
DATA BASE MANAGEMENT SYSTEM (DBMS-IO)
DATA BASE ADMINISTRATOR'S PROCEDURES MANUAL

i
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

DEC-IO-AAPMA-A-D

DECSYSTEM-IO

DATA BASE MANAGEMENT SYSTEM(DBMS-IO)

Data Base Administrator's Procedures Manual

This document reflects the software as of version I of DBMS-IO.

For additional copies, order No. DEC-IO-AAPMA-A-D
from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation · maynard. massachusetts

First Printing, September, 1973

I

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1973 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

COP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlD QUICKPOINT
COMTEX EDGRIN LAB-8 RAD-8
COMSYST EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 SABR
DECTAPE IDAC PDP TYPESET 8
DIBOL IDACS PHA UNIBUS

CONTENTS

Page

CHAPTER 1
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1

'1.4.2
1.4.3
1.4.4
1.5
1.5.1
1.5.2
1.5.3
1.6
1.6.1
1.6.1.1
1.6.1.2
1.6.1.3
1.6.2
1.6.3
1.6.3.1

1.6.3.2

1.6.3.3

1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5

MAJOR CONCEPTS
INTRODUCTION
DBMS-I0 LANGUAGES
The Device Media Control Language (DMCL)
The Data Description Languages (DDLs)
The Data Manipulatio~ Language (DML)
Language Relationships
OPERATIONAL ARCHITECTURE
The Data Base Control System (DBCS)
The User Working Area (UWA)
The Run-Unit
THE SCHEMA AND THE SUB-SCHEMA
Concepts
Variations
Placement Control
Device Independence
PROTECTION OF DATA
Privacy and Integrity
Privacy of Data
Integrity of Data
RECORDS
Location Mode
DIRECT Location Mode
CALCULATION Location Mode
VIA Location Mode
Accessing of Records
Record-Selection Expressions
Record-Selection-Expressions

Based on Identifiers
Record-Selection-Expressions

Based on Currency
positional Record-Selection-

Expressions
SETS
Characteristics of Sets
Ordering of Sets
Types of Membership In Sets
Set Mode
Maintenance Of Set Relationships

1-1
1-2
1-2
1-3
1-5
1-5
1-5
1-5
1-6
1-7
1-7
1-7
1-8
1-9
1-9
1-10
1-10
1-10
1-11
1-12
1-12
1-12
1-12
1-12
1-13
1-14

1-14

1-15

1-15
1-16
1-16
1-17
1-19
1-20
1-22

CHAPTER 2
2.1

2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.3
2.3.1
2.3.2
2.3.3

RESPONSIBILITY OF THE DATA BASE ADMINISTRATOR
DEFINITION AND ORGANIZATION OF THE

DATA BASE 2-1
Understanding User Requirements 2-1
Establishing Data Availability 2-1
Organizing the Data Base 2-2
PROTECTION OF THE DATA BASE 2-4
General Considerations 2-4
Data Base Access and Manipulation 2-4
Data Base Integrity 2-5
Save/Recovery/Restart 2-5
DOCUMENTATION OF THE DATA BASE 2-6
Data Base Directory (DBD) 2-7
Standards 2-7
Procedures For Data Base Usage 2-7

iii

2.3.4

2.3.5

2.3.6
2.3.7
2.3.8
2.3.9

CHAPTER 3
3.1
3.2
3.3
3.3.1
3.3.2

CHAPTER 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.5

CHAPTER 5

5.1
5.2
5.3
5.4
5.5

CHAPTER 6
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.2.1.6
6.2.1.7
6.2.1.8
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.4
6.3

Privacy Locks, Keys, and User
Identification

DBMS Performance and Usage
Measurements

Save Procedures
Recovery And Restart Procedures
Data Base Testing Facilities
Training Techniques And Guidelines

THE DEVICE MEDIA CONTROL LANGUAGE (DMCL)
INTRODUCTIQN
THE CONCEPT OF PAGE
DMCL ENTRIES
DMCL Record Entry
DMCL Area Entry

THE SCHEMA DATA DESCRIPTION
LANGUAGE (DDL)

INTRODUCTION
SCHEMA ENTRY
AREA ENTRY
RECORD ENTRY
Record Sub-Entry
Data Sub-Entry
SET ENTRY

THE COBOL SUB-SCHEMA DESCRIPTION
LANGUAGE (DDL)

INTRODUCTION
SUB-SCHEMA IDENTIFICATION
AREA SECTION
RECORD SECTION
SET SECTION

DATA ORGANIZATION AND ACCESS
DATA ORGANIZATION
Identification Of A DBS File
Identification Of A Page
Format And Identification Of A Line
Forming A Database Key
DATA ACCESS
The In-Core Representation
Sub-Schema Block
Record Block
Area Block
Within Block
Control Block
Owner Block
Member Block
Data Block
I/O Buffering Scheme
STORE Algorithms
DIRECT
CALC
VIA
FIND Algorithm
OVERHEAD

iv

2-7

2-8
2-9
2-9
2-9
2-9

3-1
3-2
3-3
3-3
3-3

4-1
4-1
4-2
4-3
4-3
4-5
4-6

5-1
5-1
5-2
5-2
5-3

6-1
6-2
6-2
6-5
6-6
6-6
6-8
6-8
6-9
6-10
6-12
6-12
6-12
6-14
6-15
6-16
6-18
6-18
6-18
6-19
6-19
6-19

6.3.1 Record Overhead 6-20
6.3.2 Page Overhead 6-21
6.3.3 File Overhead 6-21

CHAPTER 7 THE SCHEMA DIRECTORY FILE
7.1 INTRODUCTION 7-1
7.2 WORD BLOCKS IN SCH FILE 7-3
7.2.1 Schema Block 7-3
7.2.2 Sub-schema Block 7-4
7.2.3 Record Block 7-4
7.2.4 Area Block 7-5
7.2.5 Within Block 7-6
7.2.6 Owner Block 7-7
7.2.7 Member Block 7-7
7.2.8 Control Block 7-8
7.2.9 Data Block 7-8
7.2.10 Text Block 7-9
7.3 COBOL DML PREPROCESSOR 7-10

CHAPTER 8 RECOVERY FILES
8.1 RECOVERY FILE OPERATION 8-1
8.2 PREFIX SECTOR 8-2

APPENDIX A ERROR MESSAGES

APPENDIX B ERROR STATUS CONDITION CODES

APPENDIX C DBMS-lO PROCESSES

APPENDIX D RESERVED WORDS

APPENDIX E A SCHEMA/SUB-SCHEMA EXAMPLE

v

FOREWORD

This manual describes DBMS-lO from the point of view of the

Data Base Administrator, and as such, it is the reference manual

for the system. It is not, though, intended to be a tutorial

guide for beginning Data Base Administrators or DBMS-IO users.

In addition, it is assumed that the reader has a knowledge of

the COBOL language.

The Data Base Administrator is assumed to be familiar with

the DECsystem-lO operating system and the editing and debugging

languages available to him. Such familiarity must be acquired

prior to attempting the undertaking of the role of Data Base

Administrator.

Chapter 1 is dedicated to the major concepts of DBMS-lO, Chapter

2 to the role of the Data Base Administrator, and Chapters 3 through

5 to the various languages known to the system. Chapter 6 details the

data organization and access employed, Chapter 7 deals with the

Schema Directory File, and Chapter 8 discusses recovery files and

techniques. A number of appendices are provided which contain infor

mation essential to the system.

vii

CHAPTER 1

MAJOR CONCEPTS

Since this manual is intended to be the primary reference

document for Data Base Administrators working under the DECsystem-lO

Data Base Management System (DBMS-IO), it is essential that it

contain not only the specifications for the languages peculiar to

DBMS-IO, but that it detail the terms and concepts embodied in these

languages in such a way as to assist the Data Base Administrator in

fully understanding the specifications themselves.

1.1 INTRODUCTION

A data base is a grouping or collection of interrelated data

which has been structured and linked to permit the referencing and

accessing of the data contained therein without regard to the physical

means of storage. In other words, the program, and not the sequence

in which data is stored, determines which data is to be accessed,

when, and by whom.

As these data bases increase both in use and sophistication,

their creation and management must be relinquished by individual

application programmers in favor of greater coordination and central

ized control. It has become too costly and/or impractical, in most

instances, for individual' programmers to create data bases for single

applications on a one-to-one basis. The need at present is for data

bases which are suitable for processing by, and available to, mUltiple

applications.

The objective in developing DBMS-IO was to make this possible

by providing features which:

(1) Allow data to be structured in the manner most
suitable to each application, regardless of
the fact that some or all of that data may be
used by other applications; such flexibility
being achieved without requiring dat~ redundancy.

(2) Allow more than one run-unit to concurrently
retrieve the data in the data base even while
one run-unit is updating it.

1-1

(3) Provide and permit the use of a variety of search
strategies against an entire data base or portions
of a data base.

(4) Provide protection of the data base against
unauthorized access of data and from destructive
interaction of programs.

(5) Provide for centralized capability to control
the physical placement of data.

(6) Provide device independence for programs.

(7) Allow the declaration of a variety of data
structures ranging "from those in which no
connection exists between data items to
network structures.

(8) Allow the user to interact with the data while
being relieved of the mechanics of maintaining
the structural associations which have been
declared.

It is important to note that the Data Manipulation Language is

not a universal language. Rather, it is an enhancement of COBOL and

it can thus be categorized as a host language system. As such, its

level of procedurality is about equal to that of COBOL and thus it is

appropriate for use in programming that large class of problems for

which COBOL is the most used and most suitable language.

1.2 DBMS-IO LANGUAGES

DBMS-IO provides three languages which function to allocate

media space, to describe a data base or subset of a data base, and to

transfer data between a data base and program. There are the Device

Media Control Language (DMCL), the Data Description Languages (DDLs),

and the Data Manipulation Language (DML), respectively.

1.2.1 The Device Media Control Language (DMCL)

The DMCL is the language used by the Data Base Administrator to

allocate storage space on mass storage devices for the physical

placement of a data base. This is accomplished by equating a data

base area name to a monitor filename, and specifying how large a file

must be created to contain the area. Actually, the DMCL is not a

self~contained language; it is an extension to the Schema DDL, and it

must pass through the DDL processor at the same time that the Schema

DDL is processed.

1-2

1.2.2 The Data Description Languages (DDLs)

The DDLs are the languages used for describing a data base

(schema definition), or that portion of a data base known to a

program (sub-schema definition). These descriptions provide the

definitions for the data-items, data-aggregates, records, sets, and

areas included in the data base, as well as the relationships that

exist and must be maintained between occurrences of these elements

in the data base.

A data-item is the smallest unit of named data in a data base.

An-oc~urrence of a data-item is represented by a value. Data-items

may be alphanumeric or numeric (either fixed or floating point) •

A data-aggregate is a named collection of data items within a

record. It may be a one dimensional ordered collection of data-items

with identical characteristics (a vector), or it may be a repeating

group--i.e., a collection of data-items, vectors, and/or other re

peating groups which occur an arbitrary number of times.

A record is a named collection of data-items and/or data

aggregates which is viewed as being contiguous. When a record is

described in a schema, this description also defines the record as a

record type--i.e., the name of the record and the record type are

synonYmous. An arbitrary number of occurrences of a record can be

present in a data base for any record description in the schema for

that data base. This distinction between the actual occurrences of

a record and the type of the record is an important one.

A set is a named collection of record types which describes the

logical relationships existing between these record types. Every

set type must have one record type declared as its owner record and

can have zero, one, or many record types declared as member records.

Each occurrence of a set must contain one occurrence of its owner

record type, but it may contain an arbitrary number of occurrences

of each of its member record types. Set occurrence ordering is

independent of the physical placement of particular records~

An area is a named sub-division of the addressable storage space

in a data base and may contain occurrences of both records and sets.

Areas may be opened by a run-unit with usage modes which permit, or

1-3

forbid, concurrent run-units to open the same area. An area may be

declared in a schema to be a temporary area--i.e., each run-unit

opening it is given a unique occurrence of the area which is made

available for reuse at the termination of the run-unit.

The concept of area permits the Data Base Administrator to

subdivide a data base rather than viewing the data base as a single

entity. Efficient storage and retrieval can be accomplished through

the use of areas. This concept, when used properly, fosters optim~za

tion of data base access since the run-unit becomes interested in

only a select region of the data base. Areas also provide a conven

ient unit for recovery, since duplication or backup can be performed

selectively--e.g., areas with minimal updating then would have to be

FAILSAFEd less often than those undergoing constant updating. Like

wise, some information might be maintained for retrieval only--e.g.,

income tax tables. Thus areas also provide a convenient means for

separating data according to usage.

A data base consists of all the record occurrences, set occur

rences, and areas which are controlled by a specific schema. In the

case of multiple data bases, there must be a separate schema for

each data base. Furthermore, the contents of different data bases

are disjoint, and the intersection of two or more data bases is not

permitted. Different data bases and nondata-base files may exist,

though, on the same physical and logical storage structures known

to the DECsystem-lO monitor.

A schema consists of Schema DDL entries (see Chapter 4) which

describe all of the areas, set types, record types, data-items, and

data-aggregates as they exist in the data base. A schema is not

data itself, but a description of data. It is established and

maintained by the Data Administrator as a main storage file which

imposes discipline over the entire data base. It can be extended

as the data base grows and refines.

A sub-schema selects those areas, set types, record types,

data-items, and data-aggregates known to a given program(s) and

describes them in the form in which they are known to those specific

programs using a Sub-Schema DDL. Since the only host language

currently associated with DBMS-IO is COBOL, only the COBOL Sub-Schema

DDL has been developed and is discussed in Chapter 5.

1-4

1.2.3 The Data Manipulation Language (DML)

The DML is the language used by programmers to access data in

the data base. It is not a complete language by itself, but is a

host-language extension. In other words, the DML relies on the host

language (in the current situation, COBOL) to offer the framework

from which the DML can provide the interface \vith the data" base. In

an application program, the DML commands and the host language

statements coexist freely, and the distinction between them is merely

conceptual. From the programmer's point of view, then, he is using

one, unified language that has the capabilities of both the host

language and the DML. The host language, then, is the language used

to manipulate data in primary storage, and the DML is the interface

language with the data base. Chapter 3 of the DBMS-IO Programmer's

Procedures Manual contains the specifications for the COBOL DML.

1.2.4 Language Relationships

As already stated (Section 1.2.1), the DMCL is an extension of

the Schema DDL. Whereas the latter describes the physical and logical

layout of the data base, the former specifies physical storage space

necessary to accommodate the data base. The relationship between DDL

and DML is the relationship between declarations and procedure. The

declarations impose a discipline over the executable code and are to

a large extent substitutes for procedures written in the DML and the

host language; that is, they are implicit procedures which may be

invoked by the execution of DML commands.

1.3 OPERATIONAL ARCHITECTURE

The DBMS-IO operational environment includes the Data Base

Control System (DBCS), the User Working Area (UWA), and the run-unit.

1.3.1 The Data Base Control System (DBCS)

The DBCS is the object-time module of DBMS-lO, controlling the

placement and access of data in the data base. It provides the

interface between the application program and the data base by asso

ciating monitor relative address blocks within the data base media

files with page locations in the data base.

1-5

It must be possible for the DBCS to distinguish each occurrence

of a record from every other occurrence of a record in the data base.

For this to be possible a unique identifier must be assigned by the

DBCS to each and every record occurrence in the data base. This

unique identifier is known as a database key.

A database key is assigned by the DBCS to a record occurrence

when it is stored for the first time in the data base. It is assigned

in accordance with:

(1) The declarations for that record in the schema;

(2) Arguments, if any are required, supplied by the run-unit
adding the record to the data base.

A database key once assigned to a record occurrence remains as

the permanent identifier of that record occurrence until it is deleted

from the data base.

The permanence of database keys is an important element in the

integrity of t~e data base. Database keys are made available to and

may be saved by run-units and:

(1) Used for direct accessing;

(2) Referenced later in the execution of the same run-unit;

(3) Be re-inputted to a subsequent run-unit in which they are
referenced.

Database keys are mapped by the DBCS to physical addresses. It

is important to note, however, that positional record selection

expressions which specify an area-name are interpreted in terms of

database keys, (that is, NEXT within area-name means tne record

occurrence with the next higher database key in the named area).

1.3.2 The User Working Area (UWA)

Conceptually, the UWA is a loading and unloading zone where all

data provided by the DBCS in response to a call for data is delivered

and where all data to be picked up by the DBCS must be placed. Each

program has its own UWA. The data in the UWA of a program is not

disturbed except in response to the execution of a DML command or by

the user program's host language procedures. There is no implication

that UWA locations are contiguous.

1-6

The UWA is set up by the DBCS in accordance with the invoked

sub-schema. Each data-item included in the sub-schema will be

assigned a location in the UWA and may be referenced by its name

as declared in the sub-schema. Data-items included in the data base,

but not in the sub-schema invoked, cannot be referenced.

The DBCS must also provide for a number of System Communication

Locations (SCL). These locations are used for run-unit/system

interaction and are assigned space by the DBCS. The most important

of these locations are the currency status indicators which are

def~ned in Section 1.6. Seven other locations are also provided:

AREA-NAME, RECORD-NAME, ERROR-STATUS, ERROR-SET, ERROR-RECORD, ERROR

AREA, and ERROR-COUNT.

1.3.3 The Run-Unit

In this manual, the words 'run-unit' and 'program' are often

used interchangeably as if there were a one-to-one correspondence

between run-units and programs. However, strictly speaking, a program

is a set or group of instructions while a run-unit is an execution of

one or more programs where the precise correspondence between programs

and run-units depends on the operating system. The important fact to

note is that regardless of which of these two terms is used in the

manual there is exactly one UWA, one set System of Communication

Locations, and one set of Currency Status Indicators per run-unit.

This means that, from the point of view of DBMS-10, each run-unit is

a separate entity which it is servicing.

1.4 THE SCHEMA AND THE SUB-SCHEMA

1.4.1 Concepts

The concept of separate schema and sub-schema allows the

separation of the description of the entire data base from the des

cription of portions of the data base known to individual programs.

The concept is significant from several points of view:

(1) An individual programmer need not be concerned with
the universe of the entire data base but only with
those portions of the data base which are relevant
to the program he is writing. Since the data base
may contain data which is relevant to, and shared
by, multiple applications, this may be important to
ease the writing, debugging, and maintaining of programs.

1-7

(2) A program is limited to the subset of the schema that
is known to it via its sub-schema. To a large extent,
this automatically ensures the privacy and integrity
of the rest of the data base from that program.

1.4.2 variations

A sub-schema may differ from a schema of which it is a subset

in several important respects:

(1) At the data-item level:

De script-i-6n-s-6f-sp-e-c-i-r1C-d-atCl-rt~m~rm,r~/be-om±ttetl.

The ordering of data-items may be changed.

(2) At the data-aggregate level:

Descriptions of specific data-aggregates may be omitted.

The ordering of data-aggregates may be changed.

(3) At the record level:

-- Descriptions of specific record types may be omitted.

(4) At the set level:

-- Descriptions of specific set types may be omitted.

(5) At the area level:

Descriptions of specific areas may be omitted.

A sub-schema must, however, be a consistent and logical subset

of the schema from which it is drawn. Specific rules are included

in Chapter 5.

The following additional points are also important to an under

standing of the concept of the schema and sub-schema.

(1) An object version of the source code schema may be
"compiled" independently of any user program or any
sub-schema.

1-8

(2) Object versions of a source code sub-schema may be
"compiled" independently of any user program and
stored in a library.

(3) An arbitrary number of sub-schemas may be declared
on the basis of any given schema.

(4) The declaration of a sub-schema has no effect on
the declaration of any other sub-schema and
sub-schemas may overlap one another.

(5) Each sub-schema must be named.

(6) A user program invokes a sub-schema.

(7) The same sub-schema may be invoked by an arbitrary
number of programs.

(8) Only the areas, records, data-items, and sets
included in the sub-schema invoked by a program
may be referenced by that program.

1.4.3 Placement Control

The Schema DDL provides for control over the relative placement

of records. The objective of providing for control of relative

placement of records is to increase efficiency by advising DBMS-IO of

anticipated use patterns of records. Thus, the Schema DDL permits

specification of the area or areas to which occurrences of a partic

ular record-type are to be assigned by DBMS-IO. Where more than one

such area is specified, final selection takes place in a run-unit.

The Schema DDL also includes a clause which causes record occurrences

being added to the data base to be stored near some procedure, thereby

reducing overall access times.

The fact that the Schema DDL permits control over relative

placement of records does not necessarily have any physical connota

tions. What is required of DBMS-IO in response to this type of

declaration is for it to attempt to allocate storage space in a

manner which tends to optimize access times. The ability to achieve

some optimization of access times is important when considered in the

environment of the delays in accessing data occasioned by arm

movement and rotational delay in many of the currently available

direct access storage devices.

1.4.4 Device Independence

All interfaces of the DML with data in the data base are at the

symbolic or logical level. Application programs written using the

DML are thus device independent. In addition, programs receive and

1-9

place all data in their,User Working Area and the DBCS is responsible

for all aspects of physical input/output including buffering. No

Schema DDL entry includes references to the physical devices or media

space. Thus, a schema written using the Schema DDL is a logical

description of the data base and is not affected by the devices and

media used to store the data. The data base may, therefore, be stored

on any combination of secondary storage devices which are supported

by DBMS-ID.

1.5 PROTECTION OF DATA

1.5.1 Privacy and Integrity

The Schema and Sub-Schema DDLs and the DML include the provision

for the protection of data in the environment of a shared data

base--i.e., one which contains data relevant to, and shared by,

multiple programs or applications. In this type of environment, two

kinds of protection are required:

(1) Protection against unauthorized access of data, for
which the term privacy is used in DBMS-ID.

