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Abstract

A traditional approach to extracting geometric information from a large scene is to compute

multiple 3-D depth maps from stereo pairs or direct range finders, and then to merge the 3-D data

This is not only computationally intensive, but the resulting merged depth maps may be subject to

merging errors, especially if the relative poses between depth maps are not known exactly. The 3-D

data may also have to be resampled before merging, which adds additional complexity and potential

sources of errors.

This paper provides a means of directly extracting 3-D data covering a very wide field of view,

thus by-passing the need for numerous depth map merging. In our work, cylindrical images are first

composited from sequences of images taken while the camera is rotated 360� about a vertical axis.

By taking such image panoramas at different camera locations, we can recover 3-D data of the scene

using a set of simple techniques: feature tracking, an 8-point structure from motion algorithm, and

multibaseline stereo. We also investigate the effect of median filtering on the recovered 3-D point

distributions, and show the results of our approach applied to both synthetic and real scenes.
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c�Digital Equipment Corporation 1995. All rights reserved.

�Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399





Contents i

Contents

1 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

2 Relevant work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 2

3 Overview of approach � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3

4 Extraction of panoramic images � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4

5 Recovery of epipolar geometry � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6

5.1 8-point algorithm: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2 Tracking features for 8-point algorithm . . . . . . . . . . . . . . . . . . . . . . . 8

6 Omnidirectional multibaseline stereo � � � � � � � � � � � � � � � � � � � � � � � � � 9

6.1 Reconstruction Method 1: Unconstrained feature tracking and 3-D data merging . . 10

6.2 Reconstruction Method 2: Iterative panoramic structure from motion . . . . . . . . 11

6.3 Reconstruction Method 3: Constrained depth recovery using epipolar geometry . . 13

7 Stereo data segmentation and modeling � � � � � � � � � � � � � � � � � � � � � � � � 14

8 Experimental results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 14

8.1 Synthetic scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8.2 Real scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Discussion and conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 22

A Optimal point intersection � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 25

B Elemental transform derivatives � � � � � � � � � � � � � � � � � � � � � � � � � � � � 26



ii LIST OF TABLES

List of Figures

1 Generating scene model from multiple 360� panoramic views. . . . . . . . . . . . 3

2 Compositing multiple rotated camera views into a panorama. The ’�’ marks indi-

cate the locations of the camera optical and rotation center. . . . . . . . . . . . . . 4

3 Example undistorted image sequence (of an office). . . . . . . . . . . . . . . . . . 5

4 Panorama of office scene after compositing. . . . . . . . . . . . . . . . . . . . . . 6

5 Panorama of synthetic room after compositing. . . . . . . . . . . . . . . . . . . . 15

6 Comparison of 3-D points recovered of synthetic room. . . . . . . . . . . . . . . . 16

7 Three views of modeled synthetic room of Figure 6(h). . . . . . . . . . . . . . . . 17

8 3-D RMS error vs. number of points. The original number of points (corresponding

to 100%) is 3057. The dimensions of the synthetic room are 10(length)� 8(width)

� 6(height). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Extracted 3-D points and mesh of office scene. Notice that the recovered distribu-

tions shown in (c) and (d) appear more rectangular than those shown in (a) and (b). 21

10 Three views of modeled office scene of Figure 9(g) . . . . . . . . . . . . . . . . . 22

11 Panorama of laboratory after compositing. . . . . . . . . . . . . . . . . . . . . . . 22

12 Extracted 3-D points and mesh of laboratory scene. . . . . . . . . . . . . . . . . . 23

13 Three views of modeled laboratory scene of Figure 12(g) . . . . . . . . . . . . . . 24

List of Tables

1 Comparison of 3-D RMS error between unconstrained and constrained stereo re-

sults (n is the number of points). . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



1 Introduction 1

1 Introduction

A traditional approach to extracting geometric information from a large scene is to compute multi-

ple (possibly numerous) 3-D depth maps from stereo pairs, and then to merge the 3-D data [Ferrie

and Levine, 1987; Higuchiet al., 1993; Parvin and Medioni, 1992; Shumet al., 1994]. This is not

only computationally intensive, but the resulting merged depth maps may be subject to merging er-

rors, especially if the relative poses between depth maps are not known exactly. The 3-D data may

also have to be resampled before merging, which adds additional complexity and potential sources

of errors.

This paper provides a means of directly extracting 3-D data covering a very wide field of view,

thus by-passing the need for numerous depth map merging. In our work, cylindrical images are

first composited from sequences of images taken while the camera is rotated 360� about a vertical

axis. By taking such image panoramas at different camera locations, we can recover 3-D data of

the scene using a set of simple techniques: feature tracking, 8-point direct and iterative structure

from motion algorithms, and multibaseline stereo.

There are several advantages to this approach. First, the cylindrical image mosaics can be built

quite accurately, since the camera motion is very restricted. Second, the relative pose of the various

camera locations can be determined with much greater accuracy than with regular structure from

motion applied to images with narrower fields of view. Third, there is no need to build or purchase a

specialized stereo camera whose calibration may be sensitive to drift over time—any conventional

video camera on a tripod will suffice. Our approach can be used to construct models of building

interiors, both for virtual reality applications (games, home sales, architectural remodeling), and

for robotics applications (navigation).

In this paper, we describe our approach to generate 3-D data corresponding to a very wide field

of view (specifically 360�), and show results of our approach on both synthetic and real scenes.

We first review relevant work in Section 2 before delineating our basic approach in Section 3. The

method to extract wide-angle images (i.e.,panoramic images) is described in Section 4. Section 5

reviews the 8-point algorithm and shows how it can be applied for cylindrical panoramic images.

