
VAX-11 DSM
User~s Guide
M-HSOOB-TE

December 1982

This document describes how to use DIGITAL Standard
MUMPS operating under VAX/VMS (VAX-11 DSM). It also
describes how to install the VAX-11 DSM system software, and
how to operate and manage VAX-11 DSM in a multiuser
environment.

This revised document supersedes the VAX-11 DSM User's
Guide for version 1.0 of VAX-11 DSM.

OPERATING SYSTEM:

SOFTWARE:

VAX/VMS, V3

VAX-11 DSM, V2.0

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation
PO Box CS2008
Nashua, New Hampshire 03061
Telephone:(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale, California 94086
Telephone:(312)64~5612 Telephone:(408)734-4915

d1g1tol equipment corporation• morlboro mossochusetts

First Printing, October 1980
Revised, December 1982

© Digital Equipment Corporation 1980, 1982. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

~D~DDmD™
DEC MASS BUS UNIBUS
DECmate PDP VAX
DECsystem-1 o P/OS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

Contents

Acknowledgement

Preface

Part 1: Introduction

Chapter 1 Overview of VAX-11 DSM

1.1

1.2

System Overview

1.1.1 The DSM Language .
1.1.2 Data Management ..
1.1.3 The Precompiler . . .
1.1.4 110 Options
1.1.5 Procedure Calls
1.1.6 Shared Areas ofMemory . .
1.1. 7 Journaling.
1.1.8 The DSM Job Controller . .
1.1.9 System and Library Utilities ..

The DSM Image

1.2.1 The Languag~ Interpreter .
1.2.2 The 1/0 Interface.
1.2.3 The Data Base Supervisor .
1.2.4 . The Routine Handler ..
1.2.5 User Data Structures

. 1-1

. .. 1-2
1-2

0
• 1-3
. 1-3

. 1-4
......... 1-4

.......... 1-5
. 1-5

. 1-6

. 1-6

. .. 1-7

... 1-7
. 1-7

1-7
. 1-8

iii

Chapter 2 Accessing the System

2.1 Using the Computer Terminal 2-1

2.1.1 Function Keys . . . 2-1
2.1.2 Control Characters . 2-3

2.2 Logging into V AXNMS . . 2-4

2.2.1 User Names. . 2-4
2.2.2 Passwords .. 2-4
2.2.3 Sample Login . 2-4
2.2.4 Auto-Login . . . 2-5

2.3 Running a DSM Image .. 2-5
2.4 Switching between DSM and V AXNMS . . . 2-6
2.5 Logging Out of VAX/VMS 2-7

Chapter 3 Using VAX/VMS

3.1 Using.the DIGITAL Command Language 3-1
3.2 File Specifications . 3-2

3.2.1 Defaults in File Specifications . 3-3
3.2.2 Device Nam es . 3-4

3.3 VAX/VMS Directories and Subdirectories 3-6

3.3.1 Directory Names. 3-6
3.3.2 Creating Subdirectories . 3-6
3.3.3 The Default Directory . 3-7
3.3.4 Examining Directory Contents . . 3-7

3.4 Maintaining File Protection . 3-8

3.4.1 Setting File Protection . . 3-8
3.4.2 Examining File Protection . . 3-9

3.5 Using Logical Names . 3-9

3.5.1 Concealed Devices . . 3-9
3.5.2 Logical Name Tables. 3-10
3.5.3 Processor Modes . 3-10
3.5.4 Process-Permanent Logical Names. 3-11
3.5.5 System-Permanent Logical Names . . 3-12

Part 2: Using VAX-11 DSM

Chapter 4 VAX-11 DSM Command Line Options

4.1 Introduction . 4-1
4.2 DSM Command Syntax . 4-2

4.2.1 DSM Command Qualifier Syntax. 4-2
4.2.2 DSM Command Parameter Syntax . 4-3

4.3 VAX-11 DSM User Modes. . 4-4

4.3.1 Programmer Mode . . 4-4
4.3.2 Application Mode . 4-6

iv

4.4 Description of DSM Command Qualifiers. . . 4-7

,4.4.1 /BREAK and /NOBREAK 4-11
4.4.2 /CENABLE and /NOCENABLE . 4-11
4.4.3 /CLUSTER...;.SIZE . . . 4-11
4.4.4 /DELETE 4-11
4.4.5 /ERROR 4-12
4.4.6 /GLOBALS . . . 4-12
4.4.7 /INPUT . . . 4-12
4.4.8 /INSTALL . . . 4-12
4.4.9 /KEY_SIZE . 4-13
4.4.10 /MAPPED and /NOMAPPED. 4-13

4.4.10.1 Mapping a Global Section . 4-13
4.4.10.2 Creating a Private Virtual Memory Section. . . 4-14

4.4.11 /OPEN_ GLOBALS 4-14
4.4.12 /OPTIMIZE_BUFFER_COUNT and

/NOOPTIMIZE_BUFFER_COUNT. 4-14
4.4.13 /OUTPUT 4-15
4.4.14 /ROUTINES 4-15
4.4.15 /SECTION_NAME 4-15
4.4.16 /SEQUENTIAL_OPTIMIZATION and

/NOSEQUENTIAL_OPTIMIZATION. . 4-16
4.4.17 /SHARED and'/NOSHARED. . 4-16
4.4.18 /SOURCE_BUFFER_SIZE = n . 4-16
4.4.19 STACK_SIZE 4-17
4.4.20 /SYMBOL_TABLE_SIZE=n. . .. 4-17
4.4.21 /SYSTEM 4-17
4.4.22 /TERMINAL.;...BUFFER_SIZE=n. . 4-17
4.4.23 /TYPEAHEAD. 4-17
4.4.24 /[NOJUNWIND_STACK[=ALL] . 4-18

4.5 Examples of the Extended Command Line . . 4-18

Chapter 5 Developing and Maintaining Application Routines

5.1 Creating Routines

5.1.1 Direct Mode·
5.1.2 Entering Lines in the Routine Buffer.
5.1.3 Using the ZPRINT and ZREMOVE Commands ..

5.2 Saving and Loading Routines

5.3

5.2.1
5.2.2
5.2.3

Saving a Routine in a Routine Directory
Loading a Routine from the Routine Directory . .
Forms in Which a Routine Is Stored .

Deleting and Renaming Routines

5.3.1 Deleting a Stored Routine

5.4 Using Sequential Files to Store Routines .. .

5.4.1 Writing a Routine Onto a Sequential File
5.4.2 Loading a Routine from a Sequential File

5-1

. 5-2

. 5-2
5-2

. 5-3

. 5-4
5-4
5-5

5-5

5-5

5-6

5-6
5-6

v

vi

5.5 Using Editors · 5-7

5-7
5-8

5.5.1 Using the DSM Editor ..
5.5.2 Using VAXNMS Editors.

5.6 Starting and Stopping Routines 5-9

. .. 5-9
. 5-9

5.6.1 Executing the Routine in Your Routine Buffer ..
5.6.2 Executing a Routine from the Routine Directory ..
5.6.3 Conditions for Execution to Stop . . . 5-10

5.7 Using the VAX-11 DSM Debugger 5-10

. .. 5-11 5.7.1 Breakpoints

5.7.2
5.7.3
5.7.4
5.7.5

Setting Breakpoints with $ZBREAK . 5.7.1.1
5.7.1.2
5.7.1.3
5.7.1.4
5.7.1.5

Setting Breakpoints with the BREAK Command .
Breakpoint Actions.

. 5-12

. 5-12
5-13
5-14

.. 5-14
Examining Breakpoints
Clearing (Killing) Breakpoints .

Continuing Execution after a Breakpoint.
Interrupting Execution with (CTRL/ c J • • • •

Enabling and Disabling Debugging. . . .
Debugging Utilities Provided with V AX-11 DSM.

5-14
... 5-15

5-15
. 5-16

5.8 Using V AX-11 DSM Directories 5-16

. 5-16 5.8.1 VAX-11 DSM Routine Directories

5.8.1.1 File Specifications of Routine and
Library Directories. 5-16

5.8.1.2 Size of Routines in Directories 5-17
5.8.1.3 Routine Directory Protection and Access Modes ... 5-18
5.8.1.4 Creating or Modifying a DSM Library Directory .. 5-18
5.8.1.5 VAX-11 DSM Routine Directories and

VAX-11 RMS 5-19

5.8.2 V AX-11 DSM Global Directories. . . . 5-20

5.9 Error Processing . " 5-22

5.9.1 Error Severity Levels 5-22
5.9.2 Error-Processing Routines 5-23

5.9.2.1 Default Error-Handling Mechanism . 5-23
5.9.2.2 The ZQUIT Command and Nested DO Statements . 5-24
5.9.2.3 Exiting from an Error Handler 5-25
5.9.2.4 Error Processing if /NOUNWIND Is Specified. 5-27

5.10 Using the VAX-11 DSM Mapped Routine Facility . . 5-27

5.10.1 Types of Virtual Memory Sections 5-28

5.10.1.1 Global Section Names 5-28
5.10.1.2 Privileges Required to Create Virtual

Memory Sections 5-29

5.10.2 Creating and Mapping Virtual Memory Sections . . 5-29
5.10.3 Running Mapped Routines 5-31
5.10.4 Optimization Considerations 5-32

Chapter 6 Input/Output Processing

6.1 Overview of 1/0 Processing.
6.2 Assigning I/O Devices or Gaining Access to Files .

6.2.1 Assignment Command Syntax .
6.2.2 1/0 Device Specifiers . . .
6.2.3 Device Recognition. . . .
6.2.4 The Principal I/O Device .

6.3 I/O Commands. . . .
6.4 I/O Special Variables
6.5 Using Terminals

6.5.1 Setting Terminal Characteristics .
6.5.2 Terminal Commands.

6.5.3
6.5.4
6.5.5

6.5.2.1
6.5.2.2
6.5.2.3
6.5.2.4
6.5.2.5.
6.5.2.6
6.5.2.7
6.5.2.8
6.5.2.9

The OPEN Command .
The USE Command . .
The CLOSE Command .

. The READ Command .
The READ* Command.
The WRITE Command .
The Formatted WRITE Command
The WRITE * Command . . .
Optimizing Termin~l Output .

(CTRL/C J and (CTRL/Y l Recognition.
Escape Sequence Processing
Terminal Status and Error Conditions .

6.6 Using Files

6.7

6.6.1
6.6.2

6.6.3
6.6.4
6.6.5
6.6.6

File Organization . . .
File Access Methods .

6.6.2.1
6.6.2.2

Record 1/0 .
Block I/O ..

Creating and Opening Files
Positioning Files. ;
Reading and Writing Records
File Sharing

Sequential Files on Disk

6. 7 .1 Sequential File Commands . .

6.7.1.1 The OPEN Command
6. 7.1.2 The USE Command .
6. 7 .1.3 The CLOSE Command .
6. 7 .1.4 The READ Command .
6.7.1.5 The READ * Command.
6. 7.1.6 The WRITE Command .
6.7.1.7 The WRITE* Command ..
6. 7.1.8 The Formatted WRITE Command
6.7.1.9 The ZPRINT Command ~ ..
6.7.1.10 The ZLOAD Command

6. 7 .2 Sequential File Status and Error Conditions .

6-1
6-2

6-3
6-3
6-4
6-5

6-5
6-6
6-7

6-7
6-8

6-8
6-8
6-12
6-12
6-13
6-13
6-13
6-13
6-14

6-14
6-15

. 6-15

. .. 6-16

6-16
. 6-17

6-17
6-19

6-19
. 6-20

6-20
. 6-20

6-21

6-21

6-21
6-24
6-26
6-27
6-28
6-28
6-28

. 6-28
6-28
6-29

6-29

vii

viii

6.8

6.9

6.10

Sequential Files on Magnetic Tape .

6.8.1 Magnetic Tape Operations .
6.8.2 Magnetic Tape Access Modes.

6.8.2.1 Accessing File-Structured Tapes .
6.8.2.2 Accessing Non-File-Structured Tapes

6.8.3 Magnetic Tape Status and Error Conditions
6.8.4 Magnetic Tape Commands .

6.8.4.1 The OPEN Command
6.8.4.2 The USE Command
6.8.4.3 The CLOSE Command .
6.8.4.4 The READ and WRITE Commands .

Indexed Files

6.9.1 Indexed File Commands .

6.9.1.1 The OPEN Command
6.9.1.2 The USE Command
6.9.1.3 The CLOSE Command .
6.9.1.4 The READ Command
6.9.1.5 The WRITE Command .

6.9.2 Record Locking
6.9.3 Indexed File· Status and Error Conditions

Relative Files . •' .
6.10.1 Relative File Commands

6.10.1.1 The OPEN Command
6.10.1.2 The USE Command ..
6.10.1.3 The CLOSE Command ..
6.10.1.4 The READ Command .
6.10.1.5 The WRITE Command .

6.10.2 Record Locking
6.10.3 Relative File Status and Error Conditions

6.11 Using Mailboxes

6.11.1 Privileges Required to Create a Mailbox . .
6.11.2 Mailbox Commands

6.11.2.1 The OPEN Command .
6.11.2.2 The USE Command
6.11.2.3 The CLOSE Command ..
6.11.2.4 The READ Command .
6.11.2.5 The WRITE Command . .

6.11.3 Mailbox Status and Error Conditions.

6.12 Communicating with Remote Computers - Networks

. 6--29

. 6--30
6--30

6--30
. 6--31

. 6--31

. 6--31

6--32
. 6--33
. 6--34
. 6--34

. 6--34

. 6--35

. 6--35

. 6--36

. 6--38
6--38

. 6--40

. 6--40

. 6--41

. 6--41

6--42

.. 6--42

. . 6--42

. . 6--43

. . 6--43
. .. 6--44

. . 6--45

.. 6--45

6--46

6--46
. 6--46

. 6--47
. . 6--48
. . 6--48

6--48
.. 6--49

6.12.1
6.12.2
6.12.3
6.12.4
6.12.5
6.12.6

Limitations on Operations Across the Network

6--49

.. 6--50

.. 6--50

.. 6--50 Reading and Writing Files Across the Network. .
Task-to-Task Communication Across the Network.
Ending Communication Across the Network .
Accessing DSM Globals Across the Network .
Using Mailboxes Across the Network. . . .

6--51
.. 6--51
.. 6--51
.. 6--52

Chapter 7 VAX-11 DSM Utilities

7.1 Overview ofVAX-11 DSM Utilities
7.2 Running the DSM Utilities
7.3 Utility Conventions .
7.4 The Library Utilities. . .

7.4.1 Global Utilities ...

7.4.1.1 Compatibility Restore ("%GR11)
7.4.1.2 Global Copy ("%GC) ..
7.4.1.3 Global Create ("%GLCRE)
7.4.1.4 Global Directory ("%GD) .
7.4.1.5 Global Edit ("%GEDIT).
7.4.1.6 Library Directory (LIB"%GD).
7.4.1.7 Global List ("%GL) .
7.4.1.8 Global Restore ("%GR) .
7.4.1.9 Global Save ("%GS)
7.4.1.10 Set Attributes (SET"%GBLATR)
7.4.1.11 Show Attributes (SHOW"%GBLATR) .
7.4.1.12 Global Size ("%GBLSIZ) ..

7.4.2 Routine Utilities

7.4.3

7.4.4

7.4.5

7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5
7.4.2.6
7.4.2.7
7.4.2.8
7.4.2.9
7.4.2.10
7.4.2.11
7.4.2.12
7.4.2.13
7.4.2.14

Routine Compare ("%RCMP) .
Compatibility Restore ("%RR11)
Routine Contents ("%RCON and FULL "%RCON)
Routine Copy ("%RCOPY)
Routine Directory ("%RD)
First Line List ("%FL) . .
Library Directory (LIB"%RD) .
Routine Restore ("%RR)
Routine Save ("%RS) .
Routine Search ("%RSE) .
Routine Size ("%RSIZE)
Build Mapped Routine File ("%RBUILD) .
Contents of Mapped Routine File ("%MAPCON).
Mapped Directory (MAP"%RD)

Callable Functions

7.4.3.1 Using the Numerical Conversion Functions.
7.4~3.2 Using the "%H Function ..

Debugger Utilities.

7.4.4.1 The "%STACK Utility
7.4.4.2 The "%TRACE Utility .
7 .4.4.3 The "%ERRCHK Utility

The Information Utilities . .

7.4.5.1 Utilities on the Statistics Menu.

7.5 Overview of the System Utilities.

7-1
7-3
7-3
7-4

7-5

. 7-5

. 7-6
7-6
7-6
7-6
7-6
7-6
7-6
7-6
7-7
7-7
7-7

7-7

7-8
7-8
7-8
7-8
7-8
7-8

. 7-8
7-8
7-9

. 7-9
7-9
7-9
7-9

. 7-9

7-9

7-10
. 7-10

7-11

. 7-11

. 7-12
7-13

7-13

7-14

7-14

ix

x

7.6 Utilities Accessed through "%0PER 7-15

7.6.1 Journal Control Utilities. 7-15

7.6.2

7.6.3

7.6.1.1
7.6.1.2
7.6.1.3

Add Group to Journal List (ADDJRN"%MJCJRN) . 7-15
Change Journal-Enable Mode (JOPT"%MJCJRN). 7-15
Delete Group from Journal List
(DELJRN"%MJCJRN) 7-15

7.6.1.4
7.6.1.5

Show Groups Journal List (SHOJRN"%MJCJRN) . 7-15
Start Journaling for DSM Users
(JRNON"%MJCJRN) 7-15

7.6.1.6 Stop Journaling for DSM Users
(JRNOFF"%MJCJRN) 7-16

Log-in Control Functions

7.6.2.1 Add a Group to Log-in List (ADDLOG"%MJC)
7 .6.2.2 Allow Future DSM Logins (LOG"%MJC) . .
7 .6.2.3 Change DSM Login-Enable Mode (LOPT"%MJC) .
7.6.2.4 Delete a Group from Login List (DELLOG"%MJC)
7 .6.2.5 Show Groups (DISLOG"%MJC)
7.6.2.6 Prevent Future DSM Logins (NOLOG"%MJC)

DSM System Control Functions

7.6.3.1 Job Table Display ("%JOBTAB) ...
7.6.3.2 Kill a DSM User (KILLUSE"%MJC)
7.6.3.3 Lock Table Display ("%LCKTAB) ..
7 .6.3.4 Shutdown DSM (SHUTUP"%MJC) .
7.6.3.5 Status of DSM Job Controller (STATUS"%MJC)
7 .6.3.6 Verify DSM Users (VERIFY"%MJC)

7-16

7-16
7-16
7-16

. 7-16
7-16
7-16

7-16

7-17
. 7-17

7-17
7-17
7-17
7-18

7.7 Utilities Accessed through "%JOURNAL. 7-18

7-18
7-18

7.7.1 The DEJOURNAL Utility
7.7.2 Journal File Utilities

7.7.2.1
7.7.2.2
7.7.2.3
7.7.2.4
7.7.2.5
7.7.2.6
7.7.2.7

Add Journal File Name (ADDFIL"%JRNL) .
Close Current Journal File (CLOSEFI"%JRNL).
New Log File (NEWLOG"%JRNL)
Delete Journal File Name (DELFIL"%JRNL) .
Show Journal File Names (SHOW"%JRNL) . . .
Open Current Journal File (OPENFIL"%JRNL).
Purge Journal File Names (PURGE"%JRNL). ~

7-18
7-19
7-19
7-19
7-19
7-19
7-19

7.7.3 Journal Process Globals Utilities. 7-19

7.7.3.1
7.7.3.2
7.7.3.3

Clear Journaling for Global (CLRGL0"%JRNL).
Set Journaling for Global (SETGLO"%JRNL) . .
Test Journaling for a Global (TSTGLO"%JRNL)

7-20
7-20
7-20

7.7.4 Journal Process Operator Utilities 7-20

7.7.4.1 Disable Journal Process (DISABLE"%JRNL) 7-20
7. 7.4.2 Enable Journal Process (EN ABLE"%JRNL) . 7-20
7.7.4.3 Kill Journal Process (KILL"%JRNL) . . . 7-20
7.7.4.4 Pause Journal Process (PAUSE"%JRNL) . . 7-21
7.7.4.5 Resume Journal Process (RESUME"%JRNL) 7-21
7.7.4.6 Status of Journal Process (STATUS"%JRNL) . 7-21

7.8 The Set Up Auto-Login Facility ("%ALF) 7-21
7.9 Creating Your Own Menu . 7-22
7 .10 Error Messages 7-22

Chapter 8 Procedure Calling

8.1 Overview of Procedure Calling. 8-1
8-2 8.2 The VAX Procedure Calling Standard

8.2.1 Argument Lists
8.2.2 Argument-Passing Mechanisms
8.2.3 Data Types for Argument Passing

8-2
8-3
8-5

8.3 Calling Procedures from the DSM Language . 8-5

8-5
8-6

8.3.1 The $ZCALL Function
8.3.2 ZCALL Tables

8.3.2.1 The Procedure Entry's Routine Line
8.3.2.2 The Procedure Entry's Return Line .
8.3.2.3 The Procedure Entry's Input Lines .
8.3.2.4 The Procedure Entry's Output Lines

8.3.3 Multiple ZCALL Tables

8-7
8-8
8-9
8-11

8-12

8.4 Calling User-Defined Functions 8-13

8.4.1 Writing User-Defined Functions in VAX-11 MACRO 8-13
8.4.2 Passing String Arguments from User-Defined Functions . 8-13
8.4.3 Writing a User-Defined Function in VAX-11 FORTRAN. 8-15

8.5 Linking Procedures to the Interpreter . . 8-17

8.5.1 Linking User-Defined Functions. 8-18
8.5.2 Logical Names Used in Linking 8-18
8.5.3 Debugging. 8-19
8.5.4 Reinstalling the DSM Image. . 8-20
8.5.5 Recompiling Stored Routines. . 8-20

8.6 Supplied VAX/VMS Services and Routines . . 8-20
8. 7 Calling Mathematical, Text-Related, and Other Functions . 8-24

8.7.1
8.7.2
8.7.3
8.7.4

Mathematical Functions
Text-Manipulation Functions ..
Calling File-Related Functions ..
Calling DSM-Specific Functions .

8.8 ZCALL Error Processing
8.9 Extended Example of Using $ZCALL.

Chapter 9 The VAX-11 DSM Data Base

9.1
9.2

9.3

Global Concepts
Global Variables

9.2.1 Translating Global Variables into File Specifications .
9.2.2 Translation of Global Variables

Global Protection and Access Privileges

9.3.1 Creating and Modifying Your Own Library Globals ..
9.3.2 Shared Access
9.3.3 Record Interlocking

8-24
8-26
8-27
8-28

8-29
8-29

9-1
9-2

9-3
9-4

9-5

9-6
9-6
9-7

xi

9.4 Structural Overview of the V AX-11 DSM Data Base . .

9.4.1 The Subscript Field and the Primary Key
9.4.2 Collating Sequence
9.4.3 RMS Defaults

. 9-7

.. . 9-8
9-9

. . 9-10

9.5 Global Access from Other Languages and VAX/VMS Utilities . 9-11
9.6 Global Access and DSM 1/0 9-11
9.7 Global Optimization 9-12

9.7.1 File Layout Parameters 9-13

9.7.1.1 The Initial File Allocation 9-13
9.7.1.2 Use of Areas 9-13
9.7.1.3 Contiguity 9-13
9.7.1.4 Size of File Extensions . 9-13
9.7.1.5 Size of Buckets. 9-13
9.7.1.6 Fill Factor for Buckets . 9-14
9.7.1.7 Use of Global Buffers. . 9-14
9.7.1.8 Compression of Prologue 3 Files 9-14

9.7.2 Using the RMS Utilities 9-14
9.7.3 Optimizing RMS Parameters. 9-15

9.7.3.1 The /KEY_SIZE Qualifier . . . 9-16
9.7.3.2 The /OPEN_GLOBALS Qualifier. . 9-16
9. 7 .3.3 The /[NO]OPTIMIZE_BUFFER_COUNT Qualifier 9-17
9.7.3.4 The /[NO]SEQUENTIAL_OPTIMIZATION

Qualifier . 9-17

Part 3: Operating VAX-11 DSM

Chapter 10 Installing VAX-11 DSM

10.1 The VAX-11 DSM Distribution Kit
10.2 Installing VAX-11 DSM
10.3 Starting the DSM Job Controller ..
10.4 Installing the DSM Image as a Known Image
10.5 Installing the VAX-11 RMS Shared-File Option.

.10-1

.10-2

.10-5

.10-5

.10-6

Chapter 11 Managing VAX-11 DSM

xii

11.1 Establishing Accounts for VAX-11 DSM Users.11-1

11.1.1 How to Set Up User Accounts11-3
11.1.2 Establishing Accounts for V AX-11 DSM Programmers . .11-3
11.1.3 Establishing Accounts for DSM Applications Users. .11-4

11.1.3.1
11.1.3.2

11.1.3.3
11.1.3.4

Protecting Application Accounts
Starting an Application through a
Command Procedure
Starting an Application through Automatic Login
Suppressing VAX/VMS Messages . .

11.1.4 Deleting User Accounts
11.1.5 Assigning Privileges to VAX-11 DSM Users .
11.1.6 Assigning Limits for VAX-11 DSM Users ..
11.1.7 Optimizing SYSGEN Parameters
11.1.8 Guidelines for Estimating RMS File-Sharing Page Count

.11-4

.11-5

.11-5

.11-6

.11-6

.11-7

.11-8

.11-9

.11-12

11.2 Installing DSM Applications as Global Sections

11.2.1 Installing Mapped Routine Files
11.2.2 Deleting Mapped Routine Files
11.2.3 Listing Permanent Global Sections with INSTALL.

11.3 Optimizing VAX-11 DSM Applications

11.3.1 Optimizing Disk Volume and File Layout

11.3.1.1 -Maintaining Disk Volumes ...
11.3.1.2 Allocating and Maintaining DSM Global Files
11.3.1.3 Minimizing the Rate of Opening Globals

11.3.2 Using Mapped Routines
11.3.3 Adjusting VMS Parameters
11.3.4 V AX-11 DSM Programming Techniques . .

Chapter 12 Running the VAX-11 DSM Job Controller

.. 11-14

. .11-14
.11-15
.11-16

.11-16

.11-17

.11-17

.11-17

.11-18

.11-18

.11-18

.11-19

12.1 Overview of the Job Controller.12-1
12.2 Communication between DSM Job Controller and DSM Processes .12-3
12.3 Starting the Job Controller12-4

12.3.1 The Job Controller Start-up Command File. . .12-4
12.3.2 The Job Controller Start-up Option File . . .12-7

12.4 Job Controller Operator Utilities

Chapter 13 Running the VAX-11 DSM Journal Process

13.1 Overview of Journaling

13.1.1 Enabling Journaling.
13.1.2 Defining Users of Journaling.
13.1.3 Journal Output Files and Journal Records ..
13.1.4 Dejournaling

.12-9

.13-1

.13-2
. .13-2

.13-3
. .13-3

13.2 Communication between Journal Process and User Image13-4
13.3 Defining Journal Output Files. . .13-5
13.4 Marking Globals to be Journaled.13-5
13.5 Starting a Journal Process.13-6

13.5.1 The Journal Process Start-up Command File. . .13-6
13.5.2 The Journal Process Start-up Option File.13-8

13.5.2.1 Use of the /BLOCK Subqualifier13-10
13.5.2.2 Use of the /MESSAGE and /REPLY Subqualifiers .. 13-11

13.5.3 Journal Process Examples

13.6 Utilities that Interact with the Journal Process
13.7 Journaling to Magnetic Tape

Appendix A VAX-11 DSM Error Messages

A.1 Error Message Types.
A.2 Error Message Format
A.3 Description of V AX-11 DSM Error Messages. .

A.3.1 Job Controller and Journal Process Error Messages. .

.13-11

.13-12

.13-13

. A-1

. A-2

. A-2

·. A-12

xiii

Appendix B The VAX-11 DSM Editor

Appendix C Data Structures and Related Information

Index

Figures

Tables

xiv

C.1 Data Structures
C.2 Internal Subscript Format for a V AX-11 DSM Global

lndex-1

P-1 How to Read the VAX-11 DSM User's Guide.
2-1 The VTlOO and VT52 Keyboards .
5-1 Flow of Error Processing with ZQUIT ..
6-1 Routine to Retrieve Records by RFA . . .
7-1 The V AX-11 DSM Utilities
8-1 Argument-Passing Mechanisms for Procedures.
8-2 Procedure Entry from a ZCALL Table Source File
8-3 Supplied VAX/VMS Services . .
8-4 Mathematical Functions .
8-5 Text-Manipulation Functions
8-6 File Functions
8-7 Time Services
8-8 Extended Example of Using $ZCALL.
9-1 Three-Level Primary Key Index.
9:....2 The Primary Key
12-1 Communicating with the DSM Job Controller
13-1 Journal Process Job Controller/User Image Interaction .
C-1 Global Attribute Record .
C-2 Journal Record

2-1 Function Keys
2-2 Control Characters.
2-3 VAXNMS Commands That Do Not Invoke an Image.
3-1 File Specification Defaults .
3-2 Default File Types . . .
3-3 V AXNMS Device Types .
3-4 Process-Permanent Logical Names.
4-1 DSM Command Qualifiers
4-2 DSM Command Qualifier Defaults .
5-1 Privileges Needed to Create Virtual Memory Sections
6-1 $ZA and $ZB Assignments for Terminal 1/0 . . .
6-2 V AX-11 DSM Record Access Methods
6-3 OPEN Command Parameters for Sequential File I/O .
6-4 USE Command Parameters for Sequential File 1/0 . .
6-5 CLOSE Command Parameters for Sequential File I/O
6-6 $ZA and $ZB Assignments for Sequential File I/O .

. C-1
.. C-2

. P-3
2-2
5-26
6-25

. 7-2
8-4
8-6
8-21
8-24
8-26
8-27
8-28
8-30
9-7
9-9

.12-4

.13-4

. C-1

. C-1

2-2
2-3
2-6
3-4
3-4
3-5

. 3-11
4-8
4-10
5-29
6-16
6-18
6-22
6-24
6-26
6-29

6-7 OPEN Command Parameters for Magnetic Tape 1/0
6-8 USE Command Parameters for Magnetic Tape 110 . . .
6-9 USE Command Parameters for Indexed File 1/0 .
6-10 $ZA and $ZB Assignments for Indexed File 1/0. .
6-11 USE Command Parameters for Relative File 1/0 .
6-12 $ZA and $ZB Assignments for Relative File 1/0
6-13 OPEN Command Parameters for Mailbox 1/0
6-14 $ZA and $ZB Assignments for Mailbox 1/0.
9-1 The RMS Utilities
12-1 Command Qualifiers in DSMMJCSTA.COM
12-2 Qualifiers Used in DSMMJCPAR.OPT ...
12-3 Qualifier Summary
12-4 DSM Job Controller Utilities
12-5 Journal Utilities that Use DSM Job Controller.
13-1 Command Qualifiers in DSMJRNSTA.COM
13-2 Qualifiers Used in DSMJRNPAR.OPT .
13-3 Qualifier Summary
13-4 Journaling Utilities

6-32
. 6-33

6-37
6-41
6-43

. 6-45

. 6-47
6-50
9-15

.12-5

.12-7
.. 12-8
. .12-9

.12-9
.. 13-7
. .13-9
.. 13-9

...... 13-12

xv

·Acknowledgement

DIGITAL Standard MUMPS is an extension of the ANSI Standard
Specification (Xll.1-1977) for the Massachusetts General Hospital Utility
Multi-Programming System (MUMPS). MUMPS was originally developed
at the Laboratory of Computer Science at Massachusetts General Hospital
and was supported by grant HS00240 from the National Center for Health
Services Research and Development.

This manual reflects all of the enhancements approved by the MUMPS
Development Committee up to July 1982.

xvii

Preface

MANUAL OBJECTIVES

This manual describes how to develop and maintain V AX-11 DSM applica
tion routines using features of the V AX-11 DSM system and VAX/VMS. It
also describes how to install the VAX-11 DSM system software, and how to
operate and manage V AX-11 DSM in a multiuser environment. This man
ual does not describe the language elements or syntax of the VAX-11 DSM
language; such material is described in the VAX-11 DSM Language
Reference Manual.

INTENDED AUDIENCE

This manual is intended for programmers with a working knowledge of the
V AX-11 DSM language and either limited or extensive knowledge of
VAX/VMS. This manual is also intended for the VAX-11 DSM System
Manager and/or operator who has the responsibility for installing the
V AX-11 DSM system software, establishing V AX-11 DSM user accounts,
and performing other privileged or "sensitive" system operations.

DOCUMENT PREREQUISITES

The VAX/VMS Summary Description and Glossary introduces the basic
concepts of the VAX/VMS operating system. All V AX-11 DSM users
should be familiar with the information in the Summary Description before
reading this document.

The VAX/VMS System Management and Operations Guide provides infor
mation for people who have the overall responsibility for controlling the
operations of a V AXNMS installation. People who will be installing the
VAX-11 DSM system software and establishing VAX-11 DSM user ac
counts should be familiar with the information in the VAX/VMS System
Management and Operations Guide before reading this document.

xix

xx

HOW TO USE THIS DOCUMENT

The VAX-11 DSM User's Guide is divided into four parts, each of which is
intended for a V AX-11 DSM user with a different background or job. The
following chart summarizes the contents of each part and indicates who
should read them. Figure P-1 illustrates the order in 'which this document
should be read by various V AX-11 DSM users.

Part

I

Chapter 1

Chapters 2-.3

II

Chapters 4-9

III

Chapters 10-13

Appendixes

Appendixes A-C

Intended Audience

All V AX-11 DSM users

Application programmers
unfamiliar with V AXNMS

Application and system
programmers familiar with
VAX/VMS; System
Manager and/or Operator

Contents

•Overview ofVAX-11 DSM

• How to access V AXNMS from the
terminal and begin programming in
the VAX-11 DSM language

• Information about V AXNMS re
quired for using V AX-11 DSM.

• Detailed reference information about
the V AX-11 DSM system and its in
teraction with VAX/VMS

V AX-11 DSM System • V AX-11 DSM software installation
Manager/Operator procedure

Application and system
programmers; System
Manager and/or operator

• Establishing V AX-11 DSM user
accounts

•Running the VAX-11 DSM Job
Controller and Journal Process

• Error messages

•DSM Editor

• Data structures

Figure P-1: How to Read the VAX-11 DSM User's Guide

Legend:

l111TIT1TITlTl1 Application programmers
~ unfamiliar with VAX/VMS

Application and/or system
programmers familiar
with VAX/VMS

~ VAX-11 DSM System
~ Manager and/or

operator

I

I

I
I

I
I

I
I

/

/

MR-S-924-80

xxi

xxii

ASSOCIATED DOCUMENTS

This manual refers to the following documents that contain supplemental
information relevant for VAX-11 DSM programming and system
operations:

• VAX-11 DSM Language Reference Manual

• Introduction to DSM

• VAX/VMS Summary Description and Glossary

• VAX/VMS Command Language User's Guide

• VAX-11 Run-Time Library Reference Manual

• VAX/VMS System Services Reference Manual

• VAX/VMS System Management and Operations Guide

• VAX-11 Utilities Reference Manual

• VAX/VMS System Messages and Recovery Procedures Manual

•VAX/VMS 110 User's Guide

• Introduction to V AX-11 Record Management Services

• V AX-11 Record Management Services Tuning Guide

• VAX-11 Record Management Services Reference Manual

• V AX-11 Record Management Services Utilities Manual

• V AX-11 Symbolic Debugger Reference Manual

• V AX-11 Architecture Handbook

CONVENTIONS USED IN THIS DOCUMENT

This manual uses the following documentation conventions and symbols:

Convention

file-spec

Contrasting
Colors

Italics

Meaning

Indicates that you press the CTRL key on the terminal
keyboard while simultaneously pressing some other key
(represented here by x).

Indicates that you press the carriage return key on the
terminal keyboard.

Indicates a space must separate components of a com
mand or command line.

Square brackets indicate the enclosed item is optional.

(Square brackets are not, however, optional in the syntax
of a directory name in a VAX/VMS file specification.)

A horizontal ellipsis indicates that additional command
parameters can be added to the command line.

A vertical ellipsis indicates a break between two illus
trated lines of user input and that all user input is not
shown.

Indicates a VAX/VMS file specification.

Black - Indicates system output.
Red - Indicates user input.

Indicates a new term, defined in the sentences that
follow.

xx iii

Part 1
Introduction

Chapter 1
Overview of VAX-11 DSM

This chapter introduces the basic features of the V AX-11 DSM data man
agement system.

1.1 System Overview

VAX-11 DSM stands for DIGITAL Standard MUMPS for VAX-11 proces
sors. VAX-11 DSM is a multiuser data management system that runs
under the V AXNMS operating system. Its basic features include:

• An extended version of the ANSI Standard MUMPS language

• A language precompiler

• A subset of the 1/0 options of V AXNMS

• Support of the V AX-11 Procedure Calling Standard

• Code and data sharing through V AXNMS global sections

•A journaling facility for monitoring and recording changes to the DSM
data base

•A lock manager and· centralized control capability

•Utilities for system maintenance, status information, routine backup,
and journaling control

1-1

1.1.1 The DSM Language

The DSM language is a high-level interpretive language. Interpretive pro
cessing of the language means that each line of a DSM routine is translated
into machine-readable form and executed immediately. You do not have to
compile or link routines written in an interpretive language. Object mod-
ules and execution files are not generated. ·

Because the DSM language is interpretive, you can write, debug, edit, and
run a routine in one interactive session. As you enter source code (that is,
lines of a routine written in the DSM language) from the terminal, the
interpreter examines and analyzes each DSM statement and executes the·
specified operation. It performs error· checking '-1.uring routine execution
and reports most errors at the terminal. This reduces problem-solving time,
the computer time required to check the routine, and, most importantly,
the time required to obtain a final running application.

The DSM language has many capabilities. However, its basic orientation is
procedural. The language is directed primarily toward the processing of
variable-length string data, making interactive data base systems easier to
implement and maintain.

1.1.2 Data Management

The DSM language allows you to reference data symbolically through vari
ables. A variable represents either a numeric value or an alphanumeric
string of.variable length.

VAX-11 DSM utilizes two types of data: local data and global data, and
thus two types of variables: local variables and global variables.

Local data is defined ·solely for the routine or routines stored (as ASCII
character strings) in your source routine buffer area. This type of data is
not intended for permanent storage, but only for the duration of the current
process. VAX-11 DSM assigns a fixed amount of space to store such data in
an internal data structure called the local symbol table. You can allot addi
tional space in the symbol table to store local data as required.

Global data is stored on disk and is referenced through variables called
global variables, .or simply globals. Global variable names are similar to
local variable names, but must begin with a circumflex ("). Subscripted
global variables form a system of arrays stored on disk. The data in these
arrays forms a common data base that can be made available simulta
neously to one or more processes.

Global arrays are mapped dynamically into the disk structures that store
them. The process is handled entirely by V AX-11 DSM and is transparent
to the user.

1-2 Overview of VAX-11 DSM

1.1.3 The Precompiler

VAX-11 DSM provides a language precompiler to optimize routine execu
tion in an application environment. The precompiler interacts with the
interpreter to produce code in precompiled format. Precompiled format is a
more efficient form of source code that is faster and simpler to interpret.

Each time you terminate a DSM routine line with a carriage return, the
precompiler transforms the source code into precompiled format by:

• Stripping comments.

• Checking syntax.

• Setting up an internal table for line labels, which optimizes GOTO state
ments and DO statements that transfer control to other routine lines.

•Evaluating numeric constants and transforming them into an internal
representation (that is, packed decimal or longword).

• Converting arithmetic expressions into Reverse Polish Notation.

• Restricting the evaluation of a series of postconditionals to the occurrence
of the first false condition. To do this, the precompiler generates code that
specifies the appropriate offset to a given instruction.

When you terminate a command line in direct mode, V AX-11 DSM pre
compiles the line and executes it immediately.

When you execute a routine (with the DO command, for example), the
interpreter executes the precompiled code and reports syntax errors.

When you store a routine on disk, the system places both the source and
precompiled versions of the routine in your DSM routine directory (see
Section 5.2 for details about V AX-11 DSM directories). Thus, for a given
version of a routine, the precompilation procedure occurs only once. When
you execute a routine from your directory, VAX-11 DSM loads the precom
piled version of the routine and executes it.

You can always load, edit, and test DSM routines interactively, however,
because the system saves both forms of your routines. If you edit a routine,
V AX-11 DSM repeats the precompilation procedure. Therefore, when you
save an updated routine, an updated version of the precompiled routine
replaces the previous version.

1.1.4 1/0 Options

V AX-11 DSM provides a subset of the input/output (1/0) options of
VAX/VMS. VAX-11 DSM supports a number of 1/0 device types, as de
scribed in the following paragraphs. Each device type can be accessed
through commands in the DSM language. You can submit an 1/0 request to
any supported device that is available for use.

Overview of V AX-11 DSM 1-3

V AX-11 DSM responds to all 1/0 requests by providing an interface to the
appropriate VAX/VMS I/O handler. Terminal 1/0 and interprocess commu
nication through mailboxes are handled by the VAX/VMS Queue 110
Request system service ($QIO); $QIO provides the interface between a pro
cess and the device I/O drivers.

VAX-11 DSM supports a subset of the file-handling capabilities ofVAX-11
Record Management Services (RMS). V AX-11 RMS is the file and record
access subsystem of the VAX/VMS operating system. V AX-11 DSM uses
RMS primarily to process file 1/0 requests to disk and magnetic tape. How
ever, V AX-11 DSM can access any device to which V AX-11 RMS provides
the interface (such as card readers or line printers), provided no device
specific options are required.

All disk 1/0 requests are to Files-11 disk volumes. (Files-11 is the name of
the directoried disk volume structure used by the VAX/VMS operating
system.)

1.1.5 Procedure Calls

Procedures are service routines that are not part of the DSM language or
the V AX-11 DSM system. You can access procedures through a
DIGITAL-implemented extension to Standard MUMPS called the $ZCALL
function. Through $ZCALL, you can call VAX/VMS system services,
routines in the VAX-11 Common Run-Time Library, or routines written in
languages other than DSM. With $ZCALL, you can create and define func
tions that are not supplied with VAX-11 DSM and call them directly from
your DSM application routines.

1.1.6 Shared Areas of Memory

VAX...;..11 DSM supports a high degree of code and data sharing through the
use of V AXNMS virtual memory sections. Mapping a DSM application in a
virtual memory section improves its performance because the system does
not have to perform 1/0 to access DSM routines from disk storage. Instead,
it can execute the routines directly from virtual memory.

Virtual memory sections can be either private or shared. If shared, they are
called global sections. Global sections can be created dynamically by a pro
cess, or can be permanently present in the system. Permanent global sec
tions are generally created from routines to which a number of users
require access. When a group of routines or an application is installed in a
global section, all users of that application share the same copy of the code.
At run time, a copy of this code is mapped into the virtual address space of
each requesting process.

All users can create private virtual memory sections or map to an existing
global section. However, you must have sufficient VAX/VMS privileges to
create and install a global section.

1-4 Overview of V AX-11 DSM

1.1. 7 Journaling

Journaling is a means of keeping a record on secondary storage (disk or
magnetic tape) of transactions that alter the data base, that is, global vari
able SETs and KILLs. In V AX-11 DSM, journaling is handled by a
VAX/VMS detached process called a Journal Process.

VAX-11 DSM provides a number of journaling options to meet the needs of
a system running multiple applications. Depending on the options you se
lect, there can be one or more Journal Processes. You cah run one Journal
Process for each group in the system (where "group" is determined by the
group number of a process's DIC) or for the entire system.

Each Journal Process monitors data base transactions through mailboxes,
which are VAX/VMS pseudodevices used for interprocess communication.
When a DSM user process performs a SET or KILL on a global variable, the
Journal Process reads the transaction from a mailbox and makes a record of
it in one of many possible journal files. If the data base is corrupted, you
can use these files to restore it.

1.1.8 The DSM Job Controller

V AX-11 DSM uses another detached process to manage interlocks and
provide centralized control for DSM applications. This process is called the
DSM Job Controller. Although VAX/VMS has its own Job Controller to
coordinate requests by VMS processes, VAX-11 DSM uses the DSM Job
Controller to provide special services for DSM user processes. Specifically,
the DSM Job Controller provides the following services:

• It enables and disables DSM application mode start-up. (See Section 1.2
for an overview of DSM's programmer and application modes.)

•It manages interlock requests (through the DSM LOCK command) by
multiple DSM user processes.

• It enables and disables journaling on a group-by-group basis.

As with journaling, communication between a V AX-11 DSM user process
and the DSM Job Controller takes place through mailboxes.

VAX-11 DSM lets you either use or bypass the DSM Job Controller at
DSM start-up time. For work that does not affect the common data base (for
example, application development), you can bypass the Job Controller.
However, when you run a DSM application, journaling and interlocking
common variables between DSM user processes become necessary, so you
must use the Job Controller.

Overview ofVAX-11 DSM 1-5

1.1.9 System and Library Utilities

The V AX-11 DSM software package includes a number of utility routines.
These utilities are written in the DSM language and are provided:

•To help DSM application programmers develop and maintain the soft
ware and data for their applications.

• To help the DSM system manager to control the operation of the system
running DSM applications.

The utilities are divided into two categories: library utilities and system
utilities. Library utilities perform general services in five categories:

• Callable functions which provide date and time and numerical conversion

• Routines for use in debugging DSM routines

• Routines to manipulate globals

• Routines to provide information about your V AX-11 DSM system

• Routines to manipulate DSM routines

System utilities perform services in the following areas:

• Routines to control the use of the DSM Journal Process

• Routines to control the files used by the DSM Journal Process

• A routine that implements auto-login

Generally, you access the system and library utilities through a menu
driven utility package. Most utilities in the package are interactive, that is,
they prompt for required user input. In addition, most utilities provide
extensive on-line documentation that explains how to use them.

VAX-11 DSM also allows you to call specific utilities directly. Utilities and
utility menus are described in Chapter 7.

1.2 The DSM Image

The DSM image is the software that allows you to program in the DSM
language, execute DSM routines, perform input/output operations, and
access and manipulate the data base. When you request the execution of
this image, VAXNMS activates it in the virtual address space of your
process. You make this request by issuing the DSM command, described in
Section 2.3.

The DSM image includes a set of software components shared among all
users running DSM. These components constantly interact with each other.
For the purpose of an overview, the following sections describe each compo
nent as a separate entity.

1-6 Overview of V AX-11 DSM

1.2.1 The Language Interpreter

The language interpreter implements and controls routines written in the
DSM language. It examines and analyzes each language statement, per
forms precompilation, and executes the specified operation. It also performs
error checking and trapping, coordinates the reporting of errors at the ter
minal, and handles procedure calls.

The interpreter has two operating modes: Programmer Mode and
Application Mode. In Programmer Mode, you can create, modify, debug and
store routines, and execute commands and routines. In Application Mode,
you execute routines.

1.2.2 The 1/0 Interface

The 1/0 Interface initiates all input/output activity by coordinating an 1/0
request with the appropriate VAX/VMS 1/0 handler, either the $QIO sys
tem service or VAX-11 RMS. The 1/0 interface handles all requests involv
ing the following DSM commands and special variables:

OPEN
READ
ZWRITE
$X
$ZIO
$ZCONTROLC

CLOSE
WRITE
ZUSE
$Y
$ZA

1.2.3 The Data Base Supervisor

USE
ZPRINT
argumentless ZLOAD
$10
$ZB

The Data Base Supervisor coordinates the dynamic mapping of global ar
rays into the disk structures that store them. The Data Base Supervisor
interacts with VAX-11 RMS, which performs the physical and logical allo
cation of records into RMS indexed files. (V AX-11 DSM bases its imple
mentation of globals on indexed files. Chapter 9 describes this relationship
in detail.) The Data Base Supervisor handles all requests involving the
following DSM commands and functions (when used with global variables):

SET
$NEXT
$ZORDER

KILL
$ORDER
$ZSORT

1.2.4 The Routine Handler

$DATA
$ZNEXT

The Routine Handler implements all requests to load routines from disk
and save routines to disk. This module maps routines and global sections
and handles requests involving the following DSM commands:

DO ZSAVE $ZDIRECTORY
ZLOAD with arguments

Overview of VAX...,11 DSM 1-7

1.2.5 User Data Structures

In addition to the five components described above, which are shared
among all users if the DSM image is installed as a known image, each
process running a DSM image has a private set of data structures in its
virtual address space. These include:

• The DSM local symbol table

•Buffers to store DSM routine lines. These include the source routine
buff er and the precompiled routine buffer.

• The DSM call stack

• Other miscellaneous DSM data structures, such as control structures for
open DSM devices and for open globals

• VMS image and process structures

1-8 Overview of VAX~ll DSM

Chapter 2
Accessing the System

This chapter provides the information you need to operate the computer
terminal, access VAX/VMS, and run the DSM image.

2.1 Using the Computer Terminal

All terminals have a keyboard configuration that resembles a conventional
typewriter. The keyboard contains alphabetic and numeric keys on which
you type the commands you want the computer to process.

Terminal keyboards also contain a number of keys that allow you to signal
the computer to perform special operations. These keys are called function
keys and control characters. The following sections describe the behavior of
these keys.

2.1.1 Function Keys

Most terminals have keys that allow you to send special signals to the
computer. These are called function keys.

Figure 2-1 shows the keyboards of two different DIGITAL terminals: the
VTlOO and the VT52. Arrows point to the most commonly used function
keys. The symbols used in these diagrams are used throughout this text as
a shorthand notation to indicate that these keys should be pressed.

Note that function keys are not always in the same position on different
types of terminals, so check the keyboard layout each time you use a termi
nal for the first time.

2-1

Figure 2-1: The VTlOO and VT52 Keyboards

:____ ---------------------1---~I----------

Table 2-1 describes the important function keys that appear on your
terminal.

Table 2-l: Function Keys

Function
Key Description

~ Part of many 2-key combinations that perform a variety of functions, as
described in Section 2.1.2. The control characters used most often are de-
scribed in Table 2-2.

@ID Deletes the last character entered on a video terminal and backspaces over
it. On a hard-copy (printing) terminal, @ID instructs the system to ignore the

· last character typed.

(® Terminates lines typed at the terminal, if escape sequence processing is not
enabled ..

See Section 6.5.4 for more information about escape sequence processing.

(ijff) Carriage return; transmits the current line to the system for processing and
advances the cursor to the leftmost position of the next line.

~ Moves the printing position on the terminal to the next tab stop.

2-2 Accessing the System

Terminal keyboards do not always represent function characters in the
same way. The following are some common variations:

• The ESCAPE key may be labeled ALT MODE or ®Q) (SEL).

•The circumflex(") may be represented as an up-arrow.

•The underscore(_) may be represented as a back-arrow.

• The DELETE key may be labeled RUBOUT or ®·

• The RETURN key may be labeled CR for carriage return.

If you do not have a DIGITAL terminal, consult your terminal's user guide
for information about the representation of function characters.

2.1.2 Control Characters

A control character is a character sequence entered by pressing a letter key
and the CTRL key simultaneously. Control characters that you enter are
sometimes displayed on the terminal by a circumflex (") followed by the
selected letter. Other control characters, such as (CTRL/s J, are not displayed.

Table 2-2 summarizes the functions of the most commonly used control
characters.

Table 2-2: Control Characters

Control
Character Function

~ Generally cancels processing of DSM commands (unless !CTRL/c I recognition
is disabled). See Sections 4.3 and 6.5.3 for more information about !CTRL/ c I
recognition.

Initiates the V AXNMS log-in sequence.

Duplicates the function of the ~ key.

Form feed.

Suppresses display of terminal output the first time it is pressed, and con
tinues output to the terminal the second time it is· pressed.

Restarts terminal output that was suspended by CCTRL/s I.

Retypes the current line (including the prompt, if any) and leaves the cur
sor positioned at the end of the line.

Suspends terminal output until !CTRL/ a I is pressed.

Discards the current input line and retypes the prompt, if any.

Interrupts command or routine execution and returns control to the
VAXNMS command language interpreter (unless CCTRL/v I recognition is dis-
abled). See Sections 4.3 and 6.5.3 for more information about !CTRL/v I
recognition.

Initiates the V AXNMS log-in sequence.

Accessing the System 2-3

2.2 Logging into VAX/VMS

The procedure used to access VAX/VMS from the terminal is called log-in.
The log-in procedure identifies you to the operating system and distin
guishes you from other system users.

You must have an account on VAX/VMS before you can log in. Accounts
are set up by the system manager, or whoever authorizes the use of the
system at your installation.

After you have an account, you log in by providing the operating system
with two forms of identification:

•A User Name

•A Password

The following sections describe each form of identification and show an
example of the VAX/VMS log-in procedure.

2.2.1 User Names

A user. name is an alphabetic character string that identifies you to the
VAX/VMS operating system. It is the name that the system manager·gives
to your account. A user name is often the user's first or last name; however,
it can be any continuous character string.

2.2.2 Passwords

A password is an additional code that identifies you to the operating sys
tem. It can be any continuous character string, and is generally selected by
the individual user.

VAX/VMS does not display your password when you enter it at the termi
nal. This is for your protection. If you maintain the secrecy of your pass
word, other users cannot access the system with your user name.

For security reasons, DIGITAL recommends that your password should be
at least six characters long.

2.2.3 Sample Login

You let the system know you want to log in by pressing one of the fol
lowing keys:

• ®9

• IBfil)

e (CTRL/C)

e (CTRL/Y)

2-4 Accessing the System

After you press one of these keys, V AXNMS responds by prompting for
your user name. Type your user name followed by IB@. VAX/VMS then
prompts for your password. Enter your password and press IB@.

If you enter your user name or password incorrectly, or wait too long to
enter either form of identification, VAX/VMS displays an error message. If
this occurs, you must repeat the log-in procedure.

The following example shows the complete log-in procedure:

ffi)
Use rna111e: BLOCKID
Password: ffiJ

Welco111e to t.,JAX/t.,JMS l.,Jersion 3.0

$

When the dollar sign ($) appears at the far left of the terminal, it indicates
that login was successful and that you can begin your terminal session. The
dollar sign is the VAX/VMS command language interpreter CCLI) prompt.

2.2.4 Auto-Login

A terminal can be enabled for auto-login to ensure that only specified
routines and data can be accessed from the terminal. A terminal on which
auto-login is enabled is called a "tied" terminal.

Auto-log-in is a VAX/VMS log-in option that forces the automatic and pro
tected execution of a V AXNMS command procedure. Such a command pro
cedure can be used to start up a VMS image, such as V AX-11 DSM.
(VAX-11 DSM is the only VAX/VMS layered product that provides utili
ties for the use of auto-login.)

To log in to V AXNMS from a terminal set up for auto-login, you simply
type any of the keys listed in Section 2.2.3. See Sections 7.8 and 11.1.3.3 for
more information about auto-login.

2.3 Running a DSM Image

To run the DSM image, follow these steps:

1. Log in to V AXNMS.

2. Issue the DSM command at the CLI prompt ($).

For example:

- Log in to VAX/VMS -

$ DSMID

t.JAX-11 DSM Version 2.0

>

Accessing the System 2-5

After you enter the DSM command, V AX-11 DSM prints a sign-on message
and displays the DSM interpreter prompt, the right angle-bracket (>).
When this character appears at the far left of the terminal, it indicates that
the interpreter is ready to accept commands to build, edit, or run DSM
routines. You are now in Programmer Mode.

To get help in using the DSM language, type ?<RET> after the DSM
prompt. DSM responds by running the "%HELP utility, which provides
interactive help.

Programmer Mode is one of two user modes available to V AX-11 DSM
users. The other user mode, called Application Mode, is used for executing
routines only. Chapter 4 describes the characteristics of each user mode in
detail.

2.4 Switching between DSM and VAX/VMS

If you start up DSM in Programmer Mode, there are two ways to exit to
VAX/VMS command level (so that the CLI prompt is displayed, rather than
the DSM interpreter prompt). If you issue either of the following com
mands, control is transferred from the DSM interpreter to the CLI:

e (CTRL/Y)

•HALT

Issuing (CTRL/Y l interrupts the DSM image and transfers control to the CLI.
Because this command does not destroy the current DSM context, you can
issue the DIGITAL Command Language (DCL) CONTINUE command to
resume DSM (if you do not invoke another VAX/VMS image). Table 2-3
lists the DCL commands that do not invoke an image; you can issue any of
these and then return to your DSM image with CONTINUE.

Table 2-3: VAX/VMS Commands That Do Not Invoke an Image

= EOD SET VERIFY

ALLOCATE EXAMINE SHOW DAYTIME

ASSIGN GOTO SHOW DEFAULT

ATTACH IF SHOW QUOTA

CLOSE INQUIRE SHOW PROTECTION

CONTINUE ON SHOW STATUS

DEALLOCATE OPEN SHOW SYMBOL

DEASSIGN READ SHOW TIME

DEBUG SET CONTROL SHOW TRANSLATION

DECK SET DEFAULT SPAWN

DEFINE SETON WAIT

DELETE/SYMBOL SET PROTECTION/DEFAULT WRITE

DEPOSIT SET UIC

2-6 Accessing the System

HALT runs down the DSM image. During DSM image rundown, all re
sources allocated to VAX-11 DSM are returned to VAX/VMS. All open files
are closed; any devices allocated from DSM are deallocated, and the DSM
context is lost. Once you have issued this command, you must reissue the
DSM command to restore the DSM image.

In Application Mode, both (CTRL/ v l and HALT transfer control from the DSM
interpreter to the CLI, with the same side effects as their execution in
Programmer Mode. A DSM application can also use the QUIT command to
transfer control from DSM to the CLI, unless the current routine was called
from another DSM routine.

See Section 4.3 for more information about the behavior of these commands
in each user mode.

2.5 Logging Out of VAX/VMS

The log-out procedure deletes your process and ends a terminal session.
You must be at VAX/VMS command level to log out.

To log out, issue the DCL LOGOUT command in response to the CLI
prompt, as shown in the following example:

$ LOGOUT(@)

After you issue the LOGOUT command, VAX/VMS prints the following
message:

BLOCK lo~~ed out at 23-JULY-1980 12:Q3:10.38

If you issue the LOGOUT command with qualifiers, it causes VAX/VMS to
print a summary of accounting statistics for your terminal session. (Section
3.1 describes using qualifiers with DCL commands.) See the VAX/VMS
Command Language User's Guide for a description of specific LOGOUT
command qualifiers.

The LOGOUT command causes any sub-processes you have created during
this session to be terminated.

NOTE

If you shut your terminal off while you are logged in,
VAX/VMS does not log you out. However, if you log in on a
remote terminal (a terminal that communicates with the pro
cessor over telephone lines) or over a computer network, and
you break the connection prior to issuing the LOGOUT com
mand, VAX/VMS does log you out.

Accessing the System 2-7

Chapter 3
Using VAX/VMS

This chapter describes the features of the V AXNMS operating system you
must know to use V AX-11 DSM.

3.1 Using the DIGITAL Command Language

To use VAX-11 DSM effectively, you need to use the DIGITAL Command
Language {DCL). DCL commands help you manage and maintain your ac
count. Of particular significance to V AX-11 DSM users are commands that
help you:

•Manipulate files and directories

• Create logical names

• Set default characteristics of your process

•Mount and initialize magnetic tapes

•Determine system status

•Create command procedures (such as a log-in command file)

Throughout this manual, references are made to specific DCL commands
and their effects. Thus, you must understand the general format of the DCL
command string, described in the following paragraphs. For a detailed de
scription of DCL and the commands discussed in subsequent parts of this
document, see the VAX/VMS Command Language User's Guide.

The general format of a DCL command string is:

$[Label:]Command Name[/Qualifier(s)](§f)[Parameter 1] ... [Parameter n]

Elements in brackets are optional.

3-1

Dollar Sign($) The dollar sign is the command language interpreter
(CLI) prompt. This character must appear on the far left
of the terminal before you can enter any DCL -command.
In a command procedure, you must place a dollar sign
before every DCL command.

Label All DCL command strings can be labeled. A label
precedes the command name and is separated from it by
a colon (:). Generally, you use labels in command proce
dures when you want the ability to transfer control to
other language statements by means of such DCL com
mands as GOTO. See the VAX/VMS Command
Language User's Guide for a complete description of com
mand procedures.

Command Name The command name is an English-language verb that
describes the action the command performs. You can
truncate all command names to four characters. Many
command names can be truncated to fewer characters.

Qualifiers

Parameters

Qualifiers modify the action of a command or parameter.
You often do not need to specify a qualifier, because its
default value provides the most commonly used function
of the command.

Qualifiers al ways begin with a slash (/).

Parameters describe the ·object of a command. In some
cases, a parameter is a keyword. In others, it is the name
of a routine to execute or the name of a file or device to
manipulate

At least one space or tab must separate the first para
meter from the command name.

If you need information about a DCL and its qualifiers and parameters,
issue the DCL HELP command in response to the DCL prompt. The para
meter of the HELP command is the name of the command about which you
want information.

3.2 File Specifications

A file is a collection of logically related data stored on a medium such as a
disk or magnetic tape. All information that VAX/VMS reads or writes on
behalf of its users is defined in terms of files.

To access files that already exist, or to give names to files that you create,
you must know how the operating system identifies files. VAX/VMS identi
fies files by a file specification in the following format:

node::device:[directory]file name.file type;version number

3-2 Using V AXNMS

All punctuation marks (colons, brackets, period, semicolon) are required to
separate the components of the file specification. The elements of a file
specification are:

Node Identifies a node on a computer network. A node name
is a one- to six-character alphanumeric string. This
part of the file specification only applies to systems
that support VAX-11 DECnet.

Device Identifies the device on which a file is stored or is to be
written, as described in Section 3.2.2.

Directory Identifies the name of the directory in which the file is
catalogued. You can delimit directory names with ei
ther square .brackets, as shown, or with angle brackets
(< >). Directories are described in Section 3.3.

File name Identifies a file; a file name can be up to nine alphanu
meric characters long.

File type Describes the kind of data in the file; the file type can
be up to three alphanumeric characters long.

Version Number A decimal number from 1 to 32767 that specifies the
version of the file. Version numbers are incremented by
1 each time a new version of a file is created. You can
use either a semicolon (;) or a period (.) to separate a
file type from the version number.

3.2.1 Defaults in File Specifications

It is not necessary to explicitly state all elements of a file specification each
time you wish to perform an operation on an input file, or whenever you
create an output file. When a field of a file specification is omitted,
VAX/VMS supplies a default value. Table 3-1 summarizes the default
value for each field.

Using VAX/VMS 3-3

Table 3-1: File Specification Defaults

Field Default

Node Local network node

Device Device established as your default by (1) the entry in your user au
thorization file, or (2) executing the DCL SET DEFAULT command.

Directory Directory established as your default by (1) the entry in your user
authorization file, or (2) executing the DCL SET DEF A ULT or SET
UIC command.

File Name DSM routine directories appear in VAX/VMS directories as
ROUTINES.DSM. See Section 5.6 for more information about DSM
directories and directory specifications.

Other languages have no default file names.

File Type Depends on the context in which a file specification is used for input
or created for output. Table 3-2 lists the default file types that are
significant for V AX-11 DSM users.

Version Number For input files: Highest existing version.

For output files: Version number 1 for new files; highest existing
version plus 1 for old files.

Table 3-2 lists the default file types that are significant for VAX-11 DSM
users.

Table 3-2: Default File Types

File Type File Contents

COM VAX/VMS command procedure

DAT Input or output data file

DIR VAX/VMS directory file

DSM DSM routine directory file

EXE Executable image file

GBL DSM global file

JRN DSM journaling file

LOG DSM journal log file or error log file; also a VAX/VMS batchjob output file

OBJ Object file (created by a language compiler)

VIR DSM mapped routine file

3.2.2 Device Names

Each physical device known to the system is uniquely identified by a device
name specification. VAX/VMS device names consist of a device mnemonic,
controller designation, and unit number, in the following format:

3-4 Using VAX/VMS

devcu

dev A two- or three-character mnemonic for the device type, as listed in
Table 3-3.

c A controller designation made up of one alphabetic character. For
example, MT A designates magnetic tape controller A.

u The device unit number, a decimal number between 0 and 655,35.

Thus, a system can have two tape units on different controllers, one desig
nated MTAO and the other designated MTBO. Each drive is unit 0 on its
controller.

Table 3-3 lists the VAX/VMS device types and their mnemonics.

Table 3-3: VAX/VMS Device Types

Mnemonic Device Type

CR Card Reader

cs Console Storage Device

DB RP04, RP05, RP06 Disk

DD TU58 Cassette Tape

DL RL02 Disk

DM RK06 and RK07 Disk

DQ RB02 and RB80 Disk

DR RM03, RM05, RM80, RP07 Disk

DX RXOl Floppy Diskette

DY RX02 Floppy Diskette

LP Line Printer

MB Mailbox

MF Magnetic Tape

MS TSll, TS04 Magnetic Tape

MT TE16, TM03, TU45, TU77 Magnetic Tape

NET Network Communications Device

NL Null Device

OP Operator's Console

RT Remote Terminal

TT Interactive Terminal

XJ DUPll Synchronous Communications Line

XM DMCll Synchronous Communications Line

Using.VAX/VMS 3-5

3.3 VAX/VMS Directories and Subdirectories

A directory is a structure that organizes files on a disk device. The files
belonging to one user on a VAX/VMS system all reside in directories be
longing to that user. The user can sort the files into different directories as
desired.

Directories are represented in file specifications by directory names.

3.3.1 Directory Names

Directory names can be represented in either of two ways:

[directory name]

[g,m]

A directory represented by [directory name] contains a one- to nine
character alphanumeric string within the brackets, as in the following
example:

[LEWIS]

The directory representation [g,m] generally (but not necessarily) corre
sponds to the UIC of the owner of the directory. The following example
shows a directory name in UIC format:

[122,26]

Section 3.4 provides more information about UICs.

In addition to your main directory, represented by [directory name],
VAX/VMS allows you to organize your files into subdirectories, as ex
plained in the next section. Subdirectory names have the following format:

[name.name.name ...]

An example of a subdirectory name is [BWV431.JSB]. You can include up
to eight levels (separated by seven periods) in a subdirectory name.

3.3.2 Creating Subdirectories

Each V AXNMS user has at least one directory, a main directory, created
by the system manager when the account is established. Usually that direc
tory's name is [username].

Optionally, you can create, in your main directory, one or more subdirecto
ries. The DCL CREATE command allows you to create subdirectories. For
example, the following command creates a subdirectory to a main directory
called [OWNER]:

$ CREATE/DIRECTORY COWNER.VIDEOJ

3-6 Using VAX/VMS

This command places an entry for the directory file VIDEO.DIR in the
main directory [OWNER]. Subsequently, you can use the subdirectory
[OWNER.VIDEO] in a file specification.·

A subdirectory can contain a directory file for another subdirectory; that
subdirectory can contain a directory file for another subdirectory, and so on.
The maximum number of directory levels, including the main directory, is
eight.

3.3.3 The Default Directory

Whenever you are using VAX/VMS, you are associated with a default
directory. When you first log in, your default directory is generally your
main directory.

You change the default directory for the current session by issuing the DCL
SET DEFAULT command. The parameter of this command is the directory
name that you wish to use as a default. Note that this command does not
change what your default directory will be the next time you log in.

To see what your current default directory is, issue the DCL SHOW
DEFAULT command.

3.3.4 Examining Directory Contents

You examine the contents of a directory by issuing the DCL DIRECTORY
command, as shown in the following example:

$ DIRECTORY(@)

This command shows you the contents of the current default directory.

To examine the contents of a directory that is not your default directory,
issue the DIRECTORY command with the name of the desired directory (or
subdirectory) as the parameter.

To examine the contents of a subdirectory of the current default directory,
issue the DIRECTORY command followed by the subdirectory name, for
example:

$ DIRECTORY [.VIDEOJ

.Note that in this case you need not explicitly state the default directory
name to examine. the contents of your subdirectories.

