOLATILE

1The statements STRUCTURE a nd END STRUCTURE, UNION and END UN IO N, and
MAP and END MAP are included in the "other specifica tion statements" category. They
are used only in structure declaration blocks.

As a VAX FORTRAN extension, DATA statements can be freely inter
spersed with PARAMETER statements and other specification statements.

1.1.3 Symbolic Names

Symbolic names identify entities within a FORTRAN program unit. These
entities are listed in Table 1-1.

A symbolic name is a string of letters, digits, and the special characters
dollar sign ($) and underscore (-)· The first character in a symbolic
name must be a letter. The symbolic name can contain a maximum of
31 characters. (FORTRAN-77 limits the length of a symbolic name to six
characters.)

Examples

The following examples demonstrate valid and invalid symbolic names
and explain why the invalid ones are not valid:

Introduction to VAX FORTRAN 1-5

Valid

NUMBER

FI ND_ IT

x

Invalid

5Q

B . 4

$FREQ

Explanation

Begins with a numeral

Contains a special character other than _ or $

Begins with $

By convention, symbolic names containing a dollar sign are reserved for
DIGITAL-supplied software components. To avoid name conflicts, do not
define any symbolic names in your program that contain dollar signs.

Symbolic names cannot identify more than one entity in the same pro
gram unit-except when they identify common blocks, records, structures,
structure fields, and either arrays or variables. For example, in the fol
lowing valid statements, X is the name of a common block, a structure, a
structure field, and a variable:

CO MMON /X/ I, J
STRUCTURE /X/
INTEGER X
END STRUCTURE
REAL X

Section 4.15.1 and Section 4.1 5.2 provide more information about struc
ture and field names.

In an executable program having two or more program units, the symbolic
names of the following entities must be unique within the entire program:

• Function subprograms

• Subroutine subprograms

• Common blocks

• Main program

• Block data subprograms

• Function entry points

• Subroutine entry points

1-6 Introduction to VAX FORTRAN

For example, if your program contains a function named BTU, you can
not use BTU as the symbolic name of any other subprogram, entry, or
common block in the program-even if the name appears in a different
program unit.

Table 1-1 lists those entities that can be given a symbolic name. It also
indicates whether the entities can be given a data type. Sections 2.2.2 .1
and 2.2.2.2 discuss how to specify the data type of a symbolic name.

Table 1-1: Entities Identified by Symbolic Names
Entity Typed

Variables Yes

Arrays Yes

Structures o

Records No

Record elements Yes

Statement functions

Intrinsic functions

Function subprograms

Subroutine subprograms

Common blocks

Namelist data groups

Main programs

Block data subprograms

Function entry points

Subroutine entry points

Parameter constants

1.1.4 Comments

Yes

Yes

Yes

No

No

No

No

No

Yes

No

Yes

Comments are documentation aids that do not affect program processing
in any way. They can be freely used to describe the actions of a program,
identify program sections and processes, and provide greater ease in
reading a source program listing.

Introduction to VAX FORTRAN 1-7

Three different characters identify comments:

• The letter C - except when C begins a compiler directive

• An asterisk (*)

• An exclamation point (!)

When the letter C or an asterisk appears in the first column of a source
line, it identifies the line as a comment. An exclamation point in the fi rst
column, or anywhere in the statement portion of a source line, identifies
the remainder of that line as a comment.

An all-blank line is also treated as a comment line.

Section 10.2.9 provides an example of when the letter C in column 1
begins a compiler directive instead of a comment.

1.2 Character Set

VAX FORTRAN supports the following character set:

• All uppercase and lowercase letters (A through Z, a through z)

• The numerals 0 through 9

• The following special characters:

Character Name

t:,. or < TAB > Space or tab

Equal sign

+ Plus sign

Minus sign

* Asterisk

I Slash

(Left parenthesis

) Right parenthesis

Comma

Period

1-8 Introduction to VAX FORTRAN

Character

$

<
>
%

&

Name

Apostrophe

Quotation mark

Dollar sign

Underscore

Exclamation point

Colon

Left angle bracket

Right angle bracket

Percent sign

Ampersand

You can use the space character to improve the legibility of a FORTRAN
statement. The compiler ignores all spaces in a statement field except
those within a character or Hollerith constant; for example, GO TO and
GOTO are equivalent.

Other printable ASCII characters can appear in a FORTRAN statement
only as part of a character or Hollerith constant (see Appendix B for
a list of printable characters). Any printable character can appear in a
comment. If nonprintable characters appear anywhere in a FORTRAN
source statement, they appear as question marks in the compilation source
listing.

The control character < NEWLINE > (< LF> or ' A' X) is not supported
in VAX FORTRAN source records. VAX FORTRAN uses < NEWLINE >
to separate successive FORTRAN source lines. If you must manipulate
this character, use the CHAR(lO) fun ction reference, which is allowed in
all compile-time character expressions (see Section 6.3.2.1).

Except in character and Hollerith constants, the compiler makes no
distinction between uppercase and lowercase letters.

1.3 Coding Rules

Coding rules specify the structure of lines in VAX FORTRAN source
code. A line has four fields: the statement label, continuation indicator,
statement, and sequence number. Rules affecting individual fields are
described in Sections 1.3.3 through 1.3.6.

There are two ways to code a line: by fixed format or tab format. The
fixed-format method is convenient when you punch cards or use a coding
form . The tab-format method is convenient when you enter lines at a
terminal with a text editor.

1.3.1 Fixed-Format Lines

As shown in Figure 1-2, a FORTRAN line is divided into fields for
statement labels, continuation indicators, statement text, and sequence
numbers. Each column represents a single character.

To enter an item in a field, enter it in the columns in the coding form, as
follows:

Introduction to VAX FORTRAN 1-9

Figure 1-2: FORTRAN Coding Form

FORTRAN
coou OAT(••Gl

CO O•"" G I Qh•

FORTRAN STATEMENT ll)fNTtl l(Afl0N

I]) ') 6,. 9 101 1 1}1)1.al) l6111l1910J !"J1 7J 1"])}61'Jtl9)0)1)2)))41U)6J1)1)9•0• 1 4] 4) 4••)•6• 1 •1••)0) 1)})))...1)))6)1)1)960616}6)6•U .. 6/ .. 6'f70nn'31•1)7•17'1"t<l

h_H 1 s 1P1R1qqR,iy.i ,ct,LF=,U,Lf-,T,E ,s, ,PR 1 ME ,NYMB,E,R,s, ,F,R,OM , 1.J.__,.:_T_.,o,.__.""'5"'0 __.--+-..._...-+--._..__._..-+--._.._+-+-+-->-+--+-+-+-1

1-+-1>-+-+-+ Q.Q_ 10 l = I I 50 2

>-+-~--<r-1=-J-=+l~->-+---+-+-<--~-~-- +~--~>-+---+--+~-
'"'"~+-+-__._.!J..._._,= .,!.._.-:J._ ~-+-+--~-~~ ~-+---+--+-+--+--.+--...+-+-+--+--<-~~ -+-<--~-+-+--+--+ -+-->-+--t-+-...... -->-+--+-l

IA.=.J.
~ = L I A +-• -~-+~~+--+- · - • - . - +- - + · --- +++ -----~~-~~~~-+---.~+-+--!

,__~ _ _,_.., ... =__..l..,_.L.l. _.~~-- • - · -- · --~----~~. ----·--+------------~~~~r+-11-------~----l

f--+---~B:..-= '-'A._-_.,l'---+--- · _ ___ ---- ---------------------------------------+----~--+--4
t------
5

I F ,{BJ -2.,_..JJJ._,_.___5 _____ _ _________ ~-----·-------------->-+---++-+----+-<---i

I F _l J -.1. T ~RT J.. FL O+A.:.-:T......_._l.,__1 ,L.ll_,,_J_..<-+-.=GO_T+0+--=4-~---~~-+-+-<._._.-.-+-+-_.......__--l_-+-+-......._~
,_ _ _._ _k~Y~P~E~1~0~5__.____,__+ ____ _. _________________ ~---------------t-+-+--++--+-+-+-l

F-+=on~r<'--1-1'!,_...,,.u..=.E >---+--+- - - -- + - - · - • ___ · - · • _ _ ~ +. ~· --------------~~----++----+-+-l
r-+-+-~ +-·..--+ --+--+--+--+---> ,.._. · - ,._ ___._.._-+- +- --+- +-- -+- +-- +-----+--+---+-----+-·-+ -+-+---+->-+--+-+--+-->-+----~--+-----~>-+-++-+--.--+-+-<-._+-+-.-+-+--+-+---i

FORMAT J. I 4 ' IS _f'..Ll&.'...J.. ••.• ~ .-++ • -+~--· -----·-~-----------~-------+------~
If.ND.

PG 3 DIGITAL IEOUIPMIENT CORPORATION • MAYNAAO. MASSACHUSIETTS

Field

Statement label

Continuation indicator

Statement

Sequence number

1-10 Introduction to VAX FORTRAN

Column

1 through 5

6

7 through 72 (optionall y, to 132)

73 through 80

ZK-613-82

1.3.2 Tab-Format Lines

You can specify the statement label field , the continuation indicator
field , and the statement fi eld using tab formatting. However, you cannot
specify a sequence number fie ld using this method of coding. Figure 1-3
illustra tes FORTRAN lines coded using tab formatting and the equivalent
lines with fixed forma tting.

Figure 1-3: Line Formatting Example

Format Using TAB Character Character-per-Column Format

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C @ID FIRST VALUE c F I R s T v A L u E

10 @ID I = J + 5• K + 1 0 I = J + 5 * K +

1 L * M

@ID IVA L = 1+2 I v A L = I + 2

ZK-614 -82

The statement label field consists of the characters that you type before
the first tab character. The statement label field cannot have more than
five characters.

After typing the first tab character, you can type either the continuation
indicator field or the statement field.

To enter the continuation indicator field, type any nonzero digit after the
first tab . If you enter the continuation indicator field , the statement field
consists of all the characters after the digit to the end of the line.

Introduction to VAX FORTRAN 1-11

To enter the statement field without a continuation indicator field, type the
statement immediately after the first tab . No FORTRAN statement starts
with a digit.

Many text editors and terminals advance the terminal print carriage to
a predefined print position when you press the TAB key. However, this
action is not the VAX FORTRAN compiler's interpretation of the tab
character. The compiler treats the tab character in a statement field the
same way as it treats a space. In the source listing that the compiler
produces, the tab causes the character that follows to be printed at the
next tab stop (located at columns 9, 17, 25, 33, and so on).

NOTE

Do not use tabs when you are using sequence numbers. If you
use tabs to position your sequence numbers, the compiler may
interpret the sequence numbers as part of the statement fields
m your program.

1.3.3 Statement Label Field

Any statement can have a label. A statement label (or statement number)
consists of from one to five decimal digits in the statement label field of a
statement's initial line. Spaces and leading zeros are ignored. An all-zero
statement label is invalid.

Labeled FORMAT and labeled executable statements are the only state
ments that can be referred to by other statements (see Section 1.1.2).
FORMAT statements are referred to only in the format specifier of an
1/0 statement or in an ASSIGN statement. No two statements within a
program unit can have the same label.

The first column of the label field can contain two special indicators: the
comment indicator and the debugging statement indicator .

The statement label field of a continuation line must be blank-except in
the case of a debugging statement .

1-12 Introduction to VAX FORTRAN

1.3.3.1 Comment Indicator

The letter C (except when beginning a compiler directive); an asterisk
(•); or an exclamation point (!) in column 1 indicates that the line is a
comment. The compiler prints that line in the source program listing and
then ignores it. An all-blank line is also considered to be a comment. The
exclamation point can also be used anywhere in the statement field (except
when used in a Hollerith or character constant) to start an end-of-line
comment.

See Chapter 10 for a description of when the letter C in column 1 begins
a compiler directive instead of a comment.

1.3 .3.2 Debugging Statement Indicator

The letter D in column 1 designates debugging statements. The initial line
of the debugging statement can contain a statement label in the remaining
columns of the label field . If a debugging statement is continued onto
more than one line, every con tinuation line must begin with a D (in
column 1) and a continuation indicator.

The compiler treats debugging statements either as source text to be
compiled or as comments, depending on the setting of the / D_LINES
qualifier on the FORTRAN command. If you specify the /D_ LINES
qualifier, debugging statements are compiled as a part of the source
program. If you do not specify the /D_LINES qualifier, debugging
statements are treated as comments. See the VAX FORTRAN User Manual
for more information on the /D_LINES qualifier.

1.3.4 Continuation Indicator Field

A continuation indicator is any character, except a zero or a space, in
column 6 of a FORTRAN line, or any digit, except zero, after the fi rst tab.
The compiler considers the characters after the continuation character to
be the characters following the last character of the previous line, as if
there were no break at that point. If a continuation indicator is a zero or a
space, the compiler considers the line to be an initial line of a FORTRAN
statement.

Comment lines cannot be continued. They can occur between a state
ment's initial line and its continuation lines, or between successive
continuation lines.

Introduction to VAX FORTRAN 1-13

1.3.5 Statement Field

The text of a FORTRAN statement is placed in the statement field.
Because the compiler ignores the tab character and spaces (except in
character and Hollerith constants), you can space the text in any way
desired for maximum legibility.

By default, the statement field extends to character position 72. If the
default is in effect, any text following position 72 is ignored and no warn
ing message is printed. However, if the /EXTEND_SOURCE qualifier is
specified on the FORTRAN command line, the statement field is extended
to position 132. Any text beyond that position generates a fatal error and
causes immediate termination of the compilation. See the VAX FORTRAN
User Manual for more information on the /EXTEND_SOURCE qualifier.

1.3.6 Sequence Number Field

By defa ult, a sequence number or other identifying information can ap
pear in columns 73 through 80 of any line in a FORTRAN program. The
compiler ignores the characters in this field . However, if the /EXTEND_
SOURCE qualifier is specified on the FORTRAN command line, a se
quence number fie ld does not exist; the statement field is extended to
position 132. See the VAX FORTRAN User Manu al for more information
on the / EXTEND_SOURCE qualifier.

1.4 Compilation Control Statements

In addition to qualifiers on the FORTRAN command line, several state
ments used in the body of a VAX FORTRAN program also influence
compilation :

•

•
•

DICTIONARY-extracts records from the Common Data Dictionary
(CDD) and converts them into VAX FORTRAN records.

INCLUDE-incorporates external source code into programs .

OPTIONS-establishes compiler qualifiers otherwise specified on
the FORTRAN command line; overrides command line qualifiers if a
conflict occurs between OPTIONS statement quali fi ers and command
line qualifiers.

1-14 Introduction to VAX FORTRAN

1.4. 1 DICTIONARY Statement

The DICTIONARY statement incorporates VAX Common Data Dictionary
data definitions into the current VAX FORTRAN source fi le during com
pilation. It can occur anywhere in a VAX FORTRAN source file that a
specification statement can occur (see Chapter 4).

The DICTIONARY statement takes the following form:

DICT IONARY 'cdd-path [/ [NO]LIST]'

cdd-path
Is interpreted as the full or relative pathname of a CDD object.

/[NO]LIST
Controls whether the source code representation of the resulting struc
ture declaration is listed in a compilation source listing. The default is
/NOLIST.

Syntax Rules and Behavior

There are two types of CDD pathname: full and relative. Their formation
must conform to the rules for forming VAX COD pathnames.

A full pathname begins with CDD$TOP and specifies the given names
of all its descendants; it is a complete path to the record definition.
Descendant names are separated from each other by a period.

A relative pathname begins with any generation name other than
CDD$TOP and specifies the given names of the descendants after that
point. A relative path comes into existence when a default directory is
established with a logical name.

Examples

In the following example, the logical name definition specifies the be
ginning of the CDD pathname; thus, a relative pathname specifies the
remainder of the path to the record definition:

$DEFI NE CDD$DEFAULT CDD$TOP. FOR

The following examples illustrate how a COD pathname beginning with
CDD$TOP overrides the default COD pathname. Consider a record
with the pathname CDD$TOP.SALES.JONES.SALARY. If you defined
CDD$DEFAULT to be CDD$TOP.SALES.JONES, you could then specify a
relative pathname:

Introduction to VAX FORTRAN 1-15

DICTIONARY ' SALARY'

Alternatively, you could specify a full pathname:

DICTIONARY ' CDD$TOP .SALES . JONES.SALARY'

See the VAX Common Data Dictionary Ut ilities Manual for fu rther details.

1.4.2 INCLUDE Statement

The INCLUDE statement directs the compiler to stop reading statements
from the current file and read the statements in the included file or
module. When it reaches the end of the included file or module, the
compiler resumes compilation with the next statement after the INCLUDE
statement.

The INCLUDE statement takes one of the following forms:

INCLUDE ' [text-lib] (modul e- name) [/[NO]LIST]'

INCLUDE ' f il e- spec [/ [NO] LIST] '

text-lib
Is a character string that specifies the text library to be searched. Its form
must be acceptable to the operating system, as described in the VAX
FORTRAN User Ma nual.

file -spec
Is a character string that specifies the file to be included. The form of the
file -spec must be acceptable to the operating system, as described in the
VAX FORTRAN User Ma nual.

module-name
Is the name of the text module, located in a text library, that is to be
included. The name of the module must be enclosed in parentheses.
It can be up to 31 characters long and can contain any alphanumeric
character and the special characters dollar sign ($) and underscore (_).

/[NO]LIST
Specifies whether the incorporated code is to appear in the compila
tion source listing. In the listing, a number precedes each incorporated
statement. The number indicates the "include" nesting depth of the code.

The default is /NOLIST.

1-16 Introduction to VAX FORTRAN

Syntax Rules and Behavior

The INCLUDE statement and included fil es have the following rules:

• An included fil e or module cannot begin with a continuation line.
Each VAX FORTRAN statement must be completely contained within
a single fil e or module.

• An included file or module can contain an INCLUDE statement.

• The INCLUDE statement can appear anywhere within a program unit.

• Any VAX FORTRAN statement can appear in an included file or
module. However, the included statements, when combined with
the other statements in the compilation, must satisfy the statement
ordering restrictions described in Figure 1-1.

Example

In the following example, the file COMMON.FOR defines the size of the
blank common block and the size of the arrays X, Y, and Z.

Main Program File

I NCLUDE 'COMMON. FOR'
DIMENSION Z (M)
CALL CUBE
DO 5. I=1 . M

5 Z(I) = X(I)+SQRT(Y(I))

END

SUBROUTI NE CUBE
INCLUDE ' CO MMON.FOR'
DO 10. I=1, M

10 X(I) = Y(I) **3
RETURN
END

COMMON.FOR File

PARAMETER (M=100)
CO MMON X(M).Y (M)

Introduction to VAX FORTRAN 1-17

1.4.3 OPTIONS Statement

The OPTIONS statement overrides or confirms the FORTRAN command
line qualifiers in effect for a program unit. It takes the following form:

OPTIONS qualifier[qualifier . . .]

qualifier
Is one of the following:

I [NO] G_FLOATING
I [NO] 14
/ [NO]F77

ALL
[NO] OVERFLOW

/ CHECK = [NO]BOUNDS
[NO] UNDERFLOW
NONE

/NOCHECK
/ [NO]EXTEND_SOURCE

Syntax Rules and Behavior

The OPTIONS statement must be the first statement in a program unit,
preceding the PROGRAM, SUBROUTINE, FUNCTION, and BLOCK
DATA statements.

OPTIONS statement qualifiers have the same syntax and abbreviations
as the FORTRAN command line qualifiers, as described in the VAX
FORTRAN User Manual.

The OPTIONS qualifiers override FORTRAN command line qualifiers, but
only until the end of the program unit in which they are defined. Thus,
an OPTIONS statement must appear in each program unit in which you
wish to override the command line qualifiers.

1-18 Introduction to VAX FORTRAN

Example

In the following example, the check and extend_source options do not
remain in effect across program unit boundaries. The first OPTIONS
statement specifies that only the program unit immediately following it is
to be compiled with full checking and extend_source options, regardless
of the /CHECK and / EXTEND_SOURCE specifications on the FORTRAN
command line. The second OPTIONS statement specifies that only the
program unit following it is to be compiled with the G_floating option.

OPTIO NS /CHECK/EXTEND_SOURCE

END
OPTIO NS /G_FLOATING

Introduction to VAX FORTRAN 1- 19

Chapter 2

Data Types, Data Items, and Expressions

This chapter contains information on the following topics:

• Data types-integer, real, complex, logical, character, and BYTE
(Section 2,.1)

• Data items-constants, variables, arrays, character substrings, and
records (Section 2.2)

• Expressions-arithmetic, character, relational, and logical (Section 2.3)

2. 1 Data Types

Each constant, variable, array, expression, or function reference in a
FORTRAN statement represents typed data. The data type of these items
can be inherent in their constructions, implied by convention, or explicitly
declared.

The following data types are available in VAX FORTRAN:

• Integer-a whole number.

• REAL (REAL*4) -a 'floating point number, that is, a whole number, a
decimal fraction, or a combination of the two.

• DOUBLE PRECISION (REAL* 8) -similar to REAL*4, but has more
than twice the degree of accuracy in its representation (the G_floating
implementation also has an extended range).

• REAL*l6-similar to REAL*4 but has an extended range and more
than four times the accuracy in its representation .

Data Types, Data Items, and Expressions 2-1

• COMPLEX (COMPLEX*8)-a pair of REAL•4 values that represent
a complex number; the first value represents the real part of that
number and the second represents the imaginary part.

• DOUBLE COMPLEX (COMPLEX*l6)-similar to complex; its real and
imaginary parts are REAL*8 .

• Logical-a logical value, .TRUE. or .FALSE.

• Character-a string of printable ASCII characters.

• BYTE- a one-byte storage location that is equivalent to LOGICAL* l.

See Appendix C for descriptions of the VAX hardware representations of
these data types. See Section 4.4 for descriptions of data type declaration
statements.

2.1.1 Storage Requirements

An important attribute of each data type is the amount of memory re
quired to represent a value of that type. Variations on the basic types
affect either the accuracy of the represented value or the allowed range of
values.

ANSI FORTRAN defines a numeric storage unit as the amount of storage
needed to represent a REAL, INTEGER, or LOGICAL value. In VAX
FORTRAN, a numeric storage unit corresponds to four bytes of memory.
REAL*8 and COMPLEX•8 values occupy two of these numeric storage
units, whereas REAL*16 and COMPLEX*16 values occupy four.

ANSI FORTRAN defines a character storage unit as the amount of storage
needed to represent one character value. In VAX FORTRAN, a character
storage unit corresponds to one byte of memory.

VAX FORTRAN provides additional data types for optimum selection of
performance and memory requirements. Table 2-1 lists the data types
available, the names associated with each data type, and the amount of
storage required (in bytes). The form *n appended to a data type name is
called a da ta type length specifier.

2-2 Data Types, Data Items, and Expressions

Table 2-1: Data Type Storage Requirements
Data Type Storage Requirements (in bytes)

BYTE 11

LOGICAL 2 or 42

LOGICAL* I 11

LOG ICAL*2 2

LOGICAL*4 4

INTEGER 2 or 4 2

INTEGER*2 2

INTEGER*4 4

REAL 4

REAL*4 4

REAL*S 8

DOUBLE PRECISION 8

REAL*l6 16

COMPLEX 8

COMPLEX*B 8

COMPLEX*16 16

DOUBLE COMPLEX 16

CHARACTER *len len3

CHARACTER•(*)

1 BYTE and LOGICAL*l are equivalent. See Section C.3 for information on the range of
values that can be stored in them.

2Either two or four bytes are allocated, depending on the setting of the [NO]I4 qualifier on
the FORTRAN command line . The default allocation is four bytes .

3The value of Jen is the number of characters specified, which can be in the range 1 to
65535 . Passed-length format, *(*), applies to dummy arguments or character functions, and
indicates that the length of the actual argument or function is used (see Section 6.1.1.3
and the VAX FORTRAN User Manual) .

Data Types, Data Items, and Expressions 2-3

2. 1.2 VAX Implementations of REAL*B

The REAL*8 (and thus, COMPLEX*l6) data type has two implementa
tions on a VAX computer: D_floating and G_floating. The G_floating
implementation offers a greater range but is less precise, having a smaller
number of significant digits . D_floating is the default implementation of
REAL*8. You can select G_floating by using the OPTIONS statement or
the /G_FLOATING qualifier on the FORTRAN command line.

Some VAX processors emulate floating-point data types rather than
executing them in hardware or microcoded instruction. Processing time
with software emulation is much slower. Thus, you should be aware
of which data types are emulated on your system and choose them
(especially REAL*8) with this information in mind.

See Sections 2.2.1.2, C.5, C.5.2, and C.5.3 for more detailed information
on the two implementations of the REAL*8 data type.

2.2 Data Items

VAX FORTRAN statements use the following data items:

• Constants-fixed, self-describing values.

• Variables-stored values represented by symbolic names.

• Arrays-groups of values that are stored contiguously and can be
referred to individually or collectively. Individual values are called
array elements.

• Character substrings-a contiguous segment of a character variable or
character array element.

• Records-structured data items consisting of one or more elements
(variables and arrays) or one or more groups of these elements.
Different record elements in the same record can have unlike data
types.

2-4 Data Types, Data Items, and Expressions

2.2.1 Constants

A constant is a data item with a fixed value that cannot be changed during
program execution. The value of a constant can be a numeric value, a
logical value, or a character string. There are eight types of constants:

• Integer

• Real

• Complex

• Octal

• Hexadecimal

• Logical

• Character

• Hollerith

Octal, hexadecimal, and Hollerith constants have no data type. They
assume a data type that conforms to the context in which they appear (see
Sections 2.2.1.4 and 2.2.1. 7) .

All eight types of constants are scalar references in that they resolve into
single, typed data items. (See Section 2.2.6 for more information on scalar
references.)

2.2.1.1 Integer Constants

An integer constant is a whole number with no decimal point. It can have
a leading sign and is interpreted as a decimal number. Integer constants
take the following form:

snn

5

Is an optional sign.

nn
Is a string of decimal digits. Any leading zeros are ignored.

Data Types, Data Items, and Expressions 2-5

Syntax Rules

A minus sign must appear before a negative integer constant, whereas a
plus sign is optional before a positive constant (an unsigned constant is
assumed to be positive).

Except for a leading algebraic sign, an integer constant cannot contain any
character other than the numerals 0 through 9. The value of an integer
constant must be within the range -2147483648 to 2147483647.

Examples

The following examples demonstrate valid and invalid integer constants
and explain why the invalid ones are not valid:

Valid

0

-127

+32123

Invalid

99999999999

3 . 14

32,767

Explanation

Number too large

Decimal point not allowed

Comma not allowed

If the value of the constant is within the range -32768 to 32767, it
represents a 2-byte signed quantity and is treated as an INTEGER*2 data
type . If the value is outside that range, it represents a 4-byte signed
quantity and is treated as an INTEGER•4 data type.

Integer constants can be used to assign signed and unsigned values
to BYTE, LOGICAL• l, LOGICAL*2, and INTEGER*2 data. BYTE and
LOGICAL*l can contain signed integers with a range of -128 to 127 or
unsigned integers with a range of 0 to 255 . LOGICAL*2 and INTEGER•2
can contain signed integers with a range of -32768 to 32767 or unsigned
integers with a range of 0 to 65535 .

The following table illustrates VAX FORTRAN assignments to different
data and lists the integer and hexadecimal values in the data:

2-6 Data Types, Data Items, and Expressions

VAX FORTRAN
Assignment

BYTE X

x = -128

x = 127

x = 255

LOGI CA L*l X

X = -128

x = 127

x = 255

LOGICAL*2 X

x = -32768

x = 32767

x = 65535

I TEGER*2 X

x = -32768

x = 32767

x = 65535

Integer Value
in the Data

-128

127

-1

-128

127

-1

-32768

32767

-1

-32768

32767

-1

Hexadecimal Value
in the Data

180 1X

' 7F'X

'FF'X

1801X

' 7F'X

'FF'X

18000 1X

'7FFF'X

'FFFF'X

18000 1X

'7FFF'X

'FFFF'X

Integer constants can also be specified in octal form, as described in
Sections 2. 2.1.4 and A.5.

Data Types, Data Items, and Expressions 2-7

2.2.1.2 Real Constants

A real constant is a number written with a decimal point, exponent,
or both. The constant can be positive, zero, or negative. It can have
single precision (REAL•4), double precision (REAL•8), or quad precision
(REAL*l6).

REAL*4 (REAL) Constants

A REAL•4 constant can be any one of the following:

• Basic real constant

• Basic real constant followed by a decimal exponent

• Integer constant followed by a decimal exponent

A basic real constant takes one of the following forms:

s

s .nn
snn .nn
snn .

Is an optional sign.

nn
Is a string of decimal digits. A decimal point can appear anywhere in the
string.

A decimal exponent takes the following form:

Esnn

s
Is an optional sign.

nn
Is a string of decimal digits.

Syntax Rules and Behavior

A REAL*4 constant occupies four bytes of VAX storage. It is interpreted
as a real number with a degree of precision that is typically seven decimal
digits (see Sections C.5 and C.5.1.

2-8 Data Types, Data Items, and Expressions

The number of digits is not limited, but typically only the leftmost seven
digits are significant. Leading zeros (zeros to the left of the first nonzero
digit) are ignored in counting the leftmost seven digits. Thus, in the
constant 0.00001234567, all of the nonzero digits, and none of the zeros,
are significant.

The exponent represents a power of 10 by which the preceding real or
integer constant is to be multiplied (for example, 1.0E6 represents the
value 1.0 • 10**6).

A minus sign must appear before a negative REAL•4 constant; a plus
sign is optional before a positive constant. Similarly, a minus sign must
appear between the letter E and a negative exponent, whereas a plus sign
is optional between the letter E and a positive exponent.

A REAL•4 constant can only contain the numerals 0 through 9, algebraic
signs, a decimal point, and the letter E.

When the letter E appears in a REAL•4 constant, an integer constant
exponent field must follow. The exponent field cannot be omitted, but it
can be zero.

The magnitude of a nonzero REAL•4 constant cannot be smaller than
approximately 0.29E-38 or greater than approximately 1.7E38.

Examples

The following examples demonstrate valid and invalid REAL•4 constants
and explain why the invalid ones are not valid:

Data Types, Data Items, and Expressions 2-9

Valid

3 . 14159

621712 .

- .00127

+5 .0E3

2E- 3

Invalid

1 , 234 ,567 .

325E-45

-47.E47

100

$25 .00

Explanation

Commas not allowed

Too small

Too large

Decimal point missing - this is a valid integer constant

Special character not allowed

REAL*S (DOUBLE PRECISION) Constants

A REAL*8 constant is a basic real constant or an integer constant followed
by a decimal exponent. Its decimal exponent takes the following form:

Dsnnn

5

Is an optional sign.

nnn
Is a string of decimal digits.

Syntax Rules and Behavior

A REAL*8 constant occupies eight bytes of VAX storage. The number of
digits that precede the exponent is unlimited.

Both D_floating and G_floating implementations of REAL•8 have the
same syntax and storage requirements. However, they differ in the num
ber of significant digits and exponential range. D_floating implementation
typically has 16 (leftmost) significant numbers and a two-digit exponent.
On the other hand, G_floating typically has 15 (leftmost) significant digits
and a three-digit exponent. See Sections C.5, C.5.2, and C.5.3.

D_floating is the default implementation. To select G_floating implemen
tation, you must include the /G_FLOATING qualifier on the FORTRAN
command line.

2-10 Data Types, Data Items, and Expressions

A minus sign must appear before a negative REAL•8 constant; a plus
sign is optional before a positive constant. Similarly, a minus sign must
appear between the letter D and a negative exponent, whereas a plus sign
is optional between the letter D and a positive exponent.

A REAL•8 constant can only contain the numerals 0 through 9, algebraic
signs, a decimal point, and the letter D.

An integer constant exponent field must follow the letter D. The exponent
field cannot be omitted, but it can be zero.

The magnitude of a nonzero REAL•8 constant cannot be less than approx
imately 0.29D-38 or greater than approximately 1.7D38 for the
D_.floating implementation; nor can it be less than approximately
0.56D-308 or greater than approximately 0.9D308 for the G_.floating
implementation.

Examples

The following examples demonstrate valid and invalid D_.floating and
G_.floating REAL•8 constants and explain why the invalid ones are not
valid:

Valid

12345678900+5

+2 .71828182846182000

-72 .50-15

100

Invalid

1234567890045

1234567890 . 00-89

+2 . 7182812846182

D_floating REAL•S Constants

Explanation

Too large

Too small

No Dsnnn present;
this is a valid single-precision constant

Data Types, Data Items, and ~xpressions 2-11

G_floating REAL•8 Constants

Valid

123456789 .00

+2 .345678901230- 5

-10+300

Invalid

123456789 .0400

123456789 .0-400

REAL*1 6 Constants

Explanation

Too large

Too small

A REAL•16 constant is a basic real constant or an integer constant fol
lowed by a decimal exponent. Its decimal exponent takes the following
form:

Qsnnnn

s
Is an optional sign.

nnnn
Is a string of decimal digits.

Syntax Rules and Behavior

A REAL•16 constant occupies 16 bytes of VAX storage. The number of
digits that precede the exponent is unlimited; however, typically only the
leftmost 33 digits are significant (see Sections C.5 and C.5.4).

A minus sign must appear before a negative REAL•16 constant, but a
plus sign is optional before a positive constant. Similarly, a minus sign is
required between the letter Q and a negative exponent, but a plus sign is
optional between the letter Q and a positive exponent.

A REAL•16 constant can only contain the numerals 0 through 9, algebraic
signs, a decimal point, and the letter Q.

An integer constant exponent field must follow the letter Q. The exponent
field cannot be omitted, but it can be zero.

The magnitude of a nonzero REAL• 16 constant cannot be less than
approximately 0.84Q-4932 or greater than approximately 0.59Q4932.

2-12 Data Types, Data Items, and Expressions

Examples

The following examples demonstrate valid and invalid REAL* 16 constants
and explain why the invalid ones are not valid:

Valid

12345678904000

- 1 . 23Q -400

+2 .72QO

Invalid

1 . Q5000

1. Q-5000

2.2.1.3 Complex Constants

Explanation

Too large

Too small

A complex constant is a pair of real or integer constants. The two con
stants are separated by a comma and enclosed in parentheses. The first
constant represents the real part of that number; the second constant
represents the imaginary part.

VAX FORTRAN supports COMPLEX*8 and COMPLEX*l 6 complex
constants.

COMPLEX*S (COMPLEX) Constants

A COMPLEX*8 constant is a pair of integer or REAL*4 constants that
represents a complex number. It takes the following form:

(c. c)

c
Is an integer or REAL*4 constant.

The parentheses and comma are required parts of the constant. (See
Section 2.2.1.2 for the rules for forming REAL*4 constants.)

A COMPLEX*8 constant occupies eight bytes of VAX storage and is
interpreted as a complex number (see Sections C.5 and C.5.5).

Data Types, Data Items, and Expressions 2-13

Examples

The following examples demonstrate valid and invalid COMPLEX•8
constants and explain why the invalid ones are not valid:

Valid

(1 .7039 ,- 1 .70391)

(+12739E3,0 .)

(1 , 2)

Invalid

(1 . 23.)

(1 . 0. 1. OQO)

Explanation

Missing second REAL constant

REAL*l6 constant not allowed

COMPLEX*1 6 (DOUBLE COMPLEX) Constants

A COMPLEX•16 constant is a pair of constants that represents a complex
number. One constant must be REAL•8; the other must be an integer,
REAL•4, or REAL•8. The two constants are separated by a comma and
enclosed in parentheses; the first constant represents the real part of
the complex number, the second the imaginary part. There are two
implementations of COMPLEX• 16, corresponding to the D_floating and
G_floating implementations of REAL•8 .

A COMPLEX•16 constant takes the following form:

(c. c)

c
Is an integer, a REAL•4, or a REAL•8 constant. (One of the pair must be a
REAL•8 constant.)

A COMPLEX•16 constant occupies 16 bytes of VAX storage and is inter
preted as a complex number (see Sections C.5, C.5 .6, and C.5.7).

The parentheses and the comma are required parts of the constant.

Syntax rules for REAL•8 constants also apply to the REAL•8 portion of
COMPLEX•16 constants.

2-14 Data Types, Data Items, and Expressions

Examples

The following examples demonstrate valid and invalid COMPLEX*16
constants and explain why the invalid examples are not valid:

Valid

(1 .7039D0. - 1 . 7039DO)

(+12739D3 ,0 .DO)

Invalid

(1 , 2300)

(0 .8Q0,0 .4QO)

(1 .0D300,-1 .0D300)

Explanation

Second constant missing

REAL*16 constants not allowed

Both cons tants out of range for D_floating imple
mentation of REAL*8; they are valid for G_floating
implementation of REAL* 8

2.2. 1 .4 Octal and Hexadecimal Constants

Octal and hexadecimal constants are alternative ways to represent numeric
constants. They can appear wherever numeric constants are allowed.

An octal constant is a string of octal digits enclosed by apostrophes and
followed by the letter 0 . It takes the following form:

'c1c2c3 .. . cn'O

en
Is a digit with a range of 0 to 7.

A hexadecimal constant is a string of digits enclosed by apostrophes and
followed by the alphabetic character X. It takes the following form:

'c1c2c3 . . . cn'X

en
Is a digit in the range of 0 to 9, or an uppercase or lowercase letter in the
range of A to F.

Leading zeros are ignored in octal and hexadecimal constants. You can
specify up to 128 bits (43 octal digits, 32 hexadecimal digits).

Data Types, Data Items, and Expressions 2- 15

Examples

fhe following examples demonstrate valid and invalid octal and hexadeci
mal constants and explain why the invalid ones are not valid:

Valid

'07737 ' 0

'1'0

Invalid

'7782'0

7772'0

'0737'

Valid

'AF9730'X

'FFABC 'X

Invalid

'999. Ix

'F9X

Octal Constants

Explanation

The character 8 is invalid

No initial apostrophe

No 0 after second apostrophe

Hexadecimal Constants

Explanation

Invalid character

No apostrophe before X

Data-Typing Octal and Hexadecimal Constants

Octal and hexadecimal constants have no data type until they are used.
When used, they assume a data type based on their use .

When the constant is used with a binary operator, including the assign
ment operator, the data type of the constant is the data type of the other
operand. For example:

2-16 Data Types, Data Items, and Expressions

I

Statement

INTEGER*2 !COUNT

REAL*B DOUBLE

RAPHA = '99AF2 ' X

JCOUNT = !COUNT + ' 777 '0

DOUBLE= 'FFF99A'X

IF (N .EQ. ' 123 ' 0) GO TO 10

Data Type of
Constant

REAL*4

INTEGER*2

RE AL*8

INTEGER*4

Length of
Constant
(in bytes)

4

2

8

4

When a specific data type (generally integer) is required, that type is
assumed for the constant. For example:

Statement

Y(IX) = Y('15' 0) + 3 .

Data Type of
Constant

INTEGER*4

Length of
Constant
(in bytes)

4

When the constant is used as an actual argument, no data type is assumed .
However, a length of four bytes is always used. For example:

Statement

CALL APAC('34BC2'X)

Data Type of
Constant

None

Length of
Constant
(in bytes)

4

When the constant is used in any other context, an INTEGER*4 data
type is assumed (or an INTEGER*2 data type if /NOI4 is in effect) . For
example:

Length of
Data Type of Constant

Statement Constant (in bytes)

IF (I AF77 IX) 1 ,2, 3 INTEGER*4 4

I = '7777' 0 - ' A39 'X INTEGER*4 4

J = . NOT. I 73777 I 0 INTEGER•4 4

An octal or hexadecimal constant specifies up to 16 bytes of data. When
the data type implies that the length of the constant is more than the

Data Types, Data Items, and Expressions 2-17

number of digits specified, the leftmost digits have a value of zero. When
the data type implies that the length of the constant is less than the
number of digits specified, the constant is truncated on the left. An error
results if any nonzero digits are truncated. Table 2-1 lists the number of
bytes that each data type requires.

2.2.1.5 Logical Constants

A logical constant specifies a logical value, true or false. Thus, only the
following two logical constants are possible:

. TRUE .

. FALSE .

Both delimiting periods are required.

2.2.1.6 Character Constants

A character constant is a string of printable ASCII characters enclosed by
apostrophes. It takes the following form:

'c 1c2c3 . .. en'

en
Is a printable ASCII character.

Syntax Rules and Behavior

Both delimiting apostrophes are required.

The value of a character constant is the string of characters between
the delimiting apostrophes . The value does not include the delimiting
apostrophes, but does include all spaces or tabs within the apostrophes.

Within a character constant, the apostrophe character is represented by
two consecutive apostrophes with no space or other character between
them.

The length of the character constant is the number of characters between
the apostrophes, except that two consecutive apostrophes represent a
single apostrophe. The length of a character constant must be in the range
of 1 to 2000.

If a character constant appears in a numeric context (for example, as the
expression on the right side of an arithmetic assignment statement), it is
considered a Hollerith constant (see Section 2.2.1. 7).

2-18 Data Types, Data Items, and Expressions

Examples

The following examples demonstrate valid and invalid character constants
and explain why the invalid ones are not valid:

Valid

'WHAT?'

'TODAY' 'S DATE IS : I

I HE SAID. "HELLO" I

Invalid

I HEADINGS

I I

"NOW/OR NEVER"

2.2.1. 7 Hollerith Constants

Explanation

No trailing apostrophe

Character constant must contain at least one
character

Quotation marks cannot take the place of apostro
phes

A Hollerith constant is a string of printable ASCII characters preceded by
a character count and the letter H. It takes the following form:

nHc 1c2c3 . .. en

n
Is an unsigned, nonzero integer constant stating the number of characters
in the string (including spaces and tabs).

en
Is a printable ASCII character.

Hollerith constants are strings of 1 to 2000 characters. They are stored as
byte strings, one character per byte.

Examples

The following examples demonstrate valid and invalid hollerith constants
and explain why the invalid ones are not valid:

Data Types, Data Items, and Expressions 2-19

Valid

16HTODAY' S DATE IS:

1HB

Invalid

3HABCD

OH

Explanation

Wrong number of characters

Hollerith constants must contain at least one
character

Data-Typing Hollerith Constants

Hollerith constants have no data type. They assume a numeric data
type based on the way they are used. Hollerith constants cannot assume
a character data type and cannot be used where a character value is
expected.

When the constant is used with a binary operator, including the assign
ment operator, the data type of the constant is the data type of the other
operand. For example:

Statem ent

INTEGER*2 !COUNT

REAL*8 DOUBLP:

RALPHA = 4HABCD

JCOUNT = ! COUNT + 2HXY

DOUBLE = 8HABCDEFGH

IF (N . EQ . 1HZ) GO TO 10

Data Type of
Constant

REAL*4

INTEGER*2

REAL*8

INTEGER*4

Length of
Constant
(in bytes)

4

2

8

4

When a specific data type is required (generally integer), that type is
assumed for the constant. For example:

2-20 Data Types, Data Items, and Expressions

Statement

Y(IX) = Y(lHA) + 3 .

Data Type of
Constant

INTEGER*4

Length of
Constant
(in bytes)

4

When the constant is used as an actual argument, no data type is assumed.

Statement

CALL APAC (9HABCDEFGH I)

Data Type of
Constant

None

Length of
Constant
(in bytes)

9

When the constant is used in any other context, an INTEGER*4 data
type is assumed (or an INTEGER*2 data type if /NOI4 is in effect). For
example:

Length of
Data Type of Constant

Statement Constant (in bytes)

IF (2HAB) 1,2 ,3 INTEGER*4 4

I = 1HC - 1HA INTEGER*4 4

J = . NOT. 1HB 1NTEGER*4 4

When the length of the constant is less than the length implied by the
data type, spaces are appended to the constant on the right. When the
length of the constant is greater than the length implied by the data type,
the constant is truncated on the right. An error results if any characters
other than space characters are truncated.

Table 2-1 (in Section 2.1.1) lists the number of characters required for
each data type . Each character occupies one byte of storage.

Data Types, Data Items, and Expressions 2-21

2.2.2 Variables

A variable is represented by a symbolic name associated with a storage
location. The value of the variable is the value currently stored in that
location; you can change its value at any point in a program by assigning
a new value to it. (See Section 1.1.3 for the form of a symbolic name.)

Variables are classified by data type, just as constants are. The data type
of a variable indicates the type of data it contains, its precision, and its
storage requirements. When data of any type is assigned to a variable, it
is converted, if necessary, to the data type of the variable.

The following statements and rules establish the data type of a variable:

• Type declaration statements

• IMPLICIT statements

• Predefined typing rules

All types of variables are scalar references in that they resolve into single,
typed data items. (Section 2.2.6 discusses scalar references.)

Associating Variables

Two or more variables are associated with each other when each is
associated with the same storage location. They are partially associated
when part (but not all) of the storage associated with one variable is the
same as part or all of the storage associated with another variable.

Association and partial association occur when you use COMMON or
EQUIVALENCE statements; MAP declarations (within structure declara
tion blocks) or actual arguments and dummy arguments in subprogram
references.

If variables of different data types are associated (or partially associated)
with the same storage location, and the value of one variable is defined
(for example, by assignment), the value of the other variable becomes
undefined. This occurs because a variable is defined only if the storage
associated with it contains data of the same type as the name.

A variable can be defined before program execution by a DATA statement
or during execution by an assignment or input statement.

2-22 Data Types, Data Items, and Expressions

2.2.2.1 Data Type by Specification

Data type declaration statements explicitly specify the data type of vari
ables (see Section 4.4). For example, the following statements associate
VARl with an 8-byte complex-data storage location, and VAR2 with an
8-byte double-precision storage location:

COMPLEX VAR1
DOUBLE PRECISION VAR2

You can explicitly specify the data type of a variable only once.

An explicit data type specification takes precedence over the type specified
by an IMPLICIT statement. The data type specified by an IMPLICIT
statement associates with a variable only when an explicit specification is
absent. Thus, in the absence of an explicit specification, any variable with
a name that begins with the letter in the range specified in the IMPLICIT
statement becomes the data type of the variable.

Character type declaration statements (see Sections 4.4 and 4.4.2) specify
that given variables represent character values with the length specified.
For example, the following statements associate the variable names
INLINE, NAME, and NUMBER with storage locations containing character
data of lengths 72, 12, and 9, respectively:

CHARACTER*72 INLINE
CHARACTER NAME*12, NUMBER*9

In single subprograms, passed-length character arguments process charac
ter strings with different lengths. The passed-length character argument
has a length specification of asterisk (*); for example:

CHARACTER*(*) CHARDUMMY

The passed-length character argument assumes the length of the actual
argument. (See Section 6.1.1.3 and the VAX FORTRAN User Manual.)

Data Types, Data Items, and Expressions 2-23

2.2.2.2 Data Type by Implication

2.2.3 Arrays

In the absence of either IMPLICIT statements or explicit data type dec
larations, all variables with names beginning with I, J, K, L, M, or N are
assumed to be integer variables. Variables with names beginning with any
other letter are assumed to be REAL*4 variables. For example:

Real Variables

ALPHA

BETA

TOTAL

Integer Variables

JCOUNT

ITEM

NTOTAL

An array is a group of contiguous storage locations associated with a
single symbolic name, the array name. The individual storage locations,
array elements, are referenced by a subscript appended to the array name.

An array can have from one to seven dimensions. For example, a column
of figures is a one-dimensional array. A table with more than one column
of figures is a two-dimensional array. To refer to a specific value in this
array, you must specify both its row and column numbers. A table of
figures that covers several pages is a three-dimensional array. To locate a
value in this array, you must specify the page, row, and column numbers.

The following VAX FORTRAN statements establish arrays:

• Data type declaration (see Section 4.4)

• DIMENSION (see Section 4.5)

• COMMON (see Section 4.2)

These statements contain array declarators that define the name of the
array, the number of dimensions in the array, and the number of elements
in each dimension.

Associating Arrays

Two or more arrays are associated when each one is associated with the
same storage location. They are partially associated when part of the
storage associated with one array is the same as part or all of the storage
associated with another array.

2-24 Data Types, Data Items, and Expressions

Association and partial association occur when you use COMMON or
EQUIVALENCE statements; MAP declarations (within structure declara
tion blocks); or actual arguments and dummy arguments in subprogram
references.

If arrays with different data types are associated (or partially associated)
with the same storage location, and the value of one array is defined (for
example, by assignment), the value of the other array becomes undefined.
This happens because an element of an array is considered defined only if
the storage associated with it contains data of the same type as the array
name (see Section 2.2.3.3).

The DATA statement defines an array element or an entire array before
program execution. During program execution, array elements are defined
by an assignment or input statement, and entire arrays are defined by
input statements.

2.2.3.1 Array Declarators

An array declarator specifies the symbolic name that identifies an array
within a program unit and indicates the properties of that array. It takes
the following form:

a(d[, d] .. .)

a
Is the symbolic name of the array. (Section 1.1.3 gives the form of a
symbolic name.)

d
Is a dimension declarator that can specify both a lower bound and an
upper bound:

[dl :]du

di
Is the lower bound of the dimension.

du
Is the upper bound of the dimension. An asterisk (*) can be used as an
upper bound, but only for the last dimension of a dummy argument.
An asterisk marks the declarator as an assumed-size array declarator
(see Section 6.1.1.2).

The number of dimension declarators indicates the number of dimensions
in the array. The number of dimensions can range from one to seven.

Data Types, Data Items, and Expressions 2-25

The value of the lower-bound dimension declarator can be negative, zero,
or positive. The value of the upper-bound dimension declarator must be
greater than or equal to that of the corresponding lower-bound dimension
declarator. The number of elements in the dimension is du - dl + 1. If
a lower bound is not specified, it is assumed to be one, and the value
of the upper bound specifies the number of elements in that dimension.
For example, a dimension declarator of 50 indicates that the dimension
contains 50 elements.

Each dimension bound is an integer arithmetic expression in which each
operand is a constant, a dummy argument, or a variable in a common
block. The expression is converted to an integer if necessary.

The type of a variable used in a bound expression cannot be changed by a
later type declaration.

NOTE

Do not use array references and references to user-defined
functions in dimension bounds expressions.

Dimension bounds that are not constant expressions can be used in a
subprogram to define adjustable arrays. You can use adjustable arrays
within a single subprogram to process arrays with different dimension
bounds by specifying the array name as a subprogram argument, and by
either specifying the bounds as subprogram arguments or by placing the
bounds in a common block. (See Section 6.1.1.1 for more information on
adjustable arrays.) Dimension bounds that are not constant expressions
are not permitted in a main program.

The number of elements in an array is equal to the product of the number
of elements in each dimension.

An array name can appear in only one array declarator within a program
unit.

2-26 Data Types, Data Items, and Expressions

2.2.3.2 Array Subscripts

A subscript qualifies an array name. A subscript is a list of expressions,
called subscript expressions, enclosed in parentheses, that determine which
element in the array is referred to. The subscript is appended to the array
name it qualifies.

Subscript array references are scalar references in that they resolve into
single, typed data items. (Section 2.2.6 describes this terminology.)

A subscript takes the following form:

(s[. s] . . .)

s
Is a subscript expression.

A subscripted array reference must contain one subscript expression for
each dimension defined for that array (one for each dimension declarator) .

Each subscript can be any valid arithmetic expression. However, non
integer subscript expressions are converted to integers before use (any
fractional parts are truncated).

2.2.3.3 Arrangement of Array Elements in Storage

As discussed earlier in this section, you can think of the dimensions of an
array as pages, rows, and columns. However, FORTRAN actually stores
arrays in memory as a linear sequence of values. A one-dimensional array
is stored with its first element in the first storage location and its last
element in the last storage location of the sequence. A multidimensional
array is stored so that the leftmost subscripts vary most rapidly. This is
called the "order of subscript progression." For example, Figure 2-1 shows
array storage in one, two, and three dimensions.

Data Types, Data Items, and Expressions 2-27

Figure 2-1: Array Storage

One-Dimensional Array BRC (6)

BRC(2) 3 BRC(3) 4 BRC(4) 5 BRC(5) 6 BRC(6)

--------Memory Positions

Two-Dimensional Array BAN (3.4)

1 BAN(1 ,1) 4 BAN(1,2) 7 BAN(1,3) 10 BAN(1,4)

2 BAN(2 , 1) 5 BAN(2 ,2) 8 BAN(2,3) 11 t BAN(2,4)

3 BAN(3, 1) 6 BAN(3 ,2) 9 BAN(3,3) 12 BAN(3,4)

t l . .
Memory Pos1t1ons

Three-Dimensional Array BOS (3 ,3,3)

19 BOS(1, 1,3) 22 BOS(1,2,3) 25 BOS(1,3,3)

20 BOS(2,1,3) 23 BOS(2,2,3) 26 BOS(2,3,3)

10 BOS(1, 1,2) 13 BOS(1,2 ,2) 16 BOS(1,3,2) 27 BOS(3,3,3)

11 BOS(2,1 ,2) 14 BOS(2,2,2) 17 BOS(2,3,2)

1 BOS(1, 1,1) 4 BOS(1,2 ,1) 7 BOS(1 ,3,1) 18 BOS(3,3,2)

2 BOS(2,1 ,1) 5 BOS(2 ,2, 1) 8 BOS(2,3,1)

3 BOS(3, 1,1)' 6 808(3,2,1) 9 BOS(3 ,3,1)

1 ..
Memory Pos1t1ons

ZK-616-82

2-28 Data Types, Data Items, and Expressions

2.2.3.4 Data Type of an Array

The data type of an array is specified in the same way as the data type of
a variable-implicitly by the initial letter of the name, or explicitly by a
data type declaration statement (see Sections 2.2.2.1 and 2.2.2.2).

All the values in an array have the same data type. Any value assigned
to an array element is converted to the data type of the array. If an array
is named in a DOUBLE PRECISION statement, for example, the compiler
allocates an 8-byte storage location for each element of the array. When
a value of any type is assigned to any element of that array, the value is
converted to double precision.

2.2.3.5 Array References without Subscripts

In the following statements, you can specify an array name without a
subscript to indicate that the entire array is to be used (or defined):

• COMMON

• DATA

• EQUIVALENCE

• NAME LIST

• SAVE

• I/O

• Data type declaration

You can also use unsubscripted array names as dummy arguments in
FUNCTION, SUBROUTINE, and ENTRY statements, and as actual ar
guments in references to external procedures. Using unsubscripted array
names is not permitted in all other types of statements.

2.2.3.6 Adjustable Arrays

Adjustable arrays allow subprograms to manipulate arrays of variable
dimensions. To use an adjustable array in a subprogram, you specify the
array bounds, as well as the array name, as subprogram arguments. The
bounds may also be given in a common block. See Section 6.1.1.1 for
more information.

Data Types, Data Items, and Expressions 2-29

2.2.3. 7 Assumed-Size Arrays

Assumed-size arrays are similar to adjustable arrays . With assumed-size
arrays, however, an asterisk is used to specify the upper bound of the last
dimension. Section 6.1.1.2 describes the rules governing the dimensions
that are assumed.

2.2.4 Character Substrings

A character substring is a contiguous segment of a character variable or
character array element. It takes one of the following forms:

v([e1] : [e2])

a(s[, s] . ..) ([e1] : [e2])

v
Is a character variable name.

a
Is a character array name.

s
Is a subscript expression.

e1
Is a numeric expression that specifies the leftmost character position of the
substring.

e2
Is a numeric expression that specifies the rightmost character position of
the substring.

Character positions within a character variable or array element are num
bered from left to right, beginning at one. For example, LABEL(2:7) speci
fies the substring beginning with the second character position and ending
with the seventh character position of the character variable LABEL. If
the CHARACTER•8 variable LABEL has a value of 'XVERSUSY', then the
substring LABEL(2:7) has a value of VERSUS.

If the value of the numeric expression e 1 or e2 is not of type integer, it is
converted to an integer value by truncating any fractional part before use.

2-30 Data Types, Data Items, and Expressions

The values of the numeric expressions e 1 and e2 must meet the following
conditions:

(1 .LE . el) .AND . (el . LE . e2) .AND . (e2 . LE . len)

/en
Is the length of the character variable or array element.

If el is omitted, FORTRAN assumes that el equals one. If e2 is omitted,
FORTRAN assumes that e2 equals len. For example, NAMES(l,3)(:7)
specifies the substring starting with the first character position and end
ing with the seventh character position of the character array element
NAMES(l,3).

2.2.5 Records

A record is an aggregate entity containing one or more elements. (Record
elements are also called fields or components.) You can use records when
you need to declare and operate on multifield data structures in your VAX
FORTRAN programs. You can also access records in the VAX Common
Data Dictionary (CDD) and use them in your programs.

NOTE

Do not confuse a VAX FORTRAN record with an RMS I/O
record . VAX FORTRAN records are named data entities with
one or more fields that you create in your program.

A record is similar to an array in that they both contain one or more
elements. However, a record differs from an array in the following
respects:

• Unlike arrays, which are defined by a single declaration statement,
creating a record is a two-step process:

1. Defining the form of the record with a multistatement structure
declaration.

2. Declaring the record as an entity with a symbolic name, thus
establishing its structure in memory. More than one RECORD
statement can refer to a given structure .

• Unlike arrays, whose data elements must have the same data type,
records can have fields with different data types. Because records have
heterogeneous data elements, they are not typed as arrays are. Record
fields can be operated on individually or collectively.

Data Types, Data Items, and Expressions 2-31

• Unlike array elements, each element of a record can be named.
References to a record element consist of both the name of the record
containing the element and the name of the desired element.

Structure Declaration Blocks

A structure declaration block is a named group of statements that define
the form of a record.

To establish a structure declaration in memory, its name must be specified
in a RECORD statement.

A structure declaration block includes one or more of the following items:

• Data Type Declarations (variables or arrays): Data type declarations
in structure declarations have the form of normal VAX FORTRAN
data type declarations. Data items with different types can be freely
intermixed within a structure declaration. For example, INTEGER and
LOGICAL data items can be declared in the same structure.

• Substructure Declarations: Substructures can be established with a
structure by using either a nested structure declaration or a RECORD
statement.

Structure declarations can be nested within structure declarations.
A nested structure declaration must have one or more field names
specified on its STRUCTURE statement. A nested structure
declaration can optionally be given a structure name for later
reference by a RECORD statement.

The fields in another, previously declared, structure declaration
can be incorporated in a structure by including, within a structure
declaration, a RECORD statement naming the other structure.
This feature enables you to create a structure declaration and
then include it, as necessary, as a substructure declaration within
other structure declarations. Depending on the needs of an
application, this can have advantages over the use of nested
structure declarations, which are individually coded within a
containing, outer structure.

• Mapped Field Declarations: Mapped field declarations are made up of
one or more typed data declarations, substructure declarations (nested
structure declarations and RECORD statements), or other mapped field
declarations.

2-32 Data Types, Data Items, and Expressions

Mapped field declarations are defined by a block of statements called
a union declara tion. Unlike typed data declarations, all mapped field
declara tions that are made within a single union declaration share
a common location within the containing structure. This capability
is similar to using EQUIVALENCE statements to give names to
variables and arrays. In other languages, it is called a "variant record"
capability.

• Unn amed Fields : Unnamed fields can be declared in a structure by
specifying %FILL in place of an actual field name. This mecha
nism can be used to generate space in a record for purposes such as
alignment.

Unnamed fields cannot be initialized. For example, the following field
declaration is invalid and generates an error message:

I NTEGER*4 %FILL /1980 /

For a detailed description of the syntax and use of RECORD statements
and structure declarations, see Sections 4.13 and 4.1 5.

2.2.5.1 Arrangement of Records in Storage

FORTRAN stores a record in memory as a linear sequence of values, with
the record 's first element in the first storage location and its last element
in the last storage location . No gaps are left between elements. A record
array is stored in a similar fashion, with no gaps between array elements.

Examples

The following examples contain structure declaration blocks, RECORD
statements, and diagrams of the resulting records as they are stored in
memory.

The firs t example shows a basic structure declaration block and RECORD
statement:

Source Code

STRUCTURE /STRA/
CHARACTER*l CHR
INTEGER*4 INT

END STRUCTURE

RECORD / STRA/ REC.AREC (2)

Data Types, Data Items, and Expressions 2-33

Memory Diagram

0 1 5 (byte off set)

I REC .CHA REC .INT I
Record REC

ZK- 1844- 84

0 1 5 6 1 O (byte offset)

1 A_R_E_c_(,_) ._c_HR_l.__ _ ___ A_RE-~ i 1) INT ARECl~~l -IN_r ___ --JI

Record array AREC

ZK- 1843-84

2-34 Data Types, Data Items, and Expressions

0

NRD FLT

The next example includes a substructure:

Source Code

STRUCTURE / STRB/
REAL*8 FLT
RECORD /STRA/ STR (2)

END STRUCTURE

RECORD / STRB/ NRD

Memory Diagram

8 9

I NRD STR(l) CHR I
13 14 18 (byte oHset)

NRD ST:,_11_) IN_ r _ _ ~N_R_o ._sr_R_12_i . c_H_R~--NR_o_. s--iT~
Substructure

STRA (STRi 1))
Substructure

STRA (S TR(2))

Record NRD

ZK- 184 2-84

The next example shows how unions cause the storage of the associated
mapped fields to be overlaid:

Source Code

STRUCTURE /STR/
INTEGER*4 TAG
UNION

MAP
REAL*4 FLT
CHARACTER*2 CHR

END MAP
MAP

INTEGER*2 INT
END MAP

END UNION
LOGICAL*1 LOG

END STRUCTURE

Data Types, Data Items, and Expressions 2-35

Memory Diagram

0 4 6 8 10 11 (byte offset)
l

FLT CHR
TAG LOG

INT (unused)

Area fo r mapped fi e lds

ZK - 1845- 84

2.2.5 .2 References to Record Fields

References to record fields must correspond to the kind of field being
referenced. Aggregate field references refer to composite structures (and
substructures). Scalar field references refer to singular data items, such as
variables.

An operation on a record can involve one or more fields.

Record field references take one of the following forms:

Aggregate Field Reference

record-name [. aggregate- field- name]

Scalar Field Reference

record- name [. aggregate-f ie l d- name] s calar-fie l d- name

record-name
Is the name used in a RECORD statement to iden tify a record . See
Section 4.13 for a description of the RECORD statement.

aggregate-field-name
Is the name of a field that is a substructure (a record or a nested structure
declaration) within the record structure identified by the record name.

See Section 4.15 for a description of how fields are specified within
structure declarations .

scalar- field-name
Is the name of a typed data item defined within a structure declaration.

2-36 Data Types, Data Items, and Expressions

Scalar field references are scalar references in that they resolve into single,
typed data items . Conversely, aggregate field references are aggregate
references in that they resolve into references to structured data items:
records and nested structure declarations. Aggregate field references
are the only references that fall into the aggregate reference category.
(Section 2.2 .6 discusses this terminology.)

Syntax Rules and Behavior

Records and record fields cannot be used in EQUIVALENCE statements.
However, you can make fields of record structures equivalent to them
selves by using the UNION and MAP statements in a structure declaration
block (see Section 4.15 .1).

A scalar field reference consists of the name of a record (as specified in
a RECORD statement) and zero or more levels of aggregate field names
followed by the name of a scalar field. A scalar field reference refers to
a single, typed data item and can be treated like a normal reference to a
FORTRAN variable or array element.

Scalar field references can be used in statement functions and in exe
cutable statements. However, they cannot be used in COMMON, SAVE,
NAMELIST, or EQUIVALENCE statements, or as the control variable in
an indexed DO-loop.

Type conversion rules for scalar field references are the same as those for
variables and array elements.

An aggregate field reference consists of the name of a record (as specified
in a RECORD statement) and zero or more levels of aggregate field names.

You can assign an aggregate field to another aggregate field (record =
record) only with records having the same structure . VAX FORTRAN
supports no other operations (such as arithmetic or comparison) on
aggregate fields.

Aggregate field references can be used in unformatted 1/0 statements
(one I/ O record is written no matter how many aggregate and array name
references appear in the 1/0 list) but cannot be used in formatted and
NAMELIST I/O statements.

Aggregate field references can be used as both dummy and actual argu
ments. The declaration of the dummy record in the subprogram must
match the form of the record declared in the calling program unit; that is,
each structure must have the same number and types of fields in the same
order. The ordering of map fields within a union declaration is irrelevant.

Data Types, Data Items, and Expressions 2-37

Records are passed by reference . Aggregate field references•are treated like
normal variables. Adjustable arrays can be used in RECORD statements
that are used as dummy arguments.

NOTE

Because periods are used in record references to separate fields,
you should not use relational operators (.EQ., .XOR.) logical
constants (.TRUE., .FALSE.) and logical expressions (.AND.,
.NOT:, .OR.) as field names in structure declarations.

Examples

The following examples demonstrate record and field references . Consider
the following structure declarations (described at length in Section 4.15.1).

Structure DATE:

STRUCTURE / DATE/
LOGICAL*1 DAY , MONTH
INTEGER*2 YEAR

END STRUCTURE

Structure APPOINTMENT:

STRUCTURE /APPO I NTMENT/
RECORD /DATE/ APP_DATE
STRUCTURE /TIME/ APP_TIME (2)

LOGICAL*1
END STRUCTURE
CHARACTER*20
LOGICAL*1

END STRUCTURE

HOUR, MINUTE

APP_MEMO (4)
APP_FLAG

Consider also the following RECORD statement, which creates a variable
named NEXT_APP and a 10-element array named APP_LIST. Both the
variable and each element of the array take the form of the structure
APPOINTMENT.

RECORD / APPO INTMENT/ NEXT_APP,APP_LIST (10)

Each of the following examples of record and field references are derived
from the preceding structure declarations and RECORD statement.

Aggregate Field References

• The record NEXT_APP:

NEXT_APP

2-38 Oata Types, Oata Items, and Expressions

• The fie ld APP_TJME(l), an array fi eld of th e record NEXT_APP:

NEXT_APP. APP_TI ME(l)

• The field APP_DATE, a 4-byte array field in the record array APP_
LIST(3):

APP_LI ST(3) APP_DATE

Scalar Field References

• The field APP_FLAG, a LOGICAL field of the record NEXT_ APP:

NEXT_APP .APP_ FLAG

• The field HOUR, a LOGICAL* 1 subfield of field APP_ TIME(l) of
record NEXT_APP:

NEXT_APP.APP_TIME(l) .HOUR

• The first character of APP_MEMO(l), a CHARACTER*20 field of the
record NEXT_APP:

NEXT_APP .APP_MEM0(1) (1: 1)

• The field MONTH, a LOGICAL*l subfield of field APP_ DATE of
record array APP_ UST(l) :

APP_LIST(l) APP_DATE MONTH

2.2.6 Terminology Used to Refer to Data Items

Constants, variables, arrays, array elements, scalar record fields, aggregate
fields, character substrings, and expressions can be specified in many
places in a VAX FORTRAN program. FORTRAN statements and expres
sions have individual restrictions governing which of these items can be
used in statements and expressions and in what form. Thus, to avoid re
peatedly enumerating lists of the various items that can be specified with
the various statements and expressions, the items divide into four general
categories. The names of these categories are used throughout this manual
to identify what can be included in a particular statement or expression.
The categories are as follows:

• Scalar Reference-resolves into a reference to a single, typed data
item (a variable, scalar record field , array element, constant, character
substring, or expression).

Data Types, Data Items, and Expressions 2-39

• Scalar Memory Reference-resolves into a data item that can be as
signed a value by means of an assignment statement. It is the same as
a scalar reference, excluding constants and expressions.

• Array Name Reference-resolves into a reference to an array.

• Aggregate Reference-resolves into a reference to a structured data item
(a record structure or substructure).

Scalar reference, scalar memory reference, array name reference, and
aggregate reference are used throughout this manual to indicate where
these various categories of data items can be specified.

Examples

Consider the following declarations:

INTEGER INT, INTARY (10)

STRUCTURE / STRA/
I NTEGER I NTFLD, I NTFLDARY (10)

END STRUCTURE

STRUCTURE /STRB/
CHARACTER*20 CHARFLD
INTEGER I NTFLD, I NTFLDARY (10)
STRUCTURE STRUCFLD

COMPLEX CPXFLD, CPXFLDARY (10)
END STRUCTURE
RECORD /STRA/ RECFLD , RECFLDARY (10)

END STRUCTURE

RECORD / STRB/ REC, RECARY (10)

Each of the following references are derived from the preceding data
declarations.

