
SOFTWARE HANDBOOK

I.

SOFTWARE HANDBOOK

Copyright© 1982 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in­
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip­
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be con~trued as acornmitment by Digital Equipment
Corporation. Digital EquipmentCorporation assumes no responsi­
bility for any errors that may appear ih this manual.

DEC, DECnet, DECsystem:-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, lAS, MASSBUS, OMNIBUS

PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of

Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing Group

using an in-house text-processing system.

TABLE OF CONTENTS

PREFACE .. IX

PART I
INTRODUCTION

CHAPTER 1 INTRODUCTION TO THE VAX SOFTWARE 1
SYSTEM INTRODUCTION 1
USER PROCESS .. 2
VIRTUAL MEMORY AND MEMORY MANAGEMENT 3
SWAPPING AND SCHEDULING 5
SYSTEM PROCESSES AND SYSTEM SERVICES 6
INTERPROCESS COMMUNICATION AND SYNCHRONIZATION 8
INPUT/OUTPUT .. 8
REAL-TIME ENVIRONMENT 10
110 DRIVERS .. 10
COMMUNICATIONS SERVICES 11
PROGRAMMING LANGUAGES 12
PROGRAM DEVELOPMENT TOOLS 13
DATA AND FILE MANAGEMENT UTILITIES 17
SYSTEM MANAGEMENT UTILITIES 19

CHAPTER 2 THE SYSTEM USER 22
INTRODUCTION .. 23
SYSTEM ACCESS , ... ,., .. , ,.,.,23
FILES, . , .. , ... , , , , . , .. , , ... , , 27
LOGICAL NAMES , , 31
PROGRAM DEVELOPMENT 33

PART II
PROGRAM DEVELOPMENT

CHAPTER 3 DIGITAL COMMAND LANGUAGE40
INTRODUCTION TO DCL 41
COMMAND FORMAT41
CONVENTIONS FOR LANGUAGE-NAME COMMANDS 44
COMMAND PROCEDURES45
TERMINAL FUNCTION KEYS 46
COMMANDS .. 47

CHAPTER 4 PROGRAMMING SUPPORTFACILITIES 82
INTRODUCTION .. 83
DEC STANDARD EDITOR (EDT) 83
INTERACTIVE TEXT EDITOR (SOS) 91
BATCH-ORIENTED TEXT EDITOR (SLP) 96
LINKER .. 100
VAX DEBUG .. 105
VAX RUN-TIME LIBRARY 114
VAX SORT/MERGE .. 119
DOCUMENT FORMATTING FACILITY (DSR). " : 123
OPTIONAL CODE MANAGEMENT SYSTEM 129

CHAPTER 5 PROGRAMMING LANGUAGES 132
INTRODUCTION .. 133
VAX COMMON LANGUAGE ENVIRONMENT 133
VAX-11 BASIC .. 135
VAX-11 COBOL .. 152
VAX-11 FORTRAN .. 164
VAX-11 PASCAL .. 173
VAX-11 PL/I' 176
VAX-11 C ... , 178
VAX-1 t BLlSS-32 .. 183
VAX-11 BLlSS-16 .. 194
VAX-11 CORAL 66 .. 197
VAX-11 DSM .. 199
VAX-11 MACRO ... ; .. 203
PDP-11 FORTRAN IV/VAX TO RSX 206
MACRO-11 .. 207

CHAPTER 6 INFORMATION MANAGEMENT 210
INTRODUCTION .. 211
STRUCTURE OF THE VAX INFORMATION ARCHITECTURE 211
VAX-11 DATATRIEVE : 216
VAX-11 FMS .. 223
THE VAX-11 COMMON DATA DICTIONARy 227
VAX-11 RMS .. 229
VAX-11 DBMS .. 229

CHAPTER 7 DATA COMMUNICATIONS 238
INTRODUCTION ' 239
DIGITAL NETWORK ARCHITECTURE 242
DECNET COMMUNICATIONS SOFTWARE ; ..•..... 243
DECNET-VAX PHASE III SOFTWARE 244

ii

DIGITAL COMMAND LANGUAGE FILE HANDLING 250
RECORD MANAGEMENT SERVICES FILE HANDLING 252
SAMPLES OF INTERTASK COMMUNiCATION 255
TASK MESSAGES .. 260
PROGRAMMING PROCEDURES 261
INTERNET PRODUCTS 264
PACKETNET PRODUCTS 268

PART III
VAX/VMS SYSTEM DESIGN AND APPLICATION

CHAPTER 8 VIRTUAL MEMORY AND MEMORY
MANAGEMENT 274

INTRODUCTION .. 275
VIRTUAL MEMORy .. 275
PROCESS .. 280
PROCESS CONTROL STRUCTURES 282
IMAGE: .. 284
PAGING .. 286
SHARING PAGES BETWEEN PROCESSES 290
SWAPPING .. 292
PAGING IN SYSTEM SPACE 293

CHAPTER 9 PROCESS SCHEDULING AND SWAPPING 294
INTRODUCTION .. 295
SCHEDULING .. 296
SWAPPING .. 304

CHAPTER 10 SPECIAL EVENT HANDLING 310
INTRODUCTION .. 311
CONDITION HANDLERS 311
FATAL ERRORS AND SYSTEM CRASHES 313
EXIT HANDLERS .. 315
ASYNCHRONOUS SYSTEM TRAPS ~16

CHAPTER 11 SYSTEM SERVICES 322
INTRODUCTION .. 323
EVENT-FLAG SERVICES 324
ASYNCHRONOUS SYSTEM TRAP SERVICES 328
LOGICAL NAME SERViCES 332
INPUT/OUTPUT SERVICES 335
PROCESS CONTROL SERVICES ~ 342

iii

TIMER AND TIME CONVERSION SERViCES 348
CONDITION HANDLING SERViCES 352
MEMORY MANAGEMENT SERViCES 353
CHANGE MODE SERVICES 356
LOCK MANAGEMENT SERVICES 356

CHAPTER 12 INPUT/OUTPUT SERVICES 358
INTRODUCTION .. 359
PROGRAMMING INTERFACES 361
ANCILLARY CONTROL PROCESSES 362
DEVICE DRIVERS .. 362
1/0 REQUEST PROCESSiNG 362
QUEUE 1/0 .. 364

·1/0 COMPLETION .. 365
RECORD MANAGEMENT SERViCES 366
RMS FILE ORGANIZATION 366
RMS RECORD ACCESS MODES 370
FILE AND RECORD ATTRIBUTES 373
RMS UTI LlTI ES .. 381
USING VAX-11 RMS .. 383

CHAPTER 13 I/O DRIVERS 388
INTRODUCTION .. 389
DEVICE DRIVER ELEMENTS 390
FORK PROCESSES .. 393
GENERAL DEVICE ACTIVITY 395
A SAMPLE LINEPRINTER QIO REQUEST 399

CHAPTER 14 INTERPROCESS COMMUNiCATION 416
INTRODUCTION .. 417
COMMON EVENT FLAGS 417
MAILBOXES .. 418
DECNET .. 419
GLOBAL SECTIONS .. 419
LOCK MANAGEMENT SERVICES 421
SHARED DISK FILES .. 423

CHAPTER 15 PDP-11 COMPATIBILITY 424
OVERVIEW .. , 425
IMPLEMENTATION CONSiDERATIONS427

iv

PART IV
SITE CONSIDERATIONS

CHAPTER 16 THE SYSTEM MANAGER434
INTRODUCTION .. 435
GETTING THE SYSTEM UP 435
USER ENVIRONMENT TEST PACKAGE 436
A SYSTEM OF ACCOUNTS 437
MANAGING PUBLIC FILES AND VOLUMES441
CONTROLLING SYSTEM PERFORMANCE443
MONITORING SYSTEM ACTIVITY445
RECOGNIZING AND DEALING WITH ERRORS448

CHAPTER 17 ATTACHED PROCESSOR SUPPORT450
INTRODUCTION .. 451
SOFTWARE .. 452
PROGRAMMING CONSIDERATIONS455
SYSTEM MANAGEMENT456

APPENDIX A COMMONLY USED MNEMONICS459
GLOSSARY OF SOFTWARE TERMS463
INDEX 505

v

vi

PREFACE

At DIGITAL we recognize that when you buy our computers you are
making an investment in the future. So we design our computer sys­
tems to meet your needs today while anticipating tomorrow. Our sys­
tems are designed to let your applications grow with you. After all, that
is what investments are all about. At DIGITAL, we are committed to
making our computers the best investment around. VAX epitomizes
that commitment.

You will encounter the term "VAX architecture" in this handbook. To
really appreciate what a good investment VAX systems and software
are, you need to know something about the architecture - what it is
and why it is so important. *

The VAX architecture defines how a VAX processor will behave in
relation to software. It is the standard to which all of the VAX proces­
sors must conform. It means that all of· the software described in this
handbook will run on any member of the VAX family of processors,
from the new VAX-111730 to the VAX-11 /782 attached processor sys­
tem. It also means that all of the software you .have developed to run
on one kind of VAX will run on any other kind of VAX. Since any future
VAX system will conform to this same architecture, your investment in
software engineering is protected with VAX.

The demands of software were central to the design of the
architecture. In fact, the VAX architecture and the VAX/VMS operating
system were conceived and designed together. We made sure that the
VAX architecture enhanced the efficacy of the VAX/VMS operating
system, and that the operating system takes advantage of the VAX
processors. So; every VAX processor offers 32-bit 'virtual addressing,
a sophisticated memory management and protection mechanism, and
hardware assisted process scheduling and synchronization; all of
which is ,exploited fully by VAX/VMS. In this way, VAX can provide a
multi-user system for large and complex applications, and it can com­
pile and run huge programs (up to four gigabytes) concurrently. This
sort of capability used to be the exclusive domain of large and expen­
sive mainframes. It means the application investment you make in
VAXtoday has plenty of room to grow tomorrow.

The VAX architecture was also designed to enhance program per­
formance. For example, all of the VAX language processors take ad­
vantage of the powerful variable-length instruction set and numerous
datatypes. The result is compilers that generate compact and efficient
code, and do it very quickly-so that your applications running sooner
and performing better.

vii

But of course there is more than the VAX architecture going for your
investment; there is the software itself. This handbook describes the
extraordinary capabilities we have engineered into ()ur software. The
VAX/VMS operating system is easy to use, so it is easy to learn; and it
comes with a compliment of very powerful tools to assist and
streamline program development. The VAX language processors lead
the industry in performance and features, and programs written in one
language can call procedures written in any other language. The VAX
information management software provides an unprecedented, com­
plete system for managing your data. The networking options will al­
low your application to spread and take just about any shape you
need. In all, its an impressive offering, as you will see.

One final note. When we designed the VAX architecture and VAX/VMS
software, we were not only committed to the future, we were recogniz­
ing our commitments'to the thousands of customers who have invest­
ed-and are still investing-in our PDP-11 computers; so we'designed
PDP-1l compatibility into VAX. Your investment in PDP-11 is
protected because VAX gives it room to grow. Even if youdorl't own a
PDP-11, its nice to know that when you invest in one of our computers,
we stand behind your investment.

viii

PART I

INTRODUCTION

CHAPTER OVERVIEW
This chapter offers a survey of the VAX software, including its services,
controls, and capabilities. Brief descriptions in each section give quick
insight into VAX/VMS-specific aspects. All topics are expanded in
greater detail in later chapters.

Topics include:

• System Introduction
• Management of Virtual and Physical Memory

• Definition of a Process

• Scheduling and Swapping
• System Services, 110 Control, and I/O Devices

• Interprocess Communication

• Communications and Internets

• Realtime Capabilities

• Languages and Language Processors

• Data Management Facilities

CHAPTER 1

INTRODUCTION TO VAX SOFTWARE

SYSTEM INTRODUCTION
VAX is a family of high-'performance multiprograming computer sys­
tems which combine a 32-bit architecture, efficient memory manage­
ment, and a virtual memory operating system to provide essentially
unlimited program address space.

The architecture's variable length instruction set and variety of data
types, including decimal and character string, provide high bit effi­
ciency. The instruction set specifically implements many high-level
language constructs and operati'ng system functions.

Each member of the VAX family is a multiuser system for both pro­
gram development and application system execution. Each is a
priority-scheduled, event-driven system: the assigned priority and ac­
tivities of the processes in the system determine the level of service
they need. Realtime jobs receive service according to their priority and
ability to execute, while the system manages allocation of CPU time
and memory residency for normal executing processes ..

VAX systems are highly reliable. Built-in protection mechanisms in
both the hardware and software ensure data integrity and· system
availability. On-line diagnostics and error detecting and logging verify
system integrity. Many hardware and software features provide rapid
diagnosis and automatic recovery should the power, hardware, or
software fail.

The systems are both flexible and extendable. The virtual memory
operating system enables the programmer to write large programs
that can execute in both small and large memory configurations with­
out requiring the programmer to define overlays or later. modify the
program to take advantage of additional memory. The DIGITAL Com­
mand Language enables users to modify or extend their command
repertoire easily, and allows applications to present thek own com­
mand interface to users.

To understand how the. operating system functions, as described in
this Handbook, a few definitions of some basic terms will be valuable.
The user must first understand the concepts of program image and
process, and know the difference between them. Please note that
nearly all of the concepts and features introduced in this chapterl'!'are
examined in greater detail in subsequent sections or chapters.

Introduction to VAX Software

USER PROCESS
A program image is an executable program, created by translating
source language modules into object modules, and linking the object
modules together. An image is normally stored in a file on disk. When
a user runs an image, the operating system reads from a copy of the
image file into physical memory to execute it.

A procedure is a description of the logic to be performed to solve a
problem; that is, it is a static definition of an algorithm. An image
consists of procedures and data that have been bound together by the
linker. Linking refers to the resolution of cross linkages among mod­
ules and the assignment of virtual address space.

The environment in which an image executes is its context. The
complete context of an image includes not only the state of its execu­
tion at anyone time (known as its hardware context), but also the
definition of its resource allocation privileges and quotas, such as
device ownerShip, file access, and maximum physical memory alloca­
tion. Certain s()ftware information, including some key addresses and
some software data structures to be described later, comprise the
software context. An image context and. the image executing in the
context are called a process.

Working Set
When a process executes, only a subset of its pages need be in physi­
cal memory. (A page contains 512 bytes, which is also the size of a
physical page of memory and a disk block.) This subset of pages is
referred to as the process's working set. The remaining pages of the
process reside on secondary storage. Before a process is allowed to
compete for central processor resources, its working set must reside
in memory.

Balance Set
The set of processes that reside in physical memory is termed the
balance set. This set of processes has memory requirements that
balance with the available memory of the system. At any time during
the execution of a process, its entire working set can be written to
secondary st()rage, thereby freeing physical memory for another use.
Thisis called swapping.

Software Process Control
The VAX/VMS operating system provides each process with software
definitions used to control the process; and its working set. The oper­
ating system provides two key data structures to define a process, the
software process control block (PCB) and the process header.
Through process identification, the system also provides each proc­
ess with a unique identifier.

2

Introduction to VAX Software

VIRTUAL MEMORY "
Th'e VAX/VMS virtual address space consists of 232 bytes, divided into
system and process address spaces, each of which has 231 bytes. The
VAX/VMS system distinguishes between the physical memoryre­
quired by a process and the virtual address space that the process
defines. A process's virtual address space is the range of memory
locations that the process can address.

Process virtual address space is divided into a program region and
control region. The program region contains the image currently being
executed. The control region contains information maintained on be­
half of the process by the system, and it contains the user stack and
the kernel, executive, and supervisor mode stacks. Only a small por­
tion of the control region is reserved for context maintained by the
system; theremainder is available to the user.

A process's virtual memory is subdivided into pages. System and user
virtual space are described in a data structure called the system page
table (SPT), which contains one page table entry (PTE)for each page
of system virtual memory. When a virtual page IS in memory, the page
table entry contains the page frame number needed to map the virtual
page to a phYSical page. When it is not in memory, the page table entry
contains the information needed to locate the page on secondary or
disk storage.

A process's virtua,1 address space is described in two page tables: the
PO page table for the program region and the P1 page table for the
control region. Process page tables reside in system virtual memory.
They are virtually contiguous, but not necessarily physically
contiguous, nor necessarily in memory. The system page table resides
in system virtual memory, but is physically based and physically con­
tiguous.

The hardware system base register (SBR) and system length register
(SLR) provide the physical address and the length in longwords of the
system page table. Given the contents of SBR and SLR, it is possible
to locate all other system virtual pages. From the process page tables
contained in system virtual space, it is possible to locate all process
virtual pages.

MEMORY MANAGEMENT
Memory management code maintains a database (the page frame
number database) describing the status of all physical pages of mem­
ory and the status and location of all virtual pages of processes in the
system. For example, a physical page could be part of aworking set,
or it could be available on the free page list for a process virtual page
to be loaded into it.

3

Introduction to VAX Software

Memory management uses page tables as the database to contain the
status and location of virtual pages of processes. Each page of a
process has a page table entry in the appropriate process page table
to describe that page and its location. For example, a virtual page of a
process could be in its image file, in its working set, in an in-memory
cache, or on the modified page list.

Image Activator and Pager
Memory management is divided into two logically separate functions
to control the pages of a process: .

• Imageactivation

• Paging

The image activator is responsible for making an image capable of
running in the context of the requesting process. The image activator
locates the file containing the image and sets up the page table entries
for it.

As page faults occur for pages in the process, the pager receives the
faults, obtains a physical page, and brings the virtual page into the
working set-If the limit on the number of pages in the process's work­
ing set has been reached, the pager selects a page to be removed
from the working set. The pager selects the page to be deleted using
information in the working set list portion of the process header.

Global Sections
Memory management uses widely available image sections, called
global sections, to provide a mechanism for sharing code and data. A
global section can be either of the following:

• A shareable image file produced by the linker and identified to the
system by the system manager

• The result of a process's issuing a Create and Map Section system
service

Global sections made from shareable images are permanent; they
remain known to the system until explicitly deleted by the system
manager. Global sections made as the result of a Create and Map
Section system service are temporary or permanent; the system de­
letes temporary global sections automatically when no processes are
using them.

Global sections are defined by a database that is similar in structure to
that used to describe processes. Global sections consist of a number
of pages. A page of a global section can be mapped into one or more
process working sets. The one copy is shared among many
processes. Both read-only and read/write global sections can be de­
fined.

4

Introduction to VAX Software

WORKING SET SWAPPER.
The working set swapper is a small process that moves process work­
ing sets into and out of the balance set. The main function of the
working set swapper is to provide memory residency for the highest
priority executable processes so that they can be scheduled for exe­
cution.

Working set swapping occurs in two phases:·

• The outswapping of nonexecutable or low priority processes from
the balance set to free memory for inswap candidates

• Inswapping of processes from the executable nonresident state to
the executable resident state

The working set swapper also performs initial process creation. Be­
cause process creation is accomplished using a shell (prototype)
process that is swapped into memory, process creation requires little
additional effort by the swapper. The shell process establishes the
initial context and virtual memory of a new process.

PROCESS SCHEDULING
The VAX/VMS operating system defines 32 levels of software priority
for scheduling processes. The lower 16 priorities (0 through 15) are
reserved for normal processes, while the higher 16.priorities(16
through 31) are reserved for realtime processes. The highest priority
executable resident process is always selected for execution. Realtime
process priorities are established by the user and are not altered by
the system. Normal process priorities are altered by the system to
optimize responsiveness.

The process scheduler makes scheduling decisions by:

• Maintaining a queue for each state that a process can attain

• Reacting to system events

System events are occurrences that cause the status of one or more
processes in th~ system.to change. The scheduler reflects the change
by removing the process's software Process Control Block (PCB) from
one state queue and queuing it to the appropriate one.

SYSTEM PROCESSES
All VAX/VMS system functions are implemented as processes or as
procedures that are called by user processes or by many system
processes. A system process can be one of three types:

• Full process
• Small process

• Fork process

5

Introduction to VAX Software

Full processes are user processes.

Small processes have no program region in their virtual· address
space and have an abbreviated context. They are scheduled in the
same manner as full processes but must remain resident. For exam.;.
pie, the working set swapper is a small process.

Fork processes have minimal context; they are defined by an abbrevi­
ated control block called a fork block. Fork processes execute at
software interrupt levels and are dispatched for execution immediate­
ly. Fork processes execute until they are preempted by higher priority
forks or they terminate. Device driver routines are examples of fork
processes.

SYSTEM SERVICES
System services are. procedures in the executive that can be called by
user processes to provide controlled sharing of system resources:
Because the system performs a service on behalf of the user, func­
tions that require access to privileged databases are controlled.

Requests for system services are honored only if the requesting proc­
ess has sufficient privilege and if protection is not violated.

Event Flag Services
Event-related system services are those services that allow a process
or a group of cooperating processes to read, wait for, and manipulate
event flags. The software Process Control Block (PCB) of each proc­
ess contains two clusters of 32 event flags each that are local to the
process. In addition, groups of cooperating processes can create and
associate with two additional event flag clusters. These clusters are
common to all associated processes with the same group number.

Lock Management Services
The lock management services provide a mechanism for synchroniz­
ing access to a common resource by cooperating processes, There
are six choices of lock mode, each providing a different level of
sharing. Resources are defined by a tree-structured nametable. The
depth of hierarchy employed in the nametable determines the degree
of granularity in defining and controlling access to the resource.

ASYf;1chronous System Trap (AST) Services
Process execution can be interrupted by events (such asJlO comple­
tion) for the execution of designated subroutines. These software in­
terrupts are called asynchronous system traps (ASTs) because they
occur asynchronously to process execution~ System services are pro­
vided so that a process can control the handling of ASTs.

Introduction to VAX Software

Logical Name Services
Logical name services provide a generalized technique for maintain­
ing and accessing character string logical name and equivalence
name pairs. Logical names can provide device-independence for sys­
tem and application program input and output operations. Logical
name re-assignment is also the most convenient and flexible facility
for moving an application from a single-CPU system to a multiple-CPU
system.

I/O System Services
liD services perform input and output operations directly, rather than
through the file handling provided by the VAXIVMS Record Manage­
ment Services (RMS). liD services:

• perform physical, logical, and virtual input loutput operations

• Format output lines converting binary numeric values to ASCII
strings and substituting variable data in ASCII strings

• Perform network operations

• Queue messages to system processes
• Create mailboxes, which are virtual devices for interprocess com-

munication.

Process Control Services
Process control system services allow the user to create, delete, and
control the execution of processes.

Timer and Time Conversion Services
Timer services schedule program events for a particular time of day,
or after a specified interval of time has elapsed. The time conversion
services provide a way to set, obtain, and format binary time values for
use with the timer services.

Condition Handling Services
Condition handlers are procedures that can be designated to receive
control when a hardware or software condition occurs during image
execution. Condition handling services designate condition handlers
for special purposes.

Memory Management Services
Memory management system services allow a process to control its
use of virtual and physical memory. Included are services that:

• Allow an image to increase or decrease the amount of virtual memo­
ryavailable

• Control the paging and swapping of virtual memory
• Create and access memory files that contain shareable code and

data

7

Introduction to VAX Software

Change Mode Services
Change mode services alter the access mode of a process to a more
privileged mode to execute particular routines. Use of these services
requires privilege.

INTERPROCESS COMMUNICATION AND SYNCHRONIZATION
The VAX/VMS operating system provides a variety of methods for
processes to communicate with each other and synchronize their exe­
cution. The method selected for interprocess communication is affect­
ed by a number of variables, including: the level of explicit cooperation
between the processes, the efficiency of communication, and the
flexibility in a network environment.

Interprocess communication can be achieved using the following
methodss:

1. Implicit communication using a shared database. This method is
most efficient but requires explicit cooperation of the processes

2. Generalized communication using mailboxes or DECnet. Mail­
boxes are virtual devices to which processes can send and from
which a process can read messages. DECnet can be employed for
interprocess communication in a single node or multinode envi­
ronment. These methods, however, incur the greatest overhead.

3. Shared files

One method of interprocess synchronization is achieved using com­
mon event flag clusters. Each cluster contains 32 event flags. A proc­
ess can wait for another process in the same group to set an event
flag, thus indicating that the latter process had performed a function
for which the former was waiting. A process can associate with up to
two common event flag clusters.

Another method of synchronization is the use of the lock management
sevices. Cooperating processes can synchronize access to a resource
by queuing lock requests. There are six lock modes, each providing a
different level of access-sharing.

VAXNMS INPUT/OUTPUT
The I/O . processing system consists of several interdependent
components that enable programmers to choose the appropriate pro­
gramming interface and processing method. The I/O request process­
ing software takes advantage of the hardware's ability to overlap I/O
transfers with computation, switch contexts rapidly, and generate in­
terrupts on multiple priority levels to ensure the maximum possible
data throughput and interrupt response.

8

Introduction to VAX Software

I/O Interfaces
The I/O programming interfaces are: the record management services
(RMS)-for general-purpose file and record processing-and the 110
system services-for direct I/O processing. RMS procedures can be
invoked by a user program through high-level language statements
such as OPEN, CLOSE, GET, and PUT, or, in VAX-11 MACRO assem­
bler, by a CALL statement. The I/O system services are invoked using
a CALL statement.

RMS procedures provide device-independent, file-structured access
to all 110 peripherals, whether local or remote in a network. The most
general purpose access enables programs to process logical records,
where RMS automatically provides logical record blocking and
unblocking. RMS users may also perform their own record blocking
on file-structured volumes such as disk and magnetic tape, either to
control buffer allocation or optimize special record processing.

The 110 system services provide both device-independent and device.:.
dependent programming. Users perform their own record blocking on
file-structured and non-file-structured devices. Both virtual block and
logical block addressing are possible on file-structured volumes,
though the latter requires either privilege or own~rship of a private
volume. In addition, users with sufficient privilege can perform direct
I/O operations· using logical block addressing for defining their own
file structures and accessing methods on disk and magnetic tape de­
vices.

Both RMS and the I/O system services use the same I/O control
processes, called ancillary control processes (ACPs), for processing
file-structur~d I/O requests. An ACP provides file structuring and vol­
ume access control for a particular type of device. There are three
kinds of ACPs provided in the system: disk, magnetic tape, and net­
work communications link.

I/O RequestProcessing
All I/O requests are generated by a Oueue I/O (010) Request system
service. If a program calls RMS procedures, RMS in turn calls the 010
system service on the program's behalf. Oueue I/O Request process­
ing is extremely rapid because the system can:

• Optimize device unit use by minimizing the code that must be exe-
cuted to initiate requests and post request completion

• Optimize disk controller use by overlapping seeks with 110 transfers

The processor's many interrupt priority levels increase interrupt
response because they enable the software to have the minimum am­
ount of code executing at high priority levels by using low priority

9

Introduction to VAX Software

levels for code handling request verification and completion notifica­
tion.

VAXNMS REALTIME ENVIRONMENT
The V AX hardware and VAX/VMS software have been developed
together to insure a superior realtime multitasking computational sys­
tem. If realtime tasks are to be performed, the following inherent sys­
tem attributes of the VAX system establish it as an extremely powerful
system for the most demanding realtime applications:

• Highly efficient process scheduler providing 16 realtime process
priorities

• Rapid process context switching
• Rapid hardware processing of interrupts

• Interrupts vectored to VAX/VMS device drivers

• VAX/VMS operating system support of PDP-11 system peripherals
and facilities to enable customers to add support for their own de­
vices

• Ease of use facilities to provide mapping to the I/O page and con-
nection to an interrupt .

Because realtime applications are performance sensitive, it is
important to provide the application with a direct interface to the inner­
most core of the operating system services. Figure 1-1 illustrates in
layered form the VAX/VMS operating system.

The outer layers of the VAX/VMS operating system are the more so­
phisticated general purpose features to ensure ease of use and func­
tionality. These layers consist of command procedures, record man­
agement services, user programs, etc. The innermost layers constitute
the realtime system described above.

1/0 DRIVERS
A VAX/VMS device driver is a set of tables and routines that control
110 operations on a peripheral device interfacing to a VAX system. A
device driver:

• pefines the peripheral device for the rest of the VAX/VMS operating
system

• Defines itself for the operating system procedure that maps and
loads the driver and its device database into system virtual memory

• Initializes the device (and/or its controller) at system startup time
and after a power failure

• Translates software requests for 110 operations into device-specific
commands

• Activates the device

10

Introduction to VAX Software

Figure 1-1 VAX/VMS Operating System

• Responds to hardware interrupts generated by the device

• Reports device errors
• Returns data and status from the device to software

When details of an I/O operation need to be translated into terms
recognizable by a specific type of device, the operating system
transfers control to a device driver. This is known as devi~e-depen­
dent processing. Because different peripheral devices expect different
commands and setups, each type of device on a VAX system requires
its own supporting driver. The device driver then performs all device­
dependent processing. In addition to a wide range of peripherals sup­
ported by DIGITAL software, the customer may also develop applica­
tion-specific device driver$.

COMMUN ICATIONS SERVICES
DECnet is the family of DIGITAL's software products, protocols, inter­
faces, and support services thatlinks DIGITAL computer systems into
distributed processing networks. The VAX/VMS operating system
offers the same interfaces for use on a single VAX system as DEC­
net/VAX communications software. Adding the DECnet/VAX software

11

Introduction to VAX Software

kit to VAX/VMS enables intersystem communication while preserving
these interfaces. Therefore, a users application can grow from a single
VAX system to a multiple node network, and an existing network can
be reconfigured, without necessarily rewriting application programs.
The network is transparent to the application programmer. In fact, the
applications programmer may treat the networked computers as a
common resource.

Using DECnet communications software, -various kinds of computer
system networks can be constructed to facilitate remote communica­
tions, resource sharing, and distributed computation. The DIGITAL
Network Architecture (DNA) provides the common network structure
upon which all DECnet software products are built. DECnet communi­
cations software is highly modular and flexible, and is designed to
handle a broad range of application requirements.

DIGITAL's Internet family includes products for batch and interactive
communications with computers built by other manufacturers. The
Internet products on VAX systems emulate communication protocols
recognized and supported by IBM and CDC host processors. Such
coexistence features add flexibility to a VAX computer by increasing
the number and variety of environments in which it can operate.

PROGRAMMING LANGUAGES
Many major languages are supported under the VAX/VMS operating
system, including the FORTRAN, COBOL, BASIC, and PL/llanguages.
The compilers often offer enhancements to industry standards, while
maintaining competitive compile and execution performance.

Applications need not rely on a single language: it is possible to com­
bine several languages, as necessary, for the most efficient
accomplishment of computer jobs. Because languages can call one
another, the programmer may easily incorporate more than one lan­
guage in an application program. This means that routines which can
be most efficiently accomplished in a particular language can be writ­
ten in that language and incorporated in applications as needed.

VAXlanguages available for the VAX/VMS operating system include:

VAX-11 BASIC VAX-l1 BLlSS-32

VAX-11 COBOL

VAX-11 FORTRAN

VAX-11 PASCAL

VAX-11 PL/I

VAX-11 C

12

VAX-11 BLlSS-16

VAX-11 CORAL 66

VAX-11 DSM

VAX-11 MACRO (assembly)

Introduction to VAX Software

In addition, there is the host development mode programming envi­
ronment which includes support for PDP~ 11 FORTRAN IV/VAX to
RSX, and MACRO-11 ·Ianguage processors. These language proces­
sors produce compatibility mode object code, allowing a VAX comput­
er to "look like" a PDP-11 computer for many types of applications.

VAX PROGRAM DEVELOPMENT TOOLS
The VAX program development tools include text editors, compilers, a
librarian, a linker, and the VAX symbolic debugger (DEBUG). Also
included are the PATCH, ANAL YZ, MESSAGE, and MAIL utilities. All
program development utilities can be used either interactively or in
batch mode, including the editors and DEBUG.

Libraries maybe used extensively for building executable program
images. In the native mode programming environment, the program­
mer can create libraries of assembler macro definitions, of object
modules, and of shareable images. The system also includes the com­
mon Run-Time Library which provides library functions common to all
VAX programming languages,

All program interfaces to the operating system and its utilities have
uniform calling standards. System programmers can add new library
procedures to the Run-Time Library, installing them online without
modifying existing programs and utilities, since all arguments are
passed using standard data structures.

User programs can be written to be completely device independent
through the system service and command language logical naming
facilities. All files and devices can be identified using arbitrarily de­
fined logical names that can be assigned values at runtime.

The program development utilities, with the exception of the editors
and the Mail utility, are not available in the host development environ­
ment. Many of these utilities are described in more detail in Chapter 4
of this book.

Editors
The programmer can use any or all of the three text editors: EDT, SOS,
and SLP. EDT, the DIGITAL Standard Editor, is an interactive editor
that enables the programmer to create and modify text files using

. commands entered from either a hardcopy or video terminal. It allows

. efficient and powerful character, word, line, and buffer editing. In addi­
tion, EDT supports a keypad editor for users of VT100 and VT52 video
terminals. A window into the text, coupled with a full range of insertion,
deletion, change, and relocation commands, and the capability to
move whole text buffers (editing files) into one another make this a

13

Introduction to VAX Software

very attractive editing tool. Editing procedures (macros and programs)
can be written to establish a specialized environment in any editing
session. An audit trail file protects the session against accidental loss.

SOS is also an interactive text editor. The user can insert, delete, and
replace lines, find and substitute strings, or modify the text a character
at a time. Lines can be identified by line number, relative position, or
by contents. An adjacent group of lines can be copied or transferred
from one place to another. Editing can·be done in any order in the file.
Editor parameters can be set to user-specified "alues and the current
values can be shown. User'-specific parameters can beset automati­
cally at editor startup.

SLP is a programmed text editor that enables a user to modify an
existing file by supplying a command file that contains a list of the
modifications to be made~ The command file provides a reliable way to
duplicate the changes made to a file at a later time or on another
system.SLP provides a formal record of changes made to files, both
in the source file and in an audit trail listing, a feature useful in tracking
the stages of large programming projects.

Linker
The VAX/VMS linker accepts one or more nat,ive-mode object mod­
ules produced by an a~sembler or compiler, resolves the symbol and
procedure references between them, allocates virtual memory, and
produces an executable program image.

Unlike many other linkers, howev,er, the VAX/VMS linker also enables
a programmer tocreate shareable images that can be linked subse:­
quently with other modules. Because shareable images are allocated
virtual memory by the image activator at runtime, they offer tremen­
dous economy in program development; the shareable image can be
modified without having to relink all of the programs that use it.

The linker accepts not only object modules and shareable imagesas
input, but also object module and shareable image libraries.

Librarian
The librarian enables a programmer to create, update, modify, list and
maintain library files. A library file can be a collection of object
modules, shareable images, macros, or helptext. A programmer can
request the linker to use one or more library files from which the linker
can obtain modules to resolve references during linking.

Common Run-Time Library·
The . Run-Time Library is a collection of general-purpose and lan­
guage-specific libraries available to any native program, regardless of

14

Introduction to VAX Software

the source language in which the program was written. The Run-Time
Library allows:

• The choice of incorporating procedures from the library into an
executable image, or mapping the global sections into a process
virtual address space at runtime

• A single copy of the library to be shared by all processes

• Installation of a new shareable library without the need to relink
existing programs

The Run-Time Library includes:

• Mathematical routines (single and double precision trigonometric,
logarithmic, and exponential functions)

• Resource allocation routines (virtual memory and dynamic string
functions)

• General utility routines (data type conversions)
• Condition handling routines (signaling exception conditions and de­

claring condition handlers)

• Language-independent support routines (error handling and record
management services support functions)

• Several higher-level language-specific support routines (file han-
dling support functions)

Symbolic Debugger
The VAX symbolic debugger (DEBUG) can be linked with a program
image to control image execution. DEBUG can be used interactively or
it can be controlled from a command procedure file. The debugging
language is similar to the VAX/VMS command language. Expressions
and data references are generally similar to those of the source lan­
guage used to create the image being debugged. DEBUG commands
allow starting and interrupting program execution, stepping through
instruction sequences, calling routines, setting break or trace pOints,
setting default modes, defining symbols, and depositing, examining,
or evaluating virtual memory locations.

The symbolic debugger is discussed in more detail in Chpater 8 of this
handbook.

PATCH Utility
The image file patch utility (PATCH) provides an extensive set of
commands that lets the user make changes directly to the image file
and then run the new version without recompiling, reassembling and
relinking. PATCH creates ajournal file in which all PATCH commands
used are recorded. This file provides an easy way to keep track of the
changes and attempted changes made to an image file.

15

Introduction to VAX Software

PATCH features symbolic referencing of locations, a patch area to
store additional data and instructions, and entry and display modes to
control the environment in which PATCH accepts commands and dis­
plays output.

Object Analyzer Utility
The object module analysis utility checks an object module (or a con­
catenated file containing several object modules) to see if it is in the
correct format for input to the linker. It is a diagnostic tool for writers of
compilers or assemblers that generate VAX object code. The pro­
gram, invoked by the DIGITAL Command Language (DCL) command
ANALYZE/OBJECT, can analyze the entire module or only specified
types of records. It checks the record type, contents, and sequence of
each object module record it examines. The program creates an out­
put file containing a record-by-record analysis of the object module,
including identification of any errors in the module.

MESSAGE Utility
The MESSAGE utility allows programmers to construct informational,
warning, or error messages in standard VAX/VMS format. First, using
a text editor,the programmer creates a source file that specifies the
information used in messages, message codes, and message
symbols. The MESSAGE command can then be used to compile the
source file.

The text displayed can be modified at runtime by using the SET MES­
SAGE command.

MAIL Utility
The personal mail utility (MAIL) allows users to send messages to each
other within the same system or between VAX systems connected via
DECnet communications software. With MAIL, users can also file, for­
ward, delete, print, and reply to received messages.

MAIL is invoked with the DCL command MAIL. Messages received are
stored in a mail file in a user's default login directory, and new mes­
sages are appended to the end of the file. A user can file messages
into user-named files with the FILE command, SEARCH for a message
containing a specified text string, and request a directory of messages
in any of their mail files with the DIRECTORY command.

MAIL broadcasts to a user's terminal when a new mail message has
arrived, and indicates who the message is from. Often, users will find
MAIL to be a more efficient way reach another user than the tele­
phone.

16

Introduction to VAX Software

Command Language Editor (CLE)
The command ·Ianguage editor allows users to modify commands in,
or add new commands to, the Command Language Interpreter (CLI)
command tables.

CLE is invoked by the DCL command, SET COMMAND.

DATA AND FILE MANAGEMENT UTILITIES
A number of utilities are provided to manage data in files and the files
themselves. Included are utilities for manipulation of RMS (Record
Management Services) files and verification, manipulation, and back­
up of disk volumes.

RMS Utilities
RMS provides the programmer with a File Definition Language (FDL)
for defining the attributes of an RMS data file and a number of utilities,
including:

ANALYZE
IRMS FILE

CONVERT

CONVERT
IRECLAIM

CREATE/FDL

EDIT/FDL

RMSSHARE Utility

Allows the user to check for structure errors in the
data file; also can generate a report on data file
usage

Copies records from a source data file to a sec­
ond data file, which can be. of a different file or­
ganization. It can create a data file from an FDL
file

Reclaims empty buckets in indexed files

Creates an empty data file from an FDL file

Creates and modifies FDL files, and can be used
to create an empty data file

The RMSSHARE utility performs the following functions:

• It enables the VAX-11 RMS file sharing capability by initializing file
sharing structures in system paged dynamic memory, and sets the
maximum number of pages that the structures can occupy. The
VAX-11 RMS file sharing capability must be enabled each time the
operating system is booted

• If VAX-11 RMS file sharing has already been enabled, RMSSHARE
displays figures on allowable and actual usage,· and permits the
resetting of the maximum number of pages that the file sharing
structures can occupy

17

Introduction to VAX Software

File Transfer Utility (FLX)
The File Transfer utility (FlX) is a utility program that tranfers files from
one volume to another. FlX can be used on DOS-11, RT-11, and Files-
11 (the file system used on the VAX/VMS operating system) formatted
volumes. It converts the format of the files, as appropriate, when
transferring files between volumes with' different formats. For exam­
ple, when transferring DOS-11 files to Files-11 volumes, FlX converts
the DOS-11 files to Files-11 format.

Bad Block Locator Utility (BAD)
The Bad Block locator utility (BAD) determines and records the logi­
cal block numbers and location of faulty blocks that cannot reliably
store data. Usually, BAD is used to test block-structured volumes that
have not been initialized. After BAD locates and records the bad
blocks, the user issues the DIGITAL Command language (DCl) com­
mand INITIALIZE so that the operating system will allocate the faulty
blocks toa special file. This prevents users from accessing these
faulty blocks for their files.

File Structure Verification Utility (VERIFY)
This utility is called by the DCl command ANA-
l YZE/DISK-STRUCTURE. It will analyze Files-11 disk structures (both
level 1 and level 2) and report errors and inconsistancies. Also, option­
ally, VERIFY can 1) provide a listing of files in the index file; 2) repair
errors it detects in the file structure; 3) selectively repair errors; 4) read
check all allocated blocks on the file structure.

SORT/MERGE Utility
The SORT utility rearranges and reformats records in any VAX-11
RMS (Record Management Services) file organization. MERGE is

, used to combine sorted files.

BACKUP Utility
The BACKUP utility allows users to create back-up copies of files and
directories and to restore them. It can back up entire volume sets in
one operation or perform selective back-ups by file or date. Wildcard­
ing and several command qualifiers are available for flexible file selec­
tion. BACKUP can be used to perform incremental backups of volume
sets - a particularly valuable feature for users with large, fixed-media
disks.

Other Useful Commands
In addition to the utilities already mentioned, several DIGITAL Com­
mand language (DCl) commands, listed below, aid in data and file
management. See Chapter 3 for more information on these com­
mands.

18

Introduction to VAX Software

• The COpy command creates a new file from one or more existing
files. It can: copy one file to another file, concatenate more than one
file into a single output file, and copy a group of. files to another
group of files

• The CREATE command creates one or more sequential files from
records that follow the command in the input stream

• The DELETE command deletes one or more files from a mass
storage disk volume

• The DIFFERENCES command compares the contents of two disk
files and creates a listing of the records that do not match

• The DIRECTORY command provides a list of files or information
about a file or group of files

• The TYPE command displays the contents of a file or group of files
on the current output device

SYSTEM MANAGEMENT UTILITIES
At the time a VAX/VMS system is installed, several utility functions are
provided to tailor the systern for a particular application environment.
In addition, once the system is operational, facilities are provided to
modify the environment and to upgrade/update the system with new
software versions or optional software products.

System Bootstrap Program (SYSBOOT)
In a VAX/VMS system, system generation and start-up occur auto,;.
matically when the system is bootstrapped. The system manager pro­
vides the information needed for system generation and start-up by
supplying to SYSBOOT the name of the file that contains the system
parameter values and start-up commands.

The SYSBOOT prompt can be requested for commands during the
bootstrap operation. If this is done, the system manager can perform
the following functions:

• DeSignate the name of a file that contains system parameter values

• Set and show individual parameter values

• Specify an alternate site-independent start-up command procedure

System Generation Utility (SYSGEN)
The System Generation utility (SYSGEN) allows the system manager
to perform a "tailoring" function at system start-up (or later, if re­
quired). With SYSGEN, the system manager can:

• Create and modify system parameter files for subsequent bootstrap

• Dynamically modify many current system parameter values'

• Create swap, page, and dump files

19

Introduction to VAX Software

• Initialize multiport memory
• Dynamically connect devices and load device drivers

• Specify the start-up command procedure

AUTHORIZE Utility
The AUTHORIZE utility is run by the system manager to modify the
existing UAF (User Authorization File) or to create a new one. It also
allows specification of who may log into the system and permits con­
trols on user's activities.

DISKQUOTA Utility
The DISKQUOTA utility controls the usage of disk volumes. It can be
run by the system manager or any user maintaining a volume, and it
allows them to create and maintain quota files and set quotas on a per
volume basis.

The DISKQUOT A Utility has the following utility functions:

ADD MODIFY

CREATE

DISABLE

ENABLE

INSTALL Utility

REBUILD

REMOVE

SHOW

The system manager runs the INSTALL utility to install and maintain
known images. This enhances performance and permits the sharing of
selected executable and shareable images. Another useful function is
the ability to install an image with amplified privileges so that the
system manager need not give the required privileges to all users of
the program.

MON ITOR Utility
With the MONITOR utility, the system manager can monitor activities
indicative of system performance. Information can be displayed on:

• Network activity

• Use of the lock management services

• Principal users of CPU paging and I/O resources

• File primitive statistics

• 110 system rates

• Time in processor modes

• Page management statistics

• Nonpaged pool statistics

20

Introduction to VAX Software

• Number of processes in each scheduler state

• VAX/VMS processes

Upgrade/update
The VMSUPDATE command procedure is used for:
~ System upgrade (major releases)

• Maintenance updates
• Installation of optionElI software

An upgrade/update may only be done by the system manager on a
system where there are no user~ or batch jobs running.

SYE Utility
The SYE utility allows the ~ystem manager to selectively report the
contents of an error log file. It reports the following information:

• Errors-Device errors, bus errors, synchronous backplane
interconnect (SBI) alerts, soft error co"rrecting code (ECG) errors,
machine checks, asynchronous write errors, and hard ECC errors

• Configuration changes..,.-Volume mounts and dismounts

• System events-Cold start-up, warm start-up, crash start-up, mes­
sage from Send Message to Error Logger sy~tem "service, and time
stamp

The types of reports are as follows:

• Totals by category
• Device errors-Contents of device registers

• Brief and standard reports

System Dump Analyzer
The System Dump Analyzer is run by the system manager to" aid in
determining the cause of operating system failure. It examines and
formats contents of system dump files and displays various system
data:

• Device data structures
• Memory management data structures

• Process information

21

CHAPTER OVERVIEW
The programmer and interactive user can find in this chapter how to
get the system's attention, how to use some of the command language
commands, and how to do program development using the VAX/VMS
facilities. In addition, establishing files and assigning logical names for
files, devices, and programs are explained. Formats used in later
chapters on commands and system services are given here.

Topics include:

• Logging On
• Files and Logical Names

• Program Development Procedures

22

INTRODUCTION

CHAPTER 2

THE SYSTEM USER

The following sections will discuss basic user-oriented information.
These sections include system access, files, logical file names, and
program development.

Note that the symbol < > indicates that the user has pressed an action
key at the terminal keyboard. For example, <RET> means that the
return key is pressed; is the delete key; <tC> is the control/C
(CTRL/C) combination.

SYSTEM ACCESS
The user gains the system's attention by pressing the <RET> or
CTRL/C. The system responds by prompting for the user's name.
Upon entry of a correct user name followed by < RET>, the system
prompts for a user password. As the user enters the password, it is not
echoed; that is, the password is not displayed on the terminal.

The login sequence appears for a user named GING as follows:

<RET>
User name: GING <RET>
Password: <RET>

Welcome to VAX/VMS Version V3.0
$

The $ is a system prompting symbol: when this character appears o!l
the far left of the terminal, the system is ready forcommand entry.

A default is the user's omission of certain information when entering
commands. In the case of a default the system may assume that the
omitted names, parameters, and qualifiers have certain values called
default values. For example, the system will assume that all of a user's
files reside on the default disk unless the user specifies otherwise.
Similarly, a user will have a default working set size unless the manag­
er specifically changes it.The use of defaults can simplify and speed
up the processes 'of entering' commands, running jobs, and editing
files.,

Entering Commands
All commands to the system are English-language verbs that describe
the functions they perform. For example, the user enters the SHOW
TIME command:

$SHOWTIME<RET>

23

The System User

The system responds by displaying the current date and time, as
follows:

22-J UL-1981 10:25:30

Commands can be entered using either uppercase or lowercase let­
ters, or a combination of both.

Most commands have parameters and qualifiers. A parameter is the
object of a command verb. In the SHOW TIME command above, TIME
is a keyword parameter for the S~OW command. Keywords are words
that the system recognizes.

As another example, in the following command:

$ PRINT MYFILE.L1S<RET>

MYFILE.L1S is a parameter for the PRINT command; the command
requires the name of a file (MYFILE) and a filetype (.L1S), as explained
below.

The user does not have to include the entire command on one line. If a
command is entered without required parameters, the system will
prompt for additional data. As an example, the print command is
entered without the file name qualifiers:

$ PRINT <RET>
file: MYFILE.DAT<RET>

In this example, the filename parameter was ()mitted; therefore, the
system prompted for a file specification parameter.

Qualifiers are keywords that restrict or modify the function of a com­
mand. For example, in the following command:

$ PRINT/COPIES=2 MYFILE.L1S<RET>

ICOPIES=.2 is a qualifier indicating how many copies of a file to print.
Each qualifier in a command must be preceded by a slash character
(/).

If the user introduces errors during command input, they may be
corrected interactively. The basic line editing functions are:

• The delete key deletes and backspaces over characters
that have been typed on the current line. In the following example,
the first line illustrates ,user input, while the second line illustrates
system.echo of the first line (that is, what the user aCtualy sees typed
at hardcopy and some video terminals).

$ PROINT MYDAFILE.L1S<RET>
$ PRO\O\INT MYDA \AD\FILE.L1S

24

The System User

As far as the command processor is concerned, the line reads per­
fectly:

$ PRINT MYFllE.LlS

On some terminals, the key that performs the delete function is
marked RUBOUT

• <tU> The CTRL/U key deletes the current line and performs a
carriage return, enabling the user to reenter an entire line

• <tR> The CTRLlR key performs a carriage return and displays the
current line, leaving the print element or cursor at the end of the line
permitting continued entry

$ PRON\NO\INT MU\U\ Y <tR>
$ PRINT MY

• <tC> The CTRL/e key combination cancels an entire command
that was entered on more than one line

CTRL/C may also be used to interrupt the system during command
execution. To terminate an unwanted command during execution,
press the CTRl/e or CTRl/Y key and issue the EXIT command as
foUows:

$ TYPE MYFILE.LlS<RET>

<tC>
$ EXIT <RET>
$

The HELP Command
The HELP facilitypr'ovides information about specific DCl commands.
It is accessed interactively from the terminal, which makes it a particu­
lar benefit for users who do not have convenient access to a reference
manual.

HELP can be used in one of two ways:
1. query/response mode. The user may type simply:

$ HELP <RET>

This will invoke the HELP facility which then displays on th~ user's
terminar a table of all of the primary Del commands, organized
alphabetically, and followed by the querry

Topic?

25

The System Use,.

The user can then select a command from the table-for instance,
the PRINT command-and respond

Topic? PRINT <RET>

The HELP facility .. wilf then display·information about the PRINT
command, what it does and how to invoke it, followed bya list of
subtopicS including a list of PRINT qualifiers· with the defaults
indicated bya"(D)". HELP then queries

PRINT subtopic?

to which the user dm respond withone of theiisted PRINT subto-
pics; for example: . .

PRINT subtopic? / AFTER <RET>

In respons~, HELP displays ,information about the /AFTER
quaiifier, followed by another query for a PRINT subtopic .. The
user may then either request another subtopic description or re­
spond with a.<RET>.

PR,INTsubtopic? <RET>

In this case, HELP returns to the first stage and queries for,anolh­
er HELP topic. Another <RET> response brings the user back to
the command level and the dollar sign ($) prompt. . .

2. Direct mode. The experienced user with a specific questionmight
prefer this more direct approach. To find out about a specific
topic or subtopic, the entire command can be entered on one line.
For example, if the user types

$ HELP PRINT/AFTER

the resulting display is the same as given for I AF.TER response to
the '~PRINT subtopic"que,ry.

LOGOUT
Upon completing an interactive session, the user must enter the LOG­
OUT command as follows:

$. LOGOUT <RET>

The system responds:

Username logged out at

26

22-APR-198211 :30:50

The System User

FILES
A file is a collection of logically related data stored on a medium, such
as a disk, tape, or card deck. Many system commands require input
files or produce output files. To access files that already exist, or to
give names to files that are being created with system commands, the
user must know how to identify files.

The system uniquely identifies a file by its file specification (abbrevia­
ted "file-spec").

The file is first identified by its location, that is, the actual or physical
device on which it is stored.

Because a disk can contain files belonging to many different users,
each disk has a set of files called directories. A directory is simply a
catalog of a related set of files on that disk.

A complete file specification contains all the information the system
needs to know to locate and identify a file. It has the format:

device: [directory]fi lename. filetype;version

For example, DMA3:[HANDLE]JEANNE.L1S isa file specification for
the directory HANDLE located on an RKO? disk, controller A, unit 3.
The file name is JEANNE and the file type is .L1S. See details below.

The punctuation marks (colon, brackets, period, semicolon) are
required syntax that separate the various components of the file speci­
fication.

When the user logs onto the system, the system assumes all of that
user's files reside on a specific disk, alloted to the user by default,
called the default disk. The user can determine the current default disk
and directory by issuing the SHOW DEFAULT command as follows:

$ SHOW DEFAULT
DBA2:[TINKER]

This response indicates that the default disk device is DBA2 (an RP06
disk) and the default directory is named TINKER. Often the user's
directory name and user name are the same.

File Name and File Type
The user can specify a file uniquely by its file name and file type (or
extension) as follows:

fi lename. fi letype

The file name can be from one to nine alphanumeric characters. The
alphanumeric characters are A through Z, 0 through 9.

2?

The System User

The file type (sometimes called the file extension) can be from one to
three alphanumeric characters in length; it must be preceded by a
period. By convention, the· file type describes more spe.cifically the
kind of data in the file. The system recognizes several default file types
used for special purposes. For example, among them are:

File Type

.BAS

.B32 or BLI

. CMD

.COB

.COM

.COR

.DAT

.DIR

.DMP

.EXE

.FOR

.L32

.LlS

.LOG

.LST

.MAC

.MAP

.MAR

.MLB

Contents

Input source. file for the VAX-11 BASIC compiler

Input source file for the VAX-11 BLlSS-32 compil­
er

Compatibility mode command procedure .

Input source file for the VAX-11 COBOL compiler

Command procedure file to be executed with the
@(Execute Procedure) command, or to be sub­
mitted for batch execution with-the SUBMIT com­
mand

Input source file forthe PDP-11 CORAL 66/VAX
compiler .

Input or Output data file

Directory file

Output listing created by the DUMP command

Executable program image

Input fi.le containing source statements for the
VAX-11 FORTRAN compiler

VAX-11 BLlSS-32 precompiled library

Listing file created by a language compiler or as­
sembler;default input file type for PRINT and
TYPE commands

Batch job output file

Compatibility mode listing file

MACRO-11 source file

Memory allocation map created by th~ linker

VAX-11 MACRO source file

Macro library

28

.OBJ

.OlB

.PAS

.R32 or .REO

Version Numbers

The System User

Object file created by a language compiler or as­
sembler

Object module library

Input source file for the VAX-11 PASCAL compil­
er

VAX-11 BLlSS-32 source files required for com­
pilation

Every file has a version number associated with it, distinguishing dif­
ferent versions of the same file. Each time a file is accessed and
modified, the version number is increased by one. The version
number is placed after the file type preceded by a semicolon (;) or
period (.) as follows:

filename.filetype.version number

or

filename.filetype; version number

Physical Devices
A device name identifies the physical device on which a file is stored. A
device name is specified in the format:

dvcu:

where dv is the two-character code for the device type, c is the con­
troller designation, and u is the unit number

Some examples of device names are:

Name Device

DBA2

MTAO

TTB3

RP06 disk on controller A,. unit 2

TE16 magnetic tape on controller A, unit 0

Terminal on controller B, unit 3

If the device name is omitted from a file specification, the system
assumes it to be the default disk device.

Among the physical device mnemonics are:

29

Mnemonic

CR

CS

DB

DO

DL

OM

DO

DR

DY

LA

LP

MB

MF

MS

MT

OP

TT

XA

XM

The System User

Table 2-1 Device Names

Device Type

Card Reader

Console Device

RP06 Disk

TU58 Tape Cartridge

RL02 Disk

RK07 Disk

RB02 and RB80 Disks

RM03, RM05, RM80,and RP07 Disks

RX02 Floppy Disk

LPA11-K

Lineprinter

Mailbox

TU78 Magnetic Tape

TS 11 Magnetic Tape

TEt6, TU77 Magnetic Tapes

Console Terminal

Interactive terminal

DR11-W

DMC-11 Network Link Module

30

The System User

Directories
If the user specifies a file and· omits the directory name, the system
assumes the file tobe in the user's default directory. However; the user
may. with privilege, access files in.other directories (including directo­
ries that catalog files belonging to.otherusers) by specifying the direc­
tory name in a file specificaton ..

The user may access a tile called CUBIT.FOR whose directory name is
PERSON by issuing the TYPE command as follows:

$TYPE [PERSON]CUBIT.FOR <RET>

This file specification, however, does, not contain a device name.
Therefore; the system assumes the directory PERSON to be located
on the accessing user's default device.

If PERSON's directory were located on disk DBB2, the accessing user
would issue the TYPE command as follows:

$TYPE DBB2:[PERSON]CUBIT,FOR <RET>.

It is assumed, however, in both cases, that PERSON permitted access
to files in the directory by other users. If not, a protection violation
error would be returned to the command.

Subdirectories, down to many levels, are possible in the VAX/VMS
operating system. This useful feature allows a user to organize a tree
structure of subdirectories and catalog files in functional groups.

LOGICAL NAMES
The VAX/VMS operating system provides a generalized logical name
capability which, permits the association of an arbitrary equivalence
string to an arbitrary logical name. '

In the VAX/VMS operating system, device independence is accom­
plished through the use of logical names. During the coding of a pro­
gram, the user might refer to input and output as INFILE and OUTFILE
respectively. INFILE and OUTFILE are logical names. Prior to program
execution, the user must associate logical names used in the program
with actual files and devices required to run the program.

The ASSIGN command makes 'this connection: it establishes the cor­
respondence between a logical name (that is, the name used in the
program) and an equivalence name;(thatis~ the actual file or device to
use).

Figure'2-1 shows, how logical names are used. The program FICA
contains OPEN, READ, and WRITE statements in a general form; the
programreadsJrom a file referred to by the logical name INFILE, and
writes to a file referred to by: the logical name OUTFILE.

31

The System User

For different runs of the program, the ASSIGN command establishes
different equivalence names for INFllE and OUTFllE. In the first ex­
ample, the program reads the ·file JANUARY.DAT from the device
DBA 1 and writes to the file JANUARY.OUT on the same disk device. In
the second example,it reads the file FEBRUARY. OAT from the device
DBA2 and writes the file FEBRUARY.OUT to that device.

I TERMINAL DISPLAY I I DISK INPUT/OUTPUT FILES I

$ SHOW DEFAULT
DBAI: [WELLADAY] §

$ ASSIGN JANUARY.DAT INFILE •• --------
$ ASSIGN JANUARY .OUT OUTFILE • . .

$ RUN FICA

The program, FICA.EXE contains I/O
statements to open, read, and write
files referred to by the logical names
INFILE and OUTFlLE:

OPEN' INFILE', • OUTFILE'

READ IN FILE
WRITE OUTFILE

DBAI

$ ASSIGN DBA2: FEBRUARY .DAT INFILE • .~
$ ASSIGN DBA2: FEBRUARY .DAT OUTFILE------. , '. .

$ RUN FICA
DBA2 '

Figure 2-1 Using logical Names

System Defined Logical Names:
Certain logical names are predefined by the VAX/VMS, operating
system to provide access to commonly used resources. The major
logical names are:

Logical Name Equivalence Name

SYS$INPUT Default input stream for the process. For an
interactive user, SYS$INPUT is equated to
the terminal. In a command procedure or
batch job, SYS$INPUT is equated to the .in;.
put file or batch input stream

32

SYS$OUTPUT

SYS$ERROR

SYS$COMMAND

SYS$DISK

The System User

Default output stream for the process. For
an interactive user, SYS$OUTPUT is equat­
ed to the terminal. In a batch job,
SYS$OUTPUT is equated to the batch job
log file.

Default device to which the system writes
error and event messages. For an interac­
tive user, SYS$ERROR is equated to the ter­
minal. In a batch job, SYS$ERROR is equat­
ed to the batch job log file

Original SYS$INPUT device for an interac­
tive user or batch job

Default device established at login, or
changed by the SET DEFAULT command

PROGRAM DEVELOPMENT
Four basic steps are required during the course of program develop­
ment. They are:

• Creating the source program

• Compiling or assembling the source program

• Linking the object module output of a compil~r or assembler

• Executing and debugging the program

These steps are common to all of the languages that are available on
the VAX/VMS operating system. Figure 2-2 illustrates the necessary
steps of program development.

33

The System User

Use the ~ to create a disk file
containing the source program
statements. Specify the name of this
file when invoking the compiler
or assembler.

The various commands invoke th·e
different language compilers,assemblers,
and interpreters that check syntax, create
object modules, and if requested,
generate progrom listings.

If a compi ler signals any errors, use
the editar to correct the source
program.

The .linkI!. searches the system libraries to
resolve references in the object module
and create an executable image.
Optionally, private libraries can be
specified to search, and request the
linker to create a storage map of the
program.

The RUN command executes a program
image. While the program is running,
the system may detect errors and issue
messages. To determine if the program
is error-free, check its output.

If there is a bug in the program, determine
the cause of error and correct the source
progrom.

SOURCE PROGRAM

COMPILER
OR

ASSEMBLER

NO

LINK THE
OBJECT MODULE

RUN THE
EXECUTABLE

IMAGE

SUCCESS

CORRECT THE
SOURCE PROGRAM

Figure 2-2 Steps in Program Development

34

Use the editor to
create a disk file
containing your
source program
statements. Specify
the name of this file
when you invoke the
compiler or assem­
bler.

Various commands
invoke the different
language compilers
and assemblers that
check syntax, create
object modules, and
if requested, gener-
ate program list-
ings.

The System User

SOURCE PRO­
GRAM

COMPILER OR AS­
SEMBLER

If a compiler signals ERRORS? YES
any errors, use the
editor to correct the
source program.

The linker searches
the system libraries
to resolve refer­
ences in the object
module and create
an executable im­
age. Optionally, you
can specify private
libraries to search,
and request the
linker to create a
storage map of your
program.

NOW LINK THE OB­
JECT MODULE

35

CORRECT THE
SOURCE PRO­
GRAM

The RUN command
executes a program
image. While your
program is running,
the system may de-
tect errors and issue
messages. To de-
termine if your pro-
gram is error-free,
check its output.

The System User

RUN THE EXECU­
TABLE IMAGE

If there is a bug in BUGS
your program, de-
termine the cause of
error and correct
the source program.

Creating the Program

NO

SUCCESS

YES

The user must create a file to contain the source program statements.
The editor is used to create a file.

Compiling or Assembling the Program
The user must first invoke the compiler or assembler via a command
language command.

The compilers check the source program for syntax and programming
errors, and then translate the input source file into a binary form that
can be interpreted by the computer. The translated code, that is, the
object module, is written into a file called an object module file.

Linking the Object Module
An object module is not, in itself, executable; generally, an object
module contains references to other programs or routines that must
be bound with the object module so that it can be executed. This is the
function of the linker.

The LINK command invokes the linker. The linker uses system librar­
ies to resolve references to routines or symbols that are not defined
within the object modules it is linking. Also, the user can request the
linker to include more than one object module as input, or specify user
libraries of object modules or shareable images for it to search.

36

The System User

The linker creates an image, which is a file containing the user pro­
gram in an executable format.

Executing the Program
The RUN command executes an image, that is, it places the image
created by the linker into virtual memory so that it can be run.

37

38

PART II '

PROGRAM

DEVELOPMENT

39

CHAPTER OVERVIEW
The DIGITAL CQmmandlanguage (called Del) is a useful tQQI fQr
establishing and cQntrolling the environment in which a prQcess exe­
cutes. A cQmmand' is a request directed to' the Qperating system fQr a
specific actiQn. Frequently used strings Qf cQmmands can be built intO'
cQmmand prQcedures. This chapter introduces the idea Qf a CQm­
mand and a cQmmand prQcedure, and shQWS in SQme detail hQW each
is used. The fQrmats Qf many Qf the Del cQmmands are listed alpha­
betically, and examples Qf SQme are included. The user will find this
chapter helpful when approaching the terminal. Particular attentiQn is
paid to' the SHOW cQmmand.

TQpics include:

• language Name CQmmand CQnventiQns

• CQmmand PrQcedures

• CQmmands
• Terminal FunctiQn Keys

40

INTRODUCTION

CHAPTER 3

COMMAND LANGUAGE

A single command language, The DIGITAL Command language
(DCl), provides VAX/VMS users with an extensive set of commands
for:

• Interactive program development

• Device and data file manipulation
• Interactive and batch program execution and control

Commands exist for· program development and execution, for re­
source allocation, for environmental control, for job control, for file
maintenance, for utilities, and for operational control. Program devel­
opment and execution commands include commands to invoke each
compiler, the assembler, the editor, and the linker, as well as to run
any pre-linked program. Resource allocation commands include the
ability to allocate and deallocate devices and mount and dismount
volumes. Environmental commands include assign and deassign logi­
cal names and set and show parameters such as job status, terminal
type, and default directory. Job control commands include the ability
to continue and stop execution, a GOTO command to transfer control,
and IF and ON commands to specify error handling. The VAX/VMS
operating system also includes commands t910gin and logout, to sub­
mit batch jobs, to send messages to the operator, and to prompt the
user for input. File maintenance commands include append to files,
copy, create, and delete files, list directories, initialize volumes, print
and type files, and rename files. .

COMMAND FORMAT

Commands are composed of English words. Any file name can be
given a logical name for mnemonic reference. Command parameters
can be supplied on the same line as the command verb. Missing
parameters will be prompted for by the VAX/VMS command
interpreter. To make it easier to learn the VAX/VMS system, an exten­
sive HELP facility is provided that gives guidance on the use of com­
mands and the meaning of system messages. Typical VAX/VMS com­
mands are brief because of the extensive use of defaults. The user
also has the ability to define additional commands and use them just
as the system-defined commands are used. In addition,all command
verbs and qualifiers can be abbreviated to the short~st unique form.

41

DIGITAL Command Language

File specifications can be as simple as the user-given name of the file
only,orascomplex as a full specification of network node, device
(including type, c()ntroller: andfunit), directory, file name, file type, and
version number. Logical names can be defined for complex file speci­
fications so that repetitive typing can be avoided.

The general format of a comlllandis:

$[label:]eom mand...:name[qualifiers] [parameter-1 f.'. [parameter -n]

where the following rules apply:

1. Dollar Sign $ - The dollar sign [$] must appear in position 1 of a
command to be executed in a command ptocedure.Optionally, it
may appear in a command executed in interactive mode;

2,. Brackets -In the description of commands in this specification,
brackets ([. and]) are used to surround optional values. For
example:"

COPY[qualifiers]

indicates that the user does not need to supply any qualifiers to
issue a valid COpy command.

3: LabelS':"- Any command may be labeted; Labels are 'used to
. transfer flow of contr()1 via the GOTO command. They may also be
used for'documentation purposes. The maximum length of alabel
is 15 characters. A label precedes the command name and is
separated from it by a colon (:).

4.' C()mmand Names - The command name indicates the action the

command i,s to perform. :; .' , '.:
5. Qualifiers - A qualifier is used to modify the default act~Ql1of a

command. There are defaults for a" qualifiers, i.e., qualifiers 'are
never required. A qualifier always begins with a slash (f). Both
command names and parameters can be qualified.

Examples:

PRINT/DELETE' MYFILE.DAT
SET TERMINAL/LOWERCASE

. . , . . .

Many qualifiers haveas$ociated quali,fier values. The qualifier is
separated from'the qualifier value, by an equal sign (:::) or a colon
(:), e.g., ICqPIES==3.'W~enever a qua!~fierrequiresa Ust of val~
ues, that list must be enclosed in par~nthe~es:

IBLOCK==(5,6)

A qualifier may nol contain any blanks; however,blanks are al~
lowed in qualifier values following left parenthes'is, preceding right

42

DIGITAL Command Language

parenthesis, and before or after a comma. No other blanks are
permitted in qualifier values.

Some qualifiers may be negated. When this is permitted, the let­
ters NO prefix the qualifier name.

Example:

/OBJECT
/NOOBJECT

produce an object file
do not produce an object file

6. Parameters - A parameter either specifies a value that a com­
mand is to use when executing, or further defines the action a
command is to take. At least one space or tab must separate the
first parameter from the command name; parameters are then
separated from each other by one or more spaces and/or tabs.
Interactive users may supply parameters in response to prompts.

7. Commas and Ellipsis - Some commands permit the user to
replace a single parameter by a list of values. When this is done,
the items in the list are separated by commas. The commas may,
optionally, be surrounded by blanks.

Examples:

DELETE A,B,C

Delete files A, B, and C.

COpy A,B C

Copy files A and B into C.

In the description of a command's format, ellipsis (three dots ...)
indicate thata list of values of the same type may replace a single
value.

8. Continuation Character - A hyphen (-), which may optionally be
followed by blanks and/or a comment, is used to indicate that a
command is to be continued on the next line.

Example:

COPYA.DAT­
B.DAT

9. Comment Character ---:. An exclamation mark (!) delimits the start
of a comment. Comments can occur only after the last character
of a command or after a hyphen. Comments are for the user's
information only and do not affect the processing of the com­
mand.

43

DIGITAL Command Language

Example:

COpy A.DAT B.DAT
!FILE A TO FILE B

!COMMAND PROCEDURE FOLLOWS

10. Concatenation Character - A plus sign (+) indicates concatena­
tion, that is, the records in the file specified on the left of the plus
sign are processed followed by the records in the file specified on
the right of the plus sign.'

Example:

FORTRAN A+B

The FORTRAN statements in file A.FOR followed by the FORTRAN
statements in file B.FOR are read by the FORTRAN compiler to
product a single object module, A.OBJ.

11. Lowercase' Characters - Lowercase characters will be processed
as their uppercase equivalents except for characters within a
quoted string. The SET TERMINALI [NO]LOWER command con­
trols conversion of characters entered interactively at the termi­
nal; however, it has no effect on data entered via a command
procedure.

12. Abbreviation Rule - All command names, qualifiers and parame­
ter keywords can always be abbreviated to the first four letters.
The implementation will recognize, in each case, the minimal
unique abbreviation. Qualifiers and keywords must be unique on­
ly within the command containing them. Additional letters are ac­
ceptable, for example, LOGOUT, LOGOU, and LOGO are all cor­
rect.

13. End of Data - In interactive mode, CTRLlZisused to terminate
input to a command or a user program, i.e., CTRLlZ will generate
an end-of-file.

CONVENTIONS FOR LANGUAGE NAME COMMANDS
1. When the input file specification in a language-name command

consists of a list of concatenated files, e.g., A+B+C, then the
language processor is invoked once and a singie object file is
produced. If this object file is not explicitly named, the leftmost file
specification will be used .. for the default. (Note that not all lan­
guage processors permit the specification of a concatenated list.)

44

DIGITAL Command Language

2. When the input file specification in a language-name command
consists of a list of file specifications separated bycommas-e.g.,
A, B, C-then the language processor is. invoked separately for
each file specification and a separate object file is produced for
each. If the object files are not explicitly named, the name of the
corresponding input file specification is used for the default. A
qualifier on a file specification overrides a corresponding qualifier
on the command name for that file specification.

Example:

FORTRAN/LIST A, B/NOLlST, C

3. In interactive mode, /OBJECT, i.e., produce an object file, and
/NOLIST are the defaults. These defaults are also used when a
command procedure file is invoked from interactive mode. In
batch mode the defaults are /OBJECT and /LiST.

COMMAND PROCEDURES
A command procedure is a file containing VAX/VMS commands and,
optionally, data. The commands in a command procedure file are
executed when a reference to the cqmmand procedure file name
appears in interactive mode orin another command procedure file.
The syntax is:

@file specification

The following rules apply:

1. If no file type is given, the default is .COM.
2. Each command in a command procedure file must begin with a

dollar sign ($), including further command· procedure file refer­
ences. Lines without the dollar sign leader are interpreted as data
lines.

3. A reference to a command procedure must be the rightmost ele­
ment of the command, and the entire contents of the file are
inserted into the command at the point at which the reference was
made.

Examples:

a. The user types the command:

@MYJOB
where the file MY JOB.COM contains:

$FORTRAN A
$LlNK A
$RUN A

45

DIGITAL Command Language

b. The user types the command:

LINK @UNK_OPT
where the file LINK OPT.COM contains:
IIMAGE=JOB1 -
IMAP-
MYJOB, MYDATA

indicating that the default image type (.EXE) should be creat­
ed, ov~rriding the default name of MYJOB to JOB1. A map is
explicitly requested with the default to MY JOB, and the object
input files are MYJOB and MYDATA.

TERMINAL FUNCTION KEYS
<CR> or
RETURN

CTRL/X

CTRL/C

CTRLn

CTRL/K

CTRL/L

CTRLlO

CTRL/Q

CTRL/R

CTRL/S

Carriage return. Transmits the current line to the
system for processing

Cancels type-ahead. Discards any characters that
have been typed but not yet read by a program.
Also effects a CTRL/U

Before terminal session, initiates login sequence.

During. command entry, cancels command proc­
essing

Note: Certain system and user programs may
provide special routines to handle CTRL/C inter­
rupts. If CTRL/C is pressed to interrupt a pro­
gram that does not handle CTRLlC, CTRL/Chas
the same effect as CTRL/Y and echoes at Y.

Duplicates the function of the TAB key

Advances the current line to the next vertical tab
stop

Form feed

Alternately suppresses and continues display of
data at the terminal

Restarts terminal output that was suspended via
CTRL/S

Retypes the current line during input and leaves
the cursor positioned at the end of the line

Suspends terminal output until CTRL/Q is
pressed

46

CTRLlU

CTRLlY

CTRLlZ

DELETE or
RUBOUT

ESCAPE or
ALTMODE

COMMANDS

DIGI T ALCommand Language

Cancels the current line and discards it

Interrupts commands or program execution and
,returnscontrol to the command interpreter

Terminates a file input from the terminal

Deletes the last character entered at the terminal
and backspaces over it

Have uses pertinent to particularcommands or
programs

For the convenience of the user, commands are.listed and described
below in alphabetical order. Some include detailed examples, particu-'
larly control commands for use in command procedures. The on-line
HELP facility will provide more detail about most of these commands.

NOTE
This list is not exhaustive. See the VAX/VMS Com­
mand Language. Users Guide forcomplete details of
commands, options, and defaults. . . .

ALLOCATE

Format:

ALLOCATE device-name [:] [log ical-name[:]]

Purpose:

The ALLOCATE command provides exclusive access to a device and
optionally establishes a logical name for the device, Once a device has
been allocated, other users cannot access the device until the user
specifically deallocates it or logs out.

ANAL VZE/CRASH_ DUMP

Format:

ANALYZE/CRASH dUMP file-spec

Purpose:

This command invokes theSystEml Dump Analyzer (SOA) to examine
the specified dump file.

ANAL VZE/DISK _STRUCTURE

Format:

ANALYZE/DISK STRUCTURE

47

device-name

DIGITAL Command Language

Purpose:

ANAL YZE/DISK STRUCTURE invokes the VAX-11 Verify Utility to
check the readability and validity of a Files-11structure disk volume,
reporting errors and inconsistencies and, optionally, repairing them.

ANAL YZE/OBJECT

Format:

ANAL YZE/OBJECT file-spec [,.~.]

Purpose:

ANAL YZE/OBJECT provides a description of the records comprising
an object file or object module library. It also performs a partial error
analysis on the file.

ANAL YZE/RMS _FILE

Format:

ANAL YZE/RMS _FILE file-spec [, ...]

Purpose:

This invokes an RMS utility to inspect and analyze the internal struc­
ture of an RMS file. Refer to the description of RMS utilities in Chapter
12 for more details.

ANALYZE/SYSTEM

Format:

ANAL YZE/SYSTEM

Purpose:

This will invoke the System Dump Analyzer (SDA) to examine a run­
ning system~ 'In order use this command,you must have the Change
Mode to Kernel (CMKRNl)privilege.

APPEND

Format:

APPEND input-file-spec, ... output-file-spec

Purpose:

The APPEND command adds the contents of one or more, specified
input files to theerid of a specified output file.

ASSIGN

Format:

ASSIGN device-name[:] logical-namel:]

48

DIGITAL Command Language

Purpose:

The ASSIGN command equates a logical name to a physical device
name, to a complete file specification, or to another logical name, and
places the equivalence name string in the process, group, or system
logical name table.

BACKUP
Format:

BACKUP input-spe<? output-spec

The BACKUP command allows users to create b-ackup copies of files
and directories and to restore them. It can backup entire volume sets
in one operation or perform selective backups by file or date. Wild­
carding is available, as well as several file selection qualifiers. BACK­
UP can also be used to copy entire directory trees (directories and
sub-directories).

CANCEL
Format:

CANCEL [process-name]

Purpose:

The CANCEL command cancels scheduled wakeup requests for a
specified process. This includes wakeups scheduled with the RUN
command and with the Schedule Wakeup ($SCHDWK) system
service.

CLOSE
Format:

CLOSE

Purpose:

logical-name

The CLOSE command closes a file that was opened for input or output
with the OPEN commandand deassigns the logical name specified
when the file was opened.

49

DIGITAL Command Language

Example:

$ OPEN/READ INPUT FILE
$ READ_LOOP:
$
NO MORE INPUT FILE

$ GOTO READ_LOOP
$ NO_MORE:
$ CLOSE INPUT_FILE

TEST. OAT

READ/END OF FILE=
DATA LINE

The OPEN command opens the file TEST. OAT and assigns it the logi­
cal name of INPUT_FILE. The /END _ OF _FILE qualifier on the READ
command requests that when the end of file is reached, the command
interpreter transfer control to the line at the label NO _MORE. The
CLOSE command closes the input file.

CONTINUE

Format:

CONTINUE

Purpose:

The CONTINUE command resumes execution of a DIGITAL Com­
mand Language (DCL) command, a program, or a command pro­
cedure that was jnterrupted by pressing CTRL/Y or CTRL/C. The
CONTINUE command can also serve as the target command of an IF
or ON command ina command procedure,orfollowinga label thatis
the target of a GOTO command.

Example:

$RUN MYPROG
tY
$SHOWTIME

19-MAR-1980 13:40: 12
$ CONTINUE

Note that only a limited set of commands may be executed before a
continue command a.nd that a privileged program cannot be contin­
ued. The RUN command executes the program MYPROG.While the
program is running, pressing CTRL/Y interrupts the image. The
SHOW TIME command requests a display of the current date and
time. The CONTINUE command resumes the image.

50

DIGITAL Command Language

CONVERT

Format:

CONVERT input-tile-spec [, ...] output-tile-spec

Purpose:

This invokes the RMS CONVERT Utility, which copies trom one file to
another, changing the organization and record tormat to that ot the
second tile. Reter to the section on RMS Utilties in Chapter 12 tor more
details.

CONVERT/RECLAIM

Format:

CONVERT IRECLAI M tile-spec

Purpose:

This command invokes an RMS Utility to make empty buckets in Pro­
log 3 indexed tiles available so that new records can be written into
them. It all the records in the bucket have been deleted, that bucket is
locked until CONVERT IRECLAIM makes it available.

COpy

Format:

COpy input-tile-spec, ... output-tile-spec

Purpose:

The COpy command creates a new tile trom one or more existing tiles.
The COpy command can:

• Copy one tile to another tile
• Concatenate more than one tile into a single output tile

• Copy a group ot tiles to another group ot tiles

CREATE

Format:

CREATE file-spec

Purpose:

The CREATE command creates a sequential disk file trom records
that follow the command in the inputstream, or creates a directory file.

51

CREATE/FDL
Format:

DIGITAL Command Language

CREATE/FDL=fdl-file-spec [file-spec]

Purpose:

This command invokes the RMS utility for creating a new, empty data
file based on the specification of an FDL file. This is helpful when
creating more than one data file from a particular FDL specification.
Refer to Chapter 12 for more details.

DEALLOCATE
Format:

DEALLOCATE [device-name[:]]

Purpose:

The DEALLOCATE command returns a device that was reserved for
private use to the pool of available devices in the system.

DEASSIGN
Format:

DEASSIGN [logical-name!:]]

Purpose:

The DEASSIGN command cancels logical name aSSignments made
with the ASSIGN, DEFINE, ALLOCATE, or MOUNT commands.

DEBUG
Format:

DEBUG

Purpose:

The DEBUG command invokes VAX DEBUG after program execution
is interrupted by CTRL/C or CTRL/Y. The program image being inter­
rupted must contain the debugger; 'that is, the image was linked with
the /DEBUG qualifier arid/or run with the /DEBUG qualifier. Notice
that DBG> is the DEBUG prompt for a command.

DECK
Format:

DECK

Purpose:

The DECK command marks the beginning of an input stre?m for. a
command or program. The DECK command is reql!ir~d in command

52

DIGITAL Command Language

procedures when the first non-blank character in any data record in
the input stream is a dollar sign ($).

The DECK command must be pre,ceded by a $. Input records mayor
may not start with a $.

Example:

$ FORTRAN CERISE
$ LINK CERISE
$ RUN CERISE
$ DECK
Input line one .. .
Input line two .. .
$Input line ...

$EOD
$ PRINT SUMMARY.DAT

The FORTRAN and LINK commands compile and link program
CERISE. When the program is run, any data the program reads from
the logical device SYS$INPUT is read from the command stream. The
$DECK command indicates that the input stream may contain dollar
signs. The $EOD command signals end-of-file for the data.

DEFINE

Format:

DEFINE logical-name equivalence-name

Purpose:

The DEFINE command creates a logical name table entry and assigns
an equivalence name string to the specified logical ,n-ame. The DEFINE
command is similar in function to the ASSIGN command; however, its
primary purpose is to assign logical name/equivalence name pairs for
application-specific uses other than for logical file specification as­
signments.

DELETE

Format:

DELETE

Purpose:

file-spec, ...

The DELETE command deletes one or more files from a mass storage
disk volume.

53

DIGITAL Command Language

DELETE/ENTRY

Format:

DELETE/ENTRY=job number, ...

Purpose:

queue-name

The DELETE/ENTRY command deletes one or more entries from a
printer or batch job queue. The /ENTRY qualifier is required.

DElETE/SYM BOl

Format:

DELETE/SYMBOL

Purpose:

symbol-name

The DELETE/SYMBOL command deletes a symbol definition from a
local symbol table or from the global symbol table, or deletes all sym­
bol definitions in a symbol table. The /SYMBOL qualifier is required.

DEPOSIT

Format:

$ DEPOSIT

Purpose:

location=data, ...

The DEPOSIT command replaces the contents of a specified location
or locations in virtual memory.

The DEPOSIT command, together with the EXAMINE command, aids
in debugging programs interactively. The DEPOSIT command is simi­
lar to the DEPOSIT command of the VAX-11 Symbolic Debugger.

DIFFERENCES

Format:

DIFFERENCES

Purpose:

input-file-spec [compare-file-spec]

The DIFFERENCES command compares the contents of two disk files
and creates a listing of the records that do not match. If no specifica­
tion for a compare-file is entered, the command uses the next lower
version of the input file.

DIRECTORY

Format:

DIRECTORY [file-spec, ...]

54

DIGITAL Command Language

Purpose:

The DIRECTORY command provides a lists of files or information
about a file or group of files.

DISMOUNT

Format:

DISMOUNT device-name[:]

Purpose:

The DISMOUNT command releases a volume previously accessed
with a MOUNT command.

DUMP

Format:

DUMP file-spec

Purpose:

The DUMP command displays or prints the contents of a file or volume
in ASCII and a choice of decimal, hexadecimal, or octal data format.
The default format is hexadecimal.

EDIT

Format:

EDIT /editor file-spec

Purpose:

The EDIT command invokes one of the following VAX/VMS editors:

• EDT

• SOS

• SLP

The default editor is EDT.

EDIT/FDL

Format:

EDIT /FDL file-spec

Purpose:

EDIT /FDL invokes the file Definition Language (FDL) editor, which
allows the user to create and modify FDL files. FDL files provide the
specifications for RMS data files. For more information on FDL, refer
to Chapter 12 in this book.

55

EOD

Format:

EOO

Purpose:

DIGITAL Command Language

The EOO command signals the end of a data stream when a command
or program is reading data from an input device other than an interac­
tive terminal. This command is required only if the OECK command
preceded input data in the command stream, or if multiple input files
are contained in the command stream without intervening commands.
The program or command reading the data receives an end-of-file
condition when the EOO command is read.

The EOO command must be preceded by a $; the $ must be in the first
character position (column 1) of the input record.

Example:

$RUN MYPROG

first data file to be read by the program

$EOO

second data file to be read by the program

$ PRINT TESTOATA.OUT

The program MYPROG requires two input files; these are read from
the logical device SYS$INPUT. The EOO command signals the end of
the first data file and the beginning of the second. The next line that
begins with a dollar sign (a PRINT command in this example) signals
the end of the second data file.

EOJ

Format:

EOJ

Purpose:

The EOJ command marks the end of a batch job submitted through
the system card reader; An EOJ card is not required; however, if
present, the first non-blank character in the command line must be a
dollar sign ($). The EOJ command performs the same functions as the
LOGOUT command.

56

EXAMINE

Format:

EXAMINE

Purpose:

DIGITAL Command Language

location[: location]

The EXAMINE command displays the contents of virtual memory at
the terminal.

Example:

$RUN
tY

MYPROG

$ EXAMINE
00002678:
$ CONTINUE

2678
1F4C5026

The RUN command begins execution of the image MYPROG.EXE.
While MYPROG is running, the CTRL/Y interrupts its execution, and
the EXAMINE command requests a display of the contents of virtual
memory location hexadecimal 2678.

EXIT

Format:

EXIT [status-code]

Purpose:

The EXIT command terminates processing of the current command
procedure. If the command procedure was executed from within
another command procedure, control returns to the calling procedure.

When typed interactively, the EXIT command may be used to termi­
nate an image interrupted by CTRLlC or CTRL/Y. (See also STOP
command.)

In the EXIT command, the image's termination handlers are called,
whereas in STOP they are not. The EXIT command is the preferred
method of terminating an image interrupted by CTRL/C/CTRL/Y.

Example:

$@SUBTEST
$ IF $ST ATUS .EO. 7 THEN GOTO PROCESS

$ EXIT
$ PROCESS:

57

DIGITAL Command Language

This procedure executes a second procedure, named SUB­
TEST.COM. When SUBTEST.COM completes, the outer procedure
tests the value of the symbol $STATUS which may be set by SUBTEST
as follows:

$PATH1:

$ EXIT 7
$ PATH2:

$ EXIT 9

GOTO
Format:

GOTO label

Purpose:

The GOTO command transfers control to a labeled statement in a
command procedure.

Example:

$ IF P1.EQS. "HELP" THEN GOTO TELL
$ IF Pl.EQS. "THEN" GOTO TELL

$ EXIT
$ TELL:
$ TYPE SYS$INPUT

The IF command checks the first parameter passed to the command
procedure; if this parameter is the string HELP or is not specified, the
GOTO command is executed, and control is passed to the line labeled
TELL. Otherwise, the procedure continues executing until the EXIT
command is encountered. At the label TELL, a TYPE command dis­
plays data in the input stream that documents how to use the pro­
cedure.

58

HELP

Format:

HELP

Purpose:

DIGITAL Command Language

[keyword [keyword] ...]

The HELP command displays on the terminal information available in
the system HELP files; most notably about how to use DCl
commands. See Chapter 2 for more details about the HELP com­
mand.

IF

Format:

IF expression THEN [$] command

Purpose:

The IF command tests the value of an expression and executes a
command if the test is true. Any arithmetic or logical expression is
considered true if the result of the expression is an odd numeric value;
an expression is false if the result is an even value.

Example:

$ COUNT = 0
$ lOOP:
$ COUNT = COUNT + 1

$IF COUNT.lE.10 THEN GOTO lOOP
$ EXIT

This example shows how to establish a loop in a command procedure
using a symbol named COUNT and an IF statement that checks the
value of COUNT and performs an EXIT command when the value of
COUNT is greater than 10.

INITIALIZE

Format:

INITIALIZE device-name[:] volume-label

Purpose:

The INITIALIZE command formats and writes a label ona mass sto­
rage volume.

59

DIGITAL Command Language

INQUIRE

Format:

INQUIRE

Purpose:

symbol-name [prompt-string]

The INQUIRE command requests interactive assignment of a value for
a local or global symbol during the execution of a command pro­
cedure.

Example:

$ INQUIRE CHECK "Enter V[ES] to continue"
$IF .NOT.CHECK THEN EXIT

The INQUIRE command displays the following prompting message at
the terminal:

Enter V[ES] to continue:
The IF command tests the value entered. If it is an odd numeric value
or any non-quoted character string that begins with either a "T" or a
"V," the symbol CHECK will be considered true and the procedure will
continue executing. If it is an even numeric value, any nonquoted
character. string that begins with either an "N" or an "F," or a null
string, the symbol will be considered false and the procedure will exit.

JOB

Format:

JOB user-name

Purpose:

The JOB command identifies the beginning of a batch job submitted
through a system card reader.

Example:

$ JOB HIGGINS
$ PASSWORD HENRV
$ ON WARNING THEN EXIT
$ FORTRAN SVS$INPUT:AVERAGE
input statements for FORTRAN compiler

$ LINK AVERAGE
$ RUN AVERAGE
data records for program average

60

DIGITAL Command Language

$ PRINT AVERAGE
$EOJ

The JOB and PASSWORD cards identify and authorize the user HIG­
GINS to enter batch jobs. The command stream consists of a
FORTRAN command and FORTRAN source statements to be com­
piled. The file name AVERAGE following the device nameSYS$INPUT
provides the compiler with a file name for the object and listing files.
The output files are cataloged in the user HIGGINS' default directory.

If the compilation is successful, the LINK command creates an execut­
able image, and the RUN command executes it. Input for the program
follows the RUN command in the command stream. The last com­
mand in the job prints the program listing.

LIBRARY

Format:

LIBRARY libr~ry [file-spec, ...]

Purpose:

The LIBRARY command creates or modifies an object module library
or a macro library, or inserts, deletes, replaces, or lists modules, ma­
cros, or global symbol names in a library.

LINK

Format:

LINK file-spec, ...

Purpose:

The LINK command invokes the VAX-11 linker to link one or more
object modules into a program image and defines execution
characteristics of the image. See Chapter 4 for details about the linker.

LlNK/RSX11

Format:

LlNK/RSX11

Purpose:

file-spec, ...

The LlNK/RSX11 command invokes the RSX-11 M task builder to build
an RSX-11 M image.

61

DIGITAL Command Language

MAIL

Format:

MAIL [file-spec]

Purpose:

The MAIL command invokes the VAX/VMS personal mail utility. MAIL
can be used to correspond with other users on a system or on other
VAX systems via DECnet. With the servicesMAIL provides, the user
can:

• Send text, either messages created using MAIL or previously creat-
ed text files

• Select mail to read

• Delete mail
• File mail in user-named mail files

• Forward mail

• Print mail
• Reply to a mail message
• Peruse a directory of mail messages in the default mail file or one of

the user-named mail files

• Edit mail messages with the VAX/VMS editor of the users choice

Also, MAIL will broadcast a message on the receiving user's terminal
indicating that new mail has arrived and who it is from.

MeR

Format:

MCR [component[command-string]]

Purpose:

The MCR command provides a means of running RSX-11 M compo­
nents in a manner that is compatible with the RSX-11 M operating
system.

Examples:

1. $ MCR DSP MYFILE.DAT

The MeR command precedes a single RSX-11 M command.
When the command finishes, DCL prompts for another command.

2. $MCR
MCR>PIP MYFILE.DAT/SP
MCR>tz
$

62

DIGITAL Command Language

The MCR command requests activation of MCR command mode.
The MCR> prompt indicates that the MCR command interpreter
is ready to accept commands. After the PIP command executes,
MCR continues prompting until CTRL/Z is used to return to DCL.

MONITOR

Format:

MONITOR class-name

Purpose:

MONITOR is a VAX/VMS utility for monitoring operating system per­
formance. It collects system performance data by class and produces
two forms of optional output:
• a recording file

• statistical terminal display

For more information about the MONITOR Utility, refer to Chapter 16
of this book.

MOUNT

Format:

MOUNT device-name, ... [volume-label, ...][Iogical-name[:]]

Purpose:

The MOUNT command makes a volume and the files or data it con­
tains available for processing by system commands or user programs.

ON

Formats:

ON

ON

Purpose:

severity-level

CONTROL Y

THEN [$] command

THEN [$] command

The ON command defines the default courses of action when a com­
mand or program executed within a command procedure 1) encoun­
ters an error condition or 2) is interrupted by CTRL/Y. The specified
actions are taken only if the command interpreter is enabled for error
checking or CTRL/Y interrupts; these are the default conditions.

63

DIGITAL Command Language

Examples:

1. SON ERROR THEN GOTO BYPASS
$RUNA
$RUNB

$ EXIT
$ BYPASS: RUNC

If either program A or program B returns a status code with
severity level of error or severe error, control is transferred to the
statement labeled BYPASS.

2. $ ON CONTROL _ Y THEN GOTO CRTL EXIT

$CTRL_EXIT
$ CLOSE INFILE
$ CLOSE OUTFILE
$ EXIT

The ON command specifies action to be taken when CTRL/Y is
pressed during the execution of this procedure. When CTRL/Y is
pressed, the GOTO command that transfers control to the line
labeled CTRL_EXIT is executed. At this label, the procedure per­
forms clean-up operations, in this example, closes files and exits ..

OPEN
Format:

OPEN

Purpose:

logical-name file-spec

The OPEN command opens a file for reading or writing at the com­
mand level.

Example:

$ OPEN INPUT_FILE AVERAGE.DAT
$ READ_LOOP:
$ READ/END_OF _FILE=ENDIT INPUT FILE NUM

$ GOTO READ LOOP
$ ENDIT:
$ CLOSE INPUT FILE

64

DIGITAL Command Language

The OPEN command opens the file named AVERAGE.DAT as an input
file and assigns it the logical name INPUT_FILE. The READ comman9
reads a record from the logical file INPUT_FILE into the symbol named
NUM. The procedure executes the lines between the labels
READ LOOP and ENDIT until the end of the file is reached. At the end
of the file, the CLOSE command closes the file.

PASSWORD

Format:

PASSWORD

Purpose:

password

The PASSWORD command specifies the password associated with
the user name specified on a JOB card for a batch job submit~ed
through the system card r~ader.

Example:

$JOB JOHN
$ PASSWORD BYRON

$EOJ

The JOB and PASSWORD commands precede a batch job submitted
from the card reader. An EOJ command marks the end of the job.

PHONE

Format:

PHONE [phone-comand]

This invokes the VAX/VMS PHONE Utility, which allows users on a
system to "talk" via their terminals to one another or to any user on
another VAX System connected by DECnetlVAX.

PRINT

Format:

PRINT

Purpose:

file-spec, ...

The PRINT command queues one or more files for printing, either on a
default system printer or on a specified device.

65

DIGITAL Command Language

PURGE
Format:

PURGE

Purpose:

file-spec, ...

The PURGE command deletes all but the highest numbered version or
versions of a specified file or files.

READ
Format:

READ

Purpose:

logical-name symbol-name

The READ command reads a single record from a specified input file
and assigns the contents of the record to a specified symbol name.

Example:

$ OPEN IN NAMES.DAT
$ LOOP:
$ READ/END_OF _FILE= ENDIT IN NAME

$ GOTO LOOP
$ ENDIT:
$CLOSE IN

The OPEN command opens the file NAMES.DAT for input and assigns
it the logical name of IN. The READ command specifies the label
ENDIT to receive control when the last record in the file has been read.
The procedure loops until all records in the file have been processed.

RENAME
Format:

RENAME

Purpose:

input-file-spec output-file-spec

The RENAME command changes the directory name, file name, file
type, or file version of an existing disk file.

REQUEST
Format: .

REQUEST message-text

66

DIGITAL Command Language

Purpose:

The REQUEST command displays a message at a system operator's
terminal, and optionally requests a reply. System operators are identi­
fied by the function(s) they perform; if more than one operator is
designated for a particular function, all receive the specified message.

RUN (Image)

Format:

RUN file-spec

Purpose:

The RUN command places an image into execution in the process.

SEARCH
Format:

SEARCH file-spec [, ...] string

Purpose:

The SEARCH command allows users to search one or more file for an
occurance of a specified string. It will list all occurances on the user's
terinal or, optionally, in an output file.

SET
Format:

SET option

where the options are

CARD READER
COMMAND
[NO]CONTROL_Y
DEFAULT
MAGTAPE
MESSAGE
[NO]ON
PROCESS
PROTECTION
QUEUE
RMS DEFAULT
TERMINAL
[NO]VERIFY
WORKING SET

67

DIGITAL Command Language

Purpose:

The SET command defines or changes, for the current terminal ses­
sion or batch job, characteristics associated with files and devices
owned by the process.

1) SET CARD_READER

Format:

SET CARD READER

Purpose:

device-name

The SET CARD READER command defines the default translation
mode for cards read into a system card reader. All subsequent input
read into the specified card reader will be converted using the speci­
fied mode.

SET COMMAND

Format:

SET COMMAND file-spec [, ...]

Purpose:

SET COMMAND invokes the VAX-11 Command Definition Utility to
add commands that are defined in the specified command description
file to your process command set or a command tables file.

2) SET CONTROL _ Y

Format:

SET [NO]CONTROL _ Y

Purpose:

The SET CONTROL Y command controls whether the command in­
terpreter receives control when CTRLlY is pressed.

3) SET DEFAULT

Format:

SET DEFAULT device-name

Purpose:

The SET DEFAULT command changes the default device and/or
directory name for the current process. The new default is applied to
all subsequent file specifications that do not explicitly give a device or
directory name.

When the default device assignment is changed, the system equates
the specified device with the logical name SYS$DISK.

68

DIGITAL Command Language

4) SET MAGTAPE

Format:

SET MAGTAPE device-name[:]

Purpose:

The SET MAGTAPE command defines the default characteristics as­
sociated with a specific magnetic tape device for subsequent file oper­
ations. The SET MAGTAPE command is valid for tape devices that do
not currently have volumes mounted on them, or on which foreign
volumes are mounted.

5) SET MESSAGE

FORMAT:

SET MESSAGE

Purpose:

The SET MESSAGE command allows selection of which fields of the
message get printed.

6) SETON

FORMAT:

SET [NO]ON

Purpose:

The SET ON command controls whether the command interpreter
performs error checking following the execution of commands in com­
mand procedures.

Example:

$SET NOON
$ DELETE *.SAV;*
$ SET ON
$ COpy *.OBJ *.SAV

This command procedure routinely copies all object modules into new
files with file types of .SAV. The DELETE command deletes all existing
files with that file type, if any. The SET NOON command ensures that
the procedure will continue execution if there are not currently any
files with that file type. Following the DELETE command, the SET ON
command restores error checking. Then the COpy command makes
copies of all existing files with file types of .OBJ.

69

DIGITAL Command Language

7) SET PROCESS

Format:

SET PROCESS

Purpose:

[process-name]

The SET PROCESS command changes execution characteristics as­
sociated with a process for the current terminal session or job.

8) SET PROTECTION

Format:

SET PROTECTION[=code]

Purpose:

[file-spec, ...]

The SET PROTECTION command establishes the protection to be
applied to a particular file or a group of files, or establishes the default
protection for all files subsequently created during the terminal
session or batch job. The protection for a file limits the type of access
available to other system users.

9) SET QUEUE/ENTRY

Format:

SET QUEUE/ENTRY=jobid [queue-name]

Purpose:

The SET QUEUE command changes the current status or attributes of
a file that is queued for printing or for batch job execution but not yet
processed by the system.

10) SETRMS_DEFAULT

Format:

SET RMS DEFAULT

Purpose:

The SET RMS _ DEFAULT command defines default values for the mul­
tiblock and multibuffer counts used by the VAX-11 RMS (Record Man­
agement Services) for file operations. Defaults can be set for sequen­
tial or relative files on a process-only or system-wide basis.

11) SETTERMINAL~

Format:

SET TERMINAL [device-name]

70

DIGITAL Command Language

Purpose:

The SET TERMINAL command changes the characteristics of a speci­
fied terminal.

12) SET VERIFY

Format:

SET [NO]VERIFY

Purpose:

The SET VERIFY command controls whether or not command lines in
command procedures are displayed at the terminal or printed in a
batch job log.

Example:

$SETVERIFY

$ SET NOVERIFY
$ EXIT

The verification setting is turned on for the execution of a command
procedure. The system displays all the lines in the procedure,
including command lines, as it reads them. At the end of the pro­
cedure, the SET NOVERIFY command restores the system default.

13) SETWORKING_SET

Format:

SET WORKING SET

Purpose:

The SET WORKING SET command redefines the default working set I
size for the process 'Or sets an upper limit to which the working set size I
can be changed by an image that the process executes.

SHOW

Format:

SHOW

Options
[DAY]TIME
DEFAULT
DEVICES
LOGICAL

option

71

DIGITAL Command Language

MAGTAPE
NETWORK
PRINTER
PROCESS
PROTECTION
QUEUE
RMS DEFAULT
STATUS
SYMBOL
SYSTEM
TERMINAL
TERMINAL PERMANENT
TRANSLATION
WORKING SET

Purpose:

The SHOW command displays information about the current status of
the process, the system, or devices in the system.