Section 6 describes two methods of extracting 3-D point data: the first relies on unconstrained track-

ing and using 8-point data input, while the second constrains the search for feature correspondences

to epipolar lines. We briefly outline our approach in modeling the data in Section 7—details of this

is given elsewhere [Kanget al., 1995a]. Finally, we show results of our approach in Section 8 and
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close with a discussion and conclusions.

2 Relevant work

There is a significant body of work on range image recovery using stereo (a comprehensive survey

is given in [Barnard and Fischler, 1982]). Most work on stereo uses images with limited fields of

view. One of the earliest work to use panoramic images is the omnidirectional stereo system of

Ishigura [Ishiguraet al., 1992], which uses two panoramic views. Each panoramic view is created

by one of the two vertical slits of the camera image sweeping around 360�; the cameras (which

are displaced in front of the rotation center) are rotated by very small angles, typically about 0.4�.

One of the disadvantages of this method is the slow data accumulation, which takes about 10 mins.

The camera angular increments must be approximately 1/f radians, and are assumed to be known

a priori.

Murray [Murray, 1995] generalizes Ishiguraet al.’s approach by using all the vertical slits of

the image (except in the paper, he uses a single image raster). This would be equivalent to structure

from known motion or motion stereo. The advantage is more efficient data acquisition, done at

lower angular resolution. The analysis involved in this work is similar to Bolleset al.’s [Bolles et

al., 1987] spatio-temporal epipolar analysis, except that the temporal dimension is replaced by that

of angular displacement.

Another related work is that of plenoptic modeling [McMillan and Bishop, 1995]. The idea is to

composite rotated camera views into panoramas, and based on two cylindrical panoramas, project

disparity values between these locations to a given viewing position. However, there is no explicit

3-D reconstruction.

Our approach is similar to that of [McMillan and Bishop, 1995] in that we composite rotated

camera views to panoramas as well. However, we are going a step further in reconstructing 3-D

feature points and modeling the scene based upon the recovered points. We use multiple panoramas

for more accurate 3-D reconstruction.
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Omnidirectional
multibaseline stereo

Recovered 3-D 
scene points Modeled scene

P

Figure 1: Generating scene model from multiple 360� panoramic views.

3 Overview of approach

Our ultimate goal is to generate a photorealistic model to be used in a variety of scenarios. We are

interested in providing a simple means of generating such models. We also wish to minimize the

use of CAD packages as a means of 3-D model generation, since such an effort is labor-intensive.

In addition, we impose the requirement that the means of generating models from real scene be

done using commercially available equipment. In our case, we use a workstation with framegrabber

(real-time image digitizer) and a commercially available 8-mm camcorder.

Our approach is straightforward: at each camera location in the scene, capture sequences of

images while rotating the camera about the vertical axis passing through the camera optical center.

Composite each set of images to produce panoramas at each camera location. Use stereo to extract

3-D data of the scene. Finally, model the scene using these 3-D data input and render it with the

texture provided by the input 2-D image. This approach is summarized in Figure 1.

By using panoramic images, we can extract 3-D data covering a very wide field of view, thus

by-passing the need for numerous depth map merging. Multiple depth map merging is not only

computationally intensive, but the resulting merged depth maps may be subject to merging errors,

especially if the relative poses between depth maps are not known exactly. The 3-D data may also

have to be resampled before merging, which adds additional complexity and potential sources of
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Figure 2: Compositing multiple rotated camera views into a panorama. The ’�’ marks indicate the

locations of the camera optical and rotation center.

errors.

Using multiple camera locations in stereo analysis significantly reduces the number of ambigu-

ous matches and also has the effect of reducing errors by averaging [Okutomi and Kanade, 1993;

Kanget al., 1995b]. This is especially important for images with very wide fields of view, because

depth recovery is unreliable near the epipoles�, where the looming effect takes place, resulting in

very poor depth cues.

4 Extraction of panoramic images

A panoramic image is created by compositing a series of rotated camera image images, as shown in

Figure 2. In order to create this panoramic image, we first have to ensure that the camera is rotating

about an axis passing through its optical center, i.e., we must eliminate motion parallax when pan-

ning the camera around. To achieve this, we manually adjust the position of camera relative to an

X-Y precision stage (mounted on the tripod) such that the motion parallax effect disappears when

the camera is rotated back and forth about the vertical axis [Stein, 1995].

Prior to image capture of the scene, we calibrate the camera to compute its intrinsic camera

parameters (specifically its focal lengthf , aspect ratior, and radial distortion coefficient�). The

camera is calibrated by taking multiple snapshots of a planar dot pattern grid with known depth

separation between successive snapshots. We use an iterative least-squares algorithm (Levenberg-

�For a pair of images taken at two different locations, the epipoles are the location on the image planes which are the

intersection between these image planes and the line joining the two camera optical centers. An excellent description

of the stereo vision is given in [Faugeras, 1993].
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� � �
Image 1 Image 2 Image (N-1) Image N

Figure 3: Example undistorted image sequence (of an office).

Marquardt) to estimate camera intrinsic and extrinsic parameters (except for�) [Szeliski and Kang,

1994].� is determined using 1-D search (Brent’s parabolic interpolation in 1-D [Presset al., 1992])

with the least-squares algorithm as the black box.

The steps involved in extracting a panoramic scene are as follow:

� At each camera location, capture sequence while panning camera around 360�.

� Using the intrinsic camera parameters, correct the image sequence forr, the aspect ratio, and

�, the radial distortion coefficient.