(2) Safeguarding the data from destructive interaction
of programs, for which the term integrity is used.

To some extent the mechanisms for providing privacy and ensuring

the integrity of data overlap, but for the most part they are quite

separate. This protection, needless to say, cannot guard against

unsocial behavior on the part of individual programs. If, for example,

a program is authorized to access and delete a particular record and

does so without regard for the fact that this same record is the owner

of a set which has members required by other programs, DBMS-ID can

o£fer no protection. Such action is in reality a logical error and

can only be avoided by the Data Base Administrator creating an

awareness among progr~mmers of their actions on others.

1.5.2 Privacy of Data

The data in the data base is protected through a mechanism of

privacy locks which are specified in the schema and sub-schema, and

privacy keys which must be provided by a run-unit seeking to access

or alter data which is protected by means of privacy locks declared

at the schema level, the sub-schema level, and the area level. A

l-lD

privacy lock is a single value, up to thirty characters in length,

and may be a constant or the value of a variable. A privacy key

is a value (again, either constant or variable) which is simply

matched against a privacy lock value.

In case of a violation, DBMS-IO aborts the run-unit and records

the violation. When repeated violations occur, the Data Base Admin

istrator should take positive action to remedy the situation (see

Section 2.2). While protection of privacy is the foremost use of

privacy locks and keys, it is by far not the only one. Thismechanism

can also be used, for example, to help ensure the consistency of

interrelated data) and to prevent errors by locking out clearly incon

sistent, meaningless, or incorrect actions.

1.5.3 Integrity of Data

When run-units are permitted to interact with the same data

concurrently, they require protection against each other. No pro

vision has been included in the DML for a run-unit to selectively

lock record occurrences and make them unavailable to concurrent

run-units. Had such a feature been included, then a deterioration

of the performance of DBMS-IO would have resulted.

Provision has been included, though, for giving a run-unit

exclusive or protected update rights over one or more areas. No

concurrent run-unit can gain access to the areas over which a run-unit

has acquired exclusive update rights. Protected update is a less

restrictive form of exclusive update which prevents condurrent update

but allows concurrent retrieval. These various rights are obtained

by executing the OPEN imperative in a program which specifies the

desired right, and they are relinquished simply by closing the area.

The exclusive update option means that changes to an area are

being done in place and therefore no other run-unit can be permitted

to access that area. If the run-unit aborts before closing the

area, the area cannot be accessed again. To guard against this, the

Data Base Administrator should keep at least one additional copy of

every area as backup. The protected update option means that changes

are being made in a separate area that is logically (but not physically)

equivalent to the area being updated. These changes will only be

1-11

physically made when the run-unit performing the update relinquishes

control by closing the area. If the run-unit aborts before closing

the area, all of its changes are discarded.

1.6 RECORDS

A record--i.e., an occurrence of a record type--is viewed as a

contiguous collection of data stored in the data base. The descrip

tion of record type in the schema includes a location mode which

determines the placement of the occurrences of that record type in

the data base and the form of reference to be used in order to access

these occurrences.

1.6.1 Location Mode

The Schema DDL provides for the following access methods to be

specified in the location mode clause for each record entry appearing

in the schema.

1.6.1.1 DIRECT Location Mode - Retrieval of an occurrence of the

record type is based on the unique identifiers (database keys)

assigned by the DBCS to each record occurrence in the data base. In

this method to be used, the database keys of the record to be selected

must be made available by the run-unit to the DBCS and thus must have

been saved previously by the run-unit. This is possible because the

database keys of the current record of the run-unit are always made

available to the run-unit by the DBCS and are stable for the life

of the record.

1.6.1.2 CALCULATION Location Mode - Retrieval is based on the values

supplied by the run-unit for the data-names which are contained in the

sought record and which have been declared as CALC keys. The DBCS

transforms the values so provided into a unique identifier and

retrieves the record on the basis of that identifier. The algorithm

used in this transformation is discussed in Chapter 6.

1.6.1.3 VIA Location Mode - Retrieval depends on the relationships

which have been established for the sought record by the DBCS on the

basis of the set declarations in the schema. Functionally, two

separate steps are involved:

1-12

(1) Selection by the DBCS of the appropriate occurrence
of the named set;

(2) Selection of the sought record from among the
member record occurrences of the selected set
occurrence.

The process of set occurrence selection is controlled by decla

rations for the sought record in its capacity as a member record of

the named set. These declarations specify:

(1) The strategy to be used for selection.

(2) The data names which the run-unit must initialize
with the values that will be used by DBMS-IO for
set occurrence selection. Where, however, the
strategy is simply that set selection will be
handled by user programs, no data names can be
specified.

Set occurrences are selected by means of selecting their owner

record occurrences, and a strategy specified to the DBCS must include

sufficient information for a unique owner record occurrence, and thus

set occurrence, to be selected. When the owner record occurrence is

not unique on the basis of the selection criteria specified for it

and a hierarchy of sets exists, the strategy must include selection

criteria for the owner record itself in its capacity as a member of

another set, and so on up the hierarchy until sufficient uniqueness

is established. From the viewpoint of the DBCS uniqueness is achieved:

(1) When an owner record is to be selected by the user program
or when it is to be selected independently of its set
associations; that is, using the DIRECT or CALCULATION
access method.

(2) When occurrence selection involves a cycle and there
is a starting point for the cycle, in the sense that
the owner of at least one set in the cycle is selected
independently of the other sets in the cycle. It may
be selected as above or through its membership in a
set not involved in the cycle. Occurrences of succes
sive sets in the cycle can then be selected based on
selection criteria for those sets. Selection terminates
before a second occurrence of the starting point set is
selected. That is, the selection process proceeds in
the sequence of the cycle and does not traverse the
cycle more than once.

1.6.2 Accessing of Records

While the Schema DDL provides the means to specify the access

methods required at the record level and at the set level, the DML

1-13

provides commands which allow. interaction with such specifications

and with any relationships which have been declared. The following

items are important to an understanding of the approach taken in the

accessing of records.

(1) The DML provides for the selection of individual records.

(2) Depending on the entry in the schema for a record, a
record occurrence may be accessed on the basis of any
of the data-item values in the record, or on the basis
of a concatenation of such data-items values.

(3) The: DML is not an inquiry language.

(4) A record may always be accessed through any of the
sets in which it participates as a member.

(5) A record may always be accessed by a complete scan
of an area.

(6) The DML distinguished between the selection of a
record and its delivery to a run-unit.

(7) A record is selected by means of a FIND command
and its associated record-selection-expression.
The record most recently selected,is known as the
current record of the run-unit.

(8) Values of data-items from a record are made
available to a run-unit in its UWA. The data
items that appear in a run-unit's UWA depend
on the invoked sub-schema.

(9) All of the available methods of accessing records
may be used in a given program.

(10) All of the available methods of accessing records
may be applied to the same data base or area.

1.6.3 Record-Selection-Expressions

As stated earlier search arguments for selecting records from a

data base are provided by run-units in the form of record-selection

expressions. There are three main types of record-selection

expressions:

(i) Record-selection-expressions based on identifiers.

(2) Record-selection-expressions based on currency.

(3) Record-selection-expressions that are positional.

1.6.3.1 Record-Selection-Expressions Ba~ed on Identifiers - All

record occurrences in the database can be retrieved on the basis of

their DBCS-assigned unique identifiers. In addition, if the declared

location mode is CALCULATED, any record of that, type may be retrieved

by specifying its record name and the value of the data-item specified

as the CALC key~

1-14

1.6.3.2 Record-Selection-Expressions Based on Currency - For the

duration of each run-unit the DBCS maintains currency status infor

mation on the identity of the last record occurrence accessed by the

run-unit of:

(1) Each record-type known to the run-unit (that is,
current of record-name). .

(2) Each set-type known to the run-unit (that is,
current of set-name). Note that the current
of set-name may be any record which participates
in the set whether as an owner or as a member
record.

(3) Each area-name known to the run-unit (that is,
current of area-name).

(4) Any record-type known to the run-unit (that is,
current of run-unit).

Record-selection-expressions based on currency enable the records

whose iaentifiers are currently saved by the DBCS for a run-unit to

be retrieved by that run-unit without the specification of any other

search arguments.

Currency status indicators are, in effect, place markers kept

by the DBCS for a run-unit. At the start of a run-unit its currency

status indicators, except for the current of run-unit, may be

selectively suppressed by a run-unit.

1.6.3.3 positional Record-Selection-Expressions - positional record

selection-expressions are all relative to the current record of set

name, or the current record of area-name. Record-selection-expressions

which are relative to the current record of set-name permit, for the

occurrence of the set named which is identified by the current record

of that set-name:

(1) The member records to be retrieved in the logical
order declared for that set, either in the NEXT
direction or in the PRIOR direction from the
current record of the set.

(2) The OWNER, the FIRST, the LAST, or the nth record
of the set to be retrieved.

Record-selection-expressions which are relative to the current

record of area-name permit the NEXT, the PRIOR, the FIRST, the LAST,

or the nth record in the area named to be retrieved. Sequence, as it

relates to areas, is in terms of the unique identifiers of the record

1-15

occurrences present in the area. That is, sequence is defined by

values of database keys, the collating sequence of which is

implementor-defined.

Positional record-selection-expressions based on set name are an

important tool for traveling the logical relationships established

by means of set declarations. Such declarations provide a logical

road map of the data base. Record occurrences which participate in

more than one set are junction points. positional record-selection

expressions are the steering mechanism which permit branching off in

any direction from such junction points.

1.7 SETS

In order for DBMS-IO to allow data to be structured in the

manner most suitable to each application without requiring data

redundancy, it is necessary to represent the relationships between

records by methods other than physical juxtaposition of these records.

The Schema DDL provides the facility to declare structures through

the medium of the set. The set is, in effect, a building block which

allows various data structures to be built. DBMS-IO provides three

data structure representations~-

(1) Sequential structures (Figure 1-1)

(2) Tree structures (Figure 1-2)

(3) Network structures (Figure 1-3)

The DBMS-IO user is able not only to treat the case of one-to

many relationships, but he can now handle the more complex many-to

many relationships arising out of real-life situations. In addition,

the absence of structuring may be represented by declaring records

in the schema which do not participate in sets.

It will be assumed that the Data Base Administrator has a

general working knowledge of data structuring and linking. This is

essential if he is going to create efficient and realistic data bases.

1.7.1 Characteristics of Sets

The following characteristics are relevant to developing an

understanding of the concept of a set.

1-16

(1) A set is named collection of record types.

(2) An arbitrary number of sets may be declared in a schema.

(3) Each set must be named and must have one owner record
type and can have zero, one, or many member records
declared for it in the schema.

(4) Each set must have a SET ORDER specified for it in the
schema (see Section 1.7.2).

(5) Any record type may be declared in the schema as the
owner record type of one or more sets.

(6) Any record type may be declared in the schema as a
member record type of one or more sets.

(7) Any record may be specified as both an owner record
in one or more sets and a member record in one or
more different sets.

(8) The capability for a record to participate as both
owner and member in the same set is not supported
by DBMS-10.

(9) A record occurrence cannot appear in more than one
occurrence of the same set.

(10) A set occurrence is a collection of one or more
logically related record occurrences.

(11) Each occurrence of a set includes one occurrence
of its owner record. In fact, the existence of
the owner record in the data base is a condition
of the existence of the set occurrence and dis
tinguishes that set occurrence from all other
occurrences of that set-name.

(12) A set occurrence which contains only an occurrence
of its owner record is known as an empty set.

(13) In addition to the occurrence of its owner record,
a set occurrence may have an arbitrary number of
occurrences of each of the member records declared
for it in the schema.

(14) A special type of set which has exactly one occur
rence and for which DBMS-10 is the owner may be
declared. For convenience, this is known as a
singular set.

1.7.2 Ordering of Sets

Each set named in the schema must have a SET ORDER specified for

it. The effect of this is to cause DBMS-10 to control, in accordance

with the set order specified, the logical order of the member record

occurrences within each set occurrence. The logical order of the

member records of a set is completely independent of the physical

placement of the records themselves. Thus, the same member record

occurrences could part~cipate in occurrences of two different sets

and be ordered differently in each of those sets.

1-17

Figure 1-1 Sequential
Structures

Figure 1-2 Tree Structure
CIRCULAR
ONE WAY

LIST

TWO
WAY

LIST

ONE
WAY

LIST

~

I
~
co

Figure 1~3 Network Structure

The member records of each occurrence of a given set may be

ordered in one of several ways:

(1) SORTED in ascending or descending sequence based
on the values of specified keys. The keys
specified may be data-items in each of the
member records, the member records' names
or their unique identifiers, or any combination
of these.

(2) In the order resulting from inserting new member
record occurrences into the set:

(a) FIRST, that is, as the immediate successor
to the owner record occurrence.

(b) LAST, that is, as the immediate pre
decessor to the owner record occurrence.

(c) NEXT, PRIOR, that is, after or before
another record occurrence which is
selected by the user program storing
or inserting the record in the set.

1.7.3 Types of Membership In Sets

The membership of a record type in a set is declared in the

schema to be AUTOMATIC or MANUAL and MANDATORY or OPTIONAL. A record

may have different types of membership in different sets.

AUTOMATIC means that membership in the set is established by the

DBMS-IO when a record occurrence is stored. That is, whenever an

occurrence of a record declared to be an automatic member of a set is

added to the data base, it will be logically inserted into (that is,

made a current member of) the appropriate occurrences of all the sets

in which it has been declared as an automatic member.

The addition to the data base of a record occurrence declared to

be a MANUAL member of a set will not cause it to be made a current

member of any occurrence of the sets in which it has been declared

as a manual member. Manual means that membership in the set is

established by a run-unit by means of an INSERT command.

MANDATORY means that, once the membership of a record occurrence

in a set is established, the membership is permanent. Its set

occurrence may be changed by a MODIFY command, but the record occur

rence cannot be removed from the set. If an owner record is deleted,

so are all its mandatory members.

1-19

OPTIONAL means that the membership of a record occurrence in a

set is not necessarily permanent. Its set occurrence may be changed

by a MODIFY command or by a REMOVE command followed by an INSERT

command. Its membership may be cancelled by a REMOVE or a DELETE

command of its owner. A record which is logically removed from any

sets in which it participates remains in the data base and is still

accessi~le, though not through any set in which it is no longer a

current member.

1.7.4 Set Mode

The current implementation of DBMS-IO provides for one set

mode - CHAIN - which is declared in the Schema DDL. For each occurrence

of a set declared to have a mode of CHAIN, a chain of pointers is

created which can be followed and which provides for serial access

to all records in the set occurrence. The -pointers are embedded in

the records themselves. An illustration of an embedded pointer

chain is shown in Figure 1-4. It represents a set occurrence with

two member records. The owner record of the set occurrence contains

a pointer to the first member record in the set which in turn contains

a pointer to the second member which points back to the owner. If

the set occurrence contained n member records the chain of pointers

would pass through the n member records.

Since Figure 1-4 is a representation of a chain with embedded

pointers it is assumed that the records shown contain data as well as

pointers. Of course, records may be members in multiple sets. To

the extent that the mode of such sets is CHAIN there would then be

multiple chains passing through these records (embedded pointers).

As a result, when any given record is accessed, a pointer for each

chain in which the record participates is available and may be

followed. A chain is thus a routing device or junction box. The

essential aspect of a chain is that there are pointers, directly

linking one record in the chain to the next record in the chain.

1-20

OWNER
RECORD

MEMBER
RECORD

MEMBER
RECORD

N

N = NEXT POINTER

Figure 1-4 Chain with NEXT Pointers

Chains are always processable in either direction from any

given record in the chain. However, the linkage provided between

the records in a chain is only in the NEXT direction unless the

optional clause LINKED TO PRIOR is used. When this clause is used,

additional links in the reverse (that is, the PRIOR) direction are

also provided. Figure 1-5 is a representation of an embedded chain

which is LINKED TO PRIOR.

OWNER
RECORD

MEMBER
RECORD

N NEXT POINTER
P PRIOR POINTER

Figure 1-5 Chain with NEXT and PRIOR Pointers

1-21

In addition, the occurrences of any of the member record types

specified fora set may be declared to be LINKED TO OWNER. This

causes the owner record of the set occurrence to be accessible

directly from each of the member record occurrences. Figure 1-6

illustrates this.

OWNER
RECORD

N = NEXT POINTER
P = PRIOR POINTER
o = OWNER POINTER

Figure 1-6 Chain with NEXT, PRIOR and OWNER Pointers

The unique identifiers (i.e., database keys) assigned by the

DBCS for every record occurrence in the data base are used as pointers.

Space for a minimum of one pointer (the NEXT pointer) is required for

each record and must be assigned by the DBCS for each chain in which

a record participates as owner or member. Additional pointers and

space are required if the chain is declared to be LINKED TO PRIOR or

its members are declared to be LINKED TO OWNER.

1.7.5 Maintenance Of Set Relationships

The establishment and maintenance of relationships between

records specified by means of declaring sets in the schema, is a

responsibility of DBMS-ID. Such maintenance is required whenever:

1-22

(1) A record which has been declared as an owner or
member in one or more sets is added to or deleted
from the data base.

(2) A record is explicitly inserted or removed from
a set.

(3) A record is modified in a way which changes its
logical position in the set.

Programmers are not involved in the mechanics of this process

but must initialize with appropriate values those data-items which

are required by DBMS-IO to perform its functions. Such data-items

are declared in the schema. Programmers must also ensure that all

areas containing any record occurrences affected by a maintenance

operation are open for update.

1-23

CHAPTER 2

RESPONSIBILITY OF THE DATA BASE ADMINISTRATOR

Because DBMS-IO presupposes an environment where a data base

includes data that is shared by many user programs, it is necessary

for the schema and the sub-schema to be developed centrally. The

data base is, in a sense, a compromise between the needs of the

various user programs. Therefore, a means of mediating conflicting

needs is required for the data base. This mediation is the prime

responsibility of the Data Base Administrator, although it takes

on many different aspects.

2.1 DEFINITION AND ORGANIZATION OF THE DATA BASE

2.1.1 Understanding User Requirements

The timeliness, accuracy, and efficiency of the support to be

given to users must be explicitly agreed upon between the Data Base

Administrator and the users. Users must be educated in the

difference between access to specific existing data, information

dynamically derived from existing data, and the extensions of the

data base to include new data.

The Data Base Administrator must be aware of his organization's

long-range plans as well as of long-range needs of the users. For

instance, several groups of users might be formulating plans for

data bases using interrelated data. The Data Base Administrator

should be able to provide common access for these users. Under

standing short-range user plans and needs as they pertain to

specific application requirements is also necessary. A user, for

instance, might require data from an existing data base which could

possibly cause conflicts with the current users' interests.

These differences must be reconciled. The Data Base Administrator

has the responsibility to see that the data base is an effective,

efficient tool for all users.

2.1.2 Establishing Data Availability

One of the functions of the Data Base Administrator is to

assist users in their search for data to satisfy their application

requirements. He should maintain a Data Base Directory (DBD) in

which are recorded the record types and set types currently

2-1

available to users. The DBD will then be the initial source for

information relative to data availability. Should some data

elements be not available within the existing data base, the Data

Base Administrator will arrange the interface with the necessary

data sources to satisfy the demands of the user.

Additional factors to be included when considering data

availability are:

(1) present form and location of data;

(2) access techniques to be used;

(3) intended use of data in relation to its present
accuracy, completeness, and timeliness;

(4) need for modification of data;

(5) present authorizing agent for use of data;

(6) cost of providing the data.

2.1.3 Organizing the Data Base

The establishment and definition of data interrelationships

is a vital function of the Data Base Administrator. Users will

generally imply, in their requests, their logical data needs.

Explicitly defined proposals should be given by the Data Base

Administrator, and these ought to reflect his knowledge of fore

seeable developments--including the needs of probable related

users. The physical structure of the data base must be designed

in such a way so as to effectively meet the logical data needs

of the users. Efficient physical structuring requires expertise

on the part of the Data Base Administrator in translating and

effecting logical data relationships. As part of the establish

ment and definition process, the Data Base Administrator must

weigh the advantages of a given set of linkages against its cost

in terms of additional space required and in the degradation of

data base access performance. A variety of factors must be taken

into consideration; among these are:

(1) logical data formats and relationships;

(2) physical data formats and relationships;

(3) access methods;

(4) frequencies of access;

2-2

require complex

Redundant data

where it may

(5) physical storage media requirements;

(6) search strategies.

Sophisticated application specifications thus might

data structures involving many interrelationships.

should be reduced to a minimum, and only permitted

be required for the sake of performance.

During the organization phase,' the Data Base Administrator

builds the schema and the sub-schemas necessary to describe the

data base as a whole and subsets of the data base, respectively.

Accordingly, he

(1) Employs data structures that model the business or
problem. This is provided in the Schema Data Description
Language in terms of areas, records, sets, data-items,
and data-aggregates (see Chapter 4) .

(2) Assigns names in such a manner as to assure their
uniqueness.

(3) Selects search strategies based on the needs of the
various users of the data base.

(4) Assigns areas to devices/media based on time/space
requirements using the Device Media Control Language
(see Chapter 3).

(5) Loads the data base.

Through arbitration with the various application areas, the

Data Base Administrator is responsible for the building of the

sub-schemas used for application programs. As such he

(6) Assigns names and/or synonYms to protect the uniqueness
of the names already assigned to the data base.

(7) Selects and structures the proper subset of the data
base that must be available to the application programmer.

Detailed explanation of these seven points will be in the next

three chapters.

