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Abstract

Three dimensional kinematic models are widely-used in video-based figure track-
ing. We show that these models can suffer from singularities when motion is directed
along the viewing axis of a single camera. The single camera case is important because
it arises in many interesting applications, such as motion capture from movie footage.

We describe a novel 2-D Scaled Prismatic Model (SPM) for figure registration.
In contrast to 3-D kinematic models, the SPM has fewer singularity problems and
does not require detailed knowledge of the 3-D kinematics. We fully characterize the
singularities in the SPM and demonstrate tracking through singularities using synthetic
and real examples.

We demonstrate the application of our model to motion capture from movies. Fred
Astaire is tracked in a clip from the film “Shall We Dance”. Some simple video edits
are presented. These results demonstrate the benefits of the SPM in tracking with a
single source of video.
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1 Introduction

The kinematics of an articulated object provide the most fundamental constraint on
its motion, and there has been a significant amount of research into the use of 3-D
kinematic models for visual tracking of humans [8, 3, 13, 22, 5]. Kinematic models
play two roles in tracking. First, they define the desired output—a state vector of
joint angles that encodes the 3-D configuration of the model. Second, they specify the
mapping between states and image features that makes registration possible.

Nonlinear least-squares tracking techniques that minimize a cost function over the
state space have proven to be highly effective [8, 14, 12]. These techniques use the
gradient of the residual error to obtain a locally linear model. There are two primary
requirements for their success. First, to obtain a gradient the error function must be dif-
ferentiable. Discontinuities can occur during occlusions and these have been addressed
in [15, 8].

The second requirement is that the state space must be fully observable, ensuring
that the constraints imposed by the kinematic model accurately reflect the motion of
the object. Loss of observability occurs when some states have no instantaneous ef-
fect on the image features and the kinematic Jacobian loses rank and becomes singular.
Kinematic singularities occur for particular configurations of the object relative to the
camera, and can be reduced through the use of multiple camera viewpoints [13]. Unfor-
tunately in certain tracking applications, such as motion capture from movie footage,
there is only a single video source available.

An alternative to the direct 3-D tracking approach is to decompose figure tracking
into separateimage registration and3-D reconstruction stages, as is currently done in
structure from motion problems [20]. This decomposition has two potential benefits.
First, the registration stage can employ simple 2-D figure models which avoid most
of the singularity problems associated with 3-D tracking in the case of a single video
source. Second, the reconstruction stage can simultaneously estimate both dynamic
state parameters, such as joint angles, and static parameters, such as link lengths. This
would remove the need to specify an accurate figure model for 3-D tracking.

In this paper we introduce a novel class of 2-D kinematic models for figure registra-
tion, which we callscaled prismatic models (SPM). We show how to derive the SPM
associated with an arbitrary 3-D kinematic model and demonstrate that SPM’s have
far fewer singularity problems than conventional 3-D models. We present a detailed
discussion of the effect of singularities on tracking branched, open kinematic chains,
along with experimental results for motion capture from movies. These results provide
the first detailed analysis of singularities in articulated object tracking.

2 Singularities in Visual Tracking with 3-D Kinematic
Models

We begin by analyzing the effect of singularities on gradient-based tracking algorithms
for 3-D kinematic models. The standard approach is based on the direct registration of
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3-D models with image features.1 In this method, feature attributes such as the image
position of an edge or a template are expressed as a function of the kinematic state
variables, e.g. joint angles. State estimates are chosen by minimizing a residual error
measure defined in the image. For example, the residual error for an SSD template
feature,

Rj�q� � Ij�q�� �Ij � Ij�q� � I�PF�q�pj��� (1)

measures the registration between template pixel�Ij and the corresponding pixelIj�q�
in input imageI , given the state vectorq. Orthographic camera projection is modeled
by P and the 3-D kinematics by the nonlinear functionF�q�p j�, wherepj is the 3-
D point corresponding to pixel�Ij . Figure (1) illustrates the geometric relationship
between kinematic template model and image.
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Figure 1: Schema of the projection along the camera axisc of the template attached
to link k . Here template velocity is due to rotation around axism i of link i. Point �Ij
has positionpj and velocity�pj in 3-D, and this is projected to pixelIj whose image
gradient isrIj .

