-337-

DEC-10-MRRC-D

MONITOR CALLS

This manual reflects the software as of the 5.06 release of the monitor.

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

MONITOR CALLS

-338-

The rnaterial in this manual is for informational purposes
and is subject to change without notice.

Copyright © 1971, 1972, 1973 by Digital Equipment Corporation

Actual distribution of the software described in this
specification will be subject to terms and conditions to be
announced at some future dete by Digital Equipment
Corporation.

DEC assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DEC.

The software described in this manual is furnished to
purchaser under a license for use on a single computer system
and can be copied (with inclusion of DEC’s copyright notice)
only for use in such system, except as may otherwise be
provided in writing by DEC.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL . COMPUTER LAB

1st Printing June 1971

2nd Printing (Rev) January 1972
3rd Printing (Rev) June 1972
4th Printing (Rev) March 1973

-339- MONITOR CALLS

CONTENTS

Page
CHAPTER 1T MEMORY FORMAT
1.1 Memory Protection and Relocation i 359
1.2 User's Core Storage 360
1.2.1 Job Data Area (JOBDAT) 360
1.2.2 Vestigial Job Data Area 365
- CHAPTER 2 INTRODUCTION TO USER PROG RAMMING
2.1 Processor Modes 367
2,11 User Mode 367
2.1,2 User 1/O Mode 367
2,1.3 Executive Mode 368
2,2 Programmed Operators (UUQOs) : 368
2,2.1 Operation Codes 001-037 (User UUOs) 369
2,2,2 Operation Codes 040-077 and 000 (Monitor UUOs) 369
CALL and CALLI _ » 371
Suppression of Logical Device Names 382
Restriction on Monitor UUOs in Reentrant User
Programs 382
2,2,3 Operation Codes 100-127 (Unimplemented Op Codes) 383
2,2,4 Illegal Operation Codes ' 383
2,25 Naming Conventions for Monitor Symbols 383
CHAPTER 3. NON-I/O UUOS
3.1 Execution Control ' 385
3.1.1 Starting 385

iii April 1973

MONITOR CALLS

3.2

3.3

3.4

3.5

3.1.2

3.1.3

3.1.4

-340-
CONTENTS (Cont)

SETDDT AC, or CALLI AC, 2
Stopping

Illegal Instructions (700-777, JRST 10, JRST 14)
and Unimplemented OP Codes (101-127)

HALT or JRST 4

EXIT AC, or CALLI AC, 12
Trapping

APRENB AC, or CALLI AC, 16
Error Intercepting

Suspending

SLEEP AC, or CALLI AC, 31
HIBERAC, or CALLI AC, 72
WAKE AC, or CALLI AC, 73

Core Control

3.2.1
3.2.2

3.2.3
3.2.4

Definitions

LOCK AC, or CALLI AC, 60
KA10 Systems

Core Allocation Resource
UNLOK. AC, or CALLI AC, 120
CORE AC, or CALLI AC, 11
SETUWP AC, or CALLI AC, 36

Segment Control

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

RUN AC, or CALLI AC, 35

GETSEG AC, or CALLI AC, 40

REMAP AC, or CALLTI AC, 37

Testing for Sharable High Segments
Modifying Shared Segments and Meddling

Program and Profile Identification

3.4.1
3.4.2
3.4.3

SETNAM AC, or CALLT AC, 43
SETUUO AC, or CALLIAC, 75
LOCATE AC, or CALLI AC, 62

Inter-Program Communication

3.5.1

TMPCORAC, or CALLI AC, 44
CODE = 0 (.TCRFS), Obtain Free Space

Page

385
385

385
386
386
387
387
388
391
391

391

392
393
393
394
396
397
397
401
403
403
403
407
408
408
409
410
410
410
412
412
412
413

April 1973

-341- MONITOR CALLS
CONTENTS (Cont)

Page

CODE = 1 (,TCRRF), Read File 413

CODE =2 (.TCRDF), Read and Delete File 413

CODE = 3 (,TCRWF), Write File 414

CODE = 4 (.TCRRD), Read Directory 414

CODE = 5 (,TCRDD), Read and Clear Directory 414
Environmental Information . 414
3.6,1 Timing Information _ 414
DATE AC, or CALLI AC, 14 415

TIMER AC, or CALLI AC, 22 415

MSTIME AC, or CALLI'AC, 23 415

3.6.2 Job Status Information _ ’ 416
RUNTIM AC, or CALLI AC, 27 416

PJOB AC, or CALLI AC, 30 416

GETPPN AC, or CALLI AC, 24 416

OTHUSR AC, or CALLI AC, 77 | 416

3.6.3 Monitor Examination 416
PEEK AC, or CALLI AC, 33 416

SPY AC, orCALLI AC, 42 ‘ 416

POKE., AC, or CALLI AC, 114 417

GETTAB AC, or CALLI AC, 41 417

3,6.4 Conffgumﬁon Inforrnal"ion 442
SWITCH AC, or CALLI AC, 20 442

LIGHTS AC, or CALLI AC, -1 442

DAEMON AC, or CALLI AC, 102 442
3.7.1 .DCORE Function _ 442
3.7.2 .CLOCK Function 443
3.7.3 Retumns - 443
Real-Time Programming | 444
3.8.1 RTTRP AC, or CALLI AC, 57 444
Data Block Mnemonics 446

Interrupt Level Use of RTTRP . 447

RTTRP Returns ‘ 447

Restrictions _ 448

Removing Devices from a PI Channel 449

v ' April 1973

MONITOR CALLS

3.9

-342-
CONTENTS (Cont)

Dismissing the Interrupt

Exomples

3.8.2 RTTRP Executive Mode Trapping

Example

3.8.3 TRPSET AC, or CALLI AC, 25

3.8.4 UJEN (Op Code 100).
3.8.5 HPQ AC, or CALLI AC, 71
METER, AC, or CALLI AC, 111

CHAPTER 4 I/O PROGRAMMING

4,1

4.2

4.3

4.4

/O Organization
4.1,1 Files
4,1.2 Job 1/0O Initialization

Device Selection

4.2,1 Nondirectory Devices

4,2.2 Directory Device

4,2,3 Device Initialization
Data Channel

Device Name

Initial File Status

Data Modes
Buffer Header
Ring Buffers
4,3.1 Buffer Structure
Buffer Ring Header Block
Buffer Ring
4,3.2 Buffer Initialization

Monitor Generated Buffers

User Generated Buffers
File Selection (LOOKUP and ENTER)
4.4,1 The LOOKUP Operator
4,4,2 The ENTER Operator
4,4.3 RENAME Operator

vi

Page

449
449
453
454
455
457
457
458

461
461
461
462
462
463
463
463
463
404
464
465
466
466
466
467
468
468
469
470
470
471
472

April 1973

4.5

4.6

4,7

4.8

4.9

4.10

-343-
CONTENTS (Cont)

Data Transmission

4.5.1
4.5,2

4,5.3

Unbuffered Data Modes
Buffered Data Modes

Input

Output ;
Synchronization of Buffered I/O

Status Checking 'qnd Setting

46,1

4,6.2

File Status Checking
File Status Setting

File Termination

4,7.1
4,7.2
4,7.3
4,7.4
4,7.5
4,7.6
4,7.7
4,7.8

CLOSE D,0

CLOSE D, 1 (Bit 35=1, CL.OUT)
CLOSE D, 2 (Bit 43=1, CL.IN)
CLOSE D,4 (8it 33=1, CL.DLL)
CLOSE D, 10 (Bit 32=1, CL.ACS)
CLOSE D, 20 (it 31=1, CL.NM8)
CLOSE D, 40 (Bit 30=1, CL.RST)
CLOSE D, 100 (it 29=1, CL.DAT)

Device Termination and Reassignment

4,8.1
4.8.2
4.8,3
4.8.4
Exaaﬁples
4,9.1

4.9.2

4,9.3

RELEASE o
RESDV. AC, or CALLI AC, 117

 REASSIGN AC, or CALLI AC, 21

DEVLNM AC, or CALLI AC, 107

File Reading
File Writing
File Reading/Writing

Device Information

4,10,1
4.10.2
4,103
4.10,4
4.10.5
4.10.6

DEVSTS AC, or CALLI AC, 54
DEVCHRAC, or CALLI AC, 4
DEVTYP AC, or CALLI AC, 53
DEVSIZ AC, or CALLI AC, 101
WHERE AC, or CALLI AC, 63
DEVNAM AC, or CALLI AC, 64

vii

MONITOR CALLS

Page

474
475
476
476
477
478
479
480
480
481
481
482
482
482
482
482
482
482
483
483
483
484
484
485
485
485
486
487
487
488
489
490
491
491

April 1973

MONITOR CALLS

CHAPTER 5 1/O PROGRAMMING FOR NONDIRECTORY DEVICES

5.1

5,2

5.3

5.4

Card Punch

5.1.1
5.1.2

-344-
CONTENTS (Cont)

Concepts

Data Modes

ASCII, Octal Code 0

ASCII Line, Octal Code 1
Image, Octal Code 10

Image Binary, Octal Code 13
Binary, Octal Code 14

5.1.3 Special Programmed Operator Service
5.1.4 File Status
Card Reader
5.2.1 Concepts
5.2,2 Data Modes
ASCII, Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10
Image Binary, Octal Code 13
Binary, Octal Code 14
Super-Image, Octal Code 110
5.2,3 Special Programmed Operator Service
5.2.4 File Status
Display with Light Pen
5.3.1 Data Modes
5.3.2 Background
5.3.3 Display UUOs
INPUT D, ADR
OUTPUT D, ADR
5.3.4 File Status
Line Printer
5.4.1 Data Modes

ASCII, Octal Code 0
ASCII Line, Octal Code 1
Image, Octal Code 10

viii

Page

494

494
494
494
495
495
495
495
495
496
496
496
497
497
497
497
497
497
497
498
498
499
499
499
499
499
499
501
502
502
502
502
502

April 1973

5.5

5.6

5.7

5.4,2
5.4.3

-345-
CONTENTS (Cont)

Special Programmed Operator Service
File Status

Magnetic Tape

5.5.1

5.5,2
5.5.3

5.5.4

5.5.5
Paper-Tape
5.6,1

5.6.2
5.6.3
Paper-Tape
5.7.1

Data Modes

ASCIl, QOctal Code 0

ASCII Line, Octal Code 1
Image, Octal Code 10

Image Binary, Octal Code 13
Binary, Octal Code 14

DR (Dump Records), Octal Code 16
D (Dump), Octal Code 17
Magnetic Tape Format

Special Programmed Operator Service
MTAPE UUO

MTCHR, AC, or CALLI AC, 112
9=Channel Magtape
Digital-Compatible Mode
Industry=Compatible Mode
Changing Modes

File Status

Punch

Data Modes

ASCII, Octal Code 0

ASCII Line, Octal Code 1
Image, Octal Code 10

Image Binary, Octal Code 13
Binary, Octal Code 14

Special Programmed Operator Service
File Status

Reader

Data Modes (Input Only)
ASCII, Octal Code 0

ASCII Line, Octal Code 1
Image, Octal Code 10

MONITOR CALLS

Page

502
502
503
503
503
503
503
503
503
503
504
504
504
505
507
507
508
508
509
511
512
512
512
512
512
512
512
512
513
513
513
513
513
513