2-40 Data Types, Data Items, and Expressions

Scalar References

INT
INTARY(l)
REC . INTFLD
REC . INTFLDARY(1)
REC .RECFLD . INTFLD
REC .STRUCFLD .CPXFLD
REC .RECFLD . INTFLDARY(1)
REC .RECFLDARY(1) . I NTFLD
REC.RECFLDARY(1) . I NTFLDARY (1)
REC .CHARFLD
REC .CHARFLD (5 :10)
RECARY(1) .CHARFLD(5 :10)
RECARY (l) . INTFLD
RECARY(1) . INTFLDARY(1)
RECARY (1) .RECFLD . INTFLD
RECARY(1) .STRUCFLD .CPXF LD
RECARY (1) .RECFLD . INTF LDARY(l)
RECARY (1) .RECFLDARY (1) . INTF LD
RECARY (1) .RECFLDARY (l) .INTFLDARY(l)

Scalar Memory References

All references listed in the scalar reference category are also in the category
of scalar memory reference because they do not include constants and
expressions.

Array Name References

INT ARY
RECARY
REC . INTFLDARY
REC.RECFLDARY
REC .RECFLD . INTFLDARY
REC .RECFLDARY(1) . INTFLDARY
REC .STRUCFLD .CPXFLDARY
RECARY (l) . I NTFLDARY
RECARY(1) .RECFLDARY
RECARY (1) .RECFLD. INTFLDARY
RECARY (1) .STRUCFLD.CPXFLDARY
RECARY(1) .RECFLDARY (1) . INTFLDARY

Aggregate References

REC
RECARY (l)
REC.RECFLD
REC.STRUCF LD
REC.RECFLDARY(1)
RECARY (1) .RECFLD
RECARY(1) .STRUCFLD
RECARY(1) .RECFLDARY (1)

•

Data Types, Data Items, and Expressions 2-41

2.3 Expressions

An expression is a scalar field reference, function reference, or combination
of these references plus operators. Expressions represent singular values.
Combinations represent singular values because they resolve into singular
values when computations are made on their data items, as specified by
the operators.

Expressions are classified as arithmetic, character, relational, or logical.
Arithmetic expressions produce numeric values, character expressions
produce character values, and relational and logical expressions produce
logical values.

2.3.1 Arithmetic Expressions

Arithmetic expressions express numeric computations. Arithmetic expres
sions are formed with arithmetic elements and arithmetic operators. The
evaluation of an arithmetic expression yields a single numeric value.

An arithmetic element can be any of the following:

• Numeric scalar reference

• Arithmetic expression enclosed in parentheses

• Numeric function reference

The term numeric includes logical data, because logical data are trea ted as
integer data when used in an arithmetic context.

Arithmetic operators specify a computation to be performed using the
values of arithmetic elements. They produce a numeric value as a result.
Operators and their functions are as follows:

Operator

**

*

I
+

Function

Exponentiation

Multiplication

Division

Addition or unary plus

Subtraction or unary minus

2-42 Data Types, Data Items, and Expressions

The plus and minus operators are unary operators because they can
operate on a single operand. Used as unary operators, the plus or minus
operators precede a single operand and denote a positive or negative
value, respectively. Thus, they preserve or change the arithmetic sign of
a value. The exponentiation, multiplication, and division operators are
binary operators because they operate on a pair of operands.

Variables, array elements, and field references must have defined values
before being used in an arithmetic expression.

Valid arithmetic operations must have results that are mathematically
defined. For example, dividing by zero or raising a zero-valued base to
a zero-valued or negative-valued power is invalid. Raising a negative
valued base to a real power is also invalid.

Arithmetic expressions are evaluated in an order determined by a prece
dence associated with each operator:

Operator

••
•and/

+and -

Precedence

First

Second

Third

When operators with equal precedence appear, they can be evaluated in
any order as long as the order is algebraically equivalent to a left-to-right
order of evaluation. Exponentiation, however; is evaluated from right to
left. For example, A**B**C is evaluated as A••(B**C); B**C is evaluated
first, and then A is raised to the resulting power.

Normally, two operators cannot appear together. However, VAX
FORTRAN allows two consecutive operators if the second operator is
a plus or minus.

Examples

In the following example, the exponentiation operator is evaluated first
because it takes precedence over the multiplication operator:

A• • B•C is evaluated as (A**B) *C.

Ordinarily, the exponentiation operator would be evaluated first in the
next example. However, because VAX FORTRAN allows the combination
of the exponentiation and minus operators, the multiplication operator is
evaluated first. The exponentiation operator must wait until the minus

Data Types, Data Items, and Expressions 2-43

operator is evaluated. As a result, the multiplication operator is evaluated
first, since it takes precedence over the minus operator:

A** - B*C is evaluated as A** <- (B* A)).

2.3. 1.1 Using Parentheses

You can use parentheses to force a particular order of evaluation. When
part of an expression is enclosed in parentheses, that part is evaluated first
and the resulting value is used in the evaluation of the remainder of the
expression.

In the following four examples, the numbers below the operators indicate
a possible order of evaluation. Alternative evaluation orders are possible
in the first three examples because they contain operators of equal prece
dence that are not dictated by parentheses. In these cases, the compiler
is free to evaluate operators of equal precedence in any order-as long
as the result is the same as the result gained by the algebraic left-to-right
order of evaluation.

4 + 3 * 2 - 6 I 2 = 7

2 1 4 3

(4+3) * 2 - 6 I 2 = 11

1 2 4 3

(4 + 3 * 2 - 6) I 2 = 2

2 1 3 4

((4+3) * 2 - 6) I 2 = 4

1 2 3 4

As shown in the last two examples, expressions within parentheses
are evaluated according to the normal order of precedence, unless you
override the order by using parentheses within parentheses.

Nonessential parentheses do not affect expression evaluation, as shown in
the following example:

4 + (3 * 2) - (6/2)

2-44 Data Types, Data Items, and Expressions

However, using parentheses to specify the evaluation order is often im
portant in high-accuracy numerical computations. In such computations,
evaluation orders that are algebraically equivalent might not be compu
tationally equivalent when processed by a computer (because of the way
intermediate results are rounded off).

2.3.1.2 Data Type of an Arithmetic Expression

If every element in an arithmetic expression is of the same data type, the
value produced by the expression is also of that data type. If elements
of different data types are combined in an expression, the evaluation of
that expression and the data type of the resulting value depend on a rank
associated with each data type. The rank assigned to each data type is as
follows:

Data Type Rank

Logical 1 (Lowest)

INTEGE R*2 2

INTEGER*4 3

REAL*4 (REAL) 4

REAL*8 (DOUBLE PRECISION) 5

REAL*l6 6

COMPLEX*8 (COMPLEX) 7

COMPLEX* 16 (DOUBLE COMPLEX) 8 (H ighest)

The data type of the value produced by an operation on two arithmetic
elements of different data types is the data type of the highest-ranked
element in the operation. For example, the data type of the value resulting
from an operation on an integer and a real element is real. However,
an operation involving a COMPLEX*8 data type and either a REAL* 8 or
REAL* 16 data type produces a COMPLEX* 16 result.

The data type of an expression is the data type of the result of the last
operation in that expression and is determined according to the following
conventions:

• Integer operations: Integer operations are performed only on integer
elements. (Logical entities used in an arithmetic context are treated

Data Types, Data Items, and Expressions 2-45

as integers .) In integer arithmetic, any fraction that can result from
division is truncated, not rounded. For example:

1/4 + 1/4 + 1/4 + 1/4

The value of this expression is 0, not 1.

• Real operations: Real operations are performed only on real elements
or combinations of real, integer, and logical elements. Any integer
elements present are converted to the real data type by giving each a
fractional part equal to zero. The expression is then evaluated using
real arithmetic. However, in the statement Y = (I/ J) *X, an integer
division operation is performed on I and J, and a real multiplication is
performed on that result and X.

• REAL*B and REAL*l 6: operations: Any element in an operation in which
there is a higher-precision element is converted to the data type of the
higher-precision element by making the existing element the most
significant portion of the higher-precision data. The least significant
portion of the binary representation is zero. The expression is then
evaluated in the higher-precision arithmetic.

• Real element to higher-precision element conversions: Converting a real
element to a higher-precision element does not increase its accuracy;
for example, a REAL variable having the value 0.3333333 is converted
approximately to 0.3333333134651184DO. It is not converted to either
0.3333333000000000DO or 0.3333333333333333DO.

• Complex operations: In operations that contain any complex elements,
integer elements are converted to the real data type, as previously
described. The obtained REAL or REAL*8 element is then designated
as the real part of a complex number and the imaginary part is
assigned a value of zero. Next, the expression is evaluated using
complex arithmetic and the resulting value is a complex data type.
Operations involving COMPLEX*8 and REAL>1c8 elements are done as
COMPLEX* 16 operations; the REAL*8 element is not rounded!.

• Constants defined by PARAMETER statements: If a constant was as
signed a value by a PARAMETER statement, it may be treated as a
lower-order type in an arithmetic expression. This treatment can occur
even if the constant was explicitly typed. For example, an INTEGER*4
constant might be treated as ar INTEGER*2 constant.

These rules also generally apply to arithmetic operations in which one
of the operands is a constant. However, if a real or complex constant is
used in a higher-precision expression, additional precision will be retained
for the constant. The effect is as if a REAL*8 or REAL* 16 representation
of the constant had been given. For example, the expression I.ODO +
0.3333333 is treated as if it were I.ODO+ 0.3333333000000000DO.

2-46 Data Types, Data Items, and Expressions

2.3.2 Character Expressions

Character expressions consist of character elements and character opera
tors. The evaluation of a character expression yields a single value with a
character data type. Character expressions take the following form:

character-element [//character-element] ...

character-element
Is any one of the following entities:

• Character scalar reference

• Character substring

• Character expression, optionally enclosed in parentheses

• Character function reference

The only character operator is the concatenation operator (/ /).

The value of a character expression is a character string formed by suc
cessive left-to-right concatenations of the values of the elements of the
character expression. The length of a character expression is the sum
of the lengths of the character elements. For example, the value of the
character expression 'AB'/ j'CDE' is 'ABCDE', which has a length of five .

Parentheses do not affect the value of a character expression; for example,
the following character expressions are equivalent:

('ABC'//'DE')//'F'
'ABC'//('DE'//'F')
'ABC'//'DE'//'F'

Each of these character expressions has the value 'ABCDEF'.

If a character element in a character expression contains spaces, the spaces
are included in the value of the character expression. For example,
'ABC'/ j'D E'//'F' has a value of 'ABC DEF'.

Data Types, Data Items, and Expressions 2-4 7

2.3.3 Relational Expressions

A relational expression consists of two arithmetic expressions or two
character expressions separated by a relational operator. A relational
operator tests for a relationship between the two expressions. The value
of the relational expression is either .TRUE. or .FALSE. depending on
whether the stated relationship holds.

VAX FORTRAN supports the following relational operators:

Operator

.LT.

.LE.

.EQ.

.NE .

. GT.

.GE .

Relationship

Less than

Less than or equal to

Equal to

Not equal to

Greater than

Greater than or equal to

Both delimiting periods are required.

Complex expressions can be related only by the .EQ. and .NE. operators.
Complex entities are equal if their corresponding real and imaginary parts
are both equal.

In an arithmetic relational expression, the arithmetic expressions are
first evaluated to obtain their values. These values are then compared
to determine whether the relationship stated by the operator holds; for
example:

APPLE+PEACH .GT . PEAR+ORANGE

This expression states the relationship, "The sum of APPLE and PEACH is
greater than the sum of PEAR and ORANGE." If that relationship holds,
the value of the expression is .TRUE. If not, the value of the expression is
.FALSE.

Similarly, in a character relational expression, the character expressions
are first evaluated to obtain their values. These values are then compared
to determine whether the relationship stated by the operator holds. In
character relational expressions "less than" means "precedes in the ASCII
collating sequence," and "greater than" means "follows in the ASCII
collating sequence;" for example:

'AB'//'ZZZ' .LT. 1 CCCCC 1

2-48 Data Types, Data Items, and Expressions

This expression states that 'ABZZZ' is less than 'CCCCC'. Because that
relationship does hold, the value of the expression is .TRUE. If the
relationship stated does not hold, the value of the expression is .FALSE.

If the two character expressions in a relational expression are not the same
length, the shorter one is padded on the right with spaces until the lengths
are equal; for example:

'ABC' .EQ . 'ABC I

I AB I . LT . I c I

The first relational expression has a value of . TRUE. even though the
lengths of the expressions are not equal, and the second has a value of
.TRUE. even though 'AB' is longer than 'C '.

All relational operators have the same precedence. However, arith
metic and character operators have a higher precedence than relational
operators.

As in any other expression, you can use parentheses to alter the order
of evaluation of the expressions in a relational expression. However,
because arithmetic and character operators are evaluated before relational
operators, you do not need to enclose the entire arithmetic or character
expression in parentheses.

A relational expression can compare two numeric expressions of different
data types. In this case, the value of the .expression with the lower
ranked data type is converted to the higher-ranked data type before the
comparison is made.

2.3.4 Logical Expressions

A logical expression is a single logical element or a combination of logical
elements and logical, arithmetic, or relational operators.

Logical elements can be any one of the following:

• Integer or logical scalar reference

• Relational expression

• Integer or logical expression enclosed in parentheses

• Integer or logical function reference

Data Types, Data Items, and Expressions 2-49

VAX FORTRAN logical operators are any one of the following:

Operator

.AND.

.OR.

.NEQV.

. XOR.

.EQV.

.NOT.

Example

A .AND. B

A . OR . B

A . NEQV . B

A . XOR . B

A . EQV . B

. NOT . A

Meaning

Logical conjunction: The expression is true if
both A and B are true.

Logical disjunction (inclusive OR): The
expression is true if either A or B, or both,
are true .

Logical exclusive OR: The expression is true
if A and B have different logical values; but
the expression is false if both elements have
the same logical value.

Same as .NEQV .

Logical equivalence: The expression is true
if both A and B have the same logical value,
whether true or false.

Logical negation: The expression is true if A
is false and false if A is true.

Delimiting periods are required. Periods cannot appear consecutively
except when the second operator is .NOT. For example, the following
logical expression is valid:

A+B/(A- 1) . AND . . NOT . D+B/(D-1)

Data Types that Result from Logical Operations

On logical elements, logical operations produce single logical values
(.TRUE. or .FALSE.) with a logical data type.

On integers, logical operations produce single values with an integer data
type; they are carried out bit-by-bit on corresponding bits of the internal
(binary) representation of the integer elements.

On a combination of integer and logical values, logical operations also
produce single values with an integer data type. The operation first
converts logical values to integers and then operates as it does with
integers.

Logical operations cannot be performed on other data types.

2-50 Data Types, Data Items, and Expressions

Evaluation of Logical Expressions

Logical expressions are evaluated according to the precedence of their
operators. Consider the following expression:

A*B+C*ABC . EQ . X*Y+DM/ZZ .AND . . NOT . K*B . GT . TT

This expression is evaluated in the following sequence:

(((A*B) + (C*ABC)) . EQ . ((X*Y) + (DM/ZZ))) . AND. (.NOT. ((K*B) . GT. TT))

The following list identifies all the operators that can appear in a logical
expression in the order of their precedence:

Operator Precedence

** First (highest)

*, I Second

+,-,II Third

Relational Operators Fourth

.NOT. Fifth

.AND. Sixth

.OR. Seventh

.XOR., .EQV., .NEQV. Eighth (lowest)

As with arithmetic expressions, you can alter the sequence of evaluation
by using parentheses.

When operators have equal precedence, the compiler can evaluate them
in any order-as long as the result is the same as the result gained by the
algebraic left-to-right order of evaluation (except for exponentiation, which
is associated from right to left).

You should not write logical expressions whose results might depend on
the evaluation order of subexpressions. The compiler is free to evaluate
subexpressions in any order. In the following example, either (A(I)+ 1.0) or
B(I)•2.0 could be evaluated first:

(A(I)+l.O) .GT . B(I) *2 .0

Data Types, Data Items, and Expressions 2-51

Some subexpressions may not be evaluated if the compiler can deter
mine the result by testing other subexpressions in the logical expression.
Consider the following expression:

A .AND. (F(X,Y) .GT . 2 .0) .AND. B

If A is false, and if the compiler evaluates A first, then the compiler can
determine that the expression is false and may not call the subprogram
F(X,Y).

2-52 Data Types, Data Items, and Expressions

Chapter 3

Assignment Statements

Assignment statements define the value of a data item-a variable,
array element, record (structured variabl~), record element, or character
substring. The expression on the right side of the assignment statement's
equal sign is evaluated and the resulting value is assigned to the data item.

VAX FORTRAN supports five assignment statements: arithmetic, logical,
character, ;aggregate, and ASSIGN.

3. 1 Arithmetic Assignment Statement

The arithmetic assignment statement assigns the value of the expression
on the right of the equal sign to the numeric scalar memory reference on
the left of the equal sign. It takes the following form:

v = e

v
Is a numeric scalar memory reference.

e
Is an arithmetic expression.

The equal sign does not mean "is equal to," as in mathematics. It means
"is replaced by." For example:

COUNT = COUNT + 1

This statement means, "replace the current value of the integer variable
COUNT with the sum of that current value and the integer constant 1."

Assignment Statements 3-1

Although the symbolic name on the left of the equal sign can be un
defined, values must have been previously assigned to all symbolic
references in the expression on the right of the equal sign.

The expression e must yield a value that conforms to the range require
ments of v. For example, a real expression that produces a value greater
than 32767 is invalid if the entity on the left of the equal sign is an
INTEGER*2 variable. Significance may be lost if an INTEGER*4 value,
which can exactly represent values of approximately the range -2*10**9
to +2*10**9, is converted to REAL*4 (including the real part of a complex
constant), which is accurate to only about seven digits.

If v has the same data type as that of the expression on the right, the
statement assigns the value directly. If the data types are different, the
value of the expression is converted to the data type of the entity on the
left of the equal sign before it is assigned.

Examples

The following examples demonstrate valid and invalid assignment state
ments and explain why the invalid ones are not valid:

Valid

BETA= -1./(2 .*X)+A*A/(4. *(X*X))

PI= 3 . 14159

SUM = SUM + 1 .

NEW= RECORD 1 .FIELD1

Invalid

3 . 14 = A - B

-J = I **4

ALPHA= ((X+6)*B*B/(X-Y)

!COUNT= A//8(3 :7)

Explanation

Entity on the left must be a numeric
scalar memory reference.

Entity on the left must not be signed.

Left and right parentheses do not bal
ance.

Expression on the right cannot have a
character data type if the entity on the
left does not.

Table 3-1 summarizes the data conversion rules for assignment state
ments .

3-2 Assignment Statements

Table 3-1: Conversion Rules for Assignment Statements

Scala r
Memo r y

Re ference Intege r or

(V) Logical

Integer Assign E to V
or Logica l

REAL Append frac tion
(.0) to E and
assign to V

REAL•8 Append frac t ion
(.0) to E and
assiJ:{n to V

RE AL• I6 Sa me as abo\'e

COMPLEX Append frac tion
(.0) to E a nd
assign lo rea l
part of V;
imagina ry pa rt of
Vis 0.0

COMP LEX • I6 Append fraction
1.0) to E and ass ign
lo V: imagina ry

pa rt of V is 0.0

'MS = most s ignifi cant (h igh o rder)
LS = least signiti cant (low order)

REAL

Truncate E to
integer and
assign lo V

Assign E to V

Ass ign E to MS•
portion of V; LS•
portion of V is 0

Same as abo"e

Assign E to rea l
part of V:
imagina ry pa rt
of Vis 0.0

Assign E to MS •
port ion nf rea l

part of V:
imag ina ry pa rt
11f V is 0.0

Expression (E)

REAL0 8 R E AL-1 6 COM PLEX COMPLEX 0 16

Truncate E to T runcate E w Truncate real part T runcate real part of E

integer and in tege r and of E to integer and to in tege r and assign to

assign to V assign to V assign to V; V; imagi na ry part of E
imaginary part of E is not used

is not used

Assign MS• portion Ass ign MS • po rt ion Ass ign real pa rt of Assign MS • port ion

of E to V; LS• of E to V: LS• E to V; imaginary of the rea l pa rt of

portion of Eis port ion of E is pa rt of E is not E to V; LS• port io n

rounded rounded used of the rea l part of
E is rounded:
imagina ry pa rt of
E is not used

Ass ign E to V Same as above Ass ign real pa rt of Assign rea l pa rt of
E to MS• of V; E to V; imagina ry
LS• portion of V part of E is not used
is 0: imaginary part
of E is not used

Assign E to MS• Ass ign E to V Same as above Assign real pa rt of
port ion of V : L S• E to MS• po rt ion
port ion of V is U of V; LS• port ion

of rea l part of V
is 0. Imaginary part
of E is not used

Assign MS• portion Ass ig n MS • portion Assign E to V Assign MS • port ion

of E to rea l part of of E lo rea l part of of real part of E to

V; LS• port ion of V; LS• po rt ion of real part of V; LS•

E is rounded: E is rou nded: port ion of rea l pa rt

imal(ina ry part of imal(inary part of of E is rounded.

V is 0.0 V is 0.0 Assign MS • po rtio n of

imagi nary part of E
to imagi nary part of
V: LS• portion of
imag inary pa rt of E
is ro unded .

Ass ign E to rea l Sa me as above Ass ign real part of Ass ign E to V
pa rt of V: E to MS • portion
imaginary part of real part of V:
is 0.0 LS• portion of

rea l pa rt is 0. Ass ign
imaginary part of E
to MS • por t ion of
imagi nary part of V:
LS• portion of
imagina ry pa rt is 0.

ZK-481 2-85

Assignment Statements 3-3

3.2 Logical Assignment Statement

The logical assignment statement assigns the value of the logical expres
sion on the right of the equal sign to the logical scalar memory reference
on the left of the equal sign.

A logical assignment statement takes the following form:

v = e

v
Is a logical scalar memory reference.

e
Is a logical, integer, or arithmetic expression.

Values must have previously been assigned to all symbolic references that
appear in the expression. The expression must yield a logical value.

Examples

The following examples demonstrate valid logical assignment statements:

PAGEND = .FALSE.

PRNTOK = LINE . LE . 132 .AND . . NOT. PAGEND

ABIG = A.GT.B .AND. A.GT.C .AND . A.GT .D

3.3 Character Assignment Statement

The character assignment statement assigns the value of the character
expression on the right of the equal sign to the character scalar memory
reference on the left of the equal sign. It takes the following form:

v = e

v
Is a character scalar memory reference.

e
Is a character expression.

If the length of e is greater than the length of v, the character expression
is truncated on the right.

3-4 Assignment Statements

If the length of e is less than the length of v, the character expression is
filled on the right with spaces.

The expression e must have a character data type. You cannot assign a
numeric value to a character scalar memory reference.

By assigning a value to a character substring, you do not affect character
positions in the character scalar memory reference not included in the
substring. If a character position outside of the substring has a value
previously assigned, it remains unchanged. If the character position is
undefined, it remains undefined.

Examples

The following examples demonstrate valid and invalid character assign
ment statements and explain why the invalid ones are not valid. (In the
examples, all memory references have a character data type.)

Valid

FILE = 'PRDG2'

REVOL(1) = 'MAR'//'CIA'

LOCA(3 :8) = 'PLANT5'

TEXT(I,J+1)(2:N-1) =NAME/IX

Invalid

'ABC' = CHARS

CHARS = 25

STRING = 5HBEGIN

Explanation

Left element must be a character variable,
array element, or substring reference.

Expression on right must have a character
data type.

Expression on right must have a character
data type-Hollerith constants are numeric,
not character.

Assignment Statements 3-5

3.4 Aggregate Assignment Statement

The aggregate assignment statement assigns the value of each field of the
aggregate on the right of an equal sign to the corresponding field of the
aggregate on the left. Both aggregates must be declared with the same
structure.

An aggregate assignment statement takes the following form:

v = e

v
Is an aggregate reference with the same structure as the aggregate repre
sented by e (see Section 2.2.5.1).

e
Is an aggregate reference with the same structure as the aggregate repre
sented by v (see Section 2.2.5.1).

Example

The following example demonstrates valid aggregate assignments:

STRUCTURE /DATE/
LOGICAL*1 DAY. MONTH
INTEGER*2 YEAR

END STRUCTURE

RECORD /DATE/ TODAY, THIS_WEEK(7)
STRUCTURE /APPOI NTMENT/

RECORD /DATE/ APP_DATE

END STRUCTURE

RECORD /APPOI NTMENT/ MEETI NG

DO I = 1,7
CALL GET_DATE (TODAY)

THIS_WEEK (I) = TODAY
THIS_WEEK (I) .DAY = TODAY . DAY + 1

END DO
MEETI NG.APP_DATE =TODAY

3-6 Assignment Statements

3.5 ASSIGN Statement

The ASSIGN statement assigns a statement label value to an integer
variable. The variable can then be used as either a transfer destination
in a subsequent assigned GO TO statement or a format specifier in a
formatted I/O statement. ASSIGN statements take the following form:

ASSIGN s TO v

s
Is the label of an executable statement or a FORMAT statement in the
same program unit as the ASSIGN statement.

v
Is an integer variable.

The ASSIGN statement assigns the statement number to the variable. It
is similar to an arithmetic assignment statement with one exception: the
variable becomes defined as a statement label reference and undefined as
an integer variable.

An ASSIGN statement must be executed before the statements in which
the assigned variable is used. Additionally, the ASSIGN statement and
the statements in which the assigned variable is used must occur in the
same program unit; for example:

ASSIGN 100 TO NUMBER

This statement associates the variable NUMBER with the statement
label 100. Once the ASSIGN statement associates a statement label to
a variable, arithmetic operations on the variable produce unpredictable
run-time behavior; for example:

NUMBER = NUMBER + 1

To return the variable to the status of an integer variable, you could use .
the following statement, which dissociates NUMBER from statement 100
and assigns it an integer value of 10:

NUMBER = 10

Once returning the variable NUMBER to its integer variable status, it can
no longer be used in an assigned GO TO statement.

Assignment Statements 3-7

Examples

The following additional examples demonstrate valid ASSIGN statements:

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR

In the last example, ERROR must be previously defined as an integer
variable.

3-8 Assignment Statements

Chapter 4

Specification Statements

Specification statements are nonexecutable statements used to allocate
and initialize variables, arrays, records, and structures; and to define other
characteristics of symbolic names used in a program.

VAX FORTRAN supports the following specification statements:

• BLOCK DATA-initiates a series of statements that establish common
blocks and assign initial values to entities in named common blocks
(Section 4.1).

• COMMON-defines one or more contiguous areas of storage
(Section 4.2).

• DATA-assigns initial values to variables, arrays, and array elements
before program execution (Section 4.3).

• Data type declaration statements-explicitly define the data type of
specified symbolic names (Section 4.4).

• DIMENSION-defines the number of dimensions in an array and the
number of elements in each dimension (Section 4.5).

• EQUIVALENCE-associates two or more entities with the same
storage location (Section 4.6).

• EXTERNAL-allows use of user-supplied procedures as arguments to
subprograms (Section 4.7).

• IMPLICIT-overrides the implied data type of symbolic names
(Section 4.8).

• INTRINSIC- allows use of FORTRAN intrinsic functions as arguments
to subprograms (Section 4.9).

• NAMELIST-specifies lists of entities whose values may be read or
written in namelist-directed I/O statements; associates the list with
specified group-names (Section 4.10).

Specification Statements 4-1

• PARAMETER-associates a symbolic name with a constant value
(Section 4.11).

• PROGRAM-assigns a symbolic name to a main program unit
(Section 4.12).

• RECORD-establishes a record with the structure defined by the block
of statements in a structure declaration (Section 4.13).

• SAVE-retains values of local variables after a return from a subpro
gram (Section 4.14).

• Structure declaration block-specifies the structure (form) of a record
(Section 4.15).

• VOLATILE- prevents optimizations from being performed on speci
fied variables, arrays, and common blocks (Section 4.16).

4.1 BLOCK DATA Statement

A BLOCK DATA statement initiates a series of specification statements
that establish common blocks and assign initial values to the entities in
named common blocks.

The BLOCK DATA statement takes the following form:

BLOCK DATA [narn]

nam
Is a symbolic name.

Syntax Rules and Behavior

A BLOCK DATA statement and its associated specification statements are
a special kind of program unit, called a block data subprogram. The block
data subprogram has the following syntax rules:

• Any of the following specification statements can appear in a block
data subprogram:

4-2 Specification Statements

COMMON
DATA
DIMENSION
EQUIVALENCE
IMPLICIT
PARAMETER
RECORD

SAVE
Structure declaration
Type declaration statements

• A block data subprogram must not contain any executable statements.

• As with other types of program units, the last statement in a block
data subprogram must be an END statement.

• Within a block data subprogram, if a DATA statement initializes
any entity in a named common block, the subprogram must have a
complete set of specification statements that establishes the common
block. However, all of the the entities in the block do not have to be
assigned initial values in a DATA statement.

• One block data subprogram can establish and define initial values for
more than one common block.

• The name of a block data subprogram can appear in the EXTERNAL
statement of a different program unit to force the VMS Linker to
search object libraries for the BLOCK DATA program unit at link time.

Example

The following example demonstrates a valid block data subprogram:

BLOCK DATA BLKDAT
INTEGER S,X
LOGICAL T,W
DOUBLE PRECISION U
DIMENSION R(3)
COMMON /AREA1/R,S ,T,U /AREA2/W ,X,Y
DATA R/1 .0,2*2 .0/ , Tl .FALSE./ , U/0 .214537D-7/, WI .TRUE./, Y/3 .5/
END

4.2 COMMON Statement

A COMMON statement defines one or more contiguous areas, or blocks,
of storage. COMMON statements also define the order in which variables,
arrays, and records are stored in each common block.

A symbolic name identifies each block. However, you can omit a symbolic
name for one block in a program unit. The block without a name is
known as the blank common block.

Specification Statements 4- 3

The COMMON statement takes the following form:

COMMON [/[cb]/]nlist[[,] /[cb]/nlist] ...

cb
Is a symbolic name, called a common block name; cb can be blank. If the
first cb is blank, you can omit the first pair of slashes.

nlist
Is a list of variable names, array names, array declarators, and record
names separated by commas.

Syntax Rules and Behavior

Any common block name, blank or otherwise, can appear more than
once in one or more COMMON statements in a program unit. The list
following each successive appearance of the same common block name
is treated as a continuation of the list for the block associated with that
name.

You can use array declarators in the COMMON statement to define arrays.

A common block can have the same name as a variable, array, record,
structure, or field. However, in a program with one or more program
units, a common block cannot have the same name as a function, subrou
tine, or entry name in the executable program.

When common blocks from different program units have the same name,
they share the same storage area when the units are combined into an
executable program.

Entities are assigned storage in common blocks on a one-for-one basis.
Thus, the entities assigned by a COMMON statement in one program unit
should agree with the data type of entities placed in a common block by
another program unit; for example, consider a program unit containing the
following statement:

COMMON CENTS

And consider another program unit containing the following statements:

I NTEGER*2 MONEY
COMMON MONEY

When these program units are combined into an executable program,
incorrect results may occur if the 2-byte integer variable MONEY is
made to correspond to the lower-addressed two bytes of the real variable
CENTS.

4-4 Specification Statements

Example

In the following example, the COMMON statement in the main program
puts HEAT and X in the blank common block, and KILO and Q in a
named common block, BLKl.

The COMMON statement in the subroutine makes ALFA and BET share
the same storage location as HEAT and X in the blank common block.
It makes LIMA and R share the same storage location as KILO and Q in
BLKl.

Main Program

COMMON HEAT,X /BLK1/KILO ,Q

CALL FIGURE

4.3 DATA Statement

Subprogram

SUBROUTINE FIGURE
COMMON /BLK1/LIMA,R I /ALFA .BET

RETURN
END

The DATA statement assigns initial values to variables and array elements
before program execution. It takes the following form:

DATA nlist/clist/[[.] nlist/clist/] ...

nlist
Is a list containing any combination of variable names, array names,
array element names, character substring names, and implied-DO lists.
Elements in the list must be separated by commas.

Subscript expressions and expressions in substring references must be
integer expressions containing integer constants and implied-DO variables.

An implied-DO list in a DATA statement takes the following form:

(dlist, i=n1 ,n2[,n3])

Specification Statements 4-5

dlist
Is a list of one or more array element names, character substring
names, or implied-DO lists, separated by commas.

I

Is the name of an integer variable.

n1 ,n2,n3
Are integer constant expressions. The expression can contain implied
DO variables of other implied-DO lists that have this implied-DO list
within their ranges.

clist
Is a list of constants separated by commas; dist constants take one of the
following forms:

c
n * c

c
Is a constant or the symbolic name of a constant.

n
Defines the number of times the same value is to be assigned to
successive entities in the associated nlist; n is a nonzero, unsigned
integer constant or the symbolic name of an integer constant.

Syntax Rules and Behavior

The DATA statement assigns the constant values in each dist to the
entities in the preceding nlist, from left to right, as they appear in the nlist.
The number of constants must equal the number of entities in the nlist.

When an unsubscripted array name appears in a DATA statement, values
are assigned to every element of that array in the order of subscript
progression. The associated constant list must contain enough values to
fill the array.

The following list describes the relationship between nlist items and dist
items:

• If both the constant value in dist and the entity in nlist have numeric
data types, conversion is based on the following rules:

4-6 Specification Statements

If necessary, the constant value is converted to the data type of
the variable being initialized.

When an octal or hexadecimal constant is assigned to a variable
or array element, the number of digits that can be assigned
depends on the data type of the data item. If the constant contains
fewer digits than the capacity of the variable or array element,
the constant is extended on the left with zeros. If the constant
contains more digits than can be stored, the constant is truncated
on the left.

• If the constant value in dist and the entity in nlist are both of character
data type, the conversion is based on the following rules:

If the constant contains fewer bytes than the length of the entity,
the rightmost character positions of the entity are initialized with
spaces.

If the constant contains more bytes than the length of the entity,
the character constant is truncated on the right.

• If the constant value in dist is of numeric data type and the entity
in nlist is of character data type, the constant and the entity must
conform to the following restrictions:

The character entity must have a length of one character.

- The constant must be an integer, octal, or hexadecimal constant
and must have a value in the range 0 through 255.

When the dist constant and the nlist entity conform to these restric
tions, the nlist entity is initialized with the character that has the
ASCII code specified by the dist constant. (This behavior lets you
initialize a character entity to any 8-bit ASCII code.)

• If the constant value in dist is a Hollerith or character constant and
the entity in nlist is a numeric variable or numeric array element, the
number of characters that can be assigned depends on the data type
of the data item (see Table 3-1). If the Hollerith or character constant
contains fewer characters than the capacity of the variable or array
element, the constant is extended on the right with spaces. If the
constant contains more characters than can be stored, the constant is
truncated on the right.

Specification Statements 4-7

Examples

In the following example, the first DATA statement assigns zero to all 10
elements of array A and 4 asterisks followed by 2 spaces to the character
variable STARS. The second DATA statement assigns ASCII control
character codes to the character variables BELL, TAB, LF, and FF. The last
DATA statement uses an implied-DO loop to assign values to the odd
numbered elements in the array B.

INTEGER A(10), B(10)
CHARACTER BELL, TAB, LF , FF , STARS*6
DATA A.STARS /10*0, ' ****' /
DATA BELL ,TAB,LF ,FF /7,9 , 10 , 12/
DATA (B(I), 1=1,10 ,2) /5*1/

4.4 Data Type Declaration Statements

Type declaration statements explicitly define the data type of specified
symbolic names. There are two forms of type declaration statements:
numeric type declarations and character type declarations.

Type declaration statements can initialize data in the same way as the
DATA statement: by having values, bounded by slashes, listed immedi
ately after the symbolic name of the entity.

Syntax Rules

The following rules apply to type declaration statements:

• Type declaration statements must precede all executable statements.

• The data type of a symbolic name can be declared only once.

• Once a symbolic name has been used in a context that implicitly
assumes a data type, its assumed type cannot be changed by a type
declaration statement.

4.4.1 Numeric Type Declaration Statements

Numeric type declaration statements take the following form:

type :*n)v [*n] [/cli s t /] [, v :*n] [/clist / J) .. .

4-8 Specification Statements

type
Is any one of the following data type specifiers:

BYTE
LOGICAL
INTEGER
REAL
DOUBLE PRECISION
COMPLEX
DOUBLE COMPLEX

BYTE and LOGICAL*l are equivalent.

*n
Is an integer that specifies (in bytes) the length of v. It overrides the
length that is implied by the data type.

The value of *n must specify an acceptable length for the type of v, as
listed in Table 2.1. BYTE, DOUBLE PRECISION, and DOUBLE COMPLEX
data types have one acceptable length; thus, for these data types, the *n
specifier is invalid .

If an array declarator is used, the *n specifier must be positioned immedi
ately after the array name.

v
Is the symbolic name of a constant, variable, array, array declarator,
statement function, or function subprogram.

c/ist
Is a list of constants, as in a DATA statement. If v is the symbolic name of
a constant, the dist cannot be present. (See Section 4.3.)

Syntax Rules and Behavior

A numeric data type declaration statement can define arrays by including
array declarators in the list (see Section 2.2.3.1).

A numeric type declaration statement can assign initial values to variables
or arrays if it specifies a list of constants (the dist). The specified constants
initialize only the variable or array that immediately precedes them. The
d ist cannot have more than one element unless it initializes an array.
When the d ist initializes an array, it must contain a value for every
element in the array.

Specification Statements 4-9

Examples

In the following example, the first statement declares COUNT and SUM
as integers, and MATRIX as a two-dimensional array of integers.

INTEGER COUNT, MATRIX(4,4), SUM
REAL MAN, MU
LOGICAL SWITCH

The next example shows instances where one declaration overrides
another. In the first statement, M12•4 and IVEC•4 override INTEGER•2.
In the second statement, WX3•4 and WX6•4 override REAL•8. In the third
statement, QARRAY is initialized with implicit conversion of the REAL•4
constants to a REAL•16 data type.

I NTEGER*2 I, J , K, M12*4 , Q, IVEC*4 (10)
REAL*B WX1, WXZ, WX3*4 , WX5 , WX6*4
REAL*16 PI/3 .14159QO/, E/2 .72QO/ , QARRAY (10)/5*0 .0 ,5*1.0/

4.4.2 Character Type Declaration Statements

Character type declaration statements take the following form:

CHARACTER[*len[,]] v[*len] [/clist /] [.v[*len] [/clist/)] . ..

Jen
Is an unsigned integer constant, an integer constant expression enclosed
in parentheses, or an asterisk enclosed in parentheses. The value of len
specifies the length of the character data elements.

v
Is the symbolic name of a constant, variable, array, array declarator,
statement function, or function subprogram.

clist
Is a list of constants, as in a DATA statement. (See Section 4.3.) If v is the
symbolic name of a constant, the d ist must not be present.

Syntax Rules and Behavior

If you use CHARACTER•len, len is the default length specification for
that list. If an item in that list does not have a length specification, the
item's length is len. However, if an item does have a length specification,
it overrides the default length specified in CHARACTER•len.

4-1 0 Specification Statements

When an asterisk length specification *(*) is used for a function name or
dummy argument, it assumes the length of the corresponding function
reference or actual argument (see Chapter 2) . Similarly, when an asterisk
length specification is used for the symbolic name of a constant, the name
assumes the length of the actual constant it represents. For example,
STRING assumes a 9-byte length in the following statements:

CHARACTER*(*) STRING
PARAMETER (STRING= 'VALUE IS : ')

The length specification must range from 1 to 65535. If there is no length
specification, a length of 1 is assumed.

Character type declaration statements can define arrays if they include
array declarators (see Section 2.2.3.1) in their list. The array declarator
goes first if both an array declarator and a length are specified.

A character type declaration statement can assign initial values to variables
or arrays if it specifies a list of constants (the dist). The specified constants
initialize only the variable or array that immediately precedes them. The
dist cannot have more than one element unless it initializes an array.
When the dist initializes an array, it must contain a value for every
element in the array.

Examples

The following examples demonstrate valid and invalid character type
declaration statements:

Valid

The first example specifies an array, NAMES, with one hundred 32-
character elements; an array, SOCSEC, with one hundred 9-character
elements; and a variable, NAMETY, that is 10 characters long and has an
initial value of 'ABCDEFGHIJ ' .

CHARACTER*32 NAMES(100) ,SOCSEC(100) *9, NAMETY*10/ 'ABCDEFGHIJ '/

In the next example, the CHARACTER statement specifies two 8-character
variables, LAST and FIRST (the PARAMETER statement is described in
Section 4.11).

PARAMETER (LENGTH=4)
CHARACTER*(4+LENGTH) LAST , FIRST

Specification Statements 4-11

In the next example, the CHARACTER statement specifies an array,
LETTER, with twenty-six 1-character elements; and a dummy argument,
BUBBLE, that has a passed length defined by the calling program.

SUBROUTINE S1(BUBBLE)
CHARACTER LETTER(26), BUBBLE*(*)

Invalid

The following CHARACTER statement is invalid because the length
specified for BIGCHR is too large and the length specifier for QUEST is
not an integer constant expression:

CHARACTER*16 BIGCHR*(60000*2). QUEST*(5*INT(A))

4.5 DIMENSION Statement

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension. It takes the following
form:

DIMENSION a(d) [,a(d)] .. .

a(d)
Is an array declarator. (See Section 2.2.3.1.)

Syntax Rules and Behavior

The DIMENSION statement allocates a number of storage elements to
each array named in the statement, one storage element to each array el
ement in each dimension. The size of each storage element is determined
by the data type of the array.

The total number of storage elements assigned to an array is equal to the
number produced by multiplying together the number of elements in each
dimension in the array declarator. For example, the following statement
defines ARRAY as having 16 real elements of 4 bytes each and defines
MATRIX as having 125 integer elements of 4 bytes each:

DIMENSION ARRAY(4 ,4) , MATRIX(5 ,5,5)

Although arrays can also be declared in type declaration and COMMON
statements, array names can appear in only one array declarator in each
program unit. For further information on arrays and the storage of array
elements, see Section 2.2.3.

4-12 Specification Statements

DIMENSION has the same form and effect as the VIRTUAL statement.
(The VIRTUAL statement is described in Appendix D.)

Examples

The following examples demonstrate valid DIMENSION statements:

DI MENSION BUD(12 ,24 , 10)
DIMENSION X(5,5 ,5) , Y(4,85), Z(100)
DIMENSION MARK(4 ,4 , 4 ,4)

SUBROUTINE APROC(A1,A2, N1,N2 ,N3)
DIMENSION A1(N1:N2) , A2(N3 :*)

4.6 EQUIVALENCE Statement

The EQUIVALENCE statement partially or totally associates two or more
entities in the same program unit with the same storage location. It takes
the following form:

EQUIVALENCE (nlist) [, (nlist)] . . .

nlist
Is a list of variables, arrays, array elements, or character substring refer
ences, separated by commas. The list must contain at least two of these
entities.

Each expression in a subscript or a substring reference must be an integer
constant expression. Records, record fields, and dummy arguments cannot
be specified in EQUIVALENCE statements.

Syntax Rules and Behavior

The EQUIVALENCE statement causes all of the entities in one parenthe
sized list to be allocated storage beginning at the same storage location.

Entities having different data types can be associated because multiple
components of one data type can share storage with a single component
of a higher-ranked data type. For example, if you make an integer variable
equivalent to a complex variable, the integer variable shares storage with
the real part of the complex variable.

Specification Statements 4-13

Examples

In the first example, the EQUIVALENCE statement makes the four ele
ments of the integer array IARR occupy the same storage as that of the
double-precision variable DYAR.

DOUBLE PRECISION DVAR
I NTEGER*2 IARR(4)
EQUIVALENCE (DVAR, IARR(1))

In the second example, the EQUIVALENCE statement makes the first
character of the character variables KEY and STAR share the same storage
location. The character variable STAR is equivalent to the substring KEY
(1:10).

CHARACTER KEY*16, STAR*10
EQUIVALENCE (KEY , STAR)

4.6. 1 Making Arrays Equivalent

When you make an element of one array equivalent to an element of
another array, the EQUIVALENCE statement also sets equivalences
between the other elements of the two arrays . Thus, if the first elements
of two equal-sized arrays are made equivalent, both arrays share the same
storage space. If the third element of a 7-element array is made equivalent
to the first element of another array, the last five elements of the first array
overlap the first five elements of the second array.

Two or more elements of the same array should not be associated with
each other in one or more EQUIVALENCE statements. For example, you
cannot use an EQUIVALENCE statement to associate the first element
of one array with the first element of another array, and then attempt to
associate the fourth element of the first array with the seventh element of
the other array.

Consider the following valid example:

DIMENSION TABLE (2 ,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE(2,2) , TRIPLE (l ,2 ,2))

As a result, the entire array TABLE would share part of the storage space
allocated to TRIPLE. Table 4-1 shows how these statements align the
arrays.

4-14 Specification Statements

Table 4-1: Equivalence of Array Storage
Array TRIPLE Array TABLE

Array Element Array Element
Element Number Element Number

TRIPLE(l ,1,1) 1

TRIPLE(2, l , l) 2

TRIPLE(1,2, l) 3

TRIPLE(2,2, 1) 4 TABLE(l ,1) 1

TRIPLE(l, 1,2) 5 TABLE(2,1) 2

TRIPLE(2, l ,2) 6 TABLE(l ,2) 3

TRIPLE(l,2,2) 7 TABLE(2,2) 4

TRIPLE(2,2,2) 8

Each of the following statements also aligns the two arrays as shown in
Table 4-1:

EQUIVALENCE (TABLE , TRIPLE(2 ,2,1))
EQUIVALENCE (TRIPLE(1 , 1,2). TABLE(2 , 1))

Similarly, you can make arrays equivalent with nonunity lower bounds.
For example, an array defined as A(2:3,4) is a sequence of eight values. A
reference to A(2,2) refers to the third element in the sequence. To make
array A(2:3,4) share storage with array 8(2:4,4), you can use the following
statement:

EQUIVALENCE (A(3 ,4) , 8(2 ,4))

The entire array A shares part of the storage space allocated to array B.
Table 4-2 shows how these statements align the arrays.

Each of the following statements also aligns the arrays as shown in
Table 4-2:

Specification Statements 4-15

EQUIVALENCE (A, 8(4,1))
EQUIVALENCE (8(3,2), A(2,2))

Table 4-2: Equivalence of Arrays with Nonunity Lower
Bounds

Array B Array A

Array Element Array Element
Element Number Element Number

8(2,1) 1

8(3,1) 2

8(4,1) 3 A(2,1) 1

8(2,2) 4 A(3, 1) 2

8(3,2) 5 A(2,2) 3

8(4,2) 6 A(3,2) 4

8(2,3) 7 A(2,3) 5

8(3,3) 8 A(3,3) 6

8(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

8(3,4) 11

8(4,4) 12

Only in the EQUIVALENCE statement can you identify an array element
with a single subscript (the linear element number), even though the array
was defined as a multidimensional array. For example, the following
statements align the two arrays as shown in Table 4-1:

DIMENSION TABLE (2 ,2) , TRIPLE (2,2 ,2)
EQUI VALENCE (TABLE (4) , TRIPLE (7))

4-16 Specification Statements

4.6.2 Making Substrings Equivalent

When you make one character substring equivalent to another character
substring, the EQUIVALENCE statement also sets equivalences between
the other corresponding characters in the character entities; for example:

CHARACTER NAME*16, ID*9
EQUIVALENCE (NAME(10 :13) , ID(2 :5))

As a result of these statements, the character variables NAME and ID
share space as illustrated in Figure 4-1.

The following statement also aligns the arrays as shown in Figure 4-1:

EQUIVALENCE (NAME(9 :9), ID(1 : 1))

If the character substring references are array elements, the EQUIVALENCE
statement sets equivalences between the other corresponding characters in
the complete arrays.

Specification Statements 4-17

Figure 4-1: Equivalence of Substrings

NAME
Character
Position

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ID
Character
Position

1

2
~

3

4

5

6

7

8

9

ZK-618-82

Character elements of arrays can overlap at any character position; for
example:

CHARACTER FIELDS(100) *4, STAR(5) *5
EQUIVALENCE (FIELDS(1)(2 :4), STAR(2)(3 :5))

As a result of these statements, the character arrays FIELDS and STAR
share storage space as shown in Figure 4-2.

4-18 Specification Statements

Figure 4-2: Equivalence of Character Arrays

FIELDS

Subscript

2

3

4

5

6

7

100

Character
Position

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

~

2

3

4

Character
Posi tion

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

STAR

Subscript

2

3

4

5

ZK-619-82

Specification Statements 4-19

The EQUIVALENCE statement cannot assign the same storage location
to two or more substrings that start at different character positions in the
same character variable or character array. The EQUIVALENCE statement
also cannot assign memory locations in a way that is inconsistent with the
normal linear storage of character variables and arrays.

4.6.3 EQUIVALENCE and COMMON Interaction

A common block can extend beyond its original boundaries if variables or
arrays are associated with entities stored in the common block. However,
a common block can only extend beyond its last element; the extended
portion cannot precede the first element in the block.

Examples

The following examples demonstrate valid and invalid extensions of the
common block:

Valid

DIMENSION A(ll), B(G)

COMMON A
E Q U I l.J A L E N C E (A (2) , B (1))

Invalid

DIMENSION A(ll) , B (G)

COMMON A
EQLJil.JALENCE (A (2) , B(3))

"'

A (I) A(:Z) A(:n A(4)

H(l) H (:Z) H (:l) 8 (4) H (f>) H (6)

H(!)

Existing
Common

A(I) AU l

Hen H(:n

'-..--'"'

.... n • ..._

A(:l)

8 (4)

'V

Extended
Portion

,,..,.,

ZK- 1944 -84

A(4)

H (f>) 8 (())

./~

Extended Existing Common Extended
Portion Portion

ZK- 1945-84

The second example is invalid because the extended portion, B(l), pre
cedes the first element of the common block A.

4-20 Specification Statements

4. 7 EXTERNAL Statement

EXTERNAL statements allow you to use the names of external procedures
as arguments to other subprograms.

The subprograms mentioned in the EXTERNAL statement cannot be
FORTRAN intrinsic functions; they can only be user-supplied functions,
subroutines, or block data subprograms. The INTRINSIC statement
discussed in Section 4.9 allows intrinsic function names to be used as
arguments.

The EXTERNAL statement takes the following form:

EXTERNAL v [, v) .

v
Is the symbolic name of a user-supplied subprogram or the name of a
dummy argument associated with the name of a subprogram.

Syntax Rules and Behavior

The EXTERNAL statement declares each symbolic name included in it to
be the name of an external procedure, even if a name is the same as that
of an intrinsic function. For example, if SIN is specified in an EXTERNAL
statement (EXTERNAL SIN), all subsequent references to SIN are to a
user-supplied function named SIN, not to the intrinsic function of the
same name (see Section 6.3.1.2).

A name specified in an EXTERNAL statement can be used as an ac
tual argument to a subprogram, and the subprogram can then use the
corresponding dummy argument in a function reference or a CALL
statement.

You can include the name of a block data subprogram in the EXTERNAL
statement to force the VMS Linker to search the object module libraries for
the block data subprogram. However, the name of the subprogram must
not be used in a type declaration statement.

Used as an argument, a complete function reference represents a value, not
a subprogram; for example, FUNC(B) represents a value in the following
statement:

CALL SUBR (A, FUNC(B), C)

Specification Statements 4-21

A complete function reference cannot be defined in an EXTERNAL state
ment because there is no data type information.

NOTE

The interpretation of the EXTERNAL statement described here
is different from that of earlier versions of FORTRAN produced
by DIGITAL. See Appendix A for the earlier interpretation.

See Section 4.9 for an example of EXTERNAL statements.

4.8 IMPLICIT Statement

The IMPLICIT statement overrides implied (default) data typing of sym
bolic names. (The default data type is INTEGER for symbolic names
beginning with the letters I through N, and REAL•4 for symbolic names
beginning with any other letter.)

The IMPLICIT statement takes one of the following forms:

IMPLICIT typ (a [,a] ...) [. typ (a[. a] ...)] . ..
IMPLICIT NONE

typ
Is one of the data type specifiers (listed in Section 2.1).

When typ is equal to CHARACTER•len, len specifies the length for
character data type. Len is an unsigned integer constant or an integer
constant expression enclosed in parentheses; len must be in the range of 1
to 65535.

a
Is an alphabetic specification in either of the general forms: c or cl-c2,
where c is an alphabetic character. The latter form specifies a range of
letters, from cl through c2, where cl precedes c2 in alphabetical order.

Syntax Rules and Behavior

The IMPLICIT statement assigns the specified data type to all symbolic
names that have no explicit data type and begins with the specified
letter or range of letters. It has no effect on the default types of intrinsic
functions.

4-22 Specification Statements

The IMPLICIT NONE statement disables all implicit defaults. When
IMPLICIT NONE appears, all symbolic names in a program uni t must
be explicitly declared. No other IMPLICIT statements can appear in a
program unit containing an IMPLICIT NONE statement.

NOTE

By using the /WARNINGS= DECLARATIONS qualifier on the
FORTRAN command line, you will be issued warnings when
variables are used but not typed-without having to use the
IMPLICIT NONE statement, a language extension.

Examples

The following IMPLICIT statements represent the default in the absence
of any explicit data type specifications:

IMPLICIT INTEGER (I,J ,K,L,M,N)
IMPLICIT REAL (A - H, 0-Z)

As above, the following IMPLICIT statements assign the specified data
type in the absense of any explicit data type specification:

IMPLICIT DOUBLE PRECISION (D)
IMPLICIT COMPLEX (S , Y) , LOGICAL*l (L ,A-C)
IMPLICIT CHARACTER*32 (T-V)
IMPLICIT CHARACTER*2 (W)

4.9 INTRINSIC Statement

The INTRINSIC statement lets you use names of intrinsic functions as
arguments to subprograms. It takes the following form:

INTRI NSIC v[,v] .

v
Is the symbolic name of an intrinsic function .

Syntax Rules and Behavior

The INTRINSIC statement declares each symbolic name included in it
to be the name of an intrinsic procedure. This name can then be used
as an actual argument to a subprogram. The subprogram can then use
the corresponding dummy argument in a function reference or a CALL
statement.

Specification Statements 4-23

See Appendix D for the names and descriptions of the individual VAX
FORTRAN intrinsic functions. For further information on intrinsic func
tions, see Chapter 6.

Example

In the following example, when TRIG is called with a second argument of
SIN or COS, the function reference F(X) references the FORTRAN library
functions SIN and COS; but when TRIG is called with a second argument
of CTN, F(X) references the user function CTN.

Main Program

EXTERNAL CTN
INTRINSIC SIN, COS

CALL TRIG(ANGLE ,SIN,SINE)

CALL TRIG(ANGLE ,COS,COSINE)

CALL TRIG(ANGLE,CTN,COTANGENT)

4. 10 NAME LIST Statement

Subprogram

SUBROUTINE TRIG(X,F,Y)
Y = F(X)
RETURN
END

FUNCTION CTN (X)
CTN = COS(X)/SIN(X)
RETURN
END

The NAMELIST statement defines a list of variables or array names and
associates that list of names with a unique group-name. The group-name
is used in the namelist-directed I/O statement to identify the variables or
arrays that are to be read or written.

NAMELIST statements take the following form :

NAMELIST /group-name / namelist[[,] /group-name/ namelist] .

4-24 Specification Statements

group-name
Is a symbolic name.

namelist
Is a list of variable or array names, separated by commas, that is to te
associated with the preceding group-name.

Syntax Rules and Behavior

The namelist associates a group of entities (variables or arrays) with a
single group-name, which is used by namelist-directed I/O statements
instead of an 1/0 list. The unique group-name identifies a list whose
entities can be modified or transferred.

You cannot include array elements, character substrings, records, and
record fields in a namelist, but you can use namelist-directed I/O to
assign values to elements of arrays or substrings of character variables that
appear in namelists.

The namelist entities can have any data type and can be explicitly or
implicitly typed.

Only the entities specified in the namelist can be read or written in
namelist-directed 1/0. It is not necessary for the inpu t records in a
namelist-directed input statement to define every entity in the associated
name list.

The order of entities in the namelist controls the order in which the values
are written in the namelist-directed output. Input of namelist values can
be in any order.

A variable or an array name can appear in several namelists . Dummy
arguments cannot appear in a namelist.

Example

In the following example, the NAMELIST statement defines two group
names: INPUT, with the entities NAME, GRADE, and DATE; and
OUTPUT, with the entities TOTAL and NAME.

CHARACTER*30 NAME(25)
NAMELIST / I NPUT/ NAME. GRADE, DATE / OUTPUT/ TOTAL. NAME

Refer to Sections 7.2.1.3 and 7.3 .1.3 for more information on namelist
directed I/ 0.

Specification Statements 4-25

4.11 PARAMETER Statement

The PARAMETER statement associates a symbolic name with a constant
value. It takes the following form:

PARAMETER (p=c[,p=c] ...)

p
Is a symbolic name.

c
Is a constant, a compile-time constant expression, or the symbolic name of
a constant.

NOTE

The form and interpretation of the PARAMETER statement
described here are different from those of the PARAMETER
statement provided in earlier DIGITAL versions of FORTRAN.
However, VAX FORTRAN provides support for both the
FORTRAN-77 and the earlier form of the PARAMETER state
ment. See Appendix A for information on the earlier form and
interpretation.

Syntax Rules and Behavior

The data type of a symbolic name associated with a constant is determined
as follows:

• By an explicit type declaration statement preceding the defining
PARAMETER statement

• By the same rules for implicit declarations that determine the data
type of any other symbolic name

For example, the following PARAMETER statement is interpreted as
MU=l (MU has an integer data type by implication):

PARAMETER (MU=l.23)

If the PARAMETER statement is preceded by an appropriate type dec
laration or IMPLICIT statement, it could be interpreted as MU=l .23;
for example:

REAL*8 MU
PARAMETER (MU=l .23)

4-26 Specification Statements

Once a symbolic name is associated with a constant, it can appear
anywhere in a program that anv other constant can appear-except in
FORMAT statements (where constants can only be used in variable for
mat expressions) and as the character count for Holleri th constan ts. . For
compilation purposes, writing the name is the same as writing the value.

The following additional rules apply to symbolic names:

• If the symbolic name is used as the length specifier in a CHARACTER
declaration, it must be enclosed in parentheses.

• If it is used as a numeric item in a FORMAT edit description, it must
be enclosed in angle brackets.

• The symbolic name of a constant cannot appear as part of another
constant, although it can appear as either the real or imaginary part of
a complex constant.

• A symbolic name can be defined only once within the same program
unit.

• A symbolic name defined to be a constant can be used only within the
program unit containing the defining PARAMETER statement.

Compile-Time Constant Expressions

A compile-time constant expression can be a compile-time logical expres
sion, a compile-time character expression, or a compile-time arithmetic
expression.

A compile-time logical expression is a logical expression with the following
characteristics:

• Each operand is either a constant; the symbolic name of a constant;
one of the intrinsic functions IAND, IOR, NOT, IEO.R ISHFT, LGE,
LGT, LLE, LLT with constant operands~ or another compile-time
constant expression.

• Each operand has a data type of logical or integer.

• Each operator is a Boolean or relational operator.

A compile-time character expression is a character expression with the
following characteristics:

• Each operand is either a constant, the symbolic name of a constant,
the intrinsic function CHAR with a constant operand,, or another
compile-time constant expression.

Specification Statements 4-27

• Each operand has a data type of character.

• Each operator is the concatenation operator (/ /).

A compile-time arithmetic expression is an arithmetic expression with the
following characteristics:

• Each operand is either a constant; the symbolic name of a constant;
one of the intrinsic functions MIN, MAX, ABS, MOD, ICHAR, NINT,
DIM, DPROD, CMPLX, CONJG, IMAG with constant operands; or
another compile-time constant expression.

• Each operand has a data type of integer, real, or complex.

• Each operator is a plus, minus, multiplication, division, or exponenti
ation sign. (The exponentiation operator is evaluated at compile time
only if the exponent has an integer data type.)

Example

The following example demonstrates valid FORTRAN-77 PARAMETER
statements:

REAL*4 PI, PIOV2
REAL*8 DPI, DPIOV2
LOGICAL FLAG
CHARACTER*(*) LONGNAME
PARAMETER (PI=3 .1415927, DPI=3 . 141592653589793238DO)
PARAMETER (PIOV2=PI/2, DPIOV2=DPI/2)
PARAMETER (FLAG= .TRUE ., LONGNAME='A STRING OF 25 CHARACTERS')

4.12 PROGRAM Statement

The PROGRAM statement associates a symbolic name with a main
program unit. It takes the following form:

PROGRAM nam

nam
Is the symbolic name of a source file.

4-28 Specification Statements

Syntax Rules and Behavior

The PROGRAM statement is optional. The default name for a main pro
gram unit is filename$MAIN, where filename is the name of your source
file . If filename is larger than 26 characters and a name is not specified
in a PROGRAM or BLOCK DATA statement, the name is truncated to 26
characters and $MAIN is appended to form the program name.

If you use the PROGRAM statement, it can be preceded only by an
OPTIONS statement . Otherwise, it must come first in the main program.

Its symbolic name cannot be the name of any entity within the main
program or the name of any subprogram or entry point in the same
executable program.

4.13 RECORD Statement

The RECORD statement creates a record having the form specified in
a previously declared structure (described in Section 4.15). The effect
of using a RECORD statement is comparable to that of an ordinary
FORTRAN type declaration, except composite or aggregate data items are
declared instead of scalar data items.

RECORD statements take the following form:

RECORD /structure-narne/record- namelist
[,/structure-name/record-namelist]

[,/structure-name/record-narnelist]

structure-name
Is the name of a previously declared structure. See Section 4.15 .1 for a
description of structure declarations .

record-namelist
Is a list of one or more variable names, array names, or array declarators,
separa ted by commas. All of the records named in this list have the same
structure and are allocated separately in memory.

Specification Statements 4-29

Syntax Rules and Behavior

You can use record names in the following statements:

COMMON
DIMENSION

Record names cannot be used in DATA, EQUIVALENCE, NAMELIST, or
SAVE statements.

Records initially have undefined values unless you have defined their
values in structure declarations.

Examples

The following RECORD statement creates a pair of records (TODAY and
YESTERDAY) in separate memory locations, but with the same structure
(DATE):

REC ORD /DATE / TODAY.YESTERDAY

The following RECORD statement creates a record (CURRENT_CHECK)
and an array of records (CHECKBOOK) with the structure CHECK:

RECORD / CHECK/ CURRENT_ CHECK, CHECKBOOK (1000)

4. 14 SAVE Statement

The SAVE statement causes the definition of data entities to be retained
after execution of a RETURN or END statement in a subprogram. It takes
the following form:

SAVE [a[, a] . ..]

a
Is the symbolic name of a common block (preceded and followed by a
slash), a variable, or an array.

4-30 Specification Statements

Syntax Rules and Behavior

A SAVE statement cannot include a blank common block, names of
entities in a common block, procedure names, and names of dummy
arguments.

Within a program unit, an entity listed in a SAVE statement does not
become undefined upon execution of a RETURN or END statement within
that program unit.

Even though a common block may be included in a SA VE statement,
individual entities within the common block could become undefined (or
redefined) in another program unit.

When a SAVE statement does not explicitly contain a list, it is treated as
though it contained a list of all allowable items in the program unit that
contains it.

NOTE

It is not necessary to use SAVE statements in VAX FORTRAN
programs. The definitions of data entities are retained au
tomatically by VAX FORTRAN, making the use of SAVE
statements redundant. However, its use is required by the
ANSI FORTRAN Standard for programs that depend on such
retention for their correct operation. If you want your programs
to be transportable, you should include SA VE statements where
your programs would otherwise require them.

The omission of SAVE statements in necessary instances is not
flagged, even when you specify the /STANDARD qualifier on
the FORTRAN command line, because the compiler has no way
to determine whether such dependencies exist.

4. 15 Structure Declaration Block

A structure declaration block is a multistatement declaration that defines
the structure (or for111) of a record. It contains the following elements:

• STRUCTURE statement - marks the beginning of a structure declara
tion and defining the name of the structure.

• Declaration body - contains one or more field declarations whose
order determines the order of the fields within the structure.
Components of the declaration body are individually discussed in
this section.

Specification Statements 4-31

• END STRUCTURE statement - marks the end of a structure declara
tion.

The Declaration Body

The declaration body can have any of the following components:

• Typed data declaration statements: These are ordinary FORTRAN type
declarations, as described in Section 4.4. Fields can have any data
type and can be dimensioned in the normal way.

• Substructure declarations: A field within a structure can be a substruc
ture composed of atomic fields, other substructures, or both. There are
two ways to declare substructures:

By using RECORD statements that specify names of other, pre
viously declared, structure declarations to be incorporated as
substructures; see Section 4.13.

By nesting structure declarations (having one or more levels of
them contained within a structure declaration) .

• Union declarations: A union declaration declares that groups of fields
logically share a common location within a structure. Each group (one
or more fields) is individually declared by a map declaration within
the union declaration.

You use union declarations when you want to use the same area of
memory to alternately contain two or more groups of fields. Whenever
one of the fields declared by a union declaration is referenced in your
program, that field and any other fields in its map declaration become
defined. Then, when a field in one of the other map declarations in
the union declaration is referenced, the fields in that map declaration
become defined, superseding the fields that were previously defined.

• PARAMETER statements: PARAMETER statements can appear in
a structure declaration block and have the same effect as if they
appeared outside the block. (See Section 4.11 for information about
PARAMETER statements.)

The names specified in these statements are not the names of variables
and the statements in a structure declaration do not create variables. The
names are field names, and the information provided in the statements
describes the layout, or form, of the structure. The ordering of both the
statements and the field names within the statements is important because
this ordering determines the order of the fields in records.

The following sections describe structure declarations, substructure decla
rations, and union declarations.

4-32 Specification Statements

4. 15. 1 Structure Declaration

Structure declarations define one or more fields within a VAX FORTRAN
record. This declaration defines the field names, types of data within
fields, and order and alignment of fields within a record.

Unlike type declaration statements, structure declarations do not cre-
ate variables. Structured variables (records) are created when you use
a RECORD statement containing the name of a previously declared
structure. The RECORD statement can be considered as a kind of type
statement. The difference is that aggregate items, rather than single items,
are being defined.

A structure declaration takes the following form:

STRUCTURE [/structure-name/] [field-namelist]
field-declaration
[field-declaration]

[field-declaration]
END STRUCTURE

structure-name
Is the name used to identify a structure. A structure name is enclosed
by slashes. If the slashes are present, a name must be specified between
them.

Subsequent RECORD statements use the structure name to refer to the
structure. A structure name must be unique among structure names.
However, structures can share names with variables (scalar or array),
record fields, or common blocks. Thus, it is possible to have a vari
able named X, a structure named X, one or more fields named X, and a
common block named X.

Structure declarations can be nested (contain one or more other structure
declarations). A structure name is required for the structured declaration
at the outermost level of nesting, and optional for the other declarations
nested in it. However, if you wish to reference a nested structure in a
RECORD statement in your program, it must have a name.

Structure, field, and record names are all local to the defining program
unit. When records are passed as arguments, the fields must match in
type, order, and dimension.

Specification Statements 4-33

field-namelist
Is a list of fields having the structure of the associated structure decla
ration. A field namelist is allowed only in nested structure declarations.
Nested structure declarations are described in Section 4.15 .2.

field-declaration
Consists of any combination of the following types of declarations:

• Substructure declaration : A field within a structure can be a substruc
ture composed of atomic fields, other substructures, or a combination
of atomic fields and substructures. See Section 4.15.2 for a description
of substructure declarations.

• Union declaration: A union declaration is composed of one or more
mapped field declarations. The mapped fields logically share a
common location within a structure. See Section 4.15.3 for a more
complete description of union declarations.

• Field declaration: The syntax of a field declaration within a record
structure is identical to that of a normal FORTRAN type statement:
it includes a type (for example, INTEGER), one or more names of
variables or arrays; and optionally, one or more data initialization
values.

Syntax Rules and Behavior

The following rules and behavior apply to typed data declarations in
record structures:

• %FILL can be specified in place of a field name to leave space in a
record for purposes such as alignment. This creates an unnamed field.

