
RT–11 System Utilities Manual
Part II

Order Number AA–PF6TA–TC

August 1991

This manual alphabetically describes 16 utilities beginning with MACRO–11 and ending
with VTCOM (and including BATCH in an appendix).

Revision/Update Information: This manual supersedes the RT–11 System Utilities
Manual, AA–M239C–TC.

Operating System: RT–11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, March 1983
Revised, July 1984
Revised, November 1985
Reprinted, August 1989
Revised, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227–7013.

© Digital Equipment Corporation 1983, 1984, 1985, 1989, 1991. All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS–300, DDCMP, DECnet, DECUS,
DECwriter, DIBOL, MASSBUS, MicroPDP–11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT–
11, RTEM–11, UNIBUS, VMS, VT, and the DIGITAL logo.

S1708

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface ix

Chapter 16 MACRO–11 Assembler Utility (MACRO)

Calling and Terminating the MACRO–11 Assembler . 16–2
Command-Line Syntax . 16–3
MACRO Options . 16–5
MACRO Option Descriptions . 16–6
Sample Cross-Reference Tables . 16–12
Specifying a Cross-Reference Table File . 16–13
MACRO–11 Error Codes . 16–14
DCL Equivalents of MACRO Utility Operations . 16–16

Chapter 17 Network Interconnect Test Utility (NITEST)

Using NITEST . 17–2
NITEST Error Messages . 17–3

Chapter 18 On-Line Debugging Technique (ODT)

Virtual On-Line Debugging Technique (VDT) . 18–1
Calling and Using ODT . 18–2
Relocation . 18–6
Commands and Functions . 18–7
Programming Considerations . 18–22
Error Detection . 18–28
Creating a Monitor-Independent ODT . 18–29

Chapter 19 Object-Module Patch Utility (PAT)

Calling PAT . 19–1
Using PAT . 19–2
Command-Line Syntax . 19–4
Updating Binary Code with PAT . 19–5
Updating Object Modules . 19–6
Determining and Validating the Contents of a File . 19–9

iii

Chapter 20 Peripheral Interchange Utility (PIP)

Calling and Terminating PIP . 20–1
PIP Command-Line Syntax . 20–2
Using Wildcards with PIP . 20–3
PIP Option Summary . 20–4
PIP Option Descriptions . 20–6
DCL Equivalents of PIP Utility Operations . 20–20

Chapter 21 Queue Utility (QUEUE)

Calling and Using the Queue Utility . 21–3
QUEMAN Option Summary . 21–4
QUEMAN Option Descriptions . 21–6
Putting Support for QUEUE in an Application Program 21–12
Receiving Acknowledgment from QUEUE . 21–17
QUEUE Example Program . 21–18
DCL Equivalents of Queue Utility Operations . 21–20

Chapter 22 System-Resource Display Utility (RESORC)

RESORC Option Summary . 22–2
RESORC Option Descriptions . 22–3
DCL Equivalents of RESORC Utility Operations . 22–16

Chapter 23 RT Monitor Utility (RTMON)

Chapter 24 Save-Image Patch Utility (SIPP)

Command-Line Syntax . 24–3
SIPP Option Summary . 24–4
SIPP Dialogue . 24–5
SIPP Command Summary . 24–7
SIPP Command Descriptions . 24–9
Extending Files and Overlay Segments . 24–15
Verifying Your Work with Checksum . 24–19
Running SIPP from a Command File . 24–20
Running SIPP from a Batch Stream . 24–21

iv

Chapter 25 Source Language Patch Utility (SLP)

Command-Line Syntax . 25–2
SLP Option Summary . 25–3
Determining and Validating the Contents of a File . 25–6
Creating and Maintaining a SLP Command File . 25–7
Formatting the Update Line in a SLP Command File . 25–9
Creating a Numbered Listing . 25–11
Adding Lines to a File . 25–12
Deleting Lines in a File . 25–14
Replacing Lines in a File . 25–15

Chapter 26 Split File Utility (SPLIT)

Chapter 27 Transparent Spooling Utility (SPOOL)

SPOOL’s Components . 27–2
Running SPOOL as a Foreground or System Job . 27–3
Running SPOOL as a Virtual Job . 27–5
SPOOL SET Commands . 27–8
SPOOL Flag Pages and Status . 27–10

Chapter 28 Source Comparison Utility (SRCCOM)

Command-Line Syntax . 28–2
Text-File Comparisons . 28–3
Using Wildcards with SRCCOM . 28–4
SRCCOM Options . 28–5
Interpreting a Differences Listing . 28–6
A Differences Listing for the Example Files . 28–7
Using the MATCH Option (/L:n) . 28–8
Using the CHANGEBAR Option (/D[/V:i:d]) . 28–9
Creating a SLP Command File . 28–10
DCL Equivalents of SRCCOM Utility Operations . 28–12

Chapter 29 Native Transfer Utility (TRANSFER/TRANSF)

Three Helpful Features of the Transfer Utility . 29–2
Transfer Utility Requirements . 29–3
Installing TRANSFER . 29–4
Installing TRANSFER on VMS . 29–5
Installing TRANSFER on RSX . 29–6
Using TRANSFER . 29–7
TRANSFER Command-Line Syntax . 29–8
Summary of TRANSFER Qualifiers . 29–10

v

TRANSFER Qualifier Descriptions . 29–11
Message Format of the TRANSFER Utility . 29–15
TRANSFER Message Descriptions . 29–16
Installing TRANSF on an RT–11 Host . 29–21
TRANSF Command-Line Syntax . 29–22
Using TRANSF . 29–23
TRANSF Confirmation Messages . 29–24

Chapter 30 The Virtual Run Utility (VBGEXE)

Automatically Running Jobs Under VBGEXE . 30–2
Running Background, Foreground, or System Jobs . 30–3
How VBGEXE Allocates and Uses Low Memory . 30–4
Running Separated I-and-D Space Programs . 30–5
Restrictions for Using VBGEXE . 30–6

Chapter 31 Virtual Terminal Communications Utility (VTCOM)

VTCOM Package . 31–3
Running VTCOM . 31–5
Using VTCOM . 31–6
Establishing a Link with a Host . 31–7
Moving Between the Host and the Local Computer . 31–8
VTCOM Command Summary . 31–9
Capturing the Host’s Screen Image . 31–12
Copying ASCII Files to and from the Host . 31–13
Using the Mini-Exchange . 31–15

Appendix A BATCH

Hardware and Software Requirements . A–2
Control-Statement Format . A–2
Command Fields . A–3
Specification Fields . A–6
Comment Fields . A–9
BATCH Character Set . A–9
Temporary Files . A–11
General Rules and Conventions . A–12
Commands . A–13
$BASIC . A–15
$CALL . A–16
$CHAIN . A–17
$COPY . A–18
$CREATE . A–19
$DATA . A–20

vi

$DELETE . A–21
$DIRECTORY . A–21
$DISMOUNT . A–22
$EOD . A–23
$EOJ . A–23
$FORTRAN . A–24
$JOB . A–27
$LIBRARY . A–28
$LINK . A–28
$MACRO . A–30
$MESSAGE . A–32
$MOUNT . A–33
$PRINT . A–35
$RT11 . A–36
$RUN . A–36
$SEQUENCE . A–37
Sample BATCH Stream . A–38
RT–11 MODE . A–40
Communicating with RT–11 . A–41
Creating RT–11 Mode BATCH Programs . A–42
RT–11 Mode Examples . A–47
Operating Procedures . A–48
RT–11 BATCH and RSX–11D BATCH . A–55

Appendix B DCL Command and Utility Program Equivalents

Index

Figures

16–1 Sample Assembly Listing . 16–7
18–1 Linking ODT with a Program . 18–2
19–1 Updating a Module, Using PAT . 19–2
19–2 Processing Steps Required to Update a Module, Using PAT . 19–3
21–1 Job Block . 21–13
21–2 File Block . 21–14
21–3 QUEUE Request Block . 21–15
21–4 Request Acknowledgment Block . 21–17
21–5 QUEUE Example Program . 21–18

vii

Tables

16–1 Default File Specifications . 16–4
16–2 MACRO Options . 16–5
16–3 MACRO–11 Error Codes . 16–14
16–4 DCL Equivalents of MACRO Utility Operations . 16–16
18–1 Forms of Relocatable Expressions (r) . 18–6
20–1 PIP Option Summary . 20–4
20–2 DCL Equivalents of PIP Utility Operations . 20–20
21–1 QUEMAN Option Summary . 21–5
21–2 Request Flag Bits . 21–13
21–3 Acknowledgment Flag Bits . 21–17
21–4 DCL Equivalents of Queue Utility Operations . 21–20
22–1 RESORC Options . 22–2
22–2 DCL Equivalents of RESORC Utility Operations . 22–16
24–1 SIPP Options . 24–4
24–2 SIPP Commands . 24–7
25–1 SLP Options . 25–3
25–2 SLP Command-File Operators . 25–7
25–3 Descriptions of SLP Line Locators . 25–10
28–1 SRCCOM Command-Line Defaults . 28–2
28–2 SRCCOM Options . 28–5
28–3 DCL Equivalents of SRCCOM Utility Operations . 28–12
29–1 Summary of TRANSFER Qualifiers . 29–10
31–1 VTCOM Command Descriptions . 31–9
A–1 Command Field Options . A–4
A–2 BATCH File Types . A–7
A–3 Specification Field Options . A–8
A–4 Character Explanation . A–9
A–5 BATCH Commands . A–13
A–6 Operator Directives to BATCH Run-Time Handler . A–52
A–7 Differences Between RT–11 BATCH and RSX–11D BATCH . A–55

viii

Preface

Audience

This manual is written for experienced users of the RT–11 operating system.

Document Structure

This manual alphabetically describes the following utilities:

MACRO–11

NITEST

ODT

PATCH

PIP

QUEUE

RESORC

RTMON

SIPP

SLP

SPLIT

SPOOL

SRCCOM

TRANSFER

VBGEXE

VTCOM

Appendix A describes the BATCH utility and Appendix B lists DCL command
equivalents for all the CSI utility commands.

ix

Conventions

The following conventions are used in this guide. Op

Convention Meaning

Braces ({ }) In command syntax examples, braces enclose options that
are mutually exclusive. You can choose only one option from
the group of options that appear in braces.

Brackets ([]) Square brackets in a format line represent optional
parameters, qualifiers, or values, unless otherwise specified.

lowercase
characters

In command syntax examples, lowercase characters repre-
sent elements of a command for which you supply a value.
For example:

.ASSIGN dev: WF RET

UPPERCASE
characters

In command syntax examples, uppercase characters
represent elements of a command that should be entered
exactly as given.

number.
number10

A number followed by a period or the subscript ten indicates
a decimal number.

number
number8

A number without a decimal point (period) or followed by
the subscript eight is an octal number, unless otherwise
indicated. For example, 128. or 12810 is 128 (decimal) and
126 or 1268 is 126 (octal).

RET RET in examples represents the RETURN key. Unless
the manual indicates otherwise, terminate all commands or
command strings by pressing RET .

CTRL/x CTRL/x indicates a control key sequence. While pressing the
key labeled Ctrl, press another key. For example: CTRL/C .

Italics Italics indicate a book title, information and error messages
quoted in paragraphs, syntax elements of a command line
when referenced in a paragraph, or, occasionally, a word
highlighted in a paragraph because of its importance.

x

Associated Documents

Basic Books

• Introduction to RT–11

• Guide to RT–11 Documentation

• RT–11 Commands Manual

• PDP–11 Keypad Editor User’s Guide

• PDP–11 Keypad Editor Reference Card

• RT–11 Quick Reference Manual

• RT–11 Master Index

• RT–11 System Message Manual

• RT–11 System Release Notes

Installation Specific Books

• RT–11 Automatic Installation Guide

• RT–11 Installation Guide

• RT–11 System Generation Guide

Programmer Oriented Books

• RT–11 IND Control Files Manual

• RT–11 System Macro Library Manual

• RT–11 System Subroutine Library Manual

• RT–11 System Internals Manual

• RT–11 Device Handlers Manual

• RT–11 Volume and File Formats Manual

• DBG–11 Symbolic Debugger User’s Guide

xi

Chapter 16

MACRO–11 Assembler Utility (MACRO)

This chapter describes how to assemble MACRO–11 programs on the RT–11
operating system.

Output from the MACRO–11 assembler includes any or all of the following:

• A binary-object file—the machine-readable logical equivalent of the MACRO–11
assembly language source code

• A listing of the source input file

• A cross-reference file listing

• A table-of-contents listing

• A symbol-table listing

To use the MACRO–11 assembler, you should understand how to:

• Initiate and terminate the MACRO–11 assembler.

• Format command strings to specify files MACRO–11 uses during assembly.

• Assign temporary work files to nondefault devices, if necessary.

• Use file-specification options to override file-control directives in the source
program.

• Interpret error codes.

The following sections describe these topics. See the Introduction to RT–11 for an
introductory explanation of how to assemble a MACRO–11 file, and see the PDP–11
MACRO–11 Language Reference Manual for a detailed description of MACRO–11.

MACRO–11 Assembler Utility (MACRO) 16–1

Calling and Terminating the MACRO–11 Assembler
To call the MACRO–11 assembler from the system device, respond to the system dot
prompt by typing:

.R MACRO RET

When the assembler responds with an asterisk (*), it is ready to accept command
string input. (You can also call the assembler using the keyboard monitor MACRO
command; see the RT–11 Commands Manual for a description of this command.)

To terminate the MACRO–11 assembler while it is waiting for input, press CTRL/C

once. This returns you to system monitor control. To halt the assembly process at
any time after you have completed the command string (thus beginning an assembly)
press CTRL/C twice. This returns control to the system monitor, and a system monitor
dot prompt appears on the terminal.

To restart the assembly process, issue the R MACRO command in response to the
system monitor prompt.

16–2 RT–11 System Utilities Manual Part II

Command-Line Syntax
The assembler expects a command string consisting of the following items, in
sequence:

1. Output file specifications

2. An equal sign (=)

3. Input file specifications

Format this command string as follows (punctuation is required where shown):

dev:obj,dev:list,dev:cref/s:type=dev:source-1,...,dev:source-n/s:type

where:

dev specifies any valid RT–11 device for output; any file-structured device for
input.

obj specifies the binary object file that the assembly process produces; the
dev for this file should not be TT or LP.

list specifies the assembly and symbol-listing file that the assembly process
produces.

cref specifies the CREF temporary cross-reference file that the assembly
process produces. (However, if you omit dev:cref, you can still get a cross-
reference listing.)

/s:type specifies a set of options and arguments. (See the MACRO option
descriptions for explanations of these options and arguments.)

source-1
through
source-n

specify MACRO–11 source files or MACRO library files. (These files
contain the MACRO language programs to be assembled. You can specify
as many as six source files.)

The following command string calls for an assembly that uses one source file plus
the system MACRO library to produce an object file BINF.OBJ and a listing. The
listing goes directly to the line printer.

*DK:BINF.OBJ,LP:=DK:SRC.MAC RET

All output file specifications are optional. The system does not produce an output
file unless the command string contains a specification for that file.

The system determines the file type of an output file specification by its position in
the command string. Use commas in place of files you wish to omit. For example, to
omit the object file, you must begin the command string with a comma. The following
command produces a listing, including cross-reference tables, but not binary object
files.

*,LP:/C=(source file specification) RET

You need not include a comma after the final output file specification in the command
string.

Table 16–1 lists the default values for each file specification.

MACRO–11 Assembler Utility (MACRO) 16–3

Command-Line Syntax

Table 16–1: Default File Specifications

File
Default
Device

Default
File Name

Default
File Type

Object DK Must specify OBJ

Listing Same as for object file Must specify LST

Cref DK Must specify TMP

First source DK Must specify MAC

Additional source Same as for preceding
source file

Must specify MAC

System MACRO library System device (SY) SYSMAC SML

User MACRO DK, if first file; otherwise,
same as for preceding
source file

Must specify MLB

Assigning the Temporary Work File
Some assemblies need more symbol table space than available memory can) contain.
When this occurs the system automatically creates a temporary work file called
WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK. To cause the system to assign a different
device, enter the following command:

.ASSIGN dev: WF RET

The dev parameter is the physical name of a file-structured device. The system
assigns WRK.TMP to this device.

If possible, assign WF to the VM device. This can speed up the assembly process
and save you some disk space.

16–4 RT–11 System Utilities Manual Part II

MACRO Options
At assembly time you may need to override certain MACRO directives appearing in
the source programs. You may also need to direct MACRO–11 on the handling of
certain files during assembly. You can satisfy these needs by including special options
in the MACRO–11 command string in addition to the file specifications. Table 16–2
lists the options and describes the effect of each.

The general format of the MACRO–11 command string is repeated below for your
convenience:

dev:obj,dev:list,dev:cref/s:type=dev:source-1,...,dev:source-n/s:type

Table 16–2: MACRO Options

Option Function

/C:type Controls the contents of the cross-reference listing.

/D:type Disables the object-file function; overrides the source program directive
.DSABL.

/E:type Enables the object-file function; overrides the source program directive
.ENABL/L:type listing control, overrides the source program directive .LIST.

/L:type Controls the listing; overrides the source program directive .LIST.

/M Indicates the input file is the MACRO library file.

/N:type Controls the listing; overrides the source program directive .NLIST.

The /M option affects only the particular source file specification to which it is directly
appended in the command string.

Other options are unaffected by their placement in the command string. The /L
option, for example, affects the listing file, regardless of where you place it in the
command string.

The following section describes how to use the MACRO options.

MACRO–11 Assembler Utility (MACRO) 16–5

MACRO Option Descriptions
Listing-Control Options (/L:type and /N:type)

With two options, /L:type and /N:type, you can specify the content and format of
assembler listings. With these options, you can also override at assembly time
the arguments of .LIST and .NLIST directives in a source program.

Specifying the /N option with no argument causes the system to list only the
symbol table, table of contents, and error messages. Specifying the /L option
with no arguments causes the system to ignore .LIST and .NLIST directives
that have no arguments.

Arguments for the /L and /N Listing-Control Options

Argument Default Description

BEX List Binary extensions
BIN List Generated binary code
CND List Unsatisfied conditionals, .IF and .ENDC statements
COM List Comments
HEX No List Selects display radix of HEX
LD No list List control directives with no arguments
LOC List Address location counter
MC List Macro calls, repeat range expansion
MD List Macro definitions, repeat range expansion
ME No list Macro expansions
MEB No list Macro expansion binary code
SEQ List Source line sequence numbers
SRC List Source code
SYM List Symbol table
TOC List Table of contents
TTM No list 132-column line printer format when not specified,

terminal mode when specified

The following example command uses the /L and /N options. This command
requests a listing of binary code throughout the assembly using the 132-column
line-printer format, and suppresses the symbol-table listing.

*I,LP:/L:MEB/N:SYM=FILE RET

Figure 16–1 shows an assembly listing of a small program. In this listing, most
of the /L and /N arguments in the preceding table label the sections of the listing
which they control. For example, the SEQ argument controls the appearance of
the source-line sequence numbers.

16–6 RT–11 System Utilities Manual Part II

M
A

C
R

O
O

p
tio

n
D

escrip
tio

n
s

F
ig

u
re

16–1:
S

am
p

le
A

ssem
b

ly
L

istin
g

PROGRAM TITLE LINE

SRC
.MAIN. MACRO V05.5 Friday 20−Jan−89 11:08 Page 1

BIN COM
SEQ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

BEX
1
2
3
4
5
6
7
8
9

LOC LF=

START:
1$

MC

MC

012
.MCALL
.MACRO
.JSR
.ENDM
.GLOBAL SUBR1, SUBR2

;SYMBOL FOR LINE FEED

;DEFINE A USER MACRO

;TWO EXTERNAL SUBROUTINES
;DEFINE A CSECT
;R2 = ADPS(BUFFER)
;READ A CHAR INTO R0
;AND STORE IN BUFFER
;WAS II A LINE FEED?
;NOPE − KEEP READING
;ELSE FLAG END OF LINE WITH ZERO
;R3 = ADRS(BUFFER) FOR SUBR1
;INVOKE CALL MACRO

;GET A NEW LNE IF CARRY SET
;ELSE CALL OTHER SUBR.

;AND STORE IN ANSWER
;RETURN TO RT−11

;DEFINE ANSWER STORAGE
;INPUT LINE BUFFER

.TTYIN, .EXIT

MD

000000
000000
000000
000004
000010
000012
000016
000020
000022
000026
000032
000036
000040
000044
000050
000054
000056
000060
000062

MACRO V05.5

000062’
000000G

000012

0000062’

000000G

000000G
000004

MEB

002 LF
002 START

.GLOBA= ****** GX .TTYIN= ****** GX
SYM 000000R 002 SUBR2 = ****** GX

000
001
002
3

reads: 252

system: RT−11

COPY OF COMMAND STRING THAT REQUESTED LISTING

000012

NAME

A

AU

AU

Friday 20−Jan−88 11:08 Page 1−1

= 000012

file

ANSWER: .BLKW
BUFFER: .BLKB

.CSECT
MOV
.TTYIN
MOVB
CMPB
BNE
CLRB
MOV
CALL
JSR
BCS
CALL
JSR
MOV
.EXIT
EMT

CALL
PC,NAME

000060R
000062R

(RW,I,GBL,ABS,OVR)
(RW,I,LCL,REL,CON)
(RW,I,GBL,REL,OVR)

(7 Pages)

000000G 000000G 000000G

.MAIN.

(1 Pages)
file writes: 52

.END

PROG
#BUFFER,R2

R0,(R2)+
R0,#LF
1$
(R2)+
#BUFFER,R3
SUBR1
PC,SUBR1
START
SUBR2
PC,SUBR2
R0,ANSWER

^O350

72.
START

000006
000172

012702
000000
110022
120027
001377
105022
012703

004767
103760

004767
010067

104350

000000’

Symbol table

SUBR1 = ****** GXANSWER
BUFFER

. ABS. 000000

PROG
Errors detected:

*** Assembler statistics

Work
Work
Size of work file: 150 Words
Size of core pool: 1792 Words
Operating

Elapsed time: 00:00:12.24
DK:EXAMP1,DK:EXAMP1/C:S:R:M:P:C:E=DK:EXAMP1.MAC

M
A

C
R

O
–11

A
ssem

bler
U

tility
(M

A
C

R
O

)
16–7

MACRO Option Descriptions

Function-Control Options (/D:type and /E:type)
Two options, /E:type and /D:type, allow you to enable or disable functions at
assembly time, and thus influence the form and content of the binary object file.
These functions can override .ENABLE and .DSABL directives in the source
program.

The following table summarizes the acceptable /E and /D function arguments,
their normal default status, and the functions they control.

Arguments for /D and /E Function-Control Options

Argument Default Mode Function

ABS Disable Allows absolute binary output

AMA Disable Assembles all absolute addresses as relative addresses

CDR Disable Treats all source information beyond column 72 as
commentary

CRF Enable Allows cross-reference listing; disabling this function
inhibits CREF output if option /C is active

FPT Disable Truncates floating point values (instead of rounding)

GBL Enable Treats undefined symbols as globals

LC Enable Allows lowercase ASCII source input

LCM Disable Causes the MACRO–11 conditional assembly directives
.if IDN and .if DIF to sense differences between
uppercase and lowercase letters.

LSB Disable Allows local symbol block

MCL Disable Causes MACRO to search all MACRO libraries for a
MACRO definition if an undefined op code is found

PNC Enable Allows binary output

REG Enable Allows mnemonic definitions of registers

For example, if you type the following commands the system assembles a file
while treating columns 73 through 80 of each source line as commentary.

.R PIP RET

*SRCPRG.MAC=CR:/A RET

* CTRL/C

.R MACRO RET

*,LP:=SRCPRG.MAC/E:CDR RET

Because MACRO–11 is a two-pass assembler, you cannot read directly from
any non-file-structured device. You must use PIP (or the keyboard monitor
COPY command) to transfer input to a file-structured device before beginning
the assembly.

Use either the function-control or listing-control option and arguments at
assembly time to override corresponding listing or function-control directives in

16–8 RT–11 System Utilities Manual Part II

MACRO Option Descriptions

the source program. For example, assume that the source program contains the
following sequence:

.NLIST MEB
.
.(MACRO references)
.

.LIST MEB

In this example, you disable the listing of macro expansion binary code for
some portion of the code and subsequently resume MEB listing. However, if
you indicate /L:MEB in the assembly command string, the system ignores both
the .NLIST MEB and the .LIST MEB directives. This enables MEB listing
throughout the program.

Macro Library-File Designation Option (/M)
The /M option is meaningful only if appended to a source file specification. It
designates its associated source file as a macro library.

If the command string does not include the standard system macro library
SYSMAC.SML, the system automatically includes it as the first source file in
the command string.

When the assembler encounters an .MCALL directive in the source code, it
searches macro libraries according to their order of appearance in the command
string. When it locates a macro record whose name matches that given in the
.MCALL, it assembles the macro as indicated by that definition. Thus, if two
or more macro libraries contain definitions of the same macro name, the macro
library that appears rightmost in the command string takes precedence.

Consider the following command string:

* (output file specification)=ALIB.MLB/M,BLIB.MLB/M,XIZ

Assume that each of the two macro libraries, ALIB and BLIB, contain a macro
called .BIG, but with different definitions. Then, if source file XIZ contains
a macro call .MCALL .BIG, the system includes the definition of .BIG in the
program as it appears in the macro library BLIB.

Moreover, if macro library ALIB contains a definition of a macro called .READ,
that definition of .READ overrides the standard .READ macro definition in
SYSMAC.SML.

Cross-Reference (CREF) Table-Generation Option (/C:type)
A cross-reference (CREF) table lists all or a subset of the symbols in a source
program, identifying the statements that define and use the symbols.

Obtaining a Cross-Reference Table

To obtain a CREF table you must include the /C:type option in the command
string. Usually you include the /C:type option with the assembly listing file
specification, though you can place it anywhere in the command string.

MACRO–11 Assembler Utility (MACRO) 16–9

MACRO Option Descriptions

The /C option can have six arguments, each separated from one another by a
colon. These arguments are alphabetically summarized as follows.

Arguments for /C Option

Argument Description

C Lists control and program-section symbols

E Lists error-code symbols and groupings

M Lists MACRO symbolic names

P Lists permanent symbols including instructions and directives

R Lists register symbols

S Lists user-defined symbols

NOTE
Specifying /C with no argument is equivalent to
specifying /C:S:M:E. That special case excepted,
you must explicitly request each CREF section by
including its arguments.

You do not get a cross-reference file if you do not
specify the /C option, even if you include a CREF file
specification in the command string.

RT–11 places requested cross-reference tables after the MACRO assembly listing.
Each table begins on a new page.

The following list describes the symbol contents of each of the six cross-reference
tables. Each table begins on a page numbered to reference the table:

• S-1

User-defined program symbols, beginning on page S-1.

These are labels used in the program and symbols defined by a direct
assignment statement.

• R-1

Register equate symbols, beginning on page R-1.

These normally include R0, R1, R2, R3, R4, R5, SP, and PC, unless the REG
function has been disabled through a .DSABL REG directive or the /D:REG
option. Also included are any other symbols that are defined in the program
by the construct:

symbol = %n

where n represents the register number and has a value between 0 and 7.

16–10 RT–11 System Utilities Manual Part II

MACRO Option Descriptions

• M-1

MACRO symbols, beginning with page M-1.

These are the symbols defined by .MACRO and .MCALL directives.

• P-1

Permanent symbols, beginning with page P-1.

These are all operation mnemonics and assembler directives.

• C-1

Program sections, beginning with page C-1.

These are the names you specify as operands of .CSECT or .PSECT directives.
Also included are the default program sections produced by the assembler, the
blank p-sect, and the absolute p-sect, .ABS.

• E-1

Errors, beginning with page E-1.

These are any errors, by error type, flagged by the assembler.

RT–11 displays symbols and also symbol values, control sections, and error codes,
if applicable, beginning at the left margin of the page. References to each
symbol are listed on the same line, left-to-right across the page. The system
lists references in the form P-L, where P is the page in which the symbol, control
section, or error code appears, and L is the line number on the page.

A number sign (#) next to a reference indicates a symbol definition. An asterisk
(*) next to a reference indicates a destructive reference—that is, an operation
that alters the contents of the addressed location.

The Sample Cross-Reference Table on the next page lists all the CREF tables
the assembler produces for the MACRO–11 program displayed in Figure 16–1.

MACRO–11 Assembler Utility (MACRO) 16–11

Sample Cross-Reference Tables
Note that these tables are combined onto one page. The page breaks after each
table have been deleted to save space.
.MAIN. MACRO V05.5 Friday 25-Jan-90 11:08 Page S-1
Cross reference table (CREF V05.5)

.GLOBA 1-6

.TTYIN 1-9
ANSWER 1-20* 1-23#
BUFFER 1-8 1-14 1-24#
LF 1-1# 1-11
START 1-8# 1-17 1-25
SUBR1 1-6 1-15 1-16
SUBR2 1-6 1-18 1-19

.MAIN. MACRO V05.5 Friday 25-Jan-90 11:08 Page R-1
Cross reference table (CREF V05.5)

PC 1-15* 1-16* 1-18* 1-19*
R0 1-10 1-11 1-20
R2 1-8* 1-10* 1-13*
R3 1-14*

.MAIN. MACRO V05.5 Friday 25-Jan-90 11:08 Page M-1
Cross reference table (CREF V05.5)

.EXIT 1-2# 1-21

.TTYIN 1-2#
CALL 1-3# 1-15 1-18

.MAIN. MACRO V05.5 Friday 25-Jan-90 11:08 Page P-1
Cross reference table (CREF V05.5)

.BLKB 1-24

.BLKW 1-23

.CSECT 1-7

.END 1-25

.MACRO 1-3

.MCALL 1-2
BCS 1-17
BNE 1-12
CLRB 1-13
CMPB 1-11
EMT 1-21 1-22
JSR 1-15 1-16 1-18 1-19
MOV 1-8 1-14 1-20
MOVB 1-10

.MAIN. MACRO V05.5 Friday 25-Jan-90 11:08 Page C-1
Cross reference table (CREF V05.5)

0-0
. ABS. 0-0
PROG 1-7

.MAIN. MACRO V05.5 Friday 25-Jan-90 11:08 Page E-1
Cross reference table (CREF V05.5)

A 1-6 1-9 1-12
U 1-9 1-12

16–12 RT–11 System Utilities Manual Part II

Specifying a Cross-Reference Table File
You specify a cross-reference listing by means of the /C option. When you do so
the system creates a temporary work file whose default name is DK:CREF.TMP.

You can explicitly specify the file to use as the temporary work file by naming
it as the third output file. The system then uses your file specification instead
of DK:CREF.TMP and deletes it automatically after producing the CREF listing.
The following command string causes the system to use RK2:TEMP.TMP as the
temporary CREF file:

*,LP:,RK2:TEMP.TMP=SOURCE/C RET

Note that you must still include the /C option to control the form and content of
the listing. Your specification for a cross-reference file is ignored if the /C option
is not also present in the command string.

Another way to assign an alternate device for the CREF.TMP file is to enter the
following command prior to entering R MACRO:

.ASSIGN dev: CF RET

This method is preferred if you intend to do several assemblies, because it relieves
you from having to include the dev:cref specification in each command string. If
you enter the ASSIGN dev: CF command, and later include a CREF specification
in a command string, the specification in the command string prevails for that
assembly only.

If you assign CF to a physical device, that device also becomes the default device
for the LINK temporary file CREF.TMP created when you use the LINK/GLOBAL
(/N) option.

If your command string does not include a CREF file specification, the system
automatically generates a temporary file on device DK. If you need to have a
device other than DK contain the temporary CREF file, you must include the
DEV:CREF field in the command string.

If the listing device is magtape, load the handler for that device before issuing the
command string, using the monitor LOAD command (see the RT–11 Commands
Manual for a description of that command).

MACRO–11 Assembler Utility (MACRO) 16–13

MACRO–11 Error Codes
The MACRO–11 system prints diagnostic error codes as the first character of a
source line on which the assembler detects an error. This error code identifies the
type of error; for example, a code of M indicates a multiple definition of a label.
Table 16–3 shows the error codes that might appear on an assembly listing. For
detailed information on error code interpretation and debugging, see the PDP–11
MACRO–11 Language Reference Manual.

Table 16–3: MACRO–11 Error Codes

Error Code Meaning

A Addressing or relocation error. This code can be generated by any of the
following:

• A conditional branch instruction target that is too far above or below the
current statement. Conditional branch targets must be within -128 to
-127 (decimal) words of the instruction.

• A statement that makes an invalid change to the current location counter.
For example, a statement that forces the current location counter to cross
a .PSECT boundary can generate this code.

• A statement that contains an invalid address expression. For example,
an absolute address expression that has a global symbol, relocatable
value, or complex relocatable value can generate this code. The directives
.BLKB, .BLKW, and .REPT must have an absolute value or an expression
that reduces to an absolute value.

• Separate expressions in the statement that are not separated by commas.

• A global definition error. If .ENABL GBL is set, MACRO–11 scans the
symbol table at the end of the first pass and marks any undefined symbols
as global references. If one of these symbols is subsequently defined in
the second pass, a general addressing error occurs.

• A global assignment statement that contains a forward reference to
another symbol.

• An expression that defines the value of the current location counter and
contains a forward reference.

• An invalid argument for an assembler directive.

• An unmatched delimiter or invalid argument construction.

B Instruction or word data is being assembled at an odd address. The system
increments the location counter by 1, and continues.

D A nonlocal label is defined more than once, specifically in an earlier statement.

E The .END assembler directive at the end of the source input is missing. The
system supplies an .END statement and completes the current assembly pass.

16–14 RT–11 System Utilities Manual Part II

MACRO–11 Error Codes

Table 16–3 (Cont.): MACRO–11 Error Codes

Error Code Meaning

I MACRO–11 has detected one or more invalid characters. A question mark
(?) replaces each invalid character on the assembly listing, and MACRO–11
continues after ignoring the character.

L An input line is longer than 132 characters. In particular, this error
occurs when the expansion of a macro causes excessive substitution of real
arguments for dummy arguments.

M A label is the same as an earlier label (multiple definition of a label). For
example, two labels whose first six characters are identical can generate this
error.

N A number is not in the current program radix. MACRO–11 processes this
number as a decimal value.

O Op-code error. Exceeding the permitted nesting level for conditional
assemblies causes this error. Attempting to expand a macro that remains
unidentified after an .MCALL search can also generate this code.

P Phase error. The definition or value of a label differs from one assembler pass
to the next, or a local symbol occurs more than once in a local symbol block.

Q Questionable syntax. For example, missing arguments, too many arguments,
or an incomplete instruction scan can generate this error code.

R Register-type error. For example, if the source program attempts an invalid
reference to a register, the assembler can generate this error code.

T Truncation error. A number that generates more than 16 bits in a word, or
an expression in a .BYTE directive or trap instruction, can cause this error
code.

U Undefined symbol. The assembler assigns the undefined symbol a constant
zero value.

Z Incompatible instruction. This code is a warning that the instruction is not
defined for all PDP–11 hardware configurations.

MACRO–11 Assembler Utility (MACRO) 16–15

DCL Equivalents of MACRO Utility Operations
Table 16–4 lists the DCL MACRO command options that are equivalent to MACRO
utility operations.

The first part of the table lists that part of the CSI MACRO command syntax that
is equivalent to a DCL MACRO option. The rest of the table alphabetically lists all
the MACRO options having DCL equivalents.

Table 16–4: DCL Equivalents of MACRO Utility Operations

CSI Command/Option DCL Option

,filespec=
(no 1st output filespec)

/NOOBJECT

filespec=
(1st output filespec)

/OBJECT[:filespec]

,filespec=
(2nd output filespec)

/LIST[:filespec]

filespec[size]=
(1st output filespec)

/ALLOCATE:size

/C[:type[...:type]] /CROSSREFERENCE[:type[...:type]]

/D:type[...:type] /DISABLE:type[...:type]

/E:type[...:type] /ENABLE:type[...:type]

/L:type /SHOW:type

/M /LIBRARY

/N:type /NOSHOW:type

Note that the 1- and 3-letter type arguments to the utility options are the same
arguments as those to the MACRO command qualifiers with three exceptions:

• The DCL /DISABLE and /ENABLE qualifier have a DBG type that the CSI
command does not have.

• The CSI /D and /E options have a CRF and an MCL type that the DCL command
does not have.

16–16 RT–11 System Utilities Manual Part II

Chapter 17

Network Interconnect Test Utility (NITEST)

The Network Interconnect Test Utility (NITEST) is an unsupported utility that lets
you verify that communications are possible between one machine on an Ethernet
running RT–11 V5.2 and higher and another machine on the same Ethernet running
NITEST or DECNET.

Building NITEST
NITEST is distributed in commented source form and is built by executing the
following commands:

.MACRO NITEST RET

.LINK NITEST RET

Altering NITEST
Normally, NITEST sends the loopback request to the loopback assist multicast
address. Changing the address specified, following label XBUFF, can let NITEST
verify that communication is possible between two specific machines.

Running NITEST
Execute NITEST using one of the following commands:

.NITEST RET (CCL, runs NITEST from device SY)

.R NITEST RET (Runs NITEST from device SY)

.RUN NITEST RET (Runs NITEST from device DK)

.RUN dev:NITEST RET (Runs NITEST from device dev)

Network Interconnect Test Utility (NITEST) 17–1

Using NITEST
When NITEST is started, it reports the physical address of the Ethernet interface
board installed in the machine. It then indicates that loopback assist is enabled and
prompts the user to press RETURN ; for example:

.R NITEST RET

Station address = xx-xx-xx-xx-xx-xx
Loopback assist is enabled
Type <RETURN> to test:

If you press RETURN in response to the prompt, NITEST sends a loopback request
message to the loopback assist multicast address. If NITEST has been altered as
described above, NITEST sends a request to a station’s physical address.

If NITEST receives no response to the loopback request message within 2 seconds,
NITEST reports it and returns to the prompt; for example:

Type <RETURN> to test: RET

?NITEST-W-No Response
Type <RETURN> to test:

If it receives a response, NITEST:

• Reports the address of the responding station.

• Compares the received data with the transmitted data and reports that the data
is correct or corrupted.

• Displays the prompt.

For example:

Type <RETURN> to test: RET

?NITEST-I-Response received from xx-xx-xx-xx-xx-xx, data correct
Type <RETURN> to test:

In the following example, NITEST reports that the data is corrupted:

Type <RETURN> to test: RET

?NITEST-I-Response received from xx-xx-xx-xx-xx-xx, data corrupt
Type <RETURN> to test:

NITEST Operation
When executing, NITEST responds to loopback requests (protocol 90-00) sent to the
station’s physical address or to the loopback assist multicast address.

17–2 RT–11 System Utilities Manual Part II

NITEST Error Messages

?NITEST-I-Response received from xx-xx-xx-xx-xx-xx, data correct

A response was received from station xx-xx-xx-xx-xx-xx, and the received data
matched the transmitted data. Indicates a successful test.

?NITEST-I-Response received from xx-xx-xx-xx-xx-xx, data corrupt

A response was received from station xx-xx-xx-xx-xx-xx, but the received data
did not match the transmitted data.

?NITEST-U-Enable multicast address error

An error occurred in enabling the loopback assist multicast address. See the
ENABLE MULTICAST ADDRESS spfun described in the Ethernet handler
documentation.

?NITEST-U-Enable protocol error

An error occurred in enabling the loopback protocol. See the errors for the
ENABLE PROTOCOL spfun described in the Ethernet handler documentation.

?NITEST-U-Invalid device

The handler required for Ethernet access (NC for PRO-300 series processors, NQ
for Q-bus processors, and NU for unibus processors) was not found in the monitor
device tables. Install the required handler and run the test again.

?NITEST-U-Lookup error

An error occurred while attempting to open a channel to the Ethernet handler.
See the errors for a .LOOKUP.

?NITEST-U-No queue element

A programmed request requiring a queue element was rejected because there
was no queue element. This message should not occur.

?NITEST-U-Unit allocation error

An error occurred in allocating a unit of the Ethernet handler. See the errors for
the ALLOCATE UNIT spfun described in the Ethernet handler documentation.

?NITEST-W-No Response

Following transmission of a loopback request, there was no response within 2
seconds. Hardware problems may be affecting transmission or reception; check
the interface. There may be no stations on the Ethernet, or none which respond
to loopback messages.

Network Interconnect Test Utility (NITEST) 17–3

Chapter 18

On-Line Debugging Technique (ODT)

The On-Line Debugging Technique (ODT) Utility aids in debugging assembly
language programs by:

• Displaying the contents of any location for examination or alteration.

• Running all or any portion of an object program using the breakpoint feature.

• Searching the object program for specific bit patterns.

• Searching the object program for words that refer to a specific word.

• Calculating offsets for relative addresses.

• Filling a single word, block of words, byte or block of bytes with a designated
value.

Make sure you have an assembly listing and a link map available for the program
you want to debug with ODT.

You can make minor on-line corrections to the program during the debugging session.
Then you can verify the corrections by executing the program under the control of
ODT. If you need to make major changes, such as adding a missing subroutine, note
them on the assembly listing and incorporate them in a new assembly.

See the RT–11 System Internals Manual for information about debugging interrupt
service routines, device handlers, multiterminal jobs, extended memory and virtual
jobs. See also the DBG–11 Symbolic Debugger User’s Guide for a description of the
DBG–11 symbolic debugging package that lets you interactively debug an assembly-
language program. This is a more powerful debugger than ODT.

Virtual On-Line Debugging Technique (VDT)
The Virtual On-Line Debugging Technique (VDT) utility is a variation of ODT. ODT
accesses the hardware directly for terminal I/O; VDT uses RT–11 system services for
terminal I/O. ODT cannot be used:

• On Professional 350/380 processors

• On a terminal line supported under a multi-terminal generated monitor

• With a virtual job

VDT can be used in the preceding three situations. To use VDT, follow all the
instructions in this chapter for ODT except replace ODT with VDT in the LINK
command.

On-Line Debugging Technique (ODT) 18–1

Calling and Using ODT
ODT is a relocatable object module. You can link ODT with your program (using the
RT–11 Linker) for an absolute area in memory and load it with your program.

Link ODT low in memory relative to the program, but if you do link ODT high in
memory, be sure that the buffer space for your program is contained within program
bounds. Otherwise, if your program uses dynamic buffering, program execution may
destroy ODT in memory. Figure 18–1 shows the relationship between ODT and the
program MYPROG in memory.

To link ODT low in memory relative to your program, the program must declare
a named PSECT by using the .PSECT directive. Because the linker orders blank
PSECTs below named PSECTs in memory, your program should declare a named
PSECT so that ODT will be linked lower in memory than your program.

Figure 18–1: Linking ODT with a Program

High
Memory

Low
Memory

MYPROG
and Its
Buffers

Dynamic
Buffering

ODT Dynamic
Buffering

ODT

MYPROG
and Its
Buffers

ODT Dynamic
Buffering

ODT ODT MYPROG

Recommended Also Correct Not Recommended

MYPROG

MYPROG

For example, if you include the directive .PSECT MYPROG in the program
MYPROG, the following command will cause the linker to link ODT low in memory
relative to MYPROG, and create the executable module MYPROG.SAV:

.LINK/DEBUG/MAP:TT: MYPROG RET

After it has been loaded in memory with your program, ODT has three legal start
or restart addresses.

• The lowest (O.ODT) address, used for normal entry, retaining the current
breakpoints.

The system uses as an absolute address the address of the entry point O.ODT
shown in the linker load map.

• The next (O.ODT+2) is a restart address that clears all breakpoints and
reinitializes ODT, saving the general registers and clearing the relocation
registers.

• The last address (O.ODT+4) is used to reenter ODT. A REENTER saves the
processor status and general registers, and removes the breakpoint instructions

18–2 RT–11 System Utilities Manual Part II

Calling and Using ODT

from your program. ODT displays the bad entry (BE) error message. Breakpoints
that were set are reset by the next ;G command. (;P is invalid after a BE
message.) The ;G and ;P commands for running the program are explained later
in this chapter.

If you link ODT with an overlay-structured file, it should reside in the root segment
so that it will always be in memory. Remove all breakpoints from the current
overlay segment before execution proceeds to another overlay segment. A breakpoint
inserted in an overlay is destroyed if it is overlaid during program execution.

Examples
1. This example command links ODT low in memory relative to MYPROG, creating

the executable module MYPROG.SAV. Running MYPROG causes ODT to start
automatically:
.LINK/MAP:TT:/DEBUG MYPROG
RT-11 LINK V08.00 Load Map Thursday 04-Nov-82 14:15 Page 1
MYPROG .SAV Title: ODT Ident: 05.00

Section Addr Size Global Value Global Value Global Value

. ABS. 000000 001000 = 256. words (RW,I,GBL,ABS,OVR)
ODT 001000 006152 = 1589. words (RW,I,LCL,REL,CON)

O.ODT 001232
PROG 007152 002052 = 533. words (RW,I,LCL,REL,CON)

START 007152

Transfer address = 001232, High limit = 011222 = 2377. words

.

.R MYPROG

ODT V05.00
*

2. This example command links MYPROG low in memory relative to ODT and
specifies O.ODT as the transfer address. Running MYPROG causes ODT to
start automatically. The advantage of using this method is that MYPROG is
loaded at its normal, execution-time address:
.LINK/MAP:TT: MYPROG,ODT/TRANSFER
Transfer symbol? O.ODT
RT-11 LINK V08.00 Load Map Thursday 4-Nov-82 14:15 Page 1
MYPROG .SAV Title: ODT Ident: 05.00
Section Addr Size Global Value Global Value Global Value

. ABS. 000000 001000 = 256. words (RW,I,GBL,ABS,OVR)
PROG 001000 002052 = 533. words (RW,I,LCL,REL,CON)

START 001000
ODT 003052 006152 = 1589. words (RW,I,LCL,REL,CON)

O.ODT 003304

Transfer address = 003304, High limit = 011222 = 2377. words

.

.R MYPROG

ODT V05.00
*

On-Line Debugging Technique (ODT) 18–3

Calling and Using ODT

3. This example command is similar to the previous example, except that execution
does not automatically begin with ODT. When you start the program (MYPROG,
in this case), you must specify the address of O.ODT as shown in the link map:
.LINK/MAP:TT: MYPROG,ODT
RT-11 LINK V08.00 Load Map Thursday 04-Nov-82 14:15
Page 1
MYPROG .SAV Title: ODT Ident: 05.00
Section Addr Size Global Value Global Value Global Value

. ABS. 000000 001000 = 256. words (RW,I,GBL,ABS,OVR)
PROG 001000 002052 = 533. words (RW,I,LCL,REL,CON)

START 001000
ODT 003052 006152 = 1589. words (RW,I,LCL,REL,CON)

O.ODT 003304

Transfer address = 003304, High limit = 011222 = 2377. words

.GET MYPROG

.START 3304

ODT V05.00
*

4. This example command links ODT with a bottom address of 4000, then loads
ODT.SAV and MYPROG.SAV into memory. As in the previous example, when
you start the program, you must specify the address of O.ODT as shown in the
link map:

.LINK/MAP:TT: ODT/BOTTOM:4000
RT-11 LINK V08.00 Load Map Thursday 04-Nov-82 14:15
Page 1
ODT .SAV Title: ODT Ident: 05.00 /B:004000
Section Addr Size Global Value Global Value Global Value

. ABS. 000000 004000 = 1024. words (RW,I,GBL,ABS,OVR)
ODT 004000 006152 = 1589. words (RW,I,LCL,REL,CON)

O.ODT 004232

Transfer address = 004232, High limit = 012150 = 2612. words

.GET ODT.SAV

.GET MYPROG.SAV

.START 004232

ODT V05.00
*

5. You can restart ODT by specifying O.ODT+2 as the start address. This
reinitializes ODT and clears all breakpoints. For example:

.START 4234
*

6. You can reenter ODT by specifying O.ODT+4 as the start address. For example:

.START 4236

BE004242
*

18–4 RT–11 System Utilities Manual Part II

Calling and Using ODT

If ODT is waiting for a command, pressing CTRL/C calls the keyboard monitor. The
monitor responds with a ^C on the terminal and waits for a command. (You can use
the REENTER command to reenter ODT only if your program has set the reenter
bit and ODT is linked high in memory relative to the program; otherwise, ODT is
reentered at address O.ODT+6.)

If you press CTRL/U during a search display, the search terminates and ODT displays
an asterisk prompt.

DCL Equivalents of ODT Operations
ODT is not accessible through DCL commands.

On-Line Debugging Technique (ODT) 18–5

Relocation
When the assembler produces a relocatable object module, the base address of the
module is assumed to be location 000000. The addresses of all program locations,
as shown in the assembly listing, are relative to this base address. After you link
the module, many of the values and all of the addresses in the program will be
incremented by a constant whose value is the actual absolute base address of the
module after it has been relocated. This constant is called the relocation bias for
the module. Since a linked program may contain several relocated modules, each
with its own relocation bias, and since, in the process of debugging, these biases will
have to be continually subtracted from absolute addresses to relate relocated code
to assembly listings, ODT provides automatic relocation.

The basis of automatic relocation is the eight relocation registers, numbered 0
through 7. You can set them to the values of the relocation biases at different times
during debugging. Obtain relocation biases by consulting the link map. Once you
have set a relocation register, ODT uses it to relate relative addresses to absolute
addresses. For more information on the relocation process, see the Linker chapter.

ODT evaluates a relocatable expression as a 16-bit, six-digit (octal) number. You can
type an expression in any one of the three forms presented in Table 18–1.

Table 18–1: Forms of Relocatable Expressions (r)

Form Expression Value of r

A k The value of k.

B n,k The value of k plus the contents of relocation register n. (If the n
part of this expression is greater than 7, ODT uses only the last
octal digit of n.)

C C or
C,k or
n,C or
C,C

Whenever you type the letter C, ODT replaces C with the contents
of a special register called the constant register. (This value has the
same role as the k or n that it replaces. The constant register is
designated by the symbol $C and may be set to any value.)

Relocation register commands are discussed in detail later in the chapter. In
Table 18–1, the symbol n stands for an integer in the range 0 through 7 inclusive,
and the symbol k stands for an octal number up to six digits long, with a maximum
value of 177777. If you type more than six digits, ODT takes the last six digits typed,
truncated to the low-order 16 bits. If the symbol k is prefixed by a minus sign, its
value is the two’s complement of the number typed. For example:

k (number typed) Values

1
–1

400
–177730
1234567

000001
177777
000400
000050
034567

18–6 RT–11 System Utilities Manual Part II

Commands and Functions
ODT prompts for a command by displaying an asterisk on the terminal screen. You
can issue most ODT commands in response to the asterisk:

• Examine a word and change it.

• Run the object program in its entirety or in segments.

• Search memory for specific words or references to them.

Display Formats
Normally, when ODT displays addresses it attempts to display them in relative
form (Form B in Table 18–1). ODT looks for the relocation register whose value
is closest to, but less than or equal to, the address to be displayed. It then
displays the address relative to the contents of the relocation register. However,
if no relocation register fits the requirement, the address is displayed in absolute
form. Since the relocation registers are initialized to –1 (the highest number),
the addresses initially display in absolute form. If you change the contents of any
relocation register, it can then, depending on the command, qualify for relative
form.

For example, suppose relocation registers 1 and 2 contain 1000 and 1004
respectively, and all other relocation registers contain much higher numbers.
In this case, the following sequence might occur (the slash command causes
the contents of the location to be displayed; pressing LINE accesses the next
sequential location):

*1000;1R ;sets relocation register 1 to 1000
*1,4;2R ;sets relocation register 2 to 1004
*774/000000 LF ;opens location 774
000776 /000000 LF ;opens location 776
1,000000 /000000 LF ;absolute location 1000
1,000002 /000000 LF ;absolute location 1002
2,000000 /000000 ;absolute location 1004

The display format is controlled by the format register, $F. Normally, this register
contains 0; ODT displays relative addresses whenever possible. You can open $F
and change its contents to a nonzero value, however. In that case, all addresses
will be displayed in absolute form. See the discussion on accessing internal
registers later in this chapter.

Opening, Changing, and Closing Locations
An open location is one whose contents ODT displays for examination, making
those contents available for change. In a closed location, the contents are no
longer available for change. Several commands are used for opening and closing
locations.

Any command (except for the slash and backslash commands) that opens an
additional location causes the currently open location to be closed. You can
change the contents of an open location by typing the new contents followed by

On-Line Debugging Technique (ODT) 18–7

Commands and Functions

a single-character command that requires no argument; that is, LINE , ^ , RET ,
<– , @ , > , or < .

Slash (/)

One way to open a location is to type its address followed by a slash. For example:

*1000/012746

This command opens location 1000 for examination and makes it ready to be
changed.

If you do not want to change the contents of an open location, press RETURN

to close the location. ODT displays an asterisk prompt and waits for another
command. However, to change the word, type the new contents before issuing
the command to close the location. For example:

*1000/012746 012345 RET

*

This command inserts the new value, 012345, in location 1000 and closes the
location. ODT displays an asterisk, prompting for another command.

Used alone, the slash reopens the last location opened. For example:

*1000/012345 2340 RET

*/002340

This command opens location 1000, changes its address to 002340, and then
closes the location. ODT displays an asterisk prompt for another command.
Typing the / character reopens the last location opened and verifies its value.

Opening an additional location automatically closes the currently open location
before opening the new location.

If you specify an odd numbered address with a slash, ODT opens the location as
a byte, and then behaves as if you had typed a backslash.

Backslash (\)

ODT operates on bytes, as well as on words. Typing the address of the byte
followed by a backslash character opens the byte and displays the byte value
at the specified address, interprets the value as ASCII code, and displays the
corresponding character (if possible) on the screen. ODT displays a ? when it
cannot interpret the ASCII value as a character:

*1001\101 =A

Typing just a backslash reopens the last open byte. If a word was previously
open, the backslash reopens its even byte:

*1002/000004 \004 =?

LINE (LF)

If you press LINE when a location is open, ODT closes the open location and opens
the next sequential location:

18–8 RT–11 System Utilities Manual Part II

Commands and Functions

*1000/002340 LF

001002 /012740

In this example, pressing LINE caused ODT to display the address of the next
location and its contents and to wait for further instructions. After the preceding
operation, location 1000 is closed and 1002 is open. You can modify the open
location by typing the new contents.

If a byte location was open, pressing LINE opens the next byte location.

Circumflex or Up-Arrow

If you type the circumflex (or up-arrow) when a location is open, ODT closes the
open location and reopens the previous location. To continue from the preceding
example:

*001002/012740 ^
001000 /002340

This command closes location 1002 and opens location 1000. You may modify the
open location by typing the new contents.

If the opened location was a byte, then the circumflex opens the previous byte.

Underline or Back-Arrow (_ or <–)

If you type the underline (or back-arrow) to an open word, ODT interprets the
contents of the currently open word as an address indexed by the program counter
(PC) and opens the addressed location:

*1006/000006 _
001016 /000405

Notice in this example that the open location, 1006, is indexed by the PC as if it
were the operand of an instruction with addressing mode 67 (PC relative mode).

You can modify the opened location before you press LINE , circumflex, or
underline. Also, the new contents of the location will be used for address
calculations using the underline command. For example:

*100/000222 4 LF ;modifies to 4 and open next location
000102 /000111 6^ ;modifies to 6 and open previous location
000100 /000004 200_ ;changes to 200 and open location indexed
000302 /123456 ;by PC

On-Line Debugging Technique (ODT) 18–9

Commands and Functions

Open the Addressed Location (@)

You can use the at (@) symbol to optionally modify a location, close it, and then
use its contents as the address of the location to open next. For example:

*1006/001044 @ ;opens location 1044 next
001044 /000500

*1006/001044 2100@ ;modifies to 2100 and opens location
002100 /000167 ;2100

Relative Branch Offset (>)

Use the right-angle bracket (>) to modify a location, close it, and then use its
low-order byte as a relative branch offset to the next word to be opened. For
example:

*1032/000407 301> ;modifies to 301 and interprets as a
000636 /000010 ;relative branch

Note that 301 is a negative offset (–77). ODT doubles the offset before it adds it
to the PC; therefore, 1034+(–176)=636.