� Convert the�r� ��-corrected 2-D flat image sequence to cylindrical coordinates, with the focal

lengthf as its cross-sectional radius. An example of a sequence of corrected images (of an

office) is shown in Figure 3.

� Composite the images (with only x-directional DOF, which is equivalent to motion in the an-

gular dimension of cylindrical image space) to yield the desired panorama [Szeliski, 1994].

The relative displacement of one frame to the next is coarsely determined by using phase cor-

relation [Kuglin and Hines, 1975]. This technique estimates the 2-D translation between a

pair of images by taking 2-D Fourier transforms of both images, computing the phase differ-

ence at each frequency, performing an inverse Fourier transform, and searching for a peak

in the magnitude image. Subsequently, the image translation is refined using local image

registration by directly comparing the overlapped regions between the two images [Szeliski,

1994].

� Correct for slight errors in the resulting length (which in theory equals��f ) by propagating

residual displacement error equally across all images and recompositing. The error in length

is usually within a percent of the expected length.
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Figure 4: Panorama of office scene after compositing.

An example of a panoramic image created from the office scene in Figure 3 is shown in Figure 4.

5 Recovery of epipolar geometry

In order to extract 3-D data from a given set of panoramic images, we have to first know the relative

positions of the camera corresponding to the panoramic images. For a calibrated camera, this is

equivalent to determining the epipolar geometry between a reference panoramic image and every

other panoramic image.

The epipolar geometry dictates theepipolar constraint, which refers to the locus of possible

image projections in one image given an image point in another image. For planar image planes,

the epipolar constraint is in the form of straight lines. The interested reader is referred to [Faugeras,

1993] for details.

We use the 8-point algorithm [Longuet-Higgins, 1981; Hartley, 1995] to extract what is called

theessential matrix, which yields both the relative camera placement and epipolar geometry. This is

done pairwise, namely between a reference panoramic image and another panoramic image. There

are, however, four possible solutions [Hartley, 1995]. The solution that yields the mostpositive

projections (i.e., projections away from the camera optical centers) is chosen.

5.1 8-point algorithm: Basics

We briefly review the 8-point algorithm here: If the camera is calibrated (i.e., its intrinsic parame-

ters are known), then for any two corresponding image points (at two different camera placements)

�u� v� w�T and�u�� v�� w��T in 3-D, we have

�u�� v�� w��E

�
BBB�

u

v

w

�
CCCA � � (1)
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The matrixE is called theessential matrix, and is of the formE � �t�
�
R, whereR andt are the

rotation matrix and translation vectors, respectively, and�t�
�

is the matrix form of the cross product

with t.

If the camera is not calibrated, we have a more general relation between two corresponding

image points (on the image plane)�u� v� ��T and�u�� v�� ��T, namely

�u�� v�� ��F

�
BBB�

u

v

�

�
CCCA � � (2)

F is called the fundamental matrix and is also of rank 2,F � �t�
�
A, whereA is an arbitrary�� �

matrix. The fundamental matrix is the generalization of the essential matrixE, and is usually em-

ployed to establish the epipolar geometry and to recover projective depth [Faugeras, 1992; Shashua,

1994].

In our case, since we know the camera parameters, we can recoverE. Let e be the vector com-

prisingeij, whereeij is the (i,j)th element ofE. Then for all the point matches, we have from (1)

uu�e�� 	 uv�e�� 	 uw�e�� 	 vu�e�� 	 vv�e�� 	 vw�e�� 	 wu�e�� 	 wv�e�� 	 ww�e�� � �� (3)

from which we get a set of linear equations of the form

Ae � �� (4)

If the number of input points is small, the output of algorithm is sensitive to noise. On the other

hand, it turns out thatnormalizing the 3-D point location vector on the cylindrical image reduces

sensitivity of the 8-point algorithm to noise. This is similar in spirit to Hartley’s application of

isotropic scaling [Hartley, 1995] prior to using the 8-point algorithm. The 3-D cylindrical points

are normalized according to the relation

u � �f sin �� y� f cos ��� 
u � u�juj (5)

WithN panoramic images, we solve for�N��� sets of linear equations of the form (4). Thekth

set corresponds to the panoramic image pair 1 and�k 	 ��. Notice that the solution ofe is defined

only up to an unknown scale. In our work, we measure the distance between camera positions; this

enable us to recover the scale. However, we can relax this assumption by carrying out the following

steps:
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� Fix camera distance of first pair (pair 1), to, say unit distance. Assign camera distances for

all the other pairs to be the same as the first.

� Calculate the essential matrices for all the pairs of panoramic images, assuming unit camera

distances.

� For each pair, compute the 3-D points.

� To estimate the relative distances between of camera positions for pairj �� � (i.e., not the

first pair), find the scale of the 3-D points corresponding to pairj that minimizes the distance

error to those corresponding to pair 1. Robust statistics is used to reject outliers; specifically,

only the best 50% are used.

5.2 Tracking features for 8-point algorithm

The 8-point algorithm assumes that feature point correspondences are available. Feature tracking is

a challenge in that purely local tracking fails because the displacement can be large (of the order of

about 100 pixels, in the direction of camera motion). The approach that we have adopted comprises

spline-based tracking, which attempts to globally minimize the image intensity differences. This

yields estimates of optic flow, which in turn is used by a local tracker to refine the amount of feature

displacement.

The optic flow between a pair of cylindrical panoramic images is first estimated using spline-

based image registration between the pair [Szeliski and Coughlan, 1994; Szeliskiet al., 1995]. In

this image registration approach, the displacement fieldsu�x� y� andv�x� y� (i.e., displacements in

the x- and y- directions as functions of the pixel location) are represented as two-dimensionalsplines

controlled by a smaller number of displacement estimates which lie on a coarserspline control grid.

