SOFTWARE HANDBOOK

dlilgliltall

WAX

SOFTWARE HANDBOOK

dlilglitlall

Copyright© 1982 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in-
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip-
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a.commitment by Digital Equipment
Corporation. Digital Equnpment Corporatlon assumes no responsi-
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem- 10 DECSYSTEM -20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS
PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of
Digital Equipment Corporation

This handbook was desighed, produCed, and typ’esbet
by DIGITAL's New Products Marketing Group
using an in-house text-processing system.

TABLE OF CONTENTS

Y TN IX

PART I
INTRODUCTION
CHAPTER 1 INTRODUCTION TO THE VAX SOFTWARE 1
SYSTEMINTRODUCTION e 1
USERPROCESS s 2
VIRTUAL MEMORY AND MEMORY MANAGEMENT 3
SWAPPING AND SCHEDULINGo 5
SYSTEM PROCESSES AND SYSTEMSERVICES.................. 6
INTERPROCESS COMMUNICATION AND SYNCHRONIZATION8
INPUT/OUTPUT . e e 8
REAL-TIME ENVIRONMENT i 10
I/ODRIVERS ... 10
COMMUNICATIONS SERVICESo 11
PROGRAMMING LANGUAGES iiiiiiiiiine. 12
PROGRAM DEVELOPMENTTOOLSt 13
DATA AND FILE MANAGEMENTUTILITIES 17
SYSTEM MANAGEMENTUTILITIESioioiats, 19
CHAPTER 2 THESYSTEMUSER 22
INTRODUCTION e 23
SYSTEMACCESS e 23
FILES . e 27
LOGICALNAMES i 31
PROGRAM DEVELOPMENT ... 33
PART Il
PROGRAM DEVELOPMENT
CHAPTER 3 DIGITAL COMMAND LANGUAGE 40
INTRODUCTIONTODCL 41
COMMAND FORMAT e 41
CONVENTIONS FOR LANGUAGE-NAME COMMANDS 44
COMMAND PROCEDURES e e 45
TERMINAL FUNCTIONKEYS ... i i, 46

COMMANDS e e 47

CHAPTER 4 PROGRAMMING SUPPORTFACILITIES........ 82

INTRODUCTION e 83
DEC STANDARD EDITOR(EDT)o oot 83
INTERACTIVETEXT EDITOR(SOS) ...t 91
BATCH-ORIENTED TEXT EDITOR (SLP) .. 96
LINKER ... o 100
VAXDEBUG ... e e 105
VAXRUN-TIME LIBRARY e 114
VAXSORT/MERGEo.0i s PR . 119
DOCUMENT FORMATTING FACILITY(DSR)o el 123
OPTIONAL CODE MANAGEMENT SYSTEM 129
CHAPTER 5 PROGRAMMING LANGUAGES 132
INTRODUCTION s 133
VAX COMMON LANGUAGE ENVIRONMENT 133
VAX-T1BASIC .. 135
VAX-11COBOL........... .ot e 152
VAX-11FORTRAN . et 164
VAX-TTPASCAL ... 173
VAX-11PL/l oo e 176
VAX-11C 178
VAX-11BLISS-32 183
VAX-T1BLISS-16 194
VAX-11CORAL 66 e 197
VAX-TIDSM .o e 199
VAX-T1MACRO i en .. 208
PDP-11 FORTRANIV/VAXTORSXo 206
MACRO-11... e e 207
CHAPTER 6 INFORMATION MANAGEMENT 210
INTRODUCTION ... e 211
STRUCTURE OF THE VAX INFORMATION ARCHITECTURE 211
VAX-T1 DATATRIEVE i e 216
VAX-TTEMS 223
THE VAX-11 COMMON DATADICTIONARY 227
VAX-TTRMS i i i 229
VAX-11DBMS e e 229
CHAPTER 7 DATA COMMUNICATIONS 238
INTRODUCTION e239
DIGITAL NETWORK ARCHITECTURE D 242
DECNET COMMUNICATIONS SOFTWARE v 243

DECNET-VAXPHASE IIISOFTWARE 244

DIGITAL COMMAND LANGUAGE FILEHANDLING 250
RECORD MANAGEMENT SERVICES FILEHANDLING 252
SAMPLES OF INTERTASK COMMUNICATION. e 255
TASKMESSAGES 260
PROGRAMMING PROCEDURESoiieoe, 261
INTERNET PRODUCTS i 264
PACKETNET PRODUCTS i 268
PART il
VAX/VMS SYSTEM DESIGN AND APPLICATION
CHAPTER 8 VIRTUAL MEMORY AND MEMORY

MANAGEMENT 274

INTRODUCTION ... 275
VIRTUALMEMORY ... i e 275
PROCESS ... 280
PROCESS CONTROL STRUCTURES e 282
IMAGE 284
PAGING 286
SHARING PAGES BETWEEN PROCESSES 290
SWAPPING ... e 292
PAGINGIN SYSTEMSPACE ... 293
CHAPTER 9 PROCESS SCHEDULING AND SWAPPING294
INTRODUCTION ..o e 295
SCHEDULING e 296
SWAPPING ... e 304
CHAPTER 10 SPECIAL EVENTHANDLING 310
INTRODUCTION ... 311
CONDITIONHANDLERS e 311
FATAL ERRORS AND SYSTEM CRASHES 313
EXITHANDLERS 315
ASYNCHRONOUS SYSTEM TRAPSl 316
CHAPTER 11 SYSTEMSERVICES 322
INTRODUCTION ...t 323
EVENT-FLAGSERVICESt e 324
ASYNCHRONOUS SYSTEM TRAP SERVICES e 328
LOGICAL NAME SERVICES S 332
INPUT/OUTPUT SERVICESians. e 335
PROCESS CONTROLSERVICES N .342

TIMER AND TIME CONVERSION SERVICES -.348

CONDITION HANDLING SERVICESl 352
MEMORY MANAGEMENT SERVICES 353
CHANGEMODESERVICEScciiiiii i, 356
LOCK MANAGEMENTSERVICES 356
CHAPTER 12 INPUT/OUTPUTSERVICES 358
INTRODUCTION e 359
PROGRAMMING INTERFACES.ottt e e 361
ANCILLARY CONTROLPROCESSEScooiaa 362
DEVICEDRIVERS. 362
I/OREQUESTPROCESSING. i, 362
QUEUEN/O ... e 364
J/OCOMPLETION ... 365
RECORD MANAGEMENT SERVICES 366
RMS FILE ORGANIZATION i, 366
RMS RECORDACCESSMODESottt 370
FILEAND RECORD ATTRIBUTES, 373
RMSUTILITIES e 381
USING VAX-TTRMS ... 383
CHAPTER 13 I/ODRIVERS e 388
INTRODUCTION ... e e 389
DEVICEDRIVERELEMENTSl 390
FORKPROCESSES e 393
GENERAL DEVICEACTIVITY ... i 395
A SAMPLE LINEPRINTERQIOREQUEST 399
CHAPTER 14 INTERPROCESS COMMUNICATION......416
INTRODUCTION e 417
COMMONEVENTFLAGS e 417
MAILBOXES 418
DECNET ... 419
GLOBALSECTIONS ... e 419
LOCK MANAGEMENT SERVICES e 421
SHAREDDISKFILES i, e 423
CHAPTER 15 PDP-11 COMPATIBILITY e 424
OVERVIEW. e 425
IMPLEMENTATION CONSIDERATIONS 427

iv

PART IV

SITE CONSIDERATIONS
CHAPTER 16 THE SYSTEMMANAGER 434
INTRODUCTION ... e i 435
GETTINGTHESYSTEMUP 435
USER ENVIRONMENT TESTPACKAGEccoine 436
ASYSTEMOFACCOUNTS ... 437
MANAGING PUBLICFILESANDVOLUMES 441
CONTROLLING SYSTEM PERFORMANCE 443
MONITORING SYSTEMACTIVITY ...t 445
RECOGNIZING AND DEALINGWITHERRORS 448
CHAPTER 17 ATTACHED PROCESSORSUPPORT 450
INTRODUCTION ... e 451
SOFTWARE ... e 452
PROGRAMMING CONSIDERATIONSol 455
SYSTEM MANAGEMENTt eiaeeanen 456
APPENDIX A COMMONLY USED MNEMONICS 459
GLOSSARY OF SOFTWARETERMS 463
INDEX .. e 505

vi

PREFACE

At DIGITAL we recognize that when you buy our computers you are

making an investment in the future. So we design our computer sys-

tems to meet your needs today while anticipating tomorrow. Our sys-

tems are designed to let your applications grow with you. After all, that

is what investments are all about. At DIGITAL, we are committed to

making our computers the best investment around. VAX epitomizes
. that commitment.

You will encounter the term “VAX architecture” in this handbook. To
really appreciate what a good investment VAX systems and software
are, you need to know something about the architecture - what it is
and why itis so important.*

The VAX architecture defines how a VAX processor will behave in
relation to software. It is the standard to which all of the VAX proces-
sors must conform. It means that all of the software described in this
handbook will run on any member of the VAX family of processors,
from the new VAX-11/730 to the VAX-11/782 attached processor sys-
tem. It also means that all of the software you have developed to run
on one kind of VAX will run on any other kind of VAX. Since any future
VAX system will conform to this same architecture, your investment in
software engineering is protected with VAX.

The demands of software were central to the design of the
architecture. In fact, the VAX architecture and the VAX/VMS operating
system were conceived and designed together. We made sure that the
VAX architecture enhanced the efficacy of the VAX/VMS operating
system, and that the operating system takes advantage of the VAX
processors. So, every VAX processor offers 32-bit virtual addressing,
a sophisticated memory management and protection mechanism, and
hardware assisted process scheduling and synchronization; all of
which is.exploited fully by VAX/VMS. In this way, VAX can provide a
multi-user system for large and complex-applications, and it can com-
pile and run huge programs (up to four gigabytes) concurrently. This
sort of capability used to be the exclusive domain of large and expen-
sive mainframes. It means the application investment you make in
VAXtoday has plenty of room to grow tomorrow.

The VAX architecture was also designed to enhance program per-
formance. For example, all of the VAX language processors take ad-
vantage of the powerful variable-length instruction set and numerous
datatypes. The result is compilers that generate compact and efficient
code, and do it very quickly—so that your applications running sooner
and performing better.

vii

But of course there is more than the VAX architecture going for your
investment; there is the software itself. This handbook describes the
extraordinary capabilities we have engineered. into our software.. The
VAX/VMS operating system is easy to use, so it is easy to learn; and it
comes with a compliment of very powerful tools to assist and
streamline program development. The VAX language processors lead
the industry in performance and features, and programs written in one
language can call procedures written in any other language. The VAX
information management software provides an unprecedented, com-
plete system for managing your data. The networking options will al-_ ‘
low your application to spread and take just about any shape you
need. In all, its an-impressive offenng, as you will see.

One final note. When we designed the VAX architecture and VAX/VMS
software, we were not only committed to the future, we were recogniz-
ing our commitments to the thousands of customers who have invest-
ed—and are still investing—in our PDP-11 computers; so we designed
PDP-11 compatibility into VAX. Your investment in PDP-11 is
protected because VAX gives it room to grow. Even if you don’t own a
PDP-11, its nice to know that when you invest in one of our computers,
we stand behind your investment.

viii

PART I
INTRODUCTION

CHAPTER OVERVIEW

This chapter offers a survey of the VAX software, including its services,
controls, and capabilities. Brief descriptions in each section give quick
insight into VAX/VMS-specific aspects. All topics are expanded in
greater detail in later chapters. '

Topics include:

® System Introduction

o Management of Virtual and Physical Memory

® Definition of a Process

® Scheduling and Swapping

e System Services, I/0 Control, and I/0 Devices

® |nterprocess Communication

e Communications and Internets

e Realtime Capabilities

e Languages and Language Processors

e Data Management Facilities

CHAPTER 1
INTRODUCTION TO VAX SOFTWARE

SYSTEM INTRODUCTION

VAX is a family of high-performance multiprograming computer sys-
tems which combine a 32-bit architecture, efficient memory manage-
ment, and a virtual memory operating system to provide essentially
unlimited program address space.

The architecture's variable length instruction set and variety of data
types, including decimal and character string, provide high bit effi-
ciency. The instruction set specifically implements many high-level
language constructs and operating system functions.

Each member of the VAX family is a multiuser system for both pro-
gram development and application system execution. Each is a
priority-scheduled, event-driven system: the assigned priority and ac-
tivities of the processes in the system determine the level of service
they need. Realtime jobs receive service according to their priority and
ability to execute, while the system manages allocation of CPU time
and memory residency for normal executing processes.

VAX systems are highly reliable. Built-in protection mechanisms in
both the hardware and software ensure data integrity and. system
availability. On-line-diagnostics and error detecting and logging verify
system integrity. Many hardware and software features provide rapid
diagnosis and automatic recovery should the power, hardware, or
software fail.

The systems are both flexible and extendable. The virtual memory
operating . system enables the programmer to write large programs
that can execute in both small and large memory configurations with-
out requiring the programmer to define overlays or later. modify the
program to take advantage of additional memory. The DIGITAL Com-
mand Language enables users to modify or extend their command
repertoire easily, and allows applications to present their own com-
mand interface to users.

To understand how the operating system functions, as described in
" this Handbook, a few definitions of some basic terms will be valuable.
The user must first understand the concepts of program image and
process, and know the difference between them. Please note that
nearly all of the concepts and features introduced in this chapterare
examined in greater detail in subsequent séctions or chapters.

1

Introduction to VAX Software

USER PROCESS

A program image is an executable program, created by translating
source language modules into object modules, and linking the object
modules together. An image is normally stored in a file on disk. When
a user runs an image, the operating system reads from a copy of the
image file into physical memory to execute it.

A procedure is a description of the logic to be performed to solve a
problem; that is, it is a static definition of an algorithm. An image
consists of procedures and data that have been bound together by the
linker. Linking refers to the resolution of cross linkages among mod-
ules and the assignment of virtual address space.

The environment in which an image executes is its context. The
complete context of an image includes not only the state of its execu-
tion at any one time (known as its hardware context), but also the
definition of its resource allocation privileges and quotas, such as
device ownership, file access, and maximum physical memory alloca-
tion. Certain software information, including some key addresses and
some software data structures to be described later, comprise the
software context. An image context and the image éxecuting in the
context are called a process.

Working Set

When a process executes, only a subset of its pages need be in physi-
cal memory. (A page contains 512 bytes, which is also the size of a
physical page of memory and a disk block.) This subset of pages is
referred to as the process’s working set. The remaining pages of the
process reside on secondary storage. Before a process is allowed to
compete for central processor resources, its working set must reside
in memory.

Balance Set

The set of processes that reside in physical memory is termed the
balance set. This set of processes has memory requirements that
balance with the available memory of the system. At any time during
the execution of a process, its entire working set can be written to
secondary storage, thereby freeing physical memory for another use.
This'is called swapping.

Software Process Control

The VAX/VMS operating system provides each process with software
definitions used to control the process, and its working set. The oper-
ating system provides two key data structures to define a process, the
software process control block (PCB) and -the process header.
Through process identification, the system also provides each proc-
ess with a unique identifier.

Introduction to VAX Software

VIRTUAL MEMORY -

The VAX/VMS virtual address space consists of 232 bytes, divided into
system and process address spaces, each of which has 23" bytes. The
VAX/VMS system distinguishes between the physical memory re-
quired by a process and the virtual address space that the process
defines. A process’s virtual address space is the range of memory
locations that the process can address.

Process virtual address space is divided into a program region and
control region. The program region contains the image currently being
executed. The control region contains information maintained.on be-
half of the process by the system, and it contains the user stack and
the kernel, executive, and supervisor mode stacks. Only a small por-
tion of the control region is reserved for context maintained by the
system; the remainder is available to the user.

A process’s virtual memory is subdivided into pages. System and user
virtual space are described in a data structure called the system page -
table (SPT), which contains one page table entry (PTE) for each page
of system virtual memory. When a virtual page is in memory, the page
table entry contains the page frame number needed to map the virtual
page toa physical page. When it is not in memory, the page table entry
contains the information needed to locate the page on secondary or
disk storage.

A process’s virtual address space is described in two page tables: the
PO page table for the program region and the P1 page table for the
control region. Process page tables reside in system virtual memory.
They are virtually contiguous, but not necessarily physically
contiguous, nor necessarily in memory. The system page table resides
in system virtual memory, but is physically based and physically con-
tiguous. '

The hardware system base register (SBR) and system length register
(SLR) provide the physical address and the length in longwords of the
system page table. Given the contents of SBR and SLR, it is possible
to locate all other system virtual pages. From the process page tables
contained in system virtual space; it is possible to locate all process
virtual pages. '

MEMORY MANAGEMENT

Memory management code maintains a database (the page frame
number database) describing the status of all physical pages of mem-
ory and the status and location of all virtual pages of processes in the
system. For example, a physical page could be part of a working set,
or it could be available on the free page list for a process virtual page
to be loaded into it.

Introduction to VAX Software

Memory management uses page tables as the database to contain the
status and location of virtual pages of processes. Each page of a
process has a page table entry in the appropriate process page table
to describe that page and its location. For example, a virtual page of a
process could be in its image file, in its working set, in an in-memory
cache, or on the modified page list.

- Image Activator and Pager
Memory management is divided into two logically separate functions
to control the pages of a process: - .

® Imageactivation
® Paging

The image activator is responsible for making an image capable of
running.in the context of the requesting process. The image activator
locates the file containing the image and sets up the page table entries
for it.

As page faults occur for pages in the process, the pager receives the

faults, obtains a physical page, and brings the virtual page into the

working set. If the limit on the number of pages in the process’s work-

ing set has been reached, the pager selects a page to be removed

from the working set. The pager selects the page to be deleted using

information in the working set list portion of the process header.

Global Sections

Memory management uses widely available image sections, called

global sections, to provide a mechanism for sharing code and data. A .

global section can be either of the following:

® A shareable image file produced by the |mker and identified to the
system by the system manager

® The result of a process’s issuing a Create and Map Section system
service

Global sections made from shareable images are permanent; they
remain known to the system until explicitly deleted by the system
manager. Global sections made as the result of a Create and Map
Section system service are temporary or permanent; the system de-
letes temporary global sections automatically when no processes are
using them.

Global sections are defined by a database that is similar in structure to
that used to describe processes. Global sections consist of a number
of pages. A page of a global section can be mapped into one or more
process working sets.- The one copy is shared among many
processes. Both read- only and read/write global sectiohs can be de-
fined.

Introduction to VAX Software

WORKING SET SWAPPER.

The working set swapper is a small process that moves process work-
ing sets into and out of the balance set. The main function of the
working set swapper is to provide memory residency for the highest.
priority executable processes so that they can be scheduled for exe-
cution.

Working set swapping occurs in two phases:-

e The outswapping of nonexecutable or low priority processes from
the balance set to free memory for inswap candidates

e Inswapping of processes from the executable nonresident state to
the executable resident state

The working set swapper also performs initial process creation. Be-
cause process creation is accomplished using a shell (prototype)
process that is swapped into memory, process creation requires little
additional effort by the swapper. The shell process establishes the:
initial context and virtual memory of a new process.

PROCESS SCHEDULING

The VAX/VMS operating system defines 32 levels of software priority
for scheduling processes. The lower 16 priorities (0 through 15) are
reserved for normal processes, while the higher 16priorities .(16
through 31) are reserved for realtime processes. The highest priority
executable resident process is always selected for execution. Realtime
process priorities are established by the user and are not altered by
the system. Normal process priorities are altered by the system to
optimize responsiveness.

The process scheduler makes scheduling decisions by:

® Maintaining a queue for each state that a process can attain

® Reacting to system events

System events are occurrences that cause the status of one or more
processes in the system.to change. The scheduler reflects the change

by removing the process’s software Process Control Block (PCB) from
one state queue and queuing it to the appropriate one.

SYSTEM PROCESSES .

All VAX/VMS system functions are implemented as processes or as
procedures that are called by user processes or by many system
processes. A system process can be one of three types:

e Full process
e Small process
® Fork process

Introduction to VAX Software

Full processes are user processes.

Small processes have no program region in their virtual address
space and have an abbreviated context. They are scheduled in the
same manner as full processes but must remain resudent For exam-
ple, the working set swapper is a-small process. :

Fork processes have minimal context; they are defined by an abbrevi-
ated control block called a fork block. Fork processes execute at
software interrupt levels and are dispatched for execution immediate-
ly. Fork processes execute until they are preempted by higher priority
forks or they terminate. Device driver routines are examples of fork
processes.

"SYSTEM SERVICES ,
System services are procedures in the executive that can be called by
user processes to provide controlied sharing of system resources.
Because the system performs a service on behalf of the user, func-
tions that require access to privileged databases are controlied.

Requests for system services are honored only if the requesting proc-
ess has sufficient privilege and if protection is not violated.

Event Flag Services :

Event-related system services are those services that allow a process
or a group of cooperating processes to read, wait for, and manipulate
event flags. The software Process Control Block (PCB) of each proc-
ess contains two clusters of 32 event flags each that are local o the
process. In addition, groups of cooperating processes can create and
associate with two additional event flag clusters. These clusters are
common to all associated processes with the same group number.

Lock Management Services

The lock management services provide a mechanism for synchroniz-
ing- access to a common resource by cooperating processes. There
are six choices of lock mode, each providing a different level of
sharing. Resources are defined by a tree-structured nametable. The
depth of hierarchy employed in the nametable determines the degree
of granulanty in defmmg and controllmg access to the resource.-

Asynchronous System Trap (AST) Serwces

Process execution can be interrupted by events (such as.{/O comple-
tion) for the execution of designated subroutines. These software in-
terrupts are called asynchronous system traps (ASTs) because they
occur asynchronously to process execution. System services are pro-
vided so that a process can control the handling of ASTs. :

6"

Introduction to VAX Software

Logical Name Services

Logical name services provide a generalized technique for maintain-
ing and accessing character string logical name and equivalence
name pairs. Logical names can provide device-independence for sys-
tem and application program input and output operations. Logical
name re-assignment is also the most convenient and flexible facility
for moving an application from a single-CPU system to a multiple-CPU
system.

1/0 System Services

1/0 services perform input and output operatlons directly, rather than

through the file handling provided by the VAX/VMS Record Manage-

ment Services (RMS). I/0 services:

e perform physical, logical, and virtual input /output operations

e Format output lines converting binary numeric values to ASCIi
strings and substituting variable data in ASCH strings

® Perform network operations o

® Queue messages to system processes

e Create mailboxes, which are virtual devices for interprocess com-
munication.

Process Control Services ,
Process control system services allow the user to create, delete, and
control the execution of processes.

Timer and Time Conversion Services

Timer services schedule program events for a particular time of day,
or after a specified interval of time has elapsed. The time conversion
services provide a way to set, obtain, and format binary time values for
. use with the timer services.

Condition Handling Services

Condition handlers are procedures that can be deS|gnated to receive

control when a-hardware or software condition occurs during image

execution. Condition handling services designate condition handiers

for special purposes.

Memory Management Services

Memory management system services allow a process to control its

use of virtual and physical memory. Included are services that:

e Allow an image to increase or decrease the amount of virtual memo-
ry available

e Control the paging and swapping of virtual memory

e Create and access memory files that contain shareable code and
data

Introduction to VAX Software

Change Mode Services

Change mode services alter the access mode of a process to a more
privileged mode to execute particular routines. Use of these services
requires privilege.

INTERPROCESS COMMUNICATION AND SYNCHRONIZATION

The VAX/VMS operating system provides a variety of methods for
processes to communicate with each other and synchronize their exe-
cution. The method selected for interprocess communication is affect-
ed by anumber of variables, including: the level of explicit cooperation
between the processes, the efficiency of communication, and the
flexibility in a network environment.

Interprocess communication can be achieved using the followmg

methodss:

1. Implicit communication using a shared database. This method is
most efficient but requires explicit cooperation of the processes

2. Generalized communication. using mailboxes or DECnet. Mail-
boxes are virtual devices to which processes can send and from
which a process can read messages. DECnet can be employed for
interprocess communication in a single node or multinode envi-
ronment. These methods, however, incur the greatest overhead

3. Shared files

One method of interprocess synchronization is achieved using com-
mon event flag clusters. Each cluster contains 32 event flags. A proc-
ess can wait for another process in the same group to set an event
flag, thus indicating that the latter process had performed a function
for which the former was waxtlng A process can assomate with up to
two common event flag clusters.

Another method of synchronization is the use of the lock management
sevices. Cooperating processes can synchronize access to a resource
by queuing lock requests. There are six lock modes, each providing a
different level of access-sharing.

VAX/VMS INPUT/OUTPUT , _
The 1/0 processing system consists of several interdependent
components that enable programmers to choose the appropriate pro-
gramming interface and processing method. The I/0 request process-
ing software takes advantage of the hardware’s ability to overlap 1/0
transfers with computation, switch contexts rapidly, and generate in-
terrupts on multiple priority levels-to ensure the maximum pOSSIb|e
data throughput and interrupt response.

8

Introduction to VAX Software

1/O Interfaces

The 170 programming interfaces are: the record management services
(RMS)—for general-purpose file and record processing—and the I/0
system services—for direct I/0 processing. RMS procedures can be
invoked by a user program through high-level language statements
such as OPEN, CLOSE, GET, and PUT, or, in VAX-11 MACRO assem-
bler, by a CALL statement. The /0O system services are invoked using
a CALL statement.

RMS procedures provide device-independent, file-structured access
to all 170 peripherals, whether local or remote in a network. The most
general purpose access enables programs to process logical records,
where RMS automatically provides logical record blocking and
unblocking. RMS users may also perform their own record blocking
on file-structured volumes such as disk and magnetic tape, either to
control buffer aliocation or optimize special record processing.

The I/0 system services provide both device-independent and device-
dependent programming. Users perform their own record blocking on
file-structured and non-file-structured devices. Both virtual block and
logical block addressing are possible on file-structured volumes,
though the latter requires either privilege or ownership of a private
volume. In addition, users with sufficient privilege can perform direct
i/0 operations using logical block addressing for defining their own
file structures and accessing methods on disk and magnetic tape de-
vices.

Both RMS and the 1/0 system services use the same /O control
processes, called ancillary control processes (ACPs), for processing
file-structured 1/0 requests. An ACP provides file structuring and vol-
ume access control for a particular type of device. There are three
kinds of ACPs provided in the system: disk, magnetic tape and net-
work communications link.

1/0 Request-Processing

All I/0 requests are generated by a Queue I/0 (QlO) Request system

service. If a program calls RMS procedures, RMS in turn calls the QIO

system service on the program’s behalf. Queue 1/0 Request process-

ing is extremely rapid because the system can:

e Optimize device unit use by minimizing the code that must be exe-
cuted to initiate requests and post request completion

e Optimize disk controller use by overlapping seeks with I/0 transfers

The processor’s many -interrupt priority levels increase interrupt
response because they enable the software to have the minimum am-
ount of code executing at high priority levels by using low priority

9

Introduction to VAX Software

levels for code handling request verification and completion notifica-
tion.

VAX/VMS REALTIME ENVIRONMENT

The VAX hardware and VAX/VMS software have been developed

together to insure a superior realtime multitasking computational sys-

tem. If realtime tasks are to be performed, the following inherent sys-

tem attributes of the VAX system establish it as an extremely powerful

system for the most demanding realtime applications:

e Highly efficient process scheduler providing 16 realtime process
priorities

® Rapid process context switching

e Rapid hardware processing of interrupts

® interrupts vectored to VAX/VMS device drivers

® VAX/VMS operating system support of PDP-11 system peripherals
and facilities to enable customers to add support for their own de-
vices

e Ease of use facilities to provide mapping to the 1/0 page and con-
nection to an interrupt

Because realtime applications ‘are performance sensitive, it is
important to provide the application with a direct interface to the inner-
most core of the operating system services. Figure 1-1 iliustrates in
layered form the VAX/VMS operating system.

The outer layers of the VAX/VMS operating system are the more so-
phisticated general purpose features to ensure ease of use and func-
tionality. These layers consist of command procedures, record man-
agement services, user programs, etc. The innermost layers constltute
the realtime system described above. '

1/O DRIVERS
A VAX/VMS device driver is a set of tables and routines that control
1/0 operations on a perlpheral device interfacing to a VAX system. A
device driver:

® Defines the peripheral device for the rest of the VAX/VMS operating
system

® Defines itself for the operating system procedure that maps and
loads the driver and its device database into system virtual memory

e Initializes the device (and/or its controller) at system startup time
and after a power failure -

® Translates software requests for I/0 operatlons into devnce-specmc
commands

® Activates the device

10

Introduction to VAX Software

USE

R
PROGRAMS

COMMAND
PROCESSORS

RECORD
MANAGER

REAL TIME TASKS

Figure 1-1 VAX/VMS Operating System -

® Responds to hardware interrupts generated by the device
® Reports device errors ' '
e Returns data and status from the device to software

When details of an I/0O operation need to be translated into terms
recognizable by a specific type of device, the operating system
transfers control to a device driver. This is known as device-depen-
dent processing. Because different peripheral devices expect different
commands and setups, each type of device on a VAX system requires
its own supporting driver. The device driver then performs all device-
dependent processing. In addition to a wide range of peripherals sup-
ported by DIGITAL software, the customer may also develop applica-
tion-specific device drivers.

COMMUNICATIONS SERVICES

DECnet is the family of DIGITAL'’s software products, protocols, inter-
faces, and support services that links DIGITAL computer systems into
distributed processing networks. The VAX/VMS operating system
offers the same interfaces for use on a single VAX system as DEC-
net/VAX communications software. Adding the DECnet/VAX software

11

Introduction to VAX Software

kit to VAX/VMS enabies intersystem communication while preserving
these interfaces. Therefore, a users application can grow from a single
VAX system to a multiple node network, and an existing network can
be reconfigured, without necessarily rewriting application programs.
The network is transparent to the application programmer. In fact, the
applications programmer may treat the networked computers as a
common resource.

Using DECnet communications software, various kinds of computer
system networks can be constructed to facilitate remote communica-
tions, resource sharing, and distributed computation. The DIGITAL
Network Architecture (DNA) provides the common network structure
upon which all DECnet software products are built. DECnet communi-
cations software is highly modular and flexible, and is designed to
handle a broad range of application requirements.

DIGITAL’s Internet family includes products for batch and interactive
communications with computers built by other manufacturers. The
Internet products on VAX systems emulate communication protocols
recognized and supported by IBM and CDC host processors. Such
coexistence features add flexibility to a VAX computer by increasing
the number and variety of environments in which it can operate.

PROGRAMMING LANGUAGES

Many major languages are supported under the VAX/VMS operating
system, inciuding the FORTRAN, COBOL, BASIC, and PL/I languages.
The compilers often offer enhancements to industry standards, while
maintaining competitive compile and execution performance.

Applications need not rely on a single language: it is possible to com-
bine several languages, as necessary, for the most efficient .
accomplishment of computer jobs. Because languages can call one
another, the prograrhmer may easily incorporate more than one lan-
guage in an application program. This means that routines which can
be most efficiently accomplished in a particular language can be writ-
ten in'that language and incorporated in applications as needed.

VAXlanguages available for the VAX/VMS operating system include:

VAX-11 BASIC VAX-11 BLISS-32

VAX-11 COBOL VAX-11 BLISS-16

VAX-11 FORTRAN VAX-11 CORAL 66

VAX-11 PASCAL . VAX-11 DSM |
VAX-11 PL/I ' VAX-11 MACRO (assembly)
VAX-11C ' |

12

Introduction to VAX Software

In addition, there is the host development mode programming envi-
ronment which includes support for PDP-11 FORTRAN IV/VAX to
RSX, and MACRO-11'language processors. These language proces-
sors produce compatibility mode object code, allowing a VAX comput-
er to "look like” a PDP-11 computer for many types of applications.

VAX PROGRAM DEVELOPMENT TOOLS

The VAX program development tools include text editors, compilers, a
librarian, a linker, and the VAX symbolic debugger (DEBUG). Also
included are the PATCH, ANALYZ, MESSAGE, and MAIL utilities. All
program development utilities can be used either interactively or in
batch mode, including the editors and DEBUG.

Libraries may be used extensively for building executable program
images. In the native mode programming environment, the program-
mer can create libraries of assembler macro definitions, of object
modules, and of shareable images. The system also includes the com-
mon Run-Time Library which provides library functions common to all
VAX programming languages.

All program interfaces to the operating system and its utilities have
uniform calling standards. System programmers can add new library
procedures to the Run-Time Library, installing them online without
modifying existing programs and utilities, since all arguments are
passed using standard data structures.

User programs can be written to be completely device independent
through the system service and command language logical naming
facilities. All files.and devices can be identified using arbitrarily. de-
fined logical names that can be assigned values at runtime.

The program development utilities, with the exception of the editors
and the Mail utility, are not available in the host development environ-
ment. Many of these utilities are described in more detail in Chapter 4
of this book.

Editors

The programmer can use any or all of the three text editors: EDT, SOS,
and SLP. EDT, the DIGITAL Standard Editor, is an interactive editor
that enables the programmer to create and modify text files using
-commands entered from either a hardcopy or video terminal. It allows
-efficient and powerful character, word, line, and buffer editing. In addi-
tion, EDT supports a keypad editor for users of VT100 and VT52 video
terminals. A window into the text, coupled with a full range of insertion,
deletion, change, and relocation commands, and the capability to
move whole text buffers (editing files) into one another make this a

13

Introduction to VAX Software

very attractive editing tool. Editing procedures (macros and programs)
can be written to establish a specialized environment in any editing
session. An audit trail file protects the session against accidental loss.

SOS is also an interactive text editor. The user can insert, delete, and
replace lines, find and substitute strings, or modify the text a character
at a time. Lines can be identified by line number, relative position, or
by contents. An adjacent group of lines can be copied or transferred
from one place to another. Editing can'be done inany order in the file.
Editor parameters can be set to user-specified values and the current
values can be shown. User-specmc parameters can be set automati-
cally at editor startup.

SLP is a programmed text editor that enables a user to modify an
existing file by supplying a command file that contains a list of the
modifications to be made. The command file provides a reliable way to
duplicate the changes made to a file at a later time or on another
system. SLP provides a formal record of changes made to files, both
in the source file and in an audit trail listing, a feature useful in tracking
the stages of large programming projects.

Linker

The VAX/VMS linker accepts one or more native-mode object mod-
ules produced by an assembler or compiler, resolves the symbol and
procedure references between them, allocates virtual memory, and
produces an executable program image.

Unlike many other Ilnkers, howev\er, the VAX/VMS linker also enables
a programmer to create shareable images that can be linked subse-
qguently with other modules. Because shareable images are allocated
virtual memory by the image activator at runtime, they offer tremen-
dous economy in program development; the shareable image can be
modified without having to relink all of the programs that use it. .

The linker accepts not only object modules and shareable images as
input, but also object module and shareable image libraries.

Librarian _
The librarian enables a programmer to create, update, modify, list and
maintain library files. A library file can be a collection of object
modules shareable images, macros, or help text. A programmer can
request the linker to use one or more library files from which the linker
can obtain modules to resolve references during linking.

Common Run-Time Library
The Run-Time Library is a collection of general-purpose and:lan-
guage-specific libraries available to any native program, regardless of

14

Introduction to VAX Software

the source language in which the program was written. The Run-Time

Library allows: .

® The choice of incorporating procedures from the library into an
executable image, or mapping the global sections into a process
virtual address space at runtime

® A single copy of the library to be shared by all processes

® |nstallation of a new shareable library without the need to relink
. existing programs

The Run-Time Library includes:

e Mathematical routines (single and double precision trigonometric,
logarithmic, and exponential functions)

® Resource allocation routines (virtual memory and dynamic string
functions)

e General utility routines (data type conversions)

® Condition handling routines (signaling exception conditions and de-
claring condition handlers) -

® | anguage-independent support routines (error handling and record
management services support functions)

® Several higher-level language-specific support routines (file han-
dling support functions) '

Symbolic Debugger

The VAX symbolic debugger (DEBUG) can be linked with a program
image to control image execution. DEBUG can be used interactively or
it can be controlled from a command procedure file. The debugging
language is similar to the VAX/VMS command language. Expressions
and data references are generally similar to those of the source lan-
guage used to create the image being debugged. DEBUG commands
allow starting and interrupting program execution, stepping through
instruction sequences, calling routines, setting break or trace points,
setting default modes, defining symbols, and depositing, examining,
or evaluating virtual memory locations.

The symbolic debugger-is discussed in more detail in Chpater 8 of this
handbook. ‘

PATCH Utility

The image file patch utility (PATCH) provides an extensive set of
commands that lets the user make changes directly to the image file
and then run the new version without recompiling, reassembling and
relinking. PATCH creates a journal file in which all PATCH commands
used are recorded. This file provides an easy way to keep track of the
changes and attempted changes made to an image file.

15

Introduction to VAX Software

PATCH features symbolic referencing of locations, a patch area to
store additional data and instructions, and entry and display modes to
controt the environment in which PATCH accepts commands and dis-
plays output. :

Object Analyzer Utility

The object module analysis utility checks an object module (or a con-
catenated file containing several object modules) to see if it is in the
correct format for input to the linker. It is a diagnostic tool for writers of
compilers or assemblers that generate VAX object code. The pro-
gram, invoked by the DIGITAL Command Language (DCL) command
ANALYZE/OBJECT, can analyze the entire module or only specified
types of records. It checks the record type, contents, and sequence of
each object module record it examines. The program creates an out-
put file containing a record-by-record analysis of the object module,
including identification of any errors in the module.

MESSAGE Utility '

The MESSAGE utility allows programmers to construct mformatuonal
warning, or error messages in standard VAX/VMS format. First, using
a text editor, the programmer creates a source file that specifies the
information used in messages, message codes, and message
symbols. The MESSAGE command can then be used to complle the
source file.

The text displayed can be modified at runtlme by using the SET MES-
SAGE command.

MAIL Utlllty i
The personal mail utility (MAIL) allows users to send messages to each
other within the same system or between VAX systems connected via
DECnet communications software. With MAIL, users can also file, for-
ward, delete, print, and reply to received messages.

MAIL is invoked with the DCL command MAIL. Messages received are
stored in a mail file in a user’s default login directory, and new mes-
sages are appended to the end of the file. A user can file messages
into user-named files with the FILE command, SEARCH for a message
containing a specified text string, and request a directory of messages
in any of their mail files with the DIRECTORY command.

MAIL broadcasts to a user’s terminal when a new mail message has
arrived, and indicates who the message is from. Often, users will find
MAIL to be a more efficient way reach another user than the tele-
phone

16

Introduction to VAX Software

Command Language Editor (CLE)

The command language editor allows users to modify commands in,
or add new commands to, the Command Language Interpreter (CLI)
command tables.

CLE is invoked by the DCL command, SET COMMAND.

DATA AND FILE MANAGEMENT UTILITIES

A number of utilities are provided to manage data in files and the files
themselves. Included are utilities for manipulation of RMS (Record
Management Services) files and verification, manipulation, and back-
up of disk volumes.

RMS Utilities

RMS provides the programmer with a File Definition Language (FDL)
for defining the attributes of an RMS data file and a number of utilities,
including:

ANALYZE Allows the user to check for structure errors in the
/RMS _FILE data file; also can generate a report on data file

: usage N
CONVERT - Copies records from a source data file to a sec-

ond data file, which can be of a different file or-
ganization. It can create a data file from an FDL

file
CONVERT Reclaims empty buckets in indexed files
/RECLAIM
CREATE/FDL Creates an empty data file from an FDL file
EDIT/FDL Creates and modifies FDL files, and can be used

to create an empty data file

RMSSHARE Utility .

The RMSSHARE utility performs the foIIowmg functions:

¢ |t enables the VAX-11 RMS file sharing capability by initializing file
sharing structures in system paged dynamic memory, and:sets the
maximum number of pages that the structures can occupy. The
VAX-11 RMS file sharing capability must be enabled each time.the
operating system is booted

e If VAX-11 RMS file sharing has already been enabled, RMSSHARE
displays figures on allowable and actual usage, and permits the
resetting of the maximum number of pages that the file sharing
structures can occupy ‘

17

Introduction to VAX Software

File Transfer Utility (FLX)

The File Transfer utility (FLX) is a utility program that tranfers files from
one volume to another. FLX can be used on DOS-11, RT-11, and Files-
11 (the file system used on the VAX/VMS operating system) formatted
volumes. It converts the format of the files, as appropriate, when
transferring files between volumes with different formats. For exam-
ple, when transferring DOS-11 files to Files-11-volumes, FLX converts
the DOS-11 files to Files-11 format.

Bad Block Locator Utility (BAD)

The Bad Block Locator utility (BAD) determines and records the logi-
cal block numbers and location of faulty blocks that cannot reliably
store data. Usually, BAD is used to test block-structured volumes that
have not been initialized. After BAD locates and records the bad
blocks, the user issues the DIGITAL Command Language (DCL) com-
mand INITIALIZE so that the operating system will allocate the faulty
blocks to ‘a special file. This prevents users from accessing these
faulty blocks for their files.

File Structure Verification Utility (VERIFY)

This utility is called by the DCL command ANA-
LYZE/DISK-STRUCTURE. It will analyze Files-11 disk structures (both
level 1 and level 2) and report errors and inconsistancies. Also, option-
ally, VERIFY can 1) provide a listing of files in the index file; 2) repair
errors it detects in the file structure; 3) selectively repair errors; 4) read
check all allocated blocks on the file structure.

SORT/MERGE Utility

The SORT utility rearranges and reformats records in any VAX-11
RMS (Record Management Services) file organization. MERGE is
. used to combine sorted files.

BACKUP Utility

The BACKUP utility allows users to create back-up copies of files and
directories and to restore them. It can back up entire volume sets in
one operation or perform selective back-ups by file or date. Wildcard-
ing and several command qualifiers are available for flexible file selec-
tion. BACKUP can be used to perform incremental backups of volume
sets — a particularly valuable feature for users with large, fixed-media
disks.

Other Useful Commands

In addition to the utilities already mentloned several DIGITAL Com-
mand Language (DCL) commands, listed below, aid in data and file
management. See Chapter 3 for more information on these com-
mands.

18

Introduction to VAX Software

® The COPY command creates a new file from one or more existing
files. It can: copy one file to another file, concatenate more than one
file into a single output file, and copy a group of files to another
group of files

¢ The CREATE command creates one or more sequential flles from
records that follow the command in the input stream

e The DELETE command deletes one or more files from a mass
storage disk volume

e The DIFFERENCES command compares the contents of two disk
files and creates a listing of the records that do not match

¢ The DIRECTORY command provides a list of files or information
about a file or group of files :

e The TYPE command displays the contents of a file or group of files
on the current output device

SYSTEM MANAGEMENT UTILITIES

At the time a VAX/VMS system is installed, several utility functlons are
provided to tailor the system for a particular application environment.
In addition, once the system is operational, facilities are provided to
modify the environment and to upgrade/update the system with new
software versions or optional software products.

System Bootstrap Program (SYSBOOT)

In a VAX/VMS system, system generation and start-up occur auto-
matically when the system is bootstrapped. The system manager pro-
vides the information needed for system generation and start-up- by
supplying to SYSBOOT the name of the file that contains the system
parameter values and start-up commands.

The SYSBOOT prompt can be requested for commands during the
bootstrap operation. If this is done, the system manager can perform
the following functions:

e Designate the name of a file that contains system parameter values-
e Set and show individual parameter values
® Specify an alternate site-independent start-up command procedure

System Generation Utility (SYSGEN) _

The System Generation utility (SYSGEN) allows the system manager
to perform a “tailoring” function at system start-up (or later, if re-
quired). With SYSGEN, the system manager can:

® Create and modify system parameter files for subsequent bootstrap
e Dynamically modify many current system parameter values-
® Create swap, page, and dump files :

19

Introduction to VAX Software

® |nitialize multiport memory
- ® Dynamically connect devices and load device drivers
® Specify the start-up command procedure

AUTHORIZE Utility

The AUTHORIZE utility is run by the system manager to modify the
existing UAF (User Authorization File) or to create a new one. It also
allows specification of who may log into the system and permits con-
trols on user’s activities.

DISKQUOTA Utility

The DISKQUOTA utility controls the usage of disk volumes. It can be
run by the system manager or any user maintaining a volume, and it
allows them to create and maintain quota files and set quotas on a per
volume basis.

The DISKQUOTA Utility has the following utility functions:

ADD MODIFY
CREATE REBUILD
DISABLE REMOVE
ENABLE SHOW

INSTALL Utility

The system manager runs the INSTALL utility to install and maintain
known images. This enhances performance and permits the sharing of
selected executable and shareable images. Another useful function is
the ability to install an image with amplified privileges so that the
system manager need not give the required privileges to all users of
the program.

MONITOR Utility
With the MONITOR utility, the system manager can monitor activities
indicative of system performance. Information can be displayed on:

e Network activity

e Use of the fock management services

e Principal users of CPU paging and I/0 resources
e File primitive statistics

e |/0 system rates

e Time in processor modes

e Page management statistics

e Nonpaged pool statistics

20

Introduction to VAX Software

¢ Number of processes in each scheduler state
® VAX/VMS processes

Upgrade/update
The VMSUPDATE command procedure is used for

® System upgrade (major releases)
® Maintenance updates
e |nstallation of optional software

An upgrade/update may only be done by th'e'bsystem manager on a
system where there are no users or batch jobs running.

SYE Utility
The SYE utility allows the system manager. to selectively report the
contents of an error log file. It reports the following information:

e Errors—Device errors, bus errors, synchronous backplane
interconnect (SBI) alerts, soft error correctmg code (ECC) errors,
machine checks, asynchrorous write errors, and hard ECC errors

e Configuration changes—Volume mounts and dismounts ‘

¢ System events—Cold start-up, warm start-up, crash start-up, mes-
sage from Send Message to Error Logger system service, and time
stamp . :

The types of reports are as follows:

e Totals by category

® Device errors—Contents of device registers

e Brief and standard reports

System Dump Analyzer »

The System Dump Analyzer is run by the system manager to aid in
determining the cause of operating system failure. It examines and
formats contents of system dump files and dlsplays various system
data:

® Device data structures
¢ Memory management data structures
® Process information

21

CHAPTER OVERVIEW

The programmer and interactive user can find in this chapter how to
get the system’s attention, how to use some of the command language
commands, and how to do program development using the VAX/VMS
facilities. In addition, establishing files and assigning logical names for
files, devices, and programs are explained. Formats used in later
chapters on commands and system services are given here.

Topics include:

e Logging On

® Files and Logical Names

e Program Development Procedures

22

CHAPTER 2
THE SYSTEM USER

INTRODUCTION

The following sections will discuss basic user-oriented information.
These sections include system access, flles logical file names, and
program development.

Note that the symbol < > indicates that the user has pressed an action
key at the terminal keyboard. For example, <RET> means that the
return key is pressed; is the delete key; <¢C> is the control/C
(CTRL/C) combination.

SYSTEM ACCESS

The user gains the system’s attention by pressing the <RET> or
CTRL/C. The system responds by prompting for the user’s name.
Upon entry of a correct user name followed by <RET>, the system
prompts for a user password. As the user enters the password, it is not
echoed; that is, the password is not displayed on the terminal.

The login sequence appears for a user named GING as follows:

<RET>
User_name: GING <RET>
Password: <RET>

Welcome to VAX/VMS Version V3.0
$

The $ is a system prompting symbol: when this character appears on
the far left of the terminal, the system is ready for command entry. »

A default is the user’'s omission of certain information when entering
commands. In the case of a default the system may assume that the
omitted names, parameters, and qualifiers have certain values called
default values. For example, the system will assume that all of a user’'s
files reside on the default disk uniess the user specifies otherwise.
Similarly, a user will have a default working set size unless the manag-
er specifically changes it. The use of defaults can simplify and speed
up the processes of entering’commands, running jobs, and editing
files.

Entering Commands ‘

All commands to the system are English-language verbs that describe
the functions they perform. For example, the user enters the SHOW
TIME command:

$ SHOW TIME <RET>

23

The System User

The system responds by displaying the current date and time, as
follows:

22-JUL-1981 10:25:30 |

Commands can be entered using either uppercase or Iowercase let-
ters, or a combination of both.

Most commands have parameters and qualifiers. A parameter is the
object of a command verb. In the SHOW TIME command above, TIME
is a keyword parameter for the SHOW command Keywords are words
that the system recogmzes

As another example, in the following command:
$ PRINT MYFILE.LIS<KRET>

MYFILE.LIS is a parameter for the PRINT cdmmand the command
requires the name of a f|le (MYFILE) and afiletype (.LIS), as explained
below.

The user does not have to include the entire command on one line. If a
command is entered without required parameters, the system will
prompt for additional data. As an example, the print command is
entered without the file name qualifiers:

$ PRINT<RET>
_file: MYFILE.DAT<RET>

In this example, the filename parameter was omitted; therefore, the
system prompted for a file specification parameter.

Qualifiers are keywords that restrict or modify the function of a com-
mand. For example, in the following'‘command:

$ PRINT/COPIES¥2 MYFILE.LIS<RET>

/COPIES= =2isa qualifier indicating how many copies of a file to print.
Each qualifier in a command must be. preceded by a slash character
(/). : ,

If the user introduces errors during command input, they ma’y be
corrected interactively. The basic line editing functions are:

e The delete key deletes and backspaces over characters
that have been typed on the current line. In the following example,
the first line illustrates user input, while the second line illustrates

..system echo of the first line (that i is, what the user actualy sees typed
at hardcopy and some video terminals). :

$ PROINT MYDAFILE.LIS<RET>
$ PRO\O\INT MYDA\AD\FILE.LIS

24

The System User

As far as the command processor is concerned, the line reads per-
fectly:

$ PRINT MYFILE.LIS
“On some terminals, the key that performs the delete function is
marked RUBOUT

e <fU> The CTRL/U key deletes the current line and performs a
carriage return, enabling the user to reenter an entire line

e <!R> The CTRL/R key performs a carriage return and displays the
current line, leaving the print element or cursor at the end of the line
permitting continued entry

$ PRONANONINT MUNU\Y <4R>
$ PRINT MY

e <4C> The CTRL/C key combination cancels an entire command
that was entered on more than one line

CTRL/C may also be used to interrupt the system during command
execution. To terminate an unwanted command during execution,
press the CTRL/C or CTRL/Y key and issue the EXIT command as
follows:

" $ TYPE MYFILE.LIS<RET>

<c> |
$ EXIT <RET>
$

The HELP Command
The HELP facility provides information about specific DCL commands.
It is accessed interactively from the terminal, which makes it a particu-
lar benefit for users who do not have convenient access to a reference
manual.
HELP can be used in one of two ways:
1. query/response mode. The user may type simply:
$ HELP <RET>
This will invoke the HELP facility which then displays on the user’s

terminal a table of all of the primary DCL commands, orgamzed
alphabetically, and followed by the querry :

Topic?

25

The System User

- The user can then select a command from the table—for instance,
the PRINT command—and respond

Topic? PRINT <RET>

The HELP. facility. will: then display information about the PRINT
command, what it does and how to invoke it, followed by a list of
subtopics including a list of PRINT qualifiers with the defaults
indicated by-a”(D)". HELP then queries .

PRINT subtopic"

to which the user can respond with’ one of the Ilsted PRINT subto-
pics; for example:
PRINT subtopic? /AFTER <RET>

In _response, HELP displays information about the /AFTER

qualifier, followed by another query for a PRINT subtopuc The

user may then either request another subtoplc descnptlon or re-
' 'spond witha <RET>.

PRINT subtoplc’? <RET>

In this case, HELP returns to the first stage and querles for anoth-
er HELP topic. Another <RET> response.brings the user back to
the command level and the dollar sign ($) prompt.

2. Direct mode. The experienced user with a specific question might
prefer this more direct approach. To find out about a specific
topic or subtopic, the entire command can be entered on one line.
For example, if the user types

$ HELP PRINT/AFTER

... the resulting display is the same as glven for /AFTER response to
the "PRINT subtoplc” query.

LOGOUT

Upon compileting an interactive session, the user must enter the LOG-
OUT command as follows

. $ LOGOUT<RET>
The system responds: B N . o
Username logged out at 22-APR-1982 - 11:30:50

26

The System User

FILES

A file is a collection of logically related data stored on a medium, such
as a disk, tape, or card deck. Many system commands require input
files or produce output files. To access files that already exist, or to
give names to files that are being created with system commands, the
user must know how to identify files.

The system uniquely identifies a file by its file specification (abbrevia-
ted “file-spec”).

The file is first identified by its location, that is, the actual or physical
device on which it is stored.

Because a disk can contain files belonging to many different users,
each disk has a set of files called directories. A directory is simply a
catalog of a related set of files on that disk.

A complete file specification contains all the information the system
needs to know to locate and identify a file. It has the format:

device: [directory]filename.filetype;version

For example, DMA3:[HANDLE])JEANNE.LIS is a file specification for
the directory HANDLE located on an RKO7 disk, controlier A, unit 3.
The file name is JEANNE and the file type is .LIS. See details below.

The punctuation marks (colon, brackets, period, semicolon) are
required syntax that separate the various components of the file speci-
fication.

When the user logs onto the system, the system assumes all of that
user’s files reside on a specific disk, alloted to the user by default,
called the default disk. The user can determine the current default disk
and directory by issuing the SHOW DEFAULT command as follows:

$ SHOW DEFAULT
DBAZ2:[TINKER]

This response indicates that the default disk device is DBA2 (an RP06
disk) and the default directory is named TINKER. Often the user’'s
directory name and user name are the same.

File Name and File Type
The user can specify a file uniquely by its file name and file type (or
extension) as follows:

filename.filetype
The file name can be from one to nine alphanumeric characters. The
alphanumeric characters are A through Z, 0 through 9.

27

The System User

The file type (sometimes called the file extension) can be from one to
three alphanumeric characters in length; it must be preceded by a
period. By convention, the file type describes more specifically the
kind of data in the file. The system recognizes several default file types
used for special purposes. For example, among them are:

File Type
BAS
.B32 or BLI

.CMD
.COB
.COM

.COR

.DAT
.DIR
.DMP
.EXE
.FOR

.L32
.LIs

LOG
LST

MAC
MAP
MAR
MLB

Contents o
Input source file for the VAX-11 BASIC compiler

Input source file for the VAX-11 BLISS-32 compil-
er

Compatibility mode command procedure.
Input source file for the VAX-11 COBOL compiler

Command procedure file to be executed with the
@(Execute Procedure) command, or to be sub-
mitted for batch execution with the SUBMIT com-
mand . :

Input source file for the PDP-11 CORAL 66/VAX.
compiler ' ’ '

Ihput or Output data file

Directory file

Output listing created by the DUMP command
Executable program image '

Input file containing source statements for the
VAX-11 FORTRAN compiler

VAX-11 BLISS-32 precompiled library
Listing file created by alanguage compiler or as-

- sembler; default input file type for PRINT and

TYPE commands

Batch job output file

Compatibility mode listing file

MACRO-11 source file

Memory allocation map created by thé linker
VAX-11 MACRO source file |

* Macro library

28

The System User

.0BJ Object file created by a language compiler or as-
sembler

.oLB Object module library

.PAS Input source file for the VAX-11 PASCAL compil-
er

.R32 or .REQ VAX-11 BLISS-32 source files required for com-
pilation

Version Numbers

Every file has a version number associated with it, distinguishing dif-
ferent versions of the same file. Each time a file is accessed and
modified, the version number is increased by one. The version
number is placed after the file type preceded by a semicolon (;) or
period (.) as follows:

filename.filetype.version number
or
filename.filetype; version number

Physical Devices
A device name identifies the physical device on which a file is stored. A
device name is specified in the format:

dvcu:

where dv is the two-character code for the device type, c is the con-
troller designation, and u is the unit number

Some examples of device names are:

Name Device

DBA2 RPO06 disk on controller A, unit 2

MTAO TE16 magnetic tape on controller A, unit0
TTB3 Terminal on controller B, unit 3

If the device name is omitted from a file specification, the system
assumes it to be the default disk device.

Among the physical device mnemonics are:

29

The System User

Table 2-1 Device Names

Mnemonic Device Type

CR Card Reader

(O] Console Device

DB RPO06 Disk

DD TU58 Tape Cartridge

DL RLO2 Disk

DM ' RKO7 Disk

DQ) . - RBO02 and RB80 Disks

DR RMO03, RM05, RM80,and RPO7 Disks
DY RXO02 Floppy Disk

LA LPA11-K

LP Lineprinter

MB Mailbox

MF TU78 Magnetic fabe

MS TS11 Magnetic Tape

MT TE16, TU77 Magnetic Tapes
OoP | Console Teriminal |
TT ’ Interactive terminal

XA | DR11-W

XM DMC-11 Network Link Module

30

The System User

Directories :

If the user specifies a f||e and omits the dlrectory name, the system
assumes the file to be in the user’s defauit directory. However, the user
may, with privilege, access files in other directories (including directo-
ries that catalog files belonging to other users) by spemfymg the direc-
tory name in a file specificaton.

The user may access a file called CUBIT.FOR whose dlrectory name is
PERSON by issuing the TYPE command as follows: :

$TYPE [PERSON]CUBIT.FOR <RET>

This file specification, however, does not contain a device name.
Therefore, the system assumes the directory PERSON to be located
on the accessing user’s default device.

If PERSON'’s directory were located on disk DBBZ the accessing user
would issue the TYPE command as follows:

$TYPE DBB2:[PERSON]CUBIT.FOR <RET>.

It is assumed, however, in both cases, that PERSON permitted access
to files in the directory by other users. If not, a protection violation
error would be returned to the command.

Subdirectories, down to many levels, are possible in the‘ VAX/VMS
operating system. This useful feature allows a user to organize a tree
structure of subdirectories and catalog files in functional groups.

LOGICAL NAMES o _

The VAX/VMS operating system provides a generalized logical name
capability which. permits the assocnatlon of an arbitrary equivalence
string to an arbitrary logical name. .

in the VAX/VMS operating system, device independence is accom-
plished through the use of logical names. During the coding of a pro-
gram, the user might refer to input and output as INFILE and OUTFILE
respectively. INFILE and OUTFILE are logical names. Prior to program
execution, the user must associate logical names used in the program
with actual files and devices required to run the program. -

The ASSIGN command makes this connection: it establishes the cor-
respondence between a logical name (that is, the name used in the
program) and an equivalence name:(that is, the actual file or device to
use). ;

Figure 2- 1 shows how Ioglcal names are used The program FICA
contains OPEN, READ, and WRITE statements in a general form; the
program reads from a file referred to by the logical name INFILE, and
writes to a file referred to by the logical.name OUTFILE.

31

The System User

For different runs of the program, the ASSIGN command establishes
different equivalence names for INFILE and OQUTFILE. In the first ex-
ample, the program reads the file JANUARY.DAT from the device
DBA1 and writes to the file JANUARY.OUT on the same disk device. In
the second example, it reads the file FEBRUARY.DAT from the device
DBA2 and writes the file FEBRUARY.OUT to that device.

TERMINAL DISPLAY ' [DISK INPUT/QUTPUT FILES

$ SHOW DEFAULT

DBAI: [WELLADAY]
$ ASSIGN JANUARY .DAT INFILE
$ ASSIGN JANUARY OUT OUTFILE

$ RUN FICA

DBAI

The program, FICA .EXE contains 1/0
statements to open, read, and write
files referred to by the logical names
INFILE and OUTFILE:

'OPEN ‘INFILE', OUTFILE'
READ INFILE
WRITE OUTFILE

$ ASSIGN DBA2: FEBRUARY .DAT INFILE +————————
$ ASSIGN DBA2: FEBRUARY .DAT OUTFILE~——————
$ RUN FICA
DBA2 .

Figure 2-1 ~ Using Logical Names

System Defined Logical Names -

Certain logical names are predefined by the VAX/VMS operating
system to provide access to commonly used resources. The major
logical names are: ’

Logical Name . Equivalence Name
SYSSINPUT Default input stream for the process. For an
, * - interactive user, SYS$INPUT is equated to
the terminal. In a command procedure or
batch job, SYS$INPUT is equated to the in-:
"+ -put file or batch input stream -

32

The System User

SYS$OUTPUT Default output stream for the process. For
an interactive user, SYS$SOUTPUT is equat-
ed to the terminal. In a batch job, o
SYS$OUTPIUT is equated to the batch job
log file.

SYS$SERROR Default device to which the system writes
" error and event messages. For an interac-
tive user, SYS$ERROR is equated to the ter-
minal. In a batch job, SYS$ERROR is equat-
ed to the batch job log file

SYS$COMMAND Original SYSS$INPUT device for an interac-
: ’ tive user or batch job
SYS$DISK Default device established at login, or

changed by the SET DEFAULT command

PROGRAM DEVELOPMENT
Four basic steps are required during the course of program develop-
ment. They are:

e Creating the source program

e Compiling or assembling the source program

e Linking the object module output of a compiler or assembier

e Executing and debugging the program

These steps are common to all of the languages that are available on

the VAX/VMS operating system. Figure 2-2 illustrates the necessary
steps of program development.

33

The System User

_SOURCE PROGRAM

Use the aditor to create a disk file
containing the source program
statements. Specify the name of this
file when invoking the compiler
or assembler.

different | p lers,
and interpreters that check syntax, create
object modules, and if requested,
generate program listings.

The various commands invoke the
'

If a compiler signals any errors, use

the editor to correct the source
program.

The linker searches the system libraries to
resolve references in the object module
and create an executable image.
Optionally, private libraries can be
specified to search, and request the
linker to create a storage map of the
program.

The RUN d a prog!
image. While the program is running,
the system may detect errors and issue
messages. To determine if the program
is error-free, check its output.

If there is a bug in the program, determine

the couse .of error and correct the source
program.

COMPILER
OR
ASSEMBLER

ERROR
?

NO

YES

LINK THE
OBJECT MODULE

RUN THE
EXECUTABLE
IMAGE

NO

SUCCESS

YES

CORRECT THE
SOURCE PROGRAM

Figure 2-2 Steps in Program Development

34

Use the editor to
create a disk file
containing your
source program
statements. Specify
the name of this file
when you invoke the
compiler or assem-
bler.

Various commands
invoke the different
language compilers
and assemblers that
check syntax, create
object modules, and
if requested, gener-
ate program list-
ings.

If a compiler signals
any errors, use the
editor to correct the
source program.

The linker searches
the system libraries
to resolve refer-
ences in the object
module and create
an executable im-
age. Optionally, you
can specify private
libraries to search,
and request the
linker to create a
storage map of your
program.

The System User

SOURCE PRO-
GRAM

COMPILER OR AS-
SEMBLER

ERRORS? YES

NOW LINK THE OB-
JECT MODULE

35

CORRECT THE
SOURCE PRO-
GRAM

The System User

The RUN command RUN THE EXECU-
executes a program TABLE IMAGE
image. While your

program is running,

the system may de-

tect errors and issue

messages. To de-

termine if your pro-

gram is error-free,

check its output.

If there is a bug in BUGS - YES
your program, de-

termine the cause of

error and correct

the source program.

NO
~ SUCCESS

Creating the Program
The user must create a file to contain the source program statements.
The editor is used to create a file.

Compiling or Assembling the Program
The user must first invoke the compiler or assembler via a command
language command.

The compilers check the source program for syntax and programming
errors, and then translate the input source file into a binary form that
can be interpreted by the computer. The translated code, that is, the
object module, is written into a file called an object module file.

Linking the Object Module

An object module is not, in itself, executable; generally, an gbject
module contains references to other programs or routines that must
be bound with the object module so that it can be executed. This is the
function of the linker.

The LINK command invokes the linker. The linker uses system librar-
ies to resolve references to routines or symbols that are not defined
within the object modules it is linking. Also, the user can request the
linker to include more than one object module as input, or specify user
libraries of object modules or shareable images for it to search.

36

The System User

The linker creates an image, which is a file containing the user pro-
gram in an executable format.

Executing the Program
The RUN command executes an image, that is, it places the image
created by the linker into virtual memory so thatit can be run.

37

38

PARTII
PROGRAM
DEVELOPMENT

39

CHAPTER OVERVIEW

The DIGITAL Command Language (called DCL) is a useful tool for
establishing and controlling the environment in which a process exe-
cutes. A command is a request directed to the operating system for a
specific action. Frequently used strings of commands can be built into
command procedures. This chapter introduces the idea of a com-
mand and a command procedure, and shows in some detail how each
is used. The formats of many of the DCL commands are listed alpha-
betically, and examples of some are included. The user will find this
chapter helpful when approaching the terminal. Particular attention is
paid to the SHOW command.

Topics include:

e Language Name Command Conventions
e Command Procedures

e Commands

e Terminal Function Keys

40

CHAPTER 3
COMMAND LANGUAGE

INTRODUCTION

A single command language, The DIGITAL Command Language
(DCL), provides VAX/VMS users with an extensive set of commands
for:

® Interactive program development

® Device and data file manipulation

® {nteractive and batch program execution and controi

Commands exist for program development and execution, for re-
source allocation, for environmental control, for job control, for file
maintenance, for utilities, and for operational control. Program devel-
opment and execution commands include commands to invoke each
compiler, the assembler, the editor, and the linker, as well as to run
any pre-linked program. Resource allocation commands include the
ability to allocate and deallocate devices and mount and dismount
volumes. Environmental commands include assign and deassign logi-
cal names and set and show parameters such as job status, terminal
type, and default directory. Job control commands include the ability
to continue and stop execution, a GOTO command to transfer control,
and IF and ON commands to specify error handling. The VAX/VMS
operating system also includes commands to login and logout, to sub-
mit batch jobs, to send messages to the operator, and to prompt the
user for input. File maintenance commands include append to files,
copy, create, and delete files, list directories, initialize volumes, print
and type files, and rename files.

COMMAND FORMAT

Commands are composed of English words. Any file name can be
given a logical name for mnemonic reference. Command parameters
can be supplied on the same line as the command verb. Missing
parameters will be prompted for by the VAX/VMS command
interpreter. To make it easier to learn the VAX/VMS system, an exten-
sive HELP facility is provided that gives guidance on the use of com-
mands and the meaning of system messages. Typical VAX/VMS com-
mands are brief because of the extensive use of defaults. The user
also has the ability to define additional commands and use them just .
as the system-defined commands are used. In addition, all command
verbs and qualifiers can be abbreviated to the shortest unique form.

41

DIGITAL Command Language

File specifications can be as simple as the user-given name of the file
only, or as complex as a full specmcatlon of network node, device
(mcludmg type, controller, and’ “unit), directory, file name, file type, and
version number. Logical names can be defined for complex file speci-
fications so that repetitive typing can be avoided.

The general format of a command is:

$[label:]lcommand- -name[qualifiers][parameter-1].. [parameter-n]

where the following rules apply:

1.

Dollar Sign $ — The dollar srgn [$] must appear in posntlon 1ofa
command to be executed in a command procedure. Optlonally, it
may appear in a command executed ininteractive mode: -

- Brackets —In the description of commands in this specification,
- brackets ([and 1) are used to surround optlonal values. For

example

—

COPY[quallflers]

mdrcates that the user does not need to supply any qualmers to

issue:avalid COPY command.
Labels —: Any command may be labeled. Labels are-used to

-transfer flow of control via the GOTO command. They may also'be
‘used for documentation purposes. The maximum length of a-label
" is' 15 characters. ‘A label precedes the command name and is

separated from it by a colon (:)

* Command Names — The command name mdrcates the action the
~command is to perform

Qualifiers — A qualifier is used to modlfy the default actron of a
command. There are defaults for all qualrflers, i.e., qualifiers are
never required. A qualifier always begins with a slash (/). Both
command names and parameters can be qualified.

-Examples:

PRINT/DELETE =~ 'MYFILE.DAT
SET TERMINAL/LOWERCASE

i Many qualifiers have associated qualmer values The qualufuer |s

separated from the qualmer value by an equal srgn (=) or acolon
(). eg., /CQPIES =3. Whenever a qualifier requires a Inst of val-
ues, that llst must be enclosed in parentheses :

/BLOCK =(5,6) o
A qualifier may not contain any blanks; however, blanks are al-
lowed in qualifier values following left parenthesis, preceding right

42

DIGITAL Command Language

parenthesis, and before or after a comma. No other blanks are
permitted in qualifier values.

Some qualifiers may be negated. When this is permitted, the let-
ters NO prefix the qualifier name.

Example:

/OBJECT produce an object file

/NOOBJECT do not produce an object file
Parameters — A parameter either specifies a value that a com-
mand is to use when executing, or further defines the action a
command is to take. At least one space or tab must separate the
first parameter from the command name; parameters are then
separated from each other by one or more spaces and/or tabs.
Interactive users may supply parameters in response to prompts.
Commas and Ellipsis — Some commands permit the user to
replace a single parameter by a list of values. When this is done,
the items in the list are separated by commas. The commas may,
optionally, be surrounded by blanks.

Examples:
DELETE A.B,C

Delete files A, B, and C.
COPY AB C

Copy files A and B into C.

In the description of a command’s format, ellipsis (three dots ...)
indicate that a list of values of the same type may replace a single
value.

Continuation Character — A hyphen (-), which may optionally be
followed by blanks and/or a comment, is used to indicate that a
command is to be continued on the next line.

Example:

COPY A.DAT -

B.DAT
Comment Character — An exclamation mark (!) delimits the start
of a comment. Comments can occur only after the last character
of a command or after a hyphen. Comments are for the user’s
information only and do not affect the processing of the com-
" mand.

43

10.

11.

12.

13.

DIGITAL Command Language

- Example:

.COPY A.DAT B.DAT
IFILEATOFILEB

ICOMMAND PROCEDURE FOLLOWS
Concatenation Character — A plus sign (+) indicates concatena-
tion, that is, the records in the file specified on the left of the plus
sign are processed followed by the records in the f|Ie specmed on
the right of the plus s:gn

Example:
FORTRAN A+B

The FORTRAN statements in file A.FOR followed by the FORTRAN
statements in file B.FOR are read by the FORTRAN compller to
product a single object module, A.OBJ.

Lowercase Characters — Lowercase characters will be processed
as their uppercase equivalents except for characters within a
quoted string. The SET TERMINAL/ [NOJLOWER command con-
trols conversion of characters entered interactively at the termi-
nal; however, it has no effect on data entered via a command
procedure.

Abbreviation Rule — All command names, qualifiers and parame-
ter keywords can always be abbreviated to the first four letters.
The implementation will recognize, in each case, the minimal
unique abbreviation. Qualifiers and keywords must be unique on-
ly within the command containing them. Additional letters are ac-
ceptable, for example, LOGOUT, LOGOU, and LOGO are all cor-
rect.

End of Data — In interactive mode, CTRL/Z is used toterminate
input to a command or a user program, i.e., CTRL/Z will generate
an end- of file.

CONVENTIONS FOR LANGUAGE NAME COMMANDS

1.

When the input file specification in a language-name command
consists of a list of concatenated files, e.g., A+B+C, then the

- 'language processor is invoked once and a singie object file is
- produced. If this object file is not explicitly named, the leftmost file

specification will be used for the default. (Note that not all lan-
guage processors permit the specification of a concatenated list.)

44

DIGITAL Command Language

When the input file specification in a language-name command
consists of a list of file specifications separated by commas—e.g.,
A, B, C—then the language processor is invoked separately for
each file specification and a separate object file is produced for
each. If the object files are not explicitly named, the name of the
corresponding input file specification is used for the default. A
qualifier on a file specification overrides a corresponding qualifier

~on the command name for that file specification.

Example: ‘ .

FORTRAN/LIST A, B/NOLIST, C

In interactive mode, /OBJECT, i.e., produce an object file, and
/NOLIST are the defaults. These defaults are also used when a

command procedure file is invoked from interactive mode. In
batch mode the defauits are /OBJECT and /LIST.

COMMAND PROCEDURES

A command procedure is a file.containing VAX/VMS commands and,
optionally, data. The commands in a command procedure file are
executed when a reference to the command procedure file hame
appears in interactive mode or in another command procedure file.
The syntax is: '

@file specification

The following rules apply: -

1.
2.

If no file type is given, the default is .COM.

Each command in a command procedure file must begin with a
dollar sign ($), including further command-procedure file refer-
ences. Lines without the dollar sign leader are interpreted as data
lines. ' ' E

A reference to a command procedure must be the rightmost ele-
ment of the command, and the entire contents of the file are
inserted into the command at the point at which the reference was

" made.
Examples: _ ;
a. The user types the command:
L @MYJOB _
where the file MYJOB.COM contains:
‘ $FORTRAN A
- SLINK , A
$RUN A

45

DIGITAL Command Language

b. Theuser types the command:

LINK @LINK_OPT
where the file LINK OPT.COM contains:
/IMAGE=J0OB1 -

/MAP -

MYJOB, MYDATA

indicating that the default image type (.EXE) should be creat-
ed, overriding the default name of MYJOB to JOB1. Amap is
explicitly requested with the default to MYJOB, and the object
input files are MYJOB and MYDATA.

TERMINAL FUNCTION KEYS

<CR> or
RETURN

CTRL/X

CTRL/C

CTRL/t
CTRL/K

CTRL/L .
CTRL/O

CTRL/Q
CTRL/R

CTRL/S

Carriage return. Transmits the current line to the
system for processing

Cancels type-ahead. Discards any characters that
have been typed but not yet read by a program.
Also effects a CTRL/U

Before terminal session, initiates login sequence.
During command entry, cancels command proc--
essing

Note: Certain system and user programs may
provide special routines to handle CTRL/C inter-
rupts. if CTRL/C is pressed tointerrupt a pro-
gram that does not handle CTRL/C, CTRL/C has
the same effect as CTRL/Y and echoes at Y.

Duplicates the function of the TAB key

Advances the current line tb the next vertical tab
stop

Form feed

Alternately sUppresses and.continues display of
data at the terminal

Restarts terminal output that was suspended via
CTRL/S

Retypes the current'line during input and leaves
the cursor positioned at the end of the line

Suspends terminal output until CTRL/Q is
pressed '

46

DIGITAL:Command Language

CTRL/U Cancels the current line and discards it

CTRL/Y Interrupts commands or program execution and
.returns:control to the command interpreter

CTRL/Z ~° Terminates afile input from the terminal v

DELETE or Deletes the last character entered at the terminal

RUBOUT and backspaces over it

ESCAPE or Have uses pertinent to particular commands or

ALTMODE programs

COMMANDS

For the convenience of the user, commands are listed and described
below in alphabetical order. Some include detailed examples, particu-
larly control commands for use in command procedures. The on-line
HELP facility will provide more detail about most of these commands.

NOTE
This list is not exhaustive. See the VAX/VMS Com-
mand Language Users Gunde for complete detalls of
commands, options, and defaults.

ALLOCATE
Format:

ALLOCATE device-name [:] [logical-namel:]]
Purpose:

The ALLOCATE command provides exclusive access to a device and
optionally establishes a logical name for the device. Once a device has
been allocated, other users cannot access the device until the user
specifically deallocates it or logs out.

ANALYZE/CRASH_DUMP
Format:

ANALYZE/CRASH dUMP file-spec
Purpose:

This command invokes the System Dump Analyzer (SDA) to examine
the specified dump file.

ANALYZE/DISK_STRUCTURE
Format:
ANALYZE/DISK_STRUCTURE ~ device-name

47

DIGITAL Command Language

Purpose:

ANALYZE/DISK_STRUCTURE invokes the VAX-11 Verify Utility to
check the readablllty and validity of a Files-11 structure disk volume,
reporting errors and inconsistencies and, optionally, repairing them.

ANALYZE/OBJECT
Format: |

ANALYZE/OBJECT file-spec [,...] -
Purpose:

ANALYZE/OBJECT provides a description of the records comprising
an object file or object module library. It also performs a partial error
analysis on the file. ‘

ANALYZE/RMS FILE
Format: ‘
ANALYZE/RMS FILEf:Ie-spec[J
Purpose:
This invokes an RMS utility to inspect and analyze the internal struc-
ture of an RMS file. Refer to the description of RMS utilities in Chapter
12 for more details.
ANALYZE/SYSTEM
Format:
ANALYZE/SYSTEM
Purpose:

This will invoke the System Dump Analyzer (SDA) to examine a run-
ning system. in order use this command,you must have the Change
Mode to Kernel (CMKRNL)privilege.

APPEND
Format:

APPEND input-file-spec,... output-file-spec
Purpose:

The APPEND command adds the contents of one or more specmed
mput files to the end of a specmed output file.

ASSIGN
Format:
ASSIGN device-name[:] . logical-name[:] -

48

DIGITAL Command Language

Purpose:

The ASSIGN command equates a logical name to a physical device
name, to a complete file specification, or to another logical name, and
places the equivalence name strmg in the process, group, or system
logical name table.

BACKUP
Format:
BACKUP input-spec output-spec

The BACKUP command allows users to create backup copies of files
and directories and to restore them. It can backup entire volume sets
in one operation or perform selective backups by file or date. Wiid-
carding is available, as well as several file selection qualifiers. BACK-
UP can also be used to copy entire directory trees (directories and
sub-directories).

CANCEL
Format:

CANCEL [process name]
Purpose

The CANCEL command cancels scheduled wakeup requests for a
specified process. This includes wakeups scheduled with the RUN
command and with the Schedule Wakeup ($SCHDWK) system
service. '

CLOSE
Format:

CLOSE logical-name
Purpose:

The CLOSE command closes afile that was opened for input or output
with the OPEN -command and deassigns_the logical name specified
when the file was opened. ; :

49

DIGITAL Command Language

Example:
$ OPEN/READ INPUT FILE TEST.DAT
$ READ LOOP:
$ READ/END_OF_FILE=

NO_MORE INPUT_FILE DATA_LINE

$ GOTO READ_LOOP
$NO_MORE:
$ CLOSE INPUT_FILE

The OPEN command opens the file TEST.DAT and assigns it the logi-
cal name of INPUT_FILE. The /END_OF_FILE qualifier on the READ
command requests that when the end of file is reached, the command
interpreter transfer control to the line at the label NO _MORE. The
CLOSE command closes the mput file. .

CONTINUE

Format:
CONTINUE

Purpose:

The CONTINUE command resumes execution of a DIGITAL Com-
mand Language (DCL) command, a program, or a command pro-
cedure that was interrupted by pressing CTRL/Y or CTRL/C. The
CONTINUE command can also serve as the target command of an IF
or ON command in a command procedure, or following a label that.is
the target of a GOTO command.

Example:

$ RUN MYPROG

Y

$ SHOW TIME
19-MAR-1980 13:40:12

$ CONTINUE

Note that only a limited set of commands may be executed before a
continue command and that a privileged program cannot be ¢ontin-
ued. The RUN command executes the program MYPROG. While the
program is running, pressing CTRL/Y interrupts the image. The
SHOW TIME command requests a display of the current date and
time. The CONTINUE command resumes the image.

50

DIGITAL Command Language

CONVERT
Format:

CONVERT input-file-spec [,...] output-file-spec
Purpose:

This invokes the RMS CONVERT Utility, which copies from one file to
another, changing the organization and record format to that of the
second file. Refer to the section on RMS Utilties in Chapter 12 for more
details.

CONVERT/RECLAIM
Format:

CONVERT/RECLAIM file-spec
Purpose:

This command invokes an RMS Utility to make empty buckets in Pro-
log 3 indexed files available so that new records can be written into
them. If all the records in the bucket have been deleted, that bucket is
locked until CONVERT/RECLAIM makes it available.

COPY
Format:

COPY input-file-spec,... output-file-spec
Purpose:

The COPY command creates a new file from one or more existing files.
The COPY command can:

e Copy one file to another file ,
e Concatenate more than one file into a single output file
e Copy a group of files to another group of files

CREATE
Format:

CREATE file-spec
Purpose:

The CREATE command creates a sequential disk file from records
that follow the command in the input stream, or creates a directory file.

51

DIGITAL Command Language

CREATE/FDL
Format:

CREATE/FDL =fdI-file-spec [file-spec]
Purpose: l

This command invokes the RMS utility for creating a new, empty data
file based on the specification of an FDL file. This is helpful when
creating more than one data file from a particular FDL specification.
Refer to Chapter 12 for more details.

DEALLOCATE
Format:

DEALLOCATE [device-namel[:]]
Purpose:

The DEALLOCATE command returns a device that was reserved for
private use to the pool of available devices in the system.

DEASSIGN

Format:b . o
DEASSIGN [logical-namei:]]

Purpose:

The DEASSIGN command cancels logical name assignments made
with the ASSIGN, DEFINE, ALLOCATE, or MOUNT commands.

DEBUG

Format:
DEBUG

Purpose

The DEBUG command invokes VAX DEBUG after program execution
is interrupted by CTRL/C or CTRL/Y. The program image being inter-
rupted must contain the debugger; that is, the image was linked with
the /DEBUG qualifier and/or run with the /DEBUG qualifier. Notice
that DBG> is the DEBUG prompt for a command.

DECK
Format: ,
DECK
Purpose:
The DECK command marks the beginning of an input stream for a
command or program. The DECK command is requwed in command

52

DIGITAL Command Language

procedures when the first non-blank character in any data record in
the input stream is a doliar sign ($).

The DECK command must be preceded by a $. Input records may or
may not start with a $.

Exampie:

$ FORTRAN CERISE
$ LINK CERISE
$RUN CERISE

$ DECK

Input line one...

Input line two...

$ Input line...

$EOD
$ PRINT SUMMARY.DAT

The FORTRAN and LINK commands compife and link program
CERISE. When the program is run, any data the program reads from
the logical device SYS$INPUT is read from the command stream. The
$DECK command indicates that the input stream may contain dollar
signs. The $EOD command signals end-of-file for the data.

DEFINE
Format: ,

DEFINE logical-name equivalence-name
Purpose:

The DEFINE command creates a logical name table entry and assigns
an equivalence name string to the specified logical rame. The DEFINE
command is similar in function to the ASSIGN command; however, its
primary purpose is to assign logical name/equivalence name pairs for
application-specific uses other than for logical file specification as-
signments.

DELETE
Format:
DELETE file-spec,...
Purpose:
The DELETE command deletes one or more files from a mass storage

disk volume.

53

DIGITAL Command Language

DELETE/ENTRY
Format:

DELETE/ENTRY =job number,... queue-name
Purpose:

The DELETE/ENTRY command deletes one or more entries from a
printer or batch job queue. The /ENTRY qualifier is required.

DELETE/SYMBOL
Format:

DELETE/SYMBOL symbol-name
Purpose:

The DELETE/SYMBOL command deletes a symbol definition from a
local symbol table or from the global symbol table, or deletes all symi-
bol definitions in a symbol table. The /SYMBOL qualifier is required.

DEPOSIT
Format:) .

$ DEPOSIT location=data,...
Purpose: '

The DEPOSIT command replaces the contents of a specified location
or locations in virtual memory.