Return to Previous Sequence (<)

Use the left-angle bracket (<) to modify a location, close it, and then open the
next location of the previous sequence that was interrupted by an underline, @,
or right-angle bracket command. Note that underline, @, or right-angle bracket
causes a sequence change to the open word. If a sequence change has not
occurred, the left-angle bracket opens the next location the same as pressing
LINE . This command operates on both words and bytes:

*1032/000407 301> ;> causes a sequence change
000636 /000010 < ;returns to original sequence
001034 /001040 @ ;@ causes a sequence change
001040 /000405 \005 = < ;< now operates on byte
001035 \002 =? < ;< acts like LF

001036 \004 =?

Accessing General Registers 0–7
Open the program’s general registers 0–7 with a command in the following
format:

$n/

The symbol, n, is an integer in the range 0–7 that identifies the desired register.
When you open these registers, you can examine them or change their contents
by typing in new data, as with any addressable location. For example:

*$0/000033 RET ;examines register 0 then closes it
*

*$4/000474 464 RET ;opens register 4, changes its contents
* ;to 000464, then closes the register

18–10 RT–11 System Utilities Manual Part II

Commands and Functions

The preceding example can be verified by typing a slash in response to ODT’s
asterisk:

*/000464

You can use LINE , circumflex, or @ command when a register is open.

Accessing Internal Registers
The program’s status register contains the condition codes of the most recent
operational results and the interrupt priority level of the object program. Open
it by typing $S. For example:

*$S/000311

$S identifies the address of the status register. In response to $S in the preceding
example, ODT displays a 16-bit word, of which only the low-order eight bits are
meaningful. Bits 0–3 indicate whether a carry, overflow, zero, or negative (in
that order) has resulted, and bits 5–7 indicate the interrupt priority level (in the
range 0–7) of the object program. (Refer to the PDP–11 Processor Handbook for
the Status Register format.)

You can also use the $ to open certain other internal locations listed in the
following table.

Internal Registers

Register Contents

$B First word of the breakpoint table

$M Mask location for specifying which bits are to be examined during a bit
pattern search

$P Defines the operating priority of ODT

$S Condition codes (bits 0–3) and interrupt priority level (bits 5–7)

$C Constant register

$R Relocation register 0, the base of the Relocation Register table

$F Format register

Radix–50 Mode (X)
Many PDP–11 system programs employ the Radix–50 mode of packing certain
ASCII characters three-to-a-word. You can use Radix–50 mode by specifying the
MACRO .RAD50 directive. ODT provides a method for examining and changing
memory words packed in this way with the X command.

When you open a word and type the X command, ODT converts the contents of
the opened word to its three-character Radix–50 equivalent and displays these
characters on the terminal. You can then type one of the responses from the
following table.

On-Line Debugging Technique (ODT) 18–11

Commands and Functions

Radix–50 Terminators

Response Effect

RETURN key RETURN Closes the currently open location.

LINE FEED key LINE Closes the currently open location and opens the next one in
sequence.

Circumflex ^ Closes the currently open location and opens the previous
one in sequence.

Any three
characters whose
octal code is 040
(space) or greater

Converts the three characters into packed Radix–50 format.
Valid Radix–50 characters for this response are:
.
$
Space
0 through 9
A through Z

If you type any other characters, the resulting binary number is unspecified;
that is, no error message displays and the result is unpredictable. You must
type exactly three characters before ODT resumes its normal mode of operation.
After you type the third character, the resulting binary number is available to
be stored in the opened location. Do this by closing the location in any one of the
ways listed in the preceding table. For example:

*1000/042431 X=KBI CBA RET

*1000/011421 X=CBA

After ODT converts the three characters to binary, the binary number can be
interpreted in one of many different ways, depending on the command that
follows. For example:

*1234/063337 X=PRO XIT/013704

Since the Radix–50 equivalent of XIT is 113574, the final slash in the example
will cause ODT to open location 113574 if it is a valid address.

Breakpoints
The breakpoint feature helps you monitor the progress of program execution. You
can set a breakpoint at any instruction that is not referenced by the program for
data. When a breakpoint is set, ODT replaces the contents of the breakpoint
location with a BPT trap instruction so that program execution is suspended
when a breakpoint is encountered. Then the original contents of the breakpoint
location are restored, and ODT regains control.

With ODT you can set up to eight breakpoints, numbered 0 through 7, at any
one time. Set a breakpoint by typing the address of the desired location of the
breakpoint followed by ;B. Thus, r;B sets the next available breakpoint at location
r. (If all eight breakpoints have been set, ODT ignores the r;B command.) You
may set or change specific breakpoints by the r;nB command, where n is the
number of the breakpoint. For example:

18–12 RT–11 System Utilities Manual Part II

Commands and Functions

*1020;B ;sets breakpoint 0
*1030;B ;sets breakpoint 1
*1040;B ;sets breakpoint 2
*1032;1B ;resets breakpoint 1
*

The ;B command removes all breakpoints. Use the ;nB command to remove only
one of the breakpoints, where n is the number that identifies the breakpoint. For
example:

*;2B ;removes breakpoint 2
*

ODT keeps a table of breakpoints that you can access. The $B/ command opens
the location containing the address of breakpoint 0. The next seven locations
contain the addresses of the other breakpoints in order. You can sequentially
open them by pressing the LINE key. For example:

*$B/001020 LF

001136 /001032 LF

001140 /007070 LF

001142 /007070 LF

001144 /007070 LF

001146 /001046 LF

001150 /001066 LF

001152 /007070

In this example, breakpoint 0 is set to 1020, breakpoint 1 is set to 1032,
breakpoint 5 is set to 1046, and breakpoint 6 is set to 1066. The other breakpoints
are not set.

Note that a repeat count in a proceed command (;P) refers only to the
breakpoint that ODT most recently encountered. Execution of other breakpoints
is determined by their own repeat counts.

Running the Program (r;G and r;P)
ODT controls program execution. There are two commands for running the
program: r;G and r;P. The r;G command starts execution (go) and r;P continues
(proceed) execution after halting at a breakpoint. For example:

*1000;G

This command starts execution at location 1000. The program runs until it
encounters a breakpoint or until it completes. If it gets caught in an infinite
loop, either restart or reenter it as explained in the section, Calling and Using
ODT.

Upon execution of either the r;G or r;P command, the general registers 0–6 are
set to the values in the locations specified as $0–$6. The processor status register
is set to the value in the location specified as $S.

On-Line Debugging Technique (ODT) 18–13

Commands and Functions

When ODT encounters a breakpoint, execution stops and ODT displays Bn;
(where n is the breakpoint number), followed by the address of the breakpoint.
You can then examine locations for expected data. For example:

*1010;3B ;sets breakpoint 3 at location 1010
*1000;G ;starts execution at location 1000
B3;001010 ;stops execution at location 1010
*

To continue program execution from the breakpoint, type ;P in response to ODT’s
last prompt (*).

When you set a breakpoint in a loop, you can allow the program to execute a
specified number of times through the loop before ODT recognizes the breakpoint.
Set a proceed count by using the r;P command. This command specifies the
number of times the breakpoint is to be encountered before ODT suspends
program execution (on the kth encounter). The count k refers only to the
numbered breakpoint that most recently occurred. You can specify a different
proceed count for the breakpoint when it is encountered:

B3;001010 ;halts execution at breakpoint 3
*1026;3B ;resets breakpoint 3 at location 1026
*4;P ;sets proceed count to 4 and
B3;001026 ;continues execution; the program loops
* ;through the breakpoint three times and halts on

;the fourth occurrence of the breakpoint

Following the table of breakpoints is a table of proceed command repeat counts
for each breakpoint. You can inspect these repeat counts by typing $B/ and
nine line feeds. The repeat count for breakpoint 0 displays (the first seven line
feeds cause the table of breakpoints to be displayed; the eighth types the single-
instruction mode, explained in the next section, and the ninth line feed begins the
table of proceed command repeat counts). The repeat counts for breakpoints 1
through 7 and the repeat count for the single-instruction trap follow in sequence.
ODT initializes a proceed count to 0 before you assign it a value. After the
command has been executed, it is set to –1. Opening any one of these provides
an alternative way of changing the count. Once the location is open, you can
modify its contents by typing the new contents and then pressing RETURN . For
example:

.

.

.
nnnnnn /001036 LF ;address of breakpoint 7
nnnnnn /006630 LF ;single instruction address
nnnnnn /000000 15 LF ;count for breakpoint 0; changes to 15
nnnnnn /000000 LF ;count for breakpoint 1
.
.
.
nnnnnn /000000 LF ;count for breakpoint 7
nnnnnn /nnnnnn ;repeat count for single instruction

;mode.

18–14 RT–11 System Utilities Manual Part II

Commands and Functions

Both the address indicated as the single-instruction address and the repeat count
for single-instruction mode are explained in the following section.

Single-Instruction Mode
With this mode, you specify the number of instructions to be executed before ODT
suspends the program run. The proceed command, instead of specifying a repeat
count for a breakpoint encounter, specifies the number of succeeding instructions
to be executed. Note that breakpoints are disabled in single-instruction mode.
The following table lists the single-instruction mode commands.

Single-Instruction Mode Commands

Command Function

;nS Enables single-instruction mode (n can be any digit and serves only to
distinguish this form from the form ;S, which disables single-instruction
mode). Breakpoints are disabled.

n;P Proceeds with program run for next n instructions before reentering
ODT. (If n is missing, it is assumed to be 1.) Trapping instructions and
associated handlers can affect the proceed repeat count (see Programming
Considerations, functional organization discussion.)

;S Disables single-instruction mode.

When the repeat count for single-instruction mode is exhausted and the program
suspends execution, ODT displays:

B8;nnnnnn

where nnnnnnn is the address of the next instruction to be executed. The $B
breakpoint table contains this address following that of breakpoint 7. However,
unlike the table entries for breakpoints 0–7, direct modification has no effect.

Similarly, following the repeat count for breakpoint 7 is the repeat count for
single-instruction mode. You can modify this table entry directly. This is an
alternative way of setting the single-instruction mode repeat count. In such a
case, ;P implies the argument set in the $B repeat count table rather than an
assumed 1.

Searches
With ODT you can search any specific portion of memory for bit patterns or
references to a particular location.

Word Search (r;W)

Before initiating a word search, you must specify the mask and search limits. The
location indicated by $M specifies the mask of the search. $M/ opens the mask
register. The next two sequential locations (opened by LF s initially contain the
lower and upper limits of the search. ODT examines in the search all bits set to
1 in the mask and ignores other bits.

On-Line Debugging Technique (ODT) 18–15

Commands and Functions

You must then give the search object and the initiating command, using the r;W
command, where r is the search object. When ODT finds a match (that is, each
bit set to 1 in the search object is set to 1 in the word ODT searches over the
mask range), the matching word displays. For example:

*$M/000000 177400 LF ;tests high-order eight bits
r,nnnnnn--/000000 1000 LF ;sets low address limit
r,nnnnnn--/000000 1040 RET ;sets high address limit
*400;W ;initiates word search
001010 /000770
001034 /000404
*

In the preceding example, nnnnnn is an address internal to ODT; this location
varies and is meaningful only for reference purposes. In the first line, the slash
was used to open $M, which now contains 177400; the LINE s open the next two
sequential locations, which now contain the upper and lower limits of the search.

In the search process, ODT performs an exclusive OR (XOR) with the word
currently being examined and the search object; the result is ANDed to the mask.
If this result is 0, a match has been found and ODT reports it on the terminal.
Note that if the mask is 0, all locations within the limits display. This provides
a convenient method for dumping all memory locations within given limits using
ODT.

Pressing CTRL/U during a search display terminates the search.

Effective Address Search (r;E)

ODT provides a search for words that reference a specific location. Open the mask
register only to gain access to the low- and high-limit registers. After specifying
the search limits (as explained for the word search), type the command r;E (where
r is the effective address) to initiate the search.

Words that are an absolute address (argument r itself), a relative address offset,
or a relative branch to the effective address are displayed after their addresses.
For example:

*$M/177400 LF ;opens mask register only to gain
r,nnnnnn /001000 1010 LF ;access to search limits
r,nnnnnn /001040 1060 RET

*1034;E ;initiates search
001016 /001006 ;relative branch
001054 /002767 ;relative branch
*1020;E ;initiates a new search
001022 /177774 ;relative address offset
001030 /001020 ;absolute address

Pay particular attention to the reported effective address references. A word can
have the specified bit pattern of an effective address without actually being used
as one. ODT reports all possible references whether they are actually used or
not.

Pressing CTRL/U during a search display terminates the search.

18–16 RT–11 System Utilities Manual Part II

Commands and Functions

Constant Register (r;C)
You may want to convert a relocatable address into its value after relocation or
convert a number into its two’s complement and then to store the converted value
into one or more places in a program. Use the constant register to perform this
and other useful functions.

Typing r;C evaluates the relocatable expression to its six-digit octal value,
displays the value on the terminal, and stores it in the constant register. Invoke
the contents of the constant register in subsequent relocatable expressions by
typing the letter C. Examples follow:

*-4432;C=173346 ;places the two’s complement of 4432 in the
;constant register

*6632/062701 C RET ;stores the contents of the constant
;register in location 6632

*1000;1R ;sets relocation register 1 to 1000

*1,4272;C=005272 ;displays relative location 4272 as an
;absolute location and stores it in the
;constant register

Memory-Block Initialization (;F and ;I)
Use the constant register with the commands ;F and ;I to set a block of memory
to a specific value. While the most common value required is 0, other possibilities
are +1, –1, ASCII space.

When you type the command ;F, ODT stores the contents of the constant register
in successive memory words, starting at the memory word address you specify
in the lower search limit and ending with the address you specify in the upper
search limit.

Typing the command ;I stores the low-order eight bits in the constant register in
successive bytes of memory, starting at the byte address you specify in the lower
search limit and ending with the byte address you specify in the upper search
limit.

For example, assume relocation register 1 contains 7000, 2 contains 10000, and
3 contains 15000. The following sequence sets word locations 7000–7776 to 0,
and byte locations 10000–14777 to ASCII spaces:

;opens the mask register to gain
*$M/000000 LF ;access to search limits
r,nnnnnn /000000 1,0 LF ;sets the lower limit to 7000
r,nnnnnn /000000 2,-2 RET ;sets the upper limit to 7776
*0;C=000000 ;sets the constant register to zero
*;F ;sets locations 7000-7776 to zero

On-Line Debugging Technique (ODT) 18–17

Commands and Functions

*$M/000000 LF

r,nnnnnn/007000 2,0 LF ;sets the lower limit to 10000
r,nnnnnn/007776 3,-1 RET ;sets the upper limit to 14777
*40;C=000040 ;sets the constant register to 40

;(space)
*;I ;sets the byte locations

;10000-14777
* ;to the value in the low-order

;eight bits of the constant
;register

Calculating Offsets (r;O)
Relative addressing and branching involve the use of an offset. An offset is the
number of words or bytes forward or backward from the current location to the
effective address. During the debugging session it is sometimes necessary to
change a relative address or branch reference by replacing one instruction offset
with another. ODT calculates the offsets in response to the r;O command.

The command r;O causes ODT to display the 16-bit and 8-bit offsets from the
currently open location to address r. For example:

*346/000034 414;O 000044 022 22 RET

*/000022

This command opens location 346, calculates and displays the offsets from
location 346 to location 414, changes the contents of location 346 to 22 (the 8-bit
offset), and verifies the contents of location 346.

The 8-bit offset displays only if it is in the range -128(decimal) to 127(decimal)
and the 16-bit offset is even, as shown in the previous example. In the next
example, the offset of a relative branch is calculated and modified so that it
branches to itself:

*1034/103421 1034;O 177776 377 \021 =? 377 RET

*/103777

Note that the modified low-order byte 377 must be combined with the unmodified
high-order byte.

Relocation Register Commands
The use of the relocation registers is described briefly at the beginning of this
chapter. At the beginning of a debugging session it is desirable to preset
the registers to the relocation biases of those relocatable modules that will be
receiving the most attention. Do this by typing the relocation bias, followed by a
semicolon and the specification of relocation registers, using the following syntax:

r;nR

The symbol r may be any relocatable expression, and n is an integer in the range
0–7. If you omit n, it is assumed to be 0. For example:

*1000;5R ;puts 1000 into relocation register 5
*5,100;5R ;adds 100 to the contents
* ;of relocation register 5

18–18 RT–11 System Utilities Manual Part II

Commands and Functions

Once a relocation register is defined, you can use it to reference relocatable
values. For example:

*2000;1R ;puts 2000 into relocation register 1
*1,2176/002466 ;examines the contents of location 4176
*1,3712;0B ;sets a breakpoint at location 5712

Sometimes programs may be relocated to an address below the one at which
they were assembled; for instance, with PIC code (position-independent code),
which is moved without using the linker. In this case, the appropriate relocation
bias would be the two’s complement of the actual downward displacement. One
method for easily evaluating the bias and putting it in the relocation register is
illustrated in the following example.

Assume a program assembled at location 5000 was moved to location 1000. Then
the following sequence enters the two’s complement of 4000 in relocation register
1:

*1000;1R
*1,-5000;1R
*

Relocation registers are initialized to -1 so that unwanted relocation registers
never enter into the selection process when ODT searches for the most
appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation registers to -1,
type ;R.

ODT maintains a table of relocation registers, beginning at the address specified
by $R. Opening $R ($R/) opens relocation register 0. Successively pressing LINE

opens the other relocation registers in sequence. When a relocation register is
opened in this way, you can modify it as you would any other memory location.

The Relocation Calculators, n! and nR
When a location has been opened, it is often desirable to relate the relocated
address and the contents of the location back to their relocatable values. To
calculate the relocatable address of the opened location relative to a particular
relocation bias, use the following syntax:

n!

The symbol n specifies the relocation register. This calculator works with opened
bytes and words. If you omit n, the relocation register whose contents are closest
to, but less than or equal to, the opened location is selected automatically by ODT.
In the following example, assume that these conditions are fulfilled by relocation
register 3, which contains 2000. Use the following command to find the most
likely module that a given opened byte is in:

*2500\011 = !=3,000500

To calculate the difference between the contents of the opened location and a
relocation register, use the following syntax:

nR

On-Line Debugging Technique (ODT) 18–19

Commands and Functions

The symbol n indicates the relocation register. If you omit n, ODT selects the
relocation register whose contents are closest to, but less than or equal to, the
contents of the opened location. For example, assume the relocation bias stored
in relocation register 1 is 7000:

*1,500/011032 1R=1,002032

The value 2032 is the content of 1,500, relative to the base 7000. The next
example shows the use of both relocation calculators.

If relocation register 1 contains 1000, and relocation register 2 contains 2000, use
the following command to calculate the relocatable addresses of location 3000 and
its contents, relative to 1000 and 2000:

*3000/006410 1!=1,002000 2!=2,001000 1R=1,005410 2R=2,04410

ODT Priority Level ($P)
$P identifies a location in ODT that contains the interrupt (or processor) priority
level at which ODT operates. If $P contains the value 377, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise $P may
contain a value between 0 and 7 corresponding to the fixed priority at which ODT
operates.

To set ODT to the desired priority level, open $P. ODT displays the present
contents, which you can then change:

*$P/000006 4 RET ;lowers the priority to allow interrupts
* ;from the terminal

If you do not change $P, its value is seven.

You must set ODT’s priority to 0 if you are using ODT in a foreground/background
environment while another job is running.

ODT may not always service breakpoints that are set in routines that run at
different priority levels. For example, a program running at a low priority can
use a device service routine that operates at a higher priority level. If you set
$P low, ODT waits for terminal input at a low priority. If an interrupt occurs
from a high-priority routine, the breakpoints in the high-priority routine will not
be recognized because they were removed when the earlier breakpoint occurred.
Thus, interrupts that are set at a priority higher than the one at which ODT
is running will be serviced, but any breakpoints will not be recognized. To
avoid this problem, set breakpoints at one priority level at a time. That is,
set breakpoints within an interrupt service routine, but not at mainline code
level. For a more complete discussion of how the PDP–11 handles priority and
interrupts, refer to the processor handbook for your particular machine. ODT
disables all breakpoints in the program whenever it gains control. Breakpoints
are enabled when ;P and ;G commands are executed. For example:

18–20 RT–11 System Utilities Manual Part II

Commands and Functions

*$P/00007 5
*1000;B
*2000;B
*1000;G
B0;001000
* ;an interrupt occurs and is serviced

If a higher-level interrupt occurs while ODT is waiting for input, the interrupt
is serviced, and no breakpoints are recognized.

ASCII Input and Output (r;nA)
Inspect and change ASCII text by using a command of this syntax:

r;nA

The symbol r signifies a relocatable expression, and n is a character count. If you
omit n, it is assumed to be 1. ODT displays n characters starting at location r
followed by a RET LF combination. The following table lists responses and their
effect.

ASCII Terminators

Response Effect

RETURN ODT displays a RET / LF combination followed by an
asterisk prompt for another command.

LINE ODT opens the byte following the last byte displayed.

Up to n characters of text ODT inserts the text into memory, starting at location r.
If you type exactly n characters, ODT responds with
RET LF address *.
If you type fewer than n characters, terminate that string
with CTRL/U .
ODT responds with ?^U LF RET LF address RET LF

On-Line Debugging Technique (ODT) 18–21

Programming Considerations
Information in this section is not necessary for normal use of ODT. However,
it will help you understand how ODT functions, even under difficult debugging
circumstances.

Using ODT with Foreground/Background Jobs
It is possible to use ODT to debug programs written as either background or
foreground jobs. In the background or under the SB monitor, you can link
ODT with the program as illustrated in the first example in the chapter. To
debug a program in the foreground area, Digital recommends running ODT in
the background while the program to be debugged is in the foreground. Issue
the following sequence of commands:

.FRUN PROG/P ;loads the foreground program
LOADED AT nnnnnn ;the first address of the job displays
.RUN ODT ;runs ODT in the background
ODT V01.01 ;and sets a relocation register
*nnnnnn;0R ;to the start of the job

*$F/000000 0 ;clears the format register to enable
*0,nnnnnn;0B ;proper address displays

;sets a breakpoint

*0;G ;starts the keyboard monitor again

.RESUME ;starts the foreground job

Link the copy of ODT low enough so that it fits in memory with the foreground
job.

NOTE
Because ODT uses its own terminal handler, it
cannot be used with the display hardware. If GT
ON is in effect, ODT ignores it and directs its input
and output only to the terminal.

If you use ODT in a foreground/background environment while another job is
running, set ODT’s priority bit to 0 as follows:

*$P/000007 0 RET

This command puts ODT into the wait state at level 0, not at level 7. If you leave
ODT’s priority at 7, all interrupts (including clock) are locked out while ODT is
waiting for terminal input.

Functional Organization
The internal organization of ODT is almost totally modularized into independent
subroutines. The internal structure consists of three major functions: command
decoding, command execution, and utility routines.

18–22 RT–11 System Utilities Manual Part II

Programming Considerations

The command decoder interprets the individual commands, checks for command
errors, saves input parameters for use in command execution, and sends control
to the appropriate command execution routine.

The command execution routines take parameters saved by the command decoder
and use the utility routines to execute the specified command. Command
execution routines either return to the command decoder or transfer control to
your program.

The utility routines are common routines such as SAVE–RESTORE and I/O. They
are used by both the command decoder and the command executers.

Breakpoints
A breakpoint gives control to ODT whenever a program tries to execute the
instruction at the selected address.

When a breakpoint is executed, ODT removes all the breakpoint instructions
from the code so that you can examine and alter the locations. ODT then displays
a message on the terminal in the form Bn;r,

where:

r is the breakpoint address.

n is the breakpoint number. ODT restores the breakpoints when execution
resumes.

A major restriction in the use of breakpoints is that the program must not
reference the word where a breakpoint was set since ODT altered the word.
Avoid setting a breakpoint at the location of any instruction that clears the T-bit.
For example:

MOV #240,177776 ;SET PRIORITY TO LEVEL 5

NOTE
Instructions that cause traps or returns from them
(for example, EMT, RTI) are likely to clear the T-bit,
because a new word from the trap vector or the stack
is loaded into the status register.

A breakpoint occurs when a trace trap instruction (placed in your program by
ODT) is executed. When a breakpoint occurs, ODT operates according to the
following algorithm:

1. Sets processor priority to seven (automatically set by trap instruction).

2. Saves registers and sets up stack.

3. If internal T-bit trap flag is set, goes to step 13.

4. Removes breakpoints.

5. Resets processor priority to ODT’s priority or user’s priority.

6. Makes sure a breakpoint or single-instruction mode caused the interrupt.

On-Line Debugging Technique (ODT) 18–23

Programming Considerations

7. If the breakpoint did not cause the interrupt, goes to step 15.

8. Decrements repeat count.

9. Goes to step 18 if nonzero; otherwise resets count to one.

10. Saves terminal status.

11. Types message about the breakpoint or single-instruction mode interrupt.

12. Goes to command decoder.

13. Clears T-bit in stack and internal T-bit flag.

14. Jumps to the go processor.

15. Saves terminal status.

16. Types BE (bad entry), followed by the address.

17. Clears the T-bit, if set, in the user status and proceeds to the command
decoder.

18. Goes to the proceed processor, bypassing the TT restore routine.

Note that steps 1–5 take approximately 100 microseconds. Interrupts are not
permitted during this time, because ODT is running at priority level 7.

ODT processes a proceed (;P) command according to the following algorithm:

1. Checks the proceed for validity.

2. Sets the processor priority to seven.

3. Sets the T-bit flags (internal and user status).

4. Restores the user registers, status, and program counter.

5. Returns control to the user.

6. When the T-bit trap occurs, executes steps 1, 2, 3, 13, and 14 of the breakpoint
sequence, restores breakpoints, and resumes normal program execution.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction causing
a trap, ODT follows this algorithm:

1. When the breakpoint occurs as just described above, enters ODT.

2. When ;P is typed, sets the T-bit and executes the IOT, EMT, TRAP, or other
trapping instruction.

3. Pushes the current PC and status (with the T-bit included) on the stack.

4. Obtains the new PC and status (no T-bit set) from the respective trap vector.

5. Executes the whole trap service routine without any breakpoints.

6. When an RTI is executed, restores the saved PC and PS (including the T-
bit). Executes the instruction following the trap-causing instruction. If this
instruction is not another trap-causing instruction, the T-bit trap occurs;

18–24 RT–11 System Utilities Manual Part II

Programming Considerations

reinserts the breakpoints in the user program, or decrements the single-
instruction mode repeat count. If the following instruction is a trap-causing
instruction, repeats this sequence starting at step 3.

NOTE
You must use the RTI instruction to exit from the
trap handler; otherwise, the T-bit is lost. ODT
cannot regain control because the breakpoints have
not yet been reinserted.

Note that the ;P command is invalid if a breakpoint has not occurred (ODT
responds with ?). ;P is valid, however, after any trace trap entry.

The internal breakpoint status words have the following format:

• The first eight words contain the breakpoint addresses for breakpoints 0–7.
(The ninth word contains the address of the next instruction to be executed
in single-instruction mode.)

• The next eight words contain the respective repeat counts. (The following
word contains the repeat count for single-instruction mode.)

You may change these words at will, either by using the breakpoint commands
or by directly manipulating $B.

When program runaway occurs (when the program is no longer under ODT
control, perhaps executing an unexpected part of the program where you did
not place a breakpoint), give control to ODT by pressing the HALT key to stop
the computer and then restarting ODT. The ODT asterisk prompts for another
command.

If the program you are debugging uses the terminal for input or output, the
program can interact with ODT to cause an error because ODT also uses the
terminal. This interactive error does not occur when you run the program
without ODT.

Note the following rules concerning the ODT break routine:

• If the console terminal interrupt is enabled upon entry to the ODT break
routine, and no output interrupt is pending when ODT is entered, ODT
generates an unexpected interrupt when returning control to the program.

• If the interrupt of the console terminal reader (the keyboard) is enabled upon
entry to the ODT break routine, and the program is expecting to receive an
interrupt to input a character, both the expected interrupt and the character
are lost.

• If the console terminal reader (keyboard) has just read a character into the
reader data buffer when the ODT break routine is entered, the expected
character in the reader data buffer is lost.

On-Line Debugging Technique (ODT) 18–25

Programming Considerations

Searches
The word search lets you search for bit patterns in specified sections of memory.
Using the $M/ command, specify a mask, a lower search limit ($M+2), and an
upper search limit ($M+4). Specify the search object in the search command
itself.

The word search compares selected bits (where 1s appear in the mask) in the
word and search object. If all of the selected bits are equal, the unmasked word
displays.

The following shows the search algorithm.

1. Fetches a word at the current address.

2. XORs (exclusive OR) the word and search object.

3. ANDs the result of step 2 with the mask.

4. If the result of step 3 is zero, types the address of the unmasked word and
its contents; otherwise, proceeds to step 5.

5. Adds two to the current address. If the current address is greater than the
upper limit, types * and returns to the command decoder; otherwise, goes to
step 1.

Note that if the mask is 0, ODT displays every word between the limits, since a
match occurs every time (that is, the result of step 3 is always 0).

In the effective address search, ODT interprets every word in the search range
as an instruction that is interrogated for a possible direct relationship to the
search object. The mask register is opened only to gain access to the search limit
registers.

The algorithm for the effective address search is as follows ((X) denotes contents
of X, and K denotes the search object):

1. Fetches a word at the current address X.

2. If (X)=K [direct reference], displays contents and goes to step 5.

3. If (X)+X+2=K [indexed by PC], displays contents and goes to step 5.

4. If (X) is a relative branch to K, displays contents.

5. Adds 2 to the current address. If the current address is greater than the
upper limit, performs a RET LF combination and returns to the command
decoder; otherwise, goes to step 1.

Terminal Interrupt
When entering the TT SAVE routine, ODT follows these steps:

1. Saves the LSR status register (TKS).

2. Clears interrupt enable and maintenance bits in the TKS.

3. Saves the TT status register (TPS).

18–26 RT–11 System Utilities Manual Part II

Programming Considerations

4. Clears interrupt enable and maintenance bits in the TPS.

To restore the TT:

1. Wait for completion of any I/O from ODT.

2. Restore the TKS.

3. Restore the TPS.

If the TT display interrupt is enabled upon entry to the ODT break routine, the
following can occur:

• If no output interrupt is pending when ODT is entered, an additional
interrupt always occurs when ODT returns control to the user.

• If an output interrupt is pending upon entry, the expected interrupt occurs
when the user regains control.

If the TT reader (keyboard) is busy or done, the expected character in the reader
data buffer is lost.

If the TT reader (keyboard) interrupt is enabled upon entry to the ODT break
routine, and a character is pending, the interrupt (as well as the character) is
lost.

On-Line Debugging Technique (ODT) 18–27

Error Detection
ODT detects two types of error: invalid or unrecognizable command and bad
breakpoint entry. ODT does not check for the validity of an address when you
command it to open a location for examination or modification. In the following
example, the command references nonexistent memory, causing a trap through
the vector at location 4:

177774/
?MON-F-Trap to 4 003362

If the program you are debugging with ODT has requested traps through location
4 with the .TRPSET EMT, the program receives control at its TRPSET address.

If something other than a valid command is typed, ODT ignores the command
and displays:

(echoes invalid command)?
*

ODT then prompts for another command. Therefore, to cause ODT to ignore
a command that has just been typed, type any invalid character (such as 9 or
RUBOUT), and the command will be treated as an error and ignored.

ODT suspends program execution whenever it encounters a breakpoint (that is,
traps to its breakpoint routine). If the breakpoint routine is entered and no
known breakpoint caused the entry, ODT displays:

BEnnnnnn
*

and prompts for another command. BEnnnnnn denotes bad entry from location
nnnnnn. A bad entry may be caused by an invalid trace trap instruction, by
a T-bit set in the status register, or by a jump to some random location within
ODT.

18–28 RT–11 System Utilities Manual Part II

Creating a Monitor-Independent ODT
The following procedure lets you create a monitor-independent ODT debugger; that
is, an ODT that does not require that the operating system be loaded in memory.

The distributed debugger ODT.OBJ needs the operating system loaded in memory.
You can modify ODT so it does not need the operating system loaded in memory,
which could be useful, for example, in debugging the bootstrap.

Use the following procedure to create a debugger called ODTHWD.OBJ that
functions independently of the operating system:

1. Use KED to create the following patch program. Name it ODTPAT.MAC. In the
program, substitute for the symbol ..GVAL the value for that symbol located in
the file CUSTOM.TXT:

.TITLE ODT

.PSECT ODT
BASE=..GVAL-1000
.=.+BASE
BR .+34
.END

2. Assemble the created patch program:

.R MACRO RET

*ODTPAT=ODTPAT RET

* CTRL/C

3. Create the monitor-independent debugger ODTHWD.OBJ by modifying
ODT.OBJ, which does not destroy the distributed ODT.OBJ but modifies a copy
of it. Use the utility PAT.SAV in the following manner:

.R PAT RET

*ODTHWD=ODT,ODTPAT RET

* CTRL/C

4. Explicitly specify ODTHWD in the LINK/DEBUG command. If you do not specify
ODTHWD, RT–11 by default links the distributed ODT:

.LINK/DEBUG:ODTHWD program RET

On-Line Debugging Technique (ODT) 18–29

Chapter 19

Object-Module Patch Utility (PAT)

The RT–11 object-module patch (PAT) utility enables you to update code in a
relocatable binary object module — OBJ file. PAT does not permit you to examine
the octal contents of an object module. PAT makes the patch to the object module,
using the procedure outlined in Figure 19–1. One advantage to using PAT is that you
can add relatively large patches to an object module without performing any octal
calculations. PAT accepts a file containing corrections or additional instructions and
applies these corrections and additions to the original object module. You prepare
correction input in source form and assemble it with the MACRO–11 assembler.

Two files form the input to PAT:

• Original input file

The original input file consists of one or more concatenated object modules, only
one of which can be corrected with a single execution of the PAT utility.

• Correction file

The correction file contains the corrections and additions to that input file. The
correction file consists of object code that, when linked by the linker, either
replaces or appends to the original object module.

Output from PAT is the updated input file.

Always create a backup version of the file you want to patch before you use PAT to
make the changes.

Calling PAT
To call PAT from the system device, respond to the dot (.) prompt displayed on the
terminal by issuing the command:

.R PAT RET

The Command String Interpreter (CSI) displays an asterisk at the left margin of the
video terminal when it is ready to accept a command line. Chapter 1 describes the
general syntax of the command line PAT accepts.

Press CTRL/C twice to halt PAT at any time (or press CTRL/C once to halt PAT when
it is waiting for the terminal input) and return control to the monitor. To restart
PAT, type R PAT in response to the monitor’s prompt (.). When PAT completes an
update operation it returns control to CSI level (*).

Object-Module Patch Utility (PAT) 19–1

Using PAT
Figure 19–1 shows how PAT can update a file (FILE1) consisting of three object
modules (MOD1, MOD2, and MOD3) by appending a correction file to MOD2. After
running PAT, relink the updated module with the rest of the file to produce a
corrected executable program.

Figure 19–1: Updating a Module, Using PAT

File1

Mod1 File1

Mod1

PAT

Update2

Mod2

Update2

Mod2Mod3

Mod3

Figure 19–2 shows the four processing steps in generating an updated executable
file, using PAT:

1. Create a correction file, using the text editor.

2. Execute the assembler (or compiler) to create an object module version of the file.

3. Execute PAT, using as input the correction file and the module to be updated.

4. This step varies with the object file being a program, an element in a library or
an object module:

– If the corrected object module is part of something that typically exists as a
program (for example, BASIC), execute the linker to resolve new addresses
and create an executable program.

– If the corrected module is an element in a library (for example, SYSLIB), run
the librarian and create or update the library to contain the new (corrected)
object module.

– If the corrected module typically exists as an object module (for example,
ODT), you don’t have to do anything. Whenever you link this module, the
corrections will be included.

19–2 RT–11 System Utilities Manual Part II

Using PAT

Figure 19–2: Processing Steps Required to Update a Module, Using PAT

CORECT.MAC

CORECT.OBJ

MYFILE.OBJ

1.

2.

3.

4.

Text
Editor

CORECT.MAC

CORECT.OBJ

MYFILE.OBJ

MYFILE.SAV

MYFILE.OBJ

Linker

Object-Module Patch Utility (PAT) 19–3

Command-Line Syntax
Specify the PAT command line in the following form:

[output-filespec]=input-filespec[/C[:n]],correct-filespec[/C[:n]]

where:

output-filespec is the file specification for the output file. If you do not specify an
output file, PAT does not generate one.

input-filespec is the file specification for the input file. This file can contain one
or more concatenated object modules.

correct-filespec is the file specification for the correction file. This file contains the
updates being made to a single module in the input file.

/C specifies the checksum option for the associated file. This directs
PAT to generate an octal value for the sum of all the binary data
composing the module in that file. (See Section 21.5 for more
information on checksums.)

n specifies an octal value. PAT compares the checksum value it
computes for a module with the octal value you specify.

No DCL Equivalents of PAT Utility Operations
The PAT utility is not accessible through DCL commands.

19–4 RT–11 System Utilities Manual Part II

Updating Binary Code with PAT
PAT updates a base input module by using additions and corrections you supply in
a correction file. This section describes the PAT input and correction files, and gives
information on how to create the correction file.

Input Files
The input file is the file to be updated; it is the base for the output file and must
be in object module format. When PAT executes, the module in the correction file
applies to this file.

Correction File
The correction file must be in object module format and it is usually created from a
MACRO–11 source file in the following format:

.TITLE inputname
[.IDENT updatenum]
[section name]
inputline
inputline

.

.

.

where:

inputname is the name of the module to be corrected by the PAT update. That
is, inputname must be the same name as the name on the input
file .TITLE directive for a single module in the input file.

updatenum is any value acceptable to the MACRO–11 assembler. Generally,
this value reflects the update version of the file being processed by
PAT, as shown in the examples below.

section name is the ASECT, CSECT, or PSECT included in the correction file.

inputline are lines of input PAT uses to correct and update the input file.

During execution, PAT adds to the module’s symbol table any new global symbols
defined in the correction file. Duplicate global symbols in the correction file will
supersede their counterparts in the input file, provided that both definitions are
relocatable or both are absolute.

A duplicate PSECT or CSECT will supersede the previous PSECT or CSECT,
provided:

• Both have the same relocatability attribute (ABS or REL).

• Both are defined with the same directive (.PSECT or .CSECT).

If PAT encounters duplicate PSECT names, it sets the length attribute for the PSECT
to the length of the longer PSECT and appends a new PSECT to the module.

Object-Module Patch Utility (PAT) 19–5

If you specify a transfer address, it supersedes the transfer address of the module
you are patching.

Updating Object Modules
The following examples show the source code for an input file and a correction file
to be processed by PAT and the linker. The examples show as output a single source
file that, if assembled and linked, would produce a binary module equivalent to the
file generated by PAT and LINK. Two techniques are described:

• Overlaying lines in a module

• Appending a subroutine to a module

Overlaying Lines in a Module
In this example, PAT appends the correction file to the input file, then executes the
linker to replace code within the input file.

The input file for this example is:

.TITLE ABC

.IDENT /01/

.ENABL GBL
ABC::

MOV A,C
JSR PC,XYZ
RTS PC
.END

To add instruction ADD A,B after the JSR instruction, the following patch source
file is included:

.TITLE ABC

.IDENT /01.01/

.ENABL GBL
.=.+12

ADD A,B
RTS PC
.END

MACRO–11 assembles the patch source file (see example) and the resulting object
file is input to PAT along with the original object file.

.TITLE ABC
.IDENT /01.01/
.ENABL GBL

ABC::
MOV A,C
JSR PC,XYZ
RTS PC

.=ABC

.=.+12
ADD A,B
RTS PC
.END

19–6 RT–11 System Utilities Manual Part II

Updating Object Modules

When the linker has processed these files, the load image appears, as shown in the
following example:

.TITLE ABC

.IDENT /01.01/

.ENABL GBL
ABC::

MOV A,C
JSR PC,XYZ
ADD A,B
RTS PC
.END

The linker uses the .=.+12 in the program counter field to determine where to begin
overlaying instructions in the program and then overlays the RTS instruction with
the patch code:

ADD A,B
RTS PC

Adding a Subroutine to a Module
Often a patch requires more than a few lines added to patch the file. A convenient
technique adds new code by appending it as a subroutine at the end of the module,
so that a JSR instruction is inserted to the subroutine at an appropriate location.
The JSR directs the program to branch to the new code, execute that code, and then
return to in-line processing.

The source code for the input file for the example is:

.TITLE ABC

.IDENT /01/

.ENABL GBL
ABC::

MOV A,B
JSR PC,XYZ
MOV C,R0
RTS PC
.END

For example, suppose you wish to add the instructions:

MOV D,R0
ASL R0

between

MOV A,B

and

JSR PC,XYZ

The correction file to accomplish this is as follows:

Object-Module Patch Utility (PAT) 19–7

Updating Object Modules

.TITLE ABC

.IDENT /01.01/

.ENABL GBL
JSR PC,PATCH
NOP
.PSECT PATCH

PATCH:
MOV A,B
MOV D,R0
ASL R0
RTS PC
.END

PAT appends the correction file to the input file, then the linker processes the file,
generating the output file:

.TITLE ABC

.IDENT /01.01/

.ENABL GBL
ABC::

JSR PC,PATCH
NOP
JSR PC,XYZ
MOV C,R0
RTS PC
.PSECT PATCH

PATCH:
MOV A,B
MOV D,R0
ASL R0
RTS PC
.END

In this example, the JSR PC,PATCH and NOP instructions overlay the three-word
MOV A,B instruction. (The NOP is included because this is a case where a two-
word instruction replaces a three-word instruction. NOP is required to maintain
alignment.) The linker allocates additional storage for .PSECT PATCH, writes the
specified code into this program section, and binds the JSR instruction to the first
address in this section. (Note that the MOV A,B instruction, replaced by the JSR
PC,PATCH, is the first instruction the PATCH subroutine executes.)

19–8 RT–11 System Utilities Manual Part II

Determining and Validating the Contents of a File
Use the checksum option (/C) to determine (validate) the contents of a module. The
checksum option directs PAT to compute the sum of all binary data composing a file.
Specifying the command in the form /C:n, /C, directs PAT to compute the checksum
and compare that checksum to the value you specify as n.

To determine the checksum of a file, enter the PAT command line with the /C option
applied to the appropriate file (the file whose checksum you want to determine). For
example, PAT responds to the command:

=INFILE/C,INFILE.PAT

with the message:

?PAT-W-Input module checksum is nnnnnn

PAT generates a similar message when you request the checksum for the correction
file.

To validate the changes made to a file, enter the checksum option in the form /C:n.
PAT compares the value it computes for the checksum with the value you specify as
n. If the two values do not match, PAT enters the changes but displays a message
reporting the checksum error as either:

?PAT-W-Input file checksum error

or

?PAT-W-Correction file checksum error

NOTE
Checksum processing always results in a non-zero value.
Do not confuse this checksum with the record checksum
byte.

Object-Module Patch Utility (PAT) 19–9

Chapter 20

Peripheral Interchange Utility (PIP)

The Peripheral Interchange Utility (PIP) is a file-transfer and file-maintenance
program. You can use PIP to transfer files between any supported RT–11 devices
and to merge, rename, delete, and change the protection status of files.

Calling and Terminating PIP
To call PIP from the system device, respond to the keyboard monitor prompt (.) by
typing:

.R PIP RET

The Command String Interpreter (CSI) displays an asterisk at the left margin of
the terminal and waits for you to type a command string. If you only press RETURN

at this point, PIP displays its current version number and prompts you again for a
command string. You can type CTRL/C to halt PIP and return control to the monitor
when PIP is waiting for input from the terminal. You must type CTRL/C twice to
abort PIP at any other time. To restart PIP, type R PIP or REENTER and press
RETURN in response to the monitor’s dot.

Peripheral Interchange Utility (PIP) 20–1

PIP Command-Line Syntax
Chapter 1 of the RT–11 System Utilities Manual, Part I, describes the general syntax
of the command line PIP accepts. You can specify as many as six input files, but
only one output file.

Because PIP performs file transfers for all RT–11 data formats (ASCII, object, and
image), it does not assume file types for either input or output files. You must
explicitly specify all file types where file types are applicable.

Entering a Date Argument to a Command

Some of the PIP options accept a date as an argument. The syntax for specifying
the date is:

[:dd.][:mmm][:yy.]

where:

dd. specifies the day (a decimal integer in the range 1–31).

mmm specifies the first three characters of the name of the month.

yy. specifies the year (a decimal integer in the range 73–99).

The default value for the date is the current system date. If you omit any of the
date values (dd, mmm, or yy), RT–11 uses the values from the current system date.
For example, if you specify only the year ::90. and the current system date is May 4,
l990, RT–11 uses the date 4.:MAY:90.. If the current date is not set, it is considered
0 (the same as for an undated file in a directory listing).

On random-access devices such as disks, and in transfers from magtape, PIP
operations retain a file’s creation date. If the file’s creation date is 0, PIP gives
it the current system date. However, in transfers to magtape, PIP always gives files
the current system date.

Getting a –BAD– File-Creation Date

If you have selected timer support through the system-generation process, but have
not selected automatic end-of-month date advancement, make sure that you set the
date at the beginning of each month with the DATE command. If you fail to set
the date at the beginning of each month, the system displays –BAD– in the creation
date column of each file created beyond the end-of-month.

Note that you can eliminate –BAD– by using the RENAME/SETDATE command
after you set the date.

Changing the Dates, Protection, and Names of Files

If you specify a command involving random-access devices for which the output
specification is the same as the input specification, PIP does not move any files.
However, it can change the creation dates on the files if you use /T, it can rename
the files if you use /R, it can protect files if you use /F, or it can remove protection
from files if you use /Z.

20–2 RT–11 System Utilities Manual Part II

Using Wildcards with PIP
You can use all variations of wildcards for the input-file specifications in the
PIP command line. However, you cannot use embedded wildcards in output-file
specifications. If you use a wildcard in an input-file specification, the corresponding
output-file name or file type must be an asterisk. (The concatenate copy operation
is an exception to this rule because it does not allow wildcards in the output
specification.) following gives you the standard subhead one)

The Order in Which PIP Operates

In most cases, PIP performs operations on files in the order in which they appear in
the device directory. In transfers from magtape (and for all other transfers requested
on the same command line), PIP performs operations on files in the order in which
they appear on the volume.

Files PIP Ignores

When you use wildcards in an input file type, PIP ignores system files with the file
type SYS unless you also use the /Y option. PIP displays the message ?PIP–W–No
SYS action if you omit the /Y option on a command that would operate on SYS files.

PIP ignores all files with the file type BAD unless you explicitly specify both the file
name and file type in the command string. PIP does not display a warning message
when it does not include BAD files in an operation.

This example transfers all files, including system files (regardless of file name or file
type), from device DK to device DU1. It does not transfer BAD files:

DU1:.*/Y=*.*

NOTE
You cannot perform any operations that result in
deleting a protected file. For example, you cannot
transfer a file to a volume if a protected file with the
same name already exists on the output volume.

Examples

1. In the following example, the embedded percent character (%) specifies a valid
file-name character and the asterisk specifies a valid file name:

**.B=A%B.MAC

2. The next command deletes all files with the file type BAK (regardless of their
file names) from device DK:

**.BAK/D

3. This command renames all files with a BAK file type (regardless of file names)
so that these files now have a TST file type (maintaining the same file names):

**.TST=*.BAK/R

Peripheral Interchange Utility (PIP) 20–3

PIP Option Summary
The options you can use with PIP are summarized in Table 20–1. If you do not
specify an option, PIP assumes that the operation is a file transfer in image mode.

You can put command options at the end of the command string or type them after
any file name in the string. Operations involving magtape are an exception, because
the /M option is device dependent and has a different meaning when you specify it
on the input or output side of a command line.

You can type any number of nonconflicting options in a command line. For example,
you can combine copy and delete operations in one line. You can also combine the
protect and noprotect options with copy and rename operations.

Table 20–1: PIP Option Summary

Option Function

/A Copies files in ASCII mode, ignoring and discarding nulls and rubouts. It
converts input file to 7-bit ASCII and treats CTRL/Z (32 octal) as the logical
end-of-file on input (the default copy mode is image).

/B Copies files in formatted binary mode (the default copy mode is image).

/C[:date] Used with other options to include only files with the specified date in the
operation. If you use /C and do not specify a date, PIP includes only files with
the current date in the specified operation.

/D Deletes input files from a specific device. Note that PIP does not
automatically query before it performs the operation. If you combine /D with
a copy operation, PIP performs the delete operation after the copy completes.
This option is invalid in an input specification with magtape.

/E Transfers files in a single- or small-disk system. PIP initiates the transfer,
but pauses and waits for you to mount the volumes involved in the transfer.

/F Protects files from deletion. Gives protected status to output files during a
copy operation so you cannot delete them. If you use neither /F nor /Z, the
output files retain the protection status of the input files. Can also be used
with /R. Invalid for magtapes.

/G Ignores any input errors that occur during a file transfer and continues
copying.

/H Verifies that the output file matches the input file after a copy operation.
Cannot be used with /A or /B.

/I[:date] Used with other options to include only files created on or after the specified
date.

/J[:date] Used with other options to include only files created before the specified date.

/K:n Makes n copies of the output files to any sequential device, such as LP, or TT.

/M:n Used when I/O transfers involve magtape.

20–4 RT–11 System Utilities Manual Part II

PIP Option Summary

Table 20–1 (Cont.): PIP Option Summary

Option Function

/N Does not copy or rename a file if a file with the same name exists on the
output device. This option protects you from accidentally deleting a file. It is
invalid for magtape in the output specification.

/O Deletes a file on the output device if you copy a file with the same name
to that device. The delete operation occurs before the copy operation. This
option is invalid for magtape in the output specification.

/P Copies or deletes all files except those you specify.

/Q Use only with another operation. The /Q option causes PIP to display the
name of each file to be included in the operation you specify. You must respond
with a Y to include a particular file.

/R Renames the file you specify. This operation is invalid for magtape.

/S Copies files one block at a time.

/T[:date] Puts the specified date on all files involved in the operation. This option
is invalid when copying to magtape; operations involving magtape devices
always use the current date.

/U Copies and concatenates all files you specify.

/V Copies files from one input volume to two or more smaller output volumes.

/W Displays on the terminal a log of all files involved in the operation.

/X Causes PIP to display an information message instead of a fatal message
when it cannot find a file you specified in the command line.

/Y Includes SYS files in the operation you specify. You cannot modify or delete
these files unless you use the /Y option when you use wildcards in the input
file types.

/Z Removes protected status from output files so you can delete them. If you
use neither /F nor /Z, the output files retain the protection status of the
input files. When used with /R, enables files for deletion if they have been
previously protected with /F. Invalid for magtapes.

Peripheral Interchange Utility (PIP) 20–5

PIP Option Descriptions

Operations Involving Magtape (/M:n)
PIP handles magtape, which is a sequential-access device, differently from
random-access devices, such as disks, diskettes, and DECtape II. On magtape,
files are stored serially, one after another, and there is no directory at the
beginning of each device that lists the files and gives their location. Thus,
you can access only one file at a time on each sequential-access device unit.
Avoid commands that specify the same device-unit number for both the input
and output files—they are invalid.

The /M:n option makes operations that involve magtape more efficient. This
option lets you specify different tape handling procedures for PIP to follow. The
following sections outline the operations that involve magtape and describe the
different procedures for using these devices that you can specify with the /M:n
option. Remember that when you use the /M:n option, n is interpreted as an octal
number. You must use n. (n followed by a decimal point) to specify a decimal
number.

Magnetic tape is a convenient auxiliary storage medium for large amounts of
data, and is often used as backup for disks. Reflective strips indicate the
beginning and end of the tape. A special label (an EOF1 or EOV1 tape label)
followed by two tape marks indicates the end of current data and also where new
data can begin.

Valid Options to Use with Magtape

The following PIP options are valid for use with magtape: /A, /B, /C[:date], /F, /G,
/H, /I, /J, /M, /P, /Q, /S, /U, /V (only when magtape is the output volume), /W, /X,
/Y, and /Z. These options are invalid with magtape: /E, /K, /R, /T, and /V (when
magtape is the input volume). The /M:n option lets you direct the tape operation;
you can move the tape and perform an operation at the point you specify. Note
that /D is invalid for input from magtape; /N and /O are invalid for output to
magtape.

/M:n Is Postion Dependent

The /M:n option can be different for the output and input side of the command
line. Since the option applies to the device and not to the files, you can specify
one /M:n option for the output file and one for each input file.

The Procedure for Locating a Magtape File

Sometimes PIP begins an operation at the current position. To determine the
current position, the magtape handler backspaces from its present position
on the tape until it finds either an EOF indicator or the beginning of tape
(BOT), whichever comes first. PIP then begins the operation with the file that
immediately follows the EOF or BOT. The magtape handler also has a special
procedure for locating a file with sequence number n:

20–6 RT–11 System Utilities Manual Part II

PIP Option Descriptions

1. If the file sequence number is greater than the current position, PIP searches
the tape in the forward direction.

2. If the file sequence number is more than one file before the current position, or
if the file sequence number is less than five files from BOT, the tape rewinds
before PIP begins its search.

3. If the file sequence number is at the current position, or if it is one file past
the current position, PIP searches the tape in the reverse direction.

Whenever you fetch or load a new copy of the magtape handler, the tape position
information is lost. The new handler searches backward until it locates either
BOT or a label from which it can learn the position of the tape. It then operates
normally, according to steps 1, 2, and 3 described above.

If you omit the /M:n option, the tape rewinds between each operation. Using
/M:0 has the same effect as omitting /M:n. When n is positive, it specifies the file
sequence number. When n is negative, it specifies an instruction to the magtape
handler.

Copying from Magtapes

In copying from magtapes, /M:n functions as follows:

1. If n is 0:

The tape rewinds and PIP searches for the file you specify. If you specify more
than one file, the tape rewinds before each search. If the file specification
contains a wildcard, the tape rewinds only once and then PIP copies all the
appropriate files.

2. If n is a positive integer:

PIP goes to file sequence number n. If the file it finds there is the one you
specified, PIP copies it. Otherwise, PIP displays the ?PIP–F–File not found
DEV:FILNAM.TYP message. If you use a wildcard in the file specification,
PIP goes to the file sequence number n and then begins to search for matching
files.

3. If n is -1:

PIP starts the search at the current position. If the current position is not
the beginning of the tape, PIP may not find the file you specify, even though
it does exist on the tape.

Writing to Magtapes

In writing to magtapes, /M:n functions as follows:

1. If n is 0:

The tape rewinds before PIP copies each file. PIP displays a warning message
if it finds a file with the same name and file type as the input file and does
not perform the copy operation.

Peripheral Interchange Utility (PIP) 20–7

PIP Option Descriptions

2. If n is a positive integer:

PIP goes to the file sequence number n and enters the file you specify. If
PIP reaches logical end-of-tape (LEOT) before it finds file sequence number
n, it displays the ?PIP–F–File sequence number not found message. If you
specify more than one file or if you use a wildcard in the file specification, the
tape does not rewind before PIP writes each file, and PIP does not check for
duplicate file names.

3. If n is -1:

PIP goes to the LEOT and enters the file you specify. It does not rewind, and
it does not check for duplicate file names.

4. If n is -2:

The tape rewinds between each copy operation. PIP enters the file at LEOT
or at the first occurrence of a duplicate file name.

Writing a Logical End-of-Tape

If PIP reaches the physical end-of-tape before it completes a copy operation, it
cannot continue the file on another tape volume. Instead, it deletes the partial
file by backspacing and writing a logical end-of-tape over the file’s header label.
You must restart the operation and use another magtape.

If you type CTRL/C twice during any output operation to magtape, PIP does not
write a logical end-of-tape at the end of the data. Consequently, you cannot
transfer any more data to the tape unless you follow one of the following recovery
procedures.

1. Transfer all good files from the interrupted tape to another tape and initialize
the interrupted tape in the following manner:

MU1:.*=MU0:*.*
_<CTRL/C>
.R DUP
*MU0:/Z/Y

2. Determine the sequential number of the file that was interrupted and use the
/M:n construction to enter a replacement file (either a new file or a dummy)
over the interrupted file. PIP writes the replacement file and a good LEOT
after it. The following example assumes the bad file is the fourth file on the
tape:

*MU0:file.new/M:4=file.dum

Copy Operations
PIP copies files in image, ASCII, and binary format. Other options let you
change the date on the files, access SYS files, combine files, change a file’s
protection status, and perform other similar operations. PIP automatically
allocates the correct amount of space for new files in copy operations. For block-
replaceable devices, PIP stores the new file in the first empty space large enough
to accommodate it. If an error occurs during a copy operation, PIP displays

20–8 RT–11 System Utilities Manual Part II

PIP Option Descriptions

a warning message, stops the copy operation, and prompts you for another
command. You cannot copy BAD files unless you specifically type each file name
and file type.