1) SHOW DAYTIME

Format:

SHOW [DAY]TIME

Purpose:

The SHOW DAYTIME command displays the current date and time in
the default output stream.

2) SHOW DEFAULT

Format:

SHOW DEFAULT

Purpose:

The SHOW DEFAULT command displays the current default device
and directory name. These defaults are applied whenever a device
and/or directory name from a file specification is omitted.

The default disk and directory are established in the User Authoriza­
tion File. They can be changed during a terminal session or in a batch
job with the SET DEFAULT command, or by reassigning the logical
name SYS$DISK.

3) SHOW DEVICES

Format:

SHOW DEVICES

72

DIGITAL Command Language

Purpose:

The SHOW DEVICES command displays the status of all devices in the
system, the status of a particular device, or lists the devices that cur­
rently have volumes mounted on them and/or are allocated to
processes.

The information displayed includes:

• Device name
• Device status (indicates whether the device is online)

• Device characteristics (indicates whether the device is allocated or
spooled, has a volume mounted on it or has a foreign volume
mounted on it)

• Error count
• Volume label (for disk and tape volumes only)

• Number of free blocks on the volume

• Transaction count
• Number of mount requests issued for the volume (disk devices only)

4) SHOW LOGICAL

Format:

SHOW LOGICAL [Iogical-name[:]

Purpose:

The SHOW LOGICAL command displays all logical names in one or
more logical name tables; or displays the current equivalence name
assigned to a specified logical name by the ASSIGN, ALLOCATE,
DEFINE, or MOUNT commands.

5) SHOW MAGTAPE

Format:

SHOW MAGTAPE device-name[:]

Purpose:

The SHOW MAGTAPE command displays the current characteristics
and status of a specified magnetic tape device, including device type,
density, and format.

6) SHOW NETWORK

Format:

, SHOW NETWORK

Purpose:

The SHOW NETWORK command displays the availability of the local

73

DIGITAL Command Language

node as a member of the network and the names of all nodes that are
currently accessible by the local node.

7) SHOW PRINTER·

Format:

SHOW PRINTER [device-name[:]]

Purpose:

The SHOW PRINTER command displays the default characteristics
currently defined for a system printer; for example, tthe device type,
column-width, lines per page, and if it is currently spooled to any
device.

8) SHOW PROCESS

Format:

SHOW PROCESS

Purpose:

The SHOW PROCESS command displays information about the cur­
rent process, including:

• Date and time the SHOW PROCESS command is issued

• Device name of the current SYS$INPUT device

• User name
• Process identification number

• Process name
• User identification code (UIC)

• Base execution priority

• Default device

• Default directory

• Devices allocated to the process and volumes mounted, if any

9) SHOW PROTECTION

Format:

SHOW PROTECTION

Purpose:

The SHOW PROTECTION command displays the current file protec­
tion to be applied to all new files created during the terminal session or
batch job. The default protection can be changed at any time with the
SET PROTECTION command.

74

DIGITAL Command Language

10) SHOW QUEUE

Format:

SHOW QUEUE

Purpose:

[queue-name[:]]

The SHOW QUEUE command displays the current status of entries in
the printer and/or batch job queues.

11) SHOW QUOTA

Format:

SHOW QUOTA

Purpose:

Displays the current disk quota that is authorized and used by a spe­
cific user on a specific disk.

12) SHOW RMS_DEFAULT

Format:

SHOW RMS DEFAULT

Purpose:

The SHOW RMS DEFAULT command displays the current default
multi block count and multibuffer count that VAX-11 RMS (Record
Management Services) uses for file operations.

13) SHOW STATUS

Format:

SHOW STATUS

Purpose:

The SHOW STATUS command displays the status of the image cur­
rently executing in the process, if any. The SHOW STATUS command
is issued after execution has been interrupted by entering a CTRLlC. It
does not affect the image; execution of the image can be continued
after displaying its status.

The information displayed by the SHOW STATUS command includes:

• Current time and date
• Elapsed CPU time used by the current process

• Number of page faults

• Open file count

• Buffered I/O count

• Direct I/O count

75

DIGITAL Command Language

• Current working set size

• Current amount of physical memory occupied

14) SHOW SYMBOL

Format:

SHOW SYMBOL symbol-name

Purpose:

The SHOW SYMBOL command displays the current value of a local or
global symbol. Symbols are defined with assignment statements (=
command), by passing parameters to a command procedure file, or
by the INQUIRE or READ commands.

15) SHOW SYSTEM

Format:

SHOW SYSTEM

Purpose:

The SHOW SYSTEM command displays a list of processes in the
system and the following information about the status of each:

• Process identification

• Process name

• User identification code

• Process state

• Current priority

• Direct 1/0 count*

• Elapsed CPU time*

• Number of page faults*

• Physical memory occupied*

• Process indicator**

* This information is displayed only if the process is currently in the balance
set; if the process is not in the balance set, these columns contain the mes­
sage:

-- swapped out--

** The letter B indicates a batch job; the letter S indicates a subprocess; the
letter N indicates a network process.

16) SHOW TERMINAL

Format:

SHOW TERMINAL [device-name]

76

DIGITAL Command Language

Purpose:

The SHOW TERMINAL command displays the current characteristics
of a specific terminal. Each of these characteristics can be changed
with a corresponding option of the SET TERMINAL command.

17) SHOW TRANSLATION

Format:

SHOW TRANSLATION logical-name

Purpose:

The SHOW TRANSLATION command searches the process, group,
and system logical name tables, in that order, for a specified logical
name and returns the equivalence name of the first match found.

18) SHOW WORKI N G _SET

Format:

SHOW WORKING SET

Purpose:

The SHOW WORKING_SET command displays the working set quota
and limit assigned to the current process.

SORT

Format:

SORT

Purpose:

input-file-spec output-fi Ie-spec

The SORT command invokes the VAX SORT IMERGE utility to reorder
the records in a file into a predefined sequence, and to create either a
new file of the reordered records or an address file by which they can
be accessed.

If SORT IRSX11 is used, the PDP-11 SORT utility is invoked.

STOP

Format:

STOP [process-name]

Purpose:

The STOP command terminates execution of:

• A command, image, or command procedure that was interrupted by
CTRL/Y

77

DIGITAL Command Language

• A command procedure

• A subprocess or a detached process

See also EXIT command.

Example:

O. $ ON ERROR TI:tEN STOP

In a command procedure, the ON command establishes a default
action when any error occurs as a result of a command or pro­
gram execution. The STOP command stops all command levels: if
this ON command is executed ina command procedure that is
executed from within another procedure, control does not return
to the outer procedure, but to the command interpreter.

SUBMIT

Format:

SUBMIT file-spec, ...

Purpose:

The SUBMIT command enters a command procedure in the batch job
queue.
SYNCHRONIZE
Format:

SYNCHRONIZE [job-name]

Purpose:

The SYNCHRONIZE command places the process issuing this com­
mand in a wait state until a specified batch job completes execution.

Example:

$ SUBMIT INAME= PREP FORMAT IPARAM ETERS =
(SORT,PURGE)
$ SUBMIT PHASER

The first SUBMIT command submits the command procedure FOR­
MAT.COM for execution and gives the job the job name PREP. The
second SUBMIT command queues the procedure PHASER.COM. The
procedure PHASER.COM contains the line:

$ SYNCHRONIZE PREP

When this line is processed, the system verifies whether the batch job
name PREP is currently executing. If it is, the procedure PHASER is
forced to wait until PREP completes execution.

78

DIGITAL Command Language

TYPE
Format:

TYPE

Purpose:

file-spec, ...

The TYPE command displays the contents of a file or group of files on
the current output device.

UNLOCK

Format:

UNLOCK

Purpose:

file-spec, ...

The UNLOCK command makes accessible a file that became inacces­
sible as a result of being improperly closed. This can only happen with
compatibility mode images.

WAIT

Format:

WAIT delta-time

Purpose:

The WAIT command places the current process in a wait state until a
specified period of time has elapsed. The WAIT command is provided
for use in command procedures to delay processing of the procedure
or of a set of commands in a procedure for a specific amount of time.

Example:

$ LOOP:
$ RUN ALPHA
$WAITOO:10
$GOTO LOOP

The command procedure executes the program image ALPHA. After
the RUN command executes the program, the WAIT command delays
execution of the next command for 10 minutes. After 10 minutes, the
GOTO command executes the program again. The procedure loops
until interrupted or terminated.

If the procedure is executed interactively, it can be terminated by
pressing CTRLlC or CTRL/Y and issuing the EXIT command or anoth­
er DIGITAL Command Language command that runs a new image in
the process. If the procedure is executed in a batch job, it can be
terminated with the DELETE/ENTRY command.

79

WRITE

Format:

WRITE

Purpose:

DIGITAL Command Language

logical-name data, ...

The WRITE command writes a record to a specified output file.

Example:

$ WRITE SYS$OUTPUT "Beginning second phase of tests"

The WRITE command writes a single line of text to the current output
device. This command is particularly useful for displaying information
on the terminal from a command procedure.

80

81

CHAPTER OVERVIEW
Special notice needs to be given to some of the important program­
ming support facilities of a VAX/VMS operating system. Three text
editors-interactive and batch-are described with examples in this
chapter. The linker, a crucial VAX/VMS utility, is explained. VAX DE­
BUG can help programmers step through their code to detect and
correct logical and coding errors. The extensive VAX Run-Time Libra­
ry, which holds coded algorithms ready for linking into user
processes, is treated, as is the DIGITAL Standard RUNOFF utility.

Topics include:

• Text Editors

• The Linker

• VAX DEBUG
• The VAX Run-Time Library

• The DIGITAL Standard RUNOFF Utility

• VAX-11 SORT/MERGE
• Optional Code Management System

82

CHAPTER 4

PROGRAMMING SUPPORT FACILITIES

INTRODUCTION
The VAX/VMS operating system provides a complete program de­
velopment environment for the user. Development tools supporting
this environment are interactive and batch text editors, a linker, a
librarian, an interactive program debugger, and the differences utili­
ty. These tools, as well as program language compilers, are avail­
able to the programmer via the command language facility.

The text editors can be used to create memos, documentation, and
text and data files, as well as source program modules for any
language processor. The linker, librarian, debugger, and Run-Time

/ Library are used only in conjunction with the language processors
that produce native code. Each of the support utilities is described
below, with the exception of the librarian, which is discussed in
Chapter 3, The DIGITAL Command Language.

TEXT EDITORS
The VAX/VMS operating system supports three text editors: two
interactive text editors (EDT and SOS) and a batch-oriented text
editor (SLP). Text editing refers to the process of creating, modify­
ing, and maintaining files.

The user invokes the EDT and SOS text editors interactively with the
computer system. That is, the user creates and processes files
online. The SLP text editor, on the other hand, allows direct modifi­
cation to an information file via an instrucHon'file prepared by the
user. In addition, SLP generates a formal and complete record of
changes to a file including time of occurrence. SOS is often used to
create SLP command files. All editors are invoked by the command
language command EDIT. The default editor is EDT. Therefore, to
invoke EDT, enter EDIT or EDIT/EDT; to invoke SOS, enter the com­
mand EDIT/SOS; to invoke SLP, enter EDIT/SLP.

THE EDT EDITOR
EDT, the DIGITAL standard Editor, lets users enter and manipulate
text and programs. It is used to view and modify a file directly.

With its extensive HELP facility, the EDT editor is designed to be
learned by novices. In addition, it provides many capabilities that
will appeal to advanced users.

83

Programming Support Facilities

What EDT Does
EDT is a powerful text editor that provides:

• Both line and character editing facilities

• Screen editing using the keypad on VT52 and VT100 video terminals

• The abiliiy to work on multiple files simultaneously

• A journaling facility which protects against loss of edits due to sys­
tem crashes

• An extensive HELP facility

• A default start-up command file, which allows a choice of editing
options to be set automatically

• A window into a file (on VT52 and VT100 terminals only) that lets
users view changes in buffer contents immediately

• Shareable installation for multiple users

EDT is also supported on hardcopy terminals, but it does not provide
the window on a file.

Buffers
. All editing with EDT is done using 'buffers'. A buffer is a part of EDT's
memory that can hold an essentially unlimited amount of text. When a
user begins editing, the input file is read into the MAIN buffer, and
when editing is complete, the MAIN buffer is written onto the disk as a
file. Thus, editing in the MAIN buffer is like editing a file directly.

Editing with a Window
'Window editing' is a valuable feature that lets the user edit one 22-line
window (screenful) at a time. This feature allows the user to see im­
mediately how the edits made affect the buffer. The window moves
through the buffer so that the cursor is always visible.

Start-Up File
When a user starts EDT, the editor checks to s.ee if the user created a
start-up file. Editing options, such as SET MODE CHANGE and
DEFINE KEY, can be inserted in the start-up file. These options take
effect automatically when an editing session begins.

HELP Facilities
The HELP facilities on EDT are extensive. A user can get help on
general EDT operations by typing HELP. If help is needed while in
keypad mode, pressing the help key displays information' that is spe­
cific to keypad editing. The help information is tree-structured, so that
more specific help can be obtained on a general topiC.

84

Programming Support Facilities

Redefining Keypad Keys
A user can redefine any of the keypad keys and most of the control
(CTRL) keys on VT52 and VT100 terminals. With this feature, a series
of commands can be assigned to a key. EDT then performs these
commands when the key is pressed.

The SET and SHOW Commands
The SET command, with a variety of qualifiers, affects EDT's editing
capabilities. SET controls screen parameters such as line width. SET
also lets the user determine the appearance of text, such as changing
the window size to less that 22 lines. The SHOW command provides
information on the current state of the editor, such as terminal param­
eters, definitions of keypad keys, and the names of buffers in use
during an editing session.

Journal Processing
Journal processing protects the user's work against system crashes.
During an editing session, EDT saves all the input from a terminal in a
journal file. After a crash and recovery, the user can retrieve and
execute commands in this saved file with the IRECOVER option. In
this way, a file can be recovered to nearly the time of the crash.

EDT MODES OF OPERATION

Keypad and Line Editing
With EDT there is a choice of keypad or line mode editing. They allow
the user to:

• Display a range of lines

• Find, substitute, insert, and delete text

• Move, copy, and renumber lines

• Copy text into a buffer and write it on files

• Define the functions of keys

Keypad editing is available on VT52 and VT100 terminals. The group
of keys at the right of the keyboard are used to enter keypad functions.

Keypad editing is powerful and versatile, yet it is easy to learn and use.
In keypad editing, the active buffer is displayed on the screen as the
user edits. There is a wide variety of keypad editing functions, each of
which requires that only one or two keypad keys be pressed to per­
form a function. The user enters commands, inserts text, and per­
forms CONTROL functions from the keyboard.

Line editing is useful for those users who have hardcopy terminals or
who prefer editing by numbered lines. In line editing, all entries are
made from the keyboard. As the user makes changes to the contents
of the buffer, EDT displays one or more lines at a time.

85

Programming Support Facilities

Keypad Layout
Keypad functions allow the user to perform a variety of operations with
a single keystroke. Using the DEFINE KEY command, the function of
any keypad key can be changed. The Figure 4-1 shows the default
keypad for the VT 1 00:

Backspace

Delete

Linefeed

CTRLlA

CTRLlD

CTRLlE

CTRLlK

CTRLlT

CTRLlU

CTRLlW

CTRLlZ

Gold Help

Page Sect

Command Fill

Advance Backup

Bottom Top

Word Eol

Chngcase Del Eol

Line

Open Line

Figure 4-1

Fndnxt Del L

Find Und L

Append DelW

Replace UndW

Cut Del C

Paste Und C

Char
Enter

Spec ins

Select Subs

Reset

VT100 Keypad

Go to the beginning of line

Delete character

Delete to start of word

Compute tab level

Decrease tab level

Increase tab level

Define key

Adjust tabs

Delete to start of line

Refresh screen

Return to line mode

The commands in keypad editing let the user alter or change the
cursor position in the buffer. Some of the keypad functions let the user
advance or back up the cursor to the top or bottom of the text. The
cursor may also be moved any number of characters, words, lines, or
pages at a time.

Keypad keys let the user select a string of text and move it elsewhere
in any of the user's buffers. The next occurence of a certain piece of
text can be found and deleted or replaced. There is also a key to press
for help messages.

86

Programming Support Facilities

A SAMPLE SESSION WITH EDT
To begin an editing session with EDT, the user logs in and types EDIT
or EDIT IEDT. A prompt appears to let the user start the editor:

$ EDIT <RET>
$-File:

Creating a File
To create a file, type the file name after the prompt:

$-File: TEST <RET>

EDT notifies the user that no file with that name exists by responding:

Input file does not exist
[EDS]

[EDS] means the "End of the Suffer" in the MAIN buffer. The asterisk
prompt indicates that EDT is in line mode. When EDT is in line mode,
the buffer can be edited by individual lines.

Entering Text in Line Mode
The first entry in the buffer is an insertion. When "i" is typed to insert
and then the RETURN key is pressed, any text entered is indented two
tab spaces.

*i<RET>

[EDS]

'Twas brillig, and the slithy toves<RET>
Did gyre and gimble in the wabe;<RET>
All mimsy were the borogoves,<RET>
And the mome raths outgrabe<RET>
tz

tz (CTRL/Z) is typed to save insertions.

Range Specifications in Line Mode
A range specification expresses the part of the buffer on which a
command is to operate. There are various ways of expressing range
specifications in line mode. Some examples follow:

1. Type the whole buffer.

*tw<RET>
1
2
3
4

[EOS]

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

87

Programming Support Facilities

2. Type the second line.

*2<RET>
2 Did gyre and gimble in the wabe;

3. Type the rest of the buffer.

*t r<RET>
2 Did gyre and gimble in the wabe;
3 All mimsy were the borogoves,
4 And the mome raths outgrabe.

[EOB]

4. Type every line in the buffer that contains the word "and."

*t all 'and'<RET>
1 'Twas brillig, and the slithy toves
2 Did gyre and gimble in the wabe;
4 And the mome raths outprabe.

Deleting and Replacing Text
Range specifications are useful not only for displaying lines but also
for manipulating text. The following examples show how to delete and
replace text in the buffer.

The /QUERY option (fQ) can be used to decide whether or not to
change individual lines. EDT responds to the /QUERY option with a ?
prompt. A carriage return after this prompt causes EDT to print help
information.

1. Suppose the user wants to delete either line 2 or 3. The /QUERY
option can be used to read them ·f~rst.

*D2:3/Q<RET>
2 Did gyre and gimble in the wabe;

?<RET>
Please answer Y(es), N(o), Q(uit), or A(II)
?N

3 AU mimsy were the borogoves,
?Y<RET>
1 line deleted

4 And the mome raths outgrabe.

88

Programming Support Facilities

Notice that EDT displays the next line in the text. The file now looks like
this:

1. *tw<RET>
1
2
4

[EOB]

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
And the mome raths outgrabe.

The line numbers can be resequenced in the buffer with the following
command:

1. *res 1 :4<RET>
3 lines resequenced

EDT checks lines 1 through 4 and renumbers them in increments of 1.
In this case, simply typing res<RET> would have done as well, since
the resequence command defaults to the whole buffer.

2. Replace the new line 3 with two more lines.

*re 3<RET>
1 Ii ne deleted

tz
[EOB]
*

While grimply at her terminal
The snofu mumped agrabe.

Notice that the·REPLACE command deletes the line you specify and
puts EDT in the insert level of line mode. Exiting with CTRLlZ confirms
that the text is to be inserted. The file now looks like this:

1. *t w
1
2
3
4

[EOB]
*

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.

Entering Change Mode
For a VT52 or VT100 terminal, the easiest way to edit a file is with
keypad functions. The default mode can be reset for video terminals
with the SET KEYPAD command. When the user types an abbreviation
for change mode (C, CH, or CHA) he or she automatically enters the
keypad submode of change mode:

*CH<RET>

89

Programming Support Facilities

The screen clears, and then the contents of the buffer appear in the
upper left of the screen. The cursor appears as an underscore under
the first character in the file. The cursor appears on the first character
in the buffer. Everything typed at this pOint is inserted directly into the
buffer.

Using the Keypad
To move the cursor to the bottom of the buffer, the GOLD key is
pressed and then the BOTTOM key. The buffer appears as shown:

This is Line 1.
rEOB]

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.

Any characters that typed on thema:in keyboard are inserted before
the cursor:

But none was more beguiling<RET>
Than keypad EDT.<RET>
[EOB]

If the up-arrow key is pressed twice, the cursor will be moved up two
lines. The screen would then look like this:

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.
But none was more beguiling
Than keypad EDT .
rEOB]

A section of text can be moved about in the buffer with the CUT and
PASTE commands. The following shows how to move the last two lines
to the beginning of the buffer:

1. Mark the start of the lines by pressing the SELECT key

2. Move the cursor to the end of the lines (just above rEOB]) by
pressing the down arrow key twice

3. Press the CUT key to insert the two lines into the paste buffer. The
lines will disappear from the screen

4. Move the cursor to the top of the file by pressing the GOLD key
and then the TOP key

90

Programming Support Facilities

5. Press the GOLD key and then the PASTE key to place the
contents of the paste buffer at the start of the buffer being edited

The file now looks like this:

But none was more beguiling
Than keypad EDT.
'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.

[EOB]

The GOLD and PASTE keys can be pressed for as many times as
these two lines are to be duplicated.

Returning to Command Level
To write out the buffer and exit change mode, the user enters a
CTRLlZ. This returns the user to the asterisk prompt in line mode.
Next, the"user types "EX" (for EXIT) after the prompt:

*EX<RET>

Typing EXIT displays a message on the status of the file just edited:

DBA 1 :[USER]TEST.;1 7 lines
$

If the file is a practice file, the user types "QUIT" instead:

*QUIT<RET>

QUIT returns the user to the operating system's command level
prompt without writing out the MAIN buffer.

THE SOS EDITOR
The SOS editor is a line-oriented, interactive text-editing program. It
has features that allow examination and modification of text, character
by character. The SOS editor can be used to perform the following
functions:

• Examine, create, and modify ASCII files

• Search for and/or change one or more arbitrary text strings, with the
option to verify each change before it is made

• Merge parts of one file into another

• Create a file that is a subset of another file

91

Programming Support Facilities

Because the SOS editor is line-oriented, it operates with line-num­
bered text files. If a file is edited that does not contain line numbers,
the editor adds line numbers to the text lines. The SOS editor requires
the maintenance of line numbers within the file. For most SOS com­
mands, a line number or range of line numbers specifies the text to be
operated on. When commanded to insert, delete, move, or copy text,
The SOS editor maintains line numbers in ascending order within
each page of text.

In certain modes of operqtion, the SOS editor responds on a charac­
ter-by-character basis. For example, one SOS feature that exhibits
this character-by-character interactivity is the Alter mode. This special
mode permits interactive changes within a line of text. Alter mode has
its own commands and syntax; it functions essentially as an editor
within an editor.

Advanced features of SOS allow considerable flexibility in searching
for a string of text and allow specification of blocks of text by content,
instead of by line number. SOS features many user-controlled default
values.

Initiating and Terminating SOS
The SOS editor is initiated by entering one of the following commands
in response to the command language prompt:

$ EDIT /SOS file-spec <RET>

To terminate SOS, enter the command E (EXIT) after the SOS editor's
prompt
(*):

*E<RET>
[file-spec]

$

Upon terminating, the editor writes an output file containing all the
modifications made in editing the file. The original file is not changed.
The specifier that the SOS editor usesfor the output file has a version
number higher by 1 than the latest version of the original file.

SOS Modes of Operation
The SOS editor is capable of operating in various modes. A mode of
operation is a state in which the editor interprets terminal inputin a
distinctive way. Edit mode is the foundation of SOS, from which the
other modes can be accessed. The SOS editor can be initiated as
follows:

92

Programming Support Facilities

• Input mode-allows the insertion of one or more new lines of text
into a file. Input mode is entered either directly via the command
language or via the Edit mode

• Edit mode-allows extensive modification, additions to, and dele-
tions from an existing file

The SOS editor includes many advanced features. These features
allow the user to search through files without editing, copy parts of
files, alter individual lines interactively, and decide on text
substitutions interactively.

Input Mode
The SOS Input mode is used for creating new files or adding lines to a
file. Input may be entered either directly via the command language or
via the Edit mode. SOS Input mode is invoked if the file being refer­
enced does not exist. Therefore, SOS creates a file with the specified
name and waits to process input entry as illustrated below:

$ EDIT /SOS NEW.FOR <RET>
SOS VERSION V02.02D2

INPUT:SYSO:[TERRY]NEW.FOR.1
00100

The SOS editor prints the word INPUT before the file-spec, indicating
that it is creating a new file and operating within the Input mode. While
in the Input mode, SOS prompts the user by printing the line number
of the line to be entered. The user must terminate each new line of text
with a carriage return character, <RET>. To correct typing errors
while entering text, use the terminal control characters described in
Chapter 3.

After completing the input process, switch to Edit mode by entering an
escape character, <ESC>. The escape character on other terminals
may appear as either AL Tmode or SELect. The escape character may
be entered either at the end of a line of input or after SOS prompts with
the next line number. The SOS editor follows the user-entered escape
character by printing an asterisk (*), indicating Edit mode.

While in Edit mode, modifications may be made to the new file by
using other Edit mode commands or Alter mode commands. Upon
completion of all modifications, SOS can be terminated by entering
the E command. If it is necessary to enter lines of text into an existing
file, use either the Input or Replace commands in the Edit mode.

Edit Mode
The Edit mode constitutes the major part of the SOS editor. With the
exception of the Read-only mode, the user is able to switch to any of

93

Programming Support Facilities

the other modes of operation from the Edit mode and return. SOS
accepts 24 commands in Edit mode, many of which can be represent­
ed by a single character. Table 4-1 describes each of the Edit mode
commands.

To initiate SOS in Edit mode, enter the file-spec of an existing file
either on the Edit command line or in response to the SOS prompt as
illustrated below:

$ EDIT/SOS <RET>
SOS VERSION V02.02D2
File:PROG2.COB<RET>

EDIT:SYO:[EMIL Y]PROG2.COB.4

Table 4-1 Common Edit Mode Commands

Form Command

Copy

Description

C

D

E

F

H

N

tJ

R

Delete

End

Find

Help

Input

reNumber

Print

Replace

94

Copy a range of lines to another
place within a file, or from
another file

Delete a range of lines

Terminate SOS, return to com­
mand language monitor

Search for the occurrence of
one or more specified strings of
text

Print HELP facility on terminal

Enter Input mode to insert lInes
of text

Renumber a range of lines

Print a range of lines on the ter­
minal

Delete atange of lines and enter
Input mode

Programming Support Facilities

Table 4-1 Common Edit Mode Commands

Form Command Description

S

T

W

<RET>

<ESC>

Substitute

Transfer

Save World

SOS Examples

Copy command
1) C300,9000:95000

Replace one or more text
strings with other string(s) in a
range of lines

Copy a range of lines to a new
location and delete the original
lines

Write a new file containing all
the changes made so far and
continue editing

Print next line

Print previous line

Make a copy of lines numbered 9000-9500 and insert the
lines after line 300.

Delete command
1) 01700:1750

Delete lines numbered 1700 through 1750.

2) 0400
Delete line numbered 400.

Find command
1) Fmore<ESC>

Search for "more" from the current point in the file.

2) Fmore<ESC>,1:1000
Search for the first occurrence of "more" in the range of lines
from 1 through 1000.

95

Programming Support Facilities

Input command
1) 11200,S

Insert lines following line 1200 with new lines being numbered
with increment S.

Print command
1) PSOO:800

Print lines SOO through 800.

2) P1800
Print line numbered 1800.

Replace command
1) R1700:17S0,S

Delete lines 1700 through 17S0 and insert starting at 1700
with line increment of S.

Substitute command
1) Smore<ESC>less<ESC>,SOO:800

Change all occurrences of "more" into "less" on lines num­
bered SOO through 800.

Transfer command
1) T300,9000:9S00

Move all lines numbered 9000 through 9S00 to a point follow­
ing line 300, deleting the lines in the old location.

THE SLP EDITOR
The SLP editor is the batch-oriented editing program used for source
file maintenance. It allows updating (deletion, replacement, addition)
of lines in an existing file. Furthermore, the SLP editor generates a
record of editing modifications. The SLP command file provides a
reliable method of duplicating the changes made to a file, at a later
time or on another computer system.

Input to the SLP editor consists of a correction input file that is to be
updated, and command input containing text lines and edit command
lines that specify the update operations to be performed.SLP locates
lines to be changed by means of locators (sequence numbers or char­
acter strings). Command input normally enters through an indirect file

96

Programming Support Facilities

that contains commands and text input lines to be inserted into the file.
Alternatively, commands can be entered from the terminal.

SLP output is a listing file and an updated copy of the corrected input
file. SLP provides an audit trail that helps keep track of the update
status of each line in the file. The audit trail is provided in the listing
and is included permanently in the output file. When a given file is
updated with successive versions of an SLP command file, different
audit trails may be used to differentiate between changes made at
various times.

SLP output qualifiers permit the user to create or suppress an audit
trail, eliminate an existing audit trail, specify the length and beginning
position of the audit trail, or generate a double-spaced listing.

Initiating and Terminating SLP
SLP is initiated via the command language EDIT command. The nor­
mal way to use the SLP editor is to specify an indirect command file
that Informs SLP what files to process, and indicates what editing
changes are to be made to the correction input file. The indirect file
can be specified on the same line with the EDIT command, or on a
separate line. The indirect file must be created before running SLP.
The interactive text editor SOS is normally used to create SLP indirect
command files. If both new and old versions of the file exist, the differ­
ences utility (see Chapter 3) can be used to create a SLP correction file
that will change the old file into the new one.

SLP Input and Output Files
The SLP editor requires two types of input: a correction input file and
command input. The correction input file is the source file to be updat­
ed using SLP. Command input consists of an initialization line,
followed by SLP edit commands that indicate how the file is to be
changed.

SLP output consists of a listing file and an output file. The listing file is
a copy of the oUtput file with sequence numbers added; it shows the
changes SLP makes to the correction input file. The output file is the
permanently updated copy of the input file that resides on the system.

The Correction Input File
The correction input file is the file to be updated by SLP. It can contain
any number of lines of text. When SLP processes the correction input
file, it makes the changes specified by SLP edit commands with an
audit trail in the output file.

97

Programming Support Facilities

Command Input
The SLP editor uses command input to update files. Normally, SLP
reads command input from an indirect file; alternatively, the user can
enter commands from the terminal. Command input consists of:

• An initialization line that informs SLP what files to process

• SLP edit command lines that define changes to the input file
• New lines of text to insert into the output file

• A command terminator-a single slash in Column 1

The SLP Listing File
The SLP listing file shows the updates made to the source file. Each
line in the listing file is numbered in sequence. Updates are marked by
means of an audit trail (unless the qualifier that suppresses audit trail
generation is specified).

The SLP Output File
The SLP output file is the updated input file. All of the updates speci­
fied by the command input are inserted in this file. A default audit trail,
unless suppressed, is applied to lines changed by the update. The
numbers generated by SLP for the listing file do not appear in the
output file.

Specifying SLP Edit Commands
The SLP edit commands permit updating source files by adding, de­
leting, and replacing lines in a file. SLP edit commands are marked by
certain characters that SLP interprets as operators.

SLP Operators
The SLP editor interprets each of the following characters, when en­
tered as the first character of an input file, as special operators: the
minus sign (-),the backslash (\), the percent sign (%), the at sign (@),
the slash (I), and the less-than character «). Table 4-2 lists each of
these operators and the functions they perform.

The less-than character «) is the escape character that allows char­
acters that SLP otherwise would interpret as operators to be entered
in the command input (in column 1). Forexample, <I hides the slash
character from SLP, thereby enabling slash entry into the output file
without terminating the SLP edit session. The less-than character can
be used as an escape character for all SLP operators listed in Table 4-
2 (including itself).

98

Operator

\

%

@

/

<

Programming Support Facilities

Table 4-2 SLP Operators

Function

First character of an SLP edit command

Suppress audit-trail processing

Re-enable audit-trail processing

Invoke an indirect file for SLP processing

Terminate the edit session and return to SLP
command level

Escape character

General Form of the Edit Command
The general form of the SLP command is as follows:

-locator1 [,locator2][,/audittrail/][;comment]
inputline

where:

-(minus)

l.ocator1

locator2

/audittrail/

inputline

Specifies that this is an SLP edit command line

A line locator that causes SLP to move the current
line pointer to a specified line. If only locator1 is
specified, the current line pOinter is moved to that
line and SLP reads the next line in the edit com­
mand file

A line locator that defines a range of lines (that is,
the range beginning with locator1 and ending with
locator2) to be deleted or replaced

A character string used to keep track of the up­
date status of each line in the file. This audit trail is
used to mark new or replaced lines in the file until
the audit trail is either changed or suppressed.
This argument m~st be delimited by a slash (/)

A line of new text to be inserted into the file im­
mediately following the current line. Any number
of input lines can be entered

99

;comment

Programming Support Facilities

An optional comment. SLP ignores any text after
a semicolon

All fields in the command line are position-dependent; commas must
be specified.

The locator fields can take one of the following forms:

(/string [... string]/)
(number) [+n]
()

String, number, n, and period (.)are defined as follows:

string

number

n

. (period)

A string of ASCII characters. SLP locates the next
line in which the string exists and moves the cur­
rent line pOinter to that line. If the locator is
specified in the form /string ... string/ (that is, two
different strings of characters separated by three
periods), SLP locates the line in which the two
character strings delimit a larger character string

Specifies a sequence number to which the cur­
rent line pointer is to be moved. The largest se­
quence number that can be specified is 9999

Specifies a decimal value used as an offset from
the line specified by the locator

Indicates the current line

All forms of the line locator can be specified interchangeably in a
command line.

SLP can edit files sequentially only. Once the current line pOinter
moves past a given line in the file, it can not be returned. The file must
be closed by typing CTRUZ, and another SLP edit session invoked.

SLP Examples
1) -350

Performs insert following the 350th line

2) -17,23
Deletes the 17th through 23rd lines

LINKER
Before a source-language program can be run on VAX/VMS, it must
be assembled or compiled by a language processor and then linked.
The Language processors translate user-written source programs into
object modules. The VAX-11 Linker binds these object modules into
an image that can be executed by the VAX system.

100

Programming Support Facilities

Not all computer systems employ a linker; in some, the work of the
linker is assumed by the language processors and what is called a
"loader". But the linker offers programmers on VAX/VMS greater flex­
ibility in choosing and mixing languages, and simplifies and extends
the modern approach of modular programming.

Input to the Linker
There are two basic forms of input processed by the linker: object
modules and shareable images. They are introduced to the linker as
part of the input files specified in the LINK command. The linker will
accept one or more of the following kinds of input files:

• Object file

• Shareable image file

• Symbol table file

• Library file

• Options file

The object file can contain one or more object modules. This file has
file-type OBJ. It is the fundamental input to the linker and at least one
object file must be specified with any LINK command.

The shareable image file is the product of a previous linking operation,
but one which is by itself not executable. It can serve only as input to
another linking operation. The shareable image file can only be speci­
fied in the options file and is indicated there by the /SHAREABlE
qualifier.

The symbol table file is also a product of a previous linking operation.
It may be specified when linking so that the linker can use the symbol
values to resolve undefined symbols in other object modules. A sym­
bol table file has the file type STB.

There are two kinds of library files: object and shareable image. Of
these there are both system libraries (maintained by VMS) and user
Libraries (created by the DCl command, LIBRARY). Library files are
used by the linker either to resolve undefined symbols, or as a source
for particular object modules or shareable images specified with the
/INClUDE qualifer in the LINK command.

The options file is not really input to the linker,inthe same sense the
other files mentioned are input; rather, it is a tool for managing the
linking operation and for simplifying the use of complex and often­
repeated linker operations. (This is, in a way, analogous to the use of
DCl command procedures for complex or commonly used command
sequences.) A linker options file can contain one or more input file
specifications, includingqualifiers or special linker options that cannot
be specified in the DCl LINK command line.

101

Programming Support Facilities

Output of the Linker
The linker will generate one of three types of images:

• Executable

• Shareable

• System

and an optional image map and/or symbol table.

The most common output of the linker is the executable image. It is the
end product of program development. It has the file type EXE and can
be run by the Del command, RUN.

A shareable image, on the other hand, cannot be executed directly. It
must be linked with one or more object modules to produce an execu­
table image. It contains an image header, one or more image sections,
and a symbol table that defines universal symbols in the shareable
image.

A system image is one that does not run under the control of the
operating system, but is intended to run stand-alone on a VAX.
VAX/VMS is a system image.

If the /MAP qualifier is specified in the LINK command, the linker will
generate one or more of the following (at the user's option) in an image
map file:

• An object module synopsis

• A module relocatable reference synopsis

• An image section synopsis

• A program section synopsis

• A list of symbols by name

• A list of symbols by value

• Link run statistics

If the /SYMBOl_ TABLE qualifier is specified, the linker will generate a
symbol table file that can serve as input to a subsequent linking opera­
tion.

Action of the Linker
In the process of creating an image the linker performs three major
tasks:

• resolution of symbolic references

• allocation of virtual memory

• image initialization

The following sections describe these processes in some detail.

102

Programming Support Facilities

Resolution of Symbolic References
A symbol is a name associated with a program location or a value. Any
reference to a symbol, other than the definitive reference, must be
resolved. For example:

JMP SYMBOL_1 (Jump to where?)
or

ADD SYMBOL~,SYMBOL_B (Add what to what?)

Somewhere, SYMBOL_1 must be defined as a location of an instruc­
tion or the beginning of a subroutine. Similarly, SYMBOL~ and SYM­
BOL_B must have had values assigned to them.

References to local symbols (that is, symbols defined and used entire­
ly within the module) are resolved by the language processor, but
references to global symbols (those that can be referred to by
modules other than the defining module) and universal symbols (those
referenced outside of a shareable image) must be resolved by the
linker.

Since universal symbols are in fact global symbols that are available to
modules outside of a shareable image, the process whereby the linker
resolves global and universal symbols is the same. During its first pass
through the linking operation, the linker records each symbol refer­
ence and.definition in a global symboltable. When the linker seeks to
resolve a symbol reference, it first searches modules named in the
command line (with IINCLUDE), then user libraries, and finally system
defal,Jlt libraries.

Memory Allocation
By the end of its first pass, the linker has processed all the input
modules and library modules needed to resolve undefined symbols,
and knows how large the final image will be, but it still needs to organ­
ize the image and allocate virtual memory.

The linker organizes the image on three levels: cluster, image section,
and program section.

Clusters are determined in three ways:

• The default cluster (generated by the linker)

• User defined clusters (generated by the CLUSTERS= option)

• Shareable image clusters (one for each shareable image)

Image sections are created by gathering program sections (psects)
with similar attributes. Those attributes include writeability, executea­
bility, shareability, position-independence, and protected vector.

103

Programming Support Facilities

Program sections and their attributes are determined by the language
and, optionally, by the user, either through directives to the language
processor (for example, .PSECT in MACRO) or by the PSECj.TTR
option in the linker options file.

The linker processes each cluster, one at a time-with the exception of
non-based, or position-independent, shareable images, which are al­
located virtual memory by the image activator at runtime. In
processing all other clusters, the linker organizes the psects within
each cluster into image sections. Then the clusters are assigned virtu­
al address space and the image section descriptor (ISO) of each im­
age section is updated to include the starting virtual address of the
image section.

Image Initialization
After resolving references and allocating memory, the linker fills in the
actual contents. of the image. Primarily, initialization consists of copy­
ing all data and code into a single image; but the linker performs two
other functions at this stage:

• Computes values that depend on externally defined fields

• Inserts these values into the referencing location

Fix-up Image Section
After it has initialized the image, the linker will generate a special
image section, called the fix-up image section. This image section
contai ns the code that makes otherwise position-dependent shareable
images position independent.

The general addressing mode is used to reference routines and data
contained in a shareable image. The linker converts general address­
ing mode directives into longword deferred addressing mode, with
indirecion going through the fix-up image section. Failure to use
general addressing mode when referencing a shareable image will
elicit a warning message.

All DIGITAL VAX-11 high-level languages generate position-indepen­
dent code.

Shareable Images
An important benefit of the linker-perhaps the most important bene­
fit-is that it allows the use of shareable images. An effective applica­
tion of shareable images can help to conserve valuable resources in
the users operating environment. For example, physical memory re­
quirements would be reduced if global sections (one for each image
section of a shareable image) used commonly among processes could
be resident in memory and mapped into their address space, thus the

104

Programming Support Facilities

same physical pages satisfy a number of processes, reducing
duplication. So, too, can the user conserve disk storage and reduce
paging I/O, when sharing replaces duplication.

One of the reasons modular programming is so attractive, is that a
commonly used routine or function can be developed or modified
once, then incorporated into any number of programs. The use of
shareable images carries this efficient practice a step further. The
modules that make up a shareable image are linked only once, so the
overhead of resolving undefined symbols (within the image) and gen­
erating image sections-the bulk of the linkers work-is incurred only
once, faCilitating another level of modular hierachy. Furthermore,
since a position-independent shareable image is allocated virtual
memory by the image activator at runtime, the code it comprises can
be modified and updated without having to re-link every program that
uses that image.

The LINK Command
The linker is run by the DCl command:

$ LINK [/command-qualifier ...] file-spec [/file-qualifier ...] ...

At least one input file must be specified. There can be multiple com­
mand qualifiers, multiple file specifications, and multiple qualifiers for
each file specified.

VAX DEBUG
The VAX DEBUG program is a language-independent, interactive,
symbolic debugger that works with programs written in most of the
languages supported by the VAX/VMS operating system. Current lan­
guages for which the debugger works are: VAX-11 FORTRAN, VAX-11
BASIC, VAX-11 COBOL, VAX-11 PASCAL, VAX-11 PlII, VAX-11
BLlSS-32, and the VAX-11 MACRO assembly language.

DEBUG enables dynamic examination and modification of the con­
tents of memory locations, which is useful for finding errors in pro­
grams. Breakpoints may be set to stop program execution at specific
points, and critical code sections can be single-stepped- line by line
or instruction by instruction-to verify correct execution. Since user
program execution is controlled by DEBUG once it is invoked, modifi­
cations may be made to the program while it is executing.

Linking DEBUG with the User Program
Before DEBUG can process the user program, it-must be linked to it.
This can be accomplished by specifying the /OEBUG qualifier in the
LlNKcommand as follows:

$LlNK/DEBUG PROG1

105

Programming Support Facilities

This links the debugger to the user process called PROG1. Subse­
quent execution of the program is controlled by the debugger.

DEBUG Execution
Once linked, the process begins execution under the control of
DEBUG after the RUN command has been entered:

$ RUN PROG1

As a response to this command, DEBUG will issue an identification
message that verifies its control of the program; that is followed by a
prompt for additional DEBUG commands:

$RUN PROG1
VAX-11 DEBUG Version 3.0-3

DBG>

(Note: DBG> is the DEBUG prompt symbol.)

The programmer may now enter a series of DEBUG commands to
manipulate the execution according to program needs.

DEBUG Commands
DEBUG commands direct the execution of the program and can be
used to aid the programmer in the debugging process. The DEBUG
commands can:

1. Specify pOints at which execution will be suspended, when and if
they are encountered, by using the SET BREAK command

2. Trace the sequence of program execution by means of the SET
TRACE command. This command establishes tracepoints in the
program

3. Display before-and-after values of a location whenever that loca­
tion is stored into, by means of the SET WATCH command

4. Initiate or resume execution, by means of the GO command
5. Execute a single line or instruction of the program by means of the

STEP command
6. Determine the location of breakpoints, tracepoints, and watch­

points by means of the commands SHOW BREAK, SHOW
TRACE, SHOW WATCH, respectively

7. Erase breakpoints, tracepoints, and watchpoints in the program,
through use of the CANCEL command

8. Display the contents of variables or memory locations, by using
the EXAMINE command

9. Change the contents of variables or memory locations, by using
the DEPOSIT command

106

Programming Support Facilities

10. Obtain the value of an expression or the current address of a
symbol by using the EVALUATE command

11. Call a subroutine at DEBUG time, by means of the CALL com­
mand

12. Change values of parameters for LANGUAGE, SCOPE, MODE,
and TYPE

13. Specify an arbitrary file name for the DEBUG log file by means of
the SET LOG command

14. Control DEBUG 1/0 at debug time, via the SET OUTPUT com­
mand. This includes normal terminal output, log file output, and
command file verification

15. Find all current output attributes (VERIFY, TERMINAL and LOG)
by using the SHOW OUTPUT command. For more limited needs,
a SHOW LOG command is available that displays only the LOG
data

16. Instruct DEBUG to take commands from a specified file by means
of @Filespec

17. Display source lines with compiler-assigned listing line numbers
(for some languages only)

SET Command
The SET command is used in a variety of ways to establish one or
more conditions pertinent to DEBUG. It has the form:

SET keyword parameter

Table 4-3 summarizes the values that may be used for keyword and
parameter.

107

Programming Support Facilities

Table 4-3 SET Command Summary

Keyword Parameter Function

LANGUAGE Language-name Specifies the lan-
guage characteris-
tics to be used by
DEBUG

DBG> SET LAN-
GUAGE FORTRAN

BREAK address Sets a breakpoint at
[DO(DEBUG a location in the pro-
commands)] gram; optionally

specifies com-
mands to be per-
formed when pro-
gram execution
reaches that pOint

DBG> SET BREAK
SUB2 DO(EXAMINE
K)

TRACE address Lets the user follow
the program's exe-
cution sequence, to
ensure that instruc-
tions are being exe-
cuted in proper or-
der

DBG> SET TRACE
%LlNE 25 (see note
below)
DBG> SET TRACE
%LABEL 99 (see
note
below)

WATCH address Sets a watchpoint at
the specified ad-
dress

DBG> SET WATCH
SYM

108

Programming Support Facilities

MODULE module-name Makes all local sym­
bols in the specified
module available to
DEBUG

SCOPE

MODE

TYPE

LOG

A list whose ele­
ments may be:
pathname
nonnegative integer
"\"

Radix:
DECIMAL
HEXADECIMAL
OCTAL

Display:
[NO]SYMBOLIC

BYTE
WORD
LONG
QUAD,OCTA­
WORD
D-FLOAT
F-FLOAT
G, H-FLOAT
ASCII:length
INSTRUCTION

NOTE

DBG> SET MOD­
ULE FOO

Establishes an
ordered list of
scopes which DE­
BUG searches when
looking up the defi­
nitions of symbols

Alters the defaults
used by DEBUG for
radix and symbolic
representation of
addresses

Establishes a data
type to be used to
interpretthose ad­
dresses for which
DEBUG cannot infer
a type from the data
definition

The %LlNE and %LABEL modifiers are used to indi­
cate line numbers (%LlNE) and numeric statement
labels (%LABEL).

file name

109

Specifies that the
DEBUG log can be
called something
other than the de­
fault name, "DE­
BUG.LOG"

DBG> SET LOG
NEW.LOG

Programming Support Facilities

OUTPUT

SOURCE

EVALUATE Command

[NO]LOG,
[NO]TERMINAL,
[NO]VERIFY

directry ...

Tailors output
modes of DEBUG to
suit particular appli­
cations

DBG> SET OUT­
PUT NOLOG VERI­
FYTERMINAL

Specifies which
directories are to be
searched for source
files

DBG> SET
SOURCE [MY­
DIR],[MAST.SCR]

The EVALUATE command allows the user to check the value of an
expression or the definition of a symbol. It has the form:

EVALUATE expression

where the evaluation follows the rules of the host language.

To illustrate, if the element to be evaluated is a FORTRAN expression
(for example, (2*K-1)+A*B), the precedence of operations follows the
FORTRAN standard: parenthetical operations, followed byexponenti­
ation, followed by multiplication and division, followed by addition and
subtraction, from left to right.

The value is displayed according to the source language rules for data
types. That is, if a FORTRAN expression contains both real and integer
elements, the value will be expressed as a real value.

CALL Command
CALL is used to execute a subroutine while under the control of DE­
BUG. The subroutine may be one that was included specifically for
debugging use, or one that was used by the application program dur­
ing normal execution. The CALL command has the form:

CALL s(a, ... ,a)

where

s

a, ... ,a

subroutine name

actual arguments

110

Programming Support Facilities

SHOW Command
The SHOW command allows the user to check the status of DEBUG
settings, such as the location of breakpoints. The SHOW command
has the form:

SHOW keyword

Table 4-4 SHOW Command Summary

Keyword

BREAK

TRACE

WATCH

MODE

SCOPE

TYPE

OUTPUT

SOURCE

CANCEL Command

Function

Displays, in symbolic form, the location of
each breakpoint in the program

Displays, in symbolic form, the location of
each tracepoint in the program

Displays, in symbolic form, the location of
each watch point in the program

Displays the current modes

Displays the current ordered list of scopes

Displays current default type

Displays output attributes

Displays current directory search list

The CANCEL command is used to nullify conditions established by
earlier SET commands, such as eliminating breakpoints. The CANCEL
command has the form:

CANCEL keyword [parameter]

Table 4-5 lists the keywords and parameters that can be specified with
CANCEL.

111

Programming Support Facilities

Table 4-5 CANCEL Command Summary

Keyword Parameter Function

BREAK address Eliminates the
breakpoint at the
specified location

TRACE address Eliminates the tra-
cepoint at the speci-
fied location

WATCH address C

ied location

MODULE module-name Removes all local
symbols in the
specified module
from DEBUG sym-
bol table and re-
leases their symbol
table space

SCOPE none Restores the default
value of SCOPE

MODE none Cancels the current
mode for radix,
length, and data
type and restores
the default values

ALL none Cancels all parame-
ters previously set
for DEBUG

SOURCE none Cancels SET
SOURCE command

GO command
Use the GO command to start or resume program execution. The GO
command has the form:

GO [address]

If the user types the GO command, but does not include an address as
specified, its effect is either to start program execution at the begin-

112

Programming Support Facilities

ning, or to resume execution from the point where it stopped (such as
a breakpoint). If an address is speci'fied, DEBUG restarts program
execution at that address.

Example:

GO %LlNE 12

DEBUG resumes program execution at line 12 of the program.

NOTE
Attempting to restart a program from the beginning
will yield unpredictable and unreliable results.

STEP Command
The STEP command allows the user to specify that a specific number
of instructions or statements are to be executed in the user program.
Thereafter, execution will again stop. The user may specify instruction
or statement stepping (assuming the language supports statement
numbers). The STEP command has the form:

STEP [n]

where the value of n is a decimal integer indicating how many instruc­
tions or statements to execute. If n is omitted, one instruction or state­
ment is executed. This command allows the user to suspend program
execution prior to reaching a breakpoint or a tracepoint, so the user
can examine the result of program execution on an instruction-by­
instruction or statement-by-statement basis.

If the program has not begun to execute, the STEP command causes n
instructions or statements to be executed, starting with the first execu­
table instruction or statement in the program. If program execution
has started and been suspended, the STEP command causes n
instructions or statements to be executed starting from the point of
suspension.

EXAMINE Command
To determine the current contents of locations in the user program,
use the EXAMINE command. The EXAMINE command has the form:

EXAMINE [address]

To specify an address, enter the symbolic variable name defined in the
source program. DEBUG displays the contents in the format:

address: contents

Both the address and its contents are displayed in a form appropriate
to the host language. That is, the user will not have to translate from
hexadecimal to ASCII in order to determine the value of a location that
contains character data.

113

Programming Support Facilities

The address will, if possible, be displayed symbolically when the mode
is SYMBOLIC. Otherwise, it will be displayed numerically.

If an address is not specified, the next location's contents are dis­
played. To display a range of locations, specify the EXAMINE com­
mand as follows:

EXAMINE address1 :address2

The current contents of the locations from address1 to address2 will
be displayed.

DEPOSIT Command
To change the contents of a location while debugging, use the DEPO­
SIT command, which has the form:

DEPOSIT address = data

For example:

DEPOSIT LOC = 100

places the value 100 into the location symbolized by LOC.

TYPE Command
The TYPE command is used to display lines of source code. The
format of the TYPE command is:

TYPE moduleline-number1 :line-number2

To display source lines in the current scope, this may be abbreviated
to:

TYPE line-number1 :line-number2

or just

TYPE line-number

EXIT Command
To terminate the DEBUG session and return to the DIGITAL Command
Language level, use the EXIT command.

THE VAX RUN-TIME LIBRARY
The VAX Run-Time Library (RTL) is composed of a set of language­
independent and language-specific VAX procedures which establish a
common runtime environment for user programs written in any native
mode language. Because all of the language support procedures fol­
low the same programming standards, a user program can be com­
posed of modules written in different languages, including assembly
language. Because of the VAX procedure calling standard, each native
mode user module can call any other native mode user module or any
of the procedures in the Run-Time Library.

114

Programming Support Facilities

Most of the VAX Run-Time Library is constructed as a separate share­
able image which interacts with the rest of the operating system via an
entry point vector. This allows:

1. Installation of a new library without the need of relinking all user
programs

2. Implementation of new internal algorithms without relinking all
user programs

3. A single copy of the library to be shared by all processes

NOTE
A portion of the Run-Time Library is not shareable.

Each procedure entry pOint in the shareable image has a storage
location in the area known as the entry vector. Each entry vector con­
tains the starting address of an associated procedure to be executed
when a user program calls the library. Use of entry vectors permits a
single position-independent copy of the library to be bound to
different virtual addresses in processes which are sharing it. Use of
entry vectors and address binding at image activation also permits a
new release of the library to be installed without requiring that user
images be relinked.

The VAX Run-Time Library comprises several sections which are
grouped by function or calling sequence. They include:

• A resource allocation section

• A condition handling section
• A general utility section

• A mathematical section
• A language-independent support section

• Language-specific support sections

• A string handling section

The Run-Time Library is designed as a set of modular re-entrant pro­
cedures that run in user mode.

Resource Allocation Section (LlB$)
The Resource Allocation Section includes all procedures that allow
allocation of process-wide resources. Such resources include the fol­
lowing:

1. Virtual Memory-one procedure to allocate and one to deallo­
cate arbitrarily sized blocks of process virtual memory

2. Logical Unit Numbers-allow logical unit numbers to be allocated
in a modular manner

3. Event flags-same as logical unit numbers

115

Programming Support Facilities

In most cases, the resource allocation procedures must be used to
allocate process-wide resources ·in order for all library, DIGITAL, and
customer-written procedures to work together properly within an im­
age.

Signaling And Condition Handling
The VAX condition handling facility is a collection of library
procedures and system services that provides a unified and standard­
ized mechanism for handling errors internally in the operating system,
the Run-Time Library, and user programs. In some cases, the mecha­
nism is also used to communicate errors across these interfaces. In
particular, all error messages are printed using this mechanism.
Where an error condition is signaled, the process stack is scanned in
reverse order. Establishing a handler provides the programmer with
some control over fix-up, reporting, and flow of control on errors. It
provides the system and library messages in order to give a more
suitable application-oriented user interface.
Error Processing Procedures
Errors detected by the Run-Time Library are indicated by returning an
error completion status wherever possible. This is especially true for
the general utility library (LlB$). However, the math library and the
language support libraries indicate most errors by calling the VAX
LlB$SIGNAL or LlB$STOP procedures. The LlB$SIGNAL procedures
use a condition value as an argument which has an associated error
message stored in a system error message file. The condition is sig­
naled to successive procedure activations in the process stack. These
procedures may have established handlers to handle the conditions or
change the error message. Thus an application can tailor its error
messages to its own needs.

The Run-Time Library provides routines to perform the following con­
dition handling functions:

• Establish and delete user condition handlers (LlB$ESTABLlSH,
LlB$REVERT)

• Enable and disable the detection of the hardware and conditions
decimal overflow, ~Ioating-point underflow, and integer overflow

• Signal exception conditions and stop execution by means of the
signaling mechanism (LlB$SIGNAL, LIB$STOP)

• Emulate VAX instructions that are not implemented on the host
processor (LlB$EMULATE)

• Convert floating faults to floating traps (LlB$SIM-TRAP)

• Find the reserved operand of any F-, D-, G-, or H- floating instruc­
tion after a reserved operand fault has been signaled
(LlB$FIXUP-FL T)

116

Programming Support Facilities

General Utility (LlB$)
General utility procedures are not mandatory in order to use the rest of
the library successfully. They provide a wide range of functions for the
convenience of the user:

• Common I/O procedures-These procedures perform such func­
tions as getting records from the current input device
(LlB$GET -INPUT) and putting them to the output device
(LlB$PUT -OUTPUT), executing DCl commands from a running
program (LlB$DO-COMMAND), getting the command line from a
'foreign command' (LlB$GET -FOREIGN), and copying strings to
and from the process's common storage are (LlB$PUT -COMMON,
LlB$GET -COMMON). I/O control procedures are also available to
customize printer output and translate logical names

• Terminal independent screen procedures-These procedures pro­
vide a high-level language interface to the video terminal. They put
text to the screen, mover the cursosr to the desired position, erase
text from the screen, and manipulate the screen buffer

• Data type conversion procedures-These procedures perform con­
versions between one VAX data type and another (e.g., text to
D-floating, decimal to binary)

• Variable bit field instruction procedures-LlB$INSV, LlB$EXTV, and
LlB$EXTZV insert and extend variable bit fields. LlB$FFC searches
a bit field for the first set bit

• Performance measurement procedures-These procedures pro­
vide a facility for timing, counting I/O operations, and counting page
faults

• Date/time utility procedures-These procedures return the system
data or time in several forms

• CRC procedures-UB$CRC and LlB$CRC-TABLE permit the user
to calculate the cyclic redundancy check for a data stream

• Multiple precision arithmetic procedures-LlB$ADDX and
LlB$SUBX add and subtract signed two's-complement integers of
arbitrary length

Run-Time Library procedures also permit the high-level language pro­
grams to use the following VAX hardware instructions:

• Extended multiply and integerize-EMODF, EMODD, EM­
ODG,EMODH

• Evaluate polynomials-POL YF, POL YD, POL YG, POL YH

• Insert and remove queue entry-INSQHI, INSQTI, REMQHI,
REMQTI

117

Programming Support Facilities

Mathematical Functions (MTH$)
The mathematical library consists of over 200 standard procedures to
perform common mathematical functions. These functions include:

• Floating-point mathematical functions: trigonometric, logarithmic,
and square root

• Complex fuhctions: absolute values, conjugation, trigonometric,
arithmetic, exponetiation, return imaginary part of complex number,
return real part of complex number, make complex from floating­
pOint, logarithmic, and square root

• Exponentiation on floating-point, word, longword, and complex data

• Random number generators
• Processor-defined mathematical procedures including both the in­

trinsic and basic external functions defined in ANSI FORTRAN,
whcih are treated in a uniform manner. They include routines that
perform conversions between floating-point and integer data and a
large number of miscellaneous procedures

Language-Independent Support (OTS$)
The language support libraries support the code generated inline by
compilers. As such, most of the procedures are called impliCitly as a
consequence of a language construct specified by the user, rather
than being called explicitly by the user with a CALL statement. Those
language support procedures which are independent of higher level
language use the facility prefix OTS$. They include:

• Language-independent initialization and termination

• Error and exception-condition processing procedures

• Datatype conversion

Language-Specific Support (FOR$, BAS$, COBS, PASS)
Each of the language-specific support libraries is generally composed
of:

• 1/0 processing procedures

• FiJe processing procedures

• Compiled-code support procedures

• Compatibility procedures

• System procedures

String Processing (STR$)
The string processing procedures allocate and deallocate dynamic
strings. They also perform a wide variety of string manipulation func­
tions, such as comparing, locating a character, concatenating, extract-

118

Programming Support Facilities

ing a substring, performing arithmetic operations on decimal strings,
and translating ASCII to EBCDIC code.

System Procedures
VAX programs written in the higher-level languages may call the oper­
ating system directly. However, since some languages cannot easily
pass arguments in the form that system services require, and some
languages use data types that system services cannot properly handle
(i.e., dynamic strings), some LlB$ routines have been provided to han­
dle the input and output arguments correctly.

VAX SORT/MERGE
The VAX SORT/MERGE utility may be run interactively, as a batch job,
or called from a user-written VAX language program.

The SORT utility allows the user to reorder data from one to ten input
files into a single output file in a sequence based upon user-specified
key fields within the input data records. If the user does not wish to
physically reorder the input, SORT can be used to extract key
information and store the sorted information as a permanent file. That
file can be used then to access the original input file in the order of the
key information in the sorted file.

SORT provides four sorting techniques:
• Record sort produces a reordered data file by moving the entire

contents of each record during. the sort. A record sort can be used
with any acceptable VMS input device and can process any valid
VAX-11 RMS (Record Management Services) formatted file.

• Tag sort produces a reordered data file by moving only the record
keys and Record File Addresses (RFAs) during the sort. SORT then
randomly reaccesses the input file to create a resequenced output
file according to those record keys. The tag sort method may con­
serve temporary storage, but can accept only input files residing on
disk.

• Address sort produces an address file without reordering the input
file. The address file contains RFAs (Record's File Address),a point­
er to each record's location in a file which can later be used as an
index to read the database in the desired sequence. Any number of
address files may be created for the same database. A customer
master file, for example, may be referenced by customer-number
index or sales territory index for different reports. Address sort is
the fastest of the four sorting methods.

• Index sort produces an address file containing the key field of each
data record and a pointer to its location in the input file. The index
file can be used to randomly access data from the original file in the
desired sequence.

119

Programming Support Facilities

The MERGE utility permits the user to merge data from two to ten
similarly sorted input files. It merges the data according to keyfield(s)
defined by the user and generates a single output file. All input files to
be merged must be in the same sorted sequence, i.e., the MERGE key
fields must be a proper subset of the equivalent SORT key fields.

The following example illustrates the sorting of a sales record file by
customer last name. The name of the initial file is SALES. OAT. Each
record contains six fields: date of sale, department code, salesperson,
account number, customer name, and amount of sale. The numerical
ranges listed below the set of records indicate the position and size of
each information field within the record.

DATE OPT SALESP ACCT CUST -NAME AMT

091580 25 Fielding 980342 Coolidge Carol 24999
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Bradley 829582 Olsen Allen 3350
091580 19 Erkkila 980342 Coolidge Carol 7200

'-..--J '-..--J '-..--J '-..--J ~ '-..--J
1-7 8-10 11-21 22-28 29-58 59-65

The user may now rearrange the sales records in file SALES.OAT
according to any of the file's information fields. For instance, to sort
the file in alphabetic order of customer's last name, the user woUld
type the following command sequence:

$ SORT/KEY=(POSITION=29,SIZE=30) SALES.OAT BILL­
ING.LlS<RET>

In this command sequence, the user is defining the SORT key to be
the customer's last name and the output file to be BILLlNG.LlS.

The user may now obtain a listing of the sorted data file by using either
the TYPE orPRINT commands.

$ TYPE BILLlNG.LlS<RET>

120

Programming Support Facilities

DATE DPT SALESP ACCT CUST-NAME AMT

091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298

To perform the MERGE function, the MERGE utility expects presorted
data files upon which to operate. In the following example, MERGE is
operating upon two presorted (by alphabetic order) sales data files,
STORE1.FIL and STORE2.FIL.

STORE1.FIL
DATE DPT SALESP ACCT CUST-NAME AMT

091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 28 Meredith 272731 Karsten Jane 4000
091580 l5 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298
091580 20 OConnor 358419 Beaulieu Ronald 1598
091580 04 Docus 980342 Coolidge Carol 575500
091580 25 Fielding 669011 Fernandez Felicia 12000
091580 35 Leith 848105 Kingsfield Stanley 5550
091580 04 Kramer 561903 Landsman Melissa 230000
091580 20 OConnor 643881 McKee Michael 995
091580 19 Erkkila 454389 VanDerling Julie 5480

To merge the two data files, the user musttypethe following command
sequence:

$ MERGE/KEY= (POSITION = 29,SIZE=30)
STORE1.FIL,STORE2.FIL- CENTR.FIL<RET>

The user has indicated in the above command sequence that the files
are to be merged via the alphabetic order of the customer's last name-.
The user can examine the output file via the PRINT or TYPE com­
mands.

$ TYPE CENTR.FIL<RET>

121

Programming Support Facilities

DATE OPT SALESP ACCT CUST-NAME AMT

091580 20 OConnor 358419 Beaulieu Ronald 1598
091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 04 Docus 980342 Coolidge Carol 575500
091580 25 Fielding 669011 Fernandez Felicia 12000
091580 28 Meredith 272731 Karsten Jane 4000
091580 35 Leith 848105 Kingsfield Stanley 5550
091580 04 Kramer 561903 Landsman Melissa 230000
091580 25 Sanchez 643881 McKee Michael 2499
091580 20 OConnor 643881 McKee Michael 995
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Erkkila 454389 VanDerling Julie 5480
091580 19 Arndt 166392 Wilson Brent 1298

VAX SORT/MERGE Features
The VAX SORT/MERGE utility can perform the following functions:

• Reorder data files into ascending or descending order by up to ten
user-specified keys

• Merge as many as ten sorted input files into one sorted output file

• Create reordered address files of RFAs and keys for software use
• Supports fixed, variable, and VFC records
• Sort or Merge ASCII character keys in ASCII or EBCDIC sequence
• Supports sequential, relative, and indexed sequential files

• Supports character, decimal, binary, unsigned binary, F-, D-, G-,
and H- floating data types

• Determines its own work file requirements based on input file RMS
information received

• Can be controlled by a command string or specification file
• Efficiency may be tuned for a particular application
• Accepts input files from any VAX/VMS input device
• Will output to any VAX/VMS output device
• May be invoked by a single command string, or can prompt the

operator for input and then output file specification

• Responds with unique SORT/MERGE error messages in VAX/VMS
format

• Prints out statistics upon completion, when requested
• Optional sequence checking of input files on merge

122

Programming Support Facilities

VAX SORT/MERGE supports the following key formats:

• ASCII character data
• ASCII and EBCDIC collating sequence

• Binary, packed decimal, and zoned decimal data

• Unsigned binary and F-, D-, G-, and H- floating

• String decimal data format can be:

leading separate sign
leading overpunched sign
trailing separate sign
trailing overpunched sign

SORT/MERGE as a Set of Callable Subroutines
SORT and MERGE can be used as a set of callable subroutines from
any native VAX language. This subroutine package provides two func­
tional interfaces to choose from: a file I/O interface and a record I/O
interface.

SORT and MERGE subroutines are callable from theVAX-11 COBOL
language using the standard COBOL SORT and MERGE verbs.
(SORT/MERGE is callable from any VAX supported language that
supports the VAX Calling Standard.)

For either interface, the user can supply a key comparison routine.
This feature allows the user additional flexibility.

File and Record I/O Interfaces
The file I/O interface allows the user to specify the input files and an
output file to SORT or MERGE. SORT then reads the data from the
input file(s) and sorts the data into the output file. MERGE also reads
the data from the input file(s) and merges it into one output file.

The record I/O interface allows the user to pass each individual data
record to SORT/MERGE, let SORT/MERGE order them and then re­
ceive each record back in the correct order, individually, from
SORT /MERGE.

Any program can use either the SORT or MERGE subroutine interface
with any of the VAX native mode languages that support the VAX
Calling Standard.

DOCUMENT FORMATTING UTILITY
Designing and producing printed materials can be simplified through
the use of the DIGITAL Standard RUNOFF (DSR) utility. DSR reduces
the number of interactions needed for preparation of a document by
allowing both textual correction andformatting change to be executed

123

Programming Support Facilities

in the same pass over the file. And since text changes do not affect the
basic design, documents can be updated without extensive retyping.

The input to DSR is a file containing the text of the document and the
DSR instructions. The output file is the print-ready document. After the
program has been run, the original file remains available for further
editing.

Formatting instructions consist of commands and flags. Command
lines are signalled by a period in position one and may contain one or
more commands and text. Within the text are special charac­
ters-called flags-which specify character enhancements such as
underlined text or boldface characters.

Filling and Justifying
DSR commands set left and right margins, so that the user may enter
text without concern for line width or variable spacing between words.
The DSR program will fill and justify the text when it is run. Filling is
the successive addition of words to a line until one more word would
exceed the right margin. DSR justifies the line by adding enough
spaces between words to expand the line to the right margin.

DSR Default Modes
When an input file is processed by the DIGITAL Standard RUNOFF
utility, certain default actions are performed that do not depend upon
command or flag entries for their execution. These actions are similar
to those performed during the preparation of a manually typed docu­
ment.

DSR default modes provide:

• A standard typewriter page size of 8%" X 11"

• Sequential page numbering

• Page width of 60 characters

• Single spacing
• Automatic tab settings for every eighth print position

• Automatic filling and justifying

Page Formatting
The page formatting commands control the appearance of each page
of output. For example, there are page formatting commands to en­
able or suspend page numbering, produce and format titles and subti­
tles, or force the printer to advance to a new page.

Another page formatting command allows a cond\tional page ad­
vance, based on the number of lines left on the page. This capability

124

Programming Support Facilities

can be used to guarantee that text which should appear on a single
page (e.g., tables, lists) will not be broken up.

For example:

.LAYOUT 2,5

Title Formatting

The 2 says page titles will be
flush right on odd pages, flush
left on even pages; pages will be
numbered sequentially at cen­
ter bottom with 4 blank lines af­
ter the body of text.

Title formatting commands provide page, title, and subtitle informa­
tion for all pages. Such actions as placing only the chapter heading on
the first page of a chapter and printing any subtitles are provided for
by the title formatting commands.

For example:

TITLE King Lear Makes a title of King Lear.

SUbject-Matter Formatting
Subject-matter formatting includes commands for managing the de­
sign and appearance of text, such as making a ragged right-hand
margin, indenting a paragraph, skipping a number of lines, centering
a line of text, underlining, hyphenating, and overstriking. Parts of the
text may be formatted differently from one another, and commands
may be combined. For example, a user has the option of having lists
justified or having them with ragged margins.

For example:

.LM 5 .RM 58

.NF

.NJ

.BR

.S or .SK 2

.PG

Set the left margin at space 5
and the right margin at space 58

Disables filling: causes a new
line in the input file to produce a
new line in the ouput file

Disables justifying: lines are
ragged right

Causes a break: current line is
output without being filled or
justified

Skips two blank lines

Causes a .BREAK, then starts
the next page

125

.TP 25

.CENTER

.TS 3,7,9,15,26, ...

.P4,2,3

Programming Support Facilities

Tests the page to see if 25 lines
remain, so that certain material
that needs to stay together (e.g.,
lists) will

Centers subsequent line of text
on the next page

Sets up to 32 new tab stops to
override the default tab stop
values

Formats paragraphs in which:
first word is indented 4 spaces;
there are 2 blank lines between
paragraphs; there must be at
least 3 lines remaining on the
page for the paragraph to be
started on the next page

Graphic, List, and Note Formatting
It often becomes necessary to accommodate graphics, lists, and ta­
bles, or to allow for special notes to be inserted. Footnotes also have to
be prepared in such a way as to fit on the appropriate pages of the
final document.

For example:

.FIG 24

.FIG DEF 30

.LlST 1, ,*,

.LE

.DLE"(",LL,")"

Leaves 24 lines for a figure to be
inserted

Leaves 30 lines, including at the
top of the next page, for a figure

Sets up a list with 1 blank line
between items and an asterisk
marking each item

Identifies the start of an element

Establishes a user-specified
display format for lists: in this
case, sequential, lowercase let­
ters will be enclosed in par­
entheses

126

Programming Support Facilities

.HL 1 Plays

.HL 2 King Lear

.HL 3 Tragic Flaw

Miscellaneous Formatting

These commands provide a
properly numbered and format­
ted outline:
14 Plays
14.33 King Lear
14.3.2 Tragic FLaw--The Defi­
nition of Tragic Flaw ...

Several useful DSR commands help the user to add nonprinted com­
ments to the source file, to gather externally located files into the input,
to exert conditional control, and to set or display time and date.

For example:

.IF complete

!appendix C is 200
pages

.REO "APNDXC.RNO"

.ELSE complete

.F.J.SK10 or .S1 0; Contact the
author ...

.ENDIF complete

Flags

Processes the lines following
only if
/VARIANT:COMPLETE was
given on the command line

DSR ignores comments

Processes all of APNDXC.RNO
before continuing with next line

Marks the end of the line to
process because of the IF, and
starts the alternative

Allows commands and text in
one line

Marks the end of a group of
conditionally processed lines

Flags are special characters (e.g., an ampersand) that perform specif­
ic operations (e.g., underlining). The specified operation is invoked
when the character is recognized as a flag by DSR. Certain special
characters initially are recognized by default.

For example:

fix#s()me#space The SPACE flag (#) fixes one
nonexpandable space when­
ever it occurs

127

Programming Support Facilities

R-&D

Index and Table of Contents

The ACCEPT flag (-)prevents
·DSR from interpreting the am­
persand in R&D as an underline
flag

DSR has powerful facilities for creating indexes and tables of contents
easily. There are commands to generate one-column or two-column
indexes. The TOC program generates tables of contents.

For example:

.X Satire

.ENTRY Parody>see Satire

Running the DSR Program

Creates an index entry for Sa­
tire. DSR gives it the current
page number

Provides a cross reference to
the index

DSR is initiated by entering the following command:

RUNOFF filespec <RET>

After processing the file, DSR terminates.

For example:

$RUNOFF MYBOOK Processes MYBOOK.RNO and
produces MYBOOK.MEM as
output

Various qualifiers can be placed on the command line. Examples are:

IFORMSIZE 55 Sets page to 55 lines rather than
the default of 60 lines

IPAGES:"3-1: 3-16, 4-1 :4-16"

IDEBUG:echo

IINDEX:drama.bix

ICONTENTS:
poems.btc

IOUTPUT:TT:

Prints only pages 3-1 through 3-
16 and 4-1 through 4-16

Traces the operation of any
DSR commands defined by the
parameter by echoing each ex­
ecution in the output file

Creates an index file called dra­
ma.bix

Creates a table of contents file
called poems.btc

Puts the output on the terminal

128

Programming Support Facilities

DEC/CMS

The Digital Equipment Corporation Code Management System
(DEC/CMS) is an optional software product that provides software
developers with a tool to help manage files of an ongoing project.

DEC/CMS maintains a library of project elements, each consisting of
one or more related files. A source file and the command file for
compiling and linking that program could constitute an element of the
library. Elements are stored in the library as a succession of genera­
tions; that is, each time an element is modified, a new generation of
that element is added to the library. Historical generations of source
and other text files are stored efficiently by storing only their differ­
ences. CMS figures out the differences. A history is kept of all move­
ments of files into and out of the project library.

A generation, or line of decent, may be identified by a generation
number or by a user-defined class name. A class may denote a base
level, a release, the current stable version, a debugging version, or any
other characteristic agreed upon by users for their project.

DEC/CMS enables users to:

• keep ASCII text files in a project library
• retrieve previous file generations .
• get a report of who modified a file, including when and why the

modification was made

• learn the origin of each line of a file, either as an annotated listing or
as comments in a file

• manage concurrent modifications
• merge separately developed modifications

• keep related files together as a single element
• relate the generation of one element to the corresponding .genera­

tions of other elements

129

Programming Support Facilities

COMMANDS

Each CMS command is invoked from the VAX/VMS command level to
perform a specific function. Each command returns to the VAX/VMS
command level where the user may edit, compile, and test in the usual
manner. DEC/CMS provides the following commands:

ANNOTATE Produces an annotated listing of any
element in the library. The annotations de­
scribe the element and its ancestors, and
indicate the origin of each line of the ele­
ment (that is, the generation in which each
line was inserted or most recently modi­
fied).

CREATE

FETCH

INSERT

REPLACE

RESERVE

Creates a new element or class.

Similar to the RESERVE command de­
scribed below, except that the element is
not reserved for modification. The copy
placed in the user's working directory may
not be used to create a new generation of
the same element.

Puts an element generation into a class.

Creates a new generation of an element that
the user has reserved. The files of the new
generation are moved to the project library
from the user's working directory. The new
generation is a successor of the generation
the user obtained when the element was re­
served.

Places a copy of a generation in the user's
working directory and notes that it is intend­
ed for modification. The entire element is
reserved against the concurrent modifica­
tion by another user. A user may have sev­
eral elements reserved at the same time.
Optionally, a remark may be inserted into
each line to show the origin of the line (see
ANNOTATE above). A qualifier allows
another generation of the same element to
be merged with the copy supplied to the
user.

130

SET LIBRARY

SHOW

UNRESERVE

VERIFY

Programming Support Facilities

Identifies the user's project library at the
start of the session.

Displays chronological and status informa­
tion. For any generation, the command can
give the author, creation date, creating
commands, and author's remark. This in­
formation can be obtained for a genera­
tion's ancestors or decendents as well. Al­
so, the SHOW command can list all ele­
ments of the library, all that are reserved, or
all that have a generation in a given class.
All or a portion of the project history can be
displayed, and the display can be limited to
unusual events.

Cancels an existing reservation.

Performs consistency checks on the library,
and recovers from a malfunction by
nullifying a partially completed transaction.

131

CHAPTER OVERVIEW
The large collection of language processors is described in this chap­
ter. Included is information on language extensions beyond industry
standards and special features of the VAX language environment.
Some sample programs-particularly for COBOL-are printed in the
text.

Topics include:

• VAX Common Language Environment

• High-Level VAX Languages

• Assembly Language

• Host Development Languages

132

INTRODUCTION

CHAPTER 5

PROGRAMMING LANGUAGES

The VAX/VMS operating system provides a complete program devel­
opment environment. In addition to the assembly language, MACRO,
it offers the optional higher-level languages commonly needed in en­
gineering, scientific, commercial, instructional,. and implementation
applications-FORTRAN, COBOL, BASIC, PL/I, PASCAL, C, CORAL
66, BLlSS-16, and BLlSS-32. The VAX/VMS operating system pro­
vides the tools to write, assemble or compile, and link programs, as
well as to build libraries of source, object, and image modules. User
applications may employ more than one language, and the ability of
languages to call one another allows concatenation of application seg­
ments written in a variety of languages, provided they satisfy certain
criteria.

These VAX language processors produce native object code, and take
advantage of the native instruction set and 32-bit architecture of the
V AX hardware.

In addition, there is the host development mode programming envi­
ronment which provides support for the PDP-11 FORTRAN IV/VAX to
RSX and MACRO-11 languages. These produce compatibility mode
object code.

VAX COMMON LANGUAGE ENVIRONMENT
An important feature provided by VAX is a "common language" envi­
ronment. To put it another way, the VAX languages adhere to a
specific set of standards, and these standards include:

• A symbolic debugger interface

• Use of the symbolic traceback facility

• Use of the Common Run Time Library

• Conformance to the VAX calling standard, which allows calls among
any set of VAX languages and calls to VAX/VMS system services
and to SORT and FMS subroutines

• Common handling of exceptions

• Use of VAX-11 RMS (Record Management Services) for record han-
dling

The elements of the common language environment are briefly de­
scribed here. For more detailed information, see the Index for the
appropriate pages.

133

Programming Languages

Symbolic Debugger Interface
The VAX/VMS operating system provides facilities to aid the debug­
ging of programs written in native mode. It accomplishes this via a
program known as the symbolic debugger (DEBUG). DEBUG can be
linked with a program image to control image execution during devel­
opment. It can be used interactively or can be controlled from a
command procedure file. The debugging language is similar to the
VAX/VMS command language. Expressions and data references are
similar to those of the source language used to create the image being
debugged.

Debugging commands include the ability to start and interrupt pro­
gram execution, to step through instruction sequences, to call rou­
tines, to set break or trace pOints, to set default modes, to define
symbols, and to deposit, examine, or evaluate virtual memory loca­
tions.

Symbolic Traceback Facility
The VAX/VMS operating system supports the Symbolic Traceback
Facility. This is a runtime facility that aids programmers in finding
errors by describing the call sequences that occurred prior to the
error. The traceback facility is automatic and does not require that any
special qualifiers be included with the FORTRAN or LINK commands
(but it can be suppressed by specifying NOTRACE with the LINK com­
mand).

When an error condition is detected, the error message is displayed
by the Run Time Library indicating the nature of the error and the
address at which the error occurred (user program counter). This is
followed by the traceback information, which is presented in inverse
order to the calls. For each call frame, traceback lists module name,
routine name, source program line, and absolute and relative PC.
Using this information, the programmer can usually locate the source
of the error in a relatively short period of time.

Common Run Time Library
The VAX":11 Common Run Time Procedure Library contains sets of
general purpose and language-specific procedures. User programs
call these procedures to perform specific tasks required for program
execution. Both VAX-11 MACRO and VAX high-level language
programmers can use any of the Run Time Library procedures in any
combination. Because all procedures follow the same programming
standards and make no conflicting execution assumptions, a lan­
guage-independent common runtime environment is provided for
user programs. Such an environment encourages a user program to

134

Programming Languages

be composed of procedures written in different languages, and thus
increases programming flexibility.

VAX Calling Standard
The VAX procedure calling standard defines and supports the mecha­
nism for passing arguments between modules of major VAX software
subsystems such as languages, VAX-11 RMS (Record Management
Services), and the VAX/VMS operating system. The standard facili­
tates the calling of a procedure written in one language from a pro­
gram written in another language.

Exception Handling
The mechanism defined by the VAX calling standard are also used by
the condition handling facility to signal the occurence of exceptions
detected by hardware or software.

VAX-11 RMS
VAX-11 RMS (Record Management Services) is the technique pro­
grammers use to handle record 1/0 within programs. VAX-11 RMS
routines are system routines that provide an efficient and flexible
means of handling files and their data. Typically, VAX-11 RMS rou­
tines allow the programmer to create a file and:

• Accept new input
• Read or modify data
• Produce output in a meaningful form

High-level language programmers normally use the 1/0 facilities of
their particular language to perform record and file operations. These
operations are implemented using the VAX-11 RMS facilities. VAX-11
MACRO programmers can use the VAX-11 RMS routines directly with­
in their programs.

VAX-11 RMS routines are an integral part of the operating system. The
programmer need not perform any special linking or declaring of glo­
bal entry points for the routines. Furthermore, calls to VAX-11 RMS
routines are consistent with the VAX c~!~ing standard.

HIGH-LEVEL VAX LANGUAGES

VAX-11 BASIC
The VAX-11 BASIC productgives the VAX user the benefits of a highly
interactive programming environment and a high-performance devel­
opment language. It combines the features of the PDP-11 BASIC­
PLUS-2 and RSTS/E BASIC-PLUS languages with the performance
benefits provided by a VAX language that is fully integrated with the
VMS environment.

135

Programming Languages

The VAX-11 BASIC language is a highly extended implementation
language. It provides powerful mathematic and string handling facili­
ties, support for symbolic characters, and full RMS indexed, sequen­
tial, and relative 110 operations.

VAX-11 BASIC can be used as if it were either an interpreter or a
compiler. A fast RUN command and support for direct execution of
unnumbered statements (immediate mode) gives the VAX-11 BASIC
user the "feel" of an interpreter. However, this product can also be
used in compilation mode, where it generates native-mode object
modules like the other VAX compilers. In either case, the VAX-11
BASIC system generates optimized VAX native mode instructions
which have extremely fast execution times. Typical compilation
speeds are up to 3,000 lines per minute and computations will gener­
ally execute up to five times faster than the same programs on a PDP-
11 system.

Following is a brief overview of the general characteristics of the VAX-
11 BASIC language.

General Characteristics
The VAX-11 BASIC system generates inline native VAX instructions in
both its RUN and its compilation modes. The code produced takes
advantage of VAX/VMS native mode capabilities, including:

• Direct calls on operating system service routines, even in immediate
mode

• Transpar.ent access to DECnet communications software

• Direct calls to the Common Run-Time Library and standard system
utilities, including VAX-11 SORT/MERGE

• Direct calls to separately compiled native mode procedures written
in any language that utilizes the' VAX procedure calling standard

• Program sizes up to2 billion bytes are allowed

• All modules are position-independent (PIC) and can be run as fully
re-entrant code

• The VAX symbolic debugger has full support for the VAX-11 BASIC
language

The code generated by the VAX-11 BASIC system uses the standard
VAX/VMS traceb.ack facility for determining the source of runtime
errors. If a fatal program error should occur, an English message is
printed identifying the module and line number where the error oc­
curred. The English text, the traceback, and the integrated BASIC
HELP utility provide a powerful program debugging environment.

136

Programming Languages

Object modules produced by the VAX-11 BASIC system can be linked
with native mode modules produced by other language processors
including the BLISS, COBOL, FORTRAN, PASCAL, and MACRO proc­
essors.

Structured Programming
Structured programming constructs add some of the features of a
block structured language (such as the PASCAL language) to the BA­
SIC language to allow complex programs to be written without
recourse to subroutines or obscure programming techniques. This
makes programs easier to write and maintain.

Figure 5-1 illustrates a record defined by a MAP statement, successive
retrievals by the use of a GET statement, and iteration controlled by a
WHILE. .. NEXT statement block.

137

100

......
U)
(X)

200

--
EMPLOYEE RECORD DEFINITION(S)

LINE 100: THE "GENERAL DEFINITION"
LINE 200: THE "EXPANDED DEFINITION"

MAP (REC1) STRING EMPLOYEE.RECORD = 36,
REAL RATE,
INTEGER ENDFLAG

MAP (REC1) STRING LAST.NAME = 20,
STRING FIRST.NAME = 12,
STRING MID.INITS = 4,
REAL FILL,
INTEGE:R FILL

--!

FILE.NAME.1 $ = "EMPLOYEE.DA T"

OPEN FILE.NAME.1$ AS FILE #1 ,SEQUENTIAL, ACCESS READ, MAP REC1

TOT AL.RATES = 000000.00

Figure 5-1 Sample Structured Basic Program

&
&
&
&
&

&
&

'"0 ..,
0 co

& ii3
& :3

:3
& 5·
& co
&

r-
Q)
::J co c::
Q)
co

CD
(I)

......
eN
co

300 --------------- COMPUTE SUM OF RATES IN FILE ---------------

WHILE NOT ENDFLAG

GET#1
TOTAL.RATE = TOTAL.RATE + RATE

NEXT

400 --------------- REPORT CUMULATIVE SUM BELOW

PRINT "TOTAL. RATE: $";TOTAL.RATE

500 --------------- REPORT COMPLETED: CLOSE FILE(S) --------------­

CLOSE#1

999 END

Figure 5-1 Sample Structured Basic Program cont'd

"'tl a
CQ
~
:3
:3 s·

CQ
r­
III
:J

CQ
~
III

CQ
Cb en

Programming Languages

The SUBPROGRAM and FUNCTION constructs in the VAX-11 BASIC
language have structured END and EXIT statements. In addition, it
allows the use of statement modifiers which allow conditional or repet­
itive execution of the statement without requiring the user to construct
unnecessary loops or blocks. Any non-declarative statement in the
VAX-11 BASIC language can have one or more statement modifiers.
The BASIC statement modifiers include FOR, IF, UNLESS, UNTIL, and
WHILE constructs. Each of the statements in Figure 5-2 illustrates the
use of a statement modifier:

140

100 A(I) = A(I) + 1 FOR 1= 1 TO 100

200 PRINT SUMMARY.DATA IF OPTION.1 AND REPORT="MONTHLY"
IJ ...,
0

300 PRINT FNHOUSE.PAYMENT UNTIL RATE < 123.45 co ...,
tl)

400 GET#1 WHILE EMPLOYEE.NUMBER < 76000
:3

-I. :3
../:>. ! S·
-I.

500 GOSUB 12300 UNLESS ERROR.FLAG
co
t-
tl)
::J

600 PRINT "NORMAL EXIT" IF TOTAL> 1000 UNLESS ERRORS> 0 co
c::
tl)

co
(l)
C/)

Figure 5-2 Statement Modifiers

Programming Languages

Data Types
The VAX-11 BASIC language increases the number of data types
available to the BASIC programmer by allowing the use of 32-bit integ­
er and 64-bit floating point data values. Tabel 7-3 below describes the
data types supported by the VAX-11 BASIC language.

Data Type

REAL

WORD

LONG

INTEGER

STRING

Declarations

Table 5-1 Data Types

Meaning

Specifies that the variable or constant contains
floating-point data. The precision depends on the
COMPILE command qualifier used. COM­
PILE/SINGLE specifies 32-bit floating point num­
bers; COMPILE/DOUBLE specifies 64-bit floating
point numbers

Specifies that the variable or constant contains
word-length integer data, regardless of the COM­
PILE command qualifier used

Specifies that the variable or constant contains
longword integer data, regardless of the
COMPILE command qualifier used

Specifies that the variable or constant contains
integer data. This data type defaults to the qualifi­
er used at compile-time. If the program is com­
piled with the /WORD qualifier, integers are 16
bits long; with the /LONG qualifier, 32 bits long

Specifies that the variable or array contains string
data

The VAX-11 BASIC language allows implicit declaration of variables.
Unless specifically named in a declaration statement, a variable will be
declared by its first reference. The PDP-11 BASIC-PLUS-2 convention
is to implicitly type a variable or value by the trailing character in its
representation, e.g. ABC$ is a STRING variable; XYZ% and 123% are
INTEGER; T12, 314159, and 3.14 are implicitly REAL.

Variables can be declared in COMMON, MAP, or DECLARE state­
ments. Both COMMON and MAP statements are,used to declare static
storage areas-typically 110 records or shared data blocks. If a pro­
gram has several named common statements with the same name, the
common program sections (PSECTs) are stored one after the other. If

142

Programming Languages

several MAP statements have the same name, they overlay the same
PSECT.

The DECLARE statement is used to explicitly type variables, functions,
and constants. Note that the appearance of a variable name in a
DECLARE statement implies that that variable will not be in static
storage (see MAP, COMMON above).

Finally, the EXTERNAL statement is provided to let the BASIC pro­
grammer explicitly declare data types for symbols external to the cur­
rent program unit, e.g. the name of a VMS system service module, an
external BASIC function, or an external constant which is to be global
in an application.

Figure 5-3 illustrates the use of COMMON, MAP, DECLARE, and EX­
TERNAL statements.

143

......

.J::o.

.J::o.

100 ---------------------- CO M M 0 N STAT EM ENTS --------------------

200

300

COMMON (DATASET1) REAL A,B,C,D,E,F,G,H,O,P,Q,R,S,T,U,V,W,X,Y,Z,
INTEGER I,J,K,L,M,N
STRING S1,S2,S3,S4

COMMON (DATASET1) LAST.NAME$=10, FIRST.NAME$=5

MAP (DATASET2)

MAP (DATASET2)

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

MAP STATEMENTS ---------------------

REAL
INTEGER
STRING

REAL
INTEGER
STRING

DECLARE STATEMENTS

INTEGER
REAL
LONG
WORD
STRING

PART.NUMBER, COST,
VENDOR.CODE, QA.INDEX,
VENDOR.ID=40

FILL, FILL,
FILL, FILL,
VENDOR.NAME = 10, FILL,
VENDOR.TWX = 30

COUNTER.1, COUNTER.2,
STANDARD. DEVIATION
A.32.BIT.VARIABLE
A.16.BIT.VARIABLE
LAB.NAME = 20

Figure 5-3 Declaration Statements

&
&

&
&

&
&
&

"0 a co
~
:3
:3
S·
co
r­
Q)
::J
co c::
Q)

co
CI)
C/)

-"
~
0'1

400
401
402

500

600

DECLARE INTEGER
DECLARE REAL
DECLARE STRING
DEF CONCAT(STRING Y, STRING Z)

CONCAT = Y + Z
FNEND

PRINT CONCAT("THIS IS"," THE RESULT")

CONSTANT
CONSTANT
FUNCTION

!----------------------------- EXTERNAL STATEMENTS
!

EXTERNAL

EXTERNAL

EXTERNAL

INTEGER FUNCTION SYS$ASSIGN

INTEGER FUNCTION SYS$TRNLOG

INTEGER FUNCTION SYS$OIOW

!--

Figure 5-3 Declaration Statements

DEBUG.MODE
MY.PI
CONCAT

= 0, MY.P = 3,
= 3.1416

CAN BE USED FOR VMS SERVICES

! LOGICAL TRANSLATIONS

! SYNCHRONOUS 010 CALL

cont'd

'1J
a co
iti
:3
:3
5·

co
r­
n>
:::3
co c::
n>
co en
(I)

Programming Languages

Files and Records
The VAX-11 BASIC language supports RMS (Record Management
Services) sequential, indexed, and relative file organizations. In addi­
tion, BASIC applications can access virtual arrays (stored on files),
terminal-format files, and block I/O files via RMS.

The OPEN statement in the VAX-11 BASIC language allows
specification of file organization, access modes, file sharing, record
formats, record size, and file allocation. At the record level, a BASIC
program can FIND, GET, PUT, UPDATE, DELETE, or RESTORE any
record in a file either sequentially or randomly.

The VAX-11 BASIC language can access files created by other native
mode languages, assuming appropriate data representations are
maintained with the records.

Symbolic Characters
The BASIC language supports references to symbolic charac­
ters-those characters in the 96-character ASCII set which do not
print, e.g. NUL, SOH, FF, CR, etc. Figure 5-4 illustrates the use of
symbolic characters in a BASIC program.

146

-L

~
-....J

10 PRINT "PROGRAM STARTS ... ";LF;LF;"AT "+TIME$(O)

TITLE$ = "SUMMARY REPORT"

PRINT TITLE$;CR; FOR I = 1 TO 5
Bold copy by overprinting

PRINT

PRINT A(I) FOR 1= 1 TO 10

99

Ready
RUN
TEST5

PRINT

END

28-MAY-1980

PROGRAM STARTS ...

SUMMARY REPORT
o
o
o
o
o
o
o
o
o
o

AT 05:20 PM

Output report data

17:20

Ready Figure 5-4 Symbolic Characters

'1J a
co
~
:3
:3 s·
co
r­
III
;:,
co c:
III
co
(1)
C/)

Programming Languages

CALL Facility
The CALL statement allows the BASIC programmer to invoke pro­
cedures and functions that are external to the current source module.
By using the VAX-11 LINKER utility, procedures written in any of the
VAX native mode languages can be invoked, i.e., BASIC routines can
call or be called by procedures written in the COBOL, CORAL, FOR­
TRAN, and PASCAL languages.

The CALL statement in the VAX-11 BASIC language has been extend­
ed to allow a procedure to pass parameters BY REFerence, BY
VALUE, or BY DESCriptor. These mechanisms conform to the VAX
procedure calling standard and allow BASIC programs to call VMS
service routines and accept returning status values.

Shareable Programs
Applications written in the VAX-11 BASIC language can be made
shareable images by the VAX-11 LINKER. The BASIC language gener­
ates fully re-entrant PIC code.

Developing BASIC Programs
The VAX-11 BASIC language delivers a high-productivity develop­
ment environment. The key features of this environment include:

• Automatic line number generation via SEQUENCE command

• Integral line editing with EDIT

• A RUN command which allows a program to be placed directly into
execution without requiring a separate LINK operation

• Direct execution of unnumbered BASIC statements, allowing quick
verification of algorithms, inspection/change of data values, and
invocation of subroutines or functions in a halted BASIC program

• An integral HELP facility helps program debug/development by
providing online reference text from the BASIC manual set

• The VAX-11 BASIC system can produce source language listings
with embedded diagnostics indicating the line and position of any
errors. Fully descriptive diagnostic messages are provided at the
point of an error. Many error conditions are caught at compile time.
At the user's option, the VAX-11 BASIC system can also output a
machine language listing and/or a cross-reference listing

• The VAX symbolic debugger (DEBUG) lets the programmer set
breakpoints, and inspect or change the value of variables during
execution of a program

Figure 5-5 illustrates the use of several of these features. The text
appearing in bold in Figure 5-5 corresponds to user input, the remain­
ing text is supplied by the BASIC system.

148

Programming Languages

100 !--------------------INPUT A FILE NAME, COUNT NUMBER OF LINES IN IT­
LINPUT "What file to be opened ",FILE.NAME$
F.NAME$ = EDIT$(FILE.NAME$,32%)
OPEN F.NAME$ FOR INPUT AS FILE #1
ON ERROR GOTO 900
LINPUT #1%,TEXT$ FOR 1= 1 to 1000000
STOP

900 LINE. = ERL
NUMBER. = ERR
MESSAGE$ = ERT$(NUMBER.)
RESUME LINE 910

910 PRINT "*END, FROM LlNE";LINE.;"WITH TEXT: ";MESSAGE$;
PRINT" - AFTER ";I;"RECORDS"

991 STOP
995 PRINT "*** THE END ***"
999 END

Ready

RUNNH

DfoBASIC-E-SYNERR, syntax error
at line 900 statement 4

RESUME LINE 910

Ready

HELP RESUME

RESUME

t

The RESUME statement marks the end of an error handling routine,
and returns program control to a specified line number.

Format

RESUME [<Iin-num>]

Examples

990 RESUME 300

or

990 RESUME

Ready

LIST 900
TEST6 28-MAY-1980 17:15

900 LINE. = ERL
NUMBER. = ERR
MESSGE$ = ERT$(NUMBER.)
RESUME LINE 910

Figure 5-5 BASIC Program Development Features

149

Ready

EDIT 900 / LINE / /

900 LINE. = ERL
NUMBER. = ERR

Programming Languages

MESSAGE$ = ERT$(NUMBER)
RESUME910

Ready

RUN
TEST6 28-MAY-1980 17:16

What file to be opened ? TEST6.BAS
*END, FROM LINE 200 WITH TEXT: ?End of file on device - AFTER 17 RECORDS
%BAS-I-STO, Stop
-BAS-I-FROLINMOD, from line 991 in module TEST 6
Ready

PRINT MESSAGE$;" FROM FILE";F.NAME$
?End of file on device FROM FILETEST6.BAS
Ready

PRINT F.NAME$;CR; FOR 1= 1 TO 5
TEST6.BAS
Ready

Figure 5-5 BASIC Program Development Features cont'd

The LOAD Command
A major goal of V AX-11 BASIC is to support a program development
environment. The lOAD command allows a user to stay in BASIC,
even when a program under development involves several separately
compiled BASIC subroutines. When a RUN command is issued, any
BASIC modules moved into memory by the previous lOAD command
are automatically bound together with the module under development
and the resulting in-memory image begins execution, Le., the user is
not required to leave BASIC, invoke the LINKER, and use the DIGITAL
Command language (DCl) $RUN command. This speeds program
development considerably.

Once an application has been checked out, a final call on the LINKER
can be used to create a shareable, native mode, executable image for
prod uction use.

Error Handling
The VAX-11 BASIC system allows user-directed error and event han­
dling. Occurence of an error can activate one or more routines which
handle the error (or event), and then return control to the point where

150

Programming Languages

the error occurred (RESUME), or to the calling program (ON ERROR
GOBACK), or to the BASIC system itself for standard cleanup and
return of control at the BASIC command level.

In determining the cause of an error, the BASIC program can use the
value of: ERR-the error message number assigned by BASIC,
ERL-the line number where the error occurred, ERN$-the name of
the BASIC module where the error occurred, and ERT$(ERR)-the
error message text which the BASIC system would print if the error
were not trapped by the program.

Migration to VAXNMS
Included with the VAX-11 BASIC system is a translator utility which
helps to convert BASIC-PLUS programs to VAX-11 BASIC. Generally,
OPEN statements and SYS calls need to be modified. However, addi­
tional systems-dependent statements may need to be changed as
well. For more information, see The BASIC Transportability Manual.

The following are examples of typical changes:

• The MODE expression on an OPEN statement is changed to the
corresponding set of keywords, e.g.,

OPEN F$ AS FILE #1 MODE2%
becomes

OPEN F$ AS FILE #1, ACCESS APPEND

• MAP and DIM statements are moved to occur before OPEN state­
ments

• RSTS/E SYS-CALLS are examined and removed if not supported
by the VAX/VMS operating system

Files may be copied over on tape or by using DECnet communications
software, and the programs are RUN under VAX-11 BASIC. In the
event errors are detected by BASIC, the online HELP facility is used to
determine any additional changes needed for correct compilation. A
detailed list of differences between VAX-11 BASIC and the PDP-11
BASIC-PLUS-2 (and BASIC-PLUS/EXTEND) can be found in the
Users Guides for those products.

Certain features were carried forward from PDP-11 BASIC-PLUS and
PDP-11 BASIC-PLUS-2 to VAX-11 BASIC in order to make the move
to VAX easier. These include:

• BASIC-PLUS to VAX-11 BASIC Translator utility

• Program RESEQUENCE utility from BASIC-PLUS-2 V1.6

• FIELD statement

• CVT, SWAP, and MAGTAPEfunctions

• Foreign buffer support

151

Programming Languages

• String arithmetic
• Numerous non-privileged RSTS/E SYS calls

• Virtual arrays

Additional Functions
Additional functions of the VAX-11 BASIC language include the follow;,.
ing:

• Powerful string manipulation functions for creating, converting,
searching, editing, and extracting character values

• Variable names up to 30 characters long
• Maxiumum length of a single string is 65,535 characters

• Multiple statements on a line

• Multiline IF ... THEN ... ElSE statements

• Optional use of line continuator "&" and statement separator "\",
e.g.,

100 PRINT

vs.