The DEPOSIT command, together with the EXAMINE command, aids
in debugging programs interactively. The DEPOSIT command is simi-
lar to the DEPOSIT command of the VAX-11 Symbolic Debugger.

DIFFERENCES
Format:

DIFFERENCES input-file-spec [compare-file-spec]
Purpose£

The DIFFERENCES command compares the contents of two disk files
and creates a listing of the records that do not match. If no specifica-
tion for a compare-file is entered, the command uses the next lower
version of the inputfile.

DIRECTORY
Format:
DIRECTORY [file-spec,...]

54

DIGITAL Command Language

Purpose:

The DIRECTORY command provides a lists of files or information
about a file or group of files.

DISMOUNT
Format:

DISMOUNT device-name[:]
Purpose: ‘

The DISMOUNT command releases a volume previously accessed
with a MOUNT command.

DUMP
Format:

DUMP file-spec
Purpose:

The DUMP command displays or prints the contents of a file or volume
in ASCII and a choice of decimal, hexadecimal, or octal data format.
The default format is hexadecimal.

EDIT
Format:
EDIT/editor file-spec
Purpose: ,
The EDIT command invokes one of the following VAX/VMS editors:
e EDT
¢ SOS
e SLP

The default editor is EDT.
EDIT/FDL
Format:

EDIT/FDL file-spec
Purpose:

EDIT/FDL invokes the file Definition Language (FDL) editor, which
allows the user to create and modify FDL files. FDL files provide the
specifications for RMS data files. For more information on FDL, refer
to Chapter 12 in this book.

55

DIGITAL Command Language

EOD

Format:
EOD

Purpose:

The EOD command signals the end of a data stream when a command
or program is reading data from an input device other than an interac-
tive terminal. This command is required only if the DECK command
preceded input data in the command stream, or if multiple input files
are contained in the command stream without intervening commands.
The program or command reading the data receives an end-of-file
condition when the EOD command is read.

The EOD command must be preceded by a $; the $ must be in the first
character position (column 1) of the input record.

Example:
$ RUN MYPROG

first data file to be read by the program
$ EOD
second data file to be read by the program

$ PRINT TESTDATA.OUT

The program MYPROG requires two input files; these are read from
the logical device SYS$INPUT. The EOD command signals the end of
the first data file and the beginning of the second. The next line that
begins with a dollar sign (a PRINT command in this example) signals
the end of the second data file.

EOJ

Format:
EOJ

Purpose:

The EOJ command marks the end of a batch job submitted through
the system card reader. An. EOJ card is not required; however, if
present, the first non-blank character in the command line must be a
dollar sign ($). The EOJ command performs the same-functions as the
LOGOUT command.

56

DIGITAL Command Language

EXAMINE
Format:

EXAMINE location[:location]
Purpose:

The EXAMINE command displays the contents of virtual memory at
the terminal.

Example:
$ RUN MYPROG
Y
$ EXAMINE 2678

00002678: 1F4C5026
$ CONTINUE

The RUN command begins execution of the image MYPROG.EXE.
While MYPROG is running, the CTRL/Y interrupts its execution, and
the EXAMINE command requests a display of the contents of virtual
memory location hexadecimal 2678.

EXIT
Format:

EXIT [status-code]
Purpose:

The EXIT command terminates processing of the current command
procedure. If the command procedure was executed from within
another command procedure, control returns to the calling procedure.

When typed interactively, the EXIT command may be used to termi-
nate an image interrupted by CTRL/C or CTRL/Y. (See also STOP
command.)

In the EXIT command, the image’s termination handiers are called,
whereas in STOP they are not. The EXIT command is the preferred
method of terminating an image interrupted by CTRL/C/CTRLY/Y.

Example:

$ @SUBTEST
$IF $STATUS .EQ. 7 THEN GOTO PROCESS

$ EXIT
$ PROCESS:

57

DIGITAL Command Language

This procedure executes a second procedure, named SUB-
TEST.COM. When SUBTEST.COM completes, the outer procedure
tests the value of the symbol $STATUS which may be set by SUBTEST
as follows: :

$ PATH1:

$SEXIT7
$ PATH2:

$EXITO

GOTO
Format:

GOTO label
Purpose:

The GOTO command transfers control to a labeled statement in a
command procedure.

Example:

$ IFP1.EQS. “HELP” THEN GOTO TELL
$ IFP1.EQS. “THEN” GOTO TELL

$ EXIT
$ TELL:
$ TYPE SYSS$INPUT

The IF command checks the first parameter passed to the command
procedure; if this parameter is the string HELP or is not specified, the
GOTO command is executed, and control is passed to the line labeled
TELL. Otherwise, the procedure continues executing until the EXIT
command is encountered. At the label TELL, a TYPE command dis-
plays data in the input stream that documents how to use the pro-
cedure.

58

DIGITAL Command Language

HELP
Format:

HELP [keyword {keyword]...]
Purpose:

The HELP command displays on the terminal information available in
the system HELP files; most notably about how to use DCL
commands. See Chapter 2 for more details about the HELP com-
mand.

IF
Format:

IF expression THENI[$] command
Purpose:

The IF command tests the value of an expression and executes a
command if the test is true. Any arithmetic or logical expression is
considered true if the result of the expression is an odd numeric value;
an expression is false if the result is an even value.

Example:

$COUNT =0
$ LOOP:
$ COUNT = COUNT + 1

$IFCOUNT.LE.10 THEN GOTO LOOP
$EXIT

This example shows how to establish a loop in a command procedure
using a symbol named COUNT and an IF statement that checks the
value of COUNT and performs an EXIT command when the value of
COUNT is greater than 10.

INITIALIZE
Format: ,

INITIALIZE device-name[:] volume-label
Purpose:)

The INITIALIZE command formats and writes a label on a mass sto-
rage volume.

59

DIGITAL Command Language

INQUIRE
Format:
INQUIRE symbol-name [prompt-string]
Purpose:
The INQUIRE command requests interactive assignment of a value for

a local -or global symbol during the execution of a command pro-
cedure. ~ .

Example:

$ INQUIRE CHECK “Enter Y[ES] to continue”
$IF NOT.CHECK THEN EXIT

The INQUIRE command displays the following prompting message at
the terminal:

Enter Y[ES] to continue:
The IF command tests the value entered. If it is an odd numeric value
or any non-quoted character string that begins with either a “T” or a
“Y,” the symbol CHECK will be considered true and the procedure will
continue executing. If it is an even numeric value, any nonquoted
character string that begins with either an “N” or an “F,” or a null
string, the symbol will be considered false and the procedure will exit.

JOB
Format:

JOB user-name
Purpose:

The JOB command identifies the beginning of a batch job submitted
through a system card reader.

Example:

$ JOB HIGGINS

$ PASSWORD HENRY

$ ON WARNING THEN EXIT

$ FORTRAN SYS$INPUT:AVERAGE
input statements for FORTRAN compiler

$ LINK AVERAGE
$ RUN AVERAGE
data records for program average

60

DIGITAL Command Language

$ PRINT AVERAGE
$EOJ

The JOB and PASSWORD cards identify and authorize the user HIG-
GINS to enter batch jobs. The command stream consists of a
FORTRAN command and FORTRAN source statements to be com-
piled. The file name AVERAGE following the device name SYS$INPUT
provides the compiler with a file name for the object and listing files.
The output files are cataloged in the user HIGGINS’ default directory.

If the compilation is successful, the LINK command creates an execut-
able image, and the RUN command executes it. Input for the program
follows the RUN command in the command stream. The last com-
mand in the job prints the program listing.

LIBRARY
Format:

LIBRARY library [file-spec,...]
Purpose:

The LIBRARY command creates or modifies an object module library
or a macro library, or inserts, deletes, replaces, or lists modules, ma-
cros, or global symbol names in a library.

LINK
Format:

LINK file-spec,...
Purpose:

The LINK command invokes the VAX-11 linker to link one or more
object modules into a program image and defines execution
characteristics of the image. See Chapter 4 for details about the linker.

LINK/RSX11
Format:

LINK/RSX11 file-spec,...
Purpose:

The LINK/RSX11 command invokes the RSX-11M task builder to build
an RSX-11M image.

61

DIGITAL Command Language

MAIL
Format:
MAIL [file-spec]
Purpose: : ‘
The MAIL command invokes the VAX/VMS personal mail utility. MAIL
can be used to correspond with other users on a system or on other
VAX systems via DECnet. With the services MAIL provides, the user
can:
e Send text, either messages created using MAIL or previously creat-
ed text files S
® Select mail to read
Delete mail
File mail in user-named mail files
Forward mail
Print mail
Reply to a mail message

Peruse a directory of mail messages in the default mail file or one of
the user-named mail files

e Edit mail messages with the VAX/VMS editor of the users choice

Also, MAIL will broadcast a message on the receiving user’s terminal
indicating that new mail has arrived and who it is from.

MCR
Format:

MCR [component[command-string]] -
Purpose:

The MCR command provides a means of running R8X-11M compo-
nents in a manner that is compatible with the RSX-11M operating
system.

Examples:
1. $MCR DSP MYFILE.DAT
The MCR command precedes a single RSX-11M command.
When the command finishes, DCL prompts for another command.
2. $MCR
MCR>PIP MYFILE.DAT/SP
MCR>41Z ’
$

62

DIGITAL Command Language

The MCR command requests activation of MCR command mode.
The MCR> prompt indicates that the MCR command interpreter
is ready to accept commands. After the PIP command executes,
MCR continues prompting until CTRL/Z is used to return to DCL.

MONITOR
Format:

MONITOR class-name
Purpose:

MONITOR is a VAX/VMS utility for monitoring operating system per-
formance. It collects system performance data by class and produces
two forms of optional output:

® arecording file
o statistical terminal display

For more information about the MONITOR Utility, refer to Chapter 16
of this book.

MOUNT
Format:

MOUNT device-name,... [volume-label,...][logical-namel:]]
Purpose: .
The MOUNT command makes a volume and the files or data it con-
tains available for processing by system commands or user programs.
ON '
Formats:

ON severity-level THEN [$] command

ON CONTROL Y THEN [$] command

Purpose:

The ON command defines the default courses of action when a com-
mand or program executed within a command procedure 1) encoun-
ters an error condition or 2) is interrupted by CTRL/Y. The specified
actions are taken only if the command interpreter is enabled for error
checking or CTRL/Y interrupts; these are the default conditions.

63

DIGITAL Command Language

Examples:

1. $ON ERROR THEN GOTO BYPASS
$RUNA
$RUNB
$ EXIT

$ BYPASS: RUNC

If either program A or program B returns a status code with
severity level of error or severe error, control is transferred to the
statement iabeled BYPASS.

2. $ON CONTROL Y THEN GOTO CRTL EXIT

$CTRL_EXIT

$ CLOSE INFILE

$ CLOSE OUTFILE
$ EXIT

The ON command specifies action to be taken when CTRL/Y is
pressed during the execution of this procedure. When CTRL/Y is
pressed, the GOTO command that transfers control to the line
labeled CTRL_EXIT is executed. At this label, the procedure per-
forms clean-up operations, in this example, closes files and exits..

OPEN
Format:

OPEN logical-name file-spec
Purpose:

The OPEN command opens a file for readmg or writing at the com-
mand level.

Example:
$ OPEN INPUT FILE AVERAGE.DAT
$ READ_LOOP:

$READ/END OF_ FILE= ENDIT INPUT_FILE NUM

$GOTO READ.LOOP
$ ENDIT:
$CLOSE INPUT FILE

64

DIGITAL Command Language

The OPEN command opens the file named AVERAGE.DAT as an input
file and assigns it the logical name INPUT_FILE. The READ command
reads a record from the logical file INPUT_FILE into the symbol named
NUM. The procedure executes the lines between the labels
READ_LOOP and ENDIT until the end of the file is reached. At the end
of the file, the CLOSE command closes the file.

PASSWORD
Format:

PASSWORD password
Purpose:

The PASSWORD command specifies the password associated with
the user name specified on a JOB card for a batch job submitled
through the system card reader.

Example:

$JOB JOHN
$ PASSWORD BYRON

$EOQJ

The JOB and PASSWORD commands precede a batch job submitted
from the card reader. An EOJ command marks the end of the job.

PHONE
Format:
PHONE [phone-comand]

This invokes the VAX/VMS PHONE Utility, which allows users on a
system to “talk” via their terminals to one another or to any user on
another VAX System connected by DECnet/VAX.

PRINT
Format:

PRINT file-spec,...
Purpose:

The PRINT command queues one or more files for printing, either on a
default system printer or on a specified device.

65

DIGITAL Command Language

PURGE
Format:

PURGE file-spec,...
Purpose:

The PURGE command deletes all but the highest numbered version or
versions of a specified file or files.

READ
Format:

READ logical-name symbol-name
Purpose:

The READ command reads a single record from a specified input file
and assigns the contents of the record to a specified symbol name.

Example:

$ OPEN IN NAMES.DAT
$ LOOP:
$ READ/END_OF FILE=ENDIT IN NAME

$ GOTO LOOP
$ ENDIT:
$ CLOSEIN

The OPEN command opens the file NAMES.DAT for input and assigns
it the logical name of IN. The READ command specifies the label
ENDIT to receive control when the last record in the file has been read.
The procedure loops until all records in the file have been processed.

RENAME
Format:

RENAME input-file-spec output-file-spec
Purpose:

The RENAME command changes the directory name, file name, file
type, or file version of an existing disk file.

REQUEST
Format: -
REQUEST message-text

66

DIGITAL Command Language

Purpose:

The REQUEST command displays a message at a system operator’s
terminal, and optionally requests a reply. System operators are identi-
fied by the function(s) they perform; if more than one operator is
designated for a particular function, all receive the specified message.

RUN (Image)
Format:
RUN file-spec
Purpose:
The RUN command places an image into execution in the process.

SEARCH
Format:

SEARCH file-spec [,...] string
Purpose:

The SEARCH command allows users to search one or more file for an
occurance of a specified string. It will list all occurances on the user’s
terinal or, optionally, in an output file.

SET
Format:

SET option
where the options are

CARD_READER
COMMAND
INOJCONTROL_Y
DEFAULT
MAGTAPE
MESSAGE
[NOJON
PROCESS
PROTECTION
QUEUE
RMS_DEFAULT
TERMINAL
[NOJVERIFY
WORKING_SET

67

DIGITAL Command Language

Purpose:

The SET command defines or changes, for the current terminal ses-
sion or batch job, characteristics associated with files and devices
owned by the process.

1) SET CARD READER
Format:

SET CARD _READER device-name
Purpose:

The SET CARD_READER command defines the default translation
mode for cards read into a system card reader. All subsequent input
read into the specified card reader will be converted using the speci-
fied mode.

SET COMMAND
Format:

SET COMMAND file-spec [,...]
Purpose:

SET COMMAND invokes the VAX-11 Command Definition Utility to
add commands that are defined in the specified command description
file to your process command set or a command tables file.

2) SETCONTROL Y
Format:

SET [NOJCONTROL_Y
Purpose:

The SET CONTROL_Y command controls whether the command in-
terpreter receives control when CTRL/Y is pressed.

3) SETDEFAULT
Format:

SET DEFAULT device-name
Purpose:

The SET DEFAULT command changes the default device and/or
directory name for the current process. The new default is applied to
all subsequent file specifications that do not explicitly give a device or
directory name.

When the default device assignment is changed, the system equates
the specified device with the legical name SYS$DISK.

68

DIGITAL Command Language-

4) SET MAGTAPE
Format:

SET MAGTAPE device-name]:]
Purpose:

The SET MAGTAPE command defines the default characteristics as-
sociated with a specific magnetic tape device for subsequent file oper-
ations. The SET MAGTAPE command is valid for tape devices that do
not currently have volumes mounted on them, or on which foreign
volumes are mounted.

5) SET MESSAGE
FORMAT:

SET MESSAGE
Purpose:

The SET MESSAGE command allows selection of which fields of the
message get printed.

6) SETON
FORMAT:

SET [NOJON
Purpose:

The SET ON command controls whether the command interpreter
performs error checking following the execution of commands in com-
mand procedures.

Example:

$ SET NOON

$ DELETE *.SAV;*

$ SET ON

$COPY *.OBJ*.SAV

This command procedure routinely copies all object modules into new
files with file types of .SAV. The DELETE command deletes all existing
files with that file type, if any. The SET NOON command ensures that
the procedure will continue execution if there are not currently any
files with that file type. Following the DELETE command, the SET ON
command restores error checking. Then the COPY command makes
copies of all existing files with file types of .OBJ.

69

DIGITAL Command Language

7) SETPROCESS
Format:

SET PROCESS [process-name]
Purpose:

The SET PROCESS command. changes execution characteristics as-
sociated with a process for the current terminal session or job.

8) SETPROTECTION
Format:

SET PROTECTION[=code] [file-spec,...}
Purpose:

The SET PROTECTION command establishes the protection to be
applied to a particular file or a group of files, or establishes the default
protection for all files subsequently created during the terminal
session or batch job. The protection for a file limits the type of access
available to other system users.)

9) SET QUEUE/ENTRY
Format:

SET QUEUE/ENTRY =jobid [queue-name]
Purpose:

The SET QUEUE command changes the current status or attributes of
a file that is queued for printing or for batch job execution but not yet
processed by the system.

10) SETRMS DEFAULT
Format:

SET RMS_DEFAULT
Purpose:

The SET RMS_DEFAULT command defines default values for the mul-
tiblock and multibuffer counts used by the VAX-11 RMS (Record Man-
agement Services) for file operations. Defaults can be set for sequen-
tial or relative files on a process-only or system-wide basis.

11) SETTERMINAL,
Format:
SET TERMINAL [device-name]

70

DIGITAL Command Language

Purpose:

The SET TERMINAL command changes the characteristics of a speci-
fied terminal.

12) SET VERIFY
Format:

SET [NO]VERIFY
Purpose:

The SET VERIFY command controls whether or not command lines in
command procedures are displayed at the terminal or printed in a
batch job log.

Example:

$ SET VERIFY

$ SET NOVERIFY
SEXIT

The verification setting is turned on for the execution of a command
procedure. The system displays all the lines in the procedure,
including command lines, as it reads them. At the end of the pro-
cedure, the SET NOVERIFY command restores the system defaulit.

13) SET WORKING_SET
Format:

SET WORKING_SET
Purpose:

The SET WORKING_SET command redefines the default working set'
size for the process or sets an upper limit to which the working set size
can be changed by an image that the process executes.

SHOW
Format:
SHOW option

Options
[DAY]TIME
DEFAULT
DEVICES
LOGICAL

71

DIGITAL Command Language

MAGTAPE
NETWORK
PRINTER
PROCESS
PROTECTION
QUEUE
RMS_DEFAULT
STATUS
SYMBOL
SYSTEM
TERMINAL
TERMINAL PERMANENT
TRANSLATION
WORKING_SET

Purpose:

The SHOW command displays information about the current status of
the process, the system, or devices in the system.

1) SHOW DAYTIME
Format:

SHOW [DAY]TIME
Purpose:'

The SHOW DAYTIME command displays the current date and time in
the default output stream.)

2) SHOWDEFAULT
Format:

SHOW DEFAULT
Purpose:

The SHOW DEFAULT comménd displays the current default device
and directory name. These defaults are applied whenever a device
and/or directory name from a file specification is omitted.

The default disk and directory are established in the User Authoriza-
tion File. They can be changed during a terminal session or in a batch
job with the SET DEFAULT command, or by reassigning the logical
name SYS$DISK.

3) SHOWDEVICES
Format:
SHOW DEVICES

72

DIGITAL Command Language

Purpose:

The SHOW DEVICES command displays the status of all devices in the
system, the status of a particular device, or lists the devices that cur-
rently have volumes mounted on them and/or are allocated to
processes.

The information displayed includes:

e Device name

e Device status (indicates whether the device is online)

¢ Device characteristics (indicates whether the device is allocated or
spooled, has a volume mounted on it or has a foreign volume
mounted on it)

® Error count
e Volume label (for disk and tape volumes only)
o Number of free blocks on the volume
e Transaction count
o Number of mount requests issued for the volume (disk devices only)
4) SHOWLOGICAL
Format:
SHOW LOGICAL [logical-name[:]
Purpose:

The SHOW LOGICAL command displays all logical names in one or
more logical name tables; or displays the current equivalence name

assigned to a specified logical name by the ASSIGN, ALLOCATE,

DEFINE, or MOUNT commands.

5) SHOW MAGTAPE

Format: ;
SHOW MAGTAPE device-name|[:]

Purpose:

The SHOW MAGTAPE command displays the current characteristics
and status of a specified magnetic tape device, including device type,
density, and format.

6) SHOW NETWORK
Format: _ v
- SHOW NETWORK
Purpose:
The SHOW NETWORK command displays the availability of the local

73

DIGITAL Command Language

node as a member of the network and the names of all nodes that are
currently accessible by the local node.

7) SHOW PRINTER.
Format:

SHOW PRINTER [device-namel:]]
Purpose: , ,
The SHOW PRINTER command displays the default characteristics
currently defined for a system printer; for example, tthe device type,

column-width, lines per page, and if it is currently spooled to any
device.

8) SHOW PROCESS
Format:
SHOW PROCESS
Purpose:
The SHOW PROCESS command displays information about the cur-
rent process, including:
e Date and time the SHOW PROCESS command is issued
e Device name of the current SYS$SINPUT device
User name
Process identification number
Process name
User identification code (UIC).
Base execution priority
Default device
Default directory
® Devices allocated to the process and volumes mounted, if any

9) SHOW PROTECTION
Format: .

SHOW PROTECTION
Purpose:

The SHOW PROTECTION command displays the current file protec-
tion to be applied to all new files created during the terminal session or
batch job. The default protection can be changed at any time with the
SET PROTECTION command.

74

DIGITAL Command Language

10) SHOW QUEUE
Format:
SHOW QUEUE [queue-name]:]]
Purpose:
The SHOW QUEUE command displays the current status of entries in
the printer and/or batch job queues.
11) SHOW QUOTA
Format:
SHOW QUOTA
Purpose:
Displays the current disk quota that is authorized and used by a spe-
cific user on a specific disk.
12) SHOW RMS DEFAULT
Format:
SHOW RMS_DEFAULT
Purpose:
The SHOW RMS DEFAULT command displays the current default

multiblock count and multibuffer count that VAX-11 RMS (Record
Management Services) uses for file operations.

13) SHOW STATUS
Format:

SHOW STATUS
Purpose:

The SHOW STATUS command displays the status of the image cur-
rently executing in the process, if any. The SHOW STATUS command
is issued after execution has been interrupted by enteringa CTRL/C. It
does not affect the image; execution of the image can be continued
after displaying its status.

The information displayed by the SHOW STATUS command includes:
e Currenttime and date '

® Elapsed CPU time used by the current process

o Number of page faults

e Open file count

e Buffered I/0 count

e Direct /0 count

75

DIGITAL Command Language

® Current working set size

e Current amount of physical memory occupied
14) SHOW SYMBOL

Format:

SHOW SYMBOL symbol-name
Purpose:

The SHOW SYMBOL command displays the current value of a local or
global symbol. Symbols are defined with assignment statements (=
command), by passing parameters to a command procedure file, or
by the INQUIRE or READ commands.

15) SHOW SYSTEM
Format:
SHOW SYSTEM
Purpose:
The SHOW SYSTEM command displays a list of processes in the
system and the foliowing information about the status of each:
® Process identification
® Process name
User identification code
Process state
Current priority
Direct I/0 count*
Elapsed CPU time*
Number of page faults*
Physical memory occupied*
Process indicator**

*

This information is displayed only if the process is currently in the balance
set; if the process is not in the balance set, these columns contain the mes-
sage:

-- swapped out --

** The letter B indicates a batch job; the letter S indicates a subprocess; the
letter N indicates a network process.

16) SHOW TERMINAL
Format:
SHOW TERMINAL [device-name]

76

DIGITAL Command Language

Purpose:

The SHOW TERMINAL command displays the current characteristics
of a specific terminal. Each of these characteristics can be changed
with a corresponding option of the SET TERMINAL command.

17) SHOW TRANSLATION
Format:

SHOW TRANSLATION logical-name
Purpose:

The SHOW TRANSLATION command searches the process, group,
and system logical name tables, in that order, for a specified logicai
name and returns the equivaience name of the first match found.

18) SHOW WORKING_SET
Format:

SHOW WORKING_SET
Purpose:

The SHOW WORKING_SET command displays the working set quota
and limit assigned to the current process.

SORT
Format:

SORT input-file-spec output-file-spec
Purpose:

The SORT command invokes the VAX SORT/MERGE utility to reorder
the records in a file into a predefined-sequence, and to create either a
new file of the reordered records or an address file by which they can
be accessed.

If SORT/RSX11 is used, the PDP-11 SORT utility is invoked.
STOP ‘
Format:

STOP [process-name]

Purpose:

The STOP command terminates execution of:

® A command, image, or command-procedure that was interrupted by
CTRL/Y :

77

DIGITAL Command Language

® A command procedure
® A subprocess or a detached process

See also EXIT command.

Example:
0. $ONERRORTHEN STOP

In a command procedure, the ON command establishes a default
action when any error occurs as a result of a command or pro-
gram execution. The STOP command stops all command levels: if
this ON command is executed in @ command procedure that is
executed from within another procedure, control does not return
to the outer procedure, but to the command interpreter.

SUBMIT

Format:
SUBMIT file-spec,...
Purpose: '

The SUBMIT command enters a command procedure in the batch job
queue.
SYNCHRONIZE
Format:
SYNCHRONIZE [job-name]
Purpose:

The SYNCHRONIZE command places the process issuing this com-
mand in a wait state until a speciﬁed batch job completes execution.

Example:

$ SUBMIT/NAME=PREP FORMAT/PARAMETERS =
(SORT,PURGE)
$ SUBMIT PHASER

The first SUBMIT command submits the command procedure FOR-
MAT.COM for execution and gives the job the job name PREP. The
second SUBMIT command queues the procedure PHASER.COM. The
procedure PHASER.COM contains the line:

$ SYNCHRONIZE PREP

When this line is processed, the system verifies whether the batch job
name PREP is currently executing. If it is, the procedure PHASER is
forced to wait until PREP completes execution.

78

DIGITAL Command Language

TYPE
Format:
TYPE file-spec,...

Purpose:

The TYPE command displays the contents of a file or group of files on
the current output device.

UNLOCK
Format:

UNLOCK file-spec,...
Purpose:

The UNLOCK command makes accessible a file that became inacces-
sible as a result of being improperly closed. This can only happen with
compatibility mode images.

WAIT
Format:

WAIT delta-time
Purpose:

The WAIT command places the current process in a wait state until a
specified period of time has elapsed. The WAIT command is provided
for use in command procedures to delay processing of the procedure
or of a set of commands in a procedure for a specific amount of time.

Example:

$ LOOP:

$RUN ALPHA
$ WAIT 00:10
$GOTO LOOP

The command procedure executes the program image ALPHA. After
the RUN command executes the program, the WAIT command delays
execution of the next command for 10 minutes. After 10 minutes, the
GOTO command executes the program again. The procedure loops
until interrupted or terminated.

If the procedure is executed interactively, it can be terminated by
pressing CTRL/C or CTRL/Y and issuing the EXIT command or anoth-
‘er DIGITAL Command Language command that runs a new image in
the process. If the procedure is executed in a batch job, it can be
terminated with the DELETE/ENTRY command.

79

DIGITAL Command Language

WRITE
Format:
WRITE logical-name data,...
Purpose:
The WRITE command writes a record to a specified output file.
Example:
$WRITE SYS$OUTPUT “Beginning second phase of tests”

The WRITE command writes a single line of text to the current output
device. This command is particularly useful for displaying information
on the terminal from a command procedure.

80

81

CHAPTER OVERVIEW

Special notice needs to be given to some of the important program-
ming support facilities of a VAX/VMS operating system. Three text
editors—interactive and batch—are described with examples in this
chapter. The linker, a crucial VAX/VMS utility, is explained. VAX DE-
BUG can help programmers step through their code to detect and
correct logical and coding errors. The extensive VAX Run-Time Libra-
ry, which holds coded algorithms ready for linking into user
processes, is treated, as is the DIGITAL Standard RUNOFF utility.
Topics include:

e Text Editors

® The Linker

¢ VAX DEBUG

® The VAX Run-Time Library

e The DIGITAL Standard RUNOFF Utility

e VAX-11 SORT/MERGE

® Optional Code Management System

82

CHAPTER 4
PROGRAMMING SUPPORT FACILITIES

INTRODUCTION

The VAX/VMS operating system provides a complete program de-
velopment environment for the user. Development tools supporting
this environment are interactive and batch text editors, a linker, a
librarian, an interactive program debugger, and the differences utili-
ty. These tools, as well as program language compilers, are avail-
able to the programmer via the command language facility.

The text editors can be used to create memos, documentation, and
text and data files, as well as source program modules for any
language processor. The linker, librarian, debugger, and Run-Time
Library are used only in conjunction with the language processors
that produce native code. Each of the support utilities is described
below, with the exception of the librarian, which is discussed in
Chapter 3, The DIGITAL Command Language.

TEXT EDITORS

The VAX/VMS operating system supports three text editors: two
interactive text editors (EDT and SOS) and a batch-oriented text
editor (SLP). Text editing refers to the process of creating, modify-
ing, and maintaining files.

The user invokes the EDT and SOS text editors interactively with the
computer system. That is, the user creates and processes files
online. The SLP text editor, on the other hand, allows direct modifi-
cation to an information file via an instruction file prepared by the
user. In addition, SLP generates a formal and complete record of
changes to a file including time of occurrence. SOS is often used to
create SLP command files. All editors are invoked by the command
language command EDIT. The default editor is EDT. Therefore, to
invoke EDT, enter EDIT or EDIT/EDT; to invoke SOS, enter the com-
mand EDIT/SOS; to invoke SLP, enter EDIT/SLP.

THE EDT EDITOR
EDT, the DIGITAL standard Editor, lets users enter and manipulate
text and programs. It is used to view and modify a file directly.

With its extensive HELP facility, the EDT editor is designed to be
learned by novices. In addition, it provides many capabilities that
will appeal to advanced users.

83

Programming Support Facilities

What EDT Does

EDT is a powerful text editor that provides:

e Both line and character editing facilities

® Screen editing using the keypad on VT52 and VT100 video terminals
e The ability to work on multiple files simultaneously

® A journaling facility which protects against loss of edits due to sys-
~tem crashes

® An extensive HELP facnhty ‘

e A default start-up command file, which allows a choice of editing
options to be set automatically

e A window into a file (on VT52 and VT100 terminals only) that lets
users view changes in buffer contents immediately :

e Shareable installation for multiple users

EDT is also supported on hardcopy terminals, but it does not provide
the window on a file. .

Buffers o)

_All editing with EDT is done using ‘buffers’. A buffer is a part of EDT's
memory that can hold an essentially unlimited amount of text. When a
user begins editing, the input file is read into the MAIN buffer, and
when editing is complete, the MAIN buffer is written onto the disk as a
file. Thus, editing in the MAIN buffer is like editing a file directly.

Editing with a Window '

‘Window editing’ is a valuable feature that lets the user edit one 22-line
window (screenful) at a time. This feature allows the user to see im-
mediately how the edits made affect the buffer. The window moves
through the buffer so that the cursor is always visible.

Start-Up File

When a user starts EDT, the editor checks to see if the user created a
start-up file. Editing options, such as SET MODE CHANGE and
DEFINE KEY, can be inserted in the start-up file. These options take
effect automatically when an editing session begins.

HELP Facilities

The HELP facilities on EDT are extensive. A user can get help on.
general EDT operations by typing HELP. If help is needed while in
keypad mode, pressing the help key displays information that is spe-
cific to keypad editing. The help information is tree-structured, so that
more specific help can be obtained on a general topic.

84

Programming Support Facilities

Redefining Keypad Keys

A user can redefine any of the keypad keys and most of the control
(CTRL) keys on VT52 and VT100 terminals. With this feature, a series
of commands can be assigned to a key. EDT then performs these
commands when the key is pressed.

The SET and SHOW Commands

The SET command, with a variety of qualifiers, affects EDT’s editing
capabilities. SET controls screen parameters such as line width. SET
also lets the user determine the appearance of text, such as changing
the window size to less that 22 lines. The SHOW command provides
information on the current state of the editor, such as terminal param-
eters, definitions of keypad keys, and the names of buffers in use
during an editing session.

Journal Processing

Journal processing protects the user’s work against system crashes.
During an editing session, EDT saves all the input from a terminal ina
journal file. After a crash and recovery, the user can retrieve and
execute commands in this saved file with the /RECOVER option. In
this way, a file can be recovered to nearly the time of the crash.

EDT MODES OF OPERATION

Keypad and Line Editing

With EDT there is a choice of keypad or line mode editing. They allow
the user to:

e Display arange of lines

® Find, substitute, insert, and delete text

® Move, copy, and renumber lines

e Copy text into a buffer and write it on files

e Define the functions of keys

Keypad editing is available on VT52 and VT100 terminals. The group
of keys at the right of the keyboard are used to enter keypad functions.

Keypad editing is powerful and versatile, yet it is easy to learn and use.
In keypad. editing, the active buffer is displayed on the screen as the
user edits. There is a wide variety of keypad editing functions, each of
which requires that only one or two keypad keys be pressed to per-
form a function. The user enters commands, inserts text, and per-
forms CONTROL functions from the keyboard.

Line editing is useful for those users who have hardcopy terminals or
who prefer editing by numbered lines. In line editing, all entries are
made from the keyboard. As the user makes changes to the contents
of the buffer, EDT displays one or more lines at a time.

85

Programming Support Facilities

Keypad Layout

Keypad functions allow the user to perform a variety of operations with
a single keystroke. Using the DEFINE KEY command, the function of
any keypad key can be changed. The Figure 4-1 shows the default
keypad for the VT 100:

Fndnxt Del L
Gold Help
Find Und L
Page Sect Append Del W
Command Fill Replace Und W
Advance Backup Cut Del C
Bottom Top Paste Und C
Word Eol Char
Enter
Chngcase Del Eol Specins

Line Select Subs

Open Line Reset

Figure 4-1 VT100 Keypad

Backspace Go to the beginning of line
Delete Delete character
Linefeed Delete to start of word
CTRL/A Compute tab level
CTRL/D Decrease tab level
CTRL/E Increase tab level
CTRL/K Define key

CTRL/T Adjust tabs

CTRL/U Delete to start of line
CTRL/W Refresh screen
CTRL/Z Returnto line mode

The commands in keypad editing let the user alter. or change the
cursor position in the buffer. Some of the keypad functions let the user
advance or back up the cursor to the top or bottom of the text. The
cursor may also be moved any number of characters, words, lines, or
pages at a time.

Keypad keys let the user select a string of text and move it elsewhere
in any of the user’s buffers. The next occurence of a certain piece of
text can be found and deleted or replaced. There is also a key to press
for help messages.

86

Programming Support Facilities

A SAMPLE SESSION WITH EDT
To begin an editing session with EDT, the user logs in and types EDIT
or EDIT/EDT. A prompt appears to let the user start the editor:

$ EDIT <RET>
$-File:
Creating a File
To create afile, type the file name after the prompt:
$-File: TEST<RET>
EDT notifies the user that no file with that name exists by responding:

Input file does not exist
[EOB]

[EOB] means the “End of the Buffer” in the MAIN buffer. The asterisk
prompt indicates that EDT is in line mode. When EDT is in line mode,
the buffer can be edited by individual lines.

Entering Text in Line Mode

The first entry in the buffer is an insertion. When “i” is typed to insert
and then the RETURN key is pressed, any text entered is indented two
tab spaces.

*i<RET>
‘Twas brillig, and the slithy toves<RET>
Did gyre and gimble in the wabe; <RET>
All mimsy were the borogoves,<RET>
And the mome raths outgrabe<RET>
1z

[EOB]

4Z (CTRL/Z) is typed to save insertions.

Range Specifications in Line Mode

A range specification expresses the part of the buffer on which a
command is to operate. There are various ways of expressing range
specifications in line mode. Some examples follow:

1. Type the whole buffer.

*tw<RET>
1 " ‘Twas brillig, and the slithy toves
2 Did gyre and gimble in the wabe;
3 All mimsy were the borogoves,
4 And the mome raths outgrabe.
[EOB]

87

Programming Support Facilities

Type the second line.

*2<RET>
2 Did gyre and gimble in the wabe;

*

Type the rest of the buffer.

*tr<RET>
2 Did gyre and gimble in the wabe;
3 All mimsy were the borogoves,
4 And the mome raths outgrabe.
[EOB] ' '

Type every line in the buffer that contains the word “and.”

*tall ‘and’<RET> .
1 : ‘Twas brillig, and the slithy toves

2 Did gyre and gimble in the wabe;
4 And the mome raths Qutprabe.

Deleting and Replacing Text

Range specifications are useful not only for displaying Imes but also
for manipulating text. The following examples show how to delete and

replace text in the buffer.

The /QUERY option (/Q) can be used to decide whether or not to
change individual lines. EDT responds to the /QUERY option with a ?
prompt. A carriage return after this prompt causes EDT to print help

information

1.

Suppose the user wants to delete either line 2 or 3 The /QUERY

option can be used to read them first.

*D2:3/Q<RET> o

2 Did gyre and gimble in the wabé;
?<RET> ’ T
Please answer Y(es), N(0), Q(uit), or A(ll)
2N

3 All mimsy were the borogoves,
?2Y<RET>
1 line deleted _ ,

4 And the mome raths outgrabe.

*

88

Programming Support Facilities

Notice that EDT displays the next line in the text. The file now looks like
this:

1. *tw<RET>
1 ‘Twas brillig, and the slithy toves
2 Did gyre and gimble in the wabe;
4 And the mome raths outgrabe.
[EOB]

The line numbers can be resequenced in the buffer with the following
command:

1. *res 1:4<RET>
3 lines resequenced

EDT checks lines 1 through 4 and renumbers them in increments of 1.
In this case, simply typing res<RET> would have done as well, since
the resequence command defaults to the whole buffer.

2. Replace the new line 3 with two more lines.

*re 3<RET>
1 line deleted
While grimply at her terminal
The snofu mumped agrabe.
1z
[EOB]

Notice that the . REPLACE command deletes the line you specify and
puts EDT in the insert level of line mode. Exiting with CTRL/Z confirms
that the text is to be inserted. The file now looks like this:

1. *tw :
1 ‘Twas brillig, and the slithy toves
2 Did gyre and gimble in the wabe;
3 While grimply at her terminal
4 The snofu mumped agrabe.
[EOB]

Entering Change Mode

For a VT52 or VT100 terminal, the easiest way to edit a file is with
keypad functions. The default mode can be reset for video terminals
with the SET KEYPAD command. When the user types an abbreviation
for change mode (C, CH, or CHA) he or she automatically enters the
keypad submode of change mode:

*CH<RET>

89

Programming Support Facilities

The screen clears, and then the contents of the buffer appear in the
upper left of the screen. The cursor appears as an underscore under
the first character in the file. The cursor appears on the first character
in the buffer. Everything typed at this point is inserted directly into the
buffer.

Using the Keypad .
To move the cursor to the bottom of the buffer, the GOLD key is
pressed and then the BOTTOM key. The buffer appears as shown:

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.
This is Line 1.
[EOB]

Any characters that typed on the main keyboard are inserted before
the cursor:

But none was more beguiling<RET>
Than keypad EDT.<RET>
[EOB]

If the up-arrow key is pressed twice, the cursor will be moved up two
lines. The screen would then look like this:

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.

But none was more beguiling
Than keypad EDT.

[EOB]

A section of text can be moved about in the buffer with the CUT and
PASTE commands. The following shows how to move the last two lines
to the beginning of the buffer:

1. Mark the start of the lines by pressing the SELECT key

2. Move the cursor to the end of the lines (just above [EOB]) by
pressing the down arrow key twice

3. Press the CUT key to insert the two lines into the paste buffer. The
lines will disappear from the screen

4. Move the cursor to the top of the file by pressing the GOLD key
and then the TOP key

90

Programming Support Facilities

5. Press the GOLD key and then the PASTE key to place the
contents of the paste buffer at the start of the buffer being edited

The file now looks like this:

But none was more beguiling
Than keypad EDT.

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
While grimply at her terminal
The snofu mumped agrabe.

[EOB]

The GOLD and PASTE keys can be pressed for as many times as
these two lines are to be duplicated.

Returning to Command Level

To write out the buffer and exit change mode, the user enters a
CTRL/Z. This returns the user to the asterisk prompt in line mode.
Next, the-user types “EX” (for EXIT) after the prompt:

*EX<RET>

Typing EXIT displays a message on the status of the file just edited:
DBA1:[USER]TEST.;17 lines

$

If the file is a practice file, the user types “QUIT” instead:

*QUIT<RET>

QUIT returns the user to the operating system’s command level
prompt without writing out the MAIN buffer.

THE SOS EDITOR _

The SOS editor is a line-oriented, interactive text-editing program. It
has features that allow examination and modification of text, character
by character. The SOS editor can be used to perform the following
functions:

® Examine, create, and modify ASCII files

® Search for and/or change one or more arbitrary text strings, with the
option to verify each change before it is made

® Merge parts of one file into another
e Create a file that is a subset of another file

91

Programming Support Facilities

Because the SOS editor is line-oriented, it operates with line-num-
bered text files. If a file is edited that does not contain line numbers,
the editor adds line numbers to the text lines. The SOS editor requires
the maintenance of line numbers within the file. For most SOS com-
mands, a line number or range of line numbers specifies the text to be
operated on. When commanded to insert, delete, move, or copy text,
The SOS editor maintains line numbers in ascending order within
each page of text.

In certain modes of operation, the SOS editor responds on a charac-
ter-by-character basis. For example, one SOS feature that exhibits
this character-by-character interactivity is the Alter mode. This special
mode permits interactive changes within a line of text. Alter mode has
its own commands and syntax; it functions essentially as an editor
within an editor. ‘

Advanced features of SOS allow considerable flexibility in searching
for a string of text and allow specification of blocks of text by content,
instead of by line number. SOS features many user-controlied default
values.

Initiating and Terminating SOS
The SOS editor is initiated by entering one of the following commands
in response to the command language prompt:

$ EDIT/SOS file-spec <RET>
To terminate SOS, enter the command E (EXIT) after the SOS editor’s
prompt
C):

*E<RET>

[file-spec]

$

Upon terminating, the editor writes an output file containing all the
modifications made in editing the file. The original file is not changed.
The specifier that the SOS editor uses for the output file has a version
number higher by 1than the latest version of the original file.

SOS Modes of Operation

The SOS editor is capable of operating in various modes. A mode of
operation is a state in which the editor interprets terminal input.in a
distinctive way. Edit mode is the foundation. of SOS, from which the
other modes can be accessed. The SOS editor can be initiated as
follows:) '

92

Programming Support Facilities

e Input mode—allows the insertion of one or more new lines of text
into a file. Input mode is entered either directly via the command
language or via the Edit mode

e Edit mode—allows extensive modification, additions to, and dele-
tions from an existing file

The SOS editor includes many advanced features. These features
allow the user to search through files without editing, copy parts of
files, alter individual lines interactively, and decide on text
substitutions interactively.

Input Mode

The SOS Input mode is used for creating new files or adding lines to a
file. Input may be entered either directly via the command language or
via the Edit mode. SOS Input mode is invoked if the file being refer-
enced does not exist. Therefore, SOS creates a file with the specified
name and waits to process input entry as illustrated below:

$ EDIT/SOS NEW.FOR <RET>
SOS VERSION V02.02D2

INPUT:SYSO:[TERRY]NEW.FOR.1
00100

The SOS editor prints the word INPUT before the file-spec, indicating
that it is creating a new file and operating within the Input mode. While
in the Input mode, SOS prompts the user by printing the line number
of the line to be entered. The user must terminate each new line of text
with a carriage return character, <RET>. To correct typing errors
while entering text, use the terminal control characters described in
Chapter 3.

After completing the input process, switch to Edit mode by entering an
escape character, <ESC>. The escape character on other terminals
may appear as either ALTmode or SELect. The escape character may
be entered either at the end of a line of input or after SOS prompts with
the next line number. The SOS editor follows the user-entered escape
character by printing an asterisk (*), indicating Edit mode.

While in Edit mode, modifications may be made to the new file by
using other Edit mode commands or Alter mode commands. Upon
completion of all modifications, SOS can be terminated by entering
the E command. If it is necessary to enter lines of text into an existing
file, use either the Input or Replace commands in the Edit mode.

Edit Mode
The Edit mode constitutes the major part of the SOS editor. With the
exception of the Read-only mode, the user is able to switch to any of

93

Programming Support Facilities

the other modes of operation from the Edit mode and return. SOS
accepts 24 commands in Edit mode, many of which can be represent-
ed by a single character. Table 4-1 describes each of the Edit mode

commands.

To initiate SOS in Edit mode, enter the file-spec of an existing file
either on the Edit command line or in response to the SOS prompt as

illustrated below:

$ EDIT/SOS <RET>
SOS VERSION Vv02.02D2
File:PROG2.COB<RET>

EDIT:SYO0:[EMILY]PROG2.COB.4

Table 4-1 Common Edit Mode Commands

Form Command

C ~ Copy
Delete

E End

F Find-

H Help

| Input

N reNumber

P ~Print

R Replace

94

Description

Copy arange of lines to another
place within a file, or from
another file

Delete a range of lines

Terminate SOS, return to com-
mand language monitor

Search for the occurrence of
one or more specified strings of
text

Print HELP facility on terminal

Enter Input mode to insert lines
of text

Renumber a range of lines

Priht arange of lines on the ter-
minal

Delete arange of lines and enter
Input mode

Programming Support Facilities

Table 4-1 Common Edit Mode Commands

Form Command Description

S Substitute Replace one or more text
strings with other string(s) in a
range of lines

T Transfer Copy arange of lines to a new
location and delete the original
lines

w Save World Write a new file containing all

the changes made so far and
continue editing

<RET> Print next line
<ESC> Print previous line
SOS Examples

Copy command

1) C300,9000:95000
Make a copy of lines numbered 9000-9500 and insert the
lines after line 300.

Delete command
1) D1700:1750

Delete lines numbered 1700 through 1750.

2) D400
Delete line numbered 400.

Find command
1) Fmore<ESC>

Search for “more” from the current point in the file.

2) Fmore<ESC>,1:1000
Search for the first occurrence of “more” in the range of lines
from 1 through 1000.

95

Programming Support Facilities

Input command
1) 11200,5

Insert lines following line 1200 with new lines being numbered
with increment 5.

Print command

1) P500:800
Print lines 500 through 800.
2) P1800

Print line numbered 1800.

Replace command
1) R1700:1750,5

Delete lines 1700 through 1750 and insert starting at 1700
with line increment of 5.

Substitute command
1) Smore<ESC>less<ESC>,500:800

Change ail occurrences of “more” into “less” on lines num-
bered 500 through 800.

Transfer command
1) T300,9000:9500

Move all lines numbered 9000 through 9500 to a point follow-
ing line 300, deleting the lines in the old location.

THE SLP EDITOR

The SLP editor is the batch-oriented editing program used for source
file maintenance. It allows updating (deletion, replacement, addition)
of lines in an existing file. Furthermore, the SLP editor generates a
record of editing modifications. The SLP command file provides a
reliable method of duplicating the changes made to a file, at a later
time or on another computer system.

Input to the SLP editor consists of a correction input file that is to be
updated, and command input containing text lines and edit command
lines that specify the update operations to be performed. SLP locates
lines to be changed by means of locators (sequence numbers or char-
acter strings). Command input normally enters through an indirect file

96

Programming Support Facilities

that contains commands and text input lines to be inserted into the file.
Alternatively, commands can be entered from the terminal.

SLP output is a listing file and an updated copy of the corrected input
file. SLP provides an audit trail that helps keep track of the update
status of each line in the file. The audit trail is provided in the listing
and is included permanently in the output file. When a given file is
updated with successive versions of an SLP command file, different
audit trails may be used to differentiate between changes made at
various times.

SLP output qualifiers permit the user to create or suppress an audit
trail, eliminate an existing audit trail, specify the length and beginning
position of the audit trail, or generate a double-spaced listing.

Initiating and Terminating SLP

SLP is initiated via the command language EDIT command. The nor-
mal way to use the SLP editor is to specify an indirect command file
that informs SLP what files to process, and indicates what editing
changes are to be made to the correction input file. The indirect file
can be specified on the same line with the EDIT command, or on a
separate line. The indirect file must be created before running SLP.
The interactive text editor SOS is normally used to create SLP indirect
command files. If both new and old versions of the file exist, the differ-
ences utility (see Chapter 3) can be used to create a SLP correction file
that will change the old file into the new one.

SLP Input and Output Files _

The SLP editor requires two types of input: a correction input file and
command input. The correction input file is the source file to be updat-
ed using SLP. Command input consists of an initialization line,
followed by SLP edit commands that indicate how the file is to be
changed.

SLP output consists of a listing file and an output file. The listing file is
a copy of the output file with sequence numbers added; it shows the
changes SLP makes to the correction input file. The output file is the
permanently updated copy of the input file that resides on the system.

The Correction Input File
The correction input file is the file to be updated by SLP. It can contain
any number of lines of text. When SLP processes the correction input
file, it makes the changes specified by SLP edit commands with an
audit trail in the output file.

97

Programming Support Facilities

Command Input

The SLP editor uses command input to update files. Normally, SLP
reads command input from an indirect file; alternatively, the user can
enter commands from the terminal. Command input consists of:

® An initialization line that informs SLP what files to process

e SLP edit command lines that define changes to the input file
o New lines of text to insert into the output file

¢ A command terminator—a single slash in Column 1

The SLP Listing File

The SLP listing file shows the updates made to the source file. Each
line in the listing file is numbered in sequence. Updates are marked by
means of an audit trail (unless the qualifier that suppresses audit trail
generation is specified).

The SLP Output File

The SLP output file is the updated input file. All of the updates speci-
fied by the command input are inserted in this file. A default audit trail,
unless suppressed, is applied to lines changed by the update. The
numbers generated by SLP for the listing file do not appear in the
output file.

Specifying SLP Edit Commands

The SLP edit commands permit updating source files by adding, de-
leting, and replacing lines in a file. SLP edit commands are marked by
certain characters that SLP interprets as operators. '

SLP Operators

The SLP editor interprets each of the following characters, when en-
tered as the first character of an input file, as special operators: the
minus sign (—), the backslash (\), the percent sign (%), the at sign (@),
the slash (/),.and the less-than character (<). Table 4-2 lists each of
these operators and the functions they perform.

The less-than character (<) is the escape character that allows char-
acters that SLP otherwise would interpret as operators to be entered
in the command input (in.column 1). For example, </ hides the slash
character from SLP, thereby enabling slash entry into the output file
without terminating the SLP edit session. The less-than character can
be used as an escape character for all SLP operators listed in Table 4-
2 (including itself). ‘

98

Programming Support Facilities

Table 4-2 SLP Operators

Operator Function

— First character of an SLP edit command

\ Suppress audit-trail processing

% Re-enable audit-trail processing

@ Invoke an indirect file for SLP processing

/ Terminate the edit session and return to SLP

command level

< Escape character

General Form of the Edit Command
The general form of the SLP command is as follows:

—locator1[,locator2][,/audittrail/][;comment]
inputline :

where:
—(minus) Specifies that this is an SLP edit command line

locator1 A line locator that causes SLP to move the current
line pointer to a specified line. If only locator1 is
specified, the current line pointer is moved to that
line and SLP reads the next line in the edit com-
mand file

locator2 A line locator that defines a range of lines (that is,
the range beginning with locator1 and ending with
locator?2) to be deleted or replaced

/audittrail/ A character string used to keep track of the up-
date status of each line in the file. This audit trail is
used to mark new or replaced lines in the file until
the audit trail is either changed or suppressed.
This argument must be delimited by a slash (/)

inputline A line of new text to be inserted into the file im-
' mediately following the current line. Any number
of input lines can be entered

99

Programming Support Facilities

;comment An optional comment. SLP ignores any text after
a semicolon

All fields in the command line are position-dependent; commas must
be specified.

The locator fields can take one of the following forms:

(/string[...string]/)
(number) [+n]
«) »
String, number, n, and period (.)are defined as follows:

string A string of ASCII characters. SLP locates the next
line in which the string exists and moves the cur-
rent line pointer to that line. If the locator is
specified in the form /string...string/ (that is, two
different strings of characters separated by three
periods), SLP locates the line in which the two
character strings delimit a larger character string

number Specifies a sequence number to which the cur-
rent line pointer is to be moved. The largest se-
quence number that can be specified is 9999

n Specifies a decimal value used as an offset from
the line specified by the locator

. (périod)’ Indicates the current line

All forms of the line locator can be specified interchangeably in a
command line.

SLP can edit files sequentially only. Once the current line pointer
moves past a given line in the file, it can not be returned. The file must
be closed by typing CTRL/Z, and another SLP edit session invoked.

SLP Examples
1) -350
Performs insert following the 350th line
2) -17,23
Deletes the 17th through 23rd lines

LINKER

Before a source-language program can be run on VAX/VMS, it must
be assembled or compiled by a language processor and then linked.
The Language processors translate user-written source programs into
object modules. The VAX-11 Linker binds these object modules into
an image that can be executed by the VAX system.

100

Programming Support Facilities

Not all computer systems employ a linker; in some, the work of the
linker is assumed by the language processors and what is called a
“loader”. But the linker offers programmers on VAX/VMS greater flex-
ibility in choosing and mixing languages, and simplifies and extends
the modern approach of modular programming.

Input to the Linker

There are two basic forms of input processed by the linker: object
modules and shareable images. They are introduced to the linker as
part of the input files specified in the LINK command. The linker will
accept one or more of the following kinds of input files:

® Object file

® Shareable image file

® Symbol table file

® Library file

e Options file

The object file can contain one or more object modules. This file has
file-type OBJ. It is the fundamental input to the linker and at least one
object file must be specified with any LINK command.

The shareable image file is the product of a previous linking operation,
but one which is by itself not executable. It can serve only as input to
another linking operation. The shareable image file can only be speci-
fied in the options file and is indicated there by the /SHAREABLE
qualifier.

The symbol table file is also a product of a previous linking operation.
It may be specified when linking so that the linker can use the symbol
values to resolve undefined symbols in other object modules. A sym-
bol table file has the file type STB.

There are two kinds of library files: object and shareable image. Of
these there are both system libraries (maintained by VMS) and user
Libraries (created by the DCL command, LIBRARY). Library files are
used by the linker either to resolve undefined symbols, or as a source
for particular object modules or shareable images specified with the
/INCLUDE qualifer in the LINK command.

The options file is not really input to the linker, in'the same sense the
other files mentioned are input; rather, it is a tool for managing the
linking operation and for simplifying the use of complex and often-
repeated linker operations. (This is, in a way, analogous to the use of
DCL command procedures for complex or commonly used command
sequences.) A linker options file can contain one or more input file
specifications, including qualifiers or special linker options that cannot
" be specified in the DCL LINK command line.

101

Programming Support Facilities

Output of the Linker
The linker will generate one of three types of images:

e Executable

® Shareable

® System

and an optional image map and/or symbol table.

The most common output of the linker is the executable image. It is the

end product of program development. It has the file type EXE and can
be run by the DCL command, RUN.

A shareable image, on the other hand, cannot be executed directly. It
must be linked with one or more object modules to produce an execu-
table image. It contains an image header, one or more image sections,
and a symbol table that defines universal symbols in the shareable
image.

A system image is one that does not run under the control of the
operating system, but is intended to run stand-alone on a VAX.
VAX/VMS is a system vmage

If the /MAP qualifier is specified in the LINK command the linker will
generate one or more of the following (at the user’s option) in an image
map file:

® An object module synopsis

® A module relocatable reference synopsis

® Animage section synopsis

® A program section synopsis

¢ Alist of symbols by name

® Alist of symbols by value

® Link run statistics

If the /SYMBOL_TABLE qualifier is specified, the linker will generate a

symbol table file that can serve as inputto a subsequent linking opera-
tion.

Action of the Linker
In the process of creating an image the linker performs three major
tasks:

e resolution of symbolic references

e allocation of virtual memory

® image initialization ,

The following sections describe these processes in some detail.

102

Programming Support Facilities

Resolution of Symbolic References

A symbol is a name associated with a program location or a value. Any
reference to a symbol, other than the definitive reference, must be
resolved. For example:

JMP SYMBOL_1 (Jump to where?)
or
ADD SYMBOL_A,SYMBOL_B (Add what to what?)

Somewhere, SYMBOL_1 must be defined as a location of an instruc-
tion or the beginning of a subroutine. Similarly, SYMBOL_A and SYM-
BOL_B must have had values assigned to them.

References to local symbols (that is, symbols defined and used entire-
ly within the module) are resolved by the language processor, but
references to global symbols (those that can be referred to by
modules other than the defining module) and universal symbols (those
referenced outside of a shareable image) must be resolved by the
linker.

Since universal symbols are in fact global symbols that are available to
modules outside of a shareable image, the process whereby the linker
resolves global and universal symbols is the same. During its first pass
through the linking operation, the linker records each symbol refer-
ence and definition in a global symbol table. When the linker seeks to
resolve a symbol reference, it first searches modules named in the
command line (with /INCLUDE), then user libraries, and finally system
default libraries.

Memory Allocation

By the end of its first pass, the linker has processed all the input
modules and library modules needed to resolve undefined symbols,
and knows how large the final image will be, but it still needs to organ-
ize the image and allocate virtual memory.

The linker organizes the image on three levels: cluster, image section,
and program section.

Clusters are determined in three ways:

e The default cluster (generated by the linker)

e User defined clusters (generated by the CLUSTERS = option)

® Shareable image clusters (one for each shareable image)

Image sections are created by gathering program sections (psects)
with similar attributes. Those attributes include writeability, executea-
bility, shareability, position-independence, and protected vector.

103

Programming Support Facilities

Program sections and their attributes are determined by the language
and, optionally, by the user, either through directives to the language
processor (for example, .PSECT in MACRO) or by the PSEC_ATTR
option in the linker options file.

The linker processes each cluster, one at a time—with the exception of
non-based, or position-independent, shareable images, which are al-
located virtual memory by the image activator at runtime. In
processing all other clusters, the linker organizes the psects within
each cluster into image sections. Then the clusters are assigned virtu-
al address space and the image section descriptor (ISD) of each im-
age section is updated to include the starting virtual address of the
image section.

Image Initialization

After resolving references and allocating memory, the linker filis in the
actual contents of the image. Primarily, initialization consists of copy-
ing all data and code into a single image; but the linker performs two
other functions at this stage:

e Computes values that depend on externally defined fields

® Inserts these values into the referencing location

Fix-up Image Section ~

After it has initialized the image, the linker will generate a special
image section, called the fix-up image section. This image section
contains the code that makes otherwise position- dependent shareable
images position independent. .

The general addressing mode is used to reference routines and data
contained in a shareable image. The linker converts general address-
ing mode directives into longword deferred addressing mode, with
indirecion going through the fix-up image section. Failure to use
general addressing mode when referencing a shareable |mage will
elicit a warning message.

Ail DIGITAL VAX-11 hlgh -level languages generate position-indepen-
dent code.

Shareable Images

An important benefit of the Imker—perhaps the most |mportant bene-
fit—is that it allows the use of shareable images. An effective applica-
tion of shareable images can help to conserve valuable resources in
the users operating environment. For example, physical memory re-
quirements would be reduced if global sections (one for.each image
section of a shareable image) used commonly among processes could
be resident in memory and mapped into their address space, thus the

104

Programming Support Facilities

same physical pages satisfy a number of processes, reducing
duplication. So, too, can the user conserve disk storage and reduce
paging I/0, when sharing replaces duplication.

One of the reasons modular programming is so attractive, is that a
commonly used routine or function can be developed or modified
once, then incorporated into any number of programs. The use of
shareable images carries this efficient practice a step further. The
modules that make up a shareable image are linked only once, so the
overhead of resolving undefined symbols (within the image) and gen-
erating image sections—the bulk of the linkers work—is incurred only
once, facilitating another level of modular hierachy. Furthermore,
since a position-independent shareable image is aliocated virtual
memory by the image activator at runtime, the code it comprises can
be modified and updated without having to re-link every program that
uses that image.

The LINK Command
The linker is run by the DCL command:

$ LINK [/command-qualifier...] file-spec [/file-qualifier...]...

At least one input file must be specified. There can be multiple com-
mand qualifiers, multiple file specifications, and multiple qualifiers for
each file specified.

VAX DEBUG

The VAX DEBUG program is a language-independent, interactive,
symbolic debugger that works with programs written in most of the
languages supported by the VAX/VMS operating system. Current lan-
guages for which the debugger works are: VAX-11 FORTRAN, VAX-11
BASIC, VAX-11 COBOL, VAX-11 PASCAL, VAX-11 PL/I, VAX-11
BLISS-32, and the VAX-11 MACRO assembly language.

DEBUG enables dynamic examination and modification of the con-
tents of memory locations, which is useful for finding errors in pro-
grams. Breakpoints may be set to stop program execution at specific
points, and critical code sections can be single-stepped— line by line
or instruction by instruction—to verify correct execution. Since user
program execution is controlled by DEBUG once it is invoked, modifi-
cations may be made to the program while it is executing.

Linking DEBUG with the User Program

Before DEBUG can process the user program, it-must be linked to it.
This can be accomplished by specifying the /DEBUG quallfler in the
LINK command as follows:

$LINK/DEBUG PROG1

105

Programming Support Facilities

This links the debugger to the user process called PROG1. Subse-
quent execution of the program is controlled by the debugger.

DEBUG Execution
Once linked, the process begins execution under the control of
DEBUG after the RUN command has been entered:

$ RUN PROG1

As a response to this command, DEBUG will issue an identification
message that verifies its control of the program; that is followed by a
prompt for additional DEBUG commands:

$RUN PROGH1
. VAX-11 DEBUG Version 3.0-3
DBG>
(Note: DBG> is the DEBUG prompt symbol.)

The programmer may now enter a series of DEBUG commands to
manipulate the execution according to program needs.

DEBUG Commands

DEBUG commands direct the execution of the program and can be
used to aid the programmer in the debugging process. The DEBUG
commands can:

1. Specify points at which execution will be suspended, when and if
they are encountered, by using the SET BREAK command

2. Trace the sequence of program execution by means of the SET
TRACE command. This command establishes tracepoints in the
program

3. Display before-and-after values of a location whenever that loca-
tion is stored into, by means of the SET WATCH command

4. Initiate or resume execution, by means of the GO command

5. Execute a single line or instruction of the program by means of the
STEP command

6. Determine the location of breakpoi'nts, tracepoints, and watch-
points by means of the commands SHOW BREAK, SHOW
TRACE, SHOW WATCH, respectively

7. Erase breakpoints, tracepoints, and watchpoints in the program,
through use of the CANCEL command

8. Display the contents of variables or memory locations, by using
the EXAMINE command

9. Change the contents of variables or memory locations, by using
the DEPOSIT command

106

Programming Support Facilities

10. Obtain the value of an expression or the current address of a
symbol by using the EVALUATE command

11. Call a subroutine at DEBUG time, by means of the CALL com-
mand

12. Change values of parameters for LANGUAGE, SCOPE, MODE,
and TYPE - .

13. Specify an arbitrary file name for the DEBUG log file by means of
the SET LOG command

14. Control DEBUG I/0 at debug time, via the SET OUTPUT com-
mand. This includes normal terminal output, log file output, and
command file verification

15. Find all current output attributes (VERIFY, TERMINAL and LOG)
by using the SHOW OUTPUT command. For more limited needs,
a SHOW LOG command is available that displays only the LOG
data

16. Instruct DEBUG to take commands from a specified file by means
of @Filespec

17. Display source lines with compiler-assigned listing line numbers
(for some languages only)

SET Command

The SET command is used in a variety of ways to establish one or
more conditions pertinent to DEBUG. It has the form:

SET keyword parameter

Table 4-3 summarizes the values that may be used for keyword and
parameter.

107

Keyword

LANGUAGE

BREAK

TRACE

WATCH

Programming Support Facilities

Table 4-3 SET Command Summary

Parameter

Language-name

address
[DO(DEBUG
commands)]

“address

address

108

Function

Specifies the lan-
guage characteris-
tics to be used by
DEBUG

DBG> SET LAN-
GUAGE FORTRAN

Sets a breakpoint at
alocation in the pro-
gram; optionally
specifies com-
mands to be per-
formed when pro-
gram execution
reaches that point

DBG> SET BREAK
SUB2 DO(EXAMINE
K)

Lets the user follow
the program’s exe-

cution sequence, to
ensure that instruc-
tions are being exe-
cuted in proper or-

der

DBG> SET TRACE
%LINE 25 (see note
below)

DBG> SET TRACE
%LABEL 99 (see
note

below)

Sets a watchpoint at
the specified ad-
dress

DBG> SET WATCH
SYM

MODULE

SCOPE

MODE

TYPE

module-name

A list whose ele-
ments may be:
pathname
nonnegative integer
“\lv

Radix:
DECIMAL
HEXADECIMAL
OCTAL

Display:
[NOJSYMBOLIC

BYTE

WORD

LONG

QUAD, OCTA-

'WORD

D-FLOAT
F-FLOAT

G, H-FLOAT
ASCll:length
INSTRUCTION

NOTE

Programming Support Facilities

Makes all local sym-
bols in the specified
module available to
DEBUG

DBG> SET MOD-
ULE FOO

Establishes an
ordered list of
scopes which DE-
BUG searches when
looking up the defi-
nitions of symbols

Alters the defaults
used by DEBUG for
radix and symbolic
representation of
addresses

Establishes a data
type to be used to
interpretthose ad-
dresses for which
DEBUG cannot infer
atype from the data
definition

The %LINE and %LABEL modifiers are used to indi-
cate line numbers (%LINE) and numeric statement
labels (%LABEL).

LOG

file name

109

Specifies that the
DEBUG log can be
called something
other than the de-
fault name, "DE-
BUG.LOG"

DBG> SET LOG
NEW.LOG

Programming Support Facilities

OUTPUT [NOILOG, Tailors output
[NOJTERMINAL, modes of DEBUG to
[NOJVERIFY suit particular appli-
cations
DBG> SET OUT-
PUT NOLOG VERI-
FY TERMINAL
SOURCE directry... Specifies which

directories are to be
searched for source
files

DBG> SET
SOURCE [MY-
DIR],[MAST.SCR]

EVALUATE Command
The EVALUATE command allows the user to check the value of an
expression or the definition of a symbol. it has the form:

EVALUATE expression
where the evaluation follows the rules of the host language.

To illustrate, if the element to be evaluated is a FORTRAN expression
(for example, (2*K-1)+A*B), the precedence of operations follows the
FORTRAN standard: parenthetical operations, followed by exponenti-
ation, followed by multiplication and division, followed by addition and
subtraction, from left to right.

The value is displayed according to the source language rules for data
types. Thatis, if a FORTRAN expression contains both real and integer
elements, the value will be expressed as a real value.

CALL Command

CALL is used to execute a subroutine while under the control of DE-
BUG. The subroutine may be one that was included specifically for
debugging use, or one that was used by the application program dur-
ing normal execution. The CALL command has the form:

CALL s(a,...,a)
where
s subroutine name

a,...,a actual arguments

110

Programming Support Facilities

SHOW Command

The SHOW command allows the user to check the status of DEBUG
settings, such as the location of breakpoints. The SHOW command
has the form:

SHOW keyword

Table 4-4 SHOW Command Summary

Keyword Function

BREAK Displays, in symbolic form, the location of
each breakpoint in the program

TRACE Displays, in symbolic form, the location of
each tracepointin the program

WATCH Displays, in symbolic form, the location of
each watchpoint in the program

MODE Displays the current modes

SCOPE Displays the current ordered list of scopes

TYPE Displays current default type

OUTPUT Displays output attributes

SOURCE Displays current directory search list

CANCEL Command -

The CANCEL command is used to nullify conditions established by
earlier SET commands, such as eliminating breakpoints. The CANCEL
command has the form:

CANCEL keyword [parameter]

Table 4-5 lists the keywords and parameters that can be specified with
CANCEL.

111

Programming Support Facilities

Table 4-5 CANCEL Command Summary

Keyword Parameter
BREAK address
TRACE . address
WATCH address

ied location

MODULE module-name
SCOPE none

MODE none

ALL ‘ _ none
SOURCE none

GO command

Function

Eliminates the
breakpoint at the
specified location

Eliminates the tra-
cepoint at the speci-
fied location

Cc

Removes all local
symbols in the
specified module
from DEBUG sym-
bol table and re-
leases their symbol
table space

Restores the default
value of SCOPE

Cancels the current
mode for radix,
length, and data
type and restores
the default values

Cancels all parame-
ters previously set
for DEBUG

Cancels SET
SOURCE command

Use the GO command to start or resume program execution. The GO

command has the form:
GO [address]

If the user types the GO command, but does not include an address as
specified, its effect is either to start program execution at the begin-

112

Programming Support Facilities

ning, or to resume execution from the point where it stopped (such as
a breakpoint). If an address is specified, DEBUG restarts program
execution at that address.

Example:
GO %LINE 12
DEBUG resumes program execution at line 12 of the program.

NOTE
Attempting to restart a program from the beginning
will yield unpredictable and unreliable results.

STEP Command

The STEP command allows the user to specify that a specific number
of instructions or statements are to be executed in the user program.
Thereafter, execution will again stop. The user may specify instruction
or statement stepping (assuming the language supports statement
numbers). The STEP command has the form:

STEP [n]

where the value of n is a decimal integer indicating how many instruc-
tions or statements to execute. If n is omitted, one instruction or state-
ment is executed. This command allows the user to suspend program
execution prior to reaching a breakpoint or a tracepoint, so the user
can examine the result of program execution on an instruction-by-
instruction or statement-by-statement basis.

If the program has not begun to execute, the STEP command causes n
instructions or statements to be executed, starting with the first execu-
table instruction or statement in the program. If program execution
has started and been suspended, the STEP command causes n
instructions or statements to be executed starting from the point of
suspension.

EXAMINE Command

To determine the current contents of locations in the user program,
use the EXAMINE command. The EXAMINE command has the form:

EXAMINE [address]

To specify an address, enter the symbolic variable name defined in the
source program. DEBUG displays the contents in the format:

address: contents

Both the address and its contents are displayed in a form appropriate
to the host language. That is, the user will not have to transilate from
hexadecimal to ASCII in order to determine the value of a location that
contains character data.

113

Programming Support Facilities

The address will, if possible, be displayed symbolically when the mode
is SYMBOLIC. Otherwise, it will be displayed numerically.

If an address is not specified, the next location’s contents are dis-
played. To display a range of locations, specify the EXAMINE com-
mand as follows:

EXAMINE address1:address2

The current contents of the locations from address1 to address2 will
be displayed.

DEPOSIT Command
To change the contents of a location while debugging, use the DEPO-
SIT command, which has the form:

DEPOSIT address = data’
For example:
DEPOSIT LOC = 100
places the value 100 into the location symbolized by LOC.

TYPE Command
The TYPE command is used to display lines of source code. The
format of the TYPE command is:

TYPE moduleline-numberi:line-number2

To display source lines in the current scope, this may be abbreviated
to:
TYPE line-number1:line-number2
or just
TYPE line-number

EXIT Command
To terminate the DEBUG session and return to the DIGITAL Command
Language level, use the EXIT-command.

THE VAX RUN-TIME LIBRARY

The VAX Run-Time Library (RTL) is composed of a set of language-
independent and language-specific VAX procedures which establish a
common runtime environment for user programs written in any native
mode language. Because all of the language support procedures fol-
low the same programming standards, a user program ¢an be com-
posed of modules written in different languages, including assembly
language. Because of the VAX procedure calling standard, each native
mode user module can call any other native mode user module or any
of the procedures in the Run-Time Library.

114

Programming Support Facilities

Most of the VAX Run-Time Library is constructed as a separate share-
able image which interacts with the rest of the operating system via an
entry point vector. This allows:

1. Installation of a new library without the need of relinking all user
programs

2. Implementation of new internal algorithms without relinking all
user programs '
3. Asingle copy of the library to be shared by all processes

NOTE
A portion of the Run-Time Library is not shareabie.

Each procedure entry point in the shareable image has a storage
location in the area known as the entry vector. Each entry vector con-
tains the starting address of an associated procedure to be executed
when a user program calls the library. Use of entry vectors permits a
single position-independent copy of the library to be bound to
different virtual addresses in processes which are sharing it. Use of
entry vectors and address binding at image activation also permits a
new release of the library to be installed without requiring that user
images be relinked.

The VAX Run-Time Library comprises several sections which are
grouped by function or calling sequence. They include:

® A resource allocation section

e A condition handling section

® A general utility section

e A mathematical section

e A language-independent support section

e Language-specific support sections

® A string handling section

The Run-Time Library is designed as a set of modular re-entrant pro-
cedures that run in user mode.

Resource Allocation Section (LIBS)

The Resource Allocation Section includes all procedures that allow

allocation of process-wide resources. Such resources include the fol-

lowing: : :

1. Virtual Memory—one procedure to allocate and one to deallo-
cate arbitrarily sized blocks of process virtual memory

2. Logical Unit Numbers—aliow logical unit numbers to be allocated
in a modular manner

3. Eventflags—same as logical unit numbers

115

Programming Support Facilities

In most cases, the resource allocation procedures must be used to
allocate process-wide resources-in order for all library, DIGITAL, and
customer-written procedures to work together properly within an im-
age. v

Signaling And Condition Handling

The VAX condition handling facility is a collection of library
procedures and system services that provides a unified and standard-
ized mechanism for handling errors internally in the operating system,
the Run-Time Library, and user programs. In some cases, the mecha-
nism is also used to communicate errors across these interfaces. In
particular, all error messages are printed using this mechanism.
Where an error condition is signaled, the process stack is scanned in
reverse order. Establishing a handler provides the programmer with
some control over fix-up, reporting, and flow of control on errors. It
provides the system and library messages in order to give a more
suitable application-oriented user interface.

Error Processing Procedures

Errors detected by the Run-Time Library are indicated by returning an .
error completion status wherever possible. This is especially true for
the general utility library (LIB$). However, the math library and the
language support libraries indicate most errors by calling the VAX
LIB$SIGNAL. or LIB$STOP procedures. The LIB$SIGNAL procedures
use a condition value as an argument which has an associated error
message stored in a system error message file. The condition is sig-
naled to successive procedure activations in the process stack. These
procedures may have established handlers to handle the conditions or
change the error message. Thus an application can tailor its error
messages to its own needs.

The Run-Time Library provides routines to perform the foIIowmg con-
dition handling functions:

® Establish and delete user condition handlers (LIB$ESTABLISH,
LIBSREVERT)

e Enable and disable the detection of the hardware and conditions
decimal overflow, floating-point underflow, and integer overflow

® Signal exception conditions and stop execution by means of the
signaling mechanism (LIB$SIGNAL, LIB$STOP)

® Emulate VAX instructions that are not implemented on the host
processor (LIBSEMULATE)

e Convert floating faults to floating traps (LIB$SIM-TRAP)

® Find the reserved operand of any F-, D-, G-, or H- floating instruc-
tion after a reserved operand fault has been signaled
(LIBSFIXUP-FLT)

116

Programming Support Facilities

General Utility (LIB$)

General utility procedures are not mandatory in order to use the rest of

the library successfully. They provide a wide range of functions for the

convenience of the user:

e Common 1/0 procedures—These procedures perform such func-
tions as getting records from the current input device
(LIBSGET-INPUT) and putting them to the output device
(LIBSPUT-OUTPUT), executing DCL commands from a running
program (LIB§DO-COMMAND), getting the command line from a
‘foreign command’ (LIBSGET-FOREIGN), and copying strings to
and from the process’s common storage are (LIBSPUT-COMMON,
LIB§GET-COMMON). 1/0 control procedures are also available to
customize printer output and translate logical names

e Terminal independent screen procedures—These procedures pro-
vide a high-level language interface to the video terminal. They put
text to the screen, mover the cursosr to the desired position, erase
text from the screen, and manipulate the screen buffer

® Data type conversion procedures—These procedures perform con-
versions between one VAX data type and another (e.g., text to
D-floating, decimal to binary)

e Variable bit field instruction procedures—LIB$INSV, LIBSEXTV, and
LIBSEXTZV insert and extend variable bit fields. LIB$FFC searches
a bitfield for the first set bit :

® Performance measurement procedures—These procedures pro-
vide a facility for timing, counting I/0 operations, and counting page
faults

e Date/time utility procedures—These procedures return the system
data or time in several forms

® CRC procedures—LIB$SCRC and LIBSCRC-TABLE permit the user
to calculate the cyclic redundancy check for a data stream

® Multiple precision arithmetic procedures—LIB$ADDX and
LIB$SUBX add and subtract signed two’s-complement integers of
arbitrary length

Run-Time Library procedures aiso permit the high-level language pro-
grams to use the following VAX hardware instructions:

e Extended multiply and integerize—EMODF, EMODD, EM-
ODG,EMODH

e Evaluate polynomials—POLYF, POLYD, POLYG, POLYH

e Insert and remove queue entry—INSQHI, INSQTI, REMQHI,
REMQTI : ‘ ’

117

Programming Support Facilities

Mathematical Functions (MTH$)

The mathematical library consists of over 200 standard procedures to

perform common mathematical functions. These functions include:

® Floating-point mathematical functions: trigonometric, logarithmic,
and square root

¢ Complex functions: absolute values, conjugation, trigonometric,
arithmetic, exponetiation, return imaginary part of complex number,
return real part of complex number, make complex from floating-
point, logarithmic, and square root

e Exponentiation on floating-point, word, longword, and complex data

® Random number generators ,

® Processor-defined mathematical procedures including both the in-
trinsic and basic external functions defined in ANSI FORTRAN,
whcih are treated in a uniform manner. They include routines that
perform conversions between floating-point and integer data and a
large number of miscellaneous procedures

Language-Independent Support (OTS$)

The language support libraries support the code generated inline by
compilers. As such, most of the procedures are called implicitly as a
consequence of a language construct specified by the user, rather
than being called explicitly by the user with a CALL statement. Those
language support procedures which are independent of higher level
language use the facility prefix OTS$. They include:

e Language-independent initialization and termination

® Error and exception-condition processung procedures

e Datatype conversion

Language-Specific Support (FOR$, BASS, C_OBS, PASS) ,
Each of the language-specific support libraries is generally composed
of: v

® |/0 processing procedures

® File processing procedures

e Compiled-code support procedures
® Compatibility procedures

® System procedures

String Processing (STR$)

The string processing procedures allocate and deallocate dynamic
strings. They also perform a wide variety of string manipulation func-
tions, such as comparing, locating a character, concatenating, extract-

118

Programming Support Facilities

ing a substring, performing arithmetic operations on decimal strings,
and translating ASCI! to EBCDIC code.

System Procedures

VAX programs written in the higher-level languages may call the oper-
ating system directly. However, since some languages cannot easily
pass arguments in the form that system services require, and some
languages use data types that system services cannot properly handle
(i.e., dynamic strings), some LIB$ routines have been provided to han-
dle the input and output arguments correctly.

VAX SORT/MERGE
The VAX SORT/MERGE utility may be run interactively, as a batch job,
or called from a user-written VAX language program.

The SORT utility allows the user to reorder data from one to ten input
files into a single output file in a sequence based upon user-specified
key fields within the input data records. If the user does not wish to
physically reorder the input, SORT can be used to extract key
information and store the sorted information as a permanent file. That
file can be used then to access the original input file in the order of the
key information in the sorted file.

SORT provides four sorting techniques:

e Record sort produces a reordered data file by moving the entire
contents of each record during the sort. A record sort can be used
with any acceptable VMS input device and can process any valid
VAX-11 RMS (Record Management Services) formatted file.

® Tag sort produces a reordered data file by moving only the record
keys and Record File Addresses (RFAs) during the sort. SORT then
randomly reaccesses the input file to create a resequenced output
file according to those record keys. The tag sort method may con-
serve temporary storage, but can accept only input files residing on
disk.

e Address sort produces an address file without reordering the input
file. The address file contains RFAs (Record’s File Address),a point-
er to each record’s location in a file which can later be used as an
index to read the database in the desired sequence. Any number of
address files may be created for the same database. A customer
master file, for example, may be referenced by customer-number
index or sales territory index for different reports. Address sort is
the fastest of the four sorting methods.

¢ Index sort produces an address file containing the key field of each
data record and a pointer to its location in the input file. The index
file can be used to randomly access data from the original file in the
desired sequence.

119

Programming Support Facilities

The MERGE utility permits the user to merge data from two to ten
similarly sorted input files. It merges the data according to key field(s)
defined by the user and generates a single output file. Allinput files to
be merged must be in the same sorted sequence, i.e., the MERGE key
fields must be a proper subset of the equivalent SORT key fields.

The following example illustrates the sorting of a sales record file by
customer last name. The name of the initial file is SALES.DAT. Each
record contains six fields: date of sale, department code, salesperson,
account number, customer name, and amount of sale. The numerical
ranges listed below the set of records indicate the position and size of
each information field within the record.

- DATE DPT SALESP ACCT CUST-NAME AMT

091580 25 Fielding 980342 Coolidge Carol 24999
091580 25 Sanchez 643881 McKee Michael 2499

091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Bradiey 829582 Olsen Allen 3350
091580 Erkknla 980342 Coolidge Carol 7200
1-7 8-10 11-21 22-28 29-58 59-65

The user may now rearrange the sales records in file SALES.DAT
according to any of the file’'s information fields. For instance, to sort
the file in alphabetic order of customer’s last name, the user would
type the following command sequence:

$ SORT/KEY= (POSITION 29,SIZE=30) SALES. DAT BILL-
ING.LIS<RET>

In this command sequence, the user is defining the SOR'T key to be
the customer’s last name and the output file to be BILLING.LIS.

The user may now obtain a listing of the sorted data file 'by using either
the TYPE or PRINT commands.

$ TYPE BILLING.LIS<RET>

120

Programming Support Facilities

DATE DPT SALESP ACCT CUST-NAME AMT

091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol = 24999
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradiey 829582 Olsen Allen 3350
091580 25 Bradley 753735 RiceAnne 10875
091580 19 Arndt 166392 Wilson Brent 1298

To perform the MERGE function, the MERGE utility expects presorted
data files upon which to operate. In the following example, MERGE is
operating upon two presorted (by alphabetic order) sales data files,
STORE1.FIL and STOREZ2.FIL.