2-3

2.2 PROTECTION OF THE DATA BASE

2.2.1 General Considerations

The general considerations for data base protection are:

(1) data base access and manipulation;

(2) data base integrity;

(3) save/recovery/restart;

(4) violation of rules.

It is important that the Data Base Administrator review these

considerations and decide the degree to which they apply to his

particular environment. Provision for these considerations will

enable the Data Base Administrator to be better equipped to protect

the data base(s) under his control.

2.2.1.1 Data Base Access and Manipulation - The Data Base

Administrator should control the reading (access) and writing

(manipulation) of the data base. positive control must be exercised

if there is to be meaningful protection. Following are some

activities which should help establish and maintain this positive

control.

(1) The policy statements regarding the data base should
be published and circulated among the users. These
statements must reflect data base usage and help
promote a clear understanding regarding the data base
with user and operating personnel.

(2) It must be decided who has the right to know and/or the
need to know the content of the data as well as its
existence. Authority should be determined as to who
can read data from the data base, add new occurrences
of data to the data base, update or change existing
values of data in the data base, and delete data from
the data base. Once the authority has been established,
it is important to set up proper controls to insure
authority violations of the data base do not occur
(see Chapters 4 and 5).

(3) In many data bases, certain elements of data are
confidential. Consideration should be given to those
protections which can be used to provide the required
data security; such protections are software protection
and physical protection. In DBMS-lO, privacy locks
and keys are used to restrict and/or control software
access to the data base (see Section 1.5, Chapters
4 and 5). Physical protection can take on numerous
forms, including (but not limited to) use of dedicated

2-4

lease lines, physical separation of data elements, and
limiting the publication of information regarding
stored data to the appropriate users of the data base.

2.2.1.2 Data Base Integrity - Data in the data base must be

accurate, complete, current, and timely. Some of the Data Base

Administrator's considerations along these lines are as follows:

(1) The Data Base Administrator should monitor the data
base for usage, response, and potential reorganization.

(2) When data errors are found, they should be corrected
immediately, and the responsible parties should be
notified. The timeliness of error correction cannot
be overstressed.

(3) The Data Base Administrator can further protect the
data base and help insure data integrity by having a
complete audit trail of activity against the data
base. Such an audit trail would usually consist of
the input transaction or message, a copy of the data
base record before update, and a copy of the data
base record after update. In the event of data base
problems, this audit trail will be useful in determining
what occurred and in reconstructing data to its
correct state.

(4) Application programs will be limited to the access and
manipulation of logical data. Only the Data Base
Administrator has the need to know the characteristics,
formats, organizations, and relationships of the
physical data contained in the data base. Limiting
users to logical data access will provide increased
data base flexibility and a greater amount of data
independence from application programs.

(5). The Data Base Administrator should participate in
application program testing to help insure that these
programs are working correctly and do not inadvertently
or incorrectly alter the data base. This participation
could include providing test data bases, approving
program usage of the data base, and helping prescribe
testing procedures.

2.2.1.3 Save/Recovery/Restart - The Data Base Administrator must

take proper steps to insure that the data base can be restored to

its proper state in the event of destruction or damage. He may

design and plan save/recovery/restart procedures which reflect the

particular problems and needs of his installation.

The responsibility of the Data Base Administrator does not

cease when the data base has been restored after a failure. He

must then identify the causes of the failure, and he should

assure that appropriate corrections have been made. Those

2-5

involved in the use of the data base should be notified that a

save/restore/restart procedure was necessitated and that some

data in the data base might have to be refreshed. As this is

part of data integrity, timeliness in carrying out this aspect

is most important.

2.2.1.4 Violation Of Rules - In administering the protection of

the data base, it is necessary to know whenever violations of

rules, standards, and accesses occur. Whenever a violation occurs,

the Data Base Administrator should detect the violation, identify

the violator, and report the violation. He must then follow up

to insure all problems and violations are satisfactorily resolved.

Should repeat violations or failure to correct a problem occur,

then the violator should be denied future access to the data base.

2.3 DOCUMENTATION OF THE DATA BASE

In addition to being the organizer of and administra~or of

the data in the data base, the Data Base Administrator is the

prime documentor and educator with regards to DBMS-IO at his

installation. He should provide for the recording of procedures,

standards, guidelines, and data base descriptions necessary for

the proper, efficient, and continuing utilization of the data base.

Documentation need be structured for and selectively distributed

to the data base administration, the computer operations staff,

the application programmers, and any other users. The Data Base

Administrator has the responsibility for providing and maintaining

adequate documentation of all types including, but not limited

to: description of the physical data base' (i.e., the Data Base

Directory); standards; procedures for data base usage; locks, keys,

and user identification; DBMS-IO performance and usage measurements;

save procedures; recovery and restart procedures; data base testing

facilities; training techniques and guidelines.

All of these documentation activities are important in them

selves and should not be taken lightly. A description of each

of them follows.

2-6

2.3.1 Data Base Directory (DBD)

The DBD'should contain narratives and/or diagrams illustrating

the data structures, as well as the relationships existing between

record types--including data base cross-references. Descriptions

should also be given of the attributes of physically stored record

types--i.e., location mode, area in which stored, format of

data-items, etc. (see Chapter 4). In addition, the physical

storage medium, including the~~ocation, allocator, and utilization

of storage space in terms of areas, as wellas the location of

the data base FAILSAFE tapes and their creation date.

2.3.2 Standards

Standards should be documented as they are established. Each

installation will have its own set of user and DBMS-IO standards.

Allowable deviations should also be noted, as well as any controls

over these deviations.

2.3.3 Procedures For Data Base Usage

These procedures might include, but are not limited to,

relationships between transactions and data bases, and responsi

bilities of the users and data base personnel. In order to

fully accomplish all the tasks assigned to him and his staff, the

Data Base Administrator should schedule time when the data base is

not available to users in order to perform reorganization procedures

(such as reassigning areas to different devices/media), FAILSAFE

procedures, and other "house-cleaning ll chores. This time is in

addition to the normal preventive maintainence time for the

computer system as a whole, and the users must be made aware of

these activities. Likewise, users who merely want to retrieve

information from the data base should know when this information

is being updated by other users so that fresh copies of data are

always available.

2.3.4 Privacy Locks, Keys, And User Identification

In addition to the normal logging and billing facilities of

the computer installation, DBMS-IO provides the means of locking

out a user from the data base until he supplies the proper key

in his program (see Section 1.4). Such a lock-out mechanism can

apply to subsets of the data' base (see Section 5.2) as well as

2-7

to specified access to any area (see Section 4.3). This mechanism

is only as effective, though, as the attention paid to it by the

Data Base Administrator. All privacy locks and keys are assigned

by the Data Base Administrator, and the strictest security must

surround their use. They should not, for instance, appear in the

DBD or any other document which may be viewed by more than one

user or multiple personnel.

Should the Data Base Administrator, or any user, suspect that

a privacy key has become public knowledge, the Data Base Administra

tor should immediately issue a new unique lock/key combination to

replace the one in question. Timeliness is of the utmost importance

if data privacy and integrity should be maintained.

The knowledge of a lock/key combination should only be

related to those users who absolutely need it for their particular

applications. Whenever a change is made, all affected by the

change should be individually notified in order that the respective

software may be changed.

A further step which can be taken by the Data Base Administrator

in securing positive user identification is to assign users and

data bases to specific project-programmer numbers with passwords

which are changed frequently. This will keep out non-DBMS-IO users,

and should help to eliminate people who could cause damage to the

data base. Likewise, lock/key combinations should be changed

periodically--especially in sensitive data bases. Whenever a user

ceases to participate in the data base, for whatever reason, all

locks, keys, passwords, and identifications should be changed

immediately.

2.3.5 DBMS Performance and Usage Measurements

As part of the Data BaSe Administrator's responsibility to

monitor the data base for usage, response, and potential re

organization, he should keep a record of the resources used and

frequency of use, the users serviced, the effectiveness as related

to response time and costs. In addition, he should document how

this monitoring is to be done.

2-8

2.3.6 Save Procedures

What data is to be backed-up? How much of it is to be

backed-up? Which facilities are to be used? What is the schedule

and frequency for back-up procedures? Such questions should be

answered and documented so that there is no confusion among staff,

users, and operators--especially if operators will be depended upon

to execute the save procedures.

2.3.7 Recovery And Restart Procedures

In case of crash, or other system failure, the operations

and/or Data Base Administration staff need to know what recovery

procedures are to be used to restore the data base and what

facilities were used as part of the save procedure. These

recovery procedures are extremely important in terms of data

integrity and reliability, and should be fully documented in

detail. Priorities and sequence of data base restoration should

also be laid down--this is extremely important for systems with

many data bases of varying relative importance and usage.

2.3.8 Data Base Testing Facilities

Users must know what facilities are available to them to aid

in the testing of their programs which interface with the data

base. The Data Base Administrator should, then, publish what

procedure will be used in obtaining a test data base, and what

test criteria must be met before a program will be accepted for

running with the real data base.

2.3.9 Training Techniques And Guidelines

The Data Base Administrator is the prime educator of the users

of the data base under his care. As such, he is responsible for

establishing user training methods and facilities. These would

include, but are not limited to: seminars and lectures concerning

programming using the Data Manipulation Language and interacting

with a shared data base, individual consultation with users having

specific conceptual and/or operational problems, providing manuals

and other DBMS-IO programming aids, establishing training

criteria which must be met before a programmer will be permitted

to use DBMS to interact with the data base, fostering of

optimization techniques in application programs.

2-9

I'

CHAPTER 3

THE DEVICE MEDIA CONTROL LANGUAGE (DMCL)

This chapter contains the entire description of ,the Device

Media Control Language (DMCL).

3.1 INTRODUCTION

The DMCL enables the Data Base Administrator to select individual

areas, to assign them to files, and to allocate storage space on mass

storage devices known to the monitor. Since the DMCL is not a lan

guage of its own right, but an extension to the Schema DDL, the DMCL

commands must be executed by the DDL processor prior to the processing

of the Schema DDL commands. Under DBMS-IO, the DMCL entries are

submitted to the DDL processor as part of the schema, but before the

Schema DDL entries.

There are two types of DMCL ENTRY which serve to:

(1) Specify the maximum number of records per page
(Record Entry):

(2) Assign areas to files and specify the physical
sizes of these files in terms of pages (Area Entry) .

For each area described in the schema, there must be a DMCL

Area Entry. There can, though, only be one DMCL Record Entry per

schema. When constructing a schema, the DMCL Record Entry must always

precede the DMCL Area Entries.

The filenames specified in the DMCL Area Entries may be from one

to six letters or digits in length. No filename extension can be

given in the entry, although the DDL processor automatically assigns

the extension .DBS to these files. Each file so specified for

creation by the monitor must be uniquely named under the project and

programmer numbers to which the data base(s) belong. Data bases may

be created under any number of project and programmer nurnbersknown

to the monitor, and there may be duplication of filenames in different

project and programmer numbers, but it' is advised that all files to

which areas are assigned be given unique filenames.

3-1

Error messages associated with processing DMCL entries may be

found in Appendix A.

3.2 THE CONCEPT OF PAGE

For the purpose of direct access storage, data bases have been

described as being divided into areas. Each area is divided into

fixed-length, consecutive groups called pages, corresponding in size

to the page size specified in the DMCL Area Entry. Pages are further

divided into fixed-length, consecutive units called lines. Each line

contains an occurrence of a record type, its set linkages, and certain

system information for the DBCS. The length of a line is dependent

upon:

(1) The number of characters of data composing the
record type;

(2) The number of embedded pointers--i.e., set
linkages--defined for the record.

The length of a line, then, is determined by the record type

with which it is associated. A database key, then, specifies the

page and line number on which a record occurrence is to be found

(see Section 1.3.1).

Since input/output (I/O) operations between the DBCS and the

data base are handled by the monitor, data is transferred between

memory and the storage device as a block of words. Block size is

dictated by the physical device,being used. The physical device

normally used by DBMS-lO is the disk, which has a block size of 128

words. The monitor, though, knows nothing about pages and lines-

only blocks.

The DBCS, therefore, must translate database keys into relative

block numbers within the storage file for I/O access. The size of

a page of data storage corresponds to the size of an I/O buffer in

the DML preprocessor. The act of transferring a page from the disk

into a buffer in core is called a page-in, or the loading of a page.

All DML data retrieval and data manipulation operations are performed

on that portion of the data base which is in the buffer, and not

until the contents of the buffer are returned to the disk have any

changes been made permanent. This transferral of a page contained

in core to the disk is called page-out.

3-2

Page/buffer size is established at area allocation time by the

DMCL statements. This size is in multiples of 128 words--since blocks

of 128 words are read or written at one time by the monitor from or

to the disk. When a page/buffer size is greater than 128 words, the

page is sub-divided into sectors of 128 words each. This sub-division

has no effect on lines (which may cross over section boundaries), but

does increase the amount of I/O time needed to bring an entire page

into core. Increased buffer size also expands the need for memory

at run-time, but this is justifiable in many instances--e.g., when

an occurrence of a record type and its set linkages would take up

more than one block of storage space. DBMS-IO does not permit records

--i.e., lines--to run across a page boundary because they would not

be entirely in the buffer.

3.3 DMCL ENTRIES

This section describes the DMCL entries used to assign areas to

mass storage devices.

3.3.1 DMCL Record Entry

FUNCTION To specify the maximum number of records which can be
stored on a page.

FORMAT RECORDS-PER-PAGE integer-l

NOTES This entry must precede all other entries in a schema
description. Only one DMCL Record Entry can be associated
with any single schema.

Integer-l is an unsigned positive decimal integer between
I and (n/2)-1 where n is the page/buffer size in words.
This is the maximum number of lines--i.e., records-
permitted on a page.

3.3.2 DMCL Area Entry

FUNCTION To assign an area to a disk file, to specify the size
of this file in terms of pages, to specify the
page/buffer. size in words.

FORMAT ASSIGN area-name-l TO filename-l
FIRST PAGE IS integer-2
LAST PAGE IS integer-3
PAGE SIZE IS integer-4WORDS.

NOTES Area-name-l must be the name of an area defined in the
schema. There must be a DMCL Area Entry for each area
defined in the schema.

Filename-l may be up to six characters or digits and
cannot include a filename extension. The filenames

3-3

within a project and programmer number must be unique, and
the files so named will be assigned an extension of .DBS
by the DDL processor.

Integer-2, integer-3, must be unsigned positive decimal
integers. Page numbers within files within a data base
cannot overlap--i.e., if one file spans Pages 1 to 120,
then no other file in the same data base can contain a
page numbered less than 121. The numbering need not be
contiguous between areas.

Integer-4 should be an integer multiple of 128, less 1.
The reason for "less I" is that the DDL processor auto
matically allots the next largest integer multiple of 128
as the page/buffer size--i.e., if the page size is
specified as 127 words, then the DDL processor allocates
128 words; if it were specified as 128 words, though, 256
words would be allocated.

A maximum page/buffer size of 32K words is imposed by the
system.

The ordering of the statements in this entry is important
and must be maintained.

3-4

CHAPTER 4

THE SCHEMA DATA DESCRIPTION LANGUAGE (DDL)

This cha~ter contains the entire description of the Schema Data

Description Language (DDL).

4.1 INTRODUCTION

The DDL enables the Data Base Administrator to define and

describe the logical and physical mapping of a data base in terms of

a schema. A schema written in the Schema DDL consists of four types

of entry which serve to:

(1) Identify the schema (Schema Entry) ;

(2) Define areas (Area Entry) ;

(3) Define records (Record Entry) ;

(4) Define sets (Set Entry).

For each area, record type, and set type described in the schema,

a separate entry is required. However, one, and only one, Schema

Entry can appear in a schema. When a schema is constructed, the

following ordering of the entries must be maintained:

(1) The Schema Entry must always be the first entry;

(2) An Area Entry must precede the Record Entries for all
record types within that area;

(3) A Record Entry must precede the Set Entries for all
record types which participate in those sets as
either owners or members.

4.2 SCHEMA ENTRY

FUNCTION

FORMAT

EXAMPLE

NOTES

To identify a SCHEMA of a data base.

SCHEMA NAME IS schema-name.

SCHEMA NAME IS BARHEX.

The schema-name must be unique among the schema-names
known to DBMS-ID. All schema-names are'limited to 1
to 6 characters in length.

The schema identified by the specified schema-name consists
of the DDL entries that appear after this entry and before
the END-SCHEMA indicator.

4-1

4 • 3 AREA ENTRY

FUNCTION To name and give certain characteristics of an area within
a data base and to optionally specify privacy locks and/or
the temporary nature of the area.

FORMAT AREA NAME IS area-name-l
[i AREA IS TEMPORARY]

[i PRIVACY LOCK [FOR f(EX::::::A)LUPDATE}
~ PROTECTED

IS literal-I].

EXAMPLE

NOTES

AREA NAME IS PERSONNEL-AREA
PRIVACY LOCK EXCLUSIVE UPDATE IS PAEXUP
PRIVACY FOR RETRIEVAL IS PARER.

All area names must be unique among area-names
within the schema, and may be from I to 30
characters in length.

At least one area-name must be specified in a
schema. If only one area-name is specified, then
that area and the data base are equivalent.

A temporary area is not shared among concurrent
run-units. Any run-unit which makes reference to
an area defined as temporary is allocated a private
unique occurrence of that area. This is true even
when multiple run-units refer to the same area-name.
When a close is executed on a temporary area or the
run-unit terminates, record and set occurrences in
the area are no longer accessible and the space
occupied by the temporary area may be made available
for re-use by the DBCS.

PRIVACY LOCK specifies the privacy lock which applies
to the use of an area. A separate PRIVACY clause may
be stated for each usage-mode. However, the same
usage-mode must not be specified in more than one
PRIVACY clause.

The literals are privacy locks, to be matched with
the- pertinent privacy key. These literals must
conform to the data characteristics of privacy
locks,'and are limited to six characters in length.

The same literal may be specified for one or more
options included in the PRIVACY clause. If the
optional FOR clause is omitted, the literal applies
to any use of the area.

If a PRIVACY clause is not specified for a given
usage-mode, then the use of that usage-mode on the
described area is without restriction.

The privacy locks associated with the three usage
modes must be satisfied by the run-unit in order
to enable it to open the area with the corresponding
usage-mode.

4-2

4 • 4 RECORD ENTRY

The record Entry will be presented in terms of two sub-entries

Record Sub-Entry and Data Sub-Entry.

4.4.1 Record Sub-Entry

FUNCTION To name a record type in the schema - i.e., to specify a
generic name for all occurrences of the record type in
the data base. Also, to give certain characteristics of
record occurrences within a data base.

FORMAT RECORD NAME IS record-name-l

LOCATION MODE IS

(
data-name-l)

DIRECT identifier-l

CALC USING data-name-2
--r;-data-name-3] •••
[DUPLICATES ARE[NOT]ALLOWED]

EXAMPLE

NOTES

VIA set-name-l

WITHIN area-name-l ,area-name-2 •.. AREA-ID IS
data-name-4]

RECORD NAME IS CUSTOMER-RECORD
LOCATION MODE IS CALC USING ACCOUNT
DUPLICATES ARE NOT ALLOWED
WITHIN MARKETING-AREA

Record-names must be unique within the records of
a schema, and may be 1 to 30 characters in length.

The LOCATION MODE clause is used to define the,
criteria for selecting a record occurrence and to
advise the DBCS of the desired placement for a
record occurrence in an area.

Identifier-l is implicitly declared as a database
key and is not part of a record. Data-name-l must
be qualified with a record name and must refer to
a data-item defined as a database key. Data-name-2
and data-name-3 must refer to data-items included
in the record being described. Set-name-l must be
a set in which the record is defined as being a
member.

If the DIRECT option is specified, the specified
data item must be initialized prior to the execution
of a command that selects the record on the basis of
its location mode.

If CALC is specified, then data-name-2,3 .•. must be
initialized prior to the execution of a command that
stores a record or selects it on the basis of its
location mode.

If VIA set-name-l is specified, then all data items
used to select a unique set occurrence as specified
in the set occurrence selection clause for the set

4-3

named must be initialized prior to the execution of a
command that stores a record or selects it on the basis
of its location mode.

The LOCATION MODE clause controls placement of records
according to the options selected. Specification of
DIRECT or CALC causes placement to be controlled by
data-name-l or identifier-lor by data-name-2,3 ••.
respectively. Specification of VIA set-name-l SET
causes placement to be as close as possible to the
logical insert point 'of the record in set-name-l,
thus permitting clustering of data.

The DUPLICATES clause refers to the CALC keys. If
the DUPLICATES ARE NOT ALLOWED clause is specified,
no additional occurrence of this record type will be
allowed to exist if all of its CALC key values are
identical to those of an occurrence already in the
data base. When this clause is omitted, the default
is DUPLICATES ARE ALLOWED.

The WITHIN clause tells the DBCS into which area an
occurrence of the record is to be placed.

Area-name-l, area-name-2 must be the names of areas
for which an area entry is included in the schema
prior to this entry. By its appearance in an AREA-ID
clause, data-name-4 is implicitly defined to be a
character-string that conforms to the rules for the
formation of area-names. If the LOCATION MODE IS VIA
set-name clause is specified in this Record Entry,
the WITHIN clause for this Record Entry must include
all areas named in the WITHIN clause of the OWNER
record of the set named.

When only one area-name is specified, the contents
of data-name-4 determine the area into which a record
occurrence is placed.

Data-narne-4 must be initialized with an appropriate
area-name or with NULL-VALUE prior to the execution
of a command which stores a record or one which
selects a record on the basis of its LOCATION MODE
clause.

If the LOCATION MODE clause specifies DIRECT or
CALC, data-name-4 must be initialized with an
area-name included in the WITHIN clause; otherwise
an error will occur.