Once the initial optic flow has been found, the best candidates for tracking are then chosen. The

choice is based on the minimum eigenvalue of the local Hessian, which is an indication of local

image texturedness. Subsequently, using the initial optic flow as an estimate displacement field,

we use the Shi-Tomasi tracker [Shi and Tomasi, 1994] with a window of size 25 pixels� 25 pixels

to further refine the displacements of the chosen point features.

Why did we use the approach of applying the spline-based tracker before using the Shi-Tomasi

tracker? This approach is used to take advantage of the complementary characteristics of these two

trackers, namely:
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1. the spline-based image registration technique is capable of tracking features with larger dis-

placements. This is done through coarse-to-fine image registration; in our work, we use 6

levels of resolution. While this technique generally results in good tracks (sub-pixel accu-

racy) [Szeliskiet al., 1995], poor tracks may result in areas in the vicinity of object occlu-

sions/disocclusions.

2. the Shi-Tomasi tracker is a local tracker that fails at large displacements. It performs better

for a small number of frames and for relatively small displacements, but deteriorates at large

numbers of frames and in the presence of rotation on the image plane [Szeliskiet al., 1995].

We are considering a small number of frames at a time, and image warping due to local image

plane rotation is not expected. The Shi-Tomasi tracker is also capable of sub-pixel accuracy.

The approach that we have undertaken for object tracking can be thought of as a “fine-to-finer”

tracking approach. In addition to feature displacements, the measure of reliability of tracks is avail-

able (according to match errors and local texturedness, the latter indicated by the minimum eigen-

value of the local Hessian [Shi and Tomasi, 1994; Szeliskiet al., 1995]). As we’ll see later in Sec-

tion 8.1, this is used to cull possibly bad tracks and improve 3-D estimates.

Once we have extracted point feature tracks, we can then proceed to recover 3-D positions cor-

responding to these feature tracks. 3-D data recovery is based on the simple notion of stereo.

6 Omnidirectional multibaseline stereo

The idea of extracting 3-D data simultaneously from more than the theoretically sufficient num-

ber of two camera views is founded on two simple tenets: statistical robustness from redundancy

and disambiguation of matches due to overconstraints [Okutomi and Kanade, 1993; Kanget al.,

1995b]. The notion of using multiple camera views is even more critical when using panoramic

images taken at the same vertical height, which results in the epipoles fallingwithin the images. If

only two panoramic images are used, points that are close to the epipoles will not be reliable. It is

also important to note that this problem will persist if all the multiple panoramic images are taken at

camera positions that are collinear. In the experiments described in Section 8, the camera positions

are deliberately arranged such that all the positions arenot collinear. In addition, all the images are

taken at the same vertical height to maximize view overlap between panoramic images.
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We use three related approaches to reconstruct 3-D from multiple panoramic images. 3-D data

recovery is done either by (1) using just the 8-point algorithm on the tracks and directly recovering

the 3-D points, or (2) proceeding with an iterative least-squares method to refine both camera pose

and 3-D feature location, or (3) going a step further to impose epipolar constraints in performing a

full multiframe stereo reconstruction. The first approach is termed asunconstrained tracking and

3-D data merging while the second approach isiterative structure from motion. The third approach

is namedconstrained depth recovery using epipolar geometry.

6.1 Reconstruction Method 1: Unconstrained feature tracking and 3-D data

merging

In this approach, we use the tracked feature points across all panoramic images and apply the 8-

point algorithm. From the extracted essential matrix and camera relative poses, we can then directly

estimate the 3-D positions.

The sets of 2-D image data are used to determine (pairwise) the essential matrix. The recovery

of the essential matrix turns out to be reasonably stable; this is due to the large (360�) field of view.

A problem with the 8-point algorithm is that optimization occurs in function space and not image

space, i.e., it is not minimizing error in distance between 2-D image point and corresponding epipo-

lar line. Dericheet al. [Dericheet al., 1994] use a robust regression method calledleast-median-

of-squares to minimize distance error between expected (from the estimated fundamental matrix)

and given 2-D image points. We have found that extracting the essential matrix using the 8-point

algorithm is relatively stable as long as (1) the number of points is large (at least in the hundreds),

and (2) the points are well distributed over the field of view.

In this approach, we use the same set of data to recover Euclidean shape. In theory, the recovered

positions are only true up to a scale. Since the distance between camera locations are known and

measured, we are able to get the true scale of the recovered shape. Note, however, that this approach

is not critical upon knowing the camera distances, as indicated in Section 5.1.

Letuik be theith point of imagek, 
vik be the unit vector from the optical center to the panoramic

image point in 3-D space,�ik be the corresponding line passing through both the optical center and

panoramic image point in space, andtk be the camera translation associated with thekth panoramic

image (note thatt� � �). The equation of line�ik is thenrik � �ik
vik 	 tk. Thus, for each point
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i (that is constrained to lie on line�i�), we minimize the error function

Ei �
NX
k��

kri� � rikk� (6)

whereN is the number of panoramic images. By taking the partial derivatives ofEi with respect to

�ij , j = 1, ...,N , equating them to zero, and solving, we get

�i��opt �

PN
k�� t

T
k

�

vi� �

�

vTi�
vik

�

vik

�
PN

k��

�
� � �
vTi�
vik�

�
� � (7)

from which the reconstructed 3-D point is calculated using the relationpi��opt � �i��opt
vi�. Note

that a more optimal manner of estimating the 3-D point is to minimize the expression

Ei �
NX
k��

kpi��opt � rikk� (8)

A detailed derivation involving (8) is given in Appendix A. However, due to the practical consider-

ation of texture-mapping the recovered 3-D mesh of the estimated point distribution, the projection

of the estimated 3-D point has to coincide with the 2-D image location in the reference image. This

can be justified by saying that since the feature tracks originate from the reference image, it is rea-

sonable to assume that there is no uncertainty in feature location in the reference image.

