
~~~-· ··!"'''~~ ... >-,_ I . 
< ' · I _ .. ~ ' i ' 

. i '', 
-- -



DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, 
Massachusetts 01754, Telephone: (617) 897-5111 
SALES AND SERVICE OFFICES 
UNITED STATES-ALABAMA, Huntsville • ARIZONA, Phoenix and Tucson • 
CALIFORNIA, El Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San 
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland 
Hills •COLORADO, Englewood • CONNECTICUT, Fairfield and Meriden • DISTRICT 
OF COLUMBIA, Washington (Lanham, MD) • FLORIDA, Ft. Lauderdale and Orlando • 
GEORGIA, Atlanta • HAWAII, Honolulu • ILLINOIS, Chicago (Rolling Meadows) • 
IN DIANA, Indianapolis • IOWA, Bettendorf • KENTUCKY, Louisville • LOUISIANA, 
New Orleans (Metairie) • MARYLAND, Odenton • MASSACHUSETTS, Marlborough, 
Waltham and Westfield • MICHIGAN, Detroit (Farmington Hills) • MINNESOTA, 
Minneapolis • MISSOURI, Kansas City (Independence) and St. Louis • NEW 
HAMPSHIRE, Manchester • NEW JERSEY, Cherry Hill, Fairfield, Metuchen and 
Princeton • NEW MEXICO, Albuquerque • NEW YORK, Albany, Buffalo (Cheek­
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse • 
NORTH CAROLINA, Durham/Chapel Hill • OHIO, Clevelaifd (Euclid), Columbus and 
Dayton • OKLAHOMA, Tulsa • OREGON, Eugene and Portland • PENNSYLVANIA, 
Allentown, Philadelphia (Bluebell) and Pittsburgh • SOUTH CAROLINA, Columbia • 
TENNESSEE, Knoxville and Nashville • TEXAS, Austin, Dallas and Houston • UTAH, 
Salt Lake City • VIRGINIA, Richmond • WASHINGTON, Bellevue • WISCONSIN, 
Milwaukee (Brookfield) • 
INTERNATIONAL-ARGENTINA, Buenos Aires • AUSTRALIA, Adelaide, Brisbane, 
Canberra, Melbourne, Perth and Sydney • AUSTRIA, Vienna • BELGIUM, Brussels • 
BOLIVIA, La Paz • BRAZIL, Rio de Janeiro and Sao Paulo • CANADA, Calgary, 
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg • 
CHILE, Santiago • DENMARK, Copenhagen • FINLAND, Helsinki • FRANCE, 
Grenoble and Paris• GERMAN FEDERAL REPUBLIC, Cologne, Frankfurt, Hamburg, 
Hannover, Munich, Stuttgart and West Berlin• HONG KONG• INDIA, Bombay• 
INDONESIA, Djakarta• IRELAND, Dublin• ITALY, Milan and Turin• JAPAN, Osaka 
and Tokyo• MALAYSIA, Kuala Lumpur• MEXICO, Mexico City• NETHERLANDS, 
Utrecht• NEW ZEALAND, Auckland• NORWAY, Oslo• PUERTO RICO, Santurce • 
SINGAPORE• SWEDEN, Gothenburg and Stockholm• SWITZERLAND, Geneva and 
Zurich• UNITED KINGDOM, Birmingham, Bristol, Edinburgh, Leeds, London, 
Manchester and Reading• VENEZUELA, Caracas• 



SECTION 1 LSl-11 FAMILY HARDWARE -
SECTION 2 OPERATION -
SECTION 3 PROCESSOR -
SECTION 4 SYSTEM SOFTWARE • 
SECTJON 5 DEC SERVICES • 
APPENDICES • 



ii 



mnmnomo 

microcomputer 
handbook. 

digital equipment corporation 
iii 



Copyright © 1976 by Digital Equipment Corporation 

The material in this manual is for informational 
purposes and is spbject to change without notice. 

Digital Equipment Corporation assumes no re· 
sponsibility for any errors which may appear in 
this handbook. 

The following are trademarks of 
Digital Equipment Corporation, Maynard, Massachusetts: 

DEC 

FLIP CHIP 

DIGITAL 

iv 

PDP 

FOCAL 

DEC US 



CONTENTS 

SECTION I LSl-11 FAMILY HARDWARE 

CHAPTER 1 INTRODUCTION . . . . . . . 
. 1.1 GENERAL . . . . . . . 

1.2 LSl-11 SYSTEM COMPONENTS .. 
1.2.1 The LSl-11 Microcomputer 
1.2.2 1/0 Bus Concept ·. . . . . 
1.2.3 Memory Options . . . . . 
1.2.4 Peripheral Interface Options 
1.2.5 Backplane Options . . 
1.2.6 Expansion Boxes . . . 
1.2.7 Bus Accessory Options 

1.3 THE PDP-11/03 SYSTEM . 
1.4 THE PDP-11V03 SYSTEM . 

CHAPTER 2 SPECIFICATIONS 
2.1 GENERAL . . . . . . . 
2.2 LSl-11 SYSTEM COMPONENTS 

2.2.1 Modules ..... . 
2.2.2 Backplane Options . . 
2.2.3 BAll-ME and BAll-MF Expansion Boxes 

2.3 PDP-11/03 SYSTEM . . . . .· ... 
2.3.1 General . . . . . . . . . . 
2.3.2 H780 Power Supply . . . . 
2.3.3 Environmental Specifications 
2.3.4 Mechanical Specifications 

2.4 PDP-11 V03 SYSTEMS 
2.4.1 General . . . 
2.4.2 Specifications . . . . . 

CHAPTER 3 THE LSl-11 BUS . . . . . . . . 
3.1 CHOOSING AN 1/0 TRANSFER TYPE . 
3.2 DEVICE PRIORITY . . . . . . . . . . . . . 
3.3 MODULE CONTACT FINGER IDENTIFICATION . 
3.4 BUS SIGNALS . . . . 
3.5 BUS CYCLES ..... . 

3.5.1 General . . . . . 
3.5.2 Input Operations . 
3.5.3 Output Operations 

3.6 OMA OPERATIONS . . . 
3.7 INTERRUPTS . . . . . 
3.8 BUS INITIALIZATION . 
.3.9 POWER-UP POWER-DOWN SEQUENCE 
3.10 HALT MODE ..... 
3.11 MEMORY REFRESH .. 
3.12 BUS SPECIFICATIONS . 
3.13 BUS CONFIGURATIONS 
3.14 BUS SIGNAL TIMING 

v 

1-1 
1-1 
1-1 
1-1 
1-7 
1-8 
1-9 
1-17 
1-21 
1-21 
1-22 
1-22 

2-1 
2-1 
2-1 
2-1 
2-1 
2-6 
2-6 

. 2-6 
2-7 
2-8 
2-8 
2-11 
2-11 
2-11 

3-1 
3-1 
3-1 
3-2 
3-4 
3-9 
3-9 
"l-9 
3-9 
3-11 
3-15 
3-15 
3-17 
3-17 
3-17 
3-18 
3-18 
3-21 



CHAPTER 4 LS!-11 MODULE DESCRIPTIONS 
4.1 GENERAL . . . . . .. . 
4.2 KDll-F MICROCOMPUTER ... . 

4.2.1 General : . . . . . . .. 
4.2.2 Basic Microcomputer Functions 
4.2.3 KDll-F Resident Memory ... 
4.2.4 DC-DC Power Inverter . . . . . 

4.3 MMVll-A 4K BY 16-BIT CORE MEMORY 
4.3.1 General . . ·. . . . . . ... 
4.3.2 Functional Description . . . . 

4.4 MRVll-AA 4K BY 16-BIT READ-ONLY MEMORY . 
4.4.1 General . . . . . . . . . . . .. 
4.4.2 Functional Description . . . . . . 

4.5 MSVll-B 4K BY 16-BIT SEMICONDUCTOR 
READ/WRITE MEMORY . . . 
4.5.l General . . ..... · 
4.5.2 Functional Description 

4.6 DLVll SERIAL LINE UNIT .. 
4.6.1 General . . . . . . . 
4.6.2 Functional Description 

4.7 DRVll PARALLEL LINE UNIT . 
4.7.1 General . · ..... . 
4.7.2 Functional Description 

4.8 DRVll-B OMA INTERFACE .. 
4.9 DRVll-P LSl-11 BUS FOUNDATION MODULE 
4.10 LSHl BUS ACCESSORY OPTIONS 

4.10.1 General . . .... 
4.10.2 Terminations 
4.10.3 Bootstrap ROM Logic 
4.10.4 DMA Refresh Logic 

4.11 H780 POWER SUPPLY .. . 
4.11.1 General ..... . 
4.11.2 Specifications 
4.11.3 Functional Description 
4.11.4 H780 Connections .. 

CHAPTER 5 CONFIGURING LSl-11 MODULES 
5.1 
5.2 

5.3 

5.4 

GENERAL .......... . 
PROCESSOR MODULE . . . . . . 
5.2.1 General . . . . . . . . . 
5.2.2 Processor Module Jumpers 
5.2.3 Installation . . . . . . . 
5.2.4 Using the LSl-11 Microcomputer 
5.2.5 Initialization and Power Fail 
MSVll-B READ/WRITE MEMORY 
5.3.1 General . . . . . . .. 
5.3.2 Address Jumpers . . . . 
5.3.3 Reply to Refresh Jumpers 
5.3.4 Refresh Requirements 
MMVll-A CORE MEMORY ... 
5.4.1 General . . . . . . . . 
5.4.2 Switch-Selected Addressing 
5.4.3 Backplane Jumpers 

vi 

4-1 
4-1 
4-2 
4-2 
4-2 
4-15 
4-16 
4-16 
4-16 
4-18 
4-30 
4-30 
4-31 

4-33 
4-33 
4-34 
4-36 
4-36 
4-37 
4-42 
4-42 
4-43 
4-48 
4-48 
4-48 
4-48 
4-48 
4.50. 
4.51 
4-56 
4-56 
4-57 
4-59 
4-67 

5-1 
5-1 
5-2 
5-2 
5-2 
5-7. 
5-8 
5-9 
5-9 
5-9 
5-9 
5-9 
5-10 
5-11 
5-11 
5-12 
5-13 



5.5 MRVll-AA READ-ONLY MEMORY 5-14 
5.5.1 General 5-14 
5.5.2 Chip Type Jumpers . . . . 5-15 
5.5.3 Address and Reply Jumpers 5-15 
5.5.4 PROM Chips . 5-17 
5.5.5 Programming PROM Chips . 5-19 
5.5.6 I/ 0 Timing and Bus Restrictions 5-19 

5.6 DLVll SERIAL LINE UNIT 5-19 
5.6.1 General 5-19 
5.6.2 Jumper-Selected Addressing, Vectors, 

and Module Operations 5-19 
5.6.3 Installation 5-24 
5.6.4 Interfacing with 20 mA Current Loop Devices 5-26 
5.6.5 Interfacing with EIA-Compatible Devices 5-26 
5.6.6 Programming 5-26 
5.6.7 Console Device 5-28 

5.7 DRVll PARALLEL LINE UNIT. 5-30 
5.7.1 General 5-30 
5.7.2 Jumper-Selected Addressing and Vectors 5-30 
5.7.3 Installation 5-33 
5.7.4 Interfacing to the User's Device '5-34 
5.7.5 Programming 5-37 

5.8 DRVll-B DIRECT MEMORY ACCESS (OMA) 
INTERFACE 5-40 
5.8.1 General 5-40 
5.8.2 Registers 5-41 
5.8.3 Device and Vector Address Selection 5-44 
5.8.4 Functions 5-47 
5.8.5 Device Cables and Signals . 5-47 

5.9 LSl-11 BUS FOUNDATION MODULE 5-49 
5.9.l General 5-49 
5.9.2 Functions 5-50 
5.9.3 Component Mounting Area 5-53 

CHAPTER 6 INSTALLATION 6-1 
6.1 GENERAL 6-1 
6.2 CONFIGURATION CHECKLIST 6-1 
6.3 DEVICE PRIORITY 6-2 

6.3.1 General 6-2 
6.3.2 Priority Selection Using the H9270 Backplane 6-2 
6.3.3 H9270 Backplane/MMVll-A Configuration . 6-3 
6.3.4 DDVl 1-B Expanded Backplane Configuration 6-4 

6.4 MODULE INSERTION AND REMOVAL . 6-5 
6.5 1/0 CABLING . 6-6 
6.6 PDP-11/03 INSTALLATION PROCEDURE 6-7 

6.6.1 Packaging and Mounting . 6-7 
6.6.2 Power Requirements 6-7 
6.6.3 Environmental Requirements . 6-7 

6.7 LSl-11 SYSTEM INSTALLATION 6-7 
6.7.1 General 6-7 
6.7.2 Mounting the Backplane . 6-7 
6.7.3 DC Power Connections 6-8 
6.7.4 Backplane Ground Connectjon 6-10 

vii 



6.7.5 Environmental Requirements . . . 6-10 
6.7.6 Externally Generated Bus Signals . 6-10 

6.8 USING LSl-11 BUS ACCESSORY OPTIONS 6-15 
6.8.1 General . . . . . 6-15 
6.8.2 Using the REVll-A 6-16 
6.8.3 Using the REVll-C 6-17 
6.8.4 Using the TEVll. . 6-17 
6.8.5 Using the BCVl·B 6-17 
6.8.6 Using the BCVl-A . . . . 6-18 

6.9 USING. BAl1-ME AND BAll-MF .EXPANSION BOXES 6c19 

CHAPTER 7 USING- PROMS . . . 7~1 
7.1 GENERAL . . . . . . 7-1 
7.2 PROM TYPES . . . . . 7-1 
7.3 PROGRAMMING NOTES 7-1 
7.4 LOADING PROMS . . 7-3 

7.4.1 General . . . . 7-3 
7.4.2 Word Format . . 7'3 
7.4.3 Addressing 7-3 

7.5 PROM FORMATTING USING THE QJVll PROGRAM 7-3 
7.5.l General . . . . . . 7-3 
7.5.2 Loading QJVll . . . 7-4 
7.5.3 Entering Parameters 7-5 
7.5.4 QJVll Operation . . 7-8 

7.6 INSTALLING PROMS . . . . 7-10 

CHAPTER 8 USER-DESIGNED INTERFACES 8-1 
8.1 GENERAL . . . . . . . . . . 8-1 
8.2 BUS RECEIVER AND DRIVER CIRCUITS 8-1 
8.3 PROGRAMMED INTERFACE 8-3 
8.4 INTERRUPT LOGIC . . 8-6 
8.5. DMA INTERFACE LOGIC . 8-7 

CHAPTER 9 MAINTENANCE . . . . 9·1 
9.1 GENERAL . . . . . . . 9·1 
9.2 OPERATIONAL CHECKLIST. 9-1 

9.2.1 General . . . . . . 9·1 
9.2:2 LSl-11 System . . . 9-1 
9.2.3 PDP-11/03 System . 9-2 

9.3 USING PAPER TAPE DIAGNOSTICS 9-3 
9.3.l General . . . . . . . . . 9-3 
9.3.2 Loading Diagnostic Program Tapes 9-4 
9.3.3 Program Modification Procedure 9-4 
9.3.4 Program Starting and Execution 9-5 
9.3.5 Diagnostic Program Results . . . 9-6 

9.4 USING RXDP DIAGNOSTICS . . . . . . 9-6 
9.4.l RXDP Diagnostics . . . . . . . 9-6 
9.4.2 Program Modification and Execution 9-8 
9.4.3 Single Instruction Execution . . . . 9-10 
9.4.4 Diagnostic Program Results . . . . 9-11 
9.4.5 Running a Chain of Diagnostics . . 9-11 
9.4.6 Making a Duplicate of the Diskette . 9-13 
9.4.7 Diagnostic Program Changes . . . 9-13 
9.4.8 Creating a Unique RXDP Diskette . 9-14 

viii 



SECTION II OPERATION 

CHAPTER 1 GENERAL. PROCEDURES.. 1-1 
1.1 GENERAL . . . . . . . . 1-1 
1.2 THE CONSOLE.DEVICE. . . 1.-1 
1.3 POWER-UP RESPONSE . . . 1-2 

1.3.1 PDP-11/03. Power-On 1-2 
1.3.2. LSl-11 Initial Power-On 1-4 
1.3.3 ASCII Character Console Printout Program . 1-4 

CHAPTER 2 USING CONSOLE ODT COMMANDS . 2-1 
2.1 THE HALT MODE 2-1 
2.2 ODT COMMANDS . . . . . . . . . . 2-2 

CHAPTER 3 USING REVll-A AND REVll-C COMMANDS 3-1 
3.1 GENERAL . . . . . . . . . . . . . 3-1 
3.2 REVll-A AND REVll-C COMMAND SET 3-1 

CHAPTER 4 PAPER TAPE SYSTEM OPERATION 4-1 
4.1 GENERAL . . . . . . . . . . . 4-1 
4.2 LOADING THE ABSOLUTE LOADER 4-1 
4.3 LOADING PROGRAM TAPES . . . . 4-3 

4.3.1 General . . . . . . . . . . 4-3 
4,3,2 Normal Loading Procedure . . 4-3 
4.3.3 Relocated Loading Procedure 4-4 
4.3.4 Self-Starting Programs . . . . 4-4 

4.4 PROGRAM STARTING AND EXECUTION 4-4 
4.5 PAPER TAPE SOFTWARE . . . . . . . 4-6 

CHAPTER 5 RXVll FLOPPY DISK-BASED SYSTEM OPERATION 5-1 
5.1 GENERAL . . . . . . . . . . . . . . . 5-1 
5.2 BOOTSTRAPPING THE RXVll . . . . . . . 5-1 

5.2. l General . . . . . . . . . . . . . . . . 5-1 
5.2.2 Bootstrapping the System Using the 

REVll-A or REVll-C . . . . . . . . . . 5-1 
5.2.3 Booting the System Via the Console Device 5-2 
5.2.4 Incorrect Loading . . . . . . . . . . . . 5-3 

SECTION Ill PROCESSOR 

CHAPTER 1 INTRODUCTION 1-1 
1.1 PROCESSOR HARDWARE . 1-1 

i.1.1 . General Registers 1-1 
1.1.2 The Processor Status Word (PSW) 1-3 
1.1.3 Instruction Set . 1-4 

1.2 LSl-11 MEMORY ORGANIZATION 1-5 

ix 



CHAPTER 2 ADDRESSING MODES . . . . 2·1 
2.1 SINGLE OPERAND ADDRESSING 2·3 
2.2 DOUBLE OPERAND ADDRESSING 2·3 
2.3 DIRECT ADDRESSING . . . 2·5 

2.3.1 . Register Mode . . . 2·5 
2.3.2 Autoincrement Mode . . 2·7 
2.3.3 Autodecrement Mode . . 2·8 
2.3.4 Index Mode . . . . . . 2·9 

2.4 DEFERRED (INDIRECT) ADDRESSING 2·11 
2.5 USE OF THE PC AS A GENERAL REGISTER . 2·13 

2.5.1 Immediate Mode . . . . . . 2·14 
2.5.2 Absolute Addressing . . . . . . . 2·15 
2.5.3 Relative Addressing . . . . . . . . 2·16 
2.5.4 Relative Deferred Addressing . . . . 2·16 

2.6 USE OF STACK POINTER AS GENERAL REGISTER . 2·17 
2.7 SUMMARY OF ADDRESSING MODES . 2·17 

2.7.1 General Register Addressing . 2·17 
2.7.2 Program Counter Addressing . 2·19 

CHAPTER 3 INSTRUCTION SET . . 3·1 
3.1 INTRODUCTION 3-1 
3.2 INSTRUCTION FORMATS . 3·2 
3.3 LIST OF INSTRUCTIONS . 3-4 
3.4 SINGLE OPERAND INSTRUCTIONS 3·6 
3.5 PS WORD OPERATORS . . . . . . 3·17 
3.6 DOUBLE OPERAND INSTRUCTIONS 3·18 
3.1 PROGRAM CONTROL INSTRUCTIONS 3-24 
3.8 MISCELLANEOUS . . . . . . . 3·24 
3.9 RESERVED INSTRUCTIONS . . . 3-47 
3.10 CONDITION CODE OPERATORS . . . 3-49 

CHAPTER 4 EXTENDED ARITHMETIC OPTION . 4·1 
4.1 GENERAL . . . . . . . . . . . . 4·1 
4.2 FIXED POINT ARITHMETIC (EIS) . . 4·1 
4.3 FLOATING POINT ARITHMETIC (FIS) 4·6 

CHAPTER 5 PROGRAMMING TECHNIQUES 5·1 
5.1 THE STACK . . . . . . . . 5·1 
5.2 SUBROUTINE LINKAGE . . . 5·5 

5.2.1 Subroutine Calls . . . . 5·5 
5.2.2· Argument Transmission . 5·6 
5.2.3 Subroutine Return . . . 5·9 
5.2.4 LSl·ll Set Subroutine Advantages 5·9 
5.2.5 Trap Subroutine Calls 5·9 

5.3 INTERRUPTS . . . . . . . . 5·10 
5.3.l General Principles . . 5·10 
5.3.2 Nesting . . . . . . . 5·11 

5.4 PROGRAMMING PERIPHERALS 5·13 
5.5 DEVICE REGISTERS . . . . . 5·14 

x 



SECTION rv SYSTEM SOFTWARE 

CHAPTER 1 
1.1 
1.2 
1.3 

INTRODUCTION . . . . . . . 
SOFTWARE SYSTEMS . . . . . . . . . . 
OPERATING SYSTEMS . . . . . . . . . . 
LANGUAGES AND LANGUAGE PROCESSORS 

CHAPTER 2 OPERATING SYSTEMS . . . . 
2.1 COMPONENTS AND FUNCTIONS 
2.2 PROCESSING METHODS . . . . 
2.3 DATA MANAGEMENT . . . . . 

2.3.1 Physical and Logical Units of Data 
2.3.2 Data Storage and Transfer Modes 
2.3.3 I/ 0 Devices and Physical Data 

Access Characteristics . . . . . 
2.3.4 Physical Device Characteristics and 

Logical Data Organizations . . . 
2.3.5 File Structures and Access Methods . 
2.3.6 Directories and Directory Access Techniques 
2.3.7 File Naming . . . . . . . . . . . .... 

2.4 USER INTERFACES . . . . . . . . . . . . . .. 
2.4.1 Special Terminal Commands .... 
2.4.2 1/0 Commands . . . . . . . . . . . .. 
2.4.3 Monitor and Command Language Commands . 

2.5 PROGRAMMED SYSTEM SERVICES 
2.6 SYSTEM UTILITIES . . . . 

CHAPTER 3 LANGUAGE PROCESSORS 
3.1 LANGUAGE TRANSLATION SYSTEMS 
3.2 PDP-11 ASSEMBLERS AND THE FORTRAN 

COMPILERS ..... . 
3.3 INCREMENTAL COMPILERS ..... . 

CHAPTER 4 FOREGROUND/BACKGROUND OPERATING 
SYSTEM RT·ll . . . . . . . . . . 

4.1 OPERATING SYSTEM FUNCTIONS AND FEATURES 
4.2 MONITOR ORGANIZATION .......... . 

4.2.l Monitor Components ......... . 
4.2.2 General Memory Layout and Component Sizes 
4.2.3 1/0 System Design and Operation 
4.2.4 Batch Processing . . . . . . . . 
4.2.5 Switching Between Single-Job and 

Foreground/ Background . 
4.3 SYSTEM CONVENTIONS .... 

4.3.1 Physical Device Names . 
4.3.2 Filenames and Extensions 
4.3.3 Data Formats . . . . . 
4.3.4 File Structure . . . . . 

4.4 COMMANDS ........ . 
4.4.l - Keyboard Communication 
4.4.2 Entering 1/0 Information Using the CSI 
4.4.3 BAlCH Job Control Language . . . . 

xi 

·. 

1-1 
1-1 
1-1 
1·3 

2-1 
2-1 
2-3 
2-4 
2-4 
2·6 

2·7 

2-10 
2·12 
2-14 
2-15 
2-16 
2-17 
2·17 
2-19 
2-20 
2-20 

3-1 
3-1 

3-4 
3-7 

4-1 
4·1 
4·2 
4-3 
4-4 
4·6 
4-7 

4-7 
4·8 
4-8 
4·8 
4·9 
4.9 
4·10 
4·10 
4-14 
4·14 



4.5 

4.6 

4.7 

MONITOR PROGRAMMED REQUESTS ... 
4.5.1 Summary of Programmed Requests . 
4.5.2 Program Environment Control . . 
4.5.3 Resource and System Interrogation 
4.5.4 Command Interpretation 
4.5.5 File Operations . . . . . 
4.5.6 Input/Output . . . . . 
4.5.7 lnterjob Communications 
4.5.8 Timer Support . . . . . 
4.5.9 Program Termination or Suspension . 
4.5.10 Interrupt Service . . . 
SYSTEM PROGRAMS . 
4.6.1 EDIT Interactive Editor 
4.6.2 LINK Linker . . . . . 
4.6.3 LIBR Librarian . . . . 
4.6.4 ODT On-Line Debugger 
4.6.5 PATCH Code Patch Utility . 
4.6.6 PATCHO Object Patch Utility . 
4.6.7 PIP Peripheral Interchange Program Utility . 
4.6.8 SRCCOM Source Compare Utility . 
4.6.9 FILEX File Exchange Utility 
4.6.10 DUMP File Dump Utility . . . 
LANGUAGES .......... . 
4.7.1 MACRO Assembler .... . 
4.7.2 EXPAND Macro Expander and 

ASEMBL Assembler . 
4.7.3 FORTRAN . . . . 
4.7.4 FOCAL . . . . . 
4.7.5 Single·User BASIC 
4.7.6 Multi-User BASIC . 

CHAPTER 5 REAL-TIME MULTIPROGRAMMING RSX·llS 
5.1 FUNCTIONS AND FEATURES ...... . 
5.2 RSX-llS OPERATING SYSTEM CONCEPTS . 
5.3 SYSTEM ORGANIZATION AND GENERATION 
5.4 SYSTEM CONVENTIONS . . . . . . . 

5.4.l Devices . . . . . . . . . . 
5.4.2 MCR Operator Commands and 

Terminal Control 
5.5 SYSTEM DIRECTIVES 
5.6 LANGUAGES . . . . 

5.6.1 MACRO ... 
5.6.2 FORTRAN IV . 

CHAPTER 6 MACRO . . . . . 
6.1 FUNCTIONS AND FEATURES 
6.2 LANGUAGE . . . . . . . . . 

6.2.1 Symbols and Symbol Definitions 
6.2.2 Directives . . . . . . 

6.3 ASSEMBLER OPERATION .. 
6.4 ASSEMBLER ENVIRONMENTS .... 

xii 

4-15 
4-17 
4-20 
4-22 
4-22 
4-23 
4-24 
4-26 
4-26 
4-27 
4-27 
4-27 
4-28 
4-28 
4-28 
4-29 
4-29 
4-30 
4-30 
4-30 
4-30 
4-30 
4-30 
4-30 

4-31 
4-31 
4-32 
4-33 
4-34 

. 5-1 
5-1 
5-1 
5-6 
5·9 
5-9 

5,9 
5-11 
5-14 
5-14 
5-14 

6-1 
6-1 
6-1 
6-2 
6-4 
6-10 
6-14 



CHAPTER 7 FORTRAN IV . . . . . . . 7-1 
7.1 FUNCTIONS AND FEATURES . 7-1 
7.2 LANGUAGE . . . . . . . . . 7-3 
7.3 COMPILER OPERATION . . . . . . . . 7-9 
7.4 FORTRAN IV OPERATING ENVIRONMENTS . 7-14 

CHAPTER 8 BASIC . . . . . . . . . . . 8-1 
8.1 FUNCTIONS AND FEATURES . . 8-1 
8.2 LANGUAGE . . . . . . . . . . 8-1 

8.2.1 BASIC Files . . . . . . 8-7 
8.2.2 Creating, Modifying and 

Executing BASIC Programs 8-7 
8.3 COMPILER OPERATION . . . . 8·8 
.8.4 BASIC ENVIRONMENTS . . . . . 8·11 

SECTION V DEC SERVICES 

CHAPTER 1 EDUCATIONAL SERVICES 
1.1 GENERAL ...... . 
1.2 CATALOG COURSES . . . . 
1.3 CUSTOM COURSES . . . . 
1.4 ON-SITE INSTRUCTION . . 
1.5 AUDIO-VISUAL COURSES . . . . . . 
1.6 LSl·ll, PDP-11/03 RELATED COURSES 

CHAPTER 2 DECUS . . . . 

CHAPTER 3 MAINTENANCE . 
3.1 GENERAL . . . . 
3.2 ON-SITE SERVICE . 
3.3 OFF-SITE SERVICE 

APPENDICES 

1·1 
1·1 
l·l 
1·1 
1·1 
1·1 
1·1 

2·1 

3-1 
3·1 
3·1 
3·1 

APPENDIX A GENERAL REFERENCE DATA . . . . . . . A·l 
APPENDIX B INSTRUCTION TIMING . . . . . . . . . . B·l 
APPENDIX C LSl·ll, PDP·ll PROGRAMMING/HARDWARE 

DIFFERENCE LIST . . . . . . . . . . . . C·l 
APPENDIX D LSl·ll, PDP·ll/03 ENGINEERING BULLETIN D-1 
APPENDIX E PERIPHERALS . . . . . . . . . . E ·1 
APPENDIX F INTEGRATED CIRCUIT DIAGRAMS . . . F ·1 
APPENDIX G ABSOLUTE LOADER FORMAT . . . . . . . G·l 

xiii 



f ' 

••• 

The LSl -11 Family 

xiv 



PREFACE 

DIGITAL introduced the first PDP-11 processor in 1970. Since then, a 
family of PDP-11 computer products has been constantly evolving-not 
just a family of processors, but a family of peripherals, software, and 
services. Today, the PDP-11 family is the broadest family of compatible 
computer products on the market, with one of the latest additions being 
the LSl-11. . 

The LSl-11 is a 16-bit microcomputer with the speed and instruction set 
of a minicomputer. The LSl-11 was introduced in 1975; volume deliveries 
started during the fall of 1975. Due to its size and unique capabilities, it 
is being designed into many instrumentation, data processing, and con­
troller applications. 

Three LSl·ll system configurations comprise the LSl·ll portion of the 
PDP·ll family: LSl·ll system components, the PDP·ll/03, and the 
PDP·11V03. 

LSl·ll component systems include individual modules, backplane, etc., 
ordered as separate items. The user purchases only those items required 
for a specific application. 

The PDP-11/03, a boxed version of the LSl-11, is designed for those 
that need. a packaged microcomputer system. It consists of an LSl·ll 

'microcomputer and 4K memory, a modular power supply, and a mount-
ing box. It is an easy to use LSl·ll·based microcomputer for system 
development or dedicated applications. 

The PDP-11V03 is the latest addition to the LSl·ll family. It is a mass 
storage-based system, including the PDP-11/03, the RXVll floppy disk 
system, a system cabinet and power distribution panel, either a VT52 
DECscope or LA36 DECwriter terminal, RT·ll system software, and 
system diagnostics. 

The remainder of this handbook contains detailed information for LSl-11 
and PDP-11/03 systems. System specifications for the PDP·11V03 are 
also included. 

This handbook contains all of the information previously contained in the 
LSl-11, PDP-11/03 Processor Ha.ndbook and LSl·ll, PDP-11/03 User's 
Manual. Information has been expanded to include the latest LSl·ll op­
tions and module configurations. In addition, a section on system soft· 
ware is included. This information is those portions of the PDP-11 
Software Handbook that are applicable to LSl-11 system applications. 
A brief d.escription of the various sections comprising this handbook is 
provided beJow: 

Section 
I 

Description 
LSl-11 Family Hardware-Chapters containing a detailed de· 
scription of LSl-11 system hardware specifications, installation, 

XV· 



system configuration, and maintenance information. Instruc­
tions for loading programmable read only memory integrated 
circuits is also included. 

II Operation-Chapters describing the use of console mode ODT 
commands, REVll (optional) commands, paper tape system 
operation, and RXVl 1 floppy disk-based system operation. 

Ill Processor-Chapters describing the processor's addressing 
modes, basic instruction set, optional EIS/FIS instruction set, 
and general programming techniques. 

IV System Software-Chapters containing a listing of software 
. options, a description of operating systems, and floppy disk 
system software available for use on the LSl-11 system. 

V DIGITAL Services-Chapters on LSl-11 training, DECUS and 
maintenance services. 

xvi 



CHAPTER 1 INTRODUCTION 

CHAPTER 2 SPECIFICATIONS 

CHAPTER 3 THE LSl-11 BUS 

CHAPTER 4 LSl-11 MODULE DESCRIPTIONS 

CHAPTER 5 CONFIGURING LSl-11 MODULES 

CHAPTER 6 INSTALLATION 

CHAPTER. 7 ·USING· PROMs 

CHAPTER 8 .USER-DESlGNED INTERFACES 

CHAPTER 9 MAINTENANCE 

-



CHAPTER 1 

INTRODUCTION 

1.1 GENERAL .. 
Three basic LSl-11 microcomputer system configurations are available 
from DIGITAL: LSl-11 system components, the PDP-11/03 boxed LSl-11 
system, and the PDP-11 V03 system. The three basic system configura­
tions are described below. 

LSl-11 system components (Figure 1-1) include separate modules 
(printed circuit boards), backplanes, cables, etc., which are available 
separately. This allows the user to purchase only the system components 
required for a specific application. Original equipment manufacturers 
(OEM's), for example, can purchase LSl-11 system components to func­
tion in a specific computer-controlled system environment. In this ap­
plication, the LSI-I 1 serves as low-cost, compact, flexible solution to the 
OEM's computer requirement. All of the essential processor hardware 
architecture (instruction set, addressing modes, registers, etc.) and soft· 
ware features of the PDP-11/40 computer are retained in the LSl-11 
processor. 

The PDP-11/03 (Figure 1-2) is a packaged version of the LSl-11 micro­
computer. It includes a rack-mountable enclosure containing the LSl-11 
processor, 4K memory, an LSl-11 bus-structured backplane," a power 
supply for the processor and options contained in the box, and a control 
panel (part of the power supply assembly) containing three indicators 
and three switches. All LSl-11 component system options can be used 
in PDP-11/03 systems. The PDP-11/03 is particularly useful in prototype 
system development. 

The PDP·ll V03 system (Figure 1-3) is a complete, ready-to-use floppy 
disk-based system that includes all necessary hardware factory-config­
ured and installed, a terminal (VT52 or LA36), and RT-11 operating 
system software. RT-11 software includes single job and foreground/ 
background operating system monitors. Included in the standard RT-11 
software are all of the software tools normally required for assembly 
language programming. Floppy disk system diagnostics are also in­
cluded with the system. Software options are described in. Section IV. 

1.2 LSl-11 SYSTEM COMPONENTS 

1.2.1 The LSl-11 Microcomputer 
In general, all LSl-11 and PDP-11/03 systems include the KDll-F or 
KDll-J microcomputer. The KDll·F is a single 8.5 by 10 inch module 
that contains the LSl-11 microprocessor and a 4K by 16-bit semicon· 
ductor read/write memory (Figure 1·4). The KDll·J (Figure 1-5) uses 
the same microcomputer module as the KDll-F; however, it is supplied 
with the MMVll·A 4K by 16-bit core memory (Figure 1-7) instead of the 
semiconductor memory. 

1-1 



Figure 1-1 LSl-11 System Components 



/ 

..... 
w 

Figure 1-2 PDP-11/03 System 



Each KD l 1-F features: 

• A low-cost, powerful processor for integration into any smal l- o_r 
medium-sized computer system. 

• Direct addressing of 32K 16-bit words or 64K 8-bit bytes ( K = 1024). 

• Efficient processing of 8-bit characters without the need to rotate, 
swap, or mask. 

• Asynchronous operation that allows system components to run at their 
highest possible speed ; replacement with faster devices means faster 
operation without other hardware or software chan ges. 

• A modular component design that provides ease and flexibility in con­
figu ring systems. 

• Hardware memory stack for handling structured data, subroutines, and 
interrupts. 

• Direct memory access for high data rate devices inherent' in the bus 
architecture. 

• Eight general-purpose registers that are available for data storage, 
pointers, and accumulators . Two are dedicated : SP and PC. 

Figure 1-3 PDP-11 V03 System 
(shown with the LA36 DECwriter terminal) 

1-4 



Figure 1-4 KDll-F LSl -11 Microcomputer and 4K Memory 



Figure 1-5 KDll -J LSl-11 Microcomputer (Processor Module) 



• A bus structure that provides position-dependent priority as peripheral 
device interfaces are connected to the 1/0 bus. 

• Fast interrupt response without device polling. 

• A powerful and convenient set of programming instructions. 

• A jumper-selected power-up mode that enables restart through a 
power-up vector, console Octal Debugging Technique (ODT) micro· 
code subset, or a bootstrap program. 

• On-board 4K RAM. 

• An ODT microprogram that controls all manual entry/display fun.ctions 
previously performed by a control panel through a serial ASCII device 
(optional) which is capable of transmitting and receiving ODT com· 
mands and data. 

• Compact size (only 8.5 by 10 in.). 

1.2.2 1/0 Bus Concept 
The LSl·ll 1/0 bus is simple, fast, and easy to use as an interface be· 
tween the LSl-11 microcomputer, memory, and peripheral interface mod· 
ules. It comprises 17 control lines and a 16-line data/address bus. All 
modules connected to this bus receive the same interface signals. 

Address/data and control lines are open-collector lines that are asserted 
low. The microcomputer module is capable of driving six device locations 
along the bus. Peripheral interface or memory modules can be installed 
in any location along this bus. 

Both address and data words (or bytes) are time multiplexed over 16 
bus lines. For example, during a programmed data transfer, the LSl·ll 
microcomputer first asserts an address on the bus for a fixed time. After 
the address time has been completed, the processor performs either an 
input or output data transfer; the actual data transfer is asynchronous 
and requires a response from the addressed device. Bus synchronization 
and control signals provide this function. 

Control signal lines include two daisy-chained grant signals that provide 
a priority-structured 1/0 system. The highest priority device is the 
module electrically closest to the KDll·F (or KDll·J) module. Higher 
priority devices pass a grant signal to lower priority devices only when 
not requesting service. (Memory options or devices that do not use these 
signals must connect the chain.) 

The KDll·F contains a memory address register and 4K bank address 
decoder for its resident memory, which can be assigned to bank 0 or 
bank 1. Bank 7 is also decoded when addresses ranging from 160000 
to 177777 are placed on the bus. These addresses are normally used 
for addressing nonmemory devices, thus eliminating the need for bank 
address decoding on peripheral device interface modules. 

The bus provides a vectored interrupt capability for any interface device. 
Hence, device polling is not required in interrupt processing routines. 
This results in a considerable savings in processing time when many 
devices requiring· interrupt. service are. interfaced along the bus. When 
a device receives an interrupt grant (acknowledge), the KDl l·F inputs 

1·7 



the device's interrupt vector. The vector points to two addresses that 
contain a new processor status word and the starting address of the 
interrupt service routine for the device. 

One bus signal line functions as an external event interrupt input to the 
KOll-F module. This signal line can be connected to a frequency source, 
such as a line frequency, and used as a line time clock (LTC) interrupt. 
A jumper on the KOll-F module enables or inhibits this function. When 
enabled, the device conneeted to this line has the highest interupt prior, 
ity external to the processor. Interrupt vector 1008 is reserved for this 
function, and an interrupt request via the 6EVNT line causes new PC 
and PS words to be loaded from locations 1008 and 1028 • 

Memory refresh of dynamic MOS read/write memory is accomplished 
by bus signals. Refresh operation is controlled by either the processor 
module microcode or a direct memory access (OMA) device, such as the 
REVll-A or REVll-C.-

The processor can be placed in the Halt mode by asserting one bus 
signal. This allows peripheral devices or a separate switch to invoke 
console OOT microcode operation. 

Power-up/power-down sequencing is controlled by two bus signals. One 
signal, when in its true state, implies that primary power is normal. The 
second signal is in its true state when sufficient de power is available 
(and voltages are normal) for no'rmal system logic operation. These 
signals are produced by circuits contained in the H780. power supply. 
(POP-11/03 only) or by the· user's system (circuits external to the 
LSl·ll system components).. · 

OMA operation is controlled by three bus signals. Logic on the processor 
module, which is normally bus master, arbitrates OMA requests and 
grants bus mastership to the highest priority device requesting the bus. 
Priority is position-dependent through the use of a daisy-chained OMA 
grant signal. 

1.2.3 Memo..Y Options 
Memory options are available for expanding memory to 28K. The basic 
LSl-11 microcomputer is supplied with read/write memory. KOll-F's 
memory consists of a 4K dynamic MOS array that is physically located 
on the processor module. KOll-J's memory is a 4K magnetic core array 
contained on a separate module; the processor module supplied with 
the KOll·J contains no semiconductor memory components. 

Optional memory modules include: 

MRV11-AA-4K by 16·bit programmable read-only memory on an 8.5 by 
5 in. module (Figure 1·6). Requires one device location on the 1/0 bus. 
Can be configured using either 256 by 4·bit or 512 by 4·bit field pro­
grammable or masked read-only memories (ROMs) for a maximum ca­
pacity of 2048 or 4096 16-bit words. 

MRVll-AC-Unprogrammed 512 by 4-bit PROM integrated- circuits for 
use in the MRVll-AA. The integrated circuits are field programmable 
and should be installed in sets Of multiples Of four. 

1-8 



MMV11-A-4K by 16-bit core memory on an 8.5 by 10 by 0.9 in. unit 
(Figure 1-7). Requires two device locations on the 1/0 bus when in­
stalled in the backplane (preferred location slots A4-D4). This allows a 
daughterboard (part of the MMVll-A) to extend slightly beyond the 
backplane without using additional device locations. If not installed in 
this location, the MMVll-A requires four device locations because of 
the additional module thickness (0.9 in. instead of 0.5 in. for all other 
modules). 

MSV11-B-4K by 16-bit dynamic MOS read/write memory on an 8.5 by 
5 in. module (Figure 1-8). Requires one device location on the 1/0 bus. 
Refresh is automatically performed by the KDll-F processor microcode 
or by an external device, such as the REVll-A and REVll-C. 

1.2;4 Peripheral Interface Options 
Four basic interface module options are available for use in LSl-11 
systems. All options can be configured with unique device and vector 
addresses. 

DLV11-Serial line unit interface on an 8.5 by 5 in. module (Figure 1:9). 
Requires one device location on the bus. Jumpers select crystal-con­
trolled baud rates (50-9600 baud) and serial word format, including 
number of stop bits, number of data bits, and even, odd, or no parity 
bit. Optional interface cables include the BC05M, which connects the 
DLVll to 20 mA current loop peripheral devices, and the BC05C, which 
connects the DLVll to EIA-compatible devices (modems) via a Cinch 
DB-25P connector. 

DRV11-General-purpose parallel line unit interface on an 8.5 by 5 in. 
module (Figure 1-10). Requires one device location on the bus. Two 
40-pin connectors are included on the module for user interface appli­
cation. One is the 16-bit input and the other is the 16·bit output. 

DRVll-B-DMA interface on an 8.5 by 10 in. module (Figure 1-11). Re­
quires two device locations on the bus. The interface is programmed by 
the processor to move variable length blocks of 16-bit data words to or 
from specified locations in system memory via the LSl-11 bus. Once 
programmed, no processor intervention is required to complete the data 
transfer. The DRVll-8 is capable of transfer rates up to 250K, 16-bit 
words per second, and is capable of operating in burst modes and byte 
addressing. Switches are provided for selection of device addresses and 
interrupt vector address. 

DRV11-P-LSl-11 bus foundation on an 8.5 by 10 in. module (Figure 
1-12). Requires two device locations on the bus. 

1-9 



Figure 1-6 MRVll-AA 4K PROM Moduie 

1-10 



...... 

...... 

...... 

Figure 1-7 MMVll 4K Core Memory 



Figure 1·8 MSVll ·B 4K Semiconductor Memory 

1·12 



Figure 1-9 DLVll Serial Line Unit 

1-13 



Figure 1-10 DRVll Parallel Line Unit 

1-14 



.... 

.... 
(J1 

Figure 1-11 DRVll-B OMA Interface 



...... 

...... 

°' 

Figure 1-12 LSl -11 Bus Foundation Module 

. " : : l • ,, •• l 

: :: : : ; 

: :: : : 1' . .. . . . .. . . . .. . . . .. . . 
:· :: . : : i 
; :: : : ! 



The DRVll-P is a versatile wire wrap module that contains the bus inter­
face logic for operation with the LSl-11 or PDP-11/03 system and pro­
vides adequate board area for mounting and connecting integrated 
circuits (IC's) or discrete components. Because the bus interface logic 
is included, the module can be efficiently configured by the user to 
satisfy a variety of device interface logic applications. 

A 40-pin connector, conveniently mounted at the board edge, facilitates 
the connection to a device through several cable assembly types avail­
able from DIGITAL. 

Except for the bus interface connections, all signals and voltages are 
terminated to wire wrap pins for user connections. The bus control logic 
is provided with wire wrap test points to monitor the internal signals. 
The test points are spaced at 0.1 in. (0.254 cm) between pins to allow 
a 40-pin connector to be inserted over the wire wrap pins for automated 
test functions. 

Approximately two-thirds of the surface area on the module consists of 
plated through holes, each connected to a wire wrap pin. The user can 
mount three different types of dual-in-line IC's or a variety of discrete 
components into the holes and connect the proper voltages and signals 
by wire wrapping leads on the board. 

1.2.5 Backplane Options 
Two backplane options are available: the H9270 and the DDVll-8. The 
H9270 (Figure 1-13) is a four-by-four slot LSl-11 bus-structured back­
plane/card guide assembly. It can accept the processor module and up 
to six options. Power is applied to the backplane via a screw-terminal 
block located on one end of the assembly. Signal and power bus lines, 
provided by a printed circuit board, connect each option location as 
shown in Figure 1-14. 

The DDVll-8 (Figure 1-15) is an expanded version of the standard 
LSl-11 backplane (the H9270) for use when additional LSl-11 option 
module space is required. A nine-by-four slot section of this backplane 
is LSl-11 bus-structured and will accept the processor module, up to 15 
option modules, and one TEV-11 bus terminator module. An additional 
nine-by-two slot section of the backplane is provided with power con­
nections (+5 Vdc, -12 Vdc, and ground), only; wire wrap pins allow 
the user to interconnect the slots with appropriate signals. 

1-17 



Figure 1·13 H9270 Backplane 

1-18 



Figure 1-14 Printed Circuit Boa rd 

1-19 



Figure 1-15 DDVll -B Expanded Backplane and 
H0341 Card Cage Assembly 

1-20 



An optional card cage, type H0341, is available for use with the DDVll-B 
backplane. It provides physical protection to modules and serves as a 
card guide. The card gage completely surrounds the DDVll-B on the 
module side of the backplane. 

1.2.6 Expansion Boxes 
BAll·ME and BAll-MF expansion boxes provide a most convenient 
means for expanding LSl-11, PDP-11/03, and PDP-11V03 systems. Each 
expansion box includes an H9270 backplane, an H780 power ·supply, 
which is capable of supplying sufficient power to all modules contained 
within the expansion box, and a rack-mountable enclosure. The enclosure 
is identical in size and design to the PDP-11/03; however, the switch/ 
indicator .control panel is not included (part of the H780 power supply 
in PDP-11/03 systems). The BAll-ME requires 115 Vrms, 50 or 60 Hz 
input power, and the BAll·MF requires 230 Vrms, 50 or 60 Hz input 
power. 

1.2.7 Bus Accessory Options 
Several LSl-11 bus accessory options are available for bus expansion, 
bus termination, DMA refresh, bootstrap ROM, and combinations of the 
preceding. The options can be used in both LSl-11 and PDP-11/03 ap­
plications. A summary of the options is provided below: 

Module No. 

REVll-A 

REVll-C 

TEV-11 

BCVlA-XX 

Figure Includes 

1-16 M9400-YA Module 

M9400-YC Module 

1-17 M9400-YB Module 

1-18 Two BC05L-XX 
cables, one 
M9400-YD module, 
and one M9401 
module. 

NOTE 

System Functions 

120 n bus terminator, DMA 
refresh, bootstrap ROM. 

DMA refresh, bootstrap 
ROM. 

120 fl bus terminator. 

Bus expansion: two expan­
sion cables and two back· 
plane connector modules 
(M9400-YD and M9401). 
Normally used for expan· 
sion from second to third 
backplane in 3-backplane 
systems. (A TEVl 1 or 
REVll·A 120 fl terminator 
must be installed in the 
last device slot in back­
plane 3.) 

The -XX in BCVlA-XX and BCVlB·XX options 
denotes cable lengths. Options are available 
with cable lengths of 2, 4, 6, and 10 ft. For 
example, a BCVlA-06 includes two 6-ft cables. 
When the BCVlA and BCVlB options are used 
in a three backplane system, their lengths 
should differ by 4 ft. 

1-21 



BCVlB-XX 1-19 Two BC05L-XX 
cables, one 
M9400-YE module, 
and one M9401 
module. 

Bus expansion: 250 n 
terminator (M9400-YE), 
two expansion cables, 
backplane connector 
(M9401). Normally used 
for expansion from first to 
second backplane in 2 or 3 
backplane systems. 

The REVll-A and REVll-C options contain programs stored in the ROM. 
These programs include processor and memory diagnostics, bootstrap 
programs for the RVll floppy disk system, and absolute loader programs 
for paper tape readers. (Note that the diagnostic programs are short 
tests to provide a quick check of system operation; these tests do not 
replace system diagnostics used for maintenance purposes.) A com­
mand set used for running the programs is described in Section II, 
Chapter 3. 

TEVll (or REVll-A), BCVlA, and BCVlB options are used for system 
expansion in multiple backplane systems. In addition, the REVl 1-A or 
TEVll can be used to terminate the DDVll-8 backplane (required when 
more than six option modules are installed on the backplane). 

1.3 THE PDP-11/03 SYSTEM 
The PDP-11/03 is a packaged version of the LSl-11 system. The system 
includes the LSl-11 processor and 4K memory, an H780 power supply, 
and an H9270 backplane factory installed in a rack-mountable enclosure. 
System models are listed below: 

Model 

PDP-11/03-EA 
PDP-11/03-EB 
PDP-11/03-FA 
PDP-11/03-FB 

Primary Power 

115 V, 60 Hz 
. 230 V, 50 Hz 

115 V, 60 Hz 
230 V, 50 Hz 

1.4 THE PDP-11V03 SYSTEM 

Memory Type 

Semiconductor 
Semiconductor 
Core 
Core 

The PDP-11 V03 is a complete, ready to use system. It .includes a PDP-
11/03 packaged LSl-11 system, an additional 4K memory (8K system 
memory, total), RXVl 1 dual floppy disk system, DLVl 1 serial line unit 
interface for the console terminal, and either a VT52 DECscope terminal 
or an LA36 DECwriter II terminal. All system components, except the 
console terminal, are contained in a system cabinet. The cabinet can 
remain on the floor and moved, as desired (casters are included), placed 
under a table,. or placed on top of a table. Detailed information on the 
PDP-11V03 system is contained in the PDP-11V03 System Manual. Sys­
tem models and specifications are included in this handbook, Section I, 
Chapter 2. 

1-22 



Figure 1-16 REVll -A Bus Terminator, DMA Refresh, Bootstrap 
ROM Module 

1-23 



Figure 1-17 TEVll Bus Terminator Module 

1-24 



..... 
r\l 
U1 

Figure 1-18 BCVlA Bus Expansion Option 



Figure 1-19 BCVlB Bus Expansion Option 



CHAPTER 2 

SPECIFICATIONS 

2.1 GENERAL 
This chapter contains applicable electrical, mechanical, and environ· 
mental specifications for· LSl-11 systems. LSl-11 system components 
(modules and backplanes), PDP-11 /03, and PDP·ll V03 systems are 
covered in separate paragraphs. 

2.2 LSl·l l SYSTEM COMPONENTS 

2.2.1 Modules 
Table 2-1 lists the electrical and mechanical specifications of the LSl-11 
modules. All LSl-11 modules will operate at temperatures of 41 ° F to 
122° F (5° C to 50° C) with a relative humidity of 10% to 95% (no 
condensation), with adequate airflow across the modules. When oper· 
ating at the maximum temperature (122° F or 50° C), air flow must 
maintain the inlet to outlet air temperature rise across the modules to 
12.5° F (7° C) maximum. Air flow should be directed across the modules 
as shown in Figure 2-1, and as described in Paragraph 6.7. 

2.2.2 Backplane Options 

2.2.2.1 H9270 Backplane-The H9270 backplane will accept the 
KDll·F processor module and up to six option modules, or the KDll-J 
processor and core memory modules and up to two or four option 
modules, depending on the location of the core memory in the back­
plane. When used for bus expansion in multiple backplane systems, the 
H9270 provides space for up to six option modules, plus the required 
expansion cable connector module(s) and/or terminator module. 

Mounting dimensions for the H9270 are shown in Figure 2-1. Figure 2-3 
illustrates possible methods of mounting the backplane. 

Backplane pinning and signal functions are included in Chapter 3. Op­
tion positions are shown in Figure 2-2. Numbers indicate device interrupt 
and/or OMA priority; lowest numbered positions receive the highest 
priority. 

2-1 



Table 2·1 Module Specifications 

Option Module Power Requirements Size-in. (cm) 
Desig. No(s). Description +sv ±5% +12V ±3% Height Le"!gth* Width 

KDll·F M7264 LSl·ll processor 1.8 A 0.8A 10.5 8.9 0.5 
and 4K X 16 RAM (2.4A max.) (1.6 A max.) (26.6) (22.8) (1.27) 

KDll·J M7264-YA LSl·ll processor 6,4A 1.2 A 10.5 8.9 0.5 
H223 and 4K x 16 core (9.0 A max.) (1.5 A max.) (26.6) (22.8) (1.27) 

· G653 memory unit 10.5 8.9 0.9 
(26.6) (22.8) (2.29) 

· DLVll M7940 Serial line unit 1.0 A 5.2 8.9 0.5 
interface (1.6 A max.) (13.2) (22.8) (1.27) 

DRVll M7941 Parallel line unit 0.9A 5.2 8.9 .0.5 
I\) interface (1.6 A max.) (13.2)' (22.8) (1.27) 
r\> 

DRVll·B M7950 OMA interface 1.9 A 10.5 8.9 0.5. 
(26.6) (22.8) (l.27) 

DRVll·P M7948 LSl-11 Foundation 1.0A 10.5 8.9 0.5 
module (26.6) (22.8) (1.27) 

MRVll·AA M7942 4K x 16 read-only 0.4A 5.2 • 8.9 0.5 
memory (less PROM (0.6A max.) (13.2) (22.8) (1.27) 
integrated circuits) 
(with 32 512 x 4 2.8A 
PROM integrated (4.1 A max.) 
circuits (MRVll·AC)) 

MSVll·B M7944 4K X 16 read-write 0.6A 5.2 8.9 0.5 
MOS memory · (1.2 A max.) (13.2) (22.8) (l.27) 

* Length as stated is approximate, and includes module handles .. Actual module length is 8.5 in. (21.6 cm). 



Table 2-1 Module Specifications (Cont.) 

Option Module Power Requirements Size-in. (cm) 
Desig. No(s). Description +5 v ±5% +12 v ±3% Height Length* Width 

MMVll-A H223 4K X 16 core memory 3.0 A 0.2 A 10.5 8.9 0.9 
G653 (standby power) 7.0 A 0.6 A (26.6) (22.8) (2.29) 

(operating power) 

REVll-A M9400-YA 120 n terminator, 1.64 A 5.2 8.9 0.5 
DMA refresh, (2.24 A max.) (13.2) (22.8) (1.27) 
bootstrap ROM 

I\) REVll·C M9400-YC DMA refresh, 1.0 A 5.2 8.9 0.5 
w bootstrap ROM (1.88 A max.) (13.2) (22.8) (1.27) 

REVll·H M9400·YH DMA refresh, 1.0 A 5.2 8.9 0.5 
bootstrap ROM (1.88 A max.) (13.2) (22.8) (1.27) 

TEVll M9400-YB 120 n terminator 0.54A 5.2 8.9 0.5 
(0.70 A max.) (13.2) (22.8) (1.27) 

BCVlA·XX M9400·YD Bus expansion option: 5.2 8.9 0.5 
M9401 2 cables, 2 modules (13.2) (22.8) (1.27) 

(dimensibns for each module) 

BCVlB-XX M9400-YE Bus expansion option: 0.29A 5.2 8.9 0.5 
M9401 2 cables. 2 modules (0.37 A max.) (13.2) (22.8) (1.27) 

(dimensions for each module) 



MOUNTING 
BRACKET 
0.218" DIA 
HOLES 
(FOUR PLACES) 

6-32 THDHOLE~ 
X 0.25 DEEP 

l .. ti 
,,_,., E.t1s1° 

, .. ·• ~QE.QI~ 
2.80~ 

Figure 2-1 H9270 Backplane Mounting 

2 

3 

4 

A 8 c 
POSITION 1 POSITION 

POSITION 4 POSITION 

POSITION 5 POSITION 

POSITION 8 POSITION 

D 

2 1-- POSITIONS 1 B 2 ARE 
ORMALLY USED FOR 

3 

6 

7 

N 
T HE PROCESSOR MODULE 
N SINGLE BACKPLANE 
YSTEMS AND THE FIRST 
ACKPlANE IN MULTIPLE 

I 
s 
B 
BACKPLANE SYSTEMS. 

11-3299 

Figure 2-2 H9270 Option Positions 

2-4 

11.0" 



SIPE MOUNTING 

0 

REAR MOUNTING 

0.187 DIA HOLES 
4 PLACES 

11- 3300 

--1 1-- 10-32 THO' 0 S" LONG 

'~""'1: 1' "1, / •~•~rn ''""'"""" 1 "j"' -

., =~~·:,·,: _ -=-~=-~'" 
VIEW FROM REAR OF BACKPLANE 

TOP AND BOTTOM MOUNTING 

I 

r--
1 1-1 

1 

I 

I 
I 

9.04" 

CONNECTOR_ 

BLOCK ! I~ 

0 31" ---11-~- 2 95" 

- CiJ 

., 

11 15" 

6-32 THO HOLE 
,025"0EEP 

- ---0 

5 250" -

Figure 2-3 Backplane Mounting 

2-5 

11 - 3301 

11-3302 



2.2.2.2 DDVU-B Backplane-The DDVll·B backplane will accept the 
KDll-F processor module and up to 15 option modules, plus a termina­
tor module; or the KDll- Jprocessor module and core memory modules 
and up to 11 option modules, plus a terminator module. Mounting and 
overall dimensions for the DDVll-8 are shown in Figure 2-4. Clearance 
for the H0341 card cage assembly is shown by the dotted outline; the 

· H0341 is a separate option and it is not supplied with the DDVll-8 
option. 

In addition to providing space for mounting LSl-11 modules, 18 user­
defined slots are provided for custom applications. These slots are lo­
cated in E and F slots, which are adjacent to LSl-11 bus-structured 
slots A through D, as shown in Figure 6-3. Option positions shown in 
the figure are numbered to show device interrupt and/or OMA priority; 
lowest-numbered positions receive the highest priority. Backplane pin­
ning and signal functions are included in Chapter 3. 

2.2.3 BAU-ME and BAU-MF Expansion Boxes 
BAll-ME and BAll-MF expansion boxes provide a most convenient 
means for expanding LSl-11, PDP-11/03, and PDP-11V03 systems. Each 
expansion box includes an H9270 LSl-11 bus-structured backplane, an 
H780 power system, and an enclosure that is identical to the PDP-11/03 
enclosure. However, the front panel, including three indicators and three 
switches, is not included. Refer to PDP-11/03 Figures 2-5 an.d 2-6 for 
mechanical details. Electrical specifications are listed below: 

AC Input Power: 

BAll-ME 100-127 Vrms, 50±1 Hz or 60±1 Hz, 400 W maximum 

BAll-MF 200-254 Vrms, 50± 1 Hz or 60±1 Hz, 400 W maximum 

DC Output Power: 

+5 Vdc ±3%, 0-18 A load (static and dynamic) 

+12 Vdc ±3%, 0-3.5 A load (static and dynamic) 

Maximum output power: 120 W (total) 

2.3 PDP-U/03 SYSTEM 

2.3.1 General 
The PDP-11/03 system includes an LSl-11 processor and 4K memory 
(KDll-F or KDll·J), an H780 power supply, an H9270 backplane, and 
a rack-mountable enclosure. The PDP-11/03 is available in four models, 
providing a selection of 115 or 230 V primary power and 4K MOS or 4K 
core memory. The models are listed below: 

Model 

PDP-11/03-EA 

PDP-11/03-EB · 

PDP-11/03-FA 

Description 

KDll-F processor and resident 4K memory (M7264), 
H780-A power supply (115 V input), H9270 back­
plane, BAl 1 enclosure. 
Same as above except the H780-A power supply is 
replaced with the 230 V input H780-8 power supply. 
KDll-J processor and 4K core memory (M7264-YA, 
H223, G653), H780-A power supply (115 V input), 
H9270 backplane, BAl 1 enclosure. 

2-6 



Ir- - ------------- -------- -----~ 

1 \ H0341 • 
1 I CARD CAGE 

869 I 6-32X025(064) 1 ASSEMBLY CLEARANCE 
(22,.07 } 11 MOUNTING HOLES \ OUTLINE 

I (6 TOTALJ l 

L! l 
I I 
I I 
I I 
I I 

1.75 

14.45) d=======l===========3'============E====="3 
LJ 

- 3.012--''--- 5.25 ----'----5.25 ----'--- 3.012 
(7.65} (13.34} (13.34) (7.65) 

l-_ ________ 16.524 ________ ~ 
{41.97} 

1--'----------(~/3:~~)--------~ 
NOTE 

AU dimensions are in inches (cm) 

Figure 2-4 DDVll·B Outline and Mounting Dimensions 

PDP-11/03-FB Same as above except the H780·A power supply is 
replaced with the 230 V input H780-B power supply. 

2.3.2 H780 Power Supply 
The H780 power supply provides sufficient de power for modules in· 
stalled in one H9270 backplane. Cooling air is provided for system com· 
ponents by fans included in the H780 power supply. 

De output voltages and currents are listed below. The user can calculate 
actual de power requirements for system components by obtaining 
POV'{er requirements for the processor module and options in Table 2-1. 

Voltage 

+5V ±3% 
+12V ±3% 

Current 

0·18A [ 
0-3.5 A ( 

de Power 

120 W (total) maximum 

Input power requirements are as follows: 

Models 

PDP·ll/03·EA, 
PDP·ll/03·FA 

Input Power, 

100-127 Vrms, 50±1 Hz or 60± 1 Hz, 400 W maximum 

2-7 



PDP-11/03-EB, 200-254 Vrms, 50± 1 Hz or 60±1 Hz, 400 W maximum 
PDP-11/03-FB 

A front panel is·included on the H780 power supply that contains three 
indicators and three switches. They are described below: 

Switches 

DC ON/OFF 

HALT /ENABLE 

LTC ON/OFF 

Indicators 

DC ON 

RUN 

Function 

Enables or disables H780 de voltage outputs. (Does 
not remove ac power from power supply circuits and 
fans.) 

HALT position: Halts the processor and enables con· 
sole ODT microcode operation. Single-instruction exe· 
cution can be performed when this switch remains 
in the HALT position. 

ENABLE position: Enables the processor Run mode. 
Programs are started by entering a "G" or "P" com­
mand via the console terminal (or automatically, as 
appropriate, during power-up). 

Enables or disables the Line Time Clock signal gen­
erated by the H780. This signal generates vectored 
interrupts at the line frequency (50 or 60 Hz). 

Function 

Lit when de voltages are supplied to the backplane. 

Lit when the processor is executing programs (Run 
mode). Not lit when the processor is in the Halt mode. 

Spare 

In addition to the front panel controls and indicators, an AC ON/OFF 
switch and fuse are included on the rear of the unit. The switch nor­
mally remains in the ON position, ·allowing an external circuit (user­
supplied) to control application of primary power. Overload protection 
is provided by a fuse, as listed below: 

Model 

PDP-11/03-EA and 
PDP-11/03-FA (H780·A) 

PDP-11/03-EB and 
PDP-11/03-FB 

Fuse Type 

5 A, fast blow 

3 A, fast blow 

NOTE 
Detailed H780 power supply specifications are 
included in Paragraph 4.12.2. 

2.3.3 Environmental Specifications 

Temperature: 41° F-104° F (5° C-40° C) 
Derate at 11° F (6° C)/1000 ft at altitudes above 
8000 ft 

Relative Humidity: 10% to 95% (no condensation) 

2.3.4 Mechanical Specifications 
The PDP-11/03 (Figure 2-5) is designed with a removable front panel. 

2·8 



Removing the front panel exposes the LSI modules and cables. This 
enables replacement or installation of a module from the front of the 
PDP·ll/03. The 11/03 power supply is located on the right-hand side 
of the PDP·ll/03 when viewed from the front. The power supply con· 
tains three front panel switches and indicators, which are accessible 
through a cutout in the front panel. Therefore, when the front panel is 
removed, the lights and switches are still attached and functional. 

The PDP·ll/03 is designed to mount in a standard 19 in. cabinet (Figure 
2-6). A standard 19 in. cabinet has two rows of mounting holes in the 
front, spaced 18Yi'6 in. apart. The holes are located If2 in. or % in. apart 
from each other. Standard front panel increments are l3/.iin. 

~-· -17·5/8" DI 

T 
3·V2" 

_L 

IT D 3·112" 

l..i:::=====-=::=JJ_ 
1.r--1-1/2" 

19"-------

"'I·----- 13.50" ______ _ 

POWER SUPPLY 

~R 
L_) 

A~R 

' 

FRONT 

PROCESSOR, 
MEMORY AND 

DEVICES 

Figure 2-5 PDP·ll/03 Assembly Unit 

2·9 



0 

0 

0 

0 

0 

FRONT VIEW 

1114" 0 T -1- -0 t" 
T 5/8" 

1·3/4" 0 + 
1--- 0 +· 

1/2" 

3·1/2" 0 + 

L ____ ;1i: 0 _L 

-------18-5/16"--------< 

: : 

FRONT OF BOX(PANEL REMOVED) 
4' 114" TYP 

19" 

T 
3.50" FRONT 

_J_~-----i-~ 

~ "'°" j ~., . 
Figure 2-6 PDP-11/03 Cabinet Mounting 

2-10 



2.4 PDP-11 V03 SYSTEMS 

2.4.1 General 
PDP-11 V03 systems are ava,ilable in four basic models, depending on 
selection of input power and terminal type. All PDP-11 V03 systems in­
clude a PDP-11/03 system (Paragraph 2.3), RXVll dual floppy disk 
system, an appropriate terminal, REVll-A (OMA refresh/ROM bootstrap/ 
terminator module), DLVll (terminal serial line unit interface) config­
ured for the terminal supplied, MSVll (4K memory, comprising 8K 
memory, total), system cabinet, and RT-11 system software and diag­
nostics. The four models include the major hardware system com­
ponents as listed below: 

System Terminal Input 
Model Model Power 

PDP-11 V03-AA VT52-AA 115 V/60 Hz 
PDP-11 V03-AD VT52-AB 230 V/50 Hz 
PDP-11V03-EA LA36-DE 115 V/60 Hz 
PDP-11V03-ED LA36-DJ 230 V/50 Hz 

PDP-11/03 RXVll System 
Model Model Cabinet 

PDP-11/03-EA RXVll-BA H984-BA 
PDP-11/03-EB RXVll-80 H984-BB 
PDP-11 /03-EA RXVll-BA H984-BA 
PDP-11/03-EB RXVll-BD H984-BB 

All required signal and power interconnection cables are included in the 
system hardware. 

2.4.2 Specifications 

Size (H984 Caoinet): 
Height: 26 in. (66 cm) (including casters) 
Length: 28 in. (71.1 cm) 
Width: 21% in. (54.6 cm) 

Weight (Basic System Modules and Components in cabinet): 
205 lb with expander box fully loaded (not including terminal) 

Power Requirements: 

Input Voltage 
100-127 Vrms, 50 ± 1 Hz or 60 ± 1 Hz 
200-254 Vrms, 50 ± 1 Hz or 60 ± 1 Hz 

Input Current (Maximum configuration): 
H984-BA (115 V input): 12 A 
H984-BB (230 V input): 6 A 

Environmental Characteristics: 

Temperature 
Operating: 

Nonoperating: 
Media, non­
operating: 

59° to 90° F (15° to 32° C) ambient maximum 
temperature gradient= 20° F/hr (11.1° C/hr) 
-30° to +140° F (-35° to +60° C) 
-30° to +125° F (-35° to 52° C) 

2-11 



NOTE 
Media temperature must be within operating 
temperature range before use. 

Relative humidity 
Operating: 

Nonoperating: 
Media, non­
operating 

Magnetic field 

77° F (25° C) maximum wet bulb 
36° F (2° C) minimum dew point 
20% to 80% relative humidity 
5% to 98% relative humidity (no condensation) 
10% to 80% relative humidity 

Media exposed to a magnetic field strength of 
50 Oe or greater may lose data 

2-12 



CHAPTER 3 

THE LSl-11 BUS 

3.1 CHOOSING AN 1/0 TRANSFER TYPE 
Before interfacing the processor with any peripheral device, the designer 
must determine the type of 1/0 transfer that would be best suited for 
the application: programmed 1/0 transfers, DMA, or interrupt-driven 
transfers. 

Programmed 1/0 transfers are executed by single- or double-operand 
instructions. The instruction can be used to input or output a 16-bit data 
word or an 8-bit byte. By including the device's address as the effective 
source or destination address, the user selects the input or output 
operation. In many instances, the programmer inputs a byte from the 
device's control/status register (CSR) to determine that the device has 
input data ready or that it is ready to accept the processor's output data. 

DMA transfers are the fastest method of transferring data between 
memory and a device. They can occur between processor bus cycles and 
do not alter processor status in any way_ Addressing, controlling the 
size of the data block (number of word or byte transfers in the opera­
tion), and type of transfer are under the control of the requesting device. 
The processor does not modify data being moved in the DMA mode. 
Thus, blocks of data can be moved at memory speeds via the OMA 
transfer mode. The processor sets up these conditions before the DMA 
transfer is executed. 

lntfrrupts allow the processor to. continue a programmed operation 
·(sometimes called a background program) without waiting for a device 
to become ready to transfer data. When the device does become ready, 
it interrupts the processor's background program execution and causes 
execution of a device interrupt service routine. After the device's service 
routine has been executed, the background program is restored and 
program execution resumes at the point where it was interrupted. 

3.2 DEVICE PRIORITY 
/ 

Each device has an 1/0 priority based on its distance from the pro­
cessor. When two or more devices request interrupt service, the device 
electrically closer to the microcomputer"will receive the interrupt grant 
(acknowledge). The microcomputer can be inhibited from issuing more 
grants by setting the processor's priority to 4 in the PS word. Bit 7 in 
the new PS word should be a 1. If further interrupts are to be serviced, 
the processor's priority should be 0, and bit 7 in the new PS word 
should be a Q_ Consequently, interrupts can be nested to any level. 
Factors to consider when assigning device priorities are: 

1. Device ·operating Speed-Data from a fast device is available for 
only a short period; highest priorities are usually assigned to fast 
devices to prevent loss of data and to prevent the bus from being 
tied up by slower devices. 

3-1 



2. Ease of Data Recovery_;._lf data from a device is lost, recovery may 
be automatic, may require manual intervention, or may be impos· 
sible to recover; highest priorities are assigned to devices whose data 
cannot be recovered. 

3. Service Requirements-Some devices cannot function without help 
from the processor, while OMA devices can operate independently 
and require only minimal processor intervention; devices requiring 
continual help from the processor for servicing are assigned to lowest. 
priorities to prevent typing up the processor. 

Both address and data are multiplexed onto the 16 BOAL lines. In 
addition, individual control signals sequence programmed 1/0 opera· 
tions, direct memory access (OMA), and processor interrupts. Any bus· 
compatible module can be inserted into any bus location and still receive 
interface signals; however, the module's priority, which is position· 
dependent along the bus, will change. 

3.3 MODULE CONTACT FINGER IDENTIFICATION 
DIGITAL plug-in (FLIP CHIP) modules, including LSl-11 modules, all use 
the same contact finger (pin) identification system. The LSl-11 1/0 bus 
is based on the use of double-height modules. These modules plug into 
a two-slot bus connector, each containing 36 lines per slot (18 each on 
component and solder sides of the circuit board). Although the LSl-11 
processor module and core memory module are quad-height modules 
that plug into four connector slots, only two slots (A and B) are used 
for interface purposes on the processor module. Etched circuit jumpers 
on the unused portion of the module maintain continuity of grant signals 
BIAKI L to BIAKO L and BDMGI L to BDMGO L. These daisy-chained 
signals are described later. 

Slots, shown as ROW A and ROW B in Figure 3-1, include a numeric 
identifier for the side of the module. The component side is designahd 
side "1" and the solder side is designated side "2." Letters ranging 
from A through V (excluding G, I, 0, and Q) identify a particular pin on 
a side of a slot. Hence, a typical pin is designated as: 

Slot (Row) 
Identifier 
"Slot B" 

BE2 

Pin Identifier 
"Pin E" 

Module Side Identifier 
"solder side" 

Note that the positioning notch between the two rows of pins mates 
with a protrusion on the connector block for correct module positioning. 

Quad-height modules are similarly pin numbered. They are identified in 
Figure 3-2. 

Individual connector pins, viewed from the underside (wiring side) of a 
backplane, are identified as shown in Figure 3-3. Only the pins for one 
bus location (two slots) are shown indetail. This pattern of pins is re:. 
peated eight times on the H9270 backplane, allowing the user to install 
one LSl-11 microcomputer module (four slots) and up to six additional 
two-slot modules. · 

3·2 



PIJBV1 ( 
PIN BV2 

Figure 3-1 Module Contact Finger Identification 

ROW D 

Figure 3-2 Quad Module Contact Finger Identification 

3-3 



H9270 POWER ANO 
SIGNAL CONNECTIONS 

ROW IDENTIFIER 
TYPICAL MODULE 
LOCATION 
(SLOTS A1-81) 

MODULE SIDE IDENTIFIER 
1 ~ COMPONENT SIDE 
2" SOLDER SIDE 

WIRE-WRAP PINS 
PASS THROUGH 
H9270 PC BOARD 

"" 

Figure 3-3 LSl-11, PDP-11/03 Backplane Module Pin Identification 

3.4 BUS-SIGNALS 
H9270 backplane pin assignments are listed and described in Table 
3-1. Only slots A and B are listed. However, they are identical to slots 
C and D, respectively. Applicable bus cycle timing and specifications 
are discussed in Paragraphs 3.I2, 3.I3, and 3.I4. 

Bus 
Pin 

AAI 
A Bl 

ACl 
ADI 

AEl 
AFl 
AHI 

AJI 

AKI 
All 

AMi 

ANl 

API 

Table 3-1 Backplane Pin Assignments 

Mnemonic 

BS PAR El 
BSPARE2 

BADI6 
BAD17 

SSPAREI 
SSPARE2 
SSPARE3 

GND 

MSPAREA 
MSPAREA 

GND 

BDMRL 

BHALT L 

Description 

Bus Spare (Not Assigned, Reserved for DIGITAL 
use.) 

Extended address bits (not implemented) 

Special Spare (Not assigned, not bused. Avail­
able for user interconnections.) 

Ground-System signal ground and de return. 

Maintenance Spare-Normally connected to­
gether on the backplane at each option location 
(not bused connection). 

Ground-System signal ground and de return. 

Direct Memory Access (OMA) Request-A device 
asserts this signal to request bus mastership. 
The processor ·arbitrates bus mastership be­
tween itself and all DMA devices on the bus. If 
the processor is not bus master (it .has com­
pleted a bus cycle and BSYNC L is not being 
asserted by the processor), it grants bus mas­
tership to the requesting device by asserting 
BDMGO L: The device responds by negating 
BDMR Land asserting BSACK L. 

Processor Halt-When BHALT L is asserted, the 
processor responds by halting normal program 
execution. External interrupts are ignored but 

3-4 



Bus 
Pin 

ARI 

ASl 

ATl 
AUl 

AVl 

BAl 

BBl 

BCl 
BDl 
BEl 
BFl 
BHl 

BJl 
BKl 
Bll 

BMl 

Table 3-1 Backplane Pin Assignments (Cont.) 

Mnemonic 

BREF L 

PSPARE3 

GND 

PSPAREl 

+5B 

BDCOK H 

BPOK H 

SSPARE4 } 
SSPARE5 
SSPARE6 
SSPARE7 
SSPARE8 

GND 
MSPAREB 
MSPAREB 

GND 

Description 

memory refresh interrupts (enabled if W4 on 
the processor module is removed) and OMA re· 
quest/grant sequences are enabled. When in the 
halt state, the processor executes the ODT 
microcode and the console device operation is 
invoked. 

Memory Refresh-Asserted by a processor 
microcode-generated refresh interrupt sequence 
(when enabled) or by an external device. This 
signal forces all dynamic MOS memory units 
to be activated for each BSYNC L/BDIN L bus 
transaction. 

CAUTION 
The user must avoid using multiple OMA data 
transfers [Burst or "hog" mode] during a pro­
cessor-generated refresh operation so that a 
complete refresh cycle can occur once. every 1.6 
ms. 

Spare (Not assigned. Customer usage not rec­
ommended.) 

Ground-System signal ground and de return. 

Spare (Not assigned. Customer usage not rec­
ommended.) 
+5 V Battery Power-Secondary +5 V power 
connection. Battery power can be used with cer­
tain devices. 
DC Power OK-Power supply-generated signal 
that is asserted when there is sufficient de volt· 
age available to sustain .reliable system oper­
ation. 
Power OK-Asserted by the power supply when 
primary power is normal. When negated during 
processor operation, a power fail trap sequence 
is initiated. · 

Special Spare (Not assigned, not bused. Avail· 
able for user interconnections.) 

Ground-System signal ground and de return. 
Maintenance Spare-Normally connected to­
gether on the backplane at each option location 
(not a bused conneetion). 
Ground-System signal ground and de return. 

3,5 



Bus 
Pin 

BNl 

BPl 

BRl 

BSl 

BTl 
BUl 

BVl 
AA2 
AB2 

AC2 
AD2 
AE2 

AF2 

AH2 

Table 3·1 Backplane Pin Assignments (Cont.) 

Mnemonic 

BSACK L 

BSPARE6 

BEVNT L 

PSPARE4 

GND 
PSPARE2 

+5 
+5 
·12 

GND 

+12 
BDOUT L 

BRPLY L 

BOIN L 

Description 

This signal is assertea by a OMA device in re· 
sponse to the processor's BDMGO L signal, in· 
dicating that the OMA device is bus. master. 

Bus Spare (Not assigned. Reserved for DIGITAL 
use.) 

External Event Interrupt Request-When as­
serted, the processor responds (if PS bit 7 is 
0) by entering a service routine via vector ad· 
dress 1008 • A typical use of this signal is a line 
ti.me clock interrupt. 
Spare (Not assigned. Customer usage not rec­
ommended.) 
Ground-System signal ground and de return. 
Spare (Not assigned. Customer usage not rec­
ommended.) 
+5 V Power-Normal +5 V de system power. 
+5 V Power-Normal +5 V de system power. 
-12 V Power- -12 V de (optional) power for de· 
vices requiring this voltage. 

NOTE 
LSl-11 modules which require negative voltages 
contain an inverter circuit (on each module) 
which generates the required voltage(i;) hence, 
·12 V power is not required with DIGITAL-sup­
plied options. 
Ground-System signal ground and de return. 
+12 V Power-+12 V de system power. 
Data Output-BDOUT, when asserted, implies 
that vafid data is available on BDOL0-15 Land 
that an output transfer, with respect to the bus 
master device, is taking place. BDOUT L is 
deskewed with respect to data on the bus. The 
slave device responding to the BDOUT L signal 
must assert BRPLY L to complete the transfer. 
Reply-BR PLY L is asserted in response to BOIN 
L or BDOUT L and during IAK transaction. It is 
generated by a slave device to indicate that it 
has placed its data on the BOAL bus or that it 
has accepted output data from the bus. 
Data lnput-:BDIN L is used for two types of 
bus operation: 
1. When asserted during. BSYNC L time, BOIN 

L implies an input transfer with respect to 
the current bus master, and requires a re-

3·6 



Bus 
Pin 

AJ2 

AK2 

AL2 

AM2 
AN2 

AP2 

AR2 
AS2 

Table 3-1 Backplane Pin Assignments (Cont.) 

Mnemonic 

BSYNC L 

BWTBT L 

BIRQ L 

BIAKI L 
BIAKO L 

BBS7 L 

BDMGI L 
BDMGO L 

Description 

sponse (BRPL Y L). BOIN L is asserted when 
the master device is ready to accept data 
from a slave device. 

2. When asserted without BSYNC L, it indicates 
that an interrupt operation is occurring. 

The master device must deskew input data from 
BRPLY L. 
Synchronize-BSYNC L is asserted by the bus 
master device to indicate that it has placed an 
address on BDAL0-15 L. The transfer is in pro­
cess until BSYNC L is negated. 

Write/Byte-BWTBT L is used in two ways to 
control a bus cycle: 
1. It is asserted during the leading edge of 

BSYNC L to indicate that an output sequence 
is to follow (DATO or DATOB), rather than an 
input sequence. 

2. It is asserted during BDOUT L, in a DATOB 
bus cycle, for byte addressing. 

Interrupt Request-A device asserts this signal 
when its Interrupt Enable and Interrupt Request 
flip-flops are set. If the processor's PS word bit 
7 is 0, the processor responds by acknowledging 
the request by asserting BOIN L and BIAKO L. 

Interrupt Acknowledge· In put and Interrupt Ac-
' knowledge Output-This is an interrupt acknowl­
edge signal which is generated by the processor 
in response to an interrupt request (BIRQ L). 
The processor asserts BIAKO L, which is routed 
to the BIAKI L pi_n of the first device on the 
bus. If it is requesting an interrupt, it will inhibit 
passing BIAKO L. If it is not asserting BIRQ L, 
the device will pass BIAKI L to the next (lower 
priority) device via its BIAKO L pin and the 
lower priority device's BIAKI L pin. 

Bank 7 Select-The bus master asserts BBS7 L 
when an address in the upper 4K bank (address 
·in the 28-32K range) is placed on the bus. 
BSYNC L is then asserted and BBS7 L remains 
active for the duration of the addressing portion 
of the bus cycle. 

OMA Grant-Input and OMA Grant Output-This 
is the processor-generated daisy-chained signal 
which grants bus mastership to the highest pri­
ority OMA device along the bus. The processor 
generates BDMGO L, which is routed to the 

3-7 



Bus 
Pin 

AT2 

AU2 
AV2 

BA2 
BB2 

BC2 
BD2 
BE2 
BF2 
BH2 
BJ2 
BK2 
BL2 
BM2 
BN2 
BP2 
BR2 
BS2 
BT2 
BU2 
BV2 

Table 3·1 Backplane Pin Assignments (Cont.) 

Mnemonic 

BINIT L 

BDALO L 
BDALl L 

+s 
-12 

GND 

+12 
BDAL2 L 
BDAL3 L 
BDAL4 L 
BOALS L 
BDAL6 L 
BOAL? L 
BOALS L 
BDAL9 L 
BDALlO L 
BDALll L 
BDAL12 l. 
BDAL13 L 
BDAL14 L 
BDAL15 L 

Description 

BDMGI L pin of the first device on the bus. If 
it is requesting the bus, it will inhibit passing 
BDMGO L. If it is not requesting the bus, it will 
pass the BDMGI L signal to the next (lower pri­
ority) device via its BDMGO L pin. The device 
asserting BDMR L is the device requesting the 
bus, and it responds to the BDMGI L signal by 
negating BDMR, asserting BSACK L, assuming 
bus mastership, and executing the required bus 
cycle. 

CAUTION 
OMA device transfers must be single transfers 
and must not interfere with the memory refresh 
cycle. 
Initialize-BIN IT is asserted by the processor to 
initialize or clear all devices connected to the 
1/0 bus. The signal is generated in response to 
a power-up condition (the negated condition of 
BDCOK H). 
Data/ Address Lines-These two lines are part 
of the 16-line data/address bus over which ad­
dress and data information are communicated. 
Address information is first placed on the bus 
by the bus master device. The same device then 
either receives input data from, or outputs data 
to the addressed slave device or memory over 
the same bus lines. 
+5 V Power-Normal +5 V de system power. 
-12 V Power- -12 V de (optional) power for de· 

. vices requiring this voltage. 
Ground-System signal ground and de return. 
+12 V Power-+12 V system power. 

Data/ Address Lines-These 14 lines are part of 
the 16-line data/address bus previously de­
scribed. 

3·8 



3.5 BUS CYCLES 

3.5.1 General 
Every processor instruction requires one or more 1/0 operations. The 
first operation required is a data input transfer (DATI). which fetches 
an instruction from the location addressed by the program counter (PC 
or R7). This operation is ca.lied a DATI bus cycle. If no additional oper­
ands are referenced in memory or in an 1/0 device, no additional bus 
cycles are required for instruction execution. However, if memory or a 
device is referenced, additional DAT!, data input/output (DATIO or 
DATIOB), or data output transfer (DATO or DATOB) bus cycles are re­
quired. Between these bus cycles, the processor can service OMA re­
quests. In addition, the processor can service interrupt requests only 
prior to an instruction fetch (DAT! bus cycle) if the processor's priority 
is zero. (PS word bit 7 is 0.) 

The following paragraphs describe the types of bus cycles. Note that the 
sequences for 1/0 operations between processor and memory or be­
tween processor and 1/0 device are identical. DATO (or DATOB) cycles 
are equivalent to write operations, and DATI cycles are equivalent to 
read operations. In addition, DATIO cycles include an input transfer 
followed by an output transfer. The DATIO cycle provides an efficient 
means of executing an equivalent read-modify-write operation by making 
it unnecessary to assert an address a second time. 

3.5.2 Input Operations 
The sequence for a DATI operation is shown in Figure 3-4. DATI cycles 
are asynchronous and require a response from the addressed device or 
memory. The addressed memory or device responds to its input request 
(BOIN L) by asserting BRPLY L. If BRPL Y is not asserted within 10 µs 
(max) after BOIN L is asserted, the processor terminates the cycle and 
traps through location 4. 

Note that BWTBT L is not asserted during the address time, indicating 
that an input data transfer is to be executed. 

A DATIO cycle is equivalent to a read-modify-write operation. An address­
ing operation and an input word transfer are first executed in a manner 
similar to the DATI cycle; however, BSYNC L remains in the active state 
after completing the input data transfer. This causes the addressed 
device or memory to remain selected, and an output data transfer fol­
lows without any further addressing. After completing the output transfer, 
the device terminates BSYNC L, completing the DATIO cycle. The actual 
sequence required for a DATIO cycle is shown in Figure 3-5. Note that 
the output data transfer portion of the bus cycle can be a byte trans­
fer; hence, this cycle is shown as D.ATIOB. 
3.5.3 Output Operations 
The sequence required for a DATO or the equivalent output byte 
(DATOB) bus cycle is shown in Figure 3-6. Like the input operations, 
failure to receive BRPLY L within 10 µs after asserting BDOUT L is an 
error, and results in a processor time-out trap through location 4. 

Note that BWTBT L is asserted during addressing portion of the cycle 
to indicate that an output data transfer is to follow. If a DATOB is to 
be executed, BWTBT L remains active for the duration of the bus cycle; 

3-9 



BUS MASTER 
(PROCESSOR OR DEVICE) 

ADDRESS DEVICE/MEMORY 
• Assert BDAL0-15 L with 

address and 
• Assert BBS7 if the 

address is in the 28 - 32Krange 
• Assert BSY NC l 

--- -------

----REQUEST DATA 

• Remove the address 
from BDAL0-15 L 
and negate BBS7 L 

o Assert BOIN L 

TERMINATE INPUT TRANSFER 
• Accept data and respond by 

negating BOIN L 

-- ------

TERMINATE BUS CYCLE 
• Negate BSYNC L 4------·-----

Figure 3-4 DATI Bus Cycle 

3-10 

SLAVE 
(MEMORY OR DEVICE) 

DECODE ADDRESS 
• Store "device selected" 

operation 

INPUT DATA 

• Place data on BDAL0-15 L 
• Assert BRPL Y L 

OPERATION COMPLETED 

• Terminate BRPL Y L 

11-3138 



however, if a DATO (word transfer) is to be executed, BWTBT L is 
negated during the remainder of the cycle. 

NOTE 
Normally, all devices, when addressed, will re· 
spend to both BOIN L and BDOUT L by assert· 
ing BRPLY L to acknowledge the bus cycle. 
However, there are two special cases with which 
to be concerned. First, by PDP·ll convention, 
ROM locations do not respond to BDOUT L 
signals; in this case, processor instructions that 
generate BDOUT L will result in a non-existent 
memory trap. Second, processors may generate 
unnecessary BDOUT L signals, as when a pro· 
cessor fetches an operand via a DATIO cycle. 
Because of the first case, no destination aper· 
ands can be located in ROM, except for the 
following (non-modifying) instructions: TST(B), 
CMP(B), BIT(B), JMP, and JSR. Because of the 
second case, other (processor dependent) in· 
structions may not access source operands from 
ROM, as in the following cases: MTPS (all LSl·ll 
processors), and EIS instructions MUL, DIV, 
ASH, ASHC (processors in which the KEVl 1 
EIS/FIS option is installed). 

3.6 OMA OPERATIONS 
OMA 1/0 operations involve a peripheral device and system memory. 
A device can transfer data to or from the 4K memory on the processor 
module or any read/write memory module along the bus. The actual 
sequence of operations for executing the data transfer once a device has 
been granted DMA bus control is as previously described for input and 
output 1/0 bus cycles, execpt fhe DMA device, not the processor, is bus 
master (controls the operation). Memory addressing, timing, and con· 
trol signal generation/response are provided by logic contained on the 
device's OMA interface module; the processor is not involved with ad· 
dress and data transfers during a DMA operation. 

The required DMA sequence is shown in Figure 3-7. A device requests 
the 1/0 bus by asserting BOMR L. After completing the present bus 
cycle, the processor responds by asserting BOMGO L, allowing the device 
to become bus master. It also inhibits further processor generation of 
BSYNC L, preventing processor-initiation of a new bus cycle. The device 
responds by asserting BSACK L and negating BDMR L, causing the pro· 
cessor to terminate BDMGO L; the device is now bus master and it can 
execute the required data transfer in the same manner described for a 
DATI, DATIO, OATIOB, DATO, or DATOB bus cycle. When the data trans· 
fer is completed, the device returns bus master control to the processor 
by terminating the BSACK Land BSYNC L signals. 

3·11 



BUS MASTER 
(PROCESSOR OR DEVICE) 

ADDRESS DEVICE/MEMORY 

• Assert BDAL0-15 L with 
address 

• Assert BBS7 L and if the 
address is in the 28 · 32K range 

• Assert BSYNC L ----

SLAVE 
(MEMORY OR DEVICE) 

- - ---.., DECODE ADDRESS 
• Store "device selected" 

operation 

REQUEST DATA -- ---- --
• Remove the address from 

BDAL0-15 L 

and negate BBS7 L ---

• Assert BOIN L - --~-
-.. INPUT DATA 

• Place data on BDAL0-15 L 
• Assert BRP LY L ---------TERMINATE INPUT TRANSFER 

• Accept data and respond by 

terminating BOIN L --- --....._ 

---- ---- --.... 
COMPLETE INPUT TRANSFER 

• Remove data 
• Terminate ,BR PLY L -----------OUTPUT DATA 

• Place output data on BDAL0-15 L 

• {Assert BWTBT L if an output 
byte transfer) 

• Assert BDOUT L ---
-- ---- _., TAKE DATA 

TERMINATE OUTPUT TRANSFER .....--
• Terminate BDOUT L, and remove 

data from BOAL lines 

--
• Receive data from BOAL lines 
• Assert BRPL Y L 

-----
-- -- -- ---.. 

TERMINATE BUS CYCLE 
• Negate BSVNC L .--- -

(and BWTBT l if in 
a DA TIOB bus cycle) 

Figure 3-5 

UPEAATION COMPLETED ---- • Terminate BRPLV L 

11-3139 

DATIO or DATIOB Bus Cycle 

3-12 



BUS MASTER 
(PROCESSOR OR DEVICE) 

ADDRESS DEVICE/MEMORY 
• Assert BDAL0-15 L with 

address and 
• Assert BBS7 L (if address 

is iti the 28 - 32K range) 
• Assert BWTBT L (write 

cycle) 
Assert 8 SY NC l 

OUTPUT DATA 
• Remove the address from 

BDAL0-15 L 
and negate BBS7 L and BWTBT L 

(BWTBT L remains active if 

DATOB cycle) 

• Place data on BDAL0-15 L 
• Assert BDOUT L 

TERMINATE OUTPUT TRANSFER 
• Remove data from BDAL0-15L 

and negate BDOUT L 

TERMINATE BUS CYCLE 
• Negate BSVNC L (and BWTBT L 

if a DATOB bus cycle) 

---

............ 

SLAVE 
(MEMORY OR DEVICE) 

DECODE ADDRESS 
• Store "device selected" 

operation 

TAKE DATA 

• Receive data from BOAL lines 
• Assert BR PLY L 

OPERATION COMPLETED 
• Terminate BR PLY L 

11-3140 

Figure 3-6 DATO or DATOB Bus Cycle 

3-13 



LSl-11 PROCESSOR 
(MEMORY IS SLAVE) 

GRANT BUS CONTROL . Near the end of the current 
bus cycle (BRPL V Lis negated), 
assert BDMGO L and inhibit 
new processor generated 
BSVNC L for the duration 
of the OMA oPeration, 

TERMINATE GRANT SEQUENCE . Negate BDMGO L and 
wait for OMA o;ieration 
to be completed 

RESUME PROCESSOR 
OPERATION 

• Enable processor-generated 
BSVNC L (Processor is 
Bus master) Or issue 
another grant if BDMR L 
is asserted. 

DEVICE 

REQUEST BUS 
• Assert BDMR L 

------------.--

--- --- ACKNOWLEDGE BUS MASTERSHIP -- . Wait for negation of --.. BSYNC L and BRPL V L . Assert BSACK L . Negate BDMR L ----------....--

--- -- -- --.. ~~!~~;~:~~~I~~~~ 

------
BUSMASTERI 

• Address memory and transfer 
data as described for DATI, 
DATIO, OATIOB, DATO, 
DATOB bus cycles 

• Release the bus by 
terminating BSACK L 
Ina sooner than negation 
of last BRPL V LI and 
BSYNC L. 

11-3141 

Figure 3-7 OMA Request/Grant Sequence 

3-14 



3.7 INTERRUPTS 
Interrupts are requests, made by peripheral devices, which cause the 
processor to temporarily suspend its present (background) program 
execution to service the requesting device. Each device which is capab1e 
of requesting an interrupt must have a user-supplied service routine that 
is automatically entered when the processor acknowledges the interrupt 
request. After completing the service routine execution, program con­
trol is returned to the interrupted program. This type of operation is 
especially useful for the slower peripheral devices. 

A device can interrupt the processor only when interrupts are enabled 
and services interrupts only when its PS bit 7 is cleared. Device priority 
is highest for devices electrically closet to the processor along the bus. 
Any device that can interrupt the processor can also interrupt the service 
routine execution of a lower priority device if the processor's priority is 
O (PS bit 7 is cleared) during that execution; hence, interrupt nesting to 
any level is possible with this interrupt structure. Each device normally 
contains a control status register (CSR), which includes an interrupt 
enable bit. A program must set this bit before an interrupt can be 
generated by the device. 

An interrupt vector associated with each device is hard-wired into the 
device's interface/control logic. This vector is an address pointer that 
is transmitted to the processor during the interrupt acknowledge se­
quence, allowing automatic entry into the service routine without device 
polling. 

When the BEVNT L signal line is asserted, the processor automatically 
services the request via location 1008 ; it does not input a vector address 
as done for other external interrupt devices. This function is normally 
used for a line time clock input based on the frequency of the local ac 
power (50 or 60 Hz). 

The interface control and data signal sequence required for interrupts 
is shown in Figure 3-8. A device requests interrupt service by asserting 
BIRQ L. The processor can acknowledge interrupt requests only between 
instruction executions by generating an active (low) BOIN L signal, 
enabling the device's vector response. The processor then asse.rts the 
BIAKO L signal. The first device on· the bus re.ceives this daisy-chained 
signal at its BIAKI L input. If it is not requesting service, it passes the 
signal via its BIAKO L output to the next device, and so on, until the 
requesting device receives the signal. This device will . not pass the 
BIAKO L signal and it responds by asserting BRPLY L (low) and placing 
its interrupt vector on data/address bus lines BDAL0-15 L. Automatic 
entry to the service routine is then executed by the processor as pre­
viously described. 

NOTE 
If a device fails to assert BRPLY Lin response 
to BOIN L within 10 µs, the processor enters the 
Halt state. 

3.8 BUS INITIALIZATION 
Devices along the 1/0 bus are initialized whenever the system de volt­
ages are cycled on or off, or when a RESET instruction is executed. 

3-15 



PROCESSOR 

STROBE INTERRUPTS 
• Assert BOIN L 

I 
I 
+ 

GRANT REQUEST 
• Pause and assert 

BIAKO L 

RECEIVE VECTOR & TERMINATE 
REQUEST 

• Input vector address 

/ 
¥ 

DEVICE 

INITIATE REQUEST 
• Assert Bl RO L 

RECEIVE BOIN L 
• Store "interrupt selected" 

in device 

RECEIVE BIAKI L 
• Receive BIAK I Land inhibit 

BIAK 0 L 
• Place vector on BOAL 0-15 L 
• Assert B~PLV L 
• Terminate BIRO L 

/ 
/ 

/ 

• Terminate BOIN Land BIAKO L 

~ COMPLETE VECTOR TRANSFER 

PROCESS THE INTERRUPT 
• Save current program PC 

and PS on stack 
• Load new PC and PS from 

vector addressed location 
• Execute interrupt service 

routine for the device 

/ 
/ 

/ 

• Remove vector from 
BOAL bus 

• Terminate BRPL V L 

Figure 3·8 Interrupt Request/ Acknowledge Sequence 

3-16 

11-3142 



Initialization during the power-on/power-off sequence is described in 
Paragraph 3.9. When the RESET instruction is executed, the processor 
responds by asserting BINIT L for approximately 10 µ.s. Devices along 
the bus respond to the BIN IT L signal, as appropriate, by clearing 
registers and presetting or clearing flip-flops. 

3.9 POWER-UP POWER-DOWN SEQUENCE 
Power status signals BPOK H and BDCOK H must be asserted or negated 
in a particular sequence as de operating power is applied or removed. 
Initially, BDCOK H and BPOK H are passive (low). As de voltages rise 
to operating levels, BIN IT L is asserted by the processor module. Ap· 
proximately 3 ms (min) after +5 V and +12 V power are normal, an 
external signal source, or the H780 power supply in PDP·ll/03 sys· 
terns, produces an active BDCOK H signal; the processor responds by 
negating BINIT, and waits for BPOK H. The BPOK H signal, produced 
by an external signal source or the H780 power supply, goes true (high) 
70 ms (min) after BDCOK H goes high. The processor responds by exe· 
cuting the user-selected power-up routine (Paragraph 5.2); if SHALT L 
is asserted, the console microcode is executed. 

During a power-down sequence, the external signal source first negates 
BPOK H, causing the processor to execute the power-fail trap (PC at 
024, PS at 026). Approximately 3 ms (max) later, the processor initiCJI· 
izes the bus by asserting BINIT Lin response to the external signal nega­
tion of BDCOK H. 

3.10 HALT MODE 
The SHALT L bus signal can be asserted low to place the processor in 
the Halt mode. When in the Halt mode, the RUN indicator (PDP-11/03 
only) is extinguished, interrupts external to the processor module are 
ignored, and the processor executes the console ODT microcode. Al­
though the user could assert this line by a separate switch or a custom 
module, it is normally asserted by the HALT/ENABLE switch (PDP-11/03 
only) or the user-designated device's SLU interface module when the 
Framing Error Halt is enabled. Note that when in the Halt mode, the 
processor arbitrates DMA requests, and refresh operations. Thus, in 
addition to bus transactions between the processor and the console 
device, bus transactions can occur for DMA and refresh. 

3.11 MEMORY REFRESH 
Memory refresh operations are required when any dynamic MOS mem· 
ory devices are used in a system. These· memory devices are included 
on KDll-F and MSVll-8 modules. Memory refresh is normally controlled 
by the processor microcode, which is automatically executed once every 
1.6 ms. However, refresh could be controlled by the REVll·A or REVll-C 
options, as described in Chapter 4 and 5, or a user-supplied DMA device 
on the bus. (For example, when used in an intelligent terminal appli­
cation, the refresh logic could be included on the user's DMA interface 
module.) 

A complete refresh operation requires 64 BSYNC/BDIN transactions· 
which must be completed within 2 ms. The processor (or other device 
controlling the refresh operation) first asserts BREF L for each BSYNC/ 
BDIN transaction during the addressing portion pf each refresh oper­
ation. BREF L causes all dynamic MOS memory devices to be simul-

3-17 



taneously enabled and addressed, overriding local bank selection circuits. 
Refresh is .then accomplished by executing 64 BSYNC/BDIN transac­
tions, in a manner similar to the DATI bus cycle, incrementing the "row" 
address (bits 1-6) once for each transaction. Address bit 0 is not 
significant in the refresh operation. When refresh is controlled by pro­
cessor microcode, the operation takes approximately 130 µ,S. 

N.ote that only one dynamic MOS memory device is required to assert 
BR PLY L during the refresh BSYNC/ BOIN transactions. This should be 
performed by the slowest device on the bus. MSVll-B modules each 
contain a jumper which the user can insert to prevent the module from 
asserting BRPL Y L during refresh operations. The slowest memory 
device will normally be the MSVll-B module located the greatest elec­
trical distance from the processor module along the bus. 

· 3.12 BUS SPECIFICATIONS 

Electrical 
Input Logic Levels 

TTL Logical Low: 
TTL Logical High: 

0.8 Vdc max 
2.0 Vdc min 

Output Logic Levels 
TTL Logical Low: 
TTL Logical High: 

0.4 Vdc max 
2.4 Vdc min 

Bus Receivers 
Logical Low: 
Logical High: 

1.3 Vdc max, -IOµ, A max at 0 V 
1.7 Vdc min, 80 µ,A max at 2.5 V 

Bus Drivers 
Logical Low: 
Logical High: 

0.8 Vdc max at 70 mA 
25 µ,A max at 3.5 V 

NOTE 
All bus lines are open-collector, resistor-ter­
minated to 3.4 V nominal. 

Bus Drivers and Receivers 
Recommended Bus Drivers 

Type 957, P/N DEC 888-1, quad 2-input NANO gates. (Refer to 
specifications in Table 8-1.) 

Recommended Bus Receivers . 
Type 956, P/N DEC 8640, quad 2-input NOR gates. (Refer to speci· 
fications in Table 8-1.) 

Recommended Bus Transceivers 
Type DEC 8641, quad unified bus transceiver. 

3.13 BUS CONFIGURATIONS 
In the following descriptions, a unit load is equal to one bus receiver 
and two bus drivers and less than 10 pF of circuit board etch. Bus ter­
minations are shown in Figure 3-9. 

3-18 



+5V 

330.(]. 

680.(]. 

250.(]. 
BUS LINE 
TERMINATION 

C5V 

178.(]. 
1 °/o 

393.(]. 
1% 

120.n 
BUS LINE 
TERM! NATION 

CP-1628 

Figure 3-9 Bus Line Terminations 

Minimum Configuration (Figure 3-10) 
L The processor terminates the bus lines to Zt = 250 fL 

2. Ten-inch maximum backplane wire (each bus line for a 4 by 4 back­
plane), 6 unit loads or less. 

Intermediate Configuration (Figure 3-11) 
1. The processor terminates the bus lines to Zt = 250 D. 

!.-------BACKPLANE WIRE----+! 
10"MAX 

PROCESSOR 

ONE 
.UNIT 
LOAO 

)- ] 
ONE 
UNIT 
LOAD 

6 UNIT LOADS 

] 
ONE 

UNIT 
LOAD 

CP-182.9 

Figure 3-10 Minimum Configurations 

..._ ________ BACKPLANE WIRE _________ ~ 
14"MAX. 

250.0. 

+ 
3.4V 

PROCESSOR 

ONE 
UNIT 
LOAD 

ONE 
UNIT 
LOAD 

ONE 
UNIT 
LOAD 

15 UNIT LOADS 

ONE 
UNIT 
LOAD 

Figure 3-11 Intermediate Configuration 

3-19 

TERM 
CP-!830 



BACKPLANE WIRE_._ ___ ., 

PROCESSOR 

IO"MAX. 

ONE 
UNIT 
LOAD 

~ 1 
ONE 
UNIT 
LOAD 

5 l}NIT LO ADS MAX. 

NE WIRE 
AX. 

r.,.__ ___ BACKPLA 
10"M 

ADDITIONAL 
CABLES 

CABLE 

ONE 
UNIT 
LOAD 

~ I 
ONE 

UNIT 
LOAD 

6 UNIT LOADS MAX. 

~ 250.Q. 

+ 
3.4V 
-

-= 

CABLE/TERM 

·I 

CABLE 

6 BACKPLANES ,,...,__ ___ BACKPLANE WIRE ___ _..., 
MAX. 10" 

l 
J 

CABLE 

l 
ONE 

UNIT 
LOAD 

-\ 

ONE 
UNIT 
LOAD 

6 UNIT LOADS MAX. 

NOTES: 
1. THREE CABLES (MAX.l,1611. (MAX.) 

TOTAL LENGTH. 

2. 15 UNIT LOADS TOTAL(MAX.) 

TERM 

Figure 3-12 Maximum Configuration 

CP-1831 

2. Fourteen-inch maximum backplane wire (each bus line for a 9 by 4 
backplane), 15 unit loads or less. 

3. An additional 120 n termination is required. 

Maximum Configuration (Figure 3-12) 

1. The processor terminates the bus lines to Zt = 250 n. 
2. Ten-inch maximum backplane wire on each backplane (each bus line 

for 4 by 4 backplanes); 6 unit loads maximum each backplane, 15 
unit loads total (maximum); daisy-chained on 2 feet (minimum) 120 
n cable, three cables maximum, total cable length not exceeding 
16 feet. 

3-20 



3. Two additional terminations (one 250 n and one 120 n) are required. 

3.14 BUS SIGNAL TIMING 
Bus signal timing requirements at master and slave devices are shown 
in Figures 3-13 through 3-18. 

T/R DAL 

T SYNC 

100ns MIN r;= 200nsMAX-~ 
200ns M\N 

T DIN 

R RPLY 

=:-1150ns MIN t:= lOOns MIN 

T 857 {4) (41 

T WTBT (4) (41 

TIMING AT MASTER DEVICE 

R/T DAL ~ 
25ns I'­
Ml N f+-

(41 ____ r_oA_r_' __ __,X _____ <4_1 ____ _ 

__, ~ 100 ns Ml•X 

R SYNC 

DIN 

T RPLY 

R BS7 

75ns 
MIN 

\25ns MAX 

(41 

R WTBT (4) (41 

TIMING AT SLAVE DEVICE 

NOTES 

! Timing shown ol Mosler 011d Slave Device 
Bus Driver inputs on_d Bus Receiver Outputs 

2. Signal name prefixes ore defined below 

T " Bus Driver Input 
R " Bus Rece1ve1 Output 

3 Bus D11ver Output and Bus Receiver Input 

signal names include a "a'' prefi)(. 

4 Don't core condition 

Figure 3-13 DATI Bus Cycle Timing 

3-21 



T DAL 

T SYNC 

T DOUT 

R RPLY 

T 857 

T WTBT (4) 

L150 ns MIN 100ns t 
MIN 

(4) 

MIN 

(4) 

ASSERTION = BYTE (4) 

--..! 1QOnsMIN c 
TIMING AT MASTER DEVICE 

R DAL ~ ____ R_o_Ar_• ____ ~X 
l i.:=25ns MIN ~25nsMIN 

(4) 

R SYNC 

R OOUT 

T RPLY 

R BS7 

R WTBT 

75ns 
MIN 

25ns .f+­
MIN I 

:~--------

25ns \ 
MIN t--

TIMING AT SLAVE DEVICE 

NOTES 

I Timing showfl ot Moster and Slave Device 
Bus Driver Inputs and Bus Receiver 01.1tputs. 

2. Signal nome prefixes ore defined below. 

T" Bus Driver Input 
R -:;. Bu~ Receiver 01.1tput 

3 Bus Driver Oulpu! and Bus Receiver Input 
signo I names include a "8" prefix 

4 Don't care conr.tillon 

Figure 3·14 DATO or DATOB Bus Cycle Timing 

3-22 



R/T DAL 

T SYNC 

T OOUT 

R SYNC 

R DOUT 

R QIN 

T RPLY 

R BS7 

150ns MIN=:J 

(4) 

TIMING AT MASTER DEVICE 

(4) 

40nsMIN 

R DATA (4) 

~25ns MIN 

(4) 

~------------~ ~--'-5_c._M_IN------~lr25ns MIN 

(4) 

25ns MIN 

TIMING AT SLAVE DEVICE 

NOTES" 

I Timing shown al Requesting Device 
Bus Driver Inputs and Bus Receiver Outputs 

2. Signal n~me prefor.es are defined below· 

T " Bus Driver Input 
R = Bus Receiver Output 

3. Bus Driver Output and Bus Receiver Input 
signal names include a "B" prefi~ 

4. Don't care condition 

ASSERTION = BYTE 

Figure 3·15 DATIO Bus Cycle Timing 

3-23 

(4) 



T IRQ 

R DIN 

R IAKI 

T RPLY 

T DAL 

R SYNC 

R BS7 

T DMR 

R DMG 

T SACK 

R/T SYNC 

R/T RPLY 

T DAL 
(ALSO 857, 
WTBT, REF) 

_, INTERRUPT LATENCY 
MI NUS SERVICE TIME 

r- j 
VECTOR 

( UNASSERTED l 

(UNASSERTEDI 
NOTES: · 

I. Timing shown of Reoues1ing Device Bus Driver Inputs and Bus Receiver Outputs. 

2. Signal Nome Prefixes ore dP.fined below: 
T =Bus Driver Input 
R = Bus Receiver Output 

3. Bus Driver Output and Bus Receiver Input signal names include a "8" prefix. 

Figure 3-16 Interrupt Transaction Timing 

-.-l OMA LATENCY 

r--+--1-~ r-r-~r-t/TT/ll/I 
111///1///11 

tons MIN. 

OnsMINI 

[4--10ons 
MAX. 

CP-1777 

SECOND 
REQUEST 

~ OnsMIN 
)-IOOns MAX 

ans MIN ! 

-----------JI. ADDR x========D=A=T=A========\~-----
NOTES· 

I Timing shown at requesting device bus clriver inputs and bus receiver outputs 

2. Signal name prefiltes are defined below; 
T =Bus Driver Input 
R: Bus Receiver Output 

3 Bus Driver Output and Bus Receiver Input signal names include o "B" pref ill. 

Figure 3-17 DMA Request/Grant Timing 

3-24 



BINIT L 

B POK ~I 

BOCOK H 

DC POWER 

_.j_ ___ __, 

I 70msMIN 

POWER UP 
SEQUENCE 

Figure 3-18 Power-Up/Power-Down Timing 

3-25 

NORMAL 
POWER 



3-26 



CHAPTER 4 

LSl-11 MODULE DESCRIPTIONS 

4.1 GENERAL 
This chapter contains detailed descriptions of each LSl·ll module. The 
level of coverage is sufficient to enable users to interface their systems 
with the POP·ll/03 or LSl·ll using standard LSl·ll modules or user· 
designed interfaces. Refer to Chapter 3 for detailed bus timing infor· 
mation. 

LSl·ll modules covered in this chapter are listed in Table 4·1. Note that 
a separate description for the KOll·J microcomputer is not provided; it 
comprises the same M7264 module as the KOll·F microcomputer, 
except that a resident semiconductor memory is. not supplied. Instead, 
the MMVll core memory module is supplied with the KOll·J option. 

Table 4·1 LSl-11 Modules 

Module ·Description 
Option Number Module Option Para. No. 

KOll-F M7264 LSl·ll microcomputer and 4.2 
4K semiconductor memory 

KOll·J M7264·YA, LSl·ll microcomputer and 4.2 
H223,G653 4K core memory 

KEV-11 EIS/FIS processor chip 4.2 
MMVll·A H223, G653 K4 by 16-bit core memory 4.3 
MRVll·AA M7942 4K by 16-bit PROM 4.4 
MSVll-B M7944 4K by 16-bit dynamic read· 4.5 

write memory 
OLVll M7940 Serial line unit 4.6 
ORVll M7941 Parallel line unit 4.7 
ORVll·B M7950 OMA interface 4.8 
ORVll·P M7948 LSl·ll bus foundation 4.9 
REVll·A M940b·YA 250 n terminator, OMA 4.10 

refresh, bootstrap ROM 
REVll·C M9400·YC OMA refresh, bootstrap ROM 4.10 
REVll·H M9400·YH OMA refresh, bootstrap ROM 4.10 
TEVll M9400·YB 120 n terminator 4.10 
BCVlA M9400·YO Bus expansion modules and 4.10. 

M9401 cables 
BCVlB M9400·YE Bus expansion modules and 4.10 

M9401 cables 
H780·Aand 
H780·B Power Supply 4.11 

4·1 



4.2 KDll·F MICROCOMPUTER 
4.2.1 General 
The KDll·F microcomputer is contained on a single 8.5 by IO inch 
printed circuit board (M7264). The module includes all basic micro· 
computer functions common to both the KDll·F and KDll·J microcom· 
puters and a resident 4K by 16·bit semiconductor read/write memory. 
KDll·F functions are shown in Figure 4·1. 

NOTE 
The following description reflects the circuits 
shown in drawing CS M7264 Rev. J. 

4.2.2 Basic Microcomputer Functions · 
Basic functional blocks of the LSl-11 microcomputer are shown in 
Figure 4·1 and described in the following paragraphs. The KDll·F's 
resident memory is described separately (Paragraph 4.2.3). 

4.2.2.1 Microprocessor Chip Set-The main function contained on the 
processor module is the microprocessor chip set. This chip set in· 
eludes a control chip, a data chip, and two microinstruction ROM chips 
(microms). In addition, an optional KEVll microm that contains EIS/ 
FIS microcode can be installed on the module. Microprocessor chips 
communicate with each other over a special 22·bit microinstruction bus, 
WMIB0-21 L. All address and data communication between the micro· 
processor chips and other processor module functional blocks is via the 
data chip and the 16·bit data/address lines, WDAL0-15 H (from the 
data chip). 

Processor module control signals interface with the microprocessor 
chips via the control chip. Eight input and five output microprocessor 
control signals provide this function. 

Timing and synchronization of all microprocessor chips (and all pro· 
cessor -module functions) are controlled by four nonoverlapping clock 
pulses (Pargraph 4.2.2.2). Typical operating speed is 400 ns (100 ns 
each phase), based on a 10 MHz oscillator signal. 

The control chip generates a sequence of microinstruction addresses -
which access the microinstruction microm chips. The addressed micro­
instruction is then transferred to the data and control chips. Most of the 
microinstructions ar_e executed by the data chip; however, various jumps, 
branches, and 1/0 operations are executed in the control "chip. 

The data chip contains the data paths, logic, arithmetic logic unit (ALU), 
processor status bits, and registers that are most familiar to PDP·ll 
and LSl·ll users. Registers include.the eight general registers (RO....!R7) 
and an instruction register. The user's program has access to all gen· 
eral registers and processor status (PS) bits. All PDP·ll instructions 
enter this chip via the WDAL bus. Data and addresses to and from the 
microprocessor are also transferred to and from the processor over this 
16·bit bus. 

CAUTION 
Do not remove processor chips from their sock· 
ets. Improper .handling could permanently dam­
age the chips. 

4·2 



0-15 L 

PROCESSOR 

DATA 

CHIP 

PROCESSOR 
MICRO­

v~0_-_21_L~~,1 INSTRUCT!ON 
ROM 

CHIPS 
12) 

RPH1-4 H 

L.. 

N K::=0-=1=7=L:::::~ P~~~~:~~R 
g CHIP 

" ~ 

r-----, 
KEV-11 : 

: OPTIONAL I 

I M~~~~~~~E : 

INTERNAL 
TIMING B 
CONTROL 
SIGNALS 

L_ 

READ 
DATA 

ADDRESS 1-----~ 

I 
AND WRITE 

DATA RESIDENT 
MEMORY 

(K011-F ONLY) 

W1 

W2 

BUS 

IIO 
CONTROL 

LOGIC 

I 
Wt\ 

SMENBL CF1 

AJ2 

AK2 

AH2 

AE2 

AF2 

881 

INTERRUPT >+-----------~·~·1~1 BI 
CONTROL AP1 

AND BR1 
RESET 
LOGIC AL2 

AN2 

SSPARE 2 

L__-1-___:_--f-~;---i~---------~AN~ll___[BlB BDMR L 

IC:==::::::!)!I CH I P I 
L ____ _J 

CLOCK 
PULSE 

PH1-4 H 

Figure 4-1 

-9V 

-5V 

01V8(0) H 

l+----------~B~N~l--JIBll BSACK L 

L.'.:'.'.:~ _ _J-----------•~5~2'-'i_~B BDMGO L 

KDll·F Micorcomputer Logic Block Diagram 

4-3 



4.2.2.2 Clock Pulse Generator-The clock pulse generator produces 
four nonoverlapping clock signals for processor timing and synchroniza­
tion. A voltage-controlled oscillator generates a basic 10 MHz CK H 
signal. 

Maintenance clock gates receive and distribute the basic CK H signal 
to a two-stage counter and an RC filter circuit. The two-stage counter 
outputs are decoded by the four-state decoder, producing the basic four 
nonoverlapping clock phases. The pulse produced on the leading edge 
of each basic clock pulse inhibits the decoder for 10 ns, preventing the 
overlap of each phase. Each of the four phase signals (RPHI through 
RPH4) are positive-going, MOS-compatible IOO ns (nominal) pulses 
which are bused to each of the microprocessor chips through resistors. 
PHI L through PH4 Land PHI H through PH4 are similarly timed; how· 
ever, they are TTL-compatible for distribution elsewhere on the module. 

10MHz (APPROX),_ __ 

osc 

+3V MAlNT 
CLOCK 

-~-., GATES 
MAINT{MCKD L 

CK 

SIGNALS MCK L -~-

+sv 

OJVB (0) H (DC-DC INVERTER CLOCK) 

2-STAGE 
COUNTER 

NON-OVERLAP PULSE 

4 -STATE ,__ __ RPH1-4 H 

DECODER 1---- PH 1 _ 4 L 
AND 

DISTRIS 1---PH1 _ 4 H 

Figure 4·2 Clock Pulse Generator 

4.2.2.3 Bus Interface and Data/Address Distribution-All LSl-11 pro­
cessor module communication to and from external 1/0 devices and 
memories is accomplished using the LSl-11 bus 16-bit data/address 
lines (BDALO-I5 L) and bus control signals. The processor module in­
terfaces to the bus using bus driver/receiver chips, as shown in Figure 
4-3. Each DEC 864I chip contains four open-collector drivers and four 
high-impedance receivers. Each driver output is common to a receiver 
input. Hence, either processor output data (from the driver outputs) or 
Input data (from the bus) can stimulate bus receiver inputs . 

. Note that all four drivers in a chip are enabled or disabled by a pair of 
DRIVER ENABLE L inputs. A high input will inhibit all four drivers; when 
both enable inputs are low, the drivers are enabled and output data is 
gated onto the bus. Signals which control bus drivers include EDAL L, 
INIT (I) H, and DMGCY H. False states enable certain control signals 
which are described later. 

EDAL L is a control signal which enables the I6-bit data/address bus 
drivers. When in the active state, EDAL L gates WDALO-I5 H onto the 
BDALO-I5 L bus. 

EDAL L is generated by the logic shown in Figure 4·4. During a pro­
cessor-controlled address/data output bus cycle, or during the address­
ing portion of a processor-controlled input bus cycle, SACK L and 
DMG(l) L are passive (high). The passive signals are gated, producing 

4-4 



a low (passive) DMGCY H signal. This signal is inverted and gated with 
the passive DIN L signal, producing the active EDAL L signal. During a 
DMA cycle in which data in the processor module's resident 4K memory 
is to be read by a DMA device, BANK OR REF H goes high; this signal 
is gated with DINR H and DMG CYCLE H to produce the active EDAL L 
signal. 

DMGCY H and INIT (1) H are processor module logic control signals 
which inhibit certain bus drivers during an Initialize or DMA operation. 
Bus drivers are enabled when these signals are in the false (low) state. 

DRIVER c 
ENABLE L 

BUS 
DRIVER 

+SYz, 2500. 
LOGICAL: 

330n I• 0.4V TYP. 
0•3.3VTYP. 

I/O BUS 
o------~-----+ DATA I CONTROL 

J--:-=::::-::c-c=--::--c,------lL---J 81 T {L) 

INPUT DATA/ 
CONTROL BIT (Hl 

seo.n 

Figure 4-3 . LSl-11 Bus Loading and Driver/Receiver Interface 

Figure 4-4 EDAL L Logic 

A list of bus driver output signals and their respective enable signals is 
provided below. 

Bus Driver 
(Signal) 

BDAL0-15 L 

BSYNC L} 
BBS? L 
BREF L 
BIAKO L 

BDMG L } 
BRPLY L 
BOIN L 
BDOUT L 
BWTBT L [ 
BINIT L I 

Enable Signal(s) 
(Low = Enable) 

EDAL L 

INIT (1) H, DMGCY H 

INIT (1) H 

Always enabled 

4.5 



The near-end bus termination resistors are contained on the processor 
module. Each bus driver output is terminated by a pair of resistors, as 
shown in the figure, establishing the nominal 250 Q bus impedance and 
the 3.4 V nominal voltage level. No additional terminations are required 
for bus-compatible devices connected to the same backplane. 

Address and data information are distributed on the processor module 
via the DWAL0-15 H and DAL0-15 H 16-bit buses. WDAL0-15 H interface 
directly with the microprocessor's data chip, the DEC 8641 bus drivers, 
and the 1/0 bus/memory read data multiplexer. All processor input 
data from the 1/0 bus is via the bus receivers, the DAL0-15 H bus, the 
data multiplexer, the WDAL0-15 H bus, and the microprocessor's data 
chip. Resident memory data input is discussed later. 

4.2.2.4 Bus 1/0 Control Signal Logic-Bus 1/0 control signals include 
BSYNC L, BWTBT L, BOIN L, BDOUT L, and BRPLY L. In addition, 
BIAKO L can be considered a bus 1/0 control signal; however, since 
it is only used during the interrupt sequence, it is discussed in Para­
graph 4.2.2.6. Logic circuits which produce and/or distribute these sig­
nals are shown in Figure 4-5. Each signal is generated or received as 
described in the following paragraphs. 

BSYNC L-The control chip initiates the BSYNC L signal sequence by 
raising WSYNC H during PH2. Inverters apply the high SYNC H signal 
to the Sync flip-flop D input. On the trailing edge of PH3 L, the Sync 
flip-flop sets, producing an active (high) SYNC (1) H input to the 
BSYNC L bus driver. SYNC (1) H is gated with REPLY (1) H (when ac­
tive) to produce a direct preset input to the Sync flip-flop. This ensures 
that BSYNC L will remain active until after the bus slave device ter­
minates its BRPLY L signal and the Reply flip-flop is reset. [REPLY (1) 
H is low.] The Sync flip-flop then clocks to the reset (BSYNC L passive) 
state on the trailing edge of PH3 L. 

BWTBT L-BWTBT L is the buffered/inverted control chip WWB H out­
put signal. This signal asserts during PHl of the addressing portion of a 
bus cycle to indicate that a write (output) operation follows. It remains 
active during the output data transfer if a DATOB bus cycle is to be 
executed. 

BDIN L-BDIN L is the inverted, buffered control chip's WDIN H signal. 
This signal goes active during PH2 following an active RPLY H signal. 

BDOUT L-The control chip initiates the BDOUT L signal sequence by 
raising WDOUT H during PH2. This signal is gated with the passive 
REPLY (1) L (high) signal to produce an active low D input to the 
DOUT flip-flop. The flip-flop sets on the leading edge of PH3 H, producing 
an active BDOUT L signal. It clocks to the reset state on PH3 following 
the REPLY (1) L active (low) signal. 

BRPLY L-BRPLY Lis a required response from a bus slave device dur­
ing input or output operations. DIN L and DOU:r (1) L are ORed to pro­
duce an active 1/0 L signal whenever a programmed transfer occurs. 
1/0 L enables the time-out counter in the bus error detection portion 
of the interrupt logic. 1/0 Lis inverted to produce 1/0 H, which enables 
the reply gate REPLY H signal input to the control chip. 

4-6 



BRPLY L is received either from the LSl-11 bus or resident memory 
and inverted to produce a high input to the Reply flip-flop. PHl H clocks 
the flip-flop to set state, producing active REPLY (1) H and REPLY (1) L 
signals. REPLY (1) L is ORed with DMR (1) L to produce an active 
BUSY H signal. The processor's control chip responds by entering a 
wait state, inhibiting completion of the processor-generated bus transfer 
for the duration of REPLY (1) L. REPLY (1) H is gated with 1/0 H to 
produce an active REPLY H signal, informing the processor that the 
output data has been taken or that input data is available on the bus. 
REPLY H goes passive when 1/0 H goes passive. The bus slave device 
will then terminate the BRPLY L signal, indicating that it has completed 
its portion of tt]e data transfer. On the next PH 1 H clock pulse, the 
Reply flip-flop resets and REPLY (1) H and L and BUSY H go passive. 

PROCESSOR 
CONTROL 

CHIP 

WWB H 

WOIN H 

WDOUT H 

REPLY H 

SYNC ( 1) H 

OMG CYH 

INIT(I) H 

SYNC (t) L 

SYNCR H -------~ 

REPLY (1) L 

OOUTA H 

110 H 

Figure 4-5 Bus 1/0 Control Signal Logic 

4-7 

BSYNC L 

BWTBT L 

BOIN L 

BRPLY L 



4.2.2.5 Bank 7 Decoder-The bank 7 decode circuit is shown in Figure 
4-6. Buffers receive WDAL0-15 H bits and distribute them to the bank 7 
decoder and BOAL bus drivers. Bank 7 is decoded during the addressing 
portion of the bus cycle. If a peripheral device address is referenced, an 
address in bank 7 (28-32K address space) is used, and WDAL13, 14, 
and 15 H are all active (high). This address is decoded and BBS? L is 
asserted. When active, BBS? L enables addressing of nonmemory de­
vices along the bus. During interrupt vector bus transactions, IAK L 
becomes asserted. IAK L inhibits WDAL15 H, preventing BBS? L signal 
generation, which could result in an invalid input data transfer. · 

PROCESSOR 
DATA 
CHIP 

Figure 4-6 Bank 7 Decoder 

4.2.2.6 Interrupt Control and Reset Logic-Interrupt control and reset 
logic functions are shown in Figure 4-7. Reset functions include bus 
error and power-fail (BDCOK H negated). Interrupt functions include 
power-fail (impending), Halt mode (console microcode control), refresh 
interrupt, event (or line time clock) interrupt, and external BIRQ inter­
.rupts. The various functions are described in the following paragraphs. 

Power-Fail/Restart Sequence---A power-fail sequence is initiated when -
BPOK H goes low, clocking the Power-Fail flip-flop to the set state. 
PFAIL (1) L is ORed with HALT L to produce a high signal. This. signal 
is latched during PH2 H, producing an active IPIRQ H (interrupt 1) input 
to the processor control chip. The processor then interrupts program 
execution. Note that the low (passive) BPOK H signal is inverted to 
produce an active PFAIL H input to the fast DIN multiplexer; this signal 
status is checked by the microcode to ensure that BPOK H is asserted. 

Upon entry to this microcode routine, the processor requests a fast DIN 
cycle. This request is decoded as ROM CODE 15 L, presetting the fast 
DIN flip-flop. FDIN (0) H goes low, enabling the fast DIN multiplexer to 
place start-up microcode option jumper data, the passive time-out error 
[TERR (1) HJ signal, and the active PFAIL H signal on WDAL0-3 H. The 
processor receives the fast DIN information via the data chip. An active 
PFAIL H signal informs the processor that a power-fail condition is in 
progress, rather than the halt condition. 

If the power failure continues, BDCOK H goes passive (low) and pro­
duces an active DC LO L signal, clearing the Power-Fail flip-flop and the 
power-fail/halt and reset latches and initializing the processor and all 
devices (Paragraph 4.2.2.1). The active RESET L signal then initializes 

4-8 



the processor, causing it to abort console (halt) or power-fail microcode 
execution and enter a "no operation" state. The processor remains in 
this condition until BDCOK H returns to the active state. 

The power-up restart condition occurs when DC LO L goes false; RESET 
L goes passive (high) on the next PH2 H clock pulse. The processor 
responds by executing a fast DIN cycle to determine the start-up micro· 
code option jumper configuration. Once the fast DIN cycle has been 
completed, the processor executes the power-up option selected, and 
normal operation resumes when BP.OK is asserted. 

Hatt Mode-The Halt mode is entered by executing the HALT instruc· 
tion, by a device asserting the BHALT L signal, by a double bus error 
condition, or by a bus error (time-out) during an interrupt. The processor 
halts program execution and enters microcode execution as described 
for a power-fail operation. However, when the processor executes the 
fast DIN cycle, the PFAIL H bit (WDAL3 H) is not active and console 
microcode (not a power-fail sequence) is executed. Negation of BHAL T 
L will allow the processor to resume PDP-11 program execution. On the 
next PH2 H clock pulse, IPIRQ H goes false (low) and the processor 
Run mode is enabled. 

Bus Errors-A bus error results in aborting program execution and entry 
into a trap service routine via vector location 004. A bus error occurs 
when a device fails to respond to the processor's OBIN L or BDOUT L 
signal by not returning a BRPLY L signal within 10 µs (approximately). 
An active 1/0 signal inhibits the reset input of the 5-stage time-out 
counter, enabling counter operation. [When not in a processor-controlled 
bus 1/0 cycle, 1/0 L is passive (high), clearing the counter.] The counter 
proc;eeds with counting PH3 H clock pulse signals. Normaly BRPLY L 
would be asserted, producing an active REPLY (1) H signal which in· 
hibits the counter; the count would remain stable until cleared by a 
passive 1/0 L signal. However, if BRPLY Lis not received within 10 µs, 
the full count (32 10) is attained. This is the error condition; TERR L 
goes low and TERR (1) H goes high. The next PH2 H clock pulse clocks 
the reset latch to the reset (active) state, producing an active RESET L 
signal. The processor responds by executing the rese't microcode. After 
entering the microcode, the processor executes a fast DIN cycle and 
determines that a time-out (bus) error TERR (1) H, rather than a power­
fail condition, has occurred. It then responds by executing the bus error 
trap service routine. TFCLR L (ROM code 2) is generated by the pro­
cessor to clear the TERR latch. 

Norma/ 1/0 tnterrupts-"Normal" 1/0 interrupts are those interrupt 
requests which are generated by external devices using bus interrupt 
request BIRQ L. The request is initiated by asserting BIRQ L. This signal 
is inverted to produce a high signal, which is stored in the interrupt 
request latch on the next PH2 H pulse. The stored request produces 
IOIRQ H, which informs the processor of the request. If processor status 
word priority is 0, the processor responds by producing an active WIAK 
H (interrupt acknowledge) and WDIN H signals. WDIN H is buffered 
onto the BOIN L signal line to signal devices to stabilize their priority 
arbitration. WIAK H is inverted, producing IAK L, setting the Interrupt 
Acknowledge flip-flop on the trailing edge of PHl L one cycle after 

4.9 



BHALT L 

BOCOK H 

BIACK H 

BIRO L 

BEVNT l 

FOlN (1)L 

FOIN (0) H 

• TFCLR L (ROM COOE 121 
!NIT {I) L 

PH3H 

REPLY 11 l H 

EVENT! OR L TC) - W3 
INTERRUPT 
DISABLE 
JUMPER 

PROC MICROCODE EFCLR-l 

~~~~~srr DISABLE ~ W4 

START UP MICROCODE
SELECT JUMPERS

10)

{I)
FAST
DIN

MUX

WDAL 0-3 H

>-1-'-""'=-"---1121

EVENT(l)H

PH2 H

"'

RESET
LATCH

EVENT
INTERRUPT

REQUEST
LATCH

(C~~_)- - -

MEMORY
REFRESH
REQUEST

LATCH

RESET L

IPIRO H

DC LO L

WIAK H

IOIRQH

EVIRQ H

RFIRQ H

Figure 4·7 Interrupt Control and Reset Logic

. . .

