
DBG–11 Symbolic Debugger
User’s Guide

Order Number AA–HJ37C–TC

August 1991

This manual tells you how to use the DBG–11 symbolic debugging utility package. The
manual describes DBG–11 commands and illustrates their use with a sample program.
You should have some knowledge of assembly language programming before trying to use
DBG–11.

DBG–11 is an unsupported product and subject to change without notice. The term
unsupported as used in reference to a distributed module means that Digital does not
guarantee that future releases will be necessarily compatible with previous versions of that
module and does not guarantee that module will appear in future releases of the operating
system. However, SPRs (Software Performance Reports) on the module are answered.

Revision/Update Information: This manual supersedes AA–HJ37B–TC.

Operating Systems: RT–11 Version 5.6

Software: DBG–11 Version 2.0

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, March 1986
Revised, August 1989
Revised, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227–7013.

Copyright ©1986, 1989, 1991. Digital Equipment Corporation
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS–300, DDCMP, DECNA, DECnet,
DECUS, DECwriter, DEQNA, DEUNA, DIBOL, Ethernet, MASSBUS, MicroPDP–11, Micro/RSX, PDP,
Professional, Q-bus, RSTS, RSX, RT–11, RTEM–11, UNIBUS, VMS, VT, and the DIGITAL logo.

S1521

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface v

Chapter 1 Overview of DBG–11

1.1 Components . 1–1
1.2 Features . 1–1
1.3 Numeric Values . 1–2
1.4 Registers and Symbols . 1–2
1.5 Expressions . 1–4
1.6 Numeric and Symbolic Addressing . 1–5
1.7 Processor Mode and Address Space Prompt Displays . 1–6

Chapter 2 DBG–11 Commands

2.1 Setting DBG–11 Operating Parameters . 2–1
2.2 Defining and Deleting User Symbols . 2–4
2.3 Setting, Removing, and Displaying Breakpoints . 2–5
2.4 Executing the Program . 2–5
2.5 Opening Locations and Displaying Contents . 2–6
2.6 Changing the Contents of Locations . 2–7
2.7 Displaying Expression Values . 2–9
2.8 Special Characters . 2–9

Chapter 3 Using DBG–11 to Debug a Program

3.1 The Parts of DBG–11 . 3–1
3.2 Getting Started . 3–2
3.3 Setting DBG–11’s Operating Parameters . 3–6
3.3.1 Types of Rubouts . 3–7
3.3.2 Default Radix . 3–7
3.3.3 Symbolic Address Display . 3–8
3.3.4 Symbolic Data Display . 3–9
3.3.5 Graphics Register Display . 3–10
3.4 Defining and Deleting Symbols . 3–11
3.5 Examining Symbols . 3–12
3.6 Setting, Displaying, and Removing Breakpoints . 3–12
3.7 Executing the Program . 3–14
3.8 Examining Locations . 3–14
3.8.1 Opening and Closing Locations . 3–15

iii

3.8.2 Instruction Mode Examine (/) . 3–16
3.8.3 Symbolic Data Mode Examine ([) . 3–16
3.8.4 Numeric Data Mode Examine (|) . 3–17
3.8.5 Byte Mode Examine (\) . 3–18
3.8.6 ASCII Mode Examine (’ or ") . 3–18
3.8.7 Radix–50 Mode Examine (%) . 3–18
3.9 Changing Locations . 3–19
3.9.1 Entering MACRO–11 Instructions . 3–19
3.9.2 Entering Numeric Values . 3–19
3.9.3 Entering ASCII, Hexadecimal, and Radix–50 Strings . 3–20
3.10 Special Symbols . and Q . 3–22
3.11 Putting It All Together . 3–23

Chapter 4 The DBGSYM Utility Program

Chapter 5 Advanced DBG–11 Techniques

5.1 Debugging a Device Handler . 5–1
5.2 Separate Address Spaces and Multiple Processor Modes . 5–1
5.2.1 Linking a Separate Address Space Program for Debugging 5–2
5.2.2 Breakpoints . 5–2
5.2.3 Multiple Processor Modes . 5–3

Appendix A DBGDEM.MAC Sample Program

Appendix B DBG–11 and DBGSYM Error Messages

Appendix C DBG–11 Command Summary

Index

Tables

1–1 Address Expression in DBG–11 . 1–6
2–1 Trap Interception by DBG–11 . 2–4
3–1 SET Commands to Configure DBG–11 (SD Handler) . 3–3
3–2 SD Handler Option Identification Codes . 3–5
3–3 Program Execution . 3–14
3–4 Examination of Program Locations . 3–14

iv

Preface

Document Structure

Chapter 1 introduces the DBG–11 utility package by describing its components,
features, and general requirements.

Chapter 2 describes the commands available in DBG–11.

Chapter 3 tells you how to install and use DBG–11 to debug a program. The chapter
uses examples based on the sample program given in Appendix A.

Chapter 4 describes the DBGSYM symbol definition program available as part of
DBG–11 under RT–11. DBGSYM lets you create a file handler of user symbol
definitions that you can load and use from DBG–11.

Chapter 5 describes more advanced DBG–11 techniques that you may want to use
if you debug a device handler. The chapter also covers some aspects of accessing
extended memory with DBG–11 that you may find helpful in certain situations.

Appendix A contains a listing of the sample program used for illustration throughout
the manual.

Appendix B lists all DBG–11 error messages.

Appendix C provides a cross-reference for all DBG–11 commands.

Conventions

The following conventions are used in this manual.

Convention Meaning

Black print In examples, black print indicates output lines or
prompting characters that the system displays. For
example:
.BACKUP/INITIALIZE DL0:F*.FOR DU1:WRK

Mount output volume in DU1:; continue? Y

Red print In examples, red print indicates user input.

Braces ({ }) In command syntax examples, braces enclose options that
are mutually exclusive. You can choose only one option
from the group of options that appears in braces.

v

Convention Meaning

Brackets ([]) Square brackets in a format line represent optional
parameters, qualifiers, or values.

lowercase
characters

In command syntax examples, lowercase characters
represent elements of a command for which you supply
a value. These include:

addr An expression representing the address of a
program location.

n An integer in the range 0 through 7.

opt Option identifier.

qual A DBG–11 command qualifier.

symbol An alphanumeric string of up to 6 charac-
ters, representing a 16-bit numeric value.

val A numeric or symbolic value, used alone
or in an expression, with a maximum
value of 1777778. An expression may
include arithmetic operators. If the value
of an expression exceeds 1777778, DBG–11
truncates the resulting value to the low-
order 16 bits.

UPPERCASE
characters

In command syntax examples, uppercase characters
represent elements of a command that should be entered
exactly as given.

RET RET in examples represents the RETURN key. Unless the
manual indicates otherwise, terminate all commands or
command strings by pressing RET .

RETURN RETURN in the text represents the RETURN key.
CTRL/x CTRL/x indicates a control-key sequence. While pressing

CTRL key, press another key. For example: CTRL/C

Associated Documents

Basic Books

• Introduction to RT–11

• Guide to RT–11 Documentation

• PDP–11 Keypad Editor User’s Guide

• PDP–11 Keypad Editor Reference Card

vi

• RT–11 Commands Manual

• RT–11 Mini-Reference Manual

• RT–11 Master Index

• RT–11 System Message Manual

• RT–11 System Release Notes

Installation Specific Books

• RT–11 Automatic Installation Guide

• RT–11 Installation Guide

• RT–11 System Generation Guide

Programmer Oriented Books

• RT–11 IND Control Files Manual

• RT–11 System Utilities Manual

• RT–11 System Macro Library Manual

• RT–11 System Subroutine Library Manual

• RT–11 System Internals Manual

• RT–11 Device Handlers Manual

• RT–11 Volume and File Formats Manual

Hardware Requirements and Character Set

You can use DBG–11 on any terminal that supports hardware tab stops. DBG–11
does not simulate tabs; if you attempt to use DBG–11 on a terminal without
hardware tab support, DBG–11’s output display may be garbled.

You can use DBG–11 on a terminal without hardware tab stops if you use a version of
DBG–11 that does I/O using the monitor terminal service, and the monitor terminal
service simulates tabs.1

If you want to use DBG–11’s hardware I/O mode (see Section 3.1), the terminal must
be connected to your computer through a DL or DL-equivalent interface. DBG–11’s
software I/O mode has no interface restriction.

If you use DBG–11 on a video terminal that supports VT100 escape sequence
processing, you can take advantage of DBG–11’s graphics register display option.2
If you use a video terminal that does not support VT100 escape sequence processing,

1 SDS.SYS and SDSX.SYS use the monitor terminal service. Issue the DCL command SET TT NOTAB before using DBG–11.
2 Issue the DCL command SET TT NOCRLF before enabling DBG–11’s graphics register display.

vii

you cannot take advantage of DBG–11’s special video support, but you can still use
the terminal to run DBG–11.

DBG–11 ignores the 8th bit when displaying characters, and uses the standard 7-bit
ASCII character set in all cases. For example, DBG–11 displays both 1018 and 3018
as uppercase A.

Reading Path

You can use DBG–11 to debug programs under unmapped (SB and FB), single-
mapped (XB and XM), and fully-mapped (ZB and ZM) monitors. The monitor
mapping support determines which features, such as separate address space and
processor modes, are enabled in a program. Therefore, the most useful reading path
through this manual is determined by which type of monitor you are using with
DBG–11.

The following table shows the most useful reading path determined by the monitor
type being used.

Monitor
Type Reading Path

Unmapped Read the entire manual except Chapter 5.

Single-
Mapped

Read the entire manual. Parts of Chapter 5 dealing with separated
I-D space and Supervisor mode will be informational only.

Fully
Mapped

Read Chapters 1 through Section 3.2, and Chapter 5, then read from
Section 3.3 to end of manual.

viii

Chapter 1

Overview of DBG–11

1.1 Components

DBG–11 is a symbolic debugging package that lets you interactively debug an
assembly-language program.

The components of DBG–11 are four variants of the SD pseudodevice handler
(SDS.SYS, SDSX.SYS, SDH.SYS, and SDHX.SYS) and a symbol definition utility
(DBGSYM.SAV). Although SDS.SYS, SDSX.SYS, SDH.SYS, and SDHX.SYS appear
to be device handlers, they contain the program code to implement the DBG–11
commands and features. These files are discussed in more detail in Chapters 3 and
4.

1.2 Features

You can use DBG–11 to:

• Control program execution through breakpoint traps and single-step execution
of machine instructions.

• Depending on hardware support and how the job was linked, change the
displayed address space and processor mode.

• Display in numeric or mnemonic format the contents of memory locations and
machine registers.

• Change the contents of memory locations and machine registers.

• Define symbol names for memory addresses.

Using DBG–11, you can execute your program gradually, setting breakpoints at
selected locations or stepping through the program one PDP–11 instruction at a
time.

DBG–11 gives a symbolic rather than a numeric display of machine instructions. If
you use DBG–11 from a video terminal, DBG–11 can give you a continually updated
display of register and stack contents.

You can examine any location in your program, such as instruction or data, word
or byte, by opening the location with DBG–11. While the location is open, you can
immediately change the contents. You can move forward or backward in memory to
examine and modify other locations. Thus, you can test any number of modifications
without rebuilding your program.

You can also define your own symbols. You can then use those symbols to refer by
name to the address of a subroutine or data location, rather than using an octal

Overview of DBG–11 1–1

address. For example, you can define the symbol START to refer to the starting
address of the example program in Appendix A, and the symbol ANSWER to refer
to the location where the result of the multiplication is stored.

NOTE
Any modifications you make to a program with DBG–11
are made to only the memory image of that program.
That memory image is not written back to disk.
Therefore, any actual changes you want to make in the
program as a result of the debugging must be made to
the program file image. As appropriate, you can modify
the source file image and reassemble and relink or you
can modify locations in the save file image by using
SIPP.

1.3 Numeric Values

All numeric input to DBG–11 defaults to octal, unless the character string contains
an 8 or 9, or a decimal point (.) follows the numeric value. In those cases DBG–11
assumes the value is decimal. All input to DBG–11 is independent of the output
radix setting.

The following prefix operators let you enter hexadecimal, Radix–50, and ASCII
character values:

_$
Up to four hexadecimal digits follow. (Loads one word.)

_%
Up to three Radix–50 characters follow. Use the underscore character (_) to
enter leading or embedded spaces. (Loads one word.)

_"
Two ASCII characters follow. (Loads one word.)

_’
One ASCII character follows. (Loads one byte.)

You cannot enter a numeric value in binary (base 2) format. Convert the binary
number to another base and enter the value in octal, decimal, or hexadecimal.

DBG–11 displays all numeric values based on the output radix setting (see
description of the ;R command in Section 2.1), regardless of the radix used for input.

1.4 Registers and Symbols

DBG–11 can refer to registers and symbols as well as octal addresses.

Registers can be grouped into two classes:

1–2 DBG–11 Symbolic Debugger User’s Guide

• PDP–11 machine registers

The machine registers hold the current contents of the user’s PDP–11 general
register set and processor status word. These registers are referred to
symbolically as R0, R1, R2, R3, R4, R5, SP or R6, PC or R7, and PS.

• DBG–11 internal registers

You can refer to the DBG–11 internal registers using DBG–11 commands, such
as the open location commands described in Section 2.5.

DBG–11’s internal registers are:

_ADROFF
Maximum symbolic address offset. DBG–11 displays address values as
symbol+offset until the offset value exceeds _ADROFF; at that point, DBG–11
displays addresses as purely numeric values.1

_DATOFF
Maximum symbolic data offset. DBG–11 displays data values as
symbol+offset until the offset value exceeds _DATOFF; at that point, DBG–11
displays data values as purely numeric values.1

Symbols can be grouped into five classes:

• PDP–11 machine register symbols

Machine register symbols consist of the eight general register symbols (R0, R1,
R2, R3, R4, R5, SP, PC) and the processor status word symbol PS.