Using VAXNMS 3-7

3.4 Maintaining File Protection

VAX/VMS bases its file protection mechanism on the User Identification
Code (UIC). The system manager assigns each account in the system a UIC.
The UIC consists of two identification numbers that specify a group and
member number, as in the following example:

[226,60]

VAX/VMS defines four user categories based on the UIC, as follows:

SYSTEM

OWNER

GROUP

WORLD

All users who have low group numbers, usually 1 through 10
(octal). However, the exact range of system group numbers is
determined by the system manager at VAX/VMS sysgen
time. These group numbers are generally for system mana
gers, system programmers, and operators. Users who have
SYSPRIV, LOG_IO, and PHY_IO privileges are also in
cluded in this category.

The UIC of the person who created and therefore owns
the file.

All users who have the same group number in their UICs as
the owner of the file, including the owner.

All users who do not fall into any of the other three catego
ries. This category also includes the owner of the file and all
users in the owner's group.

Each user category can be permitted or denied the following types of file
access:

READ

WRITE

EXECUTE

DELETE

The right to ex-amine, print, or copy a file.

The right to modify a file, including deleting records
from it.

The right to execute a file that contains an executable
image.

The right to delete a file.

3.4.1 Setting File Protection

The DCL SET PROTECTION command establishes the protection that ap
plies to a file or group of files. It also establishes the default protection for
files created during the current terminal session. You will often need to use
this command to control access to your files and directories by other system
users.

3-8 Using VAX/VMS

3.4.2 Examining File Protection

The SHOW PROTECTION command displays the default protection for
files created during the current terminal session. You do not use this com
mand to examine the protection of a particular file. To look at the protec
tion of one or more particular files, issue the DIRECTORY command with
the /PROTECTION qualifier.

3.5 Using Logical Names

Using logical names, you can write routines that are independent of physi
cal file specifications. Logical names also provide a shorthand way to spec
ify files that you refer to frequently.

When VAX/VMS expects a file specification in a command or routine but
encounters a logical name instead, it translates the logical name to its
equivalence name.

You assign logical names with the DCL ASSIGN command. This command
equates a logical name with an equivalence name, which can be a device, a
complete file specification, or another logical name, for example:

$ ASSIGN DBCO: [JONES J DEMOG. DAT; 1 DEMOG

This command creates the process logical name DEMOG and associates it
wit~ the file specification DBCO:[JONESJDEMOG.DAT;l. This file specifi
cation will be used whenever VAX/VMS encounters the logical name
DEMOG in a command or routine during execution.

Since the ASSIGN command allows you to equate a logical name with
another logical name, logical name translation is a recursive procedure.
After VAX/VMS finds and translates a logical name, it uses the equiva
lence name as the argument for another logical name translation.
VAX/VMS continues in this manner until it cannot translate the equiva
lence name.

When VAX/VMS cannot translate an equivalence name, it applies system
defaults to fill in any part of a file specification that remains unspecified.
For example, if an equivalence name does not specify a device, VAX/VMS
adds your default device to the file specification. If an equivalence name
does not specify a directory, VAX/VMS adds your current default directory
to the file specification.

3.5.1 Concealed Devices

To avoid having to change references to device names when you run DSM
routines on a new device, you can use concealed device names to refer to
devices. A concealed device name is a logical name that represents a device,
but that is not translated to the physical device name unless you explicitly
ask for a translation with the SHOW LOGICAL command. Using concealed
device names allows you and VAX/VMS to refer to devices consistently by a
logical name.

Using VAX/VMS 3-9

You create a concealed device name by preceding the physical device name
(or file specification) with a double underscore (_) in the ASSIGN or
DEFINE command string for the logical name. The following command
defines the logical name TAPE2 as the physical device name MTA2:

$DEFINE TAPEZ _MTAZ:

For more information on defining and using concealed device names, see
the VAX/VMS Command Language User's Guide.

3.5.2 Logical Name Tables

When you assign a logical name to a file specification, the logical name and
its translation are placed in one of three logical name tables. The table in
which the logical name is placed depends on whether you want the logical
name to be local to the current process, available to the group, or available
to the entire system. VAX/VMS maintains a logical name table for each
category, as follows:

• Process Logical Name Table

Contains logical names that are local to the process. When an entry is
placed in this table, it is available to all images that run in the process
until it is deassigned, or until the process is deleted (for example, as a
result oflogout).

• Group Logical Name Table

Contains logical names that are available to all processes that have the
same group number in their UICs. Entries remain in this table until
explicitly deleted. User privilege is required to place and delete entries in
the group logical name table.

• System Logical Name Table

Contains logical names that are available to all processes in the system.
Entries remain in this table until they are explicitly deleted. User privi
lege is required to place and delete entries in the system logical name
table.

To translate a logical name to its equivalence name, VAX/VMS searches
the process, group, and system logical name tables, in that order, and uses
the first match it finds. Thus, entries in the process logical name table take
precedence over those in the group and system logical name tables, and
entries in the group logical name table take precedence over entries in the
system logical name table.

3.5.3 Processor Modes

When you use the ASSIGN (or DEFINE) command to create process logical
names, you can use command qualifiers to assign them in either of the
following processor modes:

3-10 Using VAX/VMS

• Supervisor mode

··User mode

Supervisor mode and user mode are two of the four VAX/VMS processor
access modes. By default, the ASSIGN command enters logical names in
the process logical name table in supervisor mode.

User mode process logical names take precedence over supervisor mode
process logical names. However, user mode process logical names are de
leted from the process logical name table after the image completes its
execution.

3.5.4 Process-Permanent Logical Names

VAX/VMS defines a set of logical names for every process created during
login. These logical names, called process-permanent logical names, remain
defined for the life of a process. Table 3-4 lists some process-permanent
logical names. You can check the process-permanent logical names for your
process by entering the following DCL command:

SHOW LOGICAL/PROCESS

Table 3-4: Process-Permanent Logical Names

Logical Name Equivalence Name

SYS$1NPUT Default input stream for the process. For an interactive user,
SYS$1NPUT equates with your terminal. For a batch job,
SYS$INPUT equates with the batch input stream.

SYS$0UTPUT Default output stream for the process. For an interactive user,
SYS$0UTPUT equates with your terminal. For a batch job,
SYS$0UTPUT equates with the batch job log file.

SYS$COMMAND Original SYS$1NPUT for a job. When a process executes an indirect
command file, SYS$INPUT is assigned to that file, and
SYS$COMMAND remains assigned to the original command
stream. The name TT is equivalent to SYS$COMMAND.

SYS$ERROR Default output stream to which the system writes messages. For an
interactive user, SYS$ERROR equates with the terminal. For a
batch job, SYS$ERROR equates with the batch job log file.

SYS$DISK Default device established at login, or by the SET DEFAULT
command.

SYS$LOGIN Default device and directory specification at login.

SYS$SCRATCH Default work disk and directory.

TT Current terminal.

The equivalence names for SYS$1NPUT, SYS$0UTPUT,
SYS$COMMAND, and SYS$ERROR define files that remain open for the
life of the process. These files can be read or written from routines.

Using VAX/VMS 3-11

3.5.5 System-Permanent Logical Names

VAX/VMS defines a number of logical names for the system logical name
table. Entries in this table are available to all processes in the system.
Among these logical names are:

SYS$HELP

SYS$LIBRARY

SYS$MANAGER

SYS$MESSAGE

SYS$SHARE

SYS$SYSTEM

SYS$UPDATE

Device and directory of the system help files

Device and directory of the system libraries

Device and directory containing (among other files)
SYSTARTUP.COM

Device and directory of system error message files

Device and directory of system shareable images

Device and directory of operating system programs
and procedures

Device and directory used in installation

For a complete list of system-permanent logical names, see the VAX/VMS
System Management and Operations Guide, or type the following DCL
command:

SHOW LOG I CAL/ SYSTEM SYS$*

3-12 Using VAX/VMS

Part 2
Using VAX-11 DSM

Chapter 4
VAX-11 DSM Command Line Opti<;>ns

This chapter describes the full syntax of the DSM command, including
command qualifiers, and discusses V AX-11 DSM user modes.

4.1 Introduction

To gain access to the DSM language, it is sufficient to issue the DSM
command in its simplest form, as described in Chapter, 2. However, the
DSM command also accepts a series of qualifiers and a command parameter
that establish initial conditions for the execution of the DSM image.

DSM command qualifiers instruct V AX-11 DSM to perform a number of
tasks. Specifically, they allow you to: ·

• Enable and disable routine interrupts by (CTRL/c J

• Enable and disable the setting of breakpoints for use in debugging

• Change your principal input and output device

•Change your default directory for DSM application and library routines,
and for globals

• Change the default size of your source and precompiled routine buffers,
your terminal's output buffer, the local symbol table, and the call stack

• Optimize global accesses

• Enable and disable the various aspects of DSM file sharing

• Map routines in virtual memory sections

4-1

The DSM command parameter allows you to load and execute a DSM rou
tine (or application) at DSM image start-up. The presence or absence of the
command parameter also determines your DSM user mode. V AX-11 DSM
can be operated in either of two user modes:

• Programmer Mode

• Application Mode

Each user mode provides an operating environment with a different set of
default characteristics, as described in Section 4.3.

4.2 DSM Command Syntax

The full syntax of the DSM command line is:

$ DSM[!Qualifier(s)[/Subqualifier]]~[Parameter]

Where:

• Command elements in brackets are optional

•All punctuation (slash, space) is required to separate the components of
the command line

Sections 4.2.1 and 4.2.2 describe the syntax of the DSM command line in
detail. Section 4.4 describes specific DSM command qualifiers.

4.2.1 DSM Command Qualifier Syntax

DSM command qualifiers have five forms:

Form

/qi

/ql/sql

/ql=n

Example

/SHARED

/MAPPED/LIBRARY

/SOURCE_BUFFER_SIZE = 10100

/ql[= func] /CEN ABLE =BREAK

/qi[= fs][/sql] /MAPPED= file specification/LIBRARY

Where:

• Elements in brackets are optional

• qi is a qualifier name

• sql is a subqualifier that further defines the action specified by the
qualifier

• n is a numeric argument

4-2 VAX-11 DSM Command Line Options

• func is a functional argument

• fs is any part of a VAX/VMS file specification

Some qualifiers have a negative form that indicates the opposite effect of
the action specified by the qualifier. Negative qualifiers have the form:

/NOql

You can truncate all DSM command qualifiers to the shortest unambiguous
string. In all cases, this is four or fewer characters.

4.2.2 DSM Command Parameter Syntax

The DSM command parameter is the name of a DSM routine that you want
to load from one of your directories and execute as soon as you terminate
the DSM command line. The command parameter has the form:

[Label[OffsetJrRoutine_N ame

Parameter elements in brackets are optional. The elements are:

Label A DSM routine line label that identifies a line in the
specified routine.

+Offset A positive integer offset f~om Label that indicates the
routine line where you want to start execution of the
specified routine; the plus sign [+] is required if you
include an offset.

"Routine_N ame The name of the routine or application you want to exe
cute; the circumflex (") is required whether you specify a
label or not.

At least one space must separate the command parameter from the DSM
command.

The DSM command parameter can also be specified following DSM com
mand qualifiers, as shown in the command line:

$ DSM/CENABLE LAB+z···oATA

This command line causes the routine DATA to execute starting from line
LAB+ 2 with (CTRL/c l recognition enabled. See Sections 4.3.1 and 4.3.2 for
more information about (CTRL/ c l recognition.

VAX-11 DSM Command Line Options 4-3

4.3 VAX-11 DSM User Modes

Depending on the presence or absence of the DSM command parameter, you
can operate V AX-11 DSM in either of two user modes, Programmer Mode
or Application Mode.

The difference .between Programmer Mode and Application Mode operation
is the default behavior of V AX-11 DSM with respect to the following:

• (CTRL/C I

• Recognition of the BREAK command

•The HALT and QUIT commands

• File sharing

•Use of the DSM Job Controller

• Use of the DSM Journal Process

• Error processing

• The ZESCAPE command

• The mapping of virtual memory sections

The following sections describe the default characteristics of each
user mode.

4.3.1 Programmer Mode

To operate V AX-11 DSM in Programmer Mode, issue the DSM command
(at the CLI prompt) without a command parameter, as shown in Chapter 2.

When you operate V AX-11 DSM in Programmer Mode, you interact with
the DSM interpreter directly. The interpreter prompt at the far left of the
terminal indicates that the interpreter is ready to accept commands to
create, modify, load, store, delete, and execute routines.

The following defaults apply to V AX-11 DSM when you operate it in
Programmer Mode:

• (CTRL/ c I and (CTRL/ v I

(CTRL/c l recognition is enabled unless you append the /NOCENABLE quali
fier to the DSM command at start-up (refer to Section 4.4 for details about
this qualifier). Typing (CTRL/c I while a DSM routine is running interrupts
execution and causes the interpreter to display the DSM interpreter
prompt. The DSM context is preserved, and you can continue to enter
DSM commands.

4-4 V AX-11 DSM Command Line Options

(CTRL/Y l recognition is generally enabled. (However, the VAX/VMS system
manager can explicitly disable (CTRL/Y l recognition on a user-by-user basis.
See Section 6.5.3 for more information about (CTRL/Y l recognition.) If (CTRL/Y l
recognition is enabled and you type (CTRL/Y l, control returns to the CLI.

Invoking a VAX/VMS image after typing (CTRL/Y l causes DSM image run
down. If you do not invoke a VAX/VMS image, you can type the DCL
CONTINUE command to return the DSM image. Refer to Table 2-3 for a
complete list of the DCL commands that do not invoke a VAX/VMS
image.

•HALT and QUIT

Execution of the HALT command causes DSM image rundown and trans
fers control from the DSM interpreter to the CLI. The DSM HALT mes
sage is displayed.

If a routine executes a QUIT command at the outermost nesting level,
execution of the routine stops. However, the DSM context is preserved.
The DSM interpreter displays the interpreter prompt, and you can con
tinue to enter DSM commands.

• File sharing

File sharing is a VAX-11 RMS option that allows many users to access
the same files with read, write, and delete privileges. For V AX-11 DSM
users, file sharing applies primarily to globals and routines. However,
library globals and routines, like other globals accessed read-only, do not
have to be explicitly shared. RMS allows many users to read files simul
taneously. This is called implicit sharing.

In Programmer Mode, file sharing is disabled unless you append the
/SHARED qualifier to the DSM command at start-up. See Section 4.4 for
a description of the /SHARED qualifier.

•The DSM Job Controller

The primary function of the DSM Job Controller is to handle interlock
requests by multiple DSM user processes, that is, requests by pro
grammers or applications involving the DSM LOCK and ZALLOCATE
commands. (Refer to the VAX-11 DSM Language Reference Manual for
details about these commands.)

In Programmer Mode, the DSM Job Controller does not process lock re
quests; if you issue LOCK or ZALLOCATE commands, VAX-11 DSM
ignores them.

See Chapter 12 for more information about the DSM Job Controller.

• Journaling

VAX-11 DSM journaling is never enabled in Programmer Mode.

VAX-11 DSM Command Line Options 4-5

• Error processing

If an error related to language syntax, routines, 1/0, or the DSM data
base occurs, the DSM context is preserved; control returns to the DSM
interpreter.

Generally, users running the DSM image cannot cause a fatal error (that
is, an error that causes DSM image rundown) in Programmer Mode. How
ever, DSM command line errors are fatal to the DSM image in
Programmer Mode.

See Section 5.7 for a general description ofVAX-11 DSM error processing
and Appendix A for a description of specific DSM errors.

• ZESCAPE

When VAX-11 DSM executes ZESCAPE in Programmer Mode, it gen
erates an error. Execution of the routine stops, and control returns to the
DSM interpreter.

•BREAK

When a BREAK command is encountered, a breakpoint is generated,
unless the /NOBREAK qualifier was specified with the DSM command.

• Mapped virtual memory sections

In programmer mode, mapped virtual memory sections are mapped as
private sections rather than as global (shared) sections.

4.3.2 Application Mode

To operate V AX-11 DSM in Application Mode, issue the DSM command (at
the CLI prompt) with a parameter, for example:

$ DSM ... DEMOG(fil]

DEMOG is the name of a routine or application that you want to load from
your directory and execute at start-up.

The following defaults apply to VAX-11 DSM when you operate it in
Application Mode:

• (CTRL/ c) and (CTRL/ y)

(CTRL/c l recognition is disabled unless you append the /CENABLE qualifier
to the DSM command at start-up.

(CTRL/v l recognition is generally enabled in Application Mode. (However, it
can and in many cases should be disabled at V AXNMS command level by
the system manager.) Typing (CTRL/Y l transfers control from the DSM inter
preter to the CLI. If you invoke a VAX/VMS image after typing (CTRL/ v l,
you cause DSM image rundown. However, if you do not invoke a
VAX/VMS image, you can type the CONTINUE command to return the
DSM image. See the Table 2-3 for a list of DCL commands which do not
invoke a VAX/VMS image.

4-6 V AX-11 DSM Command Line Options

• HALT and QUIT

Executing the HALT command in Application Mode causes DSM image
rundown and transfers control from the DSM interpreter to the CLI. No
exit message is displayed, however.

Executing the QUIT command at the outermost nesting level also causes
DSM image rundown and transfers control from the DSM interpreter to
the CLI.

• File sharing

File sharing is enabled, unless you append the /NOSHARED qualifier to
the DSM command at start-up.

• The DSM Job Controller

The DSM Job Controller processes all interlock requests involving the
LOCK and ZALLOCATE commands unless you append the /NOSHARED
qualifier to the DSM command at start-up. The DSM Job Controller can
also enable journaling for applications users, and permit or disable start
up in Application Mode.

• Error processing

A DSM user process can cause a fatal error in Application Mode.

If an error related to language syntax, routines, I/O, or the DSM data
base occurs (and error trapping is not enabled), the DSM image is run
down; control returns to the CLI. If (CTRL/c I recognition is enabled, typing
(CTRL/ c 1 also causes DSM image rundown and returns control to the CLI.

• ZESCAPE

When V AX-11 DSM executes a ZESCAPE command in an application, it
exits from the application and transfers control to the DSM interpreter in
Programmer Mode. After the DSM interpreter prompt appears, you can
enter any valid DSM command or examine any accessible routine.

•BREAK

BREAK commands are ignored in Application Mode, since applications
users should not be involved in debugging routines.

• Virtual memory sections

Virtual memory sections are mapped as global (shared) sections for appli
cations users.

4.4 Description of DSM Command Qualifiers

Table 4-1 summarizes the functions of the DSM command qualifiers. Table
4-2 shows the defaults for each qualifier. Sections 4.4.1 through the end of
the chapter describe specific qualifiers in detail. These sections are ar
ranged in alphabetical order by qualifier name.

V AX-11 DSM Command Line Options 4-7

Table 4-1: DSM Command Qualifiers

Qualifier

/[NO]BREAK

/[NO]CENABLE[=BREAK]

/CLUSTER_SIZE = n

/DELETE

/ERROR= file-spec

/GLOBALS= file-spec[ILIBRARY]

/INPUT= file-spec

/INSTALL

/KEY _SIZE= n

/[NO]MAPPED[= file-spec][ILIBRARY]

/OPEN_ GLOBALS= n

/[NO]OPTIMIZE_BUFFER_COUNT

/OUTPUT= file-spec

/ROUTINES= file-spec[ILIBRARY]

/SECTION_NAME =name

/[NOJSEQUENTIAL_ OPTIMIZATION

/[NOJSHARED

/SOURCE_BUFFER_SIZE = n

/STACK_SIZE = n

/SYMBOL_TABLE_SIZE = n

4-8 VAX-11 DSM Command Line Options

Function

Enables and disables BREAK command
recognition.

Enables and disables !CTRL/ c J recognition or in
structs the interpreter to treat !CTRL/ c I like the
BREAK command.

Sets the number of pages brought into memory
as the result of a global section page fault.*

Deletes permanent global sections.*

Specifies the output device for system
messages.

Specifies a default global directory or library
global directory for the duration of the DSM
session.

Specifies the principal input device.

Installs a mapped routine file in the system as
a permanent global section.*

Establishes the maximum size of a global key.

Establishes random access input from a global
section, or allows you to create a virtual mem
ory section.

Establishes the number of globals that can be
open simultaneously.

Overrides V AX-11 DSM optimization of the
RMS multi-buffer count for open globals.

Establishes your principal output device.

Changes your default routine directory or li
brary routine directory for the duration of the
DSM image.

Specifies the name of the DSM mapped routine
, section.

Optimizes the sequential access to global
variables.

Determines whether file sharing is enabled or
disabled, if your process communicates with
the DSM Job Controller; and whether virtual
memory sections are mapped privately or
globally.

Establishes the size (in bytes) of the DSM
source routine buffer and precompiled routine
buffer.

Specifies the interpreter's stack size.

Establishes the size (in bytes) of the local sym
bol table.

Table 4-1 (Cont.): DSM Command Qualifiers

Qualifier Function

/SYSTEM Used with /MAPPED and /SECTION_NAME
to indicate a system-wide application section.

/TERMINAL_BUFFER_SIZE = n Establishes the size (in bytes) of your termi-
nal's output buffer.

/TYPEAHEAD Indicates that DSM READ commands with li-
terals will result in a VMS "read with prompt",
but the typeahead buffer will·never be purged.

/[NOJUNWIND_STACK[=ALL] Enables and disables unwinding of the DSM
call stack when an error occurs.

* Sufficient user privileges are required to use this qualifier. See Part III of this manual
for more information.

VAX-11 DSM Command Line Options 4-9

4-10

Table 4-2: DSM Command Qualifier Defaults

Qualifier Default

/[NO]BREAK /BREAK (Programmer Mode
/NOBREAK (Application Mode)

/(NO]CENABLE[=BREAK] /CENABLE (Programmer Mode)
/NOCENABLE (Application Mode)

/DELETE Permanent global sections not deleted

/ERROR= file-spec /ERROR= SYS$ERROR*

/GLOBALS= [file-spec][/LIBRARY] /GLOBALS= default V AXNMS device ·and directory:
/GLOBALS= SYS$LIBRARY:

/INPUT= file-spec /INPUT= SYS$INPUT*

/INSTALL Global section not installed

/KEY_SIZE = n /KEY _SIZE= 64

/(NO]MAPPED[= file-spec][!LIBRARY] /NOMAPPED (Programmer Mode)
/MAPPED (Application Mode)

/OPEN_ GLOBALS= n /OPEN_ GLOBALS= 7

/[NOJOPTIMIZE_BUFFER_COUNT /OPTIMIZE_BUFFER_COUNT

/OUTPUT= file-spec /OUTPUT= SYS$0UTPUT*

/ROUTINES= [file-spec](/LIBRARY] /ROUTINES= default V AXNMS device and
directory:ROUTINES.DSM**
/ROUTINES= SYS$LIBRARY:ROUTINES.DSM**

/SECTION_NAME =name /SECTION_NAME = DSM$ROUTINE_SEC

/[NO]SEQUENTIAL_OPTIMIZATION /SEQUENTIAL_ OPTIMIZATION

/[NO]SHARED /NOSHARED (Programmer Mode)
/SHARED (Application Mode)

/SOURCE_BUFFER_SIZE = n /SOURCE_BUFFER_SIZE = 10240

/STACK_SIZE = n /STACK_SIZE = 8192

/SYMBOL_TABLE_SIZE = n /SYMBOL_TABLE_SIZE = 102400

/SYSTEM Not present by default

/TERMINAL_BUFFER_SIZE = n /TERMINAL_BUFFER_SIZE = 992

/TYPEAHEAD No typeahead

/[NO]UNWIND /UNWIND

* The translation of this process-permanent logical name.

** This is the original default. You can define a logical name to represent another default, as
described in the text below.

VAX-11 DSM Command Line Options

4.4.1 /BREAK and /NOBREAK

/BREAK
/NO BREAK

Instructs the interpreter to recognize or ignore the DSM BREAK command,
which sets breakpoints for use in debugging DSM routines. The default in
Programmer Mode is /BREAK, so that the interpreter recognizes the
BREAK command. The default in Application Mode is /NOBREAK, so that
the interpreter ignores the BREAK command. (Thus, you need not edit out
BREAKs when you run a routine in Application Mode.)

4.4.2 /CENABLE and /NOCENABLE

/CENABLE[=BREAK]
/NOCENABLE

Instructs the interpreter to:

1. Recognize or ignore (CTRL/ c I

2. Treat (CTRL/c l like the DSM BREAK command if (CTRL/c l recognition is
enabled

How the interpreter treats (CTRL/ c l depends on the user mode. Section 4.3
describes the behavior of (CTRL/c I in each user mode.

The default in Programmer Mode is /CENABLE. In Programmer Mode, the
interpreter recognizes (CTRL/ c l. The default in Application Mode is
/NOCENABLE. In Application Mode, the interpreter ignores (CTRL/ cl.

V AX-11 DSM returns an error if you use the form
/NOCENABLE =BREAK.

You can use the [NO]CENABLE option on the USE command to override
the setting of the /[NO]CENABLE qualifier on the DSM command. See
Chapter 6 for a description of USE command options.

4.4.3 /CLUSTER_SIZE

/CLUSTER_SIZE = n

Sets the number of pages brought into memory as the result of a global
section page fault. The qualifier overrides the VAX/VMS default cluster
size specified with the PFCL UST sysgen parameter.

4.4.4 /DELETE

/DELETE

Indicates that the application or library installed as a permanent global
section is to be be deleted. See Section 11.2.2 for details on how to use
/DELETE.

VAX-11 DSM Command Line Options 4-11

4.4.5 /ERROR

/ERROR= file-spec

Specifies the output device or output stream to which VAX-11 DSM writes
messages. The default output device for messages is SYS$ERROR.
SYS$ERROR is a process-permanent logical name that, for interactive
users, equates with your terminal.

4.4.6 /GLOBALS

/GLOBALS= [file-spec][/LIBRARY]

Changes your default directory for globals created in DSM application
routines or library routines until DSM image rundown. You apply the
/LIBRARY qualifier to specify a library directory; otherwise, a routine di
rectory is assumed.

The default global directory is the VAXNMS default directory and device,
unless you have defined the logical name DSM$GLOBAL_DIRECTORY to
refer to another default directory and device. The default library directory
is SYS$LIBRARY, unless you have defined the logical name
DSM$GLOBAL_LIBRARY to refer to another default library directory. To
access a global directory or library global directory other than the default,
you append any part of a file specification except a file name to the qualifier
name. The file name field is always the global name.

NOTE

To access a directory with the /GLOBALS qualifier, you must
have created the directory previously with the DSM
CREATE/DIRECTORY command.

See Section 5.2 for a complete description of V AX-11 DSM directories and
their specifications.

4.4.7 /INPUT

/INPUT= file-spec

Specifies your principal input device or input stream. The default principal
input device is SYS$INPUT. SYS$INPUT is a process-permanent logical
name that, for interactive users, equates with your terminal.

4.4.8 /INSTALL

/INSTALL

Indicates that the DSM mapped routine file specified should be installed as
a permanent global section. See Sections 5.8.2 and 11.2.2 for information on
how to use the /INST ALL qualifier.

4-12 VAX-11 DSM Command Line Options

4.4.9 /KEY _SIZE

/KEY_SIZE=n

Changes the maximum permissible length of a global key, that is, the
subscript field of a global variable.

This qualifier only applies to globals created during the current terminal
session. The maximum key size of existing globals cannot be modified.

The value of n must be greater than or equal to 4 and less than or equal to
255. The default key size is 64 characters.

Refer to Section 9.7.3.1 for more information about this qualifier.

4.4.10 /MAPPED and /NOMAPPED

/[NOJMAPPED[= file-spec][/LIBRARY]

Serves either of the following functions:

1. Establishes access to a set of DSM routines that have been mapped in a
global virtual memory section.

2. Allows you to create a private or global virtual memory section and
map a set of DSM routines in it.

You must have sufficient user privileges to create a global virtual memory
section. ·

The default in Programmer Mode is /NOMAPPED. The default. in
Application Mode is /MAPPED. Thus, in Application Mode, V AX-11 DSM
searches any virtual memory section for a routine that you want to execute
before it searches your default directory.

For more information about mapped directories and libraries, virtual mem
ory sections, and the /MAPPED qualifier, see Section 5.8.2. Also see the
description of the following qualifiers:

•/SHARED

• /SECTION_NAME

• /CLUSTER_SIZE

•/SYSTEM

•/INSTALL

•/DELETE

4.4.10.1 Mapping a Global Section - A virtual memory section is a copy of
an image or data file that can be mapped in a process's virtual address
space at run time. Virtual memory sections can be private or shared. When
a virtual memory section is shared, it is called a global section.

V AX-11 DSM Command Line Options 4-13

To map an existing global section in your process's virtual address space,
you use the /MAPPED qualifier along with the /SHARED qualifier. If you
append the /LIBRARY subqualifier to /MAPPED, a library section is
mapped. Otherwise, a routine directory is mapped.

4.4.10.2 Creating a Private Virtual Memory Section - To create a private
virtual memory section and map a directory or library in it, you must
append a file specification to /MAPPED. You must not specify /SHARED in
this case. V AX-11 DSM then requests the Create and Map Section
(CRMPSC) system service to create a virtual memory section in your pro
cess's virtual address space. The specified file is then mapped to it.

To map a directory privately, you append a file specification to the
/MAPPED qualifier. To map a library, you must append the /LIBRARY
subqualifier to the file specification, as in the following example:

/MAPPED= newfile/LIBRARY

4.4.11 /OPEN_GLOBALS

/OPEN_GLOBALS = n

Changes the maximum number of globals that can be open simultaneously.
The default number of globals that DSM keeps open simultaneously is 7.

Refer to Section 9.7.3.2 for more information about this qualifier.

4.4.12 /OPTIMIZE_BUFFER_COUNT and
/NOOPTIMIZE..:.BUFFER_COUNT

/[NO]OPTIMIZE_BUFFER_COUNT

Overrides V AX-11 DSM optimization of the RMS multi-buffer count for
existing globals. The default is /OPTIMIZE_BUFFER_COUNT. If you spec
ify /NOOPTIMIZE_BUFFER_COUNT, the system uses the RMS default
buffer counts that apply to indexed sequential (ISAM) files for all global
access.

The /OPTIMIZE_BUFFER_COUNT qualifier does not apply to newly cre
ated globals. For new globals, the RMS default multi-bµffer counter is used,
whether or not /OPTIMIZE_BUFFER_COUNT was specified on the DSM
command.

Refer to Section 9.7.3.3 for more information about the RMS multi-buffer
count and this qualifier.

4-14 V AX-11 DSM Command Line Options

4.4.13 /OUTPUT

/OUTPUT= file-spec

Specifies your principal output device or output stream.

The default principal output device is SYS$0UTPUT. SYS$0UTPUT is a
process-permanent logical name that, for interactive u~ers, equates with
your terminal.

4.4.14 /ROUTINES

/ROUTINES= [file-spec][!LIBRARY]

Changes your default directory for DSM application routines or library
routines until DSM. image rundown.

To access a DSM application routine directory other than the default, ap
pend any part of a file specification to the qualifier name. To access a DSM
library routine directory, you must append the /LIBRARY subqualifier to
the file specification. Otherwise, a routine directory is assumed.

When you use this qualifier, the original default routine directory is the file
ROUTINES.DSM in the default VAX/VMS device and directory. If you
define the logical name DSM$ROUTINE_LIB, the translation of the logical
name is used as the default instead.

The original default file specification for a library directory is
SYS$LIBRARY:ROUTINES.DSM. If you define the logical name
DSM$ROUTINE_DIR, the translation of the logical name is used as the
default instead.

See Section 5.2 for further details about VAX-11 DSM directories.

4.4.15 /SECTION_NAME

/SECTION_NAME =name

Specifies the name of the DSM mapped routine section. This qualifier must
be used in. conjunction with the /MAPPED qualifier.

The /SYSTEM, /INSTALL, or /DELETE qualifiers can be used with
/SECTION_NAME.

The argument name is the name of the DSM n;iapped routine section. It can
be up to 15 characters long. The default name is the translation of the
logical name DSM$ROUTINE __ SEC. -

The /SECTION_NAME qualifier can only be used for application sections.
You cannot use it for mapped library sections.

V AX-11 DSM Command Line Options 4-15

4.4.16 /SEQUENTIALOPTIMIZATION and
/NOSEQUENTIALOPTIMIZATION

/(NO]SEQUENTIAL_OPTIMIZATION

Optimizes the sequential access to global variables through $NEXT,
$ORDER, $ZNEXT, and $ZORDER. It does this by caching the Record File
Address (RF A) of selected operations.

4.4.17 /SHARED and /NOSHARED

/(NOJSHARED

Serves three functions:

1. Determines whether file sharing is enabled or disabled for this
DSM user.

/SHARED enables file sharing. /NOSHARED disables file sharing. This
qualifier does not affect files accessed for implicit sharing. Thus,
/[NO]SHARED does not apply to libraries or other files accessed
read only.

2. Determines whether your process communicates with the DSM Job
Controller.

/SHARED establishes a communications link between your process and
the DSM Job Controller. This link allows the DSM Job Controller to
process your lock requests.

/NOSHARED inhibits communication between your process and the
DSM Job Controller; in this case, V AX-11 DSM ignores LOCK and
ZALLOCATE commands.

3. Determines whether routines are mapped in private or global virtual
memory sections.

/SHARED causes virtual memory sections to be mapped globally.
/NOSHARED causes virtual memory sections to be mapped privately.

See the description of the /MAPPED qualifier and Section 5.8.2 for
more information about virtual memory sections.

The default in Programmer Mode is /NOSHARED. The default in
Application Mode is /SHARED.

4.4.18 /SOURCILBUFFEFLSIZE = n

/SOURCE_BUFFER_SIZE = n

Changes the size of your DSM source routine buffer and precompiled rou
tine buffer. The DSM source routine buffer stores the lines of a routine
written in the DSM language as ASCII character strings. The precompiled
routine buffer stores DSM routines in precompiled format, as described in
Chapter 1. The default size of these buffers is 10240 bytes.

4-16 V AX-11 DSM Command Line Options

4.4.19 STACl<-.SIZE

/STACK_SIZE =n

Changes the size of your DSM call stack. The size of the stack determines
how many call frames an application can keep active at the same time -
that is, how many nested DO statements, FORs, or XECUTE commands
can be used. If the stack is too small, VAX-11 DSM issues the
%DSM-E-STKOVF error message.

4.4.20 /SYMBOL TABLE_SIZE = n

/SYMBOL_TABLE_SIZE = n

Changes the size of your local symbol table. The local symbol table contains
an entry for all defined local variables, subscripted or unsubscripted. The
default size of the local symbol table is 102400 bytes.

4.4.21 /SYSTEM

/SYSTEM

Used with /MAPPED and /SECTION_NAME to indicate a system-wide ap
plication section.

4.4.22 /TERMINALBUFFER_SIZE = n

/TERMINAL_BUFFER_SIZE = n

Changes the size of your terminal's output buffer, that is, the output buffer
size for the principal device. The size of this buffer determines the maxi
mum size of a single physical write operation to the terminal. The default
size of the output buffer is 992 bytes. The maximum value of the parameter
argument n depends on the value of the VAX/VMS sysgen parameter
MAXBUF. Consult your system manager for more information about
MAXBUF.

4.4.23 /TYPEAHEAD

/TYPEAHEAD

Overrides the DSM default by which the READ literal command, issued
from a terminal, causes typeahead to be purged. If you specify
/TYPEAHEAD, typeahead is never purged.

VAX-11 DSM Command Line Options 4-17

4.4.24 /[NO]UNWIND_STACK[=ALL]

/[NO]UNWIND_ST ACK[= ALL]

When an error occurs, VAX-11 DSM unwinds the DSM call stack automat
ically, back to the call frame of the last declared error handler. The
[NO]UNWIND_STACK qualifier is provided for backward compatibility
with VAX-11 DSM Version 1.0. If /NOUNWIND is specified, the stack is
not unwound (the same behavior as in Version 1.0). If you specify
/NOUNWIND, you can use the ZCLEAR command to unwind the stack
explicitly.

If you specify /UNWIND= ALL, the DSM call stack is cleared whenever an
error occurs.

4.5 Examples of the Extended Command Line

The following are examples of the DSM command with qualifiers:

1. DSM/KEY_SIZE=83/SOURCE_BUFFER_SIZE=11000/SYMBDL_TABLE=1QOOO

Invokes V AX-11 DSM in Programmer Mode and overrides the follow
ing defaults:

• Global key size

• Source and precompiled routine buffer size

• Symbol table size

2. DSM/C~NABLE=BREAK/GLOBALS=WRKDS:[CYG.DSMJ/LIBRARY

Invokes V AX-11 DSM in Programmer Mode and changes the default
library global directory to a VAX/VMS subdirectory located on the de
vice indicated by the logical name WRKD$. It also instructs the inter
preter to treat (CTRL/c l like the DSM BREAK command.

3. DSM/INPUT=DATA.DAT;Z/OUTPUT=LPAO:DATA.OUT

Processes the input file DATA.DAT;2, and sends the output to the line
printer. The line printer listing has DATA.OUT as a header. Note that
this happens only if the line printer is a spooled device.

4. DSM/BREAK/NOSHARED ···INFO

Invokes V AX-11 DSM in Application Mode and executes the routine
INFO at start-up. BREAK recognition is enabled, and file sharing is
disabled.

4-18 VAX-11 DSM Command Line Options

5. DSM/OPEN_GLOBALS=10/ROUTINES=NEWDIR ... RECORDS

Invokes V AX-11 DSM in Application Mode and:

• Executes the routine RECORDS

• Overrides the default maximum number of open globals

• Changes the default routine directory to a file called NEWDIR.DSM.
The routine RECORDS resides in this directory.

6. DSM/NOMAPPED ··· INt,lENTORY

Invokes V AX-11 DSM in Application Mode; loads and executes the
routine INVENTORY from the default routine directory.

7. DSM/MAPPED=LIBRARY/LIBRARY

Invokes VAX-11 DSM in Programmer Mode and creates a private vir
tual memory section for the file LIBRARY.VIR.

VAX-11 DSM Command Line Options 4-19

Chapter 5
Developing and Maintaining Application Routines

This chapter describes how to develop and maintain VAX-11 DSM applica
tion routines. It describes:

• Creating routines

• Saving and loading routines

• Deleting and renaming routines

• Storing routines on sequential files

• Editing routines

• Debugging routines

• Using directories

• Error processing

• Mapping routines

To use this chapter effectively, you should be familiar with the syntax of
the DSM language as described in the VAX-11 DSM Language Reference
Manual.

5.1 Creating Routines

The V AX-11 DSM language can be used in two ways:

1. In Direct Mode, in which all commands entered at the terminal are
executed (interpreted) immediately.

2. Through routines made up of multiple lines of DSM code. Routines can
be stored and used in future DSM sessions.

5-1

Introduction to DSM, included in your documentation set, provides a tuto
rial in developing routines. The following sections summarize these sub
jects for the purpose of refernnce.

5.1.1 Direct Mode

When you enter DSM in Programmer Mode, you may want to use the
language in Direct Mode. Direct Mode is useful for learning how the lan
guage works, and for getting quick answers to computational problems.

In Direct Mode, you enter commands after the DSM prompt(>). VAX-11
DSM executes the command immediately. The following example shows
your inputto DSM in Pirect Mode and the interpreter's response: ,

> WRITE 11 Hello 11

Hello

5.1.2 Entering Lines in the Routine Buffer

Direct Mode is limited because you must wait for DSM's response after each
line of code. For more sophisticated programming tasks, you use routines
instead of individual lines of code. You signal to DSM that a line of code
belongs to a routine by starting the line with a@§) or a label followed by a
GMJ. The following are examples of routine lines:

>START@IDWRITE 11 Po1...ie rs of 2 11

>@IDSET ><= 1
>@IDFOR I= 1: 1: 10 SET ><=><*2 WRITE \I II II

1\ t

The routine lines shown above make up a routine that calculates and dis
plays on the terminal the first ten powers of 2. You execute these lines by
entering the DO command, using the first label in the routine as the point
at which execution begins:

>DO START

DSM responds by displaying the output of the routine:

Po•A•e rs of 2
2 4 8 18 32 84 i2B 258 512 1024

Because they start with a GM) or a label and a GMJ, the lines stay in your
routine buffer. You can execute them again by repeating the DO command.

5.1.3 Using the ZPRINT and ZREMOVE Commands

You can display the lines in your routine buffer by issuing the ZPRINT
command. The ZPRINT command leaves the pointer (showing your location
in the buffer) at the end of the routine.

5-2 Developing and Maintaining Application Routines

If you specify a line label with ZPRINT, DSM displays the line specified
and positions the pointer after that line.

The ZREMOVE command deletes the contents of the routine buffer. If you
specify a line label with ZREMOVE, that line is deleted.

After you delete a line with ZREMOVE, you can replace the line by enter
ing a new line starting with @ID or with a label and @ID. The following lines
show how ZREMOVE is used in deleting and replacing a routine line:

> ZREMOt.lE START
>STARTCffi@WRITE 11 Poi,.1e rs of t1A10 11

To insert a line without removing one, you first move the pointer to the
position after a line by using ZPRINT. Then, you enter the new line, as
shown in the following example:

>ZPRINT START
START WRITE 11 Po1A1ers of t1A10 11

> Cffi@W R I TE ! , 11 f r o 111 1 t o 1 0 11

To insert a line at the beginning of the routine buffer (the area in which
your routine lines are kept), type ZPRINT + 0 to position the pointer before
the first line in the buffer. Then enter the new line.

5.2 Saving and Loading Routines

If you want to save a DSM routine for later use, you can store in in a
routine directory. A routine directory is a VAX/VMS file with the default
name ROUTINES.DSM. If you want your routine directory to have another
name, include the /ROUTINES qualifier with the DSM command, as de
scribed in Section 4.4.14.

You must restore the routine to your routine buffer if you want to add more
lines, remove lines, or edit the routine with the DSM editor (described in
Section 5.5.1).

To display a list of the routines in your routine directory, invoke the "%RD
(Routine Directory) utility, as follows:

>DO ·'%RD

lJAX-11 DSM Routine Directory of WRK$:ETESTJROUTINES.DSM;

ABC DEF }-{ }{ }{

3 routines

>

Developing and Maintaining Application Routines 5-3

5.2.1 Saving a Routine in a Routine Directory

The ZSA VE command places the routine currently in your routine buffer
into your DSM routine directory.

The argument of the ZSA VE command is the name under which you want
to save the routine. For example, the following command stores the con
tents of the routine buffer in the routine directory under the name ABC:

>ZS At.IE ABC

You use the same name when you load the routine back into your routine
buffer, as described in the next section. You also use the routine name
when you execute the routine from the routine directory. To execute a
routine that is in your routine directory, you issue the DO command with
the name of the routine, preceded by a circumflex ("), as shown in the
following example:

>DO ···ABC

FrorTl 1 to 10

If you try to ZSAVE an unnamed routine (that is, if you enter ZSAVE
without an argument while code is in your routine buffer), VAX-11 DSM
returns a PNAME (Bad Routine Name) error.

A routine in your routine buffer may already have a name because it was
already stored and then loaded back into the routine buffer. You determine
the name (if any) of the current routine by issuing the following WRITE
command:

> W $ TE>~T < +O)

The function $TEXT(+ 0) always contains the string DSM uses to name the
current routine.

5.2.2 Loading a Routine from the Routine Directory

To restore a routine to the routine buffer, enter the ZLOAD command with
the name of the routine as the argument:

> ZLOAD ABC

5-4 Developing and Maintaining Application Routines

5.2.3 Forms in Which a Routine Is Stored

The ZSA VE command stores each routine in the directory in two forms:

1. In source form, as the ASCII character strings that make up each DSM
language statement in the routine.

2. In precompiled form, as source code that has been partially processed to
expedite subsequent interpretation. See Section 1.1.3 for more informa
tion about precompilation.

5.3 Deleting and Renaming Routines

As described in Section 5.1.3, the ZREMOVE command deletes lines from
your routine buffer. In conjunction with other commands, the ZREMOVE
command can be used to delete routines stored in your routine directory
and rename routines. The following sections describe these uses of
ZREMOVE.

5.3.1 Deleting a Stored Routine

To delete a routine stored in your routine directory, first enter the
ZREMOVE command to clear your routine buffer. Then enter the ZSAVE
command with the name of the routine that you want to delete as its argu
ment. This sequence saves an empty routine buffer under the same name as
the routine that you want to delete. After you delete a routine from the
routine directory,. DSM also removes that routine's name from the list dis
played by "%RD.

The following command sequence deletes from disk a routine called
BOOKSTAT that you once saved:

> ZREMOt.JE
> ZSAt.JE BOOK STAT

5.3.2 Renaming Routines

The procedure for renaming a routine stored on disk is similar to the proce
dure for deleting a routine stored on disk. First use the ZLOAD command
to load the routine into your routine buffer. Then refile the routine using
the ZSA VE command with the new name as its argument. This procedure
produces two copies of the same routine in the routine directory.

To keep only a single copy of the routine under the new name, you must
delete the routine under its original name. You do this by saving an empty
routine buffer using the old routine name. The following example shows
how to change the name of the routine BOOKSTAT to BKCHK and delete
the original version of the routine:

> ZL BOOK STAT
>ZS BKCHK
>ZR
>ZS BOOKSTAT

Developing and Maintaining Application Routines 5-5

5.4 Using Sequential Files to Store Routines

In addition to storing routines in a routine directory for execution, you can
write routines to a sequential file for later printing or backup, as described
in the following sections. However, the DSM utilities "%RS (SA VE) and
"%RR (RESTORE) move routines to and from a sequential storage medium,
so you need not execute the steps in Sections 5.4.1 or 5.4.2 manually.

NOTE

Remember that you cannot execute (use the DO command
on) a routine from a sequential file.

5.4.1 Writing a Routine Onto a Sequential File

To write a routine to a sequential file, follow these steps:

1. Issue the OPEN command to gain ownership of the device.

2. Issue the USE command to make the device current.

3. Issue the ZPRINT command followed by two spaces to write the routine.

The following command sequence writes the routine currently in your rou
tine buffer to a sequential file called FILEM.DAT:

> 0 11 FILEM 11 U 11 FILEM 11 ZP W ! C 11 FILEM 11

Note the two blanks after the ZP command in this command sequence. Two
blanks are required because the ZP command has no argument.

NOTE

You must not use the file types .DSM, .GBL, or .VIR for
routines stored in sequential files, since these file types have
special meaning for DSM operations. Use a file type such as
.DAT or .BAC.

You can also invoke the DSM routine "%RS to save a rputine'in a sequen
tial file. The "%RS routine is useful if you intend to edit your routine with a
VAX/VMS-supported editor, as described in Section 5.5.2.

5.4.2 Loading a Routine from a Sequential File

To load a routine from a sequential file manually, use the following
procedure:

1. Issue the OPEN command to gain ownership of the device.

2. Issue the USE command to make the device current.

3. Enter an argumentless ZLOAD command to load the first routine in the
file into your routine buffer. ZLOAD reads lines into your buffer until it
encounters a null line or an end-of-file.

~6 Developing and Maintaining Application Routines

For example:

> 0 11 FILEM 11 U 11 FILEM 11 ZL

If the routine you want to load is not the first record of the file, (that is, in
the first physical position), use multiple ZLOAD commands separated by
two spaces to load the desired routine. The number of ZLOAD commands
you use should match the position of the routine in the file. For example,
two ZLOADs loads the second routine in the file; three ZLOADs loads the
third, and so forth.

The DSM utility "%RR (RESTORE) loads a routine from a sequential file.
The "%RR utility is useful if you are using a VAX/VMS-supported editor,
as described in Section 5.5.2.

5.5 Using Editors

If you want to edit a routine, you have several methods to choose from, in
addition to the use of ZREMOVE described in Section 5.1.3. VAX-11 DSM
provides a text editor that can be used interactively in Programmer Mode.
This editor is described below in Section 5.5.1.

You can also invoke one of the text editors supported by VAX/VMS, as
described in Section 5.5.2.

5.5.1 Using the DSM Editor

VAX-11 DSM has an interactive text editor that allows you to edit the code
in your routine buffer. The DSM routine editor can change text on one line
or in a range of lines.

The editor displays a sequence of question-like prompts. At each prompt,
you enter the information required to do your editing task. If you enter a
question mark (?) at an editor prompt, the editor displays a list of your
options.

Before using the DSM editor, bring the routine that you want to edit into
the routine buffer (if it is not already there). The following command in
vokes the routine editor:

> }-{ECUTE ···%ED

or, in abbreviated form:

> }-{ ···1..ED

The editor's initial response to this command is:

LINE>

Developing and Maintaining Application Routines 5-7

This response indicates that you have entered the DSM editor and that the
editor is waiting for you to respond to its first query. To exit %ED, simply
type a period(.).

The DSM editor displays seven prompts. Appendix B describes each prompt
in detair. See Introduction to DSM for tutorial information on using the
DSM editor.

5.5.2 Using VAX/VMS Editors

The VAX/VMS operating system provides a number of powerful text edi
tors to help you develop and maintain your application software. Among
these editors are EDT, TECO, SOS, EDIT, and VTECO. Some of these
editors are documented in other DIGITAL publications, such as the
V AX-11 SOS Text Editing Reference Manual and the EDT Editor Manual.
Both of these books are included in your VAX/VMS documentation set. All
of the editors are documented in the VAX/VMS HELP facility.

To use one of these editors to edit DSM routines, follow these steps:

1. Use the DSM library utility Routine Save ("%RS) to transfer a routine
or group of routines to a VAX/VMS sequential file.

2. Through this utility, place the output file in your default VAX/VMS
directory, after which you can edit it with any editor you choose.

3. After your editing session, use the DSM library utility Routine Restore
("%RR) to transfer the routine(s) to your DSM routine directory.

Refer to Chapter 7 for a description of these utilities.

The following example shows how a routine is transferred to a file for
editing and then restored to the DSM routine directory.

> D ···%RS

Routine Save

0 u t Put f i 1 e? MY R 0 U TtBITl
rout in e < s) >AB C(BIT)
r o u t i n e < s) ?(BIT)

Savin~ routines on WRK$:[TESTJMYROUT+DAT;1

ABC

1 routines sa1Jed

> HALT

%DSM-I-HALTt HALT coMMand executed

$ ED IT MYROUT. DAT

$DSM

5-8 Developing and Maintaining Application Routines

t,JA}<-11 DSM t.iersion 2.0

> D '.Y..RR

Routine Restore

InPut file? MYROUT(fil]

Restorin9' routines fro1T1 WRK:[TESTJMYROUT.DAT;t
Saved on 18-AUG-1882 17:05:08.55

ABC

"· ·'

5.6 Starting and Stopping Routines

In Programmer Mode, you can execute the routine that is currently in your
routine buffer or a routine that is stored on disk, . as described in Sections
5.1.2 and 5.2.1. In Application Mode, a routine is executed immediately
after DSM image start-up. In either case, DSM executes the precompiled
version of the routine.

Section 5.6.1 summarizes the rules for executing the routine that is cur
rently in your routine buffer. Section 5.6.2 describes how you execute a
routine stored in your routine directory.

Section 5.6.3 lists the conditions under which a routine stops executing.

5.6.1 Executing the Routine in Your Routine Buffer

To execute a routine that is currently in your routine buffer, you use the
DO command in one of the following forms:

1. The DO command without an argument causes V AX-11 DSM to exe
cute the routine lines in the buffer, starting from the first execut
able line.

2. The DO command with an argument causes V AX-11 DSM to begin
executing at the line specified in the argument. For example, enter:

> DO PARA+3

Where PARA+ 3 is a routine line specified by label plus offset. V AX-11
DSM executes the routine starting with line PARA+ 3.

5.6.2 Executing a Routine from the Routine Directory

To load and execute a routine stored in your routine directory, you issue the
DO with an argument. The argument is the name of the routine in your
routine directory that you wish to execute. It is always preceded by a
circumflex (").

Developing and Maintaining Application Routines 5-9

For example, the following command line loads the routine PRIME into
your routine buffer and executes it:

>DD ·'PR I ME

You can also specify a routine line in this syntax, for example:

>D 0 G G + 1 '· PR I ME

This command loads the routine PRIME into your routine buffer and exe
cutes it starting from line GG+ 1.

5.6.3 Conditions for Execution to Stop
-~i ..

VAX-11 DSM continues to execute a routine until one of the following
takes place:

•DSM executes a HALT command (which causes rundown of the DSM
image and transfer of control to the CLI).

• DSM executes a QUIT command at the outermost nesting level. Control
returns to the DSM interpreter if execution was begun in Programmer
Mode; control returns to the CLI if execution was begun in
Application Mode.

•DSM executes a BREAK command. See Section 5.7 for more information
about the BREAK command and debugging.

• You type a (CTRL/ c l from the Principal 1/0 Device (if (CTRL/ c l recognition is
enabled). The Principal 1/0 Device is generally the terminal where you
logged in. Transfer of control is the same as for the QUIT command.

• You type a (CTRL/v l on the Principal 1/0 Device (if (CTRL/v l recognition is
enabled). Control returns to the command language interpreter.

• An error occurs.

5.7 Using the VAX-11 DSM Debugger

The VAX-11 DSM Debugger is a facility for monitoring the execution of
routines. It allows you to stop the execution of your routine at any point you
desire and enter break mode, a variety of direct mode in which you can
enter any DSM command except ZLOAD, ZREMOVE, and ZINSERT. Then
you can start execution of your routine again. You can interrupt execution
as often as you like.

The points where you stop your routine are called breakpoints. You can set
as many breakpoints as you like, of which nine are valid at any given time.
You can also execute your routine in single-step mode, in which execution
is interrupted after every command in the routine.

5-10 Developing and Maintaining Application Routines

. The debugger is implemented through a set of V AX-11 DSM commands, a
set of qualifiers on the DSM command line, and a system variable. The
commands, described in full in the VAX-11 DSM Language Reference
Manual, are:

• BREAK[:postconditional] argument

• ZDEBUG[:postconditional] argument

• ZSTEP[:postconditional] argument

• ZGO[:postconditional]

Using these commands is described later in this chapter.

The qualifiers on the DSM command are /[NO]CENABLE =BREAK and
/[NO]BREAK. As described in Section 4.4.2, /NOBREAK inhibits the recog
nition of breakpoints altogether. The /CENABLE=BREAK qualifier
causes DSM to interrupt execution of your routine when a (CTRL/ c l is entered
from the terminal. The negative form, /NOCENABLE, causes DSM to ig
nore (CTRL/ c l.

The special variable $ZBREAK, described in detail in the V AX-11 DSM
Language Reference Manual, is used to contain a reference to the location
where you set a breakpoint. Section 5.7.1.1 below describes how you use
$ZBREAK.

5.7.1 Breakpoints

V AX-11 DSM allows you to set nine breakpoints for normal execution and
one breakpoint for single-step execution. (These ten breakpoints do not
include the breakpoints set with the BREAK command, described in

·Section 5.7.1.2.)

You refer to the nine breakpoints for normal execution as $ZBREAK(l)
through $ZBREAK (9). You refer to the single-step breakpoint as
$ZBREAK(O).

You set these breakpoints, examine their contents, and clear them as de
scribed in the following sections.

When V AX-11 DSM encounters a breakpoint in a routine, and the
ZDEBUG flag (described in Section 5.7.4) is ON, DSM displays the follow
ing messages:

%DSM-I-BREAK BREAK coMMand executed
-DSM-1-ATLABEL entrY-ref routine-line
BREAK b: n >

The arguments entry-ref and routine-line identify the location in the rou
tine where the breakpoint was encountered.

Developing and Maintaining Application Routines 5-11

The argument b identifies the breakpoint. For normal execution, b is a
number from 1 to 9. For single-step execution, b is 0. When CCTRL/c 1 is en
abled to cause a BREAK, the characters ""C" are displayed instead. (If you
reach a breakpoint through the BREAK command, described in Section
5.7.1.2, b:n is the value of the argument of the BREAK command.)

The argument n is the command number (on the routine line) before which
the breakpoint took place.

5.7.1.1 Setting Breakpoints with $ZBREAK- You set a breakpoint at a par
ticular location in your program by issuing the DSM SET command with
the breakpoint variable $ZBREAK as its argument. (You can set, modify,
or kill elements in $ZBREAK regardless of the value of the DEBUG flag.)
With the $ZBREAK variable, you specify the entry reference and command
number of the desired location, in the following format:

SET $ZBREAK="Entry Reference:Command Number"

Entry Reference Must be a complete routine reference in the form:

label + offset "routine name

The label must be the closest label to the line you are
specifying. If the line you are specifying has its own
label, you must specify that label, not an offset from an
earlier label. (See Section 4.2.2 for information about
labels and offsets.)

Command Number Must be included; there is no default command number.
V AX-11 DSM does not recognize breakpoints on lines
with no commands (comment lines, for example).

VAX-11 DSM assigns this location to the first unused breakpoint, begin
ning with breakpoint 1. If all nine breakpoints are in use, VAX-11 DSM
clears breakpoint 9 and assigns the value you specify to breakpoint 9.

You set a particular breakpoint by specifying a breakpoint number with
the $ZBREAK variable, as follows:

SET $ZBREAK(b)="Entry Reference:Command Number"

You can specify any number from 1 to 9 as b for normal execution. For
single-step execution, specify 0 as b.

5.7.1.2 Setting Breakpoints with the BREAK Command - You can also set a
breakpoint in a routine by including the BREAK command in the routine,
as follows:

BREAK argument

5-12 Developing and Maintaining Application Routines

The argument (a number, expression, or string) is evaluated and displayed
in the prompt issued by DSM when execution is suspended and you enter
break mode through the BREAK command. For example, if you include the
command BREAK 4 in a routine, DSM displays the following prompt after
its informational messages:

BREAK a>

The BREAK command also takes a postconditional expression. For exam
ple, the following command string suspends execution only ifthe value ofM
is less than 30:

BREAK:M<30

Recognition of the BREAK command depends on the presence (implicit or
explicit) of the /BREAK qualifier with the DSM command. In Programmer
Mode, /BREAK is the default. In Application Mode /NOBREAK is the de
fault. However, execution of the BREAK command is independent of the
status of the DEBUG flag, set with the ZDEBUG command.

See the VAX-11 DSM Language Reference Manual for more information on
the BREAK command.

5.7.1.3 Breakpoint Actions - A breakpoint action string is a command or
set of commands that is executed whenever a breakpoint is encountered.
You can specify an action string as part of the $ZBREAK value for the
breakpoint you specify, in the following format:

SET $ZBREAK(b) ="Entry Reference:Command Number> Action"

The breakpoint action string can contain any commands that are legal in
break mode, that is, any commands but ZL, ZR, and ZI. The commands are
executed when the breakpoint is reached, before the BREAK message is
printed.

You should use an action string to perform simple tasks that you would
otherwise have to type every time a breakpoint is reached. For example,
you could use an action string to examine the contents of a variable. Break
point action strings are also useful for more sophisticated tasks, such as the
%TRACE utility described in Section 5. 7.5.

You cannot specify a breakpoint action string with the BREAK command.

You can specify a breakpoint action string for use in single-step execution.
To do this, specify breakpoint 0, as follows:

SET $ZBREAK(O) =">Action"

This causes the breakpoint action to be performed after each step in your
program. Note that you do not specify an entry reference or command num
ber in this command.

Developing and Maintaining Application Routines 5-13

5.7.1.4 Examining Breakpoints - To examine the contents of all existing
breakpoints, enter the following command:

ZWRITE $ZBREAK

To examine the contents of any particular breakpoint, enter the WRITE
command, specifying which breakpoint you want to look at:

WRITE $ZBREAK(b)

In response, VAX-11 DSM displays the contents of the breakpoint as in the
following example:

$Z5C4)= 11 START+1 TEST:3>W A 11

5.7.1.5 Clearing {Killing) Breakpoints - To clear all existing breakpoints,
enter the following command:

KILL $ZBREAK

To clear a particular breakpoint, specify the breakpoint number in the
KILL command:

KILL $ZBREAK(b)

You can also clear a breakpoint by setting the breakpoint to the null string,
as follows:

SET $ZBREAK(b) =" "

5. 7 .2 Continuing Execution after a Breakpoint

There are two VAX-11 DSM commands for continuing execution after a
breakpoint.

You use the ZGO command (abbreviated as ZG) to continue execution after
a breakpoint reached through the BREAK command or through a break
point set with SET $ZBREAK. Execution is resumed and continues until
another breakpoint is reached.

You use the various forms of the ZSTEP command to continue execution in
single-step mode. To start using single-step mode, you first stop your rou
tine at a breakpoint. Then you enter one of the forms of the STEP com
mand, as follows:

ZSTEP OVER or ZSTEP

This form of ZSTEP treats any DO command and the entire subroutine
associated with the DO command as one unit. Execution is not halted at
any of the lines in the subroutine. Execution is halted when another line is
reached in the "top" routine.

5-14 Developing and Maintaining Application Routines

ZSTEP INTO

This form of ZSTEP steps to the next command if the current command is a
DO. Thus, it steps "into" the subroutine instead of stepping "over" it. Exe
cution is halted at each line in the subroutine.

ZSTEP OUTOF

This form of ZSTEP steps to the first command following the QUIT from
the current routine. You usually use ZSTEP OUTOF when you have
stepped into a routine with ZSTEP INTO, executed a number of steps, and
then decide that you do not need to monitor the remainder of the
subroutine.

See Section 5.9.2.2 for more information about nested DO statements and
Section 5.9.2.3 for more information about the QUIT command.

5.7.3 Interrupting Execution with (crnuc J

If you equate (CTRL/c l with the BREAK command, routine execution stops
whenever (CTRL/c l is entered at the terminal. VAX-11 DSM displays the
following message:

%DSM-I-BREAK BREAK coMMand executed
-DSM-I-ATLABEL entrY-ref routine-line
BREAK '"C>

You equate (CTRL/c l with a break by including the /CENABLE=BREAK
qualifier on the DSM command.

5.7.4 Enabling and Disabling Debugging

The ZDEBUG command (abbreviated ZDEB, not ZD or ZDE) sets an inter
nal flag that turns the debugger on or off. When this flag is ON, VAX-11
DSM recognizes breakpoints set by means of the $ZBREAK special vari
able. (However, DSM does not recognize breakpoints if /NOBREAK is in
effect, even if ZDEBUG is ON.)

The flag is set to OFF until you set it to ON by entering the following
command:

ZDEBUG [ON]

The argument ON is optional. This command is abbreviated ZDEB.

To disable recognition of breakpoints set with $ZBREAK, you set the flag
to OFF with the following command:

ZDEBUGOFF

When the debugger is off, V AX-11 DSM still recognizes the BREAK and
SET $ZBREAK commands. You disable recognition of the BREAK com
mand and breakpoints set through $ZB by including the /NOBREAK quali
fier on the DSM command, as described in Chapter 4.

Developing and Maintaining Application Routines 5-15

Both ZDEBUG ON and ZDEBUG OFF can be specified with a postcondi
tional argument. Using a postconditional argument allows you to turn de
bugging off or on depending on conditions that exist at run time.

5.7.5 Debugging Utilities Provided with VAX-11 DSM

The V AX-11 DSM software includes two utilities, %TRACE and %STACK,
that use the debugging facility to provide information about the execution
of routines. You access these utilities by issuing the D "%TRACE or D
"%STACK commands.

The %TRACE utility allows you to trace the execution path of a program or
to monitor changes to variables. It uses the debugging commands and
breakpoint action strings. Section 7.4.4.2 shows a sample of %TRACE's
output.

The %STACK utility displays the DSM call stack at a breakpoint. Section
7.4.4.1 shows a sample of %STACK's output.

5.8 Using VAX-11 DSM Directories

V AX-11 DSM provides routine directories for all DSM routines and global
directories for globals. Section 5.2 introduced the functions of the routine
directory. The following sections describe these directories in greater detail.

5.8.1 VAX-11 DSM Routine Directories

VAX-11 DSM provides two routine directories for each user. These directo
ries catalog two kinds of routines:

• Application routines

•Library routines (routines whose names begin with the percent (%)
character)

VAX-11 DSM routine directories are VAX-11 RMS indexed (ISAM) files.
(See Section 6.6.1 for a description of indexed file organization). V AX-11
DSM stores every application and library routine as two records of a direc
tory file: one record for the source version of the routine and one record for
the precompiled version of the routine.

5.8.1.1 File Specifications of Routine and Library Directories - The file speci
fication that corresponds to your DSM routine and library directories is
determined by a set of defaults. The system creates a full VAX/VMS file
specification for your directory files according to the following procedure:

1. If the logical names DSM$ROUTINE_DIR and DSM$ROUTINE_LIB
are defined, they translate to a VAX/VMS device, directory (or sub
directory), file name, and file type. DSM$ROUTINE_DIR and
DSM$ROUTINE_LIB can translate to the same string or to different
strings.

5-16 Developing and Maintaining Application Routines

2. If the logical names DSM$ROUTINE_DIR and DSM$ROUTINE_LIB
are not defined, the system uses your default VAX/VMS device and
directory for your application routines, and the translation of the sys
tem logical name SYS$LIBRARY for your library routines.

3. The default file name is ROUTINES.

4. The default file type is .DSM.

Thus, depending on how you define the logical names, the default file speci
fication for DSM application routines can be either of the following:

• The translation of DSM$ROUTINE_DIR

• Default Device:[Default Directory]ROUTINES.DSM

The default file specification for DSM library routines can be either:

• The translation of DSM$ROUTINE_LIB

• SYS$LIBRARY:ROUTINES.DSM

You can override any part of the default file specification for DSM applica
tion and library routine directories by either of the following methods:

•Issue the DCL ASSIGN command before invoking DSM, as in the follow
ing example:

$ASSIGN [MYDIR.DSMJ DSMSROUTINE_DIR

As a result of this assignment, DSM considers your routine directory for
this VAX/VMS session to be [MYDIR.DSM]ROUTINES.DSM. To change
the routine directory specification for the duration of the DSM image,
append the /USER qualifier to the ASSIGN command.

•Use the /ROUTINES qualifier with the DSM command, described in
Section 4.4.14. This changes the directory's file specification for the dura
tion of the DSM image.

To examine the contents of your application and library routine directories,
run the routine utilities A%RD and LIBA%RD, described in Section 7.4.2.

5.8.1.2 Size of Routines in Directories - The default maximum size of a
DSM routine in your routine buffer is 10240. You can change this maxi
mum size (up to 16290 bytes) with the SOURCE_BUFFER_SIZE qualifier
on the DSM command, described in Chapter 4. This maximum size is deter
mined by the maximum size of a V AX-11 RMS record (16300 bytes).

However, the /SOURCE_BUFFER_SIZE qualifier does not increase the
maximum size of a routine that you can store in a routine directory. The
maximum size of a routine that you can store in a routine directory is
determined by its maximum record size, set when the routine directory is
first created. This maximum record size is the size of the routine buffer at
the time, plus ten.

Developing and Maintaining Application Routines ~17

To increase the maximum size of the DSM routines that can be stored in a
routine directory, follow this procedure:

1. Save all your routines in a sequential file, using "%RS.

2. Using the DCL RENAME command, give the routine directory a tem
porary name, for example:

$ RENAME ROUTINES.DSM ROUTINES.OLD

3. Invoke DSM, specifying a larger value with /SOURCE_BUFFER_SIZE.

4. Restore the routines from the sequential file, using "%RR.

5. Delete the renamed directory (ROUTINES.OLD).

Remember to invoke DSM with the new buffer size in the future. You may
want to define the DSM command as DSM/SOURCE=new value in your
VAX/VMS log-in command file.

5.8.1.3 Routine Directory Protection and Access Modes - V AX--11 DSM rou
tine files are subject to the same file protection mechanism as any
VAX/VMS file. This mechanism is described in Section 3.4.

When you first access a DSM routine directory file (by loading, saving, or
executing a routine), VAX-11 DSM opens the file. If the DSM routine name
does not start with the percent(%) character, the routine is by definition an
application routine; DSM opens the routine directory file with
read/wri tel delete access.

If the DSM routine name starts with the percent(%) character, the routine
is by definition a VAX-11 DSM library routine, and the system opens the
routine directory file with read-only access.

If the routine directory file is protected against write access, but DSM was
invoked in shared mode, DSM opens the file with read-only access. ,

If, however, the fully expanded file specifications of your application and
library routine directories are identical (called the resultant file specifica
tion), VAX-11 DSM opens your library routine directory with
read/write/delete access.