DATA
CHIP

PROCESSOR
CONTROL

CHIP

BOIN L is asserted. The high (active) interrupt acknowledge signal is
enabled onto the BIAKO L signal line by passive (low) OMGCY H and
INIT (1) H signals. The highest priority device requesting interrupt ser­
vice responds to the processor's BOIN L and 'BIAK L signals by placing
its vector on the BOAL bus arid asserting BRPLY L, inputting its vector
to the processor. Note that BSYNC L is not asserted during this opera·
tion and that no device addressing occurs. The device also clears its

4-10

BIRQ L signal. The processor responds to BRPLY L by terminating BOIN
Land BIAK L.

Refresh-Memory refresh is initiated by a 600 Hz refresh oscilator. This
function is enabled when jumper W4 is not installed. The leading edge
of RFOSC H clocks the Refresh Request flip-flop to the set state. On
the next PH2 H clock pulse, the memory refresh request latch stores
the request and applies an active RFIRQ H signal to the processor's
control chip. The processor responds by producing an active RF SET L
signal and executing the refresh microcode. RF SET L sets the Refresh
flip-flop, producing the BREF L signal (Paragraph 4.2.2.7) and clearing
the Refresh Request flip·flop, which terminates the request. TFCLR L
resets the Refresh flip-flop when the refresh operation is completed.
Note that BREF is not asserted if DMGCY H or IN IT (1) H is asserted.

Event Line Interrupt-The event line interrupt function can be used as
a line time clock interrupt, or as desired by the user. This interrupt
differs from the· normal 1/0 interrupt request by being the highest
priority external interrupt, and it does not input a vector in order to
enter its service routine. The interrupt is initiated by the external device
by asserting BEVNT L. This signal is inverted to produce a high (active)
signal, which clocks the Event flip-flop to the set state. (Note that when
W3 is installed, the flip-flop remains reset and the event function is dis­
abled.) On the next PH2 H clock pulse, the event interrupt request latch
stores the active EVNT (1) H signal. An active EVIRQ H signal is then
applied to the control chip. If processor status word priority is 0, the
interrupt will be serviced. Service is gained via vector 100 8 , which is
dedicated to the event interrupt. Hence, a bus DIN operation does not
occur when obtaining the vector. The request is cleared by the micro­
code generated EFCLR L signal.

4.2.2.7 Special Control Function-Special control functions include
microcode-generated bus initialize and memory refresh operations and
five special control signals which are internally on the processor module.
Special control function logic circuits are shown in Figure 4-8. Microin­
struction bus lines WMIB18-21 L are buffered to produce the four
SROM0-3 H signals. The actual codes for the special functions are
contained on SROM0·2 H; SROM3 H is always active when a special
function is to be decoded, enabling the 1 of 8 decoder during PH3 H.
The resulting decoded functions are described below.

ROM Code 10-Not used.

ROM Code 11 [/FCLR and SRUN L]-This code is produced by the pro­
cessor to clear the Initialize flip-flop and to assert the SRUN L signal
for a RUN indicator in PDP-11/03 systE;lms.

ROM Code 12 [TFCLR L]-This code is a trap function clear signal
which clears the Refresh Request and Time-Out Error flip-flops (Para­
graph 4.2.2.6).

ROM Code 13 [RFSET L]-This code is used to set the Refresh flip-flop.
The active (high) flip-flop output is gated with passive (low) IN IT (1)
H and DMG (1) H signals to produce the active BREF L signal. The flip­
flop normally resets by the microcode-generated TFCLR L signal after

4-11

completing the refresh operation, or whenever a power failure occurs.
(DC LO L goes active and clears the flip-flop.)

WMIB
18-21 L

BINIT L

J..:.'.'.~'._.'.'...r;;:---1---1----J.-•ROM CODE 10 INOT USED)

1-'---f---.ROM CODE 11 (IFCLR S SRUN LI

1--~---+--ROM CODE 12 (TFCLR L)

1' 8 ROM I---+-.----+--. ROM CODE 13 (RFSET L)

CODE ROM CODE 14 L (INITIALIZE SETl
DECODER

1---+-t--. ROM CODE 15 L (FAST DIN)

1---+---+--.ROM CODE 16 lPFCLR L)

L_ __ r-n--ROM CODE 17 IEFCLR LI

RFSET L

REFR L

Figure 4-8 Special Control Functions
11 -~148

ROM Code 14 [Programmed lnitialize]-A programmed LSl-11 bus ini­
tialize operation can be performed by executing the RESET instruction.
The processor responds by generating ROM Code 14 L (decoded). On
the positive-going trailing edge of this signal, the Initialize flip-flop clocks
to the reset (active) state, producing the active initialize signal. Approxi­
mately 10/Ls later, the processor produces a TFCLR L signal, clearing the
intialize signal.

During a power failure, the active DC LO L signal is distributed to the
Initialize flip-flop clear input; when cleared, the flip-flop is in the active
state and INIT (1) H, INIT (1) L, and BINIT L initialize signals are used
to clear (or initialize) all LSl-11 system logic functions. When normal
power resumes, the processor microcode terminates the initialize cycle
by generating TFCLR L, presetting the Initialize flip-flop; this is the
passive (noninitialize) or normal flip-flop state and all initialize signals
return to their passive states.

ROM Code 15 [Fast DIN Cyc/e]-The processor generates this code
when a fast DIN cycle is required. The fast DIN cycle allows the proces­
sor to read (input) the selected start-up mode, time-out error, and
power fail signal status (Paragraph 4.2.2.6).

ROM Code 16 [PFCLR L]-This code clears the Power Fail flip-flop (Para­
graph 4.2.2.7).

4-12

ROM Code 17 [EFCLR L]-This code clears the Event flip-flop (or line
time clock interrupt request) (Paragraph 4.2.2.7).

4.2.2.8 Bus Arbitration Logic-Bus arbitration logic (Figure 4-9)
enables the LSl-11 bus to be used by DMA devices or the processor. The
device (or processor) controlling the bus is called the bus master. When
no DMA requests are pending, the processor is bus master and all data
transfers are programmed. When a DMA device is bus master, pro­
cessor operation is suspended until the DMA operation is finished.

BSACK L

BDMR L

SACK L

INIT(1)L

OMG
EN
F/F

PH4 H

OMG
F/F

SYNC L

REPLY(1) L

DMG(1) L }ro EDAL L ·t:.OGIC

OMG (1 l H

-~ -SDMGO L
INIT(1lH~

BUSY H

Figure 4-9 Bus Arbitration Logic

Prior to a DMA request, the DMA Request flip·flop is reset (Figure 4-10);
the DMA REQ H signal is passive (low), clearing the DMG Enable flip­
flop. A device initiates a DMA request by asserting BDMR L. The request
is inverted to produce a high signal, which is clocked into the DMA Re­
quest flip-flop on the next PH 1 H clock pulse, producing active DMA REQ
H and L signals. DMA REQ Lis ORed with REPLY (1) L, producing BUSY
H and causing the processor to "wait" after completing its present bus
cycle. On the leading edge of PH4 H, the stored DMA request sets the
DMG Enable flip·flop. The processor is finished with its present bus cycle
and releases the bus when SYNC L goes passive (high).

On the first PH4 H clock pulse following the passive state of SYNC L,
the DMG flip-flop clocks to the set state and DMG (1) H and DMG
(1) L go to their active states. DMG (1) H produces the active BDMG
grant (BDMGO L) signal. DMG (1) L enables EDAL L signal generation
when the DMA operation involves KDll-F resident memory. The DMA
device responds to the BDMG signal by negating BDMR L and asserting
BSACK L, enabling EDAL L signal generation and keeping the DMA Re­
quest flip-flop in the set state. On the first PH4 H clock phase foOowing
the active state of BSACK L, the DMG Enable flip-flop clocks to the reset
state and DMG EN H goes low. The following PH4 H clock pulse clocks
the DMG flip-flop to the reset state and BDMGO L goes passive (high),
terminating the DMA request/grant sequence. BSACK L remains asserted
for the duration of the DMA operation, preventing new DMA requests
from being arbitrated.

4-13

BDMR L

OMA REQ FF

DMGEN FF

DMG FF

BDMG L

BSACK L

SYNC L

WBUSY H

~~
PH4 \

'\.i tOOns +BUS
PROP. DLY.

OMA DATA
TRANSACT 10 N

,.___INHIBIT PROCESSOR BUS CYCLES____,

Figure 4-10 DMA Grant Sequence

RESIDENT

~MEMORY
WI! BANK SELECT '

ENABLE OOR JUMPERS REFER lill H
ON-BOARD -------~==~--~

MEMORY SELECT

ENABLE
REFRESH

REPLY

DOUTR H
E(:AS H

!NIT (1) H

11 -315C'

Figure 4-11 KDll·F Resident Memory

BRPLY L
!DIN L

The DMA device releases the bus by terminating BSACK L. The following
PH 1 H clock pulse clocks the DMA request flip-flop to the passive state.
BUSY H then goes passive, enabling a processor-initiated bus cycle. Once
the processor-initiated cycle is entered, SYNC L inhibits (clears) the
DMG flip-flop for the duration of the processor's present bus cycle.

4-14

4.2.3 KDll-F Resident Memory
The 4K by 16-bit dynamic MOS read/write memory is included on the
KOll-F processor module only, (KOll-J basic memory is magnetic
core, which is contained on a separate MMVll-A core memory unit.)
Resident memory can reside in either the first or second 4K address
bank. One of two jumpers can be installed on the module to select the
desired bank (bank 0 or 1).

The basic functions involving the resident memory are shown· in Figure
4-11. Resident memory comprises sixteen 4K by 1-bit memory chips,
addressing, and control logic. The memory chips, which are 16-pin de­
vices, require an address multiplexer to address the chips with two 6-bit
bytes. The complete addressing, write, and read operations are described
below.

Addressing is initiated by a master device-either the LSl-11 processor
or a OMA device-by placing the 16-bit address on BOAL0-15 L and
asserting BSYNC L, latching the address in the 16-bit address register.
Note that the resident memory address will appear on the BOAL bus
even when the processor is bus master; the resident memory functions
exactly as a memory located elsewhere along the LSl-11 bus. Address
bits are routed via BOAL bus receivers onto the processor module's
OAL0-15 H bus to the address register input. Stored address bits A13-
A15 H are then decoded by the bank select decoder. SBSO L (bank 0)
and SBSl L (bank 1) will go active (low) only when their respective
bank addresses are decoded. Wl or W2 and Wll then applies the se­
lected address to the address multiplex control logic, enabling the
resident memory response. Address multiplex logic immediately gen­
erates an active row address strobe (RAS), which remains active for the
duration of the BSYNC L signal. Address" multiplex control (AMX) is
initially high, multiplexing the stored row address (bits A7-A12 H)
through the 12:6-bit address multiplexer and into all memory chips.
After 150 ns, address multiplex control logic generates an active column
address strobe (CAS) and a low AMX signal. The multiplexer output
bits (l·A6) are then strobed into all memory chips, completing the ad­
dressing portion of the memory operation.

Resident memory bank selection can be accomplished, by an external
signal. Wll is removed to disable the on-board memory bank selection.
SMENB L is then asserted low by the external circuit to select the res­
ident memory.

When in a memory read operation, each of the 16 memory chips
places an addressed bit on the memory read data bus. This data is
multiplexed via port A of the 1/0 bus/memory read data selector only
when in a resident memory read (or refresh) operation; the select in­
put of the data selector is asserted low for this data selection. The
read data is then placed on WOAL0-15 H, where it can be read by the
microprocessor data chip or gated onto the BOAL bus via bus drivers
for input to a OMA device.

When in a memory write operation, the addressing portion of the oper·
ation is similar to the read cycle addressing, except BWTBT L may be
asserted by the master device to indicate that a write operation is to

4-15

follow. After the addressing portion of the cycle has been completed,
BWTBT L either goes passive (high) if a DATO (word) write cycle is to
be performed, or remains asserted (BWTBT L remains low) if a DATOB
(byte) write cycle is to be performed. Word 1 byte select logic responds
to the DATO cycle by asserting both BYTE 1 WT L and 'BYTE 0 WT L
for the duration of the cycle, enabling DAL0·15 H data bits into the
addressed location in all memory chips. However, when in a DATOB
cycle, only one active signal is produced, depending upon the state of
the stored ·byte pointer (address bit AO). If AO is low (even byte), only
BYTE 0 WT L goes active, enabling only DALO·? H bits to be written
into the addressed location_ in the appropriate eight memory chips.
Similarly, if Al is high (odd byte), only BYTE 1 WT L goes active,
enabling only DAL8·15 H bits to be written into the addressed location
in the appropriate eight memory chips.

Resident memory, as well as ahy LSl·ll- bus device, must respond to
any data transaction by generating an active BRPLY L signal. Reply gates
provide this function, Approximately 150 ns after GAS L goes true (as
previously described), the reply gates are enabled; the gates will re·
spond to either an active .BOIN L or BDOUT L signal by asserting
BRPLY L. Reply gates are inhibited during an initialize operation.

Reply gates can be disa.bled by installing W9. When installed the resident
memory will not assert BRPLY L. WlO can be removed to inhibit the
reply during memory refresh operations only. REFR (0) 4 normally
enables the refresh reply.

Resident memory requires a refresh operation once every 1.6 ms. This
operation is entirely under the control of either processor microcode or
an external OMA device, as selected by the user. Resident memory re·
sponds to BREF L, generated by the refresh-controlling device, by sim·
ulating a "bank selected" operation. (All memory banks are simulta·
neously refreshed.) Refresh is then accomplished by executing 64 sue·
cessive BSYNC L/BDIN L operations while incrementing 'BDAL1·6 L by
one location on each bus transaction. Refresh is simply a series of
forced memory read operations where only the row addresses are sig·
nificant. Each of the 64 rows in all dynamic MOS memory chips in an
LSl-11 system are simultaneously refreshed in this manner:

4.2.4 DC·DC Power Inverter
The dc·to·dc power inverter circuit provides on-board generation of re·
quired negative de voltages. Input de power for the inverter circuit is
obtained directly from .the +12 V input. The inverter switching rate is
clocked by the clock pulse generator's DIVB (0) H 2.8. MHz output.
Output negative de voltages are distributed to all resident memory chips.
The -5 V output is distributed to microprocessor chips (data chip,
micro.m chips, and control chip).

4.3 MMVll·A 4K BY 16-BiT CORE MEMORY
4.3.l General
The MMVll·A 4K by 16-bit core memory option provides nonvolatile
read/write storage of user programs and data. Memory 4K addressing
is user-selected by switches contained on the option. The MMVll·A is
completely LSl-11 bus-compatible and capable of either programmed

4·16

1/0 data transfers with the processor or transfers with another LSl-11
OMA bus device.

The MMVll-A features:

• 4096 by 16-bit capacity

• Typical access time = 425 ns (475 ns maximum); full read/restore
cycle time = l.15µs.

• Nonvolatile read/write storage-stored data remains valid when power
is removed.

• User-selected bank address-three switches allow the user to select
the bank address for the option.

• +5V and +12 V power-only the normal backplane power is re-
quired to power the option.

• No adjustments, no periodic maintenance.

The MMVll·A is contained on two modules which are mated to com­
prise a single assembly as shown in Figure 4·12. The modules include
memory interface and timing board (module type G653) and core stack
(module type H223}. The actual size of the assembly is 8.5 by 10 by
0.9 in. The G653 module includes handles and retractors on the top

. edge and fingers on the bottom edge which plug into the LSl-11 bus.
Circuits contained on this module include interface, control and timing
logic, bus receivers and drivers, the 16-bit data paths, sense amplifiers,
and a +5 V de to ·5 Vdc inverter. The H223 module is slightly smaller,
includes no handles or bus fingers, and plugs onto the No. 2 (solder)
side of the G653 module via special connector pins. Spacers are located
between the modules to stiffen the assembly and to maintain the 0.9
in. dimension. Circuits contained on the H223 module include the 4096
by 16 core stack, 12-bit address register, X and Y drives, stack charge,
temperature compensation, and a series +11 V, Vee switch which re­
moves drive power when BDCOK H goes low (power fail) or BINIT L is
asserted.

>----~'-#~------ G653

I

Figure 4-12 MMVll-A Core Memory Option

4-17

MEMORY INTERFACE
AND TIMING

CP-1781

4.3.2 Functional Description

4.3.2.l Introduction-The MMVll-A memory is a read/write, random
access, coincident curr·ent magnetic core type with a cycle time of l.I5
µs and an access time of 425 ns. It is organized in a 30, 3-wire planar
configuration. Word length is 16 bits and the memory consists of 4096
(4K) words.

Major functions contained in the MMVll-A are shown in Figure 4-I3.
Memory data can be stored (written) or read by executing appropriate
bus cycles: DATO (I6-bit word) write; DATOB (8-bit byte) write; DATI
(I6-bit word) read; DATIO (16-bit word) read-modify-write; and DATIOB
(I6-bit word) read-modify-(8-bit byte) write.

Each of the functions shown in Figure 4-I3 is briefly described below:

Bus Receivers and Drivers-These devices interface dtrectly with the
LSI-I I bus and the G653 logic circuits. BOAL bus drivers are gated on
by DATA OUT L during a read operation [DATI or the input portion of a
DATIOB(B) bus cycle].

Bank Decoder-The bank decoder recives address bits A I3-I5 Land
responds when the bank address is as user-selected on the three bank
address switches on the G653 module. It responds by producing an
active DSEL H signal which initiates memory cycle timing. This signal
is enabled only when power is normal and bus initialize or refresh oper-
ations are not in progress. · ·

Timing and Control-Timing and control circuits receive bus and in­
ternal control signals and generate. appropriate read/write timing and
control signals. It also generates the B.RPLY L signal in response to
BOIN L and BDOUT L

Address Register-The address register .stores the 12-bit word address
within the 4K bank during the addressing portion of the bus cycle.
Latched bits LAI-6H are applied to Y drive circuits and LA7-I2H are
applied to X drive circuits.

X and Y Drives-X and Y drive circuits control X and Y read/write cur­
rents through all core mats. Address decoding activates I out of 64 X
wires and I out of 64 Y wires. Because the active X and Y wires each
have one-half the current required for core saturation, only one core
out of 4096 cores in each core mat is saturated. Direction of current is
determined by a read or write operation.

Core Stack-The core stack comprises sixteen 4096-core mats. Each
mat is associated with one memory bit position at all 4096 locations.
Each core has three. wires passing through it: one X, one Y, and one
sense/inhibit wire. The sense/inhibit wire passes through all 4096 cores
in one mat. Hence, the stack contains I6 sense/inhibit lines.

The sense/inhibit line ends terminate at sense amplifier inputs. During
a write operation, an inhibit current, equal to saturation current, is
applied to the center of the sense/inhibit line when a logical 0 is to be
written in the addressed core .. This current splits and one-half saturation
current flows through all cores in the mat and into termination diodes
at the sense amplifier inputs. The wire is threaded through the cores in

4-I8

a manner that causes the current to flow in :•1 direction opposite to that
of the Y write current; this prevents core saturation, which would write
a logical 1 in the addressed core.

Sense Amplifiers-Sense amplifiers respond to induced voltage impulses
during the read cycle. They are strobed during a critical time of the
cycle, producing an active (high) output when a logical 1 is read, re­
gardless of the induced polarity on the two ends of the sense/inhibit
wires for each bit.

Inverters-The inverters receive sense amplifier outputs, invert them,
and direct-set previously cleared memory data register bits when a
logical 1 is sensed.

Memory Data Register-The 16·bit memory data register is cleared upon
entry to a read cycle; sensed logical ls set appropriate bits. During a
.restore cycle (DATI bus cycle) (no memory contents are to be modified),
the same bits (low-active) are written into the same addressed location.
During a write cycle [DATO, DATOB, or the write portion of a DATIO(B)
bus cycle], bus data bits are clocked into the high and/or low byte(s),
depending upon the type of bus cycle (word or high byte or low byte).

Inhibit Drivers-Inhibit drivers, one for each bit position, produce an
inhibit current during the write cycle at INH TIME H if a logical 0 is to be
written. The current inhibits core saturation, which would produce a
stored logical 1.

Charge Circuit-The charge circuit applies the correct operating voltage
to X and Y drive circuits during the read and write memory cycles to
prevent "sneak" currents through unselected stack diodes.

X-Y Temperature Compensation-X-Y temperature compensation cir­
cuits alter drive currents over the required operating temperature range
to provide reliable operation.

DC-DC Inverter-The de-de inverter circuit generates -5V power for
sense a·mplifiers from the +5 V power.

DC Protection-DC protection circuits respond to an active BINIT L or
passive BDCOK H signal by producing active LOCKOUT L, RESET H,
RESET L, and· passive VCC20K H signals. These signal conditions pre­
vent memory circuit operation and the possible loss of stored data.

Vee Switch-The Vee switch applies +11.5 V to X and Y driver circuits
when not in an initialize or power fail condition.

4.3.2.2. Core Addressing_!_When a memory location is addressed, one
core in each of the 16 mats are accessed for a read or write operation.
Figure 4-14 illustrates a portion of the X-Y drive and associated cir­
cuits for one Y wire. Six address bits (Al-A6) select 1 of 64 Y wires.
A similar circuit (not shown) involving the remaining six address bits
(A7-Al2) selects 1 of 64 X wires. Hence, by placing 64 cores (in each
mat) on each Y wire and passing a different X wire through each core,
one of 64 cores on the active Y wire will be selected. Since the remain­
ing Y wires have a similar 64 cores each and receive the same X wires,
64 x 64, or 1 out of 4096 addressing is accomplished in each of the
core mats. A single Y wire is driven as described below.

4-19

BDALO L

BOALI L

BClAL2 L

+o

GND

BIAKI L

BIAKO L

BDMGI L

BOMGO L

BIAKI L

BIAKO L

SDMGI L

SDMGO'L

~T1,8J1,BMl,BT!,CC2,0Jl,OM!,DT1

~~

~
~
~
~
~
~
~

MORO H !LOW BYTE OR WORD CLK)

MOR1 H !HIGH BYTE ORWORO CLICI

Figure 4-13 MMVll-A Logic Block Diagram

COMP

r-+-;;v--------,
rp-;;~F~;;;.;;~T:-----:~v-1 r,P-:;;;T-;~;--1 I I
1, I COMP. CKT. I I

I I I I '--+-~-.-:!:-:--i=-----_ _.__ _ _.. ___ ~J~---1
I
I
I Al A4

A5
AG I:~

I
I
I
L----------

\~Try;-STEERING
DIODE MATRIX -------------------

WRITE
EARLY L

Figure 4-14 MMVll-A Core Addressing

Two 1:8 (octal) decoders are used in Y wire selection, each receiving
three address bits from the address register. Only one output from
each decoder will be active during addressing. Assuming address XXOO
(the zeros are the Y portion of the 12-bit address), the portion of the Y

· drive circuit shown will be enabled. During a read operation, READ
EARLY L goes active and turns on one of the eight read current source
transistors. A diode in its emitter circuit couples the drive to eight Y
wires, each terminating at the diode steering matrix. The diodes pro­
vide a read current path to all eight read sink transistors. READ LATE L
goes active 25 ns after the Y source is turned on, and turns on one of
the eight read sink transistors, completing a read current path to ground.
Hence, 1 of 64 Y wires is selected, producing a read half-current through
64 cores in all memory mats. Similar X drive circuits will produce an X
read half-current in 64 cores in each mat in exactly the same manner ..
Only one core in each mat will receive an X and a Y read half-current,
causing the core to saturate in the 0 state. If the core was previously
in the 1 state, a voltage pulse will be induced in the sense/inhibit wire
as it switches to the 0 state.

A write cycle is always preceded by a read cycle. The write operation is
similar to the read operation, except write current flows through the
addressed wire in a direction opposite to the read current direction.
The core in each mat receiving X and Y write half-currents will respond
by saturating in the 1 state. However, since a 0 may be desired, .a third
wire (sense/inhibit) will conduct a half-current which opposes the mag­
netizing effect of the Y write currents. Thus, core saturation is not

4-21

attained and the cores where Os are written remain saturated in the 0
state from the previous read cycle.

Temperature compensation is applied to driver circuits via a source
current, which is inversely proportional to temperature; an increase in
temperature decreases available drive current.

The stack charge circuit applies a +11 V (approximately) signal to the
sink ends of all X (not shown) and Y wires curing the write cycle. The
level is applied during WRITE EARLY time. Since WRITE LATE L occurs
25 ns after WRITE EARLY L, the write sink transistor is cut off, and the
full 11 V signal charges the stray capacitance of the X-Y lines, reducing
the capacitive delay effect as the X and Y write source transistors
turn on; the 11 V signal also reverse biases diodes not selected by ad·
dressing circuits, preventing sneak current. The addressed sink transistor,
turned on by the active WRITE LATE L signal, provides the return path
for the selected X and Y wfres; only those two wires" will go to approx­
imately 0 V, causing one X and one Y diode to become forward biased,
enabling the write half-currents to flow. Resistors coupling the charge
voltage to write sink transistors limit the charge current through the
addressed write sink transistors during the remainder of the-write cycle.
This circuit performs the same function for read cycles by grounding
the buses and preventing sneak currents through unselected stack
diodes.

4.3.2.3 Read/Write Data Path-The basic read/write data path is
shown in Figure 4-13. Upon entering a read cycle, the memory data
register is cleared by CLRO -and CLRl L. X and Y read currents produce
active sense amplifier outputs for those cores containing stored logical
ls as they are switched to the 0 states. These signals are inverted and
applied to the direct-set inputs of the flip-flops comprising the memory
data registers, setting the appropriate bits. During a write cycle, CLRO
L (DATOB low byte address), or CLRl L (DATOB high byte address),
or both CLRO and CLRl L (DATO word address) clear the previously
read data. The bus data is then received and clocked into the register
flip-flops by CLK MDROH and/or CLK MDRl H, as appropriate. Write
data bits are then routed to inhibit drivers which inhibit writing ls when
write bits are Os (high). Inhibit half-current_ through addressed cores
prevents X·Y write half-currents from switching cores to the 1 state.

The sense/inhibit wire passes through all cores in a core mat, as shown
in Figure 4-15. The circuit shown in the figure is repeated for each of
the 16 core mats. During the read portion of a memory cycle, a logical
1 stored in the addressed core will cause an induced voltage to appear
on the sense/inhibit wire as the core switches from the 1 saturation
state to the O saturation state. If a 0 was previously written, no appre­
ciable voltage is produced since the core is already saturated in the 0
state. During the read operation, the sense/inhibit wire functions as a
loop whose ends terminate at the sense amplifier inputs. Any difference
in potential (either polarity) will enable a sense amplifier output.
STROBE H occurs during X and Y drive read currents at a critical time
(the time of peak core switching output when ls are read). Thus, only
the correct voltage pulse produced when a core goes from the 1 state
to the 0 state is gated into the Memory Data Register flip-flop.

4-22

The threshold circuit establishes the signal voltage level at which a
logical 1 is read during strobe time. A signal voltage magnitude greater
than approximately 17 mV during strobe time results in a valid 1 level.