April 1973

MONITOR CALLS -346-
CONTENTS (Cont)

Page

Image Binary, Octal Code 13 514

Binary, Octal Code 14 ‘ 514

5.7.2 Special Programmed Operator Service 514
5,7.3 File Status 514
5.8 Plotter , 515
5.8.1 Data Modes 515
ASCII, Octal Code 0 515

ASCII Line, Octal Code 1 515

IMAGE, Octal Code 10 515

IMAGE BINARY, Octal Code 13 515

BINARY, Octal Code 14 515

5.8.2 Special Programmed Operator Service 515
5.8.3 File Status 516
5.9 Pseudo-TTY : 516
5.9.1 Concepts 516
5.9.2 The HIBER UUO 517
5.9.3 File Status 518
5.9.4 Special Programmed Operator Service 519
OUT, OUTPUT UUOs 519

IN, INPUT UUOs 519

RELEASE UUO 519

JOBSTS UWUO 519

CTLIOB UUO 520

5.10 Terminals 521
5,10,1 Data Modes 522
ASCII, Octal Code 0 and ASCII Line, Octal Code 1 522

Image, Octal Code 10 523

5.,10,2 DDT Submode 524
5.10.3 Special Programmed Operator Service 525
INCHRW ADR or TTCALL 0, ADR 526

OUTCHR ADR or TTCALL 1, ADR 526

INCHRS ADR or TTCALL 2, ADR : 527

OUTSTR ADR or TTCALL 3, ADR 527

INCHWL ADR or TTCALL 4, ADR 527

x April 1973

-347- : MONITOR CALLS
CONTENTS (Cont)

Page

INCHSL ADRor TICALL 5, ADR 527

GETLCH ADR or TTCALL 6, ADR 527

SETLCH ADRor TTCALL 7, ADR 528

RESCAN ADR or TTCALL 10, 0 528

CLRBFI ADRor TTCALL 11, 0 528

CLRBFO ADRor TTCALL 12, 0 529

SKPINC ADRor TTCALL 13, 0 529

SKPINL ADRor TTCALL 14, 0 529

IONEQU ADR or TTCALL 15, E 529

5.10.4 GETLIN AC, or CALLI AC, 34 529
5,10.5 TRMNO, AC, or CALLI AC, 115 529
5.10,6 TRMOP, AC, or CALLI AC, 116 530
5.10.7 File Status 533

5.10.8 Paper-Tape Input from the Terminal (Full-Duplex
Software) : 534
5.10,9 Paper-Tape Output at the Terminal (Full-Duplex
Software) 534
CHAPTER 6 1I/O PROGRAMMING FOR DIRECTORY DEVICES

6.1 DECtape - 536
6.1.1 Data Modes 536
Buffered Data Modes 536

Unbuffered Data Modes 536

6.1,2 DECtape Format 536
6.1.3 DECtape Directory Format 537
6.1.4 DECtape File Format 539
Block Allocation 540

6.1.5 I/O Programming 540
LOOKUPD, E 541

ENTERD, E 542

RENAME D, E 543

INPUT, OUTPUT, CLOSE, RELEASE 544

6.1,6 Special Programmed Operator Service 545
USETID, E 545

xi June 1973

MONITOR CALLS

6.2

6.1.7
6.1.8
Disk

6.2.1

6.2,2

6.2,3
6.2,4

6.2,5
6.2.6

6.2,7
6.2.8

6.2.9

-348-

CONTENTS (Cont)

USETO D, E

UGETFD, E

UTPCLR AC, or CALLI AC, 13
MTAPE D, 1 and MTAPE D, 11
DEVSTS UUO

File Status

Important Considerations

Data Modes

Buffered Data Modes
Unbuffered Data Modes
Structure of Disk Files
Addressing by Monitor
Storage Allocation Table (SAT) Blocks
File Directories '
File Format

Access Protection

UFD and SFD Privileges
Disk Quotas

Simultaneous Access

File Structure Names
Logical Unit Names
Physical Controller Class Names
Physical Controller Names
Physical Unit Names

Unit Selection on Output
Abbreviations

Job Search List

User Programming

Four-Word Arguments for LOOKUP, ENTER,
RENAME UUOs

Extended Arguments for LOOKUP, ENTER,
RENAME UUOs

Error Recovery for ENTER and RENAME UUOs

Special Programmed Operator Service
PATH, AC, or CALLI AC, 110

xii

Page

545
545
546
546

546
548
549
549
549
549
549
550
550
551
554
554
556
559
560
560
560
560
560
560
561
561
562
563

564

571
576

577
577

June 1973

6.3

6.2,10
6.2,11

Spooling of
6.3.1
6.3.2

-349-
CONTENTS (Cont)

USETI and USETO UUOs

SEEK UUO

RESET UUO

DEVSTS UUO

CHKACC UUO

STRUUO AC, or CALLI AC, 50
JOBSTR AC, or CALLI AC, 47
GOBSTR AC, or CALLI AC, 66
SYSSTR AC, or CALLI AC, 46
SYSPHY AC, or CALLI AC, 51
DEVPPN AC, or CALLI AC, 55
DSKCHR AC, or CALLI AC, 45
DISK. AC, or CALLI AC, 121
Simultaneous Supersede and Update
File Status

Disk Packs

Removable File Structures
Identification

IBM Disk Pack Compatibility
Unit Record I/O on Disk

Input Spooling

Output Spooling

CHAPTER 7 "MONITOR ALGORITHMS

7.1
7.2
7.3

Job Scheduling
Program Swapping

Device Optimization

- 7.3.1

7.3.2

7.3.3
7.3.4

Concepts

Queving Strategy

Position=Done Interrupt Optimization
Transfer=Done Interrupt Optimization
Fairness Considerations

Channel Command Chaining

Buffered Mode

xiii

MONITOR CALLS

Page

584
587
587
588
588
588
590
51
592
593
593
597
599
600
601
602
603
603
603
603
604
604

605
607
609
609
610
611
611
611
611
611

April 1973

FONITOR CALLS

7.4

7.5

7.6

7.7

APPENDIX A DECTAPE COMPATBILITY BETWEEN DEC COMPUTERS

APPENDIX B WRITING REENTRANT USER PROG RAMS

B.1
B.2
B.3
B.4

-350-
CONTENTS (Cont)

Unbuffered Mode
Monitor Error Handling

7.4.1 Hardware Detected Errors
7.4,2 Software Detected Errors
Directories

7.5.1 Order of Filenames

7.5.2 Directory Searches
Priority Interrupt Roufines

7.6.1 Channel Interrupt Routines
7.6.2 Interrupt Chains

Memory Parity Error Analysis, Reporting and Recovery

Defining Variables and Arrays

Example of Two-Segment Reentrant Program

Constant Data
Single Source File

APPENDIX C CARD CODES

APPENDIX D DEVICE STATUS BITS

APPENDIX E ERRORCODES

APPENDIX F COMPARISON OF DISK~LIKE DEVICES

APPENDIX G MAGNETIC TAPE CODES

APPENDIX H FILE RETRIEVAL POINTERS

H.1

A Group Pointer
H.1.1 Folded Checksum Algorithm

Xiv

Page

612
612
612
613
613
613
613
613
613
614
618

623
623
624
624

641
642

April 1973

-351- MONITOR CALLS

CONTENTS (Cont)

Page
H.2 End-of-File Pointer 642
H.3 Change of Unit Pointer 642
H.4 Device Data Block 642
H.5 Access Block ' 642

xv April 1973

MONITOR CALLS

-352-

ILLUSTRATIONS

Figure No. Title

1-1 KA10 User Address Mapping

1-2 KI10 User Address Mapping

3-1 Locking Jobs In Core on KA10 Systems

4-1 User's Ring of Buffers

4-2 Detailed Diagram of Individual Buffer

5-1 Pseudo-TTY

6-1 DECtape Directory Format

6-2 Format of a File on Tape

6-3 Format of a DECtape Block

6-4 Basic Disk File Organization for Each File Structure

6-5 Disk File Organization

6-6 Directory Paths on a Single File Structure

6-7 Directory Paths on Multiple File Structures
TABLES

Table No. Title

1-1 Job Data Area Locations (for user-program reference)

1-2 Vestigial Job Data Area Locations

2-1 Monitor Programmed Operators

2-2 CALL and CALLI Monitor Operations

3-1 GETTAB Tables

4~1 Buffered Data Modes

4-2 Unbuffered Data Modes

4-3 File Status Bits

5-1 Nondirectory Devices

5-2 MTAPE Functions

6-1 Directory Devices

6-2 LOOKUP Parameters

6-3 ENTER Parameters

xvi

Page

361
361
398
467
468
517
537
539
540
551
553
583
583

Page

362
365
369
372
419
465
465
479
493
505
535
541
542

June 1973

Table No,

6-4
6-5
6-6
6-7
7-1

G-1

-353-

TABLES (Cont)

Title

RENAME Parameters

File Structure Names

Extended LOOKUP, ENTER, and RENAME Arguments
. FSSRC Error Codes

Software States

ASCII Card Codes

DEC-029 Card Codes

DEC~026 Card Codes

Device Status Bits

Error Codes

Disk Devices

ASCII Codes and BCD Equivalents

xvii

MONITOR CALLS

Page

543
562
571
590
610
629
629
630
631
635
637
639

April 1973

ALPHABETICAL LIST OF MONITOR CALLS

ACTIVATE, 378
APRENB, 387
ATTACH, 379

CHGPPN, 378
CHKACC, 588
CLOSE, 481
CORE, 401
CTLJOB, 520

DAEFIN, 379
DAEMON, 442
DATE, 415
DDTGT, 372
DDTIN, 525
DDTOUT, 525
DDTRL, 372
DEACTIVATE, 378
DEVCHR, 488
DEVGEN, 378
DEVLNM, 484
DEVNAM, 491
DEVPPN, 593
DEVSIZ, 490
DEVSTS, 487
DEVTYP, 489
DISK., 599
DSKCHR, 597
DVRST., 381
DVURS., 381

ENTER, 471
EXIT, 386

FRCUUO, 379
FRECHN, 377

GETCHR, 372
GETLIN, 529
GETPPN, 416
GETSEG, 407
GETSTS, 480

5.06 Monitor

-355-

GETTAB, 417
GOBSTR, 591

HIBER, 391
HPQ, 457

IN, 474
INBUF, 468
INIT, 463
INPUT, 474

JBSET., 380
JOBPEK, 379
JOBSTR, 590
JOBSTS, 519

LIGHTS, 442
LOCATE, 412
LOCK, 394
LOGIN, 373
LOGOUT, 373
LOOKUP, 470

METER.. , 458
MSTIME, 415
MTAPE, 505

MTCHR., 507

OPEN, 463
OTHUSR, 416
OUT, 474
OUTBUF, 468
OUTPUT, 474

PATH., 577
PEEK, 416

- PJOB, 416

POKE., 417
REASSIGN, 484

RELEASE, 483
REMAP, 408

xix

MONITOR CALLS

RENAME, 472
RESDV., 483
RESET, 461, 587
RTTRP, 444
RUN, 403
RUNTIM, 416

SEEK, 587
SETDDT, 385
SETNAM, 410
SETPOV, 374
SETSTS, 480
SETUUO, 410
SETUWP, 403
SLEEP, 391
SPY, 416
STATO, 480
STATZ, 480
STRUUO, 588
SWITCH, 442
SYSPHY, 593
SYSSTR, 592

TIMER, 415
TMPCOR, 412
TRMNO., 529
TRMOP., 530
TRPJEN, 374
TRPSET, 455
TTCALL, 525

UGETF, 545
UJEN, 457
UNLOK., 397
USETI, 545, 584
USETO, 545, 584
UTPCLR, 546

WAIT, 478

WAKE, 392
WHERE, 491

April 1973

-357- MONITOR CALLS

FOREWORD

DECsystem-10 Monitor Calls is a complete reference document describing the monitor programmed

operators (UUOs) and is intended for the experienced assembly language programmer, The information
presented in this manual reflects the 5,06 release of the monitor, The monitor calls are grouped in a
manner that facilitates easy learning, and once they are mastered, the user can refer to the end of the

Table of Contents and to the index for an alphabetical list of the UUO:s.