5.8.1.4 Creating or Modifying a DSM Library Directory - The system library
directory is specified by the translation of the logical name SYS$LIBRARY.
SYS$LIBRARY contains the library routines supplied with the VAX-11
DSM system. (It also contains the globals used by these routines.)
SYS$LIBRARY :ROUTINES.DSM is your default routine library directory
unless DSM$ROUTINE_LIB is defined.

If the resultant file specifications of your application and library routine
directories are identical, V AX-11 DSM treats %Routine_Name and
Routine_Name as synonyms. In this case, you can save routines that start
with''%" without restriction or special preparation.

5-18 Developing and Maintaining Application Routines

If, however, the resultant file specifications of your DSM application and
library routine directories are not identical, you must use the following
procedure to place routines in a directory to be accessed as a library
directory:

1. Save a series of routines in an application directory (established with
the /ROUTINES= file-spec qualifier of the DSM command, for example)
with the names of each routine stripped of the leading"%".

2. Run down the DSM image

3. Reinvoke VAX-11 DSM, declaring the previous application directory to
be your library routine directory, by appending /ROUTINES=file
spec/LIBRARY to the DSM command. Using this command qualifier
also causes VAX-11 DSM to define DSM$ROUTINE_LIB. (You can
also redefine the library name using the DCL ASSIGN command.)

4. Execute the same routines by including the leading"%" in the argu
ment of the DO command.

The following example illustrates this procedure:

$ DSM I ROUTINES= MYLI B
> ZSAVE }{
>HALT
$ DSM/ROUT I NES=MYL I Bl LIBRARY

t,JAX-11 DSM Version 2+0

> DO ·' %}-{

You must have the same UIC as the system library directory (UIC [1,4]) to
save routines in this directory.

5.8.1.5 VAX-11 DSM Routine Directories and VAX-11 RMS - All VAX-11
RMS defaults relating to indexed files apply to DSM routine directories.
Thus, if you know how to use the RMS utilities, you can create, analyze,
convert, and reclaim any DSM routine directory.

The following RMS attributes apply to DSM routine directories:

• Indexed Organization

•Primary Key Position = 0

• Primary Key Size = 10

• Primary Key Type = string

•Maximum Record Size = 10250 or size set with
/SOURCE_BUFFER_SIZE, plus 10

• Record Format = variable

Developing and Maintaining Application Routines l>-19

The system and process RMS default parameters for indexed files, such as
the Multi-Buffer. Count, also apply to DSM routine directories. Refer to
Chapter 9 for more information about V AX-11 RMS.

5.8.2 VAX-11 DSM Global Directories

VAX-11 DSM provides two global directories for each user. These directo
ries catalog your:

1. Application globals

2. Library globals (global names that start with "%")

Globals comprise the V AX-11 DSM data base. The system represents each
global by one VAX-11 RMS ISAM file.

VAX-11 DSM places globals in your application global directory whenever
you execute a routine or command line that defines a global variable with
the SET command. You can delete an application global (or a sub-tree) by
issuing the KILL command. For a complete description of the global SET
and KILL procedure, refer to the V AX-11 DSM Language Reference
Manual. Refer to Chapter 9 for a detailed description of global variables.

At installation time, the system places a set of library globals in
SYS$LIBRARY. You can read the contents of these globals (all of which
start with%), but you cannot SET or KILL any nodes in them.

The correspondence between a global, the ISAM file that represents it, its
VAX-11 DSM directory, and its VAX/VMS file specification is determined
by a set of defaults. The system creates a full file specification for your
application and library globals according to the following procedure:

1. If defined, the logical names DSM$G LOBAL_DIR and
DSM$GLOBAL_LIB translate to a VAX/VMS node, device, directory
(or subdirectory), and file type. DSM$GLOBAL_DIR and
DSM$GLOBAL_LIB can translate to the same string or to different
strings.

2. If the previous logical names are not defined, the system uses the local
node and your default VAX/VMS device and directory for application
globals, and the translation of the system logical name SYS$LIBRARY
for library globals.

3. If the global variable name does not begin with"%", the file name of the
ISAM file that represents the global equals the global variable name.

If the global variable name begins with "%", the file name equals the
global variable name stripped of the leading "%" sign.

5-20 Developing and Maintaining Application Routines

NOTE

If a global variable name begins with "%", the global is
by definition a library global. Generally, library globals
can only be accessed for reading. However, if the resul
tant file specifications of your application and library
global directories are identical, you can access library
globals read/write.

4. GBL is the default file type for application and library globals. V AX-11
DSM applies this default to the specification after it applies:

a. The global variable's user field, which specifies a directory or a node
ip. a computer network, as described in Section 9.2.

b. DSM$GLOBAL_DIR or DSM$GLOBAL_LIB (since these logical
names can include a file type in their definition).

5. The default version number for globals is 1. Global file version numbers
are not updated each time they are accessed.

Depending·on how you define your logical names, the default file specifica
tion for any global used in an application routine can be either of the
following:

• DSM$GLOBAL_DIR:globalname.GBL

• Default Device:[Default Directory]globalname.GBL;l

The default file specification for any global used in a library routine can be
either:

• DSM$GLOBAL_LIB:globalname.GBL

• SYS$LIBRARY:globalname.GBL;l

You can override any part of the default file specification for DSM applica
tion and library globals (except the file name) with the DCL ASSIGN com
mand or with the /GLOBALS qualifier of the DSM command. The following
examples show these two methods:

$ ASSIGN [MYDIR.DSMJ DSM$GLOBAL_DIR

$ DSM/GLOBALS= [MYDIR.TESTJ

To examine the contents of your application and library global directories,
run the GLOBAL DIRECTORY ("%GD) and LIBRARY DIRECTORY
(LIB"%GD} utilities from the Global Utilities menu, as described in
Sections 7.4.1.4 and 7.4.1.6.

Chapter 9 describes how you create and modify your own library globals.

Developing and Maintaining Application Routines 5-21

5.9 Error Processing

VAX-11 DSM's error-processing facilities enable the system to behave
predictably when an error occurs. They also allow you to control the han
dling of errors that occur while your routines are running.

5.9.1 Error Severity Levels

VAX-11 DSM treats all errors according to their severity. Errors can have
one of five severity values, as follows:

0 Warning Information

1 = Success

3

4 Severe Error

2 = Error

Standard V AX-11 DSM error processing considers levels 2 and 4 as the
basis for stopping a job, and levels 0, 1, and 3 as the basis for continu
ing a job.

In Programmer Mode, V AX-11 DSM considers all of the following to be
level 2 errors:

• Language syntax (interpreter) errors

• Global access errors

• Routine interrupt errors

• 1/0 errors

Such errors interrupt the execution of the current routine. In Programmer
Mode, the system normally responds to errors by:

1. Transferring control from the current device to the Principal I/O
Device; this sets the $IO special variable to the principal device.

2. Interrupting the routine.

3. Printing a series of linked messages on the Principal 110 Device that
indicate:

•The line and position in the line of the DSM routine that caused the
error, and the type of DSM error that occurred

•The VAX-11 RMS error (if one occurred)

• The VAX/VMS system error (if one occurred)

Refer to Appendix A of this manual for a complete description of DSM
error messages and the VAX/VMS documentation for description of
VAX/VMS and V AX-11 RMS error messages.

4. Storing device-specific error information in the $ZA and $ZB special
variables (see Chapter 6 for further details).

5-22 Developing and Maintaining Application Routines

5. Returning to the DSM prompt(>).

In Application Mode, V AX-11 DSM turns all errors into severe errors (se
verity level 4). Severe errors cause DSM image rundown and transfer con
trol to the CLI.

VAX-11 DSM always considers as severe errors such start-up errors as the
following:

• DSM command-line errors

• Failure to open the principal device

•Faulty interaction with the DSM Job Controller or the DSM Journal
Process

5.9.2 Error-Processing Routines

You use error-processing routines in a DSM application to prevent errors
from being turned into severe errors. The DSM language provides a set of
commands and special variables for error processing. Some of these are
specifically designed for use in error processing. Others perform special
actions when executed in error-processing routines.

The mode of error handling used for your DSM routine depends on your use
of the /[NOJUNWIND qualifier on the DSM command.

If you do not specify a qualifier, or do specify /UNWIND, which is the
default, DSM treats errors as described in Sections 5.9.2.1 through 5.9.2.4.
If you specify /NOUNWIND, DSM handles errors as described in Section
5.9.2.5. The error-handling mode used when you specify /NOUNWIND is
compatible with earlier versions of V AX-11 DSM.

NOTE

The ZCLEAR command has no effect unless /NOUNWIND is
specified.

5.9.2.1 Default Error-Handling Mechanism - You use the $ZTRAP special
variable to establish an error-handling routine for your DSM routine. The
value of $ZT, as described in the VAX-11 DSM Language Reference
Manual, is a reference to the line and/or routine to which control should
pass when an error occurs in a routine called from the routine that sets
$ZT. ($ZT can be set through the SET command.)

The $ZTRAP special variable should not be confused with the ZTRAP com
mand. When this command is issued, an error occurs, and the value speci
fied as the argument of the command is passed to the error handler.

If you set the special variable $ZT to the null string, and an error occurs,
V AX-11 DSM performs standard error processing.

Developing and Maintaining Application Routines 5-23

If you set $ZT to "LABEL"ROU", and an error occurs, DSM:

1. Sets the $ZERROR special variable to a string containing the DSM
error code, the error message text, and the label and routine name that
indicate where the error occurred. This information is followed by
VAXNMS or VAX-11 RMS error messages., if any ..

2. Transfers control to the location referenced in $ZTRAP: routine called
ROU at entry point LABEL.

3. Unwinds the DSM call stack to the frame in which $ZT was set.

You can examine $ZE to determine which errors occurred and where. At
the end of the error handler, you must set $ZE to the null string(""). This
indicates to DSM that the error handler has successfully treated the error
condition, so that DSM continues execution of the application (at the point
determined by the use of the QUIT or GOTO, as described in Section
5. 9. 2.3). If $ZE is not null at the end of the error handler, DSM behaves as
if the error condition was never corrected. In addition, when the next error
occurs, a non-null value of $ZE causes V AX-11 DSM to perform no error
recovery at all.

5.9.2.2 The ZQUIT Command and Nested DO Statements - You use the
ZQUIT command in your error-processing routines if your application calls
its subroutines with nested DO statements. If executed within one of an
application's declared error handlers (a routine referenced in $ZTRAP), the
ZQUIT command transfers control to the previous error handler, that is, to
the error handler of the last subroutine to set $ZTRAP. The ZQUIT com
mand unwinds the call stack down to the frame in which this handler was
declared.

When used together, $ZTRAP and ZQUIT provide a mechanism for linking
all the error handlers, in an application into a hierarchy of handlers, sys
tematically passing an error from one handler to another until the error
condition is resolved.

To clarify the context in which error handlers are used, the following para
graphs explain how a call stack is constructed.

Each time a routine calls another routine with a DO statement, V AX-11
DSM builds a data structure called a DO frame. The DO frame is built on
the call stack (one of the private data structures in your process's virtual
address space). VAX-11 DSM stores the context of each routine that issues
a DO command in a DO frame. The context includes the current status of
any FOR loops, the value of the $ZTRAP special variable, and the position
of the return from the subroutine.

Thus, when routine A issues a DO statement to call routine B, V AX-11
DSM builds a DO frame on the call stack to preserve the context of A.
When routine B issues a DO to call routine C, V AX-11 DSM adds a DO
frame to the stack to preserve the context of B, and so forth.

5-24 Developing and Maintaining Application Routines

Each routine in an application can establish its own error-handling routine
by setting $ZTRAP to the name of an error handler to which V AX-11 DSM
passes control in the event of an error.

For example, consider the following sequence of $ZTRAP settings:

• Routine C (which contains the DO command to execute routine D) sets
$ZTRAP to ""CERR"

•Routine B sets $ZTRAP to ""BERR" (and contains the DO command to
execute routine C)

• Routine A sets $ZTRAP to "" AERR" (and contains the DO command to
execute routine B)

If an error occurs in routine D (the frame of which contains no handler),
VAX-11 DSM transfers control to CERR to process the error condition, and
unwinds the DO frame for routine D from the call stack. If an error occurs
in routine C, V AX-11 DSM transfers control to "CERR to process the error
condition, but does not unwind any frame, since the error occurred in the
same frame that $ZT was set to "CERR in.

5.9.2.3 Exiting from an Error Handler - If an error handler can correct an
error condition, it can exit using either of the following commands:

•QUIT

•GOTO

From a declared error handler, QUIT transfers control to the routine in
which the error handler was declared. Thus, if routine D, called from rou
tine C, contains an error that transfers control to "CERR, the QUIT com
mand in "CERR transfers control to the statement in routine B that follows
the DO "C command.

Usually, you terminate an error-processing routine that can correct an
error condition with GOTO. In this way the application can proceed to the
next routine (or to any appropriate destination). You can use GOTO to exit
an error handler (after setting $ZE to "") because DSM does not add a
frame to the call stack when it transfers control to an error handler.

If an error handler cannot correct an error condition, you can terminate the
error processing code with ZQUIT to transfer control to the error handler of
the last subroutine to set $ZTRAP. For example, if an error occurs in rou
tine D (in the application described above) and the error handler "CERR
cannot correct the error condition, ZQUIT transfers control to "BERR and
unwinds routine C's DO frame from the call stack. If "BERR cannot correct
the error condition, ZQUIT transfers control to "AERR and unwinds B from
the stack, and so forth. If the last declared error handler issues a ZQUIT,
the DSM error is handled as if no handler were present.

Figure 5-1 shows the flow of error processing when the error handlers
terminate with ZQUIT.

Developing· and Maintaining Application Routines 5-25

Figure l>-1: Flow of Error Processing with ZQUIT

ROUTINE D

ERROR

ROUTINE C

ROUTINE B

ROUTINE A

.
ERROR .

DSM Interpreter (>)
Programmer Mode

CERR

anywhere

VAX/VMS Command Level ($)
Application Mode

MR-S-2360-82

As shown in Figure 5-1, if you started the application in Programmer
Mode, control passes to the DSM interpreter. If this occurs, VAX-11 DSM
processes the error using standard error processing. If you started the appli
cation in Application Mode, control passes to VAX/VMS and the $STATUS
symbol is set to the binary equivalent of the error. In this case, you may
want the last error handler in the application to exit with the HALT
command.

When DSM executes a HALT comm~nd in an error-processing routine, it
automatically passes control to V AXNMS. V AX-11 DSM also passes the
status of the last DSM error to the VAX/VMS system variable $STATUS.
This variable always contains the status of the last image to execute. In
this case, $STATUS contains the binary equivalent of the current DSM
error message. (When you run down DSM normally, $STATUS contains the
binary equivalent of the message %DSM-I-HALT).

'

5-26 Developing and Maintaining Application Routines

You can test $STATUS in a command procedure and respond to it with the
DCL ON command (refer to the VAX/VMS Command Language User's
Guide for details). Thus, you can continue to process the error condition at
VAX/VMS command level if desired.

5.9.2.4 ·· Error Processing if /NOUNWIND Is Specified - If you specify
/NOUNWIND on the DSM command, the transfer of control to an error
handler does not automatically cause the stack to be unwound down to the
frame of the routine that declared the handler. If /NOUNWIND is in effect
and you want the stack to be unwound, you must issue the ZCLEAR
command.

Similarly, if /NOUNWIND is in effect and a ZQUIT command is issued,
control is transferred to the next error handler "down" the stack, but no
frames are unwound.

The QUIT and GOTO commands can also behave differently with
/NOUNWIND in effect than with /UNWIND. When /NOUNWIND is in
effect, you QUIT from the routine in which the error occurred, not from the
routine that declared the handler. GOTO transfers control to the location
specified, but a subsequent QUIT would transfer control to a different loca
tion with /NOUNWIND, because the frame in which the handler was de
clared is not unwound.

5.10 Using the VAX-11 DSM Mapped Routine Facility

·The V AX-11 DSM mapped routine facility allows you to map a precompiled
DSM routine or set of routines in a VAX/VMS virtual memory section.
After you map the section, you can access its contents, read only, from the
DSM image.

Virtual memory sections can be private or shared. A shared virtual mem
ory section is called a global section. Global sections can be accessed by
more than one process at a time. Thus, they provide a way for many users
to access frequently used code or data in a way that produces the least
overhead.

Normally, only one copy of a global section actually resides in memory.
When a group of processes require data in the same section, the system
maps the contents of the section into the virtual memory space of each
requesting process.

If you install a VAX-11 DSM application (or library) in a permanent global
section, the following improvements in performance occur: ·

1. Virtual memory ,paging replaces reading a record from an indexed file,
which improves response time because paging 110 is the fastest 1/0 in
VAX/VMS.

Developing and Maintaining Application Routines 5-27

2. The most frequently used DSM routines tend to remain in physical
memory, so page faults occur from the free .page list rather than the
disk page file. (The free page list is a list of physical memory pages that
are available for use; it also acts as a cache for pages that were recently
discarded by a process as the result of a page fault. Refer to the
VAX/VMS Summary Description and Glossary and the VAX-11
Software Handbook for more information about paging.)

5.10.1 Types of Virtual Memory Sections

A global virtual memory section can be any of the following types:

• Group temporary

• Group permanent

• System temporary

•System permanent

A group global section can be shared by all processes that have the same
group number in their UICs.

A system global section can be shared by all processes in the system.

If a group or system global section is temporary, V AX-11 DSM deletes it
when no processes are mapped to it. If a group or system global section is
permanent, the section remains in existence even when no processes are
mapped to it.

You must install permanent global sections in the system with the
/INSTALL and /SHARED qualifiers of the DSM command and delete them
with the /DELETE and /SHARED qualifiers. These qualifiers are described
in Section 11.2. The /CLUSTERSIZE qualifier can be used in conjunction
with /INSTALL to override the default VMS page fault cluster size for the
section installed. You can also specify /SECTION_NAME and /SYSTEM.

V AX-11 DSM also allows you to map a file in your own process virtual
address space. This type of mapping is called private mapping. Privately
mapped sections are not shared by other processes in the system. VAX-11
DSM deletes private virtual memory sections during DSM image rundown.
If you are in Programmer Mode, or specified /NOSHARED, DSM maps
sections privately.

5.10.1.1 Global Section Names - VAX-11 DSM applies two default names
to global sections:

DSM$ROUTINE_SEC

The global sections that contain DSM application routines have this logical
name. Each group can have only one DSM application installed as a global
section. You can include the /SYSTEM qualifier to make this section a
system global section instead of a group global section. When you create a

~28 Developing and Maintaining Application Routines

group global section, the system qualifies DSM$ROUTINE_SEC with the
group number of your UIC. Thereafter, only processes with the same group
number can access that DSM$ROUTINE_SEC. If you include the qualifier
/SECTION_NAME = n, the specification named as n supersedes the logical
name DSM$ROUTINE_SEC.

DSM$LIBRARY_SEC

The global section that contains DSM library routines has this logical
name. There is only one section named DSM$LIBRARY _SEC because only
one library can be installed as a global section. This section is always
mapped on a system-wide basis. This logical name cannot be overridden.

5.10.1.2 Privileges Required to Create Virtual Memory Sections - You must
have special user privileges to create a group or system virtual memory
section and make it permanent. Table 5-1 shows the privileges needed to
create each type of section.

Table 5-1: Privileges Needed to Create Virtual Memory Sections

Section Type Privileges

Group Permanent PRMGBL

System Temporary SYSGBL

System Permanent SYSGBL
PRMGBL

See the VAX/VMS System Management and Operations Guide for informa
tion about these user privileges.

No special privileges are required to:

• Create a private virtual memory section

• Map to an existing group or system global section

Thus, all users can access files that are mapped in a global section.

5.10.2 Creating and Mapping Virtual Memory Sections

To map a DSM routine or set of routines, either as a global section or a
private section, you must build a mapped routine file with a VAX-11 DSM
library utility called "%RBUILD. (You access this utility by choosing the
BUILD option from the MAPPED menu, found under ROUTINES in the
library utilities package.) This utility builds a file that contains selected
precompiled DSM routines in a format that can be mapped into a virtual
memory section. The "%RBUILD utility is described in Section 7.4.2.12.

Developing and Maintaining Application Routines 5-29

To map the file generated by this utility as a permanent global section,
either for the group (if an application) or for the system (if a library), you
have to .install it in the system with the /INSTALL qualifier of the DSM
command. You must have the privileges described in Section 5.10.1.2 to use
this qualifier. Section 11.2.1 describes the /INSTALL qualifier and the pro
cedure for installing permanent global sections.

To map the file generated by "%RBUILD as a temporary global section
(either group or system) you do not have to install it in the system, but you
must have the privileges described in Section 5.10.1.2. If you have these
privileges, you can create a temporary global section when you invoke the
DSM image by issuing the DSM command in either of the following forms:

DSM/SHARED/MAPPED = file name/INST ALL

Creates DSM$ROUTINE_SEC and qualifies it with the group number of
your UIC, then maps the specified file in it. The /SHARED qualifier in
structs the system to map the file in DSM$ROUTINE_SEC. You should in
general use the /INSTALL qualifier unless the section is private. You can
also include /SYSTEM and /SECTION_NAME in this command line, as in
the following command:

DSM/SHARED/MAPPED=NEWP/INSTALL/SYSTEM/SECTION NAME=RADIO$SEC

DSM/SHARED/MAPPED= file name/LIBRARY/INSTALL

Creates DSM$LIBRARY_SEC and maps the specified file in it.
DSM$LIBRARY_SEC is always created or mapped on a system-wide basis.
The /SHARE qualifier (with the /LIBRARY qualifier) instructs the system
to create this section for the file. The /INSTALL qualifier specifies that the
section should be created as a permanent section.

NOTE

If you do not specify a file type in the file specification,
V AX-11 DSM uses . VIR by default.

If you try to create a global. section when either DSM$ROUTINE_SEC or
DSM$LIBRARY _SEC already exists, V AX-11 DSM ignores the file specifi
cation, maps the existing section in your process's virtual address space,
and reports a warning message to inform you that the file was not mapped.

To map explicitly to an existing global section, issue one of the following
forms of the DSM command when you invoke the DSM image:

DSM/SHARED/MAPPED

Maps DSM$ROUTINE_SEC in your process's virtual address space. In this
case, the /SHARED qualifier instructs the system to look for a group global
section. V AX-11 DSM returns an error message if DSM$ROUTINE_SEC
does not exist. You can also include /SYSTEM and /SECTION_NAME in
this command line.

5-30 Developing and Maintaining Application Routines

If you know the name of the starting routine in a mapped application, you
can invoke V AX-11 DSM in Application Mode to map (and execute) the
section; this also allows you to omit the /SHARED qualifier from the com
mand line because the.default in Application Mode is /SHARED.

DSM/SHARED/MAPPED/LIBRARY

Maps DSM$LIBRARY _SEC in your process's virtual address space. The
/SHARED qualifier instructs the system to look for this system global
section. If you want to execute a specific mapped library routine, you can
invoke V AX-11 DSM in Application Mode. This allows you to omit
/SHARED from the command line. ·

To create a private virtual memory section, use the /MAPPED command
qualifier with the DSM command when you invoke the DSM image, and
add a qualifier to the file name. In either of the forms shown below, this
command causes V AX-11 DSM to call the Create and Map Section system
service ($CRMPSC). This system service creates a virtual memory section
in your process's virtual address space and maps the specified file to it.

DSM/MAPPED = file name

Creates a private section for a DSM application.

DSM/MAPPED= file name/LIBRARY

Creates a private section for a DSM library.

The system deletes all private virtual memory sections at DSM image
rundown. ·

5.10.3 Running Mapped Routines

The procedure for executing an application or library routine from a virtual
memory section is the same as the procedure for executing a routine that
has not been mapped. Thus, to execute a mapped application or library
routine, you simply specify the name of the routine you want to execute in
the argument of the DO command, as follows:

>DO "Routine Name

This command causes V AX-11 DSM to search DSM$ROUTINE_SEC or
your private section for the specified routine name. If it is found, the inter
preter executes the r011tine directly from virtual memory. If the routine
name is not found, the system searches your default routine directory for
the routine, and,_ if found, loads and executes it.

To execute a library routine from a virtual memory section, precede the
routine name with the percent character(%), as follows:

>DO "%Routine Name

This causes VAX-11 DSM to search DSM$LIBRARY_SEC (or the section
specified with /SECTION_NAME) or your private section for the specified
routine name stripped of the leading "%".

Developing and Maintaining Application Routines ~1

You can execute mapped and non-mapped routines during the same termi
nal session without restriction. VAX-11 DSM simply searches a virtual
memory section for the presence of a routine before searching your default
directory. However, you can map to only two DSM mapped routine sections
simultaneously:

1. One mapped application, either private or shared (group or system)

2. One mapped library, either private or shared (system-wide)

To list mapped· routines, issue the command D MAP"%RD for mapped sec
tions or the command D "%MAPCON to list the contents of a mapped file.

5.10.4 Optimization Considerations

The following DSM operations always require the presence of DSM
source code:

• Executing the $TEXT function (unless the line starts with a double
semicolon)

• Generating a DSM error message that indicates the line where the error
occurred

Because mapped routine files consist of precompiled code only, VAX-11
DSM must be able to locate the source version of the routines in which
these operations occur; that is, DSM must be able to locate the directory in
which the routines are stored in source form.

When either of the preceding operations have to be performed, V AX-11
DSM locates and interprets the source code, and then continues to execute
code from the mapped section. This process is totally transparent. However,
it does affect the performance of a mapped application if these operations
are performed frequently.

You can optimize the processing of $TEXT for an application by including a
double semicolon(;;) at the beginning of lines that reference $TEXT. The
double semicolon causes DSM to include the line in the precompiled code,
and not to access the source code at run time.

5-32 Developing and Maintaining Application Routines

Chapter 6
Input/Output Processing

This chapter describes the input and output (1/0) options for VAX-11 DSM.
It provides information about:

• DSM terminal 110

•DSM file-handling procedures

• Interprocess communication through· mailboxes

• Networking

6.1 Overview of 1/0 Processing

The V AX-11 DSM I/O subsystem is the link between the DSM language
and a subset of the 1/0 capabilities of VAX/VMS.

V AX-11 DSM performs device 110 for the following types of devices:

•Terminals

•Mailboxes

•Relative files

• Indexed files

• Sequential files

• Magnetic tapes

110 to these classes of devices is discussed in Sections 6.5 through 6.11.

VAX-11 DSM uses the VAX/VMS system service Queue 1/0 (QIO) to
handle terminals and mailboxes.

6-1

For file-structured devices (disks and magnetic tape), VAX-11 DSM uses
the file-handling capabilities of V AX-11 RMS, the file and record access
subsystem of the VAX/VMS operating system. Through DSM, you can ma
nipulate all file types supported by VAX/VMS, including relative files, in
dexed files, sequential files, and sequential files on magnetic tape.

If your system is one of the nodes in a DECnet-VAX network, the DSM 1/0
subsystem also allows you to access and manipulate files on remote comput
ers (resource sharing) and exchange data with routines on remote comput
ers (task-to-task communication).

Although V AX-11 DSM defines the general device types listed above, DSM
1/0 operations are largely independent of physical devices.· By using·
VAX/VMS logical names, you can associate any device or file specification
with an arbitrary string. Thus, you can write a routine or application that
does not explicitly refer to particular VAX/VMS devices or files; at run
time, you can simply associate the logical names in your application with
the file specification appropriate to your particular needs. If V AX-11 DSM
encounters 1/0 directives that do not apply to the device being used, the
system typically ignores the directives, instead of causing an error.

6.2 Assigning 1/0 Devices or Gaining Access to Files

To gain access to a file in a VAX/VMS directory, or to allocate and deallo
cate any device in the system other than your Principal 1/0 Device (defined
below in Section 6.2.4), you use the DSM assignment commands:

OPEN

USE

The OPEN command establishes ownership of the device indi
cated in its argument, or enables access to the file indicated.
The OPEN command can also reserve a number of devices or
files for a routine or application, if you include several device
specifiers in its argument list. When you issue the OPEN com.:.
mand, it places a device in a process'~ pool of devices.

The USE command makes one of a process's devices the current
device,or establishes access to a file. DSM directs all 1/0 re
quests to the device specified in the argument of the USE com
mand (until you issue another USE command). Thus, a routine
cannot communicate with more than one device at a time.

DSM stores the device specifier of the current device or file in
the $10 special variable, described in detail in Section 6.4. All
1/0 operations (such as READ or WRITE) are directed to the
device whose device specifier is in $10. You can reference $10
in any expression, but you can only change its value through
the USE command. The full VAX/VMS device and file specifi
cation for the device or file is stored in $ZIO.

6-2 Input/Output Processing

CLOSE The CLOSE command releases a device or file to the system
and allowsit to be used by other system users. When a routine
HALTs, or when you rundown the DSM image, all currently
owned devices and files are automatically closed (unless output
is pending, in which case the 110 operation completes before the
system closes the device or file).

6.2.1 Assignment Command Syntax

The DSM assignment commands have the following general syntax:

OPEN device-specifier[:(parameter l: ... parameter n)][:timeout]

USE device-specifier[:(parameter l: .•. parameter n)]

CLOSE ·device-specifier[:(parameter 1: ... parameter n)]

Note that:

• Command elements in brackets are optional.

• All spaces and colons are required to separate the components of the
command.

•Parentheses are required to delimit parameters if more than one para
meter is specified; quotation marks are required to delimit the device
specifier unless the device specifier is a variable or an expression, as
described in Section 6.2.2.

•Parameters are device-specific. Refer to Sections 6.5 through 6.11 for lists
of parameters for different kinds of devices.

• The timeout argument can only be used with the OPEN command. The
timeout is an integer value that specifies the number of seconds V AX-11
DSM suspends execution until the requested device or file is available. If
VAX-11 DSM cannot open the device or file in the specified period of
time, it sets the $TEST special variable to 0 and resumes execution. If
V AX-11 DSM can open the device or file during the specified period, it
sets $TEST· to 1 and resumes execution.

6.2.2 1/0 Device Specifiers

To refer to a device in any DSM assignment command, you use a device
specifier. A device specifier is any part of a V AXNMS file specification,
enclosed in quotes, or an expression evaluating to such a specification.

A DSM device specifier need not include all components of a VAX/VMS file
specification. V AX-11 DSM defaults are applied to missing components,
followed by V AXNMS defaults. Logical names can replace any field or
fields of a DSM device specifier.

A DSM device specifier can be any valid DSM variable or expression. If you
use a variable or expression, you need not enclose the device specifier in
quotes.

Input/Output Processing 6-3

The following are the defaults applied to device specifiers:

Node = local node

Device = default VAX/VMS device

Directory = default VAX/VMS directory

File name = user defined

File type = .DAT

Examples:

The following examples assume 3 is a logical name and ABC is a variable
whose value is the following string: [OWNER]INFO.DAT;l.

Device Specifier Full File Specification

0 "MTAO:TEST" MTAO:[Default Directory]TEST.DAT;l

U "[CYGNUS.DSMJLOCAT" Default Device:[CYGNUS.DSMJLOCAT
.DAT;l

C "3" Translation of the logical name 3

0 "LZ002"

U "DISK$USER:"

0 ABC

6.2.3 Device Recognition

Default Device: [Default Dire·ctory]
LZ002.DAT;l

The device represented by logical
name DISK$USER. File name null, type
.DAT.

Default Device:[OWNER]INFO.DAT;l

When you allocate a device with the OPEN command, V AX-11 DSM recog
nizes the device type either by its device specifier or by an identifying
parameter on the OPEN command itself.

V AX-11 DSM recognizes terminals and magnetic tape drives by their de
vice characteristics.

VAX-11 DSM recognizes relative files and indexed files by the presence of
the RELATIVE or INDEXED parameters on the OPEN command.

VAX-11 DSM recognizes a mailbox by the presence of the MAILBOX para
meter on the OPEN command when you first create the mailbox. At any
later point when you use the mailbox, VAX-11 DSM recognizes it by its
device characteristics alone.

If a device cannot be classified in any of the previous categories, V AX-11
DSM recognizes the device as a sequential file. Thereafter, the device can
only be accessed sequentially.

6-4 Input/Output Processing

6.2.4 The Principal 1/0 Device

By convention, the terminal at which you log in is considered to be your
principal 110 device. VAX-11 DSM interprets the following device speci
fiers to mean the principal device:

•O

•The null string

• The value of the $10 special variable when at DSM command level

VAX-11 DSM equates your principal 1/0 device with the VAXNMS pro
cess permanent logical names SYS$INPUT and SYS$0UTPUT. For in
teractive users, these logical names refer to your terminal.

You can establish a new default principal input and output device by using
the /INPUT and /OUTPUT qualifiers with the DSM command. You can
separate the input and output functions by specifying one device with
/INPUT and another with /OUTPUT.

When you run DSM from a command procedure, the input stream is the file
(file type .COM) that contains the procedure. In batch mode, the input
stream is the batch command file; output goes to the log file.

6.3 1/0 Commands

The following DSM commands allow you to perform all 1/0 operations:

ZPRINT

READ

READ*

ZLOAD

WRITE

WRITE*

ZWRITE

Writes the contents of the source routine buffer to the current
device.

Accepts data from the current input device and stores it in
local variables.

Performs an unformatted read of one 8-bit binary character.

Without arguments, loads a routine from the current 1/0 de
vice to the source routine buffer.

Writes variables and string literals to the current device
or file.

Performs a physical write of one 8-bit binary character.

Writes the contents of all or part of the local symbol table to
the current file or device.

You can use the DSM 1/0 commands freely with any applicable device. You
cannot, however, use them to perform operations that are inapplicable to a
device, such as trying to READ from a line printer.

Section 6.5 through the end of this chapter provide device-specific informa
tion about the behavior of these commands.

Input/Output Processing 6-5

6.4 1/0 Special Variables

The following V AX-11 DSM special variables report device-specific infor
mation about the current I/O operation:

$IO Contains the DSM specification of the current I/O device for all
devices except the principal device. For the principal device, $IO
returns the fully parsed V AXNMS device and file specification
of SYS$INPUT.

$X Contains an integer value that _indicates the horizontal cursor
position on the current line. The value of $X can be between 0
and 65535 (16 bits); V AX-11 DSM resets $X to 0 when its value
exceeds 65535 or when a new line (!) is written. If more than one
DSM device specifier maps to the same device, all accesses to
that device modify a common $X.

READ * and WRITE * do not update $X.

$Y Contains an integer value that indicates the current line on the
current page of the 1/0 device. The value of $Y, indicating the
number of line feeds executed since the last form feed, can be
between 0 and 65535. V AX-11 DSM resets $Y to 0 when its
value exceeds 65535 or when you enter a form feed ("L). If more
than one DSM device specifier maps to the same device, all
accesses to that device modify a common $Y.

READ* and WRITE* do not update $Y.

$ZA Contains device-dependent status or error information about the
last 1/0 operation.

$ZB Contains device-dependent status or error information about the
last I/O operation.

$ZC Contains a truth value that indicates whether a (CTRL/c l was typed
on a terminal on which (CTRL/c l recognition is disabled. $ZC con
tains 1 if (CTRL/c l was typed; otherwise it contains 0. Testing $ZC
resets it to O; $ZC is also reset to 0 before each READ or READ*
command, and whenever the DSM interpreter prompt appears.
$ZC always contains 0 for terminals on which (CTRL/ c l recognition
is enabled, and for non-terminal devices.

$ZIO Contains the fully parsed V AXNMS device and file specification
of the current device. This specification is obtained from the
DSM device specifier and the application of defaults. For the
principal device, $ZIO contains the same string as $10.

6-6 Input/Output Processing

For the principal device only, the special variables $X and $Y can be modi
fied through the cursor control functions, specified with the USE command.
These functions are specified in the following forms:

UO:X=n
UO:Y=n
U O:UPSCROLL
U O:DOWNSCROLL

See Section 6.5.2.2 for more information on these functions.

6.5 Using Terminals

110 to terminals uses the V AXNMS QIO interface. QIO is a V AXNMS
system service, described in detail in the VAX/VMS System Services
Reference Manual.

6.5.1 Setting Terminal Characteristics

Default terminal characteristics for a VAX/VMS system are defined at sys
tem generation time based on the most common type of terminal in use.
Y oti can examine these characteristics by issuing the DCL command
SHOW TERMINAL. To change these characteristics for the duration of
your process, you can issue the DCL command SET TERMINAL, in the
following format:

SET TERMINAL[!Qualifier(s)]~>[device name]

The command can take the following qualifiers to indicate which terminal
characteristics you want to set or clear:

/[NO JECHO

/[NO]ESCAPE

/[NO]FORM

/[NOJTAB

/WIDTH=n

NT05

NT52

NT55

NTlOO

/[NOJWRAP

The argument of the SET TERMINAL command is the device name of the
terminal whose characteristics you want to change. If you do not specify a
device name, the current terminal device is assumed.

From VAX-11 DSM, you can change terminal characteristics by issuing
the USE command with parameters. Most of these parameters change ter
minal characteristics for all subsequent reads and writes until your DSM
image is run down. Some affect only the next operation. Some affect the
terminal after rundown as well. Section 6.5.2.2 discusses the parameters in
detail.

Input/Output Processing 6-7

6.5.2 Terminal Commands

The VAX-11 DSM commands used for terminal 1/0 are:

Assignment

OPEN
USE
CLOSE

Input

READ
READ*
ZLOAD

Output

WRITE
WRITE*
ZPRINT
ZWRITE

These commands are described in the following sections. Assig~ment com~
mands are described first, then input commands, and finally output com
mands. The command descriptions are followed by discussions of issues
related to terminal 1/0.

6.5.2.1 The OPEN Command- You rarely need to use the OPEN command
for terminals, since n~arly all terminal 1/0 is ~o the principal device. You
generally need to use terminal OPEN for slave terminals and line printers.

For terminal 1/0, the OPEN command accepts one parameter:

BLOCKSIZE = n This parameter sets the· size (in bytes) of the output
buffer for the terminal indicated in the argument of the
OPEN command. The output' buffer size is the logical
block size, which determines the maximum size of a
single logical write operation. The maximum value of n
depends on the value of the VAX/VMS sysgen para
meter MAXBUF. If the parameter argument exceeds
the value of MAXBUF, VAX-11 DSM processes your
1/0 requests in segments that are less than MAXBUF.
Consult your system manager for the value of
MAXBUF at your installation.

V AX-11 DSM ignores any attempt to open a device that is already open.
Thus, the BLOCKSIZE parameter cannot change the buffer size of the prin
cipal device because VAX-11 DSM opens this device. when you invoke the
DSM image. To change.the buffer size of the principal device, you must use
the /TERMINAL_BUFFER_SIZE qualifier of the DSM command.

6.5.2.2 The USE Command - Parameters for the. USE command allow you
to set and clear various ~erminal characteristics. Once you set a particular
characteristic with this command, it can be cleared only by issuing the USE
command with the opposite form of the parameter appended to it.

6-8 Input/Output Processing

The USE command parameters for terminals are:

Parameter

CANCTLO

[NOJCENABLE

CLEARSCREEN

[NOJCONVERT

CTRAP = string

Function

Disables (CTRL/o l recognition for the next WRITE
operation only. V AX-11 DSM automatically
reenables (CTRL/ o l recognition for subsequent
WRITEs.

Enables or disables (CTRL/c l recognition on the
principal device. See Section 6.5.3 for more in
formation about (CTRL/c l.

For the principal device only, clears the screen
from the current cursor position to the end of the
screen. See the description of the Y = n para
meter below for an example of the use of
CLEARSCREEN.

CONVERT changes lowercase characters to
uppercase after a READ. NOCONVERT, the de
fault, prevents conversion. Note that the
CONVERT condition lasts only for the duration
of the DSM image. At DSM rundown, the de
fault condition is reestablished.

Establishes a set of trap characters for the prin
cipal device. The string specified can include
any control characters from 0 to 31. If an appli
cation user enters any of the characters speci
fied as trap characters, DSM generates the
following error message:

%DSM-E-CTRAP, character trap $C(n)
received

where n is the character entered. The trap oc
curs asynchronously, independent of pending
READs on the principal device.

You can enable trapping on control characters
regardless of the enabling or disabling of (CTRL/ c l.
However, if you specify CTRAP = $C(3), and
(CTRL/ c l recognition is also enabled through
/CENABLE, the character trap takes preced
ence. You can use CTRAP to enable (CTRL/ c l trap
ping while /NOCENABLE is in effect.

You clear character trapping by setting CTRAP
to the null string("") or by setting it to another
value.

Input/Output Processing 6-9

Parameter Function

CTRAP =string (Cont.) The following example shows how CTRAP is
used:

DOWNSCROLL

[NO JECHO

ERASE LINE

6-10 Input/Output Processing

Q U O:CTRAP=$C<2Gt7)
s $ZT= II ERR ... TH I SROUT II

·"z <<user inPut>>
ERR

I $ZE'[11 CTRAP 11 ZQ
u O:CTRAP= 11

II

W ! t
11 0Peration aborted",!

The first line of this example declares "Z (ASCII
26) and "G (the bell, ASCII 7) as trap characters.
The second line sets $ZT. Execution continues
until the user types a (CTRL/z l. Then control trans
fers to ERR.

At ERR, the routine checks to see if this is a
CTRAP error; if not, it resignals the error. For
CTRAP errors, the routine disables character
trapping and (in the last line) sends a message
to inform the user that execution was
interrupted.

For the principal device only, moves the cursor
up and scrolls if necessary. Subtracts 1 from $Y
unless $Y = 0.

Enables or disables the display of terminal in
put on the terminal. ECHO is the default. The
NOECHO parameter inhibits terminal input
from being displayed on interactive READ and
READ * commands, that is, READ commands
in the form:

READ "String Literal ",X

or

WRITE "String Literal " R X

The NOECHO condition lasts only for the dura
tion of the DSM image; if you rundown DSM
and then reinvoke the image, V AX-11 DSM
reestablishes the default condition.

For the principal device only, clears the current
line from the cursor position to the end of
the line.

Parameter

[NO]ESCAPE

FIELD=n

Function

Enables or disables escape sequence processing
for the duration of the image. NOESCAPE is the
default. See Section 6.5.4 for more information
about escape sequence processing.

Sets the size (in bytes) of the terminal's input
buff er. The default size of the input buffer is 255
bytes, the maximum length of a single DSM
string. Specifying n = 0 resets the default
buffer size.

Note that the READ X#n form of the READ
command overrides the value specified in
FIELD for the duration of a single READ.

TERMINATOR=string Declares a set of terminators for READ com
mands. A terminator can be any control charac
ter from 0 to 31. The default terminators, IB:®
(13) and @Q) (27), are always recognized. If a null
string is specified with TERMINATOR, all ter
minators except for the defaults are disallowed
for the terminal.

UPSCROLL

WIDTH=n

For example, the following command declares
that (CTRL/z l (26), form feed {12), and line feed (10)
are terminators:

U O:TERM=$CC12,10,2G>

Once this command is in effect for a terminal,
the string ABC@ is read by V AX-11 DSM as
ABC~ You cancel the effects of the USE com
mand shown above by entering the following
command:

U O:TERM=""

Once this USE command takes effect, only
<CR> and·®© are recognized as terminators.

For the principal device only, moves the cursor
down and scrolls·as necessary. Adds 1 to $Y.

Sets the right ·margin for the terminal to posi
tion n; the terminal driver inserts a carriage re
turn/line feed after the nth character. Note that
margins set with this parameter remain in ef
fect for the duration of your process; DSM image
rundown does not reset. a margin to the default.
Specifying n = 0 sets the terminal characteristics
to NOWRAP.

Input/Output Processing 6-11

Parameter

X=n

Y=n

-Function

Sets the cursor on the screen and updates $X,
for the principal device only. See the description
of the Y = n parameter for an example of the use
ofX=n.

Sets the cursor on the screen and updates $Y,
for the principal device only.

The following examples demonstrate the use of
the Y=n, X=n, and CLEARSCREEN parame
ters. The first command moves the cursor to
coordinate 40,10, clears the remainder of the
screen, and sets $X and $Y:

U O:<X=40:Y=10:CLEAR>

The next command moves the cursor to the
"home" position (0,0), sets $X and $Y, but does
not clear the screen:

U 0: <X=O:Y=O>

6.5.2.3 The CLOSE Command - The CLOSE command releases a terminal
to the system (after processing any pending output). You cannot CLOSE
the principal 110 device, however. VAX-11 DSM automatically closes this
device at DSM image rundown and ignores attempts to close the principal
device through commands such as CLOSE $1 or CLOSE 0.

6.5.2.4 The READ Command - The READ command causes V AX-11 DSM
to read a string from the terminal. Keep the following points in mind when
using the READ command for terminal 1/0:

• A READ command in the following form purges typeahead and uses the
VAX/VMS "read with prompt" feature:

READ "String Literal" ,X

READ without a literal never purges typeahead. If you specify
/TYPEAHEAD with the DSM command, typeahead is never purged.

•A READ command can only be terminated by~' ®9, or other termina
tors specified with the TERMINATOR parameter for the USE command.
All other characters, including control characters not specified with
TERMINATOR, are returned in the string read.

• If a READ command timeout expires during data entry, the variable
returns the characters entered_ prior to the occurrence of the timeout.

• The smallest permissible timeout is 0.

· • Each READ clears $ZC.

S-12 Input/Output Processing

• Each read returns the terminator in the low byte of $ZB and the escape
character in the high byte of $ZB, as described in Section 6.5.5.

• Each read affects the special variables $X and $Y, described in
Section 6.4.

6.5.2.5 The READ * Command - The READ * command reads one binary
character. During a READ * operation, V AX-11 DSM performs a limited
interpretation of the character. It reads the character in 8-bit binary for
mat and requests the Read QIO function 10$_READVBLK qualified by the
NOFILTER function modifier (as described in the VAX/VMS 110 User's
Guide). As a result, the terminal driver does not intercept (CTRL/u l, (CTRL/R l,
and DELETE; they are passed to the terminal. (However, (CTRL/v l, (CTRL/c l, and
(GTRL/o l are intercepted.)

If a READ * command timeout expires during data entry, the character
read is assumed to be -1.

The READ * command does not affect the special variables $X and $Y.

6.5.2.6 The WRITE Command - The WRITE command causes V AX-11
DSM to perform an asynchronous write of data to a terminal.

6.5.2.7 The Formatted WRITE Command- A formatted WRITE is a WRITE
command with one of the form control characters as its argument. For
terminal 1/0, the formatted WRITE performs the following functions:

Command

WRITE!

WRITE#

WRITE ?n

Function

Writes a carriage return and line feed. Clears $X and adds
1 to $Y.

Clears the terminal screen of a recognized type of video
terminal (that is, if one of the VT terminal.characteristics
is set). Otherwise, WRITE# writes a formfeed (binary 12).
WRITE# clears $X and $Y.

Performs tabulation relative to $X. If a terminal has me
chanical tabs (that is, if TAB is a terminal characteristic),
DSM writes the appropriate number of tabs (8 spaces each)
instead of spaces, to increase terminal output speed.

6.5.2.8 The WRITE *Command - The WRITE * command performs a physi
cal write of one or more characters by putting the terminal in NOFORMAT
mode for the duration of the operation. The WRITE * command accepts an
integer argument and writes the ASCII character whose code is equivalent
to the integer expression you use.

If the character is a control character, VAX-11 DSM performs the opera
tion specified by the control character on the current device. For example,
W *7 rings the terminal bell.

Input/Output Processing ~13

You can use WRITE *27 to introduce an escape sequence, but $C(27) is
preferred because it generates fewer QIOs.

WRITE * does not affect the values of the special variables $X and $Y.

6.5.2.9 Optimizing Terminal Output - The WRITE command causes V AX-11
DSM to perform an asynchronous write of as much data as possible to a
terminal. The maximum size of a single write operation depends on the
default size of the sysgen parameter MAXBUF and the value specified in
the argument of the /TERMIN AL_BUFFER_SIZE qualifier of the DSM
command. The default maximum size is 992.

The WRITE command for terminal 1/0 has different effects depending on
the form of the command used. A WRITE command in the following form
causes a single asynchronous write operation (if the total size is less than
the buffer size):

WRITE At! tBt! tCt!

A WRITE command in the following form causes three separate QIOs.

WRITE A t ! WRITE B t ! WRITE C t !

Switching from WRITE to WRITE *also causes a separate QIO. For exam
ple, the following command sequence causes three QIOs:

WRITE *7 t 11 ABC 11 t*27

Section 6.5.2.8 above describes the WRITE *command in detail.

6.5.3 (CTRL/c 1 and (CTRL/v 1 Recognition

By default, VAX-11 DSM enables (CTRL/c l recognition in Programmer Mode
and disables (CTRL/ c J recognition in Application Mode and on slave terminals
(allocated with the OPEN command).

However, you can explicitly enable or disable (CTRL/c l recognition with the
/CENABLE qualifier of the DSM command, described in Section 4.4. You
can also specify the [NO]CENABLE parameter on the DSM USE command
(described above) to enable or disable (CTRL/c I recognition on the principal
device. The DSM application can still test the value of $ZC if (CTRL/c l is
disabled.

The VAX/VMS system manager can enable and disable (CTRL/Y l recognition
on a user-by-user basis by means of the User Authorization File, described
in the VAX/VMS System Management and Operations Guide.

Inhibiting (CTRL/Y J recognition is useful in an application environment where
you do not want users to interrupt the execution of the application. If the
system intercepts a (CTRL/Y J interrupt when. (CTRL/Y l recognition is disabled,
control does not pass to the command language interpreter.

6-14 Input/Output Processing

VAX/VMS also allows you to enable and disable (CTRL/Y l recognition with the
DCL SET NOCONTROL_Y command, described in the VAX/VMS
Command Language User's Guide.

6.5.4 Escape Sequence Processing

Escape sequences are strings of two or more characters, beginning with the
escape character (decimal 27), which indicate that control information fol
lows. Escape sequences take two forms:

(§9 character (any character except question mark)

(§9 ?[?? ...] character

Terminals read and write escape sequences to enable special character sets,
to set the position of a cursor, or to use function keys (for a READ). Refer to
your terminal's user guide for terminal-specific information about escape
sequence processing.

Keep the following points in mind when doing escape sequence processing
from DSM:

• To enable escape sequence processing on a terminal, you must issue the
USE command with the ESCAPE parameter for reading only. The
ESCAPE parameter is not necessary for writing.

• Escape sequence processing uses the $ZB special variable. If an applica
tion user enters a valid escape sequence while escape sequence processing
is enabled, the escape character is returned in.the $ZB special variable. If
a READ * is issued while escape sequence processing is enabled, the
variable that you read contains O; $ZB contains the escape character. In
both of these cases, the format of the escape character in $ZB is:

The terminator (27) in the low byte

[(Character Code + 16 (decimal)) MODULO 64] in the high byte

This format is compatible with other implementations of the DSM
language.

• The escape character itself is always the last character in the terminal's
input buffer, that is, the last character of the escape sequence. For exam
ple, the escape character of the escape sequence (§9 P is "P". The escape
character of the sequence ®9 ? u is "u".

6.5.5 Terminal Status and Error Conditions

Terminal 1/0 status and error conditions are reported in the $ZA and $ZB
special variables as shown in Table 6-1.

Input/Output Processing 6-15

Table 6-1: $ZA and $ZB Assignments for Terminal 1/0

Special
Variable 1/0 Operation Successful 1/0 Operation Failed

$ZA Physical length (in bytes) of last read or Error message string
write.

$ZB Escape sequence processing enabled - termi- 0
nator plus escape character entered on last
read.

Escape sequence processing disabled-termi-
nator entered on last READ: 13 if (fil], 27 if
®9, or other, if TERMINATOR is specified.

If no terminator (last READ exceeds FIELD
length, or READ x#n issued), value is 0.

6.6 Using Files

VAX-11 DSM provides a subset of the file-handling capabilities ofVAX-11
RMS. You can create and manipulate all file types supported by RMS:
sequential, relative, and indexed.

However, VAX-11 DSM imposes several restrictions on the record access
methods that you can use for each file type. It also imposes some restric
tions on the attributes of indexed files.

The. following section describes the general organization of each file type.
For a detailed description of file types and file access methods, refer to the
Introduction to VAX-11 Record Management Services.

6.6.1 File Organization

The term file organization refers to the way records are logically arranged
on a storage device. You specify a file's organization when you create the
file; once you choose a file organization, you cannot change it later.

VAX-11 DSM supports three file organizations:

1. Sequential files

Sequential files consist of records arranged in the sequence in which
they are written to the file. A file with sequential organization can
contain records of either fixed or variable length. Sequential file organ
ization is permitted on all file-structured devices supported by VAX-11
DSM, including disks and magnetic tapes.

6-16 Input/Output Processing

2. Indexed files

Indexed files, permitted on disk devices only, consist of fixed- or vari
able-length records organized in a pyramid-like configuration of linked
buckets that store pointer information and data records. Each bucket
consists of a number of contiguous 512,..-byte physical blocks (see
Chapter 9 for more information about the structure of indexed files).
The indexed organization permits random insertion or retrieval of re
cords based on a fixed-length key; a key is simply a contiguous string of
unique characters. The location of a given record in an indexed file
depends upon the sort order defined for the keys in the file.

3. Relative files

Relative files, permitted on disk devices only, consist of numbered posi
tions called cells. Cells are fixed in size, and are numbered consecu
tively from 1 ton, where 1 is the first cell and n is the last cell in the
file. This arrangement lets you place records in the file according to cell
number. Cell numbers are referred to by a relative record number,
which specifies the location of a given record relative to the beginning
of the file. There is no requirement, however, that every cell contain a
record. Empty cells can be interspersed among cells that contain re
cords. The relative file organization supports records that are either
fixed or variable length.

6.6.2 File Access Methods

You can· manipulate files using either of the following methods:

• Record 1/0, most frequently used

• Block 1/0, less frequently used

6.6.2.1 Record 1/0 - Record 1/0 allows you to access the logical records in a
file by record access methods in these two general categories:

• Sequential access, most commonly used

• Random access

Sequential access to a file means that you can read a particular record only
after reading all records precedingit. Thus, you can only write new records
at the end of a file open for sequential access. All file types support sequen
tial record access.

Input/Output Processing 6-17

Random access to a file means that you can specify the order in which
records are read or written. V AX-11 DSM supports three random record
access methods:

Random by RF A (for
sequential and indexed
files only)

Random by Primary or
Alternate Key

Random by Relative
Record Number (for
relative files only)

Record File Address (RF A) refers to an address
that uniquely identifies the location of a record
in a file. In file types· that support random
access by . RF A, the RF A remains constant
while the record remains in the file. V AX-11
DSM returns the RF A to you in the $ZB spe
cial variable in the form "n,m" where n is the
number of the block that contains the record,
and m is the byte offset into that block, indicat
ing where the record actually begins.

In random access by key, you qualify your read
requests with the key value of the record.
V AX-11 DSM supports random access by pri
mary or alternate key value .. When you access
a record by key, VAX--11 RMS searches for the
corresponding key in· the index and reads the
record that the key points to.

The Relative Record Number is an identifica
tion number that indicates the position of a
record relative to the beginning of the file.
Random access by Relative Record Number is
only supported on files with relative organiza
tion. V AX-11 DSM returns the Relative
Record Number to you in the $ZB special vari
able as a positive integer.

Each file organization supports several record access methods. Table 6-2
shows the record access methods that VAX-11 DSM supports for each file
organization.

Table 6-2: V AX-11 DSM Record Access Methods

File
Organization Access Methods

Sequential Sequential
Random by RFA

Indexed Sequential
Random by Primary or Alternate Key
Random by RFA

Relative Sequential
Random by Relative Record Number

6-18 Input/Output Processing

6.6.2.2 Block 1/0 - Block 1/0 allows you to access and manipulate the
blocks (physical records) that make up a file, rather than its logical records.
All file types support block 1/0. For disk-resident files, you can specify the
size of the block you want to read in an OPEN command parameter
(BLOCKSIZE :;:: n); this block size must be a multiple of 512. For sequen
tial files on magnetic tape, you can specify any block size.

Performing block 1/0 on any disk.;resident file overrides the disk's logical
organization. As a result, 1/0 must proceed as if the file were a disk-resi
dent sequential file.

6.6.3 Creating and Opening Files

For sequential, indexed, and relative files, the DSM OPEN command takes
two parameters that determine whether a new file should be created:
NEWVERSION and READONLY.

If you issue the OPEN command (followed by a device specifier) with no
parameters, VAX-11 DSM opens a file on your default disk device. If the
file does not exist, VAX-11 DSM creates it. (This is not true for files on
magnetic tape, for which READONL Y is the default.)

For example, the following command line creates a sequential file named
REDLINE.DAT:

> 0 "REDLINE"

If REDLINE.DAT already exists, this command opens the file. You can
manipulate its contents with any 1/0 command.

If you include the NEWVERSION parameter, as in the next example, the
OPEN command always creates a new file, even if there is an existing file
with the same name:

> .o II SCRATCH II: NEWt.JERS I ON

If you include the READONL Y parameter (as in the following example), a
new file is never created. An error occurs if the file named does not already
exist.

> 0 II LI ST II: READONL y

If the device specifier includes a VAX/VMS device other than your default
device, V AX-11 DSM creates or opens the file on the device specified.

Input/Output Processing 6-19

6.6.4 Positioning Files

After you open a file, or after you issue the USE command with the
DISCONNECT parameter, the position of the file is undefined. The reposi
tioning of the file upon the next 1/0 operation follows these rules:

• If the next 1/0 operation after the OPEN or USE x:DISCONNECT is a
READ, the file is positioned at the beginning.

•If the next 1/0 operation after the OPEN or USE x:DISCONNECT is a
WRITE, the file is positioned at the end.

6.6.5 Reading and Writing Records

The WRITE command, described in detail under each type of file, packs a
buffer. Followed by one exclamation point, WRITE writes the current rec
ord to a file. Followed by two exclamation points (!!), it writes a null record.

The following example shows how WRITE ! is used:

> 0 11 FILE 11 :NEWt.JERSION
> U 11 FILE 11 W 11 ABC 11

> U 11 FILE 11 W 11 DEF t ! W ! t 11
}{}{}{}{}{

11 t !
> U 11 FILE 11 :DISCONNECT R XtYtZ
> W Xt! tYt! tZt!
ABCDEF
(nu 11 >

6.6.6 File Sharing

If the /NOSHARED qualifier is in effect implicitly or explicitly, the default
behavior of DSM is that no files are shared. However, the SHARED option
on the OPEN command can be used to specify that a particular file should
be shared.

If /SHARED is in effect implicitly or explicitly, indexed and relative files
are shared by default, but sequential files are never shared. To specify that
a sequential file should be shared, you must use the SHARED parameter
with the OPEN command. However, sharing sequential files has some
drawbacks, as described in the V AX-11 Record Management Services
Reference Guide.

6-20 Input/Output Processing

6. 7 Sequential Files on Disk

The following sections describe 1/0 to sequential files on disk devices. Se
quential files on magnetic tape are described in Section 6.8.

6. 7 .1 Sequential File Commands

The commands used for sequential file 1/0 are:

Assignment

OPEN
USE
CLOSE

Input

READ
READ*
ZLOAD

Output

WRITE
WRITE*
ZPRINT·
ZWRITE

These commands are described in the following sections. Assignment com
mands are described first, then input commands, and finally output com
mends. The command descriptions are followed by an explanation of the
status and error conditions returned for sequential file l/O.

6.7.1.1 The OPEN Command - The OPEN command reserves a sequential
file on disk for use by your process, or creates a sequential file if the device
specifier indicated in its argument does not exist.

Parameters·for the OPEN command allow you to set various characteristics
of the file you create, such as its protection mask. They also allow you to
establish certain conditions for the current 1/0 operation, such as making it
READ only.

For sequential file 1/0, you use the OPEN command timeout parameter to
set a limit on how ·long VAX:-11 DSM tries to open a file if the file has
already been opened by another user with sharing options that conflict with
yours. Ordinarily, VAX-11 DSM tries to open the file at one-second inter
vals until the timeout expires. If you try to open the file without a timeout
on the OPEN command, V AX-11 DSM continues trying to open the file.

Table 6-3 summarizes the OPEN command parameters for sequential file
1/0. All parameters refer to V AX-11 RMS options and are described in
detail in the V AX-11 Record Management Services Reference Manual.

Input/Output Processing 6-21

Table 6-3: OPEN Command Parameters for Sequential File 1/0

Parameter Function

ALLOCATION =n Specifies the amount of space, in blocks, to allocate to the
file when you create it.

BLOCKSIZE = n Requests block 110 and specifies the buffer size (in bytes); n
must be positive.

CONTIGUOUSBESTRY Allocates the file as contiguously as possible on the disk.

DELETE* Deletes the current version of the file when you close it or
at DSM image rundown.

EXTENSION= n Specifies the number of blocks to add to the file when the
current space is exhausted.

NEWVERSION Explicitly creates a file.

NOSEQUENTIAL Enables random access to the records in the file by RF A.

PROTECTION= opts* Sets the protection that applies to the file.

READONLY Opens an existing file for reading only.

RECORDSIZE = n Specifies the maximum record size used when a file is
created.

SHARED Enables file sharing.

SPOOL* Sends the file to the spool file of the default print queue
(SYS$PRINT) when you close it or at DSM image rundown.

SUBMIT* Submits the file to the default batch queue (SYS$BATCH)
when you close it or at DSM image rundown.

UIC = "[n,m]" Establishes the owner UIC for the file when you create it.

* Indicates the parameter is also available on CLOSE.

The ALLOCATION= n parameter accepts a numeric. argument that repre
sents a number of disk blocks, so it can only be used for disk files. The
number n is the amount of disk space allotted to the file when it is created;
n must· be in the range of 0 to 4294967295. A value of 0 indicates no
allocation. This parameter is equivalent to the RMS ALQ option.

The BLOCKSIZE = n parameter enables block 1/0 operations on the speci
fied file by creating fixed-length blocks. This parameter accepts a numeric
argument (greater than 0) that specifies the size of the buffer (in bytes).
The buffer size determines the maximum size of a single write or read. For
disk devices, the buffer size must be a multiple of 512. For magnetic tape,
you can select any buffer size. See Section 6.8 for more information about
block 1/0 on sequential files. If you create the file, n also determines the

. size of the file's fixed-length blocks.

The CONTIGUOUSBESTRY parameter instructs V AX-11 DSM to allocate
the file contiguously on a "best effort" basis. This parameter is equivalent
to the RMS CBT option. It is valid for disk files only.

6-22 Input/Output Processing

The EXTENSION= n parameter accepts a numeric argument that repre
sents a number of disk blocks. It is valid for disk files only. The value of n
determines the number of blocks added to a file when its initial allocation
of blocks is exhausted. This number must be in the range of 0 to 65535. If
you specify an extension of 0, the file is extended to the V AX-11 RMS
default extension value. This parameter is equivalent to the RMS DEQ
option.

NOTE

Automatic extension occurs whenever you perform a write
operation on a file that has used all of its initial allocation of
disk space.

The NEWVERSION parameter creates a new file. A previous version of the
file may or may not exist. NEWVERSION is required for writing to mag
netic tape, but you can use it for disks as well.

The NOSEQUENTIAL parameter enables random access to a sequential
file by Record File Address (RFA). You must include this parameter in the
OPEN command if you want to access records in a file by RF A. Specifying
this parameter clears the SQO bit in the RMS File Access Block (FAB). The
SQO bit is set in the RMS FOP parameter.

The PROTECTION= opts parameter sets the protection that applies to the
file. The PROTECTION parameter keywords are identical to the keywords
used with the DCL SET PROTECTION command. User categories are:
GROUP, WORLD, SYSTEM, OWNER. You can specify READ (R), WRITE
(W), EXECUTE (E), or DELETE (D) protection for each user category. Un
like the SET PROTECTION command syntax, however, each user category
must be separated from the protection codes by an equal sign (=). You
must use the following syntax to specify no protection:

>0 "File name":PROTECTION = (W =)

In all other respects, the PROTECTION parameter syntax is the same as
the SET PROTECTION command syntax.

>O "File na111e 11 :PROTECTION=CGROUP=RWEDtWORLD=R>

> O "Fi 1 e na111e 11
: PROTECTION= (SYSTEM=RWED tGROUP=R tWORLD=RE)

The READONL Y parameter overrides the default VAX-11 DSM access
mode for sequential files. By default, VAX-11 DSM opens a sequential file
with GET and PUT privileges, equivalent to READ/WRITE access to the
file. The READONLY parameter opens a file with GET privilege only,
equivalent to READ access; all you can do to the file is read it. READONL Y
is the default behavior for magnetic tape files.

If READONLY is present (either explicitly or implicitly), an error occurs if
you try to open a file that does not exist. A new file is never created in
response to OPEN if READONL Y is present.

Input/Output Processing 6-23

The RECORDSIZE parameter specifies the maximum size of a record. This
size, set only when the file is created, corresponds to the RMS option MRS.
If you do not specify RECORDSIZE, the default is 255, the size of a DSM
string. ·

The SHARED parameter enables shared access to a sequential file. The
SHARED parameter is equivalent to the RMS SHR options. RMS support
for sharing sequential files is limited (and in general not recommended).
See the VAX-11 Record.Management Services Record Manual for a descrip
tion of these limitations.

The NOSHARED parameter disables the RMS shared file option. This
parameter opens a file with the RMS access privilege NIL only, so that all
explicit file sharing is disabled.

You use READO NL Y and BLOCKSIZE in conjunction with SHARED or
NOSHARED to specify a file-sharing mask for a file. See Section 6.10.1.1
for details on this operation, which is more appropriate for indexed and
relative files than for sequential files.

The UIC = "[n,m]" parameter establishes the owner UIC of the file when
you create it. You must have sufficient VAX/VMS privileges to set the UIC
to one other than your own.

6.7.1.2 The USE Command - Parameters for the USE command allow you
to perform record and block 1/0 operations on the file specified in its device
specifier field. Table 6-4 summarizes the USE command parameters for
sequential file 1/0. The paragraphs following this table describe each para
meter in detail.

Table 6-4: USE Command Parameters for Sequential File 1/0

Parameter Function

[NO]CONVERT Converts lowercase characters to uppercase on READ, or disables
lowercase conversion (default).

DISCONNECT* Positions the file at the beginning or end depending on the next
operation.

RF A= "n,m" Positions the file to the specified Record File Address.

SPACE= n* Positions the file n blocks forward or backward for block 1/0
operations.

* Indicates a V AX-11 RMS option.

The CONVERT parameter instructs V AX-11 DSM to convert lowercase
characters to uppercase characters after a READ. NOCONVERT (the
default) instructs the system not to convert lowercase characters to
uppercase.

6-24 Input/Output Processing

The DISCONNECT parameter positions the file at the beginning if the
next operation is READ. It positions the file at the end ifthe next operation
is WRITE. The DISCONNECT parameter is equivalent to the RMS
$DISCONNECT macro. You need not specify DISCONNECT immediately
after OPEN.

The RF A parameter allows you to read or write records in the file by their
Record File Address (provided you have included the NOSEQUENTIAL
parameter on the OPEN command). However, you can only write a record
to a Record File Address if it is exactly the same length as the record that
currently occupies that address. The parameter argument "n,m" represents
the block and offset: n specifies the block number that contains the desired
record, and m specifies the byte offset into that block that indicates where
the record actually begins. A typical RFA specification is "2,478".

To get the RFA for each record in the file, you must initially read or write
the entire contents of the file sequentially and save the value of the $ZB
special variable after each operation; for sequential file I/O, $ZB returns
the RFA after each successful read or write, as described in Section 6.7.2.
Once you save the RFA for a record, you can access it either by-specifying
the RF A as a block and offset, as shown above, or by specifying the variable
in which you saved the RF A. Figure 6-1 shows a routine that creates a
sequential file consisting of 100 records. This routine simultaneously saves
the value of $ZB for each record in a local array.

Figure 6-1: Routine to Retrieve Records by RF A

Q ;oe1t1onstrate RFA on sec:iuential files
0 "A":CNOSEQ:NEWVERSION>
F 1=1:1:100 U "A" W "RECORD"_! t! S ACI>=$ZAtBCl)=$ZB
U 0 W !t"Nowt retrieve records"t!