Copying Files in Image Mode (the Default)

If you enter a command line without an option, PIP copies files onto the
destination device in image mode. Note that you cannot reliably transfer memory
image files to the printer or terminal. PIP can image-copy ASCII and binary data
but it does not do any of the data checking described in Section 13.4.2.3.

The following command makes a copy of the file named XYZ.SAV on device
DK and assigns it the name ABC.SAV. (Both files exist on device DK after the
operation.):

*ABC.SAV=XYZ.SAV

The next example copies from DK all MAC files whose names are three characters
long and begin with A. PIP stores the resulting files on DY1:

DY1:.*=A%%.MAC

Copying Files in ASCII Mode (/A)

Use the /A option to copy files in 7-bit ASCII mode. PIP ignores and eliminates
nulls and rubouts during file transfer. PIP treats CTRL/Z (32 octal) as logical
end-of-file if it encounters that character in the input file. You cannot use the /A
option with the /V option.

The following command copies F2.FOR from device DK onto device DY1 in ASCII
mode and assigns it the name F1.FOR:

*DY1:F1.FOR=F2.FOR/A

Copying Files in Binary Mode (/B)

Use the /B option to transfer formatted binary files (such as OBJ files produced by
the assembler or the FORTRAN compiler and LDA files produced by the linker).
You cannot use the /B option with the /V option.

The following command transfers a formatted binary file from device DL0: to
device DK and assigns it the name FILE.OBJ:

*DK:FILE.OBJ=DL:F3.OBJ/B

When performing formatted binary transfers, PIP displays a warning if a
checksum error occurs. If there is a checksum error and you did not use /G
to ignore the error, PIP does not perform the copy operation. You cannot copy
library files with the /B option. Copy library files in image mode.

Specifying a Date (/C[:date])
The /C[:date] option includes only those files with the specified date. If no date
is specified only those files with the current date are included. Specify /C only
once in the command line; it applies to all the file specifications in the entire
command.

Peripheral Interchange Utility (PIP) 20–9

PIP Option Descriptions

The following command copies (in ASCII mode) all files with the file type MAC on
DL0 that also have the date January 12, l991. It also copies the file RDWR.MAC,
if it has the date January 12, l991, from DY0 to DY1. It combines all these files
under the name NN3.MAC on DY1:

DY1:NN3.MAC=DL0:.MAC/C:12.:JAN:91.,DY0:RDWR.MAC/A/U

The next command copies all files with the current date (except SYS and BAD
files) from DK to DY1. This is an efficient way to back up all new files after a
session at the computer:

DY1:.*=*.*/C

Deleting Files (/D)
Use the /D option to delete one or more files from the device you specify. Note
that PIP does not query you before it performs this operation unless you use
/Q. Remember to use the /Y option to delete SYS files if you use wildcards in
the input file types. You cannot delete BAD files, unless you name each one
specifically, including file name and file type. You can specify only six files in
a delete operation unless you use wildcards. You must always indicate a file
specification in the command line. A delete command consisting only of a device
name (dev:/D) is invalid. The delete option is also invalid for magtape.

The following examples illustrate the delete operation:

*FILE1.SAV/D

The command shown above deletes FILE1.SAV from device DK:

DY1:.*/D
?PIP-W-No .SYS action
*

The command shown above deletes all files from device DY1: except those with
a SYS or BAD file type. Since there is a file with a SYS file type, PIP displays a
warning message to remind you that this file has not been deleted:

**.MAC/D

This command deletes all files with a .MAC file type from device DK:

Initiating a Copy Operation and Waiting (/E)
If you have a single-disk system or a diskette system, you will find the /E option
useful for copy operations. Use this option when you need to change storage
volumes during a copy procedure. The following is the general format of the
command line:

filespec/E=filespec

You can use any option with /E that is valid with your RT–11 configuration. You
cannot use wildcards as input. When you use /E, make sure that PIP is on your
system volume.

20–10 RT–11 System Utilities Manual Part II

PIP Option Descriptions

The Procedure for Using the /E Option

When you use the /E option, PIP guides you through a series of steps in the
process of completing the file transfer.

1. PIP initiates execution of the command, but then pauses and displays the
message:

Mount input volume in <device>; Continue?

where the <device> specifies the device in which you mount the input volume.

2. At this time you can remove the system volume (if necessary) and mount the
volume on which you actually want the operation to take place.

3. When the new volume is loaded, type Y or any string beginning with Y
followed by a RETURN to execute the operation. If you type N or any string
beginning with N, or CTRL/C , the operation is not completed. Instead PIP
prompts you to remount the system volume if you have removed it and the
monitor prompt (.) appears. Any other response causes the message to repeat.

4. If you type Y, PIP prompts you for the input volume, if any. When the
operation completes, the following message is displayed:

Mount system volume in <device>; Continue?

5. Replace the system device and type Y or any string beginning with Y followed
by a RETURN . If you type any other response, PIP prompts you to mount the
system volume until you type Y. When you type Y, the asterisk (*) prompt is
displayed, and PIP waits for you to enter another command.

The sections that follow describe the procedures for single-drive and double-drive
transfer.

Transferring Files Using One Device Drive

If you want to transfer a file between two storage volumes, and you have only
one drive for that type of storage volume, use the following procedure:

1. Enter a command string according to this general syntax:

output-filespec/E=input-filespec

where output-filespec specifies the destination device and file specification,
and input-filespec specifies the source device and file specification.

2. PIP responds by displaying the following message at the terminal:

Mount input volume in <device>; Continue?

where <device> specifies the device into which you are to mount your input
volume. Type Y or any string beginning with Y followed by a RETURN after you
have mounted your input volume. If you type any string beginning with N
or if you type CTRL/C , the operation is not performed and the monitor prompt
(.) appears. If you have removed the system volume, PIP prompts you to
remount it.

Peripheral Interchange Utility (PIP) 20–11

PIP Option Descriptions

3. PIP continues the copy procedure and displays the following message on the
terminal:

Mount output volume in <device>; Continue?

After you have removed your input volume from the device, mount your
output volume and type Y or any string beginning with Y followed by RETURN .
If you type any string beginning with N or if you type CTRL/C , the operation
is not performed and the monitor prompt (.) appears. If you have removed
the system volume, PIP prompts you to remount it.

4. Depending on the size of the file, PIP may repeat the transfer cycle (steps 2
and 3) several times before the transfer is complete. When the transfer is
complete, PIP displays the following message if you had to remove the system
volume from <device>:

Mount system volume in <device>; Continue?

When you remount the system volume and type Y or any string beginning
with Y followed by a RETURN in response to the last instruction, you complete
the copy operation. If you type anything other than Y, PIP continues to
prompt you to remount the system volume until you type Y.

Transferring Files Using a Double Device Drive

You can use the /E option for transferring files between two nonsystem volumes.
The following is the procedure for transferring files this way:

1. With your system volume mounted, enter a command string according to the
following general syntax:

output-filespec/E=input-filespec

where output-filespec specifies the destination device and file specification,
and input-filespec specifies the source device and file specification.

2. After you have entered the command string, PIP responds with the message:

Mount input volume in <device>; Continue?

Type Y or any string beginning with Y followed by a RETURN when you have
mounted the input volume. If you type any string beginning with N or if
you type CTRL/C , the operation is not performed and the monitor prompt
(.) appears. If you have removed the system volume, PIP prompts you to
remount it.

3. PIP then displays:

Mount output volume in <device>; Continue?

Type Y or any string beginning with Y followed by a RETURN after you have
mounted the output volume. If you type any string beginning with N or
if you type CTRL/C , the operation is not performed and the monitor prompt
(.) appears. If you have removed the system volume, PIP prompts you to
remount it.

20–12 RT–11 System Utilities Manual Part II

PIP Option Descriptions

4. Unlike the single-volume transfer, the double-volume transfer involves only
one cycle of mounting the input and output volumes. When the file transfer is
complete, PIP displays the following message if you had to remove the system
volume from <device>:

Mount system volume in <device>; Continue?

When you type Y or any string beginning with Y followed by a RETURN in
response to the last instruction, you complete the copy operation. If you type
anything other than Y, PIP continues to prompt you to mount the system
volume until you type Y.

Protecting Files (/F)
Use the /F option to protect files. The letter P next to the block size number in
the file’s directory entry indicates the file is protected.

If a file is protected you cannot perform any operations on it that result in
deleting the file. You can copy a protected file to another volume or change
its name. However, you cannot change its protected status unless you use the /Z
(no protection) option. Note that the contents of a protected file are not protected;
that is, although you cannot delete a protected file, you can change or delete its
contents.

You can also use the /F option during copy operations to protect the output file,
and with /R to change a file’s protection status. If during a copy operation you
use neither /F nor /Z, the output files retain the protection status of the input
files.

The following command protects all files with the file type MAC on DK:

**.MAC/F

The following command copies all files with file type ORI from DL0 to DL1. The
resulting output files on DL1 are protected from deletion:

DL1:.*=DL0:*.ORI/F

If you use the /F option with a file that is already protected, no operation
is performed on that file regardless of any other options in the command
string. For example, the following command requests PIP to protect the file
DY1:CALCAB.MAC and change its creation date to April 21, 1991. However,
because the file is already protected, PIP performs neither operation:

*DL1:CALCAB.MAC/F/T:21.:APR:91.

Ignoring Input Errors (/G)
The /G option copies files, but ignores all input errors. This option forces
a single-block transfer, which you can invoke at any other time with the /S
option. Use the /G option if an input error occurred when you tried to perform
a normal copy operation. The procedure can sometimes recover a file that is
otherwise unreadable. If an error still occurs, PIP displays the ?PIP–W–Input
error DEV:FILNAM.TYP message and continues the copy operation.

Peripheral Interchange Utility (PIP) 20–13

PIP Option Descriptions

The following command copies the file TOP.SAV in image mode from device DY1:
to device DK and assigns it the name ABC.SAV:

*ABC.SAV=DY1:TOP.SAV/G

The next command copies files F1.MAC and F2.MAC in ASCII mode from device
DY0 to device DY1. This command creates one file with the name COMB.MAC,
and ignores any errors that occur during the operation:

*DY1:COMB.MAC=DY0:F1.MAC,F2.MAC/A/G/U

Verifying Your Work (/H)
Use the /H option to verify that the output file matches the input file when a
copy operation is performed. If the two files are different a message is displayed
on the terminal. This option cannot be used with /A or /B.

The following command verifies that the output file A.BAK on DY1 is the same
as the input file A.MAC on DY0:

*DY1:A.BAK=DY0:A.MAC/H

Selecting Since Files Only (/I[:date])
The /I[:date] option includes only those files created on or after the specified date.
If no date is specified, PIP uses the current date.

The following command copies from DK only those MAC files created on or after
January 4, l991:

DL0:.MAC=*.MAC/I:4.:JAN:91.

Selecting Before Files Only (/J[:date])
The /J[:date] option includes only those files created before the specified date. If
you do not specify a date, PIP uses the current date.

The following command copies only those MAC files created before January 14,
l991:

DL0:.MAC=*.MAC/J:14.:JAN:91.

Making Several Copies (/K:n)
The /K:n option directs PIP to generate n copies of the file you specify. The only
valid output devices are the console terminal and the printer. Normally, each
copy of the file begins at the top of a page; copies are separated by form feeds:

*LP:=STOTLE.LST/K:3

This command, for example, prints three copies of the listing file, STOTLE.LST,
on the printer.

Preventing a Replace Operation (/N)
The /N option prevents execution of a copy or rename operation if a file with the
same name as the output file already exists on the output device. This option is
not valid when output is to magtape.

20–14 RT–11 System Utilities Manual Part II

PIP Option Descriptions

The following example uses the /N option:

*DY0:CT.SYS=DK:CT.SYS/Y/N
?PIP-W-Output file found, no operation performed DK:CT.SYS
*

The file named CT.SYS already exists on DY0, and the copy operation does not
proceed.

Predeleting Files (/O)
The /O option deletes a file on the output device if you copy a file with the same
name to that device. PIP deletes the file on the output device before the copy
operation occurs. Normally, PIP deletes a file of the same name after the copy
completes. This option is not valid when output is to magtape.

The following example uses the /O option:

*DL1:TEST1.MAC=DY1:TEST.MAC/O

If a file named TEST1.MAC already exists on DL1, PIP deletes it before copying
TEST.MAC from DY1 to TEST1.MAC on DL1:

Excluding Files from the Operation (/P)
The /P option directs PIP to include all files in the operation except the ones you
specify. Note that if you want to include system (SYS) files and you use the /P
option, you must always use the /Y option with it:

DY0:.*=DY1:*.MAC/P

This command directs PIP to transfer all files from DY1 to DY0 except the .MAC
files. The SYS files will also be excluded from the operation because the /Y option
was not specified.

Requesting Confirmation (/Q)
Use the /Q option with another PIP operation to list all files and to request
confirmation for each file before it is included. Typing Y or any string beginning
with Y followed by a RETURN causes the named file to be processed; typing
anything else excludes the file.

The following example deletes four files from DY1:

DY1:.*/D/Q
Files deleted:
DY1:FIX463.SAV?
DY1:GRAPH.BAK ? Y
DY1:DMPX.MAC ?
DY1:MATCH.BAS ?
DY1:EXAMP.FOR ?
DY1:GRAPH.FOR ? Y
DY1:GLOBAL.MAC? Y
DY1:PROSEC.MAC? Y
DY1:KB.MAC ?
DY1:EXAMP.MAC ?
*

Peripheral Interchange Utility (PIP) 20–15

PIP Option Descriptions

Renaming Files (/R)
Use the /R option to rename a file you specify as input, giving it the name you
specify in the output specification. The input and output volumes for a rename
operation must be the same. PIP displays an error message if the command
specifications are not valid. Use the /Y option if you rename SYS files and you
use wildcards in the input file types. You cannot use /R with magtape.

The following examples illustrate the rename operation:

*DY1:F1.MAC=DY1:F0.MAC/R

The command shown above renames F0.MAC to F1.MAC on device DY1:

*DL1:OUT.SYS=DL1:CT.SYS/R

This command renames file CT.SYS to OUT.SYS.

The rename command is particularly useful when a file contains bad blocks. By
giving the file a BAD file type, you can ensure that the file permanently resides in
that area of the device. Thus, the system makes no other attempts to use the bad
area. Once you give a file a BAD file type, you cannot move it during a compress
operation. You cannot rename BAD files unless you specifically indicate both the
file name and file type.

Copying Files One Block at a Time (/S)
The /S (Single-Block) option directs PIP to copy files one block at a time. On
some devices, this operation increases the chances of an error-free transfer. You
can combine the /S option with other PIP copy options. For example:

*DL1:TEST.MAC=DL0:TEST.MAC/S

PIP performs this transfer one block at a time.

Placing a Creation Date on Files (/T[:date])
This option causes PIP to put the specified date on all files involved in the
operation. If you specify no date, PIP uses the current system date. Normally,
PIP preserves the existing file creation date on copy and rename operations. This
option is invalid when copying to magtape, because PIP always uses the current
date for these operations.

The following command copies all the files with file type .COM copied from DY0
to DY1, and assigns the output files the date January 24, l991:

DY1:.*=DY0:*.COM/Y/T:24.:JAN:91.

Combining Several Files into One File (/U)
To combine more than one file into a single file, use the /U option. This option
is particularly useful when you want to combine several object modules into a
single file for use by the linker or librarian. PIP does not accept wildcards on the
output specification. Use the /B option with /U if you are concatenating object
(.OBJ) files.

20–16 RT–11 System Utilities Manual Part II

PIP Option Descriptions

The following examples show the /U option:

*DK:AA.OBJ=DY1:BB.OBJ,CC.OBJ,DD.OBJ/U/B

The command shown above transfers files BB.OBJ, CC.OBJ, and DD.OBJ to
device DK as one file and assigns it the name AA.OBJ:

*DL1:MERGE.MAC=DL0:FILE2.MAC,FILE3.MAC/A/U

This command merges ASCII files FILE2.MAC and FILE3.MAC on DL0 into one
ASCII file named MERGE.MAC on device DL1.

Copying Files from One to Several Volumes (/V)
The /V (Multivolume) option copies files from an input volume to two or more
smaller output volumes. This option is useful when you are copying several files
from a large input volume and you are not sure whether all the files will fit on
one output volume.

When you use this option PIP copies files to the output volume until the system
finds a file that will not fit. PIP continues to search that file’s directory segment,
copying all files from the segment that will fit onto the output volume. When
no more files from that segment will fit on the output volume, PIP prompts you
to mount the next output volume and displays the Continue? message. Mount
another output volume of the same type and type Y or any string beginning with
Y followed by a RETURN to continue the copy operation. If you type any string
beginning with N or if you type CTRL/C , the operation is aborted and the monitor
prompt (.) appears.

When you type Y to continue, PIP copies the first file that would not fit to the
previous output volume to the new output volume. PIP continues to copy files
from that directory segment until no more files from that segment will fit on the
output volume or until all files from that directory segment have been copied.
If all files from that segment have been copied, PIP begins copying files from
the next directory segment. File copying continues in this fashion until all the
specified input files have been copied.

The following example copies all files on DL0 to several double-density diskettes:

DY0:.*=DL0:*.*/V
Mount next output volume in DY0:; Continue? Y
Mount next output volume in DY0:; Continue? Y
Mount next output volume in DY0:; Continue? Y
*

Logging Your Work (/W)
When you use the /W option, PIP displays a list of all files included in the
operation. The /W option is useful if you do not want to take the time to use
the query mode (the /Q option description), but you do want a list of the files
operated on by PIP.

Peripheral Interchange Utility (PIP) 20–17

PIP Option Descriptions

PIP displays the log for an operation on the terminal under the command line.
This example shows logging with the delete operation:

DY1:.*/D/W
?PIP-W-No .SYS action
Files deleted:
DY1:TEST.MAC
DY1:FIX463.SAV
DY1:GRAPH.BAK
DY1:DMPX.MAC
DY1:MATCH.BAS
DY1:EXAMP.FOR
DY1:GRAPH.FOR
DY1:GLOBAL.MAC
DY1:PROSEC.MAC
DY1:EXAMP.MAC
*

Ensuring Operation Completes (/X)
The /X option causes PIP to display an information message when PIP fails to
find all of the files you specify in a command line. If you do not use the /X option,
PIP displays a fatal error message when it is unable to find an input file, and
control returns to the keyboard monitor after the operation completes. Use /X in
indirect command files to ensure that processing will continue even if PIP fails
to find a file you specify.

In the following example, the input files FILE1.TXT and FILE3.TXT are copied to
DL1:. However, since the system is unable to find DL0:FILE2.TXT, PIP displays
a message to inform you:

DL1:.*=DL0:FILE1.TXT,FILE2.TXT,FILE3.TXT
?PIP-I-File not found DL0:FILE2.TXT

Enabling Operations on System Files (/Y)
Use the /Y option if you need to perform an operation on system (SYS) files and
you use wildcards in the input file type. For example:

**.*=DY1:*.*/Y

This command copies to device DK, in image mode, all files (including SYS files)
from device DY1:. Note that you must always use /Y with the /P option to include
SYS files, even when you use no wildcards.

Removing the Protection Status from Files (/Z)
Use the /Z option to remove protected status from files, so that you can delete or
change those files. You can also use the /Z option with /R to change the protection
status of a file, and during copy operations to remove protection from the output
file.

Note that since you cannot delete files assigned as logical disks, you cannot use
the /Z option to remove protection from these files.

The following command removes protection from all MAC files on DK:

**.MAC/Z

20–18 RT–11 System Utilities Manual Part II

PIP Option Descriptions

The following command copies the file PROGRM.MAC from DY0 to DY1. The
resulting output file on DY1 is enabled for deletion:

*DY1:PROGRM.MAC=DY0:PROGRM.MAC/Z

If you use the /R option with a file that is already unprotected, no operation
is performed on that file regardless of any other options in the command
string. For example, the following command requests PIP to unprotect the file
DY1:CALCAB.MAC and change its creation date to April 21, 1990. However,
because the file is already unprotected, PIP performs neither operation:

*DL1:CALCAB.MAC/R/T:21.:APR:90.

Peripheral Interchange Utility (PIP) 20–19

DCL Equivalents of PIP Utility Operations
Table 20–2 lists the DCL commands that are equivalent to PIP utility operations.

Seven different DCL commands use PIP: COPY, DELETE, PRINT, PROTECT,
RENAME, TYPE, and UNPROTECT. Those commands that can be used with a
PIP option are placed in the column next to that PIP option; and those DCL options
that can be used with those commands are placed in the next column beside the
commands. For example, the PIP /A option is equivalent to the command COPY
/ASCII. The extended hyphen (–) in the option column means there are no DCL
options for the command(s) on the same line that use PIP.

Table 20–2: DCL Equivalents of PIP Utility Operations

CSI Option DCL Command(s) DCL Option(s)

/A COPY /ASCII

/B COPY /BINARY

/C[:date] COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/DATE:[:date],/NEWFILES

/D DELETE
PRINT, TYPE

—
/DELETE

/E COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/WAIT

/F COPY, RENAME,
PROTECT

/PROTECTION
—

/G COPY /IGNORE

/H COPY /VERIFY

/I[:date] COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/SINCE[:date]

/J[:date] COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/BEFORE[:date]

/K:n PRINT, TYPE /COPIES:n

/M:n COPY, DELETE /POSITION:n

/N COPY, RENAME /NOREPLACE

/0 COPY /PREDELETE

/P COPY, DELETE,
PROTECT, UNPROTECT

/EXCLUDE

20–20 RT–11 System Utilities Manual Part II

DCL Equivalents of PIP Utility Operations

Table 20–2 (Cont.): DCL Equivalents of PIP Utility Operations

CSI Option DCL Command(s) DCL Option(s)

/Q COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/QUERY

/R RENAME –

/S COPY /SLOWLY

/T[:date] COPY, PROTECT,
RENAME, UNPROTECT

/SETDATE[:date]

/U COPY /CONCATENATE

/V COPY /MULTIVOLUME

/W COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/LOG

/X COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/INFORMATION

/Y COPY, DELETE, PRINT,
PROTECT, RENAME,
TYPE, UNPROTECT

/SYSTEM

/Z COPY, RENAME,
UNPROTECT

—
/NOPROTECTION

Peripheral Interchange Utility (PIP) 20–21

Chapter 21

Queue Utility (QUEUE)

The Queue Utility (QUEUE) sends files to any valid RT–11 device. Although the
Queue Utility is particularly useful for queuing files for printing, queuing is not
restricted to a line printer or any other serial device.

The Components of the Queue Utility—the Queue Package
The Queue utility consists of the following three components.

Component File Function

QUEUE SY:QUEUE.REL Queues and sends the files you specify; runs as a
foreground or system job.

QUEMAN SY:QUEMAN.SAV Processes command lines and file specifications
you enter, and sends that information to QUEUE.
QUEMAN runs as a background job and serves as
the interface between you and the Queue utility.

QUFILE SY:QUFILE.WRK Contains the queue for the lineup of files waiting
to be output to the device(s) you specify; this is
also called Queue’s work file.

The Queue utility runs only with a mapped monitor.

NOTE
To prevent QUEUE and another job from intermixing
output on the same non-file-structured device, use the
LOAD command to assign exclusive ownership of a
device to QUEUE.

Features
• QUEUE appends a form-feed character <FF> to the end of each copy of a queued

file, whether the output is to a disk, a serial line printer, or a parallel line printer.

• When QUEUE sends a job consisting of more than one input file to an RT–11
file-structured device, QUEUE now copies each input file to a separate output
file with the same file name and type. The job name is printed in the JOBNAME
field of the banner page.

• To save time, magtape input devices for QUEUE operations do not rewind
between files.

Queue Utility (QUEUE) 21–1

• The PRINT command is affected when both QUEUE and SPOOL are running.

— KMON assigns precedence to SPOOL for any PRINT command, so take care
if you run both QUEUE and SPOOL. PRINT options /PROMPT and /NAME
are specific only to QUEUE. If both QUEUE and SPOOL are running, KMON
treats those PRINT options as assigned to SPOOL and returns an invalid
option error.

— When SPOOL or both SPOOL and QUEUE are running, the /FLAGPAGE:n
option, when a value is specified for n, overrides the SET SP FLAG=n
command. When no value is specified for n with the /FLAGPAGE:n option,
the value for n is set by the SET SP FLAG=n command. The /NOFLAGPAGE
option inhibits flag pages under all circumstances.

— When only the QUEUE package is running, the default number of banner
pages printed when you use the /FLAGPAGE:n option is determined by the
default number of banner pages set with the QUEMAN /P option. If the
default set with the /P option is 0, the default for /FLAGPAGE:n is 1. If the
QUEMAN /P option is not used, the default is /NOFLAGPAGE.

• If the QUEUE utility is running, the DCL command SHOW QUEUE requires
RESORC.SAV and QUEMAN.SAV be on device SY.

21–2 RT–11 System Utilities Manual Part II

Calling and Using the Queue Utility
To use the Queue utility, you must first run QUEUE from the system volume as
either a foreground or system job. You can then run QUEMAN in the background
when you are ready to output files.

Running QUEUE
• To run QUEUE as a foreground job, call QUEUE from the system volume issuing

the following command:

.FRUN QUEUE RET

• To run QUEUE as a system job, call QUEUE from the system volume issuing
the following command:

.SRUN QUEUE RET

To halt QUEUE, enter the /A option; see the description of the /A option for more
information.

Running QUEMAN
To run QUEMAN from the system volume, issue the following command:

.R QUEMAN

The Command String Interpreter (CSI) displays an asterisk at the left margin of the
terminal, indicating it is ready to accept input. Enter a command string according
to this general syntax:

[dev:[jobname[/options]]=][filespec][/options][,filespec[/options]...]

where:

dev: specifies any valid RT–11 device; the default output device is LP0.

jobname specifies the output job name. This is the logical name for all the
files specified in the command. If you send a job to a file-structured
device, QUEUE uses this name as the file name of the job, and assigns
a JOB file type. If you do not specify a job name, QUEMAN uses the
file name of the first input file. The job name can have up to six
characters.

filespec specifies the input file. If you do not specify a file type, QUEMAN
assumes a LST file type.

options specifies one or more of the options listed in the QUEMAN Option
Summary section.

If you use commas in place of file specifications, QUEMAN ignores all remaining file
specifications on that command line. (Note, however, that if your command string
consists of several lines, entering commas in place of a file specification does not
affect file specifications on subsequent lines in the command string.)

Queue Utility (QUEUE) 21–3

QUEMAN Option Summary
Table 21–1 summarizes the options you can use in the QUEMAN command line.
The sections that follow Table 21–1 provide detailed explanations and examples of
each option. Note that some of the options are position-dependent—that is, their
function depends on where you place them in the command line. Also, some of the
options accept a date as an argument. The syntax for specifying the date is:

[:dd.][:mmm][:yy.]

where:

dd. specifies the day (a decimal integer in the range 1–31).

mmm specifies the first three characters of the name of the month.

yy. specifies the year (a decimal integer in the range 73–99).

The default value for the date is the current system date. If you omit any of these
values (dd, mmm, or yy), RT–11 uses the values from the current system date. For
example, if you specify only the year ::90. and the current system date is May 4,
l991, RT–11 uses the date 4:MAY:90. If the current date is not set, it is considered 0
(the same as for an undated file in a directory listing). The date values are position-
dependent. If you omit the day (dd) or month (mmm), you must use a colon (:) in
place of the value.

If you have selected timer support through the system generation process, but have
not selected automatic end-of-month date advancement, make sure that you set the
date at the beginning of each month with the DATE command. If you fail to set the
date at the beginning of each month, the system prints –BAD– in the creation date
column of each file created beyond the end-of-month. (Note that you can eliminate
–BAD– by using the RENAME/SETDATE command after you set the date.)

Two Types of QUEMAN Options
QUEMAN options are of two types: action and qualifier. You should specify only one
action option on a command line. If you specify more than one action option, only
the last one specified is executed.

You can specify qualifier options in combination with each other and in combination
with action options. However, if you specify an action option with a qualifier option,
specify the action option first. Qualifier options should be placed after an action
option on the command line. The reason is that QUEMAN executes the last specified
option first; and when it executes an action option, QUEMAN ignores any further
options specified on the command line.

21–4 RT–11 System Utilities Manual Part II

QUEMAN Option Summary

Table 21–1: QUEMAN Option Summary

Option Type Function

/A Action Terminates QUEUE.

/C[:date] Qualifier Prints only those files with the specified date. If you use /C and
do not specify a date, QUEMAN prints only those files with the
current date.

/D Qualifier Deletes the input file(s) after printing. This option is position-
dependent.

/H:n Qualifier Prints n banner pages for each specified input file, where n is a
decimal number. This option is position-dependent.

/I[:date] Qualifier Prints only those files created on or after the specified date.

/J[:date] Qualifier Prints only those files created before the specified date.

/K:n Qualifier Prints n copies of each specified file, where n is a decimal
number. This option is position-dependent.

/L Action Lists the contents of the queue.

/M Action Removes a job from the queue.

/N Qualifier Specifies no banner pages for the input file(s).

/P Action Sets two Queue Package default values: the number of banner
pages, and whether you want QUFILE.WRK deleted when you
terminate QUEUE.

/Q Qualifier Causes QUEMAN to request confirmation that a particular file
should be included in the operation. QUEMAN prints the name
of each file that can be included in the operation. You must
respond Y to include a particular file.

/R Action Resumes sending the current job after it has been suspended, or
restarts the current file in the job being sent.

/S Action Suspends output at the end of the current file.

/W Qualifier Displays on the terminal a log of the files involved in the
operation.

/X Qualifier Allows QUEMAN to continue processing instead of halting when
it cannot find a file you specified in the command line.

// Qualifier Continues command on the next line.

If QUEUE is sending a job that has multiple input files to an RT–11 file-structured
volume, QUEUE copies each input file to a separate output file with the same file
name and type as the input file. The jobname is used in the JOBNAME field of the
banner page (if you request banner pages).

QUEUE protects files until it has placed them in the queue. Under RT–11, a file
cannot be copied to a device that contains a protected file with the same file name.
For this reason, QUEUE cannot be used to transfer a file to a device that contains
a file with the same file name.

Queue Utility (QUEUE) 21–5

QUEMAN Option Descriptions

Terminating QUEUE (/A)
When you type /A in response to the CSI asterisk, QUEMAN terminates QUEUE.
If you use /A while a job is printing, QUEUE halts output. If QUEUE is running
as a foreground job, using /A has the same effect as typing CTRL/F and two
CTRL/Cs. If QUEUE is running as a system job, using /A has the same effect
as typing CTRL/X and then specifying QUEUE as the system job to which you
want to direct input, followed by two CTRL/Cs.

The following example terminates QUEUE:

.R QUEMAN
*/A

If you type CTRL/C twice to terminate QUEUE, this may take a few seconds
because QUEUE performs the following I/O rundown before terminating:

• Waits for all current I/O transfers to complete

• Removes protection from the input file if it was unprotected before QUEUE
began copying it to the output device

• Closes the work file if you have chosen to save the work file

Date Option (/C[:date])
The /C[:date] option prints only those files with the specified date. If no date
is specified, only those files with the current date are printed. Specify /C only
once in the command line; it applies to all the file specifications in the entire
command. The following command prints on LP0: all files named ITEM1 and
ITEM2 that also have the date March 20, 1991:

*ITEM1/C:20.:MAR:91.,ITEM2

Deleting Input Files After Printing (/D)
Use the /D option to delete input files after QUEUE has sent them. This option
is position-dependent. If you use it with the job name, /D applies to all the input
files. If you use it with an input file specification, /D applies only to that input
file.

Input files are protected from deletion while QUEUE is copying them to the
output device. The following example deletes all input files after they have been
sent:

*MYJOB/D=FILE1,FILE2,FILE3

The following example deletes FILE1 and FILE3 but retains FILE2 after QUEUE
has sent them:

*MYJOB=FILE1/D,FILE2,FILE3/D

Input files are protected from deletion while QUEUE is copying them to the
output device. This protects input files from accidental deletion.

21–6 RT–11 System Utilities Manual Part II

QUEMAN Option Descriptions

Printing Banner Pages (/H:n)
Use the /H:n option to print banner pages for the input files you specify, where
n is a decimal number selecting the number of banner pages. This option is
position-dependent. If you use /H:n with the jobname, QUEUE prints n banner
pages for each input file. If you use /H:n with an input file specification, QUEUE
prints n banner pages for that file, and prints the default number of banner pages
for the remaining input files. (Note that you set the default number of banner
pages with the /P option. If the default number of banner pages set with the /P
option is 0, n defaults to 1.)

The sample command line that follows prints four banner pages for each input
file:

*LAUGHN/H:4=ROWAN.TXT,MARTIN.TXT

The following sample command prints four banner pages for MARTIN.TXT and
the default number of banner pages for ROWAN.TXT:

*LAUGHN=ROWAN.TXT,MARTIN.TXT/H:4

Note that QUEUE never prints a banner for the job; it prints banners only for
the input files.

NOTE
When SPOOL and QUEUE are running, QUEMAN
option /H returns an invalid-option error message.
This option conflicts with SPOOL (PIP) options, and
KMON assigns SPOOL precedence over QUEUE.

Since Option (/I[:date])
The /I[:date] option prints only those files created on or after the specified date.
If you specify no date QUEMAN uses the current system date. The following
command prints only those .MAC files on device DK: created on or after April
21, 1991:

**.MAC/I:21.:APR:91.

Before Option (/J[:date])
The /J[:date] option copies only those files created before the specified date. If you
specify no date QUEMAN uses the current system date. The following command
prints only those .MAC files on device DK: created before April 21, 1991:

**.MAC/J:21.:APR:91.

Printing Multiple Copies (/K:n)
Use the /K:n option to specify the number of copies of the input files you specify,
where n is a decimal number. The /K:n option is position-dependent. If you use
/K:n with the job name, QUEUE prints n copies of each input file. If you use
/K:n with an input file specification, QUEUE prints n copies of that particular
file.

Queue Utility (QUEUE) 21–7

QUEMAN Option Descriptions

The next command line prints four copies of LAUREL.LST and four copies of
HARDY.LST:

*JOB/K:4=LAUREL,HARDY

The following sample command line prints four copies of LAUREL.LST and the
default number of copies of HARDY.LST:

*JOB=HARDY,LAUREL/K:4

Listing the Contents of the Queue (/L)
Use the /L option to get a listing of the contents of the queue. The listing gives
the output device, job name, input files, job status, and number of copies for each
job that is in the queue. The job STATUS column prints P if the job is currently
being sent, S if the job being sent is suspended, or Q if the job is waiting to be
sent. If you have a large queue and your console is a video terminal, you can
use the keyboard CTRL/S and CTRL/Q commands to control the scrolling of the
listing.

The sample command line that follows lists the queue:

*/L
DEVICE JOB STATUS COPIES FILES

LP0: LAB2 P 1 PASS3 .LST
2 PASS4 .LST
2 PASS5 .LST

LP0: HODG Q 3 MESMAN.DOC
MT1: JUDITH Q 2 PART1 .DOC

2 PART2 .DOC
LP0: JOYCE Q 1 SSM .DOC

DOCPLN.DOC

Removing a Job from the Queue (/M)
Use the /M option to remove a job from the queue. When you use this option,
specify the job name followed by /M and the equal sign (=). The following example
removes the job LAB4 from the queue:

*LAB4/M=

When you use /M, you do not have to specify the input files, only the job name.
You remove all the files associated with the job name.

No Banner Pages Option (/N)
Use the /N option to specify that you do not want QUEUE to print any banner
pages for the input file(s). Use /N if you have previously set the default number
of banner pages with the /P option. The /N option is position-dependent; that
is, if you use it after the job name, it applies to each input file. Use /N after an
input file to apply to only the particular file.

The following example uses /N to specify no banner pages for each file in the job,
MYJOB2:

*MYJOB2/N=PASS1,PASS2,PASS3

21–8 RT–11 System Utilities Manual Part II

QUEMAN Option Descriptions

The /N option has the same effect as /H:0.

NOTE
When SPOOL and QUEUE are running, QUEMAN
option /N returns an invalid-option error message.
This option conflicts with SPOOL (PIP) options, and
KMON assigns SPOOL precedence over QUEUE.

Setting Queue Package Defaults (/P)
Use the /P option to set defaults for two values:

• Number of banner pages printed for each input file.

You can override the default number of banner pages by using the /H option.

• Whether you want the work file, QUFILE.WRK, deleted when you halt
QUEUE.

Note that QUFILE.WRK contains the lineup of files, or queue, waiting to be
sent to an output device.

When you type /P in response to the CSI asterisk, QUEMAN displays the
following prompt at the terminal:

1) Number of banner pages ?

QUEUE uses the number you type as the default number of banner pages it
prints for each file it sends to a device. If you type only a RETURN , QUEMAN
assumes 0. This value remains in effect until the work file, QUFILE.WRK, is
deleted (see below).

After you have responded to the previous prompt, QUEMAN prints the following
prompt at the terminal:

2) Delete workfile ?

If you type N followed by a RETURN , or only a RETURN , QUEUE maintains the
current QUFILE.WRK after you halt QUEUE. That is, if you start QUEUE
later, QUFILE.WRK retains the queue it had prior to the halt. By maintaining
QUFILE.WRK between the times QUEUE is halted, you have an automatic
queue restart capability. This value remains in effect until you reset it.

If you type Y followed by a RETURN , QUEUE deletes QUFILE.WRK when you
halt QUEUE. The next time you start QUEUE, it creates a new QUFILE.WRK.
This value remains in effect only until the next time you start QUEUE.

Query Option (/Q)
Use the /Q option to list all files and to confirm individually which of these files
should be printed. Typing Y or any string beginning with Y followed by a RETURN

causes the named file to be printed. Typing anything else excludes the file. The
following example prints files that reside on DY1:

Queue Utility (QUEUE) 21–9

QUEMAN Option Descriptions

DY1:.*/Q
DY1:FIX463.SAV to LP: ?
DY1:GRAPH.BAK to LP: ?Y
DY1:DMPX.MAC to LP: ?
DY1:MATCH.BAS to LP: ?
DY1:EXAMP.FOR to LP: ?
DY1:GRAPH.FOR to LP: ?Y
DY1:GLOBAL.MAC to LP: ?Y
DY1:PROSEC.MAC to LP: ?Y
DY1:KB.MAC to LP: ?
DY1:EXAMP.MAC to LP: ?

Suspending Output (/S)
Use the /S option to suspend output of a job being sent. When you type /S in
response to the CSI asterisk, QUEUE suspends output only after it has completed
output of the current file in the job. This option is useful if you want access to
an output device while a large job is being sent to it.

To resume output, use the /R option.

Resuming/Restarting Output (/R)
Use the /R option either to resume output of a suspended job, or to restart output
of the current file in the job from the beginning of the file. Note that a job
resumes if you previously suspended it with /S, and a job restarts if you have not
previously suspended it.

Resuming a job with multiple input files when the job is being sent to an RT–11,
file-structured volume can be useful if the volume involved is too small to contain
the entire job. You can suspend the job being sent (using the /S option), change
volumes, and resume output of the remainder of the job on the new volume.
QUEUE uses the same file name for both parts of the job.

Log Option (/W)
When you use the /W option, QUEMAN prints a list of all files printed or copied
to a file. The /W option is useful if you do not want to take the time to use the
query mode (the /Q option, but you do want a list of the files printed or copied
by QUEMAN.

QUEMAN prints the log for an operation on the terminal under the command
line. This example shows logging when files are queued to be printed on LP0:

DY1:.*/W
Files queued:
DY1:TEST.MAC to LP:
DY1:FIX463.SAV to LP:
DY1:GRAPH.BAK to LP:
DY1:DMPX.MAC to LP:
DY1:MATCH.BAS to LP:
DY1:EXAMP.FOR to LP:
DY1:GRAPH.FOR to LP:
DY1:GLOBAL.MAC to LP:
DY1:PROSEC.MAC to LP:
DY1:EXAMP.MAC to LP:

21–10 RT–11 System Utilities Manual Part II

QUEMAN Option Descriptions

Information Option (/X)
The /X option causes QUEMAN to print an information message when QUEMAN
fails to find all of the files you specify in a command line. If you do not use /X,
QUEMAN prints a fatal error message when it is unable to find an input file, and
returns control to the keyboard monitor after the rest of the operation completes.
Use /X in indirect command files to ensure that processing will continue even if
QUEMAN fails to find a file you specify.

In the following example, QUEMAN is unable to find the file FILE2.MAC.
QUEMAN prints a message informing you that the file was not found and
continues processing:

LP:.*=DL0:FILE1.MAC,FILE2.MAC,FILE3.MAC
?QUEMAN-I-File not found DL0:FILE2.MAC

Continuing a Command String (//)
Use the // option to continue a command string on subsequent lines. This option
is useful if you want to output more files than you can specify on one line. When
you want to include several lines in a CSI command string, type // at the end of
the first line, and again at the end of the command string.

The following command string uses the // option:

*JOBNAM=LML1.MAC,LML2A.MAC//
*LML51.MAC,LML95.MAC
*LML4.MAC,LML56.MAC//

Queue Utility (QUEUE) 21–11

Putting Support for QUEUE in an Application Program
Usually you queue files that you want to copy to another device by using the monitor
PRINT command. If the QUEUE program is running when you issue the PRINT
command, the files you specify are queued automatically and the monitor dot prints
on your terminal almost immediately.

Your application programs can also copy files to output devices through the QUEUE
program. The method your program must use to do this depends on which monitor
is currently running. If a monitor that includes the system job feature is running,
your program must communicate with QUEUE through the message queue (MQ)
handler by using .LOOKUP, .WRITW, and .READW programmed requests. Using
the MQ handler is beneficial because it frees the monitor for other tasks, and takes
advantage of the existing queued I/O system. Note that the MQ handler in a mapped
system borrows kernel PAR2 for its own use if the conditional assembly parameter
MQH$P2 = 1; see RT–11 System Internals Manual for more information on this topic.

If a monitor without the system job feature is running, your program must
communicate with QUEUE through the .SDAT and .RCVD programmed requests.

To queue one or more files, follow these steps:

1. Set up a job block in your program for a logical group of files to be queued.

2. Set up a file block for each file to be queued.

3. Issue the .LOOKUP programmed request for the QUEUE program. (Omit this
step if your system does not have the system job feature.)

4. Issue the .WRITW request (or the .SDATW request if your system does not have
the system job feature) to send the QUEUE request and establish a pointer to
the job and file blocks.

5. Issue the .READW request (or the .RCVDW request if your system does not have
the system job feature) to receive acknowledgment from QUEUE.

Once QUEUE acknowledges your request, your program is free to continue
processing or to exit. Figure 21–5 shows a program that uses .LOOKUP, .READW,
and .WRITW to queue one file, then exits.

21–12 RT–11 System Utilities Manual Part II

Putting Support for QUEUE in an Application Program

Step 1: Setting Up the Job Block
Set up a job block in memory for a logical group of files. The job block defines the
logical name by which you can later reference the entire group of files.

When you copy files to a file-structured device (such as the line printer, for example)
all the files belonging to the job are concatenated and stored in a file called ‘‘jobname’’
with the file type .JOB. The handler for the device to which you send the job must be
made resident in memory through the monitor LOAD command. Figure 21–1 shows
the format of the job block.

Figure 21–1: Job Block

flag bits and FLG.JR

of banners # of copies

six−character job name
(two Radix−50 words)

output device (Radix−50)

of file blocks following

The flag word in each job block defines the action QUEUE should take on each file.
Table 21–2 lists the definitions of the bits. Bits 4 through 15 are reserved for Digital.

The job block must have bit FLG.JR set. If FLG.CP is set, QUEUE sets the default
number of copies to queue for this job from the low byte of the second word in the
job block. If FLG.HD is set, QUEUE sets the number of banners to queue for this
job from the high byte of the second word in the job block.

Table 21–2: Request Flag Bits

Bit Name Mask Meaning

0 FLG.DE 1 Delete file after copying it.

1 FLG.CP 2 Make multiple copies (get number of copies from second
word in block.)

2 FLG.HD 4 Create banner pages (get number of pages from second
word in block).

3 FLG.JR 10 For initial request and job block.

Queue Utility (QUEUE) 21–13

Putting Support for QUEUE in an Application Program

Step 2: Setting Up the File Block
Immediately after the job block, your program must set up a file block for each file
that is part of the job. Arrange the blocks contiguously in memory, with the job block
first. Figure 21–2 shows the format of the file block.

Figure 21–2: File Block

flag word

of banners # of copies

four Radix−50 words
containing device, file
name, and file type of
the file to be queued

In each file block, you can specify the number of banner pages and the number of
copies for the file by setting flag bits FLG.CP and FLG.HD, and putting values into
the second word of the block. If you omit the flag bits, QUEUE ignores the second
word of the file block and checks the flag bits of the job block instead. If they are set,
QUEUE takes the values from the second word of the file block. Finally, if the flag
bits are clear in both the file and the job blocks, QUEUE uses the system default of
no banners and one copy of the file, or the current default parameters as set by the
QUEMAN /P option.

21–14 RT–11 System Utilities Manual Part II

Putting Support for QUEUE in an Application Program

Step 3: Setting Up the QUEUE Request Block
The last data structure you must establish is called the QUEUE request block. It
need not be contiguous in memory with the job and file blocks. Figure 21–3 shows
the format of the QUEUE request block. This block contains the information that
QUEUE needs to begin processing the files. QUEUE requests can only be issued
from a privileged job with kernel mapping. QUEUE request blocks must reside in
low memory.

Figure 21–3: QUEUE Request Block

FLG.JR

six−character file name of
your program

(three ASCII words)

address of job block
(must be kernel mapping)

0

Queue Utility (QUEUE) 21–15

Putting Support for QUEUE in an Application Program

Steps 4 and 5: Issuing Two Requests
• Issuing the .LOOKUP Request

In the executable section of your program, you must issue a .LOOKUP
programmed request to make the first contact with the QUEUE program and
establish a communication channel. Issue the .LOOKUP for MQ:QUEUE,
following the example provided in the QUEUE Example Program section. (Omit
this step if your system does not have the system job feature.)

• Issuing the Request to QUEUE

If the .LOOKUP is successful (or if you omitted it), you next issue the .WRITW
programmed request (or the .SDATW request if your system does not have the
system job feature) to send your request to QUEUE. The text you send to QUEUE
is the QUEUE request block. See the example provided in QUEUE Example
Program section.

If your request is valid, QUEUE inserts the request blocks into the queue, which
is a workfile on device DK. The workfile is a first-in/first-out list; it can contain
requests for different output devices. QUEUE does not maintain a separate
workfile for each device.

21–16 RT–11 System Utilities Manual Part II

Receiving Acknowledgment from QUEUE
When QUEUE acknowledges your request, your program can continue execution,
or exit, as you desire. You obtain this acknowledgment by issuing the .READW
programmed request (or the .RCVDW request if your system does not have the
system job feature). QUEUE’s response takes the form shown in Figure 21–4.

Your program must wait for this acknowledgment. QUEUE maintains only a limited
number of extra queue elements. If QUEUE sends a message to your program that
your program is not prepared to accept, a queue element is needlessly kept out of
the list of available elements; this could block another job in your system.

Figure 21–4: Request Acknowledgment Block

flag bits

six−character name

(three ASCII words)
QUEUE

0

0

If the acknowledgment is positive, the flag word contains 0. If the acknowledgment
is negative, the sign bit of the flag word is set in addition to one of the low three
bits. Table 21–3 shows the meanings of the acknowledgment flag bits.

Table 21–3: Acknowledgment Flag Bits

Bit Name Mask Meaning

0 FLG.RA 0 Request accepted.

15,0 FLG.IR 100001 Illegal job request.

15,1 FLG.QF 100002 Insufficient room in workfile.

15,2 FLG.NQ 100004 QUEUE being aborted from the terminal.

Queue Utility (QUEUE) 21–17

QUEUE Example Program
Figure 21–5 contains a listing of an example program, MYPROG, that uses QUEUE
in a system with the system-job feature to copy a data file to the line printer.

Figure 21–5: QUEUE Example Program

.TITLE MYPROG.MAC

.ENABL LC

; This example shows how an application program can
; send files through the queue system.

.MCALL .READW, .WRITW, .LOOKUP, .EXIT, .PRINT

;Flag bits for request

FLG.DE= 1 ;Delete file after printing
FLG.CP= 2 ;Multiple copies
FLG.HD= 4 ;Banner pages
FLG.JR= 10 ;Job request indicator

.PSECT QUETST

;Execution Section

START: .LOOKUP #AREA,#16,#LKUP ;.LOOKUP QUEUE
BCC 1$;Error?
.PRINT #LUPERR ;Yes, report it
.EXIT ;and quit

1$: .WRITW #AREA,#16,#REQST,#6 ;Send initial
;request to QUEUE

BCC 2$;Error?
11$: .PRINT #REQERR ;Yes, report it

.EXIT ;and quit

2$: .READW #AREA,#16,#REPLY,#6 ;Wait for ACK
;from QUEUE. Word count
;of ACK in REPLY, text
;in REQST.

BCS 11$;Branch on error
TST REQST ;ACK okay? (First word

;of ACK should be 0)
BNE MERR ;Branch if error
.PRINT #ACKMSG ;Print success message
.EXIT ;End of test, request

;sent to line printer.

MERR: .PRINT #NAKMSG ;Print error message
.EXIT ;and quit

.PSECT QUEDTA

;Block for .LOOKUP on QUEUE

LKUP: .RAD50 /MQ /
.ASCIZ /QUEUE/

Figure 21–5 (continued on next page)

21–18 RT–11 System Utilities Manual Part II

QUEUE Example Program

Figure 21–5 (Cont.): QUEUE Example Program

AREA: .BLKW 5 ;EMT area

;ACK from QUEUE goes here:
REPLY: .WORD 0 ;Word count from .READW
REQST: .WORD FLG.JR ;Initial request

.ASCII /MYPROG/ ;Calling program

.WORD JOBBLK ;Addr of job block

.WORD 0 ;End of initial request

;Block for job

JOBBLK: .WORD <FLG.JR+FLG.HD+FLG.CP> ;Flags for job,
;banners, and copies

.BYTE 2,3 ;2 copies, 3 banners

.RAD50 /LP / ;Send to printer

.RAD50 /DATA / ;Logical job name

.WORD 1 ;One file follows:
FILBLK: .WORD 0 ;No flags, use defaults

.BYTE 0,0 ;Default banners, copies

.RAD50 /DK / ;Filespec to be queued

.RAD50 /TSTFIL/

.RAD50 /DAT/

;Messages

LUPERR: .ASCIZ /MYPROG-F-QUEUE not running/
REQERR: .ASCIZ /MYPROG-F-Initial request error/
NAKMSG: .ASCIZ /MYPROG-W-QUEUE acknowledgment negative/
ACKMSG: .ASCIZ /MYPROG-I-QUEUE acknowledgment OK/

.EVEN

.END START

Queue Utility (QUEUE) 21–19

DCL Equivalents of Queue Utility Operations
Table 21–4 lists the DCL PRINT and DELETE commands that are equivalent to
Queue utility (QUEMAN) operations.

Table 21–4: DCL Equivalents of Queue Utility Operations

CSI Option DCL Command DCL Option

A no equivalent

C[:date] PRINT /DATE[:date]
/NEWFILES

/D PRINT /DELETE

/H:n PRINT /FLAGPAGE:n

/I[:date] PRINT /SINCE[:date]

/J[:date] PRINT /BEFORE[:date]

/K:n PRINT /COPIES:n

/L SHOW /QUEUE

/M DELETE /ENTRY

/N PRINT /NOFLAGPAGE

/P no equivalent

/Q PRINT /QUERY

/R no equivalent

/S no equivalent

/W PRINT /LOG

/X PRINT /INFORMATION

// PRINT /PROMPT

Note that the SHOW QUEUE command is performed by the RESORC /Q option,
rather than by the QUEMAN /L option. However, the QUEMAN /L option is still
valid for compatibility and is equivalent to the SHOW QUEUE command.

21–20 RT–11 System Utilities Manual Part II

Chapter 22

System-Resource Display Utility (RESORC)

The System-Resource Display Utility (RESORC) examines the currently running
RT–11 system and displays information about the status of the monitor and the
system configuration. You can use RESORC to display on your terminal the following
data about RT–11:

• Hardware configuration

• Monitor version

• Total amount of memory on the system and organization of physical memory

• Special features in effect

• Device names and logical device-name assignments

• Whether a device is assigned as a default device

• Terminal characteristics for terminals currently active on a multi-terminal
system

• Logical-disk subsetting

• Device handler status

• If you are running the Error Logger, QUEUE, or SPOOL, RESORC can provide
information on:

— Errors

— The update status of files waiting to be sent to an output device

— User-defined commands

Calling and Terminating RESORC
To call RESORC from the system device, respond to the keyboard monitor dot (.) by
typing:

.R RESORC RET

The Command String Interpreter (CSI) displays an asterisk (*) at the left margin of
the terminal and waits for your input. At this point, enter the RESORC option or
options required to obtain the information you need.

If you enter only a RETURN in response to the asterisk, RESORC displays its name
and current version number. To abort RESORC while it is executing, enter CTRL/C

twice. Type CTRL/C once to return control to the monitor when RESORC is waiting
for input (that is, when an asterisk has displayed on the terminal).

System-Resource Display Utility (RESORC) 22–1

RESORC Option Summary
Table 22–1 summarizes the RESORC options by listing what each one displays.

Table 22–1: RESORC Options

Option Display

/A The result of a combination of all RESORC options (except /Z)

/C The device from which you bootstrapped the system and the monitor SET
options in effect

[dd:]/D A list of the device handlers, their status, and their vectors; when [dd:] is
included, lists the status of only that device

/H The hardware configuration, including the system’s total amount of memory
(in bytes)

/J Information about the currently running and loaded jobs

/L Device assignments

/M The monitor type, version number, and update level

/O The system generation special features in effect

/Q The contents of the queue for QUEUE or SPOOL or both

/S Information about logical-disk subsetting

/T The status and options in effect for currently active terminals on multi-
terminal systems

/V The release and version number of any module in the RT–11 distribution kit.

/X The organization of physical memory

/Z The result of a combination of /M, /C, /H, /J, and /O options

By specifying one or more of the options /C, /D, /H, /J, /L, /M, /O, /S, /T, and /X, you
choose the information that RESORC lists on the terminal. If you use two or more
options, you can enter them in any order, although RESORC lists the information
in the order /M, /C, /H, /O, /D, /L, /J, /T, /X, /S.

RESORC offers two options that are equivalent to combinations of options:

• The /Z option has the same effect as a combination of the /M, /C, /H, /J, and /O
options.

• The /A option has the same effect as a combination of all the options except /Q
and /Z.

22–2 RT–11 System Utilities Manual Part II

RESORC Option Descriptions
All Option (/A)

The /A option has the same effect as a combination of all the other RESORC
options (except /Z). When you enter /A, all RESORC information is displayed on
the terminal.

Software-Configuration Option (/C)
The /C option displays status information for

• The device from which you bootstrapped the system

• Whether a foreground job is loaded (if applicable)

• The monitor SET options

SET KMON
SET EXIT
SET EDIT
SET SL
SET CLI

• Command-file nesting depth

• Extended device-unit support

• Global .SCCA flag support (enabled or disabled)

The following example uses the /C option:

*/C

Booted from DU0:RT11XM

USR is set NOSWAP
EXIT is set SWAP
KMON is set NOIND
TT is set NOQUIET
ERROR is set ERROR
SL is set ON
EDIT is set KEX
KMON nesting depth is 3
CLI is set DCL, CLI, UCL, no UCF

Device-Handler Status Option ([dd:]/D)
The /D option displays:

• The RT–11 device handlers and their status

• CSR addresses and vectors

• Installability information for any device handler that, because of the handler
characteristics or your system configuration, cannot be installed in some
manner on your system.