DECsystem-10 Monitor Calls does not include reference material on the operating system commands,

This information can be found in DECsystem=10 Operating System Commands (DEC -10-MRDC-D),

Included in DECsystem-10 Operating System Commands are discussions on commands processed by both

the monitor command language interpreter and the programs in the Batch system, The two manuals,

DECsystem-10 Monitor Calls and DECsystem-10 Operating System Commands, supersede the Time-

sharing Monitors manual (DEC-T9-MTZD-D) and all of its updates.

A third manual, Introduction to DECsystem-10 Software (DEC-10-MZDA-D), is a general overview of

the DECsystem-10, It is written for the person, not necessarily a programmer, who knows computers
and computing concepts and who desires to know the relationship between the various components of
the DECsystem=-10, This manual is not intended to be a programmer's reference manual, and therefore,
it is recommended that it be read at least once before reading the dbove-mentioned reference docu-

ments,

SYNOPSIS OF DECsystem-10 MONITOR CALLS

Chapter 1 discusses the format of memory and briefly describes the job data area. Chapter 2 introduces
all of the monitor programmed operators available to a user program and the various processor modes

in which a user program operates. The UUOs available for non-1/O operations are presented in
Chapter 3, These programmed operators are used to obtain execution, core, and segment control;
program identification; environmental information; and real-time status. An introduction to I/O

programming is presented in C'hapfer 4; the services the monitor performs for the user and how the user

xxi April 1973

MONITOR CALLS -358-

program obtains these services are also discussed. /O programming specific to the nondirectory de-
vices and directory devices is explained in Chapters 5 and 6, respectively. Algorithms of the monitor,
described in Chapter 7, give the user an insight into system operation, The appendices contain supple-

mentary reference material and tables,

CONVENTIONS USED IN DECsystem-10 MONITOR CALLS
The following conventions have been used throughout this manual:
dev: Any logical or physical device name. The colon must be included

when a device is used as part of a file specification.

list A single file specification or d string of file specifications, A file
specification consists of a filename (with or without a filename ex-
tension), a device name, a directory name, ond a protection,

job n A job number assigned by the system,

file.ext Any legal filename and filename extension,

core Decimal number of 1K blocks of core (KA10).
Decimal number of pages of core (K110),

adr An octal address.

C(adr) The contents of an octal address,

[proj, prog] Project-programmer numbers; the square brackets must be included
in the command string.

fs Any legal file structure name or abbreviation.

The symbol used to indicate the ESCAPE Key.

tx A control character obtained by depressing the CTRL key and then

the character key x.

- A back arrow used in command string to separate the input and output
file specifications.

= A equal sign used in a command string to separate the input and out-
put file specifications.

The system program response to a command string.
. The monitor response to a command string.

) The symbol used to indicate that the user should depress the RETURN
key. This key must be used to terminate every command to the monitor
command language interpreter.

Underscoring used to indicate computer typeout.

n ‘ A decimal number.

[directory] A designation identifying a particular disk area. This designation can
be in the form [proj, prog] which identifies a UFD or [proj, prog, sfd,
sfd,] which identifies a sub-file directory path brarnching from a
UFD. The square brackets are required.,

xxii April 1973

-359- MONITOR CALLS

CHAPTER 1
MEMORY FORMAT

1.1 MEMORY PROTECTION AND RELOCATION

Each user program is run with the processor in a special mode called the user mode; in this mode the
program must operate within an assigned area in core, and certain operations are illegal. Because
every, user has an assigned area in core, the rest of core is unavailable to him. He cannot gain access

to a protected area for either storage or retrieval of information.

The assigned area of each user can be divided into two segments. [f this is the case, the low segment
(impure_segment) is unique for a given user and can be used for any purpose. The high segment {pure
segment) can be used. by one user or it can be shared by many users. If the high segment is shared, the
program is a reentrant program. The monitor usually write=protects the high segment so that the user
cannot alter its contents, This is done, for example, when the high segment is a pure procedure to be
used reentrantly by many users, One high pure segment can be used with any number of low impure
segments. Any user program that q'rfempté to write in a write—protected high segment is aborted and
receives an error message. |f the monitor defines two segments but does not write-protect the high

segment, the user has a two-segment non-reentrant program (refer to Paragraph 3.2.4).

The ,DECsys’rem-TO monitor defines the size and position of a user's area. On KA10-based systems
(DECsystem=1040, -1050, and -1055), the monitor uses relocation by specifying protection-and re-

location addresses for the low and high segments. The protection address is the maximum relative

address the user can reference. The relocation address is the absolute core address of the first loca=

tion in the segment, as seen by the monitor in the hardware. The monitor defines these addresses by
loading four 8-bit registers (two 8-bit registers in a KA10 based system with the KT10 option instead of
the KT10A option), each of which correspond to the left eight bits of an 18-bit PDP-10 daddress.

Thus, segments always contain a multiple of 1024 words.

On KI10-based systems (DECsystem=1070 and -1077), the user's area is page mapped. This means
that each page (a page consists of 512 words) of the user's area is associated with a page of physical
core memory. Because the assignment of physical pages of core does not need to be contiguous, the
monitor has greater freedom in allocating core. The monitor associates (maps) pages in the user's area
with physical pages in core in such a way that the user appears to have one or two segments as with a

KA10-based system. Therefore, in most cases, the user does not need to be concered with the type

1-1 March 1973

MONITOR CALLS -360-
of processor on which his program is running. However, the unit of core allocation is different on the
two processors. The unit of allocation on the KA10 is 1024 words (1K) and on the K 110, is 512 words
(1 page).

In general, the term mapping refers to both relocation (KA10) and page mapping (K110). On either

processor, a user address is called a relative or virtual address before it is mapped, and an absolute

or physical address ofter it is mapped.

To take advantage of the fast accumulators, memory addresses 0—178 are not mapped and all users have
access to the accumulators. Therefore, relative locations 0-]78 cannot be referenced by a user's
program. The monitor saves the user's accumulators in this area when the user's program is not running

and while the monitor is servicing a UUO from the user. Refer to the PDP=10 System Reference

Manvual for a more complete description of the relocation and mapping hardware.

1.2 USER'S CORE STORAGE

A user's core storage consists of blocks of memory, the sizes of which are an integral multiple of 1024
(20008) words on the KA10-based system and 512]0 (10008) words on the KI110-based system. In a
non-reentrant monitor, the user's core storage is a single contiguous block of memory. After mapping,
the first -address in a block is a multiple of 20008 or 10008. The relative user and relocated address
configurations on the KA10 are shown in Figure 1-1, where PL' RL’ PH’ and RH are the protection
and relocation addresses for the low and high segments, respectively. If the low segment is more than
half the maximum memory capacity (PLZ 400000), the high segment starts ot the first location after
the low segment (at PL +2000). The high segment is limited to 128K, The relative user address con=-
figurations on the K110 are shown in Figure 1-2, where PL and PH are the protection addresses for

the low and high segments, respectively.

Two methods are available to the user for loading his core area. The simplest way is to load a core
image stored on a retrievable device (refer to RUN and GET commands). The other method is to use
the relocatable binary loader to link=load binary files. The user can then write the core image on

a retrievable device for future use (refer to SAVE command).

1.2.1 Job Data Area (JOBDAT)

The first 140 octal locations of the user's core area are always allocated to the job data area (refer to
Table 1-1). Locations in this area are given mnemonic assignments where the beginning characters are
.JB. The job data area provides storage for specific information of interest to both the monitor and the
user. Some locations, such as .JBSA and .JBDDT, are set by the user's program for use by the
monitor. Other locations, such as .JBREL, are set by the monitor and are used by the user's program.
In particular, the right half of . JBREL contains the highest legal address set by the monitor when the

user's core allocation changes.

5.05 Monitor 1-2 June 1972

) prore————— e o e o o
17 mmme e e e —
Low N
SEGMENT \
PLHITTT
i AN
NN
NN P
_ NN -
ILLEGAL \ /
N
NN
¢ Y
e \/ N
400000 7 \ .
HIGH e \
; SEGMENT -
Py+ 1777 ' N
ILLEGAL
77777

USER ADDRESSES
BEFORE RELOCATION

MONITOR CALLS

HARDWARE
ACCUMULATORS
17
Ry + 400000
HIGH
SEGMENT

Ry+ Py +1777

I

. R +20
| JOB DATA_AREA | RL+140

LOW
SEGMENT RLt P+ 1777
| _ | ,
| NON- | Ry MUST BE NEGATIVE
EXISTENT | UNLESS SYSTEM HAS A
| MEMORY MEMORY LARGER THAN
| 128k

(
L ——__/

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER

RELOCATION 10-0594

Figure 1-1 KA10 User Address Mapping

LOW

SEGMENT

P H177T

ILLEGAL

400000

HIGH
SEGMENT

PY+17TT

TLLEGAL

777777

USER ADDRESSES
BEFORE MAPPING

o

| 1

| 1

| NON-EXISTENT |
MEMORY

! |

| |

| |

5.05 Monitor

10-0898

Figure 1-2 K110 User Address Mapping

1-3 June 1972

MONITOR CALLS -362-

Table 1-1

Job Data Area Locations
(for user-program reference)

Octal . e
Name Location Description
.JBUUO 40 User's location 40g. Used by the hardware when proc-
essing user UUOs (001 through 037) for storing op code
and effective address.
.JB41 41 User's location 418. Contains the beginning address of

the user's programmed operator service routine (usually
a JSR or PUSHJ).

.JBERR 42 Left half: Unused.

Right half: Accumulated error count from one system
program to the next. System programs should be written
to look at the right half only.

.JBREL : 44 Left half: Zero.

Right half: The highest relative core location available
to the user (i.e., the contents of the memory protection
register when this user is running).

.JBBLT 45 Three consecutive locations when the LOADER puts a
BLT instruction and a CALLI UUO to move the program
down on top of itself. These locations are destroyed on
every executive UUO by the executive pushdown list,

.JBDDT 74 Left half: The last address of DDT.
Right half: The starting address of DDT. If contents are
0, DDT has not been loaded.