If the LOCATION MODE clause specifies VIA set-name
SET, data-name-4 must be initialized with an area
name included in the WITHIN clause or with NULL
VALUE. If it is initialized with a legal area-name
the record occurrence is placed in the named-area.
If it is initialized with NULL-VALUE the record
occurrence is placed as close as possible, within
the constraints of the areas named in its WITHIN
clause, to its logical insert point in the set
named.

4-4

4.4.2 Data Sub-Entry

FUNCTION To name a data-item or data-aggregate and indicate its
structural level within a record.

FORMAT 1 ~ data-name-l (PICTURE) IS picture-string.
, FE.

EXAMPLE 1 02 ACCOUNT PICX(6).

FORMAT 2 02 data-name-2 SIZE IS integer-I.

EXAMPLE 2 02 ADDRESS SIZE IS 50.

FORMAT 3

~
PICTURE) IS Picture-string]

(level-number) data-name-3 PIC

OCCURS integer-2 TIMES

EXAMPLE 3 03 SALES OCCURS 150 TIMES.

NOTES A data-name is a name that is not identical to any
reserved word, and may be from 1 to 30 characters
in length. A data-name must be unique within a
record.

A data sub-entry names and describes a data-item,
vector or repeating group. Additional sub-entries
are required to name and describe the components of
a repeating group.

Format 1 is used to describe elementary data-items
which are not part of a data-aggregate. The 02
level number-is mandatory. Format 2 is used to
specify a data-aggregate, which may only be defined
at the 02 level.

Format 3 is used to describe data-items which make
up a data-aggregate, and may be any COBOL accepted
format.

A picture-string must conform to the rules for
ANSI COBOL picture-strings.

A level number in Format 3 is an unsigned decimal
integer greater than 2 and less than 100, and it
must be specified.

In Format 2, i~teger-l must be equal to the sum of
the number of character positions specified for each
of the subordinate sub-entries for that data-aggregate.

The OCCURS clause in Format 3 must conform to the
rules of ANSI COBOL for such a group.

If data-name-l is used as a database key using DIRECT,
then it must have a picture X(lO).

4-5

4.5 SET ENTRY

FUNCTION To name a set type in the schema - i.e., to specify a
generic name for all occurrences of the set type in
the data base; to specify the mechanism to be utilized
to support the manipulation of a set; to specify the
insertion point of a member record occurrence within
a set occurrence and thereby define the order of
sequential progression. Also to specify the name of
a record, each occurrence of which establishes the
existence of an occurrence of the set named in this
entry; to name the records which may, be members of
the set named; and to specify the type of membership
in that set. In addition, to specify the sort control
keys for the member records of a sorted set; to
optionally check and reject the insertion within the
same set occurrence of member record occurrences that
contain duplicate values for the specified sort
control keys; to define the rules governing the
selection of the appropriate occurrence of a set for
the purpose of inserting an occurrence of a member
record or accessing a desired member record.

FORMAT SET NAME IS set-name-l

;MODE IS CHAIN [LINKED TO PRIOR]

~
FIRSTJALWAYS LAST
NEXT
PRIOR

; ORDER IS 1WITHIN RECORD-NAME J
SORTE BY DATABASE-KEY

DUPLICATES~~*iT] ALLOWED

; OWNER IS {record-name-l}
SYSTEM

;MEMBER IS record-name-2 (MANDATORY:\(AUTOMATIC)
OPTIONAL J MANUAL

[LINKED TO OWNER]

[DUPLICATES ARE NOT ALLOWED FOR identifier-l
[, identifier-2] •••]

G(ASCENDING "\[RANGE]
~ DESCENDING!

[DUPLICATES ARE

4-6

KEY IS identifier-3

[~TJ ALLOWED]]
NOT

EXAMPLE

NOTES

[i SET OCCURRENCE SELECTION IS THRU

(CURRENT OF SET J
LOCATION MODE OF OWNER .

[
USING identifier-4 [,identifier-S] ••• J)
ALIAS FOR identifier-6 IS data-name-l .•.

SET NAME IS ORDER-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS LAST
OWNER IS CUSTOMER-RECORD
MEMBER IS ORDER-RECORD OPTIONAL MANUAL OWNER

DUPLICATES ARE NOT ALLOWED FOR ORDERNUM
SET SELECTION CURRENT.

SET NAME Clause

The set-name must be unique among the set-names of
the schema.

MODE Clause

Each set within a schema may have only one MODE
clause. All participating records of a set defined
with MODE IS CHAIN clause are linked to the next
record. The optional LINKED TO PRIOR clause causes
the DBCS to generate an additional pointer in the
prior direction for the owner record and for each
member record of each occurrence of the set.

ORDER Clause

If the ORDER IS SORTED clause is specified with
the DUPLICATES option, an ASCENDING/DESCENDING
clause without a DUPLICATES clause must be
stated for each member sub-entry for this set.

ORDER FIRST refers to the position within the set
occurrence that immediately follows the owner
record occurrence. This is a reversed chronological
sequencing in that the last member record inserted
into the set occurrence becomes the first member of
the set occurrence.

ORDER LAST refers to the position within the set
occurrence that immediately precedes the owner
record occurrence. This is a chronological se
quencingi the newest member record occurrence
becomes the last member in the set occurrence.

When both the ORDER IS LAST and MODE IS CHAIN
clauses are specified in a set entry, a pointer
to the last member record of each set occurrence
will be associated with the owner record of that
set occurrence.

ORDER PRIOR/NEXT refers to insertion points
relative to the current record of the set. When
ever the current record of a given set-name is not
known to the DBCS no new member'records can be

4-7

inserted into an occurrence of that set-name
without first establishing a current record for it.

The ORDER IS SORTED clause allows' specification
of a set order based on the record-names or the
database keys of the member records of the set,
or on the values of the sort control data items
specified in the ASCENDING/DESCENDING clauses
for the member records of the set.

The optional WITHIN RECORD-NAME clause allows
records to be sorted without regard to the order
of other record types in the set. This does not
mean that there is an implied major sort by
record type. It means only that when a given
type of record is considered indepen~ently of any
other member record-type, it is in sequence by its
own sort key(s). If the ASCENDING/DESCENDING
clause is not used for any member record-type, the
database keys of the occurrences of that record
type are used as ascending sort keys.

The optional BY DATABASE-KEY clause specifies that
the member records of a set occurrence are kept in
ascending sequence by their database keys.

The optional DUPLICATES clause specifies the action
to be taken when a new record occurrence is to be
added to the set and the values of its sort control
data items are duplicates of sort control data items
of record occurrences which currently participate
as members of the set occurrence. Use of the
DUPLICATES clause also specifies that the member
records in a set occurrence are to be maintained
in a single sequence regardless of the number of
different member record-types specified in the
set entry. The common sort key(s) are specified
in the ASCENDING/DESCENDING clauses for each member
record type and must agree in size, mode and physical
position within the record.

If the ORDER IS SORTED, and the WITHIN RECORD-NAME,
BY DATABASE-KEY, or DUPLICATES clause is not used,
the record-name of the member record is used as the
major sort key. Minor sort keys are specified by
the ASCENDING/DESCENDING clauses for each member
record-type. If the ASCENDING/DESCENDING clause is
not used for any member record-type, the database
keys of the occurrence of that record type are used
as the sort keys for that record type.

OWNER Clause

Record-name-l must be previously defined in a record
entry.

If the OWNER IS SYSTEM clause is used in a set entry,
none of its member sub-entries can include a set
occurrence selection clause.

4-8

MEMBER Clause

Record-name-2 must be previously defined in a record
entry.

Identifier-I, identifier-2 .•. must refer to data items
included in record-name-2.

Record-name-2 cannot be the name of the record
specified in the OWNER clause of this set entry.

If the optional word AUTOMATIC is used occurrences
of record-name-2 are inserted unconditionally into
the selected occurrence of the set at the time the
record occurrence is stored.

If the word OPTIONAL is used occurrences of
record-name-2 may be inserted into, or removed from
the appropriate set occurrences by the execution
of the INSERT and REMOVE commands respectively.

If the DUPLICATES NOT ALLOWED clause is used the
DBCS will reject the insertion into any given set
occurrence of member record occurrences with dupli
cate values for the data items specified in this
clause. This may occur during an attempt to store
a new record occurrence in the data base, or to insert
an existing record occurrence into a set or to modify
the value of such a data item.

The optional LINKED TO OWNER clause causes each
member record occurrence of this type to be directly
associated with the database key of its OWNER. .
The LINKED TO OWNER clause cannot be applied to
member record of sing~lar sets.

A MEMBER clause must be specified for each record
type that can participate as a member in the set
being described. More than one record type can
be declared as a member of any given set.

A record can be defined as a member in more than one
set. It may also be defined as an owner in one or
more sets.

The DUPLICATES NOT ALLOWED clause must be repeated
for each data item or concatenation of data items
for which duplicate values are not allowed. The
identifiers included in any single DUPLICATES NOT
ALLOWED clause will be concatenated.

Each occurrence of a member record participates in
only one occurrence of a set. That is, within a
set, each member record occurrence may have one
and only one owner.

A record may not be defined as both an owner and a
member of the sets such that a cycle is formed in
which all records participate as automatic members
in. the sets included in the cycle.

4-9

Identifier-3, identifier-4, •.. must refer to data
items specified in the Record Entry for the record
named in the MEMBER clause of this sub-entry.

ASCENDING/DESCENDING Clause

The ASCENDING/DESCENDING clause must be included in
all member sub-entries of any set-entry which includes
an ORDER IS SORTED clause specifying the optional
DUPLICATES clause. This clause must not be used if
the set-entry does not include the ORDER IS SORTED
clause or if the ORDER IS SORTED BY DATABASE-KEY
clause is used. For all other forms of the ORDER
IS SORTED clause, specification of the ASCENDING/
DESCENDING clause is optional.

The DUPLICATES clause must be stated if and only if
the ASCENDING/DESCENDING clause is used and an ORDER
IS SORTED clause does not include a DUPLICATES clause.

The order in which the keys are specified will
define the major to minor sequence for sorting.

Within a member record some data items can be
defined as ascending keys and some can be defined
as descending keys. That is, they can be inter
mixed.

If there are multiple member record types defined
for a set, the ASCENDING/DESCENDING KEY clauses can
be intermixed between record types. That is, one
record type can be defined with an ASCENDING KEY
clause, while another can have a DESCENDING KEY
clause.

If the ORDER IS SORTED clause is used in a set entry
and no ASCENDING/DESCENDING clause is specified in one
or more of its member sub-entries, the database key
of such a member record is used as an ascending key.

If the ORDER IS SORTED clause includes the DUPLICATES
clause, the member records in a set occurrence are
maintained in a single sequence regardless of the
number of different member record-types. The corres
ponding sort keys specified for each member record
type must have identical data characteristics and
must also match in terms of whether they are ascend
ing or descending.

If the optional word RANGE is used, the ordering of
the member record occurrences is in accordance with
the above rules.

Where one or more data items declared with an
ASCENDING or DESCENDING RANGE KEY clause are speci
fied as arguments in a SET OCCURRENCE SELECTION
clause the use of the optional word RANGE causes
each occurrence of such a data item to represent
a range of values and has the following implications
for the process of set occurrence selection.

4-10

An equality match between the range key (which
is in the record to be selected) and the input
argument value in the user working area is not
required for a record to be selected as being
the owner of the sought set occurrence.

A match will occur regardless of whether the
range key has been specified as ascending or
descending as follows:

(a) If the input argument value in the User
Working Area equals the value of any
specific range key.

(b) If the input argument value in the User
Working Area equals the value of any
specific range key; then a match will
occur on the range key with the lowest
value.

(c) If the input argument value in the User
Working Area lies between two adjacent
range key values; the match will·occur
with the larger range key value.

A match will not. occur if the input value in the
UWA is greater than the largest value of any
RANGE KEY. When this is the case an Error Status
Condition will occur.

If the DUPLICATES ARE NOT ALLOWED clause is used the
DBCS will reject the insertion into any given set
occurrence of member record occurrences with duplicate
values for the specified ascending/descending keys.
This may occur during an attempt to store a new
record occurrence in the data base, or insert an
existing record occurrence into a set, modify the
value of a data item specified in an ASCENDING or
DESCENDING KEY clause.

If the DUPLICATES ARE FIRST or the DUPLICATES ARE
LAST clause is used, member record occurrences
with duplicate values for the specified ascending/
descending keys will be inserted by the DBCS before
or after, as specified, any existing member occurrences
with such duplicate values.

If the DUPLICATES clause does not include any of the
optional words FIRST, LAST or NOT, the insertion
point of duplicate member record occurrences relative
to existing duplicates is unpredictable.

SET OCCURRENCE SELECTION Clause

A USING clause may qualify the LOCATION MODE OF OWNER
clause only when the LOCATION MODE clause in the
Record Entry for the owner record of the set in which
this clause appears is VIA set-name. When this is
the case either an ALIAS or a USING clause must be
specified.

4-11

All identifiers must refer to declared data items
of the owner record of the set(s) referenced.

Identifier-6 ••• must, if the LOCATION MODE clause
in the Record Entry for the OWNER record of the set
is DIRECT or CALC, refer to data items specified in
that LOCATION MODE clause. If, however, the LOCATION
MODE is VIA set-name, identifier-6 ••• must refer to
data-items specified in the USING clause of a SET
OCCURRENCE SELECTION clause for another set with the
same defined owner record type.

By their appearance in an ALIAS clause, all data
names are implicitly defined as having the same
characteristics as their corresponding identifiers.
A data-name specified in an ALIAS clause defines
a data-name in the run-unit's User Working Area.

The LOCATION MODE OF OWNER option cannot be used
if the owner being referenced does not have a
LOCATION MODE clause specified for it in its
Record Entry.

If the LOCATION MODE OF OWNER option is used the
Record Entry for the owner record type being
referenced must have a DUPLICATES NOT ALLOWED
clause if its LOCATION MODE IS CALC.

All other identifiers explicitly named in a SET
OCCURRENCE clause must have a DUPLICATES NOT ALLOWED
clause in the appropriate Set Entries. The DUPLICATES
NOT ALLOWED clause may be specified in the ASCENDING/
DESCENDING KEY clause, the SEARCH KEY clause or the
MEMBER clause of the relevant Set Entries.

The SET OCCURRENCE SELECTION clauses for the appro
priate member record and set combinations will govern
the selection of specific set occurrences whenever:

A STORE command is executed and the object record
is an automatic member of one or more sets.

A MODIFY command is executed which changes the
value of a data item specified in a SET OCCURRENCE
SELECTION clause.

Prior to the execution of any command involving set
occurrence selection, the data items specified in
this clause must be initialized. The data items
specified by this clause are those which are explic
itly named in it and/or those which are not explicitly
named but which are implied by the LOCATION. MODE
option of this clause.

This clause applies where:

The owner record of the set occurrence to be
selected is either procedurally pre-selected
(the CURRENT OF SET option) or can be uniquely
identified on the basis of its LOCATION MODE
clause alone (the LOCATION MODE OF OWNER option

4-12

is used in this clause and the Record Entry for
the owner record of the set specifies that its
LOCATION MODE IS DIRECT or CALC).

The owner record of the set occurrence to be
selected cannot be determined except in terms of
its membership in some other set and its assoc
iated SET OCCURRENCE SELECTION clause (the
LOCATION MODE OF OWNER option is used in this
clause and the Record Entry for the owner record
of the set specifies that its LOCATION MODE IS
VIA set-name).

The CURRENT OF SET option causes the DBCS to select
the current set occurrence as defined by the current
of the appropriate set-name. This is the set-name
of which this clause is a part.

The LOCATION MODE OF OWNER option causes the DBCS
to select a set occurrence on the basis of the
LOCATION MODE clause specified in the Record Entry
for the owner of the appropriate set name. This
is the set name of which this clause is a part.
Unless the ALIAS option is used in the SET OCCURRENCE
SELECTION clause, or the LOCATION MODE clause in the
Record Entry for the owner record is VIA set-name,
the arguments used for selection of the owner record
are the arguments specified in the LOCATION MODE
clause of the Record Entry. These arguments must
therefore be initialized with the actual argument
values prior to each execution of any command con
trolled by the SET OCCURRENCE SELECTION clause.

If the LOCATION MODE OF OWNER option is used and
the LOCATION MODE clause in the Record Entry for the
owner record is VIA set-name, the owner record to be
selected must be located in terms of its membership
in another set. This selection is governed by the
SET OCCURRENCE SELECTION clause for the set named in
the LOCATION MODE clause of the owner record, and
by the USING option of the SET OCCURRENCE SELECTION
clause. The data items specified in the USING clause
must uniquely identify a specific record occurrence
within an occurrence of the set named in the LOCATION
MODE clause of the owner record. The SET OCCURRENCE
SELECTION clause for the set named in the LOCATION
MODE clause may, in turn, specify LOCATION MODE OF
OWNER and the LOCATION MODE may again be VIA set-name.

This condition may occur to an arbitrary number pf
levels, but must eventually terminate with a SET
OCCURRENCE SELECTION clause that does not specify
LOCATION MODE OF OWNER where the LOCATION MODE is
VIA set-name. At each level other than the first,
the arguments specified in a USING clause are used
to select an owner record in its capacity as a
member of another set. The arguments specified
may be any data items in the records to be selected.

4-13

The optional ALIAS clause provides for the situation
where a given record is defined as a member in more
than one set type, and each such set type has the
same owner record type. In this situation, more
than one argument value may be required for the data
item named as an argument. The ALIAS clause provides
the User Working Area locations for such values.

For sets with more than one record type named as
member record - i.e., multiple MEMBER clauses -
a SELECTION clause is needed for each MEMBER Clause
and precedes the next MEMBER Clause. SELECTION
CURRENT need not always be specified, as this is
the default.

4-14

CHAPTER 5

THE COBOL SUB-SCHEMA DATA DESCRIPTION LANGUAGE (DDL)

This chapter contains the entire description of the DBMS-IO

COBOL Sub-Schema Data Description Language (DDL).

5.1 INTRODUCTION

The COBOL Sub-Schema DDL enables the Data Base Administrator to

describe the subset of a data base known to one or more COBOL DML

programs in terms of a COBOL sub-schema. A sub-schema description

written in the COBOL Sub-Schema DDL consists of the Sub-Schema

Identification and three sections:

AREA SECTION

RECORD SECTION

SET SECTION

All sections must appear in the above order.

The Area, Record, and Set Sections consist of an entry for each

area, record, or set to be included in the sub-schema being defined.

Each such entry completely describes an area, record, or set.

Sub-schema descriptions follow the schema description, but

before the END-SCHEMA indicator, and are passed through the DDL

processor along with the DMCL and Schema DDL statements.

5.2 SUB-SCHEMA IDENTIFICATION

FUNCTION

FORMAT

EXAMPLE

NOTES

To define and name a sub-schema within a schema, and
to specify the privacy lock for the use of a sub-schema.

SUB-SCHEMA NAME IS sub-schema-name
PRIVACY LOCK IS literal-I.

SUB-SCHEMA NAME IS SUBOI PRIVACY SALEX.

Sub-schema-name must be unique among the sub-schema~names

associated with the specific schema.

Literal-l must conform to the data characteristics of
privacy locks to be matched with the pertinent privacy
keys.

5-1

5.3 AREA SECTION

FUNCTION

FORMAT 1

FORMAT 2

FORMAT 3

EXAMPLE

NOTES

To enumerate the areas of the schema that are included
in the sub-schema and, by implication, to remove from
view all other areas of the schema.

AREA SECTION.
COPY area-name-l [,area-name-2]

AREA SECTION.
COpy ALL AREAS.

AREA SECTION.
COpy TEMPORARY area-name-3 [,area-name-4]

AREA SECTION.
COpy MARKETING-AREA, INVENTORY-AREA.

Area-name-l, area-name-2, ..• must refer to areas
defined in the schema.

If Format 2 is used, Formats 1 and 3 entries are not
allowed. Otherwise 1 and 3 may be repeated as needed.

Format 1 causes the entries for the referenced areas
in the schema to be included in the sub-schema.

Format 2 causes all areas for which entries are
included in the schema to be included in the sub-schema.

Format 3 designates the named areas to be sub-schema
temporary. A sub-schema temporary area is a private
unique occurrence of a normal area which is always
opened as if protected update had been specified.
However, any changes made to this area will be discarded
when the run-unit closes the area or terminates. This
is used to permit program testing on "live" data without
loss of data base integrity.

5.4 RECORD SECTION

FUNCTION

FORMAT

EXAMPLE

NOTES

To enumerate and define the records of the schema that
are to be included in the sub-schema. By implication,
to remove from view all other records of the schema.

RECORD SECTION.
01 record-name-l.
01 record-name-2.

RECORD SECTION.
01 CUSTOMER-RECORD.
01 ORDER-RECORD.
01 STOCK-RECORD.
01 SUPPLIER-RECORD.

All record-names must be unique within the record-names
used in the sub-schema. Since each record-name must be
the name of a record declared in the schema, this should
be no problem. No changes are allowed.

5-2

Each record 'named must be located within an area named
in the Area Section. If a record is located in more than
one area, and not all of these areas are included in
the sub-schema, then only the record occurrences located
in the included areas are made part of the sub-schema.

5.5 SET SECTION

FUNCTION

FORMAT I

FORMAT 2

EXAMPLE

NOTES

To enumerate and define the sets of the schema that are
to be included in the sub-schema, and, by implication,
to remove from view all other sets of the schema.

SET SECTION.
COpy set-name-l [,set-name-2]

SET SECTION.
COpy ALL SETS.