PRINT
PRINT

vs.

100 PRINT &
\ PRINT &
\ PRINT

100 PRINT &
\ PRINT &
\ PRINT

• DIGITAL Command language (DCl) pass-through in the BASIC
command mode by simply prefixing the DCl command line with a
dollar-sign, e.g.,

Ready
$DIR *.BAS, *.OBJ

• Provision for up to ten individual BASIC object library files for au­
tomatic use at runtime when developing an application using sepa­
rately-compiled BASIC subroutines

VAX-11 COBOL
VAX-11 COBOL is a high-performance implementation of COBOL. It is
based on American National Standard Programming language CO­
BOL, X3.23-1974, the industry-wide accepted standard for COBOL.
Most features planned for the next COBOL standard,based on the
specifications in the Draft Proposed Revised X3.23 American National
Standard Programming language COBOL, are also included.

152

Programming Languages

VAX-11 COBOL also supports an embedded Data Manipulation Lan­
guage (DML) interface to VAX-11 DBMS, Digital's CODASYL- compli­
ant Data Base Management System. Also, it allows access to common
record definitions stored in the VAX-11 Common Data Dictionary.
VAX-11 COBOL's support of features in the next ANSI COBOL stan­
dard, of the VAX Information Architecture, and of other Digital-defined
extensions to COBOL makes possible a wider range of COBOL appli­
cations on the VAX.

VAX-11 COBOL is properly defined as an implementation of ANSI
COBOL with full support of the following:

• full Level 2 Nucleus Module

• full Level 2 Table Hanlding Module.

• full Level 2 Sequential I/O Module

• full Level 2 Relative I/O Module

• full Level 2 Indexed I/O Module

• full Level 1 Report Writer Module

• full Level 2 Segmentation Module

• full Level 2 SORT/MERGE Module

• full Level 2 Library Module
• full Level 2 Interprogram Communication Module

Most code in the object module produced by the VAX-11 COBOL
compiler is implemented with in-line VAX-11 instructions. The object
code takes advantage of such native mode features as:

• many of the VAX-11 string manipulation instructions

• the packed decimal instructions

• direct calls to VAX/VMS

• direct calls to VAX-11 RMS

• direct calls to VAX-11 DBMS

• direct calls to VAX-11 SORT

• direct calls to the Common Run-Time Library

• transparent access to DECnet

The VAX-11 Sym bolic Debugger many be used for program develop­
ment with VAX-11 COBOL. Features supported include the source
program display facility in which the COBOL source code is displayed
as the debugger traces the program. This reduces the need for
sources listings during program development. Other features include
complete support of COBOL qualified names, breakpoints, and the
examination and setting of program variables.

153

Programming Languages

Object modules produced by the compiler can be linked with native
mode object modules produced by other VAX language processors
including BASIC, FORTRAN, PLlI, and MACRO.

Structured Programming
VAX-11 COBOL adds some of the features of traditional structured
programming languages (such as ALGOL and PLlI) to the VAX-11
COBOL compiler. This facility makes programs easier to develop, un­
derstand, and maintain, thereby reducing program development and
maintenance costs. The structured programming facilities supported
by VAX-11 COBOL include the EVALUATE statement, scope-delimit­
ed statements, and the in-line PERFORM statement.

The EVALUATE statement in a CASE-like statement found in modern
programming languages and allows the selection of statements to be
exeucted, dependent on the state of program variables. Scope-delim­
ited statements simplify COBOL coding that previously required addi­
tional GO TO statements and procedure names. The in-line PERFORM
statement reduces program complexity by putting logic of the
PERFORM in-line.

The following program example from a transaction processing appli­
cation illustrates the usage of the structured programming facilities in
VAX-11 COBOL.

INITIALIZE STATE.

PERFORM VARYING I FROM 1 BY 1 UNIT I> 12
MOVE 0 TO MONTYL Y -RETRIEVE-TRANSACTIONS(I)
MOVE 0 TO MONTHLY -UPDATE-TRANSACTIONS(I)
END-PERFORM

TRANSACTION-LOOP.

MOVE MONTH-INDEX TO I.
EVALUATE TRANSACTION-TYPE
WHEN "RETRIEVE"

154

Programming Languages

WHEN "retrieve"
READ TRANS-FILE AT END

MOVE "EOF" TO TRANS-EOF-SWITCH
END-READ

IF TRANS-EOF-SWITCH NOT = "EOF"
THEN

ADD 1 TO MONTHLY-RETRIEVE-TRANSACTIONS(I)
END-IF

WHEN "UPDATE"
WHEN "update"

REWRITE TRANS-REC
ADD 1 TO MONTLY-UPDATE-TRANSACTION(I)

WHEN OTHER
DISPLAY TRANSACTION-TYPE "is an invalid transac­
tion"
ADD 1 TO TRANS-ERROR-CNT
END-EVALUATE.

GO TO TRANSACTION-LOOP.

The example illustrates the usage of the in-line PERFORM statement
whose scope is delimited by END-PERFORM. The in-line PERFORM
loop initializes monthly transaction counts in preparation for the sub­
sequent transaction analysis. The EVALUATE statement performs the
transaction analysis and illustrates the typical usage of this statement:
a set of actions to be executed, dependent on the state of a program
variable (e.g., TRANSACTION-TYPE). For the cases not specifically
mentioned, the (catch-ail) WHEN OTHERS imperative statement se­
quence is executed which, in this example, does exception reporting
and a count of the transaction errors. The scope-delimiters are END­
PERFORM, END-READ, END-IF, and END-EVALUATE. These help to
organize the program and to make the program more understandable
and maintainable.

Data Types
VAX-11 COBOL supports the data types specified in the ANSI COBOL
Standard. VAX-11 COBOL also supports, as extensions, the packed
decimal (COMP-3), floating point (COMP-1), double floating (COMP-
2), and address (POINTER) data types.

The following is a summary of the data types supported by VAX-11
COBOL:

155

Programming Languages

• Numeric DISPLAY Date
Trailing overpunch sign

Leading overpunch sign

Trailing separate sign

Leading separate sign

Unsigned

Numeric-edited

• Numeric COMPUTATIONAL Data

Word fixed binary

Longword fixed binary

Quadword fixed binary

• Packed-Decimal Data (COM PUTATIONAL-3)

Unsigned packed decimal

Signed packed decimal'

• Floating Point Data
F _floating (COMPUTATIONAL-1)

o _floating (COMPUTATIONAL-2)

• Alphanumeric DISPLAY Data
Alphanumeric

Alphabetic

Alphanumeric-edited

• Address Data
Pointer

Contained Programs and CALL Facilities
VAX-11 COBOL supports both the contained programs and CALL
statement facilities. Contained programs allows the nesting of one or
more contained subprograms in a containing program within a source
module. A containing progam may call any of its directly contained
subprograms. Moreover, resources such as variables, files, alphabets,
symbolic characters, and use procedures defined in a containing
program may be referenced in the contained subprogram, provided
such resources are defined in the containing program with the GLO­
BAL attribute. Thus, the contained programs facility allows the sharing
of programs and data within the same source module.

The CALL statement enables a COBOL programmer to execute rou­
tines that are external to, or contained in, the source module in which
the CALL statement appears. The VAX-11 COBOL compiler produces
an object module from a source module. The object module file can
be linked with other VAX object modules to produce an executable

156

Programming Languages

image. Thus, COBOL programs can call external routines written in
other VAX-11 languages including BASIC, FORTRAN, PLlI, and MA­
CRO.

The CALL statement has been extended by allowing arguments to be
passed BY REFERENCE (the default in COBOL), BY CONTENT, BY
DESCRIPTIOR, and BY VALUE. The BY REFERENCE and BY CON­
TENT argument-passing mechanisms are defined by the next ANSI
COBOL standard. The BY DESCRIPTOR and BY VALUE argument­
passing mechanism are Digital extensions to COBOL and are useful in
calling VAX/VMS system service routines and common run-time
library procedures. These argument-passing mechanisms conform to
the VAX calling standard. Also, a COBOL program can receive a re­
turned status value from the routine it calls via the GIVING clause
associated with the extended CALL statement.

Other extensions to VAX-11 COBOL that are useful in accessing the
VAX/VMS environment from COBOL are the external constants (VAL­
UE IS EXTERNAL), address data, and the SUCCESS/FAILURE class
conditions.

The external constants facility gives the COBOL programmer access
to values that are known at link-time only. The address data exten­
sions to VAX-11 COBOL include:

• USAGE IS POINTER clause

• VALUE IS REFERENCE clause

• SET TO REFERENCE statement

USUAGE IS POINTER specifies that the associated variable is to con­
tain an address value; the VALUE IS REFERENCE clause allows
compile-time initialization of a pOinter variable to the address of CO­
BOL data. The SET TO REFERENCE statement allows run-time ini­
tialization of a pointer variable to the address of COBOL data. The
SUCCESS/FAILURE class condition allow a COBOL program to test
the low-order bit of a returned status variable from a system service
routine call.

COBOL Data Manipulation Language (DML)
VAX-11 COBOL supports the COBOL Data Manipulation Language
interface to VAX-11 DMBS, Digital's CODASYL-compliant Data Base
Management System. Digital refers to the DML interface as an
"embedded DML" because no preprocessor techniques are used by
the compiler in the translation of the DML statements. Instead, the
VAX-11 COBOL compiler translates directly the DML statements to
calls on the Data Base Control System (DBCS) component of VAX.,.11
DBMS.

157

Programming Languages

This DML facility is an intergal part of the VAX Informaton Architecture
and consists of the following:

• the DB statement in the Sub-Schema Section

• the USE FOR DB-EXCEPTION declarative

• the database special registers

• the data manipulation verbs

The DB statement specifies the subschema and schema that a DML
program uses. The subschema and schema define the sets, record
types, and realms that the DML program manipulates. The USE FOR
DB-EXCEPTION declaratives specify error handling procedures for
database exception conditions that may arise during DML program
execution. The database special register DB-CONDITION identifies
specific database exception conditions. The data manipulation verbs
enable a DML program to navigate through a database, to test the
state of a database, and to create, update, and delete records in a
database. Some of the DML verbs supported are:

• READY - Begin database transaction

• FIND - Find record in database

• GET - Get current record in database

• STORE - Store record in database

• MODIFY - Update record in database

• ERASE - Erase record(s) in database

• COMMIT - Terminate database transaction; change database

• ROLLBACK - Terminate database transaction; no change to data­
base

The following program example from a database transaction process­
ing application illustrates the use of the DML facilities in VAX-11 CO­
BOL.

IDENTIFICATION DIVISION.
PROGRAM-ID. DMLRETRIEVE.
DATA DIVISION.
SUB-SCHEMA SECTION.
DB TRANSUBSCHEMA WITHIN TRANSCHEMA.
LINKAGE SECTION.
01 RET-KEY PIC X(7);
01 RT-INFO PIC X(73(.
PROCEDURE DIVISION USING RET-KEY, RET-INFO GIVING DB­
CONDITION.
DECLARATIVES.

158

Programming Languages

RETRIEVAL-HAN DLER-SECT SECTION.
USE FOR DB-EXCEPTION.

RETRIEVAL-HANDLER.
ROLLBACK.
EXIT PROGRAM.

END DECLARATIVES.
RETRIEVAL-SECTION SECTION.
RETRIEVE-REC.

READY CONCURRENT RETRIEVAL.
MOVE RET-KEY TO TRANSKEY.
FIND FIRST TRANSREC USING TRANSKEY.
GET TRANSREC.
MOVE TRANSINFO TO RET-INFO.
ROLLBACK.
EXIT PROGRAM.

This program is a COBOL subprogram designed to find and return
information from the TRANSCHEMA database to the caller of the sub­
program. The DB statement shows that the TRANSUBSCHEMA sub­
schema is to be used for the TRANSCHEMA schema (database). The
program is given a lookup key, RET-KEY, as input to locate the record
in the database with the FIND statement. The GET statement retrieves
the record into memory and returns the associated information (via
RET-INFO) to the caller. The USE FOR DB-EXCEPTION procedure
handles any database exception conditions that may arise during the
execution of the READY, FIND, or GET statements. If this execution
procedure is invoked due to such an error condition, the specific data­
base exception condition, specified in the special register DB-CONDI­
TION, is returned to the caller (via the GIVING option) of the
subprogram. The ROLLBACK statement terminates the database
transaction and leaves the database unchanged.

Files and Records
VAX-11 COBOL Sequential 1/0, Relative 1/0, and Indexed 1/0 mod­
ules meet the full ANSI Level 2 standard. The Language's Level 2
Indexed 1/0 module statements enable VAX-11 COBOL programs to
use the VAX-11 RMS multikey indexed record management services
to process files. These files can be accessed sequentially, randomly,
or dynamically usng one or more indexed keys to select records. VAX-
11 COBOL has full variable-length record capability for all three 1/0
modules ..

159

Programming Languages

VAX-11 COBOL supports the EXTERNAL files capability for all three
I/O modules. This facility allows a program to open a file in one sepa­
rately compiled program and perform record operations in another
separately compiled program.

VAX-11 COBOL has extended COBOL by supporting the special
registers RMS-STS, RMS-STV, and RMS-FILENAME. These special
registers give the COBOL program access to the VAX-11 RMS status
return values and file specification for each I/O operation execution.
These special registers are defined in addition to the file status values
specified in the ANSI COBOL standard.

An additional extension to VAX-11 COBOL is the file sharing and re­
cord locking facilities. These facilities are defined for interactive appli­
cations where multiple, concurrent access to a file is required. The
facilities include exclusive, concurrent read-only, and concurrent
read/write access to a file. Automatic and manual record locking ca­
pabilities are supported to protect multiple accessors to the same
record in a file.

Report Writer Facility
VAX-11 COBOL .supports the full Report Writer Module. The report
writer is a facility that places its emphasis on the organization, format,
and contents of an output report. Although a report can be produced
with the standard COBOL I/O verbs, the Report Writer facility is a
much more concise facility for report structuring and generation.
Much of the Procedure Division coding required to produce reports in
the traditional manner is done automatically by the VAX-11 COBOL
Report Writer Control System. Based on the report group description
entries in the COBOL program, the report writer control system auto­
matically:

• Moves data
• Constructs print lines

• Counts lines on a page

• Numbers pages
• Produces heading and footing lines

• Recognizes the end of logical data subdivisions

• Updates sum counters

Hence, the VAX-11 Report Writer improves programmer productivity
and produces programs that are more cost-effective to maintain.

SORT/MERGE Facility
The VAX-11 COBOL SORT/MERGE module meets the full ANSI stan­
dard and permits performing sort and merge operations at the CO-

160

Programming Languages

BOL source language level without requiring the programmer to un­
derstand the VAX-11 SORT interface. The COBOL SORT/MERGE
capability includes sorting and/or merging one or more files in the
same source module, specifying one or more sort/merge keys (in
ascending or descending order) for each file, and the option to use
either standard or user-specified input/output procedures. The VAX-
11 COBOL SORT/MERGE facility supports the sorting/merging of ver­
iable length records and input/output files of differing file organiza­
tions.

Source Library Facility
VAX-11 COBOL supports the full ANSI COBOL Library facility. All
frequently used data descriptions and program text sections can be
stored in library files available to all programs. These files can then be
copied into source programs performing textual substitution in the
process.

VAX-11 COBOL has extended the COpy statement by supporting the
COpy FROM DICTIONARY statement. This facility allows common
record defintions to be copied from the VAX-11 Common Data Dic­
tionary. This facility is an integral part of the VAX-11 Information Archi­
tecture. Record definitions may be inserted into the dictionary by VAX-
11 DATATRIEVE or by the Common Data Definition Language utility.

Debugging COBOL Programs
The VAX-11 compiler produces source language listings with
embedded diagnostics indicating line and position of error. Fully de­
scriptive diagnostic messages are listed at the point of error. Many
error conditions are checked at compile time, varying ·from simple
informational indications to severe error detections. At the user's op­
tion, the compiler can also produce a machine language listings, a
map of file names, data names, procedure names, external program
names, subschema information, and a cross reference listing. The
maps and cross reference listing may be shown in alphabetic order or
in order of declaration. The cross reference line numbers on which
data-names/procedure-names are defined are indicated and destruc­
tive references to date are distinguished from read-only references~

When a fatal error occurs at run time, an error message identifying the
cause of the error is displayed to the user. Additionally, the system
traceback facility prints the sequence of routine invocations active at
the time of the fatal error. For each routine invocation, traceback dis­
plays the module name, routine name, and source line number in
which either an invocation to another user routine occurs or the fatal
error itself occurs.

161

Programming Languages

The VAX-11 Symbolic Debugger may be used for program
development with VAX-11 COBOL. Features supported include the
source program display facility. By using the facility, the COBOL
source code may be displayed at breakpoints and tracepoints. This
reduces the need for source listings during program development.
Other significant features include full support of COBOL qualified
names, breakpoints, examination and setting of program variables.

VAX-11 COBOL also supports the ANSI conditional compilation facili­
ty: debug lines. This facility allows "D-lines" to be included condition­
ally in the compilation, depending on the presence of the WITH DE­
BUGGING MODE clause in the SOURCE-COMPUTER paragraph. The
feature, however, requires editing and recompilaton of the source pro­
gram. To overcome this limitation, VAX-11 COBOL has extended the
conditional compilation facility by providing a compile-time qualifier,
ICONDITIONALS, to indicate the inclusion or omission of debug lines
in the compilation.

VAX-11 COBOL-74 Translator Utility
The VAX-11 COBOL-74 Translator Utility is helpful to those users
migrating from PDP-11 COBOL and VAX-11 COBOL-74 to the VAX-11
COBOL compiler. This utility produces a translated source program
and a listing with flags indicating those language elements that could
not be mechanically translated and therefore require further investiga­
tion by the programmer.

Some of the differences between VAX-11 COBOL and PDP-11 COBOL
or VAX-11 COBOL-74 that require such a translator are:

• different allocation and alignment techniques

• different methods of specifying file optimization attributes

• different methods of handling variable length records

Fortunately, most differences are transparent to the programmer, and
moving programs form PDP-11 COBOL or VAX-11 requires little (is
some cases, no) programmer work.

Source Program Formats
The VAX-11 COBOL compiler accepts source programs that are cod­
ed using either the ANSI standard format or a shorter, easy-to-enter
Digital terminal format. Terminal format is designed for use with the
Digital interactive fields and allows the user to enter horizontal tab
characters and short text lines.

The REFORMAT utility reads COBOL source programs that are coded
using Digital terminal format and converts the source statements to
the ANSI standard format accepted by other COBOL compilers

162

Programming Languages

throughout the in,dustry. It also has the inverse option to accept pro­
grams written in ANSI standard format and to convert the source
statements to Digital terminal format. This offers the advantages of
saving disk space and compile-time processingwhen programs are
initially migrating from a non-Digital COBOL system to VAX-11 CO­
BOL.

Additional Features
Some additional features of the VAX-11 COBOL compiler are:

• Subscripts can be arithmetic expressions

• Subscripting and indexing are interchangeable. '

• The CONTINUE statement is included. It transfers control to the next
executable statement and can replace conditional or imperative
statements.

• The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COM-
PILED, and SECURITY paragraphs are included.

• The INITIAL and COMMON clauses on the Program-Id are included:

• User-defined alphabets are included.

• Alter statement is included.

• CALL data-name is included. Both on OVERFLOW and EXCEPTION
are supported.

• CANCEL statement is fully implemented.

• INITIALIZE statement is fully implemented.

• Complete string handling facility of COBOL are supported including
the INSPECT, STRING, and UNSTRING statements. The reference­
modification (substringing) feature is fully supported.

• SET statement supporting mnemonic-names, condition-names, and
the Digital-defined extension of SET TO SUCCESS/FAILURE is in­
cluded.

• Independent segments (segments 50 and above) of the Segmenta­
tion module are included.

• WRITE advancing mnemonic-name and associated Special-Names
C01 is included.

• Use of source file libraries by the COpy statement is supported.

• The Digital extension of non-numeric literals as arguments in ,the BY
REFERENCE, BY CONTENT,and BY DESCRIPTIOR argument­
passing mechanisms is included.

• Single-quote-Iimited non-numeric literals, a Digital extension, are
supported in addition to the standard double-quote-delimited non­
numeric literals.

• De-edited MOVE operations are supported.

163

Programming Languages

• OPEN EXTEND on relative and indexed files is included.

• ALPHABETIC-UPPER and ALPHABETIC-LOWER class conditions
are implemented.

• The ALLOWING extension on the READ, START, REWRITE, and
WRITE statements for manual locking of records in the interactive
file sharing environment is included.

• The READ REGARDLESS extension that allows the reading of re­
cords in a file sharing environment, independent of record locks
held on the record is supported.

• The UNLOC statement, a Digital extension, for explicit unlocking of
records in the file sharing environment is implemented.

• ACCEPT AT END, a Digital extension, is included.

• Thirty-one character user-names are supported.

VAX·11 FORTRAN
VAX-11 FORTRAN is an optional native-mode language processing
system for VAX/VMS. The language specifications are based on
American National Standard FORTRAN X3.9-1978 (commonly called
FORTRAN-77). The VAX-11 FORTRAN compiler supports this stan­
dard at the full-language level. Also, it provides optional, switch-selec­
table support for many industry-standard FORTRAN features based
on FORTRAN-66, the previous ANSI standard. The qualifier /NOF77
will invoke such FORTRAN-66 features.

The VAX-11 FORTRAN compiler performs the following functions:

• Produces highly optimized VAX native object code
• Makes use of the VAX floating pOint and character string instruc­

tions

• Produces shareable code

File Manipulation
OPEN and CLOSE statements extend the file management character­
istics of the FORTRAN language. An open statement can contain
specifications for file attributes that direct file creation or subsequent
processing. Attributes include: file organization (sequential, relative,
indexed); access method (sequential, direct, keyed); protection (r"ead­
only, read/write); record type (formatted, unformatted); record size;
and file allocation or extension. The program can also specify whether
the file can be shared, and whether the file is to be saved or deleted
when closed. An ERR keyword can modify the OPEN statement and
specify the statement to which control is transferred if an error is
detected during OPEN.

164

Programming Languages

Of particular interest is the VAX-11 FORTRAN support for the Indexed
Sequential Access Method (ISAM), a powerful keyed input/output file
access capability. The VAX-11 FORTRAN language is able to create,
read, and write indexed (and relative) files. In addition, it is able to
reference a relative or indexed file already created by another lan­
guage (for instance, the COBOL language), provided the file and data
formats and the key information are compatible. Some specifics of
FORTRAN ISAM are covered below, while more details on the various
file structures and access methods are included in Chapter 12 I/O
Services.

Simplified I/O Formats
List-directed and NAMELIST -directed input and output statements
provide a method for obtaining simple sequential formatted input or
output without the need for FORMAT statements. Using list-directed
input, values are read, converted to internal format, and assigned to
the elements of the I/O list. On output. values in the I/O list are con­
verted to characters and written in a fixed7format according to the data
type of the value.

The NAMELIST statement and the associated forms of input/output
statements provide a simplified means of transmitting lists of data to
and from files. The list of items that can be transferred is specified in a
NAMELIST statement. The associated I/O statement refers to the list
of items to be transferred by including the name of the NAMELIST as a
control parameter. NAMELIST I/O statements do not contain explicit
I/O lists; therefore, it is possible to reference a single name in a simple
I/O statement and get an effect similar to a statement with a long list
and a reference to a complicated format statement.

Character Data Type
A program can create fixed-length CHARACTER variables and arrays
to store ASCII character strings. The VAX-11 FORTRAN language pro­
vides a concatenation operator, substring notation, CHARACTER rela­
tional expressions, and CHARACTER-valued functions. CHARACTER
constants, consisting of a string of printable ASCII characters en­
closed in string quotes, can be assigned symbolic names using the
PARAMETER statement. Operations employing CHAR strings are
more efficient and easier to use than their analogs using arithmetic
data types. The VAX/VMS operating syst-em provides a set of charac­
ter manipulation procedures that are FORTRAN-callable (e.g.,
LlB$LOCC, locate a character in a string).

165

Programming Languages

Source Program Libraries
The INCLUDE statement proVides a mechanism for writing modular,
reliable, and maintainable programs by eliminating duplication of
sourCe code. A section of program text that is used by several pro­
gram units, such as a COMMON· block specification, can be created
and maintained as a separate source file. All program units that refer­
ence the COMMON block then merely INCLUDE this common file. Any
changes to the COMMON block will be reflected automatically in all
program units after compilation. INCLUDE also allows the user to in­
clude modules from the text libraries. VAX-11 FORTRAN provides a
text library that contains FORTRAN source for many VAX/VMS sym­
bols.

Calling External Functions. and Procedures
FORTRAN programs can call MACRO assembly language subroutines
and the system services using the VAX-11 procedure calling standard.
Special operators exist for passing argument values directly, by
re~erence, or by descriptor. A special operator also exists for obtain­
ing the location of argument values used by the system services pro­
cedures.

Shared Programs
The FORTRAN language can be used to create shareable images
which can be used by any program written in a native programming
language.

Diagnostic Messages
Diagnostic messages are generated when an error or potential error is
detected. Errors detected during compilation are reported by the
compiler, and include source program errors, such as misspelled vari­
able names, missing punctuation marks, etc.

Source program diagnostic messages are classified according to
severity: F (Fatal), E (Error), or W (Warning). F-class messages indi­
cate errors that must be corrected before compilation can be complet­
ed. Object code is not produced. E-class messages indicate that an
error was detected that is likely to produce incorrect results; however,
an object file is generated. W-class messages are produced when the
compiler detects acceptable but non-standard syntax; or when it cor­
rects a syntactically incorrect statement. The message indicates the
existence of possible trouble in executing the program.

The VAX-11 FORTRAN compiler optionally produces diagnostic mes­
sages for· VAX FORTRANextentions to ANSI FORTRAN-77. This
flagger can check both syntax and/or source form extentions.

166

Programming Languages

Debugging FORTRAN Programs
The VAX-11 FORTRAN language provides facilities to aid the debug­
ging of programs written in native mode. It accomplishes this via a
program known as the interactive symbolic debugger. The debugger
can be linked with a native program image to control image execution
during development. It can be used interactively or can be controlled
from a command procedure file. The debugging language is similar to
the VAX/VMS command language. Expressions and data references
are similar to those of the source language used to create the image
being debugged. Debugging statements can be· conditionally com­
piled.

Debugging commands include the ability to start and interrupt pro­
gram execution, to step through instruction sequences, to display
source statements, to call routines, to set break or trace pOints, to set
default modes, to define symbols, and to deposit, examine, or evalu­
ate virtual memory locations.

Compiler Operations and Optimizations
The VAX-11 FORTRAN compiler accepts sources written in the FOR­
TRAN language and produces an object file which must be linked
prior to execution. The compiler generates VAX-11 native machine
language code. It will also generate an optional cross-reference listing.

During compilation, the compiler performs many code optimizations.
The optimizations are designed to produce an object program that
executes in less time than an equivalent non-optimized program. Also,
the optimizations are designed to reduce the size of the object pro­
gram.

The VAX-11 FORTRAN compiler performs the following optimizations:

• Constant folding-constant expressions are evaluated at cbmpile­
time.

• Compile-time constant conversion.

• Compile-time evaluation of constant subscript expressions in array
calculations.

• Constant pooling-only a single copy of a constant is allocated sto­
rage in the compiled program. Constants that can be used as
immediate mode operands are not allocated storage. For example,
logical, integer, and small floating point constants are generated as
immediate mode or short literal operands wherever possible.

• Inline expansion of statemment functions.

• Argument list merging-if two function or subroutine references
have the same arguments, a single copy of the argument list is
generated.

167

Programming Languages

• Branch instruction optimizations for arithmetic or logical IF state­
ments;

• Elimination of unreachable code-an optional warning message is
issued to mark unreachable statements in the source program list­
ing.

• Recognition and replacement of common subexpressions.

• Removal of invariant computations from DO loops.

• Local register assignment-frequently referenced variables are re­
tained (if possible) in registers to reduce the number of load and
store instructions.

• Assignment of frequently used variables and expressions to regis­
ters across DO loops.

• Reordering expression evaluation to minimize the number of
temporary registers required.

• Delaying negation/not to eliminate unary complement operations.

• Flow-Boolean optimizations.
• Jump/Branch instruction resolution-the Branch instruction is used

wherever possible to eliminate unnecessary Jump instructions. This
reduces code size.

• Peephole optimizations-the code is examined on an operation-by­
operation basis to replace sequences of operations with shorter and
faster equivalent operations.

When debugging FORTRAN programs, the programmer can disable
optimizations that would remove unreferenced statement labels, FOR­
MAT statement labels, and immediately referenced labels. This en­
sures that all statement labels are available to the debugger.

VAX-11 FORTRAN LANGUAGE ELEMENTS
A FORTRAN program consists of FORTRAN statements and optional
comments. In the first category are assignment, control, 110, format,
and specification statements.

Following are three tables: Table 5-1 is a brief summary of FORTRAN-
77; Table 5-2 is a summary of VAX-11 FORTRAN extensions to the
ANSI standard. And Table 5-3 is a summary of traditional FORTRAN
IV (industry-compatible) features supported by VAX-11 FORTRAN.

168

Programming Languages

Table 5-2 FORTRAN-77 Language Summary

ASSIGNMENT STATEMENTS
variable = expression
ASSIGN label TO variable

Control Statements

GOTO
DO
CONTINUE
CALL
RETURN
PAUSE
STOP
ARITHMETIC IF, LOGICAL IF

IF-THEN­
ELSE

END

Allows conditional expression evaluation. VAX-11
FORTRAN provides the block IF statements:

IF (logical expression) THEN
ELSE IF (logical expression) THEN
ELSE
ENDIF

These are structured programming control state­
ments which provide a readable and reliable
means of writing conditional statements.

INPUTIOUTPUTSTATEMENTS
OPEN
CLOSE
INQUIRE
READ
WRITE
LIST DIRECTED INPUT/OUTPUT
REWIND
BACKSPACE

FORMAT STATEMENTS
FORMAT

ADDITIONAL DATA TYPES
The CHARACTER data type can be used to declare and manipulate
fixed-length CHARACTER variables and arrays. CHARACTER

169

Programming Languages

expressions can contain concatenation operators (II), substring
references, and references to CHARACTER variables, array
elements, and functions. A CHARACTER assignment statement
can be used to assign a character value to a character variable or
substring. Built-in functions are provided for locating a substring
within a character expression, computing the length of a character
dummy argument, and for conversions between character values
and integer-valued ASCII character codes.

SPECIFICATION STATEMENTS
IMPLICIT

IMPLICIT NONE

type var1 ,var2, ... ,varn

DIMENSION
COMMON
EQUIVALENCE
EXTERNAL
INTRINSIC
PARAMETER
DATA
PROGRAM
SAVE

USER-WRITTEN SUBPROGRAMS
name (var1, var2, ...)
-expression
FUNCTION
SUBROUTINE
BLOCK DATA
ENTRY statement

Overides all default implicit
types.

Type is one of: LOGICAL, IN­
TEGER, REAL, DOUBLE PRE­
CISION, COMPLEX, CHARAC­
TER,BYTE

Multiple entry pOints in a single
program unit

170

Programming Languages

Table 5-3 VAX-11 FORTRAN Extensions

Thi rty-one-character
symbolic names

CALL extensions Permit interfacing to VAXIVMS
system service procedures us­
ing the VAX-11 calling
standards.

Hexadecimal and octal constants and
field descriptors

Bit Manipulation

DOWHILE
ENDDO

Additional data types and
type declaration statements

Indexed File 1/0

Keyed READ

I ndexed file WRITE
REWRITE statement
DELETE statement
UNLOCK statement

Intrinsic functions used to set,
clear, test, extract, or move bits.

Structured looping control con­
structs.

BYTE, LOGICAL*1,
LOGICAL*2,
LOGICAL, LOGICAL*4,
INTEGER*2,
INTEGER,INTEGER*4,
REAL, REAL *4,
DOUBLE PRECISION, REAL *8,
COMPLEX, COMPLEX*8,
DOUBLE COMPLEX, COM­
PLEX*16,
CHARACTER*n

NOTE
Names on the same line above
are synonyms. Those in bold­
face are the ANSI standard
ones.

Key types: INTEGER*2, INTEG­
ER*4, CHARACTER with gener­
ic, and approximate key match

171

Programming Languages

Table 5-3 VAX-11 FORTRAN Extensions

Single-record locking in
shared file environments
for relative and indexed
organization files

Data initialization in type-declaration statements

Array Subscripts using general expressions
of any numeric data type

End-of-Line comments

Conditional Compilation of debugging statements

Default FORMAT width

Logical Operations on integers

INCLUDE statement

CALL extensions

INTEGER Data Type Defaults

cont'd

Table 5-4 Traditional FORTRAN IV (Industry-Compatible)
Features

FORTRAN IV Compatible Direct Access 1/0:
(Where u = logical unit #, and r = record #)

DEFINE FILE
READ (u'r)
WRITE (u'r)
FIND(u'r)

ENCODE Statement
DECODE Statement
Hollerith processing of character data
Character literals
(Optional) One-trip DO loops instead of FORTRAN-77

zero-trip DO loops

Device-oriented 1/0 Statements:
TYPE
ACCEPT
PRINT

172

Programming Languages

VAX-11 PASCAL
VAX-11 PASCAL, a re-entrant native mode compiler, is an extended
implementation of the PASCAL language as defined by Jensen and
Wirth in PASCAL User Manual and Report (1974).

PASCAL language has become an increasingly popular general pur­
pose language. It implements a well-chosen, compact set of general
purpose language features. In addition, portability is easily achievable
in PASCAL programs.

Block structuring and flexible data types make the PASCAL language
a good language for commercial users. It is also suitable for systems
programming and research applications.

The VAX-11 PASCAL language takes advantage of the VAX hardware
floating point, character instruction sets, and virtual memory capabili­
ties of the VAX/VMS operating system. Features common to other
languages of the VAX/VMS operating system are available through
the VAX-11 PASCAL language, including:

• VAX-11 Symbolic Debugger support

• Separate compilation of modules

• Standard call interface to routines written in other languages

• Access to VAX/VMS system services

At compile time, options available to the process include:

• Runtime checks for illegal assignment to set and subrange vari-
ables, and illegal array subscripts

• Cross-reference listing of identifiers

• Source program listing

• Machine code listing

Standard PASCAL provides a modular, systematic approach to com­
puterized problem solving. Major features of the language are:

• INTEGER, REAL, CHAR, BOOLEAN, user-defined, and subrange
scalar data types

• ARRAY, RECORD, SET, and FILE structured data types

• Constant identifier definition

• FOR, REPEAT, and WHILE loop control statements

• CASE and IF-THEN-ELSE conditional statements

• BEGIN ... END compound statement

• GOTO statement

• GET, PUT, READ, WRITE, READLN, and WRITELN I/O procedures

• Standard functions and procedures

173

Programming Languages

In addition, the VAX-11 PASCAL language incorporates the following
extensions to standard PASCAL, some of which are common in
PASCAL implementations:

1. Lexical

Upper- and lower-case letters treated identically except in
character and string constants

New reserved words: MODULE, OTHERWISE, SEQUENTIAL,
VALUE, %DESCR, %IMMED, %INCLUDE, and %STDESCR

The exponentiation operator, **
Hexadecimal and octal constants

DOUBLE constants

$ and (underscore) characters in identifiers

2. Predefined data types

DOUBLE

SINGLE

3. Predefined procedures

CLOSE (f)

FIND (f,n)

OPEN (f, ...)

DATE (a)

HALT

LlNELIMIT (f,n)

TIME (a)

4. Predefined functions

LOWER (a,n)

SNGL (d)

UPPER (a,n)

EXPO (r)

CARD (s)

CLOCK

UNDEFINED (r)

174

Programming Languages

5. Extensions to procedures READ and WRITE

READ (or READLN) of user-defined scalar type

READ (or READLN) of string

WRITE (or WRITELN) of user-defined scalar type

WRITE (or WRITELN) of any data using hexadecimal or octal
format

6. %INCLUDE directive

7. VALUE initialization

8. OTHERWISE clause in CASE statement

9. External procedure and function declarations

10. Dynamic array parameters

11. Extended parameter specifications

%DESCR

%IMMED

%IMMED PROCEDURE and %IMMED FUNCTION

%STDESCR

12. Separate compilation of procedures and functions. (A separate
compilation unit is termed a MODULE and several routines may
be part of a MODULE. Each MODULE is eventually embedded in a
host or main program.)

The OPEN, CLOSE and FIND procedures extend the 1/0 capabilities of
the PASCAL language. The OPEN procedure can contain file attrib­
utes that define the creation or subsequent processing of the file. A
FIND procedure is another extension to the language for direct access
to sequential files of fixed length records. The standard 1/0 pro­
cedures of GET, PUT, READ, WRITE, READLN and WRITELN are also
available in the VAX-11 PASCAL language.

175

Programming Languages

The extended parameter specifications %DESCR; %IMMED, and %
STDESCR are added to the PASCAL language to denote the method
of argument passing when calling a system service, procedure, or
function not written in the PASCAL language (for example, in the VAX-
11 FORTRAN or MACRO languages.)

VAX-11 PL/I
The VAX-11 PL/I compiler supports the PL/I language defined in the
American National Standard (ANSI) General Purpose Subset. This
subset, defined by ANSI standard X3.74, is a proper subset of the full
ANSI PL/I (ANSI X3.53-1976). The PL/I language is a versatile lan­
guage that is easily adapted to commercial, scientific, and systems
programming applications.

The General Purpose Subset includes the most widely used features
of the full PL/I language. It excludes features that were more error­
prone, difficult to understand or use, and that tended to be implemen­
tation-dependent.

VAX extensions to the Subset provide additional language features
that allow PL/I programmers to take advantage of the facilities of the
VAX/VMS operating system and its components.

Extensions provided in the VAX-11 PL/I language include selected
features of the full PL/I language that were excluded from the subset
because of their implementation cost on computers with restricted
memory and/or address space.

VAX-11 PL/I programmers can thus choose to restrict their programs
to the General Purpose Subset, ensuring compatibility with other
implementations of the subset. Or they can take advantage of the full
PL/I features and VAX extensions in programming applications.

Applications
Data processing applications can take advantage of the extensive
character-handling functions and data structuring capabilities of the
PL/I language. By declaring variables within a structure, the program
can easily refer to entire records or to fields within records by refer­
encing the name of the structure or the name of a variable within it.

In addition, the VAX-11 PL/I language provides extended access to
the features of VAX-11· Record Management Services (RMS). By spec­
ification of ENVIRONMENT 'options or special options supplied for
input/output statements, PLII programs can dynamically specify RMS
optimization parameters and values, spool a file to a printer or batch
jobqueue, and set or change the protection .on a file.

176

Programming Languages

The VAX-11 PLII language supports all RMS (Record Management
Services) file organizations, including sequential, relative, and indexed
sequential. It also permits block input/output operations. Using PLII
statements, a program can read, write, delete, and update records.
Using built-in file handling functions provided by the VAX-11 PLII
language, a program can call RMS file handling services to forward
space or backward space a file or volume,to increase the allocation of
a disk file, or to obtain information about the properties of a file.

Scientific applications can use the PLII array-handling capabilities to
define arrays of up to eight dimensions. Common arithmetic and trig­
nometric functions are defined within the language. The VAX-11 PLII
language supports all of the VAX hardware's floating-point data types.

System programming applications can use PL/I language features to
allocate storage dynamically, process linked lists and queues, and
perform a wide range of bit-string functions and operations.

In addition, VAX extensions to the language provide a simple means to
refer to VAX/VMS system global symbols and data structures. VAX-11
PLII programs can take advantage of the VAX linker's allocation of
storage by defining variables as read-only or as global symbols.

Full access to all of the VAX/VMS operating system's services and
procedures is possible through VAX-11 PL/I extensions to support the
VAX-11 Procedure Calling Standard. Procedures written in the PLII
language can call and be called by procedures written in any other
native mode language.

Error and Condition Handling
VAX-11 PLII generates traceback records in the object module of a
PL/I procedure, so that when an error occurs at runtime, the VAX
condition handling facility can report on the error and provide a mod­
ule traceback.

Within the PL/llanguage, extensive condition handling capabilities are
available via the ON statement, which allows a program to define the
action to take in the event of hardware arithmetic exceptions and
errors that occur during file processing.

VAX extensions to the ON statement permit the specification of
condition handlers for any specific'hardware or software condition
that can occur.

177

Programming Languages

Debugging Facilities
The PLII compiler generates useful diagnostics that signal syntactical
errors and language violations. Most compiler messages are two or
three lines long and provide information on how to correct the indicat­
ed error.

The VAX DEBUG utility supports symbolic debugging of PLII pro­
grams. Programmers can set breakpoints in PLII programs, examine
and change variables, and monitor the calls and function references
that occur.

Libraries
The VAX-11 PLII language is fully compatible with the VAX Run Time
Procedure Library and provides additional runtime procedures for
language support.

Source file library support is provided by the %INCLUDE statement,
which allows a program to specify at compile time an external file from
which source statements are to be read. Included files can also be
collected in VAX/VMS text file libraries. The VAX-11 PL/I compiler
searches specified libraries for the names of the included modules.

Performance
The VAX-11 PLII compiler is a shareable, native VAX/VMS image that
can be run on any supported VAX/VMS configuration. It produces
optimized, shareable, VAX/VMS object code that is runtime compati­
ble with other native VAX/VMS language products.

The degree of optimization performed by the compiler can be con­
trolled by the user at compile time, by qualifiers on the PLII command.

VAX-11 C
VAX-11 C fully supports all of the language features of C, as described
in "The C Programming Language", by Kernighan and Ritchie * . The
program flow control constructs for logical and efficient program
structuring, and the rich assortment of operators that enable an ele­
gant conciseness of expression, are there in VAX-11 C. So, too, are
the common runtime routines - only those UNIX-specific routines that
cannot be reasonably emulated under VAX/VMS are omitted. VAX-11
C even includes language extentions developed since the Kernighan
and Ritchie book was published, including the structure assignment
feature.

But VAX-11 C is more than just a faithful implemention of the C pro­
gramming lanuage. It is a very powerful implementation with an

* "The C Programming Language", B. Kernighan and D. Ritchie, Prentice-Hall,
1978.

178

Programming Languages

impressive collection of features, and, as important, VAX-11 C is an
integrated VAX/VMS layered language product; which means that
programmers have available to them all of the services and program
development aids that the VAX/VMS system provides.

The Language
VAX-11 C is a versatile programming language that combines many of
the features of a high-level language with the generality of MACRO.

Program control flow - C uses simple, appropriate English for per­
forming conditional loops (WHILE, FOR, bO), simple decisions (IF -
ELSE), and multicase decisions (SWITCH); and for escaping loops or
multi-case decisions (BREAK, GOTO label:). These facilities not only
aid in creating well-structured programs, but, combined with C's clear
statement and expression delimiters, they can provide easy to under­
stand, thus maintain, source code.

Operators - C provides an unusually large array of operators that
allow programming with clarity and economy of expression. (Refer to
Table 5-4).

Data types - Because C was designed to be a powerful, lean general­
ist among languages, it uses only the fundamental datatypes com­
monly represented by computers directly: integers of various, fixed
sizes, and single and double-precision floating point. VAX-11 C also
provides for user-defined, or enumerated, scalars (ENUM values).
ENUM data-types are defined by writing the type name followed by an
ordered list of indentifiers that are the constants of that type.

Run-time support - In order to retain its flexibility of application, the
C language does not directly support many functions usually attribut­
ed to high-level languages; for example, I/O or common math rou­
tines. But most implemenations of C include a common set of run-time
support routines for accomplishing those tasks. VAX-11 C includes all
of the non-UN IX-specific run-time support offered in the Bell Labora­
tories version (even many of the UNIX-specific routines have been
'emulated) and all of the additional support included in the VAX-11
Common Run-Time Library.

Unique to VAX-11 C - New keywords for sharing data among pro­
gram modules are offered by VAX-11 C to augment the capability of
the standard keywork for passing arguments, EXTERN. The new
keywords-GLOBALDEF, GLOBALREF, and GLOBALVALUE, which
allow VAX-11 C programs to define and reference global symbols
offer an alternative method for dealing with external variables and
values. They provide, in addition to enhanced data-sharing among C
program modules, a convenient and efficient way for a C function to

179

Programming Languages

communicate with MACRO programs, with VAX/VMS system services
and data structures, and with other high-level languages that support
global symbol definition, such as VAX-11 PL/1.

The Compiler
VAX-11 C has an extremely powerful compiler that generates share­
able, position-independent, native VAX object code directly from C
source programs (i.e., no separate assembly step) at an average rate
in excess of 3000 source statements per minute. In the process, the
compiler can perform global and local optimization by, for example,
doing global flow analysis, assigning automatic variables to register
temporaries, and removing invariant computations from loops, to
mention a few. The compiler also does peephole optimizations on the
generated machine code. The result: VAX-11 C produces faster and
smaller programs.

The VAX-11 C compiler will produce an annotated listing with state­
ment numbers and, optionally, an inline listing of generated machine
code, expanded macros, storage allocation map, cross-reference list­
ing of variable usage, and compilation statistics.

The VAXNMS Programming Environment
What most distinguishes VAX-11 C from other implementations of the
language is that it is an integrated constituent of a total VAX/VMS
environment. This means VAX-11 C provides C programmers with an
easy interface and an exceptional array of services and tools that can
maximize their productivity and the efficacy of the programs they pro­
duce.

VAX-11 RMS - In addition to performing stream file access conven­
tional among most C implementations, and because it is a VAX/VMS
layered language product, VAX-11 C allows all of the features of the
VAX-11 Record Management Services (RMS) to be exploited. RMS
supports sequential, relative, and indexed file organizations, thus
expanding the potential applications for C programs.

VAX/VMS System Services - The VAX-11 Cprogrammer can utilize
all of the VAX/VMS System Services, including, for example, the abili­
ty to define logical names. By referencing files or devices by logical
names, which in turn are defined by the user prior to execution, VAX-
11 C programs can be device or file independent; a useful quality for
many applications.

The common language environment - All DIGITAL VAX-11 lan­
guage products, VAX-:11 C among them, follow the VAX calling stan­
dard. This permits C programmers to call, as subroutines, object
modules created using other languages - say VAX-11 FORTRAN or

180

Programming Languages

VAX-11 PLII - so that particular tasks may be':coded in the most
suitable language, or proven routines already in use can be applied by
the programmer without having to lOre-invent the wheel." Of course the
inverse is true as well: Programs written in other VAX-11 languages
can call routines originally develop,ed in VAX-11 C.

VAX-11 Symbolic Debugger - With the VAX-11 Symbolic Debugger,
the VAX-11 C programmer can set breakpoints, and examine and
modify the contents of user variables dynamically while the C program
is executing. Additionally, if a C program is not performing as expect­
ed, program execution can be interrupted, the debugger called, and
execution continued.

Compatibility Across Implementations
There are no national or international standards for the C language;
however, "The C Programming Language" is generally regarded as
the definitive document, along with technical notices subsequently
published by the American Telephone and Telegraph Company. But
because C is a relatively simple language, even without formal stan­
dardization, most programs written in VAX-11 C can be re-compiled
successfully using another implementation of the language, or vice
versa, usually with few if any modifications.

Certain incompatibilities among implementations do exist, however,
especially in machine-specific library routines. To aid creating porta­
ble programs, VAX-11 C provides predefined constants ("vms", "vax",
and "vax11c") Which can be used, for example, in program control
lines to decide whether to compile source code that may not be porta­
ble. The VAX-11 C compiler command, CC, also has an optional
feature that detects several non portable program constructions and
issues warning messages.

UNIX/VAX, VAXNMS coexistance - The C programming language
was originally developed at Bell Laboratories for creating the UNIX
operating system, and it has become the language of choice for may
applications developed on that system. As an aid to migrating pro­
grams from UNIX systems to VAX/VMS, the VAX-11 C run-time library
includes many of the UNIX-specific UNIX/C routines, emulated to run
under VMS. Also, VAX-11 C allows UNIX-style stream I/O access to
VAX-11 record formats.

181

Programming Languages

Table 5-5 Summary of C Operators

Operator Example Result

- [unary] -a negative of a
* [unary] *a reference to object at address a
& [unary] &a address of a
,...., ,....,a one's complement of a
++ [prefix] ++a a after increment
++ [postfix] a++ a before increment
-- [prefix] --a a after decrement
- - [postfix] a-- a before decrement
sizeof sizeof(t1) size in bytes of type t1

sizeof e size in bytes of expression e
(type-name) (t1)e expression e, converted to type t1

+ a+b aplus b
- [binary] a-b a minus b
* [binary] a*b a times b
I alb a divided by b
% a%b remainder of alb

» a»b a, right-shifted b bits
« a« b a, left-shifted b bits

< a<b 1 if a < b; 0 otherwise
> a>b 1 if a > b; 0 otherwise
<= a<=b 1 if a < = b; 0 otherwise
>= a>= b 1 if a > = b; 0 otherwise

a==b .1 if a equal to b; 0 otherwise
!= a!= b 1 if a not equal to b; 0 otherwise

& [binary] a&b bitwise AND of a and b
a : b bitwise OR of a and b

t atb bitwise XOR (exclusive OR) of a and b

&& a&&b logical AND of a and b (yields 0 or 1)
I I

I I b logical OR of a and b (yields 0 or 1) I I a I I

!a logical NOT of a (yields 0 or 1)

?: a? e1 : e2 expression e1 if a is nonzero,
expression e2 if a is zero

182

Programming Languages

Table 5-5 Summary of C Operators cont'd

Operator

+=

*=
/=
0/0=
»=
«=
&=
I _

I -

t=

Example

a=b
a += b
a-= b
a *= b
a/= b
a%=b
a»= b
a «= b
a&= b
a: = b
at= b

VAX-11 BLlSS-32

Result

b (assigned to a)
a plus b (assigned to a)
a minus b (assigned to a)
a times b (assigned to a)
a divided by b (assigned to a)
remainder of alb (assigned to a)
a, right-shifted b bits (assigned to a)
a, left-shifted b bits (assigned to a)
a AND b (assigned to a)
a OR b (assigned to a)
a XOR b (assigned to a)

VAX-11 BLlSS-32 is a high-level systems implementation language.
The BLlSS-32 language supports development of modular software
according to structured programming concepts by providing an ad­
vanced set of language features. It provides access to most of the
hardware features of the VAX systems to facilitate programming of
time-critical and hardware dependent applications. The BLlSS-32 lan­
guage is specifically designed for the development of operating sys­
temms, compilers, runtime system components, database file sys­
tems, communications software, and utilities for use on a VAX system.

The BLlSS-32 compiler runs in native mode under the VAX/VMS
operating system. It translates BLlSS-32 source programs into reloca­
table object modules that can be linked for execution. BLlSS-32 com­
piled code is optimmized for execution efficiency.

The following features of BLlSS-32 are machine independent. Collec­
tively, this set of features is known as "Common BLISS" and can be
used to develop transportable programs that will run on VAX, DECsys­
tem-10, DECSYSTEM-20, and PDP-11 systems .

• Modules are compiled separately for modularity and convenient
development. Object modules are relocatable and can be linked
with other object modules produced by the VAX-11 MACRO assem­
bler or other native mode languages

• The BLlSS-32 language provides expressions for describing the
actions to be performed and declarations for allocating, describing,
and initializing data, and for defining macros and literals, etc.

183

Programming Languages

• The BLlSS-32 language is "type-free": all data is manipulated as
longwords or 32 bits. Interpretation of data is provided by language
operators

• The operators provide a set of operations for integer arithmetic, for
comparison, maximization, and minimization of signed integer, un­
signed integer, and address values, and for Boolean operations

.• Field references allow values to be retrieved from or assigned to any
contiguous field from 1 to 32 bits located anywhere in the VAX
virtual address space

• Character sequence functions provide for efficient runtime manipu­
lation of character data. Operations include moving, concatenating,
comparing and translating character sequences, as well as search­
ing for particular characters or substrings of characters

• IF, CASE, SELECT, and SELECTONE allow the choice of an
expression or group of expressions to be executed based on pro­
grammed tests

• DO, WHILE, and UNTIL allow general loops that cycle as long as a
programmed test is satisfied. The test can be made at either the
beginning or the end of the loop

• INCR and DECR allow counted loops that execute a computed num­
. ber of times under control of a loop variable

• LEAVE allows early termination of the processing of a named block
and continuation after the named block. LEAVE may be considered
a restricted form of forward-only GOTO, as there is no general GO­
TO in the BLlSS-32 language

• OWN and GLOBAL declarations provide static storage allocation;
GLOBAL names are made available to the linker to resolve EXTER­
NAL data declarations in other modules

• LOCAL, STACKLOCAL, and REGISTER declarations allow dynamic
stack-like allocation using either the execution stack or the general
registers

• STRUCTURE declarations allow the programmed definition of
arbitrary data structures in terms of an accessing algorithm for lo­
cating elements of a structure. Predefined declarations for VEC­
TOR, BLOCK, BITVECTOR, and BLOCKVECTOR provide common­
ly needed structures

• ROUTI NEdeclarations provide subroutines or functions in the
BLlSS-32 language. Routines are recursive and reentrant, and can
be linked in resident libraries for use by multiple processes

• REQUIRE declarations allow source files to be automatically includ­
ed in the module being compiled

184

Programming Languages

• LIBRARY declarations allow special compiler-produced binary de­
claration files to be included in the module being compiled. The
effect is substantially the same as REQUIRE, but is more efficient
because a restricted set of declarations are precompiled into inter­
nal form

• MACRO and KEYWORDMACRO declarations allow compile-time
definition of both positional and keyword-oriented macros. Macro
definition and replacement are in terms of source lexical units called
lexemes (atoms, tokens) rather than character text. Macro calls and
declarations may be nested and recursive

• %IF, % THEN, %ELSE, and &FI allow conditional compilation of
BLISS source depeneding on programmed compile-time tests.
These can be used to control expansion of macros

• Lexical functions allow a variety of compile time operations such as
concatenation of strings, construction of names, testing properties
of macro parameters, testing compiler qualifiers, generating com­
piler diagnostic messages, and controlling macro expansion

The following features of the BLlSS-32 language are specialized for
use on VAX systems. They provide precise means to tailor BLlSS-32
programs to the special capabilities of VAX systems and the
VAX/VMS operating system.

• LINKAGE declarations allow definition of specialized calling se­
quences for time critical or unusual applications. Options allow for
use of CALLS/CALLG/RET or JSB/BSB/RSB type call and return
instructions, for passing parameters in VAX general registers or in
parameter blocks, for controlling the preservation and use of regis­
ters by a routine, and for the sharing. of registers across' a set of
routines as highspeed, common storage. Built-in linkage declara­
tions for the BLISS and FORTRAN languages fully support the VAX
calling sequence conventions

• PSECT declarations allow use of link-time program sections for effi­
cient use of the virtual address space. Bydefault, generated code
sections are position independent

• BUILTIN declarations allow use of the VAX machine-specific
functions for access to VAX features not otherwise provided by the
BLlSS-32 language. Machine specific functions generally corre­
spond to VAX instructions such as ADAWI, BISPSW, CRC, HALT,
INDEX, MTPR, PROBER, REMQUE, etc. Over 50 such functions are
provided.(The complete list is shown in Table 5-4)

• ENABLE declarations, together with SIGNAL, SIGNAL-STOP, and
SETUNWIND functions, allow use of the VAX/VMS condition han­
dling and error message reporting mechanisms

185

Programming Languages

Table 5-6 VAX Machine Specific Functions

MTPR

MFPR

PROBER

PROBEW

MOVPSL

BISPSW

BICPSW

INSQUE

REMQUE

TESTBITSS

TESTBITSC

TESTBITCS

TESTBITCC

TESTBITSSI

TESTBITCCI

FFS

FFC

PROCESSOR REGISTER OPERATIONS

Move to a Processor Register

Move from a Processor Register

PARAMETER VALIDATION OPERATIONS

Probe Read accessibility

Probe Write accessibility

PROGRAM STATUS OPERATIONS

Move from PSL

Bit set PSW

Bit clear PSW

QUEUE OPERATIONS

Insert entry in Queue

Remove entry from Queue

BIT OPERATIONS

Test for Bit Set, then Set bit

Test for Bit Set, then Clear bit

Test for Bit Clear, then Set bit

Test for Bit Clear, then Clear bit

BIT OPERATIONS

Test for Bit Set, then Set bit Interlocked

Test for Bit Clear, then Clear bit Interlocked

Find First Set bit

Find First Clear bit

186

Programming Languages

Table 5-6 VAX Machine Specific Functions cont'd

ASHQ

EDIV

EMUL

INDEX

CRC

CVTLF

CVTLD

CVTFL

CVTDL

CVTFD

CVTDF

CVTRDL

CVTRFL

CMPF

CMPD

MOVTUC

SCANC

SPANC

EXTENDED ARITHMETIC OPERATIONS

Arithmetic Shift Quad

Extended Divide

Extended Multiply

Index (Subscript) Calculation

Cyclic Redundancy Calculation

FLOATING POINT CONVERSION OPERATIONS

Convert Long to Floating

Convert Long to Dou ble

Convert Floating to Long

Convert Double to Long

Convert Floating to Double

Convert Double to Floating

Convert Rounded Double to Long

Convert Rounded Floating to Long

Compare Floating

Compare Double

STRING OPERATIONS

Move Translated Until Character

Scan Characters

Span Characters

187

MOVP

CMPP

CVTLP

CVTPL

CVTPT

CVTTP

CVTPS

CVTSP

EDITPC

HALT

ROT

ADAWI

BPT

CHMx

CALLG

NOP

Programming Languages

Table 5-6 VAX Machine Specific Functions cont'd

DECIMAL STRING OPERATIONS

Move Packed

Compare Packed

Convert Long to Packed

Convert Packed to Long

Convert Packed to Trailing Nu meric

Convert Trailing Numeric to Packed

Convert Packed to Leading Separate Numeric

Convert Leading Separate Numeric to Packed

Edit Packed to Character

MISCELLANEOUS OPERATIONS

Halt Processor

Rotate

Add Aligned Word Interlocked

Breakpoint

Change Mode

Call with General Argument List

No Operating

The VAX-11 BLlSS-32 Compiler
The VAX-11 BLlSS-32 compiler performs a number of optimizations.
These include common subexpression elimination, removal of loop
invariants, constant folding, block register allocation, peephole re­
placement, test instruction elimination, jump vs. branch instruction
resolution, branch chaining, and cross-jumping.

The VAX-11 BLlSS-32 compiler optionally produces source text and
generated code in a format closely resembling a VAX-11 assembly
listing. Other options allow the proqrammer to control the degree of

188

Programming Languages

optimization, suppress production of object code, determine types
and formats of output listings, generate traceback information, and
specify the types of information to be listed at the terminal.

Library and Require Files
The BLlSS-32 language provides two methods for including common­
ly used text into BLISS programs at compile time. These involve use of
either Library files or Require files:

• Library Files-These are special files created by the compiler in a
previous library compilation and are invoked by the LIBRARY
declaration in the BLISS source program

• Require Files-These are source (text) files which are invoked via
the REQUIRE declaration in the BLISS source program

Since Library files are "pre-compiled," lexical processing and declara­
tion parsing and checking need not be repeated each time these files
are included in a compilation; their use results in a considerable re­
duction in total compilation time.

The contents of Require files must be fully processed each time the file
is used in a compilation. Hence, using Require files will, in general, be
less efficient than using Library files. However, since these files oper­
ate under a less stringent set of syntactical rules, their use may be
warranted in situations where a higher level of flexibility is desired.

Macros
The VAX-11 BLlSS-32 language provides an extensive macro-building
facility, allowing frequently used groups of declarations or expressions
to be expressed in an abbreviated way. Macros are defined via MA­
CRO declarations and are accessed by simple call statements. They
are fully expanded at compile time. The BLlSS-32 language allows
parameters to be specified in the macro definition, thus allowing each
block of text to be specialized by the actual parameters passed to it.
Macros may be positional or keyword, and may be simple, iterative, or
conditional.

Debugging
The VAX-11 BLlSS-32 compiler produces a list of error messages
showing the source program line on which the error occurred followed
by a description of the error. If the error is recoverable, then the
compiler will generate a "warning" diagnostic and continue with the
compilation process. If the error is serious enough to invalidate the
compiler's internal representation of the module, then an "error"
diagnostic is generated, and processing ceases following the syntax
checking-no object module is produced.

189

Programming Languages

If an error occurs at execution time, the process image can access the
VAX DEBUG program. This program may be accessed when the ob­
ject module is linked with the DEBUG option. The DEBUG program
allows the programmer to examine and deposit values in storage, set
breakpoints, call routines, trace through a program as it executes, and
perform other operations useful in checking out a program. It under­
stands BLISS syntax and permits the use of the user's symbolic
names. (See the section on the VAX DEBUG for a further description
of VAX debugging facilities.)

Transportability Features
The VAX-11 BLlSS-32 language is designed to facilitate transportabili­
ty, that is, the writing of programs that can be executed on architectur­
ally different machines with little or no modification. The VAX-11
BLlSS-16 language, which is discussed later in this chapter, is a high­
level implementation language for the development of systems soft­
ware for use on PDP-11 systems. For DECsystem-10 and DECSYS­
TEM-20 users, there is the BLlSS-36 language. Several language fea­
tures enhance transportability:

• The high-level language constructs may be transferred from one
machine to another with little or no alteration

• Machine-specific functions can be separated from the common,
mainline code via modularization, macros, and Library and Require
files

• Parameterization allows machine-specific characteristics to be
passed to BLISS data structures

The BLlSS-32 language's transportability makes it an ideal language
for system programming applications-and a desirable alternative to
assembly language coding in those applications in which extreme ma­
chine dependence is not involved. The following program shows how
the VAX-11 BLlSS-32 language can call VAX/VMS system services
and the VAX Common Run Time Procedure Library to print the current
time on SYS$OUTPUT.

190

-L

co
-L

SAMPLE PROGRAM

b8 74

,HI\, I
00.0'2

"'"0'3
(I','CHI
N'0'5
0C'C'le.

M ~r>!'I7
iillil"S
0~~q
(10(1'10'

0i"11
0012
i!4C?13
~V1£1

"'''15
0\,lb
0r>17
0>"1f1
0t'1 q

,"~ 2<'1
0~21
~(I'22

""'23
l'W2£1
0012'5
~(I'2b

0(1'27
VliI'28
",,,?q
(10 I? 3"
01i'31

F 0l"J2
00'33
1111"3"
0\'35
003b
0::037
01i'38
;\nq

2fIJ 2C

MODULE 8holoiti"e(II'lENT:'\-I' ~TITLE 'swOW TI14[', NAI"':Hmeo~n=
f\EGT"I

LJBIURY 'SYS.$UPIlARVISHIlLfT'1 Def;"es S\lste'" Services, etc,

HACPC

O~'N

BJNO

d~!e[l ,. l(CIJARCDUNTeXflfp.tAINTNG1, I A VAX-II ~tvle Stri~g deserletor

t I "'!!t-u f:
"sQbuf:
"'SQ(lesel

UPLIT ~YTFC XREp.tAINING 1 X,

VECTOIl [;>1 ,
VECTelP r~l'I, AYTEJ,
PLOCk [8, <>YH]

PI>E!iE:TC rdsc$",~lel'lgthJ" ~/6,
rd!c$a~pol "terl ,. /IIsQbuf 1 I

btl t-it s\lete" tl"'e
O~t"ut ,"SQ, buffer
Strl"o descrietor

for output buff!!"

f",tdesc= UIlLIT(DESCC'At the tor-e, the tl"'e Is " r.CHAI'>(7), '115XT' III

EXTERNAL ROUTINE
1 i".p\\Jt .. output I ADnRESSING~HOOf:(GEIIEIUl.) , 1 Fro", VMS RTL

ROUTINE tifleClut:

1>5

BEG IN
LOOL

RSLTI WORDI

"GETTIHC TP'AI','Il=t I,.ebu+ 1 I

~FAOLC CTI'ISTp=f",tdese,
DUTLf lll:"l t,
I"IUT8U F ="'sgdesc,
PR"'LST:l:REFCti"'ebu f)) ,

"Sr,I)ESCrdse$\I 1e"vt~l " ,rsltl

11 b$put ... output (Iftsgdesc

ENDI

bE bF" 71.j. 2.! b5 b8 7£1 2~

2' 73 &q 2' bS bD bq 7£1

5" 25 35

7£1
2~

31

1 Pesulta"'t strlnq le"Qth

Get time as &Il bit integer

Format co"tro1-stri"ll address
l'1esu'ta"t , e"gt" Co,,, V a wordll
Output buffer dese~lpto~ add~ess
Add~ess of rOI"te~ to time block

modify outrut delerietor

I prl"t the for .. atted time

, TITl.E SHOIolTI"'E SHOW TI"'E
, IDENT \ 1-1 \

,PSECT $Pl. ITS, NOiolRT, NOEXE, 2

"l ~I'H'!li'o! p,AA81 ,ASCII \At He tOP'\e, the time Is \
bS 0""IlIF
"'7 1111101 q ,ASCII <7>
;>1 0~I"IA ,ASCII \11S'U\

A~"IF ,Bl.K'" 1

1:1 a co
~
:3
:3
S'

co
r­
III
~ co c::
III
co
CD
CI)

.....
co
I\)

, Routi~. Sizel 56 bytes,

0"'"/,) ENO ELUDO,",

0ill1l~0P1'H'G

ElPIll I! Ii! 0l'1 I1IG

0r.1f11119Q1AI1IG

5i?
SE

CJF
H

CJF
1>2

""
Routine eese:

N1Q!Q!",V!!1' !iI"'~2~ p.AU: • LONG 3!
~?I~rAOI"'I1I'" ""'11124 .ADDRESS p.US

• !'SECT SOillN~,NOfXE,2

11111I~111~ TI~ERUFI.BLK8 8
0000~ MSG~UFI .eLKS 8'"

II'l'ISi-l 01110S8 MSGDESCI.WORO "" "''''II 11?'0SA • BYTE 0[2]
l'ItIIG'H"11I1I'11I0' Gl0i1lSC .ADDRESS ~SGSUF

\J
F'ITDESC= P.AAA

0
• EXTRN LIBSPUT.OUTPUT, SYSsGETTIM
.EXTRN SYS'FAOL

CO
ii1

• !'SECT HODE,,~,OItlI1T,2
:3
:3

",OI~a "'~"'''~ TI~EOUTI.~ORO Save R2
elr1'01?O' CF CJE 01110102 MOVAB MSGDESC, R2

"'8 C2 M''''07 SUE'L2 /118, SP
A8 A2 CJF l'I0"'~A PUSHAB TIMEBUF

, 11l1ll23 S·
CO
r-

I1l III 28
s:u
::J

VlI FB !ili'1f1l'D CALLS 111, -.SYSsGETTI"
A8 A2 CJE "'''''''14 ~OVAB TIMEBUF, eSp)

4",aa 8F BB 11101111/\ PUSHR II-MCR2,SP>

CO
011133 c::

s:u
CO

cae AE CJF 0!0t'11C PUSHAS RSLT
0(;'0111' CF CJF "''''i'I!F PUSHAfl F~TDESC

CD
CI)

i1'11 F~ 0"'1123 CAL.LS 1111, 'IISYSSFAOL.

"" AE Il'" 0Nl2A MCVOI RSLT, "'SGDESC 1l'035
5<' DI'J 1'111l"2E PUS~L R2 0037
OIl Ff:\ "''''''30 CAL.L.S 111, LIB$!'UT~OUTpUT

"'a "1'0037 RET 0023

$COOES + 1'1 lUI 0

......
<0
W

Neme

SOWNS
SPLIT!
'CODES

Flle

D8Ae'[SYSLI8]STARLET.Llz,q

BLISS ILIS/Nooe SHOWTIME

Bytes

PSECT SUMMARY

q6 ~RT,

1.1" NOWRT,
56 NOWIIT,

Totel

Z783

Att~lbutea

RO ,NOEXE,NOSHR,
flO ,NCEXE,NOSHR,
RD, EXE,NOSHR,

SV",bol.

LCL,
LCL,
LCL,

Loeded Pe~ce'"'t

COMMAND QUALIFIERS

, Slle. 56 code + 136 dete byte.
, Run TI"," 00,I'I,Q
I Elep,ed Time. 00i03.7
I Memo~v U.ed. 117 peoe.
I Comoiletio,", Complete

REL,
REL,
REL,

81 Ot ks
Peed

103

CON, NOPIC, AL IGN(?)
CON,NOPIC,ALIGN(Z)
CON ,,.,OP IC, AL I GN (i)

" a
co
~
:3
:3
S·
co
r­
tl)
:::3
co c::
tl)
co
~

Programming Languages

~OOU~E .~owtimeC IDENTs'1-1' XTITLE 'SMO~ TIME', MAIN.timeo~tl=

BEGIN

MACRO
dele[l • XCMARCOUNTCXREMAINING), I A VAX-II Stvle St~l"g rlesc~iDto~

UPLIT BYTEC ~REMAINING) X,

ti",.t-~fl

"'laOufl
"'Iadele I

VECTORr2l,
VECTOR [80, BYTE1,
BI.OCk [8,!!YTEl

64 bit system time
n~tD~t mS9. b~ff.~
St~l~o d •• c~iDto~

PRESET([d.eS I e"at hls eQl, fo~ o~tD~t b~ffe~
[d.cS pol "te~l II mlat'>~f),

BIND
htdesc. UPLITCOESCC'At the to"., the time Is " ~CMAR(7), '11s"T' »,

EXTERNAL. ROUTINE
I I bSD~t ... O~to~t I ADDRESSING ... MODE(GENERAL1, I F~om V~S RTL

ROUTINE timeout:
BEGIN
~OCAL

RS~TI ~ORDI

SGETTI~C TIMADR.ti",eb~f)1

SFAOL.(CTRSTR.fmtd.,e,
OUT~EN.~. It,
OUTBUFllm.Ode,c,
PRMLSTIIXREF(timebuf)1

MSGDESC[d.eS len9thl II .~Iltl

1ibSout ... output(m.gdelC)

ENOl
END ELUDCM

VAX-11 BLlSS-16

I Result,IIt at.i"o ler-lgth

I Get time II &a bit IIIt'Qe~

Fo~",.t cont~01.lt~I"Q .cd~esl
Relult."t ,."gth (0"'11' word!)
Output buff.~ d •• e~loto~ add •• I.
Add~ell of Dol"te~ to time block

I modlfv outout dele~lpto~

I p~IIIt the fo~m.tt.d time

The VAX-11 BLlSS-16 language is a high-level systems implementa­
tion language designed specifically for the development of systems
software for use on a PDP-11 system. An advanced set of language
features supports development of modular software according to
structured programming concepts. Access to many of the hardware
features of PDP-11 systems is provided in order to facilitate program­
ming of time-critical and hardware dependent applications.

Although the VAX-11 BLlSS-16 language runs on a VAX system, the
target system for the developed programs is the PDP-11 system. The
BLlSS-16 cross-compiler runs in native mode under the VAX/VMS
operating system and translates BLlSS-16 source programs into relo­
catable PDP-11 object modules that have been optimized for time and
space efficiency.

The following features of the BLlSS-16 language are machine inde­
pendent. Collectively, this set of features is known as "Common
BLISS" and can be used to develop transportable programs that will
run on VAX, DECsystem-10, DECSYSTEM-20, and PDP-11 systems.

194

Programming Languages

• Modules are compiled separately for modularity and convenient de­
velopment. Object modules are relocatable and can be linked with
other BLlSS-16 object modules or object modules produced by the
compiler or other PDP-11 language processors

• The BLlSS-16 language provides expressions for describing the
actions to be performed and declarations for allocating, describing,
and initializing data, and for defining macros and literals, etc.

• The BLlSS-16 language is "type-free": all data is manipulated as
words of 16 bits. Interpretation of data is provided by language
operators

• The operators provide a set of operations for integer arithmetic, for
comparison, maximization, and minimization of signed integer, un­
signed integer, and address values, and for Boolean operations

•. Field references allow values to be retrieved from or assigned to any
contiguous field from 1 to 16 bits within a 16 bit-word

• Character sequence functions provide for efficient runtime manipu­
lation of character data. Operations include moving, concatenating,
comparing and translating character sequences, as well as search­
ing for particular characters or substrings of characters

• IF, CASE, SELECT, and SELECTONE allow the choice of an
expression or group of expressions to be executed based on pro­
grammed tests

• DO, WHILE, and UNTIL allow general loops that cycle as long as a
programmed test is satisfied. The test can be made at either the
beginning or the end of the loop

• INCR and DECR allow counted loops that execute a computed num­
ber of times under control of a loop variable

• LEAVE allows early termination of the processing of a named block
and continuation after the named block. LEAVE may be considered
a restricted form of forward-only GOTO, as there is no general GO­
TO in the BLlSS-16 language

• OWN and GLOBAL declarations provide static storage allocation;
GLOBAL names are made available to the linker to resolve EXTER­
NAL data declarations in other modules

• LOCAL, STACKLOCAL, and REGISTER declarations allow dynamic
stack-like allocation using either the execution stack or the general
registers

• STRUCTURE declarations allow the programmed definition of
arbitrary data structures in terms of an accessing algorithm for lo­
cating elements of a structure. Predefined declarations for VEC­
TOR, BLOCK, BITVECTOR, and BLOCKVECTOR provide common­
ly needed structures

195

Programming Languages

• ROUTINE declarations provide subroutines or functions in the
BLlSS-16 language. Routines are recursive and reentrant, and can
be linked in resident libraries for use by multiple processes

• REQUIRE declarations allow source files to be automatically includ­
ed in the module being compiled

• LIBRARY declarations allow special compiler-produced binary de­
claration files to be included in the module being compiled. The
effect is substantially the same as REQUIRE, but is more efficient
because a restricted set of declarations are precompiled into inter­
nal form

• MACRO and KEYWORDMACRO declarations allow compile-time
definition of both positional and keyword-oriented macros. Macro
definition and replacement are in terms of source lexical units called
lexemes (atoms, tokens) rather than character text. Macro calls and
declarations may be nested and recursive

• %IF, % THEN, %ELSE, and &FI allow conditional compilation of
BLISS source depeneding on programmed compile-time tests.
These can be used to control expansion of macros

• Lexical functions allow a variety of compile time operations such as
concatenation of strings, construction of names, testing properties
of macro parameters, testing compiler qualifiers, generating com­
piler diagnostic messages, and controlling macro expansion

The following features of the BLlSS-16 language are specialized for
use on PDP-11 systems.

• ENVIRONMENT specifies the hardware instructions available on the
target PDP-11 (EIS or non-EIS) and controls the optional generation
of position independent code

• BLlSS-16 generated object code can be mapped to run under I/D
space

• BLlSS-16 generated object code is compatible with a wide range of
DIGITAL supported operating system environments

• PSECT declarations allow use of link-time program sections for effi­
cient use of the address space

• BUILTIN declarations allow use of PDP-11 machine specific func­
tions for access to PDP-11 features not otherwise provided by the
BLISS language. Machine specific functions generally correspond
to PDP-11 instructions such as: HALT, NOP, RESET, WAIT, BPT,
SWAB, MFPS, MTPS, MFPD, and MTPI

• ENABLE declarations, together with SIGNAL, SIGNAL-STOP, and
SETUNWIND functions, allow condition handling- the response to
an unusual event signaled during the execution of a program

196

Programming Languages

The VAX-11 BLlSS-16 Compiler
The VAX-11 BLlSS-16 compiler performs global and local optimiza­
tions to produce efficient and compact generated code. Each routine
definition is treated as a complete unit in compiling the code for that
routine.

The VAX-11 BLlSS-16 optimizations employed are: common
subexpression elimination, removing loop invariants, constant folding,
block register allocation, peephole replacement, test instruction elimi ..
nation, jumps; branch instruction resolution, branch chaining, cross­
jumping, constant propagation, and redundant store elimination.

The BLlSS-16 compiler optionally produces a side-by-side listing file
that ·shows the source text compiled and the generated code in a
format that closely resembles a PDP-11 MACRO assembly listing.
Multiple listing options allow selective inclusion or exclusion of source
and generated code, source names and source line numbers as com­
mentary to the assembly listing (where feasible), macro expansion and
tracing information, and identification of names acquired from library
files. A listing file that can be assembled by the MACRO-11 assembler
can also be requested.

VAX-11 CORAL 66
The VAX-11 CORAL 66 compiler compiles in compatibility mode and
generates native mode object code under the VAX/VMS operating
system. The CORAL language, derived from the JOVIAL and ALGOL-
60 languages in 1966, is the standard language prescribed by the
British government for military realtime applications and systems im­
plementation. A government agency controls the CORAL language
standard, which was first widely used in military projects beginning in
1970. Her Majesty's Stationery Office publishes the "Official Definition
of CORAL 66."

The CORAL language replaces assembly level programming in a
number of commercial, process control, research, and military appli­
cations. It is particularly adapted to long-life products requiring flexi­
bility and ease of maintenance.

The VAX-11 CORAL 66 language is a block-structured language. A
block is a piece of a program that can be entered only at the begin­
ning. Though internal structures cannot be "seen" from the outSide,
statements inside a block can "see" out. Sorting is possible, so that
programs may be written in which information is accessible for only
the time it is required, and no longer. In this way, unwanted interac­
tions among program parts are avoided, and out-of-date informaUon
is very quickly forgotten.

197

Programming Languages

To satisfy realtime needs, the CORAL 66 language' allows different
modules of the same suite of programs to be executed at apparently
the same time. A CORAL compiler assumes that any subroutine global
to the whole program is' likely to be active at the same time as any
other, so the compiler assures that such subroutines do not share any
local storage. Interactions, however"can be explicitly arranged by the
programmer. A program consists of communicators and separately
compiled segments. Each segment has the form of an ALGOL 60
block, within which blocks and procedures may be nested to arbitrary
depth. In the absence of communicators, block structure would
prevent different segments from using common data, labels, com­
mand qualifiers, or procedures. The purpose of a communicator is to
specify and name those objects which are to be commonly accessible
to all segments. The presence of communicators imposes a modular
and disciplined approach to progra.mming larger systems where a
team of programmers is employed.

In addition to the functionalities prescribed in the Official Definition,
the VAX-11 CORAL 66 compiler provides the following features:

• BYTE, LONG (32-bit integer) and DOUBLE (64-bit floating point)
numeric types

• Generation of re-entrant code at the procedure level

• Command-qualifier-selectable option to optimize generated code

• Conditional compilation of defined parts of source code

• English text error messages at compile and (optionally) runtime

• Command-qualifier-selectable option to control listing output

• INCLUDE keyword to incorporate CORAL 66 source code from
, user-defined files

• Command-qualifier-selectable option to read card format

The VAX-11 CORAL 66 language is essentially a high-level, block­
structured language possessing certain facilities associated with low­
level Ic;mguages, and is designed for use on small or medium-size
dedicated computers. One of the main intentions is that programs
written in the CORAL language should be fast to execute, taking up
limited quantities of storage, while being easy to write.

The realtime applications of the language are implicit rather than ex­
plicit, permitting the utilization of any hardware or special features.
Procedures, optionally with parameters, permit communication with
and reaction to external events. This is aided further by a direct code
facility which enables machine code to be included in the source pro­
gram for extra efficiency in any critical tasks.

198

Programming Languages

VAX-11 DSM
VAX-11 DSM (DIGITAL Standard MUMPS) is a multiuser data man­
agement system and a language processing system. The DSM lan­
guage is a high-level, interpretive language well-suited for the
processing of variable-length string data. It conforms to the American
National Standard MUMPS specification X11.1-1977. In addition, it
provides a number of extensions.

Interpretive processing of the language means that each line of a DSM
routine is executed as it is entered. Routines written in the DSM lan­
guage do not have to be compiled or linked, making it easier to write,
debug, edit and run a routine in one interactive session.

As DSM program lines are entered, the DSM interpreter examines and
analyzes each DSM statement and executes the specified operation. It
performs error checking during routine execution and reports all er­
rors at the terminal. This reduces problem-solving time, the computer
time required to check the routine, and most importantly, the time
required to obtain a final running application.

The DSM language has many capabilities, but its basic orientation is
procedural. The language is directed primarily toward the processing
of variable-length string data, making interactive database systems
easier to implement and maintain.

Data Management
The DSM language allows the user to reference data symbolically
through variables. A variable can contain eithera numeric value or an
alphanumeric string.

The VAX-11 DSM system utilizes two types of variables: local and
global variables. Local variables are defined solely for the current user
(or process). Local variables are not intended for permanent storage,
but only for temporary use during the life of the process.

Global variables, or simply globals, are stored on disk. Globals are
referenced symbolically using names similar to those of local vari­
ables, the only difference being the circumflex (t) preceding the first
character in the variable name. Subscripted global variables form a
system of arrays stored on disk, the data of which forms a common
database that can be made available to one or more users in the
system.

Global arrays are sparse arrays, that is, the system dynamically adds
nodes to the array as a user stores data in them, and deletes nodes as
a user deletes them. Thus, users never have to preallocate space for
globals through dimensioning, nor do they have to explicitly recover
disk space when they delete data.

199

Programming Languages

All VAX-11 DSM globals are implemented as VAX-11 RMS (Record
Management Services) ISAM (Indexed Sequential Access Method)
files. This makes DSM global arrays accessible by other VAX/VMS
operating system languages and by DECnet communications soft ...
ware. VAX-11 DSM represents each global by one indexed file. The
mapping of the logical structure of a global array into the correspond­
ing ISAM file is transparent to the DSM user. Thus, there is no concept
of "opening" and "closing" a global.

In general, global arrays are treated syntactically in the DSM language
the same way as local arrays: to create a global, the SET command is
issued; to access and manipulate its contents, any number of com­
mands and functions in the DSM language set are used; to delete a
global node, the KILL command is issued; and to delete the entire
global array, its root node is killed.

This arrangement eliminates the need to be concerned with the physi­
cal structure of files when designing a database application (as is the
case with some database systems). Using globals, you need only be
concerned with the logical relationships between elements of a
database.

The Precompiler
The VAX-11 DSM system provides a language precompiler to optimize
the execution of DSM routines in an application environment. The
precompiler is a component of the VAX-11 DSM interpreter that
processes all DSM program lines into a more efficient, intermediate
format, called precompiled format, in order to expedite .subsequent
interpretation.

When a user executes a routine, the interpreter executes the precom­
piled program. Syntax errors are reported at this point.

When a user stores a routine on disk, the system places both the
source and precompiled versions in the DSM routine directory. For a
given routine version, the precompilation procedure occurs only once.
When users execute a routine from the directory, the VAX-11 DSM
system automatically loads the precompiled version.

Because the system saves both routine versions, users can always
load, edit, and test DSM routines interactively. The precompilation
procedure is repeated if a routine is edited or updated.

The VAX-11 DSM precompiler transforms DSM program lines into
precompiled format with the following optimizations:

• It strips comments

• It checks syntax

200

Programming Languages

• It sets up an internal table for line labels which optimizes GOTO
statements and DO statements that transfer control to other routine
lines

• It evaluates constants and transforms numbers into an internal re­
presentation (that is, packed decimal or longword)

• It converts arithmetic statements into Reverse Polish Notation

• It restricts the evaluation of a series of postconditionals to the occur­
rence of the first false condition. To do this, the precompiler gener­
ates code that specifies the appropriate offset to a given instruction

Procedure Calls
The V AX-11 DSM system allows users to access services that are not
part of the DSM language through a DIGITAL-implemented extension
to Standard MUMPS called the $ZCALL function. Through $ZCALL, a
user can call VAX/VMS system services, routines in the VAX-11
Common Run Time Library, or routines written in other languages
directly from DSM application routines. For example, the DSM lan­
guage does not include a square root function. Through the procedure
calling mechanism, however, a DSM user can access the correspond­
ing Run Time Library function.

I/O Options
The VAX-11 DSM system provides a subset of the Input/Output (I/O)
options of the VAX/VMS operating system. Each of these options can
be accessed through commands in the DSM language set. DSM users
can access any VAX/VMS-supported device available for use.

The VAX-11 DSM system provides an interface to VAX/VMS I/O
handlers according to device type. Terminal I/O and interprocess
communication through mailboxes is handled by the VAX/VMS Queue
I/O service, whereas I/O to all other devices is performed through
VAX-11 RMS (Record Management Services). This allows DSM users
to access RMS sequential, relative, and indexed files, in addition to
global variable files, and perform transparent communication through
the DECnet software.

Shared Memory Areas
The VAX-11 DSM system supports a high degree of code and data
sharing through the use of VAX/VMS virtual memory sections. Map­
ping a set precompiled DSM routines in a virtual memory section
improves the performance of a DSM application because the system
does not have to perform I/O to access DSM routines stored on disk.
Instead, it can execute the routines directly from virtual memory.

201

Programming Languages

Virtual memory sections can be either private or shared. If shared,
they are called global sections. Global sections can be created dy­
namically by a process or they can be permanently present in the
system. Permanent global sections are generally created from rou­
tines to which a number of users require access. When a group of
routines or an application is installed in a global section, all users
share the same copy of precompiled DSM routines. At runtime, a copy
of this set of routines is mapped into the virtual address space of each
requesting process.

All users can create private virtual memory sections. However, users
must have sufficient VAX/VMS operating system privileges to create
and install a global section.

DSM Job Controller
The DSM Job Controller isa separate process that manages interlock
requests by multiple DSM user processes. It also allows system-wide
control over the running of DSM application, providing functions such
as enabling and disabling journaling.

Communication between a VAX-11 DSM process and the DSM Job
Controller takes place through mailboxes.

The VAX-11 DSM system lets users either use or bypass the DSM Job
Controller at DSM image activation. Work that does not affect a com­
mon database-typically program development- can bypass the Job
Controller. However, when multiple users are running a DSM
application, interlocking requires the use of the DSM Job Controller.

Journaling
Journaling is a means of keeping a record on secondary storage (disk
or magnetic tape) of transactions that alter the database (Le., global
variable SETs and KILLs). VAX-11 DSM journaling is handled by a
separate process communicating with DSM users through mailboxes.

The VAX-11 DSM system provides a number of journaling options to
meet the needs of a system running multiple applications. Depending
on the options selected, there can be one or more journal processes.
One journal process can be run for each group in the system, for a
number of groups in the system, or for the entire system.

Each journal process monitors database transactions through mail­
boxes, which are. VAX/VMS pseudo-devices used for interprocess
communication. Whenever a DSM user process performs a SET or
KILL on a global variable, the journal process makes a record of it in
one of many possible journal files. In the event of database degrada­
tion, these files can be used to restore the database.

202

Programming Languages

System and Library Utilities
The VAX-11 DSM software package includes a number of utility rou­
tines written in the DSM language. These routines help the application
programmer to develop and maintain the software and data for his or
her application, and allow the system manager to control the running
of DSM applications.

The utilities are divided into two categories: library utilities and system
utilities. Library utilities perform general services in three categories:
procedures affecting routines; procedures affecting globals; and mis­
cellaneous operations such as numeric conversion. System utilities
perform services in the areas of: journaling control; job control, and
other maintenance operations; and system information.

Generally, the system and library utilities are accessed through a
menu-driven utility package. Most utilities in the package are interac­
tive, that is, they prompt for required user input. In addition, most
utilities provide extensive online documentation that explains how to
use them.

VAX-11 MACRO
The VAX-11 MACRO assembler accepts one or more source modules
written in the MACRO assembly language and produces a relocatable
object module and symbol table and optional assembly listing. The
VAX-11 MACRO language is similar to the PDP-11 MACRO language,
but its instruction mnemonics correspond to the VAX native instruc­
tions. The VAX-11 MACRO assembly language is characterized by the
following:

• Relocatable object modules
• Global symbols for linking separately assembled object programs

• Global arithmetic, global assignment operator, global label opera-
tor, and default global declarations

• User-defined macros
• Multiple macro libraries

• Program sectioning directives

• Conditional assembly directives

• Assembly and listing control functions

• Alphabetized, formatted symbol table listing

• Default error listing on command output device

• An optional Cross Reference Table (CREF) symbol listing

Symbols and Symbol Definitions
Three types of symbols can be defined for use within MACRO source
programs: permanent symbols, user-defined symbols, and macro

203

Programming Languages

symbols. Permanent symbols consist of the VAX instruction mnemon­
ics and MACRO directives; they do not have to be defined by the user.
User-defined symbols are those used as labels or defined by direct
assignment. Macro symbols are those symbols used as macro names.

MACRO maintains a symbol table for each type of symbol. The value
of a symbol depends on its use in the program. To determine the value
of a symbol in the operator field, the assembler searches the macro
symbol table, user symbol table, and permanent symbol table, in that
order. To determine the value of the symbol used in the operand field,
the assembler searches the user symbol table and the permanent
symbol table, in that order. These search orders allow redefinition of
permanent symbol table entries as user-defined or macro symbols.

User-defined symbols· are either internal or external (global) to a
source program module. An internal symbol definition is limited to the
module in which it appears. Internal symbols are temporary definitions
which are resolved by the assembler.

A global symbol can be defined in one source program module and
referenced with another. Global symbols are preserved in the object
module and are not resolved until the object modules are linked into
an executable program. With some exceptions, all user-defined sym­
bols are internal unless explicitly defined as being global.

Directives
A program statement can contain one of three different operators: a
macro call, a VAX instruction mnemonic, or an assembler directive.
The MACRO assembly language includes directives for:

• Listing control

• Functional specification

• Data storage allocation

• Radix and numeric usage declarations

• Location counter control

• Program termination

• Program sectioning

• Global symbol definition

• Conditional assembly

• Macro definition

• Macro attributes

• Macro message control

• Repeat block definition

• Macro libraries

204

Programming Languages

Listing Control Directives
Several listing control directives are provided in MACRO to control the
content, format, and pagination of all listing output generated during\
assembly. Facilities also exist for titling object modules and presenting
other identification information in the listing output.

The listing control options can also be specified at assembly time
through command qualifier options included in the listing file specifi­
cation in the command string issued to the MACRO assembler. The
use of these command qualifiers overrides all corresponding listing
control directives in the source program.

Conditional Assembly Directives
Conditional assembly directives enable the programmer to include or
exclude blocks of source code during the assembly process, based on
the evaluation of stated condition tests within the body of the program.
This capability allows several variations of a program to be generated
from the same source module.

The user can define a conditional assembly block of code, and within
that block, issue subconditional directives. Subconditional directives
can indicate the conditional or unconditional assembly of an alternate
or non-contiguous body of code within the conditional assembly
block. Conditional assembly directives can be nested.

Macro Definitions and Repeat Blocks
In assembly language programming, it is often convenient and desira­
ble to generate a recurring coding sequence by invoking a single
statement within the program. In order to do this, the desired coding
sequence is first established with dummy arguments as a macro defi­
nition. Once a macro has been defined, a single statement calling the
macro by name with a list of real arguments (replacing the corre­
sponding dummy arguments in the macro definition) generates the
desired coding sequence or macro expansion. The MACRO language
automatically creates unique symbols where a label is required in an
expanded macro to avoid duplicate label specifications. Macros can
be nested; that is, the definition of one macro can include a call to
another.

An indefinite repeat block is a structure that is similar to a macro
definition, except that it has only one dummy argument. At each ex­
pansion of the indefinite repeat range, this dummy argument is
replaced with successive elements of a specified real argument list.
This type of macro definition does not require calling the macro by
name, as required in the expansion of conventional macros. An indefi­
nite repeat block can appear within or outside of another macro defi­
nition, indefinite repeat block, or repeat block.

205

Programming Languages

Macro Calls and Structured Macro Libraries
A program can call macros that are not defined in that program. A
user can create libraries of maCro definitions, and MACRO will look up
definitions in one or more given library files when the calls are encoun­
tered in the program. Each library file contains an index of the macro
definitions it contains to enable MACRO to find definitions quickly.

Program Sectioning
The MACRO program sectioning directives are used to declare names
for program sections and to establish certain program section attrib­
utes. These program section attributes are used when the program is
linked into an image.

The program sectioning directive allows the user to exercise complete
control over the virtual memory allocation of a program, since any
program attributes established through this directive are passed to the
linker. For example, if a programmer is writing multi-user programs,
the program sections containing only instructions can be declared
separately from the sections containing only data. Furthermore, these
program sections can be declared as read-only code, qualifying them
for use as protected, shareable programs.

HOST DEVELOPMENT LANGUAGES

PDP-11 FORTRAN IV/VAX TO RSX
The FORTRAN IV language is an extended FORTRAN implementation
based on American National Statndard (ANSI) FORTRAN, X3.9-1966.
PDP-11 FORTRAN IV code is executed in compatibility mode under
the VAX/VMS operating system. The FORTRAN IV language includes
the following extensions to the ANSI standard:

• Generated expressions allowed in all meaningful contexts

• Mixed-mode arithmetic

• BYTE data type for character manipulation

• ENCODE, DECODE statements
• PRINT, TYPE, and ACCEPT input/output statements

• Direct-access, unformatted input/output DEFINE FILE statement

• Comments allowed at the end of each source line

• PROGRAM statement
• OPEN and CLOSE file access control statements

• List-directed input/output

Additionally, virtual arrays are supported on target systems with
memory management directives. Virtual arrays are memory-resident
and require enough main memory to contain all elements of all arrays.

206

Programming Languages

The PDP-11 FORTRAN IV compiler is a fast, one-pass compiler. Com­
piler options allow program size versus execution speed (threaded
code versus inline code) trade-offs. FORTRAN IV compiler optimiza­
tions include:

• Common subexpression elimination

• Local code tailoring

• Array vectoring
• Optional inline code generation for integer and logical operations

MACRO-11 subroutines may be called from FORTRAN IV programs.
The FORTRAN IV language also includes a set of object modules,
called the Object Time System (OTS), that are selectively linked with
compiler-produced object modules to produce an executable pro­
gram.

MACRO-11
MACRO-11, the PDP-11 assembly language, is included in the com­
patibility mode environment. Programs written in the MACRO-11
assembly language can be assembled to produce relocatable object
modules and optional assembly listings. The following features are
provided:

• Relocatable object modules
• Global symbols for linking separately assembled object programs

• User-defined macros

• A comprehensive system macro library

• Program sectioning directives
• Conditional assembly directives

• Assembly and listing control functions at program and command
levels

• Alphabetized, formatted symbol table listing

• Default error listing on command output device

Symbol and Symbol Definitions
Three types of symbols can be defined for use within MACRO-11
source programs: permanent symbols, user-defined symbols, and
macro symbols. Accordingly, three types of symbol tables are main­
tained: the Permanent Symbol Table (PST), the User Symbol Table
(UST), and the Macro Symbol Table (MST).

Permanent symbols consist of the PDP-11 instruction mnemonics and
MACRO directives. The PST contains all the permanent symbols auto­
matically recognized by MACRO and is part of the assembler itself.
Since these symbols are permanent, they do not have to be defined by
the user in the source program.

207

Programming Languages

User-defined symbols are those used as labels or defined by direct
assignment. Macro symbols are those symbols used as macro names.
The UST and MSTare constructed during assembly by adding the
symbolsto the UST or MST as they are encountered.

Directives
A program statement can contain one of three different operators: a
macro call, a PDP-11 instruction mnemonic, or an assembler direc­
tive. Directives are included for:

• Listing control

• Function speCification

• Data storage
• Radix and numeric usage declarations

• Location cou nter control

• Program termination

• Program boundaries information

• Program sectioning

• Global symbol definition

• Conditional assembly

• Macro definition

• Macro attributes

• Macro message control

• Repeat block definition

• Macro libraries

208

209

CHAPTER OVERVIEW
This chapter describes the wide range of capabilities supported by
VAX/VMS systems for managing data, forms, records, and databases.
It begins with a brief overview of the set of VAX information manage­
ment products. The rest of the chapter includes detailed descriptions
of the individual products.

Topics include:

• The Structure of the Architecture

• Overview of the Products

• VAX-11 DATATRIEVE

• VAX-11 FMS
• VAX-11 Common Data Dictionary

• VAX-11 DBMS

210

INTRODUCTION

CHAPTER 6

INFORMATION MANAGEMENT

The VAX/VMS operating system supports a set of software tools that
provides a full range of information management capabilities. With
these tools, data can be organized, maintained, retrieved and manipu­
lated quickly, easily, and cost-effectively. The layered structure, called
the VAX information architecture, includes:

• VAX-11 DATATRIEVE data management facility

• VAX-11 FMS (Forms Management System)

• VAX:-:11 CDD (Common Data Dictionary)

• VAX-11 RMS (Record Management Services)

• VAX-11 DBMS (Database Management System)

The architecture of the VAX information products was developed on
the principle that no single approach to information management is
appropriate for the typical user's combination of application needs.
The layered, modular design of the VAX information architecture
makes it possible to apply the appropriate technology to each level of
an application. The components are not just a collection of indepen­
dent point products, but a series of interlocking building blocks that fit
into a well-defined software structure.

THE STRUCTURE OF THE ARCHITECTURE
The components of the architecture are arranged in layers above the
operating system, as seen in Figure 6-1. Each layer has specific capa­
bilities. The layered structure of the architecture makes it possible for
the components on one level to use the facilities of the other compo­
nents.

The top or outside layer provides a user interface where the architec­
ture supports interactive and language-callable video forms, English­
like queries, hardcopy reports, and graphics. At this level, users such
as application programmers, data entry clerks, and management
personnel can work with data, not as records and files or bits and
bytes, but as meaningful information formatted to their specifications.

On the next level is the data dictionary and a facility for high~level
access to local arid remote data.

The data dictionary provides a facility for storing logical-to-physical
data definitions. This facility integrates the other VAX information
management products. For example, high-level data access facilities

211

Information Management

PRODUCTS OF THE ARCHITECTURE

I
I

VAX-ll VAX-ll FMS I LANGUAGES

I
VAX-l1 ------,------

DATATRIEVE
I
I

VAX-ll COD I
I
!

VAX-ll RMS VAX-ll DBMS

VAX/VMS

Figure 6-1

use data dictionary information to access locally and remotely stored
data. The database management system uses the data dictionary to
store the database data definitions it shares with the languages and
the high-level data access facility.

The high-level data access facility lets the application program or in­
teractive user state an access request in terms of a desired result
rather than having to specify the operations required to achieve that
result. For example, the user could request a printout of all employees
with an annual salary equal to or greater than their age times a
thousand dollars. The high-level access facility performs all data ac­
cess, selection, formatting, and output operations required to produce'
the desired report--all in response to one simply stated English-like
query request. The English-like syntax is results oriented. Users ask
for what they want; the high-level data access facility determines how
to locate the data.

High-level data access also supports a relational join capability for
dynamically linking related records of different types. Users do not

212

Information Management

have to determine in advance the records they want to link. Using a
relational join, the access facility is capable of making these associa­
tions on the fly.

For instance, in the above example, employee stock purchase infor­
mation might be stored in a separate file from the main employee
records. However, stock-purchase information could be included in
the initial retrieval by using a request in the form "PRINT EMPLOYEES
CROSS STOCK-PURCHASE OVER EMP-NUMBER WHERE ANNUAL
SALARY IS EQUAL TO OR GREATER THAN AGE TIMES 1000." In this
case, the associated stock purchase information is appended to each
printed record because the CROSS operator performs a join of em­
ployee master records with employee stock-purchase records.

The distributed data access facility retrieves data from remote VAX-11
DATATRIEVE nodes. The process is transparent. A remote query
looks just like a local query to the user.

The lowest level consists of two online, multiuser, data management
facilities; one for traditional file structures and one for pointer-based
database structures. Sequential, relative, and multikey-ISAM (Indexed
Sequential Access Method) file organizations are supported by the file
management system. The database management system is CO­
DASYL-compliant and supports the network data model.

The Components of the Architecture
Figure 6-2 maps the VAX information architecture capabilities over the
product set presented in Figure 6-1.

Programming Languages - The VAX languages are a basic part of
the VAX information architecture. The architecture provides language
support for high-level and direct access to RMS (Record Management
Services) files and VAX-11 DBMS (Database Management System)
data structures. Through the VAX Procedure Calling Standard, lan­
guages can use the VAX-11 DATATRIEVE data management facility
for high-level access to data. The syntax for calling the VAX-11 DATA­
TRIEVE facility is exactly the same as that for using it interactively.

For VAX-11 DBMS access, a data manipulation language (DML) is
provided for VAX-11 FORTRAN and VAX-11 COBOL programs. All
other application languages are supported through a callable VAX-11
DBMS utility called DBQ (database query).

VAX-11 FMS - VAX-11 FMS (Forms Management System) is a pro­
grammer productivity tool that provides a forms managememt
capability for application languages and the VAX-11 DATATRIEVE da­
ta management facility. FMS forms are defined interactively and then

213

Information Management

FEATURES OF THE ARCHITECTURE ®

I
I

LANGUAGES FORMS QUERY & I
REPORTING I GRAPHICS

I
I---------L.------I-- - - -. --!- - - - - --

DATA DICTIONARY

SEQUENTIAL • RELATIVE.
MULTI-KEY ISAM

I
I

HIGH LEVEL I
DATA DISTRIBUTED

ACCESS I ACCESS

I
I
I

CODASYL
DATABASE

OPERATING SYSTEM

Figure 6-2

stored in an FMS forms library. At runtime, VAX-11 FMS works as a
forms management software front end. It passes data between user
programs anda video terminal on a per-field or per-form basis.