ACC U "A" :RFA=BC29) RX U 0 W ! tX t ! t"should be RECORD29", !
U "A":RFA=BCSO> W $EC"XXXXXXXXXXXXXXXXXXXXXXXXXXX" t1 tACGO>> t!
U "A":RFA=BCSO> RX U 0 W Xt! t"should be RECORD50"t!
U "A":RFA=BCSO> RXUOWXt!t"should be all X's !!"t!
U 0 W ! ! , "End ••• " , !

In Figure 6-1, routine lines ACC to ACC + 3 perform the following tasks:

• ACC reads the record in the RF A specified by the variable B(29) and
writes it to the principal device.

• ACC + 1 writes a record consisting of Xs to the RF A specified by the
variable B(60). The $EXTRACT statement makes sure that the length of
the record matches the length of the record that currently occupies
this RFA ..

• ACC + 2 reads the record in the RF A specified by the variable B(50) and
writes it to the principal device. -

• ACC + 3 reads the record that replaced record 60 and writes it to the
principal device; this record consists of eight Xs.

Input/Output Processing 6-25

The SPACE=n parameter, equivalent to the RMS $SPACE, positions a file
n blocks forward or backward for block 1/0 operations. The argument n can
be a positive or negative integer, where negative specifies backwards posi
tioning. You' can only use this parameter if you have included the
BLOCKSIZE = n parameter on the OPEN command, unless your first oper
ation on the file is block I/O. Specifying the SPACE parameter automat
ically sets the access mode to block I/O.

6.7.1.3 The CLOSE Command - Parameters for the CLOSE command allow
you to perform various exit options, such as deleting the file or sending it to
the line printer. Several CLOSE paramet~rs can also be used on the OPEN
command. If you specify one of these parameters when you open the file,
the parameter takes effect automatically when you close the file. You do
not need need to respecify the parameter when you close the file.

Table 6-5 summarizes the CLOSE command parameters for sequential file
110. The paragraphs that follow describe the parameters in greater detail.

Table 6-5: CLOSE Command Parameters for Sequential File 1/0

Parameter

DELETE*

PROTECTION= opts*

QUEUE=q

RENAME=name

SPOOL*

SUBMIT*

UIC = "[n,m]"

Function

Deletes the current version of the file

Sets the protection that applies to the file

Sends the file to a queue other than SYS$PRINT or
SYS$BATCH

Renames an existing file to the name specified in the parameter
argument

Sends the file to the spool file of the default print queue
(SYS$PRINT)

Submits a file to the default batch queue (SYS$BATCH) for
batch processing

Establishes the owner UIC for an existing file

* Indicates the parameter is available on the OPEN command.

The DELETE parameter explicitly deletes the current version of the file. If
you create a file but do not write anything to it, V AX-11 DSM deletes the
file automatically when you close it. If you use this parameter along with
the SPOOL or SUBMIT parameters, VAX-11 DSM deletes the file after it
has been processed.

The PROTECTION= opts parameter sets the protection that applies to the
file, as discussed in the description of this parameter for the OPEN
command.

6-26 Input/Output Processing

The QUEUE = q parameter sends a file to a queue other than the default
print or batch queues. The parameter argument q specifies the name of the
queue to which you want to direct the file. You use this parameter with the
SPOOL and SUBMIT parameters, as shown in the following examples:

C "File name":(SPOOL:QUEUE =queue name)

C "File name":(SUBMIT:QUEUE =queue name)

The REN AME= name parameter changes the name of an existing file to
the name specified in the parameter argument. The parameter argument
name can include any part of a file specification. If you omit fields from the
file specification, VAX-11 DSM constructs a full specification by using all
fields included in the original file specification and applying VAX/VMS
defaults.

The SPOOL parameter sends the file to the spool file of the default print
queue. The default print queue is the translation of the logical name
SYS$PRINT. If you want to direct the file to a queue other than
SYS$PRINT, you must include the QUEUE=q parameter in the CLOSE
command in addition to SPOOL.

The SUBMIT parameter sends the file to the default batch queue for batch
processing. The default batch queue is the translation of the logical name
SYS$BATCH. If you want to direct the file to a queue other than
SYS$BATCH, you must include the QUEUE= q parameter in the CLOSE
command in addition to SUBMIT.

The UIC = "[n,m]" parameter changes the owner UIC of an existing file.
You must have sufficient VAX/VMS privileges to change the file owner
UIC with this parameter.

6.7.1.4 The READ Command - For record I/O operations, the READ com
mand reads a record from the file into a variable as a DSM string. The
maximum record size that VAX-11 DSM can read is 255 bytes; this is the
default input buffer size and the maximum length of a single DSM string. If
you try to read a record that is larger than 255 characters, VAX-11 DSM
returns the record to you in pieces in subsequent READs, for example:

> U "File" RX S A(1)=$ZA ;$ZA returns len!'lth of record

> R Y S A (2) = $ZA

In this example, if the record read is larger than 255 characters, READ X
only returns the first 255 characters. If A(l) = 256 (that is, the value of
$ZA = 256), then the length of Y is 1 and the value of A(2) is 0. If A(2) is 0,
READY did not return a physical record; instead it returned the remaining
portion of record X.

For block I/O, the READ command returns a 255-byte binary string. If you
try to read a record larger than 255 characters, V AX-11 DSM returns the
record to you in pieces in subsequent READs.

Input/Output Processing 6-27

You can use a timeout parameter on the READ command, but it is ignored
for sequential 1/0.

6.7.1.5 The READ* Command- For record 1/0, the READ* command reads
one character from a record in 8-bit binary format. To retrieve an entire
record, you must issue as many READ* commands as there are characters
in the record ..

For block 1/0, READ* retrieves one binary character from a physical rec
ord (block).

V AX-11 DSM ignores the timeout parameter on the READ * command.

6.7.1.6 The WRITE Command - The WRITE command writes a DSM string
to the file's output buffer. When the output buffer becomes full, or if you
execute a formatted WRITE (as described in Section 6.7.1.8), VAX-11 DSM
writes the contents of the buffer to the file as a record. When you write
consecutive strings to the buffer, they are concatenated into a single record
until the length exceeds 255 bytes; then the system automatically creates a
new record. (Thus, a single READ actually returns a concatenated string.)

V AX-11 DSM uses the RMS RAT= CR option for carriage control. When a
sequential file is written to a carriage control device, such as a terminal or
line printer, this option instructs the system to perform a line feed/carriage
return after writing each record to the device. This information is not,
however, stored as data in the file itself. The RMS RAT=CR option corre
sponds to the FORTRAN "List" format.

6.7.1.7 The WRITE* Command - The WRITE* command writes a single
character to the file's output buffer in 8-bit binary format.

6.7.1.8 The Formatted WRITE Command - For sequential file 1/0, the for
matted WRITE performs the following functions:

Command

WRITE!

WRITE#

WRITE ?n

Function

Writes the current record to the file. Two consecutive car
riage return/line feeds (!!) write a null record to the file.

Writes the current record to the file plus a record that con
tains a form feed.

Writes the specified number of spaces (relative to $X) to the
current record buffer.

6.7.1.9 The ZPRINT Command - The ZPRINT command transfers the con
tents of the routine buffer to the file. ZPRINT causes the entire contents of
the buffer to be written as one record per source line of code. To separate
multiple routines in the file from one another, you must explicitly write a
carriage return/line feed (!) after each routine. This action writes a null
record (blank line) to the file.

6-28 Input/Output Processing

6. 7.1.10 The ZLOAD Command - The ZLOAD command transfers a routine
from a sequential file to the routine buffer. ZLOAD loads records until it
encounters either of the following:

• A blank line

• The end-of-file

If ZLOAD encounters an end-of-file, it causes an error and returns an
empty buffer.

6. 7 .2 Sequential File Status and Error Conditions

Sequential file 119 status and error conditions are reported in the $ZA and
$ZB special variables as shown in Table 6-6. Note that, for READ and
WRITE, $ZA and $ZB values apply to the current device and are stored in
the access context of the file.

Table 6-6: $ZA and $ZB Assignments for Sequential File 1/0

Special Variable 1/0 Operation Successful 1/0 Operation Failed

$ZA for READ or Length (in bytes) of last record Error message string correspond-
WRITE read or written ing to the primary RMS error

status (RMS STS value)

$ZB for READ or RF A of the last record read or Error message string correspond-
WRITE written ing to the secondary RMS error

status (RMS STV value)

Ifno STV value, returns the null
string.

$ZA after OPEN Maximum record size (RMS
MRS status)

$ZB after OPEN 0

6.8 Sequential Files on Magnetic Tape

With certain operational restrictions, V AX-11 DSM supports most mag
netic tape options provided by VAX/VMS. VAX/VMS uses the magnetic
tape structure defined by the American National Standards Institute stan
dard ANSI X3.27-1978. Magnetic tapes must be ANSI labeled and coded in
ASCII format.

VAX-ll DSM can process nonstandard tapes (such as DOS). However, you
must mount such tapes at VAXNMS command level.with the /FOREIGN
qualifier (or through $ZCALL), and you must not access the information on
the tape in block 1/0 mode. VAX/VMS uses 9-track tape drives only. Refer
to the VAX-11 Magnetic Tape User's Guide for information about labeling
and file-structuring format.

Input/Output Processing 6-29

V AX-11 DSM supports the following kinds of magnetic tape operations:

• Record 1/0 on file-structured tapes (in nearly all cases)

• Block 1/0 on file-structured tapes

• Block 1/0 on non-file-structured tapes

6.8.1 Magnetic Tape Operations

VAX-11 DSM imposes the following restrictions on magnetic tape
operations:

1. You must initialize magnetic tapes at VAX/VMS command level with
the DCL INITIALIZE command.

2. You can mount magnetic tapes either at VAX/VMS command level,
with the DCL MOUNT command, prior to invoking the DSM image, or
with the $ZCALL (%MOUNT) and (%DISMOUNT) facilities from DSM.
The only time that you do not need to explicitly mount the tape is when
you want to request the next volume of a volume set. A parameter on'
the USE command allows you to set automatic mounting of the next
volume.

See the VAX/VMS Command Language User's Guide for a complete de
scription of the INITIALIZE and MOUNT commands and the mount and
initialize procedures. See the description of $ZCALL for instructions on
using %MOUNT and %DISMOUNT.

You can position magnetic tapes directly from the DSM language, however.
Parameters on the assignment commands, described later in this chapter,
allow you to rewind a tape file-by-file or rewind the entire tape. They also
allow you to position the tape forward or backward by block-for-block 1/0
operations.

6.8.2 Magnetic Tape Access Modes

Magnetic tapes support sequential access only. Only one user can have
access to a given volume set at any one time, and only one file in the
volume set can be open for processing at a time.

You can access either file-structured or non-file-structured tapes from the
DSM language, as described in the following sections.

6.8.2.1 Accessing File-Structured Tapes - To access a file-structured tape,
you must first mount the tape at VAX/VMS command level (or through
$ZCALL). Thereafter, I/Ois very similar to 1/0 for sequential files on disk.

If you issue the OPEN command with a device specifier that includes a
VAX/VMS magnetic tape device and a file name, V AX-11 DSM opens the
specified file for reading only (READO NL Y is the default); then you can
manipulate the file's contents with any 1/0 command, for example:

6-30 Input/Output Processing

>O "TAPENAME:File narr1e+DAT 11

> 11 TA PEN AME : F i 1 e n a rr1 e •. DAT 11 R REC 0 RD

To create a new sequential file on tape, you append the NEWVERSION
parameter to the OPEN command, as described in Section 6.8.4.1. The fol
lowing example shows how a file is created and a record is written to it:

$ MOUNT MTO: MYTAPE
$ DSM

t.JAX-11 DSM Version 2+0
>II MTO: MYF I LE+ DAT II: NEWl.lERS I ON
>U 11 MTO:MYFILE.DAT 11 W "RECORD" t !

File-structured tapes support both record and block I/O.

6.8.2.2 Accessing Non-File-Structured Tapes - To access a non-file
structured tape, you must first mount the tape at VAX/VMS command
level (or through $ZCALL) with the /FOREIGN qualifier appended to the
MOUNT command. This qualifier indicates that the tape is not in the stan
dard ANSI format used by the VAX/VMS operating system. Remember
that if you mount a tape with the /FOREIGN qualifier, your routines must
be able to process the labels on the volume.

After you mount the tape and invoke the DSM image, you issue the OPEN
command with a device specifier that includes a VAX/VMS tape device
name only. Since non-file-structured tapes support block I/O only, you must
also include the BLOCKSIZE = n parameter, where n is larger than the
largest block that you want to read on that tape. For example:

>O 11 TAPENAME 11 :BLOCKSIZE=ll08G

6.8.3 Magnetic Tape Status and Error Conditions

Status and error conditions for magnetic tape are returned in $ZA and $ZB
in the same forms as status and error conditions for sequential files on disk,
described in Section 6.7.2.

6.8.4 Magnetic Tape Commands

The commands used for magnetic tape 1/0 are:

Assignment Input Output

OPEN READ WRITE
USE READ* WRITE*
CLOSE ZLOAD ZPRINT

ZWRITE

These commands are described in the following sections. Assignment com
mands are described first, then input commands, and finally output
commands.

Input/Output Processing 6-31

6.8.4.1 The OPEN Command - For file-structured tapes, the OPEN com
mand's behavior is similar to its behavior for disk-resident sequential files.
That is, the OPEN command either opens or creates a sequential file on the
device specified in the device specifier field.

For non-file-structured tapes, the OPEN command establishes a sequential
input or output stream for block 1/0 operations only.

Table 6-7 summarizes the OPEN command parameters for magnetic tape
1/0. The paragraphs following this table describe each parameter in detail.

Table 6-7: OPEN Command Parameters for Magnetic Tape 1/0

Parameter Function

BLOCKSIZE = n Requests block I/O and specifies the block size (in bytes); for existing
files, n must be greater than or equal to the largest block size on the
tape. The VAXNMS default is 2048 bytes; the DSM-11 default is
1024.

NEWVERSION Creates a new file.

READONLY Opens a file for reading only (default).

RECORDSIZE = n Specifies the maximum record size (default is 255).

REWIND Rewinds the tape; positioning depends on whether access is to a file-
structured or non-file-structured tape.

The BLOCKSIZE = n parameter enables block 1/0 operations on the speci
fied file-structured or non-file-structured tape. When you create a file, the
parameter argument n specifies the size of one tape block in bytes. When
you read an existing file, the parameter argument should be larger than
the largest block on the tape.

The NEWVERSION parameter creates a new sequential file on the speci
fied tape drive. For example:

>0 "MTAO:File name":NEWVERSION

This command line creates a new sequential file on the tape mounted on
drive MTAO. The name of the file is file name.DAT;!.

The READONLY parameter opens an existing file for reading only. Unlike
disk-resident sequential files, magnetic tape sequential files are opened
read-only by default. Thus, this parameter never has to be explicitly
specified.

The RECORDSIZE = n parameter specifies the maximum record size. The
default is 255 bytes. This parameter is equivalent to the RMS option MRS.
The REWIND parameter positions a file-structured tape at the beginning
of the current file. It positions a non-file-structured tape at the beginning of
the tape (that is, it rewinds the entire tape).

6-32 Input/Output Processing

6.8.4.2 The USE Command - Parameters for the USE command allow you
to perform record or block 1/0 operations on either file-structured or non
file-structured tapes. The parameters for this command specify RMS op
tions. Table 6-8 summarizes the USE command parameters for magnetic
tape I/O. The following paragraphs describe them in detail. Refer to the
VAX-11 Record Management Services Reference Manual for additional in
formation about these parameters.

Table 6-8: USE Command Parameters for Magnetic Tape 1/0

Parameter Function

DISCONNECT Positions the tape depending on the next operation and whether access
is to a file-structured or non-file-structured tape.

NEXT Requests the next volume in a volume set.

SPACE=n Positions the tape forward or backward n blocks for block 1/0
operations.

For file-structured tapes, the DISCONNECT parameter positions the tape
at the beginning of the file if the next operation is READ. If the next
operation is WRITE, the tape is positioned at the end of the file.

For non-file-structured tapes, the DISCONNECT parameter positions the
tape at the beginning.

The NEXT parameter requests the next volume in a volume set to be
mounted. For input, this parameter causes the following to occur:

• If the current volume is the last volume in the set, the system reports
end-of-file.

• If another file section exists (a part of a file that physically spans tapes),
the next volume is mounted. When necessary, the current volume is
rewound, and a request to mount the next volume is sent to the operator.

For output, this parameter causes the following to occur:

• The file section on the current volume is closed with the appropriate end
of-volume labels, and the volume is rewound.

•The next volume is mounted.

•A file with the same file name and the next higher file section number is
opened for output, and processing continues.

This parameter is equivalent to the RMS $NXTVOL macro.

The SP ACE= n parameter positions the tape n blocks forward or backward
for block 1/0 operations. The parameter argument n can be a positive or
negative integer; a negative integer specifies backwards positioning. For
input, you can use this parameter only if you have included the
BLOCKSIZE = n parameter on the OPEN command. This parameter is
equivalent to the RMS $SPACE macro.

Input/Output Processing 6-33

6.8.4.3 The CLOSE Command - For magnetic tape 1/0, the CLOSE com
mand accepts one parameter, REWIND. This parameter positions a file
structured tape at the beginning of the current file. It positions a non-file
structured tape at the beginning of the tape.

6.8.4.4 The READ and WRITE Commands - Except for random read by RF A
and file sharing, the READ and WRITE commands behave for magnetic
tape exactly as they behave for sequential files on disk. The READ *,
WRITE*, and Formatted WRITE commands behave exactly as they behave
for sequential files on disk.

See Sections 6.7.1.4 through 6.7.1.8 for information on how these com
mands work for sequential files on disks.

6.9 Indexed Files

V AX-11 DSM provides a subset of the options supported by V AX-11 RMS
for indexed sequential file (ISAM) organization. These options include:

•Random record access by primary or alternate key

• Random record access by RF A

• Sequential access to the file

• File sharing

• Automatic record interlocking

To create an indexed file, issue the OPEN command followed by a device
specifier and the INDEXED and NEWVERSION parameters. To open a
file, used INDEXED. If the file does not exist, VAX-11 DSM creates it, as
described in Section 6.6.3. If the file does exist, VAX-11 DSM opens it. For
example:

> 0 "GREENLINE": INDEXED

This command line opens or creates the indexed file GREENLINE.DAT on
your default disk device.

When you create an indexed file from the DSM language, V AX-11 DSM
allows you to specify the following file parameters: KEYSIZE (see Section
6.10.1.1 for details), ALLOCATION, EXTENSION,
CONTIGUOUSBESTRY, and RECORDSIZE. All other file parameters are
fixed by DSM and cannot be changed, except with the RMS utility
CREATE/FDL, described in Section 9.7.2, or the $ZCALL %FDLCREATE.

The following are the default parameters for indexed files created from the
DSM language:

•Key position=O

• Key size= 64

6-34 Input/Output Processing

• Definition of the primary key only (no alternate keys)

• No duplicate keys allowed

• ASCII collating sequence

• Maximum record size= maximum size of a DSM string (255) + key size

• Bucket size= 2

•One area

V AX-11 DSM allows you to open an existing indexed file without the
INDEXED parameter. However, if you do so, the file can only be processed
sequentially. That is, you must process the file as if it were a disk-resident
sequential file. Opening an indexed file without the INDEXED parameter
disables all random record access and record locking.

6.9.1 Indexed· File Commands

The commands used for indexed file 1/0 are:

Assignment

OPEN
USE
CLOSE

Input

READ
READ*

Output

WRITE
WRITE*

These commands are described in the following sections. Assignment com
mands are described first, then input commands, and finally output com
mands. The command descriptions are followed by sections explaining
record locking and error conditions.

6.9.1.1 The OPEN Command - When specified with the INDEXED para
meter, the OPEN command reserves an indexed file for use by your process
or creates an indexed file. If specified without the INDEXED parameter,
the OPEN command establishes a sequential input/output stream from an
indexed file.

Many ofthe OPEN command parameters specify VAX-11 RMS options.
The following list shows the OPEN parameters for indexed file 1/0; an
asterisk (*) indicates that the parameter specifies an RMS option.

ALLOCATION=n*
CONTIGUOUSBESTRY*
DELETE
EXTENSION= n*
KEYSIZE=n

PROTECTION= opts
READONLY
RECORDSIZE = n*
[NO]SHARED
NEWVERSION
UIC = "[n,m]"

Input/Output Processing 6-35

The READONLY parameter overrides the default VAX-11 DSM access
mode for sequential files. By default, V AX-11 DSM opens an indexed file
with GET, PUT, UPD, DEL, and MSE privileges, equivalent to
READ/WRITE access to the file. The READONL Y parameter opens a file
with GET privilege only, equivalent to READ access;' all you can do to the
file is read it.

If READONLY is present (either explicitly or implicitly), an error occurs if
you try to open a file that does not exist. A new file is never created in
response to OPEN if READONL Y is present.

The SHARED parameter enables shared access to the file. The SHARED
parameter is· equivalent to the RMS SHR options. If the /SHARED quali
fier, described in Section 4.4.19; is specified, the default is SHARED for
indexed files. ,

The NOSHARED parameter disables the RMS shared file option. This
parameter opens a file with the RMS access privilege NIL only, so t_hat all
explicit file sharing is disabled. If the /NOSHARED qualifier is in effect,
NOSHARED is the default for indexed files.

The following examples show various file-sharing options and the equiva
lent RMS access privileges.

OPEN Option

0 "File":(NOSHARED:INDEXED:READONLY)

0 "File":(INDEXED:SHARED)

0 "File":(INDEXED:SHARED:BLOCKSIZE = 512)

0 "File":(INDEXED:SHARED:READONL Y)

RMS File-Sharing Mask

NIL

GET,PUT,UPD,DEL,MSE

GET,PUT,UPD,DEL,MSE,UPI

GET,MSE

0 "File":(INDEXED:SHARED:READONL Y :BLOCKSIZE = 512) GET,UPI

0 "File":(INDEXED:NOSHARED) NIL

Refer to the VAX-11 RMS Reference Manual for a complete description of
the RMS keywords· listed above.

Except for the KEYSIZE parameter, the remaining OPEN parameters for
indexed file 1/0 (including the timeout) perform the same.functions as their
counterparts for sequential files, as described in Section 6.7.1.1.

The KEYSIZE = n parameter allows you to select the size of the primary
key for the records written to an indexed file. The value of the parameter
argument n can be 1 to 255. By default, the primary key size is 64; the
system uses 64 as the value of n if you do not· include this parameter when
you open the file.

6.9.1.2 The USE Command - Parameters for the USE command allow you
to perform random or sequential record 1/0. Table 6-9 summarizes the USE
command parameters for indexed file 1/0. The paragraphs following this
table describe each parameter in detail.

6-36 Input/Output Processing

Table 6-9: USE Command Parameters for Indexed File 1/0

Parameter Function

CONVERT Converts lowercase characters to uppercase on READ.

NOCONVERT Disables lowercase character conversion on READ (default).

DELETE Deletes the current record.

DISCONNECT* Positions the file at the beginning or end depending on the next
operation.

REFERENCE=n Specifies an alternate key of reference.

KEY="key" Positions the file to the specified key for read operations. If reference
is not equal to 0, the alternate key specified in the REFERENCE
parameter is used.

RFA="n,m" Positions the file to the specified Record File Address for read
operations.

* Indicates a V AX-11 RMS option.

The CONVERT, NOCONVERT, and DISCONNECT parameters perform
the same functions as their sequential file 1/0 counterparts, described in
Section 6.7.1.2.

The DELETE parameter deletes the current record. This parameter can be
used to delete records either randomly (by key or RF A) or sequentially.

The REFERENCE = n parameter specifies a key other than the primary
key. (The primary key, which is the default, is REFERENCE= 0.) The
value specified must be in the range 0 to 255. If the KEY parameter is
absent, the REFERENCE parameter is ignored. The KEY= ''key" para
meter allows you to read records randomly by primary or alternate key. It
uses any alternate key number specified as the REFERENCE parameter.

KEY positions the file to the record associated with the parameter argu
ment key, which is either the primary or the alternate key. The form of the
parameter argument is a character string of 1 to 255 characters.

When you read a record, you can specify a key that is longer than, shorter
than, or the same size as the key that was established when the file was
created. (The key size is established with the OPEN command parameter
KEYSIZE = n for the primary key, and by RMS utilities or $ZCALL
(%FDLCREATE) for alternate keys.)

If you specify a longer key, VAX-11 DSM positions the file to the record
that is strictly greater in key value (RMS KGT option) than the desired
key. For example, if the key for a record is KEYREC and you specify
KEYRECO in the KEY parameter, VAX-11 DSM positions the file beyond
the record with which KEYREC is associated. In addition, the next READ
returns the null string. The following read returns the next record.

Input/Output Processing 6-37

If you specify a key that ,is shorter than the established key size, V AX-11
DSM does an approximate key match. For example, if the key for a record is
KEYREC, and it is unique to four characters, V AX-11 DSM considers any
of the following keys a match:

• KEYR

• KEYRE

• KEYREC

The RF A = "n,m" parameter allows you to read records in the file randomly
by Record File Address. For indexed file 1/0, V AX-11 DSM returns the
RF A for a record in the $ZB special variable after each successful read or
write operation. Refer to the description of this parameter for sequential
file 1/0 (in Section 6.7.1.2) for more information about RFAs.

If you specify a key length that exactly matches the key size established
when the file was created, DSM does an approximate key match. The first
read returns a null string. If the next record exists, it is returned in the
next read. If the next record does not exist, another null string is returned.
The file is always positioned at a valid record boundary for successive
reads.

6.9.1.3 The CLOSE Command - For indexed file I/O, the CLOSE command
accepts the following parameters:

•DELETE

• PROTECTION= opts

• UIC = "[n,m]"

•RENAME

These parameters perform the same functions as their counterparts for
sequential file 1/0. All CLOSE parameters are available on the OPEN com
mand as well. If you specify one of these parameters when you open the file,
you need not respecify it.when you close the file.

6.9.1.4 The READ Command - The READ command retrieves records from
the file either ·randomly or sequentially.

You can read records randomly either by key (primary or alternate) or by
RFA. The following paragraphs describe each procedure.

1. Random by Primary Key

OPEN the file with the INDEXED parameter, and issue the USE com
mand with the KEY= "key" parameter. This positions the file to the
record associated with the specified key. A READ retrieves this record.
If the record does not exist, a READ returns the null string. To retrieve
another record, issue the USE device-specifier:KEY ="key" command

6-38 Input/Output Processing

again to reposition the file. READ the record; reissue the USE com
mand, and so on. If you try to read a record that collates past the last
key in the file, VAX-11 DSM returns the null string.

2. Random by Alternate Key

OPEN the file with the INDEXED parameter, and issue the USE com
mand with the KEY= "key" and REFERENCE parameters. This posi
tions the file to the record associated with the specified key. A READ
retrieves this record. If the record does not exist, a READ returns the
null string. To retrieve another record, issue the USE device
specifier:KEY = "key":REFERENCE command again to reposition the
file. READ the record; reissue the USE command, and so on. If you try
to read a record that collates past the last key in the file, VAX-11 DSM
returns the null string.

3. Random by RFA

OPEN the file with the INDEXED parameter, and issue the USE com
mand with the RFA="n,m" parameter. This positions the file to the
record associated with the specified Record File Address. Once posi
tioned to this RF A, the READ procedure is the same as reading a record
by primary key.

To read an indexed file sequentially or to mix random and sequential access
to the file, use one of the following procedures:

1. Open the file or issue the USE command with the DISCONNECT para
meter. The first READ positions the file at the beginning. Subsequent
READs sequentially retrieve each record in the file in the collating
sequence of their keys, described below. If you try to read a record when
you reach end-of-file, V AX--11 DSM returns an ENDOFILE error.

2. To mix random and sequential access to the file, OPEN it (with the
INDEXED parameter} and issue the USE command with either
KEY= "key" or RF A= "n,m". This positions the file to the record associ
ated with the specified key or Record File Address. The first READ
returns this record; subsequent READs sequentially retrieve the re
maining records in the file by the collating sequence of their keys
(ASCII, if created from the DSM language).

For example, if a file consists of three records called ARECORD,
BRECORD, and CRECORD, and each record has a primary key size of
4, the first READ returns ARECORD because its .key (AREC) comes
first in the ASCII collating sequence. The next READ returns
BRECORD because its key (BREC) follows AREC and precedes CREC
in the ASCII collating sequence. The next READ returns CRECORD
because its key (CREC) follows BREC in the ASCII collating sequence.

For indexed file 1/0, the READ command timeout is used to read locked
records. If you try to read a record that is locked, VAX-11 DSM will try to
read it at one second intervals until the timeout expires.

Input/Output Processing 6-39

The READ * command performs an 8-bit binary read of one character.
Thus, to retrieve an entire record, you must issue the number of READ *
commands equal tQ the length of the record. (For relative file 1/0, the $ZA
special variable returns the length of the record (in bytes) after each physi
cal read or write operation.)

6.9.1.5 The WRITE Command - The WRITE command writes a string to the
file's output buffer. V AX-11 DSM writes the contents of the buffer to the
file when:

• The buffer becomes full

• You issue a formatted WRITE (W !)

• You issue a USE:KEY ="key" command

When you write consecutive strings to the buffer, VAX-11 DSM concaten
ates them into a single record until its length exceeds 255 bytes plus the
primary key size; then V AX-11 DSM automatically creates a new record.

VAX-11 DSM places a record in the file according to the collating sequence
of its primary key. When writing a record to an indexed file, you cannot
explicitly specify a key, since the key value is always embedded in the
record itself. For indexed files created from the DSM language, the key
starts at character position 0 of the record and terminates at the point
specified in the· OPEN parameter KEYSIZE ="key".

NOTE

Trying to write a null record (or a record shorter than the
primary key) to an indexed file generates an error, because a
record always has to be large enough to contain the
primary key.

The WRITE * command performs an 8-bit binary write of one character to
the file's output buffer. To write this character to the file, you must subse
quently issue a formatted WRITE command.

The formatted WRITE command behaves for indexed files as for sequential
files on disk, as described in Section 6. 7 .1.8.

6.9.2 Record Locking

The term record locking refers to a condition that prevents all users except
the current user from accessing a record in any way. This section describes
the actions that lock and unlock records in an indexed file.

A record becomes locked when:
1. You read a record sequentially. Subsequent READs lock each subse

quent record until the operation is complete.

2. You read a record randomly by primary or alternate key.

6-40 Input/Output Processing

3. You position the file randomly by RFA.

A record becomes unlocked when:

1. You update the record with a WRITE.

2. You sequentially read or write another record.

3. You position the file to another record by primary or alternate key
(with the USE command).

You can use the READ command with timeout to find out whether a record
is locked.

6.9.3 Indexed File Status and Error Conditions

Indexed file 1/0 error and status conditions are reported in the $ZA and
$ZB special variables as shown in Table 6-10.

Table 6-10: $ZA and $ZB Assignments for Indexed File 1/0

Special Variable 1/0 Operation Successful 1/0 Operation Failed

$ZA for READ or Length (in bytes) of last record Error message string correspond-
WRITE read or written ing to the primary RMS error

status (RMS STS value)

$ZB for READ or RF A of the last record read or Error message string correspond-
WRITE written ing to the secondary RMS error

status (RMS STV value)

lfno STV value, returns the null
string.

$ZA on OPEN Maximum record size

$ZB on OPEN Primary key size

6.10 Relative Files

V AX-11 DSM provides a subset of the options supported by V AX-11 RMS
for the relative file organization. These options include:

•Random access to the file by relative record number

• Sequential access to the file

• File sharing

• Automatic record interlocking and locking of nonexistent records

To create a relative file, issue the OPEN command followed by a device
specifier and the RELATIVE parameter. If the file does not exist, VAX-11
DSM creates it. If the file does exist, VAX-11 opens it. For example:

>O 11 BLUELINE 11 :RELATIVE

Input/Output Processing 6-41

This command line opens or creates the relative file BLUELINE.DAT on
your default disk device.

You can open an existing relative file without specifying the RELATIVE
parameter. However, if you do so, the file can only be accessed sequentially;
I/O must proceed as if the file were a disk-resident sequential file. Opening
a relative file this way disables record access by relative record number and
record locking.

6.10.1 Relative File Commands

The commands used for relative file I/O are:

Assignment

OPEN
USE
CLOSE

Input

READ
READ*

Output

WRITE
WRITE*

These commands are described in the following sections. Assignment com
mands are described first, then input commands, and finally output com
mands. The command descriptions are followed by a section on record
locking and a description of the status and error conditions returned for
relative files.

6.10.1.1 The OPEN Command - The OPEN command, specified with the
RELATIVE parameter, reserves a relative file for use by your process or
creates a relative file. When specified without the RELATIVE parameter,
the OPEN command establishes a sequential access input/output stream
from a relative file.

The OPEN command parameters for relative file I/O (including the
timeout) perform the same functions as their sequential or indexed file I/O
counterparts. The following list shows the OPEN parameters for relative
file I/O; starred items (*) indicate that the parameter specifies an RMS
option. Refer to Sections 6.7.1.1 and 6.9.1.1 for a complete description of
these parameters.

ALLOCATION= n*
CONTIGUOUSBESTRY*
DELETE
EXTENSION= n*
NEWVERSION

PROTECTION= opts
READONLY
RECORDSIZE=n*
[NOJSHARED
UIC = "[n,m]"

6.10.1.2 The USE Command - Parameters for the USE command allow you
to perform random or sequential record I/O. Table 6-11 summarizes the
USE command parameters for relative file I/O. The paragraphs following
this table describe each parameter in detail.

6-42 Input/Output Processing

Table ~11: USE Command Parameters for Relative File 1/0

Parameter Function

CONVERT Converts lowercase characters to uppercase on READ

NOCONVERT Disables lowercase character conversion on READ (default)

DELETE Deletes the current record

DISCONNECT* Positions the file at the beginning or end depending on the next
operation

KEY= record number Positions the file by relative record number

* Indicates a V AX-11 RMS option.

The CONVERT, NOCONVERT, and DISCONNECT parameters perform
the same functions as their counterparts for sequential file 1/0. Refer to
Section 6. 7 .1.2 for details about these parameters.

The DELETE parameter deletes the current record. This parameter can
only be used to delete records randomly, that is, after you position the file
by key (with the KEY parameter).

The KEY= record number parameter accepts a positive integer argument
that specifies the relative record number of a record. When you include this
parameter in the USE command, V AX-11 DSM positions the file at the
specified record. See the description of the READ and WRITE commands
for more information.

6.10.1.3 The CLOSE Command- For relative file 1/0, the CLOSE command
accepts the following parameters:

•DELETE

• PROTECTION=opts

• UIC = t'[n,m]"

•RENAME

These parameters perform the same functions as their counterparts for
sequential file 110, described in Section 6.7.1.3.

The CLOSE parameters are all available on the OPEN command as well. If
you specify one of these parameters when you open the file, you need not
respecify it when you close the file.

6.10.1.4 The READ Command - The READ command reads a record from
the file into a variable as a DSM string. You can read records either ran
domly by relative record number or sequentially.

Input/Output Processing 6-43

To read a relative file randomly, issue the USE command with the
KEY =record number p~rameter to position the file at the record. Then
READ the record. (For relative file 110, the $ZB special variable returns the
relative record number after each READ or WRITE.)

To retrieve another record, you must position the file again by issuing the
USE command with KEY=record number. If you try to read an empty cell
on a random access to the file, V AX-11 DSM returns a null string.

To read a relative file sequentially or to mix random and sequential access
to the file, use one of the following procedures:

1. Open the file and USE it. The first READ positions the file at the
beginning. All subsequent READs sequentially retrieve the contents of
each cell (until you explicitly override sequential ;iccess with the KEY
parameter of the USE command). VAX-11 DSM skips empty cells on
sequential read operations.

2. To mix random and sequential access, OPEN the file (with the
RELATIVE parameter) and issue the USE command with the
KEY =record number parameter. This positions the file at the record
associated -with the specified relative record number. The first READ
returns this record, and subsequent READs sequentially return the
remaining records in the file. After VAX-11 DSM reads the last record,
it returns a %DSM-E.,....ENDOFILE message.

For relative file 1/0, the READ command timeout is used to read locked
records. See Section 6.9.2 for more information about record locking. The
timeout parameter behaves as follows. Ifyou try to read a record that is
locked, VAX-11 DSM tries to read it at one second intervals until the
timeout expires.

The READ * command behaves exactly like its counterpart for indexed
files, described in Section 6.9.1.4.

6.10.1.5 The WRITE Command - The WRITE command writes a string to
the file's output buffer. When the buffer becomes full, or if you execute a
formatted WRITE, V AX-11 DSM writes the contents of the buffer to the
file. When you write consecutive strings, VAX-11 DSM concatenates them
into a single record until the length exceeds 255 bytes; then VAX-11 DSM
automatically creates a new record.

Records can be written either randomly or sequentially. To write records
randomly, issue the USE command with the KEY =record number para
meter followed by the WRITE command. This sequence writes the record to
the specified relative cell. If the cell contains a record, it is updated. If the
cell is empty, the record is inserted into the cell. If the cell does not exist,
and the file has exhausted its initial allocation of space, the file is automat
ically extended to accommodate the new record.

6-44 Input/Output Processing

To WRITE records sequentially, OPEN the file and issue the USE com
mand. The first WRITE positions the file at the end and writes the record to
the first cell after the last record in the file. All subsequent WRITEs are
sequential (until you explicitly override sequential access with the KEY
parameter of the USE command).

NOTE

V AX-11 DSM performs an implicit WRITE ! prior to every
USE command to ensure that records are written to the ap
propriate cell. Thus, the following command sequence writes
the string "ABC" to the last. cell referenced and the string
"CDE" to cell 100:

W 11 ABC 11 U 11
}{

11 :KEY=100 W 11 CDE 11
t !

The WRITE *behaves like its counterpart for indexed file 1/0, described in
Section 6.9.1.5.

For relative file 1/0, the formatted WRITE behaves exactly as it behaves
when used with sequential files on disk. Refer to Section 6. 7 .1.8 for details.

6~ 10.2 Record Locking

Record locking is the same for relative files as for indexed files, except that
you access a relative file by relative record number, not by key. See Section
6.9.2 for information on record locking of indexed files.

6.10.3 Relative File Status and Error Conditions

Relative file 1/0 error and status conditions are reported in the $ZA and
$ZB special variables as shown in Table 6-12.

Table 6-12: $ZA and $ZB Assignments for Relative File 1/0

Special Variable 1/0 Operation Successful 1/0 Operation Failed

$ZA for READ or Length (in bytes) of last record Error message string correspond-
WRITE read or written ing to the primary RMS error

status (RMS STS value)

$ZB for READ or Relative record number Error message string correspond-
WRITE ing to the secondary RMS error

status (RMS STV value)
If no STV value, returns the null
string.

$ZA for OPEN Maximum record size

$ZB for OPEN 0

Input/Output Processing 6-45

6.11 Using Mailboxes

A mailbox is a VAX/VMS pseudodevice that can be shared by a number of
processes in the system. Though a mailbox is a software data structure in
virtual memory, it is treated exactly as if it were a record-oriented 1/0
device.

Mailboxes are used for interprocess communication. One process can create
a mailbox and write data to it, and other processes can subsequently read
data from the mailbox or write data back to it. Thus, you can use a mailbox
to pass status information, return codes, messages, or any other data. Mail
boxes can also be used to control other processes.

To create a mailbox from the DSM language, issue the OPEN command
followed by a device specifier and the MAILBOX and NEWVERSION
parameters, for example:

> 0 II T II: (MA I LBOX: NEWl.IERS I ON)

When you create a mailbox, you can make it either temporary or perma
nent. You can make it available to a single group or to the entire system. A
temporary mailbox remains in existence until the number of channels as
signed to it reaches zero, that is, when all processes close it. A permanent
mailbox remains in existence until it is explicitly deleted, as described in
Section 6.11.2.3.

VAX/VMS allows temporary _mailboxes for groups only. You can specify
that DSM create a system permanent mailbox, but you cannot create a
group permanent mailbox or a system temporary mailbox.

6.11.1 Privileges Required to Create a Mailbox

To create a group temporary mailbox, you must have the TMPMBX privi
lege. To create a system permanent mailbox, you must have the PRMMBX
privilege. (You also need this privilege to delete a system permanent
mailbox).

No special privileges are required to access an existing mailbox~

6.11.2 Mailbox Commands

The commands used for mailbox 1/0 are:

Assignment

OPEN
USE
CLOSE

Input

READ
READ*

Output

WRITE
WRITE*

These commands are described in the following sections. Assignment com
mands are described first, then input commands, and finally output com
mands. The command descriptions are followed by a description of status
and error conditions for mailbox 1/0.

6-46 Input/Output Processing

6.11.2.1 The OPEN Command- If specified with the parameters MAILBOX
and NEWVERSION, the OPEN command creates a mailbox. If specified
without parameters, the command can reserve a mailbox that already ex
ists. For example, if a mailbox called LZ004 exists, the following command
opens it for reading or writing:

> o 11 Lzooa 11

However, if no mailbox of this name exists but there is a sequential file
called LZ004, this command opens the file. If there is no device at all called
LZ004, this command creates a new sequential file, not a mailbox.

If a mailbox and a sequential file have the same name, you can use the
following OPEN command syntax to ensure you access the right device:

> o 11 L zoo a 11 Opens mailbox LZ004

> o 11 _Lzooa 11 Opens file LZ004

In the first command line, V AX-11 DSM opens the mailbox because LZ004,
like all mailbox names, is a logical name, and device specifiers always
undergo logical name translation. In the second command line, the under
score.character preceding the device specifier inhibits logical name transla
tion; thus, V AX-11 DSM opens the file. Table 6-13 summarizes the OPEN
parameters for mailbox 1/0.

Table ~13: OPEN Command Parameters for Mailbox 1/0

Parameter Function

BLOCKSIZE = n Specifies the maximum size of a single message when you create
the mailbox (default is 255, the maximum size of a DSM string).

DELETE Marks a system mailbox for deletion on CLOSE, as described in
Section 6.11.2.3.

MAILBOX Specifies that a mailbox should be created or reserved.

NEWVERSION Creates a group temporary or system permanent mailbox de-
pending on the parameters specified with it.

PROTECTION= opts Specifies the protection that applies to the mailbox (READ pro-
tect and WRITE protect only).

RECORDSIZE = n For mailboxes, the record size is equal to the block size.

SYSTEM Creates a system permanent mailbox when specified with the
NEWVERSION parameter

The BLOCKSIZE = n parameter accepts a positive integer argument that
specifies the maximum size of a message that can be written to or read from
a mailbox. The maximum value ofn depends on the value of the VAX/VMS
sysgen parameters associated with mailboxes. Consult your system mana
ger for the value of these parameters at your installation. By default,
V AX-11 DSM uses the maximum length of a DSM string (255 characters)

Input/Output Processing 6-4 7

for the maximum message size if you do not include the BLOCKSIZE para
meter on the OPEN command when you create the mailbox. As noted
above, the record size for mailboxes is equal to the block size.

The NEWVERSION parameter creates a new mailbox. By default, V AX-11
DSM creates a group temporary mailbox. If you specify the NEWVERSION
parameter when a mailbox exists, V AX-11 DSM ignores it.

The PROTECTION= opts parameter specifies the protection that applies to
the mailbox. Mailbox protection is limited to READ access, WRITE access,
and READ/WRITE access. By default, mailboxes have no protection. All
users can access the mailbox READ/WRITE. To change the protection, fol
low the procedure outlined in the description of this parameter for sequen
tial file 1/0 (in Section 6.7.1.1).

The SYSTEM parameter creates a system permanent mailbox. You must
have the privileges described in Section 6.11.1 to use this parameter. If you
do not have these privileges and you try to use this parameter, an error is
generated.

For mailbox 110, the OPEN command timeout parameter allows a process
to wait for a mailbox to be created (after which it can perform any appropri
ate operation). To do this, issue the OPEN command with only the
MAILBOX parameter and a timeout, for example:

> 0 11 ABC 11 :MAIL50}{:15

In this example, V AX-11 DSM waits 15 seconds for mailbox ABC to be
created. If you issue the OPEN command in this form without the timeout,
V AX-11 DSM continues trying to access the mailbox.

6.11.2.2 The USE Command - For mailbox I/O, the USE command accepts
the following parameter:

WAIT This parameter instructs VAX-11 DSM to wait for a written mes
sage to be read by the receiving process before returning control to
the DSM interpreter. By default, control returns to the DSM in
terpreter as soon as the message is written to the mailbox.

6.11.2.3 The CLOSE Command - For mailbox 1/0, the CLOSE command
accepts one parameter, DELETE. This parameter marks a system perma
nent mailbox for deletion. VAX/VMS only deletes a system permanent
mailbox when the number of channels assigned to it reaches 0, that is,
when no processes are accessing it.

6.11.2.4 The READ Command - The READ command retrieves one message
from the mailbox. The length of the message read depends on the length of
the record when it was written to the mailbox. If you try to read a message
that is longer than 255 characters, V AX-11 DSM returns the message to
you in pieces in subsequent READs. Refer to Section 6. 7 .1.4 for a general
description of this process.

~8 Input/Output Processing

For mailbox 1/0, a READ with timeout causes V AX-11 DSM to try to read
a message at one-second intervals until the timeout expires. A timeout of 0
causes DSM to try to read a message once and then quit. If no message is
read, the null string is returned. For timed READ, the value of$T indicates
whether an end of file was read (if $T = 1) or no message was read ($T = 0).

If you try to read a mailbox without a timeout, and the mailbox does not
contain a message, the read operation hangs until someone else writes to
the mailbox.

The READ* command retrieves one 8-bit binary character from the mes
sage string.

6.11.2.5 The WRITE Command - The WRITE command transfers a string to
the mailbox's message buffer. Only a formatted WRITE actually sends the
contents of the buffer to the mailbox.

If the buffer becomes full before you write its contents, VAX-11 DSM re
ports an error.

If you issue the USE command with the WAIT parameter, a write operation
hangs until the receiver reads the message.

NOTE

The maximum number of messages that can be written to a
mailbox depends on the value of VAX/VMS sysgen parame
ters. Consult your system manager for the value of this para
meter at your installation.

The WRITE *command writes one 8-bit binary character to the mailbox
message buffer.

For mailbox 110, the formatted WRITE performs the following functions:

Command Function

WRITE ! Writes the contents of the mailbox buffer to the mailbox. Two
consecutive carriage return/line feeds(!!) write an end-of-file.
(However, VAX-11 DSM reads end-of-file as a null string.
Thus, mailbox 110 never causes a %DSM-E-ENDOFILE
error.)

WRITE # Writes the contents of the mailbox buffer to the mailbox fol
lowed by a message that contains a form feed.

WRITE ?n Writes the specified number of spaces (relative to $X) to the
mailbox message buffer.

6.11.3 Mailbox Status and Error Conditions

Mailbox 110 status and error conditions are reported in the $ZA and $ZB
special variables as shown in Table 6-14.

Input/Output Processing 6-49

Table 6-14: $ZA and $ZB Assignments for Mailbox 1/0

Special Variable 1/0 Operation Successful 1/0 Operation Failed

$ZA on READ or Length (in bytes) of last message Error message string corre-
WRITE read or written sponding to the V AXNMS 1/0

error

$ZB on READ or After READ - Process ID (PID) of 0
WRITE sender

After WRITE with WAIT - PID
of receiver
After WRITE without WAIT - 0

$ZA after OPEN Maximum message size of mailbox

$ZB after OPEN 0

6.12 Communicating with Remote Computers - Networks

If your computer is one of the nodes in a DECnet network, you can use
V AX-11 DSM 1/0 procedures to communicate with other nodes in the net
work. These procedures allow you to exchange data with routines on a
remote system (task-to-task communication) and to access files on a remote
system (resource sharing).

Both task-to-task communication and resource sharing between systems
are transparent. That is, these intersystem exchanges do not appear to be
different from local interprocess and file access exchanges.

The following sections describe the special 'considerations that you should
keep in mind when communicating across the network.

6.12.1 Limitations on Operations Across the Network

The 1/0 options listed earlier in this chapter for the OPEN, USE, and
CLOSE commands can be used for cross-network access only if the corre
sponding options are supported by both DECnet/VAX and the system run
ning on the remote node.

You cannot use any device-dependent options in 1/0 to terminals or mail
boxes across the network. Timed read is not supported. Writing to mail
boxes is synchronous.

6.12.2 Reading and Writing Files Across the Network

To read and write files across the network (resource sharing), you specify a
node name as the first element of a VAX-11 DSM device specifier, for
example:

> 0 11 BOSTON:: TEST$D I SK: EDWNER JTESTDATA. DAT; 2 11

6-50 Input/Output Processing

This command line opens the file TESTDAT A.DAT;2 on the device repre
sented by TEST$DISK: on the BOSTON node of the network. This syntax
allows you to access remote files of any organization (sequential, relative,
indexed).

See the DECnet/VAX User's Guide for information about the use of sequen
tial, relative, and indexed files across the network.

6.12.3 Task-to-Task Communication Across the Network

Task-to-task communication requires a special field in the device specifier.
You must use the notation TASK= in place of the device field, and supply a
task name, for example:

> 0 II BOSTON:: II II TASK =NET JOB II II II

This command line establishes a link with a task on the remote node. There
must be a VMS command file (in this case, called NET JOB.COM) in the
default directory .of the account being accessed on the remote node. The
command file invokes the task that you want to run. Subsequently, your
application can receive data from this task and process it, or your applica
tion can pass data across the network to be processed.

The task invoked by the command file must contain the following
statement:

OPEN "SYS$N~T"

or the equivalent command in a language other than DSM.

6.12.4 Ending Communication Across the Network

To break the link established during task-to-task communication or re
source sharing, simply close the device on the remote node with the CLOSE
command, for example:

> C 11 BOSTON:: TEST$D I SK: [OWNER JTESTDATA. DAT; 2 11

If you use logical names in your applications, you can equate the logical
names with either local or remote files as required.

6.12.5 Accessing DSM Globals Across the Network

To access DSM globals on a remote node, you specify an alternate global
directory in the user field of the global specification (described m
Section 9.2).

The directory name can be specified in either of the following ways:

• As a full VAX/VMS specification (node name, device name, and directory
name)

Input/Output Processing 6-51

• As a node name followed by access information (in quotes) and a device
name

In the second case, you can use the dummy device name SYS$DISK, which
is translated on the remote node. An example of the user field produced by
the second method is shown in the following command line:

WR I TE ... [11 FARNODE II II ACCESSCODE II II:: SYS$D I SK: II] 5

6.12.6 Using Mailboxes Across the Network

You open a mailbox across the network by issuing the DSM OPEN com
mand with the parameter NOSEQUENTIAL specified after the node name
and the mailbox name, as in the following example:

OPEN 11 FARNOD:: MB>rnAME: 11
: NOSEQUENTI AL

You must include a colon after the logical name of the mailbox to force
logical name translation on the remote node rather than on your local node.

Note that you cannot use the MAILBOX parameter on the OPEN
command.

Remember that 110 to network mailboxes is synchronous.

~52 Input/Output Processing

Chapter 7
VAX-11 DSM Utilities

This chapter describes the VAX-11 DSM utility routines. It also describes
how to create an interactive menu interface for utilities written at your
installation.

7.1 Overview of VAX-11 DSM Utilities

The DSM utilities are a collection of routines written in the VAX-11 DSM
language that perform commonly needed tasks or provide commonly
needed information. The utilities fall into two categories:

• Library Utilities

• System Utilities

In general, library utilities serve the needs of application programmers,
and system utilities serve the needs of system managers and system
operators.

VAX-11 DSM provides access to all utilities through an interactive menu
driven package. When you invoke the package, DSM displays options on
your terminal. You select the options required to do a given task.

The utility package provides on-line information about the utilities that
make up the package. If you are ever unsure of the appropriate response to
a utility prompt, you can always enter a question mark(?) for help. DSM
responds by listing your options or by asking you to identify which option
you need clarified.

A library utility called "%HELP also provides on-line assistance; it provides
information about all DSM commands, variables, and functions. You can
run "%HELP with the DO command or invoke it (in Programmer Mode) by
typing a question mark(?).

7-1

~ Figure 7-1: The V AX-11 DSM Utilities
~

<:

~
~
~

t:J
U1
~

~ -...... M--.....
('t>
00

JOURNAL
CONTROL

SYSTEM A

UTILITIES %SYS

DSM
OPERATOR
FUNCTIONS

LOGIN
CONTROL

SYSTEM
CONTROL

VTILITIES MENU
%UTL

CALLABLE
UTILITIES DEBUGGER

LIBRARY A

UTILITIES %LIB

INFORMATION ROUTINES ZCALL

MR-S-2361-82

Figure 7-1 shows the categories of the VAX-11 DSM utilities and the tree
like structure of the utility menu.

7.2 Running the DSM Utilities

You can access the VAX-11 DSM utilities in three ways:

•Through the utility package menu, by typing:

>D"%UTL

Or, if you know the utility's category but not its name, you can access the
menu at a specific entry point by typing:

> D "%LIB for all library utilities

>D "%SYS for all system utilities

>D "%JOURNAL for all journaling utilities (included under "%SYS)

> D "%0PER for all operator functions (included under "%SYS)

• By typing the utility's V AX-11 DSM routine name directly in
Programmer Mode, in one of these formats:

>D "%Utilityname or >D Label"%Utilityname

• By invoking V AX-11 DSM in Application Mode using a utility's routine
name as the DSM command parameter, in one of these formats:

$ DSM "% Utilityname or $ DSM Label"% Utilityname

7.3 Utility Conventions

All utilities use the following conventions, unless otherwise specified in the
description of the utility:

•To get information about any utility or utility prompt, enter a question
mark (?). In response, the system prints help text.

• Each menu displays a list of numbers followed by options. Options can
point to utility categories or to actual utilities, for example, CALLABLE
FUNCTIONS or VERIFY DSM USERS. To select an option, enter either
its number or its name (enough characters to distinguish it from other
names). The menu also displays the V AX-11 DSM routine name for
many utility categories and all utility routines, for example, "%LIB or
"%RD. You cannot, however, enter such names in response to an option
prompt.

•If you do not respond to a prompt within 60 seconds, the utility returns to
the previous question; it eventually returns to the DSM interpreter
prompt if you do not type anything. The system manager can alter the
default timeout period by changing the library global "%TIMEOUT.
(Section 9.3.1 describes how to modify library globals.)

V AX-11 DSM Utilities 7-3

•The correct way to exit a menu is to back up, by typing either a IB.m or a
circumflex (") at each prompt. To exit any utility, use the same procedure.
If the utility interprets a carriage return as a default value, use the
circumflex instead of the carriage return to back up.

• After a utility has begun to operate, do not stop the utility before execu
tion is completed. You run the risk of leaving files open, corrupting the
·data base, or leaving variables undefined. Let the utility run to comple
tion, then rerun it correctly.

• When a utility requests an input or output file, it accepts any valid
VAXNMS device and file specification. You can refer to your own termi
nal as 0, but you must specify all other devices by device name or logical
name. If your VAXNMS installation spools the line printer, you can
specify LP in the device field of the output file specification. When you
include the line printer name in the file specification (for example,
LPO:MYLIST.DAT), the file name appears on the header page of your
output.

• For some utilities, such as those that manipulate routines or globals, you
may want to specify more than one name in response to a utility prompt.
List multiple names separated by commas, or use the asterisk (*) as a
wild card character. The asterisk by itself indicates ALL. When the aster
isk is the last character in an alphanumeric string, the utility interprets
that string as meaning all names with that string as their root. For
example, to specify ALP, ALPHA, ALP123, type ALP*.

Another valid response when prompted for a routine or global name is
circumflex-D ("D); this response displays the contents of your global or
routine directory (to help you make your selection). You can also enter
circumflex-L ("L); this response produces a list of the routines or globals
you have already selected.

•Access to some system utilities depends upon whether your UIC matches
the UIC of the DSM Journal Process (for "%0PER) or the DSM Job
Controller (for "%JOURNAL). If you try to run utilities in this category
and your UIC does not match, V AX-11 DSM reports an error message
indicating that it could not interact with the DSM Journal Process or the
DSM Job Controller.

• V AX-11 DSM always returns numbers in decimal, and always reads
numbers as being decimal. You can, however, do numeric conversions to
other bases, as described in Section 7.4.3.1.

7 .4 The Library Utilities

TJ::ie library utilities fall into five categories:

1. Callable functions which provide date and time and numerical
conversion

2. Routines for use in debugging DSM routines

7-4 V AX-11 DSM Utilities

3. Routines to manipulate globals

4. Routines to provide information about your V AX-11 DSM process

5. Routines to manipulate DSM routines

The following sections describe each of these categories and the utilities
within th.em. Refer to the on-line help text for detailed information about
particular utilities and the prompts they employ.

7 .4.1 Global Utilities

When you select GLOBALS from the "%LIB menu, DSM displays a menu of
utilities that examine and manipulate globals. The global utilities, de
scribed in the following sections, are:

Utility Routine Name

COMPATIBILITY RESTORE "%GR'il

COPY "%GC

CREATE "%GLCRE-

DIRECTORY "%GD

EDIT "%GED IT

LIBRARY DIRECTORY LIB"%GD

LIST "%GL

RESTORE "%GR

SAVE "%GS

SET ATTRIBUTES SET"%GBLATR

SHOW ATTRIBUTES SHOW"%GBLATR

SIZE "%GBLSIZ

Because globals are VAX-11 RMS ISAM files, you can manipulate or in
spect them with the RMS utilities as well as the VAX-11 DSM utilities.
Section 9.7.2 provides an overview of the RMS utilities. Refer to the
VAX-11 RMS Utilities Manual for a detailed description.

7.4.1.1 Compatibility Restore f'%GR11) - Restores globals from
DSM-11-generated ANSI-formatted magnetic tapes to VAX-11 DSM. The
Compatability Restore utility can restore globals from tapes generated by
both DSM-11Version1 and DSM-11Version2. In addition, it can restore
a global directly from tape or from a copy of it on disk.

VAX-11 DSM Utilities 7-5

To make transfers from DSM-11 to V AX-11 DSM with this utility, you
must set the DSM-11 magnetic tape default to A VL (ANSI variable-length
labelled) and use the DSM-11 Global Save utility ("%GS). Do not use
"%GTO~ When you bring the tape to your V AX-11 DSM system, use the
"%GR11 utility to restore tapes generated by DSM-11 Version 1 or the
V2"%GR11 entry point to restore tapes generated by DSM-11 Version 2.

When you restore a global from magnetic tape, the "%GR11 utility prompts
for an input file specification. This specification must be:

MTn:MUMPS.SRC

where n is the unit number.

7.4.1.2 Global Copy ("%GC) - Copies globals or parts of.globals from one
global to another.

7.4.1.3 Global Create ("%GLCRE) - Allows you to create a global and define
its keysize, initial allocations, and default file extension.

If the current device is the principal device, the "%GLCRE utility is interac
tive. If the current device is not the principal device, this utility automat
ically reads from the current device. You can use the latter method to read
the file generated by the Global Size ("%GBLSIZ) utility to recreate globals
of the same name with more suitable parameter values.

7.4.1.4 Global Directory ("%GD) - Prints the names of the globals in your
current global directory.

7.4.1.5 Global Edit ("%GEDIT) - Allows you to perform node-by-node edits
on one or more globals or parts of globals. Global Edit only allows you to
alter the data associated with a global node, not the node reference itself.

7.4.1.6 Library Directory (LIB"o/oGD) - Prints the names of the globals in
your current library global directory.

7.4.1.7 Global List ("%GL) - Prints the full references and values for a
specified set of globals or global nodes on your terminal.

7.4.1.8 Global Restore ("%GR)- Restores to your current default directory
the globals that were saved (using "%GS) on a disk or magnetic tape file.
You can restore all, some, or none of the globa~s in the specified file; you
can also rename each global as you restore it ..

The Global Restore utility optionally merges a global being restored with a
global of the same name. It also allows you·to KILL a global of the same
name before you restore it.

7.4.1.9 Global Save ("%GS) - Writes the references and values of a set of
specified globals or global nodes from your current global directory to a
sequential medium, such as a disk file, printer, terminal, or magnetic tape.

7-6 VAX-11 DSM Utilities,

7.4.1.10 Set Attributes (SET"%GBLATR) - Sets the attributes of all or
selected globals.

7 .4.1.11 Show Attributes (SHOW"%GBLATR) - Displays the attributes of all
or selected globals.

7.4.1.12 Global Size ("%GBLSIZ)- Scans a set of specified globals and deter
mines the maximum keysize used· by each. Optionally, the Global Size util
ity can ·write the specified global names and the maximum keysize
associated with each one to an output file. This file can subsequently be
passed to the Global Create ("%GLCRE) utility to redefine the globals with
more suitable parameter values.

7 .4.2 Routine Utilities

When you select the ROUTINES option from the "%LIB menu, DSM dis
plays a menu of utilities useful for examining and manipulating routines.
The routine utilities, described in the following sections, are:

Utility Routine Name

COMPARE "%RCMP

COMPATIBILITY RESTORE "%RR11

CONTENTS "%RCON

COPY "%RCOPY

ROUTINE DIRECTORY "%RD

FIRST LINE LIST "%FL

LIBRARY DIRECTORY LIB"%RD

RESTORE "%RR

SAVE "%RS

SEARCH "%RSE

SIZE "%RSIZE

Among the options listed in the ROUTINE menu is MAPPED. If you select
the MAPPED option, DSM displays a menu from which you can choose any
of the following utilities:

Utility

BUILD

CONTENTS

DIRECTORY

Routine Name

"%RBUILD

"%MAPCON

MAP"%RD

The following sections describe the utilities accessed through the
ROUTINES menu and the MAPPED menu.

VAX-11 DSM Utilities 7-7

7.4.2.1 Routine Compare ("%RCMP) - Compares two V AX-11 DSM routines
and prints out all lines that are different.

7.4.2.2 Compatibility Restore ("%RR11) Restores routines from
DSM-11-generated ANSI-formatted magnetic tapes to VAX~ll DSM. The
Compatability Restore utility can restore tapes generated by both DSM-11
Version 1 and DSM-11 Version 2. In addition, it can restore a routine
directly from tape or from a disk copy.

To make transfers from DSM-11 to V AX-11 DSM with %RR11, you must
set the DSM-11. magnetic tape default to A VL (ANSI variable-length la
belled) and use the DSM-11 Global Save utility. When you bring the tape
to your V AX-11 DSM system, use the "%RR11 utility to restore tapes gen
erated by DSM-11 Version 1 or the V2"%RR11 entry point to restore tapes
generated by DSM-11 Version 2.

When you restore a routine from magnetic tape, "%RR11 prompts for an
input file specification. This specification must be:

MTn:MUMPS.SRC

where n is the unit number.

7 .4.2.3 Routine Contents ("%RCON and FULL "%RCON) - Lists the names of
the routines in the file you specify; this file must have been created by the
Routine Save ("%RS) utility. The FULL"%RCON format lists both the
names and the first lines of the routines in the file. To execute Routine
Contents from the FULL"%RCON entry point, you must issue the following
command in Programmer Mode:

> D FULL"%RCON

7.4.2.4 Routine Copy ("%RCOPY) - Copies segments of DSM source code
from one routine to another. Routine Copy can also append several routines
into one routine. To copy one line of code only, enter the same line reference
(line label or line label plus offset) for both the From Line and Through
Line prompts.

7.4.2.5 Routine Directory ("%RD) - Produces an alphabetical list of the
names of the routines in your current routine directory.

7.4.2.6 First Line List ("%FL) - Lists the first lines of the routines you
specify. (By convention, these lines should contain the routine's name and a
brief description of the routine.)

7.4.2.7 Library Directory (LIB"%RD) - Lists the names of the routines in
your current library routine directory.

7.4.2.8 Routine Restore ("%RR)- Restores routines saved on a disk or mag
netic tape file to your current routine directory. You can restore all or some
of the routines in the specified file; you can also rename each routine as you
restore it.

7-8 V AX-11 DSM Utilities

7.4.2.9 Routine Save ("%RS) - Writes specified routines from your current
routine directory to any sequential medium. The Routine Save utility also
allows you to:

• Get a listing of any routine(s) you want

•Edit a routine with a VAX/VMS editor, and then restore it with the
Routine Restore utility

• Transport routines from a V AX-11 DSM system to a DSM-11 system

If you specify the line printer as your output device, the routines are
printed with a form feed between each routine.

7.4.2.10 Routine Search ("o/oRSE)- Searches a routine or set of routines for
the occurrence of a specified string. The Routine Search utility prints any
line that contains the string, and a reference to the routine in which the
line appears.

7.4.2.11 Routine Size ("%RSIZE) - Scans a set of specified routines and
determines their size (in bytes) in source and precompiled format. The
Routine Size utility also flags the largest source routine specified and the
largest routine in precompiled format.

7.4.2.12 Build Mapped Routine File ("o/oRBUILD) - Builds a file from selected
precompiled DSM routines that can be mapped in a virtual memory section.
Only files generated by "%RBUILD can be specified in the argument of the
/MAPPED= file-spec qualifier of the DSM command.

7.4.2.13 Contents of Mapped Routine File ("o/oMAPCON) - Lists the names of
all routines in the specified mapped routine file. The specified file name
must have been built with the "%RBUILD utility.

7.4.2.14 Mapped Directory {MAP"o/oRD) - Lists the names of all DSM appli
cation routines and DSM library routines that are currently mapped in
virtual memory.

7 .4.3 Callable Functions

Descriptions and examples of nine callable functions can be accessed
through the CALLABLE FUNCTIONS option of the %LIB menu. (To use
these functions, invoke them from your application routine.)

DATE ("%D)

HOROLOG ("%H)

Writes current date in the following format:

day-month~year

For example, 5-JUN-82

Converts DSM date and time, as described below
in Section 7.4.3.2

VAX-11 DSM Utilities 7-9

DECIMAL TO HEX ("%DH) Converts decimal number to hexadecimal

DECIMAL TO OCTAL ("%DO) Converts decimal number to octal

HEX TO DECIMAL ("%HD) Converts hexadecimal number to decimal

HEX TO OCTAL ("%HO) Converts hexadecimal number to octal

OCTAL TO DECIMAL ("%OD) Converts octal number to decimal

OCTAL TO HEX ("%OH) Converts octal number to hexadecimal

TIME ("%T) Writes current time in the following format:

hours:minutes AM or PM

For example, 10:24 AM

7.4.3.1 Using the Numerical Conversion Functions - When you select one of
the conversion functions from the CALLABLE FUNCTIONS menu, the
utility prompts for input. You usually, however, call these functions di
rectly from your DSM application routines, non-interactively.

These functions need not be interactive, however. If you call them from an
application routine, you can pass input to them in variables and receive
output from them in variables.

To create a routine to call one of these functions, set a local variable with
the same name as the function equal to the number you want to convert.
Then issue the following command:

>D "%Function Name

This sequence creates a variable with that function name whose value is
equal to the results of the conversion. For example, to convert your DSM
job number (which is the VAX/VMS Process I.D.) from decimal (DSM for
mat) to hexadecimal (VAX/VMS format), type:

>SET '.Y..DH=$J DO ····x.DH WRITE %DH
710019

where $J is the DSM Job Number.

If an input error occurs during the execution of any numeric conversion
routine, (for example, trying to convert 9 from octal to decimal), the vari
able receives the value*.

7.4.3.2 Using the "%H Function - The "%H function is a special case. This
function converts date and time from $HOROLOG format to the current
date and time, and vice versa. $HOROLOG expresses date and time in the
format:

n,m

where n is the number of days since December 31, 1840, and m is the
number of seconds since midnight.

7-10 V AX-11 DSM Utilities

You can perform four conversions using "%H:

1. To convert the date in $H format (n) to the current date, type:

>SET %DT=$P($H,",",1) DO %CDS"%H WRITE %DAT

This command sequence returns the date in the format month/day/year,
for example 6/5/1983.