SET SECTION.
COpy ORDER-SET, INVENTORY-SET, SUPPLIER-SET.

All set names must refer to sets defined in the schema.

Format I entries may be repeated as required. If
Format 2 is used, no Format I entries are allowed.

Format I causes the entries for the referenced sets in
the schema to be included in the sub-schema. No changes
are allowed.

Format 2 causes all sets for which entries are included
in the schema to be included in the sub-schema.

An entry must be included in the Record Section for the
owner record of each set included in a sub-schema.

If a set included in a sub-schema is SORTED on one or
more keys, all the records containing those keys are
to be included in the sub-schema. Otherwise, no record
modification will be permitted for members of that set.

5-3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CHAPTER 6

DATA ORGANIZATION AND ACCESS

Data organization refers to the manner in which data is arranged

in a data base. Data access refers to the way in which data from

the data base is read and/or written (I/O).

6.1 DATA ORGANIZATION

As discussed in previous chapters, a data base must be equated

to DECsystem-lO monitor files for storage on disks. The DDL

processor accepts the DMCL entries, which precede the DDL entries

in the Schema-Sub-Schema DDL file, and writes files based on the DMCL

entries. The assigment of physical space for these files (hereafter

called DBS files, because .DBS is the filename extension given these

files by the DDL processor) is performed automatically by the

monitor when the DBS files are ,written by the DDL processor. The

DBS files may be any length, and each data base may be divided into

as many files as its Data Base Administrator wishes, as long as

disk space is available. Under the DECsystem-lO monitor, files may

be concurrently read by more than one user at a time--thus permitting

concurrent retrieval of data from areas of a data base. Update of a

file by more than one person at the same time, though, is not possible,

although an updated version of an area of a data base may be written

by one user while other users continue to read the old version--i.e.,

protected update.

Pages are the basic partitions of the DBS files to which a data

base is assigned (see Chapter 3). By dividing the DBS files into

pages, and storing selected records on these pages, and using a page

as the basic I/O buffer size, DBCS operations that affect the records

on only one page can be handled with a single disk access. The DBS

files are random access files--i.e., they can be accessed by the

DBCS either sequentially or randomly (see Section 6.2).

Record locations on a page (hereafter referred to as lines) are

consecutively numbered starting with one. When combined with the

page number to form a database key (see Section 6.1.4), this line

number becomes the address of the corresponding record occurrence in

the data base.

6-1

Before cqnsidering data access, several aspects of data organi

zation should be discussed:

(1) identification of a DBS file;

(2) identification of a page--the page header;

(3) format and identification of a line;

(4) forming a database key.

6.1.1 Identification Of A DBS File

All files created by the DDL processor for storage of areas of

a data base are given the filename extension of .DBS when created.

Unique to each data base is a schema directory file--also created

by the DDL processor--in which the structure of that data base is

described (see Chapter 7). As part of each area description in this

directory, the corresponding DBS file appears. Further explanation

of this will be given in Section 6.2 and in Chapter 7.

6.1.2 Identification Of A Page

When a DBS file is created by the DDL processor, it is also

segmented into its appropriate number of pages, and each page is

given a page header which serves to specify:

(1) the page number;

(2) the pointer reference for the page;

(3) the space available on the page in terms of words;

(4) the record space available on the page.

The DECsystem-lO records data as 36-bit words, which can also be

viewed as 12 octal bytes. DBMS-IO is therefore designed to fit into

these 36-bit words of portions thereof.

A page header is thu~ a word block which has the following

format.

6-2

o

1

2

3

4

PAGE NUMBER

POINTER REFERENCE

SPACE AVAILABLE

RECORDS AVAILABLE
~ -

where:

PAGE NUMBER is the number of the page in octal, right
justified, and bit 0 is always zero.

POINTER REFERENCE is an octal number, right justified.
The pointer reference is a function of the page number
and the records-per-page specified in the DMCL Record
Entry.

SPACE AVAILABLE is the number of words left on the page
which can be used for lines; it is initially calculated
by subtracting the number of words used for the page
header from the page size, and is updated.

RECORDS AVAILABLE represents the maximum number of
records which can be assigned to a page as determined
from the DMCL Record Entry. The number of words necessary
to make this representation is dependent on the number
of records-per-page specified since one bit is allotted
for each record.

The following examples should be helpful in understanding how

the page header is formed.

EXAMPLE 6.1

Consider the following DMCL entries:

RECORDS-PER-PAGE 63.

ASSIGN EXAMPLE-AREA-l TO XFILEI
FIRST PAGE IS 1
LAST PAGE IS 43
PAGE SIZE IS 127 WORDS.

The page headers in XFILEl.DBS would be five words long. This

size is calculated in the following manner. The first word contains

the page number; the second, the pointer reference; and the third,

the space available. Since the records-per-page is given as 63,

6-3

63 bits are needed to represent the 63 lines which the page could

at the most hold. Two words contain 72 bits, so the leftmost 64

bits of the combined fourth and fifth words are used for this

indication. Bit 0 of the fourth word is left zero, but the following

63 bits are turned on. Later, whenever a record is stored on a

particular page, it is assigned a number corresponding to the left

most "on" bit.

The space available now on any page in XFILEl.DBS is 123 words.

This figure is derived in the following way. The page size was

given as 127 words. The DDL processor always allocates page size

as the next higher multiple of 128 words (200 8 words). Since

127<1*128, 128 words is the page s~ze used. If 128 words had been

specified, 256 (400 8 words) would have been allocated. Thus,

since five words were needed for the page header, only 123 words

(173 8 words) remain for data storage.

The pointer reference is calculated as follows:

(I) convert the page number to octal and place it in the
second word, right justified;

(2) take the records-per-page value and determine the next
highest power of 2 (e.g., the next highest power of 2
with respect to 63 is 6);

(3) shift the number in the second word left as many bits
as this power of 2 (thus in this example, it would be
shifted 6 bits).

The resulting octal number is the pointer reference. For this

example, the pointer reference for Page 1 is 100, while for the

last page, the octal page number is 53 and its reference is 5300.

Thus, in an octal dump of XFILEl.DBS, the page header for the

first page would look like:

377777777777

6-4

EXAMPLE 6.2

Now consider these DMCL entries:

RECORDS-PER-PAGE 127.

ASSIGN EXAMPLE-AREA-2 TO XFILE2
FIRST PAGE IS 100
LAST PAGE IS 1201
PAGE SIZE IS 200 WORDS.

The page header for Page S23 (1467 S) from an octal dump of

XFILE2.DBS is shown below.

~~~~~~~~1467
777777777777

~~~~~~3156~~
777777777777

377777777777

Note the page number in the first word is in octal; the pointer

reference entailed shifting 7 bits left; four words were needed to

accommodate records available, leaving 249 (371 S) words for data

storage. Note further, even though 200 words were specified for

page size, 256 (400
S

) were allocated.

6.1.3 Format And Identification Of A Line

When the DDL processor creates a DBS file, the pages are

empty, except for their page headers which are always present. The

lines on a page are written by the DBCS during execution of a run

unit (see Section 6.2). The format and identification of a line,

though, really belongs to data organization, and will be discussed

here.

Each line begins on a word boundary, and covers as many words

as is necessary, terminating on a word boundary. Lines are confined

to the page on which they begin, and can never cross page boundaries.

A line has the following format:

LINE HEADER I POINTERS DATA

The line header is a single word and contains the following:

Bits 0 through S

Bits 9 through 17

the line number in octal.

the record type to which this
record occurrence belongs (see
Chapter 7) •

6-5

Bits 18 through 19

Bits 20 through 28

Bits 29 through 35

DELETE flag.

Must be zero (MBZ).

the length of the line in words
{includes header).

For each set link associated with the record occurrence be

longing to a line, there is an embedded set pointer as part of

the line. Every pointer is given one complete word, the contents

of which is the database key of the line to which it 'points. A

further discu~sion of pointers follows in Section 6.2.

A line from an octal dump of a DBS file appears below.

Line Number Record Type
~.---------,--

,.-...~

~~1145~~~~3l

'\
Header

6.1.4 Forming A Database Key

625742456264

/'
Data

The construction of a database key is essentially the combina

tion of the line number and the number of the page on which it

resides. This is not an additive combination, but a merging of

the pointer reference in the page header (see Section 6.1.2) and

the line number. Thus, considering Example 6.1 again, the third

line on the fourth page would have 403 8 as its database key. In

Example 6.2, the database key for the ninth line on Page 823

would be 315611 8 .

6.2 DATA ACCESS

When a run-unit wishes access to a data base, the DBCS first

verifies the acceptability of the INVOKE statement of the run-unit.

For a run-unit which is permitted access, a User Working Area is

established for the run-unit, and an in-core map of the data base

is created. This in-core representation is actually a data base

itself--complete with record types and set types. Figure 6.1

shows the set structures of this in-core data base.

6-6

SUB-SCHEMA
BLOCK

RECORD
BLOCK

AREA
BLOCK

A.W SET

DATA
BLOCK

D.C SET

R.M SET

MEMBER
BLOCK

M.C SET

CONTROL
BLOCK

WITHIN
BLOCK

R.O SET

OWNER
BLOCK

O.M SET

Figure 6-1 In-Core Representation

The DBCS uses this in-core representation to govern the inter

actions with the data base. All data base I/O operations are

dependent on this map. The first point of this section to be covered,

then, will be the in-core representation of the sub-schema to which

a run-unit has access. Following this, the I/O buffering schema will

be discussed, and then the algorithms used to STORE and FIND record

occurrences.

6-7

6.2.1 The In-Core Representation

The in-core representation is a network structure of eight

record types (also called blocks) which serve to map the sub-schema

being accessed by the run-unit. It is created in core from the

schema directory (see Chapter 7) for the data base to which the

sub-schema belongs. A complete analysis will not be given, but

a description of each block is provided for those who are interested.

6.2.1.1 Sub-Schema Block - The sub-schema block is the root of the

in-core representation and has only one occurrence. The word

format for this block is shown in Figure 6-2. BITS/RECORD IN CORE

in the rightmost 30 bits of the first word is a function of the

records-per-page specified when the data base was created, and the

number which appears here is equal to (records-per-page/36) rounded

up. For all the blocks shown in this section, a word where NEXT,

OWNER, or PRIOR appears is a pointer to the appropriate block in

the in-core representation (refer to Figure 6-1 for set types used) •

BITS/RECORD IN FILE is identical with the RECORDS AVAILABLE

words in a page header (see Section 6.1.2). Thus, the size of

the sub-schema block, in words, depends on the records-pe~-page

specified in the DMCL Record Entry.

o

1

2

3

4

00

"

BITS/RECORD IN CORE

NEXT S.R SET I NEXT S.A SET

~

BITS/RECORD IN FILE
~

I

n-l

n

Figure 6-2 In-Core Sub-Schema Block

6-8

6.2.1.2 Record Block - For each record type belonging to the

sub-schema invoked, there is set up a record block in core. The

format for this II-word block is given in Figure 6-3.

o

1

2

3

4

5

6

7

8

9

10

01 I TYPE I WITHIN ID PTR

CURRENT OF RECORD TYPE -
TOTAL SIZE I DATA OFFSET I FLAG I LOC

10-

~

RECORD-NAME
~

~

NEXT S.R SET NEXT R.W SET

NEXT R.O SET NEXT R.M SET

F 1//////////1//# CALC NEXT R.D SET

Figure 6-3 In-Core Record Block

TYPE refers to the octal number which denotes the record type.

WITHIN ID PTR is a pointer to the area block for the area
in which the record is located.

CURRENT OF RECORD TYPE is the database key of the current
occurrence of this record (see Section 1.6).

TOTAL SIZE is the total number of words on the lines on
which occurrences of this record are stored.

DATA OFFSET is the number of words on these lines which
are used for the header and for pointers.

The FLAG bits in word 2 contain the following:

Bits 25-30 Must be zero (MBZ).

Bit 31

Bit 32

1

1

Delete not permitted.

Store not permitted.

LOC is the location mode for this record, and is given as
follows:

6-9

o None - no way to locate using this sub-schema.

1 DIRECT

2 CALC

3 VIA

RECORD-NAME is the name of the record type in SIXBIT.

The F(lag) bit in word 10 is the CALC duplicate flag. If
duplicates are allowed, the bit is on; otherwise, it is off.

CALC is the number of CALC fields ..

6.2.1.3 Area Block - An area block is written in core for each

area known to the invoked sub-schema. Each of these blocks contains

18 words, and the format appears in Figure 6-4.

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

02 FIRST PAGE

MODE LAST PAGE

PAGE SIZE I CH BUFFER TABLE PTR

FILENAME

EXT SECTOR OFFSET

NEXT RECOVERY SECTOR

DIRECTORY PTR FLAG I SIP IRCH

NEXT S.A SET NEXT A.W SET

CURRENT OF AREA

l-

I--

AREA-NAME
r-

-

RETRIEVAL LOCK

PROTECTED UPDATE LOCK

EXCLUSIVE UPDATE LOCK
--

AREA SEQUENCE NUMBER

Figure 6-4 In-Core Area Block

6-10

MODE refers to the USAGE MODE specified for the area in the
OPEN statement. The octal values, and the modes they
represent are:

o CLOSED - not yet:open

1 RETRIEVAL

2 EXCLUSIVE UPDATE

4 PROTECTED UPDATE

10 SCHEMA TEMPORARY

20 SUB-SCHEMA TEMPORARY

The way the DBCS works, if two areas are to be bridged using
sets, both areas must have the same usage mode; otherwise,
the DBCS will disallow STOREs and INSERTs in these sets.
Likewise, if a record is located within more than one area,
the DBCS ANDs the modes for the areas and will not permit
operations on that record if the result is zero.

CH is the software channel on which I/O for this area is
performed.

BUFFER TABLE PTR points to in-core buffer table (see
Section 6.2.2).,

FILENAME and EXT refer to the monitor file in which this
area is stored. Both are given in SIXBIT.

SECTOR OFFSET is the number of 128 (2008) word sectors at
the front of this file, which are used for recovery
purposes (see Chapter 8), and precede the first page.

NEXT RECOVERY SECTOR is the next available sector in the
recovery file for this area (see Chapter 8).

DIRECTORY PTR points to a directory buffer which is used to
page in from the recovery file.

FLAG in word 6 has the following configuration:

Bit 18
Bit 19

I
I

Schema Temporary
Sub-Schema Temporary

SIP is the number of 128 (200 8) word sectors per page.

RCH is the software channel on which I/O for the recovery
file for this area is done.

CURRENT OF AREA is the database key of the current record
occurrence of this area (see Section 1.6) .

AREA-NAME is the name of the area in SIXBIT.

The LOCKS are all given in SIXBIT.

AREA SEQUENCE NUMBER is an access reference number for the
area which is advanced by the DBCS each time an area is
opened. The primary use for this number is to assure the

6-11

retrieval user that he is always reading the data that
existed in an area when his run-unit began, and that updated
data will not be made part of the permanent data base until
he closes the area.

6.2.1.4 Within Block - According to the WITHIN CLAUSE specified in

the Schema Record Entry for records defined for the invoked sub

schema, there will be one or more in-core within blocks for a

record. These within blocks use two words, and the format is

given in Figure 6-5.

o

1

03 1/////////////// OWNER A.W SET

NEXT R.W SET NEXT A.W SET

Figure 6-5 In-Core Within Block

6.2.1.5 Control Block - A control block (Figure 6-6) exists for

all the data-items and data aggregates in the data base which have

been specified as either SORT keys or USING/ALIAS identifiers

in the SET SELECTION Clause.

o

1

2

06 k////IAD I/IU IS ALIAS PTR

OWNER M.C SET NEXT M.C SET

OWNER D.C SET NEXT D.C SET

Figure 6-6 In-Core Control Block

AD in word 0 is the ascending/descending flag.

U is the using flag and is on if the block is for using
control.

S is the sort-type flag. When off, match sort is used;
when on, range sort is performed.

The ALIAS PTR points to a core location in which is stored
the ALIAS (see Section 4.5) option used in the SET
SELECTION Clause.

6.2.1.6 Owner Block - The DBCS uses a unique owner block to

identify and define each set type known to the sub-schema invoked

by the run-unit. Figure 6-7 shows the format for this seventeen

word block.

6-12

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

04 I CHAIN IND PRI OFFSET INEXT OFFSET

OWNER R.O SET NEXT R.O SET

///////////////////IFL NEXT O.M SET

DBKEY OF OWNER OF SET

DBKEY OF PRIOR OF SET

DBKEY OF CURRENT OF SET

DBKEY OF NEXT OF SET

l-

I-

SET-NAME
r-

I--

DBKEY OF NEW MEMBER OF SET

DBKEY OF NEW PRIOR OF SET

DBKEY OF NEW NEXT OF SET

RELINK POINT IF BACKUP IS NEEDED

OWNER OF SET IF BACKUP IS NEEDED

Figure 6-7 In-Core Owner Block

CHAIN IND denotes MODE IS CHAIN.

PRI OFFSET is the number of words to skip in the line con
taining an occurrence of an owner record belonging to this
set in order to find the prior pointer.

NEXT OFFSET is the offset to the next pointer in that line.

FLag in word 2 has the following format:

Bits
Bit

o - 16
17 = 1

MBZ
Suppress update after FIND or STORE

The DBKEYs in words 3-6 are for those record occurrences
which are indicated.

SET-NAME is the name of the set in SIXBIT.

Words 12-16 are temporary storage words which are used to
hold update and backup information during a FIND or STORE.
Should a FIND or STORE require successive examination of
record occurrences, and one of the later examinations fail,
then these words are used to return the data base to its
former condition.

6-13

6.2.1.7 Member Block - A member block exists for each member

record in every set. Figure 6-8 shows this five word block.

o

1

2

3

4

05 1OWNER OFFSET I PRIOR OFFSETI NEXT OFFSET

///////////1//////////////////1 FLAGS

OWNER O.M SET NEXT O.M SET

OWNER R.M SET NEXT R.M SET

LAST M.C SET NEXT M.C SET

Figure 6-8 In-Core Member Block

The OFFSETs in word 0 refer to pointers in the lines on
which occurrences of this record are located.

The rightmost 13 bits of word 1 are FLAGS which denote
the following:

SORTED

FIRST
NEXT
LAST
PRIOR

Record may be inserted into set
Location mode is VIA this set
DBKEY sort
A/D sort
DUPLICATES flag
o allowed
1 not allowed
2 are first
3 are last
Sort by record-name
Sort entire set on identical keys
ORDER flag
o ALWAYS
1 ALWAYS
2 ALWAYS
3 ALWAYS
4 SORTED
5 SORTED BY DBKEY
6 SORTED WITHIN RECORD
7 DUPLICATES ALLOWED }

10 DUPLICA.TES NOT ALLOWED
11 DUPLICATES FIRST
12 DUPLICATES LAST

SET SELECTION CURRENT
LOCATION OF OWNER
AUTOMATIC
MANUAL
MANDATORY
OPTIONAL

Bit 33 0
1

Bit 34 0
1

Bit 35 0
1

Bit 28 = 0
= 1

Bits 29,32

Bit 23 = 1
Bit 24 = 1
Bit 25 1

= 0
Bits 26,27

The other pointers refer to Figure 6-1.

6-14

6.2.1.8 Data Block - For each data item and data aggregate belonging

to the records defined for the invoked sub-schema, there exists a

data block which describes its location on the lines on which it

appears, its attributes, and MODIFY status. The format for such a

block is given in Figure 6-9.

o

1

2

3

4

5

6

7

8

9

10

07 / IIIIIIIII I FLAGS IIIIIIIIIIII/MODE/FL
WORKING STORAGE DESCRIPTION

RECORD DESCRIPTION

OWNER R.D SET LENGTH OF FIELD

NEXT D.C SET NEXT R.D SET

I--

I--

DATA-NAME
I--

I--

RUNTIME ALT STORAGE SYNC NUMBER

Figure 6-9 In-Core Data Block

The following flag bits are used in word 0:

Bit 14 = 1 Data may be modified
Bit 15 1 Data has been modified
Bit 16 1 Data is also CONTROL field
Bit 34 1 Data is CALC field
Bit 35 1 Data is DIRECT field

MODE refers to the data storage mode:

o Binary-l
1 Binary-2
2 Float-l
3 SIXBIT
4 ASCII
5 DBKEY

(USAGE COMP)
(USAGE COMP) (2 words)
(USAGE COMP-I)
(USAGE DISPLAY-6)
(USAGE DISPLAY-7)

The WORKING STORAGE DESCRIPTION is a core pointer used to
reference the data item, aggregate, or DBKEY.

RECORD DESCRIPTION is a bit offset to the data.

LENGTH OF FIELD is length of data field in octal.

DATA-NAME is the name in SIXBIT.

6-15

RUNTIME ALT STORAGE SYNC# is a count of the number of times
the record occurrence, to which this data ~elongs, was
modified and this data was not.

6.2.2 I/O Buffering Scheme

When an area is successfully opened by a run-unit--regardless

of the USAGE MODE specified--the DBCS allocates three (3) I/O

buffers to be used for I/O access for that area. The size of each

of these three buffers is identical with the page size specified

for the area in its DMCL Area Entry. Thus, the page is the

fundamental unit for I/O operations concerning the data base.

The run-unit cannot alter the number of page buffers ~eld

within the' program. This number is preset in the DBCS, although

it may be changed by altering the run-time package. These buffers

remain allocated for the duration of the run-unit, and cannot be

selectively discarded using CLOSE statements. However, if an

OPEN-CLOSE-OPEN sequence is executed for the same area, the DBCS

will reuse the same buffers.

The DBCS maintains in core a page-buffer table which serves to:

(1) specify the number of buffers currently allocated;

(2) give the core location which is the starting address
for the buffer.