The process works exactly the same way when FMS forms are used
with the VAX-11 DATATRIEVE facility. If a form name is used as part of
a DATATRIEVE definition, the VAX-11 DATATRIEVE facility will auto­
matically use the form to collect or display the associated data. From
the point of view of VAX-11 FMS, VAX-11 DATATRIEVE is just another
user program.

VAX-11 DATATRIEVE - VAX-11 DATATRIEVE is a comprehensive
data management tool. It provides both interactive and program-call­
able access to data in RMS file organizations orin more complex,
interrelated database structures. It is a comprehensive query and re­
port writer with full update capabilities. It also includes an integrated
graphics capability. Forms support is provided through VAX-11 FMS
(Forms Management System).

214

Information Management

The VAX-11 DATATRIEVE facility consists of four major
subcomponents: at the user interface level are a query and report
writing facility and a business graphics capability; below that, the local
and distributed high-level data access facilities.

The VAX-11 COMMON DATA DICTIONARY - The VAX-11 CDD is in
many respects the keystone of the architecture and is essential to the
operation of VAX-11 DAT ATRI EVE and VAX-11 DBMS. VAX-11 DAT A­
TRIEVE statements refer to data entities defined in the VAX-11 CDD.
The VAX-11 CDD is also used to store series of VAX-11 DATATRIEVE
statements as procedures that can be invoked interactively or from
application programs.

The VAX-11 CDDis used to store the database data definitions (sche­
mas and subschemas) VAX-11 DBMS needs to create, access, and
maintain databases. Application languages access these definitions at
compile time.

VAX-11 RMS - VAX-11 RMS (Record Management Services) is an
access method with an extended syntax interface to all high-level lan­
guages. It supports sequential, relative, and multikey indexed-se­
quential file organizations, as well as concurrent file access with
record-level locking.

VAX-11 DBMS - The VAX-11 DBMS facility is a full-scale CODASYL­
compliant database management system based on the March 1981
Working Document of the ANSI Data Definition Language Committee.
It has many special ease-of-use and performance features and is suit­
able for both small and large database applications. Because it uses
the powerful network-type data model, it can accommodate complex
data relationships. The VAX information architecture allows for DBMS
data to be accessed directly from applications languages or through
the VAX-11 DATATRIEVE facility. Included with the VAX-11 DBMS
facility is an important productivity tool, DBQ, an interactive and pro­
gram-callable database query language, that makes it easy to write
and check out VAX-11 DBMS data access statements.

The remainder of this chapter is divided into five sections that cover in
detail the features and functions of VAX-11 DATATRIEVE, VAX-11
FMS, the VAX-11 CDD, VAX-11 RMS, and VAX-11 DBMS. The Lan­
guage/VAX information architecture interface is integrated into each
of the information management components. The use of DECnet-VAX
communications software is covered under Distributed Data Access in
the VAX-11 DATATRIEVE section.

215

Information Management

VAX-11 DATATRIEVE
The VAX-11 DATATRIEVE facHity is a multi-faceted data management
facility that can store, update, and retrieve information and generate
reports. The major commands include:

• CROSS-which allows multiple files to be accessed using a com­
mon field

• DECLARE-which defines global and local variables to be used
within a DATATRIEVE query

• DEFINE-which provides a consistent mechanism for creating do­
main, record, table, and view definitions in the VAX-11 Common
Data Dictionary

• DROP-which allows records to be deleted from a collection (sub­
set) only, while not modifying the actual data file

• EDIT-which invokes an editor that inserts, modifies, or deletes text
from procedures defined in the VAX-11 CDD, or from the last line
entered in an interactive session

• ERASE-which deletes one or more records corresponding to the
appropriate domain (file)

• FIND-which establishes a collection (subset) of records contained
in either a domain or a previously established collection based on a
Boolean expression

• FOR-which executes a subsequent command once for each record
in record collection providing a simple looping facility

• HELP-which provides asummary of each DATATRIEVE command
• MODIFY-which alters the values of one or more fields for either the

selected record or all records in a collection. Replacement values
are prompted for by name, or shown on a pre-defined form

• PLOT -which allows a collection of records to be displayed/printed
in graphic representation

• PRINT-which prints one or more fields of one or more records.
Output can be optionally directed to a lineprinter or disk file. Format
control can be specified. A column header is generated automati­
cally

• READY-which identifies a domain for processing and controls the
access mode to the appropriate file

• SELECT-which identifies a single record in a collection for subse­
quent individual processing

• SORT-which reorders a collection of records in either the
ascending or descending sequence of the contents of one or more
fields in the records

216

Information Management

-STORE-which creates a new record. The value for each field con­
tained in the record is prompted for by name, or indicated on a pre­
defined form

VAX-11 DATATRIEVE also provides a subset capability to allw novice
users to learn about DATATRIEVE while using it productively. This
facility is called "Guide" mode. It provides explicit help at all decision
pOints in processing a DATATRIEVE subset. The "Guide" mode subset
includes:

SHOW
READY
FIND
PRINT
SORT
SELECT

VAX-11 DATATRIEVE can be used interactively from a terminal or
called from an application program. Data can be accessed in VAX-11
RMS files and VAX-11 DBMS database structures. VAX-11 DATA­
TRIEVE features integrated editing and graphic output facilities and it
supports the forms management facility of VAX-11 FMS.

The VAX-11 DATATRIEVE facility also provides a distributed data ac­
cess capability using DECnet-VAX communications software. This ca­
pability makes it possible to use VAX-11 DATATRIEVE to retrieve data
on remote VAX systems, just as if the data were stored locally. A single
DATATRIEVE command is capable of accessing data from RMS or
DBMS files local or remote simply depending on its definition in the
VAX-11 CDD.

Designed to be used by both novices and computer professionals,
VAX-11 DATATRIEVE operates effectively in commercial, technical,
scientific, industrial, or educational environments. Typical applications
range all the way from producing a complex report to answering a
casual question. For example, using VAX-11 DATATRIEVE, a
personnel file could be queried to determine how many employees
held bachelor's degrees, or the same data file could be used to pro­
duce a report with a complete statistical analysis of the employee
education versus compensation.

Another typical environment where VAX-11 DATATRIEVE would be
useful is a distributorship with an order processing system. In this
setting, sales data could be extracted by territory, then the results
could be plotted in the form of a pie chart. Order backlogs might be
retrieved, sorted by supplier, and plotted in the form of a bar graph.

217

Information Management

Implementing a VAX-11 DATATRIEVE application is a two-phase
process. In the first phase, the appropriate statements are used to
define all data that will be accessed by the application. This need be
done only once to establish a foundation on which to build the applica­
tion. In the second phase, VAX-11 DATATRIEVE statements are used
to process the data associated with these definitions.

Data Definition
The data definition process involves establishing special VAX-11 DA­
TATRIEVE constructs called domains.

Domains - The domain concept is central to DATATRIEVE. Domains
represent relationships between actual physical data and descriptions
of data. VAX-11 DATATRIEVE performs all data management in terms
of domains. Domains must be defined before DATATRIEVE can man­
age the data associated with them.

In the simplest form, a VAX-11 DATATRIEVE domain definition con­
sists of a domain name, the name of the VAX-11 RMS file, and the
name of a record format description. A record format description
defines the fields within a record, assigning each field a name and
specifying its length, data type, and other vital parameters. All VAX-11
DATATRIEVE domain definitions and record format descriptions are
contained in the VAX-11 Common Data Dictionary.

Record format descriptions can specify data validation criteria on a
per-field basis. VAX-11 DATATRIEVE automatically uses the valida­
tion parameters to screen data at the time of input so that only data
defined as valid is accepted. Supported validation parameters include
range checks, missing value checks, default values, must-match ta­
bles, and argument-function conversion tables.

Domains can span multiple VAX-11 RMS files or VAX-11 DBMS re­
cord types. Domains can also include the name of an associated VAX-
11 FMS form or a VAX-11 DATATRIEVE table. Domains can also be
defined as remote. This means that the actual data definition and the
data exist on a remote VAX-11 DATATRIEVE node and can be ac­
cessed through DECnet-VAXcommunication software using the
distributed data access facility. These more complex domains are
explained in more detail below.

Data Management
Data management involves creating and maintaining data in a current
and correct state by adding, eliminating, and modifying records. The
STORE, ERASE, and MODIFY statements are used to perform these
relatively straightforward functions.

218

Information Management

Populating Files - When an application requires the creation of new
files, the new files must be filled with data. This process is called
"populating" the file. A series of successive STORE statements is used
for this purpose. With the STORE statement, VAX-11 OAT ATRI EVE
prompts the user for each field value and, before accepting input,
performs any validation checks specified by the record format de­
scription.

Data Retrieval
Maintaining an accurate database, however, is not an end in itself.
Data is used to make decisions, generate reports, initiate transactions,
and generally facilitate the operational processes of an enterprise.
VAX-11 DATATRIEVE allows stored data to be retrieved in an easily
understood form regardless of underlying data structure (RMS or
DBMS) or location (local or remote via DECnet).

The data retrieval statements of VAX-11 DATATRIEVE are simple, and
particularly powerful statements with English-like syntax. They consist
of verbs modified by a Record Selection Expression (RSE). The RSE
defines a subset of the records in the domain. These records are then
selected by VAX-11 DATATRIEVE for retrieval. One statement can get
the answer to a casual query or produce a long detailed report.

"EMPLOYEES WITH SALARY GREATER THAN 20000," " ACCOUNTS
WITH UNPAID-BALANCE GREATER THAN 600," or "DONORS WITH
BLOODTYPE EQUAL O-NEG" are examples of typical RSEs. Multiple
conditions can be combined in a single RSE--for example, "DONORS
WITH BLOODTYPE EQUAL O-NEG AND LAST-DONATION-DATE
LESS THAN "4/30/81."" The VAX-11 DATATRIEVE SORT operator
can be appended to the RSE to order the records being retrieved.

Ad hoc information retrieval with VAX-11 DATATRIEVE is normally
performed as an iterative process using a series of statements to
progressively narrow down the group of records to be retrieved. This
works by using a FIND request with a specified domain as its object to
establish what is called the current collection. Subsequent FIND re­
quests progressively narrow down the current collection until the user
is satisfied with the results. For example, the statement "FIND DO­
NORS WITH BLOODTYPE EQUAL O-NEG AND LAST-DONATION­
DATE LESS THAN "30/4/81"" might yield the VAX-11 DATATRIEVE
response "200 RECORDS FOUND." In this case, the user could narrow
down the current collection with the statement "FIND CURRENT WITH
ZIP-CODE EQUAL 23016." VAX-11 DATATRIEVE might then respond
with "16 RECORDS FOUND" and the user could PRINT these records
to get telephone numbers for soliciting blood donations to help an
accident victim.

219

Information Management

Reports
The PRINT statement is used to output information to a display termi­
nal, a printer, or a VAX-11 RMS file. Though there are some formatting
options possible with the PRINT statement, they are limited. The RE­
PORT command provides a more comprehensive set of formatting
options for producing standard printed reports with page and column
headings, page numbers, totals, and subtotals.

Graphics
The VAX-11 DATATRIEVE graphics capability includes histograms,
bar charts, pie charts, xy scatter diagrams, and time series graphs.
Plots use the VT125 video terminal for display and can be printed
using an attached printer. The syntax for the plot statement consists of
the PLOT verb followed by plot type and the fields to be plotted.

Forms
VAX-11 DATATRIEVE can be used with VAX-11 FMS to provide forms
input and output. See "Using FMS With VAX-11 DATATRIEVE.

Stored Procedures
With the DEFINE PROCEDURE command, users can define
sequences of VAX-11 DATATRIEVE commands and statements and
store them for later use. PROCEDURES can be invoked to run by
themselves or can be embedded in other sequences of commands
and statements. PROCEDURES can be invoked by interactive users or
application programs.

Ease-Ot-Use Features
Guide Mode - VAX-11 DATATRIEVE provides a self-teaching facility,
called "Guide" mode. In this mode of operation, users are guided
through their VAX-11 DATATRIEVE sessions with a series of prompts.
This enables the user to work productively with DATATRIEVE while
learning to use it.

To invoke guide mode, the user issues a SET GUIDE command. VAX-
11 DATATRIEVE immediately responds with "ENTER COMMAND,
TYPE? FOR HELP." If "?" is typed at this pOint, VAX-11 DATATRIEVE
will present the user with the possible responses--in this case, READY,
SHOW, or LEAVE. If one of the alternatives is selected, VAX-11 DATA­
TRIEVE then procedes to guide the user through the syntax of the
selected statement. In the case of READY, VAX-11 DATATRIEVE
prompts with "DOMAIN NAME, END WITH SPACE."

VAX-11 DATATRIEVE Editor - The VAX-11 DATATRIEVE editor
closely resembles the standard VAX editor, EDT. It can be used in
either the line or character mode, with or without keypad commands.

220

Information Management

The editor lets the user correct typing or syntax errors in VAX-11
DATATRIEVE statements without having to completely retype the
statements.

To get into editor mode, the user types EDIT and a carriage return.
VAX-11 DATATRIEVE places the last command or statement in the
main buffer of the editor, and the user edits this just like any other text.
If EXIT is used to leave the editor, VAX-11 DATATRIEVE performs the
edited statement or command. If QUIT is used to leave the editor,
VAX-11 DATATRIEVE ignores the last statement.

Application Design Tool - The Application Design Tool (ADT) is a
VAX-11 DATATRIEVE utility that simplifies the process of defining
domains, record formats, and creating VAX-11 RMS files. Operating in
an interactive mode, ADT presents the user with a series of simple
questions. The user's responses provide ADT with information to gen­
erate the proper definitions. For RMS files, ADT will prompt the user to
get a full set of parameters pertaining to organization, index keys, etc.
ADT will then create a VAX/VMS indirect command file that the user
can execute immediately or at some later time to create the desired
file.

Advanced Features
View Domains - VAX-11 DATATRIEVE allows domains to be defined
that can subset the fields of a record and can span multiple VAX-11
RMS files or VAX-11 DBMS record types. These are called view do­
mains because they provide a user's logical view of the data. Once
view domains have been established, they can be used in much the
same way as simple domains.

This facility is basic to high-level data access. It makes it possible for a
single statement to retrieve a set of related records. For example, in an
employee records application there might be an employee master file
with company confidential information pertaining to salary that could
be masked out using a view domain. Other information in the master
file such as addresses and telephone numbers could then be com­
bined in another view domain with a special file of records used in a
car -pool i ng appl ication.

View domains can also be used with VAX-11 RMS files for domains
containing records related in a hierarchical fashion. For example, in an
order processing application there might be an account master file
and an order file. These files could be combined in a view to produce
billing statements with data drawn. from both files. A single record in
this view domain could be defined to contain one account master
record and all the orders applyi ng to that accou nt.

221

Information Management

JOining Multiple Records Using CROSS - VAX-11 DATATRIEVE
also has a similar and equally important relational facility for linking
multiple record types dynamically. Using the CROSS operator, re­
cords from separate VAX-11 RMS files or from different VAX-11
DBMSdata structures can be joined dynamically in a single retrieval
statement.

This is an especially powerful facility that makes it possible for usersto
join records from any files related to one another by a common field.
For example, in a student records application, a school might maintain
a current academic status file and a registration file. When mailing
grade scores the academic status file could be joined with the regis­
tration file to get the home address. The VAX-11 DATATRIEVE state­
ment would take the form "CROSS ACADEMIC-STATUS WITH RE­
GISTRATION OVER STUDENT-I D."

DBMS Domains - DBMS domains are a VAX-11 DATATRIEVE fea­
ture to take advantage of the record format descriptions and
interrecord relationships defined in VAX-11 DBMS subschemas.
When DBMS domains are used, a schema, subschema and a record
type are simply identified. VAX-11 DATATRIEVE uses the record for­
mat description and relationships defined for the record type in the
VAX-11 COD.

Tables - VAX-11 DATATRIEVE tables can be defined to reside in the
VAX-11 Common Data Dictionary or exist as DATATRIEVE domains.
Tables can be used as a must-match list for field validation or for
argument-function type conversions. For instance, a must-match list
of valid U.S. Mail state abbreviations could be used to check an ad­
dress field or a argument-function table could be used to convert from
state abbreviation codes to the spelled out state name.

Calling VAX-11 DATATRIEVE from Applications Languages - All
the functions of VAX-11 DATATRIEVE with the exception of the editor,
ADT, and guide mode can be called from all application languages
using the standard VAX/VMS call interface. Using the specialized
power of FORTRAN, for instance, complex computational operations
can be performed on records retrieved by VAX-11 DATATRIEVE. With
COBOL, specially formatted reports can be generated from VAX-11
DATATRIEVE collections.

Distributed Data Access - The VAX information architecture works
with DECnet-VAX communications software to provide a distributed
data access facility that makes it possible for users to access remote
data just as if it were stored locally.

222

Information Management

PRODUCT DESCRIPTION: DISTRIBUTED ACCESS CAPABILITY

VAX-ll
DATATRIEVE

Figure 6-3

VAX-ll
DATATRIEVE

Figure 6-3 illustrates the distributed data access process. A remote
domain is defined with a simple statement that identifies the host node
and domain name. When the query request is executed, VAX-11 DA­
TATRIEVE uses DECnet-VAX software to forward the request to the
appropriate node. The response to the request is then returned over
the line and presented to the user just as if the data had been stored
locally.

Since VAX-11 DATATRIEVE uses the record stream concept, its dis­
tributed data access facility is extremely efficient. Line utilization is
optimized because only the records that satisfy a query are returned
over the transmission line. And since the data description is main­
tained with the data, the complex problems normally associated with
distributed data management are minimized.

VAX-11 FMS
VAX-11 FMS (Forms Management System) provides video form sup­
port for applications on VT100, VT125, and VT52 video terminals.
Because the VAX-11.FMS facility is integrated into the structure of the
VAX information architecture, it can serve both application programs
and the VAX-11 DATATRIEVE data management facility. This im­
proves productivity by reducing required training. time, since there is
only one forms package to learn.

The many special features of the VAX-11 FMS facility improve the
productivity of application programmers and application maintainers.
It is easy to use and self-teaching, meaning that it can be used effec­
tively by entry-level programmers. However, FMS also has the flexibili­
ty and power required by experienced systems designers when
implementing complex forms-oriented applications. In addition, FMS
provides the means for easily building applications that exploit the full
power of the VT100 and VT52 video terminals.

223

Information Management

FMS Subcomponents
As shown in Figure 6-4, FMS consists of forms definition software,
runtime forms management software, and form library data structures
that contain the internal representation of all forms definitions.

APPLICATION
PROGRAM DATATRIEVE

FORM
DRIVER

Figure 6-4

FORM
EDITOR

FORMS
LIBRARIES

Forms definition software performs the functions associated with
creating forms and managing the forms libraries. It consists of an
interactive editor for forms definition and modification and a library
manager.

Runtime forms management software performs interactive forms
management functions for application programs and the VAX-11 DA­
TATRIEVE data management facility.

The FMS Form Editor
The interactive FMS Form Editor is quick, easy, and natural. The forms
designer does not have to learn a forms definition language or layout
forms on a paper grid. Instead, forms are constructed directly on the
VT100 video terminal, and all screen and field attributes are defined
with function keys or by filling in simple questionaires. The form
appears just as it looks to the terminal operator at runtime. Since
forms developers can watch the end product evolve, a single session
is all that is required to get a form right, regardless of complexity. The
independence of forms from programs allows the forms to be ap­
proved early in the development process by the end user, eliminating
changes late in the development cycle.

Interactive forms definition is more efficient than a forms-Ianguage­
oriented process that requires form definition source code to be writ-

224

Information Management

ten and then compiled in an iterative procedure. With a forms lan­
guage, forms have to be compiled and tested before a forms develop­
er can actually see the results of the process.

Function-Key Logic Using the Keypad
The keypad provides function-key logic for cut-and-paste editing. The
user defines a rectangular area of the form by indicating a pair of
opposite corners with the cursor. This piece of the form can then be
picked up and moved in one operation.

Function keys allow deletion of the entire current line or only the
portion to the right or left of the cursor. An undelete function key
inserts the most recently deleted line, allowing for error recovery from
accidental deletions or fast replication of a single line.

Character attributes (bold, reverse video, underline, and blink) can be
defined for any desired rectangular portion of the screen, using a
similar technique.

Attributes are assigned to individual fields, and to the form as a whole,
through an interactive process in which the FMS forms compiler uses
the FMS runtime system to present the operator with a series of simple
fill-in-the-blank forms.

The Form Editor creates an internal representation of the form in a
work file. The Form utility is then used to create and manage the
libraries in which the form definitions reside until they are requested
by an application program. The Form utility can also be used to list the
names of forms in a library to a generate printable description of a
form suitable for use in end-user or system documentation, or to gen­
erate COBOL Data Division code reflecting the content of the form.

Forms are not compiled or linked with the application program; the
association between the application program and the form is made at
runtime. This scheme provides for a high degree of data/program
independence, with consequent savings in application maintenance
costs.

Using FMS With VAX-11 DATATRIEVE
When the VAX-11 FMS facility is used with application programs, the
developer defines a form, then writes a program to use it. In the case
of FMS used with the VAX-11 DATATRIEVE data management facility,
the developer defines the form and names it as part of a VAX-11
DATATRIEVE data definition. VAX-11 DATATRIEVE does the rest. It
will automatically generate the proper FMS calls when data associated
with a form definition is input or retrieved.

225

Information Management

Runtime Forms Management
The FMS Forms Driver (runtime system) operates as a program-call­
able software front end to facilitate application-program/terminal-user
interaction. This approach is appropriate for interactive source data
entry and transaction processing applications where the terminal user
is familiar with the data and can make decisions during the input
process.

Application-program calls to FMS specify forms and fields by using
strings of plain ASCII characters. This simple interface design elimi­
nates the need for any pre-runtime binding through a compilation or
linking process. This type of architecture encourages data/program
independence and, as a result, improves programmer productivity by
making applications easier to develop and maintain. Fields can be
moved; some attributes can be changed; and, in some cases, even the
order of fields can be changed without requiring a recompilation of the
associated application programs.

The FMS forms driver is powerful and flexible. It provides a broad
range of calls--from the simple and straightforward to the complex
and sophisticated.

Programmers of any level of proficiency can write applications easily.
An entry-level programmer could implement an entire application us­
ing just two main calls: one to display a designated form and the other
to let the operator enter data onto the form and return input data to the
program upon completion.

A more experienced programmer could use a much greater repertoire
of calls to write an application. Certain calls, for instance, provide for
program/operator interaction on a per-field basis. The application
program can look up and display an item description, unit price, or
quantity on hand, at the moment a part number is entered. Other calls
make it possible for the programmer to use scrolling, multiple over­
lapped forms, and function-key input, to achieve special effects.

Another feature of VAX-11 FMS is its Named Data capability. By stor­
ing abitrary strings of data as part of the form definition, to be re­
trieved by the application program at runtime, the application pro­
grammer can create highly general, parameterized, easily
maintainable applications. Examples of the types of parameters that
can be stored in this manner include names of successor forms for a
chained or menu-driven application, names of data files, boundaries
for range check logic in the application, small tables of validation data,
etc. An installation could easily write a library of subroutines extending
FMS validation capabilities and drive them with Named Data.

226

Information Management

THE VAX-11 COMMON DATA DICTIONARY
The VAX-11 Common Data Dictionary (COD) is a central repository for
data about data. It is the hub of the VAX information architecture. It
ties the components together by making it possible for them to use a
single set of data descriptions as a common resource.

The VAX-11 DATATRIEVE data management facility uses the VAX-11
COD for descriptions of data stored in VAX-11 RMS files or VAX-11
DBMS database structures. VAX-11 DBMS (Database Management
System) uses the VAX-11 COD to store its schemas, subschemas, and
storage schemas. Application languages and V AX-11 OAT ATRI EVE
can share subschema definitions stored in it.

Figure 6-5 is a schematic representation of the VAX-11 COD showing
the categories of data it can contain.

DIRECTORY }
ACCESS CONTROL LISTS

LOCAL "'I

DOMAINS REMOTE
VIEW
DBMS

RECORD FORMAT
DESCRIPTIONS

TABLES

PROCEDURES

~

SCHEMAS

SUBSCHEMAS

STORAGE SCHEMAS

Figure 6-5

The VAX-11 COD Directory

VAX-ll DBMS
VAX-ll DATATRIEVE

) VAX-ll DATATRIEVE

VAX-ll DBMS

The VAX-11 COD has one integrated directory that is an index to both
the VAX-11 DATATRIEVE and VAX-11 DBMS data definitions it con­
tains. The directory is organized as an n-Ievel hierarchy that has a
structure closely resembling that of the VAX/VMS system directory.

227

Information Management

Figure 6-6

Figure 6-6 shows how a typical VAX-11 CDD directory might look. The
terminal nodes are called leaves. They always reference VAX-11 CDD
objects. The other nodes form a hierarchical access path structure
that provides security control through the use of access control lists.
There is one access control list per path node. Each entry in the list
specifies a user or class of users and their access privileges with
respect to dictionary objects below the associated path node.

VAX-11 DATATRIEVE Data Definitions
For VAX-11 DATATRIEVE, the VAX-11 CDD stores record format de­
scriptions and domain definitions for VAX-11 RMS files and VAX-11
DBMS database structures. The VAX-11 CDD also contains VAX-11
DATATRIEVE procedures and tables.

VAX-11 DBMS Data Definitions
For VAX-11 DBMS, the VAX-11 CDD stores database data descrip­
tions of three types-schema, subschema, and storage schema.
These definitions are used by VAX-11 DBMS to build and later refer­
ence database structures.

The schema is the master data definition for a logical database. It
contains all record, data item, and interrecord (set) relationship defi­
nitions. There is one schema per database. The subschema defi­
nitions are application program views of the data of which there can be
many for one database. They are used by the language compilers to
produce data definition source code during the compilation process.
The storage schema is the master data definition for the physical
structures of a database. There is one storage schema per database.

Common Data Definition Language
The Common Data Definition Language (CDDL) utility provides a gen­
eric facility to enter, modify, and display record definitions for the VAX

228

Information Management

languages. Once a record definition has been entered in the Common
Data Dictionary, it can be used by the language compilers or VAX-11
DATATRIEVE. This means only one definition per record need be
stored in the VAX-11 CDD.

The Dictionary Management Utility
The Dictionary Management Utility (DMU) is a utility for managing the
VAX-11 CDD. The DMU can be used to backup and restore the VAX-
11 CDD, to create and delete VAX-11 CDO objects, to create and
delete directory nodes on any level, and to create and delete access
control lists.

The DMU can also be used to display all or part of the directory
structure. It can also display selected information about a particular
node.

The VAX-11 CDD can maintain a history of activity and will display on
command the access history of specified nodes.

VAX-11 RMS
The VAX-11 RMS facility is the standard DIGITAL data management
services software that provides an interface at the application­
program level to record/file management functions. VAX-11 RMS pro­
vides capabilities to facilitate the definition, creation, population, ac­
cess, and general maintenance and management of files and records
within files. It supports sequential, relative, and multikey indexed-se­
quential file organizations.

For information on VAX-11 RMS file organization, record access
modes, file and record attributes, and utilities, see Chapter 12 of this
handbook.

VAX-11 DBMS

Introduction
VAX-11 DBMS (Database Management System) is a CODASYL­
compliant general purpose database management system based on
the March 1981 Working Document of the ANSI Data Definition Lan­
guage Committee.

VAX-11 DBMS provides multiuser support with data security and per­
formance features that are required for large-scale database applica­
tions. However, VAX-11 DBMS also has ease-of-use features that
make it equally suitable for implementing small and medium-scale
appl ications.

There are three stages to the process of implementing a database
application using VAX-11 DBMS: data definition, application develop­
ment, and database creation.

229

Information Management

The following step-by-step account of the process of implementing a
database application provides an overview of VAX-11 DBMS at work.
It identifies the major VAX-11 DBMS subcomponents and describes
what they do and how they work together as a system.

Data Definition
VAX-11 DBMS provides three levels of data definition languages
(DDLs):

• The schema DDL defines the logical structure of the database

• The storage schema DDL defines the physical structure of the data­
base

• The subschema DDL defines an application program view of a sche-
ma

The schema DDL is the only DDL that must be written. The DDL com­
piler will produce a default subschema and a default storage schema
for each compiled schema.

The schema DDL defines the records, sets, and areas composing the
database. A record is a collection of data items. A set is a relationship
between records having one owner record and one or more member
records in some specified order. An area is a logical subdivision of the
database that contains records.

The storage schema DDL defines the representation of storage re­
cords, storage sets, and storage areas (which are equivalent to VMS
files). It also defines the placement of records within the database, the
storage set parameters, and the representation of data items within a
storage record.

The subschema DDL defines a logical subset of the database in terms
of records, sets, and realms (a collection of one or more areas). Many
subschemas can be written to provide different views of the database
for different application programs.

As shown in Figure 6-7, one DDL compiler compiles all DDL source
code and stores schema, subschema and storage schema information
in the CDD.

COO
SCHEMA

~-----I~ DOL COMPILER ~-----I~ SUBSCHEMA

Figure 6-7

230

STORAGE
SCHEMA

Information Management

Application Development
The application development stage is illustrated by Figure 6-8.
Application program source code is compiled by a language proces­
sor. The source code must reference a previously defined subschema.
The language processor gets the subschema definition from the CDD
in coded form and uses it to create DML (Data Manipulation Lan­
guage) application program data definitions and calls to the Database
Control System (DBCS).

h ::::
PROGRAM

SOURCE LANGUAGE -PROCESSOR COl)

~-
...... -

r
~ -.-"

EXECUTABLE
PROGRAM

"- -
Figure 6-8

Application programs must call the DBCS for all database record and
set operations. The specific operations supported are:

• COMMIT-which establishes a run unit quiet point

• CONNECT-which inserts a record into selected sets

• DISCONNECT-which removes a record from selected sets

• ERASE-which deletes a record from the database

• FETCH-which combines FIND and GET

• FIND-which establishes current of run unit

• FREE-which removes a dbkey value from a keep list

• GET-which gets contents of current record

• KEEP-which inserts a dbkey value into a keeplist

• MODIFY-which changes the contents of a record

• READY-which prepares selected realms for use

• RECONNECT-which combines DISCONNECT and CONNECT

• ROLLBACK-which nullifies changes since last quiet point

• STORE-which puts a record into the database

231

Information Management

Direct Language Access to the VAX·11 DBMS Database
Each application program accesses a subdivision of the database
through a simple set of commands that acts as an extension to COBOL
and FORTRAN programs or as a call from BASIC and MACRO pro­
grams. The database can be accessed by application programs
directed by the subschema (that has been predefined by the database
administrator). The subschema, which is first NAMED in the program,
includes record descriptions. The programmer can, therefore, logical­
ly manipulate the information in the database using one of two
methods provided by VAX-11 DBMS:

• Data Manipulation Language - a set of high-level statements that
create syntactical and logical extensions to FORTRAN and COBOL.
General types of DML statements are Control Statements
(READY,COMMIT, ROLLBACK); Retrieval Statements (GET,
FETCH, FIND); and Modification Statements (CONNECT, DISCON­
NECT, MODIFY, RECONNECT,STORE) .

• Call Statement Interface - used for any VAX-11 language that
supports the VAX/VMS calling standard. Programs written in these
languages call DBQ to access a database. The same set of state­
ments are available as in the host language OM Ls. VAX-11 DBMS
provides a User Work Area (UWA) generator to facilitate program
development.

Database Creation Using the Database Operator Utility (DBO)
The database creation stage is illustated by Figure 6-9. The Database
Operator Utility (DBO) converts coded schema, subschema, and sto­
rage schema information from the VAX-11 COD into data files and
control information for the Database Control System (DBCS) to use at
runtime.

The result of the database creation stage is called a null database. The
null database does not contain data. The process of filling a database
with data is called database population. Database population is done
with user written programs that are usually modified versions of regu­
lar application programs for adding data records in an operational
context.

c -::: --- ~ """'-
COD
SCHEMA
SUBSCHEMA a DBO UTILITY DATABASE
STORAGE
SCHEMA

......... -- """- .--

Figure 6-9

232

Information Management

Runtime Operation with the Database Control System and the
Database Monitor
Figure 6-10 illustrates the runtime operation of VAX-11 DBMS. It
shows how multiple applications can access the same database and
multiple databases can be supported online at one time using the
Database Control System (DBCS) and the database monitor. DBCS is
a reentrant shared system program that performs all database
accesses. It uses the Database Monitor to control all system lock con­
flicts and perform journaling and recovery functions.

Though not shown here for the sake of simplicity, database develop­
ment and database runtime operations can function concurrently.

USER
APPLICATION
PROGRAM
FOR
DATABASE A

I ORCS I
I SHARED I
L_~O~E ___ J

USER
APPLICATION
PROGRAM
FOR
DATABASE A

: DBCS

I ~~~~ED I L ______ -1

USER
APPLICATION
PROGRAM
FOR
DATABASE A

: DBCS

DATABASE
A

Figure 6-10

EASE-OF-USE FEATURES

USER
APPLICATION
PROGRAM
FOR
DATABASE B

Default Subschemas and Storage Schemas

USER
APPLICATION
PROGRAM
FOR
DATABASE B

: DBCS

DATABASE
B

Many applications do not warrant a full-scale design effort involving
subschemas and an optimized storage schema. To accommodate
these situations, VAX-11 DBMS provides an automatic default sub­
schema and storage schema generating facilility. When a schema is
compiled by itself, the DDL compiler creates default subschema and
storage schema information in the VAX-11 CDD. This information can
then be extracted from the Common Data Dictionary in source DDL
form and subsequently edited with the standard VAX/VMS editor
(EDT) to achieve a level of customization appropriate to specific appli­
cations.

Interactive Data Manipulation with DBQ
VAX-11 DBMS includes an interactive data manipulation tool called

233

Information Management

DBQ. DBQ lets the user interactively retrieve,update, and store any
database record. It executes COBOL-like data manipulation com­
mands and automatically generates VT100 displays of easy-to-follow
schematic diagrams that illustrate access paths. Using DBQ, data
manipulation operations can be tested against actual data structures.
This is particularly useful when checking out application program de­
signs.

Integrated Database Administration with DBO
The Database Operator utility provides the Database Administrator
with all of the functions required to create, maintain, delete, and con­
trol VAX-11 DBMS databases. It provides the following:

• Creation, initialization, and deletion of databases

• Reports on VAX-11 DBMS information in the VAX-11 COD

• Extraction of DDL source from the VAX-11 Common Data Dictionary

• Deletion of DOL information in the VAX-11 CDD

• Online verification of the integrity of internal database structures

• Modification of the contents of corrupted database storage areas
(This function is not recommended nor required for normal usage)

• Formatted database dumps

• Offline full and incremental database backup

• Database restoration from backup and long-term journals

• Control and display of the status of the DBCS Monitor process

• Database access statistics

• Generation of a User Work Area (UWA) for application programs
using the high-level call interface

Simple Restructuring without Reload
Fields, records, and new set relationships (provided they do not re­
quire retrofit database modifications) can be added without having to
unload and reload the database. This feature is especially useful for
applications that tend to grow over time.

Database Verification With DBO/VERIFY
VAX-11 DBMS has a database verification utility called DBa/VERIFY.
This utility can be used to check the integrity of a database that a user
suspects might be corrupted. It checks for valid set linkages and data­
base page formats.

234

Information Management

ADVANCED FEATURES

Multiuser Support with Concurrency Control
VAX-11 DBMS provides full concurrent access and update
capabilities with automatic record-level locking. The application dev­
eloper does not have to be concerned with multiuser contention for
data records by declaring and releasing data locks, because this is
performed automatically in a totally transparent, efficient manner. In
addition, users will always see a consistent view of the database.

Transaction 8ackout
VAX-11 DBMS performs record journaling with automatic transaction
rollback. A transaction is a logical unit of work in an application pro­
gram bounded by program quiet points. A program quiet point occurs
when a program is first activated or when a COMMIT or ROLLBACK
command is executed. If a process aborts or issues a ROLLBACK
command, all updates not yet committed will be backed out automati­
cally.

Journaling/Recovery
VAX-11 DBMS has the facility for record-level journaling that keeps
long-term after-image journals of all database updates and before­
images of all uncommitted updates. These journal records are used to
recover from program, system, or hardware failures.

After a program or system malfunction, VAX-11 DBMS will rollback all
uncommitted transactions. If data has been destroyed, VAX-11 DBMS
can roll forward from a backup copy of the database, using after­
images in the journal to reapply all committed transactions.

Multiple Databases
VAX-11 DBMS allows multiple databases to be online at the same
time. This is useful when totally independent data must be maintained
in separate databases with different schemas. It is also useful in the
more commonly encountered situation of a single schema that applies
to both a test and production database. A single VMS process can
only access one database at a time.

Performance Optimization
VAX-11 DBMS uses its own optimized access method to take advan­
tage of the VAX/VMS architecture. Many other design features have
been included to improve performance.

Journaling at the record level greatly reduces the amount of data that
must be written to the journal. Data buffer caching and I/O transfer
clustering are also performed to increase the efficiency of the system.

235

Information Management

An indexed tree structure is used for sorted sets which greatly reduces
the overhead of access to sorted sets.

Data Security
VAX-11 DBMS uses standard VMS system-owner-group-world file se­
curity logic at the storage-area level. Data is further protected by the
standard CODASYL mechanism of subschemas. A subschema de­
fines down to the data item just what subset of the total database a
program can access. The association between subschemas and
programs must be controlled by the Database Administrator. Data
security is also provided by protecting data definitions in the VAX-11
COD with access-control lists at each node of the hierarchical directo­
ry.

236

237

CHAPTER OVERVIEW
DIGITAL offers a range of products to link tasks or processes togeth­
er, whether they are running on the same or different systems. This
capability allows computers to operate together in data communica­
tions networks for distributed processing. Specifically, DIGITAL offers
three ways to interconnect computer systems: DIGITAL to DIGITAL
(with DECnet communications software), DIGITAL to other manufac­
turers (with DIGITAL's Internet products), and DIGITAL to public pack­
et switched networks (with DIGITAL's Packetnet p-roducts).

Topics include:

• Digital Network Architecture

• Description of a DECnet Network

• DECnet-VAX Phase III features

• Internet Products

• Packetnet Products
• Command Language, FORTRAN, MACRO

• Task Messages
• Programming Procedures

238

INTRODUCTION

CHAPTER 7

DATA COMMUNICATIONS

DIGITAL computers can communicate with other computers either
locally or remotely via a network. A network is a configuration of two or
more independent computer systems, called nodes, that are linked
together to facilitate remote communication, share resources, and
perform distributed processing. Network software can run on different
operating systems and communicate with non-DIGITAL equipment.
Within the scope of a single network, several nodes with different
operating systems and different features can interact to provide in­
creased processing flexibility.

Adjacent network nodes are linked together via carriers known as
physical links. Physical links can be relatively permanent bonds, such
as telephone lines or cables laid between nodes, or they can be tem­
porary connections that change with each use, such as dial-up tele­
phone links.

In a network, several tasks (programs) can use the same physical link
to exchange data simultaneously. Each data path is known as a logical
link.

A variety of computer networks can be implemented using DECnet
communications software, Internet products, and Packetnet products.
They typically fall into one of three classes:

• Communications Networks. These networks exist to move data from
one, often distant, physical location to another. The data may be file­
oriented (as is often the case for remote job entry systems) or re­
cord-oriented (as occurs with the concentration of interactive
terminal data). Interfaces to common carriers, using both switched
and leased-line facilities, are normally a part of such networks. Such
networks are often characterized by the concentration of all user
applications programs and databases on one or two large host sys­
tems in the network. Figure 7 -1 illustrates such a network.

239

Data Communications

Figure 7-1 Communications Network

• Resource-Sharing Networks. These networks exist to permit shar­
ing expensive computer resources among several computer sys­
tems. Shared resources can include not only peripherals such as
mass storage devices, but also logical entities, such as centralized
databases available to other systems in the network. These net­
works are often characterized by the concentration of high­
performance peripherals, extensive databases, and large programs
on one or two host systems in the network. Typically, the satellite
systems have less expensive peripherals and smaller programs.
Figure 7-2 illustrates a resource-sharing network.

VAX-111750 PDP-ll

VAX-11I730 PDP-ll

Figure 7-2 Resource-Sharing Network

240

Data Communications

• Distributed Computing Networks. These networks coordinate the
activities of several independent computing systems and exchange
data among them. Networks of this nature can have specific geome­
tries (star, ring, hierarchy), but often have no regular arrangement of
links and nodes. These networks are usually configured so that the
resources of a system are close to the users of those resources.
Distributed computing networks are usually characterized by multi­
ple computers with applications programs and databases distrib­
uted throughout the network. Figures 7-3 and 7-4 illustrate two such
networks.

VAX-1l/782

PLANT INTERFACE

DATA COLLECTION
ANDIOR

CONTROL
COMPUTERS

Figure 7-3 Typical Manufacturing Network

T------- ------,.
I ~----,

I
I
I '-------'
I
I
I
I
I GRAPHIC TERMINALS

COMPUTATIONAL SERVICE BUREAU
OR IN-HOUSE DATA CENTER
VAX-ll

I (GT-40) I
L ________________ ~

ENGINEERING FIRM

Figure 7-4 Computational Network

241

Data Communications

DIGITAL NETWORK ARCHITECTURE
The DIGITAL Network Architecture (DNA) is a set of protocols (rules)
governing the format, control, and sequencing of message exchange
for all DECnet implementations. DNA controls all data that travel
throughout a DECnet network and provides a modular design for
DECnet software. The DNA structure is similar to the ISO (International
Standards Organization) model for Open Systems Architecture. It per­
mits substitution of functional layers as new technologies become
standards.

The functional components of DNA are defined within six distinct lay­
ers: User Layer, Network Application Layer, Network Service Layer,
Transport Layer, Data Link Layer, and Physical Link Layer. Each layer
performs a well-defined set of network functions (via network proto­
cols) and presents an additional level of capability to the layer above it.

USER LAYER: This layer contains all user-supplied functions. It is the
highest layer in the DNA structure.

NETWORK APPLICATION LAYER: This layer provides the network
functions for the user layer. Modules in this layer include network
remote file access modules, a remote file transfer utility, and a remote
system loader module. The protocol used for remote file access and
file transfer is the Data Access Protocol (DAP).

NETWORK SERVICE LAYER: This layer provides a location-inde­
pendent communication mechanism for both the user layer and the
network application layer. The means by which they communicate is
called a logical link. Two network application modules may communi­
cate with each other by means of the network service layer regardless
of their network locations. The protocol used between network service
modules is the Network Services Protocol (NSP).

TRANSPORT LAYER: This layer provides a mechanism for the
network service layer to send a unit of data (a packet) from any node in
a network to any other node in the network.

DATA LINK LAYER: This layer provides the transport layer with an
error-free communication mechanism between adjacent nodes. The
data link module specified for this layer implements the DIGITAL Data
Communications Message Protocol (DDCMP). The functions provided
by this layer are independent of communication facility characteris­
tics.

PHYSICAL LINK LAYER: This layer, the lowest layer in the DNA
structure, provides the data link layer with a communication mecha­
nism between adjacent nodes. Several modules are specified for this

242

Data Communications

layer, one for each type of communication device that can be used in a
DECnet network.

DNA is system independent. It enables a variety of DIGITAL comput­
ers running a variety of DIGITAL operating systems to be tied together
in a DECnet network.

A DECnet network can grow both in size and in the number of func­
tions it provides. It can, therefore, be adapted to new technological
developments in both hardware and software. Existing DECnet im­
plementations can take advantage of these new technologies. A
DECnet network can accommodate the change of a function from
software into hardware.

DECNET COMMUNICATIONS SOFTWARE
DECnet communications software provides user interfaces consistent
with those provided by DIGITAL's operating systems. To program
task-to-task communication or remote file access, programmers use
calls formatted for the operating system in which the program will run.
The logical link between two programs is like an lID channel over
which programs can send and receive data. Using DECnet software
for task-to-task communication is like doing lID with other peripheral
drivers. Terminal users invoke DECnet utilities consistent with local
operating system conventions.

Product Capabilities
The network functions available to a DECnet-VAX user depend, in
part, on the configuration of the rest of the network. Each DECnet
product offers its own functions and its own set of features to the user.
Networks consisting entirely of DECnet-VAX Phase III nodes have all
the functions described in the DECnet-VAX Phase III section of this
chapter. Networks that combine DECnet-VAX nodes with other DEC­
net products may limit the functions available to the DECnet-VAX user
because some DECnet-VAX features may not be supported by all
DECnet products. Conversely, a user of another DECnet implementa­
tion will not necessarily have access to all DEC net-VAX functions.

The goal of DECnet-VAX ~s to provide a network capability that is
extremely easy to use and can grow with the. user. Task-to-task com­
munication and file access between systems is virtually transparent. In
fact, VAX/VMS provides the same interfaces as those used by DEC­
net/VAX to communicate over the network. This means that a user can
begin with a single VAX system, develop their applications using these
interfaces in the programs and procedures (incidently, at no cost in
performance), then expand to a multiple VAX network using
DECnet/VAX without having to re-develop their applications software,

243

Data Communications

even if communicating processes are no longer running on the same
system.

Programs executing in VAX native mode can make use of the following
network facilities.

• Interprocess (Task-to-Task) Communication: Programs executing
on one system can exchange data with programs executing on other
systems

• Intersystem File Transfer: A program or user can transfer an entire
data file from one system to another

• Intersystem Resource Sharing: Programs executing on one system
can access files and devices physically located at other systems in
the network. Access to devices in other systems is provided through
the file system of the target node and is subject to that system's file
system restrictions

• Routing: Intermediate nodes will direct data packets to the correct
target node if the source node and target node are not directly
connected

• Network Command Terminal: A terminal on one VAX system can
appear to be connected to another VAX system in the network

• Downline System Loading: Initial load images for RSX-11 S systems
in the network can be stored on the host VAX system and loaded
into adjacent PDP-11 systems configured for the RSX-11 S operat­
ing system

• Downline Task Loading: Program images for RSX-11S systems in
the network can be stored on the host VAX system and loaded on
request into PDP-11 systems configured for the RSX-11S operating
system

• Downline Command File Loading: Command language users can
send command files to a remote node to be executed there. How­
ever, no status information or error messages are returned

DECNET-VAX PHASE III COMMUNICATIONS SOFTWARE
With DECnet-VAX Phase III communications software, a suitably con­
figured VAX/VMS system can participate as a routing or end node,
performing point-to-point or multipoint communication in a DECnet
computer network. The VAX/VMS system can communicate with oth­
er DECnet systems on: VAX/VMS systems; PDP-11 computer systems
running RSTS/E, RSX-11M, RSX-11S, RSX-11M-PLUS, RT-11, and
lAS operating systems; or DECSYSTEM-20 systems running the
TOPS-20 operating system.

244

Data Communications

USER PROGRAM LEVEL ~

r----------------------,

NETWORK MGT

NETWORK COMMAND
TERMINALS

-

--

REMOTE RESOURCE ACCESS- -

FILE TRANSFER --

TASK-TO-TASK --

L-----l-------+I--------+_ COMMUNICATIONS

POINT­
TO- POINT

ROUTING MULTIPOINT

Figure 7-5 DECnet-VAX Phase III Capabilities Matrix

The following functions are supported by DECnet-VAX Phase III soft­
ware.

Access Control
Access control is the method by which network users are screened
before gaining access to network facilities. With the appropriate ac­
cess control information, a user program can log into a remote system
and access any of the remote system's resources. The accessing pro­
gram must have either an account or access to a guest account on the
remote system to login successfully.

Remote Fil.e Access
All DECnet systems support exchange of sequential ASCII files. The
DECnet software handles compatibility issues among operating sys­
tems by translating the file syntax of the sending node into a common
network syntax and then retranslating at the receiving end
appropriately for that node. The transfer of file types other than se­
quential ASCII may also be supported between particular operating
systems. Between two VAX/VMS systems, for example, sequential or
relative files- with fixed length, variable length, or variable length with
fixed control field records can be transferred. Similarly, multikeyed
indexed files with variable or fixed length records are supported.

245

Data Communications

The Remote File Access capability is implemented by such features
as: file transfer, remote command file submission/execution, downline
task loading, and terminal-to-terminal communication.

DECnet-VAX software supports file transfers between locally support­
ed File Control Services (FCS) devices and the file system of other
DECnet nodes. Wildcards can be used for the user identification code,
filename, filetype, and version number for local-to-remote file trans­
fers. Directory listings are also a supported feature.

Additional facilities on DEC net-VAX software allow system command
files to be submitted to a remote node. The list of commands must be
in a format acceptable to the node responsible for the execution. Simi­
larly, command files can be received from other systems and then
executed.

Downline task loading of memory-based RSX-11S nodes is another
useful tool provided by some DECnet products. Initial task images for
DECnet-11 S nodes can be stored on VAX/VMS file system devices
and subsequently loaded into remote DECnet-11S nodes. Programs
already executing on DECnet-11 S nodes can be checkpointed to the
host file system and later restored to main memory in the DECnet-11 S
node. Overlays for DECnet-11 S tasks can also be stored on VAX/VMS
file system devices. These features simplify the operation of network
systems that do no have mass storage devices.

File Handling Using a Terminal
By using DECnet-VAX DIGITAL Command language (DCl)
commands, the user can copy files from one node to another, delete
files stored on a remote node,and transfer a command file to another
node and then execute the command file on the remote node.

File Handling Using Record.Management Services
A wide range of VAX-11 Record Management Services (RMS) can be
used to handle files and records stored on remote nodes. At the file
level, these operations include opening, closing, creating, deleting,
and updating files· stored on a remote node. Indexed Sequential Ac­
cess Method (ISAM) files are supported by DECnet-VAX software as
part of its RMS support, thereby allowing remote-node manipulation
of files organized by this very useful file structure. AlsO, at the record
level, RMS can be used to read,· write, update, and delete records
stored on a remote node.

Network Command Terminal Facility
With the Network Command Terminal facility, local users can log onto
and use remote VAX systems as though they were local. Network

246

Data Communications

Command Terminals are a software capability and require no special
hardware. They provide virtual terminal communication between
VAX/VMS systems. Intermediate nodes (Le., nodes that are neither
the source nor destination nodes but are in the message path) can be
running DECnet-VAX or other DECnet Phase III software.

Adaptive Routing
Adaptive routing is a key feature of any DECnet Phase III network. With
DECnet-VAX Phase III software, a VAX system can act as a hub node,
in which it routes all messages to their proper destination without the
need for a physical line directly between the originating node ('A' in the
Phase III illustration of Figure 7-6) and the terminating node ('B').

To fully interconnect the four-node network with Phase II DECnet
would require 6 lines and 12 modems, with the associated line usage
charges and hardware costs. The DECnet-VAX Phase III software can
do the same interconnection with potentially half the lines and mo­
dems. In addition, the larger the network, the greater the savings in
network costs that adaptive routing can provide.

If a line goes down, A DECnet Phase III system will automatically
reroute the communication over another line, transparently to the
user. This feature enables network managers to easily reroute traffic
to avoid a troublesome line or to run diagnostics on such a line. Adap­
tive routing also makes it possible to install back-up links (which might
be dial-up connections) with the result being still fewer connections
than with traditional pOint-to-point networks.

Network Management
The Network Control Program (NCP) performs three primary func­
tions: displaying statistical and error information, controlling network
components, and testing network operation. These functions can be
performed locally or executed at remote Phase III nodes that support
these functions.

An operator can display the status of DECnet activity at any Phase III
node in the network. The user can choose to display statistics related
to the node itself or the communication lines, including traffic and
error data. The local operator can also perform many network control
functions such as starting and stopping lines, activating the local node,
and downline loading DECnet-11 S systems.

DECnet-VAX provides network event logging to a terminal device or
disk file. The NCP utility can be used to enable or disable the event
logging facility.

247

Data Communications

I PHASE]I I
BOSTON

a VA)(-11/750
VAX/VMS

DALLAS a N.Y.
PDP-ll o-.c::;;....------------::l;---;9VAX-ll/780

RSX-llM VAX/VMS

a
NEW ORLEANS

PDP-ll
RSX-ll M

I PHASE m I
BOSTON

• VAX-ll/750
I VAX/VMS
I
I

DALLAS(9lo.~----_______ ~-tslIN.Y.

R:~~l-U ~:i~~:O

0.

NEW ORLEANS
PDP-ll

RSX-llM

Figure 7-6 Phase II and Phase III Communications

248

Data Communications

The NCP can also be used to test components of the network. It en­
ables transmission and reception of test messages over individual
lines either between nodes or through other controller loopback ar­
rangements. The messages can then be compared for possible errors.
The NCP allows performance of a logical series of tests that will aid in
isolating network problems.

Task-to-TaskCommunications
DECnet-VAX software provides task-to-task communication, enabling
cooperating programs to exchange data. Task-to-task communication
is a method of creating a logical link between two tasks, exchanging
data between the tasks, and disconnecting the link when the
communication is complete. Any VAX language programmer can write
programs that perform task-to-task communication.

Intertask communication routines can be coded using one of two
methods: transparent calls or nontransparent calls.

Transparent Intertask Communication - The program opens the
network interchange as if it were preparing for device access, and
then performs a series of reads and writes just as it would to a pair of
serial devices, one for input and the other for output.

By its very nature, transparent access has no calls specifically associ­
ated with DECnet software. The calls used for interprocess communi­
cation are the same as the calls used for accessing a sequential file in
a high-level language: OPEN, CLOSE, READ, WRITE, etc. The pro­
grammer can choose to include the target node name in the. OPEN
statement, or can defer assignment using logical names.

Nontransparent Intertask Communication - In nontransparent ac­
cess, a program can obtain information about the network status to
control the nature of its communication with other processes or tasks.
This method of coding intertask communications is available to the
MACRO programmer. And if one does no AST processing nor
attempts to accept multiple connects, one may program in any lan­
guage. Nontransparent access is available only through calls to oper­
ating system service procedures. A program can issue the following
requests:

• CONNECT-Establish a logical link (the analog of OPEN)

• CONNECT REJECT-Reject a connect initiate
• RECEIVE-Receive a message (the analog of GET or READ)
• SEND-Transmit a message (the analog of PUT or WRITE)
• SEND INTERRUPT MESSAGE-Transmit a high-priority message
• DISCONNECT-Terminate a conversation (the analog of CLOSE)

249

Data Communications

The process can send optional data along with the connect request
(for example, the size or number of messages that it wants to send).
The receiving process or task can accept or reject the connect initiate.
A process can accept multiple connect requests.

A process can send or receive mailbox messages to or from another
process or task. Mailbox message traffic is essentially no different
from data message traffic except t~at it uses a mailbox associated with
the I/O channel over which the logical link was created. (This is the
same mechanism used, for example, for telling programs that unsoli­
cited terminal data is available.) A logical link, therefore, has two sub­
channels over which messages can be transmitted: one for normal
messages and another for high-priority messages. An interrupt
message is written to a mailbox that a process supplies for that pur­
pose.

In a DECnet-VAX network, a program using nontransparent access
normally opens a control path directly to a Network Ancillary Control
Process (NETACP), and designates one or more mailboxes for receiv­
ing information from the NETACP about the logical or physical links
over which the process is communicating. The NETACP can notify a
process when (a partner being a source and destination node with a
logical connection):

• A partner requests a synchronous disconnect

• A partner requests a disconnect abort

• A partner exits
• A physical link goes down
• An NSP protocol error is detected

DIGITAL COMMAND lANGUAGE (DCl) FilE HANDLING
A VAX/VMS DIGITAL Command language (DCl) user can transfer
files from one node· to another and delete files at other nodes. How­
ever, to perform operations on files stored on a remote node, the user
must prefix the file specification with the remote node's name, and an
optional login string as follows:

nodename"access-control-string"::filename.filetype;version
where:

nodename Nodename is a 1- to 6-character name (nu­
merics or upper case alphabetics) identifying
the remote network node. This can be followed
by an optional quoted string used for logging
in at the remote node.

250

access­
control-string

filename
filetype
version

Data Communications

If the "access-control-string" is omitted, de­
fault login information comes from an entry
(for the remote node) in the local configuration
data base. Thus, by using the access-control­
string, the user overddes the default login in­
formation.

One of the following formats is used for the
access-control-string:

"username password"

"username password accountname"

The double colon (::) following the nodename
separates the nodename from the file specifi­
er.

See the Chapter 2, The System User, for de­
tails of these three. But note that the way in
which a file on a remote node is identified de-
pends on the remote node's operating system.

The following format is used if the remote node
is a DEC net-VAX node:

device: [d i rectory]fi lename. fi letype;version

If, however, the remote node is not a DECnet­
VAX nOde, enclose the file specifier between
quotation marks. The file specifier is passed to
the remote node without syntax checking.

DECnet-VAX software supports the following subset of VAX/VMS
(DCl) commands:

APPEND
ASSIGN
COpy
DEASSIGN
DEFINE
DELETE
DIRECTORY
OPEN/CLOSE
READ/WRITE
SUBMIT
TYPE

The following examples illustrate the COPY and SUBMIT commands:

$ COPY BOSTON::DBA1:TEST.DAT DENVER::DMA2:

251

Data Communications

transfers a file named TEST.DAT from the disk (DBA1:) at the node
named BOSTON to the disk (DMA2:) at the node named DENVER.

Using the VAX/VMS command SUBMIT, a terminal user can have a
command file executed at another node in the network. For example,
the command:

$ SUBMIT/REMOTE WASHDC::INITIAL.COM

preceded by a DCl COpy command will transfer the command file
named INITIAL.COM from the host system to the node named
WASH DC, where the command file is executed. The SUBMIT com­
mand assumes that the file already exists at the remote node. Com­
mand files must be written in the commandlal"lguage of the system.
No status information or messages are returned to the sender.

RECORD MANAGEMENT SERVICES FILE HANDLING
By using a subset of the VAX-l1 Record Management Services (RMS),
the user can manipulate records and files stored on remote DECnet
nodes. However, before using VAX-11 RMS to perform operations on
files and records stored on a remote node, the user must prefix the file
specification with the node name of the remote node, and an optional
login string just as with any other remote file application.

Much of the VAX-11 RMS functionality, including the management of
sequential, relative, and indexed file organizations, is supported by
DEC net-VAX communications software. A large number of the VAX-11
RMS macros are available to network users.

The following MACRO program illustrates the transfer of a sequential
file from one device to another. Note the use of VAX-11 RMS macros .

SRC FAB:

. TITLE DEM01 - RMS FILE TRANSFER EXAMPLE

This program transfers a sequential file with variable length
records from one device to another. The devices are specified

" by the logical names SRC and DST. For example, to display file
INVENTORY.DAT residing at node ALBANY on the line printer at node
BOSTON, execute the following procedure:

$ DEFINE SRC ALBANY::DBB3:[XYZCO.STOCK)INVENTORY.DAT
$ DEFINE DST BOSTON::LPAO:
$DEM01

.SBTTLCONTROL BLOCK AND BUFFER STORAGE
.PSECT IMPURE NOEXE.LONG

$FAB

Define the source file FAB and RAB control blocks.

'FAC=GET,-; GET ACCESS
FOP=SQO,- ; SEOUENTIAL ONLY
FNA=SRC NAM,-; ADDRESS OF FILENAME STRING
FNS=SRC=NAM-SIZ ; SIZE OF FILENAME STRING

252

SRC RAB:

DSTJAB:

DST RAB:

SRC NAM:

DST_NAM:

BUFFER:

$RAB

$FAB

$RAB

.ASCII

.ASCII

.BLKB

.SBTTL

.PSECT

.ENTRY

MOVAB
MOVAB

MOVAB

MOVAB

$OPEN
BLBC

Data Communications

FAB=SRC FAB,-; ADDRESS OF FAB
RAC=SEQ~-; SEQUENTIAL RECORD ACCESS
UBF=BUFFER,-; ADDRESS OF USER BUFFER
USZ=BUFFER_SIZ; SIZE OF USER BUFFER

Define the destination file FAB and RAB control blocks.

FAC= <PUT>,-; PUT (WRITE) ACCESS
FOP=SQO,-; SEQUENTIAL ONLY
FNA=DST NAM,-
FNS=DST-NAM SIZ,-
ORG=SEQ,- ; SE-QUENTIAL FILE (DEFAULT)
RFM=VAR,-; VARIABLE LENGTH RECORDS
RAT=CR; PRECEDE LINE BY LF, FOLLOWED BY CR

FAB=DST FAB,-
RAC=SEQ-

Define logical names for the source and destination files.

ISRCI

SRC_NAM_SIZ= =.-SRC_NAM

IDSTI

DST _ NAM _ SIZ= = .-DST _ NAM

Allocate buffer space to be size of largest record.

132
BUFFER _ SIZ= .-BUFFER

MAINLINE

CODE NOWRT

DEM01,tM<>

Put FAB and RAB addresses in registers for efficiency.

WtSRC FAB,R6
WtSRC=RAB,R7

WtDST JAB,R8

WtDST _ RAB,R9

Open the SRC and DST files.

FAB=(R6)
RO,30$

$CONNECT RAB=(R7)

253

10$:

20$:

30$:

BLBC

$CREATE
BLBe

Data Communications

RO,30$

FAB=(R8)
RO,30$

$CONNECT RAB=(R9)

BLBC RO,30$

Transfer records until end-of-file is encountered.

$GET RAB=(R7)
CMPW RO, #<RMS$W_EOF&tXFFFF>

BEQL 20$

MOVL RAB$L _ UBF(R7),RAB$L _ RBF(R9)

MOVW RAB$W RSZ(R7),RAB$W RSZ(R9)
$PUT RAB=(R9) -

BLBS RO,10$

BRB 30$

Close theSRC and DST files .

. Note: in this example, the $DISCONNECT calls below are not
necessary because $CLOSE performs an implied
$DISCONNECT. They are included for symmetry.

$DISCONNECT
BLBC
$CLOSE
BLBC
$DISCONNECT
BLBC
$CLOSE

$EXIT _S RO

.END

RAB=(R9)
RO,30$
FAB=(R8)
RO,30$
RAB=(R7)
RO,30$
FAB=(R6)

Exit to VMS. Also, enter here on detection of an error.

: RO =' RMS completion code to
: display on error condition

DEM01

The following VAX-11 FORTRAN program illustrates the transfer of a
sequential file from one device to another.

PROGRAM OEM01.FOR
c
C This program transfers a sequential file with variable length
C records from one device to another. The devices are specified
C by the logical names SRC and OST. For example, to display file
C INVENTORY.OAT at node ALBANY on the line printer at node
C BOSTON, execute the following procedure:

254

Data Communications

C
C $ DEFINE SRC ALBANY::DBB3:[XYZCO.STOCK)INVENTORY.DAT
C $ DEFINE DST BOSTON::LPAO
C $RUN DEM01
C

C
100
200
C
C
C

C
C
C
10

C
C
C
20

C

LOGICAL*1 BUFFER(132)

FORMAT
FORMAT

(Q,132A1)
(132A1)

Open the SRC and DST files.

OPEN (UNIT=1,NAME='SRC',TYPE='OLD',ACCESS='SEQUENTAL',
1 FORM='FORMATTED')
OPEN (UNIT=2,NAME='DST',TYPE='NEW',ACCESS='SEQUENTlAL',
1 FORM='FORMATTED',CARRIAGECONTROL='LlST',DISPOSE='SAVE')

Transfer records until end-of-flle is encountered.

READ (1,100,END=20) NCHAR,(BUFFER(K),K=1,NCHAR)
WRITE (2,200,END=20) (BUFFER(K),K=1,NCHAR)
GOTO 10

Close the SRC and DST files.

CLOSE (UNIT=2)
CLOSE (UNIT=1)

END

SAMPLE VAX-11 FORTRAN INTERTASK COMMUNICATION
This section describes how to code a program to perform intertask
communication using the normal VAX-11 FORTRAN I/O instructions.
The user communicates with another task in much the same way as an
access to a sequential file, i.e., via OPEN, READ, WRITE and CLOSE
statements. This is only a sample-similar capabilities exist in any of
the native mode languages.

Three major steps in VAX-11 FORTRAN intertask communication will
be performed:

1. Create a logical link between tasks

2. Send and receive messages (each message can be 1 to 512'bytes
in length)

3. Destroy the link at the end of the message dialogue

Creating a Logical Link Between Tasks
A logical link between tasks can be created only if they agree to co­
operate with each other. That is, one task must request that a logical
link be created, and the other must agree to accept the request. The
task requesting the logical link is called the source task; the one
agreeing to accept the logical link request is called the target task.

The source task issues a logical link connect request by including a
task specifier in the source task's open statement. The task specifier
identifies the remote node and target task to be connected to. The

255

Data Communications

normal file specification in the OPEN statement's NAME argument
should be replaced with a task specifier. The following format should
be used:

nodename"access-control-string": :"T ASK = taskid"
where:

nodename

TASK=

(Refer to DIGITAL Command language File
Handling section of this chapter.)

Use one of the following formats for access­
control-stri ng:

"username password"

"username password accountname"

The double colon (::) following the node­
name separates the nodename from the file
specifier.

Specifies that what follows is the task identi­
fier.

taskid taskid is the target task's identifier.

Example of source task OPEN statement:

OPEN (UNIT=7,NAME='DENVER::"TASK=ACC"', ERR=200)

The NAME argument in the OPEN statement requests a logical
link connection to target task ACC on node DENVER.

Note that the logical name feature can be used to represent the
task specifier. For example:

OPEN (UNIT=7,NAME='TARGET',ERR=200)

permits node and target independence when you assign the
logical name before program execution (as in the following DCl
command):

$ASSIGN DENVER::"""TASK=ACC "''''TARGET
The local node passes the logical link connect request to the
remote node (using DECnet-VAX services). The remote node
creates a process for the target task, and places the source task
identifier in the process logical name table under the logical
name SYS$NET.

The target task identifies the source task requesting the logical
link connect by specifying SYS$NET as the NAME argument in
the OPEN statement.

256

Data Communications

Example of target task OPEN statement:

OPEN (UNIT=2,NAME='SYS$NET:',ERR=700)

Sending and Receiving Messages
After the logical link has been created, the tasks must "cooper­
ate" With each other. That is, for each message sent by a task
(WRITE statement), the receiving task must issue a correspond­
ing receive (READ statement).

In addition, the tasks must ensure that enough buffer space is
allocated for messages, must ensure that the end of dialogue
can be determined, and must determine which of the tasks will
disconnect the logical link (CLOSE statement).

Disconnecting the Logical Link
Either task can disconnect the logical link by calling CLOSE.
CLOSE aborts all pending sends and receives, disconnects the
link immediately, and frees the channel number associated with
the logical link.

MACRO TRANSPARENT INTERTASK COMMUNICATION
This section describes how to code a MACRO program for
transparent intertask communications using a subset of the ex­
isting macro calls available under VAX/VMS system services.
These macro calls allow the user to perform intertask communi­
cations in much the same way as normal I/O operations are
performed.

The term "transparent" simply implies that the calls are identical
in format to all other I/O calls.

Thus, communication with another task is performed in much
the· same way as an I/O channel is assigned to a device ($AS­
SIGN). Reads and writes are then performed as if to a pair of
sequential devices (that is, $010 with the _ WRITEVBLK function
or $OUTPUT, and $010 with the 10$_READVBLK function the
JO$ or $INPUT). Finally, $DASSGN the device when communi­
cation is complete.

There are three major functions in transparent intertask
communication:

1. Create a logical link between tasks

2. Send and receive messages (each message can be 0 to
65535 bytes long)

257

Data Communications

3. Delete the link at the end of the message dialogue

Creating a Logical Link Between Tasks
A logical link between tasks can be created only if the tasks agree to
cooperate with each other. That is, one task must request that a logical
link be created, and the other task must agree to accept the request.

A logical link is requested by including a task specifier in the source
task's $ASSIGN call.

A task specifier identifies the remote node and the target task to which
it is to be connected. Replace the normal file specification in the $AS~
SIGN call's devnam argument with a task specifier.

The local node passes the logical link connect request to the remote
node (using DECnet-VAX services). A remote VAX node creates a
process for the target task, and places an equivalence string contain­
ing the source task identifier in the process's logical name table for the
logical name SYS$NET.

The target task identifies the source task requesting the logical link
connect request by specifying SYS$NET as the devnam argument in
the $ASSIGN statement. This action completes the creation of the
logical link.

Sending and Receiving Messages
After the logical link is created, the tasks must "cooperate" with each
other. That is, for each message sent by a task ($QIO with the
10$_ WRITEVBLK function or $OUTPUT), the receiving task must issue
a corresponding receive ($QIO with the 10$_READVBLK function or
$INPUT).

In addition, the tasks must ensure that enough buffer space is allocat­
ed for messages, must ensure that the end of dialogue can be deter­
mined, and must decide which of the tasks will disconnect the logical
link ($DASSGN).

Disconnecting the Logical Link
Either task can disconnect the logical link by calling $DASSGN.
$DASSGN aborts all pending sends and receives, disconnects the link
immediately, and frees the channel number associated with the logical
link.

MACRO CALLS
Listed below are the VAX/VMS system service macro calls that can be
used for transparent intertask communications.

258

Data Communications

$ASSIGN-Assign I/O Channel

$QIO-Send a Message to a Remote Task
(10$_ WRITEVBLK)

$QIO-Receive a Message from a Remote Task
(10$_ READVBLK)

$DASSGN-Disconnect the Logical Link

$010

$QIO

MACRO NONTRANSPARENT INTERTASK COMMUNICATION
As with transparent intertask communication, nontransparent inter­
task communication consists of two tasks interacting to establish a
logical link. After establishing the logical link, the tasks exchange mes­
sages over the link, then disconnect the link when communication is
completed.

The MACRO system service calls discussed in this section provide the
user with greater flexibility and control over network operations. The
following features can be used when performing nontransparent inter­
task communication:

• Associate a mailbox with the I/O channel (over which the logical link
will be created). The mailbox can then receive unsolicited messages
sent by a remote task, or notifications affecting the status of the

,logical link. For example, status returned through a mailbox in-
cludes whether the remote task accepted or rejected a connect, or
the cooperating task disconnected or destroyed the link

• A task can declare itself as a network task to accept multiple logical
link connect requests

• A source task can send a logical link connect request to the target
task. The source task can optionally send up' to 16 bytes of data to
the target task at the same time it issues the connect request '

• The target task can accept or reject the connect request. It can send
up to 16 bytes of optional data back to the source task at the same
time it accepts or rejects the connect request

• A task using the nontransparent interface can also accept or reject
connect requests received from tasks written using transparent
intertask communication system service calls

• Either task can send or receive a 1- to 16-byte interrupt message
after the logical link is created

• Either task can abort the link immediately, or issue a synchronous
disconnect. The task disconnecting or aborting the logical link can
send up to 16 bytes of optional data to the remote task at the same
time it disconnects or aborts a logical link

259

Data Communications

TASK MESSAGES
There are two types of messages in nontransparent intertask com­
munications: data messages and mailbox messages.

Data Messages
A data message is a message sent by one task, and expected by the
cooperating task. That is, for each message sent by a task $010 with
the 10$_WRITEBLK function or $OUTPUT, the receiving task must
issue a receive $010 with the 10$_READVBLK function or $INPUT.

Thus, a data message in nontransparent intertask communications is
the same as a data message sent in transparent communication.

Mailbox Messages
All other messages received by a_ task employing a nontransparent
interface are classified as mailbox messages. These include anyone
of the following message types:

1. A logical link connect request-This message is received by the
target task. It requests a logical link connection to the source task

2. A connect accept-This message is received by the source task.
The message confirms that the target task accepted the logical
link connect request

3. A connect reject-This message is also received by the source
task. The message informs the source task that the target rejected
the logical link connect request

4. An interrupt message-Either task can receive a 1- to 16-byte
interrupt message sent by a cooperating task. The 1 to 16 bytes of
data are placed in the task's mailbox

5. A synchronous disconnect-This messag.e informs the task."that
the cooperating task synchronously disconnected the logical link

6. An abort disconnect-This message informs the task that the. co­
operating task aborted the link. The link is destroyed immediately

7. A network status message-This message informs the task of
some unusual network occurrence. For example, the data link has
been restarted

After a logical link is created between cooperating tasks, DEenet com­
munications software places a received mailbox message into the
mailbox associated with the channel representing the logical link to
which the mailbox message applies.

In the case of a task that can accept multiple inbound connect re­
quests, inbound connect requests are placed into the mailbox associ­
ated with the I/O channel over which the network name was declared.

260

Data Communications

Note that the mailbox was previously created using the $CREMBX
system service call. The task must then explicitly retrieve.the mailbox
message from the mailbox using the $010(10$_ READVBLK) system
service call.

PROGRAMMiNG PROCEDURES
The following sections outline the procedures to follow when using the
system service calls for intertask communications.

Creating a logical link
Both the source and target tasks must call the $ASSIGN system ser­
vice call to:

1. Assign to device_NETO:

2. Request a channel number for the logical link

3. Associate a previously created mailbox with the channel

After creating the logical link, DECnet communications software plac­
es any mailbox message associated with the logical link in the mailbox
associated with the channel.

Note that the $ASSIGN (to device NETO:) does not transmit a logical
link connect request to the remote task (as in transparent intertask
communications).

Source Task Requests a logical link Connection
The source task calls $010(10$_ ACCESS) to request a logical link
connection to the target task. The source task may optionally send up
to 16 bytes of data to the target task at the same time it sends the
connect request.

The target task is identified in the $ASSIGN call by specifying the
target task's identifier in the network control block.

The Network Connect Block (NCB) contains the information necessary
to request a logical link connection, or to accept or reject a logical link
connection request.

The optional data to be sent to the target task are also speCified as
part of the network connect block.

The source task must then call $OIO(READVBLK) to read its mailbox
to determine whether the target task accepted or rejected the connect
request.

Target Task Receives Connect Request
The target task determines whether to accept or reject a connect
request, possibly by reading the received connect block. The received
connect block contains the source task identifier, as well as up to 16
bytes of optional data sent by the targettask.

261

Data Communications

The manner by which the target task retrieves the received connect
block depends on whether the target task can receive single or
multiple connect requests.

A target task can accept multiple connect requests only if it declares
itself as an active network task. Thus, iit assigns an I/O channel to
NETO: first, then calls $QIO(IO$_ACPCONTROL) to assign a network
number and declare itself eligible to accept multiple connectrequests.

After this is done, DECnet places the first alJd all other conn~ct re­
quests in the task's mailbox. The target task then retrieves a connect
request from its mailbox by calling QIO(IO$ _ READVBLK).

If the target task can accept only one connect request, it need not
declare itself as a network task. The target task retrieves the connect
block by trallslating the logical name SYS$NET using the $TRNLOG
system service call.

Accepting or Rejecting a Connect Request
The target task accepts or rejects the connect request by:

1. Calling $QIO(IO$ _ ACCESS) to accept the logical.link connect re­
. quest, or

2. Calling $QIO(IO$_ACCESSIIO$M_ABORT) to reject the logical
link connect request [Note that! is OR]

In both cases, an unsolicited message issent back to the source task's
mailbox confirming or rejecting the connect request. The target can
send up to 16 bytes of optional data back to the source task at the
same time it accepts or rejects the logical link connect request.

Sending and Receiving Data Between Tasks
DECnet delivers a solicited message only if it has been sent by one
task and solicited by the cooperating task. Thus, after the logical link is
created, the tasks must "cooperate" with each other. That is, for each
message sent by a task ($QIO(IO$_WRITEVBLK)or $OUTPUT), the
receiving task must issue a corresponding receive
($QIO(IO$_READVBLK) or $INPUT).

Note that the term "cooperating" here implies that the tasks:

1. Create buffers large enough to send and receive data messages

2. Have agreed upon a protocol for sending and receiving data

Sending an I nterrupt Message
Either task can send a 1- to 16-byte interrupt message to a cooperat­
ing task using the$QIO(IO$_WRITEBVLKIIO$M_INTERRUPT) system
service call.

262

Data Communications

In this case, "interrupt message" is the term for an unsolicited mes­
sage sent to the cooperating task's mailbox, and should not be con­
fused with a hardware or software interrupt. It is a method that can be
used to send a message to a remote task outside the normal flow of
data messages. A task's instruction sequence is interrupted only if it
issued a request to read its mailbox with AST (Asynchronous System
Trap) notification.

Disconnecting or Aborting the Logical Link
Either task can disconnect or abort the logical link by:

• Calling $010(10$_ DEACCESSIIO$M _ SYNCH) to synchronously dis­
connect the logical link. All pending solicited and unsolicited
messages must have been transmitted to the remote node before
the link will be disconnected. DECnet returns an error if the user
tries to disconnect the link before all pending transmits are transmit­
ted. Any pending receives are terminated .

• Calling $OIO(IO$_DEACCESSIIO$M_ABORT) to abort the logical
link. This system service call destroys the link immediately. No fur­
ther 1/0 operations are permitted on the link.

Deassigning the I/O Channel
The user can issue $DASSGN after all communication between the
tasks is complete. $DASSGN releases the 1/0 channel and disassoci­
ates the mailbox from the channel. Also, if a synchronous disconnect
or abort was not previously issued, $DASSGN destroys the link im­
mediately.

MACRO CALLS
This section lists the VAX/VMS system service macro calls that can be
used for nontransparent intertask communication coding. These calls
are:

$ASSIGN-Assign 1/0 Channel

$OIO-Request a Logical Link Connection $010 (10$_ ACCESS)

$OIO-Accept a Logical Link Connection Request $010
(10$_ ACCESS)

$OIO-Reject a Logical Link Connection Request $010
(10$_ ACCESSIIO$M _ABORT)

$QIO-Send a Message to a Remote Task $010
(10$_ WRITEVBLK)

$QIO-Receive a Message from a Remote Task $010
(10$_ READVBLK)

263

Data Communications

$QIO-Send an Interrupt Message to a Remote Task
(10$_ WRITEVBLK! 10$M _I NTERRU PT)

$QIO-Synchronously Disconnect the Logical Link
(10$_ DEACCESS!IO$M _ SYNCH)

$QIO

$QIO

$QIO-Abort a Logical Link $QIO (IO$_DEACCESS!
10$M _ABORT)

$QIO-Declare a Network Name $QIO (IO$_ACPCONTROL)

$DASSGN-Disconnect the Logical Link

INTERNET PRODUCTS
DIGITAL's Internet family of products supports the interconnection of
DIGITAL computers and DIGITAL networks to systems built by other
manufacturers. Internets give data processing managers the freedom
to choose mainframes and minicomputers on the basis of application
needs, with the assurance that reliable links can be established
between systems.

Internet products emulate common communications protocols. They
are data transfer facilitators rather than hardware emulators. While
they appear to one another vendor's computers to be supported de­
vices, they are, in fact, parts of powerful DIGITAL systems. They pro­
vide transparent communication with the equipment of other vendors,
and at the same time, offer the flexibility of local file systems, many
different languages, and a wide selection of computing power. ,

VAX-11 2780/3780 Protocol Emulator
The VAX-11 2780/3780 protocol emulator provides the VAX/VMS user
with a mechanism for transferring files between a VAX system and
another system equipped to handle IBM 2780 or 3780 communica­
tions protocols. It does this by emulating the IBM Binary Synchronous
Communications (BISYNC) protocol used by a 2780 or 3780 Remote
Batch Terminals.

The emulator may be invoked either interactively or by a command
procedure. The emulator's command set is designed to facilitate shar­
ing a communication line among several users. With the appropriate
modem options, the emulator is capable of automatically answering
incoming calls.

Sophisticated operations can be performed by a combination of
command procedures, allowing, for example, unattended operation.
This would include the capability to detect an incoming call, establish
the connection, and then transmit and receive files and recover from
transmission failures, all without the intervention of the operator.

264

Data Communications

Several data formats are supported with the use of a particular format
selected by user command. Users may select various data format
translation schemes-for example, translation to and from EBCDIC,
converting variable-length records to and from card images, and BI­
SYNC transparency. All file I/O is performed through the VAX/VMS
record management facility. Print and punch stream recognition is
implemented in such a way that the data manipulation scheme can
differ with each stream.

The following remote batch terminal features are supported:

• 2780 Extended and Multiple Record Option
• Variable Horizontal Forms Control

• BISYNC Transparency
• 3780 Space Compression

All of the above features are supported on a simultaneous, multiline
basis. The product can concurrently run up to four physical lines, each
with a different set of attributes (e.g., some may be 2780, the others,
3780) at speeds up to 9600 bits per second per line.

IBM
HOST

2780

IBM
HOST

IBM
HOST

2780/3780 PROTOCOL EMULATOR

USER
PROGRAM

VMS

USER
TERMINAL

USER
TERMINAL

Figure 7-7 VAX-11 2780/3780 Protocol Emulator

265

Data Communications

Additionally, the VAX-11 2780/3780 protocol emulator can be used in
conjunction with DECnet networks, meaning that VAX systems in a
DIGITAL network can also communicate with IBM systems. For exam­
ple, files can be transferred across a DECnet network to a DECnet­
VAX node and from there to a mainframe bisynchronously.

VAX-11 3271 Protocol Emulator
The VAX-11 3271 protocol emulator provides VAX system users with
an interactive program-to-program link to an IBM mainframe. This
emulator enables a user application program on a VAX system to
exchange data with a program running under CICS or IMS on an IBM
host (System/370). Using two application programs -- one for the
DIGITAL side, and one for the IBM side -- the VAX system user can
both send and receive data.

The user·written program on the VAX system communicates with the
IBM application program by issuing 1/0 requests to the VAX-11 3271
protocol emulator. The emulator, appearing to the host as an IBM
3271 Model 2 Control Unit, interacts with the IBM system to perform
the actual mechanics of the data exchange. It manages the protocol
and the physical communications in a manner that is transparent to
the VAX system user. As part of its protocol management; for exam­
ple, it frames the data with appropriate BISYNC link-control charac­
ters: Start of Text, Unit Indentification, CRC's, and End Text.

Application programs that can be used for 3270 operations on the
VAX system include programs to access IBM databases and transac­
tion-oriented applications and programs to emulate 3270-class termi­
nals.

The communications discipline used by the VAX-11 3271 protocol
emulator is the 3271 subset of IBM's Binary Synchronous
Communications (BISYNC) protocol using EBCDIC code. Specifically,
this subset of BISYNC supports operation of full- and half-duplex
leased lines in either pOint-to-point or multipoint configurations at
transmission speeds up to 9600 bits per second. The VAX-11 3271
protocol emulator does not support switched facilities, contention line
control, or transparent BISYNC capability.

The multidrop BISYNC capability enables the VAX-11 3271 protocol
emulator to coexist with other 3271 controllers on the same line, thus
reducing the required number of communications links. On a VAX-
11/780 system, the emulator can be connected on up to four IBM
systems, or can have four lines to a single system for higher through­
put. On a VAX-11/750 system, the emulator supports two lines.

266

Data Communications

The VAX-11 3271 protocol emulator can support up to 32 logical de­
vices for each "control unit" being emulated. A user application pro­
gram can control one or more logical devices. A maximum of 32 user
application programs, one per logical device, can exist for each con­
trol unit.

VAX

IBM

APPl. PRG:

Figure7-8 VAX-113271 Protocol Emulator

The VAX-11 3271 protocol emulator performs the following key
activities:

• Provides all device handling for DUP11 Synchronous Line Interfaces
• Monitors the communications line via DUP11 Synchrono-us Line In-

terfaces for line errors

• Performs blocking of user data during transmission

• Supports an I/O interface with the user program
• Maintains the multipoint BISYNC protocol with the IBM host: en­

sures data integrity of transmitted and received data; processes
polling, selection addressing sequences, and other protocol func­
tions normally handled by an IBM 3271

• Translates incoming data from EBCDIC to ASCII and outgoing data
from ASCII to EBCDIC

• Supports multiple lines

The VAX-11 3271 protocol emulator can also be used to complement
a DECnet-VAX network. Data can be transferred across a DECnet
network to a user application program in a DECnet-VAX node and
from there to a mainframe bisynchronously.

MUX200N AX Multiterminal Emulator
The MUX200/VAX multiterminal emulator is a VAX-based software
package which provides communication with a CDC6000, CYBER ser­
ies, or other host computer systems capable of using 200UT mode 4A
communications protocols.

267

Data Communications

Any VAX interactive terminal may be used to control remote job entry
or to communicate at command level with the host system. Input files
may be sent from, and output files received onto, any VAX-supported
mass storage, unit record, or terminal device.

The MUX200/VAX emulator communicates with the host using the
Mode 4A communications protocol as defined in CDC publication
82128000. The software package can be configured to support either
the'ASCIl or the external BCD versions of the protocol.

The MUX200/VAX emulator provides for one synchronous communi­
cation circuit to a host computer system. The product supports a
single'switched or dedicated leased line two- or four-wire common
carrier facility at speeds up to 9600 bits per second.

With the MUX200/VAX emulator, several users can communicate si­
multaneously with a host system over a single line. The VAX/VMS
system, though using a single physical drop, appears to the host as a
number of multidrops and terminals on the circuit.

MUX200/VAX features include:

• Output received from the host system may be spooled to the line
printer upon detection of a text string predefined by the user

• Up to eight VAX/VMS files may be specified for transmission to the
host in a single command

• VAX/VMS terminals may be detached for other use while the soft­
ware package is operating. Data received from the host directed to a
terminal are saved for printing until the terminal is reattached

• In many applications the host system can be offloaded by taking
advantage of the local processing power of the VAX/VMS system.
This reduces host processing and line costs; for example, file edit­
ing can be performed locally rather than on the host

See Figure 7-8 for a schematic of the MUX200 use.

PACKETNETPRODUCTS
In the 1970's the International Telephone and Telegraph Consultative
Committee-CCITT -developed a series of recommendations for

'standard communications protocols that could be used by the PTTs
and other commmon carriers to provide data communications ser­
vices. Known as X.25, this recommendation developed for the public
data networks defines the interface between the computer and' the
network. The CCITT has also developed a second set of protocols
(X.3, X.28, and X.29) that specify how to control asynchronous termi­
nals connected directly to a network. Together, these protocols define
the Interactive Terminal Interface (ITI).

268

Data Communications

UP TO 16 TERMINALS

Figure 7-9 MUX200 Schematic

The fundamental technology used in public data networks is called
packet switching. With it, .user data and control information needed to
assure delivery to the correct location are formed into discrete enti­
ties-packets. The network dynamically interleaves the packets of
many users over shared transmission facilities, and routes packets to
their destinations. Unlike conventional telephone setups, where the
user is charged for both connect time and distance, regardless of the
amount of data passed, charges in public data networks are deter­
mined so that the person who uses the line the most pays the most.

Rapidly, X.25 is becoming the standard international communications
protocol. As another advantage, X.25 allows computers from different
manufacturers to work together: with appropriate security validation,
any system on the network can send data to any.other system on the
network. X.25 ensures data integrity, while at the same time relieving
users of any concern about input and output speeds of the various
processors in the network.

Public data networks are currently operational in the United States
(the Telenet and Tymnet networks), Canada (the Datapac network),
France (the Transpac network), Germany (the Datex network), and the
United Kingdom (the PSS network). Within the near future, the DNI
network will be available in Holland. DIGITAL is committed to support
public data networks using the full X.25 communications protocol, and
is therefore engaged in the development of products to link DIGITAL
systems to these networks.

269

Data Communications

VAX-11 PSI (Packetnet System Interface)
VAX-11 PSI (Packetnet System Interface) software allows a suitably
configured VAX/VMS system to connect to public data networks. This
enables a VAX system to converse with any other computer (DIGITAL
or non-DIGITAL) that has implemented the X.25 protocol.

The VAX-11 PSI interface offers process-to-process communications
via the PSS network. It also permits remote terminal access to the
VAX/VMS operating system using an Interactive Terminal Interface.
Access to VAX-11 PSI software is supported for VAX/VMS user pro­
grams written in the VAX-11 MACRO assembly language and in the
VAX higher-level languages such as VAX-11 FORTRAN.

For interprocess communication, application programs use VAX/VMS
system services to set up and break connections with the network, to
send and receive data, and to issue control and synchronization re­
quests.

X.25 User Interface
The X.25 User Interface allows application programs to use the X.25
functions, including:

• Establishing and clearing connections

• .Sending and receiving data

• Sending interrupt messages

• Receiving unsolicited messages

• Controlling errors and reporting status

For the occasional network user, the PSI software can be loaded into
memory only when needed.

Interactive Terminal Interface
Remote terminals have the same access privileges to VAX programs
as they would if they were local. Thus, it is possible to run applications
programs· across the PSS network with no modification, unless the
network itself imposes restrictions whiCh are beyond DIGITAL's con­
trol.

VAX-11 PSI software supports access by remote terminals according
to CCITT recommendations X.3, X.28, and X.29. Terminals are
supported in 'Network Terminal' mode, in which· code conversions
between ASCII and the actual code used by the terminal are per­
formed by the network.

Line Discipline
The communications discipline used is the CCITT recommendation
X.25. Specifically, the product supports V.24 (EIA-RS-232) at the hard-

270

Data Communications

ware level, the symmetric LAPS variant of the X.25 frame level proto­
col and the X.25 packet level protocol over point-to-point, 4-wire, syn­
chronous, full-duplex lines, at speeds up to a maximum of 9600 bits
per second.

Network Management
A system management command interface is provided for the control
of the operation, of the X.25 software. This includes loading and
unloading the software, defining the lines and network to which the
system is connected, specification of addressing information for in­
coming calls, and access to error counters and other maintenance
functions. This interface provides a subset of the DIGITAL Network
Architecture (DNA) specification for Network Management.

271

272

PART III

VAX/VMS SYSTEM

DESIGN

AND APPLICATION

273

CHAPTER OVERVIEW
Sophisticated techniques of memory management and concepts and
details of virtual memory design are explained in this chapter. The
division of virtual address space into various regions plus the kinds of
information that can be resident in each are also covered. The soft­
ware algorithms for paging are given, as are more detailed definitions
of the terms "context," "image," and "process."

Topics include:

• Virtual Memory Management

• Division of Virtual Address Space

• A Process and Its Context
• Paging

274

INTRODUCTION

CHAPTER 8

VIRTUAL MEMORY AND
MEMORY MANAGEMENT

The function of an operating system is to manage the system's avail­
able resources. The VAX/VMS operating system is a multiuser, mUl­
tiprogramming operating system. To accommodate multiprogram­
ming, physical memory must be shared by more than one process.
Therefore, physical memory is a fundamental resource requiring
alloca.tion, deallocation, and associated management.

Virtual address space is divided into 512-byte sections called pages.
The virtual page corresponds exactly In size to a block on a disk and to
a page frame in physical memory. The term "page" is used inter­
changeably with these and is interpreted in context. The page is the
basic unit of relocation and protection. Memory management utilizes
page tables as the database to contain the status and location of
virtual pages of processes. Each individual page of a process has
associated with it an entry In an appropriate page table to describe
that page. The functions of memory management are to map virtual
pages into physical address space, to control the paging of those
p~- in active use by the process, and to provide process and inter­
process memory protection.

VIRTUAL MEMORY
,The memory man~I"I"'''''''",'1l technique utilized by the VAX/VMS operat-
109 sy~tc:;r7l IS, Kno~n as virtual memory. Virtual memory is the set of
storage locations In both physical memory and secondary disk sto­
r~gt e t,hat are referenced by virtual addresses (see below) The size of
vir ua memory Is the total f 'J bt ' f 0 aval a e virtua' addresses Addlt' J
eatures of the VAX virtual memory usage are: . Ion a

1. Only a portion of the program (those a es wh' .
. actively referenced) need reside In PhYS;~alg Ich a~e being
cution memory durlOg exe-

2. Programs (processes) are allowed to .
ount of physical memory available exceed the maximum am-

275

Virtual Memory and Memory Management -

Virtual Address Space.
Because of the VAX fa ., 32' .
required to specify the :Jres~bl: arc~tecture, a longword (32 bits) is
virtual address space consists °ot~~ yte of m.e~ory. Therefore, VAX
dress space is divided' t or 4.3 billion bytes. Virtual ad­
consisting of 2

31
b t 10 0 system and process address space, each

into a program an~ ~~~~h~ pr~cess .address space-cis further divided
in Figure 13-1.· 0 region. Virtual address space is described

BIT 31=~

BIT 31 = 1

(1°

BIT 30: 0

BIT 30 = J
;.

BIT 30 = 0

BIT 30: I <

'-- 2
32

GROWTH DIRECTION

1
PO (PROGRAM)REGION

Pl (PROGRAM)REGION

!
GROWTH DIRECTION

GROWTH f'REQION

SYSTEM REGION
(COMMON)

RESERVED
REGION

}

NOT
CONTEXT
SWITCHED

Figure 8-1 Virtual Address Space

PROCESS
SPACE

SYSTEM
SPACE

The program region contains the native 01 "' n~tibility mode image
to be executed by the process, possibly the application m'9t~tion exe­
cutive (AME), and additional user code referenced by the image.
(Some technical terms are defined below or in other chapters~ See the
Glossary and the Index.) The program region of a process's address
space originates at virtual address location 0 and extends in the direc­
tion of increasing address locations. POBR and POLR are hardware
registers that describe the page table containing references to each
individual page· in the program region. Virtual addresses in the pro­
gram region are translated to physical address using the page table
described by the registers POBR and POLR. The program .region cor-

responds to PO space.

276

Virtual Memory and Memory Management

NOTE
To translate from a PO virtual address to a physical
one, the PO page table is used. The registers do not
give the translation, but rather point the user to the
page table.

One page table has many page table pages. Each
process has one PO page table. The registers can
only describe one process' page table at a time.

The control region of a process's address space contains process­
related information maintained by the system and process control
structures such as the the kernel, executive, supervisor, and user
stacks, and the process liD database. The control region originates at
location 231 and extends toward lower addressed locations. P1 BR and
P1 LR are hardware registers that describe the page table containing
references to each individual page in the control region. The base
address and length of the control region are described by the registers
P1 BR and P1 LR respectively. The control region corresponds to P1
space.

System virtual address space occupies the first half of locations 231

through 232 as described in Figure 13-2. System space originates at
location 231 and extends toward increasing address locations. The
remaining locations are reserved for future use. System space is that
area of total virtual address space that is shared among all processes
and contains the VAXIVMS executive and those software data struc­
tures required to control the process and to maintain the status of all
physical and virtual pages within the system.

The addresses used to locate, interpret, and execute instructions are
virtual addresses. As the process executes, the system translates
virtual addresses to physical addresses. A virtual address consists of a
21-bit virtual page number and the number of a byte (location) within
the page, as illustrated in Figure 13-3.

Bit 31 of the virtual address is used to distinguish between a process
virtual address and a system virtual address. When bit 31 is set (Le.,
has the value 1), the address is system virtual. Bit 30 is used in con­
junction with process virtual addresses to distinguish between the
program region and the control region. When bit 30 is set, the control
region is referenced.

A physical address consists of a page frame number and the number
of a byte within the physical page, as illustrated in Figure 13-4. The
page frame number is the number of a physical page in physical
memory.

277

80000000

High address end
of system virtual
address space

Virtual Memory and Memory Management

System Service Vectors

Linked Driver Code and Data Structures

Nonpaged Executive Data

Nonpaged Executive Code

Pageable Executive Routines

XDELTA (usually unmappedl. INIT

System Virtual Pages
Mapped to I/O Addresses

RMS Image

(RMS.EXEl

System Message File

(SYSMSG.EXEl

~ Pool of Unmapped System Pages

Restart Parameter Block

PFN Database

Paged Dynamic Memory

Nonpaged Dynamic Memory

Interrupt Stack

System Control Block

Balance Slots

System Header

System Page Table

Global Page Table

S tatic Portion (SYS.EXEl

0 ynamically mapped at
itialization time in

~

:::"

..

Figure 8-2 System Virtual Address Space

278

Virtual Memory and Memory Management

VIRTUAL ADDRESS
31 30 29

I I I
~ ~ ------VIRTUAL PAGE NUMBER BYTE WITHIN PAGE-

o 0 PROGRAM REGION

o 1 CONTROL REGION

1 0 SYSTEM REGION
1 I RESERVED

Figure 8-3 Virtual Address

PHYSICAL ADDRESS
31 30 29 28 9 8

I I I I ! ~ . PAGE FRAME NUMBER BYTE WITHIN PAGE---

o 0 0 MEMORY ADDRESS
o 0 1 1/0 SPACE ADDRESS

Figure 8-4 Physical Address

Dynamic Page Tables
Memory management softw~re is responsible for creating and main­
taining the mapping structure required by the processor to translate
virtual addresses referenced by a process to physical memory ad­
dresses. The basic unit of mapping and protection is the page. A page
is a block of 512 contiguous byte locations in physical memory on a
512-byte boundary. Within physical memory each page is unique, and
no pages overlap. Virtual addresses are also grouped into 512-byte
pages, where each virtual page may be mapped to a physical page or
a page (block) of secondary storage. Any number of virtual pages can
be mapped to the same physical page.

Unlike some systems, in which portions of physical memory are stati­
cally allocated or partitioned, the VAX system supports complete
dynamic allocation of physical memory. Dynamic allocation of physi­
cal memory may result in the noncontiguous physical location of a
process's pages in physical memory, but they remain virtually contigu­
ous in the process's address space.

The VAX/VMS operating system maintains unique translation maps
called page tables for each process. Process virtual address space is
described in two page tables: the PO page table corresponding to the
program region and the P1 page table corresponding to the control
region. Each portion of the process space is described by a virtually
contiguous vector Of page table entries. Process page tables reside in

279

Virtual Memory and Memory Management

system virtual memory when the process is resident. Being them­
selves virtual pages, the page tables may be mapped to physically
discontiguous areas of memory and are resident only when required.
When a virtual page is in memory, the page table entry contains the
page frame number needed to map the virtual page to a physical
page. When it is not in memory, the page table entry contains the
information needed to locate the page on secondary storage. From the
process page tables contained in system virtual space, it is possible to
locate all process virtual pages.

System virtual space is described in a data structure called the system
page table (SPT). The system page table contains one page table
entry (PTE) for each page of system virtual memory. The hardware
system base register (SBR) and system length register (SLR) provide
the physical address and the length (in longwords) of the system page
table. The system page table resides in system virtual memory, but is
physically based and physically contiguous. Given the contents of the
SBR and SLR, it is possible to locate all other system virtual pages.

PROCESS
A process is the basic schedulable entity in the VAX/VMS system. A
process consists of a virtual address space and hardware and soft­
ware contexts. The hardware context of a process is defined by values
that are loaded into processor registers when the process is
scheduled for execution. The hardware registers consist of the follow­
ing:

1. The four registers mapping user process virtual address space
POBR, POLR, P1BR, and P1 LR

2. A set of 19 user registers (RO-R13, program counter, and user,
supervisor, executive, and kernel stack pOinters)

3. The processor status longword (PSL)

The VAX processor contains one set of processor registers used to
maintain the hardware context of a single process. While a process is
executing, its hardware context is continually being updated in the
processor registers. When a process is not being executed by the VAX
processor, its hardware context is stored in a software data structure
called the hardware process control block (PCB). The VAX/VMS oper­
ating system maintains the hardware PCB in a software structure
known as the process header (PHD). Saving the contents of the VAX
processor registers into the hardware PCB of the currently executing
process and then loading a new set of context from another hardware
PCB is called context switching. Context switching occurs as one
process after another is scheduled for execution by the VAX/VMS
operating system.

280

Virtual Memory and Memory Management

The VAXIVMS operating system maintains the software context for
each process. The software information regarding the process is
maintained in a data structure called the software process control
block (software PCB). The combined hardware and software descrip­
tion is referred to as the process's context.

Working Set
When a process executes, a subset of its pages resides in physical
memory. This subset is referred to as the process's working set. A
process's working set consists of all the pages of a process's virtual
memory which are residing in physical memory and which the process
can access directly without incurring a page fault. A page fault is a
reference to a page not currently in the process's working set. This
condition is handled automatically by the operating system as dis­
cussed under the subheading "Paging."

The working set is a dynamic characteristic of a process that has both
minimum and maximum size limits. The system designates a required
minimum number of pages that have to be in a process's working set,
and the system manager defines the maximum number of pages al­
lowed in anyone job's working set in the user authorization file. The
size of the working set determines the amount of physical memory
needed to run a process, and directly affects its paging and swapping
performance.

Balance Set
The collection of processes residing in physical memory at anyone
moment is called the balance set. During the execution of a process,
conditions may occur that require the movement of the process's
working set to secondary storage, thereby freeing physical memory
for another process to use. This method of controlling memory use by
removing processes from and adding other processes to the balance
set is called swapping. The swapper utilizes three conditions to deter­
mine which processes should be swapped in and which should be
swapped out:

1. Process priority

2. Process status (which processes are executable and which are
not)

3. Expiration of process's balance set time quantum (process has
used up assigned CPU time slice without completing and must
wait for another turn)

For example, a process's working set can be written to secondary
storage while the process is waiting for liD completion on a slow
device, making room for another outswapped process which can exe":

281

Virtual Memory and Memory Management

cute immediately. The working set is brought back into the balance set
after I/O completion.