2. To convert the current date to $H format, type:

>SET %DT="mm/dd/yyyy" DO %CDN"%H WRITE %DAT

This command sequence returns a 5-digit number that represents the
first value (n) of the $H format.

3. To convert $H time (m) to the current time, type:

>SET %TM=$P($H,",",2) DO %CTS"%H WRITE %TIM

This command sequence returns the current time in the format
hours:minutes:seconds.

4. To convert current time to $H format, type:

>SET %TM= "hh:mm:ss" DO %CTN"%H WRITE %TIM

This command sequence returns the number of seconds since midnight,
that is, the $H m value.

7 .4.4 Debugger Utilities

When you select the DEBUGGER option from the "%LIB menu, DSM dis
plays the DEBUGGER menu. This menu provides access to the following
three utilities useful in debugging DSM routines:

Utility

STACK

TRACE

VERIFY ROUTINE

Routine Name

"%STACK

"%TRACE

"%ERRCHK

These utilities are described in the following sections.

7.4.4.1 The "%STACK Utility- The "%STACK utility prints out the current
state of the call stack; including the program name, line number, and com
mand number of all currently active DOs in reverse order. You can use this
utility at a breakpoint to determine exactly what path was taken to reach a
particular place in a program. You can also call the utility as a breakpoint
action, as follows:

SET $ZBREAK(4)="TRACK"PREFIT>D "%STACK"

V AX-11 DSM Utilities 7-11

7-12

The following example shows the output of "%STACK:

> SET $ZBREAK =II DUMMY+ 1 TESTZ: 1 II
> ZDEB
> D TEST
This is a test
4
%DSM-I-BREAKt BREAK comMand eMecuted
-DSM- I -ATLABEL t DUMMY+ 1 TESTZ s X= II II

BREAK 1:1>DO %STACK
Pro~ ra111 NaMe TEST2 Line Nu111ber
Pro~ra111 Na111e TESTl Line Nu111ber
Pro~ram Na111e TEST Line N1..u11ber
Pro~ra111 Na111e Line Number

BREAK 1: 1>

2 CoMMand NuMbe r
3 Co111Mand NuMber
3 CoMMand Number
0 Command Number

1
1
3
0

7.4.4.2 The "%TRACE Utility - The "%TRACE utility uses the single-step
breakpoint, $ZBREAK(O), and breakpoint action strings to produce an exe
cution trail of the routine(s) being debugged. "%TRACE allows you to moni
tor the execution of a program or a set of programs, or to monitor the state
of a variable or set of variables. ·

You can choose any of the following reporting modes when you use TRACE:

•Command - Reports any change in the command number.

• Line - Reports any change in the entry reference.

• Tag - Reports any change in the tag part of the entry reference.

• Routine - Reports any change in the routine name.

• Variable - Reports any change in the value of a variable or set of vari
ables. Reports old and new values, along with the location (entry
reference:command number) where the change occurred. This location is
called a watchpoint.

The following example shows a session with "%TRACE.

> DO ···1..TRACE

Trace utilit}'

Enter routine reference C? for helF» START+ 1 ... TEST@

OutPUt file? m
Trace options are : CCOMMAND> t L(INE> t TCAG> t RCOUTINE> or WCATCH>
Enter trace option Cor? for help) : R.@

START+l"TEST
This is a test

PR I NT+ 1 ... TEST1
4
DUMMY+ 1 ... TEST2

PR I NT+3 ... TEST 1

START+2 ·'TEST

V AX-11 DSM Utilities

PR I NT+ 1 ... TEST1
8

> DO ·' 7.. TRACE

Trace •Jtilit>·

Enter routine reference<? for help) START+1"°"TEST(fill)

OutPut file? (fill)

Trace options are: C<DMMAND>, L<INE;>, T(AG>, R(QUTINE> or I-HATCH>
Ent e r t race o Pt i on (o r ? f o r he 1 P > : W(fill)
V a r i ab 1 e ? A(fill)
t.Jariable? (fill)

This is a test

A Chan9'ed at START+1·'TEST:2
Old Value
Ne•..r Value = 2

A Chan9'ed at START+2 ... TEST:2
Old Value = 2
New Value = 4
4
A Chan9'ed at START+2 ... TEST:2
Old Value = 4
Ner..r Value = 8
8

7.4.4.3 The "%ERRCHK Utility - This utility verifies the syntax of a
V AX-11 DSM routine. The following example shows a session with the
"%ERRCHK utility:

>DD ··· 7..ERRCHK
Routine na1T1e? CHTEST(fill)
OutPr.tt file? (fill)

VAX-11/DSM Error Report for CHTEST
11:18:28.52 Pa9'e 1

%DSM-E-COMANDt bad co1T11T1and detected

26-AUG-1882

-DSM-I-ATLABELt START+1 W "This is a test"t! S A=2

%DSM-E-COMANDt bad sYnta>< at end of comMand or Xecute strin9'
-DSM-I-ATLABEL t START+Z F I=2: 1: 10 S A=A*Z D PRINT ... TEST1

%DSM-E-COMANDt bad command detected
-DSM-I-ATLABELt PRINT+3 XXXX

Ro•Jtine naMe? (fill)
>

7 .4.5 The Information Utilities

When you select the INFORMATION option from the "%LIB menu, DSM
displays the INFORMATION menu. This menu contains two options:

•STATISTICS, which generates the STATISTICS menu

• ZCALL, which provides access to the utility "%ZD

VAX-11 DSM Utilities 7-13

7.4.5.1 Utilities on the Statistics Menu - When you select the STATISTICS
option from the INFORMATION menu, DSM displays the STATISTICS
menu, which contains six options. These options are entry points into the
"%STAT utility, as follows:

Utility Entry Point

1. ALL ALL"%STAT

2. DEVICES IO"%STAT

3. DIRECTORIES DIR"%STAT

4. GENERAL GENERAL"%STAT

5. GLOBALS GBLSTAT"%STAT

6. OPEN GLOBALS GBLGLO"%STAT

7.4.5.2 The "%ZD Utility - When you select the ZCALL option from the
INFORMATION menu, DSM transfers control to entry point "%ZD. This
utility lists the currently installed external functions. You can use any of
these functions with the $ZCALL special function, described in Chapter 8.

The "%HELP utility, invoked by typing ? at the DSM prompt, describes·
under the keyword EXTERNAL FUNCTIONS the functions (beginning
with a %) supplied as $ZCALL entries.

7.5 Overview of the System Utilities

You access the DSM system utilities through the "%SYS menu. This menu
contains three options that provide access to system utilities:

•The "%0PER menu, whose options allow the DSM operator to control the
use of the DSM Job Controller. To use the options on the "%0PER menu,
you must have the same UIC as the DSM Job Controller.

•The "%JOURNAL menu, whose options allow the DSM operator to con
trol the use of the DSM Journal Process. To use the options on the
"%JOURNAL menu, you must have the same UIC as the DSM Journal
Process.

•The "%ALF utility, which sets up auto-login. You can use this utility with
any UIC.

The following sections describe the classes of utilities accessed through
these options on the "%SYS menu. Section 7.6 and its subsections describe
the utilities accessed through the "%0PER menu. Section 7. 7 and its sub
sections describe the utilities accessed through the "%JOURNAL menu.
Section 7.8 describes the "%ALF ut~lity.

7-14 VAX-11 DSM Utilities

7.6 Utilities Accessed through l\%0PER

The "%0PER menu contains three options which are themselves menus.
These options are:

1. The menu of journal control utilities

2. The menu of log-in control utilities

3. The menu of system control utilities

The following sections describe these utilities.

7 .6.1 Journal Control Utilities

These utilities enable and disable journaling by DSM users (whether or not
a DSM Journal Process is running). You must have the same UIC as the
DSM Job Controller to run these utilities.

7.6.1.1 Add Group to Journal List (ADDJRN"%MJCJRN)- Adds a VAXNMS
group (where group is determined by the group number of a process' UIC)
to the list of groups allowed to journal data base transactions. Running
ADDJRN"%MJCJRN expands the list of user groups initially established
in the DSMMJCPAR.OPT file. Additions made with this utility are only
effective if the current Journal-Enable mode is SELECT_GROUPS.

Note that you must subsequently run the Start Journaling For DSM Users
utility for these groups to be able to run the DSM image in shared mode
(Application Mode).

7.6.1.2 Change Journal-Enable Mode (JOPT"%MJCJRN) - Allows you to
change the Journal-Enable mode from ALL to SELECT_GROUPS or from
SELECT_GROUPS to ALL.

7.6.1.3 Delete Group from Journal List (DELJRN"%MJCJRN) - Deletes a
V AXNMS group (as determined by the group number of a process' UIC)
from the list of groups allowed to journal data base transactions. Deletions
made with DELJRN"%MJCJRN are only effective if the current
Journal-Enable mode is SELECT_GROUPS.

7.6.1.4 Show Groups Journal List (SHOJRN"%MJCJRN)- Displays the list of
all groups that are allowed to journal data base transactions.

7.6.1.5 Start Journaling for DSM Users (JRNON"%MJCJRN) - Prompts the
DSM Job Controller Process to send a journaling-enabled indicator to the
DSM users who are allowed to perform journaling. This indicator is sent to
all designated DSM images as they start up.

However, if a DSM image for which journaling is allowed is already run
ning, it does not receive the journaling-enabled indicator. Thus, this image
will not be able to perform journaling.

VAX-11 DSM Utilities 7-15

7.6.1.6 Stop Journaling for DSM Users (JRNOFF"%MJCJRN) - Prompts the
DSM Job Controller Process to stop sending the journaling-enabled indica
tor to the DSM users who are allowed to perform journaling. This indicator
is sent to all designated DSM images as they start up.

If a DSM image is already running, and currently journaling data base
transactions, it continues to perform journaling.

7 .6.2 Log-in Control Functions

The utilities in the following subsections control DSM operations and
access to VAX-11 DSM from VAX/VMS. You must have the same UIC as
the DSM Job Controller to run these utilities.

7.6.2.1 Add a Group to Log-in List (ADDLOG"%MJC) - Adds a VAX/VMS
group (where group is determined by the group number of a: process's
UIC) to the Hst of groups allowed to run the DSM image. Running
ADDLOG"%MJC expands the list of user groups initially established in the
DSMMJCPAR.OPT file. Additions made with this utility are only effective
if the current Login-Enable mode is SELECT_GROUPS.

Note that you must subsequently run the Allow Future DSM Logins utility
(described in the following section) for these groups to be able to run the
DSM image in shared mode (Application Mode).

7.6.2.2 Allow Future DSM Logins (LOG"%MJC)- Allows all designated DSM
users to run the DSM image in a shared m~de, that is, Application Mode.

7.6.2.3 Change DSM Login-Enable Mode (LOPT"%MJC) - Allows you to
change the DSM Login-Enable mode from ALL to SELECT_GROUPS or
from SELECT_GROUPS to ALL.

7.6.2.4 Delete a Group from Login List (DELLOG"%MJC) - Deletes a
VAX/VMS group (as determined by the group number of a process's UIC)
from the list of groups allowed to run the DSM image. Deletions made with
DELLOG"%MJC are only effective if the current Login-Enable mode is

· SELECT_GROUPS.

7.6.2.5 Show Groups (DISLOG"%MJC)- Lists the groups allowed to run the
DSM image. Groups are designated by their group numbers.

7.6.2.6 Prevent Future DSM Logins (NOLOG"%MJC) - Prevents all system
users from running. the DSM image in shared mode.

7 .6.3 DSM System Control Functions

When you select the SYSTEM CONTROL option from the "%0PER menu,
DSM displays the SYSTEM CONTROL menu. This menu provides access to
six utilities that deal with the DSM Job Controller, as described in the
following sections.

7-16 V AX-11 DSM Utilities

Note that you must have the same UIC as the DSM Job Controller to run
these utilities.

7.6.3.1 Job Table Display ("%JOBTAB) - Displays the contents of the DSM
Job Table. The Job Table is an internal data structure maintained by the
DSM Job Controller that contains the following information about each
active DSM user:

• Process ID (PID)

• Process name

• UIC

•User name

• Principal Input Device

7.6.3.2 Kill a DSM User (KILLUSE"%MJC) - Instructs the DSM Job
Controller to force DSM image rundown of a specified DSM image. In addi
tion, KILLUSE"%MJC clears the DSM Job Table and Lock Table of all
entries made by that image. Note that issuing the DCL command
STOP/ID= PID does not clear these tables, because it has no effect on the
DSM Job Controller.

7.6.3.3 Lock Table Display ("%LCKTAB)- Displays the contents of the Lock
Table. The Lock Table is an internal data structure maintained by VAX-11
DSM that contains the following information about each active DSM user:

• Process ID (PID)

• Locked local variables

• Locked global variables

• Pending lock requests

7.6.3.4 Shutdown DSM (SHUTUP"%MJC)- Causes the DSM Job Controller
to exit the system automatically, after the last DSM user known to it has
exited. SHUTUP"%MJC provides an easy way to shut down the Job
Controller if there are active DSM users and you want to avoid having to
check until the last one has logged off. After you run this utility, you can
restart the Job Controller only by performing the start-up procedures out
lined in Section 12.3. This utility does not force the exit of any DSM users.
(Use KILLUSE"%MJC to force exit.)

7.6.3.5 Status of DSM Job Controller (STATUS"%MJC) - Displays the status
of the DSM Job Controller, including:

• What groups are allowed to run the DSM image

• Whether DSM login is enabled or disabled

VAX-11 DSM Utilities 7-17

• What groups are allowed to journal.

• Whether journalling is enabled or disabled for selected groups or for all
users

7.6.3.6 Verify DSM Users .{VERIFV"o/oMJC) - Verifies that each DSM user
known to the Job Controller is an active VAX/VMS user. If any user is
found not to be an active VAX/VMS user, VERIFY"%MJC clears the DSM
Job Table entry for that user, and any entries in the Lock Table made by
that user. You may want to run this utility before shutting down DSM.

7.7 Utilities Accessed through "o/oJOURNAL

The "%JOURNAL menu contains four options:

1. The DEJ OURNAL utility

2. The menu of journal file utilities

3. The menu of journal globals utilities

4. The menu of journal process operator utilities

The utilities accessed through options 2 and 4 interact with the DSM
Journal Process. You must have the same UIC as the DSM Journal Process
to run the utilities accessed through th~se two options.

7.7.1 The DEJOURNAL Utility

The DEJOURNAL utility, "%DEJRNL, extracts information from journal
files. Dejournaling is described below in Chapter 13.

7.7.2 Journal File Utilities

The journal file utilities affect the behavior of the DSM Journal Process by
changing parameters initially established in the Journal Process start-up
option file, described in Section 13.5.2.

The utilities described in the following sections add, delete, purge, and
display file names in the list of file names maintained by the Journal
Process. The Journal Process acquires names for output files from this list.

You must have the same UIC as the DSM Journal Process to use the jour
nal file utilities.

7.7.2.1 Add Journal File Name {ADDFIL"o/oJRNL) - Adds a file name to the
list of output files maintained by the Journal Process. Although
ADDFIL"%JRNL adds the file name to the list, the Journal Process does
not write to the file until its status is current, open, and ready. If no files
are open, you must open the added file with the Open Current Journal File
utility. If any other journal file is open, the Journal Process automatically '

. opens the added file when needed.

7-18 V AX-11 DSM Utilities

7.7.2.2 Close Current Journal File (CLOSEFl"o/oJRNL)- Changes the status of
the current journal file from current to closed. After you run
CLOSEFI"o/oJRNL, records of data base transactions cannot be written to
this file.

The CLOSEFl"%JRNL utility does not automatically open a file in the
Journal Process's list of files, however. If you want journaling to continue,
you must subsequently open a file with the Open Current Journal File
utility.

NOTE

If a DSM user writes information to the Journal Process
while a file is closed, the information is not Iost. It is buffered
in the Journal Process's input mailbox.

7.7.2.3 New Log File (NEWLOG"o/oJRNL) - Creates a new Journal Log file
(.LOG). A Journal Log file contains the file specifications of the journal file
or files that have been opened. (The Journal Log file itself is used in dejour
naling. See Section 13.1.4 for details about dejournaling.)

7.7.2.4 Delete Journal File Name (DELFIL"o/oJRNL) - Deletes the journal file
name you specify from the list of journal file names maintained by the
Journal Process. Using DELFIL"%JRNL does not affect the file itself, how
ever. If you specify the file name of a closed file, the contents of the file
remain intact and its name is not deleted from the Journal Log file.

7.7.2.5 Show Journal File Names (SHOW"o/oJRNL) - Displays the Journal
Process's list of file names. The display includes information on the status
(current, open, ready, closed) of each file, and displays any message associ
ated with the file name when you added it to the list. (Such messages are
sent to the VAX/VMS operator.)

7.7.2.6 Open Current Journal File (OPENFIL"o/oJRNL)- Changes the status of
the current journal file so it becomes the open journal file; that is,
OPENFIL"%JRNL causes the file to be the file written to by the Journal
Process.

7.7.2.7 Purge Journal File Names (PURGE"o/oJRNL) - Purges the names of all
closed journal files from the Journal Process's list. Names of open files
remain in the Journal Log file, and the closed files themselves remain
intact.

7.7.3 Journal Process Globals Utilities

When you choose the GLOBALS option from the "%JOURNAL menu, DSM
displays a menu containing three options. These options are utilities that
clear, set, and test the status of globals, as described in the following
sections.

V AX-11 DSM Utilities 7-19

You do not need to have the same UIC as the DSM Journal Process to run
these utilities.

7.7.3.1 Clear Journaling for Global (CLRGLO"o/oJRNL)- Removes the marker
causing journaling from the globals you specify. This utility invokes
SET"%GBLATR (set global attribute).

7.7.3.2 Set Journaling for Global {SETGLO"o/oJRNL) - Allows you to mark
specified globals to be journaled. This utility calls SET"%GBLATR. After
you run SETGLO"%JRNL, subsequent modifications of these globals are
journaled.

If you KILL a global marked for journaling, the journal indicator associated
with that global disappears. Thus, if you recreate that global, you must
remark it for journaling with SETGLO"%JRNL or SET"%GBLATR.

7.7.3.3 Test Journaling for a Global {TSTGLO"o/oJRNL) - Indicates whether a
specified global is marked for journaling. This utility calls SET"%GBLATR.

7.7.4 Journal Process Operator Utilities

When you select the OPERATOR option from the "%JOURNAL menu,
DSM displays a menu of six operator utilities for the DSM Journal Process.
These utilities enable and disable the DSM Journal Process, KILL the DSM
Journal Process, pause and resume operation of the DSM Journal Process,
and display the status of the process, as described in the following sections.

You must have the same UIC as the DSM Journal Process to run these
utilities.

7.7.4.1 Disable Journal Process (DISABLE"o/oJRNL) - Causes the Journal
Process to suspend operations. While the Journal Process is suspended,
information written to the Journal Process is not written to the current
output file.

NOTE

The DISABLE"%JRNL utility should be used with discretion,
because it can cause loss of information.

7.7.4.2 Enable Journal Process {ENABLE"o/oJRNL) - Reenables the Journal
Process after it has been disabled with the Disable Journal Process utility.
After you run EN ABLE"%JRNL, the Journal Process resumes writing to
the output file. Any information written to the Journal Process while it was
disabled is lost.

7.7.4.3 Kill Journal Process {KILL"o/oJRNL) - Deletes the Journal Process;
that is, causes the Journal Process to exit the system. Any information not
written to an output file is lost.

7-20 V AX-11 DSM Utilities

.,
If you run KILL "%JRNL, you must perform the entire Journal Process
start-up procedure (as described in Section 13.5) to restore the system's
journaling capability. Thus, KILL"%JRNL should only be used at system
shutdown.

7.7.4.4 Pause Journal Process (PAUSE"%JRNL) - Temporarily stops the
Journal Process from writing to the output file. Information can still be
written to the Journal Process, but it is buffered in the Journal Process's
input mailbox until you resume journaling by running the Resume Journal
Process utility, described below.

Running this utility does not cause information to be lost. However, if the
Journal Process's input mailbox fills up, all users running the DSM image
hang.

7.7.4.5 Resume Journal Process (RESUME"%JRNL) - Causes the Jburnal
Process to continue writing to the output file after it has been stopped by
the Pause Journal Process utility.

7.7.4.6 Status of Journal Process (STATUS"%JRNL) - Generates a report
that indicates:

•Whether there is any pending input from the Journal Process's input
. mailbox

•Whether the Journal Process is in a Wait state

• Whether the Journal Process is enabled to write to an output file (file
type .JRN)

7.8 The Set ~p Auto-Login FacUity {"o/oALF)

The "%ALF utility allows you to "tie" terminals to a V AXNMS user name.
Through "%ALF, you manipulate a copy of the VAX/VMS Auto-Login file,
SYS$SYSTEM:SYSAL£.DAT. ,

The utility first asks you for a name for the copy of this file. The default file
name is SYSALF.DAT. After you specify a file name, the utility asks you to
identify the terminals you want tied and the user name with which you
want those terminals associated. (You set up the VAX/VMS account with
that user name according to the guidelines for special options listed in
Chapter 11.)

Once you enter this information, you must copy your file to the system
directory SYS$SYSTEM under the name SYSALF.DAT (that is, its full file
specification must be SYS$SYSTEM:SYSALF.DAT). After you copy your
file to the system directory, the information in it is implemented.

NOTE

Do not try to edit SYS$SYSTEM:SYSALF.DAT itself. If you
do, the file becomes locked, and thus interferes with the exe
cution of the VAX/VMS LOGINOUT utility.

VAX-11 DSM Utilities 7-21

7.9 Creating Your Own Menu

V AX-11 DSM supplies a utility called "%MENU that allows you to link
utilities or functions written at your installation to form an interactive,
menu-driven package, similar in format to the VAX-11 DSM menus de
scribed earlier in this chapter. The "%MENU utility can also invoke on-line
information about your utilities. ·

The utility "%MENU interprets tree-structured data. Thus, routines that
call "%MENU must refer to a global whose nodes contain data that
comprise the utility prompts and options you want displayed. Then, when
you execute "%MENU, the list of options for the calling routine(s) is printed
and the options a user selects are executed.

To link your utilities through "%MENU, follow these steps:

1. Create a global that has the menu prompts and list of options for the
utilities you want displayed. See the header comment of the source code
of "%MENU for the format to use. To examine the "%MENU source
code, invoke the "%RS utility, select %MENU, and specify a file name
for the output of this command sequence: LPO:MENU.LIS, for
example.

2. Write a one-line routine that calls "%MENU for the global you created,
for example:

> MYMENUGM)SET %MENU= ""globalname(""node"")" DO "%MENU
> ZSA VE MYMENU

Note that "%MENU cannot process a global without nodes ("A, for ex
ample). Thus, "node" is mandatory, but its name is unimportant.

After you complete these steps, type DO "MYMENU, and the list of options
you put in that global is displayed; when you select the option you want,
that option is executed.

If you want your utility to be called by "%MENU, precede the above code
with the following:

DO:$D(%MENU) PUSH"%MENU

7.10 Error Messages

Error messages reported by the V AX-11 DSM utilities are described in
Appendix A.

7-22 V AX-11 DSM Utilities

Chapter 8
Procedure Calling

This chapter describes how to call procedures written in languages other
than DSM, and provides information on calling VAX/VMS system services
and V AX-11 Run-Time Library procedures.

8.1 Overview of Procedure Calling

VAX-11 DSM allows you to access the following kinds of procedures out
side of DSM:

• Routines .written in other languages

• VAX/VMS system services

• Routines in the V AX-11 Run-Time Library

Section 8.2 defines the term procedure in more detail.

The ability to call procedures is especially useful when a feature is not
available in V AX-11 DSM. For example, the DSM language does not in
clude a square root function. Through the procedure-calling mechanism,
however, you can write a program to calculate square roots (in a language
such as FORTRAN), pass arguments to this program from your DSM rou
tine, and have the results passed back to DSM.

V AX-11 DSM implements procedure calling through the $ZCALL function.
The following sections describe this function and the procedure-calling
mechanism in detail. The material presented here assumes some knowl
edge of:

• VAX/VMS procedure calling mechanisms

• VAX/VMS argument passing mechanisms

S-1

• V AX-11 MACRO

• V AX-11 FORTRAN

You should be familiar with these subjects before you try to use the infor
mation presented in this chapter.

8.2 The VAX Procedure Calling Standard

External routines called by the V AX-11 DSM interpreter must conform to
the standard defined for VAX procedure calls. This standard defines a pro
cedure as a routine that is entered by a CALLG or CALLS instruction. The
calling standard prescribes how arguments are passed ·to· such routines,
how function values are returned, and how procedures receive and return
control.

V AX-11 DSM uses the CALLG instruction to call procedures.

The following sections describe how arguments are listed and passed in
accordance with the VAX Procedure Calling Standard. See the VAX
Architecture Handbook for further details about this standard.

8.2.1 Argument Lists

Whenever you call a procedure, V AX-11 DSM builds an argument list.
This list is the primary means of passing information to and receiving
results from the procedure.

As defined in the VAX Procedure Calling Standard, the argument list is a
sequence of longword (4-byte) entries. The first byte of the first entry is the
argument count, indicating how many arguments follow in the list. The
remaining entries are the arguments passed to the procedure for
processing.

8-2 Procedure Calling

8.2.2 Argument-Passing Mechanisms

The VAX Procedure Calling Standard defines three mechanisms by which
arguments are passed to procedures:

1. By Value

When you pass an argument by value, the argument list entry contains
the actual, uninterpreted 32-bit value of the argument. Usually, argu
ments passed by value are integer constants that fit in a longword. For
example, to pass 100 by value, the caller puts 100 directly into the
argument list.

2. By Reference

When you pass an argument by reference, the argument list entry con
tains the address of the location that contains the value of the argu
ment. That is, the argument list entry points to the value's location. For
example, ifthe variable Xis allocated to location 1000, which currently
contains the value 100, the argument list entry contains 1000.

3. By Descriptor

When you pass an argument by descriptor, the argument list entry
contains the address of a VAX-11 descriptor of the argument. This
passing mechanism is used to pass string data, which is more compli
cated than other data types. Descriptors include the following fields to
describe data:

DSC$W _LENGTH Data length in bytes

DSC$B_DTYPE Data type

DSC$B_CLASS Data class

DSC$A_POINTER Address of the first byte of data

Procedure Calling 8-3

Figure 8-1 illustrates the argument-passing mechanisms.

Figure 8-1: Argument-Passing Mechanisms for Procedures

ARGUMENT LIST

I N
:(AP)

ARG1

ARG2

ACTUAL VALUE

•
•
•

ARGN

N :(AP)

ARG1

ARG2

POINTERS TO
ACTUAL VALUE

•
•
•

ARGN

ARG1

ARG2

N :(AP)

POINTERS TO
DESCRIPTOR

•
•

ARGN

8-4 Procedure Calling

(a) ARGUMENT PASSED BY VALUE

(b) ARGUMENT PASSED BY REFERENCE

ACTUAL VALUE

(c) ARGUMENT PASSED BY DESCRIPTOR

DESCRIPTOR

CLASS D TYPE LENGTH

POINTER

ACTUAL
VALUES

MR-S-932-80

8.2.3 Data Types for Argument Passing

Each hardware data type can only be passed to and from a procedure with
certain argument-passing mechanisms, as follows:

• String data can be passed only by descriptor.

• The other data types - longword, quadword, floating-point, double float
ing-point, G_floating, and H_floating - can be passed either by value or
by reference, but not by descriptor.

Procedures that pass quadword output data return a quadword in $ZCALL
as a pair of longwords. The data is arranged in the form n,m where n is the
high longword and m is the low longword.

8.3 Calling Procedures from the DSM Language

In V AX-11 DSM, procedure calls are handled by a subsystem called the
ZCALL Module. This module makes many details of procedure calling
transparent. However, you must take certain steps to establish the proper
links between the VAX procedure-handling mechanism and V AX-11 DSM.
The following sections describe these steps.

8.3.1 The $ZCALL Function

The interface between a procedure, the ZCALL Module, and the DSM lan
guage is a DIGITAL-implemented extension. to Standard MUMPS called
$ZCALL. $ZCALL is a function; like other functions in the DSM language,
it accepts one or more arguments and returns a value. The form of the
function arguments and the value returned depend on the type of operation
performed by the procedure called by $ZCALL.

The general format of $ZCALL is:

Value = $ZCALL(Callname,arg 1, ... arg n)

You can abbreviate $ZCALL to $ZC.

Value

Callname

arg l, ... arg n

The value of the function, that is, the output produced by
the procedure. Typically, you assign Value to a DSM
variable. If the procedure produces multiple outputs,
Value consists of concatenated strings separated by
commas.

The name of the procedure you want to call. This name is
established in the ZCALL Table entry for the procedure
. (see Section 8.3.2).

Procedure names beginning with the percent sign (%)
are reserved for DIGIT AL-supplied $ZCALL functions,
such as the VMS system services and Run-Time Library
routines listed later in this chapter.

Inputs passed to the procedure for processing.

Procedure Calling 8-5

8.3.2 ZCALL Tables

V AX-11 DSM uses internal data structures called ZCALL tables to recog
nize procedure names and build the argument list for procedures called
from the DSM language. ZCALL table source files (called "table source
files" in the following discussion) are processed by the VAX-11 MACRO
assembler and linked with the DSM image by the command procedure
SYS$LIBRARY:DSMBUILD. While DSM is executing, the ZCALL Table
and external procedures reside in memory.

Whenever you write a procedure (in another language) that you want to
call through $ZCALL, you must make an entry for it in a ZCALL Table~
You can make these entries by editing the table source file provided
(ZCALLT.MAR, in the VAX/VMS directory SYS$LIBRARY) or by creating
a new table source file. (See Section 8.3.3 for more information about creat
ing your own table source files.) Then you compile the source file and relink
the object module to the DSM interpreter as described in Section 8.5.

To make an entry for a procedure in ZCALLT .MAR, follow these steps:

1. Copy ZCALLT .MAR from SYS$LIBRARY into your default directory
(with the DCL COPY command).

2. Open the file for editing with any VAX/VMS editor.

3. Type in the required data in the format shown in Figure 8-2 and de
scribed in the following sections.

Note that, whatever changes and additions you make to a table source file,
every file must begin with the following line:

ZCALLINI

Every table source file must end with the following lines:

ZCALLFIN
.END

The .END command is the required final line for any V AX-11 MACRO
source file.

Figure 8-2: Procedure Entry from a ZCALL Table Source File

;Procedure Description (any brief descriptive text>
ROUTINE CALLNAME=naMe1LINKNAME=name1INPUTS=n10UTPUTS=M
RETURN {STATUS, VALUE1 or IGNORE0}1TYPE=data type
INPUT . TYPE=data type 1MECHANISM=ar!fument Passin!f mechanisM1POSITION=I 1

INPUT
OUTPUT

.
OUTPUT

S-6 Procedure Calling

' TYPE=data type 1MECHANISM=ar!fument Passin!f mechanisl1)1POSITION=In
TYPE=data tYPe1MECHANISM=ar!fument passin!f mechanisM1POSITION=0 1

TYPE=data tYPe1MECHANISM=ar!fument Passin!f mechanisM1POSITION=Om

As shown in Figure 8-2, there are four types of lines in a procedure entry:

• A routine line

• A return line

• Input lines

• Output lines

These lines specify information about the procedure, as described in the
following sections.

8.3.2.1 The Procedure Entry's Routine Line - In each procedure entry in a
table source file, there is one ROUTINE line describing the procedure. As
shown in Figure 8-2, the ROUTINE line contains four: keyword entries:

• CALLNAME=name

•INPUTS=n

• OUTPUTS=m

• LINKNAME =name

These entries specify general information about the procedure, as follows:

CALLNAME

INPUTS

OUTPUTS

LINKNAME

Specifies the name used in the callname field of the
$ZCALL function. CALLNAME should be eight or fewer
characters in length. (Names longer than eight charac
ters are accepted, but only the first eight characters are
used by V AX-11 DSM to recognize the callname.) If you
use callnames longer than eight characters, make sure
that the first eight characters are unique.

VAX-11 DSM considers upper- and lower-case
callnames to refer to different routines.

Specifies how many input arguments the procedure ex
pects. The argument n must be a positive integer or zero.
You must include as many input lines in the procedure
entry as you specify here with the INPUTS keyword.

Specifies how many values the procedure produces as
output. The argument m must be a positive integer or 0.
You must include as many output lines in the procedure
entry as you specify here with the OUTPUTS keyword.

The name by which the VAX/VMS linker identifies a
procedure when you link it to the interpreter.
LINKNAME must be 30 or fewer characters in length.
LINKNAME and CALLNAME can be the same, or they
can be different.

Procedure Calling 8-7

8.3.2.2 The Procedure Entry's Return Line - The RETURN line indicates
how the value of RO and Rl returned by the called routine should be inter
preted by $ZCALL. The RETURN line must precede all INPUT and
OUTPUT lines. The four possible keywords used in return lines, of which
no· more than two are used in any line, are:

• TYPE =data type

•STATUS

•VALUE

•IGNORED

TYPE Specifies the data type of the value returned in RO and
Rl: LONG, QUAD, FLOATING, DOUBLE, or
G_FLOATING. (Note that you cannot use the STRING
or H_FLOATING data types.) The other keyword used in
the return line can influence the data type that you must
specify with TYPE. You include this keyword only if
VALUE is also specified.

STATUS, VALUE, and IGNORED are mutually exclusive keywords. You
can include only one of these in a return line, as follows:

STATUS

VALUE

IGNORED

I

The value returned in RO is interpreted as a status.
STATUS implies a longword data type. You need not
include the TYPE keyword if you specify STATUS. If
you enter any data type other than LONG with
STATUS, yo'u cause an error.

You should use this keyword when calling VMS system
services and some of the VMS Common Run-Time
Library functions.

RO and Rf are interpreted as a function value. They are
returned as the first (and typically the only) ou,tput of
the $ZCALL function. The value of TYPE determines
whether only RO or both RO and Rl will be considered,
and what data type will be returned. (RO and Rl are
longwords, like all registers.) Use this keyword when
you call FORTRAN functions and mathematical proce
dures from the VAX-11 Run-Time Library.

Indicates that the value returned in RO will be ignored;
that is, the status returned by $ZCALL is always suc
cess. Errors that occur in the called routine should be
signalled. Use this keyword when you call FORTRAN
subroutines.

If you omit the the RETURN line from the procedure entry, STATUS is
assumed.

8-8 Procedure Calling

8.3.2.3 The Procedure Entry's Input Lines - Each INPUT line describes an
argument passed to the· procedure for processing. INPUT lines must
precede all OUTPUT lines. You must include as many INPUT lines as the
number specified with the INPUT keyword in the routine line.

The INPUT line contains a maximum of five keywords from the following
list, as described below:

• TYPE =data type

• MECHANISM= argument"!pa~sing mechanism

• POSITION= argument position

•CONSTANT

•OPTIONAL

•DEFAULT

• VALUE =value

•REQUIRED,

TYPE Specifies the data type of the input arguments. VAX-11
DSM supports a subset of the data types defined in the
VAX Procedure Calling Standard. The data types sup
ported by V AX-11 DSM are listed below, along with the
abbreviations that you· use for them in a procedure
entry:

• String data STRING

•Longword. LONG

•Quadword QUAD

• Floa~ing-point FLOATING

• Double-precision DOUBLE
floating point

• G_floating G_FLOATING

• H_floating H_FLOATING

If a procedure requires a byte or word data type, you can
generally substitute a longword for it without affecting
the performance of the procedure.

The data type ·you choose for an input argument depends
on what the procedure does. For example, if you write a
program to. calculate the square root of a real number,
the input data type should be floating-point or double
floating. If you write a program that manipulates
strings, you must use the string data type for input.

Procedure Calling 8-9

MECHANISM Specifies the mechanism by which _v AX-11 DSM passes
the input argument to the. procedure. This mechanism
can be any of the three argument-passing mechanisms
described in Section 8.2.2 that is appropriate for the data
type. In a procedure entry, you specify these mechanisms
as VALUE, REFERENCE, or DESCRIPTOR.

POSITION Specifies the position of the input argument in the argu
ment list of the called procedure.

The keywords CONSTANT, OPTIONAL, DEFAULT, and REQUIRED are
mutually exclusive. If you include CONSTANT or DEFAULT, you must
also specify VALUE. If you specify none of these three keywords, DSM
assumes that the argument is required. You can specify the keyword
REQUIRED, if you like, to make your ZCALL Table more readable.

CONSTANT

OPTIONAL

DEFAULT

VALUE

8-10 Procedure Calling

Indicates that a constant value, specified with the
VALUE keyword, will be passed to the called routine at
the specified position in the argument list. You use
CONSTANT when you know that the routine being
called must always receive a particular value to behave
in the way that you want, and you know that you will
never need to change that value.

Indicates that if this input is present in the $ZCALL
call, the corresponding parameter will be passed to the
routine being called; however, if this input is omitted
from the $ZCALL function reference, no parameter ·will
.be passed to the routine.

Note that optional input parameters can only be omitted
if their position is last in the argument list of the
CALLG, ·as well as last in the list of INPUT lines for this
procedure entry.

Indicates that the called procedure uses the default
value for the argument, specified with the VALUE key
word, at this position unless a value is explicitly speci
fied in the DSM routine's $ZCALL function reference.
Note that default parameters must appear last in the list
of INPUT lines in this procedure entry.

Specifies the value to be used as a constant or as a de
fault for the argument, depending on whether the
CONSTANT keyword or the DEFAULT keyword is spec
ified. If the value is a special character in V AX-11
MACRO, it must be enclosed in angle brackets (<>).
Special characters, which include blanks, commas, and
semicolons, are listed in the VAX-11 MACRO Language
Reference Manual. You can specify the null string as a
value by entering an empty pair of angle brackets (< >).

REQUIRED Indicates that a value must be passed to the procedure in
the $ZCALL call. This is the default state for INPUT
lines unless CONSTANT, OPTIONAL, or DEFAULT is
specified. You need not explicitly include the keyword
REQUIRED.

Depending on the procedure, there can be zero or more INPUT lines. You
use more than one INPUT line when the procedure takes more than one
input argument. The INPUT lines can be placed in the procedure entry in
any order; the value assigned with the POSITION keyword, rather than the
location of the INPUT line in the procedure entry, determines the order in
which the procedure accepts input arguments. However, arguments must
be ordered in the $ZCALL call in the sequence used for their INPUT lines
in the procedure entry. The first INPUT line corresponds to arg 1, the
second to arg 2, and so on.

The only exceptions . to this ordering rule are caused by INPUT
CONSTANT lines, which do not correspond to an argument in the $ZCALL
function reference. Therefore, if INPUT CONSTANT is the fourth INPUT
line in a procedure entry, arg3 in the $ZCALL function reference corre
sponds to the third INPUT line, but arg4 corresponds to the fifth INPUT
line.

8.3.2.4 The Procedure Entry's Output Lines - Each OUTPUT line describes
a value produced by the procedure and the way the value is passed to
V AX-11 DSM. OUTPUT lines cannot precede INPUT lines in the proce
dure entry.

The OUTPUT line contains five keywords:

• TYPE=data type

• MECHANISM= argument-passing mechanism

• POSITION= argument position

•DUMMY

•REQUIRED

TYPE

MECHANISM

POSITION

Specifies the data type of the output arguments:
STRING, LONG, QUAD, FLOATING, DOUBLE,
G_FLOATING, or H_FLOATING.

Specifies the mechanism by which the output value is
passed: either REFERENCE or DESCRIPTOR. (Note
that VALUE is not allowed.)

Specifies the position of the output argument in the
argument list of the called procedure.

Procedure Calling 8-11

DUMMY

REQUIRED

Indicates that, although an output parameter is passed
to the routine and a value is received, that value is not
returned as part of the value of the $ZCALL function.
You use this keyword if you know that there are some
values returned by the called routine that you will
never want to examine or use. DUMMY also helps you
keep the length of the returned value within the 255
character limit for the returned value of a $ZCALL
function.

Indicates that a value is returned to DSM through this
parameter. This is the default state for OUTPUT lines
unless DUMMY is specified, so you need not explicitly
include REQUIRED.

There can be zero or more OUTPUT lines in a procedure entry. You use
multiple OUTPUT lines when the procedure returns more than one value.
Procedures that produce more that one value return them to you in
$ZCALL as a concatenated string separated by commas. The order of the
OUTPUT lines determines the position of the values returned in this
string. This string must not be longer than 255 characters.

8.3.3 Multiple ZCALL Tables

You can link more than one file containing ZCALL Table procedure entries
with the V AX-11 DSM interpreter. Using multiple ZCALL Tables allows
you to select the procedures to which access is possible from a DSM
application.

You assign file names to the table source files that you create; since these
are V AX-11 MACRO source files, the default file type is .MAR. When you
run DSMBUILD.COM, as described in Section 8.5, you specify the names of
the table source files. If you do not specify a name, ZCALLT .MAR is used.

To help you set up interface routines for the procedures that you call, DSM
provides the ZCEXAMPLE.MAR file, which contains sample $ZCALL in
terface routines. Look at this file to see how to construct $ZCALL inter
faces, and at ZCALLT.MAR to see how to construct procedure entries. Both
files reside in the VAX/VMS directory SYS$LIBRARY.

The V AX-11 DSM system software also includes (in SYS$LIBRARY) a
compiled version of ZCEXAMPLE.MAR called ZCEXAMPLE.OLB.

To call the procedures in ZCEXAMPLE.MAR, follow these steps:

1. Copy SYS$LIBRARY:ZCALLT.MAR to your default directory.

2. Assign LNK$LIBRARY to SYS$LIBRARY:ZCEXAMPLE.OLB.

3. Execute DSMBUILD.COM.

S-12 Procedure Calling

NOTE

When you install V AX-11 DSM, the binary ZCALL Table
linked to the DSM image contains only DIGITAL-supplied
procedure entries.

8.4 Calling User-Defined Functions

A user-defined function is a program written in a language that produces
native-mode code that can be called as an external procedure through
$ZCALL. The following sections provide some guidelines for writing user
defined functions in VAX-"'"11 MACRO and VAX-11 FORTRAN.

To see the list of user".defined functions that can be called through $ZCALL
on your system, use the DSM utility "%ZD.

8.4.1 Writing User-Defined Functions in VAX-11 MACRO

Keep the following points in mind when writing a user-defined function in
VAX-11 MACRO:

1. VAX-11 MACRO can pass arguments by any of the three methods
defined in the VAX Procedure Calling Standard.

2. When the CALLG instruction is executed by the DSM ZCALL module,
general register 12, the AP (argument pointer) points to a valid argu
ment list. For an argumentless procedure, the argument list consists of
a single longword containing the value o.·

3. You can pass strings to and from a MACRO program using either of
two techniques, as shown in Section 8.4.2.

8.4.2 P~ssing String Arguments from User-Defined Functions

You can pass output strings from user-defined functions in two ways:

1. Pass the output string by descriptor as an empty dynamic descriptor.

When you use this method, the program you want to call must provide
for the virtual memory space required to store the output string. Thus,
you must use the Run:--Time Library procedure LIB$SGETl_DD in
your program to allocate the necessary virtual memory for this string.

Alternatively, you can use the Run-Time Library procedure
LIB$SCOPY _DXDX to copy the resultant string to the empty dynamic
output string.

2. Pass the input string by descriptor and have the procedure operate on
the input string.

When you use this method, the program you want to call does not have
to allocate space for the output string.

Procedure Calling ~13

To understand the difference between the two ways to pass string argu
ments, consider the following two V AX-11 MACRO programs and their
respective ZCALL Table entries:

Program 1

;+
; CONVERT UPPER CASE TO LOWER CASE
; -

100$:

150$:
200$:

.ENTRY CONV2t"M<R2tR3tR4>
MOVL 8 •<AP> tR5 ; GET ADDRESS OF OUTPUT DESCRIPTOR
PUSHL R5 ; PUSH ADDRESS OF OUTPUT DESCRIPTOR
MOVL LI(AP> tR2 ; ADDRESS OF DESCRIPTOR
MOVZWL C R2 > tR3 ; GET LENGTH OF STRING
PUSHL RZ ; PUSH ADDRESS OF NEEDED LENGTH
CALLS •2 tG"LI6$SGET1_DD ; GET SPACE FOR OUTPUT
MOVL LICRZ> tR4 ; POINT TO INPUT STRING
MOVL 4CR5> tR5 POINT TO OUTPUT STRING
CMP6 C R4 > t#" A/A/ ; IS IT UPPERCASE ?
6LSS 150$; NO
CMP6 CR4> t•"A/Z/
6GTR 150$
ADD63 •< "A/a/-"A/.AI> .CR4>+ .CR5>+ ; CONVERT
6R6 200$
MOV6 C R4 > + t C R5 > + ; COPY BYTE UNTOUCHED
SOBGTR R3t100$; LOOP
MOVL • 1 tRO ; SET SUCCESS STATUS
RET ; DONE
.END

The ZCALL table procedure entry for Program 1 is:

; CONVERT UPPER CASE TO LOWER CASE

ROUTINE
RETURN
INPUT
OUTPUT

Program2

;+

CALLNAME=CONV2tLINKNAME=CONV2tINPUTS=1tOUTPUTS=1
STATUS
TYPE=STRING1MECHANISM=DESCRIPTOR1POSITION=1
TYPE=STRING1MECHANISM=OESCRIPTOR1POSITION=2

; CONVERT UPPER CASE TO LOWER CASE IN PLACE
;-

100$:

200$:

.ENTRY CONVt"M<R2tR3tR4>
MOVL LI CAP> tR2 ; ADDRESS OF DESCRIPTOR
MOVZWL C R2 > tR3 ; GET LENGTH OF STRING
MOVL 4CR2> tR4 ; POINT TO STRING
CMP6 CR4>+ t#"A/A/ ; IS IT UPPERCASE?
BLSS 200$; NO
CMP6 -1 CR4> t#"A/Z/
6GTR 200$
ADD6 •< "A/a/-"A/AI> ,-1 CR4> ; CONVERT
SOBGTR R3, 100$; LOOP
MOVL •1 tRO ; SET SUCCESS STATUS
RET ; DONE
.END

S-14 Procedure Calling

The ZCALL table procedure entry for Program 2 is:

. ; CONt.JERT UPPER CASE TO LOWER CASE IN PLACE

ROUTINE
RETURN
INPUT

CALLNAME=CONVtLINKNAME=CONVtINPUTS=1 tOUTPUTS=O
STATUS
TYPE=STRINGtMECHANISM=DESCRIPTORtPOSITION=1

Programs 1 and 2 perform the same task. When called through $ZCALL,
each accepts a string input. If the string consists of uppercase characters,
they convert it to lowerc~se. However, VAX-11 DSM builds a different
argument list for each procedure, and each procedure produces different
side effects.

Program 1 passes the· output string by descriptor, and thus uses
LIB$SGETl_DD to allocate the virtual memory necessary to store it. When
you call this program through $ZCALL, the value of the function equals the
string stored in the output descriptor. For example:

>S }{= 11 ABCD 11

>S Y=$ZCCCONVZtX)
>ZW
X=ABCD
Y=abcd

Program 2 does not pass an output string, so its procedure entry specifies 0
outputs. Instead; the program operates on the input string and passes the
modified input back in $ZCALL, as shown in the following example:

>S X= 11 ABCD 11

>S Y=$ZCCCONVtX)
>ZW
X'=abcd
Y= ;value of Y is null

8.4.a Writing a User-Defined Function in VAX-11 FORTRAN

Keep the following points in mind when writing a user-defined function in
VAX-11 FORTRAN:

1. If the procedure is a FORTRAN subroutine, you must specify RETURN
IGNORED in the procedure entry, as shown in the first FORTRAN
example below.

2. If the procedure is a FORTRAN numeric function, you must specify
RETURN VALUE in the procedure entry, as in the second FORTRAN
example.

3. The program must pass and receive arguments by reference or by de
scriptor only. By default, V AX-11 FORTRAN passes arguments by ref
erence. For more information about passing string arguments, refer to
the VAX-11 FORTRAN User's Guide.

Procedure Calling 8-15

The following example shows a FORTRAN program in the format neces·
sary to call it from the DSM language. This program calculates the roots of.
a quadratic equation. Following the program are its procedure entry and
several examples of its use with $ZCALL.

C This Pro!1ra1rt calculates the roots of a quadratic equation
C Atf3t and Care inPut quadratic coefficients.
C FLAG= 1 if roots are real, 0 if i111a~inarY.

SUBROUTINE QUADXCAtBtCtROOT1 tROOTZtFLAG>
INTEGER FLAG
REAL*B AtBtCtROOT1 tROOT2
D = C B**Z - 4*A*C)
IF CD • LE. 0. 0) GOTO 100
ROOT 1 = C -B + SQRT CD)) I (Z*A >
ROOTZ = (-B - SQRT CD) >IC Z*A)
FLAG = 1 ROOTS ARE REAL
RETURN

100 FLAG = 0 ! ROOTS ARE I MAG I NARY
RETURN
END

The ZCALL table procedure entry for this program is:

; QUADRATIC FORMULA

ROUTINE
RETURN
INPUT
INPUT
INPUT
OUTPUT
OUTPUT
OUTPUT

CALLNAME=QUADtLINKNAME=QUADXtINPUTS=3tOUTPUTS=3
IGNORED
TYPE=DOUBLEtMECHANISM=REFERENCEtPOSITION=1
TYfE=DOUBLEtMECHANISM=REFERENCEtPOSITION=2
TYPE=DOUBLEtMECHANISM=REFERENCEtPOSITION=3
TYPE=DOUBLEtMECHANISM=REFERENCEtPOSITION=4
TYPE=DOUBLEtMECHANISM=REFERENCEtPOSITION=S
TYPE=LONGtMECHANISM=REFERENCEtPOSITION=G

Note that output 3 (in position 6) is a longword, because output 3 can be
only 1 (for real roots) or 0 (for imaginary roots).

The following examples show $ZCALL function references for this
FORTRAN program:

>S A=1 tB=O tC=-1/1
>W SZCCQUADtAtBtC)/l
1t-1t1

>S L=43
>W $ZCCQUADt4tLt9)
-.21354437t-10+538458t1

> W $.Z C (QUAD t 1 t - 3 t 8 >
OtOtO

The following is a FORTRAN function with its procedure entry:

C This function returns the absolute t.ialue of its inPut

REAL*B FUNCTION ABSXCORIG>
REAL*B ORIG
ABSX = ABS <DR I G)
RETURN
END

8-16 Procedure Calling

The ZCALL table procedure entry for this procedure is:

; ZCALL TO RETURN ABSOLUTE VALUE

ROUTINE CALLNAME=ABSXtLINKNAME=ABSXtINPUTS=ltOUTPUTS=O
RETURN VALUEtTYPE=DOUBLE
INPUT TYPE=DOUBLEtMECHANISM=REFERENCEtPOSITION=l

The following examples show $ZCALL function references for this
procedure:

> S A=87 + 58 tX=-887. 54
> S B=$ZCCABSX tA> tY=$ZCCABSX tX>
> zw
A=87+56
6=87+58
X=-887+54
Y=887+5l1

8.5 Linking Procedures to the Interpreter

To call procedures from the DSM language, you must link them to the
V AX-11 DSM interpreter. Follow these steps:

1. Copy ZCALLT .MAR from SYS$LIBRARY to your default directory.

2. Edit ZCALLT.MAR to make the necessary procedure entries (as de
scribed in the preceding sections).

3. Create any additional table source files that you want.

4. Assign the logical names LNK$LIBRARY _l through
LNK$LIBRARY_n to the object libraries needed, unless the procedure
entries refer to procedures in the System Service Library or the
Run-Time Library.

5. Run the DSMBUILD.COM command file, supplied with V Ax~u DSM.
DSMBUILD.COM resides in SYS$LIBRARY and can be run by all
VAX-11 DSM users without special privileges.

Running DSMBUILD.COM builds a new version of the DSM image (in your
default VMS directory or any directory you specify) that includes the entry
points for all procedures to be called through $ZCALL. The output produced
by this command procedure is a file called DSM.EXE (or DSMD.EXE ifthe
VAX/VMS symbolic debugger is included).

DSMBUILD.COM does the following:

1. Locates the directory in which your table source files reside.

2. Assembles all ZCALL Tables from the source files.

3. Links all ZCALLTables (the object modules produced by the assembler)
to the DSM image.

Procedure Calling S-17

8.5.1 Linking User-Defined Functions

To link user-defined functions (MACRO and FORTRAN procedures), you
must first create a VAX/VMS object library (file type .OLB) to catalog their
object modules (file type OBJ). To create a VMS object library, use the DCL
LIBRARY command qualified by the /CREATE command qualifier. This
command and the process for creating object module libraries is described
in detail in the VAX/VMS Command Language User's Guiae.

After you catalog your object modules in this library, you must define the
logical name LNK$LIBRARY and equate it with the full file specification
of your object module library. All components of the file specification must
be included when you make the logical name assignment.

If LNK$LIBRARY is already in use, define LNK$LIBRARY _l through
LNK$LIBRARY_999, as needed.

After you complete these tasks (and make the necessary table source files),
execute DSMBUILD.COM .. · DSMBUILD.COM locates the directory in
which your object module library resides (by translating LNK$LIBRARY),
assembles the table source files, and links them to the DSM image.

8.5.2 Logical Names Used in Linking

For convenience, you can define any of the following logical names to tailor
the linking process to your particular needs:

DSM$LIBRARY

DSM$TARGET

DSM$ZCALL

LNK$LIBRARY
or
LNK$LIBRARY _n
(n= 1 - 999)

Directory and device of V AX-11 DSM object mod
ule libraries, macro libraries, and command files.
If undefined, DSMBUILD.COM uses
SYS$LIBRARY.

Directory and device in which you want the new
DSM image to be built. If undefined,
DSMBUILD.COM uses your default directory and
device.

Directory and device in which your table source
files reside. If undefined, DSMBUILD.COM uses
your default directory and device.

The complete file specification of an object library
of user-written programs to be called through
@ZCALL. This logical name must be defined to
link any user-written programs to the DSM image.

The following examples show how you run DSMBUILD. The first example
shows the command line for linking the default table source file
ZCALLT.MAR. The second example shows the command line for linking
DSM with several named table source files.

@SYS$LIBRARY:DSMBUILD

@SYS$LIBRARY:DSMBUILD ZCALLTBL1 t ZCALLTBL2t ZCALLTBL3

8-18 Procedure Calling

8.5.3 Debugging

Your new version of the DSM image may contain bugs. To help you debug
the code that you are linking, DSMBUILD.COM can be invoked with the
VAX/VMS Symbolic Debugger activated. This debugger allows you to mon
itor the performance of software and isolate problems quickly.

The following examples show how you run DSMBUILD.COM with the de
bugger activated. To link DSM with the default ZCALL table source file,
ZCALLT.MAR, plus the VAX/VMS symbolic debugger, enter the following:

@SYS$LIBRARY:DSMBUILD DEBUG

To link DSM, the debugger, and other table source files, enter the
following:

@SYS$:LIBRARY:DSMBUILD DEBUG ZCALLTBL4tZCALLTBL5tZCALLTBLG

It is not recommended that you call a table source file DEBUG.MAR. How
ever, if you do run DSMBUILD to link a table source file named
DEBUG.MAR, you must include a null argument ("") before the file name
in the command line, or include the word DEBUG twice, as shown in the
following examples:

@SYS$LIBRARY:DSMBUILD ""DEBUG

@SYS$LIBRARY:DSMBUILD DEBUG DEBUG

When you link in the debugger, DSMBUILD.COM produces an executable
image called DSMD.EXE that includes the debugger. To run DSMD.EXE
subsequently, you must define the DSM command to invoke DSMD.EXE,
as shown in the following example:

$DSM:==$Yo1.1r device:[Yo1.1r directorYJDSMD.EXE

You may want to include this line in your VAX/VMS log-in command file,
if you plan to run DSM with the debugger enabled.

Once this definition is made, executing the DSM command invokes
DSMD.EXE in debug mode.

See the VAX-11 Symbolic Debugger Reference Manual for instructions in
using the symbolic debugger, or the VAX-11 MACRO Reference Manual
for a condensed description.

Procedure Calling 8-19

8.5.4 Reinstalling the DSM Image

After you link your procedures with DSMBUILD.COM and are satisfied
with the operation of the DSM image, you must copy DSM.EXE to
SYS$SYSTEM and reinstall it as a VAX/VMS known image to make the
new· version ·of the interpreter available to the system. Thereafter, anyone
running the DSM image can call these procedures directly through
$ZCALL. Section 10.4 describes in detail the procedure for installing
known images.

8.5.5 Recompiling Stored Routines

If you add new procedure entries for general use on your system, and also
modify the placement of previously-installed procedure entries, you must
recompile all DSM routines that refer to the relocated entry points. The
"%REPLACE utility allows you to accomplish this task quickly. To use
"%REPLACE, invoke DSM and execute the utility, as shown in the follow
ing example. Enter the names of routines that need recompilation where
prompted. Then enter m to exit the utility.

> D ···%RE PLACE

RePlac~ routihes to force recoroPilation

routine Cs)?> routine-na111e
routine(s)? > m

The "%REPLACE utility scans your current DSM routine directory and
performs a ZLOAD followed by a ZSA VE for each routine specified, forcing
recompilation of the routine by the interpreter.

You must also rebuild any files containing DSM routines that are to be
mapped as virtual memory sections. Use the "%RBUILD utility, described
in Section 7.4.2.12.

8.6 Supplied VAX/VMS Services and Routines

V AX-11 DSM supplies procedure entries for a number of VAX/VMS sys
tem services and Run-Time Library routines that can be called from the
DSM language. V AXNMS uses these services and routines to control re
sources available to processes, to provide for communication among pro
cesses, and to perform basic operating system functions, such as
coordinating input/output operations.

To see a list of $ZCALL procedure entries supplied with V AX-11 DSM, use
the DSM utility LIB"%ZD.

Figure 8-3 shows how you enter a $ZCALL function reference for
VAX/VMS services.

S-20 Procedure Calling

Figure 8-3: Supplied VAX/VMS Services

%DAYS

SET X = $ZC(%DAYS)

Returns the number of days since a system zero date.
Calls the LIB$DA Y library routine.

%CRELOG

SET dummy= $ZC(%CRELOG,arg1 ,arg2{,arg3})

Creates a user-mode logical name (default) or a supervisor-mode logical name.

arg1 the logical name to create
arg2 the equivalence string for the logical name
arg3 "SUPERVISOR" or "PROCESS" means create logical name in supervisor mode. Otherwise

create in user mode.

Calls (through an interface routine) the LIB$SET _LOGICAL library routine or the SYS$CRELOG system
service.

%DELLOG

SET dummy= $ZC(%DELLOG,arg1 {,arg2})

Deletes a logical name. Default is user mode. To delete a supervisor-mode name, specify
"SUPERVISOR". Note that this deletes a supervisor-mode name only if a user-mode logical name by that
name does not exist.
Always returns the null string, even if the logical name is not defined.

arg1 logical name to delete

arg2 "SUPERVISOR" or "PROCESS". Use to delete logical names created with the corresponding
values in %CRELOG.

Calls (through an interface routine) the LIB$DELETE_LOGICAL library routine or the SYS$DELLOG sys
tem service.

%DELSYM

SET dummy= $ZC(%DELSYM,arg1 {,arg2})

Deletes a local (default) or a global CLI symbol.

arg1 the symbol to delete
arg2 = flags

if omitted or equal to 1,local symbol
if equal t9 2, global symbol

Calls library routine LIB$DELETE_SYMBOL.

%GETMSG

SET X = $ZC(%GETMS~,arg1)

Returns the message text associated with a VMS status code.

arg 1 = the VMS status code (in decimal)

Calls the LIB$SYS_GETMSG library routine.

%GETSYI

SET X=$ZC(%GETSYI)

Returns the following system information: VMS version identification, CPU type, system identification
register value.

Calls (through an interface routine) the SYS$GETSYI system service.

Procedure Calling 8-21

8-22

%GETSYM

SET X = $ZC(%GETSYM,arg1 ,arg2)

Returns the value of a CU symbol.

arg 1 the symbol to translate
arg2 = flags

if omitted or equal to 1,local symbol
if equal to 2, global symbol

Calls the LIB$GET _SYMBOL library routine.

%SETSYM

SET dummy= $ZC(%SETSYM,arg1 ,arg2{,arg3})

Sets a local (default) or global CLI symbol to a value.

arg1 the symbol to set
arg2 the symbol's value
arg3 flags

if omitted or equal to 1,local symbol
if equal to 2, global symbol

Calls the LIB$SET _SYMBOL library routine.

%SPAWN

SET dummy= $ZC(%SPAWN{arg1 ,arg2,arg3,arg4,arg5})

Spawns a VMS subprocess and, optionally, executes a DCL command.

arg1 DCL command. If a specified command fails, the $ZCALL fails and can be handled by setting
$ZTRAP. If no command specified, $ZCALL always succeeds.

arg2 an equivalence name to associate with SYS$1NPUT in the subprocess

arg3 an equivalenc.e name to associate with SYS$0UTPUT and SYS$ERROR in the subprocess

arg4 flags (sum for multiple flags)

1 main process and subprocess run at same time
2 no DCL symbols passed to subprocess
4 no logical names passed to subprocess

arg5 = subprocess name

Calls (through an interface routine) the LIB$SPAWN .library routine.

o/oTRNLOG

SET X = $ZC(% TRNLOG,arg1)

Returns the translation of a logical name. If the logical name is not defined, returns the null string.

arg 1 = logical name to translate

Calls (through an interface routine) the LIB$SYS_TRNLOG library routine.

Procedure Calling

%MOUNT

SET X = $ZC(%MOUNT,arg1 ,arg2{,arg3,arg4})

Mounts a magnetic tape. Mount failures are indicated by $ZCALL
failures.

arg1 the magnetic tape device name(s)
arg2 the magnetic device label(s) (may be the null string)
arg3 mount options, specified as in the DCL Command Language User's Guide. Each option must

start with a slash (/), and no embedded spaces are allowed except within quotes on the
/COMMENT qualifier.

arg4 = the logical name to equate to the device

Calls (through an interface routine) the SYS$MOUNT system service.

%DISMOUNT

SET X = $ZC(%DISMOUNT,arg1 {,arg2})

Dismounts a magnetic tape device. Dismount failures are indicated by $ZCALL failures.

arg1 = the device name to dismount; only one name allowed
arg2 = qualifiers as specified in the VAX/VMS Command Language User's Guide

Calls (through an interface routine) the SYS$DISMOU system service.

%ENABLCTRL

SET X = $ZC(%ENABLCTRL,arg1)

Sets recognition of control characters by the VMS terminal handler.
Returns the previous state of that control character as a DSM truth
value (O means off, 1 means on)

arg1 = the character to enable (for example, $CHAR(25) means @fillD)
In VMS V3.0, only two control characters may be set or disabled:
~ and ~. $CHAR(20) and $CHAR(25) respectively.

Calls (through an interface routine) the LIB$ENABLE_CTRL library
routine.

%DSABLCTRL

SET X = $ZC(%DSABLCTRL,arg1)

Stops recognition of control characters by the VMS terminal handler.
Returns the previous state of that control character as a DSM truth value (0 means off, 1 means on)

arg1 = the character to disable (for example, $CHAR(25) means~)
In VMS V3.0 only two control characters may be set or disabled:
~ and tTRL/v I, $CHAR(20) and $CHAR(25), respectively.

Calls (through an interface routine) the LIB$DISABLE_CTRL library
routine.

%GETDVI

SET X = $ZC(%GETDVl,arg1 ,arg2)

Returns device characteristics.

arg 1 the device specifier
arg2 = the mnemonic for the device characteristic (as specified for the lexical function F$GETDVI).

Only one device characteristic may be specified.

Calls (through an interface routine) the SYS$GETDVI system service.

Procedure Calling 8-23

o/oGETJPI

SET X = $ZC(%GET JPl,arg1 ,arg2)

Returns job and process information.

arg1 = the process identification (pid) in decimal
arg2 = the mnemonic for the device characteristic (as specified for the lexical function F$GET JPI).

Only one device characteristic may be specified. ·

Calls (through an interface routine) the SYS$GET JPI system service.

8.7 Calling Mathematical, Text-Related, and Other Functions

V AX-11 DSM provides procedure entries for a variety of mathematical
functions and text-manipulation functions from the VAX-11 Run-Time
Library, as well as some functions for converting time formats and creating
files. The following sections describe how you call these procedures using
$ZCALL function references.

8. 7 .1 Mathematical Functions

Figure 8-4 lists the mathematical functions from the VAX-11 Run-Time
Library for which ZCALL Table entries are provided by V AX-11 DSM.
Note that all angles are interpreted in degrees, not in radians.

Figure 8-4: Mathematical Functions

o/oSIN

SET X = $ZC(%SIN,arg1)

Returns the SIN of the argument.

arg1 = the angle expressed in degrees

Calls Run-Time Library routine MTH$DSIND.

o/oCOS

SET X = $ZC(%COS,arg1)

Returns the COS of the argument.

arg1 = the angle expressed in degrees

Calls Run-Time Library routine MTH$DCOSD.

o/oTAN

SET X=$ZC(%TAN,arg1)

Returns the TAN of the argument.

arg1 = the angle expressed in degrees

Calls Run-Time Library routine MTH$DTAND.

8-24 Procedure Calling

%ARCSIN

SET X = $ZC(%ARCSIN,arg1)

Returns the ARCSIN of the argument in degrees.

arg1 = the angle's sine

Calls Run-Time Library routine MTH$DASIND.

%ARCCOS

SET X = $ZC(%ARCCOS,arg1)

Returns the ARCCOS of the argument in degrees.

arg1 = the angle's cosine

Calls Run-Time Library routine MTH$DACOSD.

%ARCTAN

SET X=$ZC(%ARCTAN,arg1)

Returns the ARCTAN of the argument in degrees.

arg1 = the angle's tangent

Calls Run-Time Library routine MTH$DATAND.

%EXP

SET X=$ZC(%EXP,arg1)

Returns the exponential of the argument (the number "e" raised to the power of the argument).

Calls Run-Time Library routine MTH$DEXP.

%POWER

SET X = $ZC(%POWER,arg1 ,arg2)

Raises the first argument to the power of the second.

Calls Run-Time Library routine OTS$POWDD.

%LOG

SET X=$ZC(%LOG,arg1)

Returns the natural (base "e") logarithm of the argument.

Calls Run-Time Library routine MTH$DLOG.

%LOG10

SET X=$ZC(%LOG10,arg1)

Returns the common (base 10) logarithm of of the argument.

Calls Run-Time Library routine MTH$DLOG10.

%MAX

SET X = $ZC(%MAX,arg1 ,arg2{,arg3, ... })

Returns the largest number in the list of arguments.
A minimum of two and a maximum of 100 arguments may be specified.

Calls Run-Time Library routine MTH$DMAX1.

Procedure Calling S-25

8-26

%MIN

SET X = $ZC(%MIN,arg1 ,arg2{,arg3, ... })

Returns the smallest number in the list of arguments.
A minimum of two and a maximum of 100 arguments may be specified.

Calls Run-Time Library routine MTH$DMIN1.

%SQRT

SET X=$ZC(%SQRT,arg1)

Returns the square root of the argument.

Calls Run-Time Library routine MTH$DSQRT.

8. 7.2 Text-Manipulation Functions

V AX-11 DSM provides procedure entries for various functions from the
VAX-11 Run-Time Library that translate and examine character strings
and pages of text. Figure 8-5 lists the $ZCALL function references for these
functions.

Figure 8-5: Text-Manipulation Functions

%ASCEBC

SET X=$ZC(%ASCEBC,arg1)

Translates an ASCII string to EBCDIC.

arg1 = the string to translate

Calls the LIB$TRA_ASC_EBC library routine.

%EBCASC

SET X = $ZC(%EBCASC,arg1)

Translates an EBCDIC string to ASCII.

arg1 = the string to translate

Calls the LIB$TRA_ASC_EBC library routine.

%TRANSLATE

SET X = $ZC(% TRANSLA TE,arg1 ,arg2,arg3)

Translates matched characters in a string.

arg1 source string to translate
arg2 = match table
arg3 = translation table

Calls the STR$TRANSLATE library routine.