•

•

•

Unnamed fields cannot be initialized. For example, the following
statement is invalid and generates an error message:

INTEGER*4 %FILL /1980/

Initial values can be supplied in field declaration statements. These
initial values are supplied for all records that are declared using this
structure. Fields not initialized will have undefined values when
variables are declared by means of RECORD statements. Unnamed
fields cannot be initialized; they are always undefined.

All field names must be explicitly typed. There are no default names .
The IMPLICIT statement has no effect on statements within a structure
declaration.

All VAX FORTRAN data types are allowed in field declarations .

4-34 Specification Statements

• Any required array dimensions must be specified in the field decla
ration statements. DIMENSION statements cannot be used to define
field names.

• Adjustable or assumed sized arrays and passed-length CHARACTER
declarations are not allowed in field declarations.

• Field names within the same declaration level must be unique, but an
inner structure declaration (substructure declaration) can include field
names used in an outer structure declaration without conflict.

In a structure declaration, each field offset is the sum of the lengths of the
previous fields. The length of the structure, therefore, is the sum of the
lengths of its fields. The structure is packed; you must explicitly provide
any alignment that is needed by including, for example, unnamed fields of
the appropriate length.

Examples

In the first example, the declaration defines a structure named DATE.
This structure contains three scalar fields: DAY (LOGICAL*l), MONTH
(LOGICAL*l), and YEAR (INTEGER*2).

STRUCTURE /DATE/
LOGICAL*! DAY, MO NTH
I NTEGER*2 YEAR

END STRUCTURE

The following diagram shows the memory mapping of any record or
record array element with the structure DATE.

(byte offset)

0

1

2

4

1
j

field DAY

field MONTH

field YEAR

ZK - 1849- 84

Specification Statements 4-35

In the second example, the declaration defines a structure named
APPOINTMENT. APPOINTMENT contains the structure DATE (field
APP_DATE) as a substructure. It also contains a substructure named
TIME (field APP_ TIME, an array), a CHARACTER*20 array named APP_
MEMO, and a LOGICAL*l field named APP_ FLAG.

STRUCTURE /APPOI NTMENT/
RECORD /DATE/ APP _DATE
STRUCTURE /TIME/ APP_TIME (2)

LOGICAL*1 HOUR, MI NUTE
END STRUCTURE
CHARACTER*20
LOGICAL*1

END STRUCTURE

APP_MEMD (4)
APP_FLAG

The length of any instance of structure APPOINTMENT is 89 bytes.

The following diagram shows the memory mapping of any record or
record array element with the structure APPOINTMENT:

4-36 Specification Statements

(byte offset)

0 field DAY of f ield APP _ DATE

1 fi eld MONTH of field APP_ DATE

2
field YEAR of field APP _ DATE

3

4 field HOUR of field APP_ TIME(1)

5 field MINUTE of field APP_ TIME(1)

6 field HOUR of field APP_ TIME(2)

7 field MINUTE of field APP_ TIME(2)

8 field APP_ MEM0(1)

• • •
28 field APP _ MEM0(2)

• • •
48 field APP _ MEM0(3)

• • •
68 field APP_ MEM0(4)

• • •
88 field APP _ FLAG

89

ZK - 1848- 84

Specification Statements 4-37

4.15.2 Substructure Declarations

A field within a structure can itself be a structured item composed of other
fields, other structures, or both . You can declare a substructure in two
ways:

•

•

By nesting structure declarations within other structure or union
declarations (with the limitation that you cannot refer to a structure
inside itself at any level of nesting) .

One or more field names must be defined in the STRUCTURE state
ment for the substructure because all fields in a structure must be
named. In this case, the substructure is being used as a field within a
structure or union.

Field names within the same declaration nesting level must be unique,
but an inner structure declaration can include field names used in an
outer structure declaration without conflict.

%FILL can be specified in place of a field name to leave space in a
record for purposes such as alignment.

By using a RECORD statement that specifies another previously
defined record structure, thereby including it in the structure being
declared.

See the second example in the preceding section for a sample structure
declaration containing both a nested structure declaration (TIME) and an
included structure (DATE).

4.15.3 Union Declarations

A union declaration is a multistatement declaration defining a data area
that can be shared intermittently during program execution by one or
more fields or groups of fields.

A union declaration is initiated by a UNION statement and terminated by
an END UNION statement. Enclosed within these statements are two or
more map declarations, initiated and terminated by MAP and END MAP
statements. Each unique field or group of fields is defined by a separate
map declaration.

4-38 Specification Statements

A union declaration takes the following form:

UNION
map-declaration
map-declaration

[map-declaration]

[map-declaration]
END UNION

map-declaration
Takes the following form:

MAP
field-declaration

[field-declaration]

[field-declaration]
END MAP

field-declaration
Is a structure declaration or RECORD statement contained within
a union declaration, a union declaration contained within a union
declaration, or the declaration of a typed data field within a union.
See Section 4.15.1 for a more detailed description of what can be
specified in field declarations.

Syntax Rules and Behavior

As with normal FORTRAN type declarations, data can be initialized in
field declaration statements in union declarations. However, if fields
within multiple map declarations in a single union are initialized, the data
declarations are initialized in the order in which the statements appear.
As a result, only the final initialization takes effect and all of the preceding
initializations are overwritten.

The size of the shared area established for a union declaration is the size
of the largest map defined for that union. The size of a map is the sum of
the sizes of the fields declared within it.

As the variables or arrays declared in map fields in a union declaration are
assigned values during program execution, the values are established in a
record in the field shared with other map fields in the union. The fields
of only one of the map declarations are defined within a union at any
given point in the execution of a program. However, if you overlay one

Specification Statements 4-39

variable with another smaller variable, that portion of the initial variable
is retained that is not overlaid . Depending on the application, the retained
portion of an overlaid variable may or may not contain meaningful data
and can be utilized at a later poin t in the program.

Manipulating data using union declarations is similar to what happens
using EQUIVALENCE statements. The difference is that data entities spec
ified within EQUIVALENCE statements are concurrently associated with a
common storage location and the data residing there; union declarations
enable you to use one discrete storage location to alternately contain a
variety of fields (arrays or variables) .

With union declarations, only one map declaration within a union decla
ration can be associated at any point in time with the storage location that
they share. Whenever a field within another map declaration in the same
union declaration is referenced in your program, the fields in the prior
map declaration become undefined and are succeeded by the fields in the
map declaration containing the newly referenced field .

Example

In the following example, the structure WORDS_LONG is defined. This
structure contains a union declaration defining two map fields. The fi rst
map field consists of three INTEGER•2 variables (WORD_O, WORD_l ,
and WORD_2), and the second, an INTEGER•4 variable, LONG:

STRUCTURE / WORDS _LO NG/
UNION

MAP
I NTEGER*2

END MAP
MAP

I NTEGER*4
END MAP

END UNION
END STRUCTURE

WORD_O, WORD_l, WORD_2

LO NG

The length of any record with the structure WORDS_ LONG is six bytes.
The following diagram shows the memory mapping of any record with
the structure WORDS_LONG:

4-40 Specification Statements

0 2 3 4 5 6 {byte offset)

t ! I
;;I'" ! I 7, ! j

Field WORO_ O Field WORD_ 1 Field WOR0_ 2

'-. ¥ /'-- ..,, ./

Field LONG Unused Space

ZK 1846 84

4.16 VOLATILE Statement

The VOLATILE statement specifies that a value is entirely unpredictable,
based on information local to the current program unit. It prevents
specified variables, arrays, and common blocks from being optimized
during compilation.

VOLATILE takes the following form:

VO LATILE nlist

nlist
Is a list of one or more variable names, named common blocks (preceded
and followed by a slash), or array names, separated by commas.

If array names or common block names are used, the entire array or
common block becomes volatile, as the following example demonstrates.

Example

In the following statements, the named common block, BLKl, and the
variables D and E are volatile. In addition, variables Pl and P4 become
volatile because the direct equivalence (in the case of Pl) and the indi
rect equivalence (in the case of P4) causes them to assume the volatile
attribute.

Specification Statements 4-41

PROGRAM TEST
LOGICAL *1 IPI(4)
I NTEGER*4 A, B,C,D,E, ILOOK
I NTEGER*4 P1,P2 ,P3 ,P4
COMMON /BLK1/ A,B ,C

VOLATILE / BLK 1/,D ,E
EQUI VALENCE(ILOOK,I PI)
EQU I VALENCE (A,P1)
EQUI VALENCE (P1 ,P4)

See the VAX FORTRAN User Manual for information about the optimiza
tions performed by the VAX FORTRAN compiler and the circumstances in
which you should use the VOLATILE declaration.

4-42 Specification Statements

Chapter 5

Control Statements

Statements normally execute in the order in which they are written.
However, you can alter the normal order of execution by transferring
control to another section of a program unit or a subprogram. Transfer of
control can be conditional or unconditional: Conditional transfer occurs
only when specified conditions are met at a certain point in a program
unit. Unconditional transfer occurs each time a certain point is reached in
a program unit.

FORTRAN control statements transfer control to a point within the same
program unit or to another program unit. These statements govern
iterative processing, suspension of program execution, and program
termination.

VAX FORTRAN supports the following control statements:

• CALL-invokes a subroutine subprogram (Section 5.1).

• CONTINUE-transfers control to the next executable statement
(Section 5.2).

• DO and DO WHILE-execute a block of statements repetitively
(Section 5.3).

• END DO- terminates DO and DO WHILE loops (Section 5.4).

• END-marks the end of a program unit (Section 5.5).

• GO TO-transfers control within a program unit (Section 5.6).

• IF-conditionally transfers control or executes a statement or block of
statements (Section 5.7).

• PAUSE-temporarily suspends program execution (Section 5.8).

Control Statements 5-1

• RETURN-returns control from a subprogram to the calling program
unit (Section 5.9).

• STOP-terminates program execution (Section 5.10).

5. 1 CALL Statement

The CALL statement executes a subroutine subprogram or other external
procedure. It can specify an argument list for the subroutine. The CALL
statement takes the following form:

CALL sub [([a] [. [a]] . ..)]

sub
Is the name of a subroutine subprogram or other external procedure,
or a dummy argument associated with a subroutine subprogram or other
external procedure. See Chapter 6 for details on the definition and use of
subroutines.

a
Is an actual argument. (Section 6.1 describes actual arguments.)

Syntax Rules and Behavior

If you specify an argument list, the CALL statement associates the values
in the list with the dummy arguments in the subroutine. It then transfers
control to the first executable statement following the SUBROUTINE or
ENTRY statement referenced by the CALL statement.

The arguments in the CALL statement must agree in number, order,
and data type with the dummy arguments in the subroutine. They can
be variables, arrays, array elements. records, record elements, record
arrays, record array elements, substring references, constants, expressions,
Hollerith constants, alternate return specifiers, or subprogram names. An
unsubscripted array name or record array name in the argument list refers
to the entire array.

5-2 Control Statements

Examples

The following examples demonstrate valid CALL statements. The last
CALL statement uses statement label identifiers in its argument list. The
asterisks indicate that •10 and •20 are statement label identifiers. Label
identifiers that are prefixed by asterisks or ampersands (&) are called
alternate return specifiers (see Section 6.1.1.5).

CALL CURVE(BASE,3.14159+X ,Y,LIMIT ,R(LT+2))

CALL PNTOUT(A, N, 'ABCD')

CALL EXIT

RECORD /GETJPI/ GETJPIARG

CALL SYS$GETJPI (, , ,GETJPIARG , , ,)

CALL MULT(A , B,*10 ,*20 ,C)

5.2 CONTINUE Statement

The CONTINUE statement transfers control to the next executable state
ment. It primarily functions as the terminal statement of a labeled DO
loop when the loop would otherwise end improperly with either a GO
TO, arithmetic IF, or other prohibited control statement.

CONTINUE takes the following form:

CONTI NUE

5.3 DO Statements

DO statements can be either one of two types:

• Indexed (DO)

• Pretested and indefinite (DO WHILE)

Control Statements 5-3

5.3.1 Indexed DO Statement

The indexed DO statement controls iterative processing (the statements in
its range are repeatedly executed a specified number of times). It takes the
following form:

DO [s[.JJ v=e1,e2[.e3]

s
Is the label of an executable statement. The executable statement must
physically follow the DO statement in the same program unit. The label
is optional in VAX FORTRAN .

v
Is a variable with an integer or real data type.

e1 ,e2,e3
Are arithmetic expressions.

Syntax Rules and Behavior

The variable v is the control variable; el, e2, and e3 are the initial, ter
minal, and increment parameters, respectively. If you omit the increment
parameter, a default increment value of 1 is used.

The optional label that appears in the DO statement identifies the terminal
statement of the DO loop. If no label appears in the DO statement, the
DO loop must be terminated by the END DO statement, as discussed in
Section 5 .4.

The terminal statement must not be one of the following statements:

• Unconditional or assigned GO TO

• Arithmetic IF

• Any block IF

• END

• RETURN

• DO

The range of the DO statement includes all the statements that follow the
DO statement, up to and including the terminal statement or END DO .

5-4 Control Statements

The DO statement first evaluates the expressions el , e2, and e3 to
determine values for the initial, terminal, and increment parameters,
respectively. The increment parameter (e3) cannot be zero .

The value of the initial parameter is assigned to the control variable. If
the data type of the initial, terminal, and increment parameters are not the
same as the data type of the control variable, they are converted before
they are used.

The number of executions of the DO range, or iteration count, is given by
the arithmetic expression [(e2 - el+ e3)/e3].

The notation [e] represents the largest integer whose
magnitude does not exceed the magnitude of e and whose
sign is the same as the sign of e.

If the iteration count is zero or negative, the body of the loop is not
executed.

If the /NOF77 qualifier is specified on the FORTRAN command and the
iteration count is zero or negative, the body of the loop executes once.

5.3. 1. 1 DO Iteration Control

After each iteration of the DO range, the following steps execute:

1. The value of the increment parameter (e3) is algebraically added to
the control variable.

2. The iteration count is decremented.

3. The iteration count is evaluated and action taken as follows:

• If the iteration count is greater than zero, control transfers to
the first executable statement after the DO statement for another
iteration of the range.

• If the iteration count is zero, execution of the DO statement
terminates. The final value of the control variable is the value
determined by step 1.

If the control variable has a real data type, the number of iterations of the
DO range might not be what you expect because of rounding errors .

You can also terminate execution of a DO statement by using a statement
within the range that transfers control outside the loop. The control
variable of the DO statement remains defined with its current value.

Control Statements 5-5

When execution of a DO loop terminates and other DO loops share its
terminal statement, control transfers to the next outermost DO loop in the
DO nesting structure (see Section 5.3.1.2). If no other DO loop shares the
terminal statement or if the DO statement is outermost, control transfers
to the first executable statement after the terminal statement.

You cannot alter the value of the control variable within the range of the
DO statement. However, you can use the control variable for reference as
a variable within the range.

You can modify the initial, terminal, and increment parameters within the
loop without affecting the iteration count.

The range of a DO statement can contain other DO statements, as long
as these nested DO loops meet certain requirements. Section 5.3.1.2
describes these requirements.

You can transfer control out of a DO loop, but not into a loop from
elsewhere in the program. Exceptions to this rule are described in
Sections 5.3.1.3 and 5.3.1.4.

Examples

The following examples demonstrate valid and invalid DO iteration
control:

Valid

The first statement specifies 25 iterations: K=49 during the final iteration,
K=51 after the loop.

DO 100 K=1 ,50 ,2

The next statement specifies 27 iterations: J=-2 during the final iteration,
J=-4 after the loop.

DO 350 J=50 , -2 , -2

The next statement specifies 5 iterations: IVAR=S during the final iteration,
IVAR=6 after the loop.

DO 25 IVAR=1 .5

The next statement specifies 9 iterations: NUMBER=37 during the final
iteration, NUMBER=41 after the loop. The terminating statement of the
DO loop must be END DO.

DO NUMBER=5 ,40 ,4

5-6 Control Statements

Invalid

The last statement shows how a common typing error can cause errors
with DO loops-a decimal point is typed in place of a comma. In effect,
this statement assigns 2.10 to the real variable D040M.

DD 40 M=2 .10

5.3.1.2 Nested DO Loops

A DO loop can contain one or more complete DO loops. The range of an
inner nested DO loop must lie completely within the range of the next
outer loop. Nested loops can share a labeled terminal statement but not
an END DO statement,

Table 5-1 illustrates correctly and incorrectly nested DO loops.

Table 5-1: Nested DO Loops
Correctly Nested
DO Loops

DO 45 K=1, 10

DO 35 L=2 , 50 , 2

35 CONTINUE

DO 45 M=l,20

45 CONTINUE

Incorrectly Nested
DO loops

D015K=1,10

DO 25 L=1 , 20

15 CONTINUE

DD 30 M=l,15

25 CONTINUE

30 CONTINUE

Control Statements 5-7

Table 5-1 (Cont.):
Correctly Nested
DO Loops

DO 10 !=1 , 20

DO J=1 , 5

DO K= 1 , 10

END DO

END DO

10 CONTINUE

Nested DO Loops

5.3.1.3 Control Transfers in DO Loops

Incorrectly Nested
DO loops

DO 10 I=1,5

DO J=1 , 10

10 CONTINUE

END DO

In a nested DO loop, you can transfer control from an inner loop to an
outer loop. However, a transfer into a loop from outside that loop is not
permitted.

If two or more nested DO loops share the same terminal statement, you
can transfer control to that statement only from within the range of the
innermost loop. Any other transfer to that statement constitutes a transfer
from an outer loop to an inner loop because the shared statement is part
of the range of the innermost loop.

5-8 Control Statements

5.3. 1.4 Extended Range

A DO loop has an extended range if it con tains a control statement
that transfers control out of the loop and if, after execution of one or
more statements, another control statement returns control back into the
loop. Thus, the range of the loop is extended to include all executable
statements between the destination statement of the first transfer and the
statement that returns control to the loop.

The following rules apply when using a DO loop extended range:

• A transfer in to the range of a DO statement is permitted only if the
transfer is made from the extended range of that DO statemen t.

• The extended range of a DO statement must not change the control
variable of the DO statement.

Figure 5-1 illustrates valid and invalid extended range control transfers.

5.3.2 DO WHILE Statement

The DO WHILE statement is similar to the DO statement. However,
whereas the DO statement executes uncondi tionally for a fixed number of
iterations, the DO WHILE statement executes conditionally for as long as
a logical expression contained in it continues to be true . The DO WHILE
statement takes the following form :

DO [s [,]] WH I LE (e)

5

Is the label of an executable statement that must physically follow in the
same program unit.

e
Is a logical expression .

Control Statements 5-9

Figure 5-1: Control Transfers and Extended Range

Valid Invalid
Control Transfers Control Transfers

DO
Loop

Extended
Range

5-10 Control Statements

15

20

30

35

50

DO 35 K=1, 10

DO 15 L=2,20

GO TO 20

CONTINUE

A = B + C

DO 35 M=1, 15

GO TO 50

CONTINUE

D = E/F

GO TO 30

GO TO 20

DO 50 K=1, 10

20 A = B + C

DO 35 L=2,20

30 D = E/F

35 CONTINUE

GO TO 40

DO 45 M=1,15

40

45 CONTINUE

50 CONTINUE

GO TO 30

ZK -4761 ·85

Syntax Rules and Behavior

The DO WHILE statement tests the logical expression at the beginning
of each execution of the loop, including the first. If the value of the
expression is true, the statements in the body of the loop are executed.
If the expression is false, control transfers to the statement following the
loop.

If no label appears in a DO WHILE statement, the DO WHILE loop must
be terminated with an END DO statement (see Section 5.4) .

You can transfer control out of a DO WHILE loop but not into a loop from
elsewhere in the program.

Example

The following example demonstrates a valid DO WHILE statement:

CHARACTER*132 LI NE
I = 1
LINE(132 :) = ' x'
DO WHI LE (LINE (I : I) . EQ. I I)

I = I + 1
END DO

5.4 END DO Statement

The END DO statement terminates the range of the DO and DO WHILE
statements. END DO is a mandatory terminator of DO blocks if the DO
or DO WHILE statement defining the blocks does not contain a terminal
statement label. If they do contain a terminal-statement label, END DO is
optional and can be used as a labeled terminal statement.

END DO takes the following form :

END DO

Control Statements 5-11

Examples

The following examples demonstrate mandatory and optional END DO
statements:

Mandatory

DO WHILE (I .GT . J)

ARRAY (I , J) 1 . 0
I = I - 1

END DO

5.5 END Statement

Optional

DO 10 WH I LE (I . GT . J)

ARRAY (I , J) = 1. 0
I = I - 1

10 END DO

The END statement marks the end of a program unit and must be the last
source line of every program unit. It takes the following form:

END

In a main program, if control reaches the END statement, program ex
ecution terminates. In a subprogram, a RETURN statement is implicitly
executed.

If an initial line contains only an END in the statement field, it is treated
as an END statement even if it is followed by continuation lines.

5.6 GO TO Statements

GO TO statements transfer control within a program unit. Depending on
the value of an expression, control transfers to the same statement every
time GO TO executes or to one of a set of statements.

VAX FORTRAN supports three different kinds of GO TO statements:

• Unconditional

• Computed

• Assigned

5-12 Control Statements

5.6.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same state
ment every time it executes. It takes the following form:

GO TO s

s
Is the label of an executable statement that is in the same program unit as
the GO TO statement.

The unconditional GO TO statement transfers control to the statement
identified by the specified label. The label must identify an executable
statement that is in the same program unit as the GO TO statement.

Examples

The following examples demonstrate unconditional GO TO statements:

GO TO 7734

GO TO 99999

5.6.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement based
on the value of an expression within the statement. It takes the following
form:

GO TO (slist) [,] e

slist
Is a list of one or more labels of executable statements separated by
commas. The list of labels is called the transfer list.

e
Is an arithmetic expression in the range 1 to n (where n is the number of
statement labels in the transfer list).

Control Statements 5-1 J

Syntax Rules and Behavior

The computed GO TO statement evaluates the expression e and, if nec
essary, converts the resulting value to integer data type. Control is
transferred to the statement label in position e in the transfer list. For
example, if the list contains (30,20,30,40) and the value of e is 2, control is
transferred to statement 20.

If the value of e is less than 1 or greater than the number of labels in the
transfer list, control is transferred to the first executable statement after the
computed GO TO statement.

Examples

The following examples demonstrate valid computed GO TO statements:

GO TO (12 , 24 ,36) , INDEX

GO TO (320,330,340,350,360). SITU(J,K) + 1

5.6.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement label that
is represented by a variable. An ASSIGN statement must establish the
relationship between the variable and a specific statement label. Thus,
the transfer destination can be changed, depending on the most recently
executed ASSIGN statement.

Assigned GO TO statements take the following form:

GO TO v[[,] (slist)]

v
Is an integer variable.

slist
Is a list of one or more labels of executable statements separated by
commas; slist does not affect statement execution and can be omitted .

5-14 Control Statements

Syntax Rules and Behavior

The assigned GO TO statement transfers control to the statement whose
label was most recently assigned to the variable v. The variable v must be
of integer data type and must have a statement label value assigned to it
by an ASSIGN statement (not an arithmetic assignment statement) before
the GO TO statement is executed.

Both the assigned GO TO statement and its associated ASSIGN statements
must exist in the same program unit. Statements that receive control must
also be in the same program unit and must be executable.

Examples

The first example is equivalent to GD TD 200:

ASSIGN 200 TD IGO
GO TD IGO

The second example is equivalent to GD TD 450:

ASSIGN 450 TD !BEG
GO TD !BEG, (300,450,1000,25)

5.7 IF Statements

IF statements conditionally transfer control or execute a statement or block
of statements. They can be any one of three kinds:

• Arithmetic

• Logical

• Block (IF THEN, ELSE IF THEN, ELSE, END IF)

For each kind, the decision to transfer control or to execute the statement
or block of statements is based on the evaluation of an expression within
the IF statement.

Control Statements 5-15

5.7.1 Arithmetic IF Statement

The arithmetic IF statement conditionally transfers control to one of three
statements, based on the current value of an arithmetic expression. It
takes the following form:

IF (e) s1.s2 , s3

e
Is an arithmetic expression.

s1,s2,s3
Are labels of executable statements in the same program unit.

Syntax Rules and Behavior

All three labels (sl,s2,s3) are required, but they do not need to refer to
three different statements.

The arithmetic IF statement first evaluates the expression e. It then
transfers control to one of the three statement labels in the transfer list, as
follows:

If the value of e is:

Less than 0

Equal to 0

Greater than 0

Examples

Control passes to:

Label sl

Label s2

Label s3

The first example transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI. Control passes to
statement 100 only if THETA is greater than CHI.

IF (THETA-CHI) 50,50,100

The second example transfers control to statement 40 if the value of the
integer variable NUMBER is even. It transfers control to statement 20 if
the value is odd.

IF (NUMBER/2*2-NUMBER) 20,40,20

5-16 Control Statements

5. 7 .2 Logical IF Statement

The logical IF statement conditionally executes a single FORTRAN state
ment based on the current value of a logical expression within the logical
IF statement. It takes the following form:

IF (e) st

e
Is a logical expression.

st
Is any complete, executable FORTRAN statement-except any of the block
IF statements, DO, END DO, or another logical IF statement.

The logical IF statement first evaluates the logical expression e and then
acts as follows:

• If e is true, st executes.

• If e is false, control transfers to the next executable statement after the
logical IF; st does not execute.

Examples

The following examples demonstrate valid logical IF statements:

IF (J .GT .4 .OR . J . LT . 1) GO TO 250

IF (REF(J,K) .NE . HOLD) REF(J,K) = REF(J ,K) * (-1 .500)

IF (ENDRUN) CALL EXIT

5. 7 .3 Block IF Statements

Block IF statements conditionally execute blocks (groups) of statements.
They can be any one of the following:

• IF THEN

• ELSE IF THEN

• ELSE

• END IF

Control Statements 5-17

In block IF constructs, these statements take the following form:

e

IF (e) THEN
block

ELSE IF (el) THEN
block

ELSE
block

END IF

Is a logical expression.

block
Is a sequence of zero or more complete FORTRAN statements. This
sequence is called a statement block.

Syntax Rules and Behavior

Each statement in a block IF construct, except the END IF statement, has
an associated statement block. The statement block consists of all the
statements following the block IF statement up to, but not including, the
next block IF statement in the block IF construct. The statement block is
conditionally executed based on the values of the logical expressions in
the preceding block IF statements.

The functions of individual statements in a block IF construct are as
follows:

• IF THEN-begins a block IF construct. The block following it is exe
cuted if the value of the logical expression in the IF THEN statement
is true.

5-18 Control Statements

NOTE

No additional statement can be placed after the IF THEN
statement in a block IF construct. For example, the follow
ing statement is invalid in the block IF construct:

IF (e) THEN I = J

This statement is translated as the logical IF statement
IF (e) THENI = J.

• ELSE IF THEN-is an optional statement that specifies a statement
block to be executed if no preceding statement block in the block IF
construct has been executed, and if the value of the logical expression
in the ELSE IF THEN statement is true. A block IF construct can
contain any number of ELSE IF THEN statements.

• ELSE-specifies a statement block to be executed if no preceding
statement block in the block IF construct has been executed. The ELSE
statement is optional. However, if the ELSE statement is present, the
ELSE statement block must be immediately followed by the END IF
statement.

• END IF-terminates the block IF construct.

After the last statement in a statement block is executed, control passes
to the next executable statement following the END IF statement.
Consequently, no more than one statement block in a block IF construct is
executed each time the IF THEN statement is executed.

ELSE IF THEN and ELSE statements can have statement labels, but
the labels cannot be referenced. The END IF statement can have a
statement label to which control can be transferred, but only from within
the immediately preceding block.

Figure 5-2 shows the flow of control for four examples of block IF con
structs.

Control Statements 5-19

5-20

Figure 5-2: Examples of Block IF Constructs

Control Statements

Construct Flow of Control

IF (e) THEN

block

END IF

IF (e) THEN

block1
ELSE

block2
END IF

IF (e 1) THEN
block 1

ELSE IF (e2) THE N

block2
END IF

IF (e 1 I THE N
block 1

ELSE IF ie2) THEN
block 2

ELSE IF (e3) THE N

block3
ELSE

block4
END IF

Execute
block

Execute
block 1

Execute
block 1

Execute
block 1

False

Execute
block 2

Execute
block2

Execu te

block2
Execute
block3

False

Execute
block4

ZK-617 -82

5. 7 .3.1 Statement Blocks

A statement block can contain any executable FORTRAN statement except
an END statement. You can transfer control out of a statement block, but
you must not transfer control into a block. Thus, you must not transfer
control from one statement block to another.

DO loops cannot partially overlap statement blocks. The DO statement
and its terminal statement must appear together in a statement block.

5.7.3.2 Block IF Examples

The following examples illustrate four variations of block IF constructs:

Variation 1: The simplest block IF construct consists of the IF THEN
and END IF statements. This construct conditionally executes one state
ment block, which consists of all the statements between the IF THEN and
the END IF statements.

Form

IF (e) THEN

block

END IF

Example

IF (ABS(ADJU) .GE. 1. 0E-6) THEN

TOTERR = TOTERR + ABS(ADJU)

QUEST = ADJU/FNDVAL

END IF

The IF THEN statement first evaluates the logical expression e. If the
value of e is true, the statement block is executed. If the value of e is
false, control transfers to the next executable statement after the END IF
statement, and the block is not executed.

Variation 2: The second variation contains a block IF construct with an
ELSE IF THEN statement. Blockl consists of all the statements between
the IF THEN and the ELSE IF THEN statements; block2 consists of all the

Control Statements 5-21

statements between the ELSE IF THEN and the END IF statements.

Form

IF (el) THEN

blockl

ELSE IF (e2) THEN

block2

END IF

Example

IF (A .GT . B) THEN

D = B

F = A - B

ELSE IF (A .GT . B/2 .) THEN

D = B/2.

F = A - B/2 .

END IF

If A is greater than B, blockl is executed. If A is not greater than B but
A is greater than B/2, block2 is executed. If A is not greater than B
and A is not greater than B/2, neither blockl nor block2 is executed;
control transfers directly to the next executable statement after the END IF
statement.

Variation 3: The third variation contains a block IF construct with an
ELSE statement. Blockl consists of all the statements between the IF
THEN and ELSE statements; block2 consists of all the statements between
the ELSE and the END IF statements.

If the value of the character variable NAME is less than 'N', blockl is
executed. If the value of NAME is greater than or equal to 'N', block2 is
executed.

Form

IF (e) THEN

blockl

ELSE

block2

END IF

Example

IF (NAME . LT . IN I) THEN

IFRONT = IFRONT + 1

FRLET(IFRONT) = NAME(1:2)

ELSE

IBACK = IBACK + 1

END IF

Variation 4: The fourth variation contains a block IF construct with
several ELSE IF THEN statements and an ELSE statement.

5-22 Control Statements

There are four statement blocks in this example. Each consists of all the
statements between the block IF statements that follow:

Delimiting Block IF Statements

IF THEN and first ELSE IF THEN

Block

blockl

block2

block3

block4

First ELSE IF THEN and second ELSE IF THEN

Second ELSE IF THEN and ELSE

ELSE and END IF

If A is greater than B, blockl is executed. If A is not greater than B but
is greater than C, block2 is executed. If A is not greater than B or C but
is greater than Z, block3 is executed. If A is not greater than B, C, or Z,
block4 is executed.

Form

IF (el) THEN

blockl

ELSE IF (e2) THEN

block2

ELSE IF (e3) THEN

block3

ELSE

block4

END IF

5. 7 .3.3 Nested Block IF Constructs

Example

IF (A .GT . B) THEN

D = B

F = A - B

ELSE IF (A .GT . C) THEN

D = C

F = A - C

ELSE IF (A .GT . Z) THEN

D = Z

F = A - Z

ELSE

D = 0.0

F =A

END IF

You can include a block IF construct in the statement block of another
block IF construct-but the nested block IF construct must be completely
contained within a statement block. It cannot overlap statement blocks.

Control Statements 5-23

The following example contains a nested block IF construct:

block 1

block 2 {

Form

IF (el) THEN

IF (e2) THEN

block la

ELSE

block lb

END IF

ELSE

END IF

Example

IF (A .LT . 100) THEN

ELSE

I NRAN = I NRAN + 1

IF (ABS(A-AVG) .LE . 5 .) THEN

INAVG = I NAVG + 1

ELSE

OUTAVG = OUTAVG + 1

END IF

OUTRAN = OUTRAN + 1

END IF

If A is less than 100, the code immediately after the IF is executed. This
code contains a nested block IF construct. If the absolute value of A minus
AVG is less than or equal to 5, blockla is executed. If the absolute value
of A minus AVG is greater than 5, blocklb is executed.

If A is greater than or equal to 100, block2 is executed, and the nested IF
construct (blockl) is not executed.

5.8 PAUSE Statement

The PAUSE statement displays a message on the terminal and temporarily
suspends program execution in order to permit you to take some action . It
takes the following form :

PAUSE [disp]

disp
Is a character constant or a string of decimal numbers (one to five digits).

5-24 Control Statements

Syntax Rules and Behavior

The disp argument is optional.

The effect of a PAUSE statement depends on how your program is being
executed. If your program is running as a batch job or detached process,
the contents of disp are written to the system output file, but the program
is not suspended.

If the program is running in interactive mode, the contents of disp are
displayed at your terminal, followed by the prompt sequence, indicating
that the program is suspended and that you should enter a command. For
example, if the following statement is executed in interactive mode:

PAUSE 'ERRONEOUS RESULT DETECTED'

You will see the following display at the terminal:

ERRONEOUS RESULT DETECTED
$

If you do not specify a value for disp, the following message is displayed
by the system:

FORTRAN PAUSE

You can respond by typing one of the following DCL commands:

• CONTINUE-resume execution at the next executable statement.

• EXIT-terminate execution.

• DEBUG-resume execution under control of the VMS Debugger.

5.9 RETURN Statement

The RETURN statement transfers control from a subprogram to the
program that called the subprogram. You can use RETURN only in a
subprogram unit.

The RETURN statement takes the following form:

RETURN [i]

I

Is an optional integer constant or expression (such as 2 or I+J) that is
converted to an integer value if necessary .

Control Statements 5-25

Syntax Rules and Behavior

The optional argument, i, indicates an alternate return from the subpro
gram. It can be specified only in subroutine subprograms, not in function
subprograms. The value of i specifies that the ith alternate return in the
actual argument list is to be taken (see the second example that follows in
this section).

When a RETURN statement is executed in a function subprogram, control
is returned to the calling program at the statement that contains the
function reference (see Chapter 6). When a RETURN statement is executed
in a subroutine, control is returned either to the first executable statement
following the CALL statement that initiated the subroutine, or to the
statement label that was specified as the ith alternate return in the CALL
argument list.

Examples

In the first example, control is returned to the calling program at the first
executable statement following the CALL CONVRT statement.

SUBROUTINE CONVRT(N,ALPH ,DATA,PRNT,K)
INTEGER ALPH(*) , DATA(*) , PRNT(*)
IF (N .GE . 10) THEN

ELSE

DATA(K+2) = N- (N/10) *N
N = N/10
DATA(K+1) = N
PRNT(K+2) = ALPH(DATA(K+2)+1)
PRNT(K+1) = ALPH(DATA(K+1)+1)

PRNT(K+2) = ALPH(N+1)
END IF
RETURN
END

The second example shows how alternate returns can be included in a
subroutine.

5-26 Control Statements

SUBROUTINE CHECK(X ,Y. * .* ,C)

50 IF (Z) 60,70 ,80
60 RETURN
70 RETURN 1
80 RETURN 2

END

Depending on the computed value of Z, one of the following returns
occurs:

• If Z is less than zero, a normal return occurs and the calling program
continues at the first executable statement following CALL CHECK.

• If Z equals zero, the first alternate return (RETURN 1) occurs.

• If Z is greater than zero, the second alternate return (RETURN 2)
occurs.

Control returns to the statement specified as the first or second alternate
return argument in the CALL statement argument list; for example, the
CALL statement might take the following form:

CALL CHECK(A,B,*10, *20 ,C)

In this case, RETURN 1 transfers control to statement label 10 and
RETURN 2 transfers control to statement label 20.

If a subroutine includes an alternate return specifying a value less than 1
or greater than the number of alternate return arguments, control returns
to the next executable statement after the CALL statement (alternate
returns are ignored). Thus, you should ensure that the value of i is within
the range of alternate return arguments .

5.10 STOP Statement

The STOP statement terminates program execution. It takes the following
form:

STOP [<lisp]

Control Statements 5-27

disp
Is a character constant or a string of decimal numbers (one to five digits).

The disp argument is optional. If you specify it, the STOP statement dis
plays the contents of <lisp at your terminal, terminates program execution,
and returns control to the operating system. If you do not specify a value
for disp, the following message is sent by the system:

FORTRAN STOP

Examples

The following examples demonstrate valid STOP statements:

STOP 98

STOP 'END OF RUN'

5-28 Control Statements

Chapter 6

Subprograms - Subroutines and
Functions

Subprograms are program units that can be invoked from another program
unit, usually to perform some commonly used computation on behalf
of the other program unit. Normally, the program unit invoking the
subprogram passes values, known as actual arguments, to the subprogram,
which uses the actual arguments to compute the results and then returns
the results to the calling program.

Subprograms are either written by the user or supplied as part of the VAX
FORTRAN library.

User-written subprograms include the following:

• Statement functions-A computing procedure defined by a single
statement that is similar in form to an assignment statement. A
statement function is invoked by a function reference in a main
program unit or a subprogram unit.

• Function subprograms-Program units, also called functions, that con
tain a set of commonly used computations. A function subprogram's
first statement is a FUNCTION statement, optionally preceded by an
OPTIONS statement A function subprogram is invoked by a function
reference in a main program unit or a subprogram unit.

• Subroutine subprograms-Program units, also called subroutines,
that contain a set of commonly used computations. A subroutine
subprogram's first statement is a SUBROUTINE statement, optionally
preceded by an OPTIONS statement A subroutine subprogram
receives control when it is invoked with a CALL statement and
returns control with a RETURN statement.

Subprograms - Subroutines and Functions 6-1

Subprograms supplied as part of the FORTRAN library are called intrinsic
functions and include the following categories:

• Mathematical

• Character-handling

• Lexical-comparison

6.1 Subprogram Arguments

Subprogram arguments are either dummy arguments or actual arguments:

• Dummy arguments are specified when you write the subprogram.

• Actual arguments are specified when you invoke the subprogram.

When control is transferred to a subprogram, each dummy argument takes
the value of the corresponding actual argument. When control is returned
to the calling program unit, the last value assigned to a dummy argument
is assigned to the corresponding actual argument.

Section 6.1 .1 describes the general techniques used to pass arguments
between FORTRAN programs. Section 6.1.2 describes how to use built-in
functions, supplied by VAX FORTRAN, to pass arguments between VAX
FORTRAN subprograms and subprograms written in other languages.

6.1.1 Actual Argument and Dummy Argument Association

Actual arguments must agree in order, number, and data type (or struc
ture, for record arguments) with their corresponding dummy arguments.
Actual arguments can be scalar references, array name references, aggre
gate references, alternate return specifiers, or subprogram names. The
dummy arguments specified in subprogram definitions, representing
corresponding actual arguments, appear as unsubscripted names.

Although dummy arguments are not actual variables, arrays, records, or
subprograms, each dummy argument can be declared as though it were a
variable, array, record, or subprogram.

• A dummy argument declared as an array can be associated only with
an actual argument that is an array or array element of the same
data type. The actual argument must not be placed in parentheses.
If a dummy argument is an array, it must be no larger than the

6-2 Subprograms - Subroutines and Functions

array that is the actual argument. You can use adjustable arrays
(see Section 6.1.1.1) to process arrays of different sizes in a single
subprogram.

• A dummy argument declared as a record can be associated only with
an actual argument that is an aggregate reference for an entity with a
matching structure .

• A dummy argument referenced as a subprogram must be associ
ated with an actual argument that has been declared EXTERNAL or
INTRINSIC in the calling routine.

The length of a dummy argument with a data type of character must
not be greater than the length of its associated actual argument. If the
character dummy argument's length is specified as •(•), it uses the length
of the associated actual argument. (This is known as a passed-length
character argument. See Section 6.1.1.3.)

The following sections discuss several kinds of arguments:

• Adjustable array

• Assumed-size array

• Passed-length character

• Character and Hollerith constant

• Alternate return

6. 1 . 1 . 1 Adjustable Arrays

Adjustable arrays are dummy arguments in subprograms. The dimensions
of an adjustable array are determined in the reference to the subprogram.
The array declarator (see Section 2.2.3.1) for an adjustable array can
contain integer variables that are either dummy arguments or variables in
a common block.

When the subprogram is entered, each dummy argument used in the array
declarator must be associated with an actual argument, and each variable
in a common block used in an array declarator must have a defined value.
The dimension declarator is evaluated using the values of the actual
arguments, variables in common blocks, and constants specified in the
array declarator.

Argument association is not retained between one reference to a subpro
gram and the next reference to that subprogram.

The size of the adjustable array must be less than or equal to the size of
the array that is its corresponding actual argument.

Subprograms - Subroutines and Functions 6-3

Examples

The following examples demonstrate valid and invalid adjustable arrays:

Valid

In the first example, the function computes the sum of the elements of
a two-dimensional array. Notice how the dummy arguments Mand N
control the iteration.

FUNCTION SUM(A,M,N)
DIMENSION A(M,N)
SUM = 0 .0
DO 10 J=1,N
DO 10 I=l,M

10 SUM= SUM+ A(I,J)
RETURN
END

The following statements are sample calls on SUM:

DIMENSION A1(10 ,35) , A2(3,56)
SUM1 = SUM(Al ,10,35)
SUM2 = SUM(A2,3,56)
SUM3 = SUM(Al,10,10)

An adjustable array is undefined if a dummy argument array is not
currently associated with an actual argument array. It is also undefined
if any of the variables in the adjustable array declarator are either not
currently associated with an actual argument or not in a common block.

The subroutine subprogram in the next example includes statements of
a calling program unit. It illustrates how argument association is not
retained between one reference to a subprogram and the next reference.

SUBROUTINE S(A,I,X)
DIMENSION A(I)
A(I) = X
RETURN
ENTRY S1(I,A ,K, L)
A(I) = A(I) + 1 .0
RETURN
END

The following program unit calls the subroutine subprogram from the
previous example. This calling program unit defines B as a real array
with 10 elements. The first call to subroutine S sets array element B(2)
equal to the value 3.0. The second call to subroutine S (at entry point Sl)
increments array element B(S) by the value 1.0. RECORD statements not
contained within structure declaration blocks can also declare adjustable
arrays .

6-4 Subprograms - Subroutines and Functions

DIMENSION B(10)

CALL S(B ,2 ,3 .0)

CALL S1(5 ,B,3,2)

The upper- and lower-dimension bound values are determined once each
time a subprogram is entered. These values do not change during the exe
cution of that subprogram even if the values of variables contained in the
array declaration are changed. In the next example, the adjustable array X
is declared as X(-4:4,5) on entry to subroutine SUB. The assignments to I
and J do not affect that declaration.

DIMENSION ARRAY(9 ,5)
L = 9
M = 5
CALL SUB(ARRAY ,L,M)
END

SUBROUTINE SUB(X,I , J)
DIMENSION X(- I/2 : I/2,J)
X(I/2.J) = 999
J = 1
I = 2
END

Invalid

The following example is invalid-once a variable is used in an array
declarator for an adjustable array, it must not appear in a type declaration
that changes the variable's da,ta type.

SUBROUTI NE SUB1(A,X)
DIMENSION A (X)
INTEGER X

Subprograms - Subroutines and Functions 6-5

6.1.1.2 Assumed-Size Arrays

An assumed-size array is a dummy array for which the upper bound of
the last dimension is specified as an asterisk (•), for example:

SUBROUTINE SUB(A,N)
DIMENSION A(1 :N,1 :*)

The size of an assumed-size array and the number of elements that can be
referenced are determined as follows:

• If the actual argument corresponding to the dummy array is a name
of a noncharacter array, the size of the dummy array is the size of the
actual-argument array.

• If the actual argument corresponding to the dummy argument is a
name of a noncharacter array element, with a subscript value of s in
an array of size a, the size of the dummy array is a+ 1 - s.

• If the actual argument is a name of a character array, character array
element, or character array element substring and begins at character
storage unit b of an array with n character storage units, the size of
the dummy array is INT(n + 1- b)/y, where y is the length of an
element of the dummy array.

Because the actual size of an assumed-size array is unknown, an assumed
size array name cannot be used as any of the following items in an 1/0
statement:

• Array name in the 1/0 list

• Unit identifier for an internal file

• Run-time format specifier

RECORD statements not contained within structure declaration blocks can
also declare adjustable arrays ..

6-6 Subprograms - Subroutines and Functions

6.1.1.3 Passed-Length Character Arguments

A passed-length character argument is a dummy argument that assumes
the length attribute of the corresponding actual argument. An asterisk is
used to specify the length of the dummy character argument.

When control transfers to the subprogram, each dummy argument as
sumes the length of its corresponding actual argument.

A character array dummy argument can also have a passed length.
The length of each element in the dummy argument is the length of
the elements in the actual argument. The passed length and the array
declarator together determine the size of the passed-length character array.
A passed-length character array can also be an adjustable or assumed-size
array.

Examples

The following example of a function subprogram uses a passed-length
character argument. The function finds the position of the character with
the highest ASCII code value. It uses the length of the passed-length
character argument to control the iteration.

(The processor-defined function LEN determines the length of the argu
ment. See Section 6.3.2.1 for a description of the LEN function.)

INTEGER FUNCTION lCMAX(CVAR)
CHARACTER*(*) CVAR
ICMAX = 1
DO 10 I=2,LEN(CVAR)

10 IF (CVAR(I :l) .GT . CVAR(lCMAX : ICMAX)) ICMAX=I
RETURN
END

The length of the dummy argument is determined each time control
transfers to the function . The length of the actual argument can be the
length of a character variable, array element, substring, or expression.
Each of the following function references specifies a different length for
the dummy argument:

CHARACTER VAR*10 , CARRAY(3 ,5) *20

I1 = ICMAX(VAR)
I2 = ICMAX(CARRAY(2 ,2))
I3 = ICMAX(VAR(3 :8))
14 = ICMAX(CARRAY(l,3)(5 :15))
15 = ICMAX(VAR(3 :4)//CARRAY(3 ,5))

Subprograms - Subroutines and Functions 6-7

6. 1. 1.4 Character and Hollerith Constants as Actual Arguments

Actual arguments and their corresponding dummy arguments must agree
in data type. If the actual argument is a Hollerith constant (for example,
4HABCD), the dummy argument must be of numeric data type. In VAX
FORTRAN, if an actual argument is a character constant (for example,
'ABCD'), the corresponding dummy argument can have either a numeric
or a character data type. If the dummy argument has a numeric data
type, the character constant 'ABCD' is, in effect, converted to a Hollerith
constant by the FORTRAN compiler and the linker.

An exception to this occurs when the function or subroutine name is itself
a dummy argument. It is not possible to determine at compile time or link
time whether a character constant or Hollerith constant is required. In
this case, a character constant actual argument can correspond only to a
character dummy argument.

Example

The following example shows character and Hollerith constants being used
as actual arguments. In this example, the subroutine names CHARSUB
and HOLLSUB are themselves dummy arguments of the subroutine S.
Therefore, the actual argument 'STRING' in the call to CHARSUB must
correspond to a character dummy argument, whereas the actual argument
6HSTRING in the call to HOLLSUB must correspond to a Hollerith
dummy argument

SUBROUTINE S(CHARSUB,HOLLSUB ,A,B)
EXTERNAL CHARSUB ,HOLLSUB

CALL CHARSUB(A , 'STRING')
CALL HOLLSUB(B, 6HSTRI NQ

6-8 Subprograms - Subroutines and Functions

6.1.1.5 Alternate Return Arguments

To specify an alternate return argument in a dummy argument list, place
asterisks in the list; for example:

SUBROUTr'NE MINN (A, B, * , * , C)

The actual argument list passed in the CALL statement must include al
ternate return arguments in the corresponding positions. These arguments
take either one of the following forms:

*label
&l abe l

Either an asterisk or an ampersand can indicate an alternate return argu
ment in an actual argument list. The value you specify for label must be
the label of an executable statement in the program unit that issues the
CALL statement.

6.1.2 Built-In Functions

Built-in functions perform utility operations that are useful in communi
cating with subprograms written in languages other than FORTRAN. VAX
FORTRAN provides the following built-in functions:

• Argument list

• %LOC

6.1.2.1 Argument List Built- In Functions

To call subprograms (such as VAX/VMS system services) written in lan
guages other than FORTRAN, you may need to pass the actual arguments
in a form different from that used by FORTRAN.

To change the form of the argument, you can use the following built-in
functions in the argument list of a CALL statement or function reference:
%VAL, %REF, %DESCR.

These built-in functions specify the way the argument should be passed to
the subprogram. You can use them only in the actual argument list of a
CALL statement or function reference-and in no other context.

Subprograms - Subroutines and Functions 6-9

The three argument list built-in functions have the following effects:

Function Effect

%VAL(a) Pass the argument as a 32-bit immediate value. (If the actual
argument is shorter than 32 bits, it is sign-extended to a 32-bit
value.)

%REF(a)

%DESCR(a)

Pass the argument by reference.

Pass the argument by descriptor.

a is an actual argument.

See the VAX FORTRAN User Manual for more information on argument
passing mechanisms.

Table 6-1 lists the FORTRAN argument-passing defaults and the allowed
uses of %VAL, %REF, and %DESCR.

Table 6-1: Argument List Built-In Functions and Defaults
Allowed Functions

Actual Argument
Data Type Default

Expressions

Logical

Integer

REAL•4

REAL•8

REAL•16

Complex

Character

Hollerith

Aggregate

Array Name

Numeric

REF

REF

REF

REF

REF

REF

DESCR

REF

REF

REF

%VAL

Yes 1

Yes 1

Yes

No

No

No

No

No

No

No

%REF %DESCR

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

No No

Yes No

Yes Yes

1If a logical or integer value occupies less than 32 bits of storage, it is converted to a
32-bit value by sign extension . Use the ZEXT function if zero extension is desired .

6-1 0 Subprograms - Subroutines and Functions

Table 6- 1 (Cont.): A rgument List Built-In Functions and
Defaults

Actual Argument
Data Type Default

Character DESCR

Aggregate REF

Procedure Name

Numeric

Character

REF

DESCR

6.1.2 .2 %LOC Built-In Function

Allowed Functions

%VAL

No

No

No

No

%REF

Yes

Yes

Yes

Yes

%DESCR

Yes

No

Yes

Yes

The %LOC built-in function computes the internal address of a storage
element. It takes the following form :

%LOC(arg)

arg
Is a scalar memory reference, array name reference, aggregate reference,
or external procedure name.

The %LOC built-in function produces an INTEGER*4 value that repre
sents the location of its argument. The INTEGER*4 value can be used as
an element in an arithmetic expression.

See the VAX FORTRAN User Ma nual for more information on the %LOC
built-in function.

6.2 User-Written Subprograms

A user-written subprogram is a FORTRAN statement or group of
FORTRAN statements that performs a computing procedure. The com
puting procedure can be either a series of arithmetic operations or a series
of FORTRAN statements. A single subprogram can perform a computing
procedure in several places in your program, and thus avoid duplicating a
series of operations or statements in each place.

Subprograms - Subroutines and Functions 6-11

There are three types of subprograms. Table 6-2 lists each type of subpro
gram, the statements needed to define the subprogram, and the method of
transferring control to it.

Table 6-2: Types of User-Written Subprograms

Subprogram Type

Statement function

Function

Subroutine

Defining Statements

Statement function
definition

FUNCTION
ENTRY

SUBROUTINE
ENTRY

Control Transfer Method

Function reference

Function reference

CALL statement

A function reference is used in an expression and consists of the function
name and the function arguments. A function reference returns a value
that is used in evaluating the expression in which the function appears.

Function and subroutine subprograms can change the values of their
arguments, and the calling program can use the changed values.

A subprogram can refer to other subprograms, but it cannot refer to itself,
either directly or indirectly.

6.2. 1 Statement Functions

A statement function is a computing procedure defined in the same
program unit in which it is referenced. It is defined by a single statement
that is similar in form to an assignment statement. The computation is
performed each time you refer to the statement function. The resulting
value is then made available to the expression that contains the statement
function reference.

Statement function definitions take the following form:

fun ([p [. p] ...]) = e

fun
Is the symbolic name of the statement function.

p
Is a dummy argument.

6-12 Subprograms - Subroutines and Functions

e
Is an arithmetic, logical, or character expression that defines the computa
tion to be preformed.

Statement function references take the following form :

f([p [. p] . ..])

f
Is the symbolic name of the statement function .

p
Is an actual argument.

Syntax Rules

The following rules apply to statement function definitions and references:

• When a statement function reference appears in an expression, the
values of the actual arguments are associated with the dummy ar
guments in the statement function definition. The expression in the
definition is then evaluated. The resulting value is used to complete
the evaluation of the expression containing the function reference.

• The data type of a statement function is determined either implicitly
by the initial letter of the function name, or explicitly in a type
declaration statement. The data type can be any of the data types,
including the character data type.

• Dummy arguments in a statement function indicate only the number,
order, and data type of the actual arguments. The names of the
dummy arguments can represent other entities elsewhere in the
program unit.

Except for the data type, declarative information associated with an
entity is not associated with dummy arguments in the statement
function: declaring an entity to be an array or to be in a common
block does not affect a dummy argument with the same name.

• Actual arguments must agree in number, order, and data type with
their corresponding dummy arguments.

Subprograms - Subroutines and Functions 6-13

• The name of the statement function cannot represent any other entity
within the same program unit.

• The expression in a statement function definition can contain function
references. If a reference to another statement function appears in the
expression, it must be previously defined in the same program unit.

• Any reference to a statement function must appear in the same
program unit as the definition of that function.

• A statement function reference must appear as, or be part of, an
expression. The reference cannot appear on the left side of an assign
ment statement.

Examples

The following statement function definitions are valid:

VOLUME(RADIUS) = 4.189*RADIUS **3

SI NH(X) = (EXP(X)-EXP(-X)) *0.5

CHARACTER*10 CSF,A ,B
CSF(A,B) = A(6 :10)//B(1 :5)

The following statement function definition is invalid because it contains a
constant, which cannot be used as a dummy argument:

AVG(A,B,C,3 .) = (A+B+C)/3 .

Consider the following definition:

AVG(A,B,C) = (A+B+C)/3 .

Based on the previous statement, the following references are valid:

GRADE= AVG(TEST1 , TEST2,XLAB)
IF (AVG(P ,D,Q) .LT . AVG(X ,Y,Z)) GO TO 300

The following reference is invalid because the data type of the third
argument does not agree with the dummy argument:

FINAL= AVG(TEST3,TEST4,LAB2)

6-14 Subprograms - Subroutines and Functions

8.2.2 Function Subprograms

A function subprogram is a program unit consisting of a FUNCTION
statement followed by a series of statements that define a computing
procedure. Function references transfer control to a function subprogram;
RETURN or END statements return control to the calling program unit.

A function subprogram returns a single value to the calling program unit
by assigning that value to the function 's name. The function's name
determines the data type of the value returned.

6.2.2. 1 Logical and Numeric Functions

The FUNCTION statement takes the following form:

[typ] FUNCTION nam [*m] [([p [. p] . . .])]

typ
Is one of the logical or numeric data type specifiers. See Section 4.4.1 for
a list of these specifiers.

nam
Is the symbolic name of the function .

m
Is an unsigned, nonzero integer constant specifying the length of the data
type. It must be one of the valid length specifiers for the data type given
by typ.

p
Is a dummy argument.

6.2.2.2 Character Functions

The CHARACTER FUNCTION statement takes the following form:

CHARACTER [*n] FUNCTION nam : *n] [([p [, p] .. .])]

Subprograms - Subroutines and Functions 6-15

n
Is an unsigned, nonzero integer constant, or parenthetical asterisk indicat
ing a passed-length function name.

If you specify CHARACTER*(*), the function assumes the length declared
for it in the program unit that invokes it. A passed-length character func
tion can have different lengths when it is invoked by different program
units. If n is an integer constant, the value of n must agree with the length
of the function specified in the program unit that invokes the function. If
you do not specify n, a length of one is assumed. If the length has already
been specified following the keyword CHARACTER, the optional length
specification following nam is not permitted .

nam
Is the symbolic name of the function.

p
Is a dummy argument.

6.2.2.3 Function Reference

A function reference that transfers control to a function subprogram takes
the following form:

nam ([p [, p] . . .])

nam
Is the symbolic name of the function.

p
Is an actual argument.

When control transfers to a function subprogram, the values of any ac
tual arguments in the function reference are associated with any dummy
arguments in the FUNCTION statement. The statements in the subpro
gram are then executed. The resulting value is assigned to the name of
the function. Finally, the function returns control to the calling program
unit. The value assigned to the function's name is now available to the
expression containing the function reference and is used to complete the
evaluation of that expression.

6-16 Subprograms - Subroutines and Functions

The data type of a function name can be specified explicitly in the
FUNCTION statement or in a type declaration statement; it can also
be specified implicitly. The function name defined in the function subpro
gram must have the same data type as the function name in the calling
program unit.

The FUNCTION statement must be the first statement of a function sub
program, unless an OPTIONS statement is used . A function subprogram
cannot contain a SUBROUTINE statement, a BLOCK DATA statement, a
PROGRAM statement, or another FUNCTION statement. ENTRY state
ments can be included to provide multiple entry points to the subprogram
(see Section 6.2.4).

Examples

Consider the following example:

FUNCTION ROOT (A)
x = 1 . 0

2 EX = EXP(X)
EMINX = 1 . /EX
ROOT= ((EX+EMINX) *. 5+COS(X)-A)/ ((EX-EMI NX) * .5-SIN(X))
IF (ABS(X-ROOT) .LT . 1E-6) RETURN
X = ROOT
GO TD 2
END

To obtain the root of the function, the previous example uses the Newton
Raphson iteration method:

F (X) = cosh(X) + cos(X) - A = 0

The value of A is passed as an argument. The iteration formula for this
root is as follows:

X · = X · _ cosh(Xi) + cos(Xi) - A
i+l i sinh(Xi) - sin(Xi)

This formula is calculated repeatedly until the difference between Xi
and Xi+l is less than 1.0E-6. The function uses the FORTRAN intrinsic
functions EXP, SIN, COS, and ABS (see Section 6.3).

Subprograms - Subroutines and Functions 6-17

The next example is a passed-length character function. It returns the
value of its argument, repeated to fill the length of the function.

CHARACTER*(*) FUNCTION REPEAT(CARG)
CHARACTER*! CARG
DO 10 I=1,LEN(REPEAT)

10 REPEAT(I : I) = CARG
RETURN
END

Within any given program unit all references to a passed-length character
function must have the same length. In the following example, the
REPEAT function has a length of 1000:

CHARACTER*1000 REPEAT, MANYAS, MANYZS
MANYAS = REPEAT('A')
MANYZS = REPEAT('Z')

Another program unit within the executable program can specify a differ
ent length. In the following example, the REPEAT function has a length
of 2:

CHARACTER HOLD*6. REPEAT*2
HOLD= REPEAT('A')//REPEAT('B')//REPEAT('C')

6.2.3 Subroutine Subprograms - SUBROUTINE Statement

A subroutine subprogram is a program unit consisting of a SUBROUTINE
statement followed by a series of statements that define a computing pro
cedure. The CALL statement transfers control to a subroutine subprogram;
a RETURN or END statement returns control to the calling program unit.

SUBROUTINE statements take the following form:

SUBROUTINE sub [([p[,p] . . .])]

sub
Is the symbolic name of the subroutine.

p
Is a dummy argument. An asterisk in the argument list specifies a dummy
argument as an alternate return argument.

When control transfers to the subroutine, the values of any actual ar
guments in the CALL statement are associated with any corresponding
dummy arguments in the SUBROUTINE statement. The statements in
the subprogram are then executed. (Section 5.1 describes the CALL
statement.)

6-18 Subprograms - Subroutines and Functions

The SUBROUTINE statement must be the first statement of a subroutine,
unless an OPTIONS statement is used.

A subroutine subprogram cannot contain a FUNCTION statement,
a BLOCK DATA statement, a PROGRAM statement, or another
SUBROUTINE statement. ENTRY statements are allowed to specify
multiple entry points in the subroutine (see Section 6.2.4).

Examples

The first example contains a subroutine that computes the volume of a
regular polyhedron, given the number of faces and the length of one
edge. It uses the computed GO TO statement to determine whether
the polyhedron is a tetrahedron, cube, octahedron, dodecahedron, or
icosahedron. The GO TO statement also transfers control to the proper
procedure for calculating the volume. If the number of faces is not 4, 6, 8,
12, or 20, the subroutine sends an error message to the terminal.

Main Program

COMMON NFACES, EDGE, VOLUME
ACCEPT*· NFACES, EDGE
CALL PLYVOL
TYPE*· 'VOLUME=', VOLUME
STOP
END

Subprograms - Subroutines and Functions 6-19

Subroutine

1

2

3

4

5

SUBROUTINE PLYVOL
COMMON NFACES, EDGE , VOLUME
CUBED = EDGE**3
GO TO (6,6,6 , 1,6,2,6,3,6,6 ,6,4,6,6,6,6 ,6 ,6,6,5), NFACES
GO TO 6
VOLUME= CUBED* 0 . 11785
RETURN
VOLUME = CUBED
RETURN
VOLUME= CUBED * 0 .47140
RETURN
VOLUME = CUBED * 7.66312
RETURN
VOLUME = CUBED * 2 . 18170
RETURN

6 TYPE 100, NFACES
100 FORMAT (I NO REGULAR POLYHEDRON HAS I . 13. I FACES . I/)

VOLUME = 0.0
RETURN
END

The next example uses alternate return specifiers to determine where
control transfers on completion of the subroutine. The SUBROUTINE
statement argument list contains two dummy alternate return arguments
corresponding to the actual arguments •10 and •20 in the CALL statement
argument list.

The decision about which RETURN statement executes depends on the
value of Z, as computed in the subroutine:

• If Z is less than zero, the normal return executes.

• If Z is equal to zero, the return is to statement label 10 in the main
program.

• If Z is greater than zero, the return is to statement label 20 in the main
program.

6-20 Subprograms - Subroutines and Functions

Main Program

CALL CHECK(A,B.*10, *20 ,C)
TYPE * · 'VALUE LESS THAN ZERO'
GO TO 30

10 TYPE*. 'VALUE EQUALS ZERO'
GO TO 30

20 TYPE*, 'VALUE MORE THAN ZERO'
30 CONTINUE

6.2.4 ENTRY Statement

Subroutine

SUBROUTINE CHECK(X,Y ,*. * .Q)

50 IF (Z) 60,70,80
60 RETURN
70 RETURN 1
80 RETURN 2

END

The ENTRY statement provides multiple entry points within a subpro
gram. It is not executable and can appear within a function or subroutine
program after the FUNCTION or SUBROUTINE statement. Execution of a
subprogram referred to by an entry name begins with the first executable
statement after the ENTRY statement.

The ENTRY statement takes the following form:

ENTRY nam [([p [, p] . . .])]

nam
Is the symbolic name of an entry point.

p
Is a dummy argument.

Syntax Rules

The following rules apply to ENTRY statements and names:

• CALL statements should be used to refer to entry names within
subroutine subprograms.

• Function references should be used to refer to entry names within
function subprograms.

• An entry name within a function subprogram can appear in a type
declaration statement.

Subprograms - Subroutines and Functions 6-21

• An EXTERNAL statement can specify an entry name and use it as an
actual argument-but not as a dummy argument.

• Entry names cannot appear in executable statements that physically
precede their appearance in an ENTRY statement.

• Alternate return arguments can be included in ENTRY statements if
they have asterisks in the dummy argument list. ENTRY statements
that specify alternate return arguments can be used only in subroutine
subprograms.

• Dummy arguments can be used in ENTRY statements even if they
differ in order, number, type, and name from the dummy arguments
used in the FUNCTION, SUBROUTINE, and other ENTRY statements
in the same subprogram. However, each reference to a function,
subroutine, or entry must use an actual argument list that agrees
in order, number, and type with the dummy argument list in the
corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

• Dummy arguments can be referred to only in executable statements
that follow the first SUBROUTINE, FUNCTION, or ENTRY statement
in which the dummy argument is specified. If a dummy argument
is not currently associated with an actual argument, the dummy
argument is undefined and cannot be referenced-arguments do not
retain their association from one reference of a subprogram to another.

• ENTRY statements cannot appear within a block IF construct or a DO
loop.

6.2.4.1 ENTRY Statements in Function Subprograms

All entry names within a function subprogram are associated with the
name of the function subprogram. Therefore, defining any entry name
or the name of the function subprogram defines all the associated names
with the same data type. All associated names with different data types
become undefined.

The function and entry names do not need to have the same data type,
but they all must be consistent within one of the following groups of data
types:

Group 1:

Group 2:

Group 3:

BYTE, INTEGER•2, INTEGER•4, LOGICAL•2, LOGICAL•4 ,
REAL•4, REAL•8, COMPLEX•8

COMPLEX•16, REAL•16

CHARACTER

6-22 Subprograms - Subroutines and Functions

When either a RETURN statement or an implied return at the end of a
subprogram is executed, the symbolic name used to refer to the function
subprogram must be defined.

If the function has a character data type, all entry names must have a
character data type and the same length specification as the function . The
specified length must also agree with the length specified in the program
unit referring to the entry name. If an asterisk enclosed in parentheses is
used to specify the length of the entry name, the entry name has a passed
length (see Section 6.1.1.3 and the VAX FORTRAN User Manual) .

Example

The following example illustrates a function subprogram that computes
the hyperbolic functions sinh, cosh, and tanh:

REAL FUNCTION TANH(X)

C Statement function to compute twice sinh

TSINH(Y) = EXP(Y) - EXP(-Y)

C Statement function to compute twice cash

TCOSH(Y) = EXP(Y) + EXP(-Y)

C Compute tanh

TANH = TSI NH(X)/TCOSH(X)
RETURN

C Compute sinh

ENTRY SINH(X)
SI NH = TSINH(X)/2 .0
RETURN

C Compute cash

ENTRY COSH(X)
COSH = TCOSH(X)/2 .0
RETURN
END

Subprograms - Subroutines and Functions 6-23

6.2.4.2 ENTRY Statements in Subroutine Subprograms

To refer to an entry point name in a subroutine, you should issue a
CALL statement that includes the entry point name defined in the ENTRY
statement. In the following example, the call is to an entry point (SUBA)
within the subroutine (SUB). Execution begins with the first statement
following ENTRY SUBA (Q,R,S), using the actual arguments (A,B,C)
passed in the CALL statement.

Main Program Subroutine

CALL SUBA(A,B,C) SUBROUTINE SUB(X,Y,Z)

ENTRY SUBA(Q,R,S)

Alternate returns can be specified in ENTRY statements, for example:

SUBROUTINE SUB(K,*.*)

ENTRY SUBC(J ,K,*.*,X)

RETURN 1
RETURN 2
END

If you issue a call to entry point SUBC, you must include actual alternate
return arguments, for example:

CALL SUBC(M,N,*100,*200,P)

In this case, the RETURN 1 statement transfers control to statement label
100 and the RETURN 2 statement transfers control to statement label 200
in the calling program.

6-24 Subprograms - Subroutines and Functions

6.3 FORTRAN Intrinsic Functions

FORTRAN intrinsic functions perform frequently used mathematical
computations. They are supplied in the VAX FORTRAN library.

References to FORTRAN intrinsic functions use the same form as ref
erences to user-defined functions. For example, the following intrinsic
function reference is valid:

R = 3.14159 * ABS(X-1)

This reference to the intrinsic function ABS causes the absolute value of
X-1 to be multiplied by the constant 3.14159; the result of that calculation
is assigned to the variable R.

Two methods of referencing intrinsic functions are described in the
following sections.

A listing of the intrinsic functions, their data types, and the data type
of their actual arguments is located in Appendix D. Further information
describing intrinsic function algorithms is located in the VMS Run-Time
Library Routines Volume.

6.3.1 Intrinsic Function References

FORTRAN library function names are called intrinsic function names.
Normally, a name in the table of intrinsic function names (Table D-3)
refers to the FORTRAN library function with that name. However, the
name can refer to a user-defined function when the name appears in an
EXTERNAL statement (see Section 4.7).