For more information on swapping, see Chapter 14.

PROCESS CONTROL STRUCTURES
VAX hardware defines a process by using registers and a hardware
process control block (PCB). The VAX/VMS operating system, how­
ever, provides each process with additional definition that is used to
control the process, its working set, and the balance set. The two most
important structures that define a process are the software process
control block (PBC) and the process header (PHD).

The system also provides each process with a unique name called the
process identification.

Software Process Control Block
The system defines a software PCB for every process when the proc­
ess is created. The software PCB is the central control mechanism for
the process. It includes the following kinds of information about the
process:
1. Current state of the process (executable, in one of several types of

wait states, swapped out, etc.)

2. Storage address of the process if it is swapped out of memory

3. Unique identification of the process

4. Software priority of the process

5. Additional status and control information

Software PCBs for all processes reside in the system virtual address
space. However, because the software PCB contains the information
needed to schedule a process and retrieve a swapped process from
secondary storage, it is always resident in memory.

Process Header
The system defines a process header for every process when the
process is created. When a process is swapped into memory, i.e.,
brought into the balance set, the header for the process is placed in
one of the process header slots reserved in the system virtual address
space. The software PCB foreach process contains the virtual
address of the process's header. The number of process header slots
defined for the system determines the number of processes that can
be in the balance set. However, since processes are subject to
outswapping, the system can maintain a greater number of PCBs than
process header slots.

282

Virtual Memory and Memory Management

A process header, illustrated in Figure 13-5. contains the following
information:

1. Privilege mask for the process

2. Hardware PCB

3. Indices to the working set list and the process section table por-
tions stored lower down in the PHD

4. Accounting

5. Working set list

6. Process section table

7. PO and P1 page tables

PAGE
BOUN DARY

PAGE
BOUN

PAGE
BOUN

DARY

DRY

PAGE
BOUN DRY

PAGE
BOUNDRY

PRIVILEGE MASK

HARDWARE PCB

INDEXED TO
WORKING SET LIST AND

PROCESS SECTION TABLE

ACCOUNTING AND QUOTAS

WORKING SET LIST
ENTRIES

~

1
PROCESS SECTION TABLES

ENTRIES

o PAGES OF FREE SPACE
(n IS EQUAL TO OR GREATER

(THAN 0)

PO PAGE TABLE

l

f
PI PAGE TABLE

Figure 8-5 Process Header

283

-

===

FIXED
PORTION OF
PROCESS
HEADER

VARIABLE
PORTION OF
PROCESS
HEADER

Virtual Memory and Memory Management

The working set list contains entries to describe that portion of the
process's virtual address space that is resident in physical memory.
This database is maintained by the pager and is also used and modi­
fied by the working set swapper. It starts at a page boundary, and
expands toward higher addresses.

The process section table contains entries to describe the process­
private image sections that are mapped by the process's page tables.
The image activator fills in this table. The process section table starts
at a page boundary and extends in the direction of the working set list,
as illustrated in Figure 13-5.

The page tables contain the one entry needed to locate every virtual
page of the process. The page tables are initialized by the image
activator and dynamically maintained by the pager and, after inswap,
by the swapper as well. The page table for the program region of the
process starts on a page boundary and extends to higher addresses.
The address of the page table is found using a pOinter (POBR) in the
hardware PCB.

The page table for the control region of the process starts on a page
boundary and extends toward lower numbered pages. As illustrated in
Figure 13-5, the P1 table starts at the last page of the process header
and extends in the direction of the PO page table. The P1 page table
also is addressed through a pOinter (P1 BR) in the hardware PCB.

A process header is in memory only when the associated process's
working set is in the balance set.

IMAGE
An image consists of procedures and data that have been bound
together by the linker. Binding (or linking) refers to the resolution of
symbolic references between modules and the assignment of virtual
address space.

An image results from the linking of one or more object modules
together. It is the program entity that is executed by a process. When a
user logs onto the system, the system creates a process dedicated to
that user. That process executes all of the images needed to perform
the user's requests. Images are referred to by file name. Examples of
images are the linker, the assembler, and user programs.

The unit of virtual memory allocation associated with the image is
known as the image section (isect). An isect is a group of program
sections (psects) with identical attributes. For example, the psects in a
given isect might have the read-only and relocatable attributes.

284

Virtual Memory and Memory Management

Image Activation
The image activator is a set of procedures that execute in the system
address space to prepare an image for execution. The procedures,
however, run in the context of the process requesting execution of the
image.

Opening the Image File
The command interpreter passes the file name of the image to be
executed to the image activator. Using defined search rules, the image
activator locates the file and starts processing the image header. At
this pOint, the image activator determines whether the image is native
or compatibility mode, using information in the image file header.

If the requested image is a native mode image, the image activator
sets up the process section table entries and the process page table
entries in the PO and P1 page tables. Once the process section table
and the page tables are set up, the image is ready to execute.

If the image is a compatibility mode image, its name and the number
of the channel on which the image file is open are saved in a known
place in the process control region for the application migration exe­
cutive (AME). The image activator locates the image name of the AME
in the process control region and activates the AME image instead of
the requested image. The AME then maps in the compatibility mode
image.

Setting Up the Process Section Table
The image activator uses information produced by the linker to create
process section table entries for the image. When the linker produces
an image file, it places an image section descriptor (18D) in the image
header for every image section in the file. The image activator uses the
180s to create process section table entries.

Once the image activator has read the image header and created the
process section table entries for the image, it can set up the PO and P1
page table entries for the image.

Setting Up Page Table Entries
The image activator uses the number of pages for each image section
(isect) as specified in the 18Ds to determine the total number of pages
needed for the image.

Before an image can execute, the image activator must fill the page
table entries for that image with an index to the process section table
entry for the section that contains that page of the image. The process
section table contains the information needed to locate that page in
the image file.

285

Virtual Memory and Memory Management

Once all of the page table entries for the image are set up, the image is
ready to execute.

PAGING
Paging is the action of bringing pages of an executing process into
physical memory when referenced. When a process executes, all of its
pages reside in virtual memory. Only the actively used pages, how­
ever, need be in physical memory. The remaining pages can reside on
disk until they are needed in physical memory. In the VAX/VMS oper­
ating system, a process's pages are paged out only when the process
references more pages than it is allowed to have in its working set.
When the process refers to a page not in its working set, a page fault
occurs. This causes the operating system's pager to read in the refer­
enced page if it is on disk (and, optionally, other related pages),
replacing the oldest removable pages as needed.

Page Table Paging
To reduce the amount of memory required to run a process, the only
pages of process page tables that are required to remain in memory
are those containing one or more page table entries that refer to a
page frame number (Le., the identification of a page actually in memo­
ry). Page table pages are faulted into memory by faulting a page in the
page table or by faulting the page table entry itself, as happens when
creating a new page with the Create Virtual Address Space system
service. In either case, the page table looks like a normal data page in
the process's working set list and is subject to working set replace­
ment.

Whenever a page table entry has a page frame number placed in it,
the reference count for the page table page is increased. If the page
frame number is the first one in the page table, (Le., the reference
count went from 0 to 1), the pager locks the page table page in the
working set list.

As each page frame number is taken out of the page table page and
replaced by its backing store address, or by 0 if the page has been
deleted, the reference count for that page of the page table is de­
creased. When the last page frame number is taken out (Le., when the
reference count goes from 1 to 0), the pager unlocks the page table
page from the working set, thereby making it eligible for working set
replacement.

Pager
The pager is a set of routines that execute as a result of a Translation
Not Valid Fault, that is, a page fault. It is, therefore, an exception

286

Virtual Memory and Memory Management

service routine. The pager runs in kernel mode in the context of the
process that caused the fault. The pager's function is to make the page
for which the fault occurred available in physical memory so that the
process can continue execution. The page can be in the image file, in
memory but not in the process's working set, or in the paging file when
a fault occurs.

The pager uses the paging file to maintain modified pages from either
an image or a global section.

A backing store (secondary storage) address in the paging file is as­
signed to a page under either of the following conditions:

1. The page was a demand-allocate zero-fill page that was not in a
process section or global section

2. The page was a copy-on-reference page

Other pages maintain their original backing store addresses. These
pages are the following types:

• Read-only image file pages

• Read/write process section pages

• Read/write global section pages

In order to make pages available as needed, the pager maintains and
manipulates the following databases:

• Page Frame Number (PFN) database
• Free page list

• Modified page list

• Working set lists

• Page table entries

The paging philosophy implemented in the VAX/VMS operating
system is called "paging against the process." Each process is allocat­
ed a maximum number of pages in its working set. A page fault to a
filled working set requires that one page be removed for each page
brought in.

Page Frame Number (PFN) Data.Base
The page frame number (PFN) database consists of 18 bytes of infor­
mation for each page of physical memory. The 18 bytes for each page
are not grouped together to form a table per page; rather, the various
categories of information are organized as arrays. Items within each
array are indexed using physical page frame numbers (PFNs).

Every physical page has an entry in the following arrays:

• System virtual address array of longwords

287

Virtu.al Memory and Memory Management

• Backing store address array of longwords

• Reference count array of words

• Forward and backward link arrays of words

• Swap virtual block number array of words

• State array of bytes

• Type array of bytes

Free Page List
The free page list is a doubly linked list of physical memory pages that
are available for use. Pages are linked. at the end of the list and re­
moved from the head. When a page is removed from a process's
working set, the page is placed on the free page list if its reference
count in the PFN database is zero and the modify bit in the PFN state
byte is clear. If the modify bit is clear, the page has not been written
into (altered or modified), and the disk retrieval information in the PFN
database is valid.

If the process faults a page on the free page list that does contain valid
data, the pager can unlink the page from the free page list and make it
available to the faulting process. Thus, the free page list acts as a page
cache for the most recently discarded pages in addition to being a
source of available pages. Therefore, increasing the size of the free list
(through a SYSGEN parameter) can minimize the number of pages
that must be faulted from the disk. At the time a page is removed from
the top of the free page list and filled with a new virtual page, the PFN
database and the page table entries for both the old and the current
virtual pages are updated.

Modified Page List
The modified page list is a doubly linked list of physical memory pages
whose contents must be written to backing store before the pages can
be linked onto the free page list. When a page is removed from a
process's working set, the page is placed on the modified page list
when its reference count in the PFN database is zero and the modify
bit in the page table entry is set. When the modify bit is set (Le., = 1), it
indicates that the page has been altered since it was last read into
memory from either its image file or the pagi'ng file.

Just as pages can be faulted from the free page list for reuse, pages
can be faulted from the modified page list. If the write has not been
started, the page is unlinked from the list. If the write is in progress,
i.e., the write-in-progress state in the PFN database is set, the page is
no longer on the list. However,the page can still be made available to
the faulting process by signaling the write completion routine that it

288

Virtual Memory and Memory Management

should not place the page on the free page list. This also helps to
reduce accesses to secondary storage and to speed up process exe­
cution.

Working Set List
The working set list provides the mechanism required by the pager to
keep track of and limit the process's use of physical memory. It
specifies the number of physical pages of memory that the process
can have resident at any time. It also contains a linear list of the virtual
page numbers of the resident pages.

Each working set list pointer in the fixed portion of the process header
is a word containing the longword index (sometimes called an offset)
from the beginning of the process header to its respective working set
list entry.

The working set list not only limits the number of physical pages that a
process can have in memory, it also provides the complete list of those
virtual pages that are actively being used. This information is required
by the balance set swapper so that it can swap the entire working set.

Page Faults For Process-Private Pages.
Every virtual page of a process has an associated page table entry that
represents its current state. A process-private page can be in anyone
of the following states:

1. Out of the process's working set and in the image file. The page
either has never been faulted into memory or has been faulted
into memory and out again without being modified. In either case,
its backing store disk address locates it in an image file

2. Out of the process's working set and available as a demand­
allocate zero-fill page. The page has never been faulted into
memory. When it is, the pager supplies a physical page filled with
zeros

3. Out of the process's working set and in the paging file

4. In transition. That is, in the free or modified page list or currently
being read into or written from memory

5. In the process's working set

The format used for a page table entry to describe a given page indi­
cates which state the page is in. All page table entry formats use bit 31
as the valid/invalid bit. When bit 31 is set, it indicates that the virtual
page associated with that page table entry is in a physical page of
memory and is in the process's working set. That is, it is an active page
and has an entry in the process's working set list. A page fault occurs
when reference is made to a page whose page table entry has bit 31
cleared. The page can be in any of the first four states listed above.

289

Virtual Memory and Memory Management

SHARING PAGES OF PHYSICAL MEMORY BETWEEN PROCESSES
The sharing of procedures and data among many processes is ac­
complished through the use of global sections. A global section be­
comes available for sharing as a result of one of two steps:

1. Creation of a shareable image and installation of that image as a
shared known image

2. Creation of a data file and issuance of a Create and Map Section
system service to make that file globally available

Known Images
Once the image is installed as a shared known image, it is available for
mapping into the virtual address space of many processes. The instal­
lation procedure results in the creation of the database required for
the sharing of global sections, but only if it is /SHARE specified when
installed. Not all known files are shareable.

Global Section Database
Sharing sections in the process address space requires the creation of
a global section database. The global section database is created as a
result of a Create and Map Section system service issued when a
shareable image is installed as a shared known image or issued by a
process to create a global data section. The database consists of the
following data structures:

• Global section descriptor
• Global section table

• Global page table

Global Section Descriptor
The global section descriptor (GSD) provides the naming and access
protection mechanisms for a global section. One GSD is defined for
each global section. Dynamic memory is allocated for GSDs. There
are two doubly linked lists of GSDs in the system: one for system-wide
global sections and one for group global sections.

The owner user identification code (UIC) is the UIC of the creator of the
global section. Protection for the section is specified when it is
created.

The global section table index is an index to this section's global sec­
tion table entry.

During the installation of a shared known image (created by INSTALL),
the section identification and name are taken from the image section
descriptor (ISD) for the section. The ISD is produced by the linker and
placed in the header of the linkable image file. The image activator

290

Virtual Memory and Memory Management

uses this information when it prepares to execute an executable image
that is bound to a shareable image.

Global Section Table
The global section table is a parallel structure to the process section
table. It is the section table in the system process header. It contains
one entry for each global section. A global section table entry de­
scribes the disk area that the corresponding global section occupies.
The global section table index is an offset to the associated global
section table entry.

Global Page Table
The global page table is the master page table for the pages of a
global section. One global page table entry is required for each page
in the global section. The global page table entries for a section must
be contiguous. Global page table entries have formats that are similar
to those of process page table entries. The pager manages both types
of page table entries.

The initial format of a page table entry for a global section is the same
as the initial format for a page of a private section. That is, both contain
a section table index.

Read/write global section pages are written back into the image or
data file; they are not placed in the paging file. Writing themback to
the image or data file provides cooperating processes with a common
read/write area. Such cooperating processes must synchronize their
access to read/write shared files. None is provided automatically.

The global section table index contained in the page table entry is the
offset into the global section table for this section. The global section
table entry is used in the same way as a process section table entry to
locate the page in the section on disk.

Image Activation
A process can map to global sections in either of two ways:

1. By running an executable image that hasn't been installed as a
shared known image or by running an image that is linked against
a shareable image that has been installed as a shared known
image

2. By issuing a request for the Map Global Section system service

If the first method is used, the image activator takes the steps needed
to map the global section in the process's address space. When it
encounters an image section descriptor (ISD) in the image file refer­
ring to a global section, the image activator calls the Map Global
Section system service to scan global section descriptors for the sec-

291

Virtual Memory and Memory Management

tion name specified in the ISO. If the service locates the specified
section name, it compares version information in the global section
descriptor for the section. with version information in the ISO for the
section in the executable image file.

If the globally available version of the section is appropriate, the Map
Global Section system service maps the global section into the
process's address space. The result is that a specified range of page
table entries in the process space is filled with indirect pointers to the
corresponding global page table entry for the global section.

If the second method is used, the process itself requests the mapping,
rather than having the image activator request the mapping for it. The
result of the Map Global Section system service is identical in either
case. The second method is used to map a data file that has been
madea global section.

A process page table entry that contains a global page table index is a
pointer to the global page table entry and its associated database that
provides central control of the global section.

Page Faults
When a page fault occurs in a process and the process page table
entry for the page contains a global page table index, the pager uses
the content of the global page table entry pOinted to by the process
page table entry .. The global page table entry provides the pager with
the information needed to determine what action is necessary to make
the process page table entry valid. The result of the action is a process
page table entry that contains the page frame number that is the
physical address of that page of the global section.

When a fault occurs in a process for a page of a global section, the
page can be in anyone of the following states:

1. In a section of a file on disk
2. In memory but not in the working set of the faulting process

3. In the free page list or modified page list

4. In the page file

5. Doesn't exist yet, as it is a demand-zero page

SWAPPING
The swapper is the process responsible for moving entire working sets
between main memory and secondary storage. The swapper process
serves two major functions:

1. Process scheduling

2. Process creation

292

Virtual Memory and Memory Management

Process scheduling and the swapper are discussed in Chapter 14,
Process Scheduling and Swapping.

PAGING IN SYSTEM SPACE
A considerable amount of code that can be paged exists in the system
address space, including many system services. Paging in system
space is essentially the same as paging in process space. Data struc­
tures parallel to those used for a process are used for system space to
provide the information needed to page system space. The following
structures are defined: -

• System header (parallel structure to process header)

• System working set list

• System section table
• System page table (parallel to a process's PO page table)

Working set replacement in system space functions in the same man­
ner as in a process. That is, pageable system pages are paged against
each other.

293

CHAPTER OVERVIEW
Central to the effectiveness of multiuser computers is the algorithm
that controls swapping of processes and the allocation of CPU time.
The VAX/VMS operating system provides an advanced swapping
technique that reduces thrashing and helps minimize overload.

Scheduling is event-driven, pre-emptive, and priority-controlled. The
upper sixteen priority levels are usually reserved for realtime
processes. In order to balance the system load, the system modifies
the priorities of processes in the lower sixteen levels. In addition, time
quanta insure a rotation among computationally intensive processes
of the same priority. This chapter examines swapping and scheduling.

Topics are:

• Scheduling

• Swapping
• Priorities

294

CHAPTER 9

PROCESS SCHEDULING AND SWAPPING

INTRODUCTION
The VAX/VMS scheduler performs normal and realtime process sche­
duling based upon the priority of the executable processes in the
balance set. A normal process is also referred to as a timeshared or
background process while a realtime process is sometimes referred to
as ti me-critical.

The VAX/VMS operating system defines 32 distinct levels of software
priority for the purpose of scheduling. Priorities range numerically
from 0-31, where 31 represents the highest software priority. The op­
erating system allocates priorities 0-15 to the scheduling of normal
processes while priorities 16-31 are dedicated to the scheduling of
realtime processes. Realtime processes are scheduled strictly by pri­
ority; when a higher priority process is ready to execute, it pre-empts
the process currently running. Normal processes, on the other hand,
are scheduled using a modified pre-emptive algorithm to achieve
maximum overlap of computational and I/O activities.

As part of a process's total context, its software Process Control Block
(PCB) maintains a link to the current state queue defining the proc­
ess's status within the system. A state queue is a list of all those
processes currently residing in a particular processing state. A single
state queue exists for every state or condition in which a process may
reside. Examples of possible process states are: computable, local
event flag wait, hibernation, etc.

Regardless of which state queue a process is in, the process owns of a
collection of pages that is referred to as its working set. The swapper is
the process responsible for moving entire working sets between main
memory and secondary storage. Moving a process from main memory
to secondary storage is called outswapping; moving a process from a
secondary storage device to main memory is called inswapping.

The swapping of processes is necessary for two reasons:

• To replace lower priority or nonexecutable resident processes with
higher priority executable processes

• To keep the scheduler supplied with executable processes in con­
figurations that do not provide sufficient main memory to contain all
processes's working sets

295

Process SchedulIng and Swapping

SCHEDULING
Realtime processes take precedence over background processes in
the queue for execution because they are of higher priority. The
VAXIVMS scheduler performs process scheduling that takes into ac­
count the following variables:

1. The process priority
2. The occurrence of system events and resulting process state tran­

sitions

3. The expiration of in-memory time allowed to a non-realtime proc-
ess. This is called quantum overflow

The process selected to execute is always the process with the highest
priority in the executable resident state queue.

System events are occurrences that cause the state of one or more
processes in the system to change. The scheduler reflects the change
by removing the process's PCB from one state queue and placing it in
the current state queue. An executing process can cause a system
event by putting itself in a wait state, or it can cause a system event for
another process. In addition, system components like the swapper
and the timer can cause system events. Regardless of the source, all
system events are reported to the scheduler.

System events can be synchronous with the process's execution (e.g.,
a wait request), or they can be asynchronous (e.g., an liD completion
event).

Process States
The state of a process is the condition of the process at a given instant.
For example, a process can be in ahibernate state or a local event flag
wait state. The possible states of a process are mutually exclusive. A
process moves from one state to another as a result of system events.
The state number of a process is defined by a field in the software
PCB. Each state has a queueof processes that are in that state. The
processes's software PCBs are linked into the appropriate state
queue.

Some conditions have two associated state queues: one for resident
processes and the other for nonresident processes. Others mix both
resident and nonresident processes in the same queue. The separa­
tion into two queues is to optimize queue searching. In all cases, the
residence of a process is indicated by a status bit in the PCB.

State Queue Headers
Each of the state queues in which a process can be linked is a stan­
dard linked circular queue that is suitable for use in INSQUE and

296

Process Scheduling and Swapping

REMQUE* instructions. The header for all queues is a quadword that
locates the head and the tail of the queue. If the queue is empty, the
header pOints to itself. The header structure for wait state queues
differs from that for executable process state queues in that the latter
uses a subqueue structure. Figure 14-1 describes the general state
queue header.

31 o
HEAD OF QUEUE POINTER

TAIL OF QUEUE POINTER

Figure 9-1 State Queue Header

Wait State Queue Headers
Wait queue headers have a count of PCBs associated with the queue
in addition to the standard head/tail quadword. Figure 14-2 illustrates
a wait queue header.

31 o
HEAD OF QUEUE POINTER

TAIL OF QUEUE POINTER

STATE NUMBER 1 COUNT

15 o

Figure 9-2 Wait Queue Header

* The VAX-11 Architecture Hancibook gives detaileddes~riptions and exam-
ples of many VAXIVMS instructions. .

297

Process Scheduling and Swapping

Executable Process State Queues
The state queues for executable processes within and outside of the
balance set are divided into 32 subqueues, providing one subqueue
for each priority level. The state of a process and its priority provide
the scheduler with the information needed to determine the subqueue
for the process.

Each subqueue has a header that contains the head/tail quadword.
Subqueue headers do not contain a count of PCBs linked iAto the
queue. Instead, an array called the summary longword is maintained
for the executable process state subqueues. Each bit in the longword
corresponds to a subqueue, and if a bit is set, the corresponding
subqueue contains entries. Refer to Figure 14-3 for an example of an
executable process state queue.

SUMMARY
LONGWORD

BIT 0

BIT 1 0

BIT 29

BIT 30

BIT 31 0

EXECUTABLE PROCESS IN BAlANCE SET
STATE QUEUE

PRIORITY 31
SUBQUEUE HEADER

PRIORITY 30

SUBQUEUE HEADER

PRIQRITY .2
SUBQUEUE HEADER

PRIORITY 1
SUBQUEUE HEADER

PRIORITY 0
SUBQUEUE HEADER

A

Figure 9-3 Executable Process State Queue

D

Processes are selected from the state queue in order of priority.
Higher priority processes receive attention first. Processes are select­
ed on a first-in/first-out basis within a priority subqueue. Referring to
Figure 6-3, processes would be selected for execution in the order A,
8, C, and then D. Processes are selected as if they were in one queue;
the subqueue structure is used to simplify queue searching. That is, if
thesummary bit for a priority subqueue is clear, the scheduler does

298

Process Scheduling and Swapping

not need to consider that queue.· A single instruction is required to
locate the first non-empty subqueue, thereby locating the highest pri­
ority process.

Process State Transition
Transitions from one process state to another occur as the result of
system events reported to the scheduler. The process state transition
cycle is illustrated in Figure 14-4.

EVENT
SATISIFIED

Figure 9-4 Process State Transition Cycle

EVENT
SATISIFIED

When the current executing process ceases execution, it will enter one
of the following states, depending upon the system event that caused
it to stop:

1. Executable state queue in the balance set as the result of a re­
schedule event

2. A wait queue as a result of a suspend, hibernate, wait for local
event flag (LEF), wait for common event flag (CEF), page fault wait
(PFW), collided page wait (COLPG), or miscellaneous wait
(MWAIT)

A process that is in the balance set and in any of the wait queues can
make the transition to either of the following states:

299

Process Scheduling and Swapping

1. Executable and in the balance set as a result of a system event
that satisfied the wait condition. For example, if a process is wait­
ing for a local event flag and that flag becomes set, it enters the
executable state queue

2. I n the same wait state but swapped out of the balance set. For
example, in the case of suspend, hibernate, and wait for local
event flag, making the transition from a process in the balance set
to one out of the balance set causes the process to be placed in
another wait queue.

In the case of wait for common event flag, page fault wait, collided
page wait, and miscellaneous wait, processes that are in the bal­
ance set and those that are out of the balance set are placed in the
same queue

Asynchronous System Trap (AST) events are significant for processes
in a variety of states, including hibernating and outswapped, local
event flag and outswapped, page fault wait, common event flag wait,
free page wait, and collided page wait. For a process in one of these
states, issuance of an AST to the process or a request to delete the
process results in the process's being placed in the executable state
but not necessarily in the balance set.

A process that is out of the balance set and in a wait queue can make
the transition only to the state of being executable and out of the
balance set. It is placed in the appropriate subqueue according to its
priority, as illustrated in Figure 14-3.

A process that is executable and out of the balance set can make the
transition only to the state of being executable and in the balance set.
Again, it is placed in a subqueue according to its priority. Once a
process is executable and in the balance set, it is selected to execute
according to its priority as a result of a system event indicating the
need to reschedule.

When a process is created, it enters the nonresident executable state.
When a delete request is issued fora process, the process is marked
for deletion and placed in either the resident executable state queue
orthe nonresident executable state queue. The process executes ter­
mination procedures and is then removed from the system.

Dispatching A Process For Execution
Dispatching an executable process to the processor involves minimal
decision making. The selected process is always the one at the head of
the highest priority subqueue of the executable process in the balance
set state queue. The real scheduling decisions are made as a result of

300

Process Scheduling and Swapping

those system events that cause the state transitions which make
processes executable.

When a process is pre-empted to dispatch a process of higher priority,
the pre-empted process is placed at the end of the proper priority
subqueue. Placing it at the end forces a rotation of processes within a
priority. The result is that available processor time is distributed more
evenly among all processes of the same priority.

The interval between pre-emptions is random. Intervals are deter­
mined by the occurrence of system events. Quantum keeping and
other timer events provide a minimum level of event activity. In prac­
tice, the average interval between events is determined by the dura­
tion of the typical 110 operation.

Placing a process at the end of a priority queue does not necessarily
increase the likelihood that the process will leave the balance set.
However, a process in the balance set has a significantly better chance
of being executed than a process of the same priority that is not in the
balance set.

Quantum Control
Every process, regardless of its priority, is assigned an execution time
quantum that is maintained in the process header. The quantum
serves two purposes:

• It attempts to provide a minimum amount of time in which the proc­
ess can perform useful work before it is swapped out of the balance
set

• It enforces a coarse rotation interval for compute-bound processes
with a priority less than 16

Realtime processes are immune to quantum-enc;l events.

Note that the quantum is a memory occupancy quantum, not a pure
compute quantum.

A process can be pre-empted many times before it has received its full
quantum. However, a process remains in the balance set until it com­
pletes its first quantum or until a nonresident higher priority process
requires service, or until the process enters a wait state.

When a process is swapped into the balance set, its quantum is initial­
ized. The process status flag in the software process control block
(PCB) is set to indicate that the first quantum is in progress. If the
quantum expires (I.e., reaches:zero), the interrupt timer interrupt rou­
tine triggers a software level interrupt. A quantum-end event causes
the scheduler to perform the following operations:

301

Process Scheduling and Swapping

1., Set the current priority of the process one unit closer to its base
priority if it is a normal process

2. Clear the first quantum flag

3. Reset the quantum value

4. Trigger a rescheduling interrupt

Each time a process executes a wait request (e.g., to wait for 1/0
completion), a fixed amount is added to the negative quantum value,
making it that much closer to expiration. If this wait time addition
causes the quantum to be satisfied, the first quantum flag is cleared
and the quantum counter is reinitialized. Remember, the quantum is a
memory occupancy quantum rather than a pure compute quantum.

Rescheduling Interrupts
The rescheduling interrupt is triggered when either of the following
two conditions exists:

1. A process making the transition to the resident executable state
has a higher priority than the current process

2. The timer detects quantum expiration for the current process

Rescheduling is requested by triggering the software-controlled
Interrupt Priority Level (IPL) 3 interrupt. As a result of this interrupt, the
state of the currently executing process is saved and the process is
placed at the end of the proper compute queue. When the current
process is placed into a wait state, the highest priority computable
process is selected and placed into execution.

Scheduling Of Processes
Each process has a base priority assigned to it when it is created. The
priority of a realtime process remains unaltered by the system during
the process's execution. However, a normal process is subject to hav­
ing the scheduler alter its priority during the course of its execution.

The scheduler uses a modified pre-emptive priority algorithm for nor­
mal processes. The algorithm floats the priority according to the proc­
ess's recent execution history. Each process has a current priority in
addition to its base priority. The scheduler dynamically changes the
current priority as the process executes; however, the current priority
is never less than the base priority.

Scheduling according to strict priority for realtime processes and us­
ing a modified priority for other processes allow the scheduler to
achieve maximum overlap of compute and 1/0 activities while still
remaining responsive to high-priority realtime requests. Figure 14-5
illustrates process priority scheduling.

302

Process Scheduling and Swapping

PRIORITY 31

HIGH PRIORITY REAL-TIME

CHOSEN
BY

SYSTEM
MANAGER LOW PRIORITY REAL-TIME

SWAPPER
?r- --------

VERY INTERACTIVE OR 110 BOUND

CHOSEN
AUTOM ATiCALLY

BY(
FLOAT SOMEWHAT I/O BOUND

A LGORITHM

COMPUTE BOUND
"-

PRIORITY 0

Figure 9-5 Process Scheduling

Priority Increments
The scheduler uses priority increments to modify the priority of a
normal process. Each system event has an assigned priority incre­
ment that is a characteristic of the cause of the event. If the event
causes a state change to an executable state. for the process, the
scheduler adds the increment to the base priority; the result becomes
the current priority. The only restriction is that the current priority
cannot be raised to a time-critical value, that is, to priorities 16 through
31.

When a wait condition is satisfied for a normal process, the scheduler
increases the priority of the process in accordance with the priority
increment of the satisfied condition. When a process is scheduled for
execution, the scheduler decreases the process's current priority in
the PCB by one unit. When the process is stopped, it is placed at the
end of the next lower queue, thereby decreasing its priority. Thus, a
process's priority is increased after a wait and is decreased each time
it executes, as illustrated in Figure 14-6. A process's current priority is
never decreased to a value below its base priority or increased above
a priority of 15. A realtime process's priority is never modified.

The decrease of priority as a consequence of continued execution
yields preferential treatment to processes that require only brief inter­
vals of execution between the time that one wait condition is satisfied
and the next is established. Compute-bound processes quickly fall to

303

PROCESS
PRIORITY

EVENT

Process Scheduling and Swapping

BASE PRIORITY

TIME

Figure 9-6 Priority Modification

their base priorities where they can be interrupted by more event­
driven (I/O-bound) processes.

Priority increments are given for the following types of system events
(ordered from greatest to smallest):

• Terminal read completion

• Terminal write completion and other buffered I/O

• Direct I/O (e.g., disk or magtape) completion and WAKE, common
event flag wait, etc.

This gives treatment of processes with equal base priority in the fol­
lowing order of preference:

• Response to terminal input
• Terminal display·

• File I/O and other interaction

• Compute bound

SWAPPING
Swapping is accomplished by a swapper process. All of its code and
data areas are contained in system space.

The swapper performs the following functions:

1. Balancing the available page 90unt

2. Modified page writing

3; Swap scheduling'

304

Process Scheduling and Swapping

4. Outswapping

5. Inswapping

6. Process creation

Although the functions performed by the swapper are essential to
system operation, the swap per is a normally scheduled process to
permit the assignment of an appropriate priority. The swapper priority
is 16. That priority is the lowest of all realtime processes and higher
than all normal processes. Process creation is discussed in Chapter
13, Virtual Memory and Memory Management.

Balancing the Available Page Count
The system maintains a number of physical pages that are not part of
any process's working set and that are available for use by a user's
process. The swapper utilizes these available pages when it brings a
process's working set into memory and releases them when it swaps a
process's working set to secondary storage. Likewise, memory man­
agement uses these pages to fault a virtual page of a process into
memory and releases them when pages are removed from the
process's working set.

Memory management maintains two lists of available pages: the free
page list and the modified page list. Although modified pages are not
immediately available for use, they become free pages after being
written to backing storage. The modified page is written to backing
storage only when that page is required as a free page. A page either
list is referred to as a page in transition.

The number of free pages has a significant influence on system per­
formance when a number of processes are actively paging. Therefore,
the swapper attempts to keep the number of free pages within a spe­
cific range. The range is determined by the following two SYSGEN
parameters:

• A desired number of free pages

• The lowest acceptable number of free pages

When the number of free pages falls below the lower limit, the swap­
per is initiated to balance the count. The swapper performs page
count balancing by outswapping the process which, according to an
algorithm, is the most desirable to outswap (see below for the outswap
algorithm). The swapper also writes out modified pages.

The number of pages can fall below the lower limit for the following
reasons:

305

Process Scheduling and Swapping

1. A process that is resident acquired additional physical pages

2. A process was inswapped

3. A global section is deleted

Modified Page Writing
Modified pages are placed on the modified page list to be processed
by the swapper and written to their backing storage address. After the
backing storage copy of the page has been updated, the page is
placed on the free list.

The writing of modified pages is not initiated immediately when a page
is first placed on the modified page list. Rather, the swapper begins
writing pages from the list when any of the following events occurs:

1. Adding a page to the list causes it to exceed a threshold size

2. The free list falls below its low limit

3. Space is needed for an inswap candidate

Deferring the writing of modified pages has two benefits:

1. Modified pages may be written in clusters, increasing the effective
disk throughput

2. Modified pages may be faulted back into a process' working set,
eliminating the need to write them altogether

Swap Scheduling Philosophy
Swapping normally is motivated by the need to inswap a process that
would be executable if its working set were moved from secondary
storage into main memory. The function of swap scheduling is to de­
termine the highest priority process in the nonresident executable
state and obtain sufficient memory to contain that process.

The needed memory is obtained by acquiring excess free pages. The
number of excess free pages is determined by subtracting the desired
number of free pages from the actual number of free pages. If the
result is a sufficient number of pages, the nonresident process is
swapped into memory. If the result is an insufficient number of pages
for the process to be inswapped, additional pages are acquired by
outswapping suitable processes or by writing modified pages. The
pages released by outswapping are added to the count of free pages.

An executable resident process is not outswapped to acquire memory
for a normal process unless it has completed its first quantum. The
intent is to ensure that some useful execution occurs for a process
once the inswap investment has been made.

Each time a process is swapped into memory, the swapper balances
the available page count.

306

Process Scheduling and Swapping

A nonresident process with a working set that currently cannot fit into
available memory is not bypassed for a smaller process of lower pri­
ority.

Swap Scheduling Algorithm
The procedure for deciding to initiate an inswap is divided into two
phases:

1. Inswap scheduling-the selection of the highest priority inswap
candidate

2. Outswap scheduling-the selection of processes to be removed
from main memory to enable the desired inswap to occur

Both phases are repeated each time a resident process is outswapped
to permit changes that affect the choice in inswap and outswap candi­
dates to be recognized as soor as possible.

Inswap Scheduling
Processes are selected for inswapping by choosing the highest priori­
ty process in the nonresident executable state queues. When the
inswap is complete, the process is placed in one of the resident execu­
table state queues.

Each time it is wakened from its normal hibernation state, the swapper
process attempts to find an inswap candidate. The swapper is wak­
ened after any of the following events:

1. A process is deleted

2. The free page list becomes too big or too small

3. The modified page list becomes too big

4. One second passes

5. A process is added to the nonresident executable state

6. A resident process is placed into a wait (only, however, if the
process has nooutstanding direct I/O and some outstanding buff­
ered I/O)

Only the addition of a process to the nonresident executable state can
alter the choice o.f an inswap candidate; the remaining conditions in- '
crease the availabilityof memory or ou~swap candidates.

If no swap is currently in process and an inswap candidate exists, the
swapper is awakened to attempt the inswap, provided that it can
obtain sufficient' memory for the process.

Outswap Scheduling
Most of the swap scheduling effort involves obtaining memory re­
quired for the inswap candidate or balancing the free page count.

307

Process Scheduling and Swapping

Occasionally, the number of excess free pages is sufficient to satisfy
the inswap memory requirement. Normally, one or more resident
processes must be outswapped to obtain the required memory.

The memory requirement to be satisfied by outswap scheduling has
two components:
1. That required to reach the desired number of available pages
2. That required to contain the inswap candidate, i.e., the sum of

private and global page counts for the candidate

Before attempting to obtain memory for a desired inswap candidate,
the swapper adjusts the number of free pages, if necessary. The·most
suitable outswap candidate processes are outswapped until the num­
ber of available pages is greater than or equal to the desired number
of pages required for the inswap. Once the count of available pages is
balanced, 1.tIe swapper attempts to obtain memory for an inswap can­
didate.

To select an outswap candidate, the outswap schedule checks a list of
process states in a fixed order. The scheduler passes down the list
until a candidate is found. That process is then outswapped.

Some states have constraints, others do not. For example, a process
in its initial quantum is disqualified as an outswap candidate.

State queues that contain resident processes are examined for possi­
ble outswap candidates in the following order:

1. Suspended (SUSP)

Local event flag wait with direct 1/0 count equal to zero (LEF)

Hibernating (HIB)

Common event flag wait with direct 1/0 count equal to zero (CEF)

Mutex wait (MWAIT)

Processes in the above wait states are considered to be outswap
candidates regardless of their priority relative to that of the inswap
candidate.

Processes with a nonzero direct I/O count have a higher probabil­
ity of their event flag wait being satisfied quickly.

2. Free page wait (FPG)

Collided page wait (COLPG)

308

Process Scheduling and Swapping

A process in one of the above states is outswapped only if the
inswap candidate is of equal or greater priority.

3. Common event flag wait with nonzero direct I/O count (CEF)

Local event flag with a nonzero direct I/O count (LEF)
Page fault wait (PFW)

Executable (COM)

The above state queues contain the processes most likely to
benefit from balance set residency. Both priority and the quantum
flag are observed. The quantum flag indicates that the first quan­
tum is in progress.

If an available page deficit is being corrected, the outswap is per­
formed, and the scheduling procedure is repeated. Otherwise, the
search for outswap candidates continues until the page count is bal­
anced or all eligible outswap candidates have been examined. The
most suitable outswap process is outswapped. The combined
inswap/outswap scheduling operations are repeated. Eventually
enough memory becomes available to perform the desired inswap.

Process Creation
The swapper performs a major portion of the process creation func­
tion by making copies of a predefined shell process, which provides
the initial. context and virtual address space for a process. The shell
process isswapped into memory to create the process initially.

All processes that are swapped out of memory exist in a swap file as a
swap image. The swap image of the shell process exists as part of the
executive disk image. Using a shell process for process creation re­
quires very little specific code because much of the normal swapping
mechanism is used. However, it allows any degree of complexity for
the shell process.

309

CHAPTER OVERVIEW
Dealing with exception, exit, and asychnronous conditions and events
requires' sophisticated software mechanisms such as those incorpo­
rated into the, VAX/VMS operating system. The goal of condition han­
dling is the efficient handling of conditions and events without shutting
down the system or interfering with other processes is the goal of
condition handlers and traps. In this chapter theVAX/VMS solution to
such goals is examined.

Topics are:

• Condition Handlers

• Exit Handlers
• Asynchronous System Traps

310

INTRODUCTION

CHAPTER 10

SPECIAL EVENT HANDLING

During the execution of an image, both expected and unexpected
conditions, called exceptions, can occur. An exception is any event
that is detected by the hardware or software, and which interrupts the
execution of the image. For example, arithmetic overflow or underflow
and reserved opcode or operand faults are, for example, exceptions.

Condition handlers and exit handlers allow a process to respond syn­
chronously to unexpected or expected conditions.

Asynchronous System Traps (ASTs), on the other hand, are interrupts
(or at least reactions to an interrupt). Condition handlers are used to
manage hardware-generated exceptions and software-generated sig­
nals, while exit handlers are used to clean up local databases during
the termination of an image's execution.

Hardware generated exception conditions represent error conditions
and must be corrected if program execution is to continue. Some
software routines may generate exception conditions; these may be
warning or error conditions. Software exceptions may also be caused
when an error or severe error status is returned from a call to a system
service.

CONDITION HANDLERS
A condition handler is a procedure that is executed in response to a
hardware- or software-detected exception condition. Hardware­
detected conditions cause the hardware to vector to a kernel mode
routine that is responsible for interpreting the condition and dispatch­
ing control to the proper condition handler. When a software-detected
condition occurs, the software signals the condition by calling a library
procedure that is responsible for dispatching the condition to the
proper condition handler.

Bo~h hardware- and software-detected exceptions occur synchro­
nously with the execution of a process. That is, they occur as the result
of the execution of a specific instruction sequence; if that sequence
were repeated, the same exception would occur again. Examples of
hardware-detected exceptions include reserved operands, arithmetic
traps, and access violations. Examples of conditions that result in the
signaling of software-detected exceptions are an argument value that
is out of range and the passing of an invalid argument to a called
subroutine that does not return a status value, e.g., passing a negative
number to a square root routine.

311

Special Event Handling

The VAX/VMS operating system provides two methods for specifying
condition handlers:
• Specifying the address of a condition handler in the first longword of

the procedure call frame

• Establishing exception vectors with the Set Exception Vector system
service

The first method is the most common way to specify a condition
handler; the second method-the Set Exception Vector system ser­
vice-allows the specification of addresses for a primary and a secon­
dary exception vector. There is also a last chance handler that is called
after all stack handlers have been called. The exception vectors are
used primarily for debuggers or program monitors.

If an exception occurs, and no user-specified condition handler exists,
the default condition handler established by the command language
interpreter takes control; it issues a descriptive message and optional­
ly performs an exit on behalf of the image that incurred the exception,
depending on whether a warning condition or error occurred.

Exception Dispatching
When a hardware-detected exception condition occurs within a proc­
ess, the hardware vectors to a kernel mode routine after pushing PSL,
PC, and arguments, if any, on the kernel stavk. The actual number of
arguments pushed depends on the type of exception. The kernel
mode routine that gains control is called the exception dispatcher and
is responsible for dispatching the exception to the proper condition
handler. To locate a condition handler, the dispatcher examines only
the stack and vectors for the access mode in which the exception
occurred.

When a software-detected exception condition occurs, the detecting
software signals the occurrence of the condition by constructing an
appropriate argument list and calling a library procedure to perform
the signal dispatching. The search sequence for dispatching condi­
tions is the same whether the condition is detected by software or
hardware.

SEARCHING FOR A CONDiTION HANDLER
When an exception occurs, the primary exception vector and then the
secondary exception vector are examined to determine if either con­
tains the address of a handler. If either is nonzero, a condition handler
has been found.

If both are zero and the exception was hardware-detected, the call
stack for the appropriate access mode must be searched fora condi-

312

Special Event Handling

tion handler. The mode is the one at which the exception occurred or
was signaled.

The call stack is searched by following the saved frame pOinter (FP)
register images backward through the stack. At the time of the excep­
tion, the FP pOints to the current call frame. Because the condition
handler address is the first longword in a call frame, the FP also pOints
to the longword that can specify a condition handler. Each call frame
contains a saved copy of the previous call frame FP. Thus it is possible
to trace backward through the call frames, examining the first
longword in each frame to determine whether it i's nonzero.

The search back through the call stack is terminated by finding a
condition handler or detecting a previous frame pOinter that is zero.
The search of the call stack is performed at the access mode at which
the exception or signal occurred. The stack frames are accessed, and
if a frame is inaccessible, an exception occurs. The exception or signal
dispatcher declares its own condition handler for access violations
and processes any exceptions it causes.

FATAL ERRORS AND SYSTEM CRASHES
If the access mode incurring a hardware exception was kernel or
executive and any of the following conditions exist, the system is shut
down in a controlled fashion:

1. No condition handler could be found

2. All condition handlers that were found resignaled the condition

3. An access violation was detected while searching the stack

Not finding a condition handler for kernel or executive mode is consid­
ered a fatal system error. If the access mode was either supervisor or
user, an error message is issued and an Exit system service is execut­
ed on behalf of the process at the access mode of the exception. The
exit argument supplied to the system service is "absence of condiUon
handler."

Argument List Passed To The Handler
If a condition handler is found in the primary or secondary vector or on
the call stack, a complete argument list is constructed in preparation
for reflecting the exception to the proper handler. The argument list
consists of two addresses that point to longword arrays.

The first argument is an array containing the signal arguments and the
second is an array containing the mechanism arguments. The signal
array contains values describing the condition. The mechanism array
contains the condition context. The first longword of each array speci­
fies the number of arguments in the array. The depth parameter de­
fines the frame number in which the condition handler was found.

313

C CONDITION

B EXECUTION

A EXECUTION

Special Event Handling

0

FP

0

FP

Ah

FP

I
START

I---
(NO

-

f--
(NO

t---

f---

CONDITION
OCCURS

FP
HANDLER)

HANDLER)

(HA NDLER FOUND)

t---

Figure 10-1a Stack Search of Multiple Conditions

CONDITION I OCCURS

B

1
A .. Ah

1
START

Figure 10-1 b Conceptual Flow Diagram of Stack

314

Special Event Handling

Condition handlers are called using the standard procedure call
conventions. They execute at the access mode at which the exception
occurred.

Condition Handler Actions
Once entered, a condition handler has three alternatives:
1. Fix the problem and return a status value indicating that execution

is to be continued at the point of the exception

2. Determine that it does not handle the exception and return a
status value indicating that the exception is to be resignaled

3. Call the Unwind Call Stack system service to unwind the call stack
to a specific frame

EXIT HANDLERS
Exit handlers are procedures that are called whenever an image re­
quests an Exit system service from user, supervisor, or executive
mode. Exit handlers allow a procedure that is not on the call stack to
gain control and clean up procedure-specific databases.

Exit handlers are specified using the Declare Exit Handler system
service. This service accepts as an argument the address of a termina­
tion handler control block. The termination handler control block mini­
mally contains: alongword used to link termination handler control
blocks together, the entry point address of an exit handler, the number
of exit arguments, and one argument that is the address of a longword
to receive the exit status value. Typically, additional arguments are
specified to contain pOinters and values that enable the exit handler to
clean up a database. Figure 16-2 illustrates the format of an termina­
tion handler control block.

FORWARD LINK

EXIT HANDLER ADDRESS

0 I n

EXIT REASON ADDRESS

- -
ADDITIONAL

- -
EXIT

- -
ARGUMENTS

- -
IF ANY

- -

Figure 10-2 Termination Handler Control Block

315

Special Event Handling

The VAX/VMS operating system maintains a separate list of termina­
tion handler control blocks for each access mode. Each list is in last­
in/first-out order. As each exit handler is specified, its termination
handler control block is added to the front of the list for that access
mode. The execution of an exit handler is a one-shot occurrence. That
is, once executed, it must be respecified before it is executed again.

Exit Dispatching
The execution of exit handlers is triggered by a call to the Exit system
service from user, supervisor, or executive mode. If the call is made
from kernel mode, the process is immediately deleted after running
down I/O and performing other cleanup operations. Otherwise, the
appropriate lists of termination handler control blocks are examined
to determine if any exit handlers were specified.

The exit handler dispatcher scans the list of termination handler
control block one entry at a time. The respective exit handler is called
for- each one. The argument list specified in the call to the exit handler
is that specified in the termination handler control block itself; the
reason for the exit is filled into the longword whose address is speci­
fied by the first argument. If the entire list is scanned and control
returns to the exit handler dispatcher (Le., if none of the exit handlers
resets and changes the flow of control), another Exit system service is
executed.

ASYNCHRONOUS SYSTEM TRAPS
Certain system services allow a process to request an interrupt for
notification of an event that occurs out of sequence with the execution
of the process. The system enables a trap for the event ~nd, when- it
occurs, the system delivers an interrupt to the process. Control is then
passed to the user-specified routine that handles the interrupt.

Since the interrupt occurs asynchronously (out of sequence) with re­
spect to the process's execution, the interrupt mechanism is called an
asynchronous system trap (AST). That is, the process does not have
direct control over the exact moment of AST delivery. The system
services that use the AST mechanism accept as an argument the
address of the AST service routine that should be given control when
the interrupt is delivered and a longword argument.

The AST service routine executed as a result of specifying an AST
entry point in a system service is a procedure. It is entered using a
CALLG instruction and must exit- using a RET instruction. The AST
service routine executes at the access mode in effect when it was
declared. The result is a call frame on the stack for the access mode of
the AST receiver, as illustrated in Figure 16-3.

316

Special Event Handling

0

MASK I PSW

SAVED AP

SAVED FP

SAVED PC

REGISTERS
SPECIFIED BY
ENTRY MASK

0 I 5

AST PARAMETER

SAVED RO

SAVED Rl

PC OF AST

PSL OF AST

Figure 10-3 AST Receiver Stack Content

:F

...,

>

I~

P :SP

ARGUMENT
LIST

The argument list supplied to the AST routine is contained on the
stack for the access mode receiving the AST. The registers PC and
PSL in the argument list are those saved at the point at which AST
delivery interrupted the process.

When an AST is requested for a process, the following three events
occur:

1. The system queues the AST in an AST queue linked to that proc­
ess's software process control block (PCB)

2. When appropriate enabling conditions exist, the AST is delivered
to the process

3. The process's AST handling routine receives the AST

If conditions permit, the AST can be delivered directly to the process
rather than being enqueued.

AST Enqueuing
The asynchronous system trap (AST) queue for a process is main­
tained in order of access mode. The highest privileged (lowest
numbered) access mode is at the head of the queue. The queue is
first-in/first-out within an access mode.

When an AST is specified for a process, it is either delivered directly to

317

Special Event Handling

the process or queued to the PCB, depending on the setting of the
AST control bits in the PCB and the state of the process. If the AST is
deliverable based on a check 01' the AST enabled and active bits in the
PCB, and if the process is currently executing, the AST is delivered to
the process. The system computes the new value of the AST Level
(ASTL VL) and stores it in the hardware PCB contained in the process
header.

If the AST is deliverable and the process is the current process, the
ASTLVL register is also updated. If the process is not the current
process, an AST enqueuing event is reported for the process.

If the AST is deliverable but the process is nonresident, the AST is
enqueued rather than delivered and an AST enqueuing event is re­
ported. The swapper computes the proper ASTLVL value when the
process is made resident.

If the AST is not deliverable based on the state of the AST enabled and
active bits, the AST control block is placed in the proper position in the
AST queue. An AST enqueuing event is reported.

I/O Status Posting AST
The posting of 1/0 status upon 1/0 completion is a special case of AST
enqueuing. Using the AST mechanism, the posting of 1/0 status is
performed in the context of the process that initiated the 1/0 opera­
tion.

The 1/0 status posting AST is executed in kernel mode at Interrupt
Priority Level (IPL) 2. It moves the final liD status to the specified 1/0
status block and moves the data for a buffered read from the system
buffer to the process buffer. Then, it releases the system buffer.

A normal AST control block is queued for the process as a result of the
handling of the I/O status posting request if a completion AST address
is specified in the 1/0 request packet.

AST Delivery
The actual delivery of a pending asynchronous system trap (AST) is
initiated by the AST delivery interrupt at interrupt priority level (IPL) 2.
The interrupt is triggered as a result of an return from exception or
interrupt (REI) instruction and is processed entirely on the kernel
stack. When the interrupt occurs, the system first checks for the deliv­
erability of the AST control block at the head of the queue. The AST is
deliverable if all of the following condition are met:

1. ASTs are enabled for that access mode

2. No AST is active for that access mode

3. The process is not executing at a more privileged access mode

318

Special EventHandling

An immediate return is taken if the AST is not deliverable. This appar­
ently redundant check is necessary to deal with an AST delivery inter­
rupt triggered as a result of executing the previous process which is
now inappropriate for the new current process.

If the AST control block is deliverable, the following steps are taken:

1. The AST control block is removed from the AST queue

2. The active bit for the proper access mode is set

3. A new value for ASTLVL is computed and placed into the ASTLVL
field of the hardware PCB and the ASTL VL processor register

Normal AST control blocks (those other than I/O status, SUSPEND
process, DELETE process, GET JPI, and power recovery ASTs) are
processed by building an AST stack frame on the stack for the access
mode of the receiver and removing the interrupt PC and PSL from the
kernel stack. A new PC and PSL for the proper mode are constructed
according to the AST control block. Both previous mode and current
mode are set to the mode for which delivery is being made. The sto­
rage for the AST control block just serviced is released. Then, the AST
handling routine specified in the control block is entered using the
return from exception or interrupt (REI) instruction.

I/O status requests are processed in a highly streamlined fashion
without building an AST stack frame. The I/O packet is either released
or turned into a normal AST control block and requeued for the access
mode originally making the I/O request.

Control of AST Delivery
Three methods exist for the control of AST delivery to a process:

1. Set AST Enable system service

2. Automatic disabling of ASTs for an access mode if an AST is
active for that mode

3. Setting the IPL higher than the AST delivery interrupt to inhibit
AST delivery (kernel mode only)

The AST Control system service allows a process to set or clear the
AST enable bits for each of the four access modes (only at the mode of
the caller). This method of AST control permits non-kernel mode
routines to synchronize with their ASTs.

AST delivery is implicitly disabled for an access mode when an AST is
currently active for that mode. The disable is removed when the AST
procedure returns.

Within kernel mode routines, both AST delivery to kernel mode and
interrupts can be disabled by raising the IPL.

319

Special Event Handling

Exception During AST Delivery
The AST delivery routine uses the exception mechanism to signal· a
software-detected condition if there is insufficient stack space to deliv­
er the AST. The AST control block for the AST detecting the stack
problem is released and the AST active state for the affected mode is
cleared. When this occurs, the AST is lost; however, the information in
the AST signal parameters is not. An AST fault condition is a serious
error and is intended to provide information, but not to permit continu­
ation.

320

321

CHAPTER OVERVIEW
A wide range of system services is incorporated into the VAX/VMS
operating system in order to assure the smooth and efficient execution
of user processes. The system services control input and output pro­
cedures, maintain logical and symbolic tables, handle exception con­
ditions, provide system traps, and keep track of time and time conver­
sion. In this chapter the calling standards for system services are listed
with some call examples. Also, the algorithms which the system ser­
vices operate are given for several cases.

Topics include:

• Event-related Services

• Asynchronous System Traps

• Logical Name Services

• 110 Services
• Timer and Time Services

• Exception Condition Services

• Process Control Services

• Memory Management Services

• Change Mode Services

• Lock Management Services

322

INTRODUCTION

CHAPTER 11

SYSTEM SERVICES

System services are procedures incorporated into and used by the
operating system to control resources available to processes, to
provide for communication among processe,s, and to perform basic
operating system functions, such as .the coordination of input/output
operations.

The VAX/VMS system services can be called both from the VAX-11
MACRO assembly language and from the VAX high-level languages.
The examples in this chapter are all MACRO calls; however, examples
for other languages can be found in the language user's guides, and
complete system services details can be found in The VAX/VMS Sys­
tem Services Reference Manua/.

Although most system services are employed primarily by the operat­
ing system itself on behalf of logged-on users, many are generally
available and provide techniques that can be used in application pro­
grams. For example, when a user logs onto the system,the Create
Process system service is called to create a user process. The user, in
turn, may call the Create Process service to create a subprocesss.

While many system services are available and suitable for application
programming, the general use of certain services must be restricted to
privileged users in order to protect the performance of the system and
the integrity of user processes.

Information about a user's privileges is maintained by the system
manager in the user authorization file (UAF). In addition to containing
user profile information, the authorization file also contains a list of
specific user privileges and resource quotas. When the user logs onto
the system, the, list of privileges and quotas assigned by the system
manager to the user is associated with the process created on the
user's behalf.

When the image issues a call to a system service that is protected by
privilege, the privilege list is checked. If the image has been granted
the specific system service privilege it requires, then the image is
permitted to execute that' system service; otherwise, a status code
indicating an error is returned. '

When a system service that uses a resource controlled by a quota is
called, the process's quota for that resource is checked. If the process
has exceeded its quota, or if it has no quota allotment, an error status

323

System Services

code maybe returned. In some cases, the process may be placed in a
wait state until the resource becomes available.

Some· system services provide techniques for coordinating and syn­
chronizing the execution of different processes. These services enable
users to control their subprocesses, allow users with group privilege to
affect processes in their group, and give users with world privilege the
ability to control any process.

A process can execute at anyone of four access modes: user, supervi­
sor, executive, or kernel. The access modes determine a process's
ability to access pages of virtual memory. Each page has a protection
code associated with it, specifying the type of access-read, write, or
no access-allowed for each mode.

I n some system service calls, the access mode of the caller is checked
to see whether the caller may execute a particular function.

The system services are organized in the following functional catego­
ries:

• Event Flag Services
• Asynchronous System Trap (AST) Services

• Logical Name Services
• Input/Output Services
• Process Control Services
• Timer and Time Conversion Services

• Condition Handling Services
• Memory Management Services
• Change Mode Services
• Lock Management Services

The following sections describe each of the system services.

EVENT FLAG SERVICES
Event flag services are those services that allow a process or a group
of cooperating processes to read, wait for, and manipulate event flags.
A process can use event flags to synchronize sequences of operations
in a program.

Event flags are status posting bits maintained by the VAX/VMS oper­
ating system for general programming use. Programs can use event
flags to perform a variety of signaling functions:

• Setting or clearing specific flags
• Testing the current status of flags
• Placing the process in a wait state pending the setting of a specific

flag or a group of flags

324

System Services

Moreover, event flags can be used in common by more than one
process as long as the cooperating processes are in the same group.

Event flags may be set in shared memory as well as in local memory.
Flags set in a multiport memory such as the MA780 multiport memory
can be used to coordinate processes on different processors.

Some system services can set an event flag to indicate the completion
or the occurrence of an event, and the calling program can test the
flag. For example, the user can specify that the Oueue I/O Request
($010) system service set an event flag when the requested input or
output operation completes.

Each event flag is identified by a unique decimal number referred to
by event flag arguments in system service calls. For example, if event
flag 1 is specified in a call to the $010 system service, then event flag
number 1 is set when the I/O operation completes.

To allow manipulation of event flag groups, the event flags are ordered
in clusters. Each cluster contains 32 event flags, numbered from right
to left, corresponding to bits 0 through 31 in a longword. The system
defines two types of clusters:

• A local event flag cluster can only be used internally by a single
process. Local clusters are automatically available to each process

• A common event flag cluster can be shared by cooperating
processes in the same group. Before a process can refer to a com­
mon event flag cluster, it must explicity "associate" with the cluster
by using the Associate Common Event Flag Cluster ($ASCEFC) sys­
tem service

The range of event flag numbers and the clusters to which they belong
are summarized in Table 11-1.

Table 11-1 Summary of Event Flag and Cluster Numbers

Cluster
Number

o
1

2
3

Event Flag
Numbers

0-31
32-63

64-95
96-127

Description

Process-local
event flag
clusters for
general use

Assignable
common
event flag
cluster

325

Restriction

Event flags 24
through 31 are
reserved for
system use.

Must be asso­
ciated before
use

System Services

Listed below are the event flag system services.

Associate Common Event FlagCluster-$ASCEFC
When a common event flag cluster is created,it must be identified by a
1- to 15-character name string. AU processes that associate with the
cluster must use the same name to refer to the cluster; the $ASCEFC
system service establishes the correspondence between the cluster
name and the actual cluster.

Before any processes can use event flags in a common event flag
cluster, the cluster must be created: the Associate Common Event
Flag Cluster ($ASCEFC) system service creates a common event flag
cluster. If the cluster has already been created, other processes in the
same group can call $ASCEFC to establish their association with the
cluster and use its flags. The protection to be applied to the cluster
and a permanent or nonpermanent status are assigned to the event
flag cluster when it iscreated.

The following example shows how a process might create a common
event flag cluster named COMMON-CLUSTER. .

CLUSTER .ASCID/COMMON-CLUSTER/;CLUSTER NAME

$ASCFEC-S EFN=#t;>5, NAME=CLUSTER ;CREATE
;CLUSTER

Disassociate Common Event Flag Cluster-$DACEFC
The Disassociate Common Flag Cluster system service disassociates
the requesting process,from the common event flag cluster that con­
tains the specified event flag. If the common event cluster is tempora­
ry, it is deleted .when the number of processes associated with it is
zero. An implicit disassociate is performed for all clusters to which an
image has associated, when the image exits. .

The following example illustrates the disassociation of the user's proc­
ess from the common event flag cluster containing event flag number
64. .

CNAME: .CLUSTER/;CLUSTER NAME

$DACEFC-S EFN=#64;DISASSOCIATE CLUSTER

326

System Services

Delete Common Event Flag Cluster-$DLCEFC
The Delete Common Event Flag Cluster system service causes a per­
manent common event flag cluster to become nonpermanent. The
cluster is actually deleted when no processes are associated with it. A
process must have the privilege to create a permanent event flag
cluster (PRMCEB) in order to delete one.

Set Event Flag-$SETEF
The Set Event Flag system service causes the specified event flag to
be set and causes any processes waiting for the event to be made
computable.

The following example associates the user process with common
event flag cluster 3 and sets the third flag within the cluster. Note that
event flag number 96 is equivalent to bit zero of the longword (cluster
3), and therefore event flag number 99 is equivalent to bit 3 in cluster
3.

SHARE: .ASCID/COMMON-CLUSTER/;CLUSTER NAME

$ASCFEC-S EFN=#96, NAME=SHARE ;ASSOCIATE WITH
;CLUSTER
$SETEF-S EFN=#!l9 ;SET 3RD FLAG IN COMMON-CLUSTER

Clear Event Flag-$CLREF
The Clear Event Flag system service sets an event flag in a local or
common event flag cluster to O.

The following example illustrates a system service call that clears
event flag 32.

$CLREF _S EFN=#32

Read Event Flags-$READEF
The Read Event Flags system service returns the current status of all
32 event flags in a local or common event flag cluster.

Wait For Single Event Flag-$WAITFR
The Wait For Single Event Flag system service tests the specified
event flag and returns immediately if the event flag is set. Otherwise,
the process is placed in a wait state until the event flag is set.

The user's process can be placed in a wait state for a pre-determined
period of time by specifying an event flag argument to the $SETIMR
service and then using the Wait For Single Event Flag system service
as follows:

327

TIME: .BLKQ

$SETIMR-S
$WAITFR-S

System Services

;WILL CONTAIN TIME INTERVAL TO WAIT

EFN=#33, DAYTIM=TIME ;SETTHETIMER
EFN=#33, ;WAIT UNTIL TIMER EXPIRES

Wait For Logical OR of Event Flags-$WFLOR
The Wait for Logical OR of Event Flags system service tests the event
flags specified by a mask within a specified cluster and returns im­
mediately if any of the specified flags are set. Otherwise, the process is
placed in a wait state until at least one of the selected event flags is set.

Wait for Logical AND of Event Flags-$WFLAND
The Wait for Logical AND of Event Flags system service allows a proc­
ess to specify a mask of event flags for which it wishes to wait. Allof
the indicated event flags within a specified event cluster must be set;
the process is placed in a wait state until they are all set.

The following example illustrates a program that issues two $QIO sys­
tem service calls, and uses the $WFLAND system service to wait until
both 110 operations complete before it continues execution.

The MASK argument specifies which flags in the cluster are to be
waited for: the first and second. The EFN argument specifies any flag
number in the cluster containing flags for which you are waiting.

$QIO-S
BSBW
$QIO-S
BSBW
$WFLAND-S
BSBW

EFN=#1, ...
ERROR
EFN=#2, ...
ERROR
EFN=#1, MASK=#tB0110
ERROR

;ISSUE FIRST QUEUE I/O REQUEST
;CHECK FOR ERROR
;ISSUE SECOND I/O REQUEST
;CHECK FOR ERROR
;WAIT UNTIL BOTH COMPLETE
;CHECK FOR ERROR

;CONTINUE EXECUTION

ASYNCHRONOUS SYSTEM TRAP (AST) SERVICES
Various system services allow a process to request that it be interrupt­
ed when a particular event (such as I/O completion) occurs. Since the
interrupt occurs asynchronously with respect to the process's execu­
tion, the interrupt mechanism is called an asynchronous system trap
(AST). The trap provides a transfer of control to a user~specified rou­
tine that handles the event.

The system services that use the AST mechanism accept as an option­
al argument the address of an AST service routine, that is, a routine to
be given control when the event occurs.

328

System Services

These service routines are:

• Queue I/O Request ($QIO)

• Set Timer ($SETIMR)

• Set Power Recovery AST ($SETPRA)

• Update Section File on Disk ($UPDSEC)

• Get Job/Process Information ($GET JPI)

For example, when the user calls the Set Timer ($SETIMR) system
service, the user can specify the address of a routine to be executed at
a particular time of .day or when a time interval expires.

The service sets the timer and returns; the program image continues
executing. When the requested timer event occurs, the system
"delivers" an AST by interrupting the process and calling a specified
routine, unless AST delivery is temporarily blocked. (Conditions that
can prevent AST delivery are explained later on in this section).

Each request for an AST is qualified by the access mode from which
the AST is requested. Thus, if an image executing in user mode re­
quests notification of an event by means of an AST j the AST service
routine executes in user mode.

A process that is in certain wait states can be interrupted for the
delivery of an AST and the execution of an AST service routine. When
the AST service routine completes execution, the process is returned
to the wait state, if the condition that caused the wait is still in effect.

The following wait states may be interrupted:

• Event flag waits

• Hibernation
• Resource waits and page fault waits

An AST routine must be a separate routine. The system calls the AST
with a CALLG instruction; the routine must return using a RET instruc­
tion. If the service routine modifies any registers other than RO or R 1, it
must set the appropriate bits in the entry mask so that the contents of
those registers are saved.

On entry to the AST service routine, the Argument Pointer (AP) regis­
ter points to an argument list that has the format:

329

System Services

31 8 7 o
0 I 5

AST PARAMETER

RO

R1

PC

PSL

The registers RO and R1, the PC, and PSL in this list are those that
were saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine
so that it can identify the event that caused the AST.

When an AST occurs, the system may not be able to deliver the inter­
rupt to the service routine immediately. An AST cannot be delivered if
any of the following conditions exist:

1. An AST service routine is currently executing at the same or at a
more privileged access mode

2. AST delivery is explicitly disabled for the access mode of the AST
being delivered

3. The process is executing at an access mode more privileged than
that for which the AST is declared

If an AST cannot be delivered when the interrupt occurs, the AST is
queued until the conditions disabling delivery are removed. Queued
ASTs are ordered by the access mode from which they were declared,
with those declared from more privileged access modes at the front of
the queue. If more than one AST is queued for an access mode, the
ASTs are delivered in the order in which they are queued.

The following example illustrates a program that calls the
$SETIMR system service with a request for an AST when a timer event
occurs.

330

NOON:
LIBRA:

.BlKQ
WORD

System Services

:Wlll CONTAIN 12:00 SYSTEM TIME
;ENTRY MASK FOR LIBRA

$SETMIR-S
BSBW

DAYTIM=NOON.ASTADIR=TIMEAST :SET TIMER
ERROR ~CHECKFORERROR

T1MEAST:
.WORD

RET
.END LIBRA

Timer
Interrupt

;ENTRY MASK FOR AST ROUTINE
;HANDlE TIMER REQUEST

;DONE

• The call to the $SETIMR system service requests an AST at 12:00
noon

• The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time format. For details on how this is
done, see "Timer and Time Conversion Services." The ASTADR
argument refers to TIMEAST, the address of the AST service routine

• When the call to the system service completes, the process
continues execution

• The timer expires at 12:00 and notifies the system. The system inter­
rupts execution of the process and gives control to the AST service
routine

• The user routine TIMEAST handles the interrupt. When the AST
routine completes, it issues a RET instruction to return control to the
program. The program resumes ~xecution at the point at which it
was interrupted

Listed below are the services that enable or disable AST delivery or
that require an AST service routine as an argument. (Other services
accept an AST service routine as an optional argument.)

Set AST Enable-$SETAST
The Set AST Enable system service enables or disables the delivery of
ASTs for the access mode from which the service call was issued.

Declare AST -$DCLAST
The Declare AST system service queues an AST for calling or for a
less privileged access mode. For example, a routine executing in sup­
ervisor mode can declare an AST for either supervisor or user mode.

Set Power Recovery AST -$SETPRA
The Set Power Recovery AST system service establishes a routine to
receive control using the AST mechanism after a power recovery is
detected.

331

System Services

LOGICAL NAME SERVICES
The VAX/VMS logical name services provide a technique for manipu­
lating and substituting character string names. Before discussing the
logical name services, the nature and use of logical names themselves
and of the software structures known as logical name tables will be
examined.

Logical names are commonly used to specify devices or for in­
put/output operations. The user can code programs with logical or
symbolic names to refer to physical devices or files, and then establish
an equivalence or real name by issuing the ASSIGN command from
the command stream prior to program execution. When the program
executes, a reference to the logical name results in the substitution of
the equivalence name.

Logical and equivalence name pairs are maintained in three logical
name tables. Each table is associated with a unique number identifier,
as follows:

Table
Process
Group
System

Number
2
1
o

A process logical name table contains names used exclusively by the
process. A process logical name table exists for each process in the
system. Some entries in the process logical name table are made by
system programs executing at more privileged access modes; these
entries are qualified by the access mode from which the entry was
made. Table 11-2 illustrates a user process logical name table.

This process logical name table equates the logical name TERMINAL
to the specific terminal TTA2:. INFILE and OUTFILE are equated to
disk file specifications: these logical names were created from
supervisor mode.

Table 11-2 Sample Process Logical Name Table (Group=200)

Logical Name
TERMINAL
IN FILE
OUTFILE

Equivalence Name
TTA2:
DM1 :[HIGGINS]TEST.DAT
DM1 :[HIGGINS]TEST.OUT

Access Mode
User
Supervisor
Supervisor

The group logical name table contains names that cooperating proc­
esses in the same group can use. The user must have special privilege

332

System Services

to place a name in the group logical name table. Table 11-3 illustrates
a sample group logical name table.

Table 11-3 Sample Group Logical Name Table

Logical Name
TERMINAL
MAILBOX
DISPLAY
TERMINAL

Equivalence Name
TTA1:
MB3:
TERMINAL
TTA3:

Group Number
100
200
200
300

The group logical name table shows entries qualified by group num­
bers; only processes that have the indicated group number can ac­
cess these entries.

In Group 100, the logical name TERMINAL is equated to the terminal
TTA 1:. Individual processes in Group 100 that want to refer to the
logical name TERMINAL do not individually have to assign it an equi­
valence name.

Group 200 has entries for logical names MAILBOX and DISPLAY.
Other processes in Group 200 can use these logical names for input
and output operations.

In Group 300, the logical name TERMINAL is equated to the physical
device name TTA3:. Note that there are two entries for TERMINAL in
the group logical name table. These are discrete entries, since they
are qualified by the number of the group to which they belong. Other
processes in Group 300 can refer to this logical name TERMINAL
without individually having to assign it an equivalence name.

The system logical name table contains names that all processes in
the system can access. This table includes the default names for all
system-assigned logical names. Only users with special privilege may
place a name in the system logical table. Table 11-4 illustrates a
system logical name table.

Table 11-4 Sample System Logical Name Table

Logical Name
SYS$LlBRARY
SYS$SYSTEM

Equivalence Name
DBAO:[SYSLlB]
DBAO:[SYSEXE]

333

System Services

The system logical name table contains the default physical device
names for all processes in the system. SYS$LlBRARY and
SYS$SYSTEM provide logical names for all users to refer to the direc­
tories containing system files.

The VAX/VMS operating system logical name services are listed be­
low.

Create Logical Name-$CRELOG
The Create Logical Name system service inserts a logical name and its
equivalence name into the process, group, or system logical name
table. If the logical name already exists in the respective table, the new
definition supersedes the old.

In the following example, the user can perform an assignment within a
program by providing character string descriptors for the name
strings and use the $CRELOG system service. The logical name TER­
MINAL is equated to the physical device name TTA2:.

TERMINAL:
TTNAME:

DESCRIPTOR
DESCRIPTOR

:DESCRIPTOR FOR LOGICAL NAME
:DESCRIPTOR FOR EQUIVALENCE

$CRELOG-S TBLFLG=#2.LOGNAM =TERMINAL.EQLNAM = TTNAME

The TBLFLG argument indicates the logical name table number, in
this case, the process logical name table.

Delete Logical Name-$DELLOG
The Delete Logical Name system service deletes a logical name and its
equivalence name from the process, group, or system logical name
table.

For example, the following call deletes all names from the process
logical name table that were entered in the table from usermode:

$DELLOG-S TBLFLG=#2

Translate Logical Name-$TRNLOG
The Translate Logical Name system service searches the logical name
tables for a specified logical name and returns an equivalence name
string. The process, group, and system logical name tables are
searched, in that order.

334

System Services

INPUT/OUTPUT SERVICES
The VAX/VMS operating system provides the user with two methods
to perform input/output operations:

• Indirectly, through VAX-11 Record Management Services (RMS)

• Directly, through input/output system services

VAX-11 RMS provides a set of macros for general purpose, device­
independent functions, such as data storage, retrieval, and modifica­
tion.

The I/O system services permit the user to utilize the I/O resources of
the operating system directly in a device-dependent manner. The I/O
system services can perform the following functions:

• Assign and deassign channels

• Queue I/O requests
• Synchronize I/O completion

• Allocate and deallocate devices

• Create mailboxes

• Perform network operations

Listed below are the input/output system services.

Assign I/O Channel-$ASSIGN
The Assign I/O Channel system service 1) provides a path between a
device and an I/O channel so that input/output operations can be
performed on the device, or 2) establishes a logical link with a remote
node on a network.

When coding a call to the $ASSIGN service, the following arguments
must be passed:

• Name of device (physical or logical device name)

• Address of word to receive channel number

The service returns a channel number which must be used when cod­
ing an input or output request. In the following example, an I/O chan­
nel is assigned to device TTA2. The channel number is returned in the
word whose address is TTCHAN .

TTNAME:
TTCHAN:

. ASCID

.BLKW
ITTA21
1

$ASSIGN S DEVNAM=TTNAME,CHAN=TTCHAN

335

;TERMINAL DESCRIPTOR
;TERMINAL CHANNEL NUMBER

System Services

Deassign I/O Channel-$DASSGN
The Deassign liD Channel system service releases an liD channel
acquired for input/output operations with the Assign I/O channel
($ASSIGN) system service.

In the following example, the user releases the terminal channel as­
signment acquired in the previous $ASSIGN example.

$DASSGN-,-S CHAN=TTCHAN

Queue I/O Request-$QIO
The Queue liD Request system service initiates an input or output
operation by queuing a request to a device associated with a specific
channel. Control returns immediately to the issuing process, which
can synchronize liD completion in one of three ways:

1. Specify the address of an AST routine that is to execute when the
liD completes

2. Wait for a specified event flag to be set

3. Poll the specified I/O status block for a completfon status

The event flag and liD status block, if specified, are cleared before the
I/O request is queued.

In the following example, the user synchronizes liD completion by
coding an event flag as an argument to $QIO.

$QIO_S EFN=#1,... ;ISSUE 1ST liD REQUEST
BSBW ERROR ;QUEUED SUCCESSFULLY?
$QIO _ S EFN =#2,... ;ISSUE 2ND I/O REQUEST
BSBW ERROR ;QUEUEDSUCCESSFULL Y?
$WFLAND_S EFN=#O,MASK=#tB0110
;WAIT TIL BOTH DONE

• When an event flag number is coded as an argument, $QIO clears
the event flag when it queues the liD request. When the liD com­
pletes, the flag is set

• In this example, the program issues two liD requests. A different
event flag is specified for each request

• The Wait for Logical AND of Event Flags ($WFLAND) system service
places the process in a wait state until both liD operations are
complete. The EFN argument can specify any flag in the cluster
containing the flags for which the user is waiting. The MASK argu­
ment indicates the specific flags for which the user is waiting

Queue I/O Request and Wait For Event Flag-$QIOW
The Queue liD Request and Wc:lit for Event Flag system service com­
bines the $QIO and $WAITFR (Wait for Single Event Flag) system
services. It can be used when a program must wait for liD completion.

336

System Services

Queue Input Request and Wait For Event Flag-$INPUT
The $INPUT macro is a simplified form of the Queue I/O Request and
Wait for Event Flag ($QIOW) system service. This macro queues a
virtual input operation using the 10$_ READVBLK function code and
waits for I/O completion.

Queue Output Request and Wait for Event Flag-$OUTPUT
The $OUTPUT macro is a simplified form of the Queue I/O Request
and Wait for Event Flag ($QIOW) system service. This macro performs
a virtual output operation using the 10$....:.WRITEVBLK function code
and waits for I/O completion.

Formatted ASCII Output-$FAO
The Formatted ASCI~ Output system service converts binary values
into ASCII characters and returns the converted characters in an
output string. It can be used to:

• Insert variable character string data into an output string

• Convert binary values into the ASCII representations of their deci­
mal, hexadecimal, or octal equivalents and substitute the result into
an output string

Input to the $FAO service consists of:

1. A control string that contains the fixed text portion of the output
and formatting directives. The directives indicate the position
within the string where substitutions are to be made, and describe
the data type and length of the input values that are to be substi­
tuted or converted

2. An output buffer to contain the string after conversions and sub­
stitutions have been made

3. An optional argument indicating a word to receive the final length
of the formatted output string

4. Parameters that provide arguments for the directive

Formatted ASCII Output with List Par~meter-$FAOL
The Formatted ASCII Output with List Parameter macro provides an
alternative way to specify input parameters for a call to the $FAO
system service.

Allocate Device-$ALLOC
The Allocate Device system service reserves a device for exclusive use
by a process and its subprocesses. No other process can allocate the
device or assign channels to it until the image that called $ALLOC exits
or explicitly deallocates the device with the Deallocate Device ($DAL­
LOC) system service.

337

System Services

In coding the $ALLOC system service, a'device name must be provid­
ed. The device name specified can be:

• A physical device name, for example, the tape drive MTB3:

• A logical name, for example, TAPE

• A generic device name, for example, MT:

If the user specifies a physical device name, $ALLOC attempts to
allocate the specified device. If the user specifies a logical name,
$ALLOC translates the logical name and attempts to allocate the
physical device name equated to the logical name. If the user specifies
a generic device name, but not a specific controller and/or unit num­
ber, $ALLOC attempts to allocate any available device of the specified
type.

The following example illustrates the allocation of a tape device speci­
fied by the logical name TAPE.

LOGDEV:
DEVDESC:

TAPECHAN:

CHANNEL

.ASCID

:LONG
.LONG
.BLKB

.BLKW

ITAPEI

64
DEVDESC,
64

;LOGICAL NAME FOR TAPE
;DESCRIPTOR FOR PHYSICAL NAME
;LENGTH OF BUFFER
;ADDRESS OF BUFFER
;GET PHYSICAL NAME RETURNED

;CHANNEL FOR 1/0 TAPE

$ALLOC-S DEVNAM = LOGDEV, PHYLEN = DEVDESC = DEVDESC.­
PHYBUF=DEVDESC

BSBW
$ASSIGN-S

BSBW

$DASSGN-S
BSBW
$DALLOC-S

ERROR
DEVNAM = DEVDESC,CHAN = T APECHAN

ERROR
;CONTINUE WITH 1/0

CHAN=TAPECHAN ;DEASSIGN CHANNEL
ERROR

;ASSIGN

DEVNAM = DEVDESC ;DEALLOCATE TAPE

• The $ALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character
string descriptor LOGDEV. The PHYBUF argument refers to the
buffer provided to receive the physical device name of the device
actually allocated, and its length. $ALLOC translates the logical
name TAPE and returns the equivalence name string into the buffer
at DEVDESC. It writes the length of the string in the first word of
DEVDESC

• The $ASSIGN command uses the character string returned by the
$ALLOCsystem service as the input device name argument, and
requests that the channel number be written into TAPECHAN

338

System Services

• When 1/0 operations are completed, the $DASSGN system service
deassigns the channel and the $DALLOC system service deallo­

. cates the device. The channel must be deassigned before the device
can be deallocated

Deallocate Device-$DALLOC
The Deallocate Device system service deallocates a previously allocat­
ed device. Exclusive use by the issuing process is relinquished and
other processes can assign or allocate the device.

The following example illustrates device deallocation.

$DALLOC _ S DEVNAM = DEVDESC

The system automatically deallocates at image exit any devices that
were allocated from within the image.

Mount Volume-$MOUNT
The Mount Volume system service allows a process to mount a single
volume, or a volume set. A device name, a volume name, and a logical
name must be specified.

Dismount Volume-$DISMOU
The Dismount Volume system service allows a process to dismount a
volume set. A call to $DISMOU must specify a device name. If the
volume mounted on the. device is part of a full mounted volume set,
and no flags are specified, the whole volume set is dismounted.

Get I/O Channellnformation-$GETCHN
The Get liD Channel Information system service returns information
about a device towhich an 1/0 channel has been assigned. Two sets of
information are optionally returned:

• Primary device characteristics

• Secondary device characteristics

In most cases, the two sets of characteristic information are identical.
However, the two sets provide different information .in the following
cases:

• If the device has an associated mailbox, the primary characteristics
are those of the assigned device and the secondary characteristics
are those of the associated mailbox

• If the device is a spooled device, the primary characteristics are
those of the intermediate device and the secondary characteristics
are those of the spooled device

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link

339

System Services

Get I/O Device Information-$GETDEV
The Get 1/0· Device Information system service returns information
about an I/O device. This service allows a process to obtain informa-

.. tion about a device to which the process has not assigned a channel.

Get DeviceNolume Information-$GETDVI
The $GETDVI system service returns information about an I/O device.
As with the $GETDEV system service, the process does not need to
have an I/O channel assigned to the device.

Cancel I/O on Channel-$CANCEL
The Cancel I/O on Channel system service cancels all pending I/O
requests on a specific channel. This may include the request currently
in progress, as well as all I/O requests queued.

For example, the $CANCEL system service can be called as follows:

$CANCEL_S CHAN=TTCHAN

In this example, the $CANCEL system service initiates the cancellation
of all pending I/O requests on the channel whose number is located at
TTCHAN.

Create Mailbox and Assign Channel-$CREMBX
Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using
RMS or I/O services. When a mailbox is created, a channel is assigned
to itfor use by the creating process. Other processes can then assign
channels to the mailbox using the $CREMBX or $ASSIGN system ser­
vice.

The Create Mailbox and Assign Channel ($CREMBX) system service
creates the mailbox or, if the specified mailbox exists, assigns a
channel to it. When the $CREMBX service creates a mailbox, it identi­
fies the mailbox by a user-specified logical name and assigns it an
equivalence name. The equivalence name is a physical device name in
the format MBAn:, where n is a unit number.

When another process assigns a channel tathe mailbox with the $AS­
SIGN system service, it can identify the mailbox by its logical name.
$ASSIGN automatically translates the logical name. The process can
obtain the MBAn: name by translating the logical name (with the
$TRNLOG system service), or it can call the Get I/O Channellnforma­
tion ($GETCHN) system service to obtain the unit number and the
physical device name.

340

System Services

Mailboxes are either temporary or permanent; user privileges are re­
quired to create either type. $CREMBX enters the logical name and
equivalence name for a temporary mailbox in the group logical name
table of the process that created it. The system deletes a temporary
mailbox when no more channels are assigned to it.

The $CREMBX system service enters the logical name and equi­
valence name for a permanent mailbox in the system logical name
table. Permanent mailboxes continue to exist until they are specifically
marked for deletion with the Delete Mailbox ($DELMBX) system ser­
vice.

Delete Mailbox-$DELMBX
The Delete M·ailbox system service marks a permanent mailbox for
deletion. The actual deletion of the mailbox and of its associated
logical name assignment occurs when no more I/O channels are as­
signed to the mailbox.

Broadcast-$BRDCST
The Broadcast system service writes a message to one or more termi­
nals.

Send Message to Accounting Manager-$SNDACC
The Send Message to Accounting Manager system service controls
accounting log activity and allows a process to write an arbitrary data
message into the accounting log file.

By default, the system writes a record into the accounting log· file
whenever a job terminates. Termination records are written for inter­
active users, batch jobs, non-interactive processes, log-in failures,
and print jobs. The $SNDACC system service allows users to write
additional data into the accounting log and allows privileged users to
disable or enable all accounting or accounting for particular types of
jobs.

Send Message to Symbiont Manager-$SNDSMB
The Send Message to Symbiont Manager system service is used by
the operating system to queue users' print files to a system printer or
to queue command procedure files for detached job execution.

Symbiont manager requests:

• Create and delete queues

• Add or delete files from a queue
• Change the attributes of files in a queue

• Start and restart dequeuing

341

System Services

Send Message to Operator-$SNDOPR
The Send Message to Operator system service allows a process to
send a message to one or more terminals designated as operators'
terminals and optionally receive a reply.

This service is used by the system to implement the REQUEST and
REPLY commands, which provide communication between users and
operators. An operator establishes a terminal as an operator's console
by issuing the REPLY tENABLE command, specifying the types of
message that will be handled. Users can then send messages to the
operator with the REQUEST command, optionally requesting replies.

Send Message to Error Logger-$SNDERR
The Send Message to Error Logger system service writes an arbitrary
message to the system error log file. The user-specified message is
preceded by the date and time.

Get Message-$GETMSG
The Get Message system service locates and returns message text
associated with a given message identification code into the caller's
buffer. The message can be from the system message file or can be a
user-defined message.

This service is used by. the operating system to retrieve messages
based on unique message identifications and to prepare to output
them.

Put Message-$PUTMSG
The Put Message system service is a generalized message formatting
and output routine used by the operating system to write informational
and error messages to user processes.

$PUTMSG retrieves ·a message from the system message file by call­
ing the Get Message ($GETMSG) system service and formats the
message by calling the Formatted ASCII Output ($FAO) system ser­
vice, if necessary. If the caller specifies an action routine to receive
control, the action routine is called before $PUTMSG writes each for­
matted message to the process's current output device. If the proc­
ess's error device is different than theoutput device,$PUTMSG writes
the message to the error device as well.

The action routine can access the message text, scan it, write it to a
user-specified file or device, modify it, and so on.

PROCESS CONTROL SERVICES
A process is the basic executable entity scheduled by the system
software. It provides the context in which an image executes. When

342

System Services

the user logs onto the system, the system creates a process for the
execution of program images.

A process is either a subprocess or a detached process. A subprocess
receives a portion of its creator's resource quotas, and must terminate
before the creator. A detached process is fully independent. An exam­
ple of a detached process is the process created by the system for the
user during login.

Process control services allow the user to create, delete, and control
the execution of processes.

Create Process-$CREPRC
The Create Process system service allows a process to create another
process. The created process can be either a subprocess or a
detached process.

When coding the $CREPRC system service, the IMAGE argument
must be provided. This argument provides the process with the name
of the program image to execute. The specification of the UIC argu­
ment controls whether the created process is a subprocess or a de­
tached process. In the following example, a subprocess is created to
execute the program image in the file named LlBRA.EXE.

PROGRAM: .ASCID /LiBRA/ ;IMAGE TO EXECUTE

$CREPRC-S IMAGE;PROGRAM, ... ;CREATE PROCESS TO EXE-
CUTE LIBRA

In this example, only a file name is specified; the service uses current
disk and directory defaults, performs logical name translation, uses
the default file type of EXE, and locates the most recent version of the
image file. When the subprocess completes execution of the image,
the subprocess is deleted.

Delete Process-$DELPRC
The Delete Process system service allows a process to delete itself or
another process.

Process deletion completely removes a process from the system.
Deletion occurs as a result of any of the following conditions:

• The command stream contains a LOGOUT command or an end-of­
file

• An image specified by $CREPRC exits
• A process issues the Delete Process ($DELPRC) system service

343

System Services

User privileges are required to delete:

• Other processes in the same group (GROUP privilege)

• Any process in the system (WORLD privilege)

For example, if a process has created a subprocess named ACE, it
can delete the subprocess as shown below:

PROCESS: .ASCIO/ACEI

$OELPRC-S PRCNAM=PROCESS

Hibernate-$HIBER
There are two ways to halt the execution of a process temporarily:
hibernation, performed by the Hibernate ($HIBER) system service,
and suspension, performed by the Suspend Process ($SUSPND) sys­
tem service. However; hibernation and suspension differ in the follow­
ing ways:

. Process Hibernation and Suspension
Hibernation Suspension

Can only hibernate self Can suspend self or another
process, depending on privilege

Reversed by $WAKE system Reversed by $RESUME system
service service

Interruptible; can receive ASTs Noninterruptible; cannot re-
ceiveASTs

Can wake self Cannot cause self to resume

Can s·chedule wakeup at an ab- Cannot schedule resumption
solute time or at a fixed time in-
terval

Hibernate/wake complete Requires system dynamic
quickly; require little system memory
overhead

The Hibernate ($HIBER) system service allows a process to make itself
inactive but to remain known to the system so that it can be interrupt­
ed, for example, to receive ASTs. A hibernate request is a wait-for­
wake-event request. When a wake is issued for a hibernating process
with the $WAKE system service or as a result of a Schedule Wakeup
($SCHDWK) system service, the process continues execution at the
instruction following the Hibernate call.

344

System Services

Wake-$WAKE
The Wake system service activates a process that has placed itself in a
state of hibernation with the Hibernate ($HIBER) system service.

In the following example, the $WAKE system service is issued to wake
(activate) the process ORION.

ORIONDESC: .ASCID IORIONI ;DESCRIPTOR FOR PROCESS NAME

$WAKE-S PRCNAM = ORIONDESC :WAKE
ORION

BSBW ERROR

Schedule Wakeup-$SCHDWK
The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the Hiber­
nate ($HIBER) system service. A wakeup can be scheduled for a spec­
ified absolute time or for a delta time. Optionally, the request can
specify that the wakeup is to be repeated at fixed intervals.

For an example of schedule wakeup, refer to "Timer and Time Conver­
sion Services."

Suspend Process-$SUSPND
The Suspend Process system service allows a process to suspend
itself or another process. A suspended process cannot receive ASTs
or otherwise be executed until another process resumes or deletes it.

User privileges are required to suspend:

eo Other processes in the group (GROUP privilege)

e Any other process in the system (WORLD privilege)

Resume Process-$RESUME
The Resume Process system service causes a process previously
suspended by the Suspend Process ($SUSPND) system service to
resume execution, or cancels the effect of a subsequent suspend re­
quest.

User privileges are required to resume execution of:

e Other processes in the same group (GROUP privilege)

e Any other process in the system (WORLD privilege)

345

System Services

Cancel Wakeup-$CANWAK
The Cancel Wakeup system service removes all scheduled wakeup
requests for a process from the timer queue, including those made by
the caller or by other processes. Scheduled wakeup requests are
made with the Schedule Wakeup ($SCHDWK) system service.

User privileges are required to cancel scheduled wakeup requests for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Exit-$EXIT
The Exit system service is used by the operating system to initiate
image rundown when the current image in a process completes exe­
cution. Control normally returns to the command interpreter.

Force Exit-$FORCEX
The Force Exit system service causes an Exit ($EXIT) system service
call to be issued on behalf of a specified process.

User privileges are required to force an exit for:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

In the following example, a call to $FORCEX causes the image execut­
ing in the process named SMITH to exit.

PROGNAME: ISMITHI ;DESCRIPTOR FOR PROCESS NAME

$FORCEX-S PRCNAM=PROGNAME

Declare Exit Handler-$DCLEXH
The Declare Exit Handler system service describes an exit handling
routine to receive control when an image exits. Image exit normally
occurs when the image currently executing in a process returns con­
trol to the operating system. Image exit may also occur when the Exit
($EXIT) or Force Exit ($FORCEX) system service is called.

The following example illustrates the use of the Declare Exit Handler
system service.

346

EXITBLOCK:

STATUS:

PEGASUS:

EXITRTN:

10$:

.LONG

.LONG

.LONG

.LONG
BLKL

WORD
$DCLEXH-S

RET

WORD
CMPL
BEaL

RET

System Services

o
EXITRTN
1
STATUS
1

:EXIT CONTROL BLOCK
:SYSTEM USES THIS FOR POINTER
;ADDRESS OF EXIT HANDLER
;NUMBER OF ARGS FOR HANDLER
:ADDRESS TO RECEIVE STATUS CODE
;STATUS CODE FROM$EXIT

tM ;ENTRY MASK FOR PEGASUS
DESBLK=EXITBLOCK ;DECLARE EXIT HANDLER

:END OF MAIN ROUTINE
;EXIT HANDLER

tM ;ENTRY MASK
STATUS.#SS$-NORMAL ;NORMAL EXIT?
10$;YES.FINISH

:NO.CLEAN UP

:FINISHED

• EXITBLOCK is the exit control block for the exit handler EXITRTN.
The third longword indicates the number of arguments to be
passed. In this example only one argument is passed; this is the
address of a longword for the system to store the return status code.
This argument must be provided in an exit control block

• The $DCLEXH system service call designates the address of the exit
control block, thus declaring EXITRTN as an exit handler

• EXITRTN checks the status code. If·this is a normal exit, EXITRTN
returns control. Otherwise, it handles the error condition

Cancel Exit Handler-$CANEXH
The Cancel Exit Handler system service deletes an exit control block
from the list of control blocks for the calling access mode. Exit control
blocks are declared by the Declare Exit Handler ($DCLEXH) system
service, and are queued according to access mode in a last-in, first­
out order.

Set Process Name-$SETPRN
The Set Process Name system service allows a process to establish or
to change its own process name.

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name
to DIPSY as follows:

DIPSY: DESCRIPTOR :NAME DESCRIPTOR

$SETPRN-S PRCNAM=DIPSY

347

System Services

Set Priority-$SETPRI
The Set Priority system service changes a process's base and current
priority. The system scheduler uses the current priority to determine
the order in which executable processes are to run.

User privileges are required to:

• Change the priority for other processes in the same group (GROUP
privilege)

• Change the priority for any other process in the system (WORLD
privilege)

• Set any process's priority to a value greater than one's own initial
base priority (SETPRI privilege)

Set Resource Wait Mode-$SETRWM
The Set Resource Wait Mode system service allows a process to indi­
cate what action a system service should take when it lacks a system
resource required for its execution:

• When resource wait mode is enabled (the default mode), the service
waits until a resource is available and then resumes execution

• When resource wait mode is disabled, the service returns control to
the caller immediately with a status code indicating that a resource
is unavailable

Get Job/Process Information-$GET JPI
The Get Job/Process Information system service provides account­
ing, status, and identification information about a specified process.

User privileges are required to obtain information about:

• Other processes in the same group (GROUP privilege)

• Any other process in the system (WORLD privilege)

Set Privileges-$SETPRV
The Set Privileges system service allows a process to enable or dis­
able specified user privileges.

TIMER AND TIME CONVERSION SERVICES
Many applications require the scheduling of program activities based
on clock time. In VAX/VMS, an image can schedule events for a speci­
fic time of day, or after a specified time interval. Timer services can:

• Schedule setting an event flag or queuing an asynchronous system
trap (AST) for the current process, or cancel a pending request that
has not yet been honored

• Schedule a wakeup request for a hibernating process, and cancela
pending wakeup request that has not yet been honored

• Set the system time

348

System Services

VAX/VMS maintains the current date and time (using a 24-hour clock)
in 64-bit format. The time value is a binary number in 100-nanosecond
units offset from the system base date and time, which is 00:00
o'clock, November 17, 1858. This is the Smithsonian base date and
time for the astronomical calendar.

All the time values passed to system services must also be in 64-bit
format. A time value can be expressed as:

• An absolute time, which is specific date and time of day. Absolute
times are always positive values

• A delta time, which is a future offset (number of hours, minutes,
seconds, and so on) from the current time. Delta times are always
expressed as negative values

Time conversion services:

• Obtain the current date and time in an ASCII string or in system
format

• Convert an ASCII string into the system time format

• Convert a system time value into an ASCII string

• Convert the time from system format to integer values

Listed below are the Timer and Time Conversion System Services.

Get Time-$GETTIM
The Get Time system service furnishes the current system time in 64-
bit format. The time is maintained in 100-nanosecond units from the
system base time.

The current time can be obtained in system format with the Get Time
($GETTIM) system service, which places the time in a quadword buff­
er. For example:

TIME: .BLKQ ;BUFFER FOR TIME

$GETTIME-S TIMADR=TlME ;GET TIME

This call to $GETTIM returns the current date and time system format
in the quadword buffer TIME.

Convert Binary Time to Numeric Time-$NUMTIM
The Convert Binary Time to Numeric Time system service converts an
absolute or delta time from 64-bit system time format to binary integer
date and time values.

349

System Services

Convert Binary Time to ASCII String-$ASCTIM
The Convert Binary Time to ASCII String ($ASCTIM) system service
converts a time in system format to an ASCII string and returns the
string in a 23-byte buffer. To obtain the current thne in ASCII, code the
$ASCTIM system service as follows:

ATiMENOW:
.LONG
. LONG

$ASCTIM-S

23
ATIMENOW •
.BLKB

;DESCRIPTOR FOR ASCII TIME
;LENGTH OF BUFFER
;ADDRESS OF BUFFER
;23 BYTES TO HOLD TIME

TIMBUF=ATIMENOW ;GET CURRENT TIME

The string returned by the service in the buffer ATIMENOW has the
format:

dd-mmrn-yyyy hh:mm:ss.cc

dd is the day of the month, mmm is the month (a 3-character alphabet­
ic abbreviation), yyyy is the year, and hh:mm:ss.cc is the time in hours,
minutes, seconds, and hundredths of seconds.

Convert ASCII String to Binary Time-$BINTIM
The converse of the $ASCTlM system service is the Convert ASCII
String to Binary Time ($BINTIM) system service. The user provides the
service with the time in ASCII format,· and the service converts the
string to a time value in 64-bit format suitable for input to the Set Timer
($SETIMR) or Schedule Wakeup ($SCHDWK) system services.

When the user omits any of the fields in the ASCII string buffer, the
service uses the current date or time value for the field. Thus, to code a
date-independent timer request, the input buffer for the $BINTIM sys­
tem service would appear as illustrated in the example below. The two
hyphens and at least a single blank space must precede the time field.

ANOON:
BNOON:

.ASCID
BLKQ

$BINTIM-S

;ASCII12 NOON 1--12:00.001
1 ;BUFFER FOR BINARY 12

TlMBUF=ANOON,TlMEADR=BNOON ;CONVERT TIME

When the$BINTIM service completes, a 64-bit time value representing
"noon today" is returned in the quadword atBNOON.

The $BINTIM system service also converts ASCII strings to delta time
values to be used as input to timer services. The buffer for delta time
ASCII strings has the format:

ddd hh:mm:ss.cc

350

System Services

The first field, indicating the number of days, must be specified as 0 if
coding a "today" delta time.

The following example shows how to use the $BINTIM service to ob­
tain a delta time in system format.

ATENMIN: DESCRIPTOR
BTENMIN:

.BLKQ

$BINTlM-S
TIME

Set Timer-$SETIMR

<000:10:00.00> ;ASCII TEN MINUTES

;BUFFER FOR BINARY TEN
;MINUTES

TIMBUF=ATENMIN,TlMADR=BTENMIN ;CONVERT

The Set Timer system service allows a process to schedule setting an
event flag and/or queuing an AST at some future time. The time for the
event can be specified as an absolute time or as a delta time.

Cancel Timer Request-$CANTIM
The Cancel Timer Request system service cancels all or a selected
subset of the Set Timer requests previously issued by the current
image executing in a process. Cancellation is based on the request
identification specified in the Set Timer ($SETIMR) system service. If
more than one timer request was given with the same request
identification, they are all canceled.

Schedule Wakeup-$SCHDWK
The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the Hiber­
nate ($HIBER) system service. A wakeup can be sCheduled for a spec­
ified absolute time or for a delta time. Optionally, the request can
specify that the wakeup is to be repeated at fixed intervals.

Cancel Wakeup-$CANWAK
The Cancel Wakeup system service removes all scheduled wakeup
requests for a process from the timer queue, including those made by
the caller or by other processes. Scheduled wakeup requests are
made with the Schedule Wakeup ($SCHDWK) system service.