System-Resource Display Utility (RESORC) 22–3

RESORC Option Descriptions

The three possible displays are:

Display Meaning

Not BSTRAP installable Handler must be installed
by INSTALL command

Not KMON installable Handler must be installed
at system boot

Not installable Handler cannot be installed
on this system

You can obtain this information for a specific device by including the optional
argument dd. The dd variable specifies the two-letter permanent device
mnemonic.

• The port display indicates an invalid port by displaying an asterisk (*) before
the port number. For example, port = *n, where n = 0,1,2,3, indicates that
port n was not installed. If RESORC option DU:/D displays port = n, where
n = 0,1,2,3, then port n is installed.

• The default device, if present, by displaying an asterisk (*) next to the device
handler or logical disk unit. (A default device is created by using the ASSIGN
dev * command.)

DU:/D displays additional DU status information. The port display indicates an
invalid port by displaying an asterisk (*) before the port number. For example,
port = *n, where n = 0,1,2,3, indicates that port n was not installed. If DU:/D
displays port = n, where n = 0,1,2,3, then port n is installed.

MU:/D displays MU status information for the PORT and UNIT of each installed
TMSCP controller in the same manner that the DU argument displays MSCP
status information. (Partitioning is invalid with magtape devices.)

The following messages in a /D display relate to a device’s installation status.

Message Meaning

Installed Loaded into memory

nnnnnn Load address of handler

Resident Permanently located in memory

Not installed Not loaded into memory

Not installed Not loaded because the handler special features do not
match those of the monitor

Not BSTRAP installable Handler must be installed by the INSTALL command

Not KMON installable Handler must be installed at the system boot

Not installable Handler cannot be installed on this system

22–4 RT–11 System Utilities Manual Part II

RESORC Option Descriptions

Hardware-Configuration Option (/H)
The /H option lists the processor type, the total amount of memory (in bytes)
that the system contains, and all the special hardware features in your system
configuration.

Any special hardware is chosen from the following list. (The /H option displays
the features in the order they occur in the list.)

FP11 Hardware Floating Point Unit
Commercial Instruction Set (CIS)
Floating Point Microcode
Extended Instruction Set (EIS)
Floating Point Instruction Set (FIS)
Memory Management Unit
Parity Memory
ECC Memory
Cache Memory
PMI Memory
VT11 or VS60 Graphics Hardware
Extended Arithmetic Element (EAE)

The next item that appears in the /H listing is the clock frequency (50 or 60
cycles), and the last is the KW11–P programmable clock (if your system has one
and you are not using it as the system clock).

The following example shows the /H option:

*/H

PDP 11/23 PLUS Processor
1024KB of memory
Floating Point Microcode
Extended Instruction Set (EIS)
Memory Management Unit
60 Cycle System Clock

Loaded-Jobs Option (/J)
The /J option displays information about the currently loaded jobs. For each job,
RESORC displays:

• Job name and number (if you have not enabled system-job support on your
monitor, the foreground job name appears as FORE, and its priority is 1)

• Console the job owns (with a non-multiterminal monitor, this space is blank)

• Priority level of the job

• Job’s running state (running, suspended, or done but not unloaded)

• Low and high memory limits of the job

• Start address of the job’s impure area

System-Resource Display Utility (RESORC) 22–5

RESORC Option Descriptions

Device-Assignments Option (/L)
The /L option displays your system’s device assignments. The devices RESORC
lists are those in the system tables. The listing also includes additional
information about particular devices. The informational messages and their
meanings follow.

Message Meaning

(RESORC) or =RESORC The device or unit is assigned to the background
job RESORC (for multi-terminal unmapped or mapped
monitors only).

(F) or =F The device or unit is assigned to the foreground job
(for only multi-terminal unmapped monitors, mapped
monitors, and monitors without system-job support).

(jobname) or =jobname The device or unit is assigned to the system or foreground
job (for FB and mapped monitors that have system-job
support), where jobname represents the name of the
system or foreground job.

(Loaded) The handler for the device has been loaded into memory
with the LOAD command.

(Resident) The handler for the device is included in the resident
monitor and is not unloadable.

=logical-device-name(1),
logical-device-name(2),
...logical-device-name(n)

The device or unit has been assigned the indicated logical
device names with the ASSIGN command.

xx free slots The last line tells the number of unassigned, or free,
device slots.

The following is an example display with the /L option:

*/L RET

TT (Resident)
DU (Resident)
DU0 = SY, DK, OBJ, SRC, BIN
DU1 = LST, MAP

MQ (Resident)
DL (Loaded)
DM
DX (Loaded)
DX0: (MYPROG)

LP: (Loaded=QUEUE)
MT
5 free slots

The listing shows first that TT, MQ, and RK are resident in memory. The other
device handlers known to the system are DL, DM, DX, LP, and MT. There are
five free slots in the table. DU0 has the logical names SY, DK, OBJ, SRC, and
BIN. DU1 has the logical names LST and MAP. The DX handler is loaded and
device DX0 belongs to the foreground job, MYPROG. The LP handler is loaded
and belongs to the system job, QUEUE.

22–6 RT–11 System Utilities Manual Part II

RESORC Option Descriptions

Current-Monitor Option (/M)
The /M option displays the type, version number, and update level of the currently
running monitor. The following table identifies each RT–11 5.6 monitor:

Monitor Type

SB single-job, unmapped
FB multi-job, unmapped
XB single-job, single mapped
XM multi-job, single mapped
ZB single-job, fully mapped
ZM multi-job, fully mapped

The following example uses the /M option:

*/M

RT-11XM V05.06

Special-Features Option (/O)
The /O option lists on the terminal the special features chosen during a system
generation. Whatever features are in effect are displayed in the same order as
the following list of possible special features.

Option Function

Device I/O timeout support Permits device handlers to do the equivalent of a
mark time without doing a .SYNCH request; DECnet
applications require this support.

Error-logging support Keeps a statistical record of all I/O operations on devices
that are supported by this feature; detects and stores data
on any errors that occur during I/O operations.

Multi-terminal support Permits you to use as many as 16 terminals.
Memory-parity support Causes RT–11 to display an error message when a

memory-parity error occurs.
SB timer support Configures the SB monitor to include mark-time and

cancel mark-time programmed requests and to support
the .FORK process.

System-job support Allows you to run up to six jobs in the foreground in
addition to the foreground and background jobs.

Global .SCCA support Reports whether global .SCCA support was chosen during
system generation.

Floating-point unit support Reports whether FPU support was chosen during system
generation.

Multi-terminal handler
hooks support

Reports whether the monitor was SYSGENED for multi-
terminal handler hooks.

Extended unit support Reports whether the monitor was SYSGENED for
extended unit support.

Unibus mapping Reports whether it is available and enabled or disabled.

System-Resource Display Utility (RESORC) 22–7

RESORC Option Descriptions

The following example shows the /O option:

*/O

Device I/O time-out support
Error logging support
System job support
FPU support

If there are no special features in effect, RESORC displays NO SYSGEN options
enabled.

Show-Queue Option (/Q)
The /Q option lists the contents of the queue for QUEUE, SPOOL, or both, if
both are running. If there are no files in a queue, RESORC displays:

?RESORC-I-No queues active

SPOOL Status Report
The SPOOL status report shows whether each SPOOL device unit and associated
output device is active or inactive, the number of blocks spooled for output, and
the number of free blocks in SPOOL’s work file.

The following example display shows two output devices, LS0 and LP0, attached
to SPOOL, with LS0 printing and LP0 idle:

Unit Device Status
SP0: LS0: ACTIVE, 56 blocks spooled
SP1: LP0: IDLE

944 Free blocks in workfile

QUEUE Status Report
The QUEUE status report shows the output device, job name, input files, job
status, and number of copies for each job that is queued. The next example
command lists the current contents of the queue for QUEUE:

*/Q RET

DEVICE JOB STATUS COPIES FILES

LP0: LAB2 P 1 PASS3 .LST
2 PASS4 .LST
2 PASS5 .LST

LP0: HODG Q 3 MESMAN.DOC
MT1: SZYM Q 1 REFMAN.TXT
LP0: JOYCE Q 1 SSM .DOC

1 DOCPLN.DOC

The job status column contains a P if the job is currently being output, an S if
the job being output is suspended, or a Q if the job is waiting to be output. If
you have a large lineup of files, and your console is a video terminal, you can use
the CTRL/S and CTRL/Q commands to control the scrolling of the listing.

22–8 RT–11 System Utilities Manual Part II

RESORC Option Descriptions

UNIBUS Mapping-Registers Option (/R)
The /R option displays the status of UNIBUS mapping registers (UMRs) if the UB
pseudohandler is loaded, or information about why UB is not loaded. UNIBUS
mapping register support is described in the RT–11 System Internals Manual.

The following is an example display.

UMR allocation
--
00 1 10 2 20 9 30 ..MS.. P
01 1 11 2 21 9 31 P
02 1 12 2 22 9 32 P
03 1 13 4 23 9 33 P
04 1 14 4 24 9 34 P
05 2 15 4 25 9 35 ..DU.. P
06 2 16 4 26 9 36 ..DU.. P
07 2 17 9 27 9 37 IOPAGE P

2. UMRs in use
2. UMRs permanently assigned
0. UMRs dynamically assigned

0. requests waiting for UMR allocation

RESORC = NOSERIAL

Disk-Subsetting Option (/S)
The /S option displays information about the subsetting of physical disks into
logical disks. When you use the /S option, RESORC displays the following
information:

• Assigned logical-disk units

• An asterisk next to any logical-disk unit assigned as a default device. (A
default device is created by using the ASSIGN dev * command.)

• The file name to which each logical-disk unit is assigned

• The size of each logical disk in decimal blocks

• Any logical name assigned to a logical disk

For example, if you mount a 1000-block file DU4:WRK.DSK on logical device unit
LD0 and assign it the name WRK, SHOW SUBSET displays:

LD0 is DU4:WRK.DSK[1000.] = WRK

The following sample command line displays the logical disks into which the
physical disks DU and DL1 are divided:

.SHOW SUBSET RET

LD0 is DU:DISK.LST[4000.]
LD2 is DL1:DISK.SRC[1200.]
LD1 is DL1:WORK.DSK[600.]

An asterisk (*) following the file information indicates that although the logical-
disk assignment exists, the file does not exist on the volume that is currently
mounted in the drive unit. A number sign (#) indicates that the device handler

System-Resource Display Utility (RESORC) 22–9

RESORC Option Descriptions

is not loaded. These symbols are especially useful in determining the status of
logical-disk assignments after you use the SET LD CLEAN command.

If LD.SYS is not installed, RT–11 displays the message LD handler unavailable.
If no logical-disk units have been mounted (by using the MOUNT command),
RT–11 displays No LD units mounted.

Terminal-Status Option (/T)
The /T option displays the status of and special features in effect for currently
active terminals on multiterminal systems. If the monitor does not include
multiterminal support, the following message displays:

No multi-terminal support

Since multiterminal support is not part of the distributed RT–11 monitors, such
support is present on your system only if you have included it during system
generation; that is, multiterminal support is a special feature.

If the monitor includes multiterminal support, /T displays a table of the existing
terminals and lists the following information:

Unit number: 0-16

Owner: Background, foreground, system job, or none

Type: Local
Remote (dial-up)
Console
S-Console (shared by background and foreground or
system job)
Is attached to another job (the foreground)

Interface type: DL, DZ, or DH

Width: Width in characters, up to 255

SET options in effect:

TAB
CRLF
FORM
SCOPE

Line speed: Baud rate if DZ or DH; not applicable (N/A) if DL

The following example shows the terminal status of an RT–11 system:

*/T RET

Unit Owner Type WIDTH TAB CRLF FORM SCOPE SPEED
--
0 Console DL 80 No No No Yes N/A
1 Local DL 80 No No No Yes N/A
9 XL* Local DH 80 No No No Yes 9600
10 Local DH 80 No No No Yes 9600
11 Local DH 80 No No No Yes 9600
12 Remote DH 80 No No No Yes 9600

* Multi-terminal handler hooks in use

22–10 RT–11 System Utilities Manual Part II

RESORC Option Descriptions

Note that in this table, the unit number refers to the terminal; RT–11
multiterminal support permits you to use as many as 17 terminals.

The Unit column lists the terminal unit number, and the Owner column lists the
name of the job (foreground, system, background, or none) to which the terminal
is assigned. If the running monitor does not have system job support, RESORC
displays FORE and RESORC, where applicable.

The Type column of this table shows the type of terminal—local, remote, console,
or S-console (a console shared between background, system, and foreground
jobs)—and the type of hardware interface the terminal uses—DL, DZ, or DH.

The WIDTH column indicates the width in characters (up to 255) of the terminal
listing or display text.

The next four columns indicate which SET options are in effect on the terminal.
If you have set TAB, the terminal can execute hardware tabs. If you have set
CRLF, the terminal issues a carriage return and line feed whenever you attempt
to type past the right margin. The terminal is capable of executing hardware
form feeds if you have set FORM and, on graphics terminals, capable of echoing
RUBOUT characters as backspace-space-backspace if you have set SCOPE.

The last column, SPEED, lists the terminal’s baud rate (if interface is DZ or DH).
An N/A under the SPEED column indicates that the baud rate is not alterable
(DL interface, with the exceptions of DLV11–E).

Version-Numbers Option (/V)
The /V option displays the release number of any system utility or handler in
the RT–11 distribution kit and the version numbers for all modules in the utility
or handler.

Use the /V option to supply the release and version numbers for any RT–11
utilities or handlers quoted in a Software Performance Report (SPR) submission.

In the following example, the /V option displays the release and version numbers
for the LS handler:

*LS.SYS/V
Release = V05, Version(s) = 27

Physical-Memory Layout Option (/X)
The /X option lists the organization of physical memory. The memory listing
shows the location of each low-memory component and, under a mapped monitor,
each extended-memory region as well.

The memory listing displays such information as:

• Where jobs are loaded

• Where device handlers are loaded

• Where in memory KMON and the USR reside

• Number of words of memory each job and device occupy

System-Resource Display Utility (RESORC) 22–11

RESORC Option Descriptions

• Type of region in the extended memory map

• Cache-bypass status for a global region, using the symbol BYP rather than
the symbol GBL.

If you are running under a mapped monitor, the SHOW MEMORY listing is
divided into two sections, the first for extended memory and the second for kernel
memory. Memory addresses are displayed in octal.

The following example displays the organization of physical memory when
running under the SB monitor:

*/X RET

Address Module Words
------- ------ -----
160000 IOPAGE 4096.
157400 RK 120.
127274 RMON 6170.
126112 DY 313.
001000 ..BG.. 21797.

The next example shows the organization of physical memory when running
under the XM monitor:

*/X RET

------- Extended Memory --------
Address Module Words Type
------- ------ ----- ----
17760000 IOPAGE 4096. PRM HDW BYP
02000000 MEMTOP
01000000 VM 131072. SHR
00213700 95264.
00201300 SL 2688. PVT
00173200 MU 1568. PVT
00164700 SP 1632. SHR
00160000 DU 1248. PVT
00000000 KERNEL 28672. PRM HDW

------ Low Memory -------
Address Module Words
------- ------ -----
157340 DU 144.
117760 RMON 8056.
105716 USR 2577.
001000 ..BG.. 17639.

The extended-memory display includes a symbol for the type of region listed. The
table Extended-Memory Region Types shows the six types that can be listed. If
the region has characteristics of more than one type, RESORC uses the following
order of precedence:

• Private (PVT)

• Permanent (PRM)

• Automatic global elimination (AGE)

22–12 RT–11 System Utilities Manual Part II

RESORC Option Descriptions

• Hardware (HDW)

• Shared (SHR)

• Local (LCL)

For example, a shared region that also has automatic global elimination enabled
is displayed as type AGE. AGE takes precedence over SHR.

Extended-Memory Region Types

Symbol Meaning Description

AGE Automatic global
elimination

Created with the RS.AGE status argument set. Any
program can attach to and access the region.

HDW Hardware Considered part of the hardware configuration. RT–11
runs only if this region is present.

LCL Local Created by a program for the exclusive use of that
program. When the program exits or issues an .ELRG
request, the region is eliminated.

PRM Permanent Permanently installed when RT–11 is bootstrapped.
RT–11 runs only if this region is present.

PVT Private Created by a program that has not detached from the
region. The creating program has exclusive use of the
region. It cannot be attached to or accessed by another
program.

SHR Shared Created by a program that has detached from it and
possibly reattached to it. It can be attached to and
accessed by any other program. The region remains
after the creating program has exited. It can be
eliminated by the REMOVE keyboard command or
by specifying the RS.EGR status argument when a
program issues the .ELRG request.

Summary Option (/Z)
The /Z option has the same effect as a combination of the /M, /C, /H, /J, and /O
options. The /Z option displays the monitor version number and update level,
the monitor SET options in effect, the hardware configuration, the total amount
of memory on the system, and the special features in effect (if any). The listing
varies, of course, depending on which monitor and which hardware system you
are using.

Description of a CONFIGURATION Listing

• Version number and update level

First, the listing always shows the version number and update level of the
currently running monitor.

System-Resource Display Utility (RESORC) 22–13

RESORC Option Descriptions

• Monitor information

Next, the listing shows the following information about the monitor.

— The first line indicates the device from which the system was bootstrapped

— The next line indicates whether or not 22-bit addressing is on if you are
running a mapped monitor.

— Then the listing shows:

Extended device-unit support
SET CLOCK and SET FORTRA conditionals
User service routine (USR) status: SWAP or NOSWAP
EXIT status: SWAP or NOSWAP
Active command file processor: KMON or IND
SET RUN status
SET MODE status
Terminal status: QUIET or NOQUIET
ERROR severity level
SL status: ON, OFF, KMON
Default editor for the EDIT command
File nesting level (a decimal number)
Status of .SCCA support and the .SCCA flag when enabled

• System hardware configuration

Next, the listing shows the system hardware configuration. This includes:

— The processor type, such as a MicroPDP–11 or a PDP 11/84

— The total amount of memory your system contains; for example:

1022KB of memory

— A separate line for each of the following items that is present on your
system:

Extended arithmetic element (EAE)
FP11 Hardware Floating Point Unit
Commercial Instruction Set (CIS)
Extended Instruction Set (EIS)
Floating Instruction Set (FIS)
Memory Management Unit
Parity Memory
ECC Memory
Cache Memory
60 Hertz System Clock

— Another line displays any graphics hardware (VT11 or VS60) you might
have

— The clock frequency (50 or 60 Hertz) displays next

— The KW11–P programmable clock, if there is one on your system

22–14 RT–11 System Utilities Manual Part II

RESORC Option Descriptions

— Finally, the listing either shows that there are no special features in effect,
or it lists the features such as:

Device I/O time-out support
Error logging support
Floating Point Microcode
FPU support
Multi-terminal support
Memory parity support
SB timer support
System job support
Global .SCCA support
Unibus mappy support
multi-terminal handler support
extended unit support

An Example of the SHOW CONFIGURATION Display

The following example was created on a PDP 11/23 PLUS processor:
.SHOW CONFIGURATION

RT-11XM V05.6
Booted from DU0:RT11XM
22 bit addressing is on

USR is set NOSWAP
EXIT is set SWAP
KMON is set NOIND
TT is set NOQUIET
ERROR is set ERROR
SL is set OFF
EDIT is set KEX
FORTRAN is set FORTRA
KMON nesting depth is 3

CLI is set DCL, CCL, UCL, NO UCF

PDP 11/23 PLUS Processor
512KB of memory
Extended Instruction Set (EIS)
Memory Management Unit
Parity Memory
60 Hertz System Clock

Device I/O time-out support
System job support
FPU support

System-Resource Display Utility (RESORC) 22–15

DCL Equivalents of RESORC Utility Operations
Table 22–2 lists the DCL SHOW command options that are equivalent to RESORC
utility operations.

Table 22–2: DCL Equivalents of RESORC Utility Operations

CSI Option DCL Command/Option

/A ALL

/C no DCL equivalent

[dev:]/D DEVICES[dd:]

/H no DCL equivalent

/J JOBS

/L SHOW (with no option)

/M no DCL equivalent

/O no DCL equivalent

/Q QUEUE
�

/R UMR

/S SUBSET

/T TERMINALS

/V no DCL equivalent

/X MEMORY

/Z CONFIGURATION
�

The SHOW QUEUE command is performed by the RESORC /Q option, rather than by the QUEMAN /L option.
However, the QUEMAN /L option is still valid for compatibility.

22–16 RT–11 System Utilities Manual Part II

Chapter 23

RT Monitor Utility (RTMON)

The RT Monitor Utility (RTMON) is an unsupported utility that runs as a foreground
job and provides a real-time display of system activity. It requires a VT100, VT200,
or PC300 series terminal or system. RTMON runs only under monitors that include
system-job support.

To use RTMON, type FRUN RTMON in response to the monitor prompt. RTMON
requires no further commands but will respond to some control characters, such as
CTRL/W to refresh the screen and CTRL/Z to clear the screen and suspend RTMON.

For best results, use a separate terminal for the RTMON display. This is possible
only under monitors that include multiterminal support.

RT Monitor Utility (RTMON) 23–1

Chapter 24

Save-Image Patch Utility (SIPP)

The Save-Image Patch Utility (SIPP) enables you to examine code or to make code
modifications to any RT–11 binary-output file that exists on a random-access storage
volume.

Uses
• You use SIPP primarily for maintaining save-image files. Although SIPP is

designed for maintaining programs that have been created with the RT–11
Version 4 or later linker, you can use SIPP for pre-Version 4 programs that are
not overlaid.

• SIPP is useful for examining locations within a file. If you do not modify any
locations within a file, SIPP makes no changes.

Features
• You can use SIPP to examine or patch (modify individual locations) in programs

(overlaid or nonoverlaid) that were linked under RT–11 (Version 4.0 or later).

• SIPP allows you to patch nonoverlaid programs, programs with only low-memory
overlays, programs with only extended-memory overlays, and programs with both
low-memory and extended-memory overlays.

Note the following, however, for dealing with overlaid programs:

— When a program you specify for a SIPP session is overlaid, SIPP reads in
25910 words of that program at a time; that is 25610 words of a single block,
plus the first three words of the next block. If either block is a bad block,
SIPP returns the error message, ?SIPP-F-Input error <dev:filenam.typ>. If
you receive that error message, issue the command DIRECTORY/BAD for
that device to find the bad block. SIPP reads in one block at a time when
the program is overlaid and you use the /A option, or if the program is not
overlaid.

— If you use SIPP to patch or examine an overlaid program without using the /A
option and SIPP reads to the end of a disk, SIPP returns the error message,
?SIPP-F-Input error <dev:filenam.typ>, and does not read the last block on
the disk.

• You can run SIPP from a command file, a BATCH stream, or from a terminal.

• When you run SIPP, you have the option of installing your code modifications
when you close the file, or you can create a command file that contains both the
code modifications and the instructions necessary for SIPP to install them. If

Save-Image Patch Utility (SIPP) 24–1

you create a command file, you can run this file as a command file whenever you
wish.

• When SIPP patches a file, the creation date of the patched file is changed to the
current system date.

• Because SIPP does not install code modifications until you have finished making
them, SIPP’s checksum is not affected by a CTRL/U or DELETE. This feature also
makes the code modification, or patching, procedure easier for you.

NOTE
Digital does not recommend that you modify the
following data within a save-image file: locations 50, 64,
and 66; the Job Status Word; the overlay handler; the
overlay tables; and the window definition blocks. SIPP
uses these locations for internal calculations and will
automatically update them as necessary. Note, however,
that if you use the /A option, SIPP does not modify any
of these locations.

Calling and Terminating SIPP
To call SIPP, respond to the dot (.) displayed by the keyboard monitor by typing:

.R SIPP RET

The Command String Interpreter (CSI) displays an asterisk (*) at the left margin of
the terminal and waits for a command string. If you only press RETURN in response
to the asterisk, SIPP displays its current version number. If you press CTRL/C in
response to the asterisk, control returns to the monitor. If you press CTRL/C in
response to any of SIPP’s prompts, SIPP displays the following confirmation message:

?SIPP - Are you sure?

If you type Y or any string beginning with Y followed by a RETURN , SIPP aborts
the patching procedure, and returns control to the monitor, without making any
changes to your file. Any other response returns control to the procedure that was
interrupted. You must press CTRL/C twice at any other time, including while running
from a command file, to get the ?SIPP—Are you sure? message.

24–2 RT–11 System Utilities Manual Part II

Command-Line Syntax
Enter a command string according to this general syntax:

[command-file=]input-file[/option...]

where:

command-file specifies the command file that you want SIPP to create. You can
run this file as a command file. The default file type is COM. If
you do not specify a command file, SIPP does not create one.

input-file specifies the file or volume you want to modify. If you do not specify
a file type, SIPP assumes SAV.

If you enter only a device specification, SIPP opens the first block
of that volume and assumes the /A option.

/option is one of the options listed in Table 24–1.

Save-Image Patch Utility (SIPP) 24–3

SIPP Option Summary
Table 24–1 summarizes the options that you can use with SIPP.

Table 24–1: SIPP Options

Option Function

/A Prevents SIPP from automatically modifying location 50, the window
definition blocks, the overlay table, or the overlay handler. Use /A when
you are patching anything other than save-image files. When you use the
option, SIPP modifies only those locations that you specify.

Note: Whenever you use SIPP to perform a customization on a distributed or
generated RT–11 5.6 or later monitor, always use the /A option; this is needed
because of the way the monitor is linked.

/C Requires you to enter a checksum after you finish code modifications. If you
make no modifications, SIPP ignores /C. The command file will automatically
contain /C. You cannot use /C and /D together. See the section Verifying Your
Work with Checksum for more details on the checksum.

/D Use if you do not know the checksum for a particular patch and you want
SIPP to create one. SIPP displays the checksum for the patch after you have
finished entering all the code modifications. If you make no modifications,
SIPP ignores the /D option. You cannot use /C and /D together.

/L When you use /L, SIPP does not modify the input file after the patching
session. This option is useful if you wish only to create a command file and
preserve the input file.

No DCL Equivalents of SIPP Utility Operations
SIPP is not accessible through DCL commands.

24–4 RT–11 System Utilities Manual Part II

SIPP Dialogue
After you have entered the initial command string to SIPP, SIPP displays a series
of prompts at the terminal. The responses you give to these prompts guide SIPP to
the location in the input file or volume where you want to begin code modifications.

Prompts
• If the input file is overlaid, the first prompt SIPP displays at the terminal is:

Segment?

Respond to this prompt by typing the number of the overlay segment that
contains the locations you want to modify. (SIPP does not display this prompt
if the file you are modifying is not overlaid, if you are using the /A option, or if
you are modifying a volume.) You can find the segment number in the program’s
load map. Press RETURN or type 0 (zero) and RETURN , if you want to modify the
program’s root segment.

• SIPP prompts you for the base address within the program or overlay segment
where you want to begin code modifications or examination. SIPP displays the
following prompt for both overlaid and non-overlaid files. (Note that the following
prompt is the second prompt for overlaid files, and the first prompt for anything
else.)

Base?

If the file you are modifying is overlaid, respond to the preceding prompt by
entering the base address specified on the load map for the segment you want to
modify. If the file is not overlaid, enter the load address of the program section
you wish to modify or examine.

• After you have entered the base address, SIPP prompts you for the offset as
follows:

Offset?

Respond to the offset prompt by typing the offset from the current base where
you want to begin modifying or examining your program.

If the offset you specify is an even number, SIPP opens the corresponding location
as a word. If the offset is odd, SIPP opens the location as a byte. The SIPP
Command Descriptions section describes how you can alternate between words
and bytes as you proceed to modify or examine the file.

Save-Image Patch Utility (SIPP) 24–5

SIPP Dialogue

• After you have responded to Offset?, SIPP displays the following header:

Segment Base Offset Old New?

If the file is not overlaid, SIPP does not print the segment column. Below
the header, SIPP displays the segment, base, and offset you have specified by
responding to the dialog prompts.

A sample dialog format follows. In this example, SIPP is to begin code
modifications in overlay segment 2 of program PROG.SAV.

.R SIPP RET

*PROG=PROG RET

Segment? 2 RET

Base? 20000 RET

Offset? 100 RET

Segment Base Offset Old New?
000002 20000 20100 103425

Under the column marked Old, SIPP displays the contents of the currently open
location. Under the column marked New?, you can enter either a new value for
the current location and/or a command. The SIPP Command Descriptions section
gives more details on opening and modifying locations. Table 24–2 summarizes
the commands you can enter.

NOTE
SIPP does not make changes to a file as you type them.
Instead, SIPP stores the changes in a buffer, allowing
you to abort a partially completed patch operation
without leaving behind a partially patched file. When
you finish a patching operation by pressing CTRL/Y or
CTRL/Z several times (see Table 24–2), SIPP makes all
the changes in one pass.

24–6 RT–11 System Utilities Manual Part II

SIPP Command Summary
Table 24–2 summarizes the commands you can enter during the code modification
procedure and lists the sections in which you can find more details on each command.
You can enter a command by pressing either LF (line-feed key) or RETURN .

Table 24–2: SIPP Commands

Command Function

RET or LF Closes the current location without modifying it, and opens and
displays the next location.

n RET Enters the value represented by n in the current location, closes it, and
opens the next location.

^ RET Closes the current location without modifying it, and opens the
previous location.

n^ RET Enters the value represented by n in the current location, closes it, and
opens the previous location.

\ RET Reopens the current location as a byte (starting with the low, or even,
byte for that word). From this point, SIPP will continue opening byte
locations and accepting byte values. Do not use this command when
in Radix–50 or ASCII mode.

/ RET Reopens the current location as a word. SIPP displays the contents of
the currently open word location. All further displays and input will
be word values. Do not use this command when in Radix–50 or ASCII
mode.

;O RET Reopens the current location as an octal word value. This is the default
mode. Use ;O to return to octal after having been in Radix–50 or ASCII
mode. All further displays and input are octal values.

;A RET Displays the byte of the current location as an ASCII value. All further
displays are in ASCII, and SIPP advances in byte mode.

;Ax RET Inserts an ASCII character represented by x in the byte of the current
location, closes that byte, and opens and displays the next location.
Use this command for inserting only one ASCII character at a time.
You can also use this command to search for an ASCII value (see the
description of the ;S command, Searching Through Files).

;R RET Displays the current location as a word of up to three Radix–50
characters. All further displays are in Radix–50.

;Ryyy RET Inserts up to three Radix–50 characters represented by yyy into the
current location. SIPP then closes the current location, and opens and
displays the next location. Use this command for inserting up to three
Radix–50 characters. You can also use this command to search for
a Radix–50 value (see the description of the ;S command, Searching
Through Files).

Save-Image Patch Utility (SIPP) 24–7

SIPP Command Summary

Table 24–2 (Cont.): SIPP Commands

Command Function

;S RET Searches for a value within the file. When you type this command,
SIPP prompts you for a value for which it is to search. SIPP also
prompts you for the boundaries within which you want it to conduct
the search.

;V RET Displays all the modifications you have made in the current patching
session. You can use this command at any time, except in response to
Checksum?.

CTRL/Z RET Backs up to the previous prompt: Offset?, Base?, or Segment?. This
command allows you to insert code modifications in more than one area
of the file during the same patching session.

CTRL/Y RET Completes the current patching session, installs the patch, creates
the command file (if requested), and prompts you with an asterisk
for another file specification.

24–8 RT–11 System Utilities Manual Part II

SIPP Command Descriptions
Opening and Modifying Locations Within a File (RET , LF , & n)

After you guide SIPP to the location in the file where you want to begin making
code modifications, SIPP displays a header under which it lists the address and
contents of the location specified, called the current location. Under the last
column in the header, New?, you can enter a value that replaces the contents of
the current location. After you enter the new value, press RETURN to advance to
the next location.

In the following example, the value 240 is inserted in the current location. Next,
a RETURN advances SIPP to the next 16-bit location.

Base Offset Old New?
001000 001200 004767 240 RET

001000 001202 003106

If you do not want to modify the current location, simply press RETURN to advance
to the next location.

Backing Up Through Files (^)
When you type the up-arrow character (^) followed by a RETURN in place of
entering data into the current location, SIPP closes the current location and
opens the previous location. If you specify a value followed by an up-arrow, SIPP
enters that value into the current location, closes that location, and opens the
previous location.

If you type an up-arrow when the offset from a specified base is 0, SIPP opens the
previous location and displays the offset as a double-precision negative number.

In the following example, the value 112000 is entered into the current location,
and the previous location is opened.

Base Offset Old New?
002000 002134 020027 112000^ RET

002000 002132 001732

In the last example, notice how SIPP decrements the offset by 2 to designate the
previous 16-bit location.

You can use the up-arrow after you use the backslash (\) to back up to the
previous byte (if currently in word mode). You can also use the up-arrow after
you use the slash (/) to back up to the previous word (if currently in word mode).

Advancing in Bytes (RET or \)
By default, SIPP operates in word mode. That is, locations are displayed as 16-
bit words, and values are displayed and entered as word values. If you type the
backslash character (\), SIPP closes the current location and reopens the low,
or even byte, of that location. Values that are displayed and entered from this
point are in bytes.

Save-Image Patch Utility (SIPP) 24–9

SIPP Command Descriptions

To revert to word mode, type the slash character (/). When you type the slash,
SIPP reopens the current location as a 16-bit word.

The following example uses the backslash to advance in byte mode, and then the
slash to revert to word mode. Notice that SIPP displays a new header each time
it changes from word mode to byte mode, and vice versa.

Base Offset Old New?
0020000 002112 003002 \ RET

Base Offset Old New?
002000 002112 002 RET

002000 002113 006 RET

002000 002114 132 / RET

Base Offset Old New?
002000 002114 003132

If you are in byte mode when you get the Offset? prompt, SIPP automatically
resets itself to word mode.

Entering Octal Values (;O)
Use the ;O command, followed by a RETURN , to reopen the current location, and
display its contents as an octal value. Since octal mode is the default setting,
you need to use it only if you are currently operating in ASCII or Radix–50 mode
and wish to revert to octal mode. You can also use the ;O command to switch
from byte mode to word mode.

The following example uses the ;O command to switch from ASCII mode to octal
mode.

Base Offset Old New?
002000 002100 051101 ;A RET

002000 002100 <A> ;O RET

Base Offset Old New?
002000 002100 051101

Note that unlike the ;A and ;R commands, ;O accepts no optional argument. If
you return to the Offset? prompt, SIPP automatically resets itself to octal mode.

Displaying and Entering ASCII Values (;A or ;Ax)
Use the ;A command, followed by a RETURN , to open the current location as a
byte and display its contents as an ASCII value. When you use the ;A command,
SIPP continues to display contents in ASCII until you use the ;O or ;R command.
Note that when you operate in ASCII mode, you advance through the file in byte
mode.

The following example uses the ;A command to open the low byte of the current
location and display its contents as an ASCII value.

Base Offset Old New?
003000 003100 050524 ;A RET

003000 003100 <T> RET

003000 003101 <Q>

24–10 RT–11 System Utilities Manual Part II

SIPP Command Descriptions

Use the ;Ax command to insert an ASCII character, represented by x, into the
low byte of the current location. When you use the ;Ax command, SIPP enters
the ASCII character directly into the current byte, closes that byte, opens and
displays the next location as an octal, ASCII, or Radix–50 value (depending on
what mode you were in prior to using the ;Ax command). Note that you can
insert only one ASCII character at a time, and that you should not insert control
characters. You can use the ;Ax command when displaying in ASCII mode.

The next example uses the ;Ax command to enter the ASCII character, W, into
the current byte and proceed to the next byte.

Base Offset Old New
003000 003100 050524 ;AW RET

003000 003101 121

You can also use the ;Ax command to search for an ASCII value (see the
description of the ;S command, Searching Through Files).

Displaying and Entering Radix–50 Values (;R or Ryyy)
Use the ;R command, followed by a RETURN , to reopen the current location and
display its contents in Radix–50. When you use the ;R command, SIPP continues
in Radix–50 mode until you use either the ;A or ;O command. Note that Radix–50
mode advances in word mode.

The following example uses the ;R command to reopen the current location and
display its contents as a Radix–50 value.

Base Offset Old New?
001000 005220 071070 ;R RET

001000 005220 <RK> RET

001000 005222 <TES>

If the contents of a location is an invalid Radix–50 value, SIPP displays the
contents as <???>.

You can use the ;Ryyy command to insert up to three Radix–50 characters,
represented by yyy, into the current location. When you use the ;Ryyy command,
SIPP inserts the Radix–50 value into the current location, closes the current
location, and opens and displays the contents of the next location as an octal,
ASCII, or Radix–50 value (depending on what mode you were in prior to using
the ;Ryyy command).

If you use the ;Ryyy command, and you enter only two Radix–50 characters, SIPP
inserts a blank as the third character. Likewise, if you enter only one Radix–50
character, SIPP inserts blanks for the second and third characters. If you use an
imbedded blank (for example, X Z), SIPP inserts all characters as typed. Note
that you can insert up to only three Radix–50 characters at a time. Use the ;Ryyy
command only when the low byte of the current location is open; SIPP displays
an error message if you attempt to insert a Radix–50 value when the high byte
of the current location is open.

Save-Image Patch Utility (SIPP) 24–11

SIPP Command Descriptions

The following Radix–50 values are valid for use with the ;Ryyy command:

A through Z
0 through 9
$
*
.
%

Note that a space is also a valid Radix–50 character, and that SIPP translates
the percentage character to a dot (.).

The following example uses the ;Ryyy command to insert three Radix–50
characters in the current location, and proceed to the next location.

Base Offset Old New?
001000 005332 000240 ;RABC RET

001000 005334 002110

You can also use the ;Ryyy command to search for a Radix–50 value (see the
description of the ;S command, Searching Through Files).

Searching Through Files (;S)
You can use the ;S command to search between two specified boundaries of a file
for a given value. With this feature, you can find the location where you want to
make a change by searching for a specific value.

Search Procedure:

1. To request a search, type the following in response to any of SIPP’s dialog
questions or in place of entering new data in the current location.

;S

Do not type the ;S command in response to the Checksum? prompt.

After you type the ;S command, SIPP responds with the following prompt:

Search for?

2. Respond to the search prompt by entering the value for which you want
SIPP to search. You can use the ;Ax or ;Ryyy command to search for ASCII
or Radix–50 values. If you type a backslash after the value you enter, SIPP
searches for a byte value. Otherwise, it searches for a word value. Note that
if you use the ;Ax notation to search for an ASCII value, SIPP conducts the
search in byte mode.

SIPP then asks for the lower address limit at which to begin the search:

Start?

3. Respond to the lower-address prompt by entering an address, followed by a
RETURN , or just a RETURN . If you enter only a RETURN , SIPP begins its search
at the beginning of the file. If you enter an address, SIPP begins the search
at that address.

24–12 RT–11 System Utilities Manual Part II

SIPP Command Descriptions

If you are searching through an overlay segment, use the following notation
for the start address:

n:m

In the n:m notation, n specifies the number of the segment you want to search,
and m specifies the offset from the start of the segment where you want SIPP
to begin the search.

SIPP then asks for the upper-address limit for the search:

End?

4. Respond to the upper-address prompt by entering an address (including the
n:m notation) or a RETURN . If you only press RETURN , SIPP searches to the
end of the file or volume. (If you use the /A option, SIPP searches to the end of
the last block in the file or volume; otherwise it searches up to and including
the last address in the program.) If you enter an address, SIPP conducts the
search up to, but not including, that address.

5. After you have specified the search limits, the search begins. Each time SIPP
finds a value that matches the one you specified, SIPP displays the address of
that value. If you use the /A option or if SIPP is searching the root segment
of a program, SIPP displays the search results as follows:

Found at nnnnnn

If a search crosses segments in an overlaid file, SIPP displays the following
each time it finds the specified value:

Found at seg:mmm,nnn

In the seg:mmm,nnn notation:

seg specifies the segment number

mmm specifies the load map address of the segment

nnn specifies the offset from the start of the specified segment

Note that if you are searching an overlaid file, and you have specified the /A
option in the command line, SIPP does not use the seg:mmm,nnn notation.

Verifying Your Modifications (;V)
Use the ;V command to list at the terminal all the changes you have made during
the current patching session. After SIPP displays the addresses and new contents
of all the locations that have changed, SIPP returns you to the operation that
was interrupted.

You can use the ;V command at any time, except in response to the Checksum?
prompt and the search Start?, and End? prompts. You can use the ;V command
in response to the Search for? prompt.

Save-Image Patch Utility (SIPP) 24–13

SIPP Command Descriptions

The following example uses the ;V command to list at the terminal all the changes
that have been made during the current patching session.

Base Offset Old New
003000 003200 003112 240 RET

003000 003202 002300 RET

003000 003204 002300 RET

003000 003206 000230 240 RET

003000 003210 000101 ;V RET

Base Offset Old New?
003000 003200 003112 000240
003000 003206 000230 000240

Base Offset Old New?
003000 003210 000101

Note that when you use the ;V command to verify your modifications, all displays
are in octal words. Note also that if you change a location and later restore that
location to its original contents, SIPP includes that location in the verification.

Backing Up to a Previous Prompt (CTRL/Z RET)
You can use the CTRL/Z sequence (or up-arrow Z), followed by a RETURN , to
back up to a previous prompt. For example, after you have modified a series of
locations, you can press CTRL/Z RETURN to back up to the Offset? prompt. Backing
up to a previous prompt enables you to examine and/or modify other series of
locations in your program.

• If you press CTRL/Z in place of entering a value in a location, SIPP prompts
"Offset?".

• If you press CTRL/Z RETURN in response to "Offset?", SIPP prompts "Base?".

• If you press yet another CTRL/Z RETURN , SIPP does one of two things:

— Prompts "Segment?", if the file is overlaid.

— Prompts you for a checksum (if you used /C), then installs the patch (if the
checksum is valid). (Note that if you have used the /L option, SIPP does
not install the patch, but does create the command file, if requested.)

If the file is overlaid, and you press CTRL/Z again followed by a RETURN sequence
in response to Segment?, SIPP prompts you for a checksum (if specified) then
installs the modifications.

Using CTRL/Y provides a more efficient way of installing a patch (see the
following subsection). The CTRL/Z sequence is designed primarily to request
a particular prompt.

Completing Code Modifications (CTRL/Y RET)
You can type the CTRL/Y sequence (or up-arrow Y), followed by a RETURN , to
install the code modifications you have entered. If you have used the /C option,
which requires you to enter a checksum, SIPP will prompt you for a checksum
before it installs the modifications. If the checksum you type is valid, SIPP then
installs the patch. If you have used the /L option and you enter the correct

24–14 RT–11 System Utilities Manual Part II

checksum, SIPP does not install the patch, but does create the command file, if
requested.

After SIPP installs the modifications, an asterisk appears in the left margin,
indicating that SIPP is ready to accept a new command string.

Extending Files and Overlay Segments
The limits to which you can extend programs and overlay segments while patching
vary, depending on whether the program is:

• Nonoverlaid

• Overlaid, but has only low-memory overlays

• Overlaid, but has only extended-memory overlays

• Overlaid, and has both low-memory and extended-memory overlays

The following sections each respectively describe how to deal with the preceding
types of programs. These sections describe in detail:

• The restrictions on extending programs, root sections, and overlay segments

• What data within your program SIPP does or does not automatically modify as
you extend root sections and/or overlay segments.

The following table lists the data that SIPP may automatically modify as you
make extensions. Note that each item is identified by an abbreviation; the
subsections that follow reference these items by these same abbreviations.

Possible SIPP Data Changes

Data That Can
Change Description

Location 50 Contains the last address used by the program, if the
program is nonoverlaid. If the program has low-memory
overlays, location 50 contains the last address used by the
low-memory overlay region(s). If the program has only
extended-memory overlays, location 50 contains the last
address used by the root.

Region Size Indicates the size of the extended-memory region. This data
appears in the extended-memory overlay handler.

High Root + 2 Indicates the address of the next available location beyond
the root segment. This data appears in either the low-
memory overlay handler or the extended-memory handler.

High /O + 2 Indicates the address of the next available location beyond
the last low-memory overlay region. This data appears in
either the low-memory overlay handler or the extended-
memory overlay handler.

Save-Image Patch Utility (SIPP) 24–15

Extending Files and Overlay Segments

Data That Can
Change Description

Word Count
in Segment

Indicates the number of words in the current overlay
segment. This data appears in the overlay handler segment
table.

Window Definition
Block Size and Length

Indicates the window size and length to map in the window
definition block (WDB) for the extended-memory overlay you
are extending. This data appears in each extended-memory
overlay segment’s WDB.

Window Definition
Block Offset

Indicates the offset into the extended-memory region of the
windows following the segment you are extending. This data
appears in each extended-memory overlay segment’s WDB.

Extending a Nonoverlaid Program
If necessary, SIPP automatically extends a nonoverlaid program up to the end of
the last block of the save image on which the program exists (SIPP automatically
modifies location 50). See DUP (Chapter 7) for details on extending a nonoverlaid
program beyond that point.

Extending a Program with Low-Memory Overlays Only
If your program is overlaid, but has only low-memory overlays, SIPP does not permit
you to extend the root. If an overlay segment is not in the last overlay region, you
can extend it to the size of the largest segment in its region. If the overlay segment
is in the last overlay region, you can extend it to the end of the last block of that
overlay segment.

The following table shows the locations that SIPP modifies if necessary when you
extend the root or overlay segment of a program that has low-memory overlays only.
Note in this table that there is a column heading for an overlay segment that is not
the largest in its overlay region (Not Largest in Region), and for an overlay segment
that you extend beyond the largest overlay segment in its region (Past Largest in
Last Region). YES indicates that SIPP does modify the data in question if necessary,
NO indicates SIPP does not modify the data in question, and N/A indicates that the
data in question is not applicable.

Segment Limits for Only Low-Memory Overlays

Data That Can Change
Not Largest
in Region

Past Largest
in Last Region

Location 50 NO YES
Region Size N/A N/A
High Root + 2 NO NO
High /O + 2 NO YES

24–16 RT–11 System Utilities Manual Part II

Extending Files and Overlay Segments

Data That Can Change
Not Largest
in Region

Past Largest
in Last Region

Word Count
in Segment

YES YES

Window Definition
Block Size and Length

N/A N/A

Window Definition
Block Offset

N/A N/A

Extending a Program with Extended-Memory Overlays Only
If your program is overlaid, but has extended-memory overlays only, you can extend
the root segment up to the end of the last block on which the root resides. You can
also extend any overlay segment up to the end of the last block of that particular
segment, so long as you do not exceed the physical address space.

The following table shows the locations that SIPP modifies if necessary when you
extend the root or overlay segment of a program that has extended-memory overlays
only. Note in this table that there is a column heading for the root (Root), an overlay
segment that is not the largest in its overlay region (Not Largest), and an overlay
segment that you extend beyond the largest overlay segment in its region (Past
Largest). YES indicates that SIPP does modify the data in question if necessary,
and NO indicates SIPP does not modify the data in question.

Segment Limits for Only Extended-Memory Overlays

Data That Can Change Root Not Largest Past Largest

Location 50 YES NO NO
Region Size NO YES YES
High Root + 2 YES NO NO
High /O + 2 YES NO NO
Word Count
in Segment

NO YES YES

Window Definition
Block Size and Length

NO YES YES

Window Definition
Block Offset

NO YES YES

Extending a Program with Low- and Extended-Memory Overlays
If your program has both low-memory and extended-memory overlays, SIPP does
not permit you to extend the root segment. You can extend any low-memory overlay
segment up to the size of the largest segment in the same region. If the low-memory
overlay segment is in the last low-memory overlay region, you can extend it to the
end of the last block of that overlay segment.

Save-Image Patch Utility (SIPP) 24–17

Extending Files and Overlay Segments

You can extend any extended-memory overlay segment up to the end of the block
limit of that particular segment, so long as you do not exceed your physical address
space.

The following table shows the locations that SIPP modifies if necessary when you
extend the root or overlay segment of a program that has both low-memory and
extended-memory overlays. Note in this table that there is a column heading for a
low-memory overlay segment that is not the largest in its overlay region (/O Not
Largest), a low-memory overlay segment that extends beyond the largest segment
in its region (/O Past Largest), an extended-memory overlay segment that is not the
largest in its region (/V Not Largest), and an extended-memory overlay segment that
extends beyond the largest segment in its region (/V Past Largest). YES indicates
that SIPP does modify the data in question if necessary, and NO indicates SIPP does
not modify the data in question.

Segment Limits for Both Low- and Extended-Memory Overlays

Data That Can
Change

/O
Not
Largest

/O
Past
Largest

/V
Not
Largest

/V
Past
Largest

Location 50 NO YES NO NO
Region Size NO NO YES YES
High Root + 2 NO NO NO NO
High /O + 2 NO YES NO NO
Word Count
in Segment

YES YES YES YES

Window Definition
Block Size and Length

NO NO YES YES

Window Definition
Block Offset

NO NO YES YES

Note: It is possible, when extending extended-memory overlay segments, to exceed
the 96K-word physical-address space limit (SIPP displays a warning message if you
do this). If you do exceed the 96K-word limit, press CTRL/C to abort the patching
session; many system-communication area locations will have already changed to
contain invalid data.

24–18 RT–11 System Utilities Manual Part II

Verifying Your Work with Checksum
SIPP’s checksum algorithm creates the checksum only after you have finished
creating a patch. The checksum helps you verify your work. It lets you compare
the patch you make to another that is known to be correct. The checksum does not
tell you where your error is, but it does tell you that an inconsistency exists. SIPP’s
checksum algorithm uses the calculated address of a changed location and its new
contents. SIPP includes in its checksum only those values of locations that have
changed during a patching session.

If you change a word several times during a patching session, SIPP enters into
its checksum only the last value you specify. This feature allows you to correct a
mistake, yet maintain a valid checksum.

If you are creating a checksum (/D option), SIPP displays the following when you
finish the patch:

Checksum=nnnnnn

If you are verifying a checksum (/C option), SIPP asks the following when you
complete the patch:

Checksum?

Respond by entering the checksum for the patch.

If the checksum is incorrect, SIPP displays:

?SIPP-E-Checksum error

SIPP then returns to the beginning of its dialog (the Segment? or Base? prompt),
allowing you to find and correct your error without exiting from the patching session.
In this way, you do not lose the changes you have made; you can go back and
verify them (see the command description on Verifying (;V) for details on the verify
command).

SIPP does not install the patch until you enter the correct checksum. You can press
CTRL/C to abort the patching procedure.

Save-Image Patch Utility (SIPP) 24–19

Running SIPP from a Command File
The SIPP command file contains the commands necessary to install a patch in
a particular file or volume. The order in which the modifications appear in the
command file may not correspond to the actual sequence in which you typed them;
however, the changes are the same as you typed. The contents of the command file
always appear as octal word values. When you specify a command file in the initial
command string, SIPP creates that file for use as a command file. If you use the /L
option when you create the command file, SIPP installs the patch contained within
only when you run this file as a command file. SIPP assigns this file a COM default
file type.

A command file always contains a checksum generated during the input session. If
you use the /C option, SIPP prompts you for a checksum after you finish making
the code modifications. If the checksum is valid, SIPP completes the command file,
and you can execute it at any time. If you use the /A option, SIPP inserts /A in the
command file.

The command file TEST.COM is created in the following example. Note that SIPP
does not modify TEST.SAV in the example, because /L was specified in the command
string:

.R SIPP RET

*TEST=TEST/L RET

Base? 5000 RET

Offset? 20 RET

Base Offset Old New
005000 000020 032764 240 RET

005000 000022 177400 240 RET

005000 000024 000002 1016 RET

005000 000026 001016 CTRL/Y RET

* CTRL/C

A copy of TEST.COM as it appears in command-file format follows. The number
165617 (the last line in the file) is the checksum for that patch:

.TYPE TEST.COM
RUN SIPP
DK:TEST.SAV/C
5000
20
240
240
1016
^Y
165617
^C

Run the command file TEST.COM as you would run any command file:

.@TEST RET

If you run a SIPP command file when the SET TT: QUIET setting is in effect, SIPP
overstrikes its output at the terminal but does install the patch correctly.

24–20 RT–11 System Utilities Manual Part II

Running SIPP from a Batch Stream
An easy way to install a patch from a BATCH stream is to follow the instructions
for creating a command file. When you get your command file, simply open it with
an editor, enter the BATCH commands, and insert a dot before the line RUN SIPP,
and insert asterisks before each subsequent line. Remember to remove the CTRL/C
(^C) from the command file. An example of preparing TEST.COM (from the previous
section) for a BATCH stream follows.

$JOB/RT11
TTYIO

.RUN SIPP
*DK:TEST.SAV/C
*5000
*20
*240
*240
*1016
*^Y
*165617
$EOJ

Save-Image Patch Utility (SIPP) 24–21

Chapter 25

Source Language Patch Utility (SLP)

The Source Language Patch Utility (SLP), is a patching tool you can use for
maintaining source files that exist on an RT–11 device.

SLP accepts as input a source file you wish to patch and a command file that you
create when you compare two source programs using the source compare program,
SRCCOM, described in Chapter 28. When you use SLP along with the SRCCOM
command file, you can quickly and easily patch one version of a source program
to match another version. Chapter 28 also describes the procedure you can use to
create a patch command file that is suitable for input to SLP.

Calling and Terminating SLP
To call SLP from the system device, respond to the dot (.) displayed by the keyboard
monitor by entering the following:

.R SLP RET

The Command String Interpreter (CSI) prints an asterisk (*) at the left margin of
the terminal and waits for a command string. If you only press RETURN in response
to the asterisk, SLP prints its current version number.

You can press CTRL/C to halt SLP and return control to the monitor when SLP is
waiting for input from the terminal. To restart SLP, enter R SLP or REENTER in
response to the monitor’s dot.

Source Language Patch Utility (SLP) 25–1

Command-Line Syntax
Enter a command line according to this general syntax:

[outfil][,listfil]=infil,comfil/[option...]

where:

outfil specifies the updated source file. The default file type is MAC.

listfil specifies the listing file. When you specify this file, SLP creates a
numbered listing of the updates SLP made to the source file. The
default file type is LST.

infil specifies the source file you want SLP to update. The default file
type is MAC.

comfil specifies the command file that contains the commands for
updating the source file. The default file type is MAC. You can
create this file by specifying a SLP-filespec in a SRCCOM command
line. A SLP input file created by SRCCOM has the file type SLP.

/option specifies one of the options listed in Table 25–1.

Although either output file can be omitted, you must use one or both.

25–2 RT–11 System Utilities Manual Part II

SLP Option Summary
Table 25–1 lists the options you can use in the command line.

Table 25–1: SLP Options

Option Function

/A Disables audit-trail generation. The audit trail is a string of
characters that SLP appends to the end of each updated line in the
output files. The audit trail keeps track of the update status of each
line in the output file. You can use the /A option if you do not want
SLP to use the audit trail in both the updated source file and the
listing file.

/B Inserts spaces instead of tabs between the source line and the audit
trail.

/C[:n] Determines or validates the contents of the SLP input file, SLP
command file, or both, by using checksums. Use /C to determine
the checksum of a file. Use /C:n to verify the contents of a file. SLP
computes the checksum for the file, and compares the result to the
value you specify with n.

/D Creates a double-spaced listing. When you use this option, SLP
double spaces between the lines in a listing file.

/L:n Specifies the size of the source line, where n represents the maximum
number of characters you want in the source line. The default buffer
size for formatting lines is 20010 bytes. If you expect the size of the
command lines or source lines to be greater than what can fit in the
line buffer, you can use this option to change the buffer size. SLP
interprets the number you specify for n as an octal number; if you
enter a decimal number, use a decimal point. The line buffer must
be at least as long as the sum of the column number where the audit
trail begins and the number of characters in the audit trail.

/N Suppresses the creation of a backup file when SLP updates the input
file.

/P:n Specifies the start column of the audit trail, where n represents the
column number in which you want the audit trail to start. If the
number you specify for n is decimal, be sure to use a decimal point
after the number. By default, SLP starts the audit trail in column
7310. If a source line extends beyond the column where the audit
trail begins, the audit trail can overstrike the source line. If you use
the /P:n option, you start the audit trail in any tab stop column. SLP
rounds up the number you specify to the nearest tab stop column. If,
for example, you specify 46 for n, SLP rounds this number to 49.

Source Language Patch Utility (SLP) 25–3

SLP Option Summary

Table 25–1 (Cont.): SLP Options

Option Function

/S:n Specifies size of the audit trail, where n represents the number of
characters you want in the audit trail. If the number you specify is
decimal, be sure to use a decimal point after the number. The default
number of characters in the audit trail is 1110. The maximum number
of characters you can specify for the audit trail is 1610.