Except when they are used in an EXTERNAL statement, intrinsic function
names are local to the program unit that refers to them. Thus, they can be
used for other purposes in other program units. In addition, the data type
of an intrinsic function does not change if you use an IMPLICIT statement
to change the implied data type rules.

Intrinsic and user-defined functions cannot have the same name if they
appear in the same program unit.

Subprograms - Subroutines and Functions 6-25

6.3.1.1 Generic References to Intrinsic Functions

Many of the intrinsic functions supplied with VAX FORTRAN have generic
names, which means that you refer to them by a common name and the
selection of the actual library routine to be used is based on the data type
of the argument in the function reference. For example, there are five
intrinsic functions that calculate cosines. All of them can be referred to
by the generic name COS. Their names are COS, DCOS, QCOS,CCOS,
and CDCOS These functions differ in that they return REAL•4, REAL•8,
REAL*16, COMPLEX•8, and COMPLEX•16 values, respectively.

To invoke the cosine function, you can refer to it generically as COS. The
compiler then selects the appropriate routine, based on the arguments that
you specify. For example, if the argument is REAL•4, COS is selected; if it
is REAL•8, DCOS is selected; and if COMPLEX•8, CCOS is selected.

However, you can explicitly refer to a particular routine if you wish. Thus,
to invoke the double-precision cosine function, you could specify DCOS
rather than use the generic name.

The compiler lists the internal names of the intrinsic functions it has
selected in the "FUNCTIONS AND SUBROUTINES REFERENCED"
section of the source code listing.

Function selection occurs independently for each generic reference. Thus,
you can use a generic reference repeatedly in the same program unit to
access different intrinsic functions.

Table 6-3 lists generic intrinsic function names. However, you cannot use
the names in this table to generically select intrinsic functions if you use
them in any of the following ways:

• As the name of a statement function

• As a dummy argument name, a common block name, or a variable or
array name

Using the generic name of an intrinsic function in an INTRINSIC state
ment (see Section 4. 9) does not affect function references. However, when
you use a generic function name in an actual argument list as the name of
a function to be passed, function selection does not occur because there is
no argument list on which to base a selection. The name is treated accord
ing to the rules for handling specific intrinsic function names described in
Section 6.3.

6-26 Subprograms - Subroutines and Functions

Generic function names are local to the program unit that refers to them.
Thus, they can be used for other purposes in other program units.

Table 6-3: Summary of Generic Intrinsic Function Names

Generic Name

ABS

AINT, ANINT

NINT

INT

REAL

DBLE

QEXT

CMPLX

DCMPLX

MOD, MAX, MIN, SIGN, DIM

EXP, LOG, SIN, COS, SQRT

LOGlO, SIN O, COSD, TAN,
TAND . ATAN, ATAND, ATAN2,
ATAN2D, ASIN, ASIND, ACOS,
ACOSD, SINH, COSH, TANH

Data Type of Data Type of
Argument Result

Integer Integer
Real Real
COMPLEX•8 REAL•4
COMPLEX•1 6 REAL•8

Real Real

Real Integer

Integer Integer
Real Integer
Complex Integer

Integer REAL•4
Real REAL•4
Complex REAL•4

Integer REAL•8
Real REAL•8
Complex REAL•8

In teger REAL•16
Real REAL•1 6
Complex REAL• 16

Integer COMPLEX•8
Real COMPLEX•8
Complex COMPLEX•8

Integer COMPLEX•16
Real COMPLEX•16
Complex COMPLEX•l6

Integer Integer
Real Real

Real Real
Complex Complex

Real Real

Subprograms - Subroutines and Functions 6-27

6.3. 1.2 Using Intrinsic Function Names

Example 6-1 shows the different ways to use intrinsic function names. In
this annotated example, a single executable program uses the name SIN in
four distinct ways:

• As the name of a statement function

• As the generic name of an intrinsic function

• As the specific name of an intrinsic function

• As the name of a user-defined function

Using the name in these four ways emphasizes the local and global
properties of the name.

Example 6-1: Using Multiple Function Names

C Compare ways of computing sine.

PROGRAM SINES
REAL*8 X, PI
PARAMETER (PI=3 .141592653589793238DO)
COMMON V(3)

C Define SIN as a statement function t)

SIN(X) = COS(PI/2-X)
DO 10 X = -PI, PI, 2*PI/100
CALL COMPUT(X)

C Reference the statement function SIN f)

10 WRITE (6,100) X, V, SIN(X)
100 FORMAT (5F10 .7)

END

SUBROUTINE COMPUT(Y)
REAL*8 Y

C Use intrinsic function SIN as actual argument t)

INTRINSIC SIN
COMMON V(3)

C Generic reference to double-precision sine Ct
V(1) = SIN(Y)

Example 6-1 Cont'd. on next page

6-28 Subprograms - Subroutines and Functions

Example 6-1 (Cont.): Using Multiple Function Names

C I NTR INSIC FUNCTION SI NE AS ACTUAL ARGUMENT 0
CALL SUB(REAL(Y) ,SIN)
END

SUBROUTI NE SUB(A,S)

C Declare SI N as name of user function (!)

EXTERNAL SI N

C Declare SI N as type REAL*8 f)

REAL*8 SIN
COMMON V(3)

C Evaluate intrinsic funct i on SI N Cal
V(2) = S(A)

C Evaluate user-defined SI N function @>

V(3) = SIN(A)
END

C Define the user SI N function ~

REAL*8 FUNCTION SIN (X)
INTEGER FACTOR
SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5)
1 - X**7/FACTOR(7)
END

I NTEGER FUNCTION FACTOR(N)
FACTOR = 1
DO 10 I=N,1 , -1

10 FACTOR = FACTOR * I
END

Notes:

0 A statement function named SIN is defined in terms of the generic
function name COS. Because the argument of COS is double precision,
the double-precision cosine function is evaluated. The statement
function SIN is itself single precision.

8 The statement function SIN is called.

0 The name SIN is declared intrinsic so that the single-precision intrinsic
sine function can be passed as an actual argument at 0 .

0 The generic function name SIN is used to refer to the double-precision
sine function .

Subprograms - Subroutines and Functions 6-29

0 The single-precision intrinsic sine function is used as an actual argu-
ment.

0 The name SIN is declared a user-defined function name.

0 The type of SIN is declared double precision.

0 The single-precision sine function passed at 0 is evaluated.

0 The user-defined SIN function is evaluated.

G> The user-defined SIN function is defined as a simple Taylor series
using a user-defined function FACTOR to compute the factorial
function.

6.3.2 Character and Lexical Comparison Library Functions

Character library functions take character arguments and return integer,
ASCII, or character values; lexical comparison library functions take
character arguments and return logical values.

6.3.2.1 Character Functions

FORTRAN provides four character functions: LEN, INDEX, !CHAR, and
CHAR.

LEN Function

The LEN function returns the length of a character expression. It takes the
following form:

LEN(c)

c
Is a character expression. The value returned indicates how many bytes
there are in the expression.

The following example uses the LEN function:

SUBROUTINE REVERSE(S)
CHARACTER T, S*(*)

J = LEN(S)
DO 10 I=1,J/2

T = S(I : I)
S(I:I) = S(J : J)
S(J :J) = T
J = J - 1

10 CONTINUE
RETURN
END

6-30 Subprograms - Subroutines and Functions

INDEX Function

The INDEX function searches for a substring (c2) in a specified character
string (cl) and, if it finds the substring, returns the substring' s starting
position. If c2 occurs more than once in cl, the starting position of the
first (leftmost) occurrence is returned. If c2 does not occur in cl, the value
zero is returned. INDEX takes the following form:

INDEX(c1 ,c2)

c1
Is a character expression specifying the string to be searched for the
substring specified by c2 .

c2
Is a character expression specifying the substring for which the starting
location is to be determined.

The following example uses the INDEX function:

SUBROUTINE FIND_SUBSTRI NGS(SUB,S)
CHARACTER*(*) SUB, S
CHARACTER*132 MARKS

I = 1
MARKS = I I

10 J = I NDEX(S(I :) , SUB)
IF (J .NE. 0) THEN

I = I + (J-1)
MARKS(I : I) = 1 # 1

I = I + 1
IF (I . LE . LEN(S)) GO TO 10
END IF

WRITE (6 ,91) S, MARKS
91 FORMAT (2(/1X,A))

END

ICHAR Function

The ICHAR function converts a character expression to its equivalent
ASCII code and returns the ASCII value. It takes the following form:

!CHAR (c)

Subprograms - Subroutines and Functions 6-31

c
Is the character to be converted to an ASCII code. If c is longer than one
byte, only the value of the first byte is returned; the remainder is ignored.

CHAR Function

The CHAR function converts an ASCII integer value to a character value
and returns the character value. It takes the following form:

CHAR (i)

I

Is an integer expression.

6.3.2.2 Lexical Comparison Functions

FORTRAN provides four lexical comparison functions:

• LLT, where LLT(X,Y) is equivalent to (X .LT. Y)

• LLE, where LLE(X,Y) is equivalent to (X .LE. Y)

• LGT, where LGT(X,Y) is equivalent to (X .GT. Y)

• LGE, where LGE(X,Y) is equivalent to (X .GE. Y)

Lexical functions take the following form:

func(c,c)

func
Is one of the symbolic names: LLT, LLE, LGT, or LGE.

c
Is a character expression.

The lexical comparison functions defined by the FORTRAN-77 standard
are guaranteed to make comparisons according to the ASCII collating
sequence, even on non-ASCII processors. On VAX systems, the lexi
cal comparison functions are identical to the corresponding character
relationals.

6-32 Subprograms - Subroutines and Functions

Example

The following example illustrates a valid lexical comparison function:

CHARACTER*10 CH2
IF (LGT(CH2, 'SMITH')) STOP

The IF statement in the example is equivalent to the following IF state
ment:

IF (CH2 .GT . 'SMITH') STOP

Subprograms - Subroutines and Functions 6-33

..

Chapter 7

1/0 Statements

The following VAX FORTRAN I/O (input/ output) statements initiate data
transfer operations:

• READ

• WRITE

• REWRITE

• ACCEPT

• TYPE and PRINT

Following a discussion of the basic components of complete I/O state
ments, this chapter discusses individual I/O statements. For information
on other statements that influence data transfer operations, but do not
directly initiate them, see Chapters 8 and 9.

7 .1 Components of 1/0 Statements

I/O statements have three basic components: the statement keyword, the
control list, and the I /0 list. The I/O statement keywords specifically
control either input or output operations, as follows:

1/0 Statements 7-1

Input Operations Output Operations

READ

ACCEPT

WRITE

REWRITE

TYPE

PRINT

The control list and 1/0 list are described separately in the next two
sections.

7. 1. 1 Control List

•

•

The control list is composed of one or more parameters that specify the
following:

• Logical unit to be acted upon

• Internal file to be acted upon

•

•

•

•

Whether formatting is to be used for data editing, and if it is, the
format specification

NAMELIST group-name specification

Number of a direct access record to be accessed
Key and key-of-reference of a keyed access record to be accessed

Name of the variable that contains the completion status of an 1/0
operation

Label of the statement that receives control if an error or end-of-file
condition occurs

The type of a statement can always be determined by the contents of its
control list. For example, the control list of a formatted 1/0 statement
always contains a format specifier (FMT=f or f), whereas that of a list
directed 1/0 statement always contains an asterisk in place of a format
specifier.

7-2 1/0 Statements

The control list takes the following form:

(p[,p] . ..)

p
Is a specifier taking the following form:

[keyword=] value
Is one of several possible keywords and values that are described in
the following sections.

7. 1. 1. 1 Syntax Rules for Control-List Parameters

In VAX FORTRAN I/O statements, control-list parameters have three
different forms (keyword, nonkeyword, and mixed) with the following
syntax rules:

•

•

Keyword Form: When the control list parameter is specified with a
keyword and equal sign, control-list parameters can appear in any
order in the control list.

Nonkeyword Form: When the control-list parameter is specified without
a keyword or equal sign, either the logical unit specifier or the internal
file specifier must occupy the first (leftmost) position in the control list.

The nonkeyword form of the direct-access record specifier must
immediately follow the nonkeyword form of the logical unit specifier.

When used with a logical unit specifier or internal file specifier, the
nonkeyword form of the formator namelist specifier must occupy the
second position in the control list. The unit or internal file specifier
must also be in nonkeyword form (and thus occupy the first position
in the control list).

• Mixed Forms: When keyword and nonkeyword forms are mixed in the
same 1/0 statement, nonkeyword rules apply to the control list.

7 .1.1.2 Logical Unit Specifier

The logical unit specifier identifies the logical unit to be accessed. It takes
either one of the following forms:

[UNIT= Ju
[UNIT=]*

1/0 Statements 7-3

u
Is an integer expression with a value in the range 0 through 99 that refers
to a specific file or I/O device. If necessary., the value is converted to
integer data type before use.

*
Specifies that the default input or output unit is to be accessed.

The keyword UNIT is optional only if the logical unit specifier is the first
parameter in the control list.

A logical unit number is assigned to a file or device in one of two ways:

• Explicitly through an OPEN statement (see Section 9.1)

• Implicitly by the system (see the VAX FORTRAN User Manual for more
information on implicit logical assignments).

7. 1. 1 .3 Internal File Specifier

The internal file specifier identifies the internal file to be used. It takes the
following form:

[UNIT=) cv

CV

Is a character scalar memory reference or a character array name reference.

The external logical unit specifier and the internal file specifier are mutu
ally exclusive. The keyword UNIT is optional if the internal file specifier
is the first parameter in the control list.

See the VAX FORTRAN User Manual for more information on internal
files.

7. 1. 1.4 Format Specifiers

The format specifier stipulates either explicit or list-directed formatting . In
the case of explicit formatting, it also identifies the parameter that controls
formatting. The format specifier takes either one of the following forms:

7-4 1/0 Statements

[FMT=] f
[FMT=] *

f
Is the statement label of a FORMAT statement; an integer variable that
has been assigned a FORMAT statement label with an ASSIGN statement;
the name of an array or array element containing a run-time format; or a
character expression containing a run-time format.

*
Specifies list-directed formatting.

The keyword FMT is optional only if the format specifier is the second
parameter in the control list, and the first parameter is a logical unit or
internal file specifier without the optional keyword UNIT.

Chapter 8 describes FORMAT statements. Section 8.8 describes the
interaction between formats and I/O statements.

In sequential I/O statements, you can use an asterisk instead of a for
mat specifier to denote list-directed formatting (see Sections 7.2.1.2 and
7.3.1.2).

7. 1.1.5 Namelist Specifier

The namelist specifier stipulates namelist-directed IjO. It identifies the
group-name of the list of entities that may be modified on input or written
on output.

The namelist specifier takes the following form:

[NML;]group-name

group-name
Is the name of a list previously defined in a NAMELIST statement.

The keyword NML is optional only if the following conditions are true:

•

•

The firs t parameter is a logical unit specifier without an optional UNIT
keyword.

The namelist specifier is the second parameter in the control list.

A namelist specifier cannot be used in a statement that contains a format
specifier.

1/0 Statements 7-5

7. 1. 1.6 Record Specifier

The record specifier identifies the number of the record you wish to access
in a file with relative organization. It takes either one of the following
forms:

REC = r
' r

r
Is a numeric expression with a value that represents the position in a
direct access file of the record to be accessed. The value must be greater
than or equal to one, and less than or equal to the maximum number of
records allowed in the file. If necessary, a record number is converted to
integer data type before being used .

7.1. 1.7 Key-Field- Value Specifier

The key-field-value specifier identifies the key field of a record that you
wish to access in an indexed file. The key-field value is equal to the
contents of a key field. The key field contains such information as the
number, direction, length, byte offset, and type of the fields. It can be
used to access records in indexed files because it determines their location.

The attributes of the key field are specified at file creation. Records in an
indexed file have the same attributes for their key fields.

Key-field-value specifiers have two components:

• An expression (val) that specifies a value used to compare with
key-field values.

• A selection condition keyword (such as KEY) that specifies how to
compare val with key-field values.

They take the following forms:

Ascending Keys

7-6 1/0 Statements

KEY = val
KEYEQ = val
KEY NXT = val
KEYNXTN E = val
KEYGT = val
KEYGE = val

Descending Keys

KEY = val
KEYEQ = va l
KEYNXT = val
KEY NXTNE = val
KEYLT = va l
KEYLE = val

val
Is an integer or character expression. Integer expressions must compare
with integer key fields; they cannot contain real or complex values.
Character expressions must compare with character key fields; they must
be ASCII strings made up of either characters or BYTE (LOGICAL*l) array
names containing Hollerith data .

The Selection Condition

The selection condition determines how val is compared with key-field
values. The keyword can be any one of the following specifiers:

Ascending Keys

• KEY and KEYEQ-the value in the key field must be equal to val.

• KEYNXT-the value in the key field must be the next value of the key
equal to or greater than val.

• KEYNXTNE-the value in the key field must be the next value of the
key strictly greater than val.

• KEYGT-the value in the key field must be greater than val.

• KEYGE-the value in the key field must be greater than or equal to
val.

Descending Keys

• KEY and KEYEQ-the value in the key field must be equal to val.

• KEYNXT-the value in the key field must be the next value of the key
equal to or less than val.

• KEYNXTNE-the value in the key field must be the next value of the
key that is strictly less than val.

• KEYL T-the value in the key field must be less than val.

• KEYLE-the value in the key field must be less than or equal to val.

1/0 Statements 7-7

Keyword specifiers are interchangeable between ascending-key files and
descending-key files-except KEYGT, KEYGE, KEYL T, and KEYLE. These
four keywords are one-directional. If you use them with keys going in the
opposite direction, the Run-Time Library (RTL) displays an error at run
time.

KEYNXT and KEYNXTNE are interchangeable between ascending-key files
and descending-key files . Unlike KEY and KEYEQ, they are interpreted
differently depending on the direction of the keys in the file. In ascending
key files, KEYNXT is the same as KEYGE, and KEYNXTNE is the same
as KEYGT. In descending-key files, KEYNXT is the same as KEYLE, and
KEYNXTNE is the same as KEYL T.

You should use KEYGT and KEYGE when exclusively accessing ascend
ing keys and, similarly, KEYLT and KEYLE when exclusively accessing
descending keys . When a program must be able to use either kind, you
should use KEYNXT and KEYNXTNE.

The Selection Process

To select key- field integer values, the process compares values using the
signed integers themselves.

To select key-field character values, the process compares values using the
ASCII collating sequence. Additionally, the comparative length of val and
a key-field value, and the specified selection condition determine the kind
of selection that occurs: exact, generic, or approximate-generic.

Exact selections occur when the expression in val is equal in length to
the expression in the key field of the currently accessed record and the
keyword specifies a unique selection.

Generic selections occur when the expression in val is shorter than the
expression in the key field of the currently accessed record and the
keyword specifies a unique selection. The process compares all the
characters in val, from left to right, with the same amount of characters
in the key field , also from left to right. Remaining key-field characters are
ignored.

For example, if val is 'ABCD' and a record's key-field is 10 characters long,
and you specified an equal selection, the process could select a record with
a key-field value 'ABCDEFGHIJ'.

An approximate-generic selection occurs when val is shorter than the
expression in the key field and the keyword (KEYGT, KEYGE, KEYLT,
KEYLE, KEYNXT, and KEYNXTNE) does not specify a unique selection.
As with generic selections, the process uses only the leftmost characters in

7-8 1/0 Statements

the key-field to compare values . It selects the first key field that satisfies
the generic selection criterion .

For example, if val is 'ABCD' and a record 's key-field value is 5 characters
long and you specify a greater-than selection, the process could select the
key-field value 'ABCEx' (and not the key-field value 'ABCDA').

No selection occurs if val is longer than the key-field value. The RTL
displays an error message.

7 .1.1.8 Key- of- Reference Specifier

The key-of-reference specifier may optionally accompany the key-field
value specifier; it designates the key-field index that is searched to find
the specified key-field value. Key-of-reference specifiers take the following
form:

KEY ID= kn

kn
Is an integer expression, called the key-of-reference number, that desig
nates the key field index to be searched.

The key-of-reference number is an integer value in the range zero to the
maximum key number defined for the file. A value of zero specifies tbe
primary key, a value of one specifies the first alternate key, and so forth .

If no key-of-reference number is given, it defaults to th e last spedfication
given in a keyed 1/0 statement for that logical unit.

7 .1.1.9 1/0 Status Specifier

The I/O status specifier designates a variable in which is a stored value
that indicates whether an error or end-of-file condition exists:

• If the value is zero, no error or end-of-file condition exists.

• If the value is positive, an error condition exists.

• If the value is negative, an end-of-file condition exists but an error
condition does not.

The I/O status specifier takes the following form:

IOSTAT=ios

1/0 Statements 7-9

ios
Is an integer scalar memory reference.

See the VAX FORTRAN User Manual for more information on the error
numbers returned by IOSTAT.

7. 1. 1. 10 Transfer-of-Control Specifiers

The transfer-of-control specifier identifies an executable statement and
transfers control to that statement if an end-of-file or error condition
occurs. It takes either one of the following forms:

END=s

ERR=s

s
Is the label of the executable statement that receives control.

A sequential READ statement can include either or both of the previous
specifications, in any order. WRITE,REWRITE, direct access READ,and

keyed access READ statements can include only the ERR=s specification.

The statement label in the END=s or ERR=s specification must refer to
an executable statement within the same program unit as that of the 1/0
statement.

An end-of-file condition occurs when no more records exist in a file during
a sequential read, or when an end-of-file record produced by the ENDFILE
statement is encountered (see Section 9.6). End-of-file conditions do not
occur in direct accessor keyed access READ statements.

If a READ statement encounters an end-of-file condition during an I/O
operation, it transfers control to the statement designated by the END=s
specification. If there is no END=s specification, control transfers to
the statement designated by the ERR=s specification. If there is neither
specification (nor an IOSTAT specifier), the program terminates.

If a READ, WRITE,or REWRITE statement encounters an error condition
during an I/O operation, it transfers control to the statement whose label
appears in the ERR=s specification. If neither an ERR specifier nor an
IOSTAT specifier is present, the I/O error terminates program execution.

See the VAX FORTRAN User Manual for a description of system subrou
tines that you can use to control error processing. To obtain information
from the 1/0 system on the type of error that occurred, use the IOSTAT
parameter discussed in Section 7 .1.1. 9.

7-1 0 I/ 0 Statements

Examples

The following READ statement transfers control to statement 550 if an
end-of-file condition occurs on logical unit 8.

READ (8 ,END=550) (MATRIX(K) ,K=1 ,100)

The following WRITE statement transfers control to statement 390 if an
error occurs while it is being executed.

WRITE (6,50,ERR=390) VAR1 , VAR2, VAR3

The following READ statement transfers control to statement 150 (if
an error occurs while it is being executed) or to statement 200 (if an
end-of-file condition occurs).

READ (1 ,FORM,ERR=150,END=200) ARRAY

7.1.2 1/0 List

The I/O list in an input or output statement contains the scalar references,
array name references, and aggregate referencesspecifying the memory lo
cations from which or to which data will be transferred. (See Section 2.2.6
for a description of the different types of references .)

The I/O list in an input statement cannot contain constants and expres
sions because these do not specify named memory locations that can be
referenced later in the program. The I/O list in an output statement can
contain constants and expressions, however, because the compiler can use
temporary memory locations to hold these values during the execution of
the I/O statement.

An I/O list takes the following form:

s [, s] . . .

s
Is a simple list element or an implied-DO list.

The I/O statement assigns values to (or transfers values from) the list
elements in the order in which they appear, from left to right.

1/0 Statements 7-11

7 .1.2. 1 Simple List Elements

A simple 1/0 list element can be a scalar reference, scalar array name
reference, or aggregate reference; for example:

WRITE (5 , 10) J, K(3). 4, (L+4)/2 , N

When you use an array name reference or an aggregate reference in an
1/0 list, an input statement reads enough data to fill every element of the
array or aggregate . An output statement writes all of the values in the
array or aggregate .

Data transfer begins with the initial element of the array and proceeds in
the order of subscript progression, with the leftmost subscript varying most
rapidly; for example, the following statement defines a two-dimensional
array:

DIMENSION ARRAY(3,3)

If the name ARRAY, with no subscripts, appears in a READ statement,
that statement assigns values from the input record(s) to ARRAY(l,1),
ARRAY(2,1), ARRAY(3,l), ARRAY(l,2), and so on through ARRAY(3,3).

In an input statement, variables in the 1/0 list can be used in array
subscripts later in the list; for example:

READ (1 ,1250) J, K. ARRAY(J,K)
1250 FORMAT (I1,1X , I1,1X,F6 .2)

The input record contains the following values:

1 ,3,721 .73

When the READ statement is executed, the first input value is assigned to
J and the second to K, thereby establishing the actual subscript values for
ARRAY(J,K). Then the value 721.73 is assigned to ARRAY(l,3). Variables
that are to be used as subscripts in this way must appear before (to the left
of) their use as the array subscripts in the 1/0 list.

An output statement 1/0 list may contain any valid expression. However,
this expression must not attempt any further 1/0 operations on the same
logical unit. For example, an output statement 1/0 list expression must
not refer to a function subprogram that performs 1/0 on the same logical
unit.

An input statement 1/0 list must not contain a constant or an expression,
except as a subscript expression in an array reference or as an expression
in a substring reference.

7-12 1/0 Statements

Aggregate references can be used only in unformatted input and output
statements. When multiple array names or aggregate referencesare used

in the I/O list of an unformatted input or output statement, only one
record is read or written regardless of how many array name references or
aggregate referencesappear in the list.

7 .1.2.2 Implied-DO Lists in 1/0 Statements

An implied-DO list is an I/O list element that acts as though it were a
part of an I/O statement within a DO loop. Implied-DO lists can achieve
the following:

• Specify iteration of part of an I/O list

• Transfer part of an array

• Transfer array elements in a sequence different from the order of
subscript progression

An implied-DO list takes the following form:

(list, i=e1,e2[, e3])

list
Is an I/O list.

I

Is an integer or real variable.

e1,e2,e3
Are arithmetic expressions.

The variable i and the parameters el, e2, and e3 have the same forms and
the same functions that they have in the DO statement (see Section 5.3).
The list immediately preceding the DO loop parameter is the range of the
implied-DO loop. Elements in that list can reference i, but they must not
alter the value of i.

Examples

The following examples demonstrate valid implied-DO lists.

• The following two WRITE statements have the same effect:

WRITE (3 ,200) (A ,B,C, !=1,3)

WRITE (3,200) A,B,C,A,B,C,A,B,C

1/0 Statements 7-13

• In the next example, the I/O list consists of an implied-DO list
containing another implied-DO list nested within it:

•

WRITE (6) (I, (J,P(I),Q(I,J), J=1,L), I=1,M)

Together, the implied-DO lists write a total of (1+3•L)•M fields,
varying the Js for each value of I.

In a series of nested implied-DO lists, parentheses indicate the nesting
(see Section 5.3.1.2). Execution of the innermost lists is repeated most
often:

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)
150 FORMAT (F10.2)

Because the inner DO loop is executed 10 times for each iteration of
the outer loop, the second subscript, L, advances from 1 through 10
for each increment of the first subscript. This is the reverse of the
order of subscript progression. In addition, K is incremented by 2;
thus, only the odd-numbered rows of the array are output.

• The entire list of an implied-DO list is transmitted before the control
variable is incremented:

READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)

In this example, P(l), Q(l,l), Q(l,2) ... ,Q(l,10) are read before I is
incremented to 2.

• When processing multidimensional arrays, you can use a combination
of fixed subscripts and subscripts that vary according to an implied-DO
list:

READ (3,5555) (BOX(1,J). J=1,10)

This statement assigns input values to BOX(l,1) through BOX(l,10)
and then terminates without affecting other elements of the array.

• The value of the control variable can also be output directly:

WRITE (6, 1111) (I, I=1, 20)

This statement prints the integers 1 through 20.

If the I/O statement containing an implied-DO list terminates abnormally
(with an END= or ERR= transfer or with an IOSTAT value other than
zero), the loop control variable becomes undefined.

7-14 1/0 Statements

7 .2 READ Statements

The READ statement transfers input data to internal storage from records
contained in external logical units or to internal storage from internal files.

VAX FORTRAN provides the following kinds of READ statements:

• Sequential

• Direct

• Internal

• Indexed

7 .2.1 Sequential READ Statements

Sequential READ statements transfer input data to internal storage from
external records that were sequentially accessed. They can be formatted,
list-directed, namelist-directed, or unformatted, taking one of the following
forms:

Formatted

READ (extu,fmt[,iostat] [,err] [,end]) [iolist]

READ f [. i olist]

List-Directed

READ (extu. * [. iostat] [, err] [,end]) [iolist]

READ * [, io l ist]

Name list-Directed

READ (extu . nml [. iostat] [. err] [.end])

READ n

Unformatted

READ (extu[.iostat] [, err] [.end]) [iolist]

Control-list parameters are symbolized as follows:

extu-a logical unit specifier

fmt-a format specifier

1/0 Statements 7-15

f-the nonkeyword form of a format specifier

•-a list-directed format specifier (You can also use FMT=•.)

nml-a namelist specifier

n-the nonkeyword form of a namelist specifier

iostat-an I/O status specifier

err, end-transfer-of-control specifiers

The 1/0-list parameter is symbolized as follows:

iolist-the I/O list specifier

The parameters in 1/0 statements are fully described in Sections 7.1.1
(control-list parameters) and 7.1.2 (1/0-list parameter). Their syntax rules
are summarized in Section 7 .1.1.1.

7 .2.1.1 Formatted Sequential READ Statement

The formatted sequential READ statement performs the following opera
tions:

• Reads character data from one or more external records accessed under
the sequential or keyedmode of access.

• Translates the data from character to binary form using format specifi
cations to provide editing.

• Assigns the translated data to the elements in the 1/0 list, in the
order, from left to right, in which those elements appear in the list.

If the number of 1/0 list elements in a statement is less than the number
of fields in an input record, the statement ignores the excess fields .

See Section 7.2.3 for information about the combined use of formatted
sequential READ statements and indexed READ statements under the
keyed mode of access

7 -16 I I 0 Statements

7 .2.1.2 List-Directed Sequential READ Statement

The list-directed sequential READ statement performs the following
operations:

• Reads character data from records accessed under the sequential mode
of access.

• Translates data from external to binary form using the data types of
the elements in the 1/0 list, and the forms of the data, to provide
editing.

• Assigns the translated data to the elements in the 1/0 list in the order,
from left to right, in which those elements appear in the list.

The external records from which list-directed READ statements read data
contain a sequence of values and value separators. A value in one of these
records may be any one of the following:

• A constant: Each constant has the form of the corresponding
FORTRAN constant. Input constants can be any of the following
data types: integer, real, logical, complex, and character. The data
type of the constant determines the data type of the value and the
translation from external to internal form.

A numeric list element can correspond only to a numeric constant, and
a character list element can correspond only to a character constant. If
the data types of a numeric list element and its corresponding numeric
constant do not match, conversion is performed according to the rules
for arithmetic assignment (see Table 3-1).

A complex constant has the form of a pair of real or integer constants
separated by a comma and enclosed in parentheses. Spaces can occur
between the opening parenthesis and the first constant, before and
after the separating comma, and between the second constant and the
closing parenthesis.

A logical constant represents true or false values: .TRUE. or any value
beginning with T, .T, t, or .t; or .FALSE. or any value beginning with
F, .F, f, or .f.

A character constant must be delimited by apostrophes. An apos
trophe occurring within a character constant is represented by two
consecutive apostrophes.

Hollerith, octal, and hexadecimal constants are not permitted.

1/0 Statements 7-17

• A null value: A null value is specified by two consecutive commas
with no intervening constant or by an initial comma or trailing comma.
Spaces can occur before or after the commas. A null value indicates
that the corresponding list element remains unchanged. A null value
can represent an entire complex constant, but cannot be used for either
part of a complex constant.

• A repetition of constants in the form r•c: The form r•c indicates r
occurrences of c, where r is a nonzero, unsigned integer constant and
c is a constant. Spaces are not permitted except within the constant c
as previously specified.

• A repetition of null values in the form r•: The form r* indicates r
occurrences of a null value, where r is an unsigned integer constant.

A record can use any one of the following entities as a value separator,
with or without surrounding spaces of tabs:

• Space or tab

• Comma

• Slash

The slash terminates processing of the input statement and the record,
leaving all remaining 1/0 list elements unchanged.

When any of the preceding entities appear in a character constant, they
are considered part of the constant, not value separators.

The end of a record is equivalent to a space character except when it
occurs in a character constant. In this case, the end of the record is
ignored, and the character constant is continued with the next record (the
last character in the previous record is immediately followed by the first
character of the next record).

Spaces at the beginning of a record are ignored unless they are part of a
character constant continued from the previous record. In this case, the
spaces at the beginning of the record are considered part of the constant.

Each input statement reads one or more records as required to satisfy the
1/0 list. If a slash separator occurs or the 1/0 list is exhausted before all
of the values in a record are used, the remainder of the record is ignored.

7-18 1/ 0 Statements

Example

Consider a program unit with the following statements:

CHARACTER*14 C
DOUBLE PRECISION T
COMPLEX D,E
LOGICAL L,M
READ (1 ,*) I ,R,D, E,L,M, J ,K,S,T,C,A,B

And the external record that will be read:

4 6 .3 (3.4,4.2) , (3 , 2) . T.F . ,3*14 .6 . 'ABC .DEF/GHI' ' JK'/

Upon execution of the program unit, the following values are assigned to
the 1/0 list elements:

1/0 List Element Value

I 4

R 6.3

D (3.4,4 .2)

E (3.0,2.0)

L .TRUE.

M .FALSE.

K 14

s 14.6

T 14.6DO

c ABC, DEF /GHI'JK

A, B, and J are unchanged.

1/0 Statements 7-19

7 .2.1.3 Namelist-Directed Sequential READ Statement

The namelist-directed sequential READ statement performs the following
operations:

• Reads data from external records accessed under the sequential mode
of access until it finds the specified group-name.

• Translates the data from external to internal form using the data types
of the entities in the corresponding NAMELIST statement, and the
forms of the data, to provide editing.

• Assigns the translated data to the specified namelist entities in the
order in which the entities appear in the input records .

The input for a namelist-directed READ consists of a record or records
delimited by the special symbol dollar sign ($), which starts in the second
column of the first record.

Namelist input takes the following form:

column 2

+
$group-name entity= value [,entity= value , ...] $[END]

$
Is the special symbol used to indicate the beginning or end of input. The
ampersand (&) can be used in place of the dollar sign.

group-name
Is the name of the namelist that contains the entity or entities to be given
values. The namelist must have been previously defined in a NAMELIST
statement in the program unit.

entity
Is a namelist-defined entity. The entity can be a variable, array name,
subscripted variable, variable with a substring, or subscripted variable
with a substring.

value
Is a constant, a list of constants, a repetition of constants in the form r*c,
or a repetition of values in the form r* (see Section 7.2.1.2).

END
Is an optional part of the last delimiter.

7-20 1/0 Statements

Information on syntax rules for namelist input, prompting for current
values, and assigning values is presented separately under the headings
that follow.

Syntax Rules

The following syntax rlAles apply to namelist input:

•

•

•

•

•

•

•

The group-name cannot contain spaces or tabs and must be contained
within a single record.

The entities appearing on the left side of the equal sign in a value as
signment cannot contain spaces or tabs except within the parentheses
of a subscript or substring specifier. Each entity must be contained in
a single record.

Each constant that appears in a value assignment has the form of
the corresponding FORTRAN constant. A complex constant has the
form of a pair of real or integer constants separated by a comma
and enclosed in parentheses. Spaces can occur between the opening
parenthesis and the first constant, before and after the separating
comma, and between the second constant and the closing parenthesis.

A logical constant represents true or false values: .TRUE. or any value
beginning with T, .T, t, or .t; or .FALSE. or any value beginning with
F, .F, f, or .f. A character constant is delimited by apostrophes. An
apostrophe occurring within a character constant is represented by two
consecutive apostrophes . Hollerith, octal, and hexadecimal constants
are not permitted.

The valid separators in a list of constants are spaces, tabs, and com
mas. Except within a character constant, any number of consecutive
spaces and tabs is equivalent to a single space. A null value is speci
fied by two consecutive commas, by an initial comma, or by a trailing
comma. A separating comma preceded or followed by spaces is equiv
alent to a single comma. A null value indicates that the corresponding
namelist array element is unchanged. A null value can represent an
entire complex constant, but it cannot be used for either part of a
complex constant.

The form r•c indicates r occurrences of c, where r is a nonzero, un
signed integer constant and c is a constant. Spaces are not permitted
except within the constant c in complex or character constants.

The form r* indicates r occurrences of a null value, where r is an
unsigned integer constant.

1/0 Statements 7-21

• The valid separators in a list of value assignments are spaces, tabs, and
commas. Any number of consecutive spaces and tabs is equivalent to
a single space. A separating comma preceded or followed by spaces is
equivalent to a single comma. Consecutive commas are not permitted.

• The equal sign in a value assignment can be preceded and followed
by any number of spaces or tabs.

• The end of a record in namelist input is equivalent to a space character
except when the end of the record occurs in a character constant. If
this occurs, the end of the record is ignored, and the character constant
is continued with the next record; that is, the last character in the
previous record is followed immediately by the second character of
the next record. The first character is used for carriage control.

Prompting for Current Values

If your program is executing a namelist READ statement, you may prompt
it for the group name and name list entities that it will accept. To do this,
enter a question mark (?) record character. If you precede the question
mark with an equal sign (=?), the group name and current values of the
namelist entities for that group are displayed as in namelist output (see
Section 7.3.1.3).

Assigning Values

Input values can be assigned in any order using an assignment of the
form: entity=value. Each new line of input can begin in column 2 or in
any column thereafter. Column 1 of each record is assumed to contain a
FORTRAN carriage-control character. Any data placed in that column is
ignored.

Assigned values, array subscripts, and substring specifiers must be con
stant values. Symbolic (PARAMETER) constants are not permitted.

Input values can be any of the following data types: integer, real, logical,
complex, and character. If the data type of a namelist entity and its as
signed constant value do not match, conversion is performed according to
the rules for arithmetic assignment (see Table 3- 1). Conversion between
numeric and character data types is not permitted.

7-22 1/0 Statements

Examples

In the first example, the NAMELIST statement associates the group-name
CONTROL with a list of five entities . The corresponding READ statement
reads input data and assigns values to specified namelist entities .

NAMEL IST / CO NT ROL / TITLE , RESET, START, STOP, I NTERVAL
CHARACTER*10 TITLE
REAL*8 START, STOP
LOGICAL *4 RESET
I NTEGER*4 I NTERVAL
READ (UNIT=1, NML=CONTROL)

In the next example, values are assigned to all of the namelist entities
previously associated with the group-name CONTROL.

column 2
t
$CONTROL
~ TITLE='TESTT002AA' ,
IT AB j I NTERVAL=1 ,
ITABj RESET= TRUE.
~ START=1 0.2 ,
~ STOP =14 5
$END

Upon program execution, values are assigned to list enti ties as follo ws:

Entity Value

TITLE TESTT002AA

RESET T

START 10.2

STOP 14.5

INTERVAL 1

It is not necessary to assign values to all of the lis t en ti ties defined in the
corresponding NAMELIST group-name.

The namelist-directed READ statement does not change the values of
namelist enti ties that do not appear in the input data. Similarly, when
character substrings and array elements are specified, only the values of
the specified variable substrings and array elements are changed . For
example, if the next input to the character variable TITLE used in the last
example contains the following statement:

1/0 Statements 7-23

column 2

• $CO NTROL TITLE(9 :10)='BB' $END

Its new value is TESTT002BB; the first eight positions of the variable do
not change.

When a list of values is assigned to an array name, the first value in
that list is assigned to the first element of the array, the second value is
assigned to the second element of the array, and so on. The number of
array elements assigned must be less than or equal to the size of the array.
Consecutive commas within a list indicate that the values of the array
elements remain unchanged. Consider the following example:

A program unit contains the following statements:

DIMENSION ARRAY(20)
NAMELIST /ELEM/ ARRAY
READ (UNIT=1 , NML=ELEM)

The input contains the following:

column 2

• $ELEM
ARRAY=1 . 1, 1 .2, , 1 .4$END

Upon program execution, the READ statement assigns values to array
elements as follows:

Array Element Value

ARRAY(l) 1.1

ARRAY(2) 1.2

ARRAY(3) unchanged

ARRAY(4) 1.4

ARRAY(5)- ARRAY(20) unchanged

When a list of values is assigned to an array element, the assignment
begins with the specified array element, rather than with the first element
of the array. In this example, if the next input to ARRAY consists of the
following:

column 2

• $ELEM
ARRAY (3)=34 .54 , 45 .34, 87.63, 3*20 .00
$END

7-24 1/0 Statements

Upon program execution, the READ statement assigns new values only to
ARRAY elements 3 through 8. It does not alter unspecified elements.

7.2.1.4 Unformatted Sequential READ Statement

The unformatted sequential READ statement reads an external record
accessed under the sequential or keyed mode of access; it assigns the
fields of binary data contained in that record to the elements in the I/O
list, in the order, from left to right, in which those elements appear in the
list. The data is not translated and the amount of data assigned to each
element is determined by the element's data type.

The unformatted sequential READ statement reads exactly one record. If
the I/O list does not use all of the values in a record, the remainder of the
record is discarded; this happens when there are more values in the record
than elements in the list. If the number of list elements is greater than the
number of values in the record, an error occurs.

If a statement contains no I/O list, it skips over one full record, positioning
the file to read the following record on the next execution of a READ
statement.

Examples

In the first example, the READ statement reads one record from the file
connected to logical unit 1 and assigns values of binary data to variables
FIELDl and FIELD2, in that order.

READ (UNIT=1) FIELD1 , FIELD2

In the second example, the READ statement advances the file connected
to logical unit 8 by one record.

READ (8)

1/0 Statements 7-25

7 .2.2 Direct Access READ Statements

Direct access READ statements transfer input data to internal storage from
external records accessed under the direct mode of access. They can be
formatted or unformatted, taking one of the following forms:

Formatted

READ (extu, rec, fmt [, iostat] [,err]) [iolist]

Unformatted

READ (extu,rec[.iostat] [,err]) [iolist)

Control-list parameters are symbolized as follows:

extu-a logical unit specifier

rec-a record specifier

fmt-a format specifier

iostat-an 1/0 status specifier

err-a transfer-of-control specifier

The 1/0-list parameter is symbolized as follows:

iolist-the 1/0-list specifier

The parameters in 1/0 statements are fully described in Sections 7.1.1
(control-list parameters) and 7.1.2 (1/0-list parameter) and their control
list syntax rules are summarized in Section 7.1.1.1.

7 .2.2. 1 Formatted Direct Access READ Statement

The formatted direct access READ statement performs the following
operations:

• Reads character data from one or more external records accessed under
the direct mode of access.

• Translates the data from character to binary form using format specifi
cations to provide editing.

• Assigns the translated data to the elements in the 1/0 list in the
left-to-right order in which the elements appear.

7-26 1/0 Statements

If the I/O list and formatting do not use all of the characters in a record,
the remainder of the record is discarded. If the I/O list and formatting
require more characters than are contained in the record, the remaining
fields are read as spaces.

Example

In the following example, the READ and FORMAT statements read
the first 10 fields from record 35 in the file connected to logical unit 2,
translate the values to binary form, and then assign the translated values
to the internal storage locations of the 10 elements of the array NUM.

READ (2,REC=35,FMT=10) (NUM(K). K=1.10)
10 FORMAT (1012)

7 .2.2.2 Unformatted Direct Access READ Statement

The unformatted direct access READ statement reads an external record
accessed under the direct mode of access; it assigns the fields of binary
data contained in that record to the elements in the I/O list, in the order,
from left to right, in which those elements appear in the list. The data is
not translated. The amount of data assigned to each element is determined
by that element's data type.

The unformatted direct access READ statement reads exactly one record.
If that record contains more fields than there are elements in the I/O
list of the statement, the unused fields are discarded; if there are more
elements than fields, an error occurs.

Examples

In the first example, the READ statement reads record 10 in the file
connected to logical unit 1 and assigns binary integer values to elements 1
and 8 of the array LIST.

READ (1'10) LIST(1), LIST(8)

In the second example, the READ statement reads record 58 in the file
connected to logical unit 4 and assigns binary values to five elements of
the array RHO.

READ (4.REC=58,IOSTAT=K,ERR=500) (RHO(N). N=1,5)

1/0 Statements 7-27

7 .2.3 Indexed READ Statements

Indexed READ statements transfer input data to internal storage from
external records using keyed access.

In an indexed file, a series of records can be read in key value sequence
by using an indexed READ statement together with a sequential READ
statement. The first record in the sequence is read using the indexed
statement and the rest are read using sequential READ statements.

Indexed READ statements can be formatted or unformatted, taking one of
the following forms:

Formatted

READ (extu, fmt , key [,key i d] [, i ostat] [, err]) [io list]

Unformatted

READ (extu , key[, keyid] [.iostat] [, err]) [iolist]

Control-list parameters are symbolized as follows:

extu-a logical unit specifier

fmt-a format specifier

key-a key specifier

keyid-a key-of-reference specifier

iostat-an I/O status specifier

err-transfer-of-control specifier

The I/0-list parameter is symbolized as follows:

iolist-the I/0-list specifier

All of the parameters used in I/O statements are described in Sections
7.1.1 (control-list parameters) and 7.1.2 (I/0-list parameter). The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

7-28 1/0 Statements

7 .2.3.1 Formatted Indexed READ Statement

The formatted indexed READ statement performs the following operations:

• Reads character data from one or more external records accessed under
the keyed mode of access .

• Translates the data from character to binary form using forma t specifi
cations to provide editing.

• Assigns the translated values to the elements in the I/O list, in the
order, from left to right, in which they appear in the list.

The formatted indexed READ statement can be used only on indexed files.
If the I/O list and format specifications specify that additional records are
to be read, the statement reads those additional records sequentially using
the current key-of-reference value.

If the KEYID parameter is omitted, the key-of-reference remains un
changed from the most recent specification. If the KEYID parameter is
omitted from the fi rst keyed read, the key-of-reference is the primary key.

If the specified key value is shorter than the key field referred to, the key
value is matched against the leftmost characters of the appropriate key
field until a match is found . The record supplying the match is then read.
If the key value is longer than the key field referred to, an error occurs.

Example

In the following example, the READ sta tement retrieves a record with
a key value of 'ABCD' in the primary key, and then uses the format
contained in the array item KAT(25) to read the firs t four fields from the
record into variables A,B,C, and D.

READ (3 ,KAT(25) ,KEY=' ABCD') A,B,C,D

1/0 Statements 7-29

7 .2.3.2 Unformatted Indexed READ Statement

The unformatted indexed READ statement reads an external record
accessed under the keyed mode of access. It assigns the fields of binary
data contained in that record to the elements in the 1/0 list, in the order,
from left to right, in which those elements appear in the list. The data is
not translated. The amount of data assigned to each element is determined
by the element's data type.

The unformatted indexed READ statement reads exactly one record, and
may be used only on indexed files. If the number of I/O list elements is
less than the number of fields in the record being read, the unused fields
in the record are discarded. If the number of 1/0 list elements is greater
than the number of fields , an error occurs.

If a specified key value is shorter than the key field referred to, the key
value is matched against the leftmost characters of the appropriate key
field until a match is found. The record supplying the match is then read.
If the specified key value is longer than the key field that is referred to, an
error occurs.

Examples

In the first example, the READ statement reads from the file connected
to logical unit 3 and retrieves the record with the value 'SMITH' in the
primary key field (bytes 1 to 5) . The firs t two fields of the record retrieved
are placed in variables ALPHA and BETA, respectively.

OPEN (UN IT=3, STATUS= ' OLD' ,
1 ACCESS= 'KEYED' , ORGANIZATION='INDEXED ',
2 FORM='UNFORMATTED' ,
3 KEY=(1:5,30 :37, 18 :23))

READ (3,KEY='SMI TH') ALPHA, BETA

In the second example, the READ statement retrieves the first record
having a value equal to or greater than 'XYZDEF' in the second alternate
key field (bytes 18 to 23). The first field of that record is placed in the
variable IKEY.

READ (3,KEYGE='XYZDEF' ,KEYID=2,ERR=99) IKEY

7-30 1/0 Statements

7 .2.4 Internal READ Statement

Internal READ statements transfer input data to internal storage from
an internal file . (This statement has an alternative statement, DECODE,
which is discussed in Appendix A.)

The internal READ statement can be formatted or list-directed, taking one
of the following forms:

Formatted

READ (intu. fmt [. iostat] [.err] [.end]) [iolist]

List-Directed

READ (intu, * [,iostat] [,err] [,end]) [iolist]

Control-list parameters are symbolized as follows:

intu-an internal file specifier

fmt-a format specifier

•-a list-directed formatting specifier (You can also use FMT=•)

iostat-an I/O status specifier

err, end-transfer-of-control specifiers

The I/0-list parameter is symbolized as follows:

iolist-the I/0-list specifier

The parameters used in I/O statements are described in Sections 7.1.1
(control-list parameters) and 7.1.2 (I/0-list parameter). The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

7.2.4.1 Formatted Internal READ Statement

The formatted internal READ statement performs the following operations:

• Reads character data from an internal file.

• Translates the data from character to binary form using format specifi
cations to provide editing.

• Assigns the translated data to the elements in the I/O list in the
left-to-right order in which the elements appear.

1/0 Statements 7-31

Example

The following program segment reads a record and examines the first
character to determine whether the remaining data should be interpreted
as decimal, octal, or hexadecimal. It then uses internal-file reads to make
appropriate conversions from character string representations to binary.

INTEGER IVAL
CHARACTER TYPE. RECDRD*80
CHARACTER*(*) AFMT . IFMT. OFMT, ZFMT
PARAMETER (AFMT=' (Q ,A) I . IFMT= I (110) I . OFMT= I (011)' .
1 ZFMT= '(Z8) ')
ACCEPT AFMT, ILEN, RECORD
TYPE= RECORD(1 :1)
IF (TYPE .EQ . 'D') THEN

READ (RECORD(2 :MIN(ILEN, 11)). IFMT) IVAL
ELSE IF (TYPE .EQ . '0') THEN

READ (RECORD(2 :MIN(ILEN, 12)). OFMT) IVAL
ELSE IF (TYPE .EQ . 'X') THEN

READ (RECORD(2 :MI N(ILEN, 9)) .ZFMT) IVAL
ELSE

PRINT *. I ERROR I

END IF
END

7 .2.4.2 List-Directed Internal READ Statement

The list-directed internal READ statement performs the following opera
tions:

• Reads character data from an internal file .

• Translates the data from external to binary form using the data types
of the elements in the I/O list and the forms of the data to provide
editing.

• Assigns the translated data to the elements in the I/O list, in the
order, from left to right, in which those elements appear in the list.

N amelist-directed formatting is not permitted with an internal READ
statement. Refer to the VAX FORTRAN User Manual for information on
the characteristics and use of internal files.

7-32 1/0 Statements

7 .3 WRITE Statements

The WRITE statement transfers output data from internal storage to user
specified external logical units (disks, printers, terminals, mailboxes) or to
internal files. It can be used in sequential, direct, keyed, or internal access
modes.

WRITE statements cannot write to existing records in an indexed file. For
statements that can perform this function in indexed files, refer to the
REWRITE statement discussed in Section 7.4.

7 .3.1 Sequential WRITE Statements

Sequential WRITE statements transfer output data from internal storage to
external records accessed under the sequential mode of access. (See the
VAX FORTRAN User Manual for descriptions of the various access modes.)

Sequential WRITE statements can be formatted, list-directed, namelist
directed, or unformatted, taking one of the following forms:

Formatted

WRITE (extu . fmt [. iostat] [.err]) [iolist]

List-Directed

WRITE (extu , * [, iostat] [.err]) [iolist]

N amelist-Directed

WRITE (extu,nml[,iostat] [,err])

Unformatted

WRITE (extu [, iostat] [, err]) [iolist]

Control-list parameters are symbolized as follows:

extu-a logical unit specifier

fm t-a format specifier

*-a list-directed formatting specifier (You can also use FMT=•)

nml-a namelist specifier

1/0 Statements 7-33

iostat-an I/O status specifier

err-a transfer-of-control specifier

The I/0-list parameter is symbolized as follows:

iolist-the I/0-list specifier

All of the parameters used in I/O statements are described in Sections
7.1.1 (control-list parameters) and 7.1.2 (I/0-list parameter). The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

7 .3.1.1 Formatted Sequential WRITE Statement

The formatted sequential WRITE statement performs the following opera
tions:

• Retrieves specified data from internal storage.

• Translates the data from binary to character form using format specifi
cations to provide editing.

• Writes the translated values to an external record that is sequentially
accessed.

The length of the records written to a user-specified output device (for
example, a line printer) must not exceed the maximum record length that
the device can process. In the case of a line printer, this maximum is
usually 132 characters.

Using an appropriate format specification, a statement can write more than
one record.

If you transfer numeric data using formatted output statements and you
subsequently use the data as input, the resulting data may not be precise
because of a rounding of the data during conversion from binary to
character form. Therefore, if you expect to subsequently use numeric data
as input, use unformatted output and input statements for data transfer.

Examples

In the first example, the WRITE statement writes one record to logical
unit 6. The record consists of the character constant defined in the
FORMAT statement.

WRITE (6,650)
650 FORMAT (' HELLO THERE')

7-34 1/0 Statements

In the second example, the WRITE statement writes one record consisting
of fields AYE, BEE, and CEE to logical unit 1.

WRITE (1 ,95) AYE , BEE , CEE
95 FORMAT (3F8 5)

In the third example, the WRITE statement writes three separate records
to logical unit 1. Each record has only one field .

WRITE (1,900) DEE , EEE, EFF
900 FORMAT (F8 .5)

7 .3.1.2 List-Directed Sequential WRITE Statement

The list-directed sequential WRITE statement performs the following
operations:

• Retrieves specified data from internal storage.

• Translates that data from binary to character form using the data type
of the elements in the I/O list to provide editing.

• Writes the translated values to an external record accessed under the
sequential mode of access.

The values transferred as output by the list-directed WRITE statement
have the same forms as those of constant values transferred as input
by the list-directed READ and ACCEPT statements, with the following
exceptions:

• Character constants are transferred without delimiting apostrophes.

• Each internal apostrophe is represented by only one apostrophe
instead of two.

Consequently, records containing list-directed character output data can
be printed but not used for list-directed input. (See Section 7.2.1.2 for a
discussion of list-directed value forms.)

Table 7-1 shows the default output formats for each data type .

1/ 0 Statements 7-35

Table 7-1: List-Directed Default Output Formats
Data Type

LOGICAL*l(BYTE)

LOGICAL*2

LOGICAL*4

INTEGER*2

INTEGER•4

REAL

REAL•8

REAL•8(/ G _FLOATING)

REAL*16

COMPLEX

COMPLEX*l6

COMPLEX•16(/ G_FLOATING)

CHARACTER

Output Format

15

L2

L2

17

112

1PG15.7E2

1PG24.16E2

1PG24.15E3

1PG43.33E4

'(',1PG14.7E2, ',', 1PG14.7E2,')'

'(' , 1PG23.16E2,',', 1PG23.1 6E2,')'

'(', 1PG23.15E3,' ,', 1PG23.15E3,')'

An .
where n is the length of the character
expression

List-directed output formats behave in the following ways:

•

•

•
•
•

7-36 1/0 Statements

List-directed output statements do not produce octal values, null
values, slash separators, or repeated forms of values.

List-directed output edits a complex value so that there are no embed
ded spaces in the value.

Each output record begins with a space for carriage control.

Each output statement writes one or more complete records .

Each individual output value is contained within a single record, with
the exception of character constants longer than one record length and
complex constants that can be split after the comma.

Example

The following example illustrates a valid list-directed WRITE statement:

DIMENSION A(4)
DATA A/4 *3 .4/
WRITE (1 ,*) 'ARRAY VALUES FOLLOW'
WRITE (1 . *) A . 4

In this example, the WRITE statements write the following records to
logical unit 1:

ARRAY VALUES FOLLOW
3.400000 3.400000 3 .400000 3 .400000 4

7 .3 . 1.3 Namelist-Directed Sequential WRITE Statement

The namelist-directed sequential WRITE statement performs the following
operations:

• Retrieves data specified by the namelist specifier from internal storage.

• Translates that data from internal to external form using the data type
of the list entities in the corresponding NAMELIST statement.

• Writes the translated values to external records accessed under the
sequential mode of access.

The namelist-directed WRITE statement transfers as output the current
values of all list entities associated with the specified namelist specifier.
These values are written in a form that can be read as input by the
namelist-directed READ and ACCEPT statements.

The order of data output is dictated by the sequence in which namelist
entities are defined in a NAMELIST statement . The firs t list entity and
its value are written first, the second list entity and its value are written
second, and so on. Each value display begins on a new line.

1/0 Statements 7-37

Example

Consider a program unit with the following statements:

CHARACTER*19 NAME(2)/2* ' '/
REAL PITCH , ROLL, YAW , POSITION(3)
LOGICAL DIAGNOSTI CS
INTEGER ITERATIO NS
NAMELIST /PARAM/ NAME , PITCH , ROLL, YAW, POS I TION,
1 DIAGNOSTICS , ITERATIONS

READ (UNIT=l,NML=PARAM)
WRITE (UNIT=l.NML=PARAM)

The input contains the following statements:

6$PARAM6NAME(2)(10:)='HEISENBERG ',
6PITCH=5.0, YAW=O.O, ROLL=5 .0 ,
6DIAGNOSTICS= .TRUE .
6ITERAT IONS=10$END

In this case, the WRITE statement would write the following:

MPARAM
6NAME HE ISENBERG' ,
6PITCH 5 .000000
6ROLL 5 .000000
6YAW O.OOOOOOOE+OO ,
6POSITION = 3*0 .0000000E+OO ,
6DIAGNOSTICS = T,
6ITERATIONS 10
MEND

Notice that character values are enclosed in apostrophes . The value
of POSITION is not defined in the namelist-directed input. It may be
defined elsewhere in the program or be undefined. The namelist-directed
WRITE statement prints the current contents of POSITION.

7-38 1/0 Statements

7 .3.1.4 Unformatted Sequential WRITE Statement

The unformatted sequential WRITE statement transfers specified bi
nary data from internal storage to an external record accessed under the
sequential mode of access. The data is not translated.

The unformatted sequential WRITE statement writes exactly one record. If
there is no I/O list, the statement writes one null record.

Examples

In the first example, the WRITE statement writes a record to the file
connected to logical unit 1 containing the values (in binary form) of
elements 1 through 5 of the array LIST.

WRITE (1) (LIST(K), K=l , 5)

In the second example, the WRITE statement writes one null record to the
file connected to logical unit 4.

WRITE (4)

7 .3.2 Direct Access WRITE Statements

Direct access WRITE statements transfer output data from internal stor
age to external records accessed under the direct mode of access. (The
attributes of a direct access file are established by the OPEN statement.)

Direct access WRITE statements can be formatted or unformatted, taking
one of the following forms:

Formatted

WRITE (extu, rec, fmt [, iostat] [,err]) [iolist]

Unformatted

WRITE (extu, rec[, iostat] [,err]) [iolist]

Control-list parameters are symbolized as follows:

extu-a logical unit specifier

rec-a record specifier

fmt-a format specifier

iostat-an I/O status specifier

err-transfer-of-control specifier

1/0 Statements 7-39

The I/0-list parameter is symbolized as follows:

iolist-the I/0-list specifier

The parameters used in 1/0 statements are described in Sections 7.1.1
(control-list parameters) and 7.1.2 (1/0-list parameter). The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

7 .3.2.1 Formatted Direct Access WRITE Statement

The formatted direct access WRITE statement performs the following
operations:

• Retrieves binary values from internal storage.

• Translates those values to character form using format specifications to
provide editing.

• Writes the translated data to a user-specified external record accessed
under the direct mode of access.

If the values specified by the 1/0 list and formatting do not fill the output
record being written, the unused portion of the record is filled with space
characters. If the values overfill the record, an error occurs.

7 .3.2.2 Unformatted Direct Access WRITE Statement

The unformatted direct access WRITE statement retrieves binary values
from internal storage and writes those values to a user-specified external
record accessed under the direct mode of access. The values are not
translated.

If the values specified by the 1/0 list do not fill the output record being
written, the unused portion of the record is filled with zeros. If the values
do not fit in the record, an error occurs.

7-40 1/0 Statements

7 .3.3 Indexed WRITE Statements

The indexed WRITE statement transfers output data from internal storage
to external records accessed under the keyed mode of access. (The OPEN
statement establishes the attributes of an indexed file.)

Indexed WRITE statements always write a new record . You should use
the REWRITE statement to update an existing record (see Section 7.4).

The syntactic form of the indexed WRITE statement is identical to that
of the sequential WRITE sta tement. The two statements differ only in
that the indexed WRITE statement refers to a logical unit connected to an
indexed fi le, whereas the sequential WRITE statement refers to a logical
unit connected to a sequential file.

Indexed WRITE statements can be formatted or unformatted, taking one of
the following forms:

Formatted

WRITE (extu,fmt[,iostat] [, err]) [iolist]

Unformatted

WRITE (extu[, iostat] [, err]) [iolist]

Control-list parameters are symbolized as follows:

extu- a logical unit specifier

fmt-a format specifier

ios tat-an I/O status specifier

err-a transfer-of-control specifier

The 1/ 0 -list parameter is symbolized as follows:

io list- the 1/ 0-list specifier

The parameters used in I/ O statements are described in Sections 7.1.1
(control-list parameters) and 7.1.2 (I/0-list parameter) . The rules for
specifying control -list parameters are summarized in Section 7.1.1.1.

1/0 Statements 7-41

7 .3.3.1 Formatted Indexed WRITE Statement

The formatted indexed WRITE statement performs the following opera
tions:

• Retrieves binary values from internal storage.

• Translates those values to character form using format specifications to
provide editing.

• Writes the translated data to one or more external records accessed
under the keyed mode of access.

No key parameters are required in the list of control parameters because
all necessary key information is contained in the output record.

If the values specified by the I/O list and formatting do not fill a fixed
length record being written, the unused portion of the record is filled with
space characters. If additional records are specified, they are inserted in
the fi le logically according to the key values contained in each record.

When you write an INTEGER key using the formatted indexed WRITE
statement, the key is translated from internal binary form to external
character form. A subsequent attempt to read the record using an integer
key may not match the key field in the record.

Example

In the following example, the formatted indexed WRITE statement writes
the translated values of each of the 20 elements of the array RDATA
to a new formatted record in the indexed file connected to logical unit
4. KEYVAL is the key by which the record is accessed. (This example
assumes that the first 10 bytes of a record are a character key.)

WRITE (4 , 100) KEYVAL, (RDATA (I), I=1,20)
100 FORMAT (A10,20F15 7)

7-42 1/0 Statements

7 .3.3.2 Unformatted Indexed WRITE Statement

The unformatted indexed WRITE statement retrieves binary values from
internal storage and writes those values to an external record accessed
under the keyed mode of access . The values are not translated .

No key parameters are required in the list of control parameters because
all necessary key information is contained in the output record.

If the values specified by the I/O list do not fill a fixed-length record being
written, the unused portion of the record is filled with zeros. If the values
specified overfill the record, an error occurs.

Using records (structured data items) has advantages when writing to
indexed files. Such files usually have a fixed record format. Thus, by
using a structure declaration that models the file 's record format, you can
accomplish the I/O operation with a single record variable instead of a
potentially long I/O list. For an example, refer to the VAX FORTRAN User
Manual.

7 .3.4 Internal WRITE Statement

Internal WRITE statements transfer output data from internal storage to
an internal file. (You can also use the ENCODE statement discussed in
Appendix A to control internal output.) See the VAX FORTRAN User
Manual for information about the characteristics and use of internal files.

Namelist-directed formatting is not permitted with internal WRITE state
ments.

Internal write statements can be formatted or list-directed, taking one of
the following forms:

Formatted

WRITE (in tu, fmt [. iostat] [,err]) [iolist]

List-Directed

WRITE (intu , * [, i ostat] [,err]) [iolist]

Control-list parameters are symbolized as follows:

intu-an internal file specifier

fmt-a format specifier

1/0 Statements 7-43

-a list-directed formatting specifier (You can also use FMT=.)

iostat-an 1/0 status specifier

err-a transfer-of-control specifier

The I/0-list parameter is symbolized as follows:

iolist-the I/0-list specifier

The parameters used in 1/0 statements are described in Sections 7.1 .1
(control-list parameters) and 7.1.2 (I/0-list parameter). The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

7 .3.4.1 Formatted Internal WRITE Statement

The formatted internal WRITE statement performs the following opera
tions:

• Retrieves data from internal storage.

• Translates that data from binary to character form using format
specifications to provide editing.

• Writes the translated values to an internal file.

7 .3.4.2 List-Directed Internal WRITE Statement

The list-directed internal WRITE statement performs the following opera
tions:

• Retrieves data from internal storage.

• Translates that data from binary to character form using the data type
of the elements in the I/O list to provide editing.

• Writes the translated values to an internal file.

7-44 1/ 0 Statements

7 .4 REWRITE Statement

The REWRITE statement transfers data from internal storage to the current
record in a file with indexed or relative organization. The current record
is the one that was most recently accessed by a successful direct access,
indexed, or sequential READ statement.

Between a READ and REWRITE statement, you should not issue any other
I/O statement (except INQUIRE) on that logical unit. Execution of any
other I/O statement on the logical unit destroys the current-record context
and causes the current record to become undefined.

REWRITE statements can be formatted or unformatted, taking one of the
following forms:

Formatted

REWRITE (extu , fmt [, i ostat] [,err]) [iolist]

Unformatted

REWRITE (extu [, iostat] [,err]) [io l ist]

Control-list parameters are symbolized as follows:

extu-a logical unit specifier

fmt-a format specifier

iostat-an I/O status specifier

err-a transfer-of-control specifier

The I/O list parameter is symbolized as follows:

iolist-an I/0-list specifier

The parameters used in I/O statements are described in Sections 7.1.1
(control-list parameters) and 7.1.2 (I/0-list parameter). The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

1/0 Statements 7-45

7 .4. 1 Formatted REWRITE Statement

The formatted REWRITE statement performs the following operations:

• Retrieves binary values from internal storage.

• Translates those values to character form using format specifiers to
provide editing.

• Writes the translated data to an existing record in a file with indexed
or relative organization.

The formatted REWRITE statement writes to the current record in the
file (the last record accessed by a preceding direct access, indexed, or
sequential READ statement).

Errors occur with the following conditions:

• If the primary key value is changed, an error usually occurs.

• If you attempt to rewrite more than one record in a single REWRITE
statement operation, an error occurs.

• If a record is too long, an error occurs. (A record might become too
long when unused space in a rewritten fixed -length record is filled
with spaces.)

Example

In the following example, the REWRITE statement updates the current
record contained in the indexed organization file connected to logical
unit 3 with the values represented by NAME, AGE, and BIRTH.

REWRITE (3 ,10,ERR=99) NAME , AGE , BIRTH
10 FORMAT (A16,I2 ,A8)

7 .4.2 Unformatted REWRITE Statement

The unformatted REWRITE statement retrieves binary values from internal
storage and writes those values to an existing record in a file with indexed
or relative organization. The values are not translated.

The unformatted REWRITE statement writes to the current record in the
file (the last record accessed by a preceding indexed or sequential READ
statement). Unused space in a rewritten fixed-length record is filled with
zeros.

7-46 1/0 Statements

Errors occur with the following conditions:

• If the primary key value is changed, an error usually occurs .

• If you attempt to rewrite more than one record in a single REWRITE
statement operation, an error occurs .

• If a record is too long, an error occurs .

7 .5 ACCEPT Statement

The ACCEPT statement transfers input data to internal storage from
external records accessed under the sequential mode of access. ACCEPT
statements can only be used on implicitly connected logical units .

ACCEPT statements take any one of the following forms:

ACCEPT f[, iolist]

ACCEPT * [. iolist]

ACCEPT n

Control -list parameters are symbolized as follows :

/-the nonkeyword form of a format specifier

*- a list-directed formatting specifier

n- the nonkeyword form of a namelist specifier

The 1/ 0 -list parameter is symbolized as follows:

iolist-an I/O list specifier

The parameters used in I/O statements are described in Sections 7.1.1
(control-list parameters) and 7.1.2 (I/0-list parameter) . The rules for
specifying control-list parameters are summarized in Section 7.1.1.1.