An immediate problem with the approach of feature tracking and data merging is its reliance on

tracking, which makes it relatively sensitive to tracking errors. It inherits the problems associated

with tracking, such as the aperture problem and sensitivity to changing amounts of object distor-

tion at different viewpoints. However, this problem is mitigated if the number of sampled points is

large. In addition, the advantage is that there is no need to specify minimum and maximum depths

and resolution associated with multibaseline stereo depth search (e.g., see [Okutomi and Kanade,

1993; Kanget al., 1995b]). This is because the points are extracted directly analytically once the

correspondence is established.

6.2 Reconstruction Method 2: Iterative panoramic structure from motion

The 8-point algorithm recovers the camera motion parameters directly from the panoramic tracks,

from which the corresponding 3-D points can be computed. However, the camera motion param-

eters may not be optimally recovered, even though experiments by Hartley using narrow view im-

ages indicate that the motion parameters are close to optimal [Hartley, 1995]. Using the output of
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the 8-point algorithm and the recovered 3-D data, we can apply an iterative least-squares minimiza-

tion to refine both camera motion and 3-D positionssimultaneously. This is similar to work done

by Szeliski and Kang on structure from motion using multiple narrow camera views [Szeliski and

Kang, 1994].

As input to our reconstruction method, we use 3-Dnormalized locations of cylindrical image

point. The equation linking a 3-D normalized cylindrical image positionuij in framej to its 3-D

positionpi, wherei is the track index, is

uij � P
�
R

�k�
j pi 	 t

�k�
j

�
� F �pi�qj� tj� (9)

whereP�� is the projection transformation;R�k�
j andt�k�j are the rotation matrix and translation

vector, respectively, associated with the relative pose of thejth camera. We represent each rotation

by a quaternionq � �w� �q�� q�� q��� with a corresponding rotation matrix

R�q� �

�
BBB�

� � �q�� � �q�� �q�q� � �wq� �q�q� 	 �wq�

�q�q� 	 �wq� �� �q�� � �q�� �q�q� � �wq�

�q�q� � �wq� �q�q� 	 �wq� � � �q�� � �q��

�
CCCA (10)

(alternative representations for rotations are discussed in [Ayache, 1991]).

The projection equation is given simply by
�
BBB�

u

v

w

�
CCCA � P

�
BBB�

x

y

z

�
CCCA � �p

x� 	 y� 	 z�

�
BBB�

x

y

z

�
CCCA (11)

In other words, all the 3-D points are projected onto the surface of a 3-D unit sphere.

To solve for the structure and motion parameters simultaneously, we use the iterative Levenberg-

Marquardt algorithm. The Levenberg-Marquardt method is a standard non-linear least squares tech-

nique [Presset al., 1992] that works well in a wide range of situations. It provides a way to vary

smoothly between the inverse-Hessian method and the steepest descent method.

The merit or objective function that we minimize is

C�a� �X
i

X
j

cij juij �F �aij�j� � (12)

whereF�� is given in (9) and
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aij �
�
pTi �q

T
j � t

T
j

�T
(13)

is the vector of structure and motion parameters which determine the image of pointi in frame

j. The weightcij in (12) describes our confidence in measurementuij, and is normally set to the

inverse variance���ij . We setcij � �.

The Levenberg-Marquardt algorithm first forms the approximate Hessian matrix

A �
X
i

X
j

cij

�
�F�aij�

�a

�T
�F�aij�

�a
(14)

and the weighted gradient vector

b � �X
i

X
j

cij

�
�F�aij�

�a

�T

eij� (15)

whereeij � uij �F�aij� is the image plane error of pointi in framej. Given a current estimate

of a, it computes an increment	a towards the local minimum by solving

�A 	 �I�	a � �b� (16)

where� is a stabilizing factor which varies over time [Presset al., 1992]. Note that the matrixA is

an approximation to the Hessian matrix, as the second-derivative terms are left out. As mentioned

in [Presset al., 1992], inclusion of these terms can be destabilizing if the model fits badly or is

contaminated by outlier points.

To compute the required derivatives for (14) and (15), we compute derivatives with respect

to each of the fundamental operations (perspective projection, rotation, translation) and apply the

chain rule. The equations for each of the basic derivatives are given in Appendix B. The derivation

is exactly the same as in [Szeliski and Kang, 1994], except for the projection equation.

6.3 Reconstruction Method 3: Constrained depth recovery using epipolar ge-

ometry

As a result of the first reconstruction method’s reliance on tracking, it suffers from the aperture prob-

lem and hence limited number of reliable points. The approach of using the epipolar geometry to

limit the search is designed to reduce the severity of this problem. Given the epipolar geometry,
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for each image point in the reference panoramic image, a constrained search is performed along

the line of sight through the image point. Subsequently, the position along this line which results in

minimum match error at projected image coordinates corresponding to other viewpoints is chosen.

Using this approach results in a denser depth map, due to the epipolar constraint. This constrain

reduces the aperture problem during search (which theoretically only occurs if the direction of am-

biguity is along the epipolar line of interest). The principle is the same as that described in [Kang

et al., 1995b].

While this approach mitigates the problem of the aperture problem, it suffers from a much higher

computational demand. In addition, the recovered epipolar geometry is still dependent on the output

quality of the 8-point algorithm (which in turn depends on the quality of tracking). The user has to

also specify minimum and maximum depths as well as resolution of depth search.