STORE1.FIL
DATE DPT SALESP ACCT CUST-NAME AMT
091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 -Coolidge Carol 24999
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298
091580 20 OConnor 358419 Beaulieu Ronald 1598
091580 04 Docus 980342 Coolidge Carol 575500
091580 25 Fielding 669011 Fernandez Felicia 12000
.091580 35 Leith 848105 Kingsfield Stanley 5550
091580 04 Kramer 561903 Landsman Melissa 230000
091580 20 OConnor 643881 McKee Michael 995
091580 19 Erkkila 454389 VanDerling Julie 5480

To merge the two data files, the user must type the followmg command
sequence: :

$ MERGE/KEY=(POSITION=29,SIZE=30)
STORE1.FIL,STORE2.FIL- CENTR.FIL<RET>

The user has indicated in the above command sequence that the files
are to be merged via the alphabetic order of the customer’s last hame.
The user can examine the output file via the PRINT or TYPE com-
mands.

$ TYPE CENTR.FIL<RET>

121

Programming Support Facilities

DATE DPT SALESP ACCT CUST-NAME AMT
091580 20 OConnor 358419 Beaulieu Ronald 1598
091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 04 Docus 980342 Coolidge Carol 575500
091580 25 Fielding 669011 Fernandez Felicia 12000
091580 28 Meredith 272731 Karsten Jane 4000
0915680 35 Leith 848105 Kingsfield Stanley 5550
091580 04 Kramer 561903 Landsman Melissa 230000
0915680 25 Sanchez 643881 McKee Michael 2499
091580 20 OConnor 643881 McKee Michael 995
091580 - 25 Bradley 829582 Oilsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Erkkila 454389 VanDerling Julie 5480
091580 19 Arndt 166392 Wilson Brent 1298

VAX SORT/MERGE Féatures
The VAX SORT/MERGE utility can perform the following functions:

® Reorder data files into ascending or descending order by up to ten
user-specified keys

® Merge as many as ten sorted input files into one sorted output file

® Create reordered address files of RFAs and keys for software use

® Supports fixed, variable, and VFC records

e Sort or Merge ASCII character keys in ASCIl or EBCD!C sequence

e Supports sequential, relative, and indexed sequential files

® Supports character, decimal, binary, unsigned binary, F-, D-, G-,
and H- floating data types '

o Determines its own work file requirements based on input file RMS
information received

¢ Can be controlled by a command string or specification file
e Efficiency may be tuned for a particular application

e Accepts input files from any VAX/VMS input device

¢ Will output to any VAX/VMS output device

e May be invoked by a single command string, or can prompt the
operator for input and then output file specification

¢ Responds with unique SORT/MERGE error messages in VAX/VMS
format :

® Prints out statistics upon completion, when requested

® Optional sequence checking of input files on merge

122

Programming Support Facilities

VAX SORT/MERGE supports the following key formats:
® ASCII character data

e ASCII and EBCDIC collating sequence

e Binary, packed decimal, and zoned decimal data

® Unsigned binary and F-, D-, G-, and H- floating

® String decimal data format can be:

leading separate sign
leading overpunched sign
trailing separate sign
trailing overpunched sign

SORT/MERGE as a Set of Callable Subroutines

SORT and MERGE can be used as a set of callable subroutines from
any native VAX language. This subroutine package provides two func-
tional interfaces to choose from: a file I/0 interface and a record I/0
interface.

SORT and MERGE subroutines are callable from the VAX-11 COBOL
language using the standard COBOL SORT and MERGE verbs.
(SORT/MERGE is callable from any VAX supported language that
supports the VAX Calling Standard.)

For either interface, the user can supply a key comparison routine.
This feature allows the user additional flexibility.

File and Record I/O Interfaces

The file I/0 interface allows the user to specify the input files and an
output file to SORT or MERGE. SORT then reads the data from the
input file(s) and sorts the data into the output file. MERGE also reads
the data from the input file(s) and merges it into one output file.

The record I/0 interface allows the user to pass each individual data
record to SORT/MERGE, let SORT/MERGE order them and then re-
ceive each record back in the correct order, individually, from
SORT/MERGE.

Any program can use either the SORT or MERGE subroutine interface
with any of the VAX native mode languages that support the VAX
Calling Standard.

DOCUMENT FORMATTING UTILITY

Designing and producing printed materials can be simplified through
the use of the DIGITAL Standard RUNOFF (DSR) utility. DSR reduces
the number of interactions needed for preparation of a document by
allowing both textual correction and formatting change to be executed

123

Programming Support Facilities

in the same pass over the file. And since text changes do not affect the
basic design, documents can be updated without extensive retyping.

The input to DSR is a file containing the text of the document and the
DSR instructions. The output file is the print-ready document. After the
program has been run, the original file remains available for further
editing.

Formatting instructions consist of commands and flags. Command
lines are signalled by a period in position one and may contain one or
more commands and text. Within the text are special charac-
ters—called flags—which specify character enhancements such as
underlined text or boldface characters.

Filling and Justifying

DSR commands set left and right margins, so that the user may enter
text without concern for line width or variable spacing between words.
The DSR program will fill and justify the text when it is run. Filling is
the successive addition of words to a line until one more word would
exceed the right margin. DSR justifies the line by adding enough
spaces between words to expand the line to the right margin.

DSR Default Modes

When an input file is processed by the DIGITAL Standard RUNOFF
utility, certain default actions are performed that do not depend upon
command or flag entries for their execution. These actions are similar
to those performed during the preparation of a manually typed docu-
ment. _

DSR default modes provide:

e A standard typewriter page size of 82" X 11"

® Sequential page numbering

® Page width of 60 characters

e Single spacing .

e Automatic tab settings for every eighth print position

e Automatic filling and justifying

Page Formatting

The page formatting commands control the appearance of each page
of output. For example, there are page formatting commands to en-
able or suspend page numbering, produce and format titles and subti-
tles, or force the printer to advance to a new page.

Another’ page formatting command allows a conditional page ad-
vance, based on the number of lines left on the page. This ¢apability

124

Programming Support Facilities

can be used to guarantee that text which should appear on a single
page (e.g., tables, lists) will not be broken up.

For example:

.LAYOUT 2,5 The 2 says page titles will be
flush right on odd pages, flush
left on even pages; pages will be
numbered sequentially at cen-
ter bottom with 4 blank lines af-
ter the body of text.

Title Formatting

Title formatting commands provide page, title, and subtitle informa-
tion for all pages. Such actions as placing only the chapter heading on
the first page of a chapter and printing any subtities are provided for
by the title formatting commands.

For example:

TITLE King Lear Makes a title of King Lear.

Subject-Matter Formatting

Subject-matter formatting includes commands for managing the de-
sign and appearance of text, such as making a ragged right-hand
margin, indenting a paragraph, skipping a number of lines, centering
a line of text, underlining, hyphenating, and overstriking. Parts of the
text may be formatted differently from one another, and commands
may be combined. For example, a user has the option of having lists
justified or having them with ragged margins.

For example:

.LM 5 .RM 58 Set the left margin at space 5
and the right margin at space 58

.NF _ Disables filling: causes a new
line in the input file to produce a
new line in the ouput file

.NJ Disables justifying: lines are
ragged right
.BR - Causes a break: current line is
output without being filled or
‘ justified
Sor.8K2 Skips two blank lines
PG Causes a .BREAK, then starts

the next page

125

Programming Support Facilities

TP 25 Tests the page to see if 25 lines
remain, so that certain material
that needs to stay together (e.g.,
lists) will

.CENTER Centers subsequent line of text
on the next page

.TS$3,7,9,15,26,... Sets up to 32 new tab stops to
override the default tab stop
values

.P4,23 Formats paragraphs in which:
first word is indented 4 spaces;
there are 2 blank lines between
paragraphs; there must be at
least 3 lines remaining on the
page for the paragraph to be
started on the next page

Graphic, List, and Note Formatting

It often becomes necessary to accommodate graphics, lists, and ta-
bles, or to allow for special notes to be inserted. Footnotes also have to
be prepared in such a way as to fit on the appropriate pages of the
final document.

For example:

.FIG 24 Leaves 24 lines for a figure to be
inserted

.FIG DEF 30 Leaves 30 lines, including at the
top of the next page, for a figure

.LIST1,'* Sets up alist with 1 blank line

between items and an asterisk
marking each item

.LE » Identifies the start of an element

.DLE”(",LL,")” Establishes a user-specified
display format for lists: in this
case, sequential, lowercase let-
ters will be enclosed in par-
entheses

126

Programming Support Facilities

.HL 1 Plays These commands provide a
.HL 2King Lear properly numbered and format-
.HL 3 Tragic Flaw ted outline:

14 Plays

14.33 King Lear
14.3.2 Tragic FLaw--The Defi-
nition of Tragic Flaw...

Miscellaneous Formatting

Several useful DSR commands help the user to add nonpnnted com-
ments to the source file, to gather externally located files into the input,
to exert conditional control, and to set or display time and date.

For example:

IF complete Processes the lines following
only if
/VARIANT:COMPLETE was
given on the command line

lappendix C is 200 : DSRignores comments

pages

.REQ "APNDXC.RNO” Processes all of APNDXC.RNO
before continuing with next line

.ELSE complete Marks the end of the line to
process because of the IF, and

_ starts the alternative

.F.J.SK10 or .§10; Contact the Allows commands and text in

author... oneline

.ENDIF complete Marks the end of a group of
conditionally processed lines

Flags

Flags are special characters (e.g., an ampersand) that perform specif-
ic operations (e.g., underlining). The specified operation is invoked
when the character is recognized as a flag by DSR. Certain special
characters initially are recognized by default.

For example:

fix#some#space The SPACE fiag (#) fixes one
nonexpandable space when-
ever it occurs

127

Programming Support Facilities

R-&D The ACCEPT flag (-)prevents
o -DSR from interpreting the am-
persand in R&D as an underline
flag

Index and Table of Contents

DSR has powerful facilities for creating indexes and tables of contents
easily. There are commands to generate one-column or two-column
indexes. The TOC program generates tables of contents.

For example:
X Satire Creates an index entry for Sa-
‘ tire. DSR gives it the current
page number

.ENTRY Parody>see Satire Provides a cross reference to
: the index

Running the DSR Program
DSR is initiated by entering the following command:

RUNOFF filespec <RET>

After processing the file, DSR terminates.
For example:

$RUNOFF MYBOOK Processes MYBOOK.RNO and
produces MYBOOK.MEM as
output

Various qualifiers can be placed on the command line. Examples are:

/FORMSIZE 55 -+ Sets page to 55 lines rather than
‘the default of 60 lines .

/PAGES:"3-1: 3-16, 4-1: 4-16"" Prints only pages 3-1 through 3-
16 and 4-1 through 4-16

/DEBUG:echo Traces the operation of any

DSR commands defined by the
parameter by echoing each ex- -
ecution inthe output file

/INDEX:drama.bix Creates an index file called dra-
ma.bix

/CONTENTS: Creates a table of contents file

poems.btc ; called poems.btc '

/OUTPUT:TT: : Puts the output on the terminal

128

Programming Support Facilities

DEC/CMS

The Digital Equipment Corporation Code Management System
(DEC/CMS) is an optional software product that provides software
developers with a tool to help manage files of an ongoing project.

DEC/CMS maintains a library of project elements, each consisting of
one or more related files. A source file and the command file for
compiling and linking that program could constitute an element of the
library. Elements are stored in the library as a succession of genera-
tions; that is, each time an element is modified, a new generation of
that element is added to the library. Historical generations of source
and other text files are stored efficiently by storing only their differ-
ences. CMS figures out the differences. A history is kept of all move-
ments of files into and out of the project library.

A generation, or line of decent, may be identified by a generation
number or by a user-defined class name. A class may denote a base
level, a release, the current stable version, a debugging version, or any
other characteristic agreed upon by users for their project.

DEC/CMS enables users to:

® keep ASCII text files in a project library

® retrieve previous file generations

® get a report of who modified a file, mcludlng when and why the
modification was made

learn the origin of each line of a file, either as an annotated listing or
as comments in afile

manage concurrent modifications
merge separately developed modifications
keep related files together as a single element

relate the generation of one element to the correspondmg genera-
tions of other elements

129

Programming Support Facilities

COMMANDS

Each CMS command is invoked from the VAX/VMS command level to
perform a specific function. Each command returns to the VAX/VMS
command level where the user may edit, compile, and test in the usual
manner. DEC/CMS provides the following commands:

ANNOTATE Produces an annotated listing of any
element in the library. The annotations de-
scribe the element and its ancestors, and
indicate the origin of each line of the ele-
ment (that is, the generation in which each
line was inserted or most recently modi-

fied).
CREATE Creates a new element or class.
FETCH Similar to the RESERVE command de-

scribed below, except that the element is
not reserved for modification. The copy
placed in the user’s working directory may
not be used to create a new generation of
the same element. .

INSERT Puts an element generation into a class.

REPLACE Creates a new generation of an element that
the user has reserved. The files of the new
generation are moved to the project library
from the user’s working directory. The new
generation is a successor of the generation
the user obtained when the element was re-
served.

RESERVE Places a copy of a generation in the user’s
working directory and notes that it is intend-
ed for modification. The entire element is
reserved against the concurrent modifica-
tion by another user. A user may have sev-
eral elements reserved at the same time.
Optionally, a remark may be inserted into
each line to show the origin of the line (see
ANNOTATE above). A qualifier allows
another generation of the same element to
be merged with the copy supplied to the
user.

130

SET LIBRARY

SHOW

UNRESERVE
VERIFY

Programming Support Facilities

Identifies the user’s project library at the
start of the session.

Displays chronological and status informa-
tion. For any generation, the command can
give the author, creation date, creating
commands, and author’s remark. This in-
formation can be obtained for a genera-
tion’s ancestors or decendents as well. Al-
so, the SHOW command can list all ele-
ments of the library, all that are reserved, or
all that have a generation in a given class.
All or a portion of the project history can be
displayed, and the display can be limited to
unusual events. ‘

Cancels an existing reservation.

Performs consistency checks on the library,
and recovers from a malfunction by
nullifying a partially completed transaction.

131

CHAPTER OVERVIEW

The large collection of language processors is described in this chap-
ter. Included is information on language extensions beyond industry
standards and special features of the VAX language environment.
Some sample programs—particularly for COBOL—are printed in the
text.

Topics include:

e VAX Common Language Environment

e High-Level VAX Languages

® Assembly Language

e Host Development Languages

132

, CHAPTER 5
PROGRAMMING LANGUAGES

INTRODUCTION

The VAX/VMS operating system provides a complete program devel-
opment environment. In addition to the assembly language, MACRO,
it offers the optional higher-level languages commonly needed in en-
gineering, scientific, commercial, instructional, and implementation
applications—FORTRAN, COBOL, BASIC, PL/I, PASCAL, C, CORAL
66, BLISS-16, and BLISS-32. The VAX/VMS operating system pro-
vides the tools to write, assemble or compile, and link programs, as
well as to build libraries of source, object, and image modules. User
applications may employ more than one language, and the ability of
languages to call one another allows concatenation of application seg-
ments written in a variety of languages, provided they satisfy certain
criteria.

Thése VAX language processors produce native object code, and take
advantage of the native instruction set and 32-bit architecture of the
VAX hardware.

In addition, there is the host development mode programming envi-
ronment which provides support for the PDP-11 FORTRAN IV/VAX to
RSX and MACRO-11 languages. These produce compatibility mode
object code.

VAX COMMON LANGUAGE ENVIRONMENT

An important feature provided by VAX is a “common language” envi-
ronment. To put it another way, the VAX languages adhere to a
specific set of standards, and these standards include:

® A symbolic debugger interface

e Use of the symbolic traceback facility

¢ Use of the Common Run Time Library

e Conformance to the VAX calling standard, which allows calls among
any set of VAX languages and calls to VAX/VMS system services
and to SORT and FMS subroutines

o Common handling of exceptions

® Use of VAX-11 RMS (Record Management Services) for record han-
dling ‘ ' ‘

The elements of the common language environment are briefly de-

scribed here. For more detailed information, see the Index for the

appropriate pages.

133

Programming Languages

Symbolic Debugger Interface

The VAX/VMS operating system provides facilities to aid the debug-
ging of programs written in native mode. It accomplishes this via a
program known as the symbolic debugger (DEBUG). DEBUG can be
linked with a program image to control image execution during devel-
opment. It can be used interactively or can be controlled from a
command procedure file. The debugging language is similar to the
VAX/VMS command language. Expressions and data references are
similar to those of the source language used to create the image being
debugged.

Debugging commands include the ability to start and interrupt pro-
gram execution, to step through instruction sequences, to call rou-
tines, to set break or trace points, to set default modes, to define
symbols, and to deposit, examine, or evaluate virtual memory loca-
tions.

Symbolic Traceback Facility

The VAX/VMS operating system supports the Symbolic Traceback
Facility. This is a runtime facility that aids programmers in finding
errors by describing the call sequences that occurred prior to the
error. The traceback facility is automatic and does not require that any
special qualifiers be included with the FORTRAN or LINK commands
(but it can be suppressed by specifying NOTRACE with the LINK com-
mand).

When an error condition is detected, the error message is displayed
by the Run Time Library indicating the nature of the error and the
address at which the error occurred (user program counter). This is
followed by the traceback information, which is presented in inverse
order to the calls. For each call frame, traceback lists module name,
routine name, source program line, and absolute and relative PC.
Using this information, the programmer can usually locate the source
of the error in a relatively short period of time.

Common Run Time Library

The VAX-11 Common Run Time Procedure Library contains sets of
general purpose and language-specific procedures. User programs
call these procedures to perform specific tasks required for program
execution. Both VAX-11 MACRO and VAX high-level language
programmers can use any of the Run Time Library procedures in any
combination. Because all procedures follow the same programming
standards and make no conflicting execution assumptions, a lan-
guage-independent common runtime environment is provided for
user programs. Such an environment encourages a user program to

134

Programming Languages

be composed of procedures written in different languages, and thus
increases programming flexibility.

VAX Calling Standard

The VAX procedure calling standard defines and supports the mecha-
nism for passing arguments between modules of major VAX software
subsystems such as languages, VAX-11 RMS (Record Management
Services), and the VAX/VMS operating system. The standard facili-
tates the calling of a procedure written in one language from a pro-
gram written in another language.

Exception Handling .

The mechanism defined by the VAX calling standard are also used by
the condition handling facility to signal the occurence of exceptions
detected by hardware or software. '

VAX-11 RMS

VAX-11 RMS' (Record Management Services) is the technique pro-
grammers use to handle record I/0 within programs. VAX-11 RMS
routines are system routines that provide an efficient and fiexible
means of handling files and their data. Typically, VAX-11 RMS rou-
tines allow the programmer to create a file and:

® Accept new input

® Read or modify data

e Produce output in a meaningful form

High-level language programmers normally use the /0O facilities of
their particular language to perform record and file operations. These
operations are implemented using the VAX-11 RMS facilities. VAX-11
MACRO programmers can use the VAX-11 RMS routines directly with-
in their programs.

VAX-11 RMS routines are an integral part of the operating system. The
programmer need not perform any special linking or declaring of glo-
bal entry points for the routines. Furthermore, calls to VAX-11 RMS
routines are consistent with the VAX calling standard.

HIGH-LEVEL VAX LANGUAGES

VAX-11 BASIC

The VAX-11 BASIC product gives the VAX user the benefits of a highly
interactive programming environment and a high-performance devel-
opment language. It combines the features of the PDP-11 BASIC-
PLUS-2 and RSTS/E BASIC-PLUS languages with the performance
benefits provided by a VAX language that is fully integrated with the
VMS environment.

135

" Programming Languages

The VAX-11 BASIC language is a highly extended implementation
language. It provides powerful mathematic and string handling facili-
ties, support for symbolic characters, and full RMS indexed, sequen-
tial, and relative 1/0 operations.

VAX-11 BASIC can be used as if-it were either an interpreter or a
compiler. A fast RUN command and support for direct execution of
unnumbered statements (immediate mode) gives the VAX-11 BASIC
user the “feel” of an interpreter. However, this product can also be
used in compilation mode, where it generates native-mode object
modules like the other VAX compilers. In either case, the VAX-11
BASIC system generates optimized VAX native mode instfuctions
which have extremely fast execution times. Typical compilation
speeds are up to 3,000 lines per minute and computations will gener-
ally execute up to five times faster than the same programs on a PDP-
11 system. .

Following is a brief overview of the general characteristics of the VAX-
11 BASIC language.

General Characteristics

The VAX-11 BASIC system generates inline native VAX instructions in

both its RUN and its compilation modes. The code produced takes

advantage of VAX/VMS native mode capabilities, mcludrng

e Direct calls on operating system service routines, even in |mmed|ate
mode

e Transparent access to DECnet communications software

e Direct calls to the Common Run-Time Library and standard- system
utilities, including VAX-11 SORT/MERGE

e Direct calls to separately compiled native mode procedures written
in any language that utilizes the VAX procedure callmg standard

® Program sizes up to 2 billion bytes are allowed

e All modules are posmon independent (PIC) and can be run as fully
re-entrant code

® The VAX symbolic debugger has full support for the VAX-11 BASIC
language

The code generated by the VAX-11 BASIC system uses the standard

VAX/VMS traceback facility for determining the source of runtime

errors. If a fatal program error should occur, an English message .is

printed identifying the module and line number where the error oc-

curred. The English text, the traceback, and the integrated BASIC

HELP utility provide a powerful program debugging environment.

136

Programming Languages

Object modules produced by the VAX-11 BASIC system can be linked
with native mode modules produced by other language processors
including the BLISS, COBOL, FORTRAN, PASCAL, and MACRO proc-
essors.

Structured Programming

Structured programming constructs add some of the features of a
block structured language (such as the PASCAL language) to the BA-
SIC language to allow complex programs to be written without
recourse to subroutines or obscure programming techniques. This
makes programs easier to write and maintain.

Figure 5-1 illustrates a record defined by a MAP statement, successive
retrievals by the use of a GET statement, and iteration controiled by a
WHILE...NEXT statement block.

137

8el

100

200

EMPLOYEE RECORD DEFINITION(S)

LINE 100: THE “GENERAL DEFINITION”
LINE 200: THE “EXPANDED DEFINITION”

MAP (REC1) STRING EMPLOYEE.RECORD = 36,
REAL RATE,
INTEGER ENDFLAG

MAP (REC1) STRING LAST.NAME = 20,

STRING FIRST.NAME = 12,
STRING MID.INITS = 4,
REAL FILL,

INTEGER FILL

FILE.NAME.1$ = “EMPLOYEE.DAT”
OPEN FILE.NAME.1$ AS FILE #1,SEQUENTIAL, ACCESS READ, MAP REC1

TOTAL.RATES = 000000.00

Figure 5-1 Sample Structured Basic Program

Qo Q0 Qo Qo Qo Qo Qo

Q0 Qo Qo Qo Qo

sabenbue buiwuwesboly

6¢€1

300

400

500

999

WHILE NOT ENDFLAG

GET #1
TOTAL.RATE = TOTAL.RATE + RATE

NEXT

CLOSE #1

END

Figure 5-1 Sample Structured Basic Program

cont'd

sebenbue] Burwwesboid

Programming Languages

The SUBPROGRAM and FUNCTION constructs in the VAX-11 BASIC
language have structured END and EXIT statements. In addition, it
allows the use of statement modifiers which allow conditional or repet-
itive execution of the statement without requiring the user to construct
unnecessary loops or blocks. Any non-declarative statement in the
VAX-11 BASIC language can have one or more statement modifiers.
The BASIC statement modifiers include FOR, IF, UNLESS, UNTIL, and
WHILE constructs. Each of the statements in Figure 5-2 illustrates the
use of a statement modifier:

140

(348

100
20?
30'6
40?
50?

600

A(l) = A(l) + 1

PRINT SUMMARY.DATA
PRINT FNHOUSE.PAYMENT
GET #1

GOSUB 12300

PRINT “NORMAL EXIT”

FOR

IF
UNTIL
WHILE
UNLESS

IF

Figure 5-2 Statement Modifiers

I=1TO 100

OPTION.1 AND REPORT ="“MONTHLY"”
RATE < 123.45

EMPLOYEE.NUMBER < 76000
ERROR.FLAG

TOTAL > 1000 UNLESS ERRORS >0

sabenbue] Buiwwesboid

Programming Languages

Data Types

The VAX-11 BASIC language increases the number of data types
available to the BASIC programmer by allowing the use of 32-bit integ-
er and 64-bit floating point data values. Tabel 7-3 below describes the
data types supported by the VAX-11 BASIC language.

Table 5-1 Data Types

Data Type Meaning

REAL Specifies that the variable or constant contains
floating-point data. The precision depends on the
COMPILE command qualifier used. COM-
PILE/SINGLE specifies 32-bit floating point num-
bers; COMPILE/DOUBLE specifies 64-bit floating
point numbers

WORD Specifies that the variable or constant contains
word-length integer data, regardless of the COM-
PILE command qualifier used

LONG Specifies that the variable or constant contains
longword integer data, regardless of the
COMPILE command qualifier used

INTEGER Specifies that the variable or constant contains
integer data. This data type defaults to the qualifi-
er used at compile-time. If the program is com-
piled with the /WORD qualifier, integers are 16
bits long; with the /LONG qualifier, 32 bits long

STRING Specifies that the variable or array contains string
data

Declarations

The VAX-11 BASIC language allows implicit declaration of variables.
Unless specifically named in a declaration statement, a variable will be
declared by its first reference. The PDP-11 BASIC-PLUS-2 convention
is to implicitly type a variable or value by the trailing character in its
representation, e.g. ABC$ is a STRING variable; XYZ% and 123% are
INTEGER; T12, 314159, and 3.14 are implicitly REAL.

Variables can be declared in COMMON, MAP, or DECLARE state-
ments. Both COMMON and MAP statements are used to declare static
storage areas—typically 1/0 records or shared data blocks. If a pro-
gram has several named common statements with the same name, the
common program sections (PSECTSs) are stored one after the other. If

142

Programming Languages

several MAP statements have the same name, they overlay the same
PSECT.

The DECLARE statement is used to explicitly type variables, functions,
and constants. Note that the appearance of a variable name in a
DECLARE statement implies that that variable will not be in static
storage (see MAP, COMMON above).

Finally, the EXTERNAL statement is provided to let the BASIC pro-
grammer explicitly declare data types for symbols external to the cur-
rent program unit, e.g. the name of a VMS system service module, an
external BASIC function, or an externai constant which is to be global
in an application.

Figure 5-3 illustrates the use of COMMON, MAP, DECLARE, and EX-
TERNAL statements.

143

1443

200

300

COMMON STATEMENTS

COMMON (DATASET1) REAL A,B,C,D,E,F,G,H,0,P,Q,R,S,T,U VW XY,Z,

INTEGER
STRING

1,4,K,L,M,N
§1,52,53,54

COMMON (DATASET1) LAST.NAME$=10, FIRST.NAME$=5

MAP (DATASET2)

MAP (DATASET2)

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

MAP STATEMENTS = --------

REAL
INTEGER
STRING

REAL
INTEGER
STRING

DECLARE STATEMENTS

INTEGER
REAL
LONG
WORD
STRING

PART.NUMBER, COST,

VENDOR.CODE, QA.INDEX,

VENDOR.ID=40
FILL, FILL,
FILL, FILL,

VENDOR.NAME = 10, FILL,
VENDOR.TWX = 30

COUNTER.1, COUNTER.2,
STANDARD.DEVIATION
A.32.BIT.VARIABLE
A.16.BIT.VARIABLE
LAB.NAME = 20

Figure 5-3 Declaration Statements

Qo Qo Qo

sabenbue] buiwweibolid

143

400
401
402
500

600

DECLARE
DECLARE
DECLARE

INTEGER CONSTANT
REAL CONSTANT
STRING FUNCTION

DEF CONCAT(STRING Y, STRING Z)

FNEND

CONCAT=Y+2Z

PRINT CONCAT(“THIS 1S”,“ THE RESULT”)

EXTERNAL STATEMENTS

EXTERNAL
EXTERNAL

EXTERNAL

DEBUG.MODE =0,MY.P=3,
MY.PL . =3.1416
CONCAT

INTEGER FUNCTION SYS$ASSIGN
INTEGER FUNCTION SYS$TRNLOG

INTEGER FUNCTION SYS$QIOW

Figure 5-3 Declaration Statements

CAN BE USED FOR VMS SERVICES

! LOGICAL TRANSLATIONS

! SYNCHRONOUS QIO CALL

cont'd

sabenbue] bunwuwesbold

Programming Languages

Files and Records

The VAX-11 BASIC language supports RMS (Record Management
Services) sequential, indexed, and relative file organizations. In addi-
tion, BASIC applications can access virtual arrays (stored on files),
terminal-format files, and block 1/0 files via RMS.

The OPEN ‘statement in the VAX-11 BASIC language allows
specification of file organization, access modes, file sharing, record
formats, record size, and file allocation. At the record level, a BASIC
program can FIND, GET, PUT, UPDATE, DELETE, or RESTORE any
record in a file either sequentially or randomly.

The VAX-11 BASIC language can access files created by other native
mode languages, assuming appropriate data representations are
maintained with the records.

Symbolic Characters

The BASIC language supports references to symbolic charac-
ters—those characters in the 96-character ASCIl set which do not
print, e.g. NUL, SOH, FF, CR, etc. Figure 5-4 illustrates the use of
symbolic characters in a BASIC program.

146

VA4S

10 PRINT “PROGRAM STARTS...”;LF;LF;*AT ”+ TIME$(0)
TITLES = “SUMMARY REPORT”
PRINT TITLE$;CR; FORI =1TO5

! Bold copy by overprinting
]

PRINT
!
PRINTA(I)FORI=1TO 10 ! Output report data
!
PRINT
!
99 END
Ready
RUN
TEST5 28-MAY-1980 17:20
PROGRAM STARTS...
AT 05:20 PM
SUMMARY REPORT
0
0
0
0
0
0
0
0
0
0
Ready

Figure 5-4 Symbolic Characters

sabenbue] buiwweiboid

Programming Languages

CALL Facility

The CALL statement allows the BASIC programmer to invoke pro-
cedures and functions that are external to the current source module.
By using the VAX-11 LINKER utility, procedures written in any of the
VAX native mode languages can be invoked, i.e., BASIC routines can
call or be called by procedures written in the COBOL, CORAL, FOR-
TRAN, and PASCAL languages.

The CALL statement in the VAX-11 BASIC language has been extend-
ed to allow a procedure to pass parameters BY REFerence, BY
VALUE, or BY DESCriptor. These mechanisms conform to the VAX
procedure calling standard and allow BASIC programs to call VMS
service routines and accept returning status values.

Shareable Programs

Applications written in the VAX-11 BASIC language can be made
shareable images by the VAX-11 LINKER. The BASIC language gener-
ates fully re-entrant PIC code.

Developing BASIC Programs

The VAX-11 BASIC language delivers a high-productivity develop-

ment environment. The key features of this environment inciude:

e Automatic line number generation via SEQUENCE command

e Integral line editing with EDIT

¢ A RUN command which allows a program to be placed directly into
execution without requiring a separate LINK operation

® Direct execution of unnumbered BASIC statements, allowing quick
verification of algorithms, inspection/change of data values, and
invocation of subroutines or functions in a halted BASIC program

e An integral HELP facility helps program debug/development by
providing online reference text from the BASIC manual set

e The VAX-11 BASIC system can produce source language listings
with embedded diagnostics indicating the line and position of any
errors. Fully descriptive diagnostic messages are provided at the
point of an error. Many error conditions are caught at compile time.
At the user’s option, the VAX-11 BASIC system can also output a
machine language listing and/or a cross-reference listing

® The VAX symbolic debugger (DEBUG) lets the programmer set
breakpoints, and inspect or change the value of variables during
execution of a program

Figure 5-5 illustrates the use of several of these features. The text
appearing in bold in Figure 5-5 corresponds to user input, the remain-
ing text is supplied by the BASIC system.

148

Programming Languages

100 !e--receereeeeee—-INPUT A FILE NAME, COUNT NUMBER OF LINES IN IT-
LINPUT “What file to be opened ”’,FILE.NAME$
F.NAMES$ = EDIT$(FILE.NAMES$,32%)
OPEN F.NAMES$ FOR INPUT AS FILE #1
ON ERROR GOTO 900
LINPUT #1%,TEXTS FOR I = 1 to 1000000
STOP
900 LINE. = ERL
NUMBER. = ERR
MESSAGE$ = ERT$(NUMBER.)
RESUME LINE 910
910 PRINT “*END, FROM LINE";LINE.; “WITH TEXT: ’;MESSAGES;
PRINT ‘- AFTER ”;1;RECORDS”’
991 STOP
995 PRINT “*** THE END ***”
999 END

Ready
RUNNH

%BASIC-E-SYNERR, syntax error o
at line 900 statement 4
RESUME LINE 910

)
Ready

HELP RESUME
RESUME

The RESUME statement marks the end of an error handling routine,
and returns program control to a specified line number:

Format

RESUME [<lin-num>]
Examples

990 RESUME 300

or

990 RESUME

Ready

LIST 900
TEST6 28-MAY-1980 17:15

900 LINE.=ERL
: NUMBER. = ERR
MESSGE$ = ERT$(NUMBER.)
RESUME LINE 910

Figure 5-5 BASIC Program Development Features

149

Programming Languages

Ready
EDIT 900/ LINE//

900 LINE.=ERL
NUMBER. = ERR
MESSAGE$ = ERT$(NUMBER)
RESUME 910

Ready

RUN
TEST6 28-MAY-1980 17:16

What file to be opened ? TEST6.BAS

*END, FROM LINE 200 WITH TEXT: ?End of file on device - AFTER 17 RECORDS
%BAS-1-STO, Stop

-BAS-I-FROLINMOD, from line 991 in module TEST 6

Ready

PRINT MESSAGES$;“ FROMFILE”;F.NAMES$
?End of file on device FROM FILETEST6.BAS
Ready

PRINT F.NAMES$;CR; FORI=1TO5
TEST6.BAS
Ready

Figure 5-5 BASIC Program Development Features cont'd

The LOAD Command

A major goal of VAX-11 BASIC is to support a program development
environment. The LOAD command allows a user to stay in BASIC,
even when a program under development involves several separately
compiled BASIC subroutines. When a RUN command is issued, any
BASIC modules moved into memory by the previous LOAD command
are automatically bound together with the module under development
and the resulting in-memory image begins execution, i.e., the user is
not required to leave BASIC, invoke the LINKER, and use the DIGITAL
Command Language (DCL) $RUN command. This speeds program
development considerably.

Once an application has been checked out, a final call on the LINKER
can be used to create a shareable, native mode, executable image for
production use.

Error Handling

The VAX-11 BASIC system allows user-directed error and event han-
dling. Occurence of an error can activate one or more routines which
handle the error (or event), and then return control to the point where

150

Programming Languages

the error occurred (RESUME), or to the calling program (ON ERROR
GOBACK), or to the BASIC system itself for standard cleanup and
return of control at the BASIC command level.

In determining the cause of an error, the BASIC program can use the
value of: ERR—the error message number assigned by BASIC,
ERL—the line number where the error occurred, ERN$—the name of
the BASIC module where the error occurred, and ERT$(ERR)—the
error message text which the BASIC system would print if the error
were not trapped by the program.

Migration to VAX/VMS
Included with the VAX-11 BASIC system is a translator utility which
helps to convert BASIC-PLUS programs to VAX-11 BASIC. Generally,
OPEN statements and SYS calls need to be modified. However, addi-
tional systems-dependent statements may need to be changed as
well. For more information, see The BASIC Transportability Manual.
The following are examples of typical changes:
® The MODE expression on an OPEN statement is changed to the
corresponding set of keywords, e.g.,
OPEN F$ AS FILE #1 MODE2%
becomes
OPEN F$ AS FILE #1, ACCESS APPEND
¢ MAP and DIM statements are moved to occur before OPEN state-
ments
® RSTS/E SYS-CALLS are examined and removed if not supported
by the VAX/VMS operating system

Files may be copied over on tape or by using DECnet communications
software, and the programs are RUN under VAX-11 BASIC. In the
event errors are detected by BASIC, the online HELP facility is used to
determine any additional changes needed for correct compilation. A
detailed list of differences between VAX-11 BASIC and the PDP-11
BASIC-PLUS-2 (and BASIC-PLUS/EXTEND) can be found in the
Users Guides for those products.)

Certain features were carried forward from PDP-11 BASIC-PLUS and
PDP-11 BASIC-PLUS-2 to VAX-11 BASIC in order to make the move
to VAX easier. These include:

® BASIC-PLUS to VAX-11 BASIC Translator utility

® Program RESEQUENCE utility from BASIC-PLUS-2 V1.6

® FIELD statement

® CVT, SWAP, and MAGTAPE functnons

® Foreign buffer support

151

Programming Languages

e String arithmetic
e Numerous non-privileged RSTS/E SYS calls
® Virtual arrays

Additional Functions

Additional functions of the VAX-11 BASIC language include the follow-

ing: : : .

e Powerful string manipulation functions for creating, converting,
searching, editing, and extracting character values

® Variable names up to 30 characters long

e Maxiumum length of a single string is 65,535 characters

e Multiple statements on aline :

e Multitine IF...THEN...ELSE statements N

e Optional use of line continuator “&” and statement ?separator' “\”,

e.g.,
100 PRINT vs. 100 PRINT &
PRINT \ PRINT &
PRINT \ PRINT
VS.
100 PRINT &
\ PRINT &
\ PRINT

e DIGITAL Command Language (DCL) pass-through in the BASIC
command mode by simply prefixing the DCL command line with a
dollar-sign, e.g., .

Ready. .
$DIR *.BAS, *.0BJ
® Provision for up to ten individual BASIC object library files for au-

tomatic use at runtime when developing an application using sepa-
rately-compiled BASIC subroutines ‘

VAX-11 COBOL

VAX-11 COBOL is a high-performance implementation of COBOL. Itis
based on American National Standard Programming Language CO-
BOL, X3.23-1974, the industry-wide accepted standard for COBOL.
Most features planned for the next COBOL standard, based on the
specifications in the Draft Proposed Revised X3.23-American National
Standard Programming Language COBOL, are also included.

152

Programming Languages

VAX-11 COBOL also supports an embedded Data Manipulation Lan-
guage (DML) interface to VAX-11 DBMS, Digital's CODASYL- compli-
ant Data Base Management System. Also, it allows access to common
record definitions stored in the VAX-11 Common Data Dictionary.
VAX-11 COBOL'’s support of features in the next ANSI COBOL stan-
dard, of the VAX Information Architecture, and of other Digital-defined
extensions to COBOL makes possible a wnder range of COBOL appli-
cations on the VAX.

VAX-11 COBOL is properly defined as an implementation of ANSI
COBOL with full support of the following:

e full Level 2 Nucleus Module

e full Level 2 Table Hanlding Module.

o full Level 2 Sequential /0 Module

o full Level 2 Relative 1/0 Module

o full Level 2 Indexed I/0 Module

o full Level 1 Report Writer Module

¢ full Level 2 Segmentation Module

e full Level 2 SORT/MERGE Module

e full Level 2 Library Module

o full Level 2 Interprogram Communication Module

Most code in the object module produced by the VAX-11 COBOL
compiler is implemented with in-line VAX-11 instructions. The obJect
code takes advantage of such native mode features as:

e many of the VAX-11 string manipulation instructions
® the packed decimal instructions

e direct calls to VAX/VMS

e direct calls to VAX-11 RMS

® direct calls to VAX-11 DBMS

® direct calls to VAX-11 SORT

e direct calls to the Common Run-Time Library

® transparent access to DECnet

The VAX-11 Symbolic Debugger many be used for program develop-
ment with VAX-11 COBOL. Features supported include the source
program display facility in which the COBOL source code is displayed
as the debugger traces the program. This reduces the need for
sources listings during program development. Other features include
complete support of COBOL qualified names, breakpoints, and the
examination and setting of program variables.

153

Programming Languages

Object modules produced by the compiler can be linked with native
mode object modules produced by other VAX language processors
including BASIC, FORTRAN, PL/I, and MACRO.

Structured Programming

VAX-11 COBOL adds some of the features of traditional structured
programming languages (such as ALGOL and PL/I) to the VAX-11
COBOL compiler. This facility makes programs easier to develop, un-
derstand, and maintain, thereby reducing program development and
maintenance costs. The structured programming facilities supported
by VAX-11 COBOL include the EVALUATE statement, scope-delimit-
ed statements, and the in-line PERFORM statement.

The EVALUATE statement in a CASE-like statement found in modern
programming languages and allows the selection of statements to be
exeucted, dependent on the state of program variables. Scope-delim-
ited statements simplify COBOL coding that previously required addi-
tional GO TO statements and procedure names. The in-line PERFORM
statement reduces program complexity by putting logic of the
PERFORM in-line.

The following program example from a transaction processing appli-
cation illustrates the usage of the structured programming facilities in
VAX-11 COBOL.

INITIALIZE STATE.

PERFORM VARYING | FROM 1 BY 1UNIT | > 12
MOVE 0 TO MONTYLY-RETRIEVE-TRANSACTIONS(I)
MOVE 0 TO MONTHLY-UPDATE-TRANSACTIONS(I)
END-PERFORM

TRANSACTION-LOOP.

MOVE MONTH-INDEX TO I.
EVALUATE TRANSACTION-TYPE
WHEN “RETRIEVE”

154

Programming Languages

WHEN “retrieve”
READ TRANS-FILE AT END
MOVE “EOF” TO TRANS-EOF-SWITCH
END-READ
IF TRANS-EOF-SWITCH NOT = “EOF”
THEN
ADD 1 TO MONTHLY-RETRIEVE-TRANSACTIONS(I)
END-IF
WHEN “UPDATE”
WHEN “update”
REWRITE TRANS-REC
ADD 1 TO MONTLY-UPDATE-TRANSACTION(l)
WHEN OTHER
DISPLAY TRANSACTION-TYPE “is an invalid transac-
tion”
ADD 1 TO TRANS-ERROR-CNT
END-EVALUATE.
GO TO TRANSACTION-LOOP.

The example illustrates the usage of the in-line PERFORM statement
whose scope is delimited by END-PERFORM. The in-line PERFORM
loop initializes monthly transaction counts in preparation for the sub-
sequent transaction analysis. The EVALUATE statement performs the
transaction analysis and illustrates the typical usage of this statement:
a set of actions to be executed, dependent on the state of a program
variable (e.g., TRANSACTION-TYPE). For the cases not specifically
mentioned, the (catch-all) WHEN OTHERS imperative statement se-
guence is executed which, in this example, does exception reporting
and a count of the transaction errors. The scope-delimiters are END-
PERFORM, END-READ, END-IF, and END-EVALUATE. These help to
organize the program and to make the program more understandable
and maintainable.

Data Types

VAX-11 COBOL supports the data types specified in the ANSI COBOL
Standard. VAX-11 COBOL also supports, as extensions, the packed
decimal (COMP-3), floating point (COMP-1), double floating (COMP-
2), and address (POINTER) data types.

The following is a summary of the data types supported by VAX-11
COBOL:

1565

Programming Languages

Numeric DISPLAY Date
- Trailing overpunch sign
- Leading overpunch sign
- Trailing separate sign
- Leading separate sign
- Unsigned
- Numeric-edited
o Numeric COMPUTATIONAL Data
- Word fixed binary
- Longword fixed binary
- Quadword fixed binary
e Packed-Decimal Data (COMPUTATIONAL-3)
- Unsigned packed decimal
- Signed packed decimal -
® Floating Point Data
- F_floating (COMPUTATIONAL-1)
- D _floating (COMPUTATIONAL-2)
Alphanumeric DISPLAY Data
- Alphanumeric
- Alphabetic
- Alphanumeric-edited
® Address Data
- Pointer

Contained Programs and CALL Facilities

VAX-11 COBOL supports both the contained programs and CALL
statement facilities. Contained programs allows the nesting of one or
more contained subprograms in a containing program within a source
module. A containing progam may call any of its directly contained
subprograms. Moreover, resources such as variables, files, alphabets,
symbolic characters, and use procedures defined in a containing
program may be referenced in the contained subprogram, provided
such resources are defined in the containing program with the GLO-
BAL attribute. Thus, the contained programs facility allows the sharing
of programs and data within the same source module.

The CALL statement enables a COBOL programmer to execute rou-
tines that are external to, or contained in, the source module in which
the CALL statement appears. The VAX-11 COBOL compiler produces
an object module from a source module. The object module file can
be linked with other VAX object modules to produce an executable

156

Programming Languages

image. Thus, COBOL programs can call external routines written in
other VAX-11 languages including BASIC, FORTRAN, PL/l, and MA-
CRO.

The CALL statement has been extended by allowing arguments to be
passed BY REFERENCE (the default in COBOL), BY CONTENT, BY
DESCRIPTIOR, and BY VALUE. The BY REFERENCE and BY CON-
TENT argument-passing mechanisms are defined by the next ANSI
COBOL standard. The BY DESCRIPTOR and BY VALUE argument-
passing mechanism are Digital extensions to COBOL and are useful in
calling VAX/VMS system service routinesand common run-time
library procedures. These argument-passing mechanisms conform to
the VAX caliing standard. Also, a COBOL program can receive a re-
turned status value from the routine it calls via the GIVING clause
associated with the extended CALL statement.

Other extensions to VAX-11 COBOL that are useful in accessing the
VAX/VMS environment from COBOL are the external constants (VAL-
UE IS EXTERNAL), address data, and the SUCCESS/FAILURE class
conditions.

The external constants facility gives the COBOL programmer access
to values that are known at link-time only. The address data exten-
sions to VAX-11 COBOL include:

® USAGE IS POINTER clause

e VALUE IS REFERENCE clause

e SET TO REFERENCE statement

USUAGE IS POINTER specifies that the associated variable is to con-
tain an address value; the VALUE IS REFERENCE clause allows
compile-time initialization of a pointer variable to the address of CO-
BOL data. The SET TO REFERENCE statement allows run-time ini-
tialization of a pointer variable to the address of COBOL data. The
SUCCESS/FAILURE class condition aliow a COBOL program to test
the low-order bit of a returned status variable from a system service
routine call.

COBOL Data Manipulation Language (DML)

VAX-11 COBOL supports the COBOL Data Mampulatlon Language
interface to VAX-11 DMBS, Digital’'s CODASYL-compliant Data Base
Management System. Digital refers to the DML interface as an
“embedded DML” because no preprocessor techniques are used by
the compiler in the transiation of the DML statements. Instead, the
VAX-11 COBOL compiler translates directly the DML statements to
calls on the Data Base Control System (DBCS) component of VAX-11
DBMS.

157

Programming Languages

This DML facility is an intergal part of the VAX Informaton Architecture
and consists of the following:

e the DB statement in the Sub-Schema Section
¢ the USE FOR DB-EXCEPTION declarative

e the database special registers

e the data manipulation verbs

The DB statement specifies the subschema and schema that a DML
program uses. The subschema and schema define the sets, record
types, and realms that the DML program manipulates. The USE FOR
DB-EXCEPTION declaratives specify error handling procedures for
database exception conditions that may arise during DML program
execution. The database special register DB-CONDITION identifies
specific database exception conditions. The data manipulation verbs
enable a DML program to navigate through a database, to test the
state of a database, and to create, update, and delete records in a
database. Some of the DML verbs supported are:

® READY - Begin database transaction

® FIND - Find record in database

® GET - Get current record in database

® STORE - Store record in database

e MODIFY - Update record in database

e ERASE - Erase record(s) in database

e COMMIT - Terminate database transaction; change database

¢ ROLLBACK - Terminate database transaction; no change to data-
base

The following program example from a database transaction process-
ing application illustrates the use of the DML facilities in VAX-11 CO-
BOL.

IDENTIFICATION DIVISION.

PROGRAM-ID. DMLRETRIEVE.

DATA DIVISION. '

SUB-SCHEMA SECTION.

DB TRANSUBSCHEMA WITHIN TRANSCHEMA.
LINKAGE SECTION. :

01 RET-KEY - PICX(7):
01RT-INFO PIC X(73(.
PROCEDURE DIVISION USING RET-KEY, RET-INFO GIVING DB-
CONDITION.

DECLARATIVES.

158

Programming Languages

RETRIEVAL-HANDLER-SECT SECTION.
USE FOR DB-EXCEPTION.
RETRIEVAL-HANDLER.
ROLLBACK.
EXIT PROGRAM.
END DECLARATIVES.
RETRIEVAL-SECTION SECTION.
RETRIEVE-REC.
READY CONCURRENT RETRIEVAL.
MOVE RET-KEY TO TRANSKEY.
FIND FIRST TRANSREC USING TRANSKEY.
GET TRANSREC.
MOVE TRANSINFO TO RET-INFO.
ROLLBACK.
EXIT PROGRAM.

This program is a COBOL subprogram designed to find and return
information from the TRANSCHEMA database to the caller of the sub-
program. The DB statement shows that the TRANSUBSCHEMA sub-
schema is to be used for the TRANSCHEMA schema (database). The
program is given a lookup key, RET-KEY, as input to locate the record
in the database with the FIND statement. The GET statement retrieves
the record into memory and returns the associated information (via
RET-INFO) to the caller. The USE FOR DB-EXCEPTION procedure
handles any database exception conditions that may arise during the
execution of the READY, FIND, or GET statements. If this execution
procedure is invoked due to such an error condition, the specific data-
base exception condition, specified in the special register DB-CONDI-
TION, is returned to the caller (via the GIVING option) of the
subprogram. The ROLLBACK statement terminates the database
transaction and leaves the database unchanged.

Files and Records

VAX-11 COBOL Sequential I/0, Relative I/0, and Indexed 1/0 mod-
ules meet the full ANSI Level 2 standard. The Language’s Level 2
Indexed 1/0O module statements enable VAX-11 COBOL programs to
use the VAX-11 RMS multikey indexed record management services
to process files. These files can be accessed sequentially, randomly,
or dynamically usng one or more indexed keys to select records. VAX-
11 COBOL has full variable-length record capability for all three 1/0
modules.

159

Programming Languages

VAX-11 COBOL supports the EXTERNAL files capability for all three
I/0 modules. This facility allows a program to open a file in one sepa-
rately compiled program and perform record operations in another
separately compiled program.

VAX-11 COBOL has extended COBOL by supporting the special
registers RMS-STS, RMS-STV, and RMS-FILENAME. These special
registers give the COBOL program access to the VAX-11 RMS status
return values and file specification for each I/0 operation execution.
These special registers are defined in addition to the file status values
specified in the ANSI COBOL standard.

An additional extension to VAX-11 COBOL is the file sharing and re-
cord locking facilities. These facilities are defined for interactive appli-
cations where multiple, concurrent access to a file is required. The
facilities include exclusive, concurrent read-only, and concurrent
read/write access to a file. Automatic and manual record locking ca-
pabilities are supported to protect multiple accessors to the same
record in afile.

Report Writer Facility

VAX-11 COBOL supports the -full Report Writer Module. The report
writer is a facility that places its emphasis on the organization, format,
and contents of an output report. Although a report can be produced
with the standard COBOL 1/0 verbs, the Report Writer facility is a
much more concise facility for report structuring and generation.
Much of the Procedure Division coding required to produce reports in
the traditional manner is done automatically by the VAX-11 COBOL
Report Writer Control System. Based on the report group description
entries in the COBOL program, the report writer control system auto-
matically:)

e Moves data

® Constructs printlines

e Counts lines on a page

e Numbers pages

¢ Produces heading and footing lines

® Recognizes the end of logical data subdivisions |

e Updates sum counters

Hence, the VAX-11 Report Writer improves programmer productivity
and produces programs that are more cost-effective to maintain.

SORT/MERGE Facility v -
The VAX-11 COBOL SORT/MERGE module meets the full ANS| stan-
dard and permits performing sort and merge operations at the CO-

160

Programming Languages

BOL source language level without requiring the programmer to un-
derstand the VAX-11 SORT interface. The COBOL SORT/MERGE
capability includes sorting and/or merging one or more files in the
same . source module, specifying one or more sort/merge keys (in
ascending or descending order) for each file, and the option to use
either standard or user-specified input/output procedures. The VAX-
11 COBOL SORT/MERGE facility supports the sorting/merging of ver-
iable length records and input/output files of differing file organiza-
tions.

Source Library Facility

VAX-11 COBOL supports the full ANSI COBOL Library facility. All
frequently used data descriptions and program text sections can be
stored in library files available to all programs. These files can then be
copied into source programs performing textual substitution in the
process. ’

VAX-11 COBOL has extended the COPY statement by supporting the
COPY FROM DICTIONARY statement. This facility allows common
record defintions to be copied from the VAX-11 Common Data Dic-
tionary. This facility is an integral part of the VAX-11 Information Archi-
tecture. Record definitions may be inserted into the dictionary by VAX-
11 DATATRIEVE or by the Common Data Definition Language utility.

Debugging COBOL Programs

The VAX-11 compiler produces source language listings with
embedded diagnostics indicating line and position of error. Fully de-
scriptive diagnostic messages are listed at the point of error. Many
error conditions are checked at compile time, varying from simple
informational indications to severe error detections. At the user’s op-
tion, the compiler can also produce a machine language listings, a
map of file names, data names, procedure names, external program
names, subschema information, and a cross reference listing. The
maps and cross reference listing may be shown in alphabetic order or
in order of declaration. The cross reference line numbers on which
data-names/procedure-names are defined are indicated and destruc-
tive references to date are distinguished from read-only references.

When a fatal error occurs at run time, an error message identifying the
cause of the -error is displayed to the user. Additionally, the system
traceback facility prints the sequence of routine invocations active at
the time of the fatal error. For each routine invocation, traceback dis-
plays the module name, routine name, and source line number in
which either an invocation to another user routine occurs or the fatal
error itself occurs. '

161

Programming Languages

The VAX-11 Symbolic Debugger may be used for program
development with VAX-11 COBOL. Features supported include the
source program display facility. By using the facility, the COBOL
source code may be displayed at breakpoints and tracepoints. This
reduces the need for source listings during program development.
Other significant features include full support of COBOL qualified
names, breakpoints, examination and setting of program variables.

VAX-11 COBOL also supports the ANSI conditional compilation facili-
ty: debug lines. This facility allows “D-lines” to be included condition-
ally in the compilation, depending on the presence of the WITH DE-
BUGGING MODE clause in the SOURCE-COMPUTER paragraph. The
feature, however, requires editing and recompilaton of the source pro-
gram. To overcome this limitation, VAX-11 COBOL has extended the
conditional compilation facility by providing a compile-time qualifier,
/CONDITIONALS, to indicate the inclusion or omission of debug lines
in the compilation.

VAX-11 COBOL-74 Translator Utility

The VAX-11 COBOL-74 Translator Utility is helpful to those users
migrating from PDP-11 COBOL and VAX-11 COBOL-74 to the VAX-11
COBOL compiler. This utility produces a translated source program
and a listing with flags indicating those language elements that could
not be mechanically translated and therefore require further investiga-
tion by the programmer.

Some of the differences between VAX-11 COBOL and PDP-11 COBOL
or VAX-11 COBOL-74 that require such a translator are:

e different allocation and alignment techniques
e different methods of specifying file optimization attributes
¢ different methods of handling variable length records

Fortunately, most differences are transparent to the programmer, and
moving programs form PDP-11 COBOL or VAX-11 requires little (is
some cases, ho) programmer work. .

Source Program Formats . ‘
The VAX-11 COBOL compiler accepts source programs that are cod-
ed using either the ANSI standard format or a shorter, easy-to-enter
Digital terminal format. Terminal format is designed for use with the
Digital interactive fields and allows the user to enter horizontal tab
characters and short text lines. :

The REFORMAT utility reads COBOL source programs that are coded
using Digital terminal format and converts the source statements to
the ANSI standard format accepted by other COBOL compilers

162

Programming Languages

throughout the industry. It also has the inverse option to accept pro-
grams written in ANSI standard format and to convert the source
statements to Digital terminal format. This offers the advantages of
saving disk space and compile-time processingwhen programs are
initially migrating from a non-Digital COBOL system to VAX-11 CO-
BOL.

Addltlonal Features

Some additional features of the VAX-11 COBOL compller are:
® Subscripts can be arithmetic expressions

® Subscripting and indexing are interchangeable. '

® The CONTINUE statement is included. It transfers control to the next
executable statement and can replace condmonal or |mperat|ve
statements.

¢ The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COM-
PILED, and SECURITY paragraphs are included.

The INITIAL and COMMON clauses on the Program-Id are included:
User-defined alphabets are included.

Alter statement is included.

CALL data-name is included. Both on OVERFLOW and EXCEPTION
are supported.

o CANCEL statement is fully implemented.
® |INITIALIZE statement is fully implemented.
® Complete string handling facility of COBOL are supported including

the INSPECT, STRING, and UNSTRING statements. The reference-
modification (substringing) feature is fully supported.

e SET statement supporting mnemonic-names, condition-names, and
the Digital-defined extension of SET TO SUCCESS/FAILURE is in-
cluded.

® Independent segments (segments 50 and above) of the Segmenta-
tion module are included.

¢ WRITE advancing mnemonic-name and associated Spemal Names
CO1isincluded.

® Use of source file libraries by the COPY statement is supported.

® The Digital extension of non-numeric literals as arguments in the BY
REFERENCE, BY CONTENT, and BY DESCRIPTIOR argument-
passing mechanisms is included. .

® Single-quote-limited non-numeric literals, a Digital extension, are
supported in addition to the standard double-quote-delimited non-
numeric literals.

® De-edited MOVE operations are supported.

163

Programming Languages

L OPEN EXTEND on relative and indexed files is included.

e ALPHABETIC-UPPER and ALPHABETIC-LOWER class conditions
are implemented.

® The ALLOWING extension on the READ, START, REWRITE, and
WRITE statements for manual locking of records in the interactive
file sharing environment is included.

e The READ REGARDLESS extension that allows the reading of re-
cords in a file sharing environment, independent of record locks
held on the record is supported.

® The UNLOC statement, a Digital extension, for explicit unlocking of
records in the file sharing environment is implemented.

e ACCEPT AT END, a Digital extension, is included.
e Thirty-one character user-names are supported.

VAX-11 FORTRAN

VAX-11 FORTRAN is an optional native-mode language processing
system for VAX/VMS. The language specifications are based on
American National Standard FORTRAN X3.9-1978 (commonly called
FORTRAN-77). The VAX-11 FORTRAN compiler supports this stan-
dard at the full-language level. Also, it provides optional, switch-selec-
table support for many industry-standard FORTRAN features based
on FORTRAN-66, the previous ANSI standard. The qualifier /NOF77
will invoke such FORTRAN-66 features.

The VAX-11 FORTRAN compiler performs the following functions:
® Produces highly optimized VAX native object code

® Makes use of the VAX floating point and character string instruc-
tions

e Produces shareable code

File Manipulation

OPEN and CLOSE statements extend the file management character-
istics of the FORTRAN language. An open statement can contain
specifications for file attributes that direct file creation or subsequent
processing. Attributes include: file organization (sequential, relative,
indexed); access method (sequential, direct, keyed); protection (read-
only, read/write); record type (formatted, unformatted); record size;
and file allocation or extension. The program can also specify whether
the file can be shared, and whether the file is to be saved or deleted
when closed. An ERR keyword can modify the OPEN statement and
specify the statement to which control is transferred if an error is
detected during OPEN.

164

Programming Languages

Of particular interest is the VAX-11 FORTRAN support for the Indexed
Sequential Access Method (ISAM), a powerful keyed input/output file
access capability. The VAX-11 FORTRAN language is able to create,
read, and write indexed (and relative) files. In addition, it is able to
reference a relative or indexed file already created by another lan-
guage (for instance, the COBOL language), provided the file and data
formats and the key information are compatible. Some specifics of
FORTRAN ISAM are covered below, while more details on the various
file structures and access methods are included in Chapter 12 I/0
Services.

Simplified /O Formats

List-directed and NAMELIST-directed input and output statements
provide a method for obtaining simple sequential formatted input or
output without the need for FORMAT statements. Using list-directed
input, values are read, converted to internal format, and assigned to
the elements of the 1/0 list. On output, values in the 1/0 list are con-
verted to characters and written in a fixed:format according to the data
type of the value.

The NAMELIST statement and the associated forms of input/output
statements provide a simplified means of transmitting lists of data to
and from files. The list of items that can be transferred is specified in a
NAMELIST statement. The associated 1/0 statement refers to the list -
of items to be transferred by including the name of the NAMELIST as a
control parameter. NAMELIST 1/0 statements do not contain explicit
1/0 lists; therefore, it is possible to reference a single name in a simple
1/0 statement and get an effect similar to a statement with a long list
and a reference to a complicated format statement.

Character Data Type

A program can create fixed-length CHARACTER variables and arrays
to store ASCII character strings. The VAX-11 FORTRAN language pro-
vides a concatenation operator, substring notation, CHARACTER rela-
tional expressions, and CHARACTER-valued functions. CHARACTER
constants, consisting of a string of printable ASCIl characters en-
closed in string quotes, can be assigned symbolic names using the
PARAMETER statement. Operations employing CHAR strings are
more efficient and easier to use than their analogs using arithmetic
data types. The VAX/VMS operating system provides a set of charac-
ter manipulation procedures that are FORTRAN-callable (e.g.,
LIBSLOCC, locate a character in a string).

165

Programming Languages

Source Program Libraries :

The INCLUDE statement provides a mechanism for writing modular,
reliable, and’ maintainable programs by -eliminating duplication of
source code. A section of program text that is used by several pro-
gram units, such-as a COMMON. block specification, can be created
and maintained as a separate source file. All program units that refer-
ence the COMMON block then merely INCLUDE this common file. Any
changes to the COMMON block will be reflected automatically in-all
program units after compilation. INCLUDE also allows the user to in-
clude modules from the text libraries. VAX-11 FORTRAN provides a
text library that contains FORTRAN source for many VAX/VMS sym-
bols.

Calling External Functions and Procedures

FORTRAN programs can call MACRO assembly language subroutlnes
and the system services using the VAX-11 procedure calling standard.
Special operators exist for passing argumentvalues directly, by
reference, or by descriptor. A special operator also exists for obtain-
ing the location of argument values used by the system services pro-
cedures.

Shared Programs

The FORTRAN language can be used to create shareable images
which can be used by any program written in a native programming
language.

Diagnostic Messages

Diagnostic messages are generated when an error or potential error is
detected. Errors detected during compilation are reported by the
compiler, and include source program errors, such as misspelled vari-
able names, missing punctuation marks, etc.

Source program diagnostic messages are classified according to
severity: F (Fatal), E (Error), or W (Warning). F-class messages indi-
cate errors that must be corrected before compilation can be complet-
ed. Object code is not produced. E-class messages indicate that an
error was detected that is likely to produce incorrect results; however,
an object file is generated. W-class messages are produced when the
compiler detects acceptable but non-standard syntax; or when it cor-
rects a syntactically incorrect statement. The message indicates the
existence of possible trouble in executing the program.

The VAX-11 FORTRAN compiler optionally produces diagnostic mes-
sages for VAX FORTRAN . extentions to ANSI FORTRAN-77. This
flagger can check both syntax and/or source form extentions.

166

Programming Languages

Debugging FORTRAN Programs

The VAX-11 FORTRAN language provides facilities to aid the debug-
ging of programs written in native mode. It accomplishes this via a
program known as the interactive symbolic debugger. The debugger
can be linked with a native program image to control image execution
during development. It can be used interactively or can be controlled
from a command procedure file. The debugging language is similar to
the VAX/VMS command language. Expressions and data references
are similar to those of the source language used to create the image
being debugged. Debugging statements can be conditionally com-
piled.

Debugging commands include the ability to start and interrupt pro-
gram execution, to step through instruction sequences, to display
source statements, to call routines, to set break or trace points, to set
default modes, to define symbols, and to deposit, examine, or evalu-
ate virtual memory locations.

Compiler Operations and Optimizations _
The VAX-11 FORTRAN compiler accepts sources written in the FOR-
TRAN language and produces an object file which must be linked
prior to execution. The compiler generates VAX-11 native machine
language code. It will also generate an optional cross-reference listing.

During compilation, the compiler performs many code optimizations.
The optimizations are designed to produce an object program that
executes in less time than an equivalent non-optimized program. Also,
the optimizations are designed to reduce the size of the object pro-
gram.

The VAX-11 FORTRAN compiler performs the following optimizations:

e Constant folding—constant expressions are evaluated at compile-
time.

® Compile-time constant conversion.

e Compile-time evaluation of constant subscript expressions in array
calculations.

e Constant pooling—only a single copy of a constant is allocated sto-
rage in the compiled program. Constants that can be used as
immediate mode operands are not allocated storage. For example,
logical, integer, and small floating point constants are generated as
immediate mode or short literal operands wherever possible.

® Inline expansion of statemment functions.

® Argument list merging—if two function or subroutine references
have the same arguments, a single copy of the argument list is
generated.

167

Programming Languages

® Branch instruction optimizations for arithmetic or logical IF state-
ments.

e Elimination of unreachable code—an optional warning message is

issued to mark unreachable statements in the source program list-

ing. :

® Recognition and replacement of common subexpressions.

® Removal of invariant computations from DO loops.

® Local register assignment—frequently referenced variables are re-
tained (if possible) in registers to reduce the nhumber of load and
store instructions.

e Assignment of frequently used variables and expressions to regis-
ters.across DO loops.

® Reordering expression evaluation to minimize the number of
temporary registers required.

e Delaying negation/not to eliminate unary complement operations.

® Flow-Boolean optimizations. ,

e Jump/Branch instruction resolution—the Branch instruction is used
wherever possible to eliminate unnecessary Jump instructions. This
reduces code size.

® Peephole optimizations—the code is examined on.an operation-by-
operation basis to replace sequences of operations with shorter and
faster equivalent operations.

When debugging FORTRAN programs, the programmer can disable
optimizations that would remove unreferenced statement labels, FOR-
MAT statement labels, and immediately referenced labels. This en-
sures that all statement labels are available to the debugger.

VAX-11 FORTRAN LANGUAGE ELEMENTS

A FORTRAN program consists of FORTRAN statements and optional
comments. In the first category are assignment, control, 1/0, format,
and specification statements.

Following are three tables: Table 5-1 is a brief summary of FORTRAN-
77; Table 5-2 is a summary of VAX-11 FORTRAN extensions to the
ANSI standard. And Table 5-3 is a summary of traditional FORTRAN
IV (industry-compatible) features supported by VAX-11 FORTRAN.

168

Programming Languages

Table 5-2 FORTRAN-77 Language Summary

ASSIGNMENT STATEMENTS
variable = expression
ASSIGN label TO variable

Control Statements

GOTO

DO

CONTINUE

CALL

RETURN

PAUSE

STOP

ARITHMETIC IF, LOGICAL IF

IF-THEN- Allows conditional expression evaluation. VAX-11
ELSE FORTRAN provides the block iF statements:

IF (logical expression) THEN

ELSE IF (logical expression) THEN
ELSE

ENDIF

These are structured programming control state-
ments which provide a readable and reliable
means of writing conditional statements.

END

INPUT/OUTPUT STATEMENTS
OPEN
CLOSE
INQUIRE
READ
WRITE
LIST DIRECTED INPUT/OUTPUT
REWIND
BACKSPACE

FORMAT STATEMENTS
FORMAT

ADDITIONAL DATATYPES
The CHARACTER data type can be used to declare and manipulate
fixed-length CHARACTER variables and arrays. CHARACTER

169

Programming Languages

expressions can contain concatenation operators (//), substring
references, and references to CHARACTER variables, array -
elements, and functions. A CHARACTER assignment statement
can be used to assign a character value to a character variable or
substring. Built-in functions are provided for locating a substring
within a character expression, computing the length of a character
dummy argument, and for conversions between character values
and integer-valued ASCII character codes.

SPECIFICATION STATEMENTS

IMPLICIT
IMPLICIT NONE Overides all default implicit

types.

type vari,var2,...,varn Type is one of: LOGICAL, IN-
TEGER, REAL, DOUBLE PRE-
CISION, COMPLEX, CHARAC-
TER, BYTE

DIMENSION

COMMON

EQUIVALENCE

EXTERNAL

INTRINSIC

PARAMETER

DATA

PROGRAM

SAVE

USER-WRITTEN SUBPROGRAMS
name (varl, var2,...)
—expression
FUNCTION
SUBROUTINE
BLOCK DATA
" ENTRY statement Multiple entry points in a single
program unit

170

Programming Languages

Table 5-3 VAX-11 FORTRAN Extensions

Thirty-one-character
symbolic names

CALL extensions

Permitinterfacing to VAX/VMS
system service procedures us-
ing the VAX-11 calling
standards.

Hexadecimal and octal constants and

field descriptors
Bit Manipulation

DO WHILE
END DO

Additional data types and
type declaration statements

Indexed File 170
Keyed READ

Indexed file WRITE
REWRITE statement
DELETE statement
UNLOCK statement

Intrinsic functions used to set,
clear, test, extract, or move bits.

Structured looping control con-
structs.

BYTE, LOGICAL*1,
LOGICAL*2,

LOGICAL, LOGICAL*4,
INTEGER*2,

INTEGER, INTEGER*4,
REAL, REAL*4,

DOUBLE PRECISION, REAL*8,
COMPLEX, COMPLEX*8,
DOUBLE COMPLEX, COM-
PLEX*186,

CHARACTER*n

NOTE
Names on the same line above
are synonyms. Those in bold-
face are the ANSI standard
ones.

Key types: INTEGER*2, INTEG-
ER*4, CHARACTER with gener-
ic, and approximate key match

171

Programming Languages
Table 5-3°- VAX-11 FORTRAN Extensions cont’'d

Single-record locking in

shared file environments

for relative and indexed

organization files

Data initialization in type-declaration statements

Array Subscripts using general expressions
of any numeric data type

End-of-Line comments

Conditional Compilation of debugging statements
Default FORMAT width

Logical Operations on integers

INCLUDE statement

CALL extensions

INTEGER Data Type Defaults

Tablé 5-4 Traditional FORTRAN IV (Industry-Compatible)
Features

FORTRAN IV Compatible Direct Access I/0:
(Where u = logical unit#, and r = record #)

DEFINE FILE
READ (u'r)
WRITE (u'r)
FIND (u'r)
ENCODE Statement
DECODE Statement
Hollerith processing of character data
Character literals
(Optional) One-trip DO loops instead of FORTRAN-77
zero-trip DO loops

Device-oriented 1/0 Statements:
TYPE
ACCEPT
PRINT

172

Programming Languages

VAX-11 PASCAL

VAX-11 PASCAL, a re-entrant native mode compiler, is an extended
implementation of the PASCAL language as defined by Jensen and
Wirth in PASCAL User Manual and Report (1974).

PASCAL language has become an increasingly popuiar general pur-
pose language. It implements a well-chosen, compact set of general
purpose language features. In addition, portability is easily achievable
in PASCAL programs.

Block structuring and flexible data types make the PASCAL language
a good language for commercial users. It is also suitable for systems
programming and research applications.

The VAX-11 PASCAL language takes advantage of the VAX hardware
floating point, character instruction sets, and virtual memory capabili-
ties of the VAX/VMS operating system. Features common to other
languages of the VAX/VMS operating system are available through
the VAX-11 PASCAL language, including:

e VAX-11 Symbolic Debugger support

e Separate compilation of modules

e Standard call interface to routines written in other languages
¢ Access to VAX/VMS system services

At compile time, options available to the process include:

® Runtime checks for illegal assignment to set and subrange vari-
ables, and illegal array subscripts

® Cross-reference listing of identifiers

e Source program listing

® Machine code listing

Standard PASCAL provides a modular, systematic approach to com-
puterized problem solving. Major features of the language are:

® INTEGER, REAL, CHAR, BOOLEAN, user-defined, and subrange
scalar data types

e ARRAY, RECORD, SET, and FILE structured data types

e Constant identifier definition

e FOR, REPEAT, and WHILE loop control statements

® CASE and IF-THEN-ELSE conditional statements

o BEGIN...END compound statement

® GOTO statement

e GET, PUT, READ, WRITE, READLN, and WRITELN |/0 procedures
e Standard functions and procedures

173

Programming Languages

In addition, the VAX-11 PASCAL language incorporates the following
extensions to standard PASCAL, some of which are common in
PASCAL implementations:

1. Lexical

Upper- and lower-case letters treated identically except in
character and string constants

New reserved words: MODULE, OTHERWISE, SEQUENTIAL,
VALUE, %DESCR, %IMMED, %INCLUDE, and %STDESCR

The exponentiation operator, **
Hexadecimal and octal constants

DOUBLE constants

$ and (underscore) characters in identifiers

2. Predefined data types

DOUBLE
SINGLE

Predefined procedures

CLOSE (f)
FIND (f,n)
OPEN (f,...)
DATE (a)
HALT
LINELIMIT (f,n)
TIME (a)

4. Predefined functions

LOWER (a,n)
SNGL (d)
UPPER (a,n)
EXPO (r)
CARD (s)
CLOCK
UNDEFINED (r)

174

Programming Languages

5. Extensions to procedures READ and WRITE

READ (or READLN) of user-defined scalar type
READ (or READLN) of string
WRITE (or WRITELN) of user-defined scaiar type

WRITE (or WRITELN) of any data using hexadecimal or octal
format

6. %INCLUDE directive

7. VALUE initialization

8. OTHERWISE clause in CASE statement

9. External procedure and function declarations

10. Dynamic array parameters

11. Extended parameter spéciﬁcations

%DESCR

%IMMED

%IMMED PROCEDURE and %IMMED FUNCTION
%STDESCR

12. Separate compilation of procedures and functions. (A separate
compilation unit is termed a MODULE and several routines may
be part of a MODULE. Each MODULE is eventually embedded in a
host or main program.)

The OPEN, CLOSE and FIND procedures extend the 1/0 capabilities of
the PASCAL language. The OPEN procedure can contain file attrib-
utes that define the creation or subsequent processing of the file. A
FIND procedure is another extension to the language for direct access
to sequential files of fixed length records. The standard I/O pro-
cedures of GET, PUT, READ, WRITE, READLN and WRITELN are also
available in the VAX-11 PASCAL language.

175

Programming Languages

The extended parameter specifications %DESCR; %IMMED, and %
STDESCR are added to the PASCAL language to denote the method
of argument passing when calling a system service, procedure, or
function not written in the PASCAL language (for example, in the VAX-
11 FORTRAN or MACRO languages.)

VAX-11 PL/I

The VAX-11 PL/I compiler supports the PL/I language defined in the
American National Standard (ANSI) General Purpose Subset. This
subset, defined by ANSI standard X3.74, is a proper subset of the full
ANSI PL/I (ANSI X3.53-1976). The PL/I language is a versatile lan-
guage that is easily adapted to commercial, scientific, and systems
programming applications.

The General Purpose Subset includes the most widely used features
of the full PL/I language. It excludes features that were more error-
prone, difficult to understand or use, and that tended to be implemen-
tation-dependent.

VAX extensions to the Subset provide additional language features
that allow PL/I programmers to take advantage of the facilities of the
VAX/VMS operating system and its components.

Extensions provided in the VAX-11 PL/I language include selected
features of the full PL/I language that were excluded from the subset
because of their implementation cost on computers with restricted
memory and/or address space.

VAX-11 PL/I programmers can thus choose to restrict their programs
to the General Purpose Subset, ensuring compatibility with other
implementations of the subset. Or they can take advantage of the full
PL/I features and VAX extensions in programming applications.

Applications

Data processing applications can take advantage of the extensive
character-handling functions and data structuring capabilities of the
PL/I language. By declaring variables within a structure, the program
can easily refer to entire records or to fields within records by refer-
encing the name of the structure or the name of a variable within it.

In addition, the VAX-11 PL/I language provides extended access to
the features of VAX-11 Record Management Services (RMS). By spec-
ification of ENVIRONMENT options or special options supplied for
input/output statements, PL/I programs can dynamically specify RMS
optimization parameters and values, spool a file to a printer or batch
job’queue, and set or change the protection.on a file.

176

Programming Languages

The VAX-11 PL/I language supports all RMS (Record Management
Services) file organizations, including sequential, relative, and indexed
sequential. It also permits block input/output operations. Using PL/I
statements, a program can read, write, delete, and update records.
Using built-in file handling functions provided by the VAX-11 PL/I
language, a program can call RMS file handling services to forward
space or backward space a file or volume, to increase the allocation of
a disk file, or to obtain information about the properties of a file.

Scientific applications can use the PL/I array-handling capabilities to
define arrays of up to eight dimensions. Common arithmetic and trig-
nometric functions are defined within the language. The VAX-11 PL/I
language supports all of the VAX hardware’s floating-point data types.

System programming applications can use PL/I language features to
allocate storage dynamically, process linked lists and queues, and
perform a wide range of bit-string functions and operations.

In addition, VAX extensions to the language provide a simple means to
refer to VAX/VMS system global symbols and data structures. VAX-11
PL/I programs can take advantage of the VAX linker’s allocation of
storage by defining variables as read-only or as giobal symbols.

Full access to all of the VAX/VMS operating system’s services and
procedures is possible through VAX-11 PL/l extensions to support the
VAX-11 Procedure Calling Standard. Procedures written in the PL/I
language can call and be called by procedures written in any. other
native mode language.

Error and Condition Handling

VAX-11 PL/I generates traceback records in the object module of a
PL/l procedure, so that when.an error occurs at runtime, the VAX
condition handling facility can report on the error and provide a mod-
ule traceback.

Within the PL/I language, extensive condition handling capabilities are
available via the ON statement, which allows a program to define the
action to take in the event of hardware arithmetic exceptions and
errors that occur during file processing.

VAX extensions to the ON statement permit the specification of
condition handlers for any specific ‘hardware or software condition
that can occur.

177

Programming Languages

Debugging Facilities

The PL/I compiler generates useful diagnostics that signal syntactical
errors and language violations. Most compiler messages are two or
three lines long and provide information on how to correct the indicat-
ed error. :

The VAX DEBUG utility supports symbolic debugging of PL/! pro-
grams. Programmers can set breakpoints in PL/| programs, examine
and change variables, and monitor the calls and function references
that occur.

Libraries

The VAX-11 PL/I language is fully compatible with the VAX Run Time
Procedure Library:and provides additional runtime procedures for
language support.

Source file library support is provided by the %INCLUDE statement,
which allows a program to specify at compile time an external file from
which source statements are to be read. Included files can also be
collected in VAX/VMS text file libraries. The VAX-11 PL/l compiler
searches specified libraries for the names of the included modules.

Performance

The VAX-11 PL/l compiler is a shareable, native VAX/VMS image that
can be run on any supported VAX/VMS configuration. It produces
optimized, shareable, VAX/VMS object code that is runtime compati-
ble with other native VAX/VMS language products.

The degree of optimization performed by the compiler can be con-
trolied by the user at compile time, by qualifiers on the PL/I command.

VAX-11C

VAX-11 C fully supports all of the language features of C, as described
in “The C Programming Language”, by Kernighan and Ritchie * . The
program flow control constructs for logical and efficient program
structuring, and the rich assortment of operators that enable an ele-
gant conciseness of expression, are there in VAX-11 C. So, too, are
the 'common runtime routines - only those UNIX-specific routines that
cannot be reasonably emulated under VAX/VMS are omitted. VAX-11
C even includes language extentions developed since the Kernighan
and Ritchie book was published, including the structure assignment
feature.

But VAX-11 C is more than just a faithful implemention of the C pro-
gramming lanuage. It is a very powerful implementation with an

* “The C Programming Language”, B. Kernighan and D. Ritchie, Prentice-Hall,
1978.

178

Programming Languages

impressive collection of features, and, as important, VAX-11 C is an
integrated VAX/VMS layered language product; which ‘means that
programmers have available to them all of the services and program
development aids that the VAX/VMS system provides.

The Language
VAX-11 C is a versatile programming language that combines many of
the features of a high-level language with the generality of MACRO.

Program control flow — C uses simple, appropriate English for per-
forming conditional loops (WHILE, FOR, DO), simple decisions (IF —
ELSE), and multicase decisions (SWITCH); and for escaping loops or
multi-case decisions (BREAK, GOTO label:). These facilities not only
aid in creating well-structured programs, but, combined with C’s clear
statement and expression delimiters, they can provide easy to under-
stand, thus maintain, source code.

Operators — C provides an unusually large array of operators that
allow programming with clarity and economy of expression. (Refer to
Table 5-4). ‘

Data types — Because C was designed to be a powerful, lean general-
ist among languages, it uses only the fundamental datatypes com-
monly represented by computers directly: integers of various, fixed
sizes, and single and double-precision floating point. VAX-11 C also
provides for user-defined, or enumerated, scalars (ENUM values).
ENUM data-types are defined by writing the type name followed by an
ordered list of indentifiers that are the constants of that type.

Run-time support — In order to retain its flexibility of application, the
C language does not directly support many functions usually attribut-
ed to high-level languages; for example, 1/0 or common math rou-
tines. But most implemenations of C include a common set of run-time
support routines for accomplishing those tasks. VAX-11 C includes all
of the non-UNIX-specific run-time support offered in the Bell Labora-
tories version (even many of the UNIX-specific routines have been
‘emulated) and all of the additional support included in the VAX-11
Common Run-Time Library.

Unique to VAX-11 C — New keywords for sharing data among pro-
gram modules are offered by VAX-11 C to augment the capability of
the standard keywork for passing arguments, EXTERN. The new
keywords—GLOBALDEF, GLOBALREF, and GLOBALVALUE, which
allow VAX-11 C programs to define and reference global symbols
offer an alternative method for dealing with external variables and
values. They provide, in addition to enhanced data-sharing among C
program modules, a convenient and efficient way for a C function to

179

Programming Languages

communicate with MACRO programs, with VAX/VMS system services
and data structures, and with other high-level languages that support
global symbol definition, such as VAX-11 PL/I.

The Compiter

VAX-11 C has an extremely powerful compiler that generates share-
able, position-independent, native VAX object code directly from C
source programs (i.e., no separate assembly step) at an average rate"
in excess of 3000 source statements per minute. In the process, the
compiler can perform giobal and local optimization by, for example,
doing global flow analysis, assigning automatic variables to register
temporaries, and removing invariant computations from loops, to .
meéntion a few. The compiler also does peephole optimizations on the
generated machine code. The result: VAX-11 C produces faster and
smaller programs. ‘

The VAX-11 C compiler will produce an annotated listing with state-
ment numbers and, optionally, an inline listing of generated machine
code, expanded macros, storage allocation map, cross-reference list-
ing of variable usage, and compilation statistics.

The VAX/VMS Programming Environment

What most distinguishes VAX-11 C from other implementations of the
language is that it is an integrated constituent of a total VAX/VMS
environment. This means VAX-11 C provides C programmers with an
easy interface and an exceptional array of services and tools that can
maximize their productivity and the efficacy of the programs they pro-
duce.

VAX-11 RMS — In addition to performing stream file access conven-
tional among most C implementations, and because it is a VAX/VMS
layered language product, VAX-11 C allows all of the features of the
VAX-11 Record Management Services (RMS) to be exploited. RMS
supports sequential, relative, and indexed file organizations, thus
expanding the potential applications for C programs.