/T Retains trailing blanks and tabs in the input source file. By default,
SLP removes spaces and tabs that appear at the end of lines in the
input source file.

NOTE
SLP is not accessible through DCL commands.

Example Use of SLP
Note the following two sample text files CAESAR.MAC and ANTONY.MAC:

• CAESAR.MAC

FRIENDS, ROMANS, COUNTRYMEN!
LEND ME YOUR EARS!
I COME TO BURY CAESAR,
NOT TO PRAISE HIM.
THE EVIL THAT MEN DO
LIVES AFTER THEM.
THE GOOD IS OFT INTERRED
WITH THEIR BONES;
SO LET IT BE WITH CAESAR!

• ANTONY.MAC

FRIENDS, ROMANS, COUNTRYMEN!
LEN ME YOUR EARS!
I COME TO BURY CAESAR,
NOT TO PRAISE HIM.
THE EVIL THAT MAN DO
LIVES AFTER THEM.
THE GOOD IS OFT ENTERED
WIT THEIR HOMES;
SO LET IT BE WITH CAESAR!

Notice the following differences between the two preceding files.

Line ANTONY.MAC CAESAR.MAC

2 LEN LEND

5 MAN MEN

25–4 RT–11 System Utilities Manual Part II

SLP Option Summary

Line ANTONY.MAC CAESAR.MAC

7 ENTERED INTERRED

8 HOMES BONES

This section uses SLP to patch the text file, ANTONY.MAC, so that it matches the
file CAESAR.MAC. By specifying a SLP-filespec in a SRCCOM command line, you
can get an appropriate command file (for example, CAESAR.SLP) to make both
preceding files alike. See Chapter 28 for instructions on how to automatically create
a SLP command file.

The following command line directs SLP to patch ANTONY.MAC so that it matches
CAESAR.MAC.

.R SLP RET

*ANTONY,ANTONY=ANTONY,CAESAR.SLP RET

When executing the preceding command, SLP:

• Updates the source file ANTONY.MAC, making it identical to CAESAR.MAC.

• Assigns a BAK file type to the input file ANTONY.MAC.

• Assigns a MAC file type to the updated source file.

• Creates a listing file ANTONY.LST that lists each line by number and appends
an audit trail to each new line.

ANTONY.LST is as follows:

SLP V05.05

1. FRIENDS, ROMANS, COUNTRYMEN!
2. LEND ME YOUR EARS! ;**NEW**
3. I COME TO BURY CAESAR, ;**-1
4. NOT TO PRAISE HIM.
5. THE EVIL THAT MEN DO ;**NEW**
6. LIVES AFTER THEM. ;**-1
7. THE GOOD IS OFT INTERRED ;**NEW**
8. WITH THEIR BONES; ;**NEW**
9. SO LET IT BE WITH CAESAR! ;**-2

Note that when SLP updates a line, it appends an additional audit trail below the
audit trail of the updated line. The additional audit trail keeps track of the number
of consecutive lines that have been updated. In ANTONY.LST, above, note the audit
trails ;**-1 and ;**-2.

Source Language Patch Utility (SLP) 25–5

Determining and Validating the Contents of a File
Use the checksum option (/C[:n]) to determine or validate the contents of a file. The
checksum option directs SLP to compute the sum of all ASCII data in a file. If you
specify the command in the form /C:n, /C directs SLP to compute the checksum and
compare that checksum to the value you specify as n.

To determine the checksum of a file, enter the SLP command line with the /C option
applied to the appropriate file (the file whose checksum you want to determine). For
example:

INFILE,INFILE=INFILE.MAC/C,INFILE.SLP

SLP responds to this command with a message in the following format:

?SLP-I-DEV:FILNAM.TYP checksum is n

SLP generates a similar message when you request the checksum for the command
file.

To validate the changes made to a file, enter the checksum option in the form /C:n.
SLP compares the value it computes for the checksum with the value you specify as
n. If the two values do not match, SLP enters no changes and displays a message
reporting the checksum error as either a source file or a correction file checksum
error, whichever is appropriate.

?SLP-F-Source file checksum error

or

?SLP-F-Correction file checksum error

Checksum processing always results in a nonzero value.

Do not confuse this checksum with the record checksum byte.

25–6 RT–11 System Utilities Manual Part II

Creating and Maintaining a SLP Command File
SLP is a line-oriented patching tool. That is, you make changes to entire lines, not
to individual characters or strings of characters within a line. If you want to change
only a few characters within a line, you must enter a new line.

Although Digital recommends that you create the SLP input command file by
specifying a SLP-filespec in a SRCCOM command line, you can use any RT–11 editor
to create it yourself.

The next section describes the commands, or operators, you use to create that
command file. This procedure is tedious, however, and in most cases unnecessary.
But, for completeness, the procedure is included with this chapter. Table 25–2 lists
the commands, or operators, you enter into the command file. Subsequent sections
in this chapter describe various ways you can use the SLP utility to change lines in
a file.

Table 25–2: SLP Command-File Operators

Operator Function

– Indicates the start of an update. SLP ignores any data that precedes
this operator in a SLP command file. If SLP finds characters before
this operator in a command file, SLP prints a warning and the
characters are ignored. If no operator of this type is found in a
command file, SLP prints an error message and the CSI prompt (*)
appears.

\ Disables the audit trail. Note that this operator must appear on
a line by itself. If it appears in the first column of a line with
additional information following it, the audit trail is disabled and
the rest of the command line is ignored. If used in any column other
than column one, a syntax error occurs.

% Enables the audit trail.

/ Indicates the end of an update or a series of updates; it appears as
the last character in the command file.

// Indicates the end of one of a series of update texts in a single
command file; each text updates one input file. This operator is
used when you want to include updates for more than one file in a
single command file. Enter the double slash (//) on a line by itself
after each update text in the series. Then on the next line enter the
command line that specifies the next input file to be updated, and
on the succeeding lines the update text for that file. Note that the
command file specified in each command line must be the same as
the command file specified on the first command line.

Source Language Patch Utility (SLP) 25–7

Creating and Maintaining a SLP Command File

Table 25–2 (Cont.): SLP Command-File Operators

Operator Function

< Serves as an escape character for characters SLP would otherwise
interpret as operators. For example, if you want to include a slash
(/) in a source file, type the less than character (<) before the slash.
Then, SLP will not interpret the slash as an operator. You can use
the less than character as an escape character for all SLP command
file operators.

25–8 RT–11 System Utilities Manual Part II

Formatting the Update Line in a SLP Command File
The following is the general format of the SLP command-file update line with input
line(s):

–locator1,[locator2],[/audit trail/][;]
input line

.

.

.

where:

– indicates that this is an update line.

locator1 specifies a character string that serves as a line locator. SLP
moves the line pointer to the line specified by the line locator.
You can specify this line locator with any of the locator forms
described below.

locator2 specifies a character string that, when used with locator1,
defines the end of a range of lines you want to delete or
replace. You can specify this line locator with any of the
locator forms described below. You cannot define a range of
lines in a backwards direction; the line referenced by locator2
must occur in the source file after the line referenced by
locator1.

/audit trail/ specifies a character string you use as an audit trail. SLP
appends the audit trail to the right of each updated line. You
must delimit the audit trail with slashes (/).

inputline specifies a line of new text that SLP inserts into the file
immediately following the current line. You can enter as
many input lines as you want.

; is an optional command-line terminator.

All fields in the update line are positional. That is, if you specify only locator1 and
audit trail, you must use two commas between those two fields. If you want to
specify only the audit trail, you must precede the audit trail with two commas.

The update lines in a command file must edit the source file in a forward direction,
from beginning to end. Each locator1 must point to a line that appears in the source
file before the lines pointed to by any succeeding locator1.

The line locators can take one of the following forms:

/string/[+n]
/string...string/[+n]
number[+n]
.+n

Table 25–3 describes these locators.

Source Language Patch Utility (SLP) 25–9

Formatting the Update Line in a SLP Command File

Table 25–3: Descriptions of SLP Line Locators

Locator Description

/string/[+n] specifies an ASCII character string. You must delimit
any string you enter with slashes. SLP locates the first
occurrence of this string, and moves the line pointer to
the line that contains that string. +n represents the offset
from the line that contains the string. You must use the
plus character (+) with the n notation.

/string...string/[+n] specifies an ASCII character string. SLP locates the line
in which the two strings delimit a larger string. Use
the ellipsis (...) in this locator form to separate the two
strings. +n represents the offset from the line specified by
the string...string locator.

number[+n] specifies the line number to which SLP is to move the line
pointer. +n represents the offset from the line specified by
number.

.+n specifies the offset from the current line pointer. SLP
interprets the period (.) as the current line pointer
location, and the +n as the offset from it. You must use
the plus character (+).

25–10 RT–11 System Utilities Manual Part II

Creating a Numbered Listing
You can use SLP to create a numbered listing of the input source file. In creating a
command file, you should use a numbered listing when you prepare command input.
To generate a numbered listing, enter the following lines:

.R SLP RET

*,listfile=infile RET

Listfile represents the listing file SLP produces, and infile represents the input
source file. Here is a file, PROG.MAC, from which SLP is to create a numbered
listing:

.TITLE PROG.MAC VERSION 1

.MCALL .TTYOUT, .EXIT, .PRINT

EXP: .PRINT #MESSAG
MOV #N,R5

FIRST: MOV #N+1,R0
MOV #A,R1

The following command line creates a numbered listing, PROG.LST, of the preceding
file, PROG.MAC:

*,PROG=PROG RET

After SLP processes the command above, it produces the following listing of
PROG.MAC:

SLP V05.05

1. .TITLE PROG.MAC VERSION 1
2.
3. .MCALL .TTYOUT, .EXIT, .PRINT
4.
5. EXP: .PRINT #MESSAG
6. MOV #N,R5
7. FIRST: MOV #N+1,R0
8. MOV #A,R1

Source Language Patch Utility (SLP) 25–11

Adding Lines to a File
To add lines to a file, enter in the command file one of the following three locator
forms:

• -number

• -.[+n],,[/audittrail/]

• -/string/

Notice in the second locator form the two commas between the locator and the audit
trail. You do not have to insert these commas if you are not specifying an audit trail.

Consider the following file, NUMBER.PAS:

PROGRAM NUMBER;

TYPE TEXT =FILE OF CHAR;
PTR =^WORDNODE;
WORDNODE=RECORD

WORD:ARRAY[1..30] OF CHAR;
NEXT:PTR;
END;

VAR P,TOP :PTR;
INTEXT :TEXT;
I :INTEGER;

To add lines to the preceding file, we have the command file, OMEGA.MAC: This file
instructs SLP to insert the line (*POINTER TO NODE*) between the fourth and fifth
lines of NUMBER.PAS:

-/PTR/
(*POINTER TO NODE*)
/

When SLP processes OMEGA.MAC with NUMBER.PAS, it produces the following
updated listing file.

*NUMBER.PAS,NUMBER=NUMBER.PAS,OMEGA.MAC RET

SLP V05.05

1. PROGRAM NUMBER;
2.
3. TYPE TEXT =FILE OF CHAR;
4. PTR =^WORDNODE;
5. (*POINTER TO NODE*) ;**NEW**
6. WORDNODE=RECORD
7. WORD:ARRAY[1..30] OF CHAR;
8. NEXT:PTR;
9. END;
10.
11. VAR P,TOP :PTR;
12. INTEXT :TEXT;
13. I :INTEGER;

25–12 RT–11 System Utilities Manual Part II

Adding Lines to a File

SLP has numbered the lines, inserted the new text, and appended the default audit
trail (;**NEW**) to the new line.

The next example uses the same source file, but uses the following command in the
command file, SIGMA.MAC:

-/WORDNODE=/+2
ID :INTEGER;

/

When SLP processes SIGMA.MAC with the source file NUMBER.PAS, it generates
the following listing file:

*NUMBER.PAS,NUMBER=NUMBER.PAS,SIGMA.MAC RET

SLP V05.05

1. PROGRAM NUMBER;
2.
3. TYPE TEXT =FILE OF CHAR;
4. PTR =^WORDNODE;
5. WORDNODE=RECORD
6. WORD:ARRAY[1..30] OF CHAR;
7. NEXT:PTR;
8. ID :INTEGER;
9. END; ;**NEW**
10.
11. VAR P,TOP :PTR;
12. INTEXT :TEXT;
13. I :INTEGER;

Again, SLP has numbered the lines, and this time it skips two lines after the first
occurrence of the string WORDNODE, before inserting the new input line.

You can include update text for several input files in one command file. Type a
double slash (//) on a line by itself at the end of the update text for each file. Begin
the update text for the next file with a line containing only the command line that
specifies the input file to be updated by the next text. Then type the update text on
the lines that follow the command line. Type a slash (/) at the end of the command
file.

For example, the command file MTST.MAC contains update text to patch the files
NUMBER.PAS and GTMSG.MAC, in that order.

-/WORDNODE=/+2
ID :INTEGER;

//
DY0:NEWMSG=GTMSG.MAC,MTST.MAC
-2,2

.IDENT /01.01/
-7

ADD A,B
-14
B: .WORD 0
/

Source Language Patch Utility (SLP) 25–13

Deleting Lines in a File
The SLP command-file command syntax for deleting lines from a file is:

–locator1,locator2,[/audittrail/][;]

where:

locator1 specifies the line where SLP is to begin deleting lines.

locator2 specifies the last line SLP is to delete.

Both locators can be any of the locator forms described in the section, "Formatting
the Update Line in a SLP Command File."

If you want to delete lines five through eight in file NUMBER.PAS, it is helpful to
look at a numbered listing of NUMBER.PAS.

SLP V05.05

1. PROGRAM NUMBER;
2.
3. TYPE TEXT =FILE OF CHAR;
4. PTR =^WORDNODE;
5. WORDNODE=RECORD
6. WORD:ARRAY[1..30] OF CHAR;
7. NEXT:PTR;
8. END;
9.
10. VAR P,TOP :PTR;
11. INTEXT :TEXT;
12. I :INTEGER;

In the command file, GAMMA.MAC, the command for deleting lines five through
eight follows:

-/WORDNODE=/,/END/
/

When SLP processes GAMMA.MAC with NUMBER.PAS, it produces the following
listing file of NUMBER.PAS.

*NUMBER.PAS,NUMBER=NUMBER.PAS,GAMMA.MAC RET

SLP V05.05

1. PROGRAM NUMBER;
2.
3. TYPE TEXT =FILE OF CHAR;
4. PTR =^WORDNODE;
5. ;**-4
6. VAR P,TOP :PTR;
7. INTEXT :TEXT;
8. I :INTEGER;

25–14 RT–11 System Utilities Manual Part II

Replacing Lines in a File
When you replace lines, you delete and then add new text. To replace lines in a file,
first enter the full SLP edit command for the delete operation. The first line locator
specifies the first line to be deleted. The second line locator specifies both the last
line to be deleted and the location where SLP is to insert new text. For example,
the following command-file command instructs SLP to move the line pointer to line
4.

-4,.+4

Then, SLP is to delete the next four lines (represented by +4), including line 4.
Finally, SLP is to insert input lines that follow in the command file. SLP inserts the
new lines, beginning at the line pointer’s current location.

The following examples illustrate replacing lines in a file. First, the source file,
BETA.MAC, consists of the following lines:

.TITLE BETA.MAC

.MCALL .TTYOUT, .PRINT, .EXIT
START: .PRINT #MESSAG

MOV #5,R0

Next, the command file, DELTA.MAC, contains:

-6,6,/;AUDIT TRAIL/
BNE START
MOVB (R2),-(R3)
/

Then, when SLP processes DELTA.MAC with BETA.MAC, it produces the following
listing file:

*BETA,BETA=BETA,DELTA.MAC RET

SLP V05.05

1. .TITLE BETA.MAC
2.
3. .MCALL .TTYOUT, .PRINT, .EXIT
4.
5. START: .PRINT #MESSAG
6. BNE START ;AUDIT TRAIL
7. MOVB (R2),-(R3) ;AUDIT TRAIL

Source Language Patch Utility (SLP) 25–15

Chapter 26

Split File Utility (SPLIT)

The Split File Utility (SPLIT) is an unsupported utility that divides a file along the
block boundaries you specify and copies each segment to a separate file. SPLIT is
primarily intended for dividing HELP.SAV into its component parts HELP.TXT and
HELP.EXE, and for producing SYSMAC.MAC from SYSMAC.SML. However, you
can use SPLIT to split other files as well.

Command-Line Syntax
To divide a file, type a command with the following syntax:

SPLIT [outfil1,outfil2,outfil3,...]=infil/option

where:

outfil specifies the files to which the input file divisions are sent.

infil specifies the file you want to split.

option specifies one of the options in the following table.

Options

Option Function

/B:n[:m] Defines the boundaries along which to divide the input file; n and m
represent the block number (octal) of the beginning of each division,
starting with the second. (The beginning of the first division is block
0.) Therefore, you specify one less boundary than the number of
divisions you want. For example, to divide a file into three parts
you must specify two boundary block numbers.

/H Displays help information. Use this option by itself, without
specifying any input or output files.

/2 Divides the input file in half.

NOTE
SPLIT is not accessible through DCL Commands.

Split File Utility (SPLIT) 26–1

Examples
1. This command divides HELP.SAV into its component parts, HELP.EXE and

HELP.TXT:

.SPLIT HELP.EXE,,HELP.TXT=HELP.SAV/B:7:12 RET

SPLIT writes blocks 0–6 (octal) of HELP.SAV to the file HELP.EXE, discards
blocks 7–11 (no second file specification is given in the command line) and writes
from block 12 (octal) to the end of HELP.SAV to the file HELP.TXT.

2. This command writes from block 4 to the end of the file SYSMAC.SML to the file
SYSMAC.MAC:

.SPLIT ,SYSMAC.MAC=SYSMAC.SML/B:4 RET

NOTE
The values used for n and m in the two preceding
examples (splitting HELP.SAV and SYSMAC.SML)
can change. Refer to CUSTOM.TXT on your
distribution kit for the current boundary values.
In CUSTOM.TXT, the boundary value variables for
splitting HELP.SAV are ..HLP1 and ..HLP2. The
boundary value variable for splitting SYSMAC.SML
is ..SYSM.

3. This command divides the file BOTH.SAV in half on a block boundary and sends
the resulting sections to files ONE.SAV and TWO.SAV:

.SPLIT ONE.SAV,TWO.SAV=BOTH.SAV/2 RET

4. This command requests SPLIT help information:

.SPLIT /H RET

Note that when you split an ASCII file, division along block boundaries is likely
to divide the file in midsentence.

26–2 RT–11 System Utilities Manual Part II

Chapter 27

Transparent Spooling Utility (SPOOL)

The Transparent Spooling Utility (SPOOL) automatically intercepts all data directed
to the printer or other designated output device, stores it, and then forwards it to
the printer or output device. This allows you to use your terminal while you are
printing a file.

This chapter explains how to run SPOOL as a foreground, background, or virtual
job. See the Introduction to RT–11 for tutorial information on running SPOOL as a
system job.

Once SPOOL is running, its operations are transparent. Anytime you send output
to a printer, either explicitly by issuing commands (such as COPY and PRINT) or
by using commands and options that send output to the line printer by default
(such as COMPILE/LIST), SPOOL accepts the output and sends it to the printer.
While SPOOL runs in the foreground, you can continue to work on other jobs in the
background.

SPOOL and QUEUE
SPOOL differs from the Queue Package in that you need not send output to SPOOL
as a complete file. Instead, SPOOL accepts output as it becomes available ("pipeline"
operation). Queue must wait until a complete file is available before it can begin
sending output. Therefore, using SPOOL can be considerably faster than using
QUEUE.

The PRINT command is affected when both QUEUE and SPOOL are running.
KMON assigns precedence to SPOOL for any PRINT command, so take care if you
run both QUEUE and SPOOL. PRINT options /PROMPT and /NAME are specific
only to QUEUE. If both QUEUE and SPOOL are running, KMON treats those
PRINT options as assigned to SPOOL and returns an invalid option error.

SPOOL’s Output Device(s)
Although SPOOL is especially useful for spooling files for printing, the output device
is not restricted to a printer. You can use SPOOL for sending files to any RT–11 serial
non-file-structured device.

SPOOL is distributed with two default output devices, LP and LS, but you can
change the default output device by installing the software customization located in
Section 2.7.53 of the RT–11 Installation Guide.

In RT–11 5.6, SPOOL supports multiple output devices. See the Running SPOOL as
a Virtual Job section for more information on running SPOOL with multiple output
devices.

Transparent Spooling Utility (SPOOL) 27–1

SPOOL’s Components
SPOOL consists of a package of three components: a utility program, a pseudo-device
handler, and a work file:

• Utility (SPOOL.REL) or (SPOOL.SAV)

SPOOL gathers output directed to the printer or other output device, stores
(spools) it in a work file, and sends the output to the printer or other designated
output device. SPOOL runs as a foreground job on an unmapped monitor and as
a system or virtual job on a mapped monitor.

The version of SPOOL used with an unmapped monitor is SPOOL.REL,
while that used with a mapped monitor is SPOOL.SAV. SPOOL.SAV occupies
significantly less low memory than SPOOL.REL.

• Handler (SP.SYS) and (SPX.SYS)

SP is a pseudo-device handler for SPOOL. The handler file is SP.SYS for an
unmapped multi-job monitor and SPX.SYS for a mapped monitor.

When output is directed to the printer, the SP pseudo-device handler causes
SPOOL to receive the data and spool it in the work file SPOOL.SYS. As soon as
one block of information is available in SPOOL.SYS, SPOOL begins sending the
output to the printer. Since SPOOL runs as a foreground or system job, you can
continue working in the background while files are spooled and printed.

The spooler handler can be fetched by SPOOL and need not be loaded in memory
unless you are directing output to it from a system or foreground job.

SPX.SYS (the mapped version of the handler) supports up to eight input devices;
the handler syntax is SPn, where n is 0 to 7.

• Work File (SPOOL.SYS)

SPOOL.SYS is the work file where SPOOL stores output before sending it to the
printer or other output device.

SPOOL attempts to create its work file, SPOOL.SYS, on the device whose logical
name is SFD (Spool File Device). If you have not assigned the logical name SFD
to a device, SPOOL creates SPOOL.SYS on the system volume.

SPOOL by default allocates 1000 (decimal) blocks on SFD or SY for its work
file SPOOL.SYS. You can change the default size of SPOOL.SYS by applying the
software customization located in Section 2.7.52 of the RT–11 Installation Guide.

If there is not enough room on the volume for a work file of the default size,
SPOOL.SYS occupies the largest empty area on the volume. Note that you can
use VM as the work device. See the Attaching VM to SPOOL section in this
chapter for more information.

Do not squeeze the volume on which SPOOL.SYS resides while spooling is in
progress. This can move SPOOL.SYS, causing unpredictable results.

27–2 RT–11 System Utilities Manual Part II

Running SPOOL as a Foreground or System Job
To use SPOOL:

• Be sure the output device’s handler is loaded.

• Run SPOOL.

• Assign the SP pseudohandler the name of the output device as a logical name.

The following sections describe the commands you must issue to run SPOOL. You
can include the commands in your start-up indirect command files so SPOOL is
automatically available whenever you run under an unmapped multi-job monitor or
a mapped monitor.

1. Loading the Output-Device Handler (usually the printer)

Use the SHOW command to see if the LP handler is loaded. If it is not, load the
LP handler by typing this command:

.LOAD LP RET

If you are running on a Professional 300 series computer, or you have a serial-line
printer, load the LS handler instead:

.LOAD LS RET

If you customize your system to use an output device other than a printer,
substitute your output device’s mnemonic for LP or LS.

You need not load the SP handler itself.

2. Running SPOOL

You can run SPOOL as a foreground or system job. If you are running under
an unmapped multi-job monitor, you must set the USR to NOSWAP (SET USR
NOSWAP) before running SPOOL. After you issue the command to run SPOOL,
you can allow the USR to swap (SET USR SWAP). Under a mapped monitor, you
need not set the USR to NOSWAP to run SPOOL.

To run SPOOL as a foreground job, type this command:

.FRUN SPOOL.REL/BUF:256. RET

To run SPOOL as a system job, type this command:

.SRUN SPOOL.SAV RET

The FRUN command assumes SPOOL.REL and SP.SYS are on the default
volume (DK). The SRUN command assumes SPOOL.SAV and SPX.SYS are on
the system volume (SY). If SPOOL.REL or SPOOL.SAV is on another volume,
include the device mnemonic in the command (ddn:SPOOL).

NOTE
The option /BUF:256. should not be included in
the command to run SPOOL when running under a

Transparent Spooling Utility (SPOOL) 27–3

Running SPOOL as a Foreground or System Job

mapped monitor. SPOOL will allocate working space
in extended memory.

3. Assigning a Logical Name to SP

For SPOOL to work transparently, you must assign the device mnemonic of the
line printer as a logical name for SP, the SPOOL pseudohandler. This causes SP
to intercept output directed to the line printer.

To assign LP as the logical device name, type this command:

.ASSIGN SP0: LP:

To ensure that logical LP: and LP0: are the same, also type this command:

.ASSIGN SP0: LP0:

If you want SPOOL to intercept output directed to another physical device,
assign that device’s mnemonic as SP0’s logical device name. For example, if you
want SPOOL to intercept all output directed to LS, make the following logical
assignment:

.ASSIGN SP0: LS:

Starting SPOOL from a Command File
If you want SPOOL to run automatically whenever you run RT–11, include a
sequence of commands like the following in your start-up command file. These
commands run SPOOL as a foreground job under an unmapped multi-job monitor:

FRUN SY:SPOOL/BUF:256./PAUSE
ASSIGN LS: LP: †
LOAD LP:=F
SET USR NOSWAP
RESUME
ASSIGN SP0 LP
ASSIGN SP0 LP0
SET USR SWAP

Note that SPOOL, as part of its startup procedure, locks the USR for approximately
0.5 seconds to ensure that SPOOL can process commands before further commands
are allowed.

† Enter this command line only when using a Professional 300 series processor.

27–4 RT–11 System Utilities Manual Part II

Running SPOOL as a Virtual Job
The following discussion of SPOOL applies to only SPOOL.SAV and the SPX spooler
handler.

SPOOL accepts concurrent printing input from up to eight jobs and can direct files
to up to eight output devices. You can concurrently print output from more than one
job on the same printer or multiple printers.

Configuring Your Spooler
If your system is configured with more than one printer, or any printer on your
system is controlled by a device handler other than LP or LS, you must configure
the spooler for your system. The following directions explain how to configure your
spooler. Example spooler start-up command sequences are included in the directions:

1. First in the start-up command sequence, you assign each printer’s device handler
to a spooler SO device unit (SOn). Because the spooler initializes internal tables
based on those assignments, you must make them before you run SPOOL.

For example, if your system is configured with a parallel-interface printer
controlled by LPX.SYS and a serial-interface printer controlled by LSX.SYS, the
following commands would be first in the sequence:

ASSIGN LP SO0
ASSIGN LS SO1

If another printer is controlled by a device handler other than LP or LS, for
example LQ, the command is:

ASSIGN LQ SO2

The order of assignments between printer handlers and spooler device units is
unimportant.

2. After you have assigned all the printer handlers a unique spooler-device unit
number, you start the spooler as a system job but delay the command execution
to load handlers:

SRUN SPOOL.SAV/PAUSE

3. You then load all the printer device handlers. This example assumes you are
using LP, LS, and LQ:

LOAD LP=SPOOL
LOAD LS=SPOOL
LOAD LQ=SPOOL

4. Once you have loaded all the handlers, you finish starting the spooler as a system
job:

RESUME SPOOL

5. Each unit of the spooler handler (SP) is associated with the corresponding spooler
device (SO). SP0 is associated with SO0, SP1 is associated with SO1, and so on.
To make the spooler transparent in use, you should associate the appropriate

Transparent Spooling Utility (SPOOL) 27–5

Running SPOOL as a Virtual Job

logical printer name with the spooler handler (SP) and spooler device handler
(SO) for the appropriate printer.

For example, RT–11 utilities use the logical printer name LP for printing
operations. The PRINT command by default specifies logical LP as the output
device. Likewise, requesting an assembly listing on a command line directs the
listing output to logical LP.

To complete the association of logical name LP with the parallel-interface printer,
logical name LS with the serial-interface printer, and logical-name LQ with the
LQ printer:

ASSIGN SP0 LP
ASSIGN SP1 LS
ASSIGN SP2 LQ

Spooler STRTxx.COM Summary
The set of start-up commands to configure the spooler as previously described are:

ASSIGN LP SO0
ASSIGN LS SO1
ASSIGN LQ SO2
SRUN SPOOL.SAV/PAUSE
LOAD LP=SPOOL
LOAD LS=SPOOL
LOAD LQ=SPOOL
RESUME SPOOL
ASSIGN SP0 LP
ASSIGN SP1 LS
ASSIGN SP2 LQ

Those commands establish the following connections:

Output to "LP" --> SP0 --> SPOOL --> SO0 --> LPX Printer

Output to "LS" --> SP1 --> SPOOL --> SO1 --> LSX Printer

Output to "LQ" --> SP2 --> SPOOL --> SO2 --> LQX Printer

Once these start-up commands are run during a reboot, RT–11 utilities by default
send output to LP, which is then directed to the parallel-interface printer. Any
printer operations you want to direct to the serial-interface printer are sent to LS,
and any to the LQ printer are sent to LQ. For example, the following command
prints the file FILNAM.TXT residing on device DU2, on the serial-interface printer:

.PRINT/OUTPUT:LS: DU2:FILNAM.TXT RET

27–6 RT–11 System Utilities Manual Part II

Running SPOOL as a Virtual Job

Sending Output to the Default Printer
You should note that output sent to the default printer name LP does not need to be
directed to the LP handler. If you want, for example, a serial-interface printer to be
the default printer for the PRINT command, associate the logical LP with the serial
interface printer (LS) in the following way:

ASSIGN SP1 LP

This command presumes that the serial-interface printer handler LS has been
assigned the name SO1 and that SO1 is associated with spooler handler unit SP1.

Attaching VM to SPOOL
If you use VM as the work device for SPOOL, you should attach VM to SPOOL.
However, that can make VM unavailable for other use. The following series of
commands lets you attach VM as the work device for SPOOL but still makes VM
available for other use. These commands can be included in your start-up command
file; if you include them, be sure to remove or disable any commands you now use
to start SPOOL.

Notice in the series of commands that no unit number is coupled with VM for the
ASSIGN command. Note also that the commands to run the virtual versions (SAV)
of SPOOL as a system job are different from those to run the (REL) version as a
system job:

ASSIGN LS: SO0:
ASSIGN VM: SFD:
SRUN SPOOL.SAV/PAUSE
LOAD LS:=SPOOL
LOAD VM7:=SPOOL
ASSIGN SP: LP:
ASSIGN SP0: LP0:
RESUME SPOOL

VM does not recognize unit numbers. However, specifying a unit number for VM in
the preceding LOAD command lets the RT–11 monitor assign more than one function
to VM.

Transparent Spooling Utility (SPOOL) 27–7

SPOOL SET Commands
Although SPOOL operates transparently, you can use the DCL SET command to
control spooling operations. See the RT–11 Commands Manual for a full description
of this command. The format for using the SET command with SPOOL is:

SET SPx condition

where:

x specifies the unit number of the device.

condition specifies the condition you want set (banner pages, form feeds, and
so on).

You can set several conditions on a single command line by separating the conditions
with commas. For example:

SET SP0 WIDE,FLAG=3

This command sets SPOOL to generate 132-column banner pages, and sets the
default number of banner pages to 3.

NOTE
Note that you must unload SP (the SPOOL handler) and
load a fresh copy of SP into memory for a SET command
to take effect.

The following table lists and explains the SET command conditions (options) for
SPOOL. Most of these conditions require you to specify the unit number 0 (SET
SP0), because SPOOL as distributed supports only one output device at a time.

Condition Function

ENDPAGE=n Appends n terminating formfeeds to each file sent to spooled device x.
If x is not specified, ENDPAGE=n appends n terminating formfeeds to
files sent to all spooled devices.
SET SPx ENDPAGE=0 suppresses appending terminating formfeeds
to each file sent to spooled device x. If x is not specified, ENDPAGE=0
suppresses appending terminating formfeeds to files sent to all spooled
devices.
You can generate end-page support without flagpage support. To do
so, include the new SYSGEN conditional SP$EPS=1 to support end
pages without necessarily supporting flagpages, when you generate
your version of the operating system.

EXIT Aborts SPOOL in a synchronous manner. Use this command to abort
SPOOL from within a command file so that monitor prompt is not
returned until all SPOOL activity is terminated.

27–8 RT–11 System Utilities Manual Part II

SPOOL SET Commands

Condition Function

FLAG=n Sets the number of banner pages (flagpages) to prepend to each file
sent to spooled device x. If x is not specified, causes n flagpages to be
prepended to all spooled devices. The value n can be an integer in the
range 0 to 5 (up to 6 flagpages can be specified). The default value for
n is 0.
The command PRINT/FLAGPAGE:n, when a value is specified for n,
overrides the SET SP FLAG=n command. When no value is specified
for n with the PRINT/FLAGPAGE:n command, the value for n is set
by the SET SP FLAG=n command.

FORM0 Issues a form feed on spooled device n each time SPOOL encounters
block 0 of a file to be printed; this is useful if the output device is part
of a multiterminal system, or if the output device handler does not
support its own FORM0 option. If n is not specified, issues a form feed
on all spooled devices each time SPOOL encounters block 0 of a file to
be printed.

NOTE
Setting SP0 and either LS or
LP to FORM0 simultaneously
generates multiple form feeds.

NOFORM0 Turns off FORM0 mode for spooled device n. This is the default mode.
If n is not specified, turns off FORM0 for all spooled devices.

KILL Aborts output to the n spooled device. If n is not specified, aborts
output to all spooled devices.

NEXT Stops printing the current file on spooled device n and proceeds to next
file queued to that device. If n is not specified, defaults to device SP0.
If no file is queued, the command is ignored.

WAIT Suspends output to spooled device x, while output to any other spooled
device continues. If x is not specified, suspends output to all spooled
devices. SPOOL does not delete information in the work file and
SPOOL continues to accept input when SET SP0 WAIT is in effect.

NOWAIT Resumes sending output to spooled device x after output to that device
has been suspended. If x is not specified, resumes output to all spooled
devices.

WIDE Causes SPOOL to generate 132-column flag pages for specified device
x. If x is not specified, generates 132-column flag pages for all spooled
devices.

NOWIDE Causes SPOOL to generate 80-column flag pages for specified device
x. If x is not specified, generates 80-column flag pages for all spooled
devices.

Transparent Spooling Utility (SPOOL) 27–9

SPOOL Flag Pages and Status

Flag Pages
SPOOL flag page support is included in the distributed monitors. To generate flag
pages and specify the number of flag pages, issue the PRINT command with the
/FLAGPAGE=n option or the command set SP0 FLAG=n. These commands cause
SPOOL to print that number (n) of flag pages for all files subsequently spooled
for printing, unless the files are spooled without an associated file name. For
example, the command PIP LP:=MYFIL.MAC sends output to the printer without
an associated file name, so no flag pages would be generated.

You can exclude SPOOL flag page support through system generation. Excluding
SPOOL flag page support saves 927(decimal) words in the monitor.

Status
You can check the spooler’s status by issuing the SHOW QUEUE command. This
command requires that the file RESORC.SAV is on device SY.

The SHOW QUEUE command tells whether or not each SPOOL device unit and
associated output device is active or inactive, the number of blocks spooled for output,
and the number of free blocks in SPOOL’s work file.

The following example SHOW QUEUE display shows two output devices, LS0 and
LP0, attached to SPOOL, with LS0 printing and LP0 idle:

.SHOW QUEUE RET

Unit Device Status
SP0: LS0: ACTIVE, 56 blocks spooled
SP1: LP0: IDLE
944 Free blocks in workfile

If QUEUE is running, the SHOW QUEUE command displays a QUEUE status
report as well.

27–10 RT–11 System Utilities Manual Part II

Chapter 28

Source Comparison Utility (SRCCOM)

The RT–11 Source Comparison Utility (SRCCOM) compares two text files and lists
the differences between them. It is called source comparison since it compares ASCII
files, the files programmers write as source code for their programs. See Chapter
2 in the RT–11 System Utilities Manual, Part I for a description of the BINCOM
utility, which compares files in binary code.

SRCCOM can either display the differences listing on a terminal or printer, or store
the listing in a file. If there are no differences, SRCCOM displays a message on the
terminal indicating that.

Uses
• SRCCOM is useful when you want to compare two similar versions of a text file.

The SRCCOM listing highlights the changes made to the file during an editing
session. Depending on the options you choose, SRCCOM can list differences in
line feeds, tabs, spaces, blank lines, and even differences between upper and
lowercase characters. The only character SRCCOM ignores is the RETURN
character.

Note, however, that you must end the last line of a file with a line feed, if you
want SRCCOM to notice that line.

• SRCCOM is also useful for creating a command file you can run with the source
language patch program (SLP), described in Chapter 25. When you use SRCCOM
for creating a command file, you can patch one version of a source file so that it
matches another version. The Creating a SLP Command File section describes
how to create a command file for SLP.

Calling and Terminating SRCCOM
To call SRCCOM from the system device, respond to the dot (.) displayed by the
keyboard monitor by typing:

.R SRCCOM RET

The Command String Interpreter (CSI) displays an asterisk (*) prompt at the left
margin of the terminal and waits for you to enter a command string. If you respond to
the asterisk by only pressing RETURN , SRCCOM displays its current version number
and again prompts you for input.

You can type CTRL/C to halt SRCCOM and return control to the monitor when
SRCCOM is waiting for input from the terminal. You must type CTRL/C twice to abort
SRCCOM at any other time. To restart SRCCOM, type R SRCCOM or REENTER
and press RETURN in response to the monitor’s dot.

Source Comparison Utility (SRCCOM) 28–1

Command-Line Syntax
The syntax of the SRCCOM command line is:

[[outspec][,SLP-spec]=] file-1,file-2[/option...]

where:

outspec specifies a file or device (for example, a printer) for the listing of
differences.

SLP-spec specifies a file or device for the command file to be run with SLP.
See the Creating a SLP Command File section for more information
on creating a command file for SLP.

file-1 specifies the first file to be compared.

file-2 specifies the second file to be compared.

option is one of the options listed in Table 28–2.

Note that:

• You can specify the input files in any order if you want only a comparison.
However, if you are creating a patch for use with the SLP utility, then specify
the old file first and the new file second.

• You can omit either or both output file specifications. However the output file
specifications are position dependent. So, if you specify a SLP file but no output
file, you must place a comma before the SLP file specification to denote the
absence of an output file.

Table 28–1 lists the command-line defaults.

Table 28–1: SRCCOM Command-Line Defaults

Default Device
or File Type Description

terminal output device

DK input device

MAC file type for input files

DIF file type for a differences file

SLP file type for a SLP command file

28–2 RT–11 System Utilities Manual Part II

Text-File Comparisons
SRCCOM examines the two text files line by line, looking for groups of lines that
match. When SRCCOM finds a mismatch, it lists the lines from each file that
are different. SRCCOM continues to list the differences until a specific number of
lines from the first file matches the second file. The specific number of lines that
constitutes a match is a variable that you can set with the /L:n option.

If you compare two files that are identical, RT–11 does not create a listing, but
displays the following message on the terminal screen:

?SRCCOM-I-No differences found

If you compare two files that are different, RT–11 produces a listing of the differences
and displays the following message on the terminal screen:

?SRCCOM-W-Files are different

Regardless of the output specification, the differences message always displays on
the terminal, indicating whether the files are alike or different.

Source Comparison Utility (SRCCOM) 28–3

Using Wildcards with SRCCOM
You can use wildcards to do multiple text-file comparisons. However, you cannot use
wildcards when creating a command file to run with SLP.

You can use wildcards in either input file specification (file-1 or file-2) or both.
However, a different type of comparison is done depending on whether you use
wildcards in only one or in both of the input specifications:

• If you use wildcards in only one of the input specifications, SRCCOM compares
the file you specify without wildcards to all variations of the file you specify with
wildcards. The wildcard represents that part of the file specification to be varied.
Use this method to compare one file to several other files.

For example, the following command tells SRCCOM to compare the file
TEST1.MAC on device DU0 to all files on device DU1 having the name TEST2:

TEST=DY0:TEST1.MAC,DY1:TEST2. RET

By specifying an output file, you can send the results of all the comparisons to a
file rather than to the terminal. In the preceding example, all differences from
the comparisons are sent to the file TEST.DIF on device DK.

• If you use wildcards in both input file specifications, the wildcards represent
that part of the file specifications that you want to be the same in both files
being compared.

You can use this method to compare several pairs of files; each input file is
compared to only one other input file at a time. For example, the following
command requests SRCCOM to compare pairs of files; the first input file in each
pair has the file name PROG1, and the second has the file name PROG2. The
file type of both files in each pair must match:

DU0:PROG1.,DU1:PROG2.* RET

SRCCOM searches for the first file on DU0 with the file name PROG1, and
takes note of its file type. Then, SRCCOM searches DU1 for a file with the file
name PROG2 and the same file type as PROG1. If a match is found, SRCCOM
compares the two files and lists the differences on the terminal (or sends the
differences to an output file, if one is specified). SRCCOM then searches DU0 for
more files with the file name PROG1 and DU1 for PROG2 files with matching
file types.

28–4 RT–11 System Utilities Manual Part II

SRCCOM Options
Table 28–2 summarizes the operations you can perform with SRCCOM options. You
can place these options anywhere in the command string, but it is conventional to
place them at the end of the command line.

Table 28–2: SRCCOM Options

Option Function

/A Lets you specify an audit trail (a string of characters that marks each
updated line of a patched source file). Use /A with the SLP output file
specification to create a file that can be used as command file input for
the source language patch program SLP (see Chapter 25).

/B Compares blank lines; normally, SRCCOM ignores blank lines.

/C Ignores comments (all text on a line preceded by a semicolon) and spacing
(spaces and tabs). A line consisting entirely of a comment is still included
in the line count.

/D Creates a listing of the second file specified in the command line
containing the differences with the first file marked by vertical bars (|),
and the deletions marked by bullets (�).

/F Includes form feeds in the output listing; SRCCOM normally compares
form feeds, but does not include them in the differences listing.

/L[:n] Specifies the number of lines that determines a match; n is a decimal
integer in the range 1 through 311. The default value for n is 3.

/S Ignores spaces and tabs.

/T Compares blanks and tabs that appear at the end of a line. Normally
SRCCOM ignores these trailing blanks and tabs.

/V:i:d Used with /D to specify the characters you want SRCCOM to use in
place of vertical bars and bullets. This option is useful if your terminal
does not display the vertical bar character. Both i and d represent the
numeric codes for ASCII characters in the range 40 through 176 (octal),
where i represents the code for the insertion character and d the deletion
character code.

Source Comparison Utility (SRCCOM) 28–5

Interpreting a Differences Listing
To understand how to interpret the output listing, first look at the following two
sample FORTRAN text files EXAMP1.FOR and EXAMP2.FOR. Then look at the
listing of the differences between them.

Two Example FORTRAN Files
Note the two differences between the two files:

• In line 7, the first file has go to 10, while the second file has go to 100.

• In line 14, the first file has the variable radamg while the second file has the
variable radang.

Example 1: FORTRAN File with Errors (EXAMP1.FOR)

real function ASIND(x)
real x

c
c This FORTRAN callable function returns the ARCSINE
c of a specified value as an angle in degrees.
c

if (ABS(x) .lt. 1.0) go to 10
ASIND = x * 90.0
return

c
c Use trigonometric identity to calculate ARCSINE of X.
c Then convert radians to degrees.
c
100 radamg = ATAN(x / SQRT(1.0-x**2))

ASIND = radang * 57.29577951
return

c
end

Example 2: FORTRAN File without Errors (EXAMP2.FOR)

real function ASIND(x)
real x

c
c This FORTRAN callable function returns the ARCSINE
c of a specified value as an angle in degrees.
c

if (ABS(x) .lt. 1.0) go to 100
ASIND = x * 90.0
return

c
c Use trigonometric identity to calculate ARCSINE of X.
c Then convert radians to degrees.
c
100 radang = ATAN(x / SQRT(1.0-x**2))

ASIND = radang * 57.29577951
return

c
end

28–6 RT–11 System Utilities Manual Part II

A Differences Listing for the Example Files
Note the following command and the listing file EXAMP.DIF produced by that
command:

*EXAMP=EXAMP.ONE,EXAMP.TWO RET

*TYPE EXAMP.DIF RET

1) DK:EXAMP.ONE
2) DK:EXAMP.TWO

1)1 if (ABS(x) .lt. 1.0) go to 10
1) ASIND = x * 90.0

2)1 if (ABS(x) .lt. 1.0) go to 100
2) ASIND = x * 90.0

1)1 100 radamg = ATAN(x / SQRT(1.0-x**2))
1) ASIND = radang * 57.29577951

2)1 100 radang = ATAN(x / SQRT(1.0-x**2))
2) ASIND = radang * 57.29577951

The first two lines of the listing identify the two files being compared. Each file
name and the device on which each file resides are listed; for example:

1) DK:EXAMP.ONE
2) DK:EXAMP.TWO

The numbers at the left margin have the form n)m, where n specifies the files
compared (either 1 or 2) and m specifies the page (indicated by a form feed) of
that file on which the specific line is located. In this case, both files have only one
page of output.

RT–11 displays 10 asterisks both before and after a section showing one or more
differences between two files. In addition, within each section, a line of 4 asterisks
separates the two files being compared, thus dividing each difference section into
two subsections; for example:

1)1 if (ABS(x) .lt. 1.0) go to 10
1) ASIND = x * 90.0

2)1 if (ABS(x) .lt. 1.0) go to 100
2) ASIND = x * 90.0

Each difference section ends with a matching line, used as a reference to identify
the location of the differing lines; for example:

ASIND = x * 90.0

and

ASIND = radang * 57.29577951

Source Comparison Utility (SRCCOM) 28–7

Using the MATCH Option (/L:n)
A match is the number of lines in each file compared that are exactly the same.
SRCCOM looks for a match to conclude a differences section. By default three
identical lines constitute a match. However, whenever a match is found, SRCCOM
lists only the first line of the match in a differences section.

You can set the number of lines that must match by using the /L:n option. This
is a decimal number from 1 to 311. For example, the following command produces
the following listing for the preceding example files. Note that, unlike the first
differences example, there is only one differences section, since a match (seven
identical lines) could not be found before the next difference. Note also, that in
this case, both files are on the default storage device (DK):

*EXAMP1.FOR,EXAMP2.FOR/L:7 RET

1) DK:ASIND.RNO
2) DK:ASIND2.RNO

1)1 if (ABS(x) .lt. 1.0) go to 10
1) ASIND = x * 90.0
1) return
1) c
1) c Use trigonometric identity to calculate ARCSINE of X.
1) c Then convert radians to degrees.
1) c
1) 100 radamg = ATAN(x / SQRT(1.0-x**2))
1) ASIND = radang * 57.29577951

2)1 if (ABS(x) .lt. 1.0) go to 100
2) ASIND = x * 90.0
2) return
2) c
2) c Use trigonometric identity to calculate ARCSINE of X.
2) c Then convert radians to degrees.
2) c
2) 100 radang = ATAN(x / SQRT(1.0-x**2))
2) ASIND = radang * 57.29577951

28–8 RT–11 System Utilities Manual Part II

Using the CHANGEBAR Option (/D[/V:i:d])
When you use the /D option in the SRCCOM command line, SRCCOM creates a
listing in which it inserts vertical bars (|) and bullets (�) to denote the differences
between the two files in the command line. The vertical bar indicates insertion; the
bullet indicates deletion. If you do not specify an output file, SRCCOM displays the
listing at the terminal.

If you include the /V:i:d option with /D (you cannot use /V:i:d without /D), you can
specify what characters you would like in place of the vertical bar or bullet. The
argument i represents the ASCII code (between 40 and 176 octal) for the character
you want in place of the vertical bar. The argument d represents the ASCII code
(between 40 and 176 octal) for the character you want to use in place of the bullet.

The following command requests SRCCOM to compare EXAMP1.FOR with
EXAMP2.FOR:

*EXAMP1.FOR,EXAMP2.FOR/D/L:1 RET

When SRCCOM processes the preceding command, it displays on the terminal the
following listing of EXAMP2.FOR:

real function ASIND(x)
real x

c
c This FORTRAN callable function returns the ARCSINE
c of a specified value as an angle in degrees.
c

| if (ABS(x) .lt. 1.0) go to 100
ASIND = x * 90.0
return

c
c Use trigonometric identity to calculate ARCSINE of X.
c Then convert radians to degrees.
c

| 100 radang = ATAN(x / SQRT(1.0-x**2))
ASIND = radang * 57.29577951
return

c
end

?SRCCOM-W-Files are different

Source Comparison Utility (SRCCOM) 28–9

Creating a SLP Command File
You can use SRCCOM to create an input command file to SLP (the source language
patch program) described in Chapter 25. To do so, specify a SLP file in the indicated
position (see the Command-Line Syntax section) of the SRCCOM command line. For
the SLP file specification, all you need specify is the file name. By default, SRCCOM
gives your SLP file a SLP file type.

Note that if you specify:

• both an output filespec and a SLP filespec, SRCCOM creates both a differences
listing and a SLP input command file.

• only an output filespec, SRCCOM creates only a differences listing.

• only a SLP filespec, SRCCOM creates only a SLP input command file.

In the following sample command line, SRCCOM creates the input command file,
MODIFY.SLP. This file contains the necessary commands that, when used with SLP,
can modify EXAMP1.FOR so that it matches EXAMP2.FOR:

*,MODIFY=EXAMP1.FOR,EXAMP2.FOR/A RET

Notice the /A (audit) option in the command line. When you use the /A option,
SRCCOM prompts you for the audit trail:

Audit trail?

The audit trail is a string of characters that keeps track of the update status of each
line in the patched source file. For example, by using the /A option you can record
in the SLP file your initials and the date on lines of code that change. SLP appends
the audit trail as a comment on the right margin of each updated line in the patched
source file.

Respond to the audit prompt with a string of up to 11 characters. Do not use a slash
(/); SLP uses slashes to surround and identify each audit trail.

The example below shows the contents of the file MODIFY.SLP produced by the
preceding example command. Each audit trail (or update comment) begins with
the semicolon (; —the MACRO–11 comment character). In this case, RH is the
programmer’s initials and 2-20-88 is the date the programmer made the change.
The numbers preceding the comments are the line numbers in the file that will
change. Here there is a one-for-one replacement of an old line 7 with a new line 7
and of an old line 14 with a new line 14. The code beneath each comment is the
code that will replace the old code:

-7,7,/;RH-2*20*88/
if (ABS(x) .lt. 1.0) go to 100

-14,14,/;RH-2*20*88/
100 radang = ATAN(x / SQRT(1.0-x**2))

/

When you use the preceding command file with the SLP utility to modify
EXAMP1.FOR, you will get the following new version of that FORTRAN file. Note
the audit trail (as listed above) is in the right-hand column of the lines that have been

28–10 RT–11 System Utilities Manual Part II

Creating a SLP Command File

changed. An additional audit-trail line beneath each change indicates the number
of lines that changed in each modification. Note also that by default the audit trail
begins in column 73. This means that on a terminal or printer having an 80-column
wide display, audit trails longer than 8 characters are truncated. However, you can
change the start column of the audit trail. See Chapter 25 for more information
about the audit trail:

real function ASIND(x)
real x

c
c This FORTRAN callable function returns the ARCSINE
c of a specified value as an angle in degrees.
c

if (ABS(x) .lt. 1.0) go to 100 ;RH-2*20*91
ASIND = x * 90.0 ;**-1
return

c
c Use trigonometric identity to calculate ARCSINE of X.
c Then convert radians to degrees.
c

100 radang = ATAN(x / SQRT(1.0-x**2)) ;RH-2*20*91
ASIND = radang * 57.29577951 ;**-1
return

c
end

Source Comparison Utility (SRCCOM) 28–11

DCL Equivalents of SRCCOM Utility Operations
Table 28–3 lists the DCL DIFFERENCES command options that are equivalent to
SRCCOM utility operations.

The first part of the table lists that part of the SRCCOM command syntax that is
equivalent to a DIFFERENCES option. The rest of the table alphabetically lists all
the SRCCOM options having DCL equivalents. Those SRCCOM options not having
DCL equivalents are not listed.

Table 28–3: DCL Equivalents of SRCCOM Utility Operations

SRCCOM
Syntax/Option

DIFFERENCES
Option

LP:= /PRINTER

outspec= /OUTPUT:outspec

[size]= /ALLOCATE:size

,SLP-filespec= /SLP:filespec

TT:= (default) /TERMINAL (default)

/A /AUDITTRAIL

/B /BLANKLINES

/D /CHANGEBAR

/C /NOCOMMENTS

(default) /COMMENTS (default)

/F /FORMFEED

/L:n /MATCH[:n]

/S /NOSPACES

(default) /SPACES (default)

/T /NOTRIM

(default) /TRIM (default)

28–12 RT–11 System Utilities Manual Part II

Chapter 29

Native Transfer Utility (TRANSFER/TRANSF)

The Native Transfer Utility (TRANSFER/TRANSF) is an unsupported program that
runs on several host operating systems and can be used to copy files from an RT–11
stand-alone processor to the host processor or from the host to the standalone.

A host processor is a computer connected to your RT–11 stand-alone computer by
means of the VTCOM utility. TRANSFER is run only from the host processor and
supports the following host operating systems:

VMS
RSX–11M
RSX–11M–PLUS
Micro/RSX
RT–11

Name Conventions
• In the rest of this chapter, RSX refers to RSX–11M, RSX–11M–PLUS, and

Micro/RSX.

• The name Native Transfer Utility refers to the utility as installed on a host
operating system.

• TRANSF is the name of the utility, the file containing the utility, and the
command when TRANSF.SAV is installed on an RT–11 host. Unlike RSX and
VMS, RT–11 allows only up to six characters in a file name, and the name of the
utility (when on an RT–11 host) is kept the same as its RT–11 acronym file name.

TRANSF is also the name of the RT–11 distribution file containing the Transfer
Utility (TRANSF.EXE for a VMS host, TRANSF.TSK for an RSX host, and
TRANSF.SAV for an RT–11 host).

• TRANSFER is the name of the utility, the file containing the utility, and
the command used by the utility, when the appropriate version of TRANSF
(TRANSF.TSK or TRANSF.EXE) is installed on an RSX or VMS host.

First-Time Users
First-time users of the Transfer utility should read the communications chapter in
the features section of the Introduction to RT–11. This chapter describes in detail all
that is involved to succesfully communicate between a computer running RT–11 and
another computer. The chapter also explains to a new user how to use the Transfer
utility.

Native Transfer Utility (TRANSFER/TRANSF) 29–1

Three Helpful Features of the Transfer Utility
The Transfer utility:

• Allows you to copy the contents of any file between your local and host computers.

• Error checks while transferring your file(s) to ensure you of an accurate copy.

• Together with VTCOM, dynamically controls the transmission packet size of
transferred data to ensure the accuracy of the data at the most reliable
transmission speed.

Transmission errors successively halve packet size while continued transmission
success progressively restores packet size. The maximum packet size is 512
bytes and the minimum is 16. For example, a lot of continuous transmission
errors could reduce the packet size to 16 bytes, and if the transmission problems
stopped, the packet size could go back to 512 bytes.

The process of packet size reduction and restoration is controlled by the program
sending the data. Data transfers from the RT–11 stand-alone processor to a host
processor are controlled by VTCOM. Data transfers from a host processor to the
RT–11 stand-alone processor are controlled by the Transfer utility.

29–2 RT–11 System Utilities Manual Part II

Transfer Utility Requirements
To use the Transfer utility:

• You must install VTCOM on your local computer, the computer to which your
console terminal is attached and which is running RT–11. VTCOM establishes
the connection between your RT–11 local computer and the host computer. You
can use the Transfer utility only after you have established that connection.

If you intend to run VTCOM as a system job, you must have the file VTCOM.SAV
on your system (SY) device and you must LOAD all handlers for the devices you
are going to use with VTCOM. The RT–11 SHOW command displays information
about devices.