%UPC ASE

SET X = $ZC(%UPCASE,arg1)

Translates a string to upper case.

arg 1 = the string to translate

Calls the STR$UPCASE library routine.

Procedure Calling

%UPCASEQ

SET X = $ZC(%UPCASEQ,arg1)

Translates a string to upper case, except inside quoted strings.

arg1 = the string to translate

%BAS EDIT

SETX = $ZC(%BASEDIT,arg1 ,arg2)

Edits a string using the BASIC, (language) EDIT$ function.

arg1 the string to edit
· arg2 = an integers or a sum of integers, as described in the VAX-11 Run-Time Ubrary Language

Support Reference Manual

Calls the BAS$EDIT library routine.

%CURRENCY

SET X = $ZC(%CURRENCY)

Returns the local currency symbol.

Calls the LIB$CURRENCY library routine.

%DIGISEP

SET X=$ZC(%DIGISEP)

Ret~rns the local symbol used to separate digit groups.

Calls t.he LIB~DIG,IT _SEP. library routine.

%LPLINES

SET X = $ZC(%LPLINES)

Returns the number of lines per printer page.

Calls the LIB$LP _LINES library routine.

%RADIXPT

SET X = $ZC(%RADIXPT)

Returns the radix point symbol.

Calls the LIB$RADIX_POINT library routine. . .

8. 7 .3 Calling Fil .. Related functions

V AX-11 DSM supplies procedure ent~ies for· two functions dealing with
files and file information, as listed below in Figure 8-6:

Figure 8-6: File Functions

~~ETFILE ..

SET X = $ZC(%GETFILE,arg1 ,arg2)
. . . : . ., . : " ~~

Returns file information.

arg 1 file specification
arg2 = any of the options supported by the lexical function F$FILE_A TTRIBUTES

Procedure Calling 8-27

8-28

%FDLCREATE

SET dummy= $ZC(%FDLCREATE,arg1 {,arg2,arg3})

Creates a file using a File. Definition Language (FOL) file.

arg1 FOL file name
arg2 file name (optional)
arg3 default file name (optional)

8. 7.4 Callin~ DSM-Specific Functions

In addition to the services listed above, V AX-11 DSM provides procedure
entries for four time· services that are particularly useful for DSM pro-
grammers. Figure 8-7 lists these functions. ·

Figure 8-7: Time Services

%CDATASC

SET X=$ZC(%COATASC,arg1,arg2)

Converts and returns the first part of the SHOROLOG string to an ASCII date.

arg1 the date in SHOROLOG format (the number of days since the DSM starting date)

arg2 convert switch

$CDATNUM

1 convert to mm/dd/yy, where mm, dd, and.YY are all numeric
2 convert to dd-mmm-yy, where dd and yy are numeric and mmm is the three-character

abbreviation for the month
3 convert to the VMS date format, dd-mmm-yyyy, where dd and yyyy are numeric and

mmm is the three-character abbreviation for the month. Note that the year is always
four digits long, and the date is two characters, starting with a space for dates before
the tenth of the month.

SET X = $ZC($COATNUM,arg1)

Converts and returns date to the number of days since the DSM starting date (in SHOROLOG format).

arg1 = the date in any of the formats returned by %CDATASC (see above)

%CTI MASC

SET X = $ZC(%CTIMASC,arg1,arg2)

arg1 the time in SHOROLOG format (the number of seconds since the previous midnight)

arg2 convert switch
1 convert to hh:mm:ss AM or hh:mm:ss PM
2 convert to hh:mm:ss in 24-hour format
3 convert to the VMS time format, hh:mm:ss.cc

%CTIMNUM

SET X = $ZC(%CTIMNUM,arg1)

Converts and returns the time as the number of seconds since the previous midnight (in $HOROLOG
format)

arg1 = the time in any of the formats returned by o/oCTIMASC (see above)

Procedure Calling

8.8 ZCALL Error Processing

If a procedure called through $ZCALL returns an error, and the RETURN
line for the procedure specifies STATUS (see Section 8.3.2.2), DSM displays
one of the following errors, followed by the status returned by the called
procedure:

%DSM-E-ZCFATAL, Fatal error during $ZCALL
%DSM-E-ZCERROR, Error during $ZCALL
%DSM-E-ZCWARNING, Warning during $ZCALL

If an error generates a signal, DSM displays the following message: ·

%DSM-E-ZSIGNAL, condition signalled by the $ZCALL routine

DSM also places this message in $ZE for signals.

If a ZCF ATAL error occurs in Programmer Mode, control returns to the
DSM interpreter. If a ZCFATAL error occurs in Application Mode, it causes
DSM image rundown and transfers control to the CLI.

If a procedure generates a fatal error and error trapping is enabled,
that is, you set $ZT, V AX-11 DSM traps the error and puts the
%DSM-E-ZCF ATAL error message string in $ZE.

Refer to the VAX Architecture Handbook for details' about procedure call
condition handling.

8.9 Extended Example of Using $ZCALL

Figure 8-8 is an extended example showing how you create a procedure in
a language other than DSM and call it through a $ZCALL function
reference.

The example shows:

1. The creation and assembly of a V AX-11 FORTRAN procedure called
ABSX.FOR.

2. The creation and assembly of a VAX-11 MACRO table source file
called ZCALLTABS.MAR.

3. The invoking of DSMBUILD to link the table source file with the DSM
image.

4. The redefinition of the DSM command to invoke a new version of DSM.

5. A DSM session in which the FORTRAN procedure is called from the
DSM language through a $ZCALL function reference.

Procedure Calling g..;..29

Figure 8-8: Extended Example of.Using $ZCALL ·

$ CREATE A6SX. FOR
C This function returns the absolute value of its inPut

REAL*S FUNCTION ABSX <OR I G >
REAL*S ORIG
ABS){ = ABS<ORIG>
RETURN
END

$ FORTRAN ABSX
$ LiffR/CREATE ABSX ABSX
$ CREATE ZCALL TABS. MAR

.TITLE ZCALLT$ABS
ZCALLINI ; INITIALIZE THE ZCALL TABLE

; ZCALL TO RETURN ABSOLUTE VALUE
ROUTINE CALLNAME=ABSXtLINKNAME=ABSXtINPUTS=ltOUTPUTS=O
RETURN VALUEtTYPE=DOUBLE
INPUT TYPE=DOUBLEtMECHANISM=REFERENCEtPOSITION~l

ZCALLFIN ; TERMINATE ZCALL TABLE
.END

$ASSIGN DBA1:[VAXDSMV20JABSX.OLB LNK __ LIBRARY
$ @SYS$LIBRARY:DSMBUILD ZCALLTABS
Previous lo!fical naroe assi!tn111ent rePlaced

Buildin~ DSM iroa!fe with user defined ZCALL routines

DSM tar!fet device and di recto rY DBA1: [VAXDSMV20J
DSM 1 i b r a rY d e v i c e an d d i r e c t o r Y SYS$ LI B'R ARY :
DSM ZCALL source device and directorYDBA1:[VAXDSMV20J

Asseroblin!f ZCALLTABS

LinKin!t iroa!fe DBA1:[VAXDSMV20JDSM.EXE

Includin!t user object libraries:
LNK$LIBRARY DBA1:[VAXDSMV20JABSX.OLB

At this point, the new image DBAl:[V AXDSMV20]DSM.EXE has been
created. To invoke this image, define the symbol so that the command DSM
is translated to the file specification $DBA1:[V AXDSMV20]DSM. Then,
you can invoke this image by issuing the DSM command, as shown below.

$DSM :== $DBA1:[VAXDSMV20JDSM
$DSM

VAX-11 DSM Version 2.0 Field Test 1
>S A=67.56tX=-987.54
>S B=$ZC<ABSX tA> tY=SZC<ABSX tX>
>ZW
A=67.56
6=67.56
X=-987.54
Y=987.54
>H
%DSM-I-HALTt HALT cororoand executed

8-30 Procedure Calling

Chapter 9
The VAX-11 DSM Data Base

This chapter describes the implementation of global variables under
V AX~ll DSM. It provides an overview of global variable concepts, de
scribes the logical structure of a global, and outlines the relationship be
tween globals and RMS ISAM files. This chapter also provides some
guidelines for optimizing the performance of the V AX-11 DSM data base.

9.1 Global Concepts

V AX-11 DSM implements its data /base through hierarchical structures
called global arrays, or simply globals. A global is a tree-structured system
of nodes stored on disk, the data of which can be shared by a number of
processes in the system.

V AX-11 DSM creates a global on the first write access to a global variable.
A global variable is a simple or subscripted variable whose name begins
with a circumflex ("); in all other respects, the naming conventions for
global variables are the same as those for local variables (those accessible
only to the process that creates them).

Global arrays are sparse arrays. In a sparse array, the system dynamically
adds nodes to the array as you define them and deletes nodes as you delete
them. Thus, you never have to preallocate space for globals through
dimensioning.

VAX-11 DSM bases its implementation of globals on VAX-11 RMS in
dexed sequential (ISAM) files. VAX-11 DSM represents each global by one
indexed file. The mapping of globals into the logical and physical structure
ofthe"ISAM files that represent them is handled entirely by VAX-11 DSM
and is transparent to the user. Thus, there is no concept of "opening" and
"closing'' a global.

9-1

In general, global arrays are treated syntactically in the DSM language the
same .way as local arrays:

• To create a global, you issue the SET command.

• To access and manipulate a global's contents, you use any of a number of
commands and functions in the DSM language set ($FIND, WRITE,
$DATA, and so forth).

• To delete a global node, you issue the KILL command.

• To delete the entire global array, you kill its root node.

Because global operations are handled by V AX-11 DSM and are .transpar
ent to the user, applications programmers need not be concerned with the
physical structure of files when designing a data base application; they
need only be concerned with the data relationships that comprise the logi
cal design of a data base. However, a programmer who understands the
requirements of an application can optimize the system's access to globals
by laying out the files carefully, as described in Section 9.7.

In addition, the system or application manager must be concerned with the
'optimal physical layout of global files. The manager needs little or no
knowledge of the DSM applications to be run on the system, but needs to
understand V AX-11 RMS parameters.

9.2 Global Variables

The rules that govern the formation of global variables are for the most
part identical to the rules that govern local variables. The V AX-11 DSM
Language Reference Manual provides a detailed description of these rules.

Unlike local variables, however, global variables support an extra syntactic
form that includes a user field. The full syntax of a V AX-11 DSM global
variable is:

"[<user>]Globalname(Subscript 1,Subscript 2, ... Subscript n)

This syntax consists of three parts, as follows:

1. The User Field

The user field refers to a particular V AXNMS directory and/or a partic
ular node on a computer network. You can use standard VAX/VMS
syntax to specify the node, directory, and device, or use a logical name
that translates to a node, directory, and device. This field should not
include a file name; if you specify one, it is ignored. The contents of the
user field override the corresponding elements of the default file specifi
cation for the ISAM file that corresponds to the global.

All text within the user field must either be enclosed in quotation
marks, or be a DSM expression that evaluates to a string. If the user
field contains a logical name, you must include a colon (:) as the last
character immediately before the right quotation mark. The colon
forces logical translation of the string.

9-2 The V AX-11 DSM Data Base

2. Globalname

V AX-11 RMS uses the global name to construct the file name for the
file that corresponds to the global. The file name cannot be superseded
by the file specification in the user field.

3. Subscripts

These are the subscripts for the variable named as globalname.
V AX-11 DSM constructs a node key corresponding to the subscripts.
V AX-11 RMS uses this key as the primary key for storing the record
for that node in the indexed file that corresponds to the global.

The following section describes how the user field and the globalname re
late to the file specification of the ISAM file that represents a global.
Section 9.4.1 describes how the subscript field is related to the key used in
the indexed file for the global.

9.2.1 Translating Global Variables into File Specifications

The VAX/VMS file specification of the ISAM file that corresponds to a
global variable is determined by various conventions and defaults. The
following paragraphs describe how the file specification is constructed.
Section 9.2.2 shows examples of file specifications.

File name

Node, Device,
and Directory

File type

Version Number

For application globals, the file name equals the
global variable name. For library globals (globals
whose names begin with '%'), the file name equals the
global variable name stripped of the leading '%'.

If the global includes a user field, V AX-11 DSM uses
the information in the user field for the file's node,
directory, and device. Then DSM applies the transla
tion of the logical name DSM$GLOBAL_DIR to appli
cation globals or DSM$GLOBAL_LIB to library
globals. If portions of the file specification are still
missing after V AX-11 DSM examines these sources,
VAX/VMS defaults are applied.

If neither of the logical names is defined and the user
field is absent, VAX-11 DSM uses the local node and
your default device and directory for application glo
bals, or the translation of SYS$LIBRARY for library
globals.

VAX-11 DSM uses the default file type .GBL only
after it examines the user field (if present) and
DSM$GLOBAL_DIR. A file type contained in one of
these supersedes the default.

The version number for globals created by DSM is
always 1.

The V AX-11 DSM Data Base 9-3

NOTE

You can use VAXNMS utilities such as COPY to copy DSM
globals. If you copy a global into a V AXNMS directory that
already contains a global by the same name, V AXNMS will
assign the "new" ISAM file a version number other than 1.
The user is responsible for ensuring that only one version of a
global is retained. If multiple versions are retained, a KILL
of the global removes only the most recent version of the file
corresponding to that global name.

See the V AX-11 RMS Reference Manual for a complete description of how
file specifications are parsed.

9.2.2 Translation of Global Variables

The following examples show how global variables are translated into
V AXNMS file specifications. The examples assume that:

• DSM$GLOBAL_DIR: translates to the node, device, and directory
HUDSON::WRKD$:[TOPDIR].

•LOGICAL is a logical name representing [CYG].LOG (the directory and
file type elements of a file specification).

Example 1

Global Variable: "ABC

Full File Specification:

HUDSON::WRKD$:[TOPDIR]:ABC.GBL;l

Example 2

Global Variable: T'.TMP"]DEF

Full File Specification:

HUDSON::WRKD$:[TOPDIR]:DEF.TMP;l

Example 3

Global Variable: T'BOSTON::[SMITH]"]GHI

Full File Specification:

BOSTON::WRKD$:[SMITH]GHI.GBL;l

This translation assumes that WRKD$: is the local default device on the
node BOSTON. You should not, however, make assumptions about logical
name translations on other systems.

9-4 The V AX-11 DSM Data Base

Example 4

Global Variable: T'LOGICAL:"JJKL

Full File Specification:

Local Node;:WRKD$:[CYG]JKL.LOG;l

9.3 Global Protection and Access Privileges

Since VAX-11 DSM represents a global by a VAX/VMS file, the protection
mechanism that applies to VAX/VMS files also applies to globals. Thus,
access privileges to globals are governed by:

• The file's protection mask

• The file's owner UIC

You can set the protection mask for the file that corresponds to a global
with the DCL SET PROTECTION command, described in Section 3.4.1.
This command allows you to prohibit users in each user category from
performing various operations on your globals. There are three types of
access relevant to DSM globals: READ, WRITE, and DELETE (abbreviated
R,W, and D). READ enables GET access, described below. WRITE enables
PUT and UPD access, as well as DEL access for a global node. DELETE
access allows deletion of the entire file; that is, DELETE enables KILLing
of the global's root node. Thus, you can allow the nodes of a global to be
deleted, while protecting the root node, by giving the file for the global RW
access only.

The system manager establishes the UIC for each user in the system.
VAX/VMS considers your UIC an attribute of your user name. You cannot
change a file's owner UIC unless you have sufficient V AXNMS user
privileges.

By default, DSM opens the file that represents any global you create or
access with access privileges represented by the following RMS codes:

• GET - Enables reading of nodes in a global array

• PUT - Enables writing of nodes in a global array

• UPD - Enables updating of nodes in a global array

• DEL - Enables deletion of nodes in a global array

When you access a library global, DSM opens it with GET privilege only,
unless the resultant file specifications of DSM$GLOBAL_DIR and
DSM$GLOBAL_LIB are identical. If they are identical, V AX-11 DSM
opens library globals with all four access privileges listed above.

If you attempt to perform an operation on a global that is protected against
that operation, V AX-11 DSM generates an error.

The V AX-11 DSM Data Base 9-5

9.3.1 Creating and Modifying Your Own Library Globals

To create or modify your own library globals, follow these steps:

1. Invoke DSM with a global directory equal to the future library direc
tory, as in the following example:

$ DSM/GLOBALS=[MYDIR.DSMLIBJ

2. In response to the DSM prompt, set "X to the null string:

>SET ···}<= 1111

3. Create or modify the global X.GBL, and exit from DSM:

> HALT

4. Re-invoke DSM with [MAINDIR.DSMLIB] as your library global direc
tory, using either of these methods:

$ ASSIGN [MAINDIR.DSMLIBJ DSM$GLOBAL_LIB
$ DSM

or:

$ DSM/GLOBALS=[MAINDIR.DSMLIBJ/LIBRARY

When you access the global "%X, it is a library global.

. 9.3.2 Shared Access

The user mode in which you invoke V AX-11 DSM determines whether the
system enables or disables explicit sharing of globals. By default, VAX-11
DSM disables explicit sharing of globals in Programmer Mode. In
Application Mode, V AX-11 DSM enables explicit sharing.

Except for library globals, DSM attempts to open all globals accessed in
Application Mode with the default file-sharing mask described above (GET,
PUT, UPD, and DEL). This mask allows multiple users to simultaneously
read, write, update, and delete nodes in a global array. If shared globals are
protected against writing, DSM opens them with GET only. DSM also
opens globals with GET only if the disk is write-locked, as during backup.
(If the globals are also read-protected, DSM issues a privilege error.)

Unless the resultant file specifications of DSM$GLOBAL_DIR and
DSM$GLOBAL_LIB are identical, library globals support implicit sharing
(multiple simultaneous read operations) only.

You can override the file sharing default in either Programmer Mode or
Application Mode by using the /[NO]SHARE qualifier of the DSM com
mand. Refer to Section 4.4 for details about this qualifier.

9-6 The V AX-11 DSM Data Base

9.3.3 Record Interlocking

The DSM LOCK and ZALLOCATE commands provide a record
interlocking convention for shared globals. Although V AX-11 RMS pro
vides automatic record interlocking for ISAM files, V AX-11 DSM does not
use this feature, except when deleting records using the KILL command.
You must handle all record interlocking of globals open for sharing at the
DSM application level. Refer to the V AX-11 DSM Language Reference
Manual for details about the LOCK and ZALLOCATE commands.

9.4 Structural Overview of the VAX-11 DSM Data Base

LEVEL 3

On the first write access (SET) to a global variable, V AX-11 RMS con
structs one indexed file. The RMS file is subsequently maintained until the
variable is killed (by killing the root node).

An indexed file may be visualized as a pyramid with levels that become
smaller from bottom to top (see Figure 9-1). This structure is called an
index.

The bottom level of an index (which has the largest number of blocks) is
called the data level, or level 0. Levels above the data level are numbered in
ascending order up to the top level. The highest level of an index is called
the index root. The number of levels that make up an index is referred to as
the depth of the index.

Figure 9-1: Three-Level Primary Key Index

(ROOT BUCKET)

LEVEL 2

LEVEL 1

LEVEL 0
(DATA LEVEL)

__ ----0

INDEX
DEPTH
(3)

The V AX-11 DSM Data Base 9-7

Each level of an index consists of a linked and ordered chain of buckets. A
bucket is the basic retrievable element of an indexed file. It consists of an
integral number of contiguous 512-byte physical blocks. This number is
called the bucket size. DSM uses a default bucket size of two blocks, or 1024
bytes.

Buckets at each level of the index store .different types of information.
Buckets at the bottom level (level 0) store the data records associated with
a global. Buckets above level 0 up to the index root (which consists of a
single bucket called the root bucket), store location pointers to buckets at
levels below them.

Every indexed file consists of at least one index called the primary index.
Although indexed files can have more than one index (alternate indices),
VAX-11 DSM represents a global by the primary index only.

You access the records in the primary index through a record identifier
called the primary key. A key is a prologue (prefix) to a data record that
distinguishes it from other records in the file. For any global variable refer
ence, VAX-11 DSM constructs the primary key from its subscripts. If a
global variable is unsubscripted, V AX-11 DSM constructs a primary key
that consists of a series of binary zeros.

When you set a global variable node equal to a data value, V AX-11 DSM
constructs the primary key by arranging the characters in the subscript
field in the DSM numeric collating sequence. After it constructs the key,
VAX-11 DSM passes it to RMS. RMS then inserts the associated record in
the file according to the ASCII collating sequence of the primary key.
Section 9.4.2 describes this process in detail.

Whenever DSM requests a write or a read to an ISAM file, VAX-11 RMS
compares the requested key value against the entries in the root bucket.
When RMS finds a key whose value equals or exceeds the value of the
requested key, it uses the bucket pointer associated with that value to
locate the target bucket on the next lower level of the index. (This search is
always successful because the root bucket always contains the key with the
highest value in the collating sequence of the file.) This process repeats for
each level until the target bucket at the data level is reached.

If there is insufficient room in a data level bucket to store a newly written
record, RMS inserts a new bucket in the data level chain. It simultaneously
adjusts the records in the surrounding buckets to preserve the pointer infor
mation and collating sequence. This is known as a bucket split. Successive
bucket splitting adds more levels to the index, increasing its depth.

9.4.1 The Subscript Field and the Primary Key

V AX-11 DSM constructs the primary key for a record from the subscript
field of a global variable. By default, the maximum number of characters
that can be used in a key is 64. However, you can override this default in
two ways:

9-8 The V AX-11 DSM Data Base

• By using the /KEY _SIZE qualifier of the DSM command, setting the key
size to any number from 4 through 255. This qualifier only applies to
globals created during the current session. The keysize of existing globals
cannot be changed.

Refer to Section 9.7.3.1 for more information about the /KEY_SIZE
qualifier.

• By constructing the global file through other means, such as the RMS
utility CREATE/FDL and the DSM utility Global Create ("%GLCRE).

V AX-11 DSM constructs the primary key for a record by concatenating the
subscript field from left to right and inserting a byte containing binary 0
between each subscript. Following the last character of the last subscript,
VAX-11 DSM inserts zeros to fill out the key to the correct key size. (For
Prologue 3 files, such as those newly constructed with V AX-11 DSM V2.0,
RMS compresses the key to eliminate trailing zeros. RMS also compresses
the beginning of the key if it is identical to the beginning of the preceding
key in that bucket).

The first byte of each subscript in the key is a collation descriptor byte,
indicating whether the subscript is a positive number, canonic zero, a nega
tive number, or a non-canonic (that is, ASCII) string. See Appendix C for
information on the value of this byte for different types and lengths of
subscripts.

Figure 9-2 shows the structure of the primary key for the following node:

XC'AAA", "BBB", "ZZZ")

Figure 9--2: The Primary Key

collation L "AA~ZZ/00000
descriptor en subscript trailing zeros
byte (C)

You determine the length of a key by calculating the sum of:

• The characters in the subscript (without the quotes, if any)

• Twice the number of subscripts (for each subscript's delimiter and colla
tion descriptor byte)

• 1 (for the trailing zero)

9.4.2 Collating $equence

The location of records in an indexed file depends on the order in which the
keys associated with them are sorted. The order used is called the collating
sequence for the file.

The VAX-11 DSM Data Base 9--9

The default collating sequence for ISAM files is the ASCII collating se
quence. This collating sequence dictates that all keys collate in the ascend
ing order of the ASCII value of their characters.

V AX-11 DSM, however, uses a numeric collating sequence to arrange the
records associated with a global in the disk structures that store them. The
numeric collating sequence dictates that a global's subscripts sort in the
following order:

1. Canonic numbers

A canonic number is a number reduced to its simplest form. Such num
bers contain only valid numeric characters and, optionally, a single
decimal point and/or a minus sign. Canonic numbers have no leading or
trailing zeros.

Subscripts consisting of canonic numbers collate first in the ascending
numeric order of the subscript characters. Negative canonic subscripts
(those preceded by a minus sign) are placed first, followed by a sub
script of zero and then by positive canonic subscripts.

2. Strings and non-canonic numbers

V AX-11 DSM then sorts all nodes with subscipts consisting of alphanu
meric strings (such as "B9") or non-canonic numbers (such as -0.5) in
the ascending order of the total ASCII value of their subscript
characters.

Refer to the VAX-11 DSM Language Reference Manual for more informa
tion about the numeric collating sequence.

Because VAX-11 RMS uses the ASCII collating sequence to arrange re
cords in an indexed file, V AX-11 DSM implements the numeric collating
sequence through the ASCII collating sequence. To do this, V AX-11 DSM
represents alphanumeric subscripts in the key it constructs as the sub
scripts appear in a DSM string, that is, as pure ASCII characters preceded
by the collation descriptor byte. This collation descriptor byte forces the
arrangement of the records.

After VAX-11 DSM constructs the primary key in this fashion, it passes
the primary key to RMS for processing.

9.4.3 RMS Defaults

When V AX-11 DSM creates an ISAM file to represent a global, it gives the
ISAM file the following attributes by default:

1. Primary Key

•Key position = 0

• Key size = 64

9-10 The V AX-11 DSM Data Base

• No duplicate keys allowed

• No alternate keys defined

2. Maximum Record Size = key size + maximum DSM string size(255)
(default total = 319)

3. Bucket Size = 2 (1024 bytes)

4. Record Format = variable

5. Record Attribute (RMS RAT) = carriage return (CR)

6. Prologue 3 structure: index compression and. data key compression, as
described in Section 9.7.1.8 (but no data record compression).

9.5 Global Access from Other Languages and VAX/VMS Utilities

With the information provided in Sections 9.4 through 9:4.3, you can write
a program in any language that supports RMS ISAM files to access and
manipulate V AX-11 DSM globals.

Exercise extreme care when accessing the V AX-11 DSM data base from
other languages, particularly if you intend to lock records. Because the
DSM language provides its own locking mechanism for applications
(LOCK, ZALLOCATE), VAX-11 DSM does not use the RMS autolocking
feature for ISAM files. Thus, VAX-11 DSM (generally) expects to find re
cords unlocked. Since V AX-11 RMS uses autolocking by default, a program
could inadvertently lock a record or records. IfVAX-11 DSM finds a record
locked when it expects the record to be unlocked, VAX-11 DSM generates
an error.

Global files can be manipulated by all VAX/VMS utilities that operate
upon ISAM files (to copy, restructure, or back up a file). As most VAX/VMS
utilities cannot access a file in shared mode, no DSM user should be access
ing globals that are currently being handled by VAX/VMS utilities.

9.6 Global Access and DSM 1/0

Globals can be created indirectly through the DSM 1/0 interface. For exam
ple, the following command line creates an indexed file called JPB, and
predefines its key size to be 15 characters:

>OPEN 11 DSM$GLOBAL_DIR:JPB.GBL 11
·: C INDE}{ED:NEW:KEYSIZE=15)

After you create the indexed file this way, write one record to it to prevent
V AX-11 DSM from deleting the file when you close it. The following exam
ple shows this procedure:

BAL USE 11 device 11 F I= 1 : 1 : 15 W $C (0)
USE 11 de1Jice 11 W!
CLOSE 11 device 11

The V AX-11 DSM Data Base 9-11

This procedure sets the root node to the null string('"'). Thereafter, you can
access the file directly through standard global variable syntax. That is,
read and write requests to the global variable "JPB are processed as if the
global had been created by issuing a write request in the following form:

> SET ... JPB = II II

NOTE

If you create a global through the I/O interface using the
KEYSIZE parameter, you cannot change the key size later
because this action is equivalent to issuing the DSM com
mand with the /KEY_SIZE qualifier appended to it. In addi
tion, you cannot specify a key size less than 4 because this is
the smallest permissible key size for global variables.

9. 7 Global Optimization

You can manipulate a number of system and process-specific parameters to
improve throughput on global variable accesses. You set up these parame
ters when you design (lay out) or restructure the file, using the V AX-11
RMS utilities or a set of DCL commands.

The parameters set during file layout are:

• Initial file allocation

• Division of a file into areas

• Contiguity of space within a file or within areas (if you use multiple
areas)

• File extension size

• Bucket size

• Fill factor for initial loading of buckets

• Use of global buffers

You can change the file extension size and the global buffer count at a later
time using the DCL SET FILE command. You cannot alter any other'file
layout parameters without copying the file. VAX-11 DSM sets the follow
ing parameters for you at access time:

• Multi-buffer count

• Window size

• Deferred write

9-12 The V AX-11 DSM Data Base

The following sections describe the parameters that affect the performance
of the data base. All parameters described in these sections can potentially
affect the performance of the entire system. Moreover, altering one para
meter often reverses the effect of altering another. Thus, setting up your
system to yield optimum performance is a recursive process.

Refer to Section 11.1. 7 for a description of the VAX/VMS parameters that
affect not only the the data base, but VAX/VMS as a whole.

9. 7. t File Layout Parameters

The following sections describe the attributes of indexed files that you can
define when you design the file. You use the V AX-11 RMS utilities, de
scribed in Table 9-1, to set up and examine these attributes.

9.7.1.1 The Initial File Allocation - You set up the initial file allocation with
the FDL attribute FILE ALLOCATION. Careful use of this attribute (as
well as of the file extension size) can minimize the overhead of extending a
file. By reducing the number of retrieval pointers needed to map the file, a
large initial file allocation provides more efficient random access (particu
larly in large files), reducing window-turning.

9.7.1.2 Use of Areas - You divide a file into areas by using Edit/FDL.
Using areas allows you to reduce disk head movement when accessing re
cords in a file. You should set up two areas: one for index buckets and one
for data.

9.7.1.3 Contiguity - The contiguous use of space within a file (or within
areas in a file) provides the most efficient use of disk space and the fastest
access to data. To allocate space contiguously, use the
CONTIGUOUSBESTRY keyword for both the file and the area.

9.7.1.4 Size of File Extensions- You can use the Edit/FDL utility to calcu
late the amount of space that is added to a file or an area when it reaches
the limits of its allocated space. If you do not specify a file extension, RMS
uses the disk cluster size as the default extensionlength, which may not be
optimal for your application.

The disk cluster size is set using INITIALIZE (which erases the data on
the disk).

You must specify file extensions at the area level, even if you use only one
area. RMS does not recognize extensions specified at the file level.

9.7.1.5 Size of Buckets- You can use the Edit/FDL utility to calculate the
best bucket size for your application. Increasing the bucket size decreases
the number of index levels and therefore reduces disk access times. This is
particularly important for very large files.

The V AX-11 DSM Data Base 9-13

9.7.1.6 Fill Factor for Buckets - If your application is intended to insert
records with randomly distributed keys into a file, you should specify that
the initial loading of records into buckets does not completely fill the data
or index buckets. Leaving some space in the buckets provides room for
growth and reduces the number of bucket splits needed as the file is used.
The fill factor is not important if your application only reads files, or if
records are inserted with consecutive keys.

9.7.1.7 Use of Global Buffers - When multiple processes frequently refer
ence the same bucket, you may want to allow that bucket to remain in
memory, instead of being read into memory each time it is referenced. This
is important for DSM applications, in which many DSM users access the
same global variables concurrently. The root bucket, in particular, is ac
cessed every time a record is inserted or retrieved.

You can specify the number of global buffers provided by using the FDL
attribute FILE GLOBAL_BUFFER_COUNT when you create the file. You
can change the number of global buffers by issuing the DCL command SET
FILE with the qualifier /GLOBAL_BUFFERS.

Using global buffers allows deferred writing while sharing memory. Refer
to Chapter 11 for information on setting up sysgen parameters for exten
sive use of global buffers.

9.7.1.8 Compression of Prologue 3 Files - Globals created with VMS ver
sion 3.0 or later are stored in Prologue 3 files~ The prologue, an attribute of
an ISAM file that defines its structure level, is set up so that space-saving
compression operations can be performed on the file.

Because these files use the Prologue 3 format, you can specify that leading
or trailing characters that are repeated should be compressed in the index
buckets and in the keys.

You can also specify that repeating characters anywhere within a data
record should be compressed. However, this compression is not recom
mended for most DSM globals.

You can use the VAX-11 RMS Convert/Reclaim utility, described in Table
9-1, to make empty buckets usable again.

9.7.2 Using the RMS Utilities

The V AX-11 RMS utilities let you optimize your files in all of the ways
described above. There are five utilities:

• Edit/FDL, also known as the File Definition Language Editor

• Create/FDL

•Convert

• Convert/Reclaim

• Analyze/RMS_File

9-14 The V AX-11 DSM Data Base

Table 9-1 summarizes the functions of the RMS utilities. For more infor
mation on these utilities, read the V AX-11 Record Management Services
Tuning Guide and the V AX-11 Record Management Services Utilities
Reference Manual.

Table 9-1: The RMS Utilities

Utility Function

Edit/FDL Allows you to set up values for the file attribute keywords that
govern such file characteristics as initial file allocation, file exten-
sion size, bucket size, use of areas, and so on.

To optimize an existing file, you must first run Analyze/RMS_File
on the file, and then use the output of Analyze/RMS_File as input
to Edit/FDL.

Create/FDL Uses the keyword values set up with Edit/FDL to create an empty
file.

Convert[IFDL] Copies records from one or more files to an output file, either new or
existing. You can use this utility to convert one indexed file to
another, or to load data from a sequential file into an indexed file
created with Create/FDL. You append /FDL to Convert to create
and populate an indexed file in one command.

Convert/Reclaim Makes empty buckets available so that new records can be written
in them.

Analyze/RMS_File Checks for structure errors in a file, and generates a report on the
file's data structure. Can also set up the attributes of a file to be
used as input for Edit/FDL.

When you install V AX-11 DSM, a sample file definition file for globals is
inserted in SYS$LIBRARY with the file name DSMGLOBAL.FDL. You
can use this file as a model or edit it to suit your situation.

9.7.3 Optimizing DSM Parameters

The following qualifiers on the DSM command perform data-base-related
functions:

• /KEY _SIZE = n (for Prologue 2 files only)

• /OPEN_GLOBALS=n

• /[NOJOPTIMIZE_BUFFER_COUNT

• /[NO]SEQUENTIAL_OPTIMIZATION

These qualifiers tailor space and run-time requirements for global accesses.
Section 4.4 provides a general description of these qualifiers. The following
sections describe the impact of their use on the data base.

The VAX-11 DSM Data Base 9-15

9.7.3.1 The /KEV _SIZE Qualifier - The /KEY _SIZE qualifier only affects
"scratch" globals created during a session. It overrides, for the current ter
minal session, the default key size (64 characters) that VAX-11 DSM uses
for globals.

You can use this qualifier to allocate, a small key size if you know that you
will never create a key larger than, for example, ten characters. using a
smaller key size allows faster data access time and better use of disk space
for Prologue 2 files.

If your application needs to use large globals (up to 255 bytes), you can use
/KEY _SIZE to provide a large key size.

As described in Section 9. 7 .1.8, Prologue 3 files allow automatic compres
sion of leading or trailing characters in keys. In many cases, key compres
sion provides good data access time and efficient use of bucket space, so
that you can leave the key size at the default value.

9.7.3.2 The /OPEN_GLOBALS Qualifier- This qualifier overrides the default
number of globals that can be open simultaneously (7).

V AX-11 DSM maintains a list called the Open Globals List that specifies
the globals that are currently open. V AX-11 DSM updates this list on a
least recently used basis. Every time a global is accessed that is not in the
list, when the list has already reached its maximum size, VAX-11 DSM
closes the least recently accessed global, and enters the needed global in its
place.

Depending on the situation, the number of globals in the Open Globals List
can improve or degrade the performance of your data base. For optimum
performance, the list should be large enough to avoid frequent opening and
closing. However, ·it should never be unnecessarily large, as this can lead to
extra virtual memory paging.

As a rule, the size of the list should reflect the average number of globals in
your data base that are accessed simultaneously. (If this number is fewer
than the default number of globals maintained by the list, change the de
fault to that number.)

To monitor the system-wide rate of file open operations, use the V AXNMS
MON:ITOR utility. To see statistics on each process's use of RMS operations
(including OPENs and CLOSEs), use the V AX-11 DSM utility
GBLSTAT"%STAT.

Each open file (including globals) uses up part of the process's BYTLM and
FILLM quotas. Each open global is also noted in the process's Open Globals
List. The count of the Open Globals List must be less than the value of
FILLM. If you have many open globals, you may exceed your process's
FILLM quota. If you exceed this quota, VAX-11 DSM sends a warning
message to the terminal and automatically decreases the size of the Open
Globals List. The difference between FILLM and the number of open glo
bals plus 2 (for your two routine directories) is the number of files you can
have open for 1/0 (OPEN, CLOSE, USE).

9-16 The V AX-11 DSM Data Base

9.7.3.3 The /[NO]OPTIMIZE_BUFFER_COUNT Qualifier - The multi-buffer
count is the number of 1/0 buffers that V AX-11 RMS allocates when you
access a file (global or otherwise). RMS uses these buffers asynchronously
whenever possible to overlap 1/0 time with compute time.

Unless you specify /NOOPTIMIZE_BUFFER_COUNT on the DSM com
mand at image start-up (in either Programmer Mode or Application Mode),
V AX-11 DSM automatically adapts the RMS multi-buffer count for exist
ing globals to the number of levels in the global's index plus one. This value
generally produces the optimum environment for global accesses.

V AX-11 DSM always uses the RMS default multi-buffer count for globals
created during the current terminal session.

When you specify /NOOPTIMIZE_BUFFER_COUNT, RMS defaults are
used in all cases, whether you create a new global or access an old one.

You can set the default multi-buffer count at the process level or at the
system level. At the process level, you set the multi-buffer count with the
following DCL command:

SET RMS_DEFAULT/BUFFER_COUNT=n/INDEXED

where n represents the number of buffers to be allocated; the value of n
must be less than or equal to 127.

If the multi-buffer count for indexed files is undefined at the process level,
V AX-11 RMS uses the system default established at VAX/VMS sysgen
time (through the sysgen parameter RMS_DFMBIDX) or by the SET
RMS_DEFAULT command qualified by the /SYSTEM qualifier. If the sys
tem default is also undefined, RMS allocates one buffer for the file.

The multi-buffer count does not affect the use of global buffers, explained in
Section 9.7.1.7.

9.7.3.4 The /[NO]SEQUENTIAL_OPTIMIZATION Qualifier - The
/SEQUENTIAL_OPTIMIZATION qualifier, which is the default, causes
V AX-11 DSM to optimize (when possible) sequential access for a sequence
of the following operations:

• Get the contents of a node, as with the command SET X = "A("xxx")

•$DATA

•$ORDER

• $ZORDER

•$NEXT

• $ZNEXT

The V AX-11 DSM Data Base 9-17

V AX~ll DSM performs this sequential access by caching the RF A (record's
file address) corresponding to the node just accessed. If the next operation
on the same global refers to either the same node or the node that immedi
ately follows, DSM performs an access by RFA instead of by key, thus
avoiding the search through the index buckets for the key.

Operations on another global do not affect the data cached for a global.

9-18 The V AX-11 DSM Data Base

Part 3
Operating VAX-11 DSM

Chapter 10
Installing VAX-11 DSM

This chapter describes the VAX-11 DSM distribution kit and the VAX-11
DSM software installation procedure. It describes how to install the DSM
image as a known image, how to start the DSM Job Controller, and how to
install the VAX-11 RMS shared-file option. For supplemental information
about the material discussed in this chapter, refer to the VAX/VMS System
Management and Operations Guide.

10.1 The VAX-11 DSM Distribution Kit

The VAX-11 DSM distribution kit is made up of software and documenta
tion. DIGITAL distributes the VAX-11 DSM software on either a multi
volume set of floppy disks or DECtape 11 magnetic tape cartridges. The
VAX-11 DSM software consists of the following:

•Components needed to install DSM as a layered product

• DSM library utility routines and globals

• Components needed· to rebuild DSM with user-defined functions

The documentation consists of:

•The VAX-11 DSM User's Guide

•The VAX-11 DSM Language Reference Manual

•The VAX-11 DSM Summary

• Introduction to DSM

10-1

10.2 Installing VAX-11 DSM

The general procedure for installing the VAX-11 DSM system software is:

1. Log in under the privileged system manager's account.

2. Set defaults as follows:

$SET UIC [1 t4J

$SET DEFAULT SYS$UPDATE

3. At the console terminal, type:

$ @VMSUPDATE

V AXNMS then prints the following message on the terminal:

VMS UPdate Procedure

This co1r1111and procedure Perforrns l.,JA}{/VMS,softi,..1are uPdates and
o P t i o n a' 1 s o f 't i,..i a r e i n s t a 1 1 a t i o n s f o r I.I AX I I.IMS I.I e r s i o n 3 • D u r i n 9
this sec:iuence t the standard console mediurri is not Present in the
console dri1Je+ Thus t the syste111 111aY be 1J1.1lnerable to po1,..1er fail
ures or other fatal crashes. If a S}'Ste111 crash occurs durins
this ti111e.1 the update sec:iuence can be restarted at the besinnins
of t'h e f i rs t inc o 111P1 et e u Pd ate •

4. Dismount the current medium (floppy disk or magnetic tape cartridge)
from the console drive.

As yo'! remove the volume, note the direction in .which it is facing:
floppy disks or magnetic tape cartridges from the distribution kit must
be inserted in the console drive so they face the same direction. (The
label is on the front side of the volume~)

Note that you receive a device-not-mounted message if no volume is
currently mounted. Ignore this message.

5. Place the first floppy disk or magnetic tape cartridge from the distribu
tion k~t in the console drive. (The floppies or cartridges that comprise
your distribution kit are numbered sequentially. You must install the
volumes in ascending numerical order.)

VAX/VMS then prints the following query:

ARE YOU READY TO CONT I NUE?

6. Type Y for the installation procedure to proceed. When you respond to
the query with Y, the command procedure on the volume assumes con
trol, and the files on the medium are copied to the system disk.

If you respond to the query by typing N, VAX/VMS repeats the request
to put the volume in the console drive; then it repeats the READY TO
CONTINUE? query.

10-2 Installing V AX-11 DSM

7. After the files are copied from the first volume, repeat steps 5, 6, and 7
for each remaining floppy disk or magnetic tape cartridge in your dis
tribution kit.

8. After you dismount ·the last volume, V AXNMS begins to install the
V AX-11 DSM system software. A series of milestone messages is
printed, marking the installation of each component of V AX-11 DSM.
Then the system initiates a verification procedure. The ve:r;ification pro
cedure consists of the following:

•Invoking the DSM image.

• Restoring utilities from the kit utilities file.

• Restoring globals from the kit globals file. If the verification proce
dure is successful, you receive the following message:

lJAX-11 DSMl.12.0 test PASSED

NOTE

Stop the installation procedure and contact your
Software Services representative if you receive the
following message:

IJAX-11 DSM t.J2.0 test FAILED

9. During installation, VAX-11 DSM asks a series of questions. By an
swering these questions, you specify whether previous versions of
V AX-11 DSM related files should be purged:

•Do You wish to purse the Previous versions of all
VA}{-11 DSM files?

If you answer YES, VAX-11 DSM asks no additional questions; the
installation procedure purges all previous versions of VAX-11
DSM,..-related files in system dire.ctories.

If you answer NO, the following additional questions are asked:

• VA}{-11 DSM ir11ases?

Answering YES to this question causes all DSM executable images to
.be purged. Note that if you answer NO to this question, and DSM is
installed as a shared image, you will have to run the INSTALL utility
to install the new version of DSM. You need not run INSTALL if
purging is selected.

• lJA}{-11 DSM obJect libraries?

This question refers to all DSM object library files kept in
SYS$LIBRARY for linking the DSM interpreter with user-defined
$ZCALL entry points.

• t,JA}{-11 DSM option files and co11u11and Procedures?

Installing VAX-11 DSM 10--3

If you answer YES, the installation procedure purges the command
procedures and option files for starting up the DSM Job Controller
and the DSM Journal Processes.

• t.)A}{-11 DSM Librar}' routines and slobals?

If you answer NO, the installation procedure preserves the previous
version of the DSM library routine directory,
SYS$LIBRARY:ROUTINES.DSM, and previous versions of DSM li
brary globals.

e t.JA}{-11 DSM $ZCALL and f1lessase libraries?

Answering YES purges previous versions of files containing $ZCALL
t~bles and examples in SYS$LIBRARY.

10. When the installation and verification procedures are complete, you
receive a message informing you that V AX-11 DSM has been success
fully installed. Control then returns to the system command procedure
VMSUPDATE. This procedure prints the following query:

ARE THERE MORE KI TS TO PROCESS?:

Type Y if you have additional software kits to install. Otherwise, type
N to terminate the VMSUPDATE program.

11. Remount any previously mounted floppy disk or magnetic tape
cartridge.

The installation procedure places all executable images that you need to
operate DSM in the VAX/VMS directory SYS$SYSTEM. These include the
DSM Job Controller (DSMMJC.EXE), the DSM interpreter (DSM.EXE),
and the DSM journaling image (DSMJRN.EXE).

In addition, installation places the following components in the VAX/VMS
directory SYS$LIBRARY:

•The DSM library routines and globals

• The command files and example option files for starting the DSM Job
Controller and Journal Process

•The components needed to rebuild the DSM image with user-written
functions, including the $ZCALL example file (ZCEXAMPLE.MAR)

At this point, the basic VAX-11 DSM software installation procedure is
complete. To run the DSM image, type the DSM command in response to
the DCL prompt:

$ DSM(fill)

The DSM command takes a number of qualifiers, as described in Chapter 4.

10-4 Installing VAX-11 DSM

Note however, that your system is not yet configured to yield optimum
performance as layered software under VAX/VMS. At this point, your sys
tem does not:

• Provide shared access to the DSM image

• Handle simultaneous accesses to the DSM data base and other disk files

• Handle DSM locks

The following sections address these issues.

10.3 Starting the DSM Job Controller

For any VAX-11 DSM system running applications in shared mode (that
is, running in Application Mode or in Programmer Mode with the /SHARE
qualifier specified), you must start up the DSM Job Controller. The DSM
Job Controller is a process that manages lock requests for DSM applica
tions and controls the use of journaling.

To start up the DSM Job Controller, you invoke a command procedure
called DSMMJCSTA.COM, located in the directory SYS$LIBRARY. This
command procedure creates a detached process· and sets up a process name,
privileges, and input, output, and error files. To invoke the command proce
dure, enter:

@SYS$L I BR ARY: DSMMJCSTA II II [1 t 4]

You should also insert this command in the VAX/VMS start-up file
SYS$MANAGER:SYSTARTUP.COM, so that the DSM Job Controller is
started up automatically when VMS starts up. Refer to Chapter 12 for
details about the DSM Job Controller and its start-up command procedure.

10.4 Installing the DSM Image as a Known Image

VAX/VMS allows you to . install certain executable image files, such as the
DSM image file, as known images. Known images are executable image
files that can be quickly accessed and shared. They are usually installed
when the system is boote~.

Known images can have one or more of the following attributes:

• Permanently open

•Shared

• Privileged

•Protected

•Writeable

•Headers permanently resident in memory

Installing V AX-11 DSM 10-5

To install the DSM image as a known image, you use the VAX/VMS
INSTALL utility program. The following command sequence installs the
DSM image as a known image with the attributes listed above:

$ SET DEFAULT SYS$SYSTEM
$ RUN SYS$SYSTEM: INSTALL
* DSM/OPEN/SHARED/HEADER_RESIDENT

You can also use INST ALL to delete or replace files in the system's list of
known images. You will often have . to replace one version of the DSM
image with another to make user-written $ZCALL functions available to
all VAX-11 DSM users. The following example shows how to use INSTALL
to do this:

$ RUN SYS$SYSTEM: INSTALL
* DSM/REPLACE

NOTE

If you perform a system installation (as outlined in Section
10.2), and have previously installed a version of DSM as a
known image, you do not have to use INSTALL. In this case,
VAX/VMS automatically installs the new version of DSM as
a known image. VAX/VMS deletes the previous version only
if you answer YES to the purge question.

You should install DSM, however, each time you boot your V AXNMS
system, by inserting the commands shown above m
SYS$MANAGER:SYSTARTUP.COM.

10.5 Installing the VAX-11 RMS Shared-File Option

Through the shared-file option, VAX-11 RMS allows several processes to
access files simultaneously. VAX-11 DSM uses the RMS shared-file option
in application environments to allow simultaneous accesses to the DSM
data base and files created through the DSM 1/0 interface or by other
languages.

Before you can use the RMS shared-file option, you must run the
RMSSHARE utility program. You should run this utility each time you
boot the system. Because of this, it is a good idea to include a command for
running RMSSHARE in SYS$MANAGER:SYSTARTUP.COM.

The RMSSHARE utility tells you whether file sharing has been enabled. If
file sharing is enabled, RMSSHARE displays current and maximum page
counts (see Section 11.1.8). You can then increase or decrease the maxi
mum page count to which the data base can grow. Because pages are not
returned to the system pool until you reboot the system, you should not set
the maximum lower than the current count.

10-6 Installing VAX-11 DSM

To run the RMSSHARE utility program, you need the CMEXEC privilege.
If you have this privilege, issue the following command to run the
RMSSHARE utility program:

$ RUN SYSSSYSTEM:RMSSHARE

You use the EXIT command to terminate the execution of the. RMSSHARE
utility program. Type the EXIT command (in uppercase characters) in re
sponse to the program prompt.

Installing VAX-11 DSM 10-7

Chapter 11
Managing VAX-11 DSM

This chapter describes the tasks involved in managing a V AX-11 DSM
system. Topics discussed include:

• Establishing and deleting accounts for V AX-11 DSM programmers and
applications users

• Setting up the user interface for VAX-11 DSM application users

• Installing DSM applications as permanent global sections

• Deleting and listing permanent global sections

• Performing V AX-11 DSM system backup

• Tuning DSM and VMS for optimal performance

For supplemental information on the topics described in this chapter, refer
to the VAX/VMS System Management and Operations Guide.

11.1 Establishing Accounts for VAX-11 DSM Users

Each V AX-11 DSM user in Programmer Mode and each V AX-11 DSM
application run in Application Mode has an account on the V AXNMS sys
tem. Information to identify each 'account is kept in the system's user au
thorization file, SYS$SYSTEM:SYSUAF.DAT. This information includes
(but is not limited to) the following:

•A user name

The user name, as described in Section 2.2.1, is an alphabetic character
string. It is VAXNMS's principal way of identifying an account. You
must ensure that each V AX-11 DSM account has a unique user name.

11-1

The user name for a programmer is often the programmer's name. The
user name for an application is often the subject of the application, such
as INVENTORY or RADIOLOGY.

•A password

The password for a programmer's account should be known only to the
user, as described below. The password for an application account is
known by all users of the application. Note that the password of an appli
cation account set up with auto-login must be null, as described in
Section 11.1.3.3.

•The name of the default device

The default device is the storage device to which the user has access by
default upon logging in. This is normally the device on which the volume
that contains the account's most frequently used files is mounted.

• The name of the default directory

The default directory is the directory (file containing a catalog of file
names) to which the user is connected by default upon logging in. It is
generally the user's main directory, as described in Section 3.3.

Accounts can share the same default directory.

• The name of the log-in command file

The log-in command file associated with an account is a command proce
dure (file type .COM) executed automatically when the user logs in.

• Privileges

The privileges associated with a VAX/VMS account determine to what
extent the user can affect important system facilities and thus influence
how the system performs for other users.

• A User Identification Code (UIC)

The VAXNMS data protection scheme is based on the User Identification
Code (UIC). You must assign each account a UIC.

The UIC regulates each user's access to the data structures protected by
UICs, such as files and interprocess communication facilities (mailboxes
and shared areas of memory).

A UIC is made up of two 16-bit numbers. The first number represents a
user's group, and the second number represents a user's member number
within the group.

To assign UICs optimally, be careful when assigning users to groups.
VAX/VMS defines a group as a collection of users who normally have
access to each other's files and mailboxes, to global virtual memory sec
tions, and to the group logical name table. Group members share data and
can control one another's processes.

11-2 Managing VAX-11 DSM

Therefore, when establishing accounts for VAX-11 DSM users, observe the
following guidelines:

•Assign different UIQs and default directories to DSM programmers and
applications accounts, so that application users cannot alter programs
under development.

(In some cases, however, you may want to assign the same directory and
UIC to a programmer account and an application account to allow a pro
grammer to have privileged access to the application's data.)

•Assign the same group number in the UIC and default directory to users
who must share access to the same files.

11.1.1 How to Set Up User Accounts

To set up an account for a VAX/VMS user, you must have SYSPRV or
SETPRV privilege.

The first step in setting up an account is to determine what the account's
user name, password, default directory, and other identifying information
will be. Then, you create the account's main directory and (if appropriate) a
login command file. Finally, you insert information about the account into
the system's user authorization file (UAF), using the AUTHORIZE utility.
You specify the user name, password, default device, and so on to this
utility.

The following example shows how part of your session with AUTHORIZE
might look:

$RUN SYS$SYSTEM:AUTHORIZE

UAF>ADD JONES/PASSWORD=TROMBONE/UIC=[013t007J
/DEVICE=DISK$USER/DIRECTORY=[JONESJ
/LGICMD=DISK$USER:[RADIOLOGYJGRPLOGIN

The VAX/VMS System Management and Operations Guide contains a tem
plate of a command procedure for adding a new user to the U AF. This
command procedure asks for all categories of information about the user,
invokes AUTHORIZE, and cleans up after itself. You may find copying and
using this command procedure more convenient than performing all the
steps yourself.

11.1.2 Establishing Accounts for VAX-11 DSM Programmers

When you establish an account for a VAX-11 DSM programmer, follow the
guidelines for establishing an account for VAX/VMS interactive users de
scribed in the VAX/VMS System Management and Operations Guide. To
VAX/VMS, a V AX-11 DSM programmer is simply a time-sharing
VAX/VMS user who happens to be running the DSM image.

Managing VAX-11 DSM 11-3

You can recommend to the V AX-11 DSM programmers on your system
that they create subdirectories with the logical names DSM$GLOBAL_DIR
and DSM$ROUTINE_DIR. This allows programmers to separate their data
files automatically from their routines and globals.

The password for a Programmer Mode user should be selected by the user.
When you first set up the user's information in the U AF, you can assign a
dummy password (USER, for example) and instruct the user to assign his
or her own password with the DCL command SET PASSWORD. To en
hance system security; encourage Programmer Mode users to select obscure
passwords (not, for example, their first names) of at least six letters and to
change passwords occasionally.

11.1.3 Establishing Accounts for DSM Applications Users

The three basic reasons for establishing separate DSM application
accounts are:

• To enable protected and automatic start-up of a given application.

• To provide an easy-to-use interface for the user of the application.

• To prevent unintentional or unauthorized tampering with the data being
manipulated by a particular application.

You can establish either of the following methods for application users to
start a VAX-11 DSM application:

1. The user can enter a user name and password that correspond to a
particular DSM application account. As described below, a log-in com
mand procedure automatically starts the application. When the appli
cation exits, the user is automatically logged out. If you take the
precautions listed below, all interruptions, such as (CTRL/v), are disabled
while the application executes.

2. You can tie an application account to a terminal (or set of terminals), as
described in Section 11.1.3.3. When a terminal is tied, typing a control
character (such as (BTI), (BREAK), or (CTRL/c l) forces the automatic start
up of the application.

11.1.3.1 Protecting Application Accounts - When you establish a V AX-11
DSM application account with the VAX/VMS AUTHORIZE utility, take
the following precautions:

1. Specify the /FLAGS=.DISCTLY qualifier to AUTHORIZE to disable
(CTRL/Y) in the user authorization file record.

2. Specify the /FLAGS= CAPTIVE qualifier to AUTHORIZE to prevent
the application user from specifying another command interpreter (or
another start-up command file) when logging in.

3. Specify the/FLAG=LOCKPWD qualifier to AUTHORIZE to prevent
the application user from changing the password of the application
account.

11-4 Managing V AX~ll DSM

In addition, you may want to specify /DISWELCOME and /DISNEWMAIL
to keep non-application text from being displayed, and /DISNETWORK and
/DISDIALUP to prevent remote access to the application.

To prevent interactive access to an application account, specify the
/DISUSER qualifier to AUTHORIZE. This does not prevent automatic
logins through null passwords on tied terminals, described in
Section 11.1.3.3.

For additional suggestions on managing application accounts, see the de
scriptions of "turnkey" accounts in the VAX/VMS System Management and
Operations Guide.

11.1.3.2 Starting an Application through a Command Procedure - You may
find it useful to start the DSM application for the user, through a log-in
command procedure. You specify the procedure's file name with the
/LGICMD qualifier to AUTHORIZE. A log-in command procedure for start
up of the application APPL would look like the following:

$ Miscellaneous DCL Commands (for example, ASSIGN commands)

$SET NOON
$ DSM/INPUT= TT: A APPL
$LOGOUT

11.1.3.3 Starting an Application through Automatic Login - The V AXNMS
Automatic Facility (Auto-Login) is a VAX/VMS start-up feature that al
lows you to "tie" a user name to a terminal to enable the automatic and
transparent start-up of an application.

Auto-Login is handled by the V AXNMS LOGINOUT utility program.
V AX-11 DSM provides an interface to LOGINOUT through a system util
ity routine called %ALF. This utility sets up the data structures required
by LOGINOUT to tie terminals to- an application.

%ALF creates, lists, and modifies the contents of the automatic login file
SYS$SYSTEM:SYSALF .DAT, which contains the records that associate a
terminal with a particular user name. The primary key of each record is
interpreted as a terminal name, and the data is interpreted as a user name.

NOTE

Always use a temporary copy of SYSALF .DAT to perform
modifications. After· you finish, you can then copy the up
dated version of SYSALF .DAT to the system directory
(SYS$SYSTEM), automatically replacing the old version.

For an application to be tied to a terminal, the application account must
have a null password ("").

Managing V AX-11 DSM 11-5

When unsolicited input (such as ~' (BREAK) , or (CTRL/v l) occurs at a ter
minal, the LOGINOUT utility looks for SYSALF.DAT. If the utility finds
SYSALF.DAT, it checks to see whether the current terminal name corre
sponds to the key of a record in SYSALF.DAT. If the LOGINOUT utility
cannot locate a corresponding record, login proceeds as usual, with
V AXNMS prompting you for a user name and a password.

If LOGINOUT does locate a record that corresponds to the current termi
nal, and the password specified is null, LOGINOUT attempts to perform
automatic login. You are not requested to enter a user name or a password.

NOTE

If you tie a non-existent user name to a terminal, you will
receive a log-in error each time unsolicited input is entered
at that terminal.

11.1.3.4 Suppressing VAX/VMS Messages - When you set up an application
account, you can disable the V AXNMS welcome and mail messages
through the qualifiers described in Section 11.1.3.1. However, these quali
fiers do not suppress messages from DCL commands (such as ASSIGN com
mands when you replace a logical name's equivalence string) or the
V AXNMS logout message.

To suppress these messages, you can send them to a null device (device type
NL:). List the commands whose output you want to suppress in a command
procedure. Then, invoke that command procedure (from your start-up file,
for example) with the /OUTPUT= NL: qualifier.

To suppress the V AXNMS logout message, include the following command
at the end of your start-up file:

$ STOP 'F$PROCESSO

11.1.4 Deleting User Accounts

When a user leaves your VAXNMS system, or when a VAX-11 DSM appli
cation is no longer needed, you should delete the account for that user or
application. You delete an account using AUTHORIZE. Follow these steps:

1. Copy any files of possible future value to another account.

2. Delete the account's files and directories from the bottom up (that is,
starting with the files in the most nested subdirectories).

3. Invoke AUTHORIZE and delete the account, as described in the
VAX-11 Utilities Reference Manual.

11-6 Managing VAX-11 DSM

11.1.5 Assigning Privileges to VAX~ 11 DSM Users

Because many V AXNMS system functions perform extremely sensitive
tasks and affect all users of the system, they are protected by privileges.
When you assign privileges to V AX-11 DSM users, carefully consider
whether each user has the skill \and experience to use the privileges as
signed, as well as a valid need for the privilege.

However, V AX-11 DSM programmers must have certain privileges to per
form some VAX-11 DSM operations:

ZUSE

ZJOB

DSM Command

ZJOB x:DETACH

ZJOB x:PRIORITY = n

OPEN x:(MAILBOX:NEWVERSION)

OPEN x:(MAILBOX:NEWVERSION:
SYSTEM)

/INSTALL

/DELETE

/SYSTEM

DSM Qualifier

Description

Broadcast to a terminal

Start a process

Start a detached process

Start process with higher
priority

Create a telllporary mailbox

Create a permanent mailbox

Description

Create a permanent section

Delete a permanent section

Create or delete a system
wide section

Privilege

OPER

GRPNAM
TMPMBX

DETACH

ALTPRI

TMPMBX

PRMMBX

Privilege

PRMGBL

PRMGBL

SYSGBL

You must record all privileges that you assign to a user in the user's
account record in the User Authorization File (UAF), using AUTHORIZE.

In most instances, the privileges that you assign to a user can only be used
to execute an image that has corresponding privileges. However, when a
user executes a known image, the user's privileges can be temporarily am
plified so they correspond with the privileges of the known image. Thus, a
user having few privileges can execute an image that requires many
privileges.

NOTE

The DSM image is normally installed without additional
privileges.

For more information about privileges, consult the VAX/VMS System
Management and Operations Guide.

Managing VAX-11 DSM 11-7

11.1.6 Assigning Limits for VAX-11 DSM Users

Each V AXNMS user must have limits set on certain system resources that
affect system performance. You set each user's assigned limits in that
user's account record in the UAF.

The following are the V AXNMS limits that directly affect V AX-11 DSM
system operation:

1. Default AST Queue Limit (ASTLM)

Restricts the number of terminals (ASTLIM-1) that a DSM application
can have open concurrently. You should specify the VAX/VMS default
value for this limit.

2. Buffered 1/0 Count Limit (BIOLM)

Restricts the number of outstanding buffered 1/0 operations allowed to
a user's process. You should specify the V AXNMS default value for this
limit.

3. Buffered 1/0 Byte Count Limit (BYTLM)

Restricts the amount of buffer space that a process can use for various
operations, such as writes to terminals or mailboxes. Accessing files,
particularly large files, also uses up the BYTLM quota. The ·default
byte count limit is not adequate for DSM operation because of DSM's
heavy use of buffer space for writes. You should significantly increase
the value of this limit.

Note that subprocesses started with ZJOB share the buffer space allo
cated to a process with BYTLM.

4. Open File Limit (FILLM)

Restricts the number of files that a user's process can have open simul
taneously. The Open File Limit is significant for VAX-11 DSM, and
may have to be made larger than the V AXNMS default value. Refer to
Section 9.7.3.2 for additional information about this limit.

5. Direct 1/0 Count Limit (DIOLM)

Restricts the number of outstanding direct 1/0 operations permitted to
a user's process. The Direct 110 Count Limit can affect V AX-11 DSM
disk 1/0 performance. You should specify the V AXNMS default value
for this limit.

6. Enqueue Quota (ENQLM)

Establishes the maximum number of locks that a process can own. You
should set this limit in the 50-100 range, higher than the limit (20)
suggested for typical VMS operation.

11-8 Managing VAX-11 DSM

7. Paging File Limit (PGFLQUOTA)

Establishes the number of pages that a process can use in the system
paging file. The paging file provides temporary disk storage for pages
forced out of memory by a memory management operation. Thus,
PGFLQUOTA limits the writable portion of a user's address space.

The first user who gains shared access to a file with a non-zero global
buffer. count is charged by VAX/VMS for page file use resulting from
the creation of a global page-file section to hold these global buffers.

8. Subprocess Creation Limit (PRCLM)

Restricts the number of subprocesses that a process can start concur
rently with the ZJOB command or the %SPAWN $ZCALL function.
Note that each subprocess, if started, deducts from the creating process'
deductible limits. You should tailor this limit to accommodate your
application.

9. Shared File Limit (SHRFILLM)

Restricts the use of system resources required for a process to perform
file sharing.

10. Working Set Size Limit (WSQUOTA)

Restricts the size to which the working set of a user's process can be
expanded. You should tailor this limit to accommodate your applica
tion. DSM applications require a minimum working set size of 300.

11. Default Working Set Size (WSDEFAULT)

Sets the initial working set size for a user's process. You should tailor
this. limit to accommodate your application.

12. Working Set Extent Limit (WSEXTENT)

Specifies the maximum size to which a user's physical memory usage
can grow, independent of the system load. WSEXTENT should always
be greater than or equal to WSQUOTA. The minimum value is set with
the system parameter 'WSMAX, described in the following section.

For more information about limits, consult the VAX/VMS System
Management and Operations Guide.

11.1. 7 Optimizing SVSGEN Parameters

After you install VAX-11 DSM, you should modify a few VAX/VMS
SYSGEN parameters to optimize the perform&nce of V AX-11 DSM. Only
those parameters~ that specifically affect the DSM user environment (either
programmer or application) are listed in this section. For a complete de
scription of each VAXNMS SYSGEN parameter, refer to the VAX/VMS
System Management and Operations Guide.

Managing VAX-11 DSM 11-9

11-10

You should record site-specific parameter values in __ a file with the name
SYS$SYSTEM:PARAMS.DAT. This file is consulted by the VAX/VMS
AUTOGEN procedure to establish system parameters, as described in the
VAX/VMS System Management and Operations Guide.

Parameter

SYSMWCNT

WSMAX

Applicability to V AX-11 DSM

Because DSM processes perform frequent, shared
accesses to VAX-11 RMS ISAM files, increase this
parameter to enhance V AX-11 DSM performance.
You -determine _the _optimal value by running the
PAGE option of the V AXNMS MONITOR utility
and observing the system page faults. If the sys
tem page fault count is greater than 2, increase
SYSMWCNT.

This parameter should -be high enough to achieve
maximum performance in a DSM application'envi
ronment (for example, to -minimize swapping while
keeping paging to a reasonable rate). The
V AXNMS default is usually adequate.

If the -working set limit and extent quota values
assigned to individual users in the user authoriza
tion file are lower than WSMAX, they are used as
maximums. Moreover, VAX/VMS provides an au
tomatic working set adjustment mechanism
within the limit set by WSMAX.

PAGEDYN This parameter must be large enough to accommo
date the RMS shared pool space. The RMS shared
pool space is usually allocated at VAX/VMS start
up by means of the RMSSHARE utility. See the
next section for information about the RMS shared
page count, which is related to this SYSGEN
parameter.

ACP PARAMETERS These parameters affect the performance of DSM
because they affect the performance of all disk
handling. See the VAX/VMS System Management
and Operations Guide for recommended settings.

RMS PARAMETERS These parameters affect the performance of DSM
in its access to routines and globals and when per
forming sequential I/O. In particular, the multi
buffer count for indexed files affects routine access
and newly created globals. You should set the
value of RMS_DFMBFIDX to 4 or 8.

LOCKIDTBL This parameter must be increased for V AX-11
DSM. To determine the optimal value, observe the
number of lock entries under heavy load by run
ning the LOCK option of the VAX/VMS
MONITOR utility. -

Managing V AX-11 DSM

REHASHTBL

GBLPAGFIL

GBLSECTIONS

GBLPAGES.

When you increase LOCKIDTBL (see above), you
must increase REHASHTBL by the same
proportion.

This parameter defines the maximum number of
system-wide pages allowed for global page-file sec
tions, that is, scratch global sections that can be
used without being mapped to a file. V AX-11 RMS
creates one such section for each shared file that
has a global buffer count associated with it. The
size of tpe section is the bucket size of that file
times its global buffer count. If you use global
buffering to a significant extent, you will need to
raise the value of GBLPAGEFIL. Whenever you
increase GBLPAGEFIL, you must also increase
the size of the system page file,
SYS$SYSTEM:PAGEFIL.SYS, as described in the
VAX/VMS System Management and Operations
Guide. Increase GBLPAGES by the same amount,
as described below.

If you are using global buffers, see the descriptions
of the GBLSECTIONS parameter and and the
PGFLQUOTA process quota.

This parameter sets the number of global section
descriptors allocated in the system header at boot
strap time.

If you are using mapped DSM routine sections, you
need one global section header for each mapped
section.