Set System Time-$SETI ME
The Set System Time service allows users with operator (OPER) and
logical 110 (LOGIO) privileges to set the current system time. The user
can specify a new time or can recalibrate the current system time
using the hardware time-of-year clock. This service might be used, for
example, to synchronize two processors or to adjust to or from day­
light savings time.

351

System Services

CONDITION HANDLING SERVICES
A condition handler is a procedure that is given control when an ex­
ception occurs. An exception is an event that is detected by the hard­
ware or software and that interrupts the execution of an image. Exam­
ples of exceptions include arithmetic overflow or underflow and
reserved opcode or operand faults.

If the user determines that a program needs to be informed of particu­
lar exceptions so that it can take corrective action, the user can code
and specify a condition handler. This condition handler, which will
receive control when any exception occurs, can test for specific ex­
ceptions.

If an exception occurs and a condition handler has not been specified,
the default condition handler established by the command interpreter
is given control. If the exception is a fatal error, the default condition
handler issues a descriptive message and performs an exit on behalf
of the image that incurred the exception.

Listed below are the Condition Handling Services.

Set Exception Vector-$SETEXV
The Set Exception Vector system service assigns a condition handler
address to an exception vector or cancels an address previously as­
signed to a vector.

Set System Service Failure Exception Mode-$SETSFM
This system service controls whether a software exception is generat­
ed when an error or severe error status code is returned from a system
service call. Initially, system service failure exceptions are disabled;
the caller should explicitly test for successful completion following a
system service call,

Unwind CaIiStack-$UNWIND
The Unwind Call Stack system service allows a condition handling
routine to unwind the procedure call stack to a specified depth.
Optionally, a new return address can be specified to alter the flow of
execution when the topmost call frame has been unwound.

Declare Change Mode or Compatibility Mode Handler-$DCLCMH
Declare Change Mode or Compatibility Mode Hander. ($DCLCMH)
system service establishes the address of a routine to receive control
when a Change Mode to User or Change Mode to Supervisor instruc­
tion trap occurs, or a compatibility mode fault occurs.

352

System Services

MEMORY MANAGEMENT SERVICES
The VAX/VMS memory management routines map and control the
relationship between physical memory and a process's virtual address
space. These activities are, for the most part, transparent to the user
and user programs. However, in some cases the user may make the
program more efficient by explicitly controlling its virtual memory
usage. Memory Management services allow the user to:

• Increase or decrease the virtual address space available in. a proc­
ess's program or control region

• Control the process's working set size and the swapping of pages
between physical memory and the paging device

• Define disk files containing data or shareable images and map the
file into the process's virtualaddress space

Listed below are the Memory Management Services.

Expand Program/Control Region-$EXPREG
The Expand Program/Control Region system service adds a specified
number of new virtual pages to a process's program region or control
region for the execution of the current image. Expansion occurs at the
current end of that region's virtual address space.

For example, if the user desires to add four pages to a process's
program region, the call to the $EXPREG system service is coded as
follows:

SPACE:
.BLKL ;.RETURN START AND END OF NEW PAGES

$EXPREG-S PAGCNT=#4,RETADR=SPACE,REGION=#O ;GET
PAGES

• PAGCNT is the argument denoting the number of pages to be add­
ed

• RETADR is the argument receiving the starting and ending virtual
addresses of added pages

• REGION is the argument denoting which region is to be expanded.
A value of 0 indicates program region (PO) and a value of 1 indicates
control region (P1)

Therefore, to add the same number of pages to the control region, the
user would specify REGION = #1.

Contract Program/Control Region-$CNTREG
The Contract Program/Control Region system service deletes a speci­
fied number of pages from the current end of the program or control

353

System Services

region of a process's virtual address space. The deleted pages be:­
come inaccessible; any references to them cause access violations.

The following example shows four pages being deleted from the
program (PO) region:

$CNTREG_S PAGCNT=#4,REGION=#O

• PAGCNT is the argument denoting the number of pages to be delet­
ed

• REGION is the argument specifying from which region the pages are
to be deleted

Create Virtual Address Space-$CRETVA
The Create Virtual Address Space system service adds a range of
pages to a process's virtual address space for the execution of the
current image or until a $DEL TVA is issued for the pages.

Delete Virtual Address Space-$DEL TVA
The Delete Virtual Address Space system service deletes a range of
addresses from a process's virtual address space. Upon successful
completion of the service, the deleted pages are inaccessible; any
references to them cause access violations.

Create and Map Section-$CRMPSC
The Create and Map Section system service creates and/or maps a
section. A section can be a disk file section or a page frame section. A
disk file section is data or code from a disk file that can be brought into
memory and made available, either only to the process that creates it
(private section) or to all processes that map to it (global section). A
page frame section consists of one or more physical page frames in
memory or I/O space.

Creating a disk file secton involves defining all or part of a disk file as a
section. Mapping a disk file section involves making a correspon­
dence between virtual blocks in the file and pages in the caller's virtual
address space. If the $CRMPSC service specifies a global section that
already exists, the service maps it.

Map Global Section-$MGBLSC
The Map Global Section system service provides a process with ac­
cess to an existing global section. Mapping a global section estab­
lishes the correspondence between pages in the process's virtual
address space and the physical pages occupied by the global section.

Update Section File on Disk-$UPDSEC
The Update Section File on Disk system service writes all modified
pages in an active private or global section back into the section file on

354

System Services

disk. One or more I/O requests are queued, based on the number of
pages that have been modified.

Delete Global Section-$DGBLSC
The Delete Global Section system service marks an existing perman­
ent global section for deletion. The actual deletion of the global section
takes place when all processes that have mapped the global section
have deleted the mapped pages.

Lock Pages in Working Set-$LKWSET
The Lock Pages in Working Set system service allows a process to
specify that a group of pages that are heavily used should never be
replaced in the working set. The specified pages are brought into the
working set if they are not already there and are locked so that they do
not become candidates for replacement.

Unlock Pages From Working Set-$ULWSET
The Unlock Pages from Working Set system service allows a process
to specify that a group of pages that were previously locked in the
working set are to be unlocked and become candidates for page re­
placement like other working set pages.

Purge Working Set-$PURGWS
The Purge Working Set system service enables a process to remove
pages from its current working set to reduce the amount of physical
memory occupied by the current image.

Lock Pages in Memory-$LCKPAG
The Lock Pages in Memory system service locks a page or range of
pages in memory. The specified virtual pages are forced into the work­
ing set and then locked in memory. A locked page is not swapped with
its working set. These pages are not candidates for page replacement
and in this sense are locked in theworking set as well.

Unlock Page Frorn Memory-$UNLPAG
The Unlock Pages from Memory system service releases the page
lock on a page or range of pages previously locked in memory by the
Lock Pages in Memory ($LCKPAG) system service.

Adjust Working Set Limit-$ADJWSL
The Adjust Working Set Limit system service changes the current limit
of a process's working set size by a specified number of pages. This
service allows a process to control the number of pages resident in
physical memory for the execution of the current image.

355

System Services

Set Protection on Pages-$SETPRT
The Set Protection on Pages system service allows an image running
in a process to change the protection on a page or range of pages.

Set Process Swap Mode-$SETSWM
The Set Process Swap Mode system service allows a process to con­
trol whether it can be swapped out of the balance set. Once a process
is locked in the balance set, it cannot be swapped out of memory until
it is explicitly unlocked.

CHANGE MODE SERVICES
The Change Mode system services allow a process to change to either
executive mode or kernel mode to execute a specified routine. Use of
these services requires privilege.

Change To Executive-$CMEXEC
The Change to Executive Mode system service allows a process to
change its access mode to executive, execute a specified routine, and
then return to the access mode in effect before the call was issued.

Change to Kernel Mode-$CMKRNL
The Change to Kernel Mode system service allows a process to
change its access mode to kernel, execute a specified routine,and
then return to the access mode in effect before the call was issued.

Adjust Outer Mode Stack Pointer-$ADJSTK
The Adjust Outer Mode Stack Pointer system service modifies the
stack pOinter for a less privileged access mode. This service is used by
the operating system to modify a stack pOinter for a less privileged
access mode after placing arguments on the stack.

LOCK MANAGEMENT SERVICES

The VMS Lock Management Services are a tool to help users develop
complex resource-sharing applications; for example, database sys­
tems. it provides a resource nametable for defining a resource, a
variety of lock modes for controlling access to it, and the means .for
processes to queue lock requests.

The resource nametable is tree structured and allows the user to de­
fine their resource to practically any granularity or hierarchical depth.

There are six lock modes available.

• Null Lock (LCK$K-NLMODE)
• Concurrent Head (LCK$K-CHMODE)

• Concurrent Write (LCK$K-CWMODE)

356

System Services

• Protected Read (LCK$K-PRMOD)

• Protected Write (LCK$K-PWMODE)

• Exclusive (LCK$K-EXMODE)

If a lock request is made on a resource, and another process already
has an incompatible lock on that resource, the lock request is queued
until the resource is unlocked or the lock has been changed to a
compatible one. .

A process may have more than one lock at one time. The limit on the
number of locks depends on the quota assigned to the process.

For more information about the Lock Management Services, particu­
larly about lock compatibility and how this service can be applied,
refer to chapter 14.

Enqueue Lock Request - $ENQ
The Enqueue Lock Request system service allows users to queue
requests to access a resource or to convert the current lock request
mode to another lock request mode.

An Enqueue Lock Request must specify the type of lock mode and, if it
is a new lock request (not a convert lock request), the resource name.
The options available to a procedure for synchronizing with the Lock
Management Service are the same as with the 010 system service;
that is:

• wait for a specified event flag to be set

• specify the address of an AST routine to be executed when the
request is granted

• poll the lock status block for a lock-granted status

Enqueue Lock Request and Wait for Event Flag - $ENQW
The $ENOW system service combines the Enqueue Lock Request
($ENO) and Wait for Single Event Flag ($WAITFR) system services. It
may be used when a program must wait until the requested lock has
been granted.

Dequeue Lock Request - $DEQ
The $DEQ system service is used to dequeue locks that the calling
process had previously queued. All locks can be dequeued, whether
granted or waiting, new or conversion.

357

CHAPTER OVERVIEW
Input and output services require a complex management system;
otherwise the user is left with the task of producing detailed I/O control
for each process. Under the VAX/VMS operating system, complete
I/O services are provided for handling, controlling,and queueing I/O
needs or requests. VAX-11 RMS (Record Management Services) gives
users a wide range of file management techniques while remaining
transparent. This chapter investigates the I/O services of the VAX
software.

Topics include:

• Programming Interfaces

• Ancillary Control Processes (ACP)

• I/O Request Processing

• Queue I/O (QIO)

• I/O Completion
• Record Management Services (RMS)

358

INTRODUCTION

CHAPTER 12

INPUT/OUTPUT SERVICES

The VAX/VMS operating system supports a wide variety of input and
output devices, including disks, magnetic tapes, lineprinters, and card
readers. Input/output operations are extremely flexible and as device­
and function-independent as possible.

Processes issue I/O requests to channels which have been previously
associated with particular physical device units. A channel is a logical
path through the system, connecting the user process with a predeter­
mined physical I/O device unit. Each process is able to establish its
own communication between physical devices and channels. I/O re­
quests are queued by priority, first-in/first-out within priority, and then
processed strictly in queue order.

RMSandQIO
I/O requests can be handled indirectly through the use of' an esta­
blished set of procedures, such as VAX-11 RMS (Record Management
Services), or they can be interfaced directly to an I/O driver by means
of a 010 request. The principal feature of the VAX-11 RMS software is
its ease of use and device independence. Generally it is used for I/O
requests to mass storage devices, while the more direct-and compli­
cated-alO is for specialized use of terminals, special devices (e.g.,
graphics and special communications equipment), and highly
specialized formatting.

Figure 12-1 represents an overview of the major I/O processing sys­
tem components and user relationships.

359

c,J1
O'll
0 1

USER
PROGRAM

OR

OR

RMS OPEN, CLOSE
READ, WRITE

RMS OPEN, CLOSE
and $010

$010

OPERATING SYSTEM

Procedures Processes

RECORD MANAGEMENT
SERVICES

I
----~

I/O SYSTEM
SERVICES

file and
record

tflll7l7\ RMS provides
WIfiII record blocking/unblocking

O user does own
record blocking and unblocking

Figure 12-1 User Interfaces to I/O Services

Disk,
Magtape, or
Networks

::;-
1)
c::
'­o c::
-S
~
C/)
CD
~

~.
CI)

Input/Output Services

PROGRAMMING INTERFACES
The liD programming tools are: the Record Management services
(RMS)-for general purpose file and record processing-and the liD
system services-for direct liD processing. Table 12-1 summarizes
the programming interfaces.

Method

Record liD

File liD

Device liD

Table 12-1 1/0 Programming Interfaces

Program 1/0
Interface Components

RMS requests RMS, ACP
and Driver

RMS OPEN
and $010 re-
quests

RMS for
OPEN,ACP
and Driver

$010 requests Driver

Purpose

Use Files-11
disk or ANSI
magtape file
structure, de­
vice-indepen­
dent liD, use
RMS record
access
methods

Use Files-11
disk or ANSI
magtape file
structure, im-
plement own
record access
methods

Fast dumps to
disk or
magnetic
tape, foreign
file structure

RMS procedures provide device-independent, file-structured access
to all types ,of I/O peripherals. The most general purpose type of
access enables programs to process logical records, where RMS soft­
ware automatically provides record blocking and unblocking.

RMS users can also choose to perform their own record blocking on
file-structured volumes such as disk and magnetic tape, either to con­
trol buffer allocation or to optimize special record processing.

361

Input/Output Services

The I/O system services. provide both device-independent and device­
dependent programming. Users can perform their own record block­
ing on file-structured and non-file-structured devices. In addition,
users with sufficient privilege can perform I/O operations using either
logical or physical I/O requests, for example, to define their own file
structures and accessing methods on disk and magnetic tape vol­
umes.

ANCILLARY CONTROL PROCESSES
I/O control processes, called ancillary control processes (ACPs),
process file-structured I/O requests. An ACP provides file structuring
and volume access control for a particular type of device. There are
three types of ACPs provided in the system: Files-11 disk, ANS (Amer­
ican National Standard) magnetic tape, and DECnet (network) com­
munications link.

The RMS and I/O system services programming interfaces are the
same regardless of the ACP involved. However, since ACPs are partic­
ular for a device type, they do not have to be present in the system if
the device is not present. There is one network ACP process for all
DECnet network communications links in the system, and none if the
>,ystem is not in a network. For either disk or magnetic tape devices,
the system manager can install one ACP per volume for throughput, or
one ACPfor all volumes, to save space.

DEVICE DRIVERS
Once the ACP sets up the information for file-structured I/O requests,
a request can be passed to a device driver. All non-file-structured I/O
requests are passed directly to a device driver. Drivers also perform
all the hardware retry and recovery operations.

To incur the least overhead, driver processes are created dynamically
when a User makes an I/O request for a device or a device generates
an unsolicited interrupt. They have minimal context, execute to com­
pletion when created, and are memory-resident throughout execution.
One driver process is created for each device unit in the system. All
driver processes for the same device type share the code they
execute.

I/O REQUEST PROCESSING
All I/O requests pass through a Queue I/O (QIO) Request system
service. If a program requests RMS procedures, RMS issues the
Queue I/O Request system service on the program's behalf. Queue
I/O Request processing is extremely rapid because the system can
keep each device unit as busy as possible by minimizing the code that
must be executed to initiate requests and post request completion.

362

Input/Output Services

The processor's many interrupt priority levels improve interrupt re­
sponse because they enable the software to have the minimum a­
mount of code executing at high priority levels by using low priority
levels for code handling request verification and completion notifica­
tion. In addition, device drivers take advantage of the processor's
ability to overlap execution with I/O by enabling processes to execute
between the initiation of a request and its completion. User processes
can queue requests to a driver at any time, and the driver immediately
initiates the next request in its queue upon receiving an I/O comple­
tion interrupt.

All access validation and checking takes place before an I/O request
is actually queued. For file-structured I/O requests, the Queue I/O
Request system service obtains all the block mapping and volume
access checking information from the ancillary control process (ACP).
For example, on I/O requests for multivolume files, the system service
obtains mapping information from the ACP. This enables it to queue
requests to different drivers when the user's I/O request involves a
transfer that spans volumes. The Queue I/O Request system service
also checks the validity of the function requested (read, write, rewind,
etc.) for the particular device. Because all access validation and
function checking is performed before the request is queued, the dri­
ver has little to do to initiate a request.

Once the system service has verified the 110 request, it raises the
interrupt priority level to that of the driver. The only activity it has to
perform at this level is a test to see if the driver is busy. If the driver is
not busy, it calls the driver. Otherwise, it queues the request according
to the priority of the requesting process and immediately returns to the
user process. When the driver is called, it initiates the request and
returns to the user process.

At the time the device subsequently generates its interrupt at the hard­
ware interrupt priority level, the interrupt dispatcher calls the appro­
priate interrupt service routine. An interrupt service routine simply
saves the device control/status registers, requests a software interrupt
at the driver's interrupt priority level, and returns to the interrupt dis­
patcher, which is then free to scan for unit attentions. Because a disk
controller cannot generate interrupts on any unit performing a seek
until the currenttransfer completes, the interrupt dispatcher will also
dispatch seek completion when dispatching a disk I/O transfer
completion interrupt.

When the driver receives the completion interrupt, it prepares the I/O
completion status for th.e requester, and requests a software interrupt.
The driver is then free to process another request in its queue and, if

363

Input/Output Services

the queue is not empty, the driver begins again. All 1/0 completion
notification takes place outside the driver, minimizing the inter-re­
quest idle time. The 1/0 post routine notifies the process of 1/0 com­
pletion and releases or unlocks the buffer.

QUEUE I/O
Queue 1/0 is the interface by which the user interacts directly with the
1/0 driver.

Assigning Channels
A channel is a communication path that is associated with a physical
device unit during VAXIVMS 1/0 operations. It is used by a process in
the transfer of information to and from the device. Before any 1/0
operations can be requested for a device, the device must be assigned
to an I/O channel by the Assign I/O Channel ($ASSIGN) system ser­
vice.

In coding a call to the $ASSIGN service, the name of the device (real
device name or logical name) and the address of the longword to
receive the channel number must be supplied. The channel number,
which is returned by the service, is then referred to when coding an
I/O request.

Physical, Logical, and Virtual I/O
I/O transfers can take place in three possible modes of operation:
phYSical, logical, and virtual 1/0 functions.

Physical 1/0 concerns reading and writing data in the actual physical
units accepted by the hardware, for example, sectors on a disk. This
function mode allows access to all device level 1/0 operations.

Logical I/O concerns reading and writing data in blocks that usually
could map directly into physical blocks. For block-structured de­
vices-disks, for example-logical blocks are numbered starting at
zero (0).

Virtual 1/0 consists of file-oriented operations-creating files and
reading and writing files, for example. In this case, the VAXIVMS
operating system maps virtual block numbers into logical block num­
bers. For file-structured devices-disks, for example-virtual blocks
are the same size as logical blocks. They are numbered starting at one
(1) and are relative to the file rather than to the device. On non-file­
structured devices, virtual 1/0 is equivalent to logical 1/0; mapping
from virtual block number to logical block number is direct.

Issuing I/O Requests
VAXIVMS 1/0 function requests are issued via the Queue 1/0 Request
($QIO) system service. Prior to issuing such a request, the 1/0 channel

364

Input/Output Services

must be assigned to the selected device through the use of the Assign
liD Channel ($ASSIGN) system service. To effect liD operations on
the device, subsequent calls to the Oueue liD Request system service
must specify the channel number returned by the Assign liD Channel
system service.

The Oueue liD Request system service can be performed only on
assigned liD channels and only from access modes that are equal to
or more privileged than the access mode from which the original
channel assignment was made.

Certain requirements must be met before a request is queued. For
example, a valid channel number must be included in the request; the
request must not exceed certain process quotas; and there must be
sufficient dynamic memory available to complete the operation.

After an liD request has been queued, the system does not require the
issuing process to wait for the operation to complete. If at any time the
user process which issued the 010 request cannot proceed until the
liD operation is completed, an event flag can be used to synchronize
liD completion. The process should specify an event flag in the 010
request and should issue a $WAITFR (Wait for Single Event Flag)
system service request at the point where synchronization is required.

I/O COMPLETION
The successful or unsuccessful completion of an liD request can be
denoted by one or more return conditions. Selection of return condi­
tions depends on the arguments included in the 010 macro call.

There are three primary returns:

• Event flag

• liD status block

• Asynchronous system trap

Event Flags
Event flags are status-posting bits used by some liD system services
to indicate the completion or the occurrence of an event. The 010
system service sets an event flag when itcompletes an input or output
operation. Event flag services provide the techniques that allow the
user to set or clear specific flags, test the current status of flags, or
place a program in a wait state pending the setting of a particular flag
or group of flags.

I/O Status Block
The completion status of the liD request is returned in the liD status
block (IOS8).

365

Input/Output Services

The IOS8 indicates whether or not the operation was successfully
completed, the number of bytes transferred, and additional device­
dependent return information.

Asynchronous System Traps
An asynchronous system trap (AST) routine can optionally be speci­
fied in the QIO request if the user wants to interrupt a process to
execute special code on completion of the request. When the I/O
operation completes, control branches to the AST service routine. The
AST service routine is then executed at the access mode from which
the QIO service was requested. Using an AST to signal 110 completion
allows the process to be occupied with other functions during the I/O
operation. The process does not have to wait until some event occurs
before proceeding to another operation.

RECORD MANAGEMENT SERVICES
A powerful, transparent collection of routines, Record Management
Services (RMS) provides extensive capabilities for data storage, re­
trieval, and modification. Complex file manipulation is easily achieved
through RMS facilities. Users may select from several file organiza­
tions and file access techniques-each of which is suited to particular
applications-from the Simplest sequential search of a sequentially
organized file to a sophisticated keyed access of an indexed file based
on several alternate key fields.

The three file organizations supported by Record Management
Services-sequential, relative, and indexed-are variously available to
three different access modes-sequential, keyed, and Record's File
Address. In most cases, RMS software supports dynamic access, a
useful feature that allows access mode switching within a process.

NOTE
Most RMS functionality is also available to users of
DECnet commmunications software, DIGITAL's net­
working architecture. For details, see Chapter 7 of
this Handbook.

RMS FILE ORGANIZATIONS
A file is a collection of related information. For example, a file might
contain a company's personnel information (employee names, ad­
dresses, job titles). Within this file, the information is divided into rec­
ords. All the information on a single employee could constitute a single
record.

Each record in the personnel file would itself be divided into discrete
pieces of information known as fields. The user defines the number,

366

Input/Output Services

locations within the record, and logical interpretations of these fields.
The name of an employee would be a field in his personnel record, as
would a wage class or a social security number.

The user can completely control the grouping of fields into records
and records into files. Programs either build records and pass them to
RMS for storage in a file, or issue requests for records while RMS
performs the necessary operations to retrieve the records from a file.

Table 12-2 File Organizations-Advantages and Disadvantages

Sequential

Relative

Advantages-Uses disk and
memory efficiently: minimum
disk overhead and block­
boundary crossing. Provides
optimal usage if the application
accesses all records sequential­
lyon each run. Provides the
most flexible record format. Al­
lows data to be stored on many
different types of media, in a de­
vice-independent manner. Al­
lows easy file extension

Disadvantages-Some high­
level languages allow sequential
access only. Allows records to
be added only to end of file. Al­
lows write access by multiple,
concurrent users, but only in
very restricted cases

Advantages-Allows both se­
quential and random access for
all languages. Provides random
record deletion and insertion.
Allows records to be read- and
write-shared

Disadvantages-AllOWS data to
be stored on disk only. Requires
that files contain a record cell
tor each relative record number
allocated; that is, files may not
be densely populated. Requires
that record cells be the same
size

367

Input/Output Services

Indexed

Sequential File Organization

Advantages-Allows seq uen­
tial and random access by key
value for all languages. Allows
random record deletion and in­
sertion. Allows records to be
read- and write-shared; Allows
variable-length records to
change length on update. Al­
lows easy file extension

Disadvantages-Allows data to
be stored on disk only. Requires
more disk space. Uses more of
the central processing unit to
process records. Generally re­
quires multiple disk accesses to
randomly process a record

In sequential file organization, records appear in consecutive se­
quence. The order in which records appear is always the order in
which the records were originally written to the file by an application
program. Figure 12-2 illustrates sequential file organization.

Figure 12-2 Sequential File Organization

Relative File Organization
When relative organization is selected, Record Management Services
structures a file as a series of fixed-size record cells. Cell size is based
on the size specified as the maximum permitted length for a record in
the file. These cells are numbered from 1 (the first) to n (the last). A
cell's number represents its location relative to the beginning of the
file.

Each cell in a relative file can contain a single record. There is no
requirement, however, that every cell contain a record. Empty cells
can be interspersed among cells containing records. Figure 12-3 illus­
trates a relative file organization.

368

Input/Output Services

CELL NO.:
~----~----~~~~----~~~

Figure 12-3 Relative File Organization

999 1000

Because cell numbers in a relative file are unique, they can be used to
identify both a cell and the record (if any) occupying that cell. Thus,
record number 1 occupies the first cell in the file, record number 17
occupies the seventeenth cell, and so on. When a cell number is used
to identify a record, it is also known as a relative record number.

Indexed File Organization
The location of records in indexed file organization is transparent to
the program. Record Management Services completely controls the
placement of records in an indexed file. The presence of keys in the
records of the file governs this placement.

A key is a byte string present in every record of an indexed file. Any of
the six RMS keyfield data types may be used as a key: 1) character
string; 2) signed 15-bit integer; 3) unsigned 16-bit binary; 4) signed 31-
bit integer; 5) unsigned 32-bit binary; 6) packed decimal. Unique
among file organizations, indexed files can be accessed by data in the
files, rather than by addresses. The location and length of this key are
identical in all records. When creating an indexed file, the user de­
cides which byte string in the file's records is to be a key. Selecting
such a byte string indicates to RMS thatthe contents (Le., key value) of
that string in any particular record written to the file can be used by a
program to identify that record for subsequent retrieval. Frequently,
the byte string chosen as the key is one of the fields already defined in
the record. Non-numeric entries (eg., names, job descriptions) are
coded internally in a manner that is equivalent to alphabetization.

At least one key, the primary key, must be defined for an indexed file.
Optionally, additional keys or alternate keys can be defined. An alter­
nate key value can also be used as a means of identifying a record for
retrieval.

As processes write records into an indexed file, Record Management
Services (RMS) builds a tree-structured table known as an index. An
index consists of a series of entries containing a key value copied from
a record that a program wrote into the file. Along with each key value is
a pOinter to the location in the file of the record from which the value
was copied. RMS builds and maintains a separate index for each key
defined for the file. Each index is stored in the file. Thus, every indexed

369

Input/Output Services

file contains at least one index, the primary key index. Figure 12-4
illustrates an indexed file organization with a primary key. When alter­
nate keys are defined, RMS builds and stores an additional index for
each alternate key.

ABLE
I

JONES : MAIN ST 19724

I I
I I

SMITH I HOLT RD I 35888
I I

,,------------- DATA RECORDS -----------~)

Figure 12-4 Indexed File Organization

RMS RECORD ACCESS MODES
The methods of retrieving and storing records in a file are called
record access modes. A different record access mode can be used to
process records within the file each time it is opened. A program can
also change access mode during the processing of a file.

Sequential Record Access Mode
Sequential record access means that records are retrieved or written
in the sequence established by the organization of the file. Sequential
record access mode can be used to access all RMS files and all re­
cord-oriented devices, including mailboxes.

Sequential Record Accessto Sequential Files In a sequentially
organized file, physical arrangement establishes the order in which
records are retrieved when using sequential access mode. To read a
particular record in a file, say the fifteenth record, a program must
open the file and access the first fourteen records before accessing
the desired record. Thus each record in a sequential file can be re­
trieved only by first accessing all records that physically precede it.

When writing new records to a sequential file in sequential access
mode, a program must first request that RMS position the file immedi-

370

Input/Output Services

ately following the last record. Then each sequential write operation
the program issues causes a record to be written following the previ­
ous record.

Sequential Record Access to Relative Files During the sequential
access of records in the relative file organization, the contents of the
record cells in the file establish the order in which a program
processes records. RMS recognizes whether successively numbered
record cells are empty or contain records.

When a program issues read requests in sequential access mode for a
relative file, RMS ignores empty record cells and searches successive
cells for the first one containing a record. When a program adds new
records in sequential access mode to a relative file, RMS places a
record in the cell whose relative number is one higher than the relative
number of the previous request, as long as that cell does not already
contain a record. RMS allows a program to write new records only into
empty cells in the file.

Sequential Record Access to Indexed Files A program can use the
sequential record access mode to retrieve records from an indexed
file in the order represented by any index. The entries in an index are
arranged in ascending order by key values. If more than one key is
defined for the file, each separate index associated with a key repre­
sents a different logical ordering of the records in the file.

When reading records in sequential record access mode from an in­
dexed file, a program initially specifies a key (primary key, first alter­
nate key, second alternate key, etc.)to RMS. Thereafter, RMS uses the
index associated with that specified key to retrieve records in the
sequence represented by the entries in the index. Each successive
record RMS returns in response to a read request contains a value in
the specified key field that is equal to or greater than that of the
previous record returned.

When writing records to an indexed file, RMS uses the definition' of the
primary key field to place the record in the file.

Random Record Access Mode
In random access mode, the program establishes the order in which
records are processed. Each program request for access toa record
operates independently of the previous record accessed. Each re~
quest iilraridom mode identifies the particular record of interest.
Successive requests in random mode can identify and access records
anyWhere in the file.

371

Input/Output Services

Random Record Access to Sequential Files Native programs can
access sequential files on disk using relative record number to ran­
domly locate a record, provided that the records are in fixed-length
record format.

Random Record Access to Relative Files Programs can read or write
records in a relative file by specifying the relative record number. RMS
interprets each number as the corresponding cell in the file. A pro­
gram can read records at random by successively requesting, for
example, record number 47, record number 11, record number 31,
and so forth. If no record exists in a specified cell, RMS returns a
nonexistence indicator to the requesting program. Similarly, a pro­
gram can store records in a relative file by identifying the cell in the file
that a record is to occupy. If a program attempts to write a new record
in a cell already containing a record, RMS returns a record-already­
exists indicator to the program.

Random Record Access to Indexed Files For indexed files, a key
value rather than relative record number identifies the record. Each
program read request in random access mode specifies a key value
and the index (primary index, first alternate index, second alternate
index, etc.) that RMS must search. When RMS finds the key value in
the specified index, it reads the record that the index entry pOints to
and passes the record to the user program.

Program requests to write records randomly in an indexed file do not
require the separate specification of a keyvalue. AU key values (prima­
ry and, if any, alternate key values) are in the record itself. When an
indexed file is opened, RMS retrieves all definitions stored in the file.
RMS knows the location and length of each key field in a record.
Before writing a record into the file, RMS examines the values
contained in the key fields and creates new entries in the indices. In
this way RMS ensures that the record can be retrieved by any of its key
values. The process by which RMS adds new records to the file is
precisely the process it uses to construct the original index or indices.

Record's File Address (RFA) Access Mode
Record's File Address (RFA) access mode can be used to retrieve
records in any file organization as long as the file resides on a disk
volume. RFA access allows a specific record to be identified for re­
trieval, using the record's unique address. The actual format of this
address depends on the organization of the file. In all instances, how-
ever, only RMS can interpret this format. .

After every successful read or write operaUon, RMS returns the RFA of
the subject record to the program. The program can then save this

372

Input/Output Services

RFA to use again to retrieve the same record. This is an optimizing
feature that can greatly speed up record access in RFA mode. It is not
required that this RFA be used only during the current execution of the
program. RFAs can be saved and used at any subsequent time.

Dynamic Access
Dynamic access is not strictly an access mode. It is the ability to switch
from one access mode to another while processing a file. For example,
a program can access a record randomly, then switch to sequential
access mode for processing subsequent records. There is no limita­
tion on the n'umber of times such switching can occur. The only limita­
tion is that the file organization must support the access mode select­
ed.

FILE AND RECORD ATTRIBUTES
When an RMS file is created, its physical characteristics or attributes
must be defined. These characteristics are defined by source lan­
guage statements in an application program or by an RMS utility. The
program or user assigns the file a name, the owner's user identifica­
tion code, and a protection code, and selects the file organization.
Other attributes are also selected, including:

• Device

• File size

• File location
• Record format and size
• Keys (for indexed files only)

Device selection is related to the organization of the file. Sequential
files can be created on Files-11 disk volumes or ANSI magnetic tape
volumes. Sequential files can also be read from mailboxes, terminals,
and card readers, and written to mailboxes, terminals, and lineprin­
ters. Relative and indexed files can be created on Files-11 disk vol­
umes.

The logical limit on file size is 231 _1 blocks, with a more realistic limit
being the volume set on which a file can reside. When creating an RMS
file on a disk volume, the user can specify an initial allocation size. If no
file size is given, Record Management Services (RMS) allocates the
minimum amount of storage needed to contain the defined attributes
of the file. The initial size can be extended dynamically. The user can
let RMS locate the file, or the user can allocate the file at a specific
location on the disk to optimize disk access time. The file's starting
location can be specified optionally using a volume-relative block
number or physical address (track and sector number with or without
a given cylinder specification).

373

Input/Output Services

When creating a file on a magnetic tape volume, a user or program
does not specify an initial allocation size. The blocks are simply written
one after another down the tape, beginning after the last file, if any,
already written on the tape. Once a tape file has been created, another
file can replace it or be appended to it, but all subsequent files on the
tape, if any, are lost.

Record Formats
The user provides the specifications for the records the file will con~
tain. The specified format establishes how each record appears in the
file. There are four avaiable record formats:

• fixed length
• variable length

• variable with fixed-length control (not for indexed files)

• stream (for sequential files only)

Fixed length record format refers to records of a file that are all equal
in size. Each record occupies an identical amount of space in the file.
All file organizations support fixed length record format.

Variable-length record format records can be either equal or unequal
in length. All file organizations support variable-length record format.
RMS prefixes a count field to each variable-length record it writes. The
count field describes the length (in bytes) of the record. RMS removes
this count field before it passes a record to the program. RMS pro­
duces two types of count fields, depending on the storage medium on
which the file resides.

Variable-length records in files on Files-11 disk volumes have a 2-byte
binary count field preceding the data field portion of each record. The
specified size excludes the count field.

Variable-length records on ANSI magnetic tapes have 4-character de­
cimal count fields preceding the data portion of each record. The
specified size includes the count field. In the context of ANSI tapes,
this record format is known as D format.

Variable with fixed-length control records consist of two distinct parts,
the fixed-length control area and a variable-length data record. Al­
though stored together, the two parts are returned to the program
separately when the record is read. The size of the fixed-length control
area is identical for all records of the file. The contents of the fixed­
length control area are completely under the control of the program
and can be used for any purpose. For example, fixed-length control
areas can be used to store the identifier (relative record number or

374

Input/Output Services

RFA) of related records. Indexed file organizations do not support this
record format.

Stream record format records in a file are variable-length records
delimited by the occurrence of special character sequences called
terminators. Terminators are part of the record they delimit. No count
fields or control information is stored in the file. This is supported for
sequential disk files only.

Key Definitions for Indexed Files
To define a key for an indexed file, the user specifies the position and
length of the key field in the records. At least one key, the primary key,
must be defined for an indexed file. Additionally, up to 254 alternate
keys can be defined. In general, most files have two or three keys.
Because indices require storage space and Record Management
Services (RMS) updates indices as records are added or modified, no
more than six to eight keys should be defined where storage space or
access time is important.

Each primary and alternate key represents from 1 to 255 bytes in each
record of the file. RMS permits six keyfield data types: -

• String (1 to 255 bytes of character data)

• Signed 15-bit integer

• Unsigned 16-bit binary

• Signed 31-bit integer

• Unsigned 32-bit binary

• Packed decimal (1 to 31 nibbles)

The string keyfield can be composed of simple or segmented keys. A
simple key is a single, contiguous string of characters in the record,
Le., a single field. A segmented key, however, can consist of from two
to eight fields within records. These fields need not be contiguous.
When processing records that contain segmented keys, RMS treats
the separate fields (segments) as a logically contiguous character
string. The integer, binary, and packed decimal data types can be
simple keys only.

When defining keys at file-creation time, two characteristics for each
key can be specified:

• Duplicate key values are or are not allowed

• Key value can or cannot change

When duplicate key values are allowed, more than one record can
have the same value in a given key. For example, the creator of a
personnel file could define the department name field as an alternate
key. As programs wrote records into the file, the alternate index for the

375

Input/Output. Services

department name key field would contain multiple entries for each key
value (e.g., PAYROLL, SALES, ADMINISTRATION) since departments
are composed of more than one employee. When such duplication
occurs, RMS stores the records so that they can be retrieved in first­
in/first~out (FIFO) order.

An application could be written to list the names of employees in any
particular department. A single execution of the application could list
the names of all employees working, for example, in the department
called SALES. By randomly accessing the file by alternate key (with
the key value SALES), the application would obtain the first record
written into the file containing this value. Then, the application could
switch to sequential record access and successively obtain records
with the same value, SALES, in the alternate key field. Part of the logic
of the application would be to determine the point at which a sequen­
tially accessed record no longer contained the value SALES in the
alternate key field. The program could then switch back to random
record access mode and access the first record containing a different
value (e.g., PAYROLL) in the department name key field.

If key values can change, records can be read and then written back
into the file with a modified key value. For example, this specification
would allow a program to access a record in the personnel file and
change the contents of a department name field to reflect the transfer
of an employee from one department to another. This characteristic
can be specified only for alternate keys.

Program Operations on RMS Files
After· Record Management Services (RMS) has created a file, a pro­
gram can access the file and store and retrieve data.

When a program accesses the file as a logical structure (Le., a sequen­
tial, relative, or indexed file), it uses record I/O operations such as
add, update, and delete record. The organization of the file deter­
mines the types of record operations permitted.

If the record accessing capabilities of RMS are not used, programs
can access the file as an array of virtual blocks. To process a file at this
level, programs use a type of access known as block I/O.

File Processing
At the file level, before beginning record processing, a program can:

• Create a file

• Open an existing file

• Modify file attributes

• Extend a file

376

Input/Output Services

• Close a file

• Delete a file

Once a program has opened a file for the first time, it has access to the
unique intermitl ID for the file. If the program intends to open the file
subsequently, it can use that internallD to open the file and avoid any
directory search.

File Organization and Sharing - With the exception of magnetic tape
files, which cannot be shared, every RMS file can be shared by any
number of programs that are reading, but not writing, the file.
Sequential files on disk can be accessed by a single writer or shared
by multiple readers. Relative and indexed files, however, can be
shared by multiple readers and multiple writers. A program can read
or write records in a relative or indexed file while other programs are
similarly reading or writing records in the file. Thus, the information in
such files can be changing while programs are accessing them.

NOTE
RMS file sharing support is available for certain se­
quential files. Specifically, sequential files with 512
byte fixed-length records may be shared in the same
ways as relative and indexed files.

Program Sharing - A file's organization establishes whether it can be
shared for reading with a single writer or for multiple readers and
writers. A program specifies whether such sharing actually occurs at
runtime. The user controls the sharing of a file through information the
program provides Record Management Services (RMS) when it opens
the file. First, a program must declare what operations (e.g., read,
write, delete, update) it intends to perform on the file. Second, a pro­
gram must specify whether other programs can read the file or both
read and write the file concurrently with the first program.

The combination of these two types of information allows RMS to
determine if multiple user programs can access a file at the same time.
Whenever a program's sharing information is compatible with the cor­
responding information another program provides, both programs
can access the file concurrently.

Record Locking - RMS can lock records to control operations to a
relative or indexed file that more than on record steam within a proc­
ess, or more than one process, can access simultaneously. The pur­
pose of this facility is to ensure that a program can add, delete, or
modify a record in a file without another program simultaneously ac­
cessing the same record.

377

Input/Output Services

When a program opens an indexed or relative file with the declared
intention of writing or updating records, RMS locks any record ac­
cessed by the program. This locking prevents another program from
accessing that record until the program releases it. The lock remains
in effect until the program accesses another record. RMS then unlocks
the first record and locks the second. The first record is then available
for access by another concurrently executing program.

A program may also select a "manual" unlocking mode, in which all
records accessed by the program remain locked until they are
explicitly unlocked by calls to RMS.

Record I/O Processing
The organization of a file, defined when the file is created, determines
the types of operations that the program can perform on records.
Depending on file organization, Record Management Services permits
a program to perform the following record operations:

• Get a record-RMS returns an existing record within the file to the
program

• Put a record-RMS adds a new record that the program constructs
to the file. The new record cannot replace an already existing record

• Find a record-RMS locates an existing record in the file. It does not
return the record to the program, but establishes a new current
position in the file

• Delete a record-RMS removes an existing record from the file. The
delete record operation is not valid for sequential file organizations

• Update a record-The program modifies the contents· of a record
read from the file. RMS writes the modified record into the file,
replacing the old record. The update record operation is not valid
for sequential file organizations, except for sequentially organized
disk files

Sequential File Record I/O
In a sequential file organization, a program can read existing records
from the file using sequential or record's file address (RFA) access
modes. New records can be added only to the end of the file and only
through the use of sequential access mode, except that in the case
where the sequential file has records of fixed length, records can be
added using keyed access.

Relative File Record I/O
Relative file organization permits programs greater flexibility in per­
forming record operations than does sequential organization. A pro­
gram can read existing records from the file using sequential, random,
or RFA record access mode.

378

Input/Output Services

New records can be sequentially or randomly written as long as the
intended record cell does not already contain a record. Similarly, any
record access mode can be used to perform a find operation. After a
record has been found or read, RMS permits the delete operation.
Once a record has been deleted, the record cell is available for a new
record. A program can also update records in the file. If the format of
the records is variable, update operations can modify record length up
to the maximum size specified when the file was created.

Indexed File Record I/O
Indexed file organization provides the greatest flexibility in performing
record operations. A program can read existing records from the file
in sequential, record's file address (RFA), or random record access
mode. When reading records in random record access mode, the
program can choose one of four types of matches that RMS performs
using the program-provided key value. The four types of matches are:

• Exact key match

• Approximate key match

• Generic key match
• Approximate and generic key match

Exact key match requires that the contents of the key in the record
retrieved precisely match the key value specified in the program read
operation.

The approximate match facility allows the program to select either of
the following relationships between the key of the record retrieved and
the key value specified by the program:

• Equal to or greater than

• Greater than

Generic key match means that the program need specify only an initial
portion of the key value. Record Management Services (RMS) returns
to the program the first occurrence of a record whose key contains a
value beginning with those characters. This allows the program to
retrieve a class of records, for example, all employee records in the
personnel file with a name field beginning with M.

The final type of key match combines both generic and approximate
facilities. The program specifies only an initial portion of the key value,
as with generic match. Additionally, a program specifies that the key
data field of the record retrieved must be either:

• equal toor greater than the program-supplied value

• greater than the program-supplied value

379

Input/Output Services

The find operation, similar to the read operation, can be performed in
sequential, RFA, or random access mode. When finding records in
random access mode, the program can specify anyone of the four
types of key matches provided for read operations.

In addition to read, write, and find operations, the program can delete
any record in an indexed file and update any record.

Block I/O Processing
Block I/O allows a program to bypass the record processing capabili­
ties of RMS entirely. Rather than performing record operations
through the use of supported access modes, a program can process a
file as a structure consisting solely of virtual blocks.

Using block I/O, a program reads or writes multiple virtual blocks by
identifying a starting virtual block number in the file. Regardless of the
organization of the file, RMS accesses the identified block or blocks on
behalf of the program.

The presence of the block I/O facility permits user-created record
formats on a Files-11 disk volume or ANSI magnetic tape volume.

RMS Runtime Environment
The environment within which a program processes RMS files at run­
time consists of two levels, the file processing level and the record
processing level.

At the file processing level, RMS and the operating system provide an
environment that permits concurrently executing programs to share
access to the same file. RMS ascertains the amount of sharing permis­
sible from information provided by the programs themselves. Addi­
tionally, at the file processing level, RMS provides facilities that allow
programs to minimize buffer space requirements for file processing.

At the record processing level, RMS allows programs to access re­
cords in a file through one or more record access streams (except for
sequential files, which may only connect a single stream). Each record
access stream represents an independent and simultaneously active
series of record operations directed toward the file. Within each
stream, programs can perform record operations synchronously or
asynchronously. That is, RMS allows programs to choose between
receiving control only after a record operation request has been satis­
fied (synchronous operation) or receiving control before the request
has been satisfied (asynchronous operation).

For both synchronous and asynchronous record operations, RMS
provides two record transfer modes, move mode and locate mode.
Move mode causes RMS to copy a record from an I/O· buffer into a

380

Input/Output Services

program-provided location. Locate mode allows programs to read
records directly in an 1/0 buffer.

RMS Utilities
The RMS procedures are complimented by a File Definition Language
(FDL) and a number of utilities designed especially for RMS file crea­
tion and maintenance. They are called directly through DCL, and in­
clude:

• CONVERT
• CONVERT IRECLAIM

• EDIT/FDL

• CREATE/FDL
• ANAL YZE/RMS FILE
The File Definition Language is a special-purpose language used to
write file specifications for data files. These specifications are then
used by the RMS utilities and library routines to create data files and
other data structures.

The CONVERT utility copies records from a source data file to a sec­
ond data file with a different FDL specification and frequently with a
different file organization. CONVERT can also be used to create a data
file from an FDL specification.

EDIT IFDL is a utility used for creating or modifying an FDL specifica­
tion file. Since FDL files are text files, they can created using a
VAX/VMS editor, but programmers may find EDIT IFDL easier to use.
It is designed for the task; for example, EDIT IFDL will provide default
values for undesignated specifications.

CREATE/FDL is used to create an empty data file from an FDL specifi­
cation. With this capability, a user can designed FDL files with ED­
IT IFDL, defining commonly needed data files, and then create such
data files later, whenever they are required.

The ANAL YZE/RMS _FILE utility is used to check the sfructure of a file
for errors or potential for improvement. It can generate a statistical
report on a files structure and use, or be employed interactively to
"explore" the files structure. Conversely to CREATE/FDL, ANA­
L YZE/RMS _FILE can generate an FDL file from a data file.

CONVERT IRECLAIM is used for reclaiming empty buckets in a prolog
2 indexed file, so that new records can be written into them. If all the
records in a bucket have been deleted, that bucket is locked until the
CONVERT IRECLAIM utility makes it available.

In toto, the RMS Utilities provide a total system for designing and
tuning files in a users applications. (See figure 9 - 5.)

381

OFF-LINE
ANALYSIS

FDL FILE

In put/Output Services

RMS
ACCESS METHOD

OFF-LINE SPACE
RECLAMATION

-II 0

"" "",."" ... ,10,,,, 11""10." ... "" ... """,,,
•·.·• .. ·• ... •···•· ... '10.'.11 10,""11, .. """., ",,,

:: ~::::::: :::: :::::: :::: ::::: ::::: :::::,::: ::::::: :::::: :::

USER P OGRAM

Figure 12-5 File Design and Tuning

382

Input/Output Services

USING VAX-11 RMS
VAX-11 RMS (Record Management Services) is a powerful tool for
handling input/output tasks. Whether the user simply needs to have a
program read input lines from a terminal, or needs full write sharing
capability with record locking-allowing multiple processes to access
and update records in the same files simultaneously-RMS can sim­
plify and handle the task. Of course, more complex operations may
require a number of parameters and (optionally) allow specification of
many more; nevertheless, all of the basic RMS services use one of two
control structures as input for their operation. The File Access Block
(FAB) contains only fields relevant to file operations, such as the
creation of a new file or opening an existing one. The Record Access
Block (RAB) contains parameters necessary to perform record opera­
tions, such as record retrieval and update, on records within a file. The
following table illustrates this division:

Table 12-3

Category Macro Name Service

FILE PROCESSING $CREATE Creates and opens
a new file

FAB=address $OPEN Opens an existing
file and initiates file
processing

$CLOSE Terminates file
processing and
closes the file

RECORD PROC- $CONNECT Associates and con-
ESSING nects an RAB to the
RAB = address file

$GET Retrieves a record
from a file

$PUT Writes a new record
to a file

$UPDATE Rewrites an existing
record in a file

The following brief program, with comments, demonstrates the ease
and simplicity of using VAX-11 RMS (Record Management Services)
to achieve an I/O operation. Several different runs of the program

383

Input/Output Services

follow. It reads a sequential file containing ASCII text and uses a Run
Time Library routine to print the text on the user's terminal. Then the
file is copied to a remote network node and the program accesses it
on that node. Relative and indexed files could be handled as easily as
this sequential file, and with no rewriting of the program.

384

(;.)
<Xl
(J1

1
2
3
/I
5
&
7
8
~

Buffe .. , .b1kb
Buff ... de.c,

.long
• 1ong

MV ... hbt SFAB

MV ebl $RAB

St ... t, o .. d

$OPEN
BL.BC

tel'"

0
Buffe ..

FNMuINFIL.E>

".BeMv ... feb,-
UBFaBuffe .. ,-
USZe1~0

0

FABIIMy ... hb
R0,Exlt

a"oeate e 100 byte buffer
de'e"'~to .. fo .. buffe ..
length '01111 be .et .t run time
add .. es. of buffe ..

File Aece •• Block

Reco .. d Acce •• Block

open t he file
e)Cit on e o ..

10
11
12
13
14
15
1&
17
18
1q

SCONNECT R.SzMy eb connect fo eeo .. d o~e .. atlonl
BL.BC

20 Get eeordl
21 SGET
22 f3LBC
23
24
25
2&
27
28
2~
30
31
32
33

E)Cit :

MOViIi
PUSH AS
CALLS
BRB

$CLOSE

RET

.end

R03, E)C it

RABIIMy ... reb
R0,E)Clt

exit On e o ..

get the firlt .. ecord
e)Cit on e o,.

My ... ,..b + ,.ebSw sz,Buff ... desc , .to .. e length of ,..co .. d In de.c
Buff ... de.e , pUlh desc .. lpto,. .dd fo .. output
~l,LIBSPUT ... OUTPUT orlnt the record
Get ... reeord , QO beck and Q.t the n.xt reco .. d

F4B=My ... feb end cl0.e the file

Ste,.t

Figure 12-6 A Sample RMS User Program

:s
't)
t:: ,
o
t::
S
~
C/)
CD

"" ~.
~

Input/Output Services

Notice in the running of the sample program that merely by use of the
ASSIGN command the programmer was able to apply INFILE to sever­
al different files without reworking the program. The program could
have accessed any of a variety of sequential, relative, or indexed for­
mats without modification. Also, it is not necessary to close a file
explicitly because all files will be closed ("run down") by RMS when
the image exits. In fact, VAX-11 RMS handles all internal buffer and
control structure allocation and management for the user.

The variety of file organizations, record formats, and access modes,
plus network support, that RMS provides makes it one of the most
useful features of the VAX/VMS operating system.

386

c.u
00
-....J

• .~~WA"

I •• t nov.~tfy
I I d.mo".t~.t. how ••• y R~S t. to u ••
I •• t "oo"e~~o~
I I
I I u" TVPE to type out the •• mpl. t •• t f'l. u •• d in
I I the following t •• t ••
I I
I TVP! DEMO. TXT
th~. i •• t •• t p~OQ~.m
co"t.i"i"G •• ci' te.t ~eco~d.
tht. wi,l be D~i"ted out by
the t •• t p~OQ~em SIMPLE
I I
I I "OW ••• to" the t •• t fil. DEMO. TXT
• I to the looic.l "eme IN~ILE which the
I I te.' D~OG~.m SIMPLE will OD." fo~ Input

• J I ASSIGN DEMO. TXT INFILE
• rU" .tmpl.
thi. t •• t •• t D~OG~.m
co"t.i"t"G •• cit text ~.co~d.
thi. will be D~i"t.d out by
the t •• t p~OG~.m SIMPLE
XRMS-E-EOF, '"d of ftl.
I I
I I copy the t •• t file to ."oth.~ v •• node on the ".twork
I I
I COPY/LOG DEMO. TXT GALAXVIIDEMO.TXT
XCOPY-S-COPIED, D8A01[SAETHER]DEMO.TXTf3 copi.d to GALAXVIIDEMO.TXTf (~ record.)
ICOPY-S-NEWFILES, 1 file c~e.ted
I I
S I "OW u •• the •• m. te.t p~oo~.m SIMPLE to acc •••
I I the ftle .c~o •• the "etwo~k
I I
• ASSIGN GALAXVIIDEMO.TXT INFILE

PREVIDUS LOGICAL NAM! ASSIGNMENT REPLACED
S RUN SIMPLE
tht. i •• t •• t D~OQ~.m
co"t.i"i"~ •• cti t •• t ~.co~d.
th~. will b. p~t"t.d out by
the t •• t D~OG~.m SIMPLE
IRMS-E-EOF, ."d of ~tl.

Figure 12-7 Running the Sample Program

5'
'tJ
t: ,
o c::
"6'
S­
CI)
(I)

"" ~.

CHAPTER OVERVIEW
Physical devices need software control if they are to run properly (or at
all). This chapter explains the VAX/VMS device driver elements, de­
fines a fork process, and gives a complete sample lineprinter I/O
driver source program listing.

Topics include:

• Elementsof a Device Driver
• General Device Activity

• A Lineprinter I/O Request and Program Listing

388

INTRODUCTION

CHAPTER 13

I/O DRIVERS

A VAXIVMS device driver is a set of tables and routines that control
1/0 operations on a peripheral device attached to a VAX system. A
driver performs the following functions:

• Defines the peripheral device for the rest of the VAXIVMS operating
system

• Defines the driver for the system procedure that maps and loads the
driver and its device database into system virtual memory

• Initializes the device (and/or its controller) at system startup time
and after a power failure

• Translates software requests for 1/0 operations into device-specific
commands

• Activates the device
• Responds to hardware interrupts generated by the device

• Reports device errors
• Retu rns data and status from the device to user software

The VAXIVMS operating system performs all 1/0 processing that is
independent of the particular device. Such processing is known as
device-independent processing. When details of an 1/0 operation
need to be translated into terms recognizable by a specific device, the
operating system transfers control to a device driver. Such processing
is called device-dependent processing.

Since different types of peripheral devices expect different commands
and setups, each type of device on a VAX system needs its own sup­
porting driver. The driver, consisting of code and static tables, per­
forms all device-dependent processing.

The operating system and device drivers cooperate in processing an
1/0 operation by sharing a common 1/0 database. The database de­
scribes, in terms familiar to the VAXIVMS operating system, the speci­
fications and functions of each device.

389

liD Drivers

DEVICE DRIVER ELEMENTS
A device driver contains a set of routines that the operating system
calls to perform device-dependent processing on an liD request. The
routines of a VAXIVMS driver perform the following functions:

Initialization At the time that the driver is loaded, or after
a power failure, initializes a device or
controller by setting hardware registers and
initializing fields in the liD database

liD setup

Start I/O

Interrupt handling

Error recovery

Error logging

Cancel 110

Prepares an I/O request for a device by for­
matting data, allocating system buffers,
locking pages in memory, validating the re­
quest, etc.

Sets up device registers and the I/O data­
base to start a device; completes 110 re-
quest

Responds to hardware interrupts; read and
resets device registers; returns status

Sets up device registers for retry of an liD
operation; applies Error Correcting Code
(ECC) corrections to disk data; returns error
status

Writes the contents of device registers and
other data into an error buffer .

Sets up device registers to terminate I/O
activity

Drivers need not contain all of the routine types listed above, but every
driver must at least include subroutines to handle liD startup and
interrupts. Figure 12-1 illustrates operating system interaction with liD
driver subroutines.

The other parts of a device driver are static tables that describe the
device and the driver. Each driver must contain the following three
tables.

Driverprologue table

Driver dispatch table

. Describes the driver and the device type to
the system driver loading procedure

Lists the entry point addresses of standard
driver routines. Also records the size of di­
agnostic and error logging buffers for the
device type

390

110 Drivers

ERROR
RECOVERY

Figure 13-1 Operating System Calls to Driver Subroutines

Function decision table Lists all valid function codes and buffered
function codes for the device. Also lists the
addresses of function setup routine:s. Func­
tion Decision Table (FDT) routines may be
internal to the operating system, to the de­
vice driver itself, or to both. (Buffered I/O is
I/O that is buffered through the system data
buffer i.e., a READ or WRITE to a user ter­
minal. Direct I/O is I/O executed directly out
of the user data buffer, i.e., a READ or
WRITE to a disk)

Drivers do not decide when to act or what function to perform. Instead,
the operating system interprets all demands for service from users
and devices. By consulting the I/O database and the tables in the
drivers, the operating system determines which device-dependent
processing is available in the driver, and the entry point of the routine
that can provide the service. Figure 12-2 illustrates I/O driver or­
ganization conceptually.

391

I/O Drivers

DRIVER ORGANIZATION

DRIVER
PROLOGUE

TABLE

DRIVER
DISPATCH

TABLE

FUNCTION
DECISION

TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

Figure 13-2 Driver Organization

The I/O Database
The operating system and the device drivers refer to an 1/0 database
that consists of three main parts:

• Driver tables that allow the operating system to load drivers, validate
device functions, and call drivers at their entry pOints

• System data structures that describe every bus adapter, every de­
vice unit, and every logical pathway to a device or group of devices

• Dynamically allocated packets that define individual requests for 1/0
activity; these packets are known as I/O request packets (IRPs)

~he three driver tables are listed in the previous section. The control
blocks that describe and permit access to peripheral hardware are
created either at system initialization or at the time that a driver is
loaded. Drivers reference some or all of the control blocks described
below.

392

Device Data Block

Unit Control Block

Channel Request
Block

Interrupt Dispatch
Block

Adapter Control Block

I/O Drivers

Records the generic device name and
driver name for a set of devices attached to
a single controller

Defines the characteristics and current
state of an individual device unit

Defines the current activity of a single
controller

Records the characteristics of a single con­
troller and points to the devices it controls

Defines the characteristics and current
state of a UNIBUS or MASSBUS adapter

The third part of the I/O database is a group of I/O request packets.
When a user program requests device activity, the operating system
constructs a packet of data-called an I/O request packet-that de­
scribes the I/O request in a standard form.

The I/O request packet (IRP) is sent to device driver routines as a
source of detailed instructions. The packet includes buffer addresses,
a pointer to the target device, I/O function codes, and further pOinters
to the I/O database. In addition, the packet contains fields into which
the driver subroutine can write, such as status fields.

The I/O database and I/O request packets are the communicating
links between operating system and driver handling of I/O processing.

FORK PROCESSES
Device driver routines that complete an I/O operation after a device
interrupt execute for relatively short periods oftime. The routines may
be suspended to wait for shared resources. To facilitate fast dispatch­
ing of driver routines, the operating system does not schedule the
routines as full processes.

Instead, the VAX/VMS operating system implements I/O drivers as
fork processes. Fork processes are created dynamically and contain
minimal context. They execute at software interrupt level and entirely
within the system address space. They cannot incur exceptions, and
thus all code they execute must be resident. Of the 15 software inter­
rupt levels provided by VAX hardware, levels 8 through 11 are used to
schedule fork processes. Figure 12-3 illustrates the interrupt priority
level scheme.

Fork processes are scheduled by constructing a specialized control
block called a fork block, inserting the fork block in a fork queue, and
then requesting a software interrupt. Each software interrupt level

393

110 Drivers

PRIORITY HARDWARE EVENT
Hex Decima
1F 31 Machine Check, Kernel Stack Not Valid
1E 30 Power Fail
10 29 } Processor,
1C 28
1B 27 Memory, or
1A 26
19 25 Bus Error
18 24 Clock
17 23 UNIBUS BR7

} Device interrupt

16 22 UNIBUS BR6
.15 21 UNIBUS BR6
14 20 UNIBUS BR4
13 19
12 18
11 17
10 16

PRIORITY SOFTWARE EVENT
OF 15
DE 14 } Reserved for
00 13 DIGITAL
DC 12
DB 11
OA 10 } Device
09 09 Drivers
08 08
07 07 Timer Process
06 06 Queue Asynchronous System Trap (AST)
05 05 IReServed tor U~~L
04 04 1/0 Post
03 03 Process Scheduler
02 02 AST Deliverv
01 01 Reserved for DIGITAL
00 00 User Process Level

Figure 13-3 Interrupt Priority Level

contains a fork queue which is a first-in/first-out list of fork blocks for
fork processes that are waiting to be dispatched.

The fork block contains the initial context for a fork process. Fork
processes are dispatched by the fork dispatcher, which is executed in
response to a software interrupt on levels 6 and 8 through 11. A fork
block is removed from the front of the appropriate queue. The fork
process is then dispatched using a Jump to Subroutine (JSB)instruc­
tion to its entry point. The fork process can freely use registers RO
through R5, but must explicitly save and restore any other registers.

A fork process terminates its execution via an RSB instruction, which
causes a return to the fork dispatcher. The fork dispatcher repeats the
dispatching sequence for another fork block until the fork queue for

394

I/O Drivers

the corresponding level is empty. It then restores registers RO through
R5 and executes a Return from Exception or Interrupt (REI) instruction
which causes execution to resume at a lower interrupt priority level
(IPL).

GENERAL DEVICE ACTIVITY
The VAX/VMS operating system and the device driver cooperate to
execute a user request for an I/O operation.

All input and output operations under the VAX/VMS operating system
result from software requests for I/O processing. Presented here is a
general discussion of a user process terminal READ request.

Before I/O requests can be made to a device, however, the user must
assign a channel to establish a link between the user process and the
device. The process uses this channel to transfer information to and
from the device. The Assign I/O Channel ($ASSIGN) system service is
used to assign a channel to a device. The $ASSIGN system service
returns the channel number. The process can then request an I/O
operation by calling the Queue I/O ($QIO) system service and specify­
ing, as one argument, the channel number returned by the $ASSIGN
system service.

The VAX/VMS mechanism for requesting an I/O operation is the
Queue I/O ($QIO) system service call. Any native mode program can
issue a $QIO system service directly. For example, an assembly lan­
guage program can issue a $QIO directly with the following instruc­
tions:

CHAN = R2,-
FUNC = #IO$_READVBLK
P1 = buffer _ address,-
P2 = #buffer _size

An example of the $ASSIGN system service is as follows:

CHANNEL: .WORD 0
DEVICE: .LONG 20-10

.LONG 10$
10$: .ASCII \TT AO:\
20$:

$ASSIGN_S DEVNAM=DEVICE,­
CHAN=CHANNEL

An assembly language program can also issue a $QIO indirectly to a
record-oriented device with a Record Management Services (RMS)
function call. In the following example, the $GET is eventually translat­
ed by RMS into a $QIO system service call.

395

liD Drivers

$GET RAB = file rab

The RMS function call assumes that all the details of the I/O request
have been set up previously in the RAB and FAB data structures. An
executive privileged piece of software in system space called RMS
translates the function call into a $QIO system service call.

The RMS $GET command is equivalent to a READ function. The $GET
command translates into the basic $QIO system service request for
I/O processing. The $GET command sets up a $QIO with the informa­
tion necessary to perform the I/O request. Typically, $GET will provide
$010 with the following attributes:

• Channel number

• Buffer address

• Buffer length

Record Management Services will issue the $QIO resulting from the
$GET command.

However, as in the previous case, where $QIO was requested directly,
the $ASSIGN request for a channel number must also precede the
RMS $GET command. The $OPEN command must precede the $GET
command. The $OPEN command translates into a number of
functions, including the $ASSIGN system service. The $ASSIGN sys­
tem service once again provides the process with a channel to the
specified device.

FORTRAN programmers request I/O operations with the FORTRAN
language statements READ and WRITE. An example follows:

READ(2, format, ERR = exit, EN D = exit2)

The FORTRAN compiler translates the READ statement into a call to
the FORTRAN runtime system. The runtime system further translates
the statement into a $GET which translates into a$QIO system service
call. This process occurs according to the following steps:

1. Program executes "READ" statement

2. READ statement causes a call to the runtime system

3. Runtime system checks to see if this is the first I/O request on that
file

4. If it is, the runtime system performs an "OPEN." (When the first
110 request is queued, a function of the runtime system is to
perform an $OPEN on the file, establishing a device channel)

5. Performs $GET command

6. $GET translates into $010

Optionally, the FORTRAN programmer may directly specify the $QIO

396

I/O Drivers

system service. This procedure is as follows:

DIMENSION IOSB(2),BUF(20)
STATUS = SYS$ASSIGN(,TTA5:',CHAN,,)
IF(.NOT. STATUS)GO TO 980

STATUS=SYS$OIO(, %VAL(CHAN), %VAL(,31 'X),IOSB",BUF, %
VAL(80)",,)
IF (.NOT. STATUS) GO TO 900
IF (.NOT. 10SB (1)) GO TO 950

900 TYPE 910, STATUS
910 FORMAT (' 010 NOT ACCEPTED, STATUS =', Z8)

950 TYPE 960, 10SB (1)
960 FORMAT (' I/O FAILURE, 10SB =', Z8)

980 TYPE 990, STATUS
990 FORMAT (' I/O ASSIGN FAILED, STATUS =', Z8)

END

In this case, the programmer must perform an $ASSIGN to establish a
device channel.

Therefore, by requesting an I/O operation directly, via Record Man­
agement Services, or from a high-level language, the user process
specifies a logical path to the device, a READ function code, and the
address of a user buffer to hold the data.

The $010 service routine in the operating system allocates an I/O
request packet, validates the request, and locates database descrip­
tions of the device and its driver (i.e., channel control block, unit con­
trol block, device data block, etc.). The operating system locates de­
vice-independent information in this database and stores it in the I/O
request packet (IRP).

397

110 Drivers

Upon completion of device-independent liD preprocessing, the $010
service routine calls a READ function routine in the driver to allocate a
system buffer into which the device can write data. The READ function
routine is pointed to by the function decision table. The system buffer
is that buffer used to contain typed information from the terminal to be
transferred to user process space via the kernel mode AST. The READ
function routine places device-dependent information into the IRP.
Figure 12-4 illustrates the function decision table.

ENTER VIA INTERRUPT
ATIPLS-li- -- -- --

YES

Figure 13-4 Function Decision Table

The liD request packet (IRP) will be the only data explicitly passed to
the liD driver. The READ function routine returns the completed IRP to
the operating system for queuing to the driver. Up to this pOint, all of
the execution has been contained within the context of the user proc­
ess. However, the queuing of the I/O request to the driver by the
operating system is executed in system space, running in kernel
mode.

398

110 Drivers

If the device is free, the operating system calls the driver Start I/O
routine immediately. The Start 110 routine, using the IRP as its data­
base, activates the device. If the device is busy, however, the operating
system inserts the IRP into a device wait queue. The IRP remains in the
queue until the device is free and the IRP is first in the queue. Then the
operating system dequeues the IRP and calls the driver Start I/O rou­
tine.

After a driver starts a device, the driver transfers control to an operat­
ing system routine that suspends the driver until a device interrupt or
timeout occurs. The operating system suspends the driver so that a
computable process can utilize the CPU while the driver waits for a
device interrupt.

At this point of the READ operation, the user could enter information
from the keyboard. Typing a character causes an interrupt to occur at
device hardware interrupt priority level (IPL). When the interrupt oc­
curs, control is passed to the device driver interrupt service routine
(ISR). In the case of a READ operation, the ISR removes data from the
device data register and places it in the system buffer. In the case of
the WRITE operation, the ISR removes data from the system buffer
and places it in the device data register. When the data transfer is
complete, the driver's service routine restores the saved state of the
driver process.

The driver process obtains status information about the transfer by
reading device registers. The driver returns the status of the I/O to the
operating system for later delivery to the issuing process. The
operating system copies the newly read data into the user buffer via
the kernel mode asynchronous system trap (AST). It then returns to
the user process with the final status of the I/O operation via the kernel
AST.

The next section covers in greater detail an actual write I/O operation
to the lineprinter. Accompanying the text is a commented copy of the
DIGITAL-supported VAX/VMS lineprinter device driver. Correspon­
dence between text and I/O driver code is noted.

A SAMPLE LINEPRINTER QIO REQUEST
The following section describes a typical write function to the lineprin­
ter. At the conclusion of the text, a commented source program listing
of the lineprinter I/O device driver is included. The device driver listing
is separated into sections which correspond to the following text.

The LP11-R is a highspeed buffered lineprinter. A process can per­
form three functions with respect to the LP11. They are:

1. Write data to the lineprinter

399

110 Drivers

2. Read lineprinter device characteristics:

Carriage width in characters

- Check for mechanical form-feed capability

- Check for lowercase print capability

3. Write lineprinter device characteristics:

User can set carriage width

- User can set lowercase print capability

- User can set mechanical form-feed capability

Point 2 corresponds to the operating system's sense mode routine,
EXE$SENSEMODE, which is called by the function decision table
(FDT) dispatcher when the routine is entered in the Function Decision
Table.

This section will illustrate a user process request to print a line of data
to the lineprinter. The driver routines used to accomplish a write data
function are:

• FDT subroutines that reformat the user-supplied data
• A driver Start I/O routine that writes data to the device data buffer

until the printer enters a busy state, at which time the driver will wait
for the printer to interrupt, indicating the device data buffer has
been printed

• A driver interrupt handler that returns control to the Start I/O routine
after a hardware interrupt from the lineprinter

• Initialization routines called at system startup and after power failure
to initialize the unit and/or the controller

A process can print a line to this device by issuing a $010 call that
specifies the WRITE VIRTUAL BLOCK function. This procedure is
illustrated below:

CHAN = channel_number,­
FUNC = #IO$_WRITEVBLK,­
P1 = (user) buffer_address,­
P2 = (user) #buffer _size,-
P4 = #tX30 (carriage control-performs a double
space before line is printed and a carriage return
after)

Figure 12-5 illustrates the flow of execution through the operating
system and the lineprinter driver to satisfy this I/O request.

400

Ql0
VALIDATION

.
FDT

SUBROUTINE

I/O Drivers

KERNEL
MODE
AST

------~---------- I-- -

DELIVER
IRPTO

DRIVER

1
DEVICE DRIVER QUEUE 1/0
GOES I-- WRITE TO IRPTO f---- POST-INTO BUSY POST-
STATE DEVICE PROCESSOR PROCESSOR

! t
SUSPEND DRIVER
DRIVER RETURN

STATUS

I I ~
DEVICE OPERATING

GENERATES -..:.... SYSTEM
f--

INTERRUPT
INTERRUPT DISPATCHES HANDLER·

INTERRUPT

Figure 13-5 Lineprinter Write Function

USER
CONTEXT

SYSTEM
CONTEXT

The double-sided boxes in the figure indicate processing performed
by driver subroutines. All processing above the dotted line occurs in
the context of the user process. Processing below the dotted line
occurs in system or interrupt context.

I/O Preprocessing by the Operating System (Device-Independent)
The first step in processing an liD request is to validate that the re­
quest is correctly specified. This function is performed by the $010
service routine and consists of the following tasks:
1. The $010 service routine validates that the location chan­

nel_number contains an index into the process liD channel list,

401

110 Drivers

and that the process has previously assigned the lineprinter de­
vice to the specified process channel.

Also, during this sequence, the $010 service routine obtains the
address of the lineprinter driver's function decision table (FDT).
Figure 12-6 illustrates the sequence of pointers from the channel
index number to the FDT address.

CHANNEL
CONTROL f--BLOCK

(CCB) UNIT
CONTROL

BLOCK
~

(UCB) DEVICE
DATA r---BLOCK
(DDB) DRIVER

DISPATCH r---TABLE
(DDT) FUNCTION

DECISION
TABLE
(FDT)

Figure 13-6 Locating Function Decision Table

2. The $010 service routine validates (via the FDT) that the lineprin­
ter function decision table lists 10$_WRITEVBLK as a valid
function for the device

3. The $010 service routine validates that the process quotas permit
this buffered 1/0 request

4. An FDT routine validates that the user has read access to the
buffer starting at buffer_address

If all the operating system preprocessing checks succeed, the $010
service routine creates an 1/0 request packet (IRP) in non-paged sys­
tem address space. The $010 routine writes all device-independent
details about the 1/0 request into the IRP.

I/O Preprocessing by the Driver (Device-Dependent)
This section corresponds to the write function decision table (FDT)
routine coding of the lineprinter driver.

The $010 service routine scans the function decision table. It then
checks the FDT for an entry that associates the 10$_ WRITEVBLK func­
tion code with an FDT subroutine. The $010 service routine then calls
the subroutine-a device-specific subroutine located in the lineprinter
device driver.

402

I/O Drivers

The FDT subroutine copies data from the user process space buffer
into a system space buffer. The subroutine performs this function by
performing the following tasks:

• The subroutine calculates the length of the required system space
buffer

• If the process byte count quota is not exceeded, the subroutine
allocates a buffer from system address space and stores the ad­
dress of the buffer in the I/O request packet (IRP). It charges against
the process byte count quota

• The FDT subroutine accesses the lineprinter's unit control block
(UC8)

• The subroutine reads the description of the lineprinter's current line
and page position from the driver's UC8

• The subroutine then reformats the data contained in the process
buffer and places it into the system buffer. It adds carriage control
characters (specified in the $QIO argument "P4") before and after
the data

• The subroutine rewrites the updated line and page positions into the
device's unit control block

• The subroutine then transfers control to an operating system routine
that queues the I/O packet to the device driver

Both operating system and driver 1/0 preprocessing occur in the con­
text of the user process. The user address space is mapped, and the
interrupt priority level is low enough to permit context switching or
process scheduling of the process and paging. Subsequent queuing
of the I/O request to the driver and all resulting driver processing
occur at higher interrupt priority levels (IPLs) to synchronize driver
handling of the device.

Queuing the I/O Packet to the Driver
To queue the I/O request packet to the proper driver, the operating
system queuing routine first raises the IPL to the device fork level
stored in the unit control block (UC8). Raising priority to fork level
synchronizes driver access to the 1/0 database.

If the device is not busy-indicated by the "Busy" bit's being clear in
the status word of the UCB-then the operating system can transfer
control to the driver at the start 1/0 entry point. To find the proper
entry pOint, the initiation routine chains through the 1/0 database to
the driver dispatch table (DDT), which contains the start I/O entry
point. This process is illustrated in Figure 12-7.

403

/10 Drivers

Figure 13-7 Entry Point Location

If the device is busy with another I/O transfer, the operating system
inserts the I/O request packet (IRP) in a device wait queue according
to the software schedulable priority of the process.

Start I/O
This section also corresponds to the Start I/O routine of the lineprinter
device driver. The Start I/O routine contains the code to modify device
registers, fork to device fork level, and complete the I/O request.

The lineprinter driver routine writes to the lineprinter data buffer
according to the following algorithm.

1. Locates the LP11 device registers via a chain of pOinters starting
at the device's unit control block (UGB). This process is illustrated
in Figure 12-8.

Figure 13-8 LP11 Device Register Location

The control/status register (GSR) indicates the status of the line­
printer controller. The next successive address is the data buffer.
In contrast to many other devices, such as disks, the LP11 line­
printer does not share a controller with other devices. Therefore,
no arbitration ownership of the controller is required. The GSR
address is always the address of the lineprinter. control/status
register, and all other device registers are at fixed offsets from this
address.

2. The lineprinter driver routine writes data in the device's data buff­
er', then raises the IPL to block out all interrupts and sets the
interrupt enable bit in the device's control/status register. It then
calls an operating system routine to suspend driver processing
until the lineprinter generates an interrupt.

The operating system routine suspends the driver by:

• Saving driver context-R3, R4, and the address of the next instruc­
tion in the driver-in the device's unit control block (UCB)

404

110 Drivers

• Calculating the time at which the device will timeout

• Setting bits in the device's UCB to indicate that the driver expects a
device interrupt within a specified time period

The operating system then drops the IPL back to driver fork level and
returns control to the caller of the driver Start I/O routine.

The driver remains in a suspended state until one of two events
occurs:

• The lineprinter generates a hardware interrupt

• The operating system reports a device timeout because the lineprin­
ter did not generate a hardware interrupt within a specified period of
time

Normally, the LP11 prints the contents of its data buffer and generates
the interrupt. If the printer is turned off during an operation or if it runs
out of paper, the operating system reports a device timeout.

Interrupt Handling
This section corresponds to the interrupt service routine code of the
linep-rinter device driver.

When the LP11 lineprinter generates a hardware interrupt, an operat­
ing system interrupt handling routine gains control, determines which
device is requesting an interrupt, and passes the interrupt to the LP11
driver interrupt handling routine.

The driver's interrupt handling routine restores control to the driver as
follows:

1. Confirms that the interrupt was expected by examining bits in the
device's unit control block (UCB)

2. Restores the saved registers, R3 and R4, from the device's UCB

3. Transfers control to the driver PC address which was stored in the
device's UCB

Rather than execute in the interrupt context, the reactivated driver
routine calls the operating system to create a driver fork process. The
operating system again suspends driver processing by:

• Saving driver context (i.e., R3, R4, and the driver PC address in the
UCB)

• Inserting the UCB in the appropiate fork queue

The driver suspension allows the operating system to reschedule dri­
ver processing at a lower IPL. 'The fork dispatcher can reactive the
driver when IPL drops to driver fork level.

After creating the fork process, the operating system returns control to
the driver's interrupt handling routine. The handling routine:

405

110 Drivers

• Restores registers saved at the time of the device interrupt

• pismisses the interrupt

I/O Completion Processing
When the driver Start 1/0 routine finishes the write transfer, the routine
stores in RO:

• A success status code
• The number of bytes transferred

Then the routine transfers control to the operating system to complete
the 1/0 request.

The operating system inserts the 1/0 request packet (IRP) into an 1/0
postprocessing queue. If another IRP is in the device wait queue, the
operating system dequeues that IRP, and calls the driver Start 1/0
routine to process the IRP.

When the interrupt priority level (IPL) drops to IPL$JOPOST, an 1/0
postprocessing dispatcher dequeues the IRP for the lineprinter 1/0
request and performs the following steps:

1. Adds one (1) to the process's buffered 1/0 quota

2. Deallocates the system buffer used for the reformatted user data
3. Sets an event flag to indicate that the 1/0 operation is complete

4. Queues a kernel mode asynchronous system trap (AST) routine
that deallocates the IRP and optionally loads 1/0 status into a
user-specified 1/0 Status Block

The user process determines that the I/O operation is complete by
examining the event flag.

LINE PRINTER I/O DRIVER SOURCE PROGRAM LISTING

.TITLE ~PORIVER. LP11/LSll/LV11 LINEPRINTER DRIVER

.IDENT IX0SI

,
, COPVRIGHT ec) 1977
, DIGITAL EQUIPMENT CORPOIUTION, MAYNARD, MASSACHUSETTS 017511 ,
, THIS SOFTwARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
,COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
, ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
, MAY NOT BE PROVIOED OR . OTHERWISE MADE AVULABLE TO ANY OTHER PERSON
, EKCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE lICENSE
,TERHS. TITLE TO AND ~wNERSHIP OF THE SOFTWA~E SHALL AT All T1MES
, REMAIN. IN DEC. ,
, THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO tHAN~E WITHOUT NOTICE
, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT"
, CORP.OIUTION. ,
, DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY DF ITS
, SOFTWARE ON EQUIPMENT WH1CH IS NOT SUPPLIED BY DEC.

406

110 Drivers

~PII/~SII/LVll ~INE PRINTER DRIVER

MACRO LI8RARY CAL~S

SCR8DEF
SDD8DEF
SDPTDE'
SIDBDE'
SIODEF
SIRPDEF
S~PDE'
SMSGDEF
SPC8DEF
SUC8DE'
SVECDE'

~OCAL SYM80LS

ARGUMENT LIST OFFSET DEFINITIONS

PieS
Pie II
Plea
Pile 12
PSel6
P6ei0

,
, CHARACTER CODE DEFINITIONS ,
C ... CRe 11
C ... FFe 12
C ... VTell
C ... ~'eI0
C ... TA8eq

,
, FLAG REGISTER 8IT DEI'INlTIONS ,
M ... CRPENOel
V ... CRPENOeS

,OE'INE CRB O"SETS
,DEFINE 008 O"SETS
,DEFINE OPT OFFSETS
,DEFINE 108 OFFSETS
,DEFINE 1/0 FUNCTION CODES
,DEFINE IRP OFFSETS
,DEFINE LINE PRINTER CHARACTERISTICS
,DEFINE SYSTEM MESSAGE TYPES
,OEFINE PC8 OFFSETS
,DEFINE UCB OFFSETS
,DEFI NE VEC OFFSETS

,FIRST FUNCTION DEPENDENT PARAMETER
,SECOND FUNCTION DEPENDENT PARAMETER
,THIRD FUNCTION DEPENDENT PARAMETER
,FOURTH FUNCTION DEPENDENO PARAMETER
,FIFTH FUNCTION OEPENDENT PARAMETER
,SIXTH FUNCTIO!l DEPENDENT PARAMETER

,C ARR lAGE RETURN
,FORM FEED
,VERTIC~E TA8
,LINE FEED
,TABULATION

,CARRIAGE RETURN PENDING ,
LPII/LSII/~VII DEVICE REGISTER OFFSET DEFINITIONS

SDEF
SDEF

SOEFINI ~P

LP.CSR
LP.D8R

SOEFEND LP

.8LI<W

.8~I<W
,CONTRO~ STATUS REGISTER
,DATA BUFfI'ER REGISTER

DEFINE DEVICE DEPENDENT UNIT CONTROL BLOCI< OFFSETS

SDEFINI uce
.eUC8SI< ... ~ENGTH

SDEF
SDEF
SDEF
SDEF

UC8S~.LP.MUTE~ .8LKL
UCBSB ... LP ... CURSOR • 8~K8
UCBSB.LP ... ~INCNT .8LK8
UCBSB ... LP ... OFLCNT • 8~K8

.BLK8

SDEFEND uce

,~INE PRINTER UC8 MUTEX
,CURRENT HOR %ZONAL POSITI ON
,CURRENT LINE COUNT ON PAGE
,OFFLINE TIME COUNTER
,SPARE UNUSED aYT!

407

110 Drivers

L.OCAL. DATA

DRIVER PROLOGUE TABLE

OPTAB ,DEFINE DRIVER PROLOGUE TABLE
ENO_LP.END,- ,END OF DRIVER
ADAPTER-UBA,- ,ADAPTER TYPE
UCBSIZE-1Z4,- ,UCB SIZE
NAME_LPDR IVER ,DR I VER NAME

DPT.STORE INIT ,CONTROL. BL.OCK INIT VAL.UES
DPT.STORE UCB,UCBSB.FIPL,B,B ,FORK IPL
DPT.STORE UCB,UCBSL.DEVCHAR,L,- ,OEVICE CHARACTERISTICS

<OEV SM.REC- , RECORD OR aNTED
IDEVSM.AVL- J AVAILABLE
IOEVSM.CCL- , CARRIAGE CONTROL DEVICE
IDEVSM.ODV> , OUTPUT DEVICE

OPT":STORE UCB,UCBSB.DEVCLASS,B,OCS ... LP ,Of VICE CLUB
OPT .STORE UCB, UCBSB.DEVTYPE, B, LPS ... L.P 11 ,DEV ICE TYPE

DPT.STORE UCB,UCBsw.DEVBUFSIZ,W,13Z ,OEFAUL.T BUFFER SIZf
OPT.STORf UCB,UCBSL.DEVDEPEND,L.,<&4,24+L.PSM.MECHFORM> ,PRINTER PARAMETERS
DPT.STORE UCB,UCBSB ... OIPL,B,Z0 ,DEVICE IPL
DPT.STORE UCB,UCBSL..LP.MUTElC,w,-l ,INITIALIZE MUTEX
OPT.STORE REtNIT ,CONTROL BLOCK RE-INIT VALUES
OPT.STORE CRB,CRBSL.INTOU,D,LP$lNT ,INTERRUPT SERVICE ROUTINE ADDRESS
OPT.STORE CRB,CRBSL ... INTD+VECSL ... ~NITIAL,D,LP.LX11 ... CINIT ,CONTROLLER INIT
DPT ... STORE CRB,CRBSL.INTD+VECSl. ... UNITINIT,O,l.P.LX11.INIT ,UNIT INIT
DPT.STORE DDB,DDBSL.DDT,D,LPSDDT ,DDT ADDRESS
DPT.STORE END ,

DRIVER DISPATCH TABl.E

DDTAB l.P,- ,DRIVER DISPATCH TABLf
,START I/O OPERATION
,UNSOLICITfD INTERRUPT
,FUNCTION TABLE
,CANCEl. 1/0

,PAGE

STARTlO,-
0,-
FUNCTABLE,­
+IOCSCANCELIO,-
0,-
0, -
o

,REGISTER DUMP ROUTINE
,SIZE OF DIAGNOSTIC BUFFER
,SIZf OF ERROR LOG BUFFER

,SBTTl. LP11/LS11/L.V11 FUNCTION DECISION TABL.E

LP11/LSI1/LVI1 FUNCTION DECISION TABLE

FUNCTABL[, ,FUNCTION DECISION TABl.E
FUNC TAB , - ,LEGAl. FUNCT IONS

<SENSECHAA,- ,SENSE CHARACTERISTICS
snCHAA,- ,SET CHARACTERISTICS
SENSE MODE , - ,SENSE MODE
SETMODE,- ,SET MODE
iORITEl.BLK,- ,WRITE L.OGICAL Bl.OCK
WAITEPBLK,- ,WRITE PHYSICAl. BLOCK
WRITEVBLK> ,WRITE VIRTUAl. Bl.OCK

FUNCTAB ,- ,LEGAl. FUNCTIONS
<SENSECHAR,- ,SENSE CHARACTERISTICS
snCHAR,- ,SET CHARACTERISTICS
SENSE MODE, - ,SEIliSE MODE
snMOOE, - ,SET MODE
WRITELBLK,- ,WRITE LOGICAl. BLOCK
WRITEPBLK,- ,WRITE PHYSICAl. BLOCK
WRITEVBLK> ,WRITE VIRTUAL BL.OCK

FUNCTAB LP ... WRITE,<WRITEl.BL.K,WRITEPBl.K,WRITEVBLK> ,WRITE FUNCTIONS
FUNCTAB L.P ... SETMODE,cSETCHAR,SETMODE> ,SET CHARACTERISTICS FUNCTIONS
FUNCTAB +EXfSSENSEMODf,. ,

<SENSECHAR,- ,SfNSE CHARACTERISTICS
SENSEMODE> ,SENSE MODE

408

110 Drivers

FUNCTION DECISION TABLE (FDT) ROUTINE

Set Mode FDT Routine

,PAGE
,S8TT~ SET CHARACTERISTICS AND SET MODE FUNCTION PROCESSING

, +
, ~P.SETMODE - SET CHARACTERISTICS AND SET MODE FUNCTION PROCESSING ,
, THIS ROUTINE IS CA~~ED FROM THE FUNCTION DECISION TAB~E DISPATCHER TO PROCESS
, A SET MODE FUNCTION TO A ~INE PRINTER, ,
, INPUTS. ,

Ril • SCRATCH,
RI SCRATCH,
R2 SCRATCH,
Rl • ADDRESS OF 1/0 REQUEST PACKET,
R4 • CURRENT PROCESS PCB ADDRESS,
RS • ASSIGNED DEVICE UCB ADDRESS,
Rb • ADDRESS OF cce,
R7 • 1/0 FUNCTION CODE,
RB • FUNCTION DECISION TAB~E OISPATCH ADDREU,
R9 • SCRATCH,
RU • SCRATCH,
RI! • SCRATCH,
AP • ADDRESS OF FIRST FUNCTION DEPENDENT PARAMETER,

OUTPUTS.

THE SPECIFIED CHARACTERISTICS ARE MOVED INTO THE DEVICE UCB AND THE
1/0 IS COMP~ETED, ,-

~FI ... S!:TMODE.
MOV~
IFNORD
FlUSH~
MOVAB
JSB
CMP~
BEQL
MOVW

10S. MOIIW
MOIIL
JSB
POPL
MOVZWI.
JMP

205. MOVZWI.
JMFI

,SET MODE FUNCTION FlROCESSING
P!(AP).RI ,GET ADDRESS OF CHARACTERISTICS

.• a.(RI).2IlS ,CAN CHARACTERISTICS QUADWORD BE
~3 ,SAVE PACKET ADDRESS
UCBSL..LP ... MUTEX (RS). Ril ,GET ADDRESS OF UCB MUTEX
G·SCHSLOCKW ,LOCK UCB FOR WRITE ACCESS
UOS ... SETMODE.R7 ,SET MODE FUNCTION?
IllS ,IF EQI. YES
(R1>.UCBSB ... DEIICLASS(RS) ,SET DEVICE CI.ASS AND TYPE
2 (R 1>. UCBSW.DEVBUFSI HRS) ,SET DEF AUL. T BUII"FER SIZE
4(RI),UCBSI..DEVDEPEND(RS) ,SET DEVICE CHARACTERISTICS
G·SCHSUNLOCK ,UNL.OCK UCB
R3 ,RESTORE FlACKET
USS ... NORMAL. Ril ,SET NORMAL COMFI~ETI ON STATUS
G-ElIESFINISHIOC ,
.SSS;".ACCIIIO.R0 ,SET ACCESS VIO~ATION STATUS
G-EXESABORTIO

Write FDT Routine
,PAGE
,SBTTL WRITE FUNCTION PROCESSING

+
LP ... WRITE - WRITE FUNCTION PROCESSING

REAO?

THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER TO PROCESS
A WRITE PHVSICAL.. WRITE LOGICAL.. OR WRITE VIRTUAl. FUNCTION TO A LINE PRINTER,

INPUTS.

1'0 II SCRATCH,
RI • SCRATCH,
R2 • SCRUCH,
Rl • AOORESS OF 1/0 REQUEST PACKET,
Ru CURRENT PROCESS Flce ADDRESS,
RS ASSIGNED DEVICE uce ADDRESS,
Rb • ADDRESS OF CCB,
RT • 1/0 FUNCTION CODE,

409

liD Drivers

R8 • FUNCTION DECISION TABLE DISPATCH ADDRESS.
RC1 • SCRATCH.
R 10 • SCRATCH.
R II • SCRATCH.
AP • ADDRESS OF ~IRST FUNCTION DEPENDENT PARAMETER.

, OUTPUTS, , , , ,
THE FUNCTION PARAMETERS ARE CHECKED AND THE USER'S BU~~ER IS FORMATTED
AND COPIED INTO A SYSTEM BUFFER ~OR PROCESSING BY THE LINE PRINTER
DRIVER. ,-

LP ... WRITE.
CLRL
CLRL

FORMAT. MOVL
PUSMR
MOVL
MOVZWL
CMPL
BEGIL
MOVL
JSB
MOVZBL
,",OVZBL
ADDL
,",OVAB

105. TSTL
BEGIL
,",OVGI
JSB

205. ,",OVAB
JSB
BLBC
JSB

lSS.
305.

1105.

nil

5811

.all

BLBC
MOVL
'"'OVL
SUBW
HOVw
CLRL
MOVIO
MOVAB
MOVAB
JSB
CMPL
BEGIL
SUB'"
MOVZBL
MOVZIOL
HOVZBL
MOVZBL
MOYL
BBC
CLRL
BSBB
DECL
BLSS
MOVZBL
BSBB
BRB
BSB8
SUBL
SUBIOl
MOYB
I NSV

MOYS
BRB
POPR
JMP
MOYW
MOVC
POPR
PUIHL
MOVAS

RIt
RI0
~P,SP

*-MeR3,RII,R5,R&,R7,AP>
PI(APl,R8
P2(APl,RC1
*IOS ... WRITEPBLK,R7
I0S
PII(A P l,IRPIB ... CARCON(R3)
G·TT SCARR I AGE
IRP5B ... CARCON(R3l,R0
IRPSB ... CARCON+2(Rl),RI
R0,RI
12(Rll[RI1J,RI0
RC1
205
R8,R0
G"EXESIORITECHK
12(Rq) [RUl ,RI
G·EXE5BU~FRQUOTA
Ra,1I5S
G·EXEULLOCBUF

,WRITE ~UNCTION PROCESSING
,CLEAR TOTAL NUMBER OF OVERHEAD BYTES
,ASSUME WRITE PASS ALL FUNCTION
,REMOVE ALL TEMPORARIES FROM STACK
,SAVE REGISTERS
,GET STARTING ADDRESS OF USER BUFFER
,GET LENGTH OF USER BUFFER
,WRITE PHYSICAL SLOCK?
,IF EQL YES
,INSERT CARRIAGE CONTROL. INFORMATION
,TRANSLATE CARRIAGE CONTROL INFORMATION
,GET NUMBER OF PREFl)(CONTROL BYTES
,GET NUMBER OF SU~FIX CONTROL BYTES
,CALCULATE NUMBER OF CARRIAGE CONTROL BYTES
,CALCULATE TOTAL NUMBER OF OVERHEAD BYTES
,ANY BUFFER SPECI~IED?
,IF EGiL NO
,RETRIEVE BUFFER PARAMETERS
,CHECK ACCESSIBILITY OF USER BUFFER
,CALCULATE L.ENGTH OF BUFFER REQUIRED
,CHECK IF PROCESS HAS SUFFICIENT QUOTA
,I II' LBC QUOTA CriEC K F AlL.URE
,ALLOCATE BUFFER FOR LINE PRINTER OUTPUT

R0,1I5S ,IF LBC ALLOCATION FAILURE
(SPt,Rl ,RETRIEVE 'ODRESS OF 1/0 PACKET
R2,IRPSL ... SVAPTE(R3) ,SAVE ADORESS OF SUFFERED 1/0 PACKET
RI,PCBSW ... BYTCNT(Rlil ,ADJUST BUFFERED 1/0 QUOTA
RI,IRPS~ ... BOFF(R3l ,SET NUMBER OF BYTES CHARGEO TO QUOTA
IRPSL ... MED IA C Rl) ,CLEAR LINE FEED COUNT I N PACKET
RII,IRPSW ... BCNTCR3l ,INHRT SIZE OF USER BUFFER
12(R2),R2 ,GET ADDRESS OF BUFFER DATA AREA
UCBSL ... LP ... MUTEX(RSl,R0 ,GET ADDRESS OF UCB MUTEX
G·SCHSLOCKW ,LOCK UCB FOR WRITE ACCESS
*I05 ... WRITEPBLK,R7 ,WRITE PASS ALL?
50S ,IF EQL YES
tl12,RI ,CALCULATE ACTU.L LENGTH OF DAU AREA
UCBSB ... LP ... CURSOR(RS),RII ,GET CURRENT HORIZONAL CARRIAGE POSITION
UCBsw~OEVSTS(R5l,R& ,GET CURRENT CARRIAGE RETURN PENDING FLAG
UCBSB ... LP.LINCNT(RS),R7 ,GET CURRENT LrNE ON PAGE
UCB$~ ... DEVBUFSIZCR5l,RI0 ,GET wIDTH OF PRINTER CARRIAGE
.·X20,AP ,ASSUME PRINTER DOES NOT HAVE LOWER CASE
*LPSV ... LOWER,UCBSL.DEVDEPEND(R5l,35S ,IF CLR, NO LOWER CASE
AP ,SET FOR PRINTER IOITH LOWER CASE
70S ,INSERT PREFIX CARRIAGE CONTROL
RII ,ANY MORE BYTES TO TRANSFER TO SYSTEM BUFFER?
110S ,IF LSS NO
(R8)+,R0 ,GET NEXT BYTE FROM USER BUFFER
WRITE~BYTE ,wRITE BYTE IN SYSTEM BUFFER
30$,
80S ,INSERT SUFFIX CARRIAGE CONTROL IN BUFFER
IRPSL ... SVAPTE(R3),R2 ,C.LCULATE LENGTH OF OUTPUT PLUS HEAOER
11112,R2,IRPSL ... MEDIA+2CR3) ,CALCULATE ACTUAL LENGTH OF OUTPUT BUFFER
RII,UCBSB ... LP ... CURSOR(RS) ,SAVE CURRENT HORIZONAL CARRUGE POSITION
Rb,IIIY ... CRPEIIID,IIII,UCBSW ... DEVSTSCRS) ,SAVE CARRIAGE RETURN PENDING

R7,UCBIB ... LP.L.INCNT(R5)
US
.-MeR], RII, R5, RII, R7, AP.
G-ElCEUBORTIO
RtJ,IRPSL. ... MEDU+l(R])
RC1, (R8), (RZ)
'·MeR3, RII, R5 (RII, R7, AP.
R]
UCBIL.LP.MUTEl(R5),Re

,SAVE CURRENT L.INE ON PAGE ,
,RESTORE RECIISTERS ,
,INSERT NUMBER OF BYTES TO PRINT
,MOYE CHARACTERS TO SYSTEM BUFFER
,RESTOAEREGIST!RS
,SAVE AOOR!SS OF 1/0 PACKET
,GET AODRESS OF UCB MUTEX

410

JaB
POPL.
JMP

G-SCH'UNL.OCK
R]
G-fl(!lQIOORVPKT

liD Drivers

,UNL.OCK UCB
,RESTORE ADDR!SS 0' 1/0 PACten
,QUEU! 1/0 PACKET TO DRIVER

SUBROUTINE TO INaERT CARRIAGE CONTROL. IN BU"ER

Till'

81111,

nl,

MOVZBL.
B!QL.
"'OVZBL.
BRB
MOVlBL.
BEQL.
MOVlBL.
BNEQ
MOVZBL.
BaBB
MOVZBL.
B88B
SOBGTR
TITL.
RaB
.PAGE
.aBTTL.

IRI'SB ... CARCONCR]),-CSP) ,GET NUMBER 0' CHARACT!Ra TO OUTPUT
UIII ,I' EQL. NONE
IRPSB ... CARCON+1(R]) ,R0 ,Gn CHARACHR TO OUTPUT
a'll ,
IRPSB ... CAACON+ZCR]),-CSP) ,GET NUMB!R 0' CHARACHRS TO OUTPUT
10l1li ,I' EQL. NONE
IRPSB ... CAACON+]CR]) ,Rill ,GET CHARACT!R TO OUTPUT
.1111 ,IF NEQ CHARACTER SPECI'IED
'C ... CR,RIII ,GET CARR lAG! RETURN
-RITE ... BYT! ,-RITE BYTE IN SYSTEM BUF'ER
'C ... L."RIII ,Gn L.INE HED
~RITE.BVT! ,WRITE BYTE IN SYSTEM BU"ER
CSP), •• I ,ANY MORE L.E'T TO INaERT'
cap)+ ,REMOVE COUNT 'ROM STACK ,
WRITE BYTE INTO SYSTEM BUFFER

SUBROUTINE TO 'ORMAT AND 'U.L. SYSTEM BU'F!R ~ITH L.INE PRINTER OUTPUT ONE BYTE
AT A TIME.

~"ITE ... B V H'
CMPL.
BGTRU
BBSC
CMPB
BGTRU
CMPB
BEQL.
SUBL.

UI, CMPL.
BGTRU
INCL.

zel, DECL.
BL.SS
MOVB

Jel, ASB

,

'-AI I,R,
411
.V ... CRPEND,RI>,US
'-A/"I,RIII
UI
."lI'7"RIII
3111
AP,RIII

RII,R1III
3111
RII
Rl
15l1li
AlII, CRZ"

,~RITE BYTE INTO BU"ER
,CONTROL. CHARACTER'
,I' GT"U YEI
,I' SET, CARRlAGE R!TURN PENDING
,POSSIBL.Y L.OWER CASE CHARACTER'
,IF GTRU NO
,DEL.ETE CHARACTER'
,I' EQL. YEI
,CONVERT CHARACHR TO UPPER CUE

,STIL.L. ROOM ON CURRENT L.INE' ,I' liTRU NO
,INCREMENT HORIZONAL. POSITION
,ANY ROOM L.EFT IN SyaTEM BUFFER' ,I' L.SS NO
,INSERT CHARACT!R IN SYSTEM BUFFER ,

, CONTROL. CHA"ACTER !NCOUNTERED ,
IIU,

'50S,
US,

CMPL.

BLSSU
eGT~u

BBS
BISL
RSB
BBCC
PUSHL.
MOVZBL
BSBB
I' DIlL
BRB

,CARRIAGE RETURN?

5i!1S ,IF LSS NO
70. ,IF GTRU NO
'LPSV ... CR,UC8SL ... DEVDEPENDI R5),1110S ,IF SET, CARRIAGE RETURN REQUIRED
.M ... CRPEND,Rb ,SET CARRIAGE RETURN PENDING

'V ... CRPENO,Rb,20S
R0
'C ... CR,R0
11.10$
R0
WRITE ... BVT!