The ACCEPT statement functions exactly like the sequential READ state
ments discussed in Sections 7.2.1.1 through 7.2.1.3, with the following
important exception: the ACCEPT statement can never be connected to
user-specified logical units .

1/0 Statements 7-47

Example

In the following example, the ACCEPT statement reads character data
from the implicit unit and assigns binary values to each of the five
elements of the array CHARAR:

CHARACTER*10 CHARAR (5)
ACCEPT 200, CHARAR

200 FORMAT (5A10)

7 .6 TYPE and PRINT Statements

The TYPE and PRINT statements transfer output data from internal
storage to external records that are sequentially accessed.

TYPE and PRINT statements take the same forms, which can be any one
of the following:

TYPE f [, iolist]
PRI NT f [, iolist]

TYPE * [, iolist]
PRI NT * [, iol i st]

TYPE n
PRI NT n

Control-list parameters are symbolized as follows:

f-the nonkeyword form of a format specifier

*-the list-directed formatting specifier

n-the nonkeyword form of a namelist specifier

The I/0-list parameter is symbolized as follows:

iolist-the I/0-list specifier

The parameters used in I/O statements are described in Sections 7.1.1
(control-list parameters) and 7.1.2 (I/0-list parameter).

TYPE and PRINT statements function exactly like the formatted sequential
WRITE statement discussed in Section 7.3.1.1, with the following impor
tant exception: the formatted sequential TYPE and PRINT statements can
never be used to transfer data to user-specified logical units.

7-48 I /0 Statements

Example

In the following example, the PRINT statement writes one record to the
implicit output device. The record has four fields of character data.

CHARACTER*16 NAME, JOB
PRI NT 400 , NAME , JOB

400 FORMAT (I NAME= I • A. I JOB= I • A)

1/0 Statements 7-49

Chapter 8

1/0 Formatting

Formatting 1/0 statements specify the form of data being transferred.
They also specify the data conversion (editing) required to achieve that
form. The primary formatting statement is the FORMAT statement. It
is a nonexecutable statement used in coniunction with formatted 1/0
statements and with ASSIGN, ENCODE, and DECODE statements.

This chapter contains the following information about 1/0 formatting:

• General rules for writing FORMAT statements (Section 8.1)

• FORMAT statement syntax (Section 8.2)

• Field and edit descriptors (Section 8.3)

• Carriage control options for output records (Section 8.4)

• Format specifications and field separators (comma and slash)
(Sections 8.5 and 8.6)

• Run-time formats (instead of a FORMAT statement) that dynamically
creates formats during program execution (Section 8. 7)

• Format control interactions with 1/0 lists (Section 8.8)

1/0 Formatting 8-1

8. 1 General Rules for Writing FORMAT Statements

8-2 1/0 Formatting

This section summarizes the rules for constructing and using the format
specifications and their components in FORMAT statements. It also
svmmarizes the rules for constructing external fields and records .

The following are general FORMAT statement rules:

• A FORMAT statement must always be labeled.

• In a field descriptor such as rlw[.m] or nX, the terms r, w, m, and n
must be unsigned integer constants or variable format expressions
whose values are greater than or equal to zero. The values of r
and w must be greater than zero and less than or equal to 32767,
and the values of m and n must be greater than zero and less than
or equal to 255. (They cannot be names assigned to constants in
PARAMETER statements.) You can omit the repeat count and field
width specification.

• In a field descriptor such as Fw.d, the term d must be an unsigned
integer constant or variable format expression. You must specify d
with F, E, D, and G field descriptors even if d is zero. The decimal
point is also required. You must either specify both w and d, or omit
them both. In a field descriptor such as Ew.dEe, the term e must also
be an unsigned integer constant.

• In a field descriptor such as nHclc2 ... en, exactly n characters must
follow the H format code. You can use any printable ASCII character
in this field descriptor.

• In a scale factor of the form nP, n must be an integer constant or
variable format expression in the range -128 to 127. The scale factor
affects the F, E, D, and G field descriptors only. Once you specify
a scale factor, it applies to all subsequent real field descriptors in
that format specification until another scale factor appears. You
must explicitly specify OP to reinstate a scale factor of zero. Format
reversion does not affect the scale factor.

• No repeat count is permitted in BN, BZ, S, SS, SP, H, Q, X, T, TR, TL,
$, :, or character constant field descriptors unless these descriptors are
enclosed in parentheses and treated as a group repeat specification.

• If the associated I/O statement contains an I/O list, the format
specification must contain at least one field descriptor. This descriptor
must be I, 0, Z, F, E, D, G, L, A, or Q.

• A format specification in a character variable, character substring ref
erence, character array element, character array, character expression,
numeric array, or numeric array element must be constructed in the
same way as a format specification in a FORMAT statement, including
the opening and closing parentheses.

• If a character-constant format includes apostrophes, those apostrophes
must be represented by double apostrophes (").

8.1.1 Input Rules for FORMAT Statements

The following are general FORMAT statement input rules:

• A minus sign must precede a negative value in an external input field;
a plus sign is optional before a positive value.

• On input, an external field under I field descriptor control must be an
integer constant. It cannot contain a decimal point or an exponent. An
external field under 0 field descriptor control must contain only the
numerals 0 through 7. An external field input under Z field descriptor
control must contain only the numerals 0 through 9 and the letters
A(a) through F(f). An external field under 0 or Z field descriptor
control must not contain a sign, a decimal point, or an exponent. You
cannot use octal and hexadecimal constants in the form '777'0 or
'AF9'X in external records .

• On input, an external field under F, E, D, or G field descriptor control
must be an integer constant or a real constant. It can contain a decimal
point; an E(e), D(d), or Q(q) exponent field; or both.

• If an external field contains a decimal point, the actual size of the
fractional part of the field, as indicated by that decimal point, overrides
the d specification of the corresponding real field descriptor.

• If an external field contains an exponent, the scale factor (if any) of the
corresponding field descriptor is inoperative for the conversion of that
field.

• The field width specification must be large enough to accommodate
both the numeric character string of the external field and any other
characters that are allowed (algebraic sign, decimal point, exponent, or
combination of the three).

• A comma is the only character you can use as an external field
separator. It terminates the input of fields (for noncharacter data
types) that are shorter than the number of characters expected. It also
designates null (zero-length) fields.

1/0 Formatting 8-3

8.1.2 Output Rules for FORMAT Statements

The following are general FORMAT statement output rules:

• A format specification cannot specify more output characters than the
external record can contain. For example, a line printer record cannot
contain more than 133 characters, including the carriage control
character.

• The field width specification (w) must be large enough to accommo
date all characters that the data transfer can generate, including an
algebraic sign, decimal point, and exponent. For example, the field
width specification in an E field descriptor should be large enough to
contain d+7 or d+e+S characters.

• The first character of a record transmitted to a line printer or terminal
is typically used for carriage control; it is not printed. The first charac
ter of such a record should be a space, 0, 1, $, +, or ASCII NUL. Any
other character is treated as a space.

8.2 FORMAT Statement Syntax

8-4 1/0 Formatting

The FORMAT statement takes the following form:

FORMAT (q1f 1s1f2s2 ... fnqn)

qn
Is zero or more slash (/) record terminators. (See Section 8.5.)

f n
Is a field descriptor or a group of field descriptors enclosed in parentheses.
(See Section 8.3 .)

s
Is a field separator. (See Sections 8.5 and 8.6.)

The entire list of field descriptors and field separators, including the
parentheses, is called the format specification.

The field descriptor takes one of the following forms:

r

[r] c
[r] cw
[r] cw . m
[r]cw.d[Ee]

Is the repeat count for the field descriptor. If you omit r, the repeat count
is assumed to be 1.

c
Is a format code (I, 0, Z, F, E, D, G, L, A, H, X, T, P, Q, $, :, BN, BZ, S,
SP, SS, TL, or TR).

w
Is the external field width, in characters.

m
Is the minimum number of characters that must appear within the field
(including leading zeros).

d
Is the number of characters to the right of the decimal point.

E
In this context, identifies an exponent field.

e
Is the number of characters in the exponent.

The r, w, m, and d terms must all be unsigned integer constants or
variable format expressions. The values of r and w must be greater than
zero and less than or equal to 32767, and the values of m, d, and e must
be greater than zero and less than or equal to 255.

The r term is optional with some field descriptors but invalid with others
(see Section 8.3.1).

The d and e terms are required with some field descriptor but invalid with
others.

PARAMETER constants cannot be used as values for the r, w, m, d, ore
specifiers.

1/0 Formatting 8-5

8-6 1/0 Formatting

The field descriptors are as follows:

• Integer-Iw, Ow, Zw, Iw.m, Ow.m, Zw.m

• Logical-L w

• Real and complex-Fw.d, Ew.d, Dw.d, Gw.d, Ew.dEe, Gw.dEe

• Character-Aw

• Editing, and character and Hollerith constants-nH, ' ... ', nX, Tn, TLn,
TRn, nP, Q, $, :, BN, BZ, S, SP, SS (n is the number of characters or
character positions).

Table 8-1 summarizes the FORMAT codes.

Table 8-1: FORMAT Code Summary
Code

A

BN

BZ

D

E

F

G

H

I

L

0

Form

A[w]

BN

BZ

Dw.d

Ew.d[Ee]

Fw.d

Gw.d[Ee]

nHc. .. c

Iw[.m]

Lw

Ow[.m]

Effect

Transfers character or Hollerith values. (See
Section 8.3.9.1.)

Specifies that embedded and trailing blanks in
a numeric input field are to be ignored. (See
Section 8.3.3.1.)

Specifies that embedded and trailing blanks in a
numeric input field are to be treated as zeros. (See
Section 8.3.3.2.)

Transfers real values (D exponent field indicator). (See
Sections 8.3.6.3 and 8.3 .6.5.)

Transfers real values (E exponent field indicator) . (See
Sections 8.3 .6.2 and 8.3.6.5 .)

Transfers real values. (See Sections 8.3.6.2 and 8.3.6.5.)

Transfers real values: on input, acts like F code; on
output, acts like E code or F code, depending on the
magnitude of the value. (See Sections 8.3.6.4 and
8.3.6.5.)

Transfers data between the H field descriptor and an
external record. (See Section 8.3.9.2.)

Transfers decimal integer values. (See Section 8.3.5 .1.)

Transfers logical data: on input, transfers characters; on
output, transfers T or F. (See Section 8.3.8.)

Transfers octal values. (See Section 8.3.5 .2.)

Table 8-1 (Cont.): FORMAT Code Summary
Code

p

Q

s

SP

SS

T

TL

TR

x

z
$

Form

nP

Q

s

SP

SS

Tn

TLn

TRn

nX

Zw[.m]

$

Effect

Alters locations of decimal points. (See Section 8.3.7.)

Obtains the num.ber of characters remaining to be
transferred in an input record. (See Section 8.3.12.1.)

Reinvokes optional plus characters in numeric out
put fields; counters the action of SP and SS. (See
Section 8.3.4.3.)

Writes plus characters that would otherwise be optional
into numeric output fields. (See Section 8.3.4.1.)

Suppresses optional plus characters in numeric output
fields. (See Section 8.3.4.2.)

Specifies positional tabulation . (See Section 8.3.11.2.)

Specifies relative tabulation (left). (See Section 8.3.11.3.)

Specifies relative tabulation (right). (See Section 8.3.11.4.)

Specifies that n characters are to be skipped. (See
Section 8.3.11.1.)

Transfers hexadecimal values. (See Section 8.3.5.3.)

Suppresses carriage return during interactive 1/0. (See
Section 8.3.12.2 .)

Terminates format control if the I/O list is exhausted.
(See Section 8.3.12.3.)

8.3 Field and Edit Descriptors

A field descriptor describes the size and format of one or more data items.
Each data item in the external medium is called an external field. An edit
descriptor specifies an editing function to be performed on a data item or
items.

The numeric field descriptors ignore leading spaces in the external field.
Embedded and trailing spaces are ignored only if the BN edit descriptor is
specified or if BLANK='NULL' is in effect for the logical unit. Otherwise,
embedded and trailing spaces are treated as zeros.

1/0 Formatting 8-7

At the beginning of the execution of each formatted input statement, the
BLANK attribute for the relevant logical unit determines the interpretation
of spaces. Default values are as follows:

• BLANK= 'NULL'-when an open has been executed

• BLANK = 'ZERO'-when no explicit open has been executed

During execution of a formatted input statement, the BN and BZ edit
descriptors may supersede the default interpretation of blanks. The BN
and BZ edit descriptors affect only the formatted 1/0 statement of which
they are a part (as do the S, SP, and SS edit descriptors).

Sections 8.3.3 through 8.3.12 describe each of the field and edit descrip
tors.

8.3.1 Repeat Counts and Group Repeat Counts

8-8 1/0 Formatting

You can apply the field descriptors I, 0, Z, F, E, D, G, L, and A to a
number of successive data fields by preceding the field descriptor with an
unsigned integer constant (parameter constants not allowed) specifying the
number of repetitions. This constant is called a repeat count.

For example, the following two statements are equivalent:

20 FORMAT (E12 .4,E12 .4,E12 .4,I5,I5 , I5,I5)

20 FORMAT (3E12 .4,4I5)

Similarly, you can apply a group of field descriptors repeatedly to data
fields by enclosing these field descriptors in parentheses and preced
ing them with an unsigned integer constant (parameter constants are
prohibited). The integer constant is called a group repeat count.

For example, the following two statements are equivalent:

50 FORMAT (2I8,3(F8 .3,E15 .7) ,2(15))

50 FORMAT (I8,I8 ,F8.3 ,E15 .7,F8 .3,E15 .7,F8.3,E15.7,I5,I5)

1 2 3

An H or Q field descriptor, which could not otherwise be repeated, can be
enclosed in parentheses and treated as a group repeat specification. Thus,
it could be repeated a desired number of times.

If you do not specify a group repeat count, a default count of 1 is assumed.

Section 8.8 discusses how to use parentheses when the number of values
to be formatted is greater than the number of format specifications.

8.3.2 Variable Format Expressions

By enclosing an arithmetic expression in angle brackets, you can use it
in a FORMAT statement wherever you can use an integer (except as the
specification of the number of characters in the H field); for example:

FORMAT (I <J +1 >)

When the format is scanned, the preceding statement performs an I (inte
ger) data transfer with a field width of J+l. The expression is reevaluated
each time it is encountered in the normal format scan.

Syntax Rules

The following syntax rules apply to variable format expressions:

• If the expression is not of integer data type, it is converted to integer
data type before being used.

• The expression can be any valid FORTRAN expression, including
function calls and references to dummy arguments.

• The value of a variable format expression must obey the restrictions
on magnitude applying to its use in the format, or an error occurs.

• Variable format expressions are not permitted in run-time formats.

Variable format expressions are evaluated each time they are encountered
in the scan of the format. If the value of the variable used in the expres
sion changes during the execution of the I/O statement, the new value is
used the next time the format item containing the expression is processed.
See Section 8.8 for a description of the synchronization of I/O lists with
formats .

Example

Consider the following statements:

DIMENSION A(5)
DATA A/1 . , 2 . , 3 . , 4 . ,5 . /

DO 10 I=1 , 10
WRITE (6, 100) I

100 FORMAT (I <MAX (I,5)>)
10 CONTI NUE

1/0 Formatting 8-9

DO 20 I=l, 5
WRITE (6, 101) (A(I) , J=l, I)

101 FORMAT (<I>FlO.<I - 1>)
20 CONTI NUE

END

On execution, these statements produce the following output:

1
2
3
4
5

6
7

8
9
10
1.

2.0
3.00

4.000
5.0000

2.0
3 .00 3.00

4.000 4.000
5.0000 5 . 0000

8.3.3 Blank Control Editing

4.000
5.0000 5 0000

The treatment of embedded and trailing blanks within numeric input files
is controlled by BN and BZ edit descriptors.

8 .3.3. 1 BN Edit Descriptor

The BN descriptor causes the processor to ignore all the embedded and
trailing blanks it encounters within a numeric input field. It takes the
following form:

BN

The effect is that of actually removing the blanks and right-justifying the
remainder of the field. A field of all blanks is treated as zero. The BN
descriptor affects only I, 0, Z, F, E, D, and G editing during the execution
of an input statement.

8-10 1/0 Formatting

8.3.3.2 BZ Edit Descriptor

The BZ descriptor causes the processor to treat all the embedded and
trailing blanks it encounters within a numeric input field as zeros. It takes
the following form:

BZ

The BZ descriptor affects only I, 0, Z, F, E, D, and G editing during the
execution of an input statement.

8.3.4 Sign Control Editing

The treatment of optional plus characters in output data is controlled by
SP, SS, and S edit descriptors.

8.3.4.1 SP Edit Descriptor

An SP descriptor causes the processor to produce a plus character (+) in
any position where this character would otherwise be optional. It takes
the following form:

SP

The SP descriptor affects only I, F, E, D, and G editing during the execu
tion of an output statement.

8.3.4.2 SS Edit Descriptor

The SS descriptor causes the processor to suppress a leading plus character
from any position where this character would normally be produced as
an optional character. It has the opposite effect of the SP field descriptor
described previously. The SS descriptor takes the following form:

SS

The SS descriptor affects only I, F, E, D, and G editing during the execu
tion of an output statement.

1/0 Formatting 8-11

8.3.4.3 S Edit Descriptor

The S edit descriptor reinvokes optional plus characters (+) in numeric
output fields. It takes the following form:

s

The S descriptor counters the action of either the SP or SS descriptor by
restoring to the processor the discretion of producing plus characters on an
optional basis.

The same restrictions apply as for the SP and SS descriptors.

8.3.5 Integer Editing

Integer editing is controlled by I (decimal), 0 (octal), and Z (hexadecimal)
field descriptors.

8.3.5. 1 I Field Descriptor

The I field descriptor transfers decimal integer values. It takes the follow
ing form:

Iw [. m]

The corresponding 1/0 list element must have an integer or logical data
type .

Input Processing

In an input statement, the I field descriptor transfers w characters from
the external field and assigns them to the corresponding I/O list element
as an integer value. The external data must have the form of an integer
constant. It cannot contain a decimal point or exponent field.

The I field descriptor processes input in the following ways:

• If the value of the external field exceeds the range of the correspond
ing list element, an error occurs.

• If the first nonblank character of the external field is a minus sign, the
field is treated as a negative value.

8-12 1/0 Formatting

• If the first nonblank character is a plus sign or if no sign appears in
the field, the field is treated as a positive value.

• If the field is blank, it is treated as a value of zero.

The following list illustrates valid input processing with the I field descrip
tor:

Format

14

13

19

External Field

2788

-26

MMM312

Output Processing

Internal Value

2788

-26

312

In an output statement, the I field descriptor transfers the value of the
corresponding I/O list element, right-justified, to an external field that is
w characters long.

The I field descriptor processes output in the following ways:

• If the value does not fill the field, leading spaces are inserted.

• If the value is too large for the field, the entire field is filled with
asterisks.

• If the value of the list element is negative, the field will have a minus
sign as its leftmost, nonblank character. Therefore, the term w must
be large enough to fit a minus sign when necessary.

• If m is present, the external field consists of at least m digits and is
filled with zeros on the left, if necessary.

The following list illustrates valid output processing with the I field
descriptor:

1/0 Formatting 8-13

Format Internal Value External Representation

13 284 284

14 -284 -284

14 0 tiMO

15 174 M174

12 3244 **
13 -473 ***
17 29 .812 (Not permitted: error)

14.0 0 MM

14.2 1 M01

14.4 1 0001

If m is zero and the internal representation is zero, the external field is
blank.

8.3.5.2 0 Field Descriptor

The 0 field descriptor transfers octal (base 8) values and can be used with
any data type. It takes the following form:

Ow [. m]

Input Processing

In an input statement, the 0 field descriptor transfers w characters from
the external field and assigns them as an octal value to the corresponding
I/O list element. The external field can contain only the numerals 0
through 7. It cannot contain a sign, a decimal point, or an exponent field .

An all-blank field is treated as a value of zero. An error occurs if the value
of the external field exceeds the range of the corresponding list element.

The following list illustrates valid input processing using the 0 field
descriptor:

8-14 1/ 0 Formatting

Format

05

04

03

External Field

32767

16234

97t::.

Output Processing

Internal Octal Value

32767

1623

(Not pe rmitted : error)

In an output statement, the 0 field descriptor transfers the octal value
of the corresponding I/O list element, right-justified, to an external field
that is w characters long. No signs are transmitted; a negative value is
transmitted in internal form.

If the value does not fill the field, leading spaces are inserted; if the value
is too large for the field, the entire field is filled with asterisks. If m is
present, the external field consists of at least m digits and is zero-filled on
the left if necessary.

The following list illustrates valid output processing using 0 field descrip
tors :

Format Internal (Decimal) Value External Representation

06 32767 t::.77777

06 -32767 100001

02 14261 **
04 27 M33

05 10 . 5 41050

04.2 7 M07

04.4 7 0007

If m is zero and the external representation is zero, the external field is
filled with blanks .

1/0 Formatting 8-15

8 .3 .5.3 Z Field Descriptor

The Z field descriptor transfers hexadecimal (base 16) values, and can be
used with any data type. It takes the following form:

Zw [m]

Input Processing

In an input statement, the Z field descriptor transfers w characters from
the external field and assigns them as a hexadecimal value to the cor
responding 1/0 list element. The external field can contain only the
numerals 0 through 9 and the letters A (a) through F (f) . It cannot contain
a sign, decimal point, or exponent field.

An all-blank field is treated as a value of zero. If the value of the external
field exceeds the range of the corresponding list element, an error occurs.

The following list illustrates valid input processing using the Z field
descriptor:

Format

Z3

ZS

ZS

External Field

A94

A23DEF

95 .AF2

Output Processing

Internal Hexadecimal Value

A94

A23DE

(Not permitted: error)

In an output statement, the Z field descriptor transfers the hexadecimal
value of the corresponding 1/0 list element, right-justified, to an external
field that is w characters long. No signs are transmitted. A negative value
is transmitted in internal form.

If the value does not fill the field, leading spaces are inserted; if the value
is too large for the field, the entire field is filled with asterisks. If m is
present, the external field consists of at least m digits and is filled with
zeros on the left, if necessary.

The following list illustrates valid output processing using the the Z field
descriptor:

8-16 1/0 Formatting

Format Internal (Decimal) Value External Representation

Z4 32767 7FFF

ZS -32767 68001

Z2 16 10

Z4 - 10 . 5 C228

Z3.3 2708 A94

Z6.4 2708 M OA94

If m is zero and the internal representation is zero, the external field is
filled with blanks.

8.3.6 Real Editing

Editing performed on data with a real data type is controlled by the F, E,
D, and G field descriptors.

NOTE

When attempting to parse textual input, you should not mix F,
E, D, or G format descriptors. These descriptors accept some
forms that are purely textual as valid numeric input values. For
example, the input values D, E, El, +, - , and . are all treated
as 0.0.

8.3.6. 1 F Field Descriptor

The F field descriptor transfers real values. It takes the following form:

Fw.d

The corresponding I/O list element must have a real data type or it must
be either the real or the imaginary part of a complex data type.

Input Processing

In an input statement, the F field descriptor transfers w characters from
the external field and assigns them as a real value to the corresponding
1/0 list element.

1/0 Formatting 8-17

Input processing with the F field descriptor behaves in the following ways:

• If the first nonblank character of the external field is a minus sign, the
field is treated as a negative value.

• If the first nonblank character is a plus sign or if no sign appears in
the field, the field is treated as a positive value.

• If a field is all blank, it is treated as a zero value.

• If a field contains only an exponent or decimal point, it is treated as a
zero value.

• If the field contains neither a decimal point nor an exponent, it is
treated as a real number of w digits, in which the rightmost d digits
are to the right of the decimal point, with leading zeros assumed, if
necessary.

• If the field contains an explicit decimal point, the location of that
decimal point overrides the location specified by the field descriptor.
If the field contains an exponent, that exponent is used to establish the
magnitude of the value before it is assigned to the list element.

The following list illustrates valid input processing using the F field
descriptor:

Format

F8.5

F8.5

F8.5

FS .2

External Field

123456789

-1234.567

24.77E+2

1234567.89

Output Processing

Internal Value

123 .45678

-1234 .56

2477 .0

123.45

In an output statement, the F field descriptor transfers the value of the
corresponding 1/0 list element, rounded to d decimal positions and
right-justified, to an external field that is w characters long.

If the value does not fill the field, leading spaces are inserted; if the value
is too large for the field, the entire field is filled with asterisks .

The term w must be large enough to include all of the following:

• Minus sign when necessary (plus signs are optional)

8-18 1/0 Formatting

• At least one digit to the left of the decimal point

• Decimal point

• d digits to the right of the decimal

In other words, w must be greater than or equal to d+3.

The following list illustrates valid output processing using the F field
descriptor:

Format Internal Value External Representation

F8.5 2 .3547188 ti2 . 35472

F9 .3 8789.7361 ti8789 .736

F2 .1 51 . 44 **
Fl0.4 - 23 .24352 M-23 . 2435

FS .2 325.013 ******
FS .2 - . 2 -0 . 20

8.3.6.2 E Field Descriptor

The E field descriptor transfers real values in exponential form. It takes
the following form:

Ew . d [Ee]

The corresponding 1/0 list element must have a real data type or it must
be either the real or the imaginary part of a complex data type.

Input Processing

In an input statement, the E field descriptor transfers w characters from
the external field and assigns them as a real value to the corresponding
1/0 list element. The F field descriptor interprets and assigns data in
exactly the same way.

The following example illustrates valid input processing using the E field
descriptor:

1/0 Formatting 8-19

Format External Field Internal Value

E9.3 734 .432E3 734432.0

El2.4 M1022 . 43E-6 1022 . 43E-6

ElS .3 52 .3759663MMli 52 .3759663

El2 .5 210 . 52710+10 210.5271E10

In the last example, the E field descriptor treats the D exponent field
indicator as an E indicator if the I/O list element is single precision.

Output Processing

In an output statement, the E field descriptor transfers the value of
the corresponding I/O list element, rounded to d decimal digits and
right-justified, to an external field that is w characters long.

If the value does not fill the field, leading spaces are inserted. If the value
is too large for the field, the entire field is filled with asterisks.

When you use the E field descriptor, data output is transferred into
standard form. The standard form has the following components:

•
•
•
•
•

8-20 1/ 0 Formatting

Minus sign, when necessary (plus signs are optional)

Zero

Decimal point

d digits to the right of the decimal point

e + 2-character exponent that takes one of the following forms:

For exponents less than or equal to 99, with Ew . d:

E+nn

E-nn

For exponents less than or equal to 999, with Ew .d:

+nnn

-nnn

For all exponents with Ew . dEe:

E+n1n2 ... ne

E-n1n2 ... ne

The exponent field width specification is optional. If you omit it, the value
of e defaults to two. If the exponent value is too large to be converted into
one of the preceding forms, an error occurs.

The d digits to the right of the decimal point represent the entire value,
scaled to a decimal fraction .

The term w must be large enough to include all of the following:

• Minus sign when necessary (plus signs are optional)

• Zero

• Decimal point

• d digits

• Exponent

In other words, w must be greater than or equal to d+7. If e is present, w
must be greater than or equal to d+e+S.

The following list illustrates valid output processing using the E field
descriptor:

Format Internal Value External Representation

E9.2 475867.222 l!.0 .48E+06

E12.5 475867 . 222 l!.0 .47587E+06

E12.3 0 .00069 l!.M0 .690E-03

EI0.3 -0 . 5555 -0 .556E+OO

ES.3 56 . 12 *****
E14.5E4 -1 . 001 -0 . 10010E+0001

E14.3E6 0 .000123 l!.0 . 123E-000003

8.3.6.3 D Field Descriptor

The D field descriptor transfers real values in exponential form. It takes
the following form:

Dw.d

The corresponding I/O list element must have a real data type or it must
be either the real or the imaginary part of a complex data type.

1/0 Formatting 8-21

Input Processing

In an input statement, the D field descriptor transfers w characters from
the external field and assigns them as a real value to the corresponding
I/O list element. The F and E field descriptors interpret and assign data in
exactly the same way.

The following list illustrates valid input processing using the D field
descriptor:

Format

BZ,010.2

010.2

015.3

External Field

12345MMti

M123 .45M

367 . 49817630+04

Output Processing

Internal Value

12345000.000

123 . 4500

3.6749817630+06

In an output statement, the D field descriptor has the same effect as the E
field descriptor, except that the D exponent field indicator is used in place
of the E indicator.

The following list illustrates valid output processing using the D field
descriptor:

Format Internal Value External Representation

014.3 0 .0363 MtiM0 .3630-01

023.12 5413 .87625793 tititititi0.5413876257930+04

09.6 1 . 2 ** *******

8.3.6.4 G Field Descriptor

The G field descriptor transfers real values in a form that, in effect,
combines the F and E field descriptors. It takes the following form:

Gw.d[Ee]

The corresponding I/O list element must be of real data type, or it must
be either the real or the imaginary part of a complex data type.

8-22 1/0 Formatting

Input Processing

In an input statement, the G field descriptor transfers w characters from
the external field and assigns them as a real value to the corresponding
I/O list element. The F, D, and E field descriptors interpret and assign
data in exactly the same way.

Output Processing

In an output statement, the G field descriptor transfers the value of the
corresponding 1/0 list element, rounded to d decimal positions and
right-justified, to an external field that is w characters long. The form in
which the value is written is a function of the magnitude of the value, as
described in Table 8-2.

Table 8-2: Effect of Data Magnitude on G Format Conversions
Data Magnitude

m .LT. 0.1

0.1 .LE. m .LT. 1.0

1.0 .LE. m .LT. 10.0

lO**d-2 .LE. m .LT. lO**d-1

lO**d-1 .LE. m .LT. lO**d

m .GE. lO**d

Effective Conversion

Ew.d[Ee]

F(w-4).d, n (' ')

F(w-4).(d-1), n (' ')

F(w-4).1 , n(' ')

F(w-4).0, n(' ')

Ew.d[Ee]

The n(' ') field descriptor, which is in effect, inserted by the G field
descriptor for values within its range, specifies that four or e+2 spaces are
to follow the numeric data representation.

The term w must be large enough to include all of the following:

• Minus sign when necessary (plus signs are optional)

• Decimal point

• One digit to the left of the decimal point

• d digits to the right of the decimal point

• Either a 4-character or e+2-character exponent

1/0 Formatting 8-23

In other words, w must be greater than or equal to d+8. If e is present, w
must be greater than or equal to d+e+6.

The following list illustrates valid output processing using the G field
descriptor:

Format Internal Value External Representation

G13.6 0.01234567 /:!,.0.123457E- 01

G13.6 -0 . 12345678 -0 . 123457MM

G13.6 1 . 23456789 M1.23457MM

G13 .6 12 . 34567890 M12.3457MM

G13.6 123 . 45678901 M123 .457MM

G13.6 -1234.56789012 /:!,.-1234.57MM

G13.6 12345 . 67890123 M12345. 7MM

G13.6 123456 .78901234 M123457 .MM

G13.6 -1234567.89012345 -0. 123457E+07

The following list shows the same values output-processed as the previous
list, except the following list uses an equivalent F field descriptor:

Format Internal Value External Representation

F13.6 0.01234567 /:!,.MMO . 012346

F13 .6 -0 . 12345678 MM-0 . 123457

F13.6 1 . 23456789 MMf!.1 .234568

F13.6 12.34567890 MM12.345679

F13.6 123.45678901 MM23. 456789

F13.6 -1234.56789012 /:!,.-1234 . 567890

F13 .6 12345 .67890123 !:!,.12345. 678901

F13.6 123456 .78901234 123456.789012

F13.6 -1234567.89012345 *************

8-24 1/0 Formatting

8.3.6.5 Complex Data Editing

A complex value is an ordered pair of real values. Therefore, input or
output of a complex value is governed by two real field descriptors, using
any combination of the forms Fw.d, Ew.dEe, Dw.d, or Gw.dEe.

Input Processing

In an input statement, the two successive fields are read and assigned to a
complex I/O list element as its real and imaginary parts, respectively.

The following list illustrates valid input processing using complex data
editing:

Format

F8.5,F8.5

E9.1,F9 .3

External Field

1234567812345.67

734.432E8123456789

Output Processing

Internal Value

123 . 45678, 12345.67

734 . 432£8, 123456 .789

In an output statement, the two parts of a complex value are transferred
under the control of repeated or successive field descriptors . The two parts
are transferred consecutively without punctuation or spacing unless the
format specifier states otherwise.

The following list illustrates valid output processing using complex data
editing.

Format

2F8.5

E9.2,' ti ,ti ' ,ES.3

Internal Value

2.3547188, 3 .456732

47587 .222, 56 . 123

8.3. 7 Scale Factor Editing-P Edit Descriptor

External Representation

~2.35472 1'13.45673

~0 . 48E+06ti,L'I*****

During either input or output processing, the scale factor lets you alter
the location of the decimal point in real values and in the two parts of
complex values. The scale factor takes the following form:

nP

--

1/0 Formatting 8-25

n
Is a signed or unsigned integer constant in the range -128 through 127.
It specifies the number of positions, to the left or right, that the decimal
point is to move.

A scale factor can appear anywhere in a format specification but it must
precede the first field descriptor that associates with it; for example:

nPFw .d nPEw.d nPDw .d nPGw .d

Input Processing

On input, the scale factor associated with an F, E, D, or G field descriptor
multiplies the data by 10**-n and assigns it to the corresponding I/O
list element. For example, a 2P scale factor multiplies an input value by
.01, moving the decimal point two places to the left. A -2P scale factor
multiplies an input value by 100, moving the decimal point two places to
the right. However, if the external field contains an explicit exponent, the
scale factor has no effect.

The following list illustrates valid input processing using scale factor
editing:

Format

3PE10 .5

3PE10.5

-3PE10.5

External Field

f1.M37 .614f1.

M37.614E2

MM37 .614

Output Processing

Internal Value

.037614

3761 . 4

37614 .0

On output, the effect of the scale factor depends on the type of field
descriptor associated with it. For the F field descriptor, the value of the
I/O list element is multiplied by lO**n before transfer to the external
record. Thus, a positive scale factor moves the decimal point to the right.
A negative scale factor moves the decimal point to the left.

For the E or D field descriptor, the basic real constant part of the I/O list
element is multiplied by lO**n, and n is subtracted from the exponent. For
a positive scale factor, n must be less than (d + 2) or an output conversion
error occurs. Thus, a positive scale factor moves the decimal point to
the right and decreases the exponent. A negative scale factor moves the
decimal point to the left and increases the exponent.

8-26 1/ 0 Formatting

The following list illustrates valid output processing using scale factor
editing:

Format Internal Value External Representation

1PE12.3

1PE12.2

-1PE12.2

-270 . 139

- 270 . 139

- 270 . 139

M-2 . 701E+02

Mfl-2 .70E+02

flM-0 .03E+04

The effect of the scale factor for the G field descriptor is suspended if the
magnitude of the data to be output is within the effective range of the
descriptor, because the G field descriptor supplies its own scaling function.
The G field descriptor functions as an E field descriptor if the magnitude
of the data value is outside its range. In this case, the scale factor has the
same effect as for the E field descriptor.

On input and on output under F field descriptor control, a scale factor
actually alters the magnitude of the data. On output, a scale factor under
E, D, or G field descriptor control merely alters the form in which the
data is transferred. In addition, on input, a positive scale factor moves the
decimal point to the left and a negative scale factor moves the decimal
point to the right. On output, the effect is the reverse.

If you do not specify a scale factor with a field descriptor, a default scale
factor of zero is assumed. However, once you specify a scale factor, it
applies to all subsequent real field descriptors in the same FORMAT
statement, unless another scale factor appears. For example, consider the
following statements:

DI MENSION A(6)
DO 10 I=1 , 6

10 A(I) = 25 .
TYPE 100 , A

100 FORMAT(' I , F8 .2 . 2PF8 . 2 ,F8 . 2)

These statements produce the following results:

25 . 00 2500.00 2500 .00
2500 . 00 2500 .00 2500 . 00

If a second scale factor appears in the FORMAT statement, it takes control
from the first scale factor.

Format reversion has no effect on the scale factor (see Section 8.8). A scale
factor of zero can be reinstated only by an explicit OP specification.

1/0 Formatting 8-27

8.3.8 Logical Editing-L Edit Descriptor

The L field descriptor transfers logical data. It takes the following form:

Lw

The corresponding I/O list element must have an integer or logical data
type.

Input Processing

In an input statement, the L field descriptor transfers w characters from
the external field in the following ways:

• If the first nonblank characters of the field are T, t, .T, or .t, the value
.TRUE. is assigned to the corresponding 1/0 list element.

• If the first nonblank characters are F, f, .F, or .f, the value .FALSE. is
assigned.

• If the field contains all blanks, the value .FALSE. is assigned.

• If any other value is in the external field, an error occurs.

The logical constants .TRUE. and .FALSE. are acceptable input forms.

Output Processing

In an output statement, the L field descriptor transfers either the letter T
(if the value of the corresponding 1/0 list element is .TRUE.) or the letter
F (if the value is .FALSE.) to an external field that is w characters long.
The letter T or F is in the rightmost position of the field, preceded by w-1
spaces.

The following list illustrates valid output processing using logical editing:

Format

LS

Ll

8-28 1/ 0 Formatting

Internal Value

. TRUE .

. FALSE .

External Representation

8.3.9 Character Editing

Editing data with a character data type is controlled by the A and H field
descriptors .

8.3.9.1 A Field Descriptor

The A field descriptor transfers character or Hollerith values. It takes the
following form:

A [w]

The corresponding 1/0 list element can have any data type. If it has a
character data type, character data is transmitted. If it has any other data
type, Hollerith data is transmitted.

The value of w must be less than or equal to 32767.

Input Processing

In an input statement, the A field descriptor transfers w characters from
the external record and assigns them to the corresponding 1/0 list ele
ment. The maximum number of characters that can be stored depends
on the size of the 1/0 list element. For character 1/0 list elements, the
size is the length of either the character variable, the character substring
reference, or the character array element.

For numeric 1/ 0 list elements, the size depends on the data type, as listed
in Table 8- 3.

1/0 Formatting 8-29

Table 8 - 3: Size Lim it of Numeric Elements Using the A Field
Descriptor

1/0 List Element

BYTE

LOGICAL*l

LOGICAL*2

LOGICAL*4

INTEGER*2

INTEGER*4

REAL

REAL*8(DOUBLE PRECISION)

REAL*16

COMPLEX

COMPLEX*16(DOUBLE COMPLEX)

Maxim um Number of Characters

1

1

2

4

2

4

4

8

16

81

161

1 Because complex val ues are treated as pairs of rea l numbers, complex data editing requires
two format codes. See Section 8.3.6.5.

If w is greater than the maximum number of characters that can be stored
in the corresponding 1/0 list element, only the rightmost characters are
assigned to that element. The leftmost excess characters are ignored.

If w is less than the number of characters that can be stored, w characters
are assigned to the list element, left-justified, and trailing spaces are added
to fill the element.

The following list illustrates valid input processing using the A field
descriptor:

8-30 1/0 Formatting

Internal
Format External Field Representation Data Type

A6 PAGEL'i# # CHARACTER*l

A6 PAGEL'i# El'l# CHARACTER*3

A6 PAGEL'i# PAGEL'i# CHARACTER*6

A6 PAGEL'i# PAGEL'i#M CHARACTER*8

A6 PAGEL'i# # LOGICAL*l

A6 PAGEL'i# ll# INTEGER*2

A6 PAGEL'i# GEM REAL

A6 PAGEL'i# PAGEL'i#M REAL*8

Output Processing

In an output statement, the A field descriptor transfers the contents of
the corresponding I/O list element to an external field w characters long.
If w is greater than the list element size, the data appears in the field,
right-justified, with leading spaces. If w is less than the list element, only
the leftmost w characters are transferred.

The following list illustrates valid output processing using the A field
descriptor:

Format

AS

AS

AS

Internal Value

OHMS

VOLTS

AMPERES

External Representation

L'iOHMS

VOLTS

AMP ER

If you omit w in an A field descriptor, a default value is supplied.

If the 1/0 list element has a character data type, the default value is the
length of the I/O list element. If the I/ O list element has a numeric data
type, the default value is the maximum number of characters that can be
stored in a variable of that data type.

1/0 Formatting 8-31

8.3.9.2 H Field Descriptor

The H field descriptor transfers data between the external record and the
H field descriptor itself. It has the form of a Hollerith constant:

nHc1c2c3 ... en

n
Is the number of characters to be transferred.

c
Is an ASCII character.

Input Processing

In an input statement, the H field descriptor transfers n characters from
the external field to the field descriptor. The fi rst character appears
immediately after the letter H . Any characters in the field descriptor before
input are replaced by the input characters .

Output Processing

In an output statement, the H field descriptor transfers n characters
following the letter H from the field descriptor to the external field.

8.3.9.3 Character Constants

You can use a character constant instead of an H field descriptor. Both
types of format specifier function identically.

In a character constant, the apostrophe is written as two apostrophes; for
example:

50 FORMAT (' TODAY' 'SllDATEtilS : ll' ,I2, '/' ,I2 , '/' ,I2)

When you use a pair of apostrophes this way, they count as a single
character.

8- 32 1/ 0 Formatting

8.3. 10 Default Field Descriptors

If you write the field descriptors I, 0, Z, L, F, E, D, G, or A without
specifying a field width value, default values for w, d, and e are supplied
based on the data type of the I/O list element.

Table 8-4 lists the default values for w, d, and e.

Table 8-4: Default Field Descriptor Values

Field IJescriptor List Element w d e

I,O,Z BYTE 7

I,O,Z INTEGER*2,LOGICAL*2 7

1,0,Z INTEGER*4,LOGICAL*4 12

O,Z REAL*4 12

O,Z REAL*8 23

O,Z REAL*16 44

L LOGICAL 2

F,E,G,D REAL, COMPLEX*8 15 7 2

F,E,G,D REAL*8, COMPLEX*16 25 16 2

F,E,G,D REAL*16 42 33 3

A LOGICAL*l 1

A LOGICAL*2,INTEGER*2 2

A LOGICAL*4,INTEGER*4 4

A REAL*4, COMPLEX*8 4

A REAL*8, COMPLEX*16 8

A REAL*l6 16

A CHARACTER*n n

For the A field descriptor, the default is the actual length of the corre
sponding I/O list element.

1/0 Formatting 8-33

8.3. 11 Positional Editing

Positional editing is controlled by the X, T, TL, and TR edit descriptors.

On output, a T, TL, TR, or X edit descriptor does not by itself cause
characters to be transmitted and therefore does not by itself affect the
length of the record. If characters are transmitted to positions at or after
the position specified by a T, TL, TR, or X edit descriptor, positions
skipped and not previously filled are filled with blanks. The result is as if
the entire record were initially filled with blanks.

8.3. 11. 1 X Edit Descriptor

The X edit descriptor is a positional specifier. It takes the following form:

nX

The term n specifies how many character positions are passed over. The
value of n must be greater than or equal to one.

Input Processing

In an input statement, the X field descriptor specifies that the next n
characters in the input record are skipped.

Output Processing

In an output statement, the X field descriptor tabs right n spaces. It does
not write over anything already written on the same record; for example:

WRITE (6 ,90) NPAGE
90 FORMAT (' 1PAGE6NUMBER6 ' , I2 , 16X, 'GRAPHIC6ANALYSIS ,6CONT. ')

The preceding WRITE statement would print a record similar to the
following output:

PAGE NUMBER nn GRAPHIC ANALYSIS , CONT.

The term nn is the current value of the variable NP AGE. The numeral 1 in
the first character constant is not printed; it is used to advance the printer
paper to the top of a new page. (Section 8.4 describes printer carriage
control.)

8-34 1/0 Formatting

A trailing X format on a record does not write any characters unless it is
followed by another field that does; for example:

WRITE (6 ,99) K
99 FORMAT ('t:.K=' , I6,5X)

The preceding example writes a record of only 9 characters. To cause n
trailing blanks to be written at the end of a record, use the format n(' t:.').

8.3. 11.2 T Edit Descriptor

The T edit descriptor is a positional tabulation specifier. It takes the form:

Tn

The term n indicates the character position of the external record. The
value of n must be greater than or equal to one.

Input Processing

In an input statement, the T field descriptor positions the external record
to its nth character position. For example, if an input statement reads a
record containing ABCMt:.XYZ, and this record is controlled by the following
format statement:

10 FORMAT (T7 ,A3,T1,A3)

On execution, the input statement would first read the characters XYZ and
then read the characters ABC.

Output Processing

In an output statement, the T field descriptor specifies that subsequent
data transfer begins at the nth character position of the external record.
The first position of a record to be printed is usually reserved for a carriage
control character, which is not printed (see Section 8.4). For example:

PRINT 25
25 FORMAT (T51 , 'COLUMN 2' ,T21 , 'COLUMN 1')

These statements print the following line (assuming normal carriage
control processing):

Position 20 Position 50

+ • COLUMN 1 COLUMN 2

1/0 Formatting 8-35

8.3. 11.3 TL Edit Descriptor

The TL edit descriptor is a relative tabulation specifier. It takes the
following form:

TLn

n
Indicates that the next character to be transferred to or from a record is the
nth character to the left of the current character. The value of n must be
greater than or equal to one. If the value of n is greater than or equal to
the current character position, the first character in the record is specified.

8.3. 11.4 TR Edit Descriptor

The TR edit descriptor is also a relative tabulation specifier. It takes the
following form:

TRn

n
Indicates that the next character to be transferred to or from a record is the
nth character to the right of the current character. The value of n must be
greater than or equal to one.

8.3.12 Additional Editing Operations

Additional edit descriptors are Q, dollar sign ($), and colon (:).

• The Q edit descriptor obtains the number of characters remaining
following a partial read operation.

• The $ edit descriptor controls carriage returns .

• The : edit descriptor terminates format control if no more items are in
the 1/0 list.

8-36 1/0 Formatting

8 .3. 12 . 1 Q Edit Descriptor

Th e Q edit descriptor obtains the number of characters in the input record
remaining to be transferred during a read operation . It takes the form :

Q

The corresponding I/O list element must be of integer or logical data type;
for example:

READ (4 ,1000) XRAY , KK , NCHRS, (ICHR (I) , I= 1 ,NCHRS)
1000 FORMAT (E1 5 .7 , I 4 ,Q,80A1)

The preceding input statements read two fields into the variables XRAY
and KK. The number of characters remaining in th e record is stored in
NCHRS, and exactly that many characters are read into the array ICHR.
By placing the Q descriptor first in the format specification, you can
determine the actual length of the input record .

In an ou tput statement, the Q edit descriptor has no effect except that the
corresponding I/O list element is skipped.

8 .3. 12.2 Dollar Sign Descript or

The dollar sign character ($) in a format specification modifies the carriage
control specified by the first character of the record. It only affects those
fi les for which the 'FORTRAN' carriage control attribute is in effect (see
Section 8.4).

In an input statement, the $ descriptor is ignored.

In an output statement, if the first character of the record is a space, the
$ descriptor suppresses the carriage return. For terminal I/ O, this means
that a typed response will follow the output on the same line. If the first
character of the record is a plus sign, the $ descriptor causes the ou tput to
begin at the end of the previous line and leaves the prin t position at the
end of the line. If the first character of the record is 0 or 1, the $ descriptor
is ignored .

Consider the following statements:

TYPE 100
100 FORMAT (' ENTER RADI US VALUE ', $)

ACCEPT 200 , RADIUS
200 FORMAT (F6 . 2)

1/0 Formatting 8-37

The resulting formatted message would appear as follows:

ENTER RAD IUS VALUE

Your response (for example, "12.") can then go on the same line:

ENTER RAD IUS VALUE 12 .

8.3.12.3 Colon Descriptor

In a format specification, the colon character (:) terminates format control
if no more items are in the I/O list. The : descriptor has no effect if I/O
list items remain; for example:

PRI NT 1 ,3
PRI NT 2,4

1 FORMAT (' I=' , I2 . ' J=' . I2)
2 FORMAT (' K=' ,I2, : . I L=' ,I2)

These statements print the following two lines:

I=ti3LU=
K=M

Section 8.8 describes format control in detail.

8.4 Carriage Control

Whenever the default for the OPEN statement's CARRIAGECONTROL
keyword is in effect ('FORTRAN'), the first character of every record is
not printed when it is transferred to a printer. Instead, it is interpreted
as a carriage control character (except when overridden by the OPEN
statement keyword CARRIAGECONTROL = 'LIST' or 'NONE'). The
I/O system recognizes certain characters as carriage control characters.
Table 8-5 lists these characters and their effects.

8-38 1/0 Formatting

Table 8-5: Carriage Control Characters
Character Meaning

+ Overprinting: starts output at the beginning of the current line
and returns to the left margin after printing

t.. Single spacing: starts output at the beginning of the next line

0 Double spacing: skips a line before starting output

1 Paging: starts output at the top of a new page

$ Prompting: starts output at the beginning of the next line and
suppresses carriage return at the end of the line

ASCII NUL Overprinting with no advance : starts output at the beginning
of the current line and does not return to the left margin after
printing

Any character other than those listed in Table 8-5 is treated as a space
and is deleted from the print line. If you accidentally omit the carriage
control character, the first character of the record is not printed.

8.5 Format Specification Separators

Field descriptors in a format specification are generally separated by
commas. You can also use the slash (/) record terminator to separate field
descriptors. A slash terminates input or output of the current record and
initiates a new record; for example:

WRITE (6 ,40) K,L,M,N,O ,P
40 FORMAT (3I6 .6/I6,2F8 .4)

The preceding statements are equivalent to the following statements:

WRITE (6,40) K,L,M
40 FORMAT (3I6.6)

WRITE (6,50) N,O,P
50 FORMAT (I6,2F8 .4)

Multiple slashes cause input records to be bypassed or blank records to be
outputted. If n consecutive slashes appear between two field descriptors,
(n-1) records are skipped on input, or (n-1) blank records are output. The
first slash terminates the current record. The second slash terminates the
first skipped or blank record, and so on.

1/0 Formatting 8-39

However, n slashes at the beginning or end of a format specification result
in n skipped or blank records. This is because the opening and closing
parentheses of the format specification are themselves a record initiator
and terminator, respectively; for example:

WRITE (6. 99)
99 FORMAT ('1' ,T51, 'HEADING LINE'//T51 , 'SUBHEADING LINE'//)

The previous statements produce the following output:

Column 50,

(blank line)

(blank line)

(blank line)

top of page

+
HEADING LINE

SUBHEADING LINE

8.6 External Field Separators

A field descriptor such as Fw.d specifies that an input statement is to read
w characters from the external record. If the data field in the external
record contains fewer than w characters, the input statement reads charac
ters from the next data field in the external record, unless the short field is
padded with leading zeros or spaces.

When the field descriptor is numeric, you can avoid padding the input
field by using a comma to terminate the field . The comma overrides
the field descriptor's field width specification. This is called short field
termination. It is particularly useful when you are entering data from a
terminal keyboard. You can use it with the I, 0 , Z, F, E, D, G, and L field
descriptors; for example:

READ (5 ,100) I,J,A,B
100 FORMAT (2I6,2F10.2)

If the preceding statements read the following record:

1.-2.1.0,35

Based on this input, the following assignments occur:

I= 1

8-40 1/0 Formatting

J = -2

A= 1.0

B = 0.35

The physical end of the record also serves as a field terminator. The d
part of a w.d specification is not affected by an external field separator.

A comma can only terminate fields less than w characters long. If a
comma follows a field of w or more characters, the comma is considered
part of the next field.

Two successive commas or a comma after a field of w characters consti
tutes a null (zero-length) field. Depending on the field descriptor specified,
the resulting value assigned is 0, 0.0, O.DO, O.QO, or .FALSE.

A comma cannot terminate a field that is controlled by an A, H, or
character constant field descriptor. However, if the record reaches its
physical end before w characters are read, short field termination occurs
and the characters that were read are assigned successfully. Trailing
spaces are appended to fill the corresponding I/O list element or the field
descriptor.

8. 7 Run-Time Format

You can store format specifications in character scalar references, nu
meric array references, or numeric scalar field references (see Section
2.2.5.1). Such a format specification is called a run-time format and can be
constructed or altered during program execution.

A run-time format in an array has the same form as a FORMAT statement,
without the word FORMAT and the statement label. Opening and closing
parentheses are required. Variable format expressions are not permitted in
run-time formats.

Example

In the following example, the DATA statement assigns a left parenthesis to
the character array element FORCHR(O) and a right parenthesis and three
field descriptors to four character variables for later use.

Next, the proper field descriptors are selected for inclusion in the format
specification. The selection is based on the magnitude of the individual
elements of the array TABLE.

1/0 Formatting 8-41

A right parenthesis is then added to the format specification just before
the WRITE statement uses it. Thus, the format specification changes with
each iteration of the DO loop.

SUBROUTI NE PRI NT(TABLE)
REAL TABLE(10 ,5)
CHARACTER*5 FORCHR(0 :5) , RPAR*1 . FBIG, FMED , FSML
DATA FORCHR(O) ,RPAR /' (' . ') ' /
DATA FBIG.FMED .FSML /'F8 .2. I. 'F9.4 , I . 'F9 .6 , '/
DO 20 I=1.10

DO 18 J=1,5
IF (TABLE(I,J) .GE. 100 .) THEN

FORCHR(J) = FBIG
ELSE IF (TABLE(I , J) .GT . 0 . 1) THEN

FORCHR(J) = FMED
ELSE

FORCHR(J) = FSML
END IF

18 CONTI NUE
FORCHR(5)(5 :5) = RPAR
WRITE (6 ,FORCHR) (TABLE (I , J) . J=1 ,5)

20 CONTINUE
END

NOTE

Format specifications stored in arrays are recompiled at run time
each time they are used. If a Hollerith or character run-time
format is used in a READ statement to read data into the format
itself, that data is not copied back into the original array. Thus,
it will be subsequently unavailable for using that array as a
run-time format specification .

8.8 Format Control Interaction with 1/0 Lists

Format control begins with the execution of a formatted 1/0 statement.
The action taken by format control depends on information provided
jointly by the next element of the 1/0 list (if one exists) and the next field
descriptor of the format specification. Both the 1/0 list and the format
specification are interpreted from left to right, except when repeat counts
and implied-DO lists are specified.

If the 1/0 statement contains an 1/0 list, you must specify at least one I,
0, Z, F, E, D, G, L, A, or Q field descriptor in the format specification. An
error occurs if a field descriptor is not specified in this case.

8-42 1/0 Formatting

On execution, a formatted input statement reads one record from the
specified unit and initiates format control. Thereafter, additional records
are read as indicated by the format specification. Format control requires
that a new record be read when a slash occurs in the format specification,
or when the last closing parenthesis of the format specification is reached
and I/O list elements remain to be filled. Any remaining characters in the
current record are discarded when the new record is read.

On execution, a formatted output statement transmits a record to the
specified unit as format control terminates. Records can also be written
during format control if a slash appears in the format specification or if the
last closing parenthesis is reached and more I/O list elements remain to
be transferred.

The I, 0, Z, F, E, D, G, L, A, and Q field descriptors each correspond to
one element in the I/O list. No list element corresponds to an H, X, P,
T, TL, TR, SP, SS, S, BN, BZ, $, :, or character constant field descriptor.
In H and character constant field descriptors, data transfer occurs directly
between the external record and the format specification.

When an I/O list element is to be transferred, format field descriptors are
processed, beginning with the current format item, until a descriptor is
found that corresponds to an I/O list element. The I/O list element is
then transferred under control of the field descriptor.

Format execution continues until one of the following is encountered: an
element-transferring field descriptor, a colon edit descriptor, or the end
of the format. These also terminate format execution when no I/O list
elements are to be transferred.

When the last closing parenthesis of the format specification is reached,
format control determines whether more I/O list elements are to be
processed. If not, format control terminates. However, if additional list
elements remain, part or all of the format specification is reused in a
process called format reversion.

In format reversion, the current record is terminated, a new one is initi
ated, and format control reverts to the group repeat specification whose
opening parenthesis matches the next-to-last closing parenthesis of the
format specification. If the format does not contain a group repeat spec
ification, format control returns to the initial opening parenthesis of the
format specification. Format control continues from that point.

1/0 Formatting 8-43

Example

The following annotated example shows several interactions between the
I/O list and the FORMAT statement.

Consider a data file named FOR002.DAT:

$ TYPE FOR002 .DAT
001 0101 0102 0103 0104 0105
002 0201 0202 0203 0204 0205
003 0301 0302 0303 0304 0305
004 0401 0402 0403 0404 0405
005 0501 0502 0503 0504 0505
006 0601 0602 0603 0604 0605
007 0701 0702 0703 0704 0705
008 0801 0802 0803 0804 0805
009 0901 0902 0903 0904 0905
010 1001 1002 1003 1004 1005
$

Assume that the data is to be processed 2 records at a time. Each record
starts with a number to be put into an element of a vector B, followed by
5 numbers to be put in a row in matrix A.

The following program uses several different FORMAT statements to read
the data in FOR002.DAT:

INTEGER I, J, A(2,5) , B(2)

READ (2,100) (B(I), (A(I,J), J=1,5) ,I=1,2) 0
100 FORMAT (2 (I3, X, 5(I4,X), /)) f)

WRITE (6,999) B, ((A0,J) ,J=1,5) ,I=1,2) 8
999 FORMAT(' Bis', 203, X), '; A is', I

1 (I I . 5 04. X)))

READ (2,200) (B(I), (A(I,J), J=1,5),I=1,2) ~
200 FORMAT (2 03, X, 504,X), : /))

WRITE (6. 999) B, ((AO, J), J=1, 5) , !=1, 2) 0

READ (2,300) (BO), (A(I,J), J=1,5) ,I=1,2) Ci)
300 FORMAT ((I3, X, 5(14,X)))

WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2) 8

READ (2,400) (B(I), (A(I,J), J=1,5) ,I=1,2) 6)
400 FORMAT (I3, X, 5(I4,X))

8-44 1/0 Formatting

WRITE (6,999) B, ((A0,J) ,J=1,5) ,!=1,2) 0
END

Notes:

0 This starts by reading B(l); then A(l ,1) through A(l,5); then B(2) and
A(2,1) through A(2,5).

The first record (starting with 001) is read to start the processing of the
1/0 list.

8 There are two records, each in the format 13, X, 5(14, X). The / forces
the reading of the second record after A(l,5) is processed; it also forces
the reading of the third record after A(2,5) is processed-no data is
taken from that record.

9 This will output:

B is 1 2 ; A is
101 102 103 104 105
201 202 203 204 205

0 This starts by reading the record starting with 004. The / forces the
reading of the next record after A(l,5) is processed; the : stops the
reading after A(2,5) is processed but before the / forces another read.

0 This will output:

B is 4 5 ; A is
401 402 403 404 405
501 502 503 504 505

0 This starts by reading the record starting with 006. After A(l,5) is
processed, format reversion reads the next record and starts format
processing at the (before the 13.

0 This will output:

B is 6 7 ; A is
601 602 603 604 605
701 702 703 704 705

0 This starts by reading the record starting with 008. After A(l,5) is
processed, format reversion reads the next record and starts format
processing at the (before the 14.

0 This will output:

B is 8 90 ; A is
801 802 803 804 805
9010 9020 9030 9040 100

1/0 Formatting 8-45

8-46 1/0 Formatting

The record 009 0901 0902 0903 0904 0905 was processed with 14
as 11009 11 for B(2), which is 90; X skips the next 11011

; then 11901 11

is processed for A(2,1), which is 9010; 11902 11 for A(2,2); 11903 11

for A(2,3); and 11904 11 for A(2,4). The repetition factor of 5 is now
exhausted and the format ends. Format reversion reads another record
and starts format processing at the (before the 14 so that 11010 11 is read
for A(2,5), which is 100.

Chapter 9

Auxiliary 1/0 Statements

The following auxiliary IjO statements manage files during I/O opera
tions:

• OPEN-connects a FORTRAN logical unit to a file or device; declares
required attributes for read and write operations (see Section 9 .1).

• CLOSE-terminates the connection between a logical unit and a file
or device (see Section 9.2).

• INQUIRE-questions the status of specified properties of a file or
logical unit (see Section 9.3).

• REWIND-repositions an open file to the beginning of that file (see
Section 9.4).

• BACKSPACE-repositions an open file to the beginning of the preced
ing record in that file (see Section 9.5).

• ENDFILE-writes an end-of-file record to a specified unit. When an
input statement reads this record, an end-of-file condition results (see
Section 9.6).

• DELETE-deletes a record from a file (see Section 9.7).

• UNLOCK- permits other programs to access a file that is locked by a
previous READ statement (see Section 9.8).

Auxiliary 1/0 Statements 9-1

9. 1 OPEN Statement

The OPEN statement connects an existing file to a logical unit or creates
a new file and connects it to a logical unit. In addition, it can specify file
attributes that control file creation and subsequent processing. The OPEN
statement takes the following form:

OPEN (par[. par] .. .)

par
Is a keyword specification taking one of the following forms:

keywd
keywd = value

keywd
Is a keyword, as described in the text that follows (see also Table 9-1).

value
Depends on the keyword (see Table 9-1).

Keywords can be divided into several categories based on function:

• Identifying the unit and file:

UNIT

FILE or NAME

DEFAULTFILE

STATUS or TYPE

DISPOSE

- logical unit number to be used

- file-name specification for the file

- defaul t fil e-name speci fi cation for the fil e

- file existence status at OPEN

- fil e existence s tatu s after CLOSE

• Describing file processing:

ACCESS

ORGAN IZATION

READONLY

9-2 Auxiliary 1/0 Statements

- FORTRAN access method to be used

- logical fil e structure

- write protection

• Describing the records in a file:

BLOCKSlZE

CARRIAGECONT ROL

FORM

RECL or RECORDSIZE

RECORDTYPE

BLANK

KEY

- physical block size

- printer control type

- type of FORTRAN record formatting

- logical record length

- logical record format

- blank interpretation for numeric input

- positions of key fields within records in an
indexed fil e

• Describing file storage allocation when a file is created:

INITIALSIZE

EXTENDSIZE

- initial file allocation

- file allocation increment size

• Providing additional capability for direct access 1/0:

•

ASSOCIATEVARIABLE - the next record number value

MAXREC - maximum direct access record number

Providing improved performance or special capabilities; (these optional
keywords are generally transparent to 1/0 processing):

BUFFERCOUNT

NOSPANBLOCKS

USEROPEN

SHARED

ERR

IOSTAT

- number of I/O buffers to be used

- records are not to be split across physical blocks

- user program option to provide additional OPEN
capability

- other programs can simultaneously access the
file

- statement to which control is transferred if
an error occurs during execution of the OPEN
statement

- status value that indicates whether an error
condition exists

Table 9-1 lists the values accepted for each keyword.

Auxiliary 1/0 Statements 9-3

Table 9-1: OPEN Statement Keyword Values
Keyword Values

ACCESS 'SEQUENTIAL'
'DIRECT'
'KEYED'
'APPEND'

ASSOCIATEVARIABLE asv

BLANK 'NULL'
'ZERO'

BLOCKSIZE e

BUFFERCOUNT e

CARRIAGECONTROL 'FORTRAN'
1LIST'
'NONE'

DEF A UL TFILE cl

DISPOSE 'KEEP' or 'SAVE'
DISP 'DELETE'

'PRINT'
'PRINT /DELETE'
'SUBMIT'
'SUBMIT / DELETE'

ERR s

Key to Values

asv-an integer variable
v-an integer scalar memory reference
e-a numeric expression
s-a statement label
dt-a data type, INTEGER or CHARACTER
dr-direction, ASCENDING or DESCENDING

Function

Access mode

Next direct access
record

Interpretation of
blanks

Physical block size

Number of I/O
buffers

Print control

Default file specifica-
ti on

File disposition at
close

Error transfer label

Default

'SEQUENTIAL'

'NULL'

System default

System default

'FORTRAN'
(formatted)
'NONE'
(unformatted)

'KEEP'

c-a character scalar reference, numeric scalar memory reference, or numeric array name reference
cl -a character expression
e 1-the first byte position of a key
e2-last byte position of a key
p-an external function

9-4 Auxiliary 1/0 Statements

Table 9-1 (Cont.): OPEN Statement Keyword Values
Keyword

EXTENDSIZE

FILE
NAME

FORM

INITIALSIZE

I OS TAT

KEY

MAXREC

NOSPANBLOCKS

ORGANIZATION

READONLY

RECL
RECORDSIZE

Key to Values

asv-an integer variable

Values

e

c

'FORMATTED'
'UNFORMATTED'

e

v

(e 1 :e2[:dt[:dr]], .. .)

e

'SEQUENTIAL'
'RELATIVE'
'INDEXED'

e

v-an integer scalar memory reference
e-a numeric expression
s-a statement label
dt- a data type, INTEGER or CHARACTER
dr-direction, ASCENDING or DESCENDING

Function

File allocation incre-
ment

File-name specifica-
ti on

Format type

File allocation

l/O status

Key field definitions

Direct access record
limit

Records do not span
blocks

File structure

Write protection

Record length

Default

Volume or system
default

Depends on
ACCESS keyword

CHARACTER
ASCENDING

'SEQUENTIAL'

Depends on record
type and file organi
zation

c-a character scalar reference, numeric scalar memory reference, or numeric array name referen ce
cl -a character expression
e1-the fi rst byte position of a key
e2- last byte position of a key
p-an external function

Auxiliary 1/0 Statements 9-5

Table 9-1 (Cont.): OPEN Statement Keyword Values
Keyword Values

RECORDTYPE 'FIXED'
'VARIABLE'
'SEGMENTED'
'STREAM'
'STREAM_CR'
'STREAM_LF'

SHARED

STATUS 'OLD'
TYPE 'NEW'

'SCRATCH'
'UNKNOWN'

UNIT e

USER OPE N p

Key to Values

asv-an integer variable
v-an integer scalar memory reference
e-a numeric expression
s-a statement label
dt- a da ta type, INTEGER or CHARACTER
dr- direction, ASCENDING or DESCENDING

Function

Record structure

File sharing allowed

File status at open

Logical unit number

User program option

Default

Depends on
ORGANIZATION,
ACCESS, and
FORM keywords

'UNKNOWN'

c- a character scalar reference, numeric scalar memory reference, or numeric array name reference
cl-a character expression
e l - the fi rst byte position of a key
e2- last byte position of a key
p-an external function

Specifying OPEN Statement Keywords

Keyword specifications can appear in any order. In most cases, they are
optional. Default values apply in their absence. If the logical unit specifier
is the first parameter in the list, the UNIT keyword is optional.

You can specify character values at run time by substituting a general
character expression for a keyword value in the OPEN statement. The
character value can contain trailing spaces but not leading or embedded
spaces; for example:

9-6 Auxiliary 1/0 Statements

CHARACTER*7 QUAL /' '/

IF (exp) QUAL = '/DELETE'
OPEN (UNIT=l, STATUS='NEW'. DISP='SUBMIT'//QUAL)

Examples

The first statement creates a new sequential formatted file on unit 1 with
the default file name FOROOl.DAT.

OPEN (UNIT=l, STATUS='NEW', ERR=100)

The next statement creates a SO-block direct access file for temporary
storage. The file is deleted at program termination.

OPEN (UNIT=3, STATUS='SCRATCH', ACCESS='DIRECT' ,
1 I NITIALS IZE=50, RECL=64)

The next statement creates a file on magnetic tape with a large block size
for efficient processing.

OPEN (UNIT=!, FILE='MTAO :MYDATA .DAT', BLOCKSIZE=8192,
1 STATUS='NEW', ERR=14 , RECL=1024,
1 RECORDTYPE= 'FIXED 1

)

The next statement opens the file created in the previous example for
input.

OPEN (UNIT=!, FILE='MTAO :MYDATA .DAT' , READO NLY ,
1 STATUS='OLD' . RECL=1024 , RECORDTYPE='FIXED ',
1 BLOCKSI ZE=8 1 9~

The next statement uses the file name supplied by the user and the default
file specification supplied by the DEFAULTFILE keyword to define the file
specification for an existing file.