.JBCNé 106 Six temporary locations used by the CHAIN program
(refer to the LOADER manual) after it releases all 1/0
channels. .JBCNS is defined to be in .JBJDA.

.JBPFI 114 All user I/O must be to locations greater than .JBPFI,
(value)
.JBHRL 115 Left half: First relative free location in the high seg-

ment (relative to the high segment origin so it is the
same as the high segment length). Set by the LOADER
and subsequent GETs, even if there is no file to initial-
ize the low segment. The left half is a relative quan-
tity because the high segment can appear at different
user origins at the same time. The SAVE command uses
this quantity to know how much to write from the high
segment.,

Right half: Highest legal user address in the high seg-
ment. Set by the monitor every time the user starts to
run or does a CORE or REMAP UUO. The word is
3401777 unless there is no high segment, in which case
it will be zero. The proper way to test if a high seg-
ment exists is to test this word for a non-zero value.

5.04 Monitor 1-4 January 1972

-363- MONITOR CALLS

Table 1-1 (Cont)
Job Data Area Locations
(for user-program reference)

Name Li‘;ﬁin Description

.JBSYM 116 Contains a pointer to the symbol table created by link-
ing loader.
Left half: Negative of the length of the symbol table.
Right half: Lowest address used by the symbol table.

.JBUSY 117 Contains a pointer to the undefined symbol table created
by linking loader or defined by DDT. This location has
the same format as .JBSYM. There are no undefined
symbols if the contents is > 0.

.JBSA 120 Left half: First free location in low segment (set by
loader).
Right half: Starting address of the user's program.

.JBFF 121 Left half: Zero.

Right half: Address of the first free location following
the low segment. Set to C (.JBSA)LH by RESET UUO.

.JBREN 124 Left half: Unused.

Right half: REENTER starting address. Set by user or

by loader and used by REENTER command as an alternate
entry point.

.JBAPFR 125 Left half: Zero.
Right half: Set by user program to trap address when
user is enabled to handle APR traps such as illegal

memory, pushdown overflow, arithmetic overflow, and
clock. See APRENB UUO.

.JBCNI 126 Contains state of APR as stored by CONI APR when a
user-enabled APR trap occurs.

.JBTPC 127 Monitor stores PC of next instruction to be executed
when a user-enabled APR trap occurs.

.JBOPC 130 The previous contents of the job's last user mode pro-
gram counter are stored here by monitor on execution
of a DDT, REENTER, START, or CSTART command.
After a user program HALT instruction followed by a
START, DDT, CSTART, or REENTER command, .JBOPC
contains the address of the HALT. To proceed at the
address specified by the effective address, it is
necessary for the user or his program fo recompute the
effective address of the HALT instruction and to use
this address to start. Similarly, after an error during
execution of a UUO followed by o START, DDT,
CSTART, or REENTER command, .JBOPC points to the
address of the UUO. For example, in DDT to continue
after a HALT, type

.JBOPC/10000,,3010 JRST @, $X

5.04 Monitor 1-5 Jonuary 1972

MONITOR CALLS -364-

Table 1-1 (Cont)
Job Data Area Locations
(for user-program reference)

Octal -
Name Location Description
.JBCHN 131 Left half: Zero or the address of first location after first

FORTRAN 1V loaded program.
Right half: Address of first location after first FORTRAN
1V Block Data.

.JBCOR 133 Left half: Highest location in low segment loaded with
non-zero data. No low file written on SAVE or SSAVE

if less than 140, Set by the LOADER.

Right half: User argument on last SAVE or GET command.
Set by the monitor.

.JBINT 134 Left half: Reserved for the future.
Right half: Zero or the address of the error-intercepting
block (refer to Paragraph 3.1.3.2).

.JBOPS 135 Reserved for all operating systems.

.JBCST 136 Reserved for customers.

. JBVER 137 Program version number. The bits are defined as follows:
Bits 0-2 The group who last modified the program

0 = Digital development group.

1 = Other Digital employees.

2-4 = Reserved for customers.

5-7 = Reserved for customer's users.

Bits 3-11 Digital's major version number. Usually
incremented by 1 after a release.

Bits 12-17 Digital's minor version number. Usually
0, but may be used if an update is needed
after work has begun on a new major ver-
sion.

Bits 18-35 Edit number. Usually not reset.
The VERSION and the SET WATCH VERSION commands

output the version number in standard format. Refer to
DECsystem-10 Operating System Commands.

.JBDA 140 The value of this symbol is the first location available
to the user.

NOTE: Only those JOBDAT locations of significant importance to the user are given in this
table. JOBDAT locations not listed include those that are used by the monitor and those
that are unused at present. User programs should not refer to any locations not listed above
because such locations are subject to change.

5.04 Monitor 1-6 January 1972

-365- MONITOR CALLS

JOBDAT is loaded automatically, if needed, during the loader's library search for undefined global
references, and the values are assigned to the mnemonics. JOBDAT exists as a .REL file on device
SYS: for loading with user programs that symbolically refer to the locations. User programs should
reference locations by the assigned mnemonics, which must be declared as EXTERN references to the

assembler. All mnemonics in this manual with a .JB prefix refer fo locations in the job data area.

1.2.2 Vestigial Job Data Area

A few constant data in the job data area may be loaded by a fwo-segment, one~file program without
using instructions on a GET command (.JB41, .JBREN, .JBVER), and some locations are loaded by the
monitor on a GET (.JBSA, .JBCOR, .JBHRL). The vestigial job data area (the first 10 locations of
the high segment) is reserved for these low-segment consfcnfs,; therefore, 6 high—sc\egmenf program is
loaded into 400010 instead of 400000 (refer to Table 1-2). With the vestigial job data area in the
high segment, the loader automatically loads the constant data into the job data area without requir=-
ing a low file on a GET, R, or RUN command, or a.RUN UUO. SAVE will write a low file fora
two-segment program only if the LH of .JBCOR is 1408 or gredter.

‘Table 1-2
Vestigial Job Data Area Locations

Octal
Symbol Location’ Description

.JBHSA 0 ‘A copy of .JBSA.

.JBH41 1 A copy of .JB41.

.JBHCR 2 A copy of .JBCOR.
3

.JBHRN LH: restores the LH of .JBHRL,
RH: restores the RH of .JBREN.

.JBHWR 4 A copy of .JBVER.
.JBHNM 5 High segment name set on a SAVE.
.JBHSM 6 A pointer to the high-segment symbols,
if any.
7 Reserved for future use.
.JBHDA 10 First location not used by vestigial job
data area.

tRelative to origin of high segment, usually .JBHGH = 4000008.

1-7 March 1973

-367- MONITOR CALLS

CHAPTER 2
INTRODUCTION TO USER PROGRAMMING

2.1 PROCESSOR MODES

In a single-user, non-timesharing system, the user's program is subject only to those conditions
d g SY:) prog I M

inherent in the hardware. The program must

a. Stay within the memory capacity.
b. Observe the hardware restrictions placed on the use of certain memory locations.

c. Observe the restriction on interrupt instructions.

With timesharing, the hardware limits the central processor operations to one of three modes: user

mode, user 1/O mode, and executive mode.

2.1.1 User Mode

Normally, user programs run with the processor in user mode and must operate within an assigned area
of core. In user mode, certain instructions are illegal. User mode is used to guarantee the integrity of

the monitor and each user program. The user mode of the processor is characterized by the following:

a. Automatic memory protection and mapping (refer to Chapter 1).
Trap to absolute location 40 in the monitor on any of the following:
(1) Operation codes 040 through 077 and operation code 00,

(2) Input/output instructions (DATAI, DATAO, BLKI, BLKO, CONI, CONO,
CONSZ, and CONSO), ‘

(3) HALT (i.e., JRST 4,),
(4) Any JRST instruction that attempts to enter executive mode or user I/0 mode.

¢. Trap to relative location 40 in the user area on execution of operation codes 001

through 037.

2.1.2 User I/O Mode

The user 1/O mode (bits 5 and 6 of PC word = 11) of the central processor allows privileged user pro-

grams to be run with automatic protection and mapping in effect, as well as the normal execution of

5.05 Monitor 2-1 ' June 1972

MONITOR CALLS -368-

all defined operation codes. The user I/O mode provides some protection against partially debugged
monitor routines and permits infrequently used device service routines to be run as a user job. Direct

control of special devices by the user program is particularly important in real-time applications.

To utilize this mode, the user must have bit 15 (JB.TRP) set in the privilege word. RESET AC, or
CALL 0 terminates user 1/O mode. User I/O mode is not used by the monitor and is normally not

available to the timesharing user (refer to Paragraph 3.8.3).

2.1.3 Executive Mode

The monitor operates with the processor in executive mode, which is characterized by special
memory protection and mapping (refer to Chapter 1) and by the normal execution of all defined

operation codes,

User programs run in user mode; therefore, the monitor must schedule user programs, service interrupts,
perform all input and output operations, take action when control returns from a user program, and
perform any other legal user-requested operations that are not available in user mode. The services
the monitor makes available to user-mode programs and how a user program obtains these services, are
described in Chapters 3 and 4.

2.2 PROGRAMMED OPERATORS (UUOs)

Operation codes 000 through 077 in the PDP-10 are programmed operators, sometimes referred to as
UUQs. They are software-implemented instructions because from a hardware point of view, their
function is not pre-specified. Some of these op-codes trap to the monitor, and the rest trap to the

user program.

After the effective address calculation is complete, the contents of the instruction register, along with

the effective address, are stored, and an instruction is executed out of the normal sequence.

Although there is one operating system for all configurations of the DECsystem-10, some UUOs may not
be included in each DECsystem-10. This is especially true of the DECsystem-1040, the basic system
intended for small installations who do not want all of the system's features because of a constraint on
core. UUO:s are deleted from the DECsystem-1040 by feature test switches defined at MONGEN time.
In the standard DECsystem-1040, many of these switches are off, and therefore, the corresponding
UUOs are not available. This saves core but limits various features of the operating system. In the
UUO descriptions that follow, footnotes indicate if the switch is normally absent in the DECsystem-

1040. If not stated, the UUO is available on all configurations of the DECsystem-10.

5.05 Monitor 2-2 June 1972

: -369- MONITOR CALLS
2.2.1 Operation Codes 001-037 (User UUOs)

Operation codes 001 through 037 do not affect the mode of the central processor; thus, when executed
in user mode, they trap to user location 40, which allows the user program complete freedom in the

use of these programmed operators.

If a user's undebugged program accidentally executes one of these op-codes when the user did not

intend to use it, the following error message is normally issued:

HALT AT USER PC addr

This message is given because the user's relative location 41 contains HALT (unless his program has

overtly changed it) which is provided by the loader; addr is the location of the user uuo.

2.2.2 Operation Codes 040-077 and 000 (Monitor UUOs)

Operation codes 040 through 077 and 000 trap to absolute location 40, with the central processor in
executive mode. These programmed operators are interpreted by the monitor to perform 1/O operations

and other control functions for the user's program.

Operation code 000 always retums the user to monitor mode with the error message:

?ILLEGAL UUO AT USER PC addr

Table 2-1 lists the operation codes 040 through 077 and their mnemonics.