Given a template model for each link in the object, tracking proceeds by minimiz-
ing the squared residual error,E�q� � �

�R
TR, where the vectorR holds a raster-

ization of the residual from Equation 1 over all of the template pixels. Algorithms
such as Levenberg-Marquardt [2] use the linearized residual at an operating pointq �

to compute a step towards the local minima.2 The residual gradient for pixelIj can be
expressed

�Rj � �
�Rj

�q
�q��� �q � Jj �q (2)

Jji �
�Rj

�qi
� �rIj�

TP
�F

�q
�q��pj� (3)

As Equation 3 demonstrates, the residual Jacobian is made up of three terms: the
standard 3-D kinematic Jacobian,Jkj � �F��q [19], the camera projection modelP,

1We use the term “feature” to describe a wide variety of measurements, including flow [22, 1], tem-
plates [15, 17], and edges [14, 8].

2In a tracking application,q� is given by the estimate from the previous frame.
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and the image feature gradient, which in this case isrIj . By definition, we also have
�pj � Jkj �q. We see that the residual velocity is the result of projecting a 3-D point
velocity through the camera model and along the image feature gradient, as illustrated
in Figure (1).

From the figure it is clear that pixelIj will provide no information aboutq i if �pj
is directed along the optical axis or ifP �pj acts perpendicular to the gradient. Other
possible feature gradients in equation (3) include the curve normal for a contour feature,
or the identity matrix in the case of a point feature.

The complete residual JacobianJ�q� is formed by stacking upJ j ’s from equa-
tion (2) for all pointsIj , resulting in a linear map from state space to residual space.
The nullspaces of this mapping provide fundamental insight into its properties. The
left nullspace of the Jacobian,N �JT �, defines the constraints inherent in the kinematic
model. Residual velocities in the left nullspace,�R � N �JT �, are excluded by equa-
tion (2). An empty left nullspace indicates that the kinematics do not constrain the
motion. In tracking there will typically be more image measurements than parameters,
m � n, resulting in a non-empty left nullspace and rank�J� � n.

The right nullspace of the residual Jacobian defines theobservability singularities
of the articulated object. State velocities in the right nullspace,�q � N �J�, do not effect
the residual �R and so are termedsingular directions. The right nullspace is non-zero
only when the Jacobian has lost rank, i.e. rank�J� � n.
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Figure 2: Examples of (a) 1, and (b) 2 degree of freedom manipulators.

2.1 Examples of 3-D Singularities

We illustrate the Jacobian’s properties with two simple examples. Figure (2a) shows
a one-link revolute planar manipulator with a single degree of freedom (DOF)�. The
residual Jacobian for the end-point feature is defined by:

�
�x
�y

�
�

�
cos���
� sin���

� �
��
�
� (4)

assuming that the camera and joint axes are parallel. The kinematic constraint is given

by the left nullspace: �Rc �
�
sin��� cos���

�T
. The right nullspace is empty and

there are no observability singularities.
Next consider the manipulator in Figure (2b), formed by adding an additional DOF,

�, to Figure (a), which allows the link plane to tilt out of the page. With the same point
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feature and camera viewpoint we have
�

�x
�y

�
�

�
� sin��� sin��� cos��� cos���

� � sin���

��
��
��

�
(5)

Singularities now occur whensin��� � � and also whensin��� � �. In both cases
the singular direction is�q � �� ��T , implying that changes in� cannot be recovered in
these two configurations.

Singularities impact visual tracking through their effect on error minimization.
Consider tracking the model of Figure (2b) using the Levenberg-Marquardt update
step:

qk � qk�� 	 dqk � qk�� � �JTJ	����JTR (6)

where
 is a diagonal stabilizing matrix. At the singularitysin��� � �, the update step
for all trajectories has the formdqk � �� C�, implying that no updates to� will occur
regardless of the measured feature motion. This singularity arises physically when the
link rotates through the plane parallel to the image plane, resulting in a point velocity
in the direction of the camera axis.