,
,IF CL.R, CARRIAGE RETURN NOT PENDING
,SAVE CURRENT CHARACTER
,Gn CARRIAGE RETURN CHA"'CTER
,INSERT CARRIAGE RETURN IN BUFFER
,RETRIEVE CURRENT CHARACTER

CHARACTER IS A TA8, L.INE FEED, VERTICL.E TAB, OR FORM FEED

CMPL.
BGTRU
BL.SSU

CHARACTER IS A TAB

,TABUL.ATION CHARACTER'
,IF GTRU NO
,IF L.seu NO

411

Besc
PUSHAB
eICL
SUBL
MOVZBL
BRB

''1 ... CRPENO, Rb, b(llS
8 (~I.I)
." (SP)
RI.I, (SP)
'-.1 I,R0
101115

110 Drivers

,IF SET, CARRIAGE RETURN PENDING
,CALCULATE NEXT TAB POSITION .
,CLEAR EXCESS BITS
,CALCULATE BLANK COUNT
,SET SPACE CHARACTER

CHARACTER IS A LINE FEEO, VERTICLE TAB, OR FORM FEED

BU, CMPL
BEQL
BGTRU

.C ... VT,R0
5011
110S

,VERTICLE TAB?
,IF EQI. YES
,IF GTRU LINE FEED

CHARACTER IS A FORM FEED

'11115,
100S,

MOVZSL
SUBL]
BBC
ADDL
MOVZSL
BRB
MOVZBL
SSB~
SOB:lTR
TSTL
RSB

UCBSL ... DEVDEPEND+](RS),R0 ,GfT NUMBER OFLINfS PER PAGE
RI.I,R0,-(SP) ,CALCULATE NUMBER OF LINES TO END OF PAGE
.I.PSV ... MECHFORM,UCBSI. ... DEVOEPEND(RS),q05 ,IF CI.R, NO MECHANICAL FEED
(SP)+,IRPSI. ... MEOU(R]) ,UPDATE NUMBER OF LINES PRINTED
.C ... FF,R0 ,SET FORM FEED CHARACTER
12011 ,
'C ... LF,R0 ,SET LINE FEED CHARACTER
WRITE ... BYTE ,INSERT BYTE IN SYSTEM BUFFER
(SP),10011 ,ANY MORE BYTES TO INSERT?
(SP)+ ,REMOVE LOOP COUNT FROM STACK ,

CHARACTER IS A LINE FEED

1105, INCL R7 'INCREMENT LINE POSITION ON PAGE
INCL IRPSL ... MEOU(R]) ,I NCREMENT NUMBER OF LI NES PR I NT EO

CMPB R7,UCBIIL ... DEVDEPEND+](R5) ,END OF PAGE?
BNEQ 13011 ,IF NEQ NO

IUS, CI.RI. R7 ,CLEAR LINE POSITION ON PAGE
13011, BICL .M ... CRPENO,Rb ,CLEAR CARRIAGE RETURN PENOING
11.1111S, CI.RL RI.I ,CLEAR HORIZDNAL POSITION

BRW US ,

OUTPUT WILL NOT FIT IN ALLOCATED BUFFER

150S, MOVI.
CI.RL
MOVZWI.
JSB
MOVAB
POPR
AOOW
ADDL
PUSHL
MOVAB
JSB
POPL
BRW

IRPSL ... SVAPTE (R]), R0
IRPSL ... SV APTE (R])
IRPSW ... SIZE(R0),R10
G·EXElDEANONPAGED
-1.I*b(FP),SP
."'MeR], RI.I, RS, Rb, R7, APlI>
RI0,PceSW ... BYTCNT(RI.I)
*32,Rl1
R3
UCBSL ... LP ... MUTEX (RS), R0
G·SCHSUNLOCK
R3
'ORMAT

I/O Entry Routine Code

.PAGE

.SBTTL LINE PRINTER DRIVER ,+

,GET ADDRESS 0' BUU'ER TO DEALLOCATE
,INDICATE NO BU'FER ALLOCATED
,SAVE SIZE OF BUF'ER
,DEALLOCATE BUFFER
,REMOVE ALL TEMPORARIES FROM STACK
,RUTORE REGISTERS
,ADJUST BYTE COUNT QUOTA
,ADJUST COUNT OF OVERHEAD BYTES
,SAVE ADDRESS OF 1/0 PACKET
,GET ADDRESS 0" uca MUTEX
,UNLOCK UCB
,RUTORE ADDRESS 0" 110 PACKET
,TRY AGUN

, STARTIO - START 1/0 OPERATION ON LINE ~RINTERS ,
, THIS ROUTINE IS ENTERED WHEN THE ASSOCIATED UNIT IS IDLE AND A PACKET
, IS AVAILABLE. ,
, INPUTS, ,
, R] • ADDRESS OF 1/0 REQUEST PACKET,
, R5 • UCB ADDRESS FOR IDLE UNIT,

412

110 Drivers

OUTPUTS I

,-
STARTlOI

NO EXP~ICIT OUTPUTS - THE UNIT IS IN ~AITING 'OR INT!RRPUT STATE
OR THE 1/0 IS COMP~!TE.

MOV~
MOV~
MOV~
MOVAB
MOV~
MOV~

UCBS~.IRPCR5),Rl ,R!TRIEVE ADDRESS 0' 1/0 PACKET
IRPS~.MEDU+2CR]),UCBS~ ... BO"CR5) ,lET NUMBER 0' CHARACTERS TO PRINT
UCBS~.SVAPTE(R5),R] ,GET ADDRESS 0' SYSTEM BU"ER
12CR]) ,R] ,GET ADDRESS 0' DATA AREA
UCBS~.CRBCR5) ,R4 ,GET ADORUS 011" CRB
'CRBS~ ... INTD+VECS~.IOBCR4),R4 ,GET DEVICE CSR ADDRESS

START NEXT OUTPUT SEQUENCE

10SI AOOL] .LP ... OBR,R4,R0 ,CALCULATE ADDRESS 0' DATA BUII"HR REGISTER
MOVZ~~ UCBS~ ... BO"(R5),Rl ,GET NUMBER 0' CHARACTERS REMAINING
MOV~ .·X8080,R2 IGET CONTROL REIHBTER nST MASK
BRB 25S ,

2951 BIT~ R2,(R4) ,PRINTER RUD'!' OR HAVE PAPER PROB~EM?
BLEQ US , I' LEQ NOT RUO'!' OR PAPER PROB~EM

MOVB CRl,., CRS) , OUTPUT NExT CHARACTER
25S1 SOBGEQ Rl,iSS ,ANY MORE CHARACTERS TO OUTPUT1

BRB 70S ,
PRINTER IS NOT READY OR HAS P.PER PROBLEM

30S1 BNEQ I1I2IS
AODwl .1,Rl,UCBS~.BOFF(R5)
OSB INT
BISB .·X40,LP.CSR(R4)
IoIII"II<PCH 1195,*12
IO'ORI<
BRB 1121S

, I' NEQ PAPER PROBLEM
,SAVE NUMBER 0' CHARACTERS REMAINING
,OIUBLE INHRRUPTS
,SET INTERRUPT ENABLE
,WAIT 'OR INTERRUPT
,CREATE A 'ORI< PROCESS ,

PRINTER HAS PAPER PROB~EM

40S1

5121S1

USI

C~RB
.001013
CLRW
SETIPL
TSTiIj
BGTR
BBS
.CBB
CLRB
PUSHR
MOVZB~
MOVAB
JSB
POPR
OSBINT
~FIKPCH
IO'ORI<
BRB

UCBSB ... LP.0'LCNT(R5) ,CLEAR OFFLINE COUNTER
*l,Rl,UCBSIol ... BOFF(RS) ,SAVE NUMBER OF CHARACTERS REMAINING
LP.CSRCRII) ,DISABLE PRINHR INTERRUPT
UCBSB ... II"IPL(R5) ,LOWER TO 'ORI< ~EVEL
~P.CSR(R4) ,PRINTER STILL HAVE PAPER PROB~EM'l
STARTlO ,1' GTR NO
.UCBSV.CANCEL,UCBSiIj.STS(R5),80S ,IF SET, CANCEL 1/0 OPERATION
.15,.1,UCBSB.LP ... 0'LCNT(R5),~0S ,SKIP UNTIL TIMEOUT
UCBSB.I.P.OFLCNTCR5) ,RESET COUNTER
.-McRl,R4_ ,SAVE REGISTERS
.MSGS.OEVOFFLIN,R4 ,SET UP MESSAGE TYPE
G·SYSSGL.OPRMBX,R] IAOORESS TARGET MAILBOX
G-EXESSNOEVMSG ,SEND MESSAGE IGNORE ERROR
.-MCRl, R4- ,RESTORE REGISTERS

,DISABLE INTERRUPTS
50',1112 IWAn II"OR AN INTERRUPT OR TIMEOUT 2 SEC

, CRUTE II"OR PROCESS
50S ,

110 OPERATION SUCCESSFULLY CO"'PLETEO

70S1 ",OVZIoIL
CLRW
BRB

USS.NORMAL, R0
UCBSIoI ... BO"(R5)
90S

1/0 OPERATION CANCELEO

80S1
90S!

MOVZIoIL
MOV~
MOVZIoIL

USS.ABORT, R0
UCBSL ... IRP(R5),R]
IRPSL ... MEOIA(R]),Rl

,SET NORMAL COMPLETION STATUS
,CORRECT REMAININQ CHARACTER COUNT ,

,SET OPERATION ABORTED STATUS
,RETRIEVE ADDRESS 011" 1/0 PACKET
,GET NUMB!R 01" LINES PRINTEO

413

SUBW
INSV
REQCOM

liD Drivers

UCBSW.BOFF(RS),UCBSW.BCNTCR5) ,CALCULATE NUMBER OF CHARACTERS
UCBSW.BCNT(RS),1I16,U6,RQI ,INS!RT NUMBER OF CHARACTERS IN STATUS

,COMPLETE 1/0 REQUEST

Interrupt Service Routine Code

.PAGE

.SBTTL LPll/LSll/LVll LINE PRINTER INTERRUPT DISPATCHER
+

LPSINT • LPll/LS11/LVll LINE PRINTER INTERRUPT DISPATCHER.

THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT OCCURS ON AN
LPll/LS11/LV11 LINE PRINTER CONTROLLER. THE STATE OF THE STACK ON ENTRV IS,

Q10(SP)
04(SP)
218(SP)
12(SP)
16(SP)
20(SP)

• ADDRESS OF IDB ADDRESS.
• SAVED R3.

SAVED R4.
SAVED R5.

• INTERRUPT PC.
• INTERRUPT PSL.

INTERRUPT DISPATCHING OCCURS AS FOLLOWS. ,
, IF THE INTERRUPT IS EXPECTED, THEN THE DRIVER IS CALLED AT ITS INTERRUPT
, WAIT ADDRESS. ELSE THE INTERRUPT IS DISMISSED. ,-
LPSINT"

MOVL
MOVQ
BBCC
CLRW

us.

,+

MOVL
JSB
MOVQ
MOVQ
MOVQ
REI
.PAGE
.SBTTL

,ENTRV FROM DISPATCH
'(SP)+,RJ ,GET ADDRESS OF IDB
IDBSL.CSR(R3),R4 ,GET CONTROLLER CSR AND OWNER UCB ADDRESS
*UCBSV.INT,UCBSW ... STSCRS),10S ,IF CLR, INTERRUPT NOT EXPECTED
(R4) ,DISABLE OUTPUT INTERRUPTS
uceSL.FRJ(R5) ,AJ
'UCBSL ... FPC (RS)
(SP)+,R2I
(SP)+,R2
(8P)+,R4

,RESTORE REMAINDER OF DRIVER CONTEXT
,CALL DRIVER AT INTERRUPT WAIT ADDRESS
,R[STORE REGISTERS , , ,

LINE PRINTER UNIT INITIALIZATION

, LP.LX11 ... INIT - LINE PRINTER UNIT INITIALIZATION ,
, THIS ROUTINE IS CALLED AT SYSTEM STARTUP AND AFTER A POWER FAILURE. THE
, ONLINE BIT IS SET FOR THE SPECIFIED UNIT. ,
, INPUTS. ,
, R5 • ADDRESS OF DEVICE UCB. ,
, OUTPUTS. ,
, THE ONLINE BIT IS SET IN THE DEVICE UCB AND THE ADDRESS OF THE uce
, IS FILLED INTO THE IDS OWNER FIELD. ,-
LP ... LX11 ... INIT.

BISw
MOVL
MOVL
MOVL

LP ... LX 11.C INIT.
RSS

LP.END.

.END

'LINE PRINTER UNIT INITIALIZATION
*UCBSM ... ONLINE,uceSW ... STSCR5) ,SET UNIT ONLINE
UCBSL.CRB (R5)' R2I ,GET ADDRESS OF CRB
CRBSL ... INTD+VECSL ... IDB(R2I),RQI ,GET ADDRESS OF lOB
R5,IDBSL ... OWNER(R2I) ,SET ADDRESS OF DEVICE uce

,NULL CONTROLLER INITIALIZATION ,
,ADDRESS 0' LAST LDCATION IN DRIVER

414

415

CHAPTER OVERVIEW
It is frequently important that processes be able to communicate with
one another; to pass data or to share a resource or data structure. This
chapter expands on the interprocess communications section of
Chapter 1. It describes in detail the use of common event flags and
mailboxes as structures by which processes pass status information
and data to one another. Also explained, are the use of global sections
for sharing physical pages of memory and the lock management ser­
vices for generic multiprocess resource sharing.

Topics are:

• Com mon Event Flags

• Mailboxes

• DECnetlVAX

• Global Sections

• Lock Management Service

416

CHAPTER 14

INTERPROCESS COMMUNICATION

INTRODUCTION
The VAX/VMS operating system provides interprocess communica­
tion facilities for synchronizing execution, for sending messages, and
for sharing common data. The six communication techniques utilized
by cooperating processes are:

• Common event flags

• Mailboxes

• DECnet
• Shared data and code

• Lock semaphors

• Shared disk files

Common event flags are associated with group identification. The oth­
ers are more general purpose facilities which can be limited or unlimit­
ed in access.

COMMON EVENT FLAGS
Event flags are status posting bits that allow the programmer to
incorporate a variety of control functions within the program. Event
flag services capabilities include:

• Set or clear specific flags

• Test the current status of flags

• Place a program in a wait state pending the setting of a specific flag
or a group of flags

Moreover, event flags can be uSed in common by more than one
process, provided the cooperating processes are in the same group.
Thus, if an application has been developed that requires the simulta­
neous execution of several processes, event flags can be used to
establish communication and to synchronize their activity. A common
event flag cluster is composed of 32 event flags, which can be as­
signed any meaning for the processes in the group. FOlJr clusters are
available to any process at anyone time. Two are for process-local
functions, two are for in.terprocess communication. As it may with local
event flags, a process can read its group's common. event flags, can
set or clear them, can wait for a particular event flag t<;> be set, or for
any or all flags in the cluster to be set.

Associated with each common event flag cluster is a software control
structu~e known as a common eventblock (CEB). The common event

417

Interprocess Communication

block provides the system with necessary information, such as the
creator's user identification code, the cluster name and size in bytes,
process protection, and a count of processes in wait queue.

System Services For Event Flag Handling
VAX/VMS system services for the handling of event flags and clusters
provide the capability to perform the functions as described below.

Six general event flag services operate on both local and common
event flags:

$SETEF Set Event Flag
$CLREF Clear Event Flag
$READEF Read Event Flag
$WAITFR Wait for Single Event Flag
$WFLOR Wait for Logical OR of Event Flags
$WFLAND Wait for Logical AND of Event Flags

Common event flag clusters must be associated before they can be
used. Three services control their use:

$ASCEFC Associate Common Event Flag Cluster
$DACEFC Disassociate Common Event Flag Cluster
$DLCEFC Delete Common Event Cluster

These services are explained in Chapter 11.

MAILBOXES
Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using
higher-level language I/O statements, Record Management Services,
or directly with the I/O system services. When a mailbox is created, a
channel is assigned to it for use by the creating process.

The Create Mailbox and Assign Channel ($CREMBX) system service
creates the mailbox. The $CREMBX system service can optionally
create a user-specified logical name and assign it the physical mailbox
name created. Other processes can then use the $ASSIGN or $OPEN
system services (or higher level language OPEN statements), specify­
ing the logical name, to assign other channels to the mailbox. A proc­
ess can also determine the physical mailbox name by translating the
logical name (with the $TRNLOG service), or it can call the Get I/O
Channel Information ($GETCHN) service to obtain the unit number
and device name. .

Mailboxes are either temporary or permanent; user privileges are
required to create either type. $CREMBX enters the logical name and

418

Interprocess Communication

equivalence name for a temporary mailbox in the group logical name
table of the process that created it. The system deletes a temporary
mailbox when no more channels are assigned to it.

The $CREMBX system service enters the logical name and equiv­
alence name for a permanent mailbox in the system logical name
table. Permanent mailboxes continue to exist until they are specifically
marked for deletion with the Delete Mailbox ($DELMBX) system ser­
vice.

The maximum number of messages and the maximum size of mes­
sage that can be written to a mailbox can be specified when the mail­
box is created. A mailbox can be protected when it is created, just as a
device or disk volume can be protected when mounted.

The system uses mailboxes internally for interprocess messages
between system processes, and between system processes and user
processes. The following services create special mailbox messages
for system processes:

• Send Message to Accounting Manager ($SNDACC)

• Send Message to Operator ($SNDOPR)
• Send Message to Symbiont Manager ($SNDSMB)

When a process creates another process, it can specify the name of a
mailbox that is to receive the termination status when the created
process is deleted.

When a channel is assigned to a terminal ora network link, a process
can specify the name of a mailbox that is to receive unsolicited input or
high priority network messages. When the message is written to the
mailbox, an asynchronous system trap (AST) will be delivered, elimi­
nating the need for an outstanding read to each terminal or network
link.

OECNETNAX
VAX/VMS provides the same interfaces for interprocess communica­
tion on a single node as DECnetlVAX provides in a multi-node config­
uration. This communication mechanism can be an effective alterna­
tive to mailboxes. Not only is it as easy to use, but it is more flexible
because it also allows applications to expand to a multi-node
environment without modification. DECnetlVAX is d.escribed in Chap­
ter 7.

GLOBAL SECTIONS
The system supports a high degree of code and data sharing through
the use of global sections. A global section is a-copy of a portion of an
image or data file that can be included in a process virtual address
space at runtime.

419

Interprocess Communication

Global sections either are created dynamically by a process or are
permanently installed in the system. Dynamically created global sec­
tions are mapped into processes that reference them, and deleted
when no more references are made to them. Permanent global sec­
tions may be known shareable images created using the linker, or may
be created by program calls tosystem services. They are loaded into
and removed from memory dynamically as references are made to
them.

A global section can be created as a read-only or read/write global
section to protect code and data.

Normally, only one copy of a global section actually resides in memory
while cooperating processes reference it. However, should a global
section contain pre-initialized data that processes using the data are
expected to change, the global section can be declared to be copy-on­
reference. This enables each process to have its own copy of these
pages.

A read/write global section may include a demand allocate zero-filled
page. When a process references the global section for the first time,
zero-filled pages are mapped into its virtual address space. Such
pages are created dynamically and eliminate the necessity of filling up
space on secondary storage with pages of zeros. (Typical use of the
demand allocate zero-filled page is buffers or stacks.)

A process can map to a global section explicitly or implicitly. The
image itself can issue a Map Global Section system service, or it can
reference a known shareable image. When an image references a
known shareable image, the linker does not include the global section
in the image. When the image is executed, the image activator calls
the Map Global Section system service on behalf of the image. For
example, the Run Time Procedure Library is a known shareable image
implicitly mapped into images that reference library procedures. The
use of known shareable images significantly reduces the size of pro­
grams using common library procedures.

Each process that maps a global section into itsvirtual address space
can have a different access privilege to the section, depending on the
protection code to the global section. When a global section is creat­
ed, it is assigned a user identification code (Ule) identifying the group
and family member to which the global section belongs, and a protec­
tion code identifying the read and write access privileges of processes
in the system. Global sections can therefore be shared among
processes in the system, or shared among processes within a group
and protected from all other processes,. or shared among processes
within a single job and protected from all other jobs.

420

Interprocess Communication

VAX/VMS LOCK MANAGEMENT SERVICES
For cooperating processes sharing resources (for example, files, data
structures or I/O devices), VAX/VMS provides a lock management, or
semaphore, facility. The VAX/VMS lock management services, like the
common event flag services, provide a tool for synchronizing process
action. While common event flags can be used only by processes
within the same group, the lock management service can operate on a
system-wide basis. In fact, VAX-11 RMS uses this service to regulate
file sharing.

The lock management services allow users to develop complex re­
source-sharing applications, such as database systems, by providing
user-determinable granularity in defining and locking a resource, and
a flexible choice of locking modes.

Common Namespace
The lock management service does not directly control access to re­
sources; rather, it provides a mechanism for assigning names to re­
sources, which are represented in a common namespace. Processes
request access to a resource name in a common namespace and
cooperating processes understand that when they are granted access
to a resource name, they may then access the resource itself.

The resource namespace is tree structured; that is, it is hierarchically
organized with an arbitrary number of levels. Each name may have a
number of "branch" names which in turn may have a number of
branches, and so on, in a way that parallels the organization of the
actual resource. (See figure 14-1)

A lock may be granted on a name at any level of the namespace
hierarchy. The only names affected by the lock are the specified name

Figure 14-1 Paralleling Resource and Resource Namespace

421

Interprocess Communication

and those names beneath it. In this way, a resource can be defined
and access controlled to any depth of granularity required by an appli­
cation, while aliowinQ concurrent access by multiple processes.

Lock Modes
Concurrency can be increased further by an appropriate selection of
lock modes. There are six lock modes to choose from, each allowing a
different sharing scheme with other cooperating processes. See Table
14-1.

Deadlock Detection
The lock management services also provide deadlock detection. A
deadlock occurs when a group of locks are waiting for each other in a
circular fashion; for example, a Process A is waiting for a resource that
Process B has, and Process B is waiting for a resource that Process C
has, while Process C is in turn waiting for a resource that process A
has. If a deadlock situation occurs, the lock management service se­
lects one of the processes as the "victim", does not grant that process
the lock it has been waiting for, and indicates to the process that the
lock has been denied because a deadlock condition exists. The proc­
ess can then do whatever cleanup is necessary and unlock (or convert
its lock on) theresource it has - thus breaking the deadlock.

Using the Lock Management Services
A process requests a lock on a resource by issuing an $ENQ system
service request, where it specifies the resource name and the type of
lock, or lock mode, it wants. If another process has an incompatible
lock on that resource, then the request is queued and the process can
go about its business until the request is granted. Optionally, the proc­
ess can request a lock and wait with the $ENOW system service; in
fact, the options available for synchronization with a. lock request are
the same as with a 010 request.

When the lock is granted, the process is signalled that the resource is
available, and it goes ahead and accesses the resource in accordance
with its declared lock-mode.

Once it has completed its action on the resource, the process can
either change its lock mode to a less exclusive one (for example, from
an exclusive to a concurrent read), which would allow greater sharing
while retaining access, or it can release the resource altogether by
issuing a $DEO system service on that lock.

Another useful option of the lock management service is the use of
blocking AST's.lf a process needs exclusive access to a resource, but
wants to know when another process is trying to access it, it can
request that a blocking AST be issued in. that circumstance via a

422

Interprocess Communication

parameter specified in the $ENQ system service call. This mechanism
can optimize sharing and potentially increase performance.

A process may have many locks - some granted, some waiting. The
limit on the number of locks a process may have is determined by the
lock quota assigned and defined in the User Authorization File.

NOTE
The locking service is not a general data protection
mechanism. Since it does not directly control access
to a resource, a non-cooperating process could
access the resouce independently. For the lock
management services to be effective, all processes
must use agreed upon conventions.

LOCK MODE DESIRED DESIRED INDICATION
ACCESS SHARING

Null (NL) None Read Used as an interest lock,
Write and to prevent namespace

entry from being deleted

Concurrent Read Read Used in conjunction with
Read (CR) Write more restrictive locks at a

lower level

Concurrent Write Read Used in conjunction with
Write (CW) Write more restrictive locks at

a lower level

Protected Read Read Traditional "share" lock
Read (PR)

Protected Write Read Traditional "update" lock
Write (PW)

Exclusive (EX) Read None Traditional "Exclusive"
Write lock

Lock Modes

Table 14 - 1

SHARED DISK FILES
Compared to the three methods listed above, the use of shared files is
more indirect and carries more restrictions. The VAX-11 Record Man­
agement Service (RMS) is the standard vehicle for file sharing. Infor­
mation on file sharing using RMS can be found in the RMS section of
Chapter 12, Input/Output Services.

423

CHAPTER OVERVIEW
One very important consideration in the design of the VAX computers
and the VAX/VMS operating system was compatibility with the large
base of PDP-11 computers and programs that already exists. Fulfill­
ment of this goal helps protect customer investment in PDP-11 hard­
ware and software, reduce retraining costs, and simplify the task of
moving programs to VAX systems. In addition; it allows a VAXsystem
to be used as a development environment for certain non-privileged

. PDP-11 tasks, namely those that will run under an RSX-11 M operating
system. In this chapter, compatibility is discussed.

Topics include:

• The Application Migration Executive (AME)

• Compatibility Mode
• Transportable Languages

• Compatibility Considerations

424

INTRODUCTION

CHAPTER 15

PDP-11 COMPATIBILITY

A major feature of the VAX/VMS operating system is its compatibility
with the PDP-11 family of minicomputers.

The VAX system provides PDP-11 compatibility including the following
features:

• The execution of a subset of PDP-11 instructions in VAX/VMS com­
patibility mode

• An RSX-11 M compatibility mode Applications Migration Executive
(AME) allowing most RSX-11 M/S non-privileged tasks to run with
minimal or no modification

• An RSX-11 M/S Host Development Package that allows creation and
partial testing of RSX-11 M/S tasks as well as sysgening RSX-11 M/S
systems

• Transportable source-level programs in high-level languages

• Files-11 On-Disk Structure level 1
• Compatible RMS file access methods on both RSX-11 M and VMS

operating systems

• DIGITAL Command language (DCl) and RSX-11 MCR (Monitor
Console Routine) command language

The VAX instruction set is a powerful extension of the PDP-11 instruc­
tion set. Therefore, the programmer with previous PDP-11 knowledge
who is developing new VAX applications will experience a high level of
adaptability. Similarly, VAX high-level languages are closely
compatible with those of the PDP-11 family.

The VAX/VMS operating system may effectively serve as a high-per­
formance RSX-11 M/S program development system. RSX-11 M/S
programs can be edited, compiled, and linked on a VAX/VMS system.
In addition, the task can be partially debugged on a VAX/VMS system.
That is, the software development can largely be accomplished on a
VAX system and need only migrate to the target RSX-11M/S system
for final debugging and execution.

The VAX/VMS operating system, through DECnet communications
software, supports downline loading of RSX-11 S systems and RSX-
11 M tasks. However, the VAX/VMS system and the RSX-11 M/S sys­
tem must have either a common communications link or a mass sto­
rage peripheral of the same type on both systems in order to transfer
the RSX-11 M task or RSX-11 S system to the target machine.

425

PDP-11 Compatibility

Under the VAX/VMS operating system, programs may execute in ei­
ther of two modes, native or compatibility. Native mode programs use
the VAX instruction set and execute under the VAX/VMS operating
system. Compatibility mode programs, however, are those which can
execute on other PDP-11 systems.

In order to provide cross-development and migration capability, an
RSX-11 M Applications Migration Executive has been implemented
that allows most non-privileged RSX-11 tasks to execute on the
VAX/VMS system with little or no modification to the task image. The
Applications Migration Executive is part of the VAX/VMS system. It
supports a mapped RSX-11 M environment without supporting the
directives to manipulate Program Logical Address Space (PLAS),
DEC net calls, or RMS-11 file sharing. Under control of the Applica­
tions Migration Executive, the user's task is mapped into virtual mem­
ory and executes in compatibility mode. When the task issues an RSX-
11 M executive directive, a trap is initiated which automatically places
the processor in native mode. The Applications Migration Executive
then determines what directive the user is attempting to accomplish,
and executes a VAX/VMS system service of equivalent function (ex­
cept for the memory management directives, RMS-11 file sharing, and
DECnet I/O calls, which are not supported). If there is no equivalent
VAX/VMS function, such as the RSX-11 M directive to "get sense
switches," the executive will return an error code but will not cause the
task to abort.

The PDP-11 compatibility mode environment will support the FOR­
TRAN IV compiler as well as many existing PDP-11 utilities.

When programming in compatibility mode, certain pOints should be
established:

• Users' images are limited to 64 Kbyte executable segments

• Compatibility mode and native mode code cannot be shared, i.e.,
compatibility mode routines and native mode routines cannot call
each other directly

• It is possible for compatibility and native mode programs to share
data and to communicate through mailboxes

• The Applications Migration Executive does not support the memory
management directives

• The Applications Migration Executive does not support the RSX-11
DECnet I/O functions or RMS-11 file sharing

• Because the system environments differ, applications that involve
cooperating tasks may require modification

426

PDP-11 Compatibility

IMPLEMENTATION CONSIDERATIONS
The processor can execute user mode PDP-11 instruction streams in
the context of a process. The operating system supplements this fea­
ture by substituting its functionally equivalent system services for
many of the RSX-11 M operating system executive directives that user
mode tasks may call. This enables the system to execute such non­
privileged RSX-11 M task images as:

• MACRO-11 assembler

• PDP-11 FORTRAN IV compiler

• RSX-11 M program development and file management utilities, in-
cluding the task builder and text editor

In addition, the operating system supports the FCS (File Control Ser­
vices), RMS-11 and RMS-11 K record management services pro­
cedures and can read and write the RSX/IAS on-disk structure, Files-
11 Level 1 (ODS-1). Programs that call FCS or RMS-11 services can
access Files-11 file-structured volumes.

The operating system contains two command language interpreters,
MCR and DCL. The VMS MCR can accept many of the RSX-11 M MCR
commands, either typed directly on a terminal, or submitted as com­
mand files.

Any task linked for the RSX-'11 M operating system will run, assuming
the task is non-privileged,

Any RSX-11 M task image can be executed in compatibility mode
without relinking, provided that it was linked with the RSX-11 M task
builder and it meets the following requirements:

• It must not execute PDP-11 privileged instructions

• It must have been built for a mapped system

• It must not depend on 32-word memory granularity

• It must not require mapping into the executive or I/O page

• It must not use the memory management executive directives

• It must not use the CONNECT executive directive

• It must not rely on environmental features of RSX-11 M that the
VAX/VMS operating system does not support, such as significant
events or a task's STOP bit

• It must not use DECnet communications software or RMS-11 file
sharing

• It only accesses ODS-I volumes

lAS or RSX-11 D tasks that meet these'requirements can also be exe­
cuted. They must first be built with the RSX-11 M task builder. For
programs that do not meet these requirements, the VAX/VMS dperat-

427

PDP-11 Compatibility

ing system provides the program development utilities (for example,
the MACRO assembler and the task builder) for modifying programs
to execute in compatibility mode.

File System and Data Management
Magnetic tape and Files-11 disk volumes can be transported between
VAX/VMS and RSX systems. The VAX/VMS system can read and
write both Files-11 level 1 (ODS-1) disk structures and the RMS level
2 disk structures (ODS-2). The extend access protection field in ODS-
1 is used for execute access protection in ODS-2.

Overlays, Shareable Regions and PLAS
The VAX/VMS operating system supports the use of overlays and
shared regions by RSX-11 M images running in compatibility mode.
RSX-11 M images produced using the overlay descriptor language or
the RSX-11 M task builder run under the VAX/VMS operating system.
The VAX/VMS operating system loads overlays at the appropriate
point in image execution from the image file.

The VAX/VMS operating system also supports RSX-11 M image use of
dynamically loaded shared regions. RSX-11 M images can access both
shared commons and libraries. Permanently available shared regions
are identified to the VAX/VMS operating system by the system man­
ager.

The VAX/VMS operating system does not support the RSX-11 M mem­
ory management directives used to extend the program logical
address space (PlAS) of an RSX-11 M task. Any task image issuing a
memory management directive under the VAX/VMS operating system
receives an error status return.

Command Languages
The operating system's MCR command language interpreter accepts
both a subset of DCl (DIGITAL Command language) commands and
a subset of the RSX-11 M MCR (Monitor Console Routine) commands.
The VAX/VMS MCR command language consists of two types of com­
mands:

• Those thatduplicate an RSX-11M command

• Those that provide a VAX/VMS function using an MCR-like syntax

Thus, MCR allows the user access to a full range of VAX/VMS func­
tions. There is no need to change to native DCl to perform commonly
needed functions.

VAX/VMS support of RSX-11 M task images provides an interface to
the operating system that is similar to that found in RSX-11 M operat­
ing system.

428

PDP-11 Compatibility

RSX-11 M Directive Requests
In an RSX-11 M system, a task image interfaces with the operating
system by issuing directive requests. As a result of a directive request,
the RSX-11 M system performs the desired function and returns con­
trol to the task. The VAX/VMS operating system duplicates the
task/system interaction achieved by a directive request in the RSX-
11 M system. When an RSX-11 M task issues a directive, the hardware
traps to the VAX/VMS operating system. With a few exceptions, in­
cluding RSX-11 M memory management directives, the VAX/VMS op­
erating system duplicates the requested RSX-11 M function with either
of the following results:

• The RSX-11 M directive function is duplicated in the VAX/VMS oper­
ating system and the task continues execution

• The VAX/VMS operating system cannot duplicate the requested
function but does take the necessary action to allow continued task
execution

The VAX/VMS operating system duplicates the function of a majority
of RSX-11 M directives. For example:

• A checkpoint enable/disable directive is interpreted as the Set
Swap mode system service

• The send/receive directives are translated into mailbox write/read
system services. Native mode and compatibility mode images can
communicate using mailboxes

• The event flag directives are for the most part identical. Native mode
and compatibility mode images can communicate using common
event flags, provided they are in the same group

• A Logical Unit Number (LUN) assignment directive is interpreted as
an Assign Channel system service

If the VAX/VMS operating system cannot duplicate an RSX-11 M direc­
tive, it is because of differences in the basic concepts of the two sys­
tems, that is, differences in the environments provided by the two
systems. For example:

• A task image is allowed to declare a significant event, but the direc­
tive is ignored. Therefore, the VAX/VMS operating system cannot
declare a significant event upon directive request. Rather, it per­
forms no operation and returns a success status to the requesting
task, which continues execution normally

• A set priority directive is ignored, since the scheduling priorities
ranges are different. To run at a given priority, the image must be
run in the context of a process created for a user given that priority
in the user authorization file

429

PDP-11 Compatibility

For the most part, however, many RSX-11M and VAX/VMS program
environment characteristics correspond. Tasks can hibernate, receive
asynchronous system traps, and schedule wake requests.
Synchronous system trap routines can be declared as condition
handlers for trace traps, breakpoint traps, illegal instruction traps,
memory protection violations, and odd address errors.

RSX-11 M Directives
The VAX/VMS operating system will support the following RSX-11 M
directives:

ABRT$ Abort Task

ALUN$ Assign Task

ASTX$ AST Service Exit

CLEF$ Clear Event Flag

CMKT$ Cancel Mark Time Requests

CRGF$ Create Group Global Event Flags

DSAR$ Disable AST Recognition

DSCP$ Disable Checkpointing

ELGF$ Eliminate Group Global Event Flags

ENAR$ Enable AST Recognition

ENCP$ Enable Check pointing

EXIF$ Exit If

EXIT$S Task Exit

EXST$ Exit With Status

EXTK$ Extend Task

GLUN$ Get LUN Information

GMCR$ Get MCR Command Line

GPRT$ Get Partition Parameters

GTIM$ Get Time Parameters

GTSK$ Get Task Parameters

MRKT$ MarkTime

QIO$ Queue I/O Request

QIOW$ Queue I/O Request and Wait

430

RCVD$

RCVX$

RDAF$

RDXF$

RQST$

RSUM$

RUN$

SDAT$

SETF$

SFPA$

SPND$

SPRA$

SPWN$

SRDA$

STLO$

STOP$

STSE$

SVDB$

SVTK$

USTP$

WTLO$

WTSE$

PDP-11 Compatibility

Receive Data

Receive Data or Exit

Read All Event Flags

Read Extended Event Flags

Request

Resume

Run

Send Data

Set Event Flag

Specify Floating Point Processor Exception AST

Suspend

Specify Power Recovery AST

Spawn

Specify Receive Data AST

Stop for Logical OR of Event Flags

Stop

Stop for Single Event Flag

Specify SST Vector Table for Debugging Aid

Specify SST Vector Table for Task

Unstop Task

Wait for Logical OR of Event Flags

Wait for Single Event Flag

The VAX/VMS operating system does not support a number of RSX-
11 M directives, principally because of different techniques of memory
management in PDP-11 and VAX hardware.

The VAX/VMS operating system returns an error status of IE.SDP
(invalid directive) to any RSX-11 M image that issues an unsupported
directive.

The AME supports floating point instructions by emulating them in
native mode.

The VAX processor does not have sense switches. Therefore, the
VAX/VMS operating system handles the Get Sense Switch directive in
the same manner as the RSX-11 M operating system does for a system

431

PDP-11 Compatibility

that disallowed access to sense switches during system generation. It
returns the OSW status IE.SOP.

Some of the remaining unsupported directives are RSX-11 M memory
management directives. They are not supported because the
VAX/VMS operating system controls memory management very dif­
ferently from the way that the RSX-11 M operating system does. The
CONNECT directive is also not supported.

432

PART IV

SITE CONSIDERATIONS

433

CHAPTER OVERVIEW
This brief chapter lists some of the powers and responsibilities of a
VAX/VMS system manager, from the initial bootstrapping to the as­
signment of privileges and quotas to individuals or classes of users.
The VAX virtual memory operating system gives complete authority to
the system manager, including the ability to deny or limit access, to
imitate any user's identification code, and to assign priorities to real­
time and interactive processes. But the operating system supplies
tools and defaults that help make the job quite easy.

Topics include:

• Getting the System Up and Running

• User Accounts
• Monitoring System Activity
• Protection and Privilege

• Error Handling
• User Environment Test Package

434

CHAPTER 16

THE SYSTEM MANAGER

In a VAX/VMS operating system installation, the system manager con­
trols two main areas:

• Decisions that optimize the performance and efficiency of the sys-
tem

• Procedures that affect the overall management of the system

Assisting the manager in controlling these areas are many and varied
tools supplied by DIGITAL, so that what might be complicated in some
operating systems is, in the VAX/VMS operating system,
straightforward and easy. In fact, system management need not be
exercised full-time by a single person dedicated to that job; it may be
shared by several persons, some of whom may serve additionally as
system operators. However arranged, the management of a system
has as its ultimate goal delivering efficient economical service to all
users. The VAX/VMS operating system helps by providing such fea­
tures as self-installation of layered products (e.g., higher level lan­
guage compilers), autoconfiguration, a User Environment Test Pack­
age (UETP), and easy adjustment of parameter files.

Practically speaking, the job of the system manager is best defined in
terms of the following six categories of tasks a manager typically over­
sees.

• Getting the system up and running
• Setting up users' accounts

• Managing public files and volumes
• Controlling the overall performance of the system
• Monitoring system activity
• Recognizing and dealing with errors and failures

GETTING THE SYSTEM UP AND RUNNING
Unlike some other operating systems, the VAX/VMS operating system
makes it easy for the manager to get the system up. The time needed
for this task is, therefore, reduced, while the degree of expertise
required by the manager is lessened.

The VAX/VMS operating system comes pre-built. It is self-installing
and autoconfiguring. That means that any valid VAX hardware config­
uration can be supported by the VAX/VMS operating system without
special configuration considerations. Many of the parameters can be
adjusted to suitspecific needs. For example, the working set size can
be increased or decreased from the default workinQ set size by a

435

The System Manager

simple instruction. In addition, tailoring of the parameter file to satisfy
a customer's specific needs can go on while the system is running, so
that there is no downtime nor lost productivity.

Updating the system is accomplished simply: DIGITAL supplies a
command procedure to apply the update. The system manager mere­
ly runs the command procedure. The same is true for the installation
of optional software-such as DIGITAL layered products-that a user
wants. Even the installation of customer-supplied application ~nd sys­
tem software-including user-written device drivers-is quite easy,
because the VAX/VMS system provides a "friendly" environment.

User Environment Test Package (UETP)
When a VAX/VMS system is first installed and bootstrapped, an instal­
lation verification package can be used to supplement the DIGITAL
Field Service diagnostics. Such a package, the User Environment Test
Package, is part of the VAX/VMS operating system. When run, it
adapts to any VAX configuration and assures the manager that hard­
ware and the operating system are working properly together. Errors
are reported to the console terminal from which UETP was run and
stored in a log file. In addition, the UETP serves as a quick check to
help determine the cause when programs that once worked stop
working or when any condition arises that gives the manager reason to
doubt the functional integrity of the system.

The UETP performs three functions:

1. Exercises major peripherals

2. Validates VAX/VMS system services

3. Tests major VAX/VMS software com ponents (e.g., VAX-11 RMS
(Record Management Services) and the VAX-11 SORT/MERGE
utility)

The UETP is fully automatic and requires no user interaction once
started. Errors indicated during one test will not affect another test,
although the same problem might occur in different parts of the UETP.

While the UETP is thorough, it is not exhaustive and should not be
construed as fully diagnostic or as replacing a diagnostic test. It does
not, for example, test layered products such as optional language
compilers. Such products may have their own installation verification
test packages in their distribution kits. The UETP is a functionality test
that the system manager may employ to get a quick check of the
system's condition.

436

The System Manager

SETTING UP AND USING A SYSTEM OF ACCOUNTS
Some of the main reasons for setting up a meaningful system of users'
accounts are:

• To identify the users of the system

• To define important relationships among the users of the system.
For example, groups of users may share data and other files. These
relationships are the basis of a system of file protection, interpro­
cess communication, and system accounting

• To grant to some users the privileges necessary to perform sensitive
system functions, and thus to restrict other users from performing
those functions

• To set limits on the use of reusable system resources.

• To give users priorities in using the system

Many of the account parameters may be assigned by default, as can a
large number of other values in a VAX/VMS system; or the manager
may want to assign particular values to particular users. In either case,
a User Authorization File is set up for each user and contains critical
accounting information.

The User Authorization.File (UAF)
The User Authorization File (UAF) is one of the most important data
structures with which the system manager must be concerned. The
UAF contains one record ~for each user of the system; in effect, it
defines the user to the system.

Besides the users' records, the UAF also contains a default value
record and a system manager's record. In most cases, the manager
will simply allow the default values for various parameters to stand.
Thus, the manager may elect to choose characteristics only when
warranted by a special case.

Why is the UAF so important in. controlling the performance of the
VAX/VMS system? Simply stated, each process in a VAX/VMS system
is associated with a user. Each user is allotted system resources and is
given a priority and privileges, and all such attributes are specified in
the user's record in the UAF. When a user logs onto the system, a
process is created on behalf of that user. The process acquires the
characteristics of the user. These are the same characteristics as the
system manager put into or defaulted into the user's record in the
UAF.

437

The System Manager

Each user's record in the UAF contains the following types of informa­
tion:

1. User's identification

a. User name
b. Password
c. User identification code (UIC)
d. Account name

2. User's default directory name and default device name
3. User's default command interpreter name
4. User's allotment of system resources
5. User's privileges
6. User's base priority

Through the User Authorization Program (AUTHORIZE), the system
manager may add, delete, modify, or display records in the UAF.

Groups
A group is a collection of users whose processes normally have ac­
cess to each others' files, file-structured volumes, mailboxes, shared
pages of memory, common event flags, and the group logical name
table. In addition, suct} processes may have special privileges to ex­
ercise control over each"other. Therefore, the establishment of groups
principally concerns interprocess communication and control.

In setting up a group, the system manager aims toward two goals: 1) to
facilitate sharing of data and cooperation between users and their
processes; 2) to protect users from unauthorized access to their
processes and data.

The importance of properly setting up groups should not be underesti­
mated. As the system is increasingly used and as more and more files
and protected data structures arise, relationships among group mem­
bers, processes, devices, and data structures grow inevitably more
complex. In time, it becomes harder to redefine the basic relationships
among the users.

A user's membership in a particular group is defined by the User
Identification Code (UIC). The UIC consists of two octal numbers, each
ranging from 0 to 377. The first is a group number; the second is a
member number.

The UIC is the basis of the VAX/VMS data protection scheme, and it is
one of the factors (along with privilege) that govern the ways in which
processes can interact with one another. The system manager's as-

438

The System Manager

signment of UICs, therefore, should involve two important considera­
tions:

1. Which users should be allowed to share data and file access, and
which should not?

2. Which processes should be allowed to cooperate, and which
should not?

Protection, and Owner, System, Group, and World
For purposes of data protection, four different categories of users are
defined. They are:

1. Owner-users whose UICs are identical with the UIC of the owner
of the data structure or device. For example, the owner of a file is
usually the creator of that file.

2. Group-users of the system whose group numbers are the same.
3. System-users of the system with group numbers of octal 10 or

less. Certain privileges appertain to system users.
4. World-all users.

All users potentially enjoy four types of access to protected data struc­
tures and devices: read (R), write (W), execute (E), and delete (D).
Generally speaking, any category of user can be permitted or denied
any type of access to data structures and devices. There are, however,
exceptions, because not all types of access apply to all protected
items. For example, execute access applies only to files that contain
executable program images.

The scheme for protecting file-structured volumes is similar to that for
protecting files, except that execute (E) access to a volume gives the
user the right to create files on that volume.

Limits, Priority, and Privilege
The attributes which the system manager may assign or merely default
to when creating the user's account record are:

• Limits on the use of reusable system resources
• The base priority used in scheduling the processes that the system

creates for that user

• Privileges of using restricted and sensitive system functions

Limits

Limits are set on system resources that can be reused. An example is
the amount of memory that a process can have in use for queued I/O
requests. Most limit restrictions actually are placed on the use of sys­
tem dynamic memory.

439

The System Manager

Usually the system manager simply assigns the default values of lim­
its. However, the defaults can easily be overridden.

Priority

A user's priority is the base priority that is used in scheduling any
process the system creates for that user. There are 32 levels of soft­
ware priority in the VAX/VMS operating system. For normal
processes, the priority range is 0 to 15; for realtime processes, it is 16
through 31.

Processes with realtime priority are scheduled strictly according to
base priority. But processes with normal prority are scheduled ac­
cording to a slightly different principle, one that promotes overlapping
of computation and I/O activities. This scheduling is all done transpar­
ently to the programmer and manager.

Privileges.

Many system services are protected by privileges which restrict their
availability to certain users. These restrictions are intended to protect
the integrity of performance of the operating system, and thus the
integrity of service provided to all users. The manager grants privi­
leges to each user depending upon two factors: 1) whether the user
has the skill and experience to use the system service without disrupt­
ing the whole system; 2) whether the user has a legitimate need for the
privilege.

Accounting for the Use of System Resources
For accounting purposes, the VAX/VMS system itself creates and
maintains records of the use of system resources. These records are
kept in an accounting log file.

Using the detailed accounting log records provided by the system, the
system manager or a system programmer can establish programs for
reporting on the use of system resources and for billing.

Because the users of system resources are identified in two ways,
reports on the use of system resources and bills for the use of system
resources can easily be generated in either of two ways: by user name
or by account name.

The User Authorization Program
The User Authorization Program (AUTHORIZE) is a system utility re­
quired to maintain the User Authorization File (UAF). The AUTHORIZE
program lets the manager:

• Create the UAF if one does not exist. A newly created UAF contains
only the default value record and the system management account
record; no users are yet known to the system

440

The System Manager

• Define a new user to the system by creating a record for that user in
the UAF and thus granting privileges and specifying limits and pri­
ority

• Take away a user's right to the system by deleting that user's record
from the UAF

• Change the default record of the UAF

• Change a user's privileges, limits, or priority by modifying that user's
record in the UAF

• Display all information about a user's account, with the exception of
the user's password

• Make a listing of all records in the UAF

For a description of commands and options, consult the documenta­
tion delivered with the system.

MANAGING PUBLIC FILES AND VOLUMES
Typically, overall planning and management of a system of public files
and volumes are among the most important responibilities of the sys­
tem manager. The aspects of public files and volumes management
that the system manager is most concerned with are:

• Initializing and mounting public volumes

• Regularly backing-up public files and volumes

• Installing frequently used or privileged executable images as known
images or images that may be shared at runtime

• Installing frequently used shareable images as permanent global
sections or images that may be shared at runtime

• Establishing systemwide logical names needed for running the
executable images provided by DIGITAL and for running other im­
ages available to all users at an installation

• Establishing disk quotas

Initializing and Mounting Public Volumes
Public volumes contain public files, which normally must be available
to most users of a system. Public volumes may also contain files that
users create for their own private use or for general use.

Public volumes contain the following kinds of public files supplied by
DIGITAL.

• The operating system itself in executable form and files related to
the operating system

• Utility programs in executable form. Utilities available from DIGITAL
are self-installing

441

The System Manager

• Diagnostic and test programs in executable form and files related to
these programs. Such packages as the User Environment Test
Package are bundled in the system and installed along with it

•. Various system libraries: macro libraries, object module libraries,
and shared runtime libraries

• Text files; for example, the system error message file and help files,
installed with the system

• Optional software in executable form, plus related libraries and oth-
er files. Some, such as language processors, are self-installing

In addition, the system manager can include on public volumes files
that are unique to an installation. These typically are files that must be
accessible to many, if not all, users of the installation. The system
manager can also permit any user to create, catalog, and store files on
a public volume.

Mounting a disk volume establishes a relationship among the volume,
the device on which it is physically mounted, and one or more
processes that may gain access to it.

Backing-Up Public Files and Volumes
To prevent the inadvertent loss or destruction of valuable information
stored on disk file volumes, the system manager usually establishes a
policy and a schedule for regularly backing-up files on public volumes.

The BACKUP utility allows users to create back-up copies of files and
directories and to restore them. It can back up entire volume sets in
one operation or perform selective back-ups by file or date. Wildcard­
ing is available, as well as several file selection qualifiers.

The BACKUP utility is intended primarily for use by system managers
and operators; however it can be used by individual users to make
personal back-up copies and to transport files.

There are two kinds of back-ups of public disk files and volumes: 1)
selective, or partial, backups and 2) system, or all-inclusive, backups.
Either type of backup can be done either to disk or magnetic tape.

Installing Known Images and Creating Permanent Global Sections
The system manager can significantly improve system performance
by installing certain executable and shareable images as known imag­
es and by creating permanant global sections.

There are two reasons for installing known images:

1. To permit systemwide sharing of images that are frequently used
by more than one user at a time

2. To make image files more quickly accessible

442

The System Manager

Typically, the kinds of executable images that are installed as known
images are:

1. Images that need more privileges than are commonly granted to
users who need to execute them

2. Images that are executed frequently
3. Images that are executed by more than one user at a time

A number of images supplied by DIGITAL are ordinarily installed as
known images in a site-independent startup procedure.

Shareable image sections produced by the linker are almost identical
with executable image sections, except that they cannot be executed
by use of the DIGITAL Command Language command RUN. They can,
however, be linked with object modules to create executable images.

Sharing common procedures leads to three significant improvements
ih system performance:
1. Reduction of disk storage requirements
2. Reduction of phYSical memory requirements
3. Reduction of the amount of paging I/O needed

Assigning System Logical Names
A logical name is a user-specified name that may be equivalent to a
file specification or to some portion of a file speCification, such as a
device name. A systemwide Ipgical name is simply a logi,cal name that
can be referred to by all users of the system and by all processes
created for those users.

Making sure that all needed system logical names have been assigned
to equivalence names is an important part of the manager's role.

Except for default logical names, system logical names that are need­
ed by nearly all or by all VAX/VMS installations are assigned in the
startup command procedure file,STARTUP.COM. DIGITAL provides
this as part of all software release distribution kits.

Usually the system manager is responsible for establishing the system
logical names that are unique to an installation. As a rule, these names
are assigned by the use of ASSIGN commands in the site-specific
startup command procedure.

OVERALL CONTROL OFTHE SYSTEM
Two important ways in which the manager exerts control over the
behavior of a VAX/VMS system are:

• By maintaining command procedures of initialization commands
that are essential to the proper operation of the system

• By establishing output spooling and setting up and controlling batch
queues, print queues,and terminal queues

443

The System Manager

STARTUP.COM and SYSTARTUP.COM
The command procedure STARTUP.COM is a startup file that exe­
cutes automatically immediately after the VAX/VMS operating system
has been booted. This startup file is supplied by DIGITAL and contains
commands for performing site-independent operations that must oc­
cur if the system is to run properly. The operations include assigning
system logical names, installing images as known images, building the
I/O database, and loading I/O drivers.

On the other hand, the command procedure SYSTARTUP.COM is a
command file that the manager may tailor to the needs of a specific
installation. Typically, this file contains commands for performing such
operations as setting the characteristics of terminals anp other de­
vices, purging the operator's log file, and announcing that the system
is up and running.

Spooling and Batch, Print, and Terminal Queues
Usually the manager performs the following four closely related func­
tions, which establish spooled devices and control queues:

• Establishing input and output spooling .. The VAX/VMS operating
system supports input spooling of batch job files and transparent
spooling of output files for lineprinters and terminals; Using
DIGITAL Command Language commands, the system manager can
easily specify which output devices are to be spooled

• Creating and controlling batch queues

• Creating and controlling print queues

• Creating and controlling terminal queues

A system manager need not learn the inner workings of spooling and
queuing, but a pragmatic knowledge of how to establish spooled de­
vices and how to create control queues is useful for efficient manage­
ment of the system.

Spooling
Spooling is the technique of using a highspeed storage device to buff­
er data passing between lowspeed I/O devices and highspeedmain
memory. The lowspeed devices, which can be either the ultimate
sources or the ultimate destinations of buffered I/O data, are called
spooled devices; the highspeed mass storage devices are called inter­
mediate devices.

Typically, the system manager chooses lowspeed peripheral devices
to include in the system's basic complement of spooled devices. At a
minimum, the system manager should see that at least one lineprinter
is set spooled when the system is started-up. In a ·system with only one

444

The System Manager

lineprinter, this is the default system printer. The system manager
need not set a card reader spooled, because card readers are spooled
by default.

Batch Queues
Batch jobs can enter the VAX/VMS system and be queued for initia~
tion in two ways:

1. As batch job files submitted by use of the $JOB command from a
card reader. These batch job files are spooled onto disk by an
input symbiont and placed in a batch queue according to their
priority. Unless the $JOB card sp'ecifies otherwise, the name of .
the batch queue is SYS$BATCH (by default). From the batch
queue, batch jobs are selected for execution

2. As command procedure disk files submitted by use of the SUB­
MIT command. These files are also placed in a batch queue and
selected for execution according to their priority. Again, by de­
fault, this is the batch queue SYS$BATCH

Print Queues
Unless a lineprinter is associated with a physical queue (a queue that
has the same name as the lineprinter) and unless that queue has been
started (along with a generiC print queue), no queued output can occur
on that lineprinter.

Print jobs are queued for processing by an output symbiont in one of
two ways: without the direct intervention of a user (implicitly) or with
the direct intervention of a user (explicitly).

When an implicitly spooled print file destined for a spooled printer is
closed, the file is placed in a print queue. Both the spooling of the
output file to an intermediate device and the subsequent queuing of a
job consisting of this file occur withoutthe direct intervention of a user.

Through the PRINT command a user can explicitly queue a disk file or
several files for printing. The disk file or files specified by the PRINT
command are queued as a print job; if several files make up a print job
they will be printed together.

MONITORING SYSTEM ACTIVITY

Using the MONITOR Utility Program
The VAX/VMS operating system collects data on how the system is
being used and how it responds to users' requests. The MONITOR
utility program can be used to examine the collected data at a specifi­
able interval and produce three forms of output:

445

The System Manager

• Statistical display on any Digital terminal

• A statistical summary file

• A binary recording file

Displays take the forms of bar graphs and tables. MONITOR can be
used to observe the statistics of a running system or to read collected
data and play it back.

These statistics are useful for two purposes: 1) to aid system develop­
ers in understanding how the system ··operates; 2) to aid system
managers in improving system performance. The types of information
collected and displayed are:

• Network activity
• File system statistics

• 1/0 system activity

• Use of the lock management services

• Use of processor modes

• Page management statistics

• Non-paged pool statistics
• Activity in the scheduler state queues
• Principal users of CPU paging and 1/0 resources

• System process activity

Each time MONITOR is run, it starts accumulating a new set of per­
formance measurement statistics~

Below is a sample of one of the several displays that a system manag­
er can call up when he wants to examine the system statistics.

+-----+
1 CUR 1

+_.:... _-+

Inter-rupt Stack

Kernel Mode

Executive Mode

Supervisor Mode

User Mode

Compatibility Mode

Idle Time

VAX!VMS Monitor- Utility
TIME IN PROCESSOR MODES ~)

12-FEB M 1982
14:36:12

0% 25% 50% 75% 100%
+ _ ~ _ ~ + ~ ~ ~ _ + ~ ~ M ~ + ~ _ M _ ~+

9 1***
1

8 1 ***
1

3 1 *
1

1
1 1 1 1

76 1 ******************************
1 1 1 1
1
1

2 1
1 1 1
1 1 1 + _ ~ ~ M + _ _ _ _ + _ _ _ _ + _ ~ _ _ _+

Figure 16:-1

44?

The System Manager

This particular graph measures current percentage of time in the
processor modes available.

The processor modes monitored are:

• Interrupt Stack-percent of time processor was executing on inter­
rupt stack

• Kernel Mode-percent of time processor was executing in kernel
mode (does not include time on interrupt stack)

• Executive Mode-percent of time processor was executing in exe­
cutive mode

• Supervisor Mode-percent of time processor was executing in su­
pervisor mode

• User Mode-percent of time processor was executing in user mode
(does not include time in compatibility mode)

• Compatibility Mode-percent of time processor was executing com­
patibility mode user images

• Idle Time-percent of time processor was executing the null
process

The Operator's Log File
The operator's log file is a system management tool that is useful in
anticipating and preventing failures of both the hardware and the soft­
ware. By regularly examining it, the manager can often detect tenden­
cies or trends toward failures and corrective action can be taken be­
fore such failures occur.

The system operator should, therefore, print out copies of the opera­
tor's log file regularly, and the system manager should retain copies
for reference. Figure 3-2 below shows some typical messages in the
operator's log files.

Dpco~, 13-APR-1978 20:09:43.07. Losfile initialized. opwrator=_OPAO:
Opco~. 06:57:53.70. Devic~ offline. LPAO:
Opco~. 06:58:25.70, Device offline. LPAO:
Or-co~, 06:58:57.70. Device offline. LPAO:
Or-co~, LPAO:
Or-co~. LPAO:
Or-co~. LPAO:
Opcom, LPAO:

Or-COif" 11:30:47.70. D~vice offlH,e, LF'AO:
Or-com, 11:31:19.70, Devlce offline, LPAO:
Opcom, 11:31:~1.70, Device offlin~. l.PAO:
Of-con" 14-APR··l978 IJ:59:30.27. Tern,lnal ~r'dbled, operJtor'=_TTC3:

Or-COl'" 13:59:41.88, ROGERF' Accr,t'=VHS
Or-COif" TTC3:, 'TEST

Figure 16-2

447

The System Manager

RECOGNIZING AND DEALING WITH ERRORS

Error Logging
The purpose of the error logging facility is to gather and maintain
information on system errors and events as they occur; this
information provides a detailed record of system errors. By running
the r~port generator program SYE, the manager or a DIGITAL Field
Service Representative can obtain a report of the errors and events
that have occurred within a specified period of time.

Using Error Reports
The error reports generated by SYE are useful tools in two basic ways:

• Reports aid preventive maintenance by identifying areas within the
system that show potential for failure

• Reports speed the diagnosis of a failure by docum~nting the errors
and events that led up to them

The detailed contents of the reports are most meaningful to DIGITAL
Field Service personnel. However, the system manager can use the
reports as an important indicator of the system's reliability. For exam­
ple, when a report shows that a particular device is producing a rela­
tively high number of errors, the system manaQer can consult DIGITAL
Field Service. By running a diagnostic program to investigate the de­
vice, field service can attempt to isolate the source of the errors. Once
identified, the source of the errors can possibly be eliminated and a
failure averted.

448

449

CHAPTER OVERVIEW
The most powerful VAX system is the VAX-111782 Attached Processor
System. Although multi-processing under VAX/VMS is transparent to
the applications programmer, there are some unique software consid­
erations. This chapter gives a brief overview of how VAX/VMS per­
forms multiprocessing and what this means to the VAX-111782 system
manager and system programmer.

Topics include:

• Multi-processing in general

• Software
• Programming considerations

• System management considerations

450

CHAPTER 17

ATTACHED PROCESSOR SYSTEM SUPPORT

ATTACHED PROCESSOR SYSTEM
There are essentially two classes of multiprocessing systems: tightly­
coupled and loosely-coupled. In a loosely coupled system, each proc­
essor executes a separate copy of the operating system. In a tightly­
coupled system, the processors share the same operating system
code and data structures; that is, they share a common memory and a
common copy of the operating system.

Of tightly-coupled multiprocessing systems there are two varieties:
symmetric or asymmetric. In a symmetric system all the processors
can execute all of the operating system code, though perhaps not
concurrently. In an asymmetric system all processors cannot execute
all operating system code.

The VAX-11/782 Attached Processor System is a tightly-coupled,
asymmetric multiprocessing system. It consists of two VAX-11/780
processors, up to four MA 780 multiport memory units, and various
optional peripherals. No local memory is used; all active memory is
contained in the MA780 and is accessible to both processors. (Actual­
ly, some local memory exists in each processor, in order to run micro­
diagnostics.) One processor acts as the primary processor; all active
peripherals are attached to it. The other processor is known as the
attached processor, and it has no peripherals. Figure 17-1 illustrates
an example of an 11/782 configuration.

ATTACHED PROCESSOR PRIMARY PROCESSOR

Figure 17-1 Example VAX-11 1782 Configuration

451

Attached Processor Support

SOFTWARE
The VAX-11/782 system is compatible with other members of the VAX
family; most applications that run on any of the other VAX systems will
run on the 11/782 without modification. (An exeption is an application
that allows simultaneous modification of data by multiple processes,
without using RMS. See "Programming Considerations" below.) It is
the same operating system, VAX/VMS, that operates on a single sys­
tem, with only minimal modifications made. The additional multipro­
cessing code added when multiprocessing is initiated, by an
automated procedure during startup. Because no complex or perva­
sive changes were made to the VMS kernel-mode code, the user is
assured of enjoying the reliability that has characterized VAX/VMS.

Structure
To repeat, the VAX-11/782 isa tightly-coupled, asymmetric multipro­
cessing system. There is a single copy of VAX/VMS. Both processors
execute this copy simultaneously. All kernel-mode and interrupt code
is executed by the primary processor, eliminating the need for com­
plex synchronizing or locking mechanisms of various data structures.

The attached processor acts as a computational work-horse: The pri­
maty processor schedules all work on the system and performs all
I/O, both for itself and for the attached processor. In essense, then,
this is a master-slave arrangement,with the attached processor acting
more like a computing peripheral.

Attached Processor States
A state variable is maintained to record the current state of the
attached processor. The primary uses this state to determine whether
to schedule work for the attached. Each state of the variable is
"owned" by only one of the processors. Only the owner has the right to
alter the state of the variable when it is in that state. This rule prevents
various race conditions. Figure 17-2 shows the state transition dia­
gram for the attached processor. The paths are marked to indicate
which processor controls each transition from one state to another.

The attached processor is set to the INIT state when the DCl com­
mand, START/CPU, is executed on the primary processor. After the
attached finishes executing the multiprocessing initialization code, it
will change to the IDLE state. The primary notices this fact during the
next reschedule operation and will attempt to reschedule a process for
the attached to execute. When a process is found for the attached, the
primary sets the state to BUSY. The attached, which has been busy­
waiting checking the state variable, then does a load-process-context
and sets the state to EXECUTE. The EXECUTE state is a unique state
so that special conditions such as powerfail can be handled correctly.

452

Attached Processor Support

PRIMARY J INIT I PRIMARY
: DROP I I I

ATTACHED PRIMARY ATTAC HED

I STOP :
PRIMARY J L I EXECUTE I I IDLE I

~

ATTAC HED

PRIMARY J BUSY I 1

Figure 17-2 Attached Processor States

The attached processor will execute its current process until the proc­
ess either receives its quantum or requests some action in kernel­
mode. At this time, the attached will do a save-process-context and set
its state to DROP. The attached then interrupts the primary, requesting
the primary to schedule another process for it. Once the primary has
taken the process back from the attached, it sets the state to IDLE.
Thus the state transition has made an entire circuit.

There is one more state, the STOP state. This is used to request the
attached processor to turn itself oft It can be requested by the system
manager with the DCl command, STOP/CPU, or by the primary proc­
essor, for example, in a bugcheck situation. When the attached is in
the INIT or STOP state, the primary knows it should not request any
action or schedule any work for the attached. The attached can be
restarted by another DCl command, START/CPU, or by rebooting as
after bugcheck.

Scheduling
From the perspective of user applications programs, the scheduling
for the 111782 is the same as for a single processor VAX system, with
the primary doing all scheduling and the attached processor acting as
an additional computing machine. The scheduling algorithm is the
same as that always used by VAX/VMS - round-robin, highest
priority jobs first - except that any process executing in kernel-mode
may not run on the attached processor and the attached processor will
not be pre-empted by a higher priority process.

When a process on the attached processor completes its quantum of
time or changes mode to kernel, its context is saved and it is given
back to the primary. The primary is notified using the MA780 hardware

453

Attached Processor Support

interrupt feature. The primary then schedules another process for the
attached. Scheduling for the attached processor is always done before
scheduling for the primary.

If there is no process capable of being run on the attached, then the
primary will start executing a process. An AST delivery interrupt is
used to detect when a process running on the primary leaves kernel
mode. The AST interrupt is treated as a rescheduling interrupt, and
there is now work for the attached processor.

Exception Handling
Exceptions that cause transition to kernel mode are handled different­
ly for the attached processor than for the primary. There is a separate
System Control Block (SCB) for the attached, which provides the abili­
ty to execute different code for the same exception, depending on
which processor it occurs on. When an exception occurs on the at­
tached, the current process's context· is saved and the process is
passed back to the primary by requesting a rescheduling event.

Multiprocessing Interrupt Communication
The MA78D hardware provides an important feature that allows effe­
cient asymmetric multiprocessing: the ability of any processor to
interrupt any other processor. This is used extensively by the VAX-
11/782, in both directions.

The primary processor interrupts the attached processor for the fol­
lowing reasons:

• To request an invalidate of a system space address

• Because an AST has arrived for the process currently executing on
the attached

• To request a bugcheck

The attached processor interrupts the primary for other reasons:

• To request a reschedule event

• To log an error
• To request a bugcheck

454

Attached Processor Support

Fault Handling
Numerous features of VAX/VMS have been extended to work with two
processors. They include:

Powerfail

Bugcheck

Machine-check

Error logging

Auto restart

The attached processor may lose power in­
definitely and the primary will continue to
run without a single job being lost. If the
primary powerfails, then the attached proc­
essor will wait until the primary restarts.
Nothing is lost in any combination of
powerfai I u res.

Bugcheck may be requested by either proc­
essor. The attached processor will go idle
while the primary writes the system dump
file and reboots.

Machine-checks work similarly to those on
a single-processor VMS system. Many ma­
chine-checks are recoverable and do not
require a reboot.

The same errors logged on a VAX-11 /780
are logged on the 11/782.

Console floppies are provided for both
processors. They allow automatic restart af­
ter powerfailures and automatic reboot af­
ter bugchecks and machine-checks.

PROGRAMMING CONSIDERATIONS
Although most applications will run without modification on a VAX-
11/782, there is an exceptional situation: applications performing their
own synchronization of multiple-process access to data structures. In
other words, applications that do not employ VAX/VMS higher-level
services such as RMS or, higher still, layered products such as VAX-
11 DATATRIEVE for sharing data.

In this case, the programmer needs to use the MA78D-specific inter­
locking queue instructions. They are:

ADAWI Add Aligned Word Interlocked

BBCCI

BBSSI

INSQHI

Branch on Bit Clear and Clear Interlocked

Branch on Bit Set and Set Interlocked

Insert into Queue Head, Interlocked

455

Attached Processor Support

INSQTI

REMQHI

REMQTI

Insert into Queue Tail, Interlocked

Remove from Queue Head, Interlocked

Remove from Queue Tail, Interlocked

These instructions should be used to acquire access to any mutual
exclusion semaphores (mutexes) in a users application.

SYSTEM MANAGEMENT
The tasks required of a system manager are the same for the VAX-
11/782 Attached Processor System as for other VAX systems, with the
following additional considerations:

• Initialization

• Startup command file

• Special DCL commands

Initialization
A standard VAX/VMS system is booted on the primary processor,
using only multiport memory. The DCL command, START/CPU, is
executed, which loads the multiprocessing-specific code into non­
paged pool. Usually, this command is part of the site-specific com­
mand file, SYSTARTUP.COM, set up by the system manager.

At this point a new System Control Block (SCB) is initialized for the
attached processor and the primary SCB is modified to handle the
multiprocessing scheduling code and MA7aD interrupt
communication. The attached processor is booted now. It performs a
brief initialization process, then interrupts the primary, requesting a
process to execute.

Both processors are now up and running, the primary scheduling work
for both.

The Startup Command File
As suggested above, the command to load the multiprocessing code
that enables the attached processor to be booted is usually included in
the SYSTARTUP.COM command file. Typically, the system manager
would follow the START/CPU command with command that indicates
that the multiprocessor code has been loaded, and the attached proc­
essor can be booted. It might go so~ething like this:

$ START/CPU !Load multiprocessing code
$ WRITE SYS$OUTPUT "Ok to boot attached processor now."

456

Attached Processor Support

If the system manager chooses not to boot the attached processor, the
primary will operate alone. Once the attached is booted, the primary
will automatically begin scheduling work for it.

Special DCl Commands
There are three DCl commands available to the system manager to
help monitor and control the VAX-11/782 Attached Processor System.
They are:

START /CPU This command loads the multiprocessing
code and is used in initializing multipro­
cessing.

SHOW/CPU

STOP/CPU

This command displays the the state of the
attached processor, as described above in
"Attached Processor States".

This command stops the attached proces­
sor, disabling multiprocessing.

457

458

ACP
ANSI
ASCII

AST
ASTlVl
CCB
CDD
CEB
CLI
CM
CPU
CRB
CRC
CSR
DAP
DCl
DDB
DDCMP
DDT
DST
DV
ECB
ECC
ESP
ESR
FAB
FCA
FCB
FCS
FDl
FDT
FMS
FNM
FP
FPD
FU
GSD
GST

APPENDIX A

COMMONLY USED MNEMONICS

Ancillary Control Process
American National Standard Institute
American Standard Code for Information
Interchange
Asynchronous System Trap
Asynchronous System Trap level
Channel Control Block
Common Data Dictionary
Common Event Block
Command language Interpreter
Compatibility Mode bit in the hardware PSL
Central Processing Unit
Chann.el Request Block
Cyclic Redundancy Check
Central Status Register
Data Access Protocol
DIGITAL Command language
Device Data Block
DIGITAL Data Communication Message Protocol
Driver Data Table
Debug Symbol Table
Decimal Overflow trap enable bit in the PSW
Exit Control Block
Error Correction Code
Executive Mode Stack Pointer
Exception Service Routine
File Access Block
Fixed Control Area
File Control Block
File Control Services
File Definition language
Function Decision Table
Forms Management System
File Name
Frame Pointer
First Part (of an instruction) Done
Floating Underflow trap enable bit in the PSW
Global Section Descriptor
Global Symbol Table

459

lOB
10SB
IPL
IRP
IS
ISECT
ISO
ISP
ISR
IV
JSB
KED
KSP
MBA
MBl
MCR
MFD
MFPR
MME
MTPR
MUTEX
NETACP
NCB
NSP
OPCOM
POBR
POLR
P1BR
P1LR
P1PT
PC
PCB
PCBB
PFN
PID
PLAS
PME
PSECT
PSL
PSW
PTE
010
RAB
REI

Appendix A

Interrupt Dispatch Block
I/O Status Block
Interrupt Priority Level
I/O Request Packet
Interrupt Stack bit in PSL
Image Section
Image Section Descriptor
Interrupt Stack Pointer
Interrupt Service Routine
Integer Overflow trap enable b.it in the PSW
Jump to Subroutine
Keypad Editor
Kernel Mode Stack Pointer
MASSBUS Adapter
Must be Zero
Monitor Console Routine
Master File Directory
Move From Process Register instruction
Memory Mapping Enable
Move To Process Register instruction
Mutual Exclusion semaphore
Network Ancillary Control Process
Network Connect Block
Network Services Protocol
Operator Communication Manager
Program region base register
Program region length register
Control region base register
Control region limit register
Control region page table
Program Counter
Process Control Block
Process Control Block Base register
Page Frame Number
Process Identification Number
Progrq,m Logical Address Space
Performance Monitor Enable bit in PCB
Program Section
Processor Status Longword
Processor Status Word
Page Table Entry
Oueue Input/Output Request system service
Record Access Block
Return from Exception or Interrupt

460

RFA
RMS
RWED
SBI
SBR
SCB
SCBB
SLR
SP
SPT
SSP
SVA
TP
UAF
UBA
UCB
UETP
UFD
UIC
USP
VAX
VBF
VCB
VMS
VPN
WCB
WCS
WDCS

Appendix A

Record's File Address
Record Management Services
Read, Write, Execute, Delete
Synchronous Backplane Interconnect
System Base Register
System Control Block
System Control Block Base register
System Length Register
Stack POinter
System Page Table
Supervisor Mode Stack Pointer
System Virtual Address
Trace trap Pending bit in PSL
User Authorization File
UNIBUS Adapter
Unit Control Block
User Environment Test Package
User File Directory
User Identification Code
User Mode Stack Pointer
Virtual Address Extender
Variable-Length Bit Field
Volume Control Block
Virtual Memory Operating System
Virtual Page Number
Window Control Block
Writable Control Store
Writable Diagnostic Control Store

461

462

Glossary

GLOSSARY
abort An exception that occurs in the middle of an instruction and
potentially leaves the registers and memory in an indeterminate state,
such that the instruction cannot necessarily be restarted.

absolute i.ndexed mode An indexed addressing mode in which the
base operand specifier is addressed in absolute mode.

absolute mode In absolute mode addressing, the PC is used as the
register in autoincrement deferred mode. The PC contains the ad­
dress of the location containing the actual operand.

absolute time Time values expressing a specific date (month, day,
and year) and time of day. Absolute time values are always expressed
in the system as positive numbers.

access mode 1. Any of the four processor access modes in which
software executes. Processor access modes are, in order from most to
least privileged and protected: kernel (mode 0), executive (mode 1),
supervisor (mode 2), and user (mode 3). When the processor is in
kernel mode, the executing software has complete control of, and
responsibility for, the system. When the processor is in any other
mode, the processor is inhibited from executing privileged instruc­
tions. The processor status longword contains the current access
mode field. The operating system uses access modes to define pro­
tection levels for software executing in the context of a process. For
example, the executive runs in kernel and executive mode and is most
protected. The command interpreter is less protected and runs in
supervisor mode. The debugger runs in user mode and is not more
protected than normal user programs. 2. See record access mode.

access type 1. The way in which the processor accesses instruction
operands. Access types are: read, write, modify, address, and branch.
2. The way in which a procedure accesses its arguments. 3. See re­
cord access type.

access violation An attempt to reference an address that is not
mapped into virtual memory or an attempt to reference an address
that is not accessible by the current access mode.

account name A string that identifies a particular account used to
accumulate data on a job's resource use. This name is the user's
accounting charge number, not the user's identification code (UIC).

address A number used by the operating system and user software
to identify a storage location. See also virtual and physical address.

address access type The specified operand of an instruction is not
directly accessed by the instruction. The address of the specifiedop-

463

Glossary

erand is the actual instruction operand. The context of the address
calculation is given by the data type of the operand.

addressing mode The way in which an operand is specified; for
example, the way in which the effective address of an instruction oper­
and is calculated using the general registers. The basic general
register addressing modes are called: register, register deferred, au­
toincrement, autoincrement deferred, autodecrement, displacement,
and displacement deferred. In addition, there are six indexed ad­
dressing modes using two general registers, and literal mode ad­
dressing. The PC addressing modes are called: immediate (for regis­
ter deferred mode using the PC), absolute (for autoincrement deferred
mode using the PC), and branch.

address space The set of all possible addresses available to a
process. Virtual address space refers to the set of all possible virtual
addresses .. Physical address space refers to the set of 811 possible
physical addresses sent out on the Synchronous Backplane Intercon~
nect (SBI).

allocate a device To reserve a particular device unit for exclusive
use. A user process can allocate a device only when that device is not
allocated by any other process.

alphanumeric character An upper or lower case letter (A-Z, a-z), a
dollar sign ($), an underscore(J, or a decimal digit (0-9).

American Standard Code for Information Interchange (ASCII) A
set of a-bit binary numbers representing the alphabet, punctuation,
numerals, and other special symbols used in text representation and
communications protocol.

Ancillary Control Process (ACP) A process that acts as an interface
between user software and an 1/0 driver. An ACP provides functions
supplemental to those performed in the driver, such as file and direc­
tory management. Three examples of ACPs are: the Files-11 ACP, a
magnetic tape ACP, and a networks ACP.

argument pointer General register 12 (R12). By convention, AP con­
tains the address of the base of the argument list for procedures
initiated using the CALL instructions.

assign a channel To establish the necessary software linkage
between a user process and a device unit before a user process can
transfer any data to or from that device.

assembler A program that translates a source language whose op­
erations correspond directly to machine opcodes, into an object lan­
guage.

464

Glossary

asynchronous record operation A mode of record processing in
which a user program can continue to execute after issuing a record
retrieval or storage request without having to wait for the request to be
fulfilled.

Asynchronous System Trap A software-simulated interrupt to a
user-defined service routine. ASTs enable a user process to be noti­
fied asynchronously, with respect to its execution, of the occurrence of
a specific event. If a,user process has defined an AST routine for an
event, the system interrupts the process and executes the AST routine
when that event occurs. When the AST routine exits, the system re­
sumes the process at the point where it was interrupted.

Asynchronous System Trap level (ASTLVL) A value kept in an in­
ternal processor register that is the innermost access mode for which
an AST is pending. When a Return from Exception or Interrupt (REI) is
made to an access mode of privilege equal to or greater than the value
in the process register ASTLVL, a software interrupt at Interrupt Priori­
ty Level (IPL) 2 is requested. Thus, an AST for an access mode will not
be serviced while the processor is executing in a higher priority access
mode.

authorization file See user authorization file.

autodecrement indexed mode An indexed addressing mode in
which the base operand specifier uses autodecrement mode address­
ing.

autodecrement mode In autodecrement mode addressing, the con­
tents of the selected register are decremented, and the result is used
as the address of the actual operand for the instruction. The contents
of the register are decremented according to the data type context of
the register: 1 for byte, 2 for word, 4 for longword and floating, 8 for
quadword and double floating.

autoincrement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses autoincrement de­
ferred mode addressing.

autoincrement deferred mode In autoincrement deferred mode
addressing, the specified register contains the address of a longword
which contains the address of the actual operand. The contents of the
register are incremented by 4 (the number of bytes in a longword). If
the PC is used as the register, this mode is called absolute mode.

autoincrement indexed mode An indexed addressing mode in
which the base operand specifier uses autoincrement mode address­
ing.

465

Glossary

autoincrement mode In autoincrement mode addressing, the con­
tents of the specified register are used as the address of the operand,
then the contents of the register are incremented by the size of the
operand.

backing store The collection of locations on secondary storage
where data are held.

backing store address The address of a page in the backing store.
As page frame numbers are removed from page tables, they are re­
placed by backing store addresses.

balance set The set of all process working sets currently resident in
physical memory. The processes whose working sets are in the bal­
ance set have memory requirements that balance with available mem­
ory. The balance set is maintained by the system swapper process.

base operand address The address of the base of a table or array
referenced by index mode addressing.

base operand specifier The register used to calculate the base op­
erand address of a table or array referenced by index mode
addressing.

base priority The process priority that the system assigns a process
when it is created; it usually comes from the User Authorization File. A
normal process's current priority is modified to reflect its execution
history, but the current priority will never drop below the base priority.
An image running in a suitably privileged process can, through a sys­
tem service, alter its own current and base priority.

base register A general register used to contain the address of the
first entry in a list, table, array, or other data structure.

binding See linking.

bit complement of a number (also called the one's complement)
The result of exchanging Os and 1s in the binary representation of a
number. Thus, the bit complement of the binary number 11011001
(21710) is 00100110. Bit complements are used in place of their corre­
sponding binary numbers in some arithmetic computations in com­
puters.

bit string See variable length bit field.

block 1. The smallest addressable unit of data that the specified
device can transfer in an I/O operation. (Under VAX/VMS, a block is a
logical entity-disk addresses are expressed as virtual or logical block
numbers even when the disk has a smaller addressable unit.) 2. An
arbitrary number of contiguous bytes used to store logically related
status, control, or other processing information.

466

Glossary

block I/O A data accessing technique in which the program manipu­
lates the blocks (physical records) that make up a file, instead of its
logical records.

bootstrap block A block in the index file on a system disk which
contains a program that can load the operating system into memory
and start its execution.

branch access type An inst~uction attribute which indicates that the
processor does not reference an operand address, but that the
operand is a branch displacement. The size of the branch displace­
ment is given by the data type of the operand.

branch mode In branch addressing mode, the instruction operand
specifier is a signed byte or word displacement. The displacement is
added to the contents of the updated PC (which is the address of the
first byte beyond the displace,ment), and the result is the branch ad­
dress:

bucket A storage structure consisting of from 1 to 32 blocks, and
used for building and processing relative and indexed files. A bucket
contains one or more records or record cells.

bucket locking A facility that prevents. access to any record in a
bucket by more than one user until that user releases the bucket.

buffer A temporary data storage area in a process address space.

buffered I/O See system buffered 1/0.

bug check The operating system's internal diagnostic check. The
system logs the failure. It may write a crash dump file and it may crash
the system.

byte A byte is eight contiguous bits starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 7, with bit 0 the
low-order bit. When interpreted arithmetically, a byte is a 2's comple­
ment integer with significance increasing from bits 0 through 6. Bit 7 is
the sign bit. The value of the signed integer is in the range -128 to 127
decimal. When interpreted as an unsigned integer, the value is in the
range 0 to 255 decimal. A byte can be used to store one ASCII charac­
ter.

cache memory A small, high-speed memory placed between slower
main memory and the processor. A cache increases effective memory
transfer rates and processor speed. It contains copies of data recently
used by the processor, and fetches several bytes of data from memory
in anticipation that the processor will access the next sequential series
of bytes.

call frame See stack frame.

467

Glossary

call instructions The processor instructions CALLG (Call Procedure
with General Argument List) and CALLS (Call Procedure with Stack
Argument List).

call stack The stack, and conventional stack structure, used during
a procedure call. Each access mode of each process context has one
call stack, and interrupt service context has one call stack.

channel A logical path connecting a user process to a physical
device unit. A user process requests the operating system to assign a
channel to a device so the process can transfer data to or from that
device.

channel control block (CCB) A device-oriented data structure pro­
viding the link between a process and a device on which it is to per­
form I/O. One channel control block exists for each assigned channel.

channel request block (CRB) A device-oriented data structure used
to arbitrate the use of a common controller for several device units.
One channel request block is used for each controller.

character A symbol represented by an ASCII code. See also alpha­
numeric character.

character string A contiguous set of bytes. A character string is
identified by two attr'ibutes: an address and a length. Its address is the
address of the byte containing the first character of the string. Subse­
quent characters are stored in bytes of increasing addresses. The
length is the number of characters in the string.

character string descriptor A quadword data structure. used for
passing character data (strings). The first word of the quadword con­
tains the length of the character string. The second word can contain
type information. The remaining longword'contains the address of the
string.

cluster 1. A set of contiguous blocks that is the basic unit of space
allocation on a Files-11 disk vo.lume. 2. A set of pages brought into
memory in one paging operation. 3. An event flag cluster.

code 1~ The vocabulary in which a computer is addressed. Code can
be cryptographic (as in ASCII and binary) where digits and other char­
acters represent information, or language mimetic (as in MACRO and
FORTRAN) where English-like phrases represent information. 2. To
code: To organize and write instructions and data for a computer in
vocabulary it understands.

command An instruction, generally an English word, typed by the
user at a terminal or included in a command file, which requests the
software monitoring a terminal or reading a command file to perform

468

Glossary

some well-defined activity. For example, typing the COpy command
requests the system to copy the contents of one file into another file.

command file A file containing command strings. See also com­
mand procedure.

command interpreter Procedure-based system code that executes
in supervisor mode in the context of a process to receive, check the
syntax, and parse commands typed by the'user at a terminal or sub­
mitted in a command file.

command parameter The positional operand of a command
delimited by spaces, such as a file specificiation, option, or constant.

command procedure A file containing commands and data that the
command interpreter can accept in lieu of the user's typing the com­
mands individually on a terminal.

command string A line (or set of continued lines), normally termi­
nated by typing the carriage return key, containing a command and,
optionally, information modifying the command. A complete com­
mand string consists of a command, its qualifiers, if any, and its pa­
rameters (file specifications, for example), if any, and their qualifiers, if
any.

common 1. A FORTRAN term for a program section that contains
only data. 2. Shared (used or held "in common"), e.g., common event
flag cluster.

common event block The data structure created when a common
event flag cluster is created. It provides the control and coordination
mechanism for the structure. One is associated with each cluster of
common event flags.

common event flag 'cluster A set of 32 event flags that enables
cooperating processes to post event notification to each other.
Common event flag clusters are created as they are needed. A pro­
cess can associate with up to two common event flag clusters.

compatibility mode A mode of execution that enables the central
processor to execute non-privileged PDP-11 instructions. The operat­
ing system supports compatibility mode execution by providing an
RSX-11 M execution environment for an RSX-11 M task image. The
operating system compatibility mode procedures reside in the pro­
gram region of the process executing a compatibility mode image. The
procedures intercept calls to the RSX-11 M executive and convert
them to the appropriate operating system functions.

469

Glossary

compiler A code that translates a program written in a high-level
language (such as COBOL, PASCAL, or FORTRAN) into an object
program.

condition An exception condition detected and declared by soft­
ware. For example, see failure exception mode.

condition codes Four bits in .the processor status word that indicate
the results of the previously executed instruction.

condition handler A procedure that a process wants the system to
execute when an exception condition occurs. When an exception con­
dition occurs, the operating system searches for a condition handler
and, if it is found, initiates the handler immediately. The condition
handler may perform some act to change the situation that caused the
exception condition and continue execution for the process that in­
curred the exception condition. Condition handlers execute in the
context of the process at the access mode of the code that incurred
the exception condition.

condition value A 32-bit quantity that uniquely identifies an excep­
tion condition.

context The environment of an activity. See also process context,
hardware, and software context.

context indexing The ability to index through a data structure auto­
matically because the size of the data type is known and used to
determine the offset factor.

context switching Interrupting theactivity in progress and switching
to another activity. Context switching occurs as one process after
another is scheduled for execution. The operating system saves the
interrupted process's hardware context in its hardware PCB using the
Save Process Context instruction, loads another process's hardware
PCB into the hardware context using the Load Proce.ss Context in­
struction, and schedules that process for execution.

contiguous Physically adjacent and/or consecutively numbered un­
its of data.

contiguous area A space allocation on disk where the reserved
areas for all blocks, in a file are physically adjacent on the recording
medium.

continuation character A hyphen at the end of a command line
signifying that the command string continues on to the next command
line.

control region The highest-addressed half of per-process space
(the P1 region). Control region virtual addresses ,refer to the process-

470

Glossary

related information used by the system to control the process, such
as: the kernel, executive, and supervisor stacks, the permanent I/O
channels, exception vectors, and dynamically used system pro­
cedures (such as the command interpreter procedures). The user
stack is also normally found in the control region.

Control Region Base Register (P1 BR) The processor register, or its
equivalent in a hardware process control block, that contains the base
virtual address of a process control region page table.

Control Region Length Register (P1LR) The processor register, or
its equivalent in a hardware process control block, that contains the
number of non-existent page table entries for virtual pages in a proc­
ess control region.

copy-on-reference A method used in memory management for
sharing data until a process accesses it, in which case it is copied
before the access. Copy-on-reference allows sharing of the initial val­
ues of a global section whose pages have read/writ~ access but con­
tain pre-initialized data available to many processes.

counted string A character string data structure consisting of a
byte-sized length followed by the string. Although a counted string is
not used as a procedure argument, it is a convenient representation in
memory.

current access mode The processor access mode of the currently
executing software. The current mode field of the processor status
longword indicates the access mode of the currently executing soft­
ware.

cylinder The tracks at the same radius on all recording surfaces of a
disk.

data base A collection of related data structures.

data structure Any table, list, array, queue, or tree whose format
and access conventions are well defined for reference by one or more
images.

data type In general, the way in which bits are grouped and in­
terpreted. In reference to the processor instructions, the data type of
an operand identifies the size of the operand and the significance of
the bits in the operand. Operand data types include: byte, word, long­
word, and quadword integer, floating and double floating, character
string, packed decimal string, and variable-length bit field.

default The omission of certain information. The system assumes
pre-arranged values for the defaulted (omitted) information.

471

Glossary

deferred echo Refers to the fact that terminal echoing does not
occur until a process is ready to accept input entered by type ahead.

delta time A time value expressing an offset from the current date
and time. Delta times are always expressed in the system as negative
numbers whose absolute value is used as an offset from the current
time.

demand paging One technique that enables a program to execute
without having all of its pages resident in physical memory. In demand
paging, a program page is not brought into physical memory until it is
actually needed. For the technique used by VAX/VMS, see paging.

demand zero page A page, typically of an image stack or buffer
area, that is initialized to contain all zeros when dynamically created in
memory as a result of a page fault. This feature eliminates the waste of
disk space that would otherwise be required to store blocks (pages)
that contain only zeros ..

descriptor A data structure used in calling sequences for passing
argument types, addresses and other optional information. See char­
acter string descriptor.

detached process A process that has no owner. A parent process
of a tree of subprocesses. Detached processes are created by the job
controller when a user logs on the system or when a batch job is
initiated. The job controller does not own the user processes it cre­
ates; these processes are therefore detached.

device The general name for any physical terminus or link
connected to the processor that is capable of receiving, storing, or
transmitting data. Card readers, line printers, and terminals are exam­
ples of record-oriented devices. Magnetic tape devices and disk de­
vices are examples of mass storage devices. Terminal line interfaces
and interprocessor links are examples of communications devices.

device driver See driver.

device interrupt An interrupt received on interrupt priority level 16
through 23. Device interrupts can be requested only by devices, con­
trollers, and memories.

device name The field in a file specification that identifies the device
unit on which a file is stored. Device names also include the mnemon­
ics that identify an I/O peripheral device in a data transfer request. A
device name consists of a mnemonic followed by a controller
identification letter (if applicable), followed by a unit number (if appli­
cable), and ends with a colon (:).

device queue See spool queue.

472

Glossary

device register A location in device controller logic used to request
device functions (such as I/O transfers) and/or report status.

device unit One drive, and its controlling logic, of a mass storage
device system. A mass storage system can have several drives con­
nected to it.

diagnostic A program thattests hardware/firmware logic and peri­
pherals and reports any faults it detects.

direct I/O See system buffered I/O.

direct mapping cache A cache organization in which only one ad­
dress comparison is needed to locate any data in the cache because
any block of main memory data can be placed in only one possible
position in the cache. Contrast with fully associative cache.

directory A file, used to locate files on a volume, that contains a list
of file names (including extension and version number) and their
unique internal identifications.

directory name The field, in a file specification, that identifies the
directory file in which a file ~s listed.

displacement deferred indexed mode An indexed addressing
mode in which the base operand specifier uses displacement deferred
mode addressing.

displacement deferred mode In displacement deferred mode ad-:­
dressing, the specifier extension is a byte, word, or longword displace­
ment. The displacement is sign extended to 32 bits and added to a
base address obtained from the specified register. The result is the
address of a longword which contains the address of the actual oper­
and. If the PC is used as the register, the updated contents of the PC
are used as the base address. The base address is the address of the
first byte beyond the specifier extension.

displacement indexed mode An indexed addressing mode in
which the base operand specifier uses displacement mode address­
ing.

displacement mode In displacement mode addressing, the specifi­
er extension is a byte, word, or longword displacement. The displace­
ment is sign extended to 32 bits and added to a base address obtained
from the specified register. The result is the address of the actual
operand. If the PC is used as the register, the updated contents of the
PC are used as the base address. The base address is the address of
the first byte beyond the specifier extension.

domain A DATATRIEVE term that describes an entire collection of
records of a single type plus a name (or record definition). The size of

473

G/o$sary

the domainchanges as appropriate ,records are inserted orr~moved;
The record def.inition for each domain is stored in the Data Dictionary.

double floating datum" Eight contiguous bytes (64bits), starting on
an addressable byte boundary, which are interpreted as containing a
floating point number. The bits are labeled from right to left, 0 to 63.
An eight-byte floating point number is identified by the address of the
byte containing bit O. Bit 15 contains the sign of the number. Bits 14
through 7 contain the excess 128 binary exponent. Bits 63 through 16
and 6 through 0 contain a normalized' 56-bit fraction with the redun­
dant most significant fraction bit not represented. Within the fraction,
bits of decreasing significance go from 6 through 0, 31 through 16,47
through 32, then 63 through 48. Exponent values of 1 through 255 in
the 8-bit exponent field represent true binary exponents of -128 to
127. An exponent value of 0 together with a sign bit of 0 represent a
floating value of O. An exponent value of 0 with a sign bit of 1 is a
reserved representati'on; floating point instructions processing this
value return a reserved operand fault. The value of a floating datum is
in the approximate range (±) 0.29 X 10-38 to 1.7 X 1038. The precision
is approximately one part in 255 or 16 decimal digits.

drive The electro-mechanical. unit of a mass storage device system
on which a recording medium (disk cartridge, disk pack, or magnetic
tape reel) is mounted.

driver The set of code that handles physical 1/0 toa device.

dynamic access A technique in which a program switches from one
access mode to another while processing a file.

echo A terminal handling characteristic in which the characters
typed by the terminal. user on the keyboard are also displayed on the
screen or printer.

effective address The address obtained after indirect or indexing
modifications are calculated.

entry mask A word whose bits represent the registers to be saved or
restored on a subroutine or procedure call using the call and return
instructions.

entry point A location that can be specified as the object of a call. It
contains an entry mask and exception enables known as the entry
point mask.

equivalence name The string associated with a logical name in a
logical name table. An equivalence name can be, for example, a de­
vice name, another logical name, or a logical name concatenated with
a portion of a ,file specification.

474

Glossary

error logger A system process that empties the error log buffers
and writes the error messages into the error file. Errors logged by the
system include memory system errors, device errors and timeouts,
and interrupts with invalid vector addresses.

escape sequence An escape is a transition from the normal mode
of operation to a mode outside the normal mode. An escape character
is the code that indicates the transition from normal to escape mode.
An escape sequence refers to the set of character combinations start:..
ing with an escape character that the terminal transmits without inter­
pretation to the software set up to handle escape sequences.

event A change in process status or an indication of the occurrence
of some activity that concerns an individual process or cooperating
processes. An incident reported to the scheduler that affects a proc­
ess's ability to execute. Events can be synchron'ous with the process's
execution (a wait request), or they can be asynchronous (I/O
completion). Some other events include swapping, wake request, and
page fault.

event-flag A bit in an event flag cluster that can be set or cleared to
indicate the occurrence of the event associated with that flag. Event
flags are used to synchronize activities in a process or among many
processes.

event flag cluster A set of 32 event flags that are used for event
posting. Four clusters are defined for each process: two process-local
clusters, and two common event flag clusters. Of the process-local
flags, eight are reserved for system use.

exception An event detected by the hardware (other than an inter­
rupt or jump, branch, case, or call instruction)that changes the normal
flow of instruction ,execution. An exception is always caused by the
execution of an instruction or set of instructions (whereas an interrupt
is caused by an activity in the system independent of the current
instruction). There are three types of hardware exceptions: traps,
faults, and aborts. Examples are: attempts to execute a privileged or
reserved instruction, trace traps, compatibility mode faults, break­
pOint instruction execution, and arithmetic traps such as overflow,
underflow, and divide by zero.

exception condition A hardware- or software-detected event other
than an interrupt or jump, branch, case, call, jump to subroutine, or
branch to subroutine instruction that changes the normaL flow of in­
struction execution.

exception dispatcher An operating system procedure that search­
es for a condition handler when an exception condition occurs. If no

475

Glossary

exception handler is found for the exception or condition, the image
that incurred the exception is terminated.

exception enables See trap enables.

exception vector See vector.

executable image Images that are capable of being run in a proc­
ess. When run, an executable image is read from a file for execution in
a process.

executive The generic name for the 'collection of procedures
included in the operating system software that provide the basic con­
trol and monitor functions of the operating system.

executive mode The second most privileged processor access
mode (mode 1). The record management services (RMS) and many of
the operating system's system service procedures execute in execu­
tivemode.

exit An image exit is a rundown activity that occurs when image
execution terminates either normally or abnormally. Image rundown
activities include deassigning liD channels and disassociation of com­
monevent flag clusters. Any user- or system-specified exit handlers
are called.

exit handler A procedure executed when an image exits. The de­
claration of an exit handler enables a procedure that is not on the call
stack to gain control and clean up procedure-own data bases before
the actual image exit occurs.

extended attribute block (XAB) An RMS user data structure that
contains additional file attributes beyond those expressed in the file
access block (FAB), such as boundary types (aligned on cylinder,
logical block' number, virtual block number) and file protection infor­
mation.

extent The contiguous area on a disk containing a file or a portion of
a file. Consists of one or more clusters.

failure exception mode A mode of execution selected by a process
indicating that it wants an exception condition declared if an error
occurs as the result of a system service call. The normal mode is for
the system service to return an error status code for which the process
musttest.

fault A hardware exception condition that occurs in the middle of an
instruction and that leaves the registers in memory in a consistent
state, such that elimination of the fault and restarting the instruction
will give correct results.

476

Glossary

field 1. See variable-length bit field. 2.A set of contiguous bytes in a
logical record.

file A logically related collection of data treated as a physical entity
that occupies one or more blocks on a volume such as disk or
magnetic tape. A file can be ref,erenced by a name assigned by the
user. A file normally consists of one ormore logical records.

file access block (FAB) An RMS user data structure that represents
a request for data operations related to the file as a whole, such as
OPEN, CLOSE, or CREATE.

file header A block in the index file describing a file on a Files-11
disk structure. The file header identifies the locations of the file's ex­
tents. There is a file header for every file on the disk.

file name extension See file type.

file organization The particular file structure used to record the data
constit~ting a file on a mass storage medium. RMS file organizations
are: sequential, relative, and indexed.

Files-11 The name of the on-disk structure used by the RSX-11, lAS
and VAX/VMS operating systems.

file specification A unique name for a file on a mass storage medi­
um. It identifies the node, the device, the directory name, the file
name, and the version number under which a file is stored.

file structure The way in which the blocks forming a file are distrib­
uted on a disk or magnetic tape to provide a physical accessing'tech­
nique suitable for the way the data in the file are processed.

file system A method of recording, cataloging, and accessing files
on a volume.

file type The field in a file specification that consists of a period (.)
followed by a 0- to 3-character type identification. By convention, the
type identifies a generic class of files that have the same use or char ..
acteristics, such as ASCII text files, binary object files, etc.

fixed control area An area associated with a variable length record '
available for contrOlling or assisting record access operations. Typical
uses include line numbers andprinterformat control information.

fixed length record format A file format in which all records have
the same length.

floating (point) datum Four contiguous bytes (32 bits) starting on an
addressable byte boundary. The bits are labeled from right to left from
o to 31. A four-byte floating point number is identified by the address
of the byte containing bit O. Bit 15 contains the sign of the number. Bits

477

Glossary

14 through 7 contain the excess 128 binary exponent. Bits 31 through
16 and 6 through 0 contain a normalized 24-bit fraction with the redun­
dant most significant fraction bit not represented. Within the fraction,
bits of decreasing significance go from bit 6 through 0, then 31

. through 16. Exponent values of 1 through 255 in the 8-bit exponent
field represent true binary· exponents of -128 to 127. An exponent
value of 0 together with a sign bit of 0 represent a floating value of O.
An exponent value of 0 with a sign bit of 1 is a reserved representation;
floating pOint instructions processing this value return a reserved op­
erand fault. The value of a floating datum is in the approximat~ range
(±) 0.29 X 10-38 to 1.7 X 1038• The precision is approximately one part
in 232 or seven decimal digits.

foreign volume Any volume other than a Files-11 formatted volume
which mayor may not be file structured.

fork dispatcher A software interrupt service routine that selects a
fork process for execution. The fork dispatcher selects a fork process
from a queue of fork blocks. There is one queue for all the fork
processes that share a given interrupt priority level.

fork process A dynamically created system process such as a proc­
ess that executes device driver code. Fork processes have minimal
context and reside entirely in system space. They execute at software
interrupt levels and are dispatched for execution immediately. Fork
processes remain resident until they terminate.

frame pOinter General register 13 (R13). By convention, FP contains
the base address of the most recent call frame on the stack.

full process Asynonym for "process."

fully associative cache A cache organization in which any block of
data from main memory can be placed anywhere .in the cache. Ad­
dress comparison must take place against each block in the cache to
find any particular block. Contrast with direct mapping cache.

general register Any of the sixteen 32-bit registers used as the pri­
mary operands of the native mode instruction. The general registers
include 12 general purpose registers which can be used as accumula­
tors, as counters, and as pOinters to locations in main memory, and
the frame pOinter (FP), argument pOinter (AP), stack pOinter (SP), and
prograrn counter (PC)registers.

generic device name A device name that identifies the type of
device but not a particular unit; a device name in which the specific
controller and/or unit number is omitted.

giga Metric term used to represent the number 1 followed by nine
zeros.