Table 2-1
Monitor Programmed Operators
Op Code Call Function
040 CALL AC, [SIXBIT/NAME/1, or Programmed operator extension (refer to
NAME AC, ‘ Paragraph 2.2.2.1).
041 INIT D, MODE Select 1/O device (refer to Paragraph
SIXBIT/DEV/ 4.2.3).

XWD OBUF, 1BUF
error return
normal return

042 No operation
043 No operation

. . Reserved for installation-
044 No operation 4o endent definition.
045 No operation
046 » | No operation

5.06 Monitor 2-3 : March 1973

MONITOR CALLS

-370-

Table 2-1 (Cont)
Monitor Programmed Operators

Op Code Call Function
047 CALLI AC, N Programmed operator extension (refer to
Paragraph 2.2,2.1).
050 OPEN, D, E Select 1/O device (refer to Paragraph
error return 4.2.3),
normal return
E: EXP STATUS
SIXBIT /DEV/
XWD OBUF, 1BUF
051 TTCALL AC, ADR Extended operations on job-controlling
terminal (refer to Paragraph 5.10.3).
052 Reserved for future expansion by DEC.
053 Reserved for future expansion by DEC,
054 Reserved for future expansion by DEC.
055 RENAME D, E Rename or delete a file (see Section
error return 4.4.3).
normal return
E: SIXBIT /FILE/
SIXBIT /EXT/
EXP <PROT> B8+DATE
XWD PROJ, PROG
256 IND, INPUT and skip on error or EQOF (see
normal return Section 4.5).
error or EOF return
057 OuT D, OUTPUT and skip on error or EOT (see
normal return Section 4.5).
error return
060 SETSTS D, STATUS Set file status (see Section 4.6.2).
061 STATO D, BITS Skip if file status bits = 1 (see Section
RO: NO SELECTED BITS = 1 4.6.1).
R1: SOME SELECTED BITS =1
062 GETSTS D, E Copy file status to E (see Section 4.6. n.
063 STATZ D, BITS Skip if file status bits = 0 (see Section
RO: SOME SELECTED BITS = 1 4.6.1).
R1: ALL SELECTED BITS = 0
064 INBUF D, N Set up input buffer ring with N buffers
(refer to Paragraph 4.3.2).
065 OUTBUF D, N Set up output buffer ring with N buffers
(refer to Paragraph 4.3.2).
066 INPUT D, Request input or request next buffer (refer
to Paragraph 4.5).,

-371-
Table 2-1 (Cont)

Monitor Programmed Operators

MONITOR CALLS

- Op Code Call Function
067 OUTPUT D, Request output or request next buffer (refer
to Paragraph 4.5).
070 CLOSE D, Terminate file operation (refer to Paragraph
4.7).
071 RELEAS D, Release device (refer to Paragraph 4.8.1).
072 " MTAPED, N Perform tape positioning operation (refer
» to Paragraphs 5.5.3 and 6.1.6.5).
073 UGETF D, Get next free block number on DECtape
(refer to Paragraph 6.1.6.3).
074 USETID, E Set next input block number (refer to
Paragraphs 6.1.6.1 and 6.2.9.2).
075 USETO D, E Set next output block number (refer to
Paragraphs 6.1.6.2 and 6.2.9.2).
076 LOOKUP D, E Select a file for input (refer to Paragraph
error return 4.4.1).
normal return
E: SIXBIT /FILE/
SIXBIT /EXT/
0
XWD PROJ, PROG
077 ENTER D, E Select a file for output (refer to Paragraph
error return: 4.4.2).
normal return
E: SIXBIT /FILE/
SIXBIT /EXT/
0
XWD PROJ, PROG
100 UJEN Dismiss real-time interrupt (refer to
Paragraph 3.8.4).

2.2.2.1 CALL ond CALLI - Operation codes 040 through 077 limit the monitor to 408 operations,
The CALL operation extends this set by specifying the nume of the operation by the contents of the
location specified by the effective address (e.g., CALL [SIXBIT /EXIT/1). This capability provides

for indefinite extendability of the monitor operations, at the overhead cost to the monitor of a table

~lookup.

The CALLI operation eliminates the table lookup of the CALL operation by having the programmer or

the assembler perform the lookup and specify the index to the operation in the effective address of

the CALLI, Table 2-2 lists the monitor operations specified by the CALL and CALLI operations.

2-5

MONITOR CALLS -372-
Table 2-2
CALL and CALLI Monitor Operations
.'.
CALLI MCALLI . CALL Function
: nemonic

CALLI AC, -2 Customer defined Reserved for definition by

ves =N each customer installation.

CALLI AC, -1 | LIGHTS CALL AC, [SIXBIT/LIGHTS/] Display AC in console lights

(refer to Paragraph 3.6.4.2).

CALLI AC, 0 | RESET CALL [SIXBlT/RESET/] Reset 1/Q device (refer to
return Paragraph 4.1.2).

CALLI AC, 1 | DDTIN MOVEI AC, BUFFER DDT mode console input
CALL AC, [SIXBIT/DDTIN/] (refer to Paragraph 5.9.2).
only return

CALLI AC, 2 | SETDDT MOVEI AC, DDT-start-adr Set protected DDT starting
CALL AC, [SIXBIT/SETDDT/] address (refer fo Paragraph
only return 3.1.1.1).

CALLI AC, 3 | DDTOUT MOVEI AC, BUFFER DDT mode console output
CALL AC, [SIXBIT/DDTOUT/] (refer to Paragraph 5.9.2).
only return

CALLI AC, 4 | DEVCHR . MOVE AC, [SIXBIT/dev/] or Get device characteristics
MOVEI AC, channel no. (refer to Paragraph 4.10.2).
CALL AC, [SIXBIT/DEVCHR/]
only return

C(AC) = 0 if no such device

C(AC) = DEVMOD word of device
data block if device is
found.

CALLI AC, 5 | DDTGT CALL AC, [SIXBIT/DDTGT/] No operation, historical
only return Uuo.

CALUI AC, 6 | GETCHR AC: = SIXBIT/DEV/ Same as CALLI AC, 4,
CALL AC, [SIXBIT/GETCHR/]
only return

CALLI AC, 7 | DDTRL CALL AC, [SIXBIT/DDTRL/] No operation; historical
only return Uuo.

CALL AC, 10 | WAIT AC field is software channel number. | Wait until device is inactive
CALL AC, [SIXBIT/WAIT/] (refer to Paragraph 4.5.3).
only return

CALLI AC, 11 | CORE MOVE AC, [XWD HIGH ADR or O, Allocate core (refer to

.OW ADR or 0]
CALL AC, [SIXBIT/CORE/]
error return, assignment unchanged
normal return, new assignment
AC: = max. core available (in 1K
blocks) on error or normal
return.

Paragraph 3.2.3).

2-6

-373-
Table 2-2 (Cont)
CALL and CALLI Monitor Operations

MONITOR CALLS

t
CALLI MCALLI . CALL Function
nemonic

CALU AC, 12 | EXIT CALL AC, [SIXBIT/EXIT/] Stop job, may release de-
return vices depending on contents
If AC # 0, devices are not released of AC (refer to Paragraph
and CONT and CCONT commands 3.1.2.3).
are effective.

CALL AC, 13 JUTPCLR AC field is software channel number |Clear DECtape directory
CALL AC, [SIXBIT/UTPCLR/] (refer to Paragraph 6.1.6.4).
only return

CALU AC, 14 | DATE CALL AC, [SIXBIT/DATE/] Return date (refer to Para-
only return graph 3.6.1.1).

AC: = date in compressed format

CALLI AC, 15 |LOGIN'T MOVE AC, [XWD -N, LOC] Privileged UUO in that the
CALL AC, [SIXBIT/LOGIN/] calling job must not be logged
RO: return in. Is a no-op if executed

Does not return if C(RO) is a by a job already logged=~in.
_ HALT instruction.

CALLI AC, 16 | APRENB MOVEI AC, BITS Enable central processor
CALL AC, [SIXBIT/APRENB/] traps (refer to Paragraph
retum 3.1.3.1).

CALLI AC, 17 | Locout'" | CALL AC, ISIXBITALOGOUT/] Privileged UUO available
no return only to system-privileged

programs. Is treated like an
EXIT UUO if executed by a

non-system-privileged pro-

gram.

CALLI AC, 20 | SWITCH CALL AC, [SIXBIT/SWITCH/] Read console data switches
return (refer to Paragraph 3.6.4.1),

AC: contents of console data
switches

CALLI AC, 21 | REASSI MOVE AC, job number Reassign device (refer to
MOVE AC+1, [SIXBIT/DEV/] Paragraph 4.8.3).

CALL AC, [SIXBITREASSI/]
return

If C(AC) = 0 on return, the job spec-
ified has not been initialized. If
C(AC+1) = 0 on return, the device is
not assigned to calling job, or device
is TTY.

CALLI AC, 22 | TIMER CALL AC, [SIXBIT/TIMER/] Read time of day in clock

return ticks (refer to Paragraph
AC: = time in jiffies, right 3.6.1.2).
justified.
CALLI AC, 23 | MSTIME CALL AC, [SIXBIT/MSTIME/] Read time of day in milli-

return
AC: = time in milliseconds, right-
justified,

seconds (refer to Paragraph
3.6.1.3).

2-7

March 1973

MONITOR CALLS

-374-
Table 2-2 (Cont)

CALL and CALLI Monitor Operations

T
CALLI MCALLI . CALL Function
nemonic

CALLI AC, 24 | GETPPN CALL AC, [SIXBIT/GETPPN/] Return project-programmer
normal return number of job (refer to
alternate return Paragraph 3.6.2.3).

AC: = XWD proj. no., prog. no. of
this job. Alternate return is
taken only if job is privileged
and the same proj=prog number
occurs twice in the table of
jobs logged in.
CALLI AC, 25 | TRPSET MOVE AC, [XWD N, LOC] Set trap for user 1/O mode
' CALL AC, [SIXBIT/TRPSET/] (refer to Paragraph 3.8.3).
error return
normal return
LOC: JSR TRAP .
CALLI AC, 26 | TRPJEN CALL [SIXBIT/TRPJEN/] 1llegal UUO; replaced by
UJEN (op code 100).

CALLI AC, 27 | RUNTIM MOVE AC, job number or 0 Return the jobs running time
CALL AC, [SIXBIT/RUNTIM/] in milliseconds (refer to
only return Paragraph 3.6.2.1).

AC: = running time of job
AC: = 0 if non-existent job

CALLI AC, 30 | PJOB CALL AC, [SIXBIT/JOB/] Return job number (refer to
return Paragraph 3.6.2.2).
AC: = job number, right=justified :

CALL AC, 31 | SLEEP MOVE AC, time to sleep in seconds Stop job for specified time
CALL AC, [SIXBIT/SLEEP/] in seconds (refer to Para-
return graph 3.1.4.1).

CALLI AC, 32 | SETPOV CALL AC, [SIXBIT/SETPOV/] Superseded by APRENB UUO.
return .