Figure (3a) illustrates the practical implications of singularities for tracker perfor-
mance. The stair-stepped curve corresponds to discrete steps in� in a simulation of the
two DOF example model. In this example, the arm is planar with a randomly textured
template model. The solid curve shows the state estimates produced by Equation (6) as
a function of the number of iterations of the solver. The loss of useful gradient infor-
mation and resulting slow convergence of the estimator as the trajectory approaches the
point� � � is symptomatic of tracking near singularities. In this example, the singular
state was never reached and the tracker continued in a direction opposite the true mo-
tion, as a consequence of the usual reflective ambiguity under orthographic projection
(shown by the dashed line). Perspective projection also suffers from this ambiguity for
small motions.

These examples illustrate the significant implications of singularities for visual
tracking. If the search for feature measurements is driven by prediction from the state
estimates, singularities could result in losing track of the target altogether. Even when
feature correspondences are always available, such as when markers are attached to
the object, the solver will slow down dramatically near singularities, since each step
has only a small effect on the residual. This is analogous to the effect of classical
kinematic singularities in robotic manipulators [9]: manipulator control near singular-
ities may require arbitrarily large forces; here tracking near singularities may require
arbitrarily large numbers of iterations!

2.2 Conditions for 3-D Singularities

It would be useful to obtain general conditions under which singularities can arise
in tracking with 3-D kinematic models. This is a challenging task due to the high
dimensionality and nonlinearity of kinematic models. Attempts have been made to
classify the singularities in robot manipulators from the standpoint of both manipulator
design [11] and visual-servoing control [18]. In this section we derive some local
conditions for 3-D singularities and characterize some important special cases.



2.2 Conditions for 3-D Singularities 5

0 100 200 300 400 500 600 700 800

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Iteration

A
ng

le
 φ

 (
ra

di
an

s)

(a)

0 100 200 300 400 500
58

60

62

64

66

68

70

72

Iteration

Le
ng

th
 (

pi
xe

ls
)

(b)

Figure 3: Singularity example. (a) Tracking the 3-D manipulator in example 2 through
a singular point along the singular direction. While the true angle� continues to in-
crease, the tracker loses track near the singularity and then picks up an ambiguous path.
(b) 2-D tracker from Section 3 is applied to the same motion as in (a), but here exten-
sion length rather than angle is recovered, and this correctly increases and decreases
without change in damping.

From the preceding discussion and Equation (3), it is clear that singularities de-
pend fundamentally on the interaction between projected 3-D point velocities and their
associated image feature gradients. Jacobian analysis and computation can be simpli-
fied by assuming that the shape of each link is locally planar or cylindrical. This is a
good approximation when the depth variation along the link is small relative the camera
distance.

In this analysis we employ the planar link model introduced in [13]. The image
appearance of thekth link is modeled by the projection of a view-dependent texture-
mapped plane which is attached to the link’s coordinate frame. The normal vector,
nk, of the plane is adjusted as the link moves to satisfy the following two constraints:
nk � ak andnk � �ak � c� whereak defines the centerline of the link andc is the
camera axis (see Figure (1)). These constraints keep the plane “facing” the camera.
The plane is considered to be rigidly attached to the link for the purpose of Jacobian
computation.

The planar link model can be initialized from a single image and then applied across
an image sequence if the link appearance doesn’t change dramatically with the viewing
direction. When this assumption fails, the template contents can be allowed to change
with the viewing direction.

In the point feature case we have the following condition for a 3-D pointp to
contributeno information about a revolute stateq i: c k �p � c k �qimi � r wherer is
the vector from the joint center of linki to p, m i is the joint axis, andc is the camera
axis, all expressed in world coordinates.
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Now let p be located on the template plane for linkk. Thenr � �r ik 	 uak 	
v�ak � nk� whereak andnk define the template plane as above,u� v give the position
of p in template coordinates, and�rik is the vector connecting jointi to the base of link
k. All vectors are unit vectors.

We can now derive conditions on the template plane such that all of its point veloc-
ities project along the camera axis. We find three conditions:

nk k c� rik � c� mi � c� (7)

which together are sufficient. We can make three observations about these conditions.
First, use of the planar appearance model makes it possible to greatly simplify the sin-
gularity analysis for a link. Furthermore, whenak is directed along the line connecting
the joint centers, the link can be modeled as a 3-D line segment for analysis purposes.
Second, this analysis does not rely upon any particular parameterization of the model’s
kinematic DOF’s and should apply quite broadly to models of the figure. Third, ad-
ditional singular configurations can arise in cases, such as along contours, where the
feature model does not fully constrain image motion.