r;-,N7e:iffi:R I INH TIME H

I FOR EACH 4 BITS I/.
TINH L

L---

+ov

-THRESHOLD
VOLTAGE

TEST
POINT

. +~v

SOURCE
RESISTOR

r ---THRESHoLo-ci\111
~~~~~~'---< (10F4) 

TO 
THRESHOLD 

CKTS. 

l 
,....-PART OF-, I 
lsENSE AMPL IC I I 

ii 
REF. V 11 
AMPL. 11 

I ll OF2) 11 I L _____ _JI 

L- ---------_J 
' - fYPic"AL coRE"'MA:i'-1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-------- _..J 

CENTER TAPPED SENSE/ INHIBIT WIRE PASSES 
THROUGH ALL 4096 CORES IN THE MAT. 

WRITE BIT ( H ""0) 

WRITE DATA BIT 
FROM BOAL BUS 

MDRCLKO H 
(OR 

MORCLK 1 Hl 

DATOUT L 

MEMORY DATA REGISTER 
FLIP- FLOP 

BUS 
DRIVER 

Figure 4-15 MMVll-A Read/Write Bit Data Path 

READ DATA BIT 
TO BOAL BUS 

Signal levels less than the 17 mV threshold value are considered in­
valid and result in 0 levels being read. Four threshold circuits share a 
common source resistor. Each threshold circuit provides a reference 
amplifier input voltage to two sense amplifier !Cs, each containing two 
sense amplifiers; hence, one threshold circuit provides a threshold volt­
age for four data bits. 

4-23 



When in the write portion of the memory cycle; the inhibit driver re· 
mains off if a 1 write data bit is stored in the memory data register 
flip·flop. However, if a O is to be written, the write bit is high, enabling 
a gate input for the inhibit driver. At INH TIME H during the write cycle, 
the inhibit driver produces an inhibit current equal to core saturation in 
a direction that would produce a logical 0. However, note that the inhibit 
current is applied to the center of the sense/inhibit wire. Thus, half-cur­
rents flow into each half of the sense/inhibit wire, preventing the ad· 
dressed core from saturating in the 1 state. Diodes at the sense am· 
plifier ends of the wire provide a ground return for the two inhibit half­
currents. The two resistors terminate the ends of the wires. The inhibit 
driver transistor collector is clamped to ground through a diode and 
resistor to prevent breakdown during turnoff. The emitter resistor limits 
peak current. 

4.3.2.4 Timing and Control-All memory bus cycles comprise a read 
and a write operation. During a DATI bus transaction, a memory read­
restore cycle is executed. The data is first read and placed on the 1/0 
bus. The same data is then written in the same addressed location. 
During a DATO bus transaction, a memory read-modify-write cycle is 
executed. After reading the contents of the addressed location, bus data 
.is clocked into the memory data register. Previously read data is lost. 
The modified word is then written into th·e addressed location during 
the remainder of the cycle. If a DATOB bus transaction is being exe· 
cuted, only an 8-bit portion of the memory data register is modified, 
and one byte of the previously read word is retained for the write oper­
ation. A DATIO bus transaction actually initiates two separate memory 
cycles. The first cycle (read-restore) is initiated by the master device 
by placing the memory address on BDAL0-15 L and asserting BSYNC 
L. After receiving and modifying· the memory read data, the master 
devke outputs the new data to the memory and asserts BDOUT L, which 
initiates the next memory cycle (read-modify-write). Timing and control 
logic functions generate all of the timing and control signals for the 
memory cycles described above. Logic operation for each type of bus 
transaction is described in detail in the following paragraphs. 

A memory cycle is initiated when the correct bank address asserted by 
the bus master device is decoded on the leading edge of BSYNC L. 
DSEL H is the decoded bank address signal; note that it is inhibited 
during refresh bus cycles (when BREF L is asserted), or when an initial· 
ize or power fail condition exists. The logical state of DSEL H is cloc~ed 
into the Busy flip·flop on the leading edge of SYNC H (Figure 4-16). 
When DSEL 1'-1 is active (high), the Busy flip-flop sets and FBUSY H and 
FBUSY L go to their true states. FBUSY L enables one input of the 
read initiate gate. The remaining gate input isl enabled by the negative­
going pulse produced by the RC ~ircuit connected to FBUSY L. Thus, 
on the leading edge of FBUSY L, the state of FBUSY H is clocked into 
the Read flip-flop, causing it to go to the set state. This sequence is 
shown in Figures 4-17 and 4-18. 

The read-restore (DIN) cycle continues as shown in Figure 4·17. FREAD 
H activates the read time generator, producing time signals prefixed 
with "RT." Each signal is a 225 positive-going pulse whose leading 
edge is delayed with respect to FREAD H. Hence, the leading edge of 

4-24 



RT225 H, shown in Figure 4-16, occurs 225 ns after the leading edge 
of FREAD H, and approximately 275 ns after BSYNC L is asserted. 
Note that RT225 H is inverted and applied to the clear input of the 
Read flip-flop, establishing the 225 ns pulse width for RT pulses. RT225 
H goes low, 225 ns later. This time occurs 400 ns (total after BSYNC 
Lis asserted and it is referenced on Figure 4-16 as (T500L). 

The pulse produced by the RC network on the leading edge of FBUSY L 
is inverted to produce the CLRO L and CLRl L signals, which clear the 
memory data register for the new read data. READ EARLY occurs on 
the leading edge of FREAD H and remains active for the duration of 
RT50 H, producing a 300 ns pulse. RT25 H goes high 25 ns later, pro­
ducing the READ LATE L signal; this signal remains true for the dura­
tion of RTlOO, resulting in a 325 ns pulse. Read data is valid at the 
sense amplifier inputs from 200 to 275 ns after READ EARLY L goes 
active. RT175 H is gated with RT50 H to produce the sense amplifier 
strobes STROBE 0 and 1 H. The trailing edge of RT50 H occurs 100 ns 
after the leading edge of RTl 75 H, negating the strobes. During strobe 
time, the sense amplifier data bits set the appropriate flip-flops that 
comprise the memory data register, and store the memory read data. 

The bus master device initiates the data transfer portion of the DATI 
transaction by asserting BOIN L. The Reply Enable flip-flop is set on 
the trailing edge of RTlOO H 375 ns after BSYNC L. If RDIN H (BOIN 
L inverted) is received earlier than 375 ns after BSYNC L, the Reply 
flip-flop input gates wait 375 ns to produce an active RPLY SET L signal 
(Figure 4-17), which direct-sets the Reply flip-flop and produces the ac­
tive FRPLY H- and BRPL Y L signals. FRPLY L is gated with RDIN L and 
inverted, producing the DATA OUT L signal which gates memory data 
register bits onto the BOAL bus. If RDIN H is received later than 375 ns 
after BSYNC L, the Reply flip-flop sets on the leading edge of RDIN H. 
The trailing edge of RT150 H (T425 L) is gated with RPLY SET L, pro­
ducing a write initiate pulse which clocks the high FBUSY H signal into 
the Write flip-flop, initiating the restore portion of the memory cycle. 

Restore timing is produced by the write time generator in a manner 
similar to that described for read time generation. At WTOO H time, 
TINH H ·and TINH L (475 ns pulses) are produced for the inhibit drivers. 
TINH H also inhibits the Reply Clear gate, and the Reply flip-flop re­
mains set for the remainder of the memory cycle. WEARLY L and STK 
CHG H go active on the leading edge of WT175 H and remain active for 
350 ns. Similarly, WLATE L goes active on the leading edge of WT175 H 
and remains active for 325 ns. At WT250 H time, WCLR L is produced, 
clearing the Reply Enable and Write flip-flops; thus, write time generator 
outputs are 250 ns pulses. Memory data is restored (written) during 
the time that TINH H, WEARLY L, and WLATE L are active. The memory 
cycle terminates when both SYNC L and FRPLY L go to their passive 
states. The Busy Clear gate detects this condition, producing a low 
pulse which clears the Busy flip-flop, and the memory cycle ends. 

4-25 



SYNC H 

FRPLY L 

RT100 H 

RT150 H 

DSEL H 

RPLY SET L 
RT150 H 

RAO H 

SYNCH 

BUSY 
F/F 

FWBT L 

FBUSY H 

RWBTH-<~---~ 
WRITE WORD H 

----RT50H 

RT75 H 

r-'--~~, "RTl75 H 

RT225 H 
(T500 L 

READ EARLY L 

CLRt L 

STROBE 0 H 

STROBE 1 H 

DATA OUT L 

TINH H 

L---J--1-"-'-'-'--"----l-_,L..-)<>--.-L----TINH L 

STK CHG H 

CLK MOR I H 

CLK MOR 0 H 

Figure 4-16 MMV11-A Timing and Control Circuits 

4-26 



N SEC 

BOAL 

BSYNC L 

FBUSY rl 

FREAD rl 

DATA OUT L 

FWRITE H 

CLKMORI H 
CLKMDRO H 

~ TINH H 

WEARLY L 

WLATE L 

STKCHG H 

WCLR L 

J 

TO 

i...- 25nsec 
(MIN l 

75nsec 
(MIN) 

READ 

T500 

I 
INPUT 
DATA 

I 
----4--- RESTORE 

T\000 

I 

Figure 4-17 Read-Restore Memory Cycle Timing 

4-27 



MAL 

BSYNC L 

FBUSY H 

FREAD H 

READ EARLY L 

READ LATE L 

CLRO L 
CLR I L 

STROBE 0 H 
STROBE ,J H 

MEMORY DATA REGISTER­
WRITE DATA VALID 

8 DOUT L 

BRPLY L 

CLKMOR1 ti 
CLKMDRO H 

FWRITE H 

TINH H 

WEARLY L 

WLATE L 

STKCHG H 

WCLR L 

TO 500 IOOO 

i.- 25 n sec (MIN) 

----+-----!--; I l----1soom(MrNJ 

READ _J.__ WRITE --I 
MODIFY --.I 

Figure 4-18 Read-Modify-Write Memory Cycle Timing 
4-28 

CP-1787 



The DATO cycle is similar to the DAT! cycle except that duririg the ad­
dressing portion of the bus cycle, the bus master device asserts BWTBT 
L. RWBT H goes high, and the leading edge of SYNC H clocks the byte 
flip-flop to the set state. The active FWBT L signal is only used when 
in the write portion of the DATIO cycle, as described later. However, 
during a DATO bus transaction, RDIN H is not received; instead, RDOUT 
H is received, enabling the REPLY SET L gates, as shown in Figure 4-18. 
RDOUT enables one input to the WRITE TIME L gate. At the same time 
that the Write flip-flop clocks to the set state, WRITE TIME L goes low, 
enabling CLK MORO and 1 H gates. Since a DATO bus cycle is in prog­
ress, BWTBT L remains passive during the data transfer portion of the 
bus cycle. Hence, RWBT H is low, WRITE WORD H is high, and the two 
byte select OR gates apply low signals to the remaining CLK MOR gates. 
CLK MOR 0 and 1 H then clock the BOAL bus data into the memory·. 
data register; the previously read data is lost. The write portion of the 
cycle continues as described for the restore portion of the DAT! oper­
ation. 

When executing a DATOB bus transaction, BWTBT L and RWBT H re­
main active for the duration of the b.us cycle. Hence, the WRITE WORD 
H signal remains passive. The Byte Select flip-flop that stores byte ad­
dressing bit RAO H during addressing time enables generation of only 
one CLK MOR H signal. When RAO H is low, FAO L goes high and CLK 
MOR 0 H clocks low byte data bits from only BDAL0-7 L into the mem­
ory data register. Register bits 8-15 remain unchanged. Similarly, when 
RAO H is high, FAQ H goes high and CLK MOR 1 H clocks high byte data 
bits from only BDAL8-15 L into the memory data register. Register data 
bits 0-7 remain unchanged. The write portion of the memory cycle then 
continues as previously described. 

When executing a DATIO. bus cycle, two complete memory cycles are 
executed. They include a DATI and a DATO or DATOB cycle as previously 
described. However, when executing a DATIO bus transaction, BSYNC L 
remains active for the duration of the transaction. Hence, SYNC H, which 
generates FBUSY L during the read-restore portion of the cycle, cannot 
initiate the second read-modify-write memory cycle. Instead, FWBT L, 
stored during the addressing portion of the cycle, enables a read initiate 
pulse on the leading edge of RDOUT H. The Read flip-flop goes to the 
set state and operation continues· as described for DATO or DATOB bus 
transactions. 

4.3.2.5 DC Protection and Vee Switch-DC protection and Vee switch 
circuits are shown in Figure 4-19. The de protection circuit is activated 

+11.5V TO 
X-'I' DRIVERS 

Figure 4-19 DC Protection and Vee Switch Circuits 

4-29 



during power-fail or bus initialize conditions. BDCOK H and BINIT Lare 
inverted and ORed to produce LOCKOUT L. Normally, this signal is pas­
sive (high), enabling bank addressing and resulting in an active DSEL H 
signal when the memory is addressed. However, if BDCOK H goes low 
(power fail) or BINIT Lis asserted low, LOCKOUT L immediately inhibits 
the bank addressing function. 

The reset signals are also generated by this circuit. RESET L goes active 
(low) whenever LOCKOUT L is active. A 2 µs delay circuit enables the 
memory to complete its present cycle before RESET. RESET L is also 
inverteo to produce RESET H; both signals are used to clear (initialize) 
memory timing control circuits. 

To produce a 5 V"' source for reset circuits and bus receivers BSYNC L, 
BOIN L, BDOUT L, BWTBT L, and BREF L, +12 V power is regulated. 
Thus, if +12 V is removed, all MMVll memory operations are disabled. 
However, if +5 V is removed and the +12 V remains, the 5 V'~ allows 
memory protect logic to remain fui;ictional. 

RESET L is also applied to the VCC20K H input to the Vee switch circuit. 
This signal is high only when both +5 V and +12 V power sources are 
normal. The Vee switch comprises a transistor (Vee switch), which is 
turned on when power is normal to produce +11.5 V power for X-Y 
driver circuits. · 

4.3.2.6 DC·DC Inverter-The de-de inverter circuit is shown in Figure 
4-20. It is comprised of an inverter oscillator using a saturable trans­
former, a negative rectifier, and a filter. A 3-terminal regulator chip pro­
duces the regulated -5 V for sense amplifier operation. 

Figure 4-20 DC-DC Inverter Circuit 

4.4 MRVll-AA 4K BY 16-BIT READ-ONLY MEMORY 

4.4.1 General 

- 5V TO 
SENSE AMPLIFIERS 

The MRVl 1-AA is a basic read-only memory module on which the user 
can install programmable read-only memory (PROM) or masked read­
only memory (ROM) chips. All PROM/ROM chip sockets and addressing 
and control circuits are contained on a single 8.5 by 5 inch module. 

The MRVll-AA features: 

• 4096 by 16-bit capacity using 512 by 4-bit chips or 2048 by 16-bit 
capacity using 256 by 4-bit chips. 

• Compatibility with chips available from multiple sources. 

4-30 



• Jumpers that allow the user to select the 4K memory address space 
which the MRVll-AA will respond, chip type, and upper or lower 2K 
segment (when 256 by 4-bit chips are used.) 

4.4.2 Functional Description 

4.4.2.l General-Major functions contained on the MRVll-AA module 
are shown in Figure 4-21. ROM data stored on the module can be ad­
dressed and read by the LSl-11 processor or other DMA devices by exe­
cuting a DATI bus cycle. Data/address lines BDAL0-15 L and three bus 
interface control signals (BSYNC L, BOIN L, and BRPLY L) comprise all 
interface signals required for accessing the read-only memory. BREF L 
inhibits BRPL Y L and BOAL bus drivers during memory refresh oper­
ations. 

CHIP TYPE 
SELECT JUMPERS 

AODREssl>------ CHIP 

s~~~~~E r--------+-+-r------jB s;~E~T 
(OCTAL 

>-°-=~-----t-+-C------iC DECODER) 

READ DATA 4- 7 

READ DATA 8-11 

READ DATA12:·1~ 

Figure 4·21 MRVll-AA Logic Block Diagram 

BRPLY 
JUMPERS 

CED'-7 L. 

4.4.2.2 Addressing-A master device can address any 16·bit word in 
the 4K module by placing appropriate address bits on BDALl-15 L dur· 
ing the addressing portion of the DATI cycle. BDALO is not used on the 
MRVll-AA since this address bit functions only as a byte pointer during 
DATOB and the write portion of DATIOB bus cycles. Bus receivers route 
DAL13-15 H to the bank select decoder and DALl-12 H to the address 
storage latch. Bank selection occurs when the 4K address encoded on 

4-31 



DAL13-15 H is equal to the user-configured value seiected by jumpers 
W17-W15. The resulting bank select (BS H) and address bits DAL13-15 
H are then stored in the address storage latch on the leading edge of 
BSYNC L. Stored address bits SAl-8 H are buffered to produce BAl-9 L 
which are applied to all ROM/PROM chips on the module. 

When 512 by 4-bit chips are used, SA9 H is routed via jumper WlO to a 
buffer,· producing the inverted BA9 L address bit for all chips (pin 14). 
However, when 256 by 4-bit chips are used, WlO is removed and W12 
is connected, forcing a low (chip enable) signal to become applied to all 
chips (pin 14); note that 256 by 4-bit chips do not receive address bit 9. 

Memory chips sockets are arranged in eight physical rows of four sockets 
each. The memory is expanded by installing all four chips in each de­
sired row. Four chips provide the full 16,bit word storage for LSl-11 in­
structions and data. Only one row is enabled by a chip enable (CE) 
signal, produced by chip row select logic and chip type jumpers. 

When 512 by 4-bit chips are used, jumpers W8, W9, and WlO are in­
stalled. The chip row select octal decoder receives stored address bits 
SAlO, SA11, and SA12 on its A, B, and C inputs, ·respectively, as shown 
in Figure 4-22. Bank Select Stored (SBS H) is gated to produce a low 
SEL L enable signal, which is applied to the D input of the decoder. 
(The decoder is actually a decimal decoder; whenever a high signal is 
applied to its ·o input, outputs 0-7 are inhibited.) One decoder output 
goes low, enabling the appropriate physical row addressed by bits SAl0-
12 L. 

BA 1-B L 

BA9 L (ADDRESS BIT I 

CE 0 L .-''--~':--,, 

SA10 H ·-------------! CE 1 L 

SA11 H ------------1 CE2 L 
W9 SA9 /1 2 H CE 3 L 3 PHYSICAL 

SA12 H ---~---~--------l C OCTAL CE4 L t-----<4 MROEWM0
5

RY 
DECODER r->-CicE~5;-[L1---_:5:'..J 

~~; ~ 6 SBS H 7 

I 1-Jl59 

Figure 4-22 512 by 4-Bit Chip-Jumper Configuration 

When 256 by 4-bit chips are used, jumpers W8, W9, and WlO are re­
moved and jumpers Wl1, Wl2, and either W13 or W14 are installed, as 
shown in Figure 4-23. SAlO and SAl 1 are applied to octal decoder A 
and B inputs, respectively. Bit SA9, which is not used to directly address 
the 256 by 4-bit chips is then applied to input C of the octal decoder. 
SA12 H and SA12 L are available for jumper selection of the desired 2K 
segment within the 4K bank. W13, when installed, selects the lower 2K; 
W14 selects the upper 2K. When the selected segment is addressed, 
OP SEL goes high. This signal is gated with SBS H to produce the ·1ow 
(active) octal decoder enable signal. · 

4-32 



Caution must be used when assigning memory to bank 7 to avoid 
conflicts with preassigned device addresses. This 28-32K address space 
is normally used for peripheral device addresses. Certain DIGITAL­
supplied system programs and operating systems determine the pres­
ence or absence of some of these devices by accessing the assigned 
locations; if a response is obtained (i.e., no bus time-out occurs), the 
program assumes that the device is present. Thus, having a memory re­
spond to any of these preassigned locations will give the erroneous indi­
cation that the corresponding device is installed in the system. 

4.4.2.3 Data Read Operation-Once the ROM/PROM chip sockets are 
addressed, the data can be read by the bus master device. Data is avail­
able within 120 ns after BSYNC L is received. One active CE0-7 L signal 
produces the active DO RPLY H signal, which enables reply and BOAL 
bus driver gating_ Active DO RPL Y H and SYNC H signals are gated, 
producing the REPLIED L signal, which enables one of the two bus 
driver enable inputs. The remaining enable input is MDIN L. The bus 
master device asserts BOIN L to request the data. DIN H is ANDed with 
the passive (high) SREF L signal, producing MDIN L, and read data is 
enabled onto BDAL0-15 L. Active MDIN L, SYNC L, and DO RPLY H 
signals also enable the BRPLY L bus driver, producing the required re­
sponse to BOIN L. 

BA i-B L 

BA9L !CHIP ENABLE) 

SA1 t H --+------------! 

A 
CEO I: 

l"'°'' 
CE 1 L 
CE 2 L 
CE3 L 
CE4 L MEMORY 
CE5 L 4 ROWS 

CE6 L 5 

CE7 L 6 
7 

11-31 ~8 

Figure 4-23 256 by 4-Bit Chip-Jumper Configuration 

When the system is in a memory refresh operation, the MRVll-A must 
not respond to the BSYNC/BDIN refresh bus transactions. BREF L is 
asserted during the addressing portion of the bus cycle and !he refresh 
latch stores REF H on the leading edge of SYNC L. SREF L goes low and 
inhibits the MDIN L signal. Hence, BOAL and BRPLY- L bus drivers are 
not enabled. 

4.5 MSVll-8 4K BY 16-BIT SEMICONDUCTOR READ/WRITE MEMORY 

4.5.1 General 
The MSVll-B is a 4K by 16-bit dynamic MOS read/write memory module 
which can be used for storage of user programs and data. The storage 
capacity is 4096, 16-bit words. Memory address selection is user-con­
figured by installing or removing jumpers contained on the module. 

4-33 



Memory refresh is directly controlled by LSl-11 bus signals. Refresh 
operations can be automatically controlled by the LSl·ll microcomputer 
module once every 1.6 ms (approximately) or performed by another de· 
vice. The MSVll·B is LSl·ll bus compatible and capable of either pro­
grammed 1/0 data transfers with the processor or DMA transfers with 
other LSl-11 bus devices. 

The MSVll·B features: 

• 4096 by 16-bit word. 

• Fast access time-550 ns maximum. 

• Lower power-12.7 W for the module, maximum. 

• Dynamic MOS memory chips-Refresh is automatically controlled by 
the processor or by a DMA device. 

•, User-configured 4K addresses-Three jumpers allow user address con­
figuration. 

4.5.2 Functional Description 
Major functions contained on the MSVll·B module are shown in Figure 

·4·24. Memory data can be stored (written) or read by the LSl-11 micro­
computer, or other bus master devices operating in the DMA mode, with 
appropriate bus cycles: DATO (16-bit word write operation); DATOB 
(8-bit byte write operation); DATI (16-bit read operation); or DATIOB 
[16-bit read-modify-write (8 or 16-bit) operation]. 

Addressing is initiated by a master device (either the LSl·ll processor 
or a OMA device) by placing the 16-bit address on BDAL0-15 Land as· 
serting BSYNC L, latching the address (and bank select information) in 
the address register. Adress bits are routed from the BOAL bus receivers 
onto the module's DAL0-15 H bus to the 13-bit address and bank select 
register input. Address bits BDAL13·15 L are decoded by the bank ad· 
dress decoder. Decoded output signal BS H will go active (high) only 
when the jumper-selected bank address is decoded. The active BS H 
signal is stored along with the 13-bit memory address for the duration 
of the operation. 

The memory array comprises sixteen 16-pin 4K by 1-bit memory chips 
which require the address multiplexer to address the array with two 16-
bit bytes. Address multiplexer control logic responds to the active 
SYNC H and stored active bank, select (LBS L) signal by immediately 
generating an active Row Address Strobe (RAS). This signal remains 
active for the d_uration of the active SYNC H signal. Address multiplex 
control AMX L is initially passive (high), multiplexing the stored row ad­
dress bits (LDAL7-12 H) through the 12:6-bit address multiplexer and 
into all memory chips. After approximately 150 ns, address multiplex 
control logic generates an active column address strobe (CAS) and an 
active AMX L signal. Multiplexer column address bits (LDAL1·6 H) are 
then strobed into all memory chips. This completes the chip addressing 
portion of the memory operation .. 

When in a memory read operation, the bus master device asserts BDIN 
L. The data from the accessed memory location is present on the D0-15 
H bus and at bus driver inputs. Reply logic responds to BDIN L by 
generating an active DRIVE L signal which gates the memory read data 

4-34 



+5B~.+5V 
+12V~+12V 

BRPLYL 

BWTBTL 

' 
\.~~~~CT 

JUMPERS 

GNODAC2,AT1,AJl,AMl,BC2,BTl,BJ1,BM!~ 

D0-15H 

D~LP -15H 

1J·BIT 
AO DRESS 
ANO BANK 

SELECTREGR 

M~~~l~c~;ERl-t-+---"-'-' -'---------~ 
CONTROL 

OOUT H. 

WORD/ 
BYTE 

SELECT 
LOGIC 

WO L 

Figure 4-24 MSVll-8 Logic Block Diagram 

onto BDAL0-15 L for input to the requesting device; reply logic also as­
serts BRPL Y L to complete the data transfer porticin of the cycle. 

When in a memory write operation (or the write portion of a DATIOB 
cycle) the addressing portion of the operation is ·similar to the read cycle 
addressing. After the addressing portion of the cycle has been com­
pleted, the master device asserts BDOUT L, and BWTBT L either goes 
passive (high) if a DATO (word) write cycle is to be performed, or re-

4-35 



mains asserted if a DATOB (byte) write cycle is to be perfromed. Word/ 
byte select logic responds to the DATO cycle by asserting both WO L 
and Wl L for the duration of the cycle, enabling DAL0-15 H bits to be 
written into the addressed location in all memory chips. However, in a 
DATOB cycle with AO H low (even byte), only WO L goes active, enabling 
the writing of DAL0-7 H into the addressed location in the appropriate 
eight memory chips. Similarly, if AO H is high (odd byte), only WI L 
goes active, enabling only DAL8-15 H bits to be written into the ad­
dressed location in the appropriate eight memory chips. The reply logic 
also responds to the active· BDOUT L signal by asserting BRPLY L, in­
dicating that the data has been written, completing the data transfer. 

The memory chips in the MSVll-8 require a refresh operation once 
every 1.6 ms. This operation is entirely under the control of either pro­
cessor microcode or a DMA device, as selected by the user. The address 
multiplex control logic respons to BREF L, generated by the refresh­
controlling device, by simulating a "bank selected" operation. (All system 
memory banks are simultaneously selected during refresh.) Refresh is 
then accomplished by a device by executing 64 successive BSYNC L/ 
BOIN L operations while incrementing BDALl-6 by one on each bus 
transaction. Refresh is simply a series of forced memory read operations 
where only the row addresses are significant. Each of the 64 rows in all 
dynamic MOS memory chips in an LSl-11 system are simultaneously 
refreshed in this manner. The REF H signal inhibits all BOAL bus drivers 
for the duration of the refresh operation. 

A de-to-de inverter circuit is included on the module for negative voltage 
generation. Output voltages include -9 V for the MOS memory chips 
and -5 V for linear devices in the address multiplex control logic. 
Hence, only +12 V and +5 V power inputs are required for module 
operation. The BDCOK H signal starts de-to-de inverter oscillation when 
bus power is applied. 

4.6 DLVll SERIAL LINE UNIT 
4.6.1 General 
The DLVll is the basic interface module used for connecting asynchro­
nous serial line devices to the LSl-11 bus. All circuits are contained on 
a single 8.5 by 5 inch module. 

The DLVll features: 

• Either an optically isolated 20 mA current loop or an EIA interface 
selected by using the appropriate interface cable option. 

• Selectable crystal-controlled baud rates: 50, 75, 110, 134.5, 150, 200, 
300, 600, 1200, 1800, 2400, 4800, 9600, and an externally supplied 
rate. · 

• Jumper-selectable stop bit and data bit formats. 

• LSl-11 bus interface and control logic for interrupt processing and 
vector generation .. 

• Interrupt priority determined by electrical position along the LSl-11 
bus. 

4·36 



• Control/status register (CSR) and data registers compatible with 
PDP-11 software routines. CSRs and data buffer registers directly ac­
cessed via processor instructions. 

• Plug, signal, and program compatible with PDP-11 DUlA, B series. 

4.6.2 Functional Description 

4.6.2.1 General-Major functions contained on the DLVll module are 
shown on Figure 4-25. Communications between the LSl-11 microcom­
puter arid the DLVll are executed via programmed 1/0 operations or 
interrupt-driven routines, as described in Chapter 3. 

4.6.2.2 UAR/T Operation-The main function on the DLVll module 
is the Universal Asynchronous Receiver/Transmitter (UAR/T) chip. This 
is a 40-pin LSI chip that is capable of parallel 1/0 with the computer 
bus and asynchronous serial 1/0 with an external device. Jumpers which 
allow the user to select parity functions, number of stop bits, and num­
ber of data bits are described in Paragraph 5.6. Both transmit and re­
ceive functions are totally asynchronous in operation. The transmit' clock 
is always driven by the baud rate generator's CLK L signal. CLK L is 
applied to· one MSPAREB backplane pin (BKl), where it is connected . 
to MSPAREB pin BU; this is the receive function UAR/T clock input 
(RCLK L) signal. 

When a user application requires split transmit and receive baud rates, 
the MSPARE jumper can be broken from pins BKl and BU and an ex­
ternal receive baud rate signal can be applied to EiU (the drive fre­
quency should be 16 times the desired baud rate). 

4.6.2.3 Baud Rate Generator-The baud rate generator produces the 
desired UAR/T clock and a fixed 2.4576 MHz clock for the -12 V 
inverter circuit. A crystal-controlled oscillator produces the basic 2.4576 
MHz frequency for the baud rate generator. A single baud rate generator 
chip divides this frequency to produce the available baud rates. Jumpers, 
which are described in Paragraph 5.6, select the desired baud rate for 
the CLK L output signal. 

4.6.2.4 Bus Drivers and Receivers-Bus drivers and receivers interface 
directly with the LSl-11 bus. Line receivers produce RDAB0-12 H signals 
in response to BDAL0-12 L bus signals. When an input data or vector 
transfer is desired, function decoding and control logic generates an 
active INPUT ENABLE signal, which enables the bus drivers. When a 
data input operation is selected, the UAR/T receiver data buffer con­
tents (RD0-7 H) are routed through the data selector (DDAB0-7H) to 

· the BOAL bus. When responding to an interrupt acknowledge signal, in­
terface control logic generates VEC L, which selects the vector address 
produced by jumpers W6-W10 (Paragraph 5.6). In addition, DALO, 6, 7, 
and 15 are driven by CSR selection and gating circuits when a data input 
transfer from either the receiver (RCSR) or transmitter (XCSF) control/ 
status registers is performed. 

4.6.2.5 Address Decoding-Address decoding logic . responds to the 
address present on the bus when BSYNC L is asserted. The DLVll de­
vice address is contained on RDAB3-12 H, along with address bits 



RDABO, l, and 2 H, which are decoded by function decoding logic. Ad­
dress bits are not required for bank selection since all devices, such as 
any .DLVll, reside in the upper 4K bank (addresses ranging from 28-
32K). The processor generates an active BBS7L signal, indicating an 
1/0 device addressing operation. Address selection jumpers A3-Al2 al­
low the user to configure address bits 3-12, as described in Paragraph 
5.6. When the DLVll is addressed, device selection is indicated by an 
active ME signal. This signal remains active throughout the entire 1/0 
cycle (while BSYNC. L remains active), enabling function decoding. 

4.6.2.6 Function Decoding and Control-Function decoding and con­
trol logic decodes DLVll internal gating functions based upon address 
selection, address bits RDABO, 1, and 2 H, bus signals BOIN L, 'BDOUT 
L, and BSYNC L, and the VEC L signal generated by the interface con­
trol logic. In addition to generating function select signals, this circuit 
inverts BSYNC L to produce SYNC H whose leading edge clocks the 
address decoding logic. A truth table· of function select signals is pro· 
vided in Table 4-2. · 

4.6.2.7 Interface Control Logic-Interface control logic produces the 
BRPLY L signal in response to 1/0 operations, contains the interrupt 
control logic, and receives ~nd distributes the 'BINIT L initiatlize signal. 
This function also contains the Transmit Data Interrupt Enable (TDINTEN 
H) flip-flop and Receiver Data Interrupt Enable (RDINTEN H) flip-flop; 
both flip-flops can be read or written by the LSl-11 microcomputer. 
RDINTEN is set or reset by BDAL6 L; the flip'flop is clocked on the lead­
ing edge of SELOOUT L. Similarly, TDINTEN .is set or reset by BDAL6 L; 
this flip·flop is clocked on the leading edge of SEL40UT L. 

Receiver-generated interrupts occur as a result of the RDINTEN flip-flop 
being' set (interrupts enabled) and an active receiver Data Available (DA 
H) UAR/T status signal. When this condition occurs, the Receiver Data 
Interrupt Reqt1est flip-flop sets and generates an active BIRQ L signal. 
The LSl·ll microcomputer responds (if its PS bit 7 is not set) by as· 
serting BOIN L; this enables the device requesting the interrupt to place 
its vector on the BOAL bus when the interrupt request is acknowledged. 
The processor then asserts BIAKO L, acknowledgeing the interrupt re· 
quest. The interface control logic receives BIAKI L and ·responds by 
generating active VEC Land BRP.LY L signals, placing its interrupt vector 
on the LSl·ll bus and clearing the BIRQ L signal. The stored BIAK 
signal° is cleared when the next BIAKI L signal is received and the DLVll 
is not requesting an interrupt. 

4-38 



BINIT L 101=~-----+I 

BRPLY L 

BIAKO L 181=~----__,~ 

BIAKI L 10•=~-----.. 

BIRO 

BDCOK 

BBS7 

BOOUT L fBl.-""-''---------+r--1 
BOIN 

BSYNC L IE81PAJ~2~-----+I 

SSPARE B ~EXT UART CLK IN H 

MSPAREA ~EIA-12V 
MSPARE A ~ - 12 V r---i_ __ _j 

MSPARE B ~ CLK L 

MSPAREB ~Ri:LK L 

BOALO L ll011-"•u,,,2;__-----f--, 
BDAL1 

BDAL2 L 18~=-~~-1 

BDAL3 L 10•=-~-+----t 

BOAL4 L 18'=~~~--i 

BDAL5 

x 

9~ 
N 

~ ~~ 

g 
N ~ 

-' "' ~ ~ "' 

BOALS L 18,=-~~--i 
RDABO- 7H 

8DAL7 

BDALB L IB•=~~~--i 

BDAL9 L 18~=-~~-1 

8DAL10 L IB•=~--+----i 

BDALll L IR>=~--+----i 

BDALl2 l 18~=~--+--l 

BDALl5L101=~--+---t_ 

+ 5 o~~~~~ +sv 

GND~l1 

I 
~ +12V I AASERlALOUT+ 

I 
I 
I 

20 MA/TTL 
RCVD DATA 

S 20 MA DATA IN 

F EIA TRANS DATA 

SERIAL IN+ 

E!A/TTL 
RCVD DATA 

EIA DATA IN 

TTL SERIAL 
DATA IN 

UAR/T MODE 
SELECT JUMPERS 

r{:>---n-< DD DAT~ READY 

~11 Lt< V ROST TO SEND + 12 DAD2,B02, +12V 

BOMGI L~ 

BOMGO L ffiJ!ill 
14-------------------+(Z DATA SET READY 

L _ __j~-----------------,--K T CLEAR TO SEND 

BB CARRIER 

+3V~C BUSY 

-' -' 
;;; ;;; 

g ~ 
Figure 4-25 DLVll Logic Block Diagram 

4.39 



Table 4·2 DLVll Function Decoding 

Address Inputs Control Inputs Function Select Signals (low-active) 

SEL SEL SEL SEL SEL SEL SEL 
Al A2 BOIN L BDOUT L MEL OIN L 21N L 41N L OOUTL 61N L 40UTL 60UTL 

.i::. x x x x H H H H H H H H .f:. L L L x L L H H H H H H 0 
H L L x L H L H H H H H 
L H L x L H H L H H H H 
L L H L L H H H L H H H 
L H H L L H H H H H L H 
H H I H L L H H H H H H L 
H H L H L H H H H L H H 



Transmitter-generated interrupts occur in a manner similar to the re­
ceiver-generated interrupts. However, they occur as a result of the 
TDINTEN flip-flop being set (interrupts enab'led) and when the Trans­
imtter Buffer Empty (TBMT H) UAR/T signal is active (high). Note that 
if the transmitter and receiver functions request interrupts simulta· 
neously, the receiver interrupt. vector will be transmitted on the first 
interrupt cycle, an'd the transmitter interrupt vector will be transmitted 
on a subsequent (separate) interrupt sequence. If BIAKI L is received 
and the DLVll is not requesting an interrupt, it passes BIAKO L to the 
next device in the priority chain. 

The interface control logic also generates the DLVll's BRPLY L signal. 
It generates this signal when any function select signal is asserted or 
VEC L is generated. 

The system initialize signal (BINIT L) is generated by the processor 
to reset all peripheral device registers. Interface control logic responds 
by clearing all control flip-flops, including the Interrupt Request, In- · 
terrupt Acknowledge, and Break flip-flop. The UAR/T's RBUF and XBUF 
data registers are not cleared by BINIT L; however, the initialize signal 
does clear the DAH signal and set the TBMT H signal. 

4.6.2.8 CSR Selection and Gating-CSR selection and gating logic 
enables the LSl-11 microcomputer to read receiver and transmitter con­
trol/status bits. Functions are summarized below. 

Read RCSR (SELDIN L asserted) 
CARRIER or CLR TO SEND or DATA SET READY-> BDAL15 

DAH-> BDAL7 

ROINTEN H -> BOAL6 

Read XCSR (SEL4/N L asserted) 
TBMTH -> BDAL7 . 

TDINTEN H -> BDAL6 

BREAK H -> BDALO 

4.6.2.9 Break Logic-Break logic comprises the Break status flip-flop. 
It is set or cleared by the LSl-11 microcomputer by BDALO while exe· 
cuting a bus output cycle with the XCSR. Thus, the duration of the break 
signal is program controlled. The Break flip-flop is clocked on the lead· 
ing edge of the SEL40UT H signal. When set, the serial output line is 
continuously negated (space) or open circuit. The status of the Break 
flip-flop can be read in XCSR bit 0. 

4.6.2.10 Reader Run Logic-The reader run logic enables DLVll 
generation of a READER RUN pulse for 20 mA current loop teletype­
writer devices. It is enabled by loading RCSR bit O; the LSl·ll micro­
computer asserts BDALO and causes generation of the SELOOUT H signal 
(load RCSR). READER RUN is asserted and remains active until the 
received serial data has been in a mark condition for the duration of 
eight consecutive. clock pulses. The start bit of the serial input (SI) 
from the low-speed reader initiates a 4·bit binary counter. When eight 
CLK L pulses have been counted (equivalent to one-half of the start bit), 
READER RUN is negated. 

4-41 



4.6.2.11 EIA Interface Circuits-An EIA interface is provided by EIA 
drivers and receivers. EIA signal drivers are provided for ElA TRANS 
DATA, RQST TO SEND, DATA TERMINAL READY (always an active 

·high, and BUSY (always an active low. Jumper EIA applies ·12 V to the 
EIA driver chip when the DLVll .is used with EIA·compatible devices. 
EIA signal receivers are provided for EIA DATA IN, CARRIER or CLEAR 
TO SEND, and DATA SET READY. The optional BC05C modem cable 
connects the output signal of the EIA DATA IN driver (EIA/TTL RCVD 
DATA) to the TTL SERIAL DATA IN input to the UAR/T. 

4.6.2.12 20 mA Loop Current Interface-The 20 mA loop current in­
terface is provitjed by optical isolation. An active 20 riiA current loop is 
provided when jumpers CLI through CL4 are installed. If the jumpers 
are removed, 20 mA passive current loop operation is selected. The 
optional BC05M cable assembly connects the 20 mA/TTL RCVD DATA 
optical coupler signal output to the TTL SERIAL DATA IN input of the 
UAR/T. When the DLVll is used with a 110 baud teletypewriter device, 
a 0.005µF, 100 V filter capacitor should be installed between terminals 
TPl and TP2. 

4.6.2.13 -12 V Inverter-The ·12 V inverter circuit generates -12 V for 
use by the UAR/T chip and EIA driver and receiver chips. Input to the 

· circuit is the CLK signal (2.4576 MHz) and +12 V. The output is zener 
regulated to -12 V. 

4.7 DRVll PARALLEL LINE UNIT 

4.7.l~eneral 
The DRVll is a ·general-purpose interface unit used for connecting 
parallel line devices to the LSJ.11 bus. All circuits are contained on a 
single 8.5 by 5 inch module. 

The DRVl 1 features: 

• 16 diode-clamped data input lines. 

• 16 latched output lines. 

• 16·bit word or 8-bit byte programmed data transfers. 

• User-assigned device address decoding. 

• LSl-11 bus interface and control logic ·for interrupt processing and 
vector generation. 

• Interrupt priority determined by electrical position along the LSl-11 
bus. 

• Control/status registers (CSR) and data registers that are compatible 
with PDP-11 software routines. Plug, signal, and program compatible 
with DRll-C. 

• Four control lines to the peripheral device for NEW DATA READY, DATA 
TRANSMITTED, RQSTA, and RQSTB. 

• Logic compatible with TTL or DTL devices. 

• Program-controlled data transfer rate of 90K words per second (max­
imum). 

• Maximum drive capability of 25 ft of cable. 

4·42 



4.7.2 Functional Description 
4.7.2.1 ·General-Major functions contained on the DRVll module are 
shown in Figure 4-26. Communications between the LSl-11 microcom-

. puter ana the DRVl 1 are executed via programmed 1/0 operations or 
interrupt-driven routines, as described in Chapter 3. 

The DRVll is capable of storing one 16·bit output word or two 8-bit 
output bytes in DROUTBUF. The stored data (OUT0-15 H) is routed to 
the user's device via an optional 1/0 cable connected to JI. Any pro­
grammed operation that loads either a byte or a word in DROUTBUF 
causes a NEW DATA READY H signal to be generated, informing the 
user's device of the operation. 

Input data (DRINBUF) is gated onto the BOAL bus during a DATI bus 
cycle. All 16 bits are placed on the bus simultaneously; however, when 
the processor is involved in 8-bit byte operation, it uses only the high 
or low byte. When the data is taken by the processor, a DATA TRANS 
H pulse is sent to the user's device to inform the device of the data 
transfer. 

4.7.2.2 Addressing-When addressing a peripheral device interface 
such as the DRVll, the processor places an address on BDAL0-15 L, 
which is received and distributed as BRDO-i5 H in the DRVl 1. The 
address is in the upper 4K (28-32K) address space. On the leading 
edge of BSYNC L, the address decoder decodes the address selected by 
jumpers A3-Al2 and sets the Device Selected flip-flop (not shown); the 
active flip-flop output is the ME signal, which enables function selection 
and 1/0 control logic operation. At the same time, function selection 
logic stores address bits BRD0-2. 

4-43 



BoALO L 

BOAL! L 

BDAL2 L 

BOAL3 L 

BDAL4 L 

BDAL5 L 

BOALS L 

BOAL7 L 

BDALB L 

BOAL9 L 

BDALIO L 

BOALll L 

BDALl2 L 

BDALl4 L 

, BDALl5 L 

BDMGI L 

BDMGO L 

BBS7 L 

BSYNC L 

BRPLY L 

8 AU2 

8 
AF2 

- VECTOR 
- ADDRESS 

JUMPERS 
V3-V7 

-::-~~~:~~N 
JUMPERS 
A3-AIZ 

SELZINL 
SELOINL 

INT EN 
A 8 8 

1-------4-- NEW DATA READY H 
1--------'-- DATA TRANS. H 
'1-------4-- SEL4 IN L 
1--------'-- SEL2 (W+HBl L 
'----------'-- SEL2 (W+LBI L 

VECTOR H 

SE T IGNA 

INTERRUPT 
LOGIC 

r-8-US-RE_C_E-IV_E_R_\__:_ ______ L _ __:_ ______ • INIT H,INIT L 

I B '>=~---------- ANO INVERTERS : i:;; ~ 

Figure 4-26 DRVll Logic Block Diagram 

DEVICE 
INTERFACE 



Table 4-3 DRVl 1 Device Function Decoding 

BWTBT L 
Programmed Stored Device During Bus Cycle 

Operation Addr. Bits 0-2 Data Transfer . BOIN L BDOUT L Type Select Signals 

Write DRCSR 
0 0 H L DATO 

SELOOUT L 0 1 H L DATOB 

Read DRCSR 0 0 L H DATI or SELDIN L 
DATIO 

Write 
DROUTBUF 
Word 2 0 H L DATO SEL20UT 

(W + HB) L, 
.j>. SEL20UT 
.j::. (W + LB) L, and 
(J1 NEW DATA 

READY H 

Low Byte 2 1 H L DATOB SEL20UT 
(W +LB) Land 
NEW DATA 
READY H 

High Byte 3 1 H L DATOB SEL20UT 
(W + HB) Land 
NEW DATA 
READY H 

Read 2. 0 L H DATI or SEL21N L 
DROUTBUF 

I 
DATIO 

Read 4 0 L H DATI SEL41N Land 
DRINBUF DATA TRANS H 



NOTE 
When addressed, the DRVU always responds to 
either BOIN L or BDOUT L by asserting BRPLY 
L [L = assertion]. 

4.7.2.3 • Function Selection-Function selection and 1/0 control logic 
monitors the ME signal -and bus signals BOIN L, BDOUT L, and BWTBT 
L. It responds by generating appropriate Select signals which cqntrol 
internal data gating, NEW DATA READY H or DATA TRANS H output 
signals for the user's device, and the BRPL Y L bus signal which informs 
the processor that the DRVl 1 has responded to the programmed 1/0 
operation. Since the DRVll appears to the processor as three address­
able registers (DRCSR, DROUTBUF, and DRINBUF) that can be involved 
in either word or byte transfers, the three low-order address bits stored 
duri·ng the addressing portion of the bus cycle are used for function 
selection. The select signals relative to 1/0 bus control signals and 
address bits 0-2 are listed in Table 4·3. 

NEW DATA READY H is active for the duration of BDOUT L when in a 
DROUTBUF write operation. This signal is normally active for 300 ns. 
However, by adding an optional capacitor in the BRPLY L portion of 
the circuit, the leading edge of BRPLY is delayed, effectively increasing 
the duration of the NEW DATA READY H pulse to 1200 ns (maximum); 
adding the capacitor also increases the DATA TRANS H pulse width in 
exactly the same manner. 

DATA TRANS H is active for the duration of BOIN L when in a DRINBUF 
read operation. This signal is normally active for 300 ns. The time, 
however, can be extended by adding the optiona'I capacitor to the BRPLY 
L portion of the circuit as previously described. 

4.7.2.4 Read Data Multiplexer-The read data multiplexer selects the 
proper data and places it on the BOAL bus when the processor inputs 
DRCSR, DROUTBUF or interrupt vectors; DRINBUF contents are gated 
onto the bus separately. The select signals (previously described) and 
VECTOR H, produced by the interrupt logic, control read data selection. 

4.7.2.5 DRCSR Functions-The control/status register (DRCSR) is 
comprised of separate functions. Four of the six significant DRCSR bits 
can be involved in either write or read operations. The remaining two 
bits, 7 and 15, are read-only bits that are controlled by the external 
device via the REQ A H and REQ B H signals, respectively. The four 
read/write bits are stored in the 4-bit CSR latch. They represent CSRO 
and CSRl (DRCSR bits 0 and 1, respectively), which can be used to 

·simulate interrupt requests when used with an optional maintenance 
cable. INT ENB A and INT ENB B (bits 6 and 5, respectively) enable 
interrupt logic operation. Note that CSRO and CSRl are available to 
the user's device for any user application. 

4.7.2.6 DRINBUF Input Data Transfer-DRINBUF is an addressable 
16,btt read-only register that receives data from the user's device for 
transmission to the LSl-11 bus. Data to be read is provided by the user's 
device on the IN0-15 H signal lines. Since the input buffer consists of 
gating logic rather than a flip-flop register, the user's device must hold 

4-46 



the data on the lines until the data input transaction has been com­
pleted. 

The input data is read during a DATI sequence while bus drivers are 
enabled by the SEL41N L signal. The DATA TRANSMITTED pulse that is 
sent to the user's device by the function select logic informs the device 
of the transaction. Input data can be removed on the trailing edge of 
this pulse. 

4.7.2.7 DROUTBUF Output Data Transfer-DROUTBUF is comprised 
of two 8-bit latches, enabling e"i\her 16-bit word or 8-bit byte output 
transfers. Two SEL 2 signals function as clock signals for the latches. 
When· in a DATO bus cycle, both signals clock data from the internal 
BRD0-15 H bus into the latches. However, when a DATOB eycle, only 
one signal clocks data into an 8-bit latch, as determined by address bit 
0 previously stored during the addres~ing portion of the bus cycle. 

The NEW1 DATA READY H pulse generated by the function select logic is 
sent to the user's device to inform the device of the data transaction. 
The data can be input to the device on the trailing edge of this pulse. 

4.7.2.8 Interrupts-The DRVll contains LSl-11 bus-compatible in­
terrupt logic that allows the user's device to generate interrupt re­
quests. Two independent interrupt request signals (REQ A H and REQ 
B H) are capable of requesting processor service via separate interrupt 
vectors. In addition, DRCSR contains two interrupt enable bits (INTEN 
A and INT EN B) (bits 6 and 5, respectively), which independently 
enable or disable interrupt requests. REQ A and REQ B status can be 
read by the processor in DRCSR bits 7 and 15, respectively. Since 
separate interrupt vectors are provided for each request, one of the 
requests could be used to imply that device data is ready for input 
and the remaining request could be used to imply that the device is 
ready to accept new data. 

An interrupt sequence is generated when a DRCSR INT EN bit (A or B) 
is set and its respective REQ signal is asserted by the device. The pro­
cessor responds (if its PS bit 7 is not set) by asserting BOIN L; this 
enables the device requesting the interrupt to place its vector on the 
BOAL bus when the interrupt request is acknowledged. The processor 
then asserts B"IAKO L, acknowledging the interrupt request. The DRVll 
receives BIAKI L and the interrupt logic generates VECTOR H, which 
gates the jumper-addressed vector information through the read data 
multiplexer and bus drivers and onto the LSl-11 bus. The processor 
then proceeds to service the interrupt request as described in Chapter 3. 

4.7.2.9 Maintenance Mode-The maintenance mode allows the user 
to check DRVll operation by installing an optional BC08R cable be­
tween connectors Jl and J2. This maintenance cable allows the con­
tents of the output buffer DROUTBUF to be read during a DRINBUF 
DATI bus cycle. In addition, interrupts can be simulated by using DRCSR 
bits CSRO and CSRl. CSRl is routed via the cable directly to the REQ 
B H input and CSRO is routed to the REQ A H input. By setting or clear­
ing INT EN A, INT EN B, _and CSRO and CSRl bits in the DRCSR register, 
a maintenance program can test the interrupt facility. 

4.47 



4.7.2.10 lnitialization_;BINIT L is received by a bus driver, inverted, 
and distributed to DRVll logic to initialize the device interface. The 
buffered initialize signal is available to the user's device via the AINIT H 
and BINIT H signal lines. DRVll logic functions cleared by the BINIT 
signal include DROUTBUF, DRCSR (bits 0, 1, 5, and 6), and interrupt 
logic. 

4.8 DRVll-B OMA INTERFACE 
A detailed description of the DRVll-B option is included in the DRVll-8 
General Purpose OMA Interface User's Manual. Refer to that publicat[on 
for installation, programming, and theory of operation. 

4.9 DRVll-P LSl-11 BUS FOUNDATION MODULE. 
A detailed description of the DRVll-P option is included in the DRVll-P 
Foundation Module User's Manual. Refer to that publication for installa­
tion, configuring user-designed logic circuits on the module, applicable 
programming information, and theory of operation of circuits that di­
rectly communicate with the LSl-11 bus. 

4.10 LSl-11 BUS ACCESSORY OPTIONS 

4.10.1 General 
The options described in this section generally involve variations of the 
M9400 module. By including selected components and jumpers, the 
various options are factory produced. Figures 4-27 through 4-31 each 
include a simple block diagram of the options, and functional position 
within a system, as appropriate. A list of options and figures is provided. 

Figure 

4-27 
4-28 
4-29 
4-30 
4-31 

. . 
Option 

REVll-A 
REVll-C 
TEVll 
BCVlB-XX 
BCVlA-XX 

Detailed descriptions of functions contained within these figures are 
contained in the following paragraphs. 

4.10.2 Terminations 
Two types of terminations are provided: 1200 and 2500. Each bus . 
signal line termination includes two resistors as shown in Figure 4·32. 
Termination resistors are generally contained in.16-pin dual-inline pack­
ages which are physically identical"to l.C. packages. Each package con­
tains 14 terminations. The values used are shown in the figure. Daisy­
chained grant signals are terminated and jumpered; BIAKI is jumpered 
to BIAKO L and BDMGI is connected tb BDMGO 'L via a factory-installed 
jumper (Wl). Note that the 1200 and 2500 termination values are nom­
inal: with the resistor values s.hown, the actual termi.nation values will be 
approximately 1240 and 2220, respectively. 

4-48 



M9400 -YE 

M9400-YA 

1200 BUS 
TERMINATION 

OMA REFRESH 

14------<t---.. BOOTSTRAP ROM 

Figure 4-27 REVll-A Functions 

M9400-YC 

., 14-----tt-----<of BOOTSTRAP ROM 
::> 
m 

' H ., 
...I ------<t-----< .. OMA REFRESH 

Figure 4-28 REVll-C Functions 

M9400-YB 

t20l1 BUS 
TERMINATION 

Figure 4-29 TEVll Functions 

M9401 

JI 8C05L-XX JI 
( ) 

J2 BC05L-XX J2 
( ) 

250 .0. BUS 
TERMINATION 

BCVIB-XX COMPONENTS 

Figure 4·30 BCVlB Functions 

4-49 

11-3598 



M9400-YO 

JI BCOSL-XX 

M9401 

THIRD 
BACKPLANE r--, 
I I 

( 
JI 

) I I 
.___ __ _,____,_I__, I 

BCOSL-XX J2 
) 

BCVllA-XX COMPONENTS 

Figure 4-31 BCVlA Functions 

+5V +5V 

1sOn 33on 

TO/ FROM TO/FROM 
SIGNAL LINE SIGNAL LINE 

390.n seon 

-
TYPICAL 12on 
TERMINATION 

Figure 4-32 G-7 

-
TYPICAL 2son 
TERMINATION 

Bus Terminations 

4.10.3 Bootstrap ROM Loader Logic . 

I I 
I I L __ _, 

4.10.3.1 General__;Bootstrap ROM loader logic is included in REVll-A 
and REVll-C options_ Logic functions on their respective M9400-YA and 
M9400-YC modules are identical. Bootstrap programs contained in the 
REVll-A and REVll-C ROMs are identical. Logic functions are described 
below. 

4.10.3.2 Addressing-The module includes a 512 x 16-bit ROM array 
that is addressed in two 256-word segments. These address segments 
are reserved for REVll options and reside in the upper 4K address 
bank, normally used for peripheral device addresses. The reserved 
addresses range from 165000,165776 and 173000-173776. A power-up 
mode, which will cause the processor to access ROM location 173000 
upon power up, is jumper selectable on the KDll-F or KDll-J processor 
module. 

Circuits associated with bootstrap ROM logic are shown in Figure 4-3;3. 
Wired inputs to an address comparator circuit reserve the ROM ad­
dresses. The address comparator responds to any of .the reserved 
addresses during the addressing portion of a bus 1/0 cycle by generating 
an active MY BANK H signal. MY BANK H is ANDed with DIN H to pro­
duce a BRPL Y H signal when the ROM word is read by the pr-ocessor. 

4-50 



MY BANK H is also inverted and applied to the ROM array chip enable 
inputs. 

DAL9 H 

DALIO H 

DALl1 L · 

OALt2 H 

FROM BUS 857 H 
RECEIVERS 

REF H 

SYNCH 

+5V 

BOCOK H 

MY BANK H 

9-BIT 
ADDRESS BA1-8,10H 

LATCH 

+5V 

512-WORD 
I-CHIP 

BOOTSTRAP 
ROM 1--~~/ 

ARRAY 

Figure 4-33 Bootstrap ROM Logic 

BOAL 
BUS BOAL 0-15 L 

DRIVERS 

DALl-8 H and DALIO H address bits are stored in the 9-bit address latch 
on the leading-edge of SYNC H. The stored BAl-8 H and BAlO H ad­
dress bits select the desired word location to be read within the two 
256-word address segment detected by the address comparator. 

4.10.3.3 Data Transfer-After the addressing portion of the bus DATI 
cycle has been completed, the ROM 0-15 H data becomes available on 
the BOAL bus driver inputs. Note that the ROM array consists of four 
512 x 4-bit IC's. Hence, the four 4-bit outputs comprise the 16-bit LSl-11 
word. MY ENABLE L strobes the 16-bit word onto the 1/0 bus in re­
sponse to the DIN H signal. The processor then receives the data, ter­
minates BOIN L, ·and the bootstrap ROM logic responds by terminating 
BRPLY Land inhibiting the BOAL bus drivers. 

4.10.3.4 Initialization-the bootstrap ROM logic is initialized only 
when BDCOKH goes false. This condition occurs during a power failure 
and produces active BD INIT H and BD INIT L signals. These signals 
clear the 9-bit address latch and circuits contained in the OMA refresh 
logic. The option does not respond to the LSl-11 bus BINIT L signal. 

4.10.4 OMA Refresh Logic 

4.10.4.1 General-OMA refresh logic consists of the three main func­
tions shown in Figure 4-34. Arbitration logic requests the 1/0 bus once 
every 30 µs (approx) and completes the required OMA signal sequence 

4-51 



BOMR L 
~ 

BO INITH ARBITRATION BSACK L 

LOGIC BDMGI L 
BDMGO L 

:r: t~ 
0 :r: jSj 
~1:=1 :r: ffi _J 

a>< olii a:: 
(!) (..) _J 
::;: <( - <( (..) 

~INITL 
0 Ul ID ::;: a:: 

BREF L -BUS BSYNC L Ul 
CONTROL BOIN L ::> 

LOGIC ID 
BO INITH BRPLY L 

::: 
:r: :r: I 

:r:: 31§ H 

:r:I~ 
Ul 

a:: a:: _J 

WW 

~~ 
I- I-
Ul Ul 

a_ a_ <( <( 
a:: a:: ::;: ::;: 

BO INITH REFRESH BOAL! -6 L 
~ ADDRESS 

LOGIC 

BDCOK H 

7 
11-3602 

Figure 4-34 OMA Refresh Logic 

with the processor. When it becomes bus master, it enables the bus 
control logic to execute a single refresh BSYNC L/BDIN L bus trans­
action simultaneously refreshing one row in all dynamic MOS memory 
chips contained in the system. The refresh address logic places a six­
bit memory chip "row" address on the BOAL 1-6 lines during the ad­
dressing portion of the 1/0 bus cycle. Once the cycle has been com­
pleted, the row address is incemented by one for the next refresh cycle, 
and the 1/0 bus is released. The actual refresh transaction for one row 
address takes approximately 1-2 µ,s. Each dynamic MOS memory chip 
contains 64 row addresses. Hence, the OMA refresh logic is capable 
of refreshing all dynamic MOS memory contained in the system within 
the required 2 msec (maxii:num) period (ie., 64 rows x 30 µ,s between 
refresh bus cycles= 1.92 ms). 

4.104.2 Arbirtration Logic-Arbitration logic is shown in Figure 4-35; 
timing is shown in Figure 4-36. The OMA refresh sequence is initiated 
once every 30 µ,s by a clock oscillator. GRAB BUS H is the clock output 
signal. It is inverted and gated with a ground (enable} signal, supplied 
via Refresh Disable jumper W2, to produce the· REQ H signal. REQ H 

4-52 



clocks the DMR flip-flop to the set state, producing active R PENDING 
(1) H and BDMR L signals. The processor arbitrates the OMA request 
and responds by asserting the daisy-chained BDMGI L signal when the 
pre:ent bus cycle is completed. BDMGI L is received and inverted, pro­
ducing the active !?MGR H signal. The leading edge of this signal clocks 

Figure 4-35 Arbitration Logic 

the active R PENDING (1) H signal into the SACK flip-flop, causing it 
to go the set state. SACK (1) H goes high and SACK (0) L goes low, 
clearing the DMR flip-flop and inhibiting the BDMGO L signal logic, 
respectively. SACK (1) H also turns on the BSACK L bus driver; the 
active BSACK L signal informs the processor that a OMA device has 
become bus master, and the OMA grant sequence is completed. 

When not requesting the bus for a refresh bus transaction, the arbitra· 
tion logic passes BDMGI L signals to its BDMGO L output so that the 
dai::;y-chained signal .continuity is maintained to the lower priority devic~ 
requesting the bus. The passive (high) SACK (0) L signal enables gen­
eration of a delayed BDMGO L signal. The 100 ns delay ensures that 
the SACK flip-flop has sufficient time to go to the set state, if the OMA 
refresh option is requesting the I/ 0 bus. 

4.10.4.3 Bus Control Logic-The bus control logic operation is initiated 
when the arbitration logic asserts the SACK (1) H and DMG DLYD H 

. signals. These signals are gated with passive SYNC H and RPLY H signals 
to produce the MCLK H signal, as shown in Figure 4-37. MCLK H clocks 
the Master flip-flop to the set state; MASTER (1) H goes high and 
MASTER (1) L goes low. Master (1) H is inverted, producing the active 
BREF L signal. BREF L causes all dynamic MOS memories contained in 
the system to be simultaneously addressed during the refresh bus trans­
action, and it remains active for the duration of the refresh operation. 

4.53 



SCLK H 

GRAB BUS H 

REQ H 

RCLR L 

BDMR L 

BDMGI L 

BSACK L 

SACK (0) L 

MY ENABLE L 

BREF L 

MASTER 
SYNC(l)H ____ __,\ 

B (0) H 

BSYNC l 

BOIN L 

BRPLY L 

DONE (0) H 

Figure 4-36 OMA Refresh Logic Signal Sequence 

MASTER (1) H is applied t_o refresh address logic where it produces the 
MY ENABLE L signal. This signal enables low byte BOAL (0-7) bus 
drivers, and row address bits are placed on the BOAL bus. 

The sequence of operations involving the bus control logic is controlled 
by sequence flip-flops A and B. (Note that the A flip-flop is shown in­
verted.} Operations are synchronized by the positive-going leading edge 
of the 220 ns clock SCLK H signal, as shown in Figure 4-36. On the 
SCLK H leading edge following the active MASTER (1) H signal, the 
Master-Sync flip-flop clocks to the set state, producing the active 
MASTER SYNC (1) H signal. The MASTER SYNC (1) H and B (0) H 
signals are gated to produce a low signal that clocks sequence flip-flop A 
to the set state on the following SCLK H pulse. T,he RPLY (0) H signal 

4-54 



SACK (ll H 

OMG OLYO H 

BSYNC L 

BRPLY L 

PRE SYNCH 

BO INIT L 

A(OJ H 

BO INIT H 

BREF L 

MASTER (1) H 

MASTER SYNC (I) H 

MASTER ( 1) L SCLK H 

BO INIT L 

A (1) H 

B {I) H 

A (1) H 

A(Q) H SCLK H 

BO INIT L 

Figure 4-37 Bus Control Logic 

is initially high since the refresh bus transaction with system memory 
has not been completed. Thus, the high RPLY (0) H, passive (low) 
BOINIT H, and A (0) H signals are gated, producing a low signal that 
keeps the A flip-flop set until the RPLY (0) H signal goes low. The. low 
A (0) H signal is ORed with B (0) H to produce the PRE SYNC H signal. 
PRE SYNC H and the active MASTER (1) H signal are gated by the 
BSYNC L bus driver, causing that bus signal to become asserted. 

On the third SCLK H leading edge, the B sequence flip-flop clocks to the 
set state, producing the high B (1) H and low B (0) H signals. B (1) H 
and A (1) H are gated by the BOIN L bus driver, causing that signal to 
become asserted. Bus control logic remains in this state until system 
memory responds to the refresh transaction by asserting BRPLY L. (This 
may occur one or more SCLK H signals later, depending upon system 
delays.) 

BRPLY L is received and inverted, producing RPLY H. On the next lead­
ing edge of SCLK H, the reply flip-flop clocks to the set state, and high 
RPLY (1) H and low RPLY (0) H signals are produced. The low RPLY (0) 
H signal inhibits the A sequence flip·flop clear gate, and the flip-flop 
clocks to the reset state on the following SCLK H pulse. A (1) H goes 
low, inhibiting the BOIN L bus driver, and terminating that sighal. RPL Y 
(1) H and B (1) H are ANOed to produce a low signal which presets the 
B sequence ·mp-flop. This prevents resettling the B flip-flop as long as 
RPLY (1) His in the active state. 

4-55 



System memory responds to the passive BOIN L signal by terminating 
the BRPLY L signal. On the next SCLK L pulse, the reply flip-flop clocks 
to the reset state; RPLY (1) H goes low and RPLY (0) H goes high. The 
following SCLK L pulse then clocks the B sequence flip-flop to the reset 
state and B (1) H goes passive; PRE SYNC H and BSYNC L go to the 
passive states. • 

Low R PENDING (1) H and DONE (0) H signals are gated to produce 
the active (low) RCLR L signal (Figure 4-35) which clears the Sack flip­
flop; BSACK L and SACK (0) H signals go high. RCLR L also clears the 
Master flip-flop in the qus control logic (Figure 4-37), causing BREF L 
to go passive and MY ENABLE L in the refresh address logic (Figure 
4-38) to go passive, inhibiting the BOAL bus drivers. On the next SCLK 
H pulse, MASTER SYNC (1) H goes passive (Figure 4-37), and the re­
fresh bus transaction is completed. The passive MASTER SYNC (1) H 
signal resets the Done flip-flop enabling the next refresh operation. 

4.10.4.4 Refresh Address Logic-Refresh address logic is shown in 
Figure 4-38. A 6-bit binary counter produces the six row address. bits 
that are placed on the BOAL bus during the addressing portion of the 
refresh bus transaction. The low MASTER (0) H signal enables the coun­
ter output bits during the operation. Upon completing the transaction, 
RPLY (1) H goes passive, inhibiting the CK L gate; the CK L signal goes · 
hlgh, incrementing the 6-bit binary counter by one count. Hence, on 
each successive refresh operation, a new row address is used. 

MASTER 11) H 

RPLY (1) H 

BOOTSTRAP ROM 
BITS 1-6 H 

MASTER (0} H (EN) 

BO INIT H (CLRJ 

MASTER (1 l H 

REPLY H 
{FROM BOOTSTRAP LOGIC) 

* 

BOAL 
BUS BOAL \-6 L 

DRIVERS t------1/ 

* 

MY ENABLE L 

*-Also used in Bootstrap Rom Logic 

Figure 4-38 Refresh Address Logic 

4.10.4.5 Initialization-OMA refresh logic initialization is controlled by 
the BDCOK H signal. Initialization occ1,1rs only during power-up or power­
down conditions (when BDCOK H is in the low passive state). All flip­
flops (except the Done flip-flop) are initialized by either the BD IN IT H 
(inverted-passive BDCOK H), BD INIT L (inverted BD INIT H), or RCLR L 
(gated BD INIT H) signals. 

4.11 H780 POWER SUPPLY 

4.11.1 General 
The H780 power supply provides de operating power to all backplane 
slots contained in a PDP-11/03 microcomputer system. Depending on 
the configuration ordered, the primary power input is 115 or 230 Vac, 
50 or 60 Hz. In addition to providing operating power, the H780 gen-

4-56 



erates power supply status and line time clock signals that are dis­
tributed over the LSl-11 bus. Three LED indicators and three switches 
are on the H780's front panel. The indicators include RUN, which illu­
minates when the LSl-11 processor is in the run state, and DC ON, 
which illuminates when normal de operating voltages are applied to the 
LSl-11 backplane. The DC ON indicator status is controlled by circuits 
contained in the H780. The DC ON/OFF switch allows the operator to 
turn off the H780 de output voltages without turning off system primary 
power. This allows safe module installation or removal with no de power 
applied to the backplane. A normal power-up/power-down sequence is 
produced when this switch is operated. The ENABLE/HALT switch en­
ables the operator to manually assert the SHALT L bus signal, causing 
the LSl-11 microcomputer to enter the console (DDT) microcode. When 
in the ENABLE position, program execution can be initiated via console 
DDT commands. The LTC ON/OFF switch enables or disables H780 gen­
eration of the line time clock (BEVNT L) signal. One spare LED indicator 
is included. Two fans provide cooling air for the H780 power supply and 
all modules contained in the PDP-11/03 enclosure. 

The H780 features: 

• +5 V ± 3%, 18 A (maximum) and +12 V ± 3%, 3.5 A (maximum); 
combined de power mus( not exceed 120 W. 

• Overcurrent/short circuit protection-Output voltages return to nor­
mal after removal of overload or short. Current limited to approxi­
mately 1.2 times the required maximum rating. 

• Overvoltage protection-+5 V limited to +6.3 V (approx); +12 V 
limited to +15 V (approx). 

• Dual primary power configuration-Can be connected for nominal 115 
V, 60 Hz or 230 V, 50 Hz input power. 

• Syste_m control/indicator panel-A simple system control/indicator 
panel allows the user to control de power on/off and microcomputer 
Run/Halt mode. Indicators display the actual de power and processor 
status. 

• Line Time Clock-A bus-compatible signal is generated by the power 
supply for the event (line time clock) interrupt input to the processor. 
This signal is either 50 or 60 Hz, depending upon primary power line 
frequency input to the power supply. 

• Power Fail/ Automatic Restart-Fault detection and status circuits 
monitor ac and de voltages and generate bus-compatible BPOK H 
and BDCOK H signals (respectively) to inform the LSl-11 system 
modules of power supply status. 

· • Fans-Built-in fans· provide cooling for the power supply and LSl-11 
modules contained in the PDP-11/03 enclosure. 

4.11.2 Specifications 

Electrical 
Input Voltage: 

Input Power (full load): 

100-127 V rms, 50 ± 1 Hz or 60 ± 1 Hz 
200-254 V rms, 50 ± 1 Hz or 60 ± 1 Hz 

400 W maximum 

4-57 



Output Voltages: 

Output Protection: 

Output Ripple: 
5 V output: 
12 V output: 

Output Regulation: 
Line: 

Load: 

Load Interaction: 

Load Term Stability: 

Line Protection: 

+5 V ± 3%, 1.5-18 A load (static and dy­
namic) 
+12 V ± 3%, 2.5-3.5 A load (static and 
dynamic) 
Maximum output power: 110 W (total) 

Current limited to. 1.2 times maximum normal 
rating (approximately) 
Voltage +5 V and +12 V outputs limited to 
+6.3 V (nominal) and +15 V (nominal), re­
spectively 

Less than 150 mV peak-to-peak 
Less than 360 mV peak-to-peak 

+5 V, 0.5% max 
+12 V, 0.25% max 
(Static and,dynamic (Ll I < 0.1 A/µ,s): 
+5 V, 1% max 
+12 V, 0.5% max 
1.0% 

0.1 %/1000 hr max 

H780A (115 V input): Fast blow 5 A fuse 
H780B (230 V input): Fast blow 2.5 A fuse 

Noise: 

Front Panel Control 
and Indicators: 

Rear Panel Controls 
and Indicators: 

Backplane Signals: 

Mechanical 
Cooling: 

Size: 
Weight: 

Environmental 
Temperature: 
Humidity: 

AC component above 100 kHz meets DEC STD 
102.7; H780B units will meet VOE N-12 limits 
for European environment. 

DC ON/OFF switch 
HALT/ENABLE switch 
LTC ON/OFF switc.h 
RUN indicator 
DC ON indicator 
Spare indicator 

AC ON/OFF power switch 

BPOK H 
BDCOK H 
BEVNT L 
BHALTL 
SRUN L 

Two self-contained fans provide 200 LFPM air 
flow. 
6Ya in. w X 3 1h in. h X 14% in. d 
13 lbs 

5°-50° C operating 
90% maximum without condensation. 

4-58 



4.11.3 Functional Description 
4.11.3.1 General-Major functions contained in the H780 power supply 
are shown in Figure 4-39. These functions include circuits which produce 
unregulated de voltage and regulated de voltage for H780 circuit oper­
ation, +5 V and +12 V switching regulators, overload and short-circuit 
protection, +5 V and +12 V crowbar (overvoltage protection) circuits, 
and logic signal generation circuits. The following paragraphs describe 
each of these functions in detail. 

4.11.3.2 Unregulated Voltage and Local Power-Unregulated voltage 
and local power circuits provide operating de power for power supply 
logic and control circuits, ·and de power for the +5 V and +12 V reg­
ulator circuits. These circuits are shown in Figure 4-40. AC power is 
supplied to the H780 via an ac input plug and cable. A toggle switch 
mounted on the rear of the H780 assembly applies ac power to the 
power supply_ Normally, this switch remains in the ON position, allowing 
ac power to be controlled by power distribution and control circuits in 
which the PDP-11/03 system is installed. Primary circuit overload pro­
tection is provided by a fuse mounted on the rear of the H780 unit. 
Primary power circuits are factory-wired for 115 Vac (model H780A) or 
230 Vac (model H780B) operation. Power transformer primary windings 
and the two fans operate directly from the switched ac power. 

-1 REG-u1C~'iOR ~·- 15v} 
LOCAL DC POWER 

REG~CXroR +sA 

.,, 
f--~'-r---"~+i SWITCHING f-T--~~-­

REGULATOR 

OVERLOAD 
•ND 

SHORT-CKT 
PROTECTION 

OVERVOLTAGE 
(CROWBAR) 

C<T 

LOGIC 
SIGNAL 

GUIERATIOti 
'--------+------j-----J CKTS 

OVERVOLTAGE 
(CROWBAR) 

CKT 

Figure 4-39 H780 Power Supply Block Diagram 

A single center-tapped secondary winding supplies power for regulator 
circuits and internal circuit operation_ Conventional full-wave rectifiers 
and a -15 V, 3-terminal regulator provide regulated voltage for in­
ternal distribution. The rectifiers also provide +24 V (approx) for internal 
distribution and regulator operation. A 3-terminal regulator integrated 
circuit provides +5 V'logic and control power for H780 circuits. The +5 

4-59 



11 115V PRIMARY POWER CONNECTIONS ARE SHOWN ABOVE {H780AJ. 
230V PRIMARY POWER CONNECTIONS ARE SHOWN BELOW (H780B). 

}
ACV TO 
LOGIC SIGNAL 
GENERATION CKTS 

3-TERMINAL 
REGULATOR +sv 

1+5Vl 

3·TERMINAL 
~---+! REGULATOR -1!5V 

(-1!5V) 

Figure 4-40 Unregulated Voltage and Local de Power 

V and +12 V regulators use the same +24 V unregulated voltage for 
regulation and distribution to LSl-11 modules. AC voltage from one side 
of the transformer secondary is also routed to the line time clock (LTC) 
circuit, which generates a BEVNT L bus signal for a line time clock pro­
cessor interrupt. When used with a 60 Hz line frequency, the interrupt 
occurs at 16.667 ms intervals; a 50 Hz line frequency will produce in­
terrupts at 20 ms intervals. 

4.11.3.3 Basic Regulator Circuit-Both +5 V and +12 V regulator cir­
cuits receive the +24 V unregulated input power. The +5 V and +12 V 
regulator circuits are identical except for component values. Hence, only 
the basic +5 V regulator is described in detail. 

The basic regulator is a switching regulator which operates at approxi­
mately 20 kHz. The rriain controlling element is a 3-terminal regulator 
which operates at approximately the regulated output voltage level. 
Basic regulator circuits are shown in Figure 4-41. Note that the ground 
terminal of the 3-terminal regulator is connected to a circuit that allows 
factory adjustment of the terminal voltage over a -0.7 to +0.5 V range. 
Hence, the 3-terminal regulator output in the +5 V regulator circuit can 
range from 4.3 to 5.4 V (approx). 

Normal switching regulator operation is accomplished when the control 
transistor is turned on. Forward bias for the control transistor is sup­
plied via Rl4; It is turned off only during fault conditions (overcurrent 
or shorted output voltage) or when the input ac line voltage is below 
specifications. Its emitter supplies unregulated voltage to the 3-terminal 
regulator. At less than 50 mA regulator output current (approx), the 
3-terminal regulator supplies the output voltage. However, as load cur­
rent through the 3-terminal regulator is increased beyond this value, the 
voltage drop across R27 forward biases the driver transistor. The pass 
switch transistor then turns on and applies the unregulated +24 V to 
L2. The output capacitor then charges toward the +5 V value, current 
limited by the inductance of L2. When the output voltage rises to the 
3-terminal regulator regulation voltage, the 3-terminal regulator turns 
off; current through R27 stops, and the driver transistor is not forward 

4-60 



r - - - o7,'"-c1 
I 
I 
I 
I 
I PART OF 

l~~~RLOAO I 
)SHORT-CKT 
I PROTECTION ~ I L.-------' 

PASS 
SWITCH 

SNUBBER 
NETWORK 

FREE 
WHEELING 
DIODE 

R33 

C10T_ -15V 

CURRENT 
SENSE 

'---v-----' 
TO OVERLOAD 

AND 
SHORT-CIRCUIT 

PROTECTION 
CKT 

+sv ADJ. 
(FACTORY-ADJ.) 

-0.5V 

Figure 4-41 Basic Regulator Circuit 

biased. Hence the driver and pass switch transistors cut off. The energy 
stored in L2 continues to charge the capacitor bank slightly beyond the 
designed output voltage via the free-y.iheeling diode and the current 
sense resistor. Once the inductor's stored energy is spent, the load dis­
charges the output capacitor until the output voltage drops below the 
3·terminal regulator's regulation voltage. At that point, current through 
R27 increases and turns on the driver and pass switch transistors, and 
the cycle repeats. Note that as the load is increased, the pass switch 
must remain on longer in order to charge the output capacitor to the 
regulated voltage value. This process repeats at a 12-20 kHz rate, pro­
ducing the switching regulator operation. 

Switching losses in the pass switch transistor are minimized by the 
snubber network. This network operates during the "off" switching 
transient (as the pass switch is biased off) by controlling the rate of 
increasing collector to emitter voltage as collector current decreases. 

The control transistor is turned off during a fault condition by overload 
and short-circuit protection circuits. When a fault condition is detected, 
the control transistor's base voltage drops to nearly 0 V, causing it to 
cut off. When cut off, operating voltage is removed from the 3-terminal 
regulator and R27 current is 0, disabling the switching regulator circuit. 

4.11.3.4· Overload and Short-Circuit Protection-Each H780 de output 
is overload and short-circuit protected. When in an overload condition, 
excessive power supply current is sensed, causing both switching reg­
ulators to go off and then cycle on and off at a low-frequency rate (ap­
proximately 7.5 Hz) until the overload is removed. Each time the power 
supply cycles on, the circuit checks for the overload condition. If the 
load current returns to normal, the 20 kHz switching regulator operation 
resumes. 

4-61 



Overcurrent sensing circuits for +5 V and + 12 Vdc outputs are identical 
except for component values. A 5 V power supply overcurrent condition 
results in an increased voltage drop across the current sense resistor 
(Figure 4.42), forward biasing the current sense transistor. (During nor-

~7ic~~N+G5~EG - - -1 
I c~~~~~r I 
I ~"YY""'--~-vvv~~-1---~g\oAo 
L ______ _J 

FROM + 12V 

cu~~~~~ --l<l---1 
TRANSISTOR 

+ V UN REG -.-'WV-'--! 

LOW FREQ CKT 

Figure 4-42 Overload and Short-Circuit Protection 

mal operation, this transistor is not forward biased.) Current sense tran­
sistor collector voltage then drops from the normal +24 V (approx) to 
the +5 V regulator output value; this voltage, which is less than the +16 
V reference applied to the current limit comparator's inverting input, is 
diode-coupled to the comparator's non-inverting input, causing the com­
parator's output to go low; the diode coupling provides an OR logic 
function for both +5 V and +12 V overcurrent fault conditions. The 
comparator's low output signal triggers the 20 µs one-shot whose OVER­
CURRENT L pulse output triggers the 135 ms one-s.hot and sets the 
Current Limit flip-flop. The OVERCURRENT L pulse is also ORed with the 
POWER OFF L signal, turning on the +5 V and +12 V hold-off transis­
tors. Both switching regulators are then disabled. The high 135 ms one­
shot output pulse is ANDed with the Current Limit flip-flop output, 
turning on +5 V and +12 V extended hold-off transistors. Hold-c:iff 
signals remain in this state and inhibit switching regulator operation for 
the 135 ms pulse duration. At the end of this time, the 135 -ms one-shot 
resets, terminating the delayed hold-off signals, and triggers the 2.0 ms 
one-shot. Its active low output resets the Current Limit flip-flop and 
clears the 135 ms one-shot for 2.0 ms, allowing the regulator pass 
switch transistors to operate for 2 ms (minimum). At the end of this 
time, the 135 ms one-shot is again enabled (the cl.ear input goes high) 
and a new overcurrent cycle is enabled. If the overload is removed, 
normal operation resumes; otherwise, the overload causes a new over­
load condition to occur and the cycle repeats, as described above. 

4-62 



Switching regulator operation is suspended when the operator places 
the DC ON/OFF switch in the OFF position. Logic signal generation cir· 
cuits respond by immediately asserting BPOK H low to initiate a pro· 
cessor power-fail sequence. After a 5·10 ms "pseudo delay," POWER 
OFF L is asserted low. This low signal is wire-ORed with OVERCURRENT 
L, inhibiting the switching regulator operation, and de power is removed 
from the backplane. 

4.11.3.5 Crowbar Circuits-Crowbar circuits are connected across both 
+5 V and + 12 V power supply outputs for overvoltage protection. An 
overvoltage condition could occur if +12 V and +5 V outputs shorted 
together, or if a driver or switch transistor becomes shorted. When 
shorted to a higher voltage source, the crowbar fires, shorting the supply 
voltage that it is protecting to ground (de return). In this condition, the 
overload and short-circuit protection circuits respond by limiting the duty 
cycle of the switch transistor until the overvoltage source is removed. 
However, when the overvoltage is caused by a shorted driver or switch 
transistor, short-circuit protection is ineffective, and the excessive cur· 
rent caused by the crowbar circuit firing will blow the regulator's fuse 
(Fl for +5 V or F2 for +12 V). 

The crowbar circuit for the +5 V output is shown in Figure 4·43. It com· 

SWITCH~~~ j•g-;~,: -:1-9 ~~~~~~~-~~~ .... + SV 

REGULATOR 
OUTPUT 

0.5V 

08 

__,_~~-~--'---'--~~N(GND) 

Figure 4·43 Crowbar Circuit 

prises a 5.6 V zener diode 09, diode 08, programmable unijunction 
transistor Q9, and silicon-controlled rectifier (SCR) Q15, R19, 08, and 
09 supply the 6.1 Vdc (approx) crowbar reference (threshold) voltage 
to the gate of Q9 via R21. Q9 is normally off and its cathode supplies 
a O V gate input to Q15. An overvoltage is coupled into the circuit via 
C7, causing the gate voltage of Q9 to rise; this triggers Q9 and its 
cathode voltage rises to the output (overvoltage) potential. Ql5 then 
fires and shorts (crowbars) the supply output. The circuit remains in 
this condition until the overvoltage is removed (Q15 current goes to 
zero) and either the power supply switch transistor is off due to short 
circuit protection, or the regulator's de fuse opens. 

The +12 V crowbar circuit functions in a similar manner. However, the 
reference voltage for this power supply is approximately 13.5 V. 

4.11.3.6 Logic Signal Generation-Logic signal generation circuits pro· 
duce LSl-11 bus signals for power normal/power fail and line time clock 
interrupt functions and processor Run-Enable/Halt mode. The RUN in· 
dicator circuit monitors the SRUN L backplane (nonbused) signal and 

4-63 



provides an active display when the processor is in the Run mode. 
BPOK H and BDCOK H indicate power status. When both are high, power 
to the LSl-11 bus is normal and no power fail condition is pending. 
However, if primary power goes abnormally low (or is removed) for more 
than 16.5 ms, BPOK H goes low and initiates a power-fail processor in· 
terrupt. If the power-fail condition continues for mor€ than an additional 
4 ms, a "pseudo delay" circuit causes BDCOK H to go low. The circuit 
also causes the overload and short-circuit protection circuit to inhibit 
+5 V and +12 V control transistors; normal output voltages are avail­
able for 50 µs (minimum) after BDCOK H goes low (depending on the 
loading of the de output voltages). The DC ON/OFF switch simulates an 
AC ON/OFF operation by turning switching regulators on or off without 
turning system primary power off. A normal power-up/power-down se· 
quence is produced by this circuit. The line time clock circuit produces 
a processor interrupt at the power line frequency (either 50 or 60 Hz). 
The circuit simply asserts the BEVNT L line at the line frequency. 

DC voltage monitor circuits respond to both +5 V and +12 V power 
supply outputs. A +2.5 .V reference at the voltage comparator's nonin· 
verting input is established by +5 A and a voltage divider comprised of 
R25 and R3, as shown in Figure 4-44. Voltages are sensed at the anodes 
of diodes 017 and D35. . . 

The sensed voltage to the voltage cornparator's inverting input is nor­
mally 5 V, causing the comparator's output to go low. The low signal 
forward biases DC ON panel indicator driver transistor QlO, producing 
a DC ON indication, and reverse biases the BDCOK H FET bus driver 
Q6. As a result, Q6 cuts off, and its source voltage rises to +5 V, pro­
ducing the i'!Ctive BDCOK H signal. 

When either (or both) power supply output is 0 V, the. voltage at the 
voltage comparator's inverting input is less than the +2.5 V reference. 
Hence, the comparator's output goes high, turning off the DC ON in· 
dicator and allowing Q6 to conduct. Q6 asserts the BDCOK H signal low, 
indicating that a de power-fail condition exists. When normal power is 
restored, as during the power-up sequence, C37 charges via R50, and 
its voltage exceeds the +2.5 V reference; the comparator's output then 
goes high (normal). 

AC voltage monitor circuits include an ac low comparator, 16.5 ms delay, 
and a BPOK H bus driver circuit which is enabled only when BDCOK H 
is in the active (de voltage normal) state. Rectifiers D2 and 03 produce 
positive-going de voltage pulses at twice the ac line frequency. R32, R12, 
and Cl produce nominal +3.9 V (peak) normal line voltage pulses which 
are coupled to the noninverting input of the ac low compartor via R48. 
RB and R9 produce a +2.5 V reference for the comparator's inverting 
input. The comparator's normal output is a series of pulses occurring 
at twice the ac power line frequency. Each positive-going leading edge 
retriggers the 16.5 ms one-shot, keeping it in the set state. The 16.5 
ms one-shot output is diode·ORed with DCOK L via diodes 025 and D23 
and PWR OFF H via D24. Normally, the three signals are low and Qll 
remains cut off. In this condition, C4 charges to +3.125 V via R36 and 
R38. This signal is then applied to the power OK comparator's inverting 
input via R24. Since the non inverting input is referenced to +2.5 V by 

4·64 



VOLTAGE 
SENSE INPUTS 

,-----A--, 

+t2V +5V +5A +5A 

035 

027 

r;A-;T--;,;-F;;;;,: - - °1 
I PANEL I 

+SA 

+ov 

---~J--:0:;:-6-"--- BOCOK H 

+SA 

OC OK L 

R39 010 

015 

R35 r'----
oc LOH I ~~~~TOF // DC ON 

I PANEL 0 

025 L ________ .J 

POWER OFF l 

I 
I~ TO OVERLOAD ANO 

>----~+SHORT-CIRCUIT 

I I L _______ _J 

03 

02 

R32 

Ct R12 

+SA 

r.--~-----------------. I PART OF FRONT PANEL +5A J 

l+ 5 V RUNH RUN''\.1 

I I 

I 
I 
I 
I 
I 
I -::' HALT CHALT H 

I 

L--------------------~ 
R26 

Figure 4-44 Logic Signal Generation 

PROTECTION CKTS 

+SV 

+SA 

SHALT L 

voltage divider R5 and R6, the comparator's output goes low, biasing 
off FET Q5. Q5's source voltage then rises toward +5 V via R46 pro· 
ducing the active BPOK H signal. Power-up/power,down sequence timing 
is shown in Figure 4-45. 

4-65 



A power failure is first detected when the pulsating de voltage at the 
ac low comparatpr's noninverting input is less than +2.5 V (peak). The 
comparator's output then remains low, allowing the 16.5 ms one-shot 
to go out of the retrigger mode. The one-shot resets 16.5 ms after the 
leading edge of the last valid ac voltage alternation; the 16.5 ms delay 
is equivalent to a full line cycle (two-alternation) failure. The high one-

AC INPUT 

BPOK H 

BOCOK H 

DC OUTPUT 
VOLTAGES 

___.,.j 15-24ms r-

r- 70~ (MIN)--1 

Figure 4-45 Power-Up/Power-Down Sequence 

shot output is then coupled via D23 to the base of Qll, forward biasing 
it. Qll conducts and rapidly discharges C4; R36 limits peak discharge 
current. The low voltage thus produced is Jess than the +2.5 V reference 
at the power OK comparator's input, and its output goes high. Q5 then 
conducts and asserts the BPOK H signal low (power fail). The AC LO H 
signal produced by the 16.5 ms one-shot is coupled via D34 to C39 on 
the inverting input of AC GK comparator E5. When C39's voltage rises 
above 2.5 V, the comparator's output goes low, turning off the DC ON 
indicator and negating BDCOK via the DC voltage monitor circuit, and 
turns off the regulator circuits by asserting POWER OFF L via D27. 

When normal power is restored, the 16.5 ms one'shot returns to the 
retrigger (set) mode. AC LO H goes low and enables the DC voltage 
monitor and regulator circuits. The low AC LO H signal also removes 
forward bias from the base of Qll, cutting it off. Its collector voltage 
then rises as C4 charges at a relatively slow rate. R38 controls the 
charging rate of C4 and ensures that ac voltage and de output voltages 
are normal for approximately 100 ms (70 ms minimum) before BPOK 
H goes high. 

The DC ON/OFF switch simulates a power failure when it is placed in 
the OFF position. Cross-coupled inverters provide switch debounce pro­
tection and a low (false) DC ON H signal is produced. This signal is in­
verted to produce a high PWR OFF H signal that is coupled via D26 to 
the "pseudo delay" circuit, causing a power fail sequence to occur, and 
to Qll via R53 and D24, causing BPOK H to go low (power fail indica­
tion). After a 5-10 ms (approximately) "pseudo delay," Gl3's voltage 
rises above the de off voltage comparator's +2.5 V reference (nonin-

4-66 



verting) input. The comparator's output goes low, asserting POWER OFF 
L low and turning off the switching regulators (Paragraph 4.Il.3.4). 
When the DC ON/OFF switch is returned to the ON position, PWR OFF H 
goes low, ~apidly discharging CI3. POWER OFF L then goes high and 
switching regulator operation resumes. Approximately IOO ms later, 
BPOK H goes high and normal processor operation is enabled. DC ON/ 
OFF circuit timing is shown in Figure 4-46. 

DC ON 
ON/OFF 
SWITCH OFF 

BPOK H 

BDCOK H 

DC OUTPUTS 

4ms(min) 

70ms(min)------..j 

1ms(min)-..J r-
\_/ 

Figure 4·46 DC ON/OFF Circuit Timing 

BEVNT L is the bused EVENT line which is normally used for line time 
clock interrupts. Q4 is cut-off and QI is forward-biased during negative 
alternations of the ac line, producing low-active BEVNT L signals. DI 
clips negative alternations and limits Q4's reverse base to emitter volt­
age. The LTC ON/OFF switch must be in the ON position for BEVNT L 
signal generation. When the LTC function is not desired, the LTC switch 
is set to the OFF position; CSPARE2 goes low, QI remains cut-off, and 
BEVNT L remains passive (high). 

The RUN indicator is illuminated whenever the processor is executing 
programs. SRUN L, a non-bused backplane signal, is a series of pulses 
which occur at 3·5 µs intervals whenever the processor is in the Run 
mode. The pulses trigger a 200 ms one·s.hot on each SRUN L pulse 
leading edge, keeping it in the retrigger mode. Its high RUN H output 
is then inverted, producing a low signal that turns on the RUN indicator. 
When the processor is in the Halt mode, SRUN L pulses cease and the 
200 ms one-shot resets after the 200 ms delay. The RUN indicter turns 
off, indicating the Halt mode. 

The HALT /ENABLE switch allows the operator to manually assert the 
BHAL T L signal low,. causing the processor to execute console ODT 
microcode. When in the ENABLE position, BHAL T L is not asserted, and 
the Run mode is enabled. Cross-coupled inverters provide a switch de· 
bounce function. 

4.11.4 H780 Connections 
H780 connections are shown in Figure 4-47. The H9270 backplane con­
nections and interconnecting cables are also shown. Note that cable 
connectors are wired I:l. Both connectors on the H780/H9270 signal 
cable are IO·pin connectors which are wired in exactly the same manner, 

4-67 



as listed in Figure 4-47. Similarly, both ends of the panel signal/power 
cable are wired to 16-pin connectors in the same pin/signal config­
uration. 

H780 POWER SUPPLY 

AC LINE CORD 

.......... 

J4 12-PIN CONNECTOR 
(SIDE 2 OF P.C. BOARD) 

CONSOLE 
SIGNAL/POWER 
CABLE(t11n.} EJ ,. ___ .__,__,_ ______ ___, (70-09612-0M-O) 

DC POWER CABLE (12 In.) 
(70-11584-0-0) 

1 
2 

BPOK H , 
BEVNT L 

/ 
TERMINAL BLOCK 

3 SRUN L 
4 (KEY) 
5 GROUND 
6 CL3 L 
7 CS3 L 

• SPARE 
9 BHALT L 
10 DCOK H 

~ -0 - -..,.._ BDCOK H 

+12V L~~:::LT L 

+SV "'-.... "'==SRUN L 

+SVB BPOK H 

GND 

GND 

1 
2 
3 
4 
5 
6 
7 

• 

~f!!!~ 
+5A 9 +5A 
oc·ON H 10 SPARE 
SRUN L 11 SPARE 
BEVNT L 12 GROUND 
GROUND 13 GROUND 
CL3 14 DC OK LED H 
CS3 15 SPARE 
SPARE 16 B HALT L 

H9270 BACKPLANE REAR VIEW 
(P.C. BOARD SIDE 2). 

Figure 4-47 H780 Connections 

4-68 



4.74 



CHAPTER 1 INTRODUCTION 

CHAPTER 2 OPERA Tl NG SYSTEMS 

CHAPTER 3 LANGUAGE PROCESSORS 

CHAPTER 4 FOREGROUND/BACKGROUND 
OPERATING SYSTEM RT-11 

CHAPTER 5 REAL-TIME MULTIPROGRAMMING 
RSX-llS 

CHAPTER 6 MACRO 

CHAPTER 7 FORTRAN IV 

CHAPTER 8 BASIC 

-



CHAPTER 5 

CONFIGURING LSl-11 MODULES 

5.1 GENERAL 
LSl-11 modules each contain jumpers or switches that ·allow the user 
to configure the module for a specific system application. All LSl-11 and 
PDP-11/03 systems will normally require some configuration of jumpers 
and switches. PDP-11 V03 systems include LSl-11 modules which are 
factory configured for that system application. 

LSl-11 modules that are included in this chapter are listed in Table 5-L 
Note that all modules are factory configured and can be used as is in 
many system applications. Refer to the paragraphs listed for detailed 
information on factory configurations and jumper and switch functions. 
Configure the modules for your system application, as required. 

Table 5-1 LSl-11 Module Configuration Summary 

Model No. 
(Module(s)) 

KDll-F 
(M7264) 

KDll-J 
(M7264-YA, 
G653, H223) 

MSVll-B 
(M7944) 

MMVll-A 
(G653, H223) 

MRVll-AA 
(M7942) 

DLVll 
(M7940) 

DRVll 
(M7941) 

DRVll-B 
(M7950) 

Reference 
Factory Configured Application (Para.) 

Processor and resident 4K semiconductor 5.2 
read/write memory: Processor power-up 5.2 
mode 0 selected; resident memory bank 0 
selected and reply enabled (except during 
refresh); event line (LTC) interrupt enabled; 
processor controlled memory refresh 
enabled. 

Processor and 4K core memory: Processor 5.2 
power-up mode 0 selected; resident memory 5.4 
functions not enabled; processor controlled 
memory refresh disabled; event line (LTC) 
interrupt enabled. 

4K dynamic MOS read/write memory: Bank 5.3 
0 selected; reply to refresh enabled. 

4K core memory: Bank must be selected by 5.4 
setting switches to appropriate positions. 

4K read-only memory: 512 x 4 chips; bank 5.5 
0 selected; all BRPL Y jumpers installed. 

Serial line unit: Addresses and vectors for 5.6 
console device use are configured; 110 baud, 
active current loop (Teletype) 1/0 selected. 

Parallel line unit: device address = 16777X; 
vector address= 300 and 304. 

DMA interface unit: Device and vector 
addresses must be user configured by 

5-1 

5.7 



Table 5-1 LSl·ll Module Configuration Summary (Cont.). 

Model No. 
(Module(s)) 

DRVll-P 
(M7948) 

Reference 
Factory Configured Application (Para.) 

setting switches to appropriate positions. 
Summary information is contained in refer­
ened paragraph. Refer to detailed information 
included with the option for complete user 
instructions. 

LSl-11 bus foundation module: Extensive 5.8 
user configuring required. Summary informa-
tion is contained in referenced paragraph. 
Refer to detailed information included with 
the option for complete user instructions. 

5.2 LSl·ll PROCESSOR MODULE 

5.2.1 General 
Before installing and using the KDll-F or KDll-J processor iri the 
LSl-11 or PDP-11/03 system, the user must select certain processor 
features (jumper-selected), determine where the processor and option 
modules should be installed on the backplane, be aware of trap and in­
terrupt functions, and ensure the conditions for bus initialization. These 
items are discussed in detail in the following paragraphs. 

5.2.2 Processor Module Jumpers 

5.2.2.1 General-The processor module contains 11 wire wrap posts 
that allow the user to configure the module for a specific system appli­
cation. KDll-F and KDll-J processor modules are factory configured 
as shown in Table 5-2. Jumpers can be user-configured as described in 
the following paragraphs. Jumpers are located on the processor module 
as shown in Figure 5-1. 

Table 5·2 KDll·F and KDll·J Factory-Installed Jumpers 

KDll·F (M7264) KDll-J (M7264-YA) 

Jumper Status Function Status Function 

Wl R Resident memory R Resident memory 
bank 1 not bank 1 not 
selected selected 

W2 Resident memory R Resident memory 
bank 0 selected bank 0 not 

selected 

W3 R Event line (LTC) R Event line (LTC) 
interrupt enabled interrupt enabled 

W4 R Processor-con- Processor-controlled 
trolled memory memory refresh 
refresh enabled disabled 

5-2 



Table 5-2 KDll-F and KDll-J Factory-Installed Jumpers (Cont.) 

KDll·F (M7264) KDll·J (M7264-YA) 

Jumper Status Function Status Function 

W5 R Power-up mode R Power-up mode 
O selected 0 selected 

W6 R R 

W7 Factory-configured Factory-configured 
bias voltage (do bias voltage (do 

W8 not change) not change) 

W9 R Enable reply from Disable reply from 
resident memory resident memory 

WlO R Disable reply from R Disable reply from 
resident memory resident memory 
during refresh during refresh 

Wll Enable on-board R Disable on-board 
memory select memory select 

Note: I = Installed; R = Removed. 

5.2.2.2 Memory Refresh-The LSl-11 processor has the capability of 
completely controlling the refreshing of all dynamic MOS memories in 
a system when jumper W4 is removed. Memory refresh is always re­
quired when dynamic MOS memory devices are used in the LSl-11 sys­
tem, such as the KDl 1-F resident memory and the MSVl 1-8. 4K by 
16-bit read/write memory module. The refresh operation can be con­
trolled by a device other than the LSl-11 processor, H available, such 
as the REVll·A, REVll-C, and REVll-H options. If such a device is 
used, or if no dynamic MOS memory devices are present in the system 
(KDll-J), install W4. The refresh sequence is described below. 

The processor's memory refresh sequence is controlled by resident mi­
crocode in the processor which is initiated by an interrupt that occurs 
once every 1.6 ms. It is the highest priority processor interrupt, and 
cannot be disabled by software using PSW bit 7. Once the sequence is 
initiated, the processor will execute 64 BSYNC L/BDIN L bus transac­
tions while asserting BREF L. The BREF L signal overrides memory bank 
address bits 13-15 and allows all memory units to be simultaneously 
enabled. After each bus transaction, BDALl-6 L is incremented by 1 
until all 64 rows have been refreshed by the BSNYC L/BDIN L trans­
actions. This process takes approximately 130µs during which external 
interrupts (BIRQ L and BEVNT L) are ignored. However, OMA requests 
can be granted between each of the 64 refresh transactions. 

5.2.2.3 Line Time Clock-L TC (or external event) interrupts are en­
abled when jumper W3 is removed and the processor is running. The 
jumper can be inserted to disable this feature. The LTC interrupt is 
initiated by an external device when it asserts the BEVNT L signal. This 
is the highest priority external interrupt request; processor interrupts 

5-3 



M7264 ET (AND LATER) CH REV E 

Figure 5-1 KDll-F and Locations KDll-J Jumper 

5-4 

11-4290 



have higher priorities. If external interrupts are enabled (PS bit 7 = 0), 
the processor PC (R7) and PS word are pushed onto the processor's 
stack. The LTC (or external event device) service routine is entered by 
vector address 100; the usual interrupt vector address input operation 
by the processor is not required since vector 100 is generated by the 
processor. 

The first instruction of the service routine will typically be fetched 
within 16 µ,S from the time SEVNT L is asserted; however, if optional 
EIS/FIS instructions are being executed, this time could extend to 44.l 
µ.s maximum. This time could also be extended by processor trap exe­
cution (memory refresh, T-bit, power fail, etc.), or by asserting the 
SHALT L signal. 

5.2.2.4 Power-Up Mode Selection-Since the LSl-11 can .be used in 
a variety of system applications that .have either (or both) volatile 
(semiconductor read/write) or nonvolatile (PROM or core) memory, one 
of four power-up mode features are available for user selection. These 
are selected (or changed) by wire-wrap jumpers W5 and W6 on the 
KDll-F or KDll-J processor (M7264) module. Note that the jumpers 
affect only the power-up mode (after SDCOK H and SPOK H have been 
asserted); they do not affect the power-down sequence. 

The state of the SHALT L signal is significant during the power-up 
sequence. When this signal is asserted, it causes the processor's ODT 
console microcode (a subset of an Octal Debugging Technique program) 
to become invoked after the power-up sequence. The console device 
must be properly installed for correct use of the SHALT L signal. 

The power-up modes are listed in Table 5-3. Detailed descriptions of 
each mode are provided in the paragraphs which follow. 

Mode 

0 
1 
2 
3 

Table 5-3 Power-Up Modes 

Jumpers 

W6 

R 
R 
I 
I 

W5 

R 
I 
R 
I 

Mode Selected 

PC at 24 and PS at 26, or Halt mode 
ODT Microcode 
PC at 173000 for user bootstrap 
Special processor microcode 
(not implemented) 

Note: R = Jumper Removed; I =Jumper Installed. 

Power-Up Mode 0 
This option places the processor in a microcode sequence that fetches 
the contents of memory locations 24 and 26 and loads their contents 
into R7 and the PS, respectively. A microcode service translation at this 
point interrogates the state of the SHALT L signal; depending on the 
state of this signal, the processor either enters ODT microcode (SHALT 
L asserted low) or begins program execution with the current contents 
of R7 as the starting address (SHALT L not asserted). 

5-5 



Note that the T-bit (PS bit 4) is loaded with the contents of PS bit 4 
in location 26. This mode should be used only with nonvolatile memory 
locations 24 and 26 or with SHALT L asserted. This power-up sequence 
is shown in Figure 5-2. 

POWER UP 

GET 
PC FROM 24 
PS FROM26 

USE ANOTHER BEGIN PROGRAM 
POWER UP EXECUTION 
MODE 

EXECUTE >------ CONSOLE 
OOT µCODE 

Figure 5-2 Model 0 Power-Up Sequence 

Power-Up Mode 1 
This mode immediately places the processor in the console microcode 
regardless of the state of the BHAL T L signal. This mode assumes a 
console interface device at bus address 177560. 

Power-Up Mode 2 
This mode places the processor in a microcode sequence that loads a 
starting address of 173000 into R7 and begins program execution at 
this location if the SHALT L signal is not asserted. 

Note that before 173000 is loaded into R7, PS bit 4 (T-bit) is cleared 
and bit 7 (interrupt disable) is set. The user's program must set these 
bits, as desired, and set up a valid stack pointer (R6). This option 
should be used with nonvolatile memory (ROM, PROM, or core) at ad­
dress 173000. A time-out trap through location 4 will occur if no device 
exists at location 173000. 

If SHALT L is asserted, the processor will not execute the instruction 
at location 173000 and will immediately execute the console microcode. 
This power-up mode sequence is shown in Figure 5-3. 

POWER UP 
PC-173000 
PS (BIT 41- 0 
PS !BIT 7) <-1 

USE ANOTHER EXECUTE 
PDWER UP OPTION CONSOLE 

ODTµCODE 

EXECUTE 
FIRST 
INSTRUCTION 
AT 
173000 

Figure 5-3 Mode 2 Power-Up Sequence 

Power-Up Mode 3 

CONTINUE 
PROGRAM 
EXECUTION 

This microcode sequence allows access to future microcode expansion 
in the fourth microm page (microlocations 3000 to 3777). After SDCOK 
H and SPOK H are asserted and the internal flags are cleared, a micro 

5-6 



jump is made to microlocation 3002. If this option is selected and no 
microm responds to the· fourth page microaddress, a microtrap will occur 
through microlocation O which will, in turn, cause a reserved user in· 
struction trap through location 10. 

Note that the state of BHAL T L is not checked before control is. trans­
ferred to the fourth microm page. 

5.2.2.5 Resident Memory 4K Address Selection-Jumpers Wl and W2 
are used for selecting the 4K (bank) address for the KDll·F resident 
memory. Only one jumper must be installed, as follows. 

WI installed= Bank 1 (addresses 20000-37776) 
W2 installed= Bank 0 (address 0-17776) 

NOTE 
If no jumper is installed, the 4K resident mem· 
ory will not respond to any address. 

5.2.2.6 Disable Resident Memory Reply-Jumper W9, when removed, 
enables the KDll·F processor module's resident memory to assert the 
BRPL Y L signal when the rl:l_sident memory is accessed. When W9 is 
installed, the resident memory will not assert BRPLY L. This jumper is 
normally installed only on the KDll·J processor module. 

5.2.2.7 Enable Reply During Refresh-Jumper WlO, when installed, 
enables the processor module's resident memory to assert BRPLY L 
during memory refresh bus cycles; W9 must not be installed. WlO is 
normally installed when no optional dynamic MOS memory· modules are 
present in the system, other than the KDl l·F processor module's resi· 
dent memory. When optional dynamic MOS memory modules are in· 
stalled in the system, only the slowest memory module should assert 
BRPLY L to ensure proper refresh of that module. For example, when 
the processor is controlling memory refresh (W4 is removed) ·and op­
tional MSVll·B memory modules are installed in the system, the slowest 
memory module will typically be the module located at the greatest 
electrical distance from the processor module. 

5.2.2.8 Enable On-Board Memory Select-Jumper Wll is normally 
installed on the KDll-F processor module to enable normal bank selec­
tion, as configured by Wl and W2. ·Wll is removed on the KDll·J 
processor module. In special applications, the user can remove Wll 
from the KDll·F module and supply a low-active SMENB L signal to 
processor module backplane pin CFl from an external source. The 
processor module's resident memor-Y will be enabled whenever this 
signal is asserted low; bank address decoding must be provided by the 
external source. 

5.2.3 Installation 
Prior to installation, the processor module jumpers must be configured 
as directed in Paragraph 5.2.2. PDP·ll/03 systems are ~hipped from 
the factory with the KDll·F or KDll·J processor installed. Refer to 
Chapter 6 for LSl·ll processor module installation details. 

5-7 



5.2.4 Using The LSl-11 Microcomputer 
5.2.4.1 General-Most of the operational characteristics are discussed 
in Sections II and Ill and related software publications. This discussion 
indudes the use of the LTC (external event interrupt) feature, bus 
initialization, and trap and interrupt priority. 

5.2.4.2 Interrupts and Trap Priority-Interrupts and traps are quite 
similar in their operation. Interrupts are service requests from devices 
external to the processor; traps are interrupts that are generated within 
the processor. Their main operational difference, however, is that ex­
ternal interrupts can only be recognized when PS priority (bit 7) is 
zero; traps can be executed at any time, regardless of the PS priority 
bit status. 

The highest priority trap is memory refresh, when enabled (Paragraph 
5.2.2.2). Memory refresh does not require an interrupt vector since it 
is entirely controlled by processor microcode; memory refresh opera· 
tions are completely transparent to the user programs and PS bits are 
not altered in any way. The remaining traps, including EMT, BPT, IOT, 
and TRAP instructions, and hardware-generated Trace Trap, Bus Error, 

·Power Fail, etc., are described in Section Ill. The LTC (external event) 
interrupt, has the highest priority of all external interrupts, when 
enabled (Paragraph 5.2.2.3). It is acknowledged (serviced) only when 
PS priority bit 7 = 0. This interrupt always uses vector address 100. It 
loads a new PC from location 100 and a new PS from location 102. 
All other extrenal interrupts are requested by a device asserting the 
BIRQ signal. If PS bit 7 = 0, the request is acknov.r_ledged and the pro­
cessor inputs a user-assigned vector address fo rthe device's service 
routine PC (starting address) and PS. For example, when the requesting 
device is the console device, vectors 60 (console input) or 64 (console 
output) are used. These vectors are reserved for the console device by 
most DIGITAL software systems. 

5.2.4.3 Halt Mode-The LSl-11 microcomputer can operate in either a 
Run or Halt mode. When in the Halt mode, normal program execution 
is not performed and the processor executes ODT console microcode. 
However, the processor will execute memory refresh in a normal man­
ner and arbitrate OMA requests; all external interrupts are ignored. 

The Halt mode can be entered in one of six ways: 

1. When the BHAL T L signal is asserted. 

2. When a HALT instruction has been executed. 

3. 'By power-up sequence. 

4. When a double bus error has occurred [a bus error trap with SP (R6) 
pointing to non-existent memory]. 

5. No Reply received from a device (bus time-out error) when the pro­
cessor attempts to input a vector during an interrupt transaction. 

6. A bus error (time-out) occurs when the processor refreshes one of 64 
memory rows. 

The LSl-11 microcomputer does not use conventional control panel 
lights and switches. Instead, the ODT console microcode routine pro-

5-8 



vides all control panel features on a peripheral device that can be in­
terfaced at bus address 177560 and interpret ASCII characters. In a 
typical configuration there is no bus device that responds to address 
177570 (the PDP-11 SWR address). The peripheral device used with the 
ODT console microcode is called the console device, which can be any 
device capable of interpreting ASCII characters. The prompt character 
sequence and detailed use of console ODT commands are contained 
in Section II. 

5.2.5 Initialization and Power Fail 
Initialization occurs during a power-up or power-fail sequence, or when a 
RESET instruction is executed. The processor responds to these con­
ditions by asserting the 81NIT L bus signal. 8INIT L can be used to 
clear or initialize all device registers on the bus. In addition, the DRVll 
parallel line unit applies the buffered initialize signal to pins on both 
of its device interface connectors for initializing the user's device. 

During the power-up sequence, the processor asserts 81NIT L in re­
sponse to a passive (low) power supply-generated 8DCOK H signal. 
When 8DCOK H goes active (high), the processor terminates BINIT L 
and the jumper-selected power-up sequence is executed. Similarly, if 
power fails, the power supply-generated 8POK H signal goes passive 
(low) and causes the processor to push the PC and PS onto the stack 
and enter a power-fail routine via vector location 24. The processor will 
execute a user power-fail routine until either 8DCOK H goes passive 
(low), indicating that de operating power may not sustain processor 
operation, or 8POK H returns to the active state. 81NIT L will go active 
if 8DCOK H goes passive. 

Note that if a HALT instruction is executed after entering the power-fail 
routine, the ODT microcode will not be executed until 8POK H is re­
asserted. If 8POK H goes passive while the processor is in the Halt 
mode, the power-fail routine will not be executed. 

5.3 MSVll·B READ/WRITE MEMORY 

5.3.l General 
The MSV11-8(4K) read/write memory (Figure 5-4) provides temporary 
storage of user programs and data in an inexpensive, compact, low-· 
power memory subsystem. The user can select the 4K address space 
(bank) in which the module is addressed by installing or removing 
jumpers. 

The MSVll-8 module is factory configured to respond to addresses in 
bank 0 addresses 0-17776). The module will also reply to refresh signals. 

5.3.2 Address Jumpers 
MSVll-8 address jumpers are located as shown in Figure 5-5. The mod­
ule is supplied with all address jumpers installed. Figure 5-6 illustrates 
a 16-bit address and how jumpers are assigned for the MSVll-8 module. 

5.3.3 Reply To Refresh Jumpers 
Only one dynamic memory module in a system is required to reply to 
the refresh bus transactions initiated by the processor. The module 

5-9 



selected to reply should be the module with the slowest access time. 
Jumper W4 enables or inhibits the MSVll-8 reply as follows: 

W4 installed: MSVll-8 will not assert 8RPLY in response to refresh 
bus signals. 
W4 removed: MSVll-8 will reply to refresh bus 8SYNC/801N trans­
actions by asserting 8RPL Y L. 

5.3.4 Refresh Requirements 
The MSVll-8 module contains dynamic MOS memory integrated circuits. 
Hence, memory refresh cycles are required. Refresh cycles can be either 
provided automatically by the LSl-11 processor module or by the OMA 
refresh circuits contained on the REVll-A, REVll-C, or REVll-H options. 
One complete refresh operation consists of 64 refresh bus cycles. When 
refresh is controlled by the processor, 64 successive bus cycles are 
executed; a new refresh operation is initiated by the processor at 1.6 ms 
(approximately) intervals. The REVll options execute single refresh 
bus cycles at 27 µs (approximately) intervals via OMA bus cycles. A 
complete refresh operation must be completed every 2- ms maximum. 

~ 
"i ... 
"' -' 

BDALO-ISL 

BSYNC L 
BRPLY L 
BOIN L 
BWTBT L 
BDOUT L 
BDCOK H 
BREF L 

BUS 
DRIVERS 

AND 
RECEIVERS 

READ DATA 

ADORE $/WRITE DATA 

4096 BY 16-BIT 
DYNAMIC MOS 
MEMORY ARRAY 

AODR. 

ADDRESSING 
ANO CONTROL 

READ/ 
WRITE 

CP-1748 

Figure 5-4 MSVll-8 4K by 16-'8it Read/Write Memory 

Bank Address Octal Address 
Wl ,. W2 W3 No. Range Range 

I I I 0 0-4K 000000-017776 
I I R 1 4-SK 020000-037776 
I R I 2 8-12K 040000-057776 
I R R 3 12-16K 060000-077776 
R I I 4 16-20K 100000-117776 
'R I R 5 20-24K 120000-137776 
R R I 6 24-28K 140000-157776 
'R R R 7 28-32K 160000-177776 

NOTE: I = Installed, R =Removed 

5-10 



0 0 0 

1111 

M7944 ETCH REV 8 

Figure 5-5 MSVll-8 Jumper Locations 

5.4 MMVll-A CORE MEMORY 

5.4.1 General 

0 

The MMVll-A core memory option comprises two modules (G653 and 
H223) that are mated by connector pins in a single 8.5 x 10 by 0.9 
assembly. It requires two device locations (electrical positions) on the 
backplane when installed in H9270 slots A4-D4; otherwise, because of 
its total thickness (0.9 in.), the MMVll-A requires four physical device 
locations when installed in any other backplane slot. (Refer to Paragraph 
6.3.3 for installation considerations.) Memory capacity is 4096 16-bit 

5-11 



words. Switches select the 4K bank address to which the MMVll·A will 
respond. 

BOAL 
BITS___;1~5~~~-'~'~-"12'--~~~~~~~~~~~~~~~~~~--.'~~~~~0~ 

WI W2 W3 

'------.------' 
4K ADDRESS 

SPACE JUMPERS 

I 

Bank Address 
Wl W2 W3 No. Range 

I I I 0 0-4K 
I I R 1 4-BK 
I R I 2 B-12K 

I R R 3 t2-16K 
R I I 4 16-20K 
R I R 5 20-24K 
R R I 6 24-28K 
R R R 7 28-32K 

NOTE: I"' Installed, A"' Removed 

4096 LOCATION ADDRESS 

Octal Address 
Range 

000000-017776 
020000-037776 
040000-057776 
060000-077776 
100000-117776 
120000-137776 
140000-157776 
160000-177776 

Figure 5-6 MSVll-8 Address Format/ Jumpers 

BYTE 
POINTER 

The MMVll-A is fully LSl-.11 bus-compatible and can be accessed by the 
'LSl-11 microcomputer or any OMA device that becomes bus master. 
It interfaces with the bus as shown in Figure 5-7. 

"' ::> 
m 

I 
l;l 
..J 

~ 

BOAL 0-15L 

BOAL 13 -15 L 

7 BSYNC L 
BRPLY L 
BOIN L 
BOOUT L 
BWTBT L 
BOCOK H 
BINIT L 
BREF L 

BUS 
DRIVERS 

AND 
RECEIVERS 

READ DATA 

CORE STACK 
AND 

READ/ WRITE CIRCUITS 
ADDRESS/WRITE 

DATA 

TIMIN~ 
TIMING 

AND 
CONTROL LOGJC 

Figure 5-7 MMVll-A 4K by 16-Bit Core Memory 

5.4.2 Switch-Selected Addressing 

1 READ/WRI 
CONTROL 

TE 

The only preparation required for the MMVll-A before it is installed 
in the backplane is to select its bank address. This is accomplished 

5-12 



by opening or closing switches in appropriate address bit locations to 
produce the desired bank address decoding. 

MMVll-A bank address switches are used as shown in Figure 5-9. The 
figure illustrates a 16-bit address and how switches are assigned to 
each address bit. Open or close switches to produce the desired bank 
address as directed in the figure. Switches are located on the G653 
module (component side) as shown in Figure 5-8. 

SW1 , 
SW2 
SW3 
SW4 (NOT USED) 

CP -1754 

Figure 5-8 Bank Address Switch Locations 

5.4.3 Backplane Jumpers 
The BDMGI L and BIAKI L bus lines must be jumpered to BDMGO L and 
BIAKO L lines, respectively, under the H223 module when installed be­
tween the processor and 1/0 device interface modules in order to main-, 
tain daisy-chain signal continuity. 

Pins which must be connected are: 

From 
COIN2 
C01S2 

To 

C04M2 
C04R2 

Signal 
BIAKl/OL 
BDMGl/OL 

Bus pins can be identified as.shown in Figures 3-2 and 3-3. 

Memory refresh is not required for this memory option. If memory re­
fresh is used for other memory options, such as the KDll-F's resident 
memory and ·the MSVll-B semiconductor memory, the MMVll-A will 
not respond to the refresh operation. 

5-13 



i9~~ ...:..-+ 15 14 13 

ADDRESS 
WORD 

SW3 SW2 SWI BANK 

4096 LOCATION 
ADDRESS 

ADDRESSES 

0 - 17776 

NOTES: 

BYTE 
POINTER 

20000 - 37776 
40000 - 57776 
60000 - 77776 

100000 _. 117776 
120000 - 137776 
140000 - 157776 
160000 - 177776 

1. C=SW ON; O=SW OFF 

2. Bonk 7 is normo!ly reserved 
for perlpt>ercls. 

Figure 5-9 MMVll-A Addressing 

5.5 MRVll-AA READ-ONLY MEMORY 

5.5.1 General 
The MRVll-AA (Figure 5-10) is a read-only memory module that allows 
the use of user-supplied, preprogrammed, programmable read-only mem­
ory (PROM) and masked read-only memory (ROM) chips in a compact, 
nonvolatile memory subsystem. Depending on chip type, the module's 
capacity is either 4096 16-bit words or 2048 16-bit words, using 512 by 
4-bit or 256 by 4-bit chips, respectively. Full address decoding is pro­
vided on the module. The user can select the 4K address bank in whic.h 
the module resides by Jnstalling (or removing) jumpers on the module. 
Similarly, when using 256 by 4-bit chips, the user can jumper-select the 
upper or lower 2K segment within the selected 4K address bank. Note 
that 512 by 4-bit and 256 by 4-bit chips cannot be mixed on a MRVll-AA 
module; the user configures jumpers on the module for the chip. type 
being used. 

A partial listing of manufacturer's chips that will operate in the 
MRVll-AA is given in Table 5-4. 

BOAL - 15L 

BSYNC L 
BOIN L 
BRPLY L 

BUS • 
DRIVERS READ DATA 

AND 
RECEIVERS 

12-15 

8 -11 

4-7 

0-3 

CHIP ROWS 

01234561' 

MEMORY ADDRESS AND 
INTERFACE CONTROL LOGIC 

Figure 5-10 MRVll·AA Read-Only Memory 

5-14 

MEMORY 
PROM/ROM 
CHIP SOCKETS 



Manufacturer 
or Source 

D.igital Equipment 
Corp. 

lntersil 
5ignetics 
MMI 

Table 5-4 MRVll-AA Chips 

512 by 4-Bit 
Chips 

MRVll-AC 

IM5624 
825131 
6306 

256 by 4-Bit 
Chips 

IM5623 
825129 
6301 

Chips used must be tristate output devices that conform to the device 
pinning, data, and addressing described in the remainder of this chapter. 

The user can install chips in increments of four chips each. When using 
512 by 4-bit chips, memory expansion is in 512-word increments. When 
using 256 by 4-bit chips, memory expansion is in 256-word increments. 
Jumpers on the MRVll-AA can be cut by the user to prevent an incorrect 
BRPLY L signal from being generated when unpopulated locations are 
addressed on the module. 

The information contained in the remainder of this chapter will enable 
the user to prepare the MRVll-AA for use (jumper-selected addressing 
and chip selection) and includes information required for correct PROM 
and ROM programming. 

5.5.2 Chip Type Jumpers 
The module is supplied with jumpers W8, W9, and WIO installed for 
use with 512 by 4-bit chips. When using 256 by 4-bit chips, W8, W9, 
and WIO must be cut or removed and. jumpers Wll and W12 installed; 
in addition, either W13 (lower 2K) or W14 (upper 2K) must be installed 
to properly address the lower 2K or upper 2K address segment within 
the 4K memory bank. Jumpers are located as shown in Figure 5-11. 

5.5.3 Address and Reply Jumpers 
The user must consider both 4K bank address selection and BRPLY L 
signal generation when configuring a module for use. Chips (either 
PROM or ROM, 512 by 4 or 256 by 4) are arranged in eight physical 
rows (CEO-CE7) of four chips each. Entire rows can be unpopulated, al­
lowing those addressed locations to be used by read/write memory con­
tained on another module. When this is done, the BRPL Y L jumpers 
(WO-W7) associated with the unused rows should be cut or removed to 
prevent the MRVll-AA from returning a BRPLY L signal when those 
rows are addressed. A listing of octal addresses (within a 4K bank), 
physical rows, and BRPLY L jumpers is provided in Table 5-5; use data 
listed for the chip type being used. 

The 4K bank in which the MRVll-AA resides is programmed by con­
necting bank address jumpers W15-W17, as appropriate. The module is 
supplied with all bank address jumpers installed (bank 0). Jumpers 
installed represent logical Os; .jumpers not installed represent logical ls. 

Figure 5-12 illustrates addressing words used with the MRVll-AA. Refer 
to the addressing format for the type of PROM or ROM chips being used . 

. 5-15 



0 0 0 0 

12 -15 B-11 4-7 3-0 

E I E E I e CE7 

E I E E I E CE6 

e I E E I E CE5 

E I e e I E CE4 

e I E I E I E CE3 

E I E I E I E I CE2 

e I e I e I e I CEI 

E I E I E I E I CEO 

11111111 
1111111 

O- NI"') 'It' inlO l'-l ll~H HU~ 

Figure 5-11 MRVll-AA Jumper Locations 

5-16 



15 

512X4 I 
~~?p";/ROM L__J__..L__J _ _J__..J___l _ __L__.L_._J_ _ __l__L---L-...L-'---L-.-J 

I 

256X4 
PROM/ ROM 

L J 
~ 

4K ADDRESS 
SPACE JUMPERS 

15 

4096- LOCATION ADDRESS 
(W8-W\O INSTALLED; W11-Wl4 REMOVED) 

BYTE 
POINTER 

CHIPS L-...,J--:-...L_J"r~=================::::7-r 
I 
i ~ i 
'------------' 

4K ADDRESS 
SPACE JUMPERS 

2048- LOCATION ADDRESS 
(W11 AND W12'1NSTALLEO; WB-W10 REMOVED) 

HIGH/ LOW 2K SELECT 
W13 INSTALLED: 
LOW 2K (0-77771 
WJ4 INSTALLED: 
HIGH 2K ( 1000-17777) 

Figure 5-12 MRVll-AA Address Word Formats 

5.5.4 PROM Chips 

BYTE 
POINTER 

The actual procedure for loading data into PROM chips or writing speci­
fications for masked ROM chips will vary, depending on the chip manu­
facturer. Those procedures are beyond the scope of this document. (See 
chip manufacturer's data sheets.) However, the user must be aware of 
the chip pins versus LSl-11 data bit relationship, and the chip pins 
versus memory address bits. Address and data pins are described below. 

As previously discussed, chips are arranged in rows of four chips each. 
Each chip contains locations of four bits each. Hence, four chips are 
used ·to provide the 16-bit data word formats for each row. Rows are 
designated by their respective Chip Enable (CEO·CE7) signals. Depend· 
ing upon the chip type used, a row of four chips contains 512 or 256 
16-bit read-only memory locations. The actual chip within a row is des­
ignated by one additional digit (0, l, 2, or 3). Hence, the data pins are 
assigned to' LSl-11 bus bits as listed in Table 5-6. 

Table 5-6 Data Pin Assignments 

Chip Pin ChipO Chip 1 Chip2 Chip3 

9 BDAL3 BDAL7 BDALll BDAL15 
10 BDAL2 BDAL6 BDALIO BDAL14 
11 BDALl BOALS BDAL9 BDAL13 
12 BDALO BDAL4 BOALS BDAL12 

Addressing of chips is shown in Figure 5-13. All chips used on the 
MRVll·AA must conform to this information. Observe that the only dif· 
ference between 512 by 4-bit and 256 by 4-bit chip pins is pin 14. The 

5-17 



Table 5-5 PROM/ROM Chip Addressing Data 

BankAddr. 
512 by 4 Bit Chips 256 by 4 Bit Chips 

Jumpers* 
Word/Byte Physical BRPLY L 

Word/Byte Address 
Physical BRPLY L 

W15 W16 W17 Address Row Jumper W13 Installed W14 Installed Row Jumper 

Cf I I I 0-1777 CEO WO 0-777 10000-10777 CEO WO 
..... I I R 2000-3777 CEl Wl 1000-1777 11000-11777 CE2 W2 
00 I R I 4000-5777 CE2 W2 2000-2777 12000-12777 CE4· W4 

I R R 6000-7777 CE3 W3 3000-3777 13000-13777 CE6 W6 
R I I 10000-11777 CE4 W4 4000-4777 14000-14777 CEl Wl 
R I R 12000-13777 CE5 W5 5000-5777 15000-15777 CE3 W3 
R R I 14000-15777 CE6 W6 6000-6777 16000-16777 CE5 W5 
R R R 16000-17777 CE7 W7 7000-7777 17000-17777 CE7 · W7 

* R =Jumper/removed: I = Jumper installed 



LSI-11 CHIP PIN SIGNIFICANCE 

Vee 

A1 --DAL8 L 

DAL7 L 

DALG L 

DAL5 L 

DAL4 L 

DALI L 

DAL2 L 

DAL3 L 

AaorCE _____ 512 x 4-BIT PART 256 x4-BIT PART 
DAL9 L LOWER/UPPER 

CE -- CHIP ENABLE 2K SEGMENT 

01 

} 

{ROW) {WITHIN BANK) 
CHIP ENABLE 

0 2 -DATA PINS 
03 

--,c__ ___ ,..- 04 

TOP VIEW 

NOTE: 
Designations immediately acfjocent to pins ore typical 
designations used by chip manufacturers-not LSI-11 
designations. LSI-11 designations for correct 
addressing are located away from the chip. Observe that 
these signals ore low - active1 they are double-inverted 
bus signals (low = looicol "t" ). 

Figure 5-13 PROM/ROM Chip Pin Addressing 
IC- 0169 

512 by 4-bit part uses this pin for address bit DAL9; the 256 by 4-bit 
part uses this pin for a chip enable when both bank address and 2K 
segment address are true. Also note that bus address bits do not follow 
in sequence with chip manufacturer's address designations. The pinning 
arrangement shown allows for the use of commonly available PROM and 
ROM chips and optimum (compact) MRVll-AA module layout. 

5.5.5 Programming PROM Chips 
Complete information for programming PROM chips is contained in 
Chapter 7. Do not attempt to program PROMs until you are thoroughly 
familiar with the information contained in that chapter. 

5.5.6 1/0 Timing and Bus Restrictions 
Addressed memory read data is available within 120 ns after the BSYNC 
L signal is received by the MRVll-AA. Logic on the ·module responds to 
DATI bus cycles only. DATO or DATOB bus cycles will result in a bus 
time-out error. Logic functions on the module are not affected by the 
bus initialize (BIN IT L) signal. 

5.6 DLVll SERIAL LINE UNIT 

5.6.1 General 
The DLVll Serial Line Unit (SLU) interfaces serial 1/0 devices to the 
LSl-11 bus, as shown in Figure 5-14. 

5.6.2 Jumper-Selected Addressing, Vectors, and Module Operations 

5.6.2.1 General-As shown in Figure 5-15, the DLVll SLU module 
is equipped with thirty jumpers that can be configured to satisfy the 
operating requirements. A DLVll module is configured at the factory to 
serve as a console SLU. This configuration is summarized in Table 5-7. 

5-19 



5.6.2.2 Addressing-Jumpers involved with addressing include A3 
through Al2. Only address bits 03 through 12 are programmed by the 
jumpers for correct DLVll addressing, producing the 16-bit address 
word shown in Figure 5-16. The appropriate jumpers are removed to 
produce logical 1 bits; jumpers installed will produce logical 0 bits. 

UNIVERSAL 
-~B=D=ALO~·~l5=L--..i A:~~~~Rx°r:~~~ SERIAL DATA JI 

(RBUF ,XBUF) 
INTERFACE ' 

~------..i 
BDALO- ISL ADDRESSING, 

DATA 
INTERFACE 

CIRCUITS 

(20mAOR 
EIA TO TTL) 

[]-

OPTIONAL 

CABLE 
TO/FROM 
DEVICE 
BC05M (20mA) 
OR 

I 8857 L INTERRUPT, 

3 =~y;BcT LL CON~~glr~oOGIC 
. BCOSC (EIA) 

BOIN L (RCSR,XCSR) 
BDOUT L 
BRPLY L 
BINIT L 
BIRQ L 
BIAKO L 
BIAKI L 

Figure 5-14 DLVll Serial Line Unit 

Table 5·7 DLVll SLU Factory Jumper Configuration 

Jumper Jumper 
Designation State Function Implemented 

A3 I This arrangement of jumpers A3 through A12 
'A4 R implements the octal device address 17756X, 

A5 R which is the assigned address for the console 
A6 R device SLU. The least significant digit is hard-
A7 I wired on the module to address the four SLU 
AB R device registers as follows: 
A9 R 
All R X = 0, RCSR address 
AlO R X = 2, Receive data register address 
A12 R X = 4, XCSR address 

X = 6, Transmit data register address 

V3 I This jumper arrangement implements the in-
V4 R terrupt vector addresses 60 for received data 
V5 'R and 64 for transmitted data. 
V6 I 
V7 I 

NP R No parity 
258 R Two stop bits 
NB2 R Eight data bits 
NBl R 

PEV R Even parity if NP installed 
FEH I Halt on framing error 
EIA R 12 V EIA operation disabled 

5-20 



Table 5-7 DLVll SLU Factory Jumper Configuration (Cont.) 

Jam per 
Designation 

FRO 
FRI 
FR2 
FR3 

CLI 
CL2 
CL3 
CL4 

Jumper 
State Function Implemented 

R 
R 110 Baud rate selected 
R 
R 

20 mA current loop active receiver and trans· 
mitter selected 

Note: R = removed, I = installed 

TP1 _ _j__ 

,·r·. 

TP2 c!, . 
INSERT .005,u.F CAPACITOR WHEN w 
THE SERIAL LINE DEVICE IS A 
TELETYPEWRITER (LT33 OR LT35) 

>-NCll 

nm nm 
1111111111 
l"l~IO<O OZIO'IO;:N 
c:(<(<[<:( <r<::C:::;:o::t~ 

1111 

~ 
w 

Figure 5-15 DLVll Jumper Locations 

5-21 



BOAL 

BITS 1 ',' I I I I I 

'------------' 
BBS7 L 
•HU 

0 " . " 
m . 

'---~~~~~~--~~~~~~--' 

ADDRESS JUMPERS: 
INSTALLEO•O 
REMOVED • 1 RANGE: 160000& -177776 a 

Figure 5-16 DLVll Addresses 

BOAL 
BITS " 

I 0 I 0 0 I 0 0 

I 
0 

I 
0 

I 
0 I 

~ ~ b ~ J L 0. RECEIVER 
1 •TRANSMITTER 

VECTOR JUMPERS: 
INSTALLED•O 
REMOVED • 1 RANGE •0- 374 6 

Figure 5-17 DLVll Interrupt Vectors 

5.6.2.3 "vectors-Jumpers involved with vector addressing include V3 
through V7. Only vector bits 03 through 07 are programmed by the 
jumpers for correct DLVll vector addressing, producing the 16-bit ad­
dress shown in Figure 5-17. The appropriate jumpers are removed to 
produce logical 1 bits; jumpers installed will produce .logical 0 bits. 

5.6.2.4 UAR/T Operation-UAR/T operation- is programmed via jump­
ers NP, 2SB, NB!, NB2, and PEV as shown below. 

Number of Data Bits 

5 
6 
7 
8 

NBl 

Installed 
Removed 
Installed 
Removed 

Number of Stop Bits Transmitted 
2SB installed == One stop bit 
2SB removed == Two stop bits 

Parity Transmitted 
NP removed == No parity bit 
NP and PEV installed == Odd parity 

NB2 

Installed 
Installed 
Removed 
Removed 

NP installed and PEV removed == Even parity 

5.6.2.5 Baud Rate Selection-Baud rate is programmed via jumpers 
FRO through FR3 as shown in Table 5-8. 

5-22 



Table 5-8 Baud Rate Selection 

Baud Rate FR3 FR2 FRl FRO 

50 I I R I 
75 I I R R 

110 R R R R 
134.5 I R I I 
150 R R R I 
200 I R I R 
300 R R I R 
600 I R R I 

1200 R I R R 
1800 R I R I 
2400 I R R R 
2400 R R I I 
4800 R I I R 
9600 R I I I 

External x 
(via pin BHl) 

NOTE: 
I = installed X = don't care 
R =removed 

5.6.2.6 EIA lnterface-EIA drivers are enabled when jumper EIA is in­
stalled. This jumper applies -12 V to the EIA driver chip. It should be 
removed during 20 mA current loop operation. 

5.6.2.7 20 mA Current Loop Interface-Jumpers CU through CL4 are 
associated with 20 mA current loop interface operation. Remove EIA and 
remove or install jumpers as desired for the functions listed below: 

Active Current Loop (Jumper configuration is shown in Figures 5-18 and 
5-19.) 

Transmit= CL3 and CL4 installed 
Receive = CU and CL2 installed 

Passive Current Loop (Jumpers configured as shown in Figures 5-20 
and 5-21.) 

Transmit= CL3 and CL4 removed 
Receive = CU and CL2 removed 

The DLVll is supplied with jumpers CU through CL4 wired for the ac­
tive transmit, active receive mode (Figure 5-18). When in this mode, 
serial current limiting to 23 mA is provided by resistors (one each for 
transmit and receive functions) connected to the + 12 V source. Note 
that when module power is removed, the 20 mA transmit optical coupler 
closes the serial loop (active or passive mode). When the DLVll is used 
in the passive 20 mA mode (Figure 5·20), the serial device must produce 
the 20 mA current. Current limiting must be provided for transmit and 
receive currents in-the serial device. 

5·23 



DLVf1 SERIAL LINE UNIT CIRCUITS BC05M CABLE ASSEMBLY SERIAL 20mA DEVICE 
,------A-----, 

CL2 

,..."-''--'-'-'-----~J'<l S f(-'-Pr-12 ----f-;-~;-----'-P-'-<I( 3 h-SERIAL IN-

:• I I 
I • I I 

I I I I 
ACTIVE RECEIVE 
CURRENT LOOP 
MODE ENABLE 

20mA/TTL RCVD DATA ! . ~ 
SI 0 TTL SERIAL DATA IN: ( : ~ 

I I 
I I 
I I 

20mA DATA OUT I KK I 
I I 

2 ~SERIAL OUT-
j 

SO H 

CL3 I I 
/ I I 

ACTIVE TRANSMIT DIODE I I 
CURRENT LOOP'------- I I 
MODE ENABLE ------..... 

+12V~~AA?--L--C\--l------'--< 5 ~SERIAL OUT·+ 
I ' ,_ 4 / I_ . READER 

- 12V ---J<EE ~ENABLE -

READER RUN E--'---+--+--'-'--7' ---'--( 6 ~RE ADER 
pp : : I ENABLE+ 

+12V· AA"-·-···-~------LI( l :: 7~SERIA.LIN+ 
---~I ., 

CURRENT LOOP A ~ ACTIVE RECEIVE FB"" . I~ 
MODE ENABLE --~vv~ 

Figure 5-18 Active 20 mA Current Loop Interface 

~ 
w 
0 

0 

Figure 5-19 20 mA Active Current Loop Jumper Configuration 

5.6.2.8 Framing Error Halt-A_ framing error halt allows entry to con­
sole microcode directly from the console device by pressing the BREAK 
key, producing a framing error. A framing error occurs when the received 
character has no valid stop bit. This error condition is detected by the 
UAR/T. FEH is factory-installed, causing the assertion of SHALT L when 
the framing error is detected. The processor then executes console 
microcode. 

5.6.3 Installation 
Prior to installing the DLVll on the backplane, first establish the de­
sired priority level (Chapter 3) to determine the backplane slot in which 
the module will be installed. Then, check that jumpers are removed or 
installed as described for your application (Paragraph 5.6.2). Connection 

5·24 



DLV11 SERIAL LINE UNIT CIRCUITS 
I PASSIVE RECEIVE AND TRANSMIT) BC05M CABLE ASSY SERIAL 20mA DEVICE 

SO H 

20mA DATA IN JI P2 P1 -----------< s <-( ___ ,_,-... , ----<( 3 

I 
I 

I 

OPTICAL 
COUPLER 

+5V 

SERIAL 
DATA OUT 

K 7 ~SERIAL IN - }-lSV 

2 0 mA I TTL RCVD 'CD>--A TC-A---< AA {-,---+->-1~1---,.--< 5 ~ SERIAL OUT -

SI H +-+=~==---r--< : f-n II 
TTL SERIAL ~ 
DATA IN 

OPT I CAL f-----'---<KKr-'---+-.--+-1---"'--< 
COUPLER 20mA DATA 

'-----'OUT 

I 

OPTICAL 
COUPLER 

+5V 

SERIAL 
DATA IN 

- 12V ---'V>l'.---,...-_,,,,v.---,----<. EE r--+-'>-t--,1---,.--< 4 ~ RE A DER ENABLE -

I 

READER 
RUN LOGIC READER 

RUN 

I b ~ E-(----'-:--t---1-+J-+--,.--< 6 f--T- RE ADER EN AB LE + 

_f-<vv I 

Figure 5-20 Passive 20 mA ·Loop Interface 

USE BC05M CABLE 

L ~ --~1 ~Hj-y--0-:[J 
0 \, 0 0 

~ 
0 

0 

Figure 5-21 20 mA Passive Current Loop Jumper Configuration 

to the peripheral device is via an optional data interface cable. Cables 
are listed below. 

Application 

EIA Interface 
20 mA Current Loop 

Cable Type* 
BC05C-X Modem Cable 
BC05M-X Cable Assembly 

• The -X in the cable number denotes length in feet, as follows: -1, -6, -10, -20, -25. 
For example, a 10-ft EIA interface cable would be ordered as BC05C-10. 

5-25 



5.6.4 Interfacing with 20 mA Current Loop Devices 
When interfacing with 20 mA current loop devices, the BC05M cable as­
sembly provides the correct connections to the 40-pin connector on the 
DLVl 1. The peripheral device end of the cable is terminated with a 
Mate-N-Lok connector that is pin-compatible with the following periph­
eral options: 

LA36 DECwriter 
L T33 Teletypewriter 
L T35 Teletypewriter 
VT058 Alphanumeric Terminal 
VT50 DECscope 
VT52 DECscope 
RT02 Alphanumeric Terminals 
DFOl-A Acoustic Telephone Coupler 

The complete interface circuit provided by the BC05M cable and the 
associated DLVll jumpers is shown in Figure 5-18. 

NOTE 
When the DLVll is used with teletypewriter de­
vices, a 0.005 ,uF capacitor must be installed 
between split lugs TPl and TP2. · 

After configuring the module jumpers and installing the proper interface 
cable, the DLVll can be installed in the backplane. 

5.6.5 Interfacing with EIA-Compatible Devices 
When interfacing with EIA devices, the BC05C modem cable provides 
the correct connection to the 40-pin connector on the DLVl l. The pe­
ripheral device end of the cable is terminated with a Cinch DB25P con­
nector that is pin-compatible with Bell 103, 113 modems. Connector 
pinning and signal levels conform to EIA Specification RS232C. The com­
plete EIA interface circuit is s.hown in Figure 5-22; jumpers are shown 
in Figure 5·23. 

5.6;6 Programming 

5.6.6.1 Addressing-Addresses for the DLVll can range from 160000 
through 17777X8 • The least significant three bits (only bits 01 and 02 
are used; bit 0 is ignored) adress the desired register in the DLVll, as 
follows: 

Address 

lXXXXO 
1XXXX2 
1XXXX4 
1XXXX6 

Addresse~ Register 

RCSR (Receiver control/status) 
RBUF (Receiver data buffer) 
XCSR (Transmit control/status) 
XBUF (Transmit data buffer) 

Address bits 03 through 12 are jumper-selected as directed in Paragraph 
5.6.2.2. 

Since each DLVll module has' four registers, each requires four ad­
dresses. Addresses 177560-177566 are reserved for the DLVll used 
with the console peripheral device. Additional DLVll modules should be 
assigned addresses from 175610 through• 176176, allowing up to 30 
additional DLVll modules to be addressed. 

5-26 



OLVll SERIAL LINE UNIT CIRCUITS BC05C MODEM CABLE EIA INTERFACE 

JI JI REQUEST TO SEND (CINCH DB25P) 
r------a >--------...-< v EI I < 4 ~ CA 

~--T--<DDE: DATA TERMINAL READY : (•o+ CO 

r---t--~EI~A~D~AT~A~I~• ----+--< J E 1 RECEIVED DATA : < 3 + BB 

I I I 
I I I 

SI .. 
----+---~EI~A~/T=TL=RCV~O=OA=T=A"-+-< EM+---, :I :I 

TTL SERIAL DATA IN ~ 

+ 12V I I I 

EIA TRANS DATA l I TRANSMITTED DATA I ( , ! _ 
SO H ---t----1 ;>-"'"'--'-='-==-f-( F f-< +-j --====-='----ti-< 2 ~ BA 

I I 

EIA TRANS DATA 
ENABLE JUMPER TO CSR 

SELECTION 
AND GATING 

I I I 
BB E : CARRIER < B T CF 

, I CLEAR TO SEND ( , L. __ 

{ 
I T f-\-1-1 -==~='-----i-< 5 ~ CB 

---;-I -< z ( I DATA SET READY ( 6 + CC 

: : I 
+ 3V ----j _,;:-----B,,,u~sv,___-+-<: 25 tj---

1 I 
: PROTECTIVE GROUND l 

I :V f-+---"PR"'O'-"TE.,,C"-'Tl-"VE~G"'R~OU"'N~O-~~ I + AA 

B SIGNAL GROUND 7 ~ AB 

i uu....,_-~s=1•=•A=L~G=""="=•o,__ __ 

Figure 5-22 EIA Interface 

USE 8C05C CABL.E 

- N r<'l '<t 

d d ti d 
0000 

0 0 0 0 

I 
Figure 5-23 EIA Jumper Configuration 

5.6.6.2 Interrupt Vectors-Two interrupt vectors are jumper-selected 
on each DLVll as described in Paragraph 5.62.3: 

OOOXXO Receiver interrupt vector 
OOOXX4 Transmitter interrupt vector 

Vectors can range from addresses 0 through 37X8 • Vectors. 60 and 64 
are reserved for the console peripheral device. Additional DLVll mod­
ules should be assigned vectors following any DRVll modules installed 
in the system starting at address 300. 

5-27 



5.6.6.3 Word Formats~ The four word formats associated with the 
DLVll are s.hown in Figure 5-24 and are described in Table 5-9. 

5.6.7 Console Device 
The console device is a serial line device, such as the LA36 DECwriter, 
that uses a DLVll Serial Line Unit. The following device addresses must 
be used for the console device: 

Register 

RCSR 
RBUF 
XCSR 
XBUF 

Address 

177560 
177562 
177564 
177566 

Vector addresses must be assigned as follows: 

Interrupt Vector 

Console Receiver 
Console Transmitter 

Address 

000060 
000064 

word 
RCSR 

RBUF 

XCSR 

Table 5·9 Word Formats 

Bit(s) Function 

15 Dataset Status-Set when CARRIER or CLEAR TO 
SEND and DATA SET READY signals are asserted 
by an EIA device. Read-only bit. 

14-08 Not used. Read as 0. 

07 Receiver Done-Set when an entire character has 
been received and is ready for input to the proces­
sor. This bit is automatically cleared when RBUF 
is addressed or when the BDCOK H signal goes 
false (low). A receiver interrupt is enabled by the 
DLVll when this bit is set and receiver interrupt 
is enabled (bit 6 is also set). Read-only bit. 

06 

05~1 

00 

15~8 

Interrupt Enable-Set under program control when 
it is desired to generate a receiver interrupt re­
quest when a character is ready for input to the 
processor (bit 7 is set). Cleared under program 
control or by the BINIT signal. Read/write bit. 

Not used. Read as o. 
Reader Enable-Set by program control to advance 
the paper tape reader on a teletypewriter device to 
input a new character. Automatically cleared by 
the new character's start bit. Write-only bit. 

Not used. Read as 0. 

07~0 Contains five to eight data bits in a right-justified 
format. MSB is the optional parity bit. Read-only 
bit. . 

15~8 Not used. Read as 0. 

07 Transm.it Ready-Set when XBUF is empty and can 

5-28 



Word 

XBUF 

15 

ACSR 

DATASET 
STATUS 

(READ ONLY) 

15 

RBUF I 

15 

XCSR 

15 

Bit(s) 

Table 5-9 Word Formats (Cont.) 

Function 

accept another character for transmission. It is also 
set during the power-up sequence by the BDCOK 
H signal. Automatically cleared when XBUF is 
loaded. When transmitter interrupt is enabled (bit 
6 also set), an interrupt request is asserted by the 
DLVll when this bit is set. Read-only bit. 

06 Interrupt Enable-Set under program control when 
it is desired to generate a transmitter interrupt re­
quest when the DLVll is ready to accept a char­
acter for transmission. Reset under program con­
trol or by the BINIT signal. Read/write bit. 

05-01 Not used. Read as 0. 
00 Break-Set or reset under program control. When 

set, a continuous space level is transmitted. BINIT 
resets this bit. Read/write bit. 

15-08 Not used. 
07-00 Contains five to eight right-justified data bits. 

Loaded under program control for serial transmis­
sion to a device. Write only. 

(NOT USED) 

RECEIVER 
DONE 

(READONLYl 

RECEIVER 
INTERRUPT 

ENABLE 
IRE AO/ WAI TE} 

DATA AND PARITY 

READER 
ENABLE 

(WAITE ONLY) 

(5-7 BIT DATA IS RIGHT JUSTIFIED. PARITY IS B1T·7. 
NO PARITY BIT 15 PRESENT WHEN B~BIT DATA IS USED,) 

TRANSMIT 
READY 

(READ ONLY} 

TRANSMIT 
INTERRUPT 

ENABLE 
(READ/WRITE} 

(NOT USED) DATA 

Figure 5-24 DLVll Word Formats 

5-29 

BREAK 
(READ/WRITE) 



5.7 DRVll PARALLEL LINE UNIT 

5.7.1 General 
The DRVll .Parallel Line Unit (PLU) is a general-purpose device inter­
face module that connects parallel 1/0 devices to the LSl-11 bus, as 
shown in Figure 5-25. 

5.7.2 Jumper-Selected Addressing and Vectors 
The DRVll Parallel Line (PLU) module is equipped with 15 jumpers 
that can be configured to select device and interrupt vector addresses. 
In addition, the board is ·equipped with a set of split lugs for installing 
an optional capacitor to adjust certain signal pulse widths that control 
interfacing with external devices. The location of these jumpers and the 
split lugs for the optional capacitor are shown in Figure 5-26. Thfs unit 
is jumper configured to implement recommended device and vector 
addresses, and is not equipped with the split lug-mounted capacitor. 
The factory-installed jumper configuration is summarized in Table 5-10. 

0 
8DAL0-15l 

BIRO L 
BIAKI L 
BIAKO L 

BDAL0-15L 

8857 L 
BSYNC L 
BDAL0-15L 
BWTBT L 
BOIN L 
BDOUTL 
BRPLY L 
BINIT L 

BDAL0-15L 

"' 7 

{ DROUTBUF J OUT 0- 15 
,.!-!-

REO A 
·- INT_filB_A J INTERRUl;>T 

INT ENB B LOGIC \ l CSR1 J NEW DATA ROY 

DRCSR 

[ '-

J2 
F 

ADDRESS 
ANO I/O REQ B 
CONTROL 

CSRO LOGIC 

DATA TRANS 

I ORINBUF } IN 0-15 

L ~ 

Figure 5-25 DRVll Parallel Line Unit 

TO/FROM 
USER 
DEVICE 
LOGIC 

Table 5-10 DRVll PLU Factory Jumper Configuration 

Jumper 
Designation 

A3 
A4 
A5 
A6 
A7 
AS 
A9 
AlO 
All 
A12 

Jumper 
State Function Implemented 

R This arrangement of jumpers A3 through A12 
R assigns the device address 16777X to the PLU. 
R This address is the starting address of a re-
R served block in memory bank 7 which is rec-
R ommended for user device address assignments. 
R The least significant digit X is hardwired on the 
R module to implement the tnree PLU device ad· 
R dresses as follows: 
R 
I 

5-30 



Table 5·10 DRVll PLU Factory Jumper Configuration (Cont.) 

Jumper Jumper 
Designation · ·State 

V3 I 
V4 I 
V5 I 
V6 R 
V7 R 

NOTE: R = Removed, 

Function Implemented 

X = 0 DRCSR address 
X = 2 Output buffer address 
X = 4 Input buffer address 

This factory installed jumper configuration im· 
plements the two interrupt vector addresses 300 
and 304 for use as defined by application re­
quirements. 

I= Installed 

5.7.2.1 Locations-Jumpers for device address and vector selection 
are provided on the DRVll as shown in Figure 6-10. Factory installed 
jumpers can be cut or removed by the user to program the module for 
a particular system application, as described in the following paragraphs. 
5.7.2.2 Addressing-Jumpers involved with addressing include A3 
through A12. On!Y address bits 03 through 12 are programmed by jump­
ers for DRVll addressing producing the 16-bit address word shown in 
Figure 5-27. The appropriate jumpers are removed to produce logical 
1 bits; jumpers installed will produce logical 0 bits. 

5.7.2.3 Vectors-Jumpers involved with vector addressing include V3 
through V7. Only vector bits 03 th,rough 07 are programmed by the 
jumpers for DRVll vector addressing, producing the 16-b_it word shown 
in Figure 5-28. The appropriate jumpers are removed to produce logical 
1 bits; jumpers installed will produce logical 0 bits. 

5-31 



~ 
BBS7 L 
., tu 

C. 
c 

U 
J1 

u 
J2 

lv~;"~~~I 
I I 
I~;= I 
I I 
I I 
Iv>- --va 1 
L ___ =-:_v:'._J 

r -;_m;~sSJuMPE°Rs- i SLl ·.i SL2 o..--·::r--<) 
I A3- --A9 I 
I .&4- --AIOI 

I 1i== ==ta I 
I A7- I 
LA..!==-----_J 

OPTIOJJAL EXTERNAL 
CAPACITOR 

(SEE ,_ARA.i..3.4.6) 

M7941 ETCH REV. C 

Figure 5-26 DRVll Jumper Locations 

~ L BYTE SELECT L 1•hl9h byle(8-1!5J 
O•lowbyte(0-7) 

0 
~ 

ADDRESS JUMPERS: 
INSTALLED •O 
REMOVED • 1 

. 
" 

Figure 5-27 DRVll Device Address 

5-32 

REGISTER 
OOX • DRCSR 
01 X • DROUTBUF 
10X •DR1NBUF 



15 

I 0 

I 

H854 
CONNECTOR 

0 0 I o I 
0 0 

I 
0 

I 
0 

l 
> ~ I 

> 

VECTOR JUMPERS: 
INSTALLED•O 
REMOVED 'I 

l 
> 

l"igure 5-28 DRVll Vector Address 

0 0 

\ 
\ 

H856 CONNECTOR 
(SHOWN WITH 
CABLE INSTALLED) 

I 
0 

I 
0 I 

L (DRCSR-15) 
REQUEST I NG DEVICE 
0 • REQ A 
1 •REC B 

Figure 5-29 Jl or J2 Connector Pin Locations 

5.7.3 Installation 
Prior to installing the DRVll on the backplane, first establish the de­
sired priority level (Chapter 3) for the backplane slot installation. 
Check that proper device address vector jumpers are installed, as di­
rected in Paragraph 5.7.2. The DRVll can then be installed on the 
backplane. Connection to the user's device is via optional cables. 

5.33 



5.7.4 Interfacing to the User's Device 

5.7.4.1 General-Interfacing the DRVll to the user's device is via the 
two board-mounted H854 40-pin male connectors. Pins are located as 
shown in Figure 5-29. Signal pin assignments for input interface J2 
(connector No. 2) and output interface JI (connector No. I) are listed 
in Table 5-11 Optional cables and connectors for use with the DRVll 
include: 

BC08R-X*-Maintenance cable, 40-conductor flat with H856 con­
nectors on each end. Available in lengths of I, 6, 10, 20, and 25 
feet. 

BC07D-X*-Signal cable, two 20 conductor ribbon cables with a 
single H856 connector on one end; remaining end is terminated 
by the user. Available in lengths of IO, 15, and 25 feet. 

H856-Socket, 40-pin female, for user-fabricated cables. 

•The ·X in the cable number denotes length in feet. -10, -12, -20. For example, a 
10-ft BC070 cable would be ordered as BC07D-10. 

When using the BC07D cable, connect the free end of the ribbon cables 
using the wiring data contained in Table 5-12. Refer to the Hardware/ 
Accessories Catalog for additional optional interface accessories. 

5.7.4.2 Output Data Interface-The output interface is the I6-bit 
buffer (DROUTBUF). It can be either loaded or read under program 
control. When loaded by a DATO or DATOB bu·s cycle, the NEW DATA 
READY H 750 ns pulse is generated to inform the user's device of the 
data transfer. The trailing edge of this positive-going pulse should be 
used to strobe the data into the user's devit:e in order to allow data to 
settle on the interface cable. The system initialize signal (BINIT L) will 
clear DROUTBUF. 

All output signals are TTL levels capable of driving eight unit loads 
except for the following: 

NEW DATA READY= 10 unit loads 
DATA TRANSMITTED= 30 unit loads 
INIT (Initialize) =·IO units per connector 

Table 5-11 DRVll Input and Output Signal Pins 

Inputs Outputs 

Signal Connector Pin Signal Connector 

INOO J2 TT OU TOO JI 
INOl J2 LL OUTOI JI 
IN02 J2 H,E OUT02 JI 
IN03 J2 BB OUT03 JI 
IN04 J2 KK OUT04 Jl 
IN05 J2 HH OUT05 JI 
IN06 J2 EE OUT06 Jl 
IN07 J2 cc OUT07 JI 

5.34. 

Pin 

c 
K. 
NN 
u 
L 
N 
R 
T 



Table 5-11 DRVll Input and Output Signal Pins (Cont.) 

Inputs Outputs 

Signal Connector Pin Signal Connector Pin 

IN08 J2 z OUT08 Jl w 
· IN09 J2 y OUT09 Jl x 
INlO J2 w ouno Jl z 
INll J2 v OUTll Jl AA 
IN12 J2 u OUT12 Jl BB 
IN13 J2 p OUT13 Jl FF 
IN14 J2 N OUT14 Jl HH 
IN15 J2 M OUT15 J1 JJ 
REQ A Jl LL NEW DATA ROY'~ Jl vv 
REQ B J2 s DATA TRANS"' J2 c 

CSRO J2 K 
CSRl Jl DD 
INIT Jl p 
INIT J2 RR, NN 

*Pulse signals, approximately 750 ns wide. Width can be changed by 
user. 

Table 5-12 BC07D Signal Cable Connections 

Wire 
Cable 1 (connector pins 8-VV) Cable 2 (connector pins A-UU) 

Color Pins Jl Signal J2 Signal Pins Jl Signal J2 Signal 

blk B open open A open open 
brn D open open c OUTOO DATA TRANS 
red F open open E open IN02 
orn J GND GND H open IN02 
yel L OUT04 GND K OUTOl CSRO 
grn N OUT05 IN14 M GND IN15 
blu R OUT06 GND p INIT IN13 
vio T OUT07 GND s GND REQ'B 
gry v GND INll u OUT03 IN12 
wht x OUT09 GND w OUT08 INlO 
blk z OUTlO IN08 y GND IN09 
brn BB OUT12 IN03 AA OUTll GND 
red DD CSRl GND cc GND IN07 
orn FF OUT13 open EE GND IN06 
yel JJ OUT15 GND HH OUT14 IN05 
grn LL REQA INOl KK GND IN04 
blu NN OUT02 INIT MM GND GND 
vio RR OUT02 INIT pp GND GND 
gry TT open INOO SS GND GND 
wht vv New DATA open uu GND GND 

ROY 

5-35 



5.7.4.3 Input Data Interface-The input interface is the 16-bit ORIN· 
BUF read·only register, comprising gated bus drivers that transfer data 
from the user's device onto the LSl·ll bus under program control. 
DRINBUF is not capable of storing data; hence the user must keep input 
data on the IN lines until read by the LSl·ll microcomputer. When 
read, the DRVll generates a positive-going 750 ns DATA TRANSMITTED 
H pulse whi'ch informs the user's device that the data has been ac­
cepted. The trailing edge of the pulse indicates that. the input transfer 
has been completed. 

All input signals are one standard TTL unit load; inputs are protected 
by diode clamps to ground and +5 v, 
5.7.4.4 Request Flags-Two signal lines (REQ AH and REQ 8 H) can 
be asserted by the user's device as flags in the DRCSR word. REQ B is 
available via Connector No. 2, and it can be read in DRCSR bit 15. 
REQ A is available via Connector No. 1, and it can be read in DRCSR 
bit 7. Two DRCSR interrupt enable bits, INT ENB A (bit 6) and INT ENB 
B (bit 5), allow automatic generation of an interrupt request when their 
respective REQ A or REQ 8 signals are asserted. Interrupt enable bits 
can be set or reset under program control. 

In a typical application, REQ A and REQ 8 are generated by Request 
flop-flops in the user's device. The user's Request flip-flop should be set 
when servicing is required and cleared by NEW DATA READY or DATA 
TRANSMITTED when the appropriate data transaction has been com· 
pleted. 

5.7.4.5 Initialization-The BINIT L processor-generated initialize signal 
is applied to DRVll circuits for interface logic initialization. It is also 
available to the user's circuits via connectors J1 and J2 as follows: 

Connector/Pin 
Jl/P 
J2/RR 
J2/NN 

Signal 
AINITH 
BINIT H 
BINIT H 

An active BINIT L signal will clear: DROUTBUF data; DRCSR bits 6, 5, 
1, O; bits 16 and 7 ('(llhen the maintenance cable is connected); and 
Interrupt Request and Interrupt Acknowledge flip-flops. 

5.7.4.6 NEW DATA READY and DATA TRANSMITTED Pulse Width Mod­
ification-An optional capacitor can be added by the user to the DRVll 
module to extend the pulse width of both the NEW DATA READY and 
DATA TRANSMITTED pulse widths. The module without external capaci· 
tance (as shipped) will produce 750 ns pulses. The capacitor can be 
added in the location shown in Figure 5·26 to produce the approximate 
pulse widths listed below. 

Optional External 
Capacitance (µF) 

None 
0.0047 
0.01 
0.02 
0.03 

5-36 

Approximate 
Pulse Width (ns) 

750 
1150 
1750 
2650 
3850 



5.7.4.7 BCOBR Maintenance Cable-When using the optional BCOBR 
maintenance cable, the connections listed in Table 5-13 are provided. 
Cable connectors Pl and P2 are connected to DRVll connectors Jl and 
J2, respectively. Note that CSRO (J2-K), which can be set or reset under 
program control, is routed to the REQ A input (Jl-LL); similarly, CSRl 
(Jl·DD) is routed to REQ 8 (J2-S). Hence, a maintenance program can 
output data to DROUTBUF and read the same data via the cable and 
DRINBUF. DRCSR bits 0 (CSRO) and 1 (CSRl) can be used to simulate 
REQ A and REQ 8 signals, respectively. If the appropriate INT ENB bit 
(DRCSR bits 5 or 6) is set, the simulated signal will generate an in· 
terrupt request. 

5.7.5 Programming 

5.7.5.1 Addressing-Addresses for the DRVl 1 can range from 16000 
through 17777X8 • The least significant three bits address the desired 
DRVl l register as follows: 

Address 

lXXXXO 
1XXXX2 
1XXXX4 

Device Register 

DRCSR 
DROUTBUF 
DRINBUF 

Addresses 177560-177566 are reserved for the console device and 
should not be used for DRVl 1 addressing. The following address assign­
ments are normally used: 

First DRVll 
DRCSR = 167770 
DROUTBUF = 167772 
DRINBUF = 167774 

Second DRVl l 
167760 to 167764 

Third DRVll 
167750 to 167754 

Table 5-13 BCOSR Maintenance Cable Signal Connections 

J2 Jl 

Pin Name Name 

vv OPEN OPEN 
uu GND OPEN 
TT INOO OUTOO 
SS GND , OPEN 
RR INITH OPEN 
pp GND OPEN 
NN INITH OPEN 
MM GND GND 
LL INOl OU TOI 

. KK IN04 OUT04 
JJ GND GND 

5-37 

Pin 

A 
8 
c 
D 
E 
F 
H 
J 
K 
L 
M 



Table 5-13 BCOSR Maintenance Cable Signal Connections (Cont.) 

J2 Jl 

Pin Name Name Pin 

HH IN05 OUT05 N 
FF OPEN INIT H p 
EE IN06 OUT06 R 
DD GND GND s 
cc IN07 OUT07 T 
BB IN03 OUT03 u 
AA GND GND v 
z IN08 OUT08 w 
y IN09 OUT09 x 
x GND GND y 
w INlO OU TIO z 
v INll OUTll AA 
u IN12 OUT12 BB 
T GND GND cc 
s REQ B CSRl DD 
R GND GND EE 
p IN13 OUT13 FF 
N IN14 OUT14 . HH 
M IN15 OUT15 JJ 
L GND GND KK 
K CSRo· REQA LL 
J GND GND MM 
H IN02 OUT02 NN 
F OPEN GND pp 
E IN02 OUT02 RR 
D OPEN GND SS 
c DATA TRANS OPEN IT 
B OPEN GND uu 
A OPEN NEW DATA ROY w 

5.7.5.2 Interrupt Vectors-Two interrupt vectors are jumper-selected 
in the range of 0 through 37X8 • The least significant three bits identify 
the interrupting function. 

oooxxo 
OOOXX4 

Interrupt A 
Interrupt B 

Vectors 60 and 64 are reserved for the console device and should not be 
used for DRVll vectors. · 

5.7.5.3 Word Formats-The three word formats associated with the 
DRVll are shown in Figure 5-30 and are described in Table 5-14. 

5-38 



DRCSR 

... 
REQUEST B 
{READ O~LYl 

15 

CSRO 
(READ/WRITE) 

DROUT BUF LI _.L_--1. _ _.i___J _ _L_.L_~--'---'----'--L--'---'-----'---'---' 

15 

DATA OUT 
(READ/WRITE) 

DRINBUF !::I ========================='==J 

Word 

DRCSR 

DATA IN 
lREAD ONLY} 

Figure 5-30 DRVll Word Formats 

Bit(s) 

15 

14-08 

07 

Table 5-14 Word Formats 

Function 

REQUEST 8-This bit is under control of the 
user's deviee and may be used to initiate an 
interrupt sequence or to generate a flag that 
may be tested by the program. 

When used as an interrupt request; it is as­
serted by ·the external device and initiates an 
interrupt provided the INT ENB B bit (bit 05) 
is also set. When used as a flag, this bit can 
be read by the program to monitor external 
device status. 

When the maintenance cable is used, the state 
of this bit is dependent on the state of CSRl 
(bit 01). This permits checking interface oper­
ation by loading a 0 or 1 into CSRl and then 
verifying that REQUEST B is the same value. 

Read-only bit. Cleared by INIT when in main­
tenance mode. 

Not used. Read as 0. 

REQUEST A-Performs the same function as 
REQUEST B (bit 15) except that an interrupt 
is generated only if INT ENB A (bit 06) is also 
set. 

When the maintenance cable is used, the state 
of. REQUEST A is identical to that of CSRO 
(bit 00). 

Read-only bit. Cleared by .!NIT when in main­
tenance mode. 

5-39 



Word 

DRSCR 

DROUTBUF 

DRINBUF 

Table 5~14 Word Formats (Cont.) 

Bit(s) 

06 

05 

04-02 

01 

00 

15-00 

15·00 

·Function 

INT ENB A-Interrupt enable bit. When set, 
allows an interrupt request to be generated, 
provided REQUEST A (bit 07) becomes set. 

Can be loaded or read by the program (read/ 
write bit). Cleared by BINIT. 

INT ENB B-lnterrupt enable bit. 'when set, 
allows an interrupt sequence to be initiated, 
provided REQUEST B (bit 15) becomes set. 

Not used. Read as 0. 

Can be loaded or read by the program (read/ 
write bit). Cleared by INIT. 

CSRl-This bit can be loaded or read (under 
program control) and can be used for a user­
defined command to the device (appears only 
on Connector No. 1). 

When the maintenance cable is used, setting 
or clearing this bit causes an identical state 
in bit 15 (REQUEST B). This permits checking 
operation of bit 15 which cannot be loaded by 
the program. · 

Can be loaded or read by the program (read/ 
write bit). Cleared by INIT. · 

CSRO-Performs the same functions as CSRl 
(bit 01) but appears only on Connector No. 2. 

When the maintenance cable is used, the state 
of this bit controls the state of bit 07 (RE­
QUEST A). 

Read/write bit. Cleared by INIT. 

Output Data 'Buffer-Contains a full 16-bit 
word or one or two ~-bit bytes: High Byte = 
15-8; Low Byte = 7-0. 

Loading is accomplished under a program-con· 
trolled DATO or DATOB bus cycle. It can be 
read under a program-controlled DATI cycle. 

Input Data Buffer-Contains a full 16-bit word 
or one or two 8-bit bytes. The entire 16-bit 
word is read under a program-controlled DATI 
bus cycle. · 

5.8 DRVll·B DIRECT MEMORY ACCESS (OMA) INTERFACE 
5.8.1 General 
The DRVll·B is a general purpose Direct Memory Access (OMA) interface 
used to transfer data directly between the LSl-11 system memory and an 

5-40 



1/0 device as shown on Figure 5-31. The interface is programmed by the 
processor to move variable length blocks of 16-bit data words to or from 
specified locations in memory by means of the LSl·ll bus. Once pro­
grammed, no processor intervention is required. The DRVll·B can trans· 
fer up to 250K, 16-bit words per second and is cable of operating in 
burst modes, with byte addressing. The control structure also allows 
read-modify-restore operations. 

The interface consists of five registers: Word Count Register (WCR), Bus 
Address Register (BAR), Control Status Register (CSR), Input Data Buffer 
Register (IDBR), and Output Data Buffer Register (ODBR). The module 
also includes bus transceivers and logic for interrupt requests, address 
control and protocol, and OMA requests. 

The DRVll-8 contains one switch bank used to assign an appropriate de­
vice address to the OMA interface and one switch bank to select an 
iriterrupt vector address in the LSl·ll memory where the OMA routine 
is stored. 

Two 40-pin connectors, mounted near the edge of the module, facilitate 
the connection of the 1/0 device with the OMA, using any two of several 
cable assemblies available from DIGITAL. The module may be inserted 
into any available slot of the LSl-11 backplane. 

/\ 

I 

16- OUTPUT DATA BITS ~ 

K 16-DATA/ADDRESS BITS ~ READY 

CYCLE REQUEST 

DRVll-B USER"S 
DMA FUNCTION l/O 

V> 
INTERFACE DEVICE 

::J 

"' STATUS BITS 

'.'.! 
BUSY 

BUS CONTROL CONTROL BITS 

K 16- INPUT DATA BITS 

Figure 5-31 DRVll-B Interface Diagram 

5.8.2 Registers 
Each of the five registers can be addressed by the processor. The IDBR 
and ODBR are assigned the same address, and are read-only and write­
only, respectively. 

5-41 



The register bit format and functions are described as follows. 

Word Count Register (WCR) 

ADDRESS 
•xxxxo 

15 

READ/WAITE 

16 BITS COUNTER 

• All logic "ones" decoded by bus master to assert BBS? L signal 

0 

The WCR is a 16·bit read/write counter which is loaded by the program 
with the two's complement of the number of words or bytes to be trans­
ferred at one time between memory and the 1/0 device. At the end of 
eac.h transfer, the WCR is incremented. When the count becomes zero 
(all 16 bits = 0), the DMA generates an interrupt request. The contents 
of the WCR can be monitored by the processor program. 

Bus A~dress Register (BAR) 

15 14 12 11 0 

ADDRESS 
'XXXX2 I . I I I I I I I I ' ' ' 

~'-----..,..---J~~'-----..,..---J 
0-18 0-18 0-18 0-18 0-18 0-18 

• All logic "ones" decoded by bus master to assert BBS? L signal 

The BAR is a 15-bit read/write register used to generate the bus address 
which specifies the location to or from which data is to be transferred. 
The register is incremented after each transfer. It will increment across 
32K boundary lines via the extended address bits in the control status 
register. Bus address bit 00 is driven by the user device. 

Control and Status Register (CSR) 

ADDRESS 
'XXXX4 

15 14 13 12 11 10 6 

• All logic "ones" decoded by bus master to assert BBS? L signal 

0 

The CSR contains 16 bits of information used to control the function and 
monitor the status of the DMA transfers. The information in the CSR 
can be modified or read by the processor program in either 8-bit bytes 
or 16-bit words. Table 5-15 lists and defines each of the 16 bits. 

Bit 

15 

Table 5-15 Control Status Register Bit Description 

Name 

Error 
(Read Only) 

Description 

1. Indicates a special condition. 
a. NEX (bit 14) 
b. ATTN (bit 13) 

5-42 



Table 5-15 Control Status Register Bit Description (Cont.) 

Bit Name Description 

2. Sets READY (bit 7) and causes interrupt if IE 
(bit 6) is set. 

3. Cleared by removing the special condition. 
a. NEX is cleared by writing to zero. 
b. ATTN is cleared by the user device. 

14 NEX 1. Non-existent memory indicates that as bus 
(Read/Write master, the DRVll-8 did not receive 8RPLY 
Zero) or that a DATIO cycle was not completed. 

2. Sets Error (bit 15). 
3. Cleared by IN IT or by writing to zero. 

13 ATTN 1. Indicates the state of the ATTN user signal. 
(Read Only) 2. Sets Error (bit 15). 

12 MAINT 1. Maintenance bit used with Diagnostic Pro-
(Read/Write) gram. 

11 STAT A 

r 
Device Status bits that indicate the state of 

(Read Only) the DSTAT A, 8, and C user signals. 

10 STAT 8 
2. Set and cleared by user control only. (Read Only) 

09 STAT C 
(Read Only) 

08 CYCL 1. Cycle is used to prime a DMA bus cycle. 
(Read/Write) 

07 READY 1. Indicates that the DRVll-8 is able to accept 
(Read Only) a new command. Requests an interrupt if IE 

(bit 6) is set. 
2. Set by NINT. 

06 IE 1. Enables interrupts to occur when READY (bit 
(Read/Write) 07) is set. 

2 . Cleared by INIT. 

05 XAD 17 . EXTENDED Address bit 17, cleared by INIT. 
(Read/Write) 

04 XAD16 EXTENDED Address bit 16, cleared by INIT. 
(Read/Write) 

03 FNCT3 

r 
Three bits made available to te user device. 

(Read/Write) User defined. 

02 FNCT2 2. Cleared by init. 
(Read/Write) 

01 FNCT 1 
(Read/Write) 

00 GO 1. Causes "NOT READY" to be sent to the user 
(Write Only) device indicating a command has been is-

sued. Clear READY (bit 7). Enables OMA 
transfers. 

5-43 



lnp_ut Data Buffer Register (IDBR) 

ADDRESS 
'XXXX6 

15 

8 BIT HIGH BYTE 8 BIT LOW BYTE 

16 BIT DEVICE INPUT DATA WORD 

• All logic "ones" decoded by bus master to assert BBS? L signal 

The IDBR is used for read-only operations. Data is loaded into the regis­
ter by the user's device. The data may be read from the IDBR as a 16-bit 
word, an 8-bit high byte or an 8-bit low byte. Transfers are usually via 
DATO or DATOB DMA bus cycles. The register input connects to J2 
mounted on the module. 

Output Data Buffer Register (ODBR) 

ADDRESS 
'XXXX6 

15 

B BIT HIGH BYTE 

16 BIT DATA WORD 

B BIT LOW BYTE 

•All logic "ones" decoded by bus master to assert BBS? L signal 

0 

The ODBR is used during write-only operations. Data from the LSl-11 
bus is loaded into the register under program control and read from the 
register by the user's device. The register can be loaded with a 16-bit 
data word or with an 8-bit high byte, or as an 8-bit low byte. Transfers 
are usually via DATI or DATIO DMA bus cycles. The output of the register 
connects to Jl on the module. 

5.8.3 Device And Vector Address Selection 
5.8.3.1 General-The address of the DRVll-8 interface and the interrupt 
vector address in memory is selected by the position of the switches in 
switch bank SI and S2, respectively. The location of the switches on the 
module is shown on Figure 5-32. The switches are set to the OFF posi­
tion (open) to select a zero bit in the address format and the ON position 
(closed) to select a one. 

5-44 



Jlc 1 2= 
o-= 
"'= Vl 

"-= :fl 
-0= "' 0 .,.,= 0 

"'= <>: 

J2c 1 
M= w 

N= u 
> -= w 
0 

I "'= 
Vl 
v> 

"-= w 

"' <>= 0 .,.,= 0 

"'= 
<>: 

M7950 M= "' 

Do/ 
0 N= I-

-=. ~ 
> 

51 52 

D c B A 

Figure 5-32 Connector and Switch Locations 

5.8.3.2-Device Address Format-The DRV-118 decodes four address, 
one for each of the registers listed: 

Register 

WCR 
BAR 
CSR 
OBR 

Octal Address 

':'XXXXO 
':'XXXX2 
':'XXXX4 
':'XXXX6 

Normally, the addresses assigned to the OMA start at 772410 8 and pro­
gress upward. Switches Sl-1 through Sl-10 select the base address as 
indicated by the X portion of the octal code and the individual registers 
are decoded by the OMA interface. The relationship between the address 
format and the switches are shown on Figure 5-33. 

5-45 



17 15 14 12 11 9 6 0 

• Sl-1 Sl-2 Sl-3 Sl-4 Sl-S Sl-6 Sl-7 Sl-8 Sl-9 Sl-10 ' 

~~'-------''---'--'~ I 6 OR 78 0 - 78 0 - 78 0 - 78 _J 
REGISTER SELECT 
BYTE CONTROL 

• =All logic "ones" decoded by processor as 88$7-L signal 

Figure 5-33 Device Address Switch (Sl) Selection 

5.8.3.3 Interrupt Vector Address Selection_..::... The interrupt vector ad­
dresses for the LSl-11 systems are allocated memory locations from 
0-7748 • The recommended location assigned to the DRVll-'8 is 1248 • 

Switches S2-1 through S2-8 are used to select the octal address and the 
relationship between the switches and address format is shown on 
Figure 5-34. 

• ~ ~ ~ 00 00 00 

!s2-1 ls2-2. s2-3, s2-•is2-s 
1
52-6 

1
s2-1 is2-8, • , • I 

'-------....---~'-------....---
O OR I 0-78 0-78 OOR4 8 

• = Preassigned as zero 

Figure 5-34 Interrupt Vector Address Switch (S2) Selection 

5-46 



5.8.4 Functions 

5.8.4.1 General-The DRVll-8 interface operates as both a slave and 
master device. Prior to becoming bus master, all Data Transfers Out 
(DATO) or Data Transfer In (DATI) are in respect to the processor. Once 
OMA is granted bus mastership by the processor, all data transfers are 
in respect to the OMA. 

OMA operation is initialized und~r program control by: (1) loading the 
WCR with the. two's cqmplement of the number of words to be trans­
ferred; (2) loading the BAR with the first address to or from which data 
is to be transferred; (3) loading the CSR with the desired function bits. 
After the interface is initialized, data transfers are under control of the 
OMA logic. 

5.8.4.2 Program Control Transfers-Data transfers may be performed 
under program control by addressing the IDBR or ODBR and reading or 
writing data. 

5.8.4.3 DMA Control Transfers--DMA input (DATI) or output (DATO) 
data transfers occur when the processor clears READY. For a DATO cycle 
(DRVll-B to memory transfer), the user's 1/0 device presets the CON· 
TROL 'BITS [word count increment enable (WC INC ENB), bus address 
increment enable (BA INC ENB), Cl, CO, AOO, and ATTN], and asserts 
CYCLE REQUEST to gain use of the LSl-11 bus. When CYCLE REQUEST 
is asserted, input data is latched into the input DBR, the CONTROL 
BITS are latched into the DRVll·B OMA control, and BUSY goes low. A 
DATI cycle-memory to DRVll-B transfer-is handled in a similar man­
ner, except that the output data is latched into the output DBR at the 
end of the bus cycle. 

When the DRVll-B becomes bus master, a DATO or DATI cycle is per­
formed directly to or from the LSl-11 memory location specified by the 
BAR. At the end of each cycle, the WCR and BAR are incremented and 
BUSY goes high while READY remains low. A second DATO or DATI 
cycle is performed when the user's 1/0 device again asserts CYCLE RE· ' 
QUEST. OMA transfers will continue until the WCR increments to zero, 
at which time READY goes high and the DRVll·B generates an interrupt 
(if interrupt enable is set) to the LSl-11 processor. 

If burst mode is selected (SINGLE CYCLE low), only one CYCLE RE· 
QUEST is required for the complete transfer of the specified number of 
data words. 

5.8.5 Device Cables and Signals 
Data, status and control signals are transferred between the user's 1/0 
device and OMA by an input and an output cable assembly. The input 
cable attaches to connector J2 and the output cable attaches to con­
nector Jl as shown on Figure 5-32, Table 5-16 and 5-17 list the con­
nector pin and designations for each signal. Table 5-18 lists several 
recommended cable assemblies that are available from DIGiTAL in the 
lengths indicated. The H856 female connector mates with either Jl or 
J2 on the DRVll-B. To order cable assemblies in lengths not listed, 
contact a DIGITAL sales office. 

5-47 



Table 5-16 Input Connector Signals 

J2* 
Connector Pin Signal Name 

BUSY H B 
D ATTN H 
F AOO H 
J BA INC ENB H 
K 
L FNCT 3 H 

N co 4 
R FNCT 2 H 
T Cl H 
v FNCT 1 H 
DD 08 IN H 
FF 09 IN H 
JJ 10 IN H 
LL 11 IN H 
NN 12 IN H 
'RR 13 IN H 
TT 14 IN H 
vv 15 IN H 
cc 07 IN H 
EE 06 IN H 
HH 05 IN H 
KK 04 IN H 
MM 03 IN H 
pp 02 IN H 
SS 01 IN H 
uu 00 IN H 

Unit Loads 

10 (drive) 
1 
1 
1 

10 (drive) 

1 
10 (drive) 

1 
10 (drive) 

1 

*All remaining pins connect in common to logic ground by board etch.' 

Table 5-17 Output Connector Signals 

Jl* 
Connector Pin Signal Name 

B 
D 
F 
J 
K 
L 
N 
R 
T 
v 
DD 
FF 
JJ 
LL 
NN 
RR 

CYCLE REQUEST H 0 

INIT V2 H 
INI H 
WC INC ENB.H 
SINGLE CYCLE H 
STATUS A 
READY H 
STATUS B 

STATUS C 

08 OUT H t 09 OUT H 
10 OUT H 
11 OUT H 
12 OUT H 
13 OUT H 

5·48 

Unit Loads 

1 
10 (drive) 
10 (drive) 

1 
1 
1 

10 (drive) 
1 

1 



Table 5-17 Output Connector Signals (Cont.) 

Jl':' 
Connector Pin 

TT 
vv 
cc 
EE 
HH 
KK 
MM 
pp 
SS 
uu 

Signal Name 

14 OUT H 
15 OUT H 
07 OUT H 
06 OUT H 
05 OUT H 
04 OUT H 
03 OUT H 
02 OUT H 
01 OUT H 
00 OUT H 

Unit Loads 

10 (drive) 

''All remaining pins connect in common to logic ground by board etch. 

Table 5-18 Recommended Cable Assemblies 

Cable No. Connectors 

BCO?D·XX H856 to open end 

BC08R·XX H856 to H856 
BC04Z-XX H856 to open end 

Type 

2, 20 conductor 
ribbon 
·Shielded flat 
Shielded flat 

5.9 LSl-11 BUS FOUNDATION MODULE 

5.9.l General 

Standard Lengths (ft.) 

10, 15, 25 

1,6, 10, 12,20,25,50 
6, 10, 15, 25, 50 

The DRVll·P (Figure 5-35) is a versatile wire wrap module that con­
tains the bus interface logic for operation with the LSl-11 or PDP-11/03 
system and provides adequate board area for mounting and connecting 
integrated circuits (IC's) or discrete components. Because the bus inter­
face logic is included, the module can be efficiently configured by the 
user to satisfy a variety of device interface logic applications. 

A 40-pin connector, convenently mounted at the board edge, facilitates 
the connection to a device through several cable assembly types avail­
able from DIGITAL. 

Except for the bus interface connections, all signals and voltages are 
terminated to wire wrap pins for user connections. The bus control logic 
is provided with wire wrap test points for monitoring the internal signals. 
The test points are spaced at 0.1 in. (0.254 cm) between pins to allow 
a 40-pin connector to be inserted over the wire wrap pins for automated 
test functions. 

Approximately 2/3 of the surface area on t.he module consists of plated· 
through holes, each connected to a wire wrap pin. The user can mount 
three different types of dual-in-line IC's or a variety of discrete compo· 
nents into the holes and connect the proper voltages and signals by 
wire wrapping leads on the board. 

The DRVll·P module can be inserted into any one of the available in­
terface option locations of the LSl-11, PDP-11/03 backplane, or back-

5-49 



plane extender unit. The module occupies four.vertical slots. Refer to the 
documentation supplied with the option for detailed information. 

DRVll-P 

A FOUNDATION 
MODULE 

t-- -----, 
I 

BUS I 

K16-DATA/ADDRESS BITS TRANS- I :ll~YTft°"Q~T~ ]ffs=~> ? CEIVERS I 
I > I USER K STATUS/CONTROL 

"' -- - --I DESIGN iil I LOGIC 

USERS 
I/0 DEVICE 

' ,.,_ I ::~~~C!._-Q.A~ !)T~::: 
~ K BUS CONTROL LINES > BUS I 

CONTROL I 
LOGIC I 

J 

I 

l 
Figure 5-35 Typical DRVll-P Interface. 

5.9.2 Functions 

5.9.2.1 General-The DRVll-P contains 16 bus transceivers, device 
selection and vector address generation logic, interrupt control, and 
control and status register functions. The device data inputs and out­
puts of the bus transceivers and the device control signals are made 
available to user to complement control of up to four 16-bit registers. 

5.9.2.2 Address Selection Logic-The address selection logic consists 
of a device address comparator and the protocol control logic. Up to 
four discrete addresses are made available with the existing logic on 
the DRVll-P and can be assigned to data registers, status and control 
registers, or word counters. By adding additional IC's, the user can in­
crease the total number of addresses available. The main address of 
the DRVll-P is selected by monitoring the BBS? bus line and decoding 
the address information D03-Dl2 from the bus. The main device address 
is assigned by the configuration of jumper leads (A03-A08) attached to 
wire wrap pins. When the selected and input bus addresses are the 
same, the device address comparator provides an ENB H level to the 
protocol control logic. The protocol control logic receives bus signals 
and address bits DOI' D02 to assert one of the four available output 
lines-SEL DEV OL, SEL DEV 2L, SEL DEV 4L, and SEi_ DEV 6L. In 
addition, the protocol control logic provides output signals to specify 
word or byte transfers. 

Table 5-19 lists and defines the function of the control signals required 
or available for the user logic.-

Signal 

SEL DEV OL 
SEL DEV 2L 

Table 5-19 Protocol Control Logic Signals 

Function 

Select Device 0 through 4-0ne of four lines asserted 
by decoding the device address and available to select 

5-50 



Table 5·19 Protocol Control Logic Signals (Cont.) 

Signal 

SEL DEV 4L 
SEL DEV 6L 
OUT LB L 
OUT HB L 

IN WO L 

Function 

one of four user word registers. 

Out Low Byte, Out High Byte-Used to load (write) 
data into low byte (8 bits) or high byte (8 bits) or 
both bytes (16 bits) of the selected word register. 

In Word-Used to gate (read) data from the selected 
word register to the bus. 

The format for the device address selection is shown on Figure 5-36. A 
logic one is specified when no jumper lead is installed between the ap­
propriate wire wrap pin from A3-A12. A logic zero is specified when a 
jumper lead is installed. 

17 16 15 14 12 11 6 5 0 

A12 All AlO A9 AB A7 A6 AS A4 A3 Oil 0/1 0/1 ._______,._______,._______,._______, '-.,---' I 
60R 18 0-18 0-18 0-18 J 

••DECODED BY PROCESSOR 
ALL LOGIC "ONES"• BBS7 L REGISTER SELECT 0·45 

. BYTE CONTROL 

•=Decoded by processor· all logic "ones"= BBS7-L 

Figure 5-36 Device Address Selection 

5.9.2.3 Interrupt Control Logic-The interrupt. control provides the 
circuits necessary to allow a program interrupt transaction between the 
LSl-11 arid device. Two interrupt channels (A and B) are available to 
the user with channel A assigned the highest priority. Table 5-20 lists 
and defines the user available signals associated with the interrupt con­
trol logic. 

Table 5·20 Interrupt Control Logic Signals 

Signal 

RQST A H 

ENB DATA A H 

ENB CLK A 

ENB A ST H 

Function 
Interrupt Request A-Asserted by device logic and 
sets the channel A Interrupt Request flip-flop when 
the channel A Interrupt Enable flip-flop is set. 
Interrupt Enable A Data-Asserted by device logic 
and sets the channel A Interrupt Enable flip-flop 
when the EN B CLK A signal is asserted. 

Interrupt Enable A Clock-Asserted by device logic 
to cause the channel A Interrupt Enable flip-flop to 
be set when ENB DATA A signal is asserted. 

Interrupt Enable A Status-Indicates the status of 
the channel A Interrupt Enable flip-flop.-, 

5-51 



Table 5-20 

Signal 

RQST B H 

ENB DATA B H 

ENB CLK B 

ENB B ST H 

VECTOR H 

VEC RQST H 

INIT 0 L 

Interrupt Control Logic Signals (Cont.) 

Function 

Interrupt Request B-Same as RQST A H signal 
except controls channel B interrupts. 

Interrupt Enable B Data-Same as ENB DATA A H 
signal except controls channel B interrupts. 

Interrupt Enable B Clock-Same as ENB CLK A 
signal except controls channel B interrupts. 

Interrupt Enable B status-Same as ENB A ST H 
except controls channel B interrupts. 

Interrupt Vector Gate-Used by device logic to gate 
vector address onto the bus and to generate B 
RPLY signal. 

Vector Request-Asserted by device logic to specify 
that channel A vector address is required; negated 
to specify channel B vector address is required. 

Initialize Out-Buffered B INIT L signal from bus 
used for general initialization. 

5.9.2.4 Vector Address and CSR Logic-The vector address logic is 
used in conjunction with the interrupt control logic to generate a vector 
address on bus lines BOAL OOL·BDAL 07. The vector address is specified 
by the user and selected by installing jumper leads between wire wrap 
pins on the M7948 module. The addresses available are from 0008 to 
3748 • The vector address range can be increased from 0008 to 7748 with 
additional logic and wiring. · 

When the VECTOR H signal is asserted as a result of a device interrupt 
request, the vector address is placed on the bus lines. 

Wire wrap pins V3 through V7 are used to assign the vector address. A 
jumper lead installed selects a logic "zero" address bit for its associated 
line and no lead selects a logic "one" address bit according to the for­
mat on Figure 5-37. 

BOAL L 07 06 05 03 02 00 

I V7 I V6 I V5 I V4 I V3 I 0/1 I • I • I 
\._.,-)~~ 

0'3a 0-78 0 OR 45 

• =Preset by M7948 to 0 bit 

Figure 5-37 ·vector Address Select Format 

Bit BOAL 02 L can be connected to the device interrupt request signal 
RQST A signal to specify a separate vector address for channel A and 
c.hannel 8. 

5-52 



Status and control information can be multiplexed through the same 
logic used to generate the vector address. Up to eight status and con­
trol bits can be assigned by the user and transferred to bus lines BOAL 
00 L-BDAL 07 L. The information can be gated onto the bus lines using 
a select level generated by the address decoding logic. 

5.9.3 Component Mounting Area 

5.9.3.1 General-Twelve vertical areas (A·L) are available on the 
M7948 module for mounting integrated circuits or discrete components 
as shown on Figure 5·32. Each area has a double row of wire wrap pins 
that connect to an associated plated through hole located at 0.1 in. 
(.254 cm) vertical spacing. Area A is for multi-use and is capable of 
accepting IC's with pin centers at 0.3 in. (.762 cm), 0.4 in. (1.01 cm) 
or 0.6 in. (1.52 cm). Area K will also accept IC's with pin centers at 0.3 
in. 0.4 in. All remaining areas will only accept IC's with pin centers at 
0.3 in. 

Table 5·21 lists the total number of IC's with 0.3 in. spacing that can 
be mounted in the user areas of the module, A through L. 

Table 5-21 

IC Type 

14-pin 
16-pin 
18-pin 
20-pin 

IC MOUNTING 

Total Number 

60 
52 
44 
44 

5.9.3.2 Connector Wire Wrap Pins-The 36 contact pins in row C and 
D at the edge of the module connect to a double row of wire wrap pins. 
These two rows are made available to the user for connecting signals 
and voltages from the backplane to the user installed logic circuits. 
The following pins of row C and D are normally dedicated to +5V and 
GND. 

The user can connect the power to the IC or components using the row 
C and row Dwire wrap pins. 

+5v 
GND 

CA2, DA2 
CJl, CMl, en 
DJl, DMl, on 
CC2, DC2 

5.9.3.3 Device Signals--lnput and output data, status and control 
signals can be transferred between the device and the DRVll-P module 
using any one of several cable assemblies listed on Table 5-21 and 
available from DIGITAL. One end of each cable is terminated with a 40-
pin female connector which mates with the 40-pin male connector Jl 
mounted on the M7948 module. The pins of Jl connect to the user 
installed logic through a series of wire wrap pins. 

5-53 



IC MOUNTING AREA A 

0 

IC MOUNTING AREA B 

IC MOUNTING AREA C 

re MOUNTING AREA D 

IC MOUNTING AREA E 

)TEST CONNECTOR PINS I 
IC MOUNTING AREA F 

E 15 I E16 I QJC] 
IC MOUNTING AREA G 

EIJ ~ OIT:J 
IC MOUNTING AREA H I 

h-:J I TEST CONNECTOR PINS I J ,., 
EIO I ~ ~ IC MOUNTING AREA = § I ::;: 

i; z 
~ 

m 

~ CJ:O 
() 

E7 re MOUNTING AREA "' 0 
J J> "' -0 

)> 

-0 = I TEST CONNECTOR PINS I z 
V> 

re MOUNTING AREA D E4 I ES II E6 I K 1-.J 

IC MOUNTING AREA L 
El [}O DO 

Figure 5-38 DRVll-P Component Mounting Locations 

Table 5-21 Recommended Cable Assemblies 

Cable No. Connectors Type 

BC07A·XX H856 to open end 20-twisted pair· 10, 15,25 
BC07D-XX H856 to open end 2, 20 conductor 10, 15, 25 

ribbon 
BC08R-XX H856 to H856 Shielded flat 1, 6, 10, 12, 20, 

25,50, 75, 100 
BC04Z-XX H856 to open end Shielded flat 6, 10, 15,25,50 

5-54 



CHAPTER 6 

INSTALLATION 

6.1 GENERAL 
This chapter contains the basic considerations and requirements for 
configuring and installing LSl-11 .or PDP-11/03 systems. The following 
paragraphs apply to both LSl-11 systems and PDP-11/03 systems, ex­
cept where clearly stated otherwise. 

6.2 CONFIGURATION CHECKLIST 
LSl-11 and PDP-11/03 systems comprise user-selected module options 

·as required for a particular application .. Each module may require 
jumper alterations or switch settings to provide the correct addressing, 
operation, etc., for the user's application. A module configuration check­
list for each module type is provided below. Detailed information for 
configuring the modules can be obtained by referring to the paragraphs 
listed in the checklist. 

KDll Processor Jumpers 
Power-up mode (Paragraph 5.2.2) 
Memory enable (Paragraph 5.2.2) 
Line time clock enable (Paragraph 5.2.2) 
Resident memory 4K address selection and reply (KDll-F only) 

MSVll-8 4K by 16 Random Access Memory Jumpers 
Memory address (Paragraph 5.3.2) 
Reply to refresh (Paragraph 5.3.3) 

MMVll-A Core Memory 4K Address Selection 
4K address select switches (Paragraph 5.4.2) 

MRVll-A PROM/ROM Memory Jumpers 
Memory address (Paragraph 5.5.3) 
Reply signal (Paragraph 5.5.4) 
512 by 4-bit or 256 by 4-bit PROMs (Paragraph 5,5.2) 

DLVll Serial Line Unit Jumpers 
Device address (Paragraph 5.6.2.2) 
Vector address (Paragraph 5.6.2.3) 
Universal asynchronous receiver transmitter operation (Paragraph 

5.6.2.4) 
Baud rate selection (Paragraph 5.6.2.5) . 
EIA interface (Paragraph 5.6.2.6) 
20mA current loop interface (Paragraph 5.6.2.7) 
Framing error halt (Paragraph 5.6.2.8) 

DRVll Parallel Line Unit Jumpers and Pulse Width Modification 
Device address (Paragraph 5.7.2.2) 
Vector address (Paragraph 5.7.2.3). 
NEW DATA READY and DATA TRANSMITTED pulse width modifica­

tion (Paragraph 5.7.4.6) 

6-1 



DRVll-8 DMA Interface 
Device address (Paragraph 5.8.3.2) 
Vector address (Paragraph 5.8.3.3) 

DRVll-P LSI-11 Bus Foundation Module 
Device address (Paragraph 5.9.2.2) 
Vector address (Paragraph 5.9.2.3) 

The following checklist is for LSl-11 system configurations. It includes 
items that are not contained on particular modules bµt which must be 
c.hecked to ensure that the system is properly installed. 

1. BDCOK, BPOK, BEVNT, and BHAL T signals connected as required to 
backplane assembly (Paragraph 11.7.6). 

2. Modules inserted in backplane slots according to desired priority 
(Paragraph 6.3). 

3. Jumpers added to backplane when core memory (MMVll-A) is lo­
cated between processor and 1/0 device modules (Paragraph 6.3,3). 

4. Correct cabling selected for 1/0 device modules (Paragraph 6.5). 

5. Modules inserted in backplane slots with components facing in the 
correct direction (Paragraph 6.4) . 

• 
6. Correct power and ground inputs to backplane connector block (Para-

graphs 6.7.3 and 6.7.4). 
a. Voltage and current requirements met 
b. Correct terminal block power connections made 
c. Proper ground connection 

7. Environmental requirements met (Paragraph 6.7.5). 

NOTE 
Special cooling considerations might be required 
if more than one core or PROM module, or a 
combination of core and PROM modules, is im­
plemented on one H9270 backplane assembly. 

6.3 DEVICE PRIORITY 
6.3.1 General 
Device priority is established by the relative position of the device inter­
face module along the 1/0 bus· in which the devices are installed. The 
H9270 and DRVl 1-B backplanes are structured to allow the user to con­
figure device priority by installing modules in appropriate positions. The 
PDP-11/03 includes one factory-installed H9270 backplane. 

6.3.2 Priority Selection Using the H9270 Backplane 
Figure 6-1 is a front view of the H9270 backplane, showing typical 
module locations. The processor module should be installed in backplane 
slots Al-Dl. 

The LSJ-11 bus structure includes two daisy-chained signals: BIAKO 
L.,/BIAKI L (for interrupts) and BDMGO L/BDMGI L (for DMA grant). 
These signals normally propagate through option modules until they 
reach the requesting device. Option 1, as shown in Figure 6-1, is the 
first device location to receive the daisy-chained signals when the pro­
cessor module is installed in slots Al-Dl. Hence, six options can be in-

6-2 



stalled in the backplane. The PDP-11/03 is shipped with the processor 
module installed in the backplane as shown in the figure. Do not relocate 
the processor module to another location; a separate non-bused (jumper) 
connection is provided on the backplane to this location for proper RUN 
indicator' operation. 

CAUTION 
Do not configure the system with unused option locations in the back· 
plane between the processor module and 1/0 devices that require either 
of the two daisy-chained signals; an unused location will break the daisy­
chain signal continuity, and devices in higher numbered locations will 
not receive interrupt or OMA grant signals. Unused locations should 
occur only in the highest numbered option locations. 

Note that the daisy-chained BIAK and BDMG signals always folloVI! in 
increasing numbered option locations, as shown in the figure. 

6.3.3 H9270 Backplane/MMVll-A Configuration 
The MMVll-A position on the backplane should be carefully. considered 
when configuring the system. The MMVll-A's physical size is four times 
greater than other LSl-11 memory options, and it will require either two 
or four device (or option) locations on thee backplane, depending on 
where it is located on the backplane. It is actually comprised .of two 8.5 
by 10 in. modules that are mated in a single assembly. However, only 
one module has fingers that plug into the backplane. Hence, if the 
MMVll-A is installed in backplane row 4, the MMVll-A module not 
having backplane fingers will be located below the backplane (where 
"row 5" should be located) and rows 2 and 3 will be available for other 
options. Thus, row 4 is the recommended location for the MMVll-A. 

VIEW FROM MODULE SIDE OF BACKPLANE 

PROCESSOR 

OPTION 2 OPTION 1 

c~~ 
' LFERRED LOCATION FOR 

OPTION 3 OPTION 4 

OPTION 6 OPTION 5 

MMVI I-A CORE MEMORY. 

1 .-- PREFERRED LOCATION FOR 
KOil-F OR KDl1-J 
PROCESSOR MODULE, 

Figure 6-1 Typical H9270 Backplane Configuration 
-Processor and Option Locations 

If the MMVll-A is installed in row 2, as shown in Figure 6-2, row 3 will 
also be occupied by. the MMVll-A; however, the portion of the assembly 
in row 3 does not have backplane fingers. If any device modules are 
to be installed in row 4, it is necessary to install jumpers on the back­
plane in order to complete the DMA and interrupt grant signal chain. 
These jumpers (two required) should be wire wrapped between the 
backplane pins listed below: 

H9270 Backplane/MMVll·A Jumpers 

From 

C01N2 
C01S2 

To 

C04M2 
C04R2 

6-3 

Signal 

BIAKl/LO 
BDMGl/OL 



NOTE 
These jumpers are required only if the MMVll·A 
is installed in row 2. 

6.3.4 DDVll·B Expanded Backplane Configuration 
Device priority on the DDVll-B backplane is established in the same 
manner as described for the H9270 backplane. However, larger physi­
cal size allows up to 16 options (including a bus terminator module) to 
be installed on the backplane. Device (option) locations are shown in 
Figure 6-3. The highest priority location is Option 1; the lowest priority 
location is option 16. 

PROCESSOR 

MMV11-A CORE 

DEVICE 1 
MODULE SIDE 

NOTE: 
This is not o preferred configuration, for the preferred 
configuration, refer to figure 11-1. 

DEVICE 

Figure 6-2 H9270 Backplane/MMVll-A Core 

VIEW FROM MODULE SIDE OF BACKPLANE 

PREFERRED LOCATION FOR 
PROCESSOR MODULE 

"" A 

8 c D 

' PROCESSOR 

POWER 
TERMINAL 

BLOCK 

OPTION :i 

OPTION 3 

OPTION 6 

OPTION 7 

OPTION 10 ' 

OPTION 11 

OPTION 14 

OPTION 15 

OPTION 1 

OPTION 4 

OPTION S 

OPTION 8 

OPTION 9 

OPTION 12 

OPTION 13 

OPTION 16 

E F 

ROW 

3 . 

4 

6 

9 

~ 
USER DEFINED 

SLOTS 

Figure 6-3 Typical DDVll-B Backplane Configuration­
Processor and Option Locations 

6-4 



MODULE SIDE 

Figure 6-4 Module Installation in the H9270 Backplane 

CONNECTOR 
BLOCK 

/ 

When using the MMVll·A core memory on the DDVll-8 backplane, use 
the lowest priority option locations for the MMVll·A. Memory options, 
including core and semiconductor, are not priority dependent. If this 
procedure is followed, it will not be necessary to install BIAKl/O and 
BDMGl/0 jumpers as described in paragraph 6.3.3. However, if the 
MMVll-A is installed between the processor module and any device 
requiring interrupt or OMA service, the jumpers must be installed. 

When more than six options are installed on the backplane, a bus ter­
mination module is required. The TEVll bus terminator module option 
is normally used for this purpose. Install the TEVll in the last location 
(option 16 in Figure 6-3). 

NOTE 
This configuration is similar to the "interme­
diate configuration" shown in Figure 3-11. The 
bus must be terminated as specified in para­
graph 3.13 for minimum and intermediate con­
figurations. 

The REVll-A terminator, OMA refresh, bootstrap ROM option can be 
used as the bus termination instead of the TEVl 1. However, this option 
requires OMA service and must be installed as directed in paragraphs 
6.8. Improper REVll·A installation can result in improper memory re­
fresh operation; loss of semiconductor memory contents may result. 

6.4 MODULE INSERTION AND REMOVAL 
Modules must be installe_d or removed only when de power is removed 
from the backplane. The PDP-11/03 contains· a control/indicator panel 
on the front of the power supply; the DC ON/OFF switch allows the user 
to turn off de power for safe module insertion and removal. 

Modules must be installed in the backplane with components facing row 
1, as shown in Figure 6-4. 

Certain modules are equipped with metal handles that facilitate module 
installation and removal. These modules include the KDll-F and KDll·J 
processor modules, the MMVll·A core memory unit, the DRVll-8 OMA 
interface, and the DRVll-P LSl-11 bus foundation module. When in­
stalling a module equipped with the metal handles into the H9270 
backplane (or the DDVll-8 backplane equipped with the H0341 card 
cage assembly), carefully start the module fingers into the backplane 
connector block while inserting the metal handle fingers into the card 

6-5 



cage as shown in Figure 6-5. Once the module has been started into the 
backplane in this manner, insertion can be complete.d by pressing down­
ward on the handles; both handles must be pressed simultaneously. 
Module removal can be accomplished by simultaneously raising both 
handles until the handle fingers clear the card cage. The module can 
then be easily removed. 

Figure 6·5 Module Insertion Using Metal Handles 

CAUTION 
The LSl-11 modules and the backplane assembly 
mounting blocks may be damaged if the mod· 
ules are plugged. in backward. 

DC power must be removed from the backplane 
during module insertion or removal. 

6.5 1/0 CABLING 
Recommended 1/0 cable options for use with the DLVl 1 serial line unit 
and DRVll parallel line unit are listed below: 

DlVll Serial Line Unit 
20 mA Current Loop 
EIA Interface 

DRVll Parallel Line Unit 

Data Cab/e-
Two data cables (input data and output 
data) are required. Available in lengths 
of 10, 15, and 25 ft. Can be cut and 
terminated at the user's device. 

Maintenance Cable-
One maintenance cable is required for 
certain diagnostic tests. 

DRVll-B Parallel Line Unit 
Two data cables (input and output data) 
are required. 

Cable* 
BC05M·X 
BC05C·X 

Cable* 

BC07D·X 

·scOSR·X 

Cable* 
BC04Z·X 

*The -X in the cable number denotes length in feet, as follows: -1, -6, -10, ·20, -25. 
For example, a lOft EIA interface cable would be ordered as BC05C-10. 

6-6 



6.6 PDP-11/03 INSTALLATION PROCEDURE 

6.6.1 Packaging and Mounting 
The PDP-11/03 is packaged as shown in Figure 2-5. It is designed with 
a removable front panel. Removing the front panel exposes the LSI 
modules and cables. This enables replacement or installation of a mod­
ule from the front of the PDP-11/03. The 11/03 power supply is located 
on the right-hand side of the PDP-11/03 when viewed from the front. 
The power supply contains three front panel switches and indicators that 
are accessible through a cutout in the front panel. Therefore, when the 
front panel is removed, the lights and switches are still attached and 
functional. 

The PDP-11/03 is designed to mount in a standard 19 in. cabinet (Figure 
2-6). A standard 19 in. cabinet has two rows of mounting holes in the 
front, spaced 187\6 in. apart. The holes are located 1h in. or % in. apart. 
Standard front panel increments are 1% in. 

6.6.2 Power Requirements 
Input (primary) power requirements are listed in Paragraph 2.3.2. 

An appropriate power cable and plug is supplied with all PDP-11/03 
models. Note that a ground wire (and ground pin on the plug) must be 
connected to the normal service ground to ensure safe operation.· Do 
not cut or remove the ground pin . 

. The H780 power supply provides the required de power for the back­
plane in the PDP-11/03 enclosure. Typical de power requirements will 
range from 33 to 120 W (max). In addition, the power supply generates 
the necessary BPOK H and. BDCOK H power supply status signals, dis­
plays the RUN and DC status, and contains the ENABLE/HALT, DC 
ON/OFF, and LTC ON/OFF control switches. 

Before attempting to operate the system, ensure that the system is con­
figured as previously described in this chapter, and that environmental 
requirements are met. 

6.6.3 Environmental Requirements 
The PDP-11/03 will· operate at temperatures of 41° to 104° F (5° to 
40° C) with a relative humidity of 10 to 90 percent (no condensation), 
with adequate air flow across the modules. The fans in the H780 power 
supply will provide adequate air flow within the specified temperature 
range. 

6.7 LSl·ll SYSTEM INSTALLATION 

6.7.1 General 
When installing the LSl-11 system, the user must mount the backplane; 
provide de operating power, ground, and externally generated bus sig­
nals; and observe system environmental requirements. The following 
paragraphs describe the above items in detail. 

6.7.2 Mounting the Backplane 
The. H9270 backplane (Figure 2-1) is designed to accept the KDll-F or 
KDll-J microcomputer and up to six 1/0 interface or memory modules. 
Mounting of the H9270 backplane can be accomplished in any one of 
three planes, as shown in Figure 2-3. 

6-7 



The DDVll-B backplane (Figure 2-4) is designed to accept the KDll-F 
or KDll-J microcomputer and up to 15 1/0 interface or memory mod­
ules, and one bus terminator module. Mounting dimensions for the 
DDVll-B are provided in the figure. The optional H0341 card cage as­
sembly can be installed on the backplane; special mounting holes (not 
shown) are provided for that purpose. 

6.7.3 DC Power Connections 

6.7.3.1 Voltage and Current Requirements-A power supply for a single 
H9270 backplane LSl-11 system should have the following capacity: 

+5 V ±5% load; 0-18 A static/dynamic 
+12 V ±3% load; 0-2.5 A static/dynamic 
+5 ripple: less than 1 % of nominal voltage 
+12 ripple: less than 150 my pp (frequency 5 kHz) 

NOTE 
Regulation at the H9270 backplane must be 
maintained to the specifications listed above. 

A power supply for a DDVll-B, .or a multiple-backplane system using. 
H9270 backplanes should have the same voltage regulation and ripple 
specifications as listed for the single H9279 backplane. However, it will 
be necessary to calculate the actual power requirements, based on in­
dividual power requirements for modules used in the system. Refer to 
Table 2-1 for this information. 

6.7.3.2 Backplane Power Connections-Perform the following steps to 
.connect power to the H9270 backplane (Figure 6-6): 

1. Select wire size. (14 gauge is recommended.) Consider load current 
and distance between the power supply and backplane. 

2. For a standard system, connect the applicable wires to the H9270 
connector block per Table 11-1. 
For battery backup, remove the jumper between +5V and +5B and 
connect the applicable wires to the H9270 connector block per Table 
11-2. 

3. Connect the ground terminals at the power sources. 
4. It is recommended that the backplane frame/casting be electrically 

connected to system/power supply ground. 

@ +12V 

Figure 6-6 

B 

SIDE 2 

H9270 Backplane Terminal Block 

6-8 

A 

4 



Table 6-1 H9270 Backplane Standard Power Connections 

Power Source 
(From) 

+12V 
+5V 

GND 
GND 
-12V 

+12V 
+5V [ 
+5B I 
GND [ 
GND ( 
-12V 

H9270 Connector Block 
(To) 

Factory 
Connected 
Factory 
Connected 
(This voltage is not required. The 
connection is available for cus­
tom interfaces.) 

Table 6·2 H9270 Backplane Battery Backup Power Connections 

Power Source 
(From) 

+12V 
+sv (System Power) 
+5B (Battery Backup) 
GND 
GND 
-12V 

+12V 

+5V l 
+5B ( 
GND [ 
GND ( 
-12V 

H9270 Connector Block 
(To) 

Remove Factory 
Connection 
Factory 
Connected 
(This voltage is not required. The 
connection is available for cus­
tom interfaces.) 

Power connections to the DDVll-B backplane are accomplished in the 
same manner as described for the H9270. The DDVll-B backplane ter­
minal block power connections are located as shown in Figure 6-7. 

A c D 

+12V 
•5V r---, 4 

' ' •5V ' ' ' ' +58 ' ' I ' GND 

/L~ 
6 

GND 

9 

8~} BDCOK SIGNAL 
BHALT CONNECTIONS 
BEVNT (IDENTIFIED ON 
GND BACKPLANE) 
SRUN 

Figure 6-7 DDVll-B Backplane Terminal Block 

6-9 



6.7.4 Backplane Ground Connection 
Connect the backplane ground wire to system (or frame) ground in 
which backplane is installed. The ground terminal is located as shown 
in Figures 6·6 and 6-7. 

6.7.5 Environmental Requirements 
All LSl-11 modules will operate at temperatures of 41 ° to 122° F (5° to 
50° C) with a relative humidity of 10 to 90 percent (no condensation), 
with adequate air flow across the modules. When operating at the maxi­
mum temperature (122° F or 50° C), air flow must maintain the inlet to 
outlet air temperature rise to 12.5° F (7° C) maximum. Air flow should 
be directed across the modules as shown in Figure 6-8. 

6.7.6 Externally Generated Bus Signals 

6.7.6.1 General-Externally generated bus signals include 8DCOK H 
and 8POK H power status, 8EVNT L (line time clock) (if required), and 
8HALT L (if desired). The signals are applied to the H9270 backplane 