V AX-11 RMS also creates a temporary global
page-file section for each shared file with a global
buffer count. The names of these sections all start
with RMS$ followed by. eight hexadecimal digits
representing the longword address. If you are us
ing global buffers, GBLSECTIONS must be large
enough to accommodate one section for each
shared, open file that has a global buffer count
associated with it.

This parameter sets the number of global page
table entries allocated at bootstrap time.

If you are using DSM mapped routine sections, you
need the number of global pages equal to the sum
of the sizes of each section you are mapping. The
number of pages r,equired by a DSM mapped rou
tine section is equal to the number of blocks allo
cated to the corresponding DSM mapped· routine
file (.VIR). Use the DIRECTORY/SIZE command
to find out the size of a DSM mapped routine file.

Managing VAX-11 DSM 11-11

11-12

NPAGEVIR

SRPCOUNTV

IRPCOUNTV

LRPCOUNTV

If you are using global buffers, GBLP AGES must
be large enough to accommodate all the sections
associated with each shared, open file that has a
global buffer count. You must increase
GBLPAGES as well as GBLPAGFIL, described
above.

If you are using DSM mapped routine files, see the
description of the GBLSECTIONS parameter.

This ·parameter determines the maximum size to
which the nonpaged dynamic pool can be in
creased. If this value is too small, the system
could hang.

This parameter establishes the upper limit to
which the number of pre-allocated small request
packets can be increased. If this parameter is set
too low, system performance can be adversely
affected.

This parameter establishes the upper limit to
which the number of pre-allocated intermediate
request packets can be automatically increased by
the system. IflRPCOUNTV is too low, system per
formance can be adversely affected.

This parameter establishes the upper limit to
which the number of pre-allocated large request
packets can be automatically increased by the sys
tem. If LB,PCOUNTV is too low, system perfor
mance can· be adversely affected.

Use the DCL command SHOW
MEMORY/POOL/FULL to determine the use of
nonpaged dynamic pool, and of small, intermedi
ate, and large request packages.

11.1.8 Guidelines for Estimating RMS File-Sharing Page Count

When you run the RMSSHARE utility, you are asked to specify the maxi
mum number of pages to be allocated for file-sharing structures. A sample
RMSSHARE run is shown below. Note that the maximum allocation al
lowed (78) is limited by the PAGEDYN parameter, .and the other values are
determined by RMSSHARE. If you do not want to specify a maximum page
count, you enter (Bill, as shown below.

$RUN STS$SYSTEM:RMSSHARE
RMS file sharin9' is currently enabled

Maximum allocation allowed:79
N1.1111ber of Pa9'es allocated:ss
M a.x Pa 9' e s used : 5 1
Cur.rent nu1nber of Pa9'es in 1.1se:a2
Enter 111ax Pa9'es :(fil]

Managing V AX-11 DSM

The number of pages required for VAX-11 RMS file sharing structures on a
VMS system depends on the following factors:

• The number of files opened for shared access at any one time

• The global buffer count associated with each shared file

• The multi-buffer count used for accessing each file

The total requirement for RMS file sharing structures is equal to the num
ber of pages required by V AX-11 DSM users running in application mode
or with the /SHARED qualifier, plus the requirements of other VMS users
using RMS file sharing.

You can calculate an initial value for the number of pages required by
VAX-11 DSM by estimating approximately 5 pages for each VAX-11 DSM
application user who will be active simultaneously with other users. (Users
running VAX-11 DSM in programmer mode do not require any RMS file
sharing structures, unless /SHARED is specified.)

Run RMSSHARE to add the number computed above to the current size of
the RMS shared file structures.

Then, monitor the system's use of RMS shared file structures periodically
by running RMSSHARE, which displays the current and maximum num
ber of pages used, along with the total number of allocated pages. Adjust
the total number of allocated pages accordingly.

If you encounter the following error message, the space allocated to the
RMS shared file structures has been exhausted:

'X.DSM-W-SYSQUOTA t sYste111 ciuota exceeded

You must increase the number of pages as described above. Failure to do so
will adversely affect the performance of the system, and will eventually
cause V AX-11 DSM applications to terminate with a fatal error.

The values of the following VAX-11 DSM parameters can increase the
requirement for RMS shared file structures:

•The index depth of VAX-11 DSM globals (because it determines the
value of the multi-buffer count VAX-11 DSM is using for each file)

• The value of the /OPEN_GLOBALS qualifier (default is 7) because it,
determines the number of simultaneously open global files

• The global buffer count associated with V AX-11 DSM globals

To adjust the number of pages to the value needed, monitor the system's
usage as described above.

Managing VAX-11 DSM 11-13

Whenever you run RMSSHARE to increase the number of pages allocated
to RMS file sharing structures, you must also adjust the value of the system
working set size, SYSMWCNT. To determine the correct value of
SYSMWCNT, invoke the MONITOR utility ,to record the rate of system
page faults under heavy load. If the average system page fault rate exceeds
two pages per second, you must increase SYSMWCNT.

11.2 Installing DSM Applications as Global Sections

11-14

VAX/VMS allows you to install a DSM mapped routine file or a DSM
mapped library file as a permanent global section, either group global or
system global. You must always install a DSM mapped library file as a
system permanent global section.

Before you can install a permanent global section, you may need to modify
the GBLPAGES and GBLSECTIONS sysgen parameters to accommodate
all DSM mapped files that are to be installed. GBLSECTIONS must be
large enough to accommodate the number of simultaneously installed DSM
mapped routine and library sections, as well as all other VAX/VMS
installed images and sections. GBLP AGES must be large enough to accom
modate the additional total size in pages of all DSM mapped routine and
mapped library sections that are to be installed simultaneously.

Refer to Section 5.8 for a general description of mapped routine files and
global sections. The following sections describe how to install, delete, and
list permanent global sections.

11.2.1 Installing Mapped Routine Files

To install a DSM mapped routine file as either a group or system perma
nent global section, you include the /INSTALL qualifier along with
/SHARE and /MAPPED when you issue the DSM command.

To install a DSM mapped routine file, enter the following sequence of
commands:

$ DSM/SHARED/MAPPED=f ile naMe/INSTALL
·>HALT

The default name assigned to a global section for DSM mapped routine' files
is DSM$ROUTINE_SEC.

To install a DSM mapped library file, enter the following sequence of
commands:

$ DSM/SHARED/MAPPED=file naooe/LIBRARYJINSTALL
>HALT

Where "file name" is the name of the DSM mapped routine file that you
built withthe "%RBUILD library utility (described in Chapter 7).

Managing VAX-11 DSM

The default name assigned to a global section for a DSM mapped library
file is DSM$LIBRARY_SEC. You must include the /LIBRARY qualifier
when you install a library file.

You can install a DSM application) section system-wide, by specifying
/SYSTEM, or change its default name, by specifying /NAME. The following
example shows how these qualifiers are used to install a system-wide appli
cation named MYAP~$SEC.

$ DSM/SHARED/MAP=file name/INSTALL/NAME=MYAPP$SEC/SYSTEM
> HALT

However, you cannot change the name of a library section.

When you install any permanent global section, you can specify the page
fault cluster size by including the /CLUSTER_SIZE = n qualifier in the
DSM command line. If you do not include this qualifier, V AXNMS uses the
default page-fault cluster size specified in the PCDEFAULT SYSGEN
parameter.

To install a DSM mapped routine file as a group permanent global section,
you must have the GROUP and PRMGBL privileges. In addition, your UIC
group number must correspond with the UIC group number of the DSM
application users who are to map to the section.

To install a DSM mapped routine file as a system permanent global section,
you must have the SYSGBL, WORLD, and PRMGBL privileges. Because)
system permanent global sections are available to all users, you need not
have the same UIC group number as the application users who map to the
section.

11.2.2 Deleting Mapped Routine Files

To delete an application or library that has been installed as a permanent
global section, you include the /DELETE qualifier along with /SHARED
and /MAPPED when you issue the DSM command. You can only delete a
permanent global section if you have the privileges required to install one.

To delete a DSM application installed as a global section with the default
name, enter the following sequence of commands:

$ DSM/SHARED/MAPPED/DELETE
>HALT

To. delete a DSM library installed as a permanent global section, enter the
following commands:

$ DSM/SHARED/MAPPED/LIBRARY/DELETE
>HALT

To delete a mapped library, you must include the /LIBRARY qualifier.

Managing VAX-11 DSM 11-15

To delete a named section, you specify the /NAME qualifier. You must
specify /SYS with /DELETE if the section was installed with /SYS. For
example, the following line deletes MYAPP$SEC, installed in the example
in Section 11.2.1:

$DSM/SHARED/MAP=file naMe/DELETE/NAME=MYAPP$SEC/SYSTEM
>HALT

A global section is not actually deleted until all processes have ceased
mapping to it.

11.2.3 Listing Permanent Global Sections with INSTALL

The VAXNMS INSTALL utility allows you. to:

• List all group or system-wide permanent global sections

• Determine the number of available global sections and pages

To use INST ALL to list permanent global sections, issue the following se
ries of commands:

$RUN SYS$SYSTEM: INSTALL
*/GLOBAL/FULL

INSTALL also lists the number of available global sections and global
pages. You need this information to determine if there is enough room to
install a mapped section. To find out how many pages a file needs to be
installed as a section, issue the following DCL command:

DIRECTORY/SIZE filename.VIR

Check that the number of pages displayed is smaller than the number of
available global pages. If it is not, adjust the GBLPAGES SYSGEN para
meter, described in Section 11.1.7, by performing the AUTOGEN
procedure.

11.3 Optimizing VAX-11 DSM Applications

11-16

To optimize the throughput of a VAX/VMS system running a V AX-11
DSM application, you should always follow these steps:

1. Optimize the layout of disk volumes and files, particularly VAX-11
DSM global variable files.

2. Install stable DSM applications as mapped virtual memory sections.

3. Tune VMS parameters for special V AX-11 DSM requirements, such as
heavy file sharing.

You do not need any knowledge of the DSM language or DSM applica
tions to perform steps 1-3 .' These steps use standard VAX/VMS facili-

. ties and do not affect the logic of a DSM application.

Managing VAX-11 DSM

4. ·Favor certain DSM application programming techniques over others.

The following sections describe these four activities in detail.

11.3.1 Optimizing Disk Volume and File Layout

Optimizing disk volume and file layout produces the largest performance
payoff for a VAX-11 DSM application.

You must:

• Lay out the initial structure of disk volumes and files carefully

•Maintain an optimal arrangement after heavy usage

It is recommended that you re-structure volumes and files periodically,
using the appropriate VMS and RMS utilities.

11.3.1.1 Maintaining Disk Volumes - To define the initial structure of disk
volumes, use the DCL INITIALIZE command (which erases all information
on a disk). In particular, choose an appropriate value for the volume cluster
size (INITIALIZE/CLUSTERSIZE = n). A large cluster size allows more effi
cient access to the file structure and ·faster extension of files. However,
space may be wasted for small files. RMS uses a volume's cluster size as the
default extension quantity to a file.

The VAX/VMS System Management and Operations Guide gives guidelines
for maintaining volumes.

To maintain an optimum structure for disk volumes after heavy usage, use
the VAX/VMS BACKUP utility, described in the VAX-11 Utilities
Reference Manual.

11.3.1.2 Allocating and Maintaining DSM Global Files - It is crucial to the
throughput of a V AX-11 Q_SM application to carefully lay out the structure
of large DSM globals. The following attributes of a file have an impact on
access time:

• Initial allocation

• Default extension

• Separate areas for index and data buckets

•Bucket size

• Use of global buffers

The RMS utilities EDIT/FDL, CREATE/FDL and CONVERT/FDL are
easy-to-use tools to help you layout a global file initially, or restructure it
after heavy use. The RMS utility CONVERT/RECLAIM can be used to
reclaim space within a global file without copying it. Refer to Chapter 9
and the V AX-11 Record Management Services Utilities Reference Manual
and the VAX-11 Record Management Services Tuning Guide for details
about the RMS utilities.

Managing VAX-11 DSM 11-17

11-18

11.3.1.3 Minimizing the Rate of Opening Globals - If your DSM application
simultaneously accesses more globals than the default number of globals in
the open global list, you may want to adjust the size of this list. You make
this adjustment by means of the /OPEN_GLOBALS qualifier on the DSM
command, as described in Chapter 9.

11.3.2 Using Mapped Routines

If you are running a stable DSM application (that is, if the application code
does not need to be modified frequently), you can gain significant perfor
mance in the loading of DSM routines (through the DO command) by in
stalling the most frequently used DSM routines as · a mapped virtual
memory section.

The V AX-11 DSM "%RBUILD utility allows you select a set of routines to
include in a mapped section file. You do not need to install all routines of
an application in a mapped section. The section merely acts as a cache.
DSM will load from the DSM routine directory any routine that is not
mapped.

Refer to Section 11.2 for instructions on installing a DSM mapped section.

Remember that mapped routine sections are accessible for reading only. If
you need to change the code of a DSM routine that is included in a mapped
section, you must rebuild the section using "%RBUILD, and reinstall it.

11.3.3 Adjusting VMS Parameters

To adjust the values of VAX/VMS parameters, you first use the AUTOGEN
procedure to let VMS calculate optimum parameters for your configuration.

Then, you adjust a certain number of parameters for a V AX-11 DSM appli
cation environment, by recording their value in the parameter file
PARAMS.DAT. Finally, you reinvoke the AUTOGEN procedure. Refer to
VAX/VMS System Management and Operations Guide for details.

V AX-11 DSM applications typically involve heavy sharing of files and a
high use of indexed sequential files (DSM globals). Follow these guidelines
to adjust parameters according to the characteristics of your application:

1. In an environment that produces heavy file sharing, you must adjust
the system working set size, SYSMWCNT, to reduce the system paging
rate to no more than an average of two pages a second. A higher rate
has a very negative impact on total system performance. Use the
VAX/VMS MONITOR utility to monitor the system page fault rate.

2. Be sure to allocate large enough values for the upper limits of the non
paged pool (NPAGEVIR) the small request packet count (SRPCOUNT)
and the intermediate request packet count (IRPCOUNTV). If
NPAGEVIR is too small, the system may hang. If SRPCOUNTV or
IRPCOUNTV are too small, system performance may be adversely af
fected. Use MONITOR or SHOW MEMORY/POOL/FULL to determine
this usage.

Managing VAX-11 DS!\[

3. Observe the system under heavy load, and note the behavior of modi
fied-page writing, by using the PAGE option of the MONITOR utility.
If necessary, adjust the VMS sysgen parameters that affect the writing
of modified pages to the page file. These parameters start with the
characters MPW_. Consult the VAX/VMS System Management and
and Operations Guide for descriptions of these parameters.

4. Consult the VAX/VMS System Management and Operations Guide
for guidelines for adjusting the ACP parameters. These parameters
determine the size of various virtual memory caches used by the" file
system ACP.

5. Make sure every DSM user has a big enough WSQUOTA process quota.
This value is minimized by sysgen parameter WSMAX, but the default
value of WSMAX is usually adequate for DSM operation.

11.3.4 VAX-11 DSM Programming Techniques

If you are writing a DSM application specifically for V AX-11 DSM, or if
you wish to optimize the code of a DSM application developed on another
MUMPS system, follow these guidelines:

1. Avoid excessive use of the XECUTE command and indirection.

2. Use local variables rather than global variables for scratch purposes,
such as sorting.

3. Consider using sequential files rather than global variables for storing
sequential data, such as text or print files. Sequential files, combined
with access by RFA, can also be used for large data bases that are never
changed, such as archival data. In this case, while the bulk of the data
would be kept in a large sequential file, cross-references to pieces of
information can be kept in DSM globals, keyed by RF A (record file
address). This technique saves disk accesses.

4. Optimize terminal output by using large transfers of data to the termi
nal rather than many small transfers. Remember that the following
constructs produce multiple QIOs:

> FOR I= 1 : 1 : N WR I TE II II

> WRITE A WRITE B WRITE C WRITE ! WRITE D

However, the following construct produces a single QIO:

> WRITE A ,5 tC t! tD

5. If you use $TEXT with mapped routines, precede each text line with a
double semi-colon (;;) to force the pre-compiler to include this line in the
pre-compiled, mapped code. In general, DSM must load the source of a
routine to perform the $TEXT function, even if the pre-compiled ver
sion of the same routine is mapped in virtual memory.

Managing V AX-11 DSM 11-19

Chapter 12
Running the VAX-11 DSM Job Controller

This chapter describes the privileged operator interface to the VAX-11
DSM Job Controller. It includes instructions for starting up and shutting
down the DSM Job Controller.

The DSM Job Controller manages lock requests for DSM application users
and controls operations that must be performed for all users, such as
enabling and disabling journaling.

12.1 Overview of the Job Controller

The primary function of the V AX-11 DSM Job Controller is to act as a lock
manager, allowing the hierachical locking of a variable or a node of a
variable by DSM users running in shared mode. This locking function is
required for the operation of the LOCK command (from the MUMPS
Standard Language) anq the V AX-11 DSM extension commands
ZALLOCATE and ZDEALLOCATE.

The V AX-11 DSM Job Controller is a VAX/VMS detached process, with no
individual owner associated with it. This process is created by the DSM
system manager, who assigns the appropriate privileges and access rights
to it and sets up the initial lists of users who are enabled to log into DSM
and to use the DSM Journal Process. While the Job Controller Process is
running, the DSM operator can communicate with it through a set of utility
programs. These programs allow the operator to specify who is enabled to
log into DSM and to use the DSM Journal Process, as well as to monitor
and shut down the DSM Job Controller Process.

12-1

Whenever a DSM user invokes DSM in shared mode (either implicitly, by
running DSM in Application Mode, or explicitly, by using the /SHARED
qualifier in Programmer Mode), the services of the DSM Job Controller are
required. The DSM Job Controller is not needed to run DSM in
Programmer Mode without the/SHARED qualifier, or in Application Mode
with /NOSHARED specified.

For users running in a shared mode, the DSM Job Controller performs the
following functions:

•Manages the processing of LOCK, ZALLOCATE, and ZDEALLOCATE
commands.

• Controls which groups of users can log into DSM in Application Mode.

• Keeps a list of DSM users currently running in Application Mode.

• Controls which groups of users can perform journaling using the DSM
Journal Process (described in Chapter 13).

Note that since processes started through the DSM ZJOB command always
run in Application Mode, the DSM Job Controller must be running for
ZJOB to be used.

By default, there is one DSM Job Controller for each V AX-11 DSM system.
However, the system manager can set up a separate Job Controller for a
group of one or more users with the same group number in their UICs.

The following paragraphs explain what happens when you run a DSM im
age in shared mode. (Note that each process that runs the DSM image is
referred to as a "DSM process," or simply "process," in the remainder of this
chapter.)

1. As soon as a user invokes the DSM image in a shared mode, DSM sets
up a communication link between that process ·and the DSM Job
Controller. Through this communication link, the user process sends
information to the DSM Job Controller, and the DSM Job Controller
lets the DSM user image know whether or not it can run in shared
mode and whether or not journaling is permitted for the user.

2. Once communication has been established, the Job Controller processes
all LOCK, ZALLOCATE, and ZDEALLOCATE requests that the user
image makes.

3. In turn, the Job Controller is controlled either by start-up parameters
or by utilities that the VAX-11 DSM operator runs.

12-2 Running the VAX-11 DSM Job Controller

12.2 Communication between DSM Job Controller and DSM
Processes

Communication between processes running DSM and the DSM Job
Controller is accomplished through the use of mailboxes. As described in
Section 6.11, a mailbox is a VAX/VMS pseudodevice that one or more pro
cesses can use for interprocess communication.

Communication between user images and the Job Controller is established
according to these steps:

1. The DSM user process creates its own LOGIN/LOCK REPLY mailbox.

2. The DSM user image sends its user name, principal 110 device, UIC,
and other miscellaneous information to the Job Controller. The Job
Controller receives this information through its LOGIN mailbox, as
shown in Figure 12-1. The LOGIN mailbox has the logical name
DSM$MJC_REQUEST_MBX. This is a system logical name by default,
but you can set it up as a group logical name by including the /GROUP
qualifier in the start-up option file (see Section 12.3.2).

3. The DSM Job Controller sends back to the user image's mailbox:

• A "login enabled" indicator, if either of the following is true:

• DSM logins have been enabled for all users

• The current user is a member of a group for which DSM logins have
been enabled

• A "journaling enabled" indicator, if either of the following is true:

• Journaling has been enabled for all users

• The current user is a member of a group that has been specified for
journaling

•Information on how to reach the DSM Job Controller's LOCK mail
box, which receives LOCK, ZALLOCATE, and ZDEALLOCATE
requests

4. Once the user process receives this information, it can issue the LOCK,
ZALLOCATE, and ZDEALLOCATE commands. The DSM Job
Controller locks variables for user processes as requested. If another
user has previously locked the same variable, the first user must either
wait for the variable to be unlocked, or wait for a specified timeout to
occur.

5. The DSM Job Controller also sets up an Operator Request Mailbox with
the group logical name DSM$MJC_OPERATOR_MBX, accessible only
to the DSM operator, and only if the operator has the same UIC as the
DSM Job Controller Process. The operator can then send utility re
quests to this mailbox, as shown in Figure 12-1.

Running the VAX-11 DSM Job Controller 12-3

Figure 12-1 illustrates the interaction between a DSM user process, a DSM
operator, and the DSM Job Controller.

Figure 12-1: Communicating with the DSM Job Controller

LOCK, ZALLOCATE, ZDEALLOCATE requests

l
Identifying information

DSM "Login enabled" indicator DSM
JOB USER ~

CONTROLLER
"Journaling enabled" indicator

IMAGE

~

Utility
requests

DSM
OPERATOR
PROCESS

MR-S-2362-82

12.3 Starting the Job Controller

The VAX-11 DSM distribution kit includes a command file that starts the
Job Controller. This file is called DSMMJCSTA.COM; it resides in the
VAX/VMS directory SYS$LIBRARY.

DSMMJCSTA.COM contains the DCL RUN command and a number of
qualifiers. The image that is executed by the RUN command is
SYS$SYSTEM:DSMMJC.EXE. Thus, the format of the start-up command
file is:

$RUN
/INPUT= 'Pl'
/UIC = 'P2'-
/PROCESS_NAME = DSM_CONTROL
/OUTPUT= NL:-
/ERROR='P3'-
/PRIVILEGES=(TMPMBX, PRMMBX, GROUP, WORLD)
SYS$SYSTEM:DSMMJC.EXE

Section 12.3.1 describes the contents of DSMMJCSTA.COM in greater
detail.

12.3.1 The Job Controller Start-up Command File

The RUN command causes VAX/VMS to create the DSM Job Controller as
a detached process and to execute an image called DSMMJC.EXE.

VAX/VMS applies certain defaults to a detached process. For example, the
DSM Job Controller's default directory is the same as the default directory
of the system manager who starts up the DSM Job Controller.

12-4 Running the V AX-11 DSM Job Controller

The qualifiers associated with the RUN command provide information
about the files that you wish to use and the privileges that you wish to
assign to the Job Controller. The qualifiers can be specified in any order.
Table 12-1 lists the qualifiers associated with the RUN command, in the
order used in DSMMJCSTA.COM.

Table 12-1: Command Qualifiers in DSMMJCSTA.COM

Qualifier Function

/INPUT (Pl) Specifies the name of the start-up option file that the Job
Controller uses initially. This file specifies the start-up options that
the Job Controller uses until it is instructed to change them (by a
V AX-11 DSM operator). If you do not specify Pl, the Job
Controller uses the default file
SYS$LIBRARY:DSMMJCPAR.OPT, described in Section 12.3.2.

/UIC (P2) Specifies the group and member numbers of the DSM Job
Controller. The default is your current UIC. (The DSM operator
must have the same UIC as the DSM Job Controller.)

NOTE

If you invoke the DSM Job Controller from
SYSTARTUP.COM, you must specify the UIC [1,4].
Otherwise, the DSM Job Controller is set up with
the UIC [10,40].

/PROCESS_NAME Specifies the name of the VAX-11 DSM Job Controller. The default
name is DSM_CONTROL. If the DSM operator assigns a new name
to the Job Controller, the name must be unique in the VAX/VMS
system within the group.

/OUTPUT Specifies the name of the Job Controller's current output file or
device~ The /OUTPUT qualifier assigns an equivalence name for
the logical name SYS$0UTPUT. The DSM Job Controller writes
internal warning, error, and information messages to this device or
file. Since the Job Controller duplicates all messages other than
success messages in the file name you specify with /ERROR, you
specify /OUTPUT= NL: to ensure a single copy of messages.

/ERROR (P3) Specifies the file name to which the Job Controller writes internal
warning, error, and information messages. The error file is import
ant as a record of problems if the Job Controller stops unexpect
edly.

The /ERROR qualifier assigns an equivalence name for the logical
name SYS$ERROR. The text of messages is stored in the file speci
fied. If the Job Controller does not issue any messages, it does not
create the file. The default name is DSMMJC.ERR.

Running the V AX-11 DSM Job Controller 12-5

Table 12-1 (Cont.): Command Qualifiers in DSMMJCSTA.COM

Qualifier
'

Function

/PRIVILEGES Assigns privileges to the Job Controller, as follows:

• TMPMBX is required by the Job Controller. This privilege al-
lows the Job Controller to create the temporary Operator
Request mailbox and LOCK mailbox.

• PRMMBX is required by the Job Controller. This privilege al-
lows the Joh Controller to create a permanent LOGIN mailbox if
the Job Controller start-up option file specifies /SYSTEM. (If the
option file specifies /GROUP, the LOGIN mailbox is temporary.)

• GROUP and WORLD privileges are only needed internally ifthe
DSM operator uses the Job Controller to execute the KILL A
DSM USER command or the VERIFY DSM USERS command.

· GROUP allows the operator to control other users within its own
group. WORLD allows any user in the system to control-all other
users in the system.

Specifying NOSAME provides the Job Controller with only the
privileges listed in the command file.

As shown in Table 12-1, there are three optional parameters that you can
specify when you start the Job Controller by executing
DSMMJCSTA.COM:

• Pl, applied to the /INPUT qualifier·, specifies the name of the start-up
option file.

• P2, applied to the /UIC qualifier, specifies the UIC of the DSM Job
Controller.

• P3, applied to the /ERROR qualifier, specifies the name of an error log file
that is created if the Job Controller generates any warning, error, or
information messages.

Note the three parameters in the following example of a command line that
invokes the Job Controller attribute command file:

$@SYS$LIBRARY:DSMMJCSTA MYMJCPAR.OPT [1 t4J MYMJC.ERR

In this example, the DSM Job Controller starts up with UIC [1,4]. The Job
Controller uses a start-up option file called MYMJCPAR.OPT in the cur
rent default directory. Any messages that the Job Controller generates will
be stored in a file called MYMJC.ERR in the curre,nt default directory.

A system manager can modify the site-independent start-up file so the
DSM Job Controller starts automatically when the system is booted. The
command line shown in the above example is typical of the kind of addition
you have to make to the file to do this. Refer to the VAX/VMS System
Management and Operations Guide for details on tailoring the site-indepen
dent start-up file.

12-6 Running the VAX---11 DSM Job Controller

12.3.2 The Job Controller Start-up . Option File

The /INPUT qualifier in the DSMMJCSTA.COM file identifies the option
file to be used in starting up the Job Controller. If you do not specify a
name, the Job Controller uses the file SYS$LIBRARY:DSMMJCPAR.OPT.
You can construct your own start-up file (with the default name or
any name that you choose), or use the sample file supplied with the distri
bution kit.

The DSMMJCSTA.COM file contains qualifiers and the values associated
with them, in the following general format:

/[NO]QU ALIFIER/SUBQU ALIFIER = [argument][!COMMENTS]

VAX/VMS interprets any text preceded by an exclamation mark (!) as a
comment and ignores it. There can be unlimited comments in an option file.

Table 12-2 shows the qualifier options and their defaults. Table 12-3
describes the qualifiers in greater detail.

Table 12-2: Qualifiers Used in DSMMJCPAR.OPT

Qualifier Default

/[SYSTEM] /SYSTEM
[GROUP]

/[NO]LOGIN[I ALL] /LOGIN/ALL
[ISELECT_GROUPS =r= (list)]*

/[NOJJOURNAL[I ALL] /NOJOURNAL/SELECT_GROUPS
[ISELECT_GROUPS =(list)]*

The "list" is a series of group numbers separated by commas, for example: (100,101,102).

Running the V AX-11 DSM Job Controller 12-7

12-8

Table 12-3: Qualifier Summary

Qualifier Function

/GROUP or /SYSTEM Specifies that the DSM Job Controller is used by a select group
· of users (such as program developers) or for all DSM users in the

system.

/[NO]LOGIN Specifies whether or not DSM user images can run. If, however,
you defined the Job Controller for only a group, the
/[NO]LOGIN qualifier applies only to that group. Therefore, if
you specify /NOLOGIN, and the DSM operator later runs the
ALLOW FUTURE DSM LOGINS utility, only that group of
DSM user images can run.

/[NO]JOURNAL

• I ALL indicates that any DSM user image in any group can
run. If the option file includes /NOLOGIN/ALL, and the DSM
operator later runs the ALLOW FUTURE DSM LOGINS util
ity, any DSM user image in any group can run.

• /SELECT_GROUPS=(list) specifies which groups of DSM
user images can run. If the command file includes
/NOLOGIN/SELECT_GROUPS, no DSM user images can
run. If, however, the DSM operator later runs the ALLOW
FUTURE DSM LOGINS utility, only the listed groups of DSM
user images can run. (SELECT_GROUPS does not apply if
you are running the Job Controller on a group basis.)

While the DSM Job Controller is running, you can use operator
utilities to change the list of users for whom login is enabled.
These utilities are described in Section 7 .6.2.

Specifies whether or not users can perform journaling (described
in detail in Chapter 13). If the status of the "journaling enabled"
indicator changes while a DSM user image is running, that im
age is not affected by the change. A DSM user image only re
ceives an indicator at start-up time.

• /ALL indicates that all groups can use journaling. If the op
tion file includes /NOJOURNAL/ALL, and the DSM operator
later runs the START JOURNALING FOR DSM USERS util
ity, all groups can use journaling.

• /SELECT_GROUPS=(list) specifies which groups can per
form journaling. If the option file includes
/NOJOURNAL/SELECT_GROUPS, no users can use journal
ing. If, however, the DSM operator later runs the START
JOURNALING FOR DSM USERS utility, only the listed
groups can use journaling. (SELECT_GROUPS does not apply
if you are running the Job Controller on a group basis.)

While the DSM Job Controller is running, you can use operator
utilities to change the list of users who can use journaling.
These utilities are described in Section 7.6.1.

Remember that before you enable journaling for all users or selected users,
you must start a DSM Journal Process for those users (one process for all
users or one process for each group, as appropriate). Otherwise, these users
will receive a journal-initialization failed error message
(%DSM-E-JRNINIFAIL) when they try to run in Application Mode (or in
Programmer Mode with /SHARED).

Running the V AX-11 DSM Job Controller

12.4 Job Controller Operator Utilities

The DSM operator uses the V AX-11 DSM utility routines on the "%0PER
menu to communicate with the Job Controller. Table 12-4 lists these utili
ties and their entry points. For details on these utilities, see Sections 7 .6.2
and 7.6.3, or the on-line documentation.

WARNING

You must have the UIC of the DSM Job Controller to invoke
these utilities.

Table 12-4: DSM Job Controller Utilities

Utility Entry Point

Add Group to Login List ADDLOG''%MJC

Allow Future DSM Logins LOG"%MJC

Change DSM Login-Enable Mode LOPT"%MJC

Delete Group from Login List DELLOG"%MJC

Job Table Display "%JOBTAB

Kill a DSM User KILLUSE"%MJC

Lock Tabl~ Display "%LCKTAB

Prevent Future DSM Logins NOLOG"%MJC

Show Groups DISLOG"%MJC

Shutdown DSM SHUTUP"%MJC

Status of DSM Job Controller STATUS"%MJC

Verify DSM Users VERIFY"%MJC

Table 12-5 lists the journaling utilities that interact with the DSM Job
Controller.

Table 12-5: Journal Utilities that Use DSM Job Controller

Utility Entry Point

Add Group to Journal List ADDJRN"%MJCJRN

Change Journal-Enable Mode JOPT"%MJCJRN

Delete Group from Journal List DELJRN"%MJCJRN

Show Groups Journal List SHOJRN"%MJCJRN

Start Journaling for DSM User JRNON"%MJCJRN

Stop Journaling for DSM User JRNOFF"%MJCJRN

Running the VAX-11 DSM Job Controller 12-9

Chapter 13
Running the VAX-11 DSM Journal Process

This chapter describes the VAX-11 DSM journaling facility. It explains the
operator's interface to Journal Processes and the relationship between DSM
Journal Processes and users running VAX-11 DSM.

13.1 Overview of Journaling

Journaling is a method of keeping a record on a sequential storage device
(disk or magnetic tape) of the SET and KILL transactions that a DSM user
performs on the global data base.

Journaling is done through a V AXNMS detached process called a DSM
Journal Process. A Journal Process can also be started a batch process, as
described in Section 13.7.

V AX-11 DSM offers a number of journaling options to meet the needs of a
system running multiple applications. Each group of related DSM user
images running the same application can have its own Journal Process, or
there can be a single Journal Process for all DSM applications on the
system.

Journaling is performed on a per-global basis. Within an application for
which journaling is enabled, only those globals that are marked for journal-
ing are actually journaled. -

A VAX-11 DSM operator can interact with a Journal Process at run time
to control the journaling operation. This interaction is done through utili
ties supplied with the V AX-11 DSM system (see Section 13.6 for details).

13-1

13.1.1 Enabling Journaling

Journaling can be .enabled and disabled only by the DSM operator, not by
individual DSM users. The operator must do the following before the SETs
and KILLs of global variables can be journaled:

1. Start the DSM Job Controller, as described in Chapter 12.

2. Mark specific globals to be journaled within each application that is to
use journaling. To mark globals for journaling, you use the "%GBLATR
utility or the utilities on the "%JOURNAL menu.

3. Start one DSM Journal Process to perform journaling for the users of
each application for which you plan to enable journaling. You can use a
command file supplied by the V AX-11 DSM system to start DSM
Journal Processes. -

4. Interact with the DSM Job Controller to enable groups of DSM user
images to use the Journal Process. When users invoke DSM in
Application Mode, the DSM Job Controller tells the DSM image if jour
naling is enabled or disabled for that process.

A Journal Process can accept parameters to tailor the journaling operation
either at start-up or while a Journal Process is running.

During start-up, a Journal Process acquires parameters through a start-up
parameter file.

At run-time, a Journal Process acquires parameters through DSM operator
intervention with Journal Process utilities. The communications link be
tween the DSM operator and a Journal Process is the Operator Request
mailbox associated with that Journal Process. The Journal Process reads
the contents of this mailbox and sends replies back to the operator if re
quested to do so.

13.1.2 Defining Users of Journaling

To specify which DSM applications are enabled to use journaling, the oper
ator uses either the DSM Job Controller's start-up option file (described in
Section 12.3.2) or a Job Controller operator utility (described in
Section 12.4).

Journaling can be enabled system-wide or for members of specified groups.
Users running the same DSM application (that is, accessing the same glo
bals and routines) must have the same group number. (Conversely, users
with the same group number are assumed to be sharing resources; there
can be no more than one Journal Process per group.)

If journaling is enabled system-wide, all users running DSM applications
record SET and KILL transactions on the same disk or magnetic tape files
through the same Journal Process. If journaling is enabled on a group
basis, only members of the same group record transactions on the same
device or file through a single Journal Process.

13-2 Running the VAX-11 DSM Journal Process

13.1.3 Journal Output Files and Journal Records

The Journal Process writes the information it receives from user processes
as journal records in a set of output files. As described in Section 13.3, you
can specify output files when you start the DSM Journal Process, or a DSM
operator can specify them through utilities. The operator can then main
tain some control over these files through utilities while a Journal Process
is running.

Each DSM Journal Process keeps a list of available output file names. The
Journal Process writes journal records to the current output file. It keeps
writing to the current file until one of the following events occurs:

• A pre-defined number of blocks have been written to the file

• An error occurs while writing to the file

• The operator intervenes

When one of these occurs, the Journal Process closes the current file, opens
the next file on the list, and continues writing journal records.

The journal record for a data base transaction contains the following infor
mation about a transaction:

• The full file specification of the global variable

•Th~ assigned value, if SET

• The user's Process ID (PID)

•The user's UIC

• The date and time of the transaction

Whenever the Journal Process uses a new output file, the Journal Process
writes its file specification in a Journal Log file (file type .LOG), which
maintains a list of all files actually used by the Journal Process.

13.1.4 Dejournaling

The opposite of writing journal records about a data base transaction is
restoring the journal records from the journal files. This process is called
dejournaling.

To dejournal, you can use a V AX-11 DSM utility called %DEJRNL. This
utility asks you to specify either of the following:

• The Journal Log file which contains the specifications of the output files
used by the Journal Process

• A list of the journal output files (file type .JRN) from which to restore
your globals

Then, the utility gives you the option of restoring all or specific globals.

Running the V AX-11 DSM Journal Process 13-3

You can also write your own dejournaling utility, using the description of a
journal record given in Appendix C.

13.2 Communication between Journal Process and User Image

Communication between a user running the DSM image and a Journal
Process is accomplished through the use of mailboxes. Each Journal
Process has two mailboxes:

• The Journal Input mailbox (DSM$JOURNAL) - This is where DSM
user images send information· when they SET or KILL a global variable
that is marked for journaling.

•The Operator Request· mailbox (DSM$JOURNAL$COMMAND)
- Accessible to a V AX-11 DSM operator through the DSM utilities on
the "%JOURNAL menu.

Figure 13-1 illustrates the interaction between DSM user images, the DSM
Job Controller, and a Journal Process.

Figure 13-1: ·Journal Process Job Controller/User Image
Interaction

~g: "Journaling enabled" indicator B~~R
CONTROLLER IMAGE

SET
and
KILL
information

SET
and
KILL DSM

OPERATOR
PROCESS

Utility requests DSM
JOURNAL
PROCESS information ---.

names
of

----- Journal
files

MR-S-2363-82

Journaling proceeds according to the following sequence of events:

1. When DSM is invoked in Application Mode, a link is established be
tween the user image and the DSM Job Controller, as described in
Chapter 12.

2. If journaling has been enabled for the system or the group of which the
usefis a member, the DSM Job Controller sends a "journaling enabled"
indicator to the DSM user image.

3. The DSM user image looks for the logical name DSM$JOURNAL. If the
Journal Process was started system-wide, DSM$JOURNAL is a system
logical name. If the Journal Process was started for the current group,
DSM$JOURNAL is a group logical name. This name (if presentf corre
sponds to the input mailbox of a Journal Process started for the user's
group (or for the system). If this logical name is not present, a journal
initialization failure occurs.

13-4 Running the VAX-11 DSM Journal Process

4. When the DSM user image performs a SET or KILL operation on a
marked global, it writes the corresponding information to the mailbox
DSM$JOURNAL.

5. The Journal Process reads this information from the mailbox and
writes it to its current journal output file.

13.3 Defining Journal Output Files

You must give a Journal Process a list of the names of files to which it can
write journal information. You set up this list using multiple /OUTPUT
qualifiers in the Journal Process's start-up option file, described in Section
13.5.2. The DSM operator can then add to and maintain the list through
utilities.

The Journal Process writes journaling information to the current output
file. It switches to another file when:

1. The current file exhausts its specified or predefined allotment of space.

2. The DSM operator closes the current file and opens the next one from
the list of names, or by using the REPLY/ABORT command described
below. ,

When the Journal Process starts writing to a new file, it sends the full file
specification to a Journal Log File.

You set the size of journal output files by specifying the /BLOCK= n
subqualifier with the /OUTPUT qualifier when you start up the Journal
Process, as described in Section 13.5.2.1.

Using multiple output files has several advantages over using one file.
After a Journal Process has filled and closed a file, you can dump the
contents of that file onto another storage device, such as a magnetic tape.
The Journal Process can then reuse the space freed.

13.4 Marking Globals to be Journaled

To indicate which globals in an application should be journaled, use the
VAX-11 DSM utilities SETGLO"%JRNL or "%GBLATR.

Note that if you KILL an entire global marked for journaling, the journal
indicator associated with that global disappears. Thus, if you subsequently
recreate that global, you must remark it for journaling.

You can cause records to be wri_tten to the journal output file without caus
ing an actual global access. You do this by setting a node in the virtual
global "%JOURNAL. When you SET "%JOURNAL, a journal record is writ
ten to the journal output file in the same format as a record Jor a global
transaction. There is no set use for the information that you store in
"%JOURNAL records. You can use these records to place "comments" in the
output file. For example, you can note the beginning and end of a series of
transactions for a particular process. (Note that the Process ID of the pro
cess is recorded in the journal record.)

Running the VAX-11 DSM Journal.Process 13-5

If you wish to make use of the "%JOURNAL records that you have placed in
an output file, you must provide your own dejournaling utility. The dejour
naling utility provided with VAX-11 DSM ("%DEJRNL) ignores records·
created by setting nodes of "%JOURNAL. See Appendix C for the format of
a journal record.

13.5 Starting a Journal Process

The V AX-11 DSM distribution kit includes a command file that starts up a
DSM Journal Process. This command file is called DSMJRNSTA.COM; it
resides in the V AXNMS directory SYS$LIBRARY. It accepts an input
parameter file called DSMJRNPAR.OPT that also resides in
SYS$LIBRARY.

NOTE

If you are going to create more than one Journal Process, you
may want to make copies of DSMJRNSTA.COM and
DSMJRNPAR.OPT with different names. These copies
should retain (respectively) the .COM and .OPT file types,
however.

The DSMJRNSTA.COM file contains the DCL RUN command and a num
ber of qualifiers. The image that is executed by the RUN command is
SYS$SYSTEM:DSMJRN.EXE. Thus the format of the start-up command
file is:

$RUN
/UIC='P2' -
/PROCESS_NAME = DSM_JOURNAL
/OUTPUT=NL:-
/ERROR='P3' -
/PRIVILEGES=(NOSAME, TMPMBX, GRPNAM, SYSNAM)
/INPUT='Pl' -
SYS$SYSTEM:DSMJRN.EXE

The following sections describe the start-up command file and the start-up
option file that is used with it.

13.5.1 The Journal Process Start-up Command File

The RUN command causes VMS to create a Journal Process as a detached
process and to execute an image called DSMJRN.EXE.

The qualifiers associated with the RUN command provide information
about the files that you wish to use and the privileges that you wish to
assign to the Journal Process. The qualifiers can be specified in any order.
Table 13-1 lists the qualifiers associated with the RUN command in the
order used in DSMJRN.EXE.

13-6 Running the VAX-11 DSM Journal Process

Table 13-1: Command Qualifiers in DSMJRNSTA.COM

Component Function

/UIC (P2) Specifies the UIC group and member numbers of a
Journal Process. To interact with this Journal Process at
a later time, the DSM operator must have the same UIC
as the Journal Process. The default value of this qualifier
is your current UIC.

/PROCESS_NAME[=name] Specifies the name of the Journal Process for a particular
DSM image or group. The default name is
DSM_JOURNAL. If you change the name of a Journal
Process, make sure the name you choose is unique within
the group using this Journal Process.

/OUTPUT[= name] Specifies the name of the Journal Process's output file or
device. /OUTPUT assigns an equivalence name for the
logical name SYS$0UTPUT. The Journal Process writes
internal warning, error, and information messages to this
device or file. In addition, the Journal Process duplicates
all messages other than success messages at the device or
file you specify with /ERROR (SYS$ERROR). Therefore,
/OUTPUT should be null (NL:) to ensure a single copy of
messages.

/ERROR (P3)

/PRIVILEGES[= list]

Specifies the file name to which the Journal Process sends
internal warning, error and information messages.
/ERROR assigns an equivalence name for the logical
name SYS$ERROR. The text of messages is stored in the
specified file. If the Journal Process does not issue any
messages, it does not create the file. The default name for
this file is DSMJRN.ERR. The error file is important as a
record of possible problems. This file is created on the de
fault device and directory that are in effect when you start
the Journal Process, unless you specify a device and
directory.

Lists the privileges a Journal Process must have to run.
The privileges are:

• NOSAME, a convention that provides the Journal
Process with only the privileges listed in the command
file.

• TMPMBX allows the Journal Process to create tempo
rary mailboxes.

• GRPNAM allows the Journal Process to create a logical
name for the Journal Input mailbox (DSM$JOURNAL)
on a group basis. This privilege is required if the
/GROUP subqualifier is specified in the Journal Process
option file.

• SYSNAM allows the Journal Process to create a logical
name for the Journal Input mailbox (DSM$JOURNAL)
on a system basis. Any DSM user image in the system
can write to a mailbox with a system logical name. This
privilege is required if the /SYSTEM subqualifier is
specified in the Journal Process option file.

(continued on next page)

Running the VAX-11 DSM Journal Process 13-7

Table 13-l(Cont.): Command Qualifiers in DSMJRNSTA.COM

Component Function

/INPUT (Pl) Directs the DSM Journal Process to examine an option
file. The default name for this option file is
SYS$LIBRARY :DSMJRNPAR.OPT. However, you can
tailor copies of this file to suit your needs, assigning a
different name to each process's copy. different file name
for each process.

As shown in Table 13-1, the command string includes three parameters for
which you can accept the default values or specify your own values. These
parameters are:

• Pl, applied to the /INPUT qualifier, specifies the name of the start-up
option file that the Journal Process uses initially to run. If you do not
specify a name, the Journal Process uses the default file,
SYS$LIBRARY:DSMJRNPAR.OPT, for which a sample file is supplied
with the distribution kit.

• P2, applied to the /UIC qualifier, specifies the UIC of the Journal Process.
If you do not specify this parameter, the Journal Process uses your
current UIC.

• P3, applied to the /ERROR qualifier, specifies the name of an error log file ·
that is created if the Journal Process generates any warning, error, or
information messages. If you do not specify a name, the file is created in
your current directory under the name DSMJRN .ERR.

Note the three parameters in the following example of a command line that
invokes the Journal Process start-up command file:

$ @SYS$L IBRARY: DSMJRNSTA MY JRNPAR. OPT [100 t100 J MY JRN. ERR

In this example, the Journal Process starts up with UIC [100,100] using a
start-up option file called MYJRNPAR.OPT in the current default direc
tory. It then writes messages to a file called MYJRN.ERR that the Journal
Process creates in the default directory.

Note that you can modify your site-independent start-up file so your DSM
Journal Process(es) start automatically when you boot the system. Refer to
the VAX/VMS System Management and Operations Guide for details on
tailoring the site-independent start-up file.

13.5.2 The Journal Process Start-up Option File

The /INPUT qualifier in the DSMJRNSTA.COM file identifies the option
file to be used in starting up the Journal Process. If you do not specify a
name, the Job Controller uses the file SYS$LIBRARY :DSMJRNP AR. OPT.
You can construct your own start-up option file (with the default name or
any name that you choose), or use the sample file supplied with the distri
bution kit.

13-8 Running the VAX-11 DSM Journal Process

The DSMJRMPAR.OPT contains qualifiers and the parameters associated
with them, in the following general format:

/[NO]QUALIFIER/SUBQUALIFIER = [PARAMETER][!COMMENTS]

Table 13-2 shows the qualifier options and their defaults. Table 13-3
describes the qualifiers in detail.

Table 13-2: Qualifiers Used in DSMJRNP AR.OPT

Qualifier Default

/JOURNAL_INPUT [/GROUP] /GROUP
[/SYSTEM]

/COMMAND [!GROUP] /GROUP
[!SYSTEM]

/LOG= file name.LOG DSMJOURNA.LOG

/OPERATOR= [CENTRL] CENTRL
[0PER1...0PER12]

/MAILBOX_SIZE = n 603 bytes

/OUTPUT= name.JRN[IBLOCK = n] n is extended to VAX/VMS limit if not given or 0
[IMESSAGE][/REPL Y ="text"]

Table 13-3: Qualifier Summary

Qualifier Function

/JOURNAL_INPUT Determines whether the Journal Input mailbox is created as a
group or a system mailbox. You can specify a subqualifier with
/JOURNAL_INPUT as follows:

/COMMAND

/LOG

• /GROUP creates a group logical name for the Journal Input
mailbox.

• /SYSTEM creates a system logical name for the Journal Input
mailbox

Determines whether the Operator Request mailbox is created as
a group or a system mailbox. You can specify a subqualifier with
/COMMAND as follows:

• /GROUP creates a group logical name for the Operator
Request mailbox.

• /SYSTEM creates a system logical name for the Operator
Request mailbox

Defines the name of the log file into which the Journal Process
logs the full file specifications of output files used. The default
name is DSMJOURNA.LOG.

(continued on next page)

Running the VAX-11 DSM JournalProcess 13-9

13-10

Table 13-3 (Cont.): Qualifier Summary

Qualifier

/OPERATOR

/MAILBOX_SIZE

/OUTPUT

Function

Indicates to the Jo{irnal Process which terminal to send messages
to if the /MESSAGE qualifier is used. If /OPERATOR is omitted,
the default operator terminal is CENTRL, the VAXNMS opera
tor console. There can be up to 12 other operator terminals, how
ever, each with a specialized purpose, designated OPERl
through OPER12. You can designate any terminal as an
operator terminal by using the DCL command

·$REPLY/ENABLE= (0PER1, ... 0PER12), as described in Section
13.5.2.2.

Determines the size of messages that you can write to the
Journal Input mailbox. The default size is 603 bytes, correspond
ing to the default value of the DSM command qualifier
/KEY_SIZE, which is 64 bytes. You must increase mailbox size if
you increase /KEY_SIZE at DSM image start-up. (See Section
9.7.3.1 for a description of the /KEY_SIZE qualifier.)

Specifies the file name of an output file in which the Journal
Process stores journal transactions. You specify multiple file
names by repeating this qualifier. If you do not specify the file
type, the default is .JRN.

You can also specify subqualifiers with /OUTPUT as follows:

• /BLOCK= n limits the size of the output file to n blocks, as
described in Section 13.5.2.1.

• /MESSAGE= text sends the specified text to the operator, as
described in Section 13.5.2.2.

• /REPLY indicates that the operator must respond to the mes
sage before the Journal Process can use the file. See Section
13.5.2.2 for information on replying to the message.

13.5.2.1 Use of the /BLOCK Subqualifier - The /BLOCK subqualifier of the
/OUTPUT qualifier defines the maximum number of blocks (n) to be writ
ten to an output file. If the subqualifier is omitted or if n = 0 and the file is
not predefined, the size of the file is determined by VAX/VMS limits. If
/BLOCK is omitted or if n = 0 and the file is predefined, the size of the file is
limited to the preallocated space.

When the maximum number of blocks is reached, the Journal Process uses
the next file that you specified with /OUTPUT. If you did not specify more
than one /OUTPUT qualifier, you must add another file with the ADD
JOURNAL FILE NAME and OPEN CURRENT JOURNAL FILE utilities
described in Section 7. 7. The Journal Process delays further execution until
a new output file is available.

The switch from one file to the next or from one output device to the next is
handled internally and (in most cases) transparently. However, if you want
to know when the transfer occurs, you can include The /MESSAGE
subqualifier with /OUTPUT, as described in the following section.

Running the V AX-11 DSM Journal Process

13.5.2.2 Use of the /MESSAGE and /REPL V Subqualifiers - If a Journal
Process's start-up option file contains the /MESSAGE and /REPLY
subqualifiers with the /OUTPUT qualifier, the Journal Process communi
cates with the VAX/VMS operator to issue such messages as "OPENING
NEXT FILE" when the file specified with /OUTPUT is opened. The
/MESSAGE= xxx subqualifier specifies the message {here, xxx) sent to the
terminal. /REPLY indicates that the DSM Journal Process waits for a reply
from the VAX/VMS operator.

You specify the terminal to which the message specified is sent by includ
ing the /OPERATOR= OPERn qualifier in the start-up option file, as de
scribed in Table 13-3. The default terminal (if you do not include
/OPERATOR) is the VAX/VMS console terminal.

You designate a terminal to be a VAX/VMS operator's terminal when you
issue the DCL REPLY/ENABLE=OPERn command at the terminal, with
the value of OPERn equal to the value of OPERn included in the
/OPERATOR qualifier. To reply to a message, you can use any of the fol
lowing forms of the DCL REPLY command:

$ REPLY/TO= id Causes the Journal Process to open the output
file and resume operation.

$REPLY/ABORT= id Causes the Journal Process to switch to the
next output file.

$REPLY/PENDING= id Causes the Journal Process to wait for an ad
ditional reply before it resumes operation.

The argument "id" is the message number of the message from the DSM
Journal Process. If there is only one message requiring a reply, id is 0. For
details about the REPLY command, refer to the VAX/VMS System
Management and Operations Guide.

13.5.3 Journal Process Examples

You can invoke the DSMJRNSTA command file with different sets of
parameters by specifying different start-up option files. For example, you
can set start one Journal Proces~ by issuing the command:

@SYS$LIBRARY:DSMJRNSTA JRNlPAR.OPT [100,100] JRNl.ERR

This command specifies the start-up option file JRNlPAR.OPT, w~ich con
tains the following qualifiers:

/LOG=A.LOG
/OPERATOR=OPERl
/MAILBOX_SIZE = 1024
/OUTPUT= JlA.JRN/BLOCK = 1000
/OUTPUT=JlB.JRN/BLOCK= 1000
/OUTPUT= JlC.JRN/BLOCK = 1000/MESSAGE ="OPENING LAST
FILE"

Running the V AX-11 DSM Journal Process 13-11

You can start another Journal Process (for a different group) by invoking
DSMJRNSTA.COM with different parameters, for example:

@SYS$LIBRARY:DSMJRNSTA JRN2PAR.OPT [120,120] JRN2.ERR

This command specifies the start-up option file JRN2PAR.OPT, which con
tains the following qualifiers:

/INPUT/SYSTEM
/COMMAND/SYSTEM
/LOG=B.LOG
/OPERATOR=CENTRL
/MAILBOX_SIZE = 512
/OUTPUT= J2A.JRN/BLOCK = 1000
/OUTPUT= J2B.JRN/BLOCK = 1000
/OUTPUT= J2C.JRN/BLOCK = 1000/MESSAGE ="OPENING LAST
FILE"

13.6 Utilities that Interact with the Journal Process

13-12

Sections 7.6.1, 7.7.2, 7.7.3, and 7.7.4 describe the VAX-11 DSM utilities
that the DSM operator needs to control the DSM Journal Process. All of
these utilities can be invoked through the "%JOURNAL menu. Table 13-4
lists these sixteen utilities and their entry points.

WARNING

You must have the same UIC as the DSM Journal Process to
use these utilities.

Table 13-4: Journaling Utilities

Utility Entry Point

Add Journal File Name ADDFILA%JRNL

Clear Journaling for Global CLRGLOA%JRNL

Close Current Journal File CLOSEFr%JRNL

Delete Journal File Name DELFIL A%JRNL

Disable Journal Process DISABLEA%JRNL

Enable Journal Process ENABLEA%JRNL

Kill Journal Process KILLA%JRNL

New Log File NEWLOGA%JRNL

Open Current Journal File OPENFILA%JRNL

Pause Journal Process PAUSEA%JRNL

Purge Journal File Names PURGEA%JRNL

Resume Journal Process RESUMEA%JRNL

Set Journaling for Global SETGLOA%JRNL

Running the VAX-11 DSM Journal Process

Table 13-4 (Cont.): Journaling Utilities

Utility Entry Point

Show Journal File Name SHOW"%JRNL

Status of Journal Process STATUS"%JRNL

Test Journaling for Global TSTGL0"%JRNL

Chapter 12 lists the "%0PER utilities that interact with the DSM Job
controller to enable journaling.

13.7 Journaling to Magnetic Tape

If you wish to journal to magnetic tape, the DSM Journal Process must be
started as a batch job, not as a · detached· process. You cannot use
DSMJRNSTA.COM, because it starts the Journal Process as a detached
process.

The following is a sample batch command procedure, MAGJRNSTA.COM,
that can be used to start a Journal Process as a batch job:

$!Batch command procedure to start Journal Process
$SET NOON
$ MOUNT <magtape> <label>
$ RUN SYS$SYSTEM:DSMJRN
/OUTPUT= <magtape> AJRNl.JRN/BLOCK = 1000
/OUTPUT= <magtape> AJRN2.JRN
$ DISMOUNT <magtape>

Before submitting the above procedure as a batch job, you must be logged
into a user account that has the following attributes:

•The privileges required by a DSM Journal Process

• A UIC corresponding to that of the DSM application for which you want
to start the Journal Process

Remember that a batch job goes through a complete VMS log-in procedure,
including the execution· of the log-in command file, before executing the
commands in the batch command file.

The commands in the file shown above have the following functions:

1. The first command, SET NOON, is necessary because the DSM Journal
Process always exits with an error (normally, the status corresponding
to "Terminated by operator"). SET NOON forces the batch command
procedure to execute the last statement, that is, dismount the tape.

2. The second statement mounts the tape on which the Journal Process
will create the journal files AJRNl.JRN and AJRN2.JRN.

Running the VAX-11 DSM Journal Process 13-13

13-14

3. The RUN command runs the journal image within the context of the
current process.

4. The statements that follow RUN are the parameters to the Journal
Process normally included in the Journal Startup Options file. In case
of a batch job, SYS$INPUT is the batch control file. Therefore, the
journal image reads options until it encounters a line starting with a
dollar sign ($).

5. After the Journal image exits (for instance, by operator shutdown) the
next statement, DISMOUNT, is executed to dismount the tape.

You should set up a separate batch queue for the DSM Journal Process. See
the VAX/VMS System Management and Operations Guide for information
of batch queues.

Assuming that you have created a batch queue called DSM$JBATCH, you
can submit the above command procedure by entering the following
statement:

$ SUBMIT MAGJRNST A/QUEUE= DSM$JBAT~H

Running the VAX-11 DSM Journal Process

Appendix A
VAX-11 DSM Error Messages

This appendix describes the error messages generated by VAX-11 DSM. It
does not describe VAXNMS system error messages or VAX-11 RMS error
messages. For a detailed description of these messages, refer to the
VAX/VMS System Messages and Recovery Procedures Manual and the
VAX-11 Record Management Services Reference Manual.

A.1 Error Message Types

V AX-11 DSM error messages fall into two general categories:

1. Those VAX-:-11 DSM reports interactively at the terminal at run-time.

2. Those VAX-11 DSM reports in the Job Controller error log file and the
Journal Process. error log file.

VAX-11 DSM reports the following types of errors at the terminal:

• Compiler/Interpreter errors

• Global handler errors

···110 errors

• Routine manipulation errors

•General information and warnings

VAX.;_11 DSM reports most Job Controller-related and journaling-related
errors in the Job C~mtroller and Journal Process error log files.

A-1

A.2 Error Message Format

V AX-11 DSM reports error messages in the following format:

%DSM-SEVERITY-MESSAGE ID, MESSAGE

SEVERITY. represents the severity level of the error. Errors can have one
of four severity levels, as follows:

WARNING

INFORMATION

ERROR

SEVERE

Errors having warning-level or information-level severity values do not
inhibit the execution of a routine. The severity code for Warning is W; the
severity code for Information is I.

Errors having error-level severity values are fatal to a DSM routine (unless
you set $ZT), that is, they prevent a routine from executing to completion.
Such errors must be corrected for a DSM routine to execute properly. The
severity code for Error is E.

Severe errors are fatal to the DSM image, that is, they cause DSM image
rundown~ The severity code for Severe errors is F.

Unless you run a routine in Application Mode, DSM errors are generally
not severe errors. However, DSM Job Controller and Journal Process
startup errors are always severe errors. DSM command line-related errors
are also severe errors.

A.3 Description of VAX-11 DSM Error Messages

The error messages V AX-11 DSM reports at the terminal are described
below in alphabetical order. Section A.3.1 describes most Job Controller
and Journal Process error messages. Unless otherwise noted, all errors
described this section are of error-level severity.

ALLOC

Indicates a symbol table allocation failure. This error occurs when you try
to set more local variables than you have room to store in the local symbol
table.

ATOM

Indicates a bad expression atom. An expression atom is an element of a
string of characters that yields a value when evaluated. An expression
atom can be a variable, a literal, a function, an expression atom preceded
by a unary operator, or an expression enclosed in parentheses.

A-2 VAX-11 DSM Error Messages

ATLABEL

Indicates the routine line and name of the routine in which the primary
DSM error occurred (Information). ATLABEL always follows the primary
error message in the following format:

-DSM-1-ATLABEL, Routine Line"Routine Name Source Line

BLOC KERR

Indicates an attempt to read a magnetic tape block that is too large for the
input buffer.

BREAK

Indicates that a breakpoint was reached, either through the BREAK com
mand or through a setting of $ZBREAK. (Information)

BUG

Indicates the occurrence of an unexpected internal error, such as a bug in
the system software. If V AX-11 DSM generates a BUG error, consult your
DIGITAL Software Specialist for diagnostic assistance.

CLOSEP

Indicates a missing right parenthesis.

CLOSE RR

Indicates an error closing a device or file.

CODEFULL

Indicates a precompiled routine buffer overflow.

CO MAND

Indicates a bad DSM command was detected. This error can occur if you
enter more than one or two characters of the command name, but less than
the total number of characters in the command name. For example, if you
enter the following, it generates a COMAND error:

>ZLO For ZLOAD (or ZL)

>EL For ELSE (or E)

CO MEND

Indicates bad characters at the end of a statement. For example:

>S A=B+C t1 CTLC

Indicates a (CTRL/c I interrupt was typed on the principal device.

CTRAP

Indicates that a trap character (declared using USE O:CTRAP) has been
entered on the principal device.

VAX-11 DSM Error Messages A-3

CTRAPERR

Indicates an unsuccessful attempt to trap a (CTRL/c) interrupt. This error
generally occurs when you exceed your AST limit.

DEALLOC

Indicates an unexpected memory deallocation failure.

DELETE RR

Indicates an unsuccessful attempt to delete the record specified in the cur
rent 1/0 request. This error occurs after an unsuccessful USE:DELETE
command.

DEVALLOC

Indicates a physical device or file is unavailable for q.se because another
user has allocated it. This error can also occur if a device does not yet exist,
specifically, a mailbox. ·

DEVNOTOPN

Indicates an attempt to use a device (with the USE command) that was not
opened with the OPEN command.

DISCONERR

Indicates an error disconnecting the file on USE:DISCONNECT.

ENDO FILE

Indicates the last record in the file has been retrieved and that no more
records exist.

EQUALS

Indicates the equals sign (=) is missing from the current FOR or SET
statement.

ESC_APPL

Indicates an attempt to use the ZESCAPE command in Programmer Mode.

FIND ERR

Indicates an unsuccessful attempt to find the record specified in the current
1/0 request. This error occurs on unsuccessful USE:KEY and USE:RF A
commands.

FORCEXIT

Indicates forced DSM image rundown by the DSM operator (via DSM Job
Controller utilities).

A-4 VAX-11 DSM Error Messages

FRAME

Indicates an unexpected interpreter frame error. A frame error is an inter
nal system error and indicates a bug in the V AX-11 DSM software. If
V AX-11 DSM still generates a FRAME error after you recompile your
routines with "%REPLACE, consult your DIGITAL Software Specialist for
diagnostic assistance.

FUNC

Indicates faulty use of a function in the DSM language set or that the
function is not defined.

GBLCLOSER

Indicates an unsuccessful attempt to close a global.

GBLDATERR

Indicates an attempt to read a global record in an invalid format; this error
can occur if the key does not end with two zero bytes.

GBLDATOVF

Indicates an attempt to read a global record that exceeds 255 characters in
length. This error can occur if you try to read an improperly formatted
indexed file as a global.

GBLDELERR

Indicates an unsuccessful attempt to delete a global node or an entire
global array (with the KILL command).

GBLOPENER.

Indicates an unsuccessful attempt to open a global file.

GBLREADER

Indicates a read error on the current global access.

GBLWRITERR

Indicates a write error on the current global access.

HALT

Indicates the DSM HALT command was executed. (Information)

ILLBRK

Indicates the use of an illegal command in BREAK mode. Illegal commands
areZINSERT, ZREMOVE, and ZLOAD.

ILLOPT

Indicates an illegal 1/0 option or an 1/0 command syntax error on OPEN,
CLOSE, or USE.

VAX-11 DSM Error Messages A-5

INTVER

Indicates a mismatch between the current version of the V AX-11 DSM
interpreter and the version of the interpreter that generated the precom
piled code you are trying to execute. To generate compatible code, use the
"%REPLACE utility.

INV COL

Indicates that a global variable has been marked with an invalid collating
sequence indicator.

INVMAPHDR

Indicates the file specified as the object of the /MAPPED qualifier has an
invalid format, and thus cannot be mapped as a DSM routine section.
(Severe)

INVSUBSCR

Indicates a null string ("") in the subscript field of a global variable; the
null· string is an invalid global subscript.

JRNLDATOVF

Indicates the journal mailbox is too small to accept journal records with the
keysize of the global being accessed.

JRNLINFAIL

Indicates DSM cannot find the logical name DSM$JOURNAL at startup,
and thus cannot start in Application Mode. This error indicates that though
journaling has been enabled for the current user, but that no Journal
Process has been started for thi~ user's group or for the system. (Severe)

JRNLINSBUF

Indicates the journal mailbox is too small to accept journal records with the
current global keysize. (Severe)

JRNWRITER

Indicates an unsuccessful attempt by a DSM user process to write to the
journal mailbox.

LABEL

Indicates a bad routine line label was detected.

LCKBUFOVF

Indicates the current lock request caused a lock buffer overflow. Generally,
this error occurs when you try to lock (or unlock) too many variables in a
single lock statement (LOCK, ZALLOCATE, ZDEALLOCATE).

A-6 V AX-11 DSM Error Messages

LCKINTFAIL

Indicates an unsuccessful attempt to establish communication with the
DSM Job Controller at DSM image startup. This error can occur if the
logical name DSM$GLOBAL_DIR does not translate properly. (Severe)

LITERAL

Indicates a bad ASCII literal was encountered.

LOCALSS

Indicates the length of a local variable subscript exceeds 59 characters; 59
characters is the maximum permissible length of the local variable
subscript field.

MAP ERR

Indicates an unsuccessful attempt to map a file in virtual memory with the
/MAPPED=file-spec command qualifier. This can happen if the file is in
the wrong format. (Severe)

MBXBUFFUL

Indicates the mailbox output buffer is full, or an attempt to send a message
larger than the mailbox's capacity. After this error occurs, VAX-11 DSM
clears the output buffer.

MJCINTFAIL

Indicates the communication link between the DSM image and the Job
Controller was not established. A secondary DSM error message always
follows MJCINTFAIL to further explain the error, typically, NOLOGINS or
MJCNOTRUN. (Severe)

MJCINVFMT

Indicates the Job Controller cannot read the message sent to it at login by
the DSM user process. (Severe)

MJCNOTRUN

Indicates an attempt to log into the Job Controller before is has been
started. (Severe)

NAKED ERR

Indicates an attempt to reference a global variable using naked syntax
before a full syntax reference to the global or when the naked reference is
undefined, for example, after referencing a root node.

NAKEDOVF

Indicates a global reference exceeds the maximum permissible key size.

VAX-11 DSM Error Messages A-7

NAME

Indicates a bad variable name was encountered, for example, a variable
name that uses graphics characters (such as$ or*).

NEXTERR

Indicates an unsuccessful attempt to request the next volume of a volume
set for magtape 110. This error occurs after an unsuccessful USE:NEXT
command .

. NODUNDEF

Indicates a reference to a global variable node that is not defined.

NOFILMAP

Indicates the absence of a file name in the current mapping request. This
error is fatal to the .mapping operation.

NO LOGINS

Indicates that DSM logins have been disabled for application users (via Job
Controller utilities).

NOPRIV

Indicates insufficient privilege to execute the specified operation.

NOSUCHPGM

Indicates a reference to a routine name that does not exist in the current
routine directory or is not in the library routine directory.

NOTCREATED

Indicates the specified file was not mapped in virtual memory because the
section already exists. (Warning)

NUMBER

Indicates the use of an illegal number, such as MAXINT + 1.