478

Glossary

global page table The page table containing the master page table
entries for global sections.

global section A data structure (e.g., FORTRAN global common) or
shareable image section potentially available to all processes in the
system. Access is protected by privilege and/or group number ofthe
UIC.

global symbol A symbol defined in a module that is potentially avail­
able for reference by another module. The linker resolves (matches
references with definitions) global symbols. Contrast with local sym­
bol.

global symbol table (GST) In a library, an index of strongly defined
global symbols used to access the modules defining the global sym­
bols. The linker will also put global symbol tables into an image. For
example, the linker appends a global symbol table to executable im­
ages that are intended to run under the symbolic debugger, and it
appends a global symbol table to all shareable images.

group 1. A set of users who have special access privileges to each
other's directories and files within those directories (unless protected
otherwise), as in the context "system, owner, group, world," where
group refers to all members ofa particular owner's group. 2. A set of
jobs (processes and their subprocesses) that have access privileges
to a group's common event flags and logical name tables, and may
have mutual process controlling privileges, such as scheduling,
hibernation, etc.

group number The first number in a User Identification Code (UIC).

hardware context The values contained in the following registers
while a process is executing: the program counter (PC); the processor
status longword (PSL); the fourteen general registers (RO through
R13); the four processor registers (POBR, POLR, P1 BR, and P1 LR) that
describe the process virtual address space; the stack pOinter (SP) for
the current access mode in which the processor is executing; plus the
contents to be loaded in the stack pointer for every access mode other
than the current access mode. While a process is executing, its hard­
ware context is continually being updated by the processor. While a
process is not executing, its hardware context is stored in its hardware
PCB.

hardware process control block (PCB) A data structure used by the
processor to load and save process context. A process's hardware
PCB resides in its process header.

hibernation A state in which a process is inactive, but known to the
system with all of its current status. A hibernating pr.ocess becomes

479

Glossary

active again when a wake request is issued. It can schedule a wake
request before hibernating, or another process can issue its wake
request. A hibernating process also becomes active for the time,suffi­
cient to service any AST it may receive while it is hibernating. Contrast
with suspension.

home block A block in the index file that contains the volume identi­
fication, such as volume label and protection.

image An image consists of procedures and data that have been
bound together by the linker. There are three types of images: execu­
table, shareable, and system.

image activator A set of system procedures that prepares an image
for execution. The image activator establishes the memory manage­
ment data structures required both to map the image's virtual pages to
physical pages arid to perform paging.

image exit See exit.

image I/O segment That portion of the control region that contains
the RMS internal file access blocks (IFAB) and I/O buffers for the
image currentlybeing executed by a process.

image name The file name of the file in which an image is stored.

image section (isect) A group of program sections (psects) with the
same attributes (such as read-only access, read/write access,
absolute, relocatable, etc.) that is the unit of virtual memory allocation
for an image.

image section descriptor (ISO) A software data structure created
by the linker when it produces an image section of a shareable or
executable image. The image section descriptor contains information
that allows the system to locate, characterize, and control the image
section. The ISD is located in the image header.

indexed file organization A file organization in which a file contains
records and a primary key index (and optionally one or more alternate
key indices) used to process the records sequentially by index or
randomly by index.

index file The file on a Files-11 volume that contains the access
information for all files on the volume and enables the operating sys­
tem to identify and access the volume.

index file bit map A table in the index file of a Files-11 volume that
indicates which file headers are in use.

index register A register used to contain an address offset.

indexed addressing mode In indexed mode addressing, two regis-

480

Glossary

ters are used to determine the actual instruction operand: an index
register and a base operand specifier. The contents of the index regis­
ter are used as an index (offset) into a table or array. The base oper­
and specifier supplies the base address of the array .(the base operand
address or BOA). The address of the actual operand is calculated by
multiplying the contents of the index register by the size (in bytes) of
the actual operand and adding the result to the base operand address.
The addressing modes resulting from index mode addressing are
formed by adding the suffix "indexed" to the addressing mode of the
base operand specifier: register deferred indexed, autoincrement in­
dexed, autoincrement deferred indexed (or absolute indexed), au­
todecrement indexed, displacement indexed, and displacement de­
ferred indexed.

indirect command file See command procedure.

instruction buffer An eight-byte buffer in the processor used to con­
tain bytes of the instruction currently being decoded and to pre-fetch
instructions in the instruction stream. The control logic continuously
fetches data from memory to keep the eight-byte buffer full.

interleaving Assigning consecutive physical memory addresses
alternately between two memory controllers.

interprocess communication facility A common event flag, mail­
box, global section or shared file used to pass information between
two or more processes.

interrecord gap A blank space deliberately placed between data
records on the recording surface of a magnetic tape.

interrupt An event other than an exception or branch, jump, jump to
subroutine, branch to subroutine, case, or call instruction that
changes the normal flow of instruction execution. Interrupts are gener­
ally external to the process executing when the interrupt occurs. See
also device interrupt, software interrupt, and urgent interrupt.

interrupt priority level The interrupt level at which the processor
executes when an interrupt is generated. There are 31 possible inter­
rupt priority levels. IPL 1 is lowest and IPL 31 is highest. The levels
arbitrate contention for processor service. For example, a device can­
not interrupt the processor if the processor is currently executing at an
interrupt priority level greater than or equal to the interrupt priority
level of the device's interrupt service routine.

interrupt service routine The routine executed when a software in­
terrupt occurs.

interrupt stack The system-wide stack used when executing in
interrupt service context. At any time, the processor is either in a

481

Glossary

process context executing in user, supervisor, executive, or kernel
mode, or in system-wide interrupt service context operating in kernel
access mode, as indicated by the interrupt stack and current mode
bits in the PSL. The interrupt stack is not context switched.

interrupt stack pOinter The stack pOinter for the system-wide inter-
rupt stack. .

interrupt vector See vector.

I/O Data Base A group of data control blocks that are an important
part of the communications link between the operating sytem and the
devices handling I/O processing. The blocks are: the Device Data
Block, the Unit Control Block, the Channel Request Block, the Inter­
rupt Dispatch Block, and the Adapter Control Block.

I/O driver See driver.

I/O function code A six-bit value specified in a Queue I/O Request
system service that describes the particular I/O operation to be per­
formed (e.g., read, write, rewind, open file).

I/O function .modifier A 10-bit value specified in a Queue I/O Re­
quest system service that modifies an I/O function code (e.g., read
terminal input no echo).

I/O lockdown The state of a page such that· it cannot be paged or
swapped out of memory until any I/O in progress to that page is
completed.

I/O rundown An operating system function in which the system
cleans up any I/O in progress when an image exits.

I/O space The region of physical address space that contains the
configuration registers and device control/status and data registers.

I/O status block A data structure associated with the Queue I/O
Request system service. This service optionally returns a status code,
number of bytes transferred, and device- and function-dependent in­
formation in an I/O status block. It is not returned from the service call,
but filled in when the I/O request completes.

job 1. A job is the accounting unit equivalent to a process and the
collection of all the subprocesses, if any, that it and its subprocesses
create. Jobs are classified as batch and interactive. For example, the
job controller creates an interactive job to handle a user's requests
when the user logs onto the system and it creates a batch job when the
symbiont manager passes a command input file to it. 2. A print job.

job controller The system process that establishes a job's process
context, starts a process running the LOGIN image for the job, main-

482

Glossary

tains the accounting record for the job, manages symbionts, and ter­
minates a process and its subprocesses.

job queue A list of files that a process has supplied for processing
by a specific device, for example, a line printer.

kernel mode The most privileged processor access mode (mode 0).
The operating system's most privileged services, such as I/O drivers
and the pager, run in kernel mode.

lexical function A command language construct that the command
interpreter evaluates and substitutes before it performs expression
analysis on a command string. Lexical functions return information
about the current process, such as UIC or default directory; and about
character strings, such as length or substring locations.

librarian A program that allows the user to create, update, modify,
list, and maintain object library and assembler macro library files.

library file A direct access file containing one or more modules of
the same module type.

limit The size or number of given items requiring system resources
(such as mailboxes, locked pages, I/O requests, open files, etc.) that a
job is allowed to have at anyone time during execution, as specified
by the system manager in the user authorization file. See also quota.

line number A number used to identify a line of text in a file process­
ed by a text editor.

linker A program that reads one or more object files created by
language processors and produces an executable image file, a
shareable image file or a system image file.

linking The resolution of external references between object mod­
ules used to create an image, the acquisition of referenced library
routines, service entry pOints, and data for the image, and the assign­
ment of virtual addresses to components of an image.

literal mode In literal mode addressing, the instruction operand is a
constant whose value is expressed in a six-bit field of the instruction. If
the operand data type is byte, word, longword, or quadword, the oper­
and is zero-extended and can express values in the range 0 through
6310 . If the operand data type is floating or double floating, the six-bit
field is composed of two three-bit fields, one for the exponent and the
other for the fraction. The operand is extended to floating or double
floating format.

local symbol A symbol that is meaningful only to the module that
defines it. Symbols not identified to a language processor as global

483-

Glossary

symbols are considered to be local symbols. A language processor
resolves (matches references with definitions) local symbols. They are
not known to the linker and cannot be made available to another
object module. They can, however, be passed through the linker to the
symbolic debugger. Contrast with global symbol.

locality See program locality.

locate mode A record access technique in which a program reads
records in an RMS block buffer working storage area to reduce over­
head. See also move mode.

locking a page in memory Making a page within a process ineligible
for either paging or swapping. A page stays locked in memory until it is
specifically unlocked.

locking a page in the working set Making a page within a process
ineligible for paging out of the working set for the process. The page
can be swapped when the process is swapped. A page stays locked in
a working set until it is specifically unlocked.

logic The circuitry for accomplishing a particular operation within
the computer firmware or hardware.

logical block number A block on a mass storage device identified
using a volume-relative address rather than its physical (device­
oriented) address or its virtual (file-relative) address. The blocks that
constitute the volume are labeled sequentially starting with logical
block O.

logical I/O function A set of I/O operations (e.g., read and write
logical block) that allows restricted direct access to device leveU/O
operations using logical block addresses.

logical name A user-specified name for any portion or all of a file
specification. For example,the logical name INPUT can be assigned to
a terminal device from which a program reads data entered by a user.
Logical name assignments are maintained in logical name tables for
each process, each group, and the system. A logical name can be
created and assigned a value permanently or dynamically.

logical name table A table that contains a set of logical names and
their equivalence names for aparticular process, a particular group,
or the system.

logical record A group of related fields treated as a unit.

longword Four contiguous bytes (32 bits) starting on any byte
boundary. Bits are numbered from right to left with 0 through 31. The
address of the longword is the address of the byte containing bit O.

484

Glossary

When interpreted arithmetically, a longword is a 2's complementin­
teger with significance increasing from bit 0 to bit 30. When interpret­
ed as a signed integer, bit 31 is the sign bit. The value of the signed
integer is in the range -2,147,483,648 to 2,147,483,647. When in­
terpreted as an unsigned integer, significance increases from bit 0 to
bit 31. The value of the unsigned integer is in the range 0 through
4,294,967,295.

macro A statement that requests a language processor to generate
a predefined set of instructions.

mailbox A software data structure that is treated as a record-orient­
ed device for general interprocess communication. Communication
using a mailbox is similar to other forms of device-independent 1/0.
Senders perform a write to a mailbox; the receiver performs a read
from that mailbox. Some system-wide mailboxes are defined: the
error logger and OPCOM read from system-wide mailboxes.

main memory See physical memory.

mapping window A subset of the retrieval information for a file that
is used to translate virtual block numbers to logical block numbers.

mass storage device A device capable of reading and writing data
on mass storage media such as disk packs or a magnetic tape reels.

member number The second number in a user identification code
that uniquely identifies that code.

memory management The system functions that include the hard­
ware's page mapping and protection and the operating system's im­
age activator and pager.

Memory Mapping Enable (MME) A bit in a processor register that
governs address translation.

modify access type The specified operand of an instruction or pro­
cedure is read, and is potentially modified and written, during that
instruction's or procedure's execution.

module 1. A portion of a program or program library, as in a source
module, object module, or image module. 2. A board, usually made of
plastic covered with an electrical conductor, on which logic devices
(such as transistors, resistors, and memory chips) are mounted, and
circuits connecting these devices are etched, as in a logic module.

monitor See executive.

Monitor Console Routine (MCR) The command interpreter in an
RSX-11 system. Also, the command language interpreter when run­
ning the Application Migration Executive.

485

Glossary

mount a volume 1. To logically associate a volume with the physical
unit on which it is loaded (an activity accomplished by system software
at the request of an operator). 2. To load or place a magnetic tape or
disk pack on a drive and place the drive on-line (an activity
accomplished by a system operator).

move mode A record I/O access technique in which a program
accesses records in its own working storage area. See also locate
mode.

mutex A semaphore that is used to control exclusive access to a
region of code that can share a data structure or other resource. The
mutex (mutual exclusion) semaphore ensures that only one process at
a time has access to the region of code.

name block (NAM) An RMS user data structure that contains sup­
plementary information used in parsing file specifications.

native image An image whose instructions are executed in native
mode.

native mode The processor's primary execution mode, in which the
programmed instructions are interpreted as byte-aligned, variable
length instructions that operate on byte, word, longword, quadword,
integer, floating and double-floating, character string, packed deci­
mal, and variable length bit field data. The instruction execution mode
other than compatibility mode.

network A collection of interconnected individual computer sys­
tems.

nibble The low-order or high-order four bits of a byte.

node An individual computer system in a network.

numeric string A contiguous sequence of bytes representing up to
31 decimal digits (one per byte) and possibly a sign. The numeric
string is specified by its lowest addressed location~ its length, and its
sign representation.

null process A small system process that is the lowest priority proc­
ess in the system and takes one entire priority class. The sole function
of the null process is to accumulate idle processor time.

object module The binary output of a language processor such as
the assembler or acompiler, which is usedas input to the linker.

object time system (OTS) See Run Time Procedure Library.

offset A fixed displacement from the beginning of a data structure:
System offsets for items within a data structure normally have an asso­
ciated symbolic name used instead of the numeric displacement.

486

Glossary

Where symbols are defined, programmers always reference the sym­
bolic "'ames for items in a data structure instead of using the numeric
displacement.

opcode The pattern of bits within an instruction that specify the op­
eration to be performed.

operand specifier The pattern of bits in an instruction that indicate
the addressing mode, a register and/or displacement, which, taken
together, identify an instruction operand.

operand specifier type The access type and data type of an instruc­
tion's operand(s). For example, the test instructions are of read access
type, since they only read the value of the operand. The operand can
be of byte, word, or longword data type, depending on whether the
opcode is for the TSTB (test byte), TSTW (test word), or TSTL (test
longword) instruction.

Operator Communication Manager (OPCOM) A system process
that is always active. OPCOM receives input from a process that wants
to inform an operator of a particular status or condition, passes a
message to the operator, and tracks the message.

owner In the context "system, owner, group, world," an owner is the
particular member (of a group) to which a file, global section, mailbox,
or event flag cluster belongs.

owner process The process (with the exception of the job control­
ler) or subprocess that created a subprocess.

packed decimal A method of representing a decimal number by
storing a pair of decimal digits in one byte, taking adva"ntage of the fact
that only one nibble is required to represent the numbers zero through
nine.

packed decimal string A contiguous sequence of up to 16 bytes
interpreted as a string of nibbles. Each nibble represents a digit ex­
cept the low-order nibble of the highest addressed byte, which repre­
sents the sign. The packed decimal string is specified by its lowest
addressed location and the number of digits.

page 1. A setof 512 contiguous byte locations that begins at an even
512-byte boundary and is used as the unit of memory mapping and
protection. 2. The data between the beginning of a file and a page
marker, between two markers, or between a marker and the end of a
file.

page fault An exception generated by a reference to a page which is
not mapped into a working set.

page fault cluster size The number of pages read in on a page fault.

487

Glossary

page frame number (PFN) The address of the first byte of a page in
physical memory. The high-order 21 bits of the physical address of the
base of a page.

page marker A character or characters (generally a form feed) that
separates pages in a file that is processed by a text editor.

pager A set of kernel mode procedures that executes as the result of
a page fault. The pager makes the page for which the fault occurred
available in physical memory so that the image can continue execu­
tion. The pager and the image activator provide the operating system's
memory management functions.

page table entry (PTE) The data structure that identifies the location
and status of a page of virtual address space. When a virtual page is in
memory, the PTE contains the page frame number needed to map the
virtual page to a physical page. When it is not in memory, the page
table entry contains the information needed to locate the page on
secondary storage (disk).

paging The action of bringing pages of an executing process into
physical memory when referenced. When a process executes, all of its
pages are said to reside in virtual memory. Only the actively used
pages, however, need to reside in physical memory. The remaining
pages can reside on disk until they need to reside in physical memory.
In this system, a process is paged either when it references more
pages than it is allowed to have in its working set or when it first starts
up an image in memory. When a process refers to a page not in its
working set, a page fault occurs. This causes the operating system's
pager to read in the referenced page if itis on disk (and, optionally,
other related pages depending on a cluster factor), replacing the least
recently faulted pages as needed. This system pages a process only
against itself.

parameter See command parameter.

per-process address space See process address space.

'physical address The address used by hardware to identify a loca­
tion in physical memory or on directly addressable secondary storage
devices such as disk. A physical memory address consists of a page
frame number and the number of a byte within the page. A physical
disk block address consists of a cylinder or track and sector number.

physical address space The set of all possible 3~-bit physical ad­
dresses that can be used to refer to locations in memory (memory
space) or device registers (liD space).

physical block number The number of a block on a mass storage

488

Glossary

device r.eferred to by its physical (device-oriented) address rather th·an
a logical (volume-relative) or virtual (file-relative) address.

physical I/O functions A set of 1/0 functions that allows access to all
device level 1/0 operations except maintenance mode.

physical memory The memory modules connected to the S81 that
are used to store: 1) instructions that the processor can directly fetch
and execute, and 2) any other data that a processor is instructed to
manipulate. Also called main memory.

pointer A datum that gives the address of ("points to") another da­
tum, data structure, or process.

position-dependent code Code that can execute properly only in
the locations in virtual address space that are assigned to it by the
linker.

position-independent code Code that can execute properly without
modification wherever it is located in virtual address space, even if its
location is changed after it has been linked. Generally, this code uses
addressing modes that form an effective address relative to the PC.

primary vector A software vector that contains the starting address
of a condition handler to be executed when an exception condition
occurs. If a primary vector is declared, that condition handler is the
first handler to be executed.

priority The rank assigned to an activity that determines its level of
service. For example, when several jobs contend for system
resources, the job with the highest priority receives service first. See
also software priority and interrupt priority level.

private section An image section of a process that is not shareable
among processes. See also global section.

privilege See process privilege, user privilege.

privileged instructions In general, any instructions intended for use
by the operating system or privileged system programs. In particular,
instructions that the processor will not execute unless the current ac­
cess mode is kernel mode (e.g., HALT, SVPCTX, LDPCTX, MTPR, and
MFPR).

procedure 1. A routine entered via a CALL instruction. 2. See com­
mand procedure.

process The basic entity scheduled by the system software that pro­
vides the context in which an image executes. A process consists of an
address space and both hardware and software context.

process address space See process space.

489

Glossary

process context The hardware and software context of a process.

process control block (PCB) A data structure used to contain proc­
ess context. The hardware PCB contains the hardware context. The
software PCB contains the software context, which includes a pOinter
to the hardware PC B.

process header A data structure that contains the hardware PCB,
accounting and quota information, process section table, working set
list, and the page tables defining the virtual layout of the process.

process header slots That portion of the system address space in
which the system stores the process headers for the processes in the
balance set. The number of process header slots in the system
determines the 'number of processes that can be in the balance set at
anyone time.

process identification (PI D) The operating system's unique.32-bit
binary value assigned to a process. Each process has a process iden­
tification and a process name.

process I/O segment That portion of a process control region that
contains the process permanent RMS internal file access block for
each open file, a'nd the I/O buffers, including the command interpre­
ter's command buffer and command descriptors.

process name A 1- to 15-character ASCII string that can be used to
identify processes executing under the same group number.

process page tables The page tables used to describe process
virtual memory.

process priority The priority assigned to a process for scheduling
purposes. The operating system recognizes 32 levels of process pri­
ority, where 0 is low and 31 high. Levels 16 through 31 are used for
time-critical processes. The system does not modify the priority of a
time-critical process (although the system manager or process itself
may). Levels 0 through 15 are used for normal processes. The system
may temporarily increase the priority of a normal process based on
the activity of the process.

process privileges The privileges granted to a process by the sys­
tem, which are a combination of user privileges and image privileges.
They include, for example, the privilege to: affect other processes
associated with the same group as the user's' group, affect any
process in the system regardless of UIC, set process swap mode,
create permanent event flag clusters, create another process; create a
mailbox, or perform direct 110 to a file-structured device.

process section See private section.

490

Glossary

process section table A data structure used by the image activator
and page to interpret the image files produced by the linker.

process space (Also sometimes called per-process space.) The
lower addressed half of Virtual Address Space. Process space is itself
divided into the Program Region (lower half) and the Control Region
(upper half).

processor register A part of the processor used by the operating
system software to control the execution states of the computer sys­
tem. They include the system base and length registers, the program
and control region base and length registers, the system control block
base register, the software interrupt request register, and many more.

processor status longword (PSL) A system programmed proces­
sor register consisting of a word of privileged processor status and the
PSW. The privileged processor status information includes: the cur­
rent IPL (interrupt priority level), the previous access mode, the cur­
rent access mode, the interrupt stack bit, the trace trap pending bit,
and the compatibility mode bit.

Processor Status Word (PSW) The low-order word of the processor
status longword. Processor status information includes: the condition
codes (carry, overflow, zero, negative), the arithmetic trap enable bits
(integer overflow, decimal overflow, floating underflow), and the trace
enable bit.

Program Counter (PC) General (hardware) register number 15
(R15). At the beginning of execution of an instruction, the PC normally
contains the address of the location in memory from which the proces­
sor will fetch the next instruction.

program locality A characteristic of a program that indicates how
close or far apart the references to locations in virtual memory are
over time. A program with a high degree of locality does not refer to
many widely scattered virtual addresses in a short period of time.

program region The lowest-addressed half of process address
space (PO space). The program region cont~ins the ·image currently
being executed by the process and other user code called by the
image ..

program region base register (POBR) The processor register, or its
equivalent in a hardware process control block, that contains the base
virtual address of the page table entry for virtual pagenumber 0 in a
process program region.

program region length register (POLR) The processor register, or
its equivalent in a hardware process control block, that contains the

491

Glossary

number of entries in the page table for a process prog'ram region.

program section (psect)· A portion of a program with a given protec­
tion and set of storage management attributes. Program sections that
have the same attributes are gathered together by the linker to form an
image section.

pure code See re-entrant code.

quadword Eight contiguous bytes (64 bits) starting on any byte
boundary~ Bits are numbered from right to left, 0 to 63. A quadword is
identified by the address of the byte containing the low-order bit (bit
0). When interpreted arithmetically, a quadword is a 2's complement
integer with significance increasing from bit 0 to bit 62. Bit 63 is used
as the sign bit. The value of the integer is in the range -263 to 263 -1.

qualifier A portion of a command string that modifies a command
verb or command parameter by selecting one of several options. A
qualifier, if present, follows the command verb or parameter to which
it applies and is in the format: "/qualifier:option." For example, in the
command string "PRINT filename/COPIES:3," the COPIES qualifier
indicates that the user wants three copies of a given file printed.

queue n. A circular, doubly-linked list. See system queues. v. To
make an entry in a list or table, perhaps using the INSaUE instruction.

queue priority The priority assigned to a job placed in a spooler
queue or a batch queue.

quota The total amount of a system resource, such as CPU time, that
a job is allowed to use in an accounting period, as specified by the
system manager in the user authorization file. See also limit.

random access by record's file address The retrieval of a record
by its unique address, which is provided to the program by RMS. The
method of access can be used to randomly access a sequentially
organized file containing variable length records.

random access by relative record number The retrieval or storage
of a record by specifying its position relative to the beginning of the
file.

read access type An instruction or procedure operand attribute in­
dicating that the specified operand is only read during instruction or
procedure execution.

re~l-time process A process assigned to a software priority level
between 16 and 31, inclusive. The scheduling priority assigned to a
rear-time process is never modified by the scheduler, although it can
be modified by the system manager or process itself.

492

Glossary

record A collection of adjacent items of data treated as a unit. A
logical record can be of any length whose significance is determined
by the programmer. A physical record is a device-dependent collec­
tion of contiguous bytes such as a block on a disk, or a collection of
bytes sent to or received from a record-oriented device.

record access block (RAB) An RMS user data structure that repre­
sents a request for a record access stream. An RAB relates to opera­
tions on the records within a file, such as UPDATE, DELETE, or GET.

record access mode The method used in RMS for retrieving and
storing records in a file. One of four methods: sequential, or random
access by key, by record's file address, or by relative record number.

record .cell A fixed-length area in a relatively organized file that is
used to contain one record.

Record Management Services A set of operating system system
procedures that are called by programs to process files and records
within files. RMS allows programs to issue GET and PUT requests at
the record level (record 1/0) as well as read and write blocks (block
1/0). RMS is an integral part of the system software. RMS procedures
run in executive mode.

record-oriented device A device such as a terminal, line printer, or
card reader, on which the largest unit of data that a program can
access is the device's physical record.

record's file address The unique address ofa record in a file that
allows records to be accessed randomly· regardless of file
organization.

record slot A fixed length area in a relatively organized file that is
used to contain one record.

re-entrant code Code that is never modified during execution. It is
possible to let many users share the same copy of a procedure or
program written as re-entrant code.

register A storage location in hardware logic other than main mem­
ory. See also general register, processor register, and device register.

relocatable object module An object module whose addresses. are
relative, not absolute. The module can be linked to different portions
of the virtual address space (relocated) without damaging the internal
consistency of address references.

register deferred indexed mode An indexed addressing mode in
which the base operand specifier uses register deferred mode ad­
dressing.

493

Glossary

register deferre.d mode In register deferred mode addressing, the
contents of the specified register are used as the address of the actual
instruction operand.

register mode In register mode addressing, the contents of the
specified register are used as the actual instruction operand.

relative file organization A file organization in which the file con­
tains fixed length record cells. Each cell is assigned a consecutive
number that represents its position relative to the beginning of a file.
Records within each cell can be as big as or smaller than the cell.
Relative file organization permits sequential record access, random
record access by record number, and random record access by re­
cord's file address.

resource A physical part of the computer system such as a device
or memory, or an interlocked data structure such as a mutex. Quotas
and limits control the use of physical resources.

resource wait mode An execution state in which a process indicates
that it will wait until a system resource becomes available when it
issues a service request requiring a resource. If a process wants notifi­
cation when a resource is not available, it can disable resource wait
mode during program execution.

Run Time Procedure Library The collection of procedures available
to native mode images at run time. These library procedures (such as
trigonometric functions) may be used by all native mode images, re­
gardless of the language processor used to compile or. assemble the
program.

scatter/gather The ability to transfer in one 1/0 operation data from
discontiguous pages in memory to contiguous blocks on disk, or data
from contiguous blocks on disk to discontiguous pages in memory.

scheduler The interrupt service routine responsibh:l for process
execution scheduling.

secondary storage Random access mass storage.

secondary vector A location that identifies the starting address of
an exception handler to be executed when an exception occurs and
either the primary vector contains zero or the handler to which the
primary vector pOints chooses not to handle the exception condition.

section A portion of process virtual memory that has common
memory management attributes (protection, access, cluster factor,
etc.). It is created from an image section, a disk file, oras the result of a
Create Virtual Address Space system service. See global section, pri­
vate section, image section, and program section.

494

Glossary

sequential access mode The retr.ieval or storage of records in
which a program successively reads or writes records one after the
other in the order, in which they appear, starting and 'ending at any
arbitrary point in the file.

sequential file organization A file organization in which records ap~
pear in the order in which they were originally written. The records can
be fixed length or variable length. Although one does not speak of
record slots with sequentially organized files, for purposes of compari­
son with relatively organized files one can say that the record itself is
the same as its record slot, and its record number is the same as its
relative slot number. Sequential file organization permits sequential
record access and random access by record's file address. Sequential
file organization with fixed length records also permits random access
by relative record number.

shareable image An image that has all of its internal references
resolved, but which must be linked with an object module(s) to pro­
duce an executable image. A shareable image cannot be executed. A
shareable image file can be used to contain a: library of routines and
can be installed as a global section by the system manager.

shell process A predefined process that the job initiator copies to
create the minimum context necessary to establish a process.

signal 1. An electrical impulse conveying information. 2. The soft­
ware mechanism used to indicate that an exception condition was
detected.

sl'ave terminal A terminal from whichitis not possible to issue com­
mands to the command interpreter. A terminal assigned to application
software.

small process A system process that has no control region in its
virtual address space and has an abbreviated context. Examples are
the working set swapper and the null process. A small process is
scheduled in the same manner as user processes, but must remain
resident during its execution ..

software context The context maintained by the operating system
that describes a process; See software process control block (PCB).

software interrupt An interrupt generated on interrupt priority level
1 through 15 which can be requested only by software.

software process control block (PCB) The data structure used to
contain a process's software context. The operating system defines a
software PCB for every process when the process is created. The
software PCB includes the following kinds of information about the

495

Glossary

process: current state; storage address if it is swapped out of memory;
unique identification of the process, and address of the process head­
er (which contains the hardware PCB). The software PCB resides in
system region virtual address space. It is not swapped with a process.

software priority See process priority and queue priority.

spooling Output spooling: The method by which output to a low­
speed peripheral device (such as a line printer). is placed into queues
maintained. on a high-speed device (such as a disk) to await
transmission to the low-speed device. Input spooling: The method by
yvhich input from a low-speed peripheral (such as the card reader) is
placed into queues maintained on a high-speed device (such as a
disk) to await transmission to a job processing that input.

spool queue The list of files (supplied by processes) that are to be
processed by a symbiont. For example, a line printer queue is a list of
files to be printed on the line printer.

stack An area of memory set aside for temporary storage, or for
procedure and interrupt service linkag~s. A stack uses the last-in,
first-out concept. As items are added to ("pushed on") the stack, the
stack pOinter decrements. As items are retrieved from ("popped off")
the stack, the stack pOinter increments.

stack frame A standard data structure built on the stack during a
procedure call, starting·from the location addressed by the FP to lower
addresses, and popped off during a return from procedure. Also
called call frame.

stack pOinter General register 14 (R14). SP contains the address of
the top (lowest address) of the processor-defined stack. Reference to
SP will access one of the five possible stack pOinters, kernel, execu­
tive, supervisor, user, or interrupt, depending on the value in the cur­
rent mode and interrupt stack bits in the Processor Status Longword
(PSL).

state queue A list of processes in a particular processing state. The
scheduler uses state queues to keep track of processes's eligibility to
execute. They include: processes waiting ·for a common event flag,
suspended processes, and executable hibernating processes.

status code A longword value that indicates the success or failure of
a specific function. For example, system services always return a.stat­
us code in RD upon completion.

store through See write through.

strong definition Definition of aglobalsymbol that is explicitly avail­
able for reference by modules linked with the module in which the

496

Glossary

definition occurs. The linker always lists a global symbol with a strong
definition in the symbol portion of the map. The librarian always
includes a global symbol with a strong definition in the global symbol
table of a library.

strong reference A reference to a global symbol in an object mod­
ule that requests the linker to report an error if it does not find a
definition for the symbol during linking. If a library contains the defi­
nition, the linker incorporates the library module defining the global
symbol into the image containing the strong reference.

subprocess A subsidiary process created by another process. The
process that creates a subprocess is its owner. A subprocess receives
resource quotas and limits from its owner. When an owner process is
removed from- the system, all its subprocesses (and their sub­
processes) are also removed.

supervisor mode The third most privileged processor access mode
(mode 2). The operating system's command interpreter runs in super­
visor mode.

suspension A state in which a process is inactive, but known to the
system. A suspended process becomes active again only when
another process requests the operating system to resume it. Contrast
with hibernation.

swap mode A process execution state that determines the eligibility
of a process to be swapped out of the balance set. If process swap
mode is disabled, the process working set is locked in the balance set.

swapping The method for sharing memory resources among sever­
al processes by writing an entire working set to secondary storage
(swap out) and reading another working set into memory (swap in).
For example, a process's working set can be written to secondary
storage while the process is waiting for I/O completion on a slow
device. It is brought back into the balance set when I/O completes.
Contrast with paging.

switch See (command) qualifier.

symbiont A full process that transfers record-oriented data to or
from a mass storage device. For example, an input symbiont transfers
data from card readers to disks. An output symbiont transfers data
from disks to line printers.

symbiont manager The function (in the system process called the
job controller) that maintains spool queues, and dynamically creates
symbiont processes to perform the necessary I/O operations.

symbol See local symbol, global symbol, and universal global sym­
bol.

497

Glossary

Synchronous Backplane Interconnect (SBI) The part of the hard­
ware that interconnects the processor, memory controllers, MASS­
BUS adaptors, the UNIBUS adaptor.

synchronous record operation A mode of record processing in
which a user program issues a record read or write request and then
waits until that request is fulfilled before continuing to execute.

system In the context "system, owner, group, world," system is the
category of group numbers less than 8 in the User Identification Code.
Such UICs belong to the operating system and its controlling privi­
leged users, the system operators and system manager.

system address space See system space and system region.

system base register (SBR) A processor register- containing the
physical address of the base of the system page table.

system buffered I/O An 1/0 operation, such as terminal or mailbox
110, in which an intermediate buffer from the system buffer pool is
used instead of a process-specified buffer. Contrast with direct 1/0.

system control block (SCB) The data structure in system space that
contains all the interrupt and exception vectors known to the system.

system control block base register (SCBB) A processor register
containing the base address of the system control block.

system device The random access mass storage device unit on
which the volume containing the operating system software resides.

system dynamic memory Memory reserved for the operating sys­
tem to allocate as needed for temporary storage. For example, when
an image issues an 1/0 request, system dynamic memory is used to
contain the 1/0 request packet. Each process has a limit on the am­
ount of system dynamic memory that can be allocated for its use at
onetime.

System Identification Register A processor register which contains
the processor type and serial number.

system image The image that is read into memory from secondary
storage when the system is started up.

system length register (SLR) A processor register containing the
length of the system page table in longwords, that is, the number of
page table entries in the system region page table.

system page table (SPT) The data structure that maps the system
region virtual addresses, including the addresses used to refer to the
process page tables. The system page table (SPT) contains one page
table entry (PTE) for each page of system region virtual memory. The

498

Glossary

physical base address of the SPT is contained in a register called the
SBR.

system process A process that provides system-level functions.
Any process that is part of the operating system. See also full process,
small process, fork process.

system programmer A person who designs and/or writes operating
systems, or who designs and writes procedures or programs that pro­
vide general purpose services for an application system.

system queues A queue used and maintained by operating system
procedures. See also state queues.

system region The third quarter of virtual address space. The low­
est-addressed half of system space. Virtual addresses in the system
region are shareable between processes. Some of the data structures
mapped by system region virtual addresses are: system service vec­
tors, the executive, the Record Management Services, the system con­
trol block (SCB), the system page table (SPT), and process page
tables.

system services Procedures provided by the operating system that
can be called by userimages.

system space The highest~addressed half of virtual address space.
See also system region.

system virtual address A virtual address identifying a location in
system space.

system virtual space See system space.

task An RSX-11 /IAS term for a process and image bound together.

terminal The general name for those peripheral devices that have
keyboards and video screens or printers. Under program control, a
terminal enables people to type commands and data on a keyboard
and receive messages on a video screen or printer. Examples of ter­
minals are the LA36 DECwriter hard-copy terminal and VT52 video
display terminal.

time-critical process See real-time process.

timer An interrupt service routine, the hardware timer ISR, main­
tains the time of day. A software ISR subroutine scans for device
timeouts and performs time dependent scheduling upon request.

track A collection of blocks at a single radius on one recording sur­
face of a disk.

499

Glossary

transfer address The address of the location containing a program
entry point (the first instruction to execute).

transition A page is said to be in transition when it is' being written to
backup storage from the modified page list.

translation buffer An internal processor cache containing transla­
tion for recently used virtual addresses.

trap An exception condition that occurs at the end of the instruction
that caused the exception. The PC saved on the stack is the address of
the next instruction that would normally have been executed. All
software can enable and disable some of the trap conditions with a
single instruction.

trap enables Three bits in the Processor Status Word that control
the processor's action on certain arithmetic exceptions.

two's complement A binary representation for integers in which a
negative number is one greater than the bit complement of the posi­
tive number.

two-way associative cache A cache organization which has two
groups of directly mapped blocks. Each group contains several blocks
for each index position in the cache. A block of data from main memo­
ry can go into any group at its proper index position. A two-way asso­
ciative cache is a compromise between the extremes of fully associa­
tive and direct mapping cache organizations that takes advantage of
the features of both.

type ahead A terminal handling technique in which the user can
enter commands and data while the software is processing a
previously entered command. The commands typed ahead are not
echoed on the terminal until the command processor is ready to proc­
ess them. They are held in a type ahead buffer.

unit record device A device such as a card reader or line printer.

universal global symbol A global symbol in a shareable image that
can be used by modules linked with that shareable image. Universal
global symbols are typically a subset of all the global symbols in a
shareable image. When creating a shareable image, the linker ensures
that universal global symbols remain available for reference after sym­
bols have been resolved.

unwind the call stack To remove call frames from the stack by
traCing back through nested procedure calls using the current con­
tents of the FP register and FP register contents stored on the stack for
each call frame.

500

Glossary

user authorization file A file containing an entry for every user that
the system manager authorizes to gain access to the system. Each
entry identifies the user name, password,default account, User Identi­
fication Code (UIC), quotas, limits, and privileges assigned to
individuals who use the system.

user environment testpackage (UETP) A collection of routines that
verify that the hardware and software systems are complete, properly
installed, and ready to be used.

User File Directory (UFO) See directory.

User Identification Code (UIC) The pair of numbers assigned to
users, and to files, global sections, common event flag clusters, and
mailboxes. It consists of a group number and a member number se­
parated by a comma. The UIC specifies the type of access (read
and/or write access, and in the case of files, execute and/or delete
access) available to the owners, group, world, and system.

user mode The least privileged processor access mode (mode 3).
User processes and the Run Time library procedures run in user
mode.

user name The name that a person types on a terminal to log on to
the system.

user number See member number.

user privileges The privileges granted a user by the system manag­
er. See process privileges.

utility A program that provides a set of related general purpose
functions, such as a program development utility (an editor, a linker,
etc.), a file management utility (file copy or file format translation pro­
gram), or operations management utility (disk backup/restore, diag­
nostic program, etc.).

variable-length record format A file format in which records are not
necessarily the same length.

variable with fixed-length control record format A file format in
which records of variable length contain an additional fixed-length
control area. The control area may be used to contain file line numbers
and/or print format control characters.

vector 1. A interrupt or exception vector is a storage location, known
to the system, that contains the starting address of a procedure to be
executed when a given interrupt or exception occurs. The system
defines separate vectors for each interrupting device controller and
for classes of exceptions. Each system vector is a longword, 2. For the

501

Glossary

purposes of exception handling, users can declare up to two software
exception vectors (primary and secondary) for each of the four access
modes. Each vector contains the address of a condition handler. 3. A
one-dimensional array.

version number 1. The field following the file type in a file specifica­
tion. It begins with a period (.) or a semicolon (;)and is followed by a
decimal number which generally identifies it as the latest file created
of all files having the identical file specification but for version number.
2. The number used to identify the revision level of program.

virtual address A 32-bit integer identifying a byte "location" in
virtual address space. The memory management hardware translates
a virtual address to a physical address. The term virtual address may
also refer to the address used to identify a virtual block on a mass
storage device.

virtual address space The set of all possible virtual addresses that
an image executing in the context of a process can use to identify the
location of an instruction or data. The virtual address space seen by
the programmer is a linear array of 4,294,967,296 (232

) byte ad­
dresses.

virtual block A block on a mass storage device referred to by its file­
relative address rather than its logical (volume-oriented) or physical
(device-oriented) address. The first block of a file is always virtual
block 1.

virtual I/O functions A set of I/O functions that must be interpreted
by an ancillary control process.

virtual memory The set of storage locations in physical memory and
on disk that are referred toby virtual· addresses. From the program­
mer's viewpoint, the secondary storage locations appear to be loca­
tions in phYSical memory. The size of virtual memory in any system
depends on the amount of physical memory available and the amount
of disk storage used for non-resident virtual memory.

virtual page number The virtual address of a page of virtual memo­
ry.

volume. A mass storage medium ,such as a disk pack or reel of
magnetic tape.

volume set The file-structured collection of data residing on one or
more mass storage media.

wait To become inactive. A process enters a process wait statewhen
the process suspends itself, hibernates, or declares that it needs to
wait for anevent,resource, mutex, etc.

502

Glossary

wake To activate a hibernating process. A hibernating process can
be awakened by another process or a scheduled wake-up call.

weak definition Definition of a global symbol that is not explicitly
available for reference by modules linked with the module in which the
definition occurs. The librarian does not include a global symbol with a
weak definition in the global symbol table of a library. Weak definitions
are often used when creating libraries to identify those global symbols
that are needed only if the module containing them is otherwise linked
with a program.

weak reference A reference to a global symbol that requests the
linker not to report an error or to search the default library's global
symbol table to resolve the reference if the definition is not in the
modules explicitly supplied to the linker. Weak references are often
used when creating object modules to identify those global symbols
that may not be needed at run time.

wild card A symbol, such as an asterisk, that is used in place of a file
name, file type, directory name, or version number in a file
specification to indicate "all" for the given field.

window See mapping window.

word Two contiguous bytes (16 bits) starting on an addressable byte
boundary. Bits are numbered from the right, 0 through 15. A word is
identified by the address of the byte containing bit o. When interpreted
arithmetically, a word is a 2's complement integer with significance
increasing from bit 0 to bit 14. If interpreted as a signed integer, bit 15
is the sign bit. The value of the integer is in the range -32,768 to
32,767. When interpreted as an unsigned integer, significance in­
creases from bit 0 through bit 15 and the value is in the range 0
through 65,535.

working set The set of pages in process address space to which an
executing process can refer without incurring a page fault. The work­
ing set must be resident in memory for the process to execute. The
remaining pages of that process, if any, are either in memory and not
in the process working set or they are on secondary storage.

working set swapper A system process that brings process working
sets into the balance set and removes them from the balance set.

world In the context "system, owner, group, world," world refers to
all users, including the system operators, the system manager, and
users, both in an owner's group and in any other group.

write access type The specified operand of an instruction or pro­
cedure is written only during that instruction's or procedure's execu­
tion.

503

Glossary

write allocate A cache management· technique -in which cache is
allocated on a write miss as well as on the usual read miss.

write .back A cache management technique in which data from a
write operation to cache is copied-into main memory only when the
data in cache must be overWritten. This results in temporary
inconsistencies between cache and main memory. Contrast with write
through.

write through A cache management technique in which data from a
write operation is copied in both cache and main memory. Cache and
main memory data are always consistent. Contrast with write back.

504

INDEX

A

abbreviations, 44

access
distributed, 222-223
remote, 245-246
to system, 23-26
types of, 439
to VAX-11 DBMS database, 232

access control, 245

access modes, 324
RMS, 370-373

accounts systems, 437-441

ACPs (ancillary control
processes), 9, 362, 363

adaptive routing, 247

addresses, virtual address space
for, 3, 275-279

address sorts, 119

Adjust Outer Mode Stack Pointer
($ADJSTK), .356

Adjust Working Set Limit
($ADJWSL), 355

ADT (Application Design Tool), 221

ALLOCATE command, 47

Allocate Device ($ALLOC), 337-339

AL TMODE (ESCAPE) key, 47

AME (application migration
executive), 276, 285, 426

ANAL YZE/CRASH-DUMP
command, 47

ANALYZE/DISK-STRUCTURE
command, 18,47-48

ANALYZE/OBJECT command, 16,
48

ANAL YZE/RMS-FILE command, 48

ANAL YZE/RMS-FILE utility, 381

ANALYZE/SYSTEM command, 48

505

ancillary control processes
(ACPs), 9, 362, 363

ANNOTATE command,
in DEC/CMS, 130

ANSI COBOL Library facility, 161

APPEND command, 48

Application Design Tool (ADT), 221

application development using
VAX-11 DBMS, 231

application migration executive
(AME), 276, 285, 426

approximate and generic key
matches, 379

approximate key matches, 379

architecture, 1
of DIGITAL Network
Architecture, 242-243
VAX information, 211-215

Argument Pointer (AP) register,
329-330

arithmetic procedures, multiple
precision, 117

$ASCTIM (Convert Binary Time to
ASCII String), 350

assemblers, VAX-11 MACRO, 203

assembling of programs, 36

assembly languages
MACRO-11, 207-208
VAX-11 MACRO, 203-206

$ASSIGN calls, 258,259,261,263

ASSIGN command, 31,32,48-49,
443

Assign 110 Channel ($ASSIGN), 335,
364,365,395

Associate Common Event Flag
Cluster ($ASCEFC), 326,418

AST Level (ASTLVL), 318

AST parameter, 330

Index

asynchronous system traps
(ASTs), 300,311,316-320,366,
399

mailboxes and, 419
system services for, 6,328-331
in VAX-11 /782 Attached Processor

Systems, 454

attached processor systems,
451-457

attributes, of files and records, 372-
381

AUTHORIZE (User Authorization
Program) utility, 20, 440-441

Auto restart feature, 455

B

BACKUP command, 49

BACKUP utility, 18,442

Bad Block Locator (BAD) utility, 18

balance set, 2,281-282

BAS$ (language-specific
support), 118

BASIC, VAX-11, 135-152

BASIC-PLUS, 151

batch processing,
SLPeditorfor, 96-100
SORT/MERGE utility used in, 119

batch queues, 445

binding, 284

$BINTIM (Convert ASCII String to
Binary Time, 350-351

BLlSS-16, VAX-11, 194-197

BLlSS-32, VAX-11, 183-194

block I/O processing, 380

bootstrapping, SYSBOOT for, 19

brackets, 42

Broadcast ($BRDCST), 341

buffers in EDT, 84

Bugcheck feature, 455

BUILTIN declarations,
in VAX-11/BLlSS-16, 196
in VAX-11 /BLlSS-32, 185

BUSY state, 452

c

C, VAX-11, 178-183

CALL command in DEBUG, 110

CALL G instruction, 329

calling, 135
ofVAX-11 DATATRIEVE, 222
by VAX-11 DBMS, 232
in VAX-11 DSM, 201
in VAX-11 FORTRAN, 166
in VAX-11 MACRO,. 206, 258-259,

263-264

CALL statement
in VAX-11 BASIC, 148
in VAX-11 COBOL, 156-157

CANCEL command, 49
in DEBUG, 111-112

Cancel Exit Handler ($CANEXH), 347

Cancel I/O on Channel
($CANCEL), 340

Cancel Timer Request
($CANTIM), 351

Cancel Wakeup ($CANWAK), 346,
351

carriage return «cr>, <RET>,
RETURN) key, 46

CCITT (International Telephone and
Telegraph Consultative
Committee), 268, 270

CDD (Common Data
Dictionary), 215,218,227-229,
233

CEB (common event block), 417-418

Change to Executive Mode
($CM EXEC), 356

Change to Kernel Mode
($CMKRNL), 356

506

Index

change mode system services, 8,
356

channels, 359
assigning, 364

character data
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184
in VAX-11 FORTRAN, 165

characters
in command format, 43-44
as flags, 127
symbolicinVAX-11 BASIC, 146

CLE (command language editor), 17

Clear Event Flag ($CLREF), 327,418

CLI (Command Language
Interpreter), 17

CLOSE command, 49-50

CLOSE procedure, in VAX-11
PASCAL, 175

CLOSE statement, in VAX-11
FORTRAN, 164

clusters, 103,104

CMS (Code Management
Syst~m), 129-131

COB$ (language-specific
support), 118

COBOL, VAX-11, 152-164

COBOL Data Manipulation Language
(DML), 157-159

Code Management System
(DEC/CMS), 129-131

command interpreter, 285

Command Language, see DIGITAL
Command Language

command language editor (CLE), 17

Command Language Interpreter
(CLI), 17

command procedures, 45-46

commands, 47-80
for data and file management, 18-

19
in DEBUG, 106-114

507

in DEC/CMS, 130-131
in DIGITAL Standard
RUNOFF, 124
entering, 23-25
in SLP, 98-100
in SOS, 94-95
for VAX-11 /782 Attached

Processor System, 457
in VAX-11 DATATRIEVE, 216-217

commas, 43

comment characters, 43-44

Common BLISS, 183-185,194-196

COMMON block specification, 166

Common Data Definition Language
utility, 161

Common Data Dictionary, 215,
218,227-229,233

Common Data Dictionary Directory,
VAX-11, 227.,228

common event block (CEB), 417-418

common event flag clusters, 8, 325,
417,418

common event flags, 417-418

common I/O procedures, 117

common namespace, 421-422

Common Run-Time Procedure
Library, see Run-Time
Library

communications, 11-12,239-271
between processes, 8, 417, 423

communications networks, 239

Compatibility !\lode, 447

compilers
VAX-11 BLlSS-16, 197
VAX-11 BLlSS-32, 188-189
VAX-11 C, 180
VAX-11 CORAL 66, 198
VAX-11 DSM precompiler

and, 200-201
VAX-11 FORTRAN, 167-168
see a/so lang'uages

compiling of programs, 36

concatenation characters, 44

conditional assembly directives
in VAX-11 MACRO, 205

condition handlers, 311-313

condition handling
in Run-Time Library, 116
system services for, 7,352
inVAX-11 PLlI, 177

contained programs, in VAX-11
COBOL, 156-157

contents, tables of, 128

context, 2

continuation character, 43

CONTINUE command, 50

Contract Program/Control Region
($CNTREG), 353-354

control region, 3,277,284

control/status register (CSR), 404

conversion procedures, 117

Convert ASCII String to Binary Time
($BINTIM), 350-351

Convert Binary Time to ASCII String
($ASCTIM), 350

Index

CREATE/FDl command, 52

Create logical Name
($CRElOG), 334

CREATE Mailbox and Assign Channel
($CREMBX), 340-341,418,419

Create and Map Section
($CRMPSC), 4,290,354

Create Process ($CREPRC), 343

Create Virtual Address Space
($CRETVA), 286, 354

CROSS command, in VAX-11
DATATRIEVE, 216,222

CSR (control/status register), 404

CTRLlC key, 23,46

CTRLlI key, 46

CTRLlK key, 46

CTRLll key, 46

CTRLlO key, 46

CTRLlQ key, 46

CTRLlR key, 46

CTRLlS key, 46

Convert Binary Time to Numeric Time CTRLlU key, 47

($NUMTIM), 349

CONVERT command, 51

CONVERT/RECLAIM command, 51

CONVERT/RECLAIM utility, 381

CONVERT utility, 381

COPY command, 19,51

COPY FROM DICTIONARY
statement, in VAX-11 COBOL,
161

COPY statement, 161

CORAL 66, VAX-11, 198-199

<CR> (RETURN; carriage return)
key, 46

crashes, 313-315

CRC (cyclic redundancy check)
procedures, 117

CREATE command, 19,51
in DEC/CMS, 130

CTRLlX key, 46

CTRLlY key, 47

CTRLlZ key, 44,47

cyclic redundancy check (CRC)
procedures, 117

o

DAP (Data Access Protocol), 242

$DASSGN calls, 259,264

data
access to, 439
communications of, 239-271
management of, 211-236
utilities for, 17-19

Data Access Protocol (DAP), 242

Database Control System
(DBCS), 157, 231~233

508

Index

Data Base Management System, see
VAX-11 DBMS

Database Monitor, 233

Database Operator Utility
(DBO), 232

database special registers, 158,160

data definition
in VAX-11 DATATRIEVE, 218,228-

229
in VAX-11 DBMS, 230

data definition languages
(DDLs), 230

data dictionary, 211-212
VAX-11 Common Data

Dictionary, 215, 227-229

data link layer (DNA), 242

data management, 211-236
RSX and VAXIVMS transportability

and, 428
in VAX-11 DSM, 199-200

Data Manipulation Language
(DML), 231,232

COBOL support for, 157-159

data manipulation verbs, in VAX-11
COBOL, 158

data messages, 260

DATATRIEVE, see VAX-11
DATATRIEVE

data type conversion
procedures, 117

data types
in VAX-11 BASIC, 142
in VAX-11 C, 179
in VAX-11 COBOL, 155-156
in VAX-11 FORTRAN, 165

date/time utility procedures, 117

DBCS (Database Control
System), 157,231-233

DBMS, see VAX-11 DBMS

DBMS domains, 222

DBO (Database Operator Utility), 232

DBOIVERIFY utility, 234

509

DBQ, 233-234

DB statement, in VAX-11
COBOL, 158

DCL, see DIGITAL Command
Language

DDCMP (DIGITAL Data
Communications Message
Protocol), 242

DDLs (data definition
languages), 230

deadlock detection, 422

DEALLOCATE command, 52

Deallocate Device ($DALLOC), 339

DEASSIGN command, 92

Deassign I/O Channel
($DASSGN), 336

DEBUG (symbolic debugger), 15,
105-114,134

VAX-11 BLlSS-32 and, 190
VAX-11 Cand, 181
VAX-11 COBOL and, 153,162
VAX-11 PLII and, 178

DEBUG command, 52

debugging
in VAX-l1 BASIC, 136,148
in V,AX-11 BLlSS-32, 189-190
inVAX-11C, 181
in VAX-11 COBOL, 161-162
in VAX-11 FORTRAN, 167
in VAX-11 PL/I, 178

debug lines, 162

DEC/CMS (DIGITAL Equipment
Corporation Code
Management System),
129-131

DECK command, 52-53

declarations in VAX-11 BASIC, 142-
143

Declare AST ($DCLAST), 331

Declare Change Mode
or Compatibility Mode Handler
($DCLCMH), 352

Index·

DECLARE command, in VAX-11
DATATRIEVE, 216

Declare Exit Handler
($DCLEXH), 315,346-347

Declare statement, in VAX-11
BASIC, 143

DECnet, 8, 11-12, 242-250
MAIL utility on, 16

DECnet-11 S nodes, 246

DECnet communications
software, 239, 243-244

VAX information architecture
with, 222-223

DECnet-VAX Phase III, 243-250
for interprocess
communications, 419

default subschemas, 233

DEFINE command, 53
in VAX-11 DATATRIEVE, 216

DEFINE PROCEDURES command, in
VAX-11 DATATRIEVE, 220

DELETE command, 19,53

Delete Common Event Flag Cluster
($DLCEFC), 327,418

DELETE/ENTRY command, 54

Delete Global Section
($DGBLSC), 355

DELETE (RUBOUT) key, 47

Delete Logical Name
($DELLOG), 334

Delete Mailbox ($DELMBX), 341,419

Delete Process ($DELPRC), 343-344

DELETE/SYMBOL command, 54

Delete Virtual Address Space
($DEL TVA), 354

DEPOSIT command,54
in DEBUG, 114

Dequeue Lock Request ($DEQ), 357,
422

detached processes, 343

510

device-dependent processing, 389,
402-403

device drivers, 1 0-11,362,363,389-
414

device-i ndependent
processing, 389, 401-402

devices
general activity of, 395-399·.

names and mnemonics for, 29-30

diagnostic messages
in VAX-11 BLlSS-32, 189
in VAX-11 COBOL, 161
in VAX-11 FORTRAN, 166

diagnostics, 1
U ETP for, 436
in VAX-11 BLlSS-32 189
in VAX-11 COBOL, 161
in VAX-11 FORTRAN, 166
in VAX-11 PL/I, 178

Dictionary ManagementUtility
(DMU), 229

DIFFERENCES command, 19,54

DIGITAL Command Language, 1,41-
80,427,428

commands for VAX-111782
Attached Processor System in, 457
data and file management
commands in, 18-19
file handling with, 250-252

DIGITAL Data Communications
Message Protocol (DDCMP),
242 .

DIGITAL Equipment Corporation
Code Management
System (DEC/CMS),
129-131

DIGITAL Network Architecture
(DNA), 12, 242-243

DIGITAL Standard MUMPS (DSM),
VAX-11, 199-203

DIGITAL Standard RUNOFF
(DSR), 123-128

Index

directives
in MACRO-11, 208
RSX-11 M, 429-432
in VAX-11 MACRO, 204, 205

direct mode, 26

directories, 31

DIRECTORY command, 16,19,54-
55

Disassociate Common Event Flag
Cluster ($DACEFC),326, 418

DISKOUOTA utility, 20

DISMOUNT command, 55

Dismount Volume ($DISMOU), 339

distributed computing networks, 241

distributed data access, 222-223

DML (Data Manipulation
Language), 231-232

DMU (Dictionary Management
Utility), 229

DNA (DIGITAL Network
ArChitecture), 12,242-243

document formatting utility
(DSR), 123-128

$ (dollar sign), 23,42,45

domains, 218
DBMS, 222
remote, 223

view, 221

Downline Command File
Loading, 244

Downline System Loading, 244

Downline Task Loading, 244

driver dispatch tables, 390

driver prologue tables, 390

DROP command, in VAX-11
DATATRIEVE, 216

DROP state, 453

DSM (DIGITAL Standard MUMPS),
VAX-11, 199-203

DSM Job Controller, 202

511

DSR (DIGITAL Standard
RUNOFF), 123-128

DUMP command, 55

dumps, System Dump Analyzer
for, 21

dynamic access, 373

dynamic page tables, 279-280

dynamic strings, 118

E

EDIT command, 55
in VAX-11 DATATRIEVE, 216

EDIT/FDLcommand, 55

EDIT IFDL utility, 381

editors, 13-14
command language editor, 17
EDT, 83-91
MESSAGE utility used with, 16
SLP, 96-100
SOS, 91-96
in VAX-11 DATATRIEVE, 220-221
in VAX-11 FMS, 224-225

EDT text editor, 13,83-91

ellipsis (...), 43

ENABLE declarations
in VAX-11 BLlSS-16, 196
in VAX-11 BLlSS-32, 185

Enqueue Lock Request ($ENO), 357,
422

Enqueue Lock Request and Wait for
Event Flag ($ENOW), 357,422

entry vectors, 115

EOD command, 56

EOJ command, 56

ERASE command, in VAX-11
DATATRIEVE, 216

error handling
in Run-Time Library, 116
in VAX-11 BASIC, 150-151
in VAX-11 BLlSS-32, 189-190

in VAX-11 COBOL, 161
in VAX-11 FORTRAN, 166
in VAX-11 PLlI, 177

error messages
MESSAGE utility for, 16
in VAX-11 BLlSS-32, 189
in VAX-11 COBOL, 161
in VAX-11 FORTRAN, 166

error reports, 448

errors
fatal, 313-315
logging of, 448,455
severity of, 166
SYE utility for, 21
Symbolic Traceback Facility

for, 134
UETP detection of, 436

ESCAPE (ALTMODE) key, 47

EVALUATE command in
DEBUG, 110

EVALUATE statement, in VAX-11
COBOL, 154

event flags, 365
common, 417-418
common, clusters, 8

system services for, 6,324-328

event handling, special, 311-320

exact key matches, 379

EXAMINE command, 57
in DEBUG, 113-114

exception handling, 135

exceptions, 311
in VAX-11 /782 Attached Processor

System's handling of, 454

! (exclamation mark), 43-44

executable images, 102

executable process state
queues, 298-299

EXECUTE state, 452

execution
of DEBUG, 106
of programs, 37

Index

Executive mode, 447

EXIT ($EXIT), 346

EXIT command, 57-58
in DEBUG, 114

exit handlers, 311,315-316

Expand Program/Control Region
($EXPREG), 353

EXTERNAL statement

F

in VAX,:,,11 BASIC, 143
in VAX":11 COBOL, 160

FAB (File Access Block), 383

fatal errors, 166,313-315

faults
page, 4,281,286; 289, 292
VAX-11 /782 Attached Processor

Systems' handling of, 455

FCS (File Control Services), 246

FDL (File Definition Language), 17,
381

FETCH command, in DEC/CMS; 130

File Access Block (FAB), 383

FILE command, 16

File Control Services (FCS), 246

File Definition Language (FDL), 17,
381

file management utilities, 17-19

files names, 27-29

files, 27-31

512

attributes of, 372-381
DCL handling of, 250-252
image, 285
populating,in VAX-11
DATATRIEVE, 219
public, management of, 441-443
remote access'to, 245-246
RMS handling of, 252-255
RMS organization of, 366-370

Index

RSX and VAXIVMS transportability
of, 428

shared disk, 423
SLP editing of, 96
SORT/MERGE interface with, 123
VAX-11 BASIC handling of, 146
VAX-11 BLlSS-32 handling of, 189
VAX-11 COBOL handling of, 159-

160
VAX-11 FORTRAN handling

of, 164-165

file sharing facilities, 160

file specifications, 27,42,44-45

File Structure Verification utility
(VERIFY), 18

File Transfer utility (FLX), 18

file types, 27-29

filling of text, 124

FIND command, in VAX-11
DATATRIEVE, 216

FIND procedure, in VAX-11
PASCAL, .175

fixed-length records, 374

fix-up image sections, 104

flags
in DIGITAL Standard

RUNOFF, 124,127-128
see a/so event flags

FLX (File Transfer utility), 18 .

FMS (Forms Management System),
213-214,223-226

FMS Form Editor, 224-225

FMS Forms Driver, 226

FOR$ (language-specific
support), 118

Force Exit ($FORCEX), 346

FOR command, in VAX-11
DATATRIEVE, 216

fork blocks, 393, 394

fork dispatcher, 394-395

fork processes, 6, 393-395

format
for commands, 470-80
for commands, general, 41-44
of records, 374-375

Formatted ASCII Output
($FAO), 337

Formatted ASCII Output with List
Parameter ($FAOL), 337

formatting, DIGITAL Standard
RUNOFF for, 123-128

forms
in VAX-11 DATATRIEVE, 220
VAX-11 FMS for, 213-214,223-226

Forms Management Services
(FMS), 213-214,223-226

FORTRAN, VAX-11, 164-173
intertask communication

using, 255-257

FORTRAN IV IV AX, PDP-11, 206-207

frame pOinter (FP) register, 313

free page list, 288

FTD (function decision tables), 391,
402,403

full processes, 6

FUNCTION construct, in VAX-11
BASIC, 140

function deciSion tables (FTD), 391,
402,403

function-key logic, 225

function keys, terminal, 46-47

functions
mathematical, 118
in VAX-11 FORTRAN, calls for, 166

G

general utility (LlB$), 117

generic key matches, 379

Get Device/Volume Information
($GETDVI), 340

513

Index

Get I/O Channel Information
($GETCHN), 339

Get I/O Device Information
($GETDEV), 340

Get Job/Process Information
($GET JPI), 348

Get Message ($GETMSG), 342

Get Time ($GETTIM), 349

global arrays, 199, 200

GLOBAL declarations
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184

global page table, 291

global section database, 290

global section descriptor (GSD), 290-
291

global sections, 4, 419-420
permanent, 442-443

global section table, 291

global symbols, 103

global variables, 199-200

GO command in DEBUG, 112-113

GOTO command, 58

graphics
formatting of, 126-127
in VAX-11 DATATRIEVE, 220

group logical name tables, 332-333

groups (users), 438-439

GSD (global section descriptor), 290-
291

guide mode, in VAX-11
DATATRIEVE, 217,220

H

HELP command, 25-26,59
in VAX-11 DATATRIEVE, 216

HELP facilities, 41
in EDT, 83, 84

HELP utility, in VAX-11 BASIC, 136

Hibernate ($HIBERN), 344

host development language
MACRO-11, 207-208
PDP-11 FORTRAN IV/VAX, 206-

207

- (hyphens), 43

IDLE state, 452

idle time, 447

IF command, 59

image activation, 291-292

image activator, 4,285,290-291

image file patch (PATCH) utility, 15-
16

image files, 285

image map files, 102

images, 2, 284-286
exceptions and, 311
exceptions by linkers, 102
initialization of, 104
known, 442-443

image section descriptors
(ISDs), 104,205,290-291

image sections (isects), 284

INCLUDE statement in VAX-11
FORTRAN, 166

indexed file organization, 369-370
I/O operations on, 379-380
key definitions for, 375-376
random record access to, 372
sequential record access to, 371

Indexed Sequential Access Method
(ISAM), 165,246

indexes, 128

index sorts, 119

information, see data

initialization, of VAX-11 /782 Attached
Processor Systems, 456

INITIALIZE command, 18,59

514

Index

INIT state, 452

$INPUT (Queue Input Request and
Wait For Event Flag), 337

input/output, see headings beginning
with 1/0

INQUIRE command, 60

INSERT command, in DEC/CMS 130

installation, UETP for, 436

INSTALL utility, 20

INSTALL utility, 30

instruction sets, 425

inswap scheduling, 307

interactive mode, 45

Interactive Terminal Interface
(ITI), 268, 270

interfaces
in communications networks, 239
DECnet/VAX, 243
I/O, 9
I/O for SORT/MERGE, 123
Packetnet, 270-271
programming, 361 .. 362
for symbolic debugger, 134

International Standards Organization
(ISO), 242

International Telephone and
Telegraph Consultative
Committee (CCITT), 268, 270

Internet, 12,264-268

interrupt messages, 262-263

interrupt priority level (IPL), 399

interrupts
ASTs as, 311
fork processes as, 393
handling of, 405-406
priority levels for, 9-10, 363
rescheduling of, 302
in VAX-11 /782 Attached Processor

Systems, 454

interrupt service routine (ISR), 399

Interrupt Stack, 447

Intersystem File Transfer, 244

515

Intersystem Resource Sharing, 244

intertask communications, 243,244,
249-250

using MACRO-11, 257-259
using VAX-11 FORTRAN, 255-257

I/O channels, deassigning, 263

I/O database, 392-393

I/O drivers, 10-11,362,363,389-414

I/O formats in VAX-11
FORTRAN, 165

I/O interfaces, 9
for SORT/MERGE, 123

I/O options in VAX-l1 DSM, 201

I/O procedures
common, 117
in VAX-11 PASCAL, 175

I/O processing system, 8-10

I/O request packet (IRP), 393,397-
399,404,406

I/O requests, 9-10, 359, 362-364

I/O services, 359-387

I/O status block (IOSB), 365-366

I/O system services, 7, 9, 335-342

IPL (interrupt priority level), 339

IRP (I/O request packet), 393,397-
399,404,406

ISAM (Indexed Sequential Access
Method), 165,246

ISDs (image section
Descriptors), 104, 285, 290-292

ISO (International Standards
Organization), 242

ISR (interrupt service routine), 399

ITt (Interactive Terminal
Interface), 268,270

J

JOB command, 60-61

$JOB command, 445

journaling
in EDT, 85
in VAX-11 DBMS, 235
in VAX-11 DSM, 202

Jump to Subroutine (JSB)
instruction, 394

justifying of text, 124

K

Kernel mode, 447

keyfields
used by MERGE utility, 120
used by SORT utility, 119

keypad editors, 13
EDT, 85
in VAX-11 FMS, 225

keypads
layout of, 86
use of, 90-91

keys
in indexed file organization, 369,

375-376
in indexed file record 1/0
operations, 379-380
redefining, 85
terminal function, 46-47

KEYWORDMACRO declarations
in VAX-11 BLlSS-16, 196
in VAX-11 BLlSS-32, 185

known images, 290, 442-443

L

labels, for commands, 42

language-independent support
(OTS$), 118

language processors, 100,101,103

languages, 12-13
data definition, 230
Data Manipulation, 231-232
DEBUG with, 105
DIGITAL Command Language, 1,

41-80, 427, 428

Index

File Definition Language, 17,381
MACRO-11, 207-208
PDP-11 FORTRAN IV/VAX, 206-

207
support libraries for, 118
VAX-11 BASIC, 135-152
VAX-11BLlSS-16, 194-197
VAX-l1 BLlSS-32, 183-194
VAX-11 C, 178-183
VAX-11 COBOL, 152-164
VAX-11 CORAL 66, 198-199
VAX-11 DSM, 199-203
VAX-11 FORTRAN, 164-173
VAX-11 MACRO, 203-206
VAX-11 PASCAL, 173-176
VAX-11 PLlI, 176-178
in VAX architecture, 213
VAXIVMS environment for, 133-

135

language-specific support
(FOR$; BAS$; COB$;
PAS$), 118

LEAVE statement
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184

language translators, 234-235

LlB$ (general utility; resource
allocation section), 115-117

LlB$SIGNAL procedure, 116

LlB$STOP procedure, 116

librarian, 14

libraries, 13
DEC/CMS, 129
Run-Time, 14-15,114-119,

134-135
in VAX-11 COBOL, 161
in VAX-11 DSM, 203
in VAX-11 FORTRAN, 166
in VAX-11 MACRO, 206
in VAX-11 PLlI, 178

LIBRARY command, 61

LIBRARY declarations
in VAX-11 BLlSS-16, 196
in VAX-11 BLlSS-32, 185, 189

library files, 101

516

in VAX-11 BLlSS-32, 189

library utilities, in VAX-11 DSM, 203

limits, on users, 439-440

line discipline, 270-271

line editing
using EDT, 85
using SOS, 92

LINKAGE declarations, in VAX-11
BLlSS-32, 185

LINK command, 36,61,101,105
NOTRACE specification with, 134

linker, 14,36-37,100-105,284
in VAX-11 BASIC, 148

linking, 2, 284
of DEBUG, 105-106
of object modules, 36-37

LlNK/RSX11 command, 61

listing control directives in VAX-11
MACRO, 205

lists, formatting of, 126-127

LOAD command in VAX-11
BASIC, 150

loaders, 101

LOCAL declarations
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184

local event flag clusters, 325

local symbols, 103

local variables, 199

locking of records, 377-378

lock management system
services, 6,8,356-357,421-
423

Lock Pages in Memory
($LCKPAG), 355

Lock Pages in Working Set
($LKWSET), 355

logging of errors, 448, 455

logical 1/0 transfers, 364

logical links, 255-258,260,261,263

Index

logical names, 31-33,443
system services for, 7,332-334

logical name tables, 332-333

LOGOUT command, 26,62

longword index (offset), 289

longwords, 276

lowercase characters, 44

M

machine checks, 455

MACRO, VAX-11, 203-206
intertask communications

using, 257-259

MACRO-11, 207-208

macro calls, 206, 258-259, 263-264
for system services, 323

MACRO declarations
in VAX-11 BLlSS-16, 196
in VAX-11 BLlSS-32, 185

macros
in VAX-11 BLISS, 189
in VAX-11 MACRO, 205

macro symbols, 207,208

mailboxes, 8,418-419
in DECnetlVAX, 250, 259
sending interrupt messages

to, 263
in VAX-11 DSM, 202

mailbox messages, 260-261

MAIL command, 16,62

MAIL utility, 16

MAIN buffer, 84

Map Global Section
($MGBLSC), 291,292,354,420

mapping, 275

mathematical functions (MTH$), 118

MCR (Monitor Console
Routine), 427,428

MCR command, 62-63

517

Index

memory
linker allocation of, 103-104
shared, in VAX-11 DSM, 201-202,
virtual, 1,3,275-293

memory management, 3-4, 275-
293

system services for, 7,353-
357

MERGE utility, 18,120-122

MESSAGE command, 16

messages
in DECnetIVAX, 250
diagnostic, 161, 166, 189
interrupt, 262-263
sending and receiving, 257,258
task, 260-261

MESSAGE utility, 16

modes
access, 324
change mode system services

for; '8,356
in EDT, 85-91
lock, 422
processor, monitoring of, 447
for RMS record access, 370-373
in SOS, 92-96

modified page list, 288-289

modified page writing, 306

MODIFY command, in VAX-11
DATATRIEVE, 216

MONITOR command, 63

MONITOR Console Routine
(MCR), 427,428

monitoring, 445-447

MONITOR utility program, 20-21,
445-447

MOUNT command, 63

Mount Volume ($MOUNT); 339

MTH$ (mathematical functions), 118

multiple databases; 235

multiple precision arithmetic
procedures, 1'17

multiprocessing systems, 451..;457

MUMPS (VAX-11 DSM), 199-203

MUX200IVAX multiterminal
emulators, 267-268

N

Named Data capability, 226

NAMELIST statement, IN VAX-11
FORTRAN, 165

names
command, 42
common namespace for, 421-422
file, 27-29
logical, 31-33,443

NCB (Network Connect Block), 261

NCP (Network Control
Program), 247-249

Network Ancillary Control Process
(NETACP), 250

network application layer (DNA), 242

Network Command Terminal
facility, 244,246-247

Network Connect Block (NCB), 261

Network Control Program
(NCP), 247-249

network management, 271

networks, 11-12,239-241
DECnet, 243-250
DIGITAL Network Architecture

for, 242-243
Internet products for, 264~268
Packetnet products for, 268-271

network service layer (DNA), 242

Network Services Protocol
(NSP), ~42

nodes, 239

nontransparent intertask
communication, 249-250,
284

using MACRO, 259

518

notes, formatting of, 126-127

NSP (Network Services
Protocol), 242

$NUMTIM (Convert Binary Time to
Numeric Time), 349

o

object analyzer utility, 16

object files, 101

object library files, 101

object modules, 2

object modules, linking of, 36-37

offset (Iongword index), 289

ON command, 63-64

ON statement in VAX-11
PLlI, 177

OPEN command, 64:-65

OPEN procedure in VAX-11
PASCAL, 175

OPEN statement in VAX-11
FORTRAN, 164

OPEN Systems Architecture, 242

operating systems
1/0 processing by, 401-402
in multiprocessing systems, 451
virtual memory, 1
see also VAX/VMS operating

system

operators
SLP, 98-100
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184
in VAX-11 C, 179

operator's log file, 447

optimization
VAX-11 BLlSS-16 compiler

for, 197
VAX-11 BLlSS-32 compiler

for, 188-189

Index

in VAX-11 DBMS, 235-236
VAX-11 DSM precompiler for, 200-

201
in VAX-11 FORTRAN, 167-168

options files, 101

OTS$ (language-independent
support), 118

$OUTPUT (Queue Output Request
and Wait For Event Flag), 337

outswap scheduling, 307-309

overlays, 428

OWN declarations
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184

owners (users), 439

p

POBR register, 276

POLR register, 276

PO page table, 3,277,279

P1 BR register, 277

P1 LR register, 277

P1 page table, 3,279

Packetnet, 268-271

Packetnet System Interface (VAX-11
PSI), 270-271

packet switching, 269

page faults, 4,281,286,292
for process-private pages, 289

page frame number (PFN)
database, 287-288

page frame numbers (PFNs), 286-
288

pager, 4, 286-287

pages, 2, 3, 275, 279
balancing count of, 305-306
balancing count of, 305-306
formatting of, 124-125
of physical memory,

sharing of, 290-296

519

Index

page table entries
(PTE), 3, 280, 285-286

page tables, 284
dynamic, 279-280
paging of, 286

paging, 286-289
in system space, 293

parameters in command
format, 41, 43

PASS (language-specific
support), 118

PASCAL, VAX-11, 173-176

PASSWORD command, 65

PATCH (image file patch) utility, 15-
16

PCB, see Process Control Block

PDP-11 FORTRAN IV/VAX to
RSX, 206-207

PDP-11 systems, VAX/VMS
compatibility with, 425-432

performance
in VAX-11 DBMS, 235-236
ofVAX-11 PLlI, 178
see a/so optimization

performance measurement
procedures, 117

PERFORM statement, in VAX-11
COBOL 154,155

peripherals, in resource-sharing
networks, 240

permanent global sections, 420, 442-
443

permanent symbols, ·207

personal mail utility, 16

PFNs (page frame numbers), 286-
288

PHD (process header), ·280,282-284

PHONE command. 65

physical devices, 29-30

physical I/O transfers, 364

physical link layer (DNA), 242-243

Physical links, 239

physical memory, 290-292

PLl1, VAX-11, 176-178

PLAS (Program Logical Address
Space), 426,428

PLOT command, in VAX-11
DATATRIEVE, 216

+ (plus sign), 44

populating files, 219

Powerfail feature, 455

precompiler, VAX-11 DSM, 200-201

PRINT command, 65
for queues, 445
in VAX-11 DATATRIEVE, 216,220

print queues, 445

priority
of fork processes, 393-395
increments of, 303-304
of interrupts, 9-10, 363
in scheduling of processes, 5, 295
of users, 440

privileges of users, 323, 440

procedures, 2
command, 45-46
Run-Time Library for, 14-15,134-

135
system, 119
in VAX-11 DATATRIEVE, 220

VAX-11 DSMcalis for, 201
in VAX-11 FORTRAN, calls for, 166

Process Control Block (PCB), 2, 280
event flags in, 6
queuing and, 5
software, 281, 282, 295, 301

process control structures, 282-284

process control system services, 7,
342-348

processes, 2,280-282
communications and
synchronization between, 8,417-

423
creation of, swapper and, 309

520

Index

scheduling of, 5, 295-304
system, 9-6

process header (PHD), 280, 282-284

process identification, 2

process logical name table, 332

processor modes, 447

processors, in multiprocessing
systems, 451-454

process-private pages, 289

process section table, 284, 285

process states, 296

process state transition, 299-300

program development, 33-37

program development tools, 13-17,
83-131

program images, 2, 284-286

Program Logical Address Space
(PLAS), 426,428

programming
procedures for, in intertask

communications, 261-263
using VAX-11/782 Attached

Processor Systems, 455-456
in VAX-11 BASIC, 148-150
in VAX-11 MACRO assembly

language, 205

programming interfaces, 361-362

programming languages, see
languages

program region, 3

programs
RMS operations of, 376-377
RSX-111M/S, 425
sharing of, 377

program sectioning in VAX-11
MACRO, 206

program sections (psects), 103,104,
284

protocol emulators, 264-268

protocols, 242
CCITT recommendations for, 268

521

PSECT declarations
in VAX-11 BLlSS-16, 196
in VAX-11 BLlSS-32, 185

psects (program sections), 103, 104,
284

PTEs (page table entries), 3, 280,
285-286

public files, 441-443

public volumes, 441-443

PURGE command, 66

Purge Working Set ($PURGWS), 355

Put Message ($PUTMSG), 342

Q

QIO, see Queue I/O Request

qualifiers, 42-43

quantum control, 301-302

query/response mode, 25-26

Queue Input Request and Wait For
Event Flag ($INPUT), 337

Queue I/O Request ($QIO), 9,336,
359, 362-365 395-402

for intertask communications, 257-
259,261-264

Queue I/O Request and Wait For
Event Flag ($QIOW), 336

Queue Output Request and Wait For
Event Flag ($OUTPUT), 337

queues
batch and print, 445
instructions for, in VAX-11 /782

Attached Processor Systems,
455-456

for I/O packets, 403-404
in process scheduler, 5

quotas, resource, 323

R

RAB (Record Access Block), 383

random record access mode, 371-
372

READ command, 66

Read Event Flags ($READEF), 327,
418

read/write global sections, 420

READY command, in VAX-11
DATATRIEVE, 216

realtime environments, 10

Record Access Block (RAB), 383

record locking, 160,377-378

Record Management Services
(RMS), 9, 136,366-387

file handling with, 252-255
I/O requests handled by, 359,361
languages and, 213
remote use of, 246
supported by VAX-11 BASIC, 146
supported by VAX-11 DSM, 200,

201
supported by VAX-11 PUI, 176,

177
utilities for, 17
VAX-11,215,229
VAX-11 C and, 180
attributes of, 372-381
RMS access modes for, 370-373
SORT/MERGE interface with, 123
VAX-11 BASIC handling of, 146
VAX-11 COBOL handling of, 159-

160

Record's File Address (RFA) access
mode, 372-373, 379

record sorts, 119

recovery in VAX-11 DBMS, 235

REFORMAT utility, 162-163

REGISTER declarations
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184

registers
database, in VAX-11 COBOL, 158,

169
page table, 277, 280

Index

REI (return from exception or
interrupt) instruction, 318,319

relative file organization, 368-369
110 operations on, 378-379
random record access to, 372
sequential record access to, 371

remote domains, 223

remote file access, 245-246

RENAME command 66

repeat blocks, 205

REPLACE command, in
DEC/CMS, 130

REPORT command, in
DA T ATRIEVE 220

reports, generated by VAX-11
DATATRIEVE 220

Report Writer Module, 160

REQUEST command, 66-67

requests
in intertask communications, 261-

262
I/O, 9-10,359,362-364
in nontransparent intertask
communications, 249
RSM-11 directive, 429-432

REQUIRE declarations,
in VAX-11 BLlSS-16, 196
inVAX-11 BLlSS-32, 32,184,189

Require files, in VAX-11
BLlSS-32, 189

RESERVE command, in
DEC/CMS, 130

Resource Allocation Sections
(LlB$),115-116

resource quotas, 323

resources accounting for use of, 440

resource-sharing networks, 240

Resume Process ($RESUME), 345

RETURN (CR; carriage return)
key, 46

return from exception or interrupt
(REI) instruction" 318,319

522

Index

RFA (Record's File Address) access
mode, 372-373, 379

RMS, see Record Management
Services

RMSSHARE utility, 17

ROUTINE statements
in VAX-11 BLlSS-16, 196
inVAX-111 BLlSS-32, 184

routing (in DECnet), 244

routing
adaptive, 247

RSX-11 M directive requests, 429-
432

RSX-11 M MCR (Monitor Console
Routine) command language,
428

RSX-111 MIS program development
system, 425, 426

RTl, see Run-Time
Library

RUBOUT (DELETE) key, 47

RUN (image)command, 37,67

RUN command
in VAX-11 BASIC, 136

Run-Time Library (RTl), 14-15,114-
119,134-135

Run-Time Library
adding new procedures to, 13
VAX-11 BLlSS-32 and, 190
VAX-111 C and, 179
VAX-11 Pl/l and, 178

run-time operation, with Database
Control System, .233

s

SBR (system base register), 3, 280

SCB (System Control Block), 454,
456

Schedule Wakeup
($SCHDWK), 345,351

523

scheduling
of fork processes, 393-394
of processes, 5, 295-304
in VAX-11 /782 Attached Processor

Systems, 453-454

schema DDl, 230

schemas, storage, 233

screen procedures, 117

SEARCH command, 16,67

security
AUTHORIZE utility for, 20,440-441
UAF for, 437-438
UIC for, 438-439
in VAX-11 DBMS, 236

SELECT command, in VAX-11
DATATRIEVE, 216

Send Message to Accounting
Manager ($SNDACC), 341,419,

Send Message to Error logger
($SNDERR), 342

Send Message to Operator
($SNDOPR), 342,419

Send Message to Symbiont Manager
($SNDSMB), 341,419

sequential file organization, 368
1/0 operations on, 378
random record access to, 372
sequential record access to, 370-

371

sequential record access mode, 370-
371

Set AST Enable ($SETAST), 331

SET CARD-READER command, 68

SET command, 67-71
in DEBUG, 107-110
in EDT, 85

SET command, 17

SET CONTROl-Y command, 68

SET DEFAULT command, 68

Set Event Flag ($SETEF), 327,418

Set Exception Vector
($SETEXV), 312, 352

Index

SET GUIDE command, in VAX-11
DATATRIEVE, 220

SET LIBRARY command, in
DEC/CMS, 131

SET MAGTAPE command, 69

SET MESSAGE command, 16,69

SET ON command, 69

Set Power Recovery AST
($SETPRA), 331

Set Priority ($SETPRI), 348

Set Privileges ($SETPRV), 348

SET PROCESS command, 70

Set Process Name ($SETPRN), 347

Set Process Swap Mode
($SETSWM), 356

SET PROTECTION command, 70

Set Protection on Pages
($SETPRT), 356

SET QUEUE/ENTRY command, 70

Set Resource Wait Mode
($SETRWM), 348

SET RMS-DEFAUL T command, 70

Set System Service Failure Exception
Mode ($SETSFM), 352

Set System Time ($SETIME), 351

SET TERMINAL command, 70-71

Set Timer ($SETIMR), 351

SET TO REFERENCE statement, in
VAX-11 COBOL, 157

SET VERIFY command, 71

SET WORKING-SET command, 71

shareable image files, 101

shareable image library files, 101

shareable images, 102, 104-105

shareable image sections, 443

shareable programs
in VAX-11 BASIC, 148
in VAX",,11 FORTRAN, 166

shareable regions, 428

shared disk files, 423

shared memory areas, 201-202

sharing
of files and programs, 377·
of physical memory pages, 290-

292
RMSSHARE utility for, 17

shell processes, 5

SHOW command, 71-77

SHOW command
in DEBUG, 111
in DEC/CMS, 131
in EDT, 85

SHOW /CPU command, 457

SHOW DAYTIME command, 72

SHOW DEFAULT command 72

SHOW DEVICES command, 72-73

SHOW LOGICAL command, 73

SHOW MAGTAPE command, 73

SHOW NETWORK command, 73-74

SHOW PRINTER command, 74

SHOW PROCESS command, 74

SHOW PROTECTION command, 74

SHOW QUEUE command, 75

SHOW QUOTA command, 75

SHOW RMS-DEFAUL T
command, 75

SHOW STATUS command, 75-76

SHOW SYMBOL command, 76

SHOW SYSTEM command, 76

SHOW TERMINAL command, 76-77

SHOW TRANSLATION command, 77

SHOW WORKING-SET
command, 77

signaling in Run-Time Library, 116

SLP text editor, 14,83,96-100

SLR (system length register), 3, 280

small processes, 6

software, 1-21

524

Index

for DEC net, 243-244
for DECnet-VAX Phase III, 244-250

STORE command, in VAX-11
DATATRIEVE, 217

Process Control Block for, 281-282,
295,301

in VAX-11/782 Attached Processor
Systems, 452-454

software context, 2

SORT command, 77
in VAX-11 DATATRIEVE, 216

SORT/MERGE utility, 18,119-123
in VAX-11 COBOL, 160-161

SORT utility, 119

SOS text editor, 14,83,91-96

source programs
in VAX-11 COBOL, 162-163
in VAX-11 FORTRAN, 166

source tasks, 255, 261

special event.handling, 311-320

spooling, 444-445

SPT (system page table), 3, 280

ST ACKLOCAL declarations,
in VAX-11 BLlSS-16, 195
in VAX-11 BLlSS-32, 184

START/CPU command, 452,453,
456,457

Start I/O routine, 404

STARTUP.COM command
procedure, 444

start-up files, 84

state queue headers, 296-297

states, in VAX-11/782 Attached
Processor Systems, 452-453

statistics, MONITOR utility program
for, 446

STEP command, in DEBUG 113

STOP command, 77-78

STOP/CPU command, 453,457

STOP state, 453

storage schema DDL, 230

storage schemas, 233

string processing (STR$), 118-119

STRUCTURE declarations
in VAX-11 BLlSS-16, 184
in VAX-11 BLlSS-32, 184

structured programming,
in VAX-11 BASIC, 137-140
in VAX-11 COBOL, 154-155

subject-matter formatting, 125-126

SUBMIT command, 78

subprocesses, 343

SUBPROGRAM construct, in VAX-11
BASIC, 140

Subprograms,in VAX-11
COBOL, 156-157

subschemaDDL, 230

subschemas, 232
data security in, 236
default, 233

Supervisor mode, 447

support facilities, 83-131

Suspend Process ($SUSPND), 345

swapper, 292-293

swapping, 292-293, 304-309
working set swap per for, 5

SYE utility, 21, 448

symbolic characters in VAX-11
BASIC, 146

symboUc debugger see DEBUG,

Symbolic Traceback Facility, 134

symbols
linker resolution of, 103
in MACRO-11, 207-208
in VAX-11 MACRO, 203-204

Symbol table file, 101

synchronization of processes, 8

SYNCHRONIZE command, 78

syntax for command procedures, 45-
46·

525

SYS$BA TCH, 445

SYS$COMMAND, 33

SYS$DISK, 33

SYS$ERROR, 33

SYS$INPUT, 32

SYS$OUTPUT, 33

SYSBOOT (System Bootstrap
Program), 19

SYSGEN (System Generation)
utility, 14-20

SYSTARTUP.COM command
procedure, 444,456

system base register (SBR), 3, 280

System Bootstrap Program
(SYSBOOT), 19

System Control Block (SCB), 454,
456

system crashes, 313-315

System Dump Analyzer, 21

system events 5

System Generation (SYSGEN)
utility, 19-20

system images, 102

system length register (SLR), 3, 280

system logical names, 32-33, 443

system logical name tables, 333-334

system management utilities for, 19-
21

system management
in VAX-11782 Attached Processor

Systems, 456-457

system managers, 435-448,456

system page table (SPT), 3, 280

system procedures, 119

system processes, .5-6

system services, 6-8, 323-357

system services
for event handling, 418
lock management, 421-423
VAX-11 C and, 180

system space, 277

Index

paging in, 293

system users, 439

system utilities in VAX-11 DSM, 203

system virtual space, 280

T

tables in VAX-11 DATA TRIEVE, 222

tables of contents, 128

tag sorts, 119

target tasks, 261-262

task messages, 260-261

tasks
communications between, 243,

244, 249-250
logical links between, 255-257
sending and receiving

between, 262
see a/so intertask

communications

terminal·function keys, 46-47

terminals
file handling from, 246
Interactive Terminal Interface

for, 270
Network Command Terminal

facility for, 244,246-
247

screen procedures for, 117
see a/so video terminals

text ed itors, 13-14
EDT, 83-91
MESSAGE utility used with, 16
SLP, 96-100
SOS, 91-96

time conversion system services, 7,
348-351

timer system services, 7,348-351

titles, formatting of, 125

tracebacks

526

Symbolic Traceback facility
for, 134

in VAX-11 BASIC, 136
in VAX-11 PLlI, 177

transactions, 235

Translate Logical Name
($TRNLOG), 334

transparent intertask
communication, 249

using MACRO, 257-259

transportability of VAX-11
BLlSS-32, 190

transport layer (DNA), 242

TYPE command, 19,79
in DEBUG, 114

u

UAF (User Authorization File), 20,
323,437,438

UCB (unit control block), 403-405

UETP (User Environment Test
Package), 436

UIC (User Identification Code), 290,
420,438-439

unit control block (UCB), 403-405

universal symbols, 103

UNIX operating system, 181

UNLOCK command, 79

Unlock Pages From Memory
($UNLPAG), 355

Unlock Pages From Working Set
($ULWSET), 355

UNRESERVE command, in
DEC/CMS, 131

unsupported utilities, 31-32

Unwind Call Stack ($UNWIND), 352

Update Section File on Disk
($UPDSEC), 354-355

updating, system manager's
responsibilities for, 426

UPGRADE/UPDATE utility, 21

USAGE IS POINTER clause, in
VAX-1.1 COBOL, 157

Index

527

USE FOR DB-EXCEPTION
declarative, in VAX-11
COBOL, 158

User Authorization File (UAF), 20,
323,437-438

User Authorization Program
(AUTHORIZE utility), 20,
440-441

user-defined symbols, 207,208

User Environment Test Package
(UETP), 436

User Identification Code (UIC), 290,
420, 438-439

user layer (DNA), 242

USER mode, 447

users, 23-37
types of, 439

user's accounts, 437-441

utilities

v

data and file management, 17-19
PDP-11, 426
program development, 15-17
RMS, 381
system management, 19-21
in VAX-11 DSM, 203

VALUE IS REFERENCE clause, in
VAX-11 COBOL, 157

variable bit field instruction
procedures, 117

variable-length records" 374

variables
in VAX-11BASIC,142-143
in VAX-11 DSM, 199-200

variable-with-fixed control
records, 374-375

VAX-11 2780/3780 protocol
emulators, 264-266

VAX-11 3271 protocol emulator, 266-
267

VAX-11 /782 Attached Processor
System, 451-457

VAX-11 BASIC, 135-152

VAX-11 BLlSS-16, 194-197

VAX-11 BLlSS-32, 183-194

VAX-11 C, 178-183

VAX-11 COBOL, 152-164

VAX-11 COBOl-74 Translator
Utility, 162

VAX-11 Common Data
Dictionary, 215,218,227-229,
233

VAX-11 Common Data Dictionary
Directory, 227-228

VAX-11 CORAL 66, 198-199

VAX-11 DATATRIEVE, 213-223
FMS used with, 225
VAX COBOL and, 161
VAX-11 Common Data Dictionary

used by, 227-229

VAX-11 DBMS (Database
Management System), 215,
229-236

COBOL support for, 157
data dictionary used in, 212
languages and, 213
VAX-11 Common Data Dictionary

used by, 227-228

VAX-11 DSM (DIGITAL Standard
MUMPS), 199-203

VAX-11 FMS (Forms Management
System), 213';'214,223-226

VAX-11 FORTRAN, 164-173 '
intertask communications

using, 255-257

VAX-11 MACRO, 203-206
intertask communications

using, 257-259

VAX-11 PASCAL, 173-176

VAX-11 PlIl, 176-178

VAX-11 PSI (Packetnet System '
Interface), 270-271

Index

VAX-11 RMS, see Record
Management Services

VAX calling standard, 135,213

VAX DEBUG, see DEBUG

VAX Information Architecture, 158,
211-215

VAX instruction set, 425

VAX Procedure Calling
Standard, 213

VAX Run-Time library, see Run-Time
library

VAX SORT/MERGE utility, see
SORT/MERGE utility

VAXIVMS executive, 277

VAX/VMS operating system
condition handlers specified

by, 312
DECnetlVAX interfaces iii, 243
device-independent processing

in, 389, 402-403
information management on, 211
I/O processing in, 8-10
languages available for, 12-13
language environment in, 133-135
lock management services in, 421-

423
logical names predefined by, 32-

33
migration of BASIC-PLUS

programs to, 151
PDP-11 compatibility with, 425-

432
priority levels in, 5
realtime applications in, ,10
virtual address space in, 3
virtual memory used by, 275

VAX/VMS System Services, see
system services

VERIFY (File structure Verification
utility), 18

VERIFY command, in DEC/CMS, 131

version numbers; 29

video terminals
keypad editors on, '13,85

528

Index

terminal Independent screen
procedures for, 117

VAX-11 FMS on, 223-226

view domains, 221

virtual address space, 3, 275-279
memory management system

services for, 353-
357

virtual blocks, 380

virtual I/O transfers, 364

virtual memory, 1,3, 275-293
VAX-11 DSM and, 201-202

VMSUPDATE command
procedure, 21

volumes, 441-443

w

WAIT command, 79

Wait For Logical AND of Event Flags
($WFLAND), 328,418

Wait For Logical OR of Event Flags
($WFLOR), 328,418

529

Wait For Single Event Flag
($WAIRFR), 327-328,365,418

wait state queue headers, 297

Wake ($WAKE), 345

WHO utility, 84

window editing, 218 ,

working set, 2,261,284

working set list, 289

working set swapper, 5

world (users), 439

WRITE command, 80

x

X.25, 268-271

X.25 User Interface, 270

z

$ZCALL function (VAX-11 DSM), 201

NOTES

DIGITAL EQUIPMENT CORPORATION. Corporat. H.adquart.r.; Maynard. MA
01754. T.1. (617) 897-5111 - SALES AND SERVICE OFFICES; UNITED STATES­
ALABAMA. Birmingham. Huntevlll. ARIZONA. Pho.nlx. Tuc.on ARKANSAS. Llttl.
Rock CALIFORNIA. Bak.r.fleld. Co.t. M •••• EI S.gundo. Fr •• no. Lo. Ang.I •••
O.kl.nd. Sacr.m.nto. S.n DI.go. S.n Fr.ncl.co. Monrovia. Pa.ad.na. Santa Bar­
bara. Santa Clara. Sante Monica. Sherman O.k • • Sunnyval. COLORADO. Colorado
Spring • • Denver CONNECTICUT. Falrfl.ld. M.rlden DELAWARE. Newark. Wilming­
ton FLORIDA. Jack.onvllle. Melbourne. Miami. Orlando. P.n.acola. Tampa GEOR­
GIA. Atlanta HAWAII. Honolulu IDAHO. Bol •• ILLINOIS. Chicago. Peoria INDIANA.
Indl.n.poll. IOWA. Benendorf KENTUCKY. Loulevlll. LOUISIANA. Baton Roug • •
New Orlean. MAINE. Portland MARYLAND. Baltlmor.. Odenton MASSACHU­
SETTS. Bo.ton. Burlington. Springfield. Waltham MICHIGAN. D.tron. Kalamazoo
MINNESOTA. Mlnneapoll. MISSOURI. K.n.a. City. St. Loul. NEBRASKA. Omaha
NEVADA. L •• Veg ••• Reno NEW HAMPSHIRE. Manch •• ter NEW JERSEY. Ch.rry
Hili. Par.lppany. Princeton. Somer.et NEW MEXICO. Albuquerqu • • Lo. Alamo.
NEW YORK. Albany. Buffalo. Long 1.land. New York Cn,. Rocha.t.r. Syracu •••
W .. tche.ter NORTH CAROLINA. Chap. I Hili . Ch.rlott. OHIO. Cincinnati .
Cleveland. Columbu • • D.yton OKLAHOMA. Tul.a OREGON. Eug.n • • Portland
PENNSYLVANIA. Allentown. H.rrl.burg. Phll.d.lphla. PItt.burgh RHODE ISLAND.
Providence SOUTH CAROLINA. Columbia. Greenville TENNESSEE. Knoxvlll • •
Memphl • • Ne.hvllle TEXAS. AII.tln. Dalla • • EI P .. o. Hou.ton. San Antonio UTAH.
S.lt L.ke City VERMONT. Burlington VIRGINIA. Arlington. Lynchburg. Norfolk.
Richmond WASHINGTON. Seanl •• Spokane WASHINGTON D.C. WEST VIRGINIA.
Charle.ton WISCONSIN. Madl.on. Mllwauk.e INTERNATIONAL - EUROPEAN
AREA HEADQUARTERS; Geneva. Tel: [41J 122'-113-33-11 INTERNATIONAL AREA
HEADQUARTERS: Acton . MA 01754. U.S.A .• Tel: (817) 263-1000 ARGENTINA. Bue­
no. Alre. AUSTRALIA. Adelaide. Brl.bane. Canberra. Darwin. Hobart. M.lbourn • •
Newca.tle. Perth . Sydney. Townevllle AUSTRIA. VI.nna BELGIUM. Bru ••• I. BRA­
ZIL. Rio de Janeiro. Sao Paulo CANADA. Calgary. Edmonton. Hamlnon. Halifax.
Klng.ton, London, Montr ••• , Ottaw., Quebec City I Aeglna, Toronto, Vancouver I
Victoria. Winnipeg CHILE. Santiago DENMARK. Copenhagen EGYPT. Cairo EN­
GLAND. Ba.lng.toke. Birmingham. Brl.tol. Eallng. Ep.om. Leed • • L.lc •• ter. Lon­
don. Manche.ter. Newmarket. Reading. Welwyn FINLAND. Hel.lnkl FRANCE.
Bordeeux. Lllle. Lyon . Mar.ellle. Pari • • Puteaux. Stra.bourg HONG KONG INDIA.
Bangalore. Bombay. Calcuna. Hyd.rabad. N.w D.lhIIRELAND. Dublin ISRAEL. T.I
Aviv ITALY. Milan. Rome. Turin JAPAN. Fukuoka. NagQya. O.aka. Tokyo. Yokoha­
ma KOREA. Seoul KUWAIT. Safat MEXICO. Mexico City. Mont.".y NETHER­
LANDS. Am.terdam. The Hague. Utrecht NEW ZEALAND. Auckland. Chrl.tchurch.
Wellington NIGERIA. Lago. NORTHERN IRELAND. B.lfa.t NORWAY. 0.10. PERU.
Lima PUERTO RICO. San Juan SAUDI ARABIA. Jeddah SCOTLAND. Edinburgh
REPUBLIC OF SINGAPORE. SPAIN. Barcelona. Madrid SWEDEN. Goth.nburg.
Stockholm SWITZERLAND. Geneva. Zurich TAIWAN. Taipei TRINIDAD. Port of
Spain VENEZUELA. Caraca. WEST GERMANY. B.rlln. Cologn • • Frankfurt. Ham­
burg. Hannover. MU'llch. Nuremberg. Stungart YUGOSLAVIA. Balgrad • • Ljubljana.
Zagreb

ORDER CODE: EB41~~20

mamaamo VAX SOFTWARE HANDBOOK 1982-83