via a connector ·and ·an optional mating connector as shown in Figure 
6-9. The signals must conform to LSl-11 bus specifications described in 
Chapter 3. Connections made to the backplane via the ribbon cable 
shown in the figure must not exceed 12 inches in length. The DDVll-8 
includes signal connection pins in the same connector configuration. They 
are located as shown in Figure 6-7. Each signal is discussed in the fol­
lowing paragraphs. 

6.7.6.2 BDCOK H and BPOK H-Correct sequencing of the 8DCOK H 
and 8POK H signals is most necessary when the LSl-11 system contains 
core memory. (Core memory is supplied with the KDll-J LSl-11 pro­
cessor and MMVll-A core memory option.) Proper sequencing of the 
power signals will allow power-up and power-down sequencing without • 
loss of memory data. In addition, a power fail routine can be pro' 
grammed that will save the contents of CPU registers during power 
down, and automatically restore CPU registers and restart the inter­
rupted program (if desired) during the power-up sequence. 

Since the 4K semiconductor memory used on the KDll-F processor and 
MSVll-8 option is volatile (data is lost during absence of power), proper 
sequencing of power signals during power'·down is not required; how­
ever, all systems can benefit through the use of proper power signal 
sequencing to bring the processor to an orderly Halt during power off/ 
fail. This is important when the LSl-11 system is used in control appli­
cations that require an orderly Halt. Proper sequencing of the signals 
is not required .during power-up if. a manually operated INITIALIZE 
switch is' installed (Figure 6·10). If automatic initialization, or the or­
derly Halt is required, use the power signal generation circuit shown 
for core memory applications (Figure 6-11). Otherwise, use the simple 
initialization circuit described for non-core (MOS memory) systems. 

NOTE 
A switch bounce eliminator must be used with 
the manual 8DCOK switch shown in Figure 6-10. 

If the manual method of applying 8DCOK H is 
selected, contents of semiconductor read/write 

6-10 



memory may be lost when the BDCOK switch is 
depressed. 

It is not necessary to negate the BPOK H signal 
when manually initializing the processor. BPOK 
H may be left unconnected. 

The switch may be placed in the BDCOK ON 
position only when +5 V and +12 V supply 
voltages are applied to the backplane. Place the 
switch in the INITIALIZE position during power 
down or power up. 

AIR· 
OUTLET 

CONNECTOR 
CP-1764 

Figure 6·8 H9270 Backplane Air Flow 

6-11 



RIB'BON CABLE 

~ ....-MATING CONNECTOR DEC PART No.12·11206-02 
~ (3M PART No.3473-3) 

0 C B 

H9270 PRINTED 
CIRCUIT BOARD 

SIDE 2 

A 

Figure 6-9 H9270 Backplane ·Signal Connections 

SWITCH BOUNCE 
ELIMINATOR 

r-----1 
I I 

BDCDK ON L I I 
.-==~~---cl:-rOI I 

INITIALIZE 
(BDCOK OFF L) 

I I 
I I 
I I 
I I 

I I ._ ____ J 

BACKPLANE PRINTED CIRCUIT BOARD 
SIDE 2 

NOTE: 
BDCOKH S!GNAL (ASSERTED HIGH) 

LOW: 1. 3 V MAX 
HIGH: 1.7V MIN 

Figure 6-10 INITIALIZE Switch Circuit 

CP-1768 

4 

Figure 6-11 shows the circuit for the generation of the power sequence 
signals for the LSl-11 system. The circuit can be constructed by the user 
from standard, off-the-shelf components and incorporated into the LSl-11 
system. Operating power for the power signal generation circuit is de­
rived from the ac power line by means of a 28 Vac step-down transformer. 
The rectified secondary is applied to two three-terminal regulators. The 
7805 regulator produces regulated +5. V, while the 320 regulator pro­
duces regulated -5 V for the power signal generation circuits. Circuit 
operation is described in the following paragraphs. 

NOTES 
1. R-C valves shown are nominal for the delay 

times shown. Trim valves to produce the de­
lay times shown. 

6-12 



2. Adjust resistance to just maintain the retrig· 
gered state with normal ac input. Sufficient 
range is provided for 50Hz or 60Hz opera­
tion. 

3. ·Use a transformer with an appropriate pri· 
mary circuit for 115 V or 230 V operation. 
Secondary voltage/current should be 28 V, 
0.250 A (nominal). 

4. All resistors are 1,4 W. 

Power Up-During the power-up sequence, ac voltage from the trans· 
former secondary is applied to a Schmitt trigger circuit (Ql and Q2). 
The Schmitt trigger squares the ac sine wave and drives level converter 
Q3. Q3's output is a TIL-compatible signal. This square wave signal is 
applied directly to one input of an exclusive-OR gate, and to the second 
input of the exclusive-OR gate via a 5 µS delay circuit. This gating of the 
square wave produces a 5 µ pulse on each transition of the square wave 
at a rate of 120 or 100 pps (two times the line frequency). The pulse 
triggers the 10 ms one-shot and its output goes high. Successive pulses 
normally retrigger the one-shot and its output remains high. 

During the power,up sequence, +5 V SEN arid +12 V SEN (voltage 
sense) signals rise to voltage levels that cause voltage comparators A 
and B to produce high outputs. The comparator outputs are connected 
together and applied to one input of gate A. The remaining input of gate 
A is enabled by the high one-shot output signal that is applied (but not 
delayed) via driver B and the 3 ms delay circuit. Gate A's output goes 
high. This signal is then delayed 4 ms and inverted, producing a low 
signal that is applied to the non-inverting input of comparator C and 

- driver C. Comparator C's output goes low, turning off Q4 and producing 
an active BDCOK H signal 4 ms (minimum) after ac power is applied. 

Driver C's output goes high enabling gate 'B. The remaining gate B input 
is enabled by the high one-shot output signal. Gate B's high output 
signal is delayed 70 ms and inverted, producing a low signal that is ap­
plied to the non-inverting input of comparator D. Comparator D's output 
signal goes low, turning off Q5, and producing the active BPOK H signal 
70 ms after the active BDCOK H signal. With both signals in the active 
(high) state, normal system operation can proceed. 

Note that the one-shot circuit includes a lOK potentiometer. The poten­
tiometer allows for adjustment of the nominal 10 ms delay over an 
appropriate range for 50-Hz or 60-Hz line operation. It is adjusted to a 
point where the one-shot normally remains retriggered for the 10 ms 
(50-Hz line) or 8.34 ms (60-Hz line) period between ·ac line transitions. 

Power Down-When an ac power failure occurs, the trigger pulses to the 
one-shot cease, and the one-shot times out. Its output goes low, in­
hibiting gate B and gate A (via driver B). Gate B's output goes low; this 
low signal is inverted, but not delayed, by the 70 ms delay circuit, and 
the resulting high signal is applied to the non-inverting input of com· 
parator D. Comparator D's output goes high, turning on Q5, and negating 
BPOK H. Meanwhile, the high driver B output signal is delay'ed 3 ms 

6-13 



"'"~•'°"' Ill 230V/£.50Hz 
!NOTE J) 

28V/£ 
SECTION 

NOTES: 

1. RC VALUES SHOWN ARE NOMINAL FOR !HE DELAY T~ES SHOWN. 
TRIM VALUES TO PRODUCE THE DELAY TIMES SHOWN. 

2 ADJUST RESISTANCE TO JUST MAINTAIN THE RETRIGGERED STATE 
WITH NORMAL AC INPUT. SUFFJCIEN1" RANGE JS PROVIDED FOR 
.50H• OR 60Hz OPERATION 

J. USE A TRANSFORMER WITH AN APPROPIATE PRIMARY CIRCUIT FOR 
11.5V OR 2JOV OPERATION SECONOARY VOLTAGE/CURRfNT 
SHOULD BE 28V,0.250A(N0MINAL). 

4. ALL RESISTORS ARE 1/4 W 

Figure 6·11 

•.5V SEN ---<,;,--<r-f-------i 

1N7.56A 
8.2V 

'" 

•12V SEN.---->:.J-~------1 

+.5V COMPARATOR 
B 

Power Signal Generation Circuit 

" 
" 

BDCOK H 



and inverted. The resulting low signal inhibits gate A causing its output 
signal to go low. The low signal is inverted (but not delayed) by the 4 
ms delay circuit and applied to the non-inverting input of comparator C. 
Comparator C's output goes high, turning on Q4 and negating the 
BDCOK H signal 3 ms after 'BPOK H becomes negated. 

A feature of the power signal generation circuit shown in Figure 6-11 is 
the line time clock (L TC) output BEVNT L signal. This signal is pro­
duced by Q3's square wave output signal at the 60-Hz or 50-Hz line 
frequency. Its use in the LSl-11 system is optional; however, if it is used, 
the circuit described in Paragraph 6.7.6.3 should not be used. 

The BEVNT L, BDCOK H, and BPOK H signals produced by the power 
signal generation circuit are connected to the LSl-11 backplane by 
means of the nine male pins on the backplane. A mating female nine-pin 
connector (DIGITAL part no. 12·11206-02, or 3M part no. 3473·3) should 
be used to connect the power signals to the backplane. 

6.7.6.3 BEVNT L. Signal-The BEVNT L signal input to the backplane 
is the external event interrupt. Asserting the BEVNT L signal initiates the 
L TC (line time clock) interrupt on the processor. The processor will trap 
through location 1008 if PS bit 7 = 0. A typical circuit for generating 
BEVNT l is shown in Figure 6-12. 

FREQ= AC PWR 

INPUT 
FREQ. 

SOURCE 

LINE FREQ. 

BEVNTL 

CP- 2040 

Figure 6-12 BEVNT Signal 

6.7.6.4 BHALT L Signal-Manual control of the Halt mode can be ob­
tained by connecting a SHALT L signal line to the backplane printed 
circuit board. The BHALT L signal level should meet bus specifications 
described in Paragraph 3.12. 

When in the Halt mode, user program execution is not performed and 
the processor executes ODT console microcode. However, the processor 
will execute memory refresh in a normal manner and respond to OMA 
requests, even when BHAL T is asserted; all device and L TC interrupt 
requests are ignored. 

6.8 USING LSl·ll BUS ACCESSORY OPTIONS 

6.8.1 General 
Several LSl-11 bus accessory options are available for bus expansion, 

• bus termination, OMA refresh, bootstrap ROM, and combinations of the 
preceding. The options can be used in both LSl-11 and PDP·ll/03 ap· 
plications. A summary of the options is provided in Table 6-3. 

6·15 



Option No. 
REVll-A 

REVll-C 
TEVll 
BCVlB-XX 

BCVlA·XX 

Table 6-3 LSl-11 Bus Options · 

Includes 
M9400-YA Module 

M9400-YC Module 
M9400·YB Module 
Two BC05L-XX 
cables, one 
M9400-YE module, 
and one M9401 
module. 

System Functions 
120 n bus terminator, OMA refresh, 
bootstrap ROM. 
OMA refresh, bootstrap ROM. 
120 n bus terminator. 
Bus expansion: 250 n terminator 
(M9400-YE), two expansion cables, 
backplane connector (M9401). Nor­
mally used for expansion from first 
to second backplane in 2 or 3 back­
plane systems. 

NOTE 
The -XX in BCVlA-XX and BCVlB·XX options de­
notes cable lengths. Options are available with 
cable lengths of 2, 4, 6, and 10 ft. For example, 
a BCVlA-06 includes two 6-ft cables. 

Two BC05L-XX 
cables, one 
M9400,YO module, 
and one M9401 
module. 

Bus expansion: two expansion ca­
bles and two backplane connector 
modules (M9400-YO and M9401). 
Normally used for expansion from 
second to third backplane in three­
backplane systems. (A TEVl 1 120 fl 
terminator must be installed in the 
last device slot in backplane 3.) 

NOTE 
BCVlA-XX and BCVlB·XX options, when used in 
a three backplane system, s.hould be ordered 
with a 4 ft (minimum) cable length difference. 
For example, a BCVlA-02 and BCVlB-06 com­
prise a three-backplane set. The difference in 
length will locate signal transients (if present) 
to occur on the cables, rather than on one of 
the backplanes. 

6.8.2 Using the REVll-A 
6.8.2.1 Installation-The REVll·A is normally factory-~nstalled in a 
system backplane as part of a complete system. However, if the module 
is removed for service or system modifications, it must be properly in­
,stalled to ensure proper system operation. Items to be considered when 
installing the REVll·A are: 

1. Jumpers (M9400-YA and processor module) 
2. Module location on backplane 

CAUTION 
The use of other OMA devices that are installed 
on the 1/0 bus between the REVll-A and the 
processor module will likely result in ineffective 
OMA refresh and loss of memory data. When 
OMA devices are to be used in addition to the 

6-16 



REVll option, use the REVll-C (no termination 
resistors) and the TEVll; install the REVll-C 
as the highest priority OMA device and the 
TEVll as the 120 fl bus termination in the last 
option location. 

Jumpers-Three jumpers are normally installed on the M9400-YA mod­
ule, as shown in Figure 6-13. Jumpers W2 and/or W4 can be removed 
to alter REVll-A operation as follows: 

Jumper 
W2 
W4 

Normal 
(Installed) Function 

OMA refresh enabled 
Bootstrap ROM enabled 

Altered 
(Removed) Function 

OMA refresh disabled 
Bootstrap ROM disabled 

Module Location on Backplane-The REVll-A is used in two or three 
backplane configurations that require a 120 n bus termination in the last 
option location on the 1/0 bus. The REVll-A must not be used in system 
applications that use other OMA devices on the 1/0 bus, since those de­
vices would have higher priority. Do not allow any option locations be­
tween the M9400-YA and the processor module to remain unoccupied; 
option locations must be occupied in order to pass the processor's 
daisy-chained BDMGl/0 L signal to the M9400-YA module. Hence, the 
module should be located in the last available- option location on the 
last (second or third) backplane. 

6.8.2.2 Operation-Bootstrap ROM programs included in this option 
are used as described in Section II, Chapter 3. 

6.8.3 Using the REVll-C 
The REVll-C is identical to the REVll-A except the bus termination func­
tion is not included. This option should be installed as the first (highest 
priority) OMA device in the system. As supplied from the factory, the 
bootstrap ROM and OMA refresh functions are implemented. If desired, 
one of the functions can be disabled by removing a jumper, as directed 
for the REVll-A option (paragraph 6.8.2.1). 

6.8.4 Using the TEVll 
The TEVll is a 120 n terminator module that is used in LSl-11 multiple 
backplane assemblies. Install the TEVll in the last available location in 
the last (second or third) backplane. 

6.8.5 Using the BCVlB 
The BCVlB option includes two BC05L cables, one M9400-YE module, 
and one M9401 module. This option is always used to connect the first 
backplane to a second backplane in multiple backplane systems. 

Install the M9400-YE module in the last location in the first backplane, 
slots A4, 84. Ensure that all option slots in the first backplane are oc­
cupied. This is necessary to ensure that daisy-chained BIAK and BDMG 
signals will be applied to the last option in the ba'ckplane (M9400-YE 
module). Install the M9401 module in the first option slot (Al, Bl) of 
the second backplane. Install the two BC05L cables between the M9400-
YE and M9401 modules. Note that Jl on each module are connected by 
the same cable; similarly, J2 on each module are connected by the 
secon!1 cable. 

6-17 



0 0 0 

B B B B 

0 

. I OMA 
W2 REFRESH 

ENABLE 

I BOOTSTRAP 
W4 ROM 

ENABLE 

w•l 
(ALWAYS 

INSTALLED) 

11-3_607 

Figure 6-13 REVll-A, -C, Jumpers 

The completed installation for a two backplane system using the BCVlB 
option· is shown in Figure 6-14. A 120 n bus termination is required in 
the last option slot in the second backplane in a two backplane con­
figuration. This function is normally provided by the TEVll option, 
previously described. 

6.8.6 Using the BCVlA 
The BCVlA option includes two BC05L cables, one M9400-YD module, 
and one M9401 module. This option is always. used to connect the 
second backplane to the third backplane in a three backplane system. 

6-18 



A 

PROCESSOR MODULE 

OPTION 2 

OPTION 3 

250 n TERMINATOR/ 
CABLE CONNECTOR 11) 

l l 

EXPANSION J J CABLES (1) 

A _I_ _r_ B 

CABLE CONNECTOR {t) 

OPTION 8 

OPTION 9 

120n TERMINATOR/ 
CABLE CONNECTOR {2) 

Notes: 
1. Included in BCV1B bu's expansion option. (Cables are available 

in 2, 4, 6, or 12 ft. lengths.) 

2. Included in TEVl 1 bus terminator option. 

c 

OPTION 1 

OPTION 4 

OPTION 5 

OPTION £i 

OPTION 7 

OPTION 10 

OPTION 11 

Figure 6-14 BCVlB Installation 

D 

D 

FIRST 
BACKPLANE 

SECOND 
BACKPLANE 

CP-2047 

Install the M9400-YD module in the last option location in the second 
backplane, slots A4, 84. Observe that all option slots in the first and 
second backplanes are occupied. This is necessary to ensure that daisy­
chained BIAK and BDMG signals will be applied to the last option slot 
in the second backplane, in which the M9400-YD is installed. Install the 
M9401 module in the first option slot (Al, Bl) in the third backplane. 
Install the two BC05L cables between the M9400·YD and M9401 
modules. Jl on each module are connected by the same cable. Similarly, 
J2 on each module are connected by the second cable. 

The completed installation for a three backplane system using the BCVlA 
option is shown in Figure 6-15. In addition to this option, the BCVlB 
option is required to connect the first backplane to the second back­
plane, a 120 fl bus termination is required in the last option slot in the 
third backplane. The 120 fl bus termination function is normally pro­
vided by the TEVll .option, as previously described. 

6.9 USING BAll-ME AND BAll-MF EXPANSION BOXES 
Install the BAll·ME (115 v, 60 Hz) or BAll-MF (230 v, 50 Hz) expansion 
box into a rack using the procedure described for the PDP-11/03 (Para­
graph 6;6.1). When using an expansion box to expand from a single to 
a dual backplane system, the BCVlB bus expansion option and TEVll 
bus terminator options must be used. Install the BCVlB modules and 
cables as shown in Figure 6-16, The TEVll can be installed in option 
location "8" in the expander box. Carefully fold excess cable as shown 
in the figure. Refer to Paragraphs 6.8.4 and 9.8.5 for proper installation 
of the BCVlB and TEVll options. 

6-19 



A c 

PROCESSOR MODULE 

OPTION2 

OPTION 3 

25Dll TERMINATOR/ 
CABLE CONNECTOR (1) 

~ 

:1 EXPANSION 
CABLES (1) 

A ~ B 

CABLE CONNECTOR 111 

OPTION 8 

OPTION 9 

CABLE CONNECTOR {2) 

TT 
EXPANSION 1 .1 CABLES (2) 

A _r_ _r_ B 

CABLE CONNECTOR {2) 

OPTIC~ 14 

OPTION 15 

120 n TERMINATION (3) 

Notes: 
1. Included in BCV1B bus expansion option. (Cables are available 

in 2, 4, 6, or 12 ft. lengths.) 

. . 
2. Included in BCV1A bus expansion option. (Cables are available 

in 2, 4, 6, or 12 ft. lengths.) 

3. Included in TEV11 bus terminator option. 

4. The LSl11 Bus is restricted to 15 options, maximum, The$!! 
option slots would only be used when previous option(s) 
oocupy more than 1 option location. 

6. BCV1A and BCV18 expansion cables must c.liffar in length 
by four feet (minimum). 

c 

c 

D 

OPTION 1 

OPTION4 

OPTION 5 

D 

OPTIONS 

OPTION 7 

OPTION 10 

OPTION 11 

D 

OPTION 12 

OPTION 13 

OPTION 16 (4) 

OPTION 17 (41 

Figure 6-15 BCVIA Installation 

6-20 

FIRST 
BACKPLANE 

SECOND 
BACKPLANE 

THIRD 
BACKPLANE 



When expanding from a second to a third back"plane, the BCVlB bus ex­
pansion option is required, in addition to the items required for expan­
sion to the second backplane. The BCVIA installation is described in 
Paragraph 6.8.6. Note that the TEVl 1 is installed in the third backplane 
(second expansion box). 

NOTE 
BCVlA and BCVlB cables must differ in length 
by four feet (minimum). 

M9400YE 

~9400VE t---...,.-----+------,--1 

M9401 

fRONT Sta: FID'fl' SIDE 
M9401 

Figure 6-16 BAll Expansion Box 
interconnections (two-backplane system) 

6-21 

BC05L·06 
12 CABLES} 



6-22 



CHAPTER 7 

USING PROMs 

7.1 GENERAL 
This chapter contains specific instructions for programming, loading, and 
installing PROMs for use in the MRVll-AA module. MRVll-AC PROMs 
and user-supplied 512 x 4 or 256 x 4 PROMs are covered in the follow­
ing paragraphs. 

7.2 PROM TYPES 
Basically, two general types of PROMs can be used in the MRVll-AA 
module: 512 x 4 bit, and 256 x 4 bit. The MRVll-AA module contains 
sockets for installation of up to 32 PROMs. Only the types listed in this 
chapter are recommended; the particular pinning and 1/0 levels for the 
devices listed are fully compatible with MRVll-AA addressing and data 
interface. Note that PROMs are always used in multiples of four, com­
prising the 16-bit LSl-11 word format. Hence, a minimum configuration 
of four PROM chips will comprise either a 256 x 16 or 512 x 16 read­
only memory function. Recommended types are listed in Table 7-1. 

Table 7-1 MRVll-AA PROM Types 

Manufacturer 512 4-Bit 256 4-Bit 
or Source Chips Chips 

Digital Equipment Corp. MRVll-AC 

lntersil IM5624 IM5623 

Signetics 82Sl31 82Sl29 

MMI 6306 6301 

NOTE 
Refer to PROM chip manufacturer's instructions 
for actual blasting procedure and recommended 
equipment. 

7.3 PROGRAMMING NOTES 
Generally, programs or data that can be read from read/write memory 
can also be read from PROMs. However, special care is required when 
using the MTPS·instruction and KEVll-option EIS instructions. These 
instructions are listed below: 

Mnemonic Octal Code Instruction 

MTPS 1064SS Move byte to PS 

MUL 070RSS Multiply 

DIV 071RSS Divide 

ASH 072RSS Shift arithmetically 

ASHC 073RSS Arithmetic shift combined 

7-1 



These instructions, when executed on an LSl-11 processor (or PDP-
11/03 system), fetch source operands via the DATIO bus cycle, rather 
than the DAT! bus cycle. Hence, fetching a source operand from a PROM 
or ROM location will result in a bus error (time-out) because the pro­
cessor will attempt to write into the addressed location after fetching 
the operand. 

This potential problem can be avoided when writing the program by 
simply including a separate MOVe instruction. First, MOVe the source 
operand .from the PROM or ROM location to a general register or a lo­
cation in read/write memory. The MTPS or appropriate EIS installation 
is then executed using the general register and read/write memory loca­
tion as the source operand. 

Two examples are shown below using general register R4 and memory 
location TEMP as the source operand: 

1. Using a general register: 

. MOV NEWPS, R4; move source operand from PROM to temporary 
(general) register. 

MTPS R4; move N EWPS to PS. 

2. Using a temporary read/write memory location: 

MOV CONS, TEMP; move source operand from PROM to temporary 
location in read/write memory. 

MUL RI, TEMP; multiply the contents of RI by the CONStant 
in TEMP. 

When programming PROMs for use as an RT-11 bootstrap, use 256 x 4 
PROMs instead of 5I2 X 4 PROMs. This will allow the MRVll-AA ad­
dress to be configured in the I73000-173776 range. Processor module 
power-up mode 2 can then be used for automatically bootstrapping 
RT-11 during system turn-on. Avoid using 5I2 x 4 PROMs in this ap-

- plication. If 512 x 4 PROMs are used, the MRVll-AA will respond in the 
172000-173776 address range and the RT-11 Editor (EDIT.SAY) cannot 
run properly. This problem exists because the Editor tests for a periph­
eral device (the VTll) in the 172000-172776 address range. The prob­
lem can be avoided by using 256 x 4 PROMs, as described. 

SYMBOLIC} 
CMPB (R3),-(R31 

CODE 
SEGMENT OR 

CHIP NO. 

MACHINE} 

4 1+--~~---' 

12134 3 " 
CODE 

,-----'------,~-~~ ~~-~,-------->----, 

1010001011100011 

llil~l~f lli'. 
Figure 7-I Data Format 

7-2 

PINS 

~ 
12 

11 

10 

9 

,, - 3654 



7.4 LOADING PROMs 
7.4.1 General 
Loading (blasting, burning, or programming) PROMs is the process 
where the binary information is permanently stored in the PROM chip 
locations. This is a destructive process that must be carefully executed 
as directed by the appropriate PROM chip manufacturer's instructions. 

7.4.2 Word Format 
Each PROM word, when read by the LSl·ll processor, is stored in four 
4-bit ·slices in four separate PROM .chips. Each word is simultaneously 
addressed and produces its respective 4-bit portion of the 16-bit word 
that is read. For example, consider the CMPB instruction shown in 
Figure 7-1. Its machine code, using the addressing modes shown, is 
121343 8 or 1010001011100011 2 • The binary bits are stored in chips 
numbered from 1 to 4. Chip output pins, as indicated, will yield the read 
data bits for this instruction when addressed. 

Since the word format is contained in four 4-bit slices (one slice in each 
PROM chip), the user must load each PROM chip with successive mem­
ory locations, but dedicated to one 4-bit slice. This information can be 
generated manually-an error-prone, time-consuming process-or it can 
be generated automatically using the optional QJVll ROM program 
software, described later. 

7.4.3 Addressing 
PROM chips, when installed in the MRVll-AA module, are addressed by 
low-active address bits. When loading PRO Ms, the user must be careful 
that the correct addressing technique is used. An example of this ad­
dressing technique, relative to PROM chip pins, is provided in Table 7-2. 
Note that 256 X 4 bit and 512 x 4 bit PROMs are addressed in exactly 
the same manner, except for pin 14 which is A8 in the 512 x 4 bit part, 
and CE in the 256 X 4 bit part. Also note that LSl-11 bus address bit 
0 (DALO L) is not used in this application since all read operations are 
16-bit word bus transfers. 

The optional QJVll ROM programmer software addresses PROM chips 
in the manner described herein. 

The MRVll·AA address word format for 512 x 4 and 256 x 4 PROM 
applications is shown in Figure 7-2. Note the BDALO is not used in the 
address word format; BDALl corresponds to PROM chip address bit AO. 
The 4K bank select bits and 2K segment select bit (256 x 4 PROM 
applications only) are jumper-configured on the MRVll·AA module. 

7.5 PROM FORMATTING USING THE QJVll PROGRAM 

7.5.1 General 
The QJVll PROM formatter program is a software option that greatly 
reduces the work required for coding binary patterns for individual PROM 
chips. Input to the program is object tapes punched in absolute loader 
format. It will produce and verify PROM tapes and listings for 256 x 4 
bit and 512 X 4 bit PROMs for use in the MRVll-AA, and PROM chips 
in other configurations for special user applications. 

7-3 



Octal 

0 
2 
4 
6 

10 
12 
14 
16 
20 

774 
776 

Table 7-2 PROM Chip Addressing 

Address* 

Binary 

000000000 
000000010 
000000100 
000000110 
000001000 
000001010 
000001100 
000001110 
000010000 

111111100 
111111110 

8 7 6 5 4 3 2 

14 1 2 3 4 7 6 5 

H H H H H H H H 
H H H H H H H L 
H H H H H H L H 
H H H H H H L L 
H H H H H L H H 
H H H H· H L H L 
H H H H H L L H 
H H H H H L L L 
H H H H L H H H 

L L L L L L L H 
L L L L L L L L 

<-Address- (DAL) Bits 

<-PROM Chip Pins 

Actual 
Logic 
Levels 
Required 
(256" Locations) 

':'Address bit 0 is not used, hence, only even-numbered addresses are 
shown. 

~ml 15 14 13 12 " 10 o• lo• 01 oo I) ~~~M 4 

.:~. {PR~~i~i~0--t--PROM :dgREis BITS :j 
SELECT 1 

r-PROM SET NO 256 1. 4 I I I I I llCE NO! I PROM ADDRESS BITS I 
L 2K SEGMENT 

SELECT BIT 

Figure 7-2 MRVll-AA Address Word Format 

7.5.2 Loading QJVll 

I j 256 ,4 PROM 

QJVll is supplied on punched paper tape in absolute loader format. 
Load the program using the Absolute Loader program (DEC-11-UABLB· 
A-PO) or the REVll·A or REVll-C AL (absolute loader) command. 

Hardware requirements include BK read/write memory (minimum), and 
either a high-speed paper tape reader (CSR address = 177550) or a 
low-speed reader (Teletype®) used as the console terminal (CSR address 
= 177560). A procedure for loading QJVll is shown in Figure 7-3. If 
problems are encountered, refer to the more detailed paper tape system 
operating instructions contained in Section II, Chapter 4. QJVll is self-

®Teletype is a registered trademark of Teletype Corporation. 

7.4 



starting; when it has been correctly loaded the program automatically 
starts and the initial message shown in Figure 7-4 is displayed. QJVll 
is now ready to receive specific input parameters. 

7.5.3 Entering Parameters 
QJVll requires certain inputs that must be supplied for each PROM 
loading session. The dialogue between the QJVll user and the program 
is as shown in Figure 7·4; note that this is an example for 512 X 4 
PROMs to be used in the MRVll-AA PROM module. 

The first parameter to be entered is the number of words (locations) in 
a PROM. The parameter is requested in the form of a question at the 
end of the initial message. Operator response to QJVll requests in 
Figure 7·4 are underlined. Refer to Table 7·3 for a list of valid param­
eter inputs for specific applications. 

When reading source tapes for MRVll·AA programs that are not greater 
than 4K, only a single pass of the source tape is required; the QJVll's 
source buffer is 4K words (4096 x 16 bits). However, longer programs 
will require one additional pass for each 4K word buffer storage. The 
appropriate portion of the program is read into the buffer when reading 
the source tape as specified by the "starting address of the area to be 
output." Hence, the starting addresses shown in Table 7-3 are applicable 
for both multiple-pass programs to specify the starting address for that 
pass and programs that do not reside in the first 4K of system memory 
(addresses 0-17776). 

The final input to QJVl 1 is the source program to be .loaded into the 
PROMs. The program must be in absolute loader format. Place the 
source tape in the tape reader. Press the RETURN key on the console 
device to initiate tape reading. 

7-5 



Parameter 

No. words in a PROM (Na) 

No. bits in a PROM word (Na) 
.No. PROMs used in parallel 

Are data bits inverted 
Are addr. lines inverted 
How many bytes in the area 
to be output (Na) · 
Starting Address 

1/0 device on the H.S. 
reader/punch 

Table 7·3 QJVll Input Parameter 

MRVll·AA Applications 

512 X 4 PROMs 256 X 4 PROMs· 

1000 400 

4 
4 

N 
y 

20000 

0, 20000, 40000, 
60000, 100000, 
etc. 

YorN 

4 
4 

N 
y 

10000 

0, 10000, 20000, 
30000, 40000, 
etc. 

YorN 

Special Applications 
(not for MRVll·AA use) 

Any integer power of two (2000 
max.) 
l, 2, 4, or 10 (8 10) 

Any number; however, No. bits 
x No. PROMs must not exceed 
20 (1610>· 
N orY 
N orY 
Any integer power of two 
(20000 max.) 
Any integer multiple of the no. 
of bytes in the area to be out· 
put 
YorN 



TYPE: 
AL 177550 <CR> 

A 

REFER TO 
SECTION II, 
CHAPTER 4 

SYSTEM 
START 

TYPE: 
AL <CR> 

ENTER OPERATING 
PARAMETERS 

Figure 7-3 Loading QJVll in LSl-11 and PDP-11/03 Systems 

7-7 

1t -'5849 



PROM VOl-00 

ENTER AN OCTAL VALUE IN RESPONSE TO QUESTIONS 
WHICH REQUIRE A NUMERIC RESPONSE. TYPE 'Y' FOR 
YES AND 'N' OR NOTHING FOR NO. TERMINATE ALL 
RESPONSES WITH A <CR> (CARRIAGE RETURN). 
RUBOUT MAY BE USED TO DELETE ONE CHARACTER AT 
A TIME BEFORE <CR> IS TYPED. CTRL/U MAY BE 
USED TO DELETE THE ENTIRE RESPONSE. CTRL/0 
MAY BE TYPED TO TURN OFF OUTPUT TO THE 
TERMINAL. 

HOW MANY WORDS ARE IN A PROM? 1000 
HOW MANY BITS ARE 'IN A PROM WORD? 4 
HOW MANY PROMS ARE USED IN PARALLEL? 4 
ARE THE DATA BITS INVERTED? N 
ARE THE ADDRESS LINES INVERTED? Y 
HOW MAY BYTES ARE IN THE AREA TO BE 
OUTPUT? 20000 
WHAT IS THE STARTING ADDRESS OF THE AREA TO 
BE OUTPUT? 0 
IS YOUR INPUT/OUTPUT DEVICE ON THE HIGH SPEED 
READER/PUNCH? Y 
READY INPUT, TYPE <CR> WHEN READY. <CR> 

DO YOU WISH TO PUNCH TAPES? Y 
NO OUTPUT FOR PROM ADDRESS 010000 
NO OUTPUT FOR PROM ADDRESS 012000 
NO OUTPUT FOR PROM ADDRESS 014000 
NO OUTPUT FOR PROM ADDRESS 016000 
DO YOU WANT TO VERIFY A TAPE? N 
DO YOU WANT A LIST OF THE PROM CONTENTS? Y 
DO YOU WANT IT ON A LINE PRINTER? Y 
DO YOU WISH TO MAKE ANOTHER TAPE? N 

Initial 
Message 

Input 
Parameters 

QJVll 
Operation 

Figure 7-4 QJVll Program Execution (512 x 4 PROMs) 

7.5.4 QJVll Operation 

7.5.4.1 General-Once the input parameters and source program have 
been entered, the QJVll is ready to output the desired tapes, listings, 
or to verify tapes. Operation is simple: respond to QJVll questions by 
typing Y or N to indicate the operation(s) desired. The Y answers cause 
the appropriate QJVl 1 function to execute immediately. The example 
shown in Figure 7-4 does not contain the PROM program listing because 
the separate line printer was selected for the listing. (QJVll assumes 
a line printer CSR address = 177514.) If the line printer was not se­
lected, the listing would appear immediately below the listing request. 

7.5.4.2 PROM Paper Tape Format-The QJVll output tape is punched 
with as many segments as there are PROMs to be loaded for a partic­
ular application. A segment contains the information necessary for load­
ing one 512 X 4 bit or one 256 x 4 bit PROM. Since PROMs are re­
quired for the 16-bit LSl-11 word format, four segments are required, 

7-8 



comprising a set. Therefore, the minimum-size QJVll output would 
occur when programming a single set of four 256 x 4 bif-PROMs. 

The actual tape is punched as shown in Figure 7-5. Special alternate 
punched frames (16 total) identify that a PROM set follows. This area is 
followed by 32 frames with all frames punched (3778 ), followed by an 
unpunched frame (0). The first data frame follows immediately after the 
unpunched frame_ 

This frame contains the low-order four bits of the 16-bit PROM word at 
the lowest address (0) in this PROM set; the bits are read over BDAL0-3 
bus lines. Successive frames contain 4-bit slices, each representing the 
4-bit contents of a PROM location. A frame is punched for each of the 
256 or 512 locations in the PROM's segment. Frames are punched in 
high-active PROM address sequence, rather than LSl-11 bus address 
sequence. (LSl-11 bus address bits are inverted; hence, PROMs are 
programmed starting at the highest bus address or lowest PROM loca­
tion address.) 

7.5.4.3 Verifying Tapes-Tapes punched by OJVll can be verified by 
comparing the punched tape with the OJVll's source buffer contents. 
Respond to the "DO YOU WANT TO VERIFY A TAPE;" request by typing 
Y <CR>. The program responds with "READY INPUT, TYPE <CR> 
WHEN READY." Place the tape in the reader and press the RETURN 
key on the console device. 

•sET• LEADER -
ALTERNATE FRAMES 

OF 2529 AND 1259 
SINGLE UNPUNCHED FRAME 11 FIRST DATA FRAME 

UIPMENT CORPORATJ()e,.••••.•ue.~.tll'ft!f:nfftffllff~~====:::::: :••::: •• ::: •• ~: o 

4- •••••••••••••••• ··~·· •• : : :;;::!!!!!!!!!!!!!!!!!!!!!!!!!!!!.:: :: :;;:: :: .. :·~ . . ................................. ~ . . ................................. . . . . . . . . ..... ::: ::: ::::::: :::::: :: ::::: :: :: :: 
'--~~~~~~~~~~--'~ 

"SEGMENT• LEADER 
32 FRAMES 

OF 3779 EACH 

SEGMENT OI 
DATA FRAMES 

S'iR. • • • • • • • •••••• ::::"B:w.m1:i:rm1:t1R~RA2'4lg'N: ·• :"R•GRAMt1 
. . . . . ..... .......................... . . ~· .. . +-••···········-··-··········· . ·······················-·········~ ,..,.. ...... . • • • • • • • • •• • •••••••••••••••••••••••••• • • • L!J ••• ... . ........................ . ... . ........................ . .... . ........................ . ..... .......................... . 

"SEGMENT• 
LEADER 

SINGLE 
UNPUNCHED 

FRAME 

Figure 7-5 OJVl 1 PROM Tape Format 

SEGMENT 
02, 03, OR 04 
DATA FRAMES 

11-3852 

If an error is found, the program responds with "ERROR VERIFYING 
TAPE;" when an error is found it is necessary to punch another tape. 
If errors are not found, the program responds with "DO YOU WANT A 
LIST OF THE PROM CONTENTS?" 

7-9 



7.5.4.4 QJVll PROM Listing Format-A sample portion of a PROM 
listing is shown in Figure 7-6. The listing is organized by sets. Each set 
contains the successive PROM .. addresses, octal and binary codes for 
each of the four segments, Ute system memory address obtained from 
the absolute loader format source tape, and the octal content of the 
16-bit PROM word. 

7.5.4.5 Using QJVll PROM Tapes-PROM tapes can be used with 
automatic PROM loaders, such as those manufactured by DATA 1/0 
Corporation. Refer to the instructions supplied with that equipment for 
proper use of PROM tapes. 

7.6 INSTALLING PROMs 
After PROMs are properly programmed, loaded, and verified, they can 
be installed on the properly configured MRVll-AA module. Refer to 
chapter 5, paragraph 5, for instructions on installing and removing 
jumpers. Jumpers are used for configuring the module for 512 x 4 or 
256 x 4 PROM use, module 4K bank address, and, for 256 x 4 PROM 
applications, the upper or lower 2K segment selection within a memory 
bank. In addition, reply jumpers can be removed to disable the MRVll· 
AA's response to unpopulated PROM set(s) sockets. Refer to Figure 7-7 
for proper location of PROM chips. Observe that PROMs are always in­
stalled in sets of four-one for each segment. Segment and set num­
bers correspond to the numbers listed in Figure 7-6. 

An addressing summary for PROM sets as arranged by physical loca­
tions (CE numbers marked on the MRVll,AA module) is provided in 
Table 7-4. 

Table 7-4 MRVll-AA PROM Chip Addressing Summary 

Address Range 

512 X 4 PROMs 256 X 4 PROMs 

Physical Physical 
Set No. Decimal Octal location Decimal Octal location 

0 0-511 0-1777 CEO 0-255 0-777 CEO 
1 512-1023 2000-3777 CEl 256-511 1000-1777 CE4 
2 1024'-1545 4000-5777 CE2 512-767 2000-2777 CEl 
3 1546-2047 6000-7777 CE3 768-1023 3000-3777 CE5 
4 2048-2557 10000-11777 CE4 1024-1279 4000-4777 CE2 
5 2560-3071 12000-13777 CE5 1280-1545 5000-5777 CE6 
6 3072-3583 14000-15777 CE6 1546-1791 6000-6777 CE3 
7 3584-4095 16000-17777 CE?. 1792-2047 7000-7777 CE? 

7-10 



PROM 
CHIP 

ADDRESS 

PROM 

---+ 000 
001 
00.2 
oo:;: 
004 
005 
006 
007 
010 
011 
012 

775 
77(:. 
777 

PROM 

(l(J(> 

001 
00:?. 
oo;: 
(h)4 

(H)7 

01(1 
(>11 

Of 

* 
tt• 

00 
01 
00 
02 
00 
00 
10 
01 
00 
00 
01 

PROM SET 
IDENTIFIER 

! 
04 

0000 00 
0001 05 
0000 o.::: 
0010 00 
0000 01 
0000 00 
1000 12 
0001 00 
0000 00 
0000 00 
0001 05 

0000 00 0000 
0101 17 1111" 
0011 00 0000 
0000 1" 1100 
0001 00 0000 
0000 13 1011 
101(1 11 1001 
0000 02 0010 
0000 01 0001 
00(10 00 0000 
0101 17 1111 

PROM 
SEGMENT 

IDENTIFIER STORED 
WORD 

MEMORY 
ADDRESS 

I I 
,-'---, ,-->---, 

10 1000 001776 000010 
07 0111 001774 012767 
11 1001 001772 001411 
11 1001 001770 020.311 
07 0111 001766 000407 
17 1111 001764 000277 
17 1111 00176'.?- 1052.37 
06 0110 001760 010046 
12 1010 001756 00003.2 
07 0111 (101754 000007 
07 0111 001752 012767 

OCTAL VALUE OF { OCTAL __j""' T 
PROM CONTENTS BINARY 

17 1111 
1(;. 1110 
00 0000 

PROM :::ET 

0'1 

(1() 0000 
12 101(• 

00 (•(1(11) 
(l(I (l(l(>(I 

0•:1 (l(J')(l 

(":' 000:>(1 
('•) i)<)<)<:• 

1:2 1('1<) 
(l(• i)(i(>(' 

01 (1(11)1 

001 

or.:. 0110 
17 1111 
00 (l(H)O 

* 
03 

00 (•(1(1(l 

05 01<)1 
01 1)<)01 

01 (H)(l1 
0011 

(11 (l(H)l 
(1(1 (1(1(1(• 

('5 Olui 
(12 0010 
17 1111 

15 11•)1 11.:. 111(1 (•(1000'1 
16 1110 06 1)110 0001)02 

osS:,:·~TIN~7/oo.)ooo 

ADDRESS 

0.2. 01 

0<) 0000 11 l(H)l c·o-:.:T7t.:. 
15 11(11 17 1111 00;:774 
11 l('('l 04 (1100 00;:112 
11 1<)01 16 1110 00::770 
01 0(")1 01 (1001 (!(•::71=.(; 
(l(l (•<)<)(I (11'1 C•lt:'O (11)::7(;.ll 

r:•o 0('('(' 11 1(101 t:><:1·;;_.71;:2 

15 11<:•1 17 1111 00.37/.:.0 
<)1 (1<)01 05 Ol'H (H)375(;. 

17 1111 16 1110 oo::7'5'1 

11.:::3·~:6 

1677·1l. 
000137 

(l(l•)(lll 
12.:.737 
(H)(l62·l 
(1(106:3(: 
0011121 
(•()()/!<)•1 
(H)(H)11 
1227;:7 
(l1)1025 
017776 

II- 3850 

Figure 7-6 QJVll PROM Listing Format 

7-11 



0 

12-15 

p p 

E E 

E E 

§ E 

F E 

F F 
p E 

E E 

0 0 

8-11 4-7 

p 

E 

E 

p 

F 
F 

I E 

E 

SEGMENT NO 
CHIP LOCATIONS 

3-0 

E 

I E 

p 

F 
E 
p 

E 

512. 4 256" 4 
0 SET NO. SET NO. 

LOCATIONS LOCATIONS 

~ ~ I CE7 1-1 

CE6 •-3 

I CE5 s-• 
I CE4 ·-· 

CE3 3,.___5 

CE2 ·- I 

CEI ·-· 
CEO o-o 

Figure 7-7 PROM Set and Segment Positions on the MRVll-AA Module 

7-12 



CHAPTER 8 

USER-DESIGNED INTERFACES 

8.1 GENERAL 
This chapter contains sample circuits and information which can be 
utilized in usEjr-designed hardware that is installed on the LSl·ll bus. 
The user must ensure that the circuit, as used in a particular applica· 
tion, conforms to the LSl·ll bus specifications included in Chapter 3. 
The various interface module and prewired backplane previously de· 
scribed in this handbook are designed to be easy to use in nearly any 
application. However, in those applications that require a custom in· 
terface, the user can construct the interface using the DRVll·P LSl·ll 
Bus Foundation module, on which all~ required bus control and inter· 
face logic is supplied, or a special module can be designed by the user. 
Refer to the Logic Handbook and Hardware/ Accessories Catalog for a 
listing of backplanes, wire-wrap modules, blank modules, etc., that will 
enable system· components to be rapidly developed. 

8.2 BUS RECEIVER AND DRIVER CIRCUITS 
The equivalent circuits of LSl-11 bus-compatible drivers and receivers 
are shown in Figure 8-1. Any device that meets· these requirements is 
acceptable. To perform these functions, Digital Equipment Corporation 
uses two monolithic integrated circuits with the characteristics listed in 
Table 8·1. A typical bus driver circuit is shown in Figure 8·2. Note that 
DEC 8641 quad transceivers can be used, combiiling LSl-11 bus re­
ceiver and driver functions in a single package . 

IN-

Cl 

.. 3.4V 

Rl Rl =120K,MIN. 
R2=20K, MIN. 
Cl =lOpf,MAX 

our-

RANSM1mR OFF(LOGICAL 0) 
R3 = 120K, MIN 
C2 = lOpf, MAX 

TRANSMITTER ON ( LOGICALl) 
-::- R3 = 11 OHMS, MAX 

C2= IOpf,MAX 

Figure 8·1 Bus Driver and Receiver Equivalent Circuits 

8-1 



•5V 

TYPICAL BUS DRIVER 
11-3307 

.Figure 8·2 Typical Bus Driver Circuit 

Table 8-1 LSl-11 Bus Driver, Receiver, Transceiver Characteristics 

Characteristic Specifications Notes 

Receiver Input high threshold VIH 1.7 V min 1 
(DEC 8640, Input low threshold VIL 1.3 V max 1 
DEC8641) Input current at 2.5 V llH 80 µA max 1, 3 

Input current at 0 V Ill 10 µA max 1, 3 
Output high voltage VOH 2.4 V min 2 
Output high current IOH (16 TTL loads) 2,3 
Output low voltage VOL 0.4 V max 2 
Output .low current IOL (16 TTL loads) 2,3 
Propagation delay to TPDH 10 ns min 4,5 

high state 35 ns max 
Propagation delay to TPDL 10 ns min 4,5 

low state 35 ns max 

Driver Input high voltage VIH 2.0 V min 6 
(DEC 8881, Input low voltage VIL 0.8 V max 6 
DEC 8641) Input high current llH 60 µA max 6 

Input low current Ill -2.0 mA max 6 
Output low voltage VOL 0.8 V max 1 

at 70 mA sink 
Output high leakage IOH 25 µA max 1, 3 

current at 3.5 V 
Propagation delay to TPDL 25 ns max 5, 7 

low state 
Propagation delay to TPDH 35 ns max 5,8 

high state 

8·2 



NOTES 
1. This is a critical parameter for use on the 

1/0 bus. All other parameters are shown for 
reference only. 

2. This is equivalent to being capable of driving 
16 unit loads of standard 7400 series TTL 
integrated circuits. 

3. Current flow is defined as positive if into the 
terminal. 

4. Conditions of load are 390 fl to +5 V and 
1.6 kfl in parallel with 15 pF to ground for 
10 ns min and 50 pF for 35 ns max. 

5. Times are measured from 1.5 V level on in­
put to 1.5 V level on output. 

6. This is equivalent to 1.25 standard TTL unit 
loading of input. 

7. Conditions of lQO fl to + V, 15 pF to ground 
on output. 

8. Conditions of lk fl to ground on output. 

Bus receivers and drivers should be well grounded and bypassed with 
capacitors. They should be located within 4 in. (of etch) from the mod· 
ule fingers which plug into the backplane. 

8.3 PROGRAMMED INTERFACE 
A typical programmed 1/0 interface is shown in Figure 8-3. Note that 
only the control logic portion is shown in detail. This circuit is capable 
of input and output data transfers to and from four addressable data 
registers in the user's device. In addition, the reply gate will respond 
to programmed 1/0 and vector transfers. 

Address/data bus interface is provided by DEC 8641 quad unified bus 
transceiver ICs, keeping component count to a minimum. Note that the 
DEC 8641 IC at the bottom of Figure 8-3 shows complete address/data 
1/0 signal connections; the remaining DEC. 8641s include only the in­
terface signals required for device addressing. However, those !Cs will 
normally be connected for the same type of data 1/0 interface as shown 
at the bottom of the figure for bits 0, 13, 14, and 15_ 

Addressing occurs in the 28-32K address range; ·BBS7 L is always, as­
serted for this address range. Received data/address bits R3H-Ri2H 
and BS7 H are applied to 8136 (address) hex comparator /latch !Cs 
where they are compared to a user-configured device address produced 
by switches or jumpers. The switches or jumpers must produce high 
logic levels for logical ls and low logic levels for logical Os. The result 
of the address comparison is latched in each 8136 on the leading edge 
of BSYNC L. The 8136 outputs will latch for the duration of BSYNC L, 
producing an active device selected (DEV SEL H) signal. The 74175 hex 
latch shown in Figure 10-3 latches address bits 0, l, and 2 on the lead­
ing edge of BSYNC L. Bits 1 and 2 encode four unique bus addresses 
for user-supplied 1/0 functions. Address bit 0 is a byte pointer which 
is only used for DATOB or the write portion of DATIOB bus cycles. 

8-3 



88S7 L 

BDAL12 L 

BOAL 11 L 

BDAL10 L 

BDAL9 L 

BOALS L 

BDAL7 L 

BOALS L 

BOALS L 

BOAL4 L 

BDAL3 L 

BOAL2 L 

BOAL! L 

BDAL15 L 

BDAL14 L 

BDALl3 L 

BOALO L 

seon 

*DEVICE ADDRESS BITS FROM SWITCHES 
(OR JUMPERS) 

TYPICAL ADDRESS BIT CKT (10 RQO.): 
•5V 

AODR BIT TO 8136 

O WRITE 
}BYTE) 

DATA 

} 

STROBES 

BYTE 
t 

Figure 8-3 Programmed 1/0 Interface 

8-4 



co 
Ui 

ROST AH 

EN A STATUS H 

ENADATAH 

EN A CLK H 

BIAK I l 

ROST B H 

EN B STATUS H 

EN B DATA H 

EN B CLK H 

BOMGI L--, 
BDMGOL __J 

D 
INT 

ENB A 
7474 

c a 

+5 

39on 

L 
ENABLE AH 

DEC 
8640 

IAK H 

7400 

IRO 8 L 

+3 

IAK B 
7474 

Q IAK B 

Figure 8-4 Dual Interrupt Interface 

TO REPLY GATE 
ON PROGRAMMED VECTOR L 

I/O INTERFACE 

"\--174{)0!><>...LV"-'E"'C'"TO"'R"L- ~~A~SoEfi'.! 3~C'i1i1.ExOR 
(VECTOR EN l) 

BIAK 0 L 

3son 



Read data· should be multiplexed using stored address bits SAl and 
SA2 H. In addition, an interfacr circuit that also includes interrupt logic 
should use VECTOR EN L to inhibit register·read data and enable the 
interrupt vector transfer during the interrupt sequence. 

Write data strobed for the four addressable device registers are pro­
duced by a 74155 dual 2:4 demultiplexer; however, other devices and 
circuits can be used. Both sections of the 74155 are simultaneously 
strobed by the WRITE DATA EN L signal. During word transfers, WB H 
is passive (low), enabling the DATA and DATB demultiplexer inputs. As 
a result of the logical state of stored address bits SAl H and SA2 H, 
one Byte 0 and one Byte 1 write data strobe will go active, enabling 
writing into all 16 bits of the addressed device register. However, when 
outputting a byte to one of the registers, WB H goes active (high), 
enabling stored address bit O (SAO H and SAO L) to assert only one 
data input (DATA or DATB) on the 74155. Hence, only one of the eight 
write strobes will go to the active state; an 8-bit transfer to the appro­
priate high or low byte in the addressed register is thus completed. 

NOTE 
All devices, when addressed, should acknowl­
edge with BRPLY to both BOIN and BDOUT 
strobes, even if the addressed location is read­
only or write-only. This response is required 
because the LSl-11 processor may generate 
unnecessary BDIN or BDOUT strobes during 
execution of certain instructions. For example, 
the processor may execute a DATIO cycle when 
only the DATI cycle is required; if BRPLY L is 
not asserted in response to the BDOUT portion 
of the DATIO cycle, a bus error (time-out) would 
occur. 

8.4 INTERRUPT LOGIC 
The basic logic functions required in an interrupt circuit are shown in 
Figure 8-4. This is a dual interrupt circuit which will enable and control 
two interrupt request sources (A and B) supplied by the user. The 
four flip-flops, ENABLE A and B, and INT REQ A and B comprise bits 
of one or two control/status registers (CSR). The set/reset status of the 
Enable flip-flops is established by a programmed output transfer. EN A 
CLK H and EN B CLK H signals are the write data strobes shown in 
Figure 8-3; EN A DATA H and EN B DATA H would then be two of the 
received data bits (DEC 8641 "Rn" outputs). Similarly, INT REQ A and 
B flip-flop outputs INT REQ A and INT REQ B would be read as bits in 
the CSR via the read data multiplexer in the device's logic. 

A typical interrupt sequence for "device A" is described below. An in­
terrupt is enabled under program control by setting the ENABLE A flip­
flop_ When the user's device is ready for service, it produces an active 
RQST A H signal, which is ANDed with ENABLE A. The AND gate output 
clocks the IAK ENB A flip-flop to the set state and IRQA L is produced. 
Note that if the user's device terminates the RQST A H signal, the IRQA 
L signal will go low (false), causing BIRQ to go false. IRQA L is ORed 
with IRQB L and applied to a type DEC 8881 bus driver, asserting the 

8-6 



BIRQ bus signal line. The processor responds by asserting BDIN L, pro­
ducing a high DIN H signal. This signal clocks the device states (A or B 
requesting or not requesting service) into the IAK flip-flops. At a later 
time, the proces&or asserts BIAKI L, producing a high IAK H signal. 
IAK H is gated with the IAK flip-flop signals, giving the highest priority 
to Request A, if both are reque:;ting service. The 7400 gate associated 
with the IAK A flip-flop Q output goes low, clearing the IAK ENB A flip­
flop, and producing VECTOR Land BRPLY L signals. VECTOR Lis used 
for gating the vector address bits onto the 1/0 bus. With the device's 
IAK ENB flip-flop clear, it will not generate another interrupt until the 
device again requests service. 

When not requesting service, both Interrupt Acknowledge (IAK) flip-flops 
remain cleared. The flip-flop Q outputs are both gated with IAK H, pro­
ducing an active BIAKO L signal which is passed to the next (lower 
priority) device on the 1/0 bus. The INIT L signal, produced by a bus 
receiver and inverter, clears all Enable and IAK flip-flops, and presets 
(a don't care condition) all INT ENB flip-flops. When requesting service, 
the IAK flip-flops inhibit passing BIAKO L to the next lower priority 
device. 

CAUTION 
IAK flip-flops must function as synchronizers. 
(Data setup has no guaranteed minimum time.) 
Type 7474 and 74S74 are preferred. 

8.5 .OMA INTERFACE LOGIC 
A simple DMA request circuit is shown in Figure 8-5. In addition to this 
circuit, bus address, word count, control/status registers, and burst 
transfer control logic would normally be included. All registers would 
be accessible via programmed 1/0 operations. 

A OMA request is initiated by a device by producing an active REQ H 
signal. The RQST H signal must remain high until bus mastership is no 
longer required. The type DEC 8881 bus driver then asserts BDMRL. 

The processor arbitrates the request by asserting BDMGI L, setting the 
Claim flip-flop in the first requesting device along the BDMG daisy 
chain. The state of the Claim flip-flop is sampled by two gates after the 
DMG delay. CLAIM (0) H is low (false) and it inhibits the DMGO EN H 
gate. Hence, when the Claim flip-flop is set, BDMGO L is not passed to 
lower priority devices. The active (high) CLAIM (1) H signal is gated 
with DDMG H producing a low signal which enables one of the three 
7427 gate inputs. When BSYNC Land BRPLY L become negated, passive 
(low) SYNCR H and RPLYR H signals are gated with CLAIM (1) H and 
the 7427 output goes high. This transition clocks the Master flip-flop to 
the set state producing the active MASTER H signal, enabling BSACK L 
and negating BDMR L signals. MASTER H is used by the DMA device to 
enable its bus cycle. BSACK L informs the processor that the bus is in 
use. At the end of the bus cycle, the device negates REQ H, clearing the 
Claim and Master flip-flops. MASTER H and BSACK L signals then go 
passive. 

When not requesting DMA service, the device must pass BDHG signals 
to lower priority devices on the 1/0 bus. The active (high) CLAIM (0) H 

8-7 



signal is gated with OOMG H producing an active OMGO EN H signal. 
This signal enables the BOMGO L bus driver and OMG H is gated onto 
the bus. 

The actual OMG delay is determined by the RC circuit shown on the 
figure, and should be 100 ns (min). BINIT L initializes the circuit by 
clearing the Claim and Master flip-flops. · 

+ 5V 

160Sl 

BOMGI L -+---otg~~ DMG H 

390!1 

BINIT L 

NOTE: 

The OMG Delay Circuil shown above 
is preferred. However,"lhe following 
DMG Deloy Circuit con be used: 

DMGH 

OMGO EN H 

MASTER H 

DEC 
8881 

+5V 

\BOU 

BOMR L 

BSACK L 

BOMGO L 

390fi 

DMGH~ . ~ 1 ___ '_ ODMG H 

, IB20p'. 
CP-1795 

Figure 8-5 OMA Arbitration Logic 

If dynamic MOS memory is used in the system (KOll-F processor 
and/or MSV1FB memory), a OMA device is restricted to one bus cycle 
for each BOMG signal from the processor. This must be done to allow 
the processor to execute memory refresh transactions. In systems which 
include dynamic MOS memory and use more than one OMA device, the 
OMA interface designer must ensure that sufficient time will be allowed 
for the processor to execute memory refresh transactions. As a general 

8-8 



rule, to ensure that the processor performs normal memory refresh, 
the OMA device should not occupy the 1/0 bus more than 200 µs out 
of any 400 µs period. If the REVll-A or REVll-C OMA refresh option is 
used in the system, it must be allowed to· obtain the bus for one cycle 
every 27 µs. 

CAUTION 
The Claim flip-flop must function as a synchro­
nizer. (Data setup has no guaranteed minimum 
time.) Types 7474 and 74574 are preferred. 

8-9 



8-10 



CHAPTER 9 

MAINTENANCE 

9.1 GENERAL 
This chapter contains general information that will aid the user in load­
ing and running diagnostic software. No attempt is made in this chapter 
to include information that will allow the user to repair modules that 
fail diagnostic tests. The user can return modules to DIGITAL for repair 
as directed in Section V, Chapter 4. 

In addition to using diagnostic programs for locating system hardware 
faults, the programs can be used as an assurance test to ascertain that 
modules, as received, function properly. Diagnostic programs are sup­
plied on punched paper tape or on floppy disk. Both diagnostic software 
options include the required documentation (program listings and oper-
ating instructions). · 

Paper tape diagnostic programs are contained in option model No. 
ZJVOl-RB. Minimum hardware requirements include the LSl-11 processor 
and 4K memory, a console terminal, cable and DLVll interface, and a 
paper tape reader. The paper tape reader can be either a high-speed 
reader and interface (user-supplied), or a modified ASR-33 Teletype. 
DIGITAL can supply a modification kit for the ASR-33 (specify model 
No. L T33-MB); machines modified by DIGITAL are also available (con­
tact your nearest DIGITAL sales office for more information and prices). 

Diagnostic programs contained on floppy disk are available in option 
model No. ZJ215-RY. Minimum hardware requirements include the 
LSl-11 processor and SK memory, a console terminal, cable and DLVll 
interface, and the RXVll floppy disk system. 

9.2 OPERATIONAL CHECKLIST 

9.2.l General 
Many hardware problems encountered with complex systems are a re­
sult of operating procedures or improper system configuration, rather 
than an actual hardware failure. These problems are easily overloo_ked 
and sometimes are obvious when observed by a second person. Most 
of these problems become apparent when the system is first turned_on. 
If a problem seems to occur, check the items listed in the following 
paragraphs. 

9.2.2 LSl-11 System 

• Are all power supplies turned on? Check power at the backplane ter­
minals to ensure that +s V and +12 V power is applied. The system 
should produce an appropriate power-up response (Section II, Chapter 
1) when the user-supplied Initialize switch (Paragraph 6.7) is pressed 
and released. 

9-1 



• Is the system properly configured? Check: 

1. All modules are correctly plugged into the backplane to ensure 
proper interrupt and OMA priority daisy chain. No empty slots 
should exist between modules. Refer to Figure 6·1 and 6-3 for cor­
rect installation sequence. If spurious processor halts occur, use 
the ODT "M" command to determine the cause of the halt (Section 
II, Chapter 2). 

2. Console DLVll serial line unit jumpers for compatability with the 
console terminal. · 

3. Console terminal controls (baud rate, line/local, etc.). 

4. Processor module power·up mode: 
-Mode 0 is normally used with core or PROM memory. 
-Mode 1 can be used with any system hardware configuration. 

Power·up response is the @ symbol prompt character display 
on the console terminal. 

-Mode 2 is normally used with REVll·A, REVll·C, or other op· 
tions containing programs in non·volatile memory, starting at 
location 173000. 

-Mode 3 is for special processor microcode (not implemented-
do not use). · 

• Are signal cables properly installed? Check that cables are properly 
connected at each end. 

• Can the console terminal be operated in the "local" mode? If the 
console can be operated independent of the LSl-11 system, it is likely 
that the terminal is operating property: 

9.2.3 PDP-11/03 System 
The same items, in general, as listed for the LSl-11 system in Para- . 
graph 9.2.2 also apply to the PDP-11/03 system. However, lights and 
switches on the PDP·ll/03 front panel will aid in checking system 
operation. 

• Is de power on? The DC ON indicator will be lit only if +5 V and 
+12 V power supply circuits are operating and the DC ON/OFF switch 
is in the ON position. If the indicator is not lit, check: 

1. The DC ON/OFF switc.h is in the ON position. 

2. The AC ON/OFF switch on the rear of the power supply in the 
PDP-11/03 is turned on. This switch is normally left in the ON 
position and application of AC power is controlled by an exten1al 
power control (user-supplied). 

3. AC power is available to the PDP-11/03. 

4. The line power fuse on the rear of the PDP-ll/03's power suppiy. 
If it is blown, replace it. If it blows again, do not replace it; a power 
supply failure has probably occurred. 

• Is the HALT/ENABLE switch in the HALT position? If it is, the normal 
console terminal display is the @ symbol. Other power-up displays 
are possible o.nly when the switch is in the ENA:BLE position. 

• Is the system properly configured? Check the items listed in Para­
graph 9.2.2. 

9-2 



• Are signal cables properly installed? Check that cables are properly 
installed and connected at each end. 

• Can the console terminal be operated in the "local" mode? If the con· 
sole terminal can be operated independent of the PDP·ll/03 system, 
it is likely that the terminal is operating properly. 

• Is the L TC switch in the ON position? If it is, software supporting the 
event interrupt via vector location 100 must be provided. Otherwise, 
the switch must remain in the OFF position. 

9.3 USING PAPER TAPE DIAGNOSTICS 

9.3.l General 
LSl·ll system diagnostic programs are supplied on punched paper tape 
in the ZJVOl·RB software option. The diagnostic programs are capable 
of providing a rigorous test of processor memory and interface modules. 
They verify normal system operation, or identify specific fault symptoms. 
Minimum system hardware requirements for running the diagnostic 
programs include the LSl·ll processor, a console device (including in· 
terface module at address 177560), 4K read-write memory (semicon· 
ductor or core), a paper tape reader (L T33 teletype-writer or a high-speed 
reader), and diagnostic software. The diagnostic software includes an 
absolute loader and several diagnostic program tapes and listings. The 
following paragraphs briefly describe each program and provide a gen· 
eral guide for loading and using. 

Diagnostic program abstracts are provided below. Each diagnostic pro· 
gram listing includes a detailed description and information for loading 
and using the program. ~ 

MAIN DEC· 11 ·DVKAA-A-D 
LSl-11 Basic Instruction Tests-This program tests the LSl·ll basic in­
struction set in all addressing modes. 

MAINDEC-11-DVKAB-A-D 
LSl·ll Extended Instruction Tests-This program tests the extended 
arithmetic instructions ASH, ASHC, MUL, and DIV using general registers 
RO·R5 at least once with each instruction. This diagnostic program can 
only be used with LSl-11 procesors in which the KEVll Extended Arith· 
metic Chip option is installed. 

MAINDEC-11-DVKAC-A-D 
LSl-11 FIS Instruction Tests-This program tests the floating instruc­
tions FADD, FSUB, FMUL, and FDIV. It uses fixed number patterns and 
each general register at least once as the stack pointer. It also checks 
stack overflow and that floating instructions can be interrupted by the 
console device (if enabled by an operator option in the program). This 
diagnostic program can only be used with LSl·ll processors in which 
the KEVll Extended Arithmetic Chip option is installed. 

MAINDEC-1 l·DVKAD·A-D 
LSl-11 Trap Tests-This program tests all operations and instructions 
that cause traps, oddities of the SP (R6), interrupts, RESET, and WAIT 
instructions. 

9-3 



MAINDEC-11-DVKAE-A-D 
DLVll Test-This program tests the logic furictions of the DLVll Serial 
Line Unit. The program is supplied with device addresses and vectors 
for DLVll use as the console device. However, the operator can easily 
alter device address and vector assignments for the particular DLVll 
module being tested. 

MAINDEC-11-DVKAF-A-D 
DRVll Test-This program tests the logic functions of the DRVl 1 
Parallel Line Unit. The program is supplied with device address and 
vector assignments of 167770 and 300, respectively. The operator can 
easily alter these values for the particular DRVll module being tested. 
When using this program, a special maintenance cable (BC08R) must 
be connected to the module. NEW DATA READY and DATA TRANS· 
MITTED signals generated by the DRVll are not tested by this program; 
they can be checked by external hardware only. 

MAINDEC-11-DVKAG-A·D 
LSl-11 4K Read/Write Memory Tests-This program tests 4K semicon­
ductor and core read/write memory. Worst case tests (long galloping for. 
semiconductor memory and worst case noise for core memory) are in­
cluded in the program. This program will run in (and test) read/write 
memory systems of 4K or larger. 

9.3.2 Loading Diagnostic Program Tapes 
Program tapes are loaded into memory by the absolute loader tape 
supplied with the diagnostic tapes, or by using the REVll-A or REVll-C 
option AL command. Load the tapes as directed in Section II, Chapter 4. 

9.3.3 Program Modification Procedure 
Prior to executing diagnostic program tapes, the user must observe the 
operating procedure stated in the diagnostic program listing. This pro­
cedure generally includes a procedure for setting software switch regis­
ter bits, simulating switch register bit positions which are available in 
other PDP-11 systems that include a hardware switch register. In ad­
dition, entering a device address may be required, especially when test­
ing a device interface module that is configured to a device address 
other than the factory·supplied configuration. · 

When setting software switch register bits, determine the octal value 
required for the switch register word. This can be determined by adding 
the listed values for the desired program options as directed in the pro­
gram listing. For example, the listing may state that the software switch 
register is located at address 122, and you may conclude that the follow· 
ing bits should be set: 

Bit 

15 
10 

9 

Octal Value 

100000 
002000 
001000 

The octal sum to be entered is 103000. Enter the value from the above 
example as follows: 

.@.122/000000 103000 CR bf 
@ 

9-4 



where @ is the prompt character typed out by the console ODT micro­
code; 122 is the address of the software switch register to be opened; 
I is the "open location" command; 000000 is the preset contents of 
location 122; 103000 is the new software switch register value to be 
entered; CR (carriage RETURN key) enters the new value and closes the 
location; LF (line feed) @ is printed and a new console ODT command 
can be entered. · 

Other program values may be altered, such as device addresses or 
vector addresses, by using similar ODT commands shown for altering 
the software switch register. Refer to the diagnostic listing to obtain the 
procedure for these program changes. 

9.3.4 Program Starting and Execution 
Once a program has been loaded correctly, the Run mode can be en­
abled and program execution started. Place the HALT /ENABLE switch 
(PDP-11/03 panel, or equivalent user-supplied LSl-11 switch) in the 
ENABLE position. Start normal program execution as follows: 

®200G 

The 200 in the above example is a typical starting address. Each pro­
gram listing specifies the correct starting address. G is the Go command, 
and program execution will immediately commence starting at the spec­
ified location. 

Single instruction execution, when desired, is obtained by operating the 
processor in the Halt mode. Place the HALT /ENABLE switch in the HALT 
position. Enter the starting address (or a desired address for the first 
instruction to be executed) as described for normal program execution. 
The G command causes the processor to execute the first instruction 
and then Halt with the PC (R7) pointing to the next program instruction 
to be executed. This address is printed on the console device as shown 
in the following example: 

@200G CR LF 
000202 CR LF 

® 
Successive instruction executions will occur each time the Proceed (P) 
command is entered via the console device, as shown below: 

@200G 
000202 
®P" 
000204 
@P 
000206 

® 
Note that after executing each instruction, the processor halts and 
prints the address of the next instruction. Thus, Branch, Jump, and 
Skip instruction will alter the PC, as required in normal program execu­
tion, allowing the operator to observe program and hardware operation. 

9-5 



9.3.5 Diagnostic Program Results 
Basic results from running diagnostic programs range from pass results 
to error conditions. Error conditions may result in the program halting 
and printing out an error message or simply a PC value (the error Halt 
PC+2). The use of error information thus obtained is completely de­
scribed in the program listing of the diagnostic program in use. As the 
operator becomes more familiar with the use of the diagnostic program, 
it may be desirable to invoke certain program options, as described in 
the listing, such as loop on error. This allows the operator to run (or 
single instruction execute) the program in an area where a hardware 
error is detected. 

The key to effective use of diagnostic programs is in the ability of the 
operator to read the diagnostic listing (especially the comments as­
sociated with program instructions that do not execute properly), and 
relate the error conditions to hardware functions. Particular locations in 
the program can be examined to obtain much useful information about 
the fail conditions. Tags (symbolic labels) are associated with these lo­
cations, such as $FATAL, $MAIL, $TESTN, etc. Tags and their individual 
functions vary somewhat in different diagnostic programs; refer to the 
program listings for a complete listing of tags. 

Pass conditions generally result in a printout of the first pass and print· 
outs at certain multiples of passes that follow. A pass counter is located 
in each program that can be examined by the operator. A typical tag for 
the pass counter is $PASS. Intermittent errors ·can be detected by ob· 
serving the contents of that location when errors are detected. · 

Program operation can be halted and restarted by the operator at any 
time. Restart at the beginning of the program, as previously described, 
or continue 'from the point at which the program. halted by using the 
P command. 

9.4 USING.RXDP DIAGNOSTICS 
RXDP diagnostics are contained on floppy diskette and provide the re· 
quired diagnostics for testing processor, memory, and interface modules, 
the RXVll floppy disk system, and certain peripherals. Documentation 
supplied with the RXDP software includes program listings and an 
XXDP User's Manual. A listing of RXDP diagnostic programs applicable 
to LSl·ll, PDP-11/03, and PDP·11V03 systems is provided. 

9.4.1 RXDP Diagr:iostics, 

MAINDEC·ll·DVKAH 
Basic System Exerciser-Tests serial line unit, memory, processor, EIS/ 
FIS, clock, and both floppy disk drives under dynamic interactive con­
ditions. Provides simple and rapid preliminary confidence check of over· 
all system operation. 

MAINDEC·ll·DVKAA 
LSl-11 Basic Instruction Tests-Exercises and tests the LSl-11 basic 
instruction set in all addressing modes. 

MAINDEC-11-DVKAB 
LSl-11 Extended Instruction· Set (EIS) Tests-Exercises and tests the 
extended arithmetic instructions ASH, ASHC, MUL, and DIV using gen-

9-6 



eral registers RO-R5 at least once with each instruction. This diagnostic 
program can only be used with LSl-11 processors in which the KEVll 
Extended Arithmetic Chip option is installed. 

MAINDEC·ll·DVKAC 
LSl-11 Floating Instruction Set (FIS) Tests-Exercises and tests the 
floating instructions FADD, FSUB, FMUL, and FDIV. Uses fixed number 
patterns and each general register at least once as the stack pointer. 
Also checks stack overflow and confirms that floating instructions can 
be interrupted by the console device (if enabled by an operator option 
in the program). This diagnostic program can only be used with LSl-11 
processors in which the KEVll Extended Arithmetic Chip option is in­
stalled. 

MAINDEC·ll·DVKAD 
LSl-11 Trap Tests-Exercises and tests all operations and instructions 
)IVhich cause traps, oddities of the SP (R6), interrupts,· RESET, and WAIT 
instructions. 

MAINDEC·ll·DVKAE 
DLVll Test-Exercises and tests the logic functions of the DLVll Serial 
Line Unit. The program is supplied with device addresses and vectors 
for DLVll use as the console device. However, the operator can easily 
alter ·address and vector assignments for the particular DLVll module 
being tested. 

MAINDEC·ll·DVKAF 
DRVll Test-Exercises and tests the logic functions of the DRVll 
Parallel Line Unit. The program is supplied with device address and 
vector assignments of 167770 and 300, respectively. The operator can 
easily alter these values for the particular DRVll module being tested. 
When using this program, a special maintenance cable (BC08R) must 
be connected to the module. NEW DATA READY and DATA TRANS­
MITTED signals generated by the DRVll are not tested by this program; 
they can be checked by external hardware only. 

MAINDEC·ll·DZKMA 
Memory Exerciser-Tests system memory from the basic SK (required 
for floppy disk system) to the maximum 28K. 

MAINDEC-1 l·DZLAC 
LA36 Diagnostic-Under software register control, executes tests on 
four basic categories of LA36 DECwriter functions: 

1. Printing. Tests LA36 printing mechanism and associated control logic. 
2. Echo. Tests keyboard as an aid in isolating faults within the terminal. 

Results are visually verified. 
3. Options. Permits exercising LA36 options in whatever combination 

they occur. Results are visually verified. 
4. Standard 1/0 function. Tests system/terminal interface logic. Pro­

cessor halts in response to errors. 

MAINDEC·ll·DZRXA 
RXll System Reliability Check-Composed of selectable tests that 
write, read, and verify various· data patterns under various (selectable) 

9-7 



head movements. Data transfer and error check can be performed over 
entire diskette or between separately selectable track and sector limits. 

MAINDEC-11-DZRXB 
Runs series of selectable RXll Interface Diagnostics-Tests basic func­
tions of RXl 1 interface. Errors are reported by the program, and it is 
possible to loop on the error or a particular test for scope testing. 

MAINDEC-11-DZVTC 
VT52 Diagnostic-Tests all characters and commands except for BREAK, 
REPEAT, AUTO-PRINT, and SCROLL. Program is divided into four parts: 

1. Presents a series of test patterns on VT52 screen. Operator visually 
scans each pattern for errors. 

2. Tests keyboard characters input by operator (from displayed instruc­
tions) to determine if terminal is generating valid ASCII codes. 

3. Displays octal values and printable symbols corresponding to keys 
depressed by operator. 

4. Echoes on the screen characters whose keys the operator has 
pressed. 

· MAINDEC·ll·DZM9A 
Bootstrap Terminator-Exercises and tests to verify the ROM contents 
of REVll-A and REVll-C modules. The program computes and checks 
a cyclic redundancy character and a longitudinal parity character for 
the contents of the ROM storage. 

Error information consists of the following: 

1. ·Location at which error was detected. 

2. Bus address of VT52 under test. 

3. Test pattern number of failing test. 
4. Expected input character. 
5. Received input character. 

In addition to the diagnostic programs, the RXDP diskette typically con­
tains the following programs: 

RXDP 
UPDl 
UPD2 
COPY 
XTECO 

Monitor 

Update programs that allow patching of diagnostics 

Copies and verifies entire diskette 
An ASCII editor that provides for creating and updating 
ASCII files 

See XXPD User's Manual for detailed information. 

Minimum hardware requirements include an LSl-11 processor, BK (total) 
minimum read/write memory, RXVll floppy disk system, and a console 
dev.ice. 

9.4.2 Program Modification and Execution 
The RXDP diskette can be run in either RXVl 1 disk drive (DXO or DXl). 
Insert the diskette in the appropriate drive and bootstrap the system; 
instructions for bootstrapping the RXVll are included in Section II, 

9-8 



Chapter 5. Botstrapping the system causes the RXDP monitQr to identify 
itself on the console device, followed by a restart address and the moni· 
tor prompt character (.). A typical display is shown below: 

RXDP·XXDP RXll/RXOl Monitor M·ll·DZQUJ-8 21-FEB-76 8 K 
RESTART ADDR: 032260 

A help message de;;cribing RXDP commands is also output. Any or all 
of the above messages can be aborted by CTRL/C (depressing CTRL 
and C keys simultaneously on the console device). 

NOTE 
The operator can abort program execution and 
return to the RXDP monitor at any time by 
simultaneously pressing CTRL and C keys on 
the terminal. 

Once the disk monitor has been called successfully, the operator can 
proceed to run pertinent diagnostic programs. To precisely confirm the 
programs available on the diskette, the operator can issue the command 

..,D <CR> 

The period is the disk monitor prompt character and is underlined here, 
as elsewhere in this text, to indicate that it is generated by the system 
rather than the user. "D" requests that the disk directory be listed; 
"<CR>" (carriage return) is the RXDP Monitor execute operator. The 
system responds by outputting a list of all entries in the disk directory. 
This. list should correspond with that packed with. the diskette. 

The normal procedure for running individual diagnostic programs once 
the RXDP Monitor prompt character (.) ~as been is.sued by the system is 

.._ R PROGRAM. <CR> 

where PROGRAM is the name of the RXDP diagnostic VKAAAO, VKABAO, 
etc.) to be run. This will result in the program's being transferred from 
disk to memory and run. If there are no faults, the system will output 
the "END PASS" message at various intervals of from 3 seconds and 
longer, depending on the particular diagnostic program in use, indi· 
eating that the program .has completed a test cycle and another has 
begun. This operation will continue until the operator halts the pro­
cessor. To restart the RXDP monitor, enter the following command on 
the console device: 

@032260G 

where"@" is the ODT prompt character issued by the system, "032260" 
is the restart address output by the RXDP monitor when the system was 
bootstrapped, and "G" is the ODT GO command. 

Occasionally, the user may wish to set initial conditions differently from 
those assumed by a given program-to acommodate new device register 
addresses, for example. This is accomplished as follows: 

1. After receiving RXDP Monitor prompt character (.), type "L PRO· 

9-9 



Sample Directory Printout: 

• D 

FNTF(l'..L__ F Tl NAM. FXT !'IATF I ENG TH SHllU 

000001 f(XDP .JHN 17 .. ··M(.if(--76 17 0000'."iO 
000002 l!PD ·1 .BIN ·1 7-·MAf(-··76 17 00007 ·1 
000003 UPD2 .BIN 17·-·MAf( .... 76 :?.9 0001:l2 
000004 COPY .BIN 17-.. MAR--'76 24 000147 
OOOOO~i XIE CO .BIN 17-.. MAF\--76 27 00017? 
000006 VKAHAO.BIC 17-.. MAf(-.. 7 6 :1.7 000232 
000007 VKAAAO.BIC :L 7-.. MAR .... '76 17 0002~:;:3 

000010 VKAFAO, BIN 17-.. MM<-.. 76 c, 0002'74 
0000:1.:1. VKAEAO, BIN 17-.. MAf(-.. 76 1::· _, 000;302 
000()12 VKABAO.IHC 17-.. MAR-.. 7 6 p 000307 
000013 VKACAO.BIC 17-·MAF\-.. 76 16 000330 
000014 VKADAO.BIC :Ll-.. MiW--76 1 'J 0003~50 

0000 :l ~i ZKMABO.BIC 17-.. MAR-·76 9 000364 
0000·16 ZM9AAO.HTC ·1 z-.. MAR-.. '76 6 00037;-; 
000017 Zli:XADO, BI C :L z-.. MAF(-7 6 1 (~ 000403 
000020 ZRXB~10,BIC 17-MAR--76 :L~i 000426 
0000:?1 ZLACCO, H TN 1 / .... MAf! .... '76 'l6 00044:'.i 
000022 ZVTCC:L. BIN :l 7--MAR--7 6 22 00046~) 

FREE FILES: 94 
FREE BlOCKSI :1.63 

GRAM," where "PROGRAM" is the name of the diagnostic to be 
modified. 

2. Halt the processor. The console device will dispay the ODT @ prompt 
character. 

3. Determine. from XXDP manual and program listing which ·memory 
address(es) must be modified and perform modifications using ODT 
commands. Use the general procedure described in Paragraph 9.3.3 
for RXDP diagnostic. program modifications. 

4. Execute modified program by typing "200G" in response to last ODT 
"@" prompt character. · 

Changes can be permanently made by using UPDl, as described in 
Paragraph 9.4.7. 

9.4.3 Single Instruction Execution 
Single instruction execution, when desired, is obtatned by operating the 
processor in the Halt mode. After receiving the RXDP monitor prompt 
character (.}, load program with the "L" command. Place the HALT/ 

9-10 



ENABLE switch in the HALT position. Enter the starting address (or a 
desired address for the first instruction to be executed) as described for 
normal program execution. The "G" command initializes the system bus; 
thereafter, the program can be executed one instruction at a time by 
repeatedly depressing "P" (Proceed) on the console device. An example 
of single word instruction execution is shown below: 

@200G 
000202 
~ 
000204 
@P 
000206 
@P 

Note that after executing each instruction, the processor halts and 
prints the address of the next instruction. Thus, Branch, Jump, and 
Skip instructions will alter the Program Counter (PC) as required in 
normal program execution, allowing the operator time to observe pro· 
gram and hardware operation. 

9.4.4 Diagnostic Program Results 
Basic results from running diagnostic programs range from "end of 
pass" indications to error conditions. Error conditions may result in the 
program displaying an error message or simply entering Halt mode. 
This causes ODT to display the contents of the PC which will define the 
address of the Halt ( +2) and thereby permit ascertaining what the 
program was testing when it issued the Halt. The use of error infor­
mation thus obtained is completely described in the listing of the 
diagnostic program in use. As the operator becomes more familiar 
with the use of the diagnostic program, he may wish' to invoke certain 
program options, described in the listing, such as loop on error. This 
allows the operator to run (or single instruction execute) the program 
in an area where the hardware error is detected or anticipated. 

Effective use of diagnostic programs rests on the ability of the oper­
ator to read the diagnostic listing (especially the comments associated 
with program instructions that do not execute properly), and to relate 
the error conditions to hardware ·functions. Particular locations in the 
program can be examined to obtain much useful information about the 
tail conditions. Program operation can be halted and restarted by the 
or:;erator at any time. Restart at the beginning of the program, as pre· 
viously described, or continue from the point at which the program 
halted by using the P command.' 

9.4.5 Running a Chain of Diagnostics 
Running a chain of diagnostics is also called running a script of diag· 
nostics. Several RXDP diagnostics may be strung together and run in 
automatic sequence as described in the following procedure: 

NOTE 
Only those diagnostics with a ".BIC" extension 
are chainable and may be included as part of a 
chain file. 

9-11 



1. Before a chain can be run, an ASCII chain file must be created. 
a. In response to the RXDP monitor's "." prompt character, type 

"R XTECO<CR>"· 
b. XTECO will be brought into memory, a heading will be displayed, 

and the date will be requested; after the date has been input and 
echoed,'' XTECO will type the '"'"' prompt character. 

c. To create an .ASCII test file, type "TEXT DXO: program name 
CCC<CR>"· . 

'~Format for RXDP date is DD-MON·YY, e.g., 06-MAR·76 for March 6, 
1976. 

NOTE 
The "n" "DXn" will be either 0 or 1, depending 
on whether the file is to be output on drive 0 or 
drive 1. 

d. · XTECO will ask if the output fie is ready. If Disk Drive 1 .has been 
specified, insert disk in that drive and type <CR>; otherwise, just 
type <CR>. 

e. To enter data in the file, type "I" (no carriage return), and the 
desired ASCII data. Data on a line that is preceeded by a semi­
colon (;) is interpreted as a comment. Legal commands that are 
input as part of the script are RXDP monitor level commands 
such as Run (R), Load (L), Start (S), or Chain (C). When done 
inputting, press the ESC key (or ALT MODE) (echoed as "$") 
twice for execution. XTECO will respond with an '""' prompt. 

Example: 
TESTl .BIC 
TEST2 .BIC 
TEST3 .BIN 

TEST4 .BIC 

Assume that the RXDP diskette includes: 
(self-starting program) 
(not self-starting) 
(not chainable-shown by ".BIN" extension instead 
of ".BIC".) 
(self-starting program) 

In addition, assume that the test objective is to run TESTl three times, 
followed by TEST2 seven times, followe.d by TEST4 once, 

'~ I; this is an example 
R TESTl/3 
L TEST2 
S TEST2/7 
R TEST4 
C CHAIN 
$$ 
*EX$$ 
*BOOT DXO: 

f. To put the actual file onto the diskette, answer the "*" with an 
"EX$$". (Note: $ means ALT MODE.) XTECO will respond (after 
a writing/verifying interval) with '"'". The chain file is now com­
plete. 

2. To run the chain file, exit XTECO and re-enter RXDP monitor by 
typing "BOOT DXO:<CR>"· Since the RXDP monitor was rebooted, 
the initial heading and help message will be printed and then the 

9-12 



"." prompt. To run the chain file type "C filename<CR>" (in the 
example, filename would be CHAIN). To do a quick verify mode (i.e., 
run through each diagnostic listed in the file just once regardless of 
what the file says) type "C filename/QV<CR>". 

9.4.6 Making a Duplicate of the Diskette 
Making a duplicate of the RXDP diskette allows safe storage of the 
"master" and using a copy for normal RXDP use. This will protect the 
user from accidental loss of the diagnostic. P:·oduce a copy as directed 
below: 

1. Install a diskette in the remaining disk drive unit. This diskette will 
become the RXDP copy. 

2. Respond to RXDP Monitor"." prompt with "R COPY<CR>". 

3. The COPY program will be brought into memory and then will type 
out a heading and issue an "~'" prompt character. 

4. Type "COPY DXd:=:DXs:<CR>" (d == destination disk drive number; 
s == source disk drive number). The copy program will copy the entire 
diskette and verify the transfer. 

NOTE 
This process takes about 20 minutes. 

Example: Disk Drive 0 contains the RXDP diskette and disk drive 1 
contains a blank diskette. 
*COPY DX!: == DXO:<CR> 

5. If return to the RXDP monitor is desired, type "BOOT DXO:<CR>"· 

9.4.7 Diagnostic Program Changes 
Permanent changes to an RXDP diagnostic program can be made using 
the UPDI program. Proceed as directed below: 

1. Start the ·RXDP program as directed in Paragraph 9.4.2. In response 
to the "." prompt character, run the UPDl program by entering the 
following command: 

..:..R UPDI<CR> 

2. UPDl becomes loaded into system memory and starts automatically. 
UPDl then requests the date. Enter the date in the following format: 

DD-MON·YY 

where DD is a two-digit day, MON is a three letter month, and YY 
is a two-digit year. The program responds by displaying the date 
and the "':'" prompt character. 

3. Bring the program to be changed into memory by entering the fol· 
lowing command: 

.:.LOAD DXN:program name.extension 

Specify the disk drive (DXn) by entering DXO for drive 0 and DXl for 
drive 1. 

NOTE 
In the remainder of this procedure it is assumed 
that DXO is in use. If DX! is used, specify the 
drive as· directed above. 

9-13 



4. After the program has been loaded into memory, UPDl displays the 
"'''" prompt character. Specify the memory location to be modified 
(nnnnn) by entering the following command: 

2MOD nnnnn<CR> 

5. UPDl responds by displaying 

~~ 
where nnnnnn is the address of the opened location and xxxxxx is 
the present contents of that location. Enter the new (changed) octal 
value (yyyyyy) for the location and terminate the command with CR 
or LF. LF closes the changed location and opens the next locatio.n 
in memory and displays its address and contents on the next line; 
that location can then be modified, as above. CR closes the changed 
location and returns the program to the command mode; UPDl dis­
plays the """ prompt character on the next line. The complete 
command for changing one location is.shown below: 

D..!l!lD.!l.!J ~ YYYYYY<LF> 
6. Make additional changes, as necessary, using the procedure con­

tained in steps .4 and 5. Use the CR to close the last changed loca­
tion. 

7. To store the modified program on diskette using its original name, 
first delete the unmodified version from the diskette by entering the· 
following command (DXO is assumed, see note in step 3): 

2DEL DXO:program name.extension<CR> 

8. Store the modified program by entering the following command: 

.!.DUMP DXO:program name.extension<CR> 

9. After storing the modified program, UPDl displays the "'~" prompt 
character. Return control to the RXDP monitor by entering the fol­
lowing command: 

!.BOOT DXO:<CR> 

9.4.8 Creating a Unique RXDP Diskette 
A unique RXDP diskette can be generated containing only selected por· 
tions of the RXDP programs as directed in the following procedure. 

1. Place the RXDP diskette in disk drive 0. Place the blank diskette in 
drive 1. 

2. Start the RXDP prgoram as directed in Paragraph 9.4.2. In response 
to the "." prompt character, run the UPDl program by entering the 
following command: 

""'R PUDl <CR> 
3. UPDl becomes loaded into system memory and starts automatically. 

UPDl then requests the date. Enter the date in the following format: 

DD-MON-YY 

where DD is a two-digit day, MON is a three letter month, and YY is 
a two-digit year. The program responds by displaying the date and the 
"'-'" prompt character. 

4. Load the RXDP Monitor into memory by entering the following 
command: 

9-14 



..!LOAD DXO:RXDP.BIN <CR> 

5. Copy (save) the Monitor onto the new diskette by entering the fol· 
lowing command: 

!.SAVM DXl: <CR> 

6. Additional RXDP programs can be copied by first loading the desired 
program into memory and then copying the program onto the new 
diskette. This must be done for each program desired. An example 
is shown below for the COPY.BIN program. Wait for UPDl to respond 
with the "*" prompt character before entering new commands: 

.=:.LOAD DXO:COPY.BIN <CR> 
.!DUMP DXl:COPY.BIN <CR> 

9-15 



9·16 



CHAPTER 1 INTRODUCTION 

CHAPTER 2 USING CONSOLE ODT COMMANDS 

CHAPTER 3 USING REVll-A AND REVll-C 
COMMANDS 

CHAPTER 4 PAPER TAPE SYSTEM OPERATION 

CHAPTER 5 RXVll FLOPPY\DISK-BASED SYSTEM 
OPERATION. 



CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 
All LSJ:ll and PDP·ll/03 systems use the same basic hardware com­
ponents. Hence, the operating procedure for both systems is identical. 

.The operator inputs commands, data, and instructions via a console 
terminal, which also serves as an output device. All console functions 
previously provided by a control panel containing switches and lights 
are provided by this terminal, including starting programs, depositing 
and examining memory and register locations, and, with most ter· 
minals, halting prqgram execution. Console device hardware is described 
later in this chapter. 

Bootstrap, loader, and diagnostic programs are included in PROMs con­
tained on the REVll-A and REVll-C options. The bootstrap program 
allows bootstrarpping either drive (DXO or DX!) in the RXVll floppy 
disk system by entering a command on the console device. Loader 
programs include the Absolute Loader for both absolute addressed and 
relocatable programs; the loaders can be used with the console device, 
when equipped with a paper tape reader capability, and a high-speed 
reader or other reader device at a specified device address. The diag­
nostic programs perform simple go no-go tests on the processor and 
system memory. Diagnostic programs can be accessed by entering ap­
propriate commands, or executed automatically whenever a loader or 
bootstrap program is accessed. In addition, a non-memory modifying 
processor test is executed whenever the REV11 option's starting address 
(173000) is accessed during power up. The remaining chapters in this 
section describe console device ODT commands (Chapter 2), REVll-A 
and REVll-C commands (Chapter 3), paper tape system operation 
(Chapter 4), and RXVll floppy disk-based system operation (Chapter 5). 
The remainder of this chapter includes a description of the console 
device and normal power-up system response for various LSl-11 and 
PD_P-11/03 system configurations. 

1.2 THE CONSOLE DEVICE 
The console device can be nearly any terminal that is capable of trans­
mitting and receiving (for display) ASCII characters. The terminal nor­
mally interfaces with the system via a DLVll serial line unit. Factory­
installed jumpers encode the console device addresses and interrupt 
vectors. When in the con.sole state (Halt mode), all communication 
between the processor and the .serial· line unit is controlled by the 
processor's microcode in all LSl-11 and 'PDP-11/03 systems. Terminals 
equipped with a BREAK key are capable of placing the processor in the 
console state at any time. Note that this use of the console terminal 
does not interfere with its use for programmed 1/0 since the console 
and run states of the processor are mutually exclusive. A factory-in­
stalled jumper (FEH) is included on the DLVll serial line unit to enable 

1-1 



this function. Refer to Section I, Chapter 5, paragraph 5.6, for complete 
information on configuring the DLVll for use with specific terminal 
1/0 rates, serial word formats (number of data bits, number of stop 
bits, parity/no parity, odd, or even parity), and 20 mA current loop or 
EIA interface. Peripherals that are suitable for use as the console device 
terminal are listed in Table 1-1. Although the RT02·A is not capable of 
generating all ASCII characters required for full console operation, it 
can be used as the console device, but it is limited to the following ODT 
commands: 

ODTCommand 

CR 
LF 
I 
@ 
G 

RO 

RT02·A Keys 

SEND 
SHIFT and CLEAR 
SHIFT and+ 
SHIFTand@ 
SHIFT and GO 
SHIFT and ERROR 

The console device can either be directly interfaced to the DLVll or it 
can be operated in a remote location and interfaced via data sets or 
DFOl-A acoustic couplers and telephone lines. Only the LA36, LT33, 
VT50, and VT52 are capable of remotely plBcing the LSl-11 system in 
the Halt state by asserting a line break (continuous "space" transmis­
sion). (This feature is jumper-enabled on the DLVl 1 through the use of 
framing error detection.) 

1.3 POWER-UP RESPONSE 

1.3.1 PDP·ll/03 Power-On 
Proceed as follows: 

1. Ensure that the system is properly configured as previously described 
in Section I, Chapter 5. · 

2. Place the DC ON/OFF switch in the down position (DC OFF). 
3. Place the AC ON/OFF switch on the rear. of H780 power supply in the 

AC ON position. 
4. Place the HALT/ENABLE switch in the desired power-up position. 

NOTE 
The de power can be applied with the HALT/ 
ENABLE switch in either position. However, pro­
cessor power-up response is affected by this 
switch and jumper-selected power-up modes, as 
listed in Table 1-2. 

5. Place the LTC ON/OFF switch in the OFF position. 
6. Place the DC ON/OFF switch in the up (DC ON) position. The console 

device should respond with a printout (or display) ,as shown in 
Table 1-2. 

7. Proceed with initial pqwer-on checkout by entering and executing the 
program listed in Paragraph 1.3.3. 

1-2 



Table 1-1 Console Terminal Options 

Use as Serial Required 
Terminal Console Display 1/0 Speed BREAK Interface Interface 

Type Model Name Device Capacity (baud rate) Key Type Options 

Keyboard/Printer LA36 DECwriter 11 Yes 132 characters/line 300 Yes 20 mA loop DLVll, BC05M 
optional EIA DLVl-1, BC05C 

Keyboard/Printer LT33 Teletypewriter Yes 72 characters/line ID Yes 20 mA loop DLVll, BC05M 
and Paper Tape 
Reader/Punch 

Keyboard/CRT VT058 Alphanumeric Yes 1440 characters 110-2400 No 20 mA loop orDLVll, BC05M 
Display Terminal (72 char. X 20 lines) EIA DLVll, BC05C ... 

w Keyboard/CRT VT50 DECscope Yes 960 characters 75-9600 Yes 20 mA loop or DLVll, BC05M 
Display (80 char. X 12 lines) optional EIA DLVll, BC05C 

Keyboard/CRT VT52 DECscope Yes 1920 characters 75-9600 Yes 20 mA loop or DLVll, BC05M 
Display (80 char. X 24 lines) optional EIA DLVll, BC05C 

Alphanumeric RT02·A 30 Character Yes, with 32 characters 110-300 No 20 mA loop or DLVll, BC05M 
Data Entry Keyboard limited (20 mA) EIA DLVll, BC05C 
Terminal Remote Com· 110-1200 

Terminal mand Set (EIA) 

Full Alpha· RT02·8 Alphanumeric . Yes 32 characters 110-300 No 20 mA loop or DLVll, BC05M 
numeric Data Terminal (20 mA) EIA DLVll, BC05C 
Entry Terminal 110-1200 

(EIA) 



1.3.2 LSl-11 Initial Power-On 
Proceed as follows: 

1. Ensure that there is no de power applied to the backplane. 
2.· Remove all modules from the backplane. 
3. It is recommended that a single switch be used to apply +5 V and 

+12 V to the backplane. Simultaneous application of +5 V and +12 
V is recommended. 

4. Turn power on. 
5. At the backplane, chj'lck for the following voltages with respect to 

GND (pin C2 in any backplane slot): 
Row l, Slot A, Pin A2: + 5 V 
Row 1, Slot A, Pin 02: +12 V 
Row 1, Slot A, Pin Vl: +5 V 

CAUTION 
Do not plug in modules with power applied to 
backplane. 

6. Turn power off. 
7. Ensure that the system is properly configured and. installed as pre­

viously described in Section I, Chapters 5 and 6. Install modules. 
8. Turn on system power. Initialize the system by momentarily ground­

ing the BDCOKH signal. Observe that the console device responds 
as described in Table 1-2. 

9. Proceed with initial power-on checkout by entering and executing the 
program listed in Paragraph 6.3.3. 

1.3.3 ASCII Character Console Printout Program 
The following is a program that can be used to printout ASCII characters. 
The successful completion of this program can be used as a guide in 
determining the correct operation of the following: 

KDll-F or -J Processor 
DLVll Serial Line Unit 
LSl-11 data transfer and data control bus signals 
Power input connections for +12 V and +5 V 

This program does not explicitly check the following bus signals. 

BPOK H 
BEVNT L 
BDCOK H 

BHALT L 
BIRQ L 
BIAKl/OL 

BDMRL 
BDMGl/OL 
BSACK L 

This program outputs all ASCII characters and may include control 
codes for specific devices. 

Enter and execute the program via the console device as directed 
below: 

1-4 



Table 1-2 Console Power-Up Printout (or Display) 

Mode 0 (Jumpers Mode 1 (Jumper W6 Mode 2 (Jumper W6 Mode 3 (Jumper WS 
Conditions WS, W6 removed) removed, WS installed) installed WS removed) and W6 installed) 

SHALT L Processor will execute Terminal will print out Processor will execute No printout 
(unasserted), program using contents a random 6-digit program at location at terminal. 
Dynamic RAM of location 24 as the number, which is the 173000. (See Note 1) 
Memory PC value. contents of the (See Notes 2 and 3) 

program counter. 

SHALT L Processor will execute Terminal will print out Processor will execute No printout 
(unasserted), Core program in core using a random 6-digit program at location at terminal. 

._. Memory contents of location 24 number, which is the 173000 . (See Note 1) 
01 as the PC valu!E. contents of the (See Notes 2 and 3) 

program counter. 

SHALT L Terminal will print out Terminal will print out Terminal will print out No printout 
(asserted), contents of memory a random 6-digit "173000." at terminal. 
Dynamic RAM location 024 (normally number, which is the (See Note 1) 
Memory "000 000"). contents of the 

program counter. 

SHALT L Terminal will print out Terminal will print out Terminal will print out No printout 
(asserted), contents of memory a random 6-digit "173000." at terminal. 
Core Memory location 024 (normally number, which is the (See Note 1) 

"000 000"). contents of the 
program counter. 



NOTES 

1. If mode 3 is selected, and microaddress 
(3000-3777} is not implemented, the pro­
cessor will trap to memory location 010 and 
start program execution using the contents 
of location 10 as the PC value and location 
12 as the PSW value. 

2. Whenever the PDP-11/03 is executing a pro­
gram, the RUN indicator should be lit. If no 
program is provided or if a HALT instruction 
is executed, the RUN indicator will be ex­
tinguished. 

3. Normal mode for use with the REVll-A or 
REVll·C options. Normal display is a $ sym­
bol,· prompting the operator to input a com­
mand. 

Operator/ System Response 

@1000/000000 105737 <LF> 

001002 000000 177564<LF> 

Symbolic Program (Do not enter) 

LOOP: TSTB @ # 177564 

--- ---
001004 000000 100375<LF> 

001006 000000 110037 <LF> 

001010 000000 177566<LF> 

001012 000000 005200<LF> 

001014 000000 000137<LF> --- ---
001016 000000 OOlOOO<CR> 

@lOOOG 

NOTE 

BPY LOOP 

MOVB RO, @ # 177566 

INC RO 

JMP@# 1000 

Underlined characters are those -typed by the system. Characters not 
underlined are those typed by the operator. 

1. Immediately after the "@" prompt character enter the starting ad· 
· dress (1000), followed by a slash (/). The system responds by dis­

playing the contents of location 1000 (000000). Enter the first in· 
struction (105737) and close that location by pressing the LINE 
FEED key. The system responds by closing location 1000 and dis­
playing the address and contents of the next location (1002). on the 
next line. 

2. Enter the required contents for that location (177564), followed by 
the LINE FEED, and so on until the last location (001016) has been 
opened. After the required contents for that location have been 
entered, close it by pressing the RETURN key; the system responds 
by displaying the "@" prompt character on the next line. 

3. Enable the Run mode by placing the ENABLE/HALT switch (PDP·ll· 
03 panel or an equivalent LSl·ll switch} in the ENABLE position. 
Start the program by 1 entering the starting address (1000) and the 

1-6 



Go (G) command. The system will continuously output ASCII charac­
ters to the console device for display until the program is halted. The 
processor can be halted at any time by pressing the BREAK key on 
the console device (if the FEH jumper is left installed, see Section 
I, chapter 5, paragraph 5, 6) or by placing the ENABLE/HALT switch 
(PDP-11/03 panel) in the HALT position. A sample console device 
(Teletype) printout is shown in Figure 1-1. When this program is 
executed using the LA36 as the console device, use 132 column 
paper in order to avoid typing off the end of the paper. 

10"'0 G ! II 1$ :t& I () *""' ... /~ l 23456789:; <=>? iA3CDEFGH I Ji\L:-!N0?'..1.R.58 
r •• n %& • ( )*+, - ./01234 56789:; <=> 7@ABCD:::1'GH IJKl.:-lNOP~P.STUV'.IXYZ c \ l • -11A;;cD;:1'1 
! "' s:a.' () •• ., - • /3123456789;; <=> ?iA8CDEFGH lJKL:-iNOPQ?.STIJV'.JXYZ ( \ l '•@A3C:JEr• 
1••#$%&'C)*+.,-./31234S6789;;<=>?iA3CDEFGHIJKLMNOPQRSTUV~XYZt\lr·~ASCCSFa 
!"iS~&'Cl•+,-,/01234567891;<=>?iABCDEFGHIJKl.~NOPQP.STUVVXYZC~l•-iASGUE1'I 

Figure 1-1 Sample Console Printout 

1-7 



1-8 



CHAPTER 2 

USING CONSOLE -ODT COMMANDS 

2.1 THE HALT MODE 
Console ODT commands are executed by the LSl-11 processor only 
when the processor is in the Halt mode. When in this mode, the proces­
sor responds to commands and information entered via the console 
terminal, and all processor response is controlled by the processor's 
microcode. 

NOTE 
For console ODT communication, the DLVl 1 
must be configured for console bus addresses 
177560 through 177566. These addresses are 
included in the LSH 1 processor's microcode 
and cannot be changed. If no device responds 
to the above addresses, bus timeout errors will 
occur and the processor will go into an infinite 
microcode loop. The only way to get out of this 
loop is to initialize the system (momentarily 
assert the BDCOK H signal low, or cycle the 
power off and then on). 

The Halt mode is entered by one of the following ways: 

• Executing a HALT instruction 

o Pressing the BREAK key on the console terminal (this feature can be 
disabled by removing the FEH jumper on the console device's DLVll 
interface module) 

• During power-up (power-up Mode 1 configured on the processor 
module) 

• The BHALT L bus signal is asserted by any means 

• A double Bus Error (Bus Error trap with SP (R6) pointing to non· 
existent memory) 

• A Bus Error (timeout) during memory refresh 

• A Bus Error (timeout) when the processor is attempting to input a· 
vector from an interrupting device 

Upon entering the Halt mode, the processor outputs the following 
ASCII non-printing and printing c.haracters to the console terminal: 

<CR><LF> 
nnnnnn <CR><LF> 
@ 

The nnnnnn is the location of the next instruction to be executed, and 
is always the contents of the PC (R7). The <CR> and <LF> are car-

2·1 



riage return and line feed codes. The @ symbol is displayed as the 
prompt character for the operator; ODT will accept any of the com· 
mands described in this chapter at this point. 

2.2 ODT COMMANDS 
The following is a list of ODT commands and how th~y are used on the 
console terminal. Note that in the exampies provided, characters output 
by the. processor are shown underlined. Characters that are input by the 
operator are shown not underlined. 

The commands described in this chapter are a subset of ODT·l 1. Only 
the commands necessary for implementing the required console func­
tions are retained. 

Note also that all commands and characters are echoed by the processor 
and that illegal commands will l;>e echoed and followed by ? (ASCII 077) 
followed by CR (ASCII 015) followed by LF(ASCll 012) followed by @ 
(ASCII 100). If a valid command character is received when no location 
is open (e.g., when having just entered the halt state), the valid com­
mand character will be echoed and followed by a ?, CR, LF, @. Open­
ing non-existent locations will have the same response. The console 
always prints six numeric characters; however, the user is not required 
to type leading zeros for either address or data. If a bus error (timeout) 
occurs during memory refresh while in the console ODT mode, a ?, 
CR, LF, @will be typed. . 

l. "/" Slash (ASCII 057) 
This command is used to open a memory location, general-purpose 
register, or the processor status word. 

The I command is normally preceded by a location identifier. Be­
fore the contents is typed, the console will issue a space (ASCII 40) 
character. 

example: 

@ 001000/ 021525 

where: 
@= KDllF prompt character (ASCII 100) 
001000 = octal location in address space to be opened 
/ =command to open and exhibit contents of location 
012525 =-contents of octal location 1000 

NOTE 
If / used without preceding location identifier, 
address of last opened location will be used. 
This feature can be used to verify the data just 
entered in a location. 

2. "CR" carriage return (ASCII 015) 
This command is used to close an open location. If contents of 
location are to be changed, CR should be preceded by the new 
value. If no change to location is necessary then CR will not alter 
contents. 

2-2 



example: 
@ 001000/ 012525 CR LF 

@ /012525 

OR 

example: 
@ 001000/ 012525 15126421 CR LF 

@ /126421 

where: 
CR= (ASCII 015) used to close location 1000 in both examples. 
Note that in second example contents of location 1000 was 
changed and that only the last 6 digits entered were actually placed 
in location 1000. 

3. "LF" line feed (ASCII 021) 
This command is also used to close an open location or GPR 
(general-purpose register). If entered after a location has been 
opened, it will close the open location. or GPR and open location 
+ 2 or GPR + 1. If the contents of the open location or GPR are 
to be modified, the new contents should precede the LF operator. 

example: 
@ 1000/ 012525 LF CR 

001002/ 005252 CR LF --- -
@ 

where: 
LF = (ASCII 012) used to close location 1000 and open location 
1002, if used on the PS, the LF will modify the PS if the data has 
been typed, and close it; then a CR, LF, @ is issued. If LF is used 
to advance beyond R7, the register name that is printed is mean­
ingless but the contents printed is that of RO. 

4. " t " up arrow (ASCII 135) 
The "t" command is also the close an open location or GPR. 
If entered after a location or GPR has been opened, it will close 
the open location or GPR and open location 2, or GPR·l. If the 
contents of the open location or GPR are to be modified, the new 
contents should precede the "t" operator. 

example: 
@ 1000/ 012525 t CR LF 

000776/ 010101 CR LF ---
@ 

where: 
"t " = (ASCII 135) used to close location 1000 and open location 
776. 

2·3 



If used on the PS, the t will modify the PS if the data has been 
typed and close it; then CR, LF, @ is issued. If t is used to decre­
ment below RO, the register name that is printed is meaningless 
but the contents is that of R7. 

5. "@" at sign (ASCII 100) 
The @ command is used once a location has been opened to 
open a location using the contents of the opened location as a 
pointer. Also the open location can be optionally modified similar 
to other commands and if done, the new contents will be used 
as the pointer. 

example: 
@ 1000/ 000200 @ CR LF 

000200/ 000137 CR LF 

@ 

where: 
@ = (ASCII 100) used to close open location 1000 and open lo­
cation 200. 

Note that the @ command may be used with either GPRs or mem­
ory contents. 

If used on the PS, the command with modify the PS if data has 
been typed and close it; however, the last GPR or memory location 
contents will be used as a pointer. 

6. "<-" back arrow (ASCII 137) 
This command is used once a location has been opened to open 
the location that is the address of the contents of the open loca­
tion plus the address of the open location plus 2. This is useful 
for relative instructions where it is desired to determine the effec­
tive address. 

example: 
@ 1000/ 00200 <-CR LF 

001202/ 002525 CR LF --- --- -
@ 

where: 
"<-" = (ASCII 137) used to close open location 1000 and open 
location 1202 (sum of contents of location 1000 which is 200, 
1000 and 2). Note that thfs command cannot be used if a GPR 
or the PS is the open location and if attempted, the command will 
modify the GPR or PS if data has been typed, and close the GPR 
or PS; then a CR, LF, @ will be issued. 

7. $ dollar sign (ASCII 044) or R (ASCII 122) internal register _ 
designator: 
Either command if followed by a register value 0--7 (ASCII 060-
067) will allow that specific general-purpose register to be opened 
if followed by the / (ASCII 057) command. 

2-4 



example: 
~ $ n/ 012345 CR ~-

@ 

where: 
$ = register designator. This could also be R. 
n = octal register 0-7. 
012345 =contents of GPR n. 

Note that the GPRs once opened can be closed with either the CR, 
LF, "1' ", or @ commands. The "<--" command will also close a 
GPR but will not perform the relative mode operation. 

8. "$ s" (ASCII 123) processor status word 
By replacing "n" in the above example with the letter S (ASCII 
123) the processor status word will be opened. Again either $ or 
R (ASCII 122) is a legal command. 

example: 
@ $ S/ 000200 CR LF 

@ 

where: 
$ = GPR or processor status word designator 
S = specifies processor status register; differentiates from GPRs. 
000200 =eight bit contents of PSW; bit 7 =l, all other bits= 0. 

Note that the contents of the PSW can be changed using the CR 
command but bit 4 (the T bit) cannot be modified using any of the 
commands. 

9. "G" (ASCII 107) 
The "G" (GO) command is used to start execution of a program 
at the memory location typed immediately before the "G". 

example: 

@ 100 G or lOO;G 

The LSl·ll PC(R7) will be loaded with 100, the PSW is cleared 
and execution will begin at that location. Immediately after echoing 
the "G" twci null (000) characters are sent to the DLVll to act as 
fill characters in case the bus BINIT L signal clears the DLVll. 
Before starting execution, a BUS !NIT is issued for 10 µsec of idle 
time. Note that a semicolon character (ASCII 073) can be used to 
separate the address from the G and this is done for PDP-11 ODT 
compatibility. Since the console is a character by-character pro· 
cessor, as soon as the "G" is typed, the command is processed 
and a RUBOUT cannot be issued to cancel the command. If the 8 
HALT L line is asserted, execution does not take place and only 
the BUS !NIT sequence is done. The machine returns to console 
mode and prints the PC followed by CR, LF, @. 

2·5 



NOTE 
When program execution begins, the DLVll 
serial line unit is still busy processing the two 
null characters. Thus, the program should not 
assume the done bit (bit 7) is set in the output 
status register at 177564. 

10. "P" (ASCII 120) 
The "P" (Proceed) command is used to continue or resume ex· 
ecution at the location pointed to by the current contents of the 
PC(R7). 

example: 
@ P or ;P 

If the 8 HALT L line is asserted, a single instruction will be ex· 
ecuted, and the machine will return to console mode. It will print 
the contents of the PC followed by a CR, LF, @. In this fashion, 
it is possible to single instruction step through a user program. 
However, since the SHALT L line has higher priority than device 
interrupts, device interrupts will not be· recognized in the single 
step mode. 

The semicolon is accepted for PDP·ll ODT compatibility. If the 
semicolon character is received during any character sequence, 
the console ignores it. 

11. "M" (ASCII 115) 
The "M" (Maintenance) command is used for maintenance pur· 
poses and prints the contents of an internal CPU register. This 
data reflects how the machine got to the console mode. 

example: 
@ M 00213 CR LF 

@ 

The console prints six characters and then returns to command 
mode by printing CR,LF,@. 

The last octal digit is the only number of significance and is en· 
coded as follows. The value specifies how the machine got to the 
console mode. 

Last Octal Digit Value Function 

0 or 4 Halt instruction or 8 Halt line 

1 or 5 Bus Error occurred while getting device 
interrupt vector. This error probably in· 
die.ates that the priority chain (BIAKl/0 L 
signal) is broken in the system and that 
an open slot exists between modules. 
Modules must be inserted in a contiguous 
fashion according to the priority daisy 
chain. 

2·6 



Last Octal Digit Value Function 

2 or 6 Bus Error occurred while doing memory 
refresh 

3 Double Bus Error occurred (stack contains 
non-existent address) 

4 Reserved instruction trap occurred (non· 
existent Micro-PC address occurred on in· 
ternal CPU bus) 

7 . A combination of 1, 2, and 4, which im· 
plies that all three conditions occurred. 

In the abov& example, the last octal digit is a "3", which indicates 
a Double Bus Error occurred. 

The codes listed above are valid only when the console mode is 
entered, and the code is immedi(ltely displayed. This information 
is lost when a "G" command is issued; the code reflects what 
.happened in the program since the last "G" command was issued. 

12. "RO" RUBOUT (ASCII 177) 
While RUBOUT is not truly a command, the console does support 
this character. When typing in either address or data, the user can 
type RUBOUT to erase the previously typed character and the 
console will respond with a ""-." (Backslash-ASCII 134) for every 
typed RUBOUT. 

example: 
@ 000100/ 077777 123457 (RUBOUT) ~ 6 CR LF 
@ 000100/ 123456 

In the above example, the user typed a "7" while entering new 
data and. then typed RUBOUT. The console responded with a ""-." 
and then the user typed a "6" and CR. Then the user opens the 
same location and the new data reflects the RUBOUT. Note that 
if RUBOUT is issued repeatedly, only numerical characters are 
erased and it is not possible to terminate the present mode the 
console is in. If more than six RUBOUTS are consecutively typed, 
ancj then a valid location closing command is typed, the open 
location will be modified with all zeros. 

The RUBOUT command cannot be used while entering a register 
number. R2 "-. 4 / 012345 will not open register R4; however, the 
RUBOUT command will cause ODT to revert to memory mode and 
open location 4. 

13. "L" (ASCII 114) 
The "L" (Bootstrap Loader) command will cause the processor to 
self·size memory and then load a· program that is in bootstrap 
loader format (e.g., the Absolute Loader program) from the spe· 
cified device. The device is specified by typing the address of its 
input control and status register (RCSR) immediately before the 
"L". No bus initialize (BINIT L signal) is issued. 

2·7 



example: 
@ 177560L 

First, memory is sized, starting at 28K (157776), and the address 
is decremented by 2 until the highest read/write memory location 
is found. In small systems (e.g., 4K memory), a discernible pause 
of about 1 second will occur before tape motion is observed. Mem­
ory refresh continues in a normal manner during the sizing process. 
Then, the device RCSR address (177560 in the above example) is 
placed in the last location in memory (XXX776) for Absolute 
Loader compatibility. Ttie program is then loaded by setting the 
"GO" bit (bit 0) in the device address and reading a byte of data 
from the device address plus 2 (177562); this address is the 
device's receiver data buffer. PDP-11 bootstrap loader format re­
quires that the first data byte read from the tape is 351 8 . The 
Absolute Loader program tape, for example, has several inches 
of frames all punched with 351 8 • The first byte following the 351 8 
bytes contains the low byte of the starting address minus 1. (For 
Absolute Loader, this byte is 0758.) All bytes which follow are data 
bytes. Loading continues until address XXX752 has been loaded. 
The data at that location is then treated as the low byte of a new 
load address. Loading continues until byte location XXX774 has been 
loaded. (Address detection is done via pointers contained in the 
LSl-11 processor's microcode.) The processor then loads a 1 into 
byte location XXX775 so that word location XXX774 contains a 
PDP-11 Branch instruction (000765). The processor does not 
modify the PSW nor issue a BINIT L signal; it starts program ex­
ecution at location XXX774 .. The program being loaded must halt 
the processor, if that is desired. For example, when loading the 
Absolute Loader program, the processor will halt, and the console 
terminal will display XXX500 (the current PC contents), followed 
by CR, LF, @. When loading a program using the "L" command, 
the SHALT L signal line is ignored. If a timeout error occurs, such 
as would occur if a non-existent device was entered by the user 
preceding the "L" command, the console will terminate the load 
and print"?, CR, LF, @. Any device CSR address may be used that 
references an actual address configured on the reader device's bus 
interface controller module. For example, the console device ad· 
dress (RCSR=177560) can be configured on a bLVll serial line 
unit which interfaces with an LT33 Teletype low-speed reader. If 
no address is entered for the reader device, address 0 will be 
used, and the system will likely "hang." The console ODT mode 
can be restored by momentarily asserting the BDCOK H signal low, 
or by cycling the power off and then on. 

14. "CONTROL SHIFT S" (ASCII 23) 
This command is used for manufacturing test purposes and is not 
a normal user command. It is briefly described here so that in case 
a user accidentally types this character, he will understand the 
machine response. If this character is typed, ODT expects two m<)re 
characters, where the first character is treated as the high byte of 
an address, and the second character as the lo.w byte of an address. 
It uses these two characters as a 16-bit binary address and start-

2-8 



ing at that address, dumps five locations (or ten bytes) in binary 
format to the serial line. 

It is recommended that if this mode is inadvertently entered, two 
characters such as a NULL (0) and @ (ASCII 100) be typed to 
specify an address in order to terminate this mode. Once com­
pleted, ODT will issue a CR, LF, @. 

2-9 



2-10 



CHAPTER 3 

USING REVl 1-A AND REVl 1-C COMMANDS 

3.1 GENERAL 
The REVll-A and REVll-C hardware options both contain the same 
programs, stored in read-only memory. The normal starting address for 
the programs is 173000. When started at this location, the program 
that is executed is a non-memory modifying processor test. If no 
errors are detected, the program outputs a dollar sign ($) for display 
on the console device. This character is the prompt character for the 
operator to enter a command. 

The starting address can be entered and program operation started 
either manually, using the console ODT Go command, or automatically 
during power-up. Automatic operation is accomplished by selecting 
power-up Mode 2 by appropriately configuring jumpers on the proces­
sor module. The normal power-up response for this mode results in the 
console device displaying the $ prompt character instead of the @ con-
sole ODT prompt character. · 

Unsuccessful execution of the non-memory modifying processor test 
program results in the $ prompt character not being displayed. Instead, 
the program hangs (branch to self) when a sequence of instruction do 
not execute properly, or the processor halts due to a double bus error; 
a halt normally results in the console terminal displaying the PC con­
tents (the address of the Halt +2), followed by the console ODT prompt 
character@. 

3.2 REVll·A AND REVll·C COMMAND SET 
Once the $ prompt character is displayed, the operator can enter one 
of the commands described in Table 3-1. Note that in the command 
examples, characters printed by the program are shown underlined; 
characters not underlined are entered by the operator. Command inputs 
to the program can either be upper or lower case characters. If an in­
valid command is entered following the.$ prompt character, the program 
responds by displaying ? after the invalid command and a new $ prompt 
character on a new line. For example, program response to the invalid 
"XJ" command -is shown below: . · 

$ XJ? 

$ 

Table 3·1 REVll·A and REVll·C ROM Program Commands 

Command Function 

OD ODT (Halt). This allows the operator to examine 
and/or alter memory and register locations via the 
console device. Control cari be returned to the 

3·1 



Table 3-1 REVll-A and REVll-C ROM Program Commands (Cont.) 

Command Function 

XM<CR> 

REVll program by entering the ODT P (Proceed) 
command if the PC has not been altered, and the 
console device will display the $ prompt character. 
If the PC has been altered, the operator can start 
program execution by entering the starting address 
165006 and the G (Go) commands as follows: 

@ 165006G 

$ 

The processor responds by displaying the $ prompt 
character on a new line and another REVll com­
mand can be entered. 
Memory. Diagnostic program. After successfully 
completing the diagnostic, the prompt character 
($) is displayed on the console device. Errors are 
indicated by th~ following displays on the console 
device: 

1. 173732 

@ 

This is an address test error. The expected (nor­
mal) data is in R3 and the invalid data is in the 
memory locatioi:i pointed to by R2. If desired, 
continue diagnostic program execution by enter­
ing the CDT P command. · 

2. 173756 

@ 

This is a data test error. The expected (normal) 
data is stored in R3 and the invalid data is in 
the memory location pointed to by R2. If de­
sired, continue diagnostic program execution by 
entering the CDT P command. 

3. 000010 

@ 

A timeout trap has occurred in testing memory 
locations outside of the first (lowest) 4K mem­
ory. 

4. nnnnnn 

@ 

A timeout trap has occurred in testing memory 
locations within the first 4K memory. The 
nnnnnn displayed is an indeterminate number . 

. The actual memory test consists of an address test 
and a data test. The address test first writes all 

3-2 



Table 3-1 REVll-A and REVll-C ROM Program Commands (Cont.) 

Command Function 

XC<CR> 

AL<CR> 

memory locations with addresses; it then reads 
and verifies the addresses. The data test consists 
of two parts. An "all l's" word is first walked 
through all memory locations, 't'hich are initially 
0. The second part consists of walking an "all O's" 
word through all memory locations which are all 
l's. 

Processor Diagnostic program. This is a memory­
modifying instruction test. Successful execution of 
the diagnostic program results in the prompt char­
acter ($) being displayed on the console device. 
Errors are indicated by: 

1. The program halts when an instruction sequence 
is not correctly executed. 

2. The program halts in the trap vector area for 
various traps. 

NOTE 
When a halt occurs, the console ODT M com­
mand can be used to determine how the halt 
mode was invoked. When the system fails to 
successfully execute the above diagnostics, 
maintenance diagnostic programs should be 
used to thoroughly test processor (and memory) 
functions. 

Absolute Loader program, normal (absolute ad· 
dress) loading operation. Entering AL<CR> spe­
cifies that a paper tape is to be loaded via the 
console device (CSR address =177560). However, 
another device can be specified by entering the 
appropriate CSR address. For example, to load 
paper tapes in absolute loader format via a device 
whose CSR address is 177550, enter the following 
command: 

$ AL177550<CR> 

The program responds by first executing the mem­
ory-modifying CPU instruction test and memory 
test (refer to the XC and XM commands). Success­
ful test execution results in execution of the Abso­
lute Loader program. 

A successful program load is indicated when the 
console device displays: 

165625 

@ 

3-3 



Table 3-1 REVll-A and REVll-C ROM Program Commands (Cont.) 

Command Function 

AR<CR> 

the loaded program automatically starts execution, 
or 
Absolute loader errors are: 

1. Checksum error, with the program halting and 
producing the following display: 

165534 

@ 

2. Program halts in the trap vector. area for traps 
other than a timeout trap. 

3. Timeout trap occurs, causing the display of $ 
on a new line on the console device. 

Absolute Loader program, relocated loading oper­
ation. When this command is entered, the mem­
ory-modifying CPU instruction test and· memory 
test are automatically first executed (refer to the 
XC and XM commands), followed by the Absolute 
Loader program. Successful execution of the tests 
results in the program halting with the following 
console display: 

165412 

@ 

The operator must then enter the appropriate 
"software switch register" contents in R4. To select 
relocated loading, which uses an address (bias) 
contained in the software switch register, enter 
the following commands: 

@ R4/ xxxxxx nnnnnn <CR> 

@P 

The value nnnnnn is a relocation value selected by 
the operator as directed in the PDP-11 Paper Tape 
Software User's Handbook. Observe that the least 
significant "n" value entered must be an odd num­
ber; this sets the software switch register (R4) bit 
0 to a logical 1, selecting the relocated loading 
mode. Note that the program being loaded must be 
in Position Independent Code (PIC) format for re­
located loading. 

When large programs are contained on more than 
one tape, the program halts at the end of the first 
tape. Install the second tape in the· reader and 
enter a "l" in R4 using the DDT command shown 
below; resume loading by entering the P command. 

3-4 



Table 3-1 REVll-A and REVll-C ROM Program Commands (Cont.) 

Command Function 

DX <CR> or 
DXn <CR> 

@ R4/~l <CR> 

@P 

The six octal digits (xxxxxx) are the present con­
tents of R4. Entering a value of 1 selects relocated 
loading for the next program tape, starting at the 
address following the end of the previous load oper· 
ation. The P command allows the absolute loader 
program execution to continue the loading process 

. once the software switch register value has been 
entered. 

A successful program load is indicated when the 
loaded program automatically starts execution, or 
the console device displays 

165626 
@ 

Absolute loader errors are as described for the AL 
command. 

RXVll floppy disk system bootstrap. Entering the 
DX <CR> command starts the memory-modifying 
CPU instruction test and memory test execution 
(see the XC and XM commands). Successful test 
execution results in execution of the bootstrap 
program for disk drive 0, the System disk. Other­
wise, specify the drive number (n) as 0 (drive 0) 
or 1 (drive 1). 

Floppy disk bootstrap errors are: 

1. The program halts and the console device dis· 
plays: 

165316 
@ 

indicating that the device Done flag in the 
RXVll interface was not set within the required 
time (approx. 1.3 seconds). The bootstrap can 
be restarted by entering the P command; the $ 
is then displayed on the console device and the 
bootstrap command can be entered. 

2. The program halts and the console displays: 
165644 . 

@ 

indicating that a bootstrap error occurred. The 
RXVll 's Error Register contents are stored in 

3.5 



Table 3-1 REVll·A and REVll·C ROM Program Commands (Cont.) 

Command Function 

R2. By examining the contents of R2 and using 
the information contained in the RXVll User's 
Manual, the exact nature of the error can be 
determined. Examine the contents of R2 (nnnn­
nn) as follows: 

@ R2/nnnnnn <CR> 

@P 

$ 
After. examining R2, the bootstrap can be re­
started by the P command; enter the desired 
bootstrap command immediately after the $ 
prompt character. 

3. The program halts in the trap vector for traps; 
a timeout trap returns the program to the $ 
prompt character. If a timeout trap occurs first 
check for proper system cable connections and 
device interface module installation. Then, at­
tempt to successfully bootstrap the system by 
again entering the desired bootstrap command. 

Bootstrap programs can be started from the Halt (console ODT) mode 
(refer to the OD command) without first executing the Diagnostic pro­
grams. Programs started in this manner include the Absolute Loaders 
(AL and AR) and the bootstrap for disk drive 0 (DX). 

Start the DX bootstrap program by first loading R4 with the DX boot­
strap starting address (165264). Start the REV11 program at 165242. 
This sequence of operations is shown below: 

$OD 

@ R4/xxxxxx 165264 <CR> 

@ 165242G 

Start the Absolute Loader program (AL or AR) by loading the appro­
priate starting address in R4: 

AL starting address= 165414 
AR starting address = 165406 

Load the highest available memory address in R5. For example, if the 
system contains 4K read/write memory, load R5 with 177776. Proceed 
loading by starting the REV11 program at 165242. The complete se­
quence for starting the AL program in a 4K system is shown below: 

$OD 

@ R4/xxxxxx 165414 <CR> 

@ R5/xxxxxx 177776 <CR> 

@ 165242 G 

3-6 



CHAPTER 4 

PAPER TAPE SYSTEM OPERATION 

4.1 GENERAL 
Paper tape systems include no mass storage devices and programs must 
be read into system memory prior to system operation. Programs are 
read from punched paper tapes using either an optional low-speed 
reader, such as the L T·33 Teletypewriter, or a high-speed reader (user· 
supplied). The normal sequence of operation is: 

1. Load the Absolute Loader 

2. Load program tapes 

3. Execute the program 

4.2 LOADING THE ABSOLUTE LOADER 
The Absolute Loader program tape is loaded using the Bootstrap Loader, 
which is resident in the processor's microcode. The Bootstrap Loader is 
executed via the Halt mode and console ODT commands as directed 
below: 

1. Enter the Halt mode 
PDP·ll/03-Place the HALT/ENABLE switch in the HALT position. 
The console device prints the @ prompt character. 
LSl-11-Since LSl·ll systems are completely user-configured, the 
HALT mode can be entered via one or more of the following means: 

a. Momentarily place the user-supplied HALT/ENABLE switch in the 
HALT position; return the switch to the ENABLE position. 

b. Press the BREAK key on the console device (FEH jumper must be 
installed in the console SLU interface module). 

c. Initialize the processor by momentarily negating BDCOK H (pro· 
cessor module jumper W5 must be installed and W6 removed). 

2. Place the Absolute Loader tape (DEC·ll·UABLB·A·PO) in the paper 
tape reader, Note that a long portion of the tape is punched with 
the octal value 351 (Channels 8, 7, 6, 4, and 1 are punched); posi· 
tion the tape so that any of those characters is located over the 
reader head .. 

3. Enable the tape reader as follows: 
LT33 Teletypewriter 
a. Enable the low-speed reader by placing the LINE/OFF/LOCAL 

switch in the LINE position. 
b. Place the START /STOP/FREE switch in the START position. 
High-Speed Reader-Turn the reader on and place "on line," as 
appropriate for the type of reader being used. 

4. Enter the reader's CSR address by typing the value on the console 
device. For example, if the console device includes a paper tape 
reader (such as the L T33 low-speed reader), type: 
@ 177560 . 

4-1 



NOTE 

In the above example, and all examples which 
follow, characters printed by ODT are shown 
underlined. Characters entered by the operator 
are shown not underlined .. 

The value 177560 is the console device's CSR. 

5. Load the Absolute Loader tape by typing L immediately after the 
reader device's CSR. The tape will automatically be read followed 

. by printing the Absolute Loader's starting address on a .new line and 
the @ character on the following line. The complete command is 
shown below: 

@ 177560L 

037500 

@ 

The starting address of the absolute loader depends upon the size 
of the system read/write memory (in any increments). Memory sizing 
is automatic and the Absolute Loader will be properly located for the 
particular system in which it is loaded. The above example is for a 
system containing 8K memory. 
A listing of typical printouts for 4K memory increments is provided 
below: 

MEMORY SIZE PRINTOUT 

4K 017500 
@ 

8K 037500 
@ 

12K 057500 
@ 

16K 077500 
@ 

20K 117500 
@ 

24K 137500 
@ 

28K 157500 
@ 

If a proper printout of the absolute loader's starting address is not 
obtained, repeat steps 4 and 5. If no printout occurs, reenter the 
console ODT mode as directed in steps la through le, or cycle power 
off and then on. 

4-2 



4.3 LOADING PROGRAM TAPES 

4.3.1 General 
Program tapes are loaded into memory by the Absolute Loader program. 
The Absolute Loader can be used for normal loading and relocated 
loading operations. Normal loading causes the program being loaded 
to load at an absolute address punched in the program tape. Relocated 
loading allows loading certain program tapes into any .specific area in 
memory, or to continue loading from where the loade'r left off on a 
previous load operation. 

4.3.2 Normal Loading Procedure 

1. Place the program tape in the reader with blank (leader) tape over 
the read head. 

2. Enable the tape reader as described in Paragraph 4.2, Step 3. 

3. Read the program tape: 
a. If processor halted at Absolute Loader starting address (Para· 

graph 4.2, Step 5), type P (Proceed command). 
b. Load additional programs by typing the starting address of the 

loader program (previously printed out as described in Paragraph 
4.2, Step 5), followed by the G command, as follows: 
@037500G 

NOTE 
1. The above example is applicable for an 8K 

memory system. Use an appropriate starting 
address as printed out on the console device 
after loading the Absolute Loader. 

2. Leading O's can be ignored. For example, 
037500 can be entered as: @ 37500G. 

After loading the program tape, the Absolute Loader program halts. 
The Halt PC +2 address is printed on a new line, followed by the @ 
character on the following line. The complete program loading se­
quence is shown below: 

@ 177560L 

037500 

@P 

037712 First Prag Tape Loaded 

4. Incorrect load: 
If the Absolute Loader detects a checksum error while loading, it will 
halt at location XXX612, and the low byte of register RO will contain 
the difference between the calculated checksum and the checksum 
that appears at the end of a data block. If this condition occurs, it 
usually indicates misalignment in the paper tape reader. When load­
ing long tapes (i.e., 4K words or more), checksum errors are likely 

4-3 



to occur on some electromechanical readers. When checksum errors 
occur, repeat the loading procedure, starting at Step 1. 

4.3.3 Relocated Loading Procedure 
Relocated loading can be specified by setting the software switch register 
(in the Absolute Loader program) to a particular value. This value is 
normally 0, and normal program loading is selected by default. Note that 
the software switch register's address is dependent upon the Absolute 
Loader starting address, as previously printed. Use the first three octal 
digits of the starting address as the most significant three digits and 
516 as the three least significant digits. Hence, 037516 is the software 
switch register location for the Absolute Loader when loaded in an SK 
system. 

To continue loading from a previous load operation, type: 

@ 037516/000000 1 <CR> <!:£"> 

@ 

NOTE 

The above example is for an SK memory system. 

This type of relocated loading is particularly .useful for large programs 
which are contained on more than one tape. To select relocated loading 
which uses an address (bias) contained in the software switch register, 
type: 

· @ 037516/000000 nnnnnn <CR> <!:!> 

@ 

,NOTES 
1. The above eample is for an SK memory system. 

2. Select a relocation value nnnnnn as specified in the PDP-11 Paper 
Tape Software User's Handbook. Observe that the least significant 
"n" value entered must be an odd number; this sets the software 
switch register bit 0 to a logical l, selecting the relocated loading 
mode. 

3. The program being loaded must be in a Position Independent Code 
(PIC) format to allow relocation. 

4.3.4 Self Starting Programs 
Some programs are self starting (described in the Paper Tape Software 
Programming Handbook), and can automatically proceed into execu­
tion immediately after loading. Load the program tape as previously 
described. Instead of the Absolute Loader program halting after loading 
the program tape, prograni control transfers to the loaded program's 
starting address, and the processor proceeds with normal program ex­
ecution. 

4.4 PROGRAM STARTING .AND EXECUTION 
Once a program has been correctly loaded, program execution can be 

4·4 



started by placing the HALT /ENABLE switch (PDP-11/03 panel, or 
equivalent user-supplied LSl-11 switch) in the ENABLE position. Start 
normal program execution as follows: 

@ 200G 

The 200 in the above example is a typical starting address. Each pro­
gram listing specifies the correct starting address. G is the Go command, 
and program execution will immediately commence, starting at the spe­
cified location. 

Single instruction execution, when desired, is obtained by operating 
the processor in the Halt mode. Place the HALT/ENABLE switch in the 
HALT position. Enter the starting address (or a desired address for the 
first instruction to be executed) as described for normal program execu­
tion. The G command causes the processor to initialize the system and 
then Halt with the PC (R7) pointing to the first instruction. This address 
is printed on the console device as shown in the following example: 

@ 200G <CR LF> . 

000200 <CR LF> 

@ 

Successive insruction executions will occur each time the Proceed (P) 
command is entered via the console device·. 

An example of single instruction execution using the P command is 
shown below: 

@ 200G 
000200 

@P 
000202 

@P 
000204 

@P 
000206 

@ 

Note that after executing each instruction, the processor halts and prints 
the address of the next instruction. Thus, Branch, Jump, and JSR in­
structions will alter the PC as required in normal program execution, 
allowing the operator time to observe program operation. 

NOTE 
Avoid single instruction execution of programs using interrupts. Those 
interrupts cannot be serviced by the processor when in the Halt mode 
because the Halt mode service has higher priority than device inter­
rupts. 

4-5 



4.5 PAPER TAPE SOFTWARE 
Three paper tape software options are presently available for use on 
LSl-11 and PDP-11/03 systems: 

1. QJVlO-CB 
This option contains the paper tape software tools required for user­
generation of programs for specific applications. Documentation in­
cluded in the option provides complete instructions for using the 
various paper tape programs. Programs included in QJVlO-CB are 
listed below: 
• ED-11 Text Editor 
• PALllS Assembler 
• LINKll Linker 
• DUMPS Memory Dump utility program 
• ODT-11 On-Line Debugging Technique program for debugging as­

sembled programs 
o IOX Input/Output Executive 
• Absolute Loader 

2. QJVll-CB 
This program aids in user-generation of PROM listings and tapes. A 
complete description of this program is ~ncluded in Section I, Chap-
~r ~ . 

3. ZJVOl-RB LSl-11 
LSl-11, PDP-11/03 diagnostic software. Paper tape diagnostic soft­
ware and documentation contained in this software option are de­
scribed in Section I, Chapter 9, Paragraph 9.3. 

4-6 



CHAPTER 5 

RXVl 1 FLOPPY DISK-BASED 
SYSTEM OPERATION 

5.1 GENERAL 
A typical RXVll·based system includes the RXVll Floppy Disk System, 
a console terminal and its serial line unit interface, the LSl-11 processor, 
and an SK (minimum) read/write memory. PDP·ll/03 systems include 
the LSl·ll processor, console terminal serial line unit interface, and 4K 
read/write memory; an optional 4K read/write memory (MSVll·B), con· 
sole term_inal, and the RXVll Floppy Disk System are required. 

RXVll hardware includes the RXOl single or dual floppy disk drive, 
M7946 interface module, and BC05L·15 interface cable. Models are 
availa):>le for 115 V, 60 Hz and 230 V, 50 Hz operation. 

The RXOl contains no operator controls or indicators other than the 
load door(s) on the front panel. The left drive dual drive models is 
named DXO and the right drive is DXl. Load the system diskette in the 
left (or only) drive: this drive (DXO) is called the System device in most 
systems. 

5.2 BOOTSTRAPPING THE RXVll 

5.2.1 General 
The RXVl 1 bootstrap loader program loads the system monitor from 
disk into system memory. No operation can occur until the monitor is 
contained in system memory. Bootstrapping ("booting") the system can 
be accomplished via a hardware-implemented bootstrap in the REVll·A 
or REVll-C option, or it can be entered and executed via the console 
device. 

5.2.2. Bootstrapping The System Using The REVll-A or REVll-C 
The REVll-A and REVll·C implement the RXVll bootstrap (and other 
programs) in four pre-programmed ROM chips. When system power is 
applied, and LSl-11 processor Mode 2 power-up sequence is configured 
on the processor module, the system responds with a dollar sign ($) on 
a new line. If Mode 2 is not configured, the REVl 1 program can be 
started from the console ODT mode by entering 173000G <CR>- The 
operator then responds by typing the device to be bootstrapped. DX (or 
DXO) is disk drive O; DXl is the second drive in dual drive RXVll sys­
tems. A normal sequence of operations from power up through booting 
DXO is shown below: 

~DX <CR> 

RT·llSJ V02C·XX 

5-1 



NOTE 

During the booting process the floppy disk 
drive will make audible clicking sounds. This is 
normal, indicating that the heads are moving 
over the diskette. 

After executing the DXO bootstrap, the system responds by displaying 
the monitor in use (RT-llSJ in the above examples) and the particular 
version in use (V02C-XX); the version is changed software changes are 
implemented. Finally, a dot is displayed on the next line, indicating 
that the RT-11 Keyboard Monitor is ready to accept a command. The 
system is correctly booted and RT-11 programs can be executed as 
desired. Other software systems can be booted on disk drive 0 or aisk 
drive 1 in the same manner if they contain a software bootstrap pro­
gram on track 1, sector 1. 

If incorrect loading occurs (an unexpected halt during the booting 
process), refer to Paragraph 5.2.4. 

5.2.3 Booting The System Via the Console Device 
When the REVll·A or REVll·C option is not included in the system, the 
operator must enter a bootstrap program via the console device. Place 
the processor in the Halt mode and proceed as shown below; observe 
that underlined characters are printed by the processor and non-under­
lined characters are entered by the operator: 

..@_1000/000000 12702 <LF> 

'.J0!002/000000 1002n7 <LF>" 

001004/000000 12701 <LF> 

OOJOO(i/OOOOIJ9 177170 <LF> 

001010/000000 130211 <LF> 

001012/000000 1776 <LF> 

001014/000000 112703 <LF> 

001016/000000 7 <LF> 

00103Q/000000 10100 <LF> 

0010~/00001J9 10220 <LF> 

00102~/000000 402 <LF> 

001026/~000 12710 <LF> 

001030/000000 I <LF> 

001032/000000 6203 <LF> 

001034/000000 103402 <LF> 

001036/000000 112711 <LF> 

001040/000000 I 11023 (LF) 

001042/000000 30211 <LF> 

001044/000000 1776 <LF> 

001046/000000 100756 <LF> 

001050/000000 103766 <LF> 

001052/000000 1Q5711 <LF> 

001054/000000 100771 <LF> 

001056/000000 5000 <LF> 

001060/000000 22710 <LF> 

001062/000000 240 <LF> 

001064/000000 1347 <LF> 

001066/000000 122702 <LF> 

001070}000000 247 <LF> 

001072/000000 5500 <LF> 

001074/000000 5007 <CR> 

5-2 

@1000/000000 5000 <LF> 

001002/000000 12701 <LF> 

001004/000000 177170 <LF> 

001006/000000 105711 <LF> 

001010/000000 1776 <LF> 

001012/000000 12711 <LF> 

001014/000000 3 <LF> 

001016/000000 5711 <LF> 

001020/000000 1776 <LF> 

001022/000000 100405 <LF> 

001024/000000 105711 <LF>. 

001026/000000 100004 <LF> 

001030/000000 116120 <LF> 

~/000000 2 <LF> 

OOJ0~/000000 770 <LF> 

001036/000000 0 <LF> 

001040/0~ 5007 <CR> 

*n = 4 for Unit·Q 

n ::::::: 6 for Unit 1 

<LF> = Line Feed 
<CF> =Carriage Return 

Starting address .. = 1000 



The bootstrap program can be started at location 1000. Enable the 
Run mode by placing the HALT /ENABLE switch (on the PDP·ll/03 
panel, or an equivalent LSJ.11 switch) in the ENABLE position. Start 
the program using the Go command as follows: 

@ lOOOG 

After a few seconds the monitor will be loaded in system memory. The 
monitor will identify itself on the console device by displaying a mes­
sage, such as: RT·llSJ V02X-XX; this printout is followed by the Key­
board Monitor prompt character (.) displayed on the next line, for the 
RT-11 example shown above. 

If incorrect loading occurs (an unexpected halt during the booting pro­
cess), refer to Paragraph 5.2.4. 

5.2.4 Incorrect' Loading 
Incorrect loading (booting) results in unexpected halts or a hung pro­
gram If a halt occurs, type "M" (maintenance command) to determine 
the cause of the halt. Six digits will be displayed, but only the last digit 
is used. 

If the last digit is a 1 or 5, it indicates that the priority chain is broken. 
This is probably due to an open option slot between modules. Recheck 
all modules to ensure that they are inserted in contiguous locations; 
unused option locations must not occur between peripheral devices 
requiring interrupt (or OMA) service and the processor module. 

If the last digit is a 3 or 7, the stack pointer (R6) has become invalid. 
This may be the result of a faulty memory module. 

When booting the system, if the system does not respond with a dis­
play within 5 seconds, halt the processor and examine the part of the 
program that is presently being executed (at the time of the halt). The 
program may be in a loop. The actual cause of the problem may be 
discerned by decoding that portion of the program. A simple hardware 
problem may exist, such as the door of the floppy disk drive may not 
be closed properly. 

5-3 



5-4 



CHAPTER 1 INTRODUCTION. 

CHAPTER · 2 ADDRESSING MODES 

CHAPTER 3 INSTRUCTION SET 

CHAPTER 4 EXTEN.DED ARITHMETIC OPTION 

CHAPTER 5 PROGRAMMING TECHNIQUES 

-



CHAPTER 1 
INTRODUCTION 

In this section the processor hardware is examined from the program­
mer's point of view. The major portion of the section includes a descrip­
tion of the PDP-11 addressing modes and instruction set. In addition, 
the KEV11 EIS/FIS option instructions are described. Programming 
techiques that illustrate the use of the instruction set, addressing 
modes, and processor hardware features are included at the end of 
this section. The remainder of this chapter contains general information 
on processor organization, bus cycles, and addressing. 

1.1 PROCESSOR HARDWARE 
1.1.1 General Registers 
The LSl-11 central processor module contains eight 16-bit general·pur· 
pose registers that can perform a variety of functions. These registers 
can serve as accumulators, index registers, autoincrement registers, auto­
decrement registers, or as stack pointers for temporary storage of data. 
Arithmetic operations can be from one general register to another, from 
one memory location or device register to another, or between memory 
locations or a device register and a general register. The following illus­
tration identifies the eight 16-bit general registers RO through R7. 

GENERAL 
REGISTERS RO 

RI 
R2 

R3 
R4 

R5 

R6 l!SP) 

STACK POINTER 

R7 llPC) 
PROGRAM COUNTER 

Figure 1-1 General Register Identification 

Registers R6 and R7 in the LSl-11 are dedicated. R6 serves as the Stack 
Pointer (SP) and contains the location (address) of the last entry in the 
stack. Register R7 serves as the processor's Program Counter (PC) and 
contains the address of the next instruction to be executed. It is nor­
mally used for addressing purposes only and not as an accumulator. 
Register operations are internal to the processor and do not require bus 
cycles (except for instruction fetch); all memor-Y and peripheral device 
data transfers do require. bus cycles and longer execution time. 
Thus, general registers used for processor operations result in faster 
execution times. The bus cycles required for memory and device refer-
ences are described below. • 

1-1 



Bus Cycles 
The bus cycles (with respect to the processor) are: 

DATI Data word transfer input Equivalent to Read opera-
ti on 

DATIO Data word transfer input Equivalent to Read/Modify 
followed by word transfer Write 
output 

DATIOB Data word transfer input Equivalent to Read/Modify 
followed by byte transfer Write 
output 

DATO Data word transfer output Equivalent to write opera· 
ti on 

DATOB Data byte transfer output Equivalent to write opera· 
ti on 

Every processor instruction requires one or more bus cycles. The first 
operation required is a DAT!, which fetches an instruction from the loca­
tion addressed by the Program Counter (R7). If no further operands are 
referenced in memory or in an 1/0 device, no additional bus cycles are 
required for instruction execution. If memory or a device is referenced, 
however, one or more additional bus cycles are required. 

Note the distinction between interrupts and OMA operations: Interrupts, 
which may change the state of the processor, can occur only between 
processor instructions; OMA operations can occur between individual bus 
cycles since these operations do not change the state of the processor. 

·Addressing Memory and Peripherals 
The maximum direct address space of the LSl-11 is 32K 16-bit words. 
LSl-11 's memory locations and peripheral device registers are addressed 
in precisely the same manner. The upper 4096 addresses (28K·32K) 
are reserved by convention for peripheral device addressing. However, 
the user does not need to dedicate the entire 4K space to 1/0; he can 
implement only what he needs. 

An LSl-11 word is divided into a high byte and a low byte as shown 
below. 

15 7 0 

Figure 1-2 High and Low Byte 

Word addresses are always even-numbered. Byte addresses can be either 
even- or odd:numbered. Low bytes are stored at even-numbered memory 
locations and high bytes at odd-numbered memory locations. Thus, it is 
convenient to view the memory as: 

1-2 



16-BITWORD 

BYTE BYTE 
HIGH LOW 
HIGH LOW 
HIGH LOW 

~ 

HIGH LOW 
HIGH LOW 
HIGH LOW 

WORD ORGANIZATION 

000000 
000002 
000004 

OR 

017772 
01 7774 
017776 

-
-

t 

8-BIT BYTE 

LOW 
HIGH 
LOW 
HIGH 

LOW 

~ 

HIGH 
LOW 
HIGH 

000000 
000001 
000002 
000003 
000004 

01 7775 
017776 
017777 

BYTE ORGANIZATION 

Figure 1-3 Word and Byte Addresses tor First 4K Bank 

Certain memory locations have been reserved by convention for interrupt 
and trap handling and peripheral device registers. Addresses from 0 to 
3768 are reserved for trap and device interrupt vector locations. Several 
of these are reserved in particular for system (processor initiated) traps~ 

1.1.2 The Processor Status Word (PSW) 

1s ~-'-7~-..--''--r-'-~o........-"-~-'--r--"o-. 

[===~~~-----~~=~---~~--~~~R-10R~T~~-T~'-N~l _z ~j _v ~' ~c I l t lliLcARRY 
L...'.::ovERFLOW 

ZERO 
~-----NEGATIVE 

'--------TRACE TRAP 

Figure 1-4 Processor Status Word (PSW) 

The Processor Status Word (PSW) contains information on the current 
processor status. This information includes the current processor priority, 
the condition codes describing the arithmetic or logical results of the 
last instruction, and an indicator for detecting the execution of an in­
struction to be trapped durir)g program debugging. The PS word format 
is shown above. Certain instructions allow progranimed manipulation of 
condition code bits and loading or storing (moving) the PSW. The two 
instructions for explicitly accessing the PSW are described in Chapter 4. 

Priority Interrupt Bit 
The processor operates with interrupt priority PSW bit 7 asserted (1) or 
cleared (0). When PSW bit 7 = 1, an external device cannot interrupt the 
processor with a request for service. The processor must be operating at 
PSW bit 7 = 0 for the device's· request to take effect. As compared to 
other PDP-ll's, the LSl-11 operates at 1 line multi level priority. 

1-3 



Condition Codes 
The condition codes contain information on the result of the last CPU ,, 
operation. The bits are set as follows: (The bits are set after execution 
of all arithmetic or logical single operand or double operand instructions.) 

Z = 1, if the result were zero 
N = 1, if the result were negative 
C = l, if the operation resulted in ~ carry from the MSB (most 

significant bit) or a 1 were shifted from MSB or LSB (least 
significant bit) 

V = l, if the operation resulted in an arithmetic overflow 

Trap (T Bit) 
The program can only set or clear the trap bit (T) by popping a new PSW 
off the stack. When set, a processor trap will occur through location 14 at 
completion of "the current instruction execution, and a new processor 
status word will' be loaded from location 16. This T bit is especially use­
ful in debugging programs since it allows programs to be single in­
struction stepped. 

l.1.3 Instruction Set 
Implementing the PDP-11 instruction repertoire in the LSI chip set per­
mits the user to take advantage of Digital Equipment Corporation's years 
of experience with the PDP-11 family-more than 17,000 units installed, 
with all associated application notes, software, docur:nentation, training, 
reliability, customer references, and the DECUS library of application 
programs. -

The instruction complement uses the flexibility of the general-purpose 
registers to provide more than 400 powerful hard-wired instructions­
the most comprehensive and powerful instruction repertoire of any com­
puter in the 16-bit class. Unlike conventional 16-bit computers, which 
usually have three classes of instructions (memory reference instruc­
tions, operate or accumulator control instructions, and 1/0 instructions), 
all data manipulation operations in the LSl-11 are accomplished with 
one set of instructions. Since peripher.al device registers can be manip­
ulated as flexibly as memory by the central processor, instructions that 
are used to manipulate data in memory can be used equally well for data 
in peripheral device registers. For example, data in an external device 
register can be tested or modified directly by the CPU without bringing it 
into memory or disturbing the general registers. One can add or com­
pare data logically or arithmetically in a device register. 

The basic order code of the LSl-11 uses both single and double operand 
address instructions for words or bytes. The LSl-11 therefore performs 
very efficiently in one step such operations as adding or subtracting two 
operands or moving an operand from one location to another. 

LSl-11 Approach 

ADD A, B Add contents of location A to location B; 
store results at location B 

1-4 



Conventional Approach 
LOA A 

ADD B 

STA B 

Addressing 

Load contents of memory location A into 
accumulator 

Add contents ·of memory location B to ac­
cumulator 

Store result at location B 

Much of the power of the LSl-11 is derived from its wide range of ad­
dressing capabilities. LSl-11 addressing modes include sequential for­
ward or backward addressing, address indexing, indirect addressing, 16-
bit word addressing, 8-bit byte addressing, and stack addressing. Vari­
able-length instruction formatting allows a minimum number of words 
to be used for each addressing mode. The result is efficient use of pro­
gram storage space. 

1.2 LSl-11 MEMORY ORGANIZATION 
The LSl-11 processor organization and addressing, register, memory, and 
device addresses are shown. 

MEMORY 
ADDRESS 

(2) 
KD! 1-F 
PROCESSOR 
MODULE 
RESIDENT 
READ/WRITE 
MEMORY(4K} 

RESERVED VECTOR LOCATIONS 
4 BUS ERROR, TIME OUT 

10 RESERVED 
0 ~------~} 14 BPT TRAP INSTRUCTION, T BIT 

DEVICE INTERRURT D JOT EXECUTED 
AND SYSTEM 24 POWER FAIL/RESTART 
TRAP VECTORS 30 EMT EXECUTED 

34 TRAP EXECUTED 

~68 :=======::::; ~~ ~g~~gt~ ~G~~~~~151~E 

177 76 USER AND SYSTEM 
PROGRAMS AND 
STACK(S} 

l 00 EXTERNAL EVENT 
LINE INTERRUPT 

244 FIS TRAP 

(28K LOCATIONS} 
NOTE: 

DEVICE VECTORS AND 

11) 
32K MAXIMUM 
WORD LOCATIONS 

OPTIONAL 
MEMORY 

DEVICE ADDRESSES 
ARE SELECTED BY 
JUMPERS LOCATED ON 
THE DEVICE INTER­
FACE MODULES 

RECOMMENDED FOR 
DEVICE & REGISTER PERIPHERALS l/0 

DEVICE ADDR., ETC. 

\~66~~:o=======~} 

-~~------- LOC 177776 ~------~ 

MEMORY ORGANIZATION 

Figure 1-5 Memory Organization 

1·5 



NOTE 
1. There is 32K of users memory space avail­

able; however, 0-28K is recommended for 
memory address locations, and 28K-32K for 
peripherals 1/0 device addresses, etc. 

2. KDll·F resident memory can be assigned to 
the first 4K memory bank, as shown, or the 
second memory bank (address range 20000-
37776). Core memory supplied with the 
KDll-J processor can reside in any 4K mem­
ory bank. 

1-6 



CHAPTER 2 

ADDRESSING MODES 

Data stored in memory must be accessed and manipulated. Data han­
dling is specified by an LSl-11 instruction (MOV, ADD, etc.), which 
usually indicates: 

• The function (operation code). 

• A general-purpose register is to be used when locating the source oper­
and and/or a general-purpose register to be used when locating the 
destination operand. 

• An addressing mode (to specify how the selected register(s) is/are to 
be used). 

A large portion of the data handled by a computer is usually structured 
(in character strings, arrays, lists, etc.). LSl-ll's addressing modes pro­
vide for efficient and flexible handling of structured data. 

The general registers may be used with an instruction in any of the 
following ways: 

• As accumulators. The data to be manipulated resides within the reg­
ister. 

• As pointers. The contents of the register is the address of the operand, 
rather than the operand itself. 

• As pointers which automatically step through memory locations. Auto­
matically stepping forward through consecutive locations is known as 
autoincrement addressing; automatically stepping backwards is known 
as autodecrement addressing. These modes are p9rticularly useful for 
processing tabular or array data. 

• As index registers. In this instance, the contents of the register and 
the word following the instruction are summed to produce the address 
of the operand. This allows easy access to variable entries in a list. 

An important LSl-11 feature, which should be considered in conjunction 
with the addressing modes, is the register arrangement: 
• Six general-purpose registers (RO - R5) 

• A hardware Stack Pointer (SP) register (R6) 

• A Program Counter (PC) register (R7) 

Registers RO through R5 are not dedicated to any specific function; their 
use is determined by the instruction that is decoded: 

• They can be used for operand storage. For example, contents of two 
registers c~n be added and stored in another register. 

• They can contain the address of an operand or serve as pointers to 
the address of an operand. 

• They can be used for the autoincrement or autodecrement features. 

• They can be used as index registers for convenient data and program 
access. 

2-1 



The LSl-11 also has instruction addressing mode combinations that facil­
itate temporary data storage structures. This can be used for convenient 
handling of data that must be accessed frequently. This is known as 
stack manipulation. The register used to keep track of stack manipula­
tion is known as the stack pointer (SP). Any register can be used as a 
"stack pointer" under program control; however, certain instructions 
associated with subroutine linkage and interrupt service automatically 
use Register R6 as a "hardware stack pointer." For this reason, R6 is 
frequently referred to as the "SP:" 

~ The stack pointer (SP) keeps track of the latest entry on the stack. 

~ The stack pointer moves down as items are added to the stack and 
moves up as items are removed. Therefore, it always points to the top 
of the stack. 

• The hardware stack is used during trap or interrupt handling to store 
information allowing the processor to return to the main program. 

Register R7 is used by the processor as its program counter (PC). It is 
recommended that R7 not be used as a stack pointer or accumulator. 
Whenever an instruction is fetched from memory, the program counter 
is automatically incremented by two to point to the next instruction 
word. 

The next section is divided into seven major categories: 
~ Single Operand Addressing-One part of the instruction word specifies a 

register; the second part provides information for locating the operand. 

" Double Operand Addressing-Part of the instruction word specifies the 
registers; the remaining parts provide information for locating two 
·operands. 

• Direct Addressing-The operand is the content of the selected reg­
ister. 

• Deferred (Indirect) Addressing-The contents of the selected register 
is the address of the operand. 

• Use of the PC as a General Register-The PC is unique from other 
general-purpose registers in one important respect. Whenever the 
processor retrieves an instruction, it automatically advances the PC 
by 2. By combining this automatic advancement of the PC with four 
of the basic addressing modes, we produce the four special PC modes 
-immediate, absolute, relative, and relative deferred. 

• Use of Stack Pointer as General Register-Can be used for stack 
operations. 

o Summary of Addressing Modes 

NOTE 
Instruction mnemonics and address mode sym­
bols are sufficient for writing assembly language 
programs. The programmer need not be con­
cerned about conversion to binary digits; this 
is accomplished automatically by the assembler 
program. 

2-2 



2.1 SINGLE OPERAND ADDRESSING 
The instruction format for all single operand instructions (such as clear, 
increment, test) is: 

MODE Rn 

15 4 2 0 

OP CODE----~ 
DESTINATION ADDRESS-----------~ 

Bits 15 through 6 specify the operation code that defines the type of in­
struction to be executed. 

Bits 5 through 0 form a six·bit field called the destination address field. 
This consists of two subfields: 

a) Bits O through 2 specify which of the eight general-purpose registers 
is to be referenced by this instruction word. · 

b) Bits 3 through 5 specify how the selected register will be used (ad­
dress mode). Bit 3 is set to indicate deferred (indirect) addressing. 

2.2 DOUBLE OPERAND ADDRESSING 
Operations which imply two operands (such as add, subtract, move, and 
compare) are handled by instructions that specify two addresses. The 
first operand is called the source operand, the second the destination 
operand. Bit assignments in the source and destination address fi°elds 
may specify different modes and different registers. The instruction 
format for the double operand instruction is: 

OP CODE MODE Rn MODE I Rn 

15 12 II 10 9 0 
~--~---~ 

SOURCE ADDRESS----_j 
DESTINATION ADDRESS-··-------

_J 

The source address field is used to select the source operand, the first 
operand. The destination is used similarly, and locates the second op­
erand and the result. For example, the instruction ADD A, B adds the 
contents (source operand) of location A to the contents (destination 
operand) of location B. After execution B will contain the result of the 
addition and the contents of A will be unchanged. 

2-3 



Examples in this section and chapter use the following sample LSl-11 
instructions. A complete listing of the LSl-11 instructions is located in 
the appendix. 

Mnemonic Description Octal Code 

CLR Clear (zero the specified destination) 0050DD 

CLRB Clear byte (zero the byte in the specified 1050DD 
destination) 

INC Increment (add 1 to contents of destination) 0052DD 

INCB Increment byte (add 1 to the contents of 1052DD 
destination byte) 

COM Complement (replace the contents of the 0051 DD 
destination by their logical complement; 
each 0 bit is set and each 1 bit is cleared) 

COMB Complement byte (replace the contents of the 1051DD 
destination byte by their logical complement; 
each 0 bit is set and each 1 bit is cleared). 

ADD Add (add source operand to destination 06SSDD 
operand and store the result at destination 
address) 

DD = destination field (6 bits) 

SS= source field (6 bits) 

( ) = contents of 

2-4 



2.3 DIRECT ADDRESSING 
The following table summarizes the four basic modes used with direct addressing. 

Mode 

0 

2 

4 

6 

DIRECT MODES 

Name Assembler 
Syntax Function 

Register Rn Register contains operand 

I INSTRUCTION ~ OPERAND I 

Autoi ncrement 

INSTRUCTION ADDRESS 

Autodecrement 

INSTRUCTION ADDRESS 

Index 

(Rn)+ 

-(Rn) 

X(Rn) 

Register is used as a pointer to 
sequential data then in­
cremented 

Register is decremented and 
then used as a pointer. 

-2 FOR WORO, 
-1 FOR BYTE 

OPERAND 

Value X is added to (Rn) to pro­
duce address of operand. Nei­
ther X nor (Rn) are modified. 

:Ll-NS_T_:R~:..CT-IO_NJ~r----A-D-DR-E-SS-~--' + _o_PE_R_AN_o__, 

2.3.1 Register Mode 

OPR Rn 

With register mode any of the general registers may be used as simple 
accumulators and the operand is contained in.the selected register. Since 
they are hardware registers, within the processor, the general registers 
operate at high-speeds and provide speed advantages when used for 
operating on frequently-accessed variables. The assembler interprets 
and assembles instructions of the form OPR Rn as register mode oper­
ations. Rn represents a general register name or number and OPR is 
used to represent a general instruction mnemonic. Assembler syntax re­
quires that a general register be defined as follows: 

RO = %0 (% sign indicates register definition) 

Rl = %1 

R2 - %2, etc. 

2-5 



Registers are typically referred to by name as RO, Rl, R2, R3, R4, R5, 
R6 and R7. However R6 and R7 are also referred to as SP and PC, 
respectively. 

Register Mode Examples 
(all numbers in octal) 

Symbolic Octal Code Instruction Name 

1. INC R3 005203 'Increment 

Operation: Add one to the contents of general register 3. 

R0 

R1 

R2 

~'-o~o~-o~-o~~-o~-~o~~-o~l_o~-o~j_o~i-o~~-1~!~~:;?,-~R ., R3 

15 4 0 R4 

OP CODE (INC(0052ll_J 
R5 

DESTINATION FIELD-----------~ R6 (SP) 

R7 (PC) 

2. ADD R2,R4 060204 Add 

Operation: Add the contents of R2 to the contents of R4. 

3. COMBR4 

Operation: 

BEFORE AFTER 

R2 '~--00_0_00_2~ R2 ~' __ 0_0_0_00_2~ 

R4 ~I __ oo_o_o04_~ R4 ~' __ 00_00_0_6~ 

BEFORE 

105104 Complement Byte 

One's complement bits 0·7 (byte) .in R4. 
(When general registers are used, byte in· 
structions only operate on bits 0-7; i.e., byte 
0 of the register.) 

AFTER 

R4 I 022222 R4 I 022155 

2·6 



2.3.2 Autoincrement Mode 

OPR (Rn)+ 

This mode provides for automatic stepping of a pointer through sequen­
tial elements of a table of operands. It assumes the contents of the 
selected general register to be the address of the operand. Contents of 
registers are stepped (by one for bytes, by two for words, always by 
two for R6 and R7) to address the next sequential location. The auto­
increment mode is especially useful for array processing and stack pro­
cessing. It will access an element of a table and tl1en step the pointer to 
address the next operand in the table. Although most useful for table 
handling, this mode is completely general and may be used for a variety 
of purposes. 

Autoincrement Mode Examples 
Symbolic Octal Code Instruction Name 

1. CLR (R5) + 005025 Clear 

Operation: Use contents of R5 as the address of the operand. 
Clear selected operand and then increment the 
contents of R5 by two . 

BEFORE 
.l.DDRESS SPACE REGISTER 

20000 I 005025 I R5 I 030000 I 20000 

~-------------_______/ 
30000 i 111!1 16 I 30000 

.4FTER 
'4DDRESS S?ACE 

005025 

000000 

2. CLRB(R5)+ 105025 Clear Byte 

REGISTER 

Roi 030002 
----~ 

Operation: Use contents of R5 as the address of the operand. 
Clear selected byte operand and then increment 
the contents of R5 by one. · 

BEFORE 
ACORESS SPACE REGISTER 

20000 105025 I R5 I 030000 

,,,----~ 
:~~:~ ~.-"~i~,~,6~1 

i 20000 

2-7 

30000 

30002 

AFTER 

ADDRESS SPACE REGISTER 

105025 R51 ~ __ 03_0_00_1_~ 

111 000 



' 

3. ADD (R2) + ,R4 

Operation: 

BEFORE 
ADDRESS SPACE 

10000 062204 R2 

062204 Add 

The contents of R2 are used as the address of the 
operand which is added to the contents of R4. R2 
is then incremented by two. 

AFTER 
REGISTERS ADDRESS SPACES REGISTERS 

10000 I 062204 R2 I 100004 

010000 R4 I 020000 

100002 I 010000 

2.3.3 Autodecrement Mode (Mode 4) 

OPR-(Rn) 

This mode is useful for processing data in a list in reverse direction. 
The contents of the selected general register are decremented (by two 
for word instructions, by one for byte instructions) and then used as 
the address of the operand. The choice of postincrement, predecrement 
features for the LSl-11 were not arbitrary decisions, but were intended 
to facilitate hardware/software stack operations. 

Autodecrement Mode Examples 

1. 

Symbolic 

INC-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

1000 ._I __ o_os_24_o_~ 

11114 ._I __ oo_o_o_oo_~ 

2. INCB-(RO) 

Operation: 

Octal Code 

005240 

Instruction Name 

Increment 

The contents of RO are decremented by two 
and used as the address of the operand. The 
operand is incremented by one. 

AFTER 
REGISTERS ADDRESS SPACE REGISTER 

R0 l~_o1_1_11_s_~ 1000! ._ __ oo_s_24_o _ __, 017774 

~ 
17774 I 000001 I 

105240 Increment Byte 

The contents of RO are decremented by one then 
used as the address of the operand. The operand 
byte is increased by one. 

2-8 



BEFORE 

ADDRESS SPACE 

1000 I 105240 R0 I 

17774 000 

1 

000 

17776 

3. ADD-(R3).RO 

Operation: 

BEFORE 
ADDRESS SPACE 

10020 I 064300 R0 I 
R3 I 

777741 000050 

77776 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

017776 1000 I 105240. R0 017775 

17774 

17776 

064300 Add 

The contents of R3 are· decremented by 2 then 
used as a pointer to an operand (source) which is 
added to the contents of RO (destination operand). 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

000020 10020 I 064300 R0 I 0000070 

077776 R3 077774 

777741 000050 

77776 

2.3.4 Index Mode (Mode 6) 
OPR X(Rn) 

The contents of the selected general register, and ,an index word following the in· 
struction word, are summed to form the address of the operand. The contents of 
the selected register may be used as a base for calculating a series of addresses, 
thus allowing random access to elements of data structures. The selected register 
can then be modified by program to access data in the table. Index addressing in· 
structions are of the form OPR X(Rn) where X is the indexed word and is located 
in the memory location following the instruction word and Rn is the selected gen· 
eral register. 

Index Mode Examples 
Symbolic 

1. CLR 200(R4) 

Operation: 

Octal Code Instruction Name 

005064 
000200 

Clear 

The address of the operand is determined by 
adding 200 to the contents of R4. The oper­
and location is then cleared. 

2-9 



BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

R4 l.___o_o_w_o_o _ _, R4 .__I __ 0_0_10_0_0 _ _, 1020 005064 
I-------! 

1020 005064 
1-------1 

1022 000200 1022 000200 

1024 1000 
~1----o===--i +200 

1-------1 
1024 

1200~ 1200 

1202~ 
1200~ 

2. COMB 200(Rl) 

Operation: 

BEFORE 

ADDRESS SPACE 

1020 105161 RI 

1022. 000200 

105161 
000200 

Complement Byte 

The contents of a location which is deter­
mined by adding 200 to the contents of ·Rl 
are one's complemented (i.e., logically com­
plemented). 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

017777 1020 105161 R1 I 017777 

1022 000200 

+200 
;---- 017777 

-------820177 

20<761 
20200 

011 !000 201761 
20200 

166[000 

3. ADD 30(R2),20(R5) 066265 Add 

Operation: 

BEFORE 
ADDRESS SPACE 

1020 l 066265 R2 I 
1022 [ 000030 

R5 I 1024 [ 000020 

,,30 I 000001 

2020 I 000001 

1100 2000 
+30 +20 

1'i30 2020 

000030 
000020 

The contents of a location which is deter­
mined by adding 30 to the contents of R2 
are added to the contents of a location which 
is determined by adding 20 to the contents 
of R5. The result is stored at the destination 
address, i.e., 20(R5). 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

001-100 1020 [ 066265 R2 I 001100 

1022 [ 000030 
R5 I 002000 

1024 L 000020 
002000 

1130 I 000001 

2020 I 000002 

2-10 



2.4 DEFERRED (INDIRECT) ADDRESSING 
The four basic modes may also be used with deferred addressing. Where­
as in the register mode the operand is the contents of the selected reg­
ister, in the register deferred mode the contents of the selected register 
is the address of the operand. 

In the three other deferred modes, the contents of the register select 
the address of the operand rather than the operand itself. These modes 
are therefore used when a table consists of addresses rather than oper­
ands. Assembler syntax for -indicating deferred addressing is "@"(or 
"( )" when this is not ambiguous). The following table summarizes the 
deferred versions of the basic modes: 

Mode Name Assembler 
Syntax 

Function 

1 Register Deferred @Rn or (Rn) 

INSTRUCTION ADDRESS 

Register contains the address 
of the operand. 

OPERAND 

·3 Autoincrement Deferred @(Rn) + Register is first used as a 

INSTRUCTION ADDRESS 

pointer to a word containing 
the address of the operand, 
then incremented (always by 
2; even for byte instructions). 

ADDRESS OPERAND 

+2 

5 Autodecrement Deferred @-(Rn) Register is decremented (al-
ways by two; even for byte in­
structions) and then used as 
a pointer to a word containing 
the address of the operand. 

I INSTRUCTION r----1 ADDRESS f----i._ __ -_2 _ _.T ADDRESS r----1 OPERAND 

7 Index Deferred 

INSTRUCTION ADDRESS 

x 

@X(Rn) Value X (stored in a word fol­
lowing the instruction) and 
(Rn) are added and the sum 
is used as a pointer to . a 
word containing the address 
of the operand. Neither X nor 
(Rn) are modified. 

ADDRESS OPERAND 

2-11 



The following examples illustrate the deferred modes. 

Register Deferred Mode Example 

Symbolic 

CLR @R5 

Operation: 

BEFORE 
ADDRESS SPACE 

11700677 ~------I 
• 000100 

R5 I 

Octal Code 

005015 

Instruction Name 

Clear 

The contents of location specified 
cleared. 

AFTER 
REGISTER ADDRESS SPACE 

001700 16771 R5 I 
1700 000000 

in R5 are 

REGISTER 

001700 

Autoincrement Deferred Mode Example (Mode 3) 
Symbolic Octal Code Instruction Name 

INC@(R2)+ 

Operation: 

BEFORE 
ADDRESS SPACE 

R2 

005232 Increment 

The contents of R2 are used as the address 
of the address of the operand. 
Operand is increased by on~. Contents of R2 
are incremented by 2. 

REGISTER 

010300 
'----~--' 

AFTER 

AOO~ESS SPACE 

1010~ 
1012~ 

10300 ... 1 __ 00_1_01_0_ ..... 

REGISTER 

R2 I 010302 

Autodecrement Deferred Mode Example (Mode 5) 

Symbolic 

COM@-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

10100 r--01_23_4_5 _--I 

10102 • 

10174 ,,___o _1 0_1 o_o_.----1 
!0776 ...._ ___ __, 

Octal Code Complement 

005150 

The contents of RO are decremented by two 
and then used as the address of the ·address 
of the operand. Operand is one's comple­
mented. (i.e., logically complemented). 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

R0 ._I __ 0_1 0_1_16 _ _, 

:~" 
:~;:I 010100 I 

2-12 



Index Deferred Mode Example (Mode 7) 
Symbolic Octal Code Instruction Name 

ADD @ 1000(R2),Rl 067201 Add 
001000 

Operation: 

BEFORE 
ADDRESS SPACE 

1020 067201 Rt I 
1022 001000 

R2 I 
1024 

!050 I -0-00_0_02 _ __, 

\f= 
"z:l ~l~~m 

'-.....-----------

1000 and contents of R2 are summed to produce 
the address of the .address of the source operand 
the contents of which are added to contents of R 1; 
the result is stored in Rl. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

001234 1020 067201 RI I 001236 

000100 
1022 001000 

R2 I 000100 
1024 

1050 I 000002 

ltOO I 001050 

2.5 USE OF THE PC AS A GENERAL REGISTER 
Although Register 7 is a general purpose register, it doubles in function 
as the Program Counter ·for the LSl-11. Whenever the processor uses the 
program counter to acquire a word from memory, the program counter 
is automatically incremented by two to contain the address of the next 
word of the instruction being executed or the address of the next instruc­
tion to be executed. (When the program uses the PC to locate byte data, 
the PC is still incremented by two.) 

·The PC responds to all the standard LSl-11 addressing modes. However, 
there are four of these modes with which the PC can provide advantages 
for handling position independent code and unstructured data. When 
utilizing the PC these modes are termed immediate, absolute (or im­
mediate deferred), relative and relative deferred, and are summarized 
below: 

Mode Name Assembler 
Syntax 

2 Immediate # n 

3 Absolute @#A 

6 Relative A 

7 Relative Deferred @A 

2·13 

Function 

Operand follows instruction. 

Absolute Address of operand 
follows instruction. 

Relative Address (index value) 
follows the instruction. 

Index value (stored in the 
word following the instruction) 
is the relative address for the 
address of the operand. 



·The reader should remember that the special PC modes are the same as 
modes described in 2.3 and 2.4, but the general register selected is R7, 
the program counter. 

When a standard program is available for different users, it often is help­
ful to be able to load it into different areas of memory and run it there. 
LS.1-ll's can accomplish the relocation of a program very efficiently 
through the use of position independent code (PIC) which is written by 
using the PC addressing modes. If an instruction and its operands are 
moved in such a way that the relative distance between them is not 
altered, the same offset relative to the PC can be used in all positions 
in memory. Thus, PIC usually references .locations relative to the current 
location. 

The PC also greatly facilitates the handling of unstructured data. This is 
particularly true of the immediate and relative modes. 

2.5.1 Immediate Mode 
OPR #n,DD 

Immediate mode is equivalent to using the autoincrement mode with the PC. It 
provides time improvements for accessing constant operands by including the 
constant in the memory location immediately following the instruction word. 

Immediate Mode Example 
Symbolic 

ADD# 10,RO 

Operation: 

BEfORE 
ADDRESS SPACE 

1020 062700 "'R0 j 
1022 000010 

PC 
!024 

Octal Code Instruction Name 

062700 Add 
000010 

The value 10 is located in the second word of the 
instruction and is added to the contents of RO. 
Just before this instruction is fetc~ed and exe­
cuted, the PC points to the first word of the in­
struction. The processor fetches the first word and 
increments the PC by two. The source operand 
mode is 27 (autoincrement the PC). Thus, the PC 
is used as a pointer to fetch the operand (the sec­
ond word of the instruction) before being in­
cremented by two to point to the next instruction. 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

000020 1020 062700 ] R0 I 000030 

1022 000010 j~ PC 
1024 

2-14 



2.5.2 Absolute Addressing 
CPR @#A 

This mode is the equivalent of immediate deferred or autoincrement deferred us· 
ing the PC. The contents of the location following the instruction are taken as the 
address of the operand. Immediate data is interpreted as an absolute address 
(i.e., an address that remains constant no matter where in memory the as· 
sembled instruction is executed). 

Absolute Mode Examples 
Symbolic 

1. CLR@#llOO 

Operation: 

BEFORE 

ADDRESS SPACE 

20 005037 

22 001100 

(// 
1100 F 177777 

1102 

Octal Code Instruction Name 

005037 
001100 

Clear 

Clear the contents of location 1100. 

AFTER 

ADDRESS SPACE 

20 005037 

PC 22 001100 

24 

1100 I 000000 

1102 

2. ADD @ # 2000,R3 063703 
002000 

/PC 

Operation: Add contents of location 2000 to R3. 

BEFORE AFTER 

ADDRESS SPAt;E REGISTER ADDRESS SPACE REGISTER 

20 063703 R3 I 001000 

22 002000 
/PC 

24 

201--_0_6_31_0_3_-l~R31.___o_o_os_o_o_~ 
22 002000 'pc 

24 

2000 lt---o_oo_3_o_o_--i 

2·15 



2.5.3 Relative Addressing 
OPR A or OPR X (PC), 

where X is the location of A relative to the instruction. 

This·mode is assembled as index mode using R7. The base of the address calcu· 
lation, which is stored in the second or third word of the instruction, is not the ad· 
dress of the operand, but the number which, when added to the (PC), becomes 
the address of the operand. This mode is usefUI for writing position independent 
code (see Chapter 5) since the lo!=ation referenced is always fixed relative to the 
PC. When instructions are to be relocated, the operand is moved by the same 
amount. 

Relative Addressing Example 
Symbolic 

INCA 

Operation: 

BEFORE 
ADDRESS SPACE 

,, 
Octal Code 

005267 
000054 

Instruction Name 

Increment 

To increment location A, contents. of memory loca· 
tion immediately following instruction word are ad­
ded to (PC) to produce address A. Contents of A 
are increased by one. 

AFTER 

ADDRESS SPACE 

t020 0005267 

1022 000054 

1024 -PC 

1020 005267 
1022. ====00=00=5=4==:""PC 1024 ,__ ___ __, 
1026 

!-------< 
t024 

11~t1?6 

2.5.4 Relative Deferred Addressing 

OPR@A or 

1026 

1100 I ooooot 

OPR@X(PC), where x is location containing address of A, relative to the in-
struction. 

This mode is similar to the relative mode, except that the second word of the in­
struction, when added to the PC, contains the address of the address of the oper­
and, rather than the address of the operand. 

Relative Deferred Mode Example 
Symbolic Octal Code Instruction Name 

CLR@A 

Operation: 

005077 
000020 

Clear 

Add second word of instruction to updated 
PC to produce address of address of operand. 
Clear operand. 

2·16 



BEFORE AFTER 

ADDRESS SPACE ADDRESS SPACE 

(PC= 1020) 1020 005077 ' 
1022 ,___oo-o-D2_0 _ _, '----ec 

1020 005077 ' 
1022 ,___oo-o-02_D _ _, '----ec 

(PC=1022)1024 f-------i 1024 
f-------1 

to~to~6 
~ 1044 

10100 I 100001 I 10100 I 000000 

2.6 USE OF STACK POINTER AS GENERAL REGISTER, 
The processor stack pointer (SP, Register 6) is in most cases the general 
register used for the stack operations related to program nesting. Auto­
decrement with Register 6 "pushes" data on to the stack and autoincre­
ment with Register 6 "pops" data off the stack. Index mode with SP 
permits random access of items on the stack. Since the SP is used by 
the processor for interrupt handling, it has a special attribute: autoin­
crements and autodecrements are always done in steps of two. Byte 
operations using the SP in this way leave odd addresses unmodified. 

2.7 SUMMARY OF ADDRESSING MODES 

2.7.l General Register Addressing 

R is a general register, 0 to 7 
(R) is the contents of that register 

Mode 0 Register OPR R R contains operand 

R 

I INSTRUCTION f----l __ o_P_ER_AN_D~ 

Mode 1 Register deferred OPR (R) R contains address 

INSTRUCTION ADDRESS OPERAND 

2-17 



Mode 2 Autoincrement OPR (R)+ 

R contains address, then increment (R) 

INSTRUCTION ADDRESS 

Mode 3 Autoincrement OPR @(R)+ 
deferred 

R contains address of address,· 
then increment (R) by 2 

R 

INSTRUCTION ADDRESS ADDRESS 

Mode 4 Autodecrement 

Decrement (R), then R contains address 

R 

Mode 5 Autodecrement 
deferred 

R 

-2 FOR WORD, 
-1 FOR BYTE 

OPR @-(R) 

OPERAND 

+2 

OPR -(R) 

,OPERAND 

Decrement (R) by 2, 
then R contains 
address of address 

I INSTRUCTION~ ADDRESS ~.___-_2 __ T ADDRESS ~~ 

Mode6 Index OPR X(R) (R) + Xis address 

PC INSTRUCTION ADDRESS 

OPERAND 

PC+2 

2·18 



Mode 7 Index deferred QPR @X(R) 

PC INSTRUCTION ADDRESS 

PC+2 

2.7.2 Program Counter Addressing 

Register= 7 

Mode2 Immediate QPR #n 

PC I INSTRUCTION I 
PC+2._I ___ _, 

Mode3 Absolute QPR @#A 

PC I •NSTRUCTION I 
PC+2 ~I __ A _ __,1-----l OPERAND 

Mode6 Relative QPR A 

PC I •NSTRUCTION I 

PC+2 

OPERAND 

PC+4 I NEXT INSTR I 

Mode 7 Relative deferred QPR @A 

(R) + X is address of address 

ADDRESS OPERAND 

Operand n follows instruction 

Address A follows instruction 

PC + 4 + X is address 
'"-v-", 

updated PC 

PC + 4 + X is address of address 
'-v-' 

updated PC 

PC I •N STRUCTION I 

PC+2 

PC+ 4 I NEXT INSTR I 
ADDRESS OPERAND 

2-19 



2-20 



CHAPTER 3 

INSTRUCTION SET 

3.1 INTRODUCTION 

The specification for each instruction includes the mnemonic, octal code, 
binary code, a diagram showing the format of the instruction, a symbolic 
notation describing its execution and the effect on the condition codes, 
a description, special comments, and examples. 

Mf\JEMON IC: This is indicated at the top corner of each page. When the 
word instruction has a byte equivalent, the byte mnemonic is also shown. 

INSTRUCTION FORMAT: A diagram accompanying each instruction 
shows the octal op code, the binary op code, and bit assignments. (Note 
that in byte instructions the most significant bit (bit 15) is always a 1.) 

SYMBOLS: 

( ) = contents of 

SS or src =source address 

DD or dst = destination address 

loc = location 

+-=becomes 

t = "is popped from stack" 

.J, = "is pushed onto stack" 

11 =boolean Af\JD 

·v = boolean OR 

-v-= exclusive OR 

- = boolean not 

Reg or R = register 

8 =Byte 

• = {O for word 

I for byte 

, = concatenated 

3-1 



3.2 INSTRUCTION FORMATS , 
The following formats include all instructions used in the LSJ.11. Refer 
to individual instructions for more detailed information. 

1. Single Operand Group (CLR, CLRB, COM, COMB, INC, INCB, DEC, 
DECB, NEG, NEGS, ADC, ADCB, SBC, SBCB, 
TST, TSTB, ROR, RORB, ROL, ROLB, ASR, 
ASRB, ASL, ASLB, JMP, SWAB, MFPS, MTPS, 
SXT, XOR) 

15 0 

: OP ~ODE : 

2. Double Operand Group (BIT, BITS, BIC, BICB, BIS, BISB, ADD, SUB, 
MOV, MOVB, CMP, CMPB) 

15 12 11 6 5 

SS 

3. Program Control Group 
a. Branch (all branch instructions) 

15 

: 
b. Jump To Subroutine (JSR) 

15 6 

0 : -: 
c. Subroutine Return (RTS) 

15 

0 0 0 0 

d. Traps (break point, IDT, EMT, TRAP, BPT) 
15 

: . 
I 

OP CODE 

e. Mark (MARK) 

15 

0 0 6 

f. Subtract I and branch (if= O)(SOB) 

15 

0 0 

3-2 

D~ 

' DD 

NN 

NN 

0 

0 

0 

0 

0 

I 



4. Operate Group (HALT, WAIT, RTI, RESET, RTT, NOP) 

15 0 

>P~OD< I 

5. Condition Code Operators (all condition code instructions) 

15 6 5 4 3 2 1 0 

I< < :a: 
I 

: I 4 I 0/1 I N I z I v I , I 2 
I 

6. Fixed and Floating Point Arithmetic (optional EIS/FIS) (FADD, FSUB, 
FMUL, FDIV, MUL, DIV, ASH, 
ASHC) 

15 0 

: OP CODE 

Byte Instructions 
The LSl-11 includes a full complement of instructions that manipulate 
byte operands. Since all LSl-11 addressing is byte-oriented, byte mani- · 
pulation addressing is straightforward. Byte instructions with autoincre­
ment or autodecrement direct addressing cause the specified register to 
be modified by one to point to the next byte of data. Byte operations in 
register mode access the low-order byte of the specified. register. These 
provisions enable the LSl-11 to perform as either a word or byte proces­
sor. The numbering scheme for word and byte ad~resses in memory is: 

HIGH BYTE 
ADDRESS 

002001 

002003 

BYTE 

BYTE 

1 

3 

BYTE 0 

BYTE 2 

'AORO OR BYTE 
ADDRESS 

002000 

002002 

The most significant bit (Bit 15) of the instruction word is set to indicate 
a byte instruction . 

. Example: 

Symbolic Octal 

CLR 
CLRB 

005000 
105000 

3-3 

Clear Word 
Clear Byte 



3.3 LIST OF INSTRUCTIONS 
The LSl-11 instruction set is shown in the following sequence. 

SINGLE OPERAND 

Mnemonic 

General 
CLR(B) 
COM(B) 
INC(B) 
DEC(B) 
NEG(B) 
TST(B) 

Shift & Rotate 
ASR(B) 
ASL(B) 
ROR(B) 
ROL(B) 
SWAB 

Instruction 

clear dst 
complement dst . 
increment dst . 
decrement dst .................................. . 
negate dst .............................. .. 
test dst ............................................ .. 

arithmetic shift right .......... . 
arithmetic shift left ............... . 
rotate right ................................ .. 
rotate left .................... . 
swap bytes ....................................... .. 

Multiple Precision 
ADC(B) add carry ....................................... . 
SBC(B) subtract carry .................................... .. 
SXT sign extend ......................................... . 

PS WORD OPERATORS 
MFPS move byte from PS ........................... .. 
MTPS move byte to PS ............................... .. 

DOUBLE OPERAND 

General 
MOV(B) 
CMP(B) 
ADD 
SUB 

Logical 
BIT(B) 
BIC(B) 
BIS(B) 
XOR 

move source to destination .... . 
compare src to dst ............................. . 
add src to dst ..................... . 
subtract src from dst ......................... . 

bit test ........................... . 
bit clear .. 
bit set .......... . 
exclusive or .. 

3-4 

Op Code 

•050DD 
•051DD 
•052DO 
•053DD 
•054DD 
•057DD 

•062DD 
•063DO 
•060DD 
•061DD 
0003DO 

•055DD 
•056DD 
00670D 

1067DD 
1064SS 

•lSSDD 
•2SSDD 
06SSDD 
16SSDO 

•3SSDD 
•4SSDO. 
•5SSDD 
074RDD 

Page 

3-6 
3-7 
3-7 
3-8 
3-8 
3-9 

3-10 
3-11 
3-11 
3-12 
3-13 

3-15 
3-15 
3-16 

3-17 
3-17 

3-18 
3-19 
3-20 
3-20 

3-21 
3-22 
3-23 
3-24 



PROGRAM CONTROL 

Mnemonic Instruction 

Branch 
BR branch (unconditional) . ··················· 
BNE branch if not equal (to zero) 
BEQ branch if equal (to zero) 

. BPL branch if plus ..... 
BMI branch if minus .............. 
BVC branch if overflow is clear 
BVS branch if overflow is set . 
BCC branch if carry is clear 
BCS branch if carry is set .......................... 

Signed Conditional Branch 
BGE branch is greater than or equal 

(to zero) .................... .. 
BLT branch if less than (zero) ........... .. 
BGT branch if greater than (zero) 
BLE branch if less than or equal (to zero) . 

Unsigned Conditional Branch 
BHI branch if higher ........... .. 
BLOS branch if lower or same ............. .. 
BHIS branch if higher or same .. . 
BLO branch if lower . 

Jump & Subroutine 
JMP jump 
JSR jump to subroutine . 
RTS return from subroutine 
MARK mark 
SOB subtract one and branch (if # 0) ...... 

Trap & Interrupt 

Op Code 
or 

Base Code 

000400 
001000 
001400 
100000 
100400 
102000 
102400 
103000 
103400 

002000 
002400 
003000 
003400 

101000 
101400 
103000 
103400 

000100 
004RDD 
00020R 
006400 
077ROO 

Page 

3-25 
3-26 
3-26 
3-27 
3-27 
3-28 
3-28 
3-28 
3-29 

3-30 
3-30 
3-31 
3-31 

3-32 
3-32 
3·33 
3-33 

3-34 
3-35 
3-37 
3-38 
3-39 

EMT emulator trap ..................... 104000-104377 3-40 
TRAP trap .. ..... .. ....... 104400-104777 3-41 
BPT breakpoint trap .. .. ... 000003 3-42 
IOT input/ output trap . .. .. . . .. . . .. .. . . .. .. .. . 000004 3-42 
RTI return from interrupt 000002 3-43 
RTT return from interrupt .. 000006 3-43 

MISCELLANEOUS 
HALT halt .......... .. 
WAIT wait for interrupt . 
RESET reset external bus 

RESERVED INSTRUCTIONS 

3-5 

000000 
000001 
000005 

3-46 
3-46 
3-47 

00021R 3-47 
00022 3-48 



CONDITION CODE OPERATORS 
CLC clear c ............. . . . . . . . . . . . . . 
CLV clear v . . . . . . . . . . . . . . . 
CLZ clear z ............. 
CLN clear N ............. . ...................... 
CCC clear all CC bits 
SEC set C. . .. ·········· 
SEV set V. 
SEZ set Z ... . . . . . . . . . . . . . . . . . . . . . . . . 
SEN set N. 
sec set a!I CC bits . . . . . . . . . . . . . . . . ............... 
NOP no operation .. 

3.4 SINGLE OPERAND INSTRUCTIONS 

General 

CLR 
CLRB 

000241 3.49 
000242 3.49 
000244 3.49 
000250 3·49 
000257 3.49 
000261 3.49 
000262 3.49 
000264 3.49 
000270 3.49 
000277 3-49 

00240 3-49 

clear destination •05000 

1011 I o 0 0 0 

15 

Operation: (dst~O 

Condition Codes: N: cleared 
Z: set 
V: cleared 
C: cleared 

0 : 0 d d d d 

6 5 0 

Description: Word: Contents of specified destination are replaced with ze­
roes. 

Example: 

Byte: Same 

Before 
(Rl) = 177777 

NZVC 
1 1 1 1 

NOTE 

.CLR Rl 

After 
(Rl)=OOOOOO 

NZVC 
0100 

CLR and CLRB perform a OATIO bus /cycle as the 
last bus cycle during the instruction execution. 
The OATI portion of the DATIO cycle is a "don't 
care" condition, but the addressed memory or 
device must be capable of responding to the 
OATI cycle to avoid a bus timeout error. 

3-6 



COM 
COMB 

complement dst •051DD 

1011 I o 0 0 0 d d d d 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

increment dst 

6 5 0 

N: set if most significant bit of result is.set; cleared otherwise 
Z: set if result is O; cleared otherwise 
V: cleared 
C: set 

Replaces the contents of the destination address by their log­
ical complement (each bit equal to 0 is set and each bit equal 
to 1 is cleared) 
Byte: Same 

Before 
(R0)=013333. 

NZVC 
0110 

COM RO 

After 
(RO)= 164444 

NZVC 
1001 • 

INC 
INCB 

•052DD 

1011 I o 0 0 0 d d d d 

15 6 5 

Operation: (dst).(dst) + 1 

Condition Codes: N: set if result is <O; cleared otherwise 
Z: set if result is O; cleared otherwise 
V: set if (dst) held 077-777; cleared otherwise 
C: not affected 

Description: Word: Add one to contents of destination 
Byte: Same 

3.7 

0 



Example: 

DEC 
DECB 

Before 
(R2) = 000333 

NZVC 
0000 

INC R2 

After 
(R2) = 000334 

NZVC 
0000 

decrement dst •053DD 

10111 0 0 0 1 . 0 0 : 1 d d 

15 6 5 

Operation: (dst).(dst)-1 

Condition Codes: N: set if result is <0; cleared otherwise 
Z: set if result is O; cleared otherwise 

d 

V: set if (dst) was 100000; cleared otherwise 
C: not affected 

d 

0 

·Description: Word: Subtract 1 from the contents of the destination 
Byte: Same 

Example: DEC R5 

NEG 
NEGB 

Before 
(R5) = 000001 

NZVC 
1000 

After 
(R5) = 000000 

NZVC 
0100 

negate dst •054DD 

10111 0 0 0 0 , : o o I d 

15 6 5 

3-8 

d d d 
I 

d 

0 



Operation: (dst~ -(dst) 

Condition Codes: N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if the result is 100000; cleared otherwise 
C: cleared if the result is O; set otherwise 

Description: Word: Replaces the contents of the destination address by its 
two's complement. Note that 100000 is replaced by itself ·(in 
two's complement notation the most negative number has 
no positive counterpart). 
Byte: Same 

Example: NEG RO 

Before 
(RO) = 000010 

NZVC 
0000 

After 
(RO) = 177770 

NZVC 
1001 

1iSt 
TS1B 

test dst B057DD 

1011, 0 0 1 : , 0 0 d d d 
I 

15 6 5 

Operation: (dst)-ct(dst) 

Condition Codes: N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared · 
C: cleared 

d 

0 

Description: Word: Sets the condition codes N and Z according to 
the contents of the destination address, contents of 
dst remains unmodified 
Byte: Same 

Example: TST R 1 

Before 
(Rl) =012340 

NZVC 
0011 

3.9 

After 
(Rl) = 012340 

NZVC 
0000 



Shifts 
Scaling data by factors of two is accomplished by the shift instructions: 

-ASR - Arithmetic shift right 

ASL - Arithmetic shift left 

The sign bit (bit 15) of the operand is reproduced in shifts to the right. 
The low order bit is filled with 0 in shifts to the left. Bits shifted out of 
the C bit, as shown in the following examples, are lo.st. 

Rotates 
The rotate instructions operate on the destination word and the C bit as 
though they formed a 17-bit "circular buffer." These instructions facili­
tate sequential bit testing and detailed bit manipulation. 

ASR 
ASRB 

arithmetic shift right •06200 

jo11 1 o 0 

15 

Operation: 

Condition Codes: 

Description: 

0 0 d d d d 

6 5 0 

(dst)<ll(dst) shifted one place to the right 

N: set if the high-order bit of the result is set (result < 0); 
cleared otherwise 
Z: set if the result =0; cleared otherwise 
V: loaded from the Exclusive OR of the N-bit and C·bit (as set 
by the completion of the shift operation) 
C: loaded from low-order bit of the destination 

Word: Shifts all bits of the destination right one place. 
Bit 15 is reproduced. The C-bit is loaded from bit 0 of 
the destination. ASR performs signed division of the 
destination by two. 
Word: 

Byte: 

rZ, .....1...I ---I'--'-' _._1 __._...___._l~B I-£] M 7 ......... _.__,_, -1.1 _.__.__._..,......)-TI L-3 000 ADDRESS L EVEN ADDRESS 

3-10 



arithmetic shift left 

10/1 0 0 0 
. I I 

15 

d 

6 5 

Operation: (dst).-(dst) shifted one place to the left 

ASL 
ASLB 

•063DD 

d d d I 
0 

Condition Codes: N: set if high-order bit of the result is set (result < O); cleared 
otherwise 
Z: set if the result = O; cleared otherwise 
V: loaded with the exclusive OR of the N-bit and C·bit (as set 
by the completion of the shift operation) 
C: loaded with the high-order bit of the destination 

Description: Word: Shifts all bits of the destination left one place. Bit 0 is 
loaded with an 0. The C·bit of the status word is loaded from 
the most significant bit of the destination. ASL performs a 
signed multiplication of the destination by 2 with overflow in· 
dication. 
Word: 

Byte: 

G-....,,1 ::-'--~' ~1 =!,-' __._.....l-.Jf-{~ -._I _.._.L-1 -"-' __._, -'-' __._~l-0 
15 ODO ADDRESS EVEN ADORESS 0 

rotate right 

I 0/1 I 0 0 0 I 1 I 1 I 0 I 0 : 0 I 0 I d 

15 6 5 

Operation: ( dst) ~ ( dst) 
rotate right one place 

3-11 

d I d d 

ROR 
RORB 

•060DD 

0 



Condition Codes: N: set if the high-order bit of the result is set (result < O); 
cleared otherwise 
Z: set if all bits of result =0; cleared otherwise 
V: loaded with the Exclusive OR of the N-bit and C-bit (as set 
by the completion of the rotate operation) 
C: loaded with the low-order bit of the destination 

Description: Rotates all bits of the destination right one place. Bit O is 
loaded into the C-bit and the previous contents of the C-bit 
are loaded into bit 15 of the destination. 

Example: 

ROL 
ROLB 

Byte: Same 

Word: 

0-~I ~~~~'--'---"~__._____.~ 
~~~'5~~~~~~~~~~~~~~~~~~---'o 