• DBG–11 permanent symbols

DBG–11’s permanent symbols are a subset of the PDP–11 instruction mnemonics
defined in Appendix C of the PDP–11 MACRO–11 Language Reference Manual.
DBG–11 does not currently support the PDP–11 instruction mnemonics for the
CIS and FPP instruction sets.

• DBG–11 internal symbols

Some DBG–11 internal symbols are used to examine or modify DBG–11 internal
registers, while others represent values that can be used as arguments to some of
DBG–11’s commands. For example, you can use the internal symbol _ADROFF to
refer to one of DBG–11’s internal registers. The contents of _ADROFF determines
the maximum symbolic offset DBG–11 displays from a user-defined symbol.

• Current displayed location and value symbols

The special symbols period (.) and Q can be equated to the currently-displayed
location and value, respectively. Those special symbols are described in
Section 3.10.

1 You can disable symbolic address and data display entirely, using the qual;T command.

Overview of DBG–11 1–3

• User-defined symbols

You can use the colon (:) command to define or redefine your own set of symbols
during a DBG–11 debugging session. The following rules govern the creation of
user-defined symbols:

– Symbols can be composed of only alphanumeric characters (A through Z, a
through z, 0 through 9, dollar signs ($), and periods (.)).

– The first character of a symbol must not be a number.

– The first six characters of a symbol must be unique. A symbol can be written
with more than six characters, but all characters after the sixth are ignored
except to check that they are valid symbol characters. DBG–11 discards the
extra characters.

– Lowercase characters are converted to uppercase (DBG–11 is case
insensitive).

1.5 Expressions

Once you define a symbol, you can use that symbol name, alone or with other
numeric or symbolic values, to form an expression. An expression is a string of
numbers, symbols, and operators that is interpreted as a number. For example, 3+6
is an expression; DBG–11 would interpret it as 118. You can use an expression to
represent an absolute address, an offset, or a PDP–11 instruction.

An expression used in a DBG–11 session can contain any of the following elements:

• PDP–11 machine instructions.

• Numeric values.

• Symbolic values. You can use any user-defined symbol just as you would use its
numeric equivalent.

• The current location symbol (.), described in Section 3.10.

• The value at the current displayed location symbol (Q), described in Section 3.10.

• The following binary arithmetic operators:

– Plus sign (+), indicating addition.

– Minus sign (–), indicating subtraction.

– Asterisk (*), indicating multiplication.

– Divide operator (_/), indicating division. The leading underscore
differentiates it from the instruction mode examine operator.

– Logical OR operator (!), indicating a logical OR operation.

– Logical AND operator (&), indicating a logical AND operation.

1–4 DBG–11 Symbolic Debugger User’s Guide

• The following unary arithmetic operators:

– Minus sign (–) indicates that the value(s) that follow are to be negated (2’s
complement).

– Plus sign (+). Unary plus is ignored in expression evaluation, but it can be
used to indicate that a value is positive.

In evaluating expressions, DBG–11 proceeds from left to right. All operators have the
same precedence. You can nest expressions and force precedence within expressions
by using angle brackets (< >). DBG–11 allows a maximum expression nesting depth
of six. You can use the equal sign operator (=), described in Section 2.7, to display
the value of an expression.

1.6 Numeric and Symbolic Addressing

You can use octal addresses to refer to locations within a program. However, it is
often more convenient or meaningful to use symbolic addresses to refer to locations.
When you use symbolic addressing, you refer to a location not by its numeric address
but by an assigned name. You can combine symbolic references with other symbolic
references or numeric values to form address expressions.

To use symbolic addressing with DBG–11, you must first define the symbols you
want to use. Then, examine the program assembly listing and the program’s map
file created when you linked the program to determine the numeric addresses of the
symbols you want to define. Use those values to define the symbols you have chosen
with the DBG–11 symbol definition operator (:), described in Section 2.2.

Use of address expressions can make the symbol definition process easier and more
meaningful. An address expression, represented throughout this manual by the
lowercase word addr, is an expression interpreted by DBG–11 as a 16-bit numeric
value. You can use an address expression to refer to a location in your program.

You can specify an address expression in either numeric or symbolic form. You can
include in the address expression any of the operators and symbols described in
Section 1.5.

The sample program loads beginning at location 1000 (you can determine that from
the program’s link map), but the listing for the program shows START at relative
address 0 and VALUE1 at relative address 334. Instead of having to remember the
1000 offset all the time, you can define symbols like this:

1000,START:
START+102,MULPY:
START+124,PUTNUM:
START+334,VALUE1:

You can also define symbols using more complex expressions. The examples in
Table 1–1 show how DBG–11 interprets various forms of address expressions. These
examples assume a value of 1000 for the symbol START and a value of 1174 for the
symbol ANSWER.

Overview of DBG–11 1–5

Table 1–1: Address Expression in DBG–11

Expression DBG–11 Interpretation

START 001000

ANSWER 001174

START+5 001005

–<START+5> 176773

<ANSWER–START>_/2 000076

1.7 Processor Mode and Address Space Prompt Displays

DBG–11 displays the current processor mode and address space when running under
mapped monitors. The display is omitted under unmapped monitors (SB and FB),
as those monitors run only in Kernel mode Instruction space.

Under mapped monitors, the display shows the current hardware support, which
can include the processor mode and current address space. For example, the display
could show (U) for User mode on hardware that does not support separated I-D
space. For hardware that supports separated address spaces, the display couples
the current processor mode with the current address space, such as (UI) for User
processor mode and Instruction address space.

Examples of various prompt displays are located throughout the manual.

1–6 DBG–11 Symbolic Debugger User’s Guide

Chapter 2

DBG–11 Commands

DBG–11 commands consist of one or more characters plus one or more optional
arguments. When the DBG–11 command requires multiple arguments, use commas
to separate them. The maximum number of arguments in any DBG–11 command is
three.

DBG–11 commands can be put in groups according to function. DBG–11 includes
commands that:

• Set DBG–11 operating parameters.

• Define and delete user symbols.

• Set and remove breakpoints.

• Execute the program.

• Open and close locations and display contents.

• Change the contents of locations.

• Display expression values.

Each group is discussed in detail in the following sections.

2.1 Setting DBG–11 Operating Parameters

[qual];M

Change address space/processor mode display.

DBG-11 lets you temporarily change the current address space bits in MMR3 and
processor mode bits in the PSW. DBG–11 restores the initial setting automatically
before beginning execution of a proceed command. You can manually restore the
initial setting by specifying the command without condition.

Qualifiers to the ;M command must be specified singly. That is, do not use the
construction _D!_U;M, but rather issue _D;M and then _U;M.

If qual is not specified, DBG–11 restores initial address space/processor mode display.
If you specify qual, it can be one of the following:

_D
Temporarily set address space display to Data.

_I
Temporarily set address space display to Instruction (the default setting).

DBG–11 Commands 2–1

_K
Temporarily set processor mode display to Kernel.

_S
Temporarily set processor mode display to Supervisor.

_U
Temporarily set processor mode display to User.

[qual];R

Set/Reset output radix. If qual is not specified, the output radix for DBG–11 is set
to octal. If you specify qual, it can be one of the following:

_BIN
Set output radix to 2.

_OCT
Set output radix to 8 (default).

_DEC
Set output radix to 10.

_HEX
Set output radix to 16.

The output radix is the same in both Instruction and Data address spaces.

If you are using the graphics register display (see Section 3.3.5) and set the output
radix to _OCT, _HEX, or _DEC, the graphics register display will show values in the
specified radix. If you set the output radix to _BIN, the graphics register display will
default to octal, since there is not enough space in the graphics register display to
show the values in binary. However, the instruction and location examine displays
will be shown in binary.

The output radix setting has no effect on the way DBG–11 interprets numeric input.
DBG–11 assumes all numeric input is octal unless otherwise instructed, as described
in Section 1.3.

[qual];T

Set/Reset the following debugger functions:

• Escape key as single-step operator

• Processor mode

• Register (PC or PS) display

• Graphics register display

• Symbolic data display

• Symbolic address display

2–2 DBG–11 Symbolic Debugger User’s Guide

• Scope/Hard-copy rubout support

If you specify qual, it can be one of the following:

_ESC or _NOESC
Enable/disable support for ESCAPE key (ESC) as single-step operator (like ;S).

_K or _NOK
Enable/disable selection of Kernel mode (with ~ operator).

_S or _NOS
Enable/disable selection of Supervisor mode (with ~ operator).

_U or _NOU
Enable/disable selection of User mode (with ~ operator).

_PC or _PS
_PC sets the graphics register display such that the program counter (PC) is
displayed in the lower left corner of the graphics register display (the initial
setting). _PS sets the graphics register display such that the processor status
(PS) word is displayed in the lower left corner.

_REG or _NOREG
Enable/disable graphics register display. Refer to Section 3.3.5 for details.

_SYM or _NOSYM
Enable/disable symbolic data display.

_ADR or _NOADR
Enable/disable symbolic address display.

_RUB or _NORUB
Enable/disable video mode rubout support. Video mode rubout (_RUB)
backspaces and erases the previous character from the screen when you press
the RUBOUT key. Hard-copy mode rubout (_NORUB) echoes a backslash (\)
followed by the character or characters deleted, then a closing backslash.

The qualifiers _K, _S, _U, _PC, and _PS should be used singly in a command and
not coupled with each other or other qualifiers.

If you omit qual before ;T, DBG–11 sets all functions to their defaults. By default
(SET TT SCOPE), the functions are set to _NOESC, _K, _S, _U, _PC, _NOREG,
_SYM, _ADR, and _RUB. If you have issued the command SET TT NOSCOPE, the
functions are the same except _NORUB replaces _RUB.

[qual];V

Enable/Disable trap handling.

DBG–11 can intercept five types of traps: traps to 4, traps to 10, traps caused by
memory protection violations, TRAP instructions, and IOT instructions. By default,

DBG–11 Commands 2–3

DBG–11 intercepts any of those traps and notifies you by displaying a message, as
shown in Table 2–1.

Table 2–1: Trap Interception by DBG–11

Type of Trap Message Displayed

Trap to 4 T4: addr

Trap to 10 T10: addr

Memory protect MP: addr

TRAP instruction TR: addr

IOT instruction IO: addr

The [qual];V command modifies the way DBG–11 handles traps though vectors 4
and 10; qual can be _T4 or _T10. If you specify a qualifier (_T4 or _T10), DBG–
11 attempts to pass any trap though 4 or 10 to the trap-handling routine assigned
by the RT–11 .TRPSET directive. If you have issued a _T4;V or _T10;V command
but have not assigned a trap-handling routine with the .TRPSET directive, DBG–11
displays its normal trap messages when traps to 4 or 10 occur.

Specify ;V with no qualifier to reenable handling by DBG–11 of traps to 4 and 10.

Your program can intercept traps caused by IOT and TRAP instructions by filling in
vector locations 20 and 34, respectively.

DBG–11 does not intercept EMT traps. EMT instructions execute normally, calling
the monitor’s EMT processing routine. If an error occurs while the monitor is
processing an EMT, the monitor may stop the current job and exit to command level
without returning control to DBG–11. If you want to debug a routine called by an
EMT, you have to put a breakpoint within the routine itself; you cannot single-step
through the EMT instruction to get to the routine.1

2.2 Defining and Deleting User Symbols

Because DBG–11 uses a single symbol definition file, each symbol is defined (or
deleted) in both Instruction and Data address spaces.

[addr,]symbol:

Symbol definition operator. DBG–11 defines or redefines the specified symbol to be
equal to the value addr. If addr is value 0, the symbol is defined as zero but the
symbol is not used as the base to an offset in address or value displays.

If you omit addr, the value of the symbol is set equal to the value of the current
location symbol (.), described in Section 3.10. This command closes any open
location, defines the symbol, and prompts for the next command.

1 If you are using a hardware I/O version of DBG–11 (SDH.SYS or SDHX.SYS), you can set bit 4 (020) in kernel address
location 32. This sets the T-bit when the processor executes an EMT instruction, which will allow you to trace the execution
of an EMT.

2–4 DBG–11 Symbolic Debugger User’s Guide

Any symbol that you define remains defined until you delete it using the ;K command
or unload the SD handler. You can define a maximum of 2010 symbols.

symbol;K

Deletes the definition of the specified symbol from DBG–11’s user symbol table.

2.3 Setting, Removing, and Displaying Breakpoints

All breakpoint operations are performed in I-space.

[addr][,n];B

Set/Reset breakpoints. This command has the following forms:

;B
Removes all breakpoints from the user program. (0;B is equivalent.)

,n;B
Removes breakpoint n from the user program, where n can be 1 through 108.

addr[,n];B
Sets breakpoint n, where n can be 1 through 108, in the user program at address
addr. If n is omitted, DBG–11 uses the lowest-numbered available breakpoint.
You can have up to 8 breakpoints set in your program at a time, numbered 1
through 108.

;D
Displays a table of the breakpoints.

2.4 Executing the Program

[addr];G

Sets BPT instructions at all breakpoints that have been set in your program, restores
the processor status word and user program registers, and starts your program at
the specified address or at the current saved PC value if addr is omitted.

Provided the monitor has not been damaged, DBG–11 exits to the monitor prompt
(.) if you specify an address of 0 (0;G).

[val];P

Proceeds with user program execution from the current breakpoint location and
stops when the next breakpoint location is encountered. (Program must be at the
breakpoint location when issued.)