If you intend to run VTCOM as a foreground job, then you need the file
VTCOM.REL on your system (SY) device. See Chapter 31 for complete
information on using VTCOM.

• You must install the proper version of the Transfer utility on your host processor.
Note that the Transfer utility is run only from the host processor.

The Transfer utility is called the "Native File Transfer Utility" (or from the point
of view of the local RT–11 system, the "Remote File Transfer Utility") since it is
designed to be native to (or a part of) the host operating system. So, there is a
unique version of the Transfer utility for each type of host operating system on
which it can run: RSX, VMS, and RT–11. Each version is a different program
with different code adapted to a particular operating system. You can identify
the versions by the file TYPE of the Transfer utility file. The files containing the
different versions of the Transfer utility with the operating systems on which
they run are as follows:

Version Host Operating System

TRANSF.TSK RSX–11

TRANSF.EXE VMS

TRANSF.SAV RT–11

If your host computer is a PDP–11 running RSX–11, have the host computer
system manager install TRANSF.TSK. The Installing TRANSFER on RSX
section explains how to do this.

If your host computer is a VAX running VMS, have the host computer system
manager install TRANSF.EXE. The Installing TRANSFER on VMS explains how
to do this.

If your host computer is a PDP–11 running RT–11, make sure TRANSF.SAV is
located on your host system (SY) device.

Native Transfer Utility (TRANSFER/TRANSF) 29–3

Installing TRANSFER
The Transfer utility as installed on VMS or RSX is called TRANSFER. So, most of
this chapter (the following sections dealing the VMS and RSX) refers to the utility
by that name.

TRANSFER can copy files from Files–11 volumes (on VMS or RSX) to RT–11 volumes
or the reverse (from RT–11 volumes to Files–11 volumes). Files–11 is the disk volume
format maintained by the VMS and RSX operating systems.

You can use command qualifiers to specify the format of the transferred output file.
The supported formats are:

• ASCII

• Binary

• FORTRAN

• Image

In addition, you can use command qualifiers that cause TRANSFER to:

• Supply additional information during the transfer operation

• Display HELP information

• Operate in PROMPT mode, an interactive mode with questions and defaults

• Queue the output file to the host system default printer (VMS host only)

Installing TRANSFER on the Host
Before you can use TRANSFER, you must install the appropriate version on the host
system. The program named TRANSF.EXE is the version that runs on VMS, and
the program named TRANSF.TSK is the version that runs on RSX.

Two Ways of Installing TRANSFER

TRANSFER can be installed on the host processor in two ways. It can be installed
as a system utility that is available to all system users or it can be installed in an
individual’s account.

• The host system manager must install TRANSFER if it is to be a system-wide
utility.

• You can install TRANSFER in your own account on the host. If you want to
do so, follow the procedures in the section Installing TRANSFER on VMS or in
the section Installing TRANSFER on RSX. However, you must have a privileged
account to install TRANSFER on an RSX host. If you do not have a privileged
account on an RSX host, you must have the system manager install TRANSFER
in your account. You do not need a privileged account to install TRANSFER on
a VMS host.

29–4 RT–11 System Utilities Manual Part II

Installing TRANSFER on VMS
Install TRANSFER on Version 4.0 or subsequent versions of VMS.

Step 1: Copy TRANSF.EXE

Mount the RT–11 distribution volume on the host and issue the following VMS
command to transfer TRANSF.EXE to the host. When you type the command,
replace the variable ddcu: with the VMS physical device name for the device on
which TRANSF.EXE resides. Type the command exactly as shown:

$ EXCHANGE COPY/CONTIGUOUS ddcu:TRANSF.EXE/VOLUME_FORMAT=RT11 TRANSFER.EXE

NOTE
Because TRANSF.EXE is not an ASCII
file, you cannot use the VTCOM SEND
command to copy TRANSF.EXE from
the RT–11 stand-alone processor to the
host.

Step 2: Define TRANSFER as a Foreign Command

The following command completes the installation of TRANSFER by defining it
as a foreign command. (A foreign command is a symbol name, in this case
TRANSFER, that you use to invoke the utility.) Placement of the asterisk (*)
lets you abbreviate TRANSFER to TRA.

When you type the following command, replace the variable disk with the name of
the disk on which your VMS directory resides. Be sure to include the dollar sign
($) before the variable disk. Replace the variable directory with the name of your
VMS directory:

$ TRA*NSFER :== $disk:[directory]TRANSFER.EXE

Native Transfer Utility (TRANSFER/TRANSF) 29–5

Installing TRANSFER on RSX
Install TRANSFER on the indicated version or subsequent versions of the operating
systems in the following list. The RMSRES resident library must be installed on any
RSX operating system running TRANSFER. The DAPRES resident library must be
installed, along with system DECnet support, to access files across DECnet.

• RSX–11M–PLUS 3.0

• RSX–11M 4.2

• Micro/RSX 3.0

Step 1: Copy TRANSF.TSK

Mount the RT–11 distribution volume on the host and use the following RSX
commands to transfer TRANSF.TSK to the host. When you type the commands,
replace the variable ddn: with the RSX physical device name for the device on
which TRANSF.TSK resides:

>MOUNT/NOSHARE/FOREIGN ddn:

>FLX SY:=ddn:TRANSF.TSK/CO/RT/IM

>RENAME TRANSF.TSK TRANSFER.TSK

NOTE
Because TRANSF.TSK is not an ASCII
file, you cannot use the VTCOM SEND
command to transfer TRANSF.TSK
from the RT–11 stand-alone processor
to the host.

Step 2: Install the RSX Task Image

Use the following command to install TRANSFER. You must have a privileged
account to issue this command. If you do not have a privileged account, have your
system manager install TRANSFER:

>INSTALL TRANSFER.TSK

29–6 RT–11 System Utilities Manual Part II

Using TRANSFER
With TRANSFER, you can copy files between a PDP–11 processor running RT–11
and either a PDP–11 processor running RSX or a VAX processor running VMS. No
intermediary (such as the RT–11 emulator, RTEM) is required.

Requirements
To use TRANSFER, make sure the appropriate version of the TRANSFER utility
has been installed on the host processor (running VMS or RSX). Then use VTCOM
to establish a connection between the RT–11 standalone processor and the host. You
can use the TRANSFER utility only after you have established that connection.

If you run VTCOM as the foreground or system job, you must LOAD all the handlers
for the devices you are using with VTCOM. The RT–11 SHOW command displays
information about devices.

Issuing the TRANSFER Command
Run the TRANSFER utility by issuing the TRANSFER command in response to the
host system’s prompt.

Aborting TRANSFER
You can abort a file transfer at any time and return to the host system’s prompt by
typing CTRL/C . CTRL/C is the preferred method of aborting file transfers on RSX and
VMS systems. You can also abort file transfers on VMS systems by typing CTRL/Y

and then issuing the EXIT command in response to the monitor prompt.

You can exit from TRANSFER and return to the host system’s prompt by typing
CTRL/Z in response to a TRANSFER prompt.

Native Transfer Utility (TRANSFER/TRANSF) 29–7

TRANSFER Command-Line Syntax
TRANSFER infile/qualifier[s] [outfile/qualifier[s]]

where:

infile Specifies the file you want to copy. The file specification is operating
system dependent. Consult your operating system documentation
for the correct construction of the file specification. However,
observe the following:

• Wildcards are not allowed in the file specification.

• If you do not specify an output file, the first six characters of the
input file name and the first three characters of the input file
type (extension) must be alphanumeric.

• TRANSFER does not access files contained within a virtual disk
on the host.

• You cannot specify any host system record-oriented device, such
as a line printer, terminal, or magtape device.

outfile Specifies the file to which you want to transfer the input file.
The file specification is operating system dependent. Consult your
operating system documentation for the correct construction of the
file specification. However, observe the following:

• Wildcards are not allowed in the file specification.

• If you do not specify an output file, that file will have the
same name as the input file, with one exception: RT–11
truncates input file names to six characters and input file types
(extensions) to three characters.

• You cannot specify any host system record oriented device, such
as a line printer, terminal, or magtape device.

29–8 RT–11 System Utilities Manual Part II

TRANSFER Command-Line Syntax

/qualifier Specifies a TRANSFER qualifier. There are two types of TRANS-
FER qualifiers. Mode qualifiers determine the format of the trans-
ferred file. Control qualifiers affect transfer file processing by pro-
viding information, by invoking interactive mode, or by queuing the
output file to a printer. The following table lists all the qualifiers.

Command
Qualifiers

File Qualifiers
(input or output)�

/HELP
/PROMPT
/VERSION � ���

��
/ASCII[:n]
/BINARY[:n]
/FORTRAN[:n]
/IMAGE[:n]

� ����
/LOG
/PROGRESS[:n]	
/REMOTE
/TERMINAL

/STATISTICS

{ } Specifies mutually exclusive qualifiers, which are mutually
exclusive on the input or output file specifications and must appear
only once in the command.

Default File Types

TRANSFER recognizes certain file types. If you do not specify a mode qualifier,
TRANSFER performs the transfer in the default mode for that file type. TRANSFER
recognizes the following file types as being ASCII or Binary.

ASCII (variable-length records)

.ANS .BAK .BAS .BAT .BLI .B16 .B2S .B32 .C

.CBL .CMD .COM .COR .CTL .DAT .DBL .DDF .DIF

.DIR .DMP .DOC .FOR .FTN .H .LIS .LOG .LST

.MAC .MAP .MAR .MEM .ODL .PAS .REQ .RNO .R16

.R32 .S .SLP .SRC .TEC .TES .TXT

Binary (variable-length records)

.BIN .LDA .OBJ .STB

IMAGE mode is TRANSFER’s default transfer mode. If you do not specify the
/ASCII, /BINARY, /FORTRAN, or /IMAGE qualifier, and if the file you specify does
not have a recognized file type, TRANSFER performs the transfer operation in
IMAGE mode with 512-byte fixed-length records.

Native Transfer Utility (TRANSFER/TRANSF) 29–9

Summary of TRANSFER Qualifiers
The TRANSFER command has two types of qualifiers (options): Mode qualifiers that
determine the format of a transferred file, and control qualifiers that determine how
the file is processed.

Format conversions can be in either direction between Files–11 volumes and RT–
11 volumes. However, you can specify only one TRANSFER mode qualifier in a
command.

Table 29–1 summarizes the qualifiers.

Table 29–1: Summary of TRANSFER Qualifiers

Qualifier Mode Function

/ASCII[:n] Mode Formats the output as ASCII.

/BINARY[:n] Mode Formats the output as a binary OBJ file.

/FORTRAN[:n] Mode Transfers files containing FORTRAN carriage-
control characters.

/HELP Control Displays information about TRANSFER.

/IMAGE[:n] Mode Transfers files without performing any record
translations on them.

/LOG Control Creates a log of the names of all the files
transferred.

/PROGRESS[:n] Control Displays the progress of the transfer at specific
intervals while the operation is taking place.

/PROMPT Control Operates in an interactive mode that displays
questions, indicates defaults, and accepts input.

/REMOTE Control Specifies the file on the local RT–11 system.

/TERMINAL Control Specifies the file on the local RT–11 system (this
qualifier is identical to /REMOTE).

/SPOOL Control Queues the TRANSFER output file to the
default VMS printer queue.

/STATISTICS Control Displays the number of retries and the number
of characters saved through compression encod-
ing.

/VERSION Control Displays the TRANSFER utility’s version
number.

29–10 RT–11 System Utilities Manual Part II

TRANSFER Qualifier Descriptions
/ASCII[:n]

Formats the output file as ASCII. On an RT–11 output volume, the file contains
ASCII data records, each terminated by a carriage return/line feed, escape, form
feed, or vertical tab. TRANSFER removes rubouts, nulls, and vertical tabs
from input records and adds carriage return/line-feed pairs to the end of records
that do not end with escape, form feed, or line feed. When the host input file
record attributes do not specify carriage control, TRANSFER assumes embedded
carriage control. Embedded carriage control means that each record contains
the control characters necessary for proper formatting. In that case, carriage
return/line feed pairs are not appended to records.

In transfers from RT–11 to Files–11 volumes, TRANSFER removes carriage
return/line-feed pairs from the end of records.

If you specify a size value (:n), TRANSFER generates fixed-length records of that
size and pads them with nulls if required. If you omit the size value (or specify
a size of zero), TRANSFER generates variable-length records.

/BINARY[:n]
Formats the output file as a binary object (.OBJ) file. (Do not use /BINARY with
library files; use /IMAGE instead.) TRANSFER adds formatted binary headers
and checksums to records that it copies to RT–11 files and removes binary headers
and checksums from records that it copies to Files–11 files.

When you transfer files to Files–11 volumes, TRANSFER generates fixed-length
records of the size (:n) you specify. If you omit the size value (or specify a size of
zero), TRANSFER generates variable-length records.

/FORTRAN[:n]
Transfers files that contain FORTRAN carriage control characters. Use the
/FORTRAN qualifier when the first character of each record is to be interpreted
as the carriage control specifier. The /FORTRAN qualifier does not alter any
record data. Use this qualifier only when the output volume is a Files–11 volume.

TRANSFER generates fixed-length records of the size (:n) you specify. If you omit
the size value (or specify a size of zero), TRANSFER generates variable-length
records.

/HELP
Displays limited information about TRANSFER. The /HELP qualifier lists
default TRANSFER formats for various file types.

/IMAGE[:n]
Transfers files without performing any record translations on them. In other
words, TRANSFER copies the files exactly as they are.

Native Transfer Utility (TRANSFER/TRANSF) 29–11

TRANSFER Qualifier Descriptions

When you transfer files to Files–11 volumes, TRANSFER generates fixed-length
records of the size (:n) you specify. If you omit the size value (or specify a size of
zero), TRANSFER generates fixed-length records of 512 bytes.

/LOG
Creates a log of the names of all files transferred. The log displays a success
message, the complete input and output filespecs, and the number of blocks or
records transferred. For example:

$ TRANSFER FOO.TXT/LOG FOO.TXT
%TRANSFER-S-COPIED, USER:[RTINDEX]FOO.TXT;2 copied to __TTB0::DK:FOO.TXT (6 blocks)

/PROGRESS[:n]
Displays the progress of the transfer at specific intervals while the operation is
taking place. Progress is displayed in record or block intervals, depending on the
format of the file and the direction of the transfer. You can specify the interval
(:n). The default PROGRESS report interval is 10(decimal) records or blocks.

The /PROGRESS qualifier displays an informational message, the time-of-day,
the blocks or records transferred during that interval, the number of retries,
and the packet size. An increase in the number of retries and a decrease in the
packet size generally indicate interference on the transmission line. If the packet
size decreases to an unacceptable level, retry the transfer operation when your
transmission line might be more clear.

An example of the /PROGRESS qualifier:

$ TRANSFER FOO.TXT/PROGRESS:1 FOO.TXT
%TRANSFER-I-PROGRESS, 14:33:25 blocks transferred=1 retries=0 packet_size=512
%TRANSFER-I-PROGRESS, 14:33:27 blocks transferred=2 retries=0 packet_size=512

/PROMPT
Causes TRANSFER to operate in an interactive mode that displays questions,
indicates defaults, and accepts input. The questions and defaults change
dynamically, based on the responses to earlier questions. PROMPT mode shows
a list of available responses in parentheses. The default response appears in
brackets. To choose the default response, press RETURN . Choose the default
unless you are sure that another qualifier is correct.

The following are sample PROMPT mode sessions:

1. This example copies the ASCII file V5NOTE.TXT from the RT–11 stand-alone
system to the host, keeping the same file name. Defaults are taken for the
file format (ASCII) and host file record length (variable):

$ TRANSFER/PROMPT
Original file is on (HOST,REMOTE) [HOST]: remote RET

Name of original REMOTE file to copy: v5note.txt RET

Name of file to create on HOST [V5NOTE.TXT]: RET

Create HOST file with (ASCII,BINARY,FORTRAN,IMAGE) records [ASCII]: RET

Create HOST file with fixed-length records (YES,NO) [NO]: RET

%TRANSFER-S-COPIED, __TTA2::DK:V5NOTE.TXT copied to USER:[RT11]V5NOTE.TXT
19
(714 records)
There were 0 retries, with 3362 characters saved through compression encoding.

29–12 RT–11 System Utilities Manual Part II

TRANSFER Qualifier Descriptions

2. This example copies the file VDT.OBJ from the host to an RT–11 stand-alone
system, keeping the same file name. Because VDT.OBJ is a binary file, the
default BINARY qualifier is chosen by pressing RETURN :

$ TRANSFER/PROMPT
Original file is on (HOST,REMOTE) [HOST]: RET

Name of original HOST file to copy: vdt.obj RET

Name of file to create on REMOTE [VDT.OBJ]: RET

Create REMOTE file with (ASCII,BINARY,FORTRAN,IMAGE) records [BINARY]: RET

%TRANSFER-S-COPIED, USER:[WINNING]VDT.OBJ 1 copied to __TTA2::DK:VDT.OBJ
(8 blocks)
There were 0 retries, with 276 characters saved through compression encoding.

3. This example copies the image file (executable program) VTCOM.SAV from
the RT–11 system to the host, keeping the same file name. All defaults are
taken:

$ TRANSFER/PROMPT
Original file is on (HOST,REMOTE) [HOST]: remote RET

Name of original REMOTE file to copy: vtcom.sav RET

Name of file to create on HOST [VTCOM.SAV]: RET

Create HOST file with (ASCII,BINARY,FORTRAN,IMAGE) records [IMAGE]: RET

Create HOST file with fixed-length records of size (0-512) <512>: RET

%TRANSFER-S-COPIED, __TTC2:DK:VTCOM.SAV copied to USER:[RT11]VTCOM.SAV 2
(24 blocks)
There were 0 retries, with 5274 characters saved through compression encoding.

/REMOTE and /TERMINAL
The /REMOTE and /TERMINAL qualifiers indicate to TRANSFER which file is
on the local RT–11 system. /REMOTE and /TERMINAL are interchangeable;
they have the same meaning. Do not specify both qualifiers in the same
command.

To transfer a file from the host system to the stand-alone RT–11 system, use
/REMOTE or /TERMINAL on the output-filespec. That operation is the default,
so you can omit those qualifiers altogether from the command for this type of
transfer.

To transfer a file from the stand-alone RT–11 system to the host system, use
/REMOTE or /TERMINAL on the input-filespec.

The following example transfers the file FOO.TXT from the host to the stand-
alone RT–11 system:

$ TRANSFER FOO.TXT FOO.TXT

The next example transfers the file FOO.TXT from the stand-alone RT–11 system
to the host:

$ TRANSFER FOO.TXT/TERMINAL FOO.TXT

/SPOOL
Queues the TRANSFER output file to the default VMS system printer queue.
Specify the /SPOOL qualifier on the host output-filespec.

This qualifier is available only for VMS system transfers.

Native Transfer Utility (TRANSFER/TRANSF) 29–13

TRANSFER Qualifier Descriptions

/STATISTICS
Displays the number of retries and the number of characters saved through
compression encoding. (Compression encoding is a transfer speed enhancement
used by TRANSFER whether or not you specify the /STATISTICS qualifier.) For
example:

$ TRANSFER FOO.TXT/STATISTICS FOO.TXT
There were 0 retries, with 400 characters saved through compression

/VERSION
Displays the TRANSFER utility’s version number.

29–14 RT–11 System Utilities Manual Part II

Message Format of the TRANSFER Utility
The messages displayed by the TRANSFER utility when it is installed on either the
RSX or the VMS operating system have the following format:

%ProgranName-ErrorLevel-MessageAbbreviation, MessageText
[-ProgramName-ErrorLevel-MessageAbbreviation, MessageText]

where:

Program Name specifies the TRANSFER utility or operating system
facility or component name. A percent sign (%)
prefixes the first message issued, and a hyphen (-)
prefixes each subsequent message.

Error Level is a single letter indicating the severity of the error.
The error level can be one of the following.

Error
Level Meaning

S Success

I Information

W Warning

E Error

F Fatal or severe error

Consult your host operating system documentation
for the meaning of each severity level.

Message Abbreviation is the abbreviation of the message text; the following
messages are alphabetized by this abbreviation.

Message Text is the explanation of the message.

[-ProgramName-ErrorLevel-MessageAbbreviation, MessageText] is the next message.

Native Transfer Utility (TRANSFER/TRANSF) 29–15

TRANSFER Message Descriptions
The following is a listing of TRANSFER utility error messages. They are
alphabetically arranged according to the message abbreviation. Included is an
explanation of each message and the recommended action to be taken. Consult
your host operating system documentation for messages not listed here.

AMBIGQUAL, ambiguous qualifier in command

Explanation: The command qualifier abbreviation contains too few characters to
make it unique. Another qualifier begins with the same characters.

User action: Retype the command, using at least four characters of the qualifier
name.

CHKSUMERR, binary record checksum error

Explanation: The checksum for a BINARY record was in error.

User action: Make sure the input file is not an object library. Object libraries
must be copied in IMAGE mode rather than BINARY mode.

Make sure the input file is a valid binary file. Retry the transfer.

CLOSEIN, error closing ’input-file’ as input

Explanation: RMS encountered an error while closing the indicated input file.
This message is usually accompanied by an RMS message indicating the reason
for the failure.

User action: Take corrective action based on the associated message.

CLOSEOUT, error closing ’output-file’ as output

Explanation: RMS encountered an error while closing the indicated output file.
This message is usually accompanied by an RMS message indicating the reason
for the failure.

User action: Take corrective action based on the associated message.

CONFQUAL, conflicting qualifier in command

Explanation: You specified qualifiers that are mutually exclusive. For example,
you can specify only one TRANSFER mode qualifier (/ASCII, /BINARY,
/FORTRAN, or /IMAGE) in a command. Also, you can specify /REMOTE or
/TERMINAL on only one side of a command.

User action: Correct the qualifiers and retry the operation.

FILSYNTAXERR, error in file specification

Explanation: You specified a file containing syntax that was invalid for the RT–11
system. For example, the file name might contain more than six characters.

User action: Correct the syntax of the file specification for the RT–11 system.

29–16 RT–11 System Utilities Manual Part II

TRANSFER Message Descriptions

ILLBINFORMAT, illegal binary record format

Explanation: You attempted to transfer a file from the RT–11 system to the host
system using the /BINARY format qualifier. The file either was not a binary file
or was a binary file with a bad format.

User action: Make sure the specified record format qualifier agrees with the
actual file record format. Retry the operation.

INVCMDSYNTAX, invalid command syntax

Explanation: The TRANSFER utility command contained invalid syntax.

User action: Correct the syntax and reenter the command.

INVINPUTQUAL, invalid input qualifier /’qualifier’

Explanation: The indicated input qualifier is invalid in the command.

User action: Correct the qualifier and reenter the command.

INVQUAL, invalid qualifier /’qualifier’

Explanation: The indicated qualifier is invalid in the command.

User action: Correct the qualifier and reenter the command.

INVQUALVAL, invalid value for /’qualifier’ qualifier

Explanation: You specified an invalid value for the indicated qualifier.

User action: Check the range of valid values for that qualifier. Correct the value
for the qualifier and reenter the command.

NOVTCOM, VTCOM not running on remote

Explanation: VTCOM is not running on your RT–11 stand-alone system, or the
host system response time is slow due to heavy usage. TRANSFER timed out
before receiving a response from VTCOM.

User action: Make sure VTCOM is running on the RT–11 system. Decrease the
load on the host system or lower the baud rate between the RT–11 stand-alone
system and the host. Retry the operation.

OPENIN, error opening ’input-file’ as input

Explanation: The indicated input file cannot be opened. This message is usually
accompanied by an RMS message indicating the reason for the failure.

User action: Take corrective action based on the associated message.

OPENOUT, error opening ’output-file’ as output

Explanation: The indicated output file cannot be opened. This message is usually
accompanied by an RMS message indicating the reason for the failure.

User action: Take corrective action based on the associated message.

Native Transfer Utility (TRANSFER/TRANSF) 29–17

TRANSFER Message Descriptions

QUOTNOOUTPUT, quoted string specification as input needs output specification

Explanation: You did not specify the output (RT–11 only) file, when the input
(RMS) file was a quoted string specification.

User action: Explicitly specify the output file when the input file is a quoted
string specification.

READERR, error reading ’input-file’

Explanation: The indicated input file cannot be read. This message is usually
accompanied by an RMS message indicating the reason for the failure.

User action: Take corrective action based on the associated message.

REMABORT, file transfer aborted by remote

Explanation: The file transfer was aborted due to an I/O error on the RT–11
system, or the VTCOM RESET command was issued.

User action: Check the procedures listed in Section 2 of the RT–11 System
Message Manual for recovery from hard error conditions.

REMACCESS, error accessing remote

Explanation: A hard error occurred on the host system during a file transfer.

User action: Retry the operation after performing hard error recovery procedures
on the host system.

REMCLOSEIN, error closing ’input-file’ as input on remote

Explanation: TRANSFER encountered an error while closing the indicated input
file on the RT–11 system. This message is usually accompanied by another
message indicating the reason for the failure.

User action: Take corrective action based on the associated message.

REMCLOSEOUT, error closing ’output-file’ as output on remote

Explanation: TRANSFER encountered an error while closing the indicated
output file on the RT–11 system. This message is usually accompanied by another
message indicating the reason for the failure.

User action: Take corrective action based on the associated message.

REMOPENIN, error opening ’input-file’ as input on remote

Explanation: TRANSFER cannot open the indicated file on the RT–11 system.
This message is usually accompanied by another message indicating the reason
for the failure.

User action: Take corrective action based on the associated message.

29–18 RT–11 System Utilities Manual Part II

TRANSFER Message Descriptions

REMOPENOUT, error opening ’output-file’ as output on remote

Explanation: TRANSFER cannot open the indicated output file on the RT–11
system. This message is usually accompanied by another message indicating the
reason for the failure.

User action: Take corrective action based on the associated message.

REMREADERR, error reading ’input-file’ on remote

Explanation: TRANSFER cannot read the indicated input file on the RT–11
system. This message is usually accompanied by another message indicating
the reason for the failure.

User action: Take corrective action based on the associated message.

REMTIMEOUT, remote timed out during file transfer

Explanation: TRANSFER timed out during a file transfer.

User action: Make sure VTCOM is running. Retry the operation.

REMWRITEERR, error writing ’output-file’ on remote

Explanation: TRANSFER encountered an error while writing the indicated file
on the RT–11 system. This message is usually accompanied by another message
indicating the reason for the failure.

User action: Take corrective action based on the associated message.

SENSEMODE, couldn’t read terminal characteristics

Explanation: TRANSFER could not read the terminal hardware characteristics
required for a file transfer operation.

User action: Retry the operation after performing hard error recovery procedures
on the host system.

SETMODE, couldn’t write terminal characteristics

Explanation: TRANSFER could not set the terminal hardware characteristics
required for a file transfer operation.

User action: Retry the operation after performing hard error recovery procedures
on the host system.

TERMINIT, error initializing terminal for I/O

Explanation: TRANSFER could not initialize the terminal hardware on the host
system for a file transfer operation.

User action: Retry the operation after performing hard error recovery procedures
on the host system.

Native Transfer Utility (TRANSFER/TRANSF) 29–19

TRANSFER Message Descriptions

TOOBIG, record too large for file’s I/O buffer

Explanation: You attempted to transfer a Files–11 record that was too large for
TRANSFER’s file buffer.

User action: Make sure you are transferring a file in the correct mode or transfer
the file in IMAGE mode.

TOOLONG, ’nn’ byte record exceeds output file’s maximum record length

Explanation: You specified a record length that was too small to hold the largest
record from the RT–11 file.

User action: Specify a record length large enough to hold the largest record from
the RT–11 file or transfer the file using variable-length records.

USERABORT, file transfer aborted by user

Explanation: You aborted the file transfer by typing CTRL/C , or an I/O error
occurred on the host system.

User action: If an I/O error occurred, perform hard error recovery procedures on
the host system. Retry the operation.

WRITEERR, error writing ’output-file’

Explanation: RMS encountered an error while writing the indicated file. This
message is usually accompanied by another message indicating the reason for
the failure.

User action: Take corrective action based on the associated message.

29–20 RT–11 System Utilities Manual Part II

Installing TRANSF on an RT–11 Host
The Transfer utility, when installed on an RT–11 or RTEM–11 host, has the acronym
TRANSF as its name — since RT–11 utilities are traditionally named by the file
containing the utility, and RT–11 file names can only be 6 characters in length.
Therefore, in the rest of this section, the utility is called TRANSF, and the messages
displayed by TRANSF on RT–11 or RTEM–11 are alphabetically listed in the RT–11
System Message Manual under the name TRANSF.

RT–11 host computers have the same file structure as your local computer. Therefore,
TRANSF does no format translation and has no format options. All file transfers
take place in image mode.

TRANSF must be installed on a host running RT–11 or RTEM–11. TRANSF runs
only on the host processor. Do not run TRANSF on your local terminal.

To install TRANSF on the host, you must copy TRANSF.SAV from your RT–11
distribution or system volume to a common volume, carry the volume to the host,
and copy TRANSF.SAV from the volume to the host.

Native Transfer Utility (TRANSFER/TRANSF) 29–21

TRANSF Command-Line Syntax
To run TRANSF on your host system, type a command with the following CCL syntax
in response to your host system’s prompt:

TRANSF outfile[/options]=infile[/options]

where:

outfile specifies the file (the device, file name, and file type) to which you
want a file copied.

infile specifies the file (the device, file name, and file type) you want to
copy.

options specify the following options.

Option Function

/S Rings terminal bell when log messages are printed
during file transfers. Automatically enables log
messages.

/T Specifies which file is the RT–11 stand-alone system
file. To copy a file from the host to your stand-alone
system, use /T with the output-filespec. To copy
to the host, use /T with the input-filespec. If you
do not specify /T in the command line, TRANSF
assumes you are copying from the host to your
stand-alone system. You cannot use /T on both
sides of the command string.

/W Causes TRANSF to print log messages during file
transfers, but does not ring the terminal bell.

RT–11 file specifications can include only a device, a file name of up to six characters,
and a three-character file type. You cannot use wildcards in any file specifications
for TRANSF.

29–22 RT–11 System Utilities Manual Part II

Using TRANSF
Use the preceding command format to transfer files from an RT–11 host to your
stand-alone system and from your stand-alone system to an RT–11 host.

NOTE
If the host system supports the XON/XOFF feature,
TRANSF can transfer files at any baud rate you choose.
However, if the host does not support XON/XOFF, the
maximum speed you can use depends on host input
buffer size and system load. If a transfer fails at a given
baud rate, reduce the baud rate until the transfer is
successful.

Examples
1. The file RELSYS.SAV is transferred from an RT–11 host system to the file

RELSYS.SAV on an RT–11 stand-alone system:

.TRANSF RELSYS.SAV=RELSYS.SAV/W RET

2. This command transfers the file SYSBLD.COM from a stand-alone system to a
file named SYSBLD.COM on a host running RT–11:

.TRANSF SYSBLD.COM=DW:SYSBLD.COM/T RET

Native Transfer Utility (TRANSFER/TRANSF) 29–23

TRANSF Confirmation Messages
TRANSF, when used with the /W option, confirms the start of the transfer by
displaying this message:

Creating [TT::]<outfile> from [TT::]<infile>.

where:

TT:: specifies the stand-alone system, and appears with the input or output file
specification, depending on how you have issued the command.

outfile specifies the file (the device, file name, and file type) being created.

infile specifies the file (the device, file name, and file type) being copied.

If you choose either the /W or /S option, TRANSF prints the following information
when the file transfer is complete:

• Number of blocks transferred and number of retries.

• Number of characters saved through compression coding. (Compression coding
enables TRANSF to transfer data using fewer characters than normal, which
saves transfer time.)

• Confirmation of file transfer.

Example
.TRANSF REL12.MAC=REL12.MAC/T/W
Creating REL12.MAC from TT::REL12.MAC
10 blocks transferred with 0 retries
1198 characters saved through compression encoding
REL12.MAC created from TT::REL12.MAC

This example shows a typical file transfer, from a stand-alone system to a host.

29–24 RT–11 System Utilities Manual Part II

Chapter 30

The Virtual Run Utility (VBGEXE)

The Virtual Run Utility (VBGEXE) is an unsupported utility that creates a pseudo
unmapped-monitor environment enabling you to run programs faster and with less
low-memory space than the programs would otherwise require. VBGEXE lets you
execute, without relinking, many well-behaved programs as if they were operating
under an unmapped monitor.

The name of the utility is an acronym for Virtual Background Execution. VBGEXE is
called virtual since it appears to extend the amount of low memory available under
a mapped monitor.

Why Use VBGEXE
If you are running under a mapped monitor and there is not enough low memory
for your program to execute, try using VBGEXE. VBGEXE uses a small portion of
low memory and maps the rest of the job into high memory. As a result, VBGEXE
allows you to run programs which might otherwise take up more low-memory space
than you have available. Also, VBGEXE tends to speed up the execution of a job.

A program run using VBGEXE is referred to as a completely virtual job or as running
in a completely virtual environment.

Programs You Can Run with VBGEXE
You can run the MACRO–11 assembler, the linker, and most RT–11 programs, using
VBGEXE. A few RT–11 programs, such as IND, SPOOL, RESORC, and RTMON do
not work with VBGEXE. If a job is not a valid one for VBGEXE, that job does not
run and VBGEXE issues the error message:

?VBGEXE-F-Cannot run in completely virtual environment <dev:filnam.typ>

The Virtual Run Utility (VBGEXE) 30–1

Automatically Running Jobs Under VBGEXE
The DCL commands V and VRUN allow VBGEXE to run programs under mapped
monitors. See the RT–11 Commands Manual for descriptions of these commands.

If you want your programs to run in a completely virtual environment without having
to use the V or VRUN commands, include the command SET RUN VBGEXE in your
STRTxx.COM file (or just issue it), if you are running under a mapped monitor.

If you issue the SET RUN VBGEXE command, then:

• If you use R or RUN (or V or VRUN) and the job or environment is valid for
running under VBGEXE, the job runs as a completely virtual job.

• If you use R or RUN and the job or environment is not valid for running under
VBGEXE, the monitor attempts to run the job as a straight background job.

• If you use V or VRUN and the job or environment is not valid for running under
VBGEXE, VBGEXE issues an error message and the job does not run.

• If you issue an FRUN or SRUN command, the specified job is run as a foreground
or a system job. The SET RUN VBGEXE command does not apply to foreground
or system jobs.

See the description of the SET RUN [NO]VBGEXE command in the RT–11
Commands Manual for further information.

Displaying the RUN State (VBGEXE or NOVBGEXE)
Issue the SHOW CONFIGURATION command to get a system display showing
whether RUN is set to VBGEXE or NOVBGEXE.

The RUN command runs a job using VBGEXE when all the following conditions are
true:

• The file you want to run is on the specified disk.

• VBGEXE.SAV is on SY.

• The command SET RUN VBGEXE is in effect.

• The VBGEX$ (200) bit is set in the job’s $JSX word (offset 4 in block 0 of the SAV
file header). See the RT–11 Volume and File Formats Manual for a description
of the $JSX word.

If VBGEXE.SAV is not present on SY when an automatic run is attempted, the
message ?KMON-F-File not found SY:VBGEXE.SAV is displayed.

30–2 RT–11 System Utilities Manual Part II

Running Background, Foreground, or System Jobs
You can use VBGEXE to run background, foreground, or system jobs.

Running a Background Job Using VBGEXE
The following three examples show three different ways of running the MACRO–11
assembler in the background as a completely virtual job. The progam to be compiled
is MYPROG.MAC. The object file is to be named MYPROG.OBJ and the listing file,
MYPROG.LST.

1. In the first example, V invokes the assembler which then prompts for CSI
command-line input:

.V MACRO RET

*MYPROG,MYPROG=MYPROG RET

*

2. In the second example, V uses DCL command-line syntax to issue the same
command as the preceding one. In this case, since V is a DCL command, RT–11
returns you to the keyboard monitor dot prompt when it finishes execution:

.V MACRO MYPROG MYPROG RET

.

3. In the third example, the SET RUN command enables VBGEXE to automatically
load and execute programs in a completely vitual environment. Then the MACRO
command automatically compiles MYPROG in a virtual environment without it
being necessary to use the V command:

.SET RUN VBGEXE

.MACRO MYPROG/LIST:MYPROG

Running VBGEXE as a Foreground or System Job
You can also run VBGEXE as a foreground or system job, and even assign it to its
own terminal. In addition, if your monitor includes system-job support, you can use
the /NAME option to specify the program you want VBGEXE to run. For example,
the following command tells VBGEXE to execute BASIC at terminal 1:

.SRUN SY:VBGEXE.SAV/NAME:BASIC/TERM:1 RET

The Virtual Run Utility (VBGEXE) 30–3

How VBGEXE Allocates and Uses Low Memory
VBGEXE allocates and uses low memory for background or foreground and system
jobs in the following manner:

• For a background job, VBGEXE allocates all free low memory to the monitor to
satisfy user requests (.CDFN, .QSET, .FETCH) that require low memory.

• For a foreground or system job, VBGEXE establishes an approximate 1185
(decimal) word buffer in low memory. About 759 (decimal) words of that buffer
are available to the monitor to satisfy user requests (.CDFN and .QSET) that
require low memory. The buffer is large enough to let VBGEXE run most jobs.

Using the /BUFF option
If your job cannot run under VBGEXE because the .CDFN or .QSET programmed
request requires more low memory, use the /BUFF:nnnnn option in the following
manner:

.FRUN SY:VBGEXE.SAV/BUFF:nnnnn[/NAME:xxxxxx[/option]] RET

or

.SRUN SY:VBGEXE.SAV/BUFF:nnnnn[/NAME:xxxxxx[/option]] RET

where nnnnn is a decimal value for the number of additional words you want
VBGEXE to allocate as buffer space for that job. Note that increasing the buffer
size decreases the available low memory.

30–4 RT–11 System Utilities Manual Part II

Running Separated I-and-D Space Programs
RT–11 uses VBGEXE to load and run separated I-and-D (Instruction and Data) space
programs.

Loading Separated I-and-D Space Programs
VBGEXE loads separated I-and-D space programs by loading the image into
extended memory in a single local region created by VBGEXE at load time
specifically for this purpose. VBGEXE loads only the root segment of D and I spaces
at load time. It uses the D-space bitmap in block 0 to determine which data blocks
to load. It uses the I-space bitmap in the I-space of virtual block 0 to determine
which instruction blocks to load. It also places a RETURN instruction (2078) in the
first word of each I space /V overlay partition. The job’s D space is set up to contain
virtual vectors and the SYSCOM area. The job’s I-space is set up to contain the
following code in addresses 0 and 2 to facilitate proper completion routine operation:

BIC R0,R0
.ASTX

VBGEXE relies on the overlay handler to load other parts of the program and to
mark /O overlays as being non-resident.

Running a Separated I-and-D Space Program
Once VBGEXE has loaded a separated I-and-D space program, the job is started
running based on its transfer address stored in location 40 of the I-space virtual block
0 of the SAV file. The following programmed requests behave differently when issued
from a separated I-and-D space job than from a traditional RT–11 job. However, they
behave similarly to how traditional jobs run under VBGEXE behave.

1. .FETCH works from background jobs only. If the handler requested is not already
resident (or loaded), it is fetched into kernel memory below the USR.

2. .CDFN allocates channels in kernel memory below the USR and free of PAR1
space.

3. .QSET allocates queue elements in kernel memory below the USR and free of
PAR1 space.

The Virtual Run Utility (VBGEXE) 30–5

Restrictions for Using VBGEXE
The following restrictions apply to the programs VBGEXE can run:

• The program cannot contain interrupt service routines.

• The program cannot use the following programmed requests:

.FORK

.INTEN

.MFPS

.MTPS

• The program should use only the .PEEK, .POKE, .GVAL, and .PVAL programmed
requests to access the kernel address space (for example, monitor data and the
I/O page).

• The program can always gain direct access to the kernel by attaching and
mapping the global regions KERNEL and IOPAGE.

• The program can initially have direct access to the I/O page by setting the
IOPAG$ (40) bit in the job’s $JSX word (offset 4 in block 0 of the SAV file header).

30–6 RT–11 System Utilities Manual Part II

Chapter 31

Virtual Terminal Communications Utility (VTCOM)

The Virtual Terminal Communications Utility (VTCOM) enables you to connect
your stand-alone RT–11 operating system to another computer’s operating system
and to communicate between the two operating systems. VTCOM is called the
Virtual Terminal Communications utility since it also enables you to use your RT–11
terminal as if it were a terminal of the operating system to which you are connected.
In this situation, your RT–11 computer is called the local computer, and the computer
to which you are connected is called the host computer — since it acts as a host,
letting you use its resources.

With VTCOM, you have available the resources of the host system such as electronic
mail and programming languages, in addition to still being able to use the resources
of the stand-alone RT–11 system. VTCOM will transfer ASCII files between the host
and the stand-alone RT–11 system.

Users of the VTCOM utility should read the communications chapter in the features
section of the Introduction to RT–11. This chapter describes how to configure all the
components you need (hardware and software) to successfully communicate between
a computer running RT–11 and another computer.

VTCOM Functionality
VTCOM does the following:

• Allows you to log onto a host computer and use all the software and hardware
facilities (for example, electronic mail and programming languages) on that
computer, in addition to all the resources on your local computer.

• Allows you to open on your local computer a logging file that records everything
transmitted from the host computer to your local computer’s terminal screen.

• Supports some commands and customizations that let you send, for example, a
particular dial string to your modem.

• Adjusts the transfer rate of information based on the success or failure it has
in transferring that information. (Both VTCOM and TRANSFER/TRANSF do
this.)

— Reduces the transmission packet size by half for each error that occurs during
a data transmission. Transmission errors successively halve the packet size
from a maximum of 512 bytes to a minimum of 16 bytes.

— Progressively restores packet size during continued success from transmitting
at a reduced packet size. This process is dynamic; errors halve packet

Virtual Terminal Communications Utility (VTCOM) 31–1

size, while success progressively restores packet size. The maximum and
minimum packet sizes are 512 and 16 bytes respectively.

The process of packet-size reduction and restoration is controlled by the program
sending the data. Data transfers from the RT–11 standalone processor to a host
processor are controlled by VTCOM. Data transfers from a host processor to the
RT–11 standalone processor are controlled by TRANSF.

VTCOM sends data at the interface interrupt speed, but if that transfer speed
is too fast for the host terminal service to process, you can slow down the baud
rate or you can let VTCOM adjust the transfer rate, using retries and reduced
packet size. A symptom of a too fast transfer rate is a beeping terminal.

• Manages all file operations on your local computer when you use the native
transfer utility (TRANSFER/TRANSF) installed on the host (see Chapter 29 to
transfer files between your local computer and the host).

• Allows you to transfer ASCII files between your local computer and a host, but
this process is slow and without error checking. If you have the native transfer
utility installed on the host, use that utility to transfer files.

31–2 RT–11 System Utilities Manual Part II

VTCOM Package
The VTCOM package consists of three components:

• The VTCOM utility

• The handler that enables you to use VTCOM

• The native-file transfer utility (TRANSFER/TRANSF) that enables you to copy
files between computers

The following list describes these components:

• VTCOM Utility

RT–11 distributes two versions of VTCOM. Which version you use depends on
the RT–11 monitor you are running at your local computer. The following table
lists the monitors with the corresponding version of VTCOM that runs on that
monitor.

RT–11 Monitor Version of VTCOM

Mapped monitor VTCOM.SAV
(for running VTCOM as a system job)

Unmapped multi-job monitor VTCOM.REL
(for running VTCOM as a foreground job)

• VTCOM Device Handler

This handler manages the communications port on the local computer. Any serial
line of type DL, DZ, or DH can serve as the communications port for the VTCOM
utility. The following table shows the correct communications device handler file
for each computer and monitor combination.

Computer Monitor Device Handler

CTI-bus processor Mapped monitor XCX.SYS

CTI-bus processor Unmapped multi-job monitor XC.SYS

PDP–11 Mapped monitor XLX.SYS

PDP–11 Unmapped multi-job monitor XL.SYS

Note that VTCOM for RT–11 V5.2 and later cannot be used with earlier versions
of the XC and XL handlers; the XC and XL handlers for V5.2 and later cannot
be used with earlier versions of VTCOM.

Note also that to unload the XC or XL handler, you must first pause or exit from
VTCOM.

Virtual Terminal Communications Utility (VTCOM) 31–3

VTCOM Package

• Native-File Transfer Utility (TRANSFER/TRANSF)

The native-file transfer utility installed on the host enables you to transfer
files between computers. The following table matches the appropriate native-
file transfer utility with the host operating system on which it can run. See
Chapter 29 for a description of this utility.

Transfer Utility Host Operating System

TRANSF.EXE VMS

TRANSF.TSK RSX

TRANSF.SAV RT–11

31–4 RT–11 System Utilities Manual Part II

Running VTCOM
You can run VTCOM under any monitor. However, VTCOM requires that your
monitor include timer support. If you want to run VTCOM under the SB monitor,
you must generate a special monitor to include timer support.

• To run VTCOM as a foreground or system job:

1. Load VTCOM into memory, but do not run it. For example:

.FRUN VTCOM.REL/PAUSE RET

or

.SRUN VTCOM.SAV/PAUSE RET

These commands assume that VTCOM.REL or VTCOM.SAV is on your
system volume. Otherwise, include the volume’s device mnemonic in the
VTCOM file specification.

2. Load the handler and assign it exclusive ownership of VTCOM. For example:

.LOAD XL=F RET (if you plan to run VTCOM as a foreground job)

or

.LOAD XL=VTCOM RET (if you plan to run VTCOM as a system job)

3. Run VTCOM. For example:

.RESUME VTCOM RET

These command sequences are included in the distributed start-up command
files. To implement a command sequence, edit out the exclamation-point
comment delimiters; for example:

SRUN VTCOM.SAV/PAUSE
LOAD XL=VTCOM
RESUME VTCOM

Note that you must explicitly exit from VTCOM before you can unload the XL or
XC handler.

• To run VTCOM as a background job:

1. Load the handler. For example:

.LOAD XL RET

2. Run VTCOM. For example:

.RUN ddn:VTCOM RET

where ddn represents the device on which VTCOM.SAV is located.

Virtual Terminal Communications Utility (VTCOM) 31–5

Using VTCOM
Once VTCOM is running, you use it to connect your local computer to a host computer
and to communicate between the two computers. To do so, you should know how to:

• Call VTCOM

• Establish a link with a host

• Log onto a host computer through VTCOM

• Move between the host and the local computer

• Move between the host/local computer and VTCOM

• Use VTCOM commands

• Use TRANSFER/TRANSF to copy files between computers

The rest of this chapter is divided into six sections covering all but the last of the
preceding topics. See Chapter 29 for a description of the TRANSFER/TRANSF
utilities.

Calling VTCOM
Once VTCOM is running, how you call it (connect your terminal to that job) depends
on how you run VTCOM:

• To call VTCOM as a system job:

1. Press CTRL/X .

2. At the system job prompt (Job?), type VTCOM and press RET . For example:

.CTRL/X
Job? VTCOM RET

• To call VTCOM as a foreground job:

1. Press CTRL/F .

2. At the foreground job prompt (F>), press RET . For example:

.CTRL/F
F> RET

31–6 RT–11 System Utilities Manual Part II

Establishing a Link with a Host
Once you are connected with the VTCOM utility, you can establish a link with your
host system.

• If your stand-alone system is connected to the host by a hard-wired connection,
the link will be established just by calling VTCOM.

• If you plan to communicate with the host over a telephone line, you must dial a
number to establish a link. Follow the instructions provided for your modem. If
VTCOM is configured for your modem, you can use the VTCOM DIAL command
to dial the number. In that case, once you have called VTCOM and have received
the VTCOM> prompt, do the following:

1. Press CRTL/P to enter VTCOM command mode.

2. At the TT::VTCOM> prompt, issue the DIAL command. See Table 31–1 for
further information.

Note that if you log on to a host computer through a telephone line, be sure to
log off the system before breaking the telephone link.

Logging On to a Host
Once linked by hard-wire or telephone lines, you can log on to a host computer
through VTCOM.

• If you have a hard-wired link:

1. At the VTCOM> prompt, press CTRL/P .

2. At the TT::VTCOM> prompt, type BREAK and press RET .

3. Continue to press RET until you receive a connection or log-on prompt from
the host computer.

4. Log onto the host computer as you would from a directly attached console
terminal.

• If you have a telephone link, follow the instructions for your modem. When you
receive a connection or log-on prompt from the host computer, log onto the host
computer as you would from a directly attached console terminal.

Virtual Terminal Communications Utility (VTCOM) 31–7

Moving Between the Host and the Local Computer
When you are logged onto a host computer through VTCOM, VTCOM is in Terminal
Mode. When in terminal mode, you can move back and forth between the host
computer and the local computer, if you are running VTCOM as a system or
foreground job.

• To return to your local computer, press CTRL/B . The prompt B> appears. Then
press RET and the keyboard monitor prompt (.) appears. For example:

CTRL/B

B> RET

.

• To return to the host computer:

— If you are running VTCOM as a system job, press CTRL/X . The Job? prompt
appears. Then type VTCOM RET . For example:

. CTRL/X

Job? VTCOM RET

— If you are running VTCOM as a foreground job, press CTRL/F . The F> prompt
appears. Then press RET . For example:

.CTRL/F
F> RET

Entering and Exiting VTCOM Command Mode
VTCOM allows you to do other things besides logging into a host computer. However,
to issue VTCOM commands, you must enter VTCOM command mode. You can do so
by pressing CTRL/P either when logged on a host or when you have called VTCOM.
This gives you the VTCOM prompt TT::VTCOM. For example:

CTRL/P

TT::VTCOM>

You can change the character that must be typed to enter VTCOM command mode.
To do so, see the customization patch in the RT–11 Installation Guide on changing
the VTCOM command-mode character.

To return to the host from VTCOM command mode, type CONTINUE and press
RET ; for example:

CONTINUE RET

To log on the host from VTCOM command mode, Type BREAK and press RET ; for
example:

TT::VTCOM> BREAK RET

Continue to press RET until you receive a connection or log-on prompt from the host
computer. Then log onto the host computer.

31–8 RT–11 System Utilities Manual Part II

VTCOM Command Summary
To issue a VTCOM command, first enter terminal mode by typing CTRL/F or CTRL/X

and the system job name. Then, at the VTCOM> prompt, type CTRL/P to enter
VTCOM command mode. VTCOM prompts:

TT::VTCOM>

Type any of the commands listed in Table 31–1 and press RET . The shortest valid
abbreviation for each command is underlined. You can display a list of VTCOM
commands on your terminal by typing the VTCOM command HELP or by pressing
RET in response to the TT::VTCOM prompt.

Table 31–1: VTCOM Command Descriptions

Command Function

^x Lets VTCOM transmit CTRL characters that would normally be
intercepted: CTRL/B , CTRL/F , CTRL/O , CTRL/P , CTRL/Q , CTRL/S .

BREAK Transmits a break signal to the host, as if you had pressed the
BREAK key.

CLEAR Clears any CTRL/S characters that have been sent, and starts
sending characters to the terminal again.

CLOSELOG Stops recording input in a log file and closes the log file. Use this
command to make a log file permanent when you have finished
transferring a file from the host to your stand-alone system.

CONTINUE Returns your system to terminal mode. Use this command to
exit VTCOM command mode and continue communication with
the host system.

CTRL/P Sends a CTRL/P character to the host, VTCOM normally
intercepts CTRL/P characters and interprets them as a request
to enter a VTCOM command.

DIAL Causes the modem to dial the telephone dial string you specify.
When you type the DIAL command and press RET , VTCOM
prompts you for a string of numbers, letters, or symbols:

TT::VTCOM>Dial string?

Type the string you want the modem to dial and press RET .
VTCOM remembers this number for future DIAL commands
until you dial a new number, exit VTCOM, or reboot the system.

Virtual Terminal Communications Utility (VTCOM) 31–9

VTCOM Command Summary

Table 31–1 (Cont.): VTCOM Command Descriptions

Command Function

The VTCOM autodialing feature uses the prefix and suffix
characters that are appropriate for the DF224 modem. The
default prefix is <CTRL/A>. The default suffix is an exclamation
mark (!). See the customization patches in the RT–11 Installation
Guide for how to modify the default prefix and suffix characters.
Apply the appropriate software customization provided in the
RT–11 Installation Guide to set a default telephone dial string.

EXIT Terminates the VTCOM program and the XC or XL handler and
closes any open logging file. To restart VTCOM, you must use
the FRUN or SRUN command.

FAST Lets VTCOM transmit ASCII characters to the host at high
speed during a SEND operation. This command is valid only
if the host system supports XON/XOFF for its input service.

HANGUP Breaks the modem connection. VTCOM drops the DTR signal,
holds it low for 2 seconds to break the connection, and then raises
it. HANGUP has the same effect as setting the DATA/TALK
button on a modem to TALK for 2 seconds, then restoring it to
DATA.

HELP Prints a list of VTCOM commands on your console.

LOG Resumes recording data in a log file after a NOLOG command.

NOLOG Suspends the recording of data in a log file. If you are
transferring a file from a host to your stand-alone system, the
transfer continues and information will be lost.

OPENLOG Opens a log file to receive ASCII input from the host system, and
starts recording input in the log file. You can have only one log
file open at a time. If you try to open a second log file, VTCOM
closes the first log file before opening the new one.

PAUSE Ends VTCOM program control, but leaves the XL or XC handler
running to receive input from the host.

RESET Halts file transfers using TRANSF and VTCOM SEND
operations. RESET does not halt the VTCOM OPENLOG
operation, and does not halt logging.

SELECT Lets you specify a port on a Mini-Exchange. For information
on using VTCOM with the Mini-Exchange, see the Using the
Mini-Exchange section.

31–10 RT–11 System Utilities Manual Part II

VTCOM Command Summary

Table 31–1 (Cont.): VTCOM Command Descriptions

Command Function

Type SELECT RET . VTCOM displays a prompt. In response to
the prompt, specify a Mini-Exchange port. Valid port identifiers
are the numbers 1–8 and the letters M or R. M and R both
indicate that port 8 is connected to a modem.

SEND Transfers an ASCII file from your stand-alone system to a
host as if the file were being typed. The VTCOM SEND
command sends ASCII files at two speeds: SLOW or FAST.
The distributed default speed is SLOW. Use SLOW if the host
terminal service does not support XON/XOFF and FAST if it
does support XON/XOFF.
A customization in the RT–11 Installation Guide lets you set the
VTCOM SEND command speed.

SHOW Displays status of the following VTCOM characteristics:
Data transfers in progress
Logging status—on or off
SEND status—slow or fast
Current dial string
For example:

Packets sent = 4
Packets received = 3
Packet size = 256
Next active block = 3
Logging is OFF
SEND is SLOW
Dial string is not set

SLOW Causes VTCOM to transmit ASCII characters to the host at
slow speed during a SEND operation. This is useful when the
host’s terminal service does not support XON/XOFF. This is the
default.
Apply the appropriate software customization provided in the
Introduction to RT–11 to set FAST as the default speed.

Virtual Terminal Communications Utility (VTCOM) 31–11

Capturing the Host’s Screen Image
You can capture the screen image from the host computer and transfer that image
to a file on the local computer. To do so, do the following:

1. While logged into the host, type CTRL/P to enter VTCOM command mode.

2. At the VTCOM prompt, type the following command:

TT::VTCOM> OPENLOG RET

3. VTCOM prompts you for the name and type of file on your stand-alone system
to which you want to send the screen image. Type the file specification.

TT::VTCOM> Log File? myfile.log RET

When you have done the preceding you automatically exit VTCOM command
mode and are back on the host system.

4. Display on the host’s screen whatever information you want to capture in your
stand-alone’s file.

5. When you have displayed all the information you need, type CTRL/P to again
enter VTCOM command mode.

6. At the VTCOM prompt, enter the following command to close your log file:

TT::VTCOM> CLOSELOG RET

This completes the screen capture and leaves you back on the host system.

31–12 RT–11 System Utilities Manual Part II

Copying ASCII Files to and from the Host
The native-file transfer utility (TRANSFER/TRANSF) is especially designed to
transfer files between a host and a local computer. However, you can also use
VTCOM by itself to transfer files.

The following two sections show how you can use the VTCOM OPENLOG and SEND
commands to transfer ASCII files between a host and a local computer. Use this
method of transferring files only if you do not have TRANSFER/TRANSF installed
on the host.