The format for the page-buffer table is found in Figure 6-10.

o

1

2

3

n-2

n-l

n

n = NUMBER OF BUFFERS ALLOCATED

////////////////////// BUFFER LOCATION 1

////////////////////// BUFFER LOCATION 2

////1///////////////// BUFFER LOCATION 3

I I

I I

I I

I I
I I
I I

////1///////////////// BUFFER LOCATION n-2

////1///////////////// BUFFER LOCATION n-l

////1//////////1////// BUFFER LOCATION n

Figure 6-10 Page-Buffer Table

6-16

Bit 0 of words 1 through n is the MUST WRITE flag--i.e., it

designates that a change has been made to the page in this buffer,

and this page must be written to the DBS file. In the area block,

there is a PAGE-BUFFER TABLE POINTER (see Section 6.2.1). This

pointer indicates the location on the page-buffer table which has

the starting address of the current page in core.

The current page when three are in core at the same time is

determined in the following manner. Consider the three buffers

schematically shown in Figure 6-11.

1 2 3 4 5 6

26 02 15 07 03 25

-- 26 02 15 07 03

-- -- 26 -02 15 07

~ ~ ~
Figure 6-11 I/O Buffering Example

The number in a buffer square indicates the page in that buffer

after an I/O operation; the numbers in circles indicate a page which

was returned to the data base during the I/O operation. Six I/O

accesses are shown. After the first one, only Page 26 is in core;

after the second, both Pages 2 and 26 are in core; after the third,

all three buffers have a page in them. Note that core has

been expanded three times in order to accommodate all three

buffers. The current page in core refers to that page in core

on which the current record of area is located. Thus, if the current

of area were on Pa~e 2, Page 2 would be the current page. If the

current of area should change and be located on Page 15, then that

page would then be the current page.

Note, so long as Pages 15, 2, and 26 are in core, no change

has been made to the permanent data base. When the buffer in which

a page resides is needed for another page--or when the area is

closed--only then does any physical alteration of data occur in

the main storage. Which page is returned to the data base when

6-17

buffer space is needed? The one at the bottom of the buffer lot.

This is shown in I/O operations 4, 5, and 6 in Figure 6-11.

Four points should be remembered concerning the I/O buffering

scheme:

(1) Three buffers are allocated for each OPEN area; this
number is fixed.

(2) The buffer size is equal to the page size.

(3) The physical alteration of data in the DBS file do~s

not occur until the page is returned to the disk because
~ither its buffer space is needed for another page or
the area is closed.

(4) Buffers remain allocated for the life of the run-unit.

6.2.3 STORE Algorithms

The algorithm used during a STORE operation depends on the

location mode of the record to be stored.

6.2.3.1 DIRECT - As explained in Section 6.1.4, a database key

(DBKEY) is a combination of the page number and the line number

on which a record occurrence is stored. When a new occurrence is

to be stored, and the record's location mode is DIRECT, one of the

following algorithms is used:

(1) If the run-unit specifies aDBKEY, the DBCS ignores the
record portion of the DBKEY and accesses the page
specified. Once the page is in core, it is checked
for space to store the new occurrence. If the room is
there, a new line is added to the page; if not, the next
page is checked for room, and so on until room is
found for the new line. Should the last page of the
area be reached, then the DBCS folds back to the first
page of the area and continues the search for room.

(2) If no DBKEY is given, the page number of the current
of area is used to begin the above process.

(3) If there is no current of area, the first page of the
area is used as the starting point.

6.2.3.2 CALC - If the location mode is CALC, then all fields

defined as the CALC fields for the record are hashed. The re

sulting number is folded over the pages of the area until this

number can be matched with a page number. The CALC chain on that

page is then searched for the next available line in which to locate

6-18

this record occurrence. Each page has a CALC chain which links

all the CALC records on that page, with ordering in the chain

being according to record type. The first word after the line

header for CALC records contains the pointer to the next CALC

record.

If duplicates are allowed, and positioning is not requested,

then the DBCS will place the record occurrence where it chooses.

If positioning is requested--e.g., LAST--the DBCS will comply.

6.2.3.3 VIA - When the location mode is VIA set-name, the DBCS

attempts to find the logical insert point for the record occurrence

in that set, and will use that as the starting point to find room

for the new line. If this logical point cannot be determined,

the current page of the area is used for the starting point. If

the current page of the area is not known, the first page of the

area is used. VIA can be used to place records where the member

records reside in a different area than the owner record.

6.2.4 FIND Algorithms

Again, these algorithms depend on the location mode of the

record to be found. A FIND DIRECT will always work, regardless

of mode, so long as the DBKEY is given. The DBCS will use the

DBKEY to access the correct page and line directly. FIND CALC

can only be used if the mode is CALC; in which case, the DBCS

calculates, or randomizes, to the appropriate page, and follows

the CALC chain on that page until it finds the desired record

occurrence.

6.3 OVERHEAD

As has been seen in the previous sections, a certain amount

of overhead is required by the DBMS-lO to hold the linking

information, page and line headers, etc., in the main storage

files used for the data base. This section describes how the

overhead can be determined, although rough estimates of overhead

are normally sufficient. The overhead can be defined in terms of

record (line), page, and file overhead. Overhead in run-units is

proportional to the storage overhead for that portion of the data

base known to it and will not be discussed separately.

6-19

6.3.1 Record Overhead

For each record type defined for the data base, the following

can be used to determine the amount of overhead in words;

(1) location mode is CALC 1 word
(2) owner of set types 1 word per set
(3) member of set types 1 word per set
(4) LINKED TO OWNER in set types 1 word per set
(5) LINKED TO PRIOR in set types 1 word per set

Add to the calculation 1 word for the line header, and the

overhead for each occurrence of this record type is found. Consider

the following examples:

EXAMPLE 6.3

The record type INVENTORY-RECORD is a CALC record, is the

owner of 4 sets, participates as a member in 5 sets, is LINKED TO

OWNER in 3 of these, and is LINKED TO PRIOR in 1 of them. using

the above overhead determination, the record overhead would be

calculated as:

1 (for CALC chain)
4 (for owner of 4 sets)
5 (for member of 5 sets)
3 (for OWNER links)
1 (for PRIOR link)

14

Adding the word for the line header gives a total of 15 words of

overhead for each occurrence of this record type.

EXAMPLE 6.4

The record type SUPPLIER-RECORD is a DIRECT record, and owns

only one set. The -line (record) overhead for this record type

would be one word for the line header and one word for being an

owner. Thus each line on which this record type appeared would

have 2 words of overhead.

A stand-alone record--i.e., one with no set linkages--will have

a minimum of one word of overhead if its location mode is DIRECT,

and two words if it is a CALC record.

6-20

There will be times when the Data Base Administrator will

have to decide whether to repeat a certain item of data in more

than one record or to create a set to eliminate the data redundancy.

If the redundant data would take up less than one 36-bit word in

storage, the justification for using a set would be minimal. This

is one of the judgments which Data Base Administrators have to

make every time a data base is organized or r~organized--justification

of set link overhead.

6.3.2 Page Overhead

Page overhead consists of the number of words which compose

the page header. In general, this overhead can be calculated

using the formaula:

Page Overhead = 3 + RND (R + O.S) words

where R is the records-per-page divided by 36. In Example 6.1, the

page overhead would be S words; in Example 6.2, it would be 7 words.

6.3.3 File Overhead

In addition to page and line overhead, every DBS file has a

128 (200 8) word sector at the front of the file used to store

recovery file (see Chapter 8) information. This overhead is

inherent to the system and cannot be altered by the Data Base

Administrator or a user.

6-21

CHAPTER 7

THE SCHEMA DIRECTORY FILE

Unique to every data base is a file created by the DDL processor

and named schema-name.SCH. This file reflects the attributes of the

data base, which was described using the DMCL and the DDLs, in terms

of a data base. In other words, the schema directory file is itself

a data base used to map another data base.

7.1 INTRODUCTION

The schema directory file (hereafter called the SCH file because

of its extension) is physically structured exactly like a DBS file.

It has a l2S (200 S) word recovery sector at the beginning, is divided

into 32 pages of 512 (lOOOS) words each, and each page is further

divided into lines. The page. headers are 7 words long - as if a

records-per-page of 127 had been specified - and the lines are.complete

with line headers and set pointers. Each line on the page contains

an occurrence of a record type - the same as in the DBS files. The

lowest record type code allocated by the DDL processor to a record

type submitted in a DDL entry is 101 (145 S). The reason for this is

that codes 001 through 100 (144 S) are reserved 'by the DDL processor

for assignment to record types in the SCH file. Figure 7-1 shows the

record types, which make up the data base in the SCH file, and the

corresponding set structure. The codes for the record types are

given below in octal.

Table 7-1

Codes for Record Types

RECORD TYPE CODE RECORD TYPE

~~l Schema Block
~~2 Record Block
~~3 Data Block
~~4 Control Block
~~5 Member Block
~~6 Owner Block
~~7 Within Block
~l~ Area Block
~ll Text Block
~12 Sub-Schema Block

7-1

SCHEMA
BLOCK

S.S SET

TEXT
BLOCK

DATA
BLOCK

D.C SET

RECORD
BLOCK

R.M SET

MEMBER
BLOCK

SUB-SCHEMA
BLOCK

WITHIN
BLOCK

R.O SET

OWNER
BLOCK

O.M SET

AREA
BLOCK

M.C SET

CONTROL
BLOCK

Figure 7-1 Schema Directory Representation

7-2

Currently codes 013 8 through 144 8 are reserved for future use by

the DDL processor.

The lines on the pages are divided again into header, pointers,

and data. Data, in the case of the SCH file, is in the form of the

word blocks which specify different attributes of the data base being

described. These word blocks are similar to the word blocks used by

the DBCS for the in-core representation (see Section 6.2.1). In fact,

the in-core blocks are initially written from the blocks in the SCH

file. The next section will describe how the blocks in the SCH file

appear. Section 7.3 will discuss how the DML preprocessor used this

schema directory to write an executable COBOL program.

7.2 WORD BLOCKS IN SCH FILE

Ten word blocks are used in the SCH file. Eight of them are

used by the DBCS to create its in-core representation; the other two

are unique to the SCH file.

7.2.1 Schema Block

The Schema block is the data portion of the schema line in the

SCH file. This one-word block (see Figure 7-2) provides information

on how many sub-schemas have been specified for the schema and how

many bits per record are used in the DBKEYS. This block is used to

write the in-core sub-schema block.

o 1////////1 LAST S-S BIT BITS PER RECORD

Figure 7-2 SCH Schema Block

LAST S-S BIT indicates the last bit used to designate sub-schema
membership. This is checked by the DDL processor when new
sub-schemas are added.

BITS PER RECORD denotes how many rightmost bits in the DBKEY are
allocated for the line number. See Section 6.2 for how this is
calculated.

7-3

7.2.2 Sub-schema Block

As shown in Figure 7-3, the sub-schema block is a block of 7

words which serves to identify a sub-schema. There is one for each

sub-schema in the schema.

o

1

2

3

4

5

6

BIT NUMBER

PRIVACY LOCK

,..-

-
,SUB-SCHEMA NAME

-
10-

Figure 7-3 SCH Sub-schema Block

BIT NUMBER indicates which bit is used in the other blocks to
indicate membership in this sub-schema.

PRIVACY LOCK is the six character privacy lock, stored in
SIXBIT.

SUB-SCHEMA NAME is stored in SIXBIT.

7.2.3 Record Block

The record block is a l3-word block (see Figure 7-4, and ident

ifies a record type according to its

(1) type

(2) name

(3) location

7-4

o
1

2

3

4

5

6

7

8

9

10

11

12

01 I TYPE IDIIIIIIIIIIIIII CALC

TOTAL REC SIZEI DATA OFFSET IIIIIIIIIIIIILOC

f-

~

RECORD-NAME-
-

-
-

WITHIN ID
~

~

SUB-SCHEMA FLAGS

Figure 7-4 SCH Record Block

Each record defined in the data base has a record block in the

SCH file, and this block serves as the basis for the in-core record

block.

TYPE is the record type code (see Section 7.1).

CALC is the number of fields on which this record is CALCed.
D in bit 18 of word 0 is the duplicates allowed flag - when on,
they are permitted.

TOT REC SIZE is the total line size in words for an occurrence
of this record type in the data base.

DATA OFFSET is the number of words in the line used for header
and pointers.

LOC is the same as for the in-core record block (see Section
6.2.1) •

RECORD-NAME is the name of the record in SIXBIT.

WITHIN ID is the AREA-ID (if specified) in SIXBIT (see Section
4.4.1) •

SUB-SCHEMA FLAGS denote for which sub-schema this record type
is defined.

7.2.4 Area Block

Each area defined for the data base has an entry in the SCH

file, and its area block comprises 15 words, (see Figure 7-5). These

blocks are used to create the area blocks in core by the DBCS.

7-5

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

02 FIRST PAGE

IIIIIII LAST PAGE

PAGE SIZE I III I SIP I IIIIIII

FILENAME

EXT I SECTOR OFFSET

l-

I-

AREA-NAME
-

-

RETRIEVAL LOCK

PROTECTED UPDATE LOCK

EXCLUSIVE UPDATE LOCK

SUB-SCHEMA FLAGS

SUB-SCHEMA TEMP FLAGS

Figure 7-5 SCH Area Block

SUB-SCHEMA FLAGS are the same as for the record block.

SUB-SCHEMA TEMP FLAGS denotes for which sub-schema this area is
defined as sub-schema temporary.

For all other notes see "Area Block" in Section 6.2.1.

7.2.5 Within Block

The within block merely provides the link between a record type

and the areas within which it may be located. RECORD TYPE in this

single-word block (see Figure 7-6) is the record type code for the

record type whose WITHIN this is. The in-core within block is

written from this block.

01////////////////////// I RECORD TYPE

Figure 7-6 SCH Within Block

7-6

7.2.6 Owner Block

An owner block is written in the SCH file for each set type

defined for the schema. The block of seven words used to specify

the set is shown in Figure 7-7, and is used as the basis for the

in-core owner block.

o

1

2

3

4

5

6

04 1 CHAIN IND I PRI OFFSETI NEXT OFFSET

f-

"""""
SET-NAME

~

~

SUB-SCHEMA FLAGS

Figure 7-7 SCH Owner Block

Word 0 is the same as for the in-core block (see Section 6.2.1).

SET-NAME is the name of the set in SIXBIT.

The SUB-SCHEMA FLAGS are the same as described for the record
block.

7.2.7 Member Block

Each record that participates as a member of a set has associated

with it a member block that serves to identify it as a member of that

set. The SCH member block is three words long (Figure 7-8) and is used

to form the in-core member block. Words 0 and 1 are the same as for

the in-core block (see Section 6.2.1). TYPE R.M OWNER refers to the

record type code for the record type that is the owner of the set in

which this record is a member.

o

1

2

05 IOWNER OFFSET IPRIOR OFFSET INEXT OFFSET

FLAGS

//////////////////////1 TYPE R.M OWNER

Figure 7-8 SCH Member Block

7-7

7.2.8 Control Block

The control block appears for the same reasons as the in-core

control block - to specify SORT keys or range keys, or to specify

set selection invoking a USING clause. The control line carries the

pointers, and the block itself (see Figure 7-9) only contains the

FLAGS (same as for the in-core block) and the ALIAS NAME (see Section

4.5) in SIXBIT if it is used.

ALIAS NAME [if used]

0 06

1
I-

2
I-

3
-

4
-

5

IFLAGS I /1////////////////////

Figure 7-9 SCH Control Block

7.2.9 Data Block

An occurrence of the line for data is written for each data-item

and data-aggregate defined for the schema. This l7-word block

(Figure 7-10) is used to generate the in-core data block.

Word 0 is identical for both data blocks (see Section 6.2.1),
as are words 2 and 3.

RECORD TYPE in word 4 is the record type code of the record
type of which this data is part.

DATA-NAME is the data-name in SIXBIT.

PICTURE is the picture string for data-items in ASCII. For
data-aggregates this is null.

SUB-SCHEMA FLAGS are the same as for the record block.

7-8

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

07 I111111111I FLAGS I IIIIIIIIIIIIIMODE I FL

11

RECORD DESCRIPTION

1111111111111111111111 LENGTH OF FIELD

111111111111111111111 RECORD TYPE

-
-

DATA-NAME-
I--

-

-
PICTURE

-

I-

-

SUB-SCHEMA FLAGS

Figure 7-10 SCH Data Block

7.2.10 Text Block

The text block is unique to the SCrt file. The text block itself

is written for every data-aggregate specified in the schema descrip

tion. It is 22 words long, with the 21 words after the character

count being used for 105 7-bit ASCII characters to describe the data

7-9

sub-entries below the 02 level (see Section 4.4.2). Figure 7-11

illustrates the format of the text block.

o

1

2

3

4

5

6

7

8

9

10

11

12

20

21

CHARACTER COUNT

TEXT

Figure 7-11 SCH Text Block

7.3 COBOL DML PREPROCESSOR

Until such time that the COBOL DML imperatives are interfaced

with COBOL in the COBOL compiler, it will be necessary to pass pro

grams containing the COBOL DML through the COBOL DML preprocessor in

order to obtain ap executable COBOL program called LAFCOB.CBL. The

workings of the preprocessor are as follows. First, the preprocessor

scans the specified source code for any COBOL DML statements. If none

are found, it aborts the job; if these statements exist, it begins its

task of writing the COBOL program.

Next, the preprocessor checks for an INVOKE statement. When this

is found, the SCH file for the schema specified is opened and the

privacy key FOR COMPILE is compared with the privacy lock for the

7-10

sub-schema invoked. Should an invalid sub-schema-name be given, or a

key/lock match fail, no further processing is done. Otherwise, the

WORKING-STORAGE SECTION of the program is modified to include the

System Communication Locations (SCL), a register called DBMS-NULL

which is used in MACRO arguments, and those records and associated

data-items and data-aggregates that are defined as belonging to the

sub-schema invoked. Figure 7-12 shows an INVOKE statement from a

COBOL DML program, and gives the WORKING-STORAGE SECTION changes

made by the preprocessor from the information read from the Schema

Directory File.

INVOKE Statement

IDENTIFICATION DIVISION.
PROGRAM- 10. STKSPL.

DATA DIVISION.
WORKING-STORAGE SECTION.
* DBMS

INVOKE SUPPL- INVENT OF SCHEMA JTAB01 PRIVACY KEY COMPILE JTCC01.

Resulting Code

IDENTIFICATION DIVISION.
PROGRAM- ID. STKSPL.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREA-NAME, PIC X(30).
77 RECORD-NAME, PIC X(30).
77 ERROR-STATUS, PIC 9(6).
77 ERROR-SET, PIC X(30).
77 ERROR-RECORD, PIC X(30).
77 ERROR-AREA, PIC X(30).
77 ERROR-COUNT, PIC 99, USAGE COMP.
77 DB.MS- NULL PIC 99 USAGE COMP.
Z1 I NVE NT OR Y- REC ORD.

02 PART-NUM PIC XeS) USAGE DISPLAY.
02 PART-DESCRIP PIC X(20) USAGE DISPLAY.
162 QUANTITY- ON-HND PIC 9(6) USAGE DISPLAY.
02 REORDER-AT PIC 9(4) USAGE DISPLAY.
02 QUANTITY-ON-ORD PIC 9(6) USAGE DISPLAY.
02 QUANTITY-TD-SHP PIC 9(6) USAGE DISPLAY.
02 UNIT-COST PIC 9(5) V99 USAGE DISPLAY.
02 UNIT- LIST PIC 9(5) V99 USAGE D ISPLA Y.
02 UNIT-RETAIL PIC 9(5) V99 USAGE DISPLAY.
02 UNIT-QUANTITY PIC 9(4) USAGE DISPLAY.

{) 1 SUPPL IER- REc ORD.
02 SUPPL-CODE PIC X(6) USAGE DISPLAY.
02 SUPPLIER PIC X(15) USAGE DISPLAY.
02 s'UPPL-A1.>DRESS PIC X(20) USAGE DISPLAY.
02 SUPPL-CITY PIC X(10) USAGE DISPLAY.
02 SUPPL-STATE PIC X(2) USAGE DISPLAY.
02 SUPPL- ZIP PIC 9 (5) USAGE 1.> ISPLA Y.
02 SUPPL-PHONE PIC 9(12) USAGE DISPLAY.

Figure 7-12 INVOKE Statement Example

7-11

In addition, a DBMS SECTION is added to the PROCEDURE DIVISION.

This section provides the arguments for a MACRO subroutine, which

will later be loaded with the COBOL program, that binds the system

parameters. This is shown for the same INVOKE statement in Figure

7-13.

PH OCEDURE 0 I VIS ION.
DB MS- SEC TION.

ENTER MACRO SBIND USING "SUPPL- INVENT" ,"JTAB01" ,ERROR-COUNT
ENTER MACR a B I NO US I NG " I NVE NT OR Y- REC ORD"
, PART- NUM
, PART- DESCR IP
, QUA NT I TY- 0N- HNO
, REORDER- AT
, QUA NT ITY- ON- ORD
, QUA NT ITY- To-SHP
, UNIT-COST
, UNIT- LIST
, UNIT-RETAIL
, UNIT- QUANTITY
•
ENTER MACRO BIND USING "SUPPLIER-RECORD"
, SUPPL- CODE
,SUPPLIER
, SUPPL- ADDRESS
, SUPPL- CITY
, SUPPL-STATE
, SUPPL- ZIP
, SUPPL- PHONE

Figure 7-13 DBMS Section Example

The remaining COBOL DML statements are translated into arguments

for the ENTER MACRO verb. The ENTER MACRO verb is used for linkage

to MACRO subroutines which are external to the resultant COBOL pro

gram. These MACRO subroutines are later loaded with the compiled

COBOL program to form a single, unified program. The COBOL DML

preprocessor during this phase does not check if the arguments given

in the COBOL DML code are valid for the sub-schema invoked - this is

done during run-time by the DBCS. However, syntax checking is/done,

as is checking for key words being used as arguments.