TYPE *· 'ENTER NAME OF DOCUMENT'
ACCEPT *· DOC
OPEN (UNIT=l, FILE=DOC , DEFAULTFILE=' [ARCHIVE] .TXT',
1 STATUS='OLD')

The following sections provide specific information about OPEN statement
keywords. As used in these sections, a numeric expression can be any
integer or real expression. The value of the expression is converted to
integer data type before it is used in the OPEN statement.

Auxiliary 1/0 Statements 9-7

9.1.1 ACCESS Keyword

The ACCESS parameter specifies whether a file opens for keyed, direct, or
sequential access. It takes the following form:

ACCESS = ace

ace
Is a character expression having one of the following values:

•
•
•
•

'DIRECT'-by record number

'SEQUENTIAL'-by sequential access

'KEYED'- by a specified key

'APPEND'-sequentially, after the last record of the file

The default is 'SEQUENTIAL'.

9.1.2 ASSOCIATEVARIABLE Keyword

The ASSOCIATEVARIABLE parameter specifies the integer variable that
updates after each direct access I/O operation to reflect the record number
of the next sequential record in the file. This specifier is valid only for
direct access and is ignored for other access modes. It takes the following
form:

ASSOCI ATEVARIABLE = as v

asv
Is an integer variable. It cannot be a dummy argument to the routine in
which the OPEN statement appears.

9.1.3 BLANK Keyword

The BLANK parameter specifies how empty spaces are treated in a file. It
takes the following form:

BLANK = blnk

9-8 Auxiliary 1/0 Statements

blnk
Is a character expression with one of the following values:

• 'NULL'- ignore all blanks in a numeric field (except if the field is all
blank, in which case blanks are treated as zero)

• 'ZERO'-treat all blanks other than leading blanks as zeros

The default value is 'NULL'. However, if the /NOF77 qualifier is specified
on the FORTRAN command line, the default is 'ZERO'.

9.1.4 BLOCKSIZE Keyword

The BLOCKSIZE parameter specifies the physical I/O transfer size for the
file. It takes the following form :

BLOCKSI ZE = bks

bks
Is a numeric expression .

For magnetic tape files, the value of bks specifies the physical record size
in the range 18 to 32767 bytes . The default value is 2048 bytes.

For sequential disk files, the value of bks is rounded up to an integral
number of 512-byte blocks and used to specify multiblock transfers. The
number of blocks transferred can be 1 to 127. The number of blocks
transferred is determined by RMS defaul ts. Refer to the description of
the SET RMS_DEFAULT command in the VMS DCL Dictionary for more
information on setting process and system default multiblock counts if you
do not specify a block size.

For relative and indexed files, the value of bks is rounded up to an integral
number of 512-byte blocks and used to specify the RMS bucket size in the
range 1 to 63 blocks. The default is the smallest value capable of holding
a single record.

9.1.5 BUFFERCOUNT Keyword

The BUFFERCOUNT parameter specifies the number of buffers to be as
sociated wi th the logical unit for multibuffered 1/0. It takes the following
form :

BUFFERCOUNT = be

Auxiliary 1/0 Statements 9-9

be
Is a numeric expression.

The range of values for be is from 1 to 127. The size of each buffer is
determined by the BLOCKSIZE keyword. Thus, if BUFFERCOUNT=3
and BLOCKSIZE=2048, the total number of bytes allocated for buffers is
3*2048, or 6144.

The BLOCKSIZE keyword determines the size of each buffer. If you do
not specify BUFFERCOUNT, or if you specify zero, the system default is
assumed. Refer to the description of the SET RMS_DEFAULT command
in the VMS DCL Dictionary for information on setting process and system
default buffer counts.

9.1.6 CARRIAGECONTROL Keyword

The CARRIAGECONTROL parameter determines the type of carriage
control processing used when printing a file. It takes the following form:

CARRIAGECONTROL = cc

cc
Is a character expression taking one of the following values:

•
•
•

'FORTRAN'-normal FORTRAN interpretation of the first character

'LIST'-single spacing between records

'NONE'-no implied carriage control

The default for formatted fi les is 'FORTRAN'; for unformatted files, the
default is 'NONE'.

9.1.7 DEFAULTFILE Keyword

The DEFAULTFILE parameter specifies a default file specification string. It
takes the following form:

DEFAULTF ILE = ce

9-10 Auxiliary 1/0 Statements

ce
ls a character expression that contains a default fil e name specification
string.

This keyword can supply a value to the RMS default file specification
string for the missing components of a file specification. If you do not
specify the DEFAUL TFILE keyword, FORTRAN uses the default value
'FORnnn.DAT', where nnn is the unit number with leading zeros.

The default file specification string is used primarily when accepting file
specifications interactively. File specifications known to a user program
are normally completely specified in the FILE keyword.

You can specify default values for any one of the following file
specification components:

• Node

• Device

• Directory

• File name

• File type

• File version number

When you specify any of the above components in the FILE=keyword,
they override those values specified in the DEFAULTFILE=keyword. Refer
to the VMS Record Management Services Manual for more information.

9.1.8 DISPOSE Keyword

The DISPOSE (or DISP) parameter determines the disposition of the
file connected to a logical unit when the unit closes. It takes one of the
following forms:

DISPOSE = dis
DISP = dis

dis
Is a character expression having one of the following values:

• 'KEEP' or 'SAVE'- retain the file after the unit closes

• 'DELETE'-delete the file after the unit closes

• 'PRINT'-submit the file to the system line printer spooler and
retain it

Auxiliary 1/0 Statements 9-11

• 'PRINT / DELETE'-submit the file to the system line printer spooler
and then delete it

• 'SUBMIT'-submit the file to the batch job queue and retain it

• 'SUBMIT / DELETE'-submit the file to the batch job queue and then
delete it

A read-only file cannot be deleted. A scratch file cannot be saved, printed,
or submitted.

The default is 'KEEP' or 'SAVE'.

9. 1.9 ERR Keyword

The ERR parameter identifies the executable statement that receives
control when an error occurs. It takes the following form:

ERR = s

s
Is the label of an executable statement.

The ERR parameter applies only to the OPEN statement in which it is
specified and not to subsequent 1/0 operations on the unit. If an error
occurs, no file is opened or created.

9. 1. 10 EXTENDSIZE Keyword

The EXTENDSIZE parameter specifies the number of blocks by which to
extend a disk file when additional storage space is allocated. It takes the
following form:

EXTENDSIZE = es

es
Is a numeric expression.

If you do not specify EXTENDSIZE or if you specify zero, the system
default for the device is used.

See Section 9.1.13 for a discussion about the relationship between the
EXTENDSIZE keyword and the INITIALSIZE keyword.

9-12 Auxiliary 1/0 Statements

9.1.11 FILE Keyword

The FILE parameter specifies the name of the file to be connected to the
unit. It takes the following form:

FILE = fln

fin
Is a character scalar reference, numeric scalar memory reference, or
numeric array name reference .

The name of a file can be any specification accepted by the operating
system. (See the VAX FORTRAN User Manual for a de~cription of default
file name conventions.)

If the file name is stored in a numeric scalar or array, the name must
consist of ASCII characters terminated by an ASCII null character (zero
byte). However, if it is stored in a character scalar or array, it must not
contain a zero byte.

9.1.12 FORM Keyword

The FORM parameter specifies whether the file being opened is read or
written using formatted or unformatted READ or WRITE statements. It
takes the following form:

FORM = ft

ft
Is a character expression taking one of the following values:

• 'FORMATTED'

• 'UNFORMATTED'

The default is 'FORMATTED' for sequential access files, and 'UNFORMATTED'
for direct and keyed access files.

Auxiliary 1/0 Statements 9-13

9.1 .13 INITIALSIZE Keyword

The INITIALSIZE parameter specifies the number of blocks in the initial
storage allocation for a disk fi le. It is contracted by the EXTENDSIZE
parameter, which specifies the number of blocks by which a disk file is
extended each time more space is needed for a file . The INITIALSIZE
parameter takes the following form:

INITIALSIZE = insz

insz
Is a numeric expression .

If you do not specify INITIALSIZE or if you specify zero, no initial
allocation is made. The system attempts to allocate contiguous space for
INITIALSIZE. If not enough contiguous space is available, noncontiguous
space is allocated.

INITIALSIZE is effective only at the time the fi le is created. If
EXTENDSIZE is specified when the file is created, the value specified
is the default value used to allocate additional storage for the file . If
you specify EXTENDSIZE when you open an existing fi le, the value you
specify supersedes any EXTENDSIZE value specified when the fi le was
created, and remains in effect until you close the file. Unless specifically
overridden, the default EXTENDSIZE value is in effect on subsequent
openings of the file.

9.1.14 IOSTAT Keyword

The IOSTAT parameter specifies 1/0 status. It takes the following form:

IOSTAT = ios

105

Is an integer scalar memory reference.

This parameter causes ios to be defined as follows:

• Zero-if no error condition exists

• A positive integer-if an error condition exists

9-14 Auxiliary 1/0 Statements

VAX FORTRAN I/O status values are described in the VAX FORTRAN
User Manual. IOSTAT applies only to the OPEN statement in which it
appears and not to subsequent I/O operations on the logical unit that is
opened. However, you can use the IOSTAT parameter in subsequent I/O
statements to perform a similar function (see Section 7.1.1.9).

9.1.15 KEY Keyword

The KEY parameter defines the access keys for records in an indexed file.
It takes the following form:

KEY = (kspec[,k spec] . . .)

ks pee
Takes the following form :

e 1 : e 2 [: d t [: dr]]

e1
Is the first byte position of the key.

e2
Is the last byte position of the key.

dt
Is the data type of the key: INTEGER or CHARACTER.

dr
Is the direction of the key: ASCENDING or DESCENDING.

CHARACTER and ASCENDING are the default values.

The key starts at position e 1 in a record and has a length of e2 - el + 1.
The values of el and e2 must be such that the following calculations are
true:

1 . LE . (e1) .AND. (e1) .LE . (e2) .AND. (e2) .LE . record-length
1 . LE. (e2 - e1+1) . AND. (e2 - e1+1) . LE . 255

If the key type is INTEGER, the key length must be either 2 or 4.

Auxiliary 1/0 Statements 9-15

Defining Primary and Alternate Keys

You must define at least one key in an indexed file . This primary key is
the default key. It usually has a unique value for each record.

You can choose to define alternate keys. RMS allows up to 254 alternate
keys . However, individual OPEN statements only allow up to 85 key def
initions, a number that is further reduced when multiple OPEN statements
appear together in a program unit.

If a file requires more keys than the OPEN statement limit, you must
create it from another language or with the File Definition Language
(FDL). For information on FDL, see the VMS Record Management Services
Manu al.

Specifying and Referencing Keys

You must specify the KEY parameter when creating an indexed file.
However, you do not have to respecify it when opening an existing file
because key attributes are permanent aspects of the file . These attributes
include key definitions and reference numbers for subsequent I/O opera
tions. If you do choose to specify the KEY parameter for an existing file ,
your specification must be identical to the established key attributes.

Subsequent I/O operations use a reference number, called the key-of
reference number, to identify a particular key. You do not specify this
number; it is determined by the key's position in the specification list:
the primary key is key-of-reference number O; the first alternate key is
key-of-reference number 1, and so forth.

9.1.16 MAXREC Keyword

The MAXREC parameter applies only to direct access files . It specifies
the maximum number of records permitted in a direct access file . The
MAXREC parameter takes the following form:

MAXREC = mr

mr
Is a numeric expression.

The default is an unlimited number of records.

9-16 Auxiliary 1/0 Statements

9. 1. 17 NAME Keyword

NAME is a nonstandard synonym for FILE. See Section 9.1.11.

9.1 .18 NOSPANBLOCKS Keyword

The NOSPANBLOCKS parameter specifi es that records are not to cross
disk block boundaries. It takes the followin g form:

NOSPANBLOCKS

When you specify this parameter, an error occurs if any record exceeds the
size of a physical block.

9. 1. 19 ORGANIZATION Keyword

The ORGANIZATION parameter speci fies the internal organization of the
file. It takes the following form :

ORGANIZATIO N = org

org
Is a character expression with one of the fo llowing values :

• 'SEQUENTIAL'

• 'RELATIVE'

• 'INDEXED'

The default file organization is sequential. However, if you omit the
ORGANIZATION keyword when you open an existing fil e, the organiza
tion already specified in that file is used. If you specify ORGANIZATION
for an existing file, org must have the same value as that of the existing
fi le.

Auxiliary 1/0 Statements 9-17

9.1.20 READONL Y Keyword

The READONLY parameter specifies that an existing file can be read and
prohibits writing to that file. It takes the following form:

READONLY

The FORTRAN 1/0 system's default file access privileges are read-
write, which can cause run-time 1/0 errors if the file protection does
not permit write access. The READO NL Y keyword has no effect on the
protection specified for a file. Its main purpose is to allow a file to be read
simultaneously by two or more programs. For example, if you wish to
open a file for the purpose of reading the file but want to allow others
to read the same file while you have it open, specify the READO NL Y
keyword. Refer to the VAX FORTRAN User Manual for information on file
sharing.

9. 1.21 RECL Keyword

The RECL parameter specifies the length of logical records in a file. It
takes the following form:

RECL = rl

rl
Is a numeric expression indicating the length of logical records in the file.

The value of rl does not include space for control information, such as for
two segment control bytes (if present) or the bytes that RMS requires for
maintaining record length and deleted record control information. The
specification is for record data only.

The value of rl is expressed in units of bytes or longwords, depending on
the record's format. Formatted records use byte units and unformatted
records use longword units (which are equal to 4 bytes). Table 9-2 lists
the maximum values that can be specified for rl, based on file organization
and record format.

9-18 Auxiliary 1/0 Statements

Table 9-2: Record Size (RECL) Limits

File Organization

Sequential

Sequential and variable
length records on ANSI
magnetic tape

Relative and indexed

Record Format

Formatted (bytes)

32766

9999 1

16380

Unformatted
(longwords)

8191

2499 1

4095

1 Limit imposed by 4-byte ASCII count field .

RECL is mandatory when opening files with fixed-length records or
relative or indexed organization; it is optional when opening all other
types. Default values for optional cases depend on the value of the
RECORDTYPE parameter. Table 9-3 lists the RECL default values.

Table 9-3: Record Size (RECL) Default Values
RECORDTYPE value

'FIXED'

'SEGMENTED'

All other types

RECL value

none; value must be explicitly specified

2048

133

The interpretation and effect of the logical record length varies as follows:

• If the file contains fixed-length records, RECL specifies the size of each
record.

• If the fi le contains variable-length records, RECL specifies the maxi
mum length for any record.

• If your program attempts to write to an existing file a record that is
longer than the logical record length, an error occurs.

• If you are opening an existing file that contains fixed-length records or
that has relative organization and you specify a value for RECL that
is different from the actual length of the records in the file, an error
occurs.

Auxiliary 1/0 Statements 9-19

9. 1.22 RECORDSIZE Keyword

RECORDSIZE is a nonstandard synonym for RECL; refer to Section 9 .1.21
for more information.

9.1.23 RECORDTYPE Keyword

The RECORDTYPE parameter specifies whether the file has fixed-length
records, variable-length records, segmented records, or stream-type
variable-length records . It takes the following form:

RECORDTYPE = typ

typ
Is a character expression with one of the following values:

• 'FIXED'

• 'VARIABLE'

• 'SEGMENTED'

• 'STREAM'

• 'STREAM_CR'

• 'STREAM_LF'

When you create a file, default record types are as follows:

File Type

Relative or indexed files

Direct access sequential files

Formatted sequential access fil es

Unformatted sequential access files

Default Record Type

'FIXED'

'FIXED'

'VARIABLE'

'SEGMENTED'

A segmented record consists of one or more variable-length records.
Using segmented records allows a FORTRAN logical record to span
several physical records. Only unformatted sequential access fi les with
sequential organization can use segmented records. You cannot specify
'SEGMENTED' for any other fi le type.

9-20 Auxiliary 1/0 Statements

If you do not specify the RECORDTYPE parameter when you are ac
cessing an existing file, the record type of the file is used- except for
unformatted sequential-access files with sequential organization and
variable-length records. These files have a default of 'SEGMENTED'.

If you do specify the RECORDTYPE parameter when you are accessing an
existing fi le, the type that you specify must match the type of an existing
file.

In fixed-length record files, if an output sta tement does not specify a full
record, the record is filled with spaces in a formatted file and zeros in an
unformatted file.

You cannot use an unformatted READ statement to access an unformatted
sequential organization file containing variable-length records, unless you
specify the corresponding RECORDTYPE value in your OPEN statement.

Files containing segmented records can be accessed only by unformatted
sequential FORTRAN I/O statements .

9.1.24 SHARED Keyword

The SHARED parameter specifies that the file can be opened for shared
access by more than one program executing simultaneously. It takes the
fo llowing form:

SHARED

For information on fi le sharing, see the VAX FORTRAN User Manual.

9.1.25 STATUS Keyword

The STATUS parameter specifies the status of the file that you wish to
open. It takes the following form:

STATUS = sta

sta
Is a character expression with one of the following values:

• 'OLD'-the file must already exist.

• 'NEW'-a new file is created.

• 'SCRATCH'-a new file is created and is deleted when it closes.

Auxiliary 1/0 Statements 9-21

• 'UNKNOWN'-the processor first tries 'OLD'; if the file is not found,
the processor uses 'NEW', thereby creating a new file .

The default is 'UNKNOWN'. However, if you specify the / NOF77 qual
ifier on the FORTRAN command line, the default value specified by the
compiler is 'NEW'.

NOTE

The STATUS parameter is also used in CLOSE statements to
specify the status of a file after the file is closed. However,
the values it uses are different from those used in OPEN
statements.

9.1.26 TYPE Keyword

TYPE is a nonstandard synonym for STATUS. See Section 9.1.25 .

9. 1.27 UNIT Keyword

The UNIT parameter specifies the logical unit that connects to the file. It
takes the following form:

[UNIT=] u

u
Is a numeric expression.

The unit specification must appear in the parameter list unless the unit
specifier occupies the first position in the list.

The logical unit may already be connected to a file when an OPEN
statement is executed. If this file is not the same as the one to be opened,
the OPEN statement executes as if a CLOSE statement had executed just
before it. If the file to be opened is already connected to the unit, or if the
file specifier (FILE keyword) is not included in the OPEN statement, only
the blank specifier (BLANK keyword) can have a value different from the
one currently in effect. The position of the file is unaffected.

See the VAX FORTRAN User Manual for additional information about
logical unit numbers.

9-22 Auxiliary 1/0 Statements

9. 1.28 USEROPEN Keyword

The USEROPEN parameter specifies a user-written externa l function that
controls the opening of the fil e. It takes the following fo rm:

USEROPEN = procedur e-name

procedure-name
ls the symbolic name of the USEROPEN procedure.

The procedure name must be declared EXTERNAL.

Knowledgeable users can employ additional features of the operating
system that are not directly available from FORTRAN, while retaining the
convenience of writing programs in FORTRAN. See the VA X FORTRAN
Us er Manual for more information on USEROPEN.

9.2 CLOSE Statement

The CLOSE statement disconnects a file from a unit. It takes the following
form:

STATUS
CLOSE ([UNIT=] u [, DISPOSE =p] [, ERR=s] [, IOSTAT=ios])

DISP

u
Is a logical unit number.

p
Is a character expression that determines the disposition of the file. It can
be any one of the following values:

• 'SAVE' or 'KEEP'- retain the file after the unit closes

• 'DELETE' - delete the file

• 'PRINT'- submit the fil e to the line printer spooler and retain it

• 'PRINT / DELETE'- submit the file to the line printer spooler and then
delete it

• 'SUBMIT'- submit the file to the batch job queue and retain it

• 'SUBMIT /DELETE'-submit the file to the batch job queue and then
delete it

Auxiliary 1/0 Statements 9-23

s

The default is 'DELETE' for scratch files. For all other files, the default
is 'KEEP'.

Is the label of an executable statement.

ios
Is an integer scalar memory reference.

Syntax Rules and Behavior

CLOSE statement parameters can occur in any order. The UNIT keyword
is optional only if the unit specifier is the first parameter in the list.

The disposition specified in a CLOSE statement supersedes the disposition
specified in the OPEN statement, except that a file opened as a scratch file
cannot be saved, printed, or submitted, and a file opened for read-only
access cannot be deleted .. For example, the following statement closes the
file on unit 1 and submits it for printing:

CLOSE (UNIT=1, STATUS= ' PRINT')

The next statement closes the file on unit J and deletes it:

CLOSE (UNIT=J , STATUS='DELETE' , ERR=99)

9.3 INQUIRE Statement

The INQUIRE statement "asks" about specified properties of a file or of a
logical unit on which a file might be opened. It takes two forms, one for
inquiring by file and the other for inquiring by unit:

Inquiring by File

INQUIRE (FILE=fi [,DEFAULTFILE=dfi .. .] ,flist)

Inquiring by Unit

INQUIRE ([UNIT=]u ,flist)

9-24 Auxiliary 1/0 Statements

fi
Is a character expression, numeric scalar memory reference, or numeric
array name reference whose value specifies the name of the file to be
inquired about.

dfi
Is a character expression specifying a default file name specification string.

flist
Is a list of property specifiers in which any one specifier appears only
once. The specifiers are described in the following sections.

u
Is the number of the logical unit to be inquired about. The unit does not
have to exist, nor does it need to be connected to a file. If the unit is
connected to a file, the inquiry encompasses both the connection and the
file.

Syntax Rules and Behavior

FILE=fi and UNIT=u can appear anywhere in the property-specifier list;
however, if the UNIT keyword is omitted, the unit specifier (u) must be
the first parameter in the list.

DEFAUL TFILE=dfi can be used in addition to or in place of FILE=fi when
used in connection with an inquiry about a file. If a file is open with
both FILE and DEFAULTFILE keywords specified in the OPEN statement,
then you can inquire about this file by specifying both the FILE and
DEFAULTFILE keywords in the INQUIRE statement.

An INQUIRE statement may be executed before, during, or after the
connection of a file to a unit. The values assigned by the statement are
those that are current when the INQUIRE statement executes.

9.3.1 ACCESS Specifier

The ACCESS specifier takes the following form:

ACCESS = ace

Auxiliary 1/0 Statements 9-25

ace
Is a character scalar memory reference that is assigned one of the following
values:

• SEQUENTIAL-if the file is open for sequential access

• DIRECT-if the file is open for direct access

• KEYED-if the file is open for keyed access

• UNKNOWN-if no connection exists

9.3.2 BLANK Specifier

The BLANK specifier takes the following form:

BLANK = blk

blk
Is a character scalar memory reference that is assigned one of the following
values:

• NULL-if null blank control is in effect for a file open for formatted
I/O

• ZERO-if zero blank control is in effect

• UNKNOWN-if no connection exists or if the connection is not for
formatted 1/ 0

9.3.3 CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier takes the following form :

CARR IAGECONTROL = cc

cc
Is a character scalar memory reference that is assigned one of the foll owing
values:

•
•
•
•

FORTRAN-if the file has FORTRAN carriage control

LIST-if the file has implied carriage control

NONE-if the file has no carriage control attribute

UNKNOWN-if no other values apply

S-26 Auxiliary 1/0 Statements

9.3.4 DIRECT Specifier

The DIRECT specifier takes the following form :

DIRECT = dir

dir
Is a character scalar memory reference that is assigned one of the following
values:

• YES-if direct access is allowed for the file

• NO-if direct access is not allowed

• UNKNOWN-if the processor cannot determine whether direct access
is allowed

9.3.5 ERR Specifier

The ERR specifier takes the following form:

ERR = s

s
Is the label of an executable statement.

The ERR specifier is a control specifier rather than a property specifier.
If an error occurs during execution of the INQUIRE statement, control is
transferred to the statement whose label is s.

9.3.& EXIST Specifier

The EXIST specifier takes the following form:

EXIST = ex

ex
Is a logical scalar memory reference that is assigned one of the following
values:

• .TRUE.-if the specified file or unit exists

• .FALSE.-if the specified file or unit does not exist or the file cannot
be opened even though it exists

Auxiliary 1/0 Statements 9-27

9.3. 7 FORM Specifier

The FORM specifier takes the following form:

FORM = f m

f m
Is a character scalar memory reference that is assigned one of the following
values:

• FORMATTED-if the file is open for formatted I/O

• UNFORMATTED-if the file is open for unformatted I/O

• UNKNOWN-if no connection exists

9.3.8 FORMA TIED Specifier

The FORMATTED specifier takes the following form:

FORMATTED = fmd

fmd
Is a character scalar memory reference that is assigned one of the following
values:

• YES-if formatted is an allowed form for the file

• NO-if formatted is not an allowed form

• UNKNOWN-if the processor is unable to determine whether format
ted is an allowed form

9.3.9 IOSTAT Specifier

The IOSTAT specifier takes the following form:

IOSTAT = ios

9-28 Auxiliary 1/0 Statements

ios
Is an integer scalar memory reference.

The IOSTAT specifier is a control specifier rather than a property specifier.
Ios can be assigned one of the following values:

• If an error occurs during execution of the INQUIRE statement, it takes
a processor-dependent positive integer value.

• If no error occurs, it takes a ZERO value.

9.3. 10 KEYED Specifier

The KEYED specifier takes the fo llowing form :

KEYED = kyd

kyd
Is a character scalar memory reference that is assigned one of the following
values:

• YES- if keyed access is allowed for the file (The file must be indexed.)

• NO-if keyed access is not allowed

• UNKNOWN- if the processor is unable to determine whether keyed
access is allowed

9.3.11 NAME Specifier

The NAME specifier takes the following form:

NAME = rune

nme
Is a character scalar memory reference that is assigned the name of the file
being inquired about. If the file does not have a name, nme is undefined.

The value assigned to nme is not necessarily identical to the value speci
fied with the FILE keyword. For example, the value that the processor
returns may be qualified by a directory name or a version number.
However, the value that is assigned is always valid with the FILE keyword
in an OPEN statement.

Auxiliary 1/0 Statements 9-29

NOTE

The FILE and NAME keywords are synonyms when used with
the OPEN statement, but not when used with the INQUIRE
statement.

9.3.12 NAMED Specifier

The NAMED specifier takes the following form:

NAMED = nmd

nmd
Is a logical scalar memory reference that is assigned one of the following
values:

• .TRUE.-if the specified file has a name

• .FALSE.- if it does not have a name

9.3. 13 NEXTREC Specifier

The NEXTREC specifier takes the following form:

NEXTREC = nr

nr
Is an integer scalar memory reference that is assigned one of the following
values:

• If a record was previously read or written on the specified unit, the
value of nr is one more than the number of that record.

• If no records have been read or written, the value of nr is one.

• If the file is not opened for direct access or if the position is indetermi
nate because of an error condition, nr is zero .

9.3.14 NUMBER Specifier

The NUMBER specifier takes the following form:

NUMBER = num

9-30 Auxiliary 1/0 Statements

num
Is an integer scalar memory reference.

Num is assigned the number of the logical unit currently connected to the
specified file. If there is no logical unit connected to the file, num is not
defined.

9.3. 15 OPENED Specifier

The OPENED specifier takes the following form:

OPENED = od

od
Is a logical scalar memory reference that is assigned one of the following
values:

• .TRUE.-if the specified file is open on a unit or if the specified unit is
open

• .FALSE.-if the specified file or unit is not open

9.3.16 ORGANIZATION Specifier

The ORGANIZATION specifier takes the following form:

ORGANIZATIO N= org

org
Is a character scalar memory reference that is assigned one of the following
values:

• SEQUENTIAL-if the file is a sequential file

• RELATIVE-if the file is a relative file

• INDEXED-if the fi le is an indexed file

• UNKNOWN-if the processor is unable to determine the file 's
organization

Auxiliary 1/0 Statements 9-31

9.3. 17 RECL Specifier

The RECL specifier takes the following form:

RECL = rel

rel
Is an integer scalar memory reference taking one of the following values:

• If the file or unit is open, rel is the maximum record length allowed in
the file.

• If the file is not open, rel is the maximum record length allowed in
the file; or, if the maximum record length is 0, rel is the length of the
longest record in the file.

If inquiring about a file that has no maximum record size, see
Section 9.1.21.

• If the file is segmented, rel is the longest segment length in the file.

• If a specified file does not exist, rel is zero.

The rel value is expressed in longwords if a file is (or has been) opened for
unformatted I/O; and in bytes in all other circumstances.

9.3.18 RECORDTYPE Specifier

The RECORDTYPE specifier takes the following form:

RECORDTYPE = rtype

rtype
Is a character scalar memory reference that is assigned one of the fo llowing
values:

•
•
•

•

•

FIXED-if the file is open for fixed-length records

VARIABLE- if the file has variable-length records

SEGMENTED- if the file is open for unformatted sequential I/O
using segmented records

STREAM- if the file 's records are terminated with a carriage-retu rn
and line-feed

STREAM _ CR-if the fi le's records are terminated only with a
carriage-return

9- 32 Auxiliary 1/0 Statements

• STREAM_LF-if the file 's records are terminated only with line-feed

• UNKNOWN-if the processor cannot determine the record type

9.3. 19 SEQUENTIAL Specifier

The SEQUENTIAL specifier takes the following form:

SEQUENTIAL = seq

seq
Is a character scalar memory reference that is assigned one of the following
values:

• YES-if sequential access is allowed for the specified file

• NO-if sequential access is not allowed

• UNKNOWN-if the processor cannot determine whether sequential
access is allowed

9.3.20 UNFORMA TIED Specifier

The UNFORMATTED specifier takes the following form:

UNFORMATTED = unf

unf
Is a character scalar memory reference that is assigned one of the following
values:

• YES-if unformatted is an allowed form for the file

• NO-if unformatted is not an allowed form for the file

• UNKNOWN-if the processor is unable to determine whether unfor
matted is an allowed form for the file

Auxiliary 1/0 Statements 9-33

9.4 REWIND Statement

The REWIND statement repositions a sequential file currently open for
sequential or append access to the beginning of the file . It takes either one
of the following forms:

REWIND ([UNIT=]u[,ERR=s] [,IOSTAT=ios])

REWIND u

u
Is a logical unit number.

s
Is the label of the executable statement that receives control if an error
occurs.

IDS ·

Is an integer scalar memory reference that is assigned a positive integer if
an error occurs and zero if no error occurs.

Syntax Rules and Behavior

The unit number must refer to a file on disk or magnetic tape. For exam
ple, the following statement repositions logical unit 3 to the beginning of
the currently open file:

REWIND 3

This statement repositions logical unit 3 to the beginning of the currently
open file .

A REWIND statement should not be issued for a file that is open for direct
or keyed access.

9-34 Auxiliary 1/0 Statements

9.5 BACKSPACE Statement

The BACKSPACE statement repositions a sequential file currently open for
sequential access to the beginning of the preceding record. When the next
I/O statement for the unit is executed, the preceding record is available for
processing. The BACKSPACE statement takes one of the following forms:

u

BACKSPACE ([UNIT=]u[,ERR=s] [, IOSTAT=ios])

BACKSPACE u

Is a logical unit number.

s
Is the label of the executable statement that receives control if an error
occurs.

ios
Is an integer scalar memory reference that is defined as a positive integer
if an error occurs and zero if no error occurs.

Syntax Rules and Behavior

The unit number must refer to an open file on disk or magnetic tape . For
example, the following statement repositions the open file on logical
unit 4 to the beginning of the preceding record:

BACKSPACE 4

A BACKSPACE statement should not be issued for a file that is open for
direct, keyed, or append access. Backspacing from record n is done by
rewinding to the start of the file and then performing n-1 successive reads
to reach the previous record. For direct, keyed, and append access, the
current record count (n) is not available to the FORTRAN I/O system.

9.6 ENDFILE Statement

The ENDFILE statement writes an end-file record to the specified unit. It
takes one of the following forms:

ENDFILE ([UNIT=]u[, ERR=s] [, IOSTAT=ios])

ENDFILE u

Auxiliary 1/ 0 Statements 9-35

u
Is a logical unit number.

s
Is the label of the executable statement that receives control if an error
occurs.

ios
Is an integer scalar memory reference that is defined as a positive integer
if an error occurs and zero if no error occurs.

Syntax Rules and Behavior

If the unit specified in the ENDFILE statement is not open, the default file
is opened for unformatted output.

An end-file record can be written only to files with sequential organization
that are accessed as formatted-sequential or unformatted-segmented
sequential files. For example, the following statement writes an end-file
record to the logical unit 2:

ENDFILE 2

An ENDFILE statement must not be issued for a file that is open for direct
or keyed access.

End-file records should not be written in files that are read by programs
written in a language other than FORTRAN because VAX RMS does not
support the embedded end-file concept. An end-file record is a 1-byte
record containing the hexadecimal code lA (CTRL/Z).

9. 7 DELETE Statement

The DELETE statement deletes records from relative and indexed files. It
takes one of the following forms :

Indexed File Access

DELETE ([UNIT=] u [. ERR=s] [. IOSTAT=ios])

Relative File Access

DELETE ([UNIT=]u,REC=r[,ERR=s] [,IOSTAT=ios])

DELETE (u' r[,ERR=s] [,IOSTAT=ios])

9-36 Auxiliary 1/0 Statements

u
Is the number of the logical unit containing the record to be deleted.

r
Is the positional number of the record to be deleted.

s
Is the label of an executable statement that receives control if an error
condition occurs.

IDS

Is an integer scalar memory reference that is defined as a positive integer
if an error occurs and zero if no error occurs.

Syntax Rules and Behavior

The form of the DELETE statement fo r indexed files is a current-record
delete . This form deletes the curren t record, which is the last record that
is accessed by a READ statement on the specified logical unit .

The forms of the DELETE statement with relative files are direct access
deletes. These forms delete the record specified by the number r.

The DELETE statement logically removes the appropriate record from the
specified file by locating the record and marking it as a deleted record . It
then frees the position fo rmerly occupied by the deleted record so that a
new record can be written into that position.

Following a direct access delete, any associated variable is set to the next
record number.

In the following example, the fi fth record in the file connected to logical
unit 10 is deleted from the fi le:

DELETE (10 , REC =5)

In the next example, the current record is deleted from the file connected
to logical unit 11:

DELETE (1 1)

Auxiliary 1/0 Statements 9-37

9.8 UNLOCK Statement

The UNLOCK statement frees a record in an indexed, relative, or sequen
tial file that was locked on a specified logical unit by a previous READ. It
performs no other I/O operation. The UNLOCK statement takes one of
the following form s:

u

UNLOCK ([UNIT=] u [, ERR=s] [, IOSTAT=ios])

UNLOCK u

Is the number of a logical unit.

s
Is the label of the executable statement that receives control if an error
occurs .

ios
Is an integer scalar memory reference that is defined as a positive integer
if an error occurs and zero if no error occurs.

If no record is locked, the operation has no effect.

9-38 Auxiliary 1/0 Statements

Chapter 10

Compiler Directives

Compiler directives tell the compiler to perform certain tasks when it
compiles a source program unit. They are preceded by special tags that
identify them to the compiler.

VAX FORTRAN provides two categories of compiler directives: one
category, parallel directives, supports directed decomposition for parallel
processing. Parallel directives are preceded by the CP AR$ tag. The other
category, general di rectives, provides several general -purpose functions.
General directives are preceded by the CDEC$ tag.

10. 1 Compiler Directive Syntax Rules

The following general syntax rules apply to all compiler directives. They
must be precisely followed to properly compile your program and obtain
meaningful results:

• The tag (CPAR$ or CDEC$) must appear in columns 1 through 5.

• Column 6 must be a blank or tab.

• From column 7 on, blanks are insignificant. Thus, the directive can be
positioned anywhere on the line after column 6.

• Continuation lines cannot appear in compiler directives.

• If a blank common block is used in a compiler directive, it must be
specified as two slashes (/ /) .

See the individual sections in this chapter for listings of rules that pertain
only to specific categories or individual directives.

Compiler Directives 10-1

10.2 Parallel Directives

Parallel directives invoke parallel processing of indexed DO-loops, syn
chronize execution of critical regions within the loops, and define the
sharability of common blocks and symbols in parallel applications.

The /PARALLEL qualifier enables parallel directives. See the VAX
FORTRAN User Manual for details about this qualifier.

Parallel directives take the following form:

col umn 1

' CPAR$ di rective

directive
Is any one of the following values:

• CONTEXT_ SHARED-specifies shared memory locations for symbols
declared in routines that con tain parallel DO-loops.

• CONTEXT_SHARED_ALL-reinforces the context-shared default of
symbols in routines compiled with the /PARALLEL qualifier.

• DO_ PARALLEL- enables parallel processing of indexed DO-loops.

• LOCKON and LOCKOFF- forces processes to sequentially execute a
region of code.

• SHARED-specifies shared common blocks for parallel processing.

• SHARED_ALL-reinforces the shared default of common blocks in
routines compiled with the / PARALLEL qualifier.

• PRIVATE-specifies unique (private) common blocks or symbols for
each process.

• PRIVATE_ALL-forces all common blocks and symbols to have
PRIVATE defaults in routines compiled with the /PARALLEL qualifier.

Section 10.2.9 provides examples of parallel directives appropriately used
in a program unit.

10-2 Compiler Directives

10.2.1 CPARS CONTEXT_SHARED

The CONTEXT_SHARED directive specifies that the same memory
location will be used for a symbol declared in a routine. The symbol uses
the same memory location in any parallel DO-loops contained within the
routine .

If a routine has several concurrent invocations (because it is called from
within a parallel DO-loop), each invocation uses different memory loca
tions for its variables that are declared CONTEXT_SHARED.

The CONTEXT_SHARED directive takes the following form:

CPAR$ CONTEXT_SHARED syname [, syname] .

syname
Is the name of a variable, array, or record declared within the routine .

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1 , CONTEXT_SHARED has the following speci fic rules:

•

•
•

•

CONTEXT_SHARED can appear anywhere within declaration state
ments in the routine.

Arrays cannot be dimensioned within CONTEXT_SHARED .

Symbols listed in CONTEXT_SHARED cannot also be listed in a
PRIVATE directive.

Dummy arguments cannot be declared CONTEXT_SHARED .

10.2.2 CPARS CONTEXT_SHAREO_ALL

The CONTEXT_SHARED_ALL directive forces all symbols that are
declared within a routine to default to CONTEXT_SHARED. It takes the
following form:

CPAR$ CO NTEXT_ SHARED_ALL

This directive affects only default behavior. Individual symbols can still be
declared PRIVATE.

All general compiler-directive syntax rules apply to the CONTEXT_
SHARED directive (see Section 10.1).

Compiler Directives 10- 3

10.2.3 CPARS oo_PARALLEL

The DO_P ARALLEL directive tells the compiler to run an indexed DO
loop in parallel. It takes the following form:

CPAR$ DO _PARALLEL [count]

count
Is a numeric expression specifying the number of iterations in each set
distributed to processes running the DO-loop. Any remaining iterations
run in the last process. For example, if the total number of iterations is
1330, count is 100, and two processes are running the DO-loop, then each
process is distributed sets of 100 iterations at a time. The last set contains
the last 30 iterations.

The numeric expression must evaluate to a positive, non-zero integer. If
necessary, the process converts it to an integer by truncation. For example,
50.56 is acceptable and is converted to 50. However, 0.20 is not acceptable
because it is converted to zero.

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, DO_PARALLEL and its corresponding DO-loop have the
following specific rules:

•

•

•

•

The indexed DO statement must be the next executable statement
following the DO_P ARALLEL directive. Only comments can appear
between the directive and its corresponding DO-loop.

The parallel DO-loop control variable must be a private integer. If it
is not specified PRIVATE, the compiler gives an informational message
and changes the control variable's default to PRIVATE. If the control
variable is not an integer, the compiler gives an error.

A parallel DO-loop cannot contain the following:

1/0 statements

PAUSE, RETURN, or STOP statements

Calls to system services or run-time library routines that modify
the con text of the process

A parallel DO-loop must not have a branch into or out of its body .

1 0-4 Compiler Directives

When calculations in parallel DO-loops require serial (sequential) execu
tion to achieve correct results, you must guard those calculations (called
critical regions) against parallel execution . This situation occurs when
calculations modify shared values that are needed in successive iterations
of the parallel DO-loop or elsewhere in the routine.

The following section describes the LOCKON and LOCKOFF directives,
which guard critical regions. See also the VAX FORTRAN User Manua l for
addi tional information.

10.2.4 CPARS LOCKON, CPARS LOCKOFF

The LOCKON and LOCKOFF directives enclose a region of executable
code within a parallel DO-loop. They effectually force processes to
execute this critical region one at a time by excluding all other processes
from the region while one process is executing it.

A process executing the critical region "has the lock" while other processes
that want to execute it must wait until it is free . The lock becomes free
when the process in the critical region executes the associated LOCKOFF
directive.

The LOCKON and LOCKOFF directives take the following forms :

CPAR$ LOCKON lck-var

(critical region)

CPAR$ LOCKOFF lck-var

/ck-var
Is a LOGJCAL*4 variable that can be any of the following items:

•
•
•
•

Scalar variable

Dummy argument

Record field

Array element

The lock variable (lck-var) must be in a shared common block or a
variable declared as CONTEXT_SHARED in the routine containing a
parallel DO-loop.

The lock variable is considered locked when it has a value of .TRUE. and
free when it has a value of .FALSE.

Compiler Directives 10-5

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, LOCKON and LOCKOFF have the following specific rules:

•

•

•

•

All LOCKON directives require an associated LOCKOFF directive that
executes in the DO-loop.

Statements in critical regions cannot transfer control outside the
region.

Lock variables can only have a LOGICAL*4 data type. Other data
types cause a compilation error.

Lock variables must be shared, either by specification or default. If
they are declared private, a compilation error results.

10.2.5 CPARS PRIVATE

The PRIVATE directive specifies the common blocks and symbols that
must be unique for each process that runs the parallel DO-loop. It takes
the following form:

CPAR$ PRIVATE name [,name] .

name
Is the name of a symbol or a common block (preceded and followed by
a slash). Common block names cannot exceed 26 characters; they can be
blank. Symbols can be any variable name (scalar, array, or record) that is
declared within the routine .

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, PRIVATE has the following specific rules:

•

•
•
•

•

10-6 Compiler Directives

PRIVATE directives can appear anywhere within declaration state
ments in the routine.

Arrays cannot be dimensioned within this directive .

Elements contained in a common block cannot be declared PRIVATE .

Common blocks that are declared PRIVATE cannot also be declared
SHARED.

Symbols declared PRIVATE cannot also be declared CONTEXT_
SHARED.

• Symbols can only be declared PRIVATE in routines containing a
parallel DO-loop.

• Dummy arguments cannot be declared PRIVATE.

• SAVE statements cannot refer to PRIVATE symbols or common blocks.

10.2.6 CPARS PRIVATE-ALL

The PRIVATE-ALL directive forces all symbols and common blocks to
defaul t to PRIVATE in each process that runs the parallel DO-loop . It
takes the following form:

CPAR$ PRIVATE_ALL

The PRIVATE-ALL directive changes only default behavior. Individual
common blocks can still be declared SHARED and individual symbols can
still be declared CONTEXT_SHARED.

All general compiler-directive syntax rules apply to the PRIVATE-ALL
directive (see Section 10.1).

10.2.7 CPARS SHARED

The SHARED directive specifies the common blocks that must be shared
between processes running a parallel DO-loop. It takes the following
form:

CPAR$ SHARED / [cb] / [, /[cb]/] ..

cb
Is the name of a common block. The name cannot exceed 26 characters; it
can be blank.

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, SHARED has the following specific rules:

• SHARED directives can appear anywhere within declaration state
ments in the routine.

• Common blocks that are declared SHARED cannot also be declared
PRIVATE.

Compiler Directives 10-7

10.2.8 CPARS SHARED-ALL

The SHARED_ALL directive forces all common blocks to have SHARED
defaults among processes that use the parallel DO-loop. It takes the
following form:

CPAR$ SHARED_ALL

This directive affects only default behavior. Individual common blocks can
still be declared PRIVATE.

All compiler-directive syntax rules apply to the SHARED_ALL directive
(see Section 10.1).

10.2.9 Parallel Directive Examples

The following examples demonstrate valid applications of parallel direc
tives.

In the first example, assignment to the context-shared variables SUMA
and SUMB must be guarded from multiple processes attempting to write
to the variable at the same time. The LOCKON and LOCKOFF directives
accomplish this task by ensuring scalar execution of the statements.

CPAR$ PRIVATE I
CPAR$ SHARED /COM1/
CPAR$ CONTEXT_SHARED SUMA, SUMB

COMMON/COM1/A, B
INTEGER A(1000) , B(1 000) , SUMA, SUMB
LOGICAL *4 LCK_VAR

CPAR$ DO_PARALLEL
DO I = 1 , 1000
CALL CALCULATE (I)

CPAR$ LOCKON LCK_VAR
SUMA = SUMA + A(I)
SUMB = SUMB + B(I)

CPAR$ LOCKOFF LCK_VAR
ENDO

10-8 Compiler Directives

PRINT*, ' SUM A=', SUMA
PRINT*, ' SUM B=', SUMB

END

' Guard agai nst multipl e pr ocess es
writing to t he cont ext - shared
variab l e at the same t ime .

The second example uses valid SHARED, CONTEXT_SHARED, and
PRIVATE directives.

INTEGER A(1000) . 8(1000)
COMMO N/COM1 / B

PARAMETER (N = 1000)

CPAR$ SHARED_ALL

CPAR$ CONTEXT_SHARED ALL

CPAR$ PRIVATE I

CPAR$ DO_PARALLEL
DO 10 I = 1 , N

A(I) A(I) + I
B(I) A(I)

10 CONTI NUE

c

CALL SUBR(A , N)

WRITE (5 ,*) A, B

END

SUBROUTI NE SUBR(A , N)

INTEGER A(N) . 8(1000)
COMMON/ COM1/B

CPAR$ SHARED /COM1/
CPAR$ PRIVATE_ALL

CPAR$ DO_PARALLEL N/2
DO J = 1 , N

A(J) B(J) + J

ENDO

RETURN
END

' Reinforces the SHARED default for
' common blocks .
1 Reinforces the CO NTEXT_SHARED default
' for local symbols .

1 Loop control must be pri vat e .

' The common block must be SHARED .
t Make the default PRIVATE .

Di s t ributes half of the iterations to
' each of two processors .

Compiler Directives 10-9

10.3 General Directives

General directives label or modify certain entities. No qualifier is needed
on the FORTRAN command line to enable general directives.

General directives take the following form:

co l umn 1

t
CDEC$ di r ective

directive
Is any one of the following values:

• !DENT-provides identification of an object module.

• PSECT-modifies certain attributes of a common block.

• TITLE, SUBTITLE-provides a listing header.

10.3.1 CDECS IDENT

The IDENT directive specifies a string that can be used to identify an
object module. The compiler places the string in the identification field of
an object module when it generates the module for each source program
unit. The IDENT directive takes the following form:

CDEC$ IDENT string

string
Is a group of up to 31 printable characters delimited by apostrophes .

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, IDENT has the following specific rules:

• Only the first IDENT directive is effective-the compiler ignores any
additional IDENT directives in a program unit.

• IDENT has no effect when you specify /NOOBJECT on the FORTRAN
command line.

1 0-1 0 Compiler Directives

10.3.2 COE CS PSECT

The PSECT directive modifies several attributes of a common block. It
takes the following form:

CDEC$ PSECT /common-name/ attr [,at tr] .. .

common-name
Is the name of the common block, preceded and followed by a slash.

attr
Is one of the following attributes:

•
•
•
•
•

LCL-local scope; opposite to GBL and cannot appear with it

GBL-global scope

[NO]WRT-writabili ty or no-writability

[NO]SHR-shareability or no-shareability

ALIGN=val-alignment for the common block; val must be a constant
ranging from 0 thru 9

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, PSECT has the following specific rules:

• If one program unit changes one or more attributes, all other units
that reference the common block must also change those attributes in
the same way.

• Default attributes apply if you do not modify them with a PSECT
directive. Table 10-1 lists the default attributes of common blocks and
how they can be modified by PSECT.

Compiler Directives 10-11

Table 10-1: Common Block Default Attributes and PSECT
Modification

Common Block Default Attributes

Relocatability

Overlaid

Global Scope

No executabili ty

Writability

Readability

Position independence

Shareability

No protection

LONGWORD alignment (2)
(FORTRAN default)

PSECT Modification

none

none

Global or local scope

none

Writability or no-writabili ty

none

none

Shareabili ty or no-shareability

none

0 thru 9

Global or loca l scope is significant for an image that has more than one
cluster. The attribute determines whether program sections with the same
name but from differen t modules in different clusters are finally placed in
separate clusters (local scope) or in the same cluster (global scope).

[No]writability determines whether the contents of a common block can be
modified during program execution .

[No]shareability determines whether the contents of a common block can
be shared by more than one process.

ALIGN= val aligns the common block. The specified number is interpreted
as a power of 2. The value of the expression is the alignment in bytes: a
value of 0 specifies BYTE alignment; a value of 9 specifies page alignment.

Refer to the VMS Linker Utili ty Manual for detailed information about
default attributes of common blocks.

10-12 Compiler Directives

10.3.3 CDECS TITLE, CDECS SUBTITLE

The TITLE directive specifies a string and places it in the title field of a
listing header. Similarly, SUBTITLE places a specified string in the subtitle
field of a listing header.

These directives take the following forms:

CDEC$ TITLE s t r ing
CDEC$ SUBTI TLE s t r ing

string
Is a group of up to 31 printable characters delimited by apostrophes.

Syntax Rules

In addition to the general compiler-directive syntax rules listed in
Section 10.1, TITLE and SUBTITLE have the following specific rules:

•

•

•

•

To enable TITLE and SUBTITLE directives, you must specify / LIST on
the FORTRAN command line.

When TITLE or SUBTITLE appear on a page of a listing file, the
specified string appears in the listing header of the following page.

If two or more of either directives appear on a page, the last directive
is the one in effect for the following page.

If either directive does not specify a string, no change occurs in the
listing file header.

Compiler Directives 10-13

Appendix A

Additional Language Features

To facilitate compatibility with other versions of FORTRAN, VAX
FORTRAN provides the following additional language features:

• ENCODE, DECODE, DEFINE FILE, and FIND statements

• Alternative syntax for the PARAMETER statement and octal constants

• A /NOF77 interpretation of the EXTERNAL statement

These language features are particularly useful in transporting older
FORTRAN programs to a VAX system. However, you should avoid using
them in new programs on VAX systems and in new programs for which
portability to other FORTRAN-77 implementations is important.

A.1 The ENCODE and DECODE Statements

The ENCODE and DECODE statements transfer data between variables
or arrays in internal storage. The ENCODE statement translates data
from internal (binary) form to character form. Inversely, the DECODE
statement translates data from character to internal form. These statements
are comparable to using internal files in formatted sequential WRITE and
READ statements, respectively.

The ENCODE and DECODE statements take the following forms:

ENCODE (c. f. b [. IOSTAT=ios] [, ERR=s]) [list]

DECODE (c, f, b [, IOSTAT=ios] [, ERR=s]) [list]

Additional Language Features A-1

c
Is an integer expression . In the ENCODE statement, c is the number of
characters (in bytes) to be translated to character form. In the DECODE
statement, c is the number of characters to be translated to internal form .

f
Is a format identifier. An error occurs if more than one record is specified.

b
Is a scalar or array name reference. If b is an array name reference, its
elements are processed in the order of subscript progression.

In the ENCODE statement, b receives the characters after translation
to external form. If less than c characters are received, the remaining
character positions are fi lled with blank characters. In the DECODE
statement, b contains the characters to be translated to internal form.

ios
Is an integer scalar memory reference that is defined as a positive integer
if an error occurs, and zero if no error occurs.

s
Is the label of an executable statement.

list
Is an I/O list.

In the ENCODE statement, the list contains the data to be transla ted to
character form. In the DECODE statement, the list receives the data after
translation to internal form .

The interaction between the fo rmat specifier and the I/O list is the same
as for a formatted I/O statement.

Syntax Rules and Behavior

The number of characters that the ENCODE or DECODE statement can
process depends on the data type of b. For example, an INTEGER*2 array
can contain two characters per element, so that the maximum number
of characters is twice the number of elements in that array. A character
variable or character array element can contain characters equal in number
to its length. A character array can contain characters equal in number to
the length of each element multiplied by the number of elements.

A-2 Additional Language Features

Examples

In the following example, the DECODE statement translates the 12
characters in A to integer form (as specified by FORMAT 100):

DIMENSION K (3)
CHARACTER*12 A,B
DATA A/ '123456789012 ' /
DECODE (1 2 , 100, A) K

100 FORMAT (3I4)
ENCODE (12,100, B) K(3) , K(2), K(1)

The 12 characters are stored in array K:

K(1) = 1234
K(2) = 5678
K(3) = 901 2

The ENCODE statement translates the values K(3), K(2), and K(l) to
character form and stores the characters in the character variable B:

B = '90125678 1234'

A.2 DEFINE FILE Statement

The DEFINE FILE statement establishes the size and structure of files
with relative organization and associates them with a logical unit number.
The DEFINE FILE statement is comparable to the OPEN statement (in
situations where you can use the OPEN statement, it is the preferable
mechanism for creating and opening files) .

The DEFINE FILE sta tement takes the foll owing form:

DEFI NE FILE u (m,n ,U,asv)[, u (m, n ,U, asv)] . ..

u
Is an integer constant or variable that specifies the logical unit number.

m
Is an integer constant or variable that specifies the number of records in
the file.

n
Is an integer constant or variable that specifies the length of each record in
16-bit words (2 bytes).

Additional Language Features A-3

u
Specifies that the file is unformatted (binary); this is the only acceptable
entry in this position.

asv
Is an integer variable, called the associated variable of the file. At the end
of each direct access I/O operation, the record number of the next higher
numbered record in the file is assigned to v; asv must not be a dummy
argument.

Syntax Rules and Behavior

The DEFINE FILE statement specifies that a file containing m fixed-length
records, each composed of n 16-bit words, exists (or is to exist) on the
specified logical unit. The records in the file are numbered sequentially
from 1 through m.

A DEFINE FILE statement must be executed before the first direct access
I/O statement referring to the specified file, even though the DEFINE FILE
statement does not itself open the file. The file is actually opened when
the first direct access I/O statement for the unit is executed. If this I/O
statement is a WRITE statement, a new relative organization file is created.
If it is a READ or FIND statement, an existing file is opened, unless the
specified file does not exist. If a file does not exist, an error occurs.

The DEFINE FILE statement establishes the integer variable asv as the as
sociated variable of a file . At the end of each direct access I/O operation,
the FORTRAN I/O system places in asv the record number of the record
immediately following the one just read or written. Because the associated
variable always points to the next sequential record in the file (unless the
associated variable is redefined by an assignment, input, or FIND state
ment), direct access I/O statements can perform sequential processing on
the file . They do this by using the associated variable of the file as the
record number specifier.

Example

In the following example, the DEFINE FILE statement specifies that the
logical unit 3 is to be connected to a file of 1000 fixed-length records;
each record is forty-eight 16-bit words long. The records are numbered
sequentially from 1 through 1000 and are unformatted. After each direct
access I/O operation on this file , the integer variable NREC will contain
the record number of the record immediately following the record just
processed.

DEFI NE FILE 3 (1000 ,48 ,U, NREC)

A-4 Additional Language Features

A.3 FIND Statement

The FIND statement positions a direct access file at a particular record
and sets the associated variable of the file to that record number. It is
comparable to a direct access READ statement with no 1/0 list, and can
open an existing file. No data transfer takes place. (See the description
of the OPEN statement's ASSOCIATEVARIABLE keyword or the DEFINE
FILE statement for information about associate variables.)

The FIND statement takes one of the following forms:

FIND (u'r[,ERR=s] [, IOSTAT= ios])

FI ND ([UNIT=]u,REC=r[,ERR=s] [, IOSTAT= i os])

u
Is a logical unit number. It must refer to a relative organization file .

r
Is the direct access record number. It cannot be less than one or greater
than the number of records defined for the file .

s
Is the label of the executable statement that receives control if no error
occurs.

ios
Is an integer variable or integer array element that is defined as a positive
integer if an error occurs, and as a zero if no error occurs.

Examples

In the first example, the FIND statement positions logical unit 1 at the firs t
record in the file. The file's associated variable is set to one:

FI ND (1' 1)

In the second example, the FIND statement positions the file at the record
identified by the content of INDX. The fi le's associated variable is set to
the value of INDX:

FI ND (4'INDX)

Additional Language Features A-5

A.4 PARAMETER Statement

The PARAMETER statement discussed here is similar to the one discussed
in Section 4. 11; they both assign a symbolic name to a constant. However,
this PARAMETER statement differs from the other one in the following
two ways: its list is not bounded with parentheses; and the form of the
constant, rather than implicit or explicit typing of the symbolic name,
determines the data type of the variable .

This PARAMETER statement takes the following form:

PARAMETER p=c [,p=c] ...

p
Is a symbolic name.

c
Is a constant, the symbolic name of a constant, or a compile-time constant
expression .

Syntax Rules and Behavior

Each symbolic name (p) becomes a constant and is defined as the value of
the constant or constant expression (c) . Once a symbolic name is defined
as a constant, it can appear in any position in which a constant is allowed.
The effect is the same as if the constant were written there instead of the
symbolic name.

The symbolic name of a constant cannot appear as part of another con
stant, but it can appear as a real or imaginary part of a complex constant.

Compile-time constant expressions are defined in Section 4. 11.

You can use symbolic names in a PARAMETER statement only to identify
the symbolic name's corresponding constant in that program unit. Such
a name can be defined only once in PARAMETER statements within the
same program unit.

The symbolic name of a constant assumes the data type of its correspond
ing constant expression . The data type of a parameter constant cannot be
specified in a type declaration statement. Nor does the initial letter of the
constant's name implicitly affect its data type.

A-6 Additional Language Features

Examples

PARAMETER PI=3 .1415927 , DPI=3 . 141592653589793238DO
PARAMETER PIOV2=PI/2, DPIOV2=DPI/2
PARAMETER FLAG= . TRUE ., LONGNAME=' A STRING OF 25 CHARACTERS'

A.5 Octal Notation for Integer Constants

Octal forms of integer constants allow compatibility with PDP-11
FORTRAN.

An octal integer constant takes the following form:

"nn

nn
Is a string of digits in the range 0 to 7.

Examples

The following examples demonstrate valid and invalid octal integer
constants and explain why the invalid ones are not valid:

Valid

"107

"1 77777

Invalid

" 108

"1377 .

"17777"

Explanation

Contains a digit outside the allowed range

Contains a decimal poin t

Contains a trai ling quotation mark

These octal forms are not the same as the typeless octal constants dis
cussed in Section 2.2.1.4. Integer constants in octal form have integer data
type and are trea ted as integers .

Additional Language Features A-7

A.6 /NOF77 Interpretation of the EXTERNAL Statement

By using the /NOF77 qualifier on the FORTRAN command line, you can
obtain another interpretation of the EXTERNAL statement. This additional
interpretation facilitates compatibility with older versions of FORTRAN
due to the ANSI FORTRAN-77 interpretation being incompatible with the
previous Standard and previous DIGITAL implementations.

The / NOF77 interpretation of the EXTERNAL statement combines the
function of the INTRINSIC statement with that of the EXTERNAL state
ment discussed in Section 4.7. It is available only if the /NOF77 qualifier
is specified on the FORTRAN command line.

The /NOF77 EXTERNAL statement lets you use subprograms as argu
ments to other subprograms. The subprograms to be used as arguments
can be either user-supplied procedures or FORTRAN library functions .

The /NOF77 EXTERNAL statement takes the following form:

EXTERNAL [*] v [. [*] v] . ..

v
Is the symbolic name of a subprogram or the name of a dummy argument
associated with the symbolic name of a subprogram.

*
Specifies that a user-supplied function is to be used instead of a FORTRAN
library function having the same name. See Section 6.3 for information on
FORTRAN library functions (intrinsic functions) .

Syntax Rules and Behavior

The / NOF77 EXTERNAL statement declares that each symbolic name in
its list is an external procedure name. Such a name can then be used as an
actual argument to a subprogram, which in turn can use the corresponding
dummy argument in a function reference or CALL statement.

However, used as an argument, a complete function reference represents
a value, not a subprogram name; for example, SQRT(B) in CALL SUBR(A,
SQRT(B), C). It is not, therefore, defined in an EXTERNAL statement (as
would be the incomplete reference SQRT).

A-8 Additional Language Features

Example

The following example uses the /NOF77 EXTERNAL statement:

Main Program

EXTERNAL SIN, COS, *TAN, SINDEG

CALL TRIG(ANGLE ,SI N,S I NE)

CALL TRIG(ANGLE,COS,COSI NE)

CALL TRIG(ANGLE,TAN,TANGNT)

CALL TRIG(ANGLED,SI NDEG ,SI NE)

Subprograms

SUBROUTI NE TRIG(X ,F,Y)

Y = F(X)

RETURN

END

FUNCTION TAN (X)

TAN= SIN(X)/COS(X)

RETURN

END

FUNCTION SINDEG(X)

SI NDEG = SI N(X*3 . 1459/180)

RETURN

END

The CALL statements pass the name of a function to the subroutine TRIG.
The function reference F(X) subsequently invokes the function in the
second statement of TRIG. Depending on which CALL statement invoked
TRIG, the second statement is equivalent to one of the following:

Y = SI N(X)
Y = COS (X)
Y = TAN(X)
Y = SI NDEG (X)

The functions SIN and COS are examples of trigonometric functions
supplied in the FORTRAN library. The function TAN is also supplied in
the library. But the asterisk in the EXTERNAL statement specifies that
the user-supplied function be used, instead of the library function. The
function SINDEG is also a user-supplied function. Because no library
function has the same name, no asterisk is required .

Additional Language Features A-9

Appendix B

Character Sets

This appendix describes the following three character sets:

• FORTRAN

• ASCII

• Radix-50

B. 1 FORTRAN Character Set

The FORTRAN character set consists of the following:

• All upper- and lowercase letters (A through Z, a through z)

• The numerals 0 through 9

• The following special characters:

Character Sets 8-1

Character

ti or < TAB >

+

*

I

Name

Space or tab

Equal sign

Plus sign

Minus sign

Asterisk

Slash

Left parenthesis

Right parenthesis

Comma

Period

Character

$

<
>
%

&

Name

Apostrophe

Quotation mark

Dollar sign

Underscore

Exclamation point

Colon

Left angle bracket

Right angle bracket

Percent sign

Ampersand

Other printing characters can appear in a FORTRAN statement only as
part of a Hollerith or character constant. Any printing character can
appear in a comment. Printing characters are characters whose ASCII
codes are in the range 20 through 7D. See Table B-1.

B.2 ASCII Character Set

B-2 Character Sets

Table B-1 represents the ASCII character set. At the top of the table are
hexadecimal digits (0 to 7), and to the left of the table are hexadecimal
digits (0 to F). To determine the hexadecimal value of an ASCII character,
use the hexadecimal digit that corresponds to the row in the "units"
position, and use the hexadecimal digit that corresponds to the column in
the "16s" position. For example, the value of the character representing
the equal sign is 3D.

Table B-1: ASCII Character Set

Column

0 2 3 4 5 6 7

0 NUL OLE SP 0 @ p p

1 SOH DC1 1 A 0 a q

2 STX DC2 II 2 B R b

3 ETX DC3 # 3 c s c s

4 EOT DC4 $ 4 D T d

Row
5 ENO NAK % 5 E u e u

6 ACK SYN & 6 F v f v

7 BEL ETB 7 G w g w

8 BS CAN 8 H x h x

9 HT EM 9 I y y

A LF SUB J z J z
B VT ESC + K [k

c FF FS < L \
D CR GS M I m

E so RS > N n

F SI us I ? 0 0 DEL

NUL Null OLE Data Link Escape

SOH Start of Heading DC1 Device Control 1

STX Start of Text DC2 Device Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENO Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation EM End of Medium

LF Line Feed SUB Substitute

VT Vertical Tab ESC Escape

FF Form Feed FS File Separator

CR Carriage Return GS Group Separator

so Shift Out RS Record Separator

SI Shift In us Unit Separator

SP Space DEL Delete

ZK-7458-HC

Character Sets B-3

B.3 Radix- 50 Constants and Character Set

B-4 Character Sets

Radix-50 is a special character data representation in which up to 3 char
acters can be encoded and packed into 16 bits. The Radix- 50 character
set is a subset of the ASCII character set and is provided for compatibility
with PDP-11 FORTRAN.

The Radix- 50 characters and corresponding values are given in
Table B- 2.

Table B-2: RADIX-50 Character Set with Comparative
Values

Character ASCII Octal Equivalent Radix-SO Octal Value

Space 40 0

A -Z 101 - 132 1 - 32

$ 44 33

56 34

(Unassigned) 35

0 - 9 60 - 71 36 - 47

Radix-50 values are stored, up to three characters per word, by packing
them into single numeric values according to the following formula:

((i * 50 + j) * 50 + k)

The values i, j, and k represent the code values of the three Radix- 50
characters. Thus, the maximum Radix-50 value is as follows:

4 7 * 50 * 50 + 4 7 * 50 + 4 7 = 174 777

A Radix-50 constant takes the following form :

nRc1 c2 . . . en

n
Is an unsigned, nonzero integer constant that states the number of charac
ters to follow .

c
Is a character from the Radix- SO character set.

The maximum number of characters is 12. The character count must
include any spaces tha t appear in the character string (the space character
is a valid Radix- SO character). You can use Radix- SO constants only in
DATA statements .

When a Radix-50 constant is assigned to a numeric variable or array
element, the number of bytes that can be assigned depends on the data
type of the component (see Table 2- 1). If the Radix-SO constant contains
fewer bytes than the length of the component, ASCII null characters (zero
bytes) are appended on the right. If the constant con tains more bytes than
the length of the component, the rightmost characters are not used .

Examples

The following examples illustrate valid and invalid Radix-SO constants
and explain why the invalid ones are not valid:

Valid

4RABCD

6R6T0666

Invalid

4RDKO :

Explanation

colon is not a Radix-SO character

Character Sets B-5

Appendix C

FORTRAN Data Representation

This appendix describes the data types supported by VAX FORTRAN
and illustrates how they are stored in memory. The symbol :A in any
illustration specifies the address of the byte containing bit 0, which is the
starting address of the represented data element.

C.1 INTEGER*2 Representation

15 14 0

~' ~-'~'~~~~B-l_N_A_R_Y~N-U_M_B_E_R~~~~~-'' :A

ZK-798-82

SIGN = O(+) . 1(-)

Integers are stored in a twos complement representation. INTEGER•2
values are in the range -32768 to 32767, and are stored in two contiguous
bytes aligned on an arbitrary byte boundary. For example:

+22 = 0016(hex)
-7 = FFF9(hex)

FORTRAN Data Representation C-1

C.2 INTEGER*4 Representation

31 30 0

ZK-799-82

SIGN= 0(+), 1(-)

INTEGER•4 values are stored in twos complement representation and lie
in the range -2147483648 to 2147483647. Each value is stored in four
contiguous bytes, aligned on an arbitrary byte boundary. Note that if the
value is in the range of an INTEGER•2 value (-32768 to 32767), then the
first word can be referenced as an INTEGER•2 value.

C.3 LOGICAL* 1 (BYTE) Representation

7 0

BINARY NUMBER :A

ZK-797-82

LOGICAL•l (or BYTE) values are in the range -128 to 127.

C.4 LOGICAL*2 and LOGICAL*4 Representation

Logical values are stored in two (LOGICAL•2) or four (LOGICAL•4)
contiguous bytes, starting on an arbitrary byte boundary. The low-order
bit (bit 0) determines the value. If bit 0 is set, the value is .TRUE. If bit 0
is clear, the value is .FALSE.

C-2 FORTRAN Data Representation

LOGICAL•2

15 1 0

TRUE :
..__ ____ u_N_D_E_F_I N-E-D-Bl_T_s ___ __._J '_.J A

15 1 0

FALSE : UNDEF INED BITS

ZK-802-82

LOGICAL•4

15 1 0

TRUE : UNDEFINED BITS 1 :A

UNDEFINED BITS :A+2

31 16

15 1 0

FALSE : UNDEFINED BITS 0 :A

UNDEFINED BITS :A+2

31 16

ZK-803-82

C.5 Floating-Point Representations

The exponent for the REAL•4 and REAL•8 (D_floating) formats is stored
in binary excess 128 notation. Binary exponents from -127 to 127 are
represented by the binary equivalents of 1 through 255.