An alternative to working in cylindrical coordinates is to project sections of cylinder to a tan-

gential rectilinear image plane, rectify it, and use the rectified planes for multibaseline stereo. This

mitigates the computational demand as search is restricted to horizontal scanlines in the rectified

images. However, there is a major problem with this scheme: reprojecting to rectilinear coordi-

nates and rectifying is problematical due to the increasing distortion away from the new center of

projection. This creates a problem with matching using a window of a fixed size. As a result, this

scheme of reprojecting to rectilinear coordinates and rectifying is not used.

7 Stereo data segmentation and modeling

Once the 3-D stereo data has been extracted, we can then model them with a 3-D mesh and texture-

map each face with the associated part of the 2-D image panorama. We have done work to reduce

the complexity of the resulting 3-D mesh by planar patch fitting and boundary simplification. The

displayed models shown in this paper are rendered using our modeling system. A more detailed

description of model extraction from range data is given in [Kanget al., 1995a].

8 Experimental results

In this section, we present the results of applying our approach to recover 3-D data from multiple

panoramic images. We have used both synthetic and real images to test our approach. As mentioned
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Figure 5: Panorama of synthetic room after compositing.

earlier, in the experiments described in this section, the camera positions are deliberately arranged

so that all of the positions are not collinear. In addition, all the images are taken at the same vertical

height to maximize overlap between panoramic images.

8.1 Synthetic scene

The synthetic scene is a room comprising objects such as tables, tori, cylinders, and vases. One half

of the room is textured with a mandrill image while the other is textured with a regular Brodatz pat-

tern. The synthetic objects and images are created using Rayshade, which is a program for creating

ray-traced color images [Kolb, 1994]. The synthetic images created are free from any radial distor-

tion, since Rayshade is currently unable to model this camera characteristic. The omnidirectional

synthetic depth map of the entire room is created by merging the depth maps associated with the

multiple views taken around inside the room.

The composite panoramic view of the synthetic room from its center is shown in Figure 5. From

left to right, we can observe the vases resting on a table, vertical cylinders, a torus resting on a table,

and a larger torus. The results of applying both reconstruction methods (i.e., unconstrained search

with 8-point and constrained search using epipolar geometry) can be seen in Figure 6. We get many

more points using constrained search (about 3 times more), but the quality of the 3-D reconstruction

appears more degraded (compare Figure 6(b) with (c)). This is in part due to matching occurring

at integral values of pixel positions, limiting its depth resolution. The dimensions of the synthetic

room are 10(length)� 8(width)� 6(height), and the specified resolution is 0.01. The quality of the

recovered 3-D data appears to be enhanced by applying a 3-D median filter�. However, the median

�The median filter works in the following manner: For each feature point in the cylindrical panoramic image, find

other feature points within a certain neighborhood radius (20 in our case). Then sort the 3-D depths associated with the

neighborhood feature points, find the median depth, andrescale the depth associated with the current feature point such

that the new depth is the median depth. As an illustration, suppose the original 3-D feature location isvi � di�vi, where

di is the original depth and�vi is the 3-D unit vector from the camera center in the direction of the image point. Ifdmed
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(a) Correct distribution (b) Unconstrained 8-point (c) Iterative (d) Constrained search

(e) Median-filtered (f) Median-filtered (g) Median-filtered (h) Top view of
8-point iterative constrained 3-D mesh of (e)

Figure 6: Comparison of 3-D points recovered of synthetic room.

filter also has the effect of rounding off corners.

The mesh in Figure 6(f) and the three views in Figure 7 are generated by our 3-D modeling

system described in [Kanget al., 1995a]. As can be seen from these figures, the 3-D recovered

points and the subsequent model based on these points basically preserved the shape of the synthetic

room.

In addition, we performed a series of experiments to examine the effect of both “bad” track

removal and median filtering on the quality of recovered depth information of the synthetic room.

The feature tracks are sorted in increasing order according to the error in matching�. We continually

is the median depth within its neighborhood, then the filtered 3-D feature location is given byv
�

i
� �dmed�di�vi �

dmed�vi.
�Note that in general, a “worse” track in this sense need not necessarily translate to a worse 3-D estimate. A high
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(a) View 1 (b) View 2 (b) View 3

Figure 7: Three views of modeled synthetic room of Figure 6(h).

remove tracks that have the worst amount of match error, recovering the 3-D point distribution at

each instant.

From the graph in Figure 8, we see an interesting result: as more tracks are taken out, retaining

the better ones, the quality of 3-D point recovery improves—up to a point. The improvement in the

accuracy is not surprising, since the worse tracks, which are more likely to result in worse 3-D esti-

mates, are removed. However, as more and more tracks are removed, the gap between the amount

of accuracy demanded of the tracks, given an increasingly smaller number of available tracks, and

the track accuracy available, grows. This results in generally worse estimates of the epipolar ge-

ometry, and hence 3-D data. Concomitant to the reduction of the number of points is the sensitivity

of the recovery of both epipolar geometry (in the form of the essential matrix) and 3-D data. This

is evidenced by the fluctuation of the curves at the lower end of the graph. Another interesting re-

sult that can be observed is that the 3-D point distribution that has been median filtered have lower

errors, especially for higher numbers of recovered 3-D points.

As indicated by the graph in Figure 8, the accuracy of the point distribution derived from just

the 8-point algorithm is almost equivalent that that of using an iterative least-squares (Levenberg-

Marquardt) minimization, which is statistically optimal near the true solution. This result is in

agreement with Hartley’s application of the 8-point algorithm to narrow-angle images [Hartley,

1995]. It is also worth noting that the accuracy of the iterative algorithm is best at smaller num-

bers of input points, suggesting that it is more stable given a smaller number of input data.