VAX/VMS System Services — The VAX-11 C programmer can utilize
all of the VAX/VMS System Services, including, for example, the abili-
ty to define logical names. By referencing files or devices by logical
names, which in turn are defined by the user prior to execution, VAX-
11 C programs can be device or file independent; a useful quality for
many applications.

The common language environment — All DIGITAL VAX-11 lan-
guage products, VAX-11 C among them, follow the VAX calling stan-
dard. This permits C programmers to call, as subroutines, object
modules created using other languages — say VAX-11 FORTRAN or

180

Programming Languages

VAX-11 PL/I — so that particular tasks may be:coded in the most
suitable language, or proven routines already in use can be applied by
the programmer without having to “re-invent the wheel.” Of course the
inverse is true as well: Programs written in other VAX-11 languages
can call routines originally developed in VAX-11 C.

VAX-11 Symbolic Debugger — With the VAX-11 Symbolic Debugger,
the VAX-11 C programmer can set breakpoints, and examine and
modify the contents of user variables dynamically while the C program
is executing. Additionally, if a C program is not performing as expect-
ed, program execution can be interrupted, the debugger called, and
execution continued.

Compatibility Across Implementations

There are no national or international standards for the C language;
however, “The C Programming Language” is generally regarded as
the definitive document, along with technical notices subsequently
published by the American Telephone and Telegraph Company. But
because C is a relatively simple language, even without formal stan-
dardization, most programs written in VAX-11 C can be re-compiled
successfully using another implementation of the language, or vice
versa, usually with few if any modifications.

Certain incompatibilities among implementations do exist, however,
especially in machine-specific library routines. To aid creating porta-
ble programs, VAX-11 C provides predefined constants (“vms”, “vax”,
and “vax11c¢”) Which can be used, for example, in program control
lines to decide whether to compile source code that may not be porta-
ble. The VAX-11 C compiler command, CC, also has an optional
feature that detects several nonportable program constructions and
issues warning messages.

UNIX/VAX, VAX/VMS coexistance — The C programming language
was originally developed at Bell Laboratories for creating the UNIX
operating system, and it has become the language of choice for may
applications developed on that system. As an aid to migrating pro-
grams from UNIX systems to VAX/VMS, the VAX-11 C run-time library
includes many of the UNIX-specific UNIX/C routines, emulated to run
under VMS. Also, VAX-11 C allows UNIX-style stream I/0O access to
VAX-11 record formats.

181

Programming Languages

Table 5-5 Summary of C Operators

Operator Example Result -
— [unary] -a ’ negative of a
*[unary] - *a reference to object at address a
& [unary] = &a address of a ‘ :
~ ~a ' - one’s complement of a
++ [prefix] - ++a .. aafterincrement
++ [postfix] a++ . a before increment
—— [prefix] —-a a after decrement
—— [postfix] a—— a before decrement
sizeof sizeof(t1) size in bytes of type t1
: sizeof e size'in bytes of expression e
(type-name) (t1)e expression e, converted to type t1
+ a+b aplusb
— [binary] a—b aminusb -
* [binary] a*b atimesb -
/- a/b adivided by b
% a%b remainder of a/b
>> a>>b . a,right-shifted b bits
<< a<<b a, left-shifted b bits
< a<b 1ifa < b; 0 otherwise
> ‘ a>b 1ifa > b; 0 otherwise
<= a<=b 1ifa <= b; 0 otherwise
>= a>=b 1ifa > = b; 0 otherwise
== a== ~1if aequalto b; 0 otherwise
1= al=b 1if a not equal to b; 0 otherwise
& [binary] a&b bitwise AND ofaand b
i atb bitwise ORof aand b
A atb bitwise XOR (exclusive OR) of aand b
&& ’ ag&&b logical AND of a and b (yields 0 or 1)
P a i} logical OR of a and b (yields 0 or 1)
! la logical NOT of a (yields 0 or 1)
2 a?el:e2 expression el if a is nonzero,

expression e2 if a is zero

182

Programming Languages

Table 5-5 Summary of C Operators cont’d

Operator Example Result

= a=b b (assigned to a)

+= at+=b a plus b (assigned to a)

-= a—= aminus b (assigned to a)

= a=b atimes b (assigned to a) .

/= a/=b a divided by b (assigned to a)

Y%= a%=b remainder of a/b (assigned to a)

>>= a>>=b a, right-shifted b bits (assigned to a)

<<= a<<=b a, left-shifted b bits (assigned to a)
= a&=b a AND b (assigned to a)

Vo= al = a OR b (assigned to a)

A= at=b a XOR b (assigned to a)

VAX-11 BLISS-32

VAX-11 BLISS-32 is a high-level systems implementation language.
The BLISS-32 language supports development of modular software
according to structured programming concepts by providing an ad-
vanced set of language features. It provides access to most of the
hardware features of the VAX systems to facilitate programming of
time-critical and hardware dependent applications. The BLISS-32 lan-
guage is specifically designed for the development of operating sys-
temms, compilers, runtime system components, database file sys-
tems, communications software, and utilities for use on a VAX system.

The BLISS-32 compiler runs in native mode under the VAX/VMS
operating system. It translates BLISS-32 source programs into reloca-
table object modules that can be linked for execution. BLISS-32 com-
piled code is optimmized for execution efficiency.

The following features of BLISS-32 are machine independent. Collec-

tively, this set of features is known as "Common BLISS" and can be

used to develop transportable programs that will run on VAX, DECsys-

tem-10, DECSYSTEM-20, and PDP-11 systems.

® Modules are compiled separately for modularity and convenient
development. Object modules are relocatable and can be linked
with other object modules produced by the VAX-11 MACRO assem-
bler or other native mode languages

e The BLISS-32 language provides expressions for describing the
actions to be performed and declarations for allocating, describing,
and initializing data, and for defining macros and literals, etc.

183

Programming Languages

e The BLISS-32 language is "type-free”: all data is manipulated as
longwords or 32 bits. Interpretation of data is provided by language
operators

® The operators provide a set of operations for integer arithmetic, for
comparison, maximization, and minimization of signed integer, un-
signed integer, and address values, and for Boolean operations
-® Field references allow values to be retrieved from or assigned to any
contiguous field from 1 to 32 bits located anywhere in the VAX
virtual address space

® Character sequence functions provide for efficient runtime manipu-
lation of character data. Operations include moving, concatenating,
comparing and translating character sequences, as well as search-
ing for particular characters or substrings of characters

e |F, CASE, SELECT, and SELECTONE allow the choice of an
expression or group of expressions to be executed based on pro-
grammed tests

@ DO, WHILE, and UNTIL allow general loops that cycle as long as a
programmed test is satisfied. The test can be made at either the
beginning or the end of the loop

¢ INCR and DECR allow counted loops that execute a computed num-

_ber of times under control of a loop variable

e | EAVE allows early termination of the processing of a named block
and continuation after the named block. LEAVE may be considered
a restricted form of forward-only GOTO, as there is no general GO-
TO in the BLISS-32 language

e OWN and GLOBAL declarations provide static storage allocation;
GLOBAL names are made available to the linker to resolve EXTER-
NAL data declarations in other modules ‘

e LOCAL, STACKLOCAL, and REGISTER declarations allow dynamic
stack-like allocation using either the execution stack or the general
registers

¢ STRUCTURE declarations allow the programmed definition of
arbitrary data structures in terms of an accessing algorithm for lo-
cating elements of a structure. Predefined declarations for VEC-
TOR, BLOCK, BITVECTOR, and BLOCKVECTOR provide common-
ly needed structures

o ROUTINE declarations provide subroutines orfunctlons inthe
BLISS-32 language. Routines are recursive and reentrant, and can
be linked in resident libraries for use by multiple processes

e REQUIRE declarations allow source files to be automatlcally includ-

“edinthe module being compiled

184

Programming Languages

e LIBRARY declarations allow special compiler-produced binary de-
claration files to be included in the module being compiled. The
effect is substantially the same as REQUIRE, but is more efficient
because a restricted set of declarations are precompiled into inter-
nal form

¢ MACRO and KEYWORDMACRO declarations allow compile-time
definition of both positional and keyword-oriented macros. Macro
definition and replacement are in terms of source lexical units called
lexemes (atoms, tokens) rather than character text. Macro calis and
declarations may be nested and recursive

® %IF, %THEN, %ELSE, and &Fl allow conditional compilation of
BLISS source depeneding on programmed compile-time tests.
These can be used to control expansion of macros

e | exical functions allow a variety of compile time operations such as
concatenation of strings, construction of names, testing properties
of macro parameters, testing compiler qualifiers, generating com-
piler diagnostic messages, and controlling macro expansion

The following features of the BLISS-32 language are specialized for
use on VAX systems. They provide precise means to tailor BLISS-32
programs to the special capabilities of VAX systems and the
VAX/VMS operating system.

e LINKAGE declarations allow definition of specialized calling se-
quences for time critical or unusual applications. Options aliow for
use of CALLS/CALLG/RET or JSB/BSB/RSB type call and return
instructions, for passing parameters in VAX general registers or in
parameter blocks, for controlling the preservation and use of regis-
ters by a routine, and for the sharing of registers across a set of
routines as highspeed, common storage. Built-in linkage declara-
tions for the BLISS and FORTRAN languages fully support the VAX
calling sequence conventions

e PSECT declarations ailow use of link-time program sections for effi-
cient use of the virtual address space. By default, generated code
sections are position independent

o BUILTIN declarations allow use of the VAX machine-specific
functions for access to VAX features not otherwise provided by the
BLISS-32 language. Machine specific functions generally corre-
spond to VAX instructions such as ADAWI, BISPSW, CRC, HALT,
INDEX, MTPR, PROBER, REMQUE, etc. Over 50 such functions are
provided.(The complete list is shown in Table 5-4)

e ENABLE declarations, together with SIGNAL, SIGNAL-STOP, and
SETUNWIND functions, allow use of the VAX/VMS condition han-
dling and error message reporting mechanisms

185

Programming Languages

Table 5-6 VAX Machine Specific Functions

PROCESSOR REGISTER OPERATIONS

MTPR Move to a Processor Register
MFPR Move from a Processor Register

PARAMETER VALIDATION OPERATIONS

PROBER Probe Read accessibility
PROBEW Probe Write accessibility

PROGRAM STATUS OPERATIONS

MOVPSL Move from PSL
BISPSW Bit set PSW
BICPSW Bit clear PSW

QUEUE OPERATIONS

INSQUE Insert entry in Queue
REMQUE Remove entry from Queue

BIT OPERATIONS

TESTBITSS Test for Bit Set, then Set bit
TESTBITSC Test for Bit Set, then Clear bit
TESTBITCS Testfor Bit Clear, then Set bit
TESTBITCC Test for Bit Clear, then Clear bit

BIT OPERATIONS

TESTBITSSI Test for Bit Set, then Set bit Interlocked
TESTBITCCI Test for Bit Clear, then Clear bit Interlocked k
FFS Find First Set bit |
FFC Find First Clear bit

186

Programming Languages

Table 5-6 VAX Machine Specific Functions cont’d

EXTENDED ARITHMETIC OPERATIONS

ASHQ Arithmetic Shift Quad

EDIV Extended Divide

EMUL Extended Multiply

INDEX Index (Subscript) Calculation
CRC Cyclic Redundancy Calculation

FLOATING POINT CONVERSION OPERATIONS

CVTLF Convert Long to Floating
CVTLD Convert Long to Double
CVTFL Convert Floating to Long
CVTDL Convert Double to Long
CVTFD Convert Floating to Double
CVTDF Convert Double to Floating
CVTRDL Convert Rounded Double to Long
CVTRFL Convert Rounded Floating to Long
CMPF Compare Floating
CMPD Compare Double

STRING OPERATIONS
MOVTUC Move Translated Until Character
SCANC Scan Characters
SPANC Span Characters

187

Programming Languages

Table 5-6. VAX Machine Specific Functions cont’d

DECIMAL STRING OPERATIONS

MOvVP Move Packed

CMPP Compare Packed

CVTLP Convert Long to Packed

CVTPL Convert Packed to Long

CVTPT Convert Packed to Trailing Numeric

CVTTP Convert Trailing Numeric to Packed

CVTPS Convert Packed to Leading Separate Numeric
CVTSP Convert Leading Separate Numeric to Packed
EDITPC Edit Packed to Character

MISCELLANEOUS OPERATIONS

HALT Halt Processor

ROT Rotate

ADAWI Add Aligned Word Interlocked
BPT Breakpoint

CHMXx Change Mode

CALLG Céll with General Argument List
NOP No Operating

The VAX-11 BLISS-32 Compiler

The VAX-11 BLISS-32 compiler performs a number of optimizations.
These include common subexpression elimination, removal of loop
invariants, constant folding, block register allocation, peephole re-
placement, test instruction elimination, jump vs. branch instruction
resolution, branch chaining, and cross-jumping.

The VAX-11 BLISS-32 compiler optionally produces source text and
generated code in a format closely resembling a VAX-11 assembly
listing. Other options allow the programmer to control the degree of

188

Programming Languages

optimization, suppress production of object code, determine types
and formats of output listings, generate traceback information, and
specify the types of information to be listed at the terminal.

Library and Require Files

The BLISS-32 language provides two methods for including common-
ly used text into BLISS programs at compile time. These involve use of
either Library files or Require files:

e Library Files—These are special files created by the compiler in a
previous library compilation and are invoked by the LIBRARY
declaration in the BLISS source program

e Require Files—These are source (text) files which are invoked via
the REQUIRE declaration in the BLISS source program

Since Library files are “pre-compiled,” lexical processing and declara-
tion parsing and checking need not be repeated each time these files
are included in a compilation; their use results in a considerable re-
duction in total compilation time.

The contents of Require files must be fully processed each time the file
is used in a compilation. Hence, using Require files will, in general, be
less efficient than using Library files. However, since these files oper-
ate under a less stringent set of syntactical rules, their use may be
warranted in situations where a higher level of flexibility is desired.

Macros .

The VAX-11 BLISS-32 language provides an extensive macro-building
facility, allowing frequently used groups of declarations or expressions
to be expressed in an abbreviated way. Macros are defined via MA-
CRO declarations and are accessed by simple call statements. They
are fully expanded at compile time. The BLISS-32 language allows
parameters to be specified in the macro definition, thus allowing each
block of text to be specialized by the actual parameters passed to it.
Macros may be positional or keyword, and may be simple, iterative, or
conditional.

Debugging

The VAX-11 BLISS-32 compiler produces a list of error messages
showing the source program line on which the error occurred followed
by a description of the error. If the error is recoverable, then the
compiler will generate a “warning” diagnostic and continue with the
compilation process. If the error is serious enough to invalidate the
compiler’s internal representation of the module, then an “error”
diagnostic is generated, and processing ceases following the syntax
checking—no object module is produced.

189

Programming Languages

If an-error occurs at execution time, the process.image can access the
VAX DEBUG program. This program may be accessed when the ob-
ject module is linked with the DEBUG option. The DEBUG program
allows the programmer to examine and deposit values in storage, set
breakpoints, call routines, trace through a program as it executes, and
perform other operations useful in checking out a program. It under-
stands BLISS syntax and permits the use of the user’s symbolic
names. (See the section on the VAX DEBUG for a further description
of VAX debugging facilities.)

Transportability Features

The VAX-11 BLISS-32 language is designed to facilitate transportabili-
ty, that is, the writing of programs that can be executed on architectur-
ally different machines with little or no modification. The VAX-11
BLISS-16 language, which is discussed later in this chapter, is a high-
level implementation language for the development of systems soft-
ware for use on PDP-11 systems. For DECsystem-10 and DECSYS-
TEM-20 users, there is the BLISS-36 language. Several language fea-
tures enhance transportability:

® The high-level language constructs may be transferred from one
machine to another with little or no alteration

® Machine-specific functions can be separated from the common,
mainline code via modularization, macros, and Library and Require
files

o Parameterization allows machine-specific characteristics to be
passed to BLISS data structures

The BLISS-32 language’s transportability makes it an ideai language
for system programming applications—and a desirable alternative to
assembly language coding in those applications in which extreme ma-
chine dependence is not involved. The following program shows how
the VAX-11 BLISS-32 language can call VAX/VMS system services
and the VAX Common Run Time Procedure Library to print the current
time on SYS$OUTPUT.

190

L6t

SAMPLE PROGRAM

aney

een

"re3

arad

*eas

@rae
M arnay
20ne
[dd-L]
apio
(28!
812
eyl
aria
én1s
2016
er17
en18
or19
oea?
a2y
an22
aer2y
an2u
3025
0226
27
aeze
an29
ae3e
ee3t
o032
r33
an3y
8035
2a3s
ar37
on38
arie

e % ve e v % e %0 e %8 %6 % e ve Yo e % 6 %e e % e T e 8 e B N e b %6 e %6 v e e e 4% e
Too

68 74 29 2C

MODULE ghowtirme(INENT="1e1’” %TITLE °SHOW

REGIN
LIBRARY *SYSSLTRFRARYISTARLFT’y
MACPC

desc(] = XCHARCOUNT(XREMAINTING),
UPLIT RYTF(YREMAINING) %3

!

oun
timepuf: VECTOR (21,
maqbufs VECTORIRG,RYTE),
msqoesc: PLOCK[B,RYTE)
PRESET([dscSw,lemgth)
fdscSa. pointer)
BIND

fmtdescz UPLIT(DESC(°At the tone, the

EXTERNAL ROUTINE

1ibgput, output 3 ADPRESSING,MODE(GENERAL) 3

RGUTINE timeouts=
BEGIN
LoCaL
RSLTS WORD 3

SGETTIM(TIMADR=t{mebut)3

S$FAQL(CTRSTRzfmtdesc)
OUTLENEPSI L,
OUTBUFzmsgdesc,
PRMLST=XREF(timenuf))y

MSGDESC [dsc$w, lenrgth) = ,rslty

1ib§put, output(mggdesc)

ENDy

65 6E 6F 74 27 65 68 T4 28 T4
28 73 69 28 65 6D 69 T4 2f

&4 25 35 3%

41
65

21

TIME®, MAINztimeoyt)=

Defines Svstem Services, etc,

A VAX=1{ Style String deseriptor

64 bit svstem time
Outout msg, buffer

!

!

| String descrintor
R,]
= msgbut)y

time is *, ¥CWAR(7), *115%T*))s

| From VMS RTL

Resyltant string length

Get time as 64 bit {nteger
Format control=string address
Regultant length (only a wordl)
Output bufter desceriptor address
Address of pointer to time block
mod{fy output descriptor

print the formatted time

LTITLE SHOWTIME SHOW TIME

«IDENT \fe=i\

+PSECT SPLITS,NOWRT,NOEXE,2

aanea P,AAB: LASCII \At the tone,
Go22F

aap19 LASCII «7>

At A JASCIT \J1S%TA

ANPLF «BLKR 1

for output buffer

is

\

sabenbue] bujwwesboiy

26l

3 Routine Sizel S6 bvtes,

] 2440 END ELUDOM

52
SE

203Q2PAAG 9F
6F

egeeeazac 9F
62

*decopanc A9

Routine Rase:

PNARPRLF
anonpann’

LT
nog
popearnp’

a*3e’ CF QE
78 C2

A8 42 9F
7y FB

A8 42 9E
4034 8F 8B
aC AE 9F
arge’ CF 9F

o4 FR

4 AE Bm
52 0O

71 FB

"y

SCODES + aAnm@

APN2RA
agaza

aonna
LLLILES
a0@58
22054
2035C

aeany
22002
72027
eeazA
20920
annyy
20018
naaLc
aanLF
apaz23
20824
neR2E
arnla
ara37

P,AsA: LLONG

31

.ADDRESS P,AAB

JPSECT

TIMERUFt.BLKA
MSGRUF: .BLKB
MSGDESCt,WORD

.BYTE

SOWNS®, NOEXE, 2

8
8n
ae
a[2]

+ADDRESS MSGBUF

FMTDESC=
+EXTRN
LEXTRN

«PSECT

TIMEOUT3.WORD
MCVAB
SueL?2
PUSHAB
CALLS
MOvaB
PUSHR
PUSHAB
PUSHAR
CALLS
MCVW
PUSKL
CALLS
RET

P AAA
LIBSPUT OUTPUT, SYSSGETTIM
SYSSFAOL

$CODES, NOWRT, 2

Save R2

MSGDESC, R2

#8, SP

TIMEBUF

#1, OwSYSSGETTIM
TIMEBUF, (SP)
#=McR2,8P>

RSLT

FMTDESC

#4, P4SYSSFAOL
RSLT, MSGDESC

R2

#1, LIBSPUT OUTPUT

e e e we e e e e e e e

7823

ne2s
2833

”B3s
po37

2023

sabenbue] buiwweibold

€61

[

Name
SOWNS

SPLITS
$CoDES

Fite
DBABS [SYSLIB)STARLEY,L3299

BLISS /LIS/NOOB SHOWTIME

Bytes

PSECT SUMMARY

Attributes

96 WRT, RD ,NOEXE,NOSHR, LCL,
4@ NOWRT, RD ,NOEXE,NOSHR, LCL,
56 NOWRY, RD , EXE,NOSHR, LCL,

Symbols -
Tota) Loaded Percent
2783 4 [

COMMAND QUALIFIERS

Sizes Sé code + 136 data bytes

Run Timet 20t01,9
Elapsed Times 20303,7
Memopy Usedt 117 pages
Compi{lation Complete

REL,
REL,
REL,

Blocks
Read

103

CON,NOPIC,ALIGN(?)
CON,NOPIC, ALIGN(2)
CON,NOPTC,ALIGN(2?

sabenbue] Buiwwesbold

Programming Languages

MODULE showtime(IDENT=“1e1” XTITLE “8HMOW TIME’, MAINztimeout)s
BEGIN

LIBRARY *SYSSLIBRARYISTARLET’) Defimes System Services, ete,

MACRO

desc (] = XCHARCOUNT(XREMAINING), } A VAX=11 Style String descriotor
UPLIT BYTE(XREMAINING) %

OWN
timerufs VECTORT2], L 64 bit svatem time
maqbufl VECTOR[8Q,BYTE], I Nuteut msg, buffer
mgocesct BLOCK([8,BYTE) ! String descriotor

PRESET([dscSw.lengthl=z 8@, ! for output buffer
[dsc$a.pointer] = msgbuf)y
BIND

fmecdescz UPLIT(DESC(’At the tome, the time {s *, XCHAR(7), *]15%T*))t

EXTERNAL ROUTINE
1ibSput_ output @ ADDRESSING, MODE(GENERAL)y 1 Fprpom VMS RTL

ROUTINE timeouts=
BEGIN

LOCAL
RSLY: WORDy

Resultant string length
SGETTIM(TIMADRStimebuf)7 ! Get time as 64 bit integer

SFAOL(CTRSTRefmtdesc,
OUTLEN=PsIt,
OUTBUFsmsadesc,
PRMLST=XREF(timebut))y

Format controlestring acdress
Resultant length (only a wordl)
Output buffer descriptor address
Address of pointer to time block

-

MSGDESC[dscSw, lenath) & ,ralty

modify output descriptor

1ipSput,output(msgdesc) print the formatted time

ENDY
END ELUDOM

VAX-11 BLISS-16

The VAX-11 BLISS-16 language is a high-level systems implementa-
tion language designed specifically for the development of systems
software for use on a PDP-11 system. An advanced set of language
features supports development of modular software according to
structured programming concepts. Access to many of the hardware
features of PDP-11 systems is provided in order to facilitate program-
ming of time-critical and hardware dependent applications.

Although the VAX-11 BLISS-16 language runs on a VAX system, the
target system for the developed programs is the PDP-11 system. The
BLISS-16 cross-compiler runs in native mode under the VAX/VMS
operating system and translates BLISS-16 source programs into relo-
catable PDP-11 object moduiles that have been optimized for time and
space efficiency.

The following features of the BLISS-16 language are machine inde-
pendent. Collectively, this set of features is known as "Common
BLISS” and can be used to develop transportable programs that will
run on VAX, DECsystem-10, DECSYSTEM-20, and PDP-11 systems.

194

Programming Languages

e Modules are compiled separately for modularity and convenient de-
velopment. Object modules are relocatable and can be linked with
other BLISS-16 object modules or object modules produced by the
compiler or other PDP-11 language processors

e The BLISS-16 language provides expressions for describing the
actions to be performed and declaratlons for allocating, describing,
and |n|t|aI|zmg data, and for defining macros and literals, etc.

e The BLISS-16 language is "type-free”: all data is mannpulated as
words of 16 bits. Interpretation of data is provided by language
operators

® The operators provide a set of operations for integer arithmetic, for
comparison, maximization, and minimization of signed integer, un-
signed integer, and address values, and for Boolean operations

® Field references allow values to be retrieved from or assigned to any
contiguous field from 1 to 16 bits within a 16 bit-word

® Character sequence functions provide for efficient runtime manipu-
lation of character data. Operations include moving, concatenating,
comparing and translating character sequences, as well as search-
ing for particular characters or substrings of characters

e |F, CASE, SELECT, and SELECTONE ailow the choice of an
expression or group of expressions to be executed based on pro-
grammed tests

e DO, WHILE, and UNTIL allow general.loops that cycle as long asa
programmed test is satisfied. The test can be made at either the
beginning or the end of the loop

e INCR and DECR ailow counted loops that execute a computed num-
ber of times under control of a loop variable

e LEAVE allows early termination of the processing of a named block
and continuation after the named block. LEAVE may be considered
a restricted form of forward-only GOTO, as there is no general GO-
TO in the BLISS-16 language

® OWN and GLOBAL declarations provide static storage allocation;
GLOBAL names are made available to the linker to resolve EXTER-
NAL data declarations in other modules

e LOCAL, STACKLOCAL, and REGISTER declarations allow dynamic
stack-like allocation using either the execution stack or the general
registers

¢ STRUCTURE declarations allow the programmed definition of
arbitrary data structures in terms of an accessing algorithm for lo-
cating elements of a structure. Predefined declarations for VEC-
TOR, BLOCK, BITVECTOR, and BLOCKVECTOR provide common-
ly needed structures

195

Programming Languages

ROUTINE declarations provide subroutines or functionsinthe
BLISS-16 language. Routines are recursive and reentrant, and can
be linked in resident libraries for use by multiple processes
REQUIRE declarations allow source files to be automatically includ-
ed in the module being compiled

LIBRARY deClarations allow special compiler-produced binary de-
claration files to be included in the module being compiled. The
effect is. substantially the same as REQUIRE, but is more efficient
because a restricted set of declarations are precompiled into inter-
nal form ‘

MACRO and KEYWORDMACRO declarations aliow compile-time
definition of both positional and keyword-oriented macros. Macro
definition and replacement are in terms of source lexical units called
lexemes (atoms, tokens) rather than character text. Macro calls and
declarations may be nested and recursive

%IF, %THEN, %ELSE, and &Fl allow conditional compilation of
BLISS source depeneding on programmed compile-time tests.
These can be used to control expansion of macros

Lexical functions allow a variety of compile time operations such as
concatenation of strings, construction of names, testing properties
of macro parameters, testing compiler qualifiers, generating com-
piler diagnostic messages, and controlling macro expansion

The following features of the BLISS-16 language are speC|aI|zed for
use on PDP-11 systems.

ENVIRONMENT specifies the hardware instructions available on the
target PDP-11 (EIS or non-EIS) and controls the optional generation
of position independent code
BLISS-16 generated object code can be mapped to run under 1/D
space
BLISS-16 generated object code is compatible with a wide range of
DIGITAL supported operating system environments

PSECT declarations allow use of link-time program sections for effi-
cient use of the address space

BUILTIN declarations allow use of PDP-11 machine specific func-
tions for access to PDP-11 features not otherwise provided by the
BLISS language. Machine specific functions generally correspond
to PDP-11 instructions such as: HALT, NOP, RESET, WAIT, BPT,
SWAB, MFPS, MTPS, MFPD, and MTPI

ENABLE declarations, together with SIGNAL, SIGNAL-STOP, and
SETUNWIND functions, allow condition handling— the response to
an unusual event signaled during the execution of a program

196

Programming Languages

The VAX-11 BLISS-16 Compiler

The VAX-11 BLISS-16 compiler performs global and local optimiza-
tions to produce efficient and compact generated code. Each routine
definition is treated as a complete unit in compllmg the code for that
routine.

The VAX-11 BLISS-16 optimizations employed are: common
subexpression elimination, removing loop invariants, constant folding,
block register allocation, peephole replacement, test instruction elimi-
nation, jumps: branch instruction resolution, branch chaining, cross-
jumping, constant propagation, and redundant store elimination.

The BLISS-16 compiler optionally produces a side-by-side listing file
that ‘shows the source text compiled and the generated code in a
format that closely resembles a PDP-11 MACRO assembly listing.
Multiple listing options allow selective inclusion or exclusion of source
and generated code, source names and source line numbers as com-
mentary to the assembly listing (where feasible), macro expansion and
tracing information, and identification of names acquired from library
files. A listing file that can be assembied by the MACRO-11 assembler
can also be requested.

VAX-11 CORAL 66

The VAX-11 CORAL 66 compiler compiles in compatibility mode and
generates native mode object code under the VAX/VMS operating
system. The CORAL language, derived from the JOVIAL and ALGOL-
60 languages in 1966, is the standard language prescribed by the
British government for military realtime applications and systems im-
plementation. A government agency controls the CORAL language
standard, which was first widely used in military projects beginning in
1970. Her Majesty’s Stationery Office publishes the “Official Definition
of CORAL 66.”

The CORAL language replaces assembly level programming in a
number of commercial, process control, research, and military appli-
cations. It is particularly adapted to long-life products requiring flexi-
bility and ease of maintenance.

The VAX-11 CORAL 66 language is a block-structured language. A
block is a piece of a program that can be entered only at the begin-
ning. Though internal structures cannot be “seen” from the outside,
statements inside a block can “see” out. Sorting is possible, so that
programs may be written in which information is accessible for only
the time it is required, and no longer. In this way, unwanted interac-
tions among program parts are avoided, and out-of-date information
is very quickly forgotten.

197

Programming Languages

To satisfy realtime needs, the CORAL 66 language allows different
modules of the same suite of programs to be executed at apparently
the same time. A CORAL compiler assumes that any subroutine global
to the whole program is likely to be active at the same time as any
other, so the compiler assures that such subroutines do not share any
local storage. Interactions, however, can be explicitly arranged by the
programmer. A program consists of communicators and separately
compiled segments. Each segment has the form of an ALGOL 60
block, within which blocks.and procedures may be nested to arbitrary
depth. In the absence of communicators, block structure would
prevent different segments from using common data, labels, com-
mand qualifiers, or procedures. The purpose of a communicator is to
specify and name those objects which are to be commonly accessible
to all segments. The presence of communicators imposes a modular
and disciplined approach to programming larger systems where a
team of programmers is employed

In addition. to the functionalities prescnbed in the Off|c1al Definition,

the VAX-11 CORAL 66 compiler provides the following features:

® BYTE, LONG (32-bit integer) and DOUBLE (64-bit floating point)
numeric types

e Generation of re-entrant code at the procedure level

o Command-qualifier-selectable option to optimize generated code

¢ Conditional compilation of defined parts of source code

® English text error messages at compile and (optionally) runtime

e Command-qualifier-selectable option to control listing output

e INCLUDE keyword to incorporate CORAL 66 source code from
_ user-defined files

. Command qualifier-selectable option to read card format

The VAX-11 CORAL 66 language is essentially a high-level, block-
structured language possessing certain facilities associated with low-
level languages, and is designed for use on small or medium-size
dedicated computers. One of the main intentions is that programs
written in the CORAL language should be fast to execute, taking up
limited quantities of storage, while being easy to write.

The realtime applications of the language are implicit rather than ex-
plicit, permitting the utilization of any hardware or special features.
Procedures, optionally with parameters, permit communication with
and reaction to external events. This is aided further by a direct code
facility which enables machine code to be included in the source pro-
gram for extra efficiency in any critical tasks.

198

Programming Languages

VAX-11 DSM

VAX-11 DSM (DIGITAL Standard MUMPS) is a multiuser data man-
agement system and a language processing system. The DSM lan-
guage is a high-level, interpretive language well-suited for the
processing of variable-length string data. It conforms to the American
National Standard MUMPS specification X11.1-1977. In addition, it
provides a number of extensions.

Interpretive processing of the language means that each line of a DSM
routine is executed as it is entered. Routines written in the DSM lan-
guage do not have to be compiled or linked, making it easier to write,
debug, edit and run a routine in one interactive session.

As DSM program lines are entered, the DSM interpreter examines and
analyzes each DSM statement and executes the specified operation. It
performs error checking during routine execution and reports all er-
rors at the terminal. This reduces problem-solving time, the computer
time required to check the routine, and most importantly, the time
required to obtain a final running application.

The DSM language has many capabilities, but its basic orientation is
procedural. The language is directed primarily toward the processing
of variable-length string data, making interactive database systems
easier to implement and maintain.

Data Management

The DSM language allows the user to reference data symbolically
through variables. A variable can contain either a numeric value or an
alphanumeric string.

The VAX-11 DSM system utilizes two types of variables: local and
global variables. Local variables are defined solely for the current user
(or process). Local variables are not intended for permanent storage,
but only for temporary use during the life of the process.

Global variables, or simply globals, are stored on disk. Globals are
referenced symbolically using names similar to those of local vari-
ables, the only difference being the circumflex (}) preceding the first
character in the variable name. Subscripted global variables form a
system of arrays stored on disk, the data of which forms a common
database that can be made available to one or more users in the
system.

Global arrays are sparse arrays, that is, the system dynamically adds
nodes to the array as a user stores data in them, and deletes nodes as
a user deletes them. Thus, users never have to preallocate space for
globals through dimensioning, nor do they have to explicitly recover
disk space when they delete data.

199

Programming Languages

All VAX-11 DSM globals are implemented as VAX-11 RMS (Record
Management: Services) ISAM (Indexed Sequential Access Method)
files. This makes DSM global arrays accessible by other VAX/VMS
operating system languages and by DECnet communications soft-
ware. VAX-11 DSM represents each global by one indexed file. The
mapping of the logical structure of a global array into the correspond-
ing ISAM file is transparent to the DSM user. Thus, there is no concept
of "opening” and "closing” a global.

In general, global arrays are treated syntactically in the DSM language
the same way as local arrays: to create a global, the SET command is
issued; to access and manipulate its contents, any number of com-
mands and functions in the DSM language set are used; to delete a
global node, the KILL command is issued; and to delete the entire
global array, its root node is killed.

This arrangement eliminates the need to be concerned with the physi-
cal structure of files when designing a database application (as is the
‘case with some database systems). Using globals, you need only be
concerned with the logical relationships between elements of a
database.

The Precompiler

The VAX-11 DSM system provides a language precompiler to optimize
the execution of DSM routines in an application environment. The
precompiler is a component of the VAX-11 DSM interpreter that
processes all DSM program lines into a more efficient, intermediate
format, called precompiled format, in order to expedite subsequent
interpretation.

When a user executes a routine, the interpreter' executes the precom-
piled program. Syntax errors are reported at this point.

When a user stores a routine on disk, the system places both the
source and precompiled versions in the DSM routine directory. For a
given routine version, the precompilation procedure occurs only once.
When users execute a routine from the directory, the VAX-11 DSM
system automatically loads the precompiled version.

Because the system saves both routine versions, users can always
load, edit, and test DSM routines interactively. The precompilation
procedure is repeated if a routine is edited or updated.

The VAX-11- DSM precompiler transforms DSM program lines into
precompiled format with the following optimizations:

® [t strips comments

® |t checks syntax

200

Programming Languages

® |t sets up an internal table for line labels which optimizes GOTO
statements and DO statements that transfer control to other routine
lines

® |t evaluates constants and transforms numbers into an internal re-
presentation (that is, packed decimal or longword)

e [t converts arithmetic statements into Reverse Polish Notation

e |t restricts the evaluation of a series of postconditionals to the occur-
. rence of the first false condition. To do this, the precompiler gener-
ates code that specifies the appropriate offset to a given instruction

Procedure Calls

The VAX-11 DSM system allows users to access services that are not
part of the DSM language through a DIGITAL-implemented extension
to Standard MUMPS called the $ZCALL function. Through $ZCALL, a
user can call VAX/VMS system services, routines in the VAX-11
Common Run Time Library, or routines written in other languages
directly from DSM application routines. For example, the DSM lan-.
guage does not include a square root function. Through the procedure
calling mechanism, however, a DSM user can access the correspond-
ing Run Time Library function.

1/0 Options

The VAX-11 DSM system provides a subset of the Input/Output (1/0)
options of the VAX/VMS operating system. Each of these options can
be accessed through commands in the DSM language set. DSM users
can access any VAX/VMS-supported device available for use.

The VAX-11 DSM system provides an interface to VAX/VMS 1/0
handlers according to device type. Terminal 1/0 and interprocess
communication through mailboxes is handied by the VAX/VMS Queue
1/0 service, whereas 1/0 to all other devices is performed through
VAX-11 RMS (Record Management Services). This allows DSM users
to access RMS sequential, relative, and indexed files, in addition to
global variable files, and perform transparent communication through
the DECnet software.

Shared Memory Areas

The VAX-11 DSM system supports a high degree of code and data
sharing through the use of VAX/VMS virtual memory sections. Map-
ping a set precompiled DSM routines in a virtual memory section
improves the performance of a DSM application because the system
does not have to perform I/0 to access DSM routines stored on disk.
Instead, it can execute the routines directly from virtual memory.

201

Programming Languages

Virtual memory sections can be either private or shared. If shared,
they are called global sections. Global sections can be created dy-
namically by a process or they can be permanently present in the
system. Permanent global sections are generally created from rou-
tines to which a number of users require access. When a group of
routines or an application is installed in a global section, all users
share the same copy of precompiled DSM routines. At runtime, a copy
of this set of routines is mapped into the virtual address space of each
requesting process.

All users can create private virtual memory sections. However, users
must have sufficient VAX/VMS operating system privileges to create
and install a global section.

DSM Job Controlier :

The DSM Job Controller is a separate process that manages interlock
requests by muitiple DSM user processes. It also allows system-wide
control over the running of DSM application, providing functions such
as enabling and disabling journaling.

Communication between a VAX-11 DSM process and the DSM Job
Controller takes place through mailboxes.

The VAX-11 DSM system lets users either use or bypass the DSM Job
Controller at DSM image activation. Work that does not affect a com-
mon database—typically program development— can bypass the Job
Controller. However, when multiple users are running a DSM
application, interlocking requires the use of the DSM Job Controller.

Journaling

Journaling is a means of keeping a record on secondary storage (disk
or magnetic tape) of transactions that alter the database (i.e., global
variable SETs and KILLs). VAX-11 DSM journaling is handled by a
separate process communicating with DSM users through mailboxes.

The VAX-11 DSM system provides a number of journaling options to
meet the needs of a system running multiple applications. Depending
on the options selected, there can be one or more journal processes.
One journal process can be run for each group in the system, for a
number of groups in the system, or for the entire system.

Each journal process monitors database transactions through mail-
" boxes, which are VAX/VMS pseudo-devices used for interprocess
communication. Whenever a DSM user process performs a SET or
KILL on a global variable, the journal process makes a record of it in
one of many possible journal files. In the event of database degrada-
tion, these files can be used to restore the database.

202

Programming Languages

System and Library Utilities

The VAX-11 DSM software package includes a number of utility rou-
tines written in the DSM language. These routines help the application
programmer to develop and maintain the software and data for his or
her application, and allow the system manager to control the running
of DSM applications.

The utilities are divided into two categories: library utilities and system
utilities. Library utilities perform general services in three categories:
procedures affecting routines; procedures affecting globals; and mis-
cellaneous operations such as numeric conversion. System utilities
perform services in the areas of: journaling control; job control, and
other maintenance operations; and system information.

Generally, the system and library utilities are accessed through a
menu-driven utility package. Most utilities in the package are interac-
tive, that is, they prompt for required user input. In addition, most
utilities provide extensive online documentation that explains how to
use them.

VAX-11 MACRO

The VAX-11 MACRO assembler accepts one or more source modules
written in the MACRO assembly language and produces a relocatable
object module and symbol table and optional assembly listing. The
VAX-11 MACRO tanguage is similar to the PDP-11 MACRO language,
‘but its instruction mnemonics correspond to the VAX native instruc-
tions. The VAX-11 MACRO assembly language is characterized by the
following:

® Relocatable object modules
® Global symbols for linking separately assembied object programs

® Global arithmetic, global assignment operator, global label opera-
tor, and default global declarations

e User-defined macros

® Multiple macro libraries

® Program sectioning directives

e Conditional assembly directives

® Assembly and listing control functions

e Alphabetized, formatted symbol table listing

e Default error listing on command output device

e An optional Cross Reference Table (CREF) symbol listing

Symbols and Symbol Definitions
Three types of symbols can be defined for use within MACRO source
programs: permanent symbols, user-defined symbols, and macro

203

Programming Languages

symbols. Permanent symbols consist of the VAX instruction mnemon-
ics'and MACRO directives; they do not have to be defined by the user.
User-defined symbols are those used as labels or defined by direct
assignment. Macro symbols are those symbols used as macro names.

MACRO maintains a symbol table for each type of symbol. The value
of a symbol depends on its use in the program. To determine the value
of a symbol in the operator field, the assembler searches the macro
symbol table, user symbol table, and permanent symbol table, in that
order. To determine the value of the symbol used in the operand field,
the assembler searches the user symbol table and the permanent
symbol table, in that order. These search orders aliow redefinition of
permanent symbol table entries as user-defined or macro symbols.

User-defined symbols are either internal or external (global) to a
source program module. An internal symbol definition is limited to the
module in which it appears. Internal symbols are temporary definitions
which are resolved by the assembler.

A global symbol can be defined in one source program module and
referenced with another. Global symbols are preserved in the object
module and are not resolved until the object modules are linked into
an executable program. With some exceptions, all user-defined sym-
bols are internal unless explicitly defined as being global.

Directives

A program statement can contain one of three different operators: a
macro call, a VAX instruction mnemonic, or an assembler directive.
The MACRO assembly language includes directives for:

® Listing control

e Functional specification

e Data storage allocation

e Radix and numeric usage declarations

® | ocation counter control

e Program termination

® Program sectioning

e Global symbol definition

e Conditional assembly

Macro definition

Macro attributes

Macro message control

Repeat block definition

Macro libraries

204

Programming Languages

Listing Control Directives '

Several listing control directives are provided in MACRO to control the
content, format, and pagination of all listing output generated during\
assembly. Facilities also exist for titling object modules and presenting
other identification information in the listing output.

The listing control options can also be specified at assembly time
through command qualifier options included in the listing file specifi-
cation in the command string issued to the MACRO assembler. The
use of these command qualifiers overrides all corresponding listing
control directives in the source program.

Conditional Assembly Directives

Conditional assembly directives enable the programmer to include or
exclude blocks of source code during the assembly process, based on
the evaluation of stated condition tests within the body of the program.
This capability allows several variations of a program to be generated
from the same source module.

The user can define a conditional assembly block of code, and within
that block, issue subconditional directives. Subconditional directives
can indicate the conditional or unconditional assembly of an alternate
or non-contiguous body of code within the conditional assembly
block. Conditional assembly directives can be nested.

Macro Definitions and Repeat Blocks

In assembly language programming, it is often convenient and desira-
ble to generate a recurring coding sequence by invoking a single
statement within the program. In order to do this, the desired coding
sequence is first established with dummy arguments as a macro defi-
nition. Once a macro has been defined, a single statement calling the
macro by name with a list of real arguments (replacing the corre-
sponding dummy arguments in the macro definition) generates the
desired coding sequence or macro expansion. The MACRO language
automatically creates unique symbols where a label is required in an
expanded macro to avoid duplicate label specifications. Macros can
be nested; that is, the definition of one macro can include a call to
another.

An indefinite repeat block is a structure that is similar to a macro
definition, except that it has only one dummy argument. At each ex-
pansion of the indefinite repeat range, this dummy argument is
replaced with successive elements of a specified real argument list.
This type of macro definition does not require calling the macro by
name, as required.in the expansion of conventional macros. An indefi-
nite repeat block can appear within or outside of another macro defi-
nition, indefinite repeat block, or repeat block.

205

Programming Languages

Macro Calls and Structured Macro Libraries

A program can call macros that are not defined in that program. A
user can create libraries of macro definitions, and MACRO will look up
definitions in one or more given library files when the calls are encoun-
tered in the program. Each library file contains an index of the macro
definitions it contains to enable MACRO to find definitions quickly.

Program Sectioning

The MACRO program sectioning directives are used to declare names
for program sections and to establish certain program section attrib-
utes. These program section attributes are used when the program is
linked into an image.

The program sectioning directive allows the user to exercise complete
control over the virtual memory allocation of a program, since any
program attributes established through this directive are passed to the
linker. For example, if a programmer is writing multi-user programs,
the program sections containing only instructions can be declared
separately from the sections contairiing only data. Furthermore, these
program sections can be declared as read-only code, qualifying them
for use as protected, shareable programs.

HOST DEVELOPMENT LANGUAGES

PDP-11 FORTRAN IV/VAX TO RSX

The FORTRAN 1V language is an extended FORTRAN implementation
based on American National Statndard (ANSI) FORTRAN, X3.9-1966.
PDP-11 FORTRAN IV code is executed in compatibility mode under
the VAX/VMS operating system. The FORTRAN |V language includes
the following extensions to the ANSI standard:

e Generated expressions allowed in all meaningful contexts
Mixed-mode arithmetic

BYTE data type for character manipulation

ENCODE, DECODE statements

PRINT, TYPE, and ACCEPT input/output statements

e Direct-access, unformatted input/output DEFINE FILE statement

¢ Comments allowed at the end of each source line

® PROGRAM statement '

e OPEN and CLOSE file access control statements

e List-directed input/output '

Additionally, virtual arrays are supported on target systems with
memory management directives. Virtual arrays are memory-resident
and require enough main memory to contain all elements of all arrays.

206

Programming Languages

The PDP-11 FORTRAN IV compiler is a fast, one-pass compiler. Com-
piler options allow program size versus execution speed (threaded
code versus inline code) trade-offs. FORTRAN |V compiler optimiza-
tions include:

e Common subexpression elimination

® Local code tailoring

® Array vectoring

e Optional inline code generation for integer and logical operations

MACRO-11 subroutines may be called from FORTRAN IV programs.

The FORTRAN IV language also includes a set of object modules,

called the Object Time System (OTS), that are selectively linked with

compiler-produced object modules to produce an executable pro-

gram.

MACRO-11

MACRO-11, the PDP-11 assembly language, is included in the com-

patibility mode environment. Programs written in the MACRO-11

assembly language can be assembled to produce relocatable object

modules and optional assembly listings. The following features are

provided:

® Relocatable object modules

e Global symbols for linking separately assembled object programs

e User-defined macros

e A comprehensive system macro library

® Program sectioning directives

e Conditional assembly directives

e Assembly and listing control functions at program and command
levels

e Alphabetized, formatted symbol table listing

e Default error listing on command output device

Symbol and Symbol Definitions

Three types of symbols can be defined for use within MACRO-11
source programs: permanent symbols, user-defined symbols, and
macro symbols. Accordingly, three types of symbol tables are main-
tained: the Permanent Symbol Table (PST), the User Symbol Table
(UST), and the Macro Symbol Table (MST).

Permanent symbols consist of the PDP-11 instruction mnemonics and
MACRO directives. The PST contains all the permanent symbols auto-
matically recognized by MACRO and is part of the assembiler itself.
Since these symbols are permanent, they do not have to be defined by
the user in the source program.

207

Programming Languages

User-defined symbols are those used as labels or defined by direct
assignment. Macro symbols are those symbols used as macro hames.
The UST and MST are constructed during assembly by adding the
symbols to the UST or MST as they are encountered.

Directives

A program statement can contain one of three different operators: a
macro call, a PDP-11 instruction mnemonic, or an assembler direc-
tive. Directives are included for:

Listing control

Function specification

Data storage

Radix and numeric usage declarations
Location counter control
Program termination

Program boundaries information
Program sectioning

Global symbol definition

e Conditional assembly

Macro definition

Macro attributes

Macro message control

Repeat block definition

Macro libraries

208

209

CHAPTER OVERVIEW

This chapter describes the wide range of capabilities supported by
VAX/VMS systems for managing data, forms, records, and databases.
It begins with a brief overview of the set of VAX information manage-
ment products. The rest of the chapter includes detailed descriptions
of the individual products.

Topics include:

e The Structure of the Architecture
e Overview of the Products

e VAX-11 DATATRIEVE

¢ VAX-11 FMS

e VAX-11 Common Data Dictionary
e VAX-11 DBMS

210

CHAPTER 6
INFORMATION MANAGEMENT

INTRODUCTION

The VAX/VMS operating system supports a set of software tools that
provides a full range of information management capabilities. With
these tools, data can be organized, maintained, retrieved and manipu-
lated quickly, easily, and cost-effectively. The layered structure, called
the VAX information architecture, includes:

¢ VAX-11 DATATRIEVE data management facility

® VAX-11 FMS (Forms Management System)

e VAX-11 CDD (Common Data Dictionary)

e VAX-11 RMS (Record Management Services)

e VAX-11 DBMS (Database Management System)

The architecture of the VAX information products was developed on
the principle that no single approach to information management is
appropriate for the typical user’'s combination of application needs.
The layered, modular design of the VAX information. architecture
makes it possible to apply the appropriate technology to each level of
an appilication. The components are not just a collection of indepen-
dent point products, but a series of interlocking building blocks that fit
into a well-defined software structure.

THE STRUCTURE OF THE ARCHITECTURE

The components of the architecture are arranged in layers above the
operating system, as seen in Figure 6-1. Each layer has specific capa-
bilities. The layered structure of the architecture makes it possible for
the components on one level to use the facilities of the other compo-
nents.

The top or outside layer provides a user interface where the architec-
ture supports interactive and language-callable video forms, English-
like queries, hardcopy reports, and-graphics. At this level, users such
as application programmers, data entry clerks, and management
personnel can work with data, not as records and files or bits and
bytes, but as meaningful information formatted to their specifications.

On the next level is the data dictionary and a facility for high-level
access to local and remote data.

The data dictionary provides a facility for storing logical-to-physical
data definitions. This facility integrates the other VAX information
management products. For example, high-level data access facilities

211

Information Management

PRODUCTS OF THE ARCHITECTURE

VAX-11
LANGUAGES VAX-11 FMS

" DATATRIEVE

|
I
VAX-11 CDD |
l
|
i

VAX-11 RMS VAX-11 DBMS

VAX/VMS

Figure 6-1

use data dictionary information to access locally and remotely stored
data. The database management system uses the data dictionary to
store the database data definitions it shares with the languages and
the high-level data access facility.

The high-level data access facility lets the application program or in-
teractive user state an access request in terms of a desired result
rather than having to specify the operations required to achieve that
result. For example, the user could request a printout of all employees
with an annual salary equal to or greater than their age times a
thousand dollars. The high-level access facility performs all data ac-
cess, selection, formatting, and output operations required to produce
the desired report--all. in response to one simply stated English-like
query request. The English-like syntax is results oriented. Users ask
for what they want; the high-level data access facility determines how
to locate the data.

High-level. data access also supports a relational join capability for
dynamically linking related records of different types. Users do not

212

Information Management

have to determine in advance the records they want to link. Using a
relational join, the access facility is capable of making these associa-
tions on the fly.

For instance, in the above example, employee stock purchase infor-
mation might be stored in a separate file from the main employee
records. However, stock-purchase information could be included in
the initial retrieval by using a request in the form “PRINT EMPLOYEES
CROSS STOCK-PURCHASE OVER EMP-NUMBER WHERE ANNUAL
SALARY IS EQUAL TO OR GREATER THAN AGE TIMES 1000.” In this
case, the associated stock purchase information is appended to each
printed record because the CROSS operator performs a join of em-
ployee master records with employee stock-purchase records.

The distributed data access facility retrieves data from remote VAX-11
DATATRIEVE nodes. The process is transparent. A remote query
looks just like a local query to the user.

The lowest level consists of two online, multiuser, data management
facilities; one for traditional file structures and one for pointer-based
database structures. Sequential, relative, and multikey-ISAM (indexed
Sequential Access Method) file organizations are supported by the file
management system. The database management system is CO-
DASYL-compliant and supports the network data model.

The Components of the Architecture
Figure 6-2 maps the VAX information architecture capabilities over the
product set presented in Figure 6-1.

Programming Languages — The VAX languages are a basic part of
the VAX information architecture. The architecture provides language
support for high-level and direct access to RMS (Record Management
Services) files and VAX-11.DBMS (Database Management System)
data structures. Through the VAX Procedure Calling Standard, lan-
guages can use the VAX-11 DATATRIEVE data management facility
for high-level access to data. The syntax for calling the VAX-11 DATA-
TRIEVE facility is exactly the same as that for using it interactively.

For VAX-11 DBMS access, a data manipulation language (DML) is
provided for VAX-11 FORTRAN and VAX-11 COBOL programs. All
other application languages are supported through a callable VAX-11
DBMS utility called DBQ (database query).

VAX-11 FMS — VAX-11 FMS (Forms Management System) is a pro-
grammer productivity tool that provides a forms managememt
capability for application languages and the VAX-11 DATATRIEVE da-
ta management facility. FMS forms are defined interactively and then

213

Information Management
FEATURES OF THE ARCHITECTURE @

l
|
QUERY &
LANGUAGES FORMS EPORTING } GRAPHICS
i e]
|
|
MG e | oistrisuTED
DAT,
DATA DICTIONARY 2200 : CCEss
|
|
SEQUENTIAL, RELATIVE, : CODASYL
MULTI-KEY ISAM _DATABASE
OPERATING SYSTEM

Figure 6-2

stored in an FMS forms library. At runtime, VAX-11 FMS works as a
forms management software front end. It passes data between user
programs and a video terminal on a per-field or per-form basis.

The process works exactly the same way when FMS forms are used
with the VAX-11 DATATRIEVE facility. If a form name is used as part of
a DATATRIEVE definition, the VAX-11 DATATRIEVE facility will auto-
matically use the form to collect or display the associated data. From
the point of view of VAX-11 FMS, VAX-11 DATATRIEVE is just another
user program.)

VAX-11 DATATRIEVE — VAX-11 DATATRIEVE is a comprehensive
data management tool. It provides both interactive and program-call-
able access to data in RMS file organizations or in more complex,
interrelated database structures. it is a comprehensive query and re-
port writer with full update capabilities. It also includes an integrated
graphics capability. Forms support is provided through VAX-11 FMS
(Forms Management System).

214

Information Management

The VAX-11 DATATRIEVE facility consists of four major
subcomponents: at the user interface level are a query and report
writing facility and a business graphics capability; below that, the local
and distributed high-level data access facilities.

The VAX-11 COMMON DATA DICTIONARY — The VAX-11 CDD s in
many respects the keystone of the architecture and is essential to the
operation of VAX-11 DATATRIEVE and VAX-11 DBMS. VAX-11 DATA-
TRIEVE statements refer to data entities defined in the VAX-11 CDD.
The VAX-11 CDD is also used to store series of VAX-11 DATATRIEVE
statements as procedures that can be invoked interactively or from
application programs.

The VAX-11 CDD is used to store the database data definitions (sche-
mas and subschemas) VAX-11 DBMS needs to create, access, and
maintain databases. Application languages access these definitions at
compile time.

VAX-11 RMS — VAX-11 RMS (Record Management Services) is an
access method with an extended syntax interface to all high-level lan-
guages. It supports sequential, relative, and multikey indexed-se-
quential file organizations, as well as concurrent file access with
record-level locking.

VAX-11 DBMS — The VAX-11 DBMS facility is a full-scale CODASYL-
compliant database management system based on the March 1981
Working Document of the ANSI Data Definition Language Committee.
It has many special ease-of-use and performance features and is suit-
able for both small and large database applications. Because it uses
the powerful network-type data model, it can accommodate complex
data relationships. The VAX information architecture allows for DBMS
data to be accessed directly from applications languages or through
the VAX-11 DATATRIEVE facility. Included with the VAX-11 DBMS
facility is an important productivity tool, DBQ, an interactive and pro-
gram-callable database query language, that makes it easy to write
and check out VAX-11 DBMS data access statements.

The remainder of this chapter is divided into five sections that cover in
detail the features and functions of VAX-11 DATATRIEVE, VAX-11
FMS, the VAX-11 CDD, VAX-11 RMS, and VAX-11 DBMS. The Lan-
guage/VAX information architecture interface is integrated into each
'of the information management components. The use of DECnet-VAX
communications software is covered under Distributed Data Access in
the VAX-11 DATATRIEVE section.

215

Information Management

VAX-11 DATATRIEVE

The VAX-11 DATATRIEVE facility is a multi-faceted data management
facility that can store, update, and retrieve information and generate
reports. The major commands include:

o CROSS—which allows multiple files to be accessed using a com-
mon field

o DECLARE—which defines global and local variables to be used
within a DATATRIEVE query

e DEFINE—which provides a consistent mechanism for creating do-
main, record, table, and view definitions in the VAX-11 Common
Data Dictionary

® DROP—which allows records to be deleted from a collection (sub-
set) only, while not modifying the actual data file

e EDIT—which invokes an editor that inserts, modifies, or deletes text
from procedures defined in the VAX-11 CDD, or from the last line
entered in an interactive session .

¢ ERASE—which deletes one or more records corresponding to the
appropriate domain (file) v

® FIND—which establishes a collection (subset) of records contained
in either a domain or a previously established collection based on a
Boolean expression

® FOR—which executes a subsequent command once for each record
in record collection providing a simple looping facility

® HELP—which provides a summary of each DATATRIEVE command

® MODIFY—which alters the values of one or more fields for either the
selected record or all records in a collection. Replacement values
are prompted for by name, or shown on a pre-defined form

® PLOT—which allows a collection of records to be displayed/printed
in graphic representation '

e PRINT—which prints one or more fields of one or more records.
Output can be optionally directed to a lineprinter or disk file. Format
control can be specified. A column header is generated automati-
cally

e READY—which identifies a domain for processing and controls the
access mode to the appropriate file

e SELECT—which identifies a single record in a collection for subse-
quentindividual processing

® SORT—which reorders a collection of records in either the
ascending or descending sequence of the contents of one or more
fields in the records

216

- Information Management

® STORE—which creates a new record. The value for each field con-
tained in the record is prompted for by name, or indicated on a pre-
defined form

VAX-11 DATATRIEVE also provides a subset capability to allw novice
users to learn about DATATRIEVE while using it productively. This
facility is called “Guide” mode. It provides explicit help at all decision
points in processing a DATATRIEVE subset. The “Guide” mode subset
includes:

SHOW
READY
FIND
PRINT
SORT
SELECT

VAX-11 DATATRIEVE can be used interactively from a terminal or
called from an application program. Data can be accessed in VAX-11
RMS files and VAX-11 DBMS database structures. VAX-11 DATA-
TRIEVE features integrated editing and graphic output facilities and it
supports the forms management facility of VAX-11 FMS.

The VAX-11 DATATRIEVE facility also provides a distributed data ac-
cess capability using DECnet-VAX communications software. This ca-
pability makes it possible to use VAX-11 DATATRIEVE to retrieve data
on remote VAX systems, just as if the data were stored locally. A single
DATATRIEVE command is capable of accessing data from RMS or
DBMS files local or remote simply depending on its definition in the
VAX-11 CDD.

Designed to be used by both novices and computer professionais,
VAX-11 DATATRIEVE operates effectively in commercial, technical,
scientific, industrial, or educational environments. Typical applications
range all the way from producing a complex report to answering a
casual question. For example, using VAX-11 DATATRIEVE, a
personnel file could be queried to determine how many employees
held bachelor’s degrees, or the same data file could be used to pro-
duce a report with a complete statistical analysis of the employee
education versus compensation.

Another typical environment where VAX-11 DATATRIEVE would be
useful is a distributorship with an order processing system. In this
setting, sales data could be extracted by territory, then the results
could be plotted in the form of a pie chart. Order backlogs might be
retrieved, sorted by supplier, and plotted in the form of a bar graph.

217

Information Management

Implementing a VAX-11 DATATRIEVE application is a two-phase
process. In the first phase, the appropriate statements are used to
define all data that will be accessed by the application. This need be
done only once to establish a foundation on which to build the applica-
tion. In the second phase, VAX-11 DATATRIEVE statements are used
to process the data associated with these definitions.

Data Definition .
The data definition process involves establishing special VAX-11 DA-
TATRIEVE constructs called domains.

Domains — The domain concept is central to DATATRIEVE. Domains
represent relationships between actual physical data and descriptions
of data. VAX-11 DATATRIEVE performs all data management in terms
of domains. Domains must be defined before DATATRIEVE can man-
age the data associated with them.

In the simplest form, a VAX-11 DATATRIEVE domain definition con-
sists of a domain name, the name of the VAX-11 RMS file, and the
name of a record format description. A record format description
defines the fields within a record, assigning each field a name and
specifying its length, data type, and other vital parameters. All VAX-11
DATATRIEVE domain definitions and record format descriptions are
contained in the VAX-11 Common Data Dictionary.

Record format descriptions can specify data validation criteria on a
per-field basis. VAX-11 DATATRIEVE automatically uses the valida-
tion parameters to screen data at the time of input so that only data
defined as valid is accepted. Supported validation parameters include
range checks, missing value checks, default valués, must-match ta-
bles, and argument-function conversion tables.

Domains can span multipte VAX-11 RMS files or VAX-11 DBMS re-
cord types. Domains can also include the name of an associated VAX-
11 FMS form or a VAX-11 DATATRIEVE table. Domains. can also be
defined as remote. This means that the actual data definition and the
data exist on a remote VAX-11 DATATRIEVE node and can be ac-
cessed through DECnet-VAX communication software using the
distributed data access facility. These more complex domains are
explained in more detail below.

Data Management

Data management involves creating and maintaining data in a current
and correct state by adding, eliminating, and modifying records. The
STORE, ERASE, and MODIFY statements are used to perform these
relatively straightforward functions.

218

Information Management

Populating Files — When an application requires the creation of new
files, the new files must be filled with data. This process is called
“populating” the file. A series of successive STORE statements is used
for this purpose. With the STORE statement, VAX-11 DATATRIEVE
prompts the user for each field value and, before accepting input,
performs any validation checks specified by the record format de-
scription.

Data Retrieval

Maintaining an accurate database, however, is not an end in itself.
Data is used to make decisions, generate reports, initiate transactions,
and generally facilitate the operational processes of an enterprise.
VAX-11 DATATRIEVE allows stored data to be retrieved in an easily
understood form regardless of underlying data structure (RMS or
DBMS) or location (local or remote via DECnet).

The data retrieval statements of VAX-11 DATATRIEVE are simple, and
particularly powerful statements with English-like syntax. They consist
of verbs modified by a Record Selection Expression (RSE). The RSE
defines a subset of the records in the domain. These records are then
selected by VAX-11 DATATRIEVE for retrieval. One statement can get
the answer to a casual query or produce a long detailed report.

“EMPLOYEES WITH SALARY GREATER THAN 20000,” “ ACCOUNTS
WITH UNPAID-BALANCE GREATER THAN 600,” or “DONORS WITH
BLOODTYPE EQUAL O-NEG” are examples of typical RSEs. Multiple
conditions can be combined in a single RSE--for example, “DONORS
WITH BLOODTYPE EQUAL O-NEG AND LAST-DONATION-DATE
LESS THAN “4/30/81.”” The VAX-11 DATATRIEVE SORT operator
can be appended to the RSE to order the records being retrieved.

Ad hoc information retrieval with VAX-11 DATATRIEVE is normally
performed as an iterative process using a series of statements to
progressively narrow down the group of records to be retrieved. This
works by using a FIND request with a specified domain as its object to
establish what is called the current collection. Subsequent FIND re-
quests progressively narrow down the current collection until the user
is satisfied with the results. For example, the statement “FIND DO-
NORS WITH BLOODTYPE EQUAL O-NEG AND LAST-DONATION-
DATE LESS THAN “30/4/81”” might yield the VAX-11 DATATRIEVE
response “200 RECORDS FOUND.” In this case, the user could narrow
down the current collection with the statement “FIND CURRENT WITH
ZIP-CODE EQUAL 23016.” VAX-11 DATATRIEVE might then respond
with-“16 RECORDS FOUND” and the user could PRINT these records
to get telephone numbers for soliciting blood donations to help an
accident victim. :

219

Information Management

Reports

The PRINT statement is used to output information to a display termi-
nal, a printer, or a VAX-11 RMS file. Though there are some formatting
options possible with the PRINT statement, they are limited. The RE-
PORT command provides a more comprehensive set of formatting
options for producing standard printed reports with page and column
headings, page numbers, totals, and subtotals.

Graphics

The VAX-11 DATATRIEVE graphics capability includes histograms,
bar charts, pie charts, xy scatter diagrams, and time series graphs.
Plots use the VT125 video terminal for display and can be printed
using an attached printer. The syntax for the plot statement consists of
the PLOT verb followed by plot type and the fields to be plotted.

Forms
VAX-11 DATATRIEVE can be used with VAX-11 FMS to provide forms
input and output. See “Using FMS With VAX-11 DATATRIEVE.

Stored Procedures

With the DEFINE PROCEDURE command, users can deflne
sequences of VAX-11 DATATRIEVE commands and statements and
store them for later use. PROCEDURES can be invoked to run by
themselves or can be embedded in other sequences of commands
and statements. PROCEDURES can be invoked by interactive users or
application programs.

Ease-Of-Use Features

Guide Mode — VAX-11 DATATRIEVE provides a self-teaching facility,
calied “Guide” mode. In this mode of operation, users are guided
through their VAX-11 DATATRIEVE sessions with a series of prompts.
This enables the user to work productively with DATATRIEVE while
learning to use it.

To invoke guide mode, the user issues a SET GUIDE command. VAX-
11 DATATRIEVE immediately responds with “ENTER COMMAND,
TYPE ? FOR HELP.” If “?” is typed at this point, VAX-11 DATATRIEVE
will present the user with the possible responses--in this case, READY,
SHOW, or LEAVE. If one of the alternatives is selected, VAX-11 DATA-
TRIEVE then procedes to guide the user through the syntax of the
selected statement. In the case of READY, VAX-11 DATATRIEVE
prompts with “DOMAIN NAME, END WITH SPACE.”

VAX-11 DATATRIEVE Editor — The VAX-11 DATATRIEVE editor
closely resembles the standard VAX editor, EDT. It can be used in
either the line or character mode, with or without keypad commands.

220

Information Management

The editor lets the user correct typing or syntax errors in VAX-11
DATATRIEVE statements without having to completely retype the
statements.

To get into editor mode, the user types EDIT and a carriage return.
VAX-11 DATATRIEVE places the last command or statement in the
main buffer of the editor, and the user edits this just like any other text.
If EXIT is used to leave the editor, VAX-11 DATATRIEVE performs the
edited statement or command. If QUIT is used to leave the editor,
VAX-11 DATATRIEVE ignores the last statement.

Application Design Tool — The Application Design Tool (ADT) is a
VAX-11 DATATRIEVE utility that simplifies the process of defining
domains, record formats, and creating VAX-11 RMS files. Operating in
an interactive mode, ADT presents the user with a series of simple
questions. The user’s responses provide ADT with information to gen-
erate the proper definitions. For RMS files, ADT will prompt the user to
get a full set of parameters pertaining to organization, index keys, etc.
ADT will then create a VAX/VMS indirect command file that the user
can execute immediately or at some later time to create the desired
file.

Advanced Features

View Domains — VAX-11 DATATRIEVE allows domains to be defined
that can subset the fields of a record and can span multiple VAX-11
RMS files or VAX-11 DBMS record types. These are called view do-
mains because they provide a user’s logical view of the data. Once
view domains have been established, they can be used in much the
same way as simple domains.

This facility is basic to high-level data access. It makes it possible fora
single statement to retrieve a set of related records. For example, in an
employee records application there might be an employee master file
with company confidential information pertaining to salary that could
be masked out using a view domain. Other information in the master
file such as addresses and telephone numbers could then be com-
bined in another view domain with a special file of records used in a
car-pooling application. '

View domains can also be used with VAX-11 RMS files for domains
containing records related in a hierarchical fashion. For example, in an
order processing application there might be an account master file
and an order file. These files could be combined in a view to produce
billing statements with data drawn from both files. A single record in
this view domain could be defined to contain one account master
record and all the orders applying to that account.

221

Information Management

Joining Multiple Records Using CROSS — VAX-11 DATATRIEVE
also has a similar and equally important relational facility for linking
multiple record types dynamically. Using the CROSS operator, re-
cords from separate VAX-11 RMS files or from different VAX-11
DBMS data structures can be joined dynamically in a single retrieval
statement. ’ :

This is an especially powerful facility that makes it possible for users to
join records from any files related to one another by a common field.
For example, in a student records application, a school might maintain
a current academic status file and a registration file. When mailing
grade scores the academic status file could be joined with the regis-
tration file to get the home address. The VAX-11 DATATRIEVE state-
ment would take the form “CROSS ACADEMIC-STATUS WITH RE-
GISTRATION OVER STUDENT-ID.”

DBMS Domains — DBMS domains are a VAX-11 DATATRIEVE fea-
ture to take advantage of the record format descriptions and
interrecord relationships defined in VAX-11 DBMS subschemas.
When DBMS domains are used, a schema, subschema and a record
type are simply identified. VAX-11 DATATRIEVE uses the record for-
mat description and relationships defined for the record type in the
VAX-11 CDD. ‘

Tables — VAX-11 DATATRIEVE tables can be defined to reside in the
VAX-11 Common Data Dictionary or exist as DATATRIEVE domains.
Tables can be used as a must-match list for field validation or for
argument-function type conversions. For instance, a must-match list
of valid U.S. Mail state abbreviations could be used to check an ad-
dress field or a argument-function table could be used to convert from
state abbreviation codes to the spelled out state name.

Calling VAX-11 DATATRIEVE from Applications Languages — All
the functions of VAX-11 DATATRIEVE with the exception of the editor,
ADT, and guide mode can be called from all application languages
using the standard VAX/VMS call interface. Using the specialized
power of FORTRAN, for instance, complex computational operations
can be performed on records retrieved by VAX-11 DATATRIEVE. With
COBOL, specially formatted reports can be generated from VAX-11
DATATRIEVE collections.

Distributed Data Access — The VAX information architecture works
with DECnet-VAX -communications software to provide a distributed
data access facility that makes it possible for users to access remote
data just as if it were stored locally.

222

Information Management

PRODUCT DESCRIPTION: DISTRIBUTED ACCESS CAPABILITY

VAX-11 vax-n L S VAX-11 VAX-T1
DATATRIEVE DECNET | “——— | DATATRIEVE €bD

VAX-11 | VAX-11 VAX-11 | VAX-11
RMS DBMS RMS DBMS

Figure 6-3

Figure 6-3 illustrates the distributed data access process. A remote
domain is defined with a simple statement that identifies the host node
and domain name. When the query request is executed, VAX-11 DA-
TATRIEVE uses DECnet-VAX software to forward the request to the
appropriate node. The response to the request is then returned over
the line and presented to the user just as if the data had been stored
locally.

Since VAX-11 DATATRIEVE uses the record stream concept, its dis-
tributed data access facility is extremely efficient. Line utilization is
optimized because only the records that satisfy a query are returned
over the transmission line. And since the data description is main-
tained with the data, the complex problems normally associated with
distributed data management are minimized.

VAX-11 FMS

VAX-11 FMS (Forms Management System) provides video form sup-
port for applications on VT100, VT125, and VT52 video terminals.
Because the VAX-11.FMS facility is integrated into the structure of the
VAX information architecture, it can serve both application programs
and the VAX-11 DATATRIEVE data management facility. This im-
proves productivity by reducing required training. time, since there is
only one forms package to learn.

The many special features of the VAX-11 FMS facility improve the
productivity of application programmers and application maintainers.
It is easy to use and self-teaching, meaning that it can be used effec-
tively by entry-level programmers. However, FMS also has the flexibili-
ty and power required by experienced systems designers when
implementing complex forms-oriented applications. In addition, FMS
provides the means for easily building applications that exploit the full
power of the VT100 and VT52 video terminals.

223

Information Management

FMS Subcomponents

As shown in Figure 6-4, FMS consists of forms definition software,
runtime forms management software, and form library data structures
that contain the internal representation of all forms definitions.

APPLICATION FORM
PROGRAM DATATRIEVE EDITOR
coo
TN
N v
\\ FORM

N UTILITY

o FORMS
DRIVER
‘ LIBRARIES

Figure 6-4

Forms definition software performs the functions associated with
creating forms and managing the forms libraries. It consists of an
interactive editor for forms definition and modification and a library
manager.

Runtime forms management software performs interactive forms
management functions for application programs and the VAX-11 DA-
TATRIEVE data management facility.

The FMS Form Editor

The interactive FMS Form Editor is quick, easy, and natural. The forms
designer does not have to learn a forms definition language or lay out
forms on a paper grid. Instead, forms are constructed directly on the
VT100 video terminal, and all screen and field attributes are defined
with function keys or by filling in simple questionaires. The form
appears just as it looks to the terminal operator at runtime. Since
forms developers can watch the end product evolve, a single session
is all that is required to get a form right, regardiess of complexity. The
independence of forms from programs allows the forms to be ap-
proved early in the development process by the end user, eliminating
changes late in the development cycle.

Interactive forms definition is more efficient than a forms-language-
oriented process that requires form definition source code to be writ-

224

Information Management

ten and then compiled in an iterative procedure. With a forms lan-
guage, forms have to be compiled and tested before a forms develop-
er can actually see the results of the process.

Function-Key Logic Using the Keypad
The keypad provides function-key logic for cut-and-paste editing. The
user defines a rectangular area of the form by indicating a pair of
opposite corners with the cursor. This piece of the form can then be
picked up and moved in one operation.

Function keys allow deletion of the entire current line or only the
portion to the right or left of the cursor. An undeiete function key
inserts the most recently deleted line, allowing for error recovery from
accidental deletions or fast replication of a single line.

Character attributes (bold, reverse video, underline, and blink) can be
defined for any desired rectangular portion of the screen, using a
similar technique.

Attributes are assigned to individual fields, and to the form as a whole,
through an interactive process in which the FMS forms compiler uses
the FMS runtime system to present the operator with a series of simple
fill-in-the-blank forms.

The Form Editor creates an internal representation of the form in a
work file. The Form utility is then used to create and manage the
libraries in which the form definitions reside until they are requested
by an application program. The Form utility can also be used to list the
names of forms in a library to a generate printable description of a
form suitable for use in end-user or system documentation, or to gen-
erate COBOL Data Division code reflecting the content of the form.

Forms are not compiled or linked with the application program; the
association between the application program and the form is made at
runtime. This scheme provides for a high degree of data/program
independence, with consequent savings in application maintenance
costs.

Using FMS With VAX-11 DATATRIEVE

When the VAX-11 FMS facility is used with application programs, the
developer defines a form, then writes a program to use it. In the case
of FMS used with the VAX-11 DATATRIEVE data management facility,
the developer defines the form and names it as part of a VAX-11
DATATRIEVE data definition. VAX-11 DATATRIEVE does the rest. It
will automatically generate the proper FMS calls when data associated
with a form definition is input or retrieved.

225

Information Management

Runtime Forms Management

The FMS Forms Driver (runtime system) operates as a program -call-
able software front end to facilitate application-program/terminal-user
interaction. This approach is appropriate for interactive source data
entry and transaction processing applications where the terminal user
is familiar with the data and can make decisions during the input
process.

Application-program calls to FMS specify forms and fields by using
strings of plain ASCII characters. This simple interface design elimi-
nates the need for any pre-runtime binding through a compilation or
linking process. This type of architecture encourages data/program
independence and, as a result, improves programmer productivity by
making applications easier to develop and maintain. Fields can be
moved; some attributes can be changed; and, in some cases, even the
order of fields can be changed without requiring a recompilation of the
associated application programs.

The FMS forms driver is powerful and flexible. It provides a broad
range of calls--from the simple and stralghtforward to the complex
and sophisticated.

Programmers of any level of proficiency can write applications easily.
An entry-level programmer could implement an entire application us-
ing just two.main calis: one to display a designated form and the other
to let the operator enter data onto the form and return input data to the
program upon completion.

A more experienced programmer could use a much greater repertoire
of calls to write an application. Certain calls, for instance, provide for
program/operator interaction on a per-field basis. The application
program can look up and display an item description, unit price, or
quantity on hand, at the moment a part number is entered. Other calls
make it possible for the programmer to use scrolling, multiple over-
lapped forms, and function-key input, to achieve special effects.

Another feature of VAX-11 FMS is its Named Data capability. By stor-
ing abitrary strings of data as part of the form definition, to be re-
trieved by the application program at runtime, the application pro-
grammer can create highly general, parameterized, easily
maintainable applications. Examples of the types of parameters that
can be stored in this manner include names of successor forms for a
chained or menu-driven application, names of data files, boundaries
for range check logic in the application, small tables of validation data,
etc. An installation could easily write a library of subroutines extending
FMS validation capabilities and drive them with Named Data.

226

Information Management

THE VAX-11 COMMON DATA DICTIONARY

The VAX-11 Common Data Dictionary (CDD) is a central repository for
data about data. It is the hub of the VAX information architecture. it
ties the components together by making it possible for them to use a
single set of data descriptions as a common resource.

The VAX-11 DATATRIEVE data management facility uses the VAX-11
CDD for descriptions of data stored in VAX-11 RMS files or VAX-11
DBMS database structures. VAX-11 DBMS (Database Management
System) uses the VAX-11 CDD to store its schemas, subschemas, and
storage schemas. Application languages and VAX-11 DATATRIEVE
can share subschema definitions stored in it.

Figure 6-5 is a schematic representation of the VAX-11 CDD showing
the categories of data it can contain.

DIRECTORY }VAX-H DBMS
ACCESS CONTROL LisTs VAX-11 DATATRIEVE
LOCAL h
REMOTE
DOMAINS Ve
DBMS
RECORD FORMAT
DESCRIPTIONS VAX-11 DATATRIEVE
TABLES
PROCEDURES)
3
SCHEMAS
SUBSCHEMAS VAX-11 DBMS
STORAGE SCHEMAS J
Figure 6-5

The VAX-11 CDD Directory _

The VAX-11 CDD has one integrated directory that is an index to both
the VAX-11 DATATRIEVE and VAX-11 DBMS data definitions it con-
tains. The directory is organized as an n-level hierarchy that has a
structure closely resembling that of the VAX/VMS system directory.

227

Information Management

CDDSTOP

PERSONNEL JONES
PRODUCTION

=
—

YACHTS YACHT YACHTS YACHT ILETTER IMETRIC-CONV | [BUDGET
(CDDSRECORDI| TRSDOMAIN DSRECORD)! [COD$RECORD) [DTR$ TABLE) [DTR$DOMAIN)|

INVENTORY
(CDD$RECORD)

BACKORDERS
([DTR$DOMAN]

YACHTS YACHT
lD\'RlDOMAIN’J LFE RSONAl;] ’(CDD,RECORD)]

[[DTRSDOMAIN)

Figure 6-6

Figure 6-6 shows how a typical VAX-11 CDD directory might look. The
terminal nodes are called leaves. They always reference VAX-11 CDD
objects. The other nodes form a hierarchical access path structure
that provides security control through the use of access control lists.
There is one access control list per path node. Each entry in the list
specifies a user or class of users and their access privileges with
respect to dictionary objects below the associated path node.

VAX-11 DATATRIEVE Data Definitions

For VAX-11 DATATRIEVE, the VAX-11 CDD stores record format de-
scriptions and domain definitions for VAX-11 RMS files and VAX-11
DBMS database structures. The VAX-11 CDD also contains VAX-11
DATATRIEVE procedures and tables.

VAX-11 DBMS Data Definitions

For VAX-11 DBMS, the VAX-11 CDD stores database data descrip-
tions of three types—schema, subschema, and storage schema.
These definitions are used by VAX-11 DBMS to build and later refer-
ence database structures.

The schema is the master data definition for a logical database. It
contains all record, data item, and interrecord (set) relationship defi-
nitions. There is one schema per database. The subschema defi-
nitions are application program views of the data of which there can be
many for one database. They are used by the language compilers to
produce data definition source code during the compilation process.
The storage schema is the master data definition for the physical
structures of a database. There is one storage schema per database.

Common Data Definition Language
The Common Data Definition Language (CDDL) utility provides a gen-
eric facility to enter, modify, and display record definitions for the VAX

228

Information Management

languages. Once a record definition has been entered in the Common
Data Dictionary, it can be used by the language compilers or VAX-11
DATATRIEVE. This means only one definition per record need be
stored in the VAX-11 CDD.

The Dictionary Management Utility

The Dictionary Management Utility (DMU) is a utility for managing the
VAX-11 CDD. The DMU can be used to backup and restore the VAX-
11 CDD, to create and delete VAX-11 CDD objects, to create and
delete directory nodes on any level, and to create and delete access
control lists.

The DMU can also be used to display all or part of the directory
structure. It can also display selected information about a particular
node.

The VAX-11 CDD can maintain a history of activity and will display on
command the access history of specified nodes.

VAX-11 RMS

The VAX-11 RMS facility is the standard DIGITAL data management
services software that provides an interface at the application-
program level to record/file management functions. VAX-11 RMS pro-
vides capabilities to facilitate the definition, creation, population, ac-
cess, and general maintenance and management of files and records
within files. It supports sequential, reiative, and multikey indexed-se-
quential file organizations.

For information on VAX-11 RMS file organization, record access
modes, file and record attributes, and utilities, see Chapter 12 of this
handbook.

VAX-11 DBMS

Introduction

VAX-11 DBMS (Database Management System) isa CODASYL-
compliant general purpose database management system based on
the March 1981 Working Document of the ANSI Data Definition Lan-
guage Committee.

VAX-11 DBMS provides muitiuser support with data security and per-
formance features that are required for large-scale database applica-
tions. However, VAX-11 DBMS also has ease-of-use features that
make it equally suitable for implementing small and medium-scale
applications.

There are three stages to the process of implementing a database
application using VAX-11 DBMS: data definition, application develop-
ment, and database creation.

229

Information Management

The following step-by-step account of the process of implementing a
database application provides an overview of VAX-11 DBMS at work.
It identifies the major VAX-11 DBMS subcomponents and descrlbes
what they do and how they work together as a system.

Data Definition
VAX-11 DBMS provides three levels of data defnnmon Ianguages
(DDLs):

e The schema DDL defines the logical structure of the database

e The storage schema DDL defines the physical structure of the data-
base

® The subschema DDL defines an application program view of a sche-
ma '

The schema DDL is the only DDL that must be written. The DDL com-
piler will produce a default subschema and a default storage schema
for each compiled schema. -

The schema DDL defines the records, sets, and areas composing the
database. A record is a collection of data items. A set is a relationship
between records having one owner record and one or more member
records in some specified order. An area is a logical subdivision of the
database that contains records.