Byte:

ODD

15

EVEN .===1
L~J--· ____,

rotate left •06100

jo11 I o 0 0 1 I 0 0
I I I I , I d d d

I
d

15 6 5 0

Operation: (dst) ~ (dst)
rotate left one place

Condition Codes: N: set if the high-order bit of the result word is set
(result < 0): cleared otherwise
Z: set if all bits of the result word= O; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the high-order bit of the destination

Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit 0 of the destination.
Byte: Same

3-12

Example:
Word:

dst

G-~1 l__L_-L-._L___c___._-1--J__,_,____L_l_,_"-----'-='I
L.___~•5=---------------------~o

Bytes:

._I ,--L-,--L-----1.-0-'-1_0 _.__.__~..,,.I I E ~EN I ' I
. 15

1
ja 11 _Jo

-· ---·0----- -· --~{~

SWAB

swap bytes 000300

0 o I o 0

15 6 5 0

Operation: Byte 1/Byte O ~Byte O/Byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise

. Z: set if low-order byte of result = O; cleared otherwise
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of the destina­
tion word (destination must be a word address).

Example: SWAB Rl

Before
(Rl) = 077777

NZVC
11 11

3·13

After
(Rl) = 177577

NZVC
0000

Multiple Precision
It is sometimes necessary to do arithmetic on operands considered as
multiple words or bytes. The LSl-11 makes special provision for such
operations with the instructions ADC (Add Carry) and SBC (Subtract
Carry) and their byte equivalents.

For example two 16-bit words may be combined into a 32-bit double
precision word and added or subtracted as shown below:

32 BIT WORD

DP£RAND I 01 A0

31 16 15

OPERAND I B 1 ~ 60

31 16 15

RESULT

31 16 15

Example:

The addition of -1 and -1 could be performed as follows:

-1 = 37777777777

0

0

0

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD Rl,R2
ADC R3
ADD R4,R3

1. After (Rl) and (R2) are added, l is loaded into. the C bit

2. ADC instruction adds C bit lo (R3); (R3) = 0

3. (R3) and (R4) are added

4. Result is 37777777776 or -2

3-14

add carry

I 0/f I 0 0 0 0 1 I d

15 6 5

Operation: (dst) ~ (dst) + (C bit)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = O; cleared otherwise

d d

ADC
ADCB

•05500

d

0

V: set if (dst) was 077777 and (C) was l; cleared otherwise
C: set if (dst) was 177777 and (C) was l; cleared otherwise

Description: Adds the contents of the C-bit into the destination. This per­
mits the carry from the addition of the low-order words to be
carried into the high-order result.
Byte: Same

Example: Double precision addition may be done with the following in­
struction sequence:

subtract carry

ADD AO.BO add low-order parts
ADC Bl add carry into high-order
ADD Al.Bl add high order parts

SBC
SBCB

•05600

10/I I 0 . 0 0 0 1 : 1 o I d d d d d

15 6 5

Operation: (dst~(dst)-(C)

Condition Codes: N: set if result <O; cleared otherwise
Z: set if result O; cleared otherwise
V: set if (dst) was 100000; cleared otherwise

0

C: set if (dst) was 0 and C was 1; cleared otherwise

3-15

Description:

Example:

SXT

sign extend

I 0 I 0 0

15

Operation:

Condition Codes:

Description:

Example:

Word: Subtracts the contents of the C-bit from the destina­
tion. This permits the carry from the subtraction of two low­
order words to be subtracted from the high order part of the
result. ·
Byte: Same

Double precision subtraction is done by:

SUB AO,BO
SBC Bl
SUB Al.Bl

006700

0 0 • 1
I

1

6 5

(dst) ~ 0 if N·bit is clear
(dst) <ilE · 1 N·bit is set

N: unaffected
Z: set if N·bit clear
V: cleared
C: unaffected

d d I d d

0

If the condition code bit N is set then a -1 is placed in the
destination operand: if N bit is clear, then a 0 is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through .multiple words.

SXT A

Before
(A}=012345

After
(A)= 177777

NZVC
1000

3·16

NZVC
1000

3.5 PS WORD OPERATORS

Move byte From Processor Status word

0 1 I 1

Operation: (dst) ~ PSW
dst lower 8 bits

Condition Code
Bits: N =set if PSW bit 7 = 1; cleared otherwise

Z = set if PS <0:7> = O; cleared otherwise
V =cleared ·
C = not affected

MFPS

1067DD

Description: The 8 bit contents of the PS are moved to the effec­
tive destination. If destination is mode 0, PS bit 7 is
sign extended through upper byte of the register. The
destination operand address is treated as a byte ad­
dress.

Example: MFPS RO

before

RO [OJ
PS [000014]

after

RO [000014]
PS [000000]

MTPS
Move byte To Processor Status word 1064SS

I I 0 0 0

Operation: PSW ~ (SRC)

Condition Codes: Set accoring to effective SRC operand bits 0-3

Description: The 8 bits of the effective operand replaces the cur­
rent contents of the PSW. The source operand address
is treated as a byte address.
Note that the T bit (PSW bit 4) cannot be set with this
instruction. The SRC operand remains unchanged.
This instruction can be used to change the priority bit
(PSW bit 7) in the PSW

3-17

NOTE
When executing the MTPS instruction, the LSl-11
processor fetches the source operand via the
DATIO bus cycle, rather than the DAT! bus cycle.
If the source operand is contained in a PROM or
ROM location, a bus error (timeout) will occur
because the processor will attempt to write into
the addressed location after fetching the oper­
and. When using the MTPS instruction in pro­
grams that will be stored in PROM or ROM, re­
fer to Section I, Chapter 7, paragraph 7.3.

3.6 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for "load"and "save" sequences such as those
used in accumulator-oriented machines.

General

MOV
MOVB

move source to destination •lSSDD

1011 I o 0 d d d
I

d

15 12 11 6 5 0

Operation: (dst).(src)

Condition Codes: N: set if (src) <0; cleared otherwise
Z: set if (src) = 0; cleared otherwise
V: cleared
C: not affected

Description: Word: Moves the source operand to the destination location.
The previous contents of the destination are lost. The con·
tents of the source address are not affected. ·
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

Example: MOV XXX,Rl ; loads Register 1 with the con·
tents of memory location; XXX represents a programmer-de·
fined mnemonic used to represent a memory location

MOV #20,RO ; loads the number 20 into
Register 0; "#"indicates that the value 20 is the operand

3-18

MOV @# 20,-(R6) ; pushes the operand con-
tained in location 20 qnto the stack

MOV (R6) + ,@ # 177566 ; pops the operand off a stack
and moves it into memory location 177566 (terminal print
buffer)

MOV Rl,R3 performs an inter
register transfer

MOVB @#177562, @#177566 ; moves a char­
acter from terminal keyboard buffer to terminal printer
buffer.

NOTE
The MOVB instruction performs a DATIOB bus
cycle as the last bus cycle during instruction
execution, even though a DATOB bus cycle
would be sufficient. The DATI portion of the
DATIOB bus cycle is a "don't care" condition,
but the addressed memory or device must be
capable of responding to the DATI cycle to avoid
a bus timeout error. The MOV instruction per­
forms only the DATO cycle as the last bus cycle.

compare src to dst i!!2SSDD

!011 I o d d d

15 12 11 6 5 0

Operation: (src)-(dst)

Condition Codes: N: set if result <O: cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow: that is, operands ·t1ere
of opposite signs and the sign of the destination was the
same as the sign of the result; cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result: set otherwise

Description: Compares the source and destination operands and sets the
condition codes, which mav then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper­
ation is (src)-(dst), not (dst)-(src).

3-19

ADD

add src to dst 0655DD

s
.I

s d d d d
I

15 12 11 6 5 0

Operation: (dst) ~ (src) + (dst)

Condition Codes: N: set if result <O; cleared otherwise
Z: set if result = O; cleared otherwise
V: set if there was arithmetic overflow as a result of
the operation; that is both operands were of the same
sign and the result was of the opposite sign; cleared
otherwise
C: set if there was a carry from the most significant bit
of the result; cleared otherwise

Description: Adds the source operand to the desti.nation operand
and stores the result at the destination address. The
original contents of the destination are lost. The con­
tents of the source are not affected. Two's comple­
ment addition is performed.

Examples:.

SUB

Note: There is no equivalent byte mode.
/

Add to register: ADD 20,RO

Add to memory: ADD Rl,XXX

Add register to register: ADD Rl,R2

Add memory to memory: ADD@ # 17750,XXX

XXX is a programmer-defined mnemonic for a memory
location.

subtract src from dst 1655DD

s d d d I d d d

15 12 11 6 5 0

Operation: (dst) ~ (dst) - (src)

3-20

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper­
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared
otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C­
bit. when set. indicates a "borrow"

Example: SUB Rl,R2

Logical

Before
(Rl) =011111
(R2) = 012345

N.ZVC
1 1 1 1

After
(Rl)=Olllll
(R2) = 001234

NZVC
000 0

These instructions have the same format as the double operand arithmetic group.
They permit operations on data at the bit level. ·

bit test

1011, 0 d d

15 12 11 6 5

Operation: (src) r.. (dst)

d

BIT
BITB

•3SSDD

d

0

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = O; clearEid otherwise.
V: cleared
C: not affected

Description: Performs .logical "and"comparison of the source and desti­
nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des­
tination are clear in the source.

3-21

Example:

bit clear

15

BIT #30.R3 ; test bits 3 and 4 of R3 to see

: it both are off

R3=0 000 000 000 011 000

Before
NZVC
1111

o o I s

12 11

d d

6 5

After
NZVC
0001

d

BIC
BICB

•4SSDD

d

0

Operation: (dst)-.-(src) A(dst)

Condition Codes: N: set if high order bit of result set; cleared otherwise
· Z: set if result = O; cleared otherwise

V: cleared
C: not affected

Description: Clears each bit in the destination that corresponds to a set
bit in the source. The original contents of the destination are
lost. The contents of the source are unaffected.

Before
(R3) = 001234

(R4)=001111

NZVC
1 1 1 1

Before:

After:

After
(R3) = 001234

(R4) =000101

NZVC
0001

(R3)=0 000 001 010 011 100
(R4)=0 000 001 001 001 001

(R4)=0 000 000 001 000 001

3-22

bit set

1011 I 1 0

15 12 11 6 5

Operation: (dst)-.(src) v (dst)

d d d
I

BIS
BISB

•5SSDD

d

0

Condition Codes: N: set if high-order bit of result set, cleared otherwise
Z: set if result = O: cleared otherwise
V: cleared
C: not affected

Description:. Performs "Inclusive OR"operation between the source and
destination operands and leaves the result at the destination
address: that is, corresponding bits set in the source are set
in the destination. The contents of the destination are lost.

Example: BIS RO,Rl

Before
(RO) = 001234
(Rl) = 001111

Before:

After:

NZVC
0000

After
(RO)= 001234
(Rl)=001335

NZVC
0000

(RO)=O 000 001 010 011 100
(Rl)=O 000 001 001 001 001

(Rl)=O 000 001 011 011 101

3-23

XOR

·exclusive OR 074RDD

I 0 I , 0 d I d d

15 9 8 6 5 0

Operation: (dst).R.,.(dst)

Condition Codes:

Description:

Example:

N: set if the result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: unaffected

The exclusive OR of the register and destination operand is
stored in the destination address. Contents of register are
unaffected. Assembler format is: XOR R.D

Before
(RO) =001234
(R2) = 001111

NZVC
1111

Before:

After:

XOR RO,R2

After
(RO)= 001234
(R2) = 000325

NZVC
0001

(RO)=O 000 001 010 011 100
(R2)=0 000 001 001 001 001

(R2)=0 000 000 011 010 101

3.7 PROGRAM CONTROL INSTRUCTIONS
Branches
These instructions cause a branch to a location defined by the sum of
the offset (multiplied by 2) and the current contents· of the Program
Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing the con-
dition .codes (NZVC) ·

The offset is the number of words from the current contents of the PC
forward or backward. Note that the current contents of the PC point to
the word following the branch instruction.

Although the offset expresses a byte address the PC is expressed in
words. The offset is automatically multiplied by two and sign extended to
express words before it is added to the PC. Bit 7 is the sign of the offset.

3-24

If it is set, the offset is negative and the branch is done in the backward
direction. Similarly if it is not set, the offset is positive and the branch is
done in the forward direction.

The 8-bit offset allows branching in the backward direction by 2008 words
(400 bytes) from the current PC, and in the forward direction by 1778

words (376 bytes) from the current PC.

The PDP-11 assembler handles address arithmetic for the user and com­
putes and assembles the proper offset field for branch instructions in the
form:

Bxx loc

Where "Bxx" is the branch instruction and "loc" is the address to which
the branch is to be made. The assembler gives an error indication in the
instruction if the permissible branch range is exceeded. Branch instruc­
tions have no effect on' condition codes. Conditional branch instructions
where the branch condition is not met, are treated as NO OP's.

BR

branch (unconditional) 000400 Plus offset

100000001! OFFSET

15 8 7 0

Operation: PC ~ PC + (2 x offset)

Condition Codes: Unaffected

Description: Provides a way of transferring program control within
a ran~e of -12810to +127,_0words with a one word in·
struct1on.

New PC address = updated PC + (2 X offset)

Updated PC = address of branch instruction + 2

Example: With the Branch instruction at location 500, the following off­
sets apply.

New PC Address
474
476
500
502
504
506

Offset Code.
375
376
377
000
001
002

3-25

Offset (deCimal}
-3
-2
-1

0
+1
+2

BNE

branch if not equal (to zero) 001000 Plus offset

OFFSET
I I

15 8 7 0

Operation: PC -. PC + (2 x offset) if Z = 0

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear. BNE is the complementary operation to BEQ .. It is used
to test inequality following a CMP, to test that some bits set
in the destination were also in the source, following a
BIT operation, and generally, to test that the result
of the previous operation was not zero.

Example: CMP A,B
BNE C

will branch to C if A f= B

and the sequence
ADD A,B
BNE C

; compare A and B
; branch if they are not equal

; add A to B
; Branch if the result is not

equal to 0

will branch to C if A + B =f. O

BEQ

branch if equal (to zero) 001400 Plus offset

OFFSET

15 8 7 0

Operation: PC _.. PC + (2 x o.ffset) if Z

Condition Codes: 'unaffected

3-26

Description:

Example:

Tests the state of the Z-bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper­
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

CMP A,B
BEQ C

will branch to C if A = B
and the sequence

ADD A,B
BEQ C

; compare A and B
; branch if they are equal

(A - B = 0)

; add A to B
; branch if the result = O

will branch to C if A + B = 0.

BPL
branch if plus 100000 Plus offset

11 I o 0 OFFSET

15 B 7 0

Operation: PC ~ PC + (2 x offset) if N = 0

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if N
is clear, (positive result). BPL is the complementary
operation of BM I.

BMI

branch if minus 100400 Plus offset

I 1 I o o
15

0 0 0 0
I

OFFSET

B 7

Operation: PC ~ PC + (2 x offset) if N = 1

Condition Codes: Unaffected

0

Description: Tests the state of the N-bit and causes a branch if N
is set It is used to test the sign (most significant bit)
of the result of the previous operation), branching if
negative. BMI is the complementary function of BPL.

3-27

BVC

branch if overflow is clear 102000 Plus offset·

11 I o 0 o I o o I or OFFSET

15 8 7 0

Operation: PC (- PC + (2 x offset) if Y = 0

Condition Codes: ·Unaffected

Description:

BVS

Tests the state of the Y-bit and causes a branch if the
Y bit is clear. BYC is complementary operation to BYS.

branch if overflow is set 102400 Plus offset

15

Operation:

0 0
I

0 OFFSET

.8 7

PC (- PC + (2 x offset) if Y = 1

0

Condition Codes: Unaffected

Description:

BCC

Tests the state of Y-bit (overflow) and causes a branch
if the Y bit is set. BYS is used to· detect arithmetic
overflow in the previous operation.

branch if carry is clear 103000 Plus offset

I 1 I o 0 OFFSET
I I

o Io
15 8 7 0

Operation: PC (- PC + (2 x offset) if C = 0

Condition Codes: Unaffected

Description: Tests the state of the C-bit and causes a branch if C
is clear. BCC is the complementary operation to BCS.

3-28

BCS
branch if carry is set 103400 Plus offset

OFFSET

15 B 7 0

Operation: PC (- PC + (2 x offset) if C = 1

Condition Codes: Unaffected

Description: Tests the state of the C-bit and causes a branch if C
is set. It is used to test for a carry in the result of a
previous operation.

Signed Conditional Branches
Particular combinations of the condition code bits are tested with the signed con·
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values.

Note that the sense of sign.ed comparisons differs from that of unsigned com·
pa,risons in that in signed 16-bit, two's complement arithmetic the sequence of
values is as follows:

largest

po~itive

negative

smallest

077777
077776

000001
000000
177777
177776

100001
100000

whereas in unsigned 16-bit arithmetic the sequence' is considered to be

highest

lowest

177777

000002
000001
000000

3-29

BGE

branch if greater than or equal
(to zero)

002000 Plus offset

o I o 0 0 0 OFFSET

15 8 7 0

Operation: PC -. PC + (2 x offset) if N y. V = 0

Condition Codes: Unaffected

Description:

BLT

Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that
caused addition of two positive numbers. BGE will also cause
a branch on a zero result.

branch if less than (zerq) 002400 Plus offset

o I o 0 OFFSET
I I

0 I· 0 I o I 1

15 8 7 0

Operation: PC -. PC + (2 x offset) if N y. V 1

Condition Codes: Unaffected

Description: Causes a branch if the "Exclusive Or"of the N and V bits are
i. Thus BLT will always branch following an operation that
added two negative numbers, even if overflow occurred.
In particular, BLT will always cause a branch if it follows a
CMP instruction operating on a negative source and a posi­
tive destination (even if overflow occurred). Further, BLT will
never cause a branch when it follows a CMP instruction oper­
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was
zero (without overflow).

3-30

BGT

branch if greater than (zero) 003000 Plus offset

loo o o o 0 I OFFSET

15 B 7 0

Operation: PC ~ PC + (2 x offset) if Z v(N v- V) = 0

Condition Codes: Unaffected·

Description: Operation of SGT is similar to BGE, except SGT will not cause
a branch on a zero result.

BLE

branch if less than or equal (to zero) 003400 Plus offset

I 0 I 0 0 0 0 OFFSET

15 B 7 0

Operation: PC ~ PC + (2 x offset) if Z v(N v- V) = 1

Condition Codes: Unaffected

Description: Operation is similar to BLT but in addition will cause a
branch if the result of the previous operation was zero.

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

3-31

BHI

branch if higher 101000 Plus offset

0 o_ 1 o 0 OFFSET
I

15 B 7 0

Operation: PC•PC + (2xoffset)if C=OandZ=O

Condition Codes: Unaffected

Description:

BLOS

Causes a branch if the previous operation caused neither a
carry nor a zero result. This will happen in comparison (CMP)
operations as long as the source has a higher unsigned value
than the destination.

branch if lower or same 101400 Plus offset

~1_1_._l_o_.__o_.__o__, __ o....__o_,_ __ ,__1_,_l __ ...___.. __ oJ;_F_s~E~T--'---'---'--....JI
15 8 .,. 0

Operation: PC • PC + (2 x offset) if C v Z 1

Condition Codes: Unaffected

Description:
y.

Causes a branch if the previous operation caused either a
carry or a zero result. BLOS is the complementary operation
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has ·a lower unsigned value
than the destination.

3-32

BHIS

branch if higher or same 103000 Plus offset

I 1 0 0 0 0 0 I OFFSET

15 8 7 0

Operation: PC ~ PC + (2 x offset) if C 0

Condition Codes: Unaffected

Description: BHIS is the same instruction as BCC. This mnemonic is in­
cluded only for convenience.

BLO

· branch if lower 103400 Plus offset

11 0 0 0 0 OFFSET

15 8 7 0

Operation: PC ~ PC + (2 x offset) if C = 1

Condition Codes: Unaffected

Description: BLO is same instruction as BCS. This mnemonic is included
only for convenience.

3-33

Jump Instructions

JMP

jump

I 0 I 0

15

Operation:

0 o I o 0 0

PC <e- (dst)

000100

d d I d d

6 5 0

Condition Codes: unaffected

Description:

Example:

First:

List:

JMP provides more flexible program branching than
provided with the branch instructions. Control may be
transferred to any location in memory (no range limita­
tion) and can be accomplished with the full flexibility
of the addressing modes, with the exception of regis­
ter mode 0. Execution of a jump with mode O will
cause an "illegal instruction" condition, and will cause
the CPU to trap to vector address 4. (Program con­
trol cannot be transferred to a register.) Register de­
ferred mode is legal and will cause program control to
be transferred to the address held in the specified
register. Note that instructions are word data and must
therefore be fetched from an even-numbered address.

Deferred index mode JMP instructions permit transfer
of control to the address contained in a selectable
element of a table of dispatch vectors.

. JMP

JMP

FIRST

JMP

FIRST

@LIST

@(SP)+

; Transfers to First

; Transfers to location pointed to at
LIST

; pointer to FIRST

; Transfer to location pointed to by
the top of the stack, and remove
the pointer from the stack

3-34

Subroutine Instructions
The subroutine call in the PDP-11 provides for automatic nesting of sub­
routines, reentrancy, and multiple entry points. Subroutines may call
other subroutines (or indeed themselves) to any level of nesting without
making special provision for storage of return addresses at each level of
subroutine call. The subroutine calling mechanism does not modify any
fixed location in memory, thus providing for reentrancy. This allows one
copy of a subroutine to be shared among several interrupting processes.

JSR

jump to subroutine 004RDD

15

Operation:

Description:

d d I
9 8 6 5 0

t(SP).reg (push reg contents onto processor st;:ick)

re~PC (PC holds location followil'lg JSR; this address
now put in reg)

PCA(dst) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified reg­
ister (the "LINKAGE POINTER") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc·
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in­
terrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution-of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg)+. (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or­
der). These addressing modes may also be deferred, '
@(reg)+ and @X(reg) if the parameters are operand ad­
dresses rather than the operands themselves.

3-35

Example:

Before:

After:

Before:

After:

JSR PC, dst is a special case of the PDP-11 subroutine call
suitable for subroutine ca,lls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be m~ified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP)+ which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resume operation when recalled where they left off. Such rou­
tines are called "co-routines."

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR R5, SBR

(PC) R7 PC Stack

(SP) R6 n DATA 0

R5 #1

R7 SBR

I~ R6 n-2 DATA 0

#1
R5 PC+2

JSR PC, SBR

Stack
(PC) R7 PC

§ (SP) R6 n

R7 SBR

R6 n-2
~

DATAO
PC+2

3-36

RTS

return from subroutine 00020R

15

Operation:

Description:

Example:

Before:

After:

PC~ (reg)
(reg) ~ (SP) t

o I o 0

3 2 0

Loads contents of register into PC and pops the top
element of the processor stack into the specified
register. ·,
Return from a non-reentrant subroutine is typically
made through the same register that was used in its
call. Thus, a subroutine called with a JSR PC, dst
exists .with a RTS PC and a subroutine called with a
JSR RS, dst, may pick up parameters with addressing
modes (RS) +. X(RS), or @X(RS) and finally exists,
with an. RTS RS.

RTS RS

(PC) R7 SBR Stack

(SP) R6 ~ DATA 0

#1
RS PC

R7 PC

R6 . n+2 DATA 0

RS #1

3-37

MARK

mark 0064NN

I o o o o 0 0 n n I n n n

15 e 1 s 5 0

Operation: SP~ updated PC + 2 + 2n n = number of parameters
PC•RS
R~(SP)A.

Condition Codes: unaffected

Description: Used as part of the standard PDP-11 subroutine return con­
vention. MARK facilitates the stack clean up procedures in­
volved in subroutine exit Assembler format is: MARK N

Example: MOV RS,-(SP) ;place old R5 on stack
MOV Pl,-(SP) ;place N parameters
l'v10V P2,-(SP) ;on the stack to be

;used there by the
:subroutine

MOV PN,-(SP)
MOV # MARKN,-(SP) ;places the instruction

;MARK N on the stack
MOV SP ,RS ;set up address at MARK N in-

struction
JSR PC.SUB ;jump to subroutine

At this point the stack is as follows:

OLD R5

Pl

PN

MARK N

OLD PC

3-38

And the program is at the address SUB which is the
beginning of the subroutine.
SUB: ;execution of the subroutine

itself

RTS R5 ;the return begins: this

causes the contents of R5 to be placed in the PC which
then results in the execution of the instruction MARK
N. The contents of old PC are placed in. R5

MARK N causes: (1) the stack pointer to be adjusted
to point to the old R5 value; (2) the value now in R5
(the old PC) to be placed in the PC; and (3) contents
of the old R5 to be popped into R5 thus completing
the return from subroutine.

SOB

subtract one and branch (if =f:. 0) 077RNN

I 0 I 1

15 9 8 6 5

OFFSET
I

0

Operation: (R) ~ (R) - l; if this result# 0 then PC ~PC -(2 x
offset) if (R) = O; PC ~ PC

Condition Codes~ unaffected

Description: The register is decremented. If it is not equal to 0, twice the
offset is subtracted from the PC (now pointing to the follow·
ing word). The offset is interpreted as a sixbit positive num·
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

SOB R,A

where A is the address to which transfer is to be made
if the decremented R is not equal to 0. Note that the
SOB instruction can not be used to transfer control
in the forward direction.

3-39

Traps
Trap instructions provide for calls to emulators, I/ 0 monitors, debugging

·packages, and user-defined interpreters. A trap is effectively an interrupt
generated by software. When a trap occurs the contents of the current
Program Counter (PC) and processor Status Word (PS) are pushed onto
the processor stack and replaced by the contents of a two-word trap vec­
tor containing a new PC and new PS. The return sequence from a trap
involves executing an RTI or RTT instruction which restores the old PC
and old PS by popping them from the stack. Trap instruction vectors are
located at permanentlx assigned fixed addresses.

EMT

emulator trap

1 I o 0 0 0 0 I 0 I
15

Operation: 't (SP).PS
't (SP).PC

PC.(30)
PS.(32)

8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

104000-104377

0

Description: All operation codes from 104000 to 104377 are EMT
instructions and may be used to transmit information
to the emulating routine (e.g., function to be per­
formed). The trap vector for EMT is at address 30. The
new PC is taken from the word at address 30; the new
processor status (PS) is taken from the word at ad­
dress 32.

Before:

Caution: EMT is used frequently by DEC system soft­
ware and is therefore not recommended for general
use.

PS PS 1 I Stack

~
PC DATA 1

SP

3-40

After: PS

PC

SP

trap

1 I o 0 0 0

15

Operation: 't (SP).PS
't(SP:>.PC

PC.(34)
f>S.(36)

(32)

(30)

n-4

0

8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

DATA 1

PS 1

PC 1

TRAP

104400-104777

0

Description: Operation codes from 104400 to 104777 are TRAP instruc·
tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

3-41

BPT

breakpoint trap 000003

jooooooo 1 o:oooooo ,,

ffi 0

Operation: 't (SP).PS
t(SP).PC
PC• (14)
PS •(16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de·
bugging aids.

(No information is transmitted in the low byte.)

IOT

input/ output trap 000004

jo o o o 1 o o o o'.o o o o o o o

15 0

Operation: 't (SP).PS
t(SP).PC

PC.(20)
PS.(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20.

(No informatio_n is transmitted in the low byte.)

3-42

return from interrupt

15

Operation:

Condition Codes:

Peiii(SPU
PS•(SP).t
N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

RTI

000002

0

Description: Used to exit from an interrupt or TRAP service routine.
The PC and PS are restored (popped) from the pro­
cessor stack. If a trace trap is pending, the first in­
struction after RTI will not be executed prior to the
next T traps.

RTT

return from interrupt 000006

IB 0

Operation: ~(SP)•
PS•(SP) .t

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Operation is the same as RTI except that it inhibits a
trace trap while RTI permits trace trap. If new PS has
T bit set, trap will occur after execution of first in­
struction after RTT.

3-43

Reserved Instruction Traps-These are caused by attempts to execute
instruction codes reserved for future processor expansion (reserved in­
structions) or instructions with illegal addressing modes (illegal instruc­
tions). Order codes not- corresponding to any of the instructions de­
scribed are considered to be reserved instructions. JMP and JSR with
register mode destinations are illegal instructions, and trap to vector
address 4. Reserved i!lstructions trap to vector address 10.

Bus Error Traps-Bus Error Traps are time-out errors; attempts to refer­
ence addresses on the bus that have made no response within a certain
length of time. In general, these are caused by attempts to reference
non-existent memory, and attempts to reference non-existent peripheral
devices. Bus error traps cause processor traps through the trap vector
address 4.

Trace Trap-Trace Trap is enabled by bit 4 of the PSW and causes pro­
cessor traps at the end of instruction execution. The instruction that is
executed after the instruction that set the T-bit will proceed to comple­
tion and then trap through the trap vector at address 14. Note that the
trace trap is a system debugging aid and is transparent to the general
programmer.

NOTE
Bit 4 of the PSW can only be set indirectly by
executing a RTI or RTT instruction with the de­
sired PSW on the stack.

The following are special cases of the T-bit and are detailed in subse­
quent paragraphs.

1. The traced instruction cleared the T-bit.

2. The traced instruction set the T-bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The processor was interrupted between the time the T-bit was set and
the fetching of the instruction that was to be traced.

6. The traced instruction was a WAIT.

7. The traced instruction was a HALT.

8. The traced instruction was a Return from Interrupt.

NOTE
The traced instruction is the instruction after the
one that set the T-bit.

An instruction that cleared the T bit-Upon fetching the traced lnstruc·
tion, an internal flag, the trace flag, was set. The trap will still occur at
the end of execution of this instruction. The status word on the stack,
however, will have a clear T-bit.

An instruction that set the T-bit-Since the T-bit was already set, setting
it again has no effect. The trap will occur. ·

3-44

An instruction that caused an Instruction Trap-The instruction trap is
performed and the entire routine for the service trap is executed. If the
service routine exists with an RTI or in any other way restores the
stacked status word, the T-bit is set again, the instruction following the
traced instruction is executed and, unless it is one of the special cases
noted previously, a trace trap occurs.

An instruction that caused a Bus Error Trap-This is treated as an In­
struction Trap. The only difference is that the error service is not as
likely to exit with an RTI, so that the trace trap may not occur.

Note that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter­
rupts, the PSW at the trap vector should set Bit 7.

A WAIT-T bit trap is not honored during a wait.

A HALT-The processor halts. The PC points to the next instruction to
be executed. The trap will occur immediately following execution resump­
tion.

A Return from Interrupt-The return from interrupt instruction either
clears or sets the T-bit. If the T-bit was set and RTT is the traced in­
struction, the trap is delayed until completion of the next instruction.

Power Failure Trap-Occurs when AC power fail signal is received while
processor is in run mode. Trap vector for power failure is location 24
and 26. Trap will occur if an RTI instruction is executed in power fail
service routine .

. Trap Priorities__.:ln case of internal and external multiple processor trap
conditions, occurring simultaneously, the following order of priorities is
observed (from high to low):

Bus Error Trap
Memory Refresh
Instruction Traps
Trace Trap
Power Fail Trap
Halt Line
Event Line Interrupt
Device (Bus) Interrupt Request

If a bus error is caused by the trap process handling instruction traps,
trace traps, or a previous bus error, the processor is halted. This is called
a double bus error.

3-45

3.8 MISCELLANEOUS

HALT

halt 000000

l oo o o o
- I I I I

0 c 0 0
I

0 0

15 0

Condition Codes: not affected

Description: Causes the processor to leave RUN mode. The PC
points to the next instruction to be executed. The
processor goes into the HALT mode. The contents of
the PC are displayed on the console terminal and the
console mode of operation is enabled.

WAIT

· wait for interrupt 000001

0 0 0 0 0 0 0 0

15 0

Condition Codes: not affected

Description: Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt request.

·Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits higher trans­
fer rates between a device and memory, since no proc­
essor-induced latencies will be encountered by inter­
rupt requests from devices. In WAIT, as in all instruc­
tions, the PG points to the next instruction following
the WAIT instruction. Thus when· an interrupt causes
the PC and PS to be pushed onto the processor stack,
the address of the next instruction following the WAIT
is saved. The exit from the interrupt routine (Le. ·ex­
ecution of an RTI instruction) will cause resumption of
the interrupted process at the instruction following the
WAIT.

3·46

RESET

reset external bus 000005

0 I I I 0 I 0 0 0 0 0 0 0 : 0 0 I 0 ' 0 0

15 0

Condition Codes: not affected

Description: Sends IN IT on the BUS for IO µsec. All devices on the
BUS are reset to their state at power-up. The proc·
essor remains in an idle state for 90 µsec following is·
suance of IN IT.

3.9 ·RESERVED INSTRUCTIONS

15

0 0

Operation:

12 11

0 0 0 0 0

(NO ASSIGNED MNEMONIC)

00021R

0 0 0

(R) +-gets contents of 5 internal 16 bit registers R -E­

R + 12 at end of inst.

Condition Codes: Unaffected

Description:

Memory
Location

(R)

(R)+2

Contents of register R (low order 3 bits of inst.) is
used as a pointer. The contents of the internal hidden
temporary registers are consecutively written into
memory and the contents or R are incremented by 2
until the five 16 bit registers have been written.
(R) +- (R) + 12" Primarily used as a main·
tenance aid in diagnostic routines. The interpretation
of the five words in memory is as follows:

Microlevel
Register
Symbol

RBA

RSRC

Function

Bus Address Register. It contains the last
non-instruction fetch bus address for desti·
nation modes, 3, 5, 6, and 7.

Source Operand Register. It contains the last
source operand of a double operand instruc·
tion. The high byte may not be correct if it
was source mode 0.

3.47

(R)+4 RDST

(R)+6 RPSW

(R)+IO RIR

Destination Operand Register. It contains the
last destination operand fetched by the pro­
cessor.

PSW and Scratch Register. The top 4 bits
are PSW bits 4 through 7. The remaining bit
interpretation is a function of the last in­
struction and may not be that useful for all
cases.

Instruction Register. It contains the present,
not past, instruction being executed, and will
always be 36R where R is the register in the
format. The 360 is a result of firmware in­
struction decoding and is caused by 150
being added to the opcode (21R+l50=36R).

(NO ASSIGNED MNEMONIC) 00022N

Operation:

6 0

0 0 0 0

Cau~es Micro Instruction Control Transfer to Micro­
location .3000

Condition Codes: Unaffected

Description: This instruction can be used to transfer Microcontrol
to Microcode address 3000 in the Microprocessor. If
Microaddress 3000 does not exist this opcode will
cause a reserved instruction trap through memory lo­
cation 10.

This is a reserved DEC instruction.

3-48

3.10 CONDITION CODE OPERATORS CLN
CLZ
CLV
CLC
CCC

SEN
SEZ
SEV
SEC
sec

condition code operators 0002XX

l o o o o 1 o
- I I I -

o I 1

4 3 2 0

Description: Set and clear condition code bits. Selectable combinatiohs of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits 0-
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3,
if bit 4 is a L Clear corresponding bits if bit 4 = 0.

Mnemonic
Operation

CLC Cleare

CLV ClearV

CLZ Clear Z

CLN Clear N

SEC SetC

SEV SetV

SEZ Set Z

SEN Set N

sec Set all CC's

CCC Clear all CC's

Clear Vand C

NOP No Operation

OP Code

000241

000242

000244

000250

000261

000262

000264

000270

000277

000257

000243
000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions. ·

3-49

3-50

CHAPTER 4

EXTENDED ARITHMETIC OPTION

4.1 GENERAL
This chapter describes the Extended Arithmetic Chip, which is an option
on the KDll-F, KDll-J Microcomputer Module. The !\EV11 option allows
extended manipulation of fixed point numbers (fixed point arithmetic)
and enables direct operations on single precision 32-bit words (floating
point arithmetic).

4.2 FIXED POINT ARITHMETIC (EIS)
The following instructions apply to fixed point numbers:

Mnemonic

MUL
DIV
ASH
ASCH

Instruction

multiply
divide
shift arithmetically
arithmetic shift combined

Operand formats are:

Op Code

070RSS
071RSS
072RSS
073RSS

15 14 0

16-bit single word: I~·-' ~j---~--~l·_""_'a_rn_~---~.==:J

32-bit double word:
15

S is the sign bit.