Table 1 lists the 3-D errors of both constrained and unconstrained (8-point only) methods for the

synthetic scenes. It appears from this result that the constrained method yields better results (after

match error may be due to apparent object distortion at different viewpoints.
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Figure 8: 3-D RMS error vs. number of points. The original number of points (corresponding to

100%) is 3057. The dimensions of the synthetic room are 10(length)� 8(width)� 6(height).

constrained(n=10040) 8-point(n=3057) 8-point(n=1788)

original 0.315039 0.393777 0.302287

median-filtered 0.266600 0.364889 0.288079

Table 1: Comparison of 3-D RMS error between unconstrained and constrained stereo results (n is

the number of points).



8.2 Real scenes 19

median filtered) and more points (a result of reducing the aperture problem). In practice, as we shall

see in the next section, problems due to misestimation of camera intrinsic parameters (specifically

focal length, aspect ratio and radial distortion coefficient) causes 3-D reconstruction from real im-

ages to be worse. This is a subject of on-going research.

8.2 Real scenes

The setup that we used to record our image sequences consists of a DEC Alpha workstation with

a J300 framegrabber, and a camcorder (Sony Handycam CCD-TR81) mounted on an X-Y posi-

tion stage affixed on a tripod stand. The camcorder settings are made such that its field of view is

maximized (at about 43�).

To reiterate, our method of generating the panoramic images are as follows:

� Calibrate camcorder using an iterative Levenberg-Marquardt least-squares algorithm [Szeliski

and Kang, 1994].

� Adjust the X-Y position stage while panning the camera left and right to remove the effect of

motion parallax; this ensures that the camera is then rotated about its optical center.

� At each camera location, record onto tape an image sequence while rotating the camera, and

then digitize the image sequence using the framegrabber.

� Using the recovered camera intrinsic parameters (focal length, aspect ratio, radial distortion

factor), undistort each image.

� Project each image, which is in rectilinear image coordinates, into cylindrical coordinates

(whose cross-sectional radius is the camera focal length).

� Composite the frames into a panoramic image. The number of frames used to extract a panoramic

image in our experiments is typically about 50.

We recorded image sequences of two scenes, namely an office scene and a lab scene. A panoramic

image of the office scene is shown in Figure 4. We extracted four panoramic images corresponding

to four different locations in the office. (The spacing between these locations is about 6 inches and

the locations are roughly at the corners of a square. The size of the office is about 10 feet by 15

feet.) The results of 3-D point recovery of the office scene is shown in Figure 9, with three sample
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views of its model shown in Figure 10. As can be seen from Figure 9, the results due to the con-

strained search approach looks much worse. This may be directly attributed to the inaccuracy of the

extracted intrinsic camera parameters. As a consequence, the composited panoramas may actually

be not exactly physically correct. In fact, as the matching (with epipolar constraint) is in progress,

it has been observed that the actual correct matches are not exactly along the epipolar lines; there

are slight vertical drifts, generally of the order of about one or two pixels.

Another example of real scene is shown in Figure 11. A total of eight panoramas at eight dif-

ferent locations (about 3 inches apart, ordered roughly in a zig-zag fashion) in the lab are extracted.

The longest dimensions of the L-shaped lab is about 15 feet by 22.5 feet. The 3-D point distribu-

tion is shown in Figure 12 while Figure 13 shows three views of the recovered model of the lab.

As can be seen, the shape of the lab has been reasonably well recovered; the “noise” points at the

bottom of Figure 12(a) corresponds to the positionsoutside the laboratory, since there are parts of

the transparent laboratory window that are not covered. This reveals one of the weaknesses of any

correlation-based algorithm (namely all stereo algorithms); they do not work well with image re-

flections and transparent material. Again, we observe that the points recovered using constrained

search is worse.

The errors that were observed with the real scene images, especially with constrained search,

are due to the following practical problems:

� The auto-iris feature of the camcorder used cannot be deactivated (even though the focal

length was kept constant). As a result, there may be in fact slight variations in focal length

as the camera was rotated.

� The camera may not be rotating exactly about its optical center, since the adjustment of the

X-Y position stage is done manually and there may be human error in judging the absence of

motion parallax.

� The camera may not be rotating about a unique axis all the way around (assumed to be ver-

tical) due to some play or unevenness of the tripod.

� There were digitization problems. The images digitized from tape (i.e., while the camcorder

is playing the tape) contain scan lines that are occasionally horizontally shifted; this is proba-

bly caused by the degraded blanking signal not properly detected by the framegrabber. How-

ever, compositing many images averages out most of these artifacts.
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(a) Unconstrained 8-point (b) Median-filtered version of (a)

(c) Iterative (d) Median-filtered version of (c)

(e) Constrained search (f) Median-filtered version of (e)

(g) 3-D mesh of (b)

Figure 9: Extracted 3-D points and mesh of office scene. Notice that the recovered distributions

shown in (c) and (d) appear more rectangular than those shown in (a) and (b).
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(a) View 1 (b) View 2 (b) View 3

Figure 10: Three views of modeled office scene of Figure 9(g)

Figure 11: Panorama of laboratory after compositing.

� The extracted camera intrinsic parameters may not be very precise.

As a result of the problems encountered, the resulting composited panorama may not be physi-

cally correct. This especially causes problems with constrained search given the estimated epipolar

geometry (through the essential matrix). We actually widened the search a little by allowing search

as much as a couple of pixels away from the epipolar line; however, this further significantly in-

creases the computational demand and has the effect of loosening the constraints, making this ap-

proach less attractive.