Three examples are given below which illustrate the conversion

of COBOL DML statements into MACRO calls.

7-12

EXAMPLE 7.1

FIND LAST STKHLD RECORD OF AREAl AREA.

The preceding code will generate:

ENTER MACRO FIND3 USING "LAST", "STKHLD", "AREAl", "AREA".

EXAMPLE 7.2

MODIFY DVQTR3.

This code will generate:

ENTER MACRO MODIFY USING "DVQTR3".

EXAMPLE 7.3

OPEN ALL USAGE MODE IS EXCLUSIVE UPDATE.

This code will generate:

ENTER MACRO OPEND USING "UPDATE", "EXCLUSIVE", DBMS-NULL,

, "ALL".

7-13

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
J

CHAPTER 8

RECOVERY FILES

Unlike other files, DBMS-IO mass storage files are susceptible to

damage if a terminal, system, or run-unit problem occurs while one of

these files is open for update. DBMS-lO, therefore, provides a

system of .recovery files which are used to maintain a backup to data

in the data base. This chapter describes these files and their use.

8.1 RECOVERY FILE OPERATION

Every file created or used by DBMS-IO - regardless whether it is

a mass storage (DBS) file, a schema directory (SCH) file, or a recov

ery (RCV) file - has a recovery file written for it every time it is

opened for protected update. Basically, the recovery file operates

as follows. When a file is changed by execution of theDML commands,

the page on which the change was made is written into the recovery

file created for that main file. If any problems occur during the

execution of the run-unit, the recovery file may be damaged but the

main file is unaffected. It will be necessary to run the program

again to perform the update a second time, but changes made by

previous run-units are safe in the main file and need not be restored.

Thus, data integrity is assured during update.

When a DBMS-IO file is opened, the DBCS will check for the

filename and file extension of a recovery file in the main file if

the DBCS finds a CURRENT STATUS of RECOV or UPDAT (see Section 8.2).

In the case of the latter, a single reader will have the pages from

the RCV file written into the main file. If there are other readers,

a new RCV file will be written which is a merge of the older RCV

file and any new changes made to the data in the data base. This

new RCV file would then be recovered later. When RECOV is encountered,

and there are no other readers, the main file is updated in place

from the RCV file.

If a DBS file or a SCH file has an ABORT STATUS, the data within

it is questionable and should be refreshed from the latest backup

source. The DBCS will not process an aborted file. The fourth

possibility is that the STATUS is READY, in which case the data in the

main file is in good order and is up to date.

8-1

The size of an RCV file depends on:

(1) the number of pages in the main file;

(2) the number of pages needing recovery.

For every multiple (or fractional multiple) of 128 (200
8

) pages

in the main file, a 128 (200 8) word sector is created in the RCV

file to contain page pointers to the recovery pages. The rest of the

file (except the prefix sector described in the next section) grows

as each new page is added to the file. As each page is added, a

pointer is created for it. The recovery file is closed when the area

is closed. Thus the recovery file size can be smaller than, equal

to, or greater than the size of the file for which it was created.

During a merge of RCV files, the prefix sector of the newer file

supersedes all other prefix sectors. The old recovery pages are made

part of the new RCV file, and new pages are added as 'needed. Any

change made to a recovery page which is already in a RCV file super

sedes the older page.

8.2 PREFIX SECTOR

All DBMS-IO files have a 128 (200 8) 36-bit word sector preceding

all other contents which is known as the prefix sector and is part of

the file overhead. This sector serves to specify:

(1) the current status of the file;

(2) the filename and file extension of the latest
recovery file written for the file;

(3) certain access information.

A schematic of the 7-word recovery block of this prefix (or

recovery) sector is shown in Figure 8-1; a description of the block

follows.

CURRENT STATUS is a 5-character ASCII word which denotes
the present status of the file, and is used by the DBCS to
determine if recovery is needed - or even possible (see Section
8.1). The four conditions are:

READY - no recovery file exists and the data in the file is good.

ABORT - for some reason the file was not closed successfully.

UPDAT - the file was aborted, in the middle of a recovery
procedure to update the main file.

RECOV - a recovery file exists for this file and the data in the
file is processable.

8-2

o

1

2

3

4

5

6

CURRENT STATUS

RECOVERY FILENAME

EXT I /////////11///////////

A~A SEQUENCE #

NEXT AVAILABLE SECTOR

NUMBER OF READERS

FIRST RECOVERY SECTOR

Figure 8-1 Prefix Sector

RECOVERY FILENAME is the filename of the recovery file in
SIXBIT. These filenames are randomly generated internally by
the DBCS as a function of time of day when needed.

EXT is the file extension for the recovery file in SIXBIT.

AREA SEQUENCE # is a binary number, and is the same as the
one used by the DBCS in the in-core area block (see Section
6.1.2). This number is used by the DBCS in order to assign
a reader to the proper version of the data base.

NEXT AVAILABLE SECTOR is the number of the next available
sector in the recovery file in which a page can be begun
(only used in a recovery file prefix sector).

NUMBER OF READERS is the number of run-units currently
accessing the file.

FIRST RECOVERY SECTOR is the number of the first sector in
the recovery file that is used for recovery pages (only
used in a recovery file prefix sector).

Every time a file is opened, for whatever reason, its prefix

sector is updated. Thus, the name of the recovery file for any given

file is always the latest one available.

8-3

APPENDIX A

ERROR MESSAGES

The error messages issued by the DDL processor, the DML pre

processor, and the DBCS are listed in the following sections.

Lower case words are generic terms; the actual name or number is

given when the message is issued.

A.I DDL PROCESSOR MESSAGES

Listed below are the error messages that can be received during

the processing of the DMCL, Schema DDL, and COBOL Sub-Schema DDL

entries by the DDL processor. Those messages that are marked D

are associated with DMCL entries; those marked S with schema entries;

those marked C with sub-schema entries. Those messages marked with

E indicate messages that are output at the end of processing, and

those with A are associated with the processing of all entries. Any

message beginning with the word WARNING is a warning message and does

not affect the processing. All other messages indicate fatal errors,

and processing of the description file cannot be done. Most messages

are accompanied by the phrase

ON LINE # n

where n is the line of the description file on which the error occurs.

If the message

PROGRAM ERROR

should be received, a DDL processor error has occurred, and the

processor has aborted. The Software Specialist should be immediately

notified, as this indicates a processor failure.

S data-name UNDEF IN RECORD

A END-OF-FILE BEFORE END-SCHEMA

S ERROR - AID INVALID WITH DBKEY SORT

S ERROR - AID MUST BE FOR SORTED SET

S ERROR - AREA-ID MISSING

A ERROR - AREA-NAME MISSING

A-I

S ERROR - CANNOT BE BOTH OWNER AND MEMBER OF SET

S ERROR - CANNOT HAVE BOTH DISPLAY 6 AND DISPLAY 7

S ERROR - DATA-NAME HAS CONFLICTING MODES

DS ERROR - DEVICE-MEDIA CONTROL MISSING FOR AREA

S ERROR - DIRECT FIELD MISSING

A ERROR - DUPLICATE AREA-NAME

D ERROR - DUPLICATE CLAUSE

S ERROR - DUPLICATE DATA-NAME

SC ERROR - DUPLICATE PRIVACY LOCK

SC ERROR - DUPLICATE RECORD-NAME

D ERROR - DUPLICATE RECORDS-PER-PAGE FOUND

SC ERROR - DUPLICATE SET-NAME

C ERROR - DUPLICATE SUB-SCHEMA NAME

D ERROR - FILENAME MUST BE UNIQUE

D ERROR - FIRST PAGE MISSING

DS ERROR - INVALID AREA-NAME

S ERROR - INVALID CALC FIELD

S ERROR - INVALID DATA-NAME

D ERROR - INVALID DUPLICATE AREA-NAMES

D ERROR - INVALID FILENAME

C ERROR - INVALID NAME

D ERROR - INVALID NUMERIC VALUE

S ERROR - INVALID OR MISSING-DATA-NAME

D ERROR - INVALID PAGE RANGE

S ERROR - INVALID PICTURE CLAUSE

SC ERROR - INVALID SET-NAME

A ERROR - KEYWORD MISSING

D ERROR - LAST PAGE MISSING

S ERROR LOCATION MODE MISSING

S ERROR - MODE CLAUSE MUST PRECEDE MEMBER

S ERROR - MULTIPLE SCHEMA ENTRIES

A-2

ERROR - OWNER CLAUSE MUST PRECEDE MEMBER CLAUSE

ERROR - OWNER OF SET NOT IN SUB-SCHEMA

ERROR - PAGE SIZE TOO LARGE

ERROR - PAGES C~NNOT OVERLAP

ERROR - RECORD-NAME MISSING

ERROR - SCHEMA NAME MISSING

ERROR - SIZE CANNOT BE ZERO

ERROR - SORT FIELDS DO NOT AGREE

ERROR - TOO MANY FILES

ERROR - TOO MANY SORT FIELDS DEFINED

D ERROR - NUMERIC EXPECTED

S

C

D

D

SC

S

S

S

D

S

C ERROR - TOO MANY SUB-SCHEMAS DEFINED

SC ERROR - UNDEFINED RECORD-NAME

A ERROR - UNEXPECTED END-OF-STATEMENT

S ERROR - VIA SET set-name INVALID FOR RECORD record-name

S ERROR - WITHIN CLAUSE MISSING

S ERRORS FOR SET set-name *********

C INVALID OR MISSING RECORD-NAME

C MISSING OR INVALID PRIVACY LOCK

S MODE CLAUSE MISSING

C NO AREA DEFINED IN SUB-SCHEMA FOR RECORD

S ORDER CLAUSE MISSING

S OWNER CLAUSE MISSING

S SORT FIELD(S} MISSING

S SORT FIELDS DO NOT AGREE IN NUMBER MODE' SIZE

A WARNING - PERIOD MISSING - ASSUMED

A WARNING - UNEXPECTED PERIOD - IGNORED

E ***** n ERRORS FOUND *****

A-3

A.2 DML PREPROCESSOR MESSAGES

The error messages from the DML preprocessor are listed below.

All preprocessor errors are fatal. Except for the two messages

indicated by *, the error messages are followed by

ON LINE # n

where n is the line on which the error occurs.

ERROR - INVALID AREA-NAME

ERROR - INVALID DATA-NAME

ERROR - INVALID· RECORD-NAME

ERROR - INVALID SET-NAME

ERROR - KEYWORD EXPECTED

ERROR - UNEXPECTED END-OF-STATEMENT

* FATAL ERROR - NO PROCEDURE DIVISION FOUND

,INVALID INVOKE STATEMENT

* NO DBMS STATEMENTS FOUND

A.3 DBCS MESSAGES

The error messages from the object-time system, DBCS, are listed

below. All of these messages are fatal and denote serious failures

of DBMS-IO. The Data Base Administrator should determine the cause

for this failure, as the correction needed may be as simple as

adding more storage space for the data base. If the Data Base

Administrator cannot correct the situation which caused the error,

it should be reported immediately to the Software Specialist.

ALLOCR PAGE FAILURE

BLKERR IN GETBLK

CANNOT OPEN SCHEMA DEFINITION FILE

DYNAMIC STORAGE EXHAUSTED

FATAL ERROR IN DIRECTORY I/O

FATAL SET MUST WRITE ERROR

PAGE REQUESTED IS NOT PAGE READ

RECOVERY PAGE I-O ERROR

A-4

APPENDIX B

ERROR STATUS CONDITION CODES

The Error Status Condition codes which are made available in

the special register ERROR-STATUS are actually the combination of a

major code--designating which imperative was attempted--and a minor

code--denoting the condition which caused the failure of execution.

Thus, the contents of ERROR-STATUS would read as MMrnrn, where MM is

the major code and mm is the minor code.

The following table is a summary of the DML commands and their

associated major codes.

Table B-1

Major Error Codes

DML COMMAND MAJOR CODE

CLOSE 01
DELETE 02
FIND 03
GET 05
INSERT 07
MODIFY 08
OPEN 09
REMOVE 11
STORE 12

The minor codes representing the existing Error Status

Condition appear in this second 'table.

Table B-2

Minor Error Codes

CONDITION MINOR CODE

Area not open 01

Database key inconsistent with area-name 02

Violation of DUPLICATES NOT ALLOWED clause 05

Current of set, area, or record-name not known 06

End of set, area, or record 07

B-1

Table B-2 (Cont.)

CONDITION MINOR CODE

Referenced area, record, or set-name not in
sub-schema 08

Incorrect usage mode for area 09

Privacy breach attempted 10

Physical space not available 11
'-

Database key not available 12

No current record of run-unit 13

Object record is mandatory automatic in named set 14

Object record is mandatory in named set 15

Record already a member of named set 16

Current record of run-unit not of record-name 20

Record not currently member of named or implied set 22

No set occurrence satisfies argument values 25

No record satisfies rse specified 26

Area already opened 28

Unqualified DELETE attempted on non-empty set 30

Removed record involved 50

Deleted record involved 51

Function requested not permitted 78

Access requested conflicts with existing access 87

No channels available 88

Area in abort status 89

Usage mode conflict 99

B-2

APPENDIX C

DBMS-IO PROCESSES

This appendix gives a brief outline of the processes involved

in using the DBMS-IO.

C.I DATA DEFINITION PROCESS

To create a data base, the following steps should be taken:

(1) Draw a schematic of the data structure to be built,
deciding which record types are to be owner records,
which are to be member records, which should stand
alone, what location mode should be used for a given
record, what data relationships are to be maintained,
etc. Also decide which record types should be located
in different areas~

- (2) Using the Schema DDL, write the schema description of
each area, record type, and set type (see Chapter 4) •

(3) Decide in what files the areas are to be stored.
Define the records-per-page for the schema and es
tablish the page size and page range for each area.
Suppose a data base is to be designed which will
hold data on a company's inventory and its customers.
Primary concern would center around inventory informa
tion and sales information. Then set up an area to
hold the data essentially belonging to the former,
and one for the data inherent to the latter.

(4) Define as many sub-schemas as might be necessary.

(5) Complete the description of the data base and save it
as a permanent file having either no extension or the
extension .DDL. This file will be passed through the
DDL processor which will create the schema file.

An example of a data base description file is given in Appendix

E. Figure C-I illustrates the Data Definition Process.

To run the DDL processor, the following sequence is observed:

.R DDL

INPUT DDL FILENAME
*?

C-l

at which point the name of the file containing the data base des

cription is typed followed by a carriage return. If any errors are

encountered during processing (see Appendix A), the DDL processor

will not create the SCH or the DBS files. Fix the errors and

reprocess.

DMCL
STATEMENTS

SCHEMA DDL
STATEMENTS

SUB-SCHEMA DDL
STATEMENTS

DDL
PROCESSOR'

Figure C-l Data Definition Process

C.2 PROGRAM BUILDING PROCESS

To create an executable COBOL program using the COBOL DML

commands, the following steps should be taken:

(1) Create a new program or use an existing one.

(2) Run the preprocessor.

(3) Compile the resultant COBOL program.

(4) Load the relocatable object code with the LIBOL and
DBCS object-time systems.

(5) Optionally save the object code.

(6) Execute the run unit.

C-2

Figure C-2 shows this process schematically.

COBOL, DML \ SCHEMA
AND INVOKE ... DML JSUB-SCHE~... PREPROCESSOR ~

STATEMENTS j AREAS J

•COBOL SOURCE
PROGRAM WITH
MACRO CALLS

•COBOL
COMPILER

•\ \
~~LOCATABLE)

BJECT CODE
)

•LIBOL AND DBCS LOADER EXECUTABLE
ROUTINES RUN-UNIT

Figure C-2 Program Building Process

The following examples show how this is done at the terminal.

EXAMPLE C.I

Running an old COBOL DML program:

.. RUN DSK: OLDFIL

EXAMPLE C.2

Creating a new program:

.R DDL

INPUT DDL FILENAME

*NEWFILE

.COMPILE LAFCOB.CBL

~LOAD LAFCOB, SYS:DBCS.REL

.EXECUTE LAFCOB

C-3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

APPENDIX D

RESERVED WORDS

In addition to the standard COBOL reserved words, the following

words are reserved in DBMS-10, along with their abbreviations enclosed

in parentheses.

-A- -E-

ACTUAL ENCODING
ALIAS EXCLUSIVE (EXCL)
ALL
ALLOWED
ALTER -F-
ALWAYS
ARE FIND
AREA FIRST
AREA-CODE FIXED
AREA-ID FLOAT
ASCENDING FOR
AUTOMATIC (AUTO)

-G-
-B-

GET
BINARY (BIN)
BIT
BY -I-

IF
-C- IN

INDEX
CALC INDEXED
CALL INSERT
CHAIN IS
CHARACTER (CHAR)
CHECK
CLOSE -K-
COMPLEX
CURRENT KEY

-D- -L-

DATABASE-KEY (DBKEY) LAST
DECIMAL (DEC) LINKED
DECODING LOCATION (LOC)
DELETE LOCK
DESCENDING (DESC) LOCKS
DIRECT
DISPLAY
DUPLICATES (DUP)
DYNAMIC

D-l

-M-

MANDATORY
MANUAL
MEMBER
MEMBERS
MODE
MODIFY

-N-

NON-EXCLUSIVE (NEXCL)
NOT

-0-

OCCURRENCE
OCCURS
OF
ON
ONLY
OPEN
OPTIONAL (OPT)
OR
ORDER
OWNER

-P-

PICTURE (PIC)
POINTER-ARRAY (PTR)
PRIOR
PRIVACY
PROCEDURE (PROC)
PROTECTED (PROT)

-R-

RANGE
REAL
RECORD
RECORD-NAME
REMOVE
RESULT
RETRIEVAL (RETR)

-S-

SCHEMA
SEARCH
SELECTION
SELECTIVE
SET
SORTED
SOURCE
STORE
SYSTEM

-T-

TEMPORARY (TEMP)
THRU
TIMES
TO

-U-

UPDATE
USAGE
USE
USING

-V-

VALUE
VIA
VIRTUAL

-W-

WITHIN

D-2

APPENDIX E

A SCHEMA/SUB-SCHEMA EXAMPLE

Consider a research company which is organized into departments.

Some of these departments are actively engaged in research; others

are support departments--e.g., accounting, payroll, legal, etc.

Each research department is broken up into research project groups,

although there are some special projects which overlap departments.

The research projects are supported by contracts and grants which

come from external sources--some projects receiving .funds from more

than one contract or grant. The employees of the company are

grouped according to department, project, and personnel classifica

tion. Research personnel--other than project leaders--work only at

one project at a time. There are, though, some project leaders who

administer more than one project. The example at hand, then, is to

create a data base which contains data and data relationships which

describe this activity.

The schema needed to describe the company's organization,

personnel, and associated research projects is quite simple, but is

illustrative as an example. A step-by-step approach in its

creation follows.

(1) Sub-divide the data into areas. Two areas might be used
for this example--one which encompasses data on the
corporate organization, personnel, and employee classifi
cations (call it PERSONNEL-AREA), and another which
handles data on the research projects, research contracts,
and contract sources (call it RESEARCH-AREA).

(2) Assign these areas to disk files. Just call the files
FILEOI and FILE02, respectively, and set the page size
at 127 words. Let the records-per-page be 63. How many
pages should be allotted to an area? The actual number
would depend on the size of the company. For the sake
of the example, let PERSONNEL-AREA have 100 pages,
and RESEARCH-AREA have 60 pages.

(3) Define record types and associated data-items and data
aggregates. The record types chosen for this example
reflect the aforementioned attributes of the company.
They are

DEPARTMENT-RECORD
EMPLOYEE-RECORD
CLASSIFICATION-RECORD
PROJECT-RECORD
CONTRACT-RECORD
SOURCE-RECORD

E-l

The data-items shown as part of the schema description
in Figure E-2 are self-explanatory.

(4) Define set relationships and set types. Eight sets have
been defined for this example, and are illustrated in
Figure E-I. Note that two of these sets involve situations
where owners and members have been reversed to form new
sets. In the one case this is necessitated by the fact
that some projects cross department lines; in the other,
because some employees can be project leader of more than
one project •

. SOURCE
RECORD DEPARTMENT

RECORD

CLASSIFICATION
RECORD

PROJECT
RECORD

CONTRACT
RECORD

EMPLOYEE
RECORD

Figure E-I Examples of Set Relationships

Sub-schema designation is also possible. Three are
provided in the example, and they are self-explanatory.

In no way does this example exhaust all the possible ways
to establish data bases and describe them. It does,
though, illustrate many of the major points discussed in
those chapters concerning the DMCL and the DDLs. Note
that no comments are permitted in a DDL file; files
containing comments would be aborted.

E-2

RECORDS-PER-PAGE 63.
ASSIGN PERSONNEL-AREA TO FILE01
FI RST PAGE IS 1
LAST PAGE IS 100
PAGE SIZE IS 127 WORDS.

ASSIGN RESEARCH-AREA TO FILE02
FIRST PAGE IS 300
LAST PAGE IS 359
PAGE SIZE IS 127 WORDS.

SCHEMA NA ME IS SCHEX.

AREA NAME IS PERSONNEL-AREA
PRIVACY EXCLUSIVE UPDATE IS PREXUP
PRIVACY PROTECTED UPDATE IS PRPTUP
PRIVACY RETRIEVAL IS PRRTLK.