If you specify val, DBG–11 proceeds with program execution from the current
breakpoint location and stops at that breakpoint again only after encountering it
a total of val times. The default value for val is 1. Other breakpoints that may be

DBG–11 Commands 2–5

set are not counted or affected; the program continues to stop when it encounters
other set breakpoints.

You can set a different val count for each active breakpoint. For example, when you
stop at breakpoint 1 you can type 10;P, and when you stop at breakpoint 2 you can
type 25;P.

[val];S

Single step. Executes one instruction at the current PC value, and displays the
address and the next symbolic PDP–11 instruction to be executed. Breakpoints are
not recognized or displayed during single-step operations. If val is specified, DBG–11
executes val instructions, displaying each address and symbolic PDP–11 instruction
as it is executed.

Setting the operating parameter _ESC;T lets you use the ESCAPE key to single-step
each instruction.

2.5 Opening Locations and Displaying Contents

Locations are opened and contents displayed in the current address space and
processor mode.

[addr]"

Word mode ASCII operator. Interprets and displays the contents of the currently
open (or last opened) location as two ASCII characters. If the contents of a byte is a
nonprinting character (octal range 000 through 037), DBG–11 displays the character
as ^X, where X is determined by adding 1008 to the contents of the byte. For example,
003 displays as ^C, since 003 + 100 equals 103, the ASCII code for C. The nonprinting
ASCII code 1778 is treated as a special case and displayed as ^?.

If " is preceded by addr, the value addr is taken as the address of a word location
to be opened and displayed.

[addr]’

Forced byte mode ASCII operator. Interprets and displays the contents of the
currently open (or last opened) location as one ASCII character.

If the contents of a byte is a nonprinting character (octal range 000 through 037),
DBG–11 displays the character as ^X, where X is determined by adding 1008 to the
contents of the byte. For example, 003 displays as C, since 003 + 100 equals 103,
the ASCII code for C. The nonprinting ASCII code 1778 is treated as a special case
and displayed as ^?.

If ’ is preceded by addr, the value addr is taken as the address of a byte location to
be opened and displayed.

2–6 DBG–11 Symbolic Debugger User’s Guide

[addr]%

Word mode Radix–50 operator. Interprets and displays the contents of the currently
open (or last opened) location as three Radix–50 characters. If the location does not
contain a valid Radix–50 string, DBG–11 displays three question marks (???).

If % is preceded by addr, the value addr is taken as the address of a location to be
opened and displayed.

[addr]/

Instruction mode operator. Displays the contents of the currently open (or last
opened) location as a symbolic PDP–11 instruction. If the location does not contain
a PDP–11 instruction that DBG–11 recognizes, DBG–11 displays the contents as
a numeric value, using the current default output radix as set by the [qual];R
command.

If / is preceded by addr, the value addr is taken as the address of a word location to
be opened and displayed.

If you attempt to open a DBG–11 internal register using the / instruction mode
operator, DBG–11 defaults to symbolic data mode.

[addr][

Symbolic data mode operator. Displays the contents of the currently open (or last
opened) location as a symbolic data word.

If [is preceded by addr, the value addr is taken as the address of a word location
to be opened and displayed.

[addr] |

Numeric data mode operator. Displays the contents of the currently open (or last
opened) location as a numeric data word, using the current output radix.

If | is preceded by addr, the value addr is taken as the address of a word location
to be opened and displayed.

[addr]\

Forced byte mode operator. Displays the contents of the currently open (or last
opened) location as a byte using the current output radix and redefines Q, the last
displayed value symbol, as the contents of this byte.

If \ is preceded by addr, the value addr is taken as the address of a byte location
to be opened and displayed.

2.6 Changing the Contents of Locations

Before you use any of the commands described in this section, you must open a
memory location using one of the open location commands described in Section 2.5.

DBG–11 Commands 2–7

[val] RET

Closes the currently open location (if any) and prompts for the next command. If RET

is preceded by val, the value val replaces the contents of the currently open location
before it is closed. If val is specified and no location is currently open, DBG–11
displays the error message ?DBG–W–No location open.

[val] LF

Closes the currently open location (if any), opens the next sequential location (word,
byte, or instruction depending on the output mode in effect) using the current
memory mapping, and displays its contents. If LF is preceded by val, the value
val replaces the contents of the currently open location before it is closed.

[val]^

Closes the currently open location (if any), opens the immediately preceding location
(word, byte, or instruction depending on the output mode in effect) using the current
memory mapping, and displays its contents. If ^ is preceded by val, the value val
replaces the contents of the currently open location before it is closed.

If you open location 0 and type ^, DBG–11 does not wrap around memory to location
177776; the current location remains at location 0.

Backing up while in instruction mode may occasionally give incorrect results because
certain combinations are ambiguous.

[val]@

Closes the currently open location (if any), then uses the contents of the closed
location as the address to open in I-space. Selects I-space as the current space and
opens that location. If @ is preceded by val, the value val replaces the contents of
the currently open location before it is closed.

[val]#

Closes the currently open location (if any), then uses the contents of the closed
location as the address to open in D-space. Selects D-space as the current space and
opens that location. If separated I-D space is not enabled or the hardware does not
support address separation, the command functions like [val]@.

If # is preceded by val, the value val replaces the contents of the currently open
location before it is closed.

[val]~

The ~ (tilde) operator is a rotating toggle between processor modes. The rotation is
governed by the PDP–11 architecture and is Kernel to Supervisor to User. Initially,
all three modes can be toggled. Valid modes can be disabled or enabled by the
_[NO]K;T, _[NO]S;T, and _[NO]U;T commands.

2–8 DBG–11 Symbolic Debugger User’s Guide

Assuming all modes are valid, if currently in Kernel mode, closes the current location
(if any) and opens the same location (if any) in Supervisor mode. If currently in
Supervisor mode, closes the current location (if any) and opens the same location (if
any) in User mode. If currently in User mode, closes the current location (if any)
and opens the same location (if any) in Kernel mode.

If ~ is preceded by val, opens the specified location in the other mode.

[val]‘

The ‘ (grave accent) operator is a toggle between address spaces. If separated address
space is not enabled or not supported by hardware, it terminates the current line
and closes any open location.

Assuming separated address space is valid, if currently in D-space, closes the current
location (if any) and opens the same location (if any) in I-space. If currently in I-
space, closes the current location (if any) and opens the same location (if any) in
D-space.

If ‘ is preceded by val, opens the specified location in the other address space.

2.7 Displaying Expression Values

[val]=

Interprets and displays the numeric value of expression val using the current output
radix. If val is not specified, the value of the last displayed value symbol (Q) is
displayed.

2.8 Special Characters

DBG–11 recognizes some characters that perform editing functions or control
terminal output. These include:

RUBOUT

Deletes the last character typed.

CTRL/C

Ignored while using DBG–11; type 0;G to return to monitor, provided the monitor
has not been damaged.

CTRL/Q (XON)
Reenables terminal output after output was suspended with CTRL/S (XOFF).

CTRL/S (XOFF)
Suspends output to the terminal until a CTRL/Q (XON) character is received.

DBG–11 Commands 2–9

CTRL/U

Causes DBG–11 to ignore the current command line, closes any open location,
and prompts for the next command.

CTRL/W

Refreshes the graphics register display, closes any open location, and prompts for
the next command. If the graphics register display is not enabled, this command
acts like a CTRL/U .

2–10 DBG–11 Symbolic Debugger User’s Guide

Chapter 3

Using DBG–11 to Debug a Program

This chapter uses the sample program in Appendix A to illustrate the use of most of
the DBG–11 commands described in Chapter 2. The examples are not comprehensive
or complete, but they should give you enough information to let you expand your use
of DBG–11 to more complex debugging tasks. If you have difficulty following any
command explanation, assemble and link the sample program (with a link map),
run it with DBG–11, and try typing the example exactly as given; that may help you
to understand more easily what the command does.

Most of the examples assume you have defined the user symbols START, MULPY,
PUTNUM, VALUE1, and RESULT, as described in Section 3.4. If you try the
examples on your computer but have not defined those symbols, or if you have defined
additional user symbols or changed the contents of locations, the offset values or
contents of locations that DBG–11 displays may be different from those shown in
the examples. However, the results should be equivalent.

Some of the examples assume that only certain symbols are defined and that the
symbols have particular values. Those examples are clearly identified in the text
preceding them.

All the examples in this chapter, except where indicated, were produced using DBG–
11 with a ZM monitor and the example program running in User mode. If you are
not using a fully-mapped (ZB or ZM) monitor, the prefix symbols will be different.
However, the debugging process is the same. Refer to the end of Section 3.2 for more
details.

3.1 The Parts of DBG–11

DBG–11 includes four variants of an SD pseudodevice handler and the symbol
definition utility DBGSYM.SAV described in Chapter 4. The four device handlers
supplied are:

SDS.SYS
Software I/O version for use with unmapped monitors. SDS.SYS does all its
terminal input and output by using .TTYIN, .TTYOUT, and .PRINT requests.

SDH.SYS
Hardware I/O version for use with unmapped monitors. SDH.SYS does all its
terminal input and output by directly accessing the console terminal CSR.

SDSX.SYS
Equivalent to SDS.SYS, for use with mapped monitors.

Using DBG–11 to Debug a Program 3–1

SDHX.SYS
Equivalent to SDH.SYS, for use with mapped monitors.

The hardware I/O versions of DBG–11 (SDH.SYS and SDHX.SYS) are suitable for
most debugging jobs. Use the software I/O versions of DBG–11 (SDS.SYS and
SDSX.SYS) only if you cannot use the hardware I/O versions to debug your particular
application.

3.2 Getting Started

Perform one or more of the following steps. If the SD handler is already on your
system device, steps 1 through 3 may not be necessary.

1. Copy the appropriate version of DBG–11 (SDH.SYS, SDS.SYS, SDHX.SYS, or
SDSX.SYS) to SD.SYS or SDX.SYS on your system volume so the monitor will
recognize the file as a device handler. Use SDH.SYS or SDS.SYS with the
unmapped monitors; SDHX.SYS or SDSX.SYS with the mapped monitors. It
is best to copy rather than rename the file so that you always retain an original
copy of each of the four different files.

2. Issue SET commands to configure the SD handler to match your system. You will
probably need to type the SET SD SYSGEN command. If you want to change
the default settings of _ADROFF and _DATOFF, you can change those through
SET commands as well.

Table 3–1 lists the SET commands for the SD handler and briefly describes their
function.

3. Install the SD handler using the INSTALL command. If you were already using a
different version of the SD handler, you will need to use the REMOVE command
to remove the old handler before you install the new one.

4. Assemble and link the application program that you want to debug. An
example application is located in Appendix A that assembles and links under
all distributed RT–11 monitors. Assembling and linking the example program,
DBGDEM.MAC, is described further in this section. Be sure to specify a link
map to determine symbol locations.

5. Place a BPT (breakpoint) instruction at the starting address of your program
by using SIPP or by including the BPT instruction in your program source and
assembling it in.

If you want to put a BPT instruction at the starting address of a .SAV file using
SIPP, first use SIPP to examine location 40 of block 0 of the .SAV file. That value
is the starting address of the file. Next, use SIPP to look at the starting address
location. Write down the contents of the starting location so you can remember
the value later; then replace that value with a BPT instruction (000003).

6. Load the SD handler into memory using the LOAD command. The size of SD in
low memory is determined by your monitor. For mapped systems, SD occupies
somewhat more than 1K of low memory. In unmapped systems, SD is over 4K
words long, so if your program is large you may need to unload other jobs or

3–2 DBG–11 Symbolic Debugger User’s Guide

handlers to make room for DBG–11. The SD handler must be named SD; you
cannot rename the SD handler and load it under another name.

When you load the SD handler, it prints a version number and some option
information in parentheses, in the form

DBG Vxx.xx - RT-11 (opt opt opt)

Table 3–2 lists the possible options that may appear.

7. Run the program you want to debug, using the R, RUN, FRUN, SRUN, V, or
VRUN command. If you used SIPP to put a BPT instruction at the starting
location of the program, use DBG–11 to change that location back to its original
value before proceeding.

Table 3–1: SET Commands to Configure DBG–11 (SD Handler)

SET Command Function

SET SD ADROFF=val Sets default value for DBG–11 internal symbol _ADROFF. If you
do not use this command, the default value for _ADROFF is
10008. This option changes the disk-resident copy of SD, but has
no effect on any copy of SD already in memory. The new default
value remains in effect until you issue another SET SD ADROFF
command or issue the _ADROFF[val] from within DBG–11.

SET SD BREAK Executes a BPT instruction and transfers control to DBG–11.
Unlike the other SET commands, SET SD BREAK does not
configure or change SD in any way; SET SD BREAK just gives
you a way to get into DBG–11. You must load the SD handler
before typing this SET command. Refer to Section 5.1 for a
discussion of using SET SD BREAK to debug a device handler.

SET SD CSR=val Sets CSR for terminal input and output. This command applies
only to SDH.SYS and SDHX.SYS, the hardware I/O versions of
the SD handler. Use this command if you want to use a terminal
with a nonstandard CSR as the debugging terminal. This SET
condition changes the disk-resident copy of SD, but has no effect
on any copy of SD already in memory. The new value remains
in effect until you issue another SET SD CSR command.
DBG–11 assumes the following default CSR address for
hardware I/O mode:
CSR = 777560
That value is correct for standard PDP–11 console terminals and
for the debugging (printer) port on CTI Bus-based computers.
Any terminal to be used by DBG–11 for hardware I/O mode must
be connected to a DL or DL-equivalent interface.