The storage schema DDL defines the representation of storage re-
cords, storage sets, and storage areas (which are equivalent to VMS
files). It also defines the placement of records within the database, the
storage set parameters, and the representation of data items within a
storage record.

The subschema DDL defines a logical subset of the database in terms
of records, sets, and realms (a collection of one or more areas). Many
subschemas can be written to provide different views of the database
for different application programs. '

As shown in Figure 6-7, one DDL compiler compiles all DDL source
code and stores schema, subschema and storage schema information
in the CDD.

CcoD
SCHEMA
SUBSCHEMA
STORAGE
SCHEMA

DDL SOURCE

DDL COMPILER

Figure 6-7
230

Information Management

Application Development

The application development stage is illustrated by Figure 6-8.
Application program source code is.compiled by a language proces-
sor. The source code must reference a previously defined subschema.
The language processor gets the subschema definition from the CDD
in coded form and uses it to create DML (Data Manipulation Lan-
guage) application program data definitions and calls to the Database
Control System (DBCS).

PROGRAM

SOURCE LANGUAGE

PROCESSOR cDD

S—

EXECUTABLE
“PROGRAM

~——
Figure 6-8

Application programs must call the DBCS for all database record and
set operations. The specific operations supported are:

o COMMIT—which establishes a run unit quiet point
CONNECT—which inserts arecord into selected sets
DISCONNECT—which removes a record from selected sets
ERASE—which deletes a record from the database
FETCH—which combines FIND and GET

FIND—which establishes current of run unit

FREE—which removes a dbkey value from a keeplist
GET—which gets contents of current record

KEEP—which inserts a dbkey value into a keeplist

® MODIFY—which changes the contents of a record

® READY—which prepares selected realms for use

® RECONNECT-—which combines DISCONNECT and CONNECT
¢ ROLLBACK—which nullifies changes since last quiet point

& STORE—which puts a record into the database

231

Information Management

Direct Language Access to the VAX-11 DBMS Database

Each application program accesses a subdivision of the database
through a simple set of commands that acts as an extension to COBOL
and FORTRAN programs or as a call from BASIC and MACRO pro-
grams. The database can be accessed by application programs
directed by the subschema (that has been predefined by the database
administrator). The subschema, which is first NAMED in the program,
includes record descriptions. The programmer can, therefore, logical-
ly manipulate the information in the database using one of two
methods provided by VAX-11 DBMS:

e Data Manipulation Language — a set of high-level statements that
create syntactical and logical extensions to FORTRAN and COBOL.
General types of DML statements are Control Statements
(READY,COMMIT, ROLLBACK); Retrieval Statements (GET,
FETCH, FIND); and Modification Statements (CONNECT, DISCON-
NECT, MODIFY, RECONNECT,STORE).

e Call Statement Interface — used for any VAX-11 language that
supports the VAX/VMS calling standard. Programs written in these
languages call DBQ to access a database. The same set of state-
ments are available as in the host language DMLs. VAX-11 DBMS
provides a User Work Area (UWA) generator to facilitate program
development.

Database Creation Using the Database Operator Utility (DBO)

The database creation stage is illustated by Figure 6-9. The Database
Operator Utility (DBO) converts coded schema, subschema, and sto-
rage schema information from the VAX-11 CDD into data files and
control information for the Database Control System (DBCS) to use at
runtime.

The result of the database creation stage is called a null database. The
null database does not contain data. The process of filling a database
with data is called database population. Database population is done
with user written programs that are usually modified versions of regu-
lar application programs for adding data records in an operational
context.

DBO UTILITY DATABASE

Figure 6-9
232

Information Management

Runtime Operation with the Database Control System and the
Database Monitor

Figure 6-10 illustrates the runtime operation of VAX-11 DBMS. It
shows how multiple applications can access the same database and
multiple databases can be supported online at one time using the
Database Control System (DBCS) and the database monitor. DBCS is
a reentrant shared system program that performs all database
accesses. It uses the Database Monitor to control all system lock con-
flicts and perform journaling and recovery functions.

Though not shown here for the sake of simplicity, database develop-
ment and database runtime operations can function concurrently.

USER
APPLICATION
PROGRAM

USER
APPLICATION
PROGRAM

USER
APPLICATION
PROGRAM

USER
APPLICATION
PROGRAM

USER
APPLICATION
PROGRAM

FOR
DATABASE A

FOR
DATABASE A

FOR
DATABASE A

FOR
DATABASE B

FOR
DATABASE B

DBCS
SHARED

DBCS
SHARED

D8CS
SHARED
CODE

L CODE

|
L CODE 1L CODE

DBMS
MONITOR

DATABASE
B

Figure 6-10

EASE-OF-USE FEATURES

Default Subschemas and Storage Schemas

Many applications do not warrant a full-scale design effort involving
subschemas and an optimized storage schema. To accommodate
these situations, VAX-11 DBMS provides an automatic default sub-
schema and storage schema generating facilility. When a schema is
compiled by itself, the DDL compiler creates default subschema and
storage schema information in the VAX-11 CDD. This information can
then be extracted from the Common Data Dictionary in source DDL
form and subsequently edited with the standard VAX/VMS editor
(EDT) to achieve a level of customization appropriate to specific appli-
cations.

Interactive Data Manipulation with DBQ
VAX-11 DBMS includes an interactive data manipulation tool called

233

Information Management

DBQ. DBQ lets the user interactively retrieve, update, and store any
database record. It executes COBOL-like data manipulation com-
mands and automatically generates VT100 displays of easy-to-follow
schematic diagrams that illustrate access paths. Using DBQ, data
manipulation operations can be tested against actual data structures.
This is particularly useful when checking out application program de-
signs.

Integrated Database Administration with DBO

The Database Operator utility provides the Database Administrator
with all of the functions required to create, maintain, delete, and con-
trol VAX-11 DBMS databases. It provides the following:

e Creation, initialization, and deletion of databases

¢ Reports on VAX-11 DBMS information in the VAX-11 CDD

e Extraction of DDL source from the VAX-11 Common Data Dictionary

® Deletion of DDL information in the VAX-11 CDD

¢ Online verification of the integrity of internal database structures

® Modification of the contents of corrupted database storage areas
(This function is not recommended nor required for normal usage)

® Formatted database dumps

e Offline full and incremental database backup

e Database restoration from backup and long-term journals

e Control and display of the status of the DBCS Monitor process

® Database access statistics

® Generation of a User Work Area (UWA) for application programs
using the high-level call interface

Simple Restructuring without Reload

Fields, records, and new set relationships (provided they do not re-
quire retrofit database modifications) can be added without having to
unload and reload the database. This feature is especially useful for
applications that tend to grow over time.

Database Verification With DBO/VERIFY

VAX-11 DBMS has a database verification utility calied DBO/VERIFY.
This utility can be used to check the integrity of a database that a user
suspects might be corrupted. It checks for valid set linkages and data-
base page formats.

234

Information Management

ADVANCED FEATURES

Multiuser Support with Concurrency Control

VAX-11 DBMS provides full concurrent access and update
capabilities with automatic record-level locking. The application dev-
eloper does not have to be concerned with multiuser contention for
data records by declaring and releasing data locks, because this is
performed automatically in a totally transparent, efficient manner. In
addition, users will always see a consistent view of the database.

Transaction Backout

VAX-11 DBMS performs record journaling with automatic transaction
rollback. A transaction is a logical unit of work in an application pro-
gram bounded by program quiet points. A program quiet point occurs
when a program is first activated or when a COMMIT or ROLLBACK
command is executed. If a process aborts or issues a ROLLBACK
command, all updates not yet committed will be backed out automati-
cally.

Journaling/Recovery

VAX-11 DBMS has the facility for record-level journaling that keeps
long-term after-image journals of all database updates and before-
images of all uncommitted updates. These journal records are used to
recover from program, system, or hardware failures.

After a program or system malfunction, VAX-11 DBMS will rollback all
uncommitted transactions. if data has been destroyed, VAX-11 DBMS
can roll forward from a backup copy of the database, using after-
images in the journal to reapply all committed transactions.

Multiple Databases

VAX-11 DBMS allows multiple databases to be online at the same
time. This is useful when totally independent data must be maintained
in separate databases with different schemas. It is also useful in the
more commonly encountered situation of a single schema that applies
to both a test and production database. A single VMS process can
only access one database at a time.

Performance Optimization

VAX-11 DBMS uses its own optimized access method to take advan-
tage of the VAX/VMS architecture. Many other design features have
been included to improve performance.

Journaling at the record level greatly reduces the amount of data that
must be written to the journal. Data buffer caching and 1/0 transfer
clustering are also performed to increase the efficiency of the system.

235

Information Management

An indexed tree structure is used for sorted sets which greatiy reduces
the overhead of access to sorted sets.

Data Security ;

VAX-11 DBMS uses standard VMS system-owner-group-worid file se-
curity logic at the storage-area level. Data is further protected by the
standard CODASYL mechanism of subschemas. A subschema de-
fines down to the data item just what subset of the total database a
program can access. The association between subschemas and
programs must be controlled by the Database Administrator. Data
security is also provided by protecting data definitions in the VAX-11
CDD with access-control lists at each node of the hierarchical directo-
ry.

236

237

CHAPTER OVERVIEW

DIGITAL offers a range of products to link tasks or processes togeth-
er, whether they are running on the same or different systems. This
capability allows computers to operate together in data communica-
tions networks for distributed processing. Specifically, DIGITAL offers
three ways to interconnect computer systems: DIGITAL to DIGITAL
(with DECnet communications software), DIGITAL to other manufac-
turers (with DIGITAL's Internet products), and DIGITAL to public pack-
et switched networks (with DIGITAL's Packetnet products).

Topics include:

Digital Network Architecture

Description of a DECnet Network

DECnet-VAX Phase ||l features

Internet Products

Packetnet Products

Command Language, FORTRAN, MACRO

e Task Messages

® Programming Procedures

238

CHAPTER 7
DATA COMMUNICATIONS

INTRODUCTION

DIGITAL computers can communicate with other computers either
locally or remotely via a network. A network is a configuration of two or
more independent computer systems, called nodes, that are linked
together to facilitate remote communication, share resources, and
perform distributed processing. Network software can run on different
operating systems and communicate with non-DIGITAL equipment.
Within the scope of a single network, several nodes with different
operating systems and different features can interact to provide in-
creased processing flexibility.

Adjacent network nodes are linked together via carriers known as
physical links. Physical links can be relatively permanent bonds, such
as telephone lines or cables laid between nodes, or they can be tem-
porary connections that change with each use, such as dial-up tele-
phone links.

In a network, several tasks (programs) can use the same physical link
to exchange data simultaneously. Each data path is known as a logical
link.

A variety of computer networks can be implemented using DECnet
communications software, Internet products, and Packetnet products.
They typicalily fall into one of three classes:

e Communications Networks. These networks exist to move data from
one, often distant, physical location to another. The data may be file-
oriented (as is often the case for remote job entry systems) or re-
cord-oriented (as occurs with the concentration of interactive
terminal data). Interfaces to common carriers, using both switched
and leased-line facilities, are normally a part of such networks. Such
networks are often characterized by the concentration of all user
applications programs and databases on one or two large host sys-
tems in the network. Figure 7-1 illustrates such a network.

239

Data Communications

CHICAGO
VAX-11/750

VAX-11/780

LOS ANGELES
PDP-11

ATLANTA
PRP-11

Figure 7-1 Communications Network

e Resource-Sharing Networks. These networks exist to permit shar-
ing expensive computer resources among several computer sys-
tems. Shared resources can include not only peripherals such as
mass storage devices, but also logical entities, such as centralized
databases available to other systems in the network. These net-
works are often characterized by the concentration of high-
performance peripherals, extensive databases, and large programs
on one or two host systems in the network. Typically, the satellite
systems have less expensive peripherals and smaller programs.
Figure 7-2 illustrates a resource-sharing network.

VAX-11/750; PDP-11

FAST
LINE

VAX-11/780 LARGE
PRINTER DISK
VAX-11/730 POP-11

Figure 7-2 Resource-Sharing Network

240

Data Communications

e Distributed Computing Networks. These networks coordinate the
activities of several independent computing systems and exchange
data among them. Networks of this nature can have specific geome-
tries (star, ring, hierarchy), but often have no reguiar arrangement of
links and nodes. These networks are usually configured so that the
resources of a system are close to the users of those resources.
Distributed computing networks are usually characterized by multi-
ple computers with applications programs and databases distrib-
uted throughout the network. Figures 7-3 and 7-4 illustrate two such
networks.

VAX-11/782
VAX-11/750

DATA COLLECTION
AND/OR
CONTROL
COMPUTERS

VAX-11/780

PLANT INTERFACE

Figure 7-3 Typical Manufacturing Network

COMPUTATIONAL SERVICE BUREAU
OR IN-HOUSE DATA CENTER
VAX-11

PRINTER —— PDP-11 N

AN

T 71 PLOTTER

GRAPHIC TERMINALS
(GT-40)

A
1
|
!
i

ENGINEERING FIRM

Figure 7-4 Computational Network

241

Data Communications

DIGITAL NETWORK ARCHITECTURE

The DIGITAL Network Architecture (DNA) is a set of protocols (rules)
governing the format, control, and sequencing of message exchange
for all DECnet implementations. DNA controls all data that travel
throughout a DECnet network and provides a modular design for
DECnet software. The DNA structure is similar to the ISO (International
Standards Organization) model for Open Systems Architecture. It per-
mits substitution of functional layers as new technologies become
standards.

The functional components of DNA are defined within six distinct lay-
ers: User Layer, Network Application Layer, Network Service Layer,
Transport Layer, Data Link Layer, and Physical Link Layer. Each layer
performs a well-defined set of network functions (via network proto-
cols) and presents an additional level of capability to the layer above it.

USER LAYER: This layer contains all user-supplied functions. It is the
highest layer in the DNA structure.

NETWORK APPLICATION LAYER: This layer provides the network
functions for the user layer. Modules in this layer include network
remote file access modules, a remote file transfer utility, and a remote
system loader module. The protocol used for remote file access and
file transfer is the Data Access Protocol (DAP).

NETWORK SERVICE LAYER: This layer provides a location-inde-
pendent communication mechanism for both the user layer and the
network application layer. The means by which they communicate is
called a logical link. Two network application modules may communi-
cate with each other by means of the network service layer regardless
of their network locations. The protocol used between network service
modules is the Network Services Protocol (NSP).

TRANSPORT LAYER: This layer provides a mechanism for the
network service layer to send a unit of data (a packet) from any node in
a network to any other node in the network.

DATA LINK LAYER: This layer provides the transport layer with an
error-free communication mechanism between adjacent nodes. The
data link module specified for this layer implements the DIGITAL Data
Communications Message Protocol (DDCMP). The functions provided
by this layer are independent of communication facility characteris-
tics.

PHYSICAL LINK LAYER: This layer, the lowest layer in the DNA
structure, provides the data link layer with a communication mecha-
nism between adjacent nodes. Several modules are specified for this

242

Data Communications

layer, one for each type of communication device that can be usedin a
DECnet network.

DNA is system independent. It enables a variety of DIGITAL comput-
ers running a variety of DIGITAL operating systems to be tied together
in a DECnet network.

A DECnet network can grow both in size and in the number of func-
tions it provides. It can, therefore, be adapted to new technological
developments in both hardware and software. Existing DECnet im-
plementations can take advantage of these new technologies. A
DECnet network can accommodate the change of a function from
software into hardware.

DECNET COMMUNICATIONS SOFTWARE

DECnet communications software provides user interfaces consistent
with those provided by DIGITAL’s operating systems. To program
task-to-task communication or remote file access, programmers use
calls formatted for the operating system in which the program wiil run.
The logical link between two programs is like an I/0 channel over
which programs can send and receive data. Using DECnet software
for task-to-task communication is like doing 1/0 with other peripheral
drivers.. Terminal users invoke DECnet utilities consistent with local
operating system conventions.

Product Capabilities

The network functions available to a DECnet-VAX user depend, in
part, on the configuration of the rest of the network. Each DECnet
product offers its own functions and its own set of features to the user.
Networks consisting entirely of DECnet-VAX Phase Il nodes have all
the functions described in the DECnet-VAX Phase lil section of this
chapter. Networks that combine DECnet-VAX nodes with other DEC-
net products may limit the functions available to the DECnet-VAX user
because some DECnet-VAX features may not be supported by ail
DECnet products. Conversely, a user of another DECnet implementa-
tion will not necessarily have access to all DECnet-VAX functions.

The goal of DECnet-VAX is to provide a network capability that is
extremely easy to use and can grow with the user. Task-to-task com-
munication and file access between systems is virtually transparent. In
fact, VAX/VMS provides the same interfaces as those used by DEC-
net/VAX to communicate over the network. This means that a user can
begin with a single VAX system, develop their applications using these
interfaces in the programs and procedures (incidently, at no cost in
performance), then expand to a multiple VAX network using
DECnet/VAX without having to re-develop their applications software,

243

Data Communications

even if communicating processes are no longer:running on the same -
system.

Programs executing in VAX native mode can make use of the following
network facilities.

® Interprocess (Task-to-Task) Communication: Programs executing
on one system can exchange data with programs executing on other
systems

® Intersystem File Transfer: A program or user can transfer an entire
data file from one system to another

¢ Intersystem Resource Sharing: Programs executing on one system
can access files and devices physically located at other systems in
the network. Access to devices in other systems is provided through
the file system of the target node and is subject to that system’s file
system restrictions

e Routing: Intermediate nodes will direct data packets to the corréct
target node if the source node and target node are not directly
connected

e Network Command Terminal: A terminal on one VAX system can
appear to be connected to another VAX system in the network

e Downline System Loading: Initial load images for RSX-11S systems
in the network can be stored on the host VAX system and loaded
into adjacent PDP-11 systems configured for the RSX-11S operat-
ing system

e Downline Task Loading: Program images for RSX-11S systems in
the network can be stored on the host VAX system and loaded on
request into PDP-11 systems configured for the RSX-11S operating
system

e Downline Command File Loading: Command language users can
send command files to a remote node to be executed there. How-
ever, no status information or error messages are returned

DECNET-VAX PHASE Il COMMUNICATIONS SOFTWARE

With DECnet-VAX Phase Ill communications software, a suitably con-
figured VAX/VMS system can participate as a routing or end node,
performing point-to-point or multipoint communication in a DECnet
computer network. The VAX/VMS system can communicate with oth-
er DECnet systems on: VAX/VMS systems; PDP-11 computer systems
running RSTS/E, RSX-11M, RSX-11S, RSX-11M-PLUS, RT-11, and
IAS operating systems; or DECSYSTEM-20 systems running the
TOPS-20 operating system.

244

Data Communications

USER PROGRAM LEVEL —7

NETWORK MGT. -

NETWORK COMMANO
TERMINALS

REMOTE RESOURCE ACCESS——

FILE TRANSFER -

TASK-TO - TASK -

t t co ATIONS

T
POINT- ROUTING MULTIPOINT
TO- POINT

Figure 7-5 DECnet-VAX Phase lll Capabilities Matrix

The following functions are supported by DECnet-VAX Phase lil soft-
ware.

Access Control

Access control is the méthod by which network users are screened
before gaining access to network facilities. With the appropriate ac-
cess control information, a user program can log into a remote system
and access any of the remote system’s resources. The accessing pro-
gram must have either an account or access to a guest account on the
remote system to login successfully. ' '

Remote File Access

All DECnet systems support exchange of sequential ASCII files. The
DECnet software handles compatibility issues among operating sys-
tems by translating the file syntax of the sending node into a common
network syntax and then retranslating at the receiving end
appropriately for that node. The transfer of file types other than se-
quential ASCHl may also be supported between particular operating
systems. Between two VAX/VMS systems, for example, sequential or
relative files with fixed length, variable length, or variable length with
fixed control field records can be transferred. Similarly, multikeyed
indexed files with variable or fixed length records are supported.

245

Data Communications

The Remote File Access capability is implemented by such features
as: file transfer, remote command file submission/execution, downline
task loading, and terminal-to-terminal communication.

DECnet-VAX software supports file transfers between locally support-
ed File Control Services (FCS) devices and the file system of other
DECnet nodes. Wildcards can be used for the user identification code,
filename, filetype, and version number for local-to-remote file trans-
fers. Directory listings are also a supported feature.

Additional facilities on DECnet-VAX software allow system command
files to be submitted to a remote node. The list of commands must be
in a format acceptable to the node responsible for the execution. Simi-
larly, command files can be received from other systems and then
executed.

Downline task loading of memory-based RSX-11S nodes is another
useful tool provided by some DECnet products. Initial task images for
DECnet-11S nodes can be stored on VAX/VMS file system devices
and subsequently loaded into remote DECnet-11S nodes. Programs
already executing on DECnet-11S nodes can be checkpointed to the
host file system and later restored to main memory in the DECnet-11S
node. Overlays for DECnet-11S tasks can also be stored on VAX/VMS
file system devices. These features simplify the operation of network
systems that do no have mass storage devices. :

File Handling Using a Terminal

By using DECnet-VAX DIGITAL Command Language (DCL)
commands, the user can copy files from one node to another, delete
files stored on a remote node, and transfer a command file to another
node and then execute the command file on the remote node.

File Handling Usmg Record Management Services

A wide range of VAX-11 Record Management Services (RMS) can be
used to handle files and records stored on remote nodes. At the file
level, these operations include opening, closing, creating, deleting,
and updating files. stored on a remote node. Indexed Sequential Ac-
cess Method (ISAM) files are supported by DECnet-VAX software as
part of its RMS support, thereby allowing remote-node manipulation
of files organized by this very useful file structure. Also, at the record
level, RMS can be used to read, write, update, and delete records
stored on a remote node.

Network Command Terminal Facility
With the Network Command Terminal facuhty, local users can log onto
and use remote VAX systems as though they were local. Network

246

Data Communications

Command Terminals are a software capability and require no special
hardware. They provide virtual terminal communication between
VAX/VMS systems. Intermediate nodes (i.e., nodes that are neither
the source nor destination nodes but are in the message path) can be
running DECnet-VAX or other DECnet Phase Il software.

Adaptive Routing

Adaptive routing is a key feature of any DECnet Phase lll network. With
DECnet-VAX Phase lll software, a VAX system can act as a hub node,
in which it routes all messages to their proper destination without the
need for a physical line directly between the originating node (‘A’ in the
Phase lll illustration of Figure 7-6) and the terminating node (‘B’).

To fully interconnect the four-node network with Phase [I DECnet
would require 6 lines and 12 modems, with the associated line usage
charges and hardware costs. The DECnet-VAX Phase |l software can
do the same interconnection with potentially half the lines and mo-
dems. In addition, the larger the network, the greater the savings in
network costs that adaptive routing can provide.

If a line goes down, A DECnet Phase llI system will automatically
reroute the communication over another line, transparently to the
user. This feature enables network managers to easily reroute traffic
to avoid a troublesome line or to run diagnostics on such aline. Adap-
tive routing also makes it possible to install back-up links (which might
be dial-up connections) with the result being still fewer connections
than with traditional point-to-point networks.

Network Management

The Network Control Program (NCP) performs three primary func-
tions: displaying statistical and error information, controlling network
components, and testing network operation. These functions can be
performed locally or executed at remote Phase lll nodes that support
these functions.

An operator can display the status of DECnet activity at any Phase il
node in the network. The user can choose to display statistics related
to the node itself or the communication lines, including traffic and
error data. The local operator can also perform many network control
functions such as starting and stopping lines, activating the local node,
and downline loading DECnet-11S systems.

DECnet-VAX provides network event logging to a terminal device or
disk file. The NCP utility can be used to enable or disable the event
logging facility.

247

Data Communications

BOSTON
VAX-11/750
VAX/VMS
DALLAS N.Y.
PDP-11 VAX-11/780
RSX-11M) VAX/VMS
NEW ORLEANS
PDP-11
RSX-11M
PHASE IIL
BOSTON
(8) } Vax-11/750
H VAX/VMS
1
DALLAS . ; NY.
PDP-1 _
RSXCTTM Vax/vme’

NEW ORLEANS

~PDP-11
RSX-11M

Figure 7-6 ~ Phase Il and Phase Il Communications

248

Data Communications

The NCP can also be used to test components of the network. It en-
ables transmission and reception of test messages over individual
lines either between nodes or through other controller loopback ar-
rangements. The messages can then be compared for possible errors.
The NCP allows performance of a logical series of tests that will aid in
isolating network problems.

Task-to-Task Communications

DECnet-VAX software provides task-to-task communication, enabling
cooperating programs to exchange data. Task-to-task communication
is a method of creating a logical link between two tasks, exchanging
data between the tasks, and disconnecting the link when the
communication is complete. Any VAX language programmer can write
programs that perform task-to-task communication.

Intertask communication routines can be coded using one of two
methods: transparent calls or nontransparent calls.

Transparent Intertask Communication — The program opens the
network interchange as if it were preparing for device access, and
then performs a series of reads and writes just as it would to a pair of
serial devices, one for input and the other for output.

By its very nature, transparent access has no calls specifically associ-
ated with DECnet software. The calls used for interprocess communi-
cation are the same as the calls used for accessing a sequential file in
a high-level language: OPEN, CLOSE, READ, WRITE, etc. The pro-
grammer can choose to include the target node name in the OPEN
statement, or can defer assignment using logical names.
Nontransparent Intertask Communication — In nontransparent ac-
cess, a program can obtain information about the network status to
control the nature of its communication with other processes or tasks.
This method of coding intertask communications is available to the
MACRO programmer. And if one does no AST processing nor
attempts to accept multiple connects, one may program in any lan-
guage. Nontransparent access is available only through calls to oper-
ating system service procedures. A program can issue the following
requests: ’

e CONNECT—Establish a logical link (the analog of OPEN)

o CONNECT REJECT—Reject a connect initiate

e RECEIVE—Receive a message (the analog of GET or READ)

¢ SEND—Transmit a message (the analog of PUT or WRITE)

e SEND INTERRUPT MESSAGE—Transmit a high-priority message

¢ DISCONNECT—Terminate a conversation (the analog of CLOSE)

249

Data Communications

The process can send optional data along with the connect request
(for example, the size or number of messages that it wants to send).
The receiving process or task can accept or reject the connect initiate.
A process can accept multiple connect requests.

A process can send or receive mailbox messages to or from another
process or task. Mailbox message traffic is essentially no different
from data message traffic except that it uses a mailbox associated with
the 170 channel over which the logical link was created. (This is the
same mechanism used, for example, for telling programs that unsoli-
cited terminal data is available.) A logical link, therefore, has two sub-
channels over which messages can be transmitted: one for normal
messages and another for high-priority messages. An interrupt
message is written to a mailbox that a process supplies for that pur-
pose.

In a DECnet-VAX network, a program using nontransparent access
normally opens a control path directly to a Network Ancillary Control
Process (NETACP), and designates one or more mailboxes for receiv-
ing information from the NETACP about the logical or physical links
over which the process is communicating. The NETACP can notify a
process when (a partner being a source and destination node with a
logical connection): o

® A partner requests a synchronous disconnect

® A partner requests a disconnect abort

® A partner exits '

® A physical link goes down

® An NSP protocol error is detected

DIGITAL COMMAND LANGUAGE (DCL) FILE HANDLING

A VAX/VMS DIGITAL Command Language (DCL) user can transfer
files from one node to another and delete files at other nodes. How-
ever, to perform operations on files stored on a remote node, the user
must prefix the file specification with the remote node’s name, and an
optional login string as follows:

nodename“access-control-strlng” filename.filetype;version
where: ‘

nodename Nodename is a 1- to 6-character name (nu-

‘ merics or upper case alphabetics) identifying
the remote network node. This can be followed
by an optional quoted string used for logging
in at the remote node.

250

Data Communications

access- If the “access-control-string” is omitted, de-

control-string fault login information comes from an entry
{for the remote node) in the local configuration
data base. Thus, by using the access-control-
string, the user overrides the default login in-
formation. '

One of the following formats is used for the
access-control-string:

“username password”
“username password accountname”

The double colon (::) following the nodename
separates the nodename from the file specifi-

er.
filename - See the Chapter 2, The System User, for de-
filetype tails of these three. But note that the way in
version which a file on a remote node is identified de-

pends on the remote node’s operating system.

The following format is used if the remote node
is a DECnet-VAX node:

device:[directory]filename.filetype;version

If, however, the remote node is not a DECnet-
VAX node, enclose the file specifier between
quotation marks. The file specifier is passedto”
the remote node without syntax checking.

DECnet-VAX software supports the following subset of VAX/VMS
(DCL) commands:

APPEND
ASSIGN
COPY
DEASSIGN
DEFINE
DELETE
DIRECTORY
OPEN/CLOSE
READ/WRITE
SUBMIT
TYPE

The following examples illustrate the COPY and SUBMIT commands:
$ COPY BOSTON::DBA1:TEST.DAT DENVER::DMAZ2:

251

Data Communications

transfers a file named TEST.DAT from the disk (DBA1:) at the node
named BOSTON to the disk (DMA2:) at the node named DENVER.

Using the VAX/VMS command SUBMIT, a terminal user can have a
command file executed at another node in the network. For example,
the command:

$ SUBMIT/REMOTE WASHDC::INITIAL.COM

preceded by a DCL COPY command will transfer the command file
named INITIAL.COM from the host system to.the node named
WASHDC, where the command file is executed. The SUBMIT com-
mand assumes that the file already exists at the remote node. Com-
-mand files must be written in the command.language of the system.
No status information or messages are returned to the sender.

RECORD MANAGEMENT SERVICES FILE HANDLING

By using a subset of the VAX-11 Record Management Services (RMS),
the user can manipulate records and files stored on remote DECnet
nodes. However, before using VAX-11 RMS to perform operations on
files and records stored on'aremote node, the user must prefix the file
specification with the node name of the remote node, and an optional
login string just as with any other remote file application.

Much of the VAX-11 RMS functionality, including the management of
sequential, relative, and indexed file organizations, is supported by
DECnet-VAX communications software. A large number of the VAX-11
RMS macros are available to network users.

- The following MACRO program illustrates the transfer of a sequential
file from one device to another. Note the use of VAX-11 RMS macros.

.TITLEDEMO1 - RMS FILE TRANSFER EXAMPLE

This program transfers a sequential file with variable length
records from one device to another. The devices are specified

“by the logical names SRC and DST. For example, to display file
INVENTORY.DAT residing at node ALBANY on the line printer at node
BOSTON, execute the following procedure:

$ DEFINE SRC ALBANY::DBB3:[XYZCO.STOCK]INVENTORY.DAT
'$ DEFINE DST BOSTON::LPAO:
$DEMO1

.SBTTL'CONTROL BLOCK AND BUFFER STORAGE
.PSECT IMPURE NOEXE.LONG

Define the source file FAB and RAB control blocks.

SRC_FAB:
: $FAB ‘FAC=GET;-; GET ACCESS
FOP=SQO,- ; SEQUENTIAL ONLY
FNA=SRC_NAM,- ; ADDRESS OF FILENAME STRING .
FNS=SRC_NAM-SIZ ; SIZE OF FILENAME STRING

252

SRC_RAB:

DST FAB:

DST_RAB:

SRC_NAM:

DST_NAM:

BUFFER:

$RAB

Data Communications

FAB=SRC_FAB,-; ADDRESS OF FAB
RAC=SEQ,- ; SEQUENTIAL RECORD ACCESS
UBF=BUFFER,- ; ADDRESS OF USER BUFFER
USZ=BUFFER_SIZ ; SIZE OF USER BUFFER

Define the destination file FAB and RAB control blocks.

$FAB

$RAB

FAC=<PUT>,-; PUT (WRITE) ACCESS

FOP=SQO,- ; SEQUENTIAL ONLY

FNA=DST_NAM,-

FNS=DST_NAM_SIZ,-

ORG=SEQ,-; SEQUENTIAL FILE (DEFAULT)
RFM=VAR,-; VARIABLE LENGTH RECORDS
RAT=CR ; PRECEDE LINE BY LF, FOLLOWED BY CR

FAB=DST_FAB,-
RAC=SEQ

Define logical names for the source and destination files.

.ASCII

/SRC/

SRC_NAM_SIZ==.-SRC_NAM

ASCII

/DST/

DST_NAM_SIZ==.-DST_NAM

.BLKB

SBTTL

.PSECT

.ENTRY

MOVAB
MOVAB

MOVAB

MOVAB

$OPEN
BLBC

SCONNECT

Allocate buffer space to be size of largest record.

132
BUFFER_SIZ=.-BUFFER

MAINLINE

CODE NOWRT

DEMO1, tM<>

Put FAB and RAB addresses in registers for efficiency.

W{SRC_FAB,R6
WISRC_RAB,R7

WIDST_FAB,R8

W{DST_RAB,R9

Open the SRCand DST files.

FAB=(R6)
R0,30%

RAB=(R7)

253

Data Communications

BLBC ‘ RO0,30$
$CREATE) FAB=(R8)
BLBC RO0,30$
$CONNECT S RAB=(R9)

BLBC R0,30$

Transfer records until end-of-file is encountered.

108: SGET - : RAB=(R7)

CMPW :) RO, #<RMS$W_EOF&IXFFFF>
BEQL 20$

MOVL RABS$L_UBF(R7),RABSL_RBF(R9)
MOVW RAB$W_RSZ(R7),RABSW_RSZ(R9)
$PUT RAB=(R9)

BLBS R0,10$

BRB 30%

Close the SRC and DST files.
-'Note: in this'example, the SDISCONNECT calls below are not
necessary because $CLOSE performs an implied
$DISCONNECT. They are included for symmetry.

208: $DISCONNECT RAB=(R9)

BLBC RO,30%
$CLOSE FAB=(R8)
BLBC R0,30%
$DISCONNECT RAB=(R7)
BLBC R0.30%
$CLOSE FAB=(R6)

Exit to VMS. Also, enter here on detection of an error.

50$: $EXIT_S RO ; RO = RMS completion code to
. display on error condition
.END X . DEMO1

The following VAX-11 FORTRAN program illustrates the transfer of a
sequential file from one device to another.

PROGRAM DEMO1.FOR

This program transfers a:'sequential file with variable length
records from one device to another. The devices are specified
by the logical names SRC and DST. For example, to display file
INVENTORY.DAT at node ALBANY on the line printer at node
BOSTON, execute the following procedure:

Q00000

254

Data Communications

(o]
C $ DEFINE SRC ALBANY::DBB3:[XYZCO.STOCK]INVENTORY.DAT
[o] $ DEFINE DST BOSTON::LPAQ
c $ RUN DEMO1
[o]
LOGICAL*1 BUFFER(132)
c
100 FORMAT (Q,132A1)
200 FORMAT (132A1)
o]
C Open the SRC and DST files.
(o]
OPEN (UNIT=1,NAME="SRC', TYPE="OLD',ACCESS='SEQUENTAL',
1 FORM="FORMATTED’)
OPEN {(UNIT=2,NAME="DST’,TYPE='NEW',ACCESS="SEQUENTIAL’,
1 FORM="FORMATTED',CARRIAGECONTROL="LIST’,DISPOSE="SAVE’)
(o]
C Transfer records until end-of-file is encountered.
C
10 READ (1,100,END=20) NCHAR,(BUFFER(K),K=1,NCHAR)
WRITE (2,200,END=20) (BUFFER(K),K=1,NCHAR)
GOTO 10
o]
C Close the SRC and DST files.
C
20 CLOSE {(UNIT=2)
CLOSE {(UNIT=1)
c
END

SAMPLE VAX-11 FORTRAN INTERTASK COMMUNICATION

This section describes how to code a program to perform intertask
communication using the normal VAX-11 FORTRAN 1/0 instructions.
The user communicates with another task in much the same way as an
access to a sequential file, i.e., via OPEN, READ, WRITE and CLOSE
statements. This is only a sample—similar capabilities exist in any of
the native mode languages.

Three major steps in VAX-11 FORTRAN intertask communication will
be performed:

1. Create alogical link between tasks

2. Send and receive messages (each message can be 1to 512 bytes
in length))

3. Destroy the link at the end of the message dialogue

Creating a Logical Link Between Tasks

A logical link between tasks can be created only if they agree to co-
operate with each other. That is, one task must request that a logical
link be created, and the other must agree to accept the request. The
task requesting the logical link is called the source task; the one
agreeing to accept the logical link request is called the target task.

The source task issues a logical link connect request by including a
task specifier in the source task’s open statement. The task specifier
identifies the remote node and target task to be connected to. The

255

Data Communications

normal file specification in the OPEN statement's NAME argument
should be replaced with a task specifier. The following format should
be used:

nodename‘“access-control-string”::“TASK =taskid”
where:

nodename (Refer to DIGITAL Command Language File
Handling section of this chapter.)

Use one of the following formats for access-
control-string:

“username password”
“username password accountname”

The double colon (::) following the node-
name separates the nodename from the file
specifier.

TASK= Specifies that what follows is the task identi-
fier.

taskid taskid is the target task’s identifier.
Example of source task OPEN statement
OPEN (UNIT=7,NAME='DENVER: “TASK ACC’, ERR=200)

The NAME argument in the OPEN statement requests a logical
link connection to target task ACC on node DENVER.

Note that the logical name feature can be used to represent the
task specifier. For example: '

OPEN (UNIT=7,NAME=‘TARGET',ERR=200)

permits node and iarget independence when you assign the
logical name before program execution (as in the following DCL
command):

$ASSIGN DENVER::*““TASK=ACC """ TARGET
The local node passes the logical link connect request to the
remote node (using DECnet-VAX services). The remote node
creates a process for the target task, and places the source task
identifier in the process logical name table under the logical
name SYS$NET. “

The target task identifies the source task requesting the logical
link connect by specifying SYS$NET as the NAME argument in
the OPEN statement.

256

Data Communications

Example of target task OPEN statement:
OPEN (UNIT=2,NAME=‘SYSS$NET:’,ERR=700)

Sending and Receiving Messages _

After the logical link has been created, the tasks must “cooper-
ate” with each other. That is, for each message sent by a task
(WRITE statement), the receiving task must issue a correspond-
ing receive (READ statement).

In addition, the tasks must ensure that enough buffer space is
allocated for messages, must ensure that the end of dialogue
can be determined, and must determine which of the tasks will
disconnect the logical link (CLOSE statement).

Disconnecting the Logical Link

Either task can disconnect the logical link by calling CLOSE.
CLOSE aborts all pending sends and receives, disconnects the
link immediately, and frees the channel number associated with
the logical link.

MACRO TRANSPARENT INTERTASK COMMUNICATION

This section describes how to code a MACRO program for
transparent intertask communications using a subset of the ex-
isting macro calls available under VAX/VMS system services.
These macro calls allow the user to perform intertask communi-
cations in much the same way as normal /0 operatlons are
performed.

The term “transparent” simply implies that the calls are identical
in format to all other 1/0 calls.

Thus, communication with another task is performed in much
the same way as an I/0 channel is assigned to a device ($AS-
SIGN). Reads and writes are then performed as if to a pair of
sequential devices (that is, $QIO with the WRITEVBLK function
or $OUTPUT, and $QIO with the I0$ READVBLK function the
JO$ or $INPUT). Finally, $DASSGN the device when communi-
cation is complete.

There are three major functlons in transparent intertask
communication:

1. Create alogical link between tasks

2. k Send and receivé, messagés (each message ban be 0 to
65535 bytes long)

257

Data Communications

3. ‘ Delete the link at the end of the message dialogue

Creating a Logical Link Between Tasks

A logical link between tasks can be created only if the tasks agree to
cooperate with each other. That is, one task must request that a logical
link be created, and the other task must agree to accept the request.

A logical link is requested by including a task specifier in the source
task’s $ASSIGN call.

A task specifier identifies the remote node and the target task to which
it is to be connected. Replace the normal file specification in the $AS-
SIGN call's devham argument with a task specifier.

The local node passes the logical link connect request to the remote
node (using DECnet-VAX services). A remote VAX node creates a
process for the target task, and places an equivalence string contain-
ing the source task identifier in the process’s logical name table for the
logical name SYS$NET.

The target task identifies the source task requesting the logical link
connect request by specifying SYS$NET as the devham argument in
the $ASSIGN statement. This action completes the creation of the
logical link.

Sending and Receiving Messages

After the logical link is created, the tasks must “cooperate” with each
other. That is, for each message sent by a task ($QIO with the
10$_WRITEVBLK function or §OUTPUT), the receiving task must issue
a corresponding receive ($QIO with the I0$_READVBLK function or
SINPUT).

In addition, the tasks must ensure that enough buffer space is allocat-
ed for messages, must ensure that the end of dialogue can be deter-
mined, and must decide which of the tasks will disconnect the logical
link (SDASSGN).

Disconnecting the Logical Link

Either task can disconnect the logical link by calling $DASSGN.
$DASSGN aborts all pending sends and receives, disconnects the link
immediately, and frees the channel number associated with the logical
link.

MACRO CALLS
Listed below are the VAX/VMS system service macro calls that can be
used for transparent intertask communications.

258

Data Communications

$ASSIGN—Assign I/0 Channel

$QI0—Send a Message to a Remote Task $Qlo
(10$_WRITEVBLK) :

$Ql0—Receive a Message from a Remote Task $Qlo
(10$_ READVBLK) . ,

$DASSGN—Disconnect the Logical Link

MACRO NONTRANSPARENT INTERTASK COMMUNICATION

As with transparent intertask communication, nontransparent inter-
task communication consists of two tasks interacting to establish a
logical link. After establishing the logical link, the tasks exchange mes-
sages over the link, then disconnect the link when communication is
completed. : :

The MACRO system service calls discussed in this section provide the
user with greater flexibility and control over network operations. The
following features can be used when performing nontransparent inter-
task communication:

® ‘Associate a mailbox with the 1/0 channel (over which the logical link
will be created). The mailbox can then receive unsolicited messages
sent by a remote task, or notifications affecting the status of the
‘logical link. For example, status returned through a mailbox in-
cludes whether the remote task accepted or rejected a connect, or
the cooperating task disconnected or destroyed the link

® A task can declare itself as a network task to accept multlple logical
link connect requests’

® A source task can send a logical link connect request to the target
task. The source task can optionally send up to 16 bytés of data to
the target task-at the same time it issues the connect request

o The target task can accept or reject the connect request. It can send
up to 16 bytes of optional data back to the source task at the same
time it accepts or rejects the connect request

® A task using the nontransparent interface can also accept or reject
connect requests received from tasks written using transparent
intertask communication system service calls

e Either task can send or receive a 1- to 16-byte interrupt message
after the logical link is created .

e Either task can abort the link immediately, or issue a synchronous
disconnect. The task disconnecting or aborting the logical link can
send up to 16 bytes of optional data to the remote task at the same
time it disconnects or aborts a logical link

259

Data Communications

TASK MESSAGES
There are two types of messages in nontransparent intertask com-
munications: data messages and mailbox messages.

Data Messages

A data message is a message sent by one task, and expected by the
cooperating task. That is, for each message sent by a task $QIO with
the 10$_WRITEBLK function or $OUTPUT, the receiving task must
issue a receive $QIO with the I0$_READVBLK function or $INPUT.

Thus, a data message in nontransparent intertask communications is
the same as a data message sent in transparent communication.

Mailbox Messages

All other messages received by a task employing a nontransparent -
interface are classified as mailbox messages. These include any one
of the following message types: ,

1. A logical link connect request—This message is received by the
target task. It requests a logical link connection to the source task
2. A connect accept—This message is received by the source task.

The message confirms that the target task accepted the logical
link connect request

3. A connect reject—This message is also received by the source
task. The message informs the source task that the target rejected
the logical link connect request

4. An interrupt message—Either task can receive a 1- to 16-byte
interrupt message sent by a cooperating task. The 1 to 16 bytes of
data are placed in the task’s mailbox

5. A synchronous disconnect—This message informs the task that
the cooperating task synchronously disconnected the logical link

6. An abort disconnect—This message informs the task that the co-

. operating task aborted the link. The link is destroyed immediately

7. A network status message—This message informs the task of
some unusual network occurrence. For example, the data link has
been restarted

After a logical link is created between cooperating tasks, DECnet com-
munications software places a received mailbox message into the
mailbox associated with the channel representing the logical link to
which the mailbox message applies.

In the case of a task that can accept multiple inbound connect re-
quests, inbound connect requests are placed into the mailbox associ-
ated with the 1/0 channel over which the network name was declared.

260

Data Communications

Note that the mailbox was previously created using the $CREMBX
system service call. The task must then explicitly retrieve the mailbox
message from the mailbox using the $QIO(10$ READVBLK) system
service call.

PROGRAMMING PROCEDURES

The following sections outline the procedures to follow when using the
system service calls for intertask communications.

Creating a Logical Link

Both the source and target tasks must call the $ASSIGN system ser-
vice call to:

1. Assign to device NETO:

2.. Request a channel number for the logical link

3. Associate a previously created mailbox with the channel

After creating the logical link, DECnet communications software plac-
es any mailbox message associated with the logical link in the mailbox
associated with the channel.

Note that the $ASSIGN (to device NET0:) does not transmit a logical
link connect request to the remote task (as in transparent intertask
communications).

Source Task Requests a Logical Link Connection

The source task calls $QIO(I0$_ACCESS) to request a logical link
connection to the target task. The source task may optionally send up
to 16 bytes of data to the target task at the same time it sends the
connect request.

The target task is identified in the $ASSIGN call by specifying the
target task’s identifier in the network control block.

The Network Connect Block (NCB) contains the information necessary
to request a logical link connection, or to accept or reject a logical link
connection request. :

The optional data to be sent to the target task are also specified as
part of the network connect block.

The source task must then call $QIO(READVBLK) to read its mailbox
to determine whether the target task accepted or rejected the connect
request.

Target Task Receives Connect Request

The target task determines whether to accept or reject a connect
request, possibly by reading the received connect block. The received
connect block contains the source task identifier, as well as up to 16
bytes of optional data sent by the target task.

261

Data Communications

The-manner by. which the target task retrieves the received connect
block depends on whether the target task can recelve sungle or
multiple connect requests. :

A target task can accept multiple connect requests only if it declares
itself as an active network task. Thus, it assigns an I/O channel to
NETO: first, then calls $QIO(I0$_ACPCONTROL) to.assign a network
number and declare itself eligible to accept multiple connect requests.

After this is done, DECnet places the first and all other connect re-
quests in the task’s mailbox. The target task then retrieves a connect
request from its mailbox by calling QIO(1I0$_READVBLK).

If the target task can accept only one connect request, it need not
declare itself as a network task. The target task retrieves the connect
block by translating the logical name SYS$NET using the $TRNLOG
system service call. -

Accepting or Rejecting a Connect Request

The target task accepts or rejects the connect request by:

1. Calling $QIO(10$_ACCESS) to accept the logical link connect re-
- quest, or

2. Calling $QIO(10$_ACCESS!IO$M_ABORT) to reject the logical
link connect request [Note that ! is OR]

In both cases, an unsolicited message is sent back to the source task’s
mailbox confirming or rejecting the connect request. The target.can
send up to 16 bytes of optional data back to the source task at the
same time it accepts or rejects the logical link connect request.

Sending and Receiving Data Between Tasks

DECnet delivers a solicited message only if it has been sent by one
task and solicited by the cooperating task. Thus, after the logical link is
created, the tasks must “cooperate” with each other. That is, for each
message sent by a task ($QIO(10$_WRITEVBLK) or $OUTPUT), the
receiving task must issue a corresponding receive
($QIO(10$_READVBLK) or $INPUT). '

Note that the term “cooperating” here implies that the tasks:
1. Create buffers large enough to send and receive data messages
2. Have agreed upon a protocol for sendmg and receiving data

Sending an Interrupt Message

Either task can send a 1- to 16-byte interrupt message to a cooperat-
ing task using the $QIO(1I0$_WRITEBVLK!IIO$M_INTERRUPT) system
service call.

262

Data Communications

In this case, “interrupt message” is the term for an unsolicited mes-
sage sent to the cooperating task’s mailbox, and should not be con-
fused with a hardware or software interrupt. It is a method that can be
used to send a message to a remote task outside the normal flow of
data messages. A task’s instruction sequence is interrupted only if it
issued a request to read its mailbox with AST (Asynchronous System
Trap) notification.

Disconnecting or Aborting the Logical Link

Either task can disconnect or abort the logical link by:

¢ Calling $QIO(10$_DEACCESS!O$M_SYNCH) to synchronously dis-
connect the logical link. All pending solicited and unsolicited
messages must have been transmitted to the remote node before
the link will be disconnected. DECnet returns an error if the user
tries to disconnect the link before all pending transmits are transmit-
ted. Any pending receives are terminated.

® Calling $QIO(I0$_DEACCESS!IO$M_ABORT) to abort the logical
link. This system service call destroys the link immediately. No fur-
ther I/0 operations are permitted on the link.

Deassigning the I/O Channel

The user can issue $DASSGN after all communication between the
tasks is complete. $DASSGN releases the I/0 channel and disassoci-
ates the mailbox from the channel. Also, if a synchronous disconnect
or abort was not previously issued, $DASSGN destroys the link im-
mediately.

MACRO CALLS v

This section lists the VAX/VMS system service macro calls that can be
used for nontransparent intertask communication coding. These calls
are:

$ASSIGN—Assign I/0 Channel

$QlO0—Request a Logical Link Connection $QIO (10$_ACCESS)

$QlI0—Accept a Logical Link Connection Request $Qio
(I0$_ACCESS)

$QIO—Reject a Logical Link Connection Request $Qlo
(I0$_ACCESS!IO$M_ABORT)

$Ql0—Send a Message to a Remote Task $QlI0
(I0$_WRITEVBLK)

$Ql0O—Receive a Message from a Remote Task $Qlo
(10$_READVBLK)

263

Data Communications

$QI0—Send an Interrupt Message to a Remote Task $Ql0
(10% WRITEVBLK!IO$M_INTERRUPT) -

$QI10—Synchronously Disconnect the Logical Link $Ql0
(I0$_DEACCESS!IO$M_SYNCH)

$QlO—Abort a Logical Link $QIO (I0$_DEACCESS!
I0$M_ABORT)

$QI0O—Declare a Network Name $QIO0 (I0$_ACPCONTROL)
$DASSGN—Disconnect the Logical Link

INTERNET PRODUCTS v

DIGITAL’s Internet family of products supports the interconnection of
DIGITAL computers and DIGITAL networks to systems built by other
manufacturers. Internets give data processing managers the freedom
to choose mainframes and minicomputers on the basis of application
needs, with the assurance that reliable links can be established
between systems.

internet products emulate common communications'protocols. They
are data transfer facilitators rather than hardware emulators. While
they appear to one another vendor’'s computers to be supported de-
vices, they are, in fact, parts of powerful DIGITAL systems. They pro-
vide transparent communication with the equipment of other vendors,
and at the same time, offer the flexibility of local file systems, many
different languages, and a wide selection of computing power.

VAX-11 2780/3780 Protocol Emulator

The VAX-11 2780/3780 protocol emulator provides the VAX/VMS user
with a mechanism for transferring files between a VAX system and
another system equipped to handle IBM 2780 or 3780 communica-
tions protocols. It does this by emulating the IBM Binary Synchronous
Communications (BISYNC) protocol used by a 2780 or 3780 Remote
Batch Terminals.

The emulator may be invoked either interactively or by a command
procedure. The emulator's command set is designed to facilitate shar-
ing a communication line among several users. With the appropriate
modem options, the emulator is capable of automatically answering
incoming calls. '

Sophisticated operations can be performed by a combination of
command procedures, allowing, for example, unattended operation.
This would include the capability to detect an incoming call, establish
the connection, and then transmit and receive files and recover from
transmission failures, all without the intervention of the operator.

264

Data Communications

Several data formats are supported with the use of a particular format
selected by user command. Users may select various data format
translation schemes—for example, transiation to and from EBCDIC,
converting variable-length records to and from card images, and BI-
SYNC transparency. All file 1/0 is performed through the VAX/VMS
record management facility. Print and punch stream recognition is
implemented in such a way that the data manipulation scheme can
differ with each stream.

The following remote batch terminal features are supported:

® 2780 Extended and Multiple Record Option ‘

e Variable Horizontal Forms Control

o BISYNC Transparency

e 3780 Space Compression

All of the above features are supported on a simuitaneous, multiline
basis. The product can concurrently run up to four physical lines, each

with a different set of attributes (e.g., some may be 2780, the others,
3780) at speeds up to 9600 bits per second per line.

IBM IBM IBM
HOST HOST HOST
2780 3780
2780/3780 PROTOCOL EMULATOR
VMS
USER

PROGRAM ‘

USER USER
TERMINAL TERMINAL

Figure 7-7° VAX-112780/3780 Protocol Emulator

265

Data Communications

Additionally, the VAX-11 2780/3780 protocol emulator can be used in
conjunction with DECnet networks, meaning that VAX systems in a
DIGITAL network can also communicate with IBM systems. For exam-
ple, files can be transferred across a DECnet network to a DECnet-
VAX node and from there to a mainframe bisynchronously.

VAX-11 3271 Protocol Emulator

The VAX-11 3271 protocol emulator provides VAX system users with
an interactive program-to-program link to an IBM mainframe. This
emulator enables a user application program on a VAX system to
exchange data with a program running under CICS or IMS on an IBM
host (System/370). Using two application programs -- one for the
DIGITAL side, and one for the IBM side -- the VAX system user can
both send and receive data.

The user-written program on the VAX system communicates with the
IBM application program by issuing 1/0 requests to the VAX-11 3271
protocol emulator. The emulator, appearing to the host as an IBM
3271 Model 2 Control Unit, interacts with the IBM system to perform
the actual mechanics of the data exchange. It manages the protocol
and the physical communications in a manner that is transparent to
the VAX system user. As part of its protocol management, for exam-
ple, it frames the data with appropriate BISYNC link-control charac-
ters: Start of Text, Unit indentification, CRC’s, and End Text.

Application programs that can be used for 3270 operations on the
VAX system include programs to access IBM databases and transac-
tion-oriented applications and programs to emulate 3270-class termi-
nals.

The communications discipline used by the VAX-11 3271 protocol
emulator is the 3271 subset of IBM’s Binary Synchronous
Communications (BISYNC) protocol using EBCDIC code. Specifically,
this subset of BISYNC supports operation of full- and half-duplex
leased lines in either point-to-point or multipoint configurations at
transmission speeds up to 9600 bits per second. The VAX-11 3271
protocol emulator does not support switched facilities, contention line
control, or transparent BISYNC capability.

The multidrop BISYNC capability enables the VAX-11 3271 protocol
emulator to coexist with other 3271 controllers on the same line, thus
reducing the required number of communications links. On a VAX-
11/780 system, the emulator can be connected on up to four IBM
systems, or can have four lines to a single system for higher through-
put. On a VAX-11/750 system, the emulator supports two lines.

266

Data Communications

The VAX-11 3271 protocol emulator can support up to 32 logical de-
vices for each "control unit” being emulated. A user application pro-
gram can control one or more logical devices. A maximum of 32 user
application programs, one per logical device, can exist for each con-
trol unit.

VAX

J“ APPL. PRG.

APPL. PRG: l

Figure 7-8 VAX-11 3271 Protocol Emulator

The VAX-11 3271 protocol emulator performs the following key

activities:

e Provides all device handling for DUP11 Synchronous Line Interfaces

e Monitors the communications line via DUP11 Synchronous Line In-
terfaces for line errors]

e Performs blocking of user data during transmission

e Supports an I/0 interface with the user program

e Maintains the multipoint BISYNC protocol with the IBM host: en-
sures data integrity of transmitted and received data; processes
polling, selection addressing sequences, and other protocol func-
tions normally handled by an IBM 3271

e Translates incoming data from EBCDIC to ASCIl and outgoing data
from ASCIil to EBCDIC

e Supports multiple lines

The VAX-11 3271 protocol emulator can also be used to complement
a' DECnet-VAX network. Data can be transferred across a DECnet
network to a user application program in a DECnet-VAX node and
from there to a mainframe bisynchronously.

MUX200/VAX Multiterminal Emulator

The MUX200/VAX multiterminal emulator is a VAX-based software
package which provides communication with a CDC6000, CYBER ser-
ies, or other host computer systems capable of using 200 UT mode 4A
communications protocols.

267

Data Communications

Any VAX interactive terminal may be used to control remote job entry
or to communicate at command level with the host system. Input files
may be sent from, and output files received onto, any VAX-supported
mass storage, unit record, or terminal device. :

The MUX200/VAX emulator communicates with the host using the
Mode 4A communications protocol as defined in CDC publication
82128000. The software package can be configured to support either
- the’ASCII or the external BCD versions of the protocol.

The MUX200/VAX emulator provides for one synchronous communi-
cation circuit- to a host computer system. The product supports a
single -switched or dedicated leased line two- or four-wire common
carrier facility at speeds up to 9600 bits per second.

With the MUX200/VAX emulator, several users can communicate si-
multaneously with a host system over a single line. The VAX/VMS
system, though using a single physical drop, appears to the host as a
number of multidrops and terminais on the circuit.

MUX200/VAX features include:

e Output received from the host system may be spooled to the line
printer upon detection of a text string predefined by the user

e Up to eight VAX/VMS files may be specified for transmission to the
host in a single command

e VAX/VMS terminals may be detached for other use while the soft-
ware package is operating. Data received from the host directed to a
terminal are saved for printing until the terminal is reattached

¢ [n many applications the host system can be offloaded by taking
advantage of the local processing power of the VAX/VMS system.
This reduces host processing and line costs; for example, file edit-
ing can be performed locally rather than on the host

See Figure 7-8 for a schematic of the MUX200 use.

-~ PACKETNET PRODUCTS

In the 1970’s the International Telephone and Telegraph Consultative
Committee—CCITT—developed a series of recommendations for
~standard communications protocols that could be used by the PTTs
and other commmon carriers to provide data communications ser-
vices. Known as X.25, this recommendation developed for the public
data networks defines the interface between the computer and the
network. The CCITT has also developed a second set of protocols
(X.3, X.28, and X.29) that specify how to control asynchronous termi-
nals connected directly to a network. Together, these protocols deflne
the Interactive Terminal Interface (ITl).

268

Data Communications

CDC 6000
OR

CYBER
HOST SYSTEM

VAX-11/780

CARD
READER PRINTER

DLLH’_LI E&ém

UP TO 16 TERMINALS

Figure 7-9 MUX200 Schematic

The fundamental technology used in public data networks is called
packet switching. With it, user data and control information needed to
assure delivery to the correct location are formed into discrete enti-
ties—packets. The network dynamically interleaves the packets of
many users over shared transmission facilities, and routes packets to
their destinations. Unlike conventional telephone setups, where the
user is charged for both connect time and distance, regardless of the
amount of data passed, charges in public data networks are deter-
mined so that the person who uses the line the most pays the most.

Rapidly, X.25 is becoming the standard international communications
protocol. As another advantage, X.25 allows computers from different
manufacturers to work together: with appropriate security validation,
any system on the network can send data to any other system on the
network. X.25. ensures: data integrity, while at the same time relieving
users of any concern about input and output speeds of the various
processors in the network.

Public data networks are currently operational in the United States
(the Telenet and Tymnet networks), Canada (the Datapac network),
France (the Transpac network), Germany (the Datex network), and the
United Kingdom (the PSS network). Within the near future, the DNI
network will be available in Holland. DIGITAL is committed to support
public data networks using the full X.25 communications protocol, and
is therefore engaged in the development of products to link DIGITAL
systems to these networks.

269

Data Communications:

VAX-11 PSI (Packetnet System Interface)

VAX-11 PSI (Packetnet System Interface) software allows a suitably
configured VAX/VMS system to connect to public data networks. This
enables a VAX system to converse with any other computer (DIGITAL
or non-DIGITAL) that has implemented the X.25 protocol.

The VAX-11 PSI interface offers process-to-process communications
via the PSS network. It also permits remote terminal access to the
VAX/VMS operating system using an Interactive Terminal interface.
Access to VAX-11 PSI software is supported for VAX/VMS user pro-
grams written in the VAX-11 MACRO assembly language and in the
VAX higher-level languages such as VAX-11 FORTRAN.

For interprocess communication, application programs use VAX/VMS
system services to set up and break connections with the network, to
send and receive data, and to issue control and synchronization re-
quests.

X.25 User Interface

The X.25 User Interface allows application programs to use the X.25
functions, including:

e Establishing and clearing connections

¢ Sending and receiving data

e Sending interrupt messages

e Receiving unsolicited messages

e Controlling errors and repcrting status

For the occasional network user, the PSI‘softwa're can be loaded into
memory only when needed.

Interactive Terminal interface

Remote terminals have the same access privileges to VAX programs
as they would if they were local. Thus, it is possible to run applications
programs across the PSS network with no modification, unless the
network itself imposes restrictions which are beyond DIGITAL s con-
trol. .

VAX-11 PSI software supports access by remote terminals according
to CCITT recommendations X.3, X.28, and X.29. Terminals are
supported in ‘Network Terminal” mode, .in which code conversions
between ASCIl and the actual code used by the termma| are per-
formed by the network.

Line Discipline
The communications discipline used is the CCITT recommendatnon
X.25. Specifically, the product supports V.24 (EIA-RS- 232) at the hard-

270

Data Communications

ware level, the symmetric LAPB variant of the X.25 frame level proto-
col and the X.25 packet level protocol over point-to-point, 4-wire, syn-
chronous, full-duplex lines, at speeds up to a maximum of 9600 bits
per second.

Network Management

A system management command interface is provided for the control
of the operation of the X.25 software. This includes loading and
unloading the software, defining the lines and network to which the
system is connected, specification of addressing information for in-
coming calls, and access to error counters and other maintenance
functions. This interface provides a subset of the DIGITAL Network
Architecture (DNA) specification for Network Management.

271

272

PART Il
VAX/VMS SYSTEM

DESIGN
AND APPLICATION

273

CHAPTER OVERVIEW

Sophisticated techniques of memory management and concepts and
details of virtual memory design are explained in this chapter. The
division of virtual address space into various regions plus the kinds of
information that can be resident in each are also covered. The soft-
ware algorithms for paging are given, as are more detailed definitions
of the terms “context,” “image,” and “process.”

Topics include:

® Virtual Memory Management

® Division of Virtual Address Space

® A Process and Its Context

® Paging

274

CHAPTER 8

VIRTUAL MEMORY AND
MEMORY MANAGEMENT

INTRODUCTION

The function of an operating system is to manage the system’s avail-
able resources. The VAX/VMS operating system is a multiuser, mul-
tiprogramming operating system. To accommodate multiprogram-
ming, physical memory must be shared by more than one process.
Therefore, physical memory is a fundamental resource requiring
allocation, deallocation, and associated management.

Virtual address space is divided into 512-byte sections called pages.
The virtual page corresponds exactly in size to a block on a disk and to
a page frame in physical memory. The term “page” is used inter-
changeably with these and is interpreted in context. The page is the
basic unit of relocation and protection. Memory management utilizes
page tables as the database to contain the status and location of
virtual pages of processes. Each individual page of a process has
associated with it an entry in an appropriate page table to describe
that page. The functions of memory management are to map virtual

. pages into physical address space, to control the paging of those
P> -~ in gctive use by the process, and to provide process and inter-
process memory protection. '

VIRTUAL MEMORY

The mamory manaaa--it 1echnique utilized by the VAX/VMS operat-
ing systom |s"known as virtual memory. Virtual memory is the set of
storage locations in both physical memory and secondary disk sto

rage that are referenced by virtual addresses (see below). The siz ;
virtual memory is the total of available virtyal addresses. Additi e

features of the VAX virtual memory usage are: . tona!

1. Only a portion of the pro
4 gram (those pages which are bej
. . actively referenced) nee i ° being
aotve y) need reside in physical memory during exe-
2. Programs (processes) are allowed to‘exceed th

ount of physical memory available © maximum am-

275

Virtual Memory and Memory Management -

Virtual Address Space .

Because of the VAX family 32-bit architecture, a longword (32 bits) is
required to specify the address of any byte of memory. Therefore, VAX
virtual address space consists of 232 or 4.3 billion bytes. Virtual ad-
dress space is divided into system and process address space, each
consisting of 23! bytes. The process address space-is further divided

into a program and control region. Virtual address space is described
in Figure 13-1. ,

(0 GROWTH DRECTION)
BIT 30:0

" PO (PROGRAM)REGION PROCESS
BIT 31=0

SPACE
P1 [PROGRAM)REGION

8IT 30=1
GROWTH DIRECTION

ROWTH_DIRECTH
NOT
BIT 30= 0 CONTEXT

SWITCHED
SYSTEM REGION
(COMMON]

Y4
J\

SYSTEM
BIT 31=1

SPACE

R RESERVED
BIT 30:1 REGION

L 232 J

Figure 8-1 Virtual Address Space

ram region contains the native 01 ve~natibility mode image
;f: zep;?(gcuted t?y the process, possibly the apphcatio: r:gt,;:()i?“ eaxee_
cutive (AME), and additional user code rgference . yt e See?hé
(Some technical terms are defined below cg;: ;\ (:)tfh:rpiozzsz 's.address
index.) The program re : '
S;‘)Zscseagiga;gt:‘: at virtu;\ address location 0 and exteréds in ‘r:‘aerg\l/::\(r:
i increasing address locations. POBR 'tan‘d POLR are °
tlon‘ Of mch t describe the page table containing referencgs to eac
reggsﬁers thai in the program region. Virtual addresses:in the pro-
mdmdua\. pagere translated 10 physical address using the page table
?irezr:ri::éogyathe registers POBR and POLR. The program region cor-

responds to PO space.

276

Virtual Memory and Memory Management

NOTE
To translate from a PO0 virtual address to a physical
one, the PO page table is used. The registers do not
give the translation, but rather point the user to the
page table.

One page table has many page table pages. Each
process has one PO page table. The registers can
only describe one process’ page table at a time.

The control region of a process’'s address space contains process-
related information maintained by the system and process control
structures such as the the kernel, executive, supervisor, and user
stacks, and the process 1/0 database. The control region originates at
location 23! and extends toward lower addressed locations. P1BR and
P1LR are hardware registers that describe the page table containing
references to each individual page in the control region. The base
address and length of the control region are described by the registers
P1BR and P1LR respectively. The control region corresponds to P1
space.

System virtual address space occupies the first half of locations 23
through 232 as described in Figure 13-2. System space originates at
location 23" and extends toward increasing address locations. The
remaining locations are reserved for future use. System space is that
area of total virtual address space that is shared among all processes
and contains the VAX/VMS executive and those software data struc-
tures required to control the process and to maintain the status of all
physical and virtual pages within the system.

The addresses used to locate, interpret, and execute instructions are
virtual addresses. As the process executes, the system translates
virtual addresses to physical addresses. A virtual address consists of a
21-bit virtual page number and the number of a byte (location) within
the page, as illustrated in Figure 13-3.

Bit 31 of the virtual address is used to distinguish between a process
virtual address and a system virtual address. When bit 31 is set (i.e.,
has the value 1), the address is system virtual. Bit 30 is used in con-
junction with process virtual addresses to distinguish between the
program region and the control region. When bit 30 is set, the control
region is referenced.

A physical address consists of a page frame number and the number
of a byte within the physical page, as illustrated in Figure 13-4. The
page frame number is the number of a physical page in physical
memory.

277

80000000

High address end -
of system virtual
address space

Virtual Memory and Memory Management

System Service Vectors

Linked Driver Code and Data Structures

Nonpaged Executive Data

Nonpaged Executive Code

Pageable Executive Routines

XDELTA (usually unmapped), INIT

Static Portion (SYS.EXE)

System Virtual Pages
Mapped to 1/0 Addresses

RMS Image
(RMS.EXE)

System Message File
(SYSMSG.EXE)

% Pool of Unmapped System Pages

£L

74

Restart Parameter Block

PFN Database

Paged Dynamic Memory

Nonpaged Dynamic Memory

Interrupt Stack

System Control Block

AN
A\Y

Balance Slots

System Header

System Pa§e Table

Global Page Table

278

Dynamically mapped at
initialization time

- Figure 8-2 System Virtual Address Space

Virtual Memory and Memory Management

VIRTUAL ADDRESS
3130 29 9 8]

Ll |

4 | =—————————VIRTUAL PAGE NUMBER BYTE WITHIN PAGE —————
0 O PROGRAM REGION
0o 1
1o
1 1

CONTROL REGION
SYSTEM REGION
RESERVED

Figure 8-3 Virtual Address

PHYSICAL ADDRESS
31 30 29 28 9 8 0

L] _|

1 ‘ PAGE FRAME NUMBER BYTE WITHIN PAGE —————&
0O O O MEMORY ADDRESS
0 O 't I/0 SPACE ADDRESS

Figure 8-4 Physical Address

Dynamic Page Tables

Memory management software is responsible for creating and main-
taining the mapping structure required by the processor to translate
virtual addresses referenced by a process to physical memory ad-
dresses. The basic unit of mapping and protection is the page. A page
is a block of 512 contiguous byte locations in physical memory on a
512-byte boundary. Within physical memory each page is unique, and
no pages overlap. Virtual addresses are also grouped into 512-byte
pages, where each virtual page may be mapped to a physical page or
a page (block) of secondary storage. Any number of virtual pages can
be mapped to the same physical page.

Unlike some systems; in which portions of physical memory are stati-
cally allocated or partitioned, the VAX system supports complete
dynamic allocation of physical memory. Dynamic allocation of physi-
cal memory may result in the noncontiguous physical location of a
process’s pages in physical memory, but they remain virtually contigu-
ous in the process’s address space.

The VAX/VMS operating system maintains unique translation maps
called page tables for each process. Process virtual address space is -
described in two page tables: the PO page table corresponding to the
program region and the P1 page table corresponding to the control
region. Each portion of the process space is described by a virtually
contiguous vector of page table entries. Process page tables reside in

279

Virtual Memory and Memory Management

system virtual memory when the process is resident. Being them-
selves virtual pages, the page tables may be mapped to physically
discontiguous areas of memory and are resident only when required.
When a virtual page is in memory, the page table entry contains the
page frame number needed to map the virtual page to a physical
page. When it is not in memory, the page table entry contains the
information needed to locate the page on secondary storage. From the
process page tables contained in system virtual space, it is possible to
locate all process virtual pages.

System virtual space is described in a data structure called the system
page table (SPT). The system page table contains one page table
entry (PTE) for each page of system virtual memory. The hardware
system base register (SBR) and system length register (SLR) provide
the physical address and the length (in longwords) of the system page
table. The system page table resides in system virtual memory, but is
physically based and physically contiguous. Given the contents of the
SBR and SLR, itis possible to locate all other system virtual pages.

PROCESS

A process is the basic schedulable entity in the VAX/VMS system. A

process consists of a virtual address space and hardware and soft-

ware contexts. The hardware context of a process is defined by values

that are loaded into processor registers when the process is

scheduled for execution. The hardware registers consist of the follow-

ing:

1. The four registers mapping user process virtual address space
POBR, POLR, P1BR, and P1LR

2. A set of 19 user registers (R0-R13, program counter, and user,
supervisor, executive, and kernel stack pointers)

3. The processor status longword (PSL)

The VAX processor contains one set of processor registers used to
maintain the hardware context of a single process. While a process is
executing, its hardware context is continually being updated in the
processor registers. When a process is not being executed by the VAX
processor, its hardware context is stored in a software data structure
called the hardware process control block (PCB). The VAX/VMS oper-
ating system maintains the hardware PCB in a software structure
known as the process header (PHD). Saving the contents of the VAX
processor registers into the hardware PCB of the currently executing
process and then loading a new set of context from another hardware
PCB is called context switching. Context switching occurs as one
process after another is scheduled for executlon by the VAX/VMS
operating system.

280

Virtual Memory and Memory Management

The VAX/VMS operating system maintains the software context for
each process. The software information regarding the process is
maintained in a data structure called the software process control
block (software PCB). The combined hardware and software descrip-
tion is referred to as the process’s context.

Working Set

When a process executes, a subset of its pages resides in physical
memory. This subset is referred to as the process’s working set. A
procsss’s working set consists of all the pages of a process’s virtual
memory which are residing in physical memory and which the process
can access directly without incurring a page fault. A page fault is a
reference to a page not currently in the process’s working set. This
condition is handled automatically by the operating system as dis-
cussed under the subheading "Paging.”

The working set is a dynamic characteristic of a process that has both
minimum and maximum size limits. The system designates a required
minimum number of pages that have to be in a process’s working set,
and the system manager defines the maximum number of pages al-
lowed in any one job’s working set in the user authorization file. The
size of the working set determines the amount of physical memory
needed to run a process, and directly affects its paging and swapping
performance.)

Balance Set

The coliection of processes residing in physical memory at any one
moment is called the balance set. During the execution of a process,
conditions may occur that require the movement of the process’s
working set to secondary storage, thereby freeing physical memory
for another process to use. This method of controlling memory use by
removing processes from and adding other processes to the balance
set is called swapping. The swapper utilizes three conditions to deter-
mine which processes should be swapped in and which should be
swapped out:

1. Process priority

2. Process status (which processes are executable and which are
not) i

3. Expiration of process’s balance set time quantum (process has
used up assigned CPU time slice without completing and must
wait for another turn) '

For example, a process’s working set can be written to secondary
storage while the ‘process is waiting for I/0 completion on a slow
device, making room for another outswapped process which can exe-

281.

Virtual Memory and Memory Management

cute immediately. The working set is brought back into the balance set
after 170 completion.

For more information on swapping, see Chapter 14,

PROCESS CONTROL STRUCTURES

VAX hardware defines a process by using registers and a hardware
process control block (PCB). The VAX/VMS operating system, how-
ever, provides each process with additional definition that is used to
control the process, its working set, and the balance set. The two most
important structures that define a process are the software process
control block (PBC) and the process header (PHD).

The system also provides each process with a unique name called the
process identification. '

Software Process Control Block

The system defines a software PCB for every process when the proc-
ess is created. The software PCB is the central control mechanism for
the process. It includes the following kinds of information about the
process:

1. Current state of the process (executable, in one of several types of
wait states, swapped out, etc.)

Storage address of the process if it is swapped out of memory
Unique identification of the process

Software pfiority of the process

Additional status and control information

DA

Software PCBs for all processes reside in the system virtual address
space. However, because the software PCB contains the information
needed to schedule a process and retrieve a swapped process from
secondary storage, it is always residentin memory.

Process Header

The system defines a process header for every process when the
process is created. When a process is swapped into memory, i.e.,
brought into the balance set, the header for the process is placed in
one of the process header slots reserved in the system virtual address
space. The software PCB for each process contains the virtual
address of the process’s header. The number of process header slots
defined for the system determines the number of processes that can
be in the balance set. However, since processes are subject to
outswapping, the system can maintain a greater number of PCBs than
process header slots. ’

282

Virtual Memory and Memory Management

A process header, illustrated in Figure 13-5, contains the following
information:

1. Privilege mask for the process
2. Hardware PCB

3. Indices to the working set list and the process section table por-
tions stored lower down in the PHD

Accounting

Working set list
Process section table
PO and P1 page tables

N oA

AGE : -—

P
BOUNDARY PRIVILEGE MASK
HARDWARE PCB FIXED
PROCESS
INDEXED TO HEADER

WORKING SET LIST AND
PROCESS SECTION TABLE

PAGE =

BOUNDARY ACCOUNTING AND QUOTAS

WORKING SET LIST
ENTRIES

|

PAGE
BOUNDRY VARIABLE
PORTION OF
PROCESS SECTION TABLES PROCESS
ENTRIES HEADER

O PAGES OF FREE SPACE
(n IS EQUAL TO OR GREATER

(THAN 0)
PAGE
BOUNDRY PO PAGE TABLE
P1 PAGE TABLE
PAGE -—
BOUNDRY

Figure 8-5 Process Header

283

Virtual Memory and Memory Management

The working set list contains entries to describe that portion of the
process’s virtual address space that is resident in physical memory.
This database is maintained by the pager and is also used and modi-
fied by the working set swapper. It starts at a page boundary, and
expands toward higher addresses.

The process section table contains entries to describe the process-
private image sections that are mapped by the process’s page tables.
The image activator fills in this table. The process section table starts
at a page boundary and extends in the direction of the working set list,
as illustrated in Figure 13-5.

The page tables contain the one entry needed to locate every virtual
page of the process. The page tables are initialized by the image
activator and dynamically maintained by the pager and, after inswap,
by the swapper as well. The page table for the program region of the
process starts on a page boundary and extends to higher addresses.
The address of the page table is found using a pointer (POBR) in the
hardware PCB.

The page table for the control region of the process starts on a page
boundary and extends toward lower numbered pages. As illustrated in
Figure 13-5, the P1 table starts at the last page of the process header
and extends in the direction of the PO page table. The P1 page table
also is addressed through a pointer (P1BR) in the hardware PCB.

A process header is in memory only when the associated process’s
working set is in the balance set.

IMAGE o

An image consists of procedures and data that have been bound
together by the linker. Binding (or linking) refers to the resolution of
symbolic references between modules and the assignment of virtual
address space. .

An image resuits from the linking of one or more object modules
together. It is the program entity that is executed by a process. When a
user logs onto the system, the system creates a process dedicated to
that user. That process executes all of the images needed to perform -
the user’s requests. images are referred to by file name. Examples of
images are the linker, the assembler, and user programs.

The unit of virtual memory allocation associated with the image is
known as the image section (isect). An isect is a group of program
sections (psects) with identical attributes. For example, the psects in a
given isect might have the read-only and relocatable attributes.

284

Virtual Memory and Memory Management

Image Activation

The image activator is a set of procedures that execute in the system
address space to prepare an image for execution. The procedures,
however, run in the context of the process requesting execution of the
image.

Opening the Image File

The command interpreter passes the file name of the image to be
executed to the image activator. Using defined search rules, the image
activator locates the file and starts processing the image header. At
this point, the image activator determines whether the image is native
or compatibility mode, using information in the image file header.

If the requested image is a native mode image, the image activator
sets up the process section table entries and the process page table
entries in the PO and P1 page tables. Once the process section table
and the page tables are set up, the image is ready to execute.

If the image is a compatibility mode image, its name and the number
of the channel on which the image file is open are saved in a known
place in the process control region for the application migration exe-
cutive (AME). The image activator locates the image name of the AME
in the process control region and activates the AME image instead of
the requested image. The AME then maps in the compatibility mode
image.

Setting Up the Process Section Table

The image activator uses information produced by the linker to create
process section table entries for the image. When the linker produces
an image file, it places an image section descriptor (ISD) in the image
header for every image section in the file. The image activator uses the
ISDs to create process section table entries.

Once the image activator has read the image header and created the
process section table entries for the image, it can set up the PO and P1
page tabie entries for the image.

Setting Up Page Table Entries

The image activator uses the number of pages for each lmage section
(isect) as specified in the 1SDs to determine the total number of pages
needed for the image.

Before an image can execute, the image activator must fill the page
table entries for that image with an index to the process section table
entry for the section that contains that page of the image. The process
section table contains the information needed to locate that page in
the image file. '

285

Virtual Memory and Memory Management

Once all of the page table entries for the image are set up, the image is
ready to execute.

PAGING

Paging is.the action of bringing pages of an executing process into
physical memory when referenced. When a process executes, all of its
pages reside in virtual memory. Only the actively used pages, how-
ever, need be in physical memory. The remaining pages can reside on
disk until they are needed in physical memory. In the VAX/VMS oper-
ating system, a process’s pages are paged out only when the process
references more pages than it is allowed to have in its working set.
When the process refers to a page not in its working set, a page fault
occurs. This causes the operating system’s pager to read in the refer-
enced page if it is on disk (and, optionally, other related pages),
replacing the oldest removable pages as needed.

Page Table Paging

To reduce the amount of memory required to run a process, the only
pages of process page tables that are required to remain in memory
are those containing one or more page table entries that refer to a
page frame number (i.e., the identification of a page actually in memo-
ry). Page table pages are faulted into memory by faulting a page in the
page table or by faulting the page table entry itself, as happens when
creating a new page with the Create Virtual Address Space system
service. In either case, the page table looks like a normal data page in
the process’s working set list and is subject to working set replace-
ment.

Whenever a page table entry has a page frame number placed in it,
the reference count for the page table page is increased. If the page
frame number is the first one in the page table, (i.e., the reference
count went from 0 to 1), the pager locks the page table page in the
working set list.

As each page frame number is taken out of the page table page and
replaced by its backing store address, or by 0 if the page has been
deleted, the reference count for that page of the page table is de-
creased. When the last page frame number is taken out (i.e., when the
reference count goes from 1 to 0), the pager unlocks the page table
page from the working set, thereby making it eligible for working set
replacement. ,

Pager
The pager is a set of routines that execute as a result of a Translation
Not Valid Fault, that is, a page fauit. It is, therefore, an exception

286

Virtual Memory and Memory Management

service routine. The pager runs in kernel mode in the context of the

process that caused the fault. The pager’s function is to make the page

for which the fault occurred available in physical memory so that the

process can continue execution. The page can be in the image file, in

memory but not in the process’s working set, or in the paging file when

afault occurs.

The pager uses the paging file to maintain modified pages from either

an image or a global section.

A backing store (secondary storage) address in the paging file is as-

signed to a page under either of the following conditions:

1. The page was a demand-allocate zero-fill page that was notin a
process section or global section

2. . The page was a copy-on-reference page

Other pages maintain their original backing store addresses. These

pages are the following types: .

® Read-only image file pages

® Read/write process section pages

e Read/write global section pages

In order to make pages available as needed, the pager maintains and

manipulates the following databases:

o VPage Frame Number (PFN) database

® Free page list

® Modified page list

® Working set lists

® Page table entries

The paging philosophy implemented in the VAX/VMS operating

system is called “paging against the process.” Each process is allocat-

ed a maximum number of pages in its working set. A page fault to a

filled working set requires that one page be removed for each page

broughtin. ‘

Page Frame Number (PFN) Data Base

The page frame number (PFN) database consists of 18 bytes of infor-
mation for each page of physical memory. The 18 bytes for each page
are not grouped together to form a table per page; rather, the various
categories of information are organized as arrays. ltems within each
array are indexed using physical page frame numbers (PFNs).

Every physical page has an entry in the following arrays:
e System virtual address array of longwords

287

Virtual Memory and Memory Management

® Backing store address array of longwords
® Reference count array of words

® Forward and backward link arrays of words
® Swap virtual block number array of words
® State array of bytes

® Type array of bytes

Free Page List

The free page list is a doubly linked list of physical memory pages that
are available for use. Pages are linked at the end of the list and re-
moved from the head. When a page is removed from a process’s
working set, the page is placed on the free page list if its reference
count in the PFN database is zero and the modify bit in the PFN state
byte is clear. If the modify bit is clear, the page has not been written
into (altered or modified), and the disk retrieval information in the PFN
database is valid.