Finally, it is worth pointing out that in spite of the potential problems in using 3-D
kinematic models for tracking, they can be extremely reliable in practice if a sufficient
number of camera views are available. This observation is the basis for the optical
motion capture industry, for example.

3 A 2-D Scaled Prismatic Model for Registration

The previous section outlined the conditions under which singularities can occur in
3-D kinematic models. Singularities have two implications for 3-D tracking with a
single video source. First, some additional source of information will have to be used
to estimate the unobservable parts of the state space for singular configurations. For
example, assumptions about object dynamics could be used in a Kalman filter frame-
work to extrapolate an estimated state trajectory across a singular point. Second, the
utility of the kinematic model for image registration is reduced, since it will not always
supply a useful constraint on pixel motion.

It is important here to distinguish two separate goals: a registration objective in
which the model projections are aligned with image pixels, and a reconstruction goal
in which the state trajectory for a 3-D kinematic model is estimated. For some appli-
cations, such as gesture recognition, registration may be all that is required. In other
applications such as motion capture it is desirable to reconstruct the 3-D motion along
with the kinematic model parameters. Once the images have been registered, 3-D re-
construction can be cast as a batch estimation problem, since the registration step gives
the complete correspondence between model points and image coordinates in each
frame. The batch nature of the formulation is well-suited to our application of motion
capture from movies, and makes it possible to enforce smoothness constraints in both
time directions, improving the quality of the estimates.

The remainder of this section focuses on the registration step. Although we do not
want to employ the full 3-D model, we would like to employ the strongest possible
kinematic constraints so as to improve robustness to image noise. We will see that a
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Figure 4: 2-D SPM chain showing residual velocities due to state velocities: (a)�q i � ��,
and (b) �qi � �d.

novel 2-D Scaled Prismatic Model (SPM) formed by “projecting” the 3-D model into
the image plane provides a useful constraint for registration.

3.1 Kinematics of the 2-D SPM Class

The 2-D SPM acts in a plane parallel to the plane of the camera and simulates the image
motion of the 3-D model. Links have the same connectivity as in the 3-D model, rotate
around their base joint on an axis perpendicular to the plane, and scale uniformly along
their length. Each link is thus represented as a line segment having two parameters; its
angle of rotation�i and lengthdi along its directionni. As in the 3-D case a template
is attached to each link which rotates and scales with the link. Figure (4) shows both
of these parameters for a link in the 2-D SPM.

In this section we briefly derive the kinematics of this model class, show that it can
capture the projected motion of a 3-D figure, and then show that it is precisely in the
cases where the 3-D model suffers from singularities that the 2-D SPM behaves well.

The residual velocity can be expressed as the sum of the Jacobian columns times
their corresponding state parameter velocity:�R �

P
i Ji �qi. Hence we can calculate

individual Jacobian columns for each state variable,q i independently and then combine
them. Since a column of the Jacobian,J i, maps the state velocity�qi to a residual veloc-
ity, by finding the residual velocity in terms of this state we can obtain an expression
for Ji. If qi � � is the angle of a revolute joint shown in Figure (4a), it will contribute
an angular velocity component to links further along the chain given by� � �qa. Here
a is the axis of rotation which for the 2-D model is just the z axis. The image velocity,
vp, of a point at locationr on the manipulator chain resulting from this rotation is given
by:

vp � P� � r � Pa � r �q � r�d �q (8)

where the orthographic projectionP selects thex andy components. This equation
expresses the desired mapping from state velocities of axisi to image velocities of
pointj on link k giving the components of the column Jacobian,J i:

Jji �

�
� links k, wherek � i
r�d links k, wherek � i

(9)
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If qi � d refers to the extension of the scaled prismatic link shown in Figure (4b), its
derivative will contribute a velocity component to points on linki proportional to their
position on the link:bqi, whereb is the fractional position of the point over the total
extensionqi. The velocity component for a point,p, on the link is thusv p � bqi �qini.
Subsequent links,k � i, will be affected only by the end-point extension of the link,
and so have a velocity component from this joint given by:v p � qi �qini. Hence the
Jacobian element at pointj on link k for an extension parameter,q i, is given by:

Jji �

��
�

� links k, wherek � i
bqini link i
qini links k, wherek � i

(10)

We show that given certain modeling assumptions, the 2-D SPM with the above
specifications is flexible enough to represent the projected image of any 3-D model in
any legal configuration. We assume that a model consists of a branched chain of links
connected at their end-points by revolute joints. We use the template plane model from
Section (2.2) to describe link appearance. We identify thelink segment for each link
as the 3-D line segment connecting the link’s joint centers and oriented in the direction
of ak. The 3-D model specifies the link lengths and the orientation of each revolute
joint axis, while in the SPM the link lengths vary and the axis of each revolute joint
is perpendicular to the image plane. The state of a 3-D model is thus a vector of joint
angles,qm � � �� �� 	 	 	 �T , and the state of a 2-D SPM is a vector of angles and
joint lengths,qn � � �� d� �� d� 	 	 	 �T . Then more formally:

Proposition 1 The linear projection of the link segments of a 3-D kinematic model
onto a plane and the assignment of revolute joints with axes perpendicular to the plane
between each pair of connected links defines a many to one mappingFM �M� �M�

from the space of all 3-D modelsM� to 2-D modelsM�. Furthermore for each pair of
models, m 	M� and n � FM �m�, it defines another mapping FS � Q�

m � Q�
n that

maps every state of the 3-D model qm 	 Q�
m to a state of the 2-D SPM qn 	 Q�

n.

Proof: Consider the graph,G, of a 3-D model with each joint represented by a vertex
and each link by an edge. There may be many 3-D models with the same graphG since
3-D joints may have multiple revolute axes. When a 3-D model in any state is projected
onto a plane under a linear projection, the new graphG � will have the same topology
of vertices and edges, and the projected edges will remain linear. Now interpret the
graph,G�, drawn in the plane as each straight edge representing an extensible link, and
the intersection point of each connected pair of edges as a revolute joint. This defines
a unique 2-D model, and thus the mappingFM . The state of a 2-D SPM is specified
by the distances in the plane between connected joints (i.e. the link lengthsd i’s), and
the angles between links that share joints (i.e.�i’s) as illustrated in Figure (4). Now
the state of the 3-D model determines, through the projection, the relative positions
of the vertices in 2-D and thus the 2-D state. For any distribution of vertices in the
plane here must exist a 2-D stateqn that captures it since line segments can join any
two connected vertices, and any relative orientation between two line segments can be
described by a single angle. There thus must exist a mappingFS for all 3-D states.

We conclude that the 2-D SPM class can capture any projected 3-D model in any
configuration.
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3.2 Singularity Analysis of the 2-D SPM

An important advantage of the SPM is the location of its singularities. In the 3-D
model the singularities occur in the frequently traversed region of configuration space
in which links pass through the image plane. The 2-D SPM has all of its rotation axes
parallel to the camera axis and so never fulfils the 3-D singularity condition:m i � c

from Equation (7). Here we show that the SPM only has singularities whend i � �,
corresponding to a 3-D link pointing towards the camera, and that the singular direction
is perpendicular to the entering velocity and so usually does not affect tracking.

Proposition 2 Given x and y measurements of endpoints of each joint in a linear chain
scaled-prismatic manipulator, observability singularities occur if and only if at least
one of the joint lengths is zero.

Proof: We define a state vector made of pairs of components for each link:q ��
�� d� 	 	 	 �n dn

�T
, and the residual vector to be the error inx andy end-

point positions of each link. We assume the proposition holds for an � � link manip-
ulator with JacobianJ�n��� whose elements are defined as in Equations (9) and (10).
The Jacobian for then length manipulator is given by:

J�n� �

�
J�n��� A
B C

�
(11)

whereJ�n��� is a square matrix of size�n � �. Matrix A is of size�n � � � � and
expresses the dependence of then’th link’s parameters on the position of the other links
positions and so is zero. MatrixC and its square are given as:

C �

�
cos��T � �dn sin��T �
sin��T � dn cos��T �

�
� (12)

CTC �

�
� �
� d�n

�
(13)

where�T �
Pn

i�� �i. From this we see thatC has rank two if and only ifdn 
�
�. If C has rank two, then the bottom two rows ofJ �n� are linearly independent of
all other rows and ifJ�n��� is full rank thenJ�n� must have rank�n. If C or if
J�n��� do not have full rank thenJ�n� will not have rank�n, and there will be an
observability singularity. To complete the proof we need only demonstrate that the
proposition applies to the base case,n � �. Here the whole Jacobian is given byC
which has full rank only whend� 
� �. Thus the proposition is proven.