Using DBG–11 to Debug a Program 3–3

Table 3–1 (Cont.): SET Commands to Configure DBG–11 (SD Handler)

SET Command Function

SET SD DATOFF=val Sets default value for DBG–11 internal symbol _DATOFF. If you
do not use this command, the default value for _DATOFF is
1008. This SET condition changes the disk-resident copy of SD,
but has no effect on any copy of SD already in memory. The
new value remains in effect until you issue another SET SD
DATOFF command or issue the _DATOFF[val] command from
within DBG–11.

SET SD [NO]ESC Enables or disables using the ESCAPE key as the single-step
operator (instead of ;S). You can override the SET command
condition from within DBG–11 by using the _ESC;T or NOESC;T
operating parameters, described in Section 2.1. The _ESC;T or
NOESC;T parameter remains in effect until you reload the SD
handler.

SET SD [NO]K Enables or disables Kernal mode for the ~ (tilde) operator. You
can override the SET command condition from within DBG–11
by using the _K;T or _NOK;T operating parameters, described
in Section 2.1. The _K;T or _NOK;T parameter remains in effect
until you reload the SD handler.

SET SD PC
SET SD PS

Control whether the PC or PS is displayed in the graphics
register display, described in Section 3.3.5.
SET SD PC displays the program counter (PC) register as
default in the register display. SET SD PS displays the processor
status (PS) word register as default in the register display.
You can override either SET command condition from within
DBG–11 by using the _PS;T or _PC;T operating parameter. Both
parameters are described in Section 2.1. The _PS;T or _PC;T
parameter remains in effect until you reload the SD handler.

SET SD [NO]REG Enables or disables the DBG–11 register display, described in
Section 3.3.5, and makes it the default display mode. You can
override the SET command condition from within DBG–11 by
using the _REG;T or _NOREG;T operating parameter, described
in Section 2.1. The _REG;T or _NOREG;T parameter remains
in effect until you reload the SD handler.

SET SD [NO]S Enables or disables Supervisor mode for the ~ (tilde) operator.
You can override the SET command condition from within DBG–
11 by using the _S;T or _NOS;T operating parameter, described
in Section 2.1. The _S;T or _NOS;T parameter remains in effect
until you reload the SD handler.

SET SD SYSGEN Matches SYSGEN parameters of handler to those of monitor so
that monitor will install handler without error. Use this SET
command if you get the error message ?KMON–F–Conflicting
SYSGEN options when you try to install the handler. Unless
you change the monitor or the version of SD you are using, you
need to type this command only once.

3–4 DBG–11 Symbolic Debugger User’s Guide

Table 3–1 (Cont.): SET Commands to Configure DBG–11 (SD Handler)

SET Command Function

SET SD [NO]U Enables or disables User mode as default for the ~ (tilde)
operator. You can override the SET command parameter
from within DBG–11 by using the _U;T or _NOU;T operating
parameter, described in Section 2.1. The _U;T or _NOU;T
parameter remains in effect until you reload the SD handler.

The option codes in Table 3–2 appear in the identifying header that is displayed on
the terminal when you load the SD handler.

Table 3–2: SD Handler Option Identification Codes

Identifier Meaning

GRH This version of DBG–11 contains support for the VT100 graphics register
display (see Section 3.3.5).

PRO This version of DBG–11 supports terminal I/O through the printer port of a
CTI Bus-based processor. DBG–11 with this support will also do terminal I/O
through the console DL serial line on a standard PDP–11 processor.

SD: This version of DBG–11 is the SD handler implementation.

SOFT Software I/O. This version of DBG–11 uses system directives to do its terminal
I/O.

HARD Hardware I/O. This version of DBG–11 does terminal I/O by going directly
through the console CSR in the I/O page. If you want hardware I/O
support on a CTI Bus-based processor, the PRO option must also be enabled.
The distributed hardware I/O versions of the SD handler (SDH.SYS and
SDHX.SYS) have the PRO option enabled, so they can do hardware I/O on
any PDP–11 or CTI Bus-based computer.

The following sequence of commands runs the mapped-memory software I/O version
of DBG–11 with the sample background application program shown in Appendix A.
(The commands to copy SDSX.SYS, REMOVE SD, SET SD SYSGEN, and INSTALL
SD are not necessary if you have already configured and installed SD.)

The LINK command syntax is determined by the monitor you use to run DBG–11.
The following syntax is appropriate for a single-mapped (XB or XM) monitor. If you
are using a fully-mapped (ZB or ZM) monitor, see Chapter 5 for command syntax.

.COPY SDSX.SYS SDX.SYS

.REMOVE SD

.SET SD SYSGEN

.INSTALL SD

.MACRO DBGDEM

.LINK/MAP:DBGDEM DBGDEM

.LOAD SD

DBG Vxx.xx - RT-11 (SOFT SD: GRH)

.R DBGDEM

Using DBG–11 to Debug a Program 3–5

When the processor encounters a BPT instruction in your program, control transfers
to the SD handler and DBG–11 displays its initial prompt message. If you are using
an unmapped (SB or FB) monitor and debugging the sample program in Appendix A
(or another program with a BPT instruction at location 1000), the initial prompt
looks like this:

BE: 1000
DBG>

The characters BE signify breakpoint exception and 1000 is the address of the BPT
instruction. A breakpoint exception is caused by the execution of a BPT instruction
that was not placed in the program by the ,n;B command, but rather placed in
the program source or patched into the program image by SIPP. Because such a
breakpoint is placed in the program outside of DBG–11, it does not appear in the
breakpoint tables and is not displayed by the ;D command.

If you are using a mapped monitor in User mode on a processor that does not support
separated address space, the prompt looks like this:

BE:(U) 1000
DBG>

Here, (U) indicates the current processor mode.

If you are using a mapped monitor in User mode on a processor that supports
separated I-D address space, the prompt looks like this:

BE:(UI) 1000
DBG>

Here, (UI) indicates the current processor mode and address space as User Mode
and Instruction address space.

Under unmapped (SB, FB) monitors, the processor runs in only Kernel mode, so
DBG–11 omits the address mode indicator from the address displays. Under mapped
(Xx and Zx) monitors on processors that do not support separated address space,
possible values are (U) for User mode, (K) for Kernel mode, and (S) for Supervisor
mode. On processors that do support separate address spaces, the current address
space (always I for breakpoint displays) is coupled with the processor mode.

If you have a video terminal that supports VT100 escape sequences and you have
enabled the graphics register display, Section 3.3.5, DBG–11 puts the register display
on the screen before displaying the DBG> prompt.

The DBG> prompt indicates that DBG–11 is ready to accept a command.

3.3 Setting DBG–11’s Operating Parameters

You may want to modify some of DBG–11’s default parameter settings before you
begin to debug your program. These parameters determine the number base that
DBG–11 uses to display numeric values, the type of rubouts done, and the range
of address and data symbolic offsets. You can change some of them by using SET
commands, or you can use the [qual;T] command while you are running DBG–11.

3–6 DBG–11 Symbolic Debugger User’s Guide

3.3.1 Types of Rubouts

DBG–11 tests the terminal SET option status word pointed to by the monitor fixed
offset $TCFIG for the default SET TT SCOPE condition. If the default condition
exists, DBG–11 does a backspace/space/backspace sequence for rubouts.

If you have issued the DCL command SET TT NOSCOPE, DBG–11 echoes a
backslash followed by the characters that are deleted, then a closing backslash.

From within DBG–11, you can issue the DBG–11 command _RUB;T or _NORUB;T
to change DBG–11’s default rubout setting. If you issue a _[NO]RUB;T command,
the in-memory copy of SD changes. Any change remains in effect until you unload
and reload the SD handler.

The following command disables video mode rubouts and enables hardcopy rubouts:

DBG>_NORUB;T

If you want to reenable video mode rubouts, type _RUB;T.

3.3.2 Default Radix

By default, DBG–11 displays all numeric values in octal. If you prefer, DBG–11 can
display numeric values in binary, decimal, or hexadecimal.

You can use the [qual];R command to change DBG–11’s output radix, choosing a
value for qual from the following list:

_BIN;R
Set output radix to 2.

_OCT;R
Set output radix to 8 (default).

_DEC;R
Set output radix to 10.

_HEX;R
Set output radix to 16.

If you change the output radix with ;R, the change remains in effect until you type
another ;R command or unload and load the handler.

The following commands set the output radix to 10, then back to 8:

DBG>_DEC;R
DBG>_OCT;R

Except where otherwise indicated, all examples in this chapter assume that the
default radix is set to octal.

Using DBG–11 to Debug a Program 3–7

3.3.3 Symbolic Address Display

The DBG–11 qualifiers _ADROFF and _DATOFF control DBG–11’s display of
symbolic addresses.

By default, DBG–11 attempts to display an address as a symbol or as a positive offset
from a symbol. For example, if you define the symbols START and RESULT for the
sample program and then examine locations 1000 and 1002, DBG–11 will display
the addresses as START and START+2 rather than as octal values, and display the
symbol RESULT in the source field of the MOV instruction at location START+2:

DBG>1000,START:
DBG>START+230,RESULT:
DBG>1000/
(U) START / BPT LF

(U) START+2 / MOV #RESULT,R5 RET

DBG>

You can disable symbolic display of addresses by using the _NOADR;T command.
The previous example would then look like this:

DBG>_NOADR;T
DBG>1000/
(U) 1000 / BPT LF

(U) 1002 / MOV #RESULT,R5 RET

DBG>

To reenable symbolic address display, use the _ADR;T command:

DBG>_ADR;T

You can establish a range for DBG–11’s symbolic address offsets. By default, DBG–11
uses offsets of up to 10008 when displaying symbolic addresses. DBG–11 might
display the symbolic address START+762 or START+776, for example, if there were
no intervening higher-valued symbols from which DBG–11 could define a positive
offset. You can limit or extend DBG–11’s symbolic address offset range by modifying
the internal register _ADROFF. The following sequence assumes that the contents
of _ADROFF is at least 168 and that you have defined the user symbols listed in
Section 3.4:

DBG>START/
(U) START / BPT LF

(U) START+2 / MOV #RESULT,R5 LF

(U) START+6 / MOV VALUE1,R0 LF

(U) START+12 / MOV VALUE1+2,R1 LF

(U) START+16 / CALL MULPY RET

DBG>

3–8 DBG–11 Symbolic Debugger User’s Guide

Now change the contents of _ADROFF to 48 and repeat:

DBG>_ADROFF|
_ADROFF | 1000 4 RET

DBG>START/
(U) START / BPT LF

(U) START+2 / MOV #RESULT,R5 LF

(U) 1006 / MOV VALUE1,R0 LF

(U) 1012 / MOV VALUE1+2,R1 LF

(U) 1016 / CALL MULPY RET

DBG>

When _ADROFF is equal to 4, DBG–11 displays an address as an octal value rather
than as a symbol plus an offset, if the address has an offset greater than 4 from a
defined symbol.

You can change the initial (default) value of _ADROFF by using the SET SD
ADROFF=val command (see Table 3-1).

3.3.4 Symbolic Data Display

The DBG–11 internal symbols _DATOFF and _SYM are similar to _ADROFF and
_ADR, respectively. They let you control the way DBG–11 displays symbolic data.
The symbol _DATOFF defines the range of symbolic data offsets, and _SYM enables
and disables symbolic data display.

The following sequence of DBG–11 commands illustrates the effect of _SYM and
_NOSYM. This example assumes that START and RESULT are the only user
symbols defined.

First, disable symbolic data display:

DBG>_NOSYM;T
DBG>START+2/
(U) START+2 / MOV #1374,R5 RET

DBG>

Now, enable symbolic data display and examine the same location again:

DBG>_SYM;T
DBG>START+2/
(U) START+2 / MOV #RESULT,R5 RET

DBG>

The next series of DBG–11 commands illustrates the effect of _DATOFF. The example
assumes that the initial (default) value of _DATOFF is 1008 and START is the only
user symbol defined.

DBG>START+2/
(U) START+2 / MOV #1374,R5 RET

DBG>_DATOFF[
_DATOFF [100 400 RET

DBG>START+2/
(U) START+2 / MOV #START+374,R5 RET

DBG>

Using DBG–11 to Debug a Program 3–9

When location START+2 is opened the first time, the source argument for the MOV
instruction displays as an octal value because there is no symbol defined with a
value within _DATOFF bytes of the source argument value from which DBG–11 can
define a positive offset. By changing the contents of _DATOFF from 100 to 400,
however, the symbol START with a value of 1000 falls within _DATOFF bytes of
the value 1374. Opening location START+2 again now displays the value 1374 as
START+374, since the offset 374 is less than the value of _DATOFF.

You can change the initial (default) value of _DATOFF by using the SET SD
DATOFF=val command (see Table 3-1).

3.3.5 Graphics Register Display

If you have a video terminal that supports VT100 escape sequences, you can use
DBG–11’s real-time register display feature. When you enable the graphics register
display, DBG–11 continuously displays on the upper portion of your terminal screen
the contents of your machine’s registers, as well as the contents of the first four
words of your program’s stack. DBG–11 updates the screen display every time a
register’s value changes.

Issue the DCL command SET TT NOCRLF before enabling DBG–11’s graphics
register display. DBG–11 automatically uses the graphics register display if you
issue the DCL command SET SD REG. If you do not issue the monitor SET SD REG
command, you can turn on the display from within DBG–11 by typing the command
_REG;T in response to the DBG–11 prompt:

DBG>_REG;T

If you want to disable the graphics register display, you can issue the DCL command
SET SD NOREG before you load the SD handler, or you can type the DBG–11
command _NOREG;T in response to the DBG–11 prompt.