OPENERR

Indicates an error opening a device or file. This error can occur if you try to
open a device to which you have insufficient access privileges or if you
specify an illegal file specification.

PARSERR

Indicates an unsuccessful attempt to construct the file specification for a
file at start-up. This error occurs when VAX-11 DSM cannot apply the
necessary defaults to the file specification for the DSM routine or global
directories. (Severe)

A-8 VAX-11 DSM Error Messages

PATTERN

Indicates an invalid pattern match operator code.

PGMDELERR

Indicates an unsuccessful attempt to delete a routine.

PGMERR

Indicates an unsuccessful attempt to load a routine into your routine buffer.
This error is the same as PGMLOADER. However, VAX-11 DSM returns
this error message in $ZE when error trapping is enabled.

PGMLOADERR

Indicates an unsuccessful attempt to load a routine into your routine buffer.
This error is the same as PGMERR. However, VAX-11 DSM returns this
error when error trapping is disabled.

PGMMAPPED

Indicates that saving the routine (with ZSAVE) did not update the mapped
version of the routine. (Warning)

PGMOPNERR

Indicates an unsuccessful attempt to open a DSM routine directory file.
This error can occur if you try to open a file to which you have insufficient
access privileges or if DSM$ROUTINE_DIR translates to an invalid device
and file specification. -

PGMSAVERR

Indicates an unsuccessful attempt to save a routine (with the ZSA VE com
mand). This error can occur if you have insufficient privilege to perform a
save operation on the specified file. For example, if you try to save a library
utility routine, VAX-11 DSM returns a PGMSAVERR error.

PNAME

Indicates an invalid routine name. For example, a routine name that
includes graphics characters .

.. PROCQUOTA

Indicates that insufficient process quotas (such as FILLM) exist for a global
access. When this occurs, V AX-11 DSM automatically closes globals in the
Open Globals List to compensate. However, if this error occurs repeatedly,
process quotas should be increased.

READE RR

Indicates an error during a read operation.

VAX~ll DSM Error Messages A-9

A-10

RENAMERR

Indicates an unsuccessful attempt to rename a file with the
CLOSE:RENAME command.

SEARCHERR

Indicates an error on the current $ZSEARCH operation.

SPACERR

Indicates an unsuccessful attempt to position a magnetic tape for a Block
I/O operation. This error occurs after an unsuccessful USE:SPACE
command.

SRCFULL

Indicates a source routine.buffer overflow.

STKOVR

Indicates an interpreter stack overflow. This error is generally caused by
faulty programming techniques, such as:

A1F1=1:1 D A1+1
D A1

Or

>S X="X X 11

>X }{

STRLEN

Indicates the string length exceeds 255 characters.

SYNTAX

Indicates a DSM command line syntax error. (Severe)

SYSQUOTA

Indicates that VAX/VMS system quotas, such as the RMS shared file pool,
are low and may be exceeded. When this occurs, VAX-11 DSM automat
ically closes globals in the Open. Globals List to compensate. However,
when this message appears, degradation of system performance is inevita
ble, and VAX-11 DSM should be shut down and system quotas increased.
(Warning)

UNDEF

Indicates a reference to an local variable that does not exist or to a line
label that does not exist.

WRITE RR

Indicates an error in a write operation.

VAX 11 DSM Error Messages

ZCARG

Indicates an error in specifying the $ZCALL function arguments.

ZCERROR

Indicates than an error was returned by $ZCALL.

ZCFATAL

Indicates a V AXNMS error occurred that caused the current $ZCALL
operation to be aborted. VAX-11 DSM reports this error immediately fol
lowing the ZCFATAL message. A ZCFATAL error can also be generated if
a user-written program engages in faulty programming practices, for exam
ple, returning a fatal status in RO.

ZCINPUT

Indicates that the input passed to the $ZCALL function is invalid.

ZCNAME

ZCOUTPUT

Indicates that the output passed from the $ZCALL function is invalid.

ZCPARSE

Indicates that the $ZCALL function name or arguments specified are
invalid.

ZCSIGNAL

Indicates that a condition was signalled by the $ZCALL routine.

ZCTABLE

Indicates an error in the ZCALL Table.

ZCWARN

Indicates that a warning was returned by $ZCALL.

ZGO

Indicates an attempt to use the ZGO command before the BREAK com
mand was executed.

ZJOBERR

Indicates an unsuccessful attempt to create a ZJOB process. This error can
occur if you exceed your process quotas or if you do not have the appropriate
privileges to start a detached process.

ZJOBINTERR

Indicates the ZJOB process generated an error at startup.

VAX-11 DSM Error Messages A-11

ZJOBREPLY

Indicates an unsuccessful attempt by a ZJOB process to send an
acknowledgement message to the creating process.

ZJOBRPYERR

Indicates the ZJOB process generated an error after startup but prior to
executing the specified routine. In other words, an error occurred between
the following two events:

1. ZJOB process initialization

2. The point at which the specified routine is loaded, including the routine
load itself

ZQUIT

Indicates an attempt to use the ZQUIT command outside a declared error
processing routine.

ZTRAP

Indicates that a software trap has been generated by the ZTRAP command.

A.3.1 Job Controller and Journal Process 'Error Messages

The error messages that VAX-11 DSM reports in the Job Controller and
Journal Process error log files are described below in alphabetical order.
VAX-11 DSM reports messages followed by a single asterisk(*) in the Job
Controller error log file and messages followed by a double asterisk (**) in
the Journal Process error log file. Messages followed by a percent sign(%)
can appear in either error log file.

INTOPTION%

Indicates that the DSM Job Controller cannot locate the
DSMMJCPAR.OPT file or the Journal Process cannot locate the
DSMJRNPAR.OPT file. This error generally occurs as a result of an im
proper entry in either the DSMMJCSTA.COM or DSMJRNSTA.COM files
for /INPUT. This error is fatal to both the Job Controller and Journal
Process, that is, it causes process rundown. (Severe)

INVLCKFMT*

Indicates a lock request in the Job Controller mailbox that cannot be pro
cessed because it is in an invalid format.

INVOPRFMT**

Indicates an operator request in the Journal Process mailbox that cannot be
processed because it is in an invalid format.

A-12 V AX-11 DSM Error Messages

INVOPRREQ**

Indicates an invalid operator request, such as an out of range request
number.

JRNCLOERR**

Indicates an unsuccessful attempt to close a journal output file (.JRN).

JRNEXIT**

Indicates Journal Process rundown. (Information)

JRNINIFAIL**

Indicates a Journal Process initialization failure. (Severe)

JRNINVFMT**

Indicates that the Journal Input mailbox contains a journal record in an
invalid format.

JRNLOGCLO**

Indicates an unsuccessful attempt to close a journal log file.

JRNLOGERR**

Indicates a journal log file write error.

JRNLOGOPN**

Indicates an unsuccessful attempt to open a new journal log file.

JRNOPNERR**

Indicates an unsuccessful attempt to open a journal output file (.JRN).

JRNOPRRPY**

Indicates an unsuccessful attempt by the Journal Process to send the DSM
operator a message.

JRNPARSE**

Indicates a formatting error in the DSMJRNPAR.OPT file. This error is
fatal to the Journal Process, that is, it causes process rundown. (Severe)

JRNWRITE**

Indicates an unsuccessful write to the journal output file (.JRN).

MJCEXIT*

Indicates Job Controller process rundown. A secondary DSM error message
always follows MJCEXIT that further explains the error, for example,
OPERSTOP.

VAX-11 DSM Error Messages A-13

A-14

MJCINTPARS*

Indicates a formatting error in the DSMMJCPAR.OPT file. This error gen
erally occurs as the result of a typographical error in the file. The
MJCINTPARS error is fatal to the Job Controller process; it causes process
rundown. (Severe)

MJCLCKRPY*

Indicates an unsuccessful attempt to respond to a DSM user's lock request.

MJCLOGRPY*

Indicates the Job Controller cannot reply to a DSM user at login.

MJCOPRRPY*

Indicates an unsuccessful attempt by the Job Controller to send an operator
reply message to a DSM user.

MSGINVFMT*

Indicates an operator request in the Job Controller mailbox cannot be pro
cessed because it is in an invalid format. This error can occur as the result
of an accidental write to the Job Controller mailbox.

OPRBUFOVF*

Indicates a Job Controller operator reply mailbox overflow. This error
occurs when the length of the message sent by the Job Controller to the
DSM operator exceeds the space remaining in mailbox.

OPREQERR*

Indicates an invalid request by the DSM Job Controller operator.

OPERSTOP*

Indicates the Job Controller has been stopped by the operator via DSM
utility routines. (Information)

RPYMBXERR%

Indicates the DSM user mailbox has insufficient space to receive a message
from either the Job Controller, if a Job Controller-related error, or the
Journal Process, if a journaling-related error.

RPYSENDERR%

Indicates an unsuccessful attempt to send a message to a DSM user mail
box from either the Job Controller or the Journal Process. A secondary
message always follows RPYSENDERR that further explains the error, for
example, RPYMBXSIZ.

VMSOPRERR**

Indicates an unsuccessful attempt by the Journal Process to send a message
to the VAX/VMS operator.

VAX-11 DSM Error Messages

Appendix B
The VAX-11 DSM Editor

The V AX-11 DSM editor consists of seven prompts that are displayed
sequentially. After the editor displays a prompt, you enter the requested
information and the editor performs the specified operation. The following
chart describes each editor prompt in detail. It lists the valid responses to
each prompt and the results of their entry.

PROMPT 1: LINE

Response

Carriage Return

. (period)

; (semicolon)

; followed by any DSM
code

Label or label
+ offset

+ or +N, where N is a
positive integer

Result

The editor interprets a carriage return to mean
that you want to ed~t the last line edited. If this
is the first line request, or the line does not exist
for the label reference, the editor writes "LINE
NOT FOUND" and returns to the LINE prompt.
Otherwise, it proceeds to the prompt 2.

Ends the edit session .

Proceeds to the fourth editor prompt, CHANGE
EVERY.

Temporarily leaves edit mode and executes the
DSM code, then reenters the editor at the LINE
prompt.

Attempts to obtain the $TEXT of the label refer
ence and, if unsuccessful, writes "LINE NOT
FOUND" and returns to the LINE prompt.
Otherwise, it proceeds to prompt 2.

Interprets this entry . as a positive offset from
the last line label entered. Treatment is as de
scribed in response 1: Carriage Return. Note
that a + 0 works exactly like a Carriage Return.

B-1

PROMPT 2: REPLACE

Response

Carriage Return

END

A string containing
either code, a comment,
or string literal

SUBSTRING ...

SUBSTRING 1
... SUBSTRING 2

PROMPT 3: WITH

Response

Carriage Return

A string containing
either code, a comment,
or string literal

B-2 The V AX-11 DSM Editor

Result

Writes the line being edited and returns to
prompt 1.

This entry has two meanings. If the line you are
editing contains the string "END," the editor
proceeds to prompt 3 to replace the occurrence of
"END" with the response to prompt 3. Other
wise, the editor proceeds to prompt 3 to add
something to the end of the line.

If the line contains the specified string, the edi
tor proceeds to prompt 3 to replace it with the
response to prompt 3.

This entry has two meanings. If the line con
tains the string Ii teral "SUBSTRING ... ," the edi
tor proceeds to prompt 3 to replace that string
with the response to prompt 3. If it does not con
tain this string literal, the editor proceeds to
prompt 3 to replace all text from the occurrence
of SUBSTRING to the end of the line with the
response to prompt 3.

If the line contains the string literal
"SUBSTRING l...SUBSTRING 2," the editor
proceeds to prompt 3 to replace the occurrence of
the string with the response to prompt 3. If the
line does not contain the string literal, the edi
tor prints a "LINE NOT FOUND" error and
returns to prompt 2.

Result

Replaces the string specifed in prompt 2 with
nothing; that is, it removes it from the line and
returns to prompt 2.

Replaces the previously specified string from
prompt 2 with this response, and returns to
prompt 2.

PROMPT 4: CHANGE EVERY

Response

Carriage Return

A string you wish to
search for

Result

Returns to prompt 1.

Accepts whatever is typed, (including a ?) as
the string to be searched for

1
, and proceeds to

prompt 5.

PROMPT 5:· FROM LINE

Response

Carriage Return

A line label and
optional offset

PROMPT 6: TO LINE

Response

Carriage Return

A line label and
optional offset

Result

Assumes that you want to start searching from
the the first line in the routine; the editor writes
"FIRST," and then proceeds to prompt 6.

If the line does not exist, the editor writes
"LINE NOT FOUND," and repeats the prompt.
Otherwise, the editor proceeds to prompt 6.

Result

Assumes that you want to search to the last line
in the routine buffer, writes "LAST," and pro
ceeds to prompt 7.

If the line does not exist, the editor writes
"LINE NOT FOUND," and repeats the prompt.
Otherwise, the editor proceeds to prompt 7.

The V A.X-fl DSM Editor B-3

PROMPT 7: CHANGE TO

Response

Carriage Return

' (single quote)

The string you want
to insert

B-4 The VAX-11 DSM Editor

Result

Every occurrence of the "CHANGE EVERY"
string is removed from the ro:utine buffer. Re
sponding to this question begins the search.
Each time the editor finds a line with the
"CHANGE EVERY" string in it, it removes the
string and prints the line in its edited form.
When all lines specified have been searched, the
editor returns to prompt 1.

Leaves all occurrences of the "CHANGE
EVERY" string as they are; that is, the editor
just performs a search. Each line that contains
the. "CHANGE EVERY" string is written out
unchanged. When the editor is finished, it re
turns to prompt 1.

Proceeds with the search. Each time the editor
finds an occurrence of the "CHANGE EVERY"
string, it is changed to the "CHANGE TO"
string and the edited line is written out. Note
that the line is written out only once. Multiple
occurrences of the "CHANGE EVERY" string
are all edited before the line is written out.
Editor returns to prompt 1.

Appendix C
Data Structures and Related Information

C.1 Data Structures

Figure C-1: Global Attribute Record

KEY

O"J""l"OO·····~····O always 127

DATA

s't
0 = negative
1 = positive

COLLATING
SEQUENCE

0 = Journaling
disabled

1 = Journaling
enabled

JOURNAL
FLAG

\

MR-S-2364-82

Figure C-2: Journal Record

Each journal record causes three records to be written to the journal file:

18 10 6

RECORD 1 full file specification of global Time PIO UIC

quadword longword longword

RECORD 2 Key

RECORD 3 '---------0-at_a _______ __,I can be of length O

0 =KILL
1 =SET

MR-S-2365-82

C-1

C.2 Internal Subscript Format for a VAX-11 DSM Global

Each subscript in the node reference for a VAX-11 DSM global is con
structed of a variable-length string of bytes, as follows:

coll. desc. 1st byte 2nd byte last byte null byte

Each key is a concatenation of subscripts, each with a trailing zero byte, as
follows:

The collation descriptor byte, the first byte in the subscript, has a value
that depends upon the type of subscript. These values. are:

0 - reserved
1 - null subscript
2-127 - negative canonic number having 124-0 integer digits
128 - canonic zero
129-253 - positive canonic number having 0-123 integer digits
254 - ASCII string
255 · - reserved

When the subscript is an ASCII string, the bytes of the subscript following
the collation descriptor byte are the bytes of the string.

When the subscript is a positive canonic number, the bytes after the colla
tion descriptor byte are the ASCII values of the digits (including decimal
point, if any) of the number.

When the number is a negative canonic number, the bytes following the
collation descriptor byte are the two's complement of the ASCII values of
the digits (and possible decimal point). In this case, the minus character is
not included, but a byte of value 254 is appended to the end of the subscript.

All types of subscript have a trailing null byte, which acts as a separator
between subscripts. After the last subscript, null bytes are added to fill out
the remainder of the key.

The following examples show how particular global nodes are represented:

"("ABCD")
254 "A" "B" "C" "D" 0 plus extra nulls if any

"(12.5)
131 "l" "2" "." "5" 0 plus extra nulls if any

"(-2.5)
126 '2' '.' '5' 254 0 plus e4tra nulls if any

A number written without quotes is the actual decimal value of the byte.
Double quotes indicate that the value of the byte is the ASCII value of the
quoted character. Single quotes indicate that the yalue of the byte is the
two's complement of the ASCII value of the quoted character. For example,
'2' = 206.

C-2 Data Structures and Related Information

Index

Access,
file, 3-8, 3-9
magnetic tape, 6-30, 6-31

Access privileges, 9-5
Accounts,

deleting, 11-6
setting up, 11-1to11-6

ACP parameters, 11-10
Actions, breakpoint, .5-13
Allocation, initial, 9-13
ALLOCATION parameter, 6-22, 6-35, 6-42
Analyze/RMS_file utility, 9-15
Application Mode, 1-7, 2-6, 4-2, 4-6,

4-7, 4-lff
defaults in, 4-6, 4-7, 4-13
how to invoke, 4-6

Applications,
data base, 9-2
starting, 11-4 to 11-6

Approximate key match, 6-38
Argument list, 8-2 to 8-4, 8-7
Argument passing, 8-3 to 8-5
Array,

global, 1-2, 1-7, 9-1
sparse, 9-1

ASCII collating sequence, 9-10
ASSIGN command, (DCL), 3-9, 5-21, 11-9
Assigning limits, 11-8, 11-9
Assigning privileges, 11-7
Assignment commands,

DSM, 6-2, 6-3
syntax of, 6-3

ASTLM limit, 11-8
Asynchronous write, 6-14
AUTHORIZE utility CV AX/VMS),

11-4 to 11-7
AUTOGEN procedure, 11-18

Auto-Login,
definition of, 2-5, 11-5, 11-6
file (SYSALF.DAT), 11-5, 11-6
invoking terminals tied through, 2-5
setting up, 7-21, 11-8

Automatic extension, 6-4
definition of, 6-23

Backup~ 11-17
Batch job, 13-13, 13-14
BIOLM limit, 11-8
Block,

logical, 6-8
Block I/O, 6-17, 6-19, 6-30 to 6-33
Block size,

logical, 6-8
BLOCKSIZE parameter, 6-8, 6-22, 6-26,

6-31,6-32,6-47
BREAK command, 4-6, 4-7, 4-11, 5-10,

5-12,5-13
Break mode, 5-10
/BREAK qualifier, 4-11
Breakpoint, 4-11, 5-11 to 5-14

actions, 5-13
clearing, 5-14
examining, 5-14
killing, 5-14
setting, 5-12, 5-13

Bucket, 6-20,9-8, 9-11
definition of, 9-8
fill factor, 9-14
size, 9-11, 9-13
split, 9-8

Buffer,
file output, 6-28, 6-44
global, 9-14, 11-13

Index-1

Buffer (Cont.),
precompiled routin~, 1-8, 4-1, 4-16
source routine, 1-2, 1-8, 4-1, 4-16,

5-2 to 5-4, 6-28, 6-29
terminal output, 4-1, 4-17, 6-14, 11-8

· Buffered I/O operations, 11-8
BYTLM limit, 9-16, 11-8

Call stack, 4-17, 4-18, 5-15, 5-17
Callable functions, 7-9 to 7-11
CALLG instruction, 8-2
CALLS instruction, 8-2
CANCTLO parameter, 6-9
Canonic,

numbers, 9-10
subscripts, 9-9

Carriage control, 6-28
CENABLE parameter, 6-9
/CENABLE qualifier, 4-11, 6-14
CLEARSCREEN parameter, 6-9
CLI,2-6,4-5,4-6,5-6,5-10
CLI prompt, 2-5 to 2-7, 3-2, 4-6
CLOSE command, 1-7, 5-3, 6-3, 6-4,

6-12,6-26, 6-27,6-34,6-38,
6-43,6-48

/CLUSTER_SIZE qualifier, 4-11, 11-17
Collating sequence, 6-39, 9-8 to 9-10

ASCII, 6-39, 9-8, 9-10
defaults, 9-10
numeric, 9-6, 9-10

Collation descriptor byte, 9-9
Command Language Interpreter prompt,

2-5 to 2-7, 3-2, 4-6
Command line precompiling, 1-3
Command procedure, 3-2
Command string format, DCL, 3-1, 3-2
Commands,

ASSIGN (DCL), 3-9, 5~21
BREAK, 4-6, 4-7, 4-11, 5-12, 5-13
CLOSE, 1-7, 6-3, 6-4, 6-12, 6-26, 6-27,

6-34,6-38,6-43,6-48
CONTINUE (DCL), 2-6, 4-5, 4-6
COPY (DCL), 8-6
CREATE (DCL), 3-6, 4-12
DEFINE (DCL), 3-10
DIRECTORY (DCL), 3-7
DO, 1-7, 5-2 to 5-4, 5-24 to 5-26, 5-31
DSM, 2-5, 4-1 to 4-3, 5-30, 5-31
Formatted WRITE, 5-3, 6-13, 6-20, 6-28,

6-34,6-40
GOTO, 5-25 to 5-27
GOTO (DCL), 3-2

Index-2

Commands (Cont.),
HALT, 2-6, 4-5, 4-7, 4-12, 5-10, 5-26
HANG, 1-7
INITIALIZE (DCL), 6-30, 9-13, 11-17
KILL, 1-7,5-20,9-2, 13-1, 13-2
LIBRARY (DCL), 8-18
LOCK, 4-5, 4-7, 4-13, 9-11, 12-1 to 12-3
LOGOUT (DCL), 2-7
MOUNT (DCL), 6-30, 6-31
OPEN, 1-7, 5-6, 6-2 to 6-4, 6-8, 6-19,

6-21 to 6-24, 6-29, 6-32, 6-34 to 6-36,
6-38, 6-39, 6-41, 6-42, 6-45 to 6-48

QUIT, 2-6, 4-5, 4-7, 5-25 to 5-27
READ, 1-7, 6-5, 6-12, 6-13, 6-27 to 6-29,

6-34, 6-38, 6-39, 6-41, 6-43 to 6-45,
6-48

READ*, 6-5, 6-13, 6-28, 6-34, 6-44,
6-48

REPLY (DCL), 13-11
SET, 1-7, 5-10, 9-2,

9-7,9-17, 13-1, 13-2
SET NOCONTROL_Y (DCL), 6-15
SET PROTECTION (DCL), 3~8, 9-5
SET RMS_DEFAULT (DCL), 9-17
SET TERMINAL (DCL), 6-17
SHOW PROTECTION (DCL), 3-9
SHOW TERMINAL (DCL), 6-17
STOP (DCL), 7-17, 11-9
USE, 1-7, 5-6, 6-2 to 6-4, 6-8 to 6-12,

6-20, 6-24 to 6-26, 6-33, 6-36 to 6-38,
6-42 to 6-44, 6-48

WRITE, 1-7, 6-5, 6-13, 6-14, 6-28, 6-29,
6-34,6-40,6-41,6-44,6-45,9-2

WRITE *, 6-5, 6-13, 6-14, 6-28, 6-34,
6-40,6-49

XECUTE, 5-2
ZALLOCATE, 4-5, 4-7, 4-13, 9-11,

12-1to12-3
ZDEALLOCATE, 12-1 to 12-3
ZDEBUG, 5-15, 5-16
ZESCAPE, 4-6, 4-7
ZIN SERT
ZJOB, 11-5
ZLOAD, 1-7, 5-4 to 5-7, 6-6, 6-31
ZPRINT, 1-7, 5-2, 5-3, 6-5, 6-28
ZQUIT, 5-25, 5-27
ZREMOVE, 5-1, 5-2, 5-3, 5-6
ZSAVE, 1-7, 5-4, 5-5
ZSTEP, 5-14, 5-15
ZWRITE, 6-5

Common Run-Time Library, 1-4
Computer,

remote, 6-2

Computer network, 5-11, 6-2, 6-50 to 6-52
Computer network 1/0,

resource sharing, 6-50 to 6-52
TASK= notation, 6-51
task-to-task communication, 6-51

Computer network node, 3-2
Concealed devices, 3-9, 3-10
Context,

DSM software, 1-7, 2-6, 4-4, 4-5, 4-6
CONTIGUOUSBESTRY parameter, 6-22,

6-35, 6-42, 9-13
CONTINUE command, (DCL), 2-6, 4-5, 4-6
Continuing execution after breakpoint,

5-14,5-15
Control characters,

definition of, 2-3
DELETE, 6-13
entering, 2-3
(CTRL/CJ,6-13,2-3, 2-4,4-4,4-6,4-11,

5-10, 5-14, 11-14
(CTRL/ I I ' 2-3
(CTRL/ L I, 2-3
(CTRL/0 l, 6-9, 6-13
(CTRL/ Q I , 2-3
(CTRL/R l, 2-3, 6-13
(CTRL/ s I' 2-3
(CTRL/U I, 2-3, 6-13
~TRL/Yl,2-3,2-4,2-6,4-4,

4-6,5-10,6-14,6-15, 11-4
CONVERT parameter, 6-9, 6-24, 6-33,

6-37
Convert utilities, RMS, 9-15, 11-17
COPY command, (DCL), 8-6, 9-3
CREATE command, (DCL), 3-6, 4-10
Create/FDL, 9-15, 11-17
CTRAP parameter, 6-9, 6-10
(CTRL/c I recognition, 6-14, 6-15, 2-3, 4-4, 4-6,

4-7,4-11,5-10,5-14, 11-4
(CTRL/ o 1 recognition, 6-9
(CTRL/Y I recognition, 2-3, 4-4, 4-6, 5-10, 6-14,

6-15, 11-4
Cursor control, 6-15

Data base,
definition of, 1-2
supervisor, 1-7

Data base application, 9-2
$DATA function, 1-7, 9-2, 9-17
Date and time conversion, 7-10, 7-11
DCL, 2-6, 3-1, 3-2

command syntax, 3-1, 3-2

DCL commands,
ASSIGN, 3-8, 5-21
CONTINUE, 2-6, 4-5, 4-6
COPY, 8-5
CREATE, 3-6, 4-12
DEFINE, 3-8
DIRECTORY, 3-6
GOTO, 3-2
INITIALIZE, 6-30
LIBRARY, 8-18
LOGOUT, 2-7
MOUNT, 6-30
ON, 5-19
RENAME, 5-18
REPLY, 13-16
SET FILE, 9-12
SET NOCONTROL_Y, 6-15
SET PROTECTION, 3-8, 9-5
SET RMS_DEFAULT, 9-17
SET TERMINAL, 6-7
SHOW MEMORY, 11-12
SHOW PROTECTION, 3-9
SHOW TERMINAL, 6-10

DCL command parameters, 3-2
DCL command qualifiers, 3-2 .
DCL command string format, 3-1, 3-2
DCL file specifications, 3-2 to 3-4
Debugger, DSM, 5-10 to 5-16, 7-11 to 7-13
Debugger utilities, 7-11 to 7-13
Debugger, VAXNMS Symbolic, 8-19
Debugging a DSM routine, 5-10 to 5-16
Debugging the DSM image, 8-19
DECnet, 6-2, 6-50 to 6-52
Default DSM directory, 4-15
Default VAX/VMS directory, 3-7, 11-2
Deferred-write,

and global optimization, 9-12
DEFINE command, (DCL), 3-8
Dejournaling, 13-3, 13-4
DEL privilege,

RMS, 6-36, 9-5
DELETE parameter, 6-22, 6-26, 6-37, 6-38,

6-42,6-43,6-47
/DELETE qualifier, 4-11, 5-20, 11-15, 11-16
Deleting a routine, 5-5
Deleting DSM library, 11-15
Deleting global sections, 11-14, 11-15
Deleting user accounts, 11-6
Descriptor, passing arguments by, 8-3 to 8-5
Detached process, 1-5, 12-1, 13-1
Device,

controller designation, 3-5

Index-3

Device (Cont.),
file-structured, 6-16, 6-17, 6-30, 6-31
mnemonic, 3-5
null, 11-6, 12-5, 13-7
unit number, 3-3, 3-4

Device recognition, 6-3
Device specifiers, 6-3, 6-4
DIGITAL Command Language, 2-6, 3-1
DIOLM limit, 11-8
Direct mode, 5-1, 5-2
Directory, 3-3, 3-6, 3-7

default, 3-7
definition of, 3-6
DSM global, 4-1, 4-12
DSM library, 4-1
DSM library global, 4-1, 4-12
DSM library routine, 4-15, 5-16 to 5-20
DSM routine, 1-3, 4-1, 4-15, 5-16 to 5-20
file, 3-6, 3-7
levels, 3-6

DIRECTORY command, (DCL), 3-7
DISCONNECT parameter, 6-24, 6-33, 6-37,

6-39,6-43
Disk,

floppy, 10-1 to 10-3
Distribution kit,

V AX-11 DSM, 10-1
DO command, 1-3, 1-7, 5-2 to 5-4,

5-24 to 5-26, 5-31
Do Frame, 5-24 to 5-26
Dollar sign prompt, 3-2
Downscroll parameter, 6-10
DSM,

software installation procedure, 10-2 to
10-7

DSM assignment commands, 6-4
DSM command, 1-6, 2-5, 2-6, 4-1 to 4-3,

4-6, 5-30, 5-31
examples of, 4-18, 4-19
negative qualifiers, 4-3
parameter format, 4-3
qualifier defaults, 4-10
qualifier format, 4-2, 4-3
qualifier summary, 4-8, 4-9
syntax, 4-2

DSM debugger, 5-10 to 5-16
DSM editor, 5-2, B-1 to B-4.
DSM global directory, 4-1, 4-10, 5-20, 5-21

representation of, 5-20
DSM image, 2-5, 2-6, 4-1, 4-6

debugging, 8-19
definition of, 1-6, 1-7
rundown, 1-7, 2-6, 4-5, 4-7, 6-9, 6-12
startup, 1-7, 2-5, 4-2, 12-2

Index-4

DSM interpreter, 1-2, 1-3, 1-6, 2-6, 4-4,
4-5,4-6,4-7,5-26
relinking the, 8-17, 8-18

DSM library global directory, 4-12
DSM library routine directory, 4-15
DSM prompt, 2-6, 4-4
DSM routine directory, 1-3, 4-15, 5-7

file, 5-16 to 5-20
file specification of, 5-16, 5-17
protection and access, 5-18

DSMBUILD.COM file, 8-17 to 8-20
DSMD.EXE file, 8-19
DSM.EXE file, 8-20
DSM$GLOBAL_DIR, 4-12, 5-20, 5-21, 9-3,

9-4, 11-4
DSM$GLOBAL_LIB, 4-12, 5-20, 5-21, 9-3
DSMJRNPAR.OPT file,

description of, 13-8 to 13-11
DSMJRNSTA.COM file, 13-6 to 13-8

contents of, 13-6 to 13-8
format of, 13-6

DSM$LIBRARY, 8-18
DSM$LIBRARY_SEC, 5-28, 5-30
DSMMJCPAR.OPT file, 12-7, 12-8

description of, 12-7, 12-8
format of, 12-7

DSMMJCSTA.COM file, 12-4 to 12-6
DSM$ROUTINE_DIR, 4-15, 5-16,

5-17, 11-4
DSM$ROUTINE_LIB, 4-15, 5-16, 5-17
DSM$ROUTINE_SEC, 5-28, 5-30
DSM$TARGET, 8-18
DSM$ZCALL, 8-18
Dynamic descriptor, 8-13
Dynamic pool,

paged, 11-10

ECHO parameter, 6-10
Edit/FDL, 9-13, 9-15, 11-17
Editor,

DSM, 5-7, 5-8, B-1 to B-4
VAX/VMS, 5-8, 5-9

Enabling debugging, 5-15, 5-16
ENQLM, 11-8
Entry reference, 4-3, 5-12
Equivalence name, 3-9 to 3-12
ERASELINE parameter, 6-10
Error,

application mode, 5-23
DSM command-line, 5-12
fatal, 4-7
Job Controller, 5-23
Journal Process, 5-23
severity, 5-22

Error handler, 5-23 to 5-26
exiting from, 5-25 to 5-27

Error processing, ~6, ~7, 5-22 to 5-27
routines, 5-23 to 5-26
ZCALL, 8-29

/ERROR qualifier, ~12
Escape character, 6-15
ESCAPE parameter, 6-11
Escape sequence processing, 2-2, 6-15
Escape· sequences,

forms of, 6-15
Establishing user accounts, 11-1 to 11-6
Executing a routine, 5-2, 5-9, 5-10,

5-14, 5-15
Extension,

automatic, 6-23, 6-44
EXTENSION parameter, 6-23, 6-35, 6-42 -
$EXTRACT function, 6-25

Fatal error, ~6, ~ 7
Fatal signal, 8-29
FDL attributes, 9-13
FIELD parameter, 6-11
File,

definition of, 3-2
indexed, 1-7, 5-16
ISAM, 5~16, 6-44, 9-1, 9-11
Journal, 1-5
mapped routine, 5-27 to 5-32
sequential, 5-6, 5-7

File access, 3-7
File access methods,

Block I/O, 6-17, 6-19, 6-30
Record I/O, 6-17, 6-30

File extension size, 9-13 ·
File I/O, 6-2, 6-19
File layout, 9-12 to 9-14, 11-17
File organization,

definition of, 6-16
indexed, 6-17, 6-18
relative, 6-17, 6-18
sequential, 6-16, 6-18

File output buffer, 6-28, 6-44
File protection, 3-8, 3-9, 9-5
File sharing, ~5, ~7, 4-43

explicit, ~5, 6-20, 9-6
implicit, ~7, ~16, 10-6 ··

File sharing mask,
how to set, 6-36

File specification, 3-3, 3-4, 9-3 to 9-5
defaults in, 3-4
DSM directory, 5-21
format of, 3-2 to 3-4

File type,
default, 3-4
definition of, 3-3

FILLM limit, 9-16, 11-8
· $FIND function, 9-2
Floppy disk, 10-1 to 10-3
Form control characters, 6-1.3
Formatted WRITE command, 6-13, 6-20,

6-28,6-34,6-40
FORTRAN,

functions, 8-15 to 8-17, 8-29, 8-30
List format, 6-28

Free page list, 5-28
Function keys,

definition of, 2-1
(CTRL/ l, 2-2
®,2-2
®©,2-2,2-4
m,2-2,2-4,2-5
@), 2-2

Functions,
callable, 7-9 to 7-11
$DATA, 1-7, 9-2
$EXTRACT, 6-25
$FIND, 9-2
$H, 1-7
$NEXT, 1-7, 9~17
$TEXT, 5-32, 11-19
$ZCALL, 1-4
$ZDIRECTORY, 1-7
$ZH, 1-7
$ZNEXT, 1-7, 9-17
$ZORDER, 9-17
$ZSORT, 1-7
$ZVERSION, 1-7

GBLPAGES SYSGEN parameter, 11-11,
11-12

GBLPAGFIL, 11-11
GBLSECTIONS SYSGEN parameter, 11-11
GET privilege,

RMS, 6-36, 9-5
Global,

access privileges, 9-5
and indexed files, 9-1, 9-3
data records, 9-8, 9-9
definition of, 9-1
how to create, 9-2
library, 5-20, 9-3
protection, 9-5

Global array, 1-2, 1-7, 9-1
Global buffers, 9-14, 11-13, 11-17
Global directory,

DSM, ~12, 5-20, 5-21

Index-5

Global key, 4-13
Global sections, 1-4, 1-8, 4-13, 4-14,

5-27 to 5-31
default names, 11-14, 11-15
deleting permanent, 11-15
installing permanent, 11-14
listing, 11-16
permanent, 1-4,5-28

Global utilities, 7-5 to 7-7, 7-2.0
Global variable, 1-2, 1-5, 4-5, 4-11,

5-16,5-20
access privileges, 9-5
creating, 9-2
default file type, 5-21, 9-3
definition of, 9-1
deleting, 9-2
examples of, 9-4, 9-5
file specification of, 5-20, 5-21, 9-3 to 9-5
marking for journaling,, 13-4, 13-5
naming conventions, 9-1
record l'ocking, 9-7, 12-2
resultant file specification, 9-4, 9-5
subscript field, 9-2, 9-3, 9-8, 9..;...9
syntax, 9-2

Global virtual memory section, 4-12 to 4-14
/GLOBALS qualifier, 4-12, 5-21
GOTO command, 5-25 to 5-27
GOTO command, (DCL), 3-2
Group, VAXNMS, 1-5, 3-6, 11-2, 11-3

HALT c~mmand, 2-6, 4-5, 4-7, 4-12, 5-lO,
5-26

HANG command, 1-7
"%HELP utility, 2-6, 7-1
$HOROLOG format conversion, 7-10, 7-11

Image,
DSM, 1-5,2-6,4-1,4-6
V AXNMS, 4-5, 4-6

Image rundown,
DSM,2-6,4-6,4-7

Implicit file sharing, 4-7, 4-16
Index,

definition of, 9-7
depth, 9-7, 11-13
primary, 9-7
root, 9-7

Indexed file, 1-7, 4-12, 5-16
creating a, 6-34
defaults, 6-34, 6-35
OPEN command parameters, 6-35, 6-36
record locking, 6-40, 6-41

Index-6

Indexed file I/O,
and RMS, 6-34, 6-35
commands, ().-35 to ,6-40
error reporting, 6-41
reading by alternate key, 6-39

; reading by primary key, 6-37, 6-38
reading by RF A, 6-38, 6-39
reading sequentially, 6-"39
writing procedures, 6-40

INDEXED parameter, 6-3, 6-34, 6-35,
6-38,6-39

Information utilities, 7-13, 7-14
INITIALIZE command, (DCL), 6-30,

9-13, 11-17
/INPUT qualifier, 4-12, 6-15
INPUT line, ZCALL, &-9 to &-11
Inserting line in routine buffer, 5-3
/INSTALL qualifier, 4-12, 5-30, 11-6
INSTALL utility (VAX/VMS), 10-6, 11-16
Installation procedure,

DSM software, 10-2 to 10-7
Interpreter,

DSM, 1-2, 1-3, 1-6, 2-6, 4-4 to 4-7,
5-26,&-17

Interpreter prompt,
DSM, 2-6, 4-4

Interpretive language, 1-2
Interprocess communication, 1-4, 6-46,
110,

card reader, 1-4
commands, 6-5
computer network, 6-50 to 6-52
device, 1-4
file, 1-4, 6-2, 6-3, 6-16 to 6-20
indexed file, 6-34 to 6-41
line printer, 1-4
magnetic tape, 6-29 to 6-34
mailbox, 6-46 to 6-50, 6-52, 10-6
options, 1-3
relative file, 6-41 to 6-45
request, 1-4
sequential file, 5-6, 5..,... 7, 6-21 to 6-34
terminal, 1-4, 6-7 to 6-16, 10-6
$10 special variable, 1-7, 5-22; 6-6
1/0 special variables,

$10, 1-7,5-22,6-6
$X, 6-6, 6-13
$Y, 6-6, 6-13
$ZA,6-6,6-16, 6-29,6-31, 6-41,6-50
$ZB,6-6,6-13,6-16,6-29,6-31,6-41,

6-50
$ZC, 6-6, 6-12
$ZIO, 6-6

ISAM file, 4-12, 5-16, 6-44, 9-1, 9-11

Job Controller, 1-5, 4-5, 4-7, 4-16, 10-5,
12-1to12-9
and journaling, 12-2 to 12-4, 12-8, 12-9
assigning privileges to, 12-6
error file, 12-5, 12-6
functions of, 12-1, 12-2
login-enable modes, 12-3
specifying input devices, 12-5, 12-6
specifying output devices, 12-5, 12-6
starting, 10-5, 12-3
startup option file, 12-7, 12-8
startup parameters, 12-6
utilities, summary of, 12-9

Job Table, 7-17, 12-9
Journal control utilities, 7-15, 7~16
Journal file, 1-5, 7-18, 7-19, 13~3, 13-4
Journal file utilities, 7-18, 7-19
Journal Input mailbox, 13-4, 13-8, 13-9

maximum message size, 13-11
Journal Log file, 7-19, 13-3, 13-9
Journal Process, 1-5, 4-6, 13-1to13-4 _

assigning privileges to, 13-7
error log file, 13-7
running as a batch job, 13-13, 13-14
specifying error message devices~

13-7, 13-8
specifying input files, 13-8
specifying log files, 13-9
specifying output devices, 13-7, 13-8
starting, 13-6
startup command file, 13-6 to 13-8
startup option file, 13-8 to 13-11
startup parameters, 13-7

Journal record,
contents of, 13-3

Journal-enable modes, 12-8, 12-9
changing, 7-15, 12-9

Journaling, 1-5,4-5, 13-1
and the Job Controller, 12.:....2 to·12~, 12-8,

12-9, 13-2
defining users of, 12-8, 13-2
enabling, 13-2
options, 13-1, 13-2
utilities, summary, 12-9, 13-12, 13-13

Journaling-enabled indicator, 12~3,
12-4, 12-8

Key,
alternate, 6-18
attributes, 5-19
definition of, 6-18, ~9-6
global, 4-11
primary; 6-18, 6-38, 6-40, 6-46,

9-7 to 9-11

Key match,
approximate, 6-38

KEY parameter, 6-37 to 6-40, 6-43, 6-44
/KEY_SIZE qualifier, 4-13, 9-9, 9-12,

9-16, 13-10
Keyboard, terminal, 2-2
Keysize,

calculation formula, 9-14
default, 5-19

KEYSIZE parameter, 6-35, 6-37, 6-40, 9-12
KILL command, 1-7, 5-20, 9-2, 9-5,

13-1, 13-2
Known image, 10-5

attributes of, 10-5
executing, 11-4
reinstalling DSM as, 8-20

Label,
DCL command string, 3-2
DSM command parameter, 4-3, 5-2

Language,
interpretive, 1-2

Library,
object, 8-18

LIBRARY command, (DCL), 8-18
Library directory,

DSM, 4-12
Library global, 5-20, 9-3, 9-5, 9-6
Library global directory,

DSM, 4-1
Limits,

and subprocesses, 11-9
ASTLM, 11-8
BIOLM, 11-8
BYTLM, 11-8
DIOLM, 11-8
ENQLM, 11-8
FILLM, 9-16, 11-8
PRCLM, 11-9
SHRFILLM, 11"-9
WSDEFAULT, 11-9
WSEXTENT, 11-9
WSQUOTA, 11-9

Listing routines, 5-3
LNK$LIBRARY, 8-18
Loading a routine, 5-4 to 5-7, 5-9, 5-10
Local symbol table, 1-2, 1-8, 4-17
Local variable, 1-2, 4-17
LOCK command, 4-5, 4-7, 4-16, 9-11,

12-1to12-3
LOCK Table, 7-17, 12-9
Logging into VAX/VMS, 2-4, 2-5
Logging out of V AXNMS, 2-7

Index-7

Logical names,
assigning, 3-9
equivalence names, 3-9 to 3-12
process-permanent, 3-11, 4-10, 4-11, 4-13
system-permanent, 3-12
tables, 3-10, 11-2
translation, 3-9 to 3-12, 6-2, 6-47, 9-5
used for job control, 12-3
used for journaling, 13-4
used with $ZCALL, 8-17, 8-18
user mode, 4-10, 4-13

Logical record, 6-17 to 6-19
Login,

command file; 11-2
control functions, 7-16
definition of, 2-4
how to, 2-4, 2-5

LOGIN mailbox, 12-3, 12-6
Login-enabled indicator, 12-3, 12-4, 12-8
LOGIN/LOCK REPLY mailbox, 12-3
LOGINOUT- utility (VAX/VMS), 11-5, 11-6
LOGOUT command, (DCL), 2-7
Logout procedure, VAX/VMS, 2-7

Magnetic tape,
file structured, 6-30, 6-31
initializing, 6-30
journaling to, 13-13, 13-14
labels, 6-29
mounting, 6-30, 6-31
non-file structured, 6-31
operations, 6-30
volume set, 6-30, 6-34

Magnetic tape 110,
access modes, 6-30, 6-31
and RMS, 6-36
commands, 6-31 to 6-34
creating files, 6-30, 6-31
error reporting, 6-31
on file structured tapes, 6-30, 6-31
on non-file structured tapes, 6-31
positioning tapes, 6-30
rewinding tapes, 6-32
setting blocksize, 6-31

Mailbox, 6-46
creating, 6-46
maximum message number, 6-49
maximum message size, 6-47, 6-48
message buffer, 6-49
names, 6-47
privileges needed to access, 6-46
privileges needed to create, 6-46
protection, 3-7, 6-48
types of, 6-46

Index-8

Mailbox 1/0,
commands, 6-46 to 6-49
error reporting, 6-50
timeout, 6-49

MAILBOX parameter, 6-3, 6-46, 6-48
/MAPPED qualifier, 4-13, 4-14, 5-30, 5-31,

11-14 to 11-16
Mapped routine,

facility, 5-27 to 5-32
optimization, 5-32, 11-18

Mapped routine file, 5-29 to 5-31
Mapped routines,

installing as permanent sections,
11-14, 11-15

naming, 4-15
running, 5-31, 5-32

Mapped utilities, 7-7, 7-9
MAXBUF SYSGEN parameter, 4-17, 6-14,
Member number, 3-6, 11-2
Menu, utility, 7-3, 7-22
Messages,

suppressing, 11-5, 11-6
MONITOR utility (VAX/VMS), 11-18, 11-19
MOUNT command, (DCL), 6-30, 6-31

/FOREIGN qualifier, 6-31
Multi-buffer count, 4-14, 9-12, 9-17,

11-10, 11-13
defaults, 9-17
definition of, 9-17
setting, 9-17

Nested DO statements, 5-24 to 5-27
Network,

5-11, 6-50 to 6-52
accessing DSM globals, 6-51, 6-52
ending communications, 6-51
reading files across, 6-50, 6-51
task-to-task communication, 6-51
using mailboxes across, 6-52
writing files across, 6-50, 6-51

Network node,
3-2,6-5Q

Networking, 6-50 to 6-52
NEW VERSION parameter, 5-3, 6-23, 6-32,

6-34,6-42,6-48
$NEXT function, 1-7, 9-17
NEXT parameter, 6-33
NIL privilege,

RMS, 6-36
/NOBREAK qualifier, 4-11
NOCENABLE parameter, 6-9
/NOCENABLE =BREAK qualifier, 4-11
NOCONVERT parameter, 6-9, 6-24, 6-39,

6-48

Node,
in file specifications, 3-2, 3-3

NOECHO parameter, 6-10
NOESCAPE parameter, 6-11
NOFORMAT mode, 6-13
/NOMAPPED qualifier, 4-13
Non-canonic numbers, 9-10
Non-paged pool, 10-6
/NOOPTIMIZE_BUFFER_COUNT qualifier,

4-14
NOSAME, 13-9

definition of, 12-7
/NOSEQUENTIAL_OPTIMIZATION

qualifier, 4-16
NOSEQUENTIAL parameter, 6-22
/NOSHARED qualifier, 4-5, 4-7, 4-16
NOSHARED parameter, 6-20, 6-24, 6-36,

6-45
/NOUNWIND_STACK qualifier, 4-18,

5-25, 5-27
NPAGEDYN SYSGEN parameter, 11-10
Null device, 11-6, 12-5, 13-7
NULL record, 6-40
Numeric collating sequence, 9-10
Numerical conversion functions, 7-10

Object library, 8-18, 10-3
Object modules, 8-18
Offset parameter, DSM command, 4-3
ON command, (DCL), 5-19
OPEN command, 1-7, 5-3, 6-2 to 6-4, 6-8,

6-19, 6-21 to 6-24, 6-29, 6-32, 6-34 to
6-36, 6-38, 6-39,6-41, 6-42,

6-45 to 6-48
Open Globals List, 9-16, 11-13, 11-18
/OPEN_GLOBALS qualifier, 4-14, 9-16,

11-13, 11-18
Operator,

DSM, 12-1, 12-3, 12-9, 13-1
utilities, 7-20, 7-21

Operator (VAX/VMS),
sending messages to, 13-11

Operator Request mailbox,
Job Controller, 12-3, 12-6
Journal Process, 13-4, 13-9

/OPTIMIZE_BUFFER_COUNT
qualifier, 4-14, 9-17

$ORDER, 9-17
Output buffer,

file, 6-28, 6-44
terminal, 4-1, 4-14, 6-8, 6-14

Output device~
principal, 4-1, 4-15, 6-5

OUTPUT line, ZCALL, 8-11, 8-12
/OUTPUT qualifier, 4-12, 6-5

Page count,
estimating maximum, 11-12 to 11-14

Page fault, 5-28, 11-10
Page file, 5-28, 11-9
Paged dynamic pool, 11-10
PAGEDYN SYSGEN parameter, 11-10
Paging, 5-28,9-14, 11-10
Password, 2-4, 2-5, 11-2
Permanent global section, 1-4, 5-29
PFCLUST SYSGEN parameter, 4-11
PGFLQUOTA, 11-9
Physical record, 6-19
Physical write, 6-13
PRCLM limit, 11-9
Precompiled format, 1-3, 5-5

description of, 1-3
Precompiled routine, 5-27
Precompiled routine buffer, 4-1, 4-14
Precompiler,

1-3
Primary index, 9-6
Primary key, 5-19, 6-18, 6-38, 6-40, 6-41,

9-9 to 9-11
and global subscripts, 9-9
default size, 6-45

Principal device, 4-14, 6-5
Principal input device, 4-1, 6-5
Principal 1/0 Device, 5-6, 5-12, 6-15, 12-4

device specifiers meaning, 6-4
Principal output device, 4-1, 4-15, 6-5
Private virtual memory section, 1-4, 4-14
Privileges, VAX/VMS, 4-13, 11-3, 11-7,

12-6, 13-7, 13-13
assigning, 11-7
RMS, 6-36

Procedure,
calling, 8-1
definition of, 1-4, 8-1

Procedure argument passing,
by descriptor, 8-3 to 8-5
by reference, 8-3 to 8-5
by value, 8-3 to 8-5
data types, 8-5

Procedure Calling Standard, 8-2, 8-3,
Procedure Entry, ZCALL, 8-6 to 8-14
Processor access mode, 3-10, 3-11

supervisor mode, 3-11
user ,mode, 3-11

Process-permanent logical name, 3-11, 4-10,
4-11, 4-13

Index-9

Programmer Mode, 1-7, 2-6, 4-2, 4-4 to 4-6,
5-2,5-22
defaults in, 4-4 to 4-6
how to invoke, 4-4

Prologue 3 structure, 9-9, 9-11, 9'."""14, 9-16
Prompt,

DCL, 2-5, 3-2
DSM, 2-6, 4-4

Protection,
file, 3-6

PROTECTION parameter, 6-23, 6-26, 6-:-35,
6-38

PUT privilege,
RMS, 6-36, 9-5

QIO function, 6-13
Qualifiers (DSM command), 4-2, 4-3,

4-8 to 4-10
/BREAK, 4-11
/CENABLE, 4-11, 6-10
/CLUSTER_SIZE, 4-11, 11-17
/DELETE, 4-11, 5-20, 11-7
/ERROR, 4-12
/GLOBALS, 4-12, 5-11
/INPUT, 4-12, 6-5
/INSTALL, 4-12, 5-30, 10-6, 11-16
/KEY_SIZE, 4-13, 9-9, 9-12, 9-16, 13-10
/MAPPED, 4-13, 5-30, 5-31,

11-14 to 11-16
/NOSHARED, 4-5, 4-7, 4-13, 4-16, 5-30,

5-31,6-20
/OPEN_GLOBALS, 4-14, 9-16,

11-13, 11-18
/OPTIMIZE_BUFFER_COUNT, 4-14,

9-17
/OUTPUT, 4-12, 6-5
/ROUTINES, 4-13, 5-17
/SECTION_NAME, 4-15
/SEQUENTIAL_OPTIMIZATION, 4-16,

9-17, 9-18
/SHARED, 4-5, 4-7, 4-13, 4-16, 5-30,

5-31,6-20, 11-6, 11-7
/SOURCE_BUFFER_SIZE, 4-16
/STACK_SIZE, 4-17
/SYMBOL_TABLE_SIZE, 4-17
/TERMINAL_BUFFER_SIZE, 4-17,

6-8
/TYPEAHEAD, 4-17
/UNWIND_STACK, 4-18

Queue 1/0 Service, 1-4, 1-7, 6-1, 6-7,
6-13, 6-14, 11-19

QUEUE parameter, 6-27
QUIT command, 2-6, 4-5, 4-7, 5-10,

5-25 to 5-27

Index-10

RAT= CR option,
RMS, 6-28

READ * command, 6-5,. 6-6, 6-13, 6-28,
6-34,6-44, 6-48

READ command, 1-7, 6-5, 6-12, 6-13, 6-27
to 6-29, 6-34, 6-38, 6-39, 6-41,

6-43 to 6-45, 6-48
READONLY parameter, 6-19, 6-23, 6-32,

6-36,6-42
Recompiling stored routines, 8-20
Record,

logical, 6-17 to 6-19
physical, 6-19

Record access,
random, 6-18
sequential, 6-17

Record File Address, 6-18, 6-25, 6-39
definition of, 6-18

Record locking,
definition of, 6-40
global variable, 9-7, 12-2
indexed file, 6-40, 6-41
relative file, 6-45

Reference, passing argument by, 8-3 to 8-5
Relative file,

how to create, 6-41, 6-42
OPEN command· parameters, 6-42
performing record 1/0 on, 6-42, 6-44
record locking, 6-45

Relative file 1/0,
commands, 6-42 to 6-45
error reporting, 6-45
reading sequentially, 6-44
writing randomly, 6-44
writing sequentially, 6-45

RELATIVE parameter, 6-41, 6-42
Relative Record Number, 6-18, 6-44
definition of, 6-18
Relinking procedure, 8-17, 8-18
Remote system, 6-50 to 6-52
Remote terminal, 2-7
RENAME parameter, 6-38
Renaming a routine, 5-5
Renaming a routine directory, 5-18
REPLY command, (DCL), 13-11
Resource sharing, 6-2, 6-50 to 6-52
RETURN line, ZCALL, 8-8
REWIND parameter, 6-32
RFA,4-16,6-25,6-39,9-18

definition of, 6-18
random access by, 6-25
sequential access by, 9-18

RFA parameter, 6-24, 6-38
RMS, 1-7, 5-19, 5-20, 9-1 to 9-4, 9-7,

9-10, 9-11

RMS (Cont.),
attributes, 5-19, 9-10, 9-11
definition of, 1-4
DEL privilege, 6-36, 9-5
file types, 6-2, 6-16, 6-17
GET privilege, 6-36, 9-4, 9-5
maximum record size, 5-17
MSE privilege, 6-36
multi-buffer count, 4-14, 9-12, 9-17,

11-10, 11-13
NIL privilege, 6-36
Prologue 3 structure, 9-9, 9-11, 9-14, 9-16
PUT privilege, 6-36, 9-5
UPD privilege, 6-36, 9-4, 9-5
utilities, 9-14, 9-15

RMSSHARE utility, 10-6, 10-7,
11-13, 11-14
privilege needed to run, 10-7

Routine,
maximum size, 5-17, 5-18
precompiled, 5-5, 5-32

Routine buffer,
precompiled, 1-8, 4-1, 4-16
source, 1-2, 1-8, 4-1, 4-16, 5-2 to 5-4,

5-9 to 5-10, 6-28, 6-29
Routine directory,

DSM, 1-3, 4-1, 4-15, 5-3 to 5-5
5-9, 5-16 to 5-20

Routine line, 1-3, 5-2
ROUTINE line, ZCALL, 8-6, 8-7
Routine name parameter, DSM command,

4-3
Routine utilities, 7-7 to 7-9
Routines,

creating, 5-2 to 5-4
deleting, 5-5
editing, 5-7 to 5-9
entering lines, 5-2
executing, 5-4, 5-9, 5-10, 5-14, 5-15
loading, 5-4 to 5-7, 5-9, 5-10
precompiled, 5-6
recompiling, 8-20
renaming, 5-5
running mapped, 5-31, 5-32
saving, 5-4, 5-6,5-7
size of, 5-17, 5-18
starting, 5-4, 5-9, 5-10
stopping, 5-10
syntax verification, 7-13

/ROUTINES qualifier, 4-15, 5-17
ROUTINES.DSM file, 5-17
Run-Time Library routines, 8-21 to 8-27

Saving routines, 5-4, 5-6, 5-7
/SECTION_NAME qualifier, 4-15
Sequential file, 5-6, 5--7

how to create, 6-21
Sequential file 1/0, 5-6, 5-7
commands, 6-21 to 6-34
enabling block 110, 6-22
error reporting, 6-29
exit options, 6-26, 6-27
setting protection, 6-23
/SEQUENTIAL_OPTIMIZATION qualifier,

4-16,9-17, 9-18
SET command, 1-7, 5-10, 9-2, 9-7, 9-17
SET NOCONTROL_Y command, (DCL),

6-15
SET PROTECTION command, (DCL),

3-7, 9-5
SET RMS_DEFAULT command, (DCL),

9-17
SET TERMINAL command qualifiers, 6-7
SET TERMINAL command, (DCL), 6-7
Severe errors, 5-22, 5-23
Shared access to globals, 9-6
Shared fi~e option, 4-1, 6-20, 10-6, 10-7

installing, 10-6, 10-7
Shared memory, 1-4
SHARED parameter, 6-20, 6-36, 6-42
Shared pool space, 10-6
/SHARED qualifier, 4-5, 4-7, 4-13, 4-16,

5-30,5-31,6-20,9-6, 11-6, 11-7
SHOWMEMORY command, 11-12, 11-18
SHOW PROTECTION command, (DCL), 3-7
SHOW TERMINAL command, (DCL), 6-7
SHRFILLM limit, 11-9
Shutting down DSM, 7-17
Single-step mode, 5-10
/SOURCE_BUFFER_SIZE qualifier,

4-16,5-19
Source code, 1-2, 1-3, 5-4, 5-5, 5-32
Source routine buffer, 1-2, 4-1, 4-16, 5-2,

5-3,5-4,6-28,6-29
SPACE parameter, 6-24, 6-33
Sparse array, 9-1
Special variables,

$IO, 1-7, 5-22 to 5-24, 6-6
$TEST, 6-5
$X, 1-7,6-6,6-7,6-13
$Y, 1-7, 6-6, 6-13
$ZA, 1-7, 5-12, 6-6, 6-29, 6-31, 6-41,

6-50
$ZB, 1-7,5-12,6-6,6-16,6-19,6-29,

6-31, 6-41, 6-50

Index-11

Special variables (Cont.),
$ZC, 6-6, 6-14
$ZERROR, 5-24, 5-25
$ZIO, 1-7, 6-6
$ZTRAP, 5-23 to 5-26

SPOOL parameter, 6-26, 6-27
Stack, 1-8

call,4-17,4-18,5-15, 5-17
"%STACK utility, 5-16, 7-11, 7-12
/STACK_SIZE qualifier, 4-17
Starting a routine, 5-4, 5-9, 5-10
Statistics utilities, 7-14
$STATUS system variable, 5-26, 5-27
STOP command, (DCL), 7-17, 11-9
Stopping a routine, 5-10
Subdirectory, 3-6, 3-7
SUBMIT parameter, 6-26, 6-27
Subprocess,

maximum number of, 11-9
Subqualifier, 4-10, 4-12, 4-13

definition of, 4-2
Subroutine, 5-23 to 5-27
Subscript field, 4-11, 9-8, 9-9

default size, 9-8
Suppressing messages, 11-5, 11-6
Swapping, 10-6
Symbol table,

how to write, 6-5
local, 1-2, 1-8, 4-17

/SYMBOL_ TABLE_SIZE qualifier, 4-17
Symbol, VAX/VMS, 8-20
Syntax verification, 7-13
SYSALF.DAT file, 11-5, 11-6
SYS$BATCH, 6-27
SYS$DISK, 6-52, 10-2
SYS$ERROR, 3-9, 4-12, 12-6, 13-8
SYSGEN parameters, 11-9 to 11-12

GBLPAGES, 11-11, 11-12
GBLPAGFIL, 11-11
GBLSECTIONS, 11-11
IRPCOUNTV, 11-12, 11-18
LOCKIDTBL, 11-10
LRPCOUNTV, 11-12
MAXBUF, 4-17, 6-14
NPAGEVIR, 11-12, 11-18
PAGEDYN, 11-10
PFCLUST, 4-11
REHASHTBL, 11-11
SPPCOUNTV, 11-12, 11-18
SYSMWCNT, 11-12
WSMAX,11-10

SYS$INPUT, 3-11, 4-12, 6-5, 6-6
SYS$LIBRARY, 3-12, 5-20, 10-3

Index-12

SYSMWCNT SYSGEN parameter, 11-10,
11-18

SYS$0UTPUT, 3-11, 4-15, 6-5, 12-6, 13-8
SYS$PRINT, 6-27
SYS$SYSTEM, 3-12, 8-20, 10-4
System,

remote, 6-50 to 6-52
System manager, VAX/VMS, 2-4, 3-6, 6-8,

9-2, 12-6, 13-4
SYSTEM parameter, 6-48
System services, 1-4, 4-12, 8-21 to 8-24
System variable,

$STATUS, 5-26, 5-27
System-permanent logical name, 3-12

Tabulation, 6-13
TASK= notation, 6-51
Task-to-task communication, 6-2, 6-51
Terminal,

keyboard, 2-2
remote, 2-7

/TERMINAL_BUFFER_SIZE qualifier,
4-17, 6-8
NOWRAP, 6-11

Terminal I/O,
commands, 6-8 to 6-14
error reporting, 6-16
setting right margin, 6-11

Terminal output buffer, 4-1, 4-17,
6-14, 11-8

TERMINATOR parameter, 6-11
$TEST special variable, 6-3
$TEXT function, 5-32, 11-19
Timeout, 6-13, 6-28,

6-39,6-44,6-49
"%TRACE utility, 5-16, 7-12, 7-13
Turnkey accounts, 11-4, 11-5
Typeahead,

purging,4-17,6-14
/TYPEAHEAD qualifier, 4-17

UIC,3-6,3-8,9-5, 11-2, 11-3, 13-3
UIC parameter, 6-24, 6-35, 6-42
Unit numb.er, 12-3, 12-4
Unsolicited input,

definition of, 11-8
/UNWIND_STACK qualifier, 4-18,

5-25,5-27
UPD privilege,

RMS, 9-5
UPSCROLL parameter, 6-11

USE command, 1-7, 5-3, 6-2 to 6-4,
6-8 to 6-12, 6-20, 6-24 to 6-26, 6-33,

6-36 to 6-38, 6-42 to 6-44, 6-48
User accounts,

guidelines for establishing, 11-1 to 11-9
User Authorization File, 6-10, 11-7
User category, V AXNMS, 3-6, 9-4
u ser field in global specification, 9-2
User identification,

default device, 11-2
default directory, 11-2
password, 2-4, ~5, 11-2
UIC,3-6,3-8,9-5, 11-2, 11-3, 13-3
user name, 11-1

User modes,
VAX-11 DSM, 2-6, 4-2, 4-4 to 4-7

User name, 2-4, 11-1, 11-2
User-defined functions,

definition of, 8-13
calling FORTRAN, 8-15 to 8-17
calling MACRO, 8-13 to 8-15
examples of, 8-29, 8-30
passing output strings, 8-13 to 8-15
passing quadwords, 8-5

Utility package, 1-6, 7-1
creating a, 7-22

Utility routine,
conventions, 7-3, 7-4
library, 1-6, 7-4 to 7-14
running, 7-3
system, 1-6, 7-12 to 7-21

Value, passing arguments by, 8-3 to 8-5
Variable,

Definition of, 1-2
global, 1-2, 1-5, 4-16, 5-20, 11-18
local, 1-2, 4-17, 11-19

VAX-11 DSM user modes, 2-6, 4-2,
4-4 to 4-7

VAX-11 FORTRAN functions, 8-15 to 8-17,
8-29, 8-30

V AX-11 MACRO functions, 8-13 to 8-15,
8-29,8-30

VAX-11 RMS, 5-19, 5-20, 9-1to9-4, 9-7,
9-10,9-11,9-14,9-15

VAX-11 procedure calling standard, 8-2, 8-3
VAX/VMS command level, 2-6, 2-7, 4-5,

6-30, 6-31, 10-4
V AXNMS directories, 3-3, 3-6, 3-7
VAX/VMS editors, 5-3
V AXNMS file specification, 3-2 to 3-5
VAX/VMS image, 4-5, 4-6
Version number, DCL file, 3-3, 3-4, 9-3, 9-4

-. VIR files, 5-30
Virtual address space, 1-4, 1-6, 1-7, 4-13,

4-14,5-27
Virtual memory, 1-4, 5-27 to 5-31, 6-46

paging, 5-27
Virtual memory section, 1-4, 4-1, 4-13

creating, 5-29 to 5-31,
default names, 5-28, 5-29
global, 4-13, 4-14, 5-27 to 5-29, 11-2
mapping a, 5-29 to 5-32
private, 1-4, 4-14, 5-29
privileges needed to create, 5-29
types of, 5-28

VMSUPDATE program, 10-2
Volume, magnetic tape, 6-30

WAIT parameter, 6-48
WIDTH parameter, 6-11
Working set,

quota, 11-9
size, 11-9

Write,
asynchronous, 6-14
physical, 6-13

WRITE * command, 6-5, 6-13, 6-14, 6-28,
6-34,6-40, 6-49

WRITE command, 1-7, 6-5, 6-13, 6-14,
6-28,6-29, 6-34, 6-40, 6-41, 6-44,

6-45,9-2
Formatted, 5-3, 6-13, 6-20, 6-28, 6-34,

•6-40
WSDEFAULT limit, 11-9
WSMAX SYSGEN parameter, 11-10, 11-19
WSQUOTA limit, 11-9

X parameter, 6-12
$X special variable, 1-7, 6-6, 6-12
XECUTE command, 11-19

Y parameter, 6-12
$Y special variable, 1-7, 6-6, 6-12

$ZA special variable, 1-7, 5:--12, 6-6, 6-16,
6-29, 6-31, 6-41, 6-50

ZALLOCATE command, 4-5, 4-7, 4-16
9-11, 12-1 to 12-3

$ZB special variable, 1-7, 5-12, 6-6, 6-13,
6-16,6-29, 6-31, 6-41, 6-50

$ZBREAK special variable, 5-12 to 5-14
$ZC special variable, 6-6, 6-12

Index-13

ZCALL error processing, 8-29
$ZCALL function, 1-4

format of, 8-5
ZCALL module, 8-4
ZCALL Table, 8-6 to 8-13

binary, 8-13
description of, 8-6, 8-7
entry format, 8-6
multiple, 8-12
procedure entry, 8-6 to 8--13

ZCALLT.MAR file, 8-6, 8-12
ZCEXAMPLE.MAR file, 8-12
ZCEXAMPLE.OLB file, 8-12
ZDEALLOCATE command, 12-1 to 12-3
$ZDIRECTORY function, 1-7
$ZERROR special variable, 5-24, 5-25, 8-29
ZESCAPE command, 4-6, 4-7

Index-14

ZGO command, 5-11, 5-14
ZINSERT command,
$ZIO special variable, 1-7, 6-6
ZJOB command, 11-9, 12-2
ZJOB process, 12-2
ZLOAD command, 1-7, 5-4 to 5-7, 6-5,

6-29
$ZNEXT function, 1-7, 9-17
$ZORDER function, 9-17
ZPRINT command, 1-7, 5-2, 5-6, 6-5, 6-28
ZQUIT command, 5-25 to 5-27
ZREMOVE command, 5cl to 5-3, 5-5
ZSAVE command, 1-7, 5-4, 5-5.
$ZSORT function, 1-7
ZSTEP command, 5-ll, 5-14, 5-15
$ZTRAP special variable, 5-23 to 5-26, 8-29
ZWRITE command, 6-5

READER'S COMMENTS

VAX-11 DSM
User's Guide

AA-H8008-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPA) service, submit your com
ments on an SPA form.

Did you find this manual understandable, usable, and well.;,organized? Please make sugges-
tions for imp'rovement. ~

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other(p~asespectty)~~~~~~~~~~~~~~~~~~~-

Name----------------~ Date __________ _

Organization Telephone---------

Street-----------------------------~
City __________________ State ___ Zip Code __ _

or Country

-~-.- -DDomNotDTear t- Fmo~ Htt le and Tape -f ~ -111--------~~~~;:;~~ ---

- if Mailed in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

- - :- Do Not Tear - Fold Here and Tape

I
I
I
I
I
I