Copying ASCII Files from the Host (OPENLOG)
The Introduction to RT–11 has a good example of how to create log files of work
displayed on a host terminal. This section shows you how to use that same
functionality to copy an ASCII file from the host.

Begin by running VTCOM and establishing a link to your host system (see the section
Running VTCOM and the section Establishing a Link with a Host). Then, when you
have logged onto the host system, follow these steps:

1. Type:

TYPE filnam.typ

filnam.typ represents the name and type of the file you want copied to your
stand-alone system. Do not press RET .

2. Type CTRL/P to enter command mode, and type the OPENLOG command:

TT::VTCOM> OPENLOG RET

3. VTCOM prompts you for the name and type of the file on your stand-alone system
to which you want to send the host file. Type the file specification.

TT::VTCOM> Log File? filnam.typ RET

This completes the OPENLOG command, and VTCOM leaves command mode.

4. Press RET once again. VTCOM begins to transfer the file. As the file transfers,
it is displayed on the screen.

5. When VTCOM finishes sending the file (the file finishes scrolling on the screen
and the host system prompt appears), enter VTCOM command mode once again
by typing CTRL/P .

6. Type the CLOSELOG command and press RET . This closes the newly created
file on your stand-alone system.

TT::VTCOM> CLOSELOG RET

The file on your stand-alone system will contain extra characters transmitted from
the host: a carriage return, line-feed combination at the beginning of the file, and the
host system’s prompt character at the end of the file. Delete these extra characters
by editing the file with a text editor such as KED.

Virtual Terminal Communications Utility (VTCOM) 31–13

Copying ASCII Files to and from the Host

Suppressing Form-Feed and Tab Conversions

Because some terminals cannot process the form-feed (FF) character, the host
processor terminal service in some systems converts an embedded form-feed
character into a carriage return/multiple line-feed combination before sending a file.
Tabs are often converted in the same way.

To suppress these character conversions, issue the following command on the VMS
or RSX host system before starting a data transfer.

SET TERM/FORM/TAB RET

You can include this command in a log-in or start-up command file on your host
system. You do not need to issue the command on your stand-alone system.

Copying ASCII Files to the Host (SEND)
Begin by running VTCOM and establishing a link to your host system (see the section
Running VTCOM and the section Establishing a Link with a Host). Then, when you
have logged on to the host system, follow these steps:

1. Type the command appropriate for your host’s operating system to send terminal
input to a file. For example, if your host system is RT–11 or VMS, type:

COPY TT: filnam.typ RET

filnam.typ represents the name and type of the output file to which you are
copying.

2. Type CTRL/P to enter command mode, and type the SEND command:

TT::VTCOM> SEND RET

3. VTCOM prompts you for the name and type of the file you want to send to the
host system. Type the file specification for the file you want to send to the host,
and press RET .

TT::VTCOM> Send File? filnam.typ RET

This completes the SEND command, and VTCOM leaves command mode.
VTCOM begins to transfer the file. As the file is transferred, it is displayed
on your screen.

4. When VTCOM finishes sending the file (the file finishes scrolling on the screen),
type CTRL/Z . This closes the newly created file on the host.

31–14 RT–11 System Utilities Manual Part II

Using the Mini-Exchange
The Mini-Exchange is a microprocessor-based communication device that lets
personal computers and workstations in an office environment exchange data in a
small switched point-to-point network. The Mini-Exchange has eight communication
ports and thus can provide up to four concurrent point-to-point connections.

Under VTCOM, you can connect your RT–11 system to a host system through the
Mini-Exchange. To establish a connection:

1. (If you are using a Professional 300 series computer, do this step; other computers
have the speed set in the hardware.) Set the bit transfer rate using the XC
SPEED=n command, where n is one of the following values specifying bits per
second:

300
600
1200
2400
4800
9600
19200

Other transfer rates are valid once the connection has been established.

2. Issue the VTCOM SELECT command and press RET . VTCOM displays a prompt.

3. In response to the prompt, specify the Mini-Exchange port to which the host
system is connected and press RET . Valid identifiers are the numbers 1 to 8 and
the letters M and R. (M or R indicates that port 8 is a modem port.)

4. VTCOM responds by displaying the status of the port. The four valid status
responses are:

A = accepted
B = rejected
C = no device
Z = busy

If the port is currently busy (status Z), the Mini-Exchange queues your request.

If you do not receive a status within 3 seconds after making a port connection request,
check for the following conditions:

• The port you selected is not connected to any device.

• The port you selected is your own port to the Mini-Exchange.

• The device you want to connect to is malfunctioning or powered off. Check the
device.

• The cable on the device you want to connect to is malfunctioning. Check the
cable.

Virtual Terminal Communications Utility (VTCOM) 31–15

Using the Mini-Exchange

• The port you selected is malfunctioning. Perform the diagnostic tests described
in the Mini-Exchange documentation.

The following example requests port 7 of a Mini-Exchange. VTCOM accepts the
request and establishes a connection with the processor attached to port 7.

TT::VTCOM> SELECT RET

TT::VTCOM> PORT? 7 RET

A

The following example requests port 8 as a modem port. VTCOM accepts the request
and establishes the modem connection with the processor using port 8.

TT::VTCOM> SELECT RET

TT::VTCOM> PORT? M RET

A

31–16 RT–11 System Utilities Manual Part II

Appendix A

BATCH

RT–11 BATCH is a complete job-control language that allows RT–11 to operate
unattended. BATCH processing is ideally suited to frequently run production jobs,
large and long-running programs, and programs that require little or no interaction
with you, the user. With BATCH, you can prepare your job on any RT–11 input
device and leave it for the operator to start and run.

RT–11 BATCH permits you to:

• Execute an RT–11 BATCH stream from any RT–11 input device.

• Output a log file to any RT–11 output device (except magtape or cassette).

• Execute the BATCH stream with a single-job monitor or in the background with
a multi-job monitor.

• Generate and support system-independent BATCH language jobs.

• Execute RT–11 monitor commands from the BATCH stream.

RT–11 BATCH consists of the BATCH compiler and the BATCH run-time handler.
The BATCH compiler reads the batch input stream you create, translates it into
a format suitable for the RT–11 BATCH run-time handler, and stores it in a file.
The BATCH run-time handler executes this file with the RT–11 monitor. As each
command in the batch stream executes, BATCH lists the command, along with any
terminal output generated, by executing the command on the BATCH log device.

BATCH A–1

Hardware and Software Requirements
You can run RT–11 BATCH on any single-job foreground/background or extended-
memory system that is configured with at least 16K words of memory. A line printer,
although optional, is highly desirable as the log device.

BATCH uses certain RT–11 system programs to perform its operations. For example,
the $BASIC command executes the file BASIC.SAV. Make sure that the following
RT–11 programs are on the system device, with exactly the following names, before
you run BATCH:

BASIC.SAV (BASIC users only)

BA.SYS

BATCH.SAV

CREF.SAV (MACRO users only)

SYSLIB.OBJ (FORTRAN and MACRO users)

FORTRA.SAV (FORTRAN users only)

LINK.SAV

MACRO.SAV (MACRO users only)

PIP.SAV

DIR.SAV

Control-Statement Format
For input to RT–11 BATCH, you can generate a file with the RT–11 editor and use
any RT–11 input device. The input consists of BATCH control statements. A BATCH
control statement is divided into three fields, separated from one another by spaces:
command fields, specification fields, and comment fields. The control statement has
the syntax:

$command/option specification/option [!comment]

Each control statement requires a specific combination of command and specification
fields and options (see the Commands section). Control statements cannot be longer
than 80 characters, excluding multiple spaces, tabs, and comments. You can use a
hyphen (-) as a line continuation character to indicate that the control statement is
continued on the next line (see Table A-4). Even if you use the line continuation
character, the maximum control statement length is still 80 characters.

The following example of a $FORTRAN command illustrates the various fields in a
control statement:

$FORTRAN/LIST/RUN PROGA/LIBRARY PROGB/EXE !RUN FORTRAN

command/options spec fields/options comment field

A–2 RT–11 System Utilities Manual

Command Fields
The command field in a BATCH control statement indicates the operation to be
performed. It consists of a command name and certain command field options.
Indicate the command field with a $ in the first character position and terminate it
with a space, tab, blank, or return.

Command Names

The command name must appear first in a BATCH control statement and have
a dollar sign ($) in the first position of the command (for example, $JOB). No
intervening spaces are allowed in the command name. BATCH recognizes only two
forms of a command name: the full name, and an abbreviation consisting of $ and
the first three characters of the command name. For example, you can enter the
$FORTRAN command as:

$FORTRAN

or

$FOR

You cannot enter it as:

$FORT

or

$FORTR

Command-Field Options

Options that appear in a command field are command qualifiers. Their functions
apply to the entire control statement. All option names must begin with a slash (/)
that immediately follows the command name. Table A–1 describes the command field
options for BATCH and indicates the commands on which you can use them. Those
option characters that appear in square brackets are optional. The command field
options are described in greater detail in the sections dealing with the appropriate
commands.

NOTE
All /NO options are the defaults, except the /WAIT
option in the $MOUNT and $DISMOUNT commands
and the /OBJECT option in the $LINK command.

BATCH A–3

Command Fields

Table A–1: Command Field Options

Option Function

/BAN[NER] Prints the header of the job on the log file. BATCH allows this option
only on the $JOB command. Note that BATCH outputs the $JOB
command line to the log device sixty times.

/NOBAN[NER] Does not print a job header.

/CRE[F] Produces a cross-reference listing during compilation. BATCH allows
this option only on the $MACRO command.

/NOCRE[F] Does not create a cross-reference listing.

/DEL[ETE] Deletes input files after the operation completes. BATCH allows this
option on the $COPY and $PRINT commands.

/NODEL[ETE] Does not delete input files after operation completes.

/DOL[LARS] The data following this command can have a $ in the first character
position of a line. BATCH allows this option on the $CREATE,
$DATA, $FORTRAN, and $MACRO commands. BATCH terminates
reading data when you use one of the following commands or when it
encounters a physical end-of-file on the BATCH input stream:

$JOB $EOD
$SEQUENCE $EOJ

/NODOL[LARS] The data following this command cannot have a $ in the first character
position; a $ in the first character position means a BATCH control
command.

/LIB[RARY] Includes the default library in the link operation. BATCH allows this
option on the $LINK and $MACRO commands.

/NOLIB[RARY] Does not include the default library in the link operation.

/LIS[T] Produces a temporary listing file (see the Temporary Files section)
on the listing device (LST) or writes data images on the log device
(LOG). BATCH allows this option on the $BASIC, $CREATE, $DATA,
$FORTRAN, $JOB, and $MACRO commands. When you use /LIST on
the $JOB command, /LIST sends data lines in the job stream to the
log device (LOG).

/NOLIS[T] Does not produce a temporary listing file.

/MAP Produces a temporary link map on the listing device (LST). BATCH
allows this option on the $FORTRAN, $LINK, and $MACRO
commands.

/NOMAP Does not create a MAP file.

/OBJ[ECT] Produces a temporary object file as output from compilation or
assembly (see the Temporary Files section). BATCH allows this option
on the $FORTRAN, $LINK, and $MACRO commands. When you
use /OBJECT on $LINK, BATCH includes temporary files in the link
operation.

A–4 RT–11 System Utilities Manual

Command Fields

Table A–1 (Cont.): Command Field Options

Option Function

/NOOBJ[ECT] Does not produce an object file as output of compilation; with $LINK,
does not include temporary files in the link operation.

/RT11 Sets BATCH to operate in RT–11 mode (see the RT–11 Mode section).
BATCH allows this option only on the $JOB command.

/NORT11 Does not set BATCH to operate in RT–11 mode.

/RUN Links (if necessary) and executes programs compiled since the last
link-and-go operation or start of job. BATCH allows this option on the
$BASIC, $FORTRAN, $LINK, and $MACRO commands.

/NORUN Does not execute or link and execute the program after performing the
specified command.

/TIM[E] Writes the time of day to the log file when BATCH executes. BATCH
allows this option only on the $JOB command. This command writes
the time after each command that begins with a dollar sign ($).

/NOTIM[E] Does not write the time of day to the log file.

/UNI[QUE] Checks for unique spelling of options and keynames (see the $JOB
command section). BATCH allows this option only on the $JOB
command.

/NOUNI[QUE] Does not check for unique spelling.

/WAI[T] Pauses for operator action. BATCH allows this option on the
$DISMOUNT, $MESSAGE, and $MOUNT commands.

/NOWAI[T] Does not pause for operator action.

/WRI[TE] Indicates that the operator is to WRITE-ENABLE a specified device or
volume. BATCH allows this option only on the $MOUNT command.

/NOWRI[TE] Indicates that no writes are allowed or that the specified volume
is read-only; informs the operator, who must WRITE-LOCK the
appropriate device.

BATCH A–5

Specification Fields
Specification fields immediately follow command fields in a BATCH control
statement and apply only to the fields they follow. Use them to name the devices and
files involved in the command. You must separate these fields from the command
field, and from each other, by blanks or spaces.

If a specification field contains more than one file to be used in the same operation,
separate the files by a plus (+) sign. For example, to assemble files F1 and F2 to
produce an object file F3 and a temporary listing file, type:

$MACRO/LIST F1+F2/SOURCE F3/OBJECT

If you need to repeat a command for more than one field specification, separate the
files by a comma (,). For example, the following command assembles F1 to produce
F2, a temporary listing file, and a map file F3. It then assembles F4 and F5 to
produce F6 and a temporary listing file:

$MACRO/LIST F1/SOURCE F2/OBJECT F3/MAP,F4+F5/SOURCE-
F6/OBJECT

Depending on the command you use, specification fields can contain a device
specification, file specification, or an arbitrary ASCII string. You can use an
appropriate specification field option (see Table A–3) with any of these three items.

Physical Device Names

Represent each device in an RT–11 BATCH specification field with a standard two-
or three-character device name. If you do not specify a unit number for devices that
have more than one unit, BATCH assumes unit 0.

In addition to physical device names, you can assign logical device names to devices.
A logical device name takes precedence over a physical name, thus providing device
independence. With this feature, you do not need to rewrite a program that is coded
to use a specific device if the device is unavailable. For example, DK is initially
assigned to the system device, but you can assign that name to diskette unit 1
(DX1) with an RT–11 monitor ASSIGN command.

You must assign certain logical names prior to running any BATCH job. BATCH
uses these logical names as default devices. These names are:

LOG BATCH log device (cannot be magtape or cassette)

LST Default for listing files generated by BATCH stream

The following are not legal device names in RT–11; if you use them, the operator
must assign them as logical names with the ASSIGN command. You can use these
names in BATCH streams written for other Digital systems.

DF Fixed-head disk (RF)

LL Line printer with uppercase and lowercase characters

M7 7-track magtape

A–6 RT–11 System Utilities Manual

Specification Fields

M9 9-track magtape

PS Public storage (DK as assigned by RT–11)

See the ASSIGN keyboard command in the RT–11 Commands Manual for
instructions on assigning logical names to devices.

File Specifications

You can reference files symbolically in a BATCH control statement with a name of
up to six alphanumeric characters followed, optionally, by a period and a file type of
three alphanumeric characters. Tabs and embedded spaces are not allowed in either
the file name or file type. The file type generally indicates the format of a file. It is
good practice to conform to the standard file types for RT–11 BATCH. If you do not
specify a file type for an output file, BATCH and most other RT–11 system programs
assign appropriate default file types. If you do not specify a file type for an input
file, the system searches for that file name with a default file type. Table A–2 lists
the standard file types used in RT–11 BATCH.

Table A–2: BATCH File Types

File Type Explanation

BAS BASIC source file (BASIC input)

BAT BATCH command file

CTL BATCH control file generated by the BATCH compiler

CTT BATCH temporary file generated by the BATCH compiler

DAT BASIC or FORTRAN data file

DIR Directory listing file

FOR FORTRAN IV source file (FORTRAN input)

LST Listing file

LOG BATCH log file

MAC MACRO source file (MACRO or SRCCOM input)

MAP Link map output from $LINK operation

OBJ Object file output from compilation or assembly

SOU Temporary source file

SAV Runnable file or program image output from $LINK

Wildcard Construction

You may use wildcards in certain BATCH control statements (such as $COPY,
$CREATE, $DELETE, $DIRECTORY, $PRINT). You can use the asterisk as a
wildcard to designate the entire file name or file type.

BATCH A–7

Specification Fields

NOTE
You cannot use embedded wild cards (* or %) in BATCH
control statements. However, you can use them in the
keyboard monitor commands if you use the RT–11 mode
of BATCH.

Specification Field Options

Specification field options follow file specifications in a BATCH control statement
and designate how the file will be used. These options apply only to the field in
which they appear. Option names begin with a slash. The specification field options
for RT–11 BATCH are listed in Table A–3. Optional characters in the option names
are in square brackets.

Table A–3: Specification Field Options

Option Explanation

/BAS[IC] BASIC source file.

/EXE[CUTABLE] Indicates the executable program image file to be created as the result
of a link operation.

/FOR[TRAN] FORTRAN source file.

/INP[UT] Input file; default if you specify no options.

/LIB[RARY] Library file to be included in link operation (prior to default library).

/LIS[T] Listing file.

/LOG[ICAL] Indicates that the device is a logical device name; use in $DISMOUNT
and $MOUNT commands.

/MAC[RO] MACRO source file.

/MAP Linker map file.

/OBJ[ECT] Object file (output of assembly or compilation).

/OUT[PUT] Output file.

/PHY[SICAL] Indicates physical device name.

/SOU[RCE] Indicates source file.

/VID Volume identification.

A–8 RT–11 System Utilities Manual

Comment Fields
Comment fields, which document a BATCH stream, are identified by an exclamation
point (!) appearing anywhere except in the first character position of the control
statement. BATCH treats any character following the ! and preceding the return/line
feed combination as a comment. For example:

$RUN PIP !DELETE FILES ON DK:

This command runs the RT–11 system program PIP. BATCH ignores the comment.

You can also include comments as separate comment lines by typing a $ in character
position 1, followed immediately by the ! operator and the comment. For example:

$!DELETE FILES ON DK:

BATCH Character Set
The RT–11 BATCH character set is limited to the 64 uppercase characters (ASCII
40 through 137). The current ASCII set is assumed (character 137 is underscore
and not left-arrow, and character 136 is circumflex, not up-arrow). The BATCH job-
control language does not support any control characters other than tab, return, and
line feed.

Table A–4 shows how BATCH normally interprets certain characters. Character
interpretations are different if you use RT–11 mode (see The RT–11 Mode section)).

Table A–4: Character Explanation

Character Explanation

space Specification field delimiter. It separates arguments in control
statements. BATCH considers any string of consecutive spaces and
tabs (except in quoted strings) as a blank (that is, equivalent to a
single space).

! Comment delimiter. The input routine ignores all characters after the
exclamation point, up to the return/line feed combination.

" Passes a text string containing delimiting characters where the normal
precedence rules would create the wrong action. For example, use it
to include a space in a volume identification (/VID).

$ BATCH control statement recognition character. A dollar sign ($) in
the first character position of a BATCH input stream line indicates
that the line is a control statement.

. Delimiter for file type.

BATCH A–9

BATCH Character Set

Table A–4 (Cont.): Character Explanation

Character Explanation

- Indicates line continuation if the character after the hyphen is one of
the following:

• A return/line feed

• Any number of spaces or tabs followed by a return/line feed

• A comment delimiter (!)

• Spaces followed by a comment delimiter (!)

If any other character follows the hyphen, the hyphen is assumed to
be a minus sign indicating a negative value in an option.

/ Precedes an option name. An alphanumeric string must immediately
follow it.

0–9 Numeric string components.

: Immediately follows a device name. You can also use it to separate
an option name from its value or to separate an option value from its
subvalue (you can use : interchangeably with = for this purpose).

A–Z Alphabetic string components.

= Separates an option name from a value.

\ Illegal character except when it precedes a directive to the BATCH run-
time handler from the operator (see the Communicating with BATCH
jobs section). (To include \ in an RT–11 mode command, use \\.)

+ File delimiter. Separates multiple files in a single specification field.
Also indicates a positive value in options.

, Separates sets of arguments for which the command is to be repeated.

* A wildcard in utility command file specifications.

CR/LF return/line feed. It indicates end-of-line (or end of logical record) for
records in the BATCH input stream.

A–10 RT–11 System Utilities Manual

Temporary Files
When you do not include field specifications in a BATCH command line, BATCH
sometimes generates temporary files. For example, you can enter a $FORTRAN
command that is followed in the BATCH stream by the FORTRAN source program
as:

$FORTRAN/RUN/OBJECT/LIST
FORTRAN source program
$EOD

This command generates a temporary source file from the source statements that
follow, a temporary object file, a temporary listing file, and a temporary memory
image file.

BATCH sends temporary files to the default device (DK) or the listing device (LST)
according to their type. If the device is file-structured, BATCH assigns file names
and file types as follows:

nnnmmm.LST for temporary listing files (sent to LST)

nnnmmm.MAP for temporary map files (sent to LST)

nnnppp.OBJ for temporary object files (sent to DK)

000000.SAV for temporary memory image files (sent to DK)

nnnppp.SOU for temporary source files (sent to DK)

where:

nnn represents the last three digits of the sequence number assigned to the job
by the $SEQUENCE command (see the $SEQUENCE command section).
Thus, a sequence number of 12345 produces a file name beginning 345. If
you do not use the $SEQUENCE command, BATCH sets nnn to 000.

mmm represents the number of listing (or map) files BATCH generated since
the BATCH run-time handler (BA.SYS) was loaded. The first such file,
listing or map, is 000. Each time BATCH generates a new temporary file, it
increments the file name by 1. Thus, the second listing file produced under
job sequence number 12345 is 345001.LST, and the first map file produced
is 345000.MAP.

ppp represents the number of object or source files in the current BATCH run.
The first such file (object or source) is 000. Each time BATCH generates a
new temporary file, it increments the file name by 1. BATCH resets these file
names to 000 every time you run BATCH and after every $LINK, $MACRO,
or $FORTRAN command that uses the temporary files.

BATCH A–11

General Rules and Conventions
You must adhere to the following general rules and conventions associated with
RT–11 BATCH processing:

• Always place a dollar sign ($) in the first character position of a command line.

• Each job must have a $JOB and $EOJ command.

• You can spell out command and option names entirely or you can specify only
the first three characters of the command and required characters of the option.

• Specify wildcard construction (*) only for the utility commands ($COPY,
$CREATE, $DELETE, $DIRECTORY, and $PRINT) and for commands that
normally accept wildcards in RT–11 mode.

• Include comments at the end of command lines or in a separate comment line.
When you include comments in a command line, place them after the command
but precede them by an exclamation mark.

• Include only 80 characters per control statement, excluding multiple spaces, tabs,
and comments.

• When you omit file specifications from BATCH commands and supply data in the
BATCH stream, the system creates a temporary file with a default name (see the
Temporary Files section).

• You can use the RT–11 monitor type-ahead feature only with BATCH handler
directives (see Communicating with BATCH Jobs section) to be inserted into a
BATCH program. No other terminal input (except input to a foreground program)
can be entered while a BATCH stream is executing.

• You cannot use an indirect command file to call BATCH.

A–12 RT–11 System Utilities Manual

Commands
Place BATCH commands in the input stream to indicate to the system which
functions to perform in the job. All BATCH commands have a dollar sign ($) in
the first character position (for example, $JOB). Intervening spaces are not allowed
in command names. The command name must always start in the first character
position of the line.

BATCH commands are presented in alphabetical order in this chapter for ease of
reference. However, if you are not familiar with BATCH, read the commands in a
functional order as listed in Table A–5. The characters shown in square brackets
are optional.

Table A–5: BATCH Commands

Command Function

$SEQ[UENCE] Assigns an arbitrary identification number to a job.

$JOB Indicates the start of a job.

$EOJ Indicates the end of a job.

$MOU[NT] Signals the operator to mount a volume on a device and optionally
assigns a logical device name.

$DIS[MOUNT] Signals the operator to dismount a volume from a device and
deassigns a logical device name.

$FOR[TRAN] Compiles a FORTRAN source program.

$BAS[IC] Compiles a BASIC source program.

$MAC[RO] Assembles a MACRO source program.

$LIB[RARY] Specifies libraries for BATCH to use in link operations.

$LIN[K] Links modules for execution.

$RUN Causes a program to execute.

$CAL[L] Transfers control to another BATCH file, executes that BATCH file,
and returns to the calling BATCH stream.

$CHA[IN] Passes control to another BATCH file.

$DAT[A] Indicates the start of data.

$EOD Indicates the end of data.

$MES[SAGE] Issues a message to the operator.

$COP[Y] Copies files.

$CRE[ATE] Creates new files from data included in the BATCH stream.

$DEL[ETE] Deletes files.

$DIR[ECTORY] Provides a directory of the specified device.

BATCH A–13

Commands

Table A–5 (Cont.): BATCH Commands

Command Function

$PRI[NT] Prints files.

$RT[11] Specifies that the following lines are RT–11 mode commands.

For each command listed below, the term filespec represents a device name, or file
name, and a file type. Filespec has this form:

dev:filnam.typ

As a general rule, BATCH assumes device DK if you omit a device specification.

A–14 RT–11 System Utilities Manual

$BASIC
The $BASIC command calls RT–11 single-user BASIC to execute a BASIC source
program. The $BASIC command has the following syntax:

$BASIC[/option...] [filespec/option] [!comments]

where:

/option Indicates an option you can append to the $BASIC command. The options
are as follows:

/RUN indicates that BATCH should execute the source program.

/NORUN indicates that BATCH should only compile the program
and send error messages to the log file.

/LIST writes data images that are contained in the job stream
to the log file (LOG).

/NOLIST writes data images to the log file only if you specify $JOB
/LIST.

filespec indicates the name and type of the source file and the device on which it
resides. If you omit the file type, BATCH assumes BAS. If you omit this
specification, the source statements must immediately follow the $BASIC
command in the input stream.
Terminate the source program after a $BASIC statement with either a
$EOD command or with any other BATCH command that starts with a
$ in the first position.

/option indicates an option that can follow the source file name. BATCH assumes
any file name with no option appended is the name of a source file. This
option can have one of the following values (or you can omit it):

/BASIC indicates that the file name you specify is a BASIC source
program.

/SOURCE performs the same function as /BASIC.

/INPUT performs the same function as /BASIC.

You can follow the $BASIC command with the source program, BASIC commands
(such as RUN), or data. The following two BATCH streams, for example, produce the
same results (but BATCH does not echo the same output format for both streams).

$BASIC $BASIC/RUN
10 INPUT A 10 INPUT A
20 PRINT A 20 PRINT A
30 END 30 END
RUN $DATA
123 123
$EOD $EOD

BATCH A–15

$CALL
The $CALL command transfers control to another BATCH control file, temporarily
suspending execution of the current control file. BATCH executes the called file
until it reaches $EOJ or until the job aborts; control then returns to the statement
following the $CALL in the originating BATCH control file. You can nest calls up
to 31 levels. BATCH includes the log file for the called file in the log file for the
originating BATCH program. (See NOTE following the $EOJ command.)

The syntax of the $CALL command is:

$CALL filespec[!comments]

Options are not allowed in the $CALL command. BATCH saves $JOB command
options across a $CALL; however, they do not apply to the called BATCH file. If you
specify CTL as the file type, BATCH assumes a precompiled BATCH control file. If
you do not specify a file type, BATCH assumes .BAT and compiles the called BATCH
stream before execution.

NOTE
If the called program generates temporary files, those
files can supersede existing temporary files if the two
jobs have the same sequence number. For example,
consider the following two BATCH streams:

$FOR/OBJ A $FOR/OBJ A
$FOR/OBJ B $CALL C
$LINK/RUN $FOR/OBJ B

The called BATCH file (C.BAT) contains the following:

$JOB
$FOR/OBJ A1
$FOR/OBJ B1
$LINK/RUN
$EOJ

The temporary object files C.BAT generates change
the behavior of the previous two BATCH statement
sequences. The first temporary file created by C.BAT
(000000.OBJ) supersedes the temporary file produced by
the first $FORTRAN command (000000.OBJ). You can
avoid this situation by giving the BATCH job C.BAT
a unique sequence number (see the $SEQUENCE
command section).

A–16 RT–11 System Utilities Manual

$CHAIN
The $CHAIN command transfers control to a named BATCH control file but does
not return to the input stream that executed the $CHAIN command. The syntax of
the $CHAIN command is:

$CHAIN filespec[!comments]

BATCH does not permit options in the $CHAIN command. If you specify CTL as the
file type, BATCH assumes a precompiled BATCH control file. If you do not specify
a file type, BATCH assumes .BAT and compiles the chained BATCH stream before
execution.

A $EOJ command should always follow the $CHAIN command in the BATCH
stream.

NOTE
The values of BATCH run-time variables remain
constant across a $CALL, $CHAIN, or return from call.
See the Creating RT–11 Mode BATCH Programs section
for a description of these variables.

Use the $CHAIN command to transfer control to programs that you need to run
only once at the end of a BATCH stream. For example, you could use the following
BATCH program (PRINT.BAT) to print and then delete all temporary listing files
generated during the current BATCH job:

$JOB !PRINT ALL LIST FILES
$PRINT/DELETE *.LST
$EOJ

You could then run PRINT.BAT with the $CHAIN command as follows:

$JOB
$MACRO/RUN A ALST/LIST
$MACRO/RUN B BLST/LIST
$CHAIN PRINT
$EOJ

BATCH A–17

$COPY
The $COPY command copies files in image mode from one device to another. You
can use the wildcard construction (see the Specification fields section) in the input
and output file specifications. You can concatenate several input files to form one
output file (as long as the output specification does not contain a wildcard). The
$COPY command has the following syntax:

$COPY[/option] output-filespec[...,output-filespec]/OUTPUT-
input-filespec[...,input-filespec][/INPUT][!comments]

where:

/option indicates options that you can append to the $COPY command.

/DELETE deletes input files after the copy operation.

/NODELETE does not delete input files after the copy operation.

output-filespec represents an output file; you must specify a file type.

/OUTPUT indicates that a file specification is for an output
file.

input-filespec represents a file to be copied. (BATCH copies files to the output file
in the order that you list them, except when you use wildcards.)

/INPUT indicates that a file specification is for an input file;
if you do not specify an option, BATCH assumes
INPUT.

The following are examples of the $COPY command:

$COPY *.BAS/OUTPUT DL1:*.BAS

This command copies all files with the file type BAS from the volume on unit 1 to
the default storage device DK:

$COPY FILE2.FOR/OUTPUT FILE0.FOR+FILE1.FOR

This command merges the input files FILE0.FOR and FILE1.FOR to form one file
called FILE2.FOR and stores FILE2.FOR on device DK:

$COPY *.*/OUT DL0:*.FOR, DL1:*.*/OUT DL0:*.*

This command copies all files with the file type FOR from DL0 to DK and all files
on DL0 to DL1.

A–18 RT–11 System Utilities Manual

$CREATE
The $CREATE command generates a file from data records that follow the $CREATE
command in the input stream. An error occurs if the data does not immediately
follow the $CREATE command. You cannot precede the data records with a $DATA
command.

You can follow the $CREATE data with a $EOD command to signify the end of
data, or you can use any other BATCH control statement to indicate end of data and
initiate a new function. The $CREATE command has the following syntax:

$CREATE[/option...] filespec [!comments]

where:

/option indicates an option you can append to the $CREATE command. The
options are:

/DOLLARS indicates that the data following this command can
have a $ in the first character position of a line.

/NODOLLARS indicates that a $ cannot be in the first character
position of a line.

/LIST writes data image lines to the log file.

/NOLIST does not write data image lines to the log file. If you
specify $JOB/LIST, BATCH ignores this option.

filespec represents the file you want to create.

NOTE
If you use the /DOLLARS option, you must follow the
last data record with a $EOD command (see Table A–1).

The following is an example of the $CREATE command:

$CREATE/LIST PROG.FOR
FORTRAN source file
$EOD

The data records following the $CREATE command become a new file (PROG.FOR)
on the default device (DK). BATCH generates a listing on logical device LOG.

BATCH A–19

$DATA
Use the $DATA command to include data records in the input stream. Data you
include in this manner needs no file name. BATCH transfers the data to the
appropriate program as though it were input from the console terminal. For example,
you can follow the $RUN command for a particular program by a $DATA command
and the data records for the program to process. The data records must be valid
data for the program that is to use them.

The $DATA command has the following syntax:

$DATA[/option...] [!comments]

Four options that you can use with the $DATA command are as follows:

/DOLLARS Indicates that the data following this command can have a $ in the
first character position of a line.

/NODOLLARS Indicates that a $ cannot be in the first character position of a line.

/LIST Writes data image lines to the log file.

/NOLIST Does not write data images to the log file. If you specify $JOB
/LIST, BATCH ignores this option.

NOTE
Any command beginning with a $ normally follows
the last data record. However, if you specify $DATA
/DOLLARS, you must follow the last data record with
$EOD.

The following example shows data entered into a BASIC program (TEST1.BAS):

$BASIC/RUN TEST1.BAS
$DATA
25,75,125,146
180,210,520,874
$EOD

Using $DATA with FORTRAN Programs

When you use the $DATA command to provide input to a FORTRAN program, you
must insert a CTRL/Z into the BATCH file after the last data line and before $EOD
(or before the next BATCH command if you do not use $EOD). This procedure permits
FORTRAN to properly detect an end-of-file after it reads the last data line. For
example:

$FORTRAN/RUN A.FOR
$DATA
1
2
3
^Z RET LF

$EOD
$RUN PIP

A–20 RT–11 System Utilities Manual

The above program reads three numbers from the input stream and then detects
an end-of-file when it attempts to read a fourth number. If you include an END=n
statement in your FORTRAN program, statement n gets control when the end-of-file
is detected. If the CTRL/Z <RET> <LF> is not present, the program aborts when it
reaches $EOD and never executes the END=n statement.

$DELETE
Use the $DELETE command to delete files from the device you specify. This
command has the syntax:

$DELETE filespec[...,filespec][!comments]

where:

filespec represents the name of a file to be deleted.

The following example deletes all files named TEST1 on the default device DK:

$DELETE TEST1.*

The following example deletes all files with FOR file types on DL1:, then deletes all
files with MAC file types on DK:

$DELETE DL1:*.FOR,*.MAC

$DIRECTORY
The $DIRECTORY command outputs a directory of the device you specify to a listing
file. If you do not specify a listing file, the listing goes to the BATCH log file. This
command has the syntax:

$DIRECTORY [filespec/LIST] [filespec[...,filespec]][/INPUT]
[!comments]

where:

filespec/LIST indicates the name of the directory listing file

filespec/INPUT indicates the input files to be included in the directory (default)

The following command outputs a directory of the device DK to the BATCH log file:

$DIRECTORY

This next command creates on the device DK a directory file (FOR.DIR) that contains
the names, lengths, and dates of creation of all FORTRAN source files on that device.

$DIRECTORY FOR.DIR/LIST *.FOR

BATCH A–21

$DISMOUNT
The $DISMOUNT command removes the logical device name assigned by a
$MOUNT command. When BATCH encounters $DISMOUNT while executing a
job, it prints the entire $DISMOUNT command line on the console terminal. This
message tells the operator which device to unload. This command has the syntax:

$DISMOUNT[/option] logical-device-name:[/LOGICAL] [!comments]

where:

/option indicates an option you can append to the $DISMOUNT
command. The options are:

/WAIT indicates that the job must pause until the
operator enters a response. If you do not specify
either /WAIT or /NOWAIT, BATCH assumes /WAIT.
BATCH rings a bell at the terminal, prints the
physical device name to be dismounted followed
by a question mark (?), and waits for a response.
(At this point you can enter input to the BATCH
handler. See the Communicating with BATCH Jobs
section)

/NOWAIT does not pause for operator response; BATCH
prints the physical device name to be dismounted.

logical-
device-name:

is the logical device name to be deassigned from the physical
device.

/LOGICAL identifies the device specification as a logical
device name.

The following example instructs the operator to dismount the physical device with
the logical device name OUT and removes the logical assignment of device OUT. In
this example, OUT is DL0. The operator dismounts DL0: and then types a return:

$DISMOUNT/WAIT OUT:/LOGICAL
DL0?

A–22 RT–11 System Utilities Manual

$EOD
The $EOD command indicates the end-of-data record or the end of a source program
in the job stream. The syntax of this command is:

$EOD [!comments]

The $EOD command can signal the end of data associated with any of the following
commands:

$BASIC $FORTRAN

$CREATE $MACRO

$DATA

In the following example, the $EOD command indicates the end of a source program
that is to be compiled, linked, and executed:

$FORTRAN/RUN
source program
$EOD

$EOJ
The $EOJ command indicates the end of a job. This command must be the last
statement in every BATCH job. The command has the following syntax:

$EOJ [!comments]

If BATCH encounters a $JOB command, a $SEQUENCE command, or a physical
end-of-file in the input stream before $EOJ, an error message appears in the log file.

NOTE
Make sure that the $EOJ command is the last line in a
BATCH file.

BATCH A–23

$FORTRAN
The $FORTRAN command calls the FORTRAN compiler to compile a source
program. Optionally, this command can provide printed listings or list files and
can produce a link map in the listing. The $FORTRAN command has the following
syntax:

$FORTRAN[/option...] [source-filespec[/option]]
[filespec/OBJECT]-
[filespec/LIST] [filespec/EXECUTE]-
[filespec/MAP] [filespec/LIBRARY] [!comments]

where:

/option indicates an option you can append to the $FORTRAN
command. The options are as follows:

/RUN indicates that FORTRAN is to compile the
source program, link it with the default
library, and execute it. The default library
is SYSLIB.OBJ. You can change it with the
$LIBRARY command.

/NORUN compiles the program only.

/OBJECT produces a temporary object file.

/NOOBJECT does not produce a temporary object file.

/LIST produces a list file on the listing device
(LST).

/NOLIST does not produce a list file.

/MAP produces a link map on the listing device
(LST).

/NOMAP does not create a MAP file.

/DOLLARS indicates that the data following this
command can have a $ in the first character
position of a line.

/NODOLLARS indicates that a $ cannot be in the first
character position of a line.

A–24 RT–11 System Utilities Manual

$FORTRAN

source-filespec indicates the device, file name, and file type of the FORTRAN
source file. If you do not specify the file name, the $FORTRAN
source statements must immediately follow the $FORTRAN
command in the input stream; BATCH generates a temporary
source file that it deletes after FORTRAN compiles the
temporary source file (see the Temporary Files section).
You can terminate the source program included after a
$FORTRAN statement by either a $EOD command or by any
other BATCH command. If, however, you use dollar signs in
the first position in the source program, you must enter the
source program with $CREATE/DOLLARS. In this case, you
cannot use $FORTRAN/DOLLARS.

/option represents an option that can have one of the following values:

/FORTRAN indicates that the file name you specify
is a FORTRAN source program. BATCH
assumes that any file name with no option
appended is the name of a source file.

/SOURCE performs the same function as /FORTRAN.

/INPUT performs the same function as /FORTRAN.

filespec/OBJECT indicates the device, file name, and file type of the object file
produced by compilation. The object file remains on the device
you specify after the job finishes. You must follow the object
file specification, if you include it, with the /OBJECT option.
If you omit the object file specification but specify $FORTRAN
/OBJECT, BATCH creates a temporary object file. BATCH
includes this temporary file in any $LINK operations that
follow it in the job, and deletes it after the link operation.

filespec/LIST indicates the name you assign to the list file created by the
compiler. BATCH does not automatically print the list file if
you assign LST to a file-structured device, but you can list it
using the $PRINT command. Follow the list file specification
with the /LIST option.

filespec/EXECUTE indicates the name you assign to a memory image file. Follow
the memory image file specification with the /EXECUTE option.
If you do not include this field, BATCH generates a temporary
memory image file (see the Temporary Files section) and then
deletes the temporary file.

filespec/MAP indicates the name you assign to the link map file created by
the linker. Follow the map specification with the /MAP option.

filespec/LIBRARY indicates that BATCH must include the file you specify in the
link procedure as a library before SYSLIB.OBJ. The file must
be a library file (produced by the RT–11 librarian). Follow the
library specification with the /LIBRARY option.

The following command calls FORTRAN to compile and execute a source program
named PROGA.FOR:

$FORTRAN/RUN PROGA.FOR

BATCH A–25

$FORTRAN

The next command sequence compiles the FORTRAN program but does not produce
an object file. BATCH creates a temporary listing file on LST:

$FORTRAN/NOOBJ/LIST

source program

$EOD

NOTE
See the $DATA command section for instructions on
using the $DATA command with FORTRAN programs.

A–26 RT–11 System Utilities Manual

$JOB
The $JOB command indicates the beginning of a job. Each job must have its own
$JOB command. This command has the following syntax:

$JOB[/option...] [!comments]

BATCH allows the following options in the $JOB command:

/BANNER Prints a header (a repetition of the $JOB line) on the log file.

/NOBANNER Does not print a job header.

/LIST Writes data image lines that are contained in the job stream to the
log file.

/NOLIST Writes data image lines to the log file only when a /LIST option
exists on a $BASIC, $CREATE, or $DATA command that has data
lines following it.

/RT11 If no $ appears in column 1 when BATCH expects one, BATCH
assumes that the line is an RT–11 mode command (see the
$CREATE command section).

/NORT11 Does not process RT–11 mode commands.

/TIME Writes the time of day to the log file when BATCH executes
command lines (except $DATA command lines).

/NOTIME Does not write the time of day.

/UNIQUE Checks for unique spelling of options and keynames. When you
use this option, you can abbreviate commands and options to the
fewest number of characters that still make their names unique.
For example, you can abbreviate the /DOLLARS option to /DO since
no other option begins with the characters DO.

/NOUNIQUE Checks only for normal option and keyname spellings.

End each job with a $EOJ command if you want to run it. If an input stream consists
of more than one job, BATCH automatically terminates one job when it encounters
the $JOB command for the next job. BATCH will never run a job terminated with
another $JOB command; instead, an error message will appear in the log.

The following $JOB command writes the time of day to the log file before BATCH
executes each command beginning with a $. It also accepts unique abbreviations of
BATCH commands and options:

$JOB/TIME/UNIQUE

BATCH A–27

$LIBRARY
The $LIBRARY command lets you specify a list of library files for inclusion in
FORTRAN links or other link operations that have the /LIBRARY option. By default,
the list of libraries contains only SYSLIB.OBJ, the RT–11 system library. This
command has the syntax:

$LIBRARY filespec [!comments]

or

$LIBRARY filespec+SYSLIB [!comments]

where:

filespec represents a library file; the default file type is OBJ.

SYSLIB is the RT–11 system library that you create at system generation.

Libraries are linked in order of their appearance in the $LIBRARY command.

The following example shows two libraries (LIB1.OBJ and LIB2.OBJ) that are
included in FORTRAN links before SYSLIB.OBJ:

$LIBRARY LIB1.OBJ+LIB2.OBJ+SYSLIB.OBJ

$LINK
Use the $LINK command to produce memory image files from object files. This
command links any files you may specify with any temporary object files created
since the last link or link-and-go operation.

Temporary object files are those files you create as a result of a $FORTRAN or
$MACRO command without naming an object file (with the /OBJECT option) by
suppressing an object file (with the /NOOBJECT option). Create permanent object
files by using the /OBJECT option on a $FORTRAN or $MACRO file descriptor.

BATCH links files in the following order:

1. Temporary files—in the order in which they were compiled

2. Permanent files—in the order in which they are specified in the $LINK command

3. Any library specified by the $LINK command—provided that unresolved
references remain

4. The default library list—if you specified $LINK/LIBRARY

The syntax for this command is:

$LINK[/option...] [filespec/OBJECT] [filespec/LIBRARY]-
[filespec/MAP] [filespec/EXECUTE] [!comments]

where:

A–28 RT–11 System Utilities Manual

$LINK

/option indicates an option that you can append to the $LINK
command. The options are as follows:

/LIBRARY includes the RT–11 system library (SYS-
LIB.OBJ) and any default libraries spec-
ified in the $LIBRARY command in this
$LINK operation. Use this option when
the files being linked do not include any
temporary FORTRAN object files. You
can also use it when you specify $FOR-
TRAN without the /RUN or /MAP option,
but want to search the default library list
for unresolved references.

/NOLIBRARY does not include the default libraries.

/MAP produces a temporary load map on the
listing device (LST).

/NOMAP does not produce a map file.

/OBJECT includes temporary object files in the
link. If you specify neither /OBJECT nor
/NO-OBJECT, BATCH assumes $LINK
/OBJECT.

/NOOBJECT does not include temporary files in the
link.

/RUN executes the memory image files asso-
ciated with this $LINK command when
the link is complete.

/NORUN only links the program and does not
execute it.

filespec/OBJECT indicates the name of the object file BATCH must link; if you
do not specify /OBJECT, BATCH assumes it as the default.

filespec/LIBRARY indicates that the file you specify is to be included in the link
procedure as a library; the file you specify must be a library
file (produced by the RT–11 librarian).

filespec/MAP indicates the load map file BATCH must create as a result of
the $LINK command.

filespec/EXECUTE indicates the memory image file BATCH must create as a result
of the $LINK command.

The following command links all temporary object files created since the last $LINK
command, or the last $FORTRAN/OBJ or $MACRO/OBJ command:

$LINK/RUN

The next command links the temporary files and the object files PROG1.OBJ and
PROG2.OBJ to form a memory image file named PROGA.SAV. It also creates and
outputs a temporary map file:

$LINK/MAP PROG1.OBJ+PROG2.OBJ/OBJ PROGA.SAV/EXE

BATCH A–29

$MACRO
The $MACRO command calls the MACRO assembler to assemble a source program
and, optionally, to provide printed listings or list files. You must specify any MACRO
listing directives in the source program; you cannot enter them at BATCH command
level.

The $MACRO command has the following syntax:

$MACRO[/option...] [source-filespec[/option]] [filespec/OBJECT]-
[filespec/LIST] [filespec/MAP] [filespec/LIBRARY]-
[filespec/EXECUTE] [!comments]

where:

/option indicates an option you can append to the $MACRO command.
The options are as follows:

/RUN assembles, links, and runs the source
program.

/NORUN only assembles the source program.

/OBJECT produces a temporary object file.

/NOOBJECT does not produce a temporary object file.

/LIST produces a listing file on the listing
device (LST).

/NOLIST does not produce a list file.

/CREF produces a cross-reference listing during
assembly.

/NOCREF does not produce a cross-reference listing
during assembly.

/MAP produces a link map as part of the listing
file on LST.

/NOMAP does not create a MAP file.

/DOLLARS indicates that the data following this
command can have a $ in the first
character position of a line.

/NODOLLARS indicates that a $ cannot be in the first
character position of a line.

/LIBRARY includes the default library in the link
operation.

/NOLIBRARY does not include the default library in the
link operation.

A–30 RT–11 System Utilities Manual

$MACRO

source-filespec indicates the name of the source file. If you do not specify a
file name, the $MACRO source statements must immediately
follow the $MACRO command in the input stream.
You can terminate the source program you include after a
$MACRO statement with either a $EOD command or any other
BATCH command. If, however, you include dollar signs in
the first position in the source program, use the $CREATE
/DOLLARS command to enter the source program. In this case,
you cannot use $MACRO/DOLLARS.

/option can have one of the following values:

/MACRO indicates that the file name you specify
is a MACRO source program. BATCH
assumes that any file name with no
option appended is the name of a source
file.

/SOURCE performs the same function as /MACRO.

/INPUT performs the same function as /MACRO.

filespec/OBJECT indicates the name you assign to the object file produced by
compilation. The object file remains on the device you specify
after the job finishes. If you include an object file specification,
follow it with the /OBJECT option.
If you omit the object file specification but specify $MACRO
/OBJECT, BATCH creates a temporary object file. BATCH also
includes the temporary object file in any $LINK operations that
follow the $MACRO command in the job, and deletes it after
the link operation (see the Temporary Files section).

filespec/LIST indicates the name you assign to the list file created by the
assembler. BATCH does not print the list file if you assign
LST to a file-structured device, but you can list it using the
$PRINT command. The /LIST option must follow the list file
specification.

filespec/MAP indicates the file to which BATCH must output the storage
map.

filespec/LIBRARY indicates that BATCH must include the file you specify in the
link procedure as a library. The /LIBRARY option must follow
the library file specification.

filespec/EXECUTE indicates the name you assign to a memory image file.
The /EXECUTE option must follow the memory image file
specification. If you do not include this field but do use
$MACRO/RUN, BATCH generates and runs a temporary
memory image file (see the Temporary Files section).

The following $MACRO command assembles a program named PROG0.MAC, and
creates a temporary object file and a temporary listing file:

$MACRO/LIST/OBJECT PROG0.MAC

BATCH A–31

$MESSAGE
Use the $MESSAGE command to issue a message to the operator at the console
terminal. It provides a means for the job to communicate with the operator. The
$MESSAGE command has the syntax:

$MESSAGE[/option] message [!comments]

where:

/option indicates an option you can append to the $MESSAGE command. The
options are:

/WAIT indicates that the job is to pause until the operator
either types a return to continue or enters commands
to the BATCH handler followed by a return (see the
Communicating With BATCH Jobs section).

/NOWAIT does not pause for operator response.

message is a string of characters that must fit on one console line. BATCH prints
the message on the console.

For example, if you include the following message in the input stream:

$MESSAGE/WAIT MOUNT SCRATCH TAPE ON MT0:

The message:

MOUNT SCRATCH TAPE ON MT0:
?

appears on the console terminal and a bell sounds. The operator mounts the tape
and types return to allow further processing of the job. (See the Communicating
with BATCH Jobs section for operator interaction with BATCH.)

NOTE
BATCH compresses multiple spaces and tabs in
BATCH command lines; therefore, attempts to format
$MESSAGE output with tabs or spaces may not provide
you with the desired results.

A–32 RT–11 System Utilities Manual

$MOUNT
The $MOUNT command assigns a logical device name and other characteristics to a
physical device. When BATCH encounters $MOUNT during the execution of a job,
it prints the entire $MOUNT command line on the console terminal to notify the
operator which volume to use.

The $MOUNT command has the syntax:

$MOUNT[/option...] physical-device-name:[/PHYSICAL][/VID=x]
[logical-device-name:/LOGICAL] [!comments]

where:

/option indicates an option you can append to the $MOUNT
command. The options are:

/WAIT indicates that the job is to pause until
the operator enters a response. If you
do not specify either /WAIT or /NOWAIT,
BATCH assumes /WAIT. BATCH rings a
bell, prints the physical device name and a
question mark (?), and waits for a response.
(The response can consist of input for the
BATCH handler; see the Communicating
with BATCH Jobs section)

/NOWAIT does not pause for operator response.
BATCH prints the name of the physical
device to be mounted.

/WRITE tells the operator to write-enable the volume.

/NOWRITE tells the operator to write-protect the
volume.

physical-device-name is required and specifies the physical device name and an
optional unit number followed by a colon (for example, DL1:).
If you specify a device name without a unit number, the
operator can enter one in response to the question mark
printed by the $MOUNT command. If you want the operator
to supply a unit number, do not use the /NOWAIT option
because it assumes unit 0.

/PHYSICAL identifies the device specification as a physical unit
specification. If you do not specify either /PHYSICAL or
/LOGICAL, BATCH assumes /PHYSICAL.

/VID=x
/VID="x"

provides volume identification. The volume identification is
the name physically attached to the volume. Include it to
help the operator locate the volume. Use this option only
on the physical device file specification. If x contains spaces,
specify it as ‘‘x’’.

BATCH A–33

$MOUNT

NOTE
This volume identification is only a visual check for the
operator. Make the identification match the visual label
on the volume, not the identification that you wrote
onto the volume at initialization time with the INIT
/VOLUMEID command.

logical-device-name/LOGICAL is required to identify any logical device name you
may assign to the device. The /LOGICAL option must
follow the logical device name specification.

The following command instructs the operator to select a unit and mount volume
BAT01 on that unit, write-enabled. It informs the operator by printing:

$MOUNT/WAIT/WRITE DL:/VID=BAT01 2:/LOGICAL
DL0?

The operator selects a unit, mounts volume BAT01 write-enabled, and responds
to the question mark by typing the unit number (such as 1) followed by a return.
BATCH assigns logical device name 2 to the physical device (in this case DL1:) and
proceeds.

If no unit number response is necessary, as this command shows,

$MOUNT/WAIT/WRITE DL1: 2:/LOGICAL

the operator responds with a return after mounting the volume and write-enabling
the device.

A–34 RT–11 System Utilities Manual

$PRINT
Use the $PRINT command to print the contents of the files you specify on the listing
device (LST). This command has the syntax:

$PRINT[/option] filespec [...,filespec][/INPUT] [!comments]

where:

/option indicates an option you can append to the $PRINT command. The options
are:

/DELETE deletes input files after printing.

/NODELETE does not delete input files after printing.

filespec represents a file to be printed.

/INPUT indicates that the file is an input file; BATCH assumes /INPUT if you
omit it.

The following command prints a listing of files with file type MAC that are stored
on default device DK:

$PRINT *.MAC

The following example creates listing files for the programs A and B, prints the
listing files, and then deletes them:

$MACRO A.MAC A/LIST
$MACRO B.MAC B/LIST
$PRINT/DELETE A.LST,B.LST

BATCH A–35

$RT11
The $RT11 command allows the BATCH job to communicate directly with the RT–11
system. DIGITAL recommends that you use RT–11 mode if you use BATCH. This
command puts BATCH in RT–11 mode until BATCH encounters a line beginning
with $. In RT–11 mode, BATCH interprets all data images as commands to the
RT–11 monitor, to RT–11 system programs, or to the BATCH run-time system. The
$RT11 command has the syntax:

$RT11 [!comments]

See the RT–11 Mode section for a complete description of the RT–11 mode.

$RUN
The $RUN command executes a program for which a memory image file (SAV) was
previously created. It can also run RT–11 system programs.

The $RUN command has the syntax:

$RUN filespec [!comments]

where:

filespec represents the file to be executed. If you omit the file type, BATCH
assumes SAV.

For example, if DIR is on DK, you can run DIR to print a directory listing:

$RUN DIR
$DATA
LP:=DK:/L
$EOD

A–36 RT–11 System Utilities Manual

$SEQUENCE
The $SEQUENCE command is an optional command. If you use it, it must
immediately precede a $JOB command. The $SEQUENCE command assigns a job
an arbitrary identification number. BATCH assigns the last three characters of a
sequence number as the first three characters of a temporary listing or object file
(see the RT–11 Mode section). If a sequence number is less than three characters
long, BATCH fills it with zeroes on the left.

The syntax of this command is:

$SEQUENCE id [!comments]

where:

id represents an unsigned decimal number that indicates the identification
number of a job

The following are examples of the $SEQUENCE command:

$SEQUENCE 3 !SEQUENCE NUMBER IS 003
$JOB

$SEQUENCE 100 !SEQUENCE NUMBER IS 100
$JOB

BATCH A–37

Sample BATCH Stream
The following sample BATCH stream creates a MACRO program, assembles and
links that program, and runs the memory image file. It then deletes the object,
memory image, and source files it created and prints a directory of DK showing the
files the BATCH stream created:

$JOB
$MESSAGE THIS IS AN EXAMPLE BATCH STREAM
$MESSAGE NOW CREATE A MACRO PROGRAM
$CREATE/LIST EXAMPL.MAC
.TITLE EXAMPL FOR BATCH

.MCALL .PRINT,.EXIT
START: .PRINT #MESSAG

.EXIT
MESSAG: .ASCIZ /EXAMPLE MACRO PROGRAM FOR BATCH/

.END START
$EOD
$MACRO EXAMPL EXAMPL/OBJECT EXAMPL/LIST !ASSEMBLE
$LINK EXAMPL EXAMPL/EXECUTE !AND LINK
$PRINT/DELETE EXAMPL.LST
$MESSAGE RUN THE MACRO PROGRAM
$RUN EXAMPL !AND EXECUTE
$DELETE EXAMPL.OBJ+EXAMPL.SAV+EXAMPL.MAC
$MESSAGE PRINT A DIRECTORY
$DIRECTORY DK:EXAMPL.*
$MESSAGE END OF THE EXAMPLE BATCH STREAM
$EOJ

To run this batch stream, type the following commands at the console. BATCH prints
the messages:

.LOAD BA,LP

.ASSIGN LP:LOG

.ASSIGN LP:LST

.R BATCH
*EXAMPL
THIS IS AN EXAMPLE BATCH STREAM
NOW CREATE A MACRO PROGRAM
RUN THE MACRO PROGRAM
PRINT A DIRECTORY
END OF THE EXAMPLE BATCH STREAM

END BATCH
.