CALU AC, 33 | PEEK MOVEI AC, exec adr Return contents of executive

- CALL AC, [SIXBIT/PEEK/] address (refer to Paragraph
return 3.6.3.1).
AC: = C(exec~adr)

CALLI AC, 34 | GETLIN CALL AC, [SIXBIT/GETLIN/I Return SIXBIT name of at-
return ‘ : tached terminal (refer to
_AC: = SIXBIT TTY name, left- Paragraph 5.9.4).

justified (e.g., CTY, TTY27) | ~
CALLI AC, 35 |RUN MOVSI AC, start adr increment Transfer control to selected

HRRI AC, E
RUN AC,
error refurn
normal return

program (refer to Paragraph
3.3.1).

-375-
Table 2-2 (Cont)

CALL and CALLI Monitor Operations

MONITOR CALLS

.{-
CALLI (AL CALL Function
nemonic
CALLI AC, 35 | RUN E: SIXBIT/DEVICE/
(continued) SIXBIT FILE/
SIXBIT/EXT/
0
XWD proj no. prog no
XWD 0; optional core assignment
CALLI AC, 36 | SETUWP - MOVEL AC, BIT Set or clear user mode write
SETUWP AC, - protect for high segment
error return (refer to Paragraph 3.2.4).
normal return
CALLI AC, 37 | REMAP MOVEI AC, highest adr. in low seg | Remap top of low segment
REMAP AC, - into high segment (refer to
error return Paragraph 3.3.3).
normal return
CALLI AC, 40 | GETSEG MOVEI AC, E Replace high segment in
GETSEG AC, user's addressing space (re-
error refurn fer to Paragraph 3.3.2).
normal return ‘
E; SIXBIT/DEVICE/
SIXBIT/FILE/
SIXBIT/EXT/
0 ,
XWD proj no, prog no
0
CALLI AC, 41 | GETTAB MOVSI AC, job no. or index no. Return contents of monitor
HRRI AC, table no. table or location (refer to
GETTAB AC, Paragraph 3.6.3.4).
error return
normal freturn
C(AC) unchanged on error return
AC: = table entry if table is defined
and index is in range.
CALLI AC, 42 | SPY MOVEI AC, highest physical adr. Make physical core be high
desired Col segment for examination of
SPY AC, monitor (refer to Paragraph
error return 3.6.3.2).
normal return ‘
CALLI AC, 43 | SETNAM MOVE AC, [S]XBIT/NAME/_I Set program name in monitor
SETNAM AC, job table (refer to Paragraph
retum’ ' 3.4.1).
CALLI AC, 44 | TMPCOR MOVE AC, [XWD CODE, BLOCK] Allow temporary in-core
: : TMPCOR, file storage for job (refer to
error return Paragraph 3.5.1).
normal return ' :
5.04 Monitor 2-9 February 1972

MONITOR CALLS

-376-
Table 2-2 (Cont)

CALL and CALLI Monitor Operations

CALLUI

cALL

Mnemonic

CALL

Function

CALU AC, 4
(continued)

CALLI AC, 45

CALLI AC, 46

CALII AC, 47

CALLI AC, 50

CALL AC, 51

TMPCOR

DSKCHR

SYSSTR

JOBSTR

STRUUO

SYSPHY

BLOCK: XWD NAME, 0
1OWD BUFFLEN, BUFFER

AC: = value depending on CODE and
whether error or normal return

is taken,

MOVE AC, [XWD+N, LOC]
DSKCHR AC,
error return
normal return
AC: = XWD status, configuration
LOC: = SIXBIT/NAME/
0
0 values returned

0

MOVEI AC, 0 or

MOVE AC, [SIXBIT/FSNAME/]
SYSSTR AC,

error return - not a file structure
normal return

AC: = next file structure name in
SIXBIT, left-justified

MOVE AC, [XWD N, LOC]
JOBSTR AC,
error refurn
normal return
AC: = argument

Contents Use
LOC/SIXBIT/NAME/or - 1 arg
LOC+1/XWD proj no.

prog. no.
LOC+2/status bits

MOVE AC, [XWD N, LOCI]
STRUUO AC,
error refurn
normal refurn
AC: = status or error code

value
value

Contents Use

LOC:function
numbers arg
LOCH+1: arg depending
on function
number

MOVEI AC, 0 or last unit name
SYSPHY AC,

error refurn

normal return

Return disk characteristics
(refer to Paragraph 6.2.9.13).

Return next file structure

name (refer to Paragraph
6.2.9.10).

Return next file structure
name in the jobs search list
(refer to Paragraph 6.2.9.8).

Manipulate file structures
(refer to Paragraph 6.2.9.7).

Return all physical disk units
(refer to Paragraph 6.2.9.11).

-377-
Table 2-2 (Cont)

MONITOR CALLS

CALL and CALLI Monitor Operations

T
CALLI (ALt CALL Function
nemonic

CALLI AC, 52 | FRECHN Reserved for future use.

CALLI AC, 53 | DEVTYP MOVE AC, [SIXBIT/dev/] or Return properties of device
MOVEI AC, channel no. (refer to Paragraph 4.10.3).
DEVTYP AC, .
error refurn
normal return

CALLI AC, 54 | DEVSTS MOVEI AC, channel no. of device Return hardware device
DEVSTS AC, status word (refer to Para-

~error return graph 4.10.1).

normal return

CALLI AC, 55 | DEVPPN MOVE AC, [SIXBIT/DEV/] Return the project program-
DEVPPN AC, mer number associated with
error return a device (refer to Paragraph
normal return 6.2.9.12).

AC: = XWD proj-prog. number on a
normal retum

CALL AC, 56 SEEKTH AC is software channel number Perform a SEEK to current
SEEK AC, selected block for software
return channel AC (refer to Para-

graph 6.2.9.3).

CALLI AC, 57 | RTTRP MOVEI AC, RTBLK Connect real-time devices to
RTTRP AC, PI system (refer to Paragraph
error return 3.8.1).
normal return

CALLI AC, 60 | LOCK MOVE AC, [XWD high seg Lock job in core (refer to
code, low seg codel Paragraph 3.2.2).
LOCK AC,
error return
normal return

CALLI AC, 61 | JOBSTS MOVE! AC, channel no. or Return status information
MOVNI AC, job about device TTY and/or
JOBSTS AC, controlled job (refer to
error return Paragraph 5.9.4.4).
normal return :

CALLI AC, 62| LOCATE MOVE! AC, location Change the job's logical
LOCATE AC, station (refer to Paragraph
error return 3.4.3).
normal return

CALLI AC, 63 | WHERE MOVEI AC, channel no. or Return the physical station

MOVE AC, [SIXBIT/dev/]
WHERE AC,

error return

normal refurn

of the device (refer to
Paragraph 4.10.5).

5.05 Monitor

June 1972

MONITOR CALLS

-378-

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

T
CALLI CALLL CALL Function
Mnemonic

CALLI AC, 64 | DEVNAM MOVEI AC, channel no. or Return physical name of de-
MOVE AC, [SIXBIT/dev/] vice obtained through generic
DEVNAM AC, INIT/OPEN or logical de-
error return vice assignment (refer to
normal return Paragraph 4.10.6).

CALLI AC, 65 | CTLJOB MOVE AC, job number Return job number of con-
CTLJOB AC, trolling job (refer to Para-
error return graph 5.9.4.5).
normal return

CALL AC, 66 | GOBSTR MOVE AC, [XWD N, LOC] Return next file structure
GOBSTR AC, name in an arbitrary job's
error return search list (refer to Para-
normal return graph 6.2.9.9),

LOC: job number

LOC+1: XWD proj no, prog no
LOC+2: SIXBIT/NAME/or-1
LOC+3: 0

LOC+4: Status bits

CALLLAC, 67 | ACTIVATE Reserved for the future.

CALLI AC, 70 | DEACTIVATE

CALLI AC, 71 | HPQ MOVE AC, high-priority queue no. Place job in high priority
HPQ AC, scheduler's run queue (refer
error return to Paragraph 3.8.5).
normal return

CALLI AC, 72 | HIBER MOVSI AC, enable bits Allow job to become dormant
HRRI AC, sleep time until the specified event
HIBER AC, oceurs (refer to Paragraph
error return 3.1.4.2).
normal return

CALLI AC, 73 | WAKE MOVE AC, job no. Allow job to activate the
WAKE AC, specified dormant job (refer
error return to Paragraph 3.1.4.3).
normal return

CALU AC, 74 CHGPPNrT MOVE AC, new proj. prog. no. Change project-programmer
CHGPPN AC, number. Gives an error
error return return if executed by a job
normal return already logged-in.

CALLI AC, 75 | SETUUO MOVE AC, [XWD function, argu- Set system and job para-
ment] meters (refer to Paragraph
SETUUO AC, 3.4.2).
error refurn
normal return

CALL AC, 76 | DEVGEN Reserved for the future.

March 1973

-379-

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

MONITOR CALLS

-'-
CALLI CALLL CALL Function
Mnemonic

CALLI AC, 77 | OTHUSR OTHUSR AC, Determine if another job is
non=-skip return logged in with same project-
skip return programmer number (refer to

AC: = proj. prog. no. Paragraph 3.6.2.4).

CALLI AC, 100 | CHKACC MOVE AC, [EXP LOC] Check user's access to the
CHKACC AC, file specified (refer to
error return Paragraph 6.2,9.6).
normal return
LOC: XWD action, protection
LOC+1: directory proj~prog no.

LOC+2: user proj-prog no.

CALLI AC, 101 | DEVSIZ MOVE AC, [EXP LOC] Determine buffer size for the
DEVSIZ AC, specified device (refer to
error return Paragraph 4.10.4),
normal return
LOC: EXP STATUS
LOC+1: SIXBIT /dev/

CALU AC, 102 | DAEMON MOVE AC, [XWD + length, adr of Request DAEMON to per-
arg. list] form a specified task (refer
DAEMON AC, to Paragraph 3.7).
error refurn
normal return

CALLI AC, 103 | JOBPEK tt MOVE AC, adr of arg block Read or write another job's
JOBPEK AC, core. Gives the error return
error return if executed by a non-system-
normal return privileged program.

CALLL AC, 104 | ATTACH' | MOVE AC, IXWD line no., fob no.] | Attach the job to the spec~
ATTACH AC, ified TTY line number.
error return Gives the error retum if
normal return executed by a non-system-

privileged program.

CALU AC, 105 DAEFINH MOVE AC, [XWD + length, adr of Indicate that the request to
arg. list] the DAEMON program has
DAEFIN AC, been completed. Gives the
error return error return if executed by
normal return a non-system-privileged

program,

CALU AC, 106 FRCUUOT'r MOVE AC, [XWD + length, adr of Force a command for job.

arg. list]
FRCUUO AC,
error return
normal return

Gives the error return if ex-
ecuted by a non-system-
privileged program.