When the graphics register display is enabled, DBG–11 displays its DBG> prompt
below the register display and waits for you to type a command:

R0 R1 R2 R3 R4 R5
020056 000056 000000 000000 155166 102046

". %EE8 ".^@ % AF "^@^@ % "^@^@ % "vZ %48F "&^D %UEO
056,040 056,000 000,000 000,000 166,332 046,204

001000 001000PC = SP = (SP) =000003 2(SP)=016700 4(SP)=000144 6(SP)=016701

DBG>

The boxes in the top row show the contents of registers R0 through R5. The first
line in each box gives the current value of each register in octal (the default), or
in hexadecimal or decimal if you have changed the output radix using the [val];R
command. (If you set the output radix to binary, the values in the boxes are still
shown as octal.)

The second line in each box gives the current byte values of each register using the
current output radix. Binary radix again defaults to octal for this display.

3–10 DBG–11 Symbolic Debugger User’s Guide

The third line shows the contents of the registers as two ASCII characters on the
left and as three Radix–50 characters on the right. DBG–11 displays the control
character codes 000 through 0378 as ^X when they appear in the ASCII display.
The character displayed as X has the ASCII value of code + 100, where code is
a value in the range 000 through 0378. For example, 004 (or 204, since DBG–11
ignores the eighth bit) displays as ^D, because 004 + 100 equals 104, the ASCII
code for D. Similarly, DBG–11 displays 000 as ^@, because 000 + 100 is the ASCII
code for the at-sign. The nonprinting ASCII code 1778 is treated as a special case
and displayed as ^?.

The second row of boxes displays the current values of the program counter (PC), the
stack pointer (SP), and the top four values on the stack. You can issue the command
_PS;T from within DBG–11 to change display of the program counter to display of
the processor status (PS) word.

3.4 Defining and Deleting Symbols

After you set DBG–11’s operating parameters, you will probably want to define some
symbols as your first step in using DBG–11. DBG–11 accepts up to 20 user-defined
symbols.

Look at the link map, DBGDEM.MAP, created when you assembled and linked the
example in Appendix A:
RT-11 LINK V05.25 Load Map Tuesday 18-Dec-90 12:27 Page 1
DBGDEM.SAV Title: DBGDEM Ident:

Section Addr Size Global Value Global Value Global Value

. ABS. 000000 001000 = 256. words (RW,I,GBL,ABS,OVR)
INST 001000 000170 = 60. words (RW,I,LCL,REL,CON)

START 001000 MULPY 001102 PUTNUM 001124
DATA 001170 000324 = 106. words (RW,D,LCL,REL,CON)

VALUE1 001334 VALUE2 001336 ANSWER 001340
X 001342 EQ 001362 RESULT 001374

Transfer address = 001000, High limit = 001512 = 421. words

Use the colon character (:) to define a symbol, with the following syntax:

<addr>,<symbol>:

For example, you can define the following symbols according to the locations
indicated in the link map:

DBG>1000,START:
DBG>1102,MULPY:
DBG>1124,PUTNUM:
DBG>1334,VALUE1:
DBG>17,DEF:
DBG>1374,RESULT:
DBG>

Using DBG–11 to Debug a Program 3–11

Occasionally you may want to delete a symbol definition that you have made. Use the
;K command to delete symbol definitions from DBG–11’s symbol table. For example,
to delete the symbol DEF that was just defined in the previous example, use the
command

DBG>DEF;K

3.5 Examining Symbols

You can use the equal sign (=) command to look at the value of any user-defined
symbol. Type the name of the symbol followed by an equal sign; DBG–11 displays
the numeric value of the symbol in the current output radix.

The following commands display the values of symbols defined in Section 3.4, using
various output radixes:

DBG>START= 1000
DBG>_DEC;R
DBG>START= 512
DBG>_BIN;R
DBG>START= 1000000000

In this example, DBG–11 displays the value of START in octal, since that is DBG–
11’s default output radix. The command _DEC;R changes the radix to decimal, so
DBG–11 now displays the value of START as 51210. The command _BIN;R changes
the output radix to binary, so repeating the previous command displays the value of
START as a binary number.

You can also use the equal sign command to look at the value of . , the current
location symbol, and the value of Q, the last displayed value symbol. These symbols
are explained in more detail in Section 3.10.

3.6 Setting, Displaying, and Removing Breakpoints

You can set up to eight breakpoints in your program to interrupt program execution
and transfer control back to DBG–11. You can then use DBG–11 to examine the
state of your program at the time of each breakpoint to determine if the program is
executing properly. Use the following syntax to set a breakpoint in your program:

addr[,n];B

You can include n, where n can be 1 through 108, to specify which of the 8 breakpoints
you want to set at a particular address. If you omit n, DBG–11 uses the lowest-
numbered breakpoint that is free.

Use the syntax

[,n];B

to remove a breakpoint from your program. If you include n, DBG–11 removes that
numbered breakpoint from your program. If you omit n and just type ;B, DBG–11
removes all breakpoints.

3–12 DBG–11 Symbolic Debugger User’s Guide

For example, you can set a breakpoint at relative location 0016 in the sample
program, so you can verify that the arguments being passed to the multiply
subroutine are correct. You can also set a breakpoint at relative location 0022 to
give yourself a chance to check the value returned from the multiply subroutine.

DBG>START+16;B
DBG>START+22;B

Those examples do not specify any value for n, so in each case DBG–11 assigns the
lowest-numbered breakpoint that is not already in use.

Alternatively, the commands could be written

DBG>1016;B
DBG>1022;B

You display a breakpoint table by using the syntax:

;D

The ;D command displays the breakpoint table. The table shows the breakpoint
number (BPT), the 16-bit virtual program address at which the breakpoint is set
(Virtual Address), the PAR value to map that virtual address to physical memory
(PAR Value), and the number of times the breakpoint can execute (Execution Count).

BPT
Virtual
Address

PAR
Value

Execution
Count

1 000000 000000 0

2 000000 000000 0

3 000000 000000 0

4 000000 000000 0

5 000000 000000 0

6 000000 000000 0

7 000000 000000 0

10 000000 000000 0

To delete the breakpoints, type

DBG>,1;B
DBG>,2;B

or alternatively,

DBG>;B

That form of the command deletes all breakpoints.

Using DBG–11 to Debug a Program 3–13

3.7 Executing the Program

Three DBG–11 commands start or continue the execution of the program you are
debugging, as shown in Table 3–3.

Table 3–3: Program Execution

Command Meaning

[addr];G Starts program at specified address, or at current saved PC value if addr
is omitted. Provided the monitor has not been damaged, DBG–11 exists to
the monitor prompt if you specify an address of 0 (0;G).

[val];P Proceeds with user program execution from the current breakpoint location
and stops when the next breakpoint is encountered.
If you specify val, DBG–11 proceeds with program execution from the
current breakpoint location and stops at that breakpoint again only after
encountering it a total of val times. The default value for val is 1. Other
breakpoints that may be set are not counted or affected; the program stops
when it encounters other breakpoints.
You can set a different val count for each active breakpoint.

[val];S Executes the number of program instructions equal to val, then does
another breakpoint trap. If you omit val or specify a value of zero (0;S),
DBG–11 assumes a value of 1 (single-step). The ;S command lets you
proceed through your program one instruction at a time.

3.8 Examining Locations

You can examine a program location in seven modes: instruction, symbolic data,
numeric data, byte, word mode ASCII, byte mode ASCII, or Radix–50. Each mode
uses a separate character operator, listed in table Table 3–4.

Table 3–4: Examination of Program Locations

Operator Examine Mode Address Space

Slash (/) Instruction I-space

Left bracket ([) Symbolic data Current

Vertical bar (|) Numeric data Current

Backslash (\) Byte Current

Double quote (") Word mode ASCII Current

Single quote (’) Byte mode ASCII Current

Percent (%) Radix–50 Current

These modes are explained in more detail as follows.

3–14 DBG–11 Symbolic Debugger User’s Guide

3.8.1 Opening and Closing Locations

To examine a location in your program, you must open the location. To open a
location in any of the examine modes, type an address expression in response to
the DBG> prompt, followed by one of the mode character operators listed above.
DBG–11 displays the address, followed by its contents (in the format determined by
your choice of examine mode operators and the selected radix), and waits for your
response. You can:

• Close the location and return to DBG–11’s command prompt by pressing
RETURN.

• Change, then close the location and return to DBG–11’s command prompt by
typing a numeric expression followed by RETURN.

• Close the location and open another location by pressing a linefeed (LF),
circumflex (^), or at-sign (@).

• Close the location in the current address space and open the same location in
D-space by pressing the pound sign (#).

• Close the location in the current address space and open the same location in
I-space by pressing the at-sign (@).

• Change, then close the location and open another location by typing LF , ^, or @.

If you do not specify an address expression when you use one of the examine
operators listed above, DBG–11 opens the current or last-opened location. You can
find out what the current location is by using the equal sign operator to look at the
value of . (period), the current location symbol.

The following series of commands demonstrates the use of LF and ^ to examine the
contents of VALUE1 and VALUE1+2:

DBG>VALUE1|
(U) VALUE1 | 123 LF

(U) VALUE1+2 | 17 ^
(U) VALUE1 | 123 RET

DBG>

Location VALUE1+2 is equivalent to location VALUE2. However, the symbol
VALUE2 has not been defined. Therefore, DBG–11 displays the address as an offset
from a symbol that is defined, in this case VALUE1.

Although you can type the at-sign command (@) after any location, the command is
useful only when the location contains a memory reference. For example, location
START+16 calls the routine MULPY. You can use the @ command to examine location
MULPY after opening location START+16:

DBG>START+16/
(U) START+16 / CALL MULPY @
(U) MULPY / CLR -(SP) RET

DBG>

Using DBG–11 to Debug a Program 3–15

Since the LF , ^, @, and RET commands were not preceded by any values, the contents
of VALUE1, VALUE1+2, START+16, and MULPY remain unchanged. Section 3.9
illustrates the use of commands to change the contents of a location.

The graphic’s register display is the easiest way to track contents and changes in the
PC, PS, and other machine registers. If your terminal does not support the register
display (is not VT100 compatible), you can open the machine registers R0, R1, R2,
R3, R4, R5, SP, PC, and PS (the processor status word) by specifying their names in
response to DBG–11’s prompt. Follow the name with one of the character operators.
For example, you can look at the contents of the PS by typing

DBG>PS|
PS | 140000 RET

DBG>

3.8.2 Instruction Mode Examine (/)

Use the slash (/) character to open the current location in instruction mode. For
example, if you type / in response to the DBG–11 prompt at the starting address of
the sample program, DBG–11 displays the following:

DBG>/
(U) START / BPT

DBG–11 pauses at the end of the line, waiting for input. The location is now open
and can be changed. If you press RET , DBG–11 closes the location without changing
the contents and displays the DBG–11 command prompt.

You can also specify a particular address to open in instruction mode. Consider the
following sequence of commands:

DBG>1002/
(U) START+2 / MOV #RESULT,R5 RET

DBG>MULPY/
(U) MULPY / CLR -(SP)

The first command specifies the address to open as an absolute octal value. The
second command uses the user-defined symbol MULPY to specify the address to
open.

3.8.3 Symbolic Data Mode Examine ([)

The left bracket ([) character opens a location in symbolic data mode. Use this mode
to examine the contents of a location when the contents are defined as a symbol. For
example, to examine the contents of location VALUE1, where the contents are equal
to 1238 and the symbol ABC is defined as 1238 in the DBG–11 user symbol table,
the command and DBG–11 response looks like this:

DBG>VALUE1[
(U) VALUE1 [ABC

If you use this mode to examine a location and you have not defined a symbol that
represents the contents, the display is determined by the symbol offset range. If the
value at the location is within range, the display shows an offset from the nearest
symbol. If you have not defined any symbol within range, the output is numeric,

3–16 DBG–11 Symbolic Debugger User’s Guide

using the current output radix. You can set the range by using the internal registers
_ADROFF and _DATOFF. The following example shows a value that is out of range:

DBG>VALUE1+2[
(U) VALUE1+2 [17

Even though the contents of VALUE1+2 is defined as the symbol DEF in the sample
program, the symbol DEF was not placed in DBG–11’s user symbol table. Therefore,
because of the offset range, DBG–11 displays the contents of VALUE1+2 as 17, rather
than symbolically.

Location VALUE1+2 is, of course, equivalent to location VALUE2. However, the
symbol VALUE2 has not been defined. Therefore, you must specify the address as an
offset from a symbol that is defined, or as an absolute octal address. (Alternatively,
you can define the symbol VALUE2 using the : command.)

3.8.4 Numeric Data Mode Examine (|)

If you want to know what the numeric data values are, rather than their symbolic
equivalents, use the vertical bar (|) data mode examine command. This command
displays the contents of a location as a numeric value using the current default
output radix.

The previous section shows how to examine location VALUE1 in symbolic data mode.
That mode displays the contents of VALUE1 as the symbol ABC. If you use the |
command instead of the [command to examine location VALUE1, the display is in
numeric rather than symbolic form:

DBG>VALUE1|
(U) VALUE1 | 123

Since the sample program does a decimal multiply and produces a decimal result, you
probably want to know what VALUE1 and VALUE2 are in decimal. The following
commands set the output radix to decimal, examine locations VALUE1 and VALUE2
(displayed as VALUE1+2, since the symbol VALUE2 is not defined in DBG–11’s user
symbol table), and return the output radix to octal:

DBG>_DEC;R
DBG>VALUE1|
(U) VALUE1 | 83 LF

(U) VALUE1+2 | 15 RET

DBG>_OCT;R

Using DBG–11 to Debug a Program 3–17

3.8.5 Byte Mode Examine (\)

The backslash (\) command lets you examine data one byte at a time, rather than
one word at a time. The ASCII string multiplied by, in the sample program, can
illustrate the use of the \ command:

DBG>START+342\
(U) VALUE1+6 \ 40 LF

(U) VALUE1+7 \ 155 LF

(U) VALUE1+10 \ 165 LF

(U) VALUE1+11 \ 154 LF

(U) VALUE1+12 \ 164 LF

(U) VALUE1+13 \ 151 LF

(U) VALUE1+14 \ 160 RET

DBG>

You can look up those byte values in a table of ASCII characters and determine that
they are the ASCII characters multip. More simply, you can use the ASCII mode
examine commands " and ’ described in Section 3.8.6.