FORTRAN Data Representation C-3

The exponent for the REAL*8 (G_floating) format is stored in binary
excess 1024 notation. The exponent for the REAL*l6 format is stored
in binary excess 16384 notation. In REAL*8 (G_floating) format, binary
exponents from -1023 to 1023 are represented by the binary equivalents
of 1 through 2047. In REAL*l6 format, binary exponents from -16383 to
16383 are represented by the binary equivalents of 1 through 32767.

For each floating-point format, fractions are represented in sign-magnitude
notation, with the binary radix point to the left of the most significant bit.
Fractions are assumed to be normalized, and therefore the most significant
bit is not stored (this is called "hidden bit normalization"). This bit is
assumed to be 1 unless the exponent is 0. If the exponent equals 0, then
the value represented is either zero, or it is a reserved operand. (Refer to
the VAX FORTRAN User Manual for an explanation of the representation
of 0.0 and reserved operand faults.)

C.5. 1 REAL•4 (f _floating)

REAL*4 (F_floating) data is four contiguous bytes starting on an arbitrary
byte boundary. Bits are labeled from the right, 0 through 31.

15 14 7 6 0

s
I

EXPONENT FRACTION G :A
N

FRACTION :A+2

31 16
ZK-800-82

SIGN = 0(+) , 1(-)

The form of REAL*4 (F_floating) data is sign magnitude, with bit 15 the
sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:0 and 31:16 a
normalized 24-bit fraction with the redundant most significant fraction bit
not represented. The value of F_floating data is in the approximate range:
0.29*10**-38 through l.7*10**38. The precision is approximately one part
in 2**23; that is, typically, seven decimal digits.

C-4 FORTRAN Data Representation

C.5.2 REAL•B (D_floating)

REAL•8 (D_floating) data is eight contiguous bytes starting on an arbitrary
byte boundary. Bits are labeled from the right, 0 through 63 .

15 14 7 6 0

s
I EXPONENT FRACTION G :A
N

FRACTION :A+2

FRACTION :A+4 .

FRACTION :A+6

63 48

ZK-801-82

SIGN = 0(+), 1(-)

The form of REAL•8 (D_floating) data is identical to an F_floating real
number, except for an additional 32 low-significance fraction bits. The
exponent conventions and approximate range of values are the same as
those for F_floating. The precision is approximately one part in 2**55;
that is, typically, 16 decimal digits.

FORTRAN Data Representation C-5

C.5.3 REAL*B (G_floating)

REAL*8 (G_floating) data is eight contiguous bytes starting on an arbi
trary byte boundary. The bits are labeled from the right, 0
through 63.

15 14 43 0

s
I EXPONENT FRACTION G :A
N

FRACTION :A+2

FRACTION :A+4

FRACTION :A+6

63 48

ZK-804-82

SIGN = 0(+) , 1(-)

The form of REAL*8 (G_floating) data is sign magnitude, with bit 15 the
sign bit, bits 14:4 an excess 1024 binary exponent, and bits 3:0 and 63:16
a normalized 53-bit fraction with the redundant most significant fraction
bit not represented. The value of a G_floating data is in the approximate
range 0.56*10**-308 through 0.9*10**308. The precision of G_floating
data is approximately one part in 2**52; that is, typically, 15 decimal
digits.

C-6 FORTRAN Data Representation

C.5.4 REAL* 16 (H _floating)

REAL•16 (H_floating) data is 16 contiguous bytes starting on an arbitrary
byte boundary. The bits are labeled from the right, 0 through 127.

15 14 0
s
I EXPONENT G :A
N

FRACTION :A+2

FRACTION :A+4

FRACTION :A+6

FRACTION :A+8

FRACTION :A+10

FRACTION :A+12

FRACTION :A+14

127 112

ZK-805-82

SIGN = 0(+) . 1(-)

The form of a REAL•16 (H_floating) data is sign magnitude with bit 15
the sign bit, bits 14:0 an excess 16384 binary exponent, and bits 127:16 a
normalized 113-bit fraction with the redundant most significant fraction bit
not represented. The value of H_floating data is in the approximate range
0.84•10**-4932 through 0.59•10**4932. The precision of H_floating data
is approximately one part in 2**112; that is, typically, 33 decimal digits.

FORTRAN Data Representation C-7

C.5.5 COMPLEX•B (f _floating)

COMPLEX•8 data is eight contiguous bytes aligned on an arbitrary byte
boundary. The low-order four bytes contain REAL•4 data that represents
the real part of the complex number. The high-order four bytes contain
REAL•4 data that represents the imaginary part of the complex number.

15 14 76 0
s
I EXPONENT FRACTION G :A

REAL PART
N

FRACTION :A+2

s
I EXPONENT FRACTION G :A+4

IMAGINARY PART
N

FRACTION :A+6

63 48

ZK-806-82

SIGN = 0(+) . 1(-)

C.5.6 COMPLEX•16 (D_floating)

COMPLEX•16 (D_floating) data is 16 contiguous bytes aligned on an
arbitrary byte boundary. The low-order eight bytes contain REAL•8
(D_floating) data that represents the real part of the complex data . The
high-order eight bytes contain REAL•8 (D_floating) data that represents
the imaginary part of the complex data.

C-8 FORTRAN Data Representation

15 14 76 0

s
I

EXPONENT FRACTION G :A
N

FRACTION :A+2

REAL PART

FRACTION :A+4

FRACTION :A+6

s
I

EXPONENT FRACTION G :A+8
N

FRACTION :A+10

IMAGINARY PART

FRACTION :A+12

FRACTION :A+14

127 112

ZK-807-82

SIGN= O(+), 1(-)

FORTRAN Data Representation C-9

C.5.7 COMPLEX•16 (G_floating)

COMPLEX•16 (G_floating) data is 16 contiguous bytes aligned on an
arbitrary byte boundary. The low-order eight bytes contain REAL•8
(G_floating) data that represents the real part of the complex data. The
high-order eight bytes contain REAL•8 (G_floating) data that represents
the imaginary part of the complex data.

15 14 43 0
s
I EXPONENT FRACTION G :A
N

FRACTION :A+2

REAL PART

FRACTION :A+4

FRACTION :A+6

s
I EXPONENT FRACTION G :A+8
N

FRACTION :A+10

IMAGINARY PART

FRACTION :A+12

FRACTION :A+14

127 112

ZK-808-82

C-10 FORTRAN Data Representation

C.6 Character Representation

A character string is a contiguous sequence of bytes in memory.

CHAR 1 :A

•
•
•

CHAR L :A+L-1

ZK-809-82

A character string is specified by two attributes: the address A of the first
byte of the string, and the length L of the string in bytes. The length L of
a string is in the range 1 through 65535.

C. 7 Hollerith Representation

Hollerith constants are stored internally, one character per byte.

FORTRAN Data Representation C-11

1 Byte

7 0

CHAR 1 :A

2 Bytes

15 87 0

CHAR 2 CHAR 1 :A

4 Bytes

31 24 23 16 15 8 7 0

CHAR 4 CHAR 3 CHAR 2 CHAR 1 I :A

8 Bytes

15 8 7 0

CHAR 2 CHAR 1 :A

CHAR 4 CHAR 3 :A+2

CHAR 6 CHAR 5 :A+4

CHAR 8 CHAR 7 :A+6

63 56 55 48

ZK-810-82

C-12 FORTRAN Data Representation

Appendix 0

VAX FORTRAN Language Summary

This appendix summarizes VAX FORTRAN expression operators
(Table D-1), statements (Table D-2), and intrinsic functions (Table D-3).
It also describes the system subroutines provided with VAX FORTRAN
(Section D.4) and discusses the intrinsic functions available for manipulat
ing bits in integer data items (Section D.5).

0. 1 Expression Operators

This section lists the expression operators in each data type in order of
descending precedence:

Table D-1: Expression Operators
Data Type Operator Operation Operates Upon

Arithmetic ** Exponen tia ti on Arithmetic or logical
expressions

•, I Multiplication, division

+ -I Addition, subtraction,
unary plus and minus

Character II Concatenation Character expressions

Relational .GT. Greater than Arithmetic, logical, or
.GE. Greater than or equal to character expressions (all

relational operators have
equal precedence)

.LT. Less than

VAX FORTRAN Language Summary 0-1

Table D-1 (Cont.): Expression Operators
Data Type Operator Operation Operates Upon

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

Logical .NOT. .NOT.A is true only if A Logical or integer expres-
is false sions

.AND. A.AND.B is true only if
A and B are both true

.OR. A.OR.B is true if either A
or B or both are true

. EQV. A.EQV.B is true only if A .EQV., .NEQV., and .XOR .
and B are both true or A have equal priority
and B are both false

.NEQV. A.NEQV.B is true only if
A is true and B is false or
B is true and A is false

. XOR. Same as .NEQV .

0.2 Statements

This section summarizes the statements available in the VAX FORTRAN
language, including the general form of each statement. The statements
are listed alphabetically for ease of reference.

D-2 VAX FORTRAN Language Summary

Table D-2: VAX FORTRAN Language
Statement Summary

ACCEPT

See READ statements (sequential access).

See Section 7.5 .

ASSIGN s TO v

s is the label of an executable statement or a FORMAT statement.

v is an integer variable name.

Associates the statement label s with the integer variable v for later use as a
format specifier or in an assigned GO TO statement.

See Section 3.4.

Assignment Statement

v=e

v

e

is a scalar memory reference or an aggregate reference .

is an expression or an aggregate .

The assignment statement assigns the value of the arithmetic, logical, or character
expression on the right of the equal sign to the corresponding numeric, logical,
or character scalar memo~y reference on the left. If aggregates are involved, the
aggregate re ference and the aggregate must have matching structures.

See Sections 3.1 - 3.3.

BACKSPACE ([UNIT=]u[,ERR=s][,IOSTAT=ios])
BACKSPACE u

u is a logical unit specifier.

s

ios

is the label of an executable statement.

is an 1/0 status specifier.

The BACKSPACE statement backspaces the currently open file on logical unit u
by one record .

See Section 9.5.

BLOCK DAT A [nam]

nam is a symbolic name.

The BLOCK DATA statement specifies the subprogram that follows as a BLOCK
DATA subprogram.

See Section 4.1.

VAX FORTRAN Language Summary D-3

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

CALL sub[([a][,[a]] ...)]

sub a subprogram name or entry point name.

a is an expression, an array name, a procedure name, or an alternate
return specifier. An alternate return specifier is •s or &s, where s is
the label of an executable statement.

The CALL statement calls the subroutine subprogram with the name specified
by sub, passing the actual arguments (a) to replace the dummy arguments in the
subroutine definition.

See Sections 5.1 and 6.2.3.

CDEC$!DENT string

string is a group of up to 31 printable characters delimited by apostrophes.

The IDENT directive specifies a string that identifies an object module.

See Section 10.3.1.

CDEC$ PSECT /common-name/ attr [,attr] ...

common-
name

attr

is the name of the common block, which must be preceded and
followed by a slash.

is one of the fo llowing attributes: LCL (local scope); GBL (global
scope); [NO]WRT (writability or no writability); [NO]SHR (shareabil-
ity or no shareability); or ALIGN = val (alignment for the common
block, val must be a constant ranging from 0 thru 9).

The PSECT directive modifies certain attributes of a common block.

See Section 10.3.2 .

CDEC$ SUBTITLE string

string is a group of up to 31 printable characters delimited by apostrophes.

The SUBTITLE directive crea tes a header in a listing's subtitle field .

See Section 10.3.3 .

CDEC$ TITLE string

string is a group of up to 31 printable characters delimited by apostrophes.

The TITLE directive creates a header in a listing's title fi eld .

See Section 10.3.3.

CLOSE ((UNIT=]u[,p][,ERR=s][,IOSTAT=ios])

u is a logical unit specifier.

0-4 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

p is one of the following parameters:

{

STATUS
DISPOSE
DISP

} ~
'SAVE'
'KEEP'
'DELETE'
'PRINT'
'SUBMIT'
'PRINT /DELETE'
'SUBMIT /DELETE'

s is the label of an executable statement.

ios is an I/O status specifier.

The CLOSE statement closes the specified file .

See Section 9.2.

COMMON [/[cb]/]nlist[[,] /[cb]/nlist] ...

cb is a common block name.

nlist is a list of one or more variable names, array names, array declara-
tors, or records separated by commas.

The COMMON statement reserves one or more blocks of storage space to contain
the variables associated with a specified block name.

See Section 4. 2.

CONTINUE

The CONTINUE statement transfers control to the next executable statement.

See Section 5. 2.

CP AR$ CONTEXT_SHARED syname [,syname) ...

syname is the name of a variable, array, or record declared within the
routine.

The CP AR$ CONTEXT_SHARED directive specifies shared memory locations for
symbols declared in the routines compiled with the /PARALLEL qualifier.

See Section 10.2.1.

CP AR$ CONTEXT_SHARED_ALL

The CP AR$ CONTEXT_SHARED_ALL directive reinforces the context-shared
default of symbols in routines compiled with the /PARALLEL qualifier.

See Section 10.2.2.

CPAR$ oo_pARALLEL [count)

VAX FORTRAN Language Summary 0-5

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

count is a numeric expression specifying the number of iterations in each
set distributed to processors running the parallel DO-loop. The
number must be able to be evaluated as a positive, non-zero integer.

The DO_PARALLEL directive enables parallel processing of the DO-loop that
foll ows it.

See Section 10.2 .3.

CP AR$ LOCK ON kk-var
(critical region)

CP AR$ LOCK OFF lck-var

lck-var is a scalar memory reference with a LOGICAL*4 data type.

The LOCKON and LOCKOFF directives enclose a critical
region of executable code within a parallel DO-loop and
permit only one process at a time to execute the region.

See Section 10. 2 .4.

CP AR$ PRIVATE name (,name] ...

name is the name of a symbol or a common block (preceded and followed
by a slash).

The CPAR$ PRIVATE directive specifies the common blocks or symbols that must
be private for each process that runs a parallel DO-loop.

See Section 10.2.5.

CPAR$ PRIVATE_ALL

The CP AR$ PRIVATE_ALL directive forces all common blocks and symbols to
have PRIVATE defaults in routines compiled with the / PARALLEL qualifier.

See Section 10.2.6.

CPAR$ SHARED / [cb]/ (,/[cb]/] ...

cb is the name of a common block.

The CPAR$ SHARED directive specifies the common blocks to be shared by each
process that runs a parallel DO-loop.

See Section 10.2.7.

CP AR$ SHARED_ALL

The CPAR$ SHARED_ALL directive forces all common blocks to have SHARED
defaults in routines compiled with the /PARALLEL qualifier.

See Section 10.2.8.

0-6 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

DAT A nlist/clist/[[,] nlist/clist/] ...

nlist is a list of one or more variable names, array names, array element
names, character substring names, or implied-DO lists, separated by
commas. Subscript expressions and substring expressions must be
constants.

dist is a list of one or more constants separated by commas, each
optionally preceded by j•, where j is a nonzero, unsigned integer
constant.

The DATA statement initially stores elements of dist in the corresponding
elements of nlist.

See Section 4.3.

Data Type Declaration

See Type Declaration.

DECODE (c,f,b(,ERR=s][,IOSTAT=ios]) (list]

c

f

b

s

ios

list

is an integer expression representing the number of characters to be
translated to internal form .

is a fo rm at identifier.

is a scalar reference or array name reference that contains the
characters to be translated to internal form.

is the label of an executable statement.

is an integer scalar memory reference that is defined as a positive
integer if an error occurs or as a zero if no error occurs.

is an 1/ 0 list.

The DECODE statement reads c characters from buffer b and assigns values to
the elements in list, converted according to format specification f.

See Section A.1.

DEFINE FILE u(m,n,U,v)[,u(m,n,U,v)] ...

u

m

n

u
v

is a logical unit specifier.

specifies the number of records in the file .

specifies the length of each record in 16-bit words.

specifies unformatted .

is an integer variable name.

VAX FORTRAN Language Summary D-7

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

The DEFINE FILE statement defines the record structure of a direct access file
where u is the logical unit number, m is the number of fixed-length records in
the file, n is the length in 16-bit words of a single record, U is a fixed argument,
and v is the associated variable.

See Section A. 2.

DELETE((UNIT=]u(,REC=r](,ERR=s](,IOSTAT=ios])
DELETE (u'r(,ERR=s](,IOST AT=ios])

u

r

s

ios

is a logical unit specifier.

is a record specifier.

is the label of an executable statement.

is an I/O status specifier.

The DELETE statement deletes records from relative or indexed files .

See Section 9. 7.

DICTIONARY 'cdd-path(/(NO)LIST) '

cdd-path is the full or relative pathname of a CDD object.

[NO]LIST directs the compiler to include or not include the generated
FORTRAN source code in the listing.

The DICTIONARY statement extracts a data definition from the VAX/VMS
Common Data Dictionary, translates it to FORTRAN source code, and includes it
in a FORTRAN source program.

See Section 1.4.1.

DIMENSION a(d)(,a(d)) ...

a(d) is an array declarator.

a is an array name.

d is the lower (optional) and upper bounds of the array. It takes the
form [dl:]du where dl is the lower bound and du is the upper bound.

The DIMENSION statement specifies storage space requirements for arrays.

See Section 4.5.

DO {s[,]] v=el,e2(,e3)

s

v

is the label of an executable statement. VAX FORTRAN allows the
statement label to be omitted.

is a variable name.

D-8 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

el

e2

e3

is a numeric expression that specifies the initial value of v.

is a numeric expression that specifies the terminal value of the
control variable.

is a numeric expression that specifies the value by which to incre
ment the control variable.

The DO statement executes the DO loop by performing the following steps:

1. Evaluates cnt = INT((e2-el+e3)/e3).

2. Sets v = el.

3. If cnt is less than or equal to zero, does not execute the loop.

4. If cnt is greater than zero:

a. Executes the statements in the body of the loop.

b. Evaluates v = v + e3.

c. Decrements the loop count (cnt = cnt-1). If cnt is greater
than zero, repeats the loop.

See Section 5.3.

DO [s[,]) WHILE (e)

s is the label of an executable statement. VAX FORTRAN allows the
statement label to be omitted.

e is a logical expression .

The DO WHILE statement is similar to the DO statement, but DO WHILE
executes as long as the logical expression contained in the statement continues to
be true, instead of for a specified number of iterations.

See Section 5.3.2 .

ELSE

The ELSE statement defines a block of statements to be executed if logical
expressions in previous IF THEN and ELSE IF THEN statements have values of
false . See IF THEN.

See Section 5.7.3.

ELSE IF (e) THEN

e is a logical expression.

VAX FORTRAN Language Summary 0-9

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

The ELSE IF THEN statement defines a block of statements to be executed if
logical expressions in previous IF THEN and ELSE IF THEN statements have
values of false, and the logical expression e has a value of true. See IF THEN.

See Section 5.7.3 .

ENCODE (c,f,b[,ERR=s)[,IOST AT=ios]) [list]

c

f

b

s

lOS

list

is an integer expression representing the number of characters
(bytes) to be translated to character form.

is a format identifier.

is a scalar reference or array name reference.

is a label of an executable statement.

is an integer scalar memory reference that is defined as a positive
integer if an error occurs or as a zero if no error occurs.

is an 1/0 list .

The ENCODE statement writes c characters into buffer b, which contains the
values of the elements of the list, converted according to format specification f.

See Section A.1.

END

The END statement marks the end of a program unit.

See Section 5.5.

END DO

The END DO statement marks the end of the body of a DO loop, and may be
used in place of a labeled statement.

See Section 5.4.

END IF

The END IF statement marks the end of a block IF construct.

See Section 5.7.3 .

END MAP

The END MAP statement marks the end of a field declaration or a series of field
declarations in a UNION .

See Section 4.15.3.

END STRUCTURE

0-1 0 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

The END STRUCTURE statement marks the end of a structure declaration .

See Section 4 .15 .1.

END UNION

The END UNION statement marks the end of a union declaration.

See Section 4.15 .3.

ENDFILE ([UNIT=]u[,ERR=s](,IOSTAT=ios])
ENDFILE u

u is a logical unit specifier.

s

ios

is a label of an executable statement.

is an 1/0 status specifier.

The ENDFILE statement writes an end-of-file record on logical unit u.

See Section 9.6.

ENTRY nam[([p[,p] ...])]

nam is a subprogram name.

p is a dummy argument or an alternate return specifier (•).

The ENTRY statement defines an alternate entry point within a subroutine or
function subprogram.

See Section 6.2.4.

EQUIV ALEN CE (nlist)[,(nlist)] ...

nlist is a list of two or more variable names, array names, array ele
ment names, or character substring names separated by commas.
Subscript expressions and substring expressions must be compile
time constant expressions. Records and record fields cannot be
specified in EQUIVALENCE statements.

The EQUIVALENCE statement assigns the same storage location to each of the
names in nlist.

See Section 4.6.

EXTERNAL v[,v] ...
EXTERNAL *v[•v] ...

v is a subprogram name.
... is used only if / NOF77 is specified .

VAX FORTRAN Language Summary 0-11

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

The EXTERNAL statement defines the names specified as user-defined subpro
grams.

See Sections 4.7 and A.6.

FIND ([UNIT=]u,REC=r[,ERR=s][,IOST AT=ios])
FIND (u'r[,ERR=s][,IOSTAT=ios])

u

r

s

lOS

is a logical unit specifier.

is a direct access record number.

is a label of an executable statement.

is an I/O status specifier.

The FIND statement positions the file on logical unit u to record r and sets the
associated variable to record number r.

See Section A.3 .

FORMAT (format-spec[, ...])

format
spec

is a list of field descriptors and field separators.

The FORMAT statement describes the format in which one or more records are to
be transmitted; a statement label must be specified on the FORMAT statement.

See Chapter 8.

[typ] FUNCTION nam[*m][([p[,p) ...)))

typ is a data type specifier.

nam is a function name.

*m is a data type length specifier.

p is a dummy argument.

The FUNCTION statement begins a function subprogram, indicating the program
name and any dummy argument names (p). An optional type specification can be
included.

See Section 6.2 .2.

GO TO s

s is a label of an executable statement.

This GO TO statement transfers control to statement number s.

See Section 5.6.1.

D- 12 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

GO TO (slist)[,] e

slist is a list of one or more statement labels separated by commas.

e is an integer expression .

This GO TO statement transfers control to the statement specified by the value of
e (if e=l, control transfers to the first statement label; if e=2, control transfers to
the second statement label, and so forth). If e is less than one or greater than the
number of statement labels present, no transfer takes place.

See Section 5.6.2.

GO TO v[[,](slist)]

v is an integer variable name.

slist is a list of one or more statement labels separated by commas.

This GO TO statement transfers control to the statement most recently associated
with v by an ASSIGN statement.

See Section 5.6.3.

IF (e) sl,s2,s3

e is an expression.

sl,s2,s3 are labels of executable statements.

This IF statement transfers control to statement sl, s2, or s3 depending on the
value of e (if e is less than zero, control transfers to sl; if e equals zero, control
transfers to s2; if e is greater than zero, control transfers to s3) .

See Section 5.7.1.

IF (e) st

e

st

is an expression.

is any executable statement except a DO, END DO, END, block IF,
or logical IF.

This IF statement executes the statement if the logical expression has a value of
true.

See Section 5.7.2.

VAX FORTRAN Language Summary D-13

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

IF e1 THEN
block

ELSE IF e2 THEN
block

ELSE
block

END IF

el,e2

block

are logical expressions.

is a series of zero or more FORTRAN statements.

This IF statement defines blocks of statements and conditionally executes them.
If the logical expression in the IF THEN statement has a value of true, the first
block is executed and control transfers to the first executable statement after the
END IF statement.

If the logical expression has a value of false, the process is repeated for the next
ELSE IF THEN statement. If all logical expressions have values of false, the
ELSE block is executed. If there is no ELSE block, control transfers to the next
executable statement following END IF.

See Section 5.7.3.

IMP LI CIT typ(a[,a] ...)[, typ(a[,a] ...)] ...
IMPLICIT NONE

typ is a data type specifier.

a is either a single letter, or two letters in alphabetical order, separated
by a hyphen (for example, X-Y).

NONE inhibits the implicit type declaration of variables in the module.

The IMPLICIT statement implicitly declares the data types of variables within
program units . The element a represents a single letter or a range of letters
whose presence as the initial letter of a variable specifies the variable to be of that
data type.

IMPLICIT NONE and IMPLICIT must not be used in the same program unit.

See Section 4.8.

INCLUDE 'fi le-spec[/[NO]LIST] '
INCLUDE '[file-spec](module-name)[/[NO]LIST] '

file-spec is a character constant that specifies the file to be included.

0- 14 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

module
name

is the name of a text module located in a text library.

/ [NO)LIST indicates that the statements in the specified fil e are to be in
the source listing.

The INCLUDE statement includes the source statements in the compilation from
the file or module specified .

See Section 1.4.2.

INQUIRE (par(,par] ...)

par is a keyword specification having the form :

key = value

key is a keyword (see the list of keywords and values tha t
follows).

value depends on the keyword.

Keyword Values

Inputs

FILE fin

UNIT e

DEFAULTFILE fin

Outputs

ACCESS CV

BLANK CV

CARRIAGECONTROL CV

DIRECT CV

ERR s

VAX FORTRAN Language Summary D-1 5

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

Keyword Values

Outputs (continued)

EXIST Iv

FORM CV

FORMATTED CV

I OS TAT v

KEYED CV

NAME CV

NAMED Iv

NEXTREC v

NUMBER v

OPENED Iv

ORGANIZATION CV

RECL v

RECORDTYPE CV

SEQUENTIAL CV

UNFORMATTED CV

e is a numeric expression identifying a logical unit.

fin is a character expression identifying a file.

v is an integer scalar memory reference.

Iv is a logical scalar memory reference.

cv is a character scalar memory reference.

s is a statement label.

The INQUIRE statement furnishes information on specified characteristics of a file
or of a logical unit on which a file might be opened.

See Section 9.3.

D-16 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

INTRINSIC v[,v] ...

v is an intrinsic function name.

The INTRINSIC statement identifies symbolic names as representing intrinsic
functions and allows those names to be used as actual arguments.

See Section 4.9.

Map Declaration

See Union Declaration.

NAMELIST /group-name/ namelist[[,] /group-name/ namelist] ...

group
name

name list

is a symbolic name.

is a list of variables or array names, separated by commas, that is
associated with the preceding group-name.

The NAMELIST statement defines a list of variables or array names and associates
that list of names with a unique group-name for use in namelist-directed I/ O
statements.

See Section 4.10.

OPEN (par[,par] ...)

par is a keyword specification in one of the following forms:

keyword
keyword = value

keyword is a keyword (see the list of keywords and values that
follows) .

value depends on the keyword.

VAX FORTRAN Language Summary 0-17

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

Keyword Values

ACCESS 'SEQUENTIAL'
'DIRECT'
'KEYED '
'APPEND '

ASSOCIATEVARIABLE v

BLANK 'NULL'
'ZERO'

BLOCKSIZE e

BUFFERCOUNT e

CARRIAGECONTRO L 'FORTRAN'
'LIST'
'NONE '

DEFAULTFILE c

DISP (same as DISPO SE)

DISPOSE 'KEEP ' or 'SA VE'
'DELETE '
'PRINT'
'SUBMIT'
'SUBMIT /DELETE'
'PRINT / DELETE'

ERR s

EXTEND SIZE e

FILE c

D-18 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

Keyword Values

FORM 'FORMATTED'
'UNFORMATTED'

INITIALSIZE e

I OS TAT v

KEY keys pee

MAXREC e

NAME (same as FILE)

NOSP AN BLOCKS

ORGANIZATION 'SEQ UENTIA L'
'RELATIVE'
'INDEXED '

READONLY

RECL e

RECORDSIZE (same as RECL)

RECORDTYPE 'FIXED'
'VARIABLE'
'SEGMENTED'
'STREAM'
'STREAM_CR'
'STREAM_LF'

SH ARED

STATUS 'OLD'
'NEW'
'SCRATCH'
'UNKNOWN'

TYPE (same as STATUS)

UNIT e

USER OPEN p

VAX FORTRAN Language Summary D-19

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

c is a character scalar reference, numeric scalar memory
reference, or numeric array name reference .

e is a numeric expression.

p is a program unit name.

s is a statement label.

v is an integer scalar memory reference.

keyspec is e l:e2[:dt[:dr]].

e 1 is first byte position of the key .

e2 is last byte position of the key.

dt is the data type, INTEGER or CHARACTER.

dr is the direction of the key, ASCENDING or DESCENDING .

The OPEN statement opens a fil e on the specified logical unit according to the
parameters specified by the keywords.

See Section 9 .1.

OPTIONS qualifier[qualifier .. .]

quali fi er is one of the fo llowing:

/ NOCHECK

{
ALL }

/ CHECK= ([NO]OVERFLOW, [NO]BOUNDS, [NO]UNDERFLOW)
NONE

/ [NO]EXTEND_ SOURCE
/ [NO]F77
/ [NO]G _ FLOATING
/[NO]I4

The OPTIONS statement overrides the command line qualifie rs for a single
program unit.

See Section 1.4 .3.

PARAMETER (p=c[,p=c] ...)

p is a symbolic name.

D-20 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

c is a constant, the name of a constant, or compile-time constant
expression .

The PARAMETER statement defines a symbolic name for a constant.

See Sections 4.11 and A.4 .

PAUSE (disp)

disp is a decimal digit string containing 1 to 5 digits or a character
constant.

The PAUSE statement displays a message on the screen and temporarily suspends
program execution in order to permit you to take some action. You can respond
by typing CONTINUE, EXIT, or DEBUG.

See Section 5.8 .

PRINT

See WRITE statements (sequential access).

See Section 7.6.

PROGRAM nam

nam is a program name.

The PROGRAM statement specifies a name for the main program.

See Section 4.12 .

Read Statements-Formatted Sequential Access

READ ((UNIT=)u,(FMT=]f(,ERR=s](,IOST AT=ios](,END=s]) (list]
READ f(,list]
ACCEPT f[,list]

u

f

s

IOS

list

is a logical unit specifier.

is the nonkeyword form of a format specifier.

is a label of an executable statement.

is an 1/0 status specifier.

is an 1/0 list.

These input statements read one or more logical records from unit u and assign
values to the elements in the list. The records are converted according to the
format specifier (f).

See Section 7.2.1.1 and 7.5.

Read Statements-List-Directed Sequential Access

VAX FORTRAN Language Summary D-21

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

READ ([UNIT=]u,[FMT=]•[,ERR=s][,IOSTAT=ios][,END=s]) [list]
READ *[,list]
ACCEPT •[,list]

u

...

s

ios

list

is a logical unit specifier.

denotes list-directed formatting .

is a label of an executable statement.

is an 1/0 status specifier.

is an IjO list.

These input statements read one or more logical records from unit u and assign
values to the elements in the list . The records are converted according to the data
type of the list element.

See Section 7.2.1.2 and 7.5 .

Read Statements-Namelist-Directed Sequential Access

READ ([UNIT=]u,[NML=]nl[,ERR=s)[,IOST AT=ios)[,END=s])
READ nl
ACCEPT nl

u

nl

s

ios

is a logical unit speci fier.

is a namelist group-name.

is a label of an executable statement.

is an I/O status specifier.

These input statements read one or more logical records from unit u and assign
values to specified namelist entities. The records are converted according to the
data type of the namelist en tities .

See Sections 7.2.1.3 and 7.5.

Read Statements-Unformatted Sequential Access

READ ([UNIT=]u[,ERR=s][,IOST AT=ios][,END=s]) [list]

u

s

ios

list

is a logical unit specifier.

is a label of an executable statement.

is an 1/0 status specifier.

is an 1/0 list.

This READ statement reads one unformatted record from unit u and assigns
values to the elements in the list.

0-22 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

See Section 7.2.1.4.

Read Statements-Formatted Direct Access

READ ([UNIT=]u,[FMT=]f,REC=r[,ERR=s][,IOSTAT=ios]) [list]
READ (u 'r,(FMT=)f(,ERR=sJl,IOST AT=iosj) [list]

u is a logical unit specifier.

r is a record specifier.

f is a format specifier.

s is a label of an executable statement.

ios is an 1/0 status specifier.

list is an 1/0 list.

This READ statement reads record r from unit u and assigns values to the
elements in the list. The record is converted according to f.

See Section 7.2.2.1.

Read Statements-Unformatted Direct Access

READ ([UNIT=]u,REC=r[,ERR=s][,IOSTAT=ios]) [list]
READ (u 'r(,ERR=s][,IOSTAT=ios)) [list]

u is a logical unit specifier.

r is a record specifier.

s is a label of an executable statement.

ios is an 1/0 status specifier.

list is an 1/0 list.

This READ statement reads record r from unit u and assigns values to the
elements in the list.

See Section 7.2.2.2.

Read Statements-Formatted In dexed and Unformatted Indexed

Formatted indexed READ statement:

READ ((UNIT=]u,(FMT=)f,keyspec(,KEYID=kn](,ERR=s] (,IOSTAT=ios]) (list]

Unformatted indexed READ statement:

READ ((UNIT=)u,keyspec(,KEYID=kn][,ERR=s] (,IOSTAT=ios]) (list]

u is a logical unit specifier.

VAX FORTRAN language Summary D-23

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

f

keyspec

kn

s

ios

list

is a format specifier.

is a key specifier (see. Section 7.1.1.6).

is a key-of-reference specifier.

is the label of an executable statement.

is an I/ O status specifier.

is an I/ O lis t.

These input statements read one or more logical records specifi ed by key value,
and assign values to the elements in the list.

See Sections 7.2.3.1 and 7.2.3.2.

Read Statements-Formatted Internal and List-Directed Internal

Formatted internal READ statement:

READ (intu, fmt [,iostat][,err][,end]) [iolist]

List-directed internal READ statement:

READ (intu,*[,iostat][,err][,end]) [iolist]

in tu

fmt

*
iostat

err, end

iolist

is an internal file specifier.

is a format specifier.

is a list-directed formatting specifier.

is an I/O status specifier.

are transfer-of control specifiers.

is the 1/0 list specifier.

These input statements read into elements in the list. They read one or more
internal records containing character strings, converting in accordance with the
format specification.

See Section 7.2.4.

RECORD /structure-name/ record-namelist
[,/structure-name /record-namelist]

structure
name

[,/structure-name/ record-name list]

is the name of a previously declared structure.

D-24 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

record
namelist

is one or more variable or array names, or both; separated by
commas.

The RECORD statement creates a record for each variable specified or an array
of records for each array specified . The structure declaration identifi ed by
structure-name defines the form of these records.

See Section 4.13.

RETURN [i]

is an integer value that indicates which alternate return is to be
taken.

The RETURN statement returns control to the calling program from the current
subprogram.

See Section 5. 9.

REWIND ([UNIT=]u[,ERR=s][,IOSTAT=ios])
REWIND u

u is a logical unit specifier.

s

ios

is a label of an executable statement.

is an 1/0 status specifier.

The REWIND statement repositions logical unit u to the beginning of the currently
opened file.

See Section 9 .4.

REWRITE Statement-Formatted Indexed and Unformatted Indexed

Formatted indexed REWRITE statement:

REWRITE ((UNIT=]u,(FMT=]f(,ERR=s][,IOSTAT=ios]) (list]

Unformatted indexed REWRITE statement:

REWRITE ((UNIT=]u[,ERR=s][,IOST AT=ios]) (list]

u

f

s

ios

list

is a logical unit specifier.

is a format specifier.

is a label of an executable statement.

is an 1/0 status specifier.

is an 1/0 list.

The REWRITE statement transfers data from internal storage to the current record
in an indexed file .

VAX FORTRAN language Summary D-25

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

See Section 7.4 .

SA VE [a[,a] ...)

a is the name of a variable, an array, or a named common block
enclosed in slashes.

The SAVE statement retains the definition status of an entity after the execution
of a RETURN or END statement in a subprogram.

See Section 4 .14.

Statement Function

f([p(,p) ...)) = e

f

p

is a statement function name.

is a dummy argument.

e is an expression.

A statement function creates a user-defined function having the variables p as
dummy arguments. When referred to, the expression is evaluated using the actual
arguments in the function call .

See Section 6.2.1.

STOP [disp]

disp is a decimal digit string containing 1 to 5 digits or a character
constant.

The STOP statement terminates program execution and prints the display, if one
is specified.

See Section 5 .10.

Structure Declaration Block

STRUCTURE [/structure-name/] [field-namelist]
field-declaration
[field-declaration]

[field-declaration]
END STRUCTURE

structure
name

is the name tha t is used in RECORD sta tements to refer to a
structure.

0-26 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

field - are uniqu e fi eld names. (Used only in nested structure declarations.)
namelist

field - is any decl aration or combination of declarations of substructures,
declaration unions, or typed data .

A stru cture declaration block defines th e field names, types of data wi thin fi elds,
and the order and alignment of fields within a record. Unlike type declaration
statements, structure declarations do not create variables . Structured variables
(records) are created when you use a RECORD statement containing the name of
a previously declared structure.

See Section 4.15 .1.

SUBROUTINE nam[([p[,p] ...])]

nam is a subroutine name.

p is a dummy argument or an alternate return specifier (*).

The SUBROUTINE statement begins a subroutine subprogram, indicating the
program name and any dummy argument names (p) .

See Section 6.2.3 .

TYPE

See WRITE statements (sequential access).

See Section 7.6.

Type Declarations-Character and Numeric

Type Declaration (Character):

CHARACTER[•len[,]] v[•len}/clist/] [,v[•lenl /clist/} ...

len

v

specifies the length of the character data elements; or it can be an
asterisk enclosed in parentheses.

is a variable name, array name, function or function entry name,
or an array declarator. The name can optionally be followed by a
length specifier (*n) .

dist is an initial va lue or values to be assigned to the immediately
preceding variable or array element.

The character type declaration assigns the specified data type to the symbolic
names (v) .

See Section 4.4.2.

Type Declaration (Num eric):

VAX FORTRAN Language Summary D-27

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

type [*n]v[*n][dist][, v[*n][/ dist/]]

type is one of the following data type specifiers: BYTE, LOGICAL,
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or DOU BLE
COMPLEX.

*n is an in teger that specifies the byte length of v. It must be an
acceptable length for the entity (see Table 2- 1); *n is not valid for
DO UBLE PRECISIO N and DOUBLE COMPLEX da ta types.

v is a variable name, array name, function or function entry name, or
an array declarator.

clist is an in itial value or values to be assigned to the immediately
preceding variable or array element.

The Numeric Type Declaration assigns the specified data type to the symbolic
names (v).

See Section 4.4.1.

Union Declaration

UNIO N
map-declaration
map-declaration
[map-declaration]

[map-declaration]
END UNIO N

where map-declaration is:

MAP
fi eld-declaration
[field-declaration]

[field-declaration)
END MAP

field- is any declaration or combination of declarations of substructures,
declaration unions, or typed data.

Unions define a data area that can be shared by fields or groups of fields at run
time .

D-28 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

See Section 4 .15 .3.

UNLOCK ([UNIT=)u[,ERR=s)[,IOST AT=ios])
UNLOCK u

u is a logical unit specifier.

s is a label of an executable statement.

ios is an I/O sta tus specifier.

The UNLOCK statement frees a previously locked record in the file connected to
logical unit u.

See Section 9.8.

VIRTUAL a(d)(,a(d)) ...

a(d) is an array declarator.

a is an array name.

d is the lower (optional) and upper bounds of the array. It takes the
form [dl:)du where dl is the lower bound and du is the upper bound.

The VIRTUAL statement has the same effect as the DIMENSION statement and
is included for compatibility with PDP-11 FORTRAN.

See Section 4.5.

VOLATILE nlist

nlis t is a list of one or more variable names, array names, or common
block names separated by commas.

The VOLATILE statement prevents all optimizations for the items specified in the
name list.

See Section 4 .16.

Write Statements-Formatted Sequential Access

WRITE ([UNIT=)u,[FMT=)f(,ERR=s)[,IOST AT=ios]) [list)
PRINT £[,list]
TYPE £[,list)

u

f

s

ios

list

is a logical unit specifier.

is a format specifier.

is a label of an executable statement.

is an I/O status specifier.

is an 1/0 list.

VAX FORTRAN Language Summary D-29

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

These output statements write one or more logical records to unit u containing
the values of the elements in the list. The records are converted according to f.

For information about the formatted sequential access WRITE statement, see
Section 7.3 .1.1. For information about formatted sequential access PRINT and
TYPE statements, see Section 7.6.

Write Statements-List-Directed Sequential Access

WRITE ([UNIT=]u,[FMT=]•[,ERR=s][,IOSTAT=ios]) [list]
PRINT •[,list]
TYPE *[,list]

u

s

ios

list

is a logical unit specifier.

denotes list-directed formatting.

is a label of an executable statement.

is an I/O status specifier.

is an I/O list.

These output statements write one or more logical records to unit u containing
the values of the elements in the list. The records are converted according to the
data type of the list element.

For information about the list-directed sequential access WRITE statement, see
Section 7.3.1.2. For information about list-directed sequential access PRINT and
TYPE statements, see Section 7.6.

Write Statements-Namelist-Directed Sequential Access

WRITE ([UNIT=)u,[NML=)nl[,ERR=s) [,IOST AT=ios])
PRINT nl
TYPE nl

u

nl

s

ios

is a logical unit specifier.

is a namelist group-name.

is a label of an executable statement .

is an I/ O status specifier.

These output statements wri te one or more logical records to uni t u containing
the values of the namelist entities . The records are converted according to the
data type of the namelist entities.

For information about the namelist-directed sequential access WRITE statement,
see Section 7.3. 1.3. For info rmation about namelist-directed sequential access
PRINT and TYPE statements, see Section 7.6.

0-30 VAX FORTRAN Language Summary

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

Write Statements-Unformatted Sequential Access

WRITE ([UNIT=]u[,ERR=s](,IOST AT=ios]) [list]

u is a logical unit specifier.

s is a label of an executable statement label.

ios is an 1/0 status specifier.

list is an 1/0 list.

This WRITE statement writes one unformatted record to unit u containing the
values of the elements in the list.

See Section 7.3.1.4.

Write Statements-Formatted Direct Access

WRITE (JUNIT=lu,JFMT=lf,REC=r[,ERR=s1[,IOST AT=ios]) [list]
WRITE (u 'r,f[,ERR=s][,IOST AT=ios]) [list

u is a logical unit specifier.

r is a record specifier.

f is a format specifier.

s is a label of an executable statement.

ios is an 1/0 status specifier.

list is an 1/0 list.

These WRITE statements write the values of the elements of the list to record r
on unit u . The record is converted according to f.

See Section 7.3.2 .1

Write Statements-Unformatted Direct Access

WRITF ([UNTT=lu,REC=rJ,ERR=s)[,IOSTAT=ios]) [list]
WRITE (u 'r[,ERR=s)[,IOST AT=ios]) [list]

u is a logical unit specifier.

r is a record specifier.

s is a label of an executable statement.

ios is an 1/0 status specifier.

list is an 1/0 list.

These WRITE statements write record r to unit u containing the values of the
elements in the list.

VAX FORTRAN Language Summary 0-J 1

Table D-2 (Cont.): VAX FORTRAN Language
Statement Summary

See Section 7.3.2.2.

Write Statements-Formatted Internal and List-Directed Internal

Formatted internal WRITE statement:

WRITE (intu,[FMT=]f(,ERR=s)[,IOSTAT=ios]) (list]

List-directed in ternal WRITE statement:

WRITE (intu,(FMT=]*(,ERR=s] (,IOST AT=ios]) (list]

intu is an internal file specifier.

• denotes list-directed formatting.

f is a format specifier.

s is the label of an executable statement.

ios is an 1/0 status specifier.

list is an 1/0 list.

These WRITE statements write elements in the list to the internal file specified by
intu. The formatted internal WRITE statement converts the elements to character
strings in accordance with the format specification.

See Section 7.3.4.

D.3 Library Functions

Table D-3 lists the VAX FORTRAN intrinsic functions. Superscripts in the
table refer to the notes that follow the table. Refer to Section 6.3 for more
information about intrinsic functions. For descriptions of the intrinsic
function algorithms, refer to the VMS RTL Mathematics (MTH$) Manual.

0-32 VAX FORTRAN Language Summary

Table D-3: VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Square Root 1 1 SQRT SQRT REAL•4 REAL•4
a 1;2 OSQRT REAL•8 REAL•8

Q SQRT REAL• 16 REAL•16
CSQRT COMPLEX•8 COMPLEX•8
COSQ RT COMPLEX•1 6 COMPLEX•16

Natural Logarithm2 1 LOG ALOG REAL•4 REAL•4
loge a OLOG REAL•8 REAL•8

Q LOG REAL•16 REAL•16
CLOG COMPLEX•8 COMPLEX•8
CO LOG COMPLEX•1 6 COM P LEX•16

Common Logarithm2 1 LOG IO A LOG IO REAL•4 REAL•4
log10a OLOGIO REAL•8 REAL•8

QLOGIO REAL•1 6 REAL•16

Exponential 1 EXP EXP REAL•4 REAL•4
ea OEXP REAL•8 REAL•8

Q EXP REAL*l 6 REAL•16
CEXP COMPLEX•8 COMPLEX•8
CO EXP COMPLEX• 16 COMPLEX•16

Sine3 1 SIN SIN REAL•4 REAL•4
Sin a OSIN REAL*8 REAL•8

QSIN REAL•16 REAL•16
CSIN COMPLEX•8 COMPLEX•8
COS IN COMPLEX•16 COMPLEX*16

Sine3(d egree) 1 SINO SINO REAL•4 REAL•4
Sin a OSI NO REAL• 8 REAL*8

QSINO REAL•l 6 REAL•16

1The argument of SQRT, DSQRT, or QSQRT must be greater than or equal to zero. The result of CSQRT or
CDSQRT is the principal value, with the real part greater than or equal to zero . When the real part is zero,
the result is the principal value, with the imaginary part greater than or equal to zero.

2The argument of ALOG, DLOG, QSQRT, ALOGlO, DLOGlO, QLOG lO, ATA ND, ATAN2D, ASIND,
DASIND, ACOSD, DACOSD, or QACOSD must be greater than zero. The argument of CLOG or CDLOG
must not be (0.,0.).

3The argument of SIN, DSIN, QSIN COS, DCOS, QCOS, TAN, DTAN, or QTAN must be in radians. The
argument is treated modulo 2•pi. The argument of SIND, COSD, or TAND must be in degrees . The argument
is trea ted modu lo 360 .

VAX FORTRAN Language Summary D-33

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Cosine3 1 cos cos REAL•4 REAL•4
Cos a DCOS REAL•8 REAL•8

QCOS REAL• 16 REAL•16
ccos COMPLEX•8 COMPLEX•8
CDC O S COMPLEX•16 COMPLEX•16

Cosine3(degree) 1 COSD COSD REAL•4 REAL•4
Cos a DCOSD REAL•8 REAL•8

QCOSD REAL•16 REAL•16

Tangent3 1 TAN TAN REAL•4 REAL•4
Tan a DTAN REAL•8 REAL•8

QTAN REAL• l 6 REAL•16

Tangent3(degree) 1 TAND TAND REAL•4 REAL•4
Tan a DTAND REA L• 8 REAL•8

QT AND REAL•16 REAL•16

Arc Sine4
•
5 1 ASIN ASIN REAL•4 REAL•4

Arc Sin a DAS IN REAL•8 REAL•8
QASIN REAL•16 REAL•16

Arc Sine (degree) 1 AS IND AS IND REAL•4 REAL•4
Arc Sin a DASI ND REAL•8 REAL•8

QASIND REAL•1 6 REAL• 16

Arc Cosine4
'
5 1 ACOS ACOS REAL•4 REAL•4

Arc Cos a DACOS REAL•8 REAL•8
QACOS REAL•1 6 REAL• 16

Arc Cosine (degree) 1 ACOSD ACOSD REAL•4 REAL•4
Arc Cos a DACOSD REAL•8 REAL•8

QACOSD REAL•1 6 REAL•16

3The argument of SIN, DSIN, QSIN, COS, DCOS, QCOS, TAN, DTAN, or QTAN must be in radians. The
argument is treated modulo 2•pi. The argumen t of SINO, COSD, or TAND must be in degrees. The argument
is treated modulo 360 .

4 The absolute value of the argument of ASIN, DASIN, QASIN, ACOS, DACOS, QACOS, ASIND, DASIND,
QASIND, ACOSD, DACOSD, or QACOSD must be less than or equal to 1.

5The result of ASIN, DASIN, QASIN, ACOS, DACOS, QACOS, ATAN, DATAN, QATAN, ATAN2, DATAN2,
or QATAN 2 is in radians. The resul t of ASI ND, DAS!ND, QASIND, ACOSD, DAC OSD, QACOSD, ATAND,
DATAND, QATAND, ATAN 20, DATAN20, or QATAN 20 is in degrees.

D-34 VAX FORTRAN Language Summary

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Arc Tangent5 1 ATAN ATAN REAL•4 REAL•4
Arc Tan a DA TAN REAL•8 REAL•8

QATAN REAL•16 REAL•l6

Arc Tangent5
•
7 (degree) 1 ATAND ATAND REAL•4 REAL•4

Arc Tan a DATAND REAL•8 REAL•8
QATAND REAL• 16 REAL•16

Arc Tangent5
•
6 2 ATAN2 ATAN2 REAL•4 REAL•4

Arc Tan aif a2 DATAN2 REAL•8 REAL•8
QATAN2 REAL•16 REAL•16

Arc Tangent5
•
7 (degree) 2 ATAN2D ATAN2D REAL•4 REAL•4

Arc Tan aif a2 DATAN20 REAL•8 REAL•8
QATAN2D REAL•16 REAL•16

Hyperbolic Sine 1 SINH SINH REAL•4 REAL•4
Sinha DSINH REAL•8 REAL•8

QSI NH REAL•16 REAL•16

Hyperbolic Cosine 1 COSH COSH REAL•4 REAL•4
Cosh a DCOSH REAL•8 REAL•8

QCOSH REAL•16 REAL•16

Hyperbolic Tangent 1 TANH TANH REAL•4 REAL•4
Tanh a DTANH REAL•8 REAL•8

QTANH REAL•16 REAL•16

5The result of ASIN, DASIN, QAS IN, ACOS. DACOS. QACOS, ATAN. DATAN. QATAN, ATAN2, DATAN2,
or QATAN2 is in radians. The resu lt of ASIND, DASIND, QASIND, ACOSD, DACOSD, QACOSD, ATAND,
DATAND, QATAND, ATAN 2D, DATAN2D, or QATAN2D is in degrees.

6If the value of the first argument of ATAN2, DATAN2, or QATAN2 is positive, the result is positive. When
the value of the first argument is zero, the result is zero if the second argument is positive and pi if the
second argument is negative. If the value of the first argument is negative, the result is negative. If the value
of the second argument is zero, the absolute value of the result is pi/2. Both arguments must not have the
value zero. The range of the result for ATAN2, DATAN2, and QATAN2 is: -pi < result < pi.

7If the value of the first argument of ATAN 2D, DATAN2D, or QATAN2D is positive, the resu lt is positive.
When the value of the first argument is zero, the result will be zero if the second argument is positive and
180 degrees if the second argument is nega tive. If the value of the first argument is negative, the result is
negative. If the value of the second argument is zero, the absolute value of the result is 90 degrees. Both
arguments must not have the value zero. The range of the result for ATAN2D, DTAN2D, QATAN2D is: - 180
degrees < result < 180 degrees.

VAX FORTRAN Language Summary 0-35

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Absolute Value8 1 ABS IIABS INTEGER* 2 INTEGER*2
lal JI ABS INTEGER*4 INTEGER*4

ABS REAL•4 REAL•4
DABS REAL•8 REAL•S
QABS REAL*1 6 REAL•16
CABS COMPLEX•8 REAL•4
CD ABS COMPLEX* l6 REAL•8

IABS IIABS INTEGER*2 INTEGER*2
JIABS INTEGER*4 INTEGER•4

Truncation9
•
10 1 INT IINT REAT.*4 INTEGER*2

[a] }INT REAL•4 INTEGER•4
II DINT REAL*8 INTEGER*2
JI DINT REAL*8 INTEGER•4
IIQINT REAL* 16 INTEGER*2
JIQINT REAL*l6 INTEGER*4

COMPLEX*8 INTEGER* 2
COMPLEX•8 INTEGER•4
COMPLEX*l6 INTEGER*2
COMPLEX* 16 INTEGER*4

ID INT IIDINT REAL*8 INTEGER*2
JI DINT REAL•8 INTEGER•4

IQ INT IIQINT REAL*16 INTEGER*2
TIO INT REAL*l6 INTEGER*4

AINI AINI REAL*4 REAL*4
DINT REAL*8 REAL*8
QINT REAL*16 REAL*1 6

8The absolute value of a complex number, (X,Y), is the real value SQRT (X**2 + Y**2)

9 [x] is defined as the largest integer whose magnitude does not exceed the magnitude of x and whose sign is
the same as that of x. For example, [5 .7] equals 5 . and (-5 .7] equals -5 .

10The functions INT, IDINT, IQ INT, NINT, IDNINT, IQN INT, !FIX, MAXI , MINI, and ZEXT return
INTEGER*4 values if the /14 command qualifier is in effect, INTEGER*2 values if th e / NO l4 qua lifi er is
in effec t.

0-36 VAX FORTRAN Language Summary

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Nearest Integer9
•
10 1 NINT IN INT REAL•4 INTEGER•2

[a+.S•sign(a)] JN INT REAL•4 INTEGER•4
IIDNNT REAL•8 INTEGER•2
JIDNNT REAL•S INTEGER•4
IIQNNT REAL•16 INTEGER•2
JIQNNT REAL• 16 INTEGER•4

IDNINT IIDNNT REAL•S INTEGER•2
JIDNNT REAL•S INTEGER•4

IQ NINT IIQNNT REAL• 16 IN TEGER•2
JIQNNT

AN INT AN INT REAL•4 REAL•4
DNINT REAL•S REAL•S
QNINT REAL•16 REAL• 16

Zero-Extend Functions 1 ZEXT IZEXT LOGICAL• ! INTEGER• 2
LO GICAL•2
LOGICAL•2

JZEXT LOGICAL•! INTEGER•4
LOGICAL•2
LOGICAL•4
INTEGER•2
INTEGER•4

Conversion to REAL•4 11 1 REAL FLOATI INTEGER•2 REAL•4
FLOATJ INTEGER•4 REAL•4

REAL•4 REAL•4
SNGL REAL•8 REAL•4
SNGLQ REAL•16 REAL• 4

COMPLEX•8 REAL•4
COMPLEX•16 REAL• 4

9[x] is defined as the largest integer whose magnitude does not exceed the magnitude of x and whose sign is
the same as that of x. For example, [5 .7] equals 5. and [-5 .7] equals -5 .

10The functions INT, IDINT, IQINT, NINT, IDNINT, IQNINT, IFIX, MAXI, MINI, and ZEXT return
INTEGER•4 values if the /I4 command qualifier is in effect, INTEGER•2 values if the / NOI4 qualifier is
in e ffec t.

11 Functions that cause conversion of one data type to another type provide the same effect as the implied
conversion in assignment statements. The following functions return the value of the argument without
conversion: the function REAL with a real argument, the function DBLE with a double precision argument,
the function INT with an integer argument, and the function QEXT with a REAL• 16 argument.

VAX FORTRAN Language Summary D-37

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Conversion to REAL•8 11 1 DBLE INTEGER•2 REAL•8
INTEGER•4 REAL•8

DBLE REAL•4 REAL•8
REAL•8 REAL•8

DBLEQ REAL•16 REAL•8
COMPLEX•8 REAL•8
COMPLEX•16 REAL•8

Conversion to REAL•16 11 1 QEXT INTEGER•2 REAL•16
INTEGER•4 REAL•16

QEXT REAL•4 REAL•16
QEXTD REAL•8 REAL•16

REAL•16 REAL•16
COMPLEX•8 REAL•16
COMPLEX•16 REAL•16

Fix1 0, 11 1 IFIX II FIX REAL•4 INTEGER•2
(REAL•4-to- JI FIX REAL•4 INTEGER•4

integer
conversion)

Float11 1 FLOAT FLO A TI INTEGER•2 REAL•4
(Integer-to- FLOAT} INTEGER•4 REAL•4
REAL•4
conversion)

REAL•8 Float11 1 DFLOAT DFLOTI INTEGER•2 REAL•8
(Integer-to- DFLOTJ INTEGER•4 REAL•8
REAL•8
conversion)

REAL•16 Float QFLOAT INTEGER•2 REAL•16
(Integer-to- INTEGER•4 REAL•16
REAL•16
conversion)

10The functions INT, !DINT, IQINT, NINT, IDNINT, IQNINT, IFIX, MAXI , MINI, and ZEXT return
INTEGER•4 values if the / I4 command qualifier is in effect, INTEGER•2 values if the / NOI4 qual ifier is
in effect.

11 Functions that cause conversion of one data type to another type provide the same effect as the implied
conversion in assignment statements. The following fun ctions return the value of the argument without
conversion : the function REAL with a real argument, the function DBLE with a double precision argument,
the function INT with an integer argument, and the function QEXT with a REAL• 16 argumen t.

D-38 VAX FORTRAN Language Summary

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Conversion to 1,2 CMPLX INTEGER*2 COMPLEX*8
COMPLEX*8, 1,2 INTEGER*4 COMPLEX*8

or 1,2 REAL*4 COMPLEX*8
COMPLEX*8 from Two 1,2 REAL*8 COMPLEX*8
Arguments12 1,2 REAL*16 COMPLEX*8

1 COMPLEX*8 COMPLEX*8
1 COMPLEX*16 COMPLEX*8

Con version to 1,2 DCMPLX INTEGER*2 COMPLEX*16
COMPLEX*1 6, 1,2 INTEGER*4 COMPLEX*16

or 1,2 REAL*4 COMPLEX*16
CO MPLEX*16 from Two 1,2 REAL*8 COMPLEX*16
Arguments 12 1,2 REAL*16 COMPLEX*16

1 COMPLEX*8 COMPLEX*l6
1 COMPLEX*l6 COMPLEX*16

Real Part of Complex 1 REAL COMPLEX*8 REAL*4
DREAL COMPLEX16 REAL*8

Imaginary Part of 1 AI MAG COMPLEX*8 REAL*4
Complex DIM AG COMPLEX*l6 REAL*8

Complex from Two (See Conversion to COMPLEX*8 and
Arguments Conversion to COMPLEX*l6)

Complex Conjugate 1 CONJG CONJG COMPLEX*8 COMPLEX*8
(if a=(X,Y) DCONJG COMPLEX*16 COMPLEX*16
CONJG(a)=(X,-Y))

REAL•8 product of 2 DP ROD REAL*4 REAL*8
REAL•4s

a1 *a2

12 When CMPLX and DCMPLX have only one argument, this argument is converted into the real part of a
complex value, and zero is assigned to the imaginary part. (When there are two arguments (not complex), a
complex value is produced by converting the first argument into the real part of the value and converting the
second argument into the imaginary part .)

VAX FORTRAN Language Summary D-39

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Maximum 10 n MAX IMAXO INTEGER•2 INTEGER•2
max(a1,a2, . . . an) JMAXO INTEGER•4 INTEGER•4

AMAXl REAL•4 REAL•4
(returns the value DMAXI REAL•8 REAL•8
from among the QMAXl REAL•I6 REAL•I6
argument list; MAXO IMA XO INTEGER• 2 INTEGER•2
there must be at JMAXO INTEGER•4 INTEGER•4
least two MAXI IMAXl REAL•4 INTEGER•2
arguments) JM AX I REAL•4 INTEGER•4

AMAXO AIMAXO INTEGER•2 REAL•4
AJMAXO INTEGER•4 REAL•4

Minimum 10 n MIN I MINO INTEGER•2 INTEGER•2
min(a1 ,a2, .. . an) JMINO INTEGER•4 INTEGER•4

AMINl REAL•4 REAL•4
(returns the DMINI REAL•8 REAL•8
minimum value QMINl REAL• 16 REAL•16
from among MINO IMINO INTEGER•2 INTEGER•2
the argument JMINO INTEGER•4 INTEGER•4
list; there MINI IMINl REAL•4 INTEGER•2
must be at JMINl REAL•4 INTEGER•4
least two AMINO AIMINO INTEGER• 2 REAL•4
arguments) AJMINO INTEGER•4 REAL•4

Positive Difference 2 DIM IIDIM INTEGER•2 INTEGER•2
a1-(min(a1,a2)) JIDIM INTEGER•4 INTEGER•4

DIM REAL•4 REAL•4
(returns the first DDIM REAL•8 REAL•8
argument minus QDIM REAL•16 REAL•16
the minimum of IDIM II DIM INTEGER•2 INTEGER•2
the two JI DIM INTEGER•4 INTEGER•4
arguments)

10The function s INT, IDINT, IQ INT, NINT, IDNINT, IQ NINT, IFIX, MAXl , MINI, and ZEXT return
INTEGER•4 values if the / 14 command qualifier is in effect, INTEGER•2 values if the / NOI4 quali fi er is
in e ffec t.

0-40 VAX FORTRAN Language Summary

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Remainder 2 MOD !MOD INTEGER*2 INTEGER*2
a1-a2*[a1 /a2] JMOD INTEGER*4 INTEGER*4

AMOD REAL*4 REAL*4
(returns the DMOD REAL*8 REAL*8
remainder when QMOD REAL* l 6 REAL*l6
the first
argument is
divided by
the second)

Transfer of Sign 2 SIGN IISIGN INTEGER*2 INTEGER*2
la1 I Sign a2 JISIGN INTEGER*4 INTEGER*4

SIGN REAL*4 REAL*4
DSIGN REAL*8 REAL*8
QSIGN REAL*l6 REAL*16

ISIGN IIS IGN INTEGER*2 INTEGER*2
JISIGN INTEGER*4 INTEGER*4

Bitwise AND 2 IAND II AND INTEGER*2 INTEGER*2
(performs a JI AND INTEGER*4 INTEGER*4
logical AND on
corresponding bits)

Bitwise OR 2 IOR IIOR INTEGER*2 INTEGER*2
(performs an JIOR INTEGER*4 INTEGER*4
inclusive OR
on corresponding
bits)

Bitwise Exclusive OR 2 IEOR IIEOR INTEGER*2 INTEGER*2
(performs an JIEOR INTEGER*4 INTEGER*4
exclusive OR
on corresponding
bits)

Bitwise Complement 1 N OT INOT INTEGER*2 INTEGER*2
(complements JNOT INTEGER*4 INTEGER*4

each
bit)

Bitwise Shift 2 ISHFT IISH FT INTEGER*2 INTEGER*2
(a1 logically JISHFT INTEGER*4 INTEGER*4

shifted
left a2 bits)

VAX FORTRAN Language Summary 0-41

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Bit Extraction 3 IBITS IIBITS INTEGER*2 INTEGER*4
(extracts bi ts a2 JIBlTS INTEGER*4 INTEGER*4
thru a 2+ar 1 from
ai;
see also MVBITS
system subroutine)

Bit Set 2 IBSET IIBSET INTEGER*2 INTEGER*2
(returns the value JIBS ET INTEGER*4 INTEGER*4
of a 1 with
bit a 2 of ai
set to 1)

Bit Test 2 BTEST BITE ST INTEGER*2 LOGICAL*2
(returns .TRUE. if BJTEST INTEGER*4 LOG IC AL*4
bit a 2 of argument
a1 equals 1)

Bit Clear 2 IBCLR IIBCLR INTEGER*2 INTEGER*4
(returns the value JIBCLR INTEGER*4 INTEGER*4
of a 1 with bit
a2 of a 1

set to 0)

Bitwise Circular Shift 3 ISHFTC IISHFTC INTEGER*2 INTEGER*4
(circularly sh ifts JISHFTC INTEGER*4 INTEGER*4
rightmost a3 bits
of argument a 1 by
a2 places;
bits in a1
beyond the value
specified by a3
are unaffected)

Length 1 LEN CHARACTER INTEGER*4
(returns length of
the character
expression; see
Chapter 2 for
additional
information on
character
functions)

D-42 VAX FORTRAN Language Summary

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Index (C1 ,C2) 2 INDEX CHARACTER INTEGER•4
(returns the
position of the
substring c2 in
character
expression c 1;

see Chapter 2
for additional
information on
character
functions)

Character 1 CHAR LOGICAL•l CHARACTER
(returns a INTEGER•2
character that has INTEGER•4
the ASCII value
specified by the
argument; see
Chapter 2
for additional
information on
character
functions)

Nworkers 0 NWORKERS INTEGER•4
(returns the
total number of
processes
executing a
routine)

Sizeof 1 SIZEOF Anything with INTEGER•4
(returns the a valid data
number of bytes type, except
of storage used assumed-size
by the argument) arrays or

passed-length
characters

VAX FORTRAN Language Summary D-43

Table D-3 (Cont.): VAX FORTRAN Intrinsic Functions
No. of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

ASCII Value 1 I CHAR CHARACTER INTEGER*4
(returns the ASCII
value of the
argument; the
argument must be
a character
expression that
has a length of 1;
see Chapter 2
for
additional
information on
character
functions)

Character relationals 2 LLT CHARACTER LOGICAL*4
(ASCII collating 2 LLE CHARACTER LOGICAL*4
sequence) 2 LGT CHARACTER LOGICAL*4

2 LGE CHARACTER LOGICAL*4

D.4 System Subroutine Summary

The VAX FORTRAN system provides subroutines that you call in the same
manner as a user-written subroutine. These subroutines are described in
this section .

The subroutines supplied are as follows:

D-44 VAX FORTRAN Language Summary

DATE

ID ATE

ERRS NS

EXIT

SECNDS

TIME

RAN

MVBITS

Retu rns a 9-byte string containing the ASCII representation of the
current date in the form dd-mmm -yy.

Returns three integer va lues represen ting the current month , day,
and year .

Returns information about the most recently detected error condition.

Terminates the execution of a program and returns control to the
operating system .

Provides system time of day, or elapsed time, as a floa ting-poin t
value in seconds.

Returns an 8-byte string containing the ASCII representation of the
current time in hours, minutes, and seconds, in the form hh :mm :ss.

Returns the nex t number from a sequence of pseudo random
numbers of uniform distribution over the range 0 to 1.

Tra nsfers a bit fie ld from on e storage loca tion to another.

References to integer arguments in the following subroutine descriptions
refer to arguments of either INTEGER*4 data type or INTEGER*2 data
type. However, the arguments must be either all INTEGER*4 or all
INTEGER* 2. In general, INTEGER* 4 variables or array elements may be
used as inpu t values to these subroutines if their values are within the
INTEGER*2 range.

D.4.1 DATE Subroutine

The DATE subroutine obtains the current date as set within the system.
The call to DATE takes the following form:

CALL DATE (buf)

but
Is a 9-byte variable, array, array elemen t, or character substring. The date
is returned as a 9-byte ASCII character string taking the following form:

dd -mmm- yy

dd
Is the 2-digit date.

VAX FORTRAN Language Summary D-45

mmm
Is the 3-letter month specification.

yy
Is the last two digits of the year.

D.4.2 IDATE Subroutine

The IDATE subroutine returns three integer values representing the
current month, day, and year. The call to IDATE takes the following form:

CALL I DATE(i, j ,k)

If the current da te were October 9, 1988, the values of the integer variables
upon return would be as follows:

i = 10
j = 9
k = 88

D.4.3 ERRSNS Subroutine

The ERRSNS subroutine returns information about the most recent error
that has occurred during program execution. The call to ERRSNS takes
the following form:

CALL ERRSNS(fnum , rmssts,rmsstv , i unit , condval)

fnum
Is an integer variable or array element in which the most recent FORTRAN
error number is stored. VAX FORTRAN error numbers are listed in the
VAX FORTRAN User Manual.

A zero is returned if no error has occurred since the last call to ERRSNS,
or if no error has occurred since the start of execution .

rmssts
Is an integer variable or array element in which the RMS completion
status code (STS) is stored, if the last error was an RMS I/O error.

rmsstv
Is an integer variable or array element in which the RMS status value
(STV) is stored, if the last error was an RMS I/O error. This status value
provides additional status information.

D-46 VAX FORTRAN Language Summary

iunit
Is an integer variable or array element in which the logical unit number is
stored, if the last error was an I/O error.

condval
Is an integer variable or array element in which the actual VAX condition
value is stored.