LOW NUMBER PART
1 I

S = 0 for positive quantities
S = 1 for negative quantities; number is in 2's

complement notation

NOTE
When executing an EIS instruction, the LSl-11
processor fetches the source operand via the
DATIO bus cycle, rather than the DAT! bus
cycle. If the source operand is contained in a
PROM or ROM location, a bus error (timeout)
will occur because the processor will attempt
to write into the addressed location after fetch­
ing the operand. When using EIS instructions
in programs that will be stored in PROM or
ROM, refer to Section I, Chapter 7, paragraph
7.3.

4-1

MUL
multiply 070RSS

01
, ,

lo 0 0 I . '.r • 1 s

15 9 8 6 5 0

Operation: R, Rvl~ R x(src)

Condition Codes: N: set if product is <0; cleared otherwise
Z: set if product is 0; cleared otherwise
V: cleared
C: set if the result is less than-215 or greater than or equal to
21"-l.

Description: The contents of the destination register and source taken as
two's complement integers are multiplied and stored in the
destination register and the succeeding register (if R is even).
If R is odd only the low order product is stored. Assembler
syntax is : MUL S,R.
(Note that the actual destination is R, Rvl which reduces to
just R when R is odd.)

Example: 16·bit product (R is odd)

CLC
MOV #400,Rl
MUL #10,Rl
BCS ERROR

Before

(R1)=000400

;Clear carry condition code

;Carry _will be set if
;product is less than
;-215 or greater than or equal to 2'"
;no significance lost

After

(Rl)=004000

Assembler format for all EIS instructions is:
OPR src, R

4-2

DIV

divide 071RSS

I 0 I 1 1 IO 0

15 9 8 6 5

Operation: R. Rvl~ R. Rvl /(src)

Condition Codes: N: set if quotient <0; cleared otherwise
Z: set if quotient = 0; cleared otherwise

I
0

V: set if source = 0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is aborted because the quotient would exceed 15
bits.)
C: set if divide 0 attempted; cleared otherwise

Description: The 32-bit two's complement integer in R and Rvl is divided
by the source operand. The quotient is left in R; the remain­
der in Rvl. Division will be performed so that the remainder
is of the same sign as the dividend. R must be even.

Example: CLR RO
MOV#20001,Rl
DIV#2,RO

Before
(RO) = 000000
(Rl)=020001

After
(RO)= 010000
(Rl)=OOOOOl

4-3

Quotient
Remainder

ASH

shift arithmetically 072RSS

I 0 I 1 0

15 9 8 6 5 0

Operation: R-. R Shifted arithmetically NN places to right or left
Where NN = low order 6 bits of source

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = O; cleared otherwise
V: set if sign of register changed during shift; cleared other·
wise
C: loaded from last bit shifted out of register

Description: The contents of the register are shifted right or left the num­
ber of times specified by the shift count. The shift count is
taken as the low order 6 bits of the source operand. This
number ranges from -32 to +31. Negative is a a right shift
and positive is a left shift.

6 LSB of source
011111
000001
111111
100000

Example:

~

I

OR

Action in general register
Shift left 31 places
shift left 1 place
shift right 1 place
shift right 32 places

Before
(RO) = 001234
(R3) = 000003

4-4

ASH RO, R3

1-GJ
0

I I- 0

0

After
(RO) = 012340
(R3) = 000003

ASHC
arithmetic shift combined 073RSS

I 0 I 1

15

Operation:

Condition Codes:

Description:

s s I
I I

9 8 6 5 0

R, Rvl-.R, Rvl The double word is shifted NN places to the
right or left, where NN =low order six bits of source ·

N: set if result <0; cleared otherwise
Z: set if result = O; cleared otherwise
V: set if sign bit changes during the shift; cleared otherwise
C: loaded with high order bit when left Shift; loaded with low
order bit when right shift (loaded with the last bit shifted out
of the 32-bit operand)

The contents of the register and the register ORed with one
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits
16-31) are shifted right or left the number of times specified
by the shift count. The shift count is taken as the low order 6
bits of the source operand. This number ranges from -32 to
+ 31. Negative is a right shift and positive is a •left shift.

When the register chosen is an odd number the register
and the register OR'ed with one are the same. In this case the
right shift becomes.a rotate (forupto·a shiftofl6). The 16
bit word is rotated right the number of bits specified by the
shift count.

4-5

4.3 FLOATING POINT ARITHMETIC (FIS)
The Floating Point instructions used are unique to the LSl-11 and PDP-
11/35 & 40. However, the OP Codes used do not conflict with any other
instructions.

Mnenomic Instruction Op Code

FADD floating add 07500R
FSUB floating subtract 07501R
FMUL floating multiply 07502R
FDIV floating divide 07503R

The operand format is:
15

15

EXPONENT
I

7 6 0

I FRACTION (HIGH PART)
I . I I

HIGH ARGUMENT

0

FRACTION 1tLOW PART)
I ~I~~~~~~~

LOW ARGUMEN1

S = sign of fraction; 0 for positive, 1 for negative
Exponent = 8 bits for the exponent, in excess (200), notation
Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be
normalized)

The number format is essentially a sign and magnitude representation.
The format is identical with the 11/45 for single precision numbers.

Fraction
The binary radix point is to the left (in front of bit 6 of the High Argu­
ment), so that the value of the fraction is always less than 1 in magni­
tude. Normalization would always cause the fir.st bit after the radix point
to be a 1, such. that the fractional value would be between 1h and 1.
Therefore, this bit can be understood and not be represented directly,
to achieve an extra 1 bit of resolution.

The first bit to the right of the radix point (hidden bit) is always a 1: The
next bit for the fraction is taken from bit 6 of the High Argument.
The result of a Floating Point operation is always rounded away from
zero, increasing the absolute value of the number.

Exponent
The 8-bit exponent field (bits 14 to 7) allow exponent values between
-128 and +127. Since an excess (200), or (128)10 number system is
used, the .correspondence between actual values and coded representa­
tion is as follows:

Actual Value Representation

Decimal Octal Binary

+127 377 11 111 111

+1 201 10 000 001
0 200 10 000 000

·-1 177 01 111 111

-128 000 00 000 000

4-6

If the actual value of the exponent is equal to ·-128, meaning a total
value (including the fraction) of less than 2-128, the floating point number
will be assumed to be 0, regardless of the sign or fraction bits. The hard­
ware will generate a clean 0 (a 32-bit word of all zeros).

Example of a Number

+(12)ro = +(1100),

= +(24)ro x (.11), [16 x (lh + %) = 12]

s Exponent Fraction
,-------"-----
10 000 100 111000000 00000000 00000000

hidden bit is a 1

radix point is understood

representation: 0

Registers
There are no pre-assigned registers for the Floating Point option. A gen­
eral purpose register is used as a pointer to specify a stack address.
The contents of the register are used to locate the operands and answer
for the Floating Point operations as follows:

(R) = High 8 argument address
(R)+2 = Low 8 argument address
(R)+4 = High A argument address
(R)+6 = Low A argument address

After the Floating Point operation, the answer is stored on the stack as
follows:

(R)+4 =address for High part of answer
(R)+6 =address for Low part of answer

where (R) is the original contents of the general register used.

After execution of the instruction, the general register will point to the
High.answer, at (R)+4.

Condition Codes
Condition codes are set or cleared as shown in the Instruction Descrip­
tions, in the next part of this section. If a trap occurs as a function of
a Floating Instruction, the condition codes are re-interpreted as follows:

V = 1, if an error occurs
N = 1, if underflow or divide by zero
C = 1, if divide by zero
Z=O

v
Overflow 1
Underflow 1
Divide by 0 1

4-7

N c z
0 0 0
1 0 0
1 1 0

Traps occur through the vector at location 244. A Floating Point instruc·
tion will be aborted if an interrupt request is issued before the instruction
is near completion. The Program Counter will point to the aborted Float·
ing Point instruction so that the Interrupt will look transparent.

Assembler format is: QPR R

INSTRUCTIONS

FADD
floating add

I 0 I , 1

15

Operation:

,Condition Codes:

Description:

FSUB
floating subtract

I 0 I t ,

t5

07500R

3 2 0

[(R)+4, (R)+6] ~[(R)+4, (R)+6]+ [(R),(R)+2], if
result ~ 2-128; else [(R)+4, (R)+6] ~

N; set if result < O; cleared otherwise
Z: set if result = O; cleared otherwise
V: cleared
C: cleared

Adds the A argument to the 8 argument and stores
the result in the A Argument position on the stack.
General register R is used as the stack pointer for
the operation.

A~A+B

07501R

t 1 1 o t 1 o : O • O '1 O • o . t I r . r r I
3 2 0

Operation: [(R)+4, (R)+6]~[(R)+4, (R)+6]-[(R), (R)+2], if
· result ~ 2-128; else [(R)+4, (R)+6] ~

Condition Codes: N: set if result< O; cleared otherwise
Z: set if result= O; cleared otherwise
V: cleared
C: cleared

Description: Sutracts the 8 Argument from the A Argument and
stores the result in the A Argument position on the
stack.

A~A-8

4-8

FMUL
floating multiply 07502R

I 0 I 1

15

Operation:

3 2 0

[{R)+4, (R)+6] ~[(R)+4, (R)+6]X [(R), (R)+2] if
result ;;,, 2-128; else [(R)+4, (R)+6] ~o

Condition Codes: N: set if result < O; cleared otherwise

Description:

Z: set if result = O; cleared otherwise
V: cleared
C: cleared

Multiplies the A Argument by the B Argument and
stores the result in the A Argument position on the
stack.
A~A X B

(refer to note below)

FDIV
floating divide 07503R

I 0 I 1

15

Operation:

0 1 0 :a 0 0 I
I

3 2

[(R)+4, (R)+6] ~[(R)+4, {R)+6] I [(R),(R)+2] if
result ;;,, 2-128; else [(R)+4, (R)+6)] ~o

Condition Codes: N: set if result < O; cleared otherwise

Description:

Z: set if result = O; cleared otherwise
V: cleared
C: cleared

Divides the A Argument by the B Argument and
stores the result in the A Argument position on the
stack. If the divisor (B Argument) is equal to zero,
the stack is left untouched.

A~A/B

NOTE
Unlike the PDP-11/40 (and PDP-11/35), the
LSl-11 processor pushes one word onto the
stack during execution of FMUL and FDIV in­
structions and pops the word from the stack
when completed. Thus, the SP (R6) must point
to a read/write memory location; otherwise, a
bus error (timeout) will occur.

4-9

4-10

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility
of the LSl-11, the reader should become familiar with the various pro­
gramming techniques which are part of the basic design philosophy of
the LSl-11. Although it is possible to program the LSl-11 along tradi­
tional lines such as "accumulator orientation" this approach does not
fully exploit the architecture and instruction set of the LSl-11.

5.1 THE STACK
A "stack," as used on the LSl-11, is an area of memory set aside by the
programmer for temporary storage or subroutine/interrupt service link­
age. The instructions which facilitate "stack" handling are useful fea·
tures not normally found in low-cost computers. They allow a program
to dynamically establish, modify, or delete a stack and items on it. The
stack uses the "last-in, first-out" concept, that is, various items may be
added to a stack in sequential order and retrieved or deleted from the
stack in reverse order. On the LSl·l 1, a stack starts at the highest loca·
tion reserved for it and expands linearly downward to the lowest address
as items are added to the stack.

Lr:JN ADDRESSES

HIGH ADDRESSES

Figure 5-1 Stack Addresses

The programmer does not need to keep track of the actual locations his
data is being stacked into. This is done automatically through a "stack
pointer." To keep track of the last item added to the stack (or "where
we are" in the stack) a General Register always contains the memory
address where the last item is stored in the stack. In the LSl-11 any
register except Register 7 (the Program Counter-PC) may be used as a
"stack pointer" under program control; however, instructions associated
with subroutine linkage and interrupt service automatically use Register
6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently
referred to as the system "SP."

5-1

Stacks in the LSl-11 may be maintained in either full word or byte units.
This is true for a stack pointed to by any register except R6, which must
be organized in full word units only.

WORD STACK

0071 00 ITEM#l

0070 76 \TEM#2

007074 ITEM#3

007072 ITEM #4 -SP 007072

007070
007066

007064

NOTE: BYTES
ARE ARRANGED IN

BYTE STl'CK WORDS AS FOLLOWING
BYTE 3 BYTE 2

007100 ITEM#l BYTE l BYTEO

007077 ITEM#2
007076 ITEM#3

007075 ITEM#4 --RO-RS 007075

Figure 5·2 Word and Byte Stacks

Items are added to a stack using the autodecrement addressing mode
with the appropriate pointer register. (See Chapter 2 for description of
the autoincrement/decrement modes).

·This operation is accomplished as follows;

MOV Source,-(SP) ;MOV Source Word onto the stack

or

MOVB Source,-(R) ;MOVB Source Byte onto a stack

This is called a "push" because data is "pushed onto the stack."

5-2

To remove an item from a stack the autoincrement addressing mode with
the appropriate R is employed. This is accomplished in the following
manner:

MOV (SP), + ,Destination ;MOV Destination Word off the stack

or

MOVB (R) +,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a "pop" for "popping from the stack."
After an item has been "popped," its stack location is considered free and avai·
lable for other use. The stack pointer points to the last·used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share·
able temporary storage locations.

HIGHMEMORY~ ~ -sP

}
t E0 -sP

STACK
AREA

LOW MEMORY "
1. AN EMPTY STACK 2.PUSHING A DATUM

AREA ONTO THE STACK

1

~ -SP

4. ANOTHER PUSH 5. POP

7. POP

~
t~SP

3. PUSHING ANOTHER
DATUM ON10 THE
STACKS

.~-~
6. PUSH

Figure 5·3 Illustration of Push and Pop Operations

5~3

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to use registers I and 2, but these registers must be returned to the calling pro­
gram with their contents unchanged. The subroutine could be written as follows:

Address

076322
076324
076326
076330

/076410
0764I2
0764I4
0764I6
076420
076422
076424

*Index Constants

Octal Code

010I67
000074
OI0267
000072

OI670I
000006
OI6702
000004
000207
000000
000000

SUBR:

Assembler Syntax

MOV RI.TEMPI ;save RI

MOV R2,TEMP2 ;save R2

MOV TEMPI, RI ;Restore RI

MOV TEMP2, R2 ;Restore R2

RTSPC
TEMPl: 0
TEMP2: 0

Figure 5-4 Register Sav!ng Without the Stack

OR: Using a Stack

Address

OI0020
OI0022

OI0130
010132
010134

Octal Code

010143 SUBR:
OI0243

012301
012302
000207

Assembler Syntax

MOV RI, -(R3) ;push RI
MOV R2, -(R3) ;push R2

MOV (R3) +, R2 ;pop R2
MOV (83) +, Rl ;pop Rl
RTSPC

Note: In this case R3 was used as a Stack Pointer,

Figure 5-5 Register Saving Using the Stack

The second routine uses four less words of instruction code and two words of
temporary "st.ack" storage. Another routine could use the same stack space at
some later point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5-4

As a further example of stack usage, consider the task of managing an
input buffer from a terminal. As characters come in, the terminal user
may wish to delete characters from his line; this is accomplished very
easily by maintaining a byte stack containing the input characters. When·
ever a backspace is received a character is "popped" off the stack and
eliminated from consideration. In this example, a programmer has the
choice of "popping" characters to be eliminated by using either the
MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

001011

001010

001007

001006'"

001005

001004

001003

001002

001001

c c
u u

s INC A3 s
T T

0 0

M M

E E

R R

z 001001

Figure 5-6 Byte Stack Used as a Character Buffer

001002

NOTE that in this case using the increment instruction (INC) is prefer·
able to MOVB since it would accomplish the task of eliminating the un·
wanted character from the stack by readjusting the stack pointer without
the need for a destination location. Also, the stack pointer (SP) used in
this example cannot be the system stack pointer (R6) because R6 may
only point to word (even) locations.

5.2 SUBROUTINE LINKAGE
5.2.1 Subroutine Calls
Subroutines provide a facility for maintaining a single copy of a given
routine which can be used in a repetitive manner by other programs
located anywhere else in memory. In order to· provide this facility, gen·
eralized linkage methods must be established for the purpose of control
transfer and information exchange between subroutines and calling pro·
grams. The LSl·ll instruction set contains several useful instructions
for this purpose.

LSl·ll subroutines are called by using the JSR instruction which has the
following format.

a general register (R) for linkage -----.
JSR R,SUBR

an entry location (SUBR) for the subroutine__)

5.5

When a JSR is executed, the contents of the linkage register are saved
on the system R6 stack as if a MOV reg.-(SP) had been performed.
Then the same register is loaded with the memory address following the
JSR instruction (the contents of the current PC) and a jump is made to
the entry location specified by the DST operand.

Address Assembler Sy~tax Octal Code

001000 JSRR5',SUBR 004567
001002 index constant fur SUBR 000060

001064 SUBR: MOV A.B Olnnmm

Figure 5-7 JSR Using R5

BEFORE AFTER

IRS)• 000132 (R5)=001004
(R6)•001776 (R6)•001774

IPC)•(R7l • 001000 IPCl•IR7)•001064

002000. 002000 n nnnnn

001776 -sP 00t776 I 00111s mmmmmm

om114 001774 000132 .,.SP 001774

001772 001772

Figure S-8 JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean·
ingful combination.

5.2.2 Argument Transmission
The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac­
cessed from the subroutine in several ways. Using Register Sas the linkage regis­
ter, the first argument could be obtained by using the addressing modes in­
dicated by (RS), (RS)+ ,X(RS) for actual data, or @(RS) + , etc. for the address of
data; If the autoincrement mode is used,"-the linkage register is automatically up­
dated to point to the next argument.

Figures S-9 and S-10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400
010402
010404
010406

020306 SUBR:
020310

JSR RS,SUBR
Index constant for SUBR
arg #1
arg #2

MOV (RS)+ ,Rl
MOV (RS) + ,R2

SUBROUTINE CALL

ARGUMENTS

;get arg # 1

;get arg # 2 Retrieve Arguments
. from SUB

Figure 5-9 Argument Transmission -Register Autoincrement Mode

5·6

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL
010404 077722
010406 077724
010410 077726

077722 Arg # 1
077724 arg #2
077726 arg #3

020306 SUBR:
020301

Address of Arg # 1
Address of Arg. # 2
Address of Arg. # 3

arguments

MOV @(R5) + ,Rl ;get arg # 1
MOV @(R5) + ,R2 ;get arg # 2

Figure 5-10 Argument Transmission-Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the ad­
dress of the first item by placing this address in a general-purpose
register. It is not necessary.to have the actual argument list in the same
general area as the subroutine call. Thus a subroutine can be called to
work on data located anywhere in memory. In fact, in many cases, the
operations performed by the subroutine can be applied directly to the
data located on or pointed to by a pointer without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV
JSR

SUBROUTINE ADD

POINTER, Rl
PC,SUBR

(Rl) + ,(Rl) ;Add item # 1 to item # 2, place
result in item #2, Rl points

etc.
or

to item # 2 now

ADD (Rl),2(Rl) ;Same effect as above except that

Rl still points to item # 1
etc.

ITEM # 1 -Rt '~---~
ITEM #2

Figure 5-11 Transmitting Stacks as Arguments

5-7

Because the LSl-11 hardware already uses general purpose register R6
to point to a stack for saving and restoring PC and PS (processor status
word) information, it is quite convenient to use this same stack to save
and restore intermediate results and to transmit arguments to and from
su5routines. Using R6 in this manner permits extreme flexibility in nest­
ing subroutines .and interrupt service routines. .

Since arguments may be obtained from the stack by using some form of
register indexed addressing, it is sometimes useful to save a temporary
copy of R6 in some other register which has already been saved at the
beginning of a subroutine. In the previous example R5 may be used to
index the arguments while R6 is free to be incremented and decremented
in the course of being used as a stack pointer. If R6 had been used
directly as the base for indexing and not "copied," it might be difficult
to keep track of the position in the argument list since the base of the
stack would change with every autoincrement/decrement which occurs.

aro #1 aro .. ,
arg #2 aro #2

SP- oro #3 org #3

org # 2 is at source
-2(SP)

but when another item
TO is pushed

SP_.., TO

arg # 2 ls at source

-4ISP)

Figure 5·12 Shitting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any arguments are
pushed onto the stack, the position relative to R5 would remain constant. ·

org # 1 aro # 1

SP arg #2 - arg # 2

SP- erg #3

org#2 is at 2(R5) arg#2is stillat2tR5l

Figure 5-13 Constant Index Base Using "R6 Copy"

5-8

5.2.3 Subroutine Return
In order to provide for a return from a subroutine to the calling program
an RTS instruction is executed by the subroutine. This instruction should
specify the same register as the JSR used in the subroutine call. When
executed, it causes the register, specified, to be moved to the PC and
the top of the stack to be then placed in the register specified. Note that
if an RTS PC is executed, it has the effect of returning to the address
specified by the contents of the top of the stack.

Note that the JSR and the JMP instructions differ in that a linkage reg­
ister is always used with a JSR; there is no linkage register with a JMP
and no way to return to the calling program.

When a subroutine finishes, it is necessary to "clean-up" the stack by
eliminating or skipping over the subroutine arguments. One way this can
be done is by making the subroutine keep the number of arguments as
its first stack item. Returns from subroutines would then involve calcu­
lating the amount by which to reset the stack pointer. Resetting the
stack pointer then restores the original contents of the register which
was used as the copy of the stack pointer. The LSl-11 however, has a
specific instruction (MARK instruction) used to perform the clean-up
task. The MARK instruction which is stored on a stack in place of "num­
ber of argument" information may be used to automatically perform
these "clean-up" chores.

5.2.4 LSl-11 Set Subroutine Advantages
There are several advantages to the LSl-11 Set subroutine calling pro­
cedure.

a. arguments can be quickly passed between the calling program and
the subroutine.

b. if the user has no arguments or the arguments are in a general reg­
ister or on the stack, the JSR PC, DST mode can be used so that
none of the general-purpose registers are taken up for linkage.

c. many JSRs can be executed without the need to provide any saving
procedure for the linkage information since all linkage information is
automatically· pushed onto the stack in sequential order. Returns can
simply be made by automatically popping this information from the
stack in the opposite order of the JSRs.

Such linkage address bookkeeping is called automatic "nesting" of sub­
routine calls. This feature enables the programmer to construct fast,
efficient linkages in a simple, flexible manner. It even permits a routine
to call itself in those cases where this is meaningful. It also allows sub­
routines to be interrupted by external devices without losing. the proper
return linkage registers.

5.2.5 Trap Subroutine Calls
The TRAP instruction may be used to call subroutines. The TRAP instruc­
tion is typically used with a package of many different subroutines such
as the software floating-point math package. The subroutines in the
package are assigned a unique number which is to be included in the.
TRAP instruction. When a subroutine is called, a "TRAP n" instruction
is executed, where "n" is the number (o === n === 255) which designates

5-9

the subroutine to be invoked. Arguments are. typically passed on ·the
stack, in the registers, or they may follow the TRAP instruction. The
advantages of using the TRAP instruction are that a program using a
TRAP subroutine package may be assembled and linked independent of
the TRAP package and the subroutine call only requires one word, as
opposed to two. words which are normally required using the JSR in­
struction. The disadvantage of using the TRAP instruction is the extra
overhead incurred in the software decoding of the TRAP instruction.

Calling MOV ARG, -(SP) ; Push argument onto the
Program: stack

TRAP 3 ; Invoke subroutine #3

Trap TRAPH: MOV RO, -(SP) ; Save register
handler:

MOV 2(SP), RO ; Copy address of the
TRAP instruction +2

MOVB -2(RO), RO ; Copy subroutine number
in TRAP instruction

BIC #177400, RO ; Clear possible sign
extension bits

ASL RO ; Convert to word offset
JSR PC,@TRPTBL(RO) ; Call subroutine
MOV (SP)+, RO ; Restore register
RTT ; Return ~o user

TR PT BL: SUBO ~Table of pointer to
SU Bl subroutines
SUB2
SUB3

5.3 INTERRUPTS
5.3.1 General Principles
Interrupts are in many respects very similar to subroutine calls. However,
they are forced, rather than controlled, transfers of program execution
occurring because of some external and program-independent event
(such as a stroke on the teleprinter keyboard). Like subroutines, inter­
rupts have linkage information such that a return to the interrupted
program can be made. More information is actually necessary for an
interrupt than a subroutine because of the random nature of interrupts.
The compl.ete machine state of the program immediately prior to the
occurrence of the interrupt must be preserved in order to return to the
program without any noticeable effects (i.e. was the previous operation
zero or negative, etc.). This information is stored in the Process.or Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC)
(address of next instruction) and the PS are automatically pushed onto
the R6 system stack. The effect is the same as if:

MFPS, -(SP)
MOV R7,-(SP)

had been executed.

; Push PS
; Push PC

5-10

The new contents of the PC and PS are loaded from two preassigned con­
secutive memory locations which are called an "interrupt vector." The
actual locations are chosen by the device interface designer and are
located in low memory addresses. The first word contains the interrupt
service routine address (the address of the new program sequence) and
the second word contains the new PS which will determine the machine
status including the operational mode and register set to be used by the
interrupt service routine.

After the interrupt service routine has been completed, an RTI (return
from interrupt) is performed. The two top words of the stack are auto·
matically "popped" and placed in the PC and PS, respectively, thus re­
suming the interrupted program.

5.3.2 Nesting
Interrupts can be nested in much the same manner that subroutines are
nested. In fact, it is possible to nest any arbitrary mixture of subroutines
and interrupts without any confusion. By using the RTI and RTS instruc­
tions, respectively, the proper returns are automatic.

I. Process 0 is running;
SP is pointing to loca·
tion PO.

2. Interrupt stops process 0
with PC= PCO, and
status =PS 0 ;starts process I.

3. Process 1 uses stack for

temporary storage (TEO, TEl).

PO§
PSO

SP: PCO .

PO

PSO

PCO

TEO

SP- TEI

0

4. Process 1 interrupted with PC= PCl Po

and status = PSl; process 2 is started PSO

PC 0

TEO

TE t

PSI

SP-+ PC t

0

5-11

5. Process 2 is running and does a
JSR R7,A to Subroutine A with
PC = PC2.

6. Subroutine A is running
and uses stack for
temporary storage.

7. Subroutine A .releases the temporary

storage holding TAl and TA2.

8. Subroutine A returns control to process
.2 with an RTS R7,PC is reset to PC2.

5·12

PO

SP-

0

PO

SP-

0

PO

0

PO

SP-

0

PSO

PCO

TEO

TE I

PS I

PC I

PC2

PSO

PCO

TEO

TEI

PS I

PCI

PC2

TAI

TA2

PSO

PCO

TEO

TEI

PSI

PCI

PC2

PSO

PCO

TEO

TEI

PSI

PCI

9. Process 2 completes with an RTI instruction
(dismisses interrupt) PC is reset
to PC(l) and status is reset to PSl;
p~ocess 1 resumes.

10. Proce~s 1 releases the temporary
storage holding TEO and TEL

11.Process 1 completes its operation
with an RTI PC is restored to PCO
and status is reset to PSO.

PO

PSO

PCO

TEO

SP- TE1

0

PO~ PSO

SP: PCO

Figure 5-14 Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels.

5.4 PROGRAMMING PERIPHERALS
Programming of LSl-11 modules (devices) is simple. A special class of
instructions to deal with input/output operations is unnecessary. The
bus structure permits a unified addressing structure in which control,
status, and data registers for devices are directly addressed as memory
lo~ations. Therefore, all operations on these registers, such as transfer­
ring information into or out of them or manipulating data within them,
are performed by normal memory reference instructions.

The use of all memory reference instructions on device registers greatly
increases the flexibility of input/output programming. For example, infor:
mation in a device register can be compared directly with a value and a
branch made on the result:

CMP RBUF,
BEQ SERVICE

#101

In this case, the program looks for 101 in the DLVll Receiver Data
Buffer Register (RBUF) and branches if it finds it. There is no need to
transfer the information into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can
transfer the character into a user buffer in memory or to another peri·
pheral device. The instruction:

MOV DRINBUF LOC

5-13

transfers a character from the DRVll Data Input Buffer (DRINBUF) into
a user-defined location.

All arithmetic operations can be performed on a peripheral device reg­
ister. For example, the instruction ADD # 10, DROUT BUF will add 10
to the DRVll's Output Buffer.

All read/write device registers can be treated as accumulators. There is
no need to funnel all data transfers, arithmetic operations, and_ com­
parisons through a single or small number of accumulator registers.

5.5 DEVICE REGISTERS
All devices are specified by a set of registers which are addressed as
memory and manipulated as flexibly as an accumulator. There are two
types of registers associated with each device: (1) control and status
registers; (2) data registers. The following examples are general, for
specific device register information refer to the applicable manual.

Control and Status Registers-Each device can have one or more con­
trol and status registers that contain the information necessary to com­
municate with that device. The general form, shown below does not
necessarily apply to every device, but is presented as a guide.

15 14 13 12

ERROR~
DONE OR READ'l'
INTERRUPT ENABLE
ENABLE

BIT NAME

15 Error

7 Done or Ready

6 Interrupt Enable

0 Enable

11 10 0

DESCRIPTION

Set when an error occurs.

Set when the device in either ready to
accept new information, or has com-
pleted an operation and has data
available.

When set, an interrupt will be re­
quested when a done or error con-
dition occurs.

Set to allow the peripheral device to
perform a function.

Many devices require less than sixteen status bits. Other devices will
require more than sixteen bits and therefore will require additional status
and control registers.

Data Buffer Registers-Each device has at least one buffer register for
temporarily storing data to be transferred into or out of the processor.
The number and type of data registers is a function of the device. The
DLVll, for example uses single 8-bit data buffer registers. The DRVll
uses 16-bit data registers and some devices may use more than 1 reg­
ister for data buffers.

5-14

Interrupt Structure-If the appropriate interrupt enable bit is set, in the
control and status register of a device, transition from O to 1 of the
READY or ERROR bit, where applicable, should cause an interrupt re­
quest to be issued to the processor. Also if READY or ERROR is a 1
when the interrupt enable is turned on, an interrupt request is made.
If the device makes the request and the processor's priority is zero,
and no higher priority devices are requesting an interrupt, the request
is granted, and the interrupt sequence takes place.

a. the current program counter (PC) and processor status (PS) are
pushed onto the processor stack;

b. the new PC and PS are loaded from a pair of locations (the interrupt
vector) in addressed memory, unique to the interrupting device.

Since each device has a unique interrupt vector which dispatches con­
trol to the appropriate interrupt handling routine immediately, no device
polling is required. The Return from Interrupt Instruction (RTI) is used
to reverse the action of the interrupt sequence. The top two words on
the stack are popped into the PC and PS, returning control to the inter­
rupted sequence.

Programming Example-A DLVll interrupt routine to service a low-speed
paper tape reader, could appear as follows (assume the DLVl 1 's inter­
rupt vector is 60, and PRSE~ is the service routine for the device):

First the user must initialize the Stack Pointer (R6) and device
vector locations. Then the user must initialize the service
routine by specifying an address pointer and a word count:

INIT: MOV # BUFADR, RO
MOV #COUNT, COUNTR
MOV # 101, RCSR

; set address pointer into
register

; set counter
; enable DLVl 1

interrupt enable &
reader run enable,
Program continues until
interrupt occurs

When the interrupt occurs and is acknowledged, the processor stores
the current PC and PS on the stack. Next it goes to the interrupt vector
and picks up the new PC and PS location 60, 62. When the program
was loaded, the address of PRSER would be put in location 60 and 200,
in 72 (to set the processor's priority to 4 and inhibit new interrupts).
The next instruction executed is the first instruction of the device ser­
vice routine at PRSER.

PR SER:

DONE:

MOVB RBUF, (RO)+

DECCOUNTR
SEQ DONE
INC RCSR

RTI

5-15

; move character from
DLVll 's receiver data
buffer register to buffer and
increment pointer

; decrement character count
; branch when COUNTR equals 0
; set reader enable for next
; character input

; return to interrupted program

5-16

CHAPTER 1

INTRODUCTION

1.1 SOFTWARE SYSTEMS
This section describes the operating systems and programming lan­
guages available for the LSl-11 family of processors and systems, in­
cluding the LSl-11, PDP-11/03, and PDP-11V03. It is intended to pro­
vide a brief introduction for the system designer or programmer using
an LSl-11 system. Detailed software documentation is provided with the
software options when purchased. Hence, no attempt is made to include
complete programming and operating instructions in this handbook.

Software systems include the operating systems and programming lan­
guages described in this section, and diagnostic software, paper tape
software, and special-purpose software options that are not described
in this section. A list of currently available software options for the
LSl-11, PDP-11/03, and PDP-11V03 is provided in Table 1-1.

1.2 OPERATING SYSTEMS
An operating system organizes a processor and peripherals into a useful
tool for a range of applications. The operating systems, when used in
LSl-11, PDP-11/03, or PDP-11V03 hardware is generally intended for a
dedicated application. Two operating systems are available for use on
these hardware configurations as listed below:

RT-11

RSX-11S

A small, single-user foreground/background system that
can support a real-time application job's execution in the
foreground and an interactive or batch program develop­
ment job in the background.

A small, execute-only member of the RSX-11 family for
dedicated real-time multiprogramming applications (re­
quires a host RSX-11M system).

Chapters 4 and 5, respectively, describe these operating systems in de­
tail. Included in each chapter are a general description of the require­
ments for the system, the monitor/executive characteristics, the file
structures and data handling facilities, the user interfaces, the pro­
grammed monitor services, the system utilities, and the language pro­
cessor options supported. For users who are not familiar with DIGITAL
PDP-11 system components and services, Chapter 2 provides a sum­
mary description of the operating system's components and common
facilities.

1-1

Table 1-1 Software Options

Option System
No. Software Media Reference

'~QJ003·AY, RT-11 Operating System, Floppy Disk Chapters 4 & 6
QJ003-CY including Single Job and

Foreground/Background
Monitors and programs
described in Chapter 4,
and MACRO described in
Chapter 6.

'-'QJ925-AY, RT-11/FORTRAN Floppy Disk Chapters 4 & 7
QJ925-CY

'~QJ920-AY, RT-11/BASIC Floppy Disk Chapters 4 & 8
QJ920-CY

"'QJ921-AY, RT-11/MULTl-USER BASIC Floppy Disk Chapters 4 & 8
QJ921-CY

':'QJ922-AY RT-11/FOCAL Floppy Disk Chapter 4

':'QJ960-AY RT-11 I SSP-11 Scientific Fioppy Disk
Subroutine Package for
RT-11/FORTRAN

':'QJ640-AY, RSX-llS Operating System Floppy Disk Chapter 5
QJ640-CY

':'QJ945-AY RT-ll/REMOTE-11 Floppy Disk

ZJ215-RY LSl-11 Diagnostics Floppy Disk Section I,
Chapter 9

QJVlO-CB Paper Tape Software, Paper Tape PDP-11 Paper
including: Tape Software
ED-11 Text Editor Programming
PALllS Assembler Handbook
LINKll Linker
DUMPAB Memory
Dump Utility
ODT-11 On-Line Debugging
Technique
IOX Input/Out Executive
Absolute Loader

QJVll-CB PROM Formatter Paper Tape Section I,
Chapter 7

ZJVOl-RB LSl-11 Diagnostics Paper Tape Section I,
Chapter 9

1-2

*SOFTWARE SUPPORT CATEGORIES

Category A (·AY Option No. Suffex)

1. Upon notification by customer to the nearest DIGITAL office that the
computer system, including all required prerequisite hardware and
software is ready for the installation of the software, DIGITAL will
install such software in any location within the contiguous United
States, the District of Columbia, or a country in which DIGITAL or a
subsidiary of DIGITAL has a software service facility. The notification
must be received by DIGITAL and the system must be ready for in­
stallation within 30 days after the delivery of the software to cus­
tomer or DIGITAL will have no obligation to install. Installation will
consist of: (1) verification that all components of the software have
been received by customer, (2) loading the software, and (3) exe­
cuting a DIGITAL sample procedure.

2. During the 90-day period after installation, if the customer encount­
ers a problem with the current unaltered release of the software
which DIGITAL determines to be a defect in the software, DIGITAL
will provide the following remedial service (on-site where necessary):
(1) if the software is inoperable, apply a temporary correction or
make a reasonable attempt to develop an emergency bypass, and (2)
assist the customer to prepare a Software Performance Report (SPR)
and submit it to DIGITAL. .

3. During the 1-year period following installation, if the customer en­
counters a problem with the software which his diagnosis indicates
is caused by a software defect, the customer may submit an SPR to
DIGITAL. DIGITAL will respond to problems reported in SPRs which
are caused by defects in the current unaltered release of the soft­
ware via the maintenance periodical for the software, which reports
SPRs received, code corrections, temporary corrections, generally
useful emergency bypasses and/or notice of the availability of cor­
rected code. Software Updates, if any, released by DIGITAL during
the 1-year period, will be provided to the customer on DIGITAL's
standard distribution media as specified in the applicable SPD. The
customer will be charged only for the media on which such updates
are provided, unless otherwise stated in the applicable SPD, at
DIGITAL's then current media prices.

Category C (·CY Option No. Suffex)
Software is provided on an 'as is' basis. Any software services, if avail·
able, will be provided at the then current charges.

1.3 LANGUAGES AND LANGUAGE PROCESSORS
All PDP-11 operating systems offer a variety of programming language
processors. A programming language is a tool that enables the user to
state a problem that a computer can solve. A programming language is
designed to be easily understoo"d and manipulated by humans, while a
language processor translates the instructions into the machine's Ian·
guage.

1-3

In general, the language processors available to run under an operating
system are commensurate with the kind of applications for which the
operating system is designed. For example, a real-time application
environment could be a laboratory in which a scientific programming
language is useful for problem solving. The real-time application oper­
ating systems offer FORTRAN IV ranguage processors.
The programming languages that are discussed in this handbook are:

MACRO

FORTRAN IV

BASIC

The general-purpose assembly language for PDP-11
computers.

The language most used for scientific problem solving.

A language well-known in the educational/scientific
communities for its ease-of-use.

1-4

CHAPTER2

OPERATING SYSTEMS

Operating systems have two basic functions: they provide services for
application program development and act as an environment in which
application programs run. The character that an operating system has,
that is, the services and environment it supplies, is appropriate only for
a certain range of program development and application requirements in
order to serve selected needs efficiently. Operating systems for the
PDP-11 family of computers, however, share many similar program de· ·
velopment techniques and processing environments. This chapter de·
scribes some of the common features and characteristics of PDP-11
operating systems as well as some of their differences.

2.1 COMPONENTS AND FUNCTIONS
An operating system is a collection of programs that organizes a set of
hardware devices into a working unit that people can use. Figure 2·1
illustrates the relationship between users, the operating system, and
the hardware. PDP-11 operating systems basically consist of two sets of
software: the monitor (or executive) software' and the system utilities.

,------------------,
I
I

APPLICATION
PROGRAMS

OPERATING
SYSTEM HARDWARE

L------------------~
Figure 2·1 Computer System Components

An operating system monitor is an integrated set of routines that acts
as the primary interface between the hardware and a program running
on the system, and between the hardware and the people who use the
system. The monitor's. basic functions can be divided among the rou­
tines that provide the following services:

• device and data management

• user interface

• programmed processing services

• memmy allocation

• processor time allocation

2-1

In general, a monitor can have two distinct operating components: a
permanently-resident portion and a transient portion. When a monitor
is loaded into memory and started, all of the monitor is resident in
memory. Its first duty is to· interface with the operator running the sys­
tem. The monitor simply waits until an operator requests some service,
and then performs that service. In general, these services include load­
ing and starting programs, controlling program execution, modifying or
retrieving system information, and setting system parameters. In most
systems, these functions are serviced by transient portions of the mon­
itor.

In some cases, when the monitor initiates another program's execution,
the transient portion of the monitor can be over-written by the loaded
program or swapped out. The permanently-resident portion remains in
memory to act on requests from the program. These generally include
1/0 services such as file management, device dependent operations,
blocking and unblocking data, allocating storage space, and managing
memory areas. In large systems, these services might also include inter­
task communication and coordination, memory protection and parity
checking, and task execution scheduling.

The dividing line between permanently-resident and transient portions
of the monitor, however, is not strictly based on user-interface functions
and program-interface functions. In some systems, special monitor rou­
tines that service either the operator or programs might be stored on
the system device, and are called in to memory only as needed. The
concern for space in small systems usually determines what portions of
the monitor are resident at any time. The programmer or operator can
control the size of the monitor, based on the needs for memory.

In some cases, the user can adjust the size of the monitor by eliminating
certain features that are not needed in an application environment.
RSX-llS is an example of such a system.The RSX-llS system's monitor
(called an executive) is always permanently-resident when the system
is operating. In this case, the user concerned with size can eliminate
routines that perform unneeded operations. In general, however, all
PDP-11 operating systems are designed to be flexible enough to operate
in a relatively wide ra_nge of hardware environments.

System utilities are the individual programs that are run under control
of the monitor to perform useful system-level operations such as source
program assembly or compilation, object program linking, and file man­
agement.

System utility programs enhance the capabilities of an operating system
by providing users with commonly-performed general services. There
are three classes cf system utilities: those used solely or primarily for
program development, those used for file management, and those used
to perform special system management functions.

Program development utilities include text editors, assemblers and com­
pilers, linkers, program librarians, and debuggers. File management
utilities include file copy, transfer, and deletion programs, file format

2-2

translators, and media verification and clean-up programs. System man­
agement utilities vary from system to system, depending on the purpose
and functions the system services. Some examples are system informa­
tion programs, user accounting programs, and error logging and on-line
diagnostic programs.

2.2 PROCESSING METHODS
The basic distinctions among operating systems are the processing
methods they use to execute programs. The basic distinctions among
processing methods to be discussed here are:

• single-user and multi-user

• single-job and foreground/background

• foreground/background and multi-programming

• timesharing and event-driven multi-programming

A single-user operating system views demands upon its resources as
emanating from a single source. It has only to manage the resources
based on these demands. As an effect, these systems do not require
account numbers to access the system or data files. RT-11 is a single­
user operating system.

An RT-11 system can operate in two modes: as a single-job system, or
as a foreground/background system. In a foreground/background sys­
tem, memory for user programs is divided into two separate regions.
The foreground region is occupied, by a program requiring fast response
to its demands and priority on all resources while it is processing; for
example, a real-time application program. The background region is
available for a low-priority, pre-emptable program; for example, a com­
piler.

Two independent programs, therefore, can reside in memory, one in the
foreground region and one in the background region. The foreground
program is given priority and executes until it relinquishes control to
the backround program. The background program is allowed to execute
until the foreground program again requires control. The two programs
effectively share the resources of the system. When the foreground pro­
gram is idle, the system does not go unused. Yet, when the foreground
program requires service, it is immediately ready to execute. 1/0 oper­
ations are processed independently of the requesting job to ensure that
the processor is used efficiently as well as enable fast response to all
1/0 interrupts.

The basis of foreground/background processing is the sharing of a sys- ·
tern's resources between two tasks. An extension of foreground/back­
ground processing is multi-programming. In multi-programmed process­
ing, many jobs, instead of only two, compete for the system's resources.
While it is still true that only one program can have control of the CPU
at a time, concurrent execution of several tasks is achieved because
other system resources, particularly 1/0 device operations, can execute
in parallel. While one task is waiting for an 1/0 operation to complete,
for example, another task can have control of the CPU.

2-3

The RSX-11 family of operating systems employs multi-programmed pro­
cessing based on a priority-ordered queue of programs demanding sys­
tem resources. In this case, memory is divided into several regions called
partitions, and all tasks loaded in the partitions can execute in parallel.
Program execution, as in the RT-11 foreground/background system, is
event-driven. That is, a program retains control of the CPU until it de­
clares a significant event-normally meaning that it can no longer run,
either because it has finished processing, or because it is waiting for
another operation fo occur. When a significant event is declared, the
RSX-11 executive gives control of the CPU to the highest priority task
ready to execute. Furthermore, a high-priority task can interrupt a lower­
priority task if it requires immediate service.

2.3 DATA MANAGEMENT
Digital computers deal with binary information only. The way in which
people interpret and manipulate the binary information is called data
management.

This section describes PDP-11 software data management structures and
techniques, from the physical storage and transfer level to the logical
organization and processing level. This includes:

• ASCII and binary stora'ge formats-how binary data can be interpreted

• physical and logical data structures-the difference between how data
storage devices operate and how people use them

• file structures-how· physical units of data are logically organized for
ease of user reference

• file directories-how files are located and retrieved

• file protection-how files are protected from unauthorized users

• file naming conventions-how files are identified

2.3.1 Physical and Logical Units of Data
Physical units of data are the elements which digital computer devices
use to store, transfer and retrieve bin.ary information.

A bit (binary digit) is the smallest unit of data that computer systems
handle. An example of a bit is the magnetic core used in some processor
memories that is polarized in one direction to represent the binary num­
ber 0 and in the opposite direction to represent the binary number 1.

In PDP-11 computers, a byte is the smallest memory-addressable unit
of data. A byte consists of eight binary bits. An ASCII character code
can be stored in one byte. Two bytes comprise a 16-bit word. A word
is the largest memory-addressable unit of data. Some machine instruc­
tions are stored in one word.

The smallest unit of data that an 1/0 peripheral device can transfer is
called its physical record. The size of a physical record is usually fixed
and depends on the type of device being referenced. For example, a
card reader can read and transfer 80 bytes of information, stored on an
80-column punched card. The card reader's physical record length is 80
bytes.

2-4

A block is the name for the physical record of a mass-storage device
such as disk or magnetic tape. Data blocks associated with the RXVl 1
floppy disk system are actually 128 bytes of information comprising one
sector. Each floppy disk is formatted into 77 concentric tracks, !!ach
track containing 26 sectors.

Physical blocks can be grouped into a collection called a qevice or a
physical volume. This collection generally has a size equal to the capacity
of the device media. The term physical volume is generally used with
removable media, such as a floppy disk or magnetic tape.

Logical units of data are 'the elements manipulated by people and user
programs to store, transfer and retrieve information. The information
has logical characteristics, for example, data type (alphabetic, decimal,
etc.) and size. The logical characteristics are not device dependent; they
are determined by the people using the system.

A field is the smallest logical unit of data. For example, the field on a
punched card used to contain a person's name is a logical unit of data.
It can have any length arbitrarily determined by the programmer who
defines the field.

A logical record is defined as a collection of fields treated as a unit. It
can contain any logically-related information, in any one or several data
types, and it can be any user-determined length. Its characteristics are
not device dependent, but can be physically defined. For example, a
logical record can occupy several blocks, or it can reside in a single
block, or several logical records can reside in a single block. Its char­
acteristics 'are determined by the programmer.

A file is a logical collection of data that occupies one or more blocks
on a mass-storage device such as a floppy disk. A file is a system­
recognized logical unit of data. Its characteristics can be determined by
the system or the programmer.

A file can be a collection of logical records treated as a unit. An ex­
ample of a Employee File which contains one logical record in the file
for each employee. Each record contains an employee's name and ad­
dress and other pertinent information. If the logical record length is 50
bytes, and there are 200 employees, the complete Employee file could
be stored in 80 128-byte sections. Depending on the file structure used
in the system, the data could be scattered over the disk, or could be
located in sequential sectors and tracks.

A logical volume is a collection of files that reside on a single disk or
tape. It is the logical equivalent of a physical device unit (a physical
volume) consisting of physical records, such as a disk. The files
on a volume may have no specific relationship other than their residence
on the same magnetic media. In some cases, however, the files on a
volume may all belong to the same user of the system.

Figure 2-2 illustrates some of the kinds of physical and logical units of
data that PDP-11 computer systems handle.

2-5

2.3.2 Data Storage and Transfer Modes
All PDP-11 operating systems use two basic methods of data storage:
ASCII and binary. Data stored in ASCII format conform to the American
National Standard Code for Information Interchange, in which each
character is represented by a 7-bit code. The 7-bit code occupies tlie
low-order seven bits of an 8-bit byte. Depending on the operating sys­
tem's storage techniques, the high-order bit may be used for parity
checking, special formatting, or it may be ignored. Text files such as
source programs are_ examples of data stored in ASCII format.

Binary storage always uses all eight bits of a byte to store information.
The significance of any bit vari-es depending on the kind of information
to be stored. Machine instructions, two's complement integer data, and

PHYSICAL UNITS OF DATA

8 OR 0 BIT

ON OFF
SET NOT SET

~~~~~~~~l~I BYTE 
8-BlTS 7 6 5 4 3 2 l 0 

16 I I I I I I I I I I I I I I I I I WORD 
BITS 

HIGH-ORDER BYTE LOW-ORDER BYTE 

rnO PHYSICAL 
RECORD 

e.g. A DISK SECTOR 
128 BYTES . 

225 

GPHYSICAL 
VOLUME 
e.g. A DISK 

a 

LOGICAL UNITS OF 'DATA 

JONES FIELD 

I JONES I J 122-76-5931 I ~~~6~~L 
~~~ 

FIELD FIELD FIELD

LOGICAL
RECORDS

l JONES
CHAO
BEAN

J
M

s

122-76-5931
224-62-1892
298-67-1976

:

l

FILE

~-----~LOGICAL

FILE ABC. OAT VOLUME

FILE XFER. FOR

FILE SYS. AV

FILE XFER OBJ

Figure 2-2 Physical and Logical Data Storage

floating-point numeric data are some examples of data stored in binary
format.

2-6

Figure 2·3 illustrates the way in which binary data can be interpreted
as either ASCII data or machine instructions. The figure shows two ex·
amples of a word of storage containing the same sequence of bits, in·
terpreted first as two ASCII characters and second as a machine instruc­
tion. When a word of storage is interpreted as two ASCII characters, the
binary digits are grouped into octal digits in a bytewise manner. Each
byte is grouped into three octal digits. The low-order two octal digits
contain three binary digits. The high-order octal digit contains two binary
digits. When a word of storage is interpreted as a machine instruction,
the binary digits are grouped into six octal digits in a wordwise manner.
Proceeding from the low-order binary digit, each group of three binary
digits is interpreted as an octal digit. The single remaining high-order
binary digit is interpreted as an octal digit.

In large, sophisticated systems the way in which data is stored on the
byte or bit level is rarely a concern of the application programmer. The
operating system handles all data storage and transfer operations. In
small systems such as RT·ll, the programmer can become involved in
data storage formats. A particular application may require the selection
of a particular storage format.

Formatting can be applied to define the type of data file being processed.
In the RT-11 system, there are four types of binary files; each type sig­
nifies that a special interpretation applies to the kind of binary data
stored. For example, a memory image file is an exact picture of what
memory will look like when the file is loaded to be executed. A relo­
catable image file, however, is an executable program image whose in­
structions have been linked as if the base address were zero. When the
file is loaded for execution, the system has to change all the instructions
according to the offset from base address zero.

2.3.3 l/O_Devices and Physical Data Access Characteristics
In a PDP·ll computer system, data moves from external storage de·
vices into memory, from memory into the CPU registers, and back out
again. The "window" from external devices to memory and the CPU is
called the 1/0 page. Each external 1/0 device in a computing system
has an external page address assigned to it. Figure 2-4 illustrates the
data movement path in a PDP-11 computing system.

Although all external devices transmit and receive data through the
LSl-11 BUS devices differ in their ability to store, retrieve or transfer data.
Almost all PDP-11 operating systems provide device independence be­
tween devices that have similar characteristics and, where possible,
between differing devices in situations where the data manipulation
operations are functionally identical. Primarily, PDP-11 operating sys­
tems differentiate between:

• file-structured and non-file-structured devices

• block-replacable and non-block·replacable devices

Terminals, card readers, paper tape readers, paper tape punches and
line printers are examples of devices that do not provide any means
to selectively store or retrieve physical records. They can transfer data
only in the sequence in which it physically occurs.

2-7

I\)

cio

DATA

• • I I
15 7 15

INSTRUCTION
(SINGLE OPERAND)

I I I I I I I I
6 5 3 2 0

t '-- 7-BIT ASCII CODE t I.._ 7-BIT ASCII CODE
'--~~~~~~~~~~-----'~~

LPARITY BIT LPARITY BIT

INTERPRETED AS TWO BYTES

SAME
/' BIT '-­

/(PATTERN -....

OP CODE MODE REGISTER

INTERPRETED AS A WORD
r;=:::;::::::;::=:;::::::;=::::;:::::::;;:=:;=::;:::::;::=:;::::::;=::::;:::::::;;:=::;:::=;:::~ ~~~~~~~~~~~,~~~~~~~~~~

o o ojoj1joj1joloj1jojo o o j1j o o o o joj1jojoj1lojo ojoj1j1

HIGH-ORDER BYTE
Lf (LINE FEED)

LOW-ORDER BYTE
C (UPPER CASE C)

SAME
/BIT

OP CODE
COMPLEMENT

INSTRUCTION: COM R3

MODE
DIRECT

REGISTER
3

>' PATTERN""

..-o~j-o~j o~j-o~j ~o~j -1 ..-I o~l-o ~, o~j-o~j o~j-1 ~, -1 ..-I 0--.-j ---,1 j . j,.-o_,_j _o ~, o~j-o ~-o-.--..-j o--.-j -o ~, o~(-o ~, o~,~~, o--.-j ~

'----.._,.--J~~'----.._,.--J~~
OCTAL 0 1 2 0 1 5 OCTAL 0

HIGH-ORDER BYTE
CR (CARRIAGE RETURN)