If the process faults a page on the free page list that does contain valid
data, the pager can unlink the page from the free page list and make it
available to the faulting process. Thus, the free page list acts as-a page
cache for the most recently discarded pages in addition to being a
source of available pages. Therefore, increasing the size of the free list
(through a SYSGEN parameter) can minimize the number of pages
that must be faulted from the disk. At the time a page is removed from
the top of the free page list and fiiled with a new virtual page, the PFN
database and the page table entries for both the old and the current
virtual pages are updated.

Modified Page List

The modified page list is a doubly linked list of physical memory pages
whose contents must be written to backing store before the pages can
be linked onto the free page list. When a page is removed from a
process’s working set, the page is placed on the modified page list
when its reference count in the PFN database is zero and the modify
bit in the page table entry is set. When the modify bitis set (i.e., =1), it
indicates that the page has been altered since it was last read into
memory from either its image file or the paging file.

Just as pages can be faulted from the free page list for reuse, pages
can be faulted from the modified page list. If the write has not been
started, the page is unlinked from the list. If the write is in progress,
i.e., the write-in-progress state in the PFN database’is set, the page is
no longer on the list. However, the page can still be made available to
the faulting process by signaling the write completion routine that it

288

Virtual Memory and Memory Management

should not place the page on the free page list. This also helps to
reduce accesses to secondary storage and to speed up process exe-
cution.

Working Set List

The working set list provides the mechanism required by the pager to
keep track of and limit the process's use of physical memory. It
specifies the number of physical pages of memory that the process
can have resident at any time. It also contains a linear list of the virtual
page numbers of the resident pages.

Each working set list pointer in the fixed portion of the process header
is a word containing the longword index (sometimes called an offset)
from the beginning of the process header to its respective working set
list entry.

The working set list not only limits the number of physical pages that a
process can have in memory, it also provides the complete list of those
virtual pages that are actively being used. This information is required
by the balance set swapper so that it can swap the entire working set.

Page Faults For Process-Private Pages .

Every virtual page of a process has an associated page table entry that

represents its current state. A process-private page can be in any one

of the following states:

1. Out of the process’s working set and in the image file. The page
either has never been faulted into memory or has been faulted
into memory and out again without being modified. In either case,
its backing store disk address locates it in an image file

2. Out of the process’'s working set and available as a demand-
allocate zero-fill page. The page has never been faulited into
memory. When it is, the pager supplies a physical page filled with
zeros

3. Outof the process’s working set and in the paging file

4. In transition. That is, in the free or modified page list or currently
being read into or written from memory

5. Inthe process’s working set

The format used for a page table entry to describe a given page indi-
cates which state the page is in. All page table entry formats use bit 31
as the valid/invalid bit. When bit 31 is set, it indicates that the virtual
page associated with that page table entry is in a physical page of
memory and is in the process’s working set. That is, it is an active page
and has an entry in the process’s working set list. A page fault occurs
when reference is made to a page whose page table entry has bit 31
cleared. The page can be in any of the first four states listed above.

289

Virtual Memory and Memory Management

SHARING PAGES OF PHYSICAL MEMORY BETWEEN PROCESSES
The sharing of procedures and data among many processes is ac-
complished through the use of global sections. A global section be-
comes available for sharing as a result of one of two steps:

1. Creation of a shareable image and installation of thatimage as a
shared known image

2. Creation of a data file and issuance of a Create and Map Section
system service to make that file globally available

" Known Images

Once the image is installed as a shared known image, it is available for
mapping into the virtual address space of many processes. The instal-
lation procedure results in the creation of the database required for
the sharing of global sections, but only if it is /SHARE specified when
installed. Not all known files are shareable.

Global Section Database

Sharing sections in the process address space requires the creation of
a global section database. The global section database is created as a
result of a Create and Map Section system service issued when a
shareablé image is installed as a shared known image or issued by a
process to create a global data section. The database consists of the
following data structures:

® Global section descriptor
e Global sectiontable
® Giobal page table

Global Section Descriptor

The global section descriptor (GSD) provides the naming and access
protection mechanisms for a global section. One GSD is defined for
each global section. Dynamic memory is allocated for GSDs. There
are two doubly linked lists of GSDs in the system: one for system-wide
global sections and one for group global sections.

The owner user identification code (UIC) is the UIC of the creator of the
global section. Protection for the section is specified when it is
created.

The global section table index is an index to this section’s global sec-
tion table entry.

During the installation of a shared known image (created by INSTALL),
the section identification and name are taken from the image section
descriptor (ISD) for the section. The ISD is produced by the linker and
placed in the header of the linkable image file. The image activator

290

Virtual Memory and Memory Management.

uses this information when it prepares to execute an executable image
that is bound to a shareable image.

Global Section Table

The global section table is a parallel structure to the process section
table. It is the section table in the system process header. It contains
one entry for each global section. A global section table entry de-
scribes the disk area that the corresponding global section occupies.
The global section table index is an offset to the associated global
section table entry.

Global Page Table

The global page table is the master page table for the pages of a
global section. One global page table entry is required for each page
in the global section. The global page table entries for a section must
be contiguous. Global page table entries have formats that are similar
to those of process page table entries. The pager manages both types
of page table entries.

The initial format of a page table entry for a global section is the same
as the initial format for a page of a private section. That is, both contain
a section table index.

Read/write global section pages are written back into the image or
data file; they are not placed in the paging file. Writing them back to
the image or data file provides cooperating processes with a common
read/write area. Such cooperating processes must synchronize their
access to read/write shared files. None is provided automatically.

The global section table index contained in the page table entry is the
offset into the global section table for this section. The global section
table entry is used in the same way as a process section table entry to
locate the page in the section on disk.

Image Activation)

A process can map to global sections in either of two ways:

1. By running an executable image that hasn’t been installed as a
shared known image or by running an image that is linked against
a shareable image that has been installed as a shared known
image

2. By issuing arequest for the Map Global Section system service

If the first method is used, the image activator takes the steps needed
to map the global section in the process’s address space. When it
encounters an image section descriptor (ISD) in the image file refer-
ring to a global section, the image activator calls’ the Map Global
Section system service to scan global section descriptors for the sec-

291

Virtual Memory and Memory Management

tion name specified in the ISD. If the service locates the specified
section name, it compares version information in the global section
descriptor for the section with version information in the ISD for the
section in the executable image file.

If the globally available version of the section is appropriate, the Map
Global Section system service maps the global section into the
process’s address space. The result is that a specified range of page
table entries in the process space is filled with indirect pointers to the
corresponding global page table entry for the global section.

If the second method is used, the process itself requests the mapping,
rather than having the image activator request the mapping for it. The
result of the Map Global Section system service is identical in either
case. The second method is used to map a data file that has been
made a global section.

A process page table entry that contains a global page table index is a
pointer to the global page table entry and its associated database that
provides central control of the global section.

Page Faults

When a page fault occurs in a process and the process page table
entry for the page contains a global page table index, the pager uses
the content of the global page table entry pointed to by the process
page table entry. The global page table entry provides the pager with
the information needed to determine what action is necessary to make
the process page table entry valid. The result of the action is a process
page table entry that contains the page frame number that is the
physical address of that page of the global section.

When a fault occurs in a process for a page of a global section, the
page can be in any one of the following states:

1. Inasection of afile on disk

2. In memory but not in the working set of the faulting process
3. Inthe free page list or modified page list

4. Inthe pagefile

5. Doesn'texistyet, asitis a demand-zero page

SWAPPING

The swapper is the process responsible for moving entire working sets
between main memory and secondary storage. The swapper process
serves two major functions: ~

1. Process scheduling
2. Process creation

292

Virtual Memory and Memory Management

Process scheduling and the swapper are discussed in Chapter 14,
Process Scheduling and Swapping.

PAGING IN SYSTEM SPACE

A considerable amount of code that can be paged exists in the system
address space, including many system services. Paging in system
space is essentially the same as paging in process space. Data struc-
tures paraliel to those used for a process are used for system space to
provide the information needed to page system space. The following
structures are defined: ‘ ,

® System header (parallel structure to process header)

e System working set list ‘

® System section table

® System page table (parallel to a process’s PO page table)

Working set replacement in system space functions in the same man-
ner as in a process. That is, pageable system pages are paged against
each other.

293

CHAPTER OVERVIEW

Central to the effectiveness of multiuser computers is the algorithm
that controls swapping of processes and the allocation of CPU time.
The VAX/VMS operating system provides an advanced swapping
technique that reduces thrashing and helps minimize overload.

Scheduling is event-driven, pre-emptive, and priority-controlled. The
upper sixteen priority levels are usually reserved for realtime
processes. In order to balance the system load, the system modifies
the priorities of processes in the lower sixteen levels. In addition, time
quanta insure a rotation among computationally intensive processes
of the same priority. This chapter examines swapping and scheduling.
Topics are:

e Scheduling

e Swapping

® Priorities

204

CHAPTER 9
PROCESS SCHEDULING AND SWAPPING

INTRODUCTION

The VAX/VMS scheduler performs normal and realtime process sche-
duling based upon the priority of the executable processes in the
balance set. A normal process is also referred to as a timeshared or
background process while a realtime process is sometimes referred to
as time-critical.

The VAX/VMS operating system defines 32 distinct levels of software
priority for the purpose of scheduling. Priorities range numerically
from 0-31, where 31 represents the highest software priority. The op-
erating system allocates priorities 0-15 to the scheduling of normal
processes while priorities 16-31 are dedicated to the scheduling of
realtime processes. Realtime processes are scheduled strictly by pri-
ority; when a higher priority process is ready to execute, it pre-empts
the process currently running. Normal processes, on the other hand,
are scheduled using a modified pre-emptive algorithm to achieve
maximum overlap of computational and 1/0 activities.

As part of a process’s total context, its software Process Control Block
(PCB) maintains a link to the current state queue defining the proc-
ess’s status within the system. A state queue is a list of ali those
processes currently residing in a particular processing state. A single
state queue exists for every state or condition in which a process may
reside. Examples of possible process states are: computable, local
event flag wait, hibernation, etc.

Regardless of which state queue a process is in, the process owns of a
collection of pages that is referred to as its working set. The swapper is
the process responsible for moving entire working sets between main
memory and secondary storage. Moving a process from main memory
to secondary storage is called outswapping; moving a process from a
secondary storage device to main memory is called inswapping.:

The swapping of processes is necessary for two reasons:

® To replace lower priority or nonexecutable resident processes with
higher priority executable processes

® To keep the scheduler supplied with executable processes in con-
figurations that do not provide sufficient main memory to contain ali
processes’s working sets

295

Process Scheduling and Swapping

SCHEDULING

Realtime processes take precedence over background processes in
the queue for execution because they are of higher priority. The
VAX/VMS scheduler performs process scheduling that takes into ac-
count the following variables:

1. The process priority

2. The occurrence of system events and resulting process state tran-
sitions

3. The expiration of in-memory time allowed to a non-realtime proc-
ess. This is called quantum overflow

The process selected to execute is always the process with the highest
priority in the executable resident state queue.

System events are occurrences that cause the state of one or more
processes in the system to change. The scheduler reflects the change
by removing the process’s PCB from one state queue and placingitin
the current state queue. An executing process can cause a system
event by putting itself in a wait state, or it can cause a system event for
another process. In addition, system components like the swapper
and the timer can cause system events. Regardless of the source, all
system events are reported to the scheduler.

System events can be synchronous with the process’s execution (e.g.,
a wait request), or they can be asynchronous (e.g., an I/0 completion
event).

Process States

The state of a process is the condition of the process at a given instant.
For example, a process can be in a hibernate state or a local event flag
wait state. The possible states of a process are mutually exclusive. A
process moves from one state to another as a result of system events.
The state number of a process is defined by a field in the software
PCB. Each state has a queue of processes that are in that state. The
processes’s software PCBs are linked into the appropriate state
queue.

Some conditions have two associated state queues: one for resident
processes and the other for nonresident processes. Others mix both
resident and nonresident processes in the same queue. The separa-
tion into two queues is to optimize queue searching. In all cases, the
residence of a process is indicated by a status bit in the PCB.

State Queue Headers :
Each of the state queues in which a process can be linked is a stan-
dard linked circular queue that is suitable for use in INSQUE and

296

Process Scheduling and Swapping

REMQUE* instructions. The header for all queues is a quadword that
locates the head and the tail of the queue. if the queue is empty, the
header points to itself. The header structure for wait state queues
differs from that for executable process state queues in that the latter
uses a subqueue structure. Figure 14-1 describes the general state
queue header.

3 ' 0
HEAD OF QUEUE POINTER
TAIL OF QUEUE POINTER

PCB PCB PCB

Figure 9-1 State Queue Header

Wait State Queue Headers

Wait queue headers have a count of PCBs associated with the queue
in addition to the standard head/tail quadword. Figure 14-2 illustrates
await queue header.

31 0

HEAD OF QUEUE POINTER

TAIL OF QUEUE POINTER

STATE NUMBER COUNT

15 : ' 0

Figure 9-2 Wait Queue Header

* The VAX-11 A{rchitectur»ek Handbook gives detailed descriptions and exam-
ples of many VAX/VMS instructions.

297

Process Scheduling and Swapping

Executable Process State Queues

The state queues for executable processes within and outside of the
balance set are divided into 32 subqueues, providing one subqueue
for each priority level. The state of a process and its priority provide
the scheduler with the information needed to determine the subgueue
for the process.

Each subqueue has a header that contains the head/tail quadword.
Subqueue headers do not contain a count of PCBs linked into the
queue. Instead, an array called the summary longword is maintained
for the executable process state subqueues. Each bit in the longword
corresponds to a subqueue, and if a bit is set, the corresponding
subqueue contains entries. Refer to Figure 14-3 for an example of an
executable process state queue.

SUMMARY EXECUTABLE PROCESS IN BALANCE SET
LONGWORD STATE QUEUE
A
PRIORITY 31
P
BIT o ! SUBQUEUE HEADER c8
BIT 1 0 PRIORITY 30

SUBQUEUE HEADER

PRIORITY 2
¢ . 3
BIT 29 1 SUBQUEUE HEADER ce
1€ o
ar ol PRIORITY 1 | pce | | pce
SUBQUEUE HEADER L I

PRIORITY O

BIT 31| © SUBQUEUE HEADER

Figure 9-3 Executable Process State Queue

Processes are selected from the state queue in order of priority.
Higher priority processes receive attention first. Processes are select-
ed on a first-in/first-out basis within a priority subqueue. Referring to
Figure 6-3, processes would be selected for execution in the order A,
B, C, and then D. Processes are selected as if they were in one queue;
the subqueue structure is used to simplify queue searching. That is, if
the summary bit for a priority subqueue is clear, the scheduler does

298 -

Process Scheduling and Swapping

not need to consider that queue. A single instruction is required to

locate the first non-empty subqueue, thereby locating the highest pri-
ority process.

Process State Transition

Transitions from one process state to another occur as the result of
system events reported to the scheduler. The process state transition

cycleis illustrated in Figure 14-4.

VARIETY
OF WAIT
STATE QUEUES

SAME
STATE

OUTSWAP

BUT NOT
DEPENDING ON RESIDENT
REASON FOR QUEUES

EVENT
SATISIFIED

QUTSWAP

EXECUTABLE EXECUTABLE

RN STATE QUEUE BUT NOT

PROCESS (RESIDENT RESIDENT
PROCESSES) QUEUES

Figure 9-4 Process State Transition Cycle

When the current executing process ceases execution, it will enter one
of the following states, depending upon the system event that caused
it to stop:

1. Executable state queue in the balance set as the result of a re-
schedule event

2. A wait queue as a result of a suspend, hibernate, wait for local
event flag (LEF), wait for common event flag (CEF), page fault wait

(PFW), collided page wait (COLPG), or miscellaneous wait
(MWAIT) ' ’

A process that is in the balance set and in any of the wait queues can
make the transition to either of the following states:

299

Process Scheduling and Swapping

1. Executable and in the balance set as a result of a system event

- that satisfied the wait condition. For example, if a process is wait-

ing for a local event flag and that flag becomes set, it enters the
executable state queue

2. In the same wait state but swapped out of the balance set. For
example, in the case of suspend, hibernate, and wait for local
event flag, making the transition from a process in the balance set
to one out of the balance set causes the process to be placed in
another wait queue.

In the case of wait for common event fiag, page fault wait, collided
page wait, and miscellaneous wait, processes that are in the bal-
ance set and those that are out of the balance set are placed in the
same queue

Asynchronous System Trap (AST) events are significant for processes
in a variety of states, including hibernating and outswapped, local
event flag and outswapped, page fault wait, common event flag wait,
free page wait, and collided page wait. For a process in one of these
states, issuance of an AST to the process or a request to delete the
process results in the process’s being placed in the executable state
but not necessarily in the balance set.

A process that is out of the balance set and in a wait queue can make
the transition only to the state of being executable and out of the
balance set. It is placed in the appropriate subqueue according to its
priority, as.illustrated in Figure 14-3.

A process that is executable and out of the balance set can make the
transition only to the state of being executable and in the balance set.
Again, it is placed in a subqueue according to its priority. Once a
process is executable and in the balance set, it is selected to execute
according to its priority as a result of a system event indicating the
need to reschedule.

When a process is created, it enters the nonresident executable state.
When a delete request is issued for a process, the process is marked
for deletion and placed in either the resident executable state queue
or the nonresident executable state queue. The process executes ter-
mination procedures and is then removed from the system.

Dlspatchmg A Process For Execution

Dispatching an executable process to the processor involves minimal
decision making. The selected process is always the one at the head of
the highest priority subqueue of the executable process in the balance
set state queue. The real scheduling decisions are made as a result of

300

Process Scheduling and Swapping

those system events that cause the state transitions which make
processes executable.

When a process is pre-empted to dispatch a process of higher priority,
the pre-empted process is placed at the end of the proper priority
subqgueue. Placing it at the end forces a rotation of processes within a
priority. The result is that available processor time is distributed more
evenly among all processes of the same priority.

The interval between pre-emptions is random. Intervals are deter-
mined by the occurrence of system events. Quantum keeping and
other timer events provide a minimum level of event activity. In prac-
tice, the average interval between events is determined by the dura-
tion of the typical I/O operation.

Placing a process at the end of a priority queue does not necessarily
increase the liketihood that the process will leave the balance set.
However, a process in the balance set has a significantly better chance
of being executed than a process of the same priority that is notin the
balance set.

Quantum Control

Every process, regardless of its priority, is assigned an execution time

quantum that is maintained in the process header. The quantum

serves two purposes:

® |t attempts to provide a minimum amount of time in which the proc-
ess can perform useful work before it is swapped out of the balance
set

® |t enforces a coarse rotation interval for compute-bound processes
with a priority less than 16

Realtime processes are immune to quantquend events.

Note that the quantum is a memory occupancy quantum, not a pure
compute quantum.

A process can be pre-empted many times before it has received its full
quantum. However, a process remains in the balance set until it com-
pletes its first quantum or until a nonresident higher priority process
requires service, or until the process enters a wait state.

When a process is swapped into the balance set, its guantum is initial-
ized. The process status flag in the software process control block
(PCB) is set to indicate that the first quantum is in progress. If the
quantum expires (i.e., reaches zero), the interrupt timer interrupt rou-
tine triggers a software level interrupt. A quantum-end event causes
the scheduler to perform the following operations:

301

Process Scheduling and Swapping

1.. - Set the current priority of the process one unit closer to its base
priority if it is a normal process

2. Clear the first quantum flag
3. Resetthe quantum value
4. - Trigger a rescheduling interrupt

Each time a process executes a wait request (e.g., to wait for I/0
completion), a fixed amount is added to the negative quantum value,
making it that much closer to expiration. If this wait time addition
causes the quantum to be satisfied, the first quantum flag is cleared
and the quantum counter is reinitialized. Remember, the quantum is a
memory occupancy quantum rather than a pure compute quantum.

Rescheduling Interrupts
The rescheduling interrupt is triggered when either of the following
two conditions exists:

1. A process making the transition to the resident executable state
has a higher priority than the current process

2. Thetimer detects quantum expiration for the current process

Rescheduling isrequested by triggering the software-controlled
Interrupt Priority Level (IPL) 3 interrupt. As a result of this interrupt, the
state of the currently executing process is saved and the process is
placed at the end of the proper compute queue. When the current
process is placed into a wait state, the highest priority computable
process is selected and placed into execution.

Scheduling Of Processes

Each process has a base priority assigned to it when it is created. The
priority of a realtime process remains unaltered by the system during
the process’s execution. However, a hormal process is subject to hav-
ing the scheduler alter its priority during the course of its execution.

The scheduler uses a modified pre-emptive priority algorithm for nor-
mal processes. The algorithm floats the priority according to the proc-
ess’s recent execution history. Each process has a current priority in
addition to its base priority. The scheduler dynamically changes the
current priority as the process executes; however, the current priority
is never less than the base priority.

Scheduling according to strict priority for realtime processes and us-
ing a modified priority: for other processes allow the scheduler to
achieve maximum overlap of compute and 1/0 activities while ‘still
remaining responsive to high-priority realtime requests. Figure 14-5
illustrates process priority scheduling.

302

Process Scheduling and Swapping

PRIORITY 31
HIGH PRIORITY REAL-TIME

CHOSEN
BY

SYSTEM
MANAGER LOW PRIORITY REAL-TIME

SWAPPER

VERY INTERACTIVE OR 1/0 BOUND

CHOSEN
AUTOMATICALé¥
OAT SOMEWHAT 1/0 BOUND
ALGORITHM
COMPUTE BOUND
PRIORITY O

Figure 9-5 Process Scheduling

Priority Increments

The scheduler uses priority increments to modify the priority of a
normal process. Each system event has an assigned priority incre-
ment that is a characteristic of the cause of the event. If the event
causes a state change to an executable state for the process, the
scheduler adds the increment to the base priority; the result becomes
the current priority. The only restriction is that the current priority
cannot be raised to a time-critical value, that s, to priorities 16 through
31.

When a wait condition is satisfied for a normal process, the scheduler
increases the priority of the process in accordance with the priority
increment of the satisfied condition. When a process is scheduled for
execution, the scheduler decreases the process’s current priority in
the PCB by one unit. When the process is stopped, it is placed at the
end of the next lower queue, thereby decreasing its priority. Thus, a
process’s priority is increased after a wait and is decreased each time
it executes, as illustrated in Figure 14-6. A process’s current priority is
never decreased to a value below its base priority or increased above
a priority of 15. A realtime process’s priority is never modified.

The decrease of priority as a consequence of continued execution
yields preferential treatment to processes that require only brief inter-
vals of execution between the time that one wait condition is satisfied
and the next is established. Compute-bound processes quickly fall to

303

Process Scheduling and Swapping

4
EVENT
SCHEDULE
SCHEDULE
PROCESS SCHEDULE
PRIORITY .
SCHEDULE
—————————————————————————— Y BASE PRIORITY
TIME =

Figure 9-6 Priority Modification

their base priorities where they can be interrupted by more event-
driven (1/0-bound) processes.

Priority increments are given for the following types of system events

(ordered from greatest to smallest):

® Terminal read completion

® Terminal write completion and other buffered I/0

® Direct I/0 (e.g., disk or magtape) completion and WAKE, common
event flag wait, etc.

This gives treatment of processes with equal base priority in the fol-

lowing order of preference:

® Response to terminal input '

® Terminal display~ :

® File I/0 and other interaction - .

e Compute bound’ '

SWAPPING ;
Swapping is accomplished by a swapper process.-All of its code and
data areas are contained in system space.

The swapper performs the following functions:

1. Balancing the available page count

2. Modified page writing -

3. Swap scheduling:

304

Process Scheduling and Swapping

4. OQutswapping
5. Inswapping
6. Process creation

Although the functions performed by the swapper are essential to
system operation, the swapper is a normally scheduled process to
permit the assignment of an appropriate priority. The swapper priority
is 16. That priority is the lowest of all realtime processes and higher
than all normal processes. Process creation is discussed in Chapter
13, Virtual Memory and Memory Management.

Balancing the Available Page Count

The system maintains a number of physical pages that are not part of
any process’s working set and that are available for use by a user’s
process. The swapper utilizes these available pages when it brings a
process’s working set into memory and releases them when it swaps a
process’s working set to secondary storage. Likewise, memory man-
agement uses these pages to fault a virtual page of a process into
memory and releases them when pages are removed from the
process’s working set.

Memory management maintains two lists of available pages: the free
page list and the modified page list. Although modified pages are not
immediately available for use, they become free pages after being
written to backing storage. The modified page is written to backing
storage only when that page is required as a free page. A page either
listis referred to as a page in transition.

The number of free pages has a significant influence on system per-
formance when a number of processes are actively paging. Therefore,
the swapper attempts to keep the number of free pages within a spe-
cific range. The range is determined by the following two SYSGEN
parameters:

® A desired number of free pages
¢ The lowest acceptable number of free pages

When the number of free pages falls below the lower limit, the swap-
per is initiated to balance the count. The swapper performs page
count balancing by outswapping the process which, according to an
algorithm, is the most desirable to outswap (see below for the outswap
algorithm). The swapper also writes out modified pages.

The number of pages can fall below the lower limit for the following
reasons:

305

Process Scheduling and Swapping

1. A process thatis resident acquired additional physical pages
2. A process wasinswapped :
3. Aglobal section is deleted

Modified Page Writing ,
Modified pages are placed on the modified page list to be processed
by the swapper and written to their backing storage address. After the
backing storage copy of the page has been updated, the page is
placed on the free list.

The writing of modified pages is not initiated immediately when a page
is first placed on the modified page list. Rather, the swapper begins
writing pages from the list when any of the following events occurs:

1. Adding a page to the list causes it to exceed a threshold size

2. Thefree listfalls below its low limit '

3. Space is needed for an inswap candidate

Deferring the writing of modified pages has two benefits:

1. Modified pages may be written in clusters, increasing the effective
disk throughput

2. Modified pages may be faulted back into a process’ working set,
eliminating the need to write them altogether

Swap Scheduling Philosophy

Swapping normally is motivated by the need to inswap a process that
would be executable if its working set were moved from secondary
storage into main memory. The function of swap scheduling is to de-
termine the highest priority process in the nonresident executable
_ state and obtain sufficient memory to contain that process.

The needed memory is obtained by acquiring excess free pages. The
number of excess free pages is determined by subtracting the desired
number of free pages from the actual number of free pages. If the
result is a sufficient number of pages, the nonresident process is
swapped into memory. If the result is an insufficient number of pages
for the process to be inswapped, additional pages are acquired by
outswapping suitable processes or by writing modified pages. The
pages released by outswapping are added to the count of free pages.

An executable resident process is not outswapped to acquire memory
for a normal process unless it has completed its first quantum. The
intent is to ensure that some useful execution occurs for a process
once the inswap investment has been made.

Each time a process is swapped into memory, the swapper balances
the available page count.

306

Process Scheduling and Swapping

A nonresident process with a working set that currently cannot fit into
available memory is not bypassed for a smaller process of lower pri-
ority.)

Swap Scheduling Algorithm

The procedure for deciding to initiate an inswap is divided into two

phases:

1. Inswap scheduling—the selection of the highest priority inswap
candidate

2. Outswap scheduling—the selection of processes to be removed
from main memory to enable the desired inswap to occur

Both phases are repeated each time a resident process is outswapped
to permit changes that affect the choice in inswap and outswap candi-
dates to be recognized as soor as possible.

Inswap Scheduling

Processes are selected for inswapping by choosing the hlghest priori-
ty process in the nonresident executable state queues. When the
inswap is complete, the process is placed in one of the resident execu-
table state queues.

Each time it is wakened from its normal hibernation state, the swapper
process attempts to find an inswap candidate. The swapper is wak-
ened after any of the following events:

1. Aprocessis deleted

The free page list becomes too big or too small

The modified page list becomes too big

One second passes

A process is added to the nonresident executable state

A resident process is placed into a wait (only, however, if the
process has no outstanding direct I/0 and some outstanding buff-
ered 1/0)

Only the addition of a process to the nonresident executable state can
alter the choice of an inswap candidate; the remaining conditions in- -
crease the avallablllty ‘of memory or outswap candidates.

LR o

If no swap is currently in process and an inswap candidate exists, the
swapper is awakened to attempt the inswap, provided that it can
obtain sufficient memory for the process

Outswap Scheduling :
Most of the swap scheduling effort involves obtalnmg memory re-
quired for the inswap candidate or balancing the free page count.

307 -

Process Scheduling and Swapping

Occasionally, the number of excess free pages is sufficient to satisfy
the inswap memory requirement. Normally, one or more resident
processes must be outswapped to obtain the required memory.

- The memory requirement to be satisfied by outswap scheduling has
two components: '
1.. Thatrequired to reach the desired number of available pages
2. That required to contain the inswap candidate, i.e., the sum of

private and global page counts for the candidate

Before attempting to obtain memory for a desired inswap candidate,
the swapper adjusts the number of free pages, if necessary. The most
suitable outswap candidate processes are outswapped until the num-
ber of available pages is greater than or equal to the desired number
of pages required for the inswap. Once the count of available pages is
balanced, the swapper attempts to obtain memory for an inswap can-
didate.

To select an outswap candidate, the outswap schedule checks a list of
process states in a fixed order. The scheduler passes down the list
until a candidate is found. That process is then outswapped.

Some states have constraints, others do not. For example, a process
in its initial quantum is disqualified as an outswap candidate.

State queues that contain resident processes are examined for possi-
ble outswap candidates in the following order:

1. Suspended (SUSP)
Local event flag wait with direct I/0 count equal to zero (LEF)
Hibernating (HIB)
Common event flag wait with diréct 1/0 count equval tb zero (CEF)
Mutex wait (MWAIT)

Processes in the above wait states are considered to be outswap
candidates regardless of their prlonty relative to that of the inswap
candidate. .

Processes with a nonzero direct I/0 count have a higher probabil-
ity of their event flag wait being satisfied qulckly

2. Free page wait (FPG)
Collided page wait (COLPG)

308

Process Scheduling and Swapping

A process in one of the above states is outswapped only if the
inswap candidate is of equal or greater priority.

- 3. Common event flag wait with nonzero direct 1/0 count (CEF)

Local event flag with a nonzero direct I/0 count (LEF)
Page fault wait (PFW)

Executable (COM)

The above state queues contain the processes most likely to
benefit from balance set residency. Both priority and the quantum
flag are observed. The quantum flag indicates that the first quan-
tum is in progress.

If an available page deficit is being corrected, the outswap is per-
formed, and the scheduling procedure is repeated. Otherwise, the
search for outswap candidates continues until the page count is bal-
anced or all eligible outswap candidates have been examined. The
most suitable outswap process is outswapped. The combined
inswap/outswap scheduling operations are repeated. Eventually
enough memory becomes available to perform the desired inswap.

Process Creation

The swapper performs a major portion of the process creation func-
tion by making copies of a predefined shell process, which provides
the initial context and virtual address space for a process. The shell
process is swapped into memory to create the process initially.

All processes that are swapped out of memory exist in aswap fileas a
swap image. The swap image of the shell process exists as part of the
executive disk image. Using a shell process for process creation re-
quires very little specific code because much of the normal swapping
mechanism is used. However, it allows any degree of complexity for
the shell process.

309

CHAPTER OVERVIEW

Dealing with exception, exit, and asychnronous conditions and events
requires sophisticated software mechanisms such as those incorpo-
rated into the VAX/VMS operating system. The goal of condition han-
dling is the efficient handling of conditions and events without shutting
down the system or interfering with other processes is the goal of
condition handiers and traps. In this chapter the VAX/VMS solution to
such goals is examined.

Topics are:

e Condition Handlers

® Exit Handlers

® Asynchronous System Traps

310

CHAPTER 10
SPECIAL EVENT HANDLING

INTRODUCTION

During the execution of an image, both expected and unexpected
conditions, called exceptions, can occur. An exception is any event
that is detected by the hardware or software, and which interrupts the
execution of the image. For example, arithmetic overflow or underflow
and reserved opcode or operand faults are, for example, exceptions.

Condition handlers and exit handlers allow a process to respond syn-
chronously to unexpected or expected conditions.

Asynchronous System Traps (ASTs), on the other hand, are interrupts
(or at least reactions to an interrupt). Condition handlers are used to
manage hardware-generated exceptions and software-generated sig-
nals, while exit handlers are used to clean up local databases during
the termination of an image’s execution. ,

Hardware generated exception conditions represent error conditions
and must be corrected if program execution is to continue. Some
software routines may generate exception conditions; these may be
warning or error conditions. Software exceptions may also be caused
when an error or severe error status is returned from a call to a system
service.

CONDITION HANDLERS -

A condition handler is a procedure that is executed in response to a
hardware- or software-detected exception condition. Hardware-
detected conditions cause the hardware to vector to a kernel mode
routine that is responsible for interpreting the condition and dispatch-
ing control to the proper condition handler. When a software-detected
condition occurs, the software signals the condition by calling a library
procedure that is responsible for dispatching the condition to the
proper condition handler.

Both hardware- and software-detected exceptions occur synchro-
nously with the execution of a process. That is, they occur as the result
of the execution of a specific instruction sequence; if that sequence
were repeated, the same exception would occur again. Examples of
hardware-detected exceptions include reserved operands, arithmetic
traps, and access violations. Examples of conditions that result in the
signaling of software-detected exceptions are an argument value that
is out of range and the passing of an invalid argument to a called
subroutine that does not return a status value, e.g., passing a negative
number to a square root routine. '

311

Special Event Handling

The VAX/VMS operating system provides two methods for specifying

condition handlers:

e Specifying the address of a condition handler in the first longword of
the procedure call frame

® Establishing exception vectors with the Set Exception Vector system
service :

The first method is the most common way to specify a condition
handler; the second method—the Set Exception Vector system ser-
vice—allows the specification of addresses for a primary and a secon-
dary exception vector. There is also a last chance handler that is called
after all stack handiers have been called. The exception vectors are
used primarily for debuggers or program monitors.

If an exception occurs, and no user-specified condition handler exists,
the default condition handler established by the command language
interpreter takes control; it issues a descriptive message and optional-
ly performs an exit on behalf of the image that incurred the exception,
depending on whether a warning condition or error occurred.

Exception Dispatching

When a hardware-detected exception condition occurs within a proc-
ess, the hardware vectors to a kernel mode routine after pushing PSL,
PC, and arguments, if any, on the kernel stack. The actual number of
arguments pushed depends on the type of exception. The kernel
mode routine that gains control is called the exception dispatcher and
is responsible for dispatching the exception to the proper condition
handier. To locate a condition handler, the dispatcher examines only
the stack and vectors for the access mode in which the exception
occurred.

When a software-detected exception condition occurs, the detecting
_software signals the occurrence of the condition by constructing an
appropriate argument list and calling a library procedure to perform
the signal dispatching. The search sequence for dispatching condi-
tions is the same whether the condition is detected by software or
hardware.

SEARCHING FOR A CONDITION HANDLER

When an exception occurs, the primary exception vector and then the
secondary exception vector are examined to determine if either con-
tains the address of a handler If either is nonzero, a condition handler
has been found.

If both are zero and the exception was hardWare-detected, the call
stack for the appropriate access mode must be searched for a condi-

312

Special Event Handling

tion handler. The mode is the one at which the exception occurred or
was signaled.

The call stack is searched by following the saved frame pointer (FP)
register images backward through the stack. At the time of the excep-
tion, the FP points to the current call frame. Because the condition
handler address is the first longword in a call frame, the FP aiso points
to the longword that can specify a condition handler. Each call frame
contains a saved copy of the previous call frame FP. Thus it is possible
to trace backward through the call frames, examining the first
tlongword in each frame to determine whether it is nonzero.

The search back through the call stack is terminated by finding a
condition handler or detecting a previous frame pointer that is zero.
The search of the call stack is performed at the access mode at which
the exception or signal occurred. The stack frames are accessed, and
if aframe is inaccessible, an exception occurs. The exception or signal
dispatcher declares its own condition handler for access violations
and processes any exceptions it causes.

FATAL ERRORS AND SYSTEM CRASHES

If the access mode incurring a hardware exception was kernel or
executive and any of the following conditions exist, the system is shut
down in a controlled fashion:

1. No condition handler could be found
2. All condition handlers that were found resignaled the condition
3. Anaccess violation was detected while searching the stack

Not finding a condition handler for kernel or executive mode is consid-
ered a fatal system error. If the access mode was either supervisor or
user, an error message is issued and an Exit system service is execut-
ed on behalf of the process at the access mode of the exception. The
exit argument supplied to the system service is “absence of condition
handler.”

Argument List Passed To The Handler

If a condition handler is found in the primary or secondary vector or on
the call stack, a complete argument list is constructed in preparation
for reflecting the exception to the proper handler. The argument list
consists of two addresses that point to longword arrays.

The first argument is an array containing the signal arguments and the
second is an array containing the mechanism arguments. The signal
array contains values describing the condition. The mechanism array
contains the condition context. The first longword of each array speci-
fies the number of arguments in the array. The depth parameter de-
fines the frame number in which the condition handler was found.

313

Special Event Handling

CONDITION
OCCURS
0 e —— Fp
(NO HANDLER)
C CONDITION
D!t =
0
(NO HANDLER}
B EXECUTION
cv FP
Ah ‘
(HANDLER FOUND}
A EXECUTION =

START

Figure 10-1a Stack Search of Multiple Conditions

CONDITION
¢ OCCURS

START

Figure 10-1b Conceptual Flow Diagram of Stack
314

Special Event Handling

Condition handlers are called using the standard procedure call
conventions. They execute at the access mode at which the exception
occurred.

Condition Handler Actions
Once entered, a condition handler has three alternatives:

1. Fix the problem and return a status value indicating that execution
is to be continued at the point of the exception

2. Determine that it does not handle the exception and return a
status value indicating that the exception is to be resignaled

3. Call the Unwind Call Stack system service to unwind the call stack
to a specific frame

EXIT HANDLERS

Exit handlers are procedures that are called whenever an image re-
quests an Exit system service from user, supervisor, or executive
mode. Exit handiers allow a procedure that is not on the call stack to
gain control and clean up procedure-specific databases.

Exit handlers are specified using the Declare Exit Handler system
service. This service accepts as an argument the address of a termina-
tion handler control block. The termination handler control block mini-
mally contains: a longword used to link termination handler control
blocks together, the entry point address of an exit handler, the number
of exit arguments, and one argument that is the address of a longword
to receive the exit status value. Typically, additional arguments are
specified to contain pointers and values that enable the exit handler to
clean up a database. Figure 16-2 illustrates the format of an termina-
tion handler control block.

FORWARD LINK

EXIT HANDLER ADDRESS

0 n

EXIT REASON ADDRESS

ADDITIONAL
EXIT
ARGUMENTS
IF ANY

Figure 10-2 Termination Handler Control Block

315

Special Event Handling

The VAX/VMS operating system maintains a separate list of termina-
tion handler control blocks for each access mode. Each list is in last-
in/first-out order. As each exit handler is specified, its termination
handler control block is added to the front of the list for that access
mode. The execution of an exit handler is a one-shot occurrence. That
is, once executed, it must be respecified before it is executed again.

Exit Dispatching

The execution of exit handlers is triggered by a call to the Exit system
service from user, supervisor, or executive mode. If the call is made
from kernel mode, the process is immediately deleted after running
down /0 and performing other cleanup operations. Otherwise, the
appropriate lists of termination handler control blocks are examined
to determine if any exit handlers were specified.

The exit handler dispatcher scans the list of termination handler
control block one entry at a time. The respective exit handler is called
for.each one. The argument list specified in the call to the exit handler
is that specified in the termination handler control block itself; the
reason for the exit is filled into the longword whose address is speci-
fied by the first argument. If the entire list is scanned and control
returns to the exit handler dispatcher (i.e., if none of the exit handlers
resets and changes the flow of control), another Exit system service is
executed.

ASYNCHRONOUS SYSTEM TRAPS

Certain system services allow a process to request an interrupt for
notification of an event that occurs out of sequence with the execution
of the process. The system enables a trap for the event and, when: it
occurs, the system delivers an interrupt to the process. Control is then
passed to the user-specified routine that handles the interrupt.

Since the interrupt occurs asynchronously (out of sequence) with re-
spect to the process’s execution, the interrupt mechanism is called an
asynchronous system trap (AST). That is, the process does not have
direct control over the exact moment of AST delivery. The system
services that use the AST mechanism accept as an argument the
address of the AST service routine that should be given control when
the interrupt is delivered and a longword argument.

The AST service routine executed as a result of specifying an AST
entry point in a system service is a procedure. It is entered using a
CALLG instruction and must exit'using a RET instruction. The AST
service routine executes at the access mode in effect when it was
declared. The result is a call frame on the stack for the access mode of
the AST receiver, as illustrated in Figure 16-3.

316

Special Event Handling

0 {FP:SP

MASK PSW

SAVED AP

SAVED FP

SAVED PC

REGISTERS
SPECIFIED BY
ENTRY MASK

T)

AST PARAMETER

SAVED RO ARGUMENT
SAVED RI LisT

PC OF AST

PSL OF AST

Figure 10-3 AST Receiver Stack Content

The argument list supplied to the AST routine is contained on the
stack for the access mode receiving the AST. The registers PC and
PSL in the argument list are those saved at the point at which AST
delivery interrupted the process. ‘

When an AST is requested for a process, the following three events

occur:

1. The system queues the AST in an AST queue linked to that proc-
ess’s software process control block (PCB)

2. When appropriate enabling conditions exist, the AST is delivered -
to the process

3. The process’s AST handling routine receives the AST

If conditions permit, the AST can be delivered directly to the process
rather than being enqueued.

AST Enqueuing’

The asynchronous system trap (AST) queue for a process is main-
tained in order of access mode. The highest privileged (lowest
numbered) access mode is at the head of the queue. The queue is
first-in/first-out within an access mode. .

When an AST is specified for a process, it is-either delivered directly to

317

Special Event Handling

the process or queued to the PCB, depending on the setting of the
AST control bits in the PCB and the state of the process. If the AST is
deliverable based on a check of the AST enabled and active bits in the
PCB, and if the process is currently executing, the AST is delivered to
the process. The system computes the new value of the AST Level
(ASTLVL) and stores it in the hardware PCB contained in the process
header.

If the AST is deliverable and the process is the current process, the
ASTLVL register is also updated. If the process is not the current
process, an AST enqueuing event is reported for the process.

If the AST is deliverable but the process is nonresident, the AST is
enqueued rather than delivered and an AST enqueuing event is re-
ported. The swapper computes the proper ASTLVL value when the
process is made resident.

If the AST is not deliverable based on the state of the AST enabled and
active bits, the AST control block is placed in the proper position in the
AST queue. An AST enqueuing event is reported.

1/0 Status Posting AST

The posting of 170 status upon I/0 completion is a special case of AST
enqueuing. Using the AST mechanism, the posting of 1/0 status is
performed in the context of the process that initiated the 1/0 opera-
tion.

The 1/0 status posting AST is executed in kernel mode at Interrupt
Priority Level (IPL) 2. It moves the final I/0 status to the specified 1/0
status block and moves the data for a buffered read from the system
buffer to the process buffer. Then, it releases the system buffer.

A normal AST control block is queued for the process as a result of the
handling of the I/0 status posting request if a completion AST address
is specified in the I/0 request packet.

AST Delivery

The actual delivery of a pending asynchronous system.trap (AST) is
initiated by the AST delivery interrupt at interrupt priority level (IPL) 2.
The interrupt is triggered as a result of an return from exception or
interrupt (REI) instruction and is processed entirely on the kernel
stack. When the interrupt occurs, the system first checks for the deliv-
erability of the AST control block at the head of the queue. The ASTis
deliverable if all of the following condition are met:

1. ASTs are enabled for that access mode

2. NoAST is active for that access mode

3. The process is not executing at a more privileged access mode

318

Special Event Handling

An immediate return is taken if the AST is not deliverable. This appar-
ently redundant check is necessary to deal with an AST delivery inter-
rupt triggered as a result of executing the previous process which is
now inappropriate for the new current process.

If the AST control block is deliverable, the following steps are taken:
1. The AST control block is removed from the AST queue
2. The active bit for the proper access mode is set

3. A new value for ASTLVL is computed and placed into the ASTLVL
field of the hardware PCB and the ASTLVL processor register

Normal AST control blocks (those other than 1/0 status, SUSPEND
process, DELETE process, GETJPI, and power recovery ASTs) are
processed by building an AST stack frame on the stack for the access
mode of the receiver and removing the interrupt PC and PSL from the
kernel stack. A new PC and PSL for the proper mode are constructed
according to the AST control block. Both previous mode and current
mode are set to the mode for which delivery is being made. The sto-
rage for the AST control block just serviced is released. Then, the AST
handling routine specified in the control block is entered using the
return from exception or interrupt (REIl) instruction.

170 status requests are processed in a highly streamlined fashion
without building an AST stack frame. The I/0 packet is either released
or turned into a normal AST control block and requeued for the access
mode originally making the 1/0 request.

Control of AST Delivery

Three methods exist for the control of AST delivery to a process:

1. Set AST Enable system service

2. Automatic disabling of ASTs for an access mode if an AST is
active for that mode

3. Setting the IPL higher than the AST delivery interrupt to inhibit
AST delivery (kernel mode only)

The AST Control system service allows a process to set or clear the
AST enable bits for each of the four access modes (only at the mode of
the caller). This method of AST control permits non-kernel mode
routines to synchronize with their ASTs.

AST delivery is implicitly disabled for an access mode when an AST is
currently active for that mode. The disable is removed when the AST
procedure returns.

Within kernel mode routines, both AST delivery to kernel mode and
interrupts can be disabled by raising the IPL.

319

Special Event Handling

Exception During AST Delivery

The AST delivery routine uses the exceptlon mechanism to signal a
software-detected condition if there is insufficient stack space to deliv-
er the AST. . The AST control block for the AST detecting the stack
problem is released and the AST active state for the affected mode is
cleared. When this occurs, the AST is lost; however, the information in
the AST signal parameters is not. An AST fault condition is a serious
error and is intended to provide information, but not to permit continu-
ation.

320

321

CHAPTER OVERVIEW

A wide range of system services is incorporated into the VAX/VMS
operating system in order to assure the smooth and efficient execution
of user processes. The system services control input and output pro-
cedures, maintain logical and symbolic tables, handle exception con-
ditions, provide system traps, and keep track of time and time conver-
sion. In this chapter the calling standards for system services are listed
with some call examples. Also, the algorithms which the system ser-
vices operate are given for several cases.

Topics include:

Event-related Services

Asynchronous System Traps

Logical Name Services

170 Services

Timer and Time Services

Exception Condition Services

Process Control Services

Memory Management Services

Change Mode Services

Lock Management Services

e © © o o o o ¢ o o

322

CHAPTER 11
SYSTEM SERVICES

INTRODUCTION ‘
System services are procedures incorporated into and used by the
operating system to control resources available to processes, to
provide for communication among processes, and to perform basic
operating system functions, such as the coordination of input/output
operations.

The VAX/VMS system services can be called both from the VAX-11
MACRO assembly language and from the VAX high-level languages.
The examples in this chapter are all MACRO calls; however, examples
for other languages can be found in the language user’s guides, and
complete system services details can be found in The VAX/VMS Sys-
tem Services Reference Manual.

Although most system services are employed primarily by the operat-
ing system itself on behalf of logged-on users, many are generally
available and provide techniques that can be used in application pro-
grams. For example, when a user logs onto the system, the Create
Process system service is called to create a user process. The user, in
turn, may call the Create Process service to create a subprocesss.

While many system services are available and suitable for application
programming, the general use of certain services must be restricted to
privileged users in order to protect the performance of the system and
the integrity of user processes.

Information about a user’s privileges is maintained by the system
manager in the user authorization file (UAF). In addition to containing
user profile information, the authorization file also contains a list of
specific user privileges and resource quotas. When the user logs onto
the system, the list of privileges and quotas assigned by the system
manager to the user is associated with the process created on the
user’s behalf. ' ‘

‘When the image issues a call to a system service that is protected by
privilege, the privilege list is checked. If the image has been granted
the specific system service privilege it requires, then the image is
permitted to execute that system service; otherwise, a status code
indicating an error is returned. B

When a system service that uses a resource controlled by a quota is
called, the process’s quota for that resource is checked. If the process
has exceeded its quota, or if it has no quota allotment, an error status

323

System Services

code may be returned. In some cases, the process may be placed in a
wait state until the resource becomes available.

Some system services provide techniques for coordinating and syn-
chronizing the execution of different processes. These services enable
users to control their subprocesses, allow users with group privilege to
affect processes in their group, and give users with world privilege the
ability to control any process.

A process can execute at any one of four access modes: user, supervi-
sor, executive, or kernel. The access modes determine a process's
ability to access pages of virtual memory. Each page has a protection
code associated with it, specifying the type of access—read, write, or
no access—allowed for each mode.

In some system service calls, the access mode of the caller is checked
to see whether the caller may execute a particular function.

The system services are organized in the following functional catego-
ries:

e Event Flag Services

e Asynchronous System Trap (AST) Services
® Logical Name Services.

® Input/Output Services

® Process Control Services

e Timer and Time Conversion Services

¢ Condition Handling Services

e Memory Management Services

e Change Mode Services

® Lock Management Services

The following sections describe each of the system services.

EVENT FLAG SERVICES

Event flag services are those services that allow a process or a group

of cooperating processes to read, wait for, and manipulate event flags.

A process can use event flags to synchromze sequences of operations

in a program.

Event flags are status posting bits maintained by the VAX/VMS oper-

ating system for general programming use. Programs can use event

flags to perform a variety of signaling functions:

® Setting or clearing specific flags

® Testing the current status of flags

® Placing the process in a wait state pending the setting of a specific
flag or a group of flags :

324

System Services

Moreover, event flags can be used in common by more than one
process as long as the cooperating processes are in the same group.

Event flags may be set in shared memory as well as in local memory.
Flags set in a multiport memory such as the MA780 muitiport memory
can be used to coordinate processes on different processors.

Some system services can set an event flag to indicate the completion
or the occurrence of an event, and the calling program can test the
flag. For example, the user can specify that the Queue 1/0 Request
($QI0) system service set an event flag when the requested input or
output operation completes.

Each event flag is identified by a unique decimal number referred to
by event flag arguments in system service calis. For example, if event
flag 1 is specified in a call to the $QIO system service, then event flag
number 1 is set when the 1/0 operation completes.

To allow manipulation of event flag groups, the event flags are ordered

in clusters. Each cluster contains 32 event flags, numbered from right

to left, corresponding to bits 0 through 31 in a longword. The system

defines two types of clusters:

® A |ocal event flag cluster can only be used internally by a single
process. Local clusters are automatically available to each process

e A common event flag cluster can be shared by cooperating
processes in the same group. Before a process can refer to a com-
mon event flag cluster, it must explicity “associate” with the cluster
by using the Associate Common Event Flag Cluster (SASCEFC) sys-
tem service

The range of event flag numbers and the clusters to which they belong
are summarized in Table 11-1. »

Table 11-1 Summary of Event Flag and Cluster Numbers

Cluster Event Flag Description Restriction

Number Numbers

0 0-31 . Process-local Eventflags 24

1 ‘ 32-63 event flag through 31 are

' clusters for reserved for

general use system use.

2 64-95 Assignable Must be asso-

3 96-127 - common ciated before
event flag use
cluster

325

System Services

Listed below are the event flag system services.

Associate Common Event Flag CIuster—$ASCEFC _
When a common event flag cluster is created, it must be identified by a
1- to 15-character name string. All processes that associate with the
cluster must use the same name to refer to the cluster; the $ASCEFC
system service establishes the correspondence between the cluster
name and the actual cluster.

Before any processes can use event flags in a common event flag
cluster, the cluster must be created: the Associate Common Event
Flag Cluster (JASCEFC) system service creates a common event flag
cluster. If the cluster has already been created, other processes in the
same group can call $ASCEFC to establish their association with the
cluster and use its flags. The protection to be applied to the cluster
and a permanent or nonpermanent status are aSS|gned to the event
flag cluster when itis.created.

The following example shows how a process might create a common
event flag cluster named COMMON-CLUSTER.

CLUSTER -ASCID/COMMON-CLUSTER/;CLUSTER NAME

'$ASCFEC-S EFN=#65, NAME=CLUSTER ;CREATE
;CLUSTER

Disassociate Common Event Flag Cluster—$DACEFC

The Disassociate Common Flag Cluster system service disassociates
the requesting process from the common event flag cluster that con-
tains the specified event flag. If the common event cluster is tempora-
ry, it is deleted when the number of processes associated with it is
zero. An implicit disassociate is performed for all clusters to which-an
image has associated, when the image exits.

The following example illustrates the disassociation of the user’s proc-
ess from the common event flag cluster containing event flag number
64. ' B

CNAME: .CLUSTER/CLUSTER NAME

$D‘ACEFC—S EFN =#64;DISASS§CIATE CLUSTER

326

System Services

Delete Common Event Flag Cluster—$DLCEFC

The Delete Common Event Flag Cluster system service causes a per-
manent common event flag cluster to become nonpermanent. The
cluster is actually deleted when no processes are associated with it. A
process must have the privilege to create a permanent event flag
cluster (PRMCEB) in order to delete one.

Set Event Flag—$SETEF

The Set Event Flag system service causes the specified event flag to
be set and causes any processes waiting for the event to be made
computable.

The following example associates the user process with common
event flag cluster 3 and sets the third flag within the cluster. Note that
event flag number 96 is equivalent to bit zero of the longword (cluster
3), and therefore event flag number 99 is equivalent to bit 3 in cluster
3. : :

SHARE: .ASCID/COMMON-CLUSTER/;CLUSTER NAME

$ASCFEC—S EFN=#96, NAME=SHARE ;ASSOCIATE WITH
;CLUSTER
$SETEF-S EFN=#99 ;SET 3RD FLAG IN COMMON-CLUSTER

Clear Event Flag—S$CLREF
The Clear Event Flag system service sets an event flag in a local or
common event flag cluster to 0.

The following example illustrates a system service call that clears
event flag 32.

$CLREF_S EFN=#32

Read Event Flags—$READEF
The Read Event Flags system service returns the current status of all
32 event flags in a local or common event flag cluster. '

Wait For Single Event Flag—$WAITFR

The Wait For Single Event Flag system service tests the specified
event flag and returns immediately if the event flag is set. Otherwise,
the process is placed in a wait state until the event flag is set.

The user’s process can be placed in a wait state for a pre-determined
period of time by specifying an event flag argument to the $SETIMR
service and then using the Wait For Single Event Flag system service
as follows: '

327

System Services

TIME: .BLKQ 1 ;WILL CONTAIN TIME INTERVAL TO WAIT
'$SETIMR‘S EFN=#33, DAYTIM=TIME ;SET THE TIMER
$WAITFR-S EFN=#33, SWAIT UNTIL TIMER EXPIRES

Wait For Logical OR of Event Flags—$WFLOR

The Wait for Logical OR of Event Flags system service tests the event
flags specified by a mask within a specified cluster and returns im-
mediately if any of the specified flags are set. Otherwise, the process is
placed in a wait state until at least one of the selected event flags is set.

Wait for Logical AND of Event Flags—$WFLAND

The Wait for Logical AND of Event Flags system service allows a proc-
ess to specify a mask of event flags for which it wishes to wait. All of
the indicated event flags within a specified event cluster must be set;
the process is placed in a wait state until they are all set.

The following example illustrates a program that issues two $QIO sys-
tem service calls, and uses the $WFLAND system service to wait until
both 1/0 operations complete before it continues execution.

The MASK argument specifies which flags in the cluster are to be
waited for: the first and second. The EFN argument specifies any flag
number in the cluster containing flags for which you are waiting.

$QIO-S . EFN=#1,... ;ISSUE FIRST QUEUE I/0 REQUEST
BSBW ERROR ;CHECK FOR ERROR
$QIO-S EFN=#2,... ;ISSUE SECOND I/0 REQUEST
BSBW ERROR ;CHECK FOR ERROR
$WFLAND-S EFN=#1, MASK=#1B0110 SWAIT UNTIL BOTH COMPLETE
BSBW ERROR ;CHECK FOR ERROR

;CONTINUE EXECUTION

ASYNCHRONOUS SYSTEM TRAP (AST) SERVICES

Various system services allow a process to request that it be interrupt-
ed when a particular event (such as |I/O completion) occurs. Since the
interrupt occurs asynchronously with respect to the process’'s execu-
tion, the interrupt mechanism is called an asynchronous system trap
(AST). The trap provides a transfer of control to a user-specified rou-
tine that handles the event.

The system services that use the AST mechanism accept as an option-
al argument the address of an AST service routine, that is, a routine to
be given control when the event occurs.

328

System Services

These service routines are:

® Queue I/0 Request ($QI0)

e Set Timer ($SETIMR)

e Set Power Recovery AST ($SETPRA)

e Update Section File on Disk (SUPDSEC)
e Get Job/Process Information ($GETJPI)

For example, when the user calls the Set Timer ($SETIMR) system
service, the user can specify the address of a routine to be executed at
a particular time of day or when a time interval expires.

The service sets the timer and returns; the program image continues
executing. When the requested timer event occurs, the system
“delivers” an AST by interrupting the process and calling a specified
routine, unless AST delivery is temporarily blocked. (Conditions that
can prevent AST delivery are explained later on in this section).

Each request for an AST is qualified by the access mode from which
the AST is requested. Thus, if an image executing in user mode re-
quests naotification of an event by means of an AST, the AST service
routine executes in user mode.

A process that is in certain wait states can be interrupted for the
delivery of an AST and the execution of an AST service routine. When
the AST service routine completes execution, the process is returned
to the wait state, if the condition that caused the wait is still in effect.

The following wait states may be interrupted:
e Event flag waits

e Hibernation

® Resource waits and page fault waits

An AST routine must be a separate routine. The system calis the AST
with a CALLG instruction; the routine must return using a RET instruc-
tion. If the service routine modifies any registers other than RO or R1, it
must set the appropriate bits in the entry mask so that the contents of
those registers are saved.

On entry to the AST service routine, the Argument Pointer (AP) regis-
ter points to an argument list that has the format:

329

System Services

31 87 0]
0] 5

AST PARAMETER

RO

R1

PC

PSL

The registers RO and R1, the PC, and PSL in this list are those that
were saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine
so that it can identify the event that caused the AST.

When an AST occurs, the system may not be able to deliver the inter-

rupt to the service routine immediately. An AST cannot be delivered if

any of the following conditions exist:

1. An AST service routine is currently executing at the same or at a
more privileged access mode ‘

2. AST delivery is explicitly disabled for the access mode of the AST
being delivered

3. The process is executing at an access mode more privileged than
that for which the AST is declared

If an AST cannot be delivered when the interrupt occurs, the AST is
queued until the conditions disabling delivery are removed. Queued
ASTs are ordered by the access mode from which they were declared,
with those declared from more privileged access modes at the front of
the queue. If more than one AST is queued for an access mode, the
ASTs are delivered in the order in which they are queued.

The following example illustrates a program that calls the
$SETIMR system service with a request for an AST when a timer event
occurs.

330

System Services

NOON: .BLKQ 1 ‘WILL CONTAIN 12:00 SYSTEM TIME
LIBRA: WORD 0 :ENTRY MASK FOR LIBRA
$SETMIR—S DAYTIM=NOON.ASTADIR=TIMEAST :SET TIMER
BSBW ERROR +CHECK FOR ERROR
. ' Timer
Interrupt
TIMEAST:
.WORD o] JENTRY MASK FOR AST ROUTINE
. :HANDLE TIMER REQUEST
RET \DONE
.END LIBRA

® The call to the $SETIMR system service requests an AST at 12:00
noon

® The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time format. For details on how this is
done, see “Timer and Time Conversion Services.” The ASTADR
argument refers to TIMEAST, the address of the AST service routine

® When the call to the system service completes, the process
continues execution

® The timer expires at 12:00 and notifies the system. The system inter-
rupts execution of the process and gives contro! to the AST service
routine

e The user routine TIMEAST handles the interrupt. When the AST
routine completes, it issues a RET instruction to return control to the
program. The program resumes execution at the point at which it
was interrupted

Listed below are the services that enable or disable AST delivery or
that require an AST service routine as an argument. (Other services
accept an AST service routine as an optional argument.)

Set AST Enable—3$SETAST
The Set AST Enable system service enables or disables the delivery of
ASTs for the access mode from which the service call was issued.

Declare AST—$DCLAST

The Declare AST system service queues an AST for calling or for a
less privileged access mode. For example, a routine executing in sup-
ervisor mode can declare an AST for either supervisor or user mode.

Set Power Recovery AST—S$SETPRA

The Set Power Recovery AST system service establishes a routine to
receive control using the AST mechanism after a power recovery is
detected.

331

System Services

LOGICAL NAME SERVICES

The VAX/VMS logical name services provide a technique for manipu-
lating and substituting character string names. Before discussing the
logical name services, the nature and use of logical names themselves
and of the software structures known as logical name tables will be
examined.

Logical names are commonly used to specify devices or for in-
put/output operations. The user can code programs with logical or
symbolic names to refer to physical devices or files, and then establish
an equivalence or real name by issuing the ASSIGN command from
the command stream prior to program execution. When the program
executes, a reference to the logical name results in the substitution of
the equivalence name.

Logical and equivalence name pairs are maintained in three logical
name tables. Each table is associated with a unique number identifier,
as follows:

Table ’ Number
Process 2
Group 1

System 0

A process logical name table contains names used exclusively by the
process. A process logical hame table exists for each process in the
system. Some entries in the process logical name table are made by
system programs executing at more privileged access modes; these
entries are qualified by the access mode from which the entry was
made. Table 11-2 illustrates a user process logical name table.

This process'logical hame table equates the logical name TERMINAL
to the specific terminal TTA2:. INFILE and OUTFILE are equated to
disk file specifications: these logical names.were created from
supervisor mode.

Table 11-2 Sample Process Logical Name Table (Group=200)

Logical Name Equivalence Name Access Mode
TERMINAL TTA2: User

INFILE ' DM1:[HIGGINS]TEST.DAT Supervisor
OUTFILE DM1:[HIGGINS]TEST.OUT Supervisor

The group logical name table contains names that.cooperating proc-
esses in the same group can use. The user must have special privilege

332

System Services

to place a name in the group logical name table. Table 11-3 illustrates
a sample group logical name table.

Table 11-3 Sample Group Logical Name Table

Logical Name Equivalence Name Group Number
TERMINAL TTA1: 100
MAILBOX MB3: 200
DISPLAY TERMINAL 200
TERMINAL - TTA3: 300

The group logical nhame table shows entries qualified by group num-
bers; only processes that have the indicated group number can ac-
cess these entries.)

In Group 100, the logical name TERMINAL is equated to the terminal
TTA1:. Individual processes in Group 100 that want to refer to the
logical name TERMINAL do not individually have to assign it an equi-
valence name.

Group 200 has entries for logical names MAILBOX and DISPLAY.
Other processes in Group 200 can use these logical names for input
and output operations.

In Group 300, the logical name TERMINAL is equated to the physical
device name TTAS3:. Note that there are two entries for TERMINAL in
the group logical name table. These are discrete entries, since they
are qualified by the number of the group to which they belong. Other
processes in Group 300 can refer to this logical name TERMINAL
without individually having to assign it an equivalence name.

The system logical name table contains names that all processes in
the system can access. This table includes the default names for all
system-assigned logical names. Only users with special privilege may
place a name in the system logical table. Table 11-4 illustrates a
system logical name table.

Table 11-4 Sample System Logical Name Table

Logical Name Equivalence Name
SYS$LIBRARY DBAO:[SYSLIB]
SYS$SYSTEM' DBAOQ:[SYSEXE]

333

System Services

The system logical name table contains the default physical device
names for all processes in the system. SYS$LIBRARY and
SYS$SYSTEM provide logical names for all users to refer to the direc-
tories containing system files.

The VAX/VMS operating system logical name services are listed be-
low.

Create Logical Name—$CRELOG

The Create Logical Name system service inserts a logical name and its
equivalence name into the process, group, or system logical name
table. If the logical name already exists in the respective table, the new
definition supersedes the old.

In the following example, the user can perform an assignment within a
program by providing character string descriptors for the name
strings and use the $CRELOG system service. The logical name TER-
MINAL is equated to the physical device name TTA2:.

TERMINAL: DESCRIPTOR :DESCRIPTORFOR LOGICAL NAME
TTNAME: DESCRIPTOR :DESCRIPTOR FOR EQUIVALENCE
$CRELOG-S - TBLFLG=#2.LOGNAM=TERMINAL.EQLNAM = TTNAME

The TBLFLG argument indicates the logical name table number, in
this case, the process logical name table.

Delete Logical Name—S$DELLOG
The Delete Logical Name system service deletes a logical name and its

equivalence name from the process, group, or system logical name
table. ‘

For example, the following call deletes all names from the process
logical name table that were entered in the table from user mode:

$DELLOG-S TBLFLG=#2

Translate Logical Name—$TRNLOG

The Translate Logical Name system service searches the logical name
tables for a specified logical name and returns an equivalence name
string. The process, group, and system logical name tables are
searched, in that order. ‘

334

System Services

INPUT/OUTPUT SERVICES
The VAX/VMS operating system provides the user with two methods
to perform input/output operations:

e Indirectly, through VAX-11 Record Management Services (RMS)
e Directly, through input/output system services
VAX-11 RMS provides a set of macros for general purpose, device-

independent functions, such as data storage, retrieval, and modifica-
tion.

The 1/0 system services permit the user to utilize the 1/0 resources of
the operating system directly in a device-dependent manner. The 1/0
system services can perform the following functions:

e Assign and deassign channels
® Queue I/0 requests

e Synchronize I/0 completion

e Allocate and deallocate devices
e Create mailboxes

e Perform network operations

Listed below are the input/output system services.

Assign I/0 Channel—$ASSIGN

The Assign 1/0 Channel system service 1) provides a path between a
device and an 1/0O channel so that input/output operations can be
performed on the device, or 2) establishes a logical link with a remote
node on a network. '

When coding a call to the $ASSIGN service, the following arguments
must be passed:

® Name of device (physical or logical device name)

® Address of word to receive channel number

The service returns a channel number which must be used when cod-
ing an input or output request. In the following example, an 1/0 chan-

nel is assigned to device TTA2. The channel number is returned in the
word whose address is TTCHAN.

TTNAME: .ASCID ITTA2/ . :TERMINAL DESCRIPTOR
TTCHAN: .BLKW 1 :TERMINAL CHANNEL NUMBER

.$ASSIGN S DEVNAM=TTNAME,CHAN=TTCHAN

335

System Services

Deassign I/0 Channel—$DASSGN

The Deassign I/0 Channel system service releases an 1/0 channel
acquired for input/output operations with the Assign 1/0 channel
($ASSIGN) system service.

In the following example, the user releases the terminal channel as-
signment acquired in the previous $ASSIGN example.

$DASSGN_S CHAN=TTCHAN

Queue I/O Request—$QIO0

The Queue I/0 Request system service initiates an input or output

operation by queuing a request to a device associated with a specific

channel. Control returns immediately to the issuing process, which

can synchronize I/0 completion in one of three ways:

1. Specify the address of an AST routine that is to execute when the
1/0 completes

2. Waitfor a specified event flag to be set

3. Poll the specified 1/0 status block for a completion status

The event flag and 1/0 status block, if specified, are cleared before the
170 request is queued.

In the following example, the user synchronizes 1/0 completion by
coding an event flag as an argument to $QIO.

$QIO_S EFN=#1,... ;ISSUE 1ST I/0 REQUEST
BSBW ERROR ;QUEUED SUCCESSFULLY?
$QI0O_S EFN=#2,... ;ISSUE 2ND I/0 REQUEST
BSBW ERROR ;QUEUED SUCCESSFULLY?

$WFLAND S EFN=#0,MASK=#{B0110
sWAIT TILBOTH DONE

e When an event flag number is coded as an argument, $QIO clears
the event flag when it queues the 1/0 request. When the 1/0 com-
pletes, the flag is set -

¢ In this example, the program issues two 1/0 requests. A different
event flag is specified for each request

e The Wait for Logical AND of Event Flags ($WFLAND) system service
places the process in a wait state until both 1/0 operations are
complete. The EFN argument can specify any flag in the cluster
containing the flags for which the user is waiting. The MASK argu-
ment indicates the specific flags for which the user is waiting

Queue I/0 Request and Wait For Event Flag—$QIOW

The Queue I/0 Request and Wait for Event Flag system service com-
bines the $QIO and $WAITFR (Wait for Single Event Flag) system
services. It can be used when a program must wait for I/0 completion.

336

System Services

Queue Input Request and Wait For Event Flag—S$INPUT

The $INPUT macro is a simplified form of the Queue 1/0 Request and
Wait for Event Flag ($QIOW) system service. This macro queues a
virtual input operation using the |0$ READVBLK function code and
waits for I/0 completion.

Queue Output Request and Wait for Event Flag—$OUTPUT

The $OUTPUT macro is a simplified form of the Queue 1/0 Request
and Wait for Event Flag (3QIOW) system service. This macro performs
a virtual output operation using the 10$_WRITEVBLK function code
and waits for I/0 completion.

Formatted ASCIl Output—$FAO

The Formatted ASCIL Output system service converts binary values
into ASCII characters and returns the converted characters in an
output string. It can be used to:

® Insert variable character string data into an output string

e Convert binary values into the ASCII representations of their deci-
mal, hexadecimal, or octal equivalents and substitute the result into
an output string

Input to the $FAO service consists of:

1. A control string that contains the fixed text portion of the output
and formatting directives. The directives indicate the position
within the string where substitutions are to be made, and describe
the data type and length of the input values that are to be substi-
tuted or converted

2. An output buffer to contain the string after conversions and sub-
stitutions have been made

3. An optional argument indicating a word to receive the final length
of the formatted output string

4. Parameters that provide arguments for the directive

Formatted ASCIl Output with List Parameter—$FAOL

The Formatted ASCII Output with List Parameter macro provides an
alternative way to specify input parameters for a call to the $FAO
system service.

Allocate Device—$ALLOC

The Allocate Device system service reserves a device for exclusive use
by a process and its subprocesses. No other process can allocate the
device or assign channels to it until the image that called $ALLOC exits
or explicitly deallocates the device with the Deallocate Device ($DAL-
LOC) system service.

337

System Services

In coding the $ALLOC system service, a-device name must be provid-
ed. The device name specified can be:

e A physical device name, for example, the tape drive MTB3:

e A logical name, for example, TAPE

® A generic device name, for example, MT:

If the user specifies a physical device name, $ALLOC attempts to
allocate the specified device. If the user specifies a logical name,
$ALLOC translates the logical name and attempts to allocate the
physical device name equated to the logical name. If the user specifies
a generic device name, but not a specific controller and/or unit num-
ber, $ALLOC attempts to allocate any available dewce of the specified
type.

The following example illustrates the aliocation of a tape device spec1-
fied by the logical name TAPE.

LOGDEV: .ASCID ITAPE/ :LOGICAL NAME FOR TAPE
DEVDESC: :DESCRIPTOR FOR PHYSICAL NAME
. LONG 64 ;LENGTH OF BUFFER
LONG DEVDESC, ;ADDRESS OF BUFFER
.BLKB 64 ;GET PHYSICAL NAME RETURNED
TAPECHAN:

BLKW 1 :CHANNEL FOR I/0 TAPE

Z$ALLOC—S DEVNAM=LOGDEV, PHYLEN=DEVDESC=DEVDESC.-
PHYBUF =DEVDESC

BSBW ERROR
$ASSIGN-S DEVNAM=DEVDESC.CHAN=TAPECHAN {ASSIGN
CHANNEL
BSBW ERROR
JCONTINUEWITH 170
$DASSGN-S CHAN=TAPECHAN ;DEASSIGN CHANNEL
BSBW ERROR

$DALLOC-S DEVNAM=DEVDESC \DEALLOCATE TAPE

e The $SALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character
string descriptor LOGDEV. The PHYBUF argument refers to the
buffer provided to receive the physical device name of the device
actually allocated, and its length. $ALLOC translates the logical
name TAPE and returns the equivalence name string into the buffer
at DEVDESC. It writes the length of the string in the first word of
DEVDESC

® The $ASSIGN command uses the charactér string returned by the
$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN

338

System Services

® When |I/0 operations are completed, the $DASSGN system service
deassigns the channel and the $DALLOC system service deallo-
cates the device. The channel must be deassigned before the device
can be deallocated

Deallocate Device—$DALLOC ‘

The Deallocate Device system service deallocates a previously allocat-
ed device. Exclusive use by the issuing process is relinquished and
other processes can assign or allocate the device.

The following example illustrates device deallocation.
$DALLOC_S DEVNAM=DEVDESC

The system automatically deallocates at image exit any devices that
were allocated from within the image.

Mount Volume—$MOUNT

The Mount Volume system service allows a process to mount a single
volume, or a volume set. A device name, a volume name, and a logical
name must be specified.

Dismount Volume—$DISMOU

The Dismount Volume system service allows a process to dismount a
volume set. A call to $DISMOU must specify a device name. If the
volume mounted on .the device is part of a full mounted volume set,
and no flags are specified, the whole volume set is dismounted.

Get 1/0 Channel Information—$GETCHN

The Get /0 Channel Information system service returns information
about a device to which an I/0 channel has been assigned. Two sets of
information are optionally returned:

e Primary device characteristics

e Secondary device characteristics

In most cases, the two sets of characteristic information are identical.
However, the two sets. provide different information .in the following
cases: ‘ .

o |f the device has an associated mailbox, the primary characteristics
are those of the assigned device and the secondary characteristics
are those of the associated mallbox

o If the device is a spooled .device, the primary charactenstlcs are
those of the intermediate device and the secondary characteristics
are those of the spooled device

@ If the device represents a logical link on the network the secondary
characteristics contain information about the link .

339

System Services

Get I/O Device Information—$GETDEV

The. Get I70 -Device Information system service returns information
about-an 1/0 device. This service allows a process to obtain informa-
- tion about a device to which the process has not assigned a channel."

Get Device/Volume Information—$GETDVI '

The $GETDVI system service returns information about an 1/0 device.
As with the $GETDEV system service, the process does not need to
have an 1/0 channel assigned to the device.

Cancel I/O on Channel—$CANCEL

The Cancel I/0 on Channel system service cancels all pending 1/0
requests on a specific channel. This may include the request currently
in progress, as well as all I/0 requests queued.

For example, the $SCANCEL system service can be called as follows:
$CANCEL_S CHAN=TTCHAN

In this example, the $CANCEL system service initiates the cancellaﬁon
of all pending 1/0 requests on the channel whose number is located at
TTCHAN.

Create Mailbox and Assign Channel—$CREMBX

Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using
RMS or I/0 services. When a mailbox is created, a channel is assigned
to it for use by the creating process. Other processes can then assign
channels to the mailbox using the $CREMBX or $ASSIGN system ser-
vice.

The Create Mailbox and Assign Channel ($CREMBX) system service
creates the mailbox or, if the specified mailbox exists, assigns a
channel to it. When the SCREMBX service creates a mailbox, it identi-
fies the mailbox by a user-specified logical name and assigns it an
equivalence name. The equivalence name is a physical device name in
the format MBAnN:, where n is a unit number.

When another process assigns a channel to the mailbox with the $AS-
SIGN system service, it can identify the mailbox by its logical name.
$ASSIGN automatically translates the logical name. The process can
obtain the MBAn: name by translating the logical name (with the
$TRNLOG system service), or it can call the Get I/0 Channel Informa-
tion ($GETCHN) system service to obtain the unit number and the
physical device name. .

340

System Services

Mailboxes are either temporary or permanent; user privileges are re-
quired to create either type. $CREMBX enters the logical name and
equivalence name for a temporary mailbox in the group logical name
table of the process that created it. The system deletes a temporary
mailbox when no more channels are assigned to it.

The $CREMBX system service enters the logical name and equi-
valence name for a permanent mailbox in the system logical name
table. Permanent mailboxes continue to exist until they are specifically
marked for deletion with the Delete Mailbox ($DELMBX) system ser-
vice.

Delete Mailbox—$DELMBX

The Delete Mailbox system service marks a permanent mailbox for
deletion.” The actual deletion of the mailbox and of its associated
logical name assignment occurs when no more /O channels are as-
signed to the mailbox.

Broadcast—$BRDCST

The Broadcast system service writes a message to one or more termi-
nals.

Send Message to Accounting Manager—$SNDACC

The Send Message to Accounting Manager system service controls
accounting log activity and allows a process to write an arbitrary data
message into the accounting log file.

By default, the system writes a record into the accounting log: file
whenever a job terminates. Termination records are written for inter-
active users, batch jobs, non-interactive processes, log-in failures,
and print jobs. The $SNDACC system service allows users to write
additional data into the accounting log and allows privileged users to

disable or enable all accounting or accountmg for particular types of
jobs.

Send Message to Symbiont Manager—$SNDSMB :

The Send Message to Symbiont Manager system service is used by
the operating system to queue users’ print files to a system printer or
to queue command procedure files for detached job execution.
Symbiont manager requests:

® Create and delete queues

® Add or delete files from a queue

e Change the attributes of files in a queue

e Start and restart dequeuing

341

System Services

Send Message to Operator—$SNDOPR

The Send Message to Operator system service allows a process to
send a message to one -or more terminals designated as operators’
terminals and optionally receive a reply.

This service is used by the system to implement the REQUEST and
REPLY commands, which provide communication between users and
operators. An operator establishes a terminal as an operator’s console
by issuing the REPLY/ENABLE command, specifying the types of
message that will be handled. Users can then send messages to the
operator with the REQUEST command, optionally requesting replies.

Send Message to Error Logger—$SNDERR

The Send Message to Error Logger system service writes an arbitrary
message to the system error log file. The user-specified message is
preceded by the date and time. '

Get Message—$GETMSG :

The Get Message system service locates and returns message text
associated with a given message identification code into the caller’s
buffer. The message can be from the system message file or can be a
user-defined message.

This service is used by the operating system to retrieve messages
based on unique message identifications and to prepare to output
them. :

Put Message—$PUTMSG

The Put Message system service is a generalized message formatting
and output routine used by the operating systemto write informational
and error messages to user processes. :

$PUTMSG retrieves a message from the system message file by call-
ing the Get Message ($GETMSG) system service and formats the
message by calling the Formatted ASCIl Output (SFAO) system ser-
vice, if necessary. If the caller specifies an action routine to receive
control, the action routine is called before $PUTMSG writes each for-
matted message to the process’s current output device. If the proc-
ess’s error device is different than the output devnce $PUTMSG writes
the message to the error device as well.

The action routine can access the message text, scan it, write itk toa
user-specified file or device, modify it, and so on.

PROCESS CONTROL SERVICES
A process is the basic executable entity scheduled by the system
software. It provides the context in which an image executes. When

342

System Services

the user logs onto the system, the system creates a process for the
execution of program images.

A process is either a subprocess or a detached process. A subprocess
receives a portion of its creator’s resource quotas, and must terminate
before the creator. A detached process is fully independent. An exam-
ple of a detached process is the process created by the system for the
user during login.

Process control services allow the user to create, delete, and control
the execution of processes.

Create Process—$CREPRC _

The Create Process system service allows a process to create another
process. The created process can be either a subprocess or a
detached process.

When coding the $CREPRC system service, the IMAGE argument
must be provided. This argument provides the process with the name
of the program image to execute. The specification of the UIC argu-
ment controls whether the created process is a subprocess: or a de-
tached process. In the following example, a subprocess is created to
execute the program image in the file named LIBRA.EXE.

PROGRAM: .ASCID /LIBRA/ (IMAGE TO EXECUTE

iBCHEPRC—S IMAGE=PROGRAM,... iCREATE PROCESS TO EXE-
CUTE LIBRA

In this example, only a file name is specified; the service uses current
disk and directory defaults, performs logical nhame translation, uses
the default file type of EXE, and locates the most recent version of the
image file. When the subprocess completes execution of the image,
the subprocess is deleted.

Delete Process—$DELPRC

The Delete Process system service allows a process to delete itself or

another process.

Process deletion completely removes a process from the system.

Deletion occurs as a result of any of the following conditions:

® The command stream contains a LOGOUT command or an end-of-
file

® An image specified by $CREPRC exits

® A process issues the Delete Process ($DELPRC) system service

343

System Services

User privileges are required to delete:
e Other processes in the same group (GROUP privilege)
e Any process in the system (WORLD privilege)

For example, if a process has created a subprocess named ACE, it
can delete the subprocess as shown below:

PROCESS: ASCID/ACE/
$DELPRC-S PRCNAM=PROCESS

Hibernate—$HIBER

There are two ways to halt the executlon of a process temporarlly
hibernation, performed by the Hibernate ($HIBER) system service,
and suspension, performed by the Suspend Process ($SUSPND) sys-
tem service. However, hibernation and suspensmn differ in the follow-
ing ways:

Process Hibernation and Suspension

Hibernation Suspension

Can only hibernate self Can suspend self or another
process, depending on privilege

Reversed by SWAKE system Reversed by $RESUME system

service service

Interruptible; can receive ASTs Noninterruptible; cannot re-
ceive ASTs

Can wake self Cannot cause self to resume

Can schedule wakeup atanab- . Cannot schedule resumption
solute time or at a fixed time in- S

terval

Hibernate/wake complete Requires system dynamic
quickly; require little system . memory

overhead

The Hibernate ($HIBER) system service allows a process to make itself
inactive but to remain known to the system so that it can be interrupt-
ed, for example, to receive ASTs. A hibernate request is a wait-for-
wake-event request. When a wake is issued for a hibernating process
with the $WAKE system service or as a result of a Schedule Wakeup
($SCHDWK) system service, the process continues execution at the
instruction following the Hibernate call.

344

System Services

Wake—$WAKE
The Wake system service activates a process that has placed itself in a
state of hibernation with the Hibernate ($HIBER) system service.

In the following example, the $WAKE system service is issued to wake
(activate) the process ORION. :

ORIONDESC: .ASCID /ORION/ :DESCRIPTOR FOR PROCESS NAME
Z$WAKE-S PRCNAM=O0ORIONDESC ‘WAKE
ORION
BSBW ERROR

Schedule Wakeup—$SCHDWK

The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the Hiber-
nate ($HIBER) system service. A wakeup can be scheduled for a spec-
ified absolute time or for a delta time. Optionally, the request can
specify that the wakeup is to be repeated at fixed intervals.

For an example of schedule wakeup, refer to “Timer and Time Conver-
sion Services.”

Suspend Process—$SUSPND

The Suspend Process system service allows a process to suspend
itself or another process. A suspended process cannot receive ASTs
or otherwise be executed until another process resumes or deletes it.
User privileges are required to suspend:

e Other processes in the group (GROUP privilege)

® Any other process in the system (WORLD privilege)

Resume Process—$RESUME

The Resume Process system service causes a process previously
suspended by the Suspend Process (SUSPND) system service to
resume execution, or cancels the effect of a subsequent suspend re-
quest.