A further mitigating property of the 2-D singularities is that unlike in the 3-D ob-
servability singularities where the singular direction is along the motion trajectory, the
singular direction in the 2-D case is always perpendicular to the direction in which
the singularity was entered. We can see this for the single arm manipulator described
by a Jacobian equal toC in equation (12). Whend � � the velocity direction is:
�R �

�
cos��� sin���

�T
, but the left nullspace is orthogonal to this by definition.

Hence a manipulator will typically pass through a 2-D singularity without the increased
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damping caused by moving along a singular direction. Only if the link enters in one
direction and leaves orthogonally does the singularity obstruct tracking.

The assumption that we have information on endpoints is equivalent to assuming
there is sufficient texture or edge information on the link to obtain length and direction
estimates. When this assumption fails there may be more singularities for both the 3-D
and 2-D models.

While both 2-D and 3-D model classes can represent articulated motion, the 2-D
SPM provides weaker constraints. It has the two advantages of avoiding the singulari-
ties of the 3-D model and relaxing the need for accurate knowledge of link lengths and
joint axes which is required by the 3-D model. Moreover, the 2-D and 3-D models are
complementary in that their singularities occur in different parts of the state space.

4 Previous Work

There have been numerous papers on 3-D and 2-D tracking of articulated objects. How-
ever, none of them have addressed the question of singularities and their implications
for tracking with a single video source. The 3-D kinematic analysis in this paper is
based primarily on our earlier work [14, 15]. We believe it applies quite broadly.

The first works on articulated 3-D tracking were by O’Rourke and Badler [10] and
David Hogg [5]. They employed the classical AI techniques of constraint propagation
and tree search, respectively, to estimate the state of the figure. Hogg was the first
to show results for a real image sequence. A modern version of the discrete search
strategy is employed by Gavrila and Davis [3], who use a hierarchical decomposition
of the state space to search for the pose of a full body 3-D model.

Yamamoto and Koshikawa [22] were the first to apply modern kinematic models
and gradient-based optimization techniques to figure tracking. Their experimental re-
sults were limited to 2-D motion and they did not address kinematic modeling issues
in depth. The gradient-based tracking framework was extended by Rehg and Kanade
to handle self-occlusions [15] and applied to hand tracking [13].

The objective function used by Yamamoto et. al. is still popular. It compares mea-
sured image flow to the image flow predicted by the kinematic Jacobian of the figure.
The same approach was explored by Pentland and Horowitz for nonrigid motion anal-
ysis in [12], which includes an example of figure tracking. More recently, Bregler and
Malik have used the same cost function in their analysis of the Muybridge plates [1].

A number of 3-D tracking systems have used explicit shape models for the limbs,
usually some form of superquadric or generalized cylinder. The system of Kakadiaris
and Metaxas is a more complete example, and addresses model acquisition [7] and
self-occlusion handling [8]. Related work by Goncalves and Perona is described in [4].

Gradient-based search strategies have the crucial performance advantage of exploit-
ing information about the local shape of the objective function to select good search
directions. This leads to extremely fast search performance in high dimensional state
spaces. For example, Rehg and Kanade demonstrated tracking of a 26 DOF hand model
using live video [14]. In addition, the field of robot control is based on an analogous
use of the kinematic Jacobian. However, as in robotics, singularities often arise in 3-D
tracking and can cause significant problems, as we have demonstrated.
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The work of Ju et. al. [17] is perhaps the closest to our 2-D Scaled Prismatic
Model. They model the image motion of rigid links as affine flow patches with imposed
attachment constraints. Their model can be viewed as an extension of classical patch
tracking techniques, that incorporates constraints between patches. In contrast, our
model is derived from an explicit consideration of the effects of 3-D kinematics on
image motion. As a consequence, it has a more direct connection to the underlying
3-D motion. We believe this property will become important in reconstructing the 3-D
motion of the figure from SPM measurements. The SPM also has fewer parameters
than a patch-based description of flow.