LOW-ORDER BYTE
LF (LINE FEED)

~~~~~ 
0 5 0 l 5 

~~ 
OP CODE MODE REGISTER 

CLEAR DEFFERED 5 

INSTRUCTION: CLR @> 5 
Figure 2-3 ASCII and Binary Storage 



CPU 

PHYSICAL ORGANIZATION 

MAIN 
MEMORY 

FROM THE PROGRAM'S VIEWPOINT 

r, 

1/0 PAGE 

MAIN 
MEMORY 

VECTORS 
'-

Figure 2-4 Memory and 1/0 Devices 

In contrast, mass-storage devices such as floppy disk, and magnetic tape 
have the ability to store and retrieve physical records selectively. For 
example, an operating system can select a file from among many logical 
collections of data stored on the medium. 

Mass-storage devices are called file-structured devices, since a file, con­
sisting of a group of physical records, can be .stored on and retrieved 
from the device. Terminals, card readers, paper tape readers/punches 
and line printers are called non-file-structured devices because they do 
not have the ability to selectively read or write the physical records 
comprising a file. 

Finally, mass-storage devices differ in their ability to read and write 
physical records. Disk devices are block-replaceable devices, because a 
given block can be read or written without accessing or disturbing all 
the other blocks on the medium. Magnetic tape is not a block-replaceable 
device. 

2-9 



A device's physical data access characteristics determine which data 
transfer methods are possible for that device. Non-file-structured de­
vices allow sequential read or write operations only. Non-block replac­
able devices allow sequential or random read operations, but allow 
sequential write operations only. Block-replacable devices allow both 
sequential and random read or write operations. Figure 2-5 summarizes 
the read/write capabilities of each category of 1/0 device. 

~ ~;;xxxx 
~ xxxxxx 

CARDS PAPER TAPE LINE PRINTER 

SEQUENTIAL READ OR WRITE ONLY 

_N_ON_-F_IL_E-_STR_UCT_UR_ED ______________ _ 

FILE-STRUCTURED 

MAGNETIC TAPE 

READ AND WRITE SEQUENTIAL 

_i::!QN-BLO~PLACEA~ _______________ _ 
BLOCK REPLACEABLE 

DISK 

READ & WRITE SEQUENTIAL OR RANDOM 

Figure 2-5 Device Characteristics 

2.3.4 Physical Device Characteristics and Logical Data Organizations 
One of the most important services an operating system provides is the 
mapping of physical device characteristics into logical data organiza­
tions. Users do not have to write the so"ftware needed. to handle input 
and output to all standard peripheral devices, since appropriate rou­
tines are supplied with the operating system. 

2-10 



There are generally two sets of routines provided in any operating sys-
tem, depending on its complexity. They are: · 

• device drivers or handlers 

• file management services 

Device drivers and handlers can perform the following operations to 
relieve the user of the burden of 1/0 services, file management, over-

. lapping 1/0 considerations and device dependence: 

• drive 1/0 devices 

• provide device independence 

• block and unblock data records for devices, if necessary 

• allocate or deallocate storage space on the device 

• manage memory buffers 

These routines may exist in the system as part of the monitor or execu­
tive, as in RT-11. 

An operating system can also provide a uniform set of file management 
services. For example, the RT-11 system provides file management ser­
vices through the part of the monitor called the User Service Routine 
(USR). The User Service Routine provides support for the RT-11 file 
structure. USR loads device handlers, opens files for read/write oper­
ations, and closes, deletes and renames files. 

In summary, an operating system maps physical device characteristics 
into logical file organizations by providing routines to drive 1/0 devices 
and interface with user programs. Figure 2-6 illustrates the transition 
between the user interface routines· and the 1/0 devices. 

.USER INTERFACE 

OPERATING SYSTEM 

HARDWARE INTERFACES 

PROGRAM 
OR 

USER 

FILE 
MANAGEMENT 

ROUTINES 

I/O 
MANAGEMENT 

ROUTINES. 

PERIPHERAL 
DEVICES 

Figure 2-6 Device Control and File Management Services 

2-11 



2.3.5 File Structures and Access Methods 
A file structure is a method of organizing logical records into files. It 
describes the relative physical locations of the blocks comprising a file. 
The file structure or structures a particular operating system employs 
is a product of the way in which the system views the particular 1/0 
devices and the kinds of data processing requirements the system 
fulfills. 

File structure is important because a file can be effective in an appli· 
cation only if it meets specific requirements involving: 

SIZE 

ACTIVITY 

VOLATILITY 

Growth of the file may require a change in the file struc· 
ture or repositioning of the file. 

The need to access many different records in a file or 
frequently access the same file influences data retrieval 
efficiency. 

The number of additions or deletions made to a file may 
affect the access efficiency. 

An access method is a set of rules for selecting logical records from a 
file. The simplest access method is sequential: each record is processed 
in the order in which it appears. Another common access method is 
direct access: any record can be named for the access. The non-block 
replaceable devices, such as paper tape and magnetic tape, can only be 
processed sequentially. The block replaceable devices, such as disk, can 
be processed by either access method, but direct access takes fullest 
advantage of the device characteristics. 

PDP·ll operating systems provide a variety of file structures and access 
methods appropriate to their processing services: All PDP·ll file struc· 
tures are, however, based on some form of the following basic file 
structures: 

FILE STRUCTURE 

Linked 
Contiguous 
Mapped 

ACCESS METHODS 

Sequential 
Sequential or Direct Access 
Sequential or Direct Access 

Linked files are self-expanding series of blocks which are not physically 
adjacent to one another on the device. The operating system records 
data blocks for a linked file by skipping several blocks between each 
recording. The system then has enough time to process one block while 
the medium moves to the next block to be used for recording. In order 
to connect the blocks together, each block contains a pointer to the next 
block of the file. Figure 2·7 shows the format of a linked file. 

Linked files are especially suited for sequential processing where the 
final size of the file is not known. It readily allows later extension, since 
the user can add more blocks in the same way the file was created. In 
this way, linked files make efficient use of storage space. Linked files 
can also be easily joined together. 

The blocks of contiguous files are physically adjacent on the recording 
medium. This format is especially suited for random (direct access) pro· 

2·12 



cessing, since the order of the blocks is not relevant to the order in 
which the data is processed. The system can readily determine the 
physical location of a block without reference to any other blocks in the 
file. Figure 2·7 also shows the format of a contiguous file. 

ioiRECTORY ENTRY~ 
1(6 BLOCKS FROM ~- --, 
I #7352) J : 
•--------- I 

j_ 
BLOCK#7352: 

DATA 

BLOCK # 7353: 

DATA 

BLOCK # 7354: 

DATA 

BLOCK #7355: 

DATA 

BLOCK #7356 

DATA 

BLOCK #7357 

DATA 

Figure 2-7 Linked and Contiguous File Structures 

Mapped files are virtually contiguous files, that is, they appear to the 
user program to be directly-addressable sets of adjacent blocks. The 
files may not, however, actually occupy physically contiguous blocks on 
the device. The blocks can be scattered anywhere on the device. Sep­
arate information, called a file header block, is maintained to identify 
all the blocks comprising a file. This method provides an efficient use of 
storage space and allows files to be extended easily, while still main­
taining a uniform program interface. Figure 2-8 illustrates a mapped file 
format. 

If desired, a mapped file can be created as a contiguous file to ensure 
the fastest random accessing, in which case it is both virtually and 
physically contiguous. 

The basic file structure discussed above can be modified or combined 
to extend the features of each type for special-purpose logical process­
ing methods. Some examples are indexed files and global array files. 

2-13 



Indexed files are actually two contiguous files. One file acts as an or­
dered "map" of a second file containing the target data. The index 

DATA 
LOGICAL AREA 1 

BLOCK VIRTUAL 

FILE HEADER BLOCU . 

FILE I.D·. 

DATA AREA PTR 1 

#221 BLOCK 
#1 

#222 #2 

DATA AREA PTR 2 t------, 
DATA AREA PTR 3 1----1 #223 #3 

#224 #4 

#225 #5 

DATA 
LOGICAL AREA 2 
BLOCK VIRTUAL 
#172 BLOCK 

#6 

#173 #7 

#174 #8 

DATA 
LOGICAL AREA 3 
BLOCK 
#450 

Figure 2-8 Mapped File Structure (Non-contiguous file) 

portion or "map" contains either an ordered list of -key data selected 
from the target data records or pointers to data records in the second 
file, or both. The target data records can be processed in the order of 
the index portion, or the target data records can be selected by search­
ing through the index portion for the key data identifying the records. 
These methods of logically processing the target data are called indexed 
sequential access and random access by key, respectively. 

Global array files display a .special form of linked file structure. The 
arrays themselves are a logical tree-structured organization consisting 
of one or more subscripted levels of elements. All elements on a par­
ticular subscripting level are stored in a single chain of linked blocks. At 
the end of each block in the chain is a pointer to the next block in the 
chain. The levels of the array (all the block chains) are linked together 
through pointers in the first block of each chain. This file structure en­
sures that the time it takes to access any element of the array is min­
imal. 

2.3.6 Directories and Directory Access Techniques 
Just as file structure and access methods are required to locate records 

2-14 



within files, directory structures and directory access techniques are re­
quired to locate files within volumes. 

A directory is a system-maintained structure used to organize a volume 
into files. It allows the user to locate files without specifying the physical 
addresses of the files. It is a direct access method applied to the volume 
to locate files. 

RT-11 supports the simplest kind of file directory. When floppy disk 
medium is initialized for use, the system creates a directory on the de­
vice. Each time a file is created, an entry is made in the directory that 
identifies the name of the file, its location on the device and its length. 
When access to the file is requested thereafter, the system examines 
the directory to find out where the file is actually located. The system 
can access the file quickly without having to examine the entire device. 

RT-11 also permits non-block replaceable media such magnetic tape 
to be given a file structure. This media has no directory because a direc­
tory could not be updated and replaced. Instead, each file is preceded 
by one or more header records which contain the directory information 
such as the file's name. The operating system can locate a file by scan­
ning the volume and reading each file header until the correct one is 
found. The file can then be processed by a sequential access method. 

2.3.7 File Naming 

The most common way users communicate their desire to process datEJ 
is through file specifications. A file specification uniquely identifies and 
locates any logical collection of data which is on-line to a computer 
system. 

A compiler, for example, needs to know the name and location of the 
source program file that it is to compile; it also needs to know the name 
that the user wants to use for the output object program and listing 
files it produces. Most PDP·l 1 operating systems share the same basic­
format for input and output file specifications. 

In the RT-11 system, a file specification consists of the name of the de­
vice on which the file resides, a filename, and a filename extension in 
the following format: 

dev:filnam.ext 

The colon is part of the device name, separating it from the filename on 
the right. The period is part of the filename extension, separating it from 
the filename on the left. 

PDP-11 operating systems use the same device names for the devices 
they can access. A device name consists of a 2-letter mnemonic and, 
for multiple devices of the same kind, a one-digit number indicating 
the device unit number. For example, the name "DX!:" is used to iden­
tify the RXVll disk drive number 1. 

2-15 



· In the RT-11 system, a filename is a 1- to 6-character alphanumeric 
name designated by the user. For example, "SYMBOL", "RL12", and 
"NORT4" are examples of filenames. 

A filename extension is a 1- to 3-character alphanumeric name pre­
ceded by a period. The extension can either be assigned by the user 
or, if unspecified, assigned by the system. The extension generally indi­
cates the format of a file. System-assigned and recognized extensions 
make it easy for the user and the system to distinguish between differ­
ent forms of a file. For example, a file having the extension ".FOR" is 
recognized by the FORTRAN compiler as a source program written in 
FORTRAN. A file with the extension ".OBJ" is recognized by the Linker 
as an object program, a legal input file. When in the process of com­
piling and linking a FORTRAN program, the user has only to specify a 
filename to the compiler and Linker. The FORTRAN compiler will com­
pile the file whose extension is ".FOR" and produce a file with the same 
filename whose extension is ".OBJ". The Linker will link the file whose 
extension is ".OBJ". 

In most cases, the user does not have to issue a complete file specifica­
tion. The PDP-11 operating systems use default values when a portion of 
a file specification is not supplied. The filename extension defaults, as 
indicated previously, depend on the kind of operation being performed. 

The device name, if omitted, is normally assumed to be the system de­
vice. For example, the file specification "FILE.DAT" is equivalent to the 
specification "DXO:FILE.DAT," if the system device is RXVll drive 0. If 
the drive number is omitted, the number is assumed 'to be 0. For 
example "DX:" is equivalent to "DXO:"; it signifies RXVll drive 0. 

In addition to relying on defaults in the file specification, the user can 
also put an asterisk in place of a filename, filename extension, account 
number or version number to indicate a class of files. The asterisk con­
vention, also called the wildcard convention, is commonly used in 
PDP-11 operating systems when performing the same operation on 
related files. For example, the file specification "DX1:[2,]PROG. *" re­
fers to all files on DXl: under account [2, 1] with a filename PROG and 
any extension. The file specification "DX:[*,*]FILE.SAV" refers to the 
files under all accounts on RXVll drive unit 0 named FILE.SAV. The file 
specification "DX:*.OBJ" refers to all files on d~ive unit 0 that have the 
extension .OBJ. 

2.4 USER INTERFACES 
A user interface refers to both the software that passes information 
between an operator and a system and the "language" that a system 
and an operator use to communicat!'!. In the latter sense, a user inter­
face consists of commands and messages. Commands are the instruc­
tions that the user types on a terminal keyboard (or gives to a batch 
processor) to tell the system what to do. Messages are the text that a 
system prints on a terminal (or line printer) that tells the operator what 
is going on, for example, prompting messages, announcements and 
error messages. This section discusses commands, the portion of the 
user interface that tells the system what to do, and prompting messages, 
the messages the system prints when it is ready to receive commands. 

2-16 



There are basically four types of commands used in PDP-11 operating 
systems: 

• monitor or command language commands-used to request services 
from the system as a whole 

• 1/0 commands-used to direct any kind of 1/0 operation (often a 
part of monitor commands) 

• special terminal commands-these use keys on a terminal for special 
functions 

• system program commands-commands used in system programs 
that perform operations relevant only for the individual program 

Since system program commands are relevant only for individual sys­
tem programs, and not operating systems in general, this section dis­
cusses monitor and command language commands, 1/0 commands and 
special terminal commands only. -

2.4.1 Special Terminal Commands 
Special terminal commands are a set of keys or key combinations that, 
when typed on a terminal, are used to perform special functions. For 
example, a user normally types the carriage return key at the end of 
an input command string to send the command to the system, which 
responds immediately by performing a carriage return and line feed on 
the terminal. The key labelled RUBOUT or DELETE is used to delete the 
last character typed on the input line. 

The most significant special terminal commands are those used with 
the key labelled CTRL (control). When the CTRL key is held down (like the 
shift key) and another key is typed, a control character is sent to the 
system to indicate that an operation is to be performed. 

For example, a line currently being entered (whether as part of a com­
mand or as text) will be ignored by the system by typing a CTRL/U com­
bination (produced by holding down the CTRL key and typing a U key). 
The user can then enter a new input line. The CTRL/U function is the 
same as typing successive RUBOUT keys to the beginning of a line. 
CTRL/U is standard on PDP-11 operating systems. 

Another example is the CTRL/O function. If, during the printing of a 
long message or a listing on the terminal, the user types a CTRL/0, 
the teleprinter output will stop. The program printing the output, how­
ever, will still continue. The user can type a CTRL/0 again to resume 
output. CTRL/0 is a standard function on PDP-11 operating systems. 

2.4.2 1/0 Commands 
As mentioned in section 2.3.7, users communicate their intentions to 
process data files by issuing 1/0 commands consisting of at least one 
file specification. Normally, the 1/0 commands used in a system are 
standard throughout that system; in addition, most PDP-11 operating 
systems share the same basic 1/0 command string format. 

For example, in RT-11 systems, the monitor includes a Command String 
Interpreter routine that parses and validates 1/0 command strings. The 
Command String Interpreter routine is used both by the monitor and the 
system programs to obtain a definition from the user of the input file or 

2-17 



files to be processed and a definition of the output file or files to be 
created. User·Written programs can also call the Command String Inter· 
preter to obtain 1/0 specifications from the operator at a terminal. 

A standard 1/0 command string consists basically of one .or more input 
and/or output file specifications. An 1/0 command string uses the fol· 
lowing general format: 

filespec=filespec 

where "filespec" is a file. specification (see section 2.3.7) and the equal 
sign (=).represents a character (usually equal sign or less·than sign) 
that separates an input file specification on the right from an output 
file specification on the left. If there is more than one input file speci· 
fication or output file specification, they are separated from each other 
by commas. For example, if there are two output file specifications and 
three input file specifications: · 

. filespec, filespec= filespec, filespec, filespec 

If the program requesting an 1/0 command string does not need either 
an input or output file specification, the equal sign (or less than sign) 
is not present in the 1/0 command string. 

As an example, the user can run the RT·ll operating system's Linker· 
system utility to link one or more object program files and produce ari 
executable program file and a load map. The 1/0 command issued to 

· the Linker could be: 

*DX:RESTOR.SAV,DXl:RESTOR.MAP=DX:RESTOR.OBJ/8:500 
Where: 

* 

DX:RESTOR.SAV 

DXi:RESTOR.MAP 

DX:RESTOR.OBJ 

/8:500 

Is the prompting character printed by the Linker 
program indicating that it wants an 1/0 com­
mand string. After it is ·printed, the user types 
the remaining characters on the line. 

Is· the na.me of the executable program file to 
be created. It will be stored on the diskette 
mounted on drive unit 0. 

Is the name of the load map file to be created. 
It will be stored on the diskette mounted on 
drive unit 1. 

Is the name of the object module (input file) to 
be used to create RESTOR.SAV. 

Is a command string switch indicating that the 
RESTOR.SAV program is to be linked with its 
starting address at location 500. 

Command string switches are simply ways of appending qualifying in­
formation to an 1/0 command string. The switches used vary from 
program to program. They are not usually required in an 1/0 command 
string, since most programs assume default values for any switch. 

2-18 



2.4.3 Monitor and Command Language Commands 
The primary system/user interface is provided in PDP·l l operating 
systems by either monitor software or special command language in­
terface programs that run under the monitor, The monitor software and 
command languages allow the user to request the system to set system 
parameters, load and run programs, and control program execution. 

An input command line consists of the command name (an English 
word that describes the operation to be performed) followed by a space 
and a command argument. For example, the command to run a pro­
gram is the word "RUN" followed by the name of the file containing 
the program. If the command name is long, it can usually be abbre­
viated. For example, the command to set the system's date to August 
27, 1975 could be "DATE 27-AUG-75." The system could also accept 
"DA 27-AUG-75." A command input line is normally terminated by 
typing the carriage return key on the console keyboard, although in 
some systems the key labelled ALTMODE is also used. Typing the car­
riage return key (or ALTMODE key) tells the system that the command 
line is ready to be processed. 

Jn the RT-llS system, a monitor component called the Keyboard 
Monitor prints a period (:) on the left column of the system's console 
to indicate that the monitor is ready to accept commands. The user 
enters a command string on the same line following the period, and 
terminates the command string by typing the carriage return key. 

In the RSX-11 system, a command interface called the Monitor Con­
sole Routine (MCR) allows the user to perform system level operations. 
When MCR is activated, it prints the characters "MCR>" on the ter­
minal. The user enters a command on the same line as the prompt, and 
terminates the line with a carriage return or an ALTMODE. If the. line is 
terminated with a carriage return, MCR prints a prompt and is ready 
to receive another command. If the line is terminated with an ALTMODE, 
MCR does not reactivate. To reactivate MCR at a terminal, the user 
types a CTRL/C. 

There are two kinds of commands that MCR accepts: general user 
commands and privileged user commands. General user commands pro­
vide system information, run programs, and mount and dismount de­
vices. Privileged user commands control system operation and set sys­
tem parameters. 

To run a system utility, the user can type the utility's name in response 
to an MCR prompt. When the utility is loaded, it prints a prompt to 
request a command string. The user can then enter a command string. 
When it completes the operation, the user can enter another command 
or type CTRL/Z to terminate the program. For example, to run the PIP 
utility program: 

MCR>PIP 
PIP>command string 
PIP>tZ 
MCR> 

2-19 



If the user wants to issue only one command to the utility, .the user can 
type the command string on the same line with the MCR request to run 
the utility. For example: 

MCR>PIP command string 
MCR> 

2.5 PROGRAMMED SYSTEM SERVICES 
All PDP-11 operating systems provide access to their services through 
requests that programs or tasks can issue during execution. 

The RT-11 system provides a variety of programmed requests. There 
are programmed requests that perform file manipulation, data transfer 
and other system services such as loading device handlers, setting a 
mark time for asynchronous routines, suspending a program, and call­
ing the Command String Interpreter. Monitor services are requested 
through macro instructions in assembly language programs, or through 
calls to the system library in FORTRAN programs. The basis of the pro­
grammed requests in RT-11 are the EMT (Emulator Trap) instructions. 
When an EMT is executed, ~ontrol is passed to the monitor, which 
extracts appropriate information from the EMT instruction and executes 
the operation requested. When the operation is performed, the monitor 
returns control to the program. 

2.6 SYSTEM UTILITIES 
PDP-11 operating systems provide, in general,·. three kinds of system 
utility programs: program development utilities, file management utilities, 
and special system management utilities. 

Most PDP-11 operating systems include the following kinds of program 
development utilities: 

Text Editor 

Assembler 

Linker 

Librarian 

An editor is used for on-line interactive creating and 
editing of source programs or data files. An editor uses 
several sets of commands that search for character 
strings, insert, move or delete characters or lines, and 
insert, move, delete or append whole buffers of data. 
Although a text editor is designed for interactive use, it 
can also usually be run under a batch processor if the 
operating system supports batch processi·ng. 

An assembler accepts a source program written in 
PDP-11 symbolic machine language and produces an ob­
ject module as output. 

A linker is a program that accepts relocatable object 
programs created by an assembler or compiler and pro­
duces an executable program module. Some linkers 
provide facilities for overlaid program segments to 
enable a large program to execute in a small memory 
area. 

A librariaa is a program that enables a programmer to 
create, update, modify, list and maintain library files. A. 
library file is an object module (or modules) that is 
used several times in a program, used by more than 

2-20 



Debugger 

one program, or routines that are related and simply 
gathered together to incorporate easily into a program. 

A debugger is a program which enables a user to 
troubleshoot program errors dynamically through a ter­
minal keyboard. It is normally linked with a program and 
runs as part of the program. 

Some of the file management utilities available on many operating sys­
tems include: 

PIP 

FILEX 

DUMP 

VERIFY 

The Peripheral Interchange Program (PIP) is a general­
purpose file utility package for both the general user 
and programmer and the system manager. PIP normally 
handles all files with the operating system's standard 
data formats. In general, the program transfers data files 
from any device in the system to any other device in 
the system. PIP can also delete or rename any existing 
file. Some operating systems include special file man­
agement operations in the PIP utility, such as directory 
listings, device initialization and formatting, and account 
creation. 

The File Exchange program is a special-purpose file 
transfer utility similar in operation to PIP. It provides the 
ability to copy files stored in one kind of format to 
another format. This enables a user to create data on 
one system in a special format and then transfer the 
data to a device in a format that another system can 
read. 

DUMP displays all or selected portions of a file on a 
terminal or line printer. In general, DUMP enables the 
user to inspect the file in any of three modes: ASCII, 
byte, and octal. In ASCII mode, the contents of each byte 
is printed as an ASCII character. In byte mode, the con­
tents of each byte is printed as an octal value. In octal 
mode, the contents of each word is printed as an octal 
value. 

In general, a VERIFY program checks the readability and 
validity of data on a file-structured device. 

Most system management utilities included in an operating system are 
dependent on the function the operating system serves. 

2-21 



2-22 



CHAPTER 3 

LANGUAGE PROCESSORS 

3.1 LANGUAGE TRANSLATION SYSTEMS 
A programming language is a system of symbols and syntax which can 
be used to describe a procedure that a computer can execute. A lan­
guage processor is a program that translates one programming language 
into another. A language processor reads a program written in a lan­
guage easily understood by people and translates it into a program 
written in the binary language of a digital computer. The program which 
the processor reads is called the source program. The program which 
the processor writes is called the object program. 

Assemblers 
An assembler is a language processor written for a particular digital 
computer. The source language it translates is called assembly language. 
There is a one-to-one correspondence between most of the mnemonics 
used as the assembly language operators and the binary instructions of 
the computer. Some exceptions are macro calls and assembler directives. 

During the language translation process, an assembler performs a num­
ber of error checking operations. When an error is detected, the assem­
bler notes the error and attempts to continue processing. At the end of 
processing, the assembler produces an error listing showing all the ocur­
rences of errors, with substantial messages to the programmer. In addi­
tion to an error listing, the programmer can obtain an assembly listing 
in any of several formats and a symbol table listing. In addition, some 
assemblers can provide a Cross Reference listing for all symbols used 
in the program. 

Most assemblers produce an object program by making one or more 
passes over the source program (reading the original source code sev­
eral times). The resultant object program is in relocatable binary format. 
That is, the first instruction appears to be located in the first word of 
processor memory. Since in most cases the program is not to be loaded 
into the bottom of memory, the object program must be linked to the 
proper memory addresses before.it can be executed. 

The linking program is provided as a standard program development 
utility ·with an operating system. Figure 3-1 illustrates the fundamental 
steps in producing an executable program from assembly source code. 

Compilers 
A compiler is a language processor writte1>1 to translate a higher-level 
language whose structure, syntax and symbols are independent of any 
particular machine. The higher-level language operators most often do 
not correspond directly to binary instructions. It is the compiler's job to 
provide algorithms for their translation. 

3·1 



SOURCE CODE 

OBJECT CODE 

EXECUTABLE CODE 

Figure 3-1 Fundamental Assembly or Compilation Procedure 

Most compilers do not translate the source code until the entire source 
program is read at least once. The translation of the source code into 
object code takes place during several passes over the source coc!e or, 
if only one pass over the originaf source code is made, during several 
phases of the compilation process. This allows the compiler to examine 
the code it produces as a whole to eliminate unnecessary instructions 
(code optimization). In addition, the compiler can perform many levels 
of error checking and it can produce several kihds of compilation list­
ings, including source code listings, code generation listings, and diag­
nostics. · 

An incremental compiler (also called an interpreter) is a compiler that 
immediately translates source statements into an internal format. Each 
source statement is translated (and therefore can be executed) before 
the following statement is translated. Although this method of source 
translation does not enable possible object code optimization, it allows 
the compiler to provide program development services not possible in 
multi-pass or multi-phase compilers. For example, a syntax error de­
tected in a source statement can be reported to the programmer im­
mediately, and the programmer can correct the statement before pre­
ceding. 

One significant difference between a general compiler and an incremen­
tal compiler are the characteristics of the resulting object program. The 
object code produced by the former type of compiler requires a separate 
step of linking before it can be executed, as shown in Figure 3-1. This 
approach enables the programmer to combine several object programs 
into one executable program. This provides several advantages: 

Modularity 
A source program may be too large to be compiled successfully as a 
single unit but, if divided into modular sections, can be compiled as 



several separate units. The separate sections can be combined at the 
object level to produce the resultant program. In addition, programs 
that are extremely complex can be divided into several sections so that 
they can be easily manipulated, debugged or modified. A change in one 
module of the program will only require recompilation of that section. 

Assembly Language Routines 
The compiler's object code can be combined with the object code pro· 
duced by the operating system's assembler. Algorithms which are most 
easily written in assembly language, such as user-defined 1/0 processing, 
can be incorporated into a program written primarily in a higher-level 
language. 

Library Routines 
Libraries of commonly-used routines and functions written in either as­
sembly or the higher-level language can be maintained in object format. 
These routines can be selectively included in the resultant program by 
the linking utility. This not only eliminates repetitive source coding and 
associated errors, it also decreases the size of the source and object 
programs. 

The object code produced by an incremental compiler does not require 
an intermediate step of linking before it can be executed. The incre­
mental compiler actually serves two purposes: it translates the source 
code into object code and it provides the environment in which to exe­
cute the object code. That is, the steps of source code translation, link­
ing and execution are all provided by the translator. Figure 3-2 illustrates 
this type of translator operation. 

THE SOURCE CODE IS 
TRANSLATED IMMEDIATELY 

COMPILATION 
PHASE 

RUN-TIME 
PHASE 

OBJECT 
FILE 

I ________ ....J 

OPTIONAL: AN OBJECT 
FILE CAN BE CREATED AND 
SAVED FOR LATER EXECUTION 

Figure 3-2 Fundamental Incremental Compiler Operation 

Program Development Facilities 
ff complete language translation system requires facilities for creating 
and editing source programs, to link object programs into executable 
programs, and to debug programs. Most PDP-11 operating systems pro­
vide an editor utility for source program creation and editing, and a 
librarian utility for library file creation. Operating systems also provide 
a linker utility to link and combine object modules produced by multi­
pass compilers and assemblers. Finally, operating systems also include 
debugging utilities. 

Some of these facilities may or may not be incorporated into the lan­
guage translator program itself. For example, an incremental compiler 
may include an editing facility as part of the language, translation code. 

3-3 



This allows the programmer to edit the program interactively as it is 
being compiled and executed. 

Libraries and Object Time Systems 
Also included in most language translation systems is a library of the 
most commonly-used functions and routines. The system library is gen­
erally a part of the language processor's Object Time System (OTS). 

A multi-pass or multi-phase compiler does not usually generate all of 
the machine language code required by the program at run-time. Com­
mon sequences of code required by the program can be maintained in 
the OTS file.· The compiler then flags the places where the desired se­
quences are needed. The linker utility, during its pass over the object 
i:;rogram, selects those sequences from the OTS file and incorporates 
them into the executable program module. 

An incremental compiler may also have an OTS. In this case, however, 
the OTS is generally part of the run-time code of the translator. When 
the object code is executed by the incremental compiler's run-time code, 
the OTS is used to provide common library code sequences. 

3.2 PDP·ll ASSEMBLERS AND THE FORTRAN COMPILERS 

FORTRAN IV is available on the operating systems described in this 
handbook. 

The MACRO assembler and FORTRAN IV compiler display the same ex­
ternal operating characteristics. In general, they accept source code 
from any valid input device and produce an object file on any valid 
file-structured device. If the input device is a file-structured device, the 
assembler or compiler can accept several source files. If desired, an as­
sembly or compilation listing can also be produced as output, either as 
a file or on a line printer or terminal. MACRO can also generate a symbol 
table listing if requested. RT·ll MACRO can generate a Cross Reference 
Listing (CREF) if desired. 

As shown in Figure 3-3, there are several methods for creating sources. 
A source program can be punched on cards if a card reader is available, 
or it can, in some cases, be entered directly on the terminal. The com­
mon method is to create a file on a file-structured device. The file can be 
created from paper tape, using the PIP file transfer utility to copy it onto 
disk. The file can also be created on a terminal, using the operating sys· 
tern's editor utility to store it on disk. 

In addition to source program files, the MACRO assembler accepts source 
library files as input. The operating system provides a system library for 
MACRO containing the macro definitions for the system's monitor calls 
or executive directives. The assembler selects those macro definitions 
required by the source program from the system library file. 

In RSX·llS systems, the MACRO assembler can also accept a user· 
created macro library as input. The sources for the user-defined macro 
libraries are created in the same manner as normal source programs. 

3·4 



SOURCE 
DECK 

CHOICE OF 

SOURCE 7-7 
FILEIS) ( ( 

'-,-------~'\ ., _ - - - - - - - ~, 
'------- - _J. 

CHOICE OF 

SYSTEM LIBRARY 1----­
IMACRO ONLY) 

USER MACRO 
LIBRARY 

!MACRO ONLY) 

OBJECT FILE(S) 
FROM 

EARLIER ASSEMBLIES 

OBJECT LIBRARIES 
!SYSTEM OR USER) 

EXECUTABLE 
PROGRAM 

FILE 

rn1roR 
UTILITY 

Figure 3-3 Building an Executable User Program Written in 
MACRO or FORTRAN 

The operating system's librarian utility program is used to create the 
library files. Figure 3-4 illustrates this procedure. 

Once the assembler or compiler produces an object file, the object file 
can be linked by the linker utility. The linker can accept several object 
files as input. In addition, when linking object files produced a FORTRAN 
compiler, the linker accepts the FORTRAN system object library for the 
given compiler as input. The linker automatically selects the required 
routines from the library. 

3-5 



PIP 
UTILITY 

EDITOR 
UTILITY 

Figure 3-4 Building User Macro Libraries 

Users can also create their own object library files. The source code is 
created in the same manner as normal source programs. The librarian 
utility is used to build the library file. Figure 3-5 illustrates the procedure. 

PDP-11 assemblers and compilers differ in their internal operation, as 
shown in Figure 3-6. The MACRO assembler is a two-pass .assembler. It 
makes a first pass over the source input to collect the symbol references, 
expand macros and produce preliminary object code. A second pass is 
made to resolve symbol references and produce the completed object 
code and listings. 

The FORTRAN IV compiler is a multiple-phase compiler. Instead of 
making multiple passes over the source program, it reads the source 
program once and manipulates the source code in memory. The com­
piler operates in multiple phases. An overlay is read into memory for 
each phase of the compilation process. This method enables the com­
piler to compile relatively large programs very quickly. 

3-6 



SOURCE CODE 
AS IN FIGURE 3-3 

Figure 3-5 Building User Object Libraries from Sources Written in 
MACRO or FORTRAN 

3.3 INCREMENTAL COMPILERS 
The BASIC language processed by incremental compiler are: 

Two BASIC language compilers are available: single-user BASIC and 
multi-user BASIC. Both are available for use on RT-11 operating systems. 

The BASIC language processors can accept source input from a terminal 
or from a file generated using an editor utility, as illustrated in Figure 
3.7. The most common method of creating a source program is by giving 
the source statements directly to the compiler through an interactive 
terminal. For this reason, the BASIC language processors include an 
editing facility. This allows the programmer to create, test, and modify 
the source program interactively. 

3.7 



MUL Tl-PHASE COMPILATION 

MEMORY AREA 

( SOURCE ( FILE 
SPACE FOR 

OBJECT SOURCf 
FILE MANIPULATION 

COMPILER COMPILER 
FILE OVERLAYS 

MULTI· PASS COMPILATION 

( 
;OURCE ( ~ 

'----FIL----'E \'""" ~ 

SOURCE ENTERED 
ON KEYBOARD 

MEMORY 
AREA 

( 
BUFFERS FOR 

SOURCE 
MANIPULATION 

COMPILER ~ 
CODE 

'-------- E 

Figure 3-6 Compilation Methods 

EDITOR 

COMPILER 

RUN-TIME 
SYSTEM 

__ _;'r--~B~;C_T ___ 7 
- 1 FILE \ 

\.----T ____ ..J. 

______ _J 

(SOME LANGUAGE 
BASIC SYSTEM PROCESSORS ONLY) 

Figure 3-7 BASIC Language Processor Operation 

3-8 



CHAPTER 4 

FOREGROUND/BACKGROUND 
OPERATING SYSTEM 

RT-11 

4.1 OPERATING SYSTEM FUNCTIONS AND FEATURES 
RT-11 is a single-user disk operating system designed for interactive 
program development and on-line applications. In a foreground/back­
ground environment, the user can run a real-time application in the fore­
ground while interactively developing a program or running a batch 
stream in the background. RT-11 includes two compatible monitors and 
a variety of program development and system utilities. As options, RT-11 
supports FOCAL, FORTRAN IV and BASIC languages. BASIC is offered in 
a single-user or multi-user version. 

RT-11 runs on LSl-11, PDP-11/03 and PDP-11V03 systems with between 
8K and 28K words of memory. In addition, RT-11 requires ·a console 
terminal and RXVll floppy disk drive. RT-11 also supports a high-speed 
printer (LAVll). 

RT-11 is a particularly easy-to-use system, and yet it provides a sophis­
ticated set of programming tools, particularly for the lab application 
environment. The system is completely device-independent and config­
uration-independent. Programs can be directed to use a specific periph­
eral at run-time. The system can run unmodified on a variety of memory 
configurations. 

The 1/0 system has been designed so that device handlers are files on 
the system device. Users can incorporate device drivers for special de­
vices through simple file-oriented interfaces. 

Table 4-1 RT-11 System Summary 

System type 

Memory size range 

Single-user, real-time application foreground, 
program development or batch job background. 

MINIMUM: 8K words for single job monitor 
(12K with BATCH) 
16K words for Foreground/ 
Background Monitor 

MAXIMUM: 28K words 

4-1 



Table 4-1 

Additional CPU 
hardware supported 

Minimum peripherals 

Additional peripherals 

Monitor size 

Maximum space 
available for programs 
and device handlers 

System programs 

High-level languages 

RT·ll System Summary (Cont.) 

KEVll Extended Instruction Set", 
Floating Instruction Set'~ 

'~ Under BASIC or FORTRAN and FOCAL 

Console terminal; RXVl 1 floppy disk drive. 

LAVll high-speed printer 

Single Job Monitor: 2K 
Foreground/ Background Monitor: 4K 

Under Single Job Monitor: 26K 
Under Foreground/Background 
Monitor 24K 

EDIT text editor 
MACRO assembler (requires 12K system) 
EXPAND macro expander 
ASEMBL assembler 
LINK linker 
LIBR librarian 
ODT on-line debugger 
PATCH code patch utility 
PATCHO object code patch utility 
PIP peripheral interchange program 
FILEX file exchange utility 
SRCCOM text comparison utility 
DUMP file dump utility 
LAB APPLICATION-11 library (optional) 
BATCH batch processor 

FOCAL 
Single-user BASIC or multi-user MU BASIC 
FORTRAN IV 

words 
words 

words 

words 

4.2 MONITOR ORGANIZATION 
The RT-11 operating system actually provides two monitors: The single 
job (SJ) Monitor and the Foreground/ Background (F / B) Monitor. The 
F / B Monitor allows two programs to operate: A foreground program and 
a background program. The real-time or on·line function is accomplished 
in the foreground which has priority on system resources. Functions 
which do not have critical response-time requirements (e.g., program 
development or batch operations) are accomplished in the background, 
which operates whenever tr.e foreground is not busy. Both foreground 
and background have access to all the monitor services. The language 
processors and utilities are confined to the background. Although they 
operate independently, Foreground and Background can communicate 
through disk files and/or system message queuing facilities. If F /B 
operation is not required, the SJ Monitor-a totally compatible subset, 
which requires less memory and less overhead-can be booted from 
the system device instead of the F / B Monitor. 

4·2 



4.2.1 Monitor Components 
To keep system overhead low, the RT-11 Monitor is designed in a modular 
fashion so that only those portions actually in use at a given time are 
resident in memory. The Monitor. is made up of four major modules plus 
the device handlers available under the system. As shown in Figure 4-1, 
only the resident monitor (RMON) is permanently in memory. The key­
board monitor (KMON), the user service routine (USR), the command 
string interpreter (CSI), and the device handlers are loaded into memory 
only as needed. 

MAIN MEMORY 

RMON 

{

RESIDENT MONITOR (RMON) 
KEYBOARD MONITOR (KMON) 

MONITOR USER SERVICE ROUTINE(USR) 
COMMAND STRING INTERPRETER(CSI) 
DEVICE HANDLERS(DH) 

SYSTEM DEVICE 

Figure 4-1 RT-11 MONITOR 

Resident Monitor (RMON) 
The resident monitor is the only permanently memory-resident part of 
RT-11. The programmed requests for all services of RT·ll are handled 
by RMON. RMON also contains the console terminal service, error pro­
cessor, system device handler, and system tables. 

•Keyboard Monitor (KMON) 
The keyboard monitor provides communication between the user at tile 
console and the RT-11 system. Monitor commands allows the user to 
assign logical names to devices; run programs, load device handlers, 
and control F / B operations. A dot at the left margin of the console ter­
minal page indicates that the Keyboard Monitor is in memory and is 
waiting for a user command. 

User Service Routine (USR) 
The User Service Routine provides support for the RT-11 file structure. 
It loads device handlers, opens files for read or write operations, deletes 
and renames files, and creates new files. The Command String Inter· 
preter (CSI) is part of the USR and can be accessed by any program to 
interpret a character string as a command to perform a set of USR 
operations. 

4-3 



Device Handlers (DH) 
As shown below, RT-11 device handlers are, for the most part, short, 
easily implemented routines. The device handlers are merely files on 
the system device. This means they may be created by the normal 
editing and assembling process. Interfacing them to the monitor then 
requires only the modification of five to six parameters in the monitor. 
Only the device handlers with an asterisk are presently usable with 
LSl-11, PDP-11/03, and PDP11V03 peripherals. 

HANDLER 

Cartridge Disk (RKll) 113 
DECtape (TCl 1) 106 
Fixed Head Disk (Rfll) 92 
Cassette (TAll) 996 
Magtape (TMll) 1120 

':'Line Printer (LPll) (use with LAVll) 99 
Ca~ Reader (CRll) 363 

''Console Terminal (LA36) . 140 
''Paper Tape Reader 62 
;'Paper Tape Punch 56 
'~floppy· Disk (RXll) (use with RXVll) 216 

Disk Pack (RP02) 142 
Fixed Head Disk (RS03/4) 78 

4.2.2 General Memory Layout and Component Sizes 
When the RT-11 system is fi"rst bootstrapped from the system device, 
memory is arranged as shown in the left diagram of Figure 4-2 (this is 
the case for either the Single-Job or Foreground/Background Monitor, 
since no foreground job exists yet). Under the F /B Monitor the back­
ground job is the RT-11 module KMON. 

When device handlers are loaded into memory, USR and KMON are 
moved down, as shown in the center diagram of Figure 4-2. 

RMON RMON 

RMON 

USR GT HANDLER HANDLERS 

KMON DT HANDLER FJOB 

RF HANDLER USR 

USR KMON 

KMON 

RESERVED 

RESERVED 
o~-----~ RESERVED 

Figure 4·2 RT-11 System Memory Maps 

4-4 

HIGH 
ADDRESSES 



RT-11 maintains a free memory list to manage memory_ Thus, when a· 
handler is unloaded, the space the handler occupied is returned to the 
free memory list and is reclaimed by the background. 

When an RT-11 foreground job is initiated, room is created for the fore­
ground job to be loaded by decreasing the amount of space available to 
the background job, as shown in the right diagram of Figure 4-2. 

Following are the approximate sizes (in decimal number of words) of the 
components for RT-11. 

RMON 
USR 
KMON 

F/B 
4000 
2050 
1550 

Single-job 

2000 
2050 
1550 

In the F / B system, the background area must always be large enough to 
hold KMON and USR (3.5K words). The following list indicates the total 
space available for the loaded device handlers, the foreground job, and 
the display handler. Note that the low memory area from 0-477 is never 
used for executable programs. (These sizes also allow room for the 4K 
RMON). 

MACHINE SIZE (WORDS) 

16K 
24K 
28K 

FOREGROUND SPACE 
AVAILABLE (WORDS) 

8.5K 
16.5K 
20.5K 

With the Single-Job Monitor, RMON requires only 2K. The following list 
shows the amount of space available to users with the Single-Job Mon­
itor: 

MACHINE SIZE (WORDS) 
8K 

16K 
24K 
28K 

PROGRAM SPACE 
AVAILABLE (WORDS) 

6K 
14K 
22K 
26K 

When a background job or single-job program is initiated, RT-11 allows 
the program to be loaded in over the KMON and USR if it exceeds the 
free memory available. While the program is running, the KMON and 
USR are not resident. If the program issues a request that the USR must 
service, a ·portion of the program is swapped out to make room for the 
USR. The USR is swapped in and remains resident until the request is 
serviced. When the request is serviced, the portion of the program that 
was previously swapped out is swapped back in. 

If the program terminates or if an operator types a CTRL/C to interrupt 
the program, both the KMON and USR are loaded into memory. That 
portion of the program that occupies the KMON/USR space is swapped 
out; it is held until the operator either continues the program or re­
initializes the environment. 

4-5 



If a background or single-job program does not exceed the free memory 
available when it is loaded, the KMON and USR remain resident during 
its execution and are riot reloaded when the program terminates. Swap­
ping, if it does occur, is invisib~e to the user. 

Typical memory layouts for both the Single-Job ana F9reground/Back­
ground systems are shown in Figure 4-3. 

8·28K 

i 

(EXTERNAL MEMORY) 
DEVICE REGISTERS 

RMONSJ 
(1.7K) 

USR 
(2K SWAPPABLE) 

KMON 
( 1.5K SWAPPABLE) 

USER 
SPACE 

-- -uSeRSTAC~PACE-- --·-

DEVICE INTERRUPT VECTORS 

SYSTEM COMMUNICATION 
AREA 

HARDWARE /SOFTWARE 
TRAP VECTORS 

RT· 11 SJ MEMORY LAYOUT 

nnn 

760000 

X7777 

-X4615 -X126 7 

~ 

1000 
500 
977 

60 
57 

40 
37 

0 
ADDRESSES 

~ 

.:;: 

(EXTERNAL MEMORY) 
DEVICE REGISTERS 

RM0Nf8 
(3.5K) 

FOREGROUND JOB 
AREA 

USR 
(2K SWAPPABLE) 

KMON 
I 1.5K SWAPPABLE) 

BACKGROUND JOB 
AREA 

DEVICE_ INTERRUPT VECTORS 

SYSTEM CO\\MUNICATION 
AREA 

HARDWARE /SOFTWARE 
TRAP VECTORS 

RT-11 F/8 MEMORY LAYOUT 

Figure 4-3 Typical Memory Layouts 

4.2.3 1/0-System Design and Operation 

1 6·2BK 

{:-

KEY FOR X 

X. MEMORY 
3 SK 
5 12K 
11 20K 
13 24K 
15 28K 

All 1/0 is handled in block format directly to and from the user area. 
There is no intermediate buffering by the monitor to slow down through­
put. Since most programs deal with data on a character-by-character 
basis, it was deemed superfluous to provide line-oriented handling in the 
monitor. 

All 1/0 is processed by a queue manager. RMON sends 1/0 orders to the 
queue manager which directs the device handlers to carry out the order. 
If the device handler is busy, the order waits until the device is available 
and the order can be completed. If parallel processing is indicated, the 
order is placed in the 1/0 queue for later processing and control is re­
turned to the requesting program. There is one queue for each device. 
In F/8 operation, the foreground request is always given the highest 
priority because foreground requests are queued ahead of background 
requests as directed by the initial read/write order. The queue manager 
may initiate a completion routine when the device handler indicates 
completion of the 1/0 order. 

4-6 



There are three modes of 1/0 operation: 

SYNCHRONOUS 1/0 
In this mode, the 1/0 transfer is initiated and control does not return to 
the requesting program uritil the transfer is complete or an error is 
detected. This allows processing "to proceed knowing that the data 
transfer has been completed. 

ASYNCHRONOUS 1/0 
In this mode, the transfer is started (the system will place the request 
in a queue automatically if the device is already in use) and control is 
returned immediately to the requesting program so that processing may 
continue. When the user program needs assurance that the 1/0 opera· 
tion has been completed, it issues a WAIT request which returns control 
only when the requested operation has terminated. This option allows 
overlap of an 1/0 process with program execution and with other 1/0 
processes. The processes are usually asynchronous, but can be synchro­
nized when necessary. 

EVENT-DRIVEN 1/0 
This mode utilizes the full flexibility of. the PDP·ll and RT-11: The 1/0 
transfer is initiated (automatically queued if the device is already in use) 
and control is returned to the requesting program. When the 1/0 opera­
tion has been completed, the user program is interrupted and control is 
passed to a "completion routine" ·(specified when the transfer was 
originally requested). When the completion routine exits, control is 
returned to the interrupted program at the point of interrupt. The 
completion function allows fully overlapped, asynchronous 1/0, greatly 
simplifying the real-time task. 

4.2.4 Batch Processing 
RT-11 BATCH is a complete job control susbsystem which provides 
batch mode processing of user jobs. In the foreground/background en­
vironment, BATCH processes job streams in the background partition, 
allowing real-time or other user jobs to run in the foreground. The BATCH 
run-time support package (which is resident when BATCH is running) 
requires only lK words of memory. RT-11 BATCH may be used in either 
single-job monitor configurations of 12K or more of memory, or in any 
foreground/background configuration. 

RT-11 BATCH also has the unique capability of being interrupted. For 
example, a three-hour batch stream might be half done when an urgent 
need for a specific job arises. A simple command may be typed to RT-11, 
causing BATCH to give control to the keyboard monitor at a convenient 
breaking point. Commands may be entered and jobs may be run (even a 
batch job), after which a command may be given to continue running the 
interrupted batch stream to its normal completion. 

The BATCH job control language is discussed in paragraph 4.4.3. 
4.2.5 Switching Between Single-Job and Foreground/Background 
The RT-11 user can use either the Single-Job or the Foreground/Back­
ground Monitor; the process of switching between the two requires no 
special programming considerations or elaborate operator procedures. 
For an application that requires frequent switching between the F /Band 
Single-Job monitors, the basic procedure is: 

4-7 



1. Store both monitors on the same device, one with the active monitor 
name, the other with an inactive name. 

2. When the switch is desired, the operator runs the PIP system utility, 
preserves the running monitor by renaming it to an inactive name and 
renames the desired monitor to the active monitor name. The operator 
then uses two PIP commands to copy the bootstrap and reboot the 
system. 

4.3 SYSTEM CONVENTIONS 
The following sections describe the RT-11 system co.nventions for devices 
and device names, filenames and extensions, data formats and file 
structures. 

4.3.1 Physical Device Names 
Devices are referenced by means of a standard two-character device 
name. Devices can also be assigned logical names. A logical name takes 
precedence over a physical name and thus provides device independence. 
With this feature a program that is coded to use a specific device does 
not need to be rewritten if the device is unavailable. 

4.3.2 Filenames and Extensions 
Files are referred symbolically by a name of one to six alphanumeric 
characters followed, optionally, by a period and an extension of up to 
three alphanumeric characters. (Excess characters in a filename may 
cause an error message.) The extension to a filename generally indicates 
the format of a file. If an extension is not specified for an input or output 
file, most system programs assign appropriate default extensions. Table 
4-2 lists the standard extensions used in RT-11. 

EXTENSION 

.BAD 

. BAK 

. BAS 

. BAT 

. CTL 

. CTT 

. DAT 

. DIR 

. DMP 

. FOR 

. LOA 

. LLD 

. LOG 

Table 4-2 Filename Extensions 

MEANING 

Files with bad (unreadable) blocks; this extension can be 
assigned by the user whenever bad areas occur on a device. 
The .BAD extension makes the file permanent in that area, 
preventing other files from using it and consequently becom­
ing unreadable. 

Editor backup file . 

BASIC source file (BASIC input) . 

BATCH command file . 

BATCH control file generated by the BATCH compiler . 

BATCH internal temporary file . 

BASIC or FORTRAN data file . 

Directory listing file . 

DUMP output file . 

FORTRAN IV source file (FORTRAN input) . 

Absolute binary file (optional Linker output) . 

Library listing file . 

BATCH Log file . 

4-8 



Table 4-2 Filename Extension (Cont.) 

.LST Listing file (MACRO or FORTRAN output) . 

. MAC MACRO or EXPAND source file (MACRO, EXPAND, SRCCOM 
input) . 

. MAP Map file (Linker output) . 

. OBJ Relocatable binary file (MACRO, ASEMBL, FORTRAN IV out: 
put, Linker input, LIBR input and output) . 

. PAL Output file of EXPAND (the MACRO expander program), input 
file of ASEM BL. 

.REL Foreground job relocatable image (Linker output, default for 
monitor FRUN Command) . 

. SAV Memory image or SAVE file; default for R, RUN, SAVE and 
GET Keyboard Monitor commands; also default for output of 
Linker . 

. SOU Temporary source file generated by BATCH . 

. SYS System files and handlers. 

4.3.3 Data Formats 
The RT-11 system makes use of five types of data formats: ASCII, object, 
memory image, relocatable image, and load image. 

Files in ASCII format conform to the American National Standard Code 
for Information Interchange, in which each character is represented by a 
7-bit code. Files in ASCII format include program source files created by 
the Editor, listing and map files created by various system programs, and 
data files consisting of alphanumeric characters. 

Files in object format consist of data and PDP-11 machine language code. 
Object files are those output by the assembler or _FORTRAN compiler and 
used as Input to the Linker. 

The Linker can output files in memory image 'format (.SAV), relocatable 
image format (.REL), or load image format (.LOA). 

A memory image file (.SAV) is a "picture" of what memory will look like 
when· a program is loaded. The file itself requires the same number of 
disk blocks as the corresponding number of 256-word memory blocks. 

A relocatable image file (.REL) is one which can be run in the foreground. 
It differs from a memory image file in that the file is link.ed as though 
its bottom address were 0. When the program. is called (using the 
monitor FRUN command), the file is relocated as it is loaded into 
memory. (A memory image file requires no such relocation.) 

A load image (or .LDA) file may be produced for compatibility with the 
PDP-11 Paper Tape System and is loaded by the absolute binary loader . 
. LDA files can be loaded and executed in stand-alone environments with­
out relocation. 

4.3.4 File Structure 
RT-11 uses a "contiguous" file structure. This type of structure implies 

4-9 



that every file on the device is made up of a contiguous group of physical 
blocks. Thus, a file that is 9 blocks long occupies 9 contiguous blocks on 
the device. This file structure minimizes the number of disk accesses 
needed to transfer data ~nd hence increases access speed. 

A contiguous area on a device can be in one of the following categories: 

1. Permanent file. This is a file which has been clos·ed on a device. 'Any 
named files which appear in a PIP directory listing are permanent files. 

2. Tentative file. Any file which has been created but not closed is a 
tentative file entry. When the file is closed, the tentative entry be­
comes a permanent file. If a permanent file already .exists under the 
same name, the old file is deleted. If a file is never closed, the 

.. tentative file is treated ,like an empty entry. 

3. Empty entry. When disk space is unused or a permanent file is 
deleted, an empty entry is created. Empty entries appear in a com­
plete device directory listing as <UNUSED> N, where N is the 
decimal length of the empty area. · 

Since a contiguous structure does not automatically reclaim unused disk 
space, RT-11 PIP has an option which allows the user to collect all 
empty areas so that they occur at the end of a device. 

4.4 COMMANDS 
The operator controls and directs system operation through three differ­
ent interfaces. The operator communicates directly with the Monitor 
using keyboard commands and si::ecial function keys, communicates in­
directly with the Monitor or user programs by issuing an 1/0 command 
string. The following sections de3cribe the commands and command 
formats. 

4.4.1 Keyboard Communication 
Keyboard commands and special function keys allow the operator .to 
communicate with the RT-11 Monitor to allocate system resources, 
manipulate· memory images, start programs, and use foreground/back­
ground services. The keyboard commands are interpreted by KMON. 
Note that in a Foreground/Background environment, KMON is always 
run as the background job. The special function keys are interpreted by 
the console terminal device handler. They can be used to communicate 
with any system or user program through the console terminal. 

Table 4-3 lists the Monitor keyboard commands. The first set of com­
mands are general commands used in ·either a Single-Job or Foreground/ 
Background environment. The second set of commands are used in 
either environment to control single-job or background program oper­
ation. The last set of comands are only in a Foreground/Background 
system to control foreground program .operation. 

The special function of certain ,terminal keys used for communication 
with KMON are listed in Table 4-4. It is important to note that console 
input and output under F /B are independent functions; input can be 
typed· to one job while output is printed by another. The operator may 
be in the process of typing input to one job when the other job is ready 
to print on the terminal, in which case the job which has output inter-

4-10 



rupts the operator and prints the output on the terminal. Input control 
is not redirected to this job, however, unless a CTRL/B or CTRL/F is 
explicitly issued. If input is typed to one job while the other has output 
control, echo of the input is suppressed until the job accepting input re­
gains output control. At this point, all accumulated input is echoed. If 
the foreground· job and background job are both ready to print output 
at the same time, the foreground job has priority. 

Table 4-3 Monitor Keyboard Commands 

General Commands 

DATE Enters or reports the system date. The specified date is as­
signed to newly-created files, new device directory entries, 
and listing output until a new DATE command is issued. 

TIME Resets or reports the current time of day kept by the system. 

ASSIGN Assigns or deassigns a user-specified 1-3 character logical 
name to a physical device. This is useful, for example, to 
redirect 1/0 to another device when a program to be exe­
cuted refers to a device that is not available. It can also be 
used to assign FORTRAN logical units to device names. 

SET Used to change device handler characteristics and certain 
system configuratjon parameters. The user can set character­
istics such as line printer or console line width, "device not 
ready" error handling, cassette read verification, card reader 
card codes, etc. 

LOAD· Makes a device handler memory-resident for foreground 
and/or background jobs. Execution is faster when a handler 
is resident but memory area must be allocated for the 
handler. Any device handler to be used by a foreground job 
must be loaded before it can be used. A foreground or 
background job can own a device exclusively, or the jobs 
can share a device. 

UNLOAD Makes handlers that were previously loaded non-resident, 
freeing the memory they were using. UNLOAD clears owner­
ship for all units of an indicated device type. Any memory 
freed is returned to a free memory list and eventually re­
claimed for the background job. A special function of this 
command is to remove a terminated foreground job and re­
claim memory, since the space occupied by the foreground 
job is not automatically returned to the free memory list 
when it finishes. 

BASE Sets a relocation base which is added to the address spec­
ified in subsequent Examine or Deposit commands to obtain 
the address of the location to be referenced. This command 
is useful when referencing linked modules; the base address 
can be set to the address where the module is loaded. 

EXAMINE Prints the contents of a specified location(s) in octal on the 
console. 

DEPOSIT Deposits a specified value at a given location. 

4-11 



SAVE 

CLOSE 

Table 4-3 Monitor Keyboard Commands (Cont.) 

Writes a specified user memory area to a named file and 
device in save image format. This command allows the user 
to modify a background or single job program using the 
Examine and Deposit commands after it has been loaded 
into memory, and then save the modified program. 

Causes currently open output files in the background job to 
become permanent files, The command is used after a 
CTRL/C is issued to abort a background job and the user 
wants· to preserve any new files that job had open prior to 
its termination. · 

Background or Single-Job Program Control Commands 

GET Loads a specified memory image file (background program) 
into memory. It is normally used to load a background pro· 
gram into memory for modification or debugging with ODT 
or the Base, Examine, Deposit and START commands. Mul­
tiple GET commands can be used to combine programs. 

START Begins execution of the program currently in memory (loaded 
using the GET command) at a specified address. START 
does not clear or reset memory areas. 

INITIALIZE Resets background system tables and cleans up the back­
ground area. It makes non-resident any device handlers 
used by the background program that were not made per­
manently resident (using the LOAD command) and purges 
the background 1/0 channels. The command can be used 
prior to running a background program, or when the ac­
cumulated results of previously-issued GET commands are 
to be discarded. 

RUN Loads a specified memory image file (background program) 
into memory and starts execution at its start address. It is 
equivalent to a GET command followed by a START com­
mand with no start address specified. 

R The command is identical to the RUN command except that 
the file specified must reside on the system device. 

REENTER Starts a program at its reentry address (start address minus 
two). It is generally used to avoid reloading the same pro­
gram for repetitive execution, or to restart a program in­
terrupted by a CTRL/C. 

FRUN Used to initiate foreground jobs. Normally, FRUN loads the 
relocatable image file and starts it. The user can optionally 
specify additional space to be allocated for the job over 
and above the actual program size or specify additional 
stack space. In addition, the user can request that the pro­
gram be loaded only. The user must then explicitly start the 
program using the RSUME command. If ODT is used with 
the foreground job,' this feature allows the user to examine 
or modify the program before starting it. 

4-12 



Table 4-3 Monitor Keyboard Commands (Cont.) 

SUSPEND Stops the execution of a foreground job. The user can either 
resume the job, run another foreground job, or unload the 
stopped foreground job to release the memory. 

RSUME Resumes execution of the foreground job where it was sus­
pended. 

CTRL/A 

CTRL/B 

CTRL/C 

CTRL/E 

CTRL/F 

CTRL/0 

CTRL/Q 

CTRL/S 

CTRL/U 

CTRL/X 

CTRL/Z 

Table 4·4 Special Function Commands 

Display next page of output; used only after CTRL/S (used 
only with GT ON). 

Under the F /B Monitor echoes B> on the terminal (unless 
output is already coming from the background job) and 
causes all keyboard. input to be directed to the background 
job. At least one line of output will be taken from the back­
ground job (the foreground job has priority, and control will 
revert to it if it has output). All typed input will be directed 
to the background job until control is redirected to the fore­
ground job (via CTRL/F). 

Interrupts current program execution, and returns control to 
the Keyboard Monitor. Note that under the F /8 Monitor, the 
job which is currently receiving input will be the job that is 
stopped (determined by whether a CTRL/F or CTRL/B was 
most recently typed). To ensure that the command is di­
rected to the proper job, type CTRL/B or CTRL/F before 
typing CTRL/C. If a program is waiting for terminal input or 
is using the console terminal device handler for input, typing 
a single CTRL/C interrupts execution and returns control to 
the monitor command level; otherwise, two CTRL/C's must 
be typed in order to interrupt execution. 

Display all 1/0 on the screen and console terminal simul­
taneously (with GT ON command only). 

Under the F/B Monitor echoes F> on the terminal and in­
structs that all keyboard input be directed to th.e foreground 
job and all output be taken from the foreground job. If no 
foreground job exists, F? is printed and control is directed 
to the background job. Otherwise, control remains with the 
foreground job until redirected to the background job (via 
CTRL/B) or until the foreground job terminates. 

Inhibit printing on console terminal. 

Resume console output; used only _after CTRL/S. 

Temporarily suspended terminal output until CTRL/ A or 
CTRL/Q. 

Delete current line being entered. 

Delete entire command string (EDIT only). 

End-of-file for terminal input. 

4-13 



4.4.2 Entering 1/0 Information Using the CSI 
Once either monitor has been loaded and a system program (or any 
program which uses the Command String Interpreter) has been started, 
the Command String Interpreter prints an asterisk at the left margin. 
In response to the asterisk, a command string is entered providing in­
formation about devices, filenames and extensions, and switch options. 
The general format of this command line is: 

''OUTPUT= INPUT /SWITCH 

The = sign is a delimiter which separates the output and input fields; 
the <sign may be used in place of the= sign. 

OUTPUT is entered in the format: 

dev:filnam.ext[n], ... dev:filnam.ext[n] 

INPUT as: 

dev:filnam.ext, ... dev:filnam.ext 

Command string switches vary with the system or user program. 

4.4.3 BATCH Job Control Language 
The RT-11 BATCH job control language provides complete system con­
trol capabilities through easy-to-learn commands: 

Job Control 

$JOB 
$SEQUENCE 
$EOJ 

Data Control 

$DATA 

$EOD 

Begin a job. 
Assign an identification "to a job. 
End a job. 

Delimit the beginning of data in the input 
stream. 

Signal end of data in input stream. 

Operator Communications 

$MESSAGE Write a message to the console terminal. 

Device Associations 

$MOUNT 

$DISMOUNT 

Functional Commands 

$COPY 

$CREATE 

$DELETE 

$DIRECTORY 

Allows the operator to mount a requested vol­
ume and to associate the volume with a logical 
device name. · -

Disassociates a logic device name from a phys­
ical unit. 

Copies input files to output files. 

Create a file with the data records in the input 
stream. 

Delete specified files. 

Make directory listings. 

4-14 



$LINK Create an executable program from object mod-
ules and libraries. · 

$PRINT Print copies of specified files. 

$RUN Initiate execution of a specified prog.ram. 

Language Processors 

$BASIC Execute BASIC. 

$FORTRAN Compile FORTRAN source programs. 

$MACRO Assemble MACRO source programs. 

Additional Commands 

$RT11 

$LIBRARY 

$CALL 

$CHAIN 

Accept RT-11 Keyboard Monitor commands di­
rectly. 

Create a library list to be used in Link oper­
ations. 

CALL another BATCH command file as a sub­
routine. 

Transfer control to another BATCH command 
file. 

All of the commands shown have s.everal options each, allowing BATCH 
commands to specify many ·different operations. The following is an 
example of a runnable BATCH stream which will compile and execute a 
simple FORTRAN program: · 

·$JOB 
$FORTRAN/RUN 
$EOJ 

RT-11 BATCH also has a programmable mode. In this mode, BATCH 
supports such features as labels, variables, conditional branches, and 
substitute arguments. 

4.5 MONITOR PROGRAMMED REQUESTS 
The RT-11 monitor provides a complete set of services for user pro­
grams. Monitor services include calls used for program initialization, 
control of system operating characteristics, interrogation of system state 
and resources, command interpretation, file operations, 1/0 transfers, 
program. termination, and interrupt servicing. Some features which are 
available only to the F /B user include: 

1. Mark Time-This facility allows user programs to set clock timers 
to run for specified amounts of time. When the timer runs out, a 
routine specified by the user is entered. There may be as many mark 
time requests as desired, providing system queue space is reserved. 

2. Timed Wait-This feature allows the user program to "sleep" until 
the specified time increment elapses. Typically, a program may need 
to sample data every few seconds or even minutes. While the pro­
gram is idle, the other job can run. The timed wait accomplishes this; 
when the time has elapsed, the issuing job is again runnable. 

3. Send Data/Receive-It is possible, under RT-11 F /B, to have the 
foreground and background programs communicate with one another. 

4-15 



This is accomplished with the send/receive data functions. Using this 
facility, one ·program sends messages (or data) in variable size blocks 
to the other job. This can be used, for example, to pass data from a 
foreground collection program directly to a background analysis pro­
gram. 

For users of FORTRAN, the system subroutine library (SYSLIB) provides 
a set of functions for alphanumeric string manipulation as well as most 
monitor functions. · 

Communication with the monitor is accomplished through the EMT in­
struction or FORTRAN CALLS to the system library. The low-order byte 
of the EMT instruction is used as an operation code in the range 360(8) 
through 375(8). Those operations which use codes 360(8) througl:J 
374(8) either require no arguments or use Register 0 to pass arguments 
to or return arguments from the monitor. Operations that require more 
than one argument use EMT 375, and RO is used to point to an argu­
ment list in memory. The argument list includes an operation code, the 
channel for that operation. and any other arguments necessary. 

For example, the macro call to read 1000(8) words into a buffer from 
block 7 of file 3 

i" 

.READW #AREA, #3, #BUFFER#, #1000, #7 

is expanded into code which points RO to the argument block, fills the 
argument block with the specified arguments and executes the instruc­
tion EMT 375. 

This structure is fully re-entrant, and allows users to construct pro­
grammed requests either statically or dynamically from parameters 
specified at run-time. The same routine can process many monitor ser­
vices, simply loading RO with argument pointers from appropriate 
queues. FORTRAN users can issue monitor calls through function calis 
to SYSUB, the FORTRAN system interface library. These calls execute 
FORTRAN object time system (OTS) routines which actually issue the 
appropriate EMT instructions to be executed with the arguments spec­
ified. For example, the previous READ operation can be accomplished in 
a FORTRAN program l(ia a CALL READW statement. 

Most system resource control and interrogation is done through the 
programmed requests, but some communication is accomplished using 
two core areas, the system communication area and the monitor "fixed­
offsets." The job communication area is located in locations 40(8)-57(8), 
and contains parameters which describe and control execution of the 
particular job running at the time (it is context-switched in F /8). In­
cluded in this area is the Job Status Word, starting address of the job, 
USR swapping address, and other parameters. 

The second memory communication area is the "fixed-offset area," 
whose items are accessed by a fixed address offset from the start of the 
resident monitor. It contains system constants used to control monitor 
operation. The user program can interrogate· these constants to deter­
mine characteristics of the operating environment while the job is 
running. 

4-16 



AREA: READ l 
CODE 3 ; FUNCTION Af~JD CHANNEL 

BUFFER ; BUFFER ADDRESS 

10008 ;WORD COUNT 

7 ; BLOCK# 

0 ; USE WAIT MODE(READW) 

4.5.1 Summary of Programmed Requests 

There are three types of services which the monitor makes available to 
the user through programmed requests. These are: 

1. Requests for File Manipulation. 

2. Requests for Data Transfer. 

3. Requests for Miscellaneous Services 

Table 4-5 summarizes the programmed requests in each of these cate­
gories alphabetically. Those marked with an asterisk function only in a 
F / B environment; they a~e ignored under the Single-Job Monitor. 

Table 4-5 Summary of Programmed Requests 

File Manipulation Requests 

MNEMONIC 

".CHCOPY 

.CLOSE 

. DELETE 

. ENTER 

.LOOKUP 

. RENAME 

.REOPEN 

.SAVESTATUS 

PURPOSE 

Establishes a link and allows one job to access another 
job's chan.nel. 

Closes the specified channel. 

Deletes the file from the specified device . 

Creates a new file for output . 

Opens an existing file for input and/or output via the 
specified channel. 

Changes the name of the indicated file to a new name . 

Restores the parameters stored via a SAVESTATUS re· 
quest and reopens the channel for 1/0. 

Saves the status parameters of an open file in user 
memory ~nd frees the channel for future use. 

Data Transfer Requests 

MNEMONIC 

'''.RCVD 
''.RCVDC 
'''.RCVDW 

PURPOSE 

Receives data. Allows a job to read messages or data 
sent by another job in an F/B environment. The three 
modes correspond to the READ, .READC, and READW 
modes described below. 

4-17 



Table 4·5 

.READ 

.REA DC 

.READW 

*.SDAT 
*.SDATC 
*.SDATW 

.TTYIN 

. TTINR 

.TTYOUT 

. TTOUTR 

.WRITE 

.WRITC 

.WRITW 

Summary of Programmed Requests (Cont.) 

Transfers data via the specified channel to a memory 
buffer and returns control to the user program when 
the transfer request is entered in the 1/0 queue. No 
special action is taken upon completion of 1/0. 

Transfers data via the specified channel to a memory 
buffer and returns control to the user program when 
the transfer request is entered in the 1/0 queue. 
Upon completion of the read, control transfers asyn­
chronously to the routine specified in the .READC re­
quest. 

Transfers data via the specified channel to a memory 
buffer and. returns control to the user program only 
after the transfer is complete. ' 

Allows the user to send messages or data to the other 
job in an F /B environment. The three modes corres­
pond to the .WRITE, .WRITEC, and WRITEW modes. 

Transfers one character from the keyboard buffer to 
RO . 

Transfers one character from RO to the terminal out­
put buffer . 

Transfers data via the specified channel to a device 
and returns control to the· user program when the 
transfers request is entered in the 1/0 queue. No 
special action is taken upon completion of the 1/0. 
Transfers data via the specified channel to a device 
and returns control to tire user program when the 
transfer request Is entered in the 1/0 queue. Upon 
completion of the write, control transfers asynchro­
nously to the routine specified in the .WRITIC request. 
Transfers data via the specified channel to a device 
and returns control to the user p'rogram only after the 
transfer is complete. 

Miscellaneous Requests 

MNEMONIC 

. CDFN 

.CHAIN 

*.CMKT 

*.CNTXSW 

.CSIGEN 

. CSISPC 

*.CSTAT 

. DATE 

PURPOSE 

Defines additional cha'nne!s for doing 1/0 . 

Chains to another program (in the background job 
only) .. 

Cancels an unexpired mark time request. 

Requests that the indicated memory locations be part 
of the F / B context switch process. 

Calls the Command String Interpreter (CSI) in general 
mode. 

Calls the CSI in special mode . 

Returns the status of the channel indicated. 

Moves the current date information into RO . 

4-18 



Table 4-5 Summary of Programmed Requests (Cont.) 

'''.DEVICE Allows user to turn off device interrupt enable in F/8 
upon program termination . 

. DSTATUS Returns the status of a particular device . 

. EXIT Exits the user program and returns control to the Key­
board Monitor. 

. FETCH 

. GTIM 

. GTJB 

. HERR 

.HRESET 

.INTEN 

.LOCK 

'''.MRKT 

''.MWAIT 

.PRINT 

'''.PROTECT 

. PURGE 

. QSET 

.RCTRLO 

. REG DEF 

. RE LEAS 

'''.RSUM 

.SERR 

.SETTOP 

.SFPA 

.SPF UN 

'''.SPND 

.SRESET 

Loads device handlers into memory . 

Gets time of day . 

Gets parameters of this job . 

Specifies termination of the job on fatal errors . 

Terminates 1/0 transfers and does a .SRESET opera­
tions. 

Notifies monitor that an interrupt has occurred and 
to switch to "system state," and sets the processor 
priority to the correct value. 

Makes the monitor User Service Routines (USR) per­
manently resident until .EXIT or .UNLOCK is executed. 
The user program is swapped out if necessary. 

Marks time; i.e., sets asynchronous routine ·to occur 
after a specified interval. 

Waits for messages to b,e processed. 

Outputs an ASCII string to the terminal. 

Requests that a vector or vectors in the area from 
0-476 be given exclusively to this job . 

Clears out a channel. 

Expands the size of the monitor 1/0 queue . 

Enables output to the terminal. 

Defines the PDP-11 general registers . 

Remo-Jes device handlers from memory . 

Causes the main line of the job to be resumed where 
it was suspended with .SPND. 

Inhibits most fatal errors from causing the job to be 
aborted. -

Specifies the higest memory location to be used by the 
user program. 

Sets user interrupt for floating point processor ex-· 
ceptions. 

Performs special functions on magtape and cassette 
units. 

Causes the running job to be suspended. 

Resets all channels and releas~s the device handlers 
from memory. 

4-19 



Table 4-5 Summary of Programmed Requests (Cont.) 

.SYNCH 

'''.TLOCK 

. TRPSET 

''.TWAIT 

.UNLOCK 

.WAIT 

Causes the rest of the interrupt service routine to run 
. as a completion routine. 

Indicates if the USR is currently being used by another 
job and performs a .LOCK if available. 

Sets a user intercept for traps to locations 4 to 10 . 

Suspends the running job for a specified amount of 
time. 

Releases USR if a LOCK was done. The user program 
is swapped in if required. 

Waits for completion of all 1/0 on a specified channel. 

4.5.2 Program Environment Control 
A user program typically issues several programmed requests to control 
the operating environment in which it will run. These include memory 
use, 1/0 access, device control, and error processing. 

The memory needs of a program are specified to the monitor by the 
.SETTOP request. When loaded, a program occupies the memory specified 
by its image created at link item. To obtain more memory, a .SETTOP 
request is executed, with RO containing the highest address desired. 
The monitor returns the highest address available (resident handlers or 
foreground jobs may prevent all the memory desired from being avail­
able}, and adjusts its core usage algorithms accordingly. If the memory 
requirements of the running program permit it, the monitor will retain 
the file system in resident memory (reducing swapping). If not, it will 
automatically swap the file system with part of the user program (in­
visiQle to that program). The .SETTOP request, then, is the main mech­
anism by-which a user program can determine how much memory is 
available and can control monitor swapping characteristics. 

If a program needs so much memory that the USR (file system) must 
swap, the swapping will automatically occur (invisible to the program) 
whenever a USR call is made. If a program knows what file operations 
are necessary, however, and these operations can be consolidated and 
performed in localized areas, the efficiency of the system can be en­
hanced in the following manner:· request the USR to be swapped in, 
have it remain resident while a series of USR operations are performed 
one after the other, then swap the USR back out when the sequence is 
done. Three requests are provided for the control of USR swapping: 
LOCK causes the USR to be made resident for a series of file operations; 
UNLOCK causes it to_ swap again. F/B programs can use .TLOCK to 
make the USR resident, but only if the USR is not occupied servicing 
the other job's file requests. This check can prevent a job from becom­
ing blocked while the USR, which is a serial, synchronous resource, is 
processing a request. When a .TLOCK succeeds, the USR is ready to 
perform an operation immediately. 

1/0 in RT-11 is accomplished via "channels." A "channel" is a logical 
link between a file or a device and a program doing 1/0 on that file or 
device. When a file is opened, a unique channel number is associated 

4-20 



with it, and all operations on that file are identified via the channel num­
ber. The only time a file or device name is used is when the file is 
opened. RT-11 provides 16(10) channels as part of the resident monitor; 
that is, up to 16(10) files can be active at any given time. More chan­
nels can be activated (up to 255(10) with the .CDFN request. This re­
quest sets aside memory inside the job area to provide storage neces­
sary to accommodate status information for the extra channels. Once the 
.CDFN request has been executed, as many channels as space allows 
can be active simultaneously. 

The Foreground/ Background monitor context-switches critical items such 
as the machine registers and the job status area. The job can add 
memory locations to the list of items to be context-switched with the 
CNTXW request. Typical use of CNTXW is to include a special user device 
or arithmetic unit in normal context switches. 

Special devices can be stopped and interrupt-disabled should the job 
have to be unexpectedly aborted. The .DEVICE request allows the user 
to specify a set of device control register addresses and a mask of bits 
to be set in that register on job exit. When a job is terminated (either 
normally, by error condition, or operator command), the specified bits 
are set in the specified locations. The normal use of this feature is to 
disable any special devices that may be in use by the running program. 

Special devices also require vector locations in the area 0-500(8). 
Since RT-11 normally loads the unused vector space as part of a pro­
gram load, the user specifies the use of a vector with the .PROTECT 
request. This will cause RT-11 to leave this vector intact, and prevent 
other jobs from obtaining the vector at the same time. 

During the course of program execution, errors can occur which nor­
mally indicate that a program cannot continue, and the job is stopped 
by the monitor. Typical examples of such errors include directory l/0 
errors, monitor 1/0 errors on the system device, or 1/0 requests to non­
existant devices. Some programs cannot afford, however, to allow the 
monitor to abort the job because of such errors; a typical example is 
RT-11 multi-user BASIC, which cannot be aborted because of a directory 
1/0 error affecting only one of its users. For such applications, a pair of 
requests is provided, .HERR and .SERR. A .HERR request (the normal 
default) indicates that severe errors are to be handled by the monitor 
and result in job abortion; a .SERR request causes the monitor to return 
most errors to the user program for appropriate action. 

Each of the. pending l/G, message, or timer requests must be·queued in 
one of the monitor queues. Since queue length is variable from one job 
to another, memory for queue elements desired is set aside with the . 
. QSET request. If no .QSET request is executed by the user program, the · 
monitor uses queue elements set aside in the resident monitor. If only 
one element is available, all operations will be synchronous (any request 
issued when the queues are full automatically waits for an element to 
free up). To expand the size of the 1/0 queues, a .QSET is executed by 
the user program. The .QSET declares where in memory the additional 
queues will go and how many e!ements they are to contain. 

4-21 



Finally, in addition to using .HERR and .SERR to process 1/0 errors, the 
user program can specify that it wishes to handle traps to locations 4(8) 
and 10(8) (processor error traps). Normally these fatal errors are re­
ported by the monitor and the job is aborted. A .TRPSET request, how­
ever, will specify the address of a user routine that is to be entered 
when a trap to 4(8) to 10(8) occurs. If this request is issued, the monitor 
takes no action on these errors: it merely calls the specified routines. 

All the previous initialization and control requests allow the user com­
plete control over the characteristics of his operating environment. The 
monitor offers a variety of services to make it easy to write simple pro· 
grams; sophisticated programmers, howe·1er, have full control over all 
aspects of monitor operation, and can place the monitor in the sub· 
servient role an operating system should play. 

4.5.3 Resource and System Interrogation 
Many programs are statically written. The devices to be used are known 
at programming time and the code is written accordingly. Other pro­
grams depend on user commands to confrol their operation. They must 
interrogate the system to find out specific details about a device· or file 
it may be using. 

The date can be obtained with a .DATE request, and then printed on a 
report or entered as a data record in a file. The time-of-day can also be 
determined with a .GTIM request .for much the same purposes. Informa­
tion about whether the job is running in the foreground or background, 
as well as information on the memory limits of the job and the address 
of its channel areas, can be obtained with a .GT J B request. 

The specifics of a given file (what block it starts at, its. length, what de· 
vice it is on) can be obtained with a .CSTATUS request, and the specifics 
of a device (what controller it is, whether or not it is file structured, its 
block length, etc.) can be obtained with a .DSTATUS request. 

These requests are most often used by programs which alter their be­
havior if they are using a particular device or are running in the fore­
ground. 

4.5.4 Command Interpretation 
Two of the most powerful requests are those for the system Command 
String Interpreter {CSI). The CSI, which is part of the USR, will process 
standard RT-11 command strings in the form 

*DEV:OUTPUT /SWITCH= DEV: INPUT /SWITCH 

These are the same command strings used by RT-11 system programs. 

The most commonly used CSI request is .CSIGEN. When called via 
.CSIGEN, the CSI will obtain a command string .from the user at the 
terminal (or process a string in memory if desired). The CSI will then 
analyze the string for correct syntax (if incorrect, an error will be re­
ported to the user and another command will be automatically solicited). 
It will then load the specified device handlers into memory, open the 
specified files, and return to the calling programs with switch informa­
tion and all 1/0 chanr:iels active and ready for 1/0. This means that with 

4-22 



one simple macro call 

.CSIGEN # DEFEXT, # DEVSPC, #0 

a program can obtain a command, create or locate the name files, open 
the appropriate channels, and be ready to perform 1/0 without evef 
having to worry about file names, devices, or the like. Many RT-11 pro­
grams never directly open files or manipulate devices; a simple call to 
.CSIGEN sets up 1/0 and starts the program. With one macro call, a 
language processor such as FORTRAN is ready to do 1/0 from the source 
file and output to the listing and binary files. All user-specified switches 
are available to control the language processor's operation. 

Some programs desire to do their own file and device manipulation, but 
do not wish to provide their own command processor. For these needs 
.CSISPC is provided. When .CSISPC is used, the CSI will obtain a com­
mand string, syntactically ·analyze it into tabular form, and pass the 
tables on to the user program for appropriate action. The calling pro­
gram is saved the chore of analyzing the command, but retains complete 
control over any device or file activity. As an example of how powerful 
these CSI calls are, consider the following routine. It copies, in only nine 
statements, a user-specified file on any input device to a file on any out­
put device. The file names and devices for input and output are specified. 
by the user during program execution. 

START: 
LOOP: 

DONE: 
HERR: 

.CSIGEN 
.READW 
BCS 
.WRITW 
BCS 
INC 
BR 
.EXIT 

· 4.5.5 File Operations 

#DSPACE, #DEFEXT, #0 
#AREA, #3, #BUFFER, #400, BLOCK 
DONE 
#AREA, #0, #BUFFER, #400, BLOCK 
HERR 
BLOCK 
LOOP 

The basis of all RT-11 1/0 are the device handlers. Device handlers are 
the monitor's device-specific routines w·hich actually receive an 1/0 com­
mand. The system device and console terminal handlers are part of the 
resident monitor and require no further attention. All other device han­
dlers are loaded into the user area with a .FETCH request prior to any 
request which might access that device. 

Once the handler has been loaded, existing files can be located and 
opened for access with a .LOOKUP request. New files are created with 
an .ENTER request, which allows allocation of a specific-size disk space 
for the file. The option also exists fo request that the monitor auto­
matically allocate as much space as possible. When file operations are 
completed, a .CLOSE is done to make a new file permanent in the direc­
tory, or a .PURGE may be. performed to free the channel (close the file) 

4-23 



without involving any directory operations. Existing files can be renamed 
with a .RENAME request, or deleted with a .DELETE. Once the 1/0 on a 
device is finished, a .RELEAS command will remove the device handler 
from memory and free the space it occupied for other use. Two other 
requests add to the flexibility of file operations. Once an existing file has 
been opened with a .LOOKUP request, it can be made temporarily in­
active with a .SAVESTATUS, which "remembers" the current status of the 
file and frees the channel for use with another file. When the time comes 
to access the file again, it can be re-activated on any free channel. with a 
.REOPEN request, an·d 1/0 can contin.ue on that channel. This feature is 
used for two purposes; it enables more files to be open than there are 
channels to keep them active, and it increases system swapping effi­
ciency. The u'ser keeps more files open than there are channles by per­
forming a .SAVESTATUS on those which do not have to be active, shuf· 
fling files between active and inactive status as demand dictates. USR 
efficiency can be increased by locking the USR into core, opening all the 
files a job needs at once, .SAVESTATUSing them as they are opened; 
releasing the USR from core, and .REOPENing the files one at a time as 
they are needed. Because .REOPEN does not require any 1/0, all USR 
swapping and directory motion for a job can be iso!ated in non-real-time 
initialization code, and many files can be efficiently manipulated at once. 

4.5.6 Input/Output 
RT-11 1/0 operates in three modes: synchropous, asynchronous, and 
event-driven or completion 1/0. Synchronous 1/0 is th~ simplest and 
consists of .READW and .WRITW requests. These requests do not return 
control to the user program until the specified operation is complete. 
When a program resumes after one of these requests, it can process 
the buffer, as the specified operation has been completed. -Asynchronous 
1/0 is accomplished with .READ and .WRITE requests. These requests 
cause the 1/0 command to be queued. Control is returned immediately 
to the calling program. It is up to the program, then, to perform a .WAIT 
on that channel before operating on the buffer. It is asynchronous 1/0 
which is most commonly used for double-buffering, with a typical algo· 
rithm of 

START: .READ Buffer 1 
LOOP: .READ Buffer 2 

.WAIT Buffer 1 
process Buffer 1 
.READ Buffer 1 
.WAIT Buffer 2 
process Buffer 2 
GO TO LOOP 

Event-driven or completion 1/0 is the mode most akin to the 1/0 struc· 
ture of the processor itself. Initiated with a .READC or .WRITC, comple· 
tion 1/0 requests specify an extra parameter: the address of a user­
written service routine to be entered when the operation is complete. The 
request is queued and control returns immediately to the calling pro· 
gram. When the operation is completed, the user program is "inter· 
rupted," and the completion routine is entered. Completion routine~ 

4·24 



perform whatever operation is appropriate to the completion of an 1/0 
request (they can even issue an 1/0 request of their own), and return 
to the monitor, which resumes the main program where it was left off. 

Completion routines are one of the most powerful features of RT-11. 
They are most frequently used as "event detectors," which keep 1/0 
going independent of main processing or respond with service to a spe­
cific external stimulus. They are a software analog to the hardware in­
terrupt structure; they require no processor time until the completion 
occurs, at which point they become the highest priority code in the job. 

Consider as an example of completion 1/0 a simple "spooler" which 
prints a disk file on the line printer (LAVll). 

Main Routine 

Read disk with completion routine DC (start spooling) 

(processing) 

Disk Completion Routine 
DC: Write line printer with completion routine LP 
RETURN 

Line Printer Routine 
LP: Read disk with completion routine DC 
RETURN 

The main program starts the processing by reading the first buffer load 
from the disk, then· goes to a compute-bound job. When the disk-read 
completes, the disk completion routine is entered. A request is issued 
to print the buffer on the line printer, then the disk returns to the inter­
rupted program. When the line printer-write completes, the line printer 
completion routine is entered and a request is. issued for the next disk 
block to be read. This loop of completion routine issuing a request which 

· results in activation of another completion routine continues until the 
entire· file is printed. Meanwhile, the main program continues its pro­
cessing, unaware of the interrupt-driven activity except that it has slightly 
less CPU time available. 

RT-11 provides ail additional 1/0 capability for the console terminal. 
Although buffers can be read or written to the terminal in the same 
manner as any other device, an alternative mode of 1/0 permits the 
terminal to provide character-by-character 1/0 more in keeping with the 
nature of the device itself. A .TTYIN request will obtain a character from 

4-25 



the console; a .TTYOUT will print one on the console. Whole lines can be 
output with a .PRINT request. Real-time programs can issue .TTINR and 
.TTOUTR requests, which return an indication that a character is not 
available or the output buffer is full, rather than waiting for their avail­
ability_ The program can then resume real-time operation and try again 
later. A .RCTRLO request will force the terminal output to be reactivated 
should the user have typed CTRL/0 to suppress it, assuring that urgent 
messages will be printed. The console terminal handler that services 
these requests also makes all the special function commands available 
for input and output to user programs. 

Finally, RT-11 provides .SPFUN, a request for performing· special func­
tions on unique devices such as magnetic tape .. SPFUN requests are 
passed to the handler, and are used for such things are rewind or space­
forward operations on magnetic tape devices. 

4.5.7 lnterjob Communications 
The foreground/background monitor provides a mechanism for sending 
and receiving messages that is analogous to normal 1/0. The .SDAT and 
.RCVD· requests also have three modes (synchronous, asynchronous, and 
event-driven) which allow transfer of buffers between the two jobs as if 
1/0 were being done. The sending job treats .SDAT requests as if they 
were writes, and the receiving job views .RCVD as a read. Receiving job:; 
can be "activated" when messages are sent via .RCVDC completion 
routines, and sending jobs via .SDATC completion routines .. MWAIT is 
provided as a synchronization tool for message requests, similar to 
.WAIT for normal 1/0. 

It is a common practice for one job in F / B to wish to read or write data 
in a file opened by the other job (the background may be processing data 
collected by the foreground, for example). This is accomplished via the 
.CHCOPY request,' which allows the user to obtain channel information 
from the other job and use that channel information to control a read or 
write request. Thus a background job processing foreground data might 

- get a message from the foreground stating that the information is avail­
able on a given channel. It would then perform a .CHCOPY on that chan­
nel and read frorn the file which was opened by the foreground. 

4.5.8 Timer Support 
Completion routines are also the mechanism used to provide timer sup­
port in the F/B monitor. With the .MRKT request, the user specifies the 
address of a routine that is to be entered after a specified number of 
clock ticks. Similar to an 1/0 completion routine, .iviRKT routines are 
asynchronous and independent of the main program. After the specifi~d 
time elapses, the main program is interrupted, the timer completion 
routine executes, and when done, returns control to the interrupted pro· 
gram. 

Pending .MRKT requests-as many as the queue can hold-are num­
bered for identification purposes. Pending timer requests can be can­
celled with a .CMKT request._ .MRKT requests are normally used as a 
scheduling tool; multi-function· jobs can "schedule" subjobs on the basis 
of clock "events," detected by tinier completion routines. 

4-26 



RT-11 allows a job to suspend itself for a specified time interval wit!i a 
.TWAIT request .. TWAIT allows a compute-bound job to relinquish slices 
of time to the rest of the system, permitting other components to run. 

4.5.9 Program Termination or Suspension 
Many jobs come to an execution point where there is no further pro­
cessing necessary until an external event occurs. In the F /8 environ­
ment, such a job can issue a .SPND request, which suspends the execu­
tion of that job until it later executes a .RSUM request in a completion 
routine. While the foreground is suspended, the background will be run­
ning. When the desired external event occurs, it is often detected by a 
completion routine, which executes a .RSUM to continue the job where 
it was suspended. 

When a job is ready to terminate or reaches a serious error condition, it 
can reset the system with .SRESET and .HRESET directives .. SRESET 
is a soft reset: the monitor data base is re-initialized, but queued 1/0 is 
allowed to run to completion .. HRESET is a hard reset: all 1/0 is stopped 
by a RESET instruction in the single job monitor or by calls to the 
handlers in F/B. 

For actual termination, a job can return to the keyboard monitor with 
.EXIT, or initiate the execution of another program with a .CHAIN re­
quest. MACRO, for example, chains to CREF when finished to provide for 
the Cross REFerence listing5. Files can remain open across a .CHAIN, 
and information is passed in memory to the chained job, so that it can 
adjust processing accordingly. 

4.5.10 Interrupt Service 
RT-11 does not require hardware for memory management or 1/0 man­
agement, so two program requests are used in interrupt service routines 
to provide necessary links to the monitor 1/0 system .. INTEN is the first 
command in every interrupt routine; it causes the system to use the 
system stack for interrupt service and allows the scheduler to make note 
of the interrupt. If device service is all the routine does, .INTEN is the 
only call it need make. If the interrupt routine is to do any other program 
requests, however (such as .READ or .WRITE), it must first force a con­
text switch with a .SYNCH call .. SYNCH causes the remainder of the in­
terrupt routine to be scheduled as a completion routine. When the 
.SYNCH is finished the completion routine can execute programmed re­
quests, initiate 1/0, resume the mainline code or schedule a subjob. 

4.6 SYSTEM PROGRAMS 
As a comprehensive program development and operating system, RT-11 
provides an impressive set of system programs to assist in user program 
development and debugging. These include a text editor, macro ex­
pander, language translators (MACRO, ASEMBL, FORTRAN, BASIC, FO­
CAL), lioker, librarian, and debugging utilities (ODT, PATCH, PATCHO). 
Jn addition, the system programs include several file utility programs .. 
This section describes the standard system programs. Paragraph 4.7 
describes the languages. 

4-27 



4.6.l EDIT Interactive Editor 
The RT-11 editor, EDIT, is an interactive, character-oriented text editor 
with all the advantages of character searches and string manipulation 
that a character-oriented editor offers. 

EDIT has essentially three modes:. character commands for character­
level operations, line-oriented commands for those operations suited to 
lines, and scope mode, which allows users of VT11 displays (not avail· 
able for use on LSl-11, PDP-11/03, and PDP-11 V03 systems) to inter­
actively edit text with the aid of the screen. Features of EDIT above and 
beyond normal text editors include iteration brackets, which allow repe­
tition of portions of the command as often as desired, ·command macros, 
which allow specification of 'a series of operations to be used 'over and 
over again as a discrete command, and the ability to save and move 
blocks of text. · 

4.6.2 LINK Linker 
The outstanding feature of the RT-11 linker is its transparent overlay 
scheme. The linker provides standard -capabilities such as automatic 
library searches, the ability to output core image, foreground-relocatable 
or absolute binary program files, and a variety of link-time library manip­
ulation capabilities. 

Overlays in RT-11, ·however, require no assembly language instructions 
or macro calls. The overlay structure of a program is specified at link 
time and can be altered simply by altering the linker command strings 
(no source changes involved). It is only necessary to follow a few simple 
conventions as routines are w.ritten; (the restrictions amount to good 
modular programming rules). The routines are then combined in any 
number of possible overlay structures. 

For example, assume main program A, subroutines B and C which are 
called by A, and subroutines D and E, called bY subroutine B. 

The user can generate a program image which includes ·all five modules 
if abundant memory is availabie with the command: 

*PROG = A,B,C,D,E 

As memory gets more restricted, D and E could share an overlay region 
by relinking with the command string. 

*PROG = A,B,C/C 
*D/0:1/C 
*E/0:1 

Finally, the program could be made as small as possible by overlaying 
Band Caswell as D and E with command strings 

*PROG = A/C 
*B/0:1/C 
*C/0:1/C 
*D/0:2/C 
*E/0:2 

4.6.3 LIBR Librarian 
The RT·l~ Librarian (LIBR) allows the user to create, update, modify, 
Hsf, and maintain library files. 

4-28 



LIBR provides the user with the capability of maintaining libraries com­
posed of commonly-used functions and routines. 

Each library is a file containing a library header, -library directory (or 
entry point table), and one or more object modules. The object modules 
in a library file may be routines which are repeatedly used in a program, 
routines which are used by more than one program, or routines which 
are related and simply gathered together for ease in usage. The con· 
tents of the library file are determined by the user's needs. An example 
of a typical library file is the FORTRAN library provided with the FOR­
TRAN package, which contains all the mathematical functions needed 
for normal usage. 

A program requests a library module through a subprogram call to a 
global entry point. If this global entry point (subprogram name) is de­
fined in another module passed to the Linker, the request is said to be 
satisfied. When a library is passed to the Linker, it is searched for entry 
points to match unsatisfied requests. The modules which satisfy requests 
are linked in; all other modules in the library are ignored. 

4.6.4 ODT On·Line Debugger 
RT-11 On-Line Debugging Technique (ODT) is a system program that aids 
in debugging assembled and linked object programs. From the keyboard, 
the user interacts with ODT and the object program to: 

• Examine and modify the contents of any location in main memory, the 
registers, the pr9cessor status register, or ODT internal registers. 

• Run all or any portion of an object program using the breakpoint 
feature. 

• Search the-object program for specific bit patterns. 
• Search the object program for words which reference a specific word. 
• Calculate offsets for relative addresses. 
• Fill a single word, block of words, byte or block of bytes with a desig-

nated val_l.Je. 

The assembly listing of the program to be debugged should be readily 
available when ODT is being used. Minor corrections to the program can 
be made on-line during the debugging session, and the program may 
then be run under control of ODT to verify any changes made. 

It is possible to use ODT to debug programs written as either background 
or foreground jobs. In the background or under the Single-Job Monitor, 
ODT can be linked with the program. 

To debug a prograr.i in the foreground area, it is recommended that ODT 
be run in "the background while the program to be debugged is in the 
foreground. 

4.6.5 PATCH Code Patch Utility 
The PATCH 'utility program is used to make code modifications to mem· 
cry image (.SAV) files, including overlay-structured and monitor files. 
PATCH, like ODT, can be used to interrogate, and then to change, words 
or bytes in the file. 

4-29 



4.6.6 PATCHO Object Patch Utility 
The RT-11 PATCHO program is used to correct and update object mod· 
ules (files output by the assemblers or by the FORTRAN compiler). It is 
particularly useful when making corrections to routines that are in .OBJ 
format for which the source files are not available. PATCHO cannot be 
used to patch libraries built by LIBR, but it can be used to patch the 
.OBJ modules from which a library is built. 

4.6.7 PIP Peripheral Interchange Program Utility 
A very commonly used RT-11 system program is PIP, the file transfer 
and maintenance program. PIP is the "system utility"; besides providing 

. file-oriented operations, PIP offers several functions which are used in 
system building or control. PIP functions include the ability to copy files 
individually or in groups; operations which can extend, delete, or rename 
files; commands which list device directories; commands to initialize de­
vices with directories or system bootstraps; the ability to bootstrap any 
supported system device; and the ability to scan a disk for bad blocks. 
Finally, one of the more important functions provided by PIP is the abil­
ity to consolidate the free space on a device into one area, making more 
efficient use of RT-ll's contiguous file structure. 

4.6.8 SRCCOM Source Compare Utility 
The RT-11 Source Compare program (SRCCOM) is used to compare two 
ASCII files and.to output any differences to a specified output device. It 
is particularly useful when the two files are different versions of a single 
program, in which case SRCCONI prints all the editing changes which 
transpired between the two versions. 

4.6.9 FILEX File Exchange Utility 
FILEX is a general file transfer program used to convert files among 
file'formatted devices for various operating systems.Files are transferr­
ed as 16-bit binary data. No processing is done on the data itself except 
that Which is necessary to convert between various data representations. 

4.6.10 DUMP File Dump Utility 
RT-11 DUMP prints the contents of all or any part of a file on the con­
sole or the line printer. DUMP can print the file contents in any one of 
four selected formats: octal words, oc;tal bytes, ASCII characters, or 
RAD50 characters. 

4.7 LANGUAGES 
RT-11 supports a wide variety of programming languages. The user can 
select any one of four languages to solve a particular application prob­
lem. Users can implement entire problem solutions using FORTRAN IV, 
BASIC or FOCAL, or can combine any of these languages with MACRO 
assembly language modules. 

4.7.1 MACRO Assembler 
The RT-11 MACRO assembler is a powerful, general-purpose macro as­
sembler, the primary implementation tool for assembler language pro­
grams. MACRO is a two-pass assembler requiring an RT-11 system con­
figuration (or background partition) of 12K or more words. Some notable 
features of MACRO are: 

4-30 



• program control of assembly functions 

• device and filename specifications for input and oµtput files 

• error listing on command output device 

• alphabetized, formatted symbol table listing 

• relocatable object modules 

• global symbols declaration for linking among object modules 

• conditional assembly directives 

• program sectioning directives 

• instruction repetition directives 

• macro definition directives for user-defined macros 

• comprehensive set of system macros 

• extensive listing control, including cross-reference listing; can be spec-
ified in the command string or in source program 

MACRO also allows an ASCII file or macros, called a macro library, to 
be edited and used. Normally, DIGITAL's system macro library is used 
to support macro calls to the monitor; these can be conveniently com­
bined with user-defined macro libraries with a simple editing operation. 

4.7.2 EXPAND Macro Expander and ASEMBL Assembler 
Because the MACRO assembler requires 12K words of memory to oper­
ate, a pair of programs is provided which gives a subset of macro 
capabilities to SK users. EXPAND is a one-pass macro expansion utility 
that takes a macro source file as input, expands the macro calls into 
simple assembler source statements, and outputs a ruacro-free assembly 
language program as an ASCII file. This source file is then input to the 
two-pass assembler, ASEMBL, which runs in SK. The effect is that £X­
PAND and ASEMBL combine to provide a considerable subset of 
MACRO's capability; enough of a subset to handle the system macro 
library and user macros which use a subset of the macro language. 

4.7.3 FORTRAN 
FORTRAN/RT-11 is an extended, optimizing FORTRAN IV system which 
operates on any RT-11 system. The FORTRAN IV compiler processes 
source programs extremely rapidly; typical 300-line programs compile 
in less 25. seconds. 

Extensive optimizations such as common subexpression elimination, ar­
ray vectoring, and "peephole" local code sequence tailoring, decrease 
the size and increase _the speed of object programs. The compi.ler pro­
duces the object code directly, without using temporary files, and does 
not require an intermediate assembly step, thus" speeding program de­
velopment time. 

The FORTRAN IV system is designed to minimize the size of executable 
programs. The entire system (including the compiler and optimization 
capabilities) is completely functional in the minimum SK RT-11 environ­
ment. The optional KEVll EIS/FIS can be used.to further improve sys­
tem performance. 

4-31 



FORTRAN programs may be developed under RT-11 and output in ab­
solute binary format for execution on a satellite machine with minimum 
peripherals. Only a device such as a paper tape reader is required for 
program loading. 

Using SYSLIB, the RT-11 FORTRAN system subroutine library, all fea­
tl.ires and services of the RT·ll monitor are available. to the FORTRAN 
programmer without the need for assembly language coding. FORTRAN 
programs may schedule subroutines to be executed when .an external 
event occurs (the receipt of a message from the other job, the comple­
tion of an 1/0 transfer, the lapsing of a specified time interval); perform 
all types of monitor-level input/output and system informational calls; 
handle interrupts with a FORTRAN subprogram. 

SYSLIB also contains extensive string manipulation routines in addition 
to routines for calling the monitor functions previously described. These 
routines create strings in LOGICAL* 1 arrays, and allows their manipula­
tion. 

CONCAT 

GETSTR 

INDEX 

INSERT 

LEN 

PUTSTR 

REPEAT 

SCOMP 

SCOPY 

STRPAD 

SUBSTR 

TRANSL 

TRIM 

VERIFY 

to concatenate two strings together. 

to input a string. 

for locating substring X in string Y. 

for inserting one string into another. 

for determining the length of a string. 

will output a string. 

will repeat strings. 

for string comparison and sorting. 

will copy a string. 

to pad a string with blanks to a specified length. 

extracts a substring from a larger string. 

will replace one string with another after directed char­
acter modification. 

to remove trailing blanks. 

to test whether characters in one string appear in an­
other. 

The real power of these functions is that they operate on .variable-length 
strings. The strings can be manipulated fully without knowledge of their 
length, adding a new dimension to FORTRAN capabilities. 

4.7.4 FOCAL 
FOCAL ·is an easy-to-learn interactive language. The RT-11 imple:nen­
tation is as an interpreter, which provides both stored program and 
immediate mode operations. Commands may be abbreviated to a single 
letter. ·Alphanumeric symbol names are provided, with up. to· six char­
acters carriea in the symbol table, only two of which are significant to 
FOCAL. FOCAL utilizes the same floating point package as does FOR­
TRAN/RT-11, so all arithmetic options are supported; a double-precision 
yersion of FOCAL supports up to 17 digits of accuracy. 

4-32 



Any peripheral supported under RT-11 is available to the FOCAL user. 
The LIBRARY command allows the user to access any RT-11 file-struc­
tured device. Programs may be saved, loaded, started and/or CHAIN'd. 
Data may be save/accessed in sequential files and/or virtual files. (Files 
may be treated by the FOCAL user as a virtual array; data types include 
floating, double-precision floating, signed or unsigned integers, or byte 
data.) 

Other features include scheduling up to eight asynchronous tasks from 
the clock; processing interrupts in the FOCAL language; user-controlled 
error processing, and the facility for one or more user-written assembly 
language functions. 

4.7.5 Single-User BASIC 
BASIC/RT-11 is best suited for interactive applications. Machine re­
sources (memory and -execution time:) are expended with resulting sav­
ings in programming time. BASIC/RT-11 has several features which add 
to its usefulness as a development tool. It is implemented as an incre­
mental compiler; source statements are translated into a more compact, 
easily executed code and stored directly in memory_ When the RUN 
command is issued, this easily interpreted internal language is executed 
as a program. When the LIST or SAVE commands are used, the internal 
form is translated back to the original ASCII for output. Like all Dart­
mouth-compatible BASIC implementations, statements are entered di­
rectly to BASIC one at a time (or the editor can be used), then executed 
as a program. Statements can also be executed immediately simply by 
tyi:;ing commands without statement numbers. This immediate mode 
can be used for debugging, development, or even as a calculator. Im­
mediate mode is a valuable degugging tool, because statements like 

PRINT Vl,Q 

or 

LET Vl=3 

allow the user to investigate the state of various program variables, 
change them, or insert statements in the middle of program execution. 

BASIC/RT-11 supports two types of files, sequential and virtual. Se­
quential files are ASCII files of string or numeric data that are accessed 
sequentially. To get to item N, items 1 through N-1 have to be read 
first. Virtual files behave like standard arrays; string or numeric elements 
are accessed by subscript as if they were memory-resident. If the desired 
element is in the buffer, no 1/0 takes pla~e; if not, the disk block con­
taining the desired element is read, invisible to the program. Virtual files 
have a 256-word "cache;" access of elements near each other mini­
mizes overhead, while 1/0 overhead increases as elements become more 
random. 

Note that virtual files in immediate mode can be used to manipulate or 
"edit" a data base. If, for example, a file of 2000 data points is taken 
from A/D and is to be examined, commands like 

4-33 



OPEN "DATA" AS FILE VF1(2000) 

and 

PRINT VF1(137.) 

allow points to be selectively examined, and commands like 

LET VF1(137)=0 

are used to_ change them. 

Beside numeric data, BASIC allows variab!e-length alphanumeric string 
variables. These string variables can also be used in both types of files. 

For interface of user-written and special-purpose functions, BASIC/RT-11 
supports the CALL statement. CALL allows the user to invoke a func· 
tion by name and pass it any number of arguments. ' 

In addition to these features, BASIC/RT·ll programs execute much 
faster than traditional interpreters, although programs written under 
FORTRAN execute considerably faster. 

4.7.6 Multi-User BASIC 
MU BASIC/RT·ll is an extended version of BASIC/RT·ll that allows an 
RT-11 system to support up to eight interactive BASIC users on single­
job systems with 24K words of memory, or up to four users on single'-job 
systems with 16K words of memory. Under the foreground/background 
moriitor, up to four BASIC terminals can be supported on 28K word 
systems. 

All terminal 1/0 is performed by the MU· BASIC language processor. 
Users are optionally provided with accounts and passwords for file pro­
tection. 

MU BASIC extends the BASIC/RT·ll language with additional statements 
as well as commands and functions. In particular, some additional state· 
ment features are: 

COMMON 

PRINT-USING 

ON-GOTO 

ON-GOSUB 

Allows a program to pass information to a chained 
program. 

Provides extensive output formatting capabilities, in­
cluding the ability to print exponential numbers and 
dollar amounts .with asterisk-fill protection. 

Transfers control to one of several lines of the pro­
gram based on one or more conditions. 

Transfers control to a subroutine based on the con­
dition specified in the statement. 

4-34 



CHAPTER 5 

REAL-TIME MULTIPROGRAMMING RSX-1 lS 

5.1 FUNCTIONS AND FEATURES 

RSX-11S is a small execute-only operating system for dedicated appli­
cation environments that can be run on LSl-11, PDP-11/03 and PDP-
11 V03 systems. 

RSX-11S requires a host RSX-11M system for program development and 
system generation. Tasks can be written in MACRO or FORTRAN IV, 
assembled or compiled and subsequently linked on the host system, 
and then transported to an RSX-1 lS system for execution. The minimum 
RSX-11S system includes an Executive (with incorporated device drivers) 
and a special FCS that contains no support for file-structured devices. 
The user can also add a subset of RSX-11M's MCR services if the hard­
ware configuration includes a terminal. If on-line task loading is desired, 
the user can include an On-line Task Loader (OTL) utility. If the user 
wants to save a system image for subsequent re-booting, the user can 
include the System Image Preservation (SIP) utility. 

Since RSX-11S is a memory-only system, it does not support a file sys· 
tern, non-resident tasks, task checkpointing, dynamic memory allocation 
or program development. It does, however, support data storage on all 
devices supported by RSX-11 M. Its purpose is to provide a run-time en­
vironment for the execution of tasks on a small system with a very 
modest complement of peripherals. 

The minimum configuration for an RSX-11S system is a PDP-11 proces­
sor (including the LSl-11) with at least 8K words of memory and one 
of the following load devices: paper tape reader, paper tape reader/ 
punch, or RXVll floppy disk. At least 16K words are required for on­
line task loading or the execution of tasks written in FORTRAN IV. 

Table 5·1 summarizes the components of RSX-11. 

5.2 RSX·llS OPERATING SYSTEM CONCEPTS 

The RSX-11S operating system is designed to provide a resource-sharing 
environment ideal for multiple real-time activities. The basic facilities 
that RSX-llS provides for handling multiple requests for services while 
maintaining real-time response to each request are: 

• multiprogramming 

• priority scheduling 

• contingency exist 

• power-fail shutdown and auto-restart 

5-1 



The basic unit of work, which these operating system facilities service, is 
called the task. A task consists of one or more programs written in a 
source language such as MACRO or FORTRAN, assembled or compiled 
into an object format, and then built into a task image by the linker 
utility called the Task Builder. In addition to the normal linkage functions 
of combining object modules or creating overlays, the Task Builder sets 
up the basic task attributes that determine the task's resource require­
ments and relationship to other tasks in the system. The significant task 

System type 

CPU's 
supported 

Memory 
ranges 

Additional 
hardware 
supported 
CPU 

Minimum 
peripherals 

System 
utilities 

Table 5·1 RSX·llS System Summary 

Execute-only real-time applications system; requires 
RSX-llM system for generation and program develop­
ment 

LSl-ll processors (including PDP-11/03 and PDP-11 V03) 
PDP-11/04, 05, 10 
PDP-ll/35, 40, 45 
PDP-11/70 

Minimums: 
SK words without on-line task loading option 
16K words for one-line task loading or execution of 

tasks written in FORTRAN 
Maximum: 

124K words on all but PDP-11/70, LSl-11, PDP-11/03, 
and PDP-11V03 

1024K words on-a PDP-11/70 
28K words on- LSl-11, PDP-11/03, and PDP-11V03 

Same as RSX-llM 

One of the following load devices: 
Paper tape reader 
Paper tape reader/punc.h 
RXVl 1 floppy disk system 

OTL On-line Task Loader 
SIP System Image Preservation Program 
MCR Subset Console Interface 

5-2 



attributes that affect a task's operation in a real-time multiprogramming 
environmenf are: 

• partition-the section of memory where the task will reside when it 
executes 

~ priority-the task's relationship to other tasks competing for system 
resources 

Once a task is built,_ it can be installed in the system and executed. 
Task installation simply registers a task's attributes with the system_ 
The task is not in memory, nor is it in competition for system resources. 
An installed task can be put in active competition for system resources 
by the operator or by another active task in the system. 

When an installed task is activated, the system will allocate necessary 
resources, bring the task into memory for execution, and place it in com­
petition ·with other active tasks. Task installation is the basis for efficient 
task operation. An installed task uses very little memory resources; yet, 
when the task is needed to service a real-time event, it can be intro­
duced into the system quickly since its basic parameters are already 
known to the system. 

Tasks can also share code and data amo·ng themselves through the 
Shareable Global Areas facility. A Shareable Global Area (SGA) is made 
accessible to the system and to tasks by installing the SGA and the task 
which intends to use it. · 

The following paragraphs describe how the RSX-ll's real-time facilities 
handle task execution. 
Multiprogramming 
Multiprogramming is the concurrent execution of two or more tasks 
residing in memory. In a single processor, only one task can have con­
trol of the CPU at a time. When that task does not need CPU time (for 
example, when it is waiting for input from a terminal) another task that 
needs CPU time can execute. The multiprogramming of tasks is accom­
plished by logically dividing available memory into a number of named 
partitions. Tasks are tiuilt to execute out of a specific partition, and all 
partitions in the system can operate in parallel. Partitions are user con­
trolled allowing the user to handle the allocation of memory for the exe­
cution of tasks. A user controlled partition is allocated to only one task 
at a time. The user has complete control over system activity in this 
type of partition. As a result, it provides an ideal environment for a 
real-time task's execution. 

In RSX-llM or RSX-llS systems, a user controlled partition can be sub­
divided into as many as seven non-overlapping subpartitions. The sub­
partitions occupy the identical physical memory occupied by the main 
partition. Tasks built to execute in the subpartitions can execute in 
parallel. Tasks can not, however be resident in a main partition and its 
subpartitions simultaneously. If a main partition is occupied, the sub­
partitions can not be. All subpartitions can have tasks residing in them; 
therefore, up to seven potentially parallel task executions can exist 
within a pre-empted user controlled main partition. The goal of subparti­
tioning is to reclaim large memory areas when a task requiring a main 
partition is no longer active. 

5-3 



When installing tasks into a partition, a task. is linked to be installed 
and run in a partition with a specific base address. It can not run in any 
partition whose base address is not the same. 

Priority Scheduling 
Task scheduling in RSX-11S is primarily event-driven, in contrast to sys­
tems which use a time slice mechanism for determining a task's eligibil­
ity to execute. The basis of event-driven task scheduling is the soft­
ware priority assigned to each active task. A task's default priority is set 
when the task is built. It can be altered once it is installed (though not 
active) by an MCR command from the console. 

Tasks are run at a software priority level ranging from a low of 1 to a 
high of 250. The Executive grants central processor resources to the 
highest priority task capable Qf execution. That task retains control of 
the central processor until it declares a significant event. 

A significant event occurs when a task issues a system directive that 
implicitly or explicitly suspends a task's execution, or when an external 
interrupt occurs that can affect a task's execution. For example, a task 
can issue a directive that indicates it wants to wait until an 1/0 opera­
tion is complete before c·ontinuing execution; a significant event is de­
clared when the 1/0 operation is complete. A special system directive 
also exists that allows a task to stimulate the event-driven task schedul­
ing mechanism explicitly. 

When a significant event is declared, the Executive interrupts the execut­
ing task and searches for a task capable of executing. The highest prior­
ity task that has all the resources it needs to run; and can make use of 
the resources it needs, will be the task that gains control of the CPU. 

Event flags are associated with significant events. When a significant 
event occurs, the event flag indicates the specific cause of the interrupt. 

There are 64 event flags. Flags 1 through 32 are local to the task, while 
event flags 33 through 64 are common to all tasks. A task can set, clear, 
test, and wait for any event flag or combination of event flags to achieve 
efficient synchronization between itself and other tasks in the system. 

For example, upon completion of 1/0 requests, a device handler nor­
mally sets a requestor-indicated event flag and declares a significant 
event. If a requesting task instructs the system that it cannot run until 
an event flag is set (signalling task 1/0 completion), other eligible tasks 
of lower priority may run. !n the scan of the active task list, a task that 
is awaiting 1/0 completion is bypassed until a significant event is de­
clared through the setting of a event flag upon task 1/0 completion. 

Although event-driven scheduling is the primary RSX-11 task scheduling 
mechanism, it is not the only mechanism available. As an option during 
system generation, RSX-11S allows the user to supplement event­
driven task scheduling with time-sliced or time-based scheduling. The 
time-slice scheduling is based on a priority range specified by the user 
during system generation. All tasks that have priorities within the spe­
cified range are scheduled using a time-slice algorithm. Tasks with 
higher or lower priorities than the specified range receive service in an 
event-driven manner. As a whole, the task range also receives service 

5-4 



in an event-driven manner, but CPU time among the tasks within the 
range is shared. 

Contingency Exits (System Traps) 
Subroutines automatically entered as the result of an unanticipatea syn­
chronous condition (for example, an attempt to execute an illegal in­
struction) or as the result of an asynchronous condition anticipated or 
unanticipated (for example an 1/0 termination) are called contingency 
exit or system trap routines. 

System traps are another means of governing task execution. While 
significant events have a system-wide scope, traps are local to a task. 
Traps interrupt the sequence of instruction exe.cution in the task and 
cause control to be transferred to a prespecified point in the program. 
In this way, system traps provide the ~bility to service certain conditions 
without continuously testing for their existence. 

When a task plans to use the system trap facility, it must contain a trap 
service routine. This routine is automatically entered when the trap oc­
curs using the task's normal priority and privilege. If a service routine is 
not supplied, the action taken by the Executive is dependent upon the 
type of trap. 

There are two types of system traps: Synchronous System Traps (SST's) 
and Asynchronous System Traps (AST's). 

SST's provide a means of servicing fault conditions within a task. These 
conditions, which are internal to a task and are not significant events, 
occur synchronously with respect to task execution. In these cases, if 
an SST service routine is not included in the task, the task's execution 
is aborted. 

AST's commonly occur as the result of a significant event and thus occur 
asynchronously with respect to a task's execution. A task does not have 
direct or complete control over when AST's occur. A characteristic of 
AST's is that they are for information purposes, such as signifying al] 
1/0 completion that a task wants to know about immediately. If an AST 
service routine is not provided, a trap does not occur and task execu­
tion is not interrupted. 

It should be emphasized that SST's are only initiated by the Executive; 
no further action is taken. That is, they appear to the Executive just like 
normal task execution. The Executive, having initiated an SST, cannot 
determine that the task is in the SST service routine. Thus, an SST ser­
vice routine can be interrupted by another SST or an AST. SST's can be 
nested. 

SST's are caused by activities internal to the task, while AST's occur as 
a result of an external event. The Executive keeps track of all AST's, 
queues them first-in, first-out, and is aware that a task is executing an 
AST. 

Power Failure Restart 
Power failure restart is the ability of a system to smooth out intermittent 
short-term power fluctuations with no apparent loss of service and with­
out losing data, all the while maintaining logical consistency within the 

5-5 



system itself and the application tasks. Power failure restart can be im­
plemented in systems using non-volatile memory (PROM or core), or 
systems using battery backup (user-implemented) power for processor 
and volatile memory. Power failure affects absolute response time and 
peak capacity differently from the facilities previously discussed; since 
it applies to the aggregate system performance rather than increasing 
performance when the system is actually in operation. A system i_s not 
performing when it is shut down, and if the Executive can reduce the 
shutdown periods due to power failure restart, aggregate performance 
is increased. 

RSX·llS systems perform the phases of power failure restart listed 
below: 

1. When power begins to fail, the processor tra.ps to the Executive which 
stores all register contents. 

2. When power is restored, the Executive again receives control and re· 
stores the previously preserved state of the system. 

3. The Executive then informs any tasks that have requested power 
failure restart notification through the Asynchronous System Trap 
mechanism that a power failure has occurred. These tasks can then, 
if required, make restorations of state they deem necessary. 

4. The Executive schedules all device drivers that were active at the time· 
the power failure occurred at their powerfail entry point. Drivers 
have the option of always being scheduled on power recovery, or 
only when the driver has an outstanding 1/0 order. 

These drivers can then, if required, make those restorations of state 
(for example, repeating 1/0 requests) they deem necessary. 

The RSX-llS family's approach is quite efficient because the repeating of 
1/0 is placed nearest the source most likely to know how to make the 
restoration. 

5.3 SYSTEM ORGANIZATION AND GENERATION 
The following paragraphs discuss the basic design elements of the 
RSX-llS operating system. Total system structure is essentially de· 
pendent on the decisions that the user makes during system generation. 
The user defines the system organization and chooses the Executive 
services appropriate for the particular applications environment. 

There are three basic functional uses for which memory is allocated. 
The amount of memory allocated to each function is specified by the 
user during system generation. The three functional memory spaces are 
for: 

• the RSX-llS Executive 

• partition space for tasks and shared global areas 

• the system communication areas, including system lists and tables _ 

RSX-llS systems are designed to provide the most efficient use of sys­
tem resources during system operation. To be useful to a wide range of 
applications and still obtain maximum system performance for a given 

5-6 



operating environment, RSX-11S systems require the user to become 
more involved in system generation. 

System generation for RSX·11S systems provide the user with absolute 
control over system features and capabilities. Users concerned about 
size can eliminate the Executive services that are not essential to a 
particular application. In addition, 1/0 device drivers must be included 
in the Executive during system generation. Their inclusion in the Execu­
tive serves two purposes: it enhances overall system operation and it 
greatly decreases 1/0 driver size. System operation is enhanced because 
interrupt response, processing speed, and system throughout are in· 
creased. The size of the individual 1/0 drivers is decreased for two rea· 
sons. They do not have to contain code to initialize themselves, since 
they are initialized during system generation. Furthermore, the Executive 
can perform many operations common to all drivers; the drivers do not 
have to contain duplicate code required for independent operation. 

For RSX-11S system generation, the user has to define the system com· 
munication area parameters, specify the sizes and base addresses of the 
partitions, and select the Executive services needed for the particular 
application. System generation is performed in two phases: the first 
phase defines the hardware configurations and software options; the 
second phase puilds the complete system. Some system generation 
parameters can be changed on-line, for example, partition configuration. 
If Executive services are to be changed, however, the user must re· 
generate the system. 

RSX) lS requires an RSX-11 M system for system generation and pro· · 
gram development. An RSX·11S system is generated from the RSX·11M 
system using the standard system generation process. The maximum 
hardware and software configuration is the same as th_at of an RSX·11M 
system with the exceptions of file system support, non-resident tasks, 
task checkpointing, and dynamic memory allocation and available peri· 
pherals. 

The basic software building blocks for an RSX·11S system are: 

1. The generatable features of the RSX-11M Executive (2.5 to 4K), in· 
eluding a special File Control Services (FCS) that contains no support 
for directory devices 

2. All RSX·11M 1/0 device drivers 

3. Subset MCR (2K) 

4. Online Task Loader (2.5K) 

5. System Image Preservation Program (1.5K) 

The minimum software system is an Executive. The smallest Executive 
that can be generated requires 2.5K words of memory. Services that are 
omitted from the 2.5K Executive include: 

• Address checking 

• Asynchronous System Traps 

5.7 



• 1/0 rundown 

• Task termination and device-not-ready notification 

• External MCR functions (user-written functions) 

• lristall, Request, and Remove-on-exit support 

• SEND, RECEIVE, GET TASK PARAMETERS,* GET 
SENSE SWITCHES and GET PARTITION PARAMETERS directives 

• Parity Memory support 

• Network support 

• All 1/0 drivers 

Although omitted from the minimum Executive, these features can be 
generated into an RSX-11S system at the cost of memory. 

The minimum RSX·11S software system must include the Executive and 
1/0 device drivers. For example, two to four 1/0 device drivers could be 
added to the minimum Executive at the cost of an additional 1.5K words 
of memory. In an SK word system, approximately 4K words would be 
available to application tasks. 

If operator communication is required, subset MCR can be included in 
a system at a cost of 2K of memory. In an SK system this still leaves 
approximately 2K for application tasks. 

The On-line Task Loader (OTL) can be included in an RSX-11S system if 
on-line loading of tasks is desired, OTL is capable of loading tasks from 
the following media: 

• Paper Tape Reader 

• Floppy Disk (RXVl 1) 

Tasks are created on a host RSX-11 M system, transferred to the load 
medium using RSX·11M's File Exchange Utility (FLX), and then loaded 
into a running RSX·llS system using OTL. The minimum size for OTL 
is 2.5K words. In 2.5K words, however,_ OTL supports only one load de­
vice. On-line task loading requires a 16K word system, since approxi­
mately S.5K words will be required for system software (2.5K Executive, 
2K MCR, 1.5K device drivers, and 2.5K OTL). · 

The System Image Preservation Program (SIP) is an on-line utility task 
that provides the capability to save the image of a running system onto 
a ioad device-medium in bootstrappable format. Permissible load devices 
are the same as for OTL. The saved system can subsequently be re· 
stored by bootstrapping it from the load device medium. The minimum 
size for SIP is 1.5K words. In 1.5K words, it can support only one load 
device. 

The standard RSX·llM File Control Services (FCS) record 1/0 package 
contains a large amount of code to support file-structured devices, 
RSX-11S contains no file support and therefore this code is unnecessary. 
The special version of FCS provided with RSX-11S is the standard FCS 
without the file support code. This provides a significant reduction in 
size while maintaining_ complete transparency. 

5-S 



5.4 SYSTEM CONVENTIONS 
To simplify operations, RSX-11 systems observe certain conventions with 
respect to devices and operator commands. 

5.4.1 Devices 
The RSX-llS system supports a variety of peripheral devices. They are 
referred to by a 2-letter name and an optional 1- or 2-digit unit number 
followed by a colon. For example, TT12: represents user terminal number 
12. Peripheral devices can_ be referred to by mnemonics, by pseudo­
device names, or, in task references, by logical unit numbers. In addition, 
RSX-llM systems support logical device name assignments. 

Pseudo-device names are associated with normal device mnemonics as­
signed by the system manager. They permit the system manager to 
dynamically determine the physical devices that will send or receive in­
formation. The following are pseudo-devices: 

SY: System device; indicates the device on which the system disk is 
mounted. 

Tl: Terminal interface; indicates the terminal with which a particular 
task is associated. Each terminal has a unique TL The Tl of each 
task is assigned to the requesting terminal. 

CL: Console log; indicates the device normally used for the listing of 
files. The CL device is normally redirected to the high-speed 
printer (LAVll). 

-CO: Console output; indicates the device by which the system can 
communicate with the system manager. The CO device is nor­
mally redirected to the system console. 

Logical unit numbers (LUN's) provide the mechanism for programs to 
maintain device independence. The logical unit numbers used in a pro­
gram can be assigned by means of device mnemonics to any available 
peripheral device that performs the desired function. LUN's can be as­
signed by the programmer at task build time, or by the task itself at 
run-time. Because the system provides default LUN assignments, it is 
not always necessary to assign a LUN to a task. Furthermore, LUN's 
can be changed by an MCR function for any installed, inactive, non-fixed 
task. 

5.4.2 MCR Operator Commands and Terminal Control 
The Monitor Console Routine (MCR) is the terminal interface between 
the user and the RSX-llS operating system. In the system, terminals can 
have either of two functions: command or slave. The system does not 
accept any unsolicited input from a slave terminal; its 1/0 is normally 
under task control. A command terminal is used to activate MCR and 
interface with the system using MCR system commands. 

MCR's system commands enable the general user to perform the follow­
ing functions: 

• gain access to the system 

• initiate and terminate execution of system or user programs 

In addition, the privileged user can perform the following additional 
functions: 

5-9 



• adjust, modify and control the system environment 

The privileged MCR user has complete control over the system's opera­
tion. The general user has no protection from the operations directed 
by the privileged user. · 

The RSX·ll systems include four different kinds of MCR commands: 
initialization commands, informational commands, task control com­
mands, and system maintenance commands. Table 5:2 lists the RSX-llS 
MCR comands, and indicates their system functions. 

Table 5-2 RSX-11 MCR Commands 

Initialization Command 

Command 

TIME 

Function 

Lists the time and date maintained in the system clock 
calendar. A privileged user can change the time and date. 

Informational Commands 

Command Function 

ACTIVE TASK Lists the active tasks in the system, indicating the tasks' 
LIST current status, for example, task suspended, waiting for 

1/0, etc. 
TASK LIST Lists a description of each task installed in the system, 

including task name, version number, default partition 
name, priority and size. (RSX-11D, this is an option of 
the SYSTEM command.) ' 

Task Control Commands 

Command 

REDIRECT 

RUN 

CANCEL 

ABORT 

RESUME 

REMOVE 

Function 

Redirects all 1/0 requests from one physical 
device to another . 

. Initiates the execution of an installed task. An installed 
task can be started immediately, started a specified time 
from when the command is issued, started a specified 
time from the next time unit, or started at an absolute 
time of day. A special option of the RUN command 
allows the user to run a task not installed; when issued, 
the task is installed, run and removed on exit. In all 
cases except the latter, the user can specify a resched­
ule interval for the task·. In addition, RSX-11D provides 
a RUN command option to run a program only if there 
is available memory. 

yancels any pending periodic rescheduling for a task. 

Terminates execution of a specified task. 

Continues execution of a previously suspended task. 

Removes a task name from the System Task Directory 
(opposite of INSTALL). Under RSX-11D, this command 
is also used to remove a Shareable Global Area (SGA) 
from the Global Common Directory. 

5-10 



Table 5·2 RSX·ll MCR Commands (Cont.) 

System Mai"!tenance Command 
Command Function 

OPEN Allows the privileged user to examine or modify a word 
in memory. 

In addition to the MCR commands available to control system execu· 
tion, RSX·l 1 system provide the following special terminal control char· 
acters: 

CTRL/C 

CTRL/Z 

CTRL/I 

CTRL/U 

CTRL/O 

CTRL/S 

Activates MCR at a terminal. The system types the 
prompt "MCR>". Note that, unlike most other PDP·ll 
systems, the RSX·ll family does not use CTRL/C to 
affect execution of any currently running tasks other than 
MCR;· 

Logical end-of-file; when typed in response to a prompt 
from most utility programs, CTRL/Z causes the program 
to exit. 

Causes a horizontal tab. 

Cancels the current input line. 

Enables or disables output to the terminal. 

Temporarily suspends output to the terminal. This feature 
enables users with high-speed terminals to fill the display 
screen, stop output with a CTRL/S and then continue 
with a CTRL/Q. -

CTRL/Q Resumes printing of characters on the terminal from the 
point at which printing was interrupted using CTRL/S. 

5.5 SYSTEM DIRECTIVES 
System directives are instructions to RSX-llS to perform functions for 
an executing task. System directives allow tasks to perform the follow­
ing: 
• Schedule other tasks, 

• Communicate with other tasks, 

• Measure time intervals, 

• perform 1/0 functions, 

• Suspend execution, 

• Exit 
Directives are generated by MACRO programs via macro calls and are 
supported for FORTRAN by library routines supplied by DIGITAL. 

Directives are implemented solely through the PDP,-11 •s EMT 377 in­
struction. By using only EMT 377, programs using EMT O through EMT 
376 can be run via a non-RSX system trap. Any EMT other than EMT 377 
traps to a task-contained service routine that can be written to simulate 
another environment to whatever degree is desired. 

By using-macro calls, instead of executing the directive, the programmer 
need only reassemble a program if changes are made in the directive 
specifications, rather than being required to edit the source code. 

Listed below are the RSX·llS Executive directives. 

5-11 



Task Execution Control Directives 

REQUEST 

RUN 

CANCEL 

SUSPEND 

EXIT 

ABORT 

Informational Directives 

GET TASK 
PARAMETERS 

GET 
PARTITION 
PARAMETERS 

GET LUN 
DATA 

GET TIME 
PARAMETERS 

GET SENSE 
SWITCHES 

Instruct the executive to request immediate 
execution of an indicated task. Memory parti· 
tion, priority, and UIC may be specified. 

Instruct the executive to schedule an indicated 
task's execution at a time specified in terms 
of delta time from issuance. Periodic resc.hed· 
uling, memory partition, priority, and UIC may 
be specified. 

Instruct the executive to cancel scheduled re­
quests for an indicated task's execution. Nor· 
mally, all scheduling for the indicated task is 
cancelled. 

Instruct the executive to suspend execution of 
the issuing task until explicitly resumed via a 
RESUME directive. 

Instruct the executive that the issuing task has 
completed its execution. Unless the exiting 
task is fixed, its memory is freed for use by 
other tasks. 

Instruct tlie executive to terminate the execu­
tion of an indicated task. 

Instruct the executive to return parameters re· 
lated to the issuing task. 

Instruct the executive to return parameters re· 
lated to an indicated memory partition. 

Instruct the executive to. return information 
regarding an indicated logical unit to the is­
suing task. 

Instruct the executive to return current time 
parameters (year, month, day, hour, minute, 
second, tick and ticks/second). 

Instruct the executive to return the polarities 
of the sixteen console switches. 

Event-associated Directives 

DECLARE 
SIGNIFICANT 
EVENT 

SET EVENT 
FLAG 

Instruct the executive to test for a new "high­
est priority task capable of execution" and, if 
found, interrupt the currently executing task 
and start the execution of the new highest 
priority task. An event flag to be set may also 
be specified. 

Instruct the executive to set an indicated event 
flag and return the previous polarity of the in· 
dicated flag (without a declaration of a signifi· 
cant event). 

5·12 



CLEAR EVENT 
FLAG 

READ ALL 
FLAGS 

WAIT FOR 
SINGLE 
EVENT FLAG 

WAIT FOR 
LOGICAL OR 
OF FLAGS 

WAIT FOR ANY 
SIGNIFICANT 
EVENT 

EXIT IF 

Instruct the executive to clear an indicated 
event flag and return the previous polarity of 
the indicated flag. 

Instruct the executive to return the polarities 
of all event flags. 

Instruct the executive to suspend the execu­
tion of the issuing task until an event flag of 
an indicated set of flags is set. 

Suspend execution of the issuing task until any 
indicated event flag in one of five groups is 
set. 

Instruct the executive to suspend the execu­
tion of the issuing task until the next signifi­
cant event. 

Instruct the executive to cause the issuing task 
to exit, if, and only if, an indicated event flag 
is clear, i.e., to continue execution if the flag 
is set. 

Trap-associated Directives 

MARK TIME Instruct the executive to set an indicated event 
flag after a specified period of time, and/or 
cause an AST (Asynchronous System Trap) 
after the specified time has elapsed. 

CANCEL MARK 
TIME REQUESTS 

DISABLE AST 
RECOGNITION 

ENABLE AST 
RECOGNITION 

SPECIFY POWER 
RECOVERY AST 

SPECIFY FPP 
EXECUTION AST 

SPECIFY 
RECEIVE AST 

Instruct the executive to cancel MARK TIME 
requests that have been made by the issuing 
task. 

Instruct the executive to inhibit AST (Asyn­
chronous System Trap) recognition for the is­
suing task; the AST's are queued, and only 
their recognition is inhibited. 

Instruct the executive to enable AST recogni­
tion for the issuing task. 

Tell the system whether or not power re­
covery AST's. are desired for the issuing task. 
If desired, this directive indicates where con­
trol is to be transferred when the AST occurs. 

Instruct the executive that the issuing task 
contains an AST service routine whose execu­
tion is to interrupt the task's execution when­
ever a floating point processor exception (error) 
occurs. 

Instruct the executive that the issuing task 
contains an AST service routine whose execu­
tion is to interrupt the task's execution when­
ever data is sent to the issuing task via the 
SEND directive. 

5-13 



AST EXIT 

SPECIFY SST 
VECTORS 

SPECIFY SST 
VECTOR TABLE 
FOR DEBUGGING AID 

1/0 Related Directives 

QUEUE 1/0 

ASSIGN LUN 

SEND DATA 

RECEIVE DATA 

RECEIVE DATA 
OR EXIT 

GET MCR COMMAND 

5.6 LANGUAGES 

Instruct the executive that the issuing task is 
exiting from an AST service routine. 

Instruct the executive that the issuing task 
contains a table of addresses of service rou­
tines to be executed upon task· trap or fault 
conditions (viz., memo~y protect violation). 

Specifies the virtual address of a tabl~ of syn­
chronous system trap service routine entry 
points for use by ODT or other debugging aids. 

Instruct the executive to queue an 1/0 request 
for the issuing task. This request is queued 
by priority for a logical unit which is assigned 
to a physical unit via various mechanisms. An 
event flag, an AST, and an in-task status block 
may be specified as an 1/0 completion indi­
cation. 

Instruct the executive to assign a logical unit 
number (LUN) of the issuing task to an indi­
cated physical unit. 

Instruct the executive to send a block of data 
to an indicated task. 

Instruct the executive that the issuing task 
wishes to receive data that has been sent from 
another task via the SEND directive. 

Instruct the executive to attempt to receive 
data for the issuing task. If no data is received, 
the issuing task is allowed to exit. 

Instruct the executive to transfer an MCR 
(console) command line to the issuing task. 

RSX-11 programs can be written in MACRO or FORTRAN IV. Programs 
written in MACRO or FORTRAN are translated into object code by the 
MACRO a.ssembler or FORTRAN IV compiler, and then are task built into 
executable images by the TKB Task Builder. 

5.6.1 MACRO 
RSX-11 MACRO assembler allows the user to take full advantage of the 
PDP-11 instruction set and the RSX-11 system directives. During as­
sembly, MACRO detects errors and produces output indicating the types 
of errors found, thus simplifying the process of locating program errors. 

5.6.2 FORTRAN IV 
RSX-11 FORTRAN is an ANSI standard FORTRAN IV language accom­
panied by an object time system (OTS). FORTRAN programs can be 
compiled into object code which can be linked, optionally with other 
object programs (either FORTRAN or MACRO), into executable task 
images. The OTS is an object library of commonly used FORTRAN rou­
tines, including math, error handling, process 1/0, laboratory peripheral 
routines, and Executive directives. 

5-14 



CHAPTER 6 

MACRO 

6.1 FUNCTIONS AND FEATURES 
PDP-11 MACRO processes source programs written. in the MACRO as­
sembly language and produces a relocatable object module and optional 
assembly listing. MACRO is included with the RT-11 operating system. 

MACRO provides the following features: 

• relocatable object modules 

• global symbols for linking separately-assembled object programs 

• device and filename specifications for input and output files 

• user-defined macros 

• comprehensive system macro library 

• program sectioning directives 

• conditional assembly directives 

• assembly and listing control functions at program and command string 
levels 

• alphabetized, formatted symbol table listing 

• default error listing on command output device 

The MACRO assembler included in the RT-11 system also features: 

• a Cross Reference Table (CREF) symbol listing 

6.2 LANGUAGE 
A MACRO source program is composed of a sequence of source coding 
lines. Each source line contains a single assembly language statement 
followed by a statement terminator, such as a carriage return. The as­
sembler processes source statements sequentially, generating binary ma­
chine instructions and data words or performing assembly-time opera­
tions (such as macro expansions) for each statement. 

A statement can contain up to four fields which are identified by order 
of appearance and by specified terminating characters. The general for­
mat of a MACRO assembly language statement is: 

label: operator operand(s) ;comments 

The label and comment fields are optional. The operator and operand 
fields are interdependent; either can be omitted depending upon the 
contents of the other. Some statements have one operand, for example: 

CLR RO 

while others have two: 

MOV #344,R2 

6-1 



A label is a unique user-defined symbol-which is assigned the current 
location counter and entered into the user-defined symbol table. A label 
is a symbolic means of referring to a specific location within a program. 
The value of the label can be either absol.ute (fixed in memory inde­
pendently of the position of the program) or relocatable (not fixed in 
memory), depending on whether the location counter value is currently 
absolute or relocatable. 

An operator field follows the label field, if present, and can contain a 
macro call, a PDP-11 instruction mnemonic, or an assembler directive. 
When the operator is a macro call, the assembler inserts the appropriate 
code during assembly to expand the macro. When the operator is an 
instruction mnemonic, it specifies the instruction to be generated and 
the action to be performed on any operands which follow. When the 
operator is an assembler directive, it specifies a certain function or ac­
tion to be performed during assembly. 

An operand is that part of the statement manipulated by the operator. 
Operands can be expressions, numbers, symbolic arguments, or macro 
arguments. 

The comment field can contain any ASCII text characters. Comments do 
not affect assembly processing or program execution, but are useful in 
source listings for later analysis, documentation or debugging purposes. 

6.2.1 Symbols and Symbol Definitions 
Three types of symbols can be defined for use within MACRO source 
programs: permanent symbols, user-defined symbols and macro symbols. 
Correspondingly, MACRO maintains three types of symbol tables: the 
Permanent Symbol Table (PST), the User Symbol Table (UST) and the 
Macro Symbol Table (MST). 

Permanent symbols consist of the PDP-11 instruction mnemonics and 
MACRO directives. The PST contains all the permanent symbols auto· 
matically recognized by MACRO and is part of the assembler itself. ·since 
these symbols are permanent, they do not have to be defined by the user 
in the source program. 

User-defined symbols are those used as labels or defined by direct as­
signment. Macro symbols are those symbols used as macro names. The 
UST and MST are constructed during assembly by adding the symbols to. 
the UST or MST as they are encountered. 

The value of a symbol depends on its use in the program. A symbol in 
the operator field can be ·a macro symbol, a user-defined symbol or a 
permanent symbol. To determine the value of the symbol, the assembler 
searches the three symbol tables in the following order: MST, UST and 
PST. 

A symbol used in the operand field can be either a user-defined symbol 
or a permanent symbol. To determine the value of the symbol, the as· 
sembler searches the User Symbol· Table and the Permanent Symbol 
Table in that order. 

6-2 



These search orders allow redefinition of Permanent Symbol Table en­
tries as user-defined or macro symbols. The same name can be assigned 
to both a macro and a label. 

User-defined symbols are either internal or external (global) to a source 
program module. An internal symbol definition is limited to the module 
in which it appears. A global symbol can be defined in one source pro­
gram module and referenced within another. 

Internal symbols are temporary definitions which are resolved by the 
assembler. Global symbols are preserved in the object module and are 
not resolved until the object ·modules are linked into an executable pro­
gram. With some exceptions, all user-defined symbols are internal unless 
explicitly defined as being global. 

When a label is given to a program statement, a symbol table entry is 
made and the value of the current location counter is assigned to it. 

A direct assignment statement associates a symbol v,iith a value. When 
a direct assignment is first used to define a symbol, that symbol is en­
tered into the User-defined Symbol Table, and the specified value is 
associated with it. The general format for a. direct assignment is: 

symbol = expression 

Expressions are combinations of terms that are joined together by binary 
operators and that reduce to a 16-bit value. Binary operators are, for 
example, addition, subtraction, multiplication, division, logical AND, and 
logical inclusive OR. 

The expression in a direct assignment statement can itself be a refer­
ence to another symbol. In this way, a symbol can be redefined in a 
subsequent direct assignment statement if the symbol definition con­
tains a reference to a subsequently-defined symbol. Only one level of 
forward referencing is allowed. The following example illustrates an illegal 
forward reference: 

X=Y 
Y=Z 
z = 1 

(Legal forward reference) 
(Illegal forward reference) 

Although one level of forward referencing is allowed for local symbols, a 
global symbol defined in a direct assignment statement must not contain 
a forward reference. The global assignment expression (= =) must riot 
itself conta'in an undefined reference to another symbol. 

Local symbols are specially-formatted internal symbols used as labels 
within a given range of source code, called a local symbol block. Local 
symbols are of the form n$, where n is a decimal integer between 1 and 
65535, inclusive. Examples of local symbols are: 1$, .27$, 59$, 104$. 