User privileges are required to resume execution of:

e Other processes in the same group (GROUP privilege)

® Any other process in the system (WORLD privilege)

345

System Services

Cancel Wakeup—$CANWAK :

The Cancel Wakeup system service removes all scheduled wakeup
requests for a process from the timer queue, including those made by
the caller or by other processes. Scheduled wakeup requests are
made with the Schedule Wakeup ($SCHDWK) system service.

User privileges are required to cancel scheduled wakeup requests for:
e Other processes in the same group (GROUP privilege)

® Any other process in the system (WORLD privilege)

Exit—$EXIT

The Exit system service is used by the operating system to initiate
image rundown when the current image in a process completes exe-
cution. Control normally returns to the command interpreter.

Force Exit—$FORCEX

The Force Exit system service causes an Exit (8EXIT) system service
call to be issued on behalf of a specified process.

User privileges are required to force an exit for: ‘

e Other processes in the same group (GROUP privilege)

e Any other process in the system (WORLD privilege)

In the following example, a call to $FORCEX causes the image execut-
ing in the process named SMITH to exit.

PROGNAME: /SMITH/ . ;DESCRIPTOR FOR PROCESS NAME

$FORCEX-S PRCNAM=PROGNAME

Declare Exit Handler—$DCLEXH

The Declare Exit Handler system service describes an exit handling
routine to receive control when an image exits. Image exit normally
occurs when the image currently executing in a process returns con-
trol to the operating system. Image exit may also occur when the Exit
($EXIT) or Force Exit (JFORCEX) system service is called.

The following example illustrates the use of the Declare Exit Handler
system service. :

346

System Services

EXITBLOCK: {EXIT CONTROL BLOCK
LONG 0 /SYSTEM USES THIS FOR POINTER
.LONG EXITRTN ;/ADDRESS OF EXIT HANDLER
.LONG 1 ;NUMBER OF ARGS FOR HANDLER
.LONG STATUS :ADDRESS TO RECEIVE STATUS CODE
STATUS: BLKL 1 ;STATUS CODE FROMSEXIT
PEGASUS: WORD ™ ;ENTRY MASK FOR PEGASUS
$DCLEXH-S DESBLK=EXITBLOCK ;DECLARE EXIT HANDLER
RET ;END OF MAIN ROUTINE
EXITRTN: ' JEXIT HANDLER
WORD ™ JENTRY MASK
CMPL STATUS #SS$-NORMAL iNORMAL EXIT?
BEQL 108 YES,FINISH
. :NO.CLEAN UP
108: RET {FINISHED

o EXITBLOCK is the exit control block for the exit handler EXITRTN.
The third longword indicates the number of arguments to be
passed. In this example only one argument is passed; this is the
address of a longword for the system to store the return status code.
This argument must be provided in an exit control block

e The $DCLEXH system service call designates the address of the exit
control block, thus declaring EXITRTN as an exit handler

® EXITRTN checks the status code. If-this is a normal exit, EXITRTN
returns control. Otherwise, it handles the error condition

Cancel Exit Handler—$CANEXH

The Cancel Exit Handler system service deletes an exit control block
from the list of control blocks for the calling access mode. Exit control
blocks are declared by the Declare Exit Handler ($DCLEXH) system
service, and are queued according to access mode in a last-in, first-
out order.

Set Process Name—$SETPRN
The Set Process Name system service allows a process to establish or
to change its own process name.

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name
to DIPSY as follows:

DIPSY: DESCRIPTOR ;NAME DESCRIPTOR

§SETPRN-S PRCNAM=DIPSY

347

System Services

Set Priority—$SETPRI

The Set Priority system service changes a process’s base and current

priority. The system scheduler uses the current priority to determine

the order in which executable processes are to run.

User privileges are required to:

® Change the priority for other processes in the same group (GROUP
privilege)

® Change the priority for any other process in the system (WORLD
privilege)

e Set any process’s priority to a value greater than one’s own initial
base priority (SETPRI privilege)

Set Resource Wait Mode—$SETRWM

The Set Resource Wait Mode system service allows a process to indi-

cate what action a system service should take when it lacks a system

resource required for its execution:

e When resource wait mode is enabled (the default mode), the service
waits until a resource is available and then resumes execution

® When resource wait mode is disabled, the service returns control to
the caller immediately with a status code indicating that a resource
is unavailable

Get Job/Process Information—$GETJPI

The Get Job/Process Information system service provides account-
ing, status, and identification information about a specified process.
User privileges are required to obtain information about:

e Other processes in the same group (GROUP privilege)

® Any other process in the system (WORLD privilege)

Set Privileges—$SETPRV
The Set Privileges system service aliows a process to enable or dis-
able specified user privileges.

TIMER AND TIME CONVERSION SERVICES

Many applications require the scheduling of program activities based

on clock time. In VAX/VMS, an image can schedule events for a speci-

fic time of day, or after a specified time interval. Timer services can:

e Schedule setting an event flag or queuing an asynchronous system
trap (AST) for the current process, or cancel a pending request that
has not yet been honored

e Schedule a wakeup request for a hibernating process, and cancel a
pending wakeup request that has not yet been honored

¢ Set the system time

348

System Services

VAX/VMS maintains the current date and time (using a 24-hour clock)
in 64-bit format. The time value is a binary number in 100-nanosecond
units offset from the system base date and time, which is 00:00
o’clock, November 17, 1858. This is the Smithsonian base date and
time for the astronomical calendar.

All the time values passed to system services must also be in 64-bit
format. A time value can be expressed as:

e An absolute time, which is specific date and time of day. Absolute
times are always positive values

e A delta time, which is a future offset (number of hours, minutes,
seconds, and so on) from the current time. Delta times are always
expressed as negative values

Time conversion services:

e Obtain the current date and time in an ASCII string or in system
format

e Convert an ASCII string into the system time format
e Convert a system time value into an ASCII string
e Convert the time from system format to integer values

Listed below are the Timer and Time Conversion System Services.

Get Time—$GETTIM

The Get Time system service furnishes the current system time in 64-
bit format. The time is maintained in 100-nanosecond units from the
system base time.

The current time can be obtained in system format with the Get Time
($GETTIM) system service, which places the time in a quadword buff-
er. For example:

TIME: -BLKQ 1 :BUFFER FOR TIME

:SGETTIME-S TIMADR=TIME JGET TIME

This call to $GETTIM returns the current date and time system format
in the quadword buffer TIME.

Convert Binary Time to Numeric Time—$NUMTIM

The Convert Binary Time to Numeric Time system service converts an
absolute or delta time from 64-bit system time format to binary integer
date and time values.

349

System Services

Convert Binary Time to ASCII String—$ASCTIM

The Convert Binary Time to ASCII String (ASCTIM) system service
converts a time in system format to an ASCIH string and returns the
string in a 23-byte buffer. To obtain the current time in ASCII, code the
$ASCTIM system service as foliows:

ATIMENOW: ;DESCRIPTOR FOR ASCII TIME
.LONG 23 ;LENGTH OF BUFFER
LONG ATIMENOW, ;ADDRESS OF BUFFER
.BLKB ;23 BYTES TOHOLD TIME

i$ASCTIM-S TIMBUF=ATIMENOW JGET CURRENT TIME

The string returned by the service in the buffer ATIMENOW has the
format:

dd-mmm-yyyy hh:mm:ss.cc

dd is the day of the month, mmm is the month (a 3-character alphabet-
ic abbreviation), yyyy is the year, and hh:mm:ss.cc is the time in hours,
minutes, seconds, and hundredths of seconds.

Convert ASCII String to Binary Time—$BINTIM

The converse of the $ASCTIM system service is the Convert ASCI
String to Binary Time ($BINTIM) system service. The user provides the
service with the time in ASCII format, and the service converts the
string to a time value in 64-bit format suitable for input to the Set Timer
($SETIMR) or Schedute Wakeup ($SCHDWAK) system services.

When the user omits any of the fields in the ASCII string buffer, the
service uses the current date or time value for the field. Thus, to code a
date-independent timer request, the input buffer for the $BINTIM sys-
tem service would appear as illustrated in the example below. The two
hyphens and at least a single blank space must precede the time field.

ANOON: .ASCID /--12:00.00/ ;ASCII 12 NOON
BNOON: BLKQ 1 :BUFFER FOR BINARY 12

$BINTIM-S TIMBUF=ANOON,TIMEADR=BNOON ;CONVERT TIME

When the $BINTIM service completes, a 64-bit time value representing
“noon today” is returned in the quadword at BNOON.

The $BINTIM system service also converts ASCII strings to delta time
values to be used as input to timer services. The buffer for delta time
ASCII strings has the format:

ddd hh:mm:ss.cc

350

System Services

The first field, indicating the number of days, must be specified as 0 if
coding a “today” delta time.

The following example shows how to use the $BINTIM service to ob-
tain a delta time in system format.

ATENMIN: DESCRIPTOR <000:10:00.00> JASCII TEN MINUTES
BTENMIN:
.BLKQ 1 ;BUFFER FOR BINARY TEN
. 'MINUTES .
iBINTIM-S TIMBUF=ATENMIN,TIMADR=BTENMIN ;CONVERT
TIME

Set Timer—$SETIMR

The Set Timer system service allows a process to schedule setting an
eventflag and/or queuing an AST at some future time. The time for the
event can be specified as an absolute time or as a delta time.

Cancel Timer Request—$CANTIM

The Cancel Timer Request system service cancels all or a selected
subset of the Set Timer requests previously issued by the current
image executing in a process. Cancellation is based on the request
identification specified in the Set Timer ($SETIMR) system service. If
more than one timer request was given with the same request
identification, they are all canceled.

Schedule Wakeup—$SCHDWK

The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the Hiber-
nate ($HIBER) system service. A wakeup can be scheduled for a spec-
ified absolute time or for a delta time. Optionally, the request can
specify that the wakeup is to be repeated at fixed intervals.

Cancel Wakeup—$CANWAK

The Cancel Wakeup system service removes all scheduled wakeup
requests for a process from the timer queue, including those made by
the caller or by other processes. Scheduled wakeup requests are
made with the Schedule Wakeup ($SCHDWAK) system service.

Set System Time—$SETIME

The Set System Time service aliows users with operator (OPER) and
logical 1/0 (LOGIO) privileges to set the current system time. The user
can specify a new time or can recalibrate the current system time
using the hardware time-of-year clock. This service might be used, for
example, to synchronize two processors or to adjust to or from day-
light savings time.

351

System Services

CONDITION HANDLING SERVICES

A condition handler is a procedure that is given control when an ex-
ception occurs. An exception is an event that is detected by the hard-
ware or software and that interrupts the execution of an image. Exam-
ples of exceptionsinclude arithmetic overflow or underflow and
reserved opcode or operand faults.

If the user determines that a program needs to be informed of particu-
lar exceptions so that it can take corrective action, the user can code
and specify a condition handler. This condition handler, which will
receive control when any exception occurs, can test for specific ex-
ceptions.

If an exception occurs and a condition handler has not been specified,
the default condition handler established by the command interpreter
is given control. If the exception is a fatal error, the default condition
handler issues a descriptive message and performs an exit on behalf
of the image that incurred the exception.

Listed below are the Condition Handling Services.

Set Exception Vector—$SETEXV

The Set Exception Vector system service assigns a condition handler
address to an exception vector or cancels an address previously as-
signed to a vector.

Set System Service Failure Exception Mode—$SETSFM

This system service controls whether a software exception is generat-
ed when an error or severe error status code is returned from a system
service call. Initially, system service failure exceptions are disabled;
the caller shouid explicitly test for successful completion following a
system service call. ‘

Unwind Call Stack—$UNWIND

The Unwind Call Stack system service allows a condition handling
routine to unwind the procedure call stack to a specified depth.
Optionally, a new return address can be specified to alter the flow of
execution when the topmost call frame has been unwound.

Declare Change Mode or Compatibility Mode Handler—$DCLCMH
Declare Change Mode or Compatibility Mode Hander ($DCLCMH)
system service establishes the address of a routine to.receive control
when a Change Mode to User or Change Mode to Supervisor instruc-
tion trap occurs, or a compatibility mode fault occurs.

352

System Services

MEMORY MANAGEMENT SERVICES

The VAX/VMS memory management routines map and control the

relationship between physical memory and a process’s virtual address

space. These activities are, for the most part, transparent to the user

and user programs. However, in some cases the user may make the

program more efficient by explicitly controlling its virtual memory

usage. Memory Management services allow the user to:

® Increase or decrease the virtual address space available in a proc-
ess’s program or control region

e Control the process’s working set size and the swapping of pages
between physical memory and the paging device

e Define disk files containing data or shareable images and map the
file into the process’s virtual address space

Listed below are the Memory Management Services.

Expand Program/Control Region—$EXPREG

The Expand Program/Control Region system service adds a specified
number of new virtual pages to a process’s program region or control
region for the execution of the current image. Expansion occurs at the
current end of that region’s virtual address space.

For example, if the user desires to add four pages to a process’s
program region, the call to the $EXPREG system service is coded as
follows: ’

SPACE:
.BLKL 2 ;-RETURN START AND END OF NEW PAGES

-$EXPFIEG-S PAGCNT=#4,RETADR=SPACE,REGION=#0 ;GET 4
PAGES

e PAGCNT is the argument denoting the number of pages to be add-
ed:

e RETADR is the argument receiving the starting and ending virtual
addresses of added pages

¢ REGION is the argument denoting which region is to be expanded.
A value of 0 indicates program region (P0) and a value of 1 indicates
control region (P1)

Therefore, to add the same number of pages to the control region, the
user would specify REGION = #1.

Contract Program/Control Region—$CNTREG
The Contract Program/Control Region system service deletes a speci-
fied number of pages from the current end of the program or control

353

System Services

region of a process’s virtual address space. The deleted pages be-
come inaccessible; any references to them cause access violations.

The following example shows four pages being deleted from the

program (PO0) region:

$CNTREG_S PAGCNT=#4,REGION=#0

e PAGCNT is the argument denoting the number of pages to be delet-
ed

® REGION is the argument specifying from which region the pages are
to be deleted

Create Virtual Address Space—$CRETVA

The Create Virtual Address Space system service adds a range of
pages to a process’s virtual address space for the execution of the
current image or until a $DELTVA is issued for the pages.

Delete Virtual Address Space—$DELTVA
The Delete Virtual Address Space system service deletes a range of
addresses from a process’s virtual address space. Upon successful
completion of the service, the deleted pages are inaccessible; any
references to them cause access violations.

Create and Map Section—$CRMPSC

- The Create and Map Section system service creates and/or maps a
section. A section can be a disk file section or a page frame section. A
disk file section is data or code from a disk file that can be brought into
memory and made available, either only to the process that creates it
(private section) or to all processes that map to it (global section). A
page frame section consists of one or more physical page frames in
memory or I/0 space.

Creating a disk file secton involves defining all or part of a disk file as a
section. Mapping a disk file section involves making a correspon-
dence between virtual blocks in the file and pages in the caller’s virtual
address space. If the SCRMPSC service specifies a global section that
already exists, the service maps it. :

Map Global Section—$MGBLSC

The Map Global Section system service provides a process with ac-
cess to an existing global section. Mapping a global section estab-
lishes the correspondence between pages in the process’s virtual
address space and the physical pages occupied by the global section.

Update Section File on Disk—$UPDSEC
The Update Section File on Disk system service writes all modified
pages in an active private or global section back into the section file on

354

System Services

disk. One or more /0 requests are queued, based on the number of
pages that have been modified.

Delete Giobal Section—$DGBLSC

The Delete Global Section system service marks an existing perman-
ent global section for deletion. The actual deletion of the global section
takes place when all processes that have mapped the global section
have deleted the mapped pages.

Lock Pages in Working Set—$LKWSET _

The Lock Pages in Working Set system service allows a process to
specify that a group of pages that are heavily used should never be
replaced in the working set. The specified pages are brought into the
working set if they are not already there and are locked so that they do
not become candidates for replacement.

Unlock Pages From Working Set—$ULWSET

The Unlock Pages from Working Set system service allows a process
to specify that a group of pages that were previously locked in the
working set are to be unlocked and become candidates for page re-
placement like other working set pages.

Purge Working Set—$PURGWS

The Purge Working Set system service enables a process to remove
pages from its current working set to reduce the amount of physical
memory occupied by the current image.

Lock Pages in Memory—$LCKPAG

The Lock Pages in Memory system service locks a page or range of
pages in memory. The specified virtual pages are forced into the work-
ing set and then locked in memory. A locked page is not swapped with
its working set. These pages are not candidates for page replacement
and in this sense are locked in the working set as well.

Unlock Page From Memory—$UNLPAG -
The Unlock Pages from Memory system service releases the page
lock on a page or range of pages previously locked in memory by the
Lock Pages in Memory (3LCKPAG) system service.

Adjust Working Set Limit—$ADJWSL ‘

The Adjust Working Set Limit system service changes the current limit
of a process’s working set size by a specified number of pages. This
service allows a process to control the number of pages resident in
physical memory for the execution of the current image.

355

System Services

Set Protection on Pages—$SETPRT
The Set Protection on Pages system service allows an image running
in a process to change the protection on a page or range of pages.

Set Process Swap Mode—$SETSWM

The Set Process Swap Mode system service allows a process to con-
trol whether it can be swapped out of the balance set. Once a process
is locked in the balance set, it cannot be swapped out of memory until
it is explicitly unlocked.

CHANGE MODE SERVICES

The Change Mode system services allow a process to change to either
executive mode or kernel mode to execute a specified routine. Use of
these services requires privilege.

Change To Executive—$CMEXEC

The Change to Executive Mode system service allows a process to
change its access mode to executive, execute a specified routine, and
then return to the access mode in effect before the call was issued.

Change to Kernel Mode—$CMKRNL

The Change to Kernel Mode system service allows a process to
change its access mode to kernel, execute a specified routine, and
then return to the access mode in effect before the call was issued.

Adjust Outer Mode Stack Pointer—$ADJSTK

The Adjust Outer Mode Stack Pointer system service modifies the
stack pointer for a less privileged access mode. This service is used by
the operating system to modify a stack pointer for a less privileged
access mode after placing arguments on the stack.

LOCK MANAGEMENT SERVICES

The VMS Lock Management Services are a tool to help users develop
complex resource-sharing applications; for example, database sys-
tems. it provides a resource nametable for defining a resource, a
variety of lock modes for controlling access to it, and the means for
processes to queue lock requests.

The resource nametable is tree strudtured and allows the user to de-
fine their resource to practically any granularity or hierarchical depth.
There are six lock modes available.

o Null Lock (LCK$K-NLMODE)

e Concurrent Read (LCK$K-CRMODE)

e Concurrent Write (LCK$K-CWMODE)

356

System Services

e Protected Read (LCK$K-PRMOD)
e Protected Write (LCK$K-PWMODE)
® Exclusive (LCK$K-EXMODE)

If a lock request is made on a resource, and another process already
has an incompatible lock on that resource, the lock request is queued
until the resource is unlocked or the lock has been changed to a
compatible one. :

A process may have more than one lock at one time. The limit on the
number of locks depends on the quota assigned to the process.

For more information about the Lock Management Services, particu-
larly about lock compatibility and how this service can be applied,
refer to chapter 14.

Enqueue Lock Request - SENQ

The Enqueue Lock Request system service allows users to queue
requests to access a resource or to convert the current lock request
mode to another lock request mode.

An Enqueue Lock Request must specify the type of lock mode and, if it
is a new lock request (not a convert lock request), the resource name.
The options availabie to a procedure for synchronizing with the Lock
Management Service are the same as with the QIO system service;
that is:

® wait for a specified event flag to be set

L] specify the address of an AST routine to be executed when the
request is granted

¢ poll the lock status block for a lock-granted status

Enqueue Lock Request and Wait for Event Flag - SENQW

The SENQW system service combines the Enqueue Lock Request
($ENQ) and Wait for Single Event Flag (SWAITFR) system services. It
may be used when a program must wait until the requested lock has
been granted

Dequeue Lock Request - SDEQ

The $DEQ system service is used to dequeue locks that the calling
process had previously queued. All locks can be dequeued, whether
granted or waiting, new or conversion.

357

CHAPTER OVERVIEW ;
Input and output services require a complex management system;
otherwise the user is left with the task of producing detailed 1/0 control
for each process. Under the VAX/VMS operating system, complete
I/0 services are provided for handling, controlling, and queueing 1/0
needs or requests. VAX-11 RMS (Record Management Services) gives
users a wide range of file management techniques while remaining
transparent. This chapter- investigates the I/0 services of the VAX
software.

Topics include:

e Programming Interfaces

e Ancillary Control Processes (ACP)

® |/O Request Processing

e Queue I/0 (QIO)

¢ |/O Completion

e Record Management Services (RMS)

358

CHAPTER 12
INPUT/OUTPUT SERVICES

INTRODUCTION

The VAX/VMS operating system supports a wide variety of input and
output devices, including disks, magnetic tapes, lineprinters, and card
readers. Input/output operations are extremely flexible and as device-
and function-independent as possible.

Processes issue /0 requests to channels which have been previously
associated with particular physical device units. A channel is a logical
path through the system, connecting the user process with a predeter-
mined physical I/0 device unit. Each process is able to establish its
own communication between physical devices and channels. /0 re-
quests are queued by priority, first-in/first-out within priority, and then
processed strictly in queue order.

RMS and QIO ;

1/0 requests can be handled indirectly through the use of an esta-
blished set of procedures, such as VAX-11 RMS (Record Management
Services), or they can be interfaced directly to an 1/0 driver by means
of a QIO request. The principal feature of the VAX-11 RMS software is
its ease of use and device independence. Generally it is used for I/0
requests to mass storage devices, while the more direct—and compli-
cated—AQIO is for specialized use of terminals, special devices (e.g.,
graphics and special communications equipment), and highly
specialized formatting.

Figure 12-1 represents an overview of the major I/0O processing sys-
tem components and user relationships.

359

[dh]
(@]

USER
PROGRAM

OPERATING SYSTEM

Procedures

RECORD MANAGEMENT

SERVICES

Logical Record,

RMS OPEN, CLOSE File Relative,
READ, WRITE
A RMS OPEN, CLOSE
~ _ and$Qlo Virtuat Block
or L File Relative
a $QI0

Physical Block
Device Relative

1/0 SYSTEM
SERVICES

I Processes

file and
record \
acoess ANCILLARY
—_— - CONTROL
PROCESS
file
access < l
. DRIVER
file-structured or "\- FORK
non»file-structureiI PROCESS

Disk,
Magtape, or
Networks

Figure 12-1

RMS provides
record blocking/unblocking

user does own
record blocking and unblocking

User Interfaces to /0 Services

$891AJ8S INdINO/INduy

Input/Output Services

PROGRAMMING INTERFACES

The I/0 programming tools are: the Record Management services
(RMS)—for general purpose file and record processing—and the I/0
system services—for direct 1/0 processing. Table 12-1 summarizes
the programming interfaces.

Table 12-1 1/O Programming Interfaces

Method Program I/0 Purpose
Interface Components
Record I/0 RMS requests RMS, ACP Use Files-11
: and Driver disk or ANSI
magtape file

structure, de-
vice-indepen-
dent 1/0, use
RMS record
access
methods

File 170 RMS OPEN RMS for Use Files-11
and $QIO re- OPEN, ACP disk or ANSI
quests and Driver magtape file

structure, im-
plemernit own
record access
methods

Device I/0 $QlO requests Driver Fast dumps to
: disk or
magnetic
tape, foreign
file structure

RMS procedures provide device-independent, file-structured access
to all types of 1/O peripherals. The most general purpose type of
access enables programs to process logical records, where RMS soft-
ware automatically provides record blocking and unblocking.

RMS users can also choose to perform their own record blocking on
file-structured volumes such as disk and magnetic tape, either to con-
trol buffer allocation or to optimize special record processing.

361

Input/Output Services

The I/0 system services provide both device-independent and device-
dependent programming. Users can perform their own record block-
ing on file-structured and non-file-structured devices. In addition,
users with sufficient privilege can perform 1/0 operations using either
logical or physical I/0 requests, for example, to define their own file
structures and accessing methods on disk and magnetic tape vol-
umes.

ANCILLARY CONTROL PROCESSES

I/0 control processes, called ancillary control processes (ACPs),
process file-structured 1/0 requests. An ACP provides file structuring
and volume access control for a particular type of device. There are
three types of ACPs provided in the system: Files-11 disk, ANS (Amer-
ican National Standard) magnetic tape, and DECnet (network) com-
munications link.

The RMS and I/0 system services programming interfaces are the
same regardless of the ACP involved. However, since ACPs are partic-
ular for a device type, they do not have to be present in the system if
the device is not present. There is one network ACP process for all
DECnet network communications links in the system, and none if the
system is not in a network. For either disk or magnetic tape devices,
the system manager can install one ACP per volume for throughput, or
one ACP for all volumes, to save space.

DEVICE DRIVERS

Once the ACP sets up the information for file-structured I/0 requests,
a request can be passed to a device driver. All non-file-structured 1/0
requests are passed directly to a device driver. Drivers also perform
all the hardware retry and recovery operations.

To incur the least overhead, driver processes are created dynamically
when a user makes an I/0 request for a device or a device generates
an unsolicited interrupt. They have minimal context, execute to com-
pletion when created, and are memory-resident throughout execution.
One driver process is created for each device unit in the system. All
driver processes for the same device type share the code they
execute.

1/O REQUEST PROCESSING

All I/0 requests pass through a Queue I/0 (QlO) Request system
service. If a program requests RMS procedures, RMS issues the
Queue I/0 Request system service on the program’s behalf. Queue
170 Request processing is extremely rapid because the system can
keep each device unit as busy as possible by minimizing the code that
must be executed to initiate requests and post request completion.

362

Input/Output Services

The processor’'s many interrupt priority levels improve interrupt re-
sponse because they enable the software to have the minimum a-
mount of code executing at high priority levels by using low priority
levels for code handling request verification and completion notifica-
tion. In addition, device drivers take advantage of the processor’'s
ability to overlap execution with I/0 by enabling processes to execute
between the initiation of a request and its completion. User processes
can queue requests to a driver at any time, and the driver immediately
initiates the next request in its queue upon receiving an 1/0 comple-
tion interrupt.

All access validation and checking takes place before an 1/0 request
is actually queued. For file-structured 1/0 requests, the Queue 1/0
Request system service obtains all the block mapping and volume
access checking information from the ancillary control process (ACP).
For example, on 1/0 requests for multivolume files, the system service
obtains mapping information from the ACP. This enables it to queue
requests to different drivers when the user’s 1/0 request involves a
transfer that spans volumes. The Queue I/0 Request system service
also checks the validity of the function requested (read, write, rewind,
etc.) for the particular device. Because all access validation and
function checking is performed before the request is queued, the dri-
ver has little to do to initiate a request.

Once the system service has verified the 170 request, it raises the
interrupt priority level to that of the driver. The only activity it has to
perform at this level is a test to see if the driver is busy. If the driver is
not busy, it calls the driver. Otherwise, it queues the request according
to the priority of the requesting process and immediately returns to the
user process. When the driver is called, it initiates the request and
returns to the user process.

At the time the device subsequently generates its interrupt at the hard-
ware interrupt priority level, the interrupt dispatcher calls the appro-
priate interrupt service routine. An interrupt service routine simply
saves the device control/status registers, requests a software interrupt
at the driver’s interrupt priority level, and returns to the interrupt dis-
patcher, which is then free to scan for unit attentions. Because a disk
controller cannot generate interrupts on any unit performing a seek
until the current transfer completes, the interrupt dispatcher will also
dispatch seek completion'when dispatching a disk 1/0 transfer
completion interrupt.

When the driver receives the completion interrupt, it prepares the I/0
completion status for the requester, and requests a software interrupt.
The driver is then free to process another request in its queue and, if

363

Input/Output Services

the queue is not empty, the driver begins again. All I/0 completion
notification takes place outside the driver, minimizing the inter-re-
quest idle time. The 1/0 post routine notifies the process of I/0 com-
pletion and releases or unlocks the buffer.

QUEUE I/O
Queue I/0 is the interface by which the user interacts directly with the
1/0 driver.

Assigning Channels

A channel is a communication path that is associated with a physical
device unit during VAX/VMS I/0 operations. It is used by a process in
the transfer of information to and from the device. Before any 1/0
operations can be requested for a device, the device must be assigned
to an I/0 channel by the Assign I/0 Channel ($ASSIGN) system ser-
vice.

In coding a call to the $ASSIGN service, the name of the device (real
device name or logical name) and the address of the longword to
receive the channel number must be supplied. The channel number,
which is returned by the service, is then referred to when coding an
1/0 request.

Physical, Logical, and Virtual I/0
1/0 transfers can take place in three possible modes of operation:
physical, logical, and virtual 1/0 functions.

Physical I/0 concerns reading and writing data in the actual physical
units accepted by the hardware, for example, sectors on a disk. This
function mode allows access to all device level I/0 operations.

Logical 1/0 concerns reading and writing data in blocks that usually
could map directly into physical blocks. For block-structured de-
vices—disks, for example—loglcal blocks are numbered starting at
zero (0).

Virtual 1/0° consists of file-oriented operations—creating files and
reading and writing files, for example. In this case, the VAX/VMS
operating system maps virtual biock numbers into logical block num-
bers. For file-structured devices—disks, for example—virtual blocks
are the same size as logical blocks. They are numbered starting at one
(1) and are relative to the file rather than to the device. On non-file-
structured devices, virtual 1/0 is equivalent to logical 1/0; mapping
from virtual block number to logical block number is direct. -

Issuing /O Requests
VAX/VMS 1/0 function requests are issued via the Queue 1/0 Request
($QI0) system service. Prior to issuing such a request, the I/0 channel

364

Input/Output Services

must be assigned to the selected device through the use of the Assign
I/0 Channel ($ASSIGN) system service. To effect I/0 operations on
the device, subsequent calls to the Queue I/0 Request system service
must specify the channel number returned by the Assign 1/0 Channel
system service.

The Queue I/0 Request system service can be performed only on
assigned I/0 channels and only from access modes that are equal to
or more privileged than the access mode from which the original
channel assignment was made.

Certain requirements must be met before a request is queued. For
example, a valid channel number must be included in the request; the
request must not exceed certain process quotas; and there must be
sufficient dynamic memory available to complete the operation.

After an 1/0 request has been queued, the system does not require the
issuing process to wait for the operation to compilete. If at any time the
user process which issued the QIO request cannot proceed until the
1/0 operation is completed, an event flag can be used to synchronize
1/0 completion. The process should specify an event flag in the QIO
request and should issue a $WAITFR (Wait for Single Event Flag)
system service request at the point where synchronization is required.

1/0 COMPLETION

The successful or unsuccessful completion of an I/0 request can be
denoted by one or more return conditions. Selection of return condi-
tions depends on the arguments included in the QIO macro call.

There are three primary returns:
e Event flag

o |/0 status block

® Asynchronous system trap

Event Flags

Event flags are status-posting bits used by some /O system services
to indicate the completion or the occurrence of an event. The QIO
system service sets an event flag when it completes an input or output
operation. Event flag services provide the techniques that allow the
user to set or clear specific flags, test the current status of flags, or
place a program in a wait state pending the setting of a particular flag
orgroup of flags.

1/0 Status Block
The completion status of the /0O request is returned in the 1/0 status
block (I0SB).

365

Input/Output Services

The IOSB indicates whether or not the operation was successfully
completed, the number of bytes transferred, and additional device- .
dependent return information.

Asynchronous System Traps

An asynchronous system trap (AST) routine can optionally be speci-
fied in the QIO request if the user wants to interrupt a process to
execute special code on completion of the request. When the 1/0
operation completes, control branches to the AST service routine. The
AST service routine is then executed at the access mode from which
the QIO service was requested. Using an AST to signal 1/0 completion
allows the process to be occupied with other functions during the 1/0
operation. The process does not have to wait until some event occurs
before proceeding to another operation.

RECORD MANAGEMENT SERVICES

A powerful, transparent collection of routines, Record Management
Services (RMS) provides extensive capabilities for data storage, re-
trieval, and modification. Complex file manipulation is easily achieved
through RMS facilities. Users may select from several file organiza-
tions and file access techniques—each of which is suited to particular
applications—from the simplest sequential search of a sequentially
organized file to a sophisticated keyed access of an indexed file based
on several alternate key fields.

The three file organizations supported by Record Management
Services—sequential, relative, and indexed—are variously available to
three different access modes—sequential, keyed, and Record’s File
Address. In most cases, RMS software supports dynamic access, a
useful feature that allows access mode switching within a process.

NOTE
Most RMS functionality is also available to users of
DECnet commmunications software, DIGITAL’s net-
working architecture. For details, see Chapter 7 of
this Handbook.

RMS FILE ORGANIZATIONS

A file is a collection of related information. For example, a file might
contain a company’s personnel information (employee names, ad-
dresses, job titles). Within this file, the information is divided into rec-
ords. All the information on a single employee could constitute a single
record.

Each record in the personnel file would itself be divided into discrete
pieces of information known as fields. The user defines the number,

366

Input/Output Services

locations within the record, and logical interpretations of these fields.
The name of an employee would be a field in his personnel record, as
would a wage class or a social security number.

The user can completely control the grouping of fields into records
and records into files. Programs either build records and pass them to
RMS for storage in a file, or issue requests for records while RMS
performs the necessary operations to retrieve the records from a file.

Table 12-2 File Organizations—Advantages and Disadvantages

Sequential Advantages—Uses disk and
memory efficiently: minimum
disk overhead and block-
boundary crossing. Provides
optimal usage if the application
accesses all records sequential-
ly on each run. Provides the
most flexible record format. Al-
lows data to be stored on many
different types of media, in a de-
vice-independent manner. Al-
lows easy file extension

Disadvantages—Some high-
level languages allow sequential
access only. Allows records to
be added only to end of file. Al-
lows write access by multiple,
concurrent users, but only in
very restricted cases

Relative Advantages—Allows both se-
quential and random access for
all languages. Provides random
record deletion and insertion.
Allows records to be read- and
write-shared

Disadvantages—Allows data to
be stored on disk only. Requires
that files contain a record cell
for each relative record number
allocated; that is, files may not
be densely populated. Requires
that record cells be the same
size

367

Input/Output Services

indexed - Advantages—Allows sequen-
: tial and random access by key

value for all languages. Allows
random record deletion and in-
sertion. Allows records to be
read- and write-shared. Allows
variable-length records to
change iength on update. Al-
lows easy file extension

Disadvantages—Aliows data to
be stored on disk only. Requires
more disk space. Uses more of
the central processing unit to
process records. Generally re-
quires multiple disk accesses to
randomly process a record

Sequential File Organization

In sequential file organization, records appear in consecutive se-
quence. The order in which records appear is always the order in
which the records were originally written to the file by an application
program. Figure 12-2 illustrates sequential file organization.

END OF FILE

RECORD | RECORD | RECORD | RECORD | RECORD | RECORD « « o « |RECORD |RECORD

Figure 12-2 Sequential File Organization

Relative File Organization

When relative organization is selected, Record Management Services
structures a file as a series of fixed-size record cells. Cell size is based
on the size specified as the maximum permitted length for a record in
the file. These cells are numbered from 1 (the first) to n (the last). A
cell’'s number represents its location relative to the beginning of the
file.

Each cell in a relative file can contain a single record. There is no
requirement, however, that every cell contain a record. Empty cells
can be interspersed among cells containing records. Figure 12-3 illus-
trates a relative file organization.

368

Input/Output Services

CELL NO.:) 2 3 4 5 999 1000

REC‘ORD REC(;RD EMPTY RECC:RD EMPTY’ L REE?:D EMK

Figure 12-3 Relative File Organization

Because cell numbers in a relative file are unique, they can be used to
identify both a cell and the record (if any) occupying that celi. Thus,
record number 1 occupies the first cell in the file, record number 17
occupies the seventeenth cell, and so on. When a cell number is used
to identify a record, it is also known as a relative record number.

Indexed File Organization

The location of records in indexed file organization is transparent to
the program. Record Management Services completely controls the
placement of records in an indexed file. The presence of keys in the
records of the file governs this placement.

A key is a byte string present in every record of an indexed file. Any of
the six RMS keyfield data types may be used as a key: 1) character
string; 2) signed 15-bit integer; 3) unsigned 16-bit binary; 4) signed 31-
bit integer; 5) unsigned 32-bit binary; 6) packed decimal. Unique
among file organizations, indexed files can be accessed by data in the
files, rather than by addresses. The location and Ilength of this key are
identical in all records. When creating an indexed file, the user de-
cides which byte string in the file’s records is to be a key. Selecting
such a byte string indicates to RMS that the contents (i.e., key value) of
that string in any particular record written to the file can be used by a
program to identify that record for subsequent retrieval. Frequently,
the byte string chosen as the key is one of the fields already defined in
the record. Non-numeric entries (eg., names, job descriptions) are
coded internally in a manner that is equivalent to alphabetization.

At least one key, the primary key, must be defined for an indexed file.
Optionally, additional keys or alternate keys can be defined. An alter-
nate key value can also be used as a means of identifying a record for
retrieval.

As processes write records into an indexed file, Record Management
Services (RMS) builds a tree-structured table known as an index. An
index consists of a series of entries containing a key value copied from
arecord that a program wrote into the file. Along with each key value is
a pointer to the location in the file of the record from which the value
was copied. RMS builds and maintains a separate index for each key
defined for the file. Each index is stored in the file. Thus, every indexed

369

Input/Output Services

file contains at least one index, the primary key index. Figure 12-4
illustrates an indexed file organization with a primary key. When alter-
nate keys are defined, RMS builds and stores an additional index for
each alternate key.

KEY DEFINITION

]

PRIMARY INDEX (EMPLOYEE NAME) N\

ABLE LA JONES | =+ = SMITH,
ABLE E ELM AV 24379 . JONES i MAIN ST E 19724 .. SMITH EHOLT RD 35888
1 1 L 1
\ DATA RECORDS
Figure 12-4 Indexed File Organization
RMS RECORD ACCESS MODES

The methods of retrieving and storing records in a file are called
record access modes. A different record access mode can be used to
process records within the file each time it is opened. A program can
also change access mode during the processing of a file.

Sequential Record Access Mode

Sequential record access means that records are retrieved or written
in the sequence established by the organization of the file. Sequential
record access mode can be used to access all RMS files and all re-
cord-oriented devices, including mailboxes.

Sequential Record Accessto Sequential Files Inasequentially
organized file, physical arrangement establishes the order in which
records are retrieved when using sequential access mode. To read a
particular record in a file, say the fifteenth record, a program must
open the file and access the first fourteen records before accessing
the desired record. Thus each record in a sequential file can be re-
trieved only by first accessing all records that physically precede it.

When writing new records to a sequential file in sequential access
mode, a program must first request that RMS position the file immedi-

370

Input/Output Services

ately following the last record. Then each sequential write operation
the program issues causes a record to be written following the previ-
ous record.

Sequential Record Access to Relative Files During the sequential
access of records in the relative file organization, the contents of the
record cells in the file establish the order in which a program
processes records. RMS recognizes whether successively numbered
record cells are empty or contain records.

When a program issues read requests in sequential access mode for a
relative file, RMS ignores empty record cells and searches successive
cells for the first one containing a record. When a program adds new
records in sequential access mode to a relative file, RMS places a
record in the cell whose relative number is one higher than the relative
number of the previous request, as long as that cell does not already
contain a record. RMS allows a program to write new records only into
empty cells in the file.

Sequential Record Access to Indexed Files A program can use the
sequential record access mode to retrieve records from an indexed
file in the order represented by any index. The entries in an index are
arranged in ascending order by key values. If more than one key is
defined for the file, each separate index associated with a key repre-
sents a different logical ordering of the records in the file.

When reading records in sequential record access mode from an in-
dexed file, a program initially specifies a key (primary key, first alter-
nate key, second alternate key, etc.)to RMS. Thereafter, RMS uses the
index associated with that specified key to retrieve records in the
sequence represented by the entries in the index. Each successive
record RMS returns in response to a read request contains a value in
the specified key field that is equal to or greater than that of the
previous record returned.

When writing records to an indexéd file, RMS uses the definition of the
primary key field to place the record in the file.

Random Record Access Mode

In random access mode, the program establishes the order in which
records are processed Each program request for access to a record
operates lndependently of the previous record accessed. Each re-
quest in random mode identifies the particular record of interest.
Successive requests in random mode can identify and access records
anywhere in the file.

371

- Input/Output Services

Random Record Access to Sequential Files Native programs can
access sequential files on disk using relative record number to ran-
domly locate a record, provided that the records are in fixed-length
record format.

Random Record Access to Relative Files Programs can read or write
records in a relative file by specifying the relative record number. RMS
interprets each number as the corresponding cell in the file. A pro-
gram can read records at random by successively requesting, for
example, record number 47, record number 11, record number 31,
and so forth. If no record exists in a specified cell, RMS returns a
nonexistence indicator to the requesting program. Similarly, a pro-
gram can store records in arelative file by identifying the cell in the file
that a record is to occupy. If a program attempts to write a new record
in a cell already containing a record, RMS returns a record-already-
exists indicator to the program.

Random Record Access to Indexed Files For indexed files, a key
value rather than relative record number identifies the record. Each
program read request in random access mode specifies a key value
and the index (primary index, first alternate index, second alternate
index, etc.) that RMS must search. When RMS finds the key value in
the specified index, it reads the record that the index entry points to
and passes the record to the user program.

Program requests to write records randomly in an indexed file do not
require the separate specification of a key.value. All key values (prima-
ry and, if any, alternate key values) are in the record itself. When an
indexed file is opened, RMS retrieves all definitions stored in the file.
RMS knows the location and length of each key field in a record.
Before writing a record into the file, RMS examines the values
contained in the key fields and creates new entries in the indices. In
this way RMS ensures that the record can be retrieved by any of its key
values. The process by which RMS adds new records to the file is
precisely the process it uses to construct the original index or indices.

Record’s File Address (RFA) Access Mode

- Record’s File Address (RFA) access mode can be used to retrieve
records in any file organization as long as the file resides on a disk
volume. RFA access allows a specific record to be identified for re-
trieval, using the record’s unique address. The actual format of this
address depends on the organization of the file. In all instances, how-
ever, only RMS can interpret this format.

After every successful read or write operation, RMS returns the RFA of
the subject record to the program. The program can then save this

372

Input/Output Services

RFA to use again to retrieve the same record. This is an optimizing
feature that can greatly speed up record access in RFA mode. It is not
required that this RFA be used only during the current execution of the
program. RFAs can be saved and used at any subsequent time.

Dynamic Access

Dynamic access is not strictly an access mode. It is the ability to switch
from one access mode to another while processing a file. For example,
a program can access a record randomly, then switch to sequential
access mode for processing subsequent records. There is no limita-
tion on the number of times such switching can occur. The only limita-
tion is that the file organization must support the access mode select-
ed.

FILE AND RECORD ATTRIBUTES

When an RMS file is created, its physical characteristics or attributes
must be defined. These characteristics are defined by source lan-
guage statements in an application program or by an RMS utility. The
program or user assigns the file a name, the owner’s user identifica-
tion code, and a protection code, and selects the file organization.
Other attributes are also selected, including:

e Device '

® File size

e File location

® Record format and size

o Keys (for indexed files only)

Device selection is related to the organization of the file. Sequential
files can be created on Files-11 disk volumes or ANSI magnetic tape
volumes. Sequential files can also be read from mailboxes, terminals,
and card readers, and written to mailboxes, terminals, and lineprin-
ters. Relative and indexed files can be created on Files-11 disk vol-
umes.

The logical limit on file size is 23'—1 blocks, with a more realistic limit
being the volume set on which a file can reside. When creating an RMS
file on a disk volume, the user can specify an initial allocation size. If no
file size is given, Record Management Services (RMS) allocates the
minimum amount of storage needed to contain the defined attributes
of the file. The initial size can be extended dynamically. The user can
let RMS locate the file, or the user can allocate the file at a specific
location on the disk to optimize disk access time. The file’s starting
location can be specified optionally using a volume-relative block
number or physical address (track and sector number with or without
a given cylinder specification).

373

Input/Output Services

When creating a file on a magnetic tape volume, a user or program
does not specify an initial allocation size. The blocks are simply written
one after another down the tape, beginning after the last file, if any,
already written on the tape. Once a tape file has been created, another
file can replace it or be appended to it, but all subsequent files on the
tape, if any, are lost.

Record Formats :

The user provides the specifications for the records the file will con-
tain. The specified format establishes how each record appears in the
file. There are four avaiable record formats:

® fixed length

® variable length

e variable with fixed-length control (not for indexed files)

e stream (for sequential files only)

Fixed length record format refers to records of a file that are all equal
in size. Each record occupies an identical amount of space in the file.
All file organizations support fixed length record format.

Variable-length record format records can be either equal or unequal
in length. All file organizations support variable-length record format.
RMS prefixes a count field to each variable-length record it writes. The
count field describes the length (in bytes) of the record. RMS removes
this count field before it passes a record to the program. RMS pro-
duces two types of count fields, depending on the storage medium on
which the file resides.

Variable-length records in files on Files-11 disk volumes have a 2-byte
binary count field preceding the data field portion of each record. The
specified size excludes.the count field.

Variable-length records on ANSI magnetic tapes have 4-character de-
cimal count fields preceding the data portion of each record. The
specified size includes the count field. In the context of ANSI tapes,
this record format is known as D format.

Variable with fixed-length control records consist of two distinct parts,
the fixed-length control area and a variable-length data record. Al-
though stored together, the two parts are returned to'the program
separately when the record is read. The size of the fixed-length control
area is identical for all records of the file. The contents of the fixed-
length control area are completely under the control of the program
and can be used for any purpose. For example, fixed-length control
areas can be used to store the identifier (relative record number or

374

Input/Output Services

RFA) of related records. Indexed file organizations do not support this
record format.

Stream record format records in a file are variable-length records
delimited by the occurrence of special character sequences called
terminators. Terminators are part of the record they delimit. No count
fields or control information is stored in the file. This is supported for
sequential disk files only.

Key Definitions for Indexed Files

To define a key for an indexed file, the user specifies the position and
length of the key field in the records. At least one key, the primary key,
must be defined for an indexed file. Additionally, up to 254 alternate
keys can be defined. In general, most files have two or three keys.
Because indices require storage space and Record Management
Services (RMS) updates indices as records are added or modified, no
more than six to eight keys should be defined where storage space or
access time is important.

Each primary and alternate key represents from 1 to 255 bytes in each
record of the file. RMS permits six keyfield data types: i

e String (1 to 255 bytes of character data)

® Signed 15-bit integer

® Unsigned 16-bit binary

e Signed 31-bit integer

e Unsigned 32-bit binary

e Packed decimal (1to 31 nibbles)

The string keyfield can be composed of simple or segmented keys. A
simple key is a single, contiguous string of characters in the record,
i.e., a single field. A segmented key, however, can consist of from two
to eight fields within records. These fields need not be contiguous.
When processing records that contain segmented keys, RMS treats
the separate fields (segments) as a logically contiguous character
string. The integer, binary, and packed decimal data types can be
simpie keys only.

When defining keys at file-creation time, two characteristics for each
key can be specified:

® Duplicate key values are or are not allowed

e Key value can or cannot change

When duplicate key values are allowed, more than one record can
have the same value in a given key. For example, the creator of a
personnel file could define the department name field as an alternate
key. As programs wrote records into the file, the alternate index for the

375

Input/Output Services

department name key field would contain multiple entries for each key
value (e.g., PAYROLL, SALES, ADMINISTRATION) since departments
are composed.of more than one employee. When such duplication
occurs, RMS stores the records so .that they can be retrieved in first-
in/first-out (FIFO) order. -

An application could be written to list the names of employees in any
particular department. A single execution of the application could list
the names of all employees working, for example, in the department
called SALES. By randomly accessing the file by alternate key (with
the key value SALES), the application would obtain the first record
written into the file containing this value. Then, the application could
switch to sequential record access and successively obtain records
with the same value, SALES, in the alternate key field. Part of the logic
of the application would be to determine the point at which a sequen-
tially accessed record no longer contained the value SALES in the
alternate key field. The program could then switch back to random
record access mode and access the first record containing a different
value (e.g., PAYROLL) in‘the department name key field.

If key values can change, records can be read and then written back
into the file with a modified key value. For example, this specification
would allow a program to access a record in the personnel file and
change the contents of a department name field to reflect the transfer
of an employee from one department to another. This characteristic
can be specified only for alternate keys.

Program Operations on RMS Files :
After-Record Management Services (RMS) has created a file, a pro-
gram can access the file and store and retrieve data.

When a program accesses the file as a logical structure (i.e., a sequen-
tial, relative, or indexed file), it uses record 1/O operations such as
add, update, and delete record. The organization of the file deter-
mines the types of record operations permitted.

If the record accessing capabilities of RMS are not used, programs
can access the file as an array of virtual blocks. To process a file at this
level, programs use a type of access known as block 1/0.

File Processing
At the file level, before beginning record processmg a program can:

® Create afile
e Open ayn existing file
® Modify file attributes
e Extend afile

376

Input/Output Services

® Close afile
® Delete afile

Once a program has opened a file for the first time, it has access to the
unique internal ID for the file. If the program intends to open the file
subsequently, it can use that internal ID to open the file and avoid any
directory search.

File Organization and Sharing — With the exception of magnetic tape
files, which cannot be shared, every RMS file can be shared by any
number of programs that are reading, but not writing, the file.
Sequential files on disk can be accessed by a single writer or shared
by multiple readers. Relative and indexed files, however, can be
shared by multiple readers and multiple writers. A program can read
or write records in a relative or indexed file while other programs are
similarly reading or writing records in the file. Thus, the information in
such files can be changing while programs are accessing them. ‘

NOTE
RMS file sharing support is available for certain se-
quential files. Specifically, sequential files with 512
byte fixed-length records may be shared in the same
ways as relative and indexed files.

Program Sharing — A file’s organization establishes whether it can be
shared for reading with a single writer or for muitiple readers and
writers. A program specifies whether such sharing actually occurs at
runtime. The user controls the sharing of a file through information the
program provides Record Management Services (RMS) when it opens
the file. First, a program must declare what operations (e.g., read,
write, delete, update) it intends to perform on the file. Second, a pro-
gram must specify whether other programs can read the file or both
read and write the file concurrently with the first program.

The combination of these two types of information allows RMS to
determine if multiple user programs can access a file at the same time.
Whenever a program’s sharing information is compatible with the cor-
responding information another program provides, both programs
can access the file concurrently.

Record Locking — RMS can lock records to control operations to a
relative or indexed file that more than on record steam within a proc-
ess, or more than one process, can access simultaneously. The pur-
pose of this facility is to ensure that a program can add, delete, or
modify a record in a file without another program simultaneously ac-
cessing the same record.

377

‘Input/Output Services

When a program opens an indexed or relative file with the declared
intention of writing or updating records, RMS locks any record ac-
cessed by the program. This locking prevents another program from
accessing that record until the program releases it. The lock remains
in effect until the program accesses another record. RMS then unlocks
the first record and locks the second. The first record is then availabie
for access by another concurrently executing program.

A program may also select a “manual” unlocking mode, in which all
records accessed by the program remain locked until they are
explicitly unlocked by calls to RMS.

Record I/0 Processing

The organization of a file, defined when the file is created, determines

the types of operations that the program can perform on records.

Depending on file organization, Record Management Services permits

a program to perform the following record operations:

e Get a record—RMS returns an existing record within the file to the
program

® Put a record—RMS adds a new record that the program constructs
to the file. The new record cannot replace an already existing record

® Find a record—RMS locates an existing record in the file. It does not
return the record to the program, but establishes a new current
position in the file

e Delete a record—RMS removes an existing record from the file. The
delete record operation is not valid for sequential file organizations

e Update a record—The program modifies the contents of a record
read from the file. RMS writes the modified record into the file,
replacing the old record. The update record operation is not valid
for sequential file organizations, except for sequentially organized
disk files

Sequential File Record i/O

In a sequential file organization, a program can read existing records
from the file using sequential or record’s file address (RFA) access
modes. New records can be added only to the end of the file and only
through the use of sequential access mode, except that in the case
where the sequential file has records of fixed length, records can be
added using keyed access.

Relative File Record I/O
Relative file organization permits programs greater flexibility in per-
forming record operations than does sequential organization. A pro-

gram can read existing records from the file using sequential, random, ’
or RFA record access mode.

378

Input/Output Services

New records can be sequentially or randomly written as long as the
intended record cell does not already contain a record. Similarly, any
record access mode can be used to perform a find operation. After a
record has been found or read, RMS permits the delete operation.
Once a record has been deleted, the record cell is available for a new
record. A program can also update records in the file. If the format of
the records is variable, update operations can modify record length up
to the maximum size specified when the file was created.

Indexed File Record 1/O

Indexed file organization provides the greatest flexibility in performing
record operations. A program can read existing records from the file
in sequential, record’s file address (RFA), or random record access
mode. When reading records in random record access mode, the
program can choose one of four types of matches that RMS performs
using the program-provided key value. The four types of matches are:
e Exact key match

® Approximate key match

® Generic key match

® Approximate and generic key match

Exact key match requires that the contents of the key in the record
retrieved precisely match the key value specified in the program read
operation.

The approximate match facility allows the program to select either of
the following relationships between the key of the record retrieved and
the key value specified by the program:

e Equal to or greater than

e Greater than

Generic key match means that the program need specify only an initial
portion of the key value. Record Management Services (RMS) returns
to the program the first occurrence of a record whose key contains a
value beginning with those characters. This allows the program to
retrieve a class of records, for example, all employee records in the
personnel file with a name field beginning with M.

The final type of key match combines both generic and approximate
facilities. The program specifies only an initial portion of the key value,
as with generic match. Additionally, a program specifies that the key
data field of the record retrieved must be either:

e equal to or greater than the program-supplied value
e greater than the program-supplied value

379

Input/Output Services

The find operation, similar to the read operation, can be performed in
sequential, RFA, or random access mode. When finding records in
random access mode, the program can specify any one of the four
types of key matches provided for read operations.

In addition to‘read, write, and find operations, the program can delete
any record in an indexed file and update any record.

Block I/O Processing

Block 1/0 allows a program to bypass the record processing capabili-
ties of RMS entirely. Rather than performing record operations
through the use of supported access modes, a program can process a
file as a structure consisting solely of virtual blocks.

Using block 1/0, a program reads or writes multiple virtual blocks by
identifying a starting virtual block number in the file. Regardless of the
organization of the file, RMS accesses the identified block or blocks on
behalf of the program.

The presence of the block 1/0 facility permits user-created record
formats on a Files-11 disk volume or ANSI magnetic tape volume.

RMS Runtime Environment

The environment within which a program processes RMS files at run-
time consists of two levels, the file processing level and the record
processing level.

At the file processing level, RMS and the operating system provide an
environment that permits concurrently executing programs to share
access to the same file. RMS ascertains the amount of sharing permis-
sible from information provided by the programs themselves. Addi-
tionally, at the file processing level, RMS provides facilities that allow
programs to minimize buffer space requirements for file processing.

At the record processing level, RMS allows programs to access re-
cords in a file through one or more record access streams (except for
sequential files, which may only connect a single stream). Each record
access stream represents an independent and simultaneously active
series of record operations directed toward the file. Within each
stream, programs can perform record operations synchronously or
asynchronously. That is, RMS allows programs to choose between
receiving control only after a record operation request has been satis-
fied (synchronous operation) or receiving control before the request
has been satisfied (asynchronous operation).

For both synchronous and asynchronous record operations, RMS
provides two record transfer modes, move mode and- locate mode.
Move mode causes RMS to copy a record from an I/0 buffer into a

380

Input/Output Services

program-provided location. Locate mode allows programs to read
records directly in an I/0 buffer.

RMS Utilities

The RMS procedures are complimented by a File Definition Language
(FDL) and a number of utilities designed especially for RMS file crea-
tion and maintenance. They are called directly through DCL, and in-
clude:

e CONVERT

e CONVERT/RECLAIM

e EDIT/FDL

e CREATE/FDL

o ANALYZE/RMS FILE

The File Definition Language is a special-purpose language used to
write file specifications for data files. These specifications are then
used by the RMS utilities and library routines to create data files and
other data structures.

The CONVERT utility copies records from a source data file to a sec-
ond data file with a different FDL specification and frequently with a
different file organization. CONVERT can also be used to create a data
file from an FDL specification.

EDIT/FDL is a utility used for creating or modifying an FDL specifica-
tion file. Since FDL files are text files, they can created using a
VAX/VMS editor, but programmers may find EDIT/FDL easier to use.
It is designed for the task; for example, EDIT/FDL will provide default
values for undesignated specifications.

CREATE/FDL is used to create an empty data file from an FDL specifi-
cation. With this capability, a user can designed FDL files with ED-
IT/FDL, defining commonly needed data files, and then create such
data files later, whenever they are required.

The ANALYZE/RMS_FILE utility is used to check the structure of a file
for errors or potential for improvement. It can generate a statistical
report on a files structure and use, or be employed interactively to
“‘explore” thefiles structure. Converselyto CREATE/FDL, ANA-
LYZE/RMS_FILE can generate an FDL file from a data file.
CONVERT/RECLAIM is used for reclaiming empty buckets in a prolog
2 indexed file, so that new records can be written into them. If all the
records in a bucket have been deleted, that bucket is locked until the
CONVERT/RECLAIM utility makes it available.

In toto, the RMS Utilities provide a total system for designing and
tuning files in a users applications. (See figure 9-5.)

381

-

OFF-LINE
ANALYSIS

|
|
!
|
|
|
1
i
|
I
|
|
|
|
|
|
|
'
|
|
1
i
|
1

'
'
1
| PR |

P
CONVERT g

ISAM
FILE

ANALYSIS/RMS- FILE \

|
|

Input/Output Services

FDL FILE

RMS
ACCESS METHOD

USER PH

OFF-LINE SPACE

RECLAMATION

OGRAM .

CONVERT/RECLAIM

S — |

Figure 12-5 File Design and Tuning

382

Input/Output Services

USING VAX-11 RMS

VAX-11 RMS (Record Management Services) is a powerful tool for
handling input/output tasks. Whether the user simply needs to have a
program read input lines from a terminal, or needs full write sharing
capability with record locking—allowing multiple processes to access
and update records in the same files simultaneously—RMS can sim-
plify and handle the task. Of course, more complex operations may
require a number of parameters and (optionally) allow specification of
many more; nevertheless, all of the basic RMS services use one of two
control structures as input for their operation. The File Access Block
(FAB) contains only fields relevant to file operations, such as the
creation of a new file or opening an existing one. The Record Access
Block (RAB) contains parameters necessary to perform record opera-
tions, such as record retrieval and update, on records within a file. The
following table illustrates this division:

Table 12-3
Category Macro Name Service
FILE PROCESSING $CREATE Creates and opens
anew file
FAB=address $OPEN Opens an existing
file and initiates file
processing
$CLOSE Terminates file
processing and
closes the file
RECORD PROC- $CONNECT Associates and con-
ESSING nects an RAB to the
RAB = address file
$GET Retrieves a record
from afile
$PUT Writes a new record
to afile
$UPDATE Rewrites an existing

record in a file

The following brief program, with comments, demonstrates the ease
and simplicity of using VAX-11 RMS (Record Management Services)
to achieve an 1/0O operation. Several different runs of the program

383

Input/Output Services

follow. It reads a sequential file containing ASCII text and uses a Run
Time Library routine to print the text on the user’s terminal. Then the
file is copied to a remote network node and the program accesses it
on that node. Relative and indexed files could be handled as easily as
this sequential file, and with no rewriting of the program.

384

G8¢

ODNT NS -

~ ~e e we

~ e e

~

allocate s 1202 byte buffer
descriptor for buffer

length wil) be set at run time
address of buffer

F{le Access Block

Record Access Block

open the file
exit on error

connect for record operations
exit on error

qet the first record
exit om error

My, rsb ¢+ rabSw, rsz,Buff, desc J store length of record {n desc

Buffert .blkb 120
Buff.desc:
«long [}
«long Butfer
My, fabt $FAR FNM3<INFILE>
My, rabs $RAB FABsMy, fab, =
UBF3Byffer,=
UsZs129
Startt ,word @
SOPEN FABaMy, fab
BLBC RB,Exit
SCONNECT RAB3My, rab
BLBC RA,Exit
Get records
$GET RABaMy, rab
BLBC RO,Ex{t
MOVW
PUSHAB Buff,desc
CALLS #1,LI188PUT OUTPUT
BRB Get record
SCLOSE FABzMy, fab
Exit: REY
.end Start

push descriptor address for output
orint the record
96 back and get the mext record

and close the file

Figure 12-6 A Sample RMS User Program

$89/A488 1ndinO /induy

Input/Output Services

Notice in the running of the sample program that merely by use of the
ASSIGN command the programmer was able to apply INFILE to sever-
al different files without reworking the program. The program could
have accessed any of a variety of sequential, relative, or indexed for-
mats without modification. Also, it is not necessary to close a file
explicitly because all files will be closed (“run down”) by RMS when
the image exits. In fact, VAX-11 RMS handles all internal buffer and
control structure allocation and management for the user.

The variety of file organizations, record formats, and access modes,
plus network support, that RMS provides makes it one of the most
useful features of the VAX/VMS operating system.

386

18€

* veuwan
$ set noverity

$ | demonstrate how easy RM8 {s to use

3 set noonerror

s |

$ | use TYPE to type out the sampie text file used in
$ | the following tests,

]

]
TYPE DEMO,TXT
this s a test proaram
containing ascii{ text records
this wil) be printed out by
:ho test progrem SIMPLE

|

now assign the text file DEMO,TXT
to the 1ogice) neme INFILE which the
test program SIMPLE will open for imput

NN N
- o e

$ ASSIGN DEMO,TXT INFILE
$ run simple
this is o test program
containing asci{ text records
this will be printed out by
the test program SIMPLE
iRNS-E-EOF. end of file
i
$ | copy the text file to another vax node on the network
s

i
$ COPY/LOG DEMO,TXT GALAXY331DEMO,TXT
XCOPY=8=COPIED, DBAG: [SAETHERIDEMO,TXT33 corfed to GALAXYJIDEMD,TXTs (4 records)
XCOPY«8eNEWFILES, { f{le created
|
S | now yse the same test program SIMPLE to accese
$ | the file across the network
s
s

]
ASSIGN GALAXYSIIDEMO,TXT INFILE
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
$ RUN SIMPLE
this is s test program
containing enel{i text records
this will be printed out by
the test program SIMPLE
XRMSeE<EQF, end of file

Figure 12-7 Running the Sample Program

s89jA188 ndino/induy

CHAPTER OVERVIEW

Physical devices need software control if they are to run properly (or at
all). This chapter explains the VAX/VMS device driver elements, de-
fines a fork process, and gives a complete sample lineprinter /O
driver source program listing.

Topics include:

® Elements of a Device Driver

® General Device Activity

® AlLineprinter I/0 Request and Program Listing

388

CHAPTER 13
I/O DRIVERS

INTRODUCTION

A VAX/VMS device driver is a set of tables and routines that control

I1/0 operations on a peripheral device attached to a VAX system. A

driver performs the following functions:

® Defines the peripheral device for the rest of the VAX/VMS operating
system

e Defines the driver for the system procedure that maps and loads the
driver and its device database into system virtual memory

® |nitializes the device (and/or its controller) at system startup time
and after a power failure

® Translates software requests for I/0O operations into device-specific
commands

Activates the device
Responds to hardware interrupts generated by the device
Reports device errors

[]
[J
[J
® Returns data and status from the device to user software

The VAX/VMS operating system performs all I/0 processing that is
independent of the particular device. Such processing is known as
device-independent processing. When details of an I/0 operation
need to be translated into terms recognizable by a specific device, the
operating system transfers control to a device driver. Such processing
is called device-dependent processing.

Since different types of peripheral devices expect different commands
and setups, each type of device on a VAX system needs its own sup-
porting driver. The driver, consisting of code and static tables, per-
forms all device-dependent processing.

The operating system and device drivers cooperate in processing an
1/0 operation by sharing a common 1/0 database. The database de-
scribes, in terms familiar to the VAX/VMS operating system, the speci-
fications and functions of each device.

389

1/0 Drivers

DEVICE DRIVER ELEMENTS

A device driver contains a set of routines that the operating system
calis to perform device-dependent processing on an I/0 request. The
routines of a VAX/VMS driver perform the following functions:

Initialization

1/0 setup

Start 170
Interrupt handling

Error recovery

Error logging

Cancel I/0

At the time that the driver is loaded, or after
a power failure, initializes a device or
controller by setting hardware registers and
initializing fields in the 1/0 database

Prepares an I/0 request for a device by for-
matting data, allocating system buffers,
locking pages in memory, validating the re-
quest, etc.

Sets up device registers and the 1/0 data-
base to start a device; completes 1/0 re-
quest

Responds to hardware interrupts; read and
resets device registers; returns status

Sets up device registers for retry of an 1/0
operation; applies Error Correcting Code
(ECC) corrections to disk data; returns error
status

Writes the contents of device registers and
other data into an error buffer

Sets up device registérs to terminate 1/0
activity

Drivers need not contain all of the routine types listed above, but every
driver must at least include subroutines to handie 1/0 startup and
interrupts. Figure 12-1 illustrates operating system interaction with 1/0

driver subroutines.

The other parts of a device driver are static tables that describe the
device and the driver. Each driver must contain the following three

tables.
Driver prologue table

Driver dispatch table

- Describes the driver and the device type to

the system driver loading procedure

Lists the entry point addresses of standard
driver routines. Also records the size of di-
agnostic and error logging buffers for the
device type v

390

1/0 Drivers

1/0

OPERATION
SETUP
START
CONTROLLER 10
INITIALIZATION OPERATION
DEVICE OPERATING SERVICE
UNIT SYSTEM DEVICE
INITIALIZATION INTERRUPT
LOG CANCEL
DEVICE 1/0
ERRORS OPERATION
ERROR
RECOVERY

Figure 13-1 Operating System Calls to Driver Subroutines

Function decision table Lists all valid function codes and buffered
function codes for the device. Also lists the
addresses of function setup routines. Func-
tion Decision Table (FDT) routines may be
internal to the operating system, to the de-
vice driver itself, or to both. (Buffered I/0 is
1/0 that is buffered through the system data
buffer i.e., a READ or WRITE to a user ter-
minal. Direct I/0 is I/0 executed directly out
of the user data buffer, i.e., a READ or
WRITE to a disk) ‘

Drivers do not decide when to act or what function to perform. Instead,
the operating system interprets all demands for service from users
and devices. By consulting the I/O database and the tables in the
drivers, the operating system determines which device-dependent
processing is available in the driver, and the entry point of the routine
that can provide the service. Figure 12-2 illustrates I/0 driver or-
ganization conceptually.

391

1/0 Drivers

DRIVER ORGANIZATION

DRIVER
PROLOGUE
TABLE

DRIVER
DISPATCH
TABLE

FUNCTION
DECISION
TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUT INES

Figure 13-2 Driver Organization

The /O Database
The operating system and the device drivers refer to an 1/0 database
that consists of three main parts:

¢ Driver tables that allow the operating system to load drivers, validate
device functions, and call drivers at their entry points

e System data structures that describe every bus adapter, every de-
vice unit, and every logical pathway to a device or group of devices

e Dynamically allocated packets that define individual requests for I/0
activity; these packets are known as /0 request packets (IRPs)

The three driver tables are listed in the previous section. The control
blocks that describe and permit access to peripheral hardware are
created either at system initialization or at the time that a driver is
loaded. Drivers reference some or all of the control blocks described
below.

392

1/0O Drivers

Device Data Block Records the generic device name and
driver name for a set of devices attached to
a single controller

Unit Control Block Defines the characteristics and current
state of an individual device unit

Channel Request Defines the current activity of a single

Block controller

Interrupt Dispatch Records the characteristics of a single con-

Block troller and points to the devices it controls

Adapter Control Block Defines the characteristics and current
state of a UNIBUS or MASSBUS adapter

The third part of the I/0 database is a group of 1/0 request packets.
When a user program requests device activity, the operating system
constructs a packet of data—called an I/0 request packet—that de-
scribes the I/0 request in a standard form.

The 1/0 request packet (IRP) is sent to device driver routines as a
source of detailed instructions. The packet includes buffer addresses,
a pointer to the target device, 1/0 function codes, and further pointers
to the I/0 database. In addition, the packet contains fields into which
the driver subroutine can write, such as statusfields.

The 1/0 database and 1/0 request packets are the communicating
links between operating system and driver handling of 1/0 processing.

FORK PROCESSES

Device driver routines that complete an 1/0 operation after a device
interrupt execute for relatively short periods of time. The routines may
be suspended to wait for shared resources. To facilitate fast dispatch-
ing of driver routines, the operating system does not schedule the
routines as full processes.

Instead, the VAX/VMS operating system implements I/0 drivers as
fork processes. Fork processes are created dynamically and contain
minimal context. They execute at software interrupt level and entirely
within the system address space. They cannot incur exceptions, and
thus all code they execute must be resident. Of the 15 software inter-
rupt levels provided by VAX hardware, levels 8 through 11 are used to
schedule fork processes. Figure 12-3 illustrates the interrupt priority
level scheme.

Fork processes are scheduled by constructing a specialized control
block called a fork block, inserting the fork block in a fork queue, and
then requesting a software interrupt. Each software interrupt level

393

1/0 Drivers

PRIORITY HARDWARE EVENT
Hex Decima

1F 31 [Machine Check, Kernel Stack Not Valid
1E 30 {Power Fail

1D 29 |. Processor,
1C 28

1B 27 : Memory, or
1A 26 .

19 25 Bus Error

18 24 Clock

17 23 |UNIBUS BR7

16 22 |UNIBUS BR6

15 21 |UNIBUS BR6

14 20 |UNIBUS BR4 Device interrupt
13 19

12 18

11 17

10 16

PRIORITY SOFTWARE EVENT
OF 15

OE 14 Reserved for
oD 13 DIGITAL

0C 12

0B 11

0A 10 Device

09 09 Drivers

08 08

07 07 __|Timer Process

06 06 |Queue Asynchronous System Trap (AST)
05 05 eserved for DIGITAL

04 04]I/0 Post

03 03 |Process Scheduler

02 . 02 |AST Delivery

01 01 [Reserved for DIGITAL

00 00 |User Process Level

Figure 13-3 Interrupt Priority Level

contains a fork queue which is a first-in/first-out list of fork blocks for
fork processes that are waiting to be dispatched.

The fork block contains the initial context for a fork process. Fork
processes are dispatched by the fork dispatcher, which is executed in
response to a software interrupt on levels 6 and 8 through 11. A fork
block is removed from-the front of the appropriate queue. The fork
process is then dispatched using a Jump to Subroutine (JSB) instruc-
tion to its entry point. The fork process can freely use registers RO
through R5, but must explicitly save and restore any other registers.

A fork process terminates its execution via an RSB instruction, which
causes a return to the fork dispatcher. The fork dispatcher repeats the
dispatching sequence for another fork block until the fork queue for

394

1/0 Drivers

the corresponding level is empty. It then restores registers R0 through
R5 and executes a Return from Exception or Interrupt (REI) instruction
which causes execution to resume at a lower interrupt priority level
(IPL).

GENERAL DEVICE ACTIVITY
The VAX/VMS operating system and the device driver cooperate to
execute a user request for an I/0 operation.

All input and output operations under the VAX/VMS operating system
result from software requests for 1/0 processing. Presented here is a
general discussion of a user process terminal READ request.

Before I/0 requests can be made to a device, however, the user must
assign a channel to establish a link between the user process and the
device. The process uses this channel to transfer information-to and
from the device. The Assign I/0 Channel ($ASSIGN) system service is
used to assign a channel to a device. The $ASSIGN system service
returns the channel number. The process can then request an 1/0
operation by calling the Queue 1/0 ($QI0) system service and specify-
ing, as one argument, the channel number returned by the $ASSIGN
system service.

The VAX/VMS mechanism for requesting an 1/O operation is the
Queue /0 ($QI0) system service call. Any native mode program can
issue a $QIO system service directly. For example, an assembly lan-
guage program can issue a $QIO directly with the following instruc-
tions:

$Qlo_s CHAN = R2,-
FUNC = #10$_READVBLK
P1 = buffer_address,-
P2 = #buffer_size

An example of the $ASSIGN system service is as follows:

CHANNEL.: .WORD 0

DEVICE: .LONG 20$—-10%
.LONG 10%

10$: ASCIINTTAO:\

20%:

$ASSIGN_S DEVNAM=DEVICE,-
CHAN=CHANNEL - :

An assembly language program can also issue a $QIO indirectly to a
record-oriented device with a Record Management Services (RMS)
function call. In the following example, the $GET is eventually translat-
ed by RMS into a $QIO system service call.

—

395

1/0 Drivers

$GET RAB = file_rab

The RMS function call assumes that all the details of the 1/0 request
have been set up previously in the RAB and FAB data structures. An
executive privileged piece of software in system space called RMS
translates the function call into a $QIO system service call.

The RMS $GET command is equivalent to a READ function. The $GET
command translates into the basic $QIO system service request for
1/0 processing. The $GET command sets up a $QIO with the informa-
tion necessary to perform the 1/0 request. Typically, $GET will provide
$QIO with the following attributes:

e Channel number
e Buffer address
e Buffer length

Record Management Services will issue the $QIO resulting from the
$GET command.

However, as in the previous case, where $QIO was requested directly,
the $ASSIGN request for a channel number must also precede the
RMS $GET command. The $OPEN command must precede the $GET
command. The $OPEN command translates into a number of
functions, including the $ASSIGN system service. The $ASSIGN sys-
tem service once again provides the process with a channel to the
specified device.

FORTRAN programmers request I/0 operations with the FORTRAN
language statements READ and WRITE. An example follows:

READ(2,format,ERR=exit, END =exit2)

The FORTRAN compiler translates the READ statement into a calil to
the FORTRAN runtime system. The runtime system further translates
the statement into a $GET which translates into a $QIO system service
call. This process occurs according to the following steps:

1. Program executes “READ” statement

2. READ statement causes a call to the runtime system

3. Runtime system checks to see if this is the first 1/0 request on that
file

4. Ifitis, the runtime system performs an “OPEN.” (When the first

1/0 request is queued, a function of the runtime system is to
perform an $OPEN on the file, establishing a device channel)

5. Performs $GET command
6. $GET translates into $QIO

Optionally, the FORTRAN programmer may directly specify the $QIO

396

I/0 Drivers

system service. This procedure is as follows:

DIMENSION 10SB(2),BUF(20)
STATUS = SYS$ASSIGN('TTA5,CHAN,,)
IF(.NOT. STATUS)GO TO 980

STATUS=SYS$QIO(,%VAL(CHAN),%VAL('31°X),I0SB,,,BUF,%
VAL(80),,,,)

IF (NOT. STATUS) GO TO 900

IF (.NOT. 0SB (1)) GO TO 950

900 TYPE 910, STATUS
910 FORMAT (' QIO NOT ACCEPTED, STATUS =’, Z8)

950 TYPE 960, IOSB (1)
960 FORMAT (' 1/0 FAILURE, 10SB ="', Z8)

980 TYPE 990, STATUS
990 FORMAT (’ 1/0 ASSIGN FAILED, STATUS =", Z8)

END

In this case, the programmer must perform an $ASSIGN to establish a
device channel.

Therefore, by requesting an I/O operation directly, via Record Man-
agement Services, or from a high-level language, the user process
specifies a logical path to the device, a READ function code, and the
address of a user buffer to hold the data.

The $QIO service routine in the operating system allocates an 1/0
request packet, validates the request, and locates database descrip-
tions of the device and its driver (i.e., channei control block, unit con-
trol block, device data block, etc.). The operating system locates de-
vice-independent information in this database and stores it in the I/0
request packet (IRP).

397

1/0 Drivers

Upon completion of device-independent 1/0 preprocessing, the $QIO
service routine calls a READ function routine in the driver to allocate a
system buffer into which the device can write data. The READ function
routine is pointed to by the function decision table. The system buffer
is that buffer used to contain typed information from the terminal to be
transferred to user process space via the kernel mode AST. The READ
function routine places device-dependent information into the IRP.
Figure 12-4 illustrates the function decision table.

ENTER VIA INTERRUPT SAVE
AT IPLB-11 RO-RS

—

READ
IPL

|

REMOVE
FORK BLOCK

NO

FORK BLOCK RESTORE
ADDR TO RS RO-RS

| 1

LOAD R3-R4
FROM FORK REL
BLOCK

|

JSB TO FORK
START ADDR

A

Figure 13-4 Function Decision Table

The I/0 request packet (IRP) will be the only data explicitly passed to
the 170 driver. The READ function routine returns the completed IRP to
the operating system for queuing to the driver. Up to this point, all of
the execution has been contained within the context of the user proc-
ess. However, the queuing of the 1/0 request to the driver by the
operating system is executed in system space, running in kernel
mode.

398

1/0 Drivers

If the device is free, the operating system calls the driver Start I/0
routine immediately. The Start 1/0 routine, using the IRP as its data-
base, activates the device. If the device is busy, however, the operating
system inserts the IRP into a device wait queue. The IRP remains in the
queue until the device is free and the IRP is first in the queue. Then the
operating system dequeues the IRP and calls the driver Start 1/0 rou-
tine. :

After a driver starts a device, the driver transfers control to an operat-
ing system routine that suspends the driver until a device interrupt or
timeout occurs. The operating system suspends the driver so that a
computable process can utilize the CPU while the driver waits for a
device interrupt.

At this point of the READ operation, the user could enter information
from the keyboard. Typing a character causes an interrupt to occur at
device hardware interrupt priority level (IPL). When the interrupt oc-
curs, control is passed to the device driver interrupt service routine
(ISR). In the case of a READ operation, the ISR removes data from the
device data register and places it in the system buffer. In the case of
the WRITE operation, the ISR removes data from the system buffer
and places it in the device data register. When the data transfer is
complete, the driver’s service routine restores the saved state of the
driver process.

The driver process obtains status information about the transfer by
reading device registers. The driver returns the status of the 1/0 to the
operating system for later delivery to the issuing process. The
operating. system copies the newly read data into the user buffer via
the kernel mode asynchronous system trap (AST). It then returns to
the user process with the final status of the I/0 operation via the kernel
AST.

The next section covers in greater detail an actual write I/0 operation
to the lineprinter. Accompanying the text is a commented copy of the
DIGITAL-supported VAX/VMS lineprinter device driver. Correspon-
dence between text and I/0 driver code is noted.

A SAMPLE LINEPRINTER QIO REQUEST

The following section describes a typical write function to the lineprin-
ter. At the conclusion of the text, a commented source program listing
of the lineprinter 1/0 device driver is included. The device driver listing
is separated into sections which correspond to the following text.

The LP11-R is a highspeed buffered lineprinter. A process can per-
form three functions with respect to the LP11. They are:

1. Write data to the lineprinter

399

1/0 Drivers

2. Read lineprinter device characteristics:

— Carriage width in characters

— Check for mechanical form-feed capability

— Check for lowercase print capability
3. Write lineprinter device characteristics:

— User can set carriage width

— User can set lowercase print capability

— User can set mechanical form-feed capability
Point 2 corresponds to the operating system’s sense mode routine,
EXE$SENSEMODE, which is called by the function decision table
(FDT) dispatcher when the routine is entered in the Function Decision
Table. :

This section will illustrate a user process request to print a line of data
to the lineprinter. The driver routines used to accomplish a write data
function are: ’

® FDT subroutines that reformat the user-supplied data

e A driver Start I/0 routine that writes data to the device data buffer
until the printer enters a busy state, at which time the driver will wait
for the printer to interrupt, indicating the device data buffer has
been printed

® A driver interrupt-handler that returns control to the Start 1/0 routine
after a hardware interrupt from the lineprinter

® |nitialization routines called at system startup and after power failure
to initialize the unit and/or the controller

A process can print a line to this device by issuing a $QIO cali that
specifies the WRITE VIRTUAL BLOCK function. This procedure is
illustrated below:

$Ql0_ S CHAN = channel_number,-
FUNC = #10$_WRITEVBLK,-
= (user) buffer_address,-
= (user) #buffer_size,-
P4 #X30 (carriage control—performs adouble
space before line is printed and a carriage return
after) :

Figure 12-5 illustrates the flow of execution through the operating
system and the lineprinter driver to satisfy this I/0 request.

400

1/0 Drivers

Q10
VALIDATION
SUBROUTINE "D
USER
CONTEXT
SYSTEM
CONTEXT
DELIVER
IRP TO
DRIVER
P DRIVER QuEve vo
INTO BUSY WRITE TO POST- POST-
STATE DEVICE PROCESSOR PROCESSOR
DRIVER
s . ,
DRIVER. RETURN
STATUS
!
|
A |
vi OPERATING
GENERATES | .| SYSTEM | INTERRUPT
INTERRUPT DISPATCHES HANDLER-
INTERRUPT

Figure 13-5 Lineprinter Write Function

The double-sided boxes in the figure indicate processing performed
by driver subroutines. All processing above the dotted line occurs.in
the context of the user process. Processing below the dotted line
occurs in system or mterru pt context

1/0 Preprocessing by the Operatmg System (Dewce Independent)
The first step in processing an I/0 request is to validate that the re-
quest is correctly specified. This function is performed by the $QIO
service routine and consists of the following tasks:

1. The $QIO service routine validates that the location chan-
nel_number contains an index into the process 1/0 channel list,

401

1/0 Drivers

and that the process has previously assigned the lineprinter de-
vice to the specified process channel.

Also, during this sequence, the $QIO service routine obtains the
address of the lineprinter driver’s function decision table (FDT).
Figure 12-6 illustrates the sequence of pointers from the channel
index number to the FDT address. ‘

CHANNEL
CONTROL
BLOCK
UNIT
(ccal CONTROL
BLOCK
(UCB) DEVICE
DATA
BLOCK
{DDB) DRIVER
DISPATCH :
T(ADIB)"TE) FUNCTION

DECISION
TABLE
(FOT)

Figure 13-6 Locating Function Decision Table

2. The $QIO service routine validates (via the FDT) that the lineprin-
ter function decision table lists |I0$_WRITEVBLK as a valid
function for the device

3. The $QIO service routine validates that the process quotas permit
this buffered I/0 request

4. - An FDT routine validates that the user has read access to the
buffer starting at buffer_address

If all the operating system preprocessing checks succeed, the $QIO
service routine creates an 1/0 request packet (IRP) in non-paged sys-
tem address space. The $QIO routine writes all device-independent
details about the 1/0 request into the IRP.

I/O Preprocessing by the Driver (Device-Dependent)
This section corresponds to the write function decision table (FDT)
routine coding of the lineprinter driver.