AR EA NA ME IS RESEAR CH- AREA
PRIVACY LOCK RSCHLK.

RECORD NAME IS DEPARTMENT-RECORD
LOCATION MODE IS DIRECT DPTKEY
WITHIN PERSONNEL-AREA.

02 DEPARTMENT PIC X(20).

RECORD NAME IS EMPLOYEE-RECORD
LOCATION MODE VIA CLASS-SET
WITHIN PERSONNEL-AREA.

02
'32
02
02
02
02
02
02

EMPLOYEE
HOME- ADDRESS
HOME- PHO NE
SS- NUMBER
MARITAL-STATUS
HIRED
DEPENDENTS
BASE- SALARY

PIC X(25).
PIC X(40).
PIC9(HD.
PIC 9(9).
PIC X.
PIC 9(8).
PI C 99.
PIC 9(5) V99.

RECORD NAME IS CLASSIFICATION-RECORD
LOCATION MODE IS CALC USING CLASSIFICATION
DUPLICATES ARE NOT ALLOWED
WITHIN PERSONNEL-AREA.

02 CLASSIFICATION PIC X(15).
~2 LEVEL PIC 99.

Figure E-2 Schema/Sub-schema Examples

E-3

RECORD NAME IS PROJECT-RECORD
LOCATION MODE CALC USING PROJECT-ID
DUPLICATES ARE NOT ALLOWED
WITHIN RESEARCH-AREA.

02 PRO JECT- I D PIC 99 V3 999 •
02 PROJECT-TITLE PIC X(30).

RECORD NAME IS CONTRACT-RECORD
LOCATION MODE VIA FUNDS-SET
INI TH IN RES EARCH- AR EA.

~2 CONTRACT- NUMBER PIC 9(7).
02 CONTRACT-DATE PIC 9(10).
02 COMPLETION-DATE PIC 9(10).
02 I NIT IAL- AM 0UNT PIC 9(7) ~ 9•
02 BALANCE PIC 9(7) ~9.

RECORD NAME IS SOURCE-RECORD
LOCATION DIRECT SRCKEY
WITHIN RESEARCH-AREA.

02 SOURCE- NAME PIC X(25) •
02 SOURCE-ADDRESS PIC X(40).
02 SOURCE-PHONE PIC 9(10).
02 SOURCE-CONTACT PIC X(25).
02 SOURCE-TITLE PIC X(lliD.

SET NAME IS DEPT- SET
MODE IS CHAIN LINKED TO PRIOR
ODER IS SORTED DUPLICATES NOT ALLOWED
OWNER IS DEPARTMENT-RECORD
MEMBER IS EMPLOYEE-RECORD OPTIONAL M\NUAL LINKED TO OWt-JER

ASCENDING KEY IS SS-NUMBER.
SELECTON CURRENT.

SET NAME IS CLASS-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED
OWNER IS CLASSIFICATION-RECORD
MEMBER IS EMPLOYEE-RECORD OPTIONAL MANUAL LINKED TO OWNER

ASCENDING KEY IS BASE-SALARY
SELECTION CURRENT.

SET NAME IS PROJECT-SET
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS LAST
OWNER IS PROJECT-RECORD
MEMBER IS EMPLOYEE-RECORD OPTIONAL ;'t'1ANUAL LINKED TO O\·JNER
SET SELECTION IS CURRENT.

Figure E-2 (cant) Schema/Sub-schema Example

E-4

SET NAME IS PROJLDR-SET
MODE IS CHAIN LINKED TO PRIDR
ORDER IS ALWAYS NEXT
OWNER IS EMPLOYEE-RECORD
MEMBER IS PROJECT-RECORD OPTIONAL MANUAL LINKED TO OWNER
SET SELECTION CURRENT.

SET NAME IS DEPT-PROJ-SET _
MODE IS CHAIN LINKED TO PRIOR
ORDER IS SORTED
OWNER IS DEPARTMENT-RECORD
MEMBER IS PROJECT-RECORD MAND AUTO LINKED TO OWNER

ASCENDING KEY IS PROJECT-ID
SELECTION CURRENT.

SET NAME IS SPECIAL-PROJ-SET
MODE IS CHAIN LINKED TO PRIOR
OR DER IS SORTED
OWNER IS PROJECT-RECORD
MEMBER IS DEPARTMENT-RECORD OPTIONAL MANUAL LINKED TO OWNER
SET SELECTION IS CURRENT.

SET NA ME IS FU NDS- SE T
MODE IS CHAIN LINKED TO PRIOR
ORDER IS ALWAYS LAST
OWN~R IS PROJECT-RECORD
MEMBER IS CONTR.4CT-RECORD i'14ND AUTO LINKED TO OWNER
SELECTION IS CURRENT.

SET ~J.AME IS SOURCE- SET
MODE IS CHAIN LINKED TO ?RIOR
ORDER IS ALWAYS LAST
OWNER IS SOURCE-RECORD
MEMBER IS CONTRACT-RECORD MAND AUTO LINKED TO OWNER
SELEC TION CU RRENT.

SUB-SCHEMA NAME IS FUNDING
PRIVACY LOCK IS DNUF.

AREA SECTION.
COpy RESEARCH-AREA.

SECTION.
SOURCE-RECORD.
CONTRACT-RECORD.
PROJECT-RECORD.

SECTION.
COPY SOURCE- SET, FUNDS- SET.

RECORD
01
01
~1

SET

Figure E-2 (cent) Schema/Sub-schema Example

E-5

SUB-SCHEMA IS DEPT-PROJ
PRIVACY LOCK IS DEPROJ.

AREA SECTION.
COpy TEMPORARY PERSONNEL-AREA, RESEARCH-AREA.

RECORD- SEC TI ON.
01 DEPARTMENT-RECORD.
01 PROJECT-RECORD'
01 CONTRACT-RECORD.
SET SECTION.

COpy DEPT-PROJ-SET, SPECIAL-PROJ-SET, FUNDS-SET.

SUB-SCHEMA NAME TOTAL PRIVACY ETHING.
AREA SECTION.

COpy ALL AREAS.
RECORD SEC TI ON.
01 DEPARTMENT-RECORD.
01 EMPLOYEE-RECORD.
01 CLA SSIr I CAT I 0N- RECOR D•
01 PROJECT-RECORD.
01 CONTRACT-RECORD.
01 SOURCE-RECORD.
SET SECTION.

COpy ALL SETS.

END- SCHEMA.

Figure E-2 (cant) Schema/Sub-schema Example

E-6

Aceess,
Data, 6-6

Aceess1no a record, 1-13
Ac:eelllnQ data 1n a data

base, 1-5
Allocating storage space,

1-2, 3-1
Area, 1-3

Temporary, 4.2
Area block, 6-10, 7.S
AREA Clause, 4-2
Area entry, 3-1, 4-1, 4--2
Area entry,

OMC~, 3-3
AREA SECTION Clause, 5-2
Areal,

Assioning, 3-1
Seleetlnq, 3-1

ASCE~DJNG/DESCENDINGKEY
Claule, 4-6

ASSIGN Clause, 3-3
Ass1qning areas, 3-1
Assigning database key, 1.6
AUTOMATIC Set memberShip,

1-19

BlOCk,
Area, 6-10, 7-5
Control, 6-12, 7-8
Data, 6-15, 7-8
Member, 6--14, 7-7
Owner, 6-12, 7-7
Reeord, 6-9, 7-4
SCH File Word, 7-3
Schema, 7-3
SUb-schema, 6-8, 7-4
Telt, 7-9
W.ithin, 6-12, 7-6

CALC Loeat1on mode, 1-12,
4-3

Storing by, 6-18
CHAIN Set mode, 1-20
Characteristies of sets,

1-16
Clause,

AREA, 4-2
ARF.A SECTION, 5-2
ASCENDING/DESCENDING KEY,

4-6
ASSIGN, 3.3
DUPLICATES, 4-3, 4-6
FIRST PAGE, 3-3
LAST PAGE, 3-3
LINKED TO OWNE~, 4-6
LOCATION MODE, 4-3
MEr~BER, 4-6
MODE, 4-6
OROE~, 4-6

INDEX

OWNER, 4-6
PAGE SIZE, 3-3
PRIVACY LOCK, 4-2
RECORD, 4-3
RECORD SECTION, 5--2
RECORDS-PER-PAGE, 3.3
SCHEMA, 4-1
SET, 4-6
SET SECTION, 5-3
SET SELECTION, 4-7
SUa-SCHEMA, S-l
WITHIN, 4-3

Codes,
Error status condition,

B-1
Major error, a-1
Minor error, B-1

Control block, 6--12, 7-8
Currency statuI indicators,

1.7

Data access, 6-6
Data agqreqate, 1-3
Data availability,

Establishing, 2-1
Data base, 1-1

AceesslnQ data 1n a, 1-5
Deseribinq a, 1-3, 4-1
nescribing portions of a,

.1-3
Documenting tne,2-6
OrQanizinq the, 2-2
ProtectinQ the, 2.4
~ubdivldinq a, 1-4

Data base access, 2~4

Data base administrator,
1-1

Data base administrator,
Responsibility of, 2-1

Data Base Control System,
1-5

Data base directory, 2-7
Data base 1nteqritv, 2-5
Data base man1pulation, 2-4
Data base map,

In.core, 6-6
Data base representation,

In·core, 6·8
Data base test1ng, 2-9
Data base use,

Procedures for, 2.7
Data blOCk, 6-15, 7.8
Data d~f1nit~on ~roeess,

C-1
Data description language,

Schema, 4-1
SUb-schema, 5-1

Data in a data base,
Accessing, 1-5

INDEX-l

Data integrity, 1-11
Data item, 1-3
Data manipulatIon language,

1-5
Data organization, 6-1
Data privacy, 1-10
Data protection, 1... 10
Data structures, 1.16
Data sUb-entry, 4-5
Database Key, 1-6

AsslQnlng, 1"6
Formlnc; a, 6-6
Permanence of, 1-6

DBCS, 1-5
OBCS Messages, A-4
DBMS Performance

measurement, 2.e
DBMS section, 7"'12
DBMS Usage measurement, 2-8
DBMS-l0 features, 1-1
DBMS-l0 lanquaqe, 1-2
DBMS-l0 object-time modUle,

1-5
DBMS-10 operational

architecture, 1-5
DBMS-10 processes, C-l
DBS File, 6-1
DBS File Identification,

6-2
DOL,

Schema, 1-3, 4-1
Sub-schema, 1-3, 5.1

DOL Processor Messages, A-I
Describing a data base, 1-3,

4-1
Describing portions Of a

data base, 1-3
DeVice independence, 1-9
DeVice media control

lanquage, 1-2, 3-1
DIRECT Location mode, 1-12,

4.3
Storln~ by, 6-18

OMCL, 1-2, 3-1
DMCL Area entry, 3-3
DMCL Record entry, 3-3
DML, 1--5
DML preprocessor, 7.10
DML Preprocessor MeSSages,

A-4
Doeumentin9 the data hase,

2-6
DUPLICATES Clause, 4-3, 4-6

Error codes,
Hajor, B-1
Minor, B--l

Error. messages, A~l

Error status condition
codes, a-l

Error status indicator.,
1-'

Estab11shino ~ata
availability, 2-1

Example,
Schema/sub-schema, E-l

Exclusive update, 1-11

F1le,
DBS, 6-1
RCV, e-1
Recovery, B",l
seH, 7-1
Schema direetory, '-1

File overhead, 6-21
FIND algorithms, 6-19
FIRST PAGE Clause, 3-3
Format,

Line, 6~5

Paqe header, 6-3
Forming a database Key, 6.6

Header,
Page, 6-2

Host language, 1-2

1/0 buffering schema, 6-16
Identification,

DBS File, 6-2
Line, 6.5
Page, 6.2
SUb-schema, 5-1

In·core data base maP, 6-6
In-core data base

representatIon, 6-8
In-core Dage/buffer table,

61:116
Integrity,

Data base, 2-5
Integrity of data, 1-11
TNVOKE statement, '-11

Language,
Data man1pulatlo~, 1.5
Pevice media contrOl, 1-2,

3"'1
Schema data descriPtion,

1.. 3, 4-1
SUD. schema data

description, 1-3, 5-1
Language rp.lationshiPs, 1-5
LAST PAGE Clause, 3-3
Line, 3-2, 6-1
Line format, ~.5

Line identification, 6.5
LINKED TO OWNER Clause, 4-6
Location mode, 1-12

CAIJC, 1.12, 4- 3
DI~ECT, 1-12, 4.3
5tor1nQ by CALC, 6-18

INDEX-2

Storin9 by DIRECT, 6~18

Stor1n~ by VIA, 6-19
VIA, 1"12, 4-3

LOCATION MODE Clause, 4-3

Malntalninq set
relatlonshl~s, lM22

Major concepts, 1-1
Major error codes, B-1
MANDATORY Set membership,

1-19
MANUAL Set membership, 1-19
Map,

In-core data base, 6-6
Member bloCK, 6-14, 7.7
MEMBER Clause, 4-6
Messages,

DBCS, A-4
DOL· Processor, A-l
DML Pre~rocessor, A.4

Minor error codes, a-l
MODE Clause, 4-6

Network structures, 1-16
NEXT PoInters, 1-21

OPTIONAL Set me~bersh1p,

1-20
ORDER Clause, 4-6
Orderlnq of set~, 1-17
Organizing the data base,

2-2
Overhead~

File, 6-21
Paqe, 6-21
Record, 6-20

Owner block, 6-12, 7-7
OWNER Clause, 4-6
OWN e: R Pol nt er s, t - 22

Page, 3·2, 6-1
Paqe header, 6-2
Page header format, 6-3
Paqe identification, 6-2
Page overhead, 6-21
Paqe size, 3-2
PAGE SIZE Clause, 3~3

Page""ln, 3-2
Page-out, 3-2
Page/buffer size, 3-3
Page/buffer table,

In-core, 6-16
Performance measurement,

DBMS, 2-8
Permanence of database key,

1-6
Placement control, 1·9
J?ointers, 1",20

NEXT, 1""21
OWNER, 1.. 22

PRIOR, 1-22
Prefix sector, 8-2
preprocessor,

DML, 7.10
PRIOR Pointers, 1-22
Privacy key, 1-10, 2-7
Privacy lOCK, 1-10, 2-7
PRIVACY LOCK Clause, 4.2
Privacy of data, 1~10

Prncedures,
Recovery, 2-9
Restart, 2-9
Save, 2-9

Procedures tor data base
use, 211117

Program buIldIng process,
C·2

Protected update, 1~11

Protecting the data base,
2-4

Protection of data, 1-10

ReV P'ile, e-l
Record, 1-3

AccessinQ a, 1-13
Record bloCk, 6-9, 7-4
RECORD Clause, 4-3
Record entry, 3-1, 4"'1, 4-3
Record entry,

DMCL, 3-3
Re~ord identifier, 1-6
Record occurrence, 1-3,

1-12
Record overhead, 6-20
RECORD SECTION Clause, 5-2
Record selection

expressions, 1-14
Record SUb-entry, 4~3

Record ty"e, 1 "'3
RECORDS.PER-PAGE Clause,

3-3
Recovery tile, e-1
Recovery file operation,

, R-1
Recovery procedures, 2-9
Representation,

Schema directory, 7-2
Reserved words, 0-1
Responsib1lity of data base

administrator, 2-1
Restart procedures, 2-9
Run-unit, 1·7

Save procedures, 2.9
Save/recovery/restart, 2-5
SCt: File, 7.'
SCH File W~rd BloCk, '.3
Schema, '-4
Schem.a bloCK, '-3
SCHEMA Clause, 4-1

INDEX-3

Schema data description
lanQuage, 1-3, 4-1

Schema DOL, 1-3, 4~1

Schema directory file, 7-1
Schema directory

representation, 7-2
Schema entry, 4-1
Schema/sub-schema

differences, 1-e
Schema/sub-schema exam~le,

E-l
Selectinq areaS, 3-1
Sequential structures, 1-16
Set, 1.3, 1.16
Set Characteristics, 1-16
SET Clause, 4-6
Set entry, 4-1, 4-6
Set membership, 1-19

'AUTOMATIC, 1-19
MANDATORY, 1-19
MANUAL, 1-19
OPTIONAL, 1-20

Set mode, 1-20
CHAIN, 1"20

Set occurrence, 1-3
Set occurrence selection,

1-13
Set orderinq, 1"'17
Set relationShips,

MaintalnlnQ, 1-22
SET SECTION Clause, 5.3
SET SELECTION Clause, 4.'
Set type, 1-3
Standards, 2.7
statement,

INVOKE, '-11
StopplnQ violation of rUles,

2-6
Storaoe space,

Allocating, 1·2, 3-1
STORE algorithms, 6-18
Storlna by CALC Location

mode, 6-18
Storina by DIRECT Location

mode, 6-18
Storlna by VIA Location

mode, 6-'19

Strueturel,
Data, 1-16
Networ~, 1-16
Sequential, 1-16
Tree, 1-16

Sub-schema, 1-4
Sub-schema blOCk, 6-8, 7-4
Sua-SCHEMA Clause, 5-1
Sub-schema data descriPtion

lanquaQe, 1-3, 5.. 1
Sub-schema DOL, 1-3, 5-1
Sub-schema identification,

5-1
Subdividing a data base,

1",4
System com~unicat1on

locations, 1-7

Temporary area, 4-2
Test blOCk, '-9
Testlna,

Data base, 2-9
TralninQ techniques, 2-9
Tree structures, 1.16

Understand1nQ user
requirements, 2-1

Uni~ue record identifier,
1-6

Update,
Exclusive, 1-11
Protected, 1-11

Usage measurement,
DBMS, 'i.-e

Usage-mode, ~ .. 2
User identification, 2~'

User requirements,
Understanding, 2-1

User working area, 1-6
UWA, 1"6

VIA Location mode, 1-12,
4~]

Storlnq by, 6-19
Vlnlfttlon of rUles,

Stopping, 2-6

Within bloCk, 6-12, 7.. 6
WITHIN Clause, 4-3

INDEX-4

DECsystem-lO
Data Base Management System (DBMS-lO)

Data Base Administrator's Procedures Manual
DEC-lO-AAPMA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFO~mTION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date _

Organization _

Street _

City State Zip Code _
or

Country

If you do not require a written reply, please check here. 0

.--Fold lIere--

.-- Do Not Tear - Fold lIere and Staple ---

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

j

j
j
j
j
I

{
j
I
I

j
j

{
j
j
j
j
j
I

J

I
J
I
j
{
l
J
j
J
j

{
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
J

DIGITAL EQUIPMENT CORPORATION, Maynard, Massachusetts, Telephone: (617) 897-5111 • ARIZONA, Phoenix • CALIFORNIA,
Sunnyvale, Santa Ana, Los Angeles, Oakland, San Diego and San Francisco (Mountain View) • COLORADO, Denver. CONNECTICUT,
Meriden • DISTRICT OF COLUMBIA, Washington (Riverdale, Md.) • FLORIDA, Orlando • GEORGIA, Atlanta • ILLINOIS, Chicago
• INDIANA, Indianapolis • LOUISIANA, New Orleans • MASSACHUSETTS, Cambridge and Waltham • MICHIGAN, Ann Arbor and
Detroit (Southfield) • MINNESOTA, Minneapolis • MISSOURI, St. Louis • NEW JERSEY, Englewood, Metuchen, Parsippany
and Princeton • NEW MEXICO, Albuquerque • NEW YORK, centereach (L1.), Manhattan, Syracuse and Rochester • NORTH
CAROLINA, Durham/Chapel Hill • OHIO, Cleveland and Dayton • OKLAHOMA, Tulsa • OREGON, Portland • PENNSYLVANIA,
Philadelphia and Pittsburgh • TENNESSEE, Knoxville • TEXAS, Dallas and Houston • UTAH, Salt Lake City • WASHINGTON,
Seattle • WISCONSIN, Milwaukee • ARGENTINA, Buenos Aires • AUSTRALIA, Adelaide, Brisbane, Melbourne, Perth and Sydney
• AUSTRIA, Vienna • BELGIUM, Brussels • BRAZIL, Rio de Janeiro, Sao Paulo and Porto Alegre • CANADA, Calgary, Alberta;
Vancouver, British Columbia; Ottawa and Toronto, Ontario; and Montreal, Quebec • CHILE, Santiago • DENMARK, Copenhagen
• FINLAND, Helsinki. FRANCE, Grenoble and Paris. GERMANY, CoI~gne, Hannover, Frankfurt, Munich and Stuttgart. INDIA, Bombay.
ITALY, Milan • JAPAN, Tokyo • MEXICO, Mexico City • NETHERLANDS, The Hague • NEW ZEALAND, Auckland • NORWAY, Oslo •
PHILIPPINES, Manila • PUERTO RICO, Miramar • SPAIN, Barcelona and Madrid • SWEDEN, Stockholm • SWITZERLAND,
Geneva and Zurich • UNITED KINGDOM, Birmingham, Edinburgh, London, Manchester and Reading • VENEZUELA, Caracas

	Contents
	Foreword
	Chapter 1 Major Concepts
	Chapter 2 Responsibility of the Data Base Administrator
	Chapter 3 The Device Media Control Language (DMCL)
	Chapter 4 The Schema Data Description Language (DDL)
	Chapter 5 The COBOL Sub-Schema Data Description Language (DDL)
	Chapter 6 Data Organization and Access
	Chapter 7 The Schema Directory File
	Chapter 8 Recovery Files
	Appendix A Error Messages
	Appendix B Error Status Condition Codes
	Appendix C DBMS-10 Processes
	Appendix D Reserved Words
	Appendix E A Schema/Sub-Schema Example
	Index