5 Experimental Results

We present two sets of experimental results that demonstrate the differences between
3-D and 2-D tracking for real image sequences and give some preliminary results for
our motion capture from movies application.

5.1 Comparison between 2-D and 3-D Models

Figure (5a) and (5b) show the starting and ending frames of a 30 frame sequence of an
arm moving through a singularity. In this example the arm remains rigid, approximat-
ing the model of Figure (2b), but with the addition of a base link capable of translation
in the image plane. The trajectory of the arm was similar to the simulation in Figure
(3), but with the addition of a nonzero� component. Overlaid on the images are the
positions of the 2-D SPM resulting from the state estimates. The longer part of the “T”
shape on the arm is the prismatic joint axis. The second link superimposed on the torso
has X and Y translation DOF’s, which were negligible.

We conducted three experiments in which the sequence in Figure (5) was tracked
with an SPM and two 3-D kinematic models with different damping factors
. In
each case, the tracker was given a budget of twenty iterations with which to follow
the motion in a given frame. By analogy to the simulation example, we would expect
the 3-D models to lose ground in the vicinity of a singularity. Figure (6a–c) compares
the relative performance of the 2-D and 3-D models. Plot (a) shows the length of the
arm link projected into the image plane for the three trackers. As expected, the 2-D
SPM tracker is unaffected by the singularity and exhibits uniform convergence rates
throughout the trajectory. The extension of the arm corresponds to the prismatic state
d� in the SPM model, which is plotted with large dots in the figure.

The under-damped 3-D tracker drawn with dashed lines in Plot (a) performs well
until it approaches the singularity, upon which it begins oscillating wildly. These oscil-
lations in projected arm length are the result of fluctuations in the out-of-plane rotation
angle, which is shown in Plot (b). Once the arm leaves the singular configuration the
under-damped tracker recovers and tracks the remainder of the sequence. In contrast,
the well-damped tracker plotted with a solid line in Plot (a) does not oscillate at the
singularity. It does, however, have more difficulty escaping from it and lags the SPM
tracker by several pixels over several frames of measurements.
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Figure 5: Test sequence. Frames 15 (a) and 36 (b) from the test sequence for singularity
comparison, showing the 2-D SPM estimates.

In a real application, an algorithm such as Levenberg-Marquardt would be used to
automatically adapt the amount of damping. It is clear, however, that any 3-D tracker
will be forced to do a significant amount of work in the vicinity of the singularity to
avoid poor performance. Unfortunately, in spite of this effort the 3-D tracker will be
quite sensitive to both image noise and errors in the kinematic model parameters, such
as link lengths, during this part of the trajectory.

Figure (6b) shows the out-of-plane rotation angle,�, for the two 3-D models. The
divergence of the two curves following the singularity is a consequence of the usual or-
thographic ambiguity. Plot (c) shows the in-plane rotation angle,�, which is essentially
the same for all of the models. In summary, the 2-D SPM exhibits more consistent and
uniform registration performance, as expected. Performance of the 3-D model depends
critically on determining the correct amount of damping.

5.2 Motion Capture from Movies

For the second experiment, we developed a 2-D SPM for the human figure and applied
it to a short dance sequence by Fred Astaire. Figure (7) shows stills from the movie
“Shall We Dance”, overlaid with their associated state estimates. The overall quality of
the registration is fairly good, especially considering the low contrast between figure
and background. The tracker slipped off the right leg around the third frame, due
probably to low contrast, but managed to get back on over the next frame. Finally, the
tracker fails in the last frame due to self-occlusion.

As a preprocessing step, we used standard image stabilization techniques [6] to
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Figure 6: Tracking results for 2-D SPM and 3-D kinematic models using the motion
sequence in Figure (5). 2-D SPM data is shown by large dots, while 3-D model data is
shown by a solid curve in the well-damped case and a dashed line in the under-damped
case. (a) (Top) Displacement in pixels corresponding to the length of the arm link after
projection into image plane using the estimated state. (b) (Middle) angle� of 3-D
trackers, and (c) (Bottom) in-plane rotation� of each model.
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compensate for camera motion and generate a background image that does not contain
the moving figure. Both the initial state of the kinematic model and the SSD template
model were initialized by hand on the first frame of the sequence.