The $QIO service routine scans the function decision table. It then
checks the FDT for an entry that associates the I0$_WRITEVBLK func-
tion code with an FDT subroutine. The $QIO service routine then calls
the subroutine—a device-specific subroutine located in the lineprinter
device driver.

402

I/0 Drivers

The FDT subroutine copies data from the user process space buffer
into a system space buffer. The subroutine performs this function by
performing the following tasks:

® The subroutine calculates the length of the required system space
buffer

e |f the process byte count quota is not exceeded, the subroutine
allocates a buffer from system address space and stores the ad-
dress of the buffer in the 1/0 request packet (IRP). It charges against
the process byte count quota

e The FDT subroutine accesses the lineprinter’s unit control block
(ucsB)

e The subroutine reads the description of the lineprinter’s current line
and page position from the driver’s UCB

® The subroutine then reformats the data contained in the process
buffer and places it into the system buffer. It adds carriage control
characters (specified in the $QIO argument “P4”) before and after
the data _

e The subroutine rewrites the updated line and page positions into the
device’s unit control block

e The subroutine then transfers control to an operating system routine
that queues the 170 packet to the device driver

Both operating system and driver 1/0 preprocessing occur in the con-
text of the user process. The user address space is mapped, and the
interrupt priority level is low enough to permit context switching or
process scheduling of the process and paging. Subsequent queuing
of the 1/0 request to the driver and all resulting driver processing
occur at higher interrupt priority levels (IPLs) to synchronize driver
handling of the device.

Queuing the I/O Packet to the Driver

To queue the 1/0 request packet to the proper driver, the operating
system queuing routine first raises the IPL to the device fork level
stored in the unit control block (UCB). Raising priority to fork level
synchronizes driver-access to the 1/0 database.

If the device is not busy—indicated by the “Busy” bit's being clear in
the status word of the UCB—then the operating system can transfer
control to the driver at the start /0 entry point. To find the proper
entry point, the initiation routine chains through the 1/0 database to
the driver dispatch table (DDT), which contains the start 1/0 entry
point. This process is illustrated in Figure 12-7.

403

1/0 Drivers

1/0 UNIT DEVICE DRIVER ?}é‘"
REQUEST CONTROL DATA DISPATCH ety
PACKER BLOCK BLOCK TABLE FOINT

Figure 13-7 Entry Point Location

If the device is busy with another 1/0 transfer, the operating system
inserts the 1/0 request packet (IRP) in a device wait queue according
to the software schedulable priority of the process.

Start I/O : :

This section also corresponds to the Start 1/0 routine of the lineprinter
device driver. The Start I/0 routine contains the code to modify device
registers, fork to device fork level, and complete the I/0 request.

The lineprinter driver routine writes to the lineprinter data buffer
according to the following algorithm. '

Locates the LP11 device registers via a chain of pointers starting
at the device’s unit control block (UCB). This process is illustrated
in Figure 12-8. ’

UNIT CHANNEL INTERRUPT SONTROL
CONTROL REQUEST DATA REGISTER
BLOCK BLOCK BLOCK ADDRESS

Figure 13-8 LP11 Device Register Location

The control/status register (CSR) indicates the status of the line-
printer controller. The next successive address is the data buffer.
In contrast to many other devices, such as disks, the LP11 line-
printer does not share a controller with other devices. Therefore,
no arbitration ownership of the controller is required. The CSR
address is always the address of the lineprinter.control/status
register, and all other device registers are at fixed offsets from this
address. ,

The lineprinter driver routine writes data in the device’s data buff-
er, then raises the IPL to block out all interrupts and sets the
interrupt enable bit in the device’s control/status register. It then
calls an operating system routine to suspend driver processing
until the lineprinter generates an interrupt.

The operating system routine suspends the driver by:
e Saving driver context—R3, R4, and the address of the next instruc-

tion in the driver—in the device’s unit control block (UCB)

404

1/0 Drivers

e Calculating the time at which the device will timeout

e Setting bits in the device’s UCB to indicate that the driver expects a
device interrupt within a specified time period

The operating system then drops the IPL back to driver fork level and
returns control to the caller of the driver Start 1/0 routine.

The driver remains in a suspended state until one of two events
occurs:

® The lineprinter generates a hardware interrupt

® The operating system reports a device timeout because the lineprin-
ter did not generate a hardware interrupt within a specified period of
time

Normally, the LP11 prints the contents of its data buffer and generates

the interrupt. If the printer is turned off during an operation or if it runs

out of paper, the operating system reports a device timeout.

Interrupt Handling
This section corresponds to the interrupt service routine code of the
lineprinter device driver.

When the LP11 lineprinter generates a hardware interrupt, an operat-
ing system interrupt handling routine gains control, determines which
device is requesting an interrupt, and passes the mterrupt to the LP11
driver interrupt handling routine.

The driver’s interrupt handling routine restores control to the driver as
follows:

1. Confirms that the interrupt was expected by examining bits in the
device’s unit control block (UCB)

2. Restores the saved registers, R3 and R4, from the device’s UCB
3. Transfers control to the driver PC address which was stored in the
device’s UCB

Rather than execute in the interrupt context, the reactivated driver

routine calls the operating system to create a driver fork process. The

operating system again suspends driver processing by:

e Saving driver context (i.e., R3, R4, and the driver PC address in the
UCB)

¢ Inserting the UCB in the appropiate fork queue

The driver suspension allows the operating system to reschedule dri-
ver processing at a lower IPL. The fork dispatcher can reactive the
driver when IPL drops to driver fork level.

After creating the fork process, the operating system returns control to
the driver’s interrupt handling routine. The handling routine:

405

1/O Drivers

e Restores registers saved at the time of the device interrupt
® Dismisses the interrupt '

/0 Completion Processing
When the driver Start /0 routine finishes the write transfer, the routine
stores in RO:

® A success status code
® The number of bytes transferred

Then the routine transfers control to the operating system to complete
the I/0 request.

The operating system inserts the 1/0 request packet (IRP) into an 1/0
postprocessing queue. If another IRP is in the device wait queue, the
operating system dequeues that IRP, and calls the driver Start 1/0
routine to process the IRP.

When the interrupt priority level (IPL) drops to IPL$ IOPOST, an 1/0
postprocessing dispatcher dequeues the IRP for the lineprinter 1/0
request and performs the following steps:

1. Adds one (1) to the process’s buffered 1/0 quota

2. Deallocates the system buffer used for the reformatted user data
3. Sets an event flag to indicate that the I/0 operation is complete
4,

Queues a kernel mode asynchronous system trap (AST) routine
that deallocates the IRP and optionally loads 1/0 status into a
‘user-specified /0 Status Block

The user process determines that the I/0 operation is complete by
examining the event flag. ' '

LINE PRINTER 1/0 DRIVER SOURCE PROGRAM LISTING

LTITLE LPDRIVER = LP117L811/LV11 LINE PRINTER DRIVER
+« IDENT /X@S/

COPYRIGHT (C) 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 081754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE, THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS, TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN. IN DEC,

THE INFORMATION IN THIS SOFTWARE 18 SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION,

DEC ASSUMES NO RESPONS!EIL!TV FOR THE USE OR RELIABILITY OF 178
SOFTWARE ON EQUIPMENT WHICH 18 NOT SUPPLIED BY DEC, :

“ e e v e e v e e e e e

406

MACRO LIBRARY CALLS

- e e e e

SCRBDEF
$DDBDEF
SDPTDEF
SIDBDEF
SIODEF

SIRPDEF
SLPDEF

SMBGDEF
SPCADEF
SUCBDEF
SVECDEF

LOCAL SYMBOLS

Pis@
Pamy
P3ing
Pysi2
PS=i6
L1]

'
1 CHARACTER CODE DEFINITIONS
!

C.CRE13
CLFFmt2
CLlvremyy
CiLFsi@
C.TABE9

'
y FLAG REGISTER 8IT DEFINITIONS
!

M_CRPENDE
V.CRPEND=®

LP11/1L811/LVLt LINE PRINTER DRIVER

ARGUMENT LISY OFFSET DEFINITIONS

1/0 Drivers

sDEFINE CRB OFFSETS

sDEFINE DDB OFFSETS

SDEFINE OPT OFFSETS

JDEFINE DB OFFSETS

JDEFINE 1/0 FUNCTION CODES
sOEFINE IRP OFFSETS

JDEFINE LINE PRINTER CHARACTERISTICS
sDEFINE SYSTEM MESSAGE TYPES
JDEFINE PCB QFFSETS

JDEFINE UCB OFFSETS

I1DEFINE VEC OFFSETS

$FIRST FUNCTION DEPENDENT PARAMETER
ySECOND FUNCTION DEPENDENT PARAMETER
JTHIRD FUNCTION DEPENDENT PARAMETER
$FOURTH FUNCTION DEPENDEND PARAMETER
sFIFTH FUNCTION DEPENDENT PARAMETER
18IXTH FUNCTION DEPENDENT PARAMETER

1CARRIAGE RETURN
1FORM FEED
JVERTICLE TaAB
SLINE FEED
JTABULATION

)CARRIAGE RETURN PENDING
!

'
s LP11/L814/LV11 DEVICE REGISTER OFFSET DEFINITIONS

SDEFINI LP
SDEF LPLCSR «BLKW
SDEF LPLDBR o BLKW
SDEFEND LP

1

JCONTROL STATUS REGISTER
1DATA BUFFER REGISTER

H
y DEFINE DEVICE DEPENDENT UNIT CONTROL BLOCK OFFSETS

'
SDEFINI UCB

+BUCBSK LENGTH

SOEF UCBSL LP MUTEX ,BLKL

SDEF UCBSB_LP, CURSOR ,BLKB

SDEF UCBSB_LP_LINCNT ,BLKB
SDEF UcesBe _ LP OFLCNT ,BLKB

$DEFEND UCB

- a aea

'

JLINE PRINTER UCB MUTEX
$CURRENT HORIZONAL POSITION
JCURRENT LINE COUNT ON PAGE
JOFFLINE TIME COUNTER
JSPARE UNUSED BYTE

407

1/0 Drivers

]
) LOCAL DATA

'
¢ DRIVER PROLOGUE TABLE
'

DPTAB =
ENDBLP END, =
ADAPTERSUBA, =
UCBSIZE®]24,=
NAMERLPDRIVER

DPT,_STORE INIT

DPT_STORE UCB,UCBSB,FIPL,B,8

JOEFINE ORIVER PROLOGUE TABLE
1ENO OF DRIVER

1ADAPTER TYPE

1UCB 81ZE

J10RIVER NAME

JCONTROL 8LOCK INIT VALUES
yFORK IPL

DPT_STORE UCB,UCBSL DEVCHAR,L,= jDEVICE CHARACTERISTICS

<DEVSM_ REC=
IDEVSM AVL=
LDEVEM_ CCL=
IDEVSEM, O0V>

1 RECORD ORIENTED

¥ AVAILABLE

3 CARRIAGE CONTROL DEVICE
y OUTPUT DEVICE

DPT_STORE UCB,UCBSB DEVCLASS,8,DCS.LP JDEVICE CLASS
OPT_STORE UCB,UCBSB _DEVTYPE,B,LPS_LP11 jDEVICE TYPE

DPY, STORE UCB,UCBSW _DEVBUFS8IZ,W, {32 jDEFAULY BUFFER SI1ZE
DPT,_STORE UCB,UCBSL,DEVDEPEND,L,<64024¢ PSM _MECHFORM>)PRINTER PARAMETERS

DPT_STORE UCB,UCBSB, DIPL,B,20

JDEVICE IPL

DPT _STORE UCB,UCBSL LP MUTEX,Wy={ JINITIALIZE MUTEX

OPT_STORE REINIT

JCONTROL BLOCK RE«INIT VALUES

OPT,_STORE CRB,CRBSL_INTD#4,0/)LPSINT jINTERRUPT SERVICE ROUTINE ADDRESS
DPT_STORE CRB,CRBSL, INTOSVECSL INITIAL,D,LP LX11, CINIT JCONTROLLER INIT
OPT_STORE CﬁBoCRBSL‘!NTD#VECSL,UNITINXT,D:LP‘LX11*IN!T JUNIT INIT
DPT_STORE DDB;DDBSL‘DDTyDaLPIDDT ;DDT ADDRESS

DPT,.STORE END ;)

'
? DRIVER DISPATCH TABLE
1

DDTAB LPy=
STARTIO,=
Qe
FUNCTABLE,=
+I0CSCANCELIO, =
By
@,
[
«PAGE
«8BTTL

1
3 LP11/L811/LV11 FUNCTION DECISION TABLE

FUNCTABLES

FUNCTAB ,»
CSENSECHAR, =
SETCHAR, =
SENSEMODE, »
SETMODE, -
WRITELBLK,»
WRITEPBLK,=
WRITEVBLK>

FUNCTAB ,»
CSENSECHAR, =
SETCHAR,»
SENSEMODE, »
SETMODE, »
WRITELBLK,=
WRITEPBLK,=
WRITEVBLK>

I1DRIVER DISPATCH TABLE
$START 1/0 OPERATION
JUNSOLICITED INTERRUPT
JFUNCTION TABLE

1CANCEL 1/0

JREGISTER DUMP ROUTINE
181ZE OF DIAGNOSTIC BUFFER
18IZE OF ERROR LOG BUFFER

LP11/L814/LVL1 FUNCTION DECISION TABLE

$FUNCTION DECISION TABLE
JLEGAL FUNCTIONS
JSENSE CHARACTERISTICS
3SET CHARACTERISTICS
1SENSE MODE

18ET MODE

JWRITE LOGICAL BLOCK
JNRITE PHYSICAL BLOCK
SWRITE VIRTUAL BLOCK
JLEGAL FUNCTIONS
JSENSE CHARACTERISTICS
18ET CHARACTERISTICS
JSENSE MODE

1SET MODE

IWRITE LOGICAL BLOCK
JWRITE PHYSICAL BLOCK
IWRITE VIRTUAL BLOCK

FUNCTAB LP WRITE, <WRITELBLK,WNRITEPBLK,WRITEVBLK> yWRITE FUNCTIONS
FUNCTAB LP_ SETMODE, «<SETCHAR, SETMODE> 3SET CHARACTERISTICS FUNCTIONS

FUNCTAB +EXESSENSEMODE,»
<SENSECHAR, =
SENSEMQDE>

' .
- 1SENSE CHARACTERISTICS

1SENSE MODE

408

1/0 Drivers

FUNCTION DECISION TABLE (FDT) ROUTINE
Set Mode FDT Routine

JPAGE
.8BTTL SET CHARACTERISTICS AND SET MODE FUNCTION PROCESSING
[AJ
LP.SETMODE « SET CHARACTERISTICS AND SET MODE FUNCTION PROCESSING

L}

1}

3 THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER TO PROCESS
3 A SET MODE FUNCTION TO A LINE PRINTER,
!
'
!

INPUTS:

] RB m SCRATCH,

1 Ry = SCRATCH,

i R2 = BCRATCH,

] R3 m ADDRESS OF 1/0 REGUEST PACKET,

] Ry ® CURRENT PROCESS PCB ADDRESS,

' RS = ASSIGNED DEVICE UCB ADDRESS,

[} R6 = ADDRESS OF cCa,

1 R7 = 1/0 FUNCTION CODE,

[} R8 & FUNCTION DECISION TABLE DISPATCH ADDRESS,

' R9 3 SCRATCH,

[] R12 = SCRATCH,

' Ri{ = SCRATCH,

] AP = ADDRESS OF FIRST FUNCTION ODEPENDENT PARAMETER,

'

s OUTPUTS:

: THE SPECIFIED CHARACTERISTICS ARE MOVED INTO THE DEVICE UCB AND ‘THE

' 1/0 18 COMPLETED,

1o

LPLSETMODE: 9SET MODE FUNCTION PROCESSING
MOVL _P1(AP),RY 3JGET ADDRESS OF CHARACTERISTICS
IFNORD #8,(R1),208 . JCAN CHARACTERISTICS QUADWORD BE READ?
PUSHL R3 $SAVE PACKET ADDRESS
MOVAB = UCBSL.LP_MUTEX(RS),R9 3GET ADDRESS OF UCB MUTEX
Jse © G*SCHSLOCKW JLOCK uCB FOR WRITE ACCESS
CHPL tIOS SETMODE,RY $SET MODE FUNCTION?
BEQL 10 1IF EGL YES

MOVW (Ri)'UCBSB‘DEVCLASS(RS) 1SET DEVICE CLASS AND TYPE
1081 MOV 2(R1),UCBSW, DEVBUFSIZ(RS) §8ET DEFAULT BUFFER SIZE
MOvVL 4(R1),UCBSL DEVDEPEND(RS) pSET DEVICE CHARACTERISTICS

Jse G SCHSUNLOCK JUNLOCK uce
POPL R3 JRESTORE PACKET
MOVZIW| #SSS NORMAL,RO JSET NORMAL COMPLETION STATUS
JMP G"EXESFINISHIOC ’

208: MOVZWL #885,ACCVIO,RE $SET ACCESS VIOLATION STATUS
JMP G*EXESABORTIO ’

Write FDT Routine
JPAGE

W8BTTL WRITE FUNCTION PROCESSING
[R4
¢ LPLWRITE « WRITE FUNCTION PROCESSING

'
y THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER TO PROCESS
? A WRITE PHYSICAL, WRITE LOGICAL, OR WRITE VIRTUAL FUNCTION TO A LINE PRINTER,

'

1 INPUTS:

'

y R@ = SCRATCH,

' R = SCRATCH,

' R2 = SCRATCH,

’ R3 = ADDRESS OF 1/0 REGUEST PACKET,
’ R4 & CURRENT PROCESS PCB ADDRESS,
' RS ® ASSIGNED DEVICE UCB ADDRESS.
' R6 = ADDRESS OF CCB,

' R7 = 1/0 FUNCTION CODE,

409

- .-

1
'
!
!
'
'

1/0 Drivers

R8 = FUNCTION DECISION TABLE DISPATCH ADDRESS,
R9 ® SCRATCH,
Ri® s SCRATCH,
Ri1 = SCRATCH,
AP = ADDRESS OF FIRST FUNCTION DEPENDENT PARAMETER,

QUTPUTS:
YHE FUNCTION PARAMETERS ARE CHECKED AND THE

USER’S BUFFER I8 FORMATYED

AND COPIED INTO A SYSTEM BUFFER FOR PROCESSING BY THE LINE PRINTER

DRIVER,

LPLWRITE:

FORMATt

188

2081

3584
3081

4081

ses:
[1-1]]

CLRL
CLRL
MOVL
PUSHR
MOVL
MOVZWL
CHPL
BEQL
MOVL
Jse
MOVZBL
MQVZBL
ADDL
MQOVaAB
TSTL
BEQL
MOVQ
Jss
MOVAB
JSB
BLBC
JS§B

8LBC
MOVL
MOV
SUBwW
MOVW
CLRL
MOVW
MOVAB
MOVAB
Jse
CMRL
BEGL
SUBW
MOVZBL
MOVZWL
MOVZBL
MOVZBL
MOvVL
88cC
CLRL
8s88
DECL
BLSS
MOVZBL
BSBB
BRB
8s8B
SUBL
SUBW3
MOVB
INSV

MOVE
8RB
POPR
JMP
MOVW
Move
POPR
PUSHL
MOVAS

R1t
R18
FP,SP

#*M<RI,RY,R5,R6,R7,AP>

P1(AP),R8
P2(AP),R9
‘IOS‘NPITEPBLK:R7
ies

P4CAP), IRPSB, CARCON(RS)

G*TTSCARRIAGE
IRPSB,CARCON(R3),RQ

IRPSB_CARCON®2(R3),R1

R2,R1
32(R1)[R1L),R1Q
R9

H-1

R8,RE
G*EXESWRITECHK
12(R9) [R18] R
G*EXESBUFFRAUOTA
RO,458
G*EXESALLOCBUF

RQ,u58

(SP),R3

Re, IRPSL, SVAPTE(RY)
R1,PCBSW, BYTCNT(R4)
Ri,IRPSwW, BOFF(R3)
IRPSL MEDIA(R3)

R9, IRPSW,_BCNT(RY)
12(R2),R2

UCBSL LP,MUTEX(RS),R0

G SCHSLOCKW

4108 WRITEPBLK,RY
ses

#12,R1

UCBSB_ LP CURSOR(RS) Ry

UCBSW, DEVSTS(R5),R6

UCBSB, LP,LINCNT(RS),R7
UCBSW DEVBUFSIZ(RS),R10Q

KEX20, AP

JWRITE FUNCTION PROCESSING

JCLEAR TOTAL NUMBER OF OVERMEAD BYTES
JASSUME WRITE PASS ALL FUNCTION

JREMOVE ALL TEMPORARIES FROM STACK

JSAVE REGISTERS

JGET STARTING ADDRESS OF USER BUFFER
1GET LENGTH OF USER BUFFER

JWRITE PHYSICAL BLOCK?

1IF EQL YES

$INSERT CARRIAGE CONTROL INFORMATION
JTRANSLATE CARRIAGE CONTROL INFORMATION
JGET NUMBER OF PREFIX CONTROL BYTES

}GET NUMBER OF SUFFIX CONTROL BYTES
JCALCULATE NUMBER OF CARRIAGE CONTROL BYTES
JCALCULATE TOTAL NUMBER OF OVERHEAD BYTES
JANY BUFFER SPECIFIED?

1IF EQL NO

JRETRIEVE BUFFER PARAMETERS

JCHECK ACCESSIBILITY OF USER BUFFER
JCALCULATE LENGTH OF BUFFER REQUIRED
JCHECK IF PROCESS WAS SUFFICIENT QUOTA
yIF LBC QUOTA CHECK FAILURE

JALLOCATE BUFFER FOR LINE PRINTER OUTPUT

11F LBC ALLOCATION FAILURE

tRETRIEVE ADDRESS OF I/0 PACKET

1SAVE ADDRESS OF BUFFERED 1/0 PACKET
yADJUST BUFFERED I/0 GUOTA

$SET NUMBER OF BYTES CHARGED TO QUOTA
sCLEAR LINE FEED COUNT IN PACKET

t INSERT SIZE OF USER BUFFER

1GET -ADDRESS QOF BUFFER DATA AREA

1GET ADDRESS OF UCB MUTEX

1LOCK UCB FOR WRITE ACCESS

JWRITE PASS ALL?

1 IF EQGL YES

1CALCULATE ACTUAL LENGTH OF DATA AREA
$GET CURRENT WORIZONAL CARRIAGE POSITION
1GET CURRENT CARRIAGE RETURN PENDING FLAG
JGET CURRENT LINE ON PAGE

1GET WIDTH OF PRINTER CARRIAGE

JASSUME PRINTER DOES NOT HAVE LOWER CASE

QLPSV LOWER, UCBSL‘DEVDEPEND(ﬁ51135S 1IF CLR, NO LOWER CASE

7as
RO

4es

(R8)+,RD

WRITE, BYTE

308

80s

IRPSL SVAPTE(R3),R2

¥12,R2, IRPSL MEDIA+2(R3)
R4,UCBIB, LP, CURSOR(RS)
R6,#V CRPEND,#1,UCBSW, DEVSTS(RS)
RY,UCBIB.LP_LINCNT(RS)
603

#*MCRI,RU,RE,R6,RT,AP>

G EXESABORYIO
R9, IRPSL _MEDIA+2(RY)
R9, (R8),(R2)

BOMCRI,RUYRSsRG,RT, AP>

R3

UCBSL LP_ MUTEX(RS),RO

§JSET FOR PRINTER WITH LOWER CASE

3 INSERT PREFIX CARRIAGE CONTROL

$ANY MORE BYTES TO TRANSFER TO SYSTEM BUFFER?
sIF LSS NO

$1GET NEXT BYTE FROM USER BUFFER

$WRITE BYTE IN SYSTEM BUFFER

'

S INSERT SUFFIX CARRIAGE CONTROL IN BUFFER
sCALCULATE LENGTH OF OUTPUT PLUS HEADER
JCALCULATE ACTUAL LENGTH OF OUTPUT BUFFER
$1SAVE CURRENT HORIZONAL CARRIAGE POSITION
$SAVE CARRIAGE RETURN PENDING

1SAVE CURRENT LINE ON PAGE
'
$RESTORE REGISTERS

]

s INSERT NUMBER .OF BYTES TO PRINT
JMOVE CHARACTERS TO SYSTEM BUFFER
JRESTORE REGISTERS

JSAVE ADDRESS OF 1/0 PACKEY

JGET ADDRESS OF UCB MUTEX

410

1/0 Drivers

Jss G*SCHSUNLOCK TUNLOCK uCB
POPL R3 tRESTORE ADDRESS OF 1/0 PACKEY
JmuP G EXESQIODRVPKT 1QUEUE 1/0 PACKEY TO DRIVER

1

t SUBROUTINE TO INSERT CARRIAGE CONTROL IN BUFFER

'

7081 MOVZBL IRPSB_CARCON(R3),=(8P) GET NUMBER OF CHARACTERS TO QUTPUT
BEGL {008 1IF EGL NONE
MOVZBL IRP!!‘CARCON01(R1)'RO ,GET CHARACTER TO OUTPUT

BRB ss
(1LY MOVZBL IRP!B‘CARCONoz(R!);-(SP) JGET NUMBER OF CHARACTERS TO OUTPUT

BEQL 1208 11F EQL NONE

MOVZBL IRPSB_CARCON+3(R3),R8 IGET CHARACTER TO OUTPUY
8591 BNEQ 908 11F NEQ CHARACTER SPECIFIED

MOVZIBL #C_CR,RQ 1GET CARRIAGE RETURN

8888 WRITE,BYTE JWRITE BYTE IN SYSTEM BUFFER

MOVIBL #C,LF,RE 1GET LINE FEED
908 31.1] WRITE BYTE JWRITE BYTE IN SYSTEM BUFFER

SOBGTR (8P),908 JANY MORE LEFT TO INSERT?
1009 ;:;L (8p)e JREMOVE COUNT PROM STACK

'
«PAGE

«3BTTL WRITE BYTE INTO SYSTEM BUFFER

' .
9 SUBROUTINE TO FORMAT AND FILL SYSTEM BUFFER WITH LINE PRINTER OUTPUT ONE BYTE
3 AT A TIME,

’

WRITE, BYTE: JWRITE BYTE INTO BUFFER

CMPL ¥°A/ /4RO JCONTROL CMARACTER?

BGTRU oS 1IF GTRU YES

BBSC #V,CRPEND,R6, 608 11F 8ET, CARRIAGE RETURN PENDING

CMPB #%k/%/,Re 1POSSIBLY LOWER CASE CHARACTER?

BGTRU 108 11F GTRU NO

CMPB V*XTP, RO JDELETE CHARACYER?

BEQL 308 yIF EGL ¥

SuBL AP,RQ JCONVERT CNARACTER TO UPPER CASE
1081 CMPL Ra,Rip)STILL ROOM ON CURRENT LINE?

8GTRU 308 1IF GTRU NO

INGL RG INCREMENT HORIZONAL POSITION
2081 DECL Rl YANY ROOM LEFT IN S8YSTEM BUFFER?

8L8S 1508 11F L83 NO

Move R@, (R2)+ yINSERT CMARACTER IN SYSTEM BUFFER
3081 RSB [}

'
9 CONTROL CHARACTER ENCOUNTERED
’

4081 CMPL #C.CR,RQ JCARRIAGE RETURN?
BLSSU s@s 11F LSS NO
BGTRU 7@8 1IF GTRU NO
888 #LPSV, CR,UCBSL DEVDEPEND(RS),140$ 3IF SET, CARRIAGE RETURN REQUIRED
8§SL #M, CRPEND,R6))SET CARRIAGE RETURN PENDING
RSB '
S081¢ 88CC #V CRPEND,Rb, 20S yIF CLR, CARRIAGE RETURN NOT PENDING
6031 PUSHL Rp 1SAVE CURRENT CMARACTER
MOVZBL C_CR,RQ 1GET CARRIAGE RETURN CHARACTER
8888 1u0s 1 INSERT CARRIAGE RETURN IN BUFFER
POPL Re JRETRIEVE CURRENT CHARACTER
8RB WRITE,BYTE ’

' .
) CHARACTER I8 A TaB, LINE FEED, VERTICLE TAB, OR FORM FEED
'

703, CMPL ¥C, TAB,RO sTABULATION CHARACTER?
BGTRU ses 1tIF GTRU NO
BLSSU 828 1IF LSSU NO

!
1 CHARACTER IS A TaB
'

411

1/0 Drivers

BBSC #V CRPEND,R6) 608 3IF SET, CARRIAGE RETURN PENDING
PUSHAB 8(R4) pCALCULATE NEXT TAB POSITION
BICL 47, (SP) tCLEAR EXCESS BITS

SuBL Ry, (SP) JCALCULATE BLANK COUNT

MOVZBL ¥4/ /4R0 1SET SPACE CHARACTER

BRB 1g0$ '

H
3 CHARACTER I8 A LINE FEED, VERTICLE TAB, OR FORM FEED
)

8081 cMPL #C VT,RO JVERTICLE TAB?
. BEQL 503 1 IF EQL YES
8GTRU 1103 9IF GTRU LINE FEED

H
3 CHARACTER I8 A FORM FEED
1

MOVZBL UCBSL . DEVDEPEND+3(RS),R@ jGET NUMBER OF LINES PER PAGE

SUBL3 R4,RO,=(SP) sCALCULATE NUMBER OF LINES TO END OF PAGE
88¢ #LPSV_ MECHFORM,UCBSL DEVDEPEND(RS), 9088 3IFf CLR, NO MECHANICAL FEED
ADDL (SP)+, IRPSL MEDIA(RS) JUPDATE NUMBER OF LINES PRINTED
MOVZBL #C.FF,R@ 3JSET FORM FEED CHARACTER
BRB 1208 4
90881 MOVZBL #C_.LF,Rp 98ET LINE FEED CHARACTER
10081 BSBW WRITE,BYTE "JINSERT BYTE IN SYSTEM BUFFER
S0BGTR (SP), 1208 JANY MORE BYTES TO INSERT?
T8TL (SP)+ JREMOVE LOOP COUNT FROM STACK

RSB !

'
3 CHARACTER IS8 A LINE FEED
!

11081 INCL RY $ INCREMENT LINE POSITION ON PAGE

INCL IRPSL_MEDIA(R3) y INCREMENT NUMBER OF LINES PRINTED
CMPB R7,UCBSL_OEVOEPEND+3I(RS) jEND OF PAGE?
BNEQ 1308 31F NEG NO
12081 CLRL R7 JCLEAR LINE POSITION ON PAGE
13031 - 3{48 #M_CRPEND,Rb $CLEAR CARRIAGE RETURN PENDING
14081 CLRL Ry -JCLEAR HORIZONAL POSITION
BRW 28s .]

'
) OUTPUT WILL NOT FIT IN ALLOCATED BUFFER
'

15031 MOVL IRPSL SVAPTE(R3),R@ 1GET ADDRESS OF BUUFER TO DEALLOCATE
CLRL IRPSL_SVAPTE(RS) P INDICATE NO BUFFER ALLOCATED
MOVZWL IRPSW, SIZE(RD),RLQ 1SAVE SIZE OF BUFFER
Jss G EXESDEANONPAGED 10EALLOCATE BUFFER
MOVAB wyup(FP),SP JREMOVE ALL TEMPORARIES FROM STACK

POPR ¥*M<R3I,RU,R5,R6,RT,AP> JRESTORE REGISTERS
ADDW R10,PCBSW, BYTCNT (R4) 1ADJUST BYTE COUNT QUOTA

ADDL #32,R11 yADJUST COUNT OF OVERMEAD BYTES
PUSHL R3 ySAVE ADDRESS OF I/0 PACKET
MOVAB UCBSL LP. MUTEX(R5),RO 1GET ADDRESS OF UCB MUTEX
Jss G*SCHSUNLOCK JUNLOCK yCB
POPL R3 sRESTORE ADDRESS OF 1,0 PACKET
BRW FORMATY $TRY AGAIN

1/0 Entry Routine Code
«PAGE

«8SBYTL LINE PRINTER DRIVER
124
7 STARTIO = START 1/0 OPERATION ON LINE PRINTERS

’
7 THIS ROUTINE I8 ENTERED WHEN THE ASSOCIATED UNIT I8 IDLE AND A PACKEY
7 I8 AVAILABLE,

H

1 INPUTS

H

] R3 = ADDRESS OF 1/0 REQUEST PACKET,
] RS = UCB ADDRESS FOR IDLE UNIT,

412

1/0 Drivers

1

3 OUTPUTS:

!

] NO EXPLICIT OUTPUTS = THE UNIT IS IN WAITING FOR INTERRPUT STATE

] OR THE 1/0 I8 COMPLETE,

g

STARTIO
ovL UCBSL, IRP(RS),R3 JRETRIEVE ADDRESS OF 1/0 PACKET
MOVW IRPSL MEDIA+2(R3),UCBSW BOFF(RS))SET NUMBER OF CHARACTERS TO PRINT
MOVL UCBSL_ SVAPTE(RS),R3 1GET ADDRESS OF SYSTEM BUFFER
MOVAB 12(R3),R3 $GET ADDRESS OF DATA AREA
MOVL UCBSL CRB(RS),RY JGET ADDRESS OF CRB
MOVL OCRBSL INTD¢VECSL_IDB(R4))Ry JGET DEVICE CSR ADDRESS

'
? START NEXT OUTPUT SEQUENCE

1832 ADDL3
MOVZWL
MOVW
BRB

2081 BITw
BLEQ

MOVB
2581 SOBGEQ
BRB

3081 BNEQ
ADDWS
DSBINT

BISB
WFIKPCH
I0FORK
BRB

#LP_DBR,R4,RO JCALCULATE ADDRESS OF DATA BUFFER REGISTER
UCBSW_BOFF(RS),R1 IGET NUMBER OF CHARACTERS REMAINING
‘;XQGGB,R! 1GET CONTROL REGISTER TEST MASK

258 !

R2, (R4) SPRINTER READY OR HAVE PAPER PROBLEM?

3o8 9IF LEQ NOT READY OR PAPER PROBLEM

(R3)+, (RO) JOUTPUT NEXT CHARACTER

Ri,208 1 ANY MORE CHARACTERS T0 OUTPUT?

708 !

!
3 PRINTER IS8 NOT READY OR HAS PAPER PROBLEM

uos 1IF NEQ PAPER PROBLEM
#1,R1,UCBIN BOFF (RS) JSAVE NUMBER OF CWARACTERS REMAINING
1OISABLE INTERRUPTS
X409, LP, CBR(RY) $SET INTERRUPT ENABLE
408, ¥#12 JWAIT FOR INTERRUPT
: JCREATE A FORK PROCESS
1es '

'
3 PRINTER HMAS PAPER PROBLEM

unst CLRB
ADDW3

5081 CLRW
SETIPL
TSTW
BGTR
BBS
ACBB
CLRB
PUSHR
MOVZBL
MOVAB
JsB
POPR

6081 DSBINT
WFIKPCH
10FORK
BRB

'
1 1/0 OPERATION
’

7081 MOVZWL
CLRW
BRB

'
$ 1/0 OPERATION
’

8os: MOVZWL
903 MovL
MOVZWL

UCBSB_LP,OFLCNT(RS) $CLEAR OFFLINE COUNTER

#1,R1{,UCBSW _BOFF(RS) JSAVE NUMBER OF CHARACTERS REMAINING
LP.CSR(R4) sDISABLE PRINTER INTERRUPT .

ucBsB, FIPL(RS) JLOWER TO FORK LEVEL

LP CSR(R4) JPRINTER S8TILL HAVE PAPER PROBLEM?
STARTIO 11F GTR NO

#UCBSV CANCEL,UCBSW,_STS(RS), 808 ;IF SET, CANCEL I/0 OPERATION
#15,#1,UCBSBLP_OFLCNT(RS), 608)SKIP UNTIL TIMEOUT

UCBSB, LP.OFLCNT(RS) $RESET COUNTER

#*"M<R3,RU> JSAVE REGISTERS

#MSGS DEVOFFLIN,R4 JSET UP MESSAGE TYPE

G*SYSSGL,OPRMBX,R3 1ADDRESS TARGET MAILBOX

G*EXESSNDEVMSG $SEND MESSAGE IGNORE ERROR

¥“M<R3,RY> yRESTORE REGISTERS
yOISABLE INTERRUPTS

sa3,82 JWAIT FOR AN INTERRUPT OR TIMEOUT 2 SEC
)CREATE FOR PROCESS

508 []

SUCCESSPULLY COMPLETED

#5838 _NORMAL,R@ JSET NORMAL COMPLETION STATUS
UCBSW_BOFF(RS) $CORRECT REMAINING CHARACTER COUNT
908 '

CANCELED

#S8S ,ABORT,RO $SET OPERATION ABORTED STATUS
UCBSL_IRP(RS),R3 JRETRIEVE ADDRESS OF I1/0 PACKET
IRPSL MEDIA(R3),RY)GET NUMBER OF LINES PRINTED

413

1/0 Drivers

SUBW UCBSW, BOFF(RS),UCBSW,_BCNT(RS) jCALCULATE NUMBER OF CHARACTERS
INSV UCBSW_BCNT(RS) ,#16,#16,RQ JINSERT NUMBER OF CHARACTERS IN STATUS
REQCOM JCOMPLETE I/0 REQUEST

Interrupt Service Routine Code

+PAGE ’
«SBYTL LP11/L811/LV11 LINE PRINTER INTERRUPT DISPATCHER

1+ . .
3 LPSINT = LP11/L814/LV11 LINE PRINTER INTERRUPT DISPATCHER,

} THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT OCCURS ON AN
) LP11/L811/LV11 LINE PRINTER CONTROLLER, THE STATE OF THE STACK ON ENTRY I83
]
1 @P(SP) = .ADDRESS OF IDB ADDRESS,
' P4(SP) = SAVED R3,
' P8(SP) = SAVED Ru,
! 12(8P) = SAVED RS,
' 16(SP) = INTERRUPT PC,
' 20(SP) = INTERRUPT PSL,
'
} INTERRUPT DISPATCHING OCCURS AS FOLLOWS
'
' IF THE INTERRUPT I8 EXPECTED, THEN THE DRIVER IS CALLED AT ITS INTERRUPT
’ WAIT ADDRESS, ELSE THE INTERRUPT 18 DISMISSED,
I
LPSINT1s JENTRY FROM DISPATCH
MOVL #(SP)+,R3 JGET ADDRESS OF IDB
MOVQ 10884, C8R(R3) R4 JGET CONTROLLER CSR AND OWNER UCB ADDRESS
sacc #UCBSV_INT,UCBSW,_STS(RS), 188 yIF CLR, INTERRUPT NOT EXPECTED
CLRW (R4) JDISABLE OUTPUT INTERRUPTS
MOVL UCBSL, FR3(RS),R3 IRESTORE REMAINDER OF DRIVER CONTEXT
JsB SUCBSL FPC(RS) JCALL DRIVER AT INTERRUPT WAIT ADDRESS
1881 MOVQ (SP)+,RE JRESTORE REGISTERS
NOVE (8P)+,R2 H
wovVa (8P) ¢, R]
REI]

«PAGE
#SBTTL LINE PRINTER UNIT INITIALIZATION

e
1 LPLLXI1L INIT = LINE PRINTER UNIT INITIALIZATION

!
t THIS ROUTINE IS CALLED AT SYSTEM STARTUP AND AFTER A POWER FAILURE, THE
1 ONLINE BIT I8 SET FOR TWE SPECIFIED UNIT,

! INPUTS:
, RS = ADDRESS OF DEVICE UCS,

) outPUTS: ’

J THE ONLINE BIT I8 SET IN THE DEVICE UCB AND THE ADDRESS OF THE UCB
: IS PILLED INTO TWE IDB OWNER FIELOD,

LPLLXLILINITY TLINE PRINTER UNIT INITIALIZATION
BISW tUCB!H‘ONLIN!,UCB!N‘!TS(RS))SET UNIT ONLINE
MOVL UCBSL CRB(RS),R0 JGET ADDRESS OF CRB
MOVL CRD!L‘INTDQV!tSL‘!DB(RO):RB 1GET ADDRESS OF I0B
MovL RS, IDBSL OWNER(R@) $SET ADDRESS OF DEVICE ucB
L"Lxll‘:gng! JNULL CONTROLLER INITIALIZATION
’
LPLEND: JADDRESS OF LAST LOCATION IN DRIVER
+END

414

415

CHAPTER OVERVIEW

It is frequently important that processes be able to communicate with
one another; to pass data or to share a resource or data structure. This
chapter expandsontheinterprocesscommunications section of
Chapter 1. It describes in detail the use of common event flags and
maiiboxes as structures by which processes pass status information
and data to one another. Also explained, are the use of global sections
for sharing physical pages of memory and the lock management ser-
vices for generic multiprocess resource sharing.

Topics are:

® Common Event Flags

® Mailboxes

e DECnet/VAX

® Global Sections

e Lock Management Service

416

CHAPTER 14
INTERPROCESS COMMUNICATION

INTRODUCTION

The VAX/VMS operating system provides interprocess communica-
tion facilities for synchronizing execution, for sending messages, and
for sharing common data. The six communication techniques utilized
by cooperating processes are:

o Common event flags

e Mailboxes

e DECnet

e Shared data and code

® Lock semaphors

e Shared disk files

Common event flags are associated with group identification. The oth-
ers are more general purpose facilities which can be limited or unlimit-
ed in access.

COMMON EVENT FLAGS

Event flags are status posting bits that allow the programmer to
incorporate a variety of control functions within the program Event
flag services capabilities include:

e Set or clear specific flags
e Test the current status of flags

® Place a program in a wait state pending the setting of a specific flag
or agroup of flags

Moreover, event flags can be used in common by more than one
process, provided the cooperating processes are in the same group.
Thus, if an application has been developed that requires the simulta-
neous execution of several processes, event flags can be used to
establish communication and to synchronize their activity. A common
event flag cluster is composed of 32 event flags, which can be as-
signed any meaning for the processes in the group. Four clusters are
available to any process at any one time. Two are for process-local
functions, two are for interprocess communication. As it may with local
event flags, a process can read its group’s common. event flags, can
set or clear them, can wait for a particular event flag to be set, or for
any or all flags in the cluster to be set.

Associated with each common event flag cluster is a software control
structure known as a common event block (CEB). The common event

417

Interprocess Communication

block provides the system with necessary information, such as the
creator’s user identification code, the cluster name and size in bytes,
process protection, and a count of processes in wait queue.

System Services For Event Flag Handling
VAX/VMS system services for the handling of event flags and clusters
provide the capability to perform the functions as described below.

Six general event flag services operate on both local and common
event flags:

$SETEF SetEvent Flag

$CLREF Clear Event Flag

$READEF Read Event Flag

$WAITFR Wait for Single Event Flag
$WFLOR Wait for Logical OR of Event Flags
$WFLAND Wait for Logical AND of Event Flags

Common event flag clusters must be associated before they can be
used. Three services control their use:

$ASCEFC Associate Common Event Flag Cluster
$DACEFC Disassociate Common Event Flag Cluster
$DLCEFC Delete Common Event Cluster

These services are explained in Chapter 11.

MAILBOXES

Mailboxes are virtual devices that can be used for communication
between processes. Actual data transfer is accomplished by using
higher-level language /0 statements, Record Management Services,
or directly with the 1/0 system services. When a mailbox is created, a
channel is assigned to it for use by the creating process.

The Create Mailbox and Assign Channel (SCREMBX) system service
creates the mailbox. The $CREMBX system service can optionally
create a user-specified logical name and assign it the physical mailbox
name created. Other processes can then use the $ASSIGN or $OPEN
system services (or higher level language OPEN statements), specify-
ing the logical name, to assign other channels to the mailbox. A proc-
ess can also determine the physical mailbox name by translating the
logical name (with the $TRNLOG service), or it can call the Get 1/0
Channel Information (SGETCHN) service to obtain the unit number
and device name.

Mailboxes are either temporary or permanent; user privileges are
required to create either type. $CREMBX enters the logical name and

418

Interprocess Communication

equivalence name for a temporary mailbox in the group logical name
table of the process that created it. The system deletes a temporary
mailbox when no more channels are assigned to it.

The $CREMBX system service enters the logical name and equiv-
alence name for a permanent mailbox in the system logical name
table. Permanent mailboxes continue to exist until they are specifically
marked for deletion with the Delete Mailbox ($DELMBX) system ser-
vice.

The maximum number of messages and the maximum size of mes-
sage that can be written to a mailbox can be specified when the mail-
box is created. A mailbox can be protected when it is created, justas a
device or disk volume can be protected when mounted.

The systéem uses mailboxes internally for interprocess messages
between system processes, and between system processes and user
processes. The following services create special mailbox messages
for system processes:

® Send Message to Accounting Manager ($SNDACC)

e Send Message to Operator ($SNDOPR)

e Send Message to Symbiont Manager ($SNDSMB)

When a process creates another process, it can specify the name of a
mailbox that is to receive the termination status when the created
process is deleted.

When a channel is assigned to a terminal or a network link, a process
can specify the name of a mailbox that is to receive unsolicited input or
high priority network messages. When the message is written to the
mailbox, an asynchronous system trap (AST) will be delivered, elimi-
nating the need for an outstanding read to each terminal or network
link.

DECNET/VAX

VAX/VMS provides the same interfaces for interprocess communica-
tion on a single node as DECnet/VAX provides in a multi-node config-
uration. This communication mechanism can be an effective alterna-
tive to mailboxes. Not only is it as easy to use, but it is more flexible
because it also allows applications to expand to a multi-node
environment without modification. DECnet/VAX is described in Chap-
ter7. . .

GLOBAL SECTIONS

The system supports a high degree of code and data sharing through
the use of global sections. A global section is a-copy of a portion of an
image or data file that can be included in a process virtual address
space at runtime.

419

Interprocess Communication

Global sections either are created dynamically by a process or are
permanently installed in the system. Dynamically created global sec-
tions are mapped into processes that reference them, and deleted
when no more references are made to them. Permanent global sec-
tions may be known shareable images created using the linker, or may
be created by program calls to system services. They are loaded into
and removed from memory dynamically as references are made to
them.

A global section can be created as a read-only or read/write gIobaI
section to protect code and data.

Normally, only one copy of a global section actually resides in memory
while cooperating processes reference it. However, should a global
section contain pre-initialized data that processes using the data are
expected to change, the global section can be declared to be copy-on-
reference. This enables each process to have its own copy of these
pages.

A read/write global section may include a demand allocate zero-filled
page. When a process references the global section for the first time,
zero-filled pages are mapped into its virtual address space. Such
pages are created dynamically and eliminate the necessity of filling up
space on secondary storage with pages of zeros. (Typical use of the
demand allocate zero-filled page is buffers or stacks.)

A process can map to a global section explicitly or implicitly. The
image itself can issue a Map Global Section system service, or it can
reference a known shareable image. When an image references a
known shareable image, the linker does not include the global section
in-the image. When the image is executed, the image activator calls
the Map Global Section system service on behalf of the image. For
example, the Run Time Procedure Library is a known shareable image
implicitly mapped into images that reference library procedures. The
use of known shareable images significantly reduces the size of pro-
grams using common library procedures. :

Each process that maps a global section into its virtual address space
can have a different access privilege to the section, depending on the
protection code to the global section. When a global section is creat-
ed, it is assigned a user identification code (UIC) identifying the group
and family member to which the global section belongs, and a protec-
tion code identifying the read and write access privileges of processes
in the system. Global sections can therefore be shared among
processes in the system, or shared among processes within a group
and protected from all other processes, or shared among processes
within a single job and protected from all other jobs.

420

Interprocess Communication

VAX/VMS LOCK MANAGEMENT SERVICES

For cooperating processes sharing resources (for example, files, data
structures or I/0 devices), VAX/VMS provides a lock management, or
semaphore, facility. The VAX/VMS lock management services, like the
common event flag services, provide a tool for synchronizing process
action. While common event flags can be used only by processes
within the same group, the lock management service can operate on a
system-wide basis. In fact, VAX-11 RMS uses this service to regulate
file sharing.

The lock management services allow users to develop complex re-
source-sharing applications, such as database systems, by providing
user-determinable granularity in defining and locking a resource, and
a flexible choice of locking modes. -

Common Namespace

The lock management service does not directly control access to re-
sources; rather, it provides a mechanism for assigning. names to re-
sources, which are represented in a common namespace. Processes
request access to a resource name in a common namespace and
cooperating processes understand that when they are granted access
to a resource name, they may then access the resource itself.

The resource namespace is tree structured; that is, it is hierarchically
organized with an arbitrary number of levels. Each name may have a
number of “branch” names which in turn may have a number of
branches, and so on, in a way that parallels the organization of the
actual resource. (See figure 14-1)

A lock may be granted on a name at any level of the namespace
hierarchy. The only names affected by the lock are the specified name

DATABASE DB_.NAME
FILE FILE . ' FILE_1 FILE_2
RECORD RECORD RECORD REC..1 REC..2 | | REC_3

Figure 14-1 Paralleling Resource and Resource Namespace

421

Interprocess Communication

and those names beneath it. In this way, a resource can be defined
and access controlled to any depth of granularity required by an appli-
cation, while allowing concurrent access by multiple processes.

Lock Modes ,
Concurrency can be increased further by an appropriate selection of
lock modes. There are six lock modes to choose from, each allowing a
different sharing scheme with other cooperating processes. See Table
14-1.

Deadlock Detection

The lock management services also provide deadlock detection. A
deadlock occurs when a group of locks are waiting for each otherin a
circular fashion; for example, a Process A is waiting for a resource that
Process B has, and Process B is waiting for a resource that Process C
has, while Process C is in turn waiting for a resource that process A
has. If a deadlock situation occurs, the lock management service se-
lects one of the processes as the “victim”, does not grant that process
the lock it has been waiting for, and indicates to the process that the
lock has been denied because a deadlock condition exists. The proc-
ess can then do whatever cleanup is necessary and unlock (or convert
-its lock on) the resource it has — thus breaking the deadlock.

Using the Lock Management Services

A process requests a lock on a resource by issuing an $ENQ system
service request, where it specifies the resource name and the type of
lock, or lock mode, it wants. If another process has an incompatible
lock on that resource, then the request is queued and the process can
go about its business until the request is granted. Optionally, the proc-
ess can request a lock and wait with the SENQW system service; in
fact, the options available for synchronization with a lock request are
the same as with a QIO request.

When the lock is granted, the process is signalled that the resource is
available, and it goes ahead and accesses the resource in accordance
with its declared lock-mode.

Once it has completed its action on the resource, the process can
either change its lock mode to a less exclusive one (for example, from
an exclusive to a concurrent read), which would allow greater sharing
while retaining access, or it can release the resource altogether by
issuing a $DEQ system service on that lock.

Another useful option of the lock management service is the use of
blocking AST’s. If a process needs exclusive access to a resource, but
wants to know when another process is trying to access it, it can
request that a blocking AST be issued in that circumstance via a

422

Interprocess Communication

parameter specified in the $ENQ system service call. This mechanism
can optimize sharing and potentially increase performance.

A process may have many locks — some granted, some waiting. The
limit on the number of locks a process may have is determined by the
lock quota assigned and defined in the User Authorization File.

NOTE
The locking service is not a general data protection
mechanism. Since it does not directly control access
to aresource, a non-cooperating process could
access the resouce independently. For the lock
management services to be effective, all processes
must use agreed upon conventions.

LOCK MODE DESIREDDESIRED INDICATION
ACCESS SHARING
Null (NL) None Read Used as an interest lock,
Write and to prevent namespace
entry from being deleted
Concurrent Read Read Used in conjunction with
Read (CR) Write more restrictive locks at a
lower level
Concurrent Write Read Used in conjunction with
Write (CW) Write more restrictive locks at
alower level
Protected Read Read Traditional “share” lock
Read (PR)
Protected Write Read Traditional “update” lock
Write (PW) :
Exclusive (EX) Read None Traditional “Exclusive”
Write lock
Lock Modes
Table 14 -1

SHARED DISK FILES

Compared to the three methods listed above, the use of shared files is
more indirect and carries more restrictions. The VAX-11 Record Man-
" agement Service (RMS) is the standard vehicle for file sharing. Infor-
mation on file sharing using RMS can be found in the RMS section of
Chapter 12, Input/Output Services.

423

CHAPTER OVERVIEW

One very important consideration in the design of the VAX computers

and the VAX/VMS operating system was compatibility with the large

base of PDP-11 computers and programs that already exists. Fulfill-

ment of this goal helps protect customer investment in PDP-11 hard-

ware and software, reduce retraining costs, and simplify the task of

moving programs to VAX systems. In addition, it allows a VAX.system

to be used as a development environment for certain non-privileged

" PDP-11 tasks, namely those that will run under an RSX-11M operating
system. In this chapter, compatibility is discussed. ‘

Topics include:

® The Application Migration Executive (AME)

e Compatibility Mode

e Transportable Languages

e Compatibility Considerations

424

CHAPTER 15
PDP-11 COMPATIBILITY

INTRODUCTION
A major feature of the VAX/VMS operating system is its compatibility
with the PDP-11 family of minicomputers.

The VAX system prowdes PDP-11 compatlblllty including the following

features:

® The execution of a subset of PDP-11 instructions in VAX/VMS com-
patibility mode

e An RSX-11M compatibility mode Applications Migration Executive
(AME) allowing most RSX-11M/S non-privileged tasks to run with
minimal or no modification

e An RSX-11M/S Host Development Package that allows creation and
partial testing of RSX-11M/S tasks as well as sysgening RSX-11M/S
systems

® Transportable source-level programs in high-level languages

® Files-11 On-Disk Structure Level 1

e Compatible RMS file access methods on both RSX 11M and VMS
operating systems

e DIGITAL Command Language (DCL) and RSX-11 MCR (Monitor
Console Routine) command language

The VAX instruction set is a powerful extension of the PDP-11 instruc-
tion set. Therefore, the programmer with previous PDP-11 knowledge
who is developing new VAX applications will experience a high level of
adaptability. Similarly, VAX high-level languages are closely
compatible with those of the PDP-11 family.

The VAX/VMS operating system may effectively serve as a high-per-
formance RSX-11M/S program development system. RSX-11M/S
programs can be edited, compiled, and linked on a VAX/VMS system.
In addition, the task can be partially debugged on a VAX/VMS system.
That is, the software development can largely be accomplished on a
VAX system and need only migrate to the target RSX-11M/S system
for final debugging and execution.

The VAX/VMS operating system, through DECnet communications
software, supports downline loading of RSX-11S systems and RSX-
11M tasks. However, the VAX/VMS system and the RSX-11M/S sys-
tem must have either a common communications link or a mass sto-
rage peripheral of the same type on both systems in order to transfer
the RSX-11M task or RSX-11S system to the target machine.

425

PDP-11 Compatibility

Under the VAX/VMS operating system, programs may execute in ei-
ther of two modes, native or compatibility. Native mode programs use
the VAX instruction set and execute under the VAX/VMS operating
system. Compatibility mode programs, however, are those which can
execute on other PDP-11 systems.

In order to provide cross-development and migration capability, an
RSX-11M Applications Migration Executive has been implemented
that allows most non-privileged RSX-11 tasks to execute on the
VAX/VMS system with little or no modification to the task image. The
Applications Migration Executive is part of the VAX/VMS system. It
supports a mapped RSX-11M environment without supporting the
directives to manipulate Program Logical Address Space (PLAS),
DECnet calls, or RMS-11 file sharing. Under control of the Applica-
tions Migration Executive, the user’s task is mapped into virtual mem-
ory and executes in compatibility mode. When the task issues an RSX-
11M executive directive, a trap is initiated which automatically places
the processor in native mode. The Applications Migration Executive
then determines what directive the user is attempting to accomplish,
and executes a VAX/VMS system service of equivalent function (ex-
cept for the memory management directives, RMS-11 file sharing, and
DECnet I/0 calls, which are not supported). If there is no equivalent
VAX/VMS function, such as the RSX-11M directive to “get sense
switches,” the executive will return an error code but will not cause the
task to abort.

The PDP-11 compatibility mode environment will support the FOR-
TRAN IV compiler as well as many existing PDP-11 utilities.

When programming in compatibility mode, certain points should be
established:

e Users’ images are limited to 64 Kbyte executable segmehts

¢ Compatibility mode and native mode code cannot be shared, i.e.,
compatibility mode routines and native mode routines cannot call
each other directly

® |t is possible for compatibility and native mode programs to share
data and to communicate through mailboxes

e The Applications Migration Executive does not support the memory
management directives

® The Applications Migration Executive does not support the RSX-11
DECnet /0 functions or RMS-11 file sharing .

® Because the system environments differ, applications that involve
cooperating tasks may require modification :

426

PDP-11 Compatibility

IMPLEMENTATION CONSIDERATIONS

The processor can execute user mode PDP-11 instruction streams in
the context of a process. The operating system supplements this fea-
ture by substituting its functionally equivalent system services for
many of the RSX-11M operating system executive directives that user
mode tasks may call. This enables the system to execute such non-
privileged RSX-11M task images as:

e MACRO-11 assembler

e PDP-11 FORTRAN IV compiler

e RSX-11M program development and file management ut|||t|es in-
cluding the task builder and text editor

In addition, the operating system supports the FCS (File Control Ser-
vices), RMS-11 and RMS-11K record management services pro-
cedures and can read and write the RSX/IAS on-disk structure, Files-
11 Level 1 (ODS-1). Programs that call FCS or RMS-11 services can
access Files-11 file-structured volumes.

The operating system contains two command language interpreters,
MCR and DCL. The VMS MCR can accept many of the RSX-11M MCR
commands, either typed directly on a terminal, or submitted as com-
mand files.

Any task linked for the RSX-11M operating system will run, assuming
the task is non-privileged.

Any RSX-11M task image can be executed in compatibility mode
without relinking, provided that it was linked with the RSX-11M task
builder and it meets the following requirements:

e |t must not execute PDP-11 privileged instructions

It must have been built for a mapped system

It must not depend on 32-word memory granularity

It must not require mapping into the executive or 1/0 page

e |t must not use the memory management executive directives
® |t must not use the CONNECT executive directive

® [t must not rely on environmental features of RSX-11M that the
VAX/VMS operating system does not support, such as S|gn|f|cant
events or a task’s STOP bit

e |t must not use DECnet commumcations software or RMS-11 file
sharing

® |t only accesses ODS-I| volumes

IAS or RSX-11D tasks that meet these requirements can also be exe-
cuted. They must first be built with the RSX-11M task builder. For
programs that do not meet these requirements, the VAX/VMS operat-

427

PDP-11 Compatibility

ing system provides the program development utilities (for example,
the MACRO assembler and the task builder) for modifying programs
to execute in compatibility mode. -

File System and Data Management

Magnetic tape and Files-11 disk volumes can be transported between
VAX/VMS and RSX systems. The VAX/VMS system can read and
write both Files-11 Level 1 (ODS-1) disk structures and the RMS Level
2 disk structures (ODS-2). The extend access protection field in ODS-
1 is used for execute access protection in ODS-2.

Overlays, Shareable Regions and PLAS '
The VAX/VMS operating system supports the use of overlays and
shared regions by RSX-11M images running in compatibility mode.
RSX-11M images produced using the overlay descriptor language or
the RSX-11M task builder run under the VAX/VMS operating system.
The VAX/VMS operating system loads overlays at the approprlate
point in image execution from the image file.

The VAX/VMS operating system also supports RSX-11M image use of
dynamically loaded shared regions. RSX-11M images can access both
shared commons and libraries. Permanently available shared regions
are identified to the VAX/VMS operating system by the system man-
ager.

The VAX/VMS operating system does not support the RSX-11M mem-
ory management directives used to extend the program logical
address space (PLAS) of an RSX-11M task. Any task image issuing a
memory management directive under the VAX/VMS operating system
receives an error status return.

Command Languages

The operating system’s MCR command language interpreter accepts
both a subset of DCL (DIGITAL Command Language) commands and
a subset of the RSX-11M MCR (Monitor Console Routine) commands.
The VAX/VMS MCR command language consists of two types of com-
mands:

e Those that duplicate an RSX-11M command

® Those that provide a VAX/VMS function using an MCR-like syntax
Thus, MCR allows the user access to a full range of VAX/VMS func-

tions. There is no need to change to native DCL to perform commonly
needed functions.

VAX/VMS support of RSX-11M task images provides an interface to
the operating system. that is similar to that found in RSX-11M operat-
ing system.

428

PDP-11 Compatibility

RSX-11M Directive Requests

In an RSX-11M system, a task image interfaces with the operating
system by issuing directive requests. As a result of a directive request,
the RSX-11M system performs the desired function and returns con-
trol to the task. The VAX/VMS operating system duplicates the
task/system interaction achieved by a directive request in the RSX-
11M system. When an RSX-11M task issues a directive, the hardware
traps to the VAX/VMS operating system. With a few exceptions, in-
cluding RSX-11M memory management directives, the VAX/VMS op-
erating system duplicates the requested RSX-11M function with either
of the following results:

® The RSX-11M directive function is duplicated in the VAX/VMS oper-

ating system and the task continues execution

® The VAX/VMS operating system cannot duplicate the requested
function but does take the necessary action to allow continued task
execution

The VAX/VMS operating system duplicates the function of a majority

of RSX-11M directives. For example:

® A checkpoint enable/disable directive is interpreted as the Set
Swap mode system service

® The send/receive directives are translated into mailbox write/read
system services. Native mode and compatibility mode images can
communicate using maitboxes

® The event flag directives are for the most part identical. Native mode
and compatibility mode images can communicate using common
event flags, provided they are in the same group

® A Logical Unit Number (LUN) assignment directive is interpreted as
an Assign Channel system service »

If the VAX/VMS operating system cannot duplicate an RSX-11M direc-
tive, it is because of differences in the basic concepts of the two sys-
tems, that is, differences in the environments provided by the two
systems. For example:

® A task image is allowed to declare a significant event, but the direc-
tive is ignored. Therefore, the VAX/VMS operating system cannot
declare a significant event upon directive request. Rather, it per-
forms no operation and returns a success status to the requesting
task, which continues execution normally

® A set priority directive is ignored, since the scheduling priorities
ranges are different. To run at a given priority, the image must be
run in the context of a process created for a user given that priority
in the user authorization file

429

PDP-11 Compatibility

For the most part, however, many RSX-11M and VAX/VMS program
environment characteristics correspond. Tasks can hibernate, receive
asynchronous system traps, and schedule wake requests.
Synchronous system trap routines can be declared as condition
handlers for trace traps, breakpoint traps, illegal instruction traps,
memory protection violations, and odd address errors. .

RSX-11M Directives ,
The VAX/VMS operating system will support the following RSX-11M
directives:

ABRTS$ Abort Task

ALUNS$ Assign Task

ASTX$ AST Service Exit

CLEF$ - .Clear Event Flag

CMKT$ Cancel Mark Time Requests
CRGF$ Create Group Global Event Flags
DSAR$ Disable AST Recognition
DSCP$ Disable Checkpointing
ELGF$ Eliminate Group Global Event Flags
ENAR$ Enable AST Recognition
ENCP$ Enable Checkpointing

EXIFS C Exitlf |

EXIT$S Task Exit

EXST$ Exit With Status

EXTKS ' Extend Task

GLUNS$ Get LUN Information
GMCRS$ Get MCR Command Line
GPRT$ | Get Partition Parameters
GTIMS$ - Get Time Parameters
GTSK$ Get Task Parameters
MRKT$ Mark Time

Qlog Queue I/0 Request

QIOW$ " Queue I/0 Request and Wait

430

PDP-11 Compatibility

RCVD$ Receive Data

RCVX$ Receive Data or Exit

RDAF$ Read All Event Flags

RDXF$ Read Extended Event Flags
RQST$ Request

RSUMS$ Resume

RUNS$ Run

SDAT$ Send Data

SETF$ Set Event Flag

SFPAS$ Specify Floating Point Processor Exception AST
SPND$ Suspend

SPRAS Specify Power Recovery AST
SPWN$ Spawn

SRDAS Specify Receive Data AST

STLOS$ Stop for Logical OR of Event Flags
STOP$ Stop

STSE$ Stop for Single Event Flag

SVDB$ Specify SST Vector Table for Debugging Aid
SVTK$ Specify SST Vector Table for Task
USTP$ Unstop Task

WTLO$ Wait for Logical OR of Event Flags
WTSE$ Wait for Single Event Flag

The VAX/VMS operating system does not support a number of RSX-
11M directives, principally because of different techniques of memory
management in PDP-11 and VAX hardware.

The VAX/VMS operating system returns an error status of IE.SDP
(invalid directive) to any RSX-11M image that issues an unsupported
directive.

The AME supports floating point instructions by emulating them in
native mode.

The VAX prodessor does not have sense switches. Therefore, the
VAX/VMS operating system handles the Get Sense Switch directive in
the same manner as the RSX-11M operating system does for a system

431

PDP-11 Compatibility

that disallowed access to sense switches during system generation. It
returns the DSW status IE.SDP.

Some of the remaining unsupported directives are RSX-11M memory
management directives. They are not supported because the
VAX/VMS operating system controls memory management very dif-
ferently from the way that the RSX-11M operating system does. The
CONNECT directive is also not supported.

432

PARTIV
SITE CONSIDERATIONS

433

CHAPTER OVERVIEW

This brief chapter lists some of the powers and responsibilities of a
VAX/VMS system manager, from the initial bootstrapping to the as-
signment of privileges and quotas to individuals or classes of users.
The VAX virtual memory operating system gives complete authority to
the system manager, including the ability to deny or limit access, to
imitate any user’s identification code, and to assign priorities to real-
time and interactive processes. But the operating system supplies
tools and defaults that help make the job quite easy.

Topics include:

® Getting the System Up and Running

® User Accounts

® Monitoring System Activity

® Protection and Privilege

® Error Handling

® User Environment Test Package

434

CHAPTER 16
THE SYSTEM MANAGER

In a VAX/VMS operating system installation, the system manager con-
trols two main areas:

® Decisions that optimize the performance and efficiency of the sys-
tem ' ;

e Procédures that affect the overall management of the system

Assisting the manager in controlling these areas are many and varied
tools supplied by DIGITAL, so that what might be complicated in some
operating systems is, in the VAX/VMS operating system,
straightforward and easy. In fact, system management need not be
exercised full-time by a single person dedicated to that job; it may be
shared by several persons, some of whom may serve additionally as
system operators. However arranged, the management of a system
has as its ultimate goal delivering efficient economical service to all
users. The VAX/VMS operating system helps by providing such fea-
tures as self-installation of layered products (e.g., higher level lan-
guage compilers), autoconfiguration, a User Environment Test Pack-
age (UETP), and easy adjustment of parameter files.

Practically speaking, the job of the system manager is best defined in
terms of the following six categories of tasks a manager typically over-
sees.

® Getting the system up and running

e Setting up users’ accounts

® Managing public files and volumes '

® Controlling the overall performance of the system

® Monitoring system activity

® Recognizing and dealing with errors and failures

GETTING THE SYSTEM UP AND RUNNING

Unlike some other operating systems, the VAX/VMS operating system
makes it easy for the manager to get the system up. The time needed
for this task is, therefore, reduced, while the degree of expertise
required by the manager is lessened. .

The VAX/VMS operating system comes pre-built. It is self- mstallmg
and autoconfiguring. That means that any valid VAX hardware config-
uration can be supported by the VAX/VMS operating system without
special configuration considerations. Many of the parameters can be
adjusted to suit specific needs. For example, the working set size can
be increased or decreased from the defauit working set size by a

435 .

The System Manager

simple instruction. In addition, tailoring of the parameter file to satisfy
a customer’s specific needs can go on while the system is running, so
that there is no downtime nor lost productivity.

Updating the system is accomplished simply: DIGITAL supplies a
command procedure to apply the update. The system manager mere-
ly runs.the command procedure. The same is true for the installation
of optional software—such as DIGITAL layered products—that a user
wants. Even the installation of customer-supplied application and sys-
tem software—including user-written device drivers—is quite easy,
because the VAX/VMS system provides a “friendly” environment.

User Environment Test Package (UETP)

When a VAX/VMS system is first installed and bootstrapped, an instal-
lation verification package can be used to supplement the DIGITAL
Field Service diagnostics. Such a package, the User Environment Test
Package, is part of the VAX/VMS operating system. When run, it
adapts to any VAX configuration and assures the manager that hard-
ware and the operating system are working properly together. Errors
are reported to the console terminal from which UETP was run and
stored in a log file. In addition, the UETP serves as a quick check to
help determine the cause when programs that once worked stop
working or when any condition arises that gives the manager reason to
doubt the functional integrity of the system.

The UETP performs three functions:
1. Exercises major peripherals
2. Validates VAX/VMS system services

3. Tests major VAX/VMS software components (e.g., VAX-11 RMS
(Record Management Services) and the VAX-11 SORT/MERGE
utility)

The UETP is fully automatic and requires no user interaction once
started. Errors indicated during one test will not affect another test,
although the same problem might occur in different parts of the UETP.

While the UETP is thorough, it is not exhaustive and should not be
construed as fully diagnostic or as replacing a diagnostic test. It does
not, for example, test layered products such as optional language
compilers. Such products may have their own installation verification
test packages in their distribution kits. The UETP is a functionality test
that the system manager may employ to get a quick check of the
system’s condition. ’

436

The System Manager

SETTING UP AND USING A SYSTEM OF ACCOUNTS
Some of the main reasons for setting up a meaningful system of users’
accounts are:

e To identify the users of the system

e To define important relationships among the users of the system.
For example, groups of users may share data and other files. These
relationships are the basis of a system of file protection, interpro-
cess communication, and system accounting

® To grant to some users the privileges necessary to perform sensitive
system functions, and thus to restrict other users from performing
those functions

® To set limits on the use of reusable system resources.
® To give users priorities in using the system

Many of the account parameters may be assigned by default, as can a
large number of other values in a VAX/VMS system; or the manager
may want to assign particular values to particular users. In either case,
a User Authorization File is set up for each user and contains critical
accounting information.

The User Authorization File (UAF) ' :

The User Authorization File (UAF) is one of the most important data
structures with which the system manager must be concerned. The
UAF contains one record -for each user of the system; in effect, it
defines the user to the system.

Besides the users’ records, the UAF also contains a default value
record and a system manager’s record. In most cases, the manager
will simply allow the default values for various parameters to stand.
Thus, the manager may elect to choose characteristics only when
warranted by a special case.

Why is the UAF so important in controlling the performance of the
VAX/VMS system? Simply stated, each process in a VAX/VMS system
is associated with a user. Each user is allotted system resources and is
given a priority and privileges, and all such attributes are specified in
the user’s record in the UAF. When a user logs onto the system, a
process is created on behalf of that user. The process acquires the
characteristics of the user. These are the same characteristics as the
system manager put into or defauited into the user’s record in the
UAF. -

437

The System Manager

Each user’s record in the UAF contains the following types of informa-
tion: . .

1. User’sidentification

) a. User name

b. Password

c. Useridentification code (UIC)

d. -Accountname

User’s default directory name and default device name
User’s default command interpreter name

User’s allotment of system resources

User’s privileges

User’s base priority

Through the User Authorization Program (AUTHORIZE), the system
manager may add, delete, modify, or display records in the UAF.

o0 s 0N

Groups

A group is a collection of users whose processes normally have ac-
cess to each others’ files, file-structured volumes, mailboxes, shared
pages of memory, common event flags, and the group logical name
table. In addition, such processes may have special privileges to ex-
ercise control over each other. Therefore, the establishment of groups
principally concerns interprocess communication and control.

In setting up a group, the system manager aims toward two goals: 1) to
facilitate sharing of data and cooperation between users and their
processes; 2) to protect users from unauthorized access to their
processes and data.

The importance of properly setting up groups should not be underesti-
mated. As the system is increasingly used and as more and more files
and protected data structures arise, relationships among group mem-
bers, processes, devices, and data structures grow inevitably more
complex. In time, it becomes harder to redefine the basic relatlonshlps
among the users.

A user's membership in a partucular group-is defined by the User
Identification Code (UIC). The UIC consists of two octal numbers, each
ranging from 0 to 377. The flrst is a group number; the second is a
member number.

The UIC is the basis of the VAX/VMS data protection scheme, and itis
one of the factors (along with privilege) that govern the ways in which
processes can interact with one another. The system manager’s as-

438

The System Manager

signment of UICs, therefore, should involve two important considera-

tions:

1. Which users should be allowed to share data and file access, and
which should not?

2. Which processes should be allowed to cooperate, and which
should not?

Protection, and Owner, System, Group, and World

For purposes of data protection, four different categories of users are

defined. They are:

1. Owner—users whose UICs are identical with the UIC of the owner
of the data structure or device. For example, the owner of a file is
usually the creator of that file.

2. Group—users of the system whose group numbers are the same.

3. System—users of the system with group numbers of octal 10 or
less. Certain privileges appertain to system users.

4. World—all users.

All users potentially enjoy four types of access to protected data struc-
tures and devices: read (R), write (W), execute (E), and delete (D).
Generally speaking, any category of user can be permitted or denied
any type of access to data structures and devices. There are, however,
exceptions, because not all types of access apply to all protected
items. For example, execute access applies only to files that contain
executable program images.

The scheme for protecting file-structured volumes is similar to that for
protecting files, except that execute (E) access to a volume gives the
user the right to create files on that volume.

Limits, Priority, and Privilege
The attributes which the system manager may assign or merely default
to when creating the user’s account record are:

¢ Limits on the use of reusable system resources

e The base priority used in scheduling the processes that the system
creates for that user

® Privileges of using restricted and sensitive system functions

Limits

Limits are set on system resources that can be reused. An example is
the amount of memory that a process can have in use for queued 1/0

requests. Most limit restrictions actually are placed on the use of sys-
tem dynamic memory.

439

The System Manager

Usually: the system manager simply assigns the default values of lim-
its. However, the defaults can easily be overridden.

Priority

A user’s priority is the base priority that is used in scheduling any
process the system creates for that user. There are 32 levels of soft-
ware priority in the VAX/VMS operating system. For normal
processes, the priority range is 0 to 15; for realtime processes, it is 16
through 31.

Processes with realtime prlonty are scheduled strictly accordmg to
base priority. But processes with normal prority are scheduled ac-
cording to a slightly different principle, one that promotes overlapping
of computation and 1/0 activities. This scheduling is all done transpar-
ently to the programmer and manager.

Privileges

Many system services are protected by privileges which restrict their
availability to certain users. These restrictions are intended to protect
the integrity of performance of the operating system, and thus the
integrity of service provided to all users. The manager grants privi-
leges to each user depending upon two factors: 1) whether the user
has the skill and experience to use the system service without disrupt-
ing the whole system; 2) whether the user has a legitimate need for the
privilege.

Accounting for the Use of System Resources

For accounting purposes, the VAX/VMS system itself creates and
maintains records of the use of system resources. These records are
keptin an accounting log file.

Using the detailed accountinglog records provided by the system, the
system manager or a system programmer can establish programs for
reporting on the use of system resources and for billing.

Because the users of system resources are identified in two ways,
reports on the use of system resources and bills for the use of system
resources can easily be generated in either of two ways: by user name
or by account name.

The User Authorization Program

The User Authorization Program (AUTHORIZE) is a system utility re-

quired to maintain the User Authorization File (UAF). The AUTHORIZE

program lets the manager:

o Create the UAF if one does not exist. A newly created UAF contains
only the defauit value record and the system management account
record; no users are yet known to the system

440

The System Manager

e Define a new user to the system by creating a record for that user in
the UAF and thus granting privileges and specifying limits and pri-
ority

e Take away a user’s right to the system by deleting that user’s record
from the UAF _ ‘

e Change the default record of the UAF

® Change a user’s privileges, limits, or priority by modifying that user’s
record in the UAF

e Display all information about a user’s account, with the exception of
the user’s password

® Make a listing of all records in the UAF

For a description of commands and options, consult the documenta-
tion delivered with the system.

MANAGING PUBLIC FILES AND VOLUMES

Typically, overall planning and management of a system of public files

and volumes are among the most important responibilities of the sys-

tem manager. The aspects of public files and volumes management

that the system manager is most concerned with are:

® |nitializing and mounting public volumes

e Regularly backing-up public files and volumes

¢ [nstalling frequently used or privileged executable images as known
images or images that may be shared at runtime

e |nstalling frequently used shareable images as permanent global
sections or images that may be shared at runtime

e Establishing systemwide logical names needed for running the
executable images provided by DIGITAL and for running other im-
ages available to all users at an installation

e Establishing disk quotas

Initializing and Mounting Public Volumes

Public volumes contain public files, which normally must be available
to most users of a system. Public volumes may also contain files that
users create for their own private use or for general use.

Public volumes contain the following kinds of public files supplied by
DIGITAL.

e The operating system itself in executable form and files related to
the operating system

o Utility programs in executable forrh. Utilities available from DIGITAL
are self-installing

441

The System Manager

e Diagnostic and test programs in executable form and files related to
these programs. Such packages as the User Environment Test
Package are bundled in the system and installed along with it

® Various system libraries: macro libraries, object module libraries,
and shared runtime libraries

® Text files; for example, the system error message file and help files,
installed with the system

e Optional software in executable form, plus related libraries and oth-
er files. Some, such as language processors, are self-instatling

In addition, the system manager can include on public volumes files
that are unique to an installation. These typically are files that must be
accessible to many, if not all, users of the installation. The system
manager can also permit any user to create, catalog, and store files on
a public volume.

Mounting a disk volume establishes a relationship among the volume,
the device on which it is physically mounted, and one or more
processes that may gain access to it.

Backing-Up Public Files and Volumes

To prevent the inadvertent loss or destruction of valuable information
stored on disk file volumes, the system manager usually establishes a
policy and a schedule for regularly backing-up files on public volumes.

The BACKUP utility allows users to create back-up copies of files and
directories and to restore them. it can back up entire volume sets in
one operation or perform selective back-ups by file or date. Wildcard-
ing is available, as well as several file selection qualifiers.

The BACKUP utility is intended primarily for use by system managers
and operators; however it can be used by individual users to make
personal back-up copies and to transport files.

There are two kinds of back-ups of public disk files and volumes: 1)
selective, or partial, backups and 2) system, or all-inclusive, backups.
Either type of backup can be done either to disk or magnetic tape.

Installing Known Images and Creating Permanent Global Sections
The system manager can significantly improve system performance
by installing certain executable and shareable images as known imag-
es and by creating permanant global sections.

There are two reasons for installing known images:

1. To permit systemwide sharing of images that are frequently used
by more than one user at a time

2. To make image files more quickly accessible

442

The System Manager

Typically, the kinds of executable images that are instalied as known
images are:

1. Images that need more privileges than are commonly granted to
users who need to execute them

2. Images that are executed frequently
3. Images that are executed by more than one user at a time

A number of images supplied by DIGITAL are ordinarily installed as
known images in a site-independent startup procedure.

Shareable image sections produced by the linker are almost identical
with executable image sections, except that they cannot be executed
by use of the DIGITAL Command Language command RUN. They can,
however, be linked with object modules to create executable images.

Sharing common procedures leads to three significant improvements
in system performance:

1. Reduction of disk storage requirements
2. Reduction of physical memory requirements
3. Reduction of the amount of paging I/0 needed

Assigning System Logical Names

A logical name is a user-specified name that may be equivalent to a
file specification or to some portion of a file specification, such as a
device name. A systemwide logical name is simply a logical name that
can be referred to by all users of the system and by all processes
created for those users.

Making sure that all needed system logical names have been assigned
to equivalence names is an important part of the manager’s role.

Except for default logical names, system logical names that are need-
ed by nearly all or by all VAX/VMS installations are assigned in the
startup command procedure file, STARTUP.COM. DIGITAL prowdes
this as part of all software release distribution kits.

Usually the system manager is responsible for establishing the system
logical names that are unique to an installation. As a rule, these names
are assigned by the use of ASSIGN commands .in the site-specific
startup command procedure.

OVERALL CONTROL OF THE SYSTEM
Two important ways in which the manager exerts control over the
behavior of a VAX/VMS system are: .

e By maintaining command procedures of initialization: commands
that are essential to the proper operation of the system .

® By establishing output spooling and setting up and controlling batch
queues, print queues, and terminal queues

443

The System Manager

STARTUP.COM and SYSTARTUP.COM

The command procedure STARTUP.COM is a startup file that exe-
cutes automatically immediately after the VAX/VMS operating system
has been booted. This startup file is supplied by DIGITAL and contains
commands for performing site-independent operations that must oc-
cur if the system is to run properly. The operations include assigning
system logical names, installing images as known images, building the
I/0 database, and loading 1/0 drivers.

On the other hand, the command procedure SYSTARTUP.COM is a
command file that the manager may tailor to the needs of a specific
installation. Typically, this file contains commands for performing such
operations as setting the characteristics of terminals angd other de-
vices, purging the operator’s log file, and announcing that the system
is up and running. '

Spooling and Batch, Print, and Terminal Queues
Usually the manager performs the following four closely related func-
tions, which establish spooled devices and control queues:

e Establishing input and output spooling.. The VAX/VMS operating
system supports input spooling of batch job files and transparent
spooling - of output files for lineprinters and terminals. Using
DIGITAL Command Language commands, the system manager can
easily specify which output devices areto be spooled

e Creating and controlling batch queues

e Creating and controlling print queues

e Creating and controlling terminal queues

A system manager need not learn the inner workings of spooling and
queuing, but a pragmatic knowledge of how to establish spooled de-
vices and how to create control queues is useful for efficient manage-
ment of the system.

Spooling

Spooling is the technique of using a highspeed storage device to buff-
er data passing between lowspeed 1/0 devices and highspeed main
memory. The lowspeed devices, which can be either the ultimate
sources or the ultimate destinations of buffered 1/0 data, are called
spooled devices; the highspeed mass storage devices are called inter-
mediate devices.

Typically, the system manager chooses lowspeed peripheral devices
to include in the system’s basic complement of spooled devices. At a
minimum, the system manager should see that at least one lineprinter
is set spooled when the system is started-up. In a'system with only one

444

The System Manager

lineprinter, this is the default system printer. The system manager
need not set a card reader spooled, because card readers are spooled
by default.

Batch Queues

Batch jobs can enter the VAX/VMS system and be queued for initia-

tion in two ways:

1. As batch job files submitted by use of the $JOB command from a
card reader. These batch job files are spooled onto disk by an
input symbiont and placed in a batch queue according to their
priority. Unless the $JOB card specifies otherwise, the name of .
the batch queue is SYS$BATCH (by defauit). From the batch
gueue, batch jobs are selected for execution

2. As command procedure disk files submitted by use of the SUB-
MIT command. These files are also placed in a batch queue and
selected for execution according to their priority. Again, by de-
fault, this is the batch queue SYS$BATCH

Print Queues

Unless a lineprinter is associated with a physical queue (a queue that
has the same name as the lineprinter)