3.8.6 ASCII Mode Examine (’ or ")

Although the \ command lets you examine data one byte at a time, if the bytes
are ASCII characters, you probably want to see them as ASCII characters, not as
numeric quantities. Use the double quote (") or single quote (’) command to display
locations as ASCII words or bytes, respectively.

The remainder of the ASCII string multiplied by, examined in byte mode in
Section 3.8.5, is easily identified when examined with the ’ command:

DBG>VALUE1+15’
(U) VALUE1+15 ’ l LF

(U) VALUE1+16 ’ i LF

(U) VALUE1+17 ’ e LF

(U) VALUE1+20 ’ d LF

(U) VALUE1+21 ’ LF

(U) VALUE1+22 ’ b LF

(U) VALUE1+23 ’ y LF

(U) VALUE1+24 ’ LF

(U) VALUE1+25 ’ ^@ RET

DBG>

The terminating byte of 2008 displays as ^@.

3.8.7 Radix–50 Mode Examine (%)

MACRO–11 programs can also contain Radix–50 character strings. Use DBG–11’s %
command to display words as Radix–50 equivalents. Although the sample program
does not contain any defined Radix–50 character strings, the following example
illustrates the use of the % command:

DBG>START+6%
(U) START+6 % D0P

The location START+6 contains 167008, the first word of the instruction MOV
VALUE1,R0, but the % command interprets the contents of the location as the

3–18 DBG–11 Symbolic Debugger User’s Guide

Radix–50 string D0P. In other words, the % command assumes the value 16700
results from the definition .RAD50 /D0P/.

3.9 Changing Locations

Whenever you use any of the examine commands described in Section 3.8 to examine
a location in your program, the location you examine is open and available for
change. You can enter MACRO–11 instructions, numeric values as numbers or
defined symbols, ASCII characters, or Radix–50 strings.

3.9.1 Entering MACRO–11 Instructions

You can type in symbolic MACRO–11 instructions to DBG–11 as new contents
for open locations. DBG–11 recognizes most permanent MACRO–11 instruction
mnemonics, except those defined for the CIS and FPP instruction sets.

DBG–11 is not an assembler, and its capabilities are limited. If you enter a two- or
three-word instruction as a replacement for a single-word instruction or vice-versa,
DBG–11 does the replacement and writes over or leaves unchanged the words that
are not part of the instruction. You must count words yourself and make sure that
everything is aligned properly.

For example, you can replace the initial BPT instruction in the sample program with
another one-word instruction, perhaps CLR R0:

DBG>START/
(U) START / BPT CLR R0 RET

DBG>START/
(U) START / CLR R0 RET

DBG>

However, If you try to replace it with a two-word instruction, say, CLR ANSWER,
the results are less desirable, as illustrated below.

DBG>START+340,ANSWER:
DBG>START/
(U) START / BPT CLR ANSWER RET

DBG>START/
(U) START / CLR ANSWER LF

(U) START+4 / BNE 466 LF

(U) START+6 / MOV VALUE1,R0 RET

DBG>

The leftover portion of the instruction MOV #RESULT,R5 gets interpreted as BNE
466, which is meaningless in the context of the program.

If you have tried this example on your own computer, be sure you put the original
instructions of the program back before you try to run it.

3.9.2 Entering Numeric Values

You can type in numeric values using the digits 0 through 9 and an optional decimal
point. If the number you type contains an 8, 9, or decimal point, DBG–11 interprets
the number as decimal. Otherwise, DBG–11 interprets the number as octal. Use

Using DBG–11 to Debug a Program 3–19

the _$ prefix operator to enter numbers in hexadecimal. You cannot enter a number
in binary.

Locations VALUE1 and VALUE2 in the sample program contain the two numbers
that the program multiplies together. Consider the following series of commands:

DBG>VALUE1/
(U) VALUE1 / JMP (R3)+ RET

DBG>|
(U) VALUE1 | 123 85 RET

DBG>|
(U) VALUE1 | 125 RET

DBG>

Typing a slash as the first command opens the location VALUE1 in instruction mode.
Since VALUE1 contains a data value, not a PDP–11 instruction, the resulting display,
JMP (R3)+, has no meaning. The second command line corrects that mistake by
using a vertical bar (|) to open the current (last opened) location in data mode,
which displays a value of 1238. Typing 85 followed by a line terminator changes the
contents of VALUE1 to 8510. DBG–11 interprets the number as decimal because it
contains an 8. Typing another vertical bar again displays the contents of VALUE1,
this time as 1258.

You can also enter the name of any user-defined symbol as the new contents of a
location. The following commands define the symbol ABC, then use it to change the
contents of location VALUE1.

DBG>123,ABC:
DBG>VALUE1|
(U) VALUE1 | 125 ABC RET

DBG>|
(U) VALUE1 | 123 RET

DBG>[
(U) VALUE1 [ABC RET

DBG>

The vertical bar opens location VALUE1 and displays the contents as 1258, set in
the previous example. Entering the symbol ABC followed by a RETURN changes
the contents of VALUE1 to the value of symbol ABC. Typing another vertical bar
reopens the current location and displays the new contents of 1238, the value of
symbol ABC. If you use [, the symbolic data display command, DBG–11 displays the
contents of VALUE1 symbolically and confirms that 1238 is equal to ABC.

3.9.3 Entering ASCII, Hexadecimal, and Radix–50 Strings

You can enter data in ASCII, hexadecimal, or Radix–50 format by preceding the data
with a special prefix operator. The prefix operator tells DBG–11 to interpret what
follows as a particular type of character string.

You can specify a word or byte address for a destination. If you specify a byte
address and the data you enter is too large to fit in one byte, DBG–11 truncates
without reporting an error.

3–20 DBG–11 Symbolic Debugger User’s Guide

ASCII
Use the _’ or _" prefix operator to enter one or two ASCII characters at a time. The
ASCII equivalent of the character that follows the _’ prefix, or the two characters
that follow the _" prefix, are stored one character per byte at the address you specify.

The sample program contains the ASCII string multiplied by. You can change by
to uppercase, for example, with either of the following DBG–11 command lines:

DBG>VALUE1+22"
(U) VALUE1+22 " by _"BY RET

DBG>

or

DBG>VALUE1+22’
(U) VALUE1+22 ’ b _’B LF

(U) VALUE1+23 ’ y _’Y RET

DBG>

In the first case, the _" prefix operator requires that you type two characters, B and
Y. The _’ operator, on the other hand, lets you replace a single character (byte) at a
time.

Hexadecimal
The _$ prefix operator lets you enter up to four hexadecimal digits. DBG–11 stores
the binary equivalent at the address you specify. You can use this operator to change
the contents of location VALUE1 to a value corresponding to the hexadecimal string
3F:

DBG>VALUE1|
(U) VALUE1 | 123 _$3F
DBG>|
(U) VALUE1 | 77 RET

DBG>

The data mode examine operator opens location VALUE1 and displays its octal
contents, 123. The prefix operator _$ tells DBG–11 to interpret the next two
characters, 3F, as two hexadecimal digits and to store them in the currently open
location. Reopening location VALUE1 shows that the contents of VALUE1 are now
778, which is equivalent to 3F16. You can also display the contents of VALUE1 as
a hexadecimal value by changing DBG–11’s output radix to hexadecimal with the
_HEX;R command.

Radix–50
Use the _% prefix operator to enter up to three Radix–50 characters. If you want
to include a leading or embedded space as part of the Radix–50 character string,
replace the space with an underscore (_) character when you type in the string. For
example, typing the characters _%_AC stores the Radix–50 string <space>AC. If you
type less than three characters, DBG–11 assumes trailing spaces.

Using DBG–11 to Debug a Program 3–21

The sample program uses no Radix–50 strings, but, for illustration, the following
example stores the Radix–50 string LST in location START+340, then uses the |
and % commands to examine the location and verify the new contents:

DBG>START+340|
(U) VALUE1+4 | 0 _%LST RET

DBG>|
(U) VALUE1+4 | 47014 %LST RET

DBG>

3.10 Special Symbols . and Q

When debugging, you frequently need to refer to the current location, that is, where
you are in the program right now. DBG–11 defines the special symbol period (.) to
be equal to the address of the current location. The current location is the location
that is currently open, if any, or the last location that was open. You can define the
value of . yourself, using the : symbol definition command, but its value will change
as soon as you open a new location.

In general, if you do not specify an address in a DBG–11 command that requires an
address argument, DBG–11 defaults to the current location.

DBG–11 defines the symbol Q to be equal to the last symbolic or numeric value that
was displayed on the terminal. In general, that value will be the last symbol in
an instruction, or the numeric equivalent of ASCII or Radix–50 characters. If you
open a location in instruction mode but the instruction refers only to registers (for
example, MOV R1,R0), Q is set to the opened address. You can define the value of Q
yourself, using the : symbol definition command, but its value will change as soon
as you examine a new numeric value.

The following examples show the value of Q after DBG–11 displays various types of
expressions:

DBG>START+2/
(U) START+2 / MOV #RESULT,R5

Q = 1374, the value of the symbol RESULT.

DBG>START+16/
(U) START+16 / CALL MULPY

Q = 1102, the value of the symbol MULPY.

DBG>PUTNUM/
(U) PUTNUM / MOV R0,-(SP)

Q = 1124, the value of the symbol PUTNUM.

3–22 DBG–11 Symbolic Debugger User’s Guide

DBG>START+2%
(U) START+2 % CSM

Q = 12705, the Radix–50 equivalent of CSM.

DBG>START+2[
(U) START+2 [12705

Q = 12705, the octal contents of START+2.

DBG>VALUE1+22"
(U) VALUE1+22 " by

Q = 74542, the ASCII equivalent of by.

3.11 Putting It All Together

Previous sections have shown examples of individual DBG–11 commands. This
section shows a simple DBG–11 session from start to finish, which may give a more
meaningful context for some of the commands. It is based on the sample program
in Appendix A.

The sample program multiplies two numbers and stores the result as an ASCII
string without giving any visible output. To find out if the program runs properly,
you can watch the program execute with DBG:

.LOAD SD RET

DBG V01.00 - RT-11 (SOFT SD: GRH)

.R DBGDEM RET

BE:(U) 1000
DBG>

DBG–11 stops at the BPT instruction at the beginning of the program, prints its
command prompt, and waits for a command.

Set the operating parameters for DBG–11; for example, enable video mode rubouts:

DBG>_RUB;T

Define user symbols to which you may want to refer when debugging the program:

DBG>1000,START:
DBG>START+102,MULPY:
DBG>START+124,PUTNUM:
DBG>START+334,VALUE1:
DBG>START+374,RESULT:
DBG>

Set breakpoints at places in the program where you want to check location values
or program status:

DBG>START+16;B
DBG>START+22;B

Using DBG–11 to Debug a Program 3–23

Now, continue executing the program.

DBG>;P
BPT1>(U) START+16 / CALL MULPY RET

DBG>

Display the breakpoint table:

DBG>;D

BPT
Virtual
Address

PAR
Value

Execution
Count

1 001016 000000 1

2 001022 000000 1

3 000000 000000 0

4 000000 000000 0

5 000000 000000 0

6 000000 000000 0

7 000000 000000 0

10 000000 000000 0

DBG–11 stops at the first breakpoint, displays the instruction to be executed, and
prints the DBG–11 command prompt. The program is about to call the integer
multiply subroutine. Check the values of the parameters being passed in R0 and
R1:

DBG>R0|
R0 | 123 LF

R1 | 17 ;P

If you are using the graphics register display (Section 3.3.5), you can check the
contents of R0 and R1 there, without having to type any DBG–11 commands.

The ;P command continues execution until DBG–11 encounters the next breakpoint,
which is set after the program returns from the multiply subroutine with the answer
in R0. You can check the result of the multiply by looking at the contents of R0.
The program stores the final result in decimal, not octal form; to examine R0 as a
decimal value, change the output radix mode to decimal:

BPT2>(U) START+22 / MOV R0,ANSWER RET

DBG>R0|
R0 | 2335 _DEC;R
DBG>R0|
R0 | 1245 _OCT;R
DBG>;S

3–24 DBG–11 Symbolic Debugger User’s Guide

After DBG–11 displays the answer in decimal, the _OCT;R command changes the
default output radix back to octal. A ;S command single-steps to the next instruction
and breaks again:

BPT0>(U) START+26 MOV VALUE1,R0 ;S
BPT0>(U) START+32 CALL PUTNUM RET

DBG>

Define a breakpoint at the HALT instruction in the program, and proceed:

DBG>START+100;B
DBG>;P
BPT3>(U) START+100 HALT

Display the breakpoint table and note the third breakpoint:

DBG>;D

BPT
Virtual
Address

PAR
Value

Execution
Count

1 001016 000000 1

2 001022 000000 1

3 001100 000000 1

4 000000 000000 0

5 000000 000000 0

6 000000 000000 0

7 000000 000000 0

10 000000 000000 0

At this point, the sample program has finished executing and stored the result of its
computation as an ASCII string beginning at the symbol RESULT. Use the word-
mode ASCII examine operator to check the answer:

BPT3>(U) START+100 HALT RESULT"83 LF

(U) RESULT+2 " m LF

(U) RESULT+4 " ul LF

(U) RESULT+6 " ti LF

(U) RESULT+10 " pl LF

(U) RESULT+12 " ie LF

(U) RESULT+14 " d LF

(U) RESULT+16 " BY LF

(U) RESULT+20 " 1 LF

(U) RESULT+22 " 5 LF

(U) RESULT+24 " eq LF

(U) RESULT+26 " ua LF

(U) RESULT+30 " ls LF

(U) RESULT+32 " 1 LF

(U) RESULT+34 " 24 LF

(U) RESULT+36 " 5^@ RET

DBG>

Using DBG–11 to Debug a Program 3–25

The answer is correct. Type another ;P command to execute the HALT instruction:

DBG>;P

T10:(U) MULPY

This example was run using an RT–11 XM system with the sample program running
in User mode, so the HALT instruction causes a trap to 10 (on some processors, a
HALT in User mode may cause a trap to 4). DBG–11 intercepts the trap and reports
it as shown.