The combination of figure tracking and recovery of a background image enables
some simple video edits. The first is to remove Fred from the background of the original
sequence and replay his motion against a new background. Stills from the resulting
video clip are displayed in Figure 8. In this example, a photograph of the second
author’s office at CRL provides a new backdrop for the original dance sequence.

The compositing technique used to generate the new sequence is a straightforward
application of the forward kinematic model, using the estimated state of the figure
in each frame. The forward model contains a set of templates initialized on the first
frame of the sequence. Each state estimate produces a specific configuration of these
templates in the image plane. Our composition algorithm simply replaces pixels in the
background image with template pixels to synthesize a new frame.

In this example, the segmentation of the templates pixels is quite crude. We use a
rectangular bounding box to identify the pixels associated with each link in the kine-
matic model. While this approximation is adequate for tracking, it leads to artifacts in
the synthesized images. There are two forms of artifacts. The first are segmentation
errors in which the template contains pixels from the background of the initial frame in
the sequence. The second artifact occurs at the joints, where the template model fails
to capture the visual continuity of the figure across links. Both of these artificts can be
eliminated through the use of image compositing and blending techniques. This will
be addressed in future work.

The second edit we performed was to replace the pixels in Fred’s template model
with pixels from the image of another person. This allows us to animate the image
of a different person with the original motion against the background image from the
video. The result is the illusion of a different person performing the dance. This is
illustrated in Figure 9, which shows stills from a sequence in which the director of
CRL, Dr. Robert Iannucci, dances under the watchful eye of Ginger Rogers.

This last edit is an example ofmotion transfer, using the pixel motion from one
video sequence to directly animate the pixel content of another image (or set of im-
age). Here we are making an analogy to view transfer, in which a set of images is
“transferred” to a new camera viewpoint. If 3-D motion information is available, more
complex motion transformations are possible. See [21] for an example.

From the standpoint of video editing, we can view the tracking process as an au-
tomatic extrapolation across the image sequence of the segmentation provided by the
user in the first frame.

6 Future Work

In future work, we plan to address the 3-D reconstruction of fixed and variable kine-
matic parameters from a sequence of SPM estimates. We are also interested in using
more sophisticated estimation techniques such as multiple hypothesis tracking [16] to
compensate for self-occlusions, background clutter, and photometric variation.
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(a) (b)

(c) (d)

(e)

Figure 7: Fred Astaire tracked in an image sequence using the SPM-based tracker.
Images (a)–(e) correspond to frames 0,4,5,6 and 7 from the input sequence.
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(a) (b)

(c) (d)

(e)

Figure 8: First video edit. Obtained by synthesizing a sequence of Fred Astaire’s
motion against an office background. The figure poses in (a)–(e) correspond to input
frames 0,2,4,6 and 7.
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(a) (b)

(c) (d)

(e)

Figure 9: Second video edit. Obtained by replaying the motion estimates using tem-
plate pixels from a second person. The background was obtained from the original
sequence. The figure poses in (a)–(e) correspond to input frames 0,2,4,6 and 7.
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7 Conclusions

While kinematic models provide powerful constraints for gradient-based tracking algo-
rithms, we have shown that trackers utilizing 3-D kinematic models suffer from singu-
larities when motion is directed along the viewing axis of a single camera. This results
in greater sensitivity to noise and possible loss of registration.

We have introduced a 2-D Scaled Prismatic Model which captures the image plane
motion of a large class of 3-D kinematic models. The SPM has the following three
advantages. First, it has fewer singularity problems than 3-D kinematic models. In
addition, unlike the general 3-D model, its singularities can be fully characterized en-
abling it to be used only in appropriate situations. Second, the SPM does not require
the specification of link lengths and joint axes, which can sometimes be difficult. In
cases where 3-D information is unnecessary the SPM alone may provide sufficient mo-
tion estimation. Third, when 3-D motion estimates are desired, they can be obtained
from SPM motion estimates using a batch estimation approach.

We have used the SPM to track Fred Astaire in a video clip taken from the movie
“Shall We Dance”. We have demonstrated some simple applications of this tracking
technology to video editing.
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