The preceding sample BATCH stream produces the following log file on the line
printer:

NOTE
The amount of free memory and the directory format
are variable.

$JOB

$MESSAGE THIS IS AN EXAMPLE BATCH STREAM

$MESSAGE NOW CREATE A MACRO PROG.

$CREATE/LIST EXAMPL.MAC

A–38 RT–11 System Utilities Manual

Sample BATCH Stream

.TITLE EXAMPLE FOR BATCH
.MCALL .PRINT,.EXIT

START: .PRINT #MESSAG
.EXIT

MESSAG: .ASCIZ /EXAMPLE MACRO PROGRAM FOR BATCH/
.EVEN
.END START

$EOD

$MACRO EXAMPL EXAMPL/OBJECT EXAMPL/LIST !ASSEMBLE

ERRORS DETECTED: 0

EXAMPLE FOR BATCH MACRO V03.00 21-JUN-77 00:05:29 PAGE 1

1 .TITLE EXAMPLE FOR BATCH
2 .MCALL .PRINT,.EXIT
3 000000 START: .PRINT #MESSAG
4 000006 .EXIT
5 000010 105 130 101 MESSAG: .ASCIZ /EXAMPLE MACRO PROGRAM FOR BATCH/
000013 115 120 114
000016 105 040 115
000021 101 103 122
000024 117 040 120
000027 122 117 107
000032 122 101 115
000035 040 106 117
000040 122 040 102
000043 101 124 103
000046 110 000

6 .EVEN
7 000000’ .END START

EXAMPLE FOR BATCH MACRO V03.00 21-JUN-77 00:05:29 PAGE 1-1
SYMBOL TABLE

MESSAG 000010R START 000000R

. ABS. 000000 000
000050 001

ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 508 WORDS (2 PAGES)
DYNAMIC MEMORY AVAILABLE FOR 48 PAGES
EXAMPL,EXAMPL=EXAMPL

$LINK EXAMPL EXAMPL/EXECUTE !AND LINK

$PRINT/DELETE EXAMPL.LST

$MESSAGE RUN THE MACRO PROGRAM

$RUN EXAMPL !AND EXECUTE

EXAMPLE MACRO PROGRAM FOR BATCH

$DELETE EXAMPL.OBJ+EXAMPL.SAV+EXAMPL.MAC

$MESSAGE PRINT A DIRECTORY

$DIRECTORY DK:EXAMPL.*

21-JUN-77
EXAMPL.BAK 2 14-JUN-77 EXAMPL.BAT 2 21-JUN-77
EXAMPL.CTL 3 21-JUN-77
3 FILES, 7 BLOCKS
1903 FREE BLOCKS

$MESSAGE END OF THE EXAMPLE BATCH STREAM

$EOJ

BATCH A–39

RT–11 MODE
RT–11 mode lets you enter commands to the RT–11 monitor or to system programs,
and lets you create BATCH programs. You can enter RT–11 mode with either the
$JOB/RT11 command or the $RT11 command. If you enter RT–11 mode with the
$JOB/RT11 command, RT–11 mode remains in effect until BATCH encounters the
next $JOB command. If you enter RT–11 mode with the $RT11 command, RT–11
mode is in effect until BATCH encounters a $ in the first position of the command
line.

When the characters ., $, *, and tab or space appear in the first position of a line,
they are control characters and indicate the following:

. command to the RT–11 monitor, for example:

.R PIP

* data line; any line not intended to go to the RT–11 monitor or to the BATCH
run-time handler, such as a command to the RT–11 PIP program:

*FILE1.DAT/D

NOTE
BATCH does not pass the * as data
to the program. Comment lines
(!) cannot appear on data lines,
as BATCH would consider them as
data.

$ BATCH command. It causes an exit from RT–11 mode if you entered RT–11
mode with the $RT11 command. For example:

$RT11 !ENTER RT--11 MODE
.R PIP
*FILE1.DAT/D
$FORTRAN !LEAVE RT--11 MODE

space/tab separator to indicate a line directed to BATCH run-time handler. This
separator is indicated by a TAB in the following descriptions.

A–40 RT–11 System Utilities Manual

Communicating with RT–11
The most common use of RT–11 mode is to send commands to the RT–11 monitor
and to run system programs. For example, you can insert the following commands
in the BATCH stream to run PIP and save backup copies of files:

$RT11
.R PIP
DL1:.*=*.FOR

You must anticipate and include in the BATCH input stream responses that the
called program requires, such as the Y response to DUP’s Are you sure? query.
Place a line in your BATCH file consisting of Y and RETURN or use the DUP /Y
option to suppress the query. For example:

$RT11
.INITIALIZE RK1:
*Y

You can communicate directly with the RT–11 monitor by using the keyboard monitor
commands; for example:

$RT11
.DELETE/NOQUERY DX1:*.MAC

This command deletes all files with a file type of MAC from device DX1.

You cannot mix BATCH standard commands with RT–11 mode data lines (lines
beginning with an asterisk). For example, the proper way to do a $MOUNT within
a sequence of RT–11 mode data commands is:

$JOB/RT11
.R MACRO
*A1=A1
*A2=A2
$MOUNT DL0:/PHYSICAL
.R MACRO
*B1=DL:B1
*B2=DL:B2

BATCH A–41

Creating RT–11 Mode BATCH Programs
Advanced system programmers can use RT–11 mode to create BATCH programs.
These BATCH programs consist of standard RT–11 mode commands (monitor
commands, data lines for input to system programs, and so on) plus special RT–11
mode commands. The BATCH run-time handler interprets these special commands
to allow dynamic calculations and conditional execution of the RT–11 mode standard
commands. The following can help you create BATCH programs and dynamically
control their execution at run-time:

• Labels

• Variable modification:

1. Equating a variable to a constant or character (LET statement)

2. Passing the value of a variable to a program

3. Incrementing the value of a variable by 1

4. Conditional transfers on comparison of variable values with numeric or
character values (IF and GOTO statements)

• Commands to control terminal I/O

• Other control characters

• Comments

Labels

You define labels in RT–11 mode to provide a symbolic means of referring to a
specific location within a BATCH program. If present, a label must begin in the
first character position, must be unique within the first six characters, and must
terminate with a colon (:) and a return/line feed combination.

Variables

A variable in RT–11 mode is a symbol representing a value that can change during
program execution. The 26 variables BATCH permits in a BATCH program have
the names A–Z; each variable requires one byte of physical storage. There are four
ways to modify variables.

You can assign values to variables in a LET statement.

You can then test these values by an IF statement to control the direction of program
execution.

A–42 RT–11 System Utilities Manual

Creating RT–11 Mode BATCH Programs

Assign values to variables with a LET statement of the following form:
TAB LET x="c

where:

x represents a variable name in the range A–Z.

"c indicates the ASCII value of a character.

For example:
TAB LET A="0

This example indicates that the value of variable A is the 7-bit ASCII value of the
character 0 (60).

The LET statement can also specify an octal value in the form:
TAB LET A=n

where:

n represents an 8-bit signed octal value in the range 0–377. Positive numbers range
from 0–177; negative numbers range from 200–377 (–200 to –1).

You can use variables to introduce control characters, such as ESCAPE, into a
BATCH stream. For example, wherever ’A’ appears in the following BATCH stream,
BATCH substitutes the contents of variable A (the code for an ESCAPE):

$JOB/RT11
LET A=33
!A IS AN ESCAPE

.R EDIT
*EBFILE.MAC’A’’A’
*R’A’’A’

!EDIT FILE TO CHANGE THE VERSION NUMBER TO 2
*GVERSION=’A’DI2’A’’A’
*EX’A’’A’

Increment the value of a variable by 1 by placing a percentage sign (%) before the
variable. For example:

TAB %A

This command indicates that BATCH must increase the unsigned contents of
variable A by 1.

Indicate with an IF statement conditional transfers of control according to the value
of a variable. The IF statement has the syntax:

TAB IF(x-"c) label1, label2, label3

or
TAB IF(x-n) label1, label2, label3

where:

x represents the variable to be tested.

BATCH A–43

Creating RT–11 Mode BATCH Programs

"c is the ASCII value to be compared with the contents of the variable.

n is an octal integer in the range 0–377.

label1
label2
label3

represent the names of labels included in the BATCH stream.

When BATCH evaluates the expression (x–"c) or (x–n), the BATCH run-time handler
transfers control to:

• label1, if the value of the expression is less than zero.

• label2, if the value of the expression is equal to zero.

• label3, if the value of the expression is greater than zero.

If you omit one of the labels, and the condition is met for the omitted label, control
transfers to the line following the IF statement.

NOTE
Since this comparison is a signed byte comparison, 377
is considered to be –1.

The characters + and - allow you to control where BATCH begins searching for label1,
label2, and label3. If you precede the label by a minus sign (-), BATCH starts the
label search just after the $JOB command. If a plus sign (+) or no sign precedes the
label, the label search starts after the IF statement. For example:

TAB IF(B-"9) -LOOP, LOOP1,

This statement transfers program control to the label LOOP following the $JOB
command if the contents of variable B are less than the ASCII value of 9. It transfers
control to the label LOOP1 following the IF statement if B is equal to ASCII 9. If
the contents of variable B are greater than the ASCII value of 9, program control
goes to the next BATCH statement in sequence.

The GOTO statement unconditionally transfers program control to a label you specify
as the argument of the statement. You can use one of the following three forms of
this statement:
TAB GOTO label transfers control to the first occurrence of label that appears

after this GOTO statement in the BATCH stream.

TAB GOTO +label same as GOTO label.

TAB GOTO -label transfers control to the first occurrence of label that appears
after the $JOB command.

A–44 RT–11 System Utilities Manual

Creating RT–11 Mode BATCH Programs

The following GOTO statement transfers control unconditionally to the next label
LOOP if such a label appears in the BATCH stream following the GOTO statement:

TAB GOTO LOOP

NOTE
If BATCH cannot find a label (for example, you
unintentionally omit a minus sign), the BATCH handler
searches until it reaches the end of the CTL file and ends
the job.

Terminal I/O Control

You can issue commands directly to the BATCH run-time handler to control logging
console terminal input and output. If you do not enter any of the following
commands, BATCH assumes TTYOUT (this includes indirect command files):
TAB NOTTY does not write terminal input and output to the log file.

Comments to the log are still logged.

TAB TTYIN writes only terminal input to the log file.

TAB TTYIO writes terminal input and output to the log file. (You should
enter this command if using RT–11 mode so that RT–11 mode
commands go to the log file.)

TAB TTYOUT writes only terminal output to the log file (default).

Other Control Characters

The system permits other control characters in an RT–11 mode command that begins
with a period (.) or an asterisk (*). Following are these control characters and their
meanings:

’text’ command to BATCH run-time handler, where text can be one of the following:

CTY accepts input from the console terminal; notifies the operator
that action is required by ringing a bell and printing a
question mark (?).

FF outputs the current log buffer.

NL inserts a new line (line feed) in the BATCH stream.

x inserts the contents of a variable where x is an alphanumeric
variable in the range A through Z. It indicates that BATCH
should insert the contents of the variable as an ASCII
character at this place in the command string.

"message" directs the message to the console terminal.

The following commands allow the operator to enter the name of a MACRO program
to be assembled. The BATCH stream contains:

$JOB/RT11
.R MACRO
*’"ENTER MACRO COMMAND STRING"’’CTY’

BATCH A–45

Creating RT–11 Mode BATCH Programs

The operator receives the following message at the terminal and types a response,
followed by a return; BATCH processing continues:

ENTER MACRO COMMAND STRING
?FILE,FILE=FILE

To run the same BATCH file on several systems with different configurations you
need to assign a device dynamically. The following RT–11 mode command lets you
request that the listing device name be entered by the operator:

.ASSIGN ’"PLEASE TYPE LST DEVICE NAME"’’CTY’LST

The operator receives the message and responds with the device to be used as the
listing device (DL2:):

PLEASE TYPE LST DEVICE NAME
?DL2:

Comments

You can include comments in RT–11 mode as separate comment statements. Include
comments by typing a separator followed by a ! and the comment. For example:

TAB !OPERATOR ACTION IS REQUESTED IN THIS JOB. BE PREPARED.

A–46 RT–11 System Utilities Manual

RT–11 Mode Examples
The following are examples of BATCH programs using the RT–11 mode.

This BATCH program assembles, lists, and maps 10 programs with only 12 BATCH
commands:

$JOB/RT11 !ASSEMBLE, LIST, MAP PROG0 to PROG9
TTYIO
!WRITE TERMINAL I/O TO THE LOG FILE
LET N="0
!START AT FILE PROG0

LOOP:
.R MACRO
*PROG’N’,LOG:/C=PROG’N’/N:TTM
.R LINK
*,LOG:=PROG’N’

%N
!INCREMENT VARIABLE N
IF(N-"9)-LOOP,-LOOP,END
!TEST FOR END

END:
$EOJ

The following program lets you set up a master control stream to run several BATCH
jobs with one call to BATCH. First set up a BATCH job (INIT.BAT) that performs a
$CHAIN to the master control stream:

$JOB/RT11
LET I="0
!INITIALIZE INDEX

$CHAIN MASTER !GO TO MASTER
$EOJ

The following is the master control stream (MASTER.BAT) to which INIT chains:

$JOB/RT11 !MASTER CONTROL STREAM
%I
!BUMP INDEX BY 1
IF(I-"7),,END

.R BATCH
!THIS IS A $CHAIN

*JOB’I’
!RUNS JOB1-JOB7

END:
$MESSAGE END OF BATCH RUN
$EOJ

Each job MASTER.BAT will run must contain the following:

$JOB
!BATCH COMMANDS

$CHAIN MASTER
$EOJ

Activate the master control stream by calling BATCH as follows:

.R BATCH
*INIT

BATCH A–47

Operating Procedures
This section describes the operations you must perform to prepare for using BATCH,
and for running BATCH.

Loading BATCH

After you bootstrap the RT–11 system and enter the date and time, you must make
the BATCH run-time handler resident by typing the RT–11 LOAD command as
follows:

.LOAD BA:

You detach and unload the BATCH run-time handler with the /U option in the
BATCH compiler command line (see the Operating Procedures section).

NOTE
If BATCH crashes, you must unload BATCH with the
UNLOAD command and then reload BATCH with the
LOAD command. This ensures that the BATCH handler
is properly initialized when you rerun BATCH.

You must make the BATCH log device and list device resident unless the log or list
device is SY, or unless it is a device for which the handler is already resident. Load
the log device, using the following syntax:

.LOAD log-device

where:

log-device represents the device to which BATCH must write the log file.

For example:

.LOAD LP:

You can, of course, load device handlers with a single LOAD command. For example:

.LOAD BA:,LP:

You must then assign the logical device name LOG to the log device. Use the RT–11
monitor ASSIGN command in the form:

.ASSIGN log-device LOG

For example, if LP: is the log device, type:

.ASSIGN LP LOG

A–48 RT–11 System Utilities Manual

Operating Procedures

Then assign the logical device name LST using the RT–11 ASSIGN command in the
form:

.ASSIGN list-device LST

where:

list-device represents the physical device BATCH must use for listings.

If, for example, you want to produce listings on the line printer, type:

.ASSIGN LP LST

NOTE
Do not use the DEASSIGN command with no arguments
in a BATCH program since it deassigns the log and list
devices, possibly causing the BATCH job to terminate.

You must also make resident the BATCH run-time handler input device (compiler
output device). If this device is already resident or is SY, you do not need to load it.
For example, to load the DL handler as the input device, type:

.LOAD DL

Running BATCH

When you have loaded all necessary handlers, run the BATCH compiler as follows:

.R BATCH

BATCH responds by printing an asterisk (*) to indicate its readiness to accept
commands. In response to the *, type the output file specifications for the control
file followed by an equal sign. Then type the input file specifications for the BATCH
file as follows:

[[output-filespec][,log-filespec][/option...]=]input-filespec[...,
input-filespec][/option...]

where:

output-filespec is the BATCH compiler output device and file the BATCH
run-time handler must use. The device you specify must
be random-access. Your BATCH job should not delete or
move this file. Your BATCH job should avoid compressing
the system volume with the SQUEEZE command or the DUP
/S option. If you omit output-filespec, BATCH generates a
file on the default device DK with the same name as the first
input file but with a CTL file type. If you do not specify a
file type in output-filespec, BATCH assumes CTL.

BATCH A–49

Operating Procedures

log-filespec is the log file created by the BATCH run-time handler. If
you do not specify a log device, BATCH assumes LOG. The
device name you specify for log-filespec must be the same as
you assign to LOG.
You can change the size of a log file on a file-structured device
from the default size of 64(decimal) blocks. To make this
change, enclose the required size in square brackets. For
example:

*,FILE.LOG[10]=FILE

The default file type for the log-filespec is LOG.

input-filespec represents an input file. If you do not specify a file type,
BATCH assumes BAT. If you specify a CTL file, BATCH
assumes a precompiled file that must be the only file in the
input list.

/option is an option from the following list:

/N compiles but does not execute. This
option creates a BATCH control file (CTL),
generates an ABORT JOB message at the
beginning of the log file, and returns to the
RT–11 monitor.

/T:n if n=0, sets the /NOTIME option as the
default on the $JOB command. If n=1, the
default option on the $JOB command is
/TIME.

/U indicates that the BATCH compiler must
detach the BATCH run-time handler from
the RT–11 monitor and unload the handler.

NOTE
You need not spec-
ify the RT–11 moni-
tor UNLOAD BA com-
mand to remove the
handler. Specifying
/U to BATCH causes
the handler to de-
tach and unload.

/X indicates that the input is a precompiled BATCH program.
Use this option when you do not specify the CTL file type.

RET prints the version number of the BATCH compiler.

The following example calls BATCH to compile and execute three input files
(PROG1.BAT, PROG2.BAT, PROG3.BAT) to generate on DK the compiler output
files, and to generate on LOG a log file:

.R BATCH
*PROG1.BAT,PROG2.BAT,PROG3.BAT

A–50 RT–11 System Utilities Manual

Operating Procedures

The following commands print the version number of BATCH, then compile and run
SYBILD.BAT:

.R BATCH
* RET

BATCH V04.00A
*SYBILD

The following commands compile PROTO.BAT to create PROTO.CTL but do not run
the compiled BATCH stream:

.R BATCH
*PROTO/N

Type the following commands to unlink BA.SYS from the monitor and to unload it:

.R BATCH
*/U

The following commands compile FILE.BAT from magtape to create FILE.CTL on
RK1. They execute the compiled file and create a log file named FILE.LOG (of size
20) on LOG:

.R BATCH
*RK1:FILE,FILE[20]=MT:FILE

The following commands execute a precompiled job called FILE.TST:

.R BATCH
*FILE.TST/X

The following commands execute a precompiled job called FILE.CTL:

.R BATCH
*FILE/X

Communicating with BATCH Jobs

During the execution of a BATCH stream, BATCH can request the operator to service
a peripheral device, to provide information, or to insert a command line into the
BATCH stream. The operator does this by typing directives to the BATCH handler
on the console terminal.

NOTE
These directives are equivalent to the compiler output
that BATCH generates in the CTL file. The CTL file is
an ASCII file that you can list by using the PRINT or
TYPE commands or by running PIP.

These directives have the form:

\dir

where:

dir represents one of the directives listed in Table A–6.

BATCH A–51

Operating Procedures

To use these directives, the operator must get control of the BATCH run-time
handler. This can be achieved through a /WAIT or a CTY in the BATCH stream, or
by typing a return on the console terminal. If a return is typed, the operator does
not know exactly where the BATCH stream has been interrupted. When BATCH
executes a command, it acknowledges the return and prints a return/line feed
combination at the terminal. The operator can then enter a directive from Table A–6.
The most useful directives are marked with an asterisk (*). Some directives are not
particularly useful in this mode, but are listed to explain completely the BATCH
compiler output.

Table A–6: Operator Directives to BATCH Run-Time Handler

Directive Function

\@ Sends the characters that follow to the console terminal.

*\A Changes the input source to be the console terminal.

*\B Changes the input source to be the BATCH stream.

*\C Sends the following characters to the log device.

*\D Considers the following characters as user data.

*\E Sends the following characters to the RT–11 monitor.

*\F Forces the output of the current log block. If this directive is followed
by any characters other than another BATCH backslash (\) directive,
the BATCH job prints an error message and terminates. BATCH then
returns control to the RT–11 monitor.

\G Gets characters from the console terminal until a return is
encountered.

\Hn Help function that changes the logging mode. n specifies the following:

0 Log only .TTYOUT and .PRINT

1 Log .TTYOUT, .PRINT, and .TTYIN

2 Do not log .TTYOUT, .PRINT, and .TTYIN

3 Log only .TTYIN

\Ivxlabel1?
label2?
label3?

IF statement that causes conditional transfer, where v is a variable
name in the range A–Z; x is a value for the signed 8-bit comparison (v-
x); and label1, label2, label3 are 6-character labels to which control is
transferred under certain conditions. (All labels must be six characters
in length; if too short, pad with spaces.) If v-x is less than 0, control
transfers to label1; if v-x is equal to 0, control goes to label2; if v-x
is greater than 0, control goes to label3. The direction for the label
search is indicated by ?; if ? is 0, the search begins at the beginning of
this job; if ? is 1, the label search begins after the IF statement.

\Jlabel? Jump, unconditional transfer; where label is a 6-character label and ?
is 0 or 1. (All labels must be six characters in length; if too short, pad
with spaces.) If ?=0, label is a backward reference; if ?=1, label is a
forward reference.

A–52 RT–11 System Utilities Manual

Operating Procedures

Table A–6 (Cont.): Operator Directives to BATCH Run-Time Handler

Directive Function

\Kv0 Increment variable v, where v is a variable name in the range A–Z.

\Kvln Stores the 8-bit number n in variable v.

\Kv2 Takes the value in variable v and returns it to the program (via
.TTYIN).

\Llabel Inserts label as a 6-character alphanumeric string in the BATCH
stream. (All labels must be six characters in length; if too short,
pad with spaces.) Labels must not include backslash characters.
Characters beyond six are ignored.

In the following example, the operator must interrupt the BATCH handler to enter
information from the console. As a result of a /WAIT or ’CTY’ in the BATCH stream,
the following message appears at the terminal:

$MESSAGE/WAIT WRITE NECESSARY FILES TO DISK

To divert BATCH stream input from the current file to the console terminal, the
operator types \E, enters commands to the RT–11 monitor, then types \B. Control
then returns to the BATCH stream. The following example illustrates this procedure:

.R BATCH
*NEXT
WRITE NECESSARY FILES TO DISK
?\A\E

\ECOPY DT1:FILE.MAC RK:

FILES COPIED:
DT1:FILE.MAC TO RK:FILE.MAC

\E\F\B

2
END BATCH

The following BATCH program lets you make frequent edits to a file and list only
the edits. First, create a BATCH program that assembles with a listing and link the
file. This BATCH program, called COMPIL.BAT, contains:

$JOB/RT11
TTYIO
!WRITE TERMINAL I/O TO LOG FILE

.R MACRO
!CALL THE MACRO ASSEMBLER

*FILE,FILE/C=FILE
$MESSAGE/WAIT OK TO TYPE EDIT COMMANDS
.R LINK

!CALL THE RT--11 LINKER
*FILE,LOG:=FILE
$EOJ

At run time, you can insert commands into the BATCH stream from the console
terminal. These commands search for the section of the listing file that has been
edited, then list this section to the log. You must insert the command after the

BATCH A–53

Operating Procedures

R MACRO command but before the R LINK command. The following example
illustrates this procedure:

.R BATCH
*COMPIL
OK TO TYPE EDIT COMMANDS
?\A\E

\ER EDIT

*ERFILE.LST$$
*EWFILE.SEC$$
*PRETRY:$=J$$
*\L$$
RETRY: 0 ;HIGH ORDER BIT USED FOR "RESET IN PROGRESS FLAG

49 000020 016705 177764 MOV RKCQE,R5 ;GET Q P
50 000024 011502 MOV @R5,R2 ;R2 = BL
51 000026 016504 000002 MOV 2(R5),R4 ;R4 = UN
52 000032 006204 ASR R4 ;ISOLATE
53 000034 006204 ASR R4
54 000036 006204 ASR R4
55 000040 000304 SWAB R4
56 000042 042704 017777 BIC #^C<160000>,R4
57 000046 000404 BR 2$;ENTER C

*EX$$

E\C\B

END BATCH

Terminating BATCH When BATCH terminates normally, it prints the following
message and returns control to the RT–11 monitor:

END BATCH

To abort BATCH while it is executing a BATCH stream, interrupt the BATCH
handler by typing a return. When BATCH executes the next command after the
return, it prints a return/line feed combination at the console terminal. You then
gain control of the system. Type \F followed by a return. The BATCH handler
responds with the FE (forced exit) error message and writes the remainder of the
log buffer. Control returns to the RT–11 monitor.

Typing two CTRL/Cs terminates BATCH immediately. Use two CTRL/Cs when
BATCH is in a loop or when a long assembly is running. In these cases, BATCH
responds slowly to your return interrupt.

A–54 RT–11 System Utilities Manual

RT–11 BATCH and RSX–11D BATCH
Some programmers run their RT–11 BATCH programs under RSX–11D. Note the
differences between the two BATCH implementations listed in Table A–7. BATCH
programs that run under both systems must be compatible with both RT–11 and
RSX–11D BATCH.

Table A–7: Differences Between RT–11 BATCH and RSX–11D BATCH

Characteristic RT–11 RSX–11D

File descriptors filespec/option SY:filnam.typ/option

Default listing file type LST(or LIS) LIS

Executable file type SAV EXE

Incompatible commands $BASIC

$CALL $MCR

$CHAIN

$LIBRARY

$RT11

$SEQUENCE

Incompatible options $COPY/DELETE

$CREATE/DOLLARS

$CREATE/LIST

$DATA/DOLLARS

$DATA/LIST

$DIR file/LIST $DIR file/DIRECTORY

$DISMOUNT/WAIT

$DISMOUNT lun:/LOGICAL

$FORTRAN/DOLLARS

$FORTRAN/MAP

$JOB/BANNER $JOB/NAME

$JOB/LIST $JOB/LIMIT

$JOB/RT11 $JOB/MCR

$JOB/TIME

$JOB/UNIQUE

$LINK/LIBRARY $JOB/MCR

BATCH A–55

RT–11 BATCH and RSX–11D BATCH

Table A–7 (Cont.): Differences Between RT–11 BATCH and RSX–11D BATCH

Characteristic RT–11 RSX–11D

$LINK/OBJECT

$MACRO/CREF

$MACRO/DOLLARS

$MACRO/LIBRARY

$MACRO/MAP

$MESSAGE/WAIT

$MESSAGE/WRITE

$PRINT/DELETE

$DATA input Appears as if from input Appears as if from a file
named FOR001.DAT

Logical device names In $MOUNT and $DISMOUNT Logical unit numbers only

$RUN You must specify file name RSX11DBAT.EXE is default

A–56 RT–11 System Utilities Manual

Appendix B

DCL Command and Utility Program Equivalents

This appendix provides a table of correspondence between the DCL monitor
commands with their options and the system utility programs with their options.
Remember that the syntax you use to issue a DCL command is different from
the syntax that the Command String Interpreter requires for input and output
specifications. Bear in mind that there are many differences between issuing a
DCL command and running a utility program.

The following table lists all the DCL monitor commands and options. A dash under
the corresponding system program or option column indicates that the command has
no real system program equivalent, that the function is inherent in the keyboard
monitor, or that the function is the default mode of operation.

DCL
Command Option

Utility
Program Option

ABORT – –

ASSIGN – –

B – –

BACKUP BUP – –
/DEVICE BUP /I
/DIRECTORY BUP TT: as

3rd output
specification

/DIRECTORY/OUTPUT:filespec BUP 3rd output
specification

/DIRECTORY/PRINTER BUP LP: as
1st output
specification

/FILE BUP /F
/NOQUERY BUP /Y
/NOREWIND BUP /M
/NOSCAN BUP /G
/NOLOG BUP /W
/RESTORE BUP /X
/SUBSET BUP /R
/SAVESET BUP /S
/SYSTEM BUP /E
/VERIFY[:ONLY] BUP /V[:ONL]

DCL Command and Utility Program Equivalents B–1

DCL
Command Option

Utility
Program Option

/INITIALIZE BUP /Z

BOOT DUP /O
/FOREIGN DUP /Q
/WAIT DUP /W

CLOSE – –

COMPILE – –
/ALLOCATE:size – [size]
/ALPHABETIZE DIBOL /A
/BUFFERING DIBOL /B
/CODE:type FORTRAN /I:type
/CROSSREFERENCE[:type...] MACRO,DIBOL /C[:type...]
/DIAGNOSE FORTRAN /B
/DIBOL DIBOL –
/DISABLE:type[:type...] MACRO /D:type[:type...]
/ENABLE:type[:type...] MACRO /E:type[:type...]
/EXTEND FORTRAN /E
/FORTRAN FORTRAN –
/HEADER FORTRAN /O
/I4 FORTRAN /T
/LIBRARY MACRO /M
/LINENUMBERS DIBOL,FORTRAN –
/NOLINENUMBERS DIBOL /O

FORTRAN /S
/LIST[:filespec] – 2nd output

specification
/LOG DIBOL /G
/MACRO MACRO –
/OBJECT[:filespec] – 1st output

specification
/NOOBJECT – null

1st output
specification

/ONDEBUG DIBOL,FORTRAN /D
/PAGE:value DIBOL /P:value
/RECORD:length FORTRAN /R:length
/SHOW:type FORTRAN,MACRO /L:type
/NOSHOW:type MACRO /N:type
/STATISTICS FORTRAN /A
/SWAP FORTRAN –
/NOSWAP FORTRAN /U
/TABLES DIBOL /S
/UNITS:value FORTRAN /N:value
/VECTORS FORTRAN –

B–2 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/NOVECTORS FORTRAN /V
/WARNINGS DIBOL –

FORTRAN /W
/NOWARNINGS DIBOL /W

FORTRAN –

COPY PIP –
/ALLOCATE:size – [size]
/ASCII PIP,FILEX /A
/BEFORE[:date] PIP /J[:date]
/BINARY PIP /B
/BOOT[:dev] DUP /U[:dev]
/CONCATENATE PIP /U
/DATE[:date] PIP /C[:date]
/DELETE PIP /D
/DEVICE DUP /I
/DOS FILEX /S
/END:value DUP /E:value
/EXCLUDE PIP /P
/FILES DUP /F
/IGNORE PIP /G:value
/IMAGE PIP,FILEX /I
/INFORMATION PIP /X
/INTERCHANGE[:size] FILEX /U[:size]
/LOG PIP /W
/NOLOG PIP –
/MULTIVOLUME PIP /V
/NEWFILES PIP /C
/OWNER[:valuenn,nnn] FILEX [UIC]
/PACKED FILEX /P
/POSITION[:value] PIP /M[:value]
/PREDELETE PIP /O
/PROTECTION PIP /F
/NOPROTECTION PIP /Z
/QUERY PIP,FILEX /Q
/NOQUERY PIP –
/REPLACE DUP /R
/NOREPLACE PIP /N
/SETDATE[:date] PIP /T[:date]
/SINCE[:date] PIP /I[:date]
/SLOWLY PIP /S
/START:value DUP /G
/SYSTEM PIP /Y
/TOPS FILEX /T
/VERIFY PIP, /H

DCL Command and Utility Program Equivalents B–3

DCL
Command Option

Utility
Program Option

DUP /H
/WAIT DUP, FILEX /W

PIP /E

CREATE DUP /C
/ALLOCATE:size DUP [size]
/EXTENSION:size DUP /T:size
/START:value DUP /G:value

D – –

DATE – –

DEASSIGN – –

DELETE PIP /D
/BEFORE[:date] PIP /J[:date]
/DATE[:date] PIP /C[:date]
/DOS FILEX /S
/ENTRY QUEMAN /M
/EXCLUDE PIP /P
/INFORMATION PIP /X
/INTERCHANGE FILEX /U
/LOG PIP /W
/NEWFILES PIP /C
/POSITION[:value] PIP /M[:value]
/QUERY PIP /Q
/NOQUERY PIP –
/SINCE[:date] PIP /I[:date]
/SYSTEM PIP /Y
/WAIT PIP /E

FILEX /W

DIBOL R DIBOL –
/ALLOCATE:size [size]
/ALPHABETIZE DIBOL /A
/BUFFERING DIBOL /B
/CROSSREFERENCE DIBOL /C
/LINENUMBERS DIBOL –
/NOLINENUMBERS DIBOL /O
/LIST[:filespec] DIBOL 2nd output

specification
/LOG DIBOL /G
/OBJECT[:filespec] DIBOL 1st output

specification

B–4 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/NOOBJECT DIBOL null
1st output
specification

/ONDEBUG DIBOL /D
/PAGE:value DIBOL /P:value
/TABLES DIBOL /S
/WARNINGS DIBOL –
/NOWARNINGS DIBOL /W

DIFFERENCES R SRCCOM –
/ALLOCATE:size – [size]
/ALWAYS BINCOM /O
/AUDITTRAIL SRCCOM /A
/BINARY BINCOM –
/BLANKLINES SRCCOM /B
/BYTES BINCOM /B
/CHANGEBAR SRCCOM /D
/COMMENTS SRCCOM –
/NOCOMMENTS SRCCOM /C
/DEVICE BINCOM /D
/END[:value] BINCOM /E[:value]
/FORMFEED SRCCOM /F
/MATCH[:value] SRCCOM /L[:value]
/OUTPUT:filespec SRCCOM 1st output

specification
BINCOM 1st output

specification
/PRINTER SRCCOM LP: as

1st output
specification

BINCOM LP: as
1st output
specification

/QUIET BINCOM /Q
/SIPP:filespec BINCOM 2nd output

specification
/SLP:filespec SRCCOM 2nd output

specification
/SPACES SRCCOM –
/NOSPACES SRCCOM /S
/START[:value] BINCOM /S[:value]
/TERMINAL SRCCOM TT: as

1st output
specification

BINCOM TT: as
1st output
specification

/TRIM SRCCOM –

DCL Command and Utility Program Equivalents B–5

DCL
Command Option

Utility
Program Option

/NOTRIM SRCCOM /T

DIRECTORY DIR –
/ALLOCATE:size – [size]
/ALPHABETIZE DIR /A
/BACKUP BUP /L
/BADBLOCKS DUP /K
/BEFORE[:date] DIR /K[:date]
/BEGIN DIR /G
/BLOCKS DIR /B
/BRIEF DIR, FILEX /F
/COLUMNS:value DIR /C:value
/DATE[:date] DIR /D[:date]
/DELETED DIR /Q
/DOS FILEX /S
/END:value DUP /E:value
/EXCLUDE DIR /P
/FAST DIR, FILEX /F
/FILES DUP /F
/FREE DIR /M
/FULL DIR /E
/INTERCHANGE FILEX /U
/NEWFILES DIR /D
/OCTAL DIR /O
/ORDER[:category] DIR /S[:category]
/OUTPUT:filespec DIR 1st output

specification
FILEX TT: as

1st output
specification

/OWNER[:valuenn,nnn] FILEX [UIC]
/POSITION DIR /B
/PRINTER DIR LP: as

1st output
specification

FILEX LP: as
1st output
specification

/PROTECTION DIR /T
/NOPROTECTION DIR /U
/REVERSE DIR /R
/SINCE[:date] DIR /J[:date]
/SORT[:category] DIR /S[:category]
/START:value DUP /G:value
/SUMMARY DIR /N

B–6 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/TERMINAL DI TT: as
1st output
specification

FILEX TT: as
1st output
specification

/TOPS FILEX /T
/VOLUMEID[:ONLY] DIR

FILEX /V[:ONL]
/WAIT DUP,FILEX /W

DISMOUNT LD /L

DUMP R DUMP –
/ALLOCATE:size – –
/ASCII DUMP –
/NOASCII DUMP /N
/BYTES DUMP /B
/END:value DUMP /E:value
/FOREIGN DUMP /T
/IGNORE DUMP /G
/ONLY:value DUMP /O:value
/OUTPUT:filespec DUMP 1st output

specification
/PRINTER DUMP LP: as

1st output
specification

/RAD50 DUMP /X
/START:value DUMP /S:value
/TERMINAL DUMP TT: as

1st output
specification

/WORDS DUMP /W

E – –

EDIT EDIT,TECO
KED,KEX

/ALLOCATE:size – [size]
/CREATE EDITOR –
/EDIT EDIT –
/EXECUTE:filespec TECO –
/INSPECT EDITOR –
/KED KED –
/KEX KEX –
/OUTPUT:filespec EDITOR –
/TECO TECO –

DCL Command and Utility Program Equivalents B–7

DCL
Command Option

Utility
Program Option

EXECUTE – –
/ALLOCATE:size – [size]
/ALPHABETIZE DIBOL /A
/BOTTOM:value LINK /B:value
/BUFFERING DIBOL /B
/CODE:type FORTRAN /I:type
/CROSSREFERENCE[:type[...] DIBOL,MACRO /C
/DEBUG[:filespec] LINK –
/DIAGNOSE FORTRAN /B
/DIBOL DIBOL –
/DISABLE:type[...] MACRO /D
/DUPLICATE LINK /D
/ENABLE:type[...] MACRO /E
/EXECUTE[:filespec] LINK 1st output

specification
/EXTEND FORTRAN /E
/FORTRAN FORTRAN –
/GLOBAL LINK /N
/HEADER FORTRAN /O
/I4 FORTRAN /T
/LIBRARY MACRO /M
/LINENUMBERS DIBOL, FORTRAN –
/NOLINENUMBERS DIBOL /O

FORTRAN /S
/LINKLIBRARY:filespec LINK –
/LIST[:filespec] — 2nd output

specification
/LOG DIBOL /G
/MACRO MACRO –
/MAP[:filespec] LINK 2nd output

specification
/OBJECT[:filespec] — 1st output

specification
/ONDEBUG DIBOL, FORTRAN /D
/PAGE:value DIBOL /P:value
/PROMPT LINK //
/RECORD:length FORTRAN /R:length
/RUN RUN –
/NORUN – –
/SHOW[:type] FORTRAN, MACRO /L[:type]
/NOSHOW[:type] MACRO /N[:type]
/STATISTICS FORTRAN /A
/SWAP FORTRAN –
/NOSWAP FORTRAN /U
/TABLES DIBOL /S

B–8 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/UNITS:value FORTRAN /N:value
/VECTORS FORTRAN –
/NOVECTORS FORTRAN /V
/WARNINGS FORTRAN /W

DIBOL –
/NOWARNINGS DIBOL /W

FORTRAN –
/WIDE LINK /W

FORMAT – –
/PATTERN[:value] FORMAT /P[:value]
/QUERY FORMAT –
/NOQUERY FORMAT /Y
/SINGLEDENSITY FORMAT /S
/VERIFY[:ONLY] FORMAT /V[:ONLY]
/WAIT FORMAT /W

FORTRAN R FORTRAN –
/ALLOCATE:size – [size]
/CODE:type FORTRAN /I:type
/DIAGNOSE FORTRAN /B
/EXTEND FORTRAN /E
/HEADER FORTRAN /O
/I4 FORTRAN /T
/LINENUMBERS FORTRAN –
/NOLINENUMBERS FORTRAN /S
/LIST[:filespec] FORTRAN 2nd output

specification
/OBJECT[:filespec] FORTRAN 1st output

specification
/NOOBJECT FORTRAN null

1st output
specification

/ONDEBUG FORTRAN /D
/RECORD:length FORTRAN /R
/SHOW[:type] FORTRAN /L[:type]
/STATISTICS FORTRAN /A
/SWAP FORTRAN –
/NOSWAP FORTRAN /U
/UNITS:value FORTRAN /N:value
/VECTORS FORTRAN –
/NOVECTORS FORTRAN /V
/WARNINGS FORTRAN /W
/NOWARNINGS FORTRAN –

FRUN – –

DCL Command and Utility Program Equivalents B–9

DCL
Command Option

Utility
Program Option

/BUFFER:value – –
/NAME:valueame – –
/PAUSE – –
/TERMINAL:value – –

GET – –

HELP – –
/PRINTER – –
/TERMINAL – –

INITIALIZE DUP /Z
/BACKUP BUP /Z
/BADBLOCKS[:RET] DUP /B[:RET]
/DOS FILEX /S
/FILE:filespec DUP 1st output

specification
/INTERCHANGE FILEX /U
/QUERY DUP, FILEX –
/NOQUERY BUP, DUP, FILEX /Y
/REPLACE[:RET] DUP /R[:RET]
/RESTORE DUP /D
/SEGMENTS:value DUP /N:value
/VOLUMEID[:ONLY] DUP /V[:ONL]

FILEX
/WAIT DUP,FILEX /W

INSTALL – –

LIBRARY R LIBR –
/ALLOCATE:size – [size]
/CREATE LIBR –
/DELETE LIBR /D
/EXTRACT LIBR /E
/INSERT LIBR –
/LIST[:filespec] LIBR 2nd output

specification
/MACRO[:value] LIBR /M[:value]
/OBJECT[:filespec] LIBR 1st output

specification
/NOOBJECT LIBR null

1st output
specification

/PROMPT LIBR //
/REMOVE LIBR /G
/REPLACE LIBR /R

B–10 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/UPDATE LIBR /U

LINK R LINK –
/ALLOCATE:size – [size]
/ALPHABETIZE LINK /A
/BITMAP LINK –
/NOBITMAP – /X
/BOTTOM:value LINK /B:value
/BOUNDARY:value LINK /Y:value
/DEBUG[:filespec] LINK –
/DUPLICATE LINK /D
/EXECUTE[:filespec] LINK 1st output

specification
/NOEXECUTE LINK null

1st output
specification

/EXTEND:value LINK /E:value
/FILL:value LINK /Z:value
/FOREGROUND[:stacksize] LINK /R[:stacksize]
/GLOBAL LINK /N
IDSPACE LINK J
/INCLUDE LINK /I
/LDA LINK /L
/LIBRARY:filespec LINK –
/LIMIT[:value] LINK /K[:value]
/LINKLIBRARY:filespec LINK –
/MAP[:filespec] LINK 2nd output

specification
/PROMPT LINK //
/ROUND:value LINK /U:value
/RUN LINK, RUN –
/SLOWLY LINK /S
/STACK[:value] LINK /M[:value]
/SYMBOLTABLE[:filespec] LINK 3rd output

specification
/TOP[:value] LINK /H[:value]
/TRANSFER[:value] LINK /T[:value]
/WIDE LINK /W
/XM LINK /V

LOAD – –

MACRO R MACRO –
/ALLOCATE:size – [size]
/CROSSREFERENCE[:type[...]] MACRO /C
/DISABLE:type[...] MACRO /D

DCL Command and Utility Program Equivalents B–11

DCL
Command Option

Utility
Program Option

/ENABLE:type[...] MACRO /E
/LIBRARY MACRO /M
/LIST[:filespec] MACRO 2nd output

specification
/OBJECT[:filespec] MACRO 1st output

specification
/NOOBJECT MACRO null

1st output
specification

/SHOW:type MACRO /L
/NOSHOW:type MACRO /N

MOUNT LD /L
/WRITE LD /W
/NOWRITE LD /R

PRINT – –
/BEFORE[:date] PIP /J[:date]

QUEMAN
/COPIES:value PIP, QUEMAN /K:value
/DATE[:date] PIP, /C[:date]

QUEMAN
/DELETE PIP, QUEMAN /D
/FLAGPAGE:value QUEMAN /H:value
/NOFLAGPAGE QUEMAN /N
/INFORMATION PIP, QUEMAN /X
/LOG PIP, QUEMAN /W
/NOLOG PIP, QUEMAN –
/NAME:[dev:]jobname QUEMAN 1st output

specification
/NEWFILES PIP,QUEMAN /C
/PRINTER PIP LP: as

1st output
specification

/PROMPT QUEMAN //
/QUERY PIP,QUEMAN /Q
/SINCE[:date] PIP /I[:date]

QUEMAN
/WAIT PIP /E

PROTECT PIP /F
/BEFORE[:date] PIP /J[:date]
/DATE[:date] PIP /C[:date]
/EXCLUDE PIP /P
/INFORMATION PIP /X
/LOG PIP /W
/NOLOG PIP –

B–12 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/NEWFILES PIP /C
/QUERY PIP /Q
/SETDATE[:date] PIP /T[:date]
/SINCE[:date] PIP /I[:date]
/SYSTEM PIP /Y
/WAIT PIP /E

R – –

REENTER – –

REMOVE – –

RENAME PIP –
/BEFORE[:date] PIP /J[:date]
/DATE[:date] PIP /C[:date]
/INFORMATION PIP /X
/LOG PIP /W
/NOLOG PIP –
/NEWFILES PIP /C
/PROTECTION PIP /F
/NOPROTECTION PIP /Z
/QUERY PIP /Q
/REPLACE PIP –
/NOREPLACE PIP /N
/SETDATE[:date] PIP /T[:date]
/SINCE[:date] PIP /I[:date]
/SYSTEM PIP /Y
/WAIT PIP /E

RESET – –

RESUME – –

RUN – –

SAVE – –

SET – –

SHOW ALL RESORC /A
CONFIGURATION RESORC /Z
DEVICES[:dd] RESORC /D[:dd]
ERRORS ERROUT –

/ALL ERROUT /A

DCL Command and Utility Program Equivalents B–13

DCL
Command Option

Utility
Program Option

/FILE:filespec ERROUT 1st input
specification

/FROM[:date] ERROUT /F
/OUTPUT:filespec ERROUT 1st output

specification
/PRINTER ERROUT LP: as

1st output
specification

/SUMMARY ERROUT /S
/TERMINAL ERROUT TT: as

1st output
specification

/TO[:date] ERROUT /T
JOBS RESORC /J
MEMORY RESORC /X
QUEUE QUEMAN /Q
SUBSET RESORC /S
TERMINALS RESORC /T

SQUEEZE DUP /S
/OUTPUT:filespec DUP 1st output

specification
/QUERY DUP –
/NOQUERY DUP /Y
/WAIT DUP /W

SRUN
/BUFFER:value – –
/LEVEL:value – –
/NAME:logical–jobname – –
/PAUSE – –
/TERMINAL:value – –

START – –

SUSPEND – –

TIME – –

TYPE – –
/BEFORE[:date] PIP /J[:date]
/COPIES:value PIP /K:value
/DATE[:date] PIP /C[:date]
/DELETE PIP /D
/INFORMATION PIP /X
/LOG PIP /W
/NOLOG PIP –

B–14 RT–11 System Utilities Manual

DCL
Command Option

Utility
Program Option

/NEWFILES PIP /C
/QUERY PIP /Q
/SINCE[:date] PIP /I[:date]
/WAIT PIP /E

UNLOAD – –

UNPROTECT PIP /F
/BEFORE[:date] PIP /J[:date]
/DATE[:date] PIP /C[:date]
/EXCLUDE PIP /P
/INFORMATION PIP /X
/LOG PIP /W
/NOLOG PIP –
/NEWFILES PIP /C
/QUERY PIP /Q
/SETDATE[:date] PIP /T[:date]
/SINCE[:date] PIP /I[:date]
/SYSTEM PIP /Y
/WAIT PIP /E

DCL Command and Utility Program Equivalents B–15

Index

B
$BASIC

BATCH command, A–15
BASIC

calling with BATCH, A–15
BATCH

assembling MACRO source files using,
A–30

calling another BATCH control file, A–17
calling FORTRAN compiler with, A–24
character set, A–9
character set (table), A–9
command field options, A–3
command field options (table), A–4
command fields in control statement, A–3
command line syntax, A–2
command names, A–3
commands, A–13, A–15, A–16, A–17, A–18,

A–19, A–20, A–21, A–22, A–23, A–24,
A–27, A–28, A–30, A–32, A–33, A–35,
A–36, A–37

commands (table), A–13
comments, A–9
communicating with RT–11, A–41
communicating with RT–11 system, A–36
compiler, A–1
creating files with, A–19
data transfers, A–20

with FORTRAN programs, A–20
deassigning logical device names with,

A–22
directory operation, A–21
executing a program with, A–36
file deletion, A–21
file specifications in control statements to,

A–7
file types, A–7
function of, A–1
general rules, A–12
hardware requirements, A–2
image mode copy, A–18
indicating beginning of job for, A–27

BATCH (Cont.)
indicating end of a job for, A–23
indicating end-of-data for, A–23
in RT–11 mode, A–36
link operations, A–28
loading, A–48
nesting control files with BATCH, A–16
preparing to use, A–48
printing files with, A–35
RT–11

differences from RSX–11D, A–55
RT–11 mode, A–40
RT–11 mode (examples), A–47
RT–11 mode programs

comments in, A–46
creating, A–42

running, A–49
run-time handler, A–1
software requirements, A–2
specification field options, A–8
specification field options (table), A–8
specification fields, A–6
specifying devices in control statement for,

A–6
stream (example), A–38
temporary files, A–11
terminal I/O control with, A–45
terminating, A–54
using wildcards with, A–7

BATCH jobs
assigning identification number to, A–37
communicating with, A–51

C
$CALL

BATCH command, A–16
CF work file

MACRO, 16–13
$CHAIN

BATCH command, A–17
Comments

in BATCH files, A–9

Index–1

$COPY
BATCH command, A–18

$CREATE
BATCH command, A–19

Cross-reference tables
MACRO, 16–9, 16–12, 16–13

D
Data

transferring with BATCH, A–20
$DATA

BATCH command, A–20
DCL equivalents

RESORC
See QUEUE
SRCCOM
MACRO, 16–16
PIP, 20–20

$DELETE
BATCH command, A–21

Deleting files
with BATCH, A–21

$DIRECTORY
BATCH command, A–21

$DISMOUNT
BATCH command, A–22

E
$EOD

BATCH command, A–23
$EOJ

BATCH command, A–23

F
Files

copying in image mode with BATCH, A–18
creating with BATCH, A–19
deleting with BATCH, A–21
printing with BATCH, A–35

$FORTRAN
BATCH command, A–24

FORTRAN compiler
calling with BATCH, A–24

J
$JOB

BATCH command, A–27

L
$LIBRARY

BATCH command, A–28
Library files

including in link operations using BATCH,
A–28

$LINK
BATCH command, A–28

Link operations
using BATCH, A–28

Logical device names
assigning using BATCH, A–33
deassigning with BATCH, A–22
displaying assignments of, 22–6
using with BATCH, A–6

M
MACRO

calling, 16–2
CF work file, 16–13
command-line syntax, 16–3
cross-reference tables, 16–9, 16–12, 16–13
DCL equivalents, 16–16
error codes, 16–14
options

descriptions, 16–6
summary, 16–5

output, 16–1
terminating, 16–2
using, 16–1
WF work file, 16–4

$MACRO
BATCH command, A–30

MACRO–11
See MACRO

MACRO–11 assembler
calling using BATCH, A–30

$MESSAGE
BATCH command, A–32

Messages
sending to the console with BATCH, A–32

$MOUNT
BATCH command, A–33

N
Native Transfer Utility

See TRANSFER/TRANSF
Network Interconnect Test Utility

Index–2

Network Interconnect Test Utility (Cont.)
See NITEST

NITEST
building, 17–1
definition, 17–1
error messages, 17–3
running, 17–1
using, 17–2

O
Object-Module Patch Utility

See PAT
ODT, 18–1

accessing internal registers, 18–11
ASCII input and output, 18–21
breakpoints, 18–12
calling and using, 18–2
commands, 18–7

close, 18–8
display, 18–7
open, 18–8

constant register, 18–17
errors, 18–28
linking with a program, 18–2
memory-block initialization, 18–17
monitor independent, 18–29
offsets, 18–18
priority level, 18–20
programming

breakpoints, 18–23
foreground/background jobs, 18–22
functional organization, 18–22
searches, 18–26
terminal input, 18–26

radix-50 mode, 18–11
relocation, 18–6
relocation calculators, 18–19
relocation register commands, 18–18
running the program, 18–13
searches, 18–15

addresses, 18–16
words, 18–15

single-instruction mode, 18–15
On-Line Debugging Technique Utility

See ODT

P
PAT

PAT (Cont.)
appending a subroutine, 19–6
binary code update, 19–5
calling, 19–1
checksum option, 19–9
command-line syntax, 19–4
correction file, 19–1, 19–5
examples, 19–6
input file, 19–1, 19–5
overlaying lines, 19–6
processing steps, 19–2
using, 19–2
validating correction, 19–9

Peripheral Interchange Utility
See PIP

PIP
command-line syntax, 20–2
DCL equivalents, 20–20
definition, 20–1
option descriptions, 20–6
option summary, 20–4
with wildcards, 20–3

$PRINT
BATCH command, A–35

Q
QUEMAN

See QUEUE
QUEUE

acknowledgment from, 21–17
application support, 21–12
calling, 21–3
components, 21–1
DCL equivalents, 21–20
definition, 21–1
example program, 21–18
features, 21–1
QUEMAN

option descriptions, 21–6
option summary, 21–4

using, 21–3

R
RESORC

DCL equivalents, 22–16
definition, 22–1
option descriptions, 22–3
option summary, 22–2

Index–3

$RT11
BATCH command, A–36

$RUN
BATCH command, A–36

S
Save-Image Patch Program

See SIPP
$SEQUENCE

BATCH command, A–37
SIPP

calling, 24–2
command descriptions, 24–9
command-line syntax, 24–3
command summary, 24–7
definition, 24–1
dialogue, 24–5
extending files, 24–15
extending overlay segments, 24–15
features, 24–1
from a Batch stream, 24–21
from a command file, 24–20
option summary, 24–4
terminating, 24–2
uses, 24–1
verifying the patch, 24–19

SLP
calling, 25–1
command file

format, 25–9
operators, 25–7

command-line syntax, 25–2
definition, 25–1
example, 25–4
lines

adding, 25–12
deleting, 25–14
replacing, 25–15

numbered listing, 25–11
option summary, 25–3
terminating, 25–1
validating, 25–6

Source Comparison Utility
See SRCCOM

Source Language Patch Utility
See SLP

SPLIT
definition, 26–1

SPLIT (Cont.)
examples, 26–2
using, 26–1

Split File Utility
See SPLIT

SPOOL
and QUEUE, 27–1
as a foreground job, 27–3
as a system job, 27–3
as a virtual job, 27–5
components, 27–2
definition, 27–1
flag pages, 27–10
output devices, 27–1
SET commands, 27–8
status, 27–10
with a command file, 27–4

SRCCOM
calling, 28–1
CHANGEBAR option, 28–9
command-line syntax, 28–2
DCL equivalents, 28–12
definition, 28–1
differences listing, 28–6
MATCH option, 28–8
options, 28–5
terminating, 28–1
uses, 28–1
with SLP command file, 28–10
with wildcards, 28–4

System-Resource Display Utility
See RESORC

T
TRANSF

command-line syntax, 29–22
confirmation messages, 29–24
installing, 29–21
using, 29–23

TRANSFER
command-line syntax, 29–8
installing, 29–4
messages, 29–15
qualifiers, 29–10
using, 29–7

TRANSFER/TRANSF
definition, 29–1
features, 29–2
requirements, 29–3

Index–4

Transparent Spooling Utility
See SPOOL

V
VBGEXE

allocation of low memory, 30–4
background jobs, 30–3
definition, 30–1
foreground jobs, 30–3
I-and-D space programs, 30–5
purpose, 30–1
restrictions, 30–6
system jobs, 30–3
using, 30–2

VDT (Virtual On-Line Debugging Technique),
18–1

Virtual memory
See VBGEXE

Virtual Run Utility
See VBGEXE

Virtual Terminal Communications Utility
See VTCOM

VTCOM
and linking with host, 31–7
and logging on host, 31–7
and mini-exchange, 31–15
calling, 31–6
capturing host screen image, 31–12
command mode, 31–8
command summary, 31–9
definition, 31–1
moving between host and local computer,

31–8
package, 31–3
using, 31–6
with background job, 31–5
with foreground or system jobs, 31–5

W
WF Work file

MACRO, 16–4
Wildcards

using with BATCH, A–7

Index–5