2-13

MONITOR CALLS

-380-

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

T
CALL CALLL CALL Function
Mnemonic

CALU AC, 107| DEVLNM MOVE AC, [SIXBIT/dev/] or Set a logical name for this
MOVEI AC, channel no. specified device (refer to
MOVE AC+1, [SIXBITlogical name/] Paragraph 4.8.4).
DEVLNM AC,
error refurn
normal return

CALL AC, 110} PATH. MOVE AC, [XWD + length, adr. of Read or modify the default
argument list] directory path or read the
PATH. AC, current path of a file OPEN
error refurn on a channel. Refer to
normal return Paragraph 6.2.9.1.
ADR: N or SIXBIT/NAME/
ADR+1: Scan switch
ADR+2: PPN
ADR+3: SFD name
ADR+4: SFD name

CALLU AC, 111| METRR. MOVE AC, [XWD N, LOC] Provide performance analysis
METER. AC, and metering of dynamic
error return system variables. Refer to
normal return Paragraph 3.9.
LOC: function code
LOC+1: argument depends
LOC+2: on function code used.
LOC+N-1:

CALLU AC, 112} MTCHR. MOVEI AC, channel no. or Return characteristics of the
MOVE AC, [SIXBIT/dev/] magnetic tape. Refer to
MTCHR. AC, Paragraph 5.5.3.2.
error return
normal return

CALU AC, 113 JBSET. ' MOVE AC, [2,,BLOCK] Execute the specified
JBSET. AC, function of SETUUO for a
error return particular job.
normal return
BLOCK: 0,, job number
BLOCK+1: function,, value

CALLI AC, 114| POKE. MOVE AC, [3,,BLOCKI] Alter the specified location
POKE. AC, in the Monitor. Refer to
error return Paragraph 3.6.3.3.
normal return
BLOCK: location
BLOCK+1: old value
BLOCK+2: new value

5.04 Monitor

2-14

February 1972

-381-

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

MONITOR CALLS

. 1
CALLI AL CALL Function
nemonic

CALLI AC, 115 |TRMNO., MOVE AC, job number Return number of the fer-
TRMNO., AC, minal currently controlling
error return the specified job. Refer to
normal return Paragraph 5.10.5,

CALLI AC, 116 [TRMOP. MOVE AC, [XWD N, ADR] Perform miscellaneous ter-
TRMOP, AC, minal functions. Refer to
error refurn Paragraph 5.10.6.
normal return
ADR: function code
ADR+1: terminals's universal index

Following arguments depend
on function used, '

CALLI AC, 117 |JRESDV. MOVE AC, channel no. Reset the specified channel.
RESDV. AC, Refer to Paragraph 4.8.2.
error refurn
normal return

CALU AC, 120 |UNLOK. MOVSI AC, 1 Unlock a locked job in core.

: MOVSI AC, 0 Refer to Paragraph 3.2.2.4.
HRRI AC, 1
HRRI AC,0
UNLOK. AC,
error return
normal return

CALLI AC, 121|DISK, MOVE AC, [XWD function, ADR] Set or read a disk or file
DISK. AC, system parameter (e.g., set
‘error return tKe disk priority for a
normal return channel or the job)., Refer

to Paragraph 6.2.9.14.

CALLI AC, 122 DVRST.TT MOVE AC, [SIXBIT/dev/] or Restrict the specified device
MOVEI AC, channel no. to a privileged job.
DVRST., AC, . .
error return
normal return

CALLI AC, 123 DVURS".TJr MOVE AC, [SIXBIT/dev/] or Remove the restricted
MOVEI AC, channel no. status of the specified
DVURS. AC, device.
error return
normal return

The CALLI mnemonics are defined in o separate MACRO assembler table,
an undefined OP CODE is found. If the symbol is foun
had appeared in an appropriate OPDEF statement,
RETURN : EXIT

that is

which is scanned whenever

d in the CALLI table, it is defined as though it

If EXIT is undefined, it will be assembled as though the program contained the statement
OPDEF EXIT [CALLI 12]
This facility is available in MACRO V.43 and later.

5.05 Monitor June 1972

MONITOR CALLS -582-

Table 2-2 (Cont)
CALL and CALLI Monitor Operations

"1 This CALLL is a system-privileged UUO available only to users logged in under [1,2] or to programs
running with the JACCT bit set. Complete documentation for system-privileged UUO:s appears in the
Specifications section of the DECsystem-10 Software Notebooks.

TTTAll CALLI's above CALLI 55 do not have a corresponding CALL with a SIXBIT argument. This is to
save monitor table space.

The customer is allowed to add his own CALL and CALL calls to the monitor. A negative CALLI

effective address (=2 or less) should be used to specify such customer—added operations.

2.2.2.2 Suppression of Logical Device Names - Some system programs, €.9., LOGOUT, require
1/0 to specific physical devices regardless of the logical name assignments. Therefore, for any CALLI,
if bit 19 (UU. PHS) in the effective address of the CALLI is not equal to bit 18, only physical names
will be used; logical device assignments will be ignored. This suppression of logical device names

will be ignored. This suppression of logical device names is helpful, for example, when using the

results of the DEVNAM UUO where the physical name corresponding to a logical name is returned.

2.2.2.3 Restriction on Monitor UUOs in Reentrant User Programs - A number of restrictions on UUOs
that involve a high segment prevent naive or malicious users from interferring with other users while
sharing segments and minimize monitor overhead in handling two-segment programs. The basic rules

are as follows:

a. All UUOs can be executed from the low or high segment although some of their argu-
ments cannot be in or refer to the high segment.

b. No buffers, buffer headers, or dump-mode command lists may exist in the high segment
for reading from or writing to any 1/O device.

c. No I/O is processed info or out of the high segment except via the SAVE and SSAVE
commands.

d. No STATUS, CALL or CALLI UUO allows a store in the high segment.

e. The effective address of the LOOKUP, ENTER, INPUT, OUTPUT, and RENAME UUOs
cannot be in the high segment. If any rule is violated, an address check error message
is given.

f. As a convenience in writing user programs, the monitor makes a special check so that
the INIT UUO can be executed from the high segment, although the calling sequence
is in the high segment. The monitor also allows the effective address of the CALL UUO,
which contains the SIXBIT monitor function name, and the effective address of the OPEN
UUO, which contains the status bits, device name, and buffer header oddresses, in the
high segment. The address of TTCALL 1, and TTCALL 3, may be in the high segment for
convenience in typing messages.

5.05 Monitor 2-16 June 1972

-383- MONITOR CALLS

2.2.3 Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100(UJEN) Dismiss real-time interrupt from user mode
(refer to Paragraph 3.8.4),
Op codes 101-107 Monitor prints ?ILL INST. AT USER n and
114-117 stops the job.
123
Op codes 110-113 These op codes are valid on the KI10. If
120-122 used on the KA10, the monitor prints
124-127 ‘ ?KI10 ONLY INST. AT USER n and stops
the job.

2.2.4 Tllegal Operation Codes

The eight /O instructions (e.g., DATAI) and JRST instructions with bit 9 or 10 = 1 (e.g., HALT,
JEN) are interpreted by the monitor as illegal instructions (refer to the System Reference Manual in
the Software Notebooks). The job is stopped and a question mark is printed immediately. A carriage
retum-line feed is then output, followed by an error message. For example, a DATAI instruction
would produce the following: '

?
? ILL INST AT USER addr

2.2.5 Naming Conventions for Monitor Symbols

The names of the monitor's data base symbols contain dots or percent signs so that they can be made
user-mode symbols without conflicting with previously-coded user programs. Data symbols can be

divided into five classes:

1) numbers

2) masks

3) UUO names .
4) GETTAB arguments

5) error codes.

Symbols defining numbers begin with a dot, followed by a two-letter prefix indicating the type of
number, and end with a three-character abbreviation representing the specific number. Numbers are
18-bit quantities and include core addresses and function codes. The following are examples of names

of various numbers:

. JBxxx Job Data Area
. GTxxx GETTAB table numbers
.RBxxx Extended arguments for LOOKUP, ENTER, RENAME

5.06 Monitor 2-17 March 1973

MOMNITOR CALLS -384-

Names for masks start with a two-letter prefix indicating the individual word, followed by a dot, and
end with three characters representing the specific mask. Masks are 36-bit quantities and include bits

and fields. The following are examples of names of masks:

JP.xxx Privilege word bits
JW . xxx WATCH word bits
PC.xxx PC word bits

Names for UUOs implemented after the 5.03 release of the monitor are five or less characters followed

by a dot. For example,

PATH. UUO to modify directory path
TRMOP. UUO to perform terminal functions.

Individual words within a GETTAB table start with a percent sign, followed by two characters repre-
senting the generic name of the table, and end with three characters identifying the specific word.

For example,

%NSCMX CORMAX word in the nonswapping data table.
%CNSTS States word in the configuration table.

Names of bytes and bits within a GETTAB word begin with two characters representing the word,

followed by a percent sign, and end with three characters designating the specific byte.

ST % DSK Byte representing disk system; contained in the states word.
ST % SWP Byte indicating swapping system; contained in the states word.

Error codes returned on a UUO error have names with the following pattern: two characters indicating

the UUO, three characters designating the failure type, and a terminating percent sign.

DMILF% DAEMON error; illegal function.
RTDIU% RTTRP error; device in use.
LKNLP% LOCK error; no locking privileges.

Many of the values useful in user programming are encoded in the parameter file C.MAC for the con-

venience of writing and modifying programs.

5.04 Monitor 2-18 January 1972

-385- MONITOR CALLS

CHAPTER 3
NON-1/0 UUOS

3.1 EXECUTION CONTROL

3.1.1 Starting

A user program may start another program only by using the RUN or GETSEG UUOs (refer to
Paragraphs 3.3.1 and 3.3.2). A user at a terminal may start a program with the monitor commands
RUN, START, CSTART, CONT, CCONT, DDT, and REENTER (refer to DECsystem=10 Operating

System Commands). The starting address either appears as an argument of the command or is stored

in the user's job data area (refer to Chapter 1).

3.1.1.1 SETDDT AC, or CALLI AC, 2 - This UUO causes the contents of the AC to replace the
DDT starting address, which is stored in the protected job data area location .JBDDT. The starting

address is used by the monitor command, DDT.

3.1.2 Stopping
Any of the following procedures can stop a running program:

d. One 1C from the user's terminal if the user program is in a TTY input wait; otherwise,
two 1Cs from the user's terminal (refer to DECsystem-10 Operating System Commands);

b. A monitor detected error;
¢. Program execution of HALT, CALL [SIXBIT/EXIT/1, or CALL [SIXBIT/LOGOUT/].

3.1.2,1 Illegal Instructions (700-777, JRST 10, JRST 14) and Unimplemented OP Codes (101-127)-

Illegal instructions trap to the monitor, stop the job, and print:
?ILL INST. AT USER adr or ?KI ONLY INST, AT USER adr

Refer to Paragraph 2.2.3 for an explanation of op codes 101-127. Note that the program cannot be
continued by typing the CONT or CCONT commands.

5.06 Monitor 3-1 ’ March 1973

MONITOR CALLS -386-
3.1.2.2 HALT or JRST 4 - The HALT instruction is an exception to the illegal instructions; it traps
to the monitor, stops the job, and prints:

?HALT AT USER adr

where n is the location of the HALT instruction. If the HALT instruction is in location 41 and the
program executed a user UUQ (operation codes 001-037), the address in the error message is that

of the user UUO instead of address 41.

However, the CONT and CCONT commands are still valid, and, if typed, will continue the program
at the effective address of the HALT instruction. After a user program HALT instruction followed

by a START, DDT, CSTART, or REENTER command, . JBOPC contains the address of the HALT.