9 Discussion and conclusions

We have shown that omnidirectional depth data (whose denseness depends on the amount of local

texture) can be extracted using a set of simple techniques: camera calibration, image compositing,

feature tracking, the 8-point algorithm, and constrained search using the recovered epipolar geom-

etry. The advantage of our work is that we are able to extract depth data within a wide field of view

simultaneously, which removes many of the traditional problems associated with recovering camera

pose and narrow-baseline stereo. Despite the practical problems caused by using unsophisticated

equipment which result in slightly incorrect panoramas, we are still able to extract reasonable 3-D

data. Thus far, the best real data results come from using unconstrained tracking and the 8-point al-
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(a) Unconstrained (b) Median-filtered (c) Iterative
8-point version of (a)

(d) Median-filtered (e) Constrained (f) Median-filtered
version of (c) search version of (e)

(g) 3-D mesh of (b)

Figure 12: Extracted 3-D points and mesh of laboratory scene.
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(a) View 1 (b) View 2 (b) View 3

Figure 13: Three views of modeled laboratory scene of Figure 12(g)

gorithm (both direct and iterative structure from motion). Results also indicate that the application

of 3-D median filtering improves both the accuracy and appearance of stereo-computed 3-D point

distribution.

To expedite the panorama image production in critical applications that require close to real-

time modeling, special camera equipment may be called for. One such possible specialized equip-

ment is Ahuja’s camera system (as reported in [Freedman, 1995]), in which the lens can be rotated

relative to the imaging plane. However, we are currently putting our emphasis on the use of com-

mercially available equipment such as a cheap camcorder.

Even if all the practical problems associated with imperfect data acquisition were solved, we

still have the fundamental problem of stereo—that of the inability to match and extract 3-D data in

textureless regions. In scenes that involve mostly textureless components such as bare walls and

objects, special pattern projectors may need to be used in conjunction with the camera [Kanget al.,

1995b].

Currently, the omnidirectional data, while obtained through a 360� view, has limited vertical

view. We plan to extend this work by merging multiple omnidirectional data obtained at both differ-

ent heights and at different locations. We will also look into the possibility of extracting panoramas

of larger height extents by incorporatingtilted (i.e., rotated about a horizontal axis) camera views.

This would enable scene reconstruction of a building floor involving multiple rooms with good ver-

tical view. We are currently characterizing the effects of misestimated intrinsic camera parameters

(focal length, aspect ratio, and the radial distortion factor) on the accuracy of the recovered 3-D

data.
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In summary, our set of methods for reconstructing 3-D scene points within a wide field of view

has been shown to be quite robust and accurate. Wide-angle reconstruction of 3-D scenes is con-

ventionally achieved by merging multiple range images; our methods have been demonstrated to

be a very attractive alternative in wide-angle 3-D scene model recovery. In addition, these methods

do not require specialized camera equipment, thus making commercialization of this technology

easier and more direct. We strongly feel that this development is a significant one toward attaining

the goal of creating photorealistic 3-D scenes with minimum human intervention.
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A Optimal point intersection

In order to find the point closest to all of the rays whose line equations are of the formr � tk	�k
vk,

we minimize the expression

E �
X
k

kp� �tk 	 �k
vk�k� (17)

wherep is the optimal point of intersection to be determined. Taking the partials ofE with respect

to �k andp and equating them to zero, we have

�E
��k

� �
vT
k �tk 	 �k
vk � p� � � (18)

�E
�p

� ��
X
k

�tk 	 �k
vk � p� � �� (19)

Solving for�k in (18), noting that
vT
k 
vk � �, and substituting�k in (19) yields
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Aktk
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where

Ak � I� 
vk
v
T
k

is the perpendicular projection operator for ray
vk, and

p�k � tk � 
vk�
v
T
k tk� � Aktk

is the point along the viewing rayr � tk 	 �k
vk closest to the origin.

Thus, the optimal intersection point for a bundle of rays can be computed as a weighted sum of

adjusted camera centers (indicated bytk’s), where the weighting is in the direction perpendicular

to the viewing ray.

A more “optimal” estimate can be found by minimizing the formula

E �
X
k

���k kp � �tk 	 �k
vk�k� (21)

with respect top and�k ’s. Here, by weighting each squared perpendicular distance by���k , we

are downweighting points further away from the camera. The justification for this formula is that

the uncertainty in
vk direction defines aconical region of uncertainty in space centered at the cam-

era, i.e., the uncertainty in point location (and hence the inverse weight) grows linearly with�k.

However, implementing this minimization requires an interative non-linear solver.

B Elemental transform derivatives

The derivative of the projection function (11) with respect to its 3-D arguments and internal param-

eters is straightforward:

�P�x�

�x
�

�

D

�
BBB�

y� 	 z� �xy �xz
�xy x� 	 z� �yz
�xz �yz x� 	 y�

�
CCCA �

where

D �
�
x� 	 y� 	 z�

� �

�

The derivatives of an elemental rigid transformation (9)

x� � Rx	 t



B Elemental transform derivatives 27

are
�x�

�x
� R�

�x�

�t
� I� and

�x�

�q
� �RC�x�G�q��

where

C�x� �

�
BBB�

� �z y

z � �x
�y x �

�
CCCA and G�q� � �

�
BBB�
�q� w q� �q�
�q� �q� w q�

�q� q� �q� w

�
CCCA

(see [Shabana, 1989]). The derivatives of a screen coordinate with respect to any motion or struc-

ture parameter can be computed by applying the chain rule and the above set of equations.
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