Any of the arguments can be null. If the arguments have an INTEGER*2
type, only the low-order 16 bits of information are returned. The saved
error information is set to zero after each call to ERRSNS.

D.4.4 EXIT Subroutine

The EXIT subroutine causes program termination, closes all files, and
returns control to the operating system. A call to EXIT has the form:

CALL EXIT [(exit-status)]

exit-status
Is an optional integer argument you can use to specify the image exit
status value.

D.4.5 SECNDS Subroutine

The SECNDS function subprogram returns the system time in sec
onds as a single-precision, floating-point value, minus the value of its
single-precision, floating-point argument. The call to SECNDS takes the
following form:

y = SECNDS(x)

y
Is set equal to the time in seconds since midnight, minus the user-supplied
value of x.

The SECNDS function can perform elapsed-time computations. For
example:

VAX FORTRAN Language Summary D-4 7

C START OF TIMED SEQUENCE
T1 = SECNDS (0 . 0)

C CODE TO BE TIMED

DELTA = SECNDS (T1)

DELTA gives the elapsed time.

The value of SECNDS is accurate to 0.01 second, which is the resolution
of the system clock.

The time is computed from midnight. The SECNDS subroutine also
produces correct results for time intervals that span midnight.

The 24 bits of precision provides accuracy to the resolution of the system
clock for about one day. However, loss of significance can occur if you
attempt to compute very small elapsed times late in the day. More precise
timing information can be obtained using the following Run-Time Library
procedures:

• LIB$INIT_ TIMER

• LIB$SHOW_ TIMER

• LIB$STAT_ TIMER

D.4.6 TIME Subroutine

The TIME subroutine returns the current system time as an ASCII string.
The call to TIME takes the following form:

CALL TIME (buf)

buf
Is an 8-byte variable, array, array element, or character substring.

The TIME call returns the time as an 8-byte ASCII character string having
the following form:

hh :mm :ss

hh
Is the 2-digit hour indication .

mm
Is the 2-digit minute indication.

D-48 VAX FORTRAN Language Summary

SS

ls the 2-digit second indication.

For example:

10 45 23

A 24-hour clock is used.

D.4. 7 RAN Subroutine

The RAN function is a general random number generator of the multi
plicative congruential type. The result is a floating-point number that is
uniformly distributed in the range between 0.0 inclusive and 1.0 exclusive.
The call to RAN takes the following form:

y = RAN(i)

y
Is set equal to the value associated, by the function, with the argument i.
The argument i is called the seed. It must be an INTEGER*4 variable or
INTEGER*4 array element.

The argument should initially be set to a large, odd integer value. The
RAN function stores a value in the argument that it later uses to calculate
the next random number.

There are no restrictions on the seed, although it should be initialized
with different values on separate runs in order to obtain different random
numbers. The seed is updated automatically, and RAN uses the following
algorithm to update the seed passed as the parameter:

SEED= MOD (69069 *SEED+ 1. 2**32)

The value of SEED is a 32-bit number whose high-order 24 bits are
converted to floating point and returned as the result.

0.5 Bit Functions

VAX FORTRAN provides intrinsic functions for manipulation of the
bits in the binary patterns that represent integer data types. For more
information, refer to Table D-3 .

VAX FORTRAN language Summary D-49

D.5.1 Bit Position

Integer data types are represented internally in binary twos complement
notation. Bit positions in the binary representation are numbered from
right (least significant bit) to left (most significant bit); the rightmost bit
position is numbered 0. A bit in a binary pattern has a value of 0 or 1.

D.5.2 Bit Function Arguments

The intrinsic functions IAND, IOR, IEOR, and NOT operate on all of
the bits of their argument or arguments. Bit 0 of the result is the result
of applying the specified logical operation to bit 0 of the argument or
arguments. Bit 1 of the result is the result of applying the specified logical
operation to bit 1 of the argument or arguments, and so on for all of the
bits of the result.

The shift functions ISHFT and ISHFTC shift binary patterns. A positive
shift count indicates a left shift, while a negative shift count indicates a
right shift. ISHFT specifies a logical shift; bits shifted out of one end are
lost and zeros are shifted in at the other end. ISHFTC performs a circular
shift; bits shifted out at one end are shifted back in at the other end.

The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine
MVBITS operate on bit fields. A bit field is a contiguous group of bits
within a binary pattern. Bit fields are specified by a starting bit position
and a length. A bit field must be entirely contained in its source operand.

For example, the integer 47 is represented by the following:

Binary pattern: 0 ... 0101111

Bit position : n ... 6543210
Where n is the number
of bit positions in the numeric storage unit .

You can refer to the bit field contained in bits 3 through 6 by specifying a
starting position of 3 and a length of 4.

Negative integers are represented in twos complement notation. For
example, the in teger -47 is represented by the following:

D-50 VAX FORTRAN Language Summary

Binary pattern : 0 ... 10 1000 1

Bit positio n : n ... 65432 10
Where n is th e number
of bit positions in th e numeri c s to rage unit .

Notice that the value of bit position n is as fo llows:

1 - for a negative number
0 - for a non-negative number

All the high-order bits in the pattern from the last significant bit of the
value up to bit n are the same as bit n.

IBITS and MVBITS operate on general bit fields. Both the starting position
of a bit fiel d and its length are arguments to these intrinsics. IBSET,
IBCLR, and BTEST operate on 1-bit fields. They do not require a length
argumen t.

For optimum selection of performance and memory requirements,
FORTRAN provides two integer data types: INTEGER*2 requires two
bytes of storage, while INTEGER*4 requires four bytes. The bit manipula
tion functions each have a generic form that operates on either of the two
integer types and a specific form for each type. When you use the intrinsic
func tions that refer to bit positions or that shift binary patterns within a
storage unit, you must be careful that you do not crea te a value that is
outside the range of integers representable by the data type. For example:

I NTEGER*2 I , J
I = 1
J = 17
I = ISHFT(I ,J)

The variables I and J have INTEGER*2 data type. Therefore, the generic
function ISHFT maps to the specific function IISHFT, which returns an
INTEGER*2 result. INTEGER*2 results must be in the range -32768 to
32 767, bu t the value 1, shifted left 17 positions, yields the binary pattern
1 followed by 17 zeros, which represents the integer 131072. (This would
be valid if either I or J or both were INTEGER*4 because in both cases
ISHFT would map to the specific func tion JISHFT, which returns an
INTEGER*4 value.)

If ISHFT is called with constant arguments, it returns an INTEGER*4
value.

VAX FORTRAN Language Summary 0-51

D.5.3 MVBITS Subroutine

The MVBITS subroutine transfers a bit field from one storage location
(source) to a field in a second storage location (destination). The call to
MVBITS takes the following form:

CALL MVB ITS(rn ,i , len ,n , j)

m
Is an integer variable or array element that represents the source location
(the location from which a bit field is transferred).

I

Is an integer expression that identifies the first bit position in the field
transferred from m .

fen
Is an integer expression that identifies the length of the field transferred
from m.

n
Is an integer variable or array element that represents the destination
location (the location to which a bit field is transferred) .

1
Is an integer expression that identifies the starting position, within n, for
the bits being transferred .

The MVBITS subroutine transfers len bits from positions i through i+len-1
of the source location (m) to positions j through j+len- 1 of the destination
location (n). Other bits of the destination location and all of the bits of the
source location remain unchanged. The values of i+len must be less than
32, and j+len must be less than or equal to 32.

D-52 VAX FORTRAN Language Summary

See Subtraction or unary minus operator

See Exclamation point

See Quotation marks
$

See Dollar sign
*

See Asterisk
**

See Exponentiation operator
+

See Addition or unary plus operator

See Colon
?

See Question mark

I
See Division operator

II
See Concatenation operator

A
ABS intrinsic function • D-36
Absolute Value intrinsic function• D-36
ACCEPT statement• 7-47 to 7-48
ACCESS

INQUIRE statement specifier• 9-25
OPEN statement keyword • 9-4, 9-8

Index

Access, shared

SHARED keyword
on OPEN statement• 9-4, 9-21

Access keys
for indexed fi les

specified in OPEN statement• 9-15
Access modes

direct in OPEN statement keywords• 9-2
ACOSD intrinsic function• D-34
ACOS intrinsic function• D-34
Actual arguments

aggregate field references used as• 2-37
external procedure names used

as• 4-21 to 4-22
unsubscripted array used as• 2-29

Addition operator(+)• 2-42 to 2-44, 2-51
Adjustable arrays• 2-29

in RECORD statements• 2-38
A field descriptor• 8-29 to 8-31
Aggregate assignment statement• 3-6
Aggregate field reference

examples• 2-38 to 2-39
format of•2-36 to 2-37

Aggregate reference• 2-39 to 2-41
AIMAG intrinsic function• D-39
AINT intrinsic function• D-36
Allocation

see File storage allocation
Alternate return argument• 6-9
AMAXO intrinsic function • D-40
AMINO intrinsic function• D-40
.AND .

See logical operators
ANINT intrinsic function• D-37

lndex-1

ANSI Standard

comparison with ISO Standard• 1-1
VAX FORTRAN extensions of• 1-1

APPEND
OPEN statement keyword value• 9-4

'APPEND'
OPEN statement keyword value • 9-8

Arc Cosine (degree) intrinsic function • D-34
Arc Cosine intrinsic function • D-34
Arc Sine (degree) intrinsic function• D-34
Arc Sine intrinsic function• D-34
Arc Tangent (degree) intrinsic function• D-35
Arc Tangent intrinsic function• D-35
Arguments

See also Actual arguments, Dummy arguments
aggregate field references as• 2-37
associating array elements with• 2-25
associating variables with• 2-22
bit function arguments• D-50 to D-52
external procedure names used

as• 4-21 to 4-22
general description• 6-2 to 6-11

alternate return arguments• 6-9
arrays• 6-3 to 6-5
assumed-size arrays• 6-6
character arrays• 6-7
defaults for arguments

passing• 6-9 to 6-11
Hollerith and character constants• 6-8
overview• 6-2
passed-length character arguments• 6-7

intrinsic function names used as• 4-23
use of built-in functions

argument list functions (%VAL, %REF,
%DESCR) • 6-9 to 6-11

%LOC function• 6-11
Arithmetic assignment statement• 3-1 to 3-3
Arithmetic expressions• 2-42 to 2-46

compile-time• 4-27, 4-28
data type ranking• 2-45
in relational expressions• 2-48
operator precedence• 2-43 to 2-44
order of evaluation• 2-43 to 2-45
rules governing typing of• 2-45 to 2-46

Arithmetic IF statement• 5-16
Arithmetic operators

in expressions• 2-42 to 2-44, D-1

2-lndex

Array element
defining values of• 3-1

Array name
references to• 2-39 to 2-41
unsubscripted in a DAT A statement• 4-6

Array references
in dimension bounds expressions• 2-26
without subscripts• 2-29
with subscripts• 2-27

Arrays
addressing character substrings in elements

of• 2-30 to 2-31
adjustable• 2-29
arrangement of elements• 2-27
associating two or more• 2-25
assumed-size• 2-30
data types of• 2-1
data typing• 2-29
declarators• 2-25 to 2-26
defining in a COMMON statement• 4-4
defining with character type declarations• 4-11
definition of• 2-4
dimension bounds expressions• 2-25 to 2-26
dimensioning • 4-12
elements as scalar references• 2-39
establishing with subprogram references• 2-25
general description• 2-24 to 2-25
inability to dimension within CONTEXT_

SHARED• 10-3
initializing with DAT A statements• 4-5 to 4-8
in structure declaration blocks• 2-32
making equivalent• 4-14 to 4-16
references to in statements• 2-29
subscripts• 2-27
unsubscripted array names

usage restrictions• 2-29
ASCII character set• B-2
ASCII collating sequence functions• 0-45
ASCII constants

assigned in DAT A statements• 4-7
ASCII Value intrinsic function• 0-45
ASIND intrinsic function • D-34
ASIN intrinsic function • 0-34
Assigned GO TO statement• 5-14 to 5-1 5

establishing symbolic statement labels
for• 3-7 to 3-8

Assignment statements

aggregate• 3 - 6
arithmetic• 3- 1 to 3-3
character• 3- 4 to 3- 5
logical • 3-4

ASSIGN statement • 3-7 to 3-8
ASSOC IA TEV ARI ABLE

OPEN statement keyword• 9-4, 9-8
Association

of arrays• 2- 24
of variables• 2-22

Assumed-size arrays• 2-30
Asterisk (*)

comment line indicator• 1-8, 1-13
format specifier

in list-directed 1/0 • 7-2, 7-5
multiplication operator• 2-42 to 2-44, 2-51
upper bound of array• 2- 25

Asterisk (*) length specifier
for dummy argument or function name• 4- 11
in numeric type declarations• 4-9

AT AN2 intrinsic function• D-35
AT AND2D intrinsic function• D-35
AT AND intrinsic function• D-35
AT AN intrinsic function• D-35

B
BACKSPACE statement

See also REWIND statement
general description• 9-35

Binary operators
definition of• 2-43

Bit Clear intrinsic function• D- 42
Bit Extraction intrinsic function• D-42
Bit field transfers

MVBITS subroutine• D-53
Bit functions

general information about• D-50 to D-52
Bit Set intrinsic function• D-42
Bit Test intrinsic function• D-42
Bitwise AND intrinsic function• D-4 1
Bitwise Circular Shift intrinsic function• D-43
Bitwise Complement intrinsic function• D-4 1
Bitwise Exclusive OR intrinsic function• D-4 1
Bitwise OR intrinsic function• D-41
Bitwise Shift intrinsic function• D-42

BLANK
INQUIRE statement specifier• 9- 26
OPEN statement keyword• 9-4, 9- 8

Blank common block• 4- 3
Blank control editing

BN and BZ edit descriptors• 8-10 to 8-11
Blank lines• 1-8, 1-13
Block DAT A statement• 4-2 to 4-3
BLOCK DAT A statement

position after OPTIONS statement• 1-19
Block DAT A subprogram• 4- 2 to 4- 3
BLOCK DAT A subprogram

forcing linker to search libraries• 4-21
Block IF constructs• 5-17 to 5-24
Blocks

OPEN keywords affecting• 9-2
BLOCKSIZE

OPEN statement keyword • 9-4, 9- 9
BN edit descriptor• 8-10
BTEST intrinsic function • D-42
BUFFERCOUNT

OPEN statement keyword• 9-4, 9-9
Built-in functions

argument list functions
% VAL, %REF, %DESCR • 6-9 to 6-11

%LOC function• 6-11
BYTE

as a data type• 2-2
as storage location• 2-3
declaring data type• 4-8 to 4-10
equivalence with LOGICAL* 1 • 4-9

BZ edit descriptor• 8-11

c
c

to begin a compiler directive• 1- 13

See also Compiler directives
to indicate a comment line• 1-8, 1- 13

Calendar dates
subroutines for calculating

DATE and IDATE • D-46
CALL statement• 5-2 to 5-3

use of return args • 5-25, 5-27
use with ENTRY statement• 6-24
use with SUBROUTINE statement• 6-18,

6-20

lndex-3

CALL statement (cont'd.)

using names declared in INTRINSIC
statement• 4-23

using names specified in EXTERNAL
statement• 4-21

CARRIAGECONTROL
INQUIRE statement keyword• 9-26
OPEN statement keyword• 9-4, 9-10

Carriage control characters• 8-38 to 8-39
Carriage control editing• 8-38 to 8-39
CDD$TOP•1-16
COD records• 1-15
CDEC$ IDENT directive• 10-10
CDEC$ PSECT directive• 10-11 to 10-12
CDEC$ SUBTITLE directive• 10-13
CDEC$ TITLE directive• 10-13
CHARACTER

data type
definition• 2-1
representation in memory • C-11
storage requirement• 2-2 to 2-3

Character arguments
passed length• 2-23

Character assignment statement• 3-4 to 3-5
Character comparison library functions

LEN, INDEX, ICHAR, CHAR• 6-30 to 6-32
See also Lexical comparison functions

Character constants
as actual arguments• 6-8
assigned in DAT A statements• 4-7
general description• 2-18 to 2- 19
upper and lowercase letters in• 1-9
use of space within • 1-9

Character editing (A ,H) • 8-29 to 8-32
character constants• 8-32

Character expressions• 2-4 7
compile-time• 4-27
in relational expressions• 2-48

CHARACTER FUNCTION statement• 6-15
Character intrinsic function• 0-44
Character operators• 2-4 7

in expressions• 0 - 1
Character relational intrinsic functions• 0-45
Characters

See also uppercase characters , lowercase
characters

declaring variables• 4-10

4-lndex

Characters (cont'd .)

defining values of• 3-1
in character and Hollerith constants • 1-9
printable/nonprintable • 1-9

Character set • 1-8
ASCII• B-2
FORTRAN • B-1
Radix-50 • B-4 to B-5

Character storage units• 2-2
Character substrings

addressing in variables, arrays, and array
elements• 2-30 to 2-31

as scalar references• 2-39
definition• 2-4
making equivalent• 4-17 to 4-20

Character type declaration statement
general description• 4-10 to 4- 12

CHAR function• 6-32
CHAR intrinsic function• 0-44
CLOSE statement

general description• 9-23 to 9-24
CMPLX intrinsic function• 0-39
Coding form • 1- 10
Colon(:)

edit descriptor• 8-38
Columns

comment indicator position • 1-13
continuation indicator position • 1-14
in a line• 1-2
of a statement label field• 1-13
sequence number field position• 1-15
statement field position • 1-14

Comment • 1-7 to 1-8
allowable characters in• 1-9
in a parallel DO-loop • 10-4

Comment line indicator
Din column 1•1-14
general description• 1-7

common block
names in COMMON statement• 4-4

Common block
COMMON and EQUIVALENCE

interaction• 4-20
default attributes of• 10-12t
establishing order of contents• 4-4
initializing values in• 4-2 to 4-3

Common block
in parallel processing

specifying private default shareability •
10-7

specifying private shareability • 10- 6
specifying shared default shareability •

10-8
specifying shared shareability • 10-7

modifying attributes of• 10-11
modifying shareability in parallel

DO-loop• 10-2 to 10-7
Common Data Dictionary

See DICTIONARY statement
Common logarithm intrinsic function • D-33
COMMON statement

See also Common block
establishing arrays with• 2- 24, 2-25
establishing variables with• 2-22
general description• 4-3 to 4-5
interaction with EQUIVALENCE• 4-20
using unsubscripted array names• 2-29

Compilation options
overriding FORTRAN command

options • 1-18 to 1-1 9
Compiler directives• 10-1 to 10-13
Compile-time constant

expressions• 4-27 to 4-28
COMPLEX

declaring data type• 4-8 to 4-1 0
COMPLEX•16

constants• 2-14
data type

representation in memory• C-8 to C-10
storage requirement• 2-2 to 2-3

D_floating and G_floating
implementations• 2-4

COMPLEX•8
constants• 2-13 to 2-14
data type

definition• 2-1
representation in memory• C-8
storage requirement• 2-2 to 2-3

Complex Conjugate intrinsic function• D- 39
Complex data editing• 8-25
Complex entities

in relational expressions• 2-48
Complex from Two Arguments function

Complex from Two Arguments function (cont'd.)

See CMPLX intrinsic function , DCMPLX intrinsic
function

Complex numbers
intrinsic functions that operate on• D-39
intrinsic functions to operate on• 6-26

Computed GO TO statement• 5- 13 to 5-1 4
Concatenation operator (/ /) • 2-4 7 , 2-51
CONJG intrinsic function• D-39
Connect ions, logical

to logical 1/0 units
explicitly by means of OPEN• 9-22

Constants
as scalar references• 2-39
assigning symbolic names with PARAMETER

statement• 4-26 to 4-28
character• 2-18
complex• 2-13 to 2-15
data types of • 2-1
definition• 2-4
hexadecimal• 2-15 to 2-18
Hollerith• 2-19 to 2-21
initialized by a PARAMETER statement• 2-46
integer• 2-5
logical• 2-18
octal•2-15to 2-18
Radix-50 • B-4
real• 2- 8 to 2-13
specifying data types of• 2-5 to 2-21
using a symbolic name• 4-27

CONTEXT _SHARED directive• 10-3
CONTEXT _ SHARED_ ALL directive• 10-3
Continuation indicator field • 1-10, 1-14
Continuation line• 1-2

effect on statement labels• 1-13
in debug source statements • 1-14
indicator in source code• 1-14
in included files• 1-17
use of in compiler directive• 10-1

CONTINUE statement• 5-3
Control characters• 1-9
Control list parameters

general description• 7-2 to 7-3
Control statements• 5-1 to 5-28

See also CALL, RETURN
in parallel DO-loop• 10-4

Control transfer
FORTRAN control statements• 5-1 to 5-28

lndex-5

Control transfer (cont'd.)

with DO-loops • 5-8
Conversion

of data types in arithmetic assignments• 3-3t
with FORMAT statements• 8-1

Conversion to COMPLEX• 16 function• D-39
Conversion to COMPLEX •8 function• D-39
Conversion to REAL* 16 function• D-38
Conversion to REAL•4 function• D-37
Conversion to REAL•8 function• D- 38
COSD intrinsic function • D-34
COSH intrinsic function• D-35
Cosine (degree) intrinsic function • D-34
Cosine intrinsic function• D-34
COS intrinsic function• D-34
CPAR$ CONTEXT _SHARED directive• 10-3
CPAR$ CONTEXT _SHARED_ ALL directive• 10-3
CPAR$ DO_PARALLEL directive• 10-4 to 10-5
CPAR$ LOCK OFF directive• 10-5 to 10-6
CPAR$ LOCK ON directive• 10-5 to 10-6

used to resolve data dependences• 10-5
CPAR$ PRIVATE directive• 10-6 to 10-7
CPAR$ PRIVATE _ALL directive• 10-7
CPAR$ SHARED directive• 10-7
CPAR$ SHARED_ ALL directive• 10-8
Critical region

in a parallel DO-loop• 10-5

D
D

in REAL•8 constants• 2-11
D_floating data implementation

representation in memory
COMPLEX• 16 • C-8 to C-9
REAL•8•C-3 , C-5

with COMPLEX•16 data type• 2-4, 2-14
with REAL•8 data type•2-4, 2-10

/D_LINES qualifier• 1-14
Data

as stored in memory
by VAX FORTRAN•C-1 to C-12

editing
with FORMAT statements• 8-1

retaining after END or RETURN• 4-30 to 4-31
Data dependences

in a parallel DO-loop• 10-5

6-lndex

Data items
as scalar references• 2-39
defining values for• 3- 1
definition• 2-4
identified by symbolic names• 1-7

DATA statement
general description• 4- 5 to 4-8
to define arrays and elements• 2-25
using unsubscripted array names• 2-29

Data type declaration statement

See also Type declaration statement
character type declarations• 4-10 to 4-12
numeric type declarations• 4-8 to 4-10
use to establish arrays• 2-24
using unsubscripted array names• 2-29

Data types
ability of entities to have• 1-7
conversion in arithmetic assignment

statements • 3-3t
declaration within structures• 4-34
default data types of undeclared names• 4-22
definition of different types• 2-1 to 2-2
establishing in arithmetic

expressions• 2-45 to 2-46
length specifiers• 2-2
rank in arithmetic expressions• 2-45
specifying for arrays• 2-28
specifying for constants• 2-5 to 2-21
specifying for variables• 2-22, 2-23 to 2-24

Dates , calendar
subroutines for calculating

DA TE and IDA TE• D-46
DA TE subroutine• D-46
DBLE intrinsic function• D-38
DCMPLX intrinsic function• D-39
D debugging statement indicator

in column 1 • 1-14
Debugging statements• 1-14
Declarators, array• 2- 25 to 2-26
DECODE statement• A-1 to A-3
DEF AUL TFILE

INQUIRE statement keyword• 9-25
OPEN statement keyword• 9-4, 9-10

Defaults
argument passing defaults• 6-10
data type of undeclared names• 4-22
field descriptors vs. 1/0 list elements• 8-33

DEFINE FILE statement• A-3 to A-4
DELETE

file description• 9-23
DELETE statement

general description• 9-36 to 9-37
Delimiting periods

of logical values• 2- 50
of relational values• 2-48

%DESCR built-in function• 6-10
D field descriptor• 8-21

in complex data editing• 8-25
DFLOA T intrinsic function• D-38
DICTIONARY statement• 1-15 to 1-16
DIMAG intrinsic function• D-39
Dimension bounds expressions

See Arrays
Dimensions

array limits• 2-24
declaring of an array• 2-25 to 2-26

DIMENSION statement
general description• 4-12 to 4- 13
use to establish arrays• 2-24

DIM intrinsic function• D-40
DIRECT

INQUIRE statement specifier• 9-27
OPEN statement keyword value• 9-4

Direct access FIND statements• A- 5
Direct access mode

OPEN statement keywords• 9-2
Direct access READ statements• 7- 26 to 7-27
Direct access WRITE statements• 7-39 to 7-40
Directives

See Compiler directives
'DIRECT'

OPEN statement keyword value• 9- 8
DISP

CLOSE statement keyword• 9-23
DISPOSE

CLOSE statement keyword• 9-23
OPEN statement keyword• 9-4, 9-11

Division operator (/) • 2-42 to 2-44, 2-51
Dollar sign ($)

delimiter for namelist record• 7-20
edit descriptor• 8-37 to 8- 38
in a symbolic name• 1- 6

DO-loop

See also Parallel DO-loop

DO-loop (cont'd .)

transferring control• 5-8
DO statements • 5-3 to 5-1 2

indexed• 5-4 to 5-9
pretested indefinite

DO WHILE• 5-9 to 5-11
DOUBLE COMPLEX

declaring data type• 4-8 to 4-10
DOUBLE PRECISION

declaring data type• 4-8 to 4- 10
DO WHILE statement• 5-9 to 5-11
DO_ PARALLEL directive• 10-4 to 10-5
DPROD intrinsic function• D-39
DREAL intrinsic function • D-39
Dummy arguments

aggregate field references used as• 2-37
inability to declare in

CONTEXT_ SHARED• 10-3
unsubscribed array names used as• 2-29
using asterisk (•) length specifier• 4-11

E
Edit descriptors

summary• 8- 6 to 8- 7
E field descriptor• 8-19

in complex data editing• 8-25
ELSE IF THEN statement

block IF constructs• 5-17 to 5-24
ELSE statement

block IF constructs• 5-17 to 5-24
ENCODE statement• A-1 to A-3
END DO statement• 5-11 to 5-12
ENDFILE statement• 9-35 to 9- 36
END IF statement

block IF constructs• 5-17 to 5-24
END MAP statement• 4-39
End-of-file condition

reporting with IOST AT value• 7- 9
transferring control with END specifier• 7-10

End-of-file record
ENDFILE statement• 9-35 to 9-36

END specifier
in 1/0 statements• 7-10

END statement
general description• 5-12
with BLOCK DAT A statement• 4-3

lndex-7

END statement (cont'd .)

with FUNCTION statement• 6-15
with SUBROUTINE statement• 6-18

END UNION statement• 4- 39
ENTRY statement• 6-21 to 6-24

use with FUNCTION statement• 6-17
use with SUBROUTINE statement• 6- 19
using unsubscripted array names• 2-29

.EQ.
See relational operators

EQUIVALENCE statement
associating arrays with• 2-25
associating variables with• 2-22
contrasted with union declaration• 4-40
general description• 4-13 to 4-20
interaction with COMMON• 4- 20
use of unsubscripted arrays with• 2- 22, 2- 25
using unsubscripted array names• 2-29

.EQV .
See logical operators

ERR
BACKSPACE statement keyword• 9-35
CLOSE statement keyword• 9- 23
DELETE statement keyword • 9- 36
ENDFILE statement keyword• 9-35
1/0 statement specifier• 7-10
INQUIRE statement specifier• 9-27
OPEN statement keyword• 9-4, 9- 12
REWIND statement keyword• 9- 34
UNLOCK statement keyword• 9-38

Error condition
during l/0•7-9, 7-10

Error handling
subroutine for obtaining error information

ERRSNS subroutine• D-4 7
user controls in 1/0 statements

ERR, END, and IOSTAT specifiers• 7-9 ,
7-10

ERRSNS subroutine • D-4 7
Exclamation point (!)

comment indicator• 1-8, 1-13
Executable statements• 1-2, 1-4
Execution , program

temporarily suspending
(PAUSE)• 5-24 to 5-25

terminating
EXIT• 0-48
STOP•5-27

8-lndex

EXIST
INQUIRE statement specifier• 9-27

EXIT system subroutine• D-48
EXP intrinsic function• D-33
Explicit formatting

1/0 statement specifier• 7-4 to 7-5
Exponential intrinsic function• D-33
Exponentiation operator (••) • 2-42 to 2-44,

2-51
Exponents

in REAL•4 constants• 2-8
in REAL•8 constants• 2- 10
in REAL• 16 constants• 2-12

Expressions, FORTRAN

See also Arithmetic expressions, Character
expressions, Logical expressions,
Relational expressions

as scalar references• 2-39
compile-time constant

expressions• 4-27 to 4- 28
data types of• 2-1
definition of• 2-42
expression operators

summary of• D-1 to D-2
variable FORMAT• 8-9 to 8-10

Extended ranges , DO-loop• 5-9
EXTENDSIZE

OPEN statement keyword• 9-4, 9-12
External field separators• 8-40 to 8-4 1
External procedure names

as arguments• 4-21 to 4-22
duplicating intrinsic function names• 4-2 1

External procedures
invoking with CALL• 5-2
unsubscripted array names as dummy

arguments• 2-29
EXTERNAL statement• 4-21 to 4-22

/NOF77 implementation• A-8 to A-9
to search object libraries for block data

subprograms• 4- 3

F
F _floating data implementation

representation in memory
COMPLEX •8 • C-8
REAL•4 • C- 4

F field descriptor• 8-17
in complex data editing• 8-25

Field
in FORTRAN source code• 1-9 to 1- 15

Field declarations
allowable entities• 4-35

Field descriptors
defaults for 1/0 list elements• 8-33
summary• 8- 6 to 8-7

Field namelist • 4-34
Field names • 4-34

in structure declarations• 4-38
Field references

See Record and field references
Fields

definition in structure
declarations• 4-33 to 4-38

initial ization of unnamed fields• 2-33
Fields, unnamed

use of %FILL• 2-33
Field separators, external• 8-40 to 8-41
File

combining at compilation• 1-17 to 1-18
deleting records from

DELETE statement• 9-36 to 9-37
disposition

CLOSE statement keywords• 9-23
INCLUDE files• 1-17 to 1-18
processing options

OPEN statement keywords• 9-2
properties, inquiring about

INQUIRE statement• 9-24 to 9- 33
providing a listing header for• 10-13
record description options, 1/0

OPEN statement keywords• 9-2
repositioning

BACKSPACE statement• 9-35
repositioning with REWIND statement• 9-34
status options

OPEN statement keywords• 9-2
FILE

INQUIRE statement keyword• 9-25
OPEN statement keyword• 9-4, 9-13

File-handling commands
BACKSPACE statement• 9-35
CLOSE statement• 9-23 to 9-24
INQUIRE statement• 9-24 to 9-33
OPEN statement• 9-2 to 9-23

File-handling commands (cont'd .)

REWIND statement• 9-34
File sharing

SHARED keyword (OPEN statement)• 9-4,
9-21

File specifications
OPEN statement keywords• 9-2

File status
CLOSE statement keywords• 9-23
OPEN statement keywords

DISPOSE• 9-4, 9-11
STATUS or TYPE• 9-4, 9-22

File storage allocation
OPEN statement keywords• 9-2

%FILL• 2-33, 4-34, 4-38
FIND statement• A-5
Fixed-format • 1-10 to 1-11
Fixed-length records

RECORDTYPE keyword
(OPEN statement)• 9-4, 9-20 to 9-21

Fix intrinsic function• D-38
Floating-point data types

emulation of• 2-4
representation in memory• C-3 to C-1 O

FLOAT intrinsic function• D-38
FMT format specifier

in 1/0 statements• 7-4
FORM

INQUIRE statement specifier• 9-28
OPEN statement keyword• 9-4, 9- 13

Format
coding with fixed format • 1-10 to 1-11
coding with tab format • 1-11 to 1-13

Formats
passed length• 2-2
run-time• 8-41 to 8-42

Format specification separators• 8-39 to 8-40
Format specifier

control list parameter
in 1/0 statements• 7-4

FORMAT statements
arithmetic expressions in • 8-9 to 8-1 O
description of use• 8-1
external field separators• 8-40 to 8-41
field and edit descriptors

additional editing operations
(Q,$,:) • 8-36 to 8- 38

blank control editing, (BN,BZ) • 8-1 O

lndex-9

FORMAT statements
field and edit descriptors (cont'd .)

character editing (A,H) • 8-29 to 8-32
counts, repeat• 8-8
integer editing (1,0,Z) • 8-12 to 8-17
logical editing (L) • 8-28
positional editing (X, T, TL, TR)•

8-34to 8-36
real editing (F,E,D,G) • 8-17 to 8-25
scale factor editing (P) • 8-25 to 8-2 7
sign control editing (SP ,SS,S) • 8-11
summary of• 8-6 to 8-7
use of character constants• 8-32

format expressions, variable• 8-9 to 8-10
format specification

separators• 8-39 to 8-40
general rules• 8-2 to 8-3
1/0 lists, interaction with• 8-42 to 8-46
input rules• 8-3
output rules• 8-3 to 8-4
run-time formats• 8-4 1 to 8-42
syntax • 8-4 to 8-6

FORMATTED
INQUIRE statement specifier• 9-28

Formatted 1/0 statements
ACCEPT statement• 7-47
establishing symbolic statement labels

for• 3-7 to 3-8
PRINT statement• 7-48 to 7-49
READ statements

direct access• 7-26
indexed• 7-28, 7-29
internal• 7-31
sequential• 7-15, 7-16

REWRITE statement • 7-45, 7-46
TYPE statement • 7-48 to 7-49
WRITE statements

direct access• 7-39, 7-40
indexed• 7-41, 7-42
internal• 7-43, 7-44
sequential• 7-33, 7-34 to 7-35

FORTRAN-66
VAX FORTRAN support of• 1-1

FORTRAN-77
VAX FORTRAN extensions of• 1-1

FORTRAN character set• 8-1
FORTRAN command (DCL)

/D_LINES • 1-14

10-lndex

FORTRAN command (DCL) (cont'd .)

overriding • 1-15, 1-18 to 1-19
FORTRAN data representation in

memory • C-1 to C- 12
FORTRAN statements• 1-2 to 1-5

assignment statements• 3-1 to 3-8
control statements• 5-1 to 5-28
1/0 statements• 7-1 to 7-49
1/0 statements, auxiliary• 9-1 to 9-38
language summary (alphabetic) • D-2 to 0-32
scalar field references in• 2-37
specification statements • 4-1 to 4-42
supplemental statements

supported to maintain non-VAX FORTRAN
compatibility• A-1 to A-9

Function name
using asterisk (•) length specifier• 4-11

Function references
data types of• 2-1
general description • 6-1 6 to 6-18
types of references to intrinsic functions

specific and generic• 6-25 to 6-30
Functions

See Built-in functions
See Intrinsic functions, system supplied

See Lexical comparison library functions

See Statement functions
FUNCTION statement• 6-15 to 6-18

logical and numeric functions• 6-15
position after OPTIONS statement • 1-19
using unsubscripted array names• 2-29

Function subprograms• 6-15 to 6-18

G
G_floating data implementation

representation in memory
COMPLEX•16 • C-10
REAL•8 • C-6

with COMPLEX•16 data type• 2-4, 2-14
with REAL•8 data type• 2-4, 2-10

.GE .
See relational operators

General directives• 10-10 to 10-13
ordering with statements • 1-3f

Generic references

Generic references (cont'd .)

to intrinsic function names• 6-26 to 6- 27 ,
6- 28

G field descriptor• 8-22
in complex data edit ing• 8-25

GO TO statement
establishing symbolic statement labels for

assigned• 3-7 to 3- 8
GO TO statements• 5-12 to 5-15
Group repeat counts

in FORMAT statements• 8-8
.GT.

See relational operators

H
H_ floating data implementation

representation in memory
REAL• 16 • C-7

Hexadecimal constants• 2- 5 , 2-15 to 2-18
assigned in DAT A statement• 4-7
data type assignments• 2- 16 to 2-17

H field descriptor• 8-32
Hollerith constants• 2-5, 2-19 to 2- 21

assigned in DAT A statements• 4-7
upper and lowercase letters in • 1-9
use of space within• 1-9

Hollerith Constants
representation in memory• C-11

Hyperbolic Cosine intrinsic function• D- 35
Hyperbolic Sine intrinsic function• D-35
Hyperbolic Tangent intrinsic function• D-35

I

field descriptor• 8-12 to 8-14
1/0, iterative

See iterative 1/0
1/0 statement components

control list parameters• 7-1 to 7-3
format specifier • 7- 4
1/0 status specifier• 7-9
internal file specifier• 7-4
key-field value specifier• 7-6
key-of-reference specifier• 7-9
logical unit specifier• 7-3

1/0 statement components
control list parameters (cont'd .)

namelist specifier• 7-5
record specifier • 7-6
rules for specifying • 7-3
transfer-of-control specifier• 7-10

1/0 list parameter• 7-11 to 7-14
implied-DO lists• 7-13 to 7-14
interaction with format

controls• 8-42 to 8-46
simple list elements• 7-12

1/0 statements

See also 1/0 statement components, ACCEPT,
FORMAT, OPEN, PRINT, READ, REWRITE ,
TYPE, WRITE

in parallel DO-loop• 10-4
list of• 7- 1
OPEN statement interdependencies

logical unit specifier• 7-4
specifiers

See 1/0 statement components
using unsubscripted array names• 2-29

1/0 status specifier
control list parameter

in 1/0 statements• 7-9
IABS intrinsic value• D-36
IAND intrinsic function• D-41
IBCLR intrinsic function • D-42
IBITS intrinsic function• D-42
IBTSET intrinsic function• D-42
ICHAR function • 6-31
ICHAR intrinsic function • D-45
IDA TE subroutine• D-4 7
IDENT directive• 10-10
IDIMintrinsic function• D-40
IDINT intrinsic function• D-36
IDNINT intrinsic function• D-37
IEOR intrinsic function• D-41
IFIX intrinsic function• D-38
IF statements• 5-15 to 5-24

general descriptions
arithmetic IF• 5-16
block IF• 5-1 7 to 5-24
logical IF • 5-1 7

IF THEN statement
block IF constructs• 5-17 to 5-24

Imaginary Part of Complex function• D-39

lndex-11

IMPLICIT NONE statement• 4-23
IMPLICIT statement

effect of /WARNINGS option• 4-23
general description• 4-22 to 4-23
using to type variables• 2-23

Implied-DO list

See Iterative 1/0
Implied-DO variables

initializing with statements• 4-5 to 4-8
INCLUDE statement• 1-17 to 1-18
Indefinite DO statement, pretested

DO WHILE• 5-9 to 5-11
Indexed DO statement • 5-4 to 5-9
Indexed files

freeing locked records• 9-38
Indexed 1/0 statements

READ statements• 7-28 to 7-30
WRITE statements• 7-4 1 to 7-43

Indexed organization files
access keys

specifier in OPEN statement• 9-15
deleting records from

DELETE statement• 9-36 to 9-37
Indexed WRITE statements• 7-41 to 7-43
INDEX function• 6-3 1
INDEX intrinsic function• D-43
INITIALSIZE

OPEN statement keyword • 9-4, 9-14
INQUIRE statement

general description• 9-24 to 9-33
Integer

constants
in REAL•4 constants• 2-8
octal notation• A-7

data type
definition• 2-1
representation in memory• C-1, C-2
storage requirements• 2-2 to 2-3

declaring data type• 4-8 to 4-1 O
default data type of undeclared names• 4-22

Integer constants
in COMPLEX•8 constants• 2-13
in REAL•8 constants• 2-10
in REAL• 16 constants• 2-12 , 2-14
used to assign values• 2-6

Integer data type

See also Constants

12-lndex

Integer editing (1,0,Z) • 8-12 to 8-17
Internal file specifier

control list parameter
in 1/0 statements• 7-4

Internal 1/0 statements
ENCODE and DECODE statements•

A-1 to A-3
READ statements• 7-31 to 7-32
WRITE statements • 7-43 to 7-44

Internal WRITE statements• 7-43 to 7-44
INT intrinsic function• D-36
Intrinsic functions, system-supplied

character comparison functions•
6-30to 6-32

complete list of• D-32 to D-45
description of types• 6-2
external procedures of same name• 4-21
lexical comparison functions• 6-32 to 6-33
names used as arguments• 4-23
references, generic• 6-26 to 6-27,

6-28to 6-30
references, specific• 6-25, 6-28 to 6-30

INTRINSIC statement
general description• 4-23 to 4-24

IOR intrinsic function• D- 41
IOSTAT

BACKSPACE statement keyword• 9-35
CLOSE statement keyword• 9-23
DELETE statement keyword• 9-36
ENDFILE statement keyword• 9-35
INQUIRE statement specifier• 9-28
OPEN statement keyword• 9-4, 9-14
REWIND statement keyword• 9-34
specifier in 1/0 statements• 7-9
UNLOCK statement keyword• 9-38

IQINT intrinsic function• D-36
IQNINT intrinsic function• D-37
ISHFTC intrinsic function• D-43
ISHFT intrinsic function • D-42
ISIGN intrinsic function• D-41
ISO Standard

comparison with ANSI Standard• 1-1
Iterative 1/0

implied-DO list• 7-13 to 7-14
iterative count controls

indexed DO statement • 5-4 to 5-9
Iterative processing controls

See DO statements

K
KEEP

file disposition• 9-23
KEY

key-field value specifier
in 1/0 statements• 7-6

OPEN statement keyword• 9-4, 9-15
KEYED

INQUIRE statement specifier• 9-29
OPEN statement keyword value • 9-4

'KEYED'
OPEN statement keyword value • 9-8

Key-field value specifier
control list parameter

in 1/0 statements• 7-6
KEYID specifier

see key-of-reference specifier• 7-9
Key-of-reference specifier

control list parameter
in 1/0 statements• 7-9

Keys, access
specified in OPEN statement • 9-15

KEYx specifier (KEY, KEYEQ, KEYGE, KEYGT,
KEYNXTNE, KEYNXT)

See key-field value specifier

L
Labels

See statement labels
.LE.

See relational operators
L edit descriptor• 8-28
LEN function• 6-30
Length

effect of /EXTEND_SOURCE on sequence
number field • 1-1 5

specifier in data type declarations• 2-2
Length intrinsic function• D-43
LEN intrinsic function• D-43
Lexical comparison library functions

LL T , LLE, LGT, LGE • 6-32 to 6-33
< LF > control character • 1-9

LGE function• 6-32 to 6-33
LGT function• 6-32 to 6-33

Library functions, system-supplied
algorithms used in• D-32

Line
as a physical section of statements• 1- 2
blank• 1-8, 1-13
characters embedded in • 1-9
continuation indicator field• 1-14
entering with fixed format • 1-10 to 1-1 1
entering with tab format• 1-11 to 1-13
format of statement label field • 1-13
sequence number field • 1-15
statement field • 1-14

Linefeed control character• 1- 9
List-directed formatting

1/0 statement specifier• 7-4
List-directed 1/0 statements

ACCEPT statement• 7- 47
READ statements

internal READ• 7- 31
sequential READ • 7- 15, 7-17 to 7-19

WRITE statements
internal WRITE• 7-43 , 7-44
sequential WRITE• 7-33, 7-35 to 7-37

List elements, simple
1/0 list parameter

in 1/0 statements• 7-12
Listing

See Source listing
Listing header

providing for a file• 10-13
/LIST qualifier

to enable TITLE and SUBTITLE compiler
directives • 10-13

Lists, implied-DO
in DAT A statements• 4-5

LLE function• 6-32 to 6-33
LL T function• 6-32 to 6-33
%LOC built-in function• 6-11
Locked records

freeing locked records• 9-38
LOCK OFF directive• 10-5 to 10- 6
LOCK ON directive• 10-5 to 10-6

used to resolve data dependences• 10-5
Lock variable• 10-5
LOG 10 intrinsic function• D-33

lndex-13

Logical

See also Arrays, Constants, Data types, Logical
values, Variables

constants
representation in memory• C-2
storage requirement• 2-2 to 2-3

data type
definition• 2-2

relationship to BYTE data type• 4- 9
LOGICAL

declaring data type• 4-8 to 4-10
LOGICAL•n

See Logical
Logical assignment statement• 3-4
Logical constants• 2-18
Logical editing (L) • 8-28
Logical elements

See Logical expressions
Logical expressions• 2-49 to 2-52

compile-time• 4-27
evaluation of subexpressions• 2-51
order of evaluation• 2-51 to 2-52

Logical functions• 6-15
Logical 1/0 units

CLOSE statement options• 9-23
connection method

explicitly by means of OPEN• 9-22
defining logical unit numbers

DEFINE FILE statement• A-3 to A-4
inquiring about properties

INQUIRE statement• 9-24 to 9-33
OPEN statement options• 9-2

Logical IF statement• 5-1 7
Logical operations

data types that result from• 2-50
Logical operators• 2-50t

in expressions• D-2
Logical scalar memory reference

See Scalar memory reference
Logical unit specifier

control list parameter
in 1/0 statements• 7-3

Logical values
representation in memory• C-2 to C-3

LOG intrinsic function• D-33
Loops , DO

DO statements • 5-3 to 5- 1 2

14-lndex

Lowercase characters• 1-8
affect on compiler• 1-9
in character and Hollerith constants• 1-9

.LT .
See relational operators

M
Main program

as a program unit• 1-2
Map declaration

general description• 4-38 to 4-41
to establish variables• 2-22
use to establish arrays• 2-25

Mapped field declarations• 2-33
MAP statement• 4- 38, 4-39
Mathematical functions, intrinsic• D-32 to D-45
MAXO intrinsic function• D-40
MAX 1 intrinsic function• D-40
Maximum intrinsic function• D-40
MAX intrinsic function• D-40
MAXREC

OPEN statement keyword• 9-4, 9-16
Memory diagrams

of structured records• 2-34 to 2-36
Messages

sending to terminal

See PAL1SE statement
MINO intrinsic function• D-40
MIN 1 intrinsic function• D-40
Minimum intrinsic function• D-40
MIN intrinsic function• D-40
Minus operator (-) • 2-42 to 2-44, 2-51
MOD intrinsic function • D-4 1
Multiplication operator (*) • 2-42 to 2-44, 2-51
MVBITS subroutine• D-53

N

Name
See also symbolic names, entry names

NAME
INQUIRE statement specifier• 9-29
OPEN statement keyword• 9-4, 9-17

Name, structure
using •4-33

NAMED

INQUIRE statement specifier• 9-30
Named c.ommon blocks

establishing order of contents• 4-4
initializing values in• 4-2 to 4-3

Namelist-directed 1/0 statements

See also NAMELIST statement
ACCEPT statement• 7-47
sequential READ statement• 7-15,

7-20 to 7-25
sequential WRITE statement• 7-33,

7-37 to 7-38
Namelist specifier

control list parameter
in 1/0 statements• 7-5

NAMELIST statement
general description• 4-24 to 4-25
using unsubscripted array names• 2-29

Names, symbolic

See Symbolic names
Natural Logarithm intrinsic function • D-33
.NE.

See relational operators
Nearest Integer intrinsic function• D-37
.NEQV.

See logical operators
Nested block IF constructs• 5-23 to 5-24
Nested DO loops • 5-7 to 5- 8
Nested structured declarations

See substructure declarations
Nesting

structure declarations• 4-33, 4-38
< NEWLINE > control character• 1-9

NEXTREC
INQUIRE statement specifier• 9-30

NINT intrinsic function• D-37
NML specifier

in 1/0 statements• 7-5
/NOF77 qualifier

effect on Do-loops • 5-5
/NOLIST qualifier

in the DICTIONARY statement• 1-16
in the INCLUDE statement• 1-17

Nonexecutable statements• 1-2
Non printable characters• 1-9
/NOOBJECT qualifier

disabling IDENT directive• 10-10

NOSP ANBLOCKS
OPEN statement keyword• 9-4, 9-17

.NOT.
See logical operators

NOT intrinsic function• D-41
NUMBER

INQUIRE statement specifier• 9-30
Number, sequence• 1-15
Numerals • 1-8
Numeric functions• 6-15
Numeric scalar memory reference

See Scalar memory reference
Numeric storage unit• 2-2
Numeric type declarations

general description • 4-8 to 4-10
NWORKERS intrinsic function• D-44

0
0

field descriptor• 8-14
Object libraries

searching for block data subprograms • 4-3
Object module

labeling and identifying with compiler directive•
10-10

Octal constants• 2-5, 2-15 to 2-18
assigned in DAT A statement• 4-7
data type assignments• 2-16 to 2-17

Octal notation (n)

for integer constants• A-7
Octal values

1/0 transfers
by 0 field descriptor • 8-14

OPENED
INQUIRE statement specifier • 9-3 1 '

OPEN statement
general description• 9-2 to 9-23
1/0 statement interdependencies

logical unit specifier• 7-4
Operators

See also arithmetic operators, relational
operators

expression operators
summary of• D-1 to D-2

logical• 2-50t

lndex-15

Operators (cont'd .)

precedence in arithmetic expressions•
2-43to 2- 44

precedence in relational expressions• 2-49
used in logical expressions• 2-51

Optimization
effect of VOLATILE statement• 4-41

OPTIONS statement • 1-3, 1-18 to 1-19
.OR.

See logical operators
Order

required of statements• 1-3t
ORGANIZATION

p

INQUIRE statement specifier• 9-31
OPEN statement keyword• 9-4, 9-17

Parallel directives• 10-2 to 10-9
See also NWORKERS function
enabling • 10-2
examples of• 10-8 to 10-9
ordering with statements • 1-3t

Parallel DO-loop • 10-4 to 10-9
/PARALLEL qualifier• 10-2
PARAMETER statement

alternate version of• A-6
defining constants in arithmetic

expressions• 2-46
general description• 4-26 to 4-28
in structure declaration block• 4-32

Parentheses ·
effect in arithmetic expressions•

2-44to 2-45
effect in character expressions• 2-47
in logical expression• 2- 51

Passed-length character arguments• 2-23
Passed-length format, *(*)

for dummy arguments or character
functions• 2-2

Pathnames (COD)• 1-16
PAUSE statement• 5-24 to 5-25

in parallel DO-loop• 10-4
PDP-11 FORTRAN-77

source programs on a VAX FORTRAN
compiler• 1-2

P edit descriptor• 8-25 to 8-27

16-lndex

Periods
delimiting logical values• 2-50
delimiting relational values• 2-48

Plus operator (+) • 2-42 to 2-44, 2-51
Positional editing (X,T,TL,TR) • 8-34 to 8-36
Positive Difference intrinsic function • D-40
Precedence, operator

effect of parentheses• 2-44 to 2-45
in relational expressions• 2-49
within arithmetic expressions• 2-43 to 2-44

Pretested indefinite DO statement
DO WHILE• 5-9 to 5-11

PRINT
file disposition• 9-23

PRINT statement • 7-48 to 7-49
PRIVATE directive• 10-6 to 10-7
Private entities

using SA VE statement for• 10-7
PRIV A TE_ALL directive• 10-7
Procedure

See subprogram
Program

See program unit
Program execution

temporarily suspending
(PAUSE)• 5-24 to 5-25

terminating
EXIT• D-48
STOP• 5-27

PROGRAM statement
general description• 4-28 to 4-29
position after OPTIONS statement • 1-19

Program unit
assigning a name to main program

unit• 4-28 to 4-29
block data subprogram • 4-2
definition of• 1-2

PSECT directive• 10-11 to 10-12

0
Q

edit descriptor• 8-37
in REAL•16 constants•2-12

QEXT intrinsic function• D-38
QFLOA T intrinsic function• D-38

Question mark (?)

namelist prompt• 7- 22
Quotation marks (")

octal notation for integer constants• A - 7

R
Radix-50

constants and character sets• B-4 to B-5
Random number generator

RAN function • D-50
RAN function• D- 50
READONLY

OPEN statement keyword • 9-4, 9-18
READ statements

direct access READ• 7-26 to 7-27
formatted• 7-26
unformatted• 7-26, 7-27

indexed READ• 7-28 to 7-30
formatted• 7-28, 7-29
unformatted• 7-28, 7-30

internal READ• 7-31 to 7-32
formatted • 7-32
list-directed• 7-31, 7-32

relationship to DECODE statement• A- 1, A-2
sequential READ• 7-15 to 7-25

REAL

formatted• 7-15, 7-16
list-directed• 7- 15, 7-17 to 7-19
namelist-directed • 7- 15, 7- 20 to 7-25
unformatted•7-15, 7-25

See REAL•4
declaring data type• 4-8 to 4-10

REAL• 16

See also Arrays , Constants, Data types,
Variables

constants• 2-12 to 2-13
data type

definition• 2- 1
representation in memory• C-4, C-7
storage requirements• 2-2 to 2-3

REAL• 16 float intrinsic function• D-38
REAL•4

See also Arrays, Constants, Data types,
Variables

constants• 2-8 to 2-10

REAL•4
data type

definition• 2- 1
representation in memory• C- 4
storage requirements• 2- 2 to 2- 3

default data type of undeclared names• 4-22
REAL•8

See also Arrays , Constants, Data types,
Variables

constants• 2-10 to 2- 12
data type

definition• 2-1
representation in memory (G _ and D_

floating)• C-3 , C-4, C-5 to C-6
storage requirement• 2-2 to 2-3

D_ floating and G_ floating
implementations• 2- 4

REAL •8 float intrinsic function• D- 38
REAL•8 product of REAL•4's function• D- 39
Real editing (F ,E,D,G) • 8- 17 to 8-25

complex data editing• 8-25
relationship to DECODE statement• A-1

REAL intrinsic function• D- 37 , D-39
Real Part of Complex function• D-39
REC

DELETE statement keyword• 9-36
specifier in 1/0 statements• 7-6

RECL
INQUIRE statement specifier• 9-32
OPEN statement keyword• 9- 4 , 9-18

Record and field references• 2-36 to 2-37
examples• 2- 38 to 2-39

Record names
statements that can use• 4-30

Records
allowable operations on aggregate fields• 2-37
arrangement in memory• 2- 33 to 2- 36
defining values of• 3-1
freeing locked records• 9-38
general description• 2-31 to 2- 32
1/0 records

deleting records from a file
(DELETE)• 9-36 to 9-37

RECORDTYPE keyword (INQUIRE
statement) • 9-32

RECORDTYPE keyword (OPEN
statement) • 9-20

lndex-17

Records
1/0 records (cont'd.)

sizes (OPEN statement keywords) • 9-18
RECORDSIZE

OPEN statement keyword• 9-4, 9-20
Record size (RECL)

default va lues• 9-19
limits • 9-19

Record specifier
control list parameter

in 1/0 statements• 7-6
RECORD statement

general description• 4-29 to 4- 30
RECORDTYPE

INQUIRE statement specifier• 9-32
OPEN statement keyword • 9-4,

9-20 to 9-21
%REF built-in function• 6-10
References, function

See function references
References, generic or specific

See function references
Relational expressions• 2-48 to 2-49
Relational operators• 2-48

avoiding use as field names• 2-38
in expressions• D-1

Relative organization files
defining size and structure

DEFINE FILE statement• A-3 to A-4
deleting records from

DELETE statement• 9-36 to 9-37
freeing locked records• 9-38

Remainder intrinsic function • D-41
Repeat count

in FORMAT statements• 8-8
Return argument, alternate• 6-9
RETURN statement

general description• 5-25 to 5-27
in parallel DO-loop• 10-4
return args in CALL• 5-25, 5-27
use with FUNCTION statement• 6-15
use with SUBROUTINE statement• 6-18,

6-20
REWIND statement

See also BACKSPACE statement
general description• 9-34

REWRITE statements • 7-45 to 7-4 7

18-lndex

Run-time formats• 8-41 to 8-42
Run-time library routines

in parallel DO-loop • 10-4

s
s

edit descriptor• 8-12
SAVE

file disposition• 9-23
SA VE statement

general description • 4-30 to 4-3 1
use of for private entities• 10-7
using unsubscripted array names• 2-29

Scalar field reference
examples• 2-38 to 2-39
format of• 2-36 to 2-37

Scalar memory reference• 2-39 to 2-41
Scalar reference• 2-39 to 2-41
Scale factor editing (P) • 8-25 to 8-2 7
SECNDS function subprogram • D-48
Segmented records

RECORDTYPE keyword (OPEN
statement)• 9-4, 9-20 to 9-21

Separators
external fie ld separators• 8-40 to 8-41
format specification

separators• 8-39 to 8-40
Sequence number field• 1-10, 1-15
SEQUENTIAL

INQUIRE statement specifier• 9-33
OPEN statement keyword value• 9-4

Sequential 1/0 statements
READ statements• 7-15 to 7-25
WRITE statements• 7-33 to 7-39

Sequential organization files
freeing locked records• 9-38
repositioning

REWIND statement• 9- 34
repositioning with BACKSPACE

statement• 9-35
writing end-of-file records

ENDFILE statement• 9-35 to 9-36
'SEQUENTIAL'

OPEN statement keyword value • 9-8
SHARED

OPEN statement keyword• 9-4, 9-21

SHARED directive• 10-7
SHARED_ALL directive• 10-8
Sign control editing • 8-11
SIGN intrinsic function• 0-41
Simple list elements

1/0 list parameter
in 1/0 statements• 7-12

SINO intrinsic function• 0-33
Sine (degree) intrinsic function• 0-33
Sine intrinsic function • 0-33
SINH intrinsic function• 0-35
SIN intrinsic function • 0-33
SIZE OF intrinsic function• D-44
Slash (/)

division operator• 2-42 to 2-44, 2-51
record terminators

in FORMAT statements • 8-4
Source code

See also source program
allowable characters • 1-9
comments in • 1-7
debugging statements in • 1-14
description of fields • 1-9 to 1-15
format using fixed-format • 1-10 to 1-11
format using tab-format • 1-11 to 1-13

Source listing
of COD records • 1-16
of included files • 1-17

Source program

SP

See also source code
definition of a program unit• 1-2
Din column 1•1-14
statement order• 1-3 to 1- 5
symbolic names in • 1-5 to 1-7

edit descriptor• 8-11
Space character• 1-9

effect of FORMAT descriptors • 8-7, 8-1 O
in statement label fields • 1-13

Special characters• 1-8
Specification statements • 4-1 to 4-42
SORT intrinsic function • 0-33
Square root intrinsic function• 0-33
SS

edit descriptor• 8-11
/ST AND ARD qualifier• 4-31

Standards

See ANSI Standard, FORTRAN-66,
FORTRAN-77, ISO Standard

Statement field• 1-10, 1-14
Statement functions• 6-12 to 6-14
Statement label

rules governing use of• 1-13
Statement label field• 1-10, 1-13
Statement label references

FORMAT and GOTO statements • 3-7
symbolic • 3-7 to 3-8

Statement labels
assigning symbols to • 3-7 to 3-8
rules governing use • 1-3

Statement order
following OPTIONS statement • 1-19
requirements of• 1-3t

Statements
See FORTRAN statements

STATUS
CLOSE statement keyword• 9-23
OPEN statement keyword• 9- 4, 9-21

STOP statement
general description• 5-27
in parallel DO-loop • 10-4

Storage allocation, file
OPEN statement keywords

EXTENDSIZE • 9-4, 9-12
INITIALSIZE • 9-4, 9-14

Storage requirements
of data types• 2-3

Storage units
character• 2-2
numeric• 2-2

Stream records
RECORDTYPE keyword (OPEN

statement)• 9-4, 9-20 to 9-21
Structure declaration block

general description• 2-32 to 2-33
Structure declaration blocks

components of• 4-32
data type declaration rules • 4-34
field declarations within• 4-34 to 4-38
general description • 4-31 to 4-4 1
use of %FILL• 2-33, 4-34

Structure declarations• 4-33
STRUCTURE statement

general description • 4-33 to 4-34

lndex-19

Subexpressions
in logical expressions• 2-51

SUBMIT
file disposition• 9-23

Subprogram arguments
aggregate field references used as• 2-37
associating arrays with• 2-25
associating variables with• 2-22
bit function arguments• 0-50 to 0-52
external procedure names used

as• 4-21 to 4-22
general description• 6-2 to 6-11

adjustable arrays• 6-3 to 6-5
alternate return arguments• 6-9
assumed-size arrays• 6-6
character arrays • 6-7
defaults for arguments

passing• 6-9 to 6-11
Hollerith and character constants• 6-8
overview• 6-2
passed-length character arguments• 6-7

intrinsic function names used as• 4-23
use of built-in functions

argument list functions (%VAL, %REF,
%0ESCR) • 6-9 to 6-11

%LOC function• 6-11
Subprograms

bit functions
general discussion about• 0-50 to 0-52

CHARACTER FUNCTION statement• 6-15
definition of• 1-2
effect of END statement• 5-12
ENTRY statement• 6-21 to 6-24
function references• 6-16 to 6-18
functions, built-in

argument list functions (%VAL, %REF,
%DESCR) • 6-9 to 6-11

%LOC function• 6-11
FUNCTION statement• 6-15 to 6-18
invoking with CALL• 5-2
passed-length character arguments

used in• 2-23
SUBROUTINE statement• 6-18 to 6-2 1
system-supplied FORTRAN intrinsic functions

algorithms used in• D-32
character comparison

functions• 6-30 to 6-32

20-lndex

Subprograms
system-supplied FORTRAN intrinsic functions

(cont 'd .)

complete list of• D-32 to 0-45
description of types• 6-2
duplicating external procedure

names•4-21
lexical comparison

functions• 6-32 to 6-33
references, generic• 6-26 to 6-27,

6-28to 6-30
references, specific• 6-25,

6-28to 6-30
system-supplied intrinsic functions

names used as arguments• 4-23
system-supplied subroutines and functions

list and descriptions of• 0-45 to 0-53
use of RETURN statement• 5-25 to 5-27
user-written functions

function subprograms• 6-15 to 6-18
subroutine subprograms• 6-18 to 6-21

user-written subprograms
general description• 6-11 to 6-12
statement functions • 6-12 to 6-14

Subroutine arguments

See subprogram arguments
SUBROUTINE statement• 6-18 to 6-21

see also subprograms
position after OPTIONS statement • 1-19
using unsubscripted array names• 2-29

Subscripts, array• 2-27
Substrings

making equivalent• 4- 17 to 4-20
Substrings, character

addressing in variables, arrays, and array
elements• 2-30 to 2-31

definition• 2-4
Substructure

example of• 2-35
Substructure declarations

general description• 2-32, 4-32, 4-34, 4 - 38
SUBTITLE directive• 10-13
Subtraction operator (-) • 2-42 to 2-44
Symbolic names

assigning to constants with PARAMETER
statement• 4-26 to 4-28

assigning to main program unit• 4-28 to 4-29

Symbolic names (cont'd.)

default data types• 4-22
external procedure names as subprogram

arguments• 4-21 to 4-22
intrinsic function names used as subprogram

arguments• 4-23
of arrays• 2-25
of constants• 4- 26
rules, conventions, and use• 1-5 to 1-7
use with variables• 2-22

Symbolic statement labels
establishing • 3-7 to 3-8
in formatted 1/0 statements• 3-7 to 3-8
in GOTO statements • 3-7 to 3-8

Symbols
in parallel processing

specifying private default
shareability • 10-3, 10-7

specifying private shareability • 10-3,
10- 6

modifying
shareability in parallel DO-loop•
10-2 to 10-7

System services
calling from parallel DO-loop • 10-4

System time

T

function subprogram for calculating
SECNDS • D-48

subroutine for calculating
TIME• D-49 to 0-50

Tab format • 1-11 to 1-13
Tags

of compiler directives• 10-1
T AND intrinsic function• 0-34
Tangent (degree) intrinsic function• 0-34
Tangent intrinsic function• 0-34
TANH intrinsic function• D-35
TAN intrinsic function• 0-34
T edit descriptor• 8-34, 8-35
Text file libraries

accessing • 1-17 to 1-18
Time, system

See System time • D-48
TIME subroutine• 0-49 to 0-50

TITLE directive• 10-13
TL edit descriptor• 8- 34, 8-36
Transfer, control

See Control transfer
Transfer-of-control specifier

control list parameter
in 1/0 statements• 7-10

Transfer of Sign intrinsic function• D-41
TR edit descriptor• 8- 34, 8-36
Truncation intrinsic function• 0-36
TYPE

OPEN statement keyword• 9-4, 9-22
Type declaration statement

See Data type declaration statement
to establish variables• 2-22, 2-23

TYPE statement• 7-48 to 7-49

u
Unary operators

definition of• 2-43
Unary plus and minus operators

(+and-)• 2-42 to 2-44, 2-51
Unconditional GO TO statement • 5-1 3
Undeclared symbolic names

default data types• 4- 22
UNFORMATTED

INQUIRE statement specifier• 9-33
Unformatted 1/0 statements

READ statements
direct access• 7-26, 7-27
indexed• 7-28, 7-30
sequential• 7-15, 7-25

REWRITE statements • 7-45, 7-46
use of aggregate field references• 2-37
WRIT!; statements

direct access• 7-39, 7-40
indexed• 7-41 , 7-43
sequential• 7-33, 7-39

Union declarations
contrasted with EQUIVALENCE• 4-40
definition• 4-32
general description• 4-38 to 4-41

UNION statement• 4-39
UNIT

BACKSPACE statement keyword• 9-35
CLOSE statement keyword• 9-23

lndex-21

UNIT (cont'd.)

DELETE statement keyword • 9-36
ENDFILE statement keyword• 9-35
INQUIRE statement keyword• 9-25
OPEN statement keyword• 9-4, 9-22
REWIND statement keyword • 9-34
specifier in 1/0 statements• 7-3
UNLOCK statement keyword • 9-38

UNLOCK statement• 9-38
Unnamed fields

in a structure• 2-33
Unsubscripted array names

usage restrictions• 2-29
use of• 2-29

Uppercase characters • 1-8
effect on compiler• 1-9
in character and Hollerith constants• 1-9

User-defined functions
references to in dimension bounds expressions

•2-26
USEROPEN

OPEN statement keyword• 9-4, 9-23

v
% VAL built-in function• 6-1 O
Variable-length records

RECORDTYPE keyword (OPEN statement) •
9-4, 9-20 to 9-21

Variables
as scalar references• 2-39
association of two or more• 2-22
character substrings• 2- 30 to 2-31
data types of• 2-1
data typing by implication• 2-24
data typing by specification• 2-23
default shareability in parallel

DO-loop• 10-2 to 10-7
defining in memory• 2-22
defining values of• 3-1
definition• 2-4, 2-22
establishing with subprogram references• 2-22
initializing with DAT A statements• 4-5 to 4-8
in structure declarations• 2-32

Variant record capability• 2-33
VAX FORTRAN

extensions to ANSI Standard• 1-1

22-lndax

VIRTUAL statement
DIMENSION statement compared to • 4-13

VOLATILE statement
general description • 4-4 1

w
/WARNINGS qualifier • 4-23
WRITE statements • 7-33 to 7-44

direct access WRITE• 7-39 to 7-40
formatted•7-39, 7-40
unformatted • 7-39, 7-40

indexed WRITE • 7-41 to 7-43

x

formatted•7-41, 7-42
unformatted • 7-4 1, 7-43

internal WRITE • 7- 43 to 7-44
formatted • 7-43, 7-44
list-directed• 7-43, 7-44

relationship to ENCODE statement• A-1, A-2
sequential WRITE• 7-33 to 7-39

formatted•7-33, 7-34to 7-35
list-directed• 7-33, 7- 35 to 7-37
namelist-directed • 7-33, 7-37 to 7-38
unformatted• 7-33, 7-39

X edit descriptor• 8-34, 8-34 to 8-35
.XOR.

See logical operators

z
Zero-Extended Functions• D-37
ZEXT intrinsic function• D-37
Z field descriptor• 8-16

Reader's Comments
VAX FORTRAN

Language Reference Manual
AA-0034E-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form .

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Excellent

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes .

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

I
I
I
I
I
I
I

Do Not Tear - Fold Here and Tape -------------- ------------------------1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

II I 11111II1 11 .. • 1 II 111 .1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

- Do Not Tear - Fold Here --

I
I
I
I
I
I
I
I
I
I
I

~ c
;:j

l ..
0
Q
~ c
0

<