The HALT instruction may also behave differently on processors that do not support
memory mapping. If you run this example on an unmapped system, the HALT
instruction may not cause a trap and the processor may do a hard halt at the HALT
instruction.

3–26 DBG–11 Symbolic Debugger User’s Guide

Chapter 4

The DBGSYM Utility Program

You can define up to 20 user symbols by using DBG–11’s colon (:) symbol definition
command described in Section 2.2. However, that method of defining symbols can
become tedious and the 20-symbol limit may prove restrictive if you are debugging
a large program.

Use the utility program DBGSYM.SAV to create a DBG–11 symbol table from a
symbol table (.STB) file.1 You do not need to type the symbol definitions, and
there is no limit except memory space on the number of symbols you can define.
DBGSYM takes .STB file symbol definitions, adds prefix and suffix text, and creates
a pseudodevice handler ST.SYS or STX.SYS. When you load the SD handler, DBG–11
looks for the presence of ST and, if found, uses the symbol definitions that DBG–11
finds there.

You can use the symbol;K command to delete symbols defined in ST. If you delete a
symbol defined in ST, you can use the colon command to define another symbol in its
place, in addition to the 20 other symbols you can define using the colon command.
For example, if you define 30 symbols in ST and then delete them all with the ;K
command, you can then define a total of 50 symbols using the colon command.

To define symbols with DBGSYM, perform the following steps:

1. Define as global all the symbols in your program that you want to use with
DBG–11 (only global symbols go into an .STB file).

2. Create an .STB file by specifying a third output file name in your CSI command
line when you link the program that you plan to debug, or use the /SYMBOL:file
option in your DCL command line.

3. Run DBGSYM and specify the .STB file as input. DBG–11 uses the default output
file name ST.SYS if you are running under the unmapped monitors, STX.SYS if
you are running under the mapped monitors. You can specify another output
file name if you want, but you must name the file STx.SYS before you can use
it with DBG–11. If you try to load ST under a different name, you will get the
error message ?ST–F–handler must be named ST.

4. Load SD, then install and load ST on your system volume. DBGSYM makes
the SYSGEN configuration bits of the ST handler it creates compatible with the
currently running monitor. If you copy the ST handler to a different system or
boot a different monitor, you may need to issue the command SET ST SYSGEN
before installing ST.

1 Refer to the PDP–11 MACRO–11 Language Reference Manual for more information about .STB files.

The DBGSYM Utility Program 4–1

5. Run the program you want to debug, as described in Chapter 3. DBG–11 will
look for the ST device handler and use any symbol definitions that it finds.

6. When you finish debugging a program, you can unload the ST handler you have
been using, and then create, install, and load a new version of the ST handler
containing symbols for another program you want to debug.

4–2 DBG–11 Symbolic Debugger User’s Guide

Chapter 5

Advanced DBG–11 Techniques

This chapter discusses some ways of using DBG–11 you may find useful in special
situations.

5.1 Debugging a Device Handler

You must use the hardware I/O versions of SD (SDH.SYS or SDHX.SYS) when you
debug a device handler. You can use either of two techniques to coordinate SD with
the device handler:

• Issue the RT–11 monitor SET command, SET SD BREAK, after you load the SD
handler and the handler you want to debug. When you issue SET SD BREAK,
control transfers to DBG–11. You can put breakpoints in the handler you want to
debug, examine locations, or perform other DBG–11 operations without putting
a BPT instruction in your handler code. After setting breakpoints, type ;P to
return to the RT–11 monitor, and run a test program to call the handler. When
the test program calls the handler and encounters a DBG–11 breakpoint, control
transfers to DBG–11.

The SET SD BREAK command may be useful in other circumstances as well,
but its functionality is somewhat limited. The program code you want to debug
must be loaded when you issue the SET SD BREAK command, and you can only
issue the SET command from the RT–11 monitor level.

• You can use the same technique to initially enter a device handler as you use
when debugging a background program. Put a BPT instruction at the start of
the handler you are debugging. Load the handler, load SD, and then run a test
program to call your handler. When the test program calls the handler and
executes the BPT instruction, control will transfer to DBG–11. You can then
set additional breakpoints, examine locations, and perform any other DBG–11
operations.

5.2 Separate Address Spaces and Multiple Processor Modes

This section applies to only mapped monitors, because with unmapped monitors,
all memory is within one address space and processor mode. All mapped monitors
support Kernal and User mode. Only fully-mapped (ZB and ZM) monitors support
separated I-D address space and Supervisor mode.

Advanced DBG–11 Techniques 5–1

5.2.1 Linking a Separate Address Space Program for Debugging

The DBG–11 symbol table stores 16-bit location values and does not distinguish
between Instruction and Data PSECTs. If your program is linked such that
Instruction and Data PSECTs occupy the same virtual addresses in separate address
spaces, symbols defined in one address space become mixed with those of the other.
That makes debugging, using symbols, very confusing.

A useful technique is to link your program (for debugging purposes only) such
that the Data PSECTs are located above the Instruction PSECTs. The linker
contains a number of options that let you control PSECT placement; use the
/BOUNDARY:value:DAS option to control the base of the Data PSECTs. In the
example program, the base of the Data PSECT is linked at boundary value 1024.
(The boundary values must be a power of 2.)

After assembling DBGDEM.MAC, link the object module by issuing the following
command. The command specifies an extended save image (/IDSPAC) with the Data
PSECT (DATA) located at boundary value 102410:

.LINK/MAP:DBGDEM/IDSPAC DBGDEM/BOUNDARY:1024.:DAS RET

Data boundary section? DATA RET

.

This produces the following link map:
RT-11 LINK V05.25 Load Map Tuesday 18-Dec-90 17:18 Page 1
DBGID .SAV Title: DBGDEM Ident:

Section Addr Size Global Value Global Value Global Value

. ABS. 000000 001000 = 256. words (RW,D,GBL,ABS,OVR)
INST 001000 001000 = 256. words (RW,I,LCL,REL,CON)

START 001000 MULPY 001102 PUTNUM 001124
DATA 001000 000324 = 106. words (RW,D,LCL,REL,CON)

VALUE1 001144 VALUE2 001146 ANSWER 001150
X 001152 EQ 001172 RESULT 001204

Transfer address = 001000, High limit = 001776 = 511. words

Without raising the DATA PSECT boundary, symbols START and VALUE1 would
have the same location value, 1000, and various Instruction and Data symbols would
be interspersed. Using this method, all symbol locations in both Instruction and Data
address spaces can be defined. Note again that this procedure is probably useful only
for debugging. When linking your debugged program, either let the linker determine
location values or specify values for your own purposes.

When you work through the examples in this manual, use the location values shown
above (or those you obtain from your own link map) as symbol locations. Assuming
that, the general discussion will then agree with what you see displayed on your
screen.

5.2.2 Breakpoints

The DBG–11 breakpoint table stores breakpoints as 22-bit values (physical memory
location). Therefore, DBG–11 keeps track of breakpoints set under all processor
modes. You can, however, only issue breakpoints in the Instruction address space.

5–2 DBG–11 Symbolic Debugger User’s Guide

When the current location is at a breakpoint, the ;D command displays the
breakpoint table. The table shows the breakpoint number (BPT), the 16-bit virtual
program address at which the breakpoint is set (Virtual Address), the PAR value
to map that virtual address to physical memory (PAR Value), and the number of
times the breakpoint can execute (Execution Count). The following is an example
breakpoint table in the fully-mapped environment:

BPT
Virtual
Address

PAR
Value

Execution
Count

1 001016 004450 1

2 001022 004450 1

3 000000 000000 0

4 000000 000000 0

5 000000 000000 0

6 000000 000000 0

7 000000 000000 0

10 000000 000000 0

5.2.3 Multiple Processor Modes

In mapped systems, the processor mapping mode (Kernal, Supervisor, or User)
determines whether DBG–11 references the same memory as the program or device
handler being debugged and the rest of the system. Typically, a foreground or
background job is mapped in User mode, the monitor and device handlers are
mapped in Kernel mode, and elements such as libraries can be mapped in Supervisor
mode.

By default, DBG–11 tracks and uses the current address mode in the processor
status word (PSW); the same as the program being debugged. When you debug a
background or foreground job under the mapped monitors, DBG–11 can reference
whatever is mapped in User or Supervisor mode. If user mapping does not
correspond to kernel mapping, the monitor and handlers are invisible to you.
Likewise, if you use the DBG–11 procedures described in Section 5.1 to debug a
device handler, DBG–11 can access whatever is mapped in Kernel mode, the mapping
mode of the handler, but any background or foreground job mapped in User or
Supervisor mode is invisible to DBG–11.

Occasionally, you may want to change the contents of the PSW current mode field
to access memory outside the current mapping. You can temporarily change the
processor addressing mode (the current mode bits in the PSW) by issuing the
[qual];M command, as described in Section 2.1. For example, this technique provides
a simple way to look at the I/O page (mapped in Kernel mode) while debugging a
program in User mode. Issue the _K;M command to change the current mapping
mode from User to Kernel mode. DBG–11 automatically returns to the initial

Advanced DBG–11 Techniques 5–3

mapping mode before executing any Proceed (;P) command. You can explicitly return
to initial mapping by issuing the ;M command with no qualifier.

If your processor (or your program) does not support Supervisor mode, you can stop
the processor mode toggle operator (~) from calling Supervisor mode by issuing
the command _NOS;T from within DBG–11. Otherwise, the toggle goes through
Supervisor mode each time you toggle between Kernel and User modes.

You can also use DBG–11 to modify the KT11 page address registers (PARs) if you
want to examine memory that is not currently mapped in Kernel or User mode. For
example, if you are debugging a device handler that does its own extended memory
mapping, you may find that you need to use DBG–11 to modify the contents of the
PARs.

CAUTION
If you change the contents of a PAR, be sure to restore
the contents to the original value, or be sure the new
value is what your program expects, before attempting
to execute the program.

5–4 DBG–11 Symbolic Debugger User’s Guide

Appendix A

DBGDEM.MAC Sample Program

The examples in this manual were created using an RT–11 XM single-mapped
monitor (any RT–11 system with a VT100-compatible terminal should work as well)
and the example program shown below. An explanation of how to assemble and
link this program for separated I-D space and a fully-mapped monitor is located in
Chapter 5.

If you have difficulty following any command explanation, assemble and link the
example program, run it with DBG–11, and try typing the example of the command
exactly as given. That may help you understand what the command does.

This program does no I/O itself, and should assemble and run on any PDP–11 that
supports the MACRO–11 assembler.
DBGDEM.MAC MACRO V05.05 Tuesday 18-Dec-90 13:39 Page 1

1 .TITLE DBGDEM.MAC
2 .ENABL LC
3 .NLIST BEX
4
5 ; Demonstration program for DBG-11 manual.
6 ; Multiplies VALUE1 by VALUE2, puts
7 ; result as ASCII string in ANSWER.
8
9 000000 .PSECT INST,I

10
11 000123 ABC = 83. ;The values
12 000017 DEF = 15. ; to multiply
13
14 000000 000003 START:: BPT
15 000002 012705 MOV #RESULT,R5 ;Put result here
16 000006 016700 MOV VALUE1,R0 ;Set up R0, R1
17 000012 016701 MOV VALUE2,R1
18 000016 004767 CALL MULPY ; R0 <-- R0*R1
19 000022 010067 MOV R0,ANSWER ;Save answer
20 000026 016700 MOV VALUE1,R0 ;Store first value
21 000032 004767 CALL PUTNUM ; as ASCII string
22 000036 012700 MOV #X,R0 ; multiplied by
23 000042 004767 CALL PUTSTR
24 000046 016700 MOV VALUE2,R0 ;Store 2nd value
25 000052 004767 CALL PUTNUM ; as ASCII string
26 000056 012700 MOV #EQ,R0 ; "equals...
27 000062 004767 CALL PUTSTR
28 000066 016700 MOV ANSWER,R0 ;Store answer
29 000072 004767 CALL PUTNUM ; as ASCII string
30 000076 105025 CLRB (R5)+ ;End with 0 byte
31 000100 000000 HALT
32
33 ;Single-precision unsigned multiply,
34 ; single-precision result.
35 ;Multiply R0 by R1, put result in R0.