A local symbol block can be delimited in one of three ways: 

• The range of a local symbol block usually consists of those statements 
between two normally-defined labels. 

6-3 



• The range of a local symbol block is normally terminated upon enter­
ing a new program section, as defined by a program !!ection directive. 

•. The range of a local symbol block can be explicitly defined by the use 
of the .ENABL and .DSABL directives. 

Local symbols provide a convenient means of generating labels to be 
referenced only within a local symbol block. The use of local symbols 
reduces the possibility of entry point symbols with multiple definitions 
appearing within a program. A local symbol, then, is not referenced from 
other source program modules or even from outside its local symbol 
block. Thus, local symbols of the same name can appear in other local 
symbol blocks without conflict. 

6.2.2 Directives 
A program statement can contain one of three different operators: a 
macro call, a PDP-11 instruction mnemonic, or an assembler directive. 
MACRO includes directives for: 

• listing control 

• function specification 

• data storage 

• radix and numeric usage declarations 

• location counter control 

• program termination 

• program boundaries information 

• program sectioning 

• global symbol definition 

• conditional assembly 

• macro definition 

• niacro attributes 

• macro message control 

• repeat block definition 

• macro libraries 

Table 6·1 lists the MACRO directives. 

Table 6-1 Assembly and Macro Directives 

Listing Control Directives 

.LIST 

.NLIST 

.TITLE 

Control the listing of source lines, sequence numbers, cur­
rent ld'cation counter field, generated binary code, source 
code, comments, macro expansions, table of contents, sym­
bol table, etc. 

Assigns a name to the object module and provides the 
header of each page in the assembly listing. 

6-4 



.SB TTL 

. IDENT 

.PAGE 

Table 6-1 Assembly an<!_ Macro Directives (Cont.) 

Identifies an element to be included in the assembly listirrg 
table of contents. 

Provides an additional label for the object module . 

Ejects a page in the assembly listing. Same as issuing a form 
feed. 

Func.tion Directives 

.ENABL 

.DSABL 
Enables or disables the following function control options: 
produce absolute binary output, assemble all relative ad· 
dresses as absolute addresses (useful during debugging), 
ignore card column sequence numbers, truncate or round 
floating-point values, accept lower case input, permit a local 
symbol block to cross program boundaries (useful for mul· 
tiple-entrant routines), inhibit binary output. 

Data Storage Directives 

.BLKB 

. BLKW 

.BYTE 

.WORD 

.ASCII 

.ASCIZ 

.RAD50 

.FLT2 

. FLT4 

Reserves a byte- or word-aligned block of storage in the ob­
ject program . 

Stores a binary value in a byte in the object module. Used to 
generate successive bytes of data. 

Stores a binary value in a word in the object module. Used 
to generate successive words of data. 
Stores the ASCII code(s) for the given character(s) follow­
ing the apostrophe or quote in a byte or word. Used to gen­
erate text characters in the source code. 

Translates a character string into its equivalent 7-bit ASCII 
values and stores them in the object module. 
Translates a character string into its equivalent 7-bit ASCII 
values and stores them in the object module appending a 
zero byte to the string. This enables the program to identify 
the end of the string by searching for a null character (zero 
byte). · 

Allows three ASCII characters to be packed into one word 
(Radix-50 format); using this directive, any 6-character sym­
bol can be stored_ in two consecutive words. 
Stores a floating-point number in 2-word floating-point for-
m~ . 
Stores a floating-point number in 4-word floating-point 
format. 

6-5 



Table 6-1 Assembly and Macro Directives (Cont.) 

Radix and Numeric Control Operators 

.RADIX Declare any one of the following radices to apply to succeed­
ing numbers in the source program: 2, 4, 8 or 10. 
Declare a (temporary) decimal, o~tal or binary radix for .the 
number following the control operator. 

Declare that the number following the control operator is to 
be one's complemented as it is evaluated during assembly. 
Declare that the number following the control operator is to 
be interpreted as a l·word floating point argument. 

Location Counter Control Directives 

.EVEN 

.ODD 

Ensures that the current location counter contains an even 
value by adding one if the current value is odd. 
Ensures that the current location counter contains an odd 
value by adding one if the current value is even. 

Terminating Directives 

.END Indicates the logical end of source input and, optionally, 
specifies the entry point, starting or transfer address . 

. EQT End of input tape. Ignored by the Assembler (included for 
compatibility with PAL-11 assemblers). 

Program Boundaries Directive 

.LIMIT Reserves two words in the object module which, during link­
ing, are used fa store the address of the bottom of the 
program and the address of the first free word following the 
program image. This enables the program to determine its 
upper and lower address boundaries during execution. 

Program Sectioning Directives 

. ASECT 

.CSECT 

Begin or continue an absolute P,rogram section . 

Begin or continue a relocatable program section.· 

Symbol Control Directive 

.GLOBL Defines (and thus provides linkage to) symbols not other­
wise defined as global.symbols within a module. 

Conditional Assembly Directives 

.IF If the condition specified in the argument is met, include 

6-6 



. ENDC 

.IFF 

.IFT 

.IFTF 

. llF 

Table 6-1 Assembly and Macro Directives (Cont.) 

the following block of code in the assembly. Condition test 
ing can be based on the value of an expression, the exis· 
tence of a definition for a symbol, or the value of a macro­
type argument . 

Identifies the end of the conditional assembly block. 

The code following this subconditional directive, and contin­
uing up to the next occurrence of a subconditional directive 
or to the end of the conditional assembly block, is to be 
included in the program, providing that the condition tested 
upon entering the conditional assembly block is false. 

The code following this subconditional directive, and con­
tinuing up to the next occurrence of a subconditional di­
rective or to the end of the conditional assembly block, is 
to be included in the program, providing that the condition 
tested upon entering the conditional assembly block is true. 

The code following this subconditional directive, and con­
tinuing up to the next occurrence of a subconditional di­
rective or to the end of the conditional assembly block, is 
to be included in the program, regardless of the result of 
the condition tested upon entering the conditional assembly 
block . 

Assemble this line of code if the condition specified on the 
line is met. 

Macro Definition Directives 

. MACRO 

.ENDM 

.MEXIT 

Identifies the beginning of a macro definition . 

Identifies the end of a macro definition. 

Terminates a macro expansion before the end of the macro 
is encountered. 

Macro Attribute Directives 

.NARG 

.NCHR 

.NTYPE 

Determines the number of arguments in the macro call cur­
rently being expanded. 

Determines the number of characters in a specified char­
acter string. It is useful in calculating the length of macro 
arguments. 
Determines the addressing mode of a specified macro ar­
gument. 

Macro Message Control Directives 

. ERROR Sends a message to the listing file during assembly pass 2 . 
A common use of this directive is to provide a diagnostic 
announcement of a rejected or erroneous macro call or to 
alert the user to the existence of an illegal set of conditions 

6-7 



.PRINT 

Table 6-1 Assembly and Macro Directives (Cont.) 

specified in a conditional assembly. 
Identical to the .ERROR directive, except that it is not 
flagged in the assembly with an error code. 

Macro Repeat Block Directives 

.IRP 

.IRPC 

.REPT 

Replaces a dummy argument with successive real arguments 
specified in an argument string. 

Replaces a dummy argument with each successive character 
of the specified string. 

Duplicates a block of code a number of times in-line with 
other source code. 

Macro Library Directive 

.MCALL Includes in the assembly macro definitions which are taken 
from system or user macro library files. 

LISTING CONTROL DIRECTIVES 
Several listing control directives are provided in MACRO to control t)le 
content, format and pagination of all listing output generated during 
assembly. Facilities also exist for creating object mcidule names and 
other identification information in the listing output. 

The listing control options can also be specified at assembly-time through 
switch options included in the listing file specification in the command 
string issued to the MACRO assembler. The use of these switch options 
overrides all corresponding listing control directives in the source pro· 
gram. 

When no listing file is specified, any errors encountered in the source 
program are printed on the terminal from which MACRO was initiated. 

FUNCTION DIRECTIVES 
Several function control options are provided by MACRO through the 
.ENABL and .DSABL directives. These directives are included in a source 
program to invoke or inhibit certain MACRO functions and operations 
incident to the assembly process itself. They include .the ability to: 

• Produce absolute oinary output. 

• Assemble all relative addresses as absolute addresses. This function 
is useful during the debugging phase of program development. 

• Cause source columns 73 and greater (to the end of the line) to be 
treated as commen't 

• Truncate or round floating point literals. 

• Accept lower case ASCII input instead of converting it to upper case. 

6-8 



• Enable a local symbol block to cross program section boundaries. A 
local symbol block is normally established by encountering a new 
symbolic label or a program section directive in the source program. 
By enabling a local symbol block to cross program section boundaries, 
a local symbol block can be established which is not terminated until 
another symbolic label or program section directive is encountered 
following a disable local symbol block function directive. Local symbols 
cannot, however, be defined in a program section other than that 
which was in effect wheh the block was entered. The basic function 
of this directive in regard to program sections is limited to those in­
stances were it is desirable to leave a program section temporarily 
to store data, followed by a return to the original program section. 

• Inhibit binary output. 

CONDITIONAL ASSEMBLY DIRECTIVES 
Conditional assembly directives enable the programmer to include or ex­
clude blocks of source code during the assembly process, based on the 
evaluation of stated condition tests within the body of the program. This 
capability allows several variations of a program to be generated from 
the same source. 

The user can define a conditional assembly block of code, and within 
that block, issue subconditional directives. Subconditional directives 
within conditional assembly blocks are used to indicate: 

• The assembly of an alternate body of code when the condition of the 
block tests false. 

• The assembly of a non-contiguous body of code within the conditional 
assembly block, depending on the result of the conditional test on 
entering the block. 

• The unconditional assembly of a body of code within a conditional. 
assembly block. 

Conditional assembly directives can be nested. MACRO permits a nesting 
depth of 16 conditional assembly levels. 

MACRO DEFINITIONS AND REPEAT BLOCKS 
In assembly-language programming, it is often convenient and desirable 
to generate a recurring coding sequence by invoking a single statement 
within the program. In order to do this, the desired coding sequence is 
first established with dummy arguments as a macro definition. Once a 
macro has been defined, a single statement calling the macro by name 
with a list of real arguments (replacing the corresponding dummy argu­
ments in the macro definition) generates the desired coding sequence 
or macro expansion. 

Macros can be nested; that is, the definition of one macro can include a 
call to another. The depth of nesting allowed is dependent on the amount 
of memory used by the source program being assembled. 

A label is often required in an expanded macro. Normally, a label can 
be explicitly specified as an argument with each macro call. Care must 
be taken, however, in issuing subsequent calls to the same macro in 

6-9 



order to avoid specifying a duplica_te label as a real argument. This 
concern is eliminated through a feature of MACRO which creates a 
unique symbol where a label is requir"'.d in an expanded m~cro. 

MACRO can automatically create unique local symbols. This automatic 
facility is invoked on each call of a macro whose definition contains a 
dummy argument preceded by the question mark (?) character, if a real 
argument of the macro call is either null or missing. If the real argu­
ment is specified in the macro call, however, MACRO does not generate 
a locai symbol and normal argument replacement occurs. 

An indefinite repeat block is a structure that is very similar to a macro 
definition. Such a structure is essentially a macro definition that has 
only one dummy argument. At each expansion of the indefinite repeat 
range, this dummy argument is replaced with successive elements of a 
specified real argument list. An indefinite repeat block directive and its 
associated repeat range are coded in-line within the source program. 
This type of macro definition does not require calling the macro by 
name, as required in the expansion of conventional macros described 
above. 

An indefinite repeat block can appear within or outside of another macro 
definition, indefinite repeat block, or repeat block. 

MACRO CALLS AND STRUCTURED MACRO LIBRARIES 
All macro definitions must occur prior to their references within the user 
program. MACRO provides a selection mechanism for the programmer 
to indicate in advance those system macro definitions required in the 
program. (System macros include the monitor programmed requests or 
executive directives available with each operating system.) 

The .MCALL directive is used to specify the names of all the macro def­
initions not defined in the current program but which are used in the 

·program. When this directive is encountered, M_ACRO searches the sys­
tem macro library file to find the requested definition. 

Each library file contains an index of the macro definitions it contains. 
When an .MCALL directive is encountered in the source program, MACRO 
searches the user macro library for the named macro definitions and, 
if necessary, continues the search with the system macro library. Be­
cause each macro library contains an index of all of its entries, MACRO 
searches only the index in each library to find where the macro definition 
is stored. 

6.3 ASSEMBLER OPERATION 
The MACRO Assembler assembles one or more ASCII sources containing 

. MACRO statements into a single relocatable binary object program. 
MACRO can accept source data from any input device, such as ,a floppy 
disk or paper tape reader. The sources to be included in a single as­
sembly are listed in the command string from left to right in the order 
in which they are to be assembled. The last statement in the last source 
specified is normally the .END statement. 

Assembler output consists of the binary object file and an optional as­
sembly listing followed by the symbol table listing. Using the MACRO 

6-10 



available under RT-11, cross reference (CREF) listings can also be pro­
duced. 

MACRO is a two-pass assembler. During assembly pass one, MACRO 
locates and reads all required macros from libraries, builds symbol 
tables and program section tables for the program, and performs a 
rudimentary assembly of each source statement. During assembly pass 
two, MACRO completes the assembly, writes out an object file, and gen­
erates an assembly and symbol table listing for the program. 

At the end of assembly pass one, MACRO determines whether a given 
global symbol is defined in the current program modules or whether it 
is to be treated as an external symbol. In general, all undefined global 
symbols appearing in a given program must be defined by the end of 
assembly pass one. 

The object module MACRO produces must be processed by the operat­
ing system's linker utility program (called the Linker or Task Builder) 
to create an executable program. The linker joins separately-assembled 
object modules into a single load module (task image). The linker fixes 
(makes absolute) the values of the external or relocatable symbols in 
the object module. 

To enable the linker to fix the value of an expression, MACRO passes 
it certain directives and parameters. In the case of the relocatable ex­
pressions in the object module, the linker adds the base of the asso­
ciated relocatable program section to the value of the relocatable ex­
pression provided by MACRO. In the case of external expression values, 
the linker determines the value of the external term in the expression 
(since the external expression must be defined in at least one of the 
other object modules being linked together) and then adds it to the 
absolute portion of the external expression, as provided by MACRO. 

In summary, an executable program image can be constructed from 
one or more source modules, which can be assembled either separately 
or together. The resultant object module(s) must be linked together 
using the linked utility. Figure 6-1 illustrates the processing steps re­
quired to produce an executable program from several sources stored 
as files. 

PROGRAM SECTIONING 
The MACRO program sectioning directives are used to declare names 
for program s.ections and to establish certain program sectiol"! attributes. 
These program section attributes are used when the program is linked 
into an executable load module or task. 

A program can consist of an absolute program section, an unnamed re­
locatable program section, and up to 254 named relocatable program 
sections. The absolute program section serves to "link" the program 
with fixed memory locations such as interrupt vectors and the peripheral 
device register addresses. 

The relocatable program sections are also called control sections, since 
they normally contain instructions. The unnamed control section is in­
ternal to each object module. That is, every object module can have an 

6-11 



SOUFKE 
FILE IA 

SOURCE 
FILE lB 

SOU~CE 
FILE 2 

SOURCE 
FILE 3 

o~, 
·~_'.__J'~ 

l1NKEP. 

OR 
TASK BUILDER 

EXECUTABLE 
LOAD MODULE 

(fAS:< IMAGE) 

•CAN ALSO INCLUDE A CROSS· REFERENCE 
SYMBOL TABLC llSTING ON RT-11 MACRO 

••CAN ALSO INCLUDE A GLOBAL CROSS­
REFERENCE LISTING IN RSX-11 TASK B'J1LDER 

Figure 6-1 MACRO Assembly Procedure 

unnamed control section but the linker treats each control section in­
dependently. Each is assigned an absolute address such that it occupies 
an exclusive area of memory. Named control, sections, on the other 
hand, are treated globally, in the same manner as FORTRAN COMMON.''' 
If different object modules have control sections with the same name, 
they are all assigned the same absolute load address and the size of the 
area reserved for loading of the section is the size of the largest. Thus, 
named control sections allow for the sharing of data and/or instructions 
among object modules. 

The assembler maintains separate location counters for each section. 
The first occurrence of a program section directive assumes that the 
current location counter is set at relocatable zero. The scope of this 
directive then extends until a directive declaring a different program sec­
tion is specified. For example: 

.CSECT 
A: 0 
B: 0 
C: 0 
ST: CLR 

CLR 
CLR 
.ASECT 

;start the unnamed relocatable section 
;assembled at relocatable 0, 
;relocatable 2 and 
;relocatable 4 
;assemble code at 
;relocatable address 
;6 through 21 
;start the absolute section 

'If declared with the .PSECT directive (see below), they must have the attributes 
global and overlaid. 

6-1'2 



.=4 

.WORD .+2, .HALT 

.CSECT 
INC A 
BR ST 
.END 

;assemble code at 
;absolute locations 4 through 7 
;resume the unnamed relocatable section 
;assemble code at 
;relocatable 22 through 27 

By maintaining separate location counters for each program section, 
MAC.RO allows the user to write statements which are not physically 
contiguous within the program, but which can be loaded contiguously 
following assembly. ' 

MACRO under RT-11 includes two program sectioning directives: .CSECT 
and .ASE;CT. The .CSECT directive is used to define the named and un­
named relocatable program sections. The .ASECT directive is used to 
identify the portions of the absolute program section. 

The .PSECT directive allows the user to exercise absolute control over 
the memory allocation of a program at task-build time, since any pro­
gram attributes established through this directive are passed to the Task 
Builder. For example, if a programmer is writing programs for a multi­
user environment, a program section containing pure code (instructions 
only) or a program section containing impure code (data only) can be 
explicitly declared through the .PSECT directive. Furthermore, these pro­
gram sections can be explicitly declared as read-only code, qualifying 
them for use as protected, reentrant programs. In addition, program 
sections exhibiting the global attribute can be explicitly allocated in a 
task's overlay structure by the user at task-build time. The advantages 
gained through sectioning programs in this manner therefore relate pri­
marily to control of memory allocation and program modularity. 

The .PSEC.T directive allows the user to define the following program 
section attributes: 

Access 
Two types of access can be permitted to the program section: read-only 
or read/write. 

Contents 
A program section can contain either instructions or data. This attribute 
allows the Task Builder to differentiate global symbols that are program 
entry-point instructions from those that are data values. 

~cope 
The scope of the program section can be global or local. In building 
single-segment programs, the scope of tt1e program has no meaning, 
because the total memory allocation for the program will go into the 
root segment of the task. The global or local attribute is significant only 
in the case of overlays. If an object module contains a local program 
section, then the storage allocation for that module will occur within 
the segment in which the module resides. Many modules can reference 
this same program section, and the memory allocation for each module 
is either concatenated or overlaid within the segment, depending on the 
argument of the program section defining its allocation requirements (see 

6-13 



below). If an object module contains a global program section, the 
memory area allocations to this program section are collected across 
segment boundaries, and the allocation of memory for that section will 
go into the segment nearest the root in which the first memory alloca­
tion to this program section appeared. 

Relocatability 
A program section can be absolute or relocatable. When a program sec­
tion is declared to be absolute, the program section requires no relo­
cation. The program section is assembled and loaded, starting at abso­
lute virtual address 0. When the program section i's declared to be re­
locatable, the Task Builder calculates a relocation bias and adds to it 
all references within the program section. 

Allocation Requirements 
The program section can be concatenated or overlaid. When concate­
nated, all memory allocations to the program section are to be con­
catenated with other references to this same program section in order 
to determine the total memory allocation requirements for this program 
section. When overlaid, all memory allocations to the program section are 
to be overlaid_ Thus, tile total allocation requirement for the program 
section is equal to the largest individual allocation request for this pro­
gram section. 

6.4 ASSEMBLER ENVIRONMENTS 
MACRO requires an RT-11 system configuration (or background parti­
tion) of 12K words or more. If more than 12K words are available, 
MACRO will use the additional memory to increase the amount of sym­
bol table space possible. 

RT-11 MACRO provides a system macro library containing the expanded 
code for all the RT-11 Monitor's programmed requests. Refer to the 
RT-11 chapter in Section II of this handbook for a list of the RT-11 
programmed requests. 

Under the RT-11 operating system, a smaller version of MACRO, called 
ASEMBL, is available for users with minimum system configurations. 
ASEMBL has the same features as MACRO with the following exceptions: 

• macro directives (.MACRO, .MCALL, .ENDM, .!RP, etc.) are not recog­
nized 

~ DATE is not printed in listings 

• wide line-printer output is not available 

• there is no lower case mode 

• there is no enable/disable punch directive 

• there are no floating point directives 

• there are no local symbols or local symbol blocks 

• CREF is not available 

Most of the macro definition features not available in ASEMBL are sup­
ported by EXPAND. EXPAND is an RT-11 system program which pro­
cesses the macro references in a macro assefT!bly language source file. 

6-14 



EXPAND simply copies its input files to its output file unless it en­
counters any of the following directives: .MCALL, .MACRO, .name, and 
.ENDM. The .MCALL directive instructs EXPAND to search the system 
macro library to find the macro (lames listed in the directive, and store 
their definition in internal tables. The .MACRO directive instructs EXPAND 
to copy a macro definition from the ·user's input file to its internal 
tables. The .name directive, if "name" is the name of a macro, instructs 
EXPAND to replace the macro call with the definition stored in its in­
ternal tables. The .ENDM directive terminates the macro definition when 
encountered while EXPAND stores a macro definition. 

6-15 



6-16 



CHAPTER 7 

FORTRAN IV 

7.1 FUNCTIONS AND FEATURES 
The FORTRAN IV compiler and Object Time System is available as an 
optional language processing system for the RT-11 operating system. 
The FORTRAN compiler accepts source programs written in the FOR­
TRAN IV language and produces an object file which must be linked 
prior to execution. The PDP-11 FORTRAN IV language conforms to the 
specifications for the American National Standard FORTRAN X3.9-1966. 
The following are enhancements to the American National Standard: 

• Array Subscripts-any arithmetic expression can be used as an array 
subscript. If the value of the expression is not an integer, it is con­
verted to integer format. 

• Array Dimensions-'--arrays can have up to seven dimensions. 

• Character Literals-character strings bounded by apostrophes can be 
used in place of Hollerith constants. 

• Mixed-mode Expressions-mixed-mode expressions can contain any 
data type, including complex and byte. 

• End of line comments-any FORTRAN statement can be followed, in 
the same line, by a comment that begins with an exclamation point. 

• Debugging Statements-statements that are included in a program for 
debugging purposes can be so designated by the letter D in column 1. 
Those statements are compiled only when the associated compiler com­
mand string option switch is set. They are treated as comments other­
wise. 

• Read/Write 'End-of-file or Error Condition Transfer-the specifications 
END= n and ERR= n (where n is a statement number) can be in­
cluded in any READ or WRITE statement to transfer control to the 
specified statement upon detection of an end-of-file or error condition. 
The ERR = n option is also permitted in the ENCODE and DECODE 
statements, allowing program control of data format errors. 

• General Expressions in 1/0 lists-general expressions are permitted in 
1/0 lists of WRITE, TYPE, and PRINT statements. 

• General Expression DO and GO TO Parameters-general expressions 
are permitted for the initial value, increment, and limit parameters in 
the DO statement, and as the control parameter in the computed GO 
TO statement. · 

• DO Increment Parameter-the value of the DO statement increment 
parameter can be negative. 

7·1 



• Optional Statement Label List-the statement label list in an assigned 
GO TO is optional. 

• Override Field Width Specifications-undersized input data fields can 
contain external separators to override the FORMAT field width specifi­
cations for those fields (called "short field termination"), permitting 
free'format input from terminals. '" 

• Default FORMAT Widths-the FORTRAN IV programmer may specify 
input or output formatting by type and default width, and precision val­
ues will- be supplied. 

• Additional 1/0 Statements: 
Device-oriented 1/0 

ACCEPT 
TYPE 
PRINT 

Memory-to-memory formatting 
ENCODE . 
DECODE 

Unformatted direct access 1/0 
DEFINE FILE 
READ (u'r) u = logical unit number 
WRITE (u'r) r = record number 
FIND (u'r) 

The unformatted direct access 1/0 facility allows the FORTRAN pro­
grammer to read and write files written in any format. 

• Logical Operations on INTEGER Data-the logical operators .AND., .OR., 
.NOT., .XOR., and .EQV. may be applied to integer data to perform bit 
masking and manipulation. 

• Additional Data Type---,the byte data type (keyword LOGICAL~· 1 or BYTE) 
is useful for storing small. integer values as well as for storing and 
manipulating character information. It enables the programmer to 
save space when manipulating small integer values without affecting 
their characteristics, because they are treated internally as integer 
values. Since the arithmetic and masking operations are legal for the 
byte data type, it is a_lso possible to manipulate and modify character 
data. 

• IMPLICIT Declaration-the IMPLICIT statement has been added to 
redefine ·the implied data type of symbolic names. 

• Fewer Syntactic Restrictions-FORTRAN IV has no statement ordering 
requirements, allowing declarations to appear anywhere within the 
source program. Terminal format input (using the tab character to de· 
limit fields) eases program preparation. 

The FORTRAN IV compiler performs well in small environments. On an 
RT-11 system with as little as. SK words of memory, FORTRAN IV can 

· compile programs containing as many as 450 lines. On an RT·ll system 
with 28K words, FORTRAN IV can compile programs containing as many 
as 2200 lines. 

Despite its small size requirements and high compilation rate, FORTRAN 
IV provides a high level of automatic object program optimization. The 
compiler performs redundant e'xpression eliminati.on, constant expression 

7-2 



folding, branch structure optimization, and several types of subscripting 
optimizations. 

7.2 LANGUAGE 
A FORTRAN program consists of FORTRAN statements and optional com· 
ments. There are two kinds of statements: executable and non-executable. 
Executable statements describe the action of the program. Non-execut­
able statements describe the data arrangement and characteristics, and 
provide editing and data conversion information. 

There are assignment statements, control statements, 1/0 statements, 
FORMAT statements and specification statements. FORMAT and specifi­
cation statements are non-executable. Table 7.2 summarizes the FOR­
TRAN IV language components. 

Table 7-2 FORTRAN IV language Summary 

Expression Operators 

TYPE 

Arithmetic 

Relational 

Logical 

OPERATOR 

I 
+. 

.GT. 

.GE. 

.LT. 

.LE. 

.EQ. 

.NQ. 

.NOT. 

.AND. 

.OR. 

exponentiation 
multiplication 
division 
addition, subtraction, 
unary plus and minus · 

greater than 
greater than or 

equal to 
less than 
less than or 

equal to 
equal to 
not equal to 

.NOT.A is true 
if and only if 
A is false 
A.AND.B is true if 
and only if A and 
B are both true 
A.OR. B is true if 
and only if A or 
B or both are true 

.EQV. A.EQV.B is true if 
and only if either 
A and B are both true 
or A and B are both 
false 

.XOR. A.XOR.B is true if and 
only if A is true and 
B is false or B is true 
and A is false 

7-3 

OPERATES ON 

arithmetic or logical con­
stants, variables and ex­
pressions 

arithmetic or logical 
constants, variables 
and expressions (all 
relational operators 
have equal priority) 

logical or integer 
constants, variables 
and exprnssions 



Table 7-2 FORTRAN IV Language Summary (Cont.) 

Assignment Statements 
variable=expression 

ASSIGN· TO 

Control Statements 

Arithmetic/Logical Assignmei;it: 
The value of the arithmetic or logical expression 
is assigned to the variable. 

The ASSIGN statement is used to associate a 
statement label with an integer variable. The 
variable can then be used as a transfer desti­
nation in a subsequent assigned GO TO state· 
ment in the same program unit. 

GO TO Unconditional Transfers control. to the same state­
ment every time it is executed. 

Computed 

Assigned 

IF Arithmetic 

Logical 

DO 

CONTINUE 

CALL 

Permits a choice of transfer destina­
tions, based on a value of an expres­
sion within the statement. 

Transfers control to a statement label 
that is represented by a variable. Be­
cause the relationship between the vari­
able and a specific statement label 
must be established ·by an ASSIGN 
statement, the transfer destination can 
be changed, depending upon which 
ASSIGN statement was most recently 
executed. 

Transfers control to a statement de­
pending on the value of an arithmetic 
expression. Used for conditional con­
trol transfers. 

_ Executes a statement if the test of a 
logical expression is true. 

Causes the statements in its range to 
be repeatedly executed a specified 
number of times. The range of the DO 
begins with the statement following the 
DO and ends with a specified terminal 
statement. The number of iterations 
is determined by the values for the 
initial, terminal, and increment para­
meters. 

Causes no processing. Passes control 
to the next executable statement. Used 
primarily as the terminal statement of 
a DO loop when that loop would other­
wise end with a GO TO, arithmetic IF, 
or other prohibited control statement. 
Calls a SUBROUTINE subprogram and 
passes it actual arguments to replace 

· the dummy arguments in the subpro­
gram. 

7-4 



Table 7-2 FORTRAN IV Language Summary (Cont.) 

RETURN Returns control from a subprogram to 
the calling program unit. 

PAUSE Prints a message (if specified) on the 
terminal and s'uspends execution until 
the user responds. 

STOP Terminates program execution and 
prints a message (if specified) on the 
terminal. 

END Marks the end of a program unit. In a 
main program, if control reaches the 
END statement, a CALL EXIT is im­
plicitly executed. ·in a subprogram, a 
RETURN statement is implicitly ex­
ecuted. 

Input/Output Statements 

READ Formatted 

Unformatted 

Direct Access 

Error Control 

WRITE Formatted 

Unformatted 

Direct Access 

Error Control 

Reads at least one logical record from 
the specified device according to the 
given format specifications, and assigns 
values to the elements in a list. 

Reads one logical record from the spe­
cified device, assigning the input values 
to the variables in a list. 
Reads from the specified logical record 
and assigns the input values to the 
variables in a list. 

Optional elements in the READ state­
ment allow control transfer on error 
conditions. If an end-of-file condition 
is detected and the END option is spe­
cified, execution continues at a given 
statement. If a recoverable 1/0 error 
occurs and the ERR option is specified, 
execution continues at a given state- · 
ment. 

Writes one or more logical records con· 
taining the values of the variables in a 
list onto the specified device in the 
given format. 

Writes one logical record containing the 
values of the variables in the list onto 
the specified device. 

Writes one logical record containing the 
values of the variables in the list into 
the specified record of the given device. 

Optional elements in the WRITE state­
ment allow control transfer on error 
conditions. If an end-of-file condition is 

7-5 



Table 7·2 FORTRAN IV Language Summary (Cont.) 

ACCEPT 

TYPE 

PRINT 

DEFINE FILE 

REWIND 

BACKSPACE 

END FILE 

FIND 

ENCODE 

DECODE 

Format Statements 

FORMAT 

detected and the END option is spe· 
cified, control transfers to the given 
statement. If an 1/0 error occurs and 
ERR is specified, execution continues 
at the given statement. 

Reads input from a given logical unit 
(normally associated with a terminal 
keyboard). 

Identical to a formatted WRITE except 
that output is directed to a logical unit 
normally associated with the terminal 
printer. 

Same as a TYPE statement, except that 
output is directed to a logical unit nor· 
mally associated with the line printer. 

Defines the record structure of a disk 
or DECtape direct access file: the log· 
ical unit. number, the number of fixed· 
length records in the file, the length 
of single record, and the pointer to the 
next record. 

The given logical unit is repositioned 
to the beginning of the currently open 
file. 

The currently open file on the given 
logical unit is backspaced one record. 

An end·of·file record is written on . the 
file open on the given logical unit. 

Positions the direct access file on the 
given logical unit to the specified 
record and sets the associated pointer. 

Changes the elements in the given list 
of variables into ASCII format. The ERR 
option. allows control transfer to a 
given statement if- an error condition 
is detected. 

Changes the elements in the given list 
of variables in ASCII format into in· 
ternal binary format. The ERR option 
allows control transfer to a given state· 
ment if an error is detected. 

Describes the format in which one or more 
records are to be transmitted. The format 
descriptors include integer and octal, logical, 

7·6 



Table 7-2 FORTRAN IV Language Summary (Cont.) 

Specification Statements 
IMPLICIT 

type varl,var2, ... , varn 

DIMENSION 

COMMON 

EQUIVALENCE 

EXTERNAL 

DATA 

PROGRAM 

User-Written Subprograms 
name(varl,var2, ... )= 
expression 

real, double precision, complex, literal and 
editing. Real, double precision and complex 
formats can be scaled. 

Overrides the implied data type of symbolic 
names, in which all names that begin with the 
letters I, J, K, L, M, or N are ptesumed to be 
INTEGER values, and all names beginning 
with any other letter are assumed to be R'EAL 
values, unless otherwise specified. IMPLICIT 
allows the programmer to define the initial 
letters for implied data types. If a variable is 
not given an explicit type, and its name be­
gins with a letter defined in an IMPLICIT state­
ment, its default type is that defined by the 
IMPLICIT statement. 

Type Declaration: 
The given variable names are assigned the 
specified data type in the program unit. Type 
is one of INTEGER*2, INTEGER*4, REAL*4, 
REAL*8, DOUBLE PRECISION, COMPL:EX*8, 
LOGICAL*4, LOGICAL*! or BYTE. 

Reserves storage space for the specified ar­
ray(s). 

Reserves one or more blocks of storage space 
under the specified name to contain the vari­
ables associated with the block name. 

Declares two or more variable names in the 
same program unit to be associated with the 
same storage location. 

Permits the use of external procedures (func­
tions, subroutines and FORTRAN library func­
tions) as arguments to other subprograms. It 
informs the system that the names specified 
are those of routines not contained in the cur­
rent program unit. 

Permits the assignment of initial values to 
variables and array elements prior to program 
execution. 

Assigns a name to a main program unit. If . 
present, it is the first statement in the main 
program. 

Arithmetic Statement Function: 
Creates a user-defined function having the 

7-7 



Table 7-2 FORTRAN IV Language Summary (Cont.) 

FUNCTION 

SUBROUTINE 

BLOCK DATA 

variables as dummy ·arguments. When refer­
enced, the expression is evaluated using the 
actual arguments in the function call. 
Begins a FUNCTION subprogram, indicating 
the program name and any dummy variable 
names. An optional type specification can be 
included. 
Begins a SUBROUTINE subprogram, indi­
~ating the program name and· any dummy 
variable names. 
Specifies the subprogram which follows as a 
BLOCK DATA subprogram. An opti,onal name 
for the program unit may be given. 

Fortran Library Functions 
ABS(X) 
IABS(X) 
DABS(X) 
CABS(Z) 
FLOAT( I) 
IFIX(X) 
SNGL(X) 
DBLE(X) 
REAL(Z) 
AIMAG(Z) 
CMPLX(X,Y) 
AINT(X) 
INT(X) 
IDINT(X) 
AMOD(X,Y) 
MOD(l,J) 
DMOD(l,J) 
AMAXO(l,J, ... ) 
AMAXl(l,J, ... ) 
MAXO(l,J, ... ) 
MAXl(X,Y, ... ) 
DMAXl(X,Y, ... ) 
AMINO(l,J, ... ) 
AMINI(X,Y, ... ) 
MINO(l,J, ... ) 
MINI(X,Y, ... ) 
DMINl(X,Y, ... ) 
SIGN(X,Y) 
,ISIGN(l,J) 
DSIGN(X,Y) 
DIM{X,Y) 
IDIM(l,J) 

Real absolute value 
Integer absolute value 
Double Precision absolute value 
Complex to Real, absolute value 
lnte~er to Real conversion 
Real to Integer conversion 
Double to Real conversion 
Real to Double conversion 
Complex to Real conversion 
Complex to Real conversion 
Real to Complex conversion 
Real to Real truncation 
Real to Integer conversion 
Double to Integer conversion 
Real remainder 
Integer remainder 
Double Precision remainder 
Real maximum from Integer list 
Real maximum from Real list 
Integer maximum from Integer list 
Integer maximum from Real list 
Double maximum from Double list 
Real minimum of Integer list 
Real minimum of Real list 
Integer minimum of Integer list 
Integer minimum of Real list 
Double minimum from Double list 
Real transfer of sign 
Integer transfer of sign 
Double Precision transfer of sign 
Real positive difference 
Integer positive difference 

7-8 



Table 7-2 

EXP(X) 
DEXP(X) 
CEXP(Z) 
ALOG(X) 
ALOGlO(X) 
DLOG(X) 
DLOGlO(X) 
CLOG(Z) 
SQRT(X) 
DSQRT(X) 
CSQRT(Z) 
SIN(X) 
DSIN(X) 
CSIN(Z) 
COS(X) 
DCOS(X) 
CCOS(Z) 
TANH(X) 
ATAN(X) 
DATAN(X) 
ATAN2(X,Y) 
DATAN2(X,Y) 
CONJG(Z) 
RAN(l,J) 

FORTRAN IV Language Summary (Cont.) 

' e raised to the X power (Xis Real) 
e raised to the X power (X is Double) 
e raised to the Z power (Z is Complex) 
Returns the natural log of X (Xis Real) 
Returns the log base 10 of X (Xis Real) 
Returns the natural log of X (Xis Double) 
Returns the log base 10 of X (Xis Double) 
Returns the natural log of Z (Z is Complex) 
Square root of Real argument 
Square root of Double Precision argument 
Square root of Complex argument 
Real sine 
Double Precision sine 
Complex sine 
Real cosine 
Double Precision cosine 
Complex cosine 
Hyperbolic tangent 
Real arctangent 
Double Precision arctangent 
Real a~tangentof (X/Y) 
Double Precision arctangent of (X/Y) 
Complex conjugate 
Returns a random number between 0 and 1 

7.3 COMPILER OPERATION 
The FORTRAN IV compiler accepts a source written in the FORTRAN 
language as input and produces an object file and a listing file as output. 
The object file must be subsequently processed by the operating system's 
linker program, for example, the Linker or Task Builder, to produce an 
executable program. 

Command String Specification Options 
In the input/output file specification command string issued to the FOR· 
TRAN IV compiler to request program compilation, the user can specify 
a number of switch parameter options. Some of the parameters are: 

SPECIFY LISTING OPTIONS 
The user can request a number of listing options. By default, the user is 
supplied with diagnostics (if any), a source program listing, and the 
storage map. In addition, the user can request a generated code listing, 
or can combine any of the listing options in a single listing. The gener· 
ated code listing contains a symbolic representation of the object code 
generated by the compiler, including a location offset from the base of 
the program unit, the symbolic Object Time System (OTS) routine names, 
and routine arguments. The code generated for each statement is labelled 
with the same internal sequence number that appears in the source pro­
gram listing, for easy cross reference. 

COMPILE DEBUGGING STATEMENT LINES 
The user can request the compiler to include in the compilation those 
lines with a "D" in column one. These statements allow the inclusion of 
programmer-selected debugging aids (see below). 

7.9 



ENABLE/DISABLE THE COMMON SUBEXPRESSION OPTIMIZER 
In general, the optimizer will make the program run faster. Disabling the 
optimizer can reduce program storage requirements, but will increase 
execution time. 

INCLUDE OR SUPPRESS INTERNAL SEQUENCE NUMBERS 
Suppressing internal sequence number accounting reduces program stor­
age requirements for generated code and slightly increases execution 
time, but disables line number information during traceback. 

ALLOCATE TWO WORDS FOR DEFAULT LENGTH 
OF INTEGER VARIABLES 
Normally, single storage words will be the default allocation for integer 
variables not given an explicit length specification (i.e., INTEGER*2 or 
INTEGER*4). Only one word is used for computation. The user can re­
quest that the default allocation be two storage words. 

ENABLE/DISABLE VECTORING OF ARRAYS 
Array vectoring is a process which decreases the time necessary to refer­
ence elements of a multidimensional array by using some additional 
memory to store array accessing information. If array vectoring is en­
abled, the compiler decides whether to vector a ·multidimensional array 
based on the ratio of the amount of space required to vector the array 
over the total space required by the array. If this ratio is greater than 
25%, the array is not vectored, and standard mapping is used instead. 
If size is a more critical factor than speed, the user can disable the vec­
toring of all arrays: If arrays are vectored, it is so noted in the storage 
map listing. 

ENABLE/DISABLE COMPILER WARNING DIAGNOSTICS 
Warning diagnostics report conditions which are not fatal error condi­
tions, but which can be potentially dangerous at execution time, or which 
may present compatibility problems with other FORTRAN compilers run­
ning on PDP-11 operating systems. For example, a warning message is 
generated if a variable name exceeds six characters in length. This is po­
tentially dangerous if another variable name has the same first six char­
acters. Another example is that statement ordering restrictions are not' 
imposed by the FORTRAN IV compiler, but are imposed by the FORTRAN 
IV-PLUS compiler. A program written for the FORTRAN IV compiler which 
does not conform to the FORTRAN IV-PLUS convention could not be com­
piled by both FORTRAN IV and FORTRAN IV-PLUS compilers. The warning 
diagnostics are normally enabled, bt:Jt the user can suppress their inclu­
sion in ihe diagnostics iisting. 

Internal Operation and Structure 
Instead of using temporary files to process source programs, the FOR­
TRAN IV compiler performs all its activities in main memory. It reads the 
entire source program once, stores it in memory in a compacted format, 
and processes the compacted code in memory. The advantage to this 
method is that the FORTRAN IV compiler does not require a disk device 
for its operation. In addition, since a disk device is not used for tempo­
rary file operations,. compilation speed is significantly increased. 

To reduce the memory requrements of such a compilation system, the 
FORTRAN IV compiler employs a multi-phase overlaid structure. The com-

7-10 



piler consists of a large number of overlays, each of which occupies no 
more than 1 K to 1.25K words of memory. Most of the space allocated to 
the compiler is occupied by the compressed source code. Figure 7-1 illus­
trates the compile-time memory map. 

SYMBOL TABLE 
(DYNAMIC) 

(GROWS DOWNWARD) 

f- ______ j _______ 

CURRENT INTERNAL 
FORM OF SOURCE 

PROGRAM 
(DYNAMIC) 

l /0 BUFFER AREA 

ACTIVE OVERLAY AREA 

ROOT SEGMENT AND 
OVERLAY LOADER 

VECTORS AND SYSTEM 
COMMUNICATION AREA 

HIGH ADDRESSES 

.25K 

MINIMUM 
1.25K WORDS 

.25K WORDS 

.25K WORDS 

LOW ADDRESSES 

Figure 7-1 Compile-Time Memory Map 

The compiler goes through a series of processing phases, one for each 
of its 18-20 overlays. Each program segment is processed separately, 
generally using the entire sequence of overlay phases. The basic process­
ing phases are: 

1. Source program compaction and listing 
2. Syntax analysis and error reporting 
3. Non-executable statement processing 
4. Code generation 
5. Code optimization 

The compiler begins by reading in as much of the source subprogram as 
it can fit in memory. It then compresses the source code in memory by 
removing blanks and other unnecessary data. It continues to read in 
more source code, compressing it as it goes, until the entire program seg­
ment fits in memory; 

Once the source code is compacted into memory, the compiler begins 
processing the internal form of the source code as a whole. Because the 
entire program segment is available to the compiler at a glance, FOR­
TRAN IV does not require statement ordering restrictions. 

During the first stage of code generation, the compiler immediately writes 
as much information as possible to the object file. This step is necessary 
to further compress the internal source code to enable the symbol table 
to grow in the later stages of processing. 

7-11 



The non-executable statements are eligible for immediate processing, 
since the information they provide is not needed until run-time. There­
fore, the compiler searches for all the occurrences of non-executable 
statements, such as FORMAT and DATA statements, produces the begin­
ning of the object module, and compacts the internal source code further. 

To begin the next stage of code generation, the compiler enters all vari· 
ables and constants not yet processed into the symbol table, and per­
forms the syntax scan of the executable statements. The program is 
trarislated into an internal format in preparation for final code generation. 

Object Code Generation 
A few executable FORTRAN .statements can be translated directly into 
machine instructions. Typical FORTRAN operations, however, require long 
sequences of PDP-11 machine instructions. For example, standard se­
quences are needed to locate an element of a multidimensional array, 
initialize an 1/0 operation, or simulate a floating-point operation not sup­
ported by the hardware configuration. 

The common sequence·s of PDP·l 1 machine instructions are contained 
in a library known as the FORTRAN Object Time System (OTS). The FOR· 
TRAN IV compiler does not actually generate pure machine instructions 
for the FORTRAN source code statements. It simply determines which 
combination of appropriate OTS routines are needed to implemeflt a 
FORTRAN program. During the linking process for an object program, the 
linker utility includes the needed OTS routines into the load module. Dur' 
ing pr_ogram execution, these routines are chained together to effect the 
desired result. 

The compiler references a library instruction sequence by generating a 
word containing the address of the first instruction in the OTS routine, 
followed by the information upon which the routine is to operate (the 
operands). For example, an OTS routine used to perform the end-of-DO· 
loop sequence must be passed the location of the index variable, the limit 
value, and the address of the beginning of the loop. 

The compiler and OTS make use of the PDP-11 general register a"nd in· 
direct addressing facility to have the OTS routines executed at run-time. 
Register 4 (R4) is used to chain together the selected OTS routines. The 
last instruction executed in each library routine is a JMP @(R4)+, which 
transfers control to the next library instruction sequence. 

Optimizatio·ns 
The FORTRAN IV compiler performs the following optimizations during 
code generation: 

1. Compiled FORMAT Statements 
The compiler interprets the FORMAT statements at compile-ti~e, 
translating the format into an internal form; This not only increases 
the execution speed of the program, it decreases its size, because less 
run-time code is needed. 

2. Array Vectoring 
Array vectoring decreases the time necessary to reference elements of 

·a multidimensional array by using additional memory to store the ar­
ray. If an array is vectored, a particular element in the array can be 

7-12 



located by a simplified mapping function, without the need for multi­
plication operations. A table lookup is performed to determine the 
location of a particular element. 

3. Constant Folding 
Integer constant expressions are evaluated at compile-time. 

4. Compile-time Evaluation of Constant Subscript Expressions 
Constant subscript expressions in array calculations are evaluated at 
compile-time. 

5. Elimination of Unreachable Code 
Statements that are never reached by flow of control are eliminated 
from the object code. 

6. Common Subexpression Elimination 
Redundant subexpressions whose operands are not changed between 
computations are replaced by a temporary value calculated only once. 

7. Peephole Optimizations 
The compiler examines the internal form of the object code on an 
operation-by-operation basis to replace sequences of operations with 
shorter and faster equivalent operations. For example, the compiler 
replaces a divide-by-two operation with a multiply-by-one-half opera­
tion. There are a large set of these kinds 'of operations. 

8. Branch Optimizations for Arithmetic and Logical IF 
Branch structure optimizations improve program speed and decrease 
its size. For example, an arithmetic IF statement can often be im-
proved: ' 

IF(A-7.0)100, 200, 100 !goto 200 if A is equal to 7.0 
100 CONTINUE 

The compiler will optimize this statement to: 

IF(A .EQ. 7.0) GOTO 200 

Librari~ . 
The FORTRAN programmer can create a library of commonly-used assem­
bly language and FORTRAN functions and subroutines. The operating sys­
tem's librarian utility provides a library creation and modification capa­
bility. ·Library files may be included in the command string to the linker 
utility. The linker recognizes the file as a library file and links only those 
routines in the library that are required in the executable program. By 
default, the linker also automatically searches the FORTRAN system 
library for any other required routines. 

Debugging a FORTRAN Program 
Two debugging facilities are available to the FORTRAN programmer. The 
FORTRAN-Object Time System provides the traceback feature for fatal 
run-ti.me errors. This feature locates the actual program unit and line 
number of a. run-time errqr. Immediately following the error message, 
the error handler will list the line number and program unit name in 
which the error occurred. If the program unit is a subroutine or function 
subprogram, the error handler will trace back to the calling program unit 
and display the 'name of that program unit and the line number where the 
call occurred. This process will continue until the calling sequence has 
b!;!en traced_ back to a specific line number in the main program,-This 

7-13 



allows the exact determination of the location of an error even if the error 
occurs in a deeply nested subroutine, 

In addition to the FORTRAN OTS error diagnostics which include the 
traceback feature, there is another debugging tool available. A "D" in 
column one of a FORTRAN statement allows that statement to be condi· 
tionally compiled. These statements are considered comment lines by the 
compiler unless the appropriate debugging lines switch is issued if1 the 
compiler command string. In this case, the lines are compiled as regular 
FORTRAN statements. liberal use of the PAUSE statement and selective 
variable printing can provide the programmer with a method of moni­
toring program execution. This feature allows the inclusion of debugging 
aids that can be compiled in the early program testing stages and later 
eliminated without source program modification. 

7.4 FORTRAN IV OPERATING ENVIRONMENTS 
The FORTRAN IV compiler and OTS is available as an optional language 
processor for the RT-11 operating system. 

The operating system provides additional features particular to ·the en­
vironment. For example, the monitor programmed requests or executive 
directives are usually availabie as a library of FORTRAN-callable routines_ 

Under RT-11 
The RT-11 System Subroutine library (SYSLIB) is a collection of FOR­
TRAN-callable routines which allow a FORTRAN user to utilize various 
features of the RT-11 Foreground/Background (F / B) and Single-Job mon­
itors. SYSLIB also provides various utility functions, a complete character 
string manipulation package·, ·and 2-word integer support. SYSLIB is pro· 
vided as a library of object modules to be combined with FORTRAN pro· 
grams at link-time. 

SUMMARY OF SYSLIB CAPABILITIES 

• Complete RT-11 1/0 facilities, including synchronous, asynchronous, 
and event-driven modes of operation. FORTRAN subroutines may be 
activated on the completion of an input/output operation. 

• Timed scheduling of asynchronous subjobs (completion routines). (Un· 
de.r F /B operation only.) 

• Complete facilities for interjob communication. (Under F/B operation 
only.) 

• FORTRAN interrupt service routines. 

• Complete timer-support facilities, including timed suspension of execu· 
tion (F /B only), conversion of different time formats, and time-of-day 
information. These timer facilities support either 50 or 60:cycle clocks. 

• All auxiliary input/output functions provided by RT-11, including the 
capabilities of opening, closing, renaming,. creating, and deleting files 
from any device. 

• All monitor level informational functions, such as job partition param­
eters, device statistics, and input/output channel statistics. 

• Access to the RT-11 Command String Interpreter (CSI) for acceptance 
and parsing of standard RT-11 command strings. 

7-14 



• A character string manipulation package supporting variable-length 
character strings. 

• INTEGER*4 support. routines that allow two-word integer computations. 

SYSLIB allows the RT-11 FORTRAN user to write almost all application 
programs in FORTRAN with no assembly-lang·uage coding. 

Also available under RT-11 is the Scientific Subroutine Library, providing 
FORTRAN-language routines for mathematical and statistical applica­
tions. 

7-15 



7-16 



CHAPTER 8 

BASIC 

8.1 FUNCTION AND FEATURES 
BASIC is an incremental compiler which provides immediate translation 
and storage of a program written in the BASIC source language while it 
is being entered. A single-user BASIC system and a RT-11 multi-user 
BASIC system are available as an option for the RT-11 operating system. 

BASIC provides the following features: 

• incremental compiler for immediate source translation 

• immediate mode for ease in debugging and use as a desk calculator 

• ASCII sequential files compatible with FORTRAN 

• integer, string and floating pofnt virtual array files for random access 

• dynamic allocation of string storage 

• PRINT-USING statement for output formatting 

• complete set of string manipulation functions 

• user-defined functions 

• programs chained together can pass data through common 

• CALL statement for assembly language subroutines 

8.2 LANGUAGE 
The BASIC language is a conversational programming language which 
uses simple English-type statements and familiar mathematical notation 
to perform operations. BASIC is one of the simplest computer languages 
to learn, and once learned, provides advanced techniques to perform in­
tricate data manipulations and efficient problem expression. 

A BASIC program is composed of lines of statements containing instruc­
tions to the BASIC compiler. Each line of the program begins with a 
number that identifies that line as a statement and indicates the order of 
statement execution relative to other lines in the program. Each state­
ment starts with an English word specifying the type of operation to be 
performed. 

8-1 



All BASIC statements and computations must be written on a single line. 
Statements cannot be continued on a. following line. More than one 
statement, however, can be written on a single line when each statement 
after the first is pr~.ceded by a backslash. For example, 

10 INPUT A,B,C 

is a single statement line, while 

20 LET X = 11 "- PRINT X,Y,Z "- IF X =A THEN 10 

is a multiple statement line containing three statements: LET, PRINT, 
and IF. 

Constants and Variables 
BASIC treats all numbers (real and integer) as decimal numbers. The 
advantage of treating all numbers as decimal numbers is that any num­
ber or symbol can be used in any mathematical expression without 
regard to its type. Numbers used must be in the approximate range 
10-38 to 10+38. 

In addition to real and integer formats, BASIC accepts exponential nota­
tion. Numeric data can be input in any one or all of these formats. 
BASIC automatically uses the most efficient format for printing a number, 
according to its size. It automatically suppresses leading and trailing 
zeros in integer and decimal numbers and formats all exponential 
numbers. 

Both floating point and integer formats are used when storing and cal­
culating numbers. If a number can be stored as an integer, .it is handled 
as an integer unless the operation requires that it be stored as floating 
point. 

BASIC also processes information in the form of strings. A string is a 
sequence of alphabetic, numeric or special characters treated as a unit. 
A string constant is a list of characters enclosed in quotes. A string con­
stant can be used in the PRINT, CALL, and CHAIN statements. These 
usages of'string constants are allowed in versions of BASIC that do not 
support strings. 

In BASIC with string-support,· string constants can also be used to as­
sign a value to a string variable, for example, in the LET and INPUT 
statements. 

BASIC recognizes four types of variables: numeric and subscripted nu­
meric, string and subscripted string. A numeric variable is an algebraic 
symbol representing a number and is formed by a single letter or letter 
optionally followed by a single digit. For example: I, B3, or X. 

Subscripted variables provide additional computing capabilities for deal­
ing with lists, tables, matrices, or any set of related variables·. In BASIC, 
variables are allowed one or two subscripts. For example, a list might 
be described as A(I) where I goes from 0 to 5: 

.-A(O), A(l), f\{2), A(3), A(4), A(5). 

8-2 



This allows reference to each of the six elements in the list, and can be 
considered a one-dimensional algebraic matrix. Two-dimensional matrices 
are also allowed. 

Any variable name followed by a dollar sign ($) character indicates a 
string variable. For example: A$, C7$. Any list or matrix variable name 
followed by the dollar sign character denotes the string form of that 
variable. For example: V$(n), M2$(n), C$(m,n), G1$(m,n). 

The user can assign values to variables by indicating the values in a 
LET statement, by enterine the value as data in an INPUT statement, 
or by a READ statement. The value assigned to variable does not change 
until the next time a statement is encountered that contains a new value 
for that variable. 

Operators 
BASIC performs addition, subtraction, multiplication, division and ex­
ponentiation. The five operators used in writing most familiar formulas 
are: 

+ A + B Add to Band A 
A B Subtract B from A 

... A ... 8 Multiply A by B 
I A I B Divide A by B 

t A t 8 Raise A to the Bth power 

In addition, BASIC allows unary plus and minus arithmetic operators. 
For strings, the concatenation operator ( + or &) puts one string after 
another without any intervening characters. 

I 

Relational operators allow comparison of two values and are used to 
compare arithmetic expressions or strings in an IF-THEN statement. The 
relational operators are: 

Equals (alphabetically equal) 
< Less than (alphabetically precedes) 
< = Less than or equals (precedes or equals) 
> Greater than (alphabetically follows) 
> = Greater than or equals (follows or equals) 
< > Not equals (not alphabetically equal) 

Statements 
The following summary of BASIC statements gives a brief explanation 
of each statement's use. 

REM 

LET= 

DIM 

DATA 

Contains explanatory comments in a BASIC program. 

Assigns the value of an expression to the specified 
variable. Variable and expression must be of the 
same type. 

Reserves space in memory for arrays according to 
the subscripts specified. 

Used in conjunction with READ to input listed data 
into an executing program. Can contain any mixture 
of strings and numbers. 

8-3 



READ 

OPEN FOR 
INPUT [OUTPUT] 
AS FILE 

INPUT 

IF END 

PRINT 

PRINT-USING 

RESTORE. 

RESET 

CLOSE 

NAME-TO 

KILL 

RANDOMIZE 

DEF FN 

CALL 

FOR-TO 

NEXT 

IF 

GOSUB 

Assigns values listed in DATA statements to the 
specified values. Variables can be numeric or s!ring. 

Opens a file for input (or output) and associates the 
file with the specified logical unit number. 

Reads data from the file associated with the logical 
unit specified or from the user's terminal. Variables 
can be arithmetic or string. 

Tests for an end-of-file condition on input sequential 
file associated with logical unit expression. 

Prints the values of the specified expressions on the 
terminal or, when specified, to the file associated 
with the logical unit expression. The TAB function 
·can also be included. 

Prints the values of the specified expression on the 
terminal or, when specified, to the file associated 
with logical unit expression in the format determined 
by the given string. Both numeric and string ex­
pressions can be used. 

Resets either the data pointer or, when specified, the 
input file associated with the given logical unit num­
ber to the beginning. 

Equivalent to RESTORE. 

Closes the file(s) associated with the logical unit 
number(s) and virtual file logical unit number(s) 
specified. If no logical unit number is specified, 
closes all open files. 

Renames the specified file. 

Deletes the specified file. 

Causes the random number generator (RND func­
tion) to produce different random numbers every 
time·the program is run. 

Defines a user function. 

Used to call assembly language subroutines from a 
BASIC program. 

Sets up a loop to be executed the specified number 
of times. 

Placed at the end of the FOR loop to return control 
to the FOR statement. 

Conditionally executes the specified statement or 
transfers control to the specified line number. When 
the condition is not satisfied, execution continues at 
the next sequential line. The expressions and the 
relational operator must all be string or all be nu­
meric. 

Unconditionally transfers control to specified line of 
subroutine. 

8-4 



RETURN 

GO TO 

ON-GOSUB 

ON-GO TO 

CHAIN 

COMMON 

END 

STOP 

Functions 

Terminates a subroutine and returns control to the 
statement following the last executed GOSUB state­
ment. 

Unconditionally transfers control to specified line 
number. 

Conditionally transfers control to the subroutine at 
one line number specified in the list. The value of 

· the expression determines the line number to which 
control is transferred. 

Conditionally transfers control to one line number in 
the specified list. The value of the expression de­
termines the line number to which control is trans­
ferred. 

Terminates execution of the program, loads the pro­
gram specified, and begins execution of the lowest 
line number or, when a line number is present in the 
statement, at the specified line number. 

Preserves values and names of specified variables 
and arrays when the CHAIN statement is executed. 
Both string a.nd arithmetic variables and arrays can 
be passed. The statement also dimensions the spec­
ified arrays. 

Placed at the end of the physical end of the program 
to terminate execution (optional). 

Terminates execution of the program. Placed at the 
logical end of the program. 

BASIC provides a variety of functions to perform mathematical and 
string operations. 

ARITHMETIC FUNCTIONS 
ABS Returns the absolute value of an expression. 
ATN Returns the arctangent as an angle in radians. 
COS Returns the cosine· of an expression in radians. 
EXP. Returns the value of the constant e (approx. 2.71828) raised 

to a given power (expression). 
INT Retu.rns the greatest integer Jess than or equal to a given 

LOG 
LOGlO 
Pl 
RND 
SGN 
SIN 
SQR 
TAB 

SYS 

expression. 
Returns the natural logarithm of an expression. 
Returns the base 10 logarithm of an expression. 
Returns the value of pi (3.141593 approx.) 
Returns a random number between 0 and 1. 
Returns value indicating the sign of an expression. 
Returns the sine of an expression in radians. 
Returns the square root of an expression. 
Causes the terminal print head to tab to column number 
given by an expression (valid only in PRINT). 
Special system function calls; control terminal 1/0 and per­
form special functions. 

8-5 



STRING FUNCTIONS 
ASC Returns the ASCII code in deci!'1al for the l·character string 

BIN 

CHR$ 

DAT$ 
LEN 
OCT 

POS 

SEG$ 

STR$ 

TRM$ 
VAL 

expression. 
Converts a string expression containing a binary number to 
a decimal value. ' 
Generates a l·character string whose ASCII value is the low· 
order 8 bits of the integer value of the given expression. 
Returns the date as a string. 
Returns the number of characters in the given string. 
Converts a string expression containing an octal number to 
a decimal value. 
Searches for and returns the position of .the first occurrence 
of a substring in a string. 
Returns the string of- characters in the given positions in the 
string. 
Returns the string which represents the numeric value of 
the given expression. 
Returns the given string without trailing blanks. 
Returns the value of the decimal number contained in the 
given string expression. 

USER-DEFINED FUNCTIONS 
In some programs it may be necessary to execute the same sequence 
of statements in several different places. BASIC allows definition of 
unique operations or expressions and the calling of these functions in 
the same way as, for example, the square root or trigonometric tune· 
tions. Each function is defined once and can appear anywhere in the 
program. 

A function definition consists of the function name, a dummy variable 
list (up to five), and an expression. 

When the user-defined function is used in the program, the expressions 
in the argument list passed to the function will replace the dummy_ 
variables in the defining expression. Any variable in the defining expres· 
sion that is not in the dummy variable list will have the value that the 
variable is· currently assigned. · 

Programming Example 
The POS function is used to find the position of a substring in a string. 
The POS function can be used to map a string of characters to a cor· 
responding integer value which can be used for subsequent processing. 
This technique is called a table look-up. The table string is the first ar· 
gument of the POS function and the string to be mapped is the second 
argument. For example: 

LISTNH 

10 
15 
20 
100 
110 
120 
130 

REM PROGRAM TO TRANSLATE MONTH NAMES 
REM TO NUMBERS 
T$ = "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC" 
PRINT "TYPE THE FIRST 3 LETTERS OF A MONTH"; 
INPUT M$ 
IF LEN(M$) < > 3 GO TO 200 
M = (POS(T$,M$,l) +2)/3 

8·6 



140 REM CHECK IF MONTH IS SPELLED CORRECTLY 
150 IF M < > INT(M) GO TO 200 
160 PRINT M$" IS MONTH NUMBER "M 
170 GO TO 100 
200 PRINT "INVALID ENTRY-TRY AGAIN""'- GO TO 100 

READY 

RUN NH 

TYPE THE FIRST 3 LETTERS OF A MONTH? NOV 
NOV IS MONTH NUMBER. ~1 
TYPE THE FIRST 3 LETTERS OF A MONTH? DEC 
DEC IS MONTH NUMBER 12 
TYPE THE FIRST 3 LETTERS OF A MONTH? JUN 
INVALID ENTRY-TRY AGAIN 
TYPE THE FIRST 3 LETTERS OF A MONTH?iC 
STOP AT LINE 110 

READY 

8.2.1 BASIC Files 
Data is stored either in sequential files or in random access, virtual array 
files. Sequential files are treated in the same way as terminal 1/0; data 
is read by an INPUT statement and written by a PRINT statement. Se· 
quential files are useful for storing data that is processed serially. 

Virtual array files are similar to arrays stored in memory. An element of 
data in a virtual array can be part of any BASIC expression just the same 
as an element of a normal array. An element of a virtual array file can 
be assigned a value by a special form of the LET statement. Virtual array 
files allow data to be accessed in a random, non-serial manner and are 
the only BASIC files in which existing data can be updated without re­
writing the entire file. 

There are three data types for virtual array files: integer, floating point, 
and string. A file can contain only one data type. 

8.2.2 Creatin~, Modi~yin_g and Executing BASIC Programs 
A BASIC program is entered in the system using the editing commands. 
Once a program has been entered, it can be saved, retrieved, listed or 
executed using the editing commands. When the BASIC system is run­
ning, it prints the message READY on the terminal to indicate that it is 
ready to accept an editing command. 

The BASIC system's editor is a replacement editor. That is, an incor­
rect line is changed by entering a new line with the same line number 
as the incorrect line. The editor replaces the old line with the new line 
entered. A line can be deleted by typing its line number and a carriage 
return. Both the line number and the line are removed from the pro­
gram. The following provides a summary of the BASIC editing commands. 

NEW Clears the user area in memory and assigns a specified 
name to the current program. Used to create a new pro­
gram. 

8-7 



LIST 
LISTNH 

RUN 
RUN NH 

CLEAR 

RENAME 

SAVE 

OLD 

REPLACE 

APPEND 

LENGTH 

SCR 
UN SAVE 

BYE 

Types on the terminal the program currently in memory. 
A range of line numbers can be specified. If the command 

· does not have the ''NH" suffix, the program header is 
printed. 

If issued with no file specification, executes the program 
currently in memory. If a file specification is issued, clears 
the user area, reads a program in from the file, and exe-
cutes the program. If the command does not have the 
"NH" suffix, the program header is printed. 

Clears the contents of the user array and string buffers. 
This command is used when a program has been exe­
cuted and then edited. Before rerunningthe program, the 
array and string buffers are cleared to providP. more mem· 
ory space. 

Changes the current program name to a specified name. 

Copies the contents of the user area to a file, lists the con­
tents on the line printer, or punches the contents on paper 
tape. 

Clears the user area and reads a· program from a specified 
file into the user area in memory. 

Replaces the specified file with the program currently in 
memory. 

Merges the program currently in memory with a program 
stored in a file. All lines in the program in memory that 
have duplicate line numbers with the program in the file 
are replaced by the lines from the program in the file. 

Displays on the terminal the amount of storage required by 
the BASIC program currently in memory. This information 
is useful in determining the minimum user area in which 
a specific program can run. 
Erases the user area in memory. 
Deletes the specified file. 

If the BASIC system supports multiple users, terminates 
the session at the terminal. 

In addition to the editing commands, the BASIC system recognizes the 
following special control characters: 

CTRL/C Interrupts program execution and prints the READY mes-
sage. 

CTRL/0 Enables/disables console output.· 
CTRL/U Deletes the current line being entered. 
RUBOUT Deletes the last character typed. 

8.3 COMPILER OPERATION 
When the user enters a BASIC program, the BASIC system does not store 
the program exactly as it is typed or read from the input file. Instead, 
it translates the program into an intermediate form which can be used in 
two different ways. The intermediate code can be returned to its initial 

8-8 



form by the LIST or SAVE commands to produce an ASCII program which 
looks like the input program, or the translated code can be quickly in­
terpreted by the RUN command to execute a program under the operat­
ing system. 

Immediate Mode of Execution 
It is not necessary to write a complete program to use BASIC. Almost 
any BASIC statement can. be executed in immediate mode. This latter 
facility makes BASIC an extremely powerful calculator. 

BASIC distinguishes between those lines entered for immediate execu­
tion and those entered for later execution by the presence or absence of 
a line number. Statements which begin with line numbers are stored; 
those without line numbers are executed immediately. 

Immediate mode operation is especially useful for program debugging 
and desk calculation problems. 

To facilitate debugging a program, STOP statements can be placed 
throughout the program. When the program is run, each STOP statement 
causes the program to halt. The data values can then be examined and 
modified in immediate mode. The immediate mode statement 

GO TO line number 

is used to continue program execution. The values assigned to variables 
when the RUN command was issued remain intact until a SCRatch, 
CLEAR or another RUN command is issued. 

If the STOP statement occurs in the middle of a FOR loop, modifications 
can not be made to the section of the program which precedes the 
FOR statement. 

If CTRL/C is used to halt program execution, the GO TO command 
can be used to continue execution at the line where execution stopped. 

When using immediate mode, nearly all the standard statements can be 
used to generate or print immediate mode results. Multiple statements 
can be .used on a single line in immediate mode. For example: 

A=l "- PRINT A 
1 

Program loops in immediate mode are allowed in multiple statement 
lines. Thus a table of square roots can be produced as follows: 

FOR 1=1TO10 "-PRINT l,SQR(I) "-NEXT I 
1 1 
2 1.41421 
3 1.73205 
4 2 
5 2.23607 
6 2.44949 
7 2.64575 
8 2.82843 
9 3 
10 3.16228 

8-9 



Certain-statements, while not illegal, make no sense when used in imme· 
diate mode, such as COMMON, DEF, DIM, DATA and RANDOMIZE. The 
INPUT statement is illegal in immediate mode. Also, function references 
in immediate mode are illegal unless the program containing the defini· 
tion was previously executed. 

User Area Allocation and Program Size 

The BASIC system stores each user's program in memory in the follow­
ing format: 

Arrays high addresses 

Buffers 

Strings 

Symbol Table 

User Code low addresses 

The symbol table and user code area are created when the program is 
entered. When the RUN com.marid is issued, the user program is 
scanned and arrays are set up. The string area is created during pro­
gram execution. 

The SCRatch command clears all the user code, symbol table, strings, 
and arrays from memory. The CLEAR command clears the arrays and 
strings but does not affect the user code or symbol table. 

A symbol table entry is created for each distinct line number or variable 
name referenced in the program. These entries are not deleted, how­
ever, even when all references in the program 'to a particular line number 
or variable are removed. Thus, if the program in memory is heavily 
modified, it may be desirable to save it with the SAVE command and 
then restore the program with the OLD command to obtain the largest 
possible user area. 

The LENGTH command displays on the terminal the amount of storage 
required by the BASIC program in memory. This information is useful 
in determining the minimum user area in which a specific program can 
run. 

LENGTH prints the number of words used and the number of words 
remaining free in the user's area. The LENGTH command always re· 
turns the current memory requirements; they may differ depending on 
when the command is issued.· The number of words in use includes 
memory currently needed by the BASIC program itself, arrays, string 
variables, and file buffers in the user area. To determine the size of 
the program alone, issue the LENGTH command immediately after an 
OLD or CLEAR command. Arrays are created after the RUN command 
is issued and file buffers are created when the OPEN statement is ex· 
ecuted. The memory required for string variables and string arrays 
varies with the current values of the strings. 

8-10 



8.4 BASIC ENVIRONMENTS 
Two BASIC versions are available for the RT·l 1 operating system: the 
standard single-user version and a special multi-user version. 
The following paragraphs discuss the features and capabilities of the 
BASIC versions available. Table 8·1 compares the features and language 
elements of each version. 

Under RT-11: Single-user Version 
BASIC/RT·ll interfaces with the RT-11 monitor. BASIC is loaded under 
control of the monitor by typing the "R BASIC" command. Users can 
access any RT·ll supported device, including paper tape reader/punch 
and floppy disk (RXVll). BASIC/RT-11 files can be processed by FOR­
TRAN IV/RT-11. At least 8K words of memory are required to run BASIC. 
In systems with more than 8K words of memory, BASIC/RT·ll provides 
alphanumeric character string 1/0 and strirlg variable support. 

Under RT-11: Multi-user version 
MU BASIC/RT-11 is a multi-user BASIC system, capable of accom· 
modating up to eight users simultaneously. Each user independently 
creates and executes BASIC programs. All of the features of MU BASIC, 
including statements, commands, functions and immediate mode execu· 
tion are available to all users. 

MU BASIC runs under the RT·ll monitor. Users can access the follow­
ing devices supported by RT·l 1: paper tape reader /punch, line printer 
(LAVll) and floppy disk (RXVll). 

Up to eight users can be supported on Single-job systems with at least 
24K words of memory. Up to four users can be supported on Single· · 
job systems with at least 16K words of memory, or on Foreground/ 
Background systems with 28K words of memory. 

To accommodate multiple users, MU BASIC provides a scheduling 
supervisor and terminal handler. In addition, the system provides a log 
on procedure and file protection as options. 

The log on procedure requires that users obtain a user ID and password 
from the system manager to gain access to the system. The HELLO and 
BYE commands are used in this case to log on and log off the system. 

The file protection system provides several degrees of file access. There 
are three classes of files: public, group, and private. Public library files 
are available to all. users. Group library files are accessible to all users 
have the same first character in their user ID. A private file is accessible 
only to the user who created it. 

If file protection is desired, a file can be given any of the following access 
characteristics: 

Run 

Read 

Update 

Allows access by the RUN command or CHAIN statement. 

Allows access by the OLD or APPEND command or the 
OPEN FOR INPUT or OVERLAY statement or use of the 
value of an element of a virtual array. 

Allows a virtual array file to be updated. 

8-11 



Complete Allows access by all of the above and by the SAVE, REPLACE 
or UNSAVE command or the OPEN FOR OUTPUT, NAME TO 
or KILL statement. 

A nonprivileged user is allowed complete access only to the user's own 
private files. A nonprivileged user can have Run and Read access to 
files in the public library and the user's own group library. Nonprivileged 
users are not allowed access to other user's private·library files or other 
group's files. The access allowed a nonprivileged user to al! files other 
than the user's own files can be modified by the inclusion of a protection 
code in the filename. 

A privileged user has complete access to all files. Group library and 
public library files can only be created by a privileged user ... 

In addition to the log on procedure and file protection, MU BASIC in· 
eludes the following commands: 

HELLO 

ASSIGN 

Allows the user to log on. to the system (optional). 

Assigns a specified device to a user if it is available. 

DEASSIGN Deassigns a specified device. 

TAPE 

KEY 

SET TTY 

Disables echoing for the low·speed paper tape reader. 

Enables echoing after the TAPE command (or a disable 
echoi'ng system function call). 

Sets the system to allow different terminal characteristics. 

MU BASIC provides a comprehensive set of system functions. Certain 
system functions are availabl!l to all users. These functions enable the 
programmer to cancel CTRL/0 typed at a terminal, disable/enable echo­
ing, enter single characterlnput mode, scratch the user area in memory 
and return to the READY message, and return the current user's ID. 
Certain other system function calls can be executed only by a privileged 
user. These functions include the ability to disable the CTRL/C interrupt, 
set the user ID, terminate the privileged user status, and cause BASIC 
to exit and return control to the RT-11 monitor. 

The single character input mode system function call is useful for special 
read operations. It returns the decimal ASCII value of the next character 
input from the terminal or a file. It is the only method for BASIC pro· 
grams to process terminal input without waiting for a carriage return 
to be typed. This allows interactive programs to use single character 
response and not require a carriage return. 

Single character input mode allows data in any file to be read with no 
need for separating commas or carriage returns. Binary fileS' can be 
copied exactly. 

8-12 



Table 8-1 BASIC Language Implementations 

Language Elements MU 
BASIC BASIC 

RT RT 

FUNCTIONS 

Mathematical (ABS, SIN, COS, SGN, LOG, EXP, 
ATN, INJ, RND, SQR) x x 
String LEFT, RIGHT, MIDdle LENgth 
String LEN, SEG x1 x1 
String search for substring x1 x1 
TRM$ (delete trailing spaces) x1 x1 
ASCII code of character x1 x1 
Character equivalent to ASCII code (CHR$) x1 x1 
Date x1 x1 
Numeric string conversion x1 x1 
Octal and binary functions (OCT and BIN) x x 
Common log (LOGlO) x 
TAB for print positioning x x 
Assembly language routines x x 
PROGRAM LINES 

Multiple statement lines x x 
Assignment 
LET x x 
Word LET optional x x 
Control 

GOTO x x 
IF-THEN x x 
IF-GOTO x x 
FOR, NEXT x x 
FOR-WHILE, FOR-UNTIL 
ON-GOTO x 
CHAIN x x 
Subroutines and Functions 

GOSUB x x 
RETURN x x 
ON-GOSUB x 
DEF, single line x x 
1/0 
READ x x 
DATA x x 
RESTORE x x 
INPUT x x 
LINPUT x 
PRINT x x 
PRINT USING x 

8-13 



Table 8-1 BASIC Language Implementations (Cont.) 

Language Elements MU 
BASIC BASIC 

RT RT 
Files 

OPEN 
CLOSE x x 
NAME-AS 
NAME-TO x 
KILL x 
IF END x x 
Virtual files x x 
Specifications 

REM x x 
DIM x x 
RANDOMIZE x x 
COMMON x 
Miscellaneous 

CHANGE string to/from array 
STOP x x 
END x x 
END statement optional x x 
Editing 

RENAME x x 
LIST x x 
LENGTH. x 
Program storage I retrieval 

NEW x ~ 
OLD x x 
SAVE x x 
REPLACE x x 
UN SAVE x 
APPEND x 
Miscellaneous 

KEV x 
TAPE x 
RUN x x 
HELLO x 
BYE x 
Immediate Mode x x 

8-14 



CHAPTER 1 EDUCATIONAL SERVICES 

CHAPTER 2 DECUS 

CHAPTER 3 MAINTENANCE 

-



1.1 GENERAL 

CHAPTER 1 

EDUCATIONAL 
SERVICES 

Like DIGITAL's computer systems, training facilities span the globe­
Japan, Australia, Great Britain, Germany, France, the Netherlands, Swe­
den, Italy, and throughout the United States. Services are centered 
around 14 fully equipped Regional Education Centers and a staff of sea­
soned educators dedicated to providing all aspects of education and 
training needed in support of all DIGITAL systems. 

1.2 CATALOG COURSES 
Catalog courses are regularly scheduled classes offered at training cen­
ters. Presently, there are more than 100 scheduled classes that cover 
the range from first-time user to highly specialized training on theory of 
operation. Most catalog courses include extensive hands-on laboratory 
time, and all incorporate the use of a broad assembly of student work­
books, reference manuals, and other instructional materials. 

1.3 CUSTOM COURSES 
Specialized training is available for users with unique applications or 
training situations. This approach is designed to give the student the 
maximum relevant material for specific applications, while minimizing 
extraneous information. The custom courses are tailored to the individ­
ual customer's schedule and typically comprise a series of courses. 
These can be modified from existing courses or be entirely new pro­
grams based on mutually agreed upon objectives. 

1.4 ON-SITE INSTRUCTION 
Customers with a group of individuals to train may find it more econom­
ical to have Educational Services conduct courses at the user's .home 
site. On-site instruction of both catalog and custom courses eliminates 
travel and other expenses incurred by students attending classes at 
training centers. This method of instruction further enhances training 
by allowing DIGITAL instructors to emphasize points of particular value 
to the student's applications and operations. 

1.5 AUDIO-VISUAL COURSES 
By taking advantage of the latest in audio-visual techniques, Educational 
Services has developed a series of courses that offers independent learn­
ing. Audio-visual courses are convenient, self-contained, and modular in 
topic. The self-instructional format allows students to progress at their 
own rates, study when and where they wish, and play back modules for 
review. Audio-visual course material is available in several forms-video­
tape, videocassette, or audio/filmstrip cassette-all supported by stu­
dent workbooks. 

1.6 LSl-11 AND PDP·ll/03 RELATED COURSES 
DIGITAL's educational group offers a series of courses on the hardware 

1-1 



and software for your LSFll. PDP·ll/03 systems. A list of these 
courses, with a brief abstract of each follows: 

• INTRODUCTION TO MINICOMPUTERS-This course is designed for 
the individual with no computer experience or the programmer with 
compiler-level background only. It covers computer concepts and the 
fundamentals of Assembly Language programming and provides back­
ground for further hardware or software training on any of our sys­
tems. It is also useful as a stand-alone overview course. 

• INTRODUCTION TO DIGITAL COMPUTER LOGIC-This course concen­
trates on the internal construction and functional operation of the 
logic circuitry of which DIGITAL's computer systems are built. This 
examination of the internal building blocks used in DIGITAL's com­
puters can be useful to anyone about to enter the field of computers. 
This course is a prerequisite for entering hardware familiarization or 
maintenance courses on other DIGITAL computers. 

The course covers the operation of digital computer circuitry from a 
logic rather than electronic point of view. 

A DIGITAL computer laboratory exercises to implement some of the 
logic circuits discussed. 

• LSl-11 AND PDP-11/03 HARDWARE AND INTERFACING-This course 
is intended to provide design oriented engineering personnel with an 
overview of LSl·ll system operation and detailed interfacing infor­
mation. 

Emphasis will be placed on Bus timing structure and standard DIGI· 
TAL interfacing modules. 

Laboratory periods will be provided for student familiarization with 
the LSI and 11/03 system including machine language programming 
and standard DIGITAL interfaces. 

• PDP-11 FUNDAMENTALS AND INSTRUCTIONS-This course is in­
tended for data processing personnel who will be programming for 
any model within the PDP-11 family. It covers the instructions and 
features common to all PDP·ll models. It does not cover options or 
features unique to the more powerful models. The course is also ap­
propriate for a manager or supervisor requiring a fairly detailed 
knowiedge of the PDP-11 and its instructioii set. 

• MACR0-11-This course is intended to provide the inexperienced as· 
sembly language programmer with a MACR0-11 programming back­
ground for entry to any of the following operating systems courses: 
DOS-11, RT-11, RSX·llM, RSX-llD, and IAS. Classroom and labora· 
tory exercises will supplement the lectures. 

• PDPll REAL-TIME OPERATING SYSTEM (RT·ll) STANDARD-This 
course is designed for users who have limited operating systems ex­
perience and wish to acquire·a working knowledge of RT-11, including 
both Single-Job and Foreground/Background monitors. Emphasis is 
placed on system programs and on techniques for programming in a 
foreground/background real-time environment. 

1-2 



For complete information on course content, prerequisites, pricing, and 
scheduling, consult the Educational Courses Catalog available through 
DIGITAL's Educational Centers listed below: 

Boston area: 
Digital Equipment Corporation 
Educational Services Department 
Maynard, Massachusetts 01754 
Telephone: (617) 897-5111 
Ext. 3819 or 6331 

Chicago area: 
Digital Equipment Corporation 
Educational Services Department 
5600 Apollo Drive 
Rolling Meadows, Illinois 60008 
Telephone: (312) 640-5520 

Philadelphia area: 
Digital Equipment Corporation 
Educational Services Department 
Whitpain Office Campus 
1740 Walton Road 
Blue Bell, Pennsylvania 19422 
Telephone: (215) 825-4200 Ext 26 

Washington, D.C. area: 
Digital Equipment Corporation 
Educational Services Department 
Lanham 30 Office Building 
5900 Princess Garden Parkway 
Lanham, Maryland 20801 
Telephone: (301) 459-7900 Ext. 315 or 215 

San Francisco area: 
Digital Equipment Corporation 
Educational Services Department 
310 Soquel Way 
Sunnyvale, California 94086 
Telephone: (408) 984-0200 Ext. 293 or 294 

1-3 



CHAPTER 2 

DECUS 

Additional programs and applications packages may be obtained from 
DECUS, the Digital Equipment Computer Users Society. DECUS is a not· 
for-profit computer users group (the largest such group, worldwide) that 
sponsors technical symposia, publishes a periodic newsletter and sym­
posia proceedings, and maintains a library of more than 2200 programs 
for the various DIGITAL computers. Every customer who has purchased 
or ordered a computer manufactured by DIGITAL is eligible for an in· 
stallation membership in DECUS. Associate membership is also available 
to any person with a bona fide interest in DIGITAL computers. Member­
ship in DECUS is strictly voluntary, and does not require payment of 
dues. Programs from the DECUS library are available to all members 
for nominal reproduction and handling charges. A complete catalog of 
available programs may be obtained from the Society. 

Further information on the DECUS Library, publications, and other 
DECUS activities is available from the DECUS offices listed below: 

AUSTRALIA AND 
NEW ZEALAND: 
DEC US 
P.O. Box 491 
Crows Nest, N.S.W. 2065 
Australia 

CANADA: 
DEC US 
P.O. Box 11500 
Ottawa, Ontario K2H 8K8 
Canada 

2·1 

EUROPE AND 
MIDDLE EAST: 
DEC US 
Case Postale 340 
1211 Geneva 26 
Switzerland 

ALL OTHERS: 
DEC US 
146 Main Street 
Maynard, Massachusetts Oi 754 
U.S.A. 



2-2 



CHAPTER 3 

MAINTENANCE 

3.1 GENERAL -
DIGITAL offers a wide range of maintenance servic_es to LSl-11, PDP-
11/03, and PDP-11 V03 customers. These services are provided through 
DIGITAL's Customer Services Organization and have been designed to 
meet our customer's complete maintenance needs, either on-site or off­
site. These service plans provide complete DIGITAL maintenance on-site 
by our factory-trained engineers, or provide module and unit repairs 
off-site for those customers desiring to perform their own mainten_ance. 

3.2 ON-SITE SERVICE 
DIGITAL's service organization provides on-site maintenance service with 
a staff bf over 4,000 factory trained engineers in 300 locations world­
wide. Each service office maintains adequate inventory to support its 
customers and is fully supported by our logistics operation in Maynard, 
Massachusetts. 

o Serv.ice Agreements-On-site contract service is available for all PDP­
ll V03 systems, and PDP-ll/03's subject to minimum hardware con­
figurations. This service provides corrective maintenance, preventive 
maintenance, and all applicable engineering changes to ensure your 
products are operational and kept completely up to date. In addition 
to priority service, contractual maintenance allows DIGITAL customers 
to budget for their annual maintenance needs. The monthly contract 
charge covers all travel, labor, and material. 

• Per Call-DIGITAL also offers on-site per call service. DIGITAL will 
respond to maintenance needs on a billable travel, time, and ma­
terials basis. 

• Installation and Warranty-On-site installation and warranty service is 
also available for PDP-11V03's, and PDP-11/03's subject to minimum 
hardware configurations. This service must be purchased at the· time 
of original order. 

3.3 OFF-SITE SERVICE 
DIGITAL offers complete unit and module repair services to customers 
capable of performing their own maintenance. The Customer Returns 
Area (CRA) has been established ln Maynard, Massachusetts, to offer 
single-point interfacing for all off-site repairs for North American cus­
tomers. The CRA assures the customer of complete "one-stop shopping" 
for ail factory-level warranty and post-warranty services. All repairs are 
affected at our Module Repair Facility in Maynard. 

For European, Australian, and Japanese customers, we have established 
Product Repair Centers (PRCs) in eleven countries. Customers can re­
turn defective material to the PRC in their country without the burden 
of customs, duties, and licensing requirements. The PRCs offer the same 
services to these customers as the CRA in Maynard. 

3-1 



For information on services in Latin and South America, contact the 
CRA in Maynard. 

• Warranty Service-All products are warranted against defects in work­
manship and materials under normal and proper use in their unmodi· 
fied condition for a period of ninety (90) days from date· of initial 
shipment. As a condition of this warranty, customers must obtain a 
DIGITAL Repair Authorization (RA) number and return the products 
prepaid, together with a written description of the claimed defect, to 
the nearest authorized DIGITAL Repair Center as listed here. 

RA numbers may be obtained by contacting the CRA in Maynard (PRC 
if non-U.S.) and providing the following information: 

1. Customer name and location. 
2. Part number/serial number of failing item. 
3. Part number/serial number of next higher assembly if a module 

or subassembly. 
4. Product line and date purchased. 

• Post-Warranty Service-DIGITAL offers its post-warranty services in 
several forms: 
1. Loose piece subassembly repair. For a minimum order, customers 

may elect to return loose piece subassemblies and take advantage 
of flat rate pricing. 

2. Prepaid module. mailers. Available on specific module types, this 
is the fastest repair service in the industry. Customers with current 
discount agreements immediately qualify and, upon payment, are 
assured of seven-day turnaround of their subassen:blies. 

3. Annual subassembly ·contracts. A new and unique service offered 
only by DIGITAL, this contract compliments DIGITAL's subassembly 
warranty policy. For a fixed· annual fee, all subassemblies used in 

- DIGITAL supplied equipment are eligible for return and repair. This 
is the most cost-effective service available anywhere. DIGITAL cus­
tomers realize considerable repair cost savings by performing the 
diagnosis of their system and returning only the failing subas­
sembly. This service is made available only on PDP-11/03 and 
PDP-11 V03 systems. 

4. Firm quote product and option repair. For the smaller customer 
with only occasional service needs or those who do not .have any 
in-house troubleshooting capability, this service offers total support 
with no risk. Upon return and inspection, the customer is quoted 
a fixed fee for product repair and/ or refurbishment. He may 
choose exactly what level of service he feels is right for his en­
vironment. 

For more complete information and pr.icing on any of the services listed, 
contact the repair center nearest you. 

The following repair centers .have been established to provide complete 
off-site repair services. These centers should be contacted for all off-site 
warranty and post-warranty services and prices. All defective material 
should be set to the address indicated with your RA number appearing 
on the shipping label. 

3-2 



North America 
Digital Equipment Corporation 
Customer Returns Area 
111 Powder Mill Road 
Maynard, Massachusetts 01754 

RA Number 
Telephone Number: 617-897-5111, Ext 6871 

Canada 
Digital Equipment of Canada, Ltd .. 
100 Herzberg Road 
Kanata, Ontario, Canada 
ATTN: Forward to Customer Returns Area 

RA Number 
Telephone Number: 613-592-5111 

Europe 

Austria 
Product Repair Center Manager 
Digit Equip Corp, GES. M.B.H. 
Gumpendorferstrasse 65 
P.O. Box 438 
A-1061 Wien 
Austria 
Telephone: (0222) 57-36-49 

Belgium 
Product Repair Center Manager 
Digital Equipment Sa/Nv 
108 Rue D'Arlon 
B-1040 Bruxelles, Belgium 
Telephone: (02) 13-92-56 

France 
Product Repair Center Manager 
Digital Equipment France 
2, place Gustave Eiffel 
Cidex L225 
18, Rue Saarinen 
94 533 Rungis, France 
Telephone: (01) 687-2333 

Germany 
Product Repair Center Manager 
Digital Equipment GmbH 
D-8000 Munchen 40 
Wallensteinplatz 2 
West Germany 
Telephone: 35031 

3-3 



Holland 
Product Repair Center Manager 
Digital Equipment Bv 
Kaap Horndreef 38 
P.O. Box 9064 
Utrecht, Holland 
Telephone: (030) 63 12 22 

Italy 
Product Repair Center Manager 
Digital Equipment S.P.A. 
Corso Garibaldi 49 
1-10121 Milano 
Italy 
Telephone: (02) 879051 

Sweden 
Product Repair Center Manager 
Digital Equipment AB -
Englodsvaegen 7 · 
S-17141 Solna 
Sweden 
Telephone: (08) 730-08-00 

Switzerland 
Product Repair Center Manager 
Digital Equipment Corp. AG/SA 
Schaffhauserstrasse 315 
CH-8050 Zurich/Oerlikon 
Switzerland 
Telephone: (01) 46 41 91 

United Kingdom 
Product Repair Center Manager 
Digital Equipment Corp., Ltd. 
Digital House, Kings Road 
Reading RGl·4HS 
England 
Telephone: (734) 58 35 55 

General International Area 

At this time, the only service offered in the GIA is firm quote product/ 
option repair through the Tokyo and Sydney repair centers. During Fiscal 
Year 1977 this will be expanded to include other services and locations 
and will be announced separately. 

3-4 



GIA Product Repair Centers 

Australia 
Product Repair Center Manager 

·Digital Equip. Australia Pty. Ltd. 
132·125 Willoughby Road 
P.O. Box 491 
Crows Nest 
New South Wales, 2065 Australia 
Telephone: (02) 435 2566 

Latin America 
South America 
·contact the CRA, Maynard. 

Japan 
Product Repair Center 
Digital Equipment Corp. Int. 
#5 Shin/Taiso Building 
2-10-7 Dogenzaka, Shibuya/K.U. 
Tokyo 150, Japan 
Telephone: 404·4082 

3.5 



3·6 



• 



APPENDIX A 

GENERAL REFERENCE DATA 

A.1 SUMMARY OF LSl-11 INSTRUCTIONS 

WORD FORMAT 

15 1, 12 11 9 B 0 

I I BINARY-OCTAL 
.___..__ ___ _._ ___ _,_ ___ -L ___ ___,_ ___ __, REPRESENTATION 

Mode 

0 
1 
2 
3 
4 
5 
6 
7 

Name 

register 
register deferred 
auto-increment 
auto-i n.cr deferred 
auto-decrement 
auto-deer deferred 
index 
index deferred 

Symbolic 

R 
(R) 

(RH 
@(R)+ 
-(R) 

@-(R) 
X(R) 

@X(R) 

MODE 

Description 

(R) is operand [ex. R2 = %2] 
(R) is address 
(R) is adrs; (R) +(1 or 2) 
(R) is adrs of adrs; (R) +2 
(R) -(1 or 2); is adrs 
(R) -2; (R) is adrs of adrs 
(R) + X is adrs 
(R) + X is adrs of adrs 

PROGRAM COUNTER ADDRESSING Reg = ! 

2 
3 
6 
7 

immediate 
absolute 
relative 
relative deferred 

LEGEND 

Op Codes 

#n 
@#A 

A 
@A 

• = 0 for word/l for byte 
SS = source field (6 bits) 
DD = destination field (6 bits) 
R = gen register (3 bits), 

Oto 7 
XXX =offset (8 bits), +127 

to -128 

MODE 

operand n follows instr 
address A follows instr 
instr adrs + 4 + X is adrs 
instr adrs + 4 + Xis adrs of adrs 

Operations 

( ) = contents of 
s = contents of source 
d = contents of destination 
r = c.ontents of register 

+- =becomes 

A·l 



Op Codes Operations 

N = number (3 bits) X = relative address 
NN = number (6 bits) % = register definition 

Boolean Condition Codes 
(\ 

v 
v 

=AND 
= inclusive OR 
= exclusive OR 
=NOT 

= conditionally set/cleared 
= not affected 

0 
1 

SINGLE OPERAND: OPR dst 

15 

OP CODE 

Mne-
monic Op Code Instruction 

General 

CLR(B) • 050DD clear 
COM(B) • 051DD complement (l's) 
INC(B) • 052DD increment 
DEC(B) • 053Db decrement 
NEG(B) • ·o54DD negate (2's com pl) 
TST(B) • 057DD test 

Rotate ~ Shift 

ROR(B) • 060DD rotate right 
ROL(B) • 061DD rotate left 
ASR(B) • 062DD arith shift right 
ASL(B) • 063DD arith shift left 
SWAB 000300 swap bytes 

Multiple Precision 

ADC(B) • 05500 add carry 
SBC(B) • 056DD subtract carry 
SXT 006700 sign extend 

Processor Si:ai:us (FSj Operators 

MFPS 106700 move byte from PS 
MTPS 1064SS move byte to PS 

=cleared 
=set 

SS OR DD 

dst Result N 

0 0 
,_, d .•. 

d + 1 ::: 

d - 1 ::: 

-d ::: 

d ::: 

.... C, d . .. 
C, d <- ::: 

d/2 ... 
2d ... 

... 

d + c * 
d - c ::: 

0 or -1 -

d <- PS ::: 

PS <- s . ,. 

DOUBLE OPERAND: OPR src, dst OPR src, R or OPR R, dst 

15 12 11 6 

OP CODE SS DD 

15 

OP CODE SS OR DD 

A-2 

0 

z v 

1 0 
... 0 
::: ... 
::: ::: 

):: .•. 
... 0 

:;: ::: 

... ... 
::: ::: 

... ~ 

... 0 

... :;: 

. ,. ::: 

... 0 

::: 0 
., . ::: 

0 

0 

c 

0 
1 

... 
0 

::: 

... 
::: 

.•. 

0 

::: 
., . 

::: 



Mne- N z v c 
monic Op Code Instruction Operation 

General 

MOV(B) • lSSDD move d 'i-S .,. ... 0 
CMP(B) • 2SSDD coma pare s-d ... ... ., . :;e 

ADD 06SSDD add d<-s+d ... ... ::: .. . 
SUB 16SSDD subtract d<-d-s ... ... ... . .. 

Logical 

BIT(B) • 3SSDD bit test (AND) s d ... ::: 0 
BIC(B) • 4SSDD bit clear d <- (,_,S) A d ... ... 0. 
BIS(B) • 5SSDD bit set (OR) d<-svd . .. ::: 0 
XOR 074RDD exclusive. (OR) d<-r-v-d ... ... 0 

Optional EIS 

MUL 070RSS multiply r<-rxs ::: ... 0 ... 
DIV 071RSS divide r <- r /s ... ... ... ... 
ASH 072RSS shift arithmetically ... ... ::: ... 
ASHC 073RSS arith shift combined ... ... ... ., . 

Optional FIS 

FADD 07500R floating add ... ., . 0 0 
FSUB 07501R floating subtract ... ... 0 0 
FMUL 07502R floating multiply ... ... 0 0 
FDIV 07503R floating divide ... ::: 0 0 

BRANCH: B-location . 

If condition is satisfied 
Branch to location, 
New PC<- Updated PC+ (2 x offset) 

15 

BASE CODE 

Op Code = Base Code + XXX 

Mne­
monic 

Branches 

BR 
BNE 
BEQ 
BPL 
BMI 
BVC 
BVS 

Base 
Code 

000400 
001000 
001400 
100000 
100400 
102000 
102400 

Instruction 

branch (unconditional) 
br if not equal (to 0) 
br if equal (to 0) 
branch if plus 
branch if minus 
br if overflow is clear 
br if overflow is set 

A-3 

adrs of br instr+ 2 

xxx 

Branch Condition 

(always) 
#0 
=0 
+ 

z =0 
z = 1 
N = 0 
N = 1 
v =0 
v = 1 



Mne­
monic 

Base 
Code Instruction 

BCC 103000 br if carry is clear 
BCS 103400 br if carry is set 

Signed Conditional Branches 

BGE 

BLT 
BGT 
BLE 

002000 br if greater or ~ O 
equal (to 0) 

002400 br if less than (0) < 0 
003000 br if greater than (0) > 0 
003400 br if less or equal (to 0) =::;:; O 

Unsigned Conditional Branches 

BHI 101000 branch if higher > 
BLOS 101400 branch if lower or same =::;:; 
BHIS 103000 branch if higher or same ~ 
BLO 103400 branch if lower < 

JUMP & SUBROUTINE 

Mne-

Branch Condition 

c =0 
c = 1 

.N"'ttV=O 

N-vV= 1 
Zv (N-v-V) = 0 
Z v (N-VV) = 1 

CvZ= 0 
CvZ = 1 
c =·0 
c = 1 

manic Op Code Instruction Notes 

JMP 000100 jump PC +- dst 
JSR 004RDD jump to subroutine } 
RTS 00020R return from use same R 

subroutine 
MARK 0064NN . mark aid in subr return 
SOB 077RNN subtract 1 & br (R) - 1, then if (R) =F 0: 

·(if =F 0) PC +- Updated PC -
(2 x NN) 

TRAP & INTERRUPT: 

Mne-
manic Op Code Instruction Notes 

EMT 104000 emulator trap PC at 30, PS at 32 
to 104377 (not for genera'! use) 

TRAP 104400 trap PC at 34, PS at 36 
to 104777 

BPT 000003 breakpoint trap PC at 14, PS at 16· 
IOT 000004 input/output trap PC at 20, PS at 22 
RTI 000002 return from inter~upt 
RTT 000006 return from inte·rrupt inhibit T bit trap 

MISCELLANEOUS: 
Mnemonic Op Code Instruction 

HALT 000000 halt 
WAIT 000001 wait for interrupt 
RESET 000005 reset external bus 
NOP 000240 (no operation) 

A-4 



CONDITION CODE OPERATORS: 

15 

OP CODE BASE~ 000240 v c 

0 =CLEAR SELECTED COND. CODE BITS 
1 =SET SELECTED COND. CODE BITS 

Mnemonic Op Code Instruction N z v c 
CLC 000241 clear C - - - 0 
CLV 000242 clear V 0 -
CLZ 000244 clear Z - 0 
CLN 000250 clear N 0 - - -
CCC 000257 clear all cc bits 0 0 0 0 

SEC 000261 set C - - - 1 
SEV 000262 set V 1 -
SEZ 000264 set Z - 1 
SEN 000270 set N 1 - - -
sec 000277 set all cc bits 1 1 1 1 

A.2 NUMERICAL OP CODE LIST 

Mne- Mne- Mne-
Op Code manic Op Code manic Op Code manic 

00 00 00 HALT 00 60 DD ROR 10 40 00} 
00 00 01 WAIT 00 61 DD ROL 

EMT 00 00 02 RTI 00 62 DD ASR 
00 00 03 BPT 00 63 DD 10 43 77 
00 00 04 IOT 00 64 NN MARK 
00 00 05 RESET 00 67 DD SXT 10 44 00} 
00 00 06 RTT 

TRAP 00 00 07 ~(unused) 00 70 00 

} '""""di 
00 00 77 10 47 77 

00 01 DD JMP 00 77 77 10 50 DD CLRB 
00 02 OR RTS 10 51 DD COMB 

01 SS DD MOV 10 52 DD INCB 
00 02 10 

}(<e•eNed) 
02 SS DD CMP 10 53 DD DECB 
03 SS DD BIT 10 54 DD NEGS 
04 SS DD BIC 10 55 DD ADCB 

00 02 27 05 SS DD BIS 10 56 DD SBCB 
06 SS DD ADD 10 57 DD TSTB 

00 02 40 NOP 
07 OR SS MUL 10 60 DD RORB 

00 02 41 07 1R SS DIV 10 61 DD ROLB 

} oo"d 07 2R SS ASH 10 62 DD ASRB 
codes 07 3R SS ASHC 10 63 DD ASLB 

00 02 77 07 4R DD XOR 10 64 SS MTPS 
10 67 DD MFPS 

00 03 DD SWAB 07 50 OR FADD 
07 50 IR FSUB 11 SS DD MOVB 

A-5 



Mne· Op Code Mne- Mne-
Op Code manic manic Op-Code manic 
00 04 xxx BR . 07 50 2R FMUL 12 SS DD CMPB 
00 10 xxx BNE 07 50 3R FDIV 13 SS DD BITB 
00 14 xxx BEQ 14 SS DD BICB 
00 20 xxx BGE 07 50 40 

}(uou•od) 
15 SS DD BISB 

00 24 xxx BLT 16 SS DD SUB 
00 30 xxx BGT 
00 34 xxx BLE 07 67 77 

00 4R DD JSR 07 7R NN SOB 17 00 00} 
RE· 

00 50 DD CLR 10 00 xxx BPL SERVED 
00 51 DD COM 10 04XXX BML 17 77 77 
00 52 DD INC 10 10 xxx BHI 
00 53 DD DEC 10 14 xxx BLOS 
00 54 DD NEG 10 20 xxx BVC 
00 55 DD ADC 10 24 xxx BVS 
00 56 DD SBC 10 30 xxx BCC, 

.00 57 DD TST BHIS 
10 34 xxx BCS, 

BLO 

A.3 EIS/FIS OPERAND FORMATS 

EIS Data (Fixed Point) 

16-bit single word: 
15 14 0 

NUMBER 

32-bit double word: 

0 

HIGH NUMBER PART 

15 0 

LOW NUMBER PART 

S is the sign bit. S = 0 for positive quantities 
S = 1 for negative quantities; number is in 2's 

complement notation 
FIS Data (Floating Point) 

0 

EXPONENT I FRACTION (HIGH PART) 

HIGH ARGUMENT 

15 0 

FRACTION (LOW PART) 
I 

LOW ARGU\IENT· 

A·6 



S = sign of fraction; 0 for positive, 1 for negative 
Exponent= 8 bits for the exponent, in excess (200), notation 
Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be 
normalized) 

A.4 PROCESSOR STATUS WORD 

L .I. 
r .!.____~~~:~;LOW 

_ ~------ NEGATIVE 
~------ TRACE TRAP 

PRIORITY 

A.5 ABSOLUTE LOADER 

Starting 
Address: -500 
Memory Size: 

4K 017 
BK 037 

12K 057 

Relocation Software Switch Register Address = 516 
(eg.: relocation switch register address in a 4K system 

= @17516) 
16K 077 
20K 117 
24K 137 
28K 157 

A.6 RESERVED TRAP AND INTERRUPT VECTORS 

000 (Reserved) 
004 Bus Timeout and Illegal Instructions (eg. JMP RO) (Odd Address 

and Stack Overflow Traps Not Implemented on LSl-11) 
010 Illegal and Reserved Instruction 
014 BPT Instruction and T Bit 
020 JOT Instruction 
024 Power Fail 
030 EMT Instruction 
034 TRAP Instruction 
060 Console Input Device 
064 Console Output Device 
100 External Event Line Interrupt 
200 LAVll 
244 FIS (Optional) 
264 RXVll 
300 Floating Vectors start here 

A-7 



A. 7 RXVll BOOTSTRAPS 
Full Length Version 

~1000/000000 12702 <LF> 

001002/000000 1002n7 <LF>* 

001004/000000 12701 <LF> 

001006/000000 177170 <LF> 

001010/000000 130211 <LF> 

001012/000000 1776 <LF> 

001014/000000 112703 <LF> 

001016/000000 7 <LF> 

001020./000000 10100 <LF> 

001022/0000~ 10220 <LF> 

00102~/000000 402 <LF> 

001026/000000 12710 <LF> 

001030/000000 ~ <LF> 

001032/000000 6203 <LF> 

001034/000000 103402 <LF> 

001036/000000 112711 <LF> 

001040/000000 111023 (LF) 

001042/000000 30211 <LF> 

001044/000000 1776 <LF> 

001046/000000 100756 <LF? 

001050/000000 103766 <LF> 

001052/000000 105711 <lF> 

001054/000000 100771 <LF> 

001056/000000 5000 <LF> 

001060/000000 22710 <LF> 

001062/000000 240 <LF> 

001064/000000 1347 <LF> 

001066/000000 122702 <LF> 

001070/000000 247 <LF> 

001072/000000 5500 <LF> 

001074/000000 5007 <CR> 

A-8 

Abbreviated Version 
(DRIVE 0 ONLY): 
@1000/000000 5000 <LF> 

001002/000000 12701.<LF> 

001004/000000 177170 <LF> 

001006/00000g 105711 <LF> 

001010/000000 1776 <LF> 

001012/000000 12711. <LF> 

001014/000000 3 <LF> 

001016/000000 5711 <LF> 

001020/000000 1776 <LF> 

001022/000000 100405 <LF> 

001024/000000 105711 <LF> 

001026/000000 100004 <LF> 

001030/000000 116120 <LF> 

001032/000000 2 <LF> 

. 001034/000000 770 <LF> 

001036/000000 0 <LF> 

001040/000000 5007 <CR> 

*n = 4 for Unit 0 

n = 6 for Unit 1 

<LF> = Line Feed 

<CF> = Carriage Return 

Starting address = 1000 



A.8 DEVICE REGISTER ADDRESSES 

Device Interrupt 
Device Registers Address Vector 

Line Time Clock 100 
(external event) 
interrupt 

Console Terminal 
Input Control/Status RCSR 177560 60 
Input Buffer RBUF 177562 
Output Control/ Status XCSR 177564 64 
Output Buffer XBUF 177566 

LAV11 High-Speed 
Printer 

Printer Status 177514 200 
Printer Buffer 177516 

High·Speed Paper Tape 
Reader/Punch 

Reader Status 177550 70 
Reader Buffer 177552 
Punch Status 177554 74 
Punch Buffer 177556 

RXVl 1 Floppy Disk 
System 

Status RXCS 177170 264 
Buffer RXDB 177172 

REVl 1 ROM Programs _ 165000-165776, 
p3000-173776 

A.9 CONSOLE ODT COMMANDS 

Format 

RETURN 

LINE FEED 

t or] 
-E- or -

@ 

r/ 
I 
$nor Rn 

r; G or rG 

Octal 
Code 

015 

012 

135 
137 

100 

057 
057 

De~ription 

Close opened location and accept next 
command. 

Close current location; open next sequen· 
tial location. 

Open previous location. 

Take contents of opened location, index 
by opened location plus 2, and open that 
location. 

Take contents of opened location as an 
apsolute address and open that location. 

Open location r. 

Open last location. 

044 or 122 Open general register n (0-7) or S (PS 
register). 

073 107 or Go to location r, initialize the bus, and 
107 start program. 

A·9 



Format 

nL 

Octal 
Code 

114 

Description 

Execute bootstrap loader using n as de­
vice CSR address. 

;P or P 073 120 or Proceed with program execution. 
120 

RU BOUT or 177 Erase previous character. Response is a 
DELete backslash ". (134) each time RUBOUT is 

entered. 

M 115 Maintenance. Display of an internal CPU 
register follows the M command. Only the 
last digit displayed is significant, indicat­
ing how the CPU entered the Halt (ODT) 
mode, as follows. 
Last 
Digit Halt Source 
0 or 4 HALT instruction or BHALT L bus 

signal asserted. 
1 or 5 Bus arror occurred while getting 

device interrupt vector. 
2 or 6 Bus error occurred while doing 

memory refresh. 
3 Double bus error occurred (stack 

was non-existent value). 

4 Reserved instruction trap occurred 
(non-existent Micro-PC address 
occurred on internal CPU bus). 

7 A combination of 1, 2, and 4 
occurred. 

CTRL-SHIFT-S 023 For manufacturing tests only. Escape this 
command function by typing NULL and 
@ (000 and 100). 

A.10 REVll·A, REVll-C COMMANDS/OPERATION 

Command 

$OD 

$XM <CR> 

$XC <CR> 

Function . 
Halt processor; system responds to console ODT 
commands. 

Execute memory diagnostic program. Program 
result in displaying: 

$ Pass condition, or 
xxxxxx Halt (fail) condition 
@ 

Execute processor diagnostic program. Program 
execution results in displaying: 

$ Pass condition, 
xxxxxx Halt (fail) condition 
@ 

A-10 



Command 

$AL <CR>, or 
$Aldddddd <CR> 

$AR <CR>. or 
$ARdddddd <CR> 

$DX <CR>. or 
$DXn <CR> 

Function 

Execute XC, XM, and absolute loader programs 
using console device (default) or device CSR = 
dddddd. Successful load results in automatic 
program start or program halt at 165626. ,.._, 
Execute XC, XM, and absolute loader programs 
for relocated loading operation using console 
device (default) or device CSR = dddddd. The 
program halts and allows the relocation address 
(nnnnnn) bias to be entered into the software 
switch register (R4) as follows; restart program 
execution by entering P command: 

@R4/xxxxxx nnnnnn <CR> 
@P 

Successful load results in automatic program 
start or program halt with 165412 display. 

Execute RXVll floppy disk system bootstrap for 
disk 0 (default) or disk n (0 or 1). 

NOTES 
1. $ is the prompt character for all REVll-A and 

REVll-C commands. 

2. <CR> is a carriage RETURN (octal code= 
015) command delimiter required by all com­
mands except OD. 

3. REVll-A and REVll-C starting address is 
173000, resulting in non-memory modifying 
processor diagnostic test execution. Success­
ful completion results in the $ prompt char­
acter being displayed. 

A-11 



A.11 7-BIT ASCII CODE 

Octal Octal Octal Octal 
Code Char Code Char Code Char Code Char 

000 NUL 040 SP 100 @ 140 " 001 SOH 041 101 A 141 a 
002 STX 042 102 B 142 b 
003 ETX 043 # 103 c 143 c 
004 EOT 044 $ 104 D '144 d 
005 ENQ 054 % 105 E 145 e 
006 ACK 046 & 106 F 146 f 
007 BEL 047 107 G 147 g 
010 BS 050 ( 110 H 150 h 
011 HT 051 ) 111 I 151 
012 LF 052 * 112 J 152 j 
013 VT 053 + 113 K 153 k 
014 FF 054 ' 114 L 154 I 
015 CR 055 115 M 155 m 
016 so '056 116 N 156 n 
017 SI 057 I 117 0 157 0 
020 OLE 060 0 120 p 160 p 
021 DCl 061 1 121 Q 161 q 
022 DC2 062 2 122 R 162 r 
023 DC3 063 3 123 s 163 5 

024 DC4 056 4 124 T 164 t 
025 NAK 065 5 125 u 165 u 
026 SYN 066 6 126 v 166 v 
027 ETB 067 7 127 w 167 w 
030 CAN 070 8 130 x 170 x 
031 EM 071 9 131 y 171 y 
032 SUB 072 132 z 172 z 
033 ESC 073 133 [ 173 

~ 034 FS 074 < 134 " 174 
035 GS 075 135 ] or t 

.. 
175 } 

036 RS 076 > 136 A 176 ,.._, 
037 us 077 ? 137 - or~ 177 DEL 

A-12 



A.12 LSl-11 BUS PIN ASSIGNMENTS 

Row A Row B 
(Same as Row C) (Same as Row D) 

Module Side 1 (Component Side) 

AAl 8SPARE1 8Al 8DCOK H 
A81 8SPARE2 881 8POK H 
ACl 8AD16 8Cl SSPARE4 
ADl 8AD17 801 SSPARE5 
AEl SSPAREl BEl SSPARE6 
A Fl SSPARE2 BFl SSPARE7 
AHl SSPARE3 8Hl SS PAR EB 
AJl GND BJl GND 
A Kl MSPAREA BKl MSPARE 8 
All MS PAR EA BU MSPARE 8 
AMl GND 8Ml GND 
ANl 8DMR L 8Nl BSACK L 
APl SHALT L BPl BSPARE6 
ARl BREF L 8Rl BEVNT L 
ASl PSPARE3 BSl PSPARE4 
ATl GND BTl GND 
AUl PSPAREl BUI PSPARE2 
AVl +58 BVl +5 

Module Side 2 (Solder Side) 

AA2 +5 8A2 +5 
AB2 • -12 882 -12 
AC2 GND 8C2 GND 
AD2 +12 802 +12 
AE2 BDOUT L BE2 BDAL2 L 
AF2 BRPLY L BF2 BDAL3 L 
AH2 BOIN L BH2 BDAL4 L 
AJ2 BSYNC L BJ2 BDAL5 L 
AK2 8WTBT L BK2 BDAL6 L 
AL2 BIRQ L BL2 BDAL7 L 
AM2 BIAKI L BM2 BDAL8 L 
AN2 BIAKO L BN2 BDAL9 L 
AP2 BBS7 L BP2 BDALlO L 
AR2 BDMGI L BR2 BDALll L 
AS2 BDMGO L 852 BDAL12 L 
AT2 BINIT L BT2 BDAL13 L 
AU2 BDALO L BU2 BDAL14 L 
AV2 BDALl L BV2 BDAL15 L 

A-13 



A-14 



APPENDIX B 

INSTRUCTION TIMING 

8.1 LSl·ll INSTRUCTION EXECUTION TIME 
The execution time for an instruction depends on the instruction itself, 
the modes of addressing used, and the type of memory referenced. In 
most cases the instruction execution time is the sum of a Basic Time, a 
Source Address (SRC) Time, and a Destination Address (DST) Time. 

INSTR TIME= Basic Time+ SRC Time+ DST Time 

(BASIC Time = Fetch Time+ Decode Time + Execute Time) 

Some of the instructions require only some of these times. All timing in­
formation is in microseconds, unless otherwise noted. Times are typical; 
process timing can vary ±20 percent. A 350ns microcycle is assumed. 

8.2 SOURCE AND DESTINATION TIME 

SRC TIME SRC TIME DST TIME DST TIME 
MODE (Word) (Byte) (Word) (Byte) 

0 0 0 0 0 
1 1.40 µ,S 1.05 µ,S 2.10 µ,S 1.75 µ,S 
2 1.40 1.05 2.10 1.75 
3 3.50 3.15 4.20 4.20 
4 2.10 1.75 2.80 2.45 
5 4.20 3.85 4.90 4.90 
6 4.20 3.85 4.90 4.55 
7 6.30 5.95 6.65 7.00 

NOTE FOR MODE 2 and MODE 4 if R6 or R7 used with Byte operation, 
add 0.35 µ,s to SRC time and 0.70 µ,s to DST time. 

B.3 BASIC TIME 

OOPS (Double Operand) 

MOV 
ADD,XOR,SUB,BIC,BIS 
CMP,BIT 
MOVB 
BICB,BISB 
CMP,BITB 

OMO = Destination Mode 0 
NOTE 

DMl-7 = Destination Modes 1 through 7 

B-1 

OMO 

3.50 µ,S 
3.50 
3.50 
3.85 
3.85 
3.15 

DMl-7 

2.45 µ,S 
4.20 
3.15 
3.85 
3.85 
2.80 



SOPS (Single Operand) OMO 

CLR 3.85 µS 
INC,ADC,DEC,SBC 4.20 
COM,NLG 4.20 
ROL,ASL 3.85 
TST 4.20 
ROR 5.25 
ASR 5.60 
CLRB,COMB,NEGB 3.85 
ROLB,ASLB 3.85 
INCB,DECB,SBCB,ADC 3.85 
TSTB 3.85 
RORB 4.20 
ASRB 4.55 
SWAB 4.20 
SXT 5.95 
MFPS (106700) 4.90 
MTPS (1064SS) 7.00 

* For MTPS use Byte DST time not SRC time. 
* Add 0.35 µs to instr. time if Bit 7 of effective OPR = 1 

JMP/JSR MODE 

1 
2 
3 
4 
5 
6 
7 

INSTRUCTION 

JMP 
JSR (PC = LINK) 
JSR (PC =F LINK) 

DST TIME 

0.70 µS 
1.40 
1.75 
1.40 
2.45 
2.45 
4.20 

BASIC TIMES 

3.50 µS 
5.25 
8.40 

DMl-7 

4.20 µS 
4.90 
4.55 
4.55 
3.85 
5.95 
6.30 
4.20 
4.20 
4.55 
3.50 
4.90 
5.95 
3.85 
6.65 
6.65 
7.00 * 

ALL BRANCHES 
SOB (BRANCH) 
SOB (NO BRANCH) 

3.50 (CONDITION MET OR NOT MET) 

SET CC 
CLEAR CC 
NOP 

RTS 
MARK 
RTI 
RTT 

4.90 
4.20 

3.50 
3.50 
3.50 

5.25 
11.55 
8.75 * 
8.75 * + 

B-2 



INSTRUCTION 

TRAP, EMT 
IOT,RPT 

WAIT 
HALT 
RESET 

BASIC TIMES 

16.80 * µS 
18.55 * 
6.30 
5.60 
5.95 + 10.0 µS for INIT + 90.0 µS 

MAINT INST. (00021R) 
RSRVD INST. (00022N) 

20.30 
5.95 (TO GET TO µADDRESS 3000) 

* If NEW PS HAS BIT 4 or BIT 7. SET ADD 0.35 µs FOR EACH 
+ IF NEW PS HAS BIT 4 (T BIT) SET ADD 2.10 µs 

B.4 EXTENDED ARITHMETIC (KEVll) INSTRUCTION TIMES 

EIS Instruction Times 

MODE 

0 
1 
2 
3 
4 
5 
6 
7 

INSTRUCTION 

MUL 

DIV 
ASH (RIGHT) 
ASH (LEFT) 
ASHC (RIGHT) 
ASHC (LEFT) 

SRC TIME 

0.35 µS 
2.10 -
2.80 
3.15 
2.80 
3.85 
3.85 
5.60 

BASIC TIME 

24.0 to 37.0 µS 

64.0 µs Worst Cas.e 
78.0 µs Worst Case 
10.1 + 1.75 per shift 
10.8 + 2.45 per shift 
10.1 + 2.80 per shift 
10.1 + 3.15 per shift 

If both numbers less than 
256 in absolute value 
16 bit multiply 

FIS Instruction Times (us) 
INST. TIME= BASIC TIME+ SHIFT TIME FOR BINARY POINTS+ SHIFT 

TIME FOR NORMALIZATION 

INSTRUCTION 

FADD 
FSUB 

BASIC TIME 

42.1 µS 
42.4 

8-3 



EXPONENT DIFFERENCE ALIGN BINARY POINTS 

2.45 µs per shift 0- 7 
8--15 

16-23 
3.50 + 2.45 per shift over 8 
7.00 + 2.45 per shift over 16 

EXPONENT DIFFERENCE NORMALIZATION 

2.1 µs per shift 0- 7 
8--15 

16-23 
2.1 + 2.1 per shift over 8 
4.2 + 2.1 per shift over 16 

INSTRUCTION BASIC TIME (µs) 

FMUL 74.2 to 80.9 µs if either argument 
has only 7 bits of precision, i.e., the 
second word of the 32 bit argument 
is 0. 

121.1 µs worst case (i.e., arguments 
have more than 7 bits. of precision). 

FDIV 151 µs typical 
232 µs worst cas·e 

8.5 OMA (DIRECT MEMORY ACCESS) LATENCY 
OMA latency, which is the time from request (BDMRL) to bus mastership 
for the first OMA device, is 5.25 µs, maximum. This time is the longest 
processor DATIO cycle which occurs for an ASR instruction with destina­
tion modes of 1 through 7. OMA requests are honored. during memory 
refresh by the processor. 

8.6 INTERRUPT LATENCY (ALL TIMES IN MICROSECONDS) 

a. If processor is performing memory refresh 
(regardless whether KEVll is present): 

Time from interrupt request (BIRQ L) 
to acknowledgement (BIAK I:.) 

Time from acknowledgement (BIAK L) 
to fetch of first service routine 
instruction 

Total time from· request to first 
service routine instruction . 

b. If processor is not performing memory refresh 
(and KEVll not present): . 

Time from interrupt request (BIRQ L) 
to acknowledgement (BIAK L) 
(Longest instruction is IOT) 

Time from acknowledgement (BIAK L) 
to fetch of first service routine 
instruction 

Total time from request to first 
service routine instruction 

8-4 

118 µs max 

16.5 µs max 

134.5 µs max 

18.55 µs max 

16.5 µs max 

35.05 µS max 



c. If processor is not performing memory refresh 
and KEV11 option is present: 

Time from interrupt request (BIRQ L) 
to acknowledgement (BIAK L) 

Time from acknowledgement (BIAK L) 
to fetch of first service routine 
instruction 

Total time from request to first 
service routine instruction 

NOTE 

27.6 µs max 

16.5 µS mqX 

44.1 µs max 

During all KEVl 1 instructions (EIS and FIS), de­
vice and event interrupt requests are periodically 
scanned. If present, the instruction is aborted 
and all processor state information is backed up 
to the beginning of the instruction. After the in­
terrupt is processed, the KEVll instruction is 
re-executed from the beginning. Caution should 
be observed with the frequency of event inter· 
rupts; if the frequency is too high, the KEVl 1 
instruction will never complete. It is suggested 
a maximum frequency of 3.3 kHz be used on the 
event input if the KEVll option is present. With­
out the KEVl 1, the maximum frequency should 
not exceed 20 kHz. Both times allow approxi­
mately 50 µs for the interrupt service routine. 

8-5 



8-6 



APPENDIX C 

LSl-11, PDP-11 PROGRAMMING/HARDWARE 
DIFFERENCE LIST 

C-1 



Activity 

ALL = Assembly Level Language 
HLL = High Level Language 

Applicable to 
Programming 

Language Levels 

Applicable to 
the PDP·ll 

HO = Hardware Only ALL HLL HO NOTE LSl·ll 05/10 15/20 35/40 45 

1. OPR %R, (R)+ or QPR %R, -(R) using the same 
register as both source and destination: contents 
of R are incremented (decremented) by 2 before 
being used as the source operand. 

OPR %R, (R)+ or QPR %R, -(R) using the same 
register as both register and destination: initial 
contents of R are used as the source operand. 

2. OPR %R, @ (R)+ or QPR %R, @ -(R) using 
the same register as both source and destination: 
contents of Rare incremented (decremented) by 2 
before being used as the source operand. 

OPR 0 %R, @ (R)+ or OPR %R, @ -(R) using 
the same register as both source and destination: 
initial contents of R are used as the source oper· 

·and. · 

x 

x 

x 

x 

3. OPR PC, X(R); QPR PC, X(R); OPR PC, @ A;· OPR : X 
PC, A: location A will contain the PC of OPR +4. · 

OPR PC, X(R); QPR PC, @ X(R); OPR PC, A; OPR 
PC, @ A: location A will contain the PC of OPR 
+2. 

x 

x x 

x x x 

x x 

x ·x x 

. x x 

x x x 



4. JMP (R)+ or JSR reg, (R)+: contents of R are in­
cremented by 2, then used as the new PC address. 

JMP (R)+ or JSR reg, (R)+: initial contents of R 
are used as the new PC. 

5.· JMP %R or JSR reg, %R traps to 4 (illegal in­
struction). 

JMP %R or JSR reg, %R traps to 10 (illegal in­
struction). 

6. SWAB does not change V. 

SWAB clears V. 

7. Register addresses (177700-177717) are valid 
program addresses when used by CPU. 

Register addresses (177700-177717) timeout 
when used as a program address by. the CPU. Can 
be addressed under console operation. Note ad­
dresses cannot be addressed under console for 
LSl-11. 

8. Basic instructions noted in PDP-11 processor 
handbook. 

SOB, MARK, RTT, SXT instructions.' 

ASH, ASHC, DIV, MUL, SPL instructions. 

x 

x 

x 

x 

x 
x 
x 

x 

x 

x 

x 

x x 

x x x 

x X· x x 

x 

x 

x x x x 
x 

x x x . x 

x x x x 

x x x 

x 



XOR instruction. 

,t,ctivity 

ALL = Assembly Level Language 
HLL =High Level Language 
HO = Hardware Only 

Applicable to 
Programming 

Language Levels 

Applicable to 
the PDP-11 

ALL HLL HO NOTE LSl·ll 05/10 15/20 35/40. 45 

x x x 
·----·····--·-·················································-·····--------·-····································-···· .. ···-------·············--· .............................................................................................................. . 

The external option KEll·A provides a MUL, DIV, 
and shift operation in the same data format. 

The KEll·E (Expansion Instruction Set) provides 
the instructions MUL, DIV, ASH, and ASHC. These 
new instructions are 11/45 compatible. 

The KEll·F adds unique stack ordered floating 
point instructions: FADD, FSUB, FMUL, FDIV. 

The KEVll adds EIS/FIS instructions. 

SPL instruction. 

9. Power fail during RESET instruction is not recog­
nized until after th·e instruction is finished (70 
ms). RESET instruction consists of 70 ms pause 
with INIT occurring during first 20 ms. 

Power fail immediately ends the RESET instruction 
and traps if an INIT is in progress. A minimum 
INIT of 1 µs occurs if instruction aborted. 

x 

x 

x 

x x 
x 
x. 

x 

' x x 

x ' 

x 

x 
x x 

x 



Power fail acts the same as 11/45 (22 ms with 
about 300 ns minimum). Power fail during RESET 
fetch is fatal with no power down sequence. 

Reset instruction consists of 10. µs of INIT fol­
lowed by a 90 µs pause. Power fail not recognized 
until the instruction is complete. · 

10. No RTI instruction. 

If RTI sets the T bit, the T bit trap occurs after 
the instruction following RTI. 

11. If RTI sets "T" bit, "T" bit trap is acknowledged 
after instruction following RTI. 

12. 

If RTI sets "T" bit, "T" bit trap is acknowledged 
immediately following RTI. 

If an interrupt occurs during an instruction that 
has the "T" bit set, the "T" bit trap is acknow-
edged before the interrupt. 

If an interrupt occurs during an instruction and 
the "T" bit is set, the interrupt is acknowledged 
before "T" bit trap. 

13. "T" bit trap will sequence out of WAIT instruction. 

"T" bit trap will not sequence out of WAIT in­
struction. Waits until an interrupt. 

x 

x 

x 
x 

x 

x 

x 

x 

x 
x 

x 

x 

x x 
x x x 

x x 

x x x 

x x x x 

x 

x x x 
x x 



Activi~y 

14. Explicit reference (direct access) to PS can load 
"T" bit. Console can also load·"T" bit. 

Only implicit references (RTI, RTT, traps and in­
terrupts) can load "T" bit. Console cannot load 
"T" bit. 

15. Odd ·address/non-existent referens;es using the S'P 
cause a HALT. This is a case of double bus error 

0 with the second error occurring in the trap ser-
m vicing the first error. Odd address trap not in 

LSl-11. 

Odd address/non-existent references using the 
stack pointer cause a fatal trap. On bus error in 
trap service, new stack create~ at 0/2. 

16. The first instruction in an interrupt routine will not 
be executed if another interrupt occurs at a higher 
priority level than was assumed by the first in­
terrupt. 

The first instruction in an interrupt service is guar­
anteed to be executed. 

17. 8 general-purpose registers. 

Applicable to 
Programming 

Language Levels 

Applicable to 
the PDP·ll 

ALL HLL HO NOTE LSl-11 05/10 15/20 35/40 45 

x x x 

x x x x 

x x x x 

x x x 

x x x x x 

x x x x 

x x x x x 



0 

16 general-purpose registers. 

18. PSW address, 177776, not implemented must use 
new instructions, MTPS (Move To PS) and MFPS 
(Mqve From PS). 

PSW address implemented, MTPS and MFPS not 
implemented. 

19. Only one interrupt level (BR4) exists. 

Four interrupt levels exist. 

20. Stack overflow not implemented. 

Some sort of stack overflow implemented. 

'i 21. Odd address trap not implemented. 

Odd address trap implemented. 

22. FMUL and FDIY instructions implicitly use R6 
(one push and Pop); hence R6 must be set up cor­
rectly. 

FMUL and FDIY instructions do not implicitly use 
R6. 

23. Due to their execution time, EIS instructions can 
abort because of a device interrupt. 

EIS instructions do not abort because of a device 
interrupt. 

x 
x x 

x x 

x x 
x x 
x 
x 

x x 

x x 

x 

x 

x 
x 

x x x x 

x 
x x x x 

x 
x x x x 

x x 
x x x x x 

x 

x 

x x 

x x x 



24. 

25. 

\>. 26. 
co 

Activity 

Due to their execution time, FIS instructions can 
abort because of a device interrupt. 

EIS instructions do a DATIP (or DATIO) and DATO 
bus sequence when fetching source operand. 

·EIS instructions do a DAT! bus sequence when 
fetching source operand. 

MOV instruction does just a DATO bus sequence 
for the last memory cycle. 

MOV instruction does a DATIP and DATO bus se­
quence for the last memory cycle. 

27. If PC contains non-existent memory address and a . 
bus error occurs, PC will have been incremented. 

If PC contains non·e~istent memory address and a 
bus error occurs, PC will be unchanged. 

28. If register contains non-existent memory address 
in· mode 2 and a bus error occurs, register will be 
incremented. 

29. If register contains an odd value in mode 2 and a 
bus error occurs, register will be incremented. 

Applicable to 
Programming 

Language Levels 

ALL HLL HO NOTE 

x x 

x 

x 

x 

x 

x 

x 

x 

x 

LSl·ll 

x 

x 

x 

x 

x 

x 

Applicable to 
the PDP·ll 

05/10 15/20 35/40 

x 

x 

x 

x x 

x x 

x 

x x 

x x 

45 

x 

x 

x 

x 

x 



If register contains an odd value in mode 2 and a 
bus error occurs, register will be unchanged. 

30. Condition codes restored to original values after 
FIS interrupt abort (EIS doesn't abort on 35/40). 

Condition codes that are restored after EIS/FIS 
interrupt abort are indeterminate. 

31. Op codes 075040 through 075377 unconditionally · 
trap to 10 as reserved op codes. 

If KEVl 1 option is present, op codes 75040 
through 075377 perform a memory read using the 
register specified by the low order 3 bits as a 
pointer. If the register contents are a non-existent 
address, a trap to 4 occurs. If the register con­
tents are an existent address, a trap to 10 occurs 
if user microcode is not pre.sent. If no · KEVl 1 
option is present, a trap to 10 occurs. 

32. Op codes 210 through 217 trap to 10 as reserved 
op codes. 

Op codes 210 through 217 are used as a main­
tenance instruction. 

33. Op codes 75040 through 75777 trap to 10 as re­
served op codes. 

x 

x 

x 

x 

x x 

x 

x x 

x 

x 

x 

x x x x 

x x x x 

x x x x 



'." ..... 
0 

ActMty 

Only if KEVl 1 option is present, op codes 75040 
through 75377 can be used as escapes to user 
microcode. Op codes 75400 through 75777 can 
also be used as escapes to user microcode and 
K1;:v11 option need not be present. If no user 
microcode exists, a trap to 10 occurs . 

34. Op codes 170000 through 177777 trap to 10 as 
reserved instructions. 

Op codes 170000 through 177777 are imple­
mented as floating point instructions. 

Op codes 170000 through 177777 can be used as 
escapes to user microcode. If no user microcode 
exists, a trap to 10 occurs. 

Applicable to 
Programming 

Language Levels 

Applicable to 
the PDP-11 

ALL HLL HO NOTE LSl-11 05/10 15/20 35/40 45 

x x 

x x x x 

x x x 

x x 



\' ..... 
..... 

35. 

Activity LSl-11 

Priority of pro­
cessor traps: 
Bus error trap 
Memory refresh 
TRAP instructions 
TRACE Trap 
Power Fail Trap 
Halt Line 
Event Line Interrupt 
Device (BUS) 
Interrupt Request 

HARDWARE DIFFERENCES-TRAPS 
(TRANSPARENT TO SOFTWARE) 

PDP-11/05, 10 

Priority of internal 
processor traps, 
external interrupts, 
HALT and WAIT: 

Bus Error Trap 
Trap instructions 
TRACE Trap 
OVFL Trap 
PWR Fail Trap 
UNIBUS BUS 

REQUEST 
CONSOLE STOP 
WAIT LOOP 

PDP-11/15, 20 

Priority of internal 
processor traps, 
external interrupts, 
HALT and WAIT: 

Bus Error Trap 
Trap Instructions 
TRACE Trap 
OVFL Trap 
PWR Fail Trap 
CONSOLE BUS 

REQUEST 
UNIBUS BUS 

REQUEST 
WAIT LOOP 

PDP-11/35, 40 

Priority of internal 
processor traps, 
external interrupts, 
HALT and WAIT: 

Memory Parity 
Errors 

Memory Manage­
ment Fault 

OVFL Trap 
(red zone) 

TRAP Instructions 
TRACE Trap 
OVFL Trap 

(yellow zone) 
PWR Fail Trap 
CONSOLE BUS 

REQUEST 
UNIBUS BUS 

REQUEST 
WAIT LOOP 

PDP-11/45 

Priority of internal 
processor traps, 
external interrupts, 
HALT and WAIT: 

Memory Parity 
Errors 

BUS Error Traps 
TRAP Instruction 
CONSOLE Bus 

Request 
Memory Manage­

ment 
OVFL Trap 
FLOATING POINT 

Trap. 
PROGRAM INTER­

RUPT Request 
UNIBUS .BUS 

Request 
WAIT LOOP 
TRACE Trap 



C-12 



APPENDIX D 

LSl-11, PDP-11/03 ENGINEERING BULLETIN 

LSl-11, PDP-11/03 Differences 
The purpose of this engineering bulletin is to document the specific 
differences existing between the several versions of the KDll-F and 
KDll-J processor modules, which serve as the CPU in LSl-11 and PDP-
11/03 microcomputer systems. Also included are programming recom­
mendations pertinent to the several revisions. 

At present, LSl-11 and PDP-11/03 systems are equipped with processor 
modules having two levels of revision: one level is revisions C and D, 
and the other level is revision E and subsequent revisions. In the de­
scriptions of differences and in programming recommendations, these 
two levels are referred to as Rev C/D and Rev E. The revision designa­
tion for a given processor module is indicated by the letter following the 
date code on the etch side of the processor module quick-release handle. 

Each difference is defined in detail in this bulletin, along with necessary 
recommendations for resolving any departures from conventional PDP-11 
programming techniques imposed by the difference. 

Revision Level Differences 

Length of .BUS INIT 
The period of the signal BUS IN IT, whether asserted by a RESET in­
struction or upon power up,· will be approximately 100 µ,s on revision 
level C/D systems rather than the specified 12 µ,s, as on the revision 
level E systems. For those users having revision level C/D systems, it is 
recommended that only the leading edge or BUS INIT be used and not 
the signal pulse width, when designing user interfaces. 

RTT Instruction and Internal Refresh 
If the T bit is set to 1 by an RTT instruction on systems at revision level 
C/D, and the CPU performs a memory refresh immediately after exe­
cuting the RTT, the one instruction delay for the T bit will not occur. As 
a result, the T bit trap will occur immediately after refresh is completed. 
The difference is present only when the CPU performs a refresh cycle 
so that the incidence should be very low since there is normally very 
little use of the T bit by user software. This difference can be eliminated 
on the present machines by having refresh done externally. As an alter­
native, this difference can be handled in 'a program using the T·bit, by 
making sure that the PC has changed from the previous trace trap. If 
the PC did not change, the program knows that a refresh cycle inter­
vened. 

On revision level E systems, this one instruction cycle delay occurs 
normally after execution of an RTT. 

Possibility of Memory Locations Being Altered When a BUS Error Occurs 
Due to a race condition on revision level C/D systems, the contents of 

D·l 



locations 4, 6, 14, or 16 could possibly be altered during the processing 
of a bus error by the CPU, due to conflict on the WD tri-state DAL bus 
lines. 

It is recommended that intentional bus errors, such as memory sizing, 
be kept to a minimum. This alteration, if it occurs, takes place before 
the content of the trap location is read by the CPU. Hence,· if location 4 
is altered, the resultant PC from that location would not be correct. 

PSW Not Initialized for all Power-Up Options 
If a power-up option other than to 24 (Option #0) is selected with the 
CPU module jumpers, on revision level C/D systems, the event and de­
vice .interrupts are inhibited until a specific MTPS instruction is executed. 
However, since the PSW bit 7 may be off, this condition is not apparent. 
Also, the remaining bits in the PSW are indeterminate at this time. On 
Rev C/D systems, for power-up modes other than to location 24, it 
is recommended that the PSW be initialized through the Stack Pointer 
(register R6). An MTPS instruction will not clear the T-bit, which could 
be set to one in this circumstance. 

In the foHowing example, a PC and the desired PSW are pushed onto the 
Stack, and an RTI is executed to load the PSW. The PC pushed onto 
the Stack is the address of the instruction following the RTI, so that 
after execution of the RTI, normal program execution can continue. 

MOV # PSW ·(SR) 
MOV #TAGl-(SR) 
RTI 

Push PSW onto Stack 
Push new PC onto Stack 
Pop new PC and PSW of Stack 

TAG: Program continues here 

However, any trap or interrupt following power-up options 1, 2, or 3 
should be avoided, because if the T bit is on, it will be saved on the 
stack and upon return, the T bit will be honored, since the microlevel 
flag is now set. 

For revision .level E systems, the PSW is initialized to 200 so that in· 
terrupts are inhibited for the power-up to 173000 (option 2). The re­
maining power-up options, other than power-up to 24, specifically op­
tions 1 and 3, still have the above difference. If microcode or ODT 
power-up are selected (options 3 and 1, respectively), the PSW will not 
be initialized. For these two cases, the effect of this difference should 
be minimal since most users will type a "G" (GO) which will clear the 
PSW. However, those who select the ODT power-up option, then enter 
a program, set the PC, and type "P", could experience difficulty. To 
avoid this difficulty, the PSW should be explicitly cleared using the "RS" 
command. 

Certain Reserved Op Codes in Group 7 through 77 Not Reserved 
In the op code group 7 through 77, those codes that have bit 3 = 1 will 
be executed as the maintenance instruction (21R), rather than trapping 
to 10, revision level C/D systems. Those codes having bit 3 = 0 will try 
to execute microcode at micro PC 3000. But as long as a user does not 
add microcode that responds to micro PC 3000, these op codes will 
trap to 10. 

D-2 



Rubout Function Does Not Work for Register N.umbers 
This description clarifies a characteristic cif revision level C/D systems; 
specifically, if a user types the following (where the underlined characters 
are those Micro-ODT characters previously typed): 

@R_?"'-6/012345 The response by the CPU is a backslash which 
is the symbol f9r RUBOUT. 

This action will not open register 6(R6) but rather memory location 6. 
Once the "R" is typed, attempting to rubout only the register number 
will change modes and open the corresponding memory location instead. 
Other commands such as "line feed" will indicate that the user is in 
memory mode by typing memory locations and not register numbers. It 
is recommended that when the wrong register number is selected, an­
other "R" be typed along with the new register number. For example, 
@R5R6/123456. 

SRUN Differences 
The signal SRUN is available at module finger CHl on Rev E pro­
cessor modules. This signal is asserted. by Rev E processor modules 
under the following circumstances: 

L Once each time the CPU fetches an instruction. 

2. Once each time the CPU executes a Reset instruction. 

3. Twice each time the CPU responds to assertion of the bus signal 
BDCOK H. 

4. Once each time the CPU times out on a bus cycle,(including timeouts 
occurring when in the terminal mode, and when sizing memory under 
the console "L" command). 

In the PDP-11/03 systems, this signal is connected to a retriggerable 
one-shot to drive the front panel RUN indicator light. 

On Rev C/D processor modules, SRUN does not appear on module 
finger CHL However, on Rev C/D processor modules, SRUN can be 
decoded from the SROM fingers DDl, DEl, DFl, and DHl (SROM signals 
SROMO H, SROMl H, SROM2 H and SROM3 H). These signals are stable 
and valid only while the signal SPH3 H on finger DDl is true, so that 
SRUN can be decoded once each time the CPU fetches an instruction. 
Decoding of the SROM signals is based on SROMl being true and 
SROMO, SROM2, and SROM3 being false, with SPH3 H true serving as 
the decoding strobe. On Rev C/D processor modules,, this particular 
assertion of the SROM signals occurs once during the fetching of each 
instruction and at no other time. 

Condition Codes Not Restored to Original Values After 
EIS/FIS Interrupt Abort 
This difference applies only .to diagnostics that may check this condition. 
Otherwise, it is transparent to a· programmer since all the EIS and FIS 
instructions affect all the condition codes. 

Programming Recommendations 

Micro-CDT Typeout on Power-Up is Dependent on the Character 
in the UAR/T Buffer (DLVll) 

D-3 



For both rev1s1on level C/D and E systems and jumpered for power-up 
to location 24 option, the normal micro-ODT type out is the contents 
of the PC followed by a carriage return, line feed, and prompt character. 
If that character is a RUBOUT (177), the typeout will ·be the contents of 
the PC followed by a backslash as a result of a RUBOUT character in 
the UAR/T buffer. The content of the UAR/T buffer can be a RUBOUT 
character as a consequence of DLVll power up. The carriage return, 
line feed, and prompt character will not be typed in this case. However, 
the state of micro-ODT does not change and after the backslash it is 
ready to accept commands. Consider this example: A power-up to 24 
(24 contains 0 and 0 contains 0) normally would type: 

000002 

~ 

If a RUBOUT character is contained in the UAR/T buffer, the typeout 
would be 

00002/ 

Although no prompt character is typed, ODT will accept all commands 
in the normal manner. Also, if the machine halts for any reason and a 
RUBOUT character is in t!le UAR/T input buffer, the same erroneous 
typeout will occur. 

Caution on Storing MTPS and EIS Instructions in ROM 
If MTPS and EIS instructions are executed out of ROM on both revision 
level C/D and E systems, some addressing modes will cause a bus time­
out error. This occurs because the processor performs a read-modify­
write rather than a read when obtaining the source operand. Therefore, 
any mode where the effective source operand address is stored in ROM 
will cause a timeout error. 

The following example causes a timeout: 

MUL #123,RO · 

The timeout can be avoided, however, ·by first moving the literal to a 
general register or to RAM, as follows: 

MOV #123,R4 
MUL R4,RO 

or another alternative is: 

MOV #123,TEMP 
MUL TEMP,RO 

where TEMP is in RAM. 

Event Line not Disabled when "G" and "L" Commands are Used 
If a free-running clock, such as 60 Hz from the power supply, is attached 
to the BEVNT bus line on both revision level C/D and E systems, an 
interrupt to location 100 will occur when using the "G" and "L" com­
mands prior to executing the first instruction. Therefore, with an MTPS 

D-4 



as the first instruction, a program can not disable the BEVNT bus line 
by inhibiting interrupts. 

User programs requiring a free-running clock attached to the BEVNT 
bus line can temporarily avoid this situation by setting the PSW (RS) to 
200, loading the PC with the starting address instead of using the "G" 
command, and then using the "P" command. Before using the "L" 
command, the PSW (RS) can be set to 200, thereby inhibiting interrupts, 
to avoid receiving the event interrupt after loading the ABS loader. 

T Bit is On and a WAIT Instruction is Executed 
If the T bit is = 1 when a WAIT instruction is executed on both revision 
level C/D and E systems, the processor will hang and will not honor 
any device, event, halt, or power-down interrupts. However, refresh will 
still occur. In general, this situation will occur when an application pro­
gram is linked to ODT-11, and the user is single stepping his program 
and a WAIT instruction is encountered. To escape this state, the pro­
cessor must be powered-down and then powered-up again, with an as­
sertion of the DCOK signal. Note that the content of dynamic MOS RAM 
could be lost if DCOK is asserted for longer than 400 µ.S. The use of a 
one-shot multivibrator to assert DCOK is recommended in these circum­
stances. This difference will not affect user software since the T bit is 
not generally used by application programs. 

T Bit and EIS/FIS Instructions Being Aborted by Device Interrupts 
If the T bit is set while executing an EIS or FIS instruction, a subsequent 
event interrupt causes that instruction to be aborted, and the new PSW 
at the T bit vector location plus two (location 16) inhibits interrupts. 
Consequently, the processor will enter an endless loop executing the EIS 
or FIS instruction and the T bit trap and will never service the device or 
event interrupt. 

The reason for this circumstance is that the RTT instruction, which is at 
the end of the T bit service routine, does not arbitrate interrupts if the 
T bit has been set, thereby popping the old PSW from the stack. 

This restriction is imposed in order to guarantee that the T-bit trap is 
not immediately executed in this situation as with the RTI instruction. 
Most system and application software do not use the T bit and only a 
utility such as ODT-11 would use this facility. In those cases where the 
T bit is used, the solution is to allow interrupts to be honored in the T 
bit service routine by lowering the PS priority. Irrespective of T bit state, 
the limiting case concerns an interrupt such as a free-running clock tied 
to the BEVNT bus line which is occurring at such a rapid rate that the 
EIS or FIS instruction never finishes. In such a case, every time the in· 
terrupt is serviced and a return is made to re-try the EIS or FIS instruc­
tion, the interrupt occurs again and the instruction is aborted. 

Caution When Clearing Device Interrupt Enable Bits 
On both revision level C/D and E systems, clearing device Interrupt En­
able bits while the device is still active can lead to a bus timeout error 
when the processor attempts to receive the interrupt vector from that 
dvice. Consider the exampl.e: 

PSW = 0 
CLR@ #177564 

D-5 



As a result, the DLVll Serial Line Unit interrupt enable bit is being 
cleared. Now, assume that the transmitter is still active and sending 
characters, and further assume that the Done bit in the status register 
becomes set shortly after the CLR instruction is fetched, but before the 
Interrupt Enable bit can be cleared. The device will now post an inter­
rupt request because Done bit has been set and Interrupt Enable bit is 
still set. The CLR instruction will complete execution and the processor 
will recognize the interrupt request since there was not enough time for 
the device to disable the interrupt request. The processor will then at­
tempt to obtain a vector from the interrupting device. However, a bus 
timeout error will occur because the device now has had enough time to 
remove the interrupt request and will not respond. The processor treats 
this timeout as a fatal condition and halts by entering Micro-ODT. If 
multiple interrupt requests were pending at this time, a timeout would 
not occur since the next device would respond with an interrupt vector. 

One method of avoiding this problem is to disable interrupts immediately 
before the Interrupt Enable bit is cleared. For example: 

MTPS #200 
CLR @ #177564 
MTPS #0 

In this situation, enough time has been allowed for the interrupt request 
to be removed by the device. This feature was included to permit detec­
tion of faulty interrupt operation; specifically when an interrupting device 
does not properly respond within the required time period. 

D-6 



APPENDIX E 

PERIPHERALS 

E.1 CONSOLE DEVICE APPLICATIONS 
Peripherals available for use in PDP-11/03 and LSl-11 1/0 applications 
as the console terminal are listed below. All peripherals listed are serial 
line devices which interface via the DLVll Serial Line Unit interface 
module. Refer to Table E-1 for peripheral types, models, brief specifica­
tions, and required interface options (DLVll and either the BC05M 20 
mA current loop interface cable or the BC05C EIA interface cable). Con­
tact your local Digital Equipment Corporation Sales Office for detailed 
information on any of the peripherals listed. 

Typical applications are shown in Figures E-1 through E-3. Although the 
RT02-A is not capable of full console operation, it can be used as the 
console device, but it is limited to the following ODT commands: 

ODT Command RT02·A Keys 

CR SEND 
LF SHIFT and CLEAR 
I SHIFT and+ 

@ SHIFT and@ 
G SHIFT and GO 

RO SHIFT and ERROR 

The console device can either be directly interfaced to the DLVll or it 
ccin be operated in a remote location and interfaced via data sets or 
acoustic couplers and telephone lines. However, only the LA36, LT33, 
VT50, and VT52 are capable of remotely placing the LSl-11 system in the 
Halt state by asserting a line break (continuous "space" transmission). 
(This feature is jumper-enabled on the DLVll through the use of framing 
error detection.) 

TERMINAL 
INTERFACE CABLE (BCOSM) (LA36, LT33, 

-~~~~~=~-- VT50, VT52, 
RT02·A, RTOZ-8) 

Figure E-1 Direct 20 mA Current Loop Interface 

TELEPHONE 
LINES 

Figure E-2 Telephone Line Interface Via Data Sets 

E-1 

TERMINAL 
IVTSO, VT52, 
LA36, RT02-A, 
RT02·Bl 



INTERFACE 
CABLE 
(8C05M 
OR BC05CI 

TELEPHONE 
LI NES 

(110-300 BAUD} 

TER MINAL 
ILA36, LT33 
VT50, VT52 . 
RT02-A, RT02-Bl 

Figure E-3 Telephone Line Interface Via Acoustic Couplers 

Figure E-4 LA36 DECwriter II 

E-2 



Table E·l LSl-11 Console Terminal Peripheral Options 

Serial Required 
Display 1/0 Speed BREAK Interface Interface 

Model Name Figure Terminal Type Capacity (baud rate) Key Type Options 

LA36 DECwriter II E-4 Keyboard/ Printer 132 characters/line 300 Yes 20 mA loop DLVll, 
optional EIA BC05M 

DLVll, 
BC05C 

LT33 Teletypewriter Keyboard/ Printer 72 characters/ line 110 Yes 20 mA loop DLVll, 
and Paper Tape BC05M 
Reader/ Punch 

VT50 DECscope E-5 Keyboard/ CRT 960 characters 75-9600 Yes 20 mA DLVll, 
Display (80 char loop or BC05M 

l'T1 x 12 lines) optional EIA DLVll, 
w BC05C 

VT52 DECscope E-6 Keyboard/CRT 1920 characters 75-9600 Yes 20 mA DLVll, 
Display (80 char loop or BC05M 

X 24 lines) optional EIA DLVll, 
BC05C 

RT02-A 30 Character E-7 Alphanumeric 32 characters 110-300 No 20 mA loop DLVll, 
Keyboard Re- Data Entry (20 mA) or EIA BC05M 
mote Terminal Terminal 110-1200 DLVll, 
(Limited con- (EIA) BC05C 
sole ODT 
command set) 

RT02-B Alphanumeric E-8 Full Alpha- 32 characters 110-300 No 20 mA loop DLVll, 
Terminal numeric Data (20 mA) or EIA BC05M 

Entry Terminal 110-1200 DLVll, 
(EIA) BC05C 



Figure E-5 VT50 DECscope 

Figure E-6 VT52 DECscope 

E-4 



Figure E-7 RT02-A 30-Character Keyboard 
Remote Terminal 

E-5 



Figure E-8 RT02-B Alphanumeric Terminal 

E-6 



Figure E-9 LA180 DECprinter 

E-7 



""' -..-~-.;; ~ '.'"i ,,, ,,_, , ,. ~- ~ 

' I 

Figure E-10 RXVll Floppy Disk System 
(RXOl Floppy Disk Drive) 

E.2 PRINTERS 
Two basic printers are available for use in LSl-11 applications: The LA35, 
a receive-only version of the LA36, and the LA180 DECprinter. The LA35 
has the same characteristics as the LA36 except no keyboard (send) is 
provided. · 

The LA180 DECprinter (Figure E-9) is available in several models. All 
models feature low cost, high speed, quiet, and reliable operation. The 
DECprinter is capable of printing from 60 to 400 lines per inch, depend­
ing on line length, at 180 characters per inch. Models are listed below: 

Model 

LAVll-PA 

LAVll -PD 

LA180 

LA180-CA 

Description 

115 V, 60 Hz LA180, LSl-11 bus interface controller mod­
ule, BCllS interface cable. 

230 V, 50 Hz LA180, LSl -11 bus interface controller mod­
ule, BCll S interface cable. 

Serial LA180 DECprinter. Requires one (optional) DLVll 
serial line interface and one interface cable. The model 
numbers are defined below: 

115 V, 60 Hz serial LA180, 20 mA current loop interface 
(use BC05M interface cable) . 

E-8 



Model Description 

LA180-CD 230 V, 50 Hz serial LA180, 20 mA current loop interface 
(use BC05M interface cable). 

LA180-EA 115 V, 60 Hz serial LA180, EIA interface (use BC05C inter­
face cable). 

LA180-ED 230 V, 50 Hz serial LAlBO, EIA interface (use BC05C inter-
face cable). 

E.3 RXVll FLOPPY DISK SYSTEM 
The RXVl 1 Floppy Disk System is a low cost, random access, mass 
memory device that stores data in fixed-length blocks on preformatted 
flexible diskettes. The RXVll is available in single drive and dual drive 
models (Figure E-10). Each drive is capable of storing up to 256K 8-bit 
bytes of data. Each floppy disk system includes an RXOl floppy disk 
drive (single or dual disk drive assembly), a 15-foot interface cable, and 
an RXVll interface that plugs into the LSl-11 or PDP-11/03 system back­
plane. RXVll models are described below: 

Model 

RXVll-AA 
RXVll-AD 
RXVll-BA 
RXVll-BD 

Description 

115 V, 60 Hz single drive, floppy disk system 
230 V, 50 Hz single drive, floppy disk system 
115 V, 60 Hz dual drive, floppy disk system 
230 V, 50 Hz dual drive, floppy disk system 

E-9 



E-10 



APPENDIX F 

INTEGRATED CIRCUIT DIAGRAMS 

14 13 12 11 

• 

1 2 3 4 
GND 

10 9 

5 6 

Vee 
8 

7 

CP-1271 

F.l DEC 8640 QUAD 2-INPUT NOR GATES 
(Bus Receiver) 

Vee 
14 13 12 11 10 9 8 

2 3 4 5 6 7 
GND 

CP-1272 

F.2 DEC 8881 QUAD 2-INPUT NANO GATE 
(Bus Driver) 

F-1 



BUS I 

DATA IN I 
2 

DATA OUT I 
3 

BUS 2 4 

DATA IN 2 
5 

DATA OUT 2 
6 

ENABLE A 
7 

GROUND 
8 

16 Vee 
IS 

BUS 4 
14 DATA IN 4 
13 

DATA OUT 4 
12 

BUS 3 
11 

DATA IN3 
IQ 

DATA OUT 3 
9 

ENABLE B 

/.-- _. l BUS 1 
I 

7 DATA ;~· ;-2- -- '\._,,' 

ENABLE A-:__.....---.. P-----t--o DATA OUT! 

ENABLE B -~9 _.___. 

ONE OF FOUR 

F.3 · DEC 8641 QUAD UNIFIED BUS TRANSCEIVER 
(Bus Receiver/ Driver) 

F·2 



•VCC---@ 

•VCC 16 ENAST H 

RCS TA 

ENDATA H 
VECTOR H 1 vcc 

VECRQST8 H RQSTA H 

BOIN L ENAST H 

'Tl INlTO l 15 ENAOATA H 
BINIT L ENACUC H :i:-
BIAKO L EN8CU: H 
BIAKI l 

0 BJRQ L 

(") RQSTB H 

0 
g. BIAKI· L 

'Tl 2 0 BIAICO L 

w -I BINIT L 

fT1 
:::0 
:::0 08 BJRQ l 

c BOIN L 

~ 
(") VECTOR H 
::i: 
,, ENBDATA 

VECRQSTB H 

+VCC 

RQSTB H " 
~GND IN ITO L 



ENB H §--vcc 

BSYNC L DECODER ~GNO 

03 

BOAL2 L .,, 
in SEL 6 L 

02 
SEL 4 L 

.8 BDAll L 01 VECTOR vcc SEL2 L 
0 BDAl2 L ENB H 
0 DO SELO L BDALI L RXCX H 

""' BOALO SEL6 L .,, .,, BWTBT OC004 
SEL4 L 

.j,.. ::0 BDALO L SEL2 L 

0 
OUTHB L 

BOIN L 

d OUTLB L BRPLY l OUTHB l 
BOOUT l OUTLB l 

(") BWTBT L GNO 
0 
r 
(") RXCX H 

:c 
:;; 

BRPLY l 

BDOUT l VECTOR H 

BD~N l 11 JNWO L 



JAl l I vcc 
JA2 l 

MATCH H 

RECH 4 OATI H 

XMIT H JVJ H 

OATJ H JV2 H 

DAT2 H JV\ H 

BUSJ L MENB l 

BUS2 L • 12 BUSO l 
GND \\ BUSl l 

F.6 DC005 TRANSCEIVER 

F-5 



F-6 



APPENDIX G 

ABSOLUTE LOADER FORMAT 

The Absolute Loader uses the eight general registers (RO-R7) and does 
not preserve or restore their previous contents. Therfore, caution should 
be taken to restore or load these registers, when necessary, after using 
the loader. 

A block of data punched on paper tape in absolute binary format has the 
following format. 

FRAME 1 
2 
3 
4 
5 
6 

001 
000 
xxx 
xxx 
yyy 
yyy 
• 
• 
• 

zzz 

start frame 
null frame 
byte count (low 8 bits) 
byte count (high 8 bits) 
load address (low 8 bits) 
load address (high 8 bits) 
data is 

placed 
here 

last frame contains a block checksum 

A program on paper tape can consist of one· or more blocks of data. Each 
block with a byte count (frames 3 and 4) greater than six causes subse· 
quent data to be loaded into core (starting at the address specified in 
frames 5 and 6 for a normal load). The byte count is a positive integer 
denoting the total number of bytes in the block, excluding the checksum. 
When the byte count of a block is six, the specified load address is 
checked to see whether the address is to an even or to an odd location. 
If the address is even, the absolute Loader transfers control to the ad· 
dress specified. Thus, the loaded program is automatically started upon 
completion of loading. If the address is odd, the absolute loader halts. 

The transfer address (TRA) may be explicitly specified in the source pro· 
gram by placing the desired address in the operand field following the 
.END statement. For example, 

.END ALPHA 

specifies the sym,bolic location ALPHA as the TRA, and 

.END 

causes the absolute Loader to halt. With 

.END nnnnnn 

the absolute Loader also halts if the address (nnnnnn) is odd. 

The checksum is located in the low byte of general register RO. Upon 
completion of a load, the low byte of RO should be all zeros. Otherwise, 

G·l 



a checksum error has occurred, indicating that the load was not correct. 
The checksum is the low-order byte of the negation of the sum of all 
the previous bytes in the block. When all bytes of a block including the 
cl)ecksum are added together, the low-order byte of the result should 
be zero. If not, some data was lost during the load or erroneous data 
was picked up; the load was incorrect. When a checksum error is indi­
cated the entire program should be reloaded. 

G-2 



DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, 
Massachusetts 01754, Telephone: (617) 897-5111 
SALES AND SERVICE OFFICES 
UNITED STATES-ALABAMA, Huntsville • ARIZONA, Phoenix and Tucson • 
CALIFORNIA, El Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San 
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland 
Hills • COLORADO, Englewood • CONNECTICUT, Fairfield and Meriden • DISTRICT 
OF COLUMBIA, Washington (Lanham, MD) • FLORIDA, Ft. Lauderdale and Orlando " 
GEORGIA, Atlanta • HAWAII, Honolulu • ILLINOIS, Chicago (Rolling Meadows) • 
IN DIANA, Indianapolis • IOWA, Bettendorf • KENTUCKY, Louisville • LOUISIANA, 
New Orleans (Metairie) • MARYLAND, Odenton • MASSACHUSETTS, Marlborough, 
Waltham and Westfield • MICHIGAN, Detroit (Farmington Hills) • MINNESOTA, 
Minneapolis • MISSOURI, Kansas City (Independence) and St. Louis • NEW 
HAMPSHIRE, Manchester • NEW JERSEY, Cherry Hill, Fairfield, Metuchen and 
Princeton • NEW MEXICO, Albuquerque • NEW YORK, Albany, Buffalo {Cheek­
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syrac1,1se • 
NORTH CAROLINA, Durham/Chapel Hill • OHIO, Cleveland (Euclid), Columbus and 
Dayton • OKLAHOMA, Tulsa • OREGON, Eugene and Portland • PENNSYLVANIA, 
Allentown, Philadelphia (Bluebell) and Pittsburgh • SOUTH CAROLINA, Columbia • 
TENNESSEE, Knoxville and Nashville • TEXAS, Austin, Dallas and Houston • UTAH, 
Salt Lake City • VIRGINIA, Richmond • WASHINGTON, Bellevue • WISCONSIN, 
Milwaukee (Brookfield) • 
INTERNATIONAL-ARGENTINA, Buenos Aires • AUSTRALIA, Adelaide, Brisbane, 
Canberra, Melbourne, Perth and Sydney • AUSTRIA, Vienna • BELGIUM, Brussels • 
BOLIVIA, La Paz • BRAZIL, Rio de Janeiro and Sao Paulo • CANADA, Calgary, 
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg • 
CHILE, Santiago • DENMARK, Copenhagen • FINLAND, Helsinki • FRANCE, 
Grenoble and Paris• GERMAN FEDERAL REPUBLIC, Cologne, Frankfurt, Hamburg, 
Hannover, Munich, Stuttgart and West Berlin• HONG KONG• INDIA, Bombay• 
INDONESIA, Djakarta• IRE LAND, Dublin• ITALY, Milan and Turin• JAPAN, Osaka 
and Tokyo• MALAYSIA, Kuala Lumpur• MEXICO, Mexico City• NETHERLANDS, 
Utrecht• NEW ZEALAND, Auckland• NORWAY, Oslo• PUERTO RICO, Santurce • 
SINGAPORE• SWEDEN, Gothenburg and Stockholm• SWITZERLAND, Geneva and 
Zurich• UNITED KINGDOM, Birmingham, Bristol, Edinburgh, Leeds, London, 
Manchester and Reading• VENEZUELA, Caracas• 




	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1_00
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_1-15
	1_1-16
	1_1-17
	1_1-18
	1_1-19
	1_1-20
	1_1-21
	1_1-22
	1_1-23
	1_1-24
	1_1-25
	1_1-26
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_3-07
	1_3-08
	1_3-09
	1_3-10
	1_3-11
	1_3-12
	1_3-13
	1_3-14
	1_3-15
	1_3-16
	1_3-17
	1_3-18
	1_3-19
	1_3-20
	1_3-21
	1_3-22
	1_3-23
	1_3-24
	1_3-25
	1_3-26
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_4-08
	1_4-09
	1_4-10
	1_4-11
	1_4-12
	1_4-13
	1_4-14
	1_4-15
	1_4-16
	1_4-17
	1_4-18
	1_4-19
	1_4-20
	1_4-21
	1_4-22
	1_4-23
	1_4-24
	1_4-25
	1_4-26
	1_4-27
	1_4-28
	1_4-29
	1_4-30
	1_4-31
	1_4-32
	1_4-33
	1_4-34
	1_4-35
	1_4-36
	1_4-37
	1_4-38
	1_4-39
	1_4-40
	1_4-41
	1_4-42
	1_4-43
	1_4-44
	1_4-45
	1_4-46
	1_4-47
	1_4-48
	1_4-49
	1_4-50
	1_4-51
	1_4-52
	1_4-53
	1_4-54
	1_4-55
	1_4-56
	1_4-57
	1_4-58
	1_4-59
	1_4-60
	1_4-61
	1_4-62
	1_4-63
	1_4-64
	1_4-65
	1_4-66
	1_4-67
	1_4-68
	1_4-74
	1_4_00
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_5-15
	1_5-16
	1_5-17
	1_5-18
	1_5-19
	1_5-20
	1_5-21
	1_5-22
	1_5-23
	1_5-24
	1_5-25
	1_5-26
	1_5-27
	1_5-28
	1_5-29
	1_5-30
	1_5-31
	1_5-32
	1_5-33
	1_5-34
	1_5-35
	1_5-36
	1_5-37
	1_5-38
	1_5-39
	1_5-40
	1_5-41
	1_5-42
	1_5-43
	1_5-44
	1_5-45
	1_5-46
	1_5-47
	1_5-48
	1_5-49
	1_5-50
	1_5-51
	1_5-52
	1_5-53
	1_5-54
	1_6-01
	1_6-02
	1_6-03
	1_6-04
	1_6-05
	1_6-06
	1_6-07
	1_6-08
	1_6-09
	1_6-10
	1_6-11
	1_6-12
	1_6-13
	1_6-14
	1_6-15
	1_6-16
	1_6-17
	1_6-18
	1_6-19
	1_6-20
	1_6-21
	1_6-22
	1_7-01
	1_7-02
	1_7-03
	1_7-04
	1_7-05
	1_7-06
	1_7-07
	1_7-08
	1_7-09
	1_7-10
	1_7-11
	1_7-12
	1_8-01
	1_8-02
	1_8-03
	1_8-04
	1_8-05
	1_8-06
	1_8-07
	1_8-08
	1_8-09
	1_8-10
	1_9-01
	1_9-02
	1_9-03
	1_9-04
	1_9-05
	1_9-06
	1_9-07
	1_9-08
	1_9-09
	1_9-10
	1_9-11
	1_9-12
	1_9-13
	1_9-14
	1_9-15
	1_9-16
	2_00
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	3_00
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	3_2-07
	3_2-08
	3_2-09
	3_2-10
	3_2-11
	3_2-12
	3_2-13
	3_2-14
	3_2-15
	3_2-16
	3_2-17
	3_2-18
	3_2-19
	3_2-20
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_3-15
	3_3-16
	3_3-17
	3_3-18
	3_3-19
	3_3-20
	3_3-21
	3_3-22
	3_3-23
	3_3-24
	3_3-25
	3_3-26
	3_3-27
	3_3-28
	3_3-29
	3_3-30
	3_3-31
	3_3-32
	3_3-33
	3_3-34
	3_3-35
	3_3-36
	3_3-37
	3_3-38
	3_3-39
	3_3-40
	3_3-41
	3_3-42
	3_3-43
	3_3-44
	3_3-45
	3_3-46
	3_3-47
	3_3-48
	3_3-49
	3_3-50
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_4-05
	3_4-06
	3_4-07
	3_4-08
	3_4-09
	3_4-10
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_5-06
	3_5-07
	3_5-08
	3_5-09
	3_5-10
	3_5-11
	3_5-12
	3_5-13
	3_5-14
	3_5-15
	3_5-16
	4_1-01
	4_1-02
	4_1-03
	4_1-04
	4_2-01
	4_2-02
	4_2-03
	4_2-04
	4_2-05
	4_2-06
	4_2-07
	4_2-08
	4_2-09
	4_2-10
	4_2-11
	4_2-12
	4_2-13
	4_2-14
	4_2-15
	4_2-16
	4_2-17
	4_2-18
	4_2-19
	4_2-20
	4_2-21
	4_2-22
	4_3-01
	4_3-02
	4_3-03
	4_3-04
	4_3-05
	4_3-06
	4_3-07
	4_3-08
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_4-07
	4_4-08
	4_4-09
	4_4-10
	4_4-11
	4_4-12
	4_4-13
	4_4-14
	4_4-15
	4_4-16
	4_4-17
	4_4-18
	4_4-19
	4_4-20
	4_4-21
	4_4-22
	4_4-23
	4_4-24
	4_4-25
	4_4-26
	4_4-27
	4_4-28
	4_4-29
	4_4-30
	4_4-31
	4_4-32
	4_4-33
	4_4-34
	4_5-01
	4_5-02
	4_5-03
	4_5-04
	4_5-05
	4_5-06
	4_5-07
	4_5-08
	4_5-09
	4_5-10
	4_5-11
	4_5-12
	4_5-13
	4_5-14
	4_6-01
	4_6-02
	4_6-03
	4_6-04
	4_6-05
	4_6-06
	4_6-07
	4_6-08
	4_6-09
	4_6-10
	4_6-11
	4_6-12
	4_6-13
	4_6-14
	4_6-15
	4_6-16
	4_7-01
	4_7-02
	4_7-03
	4_7-04
	4_7-05
	4_7-06
	4_7-07
	4_7-08
	4_7-09
	4_7-10
	4_7-11
	4_7-12
	4_7-13
	4_7-14
	4_7-15
	4_7-16
	4_8-01
	4_8-02
	4_8-03
	4_8-04
	4_8-05
	4_8-06
	4_8-07
	4_8-08
	4_8-09
	4_8-10
	4_8-11
	4_8-12
	4_8-13
	4_8-14
	5_00
	5_1-01
	5_1-02
	5_1-03
	5_2-01
	5_2-02
	5_3-01
	5_3-02
	5_3-03
	5_3-04
	5_3-05
	5_3-06
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	xBack1
	xBack2