DBGDEM.MAC Sample Program A–1

36
37 000102 005046 MULPY:: CLR -(SP) ;Put answer on stack
38 000104 000402 BR 3$
39 000106 060016 1$: ADD R0,(SP)
40 000110 006300 2$: ASL R0
41 000112 006201 3$: ASR R1
42 000114 103774 BCS 1$
43 000116 001374 BNE 2$
44 000120 012600 MOV (SP)+,R0 ;Get answer from stack
45 000122 000207 RETURN ;Return to caller
46
47 ; Store contents of R0 as decimal number
48 ; as ASCII string with no leading zeros.
49 ; R5 --> place to store string.
50
51 000124 010046 PUTNUM:: MOV R0,-(SP)
52 000126 005000 CLR R0
53 000130 005200 1$: INC R0
54 000132 162716 SUB #10.,(SP)
55 000136 002374 BGE 1$
56 000140 062716 ADD #60+10.,(SP)
57 000144 005300 DEC R0
58 000146 001402 BEQ 2$
59 000150 004767 CALL PUTNUM
60 000154 112625 2$: MOVB (SP)+,(R5)+
61 000156 000207 RETURN
62
63 ; Copy ASCII string pointed to by R0 to locations
64 ; pointed to by R5. End on 0 or 200 byte, don’t
65 ; store the 0 or 200 byte.
66
67 .ENABL LSB
68 000160 112025 10$: MOVB (R0)+,(R5)+
69 000162 105710 PUTSTR::TSTB (R0)
70 000164 003375 BGT 10$
71 000166 000207 RETURN
72 .DSABL LSB
73
74 000000 .PSECT DATA,D
75 000000 .BLKW 50. ;Put some space here
76 000144 000123 VALUE1:: .WORD ABC ;Arbitrary values
77 000146 000017 VALUE2:: .WORD DEF ; to multiply
78 000150 000000 ANSWER:: .WORD 0 ;Save result here
79 000152 040 X:: .ASCII / multiplied by /<200>
80 000172 040 EQ:: .ASCII / equals /<200>
81 .EVEN
82 000204 RESULT:: .BLKB 80. ;Final string here
83 .EVEN
84 000000’ .END START

A–2 DBG–11 Symbolic Debugger

Appendix B

DBG–11 and DBGSYM Error Messages

?DBGSYM–E–No input .STB file specified

Explanation: You did not specify an input file in the DBGSYM command line.

User Action: Review the documentation of DBGSYM in Chapter 4 to be sure you
understand the command line format required. Retype the command line and
include an input .STB file.

?DBGSYM-E-No symbols in .STB file

Explanation: There were no global symbol definitions in the input .STB file that
you specified. Therefore, nothing can be put in the output .SYS file.

User Action: Only global symbols get placed in .STB files. Be sure any symbols
you want included in the ST.SYS or STX.SYS file are defined as global symbols
in your program.

?DBGSYM–F–Error writing .SYS file

Explanation: An output error occurred while writing the output ST[x].SYS file.

User Action: Be sure you have enough space for the file on the output volume.

?DBGSYM–F–Output device full

Explanation: There is not enough space on the output volume to hold the symbol
table pseudodevice handler created by DBGSYM.

User Action: Delete some files on the output volume, squeeze the volume to
consolidate free space, or specify a different output device.

?DBGSYM–F–Protected file already exists DEV:FILNAM.TYP

Explanation: A protected file of the same name as the DBGSYM output file
specification already exists on the output volume. DBGSYM uses a default output
filename of ST.SYS if you are using an unmapped monitor, STX.SYS if you are
using a mapped monitor.

User Action: Unprotect the existing protected file if you want to replace that file,
or explicitly specify an output filename in the DBGSYM command line that does
not conflict with existing files on your output volume.

DBG–11 and DBGSYM Error Messages B–1

?DBGSYM–I–Default output filename is DEV:FILNAM.TYP

Explanation: DBGSYM uses a default output filename based on the type of
monitor you are using. This message tells you what DBGSYM used. The possible
defaults are ST.SYS for unmapped monitors, or STX.SYS for mapped monitors.

User Action: The message is informational; no action is required.

?DBGSYM–I–Number of symbols written was <val>

Explanation: This message tells you how many symbol definitions DBGSYM put
in its output file.

User Action: The message is informational; no action is required.

?DBGSYM–U–Error reading proto blocks

Explanation: This error should not occur.

User Action: If you get this error, send an SPR to Digital. Include a copy of
the program you are debugging, together with a detailed explanation of how to
reproduce the situation that causes this error to occur.

?DBGSYM–U–Unable to locate proto blocks

Explanation: This error should not occur.

User Action: If you get this error, send an SPR to Digital. Include a copy of
the program you are debugging, together with a detailed explanation of how to
reproduce the situation that causes this error to occur.

?DBGSYM–U–Wrong version of RT–11

Explanation: You tried to use a version of DBGSYM supplied with one version
of the RT–11 monitor with an earlier or later version of the RT–11 monitor.

User Action: Use DBGSYM and the rest of the pieces of the DBG–11 debugging
package only with the version of RT–11 with which they were shipped.

?DBGSYM–W–File created; Protected file already exists DEV:FILNAM.TYP

Explanation: The output file created by DBGSYM on the output device has the
same name as a protected file that already exists. This situation can occur if a
foreground or system job creates a file of the same name as the file created by
DBGSYM in the background.

User Action: List the device directory and find the location of both files relative
to each other. The version created by DBGSYM will not be protected. Use the
RENAME command to change the first occurrence of the filename in the directory
to a different name.

B–2 DBG–11 Symbolic Debugger

?DBGSYM–W–Remove and reinstall ST handler

Explanation: Because the RT–11 monitor automatically locates and installs
handlers only at bootstrap time, you must remove and install the ST handler
before your monitor can use it. This warning message reminds you to do so.

User Action: Use the monitor commands REMOVE ST and INSTALL ST to
ensure that your monitor uses the latest version of the ST handler.

?DBG–U–Internal error, aborting

Explanation: This error should not occur.

User Action: If you get this error, send an SPR to Digital. Include a copy of
the program you are debugging, together with a detailed explanation of how to
reproduce the situation that causes this error to occur.

?DBG–U–Stack overflow

Explanation: This error should not occur.

User Action: If you get this error, send an SPR to Digital. Include a copy of
the program you are debugging, together with a detailed explanation of how to
reproduce the situation that causes this error to occur.

?DBG–W–Bad expression

Explanation: The address or numeric expression you typed contains a syntax
error.

User Action: Examine the expression, be sure it follows the rules for expressions
given in Chapter 1, correct any errors, and enter the expression again.

?DBG–W–Can’t proceed—<PC value>

Explanation: You issued a ;P or ;S command, but the last entry to DBG–11
occurred because of a fatal trap to 4 or trap to 10. DBG–11 displays the value of
the PC where the trap occurred.

User Action: Check your program to determine the cause of the trap to 4 or
trap to 10, and correct the error. You can restart the program using the addr;G
command.

?DBG–W–Command parameters invalid

Explanation: The parameters you typed are invalid for the command you are
attempting to execute.

User Action: Check the syntax of the command in Chapter 2. Be sure you
understand what each parameter is supposed to be, and enter the command
again with valid parameters. You also get this error if you attempt to delete the
special symbols . or Q.

DBG–11 and DBGSYM Error Messages B–3

?DBG–W–Instruction syntax error

Explanation: You typed a MACRO–11 instruction incorrectly.

User Action: Correct the syntax of the instruction and enter it again.

?DBG–W–Invalid command

Explanation: You typed a command that DBG–11 does not recognize.

User Action: Type only valid DBG–11 commands. Chapter 2 lists all valid
DBG–11 commands.

?DBG–W–Invalid internal register

Explanation: You tried to examine a location that lies outside the DBG–11
internal register table by using the circumflex (^) or LF command.

User Action: Examine DBG–11 internal registers individually by name, or do not
exceed the register table limits when moving through the table with ^ and LF

commands.

?DBG–W–Invalid memory reference

Explanation: You typed a memory address that DBG–11 cannot access. DBG–11
can access only memory that is currently mapped by the program you are
debugging. This error applies only to XM systems.

User Action: Be sure you typed the address correctly. If you did, check to see
why the address is not currently mapped by the program you are debugging. If
you are attempting to access an address outside the program’s address space,
you will need to take special action, as described in Chapter 5.

?DBG–W–Line too long

Explanation: You typed a line longer than 80 characters.

User Action: DBG–11 input lines must be 80 characters or less. Break the line
you are typing into parts, and enter the parts individually.

?DBG–W–Maximum nesting depth exceeded

Explanation: You entered an expression with too many levels of precedence using
the angle bracket (<>) operators. DBG–11 allows a maximum nesting depth of
six.

User Action: Reformat the expression so that it requires six or fewer pairs of
brackets, or break the expression into parts and enter the parts individually.

?DBG–W–Maximum parameter count exceeded

Explanation: You typed more parameters than expected for a DBG–11 command.

User Action: Check the command syntax in Chapter 2, and enter the command
correctly.

B–4 DBG–11 Symbolic Debugger

?DBG–W–No location open

Explanation: You attempted to store a value when DBG–11 was at its command
prompt.

User Action: Be sure you have opened a location using one of the operators, such
as /, [, or | , before you try to store a value.

?DBG–W–No room

Explanation: You tried to define more than 20 user symbols using the colon (:)
operator. DBG–11 accepts a maximum of 20 user symbol definitions.

User Action: Use the ;K command to delete an existing symbol definition, then
use the : operator to define a new symbol.

?DBG–W–Odd address

Explanation: You specified an odd address for an operation that must start at
an even (word) address.

User Action: Retype the command using an even address, or use a command that
allows odd byte addressing.

?DBG–W–Offset truncation error

Explanation: You typed a PDP–11 instruction, such as a branch or SOB, with
an offset that exceeds the maximum of +1778 or -2008 words from the current
location. For example, you typed BNE .+6000.

User Action: Be sure you do not exceed the offset limits when entering branch
or SOB instructions.

?DBG–W–Undefined symbol—<symbol>

Explanation: You used a symbol that DBG–11 does not recognize. DBG–11
displays the symbol at the end of the message.

User Action: Be sure you typed the symbol correctly. If the symbol is undefined,
define the symbol with the colon (:) symbol definition command before you
attempt to use it as part of a DBG–11 command.

?SD–F–Handler must be named SD

Explanation: You tried to load the SD handler under a different name.

User Action: You can load the SD handler only under the name SD. Copy or
rename the file to SD.SYS for unmapped systems, or SDX.SYS for mapped
systems, and repeat the LOAD command.

DBG–11 and DBGSYM Error Messages B–5

?SD–F–Handler must be named ST

Explanation: You tried to load the ST handler under a different name.

User Action: You can load the ST handler only under the name ST. Copy or
rename the file to ST.SYS for unmapped systems, or STX.SYS for mapped
systems, and repeat the LOAD command.

?SD–W–BPT not found in code

Explanation: DBG–11 found at least one breakpoint/instruction pair in its
breakpoint table that does not correspond to the program contents at that
location.

The correspondence between a defined breakpoint and the corresponding
instruction in a program is maintained in the DBG–11 breakpoint table as long
as SD remains loaded in memory. If a program containing breakpoints is run
through DBG–11 and another program is then run (without unloading SD), that
correspondence is broken.

User Action: Clear all breakpoints and thereby reestablish correspondence by
issuing the ;B command. You can then set whatever breakpoints you require to
debug the program.

B–6 DBG–11 Symbolic Debugger

Appendix C

DBG–11 Command Summary

Command Meaning
Section
Reference

’ Byte-mode ASCII examine 2.5
\ Byte mode examine 2.5
| Data mode examine 2.5
@ Indirect examine in I-space 2.6
Indirect examine in D-space 2.6
‘ Toggle between address spaces 2.6
~ Toggle between processor modes 2.6
/ Instruction mode examine 2.5
^ Previous location examine 2.6
% Radix–50 examine 2.5
[Symbolic data mode examine 2.5
" Word-mode ASCII examine 2.5

_’ Byte-mode ASCII data entry prefix 1.3
_$ Hexadecimal data entry prefix 1.3
_% Radix–50 data entry prefix 1.3
_" Word-mode ASCII data entry prefix 1.3

+ Addition operator, unary plus 1.5
_/ Division operator 1.5
! Inclusive OR Boolean operator 1.5
& Logical AND Boolean operator 1.5
* Multiplication operator 1.5
– Subtraction operator, unary minus 1.5

< > Brackets for expression nesting 1.5
= Display value 2.7
: Symbol definition 2.2
. Value of current location counter 3.10

DBG–11 Command Summary C–1

Command Meaning
Section
Reference

Command Meaning
Section
Reference

[addr][,n];B Set and remove breakpoints 2.3
;D Display breakpoint table 2.3
[addr];G Begin program execution 2.4
[qual];M Change processor mode and Address Space display; qual

can be:

D Data address space display
I Instruction space
K Temporary Kernel mode
U Temporary User mode
S Temporary Supervisor mode

(No qual); restore Instruction space and initial
processor mode

2.1

[qual];R Set output radix; qual can be:

_BIN (binary) _DEC (decimal)
_HEX (hexadecimal) _OCT (octal)

2.1

[qual];T Set DBG–11 features; qual can be:

_ESC or _NOESC Support ESCAPE key as single-
step operator

_K or _NOK Kernel mode support for ~ operator
_S or _NOS Supervisor mode support for ~

operator
_U or _NOU User mode support for ~ operator

_PC or _PS PC or PS displayed
_ADR or _NOADR Symbolic address display
_REG or _NOREG Graphics register display
_RUB or _NORUB Scope/hardcopy rubout
_SYM or _NOSYM Symbolic data display

2.1

[qual];V Set trap handling; qual can be:

_T4 Pass traps to 4
_T10 Pass traps to 10

2.1

symbol;K Delete user symbol definition 2.2
[val];P Proceed from breakpoint 2.3
[val];S Single-step from breakpoint 2.3

C–2 DBG–11 Symbolic Debugger