To proceed at the address specified by the effective address, it is necessary for the user or his
program to recompute the effective address of the HALT instruction and to use this address to start
(refer to .JBOPC description, Table 1-1 in Paragraph 1.2.1). HALT is not the instruction used to
terminate a program (refer to Paragraph 3.1.2.3). HALT is useful for indicating impossible error

conditions.

3.1.2.3 EXIT AC, or CALLI AC, 12 - When the value of AC is zero, all I/O devices (including
real=time devices) are RELEASed (refer to Paragraph 4.8.1); the job is unlocked from core; the user
mode write protect bit (UWP) for the high segment is set; the APR traps are reset to 0; the PC flags
are cleared; and the job is stopped. If timesharing was stopped (refer to Paragraph 3.8.3), it is
resumed. In other words, after releasing all I/O devices that close out all files, a RESET is done
(refer to Paragraph 4.1.2). The carriage-return/line-feed is performed, and

EXIT

is printed on the user's terminal, which is left in monitor mode. The CONT and CCONT commands

cannot continue the program.

When the value of AC is nonzero, the job is stopped, but devices are not RELEASed ond a RESET is
not done. Instead of printing EXIT, only a carriage-retum and line-feed is performed, and a period
is printed on the user's terminal, The CONT and CCONT commands may be used to continue the
program. In other words, this form of EXIT does not affect the state of the job except to stop it and
retumn the terminal to monitor mode. Programs using EXIT 1, (MONRT.) as a substitute for EXIT

(to eliminate the typing of EXIT) should RELEASE all devices first.

5.06 Monitor 3-2 March 1973

-397- MONITOR CALLS
3.1.3 Trapping

3.1.3.1 APRENB AC, or CALLI AC, 16 - APR trapping allows a user to handle any and all traps
that occur while his job is running on the central processor, including illegal memory references,
non-existent memory references, pushdown list overflow, arithmetic overflow, floating—point over-
flow, and clock flag. To enable for trapping, a APRENB AC, or CALLI AC, 16 is executed, where

the AC contains the central processor flags to be tested on interrupts, as defined below:

Name AC Bit Trap On
AP.REN 18 400000 Repetitive enable
AP.POV 19 200000 Pushdown overflow
AP.ILM 22 20000 Memory protection violation
AP.NXM 23 10000 Nonexistent memory flag
AP.PAR 24 4000 Parity error
AP.CLK 26 1000 Clock flag
AP.FOV 29 100 Floating=point overflow
AP.AQV 32 10 Arithmetic overflow

When one of the specified conditions occurs while the central processor is in user mode, the state of
the central processor is CONditioned Into (CONI) location, .JBCNI, and the PC is stored in location
.JBTPC in the job data area (refer to Table 1-1 in Paragraph 1.2.1). Then control is fransferred to
the user trap-answering routine specified by the contents of the right half of .JBAPR, after the
arithmetic and floating—-point overflow flags are cleared. (However, the job is stopped if the PC

is equal to the first or second instruction in the user's frap routine.) The user program must set up
location .JBAPR before executing the APRENB UUO., To return control fo his interrupted program,
the user's trap-answering rduﬁne must execute a JRSTF @ ,JBTPC which clears the bits that have been

processed and restores the state of the processor.

The APRENB UUQ normally enables traps for only one occurrence of any selected condition and must
be re-issued after each condition of a frap. To disable this feature, set bit 18 to a 1 when executing —

the UUO. However, even with bit 18 = 1, clock interrupts must be re~enabled after each trap.

If the user program does not endble traps, the monitor sets the PDP-10 processor to ignore arithmetic
and floating=point overflow, but enables interrupts for the other error conditions in the list above.
If the user program produces such an error condition, the monitor stops the user job and prints one of
the following appropriate messages:

?PC OUT OF BOUNDS AT USER PC addr

?ILL MEM REF AT USER PC addr

? NON-EX MEM AT USER PC addr

?PDL OV AT USER PC addr
? MEM PAR ERROR AT USER PC addr

The CONT and CCONT commands will not succeed after sucH an error.

5.06 Monitor 3-3 March 1973

FONITOR CALLS -338-

3.1.3.2 Error Intercepting - When certain conditions occur in the program, the monitor intercepts
the condition and examines location .JBINT in the job data area. Depending on the contents of
this location, control is either retained by the user program or is given to the monitor for action. If
this location is zero, the job is stopped and the user and possibly the operator are notified by appro-
priate messages, if any. If location .JBINT is non-zero, the contents is interpreted as the address
of a block with the following format:

LOC: XWD N, INTLOC

LOC+1: XWD BITS, CLASS

LOC+2: 0
LOC+3: 0

where N is the number of words in the block (N >3).
INTLOC is the location at which the program is to be restarted.
BITS is a set of bits interpreted as follows:

If bit 0=1, an error message, if any, is not to be typed on the user's
terminal or, in some cases, the operator's terminal.

If bit 0=0, an error message, if any, will be typed on the user's
terminal and possibly the operator's terminal.

CLASS is a set of bits interpreted as follows:

For each type of error, CLASS has a specific bit. For a given error, the job will
be interrupted if the appropriate bit is 1 and the content of LOC+2 is zero. The
job will be stopped if either the appropriate bit is O or the appropriate bit is 1 and
the content of LOC+2 is not zero. By requiring LOC+2 to be zero, the possibility
of a loop occurring is prevented.

The monitor examines the CLASS bits and the contents of LOC+2 to determine if fheiiob is fo be
stopped or interrupted on the particular error. If the job is interrupted, the following information
is then stored in LOC+2 and LOC+3:

LOC+2 The last user PC word.

LOC+3 RH = the channel number.
LH = the eror bit as defined in CLASS (see below).

The job is then restarted at location INTLOC.

The CLASS bits are defined as follows:

Device Errors

1
Bit 35 (ER.IDV) represents device errors that can be corrected by human
intervention. The appropriate message returned to the user is

DEVICE xxx OPR zz ACTION REQUESTED

where xxx is the device name, and zz is the number of the station at which the opera-
tor is located. The operator receives the message

%PROBLEM ON DEVICE xxx FOR JOB n

TThis bit depends on FTOPRERR which is normally off in the DECsystem~1040.
5.06 Monitor 3-4 March 1973

-389- -~ MOHITOR CALLS

where xxx is the device name, and n is the number of the job that is stopped. When
the operator has corrected the error, he starts the job with the JCONT command and
the message

CONT BY OPER

appears on the user's terminal to signify that the error has been corrected.

1C Intercept

Bit 34] (ER.ICC) indicates a 1C intercept. This intercept allows the user's program

to process a 1C itself instead of allowing the job to automatically return to monitor
level. If this bit is 1, the job does not return to monitor level on two 1Cs (or on one
1C if the job is in TTY input wait), but instead traps to the user's interrupt routine.
There are no messages associated with this bit. When enabled for 1C, the program
should normally exit immediately by releasing any special resources and issuing an
EXIT UUO (MONRT. or CALLI 1, 12). . If the user types .CONT, the job continues.

TITLE CONCIN == SAMPLE FOR CONTROL=C INTERCEPT

3 THIS ROUTINE SHOWS HOW TO ENABLE FOR A CONTROL-C INTERCEPT
$AND HANDLE IT CORRECTLY. THE IDEA IS TO GET THE USER TO
s "ONITOR LEVEL AS QUICKLY AS POSSIBLE,

LoC 134 . $SET POINTER IN +JBINT
EXP INTBLK 3 TO THE INTERRUPT BLOCK
RELOC
INTBLK: XWD 4,INTLOC $4 WORDS LONG,,PLACE TO START
' XWD 3,2 3 NO MESSAGE CONTROL,,TYPE 2 (1C)
z $ GETS LAST USER PC

Z sLH GETS INTERRUPT TYPE
s THE INTERRUPT ROUTINE STARTS HERE '

INTLOC: MOVEM 1, TEMP] $SAVE AC |
HLRZ 1, INTBLK+3- $ GET REASON FOR INTERRUPT
CAIE 1,2 $SEE' IF CONTROL~C
HALT . $ ERROR IF NOT.

$RELEASE ANY SPECIAL RESQOURCES HERE
$ BUT BE CAREFUL THAT THIS DOES NOT
s+ TAKE VERY LONG OR CAUSE A LOOP,

EXIT I, $ RETURN TO MONITOR

MOVE 1,INTBLK+2 $ GET RETURN PC

EXCH 1,TEMPI s RESTORE AC

PUSH P, INTBLK+2 s SAVE RETURN ADDRESS

SETZM INTBLK+2 sCLEAR INTERUPT TO ALLOW ANOTHER ONE

POPJ P, $RETURN TO PROGRAM WHERE STOPPED
TEMPl: Z s TEMPORARY

T e o
This bit depends on FTCCIN which is normally off in the DECsystem=-1040

5.06 Monitor 3-5 March 1973

- MONITOR CALLS -390-

The following example illustrates user 1C processing by a program which will not let users reach mon-

itor level by means of a 1IC.

LocC 154 $SET UP .JBINT TO POINT TO
EXP INTBLK 3 THE INTERRUPT BLOCK
RELOC

INTBLK: XWD 3,INTLOC 33 WORDS LONG,,PLACE TO START
XWD 8,2 s NO MESSAGE CONTROL,,TYPE 2 (tC)
z $ GETS LAST USER PC
z sLH GETS INTERRUPT TYPE

s HE INTERRUPT ROUTINE

INTLOCs SKIPL RENFLA $0K TO FAKE A REENTER?

JRST) s NO, CURRENT ROUTINE CANNOT BE
s INTERRUPTED

SETZM INTBLK+2 s YES, RE-ENABLE INTERRUPT AND GO

JRST REENRT s TO INTERRUPT ROUTINE

SETOM RENSWH $SET FLAG TO SAY "REENTER AS SOON AS
s YOU CAN"

PUSH P, INTBLK+2 3 GET LAST PC, PUSH/POP

SETZM INTBLK+2 s RE-ENABLE INTERRUPT

POPJ P, s GO BACK TO INTERRUPTED ROUTINE

NOTE THAT IF A CONTROL-C IS
TYPED AFTER THE SETZM, THE
INTERRUPTS NEST,

ws we we

Off-line Disk Unit

Bit 33 (ER.OFL) indicates a disk unit has dropped off-line. The operator is given the
message

UNIT xxx WENT OFF-LINE (FILE UNSAFE)
PLEASE POWER DOWN AND THEN TURN IT ON AGAIN

immediately and then once every minute. The user receives the message

DSK IS OFF-LINE. WAITING FOR OPERATOR
ACTION. TYPE « TO GET A HUNG MESSAGE

(IN 15 SECONDS). DONT TYPE ANYTHING TO WAIT
FOR THE OPERATOR TO FIX THE DEVICE.

5.06 Monitor 3-6 March 1973

-391- : MONITOR CALLS

If the user has a system resource, he receives the additional message:

THE SYSTEM WILL DO NO USEFUL WORK UNTIL
THE DRIVE IS FIXED OR YOU TYPE 1C

Full File Structure

Bit 32 (ER.FUL) indicates that a file structure has filled up with data (i.e., there are
no free blocks). There are no messages associated with this bit.

Exhausted Disk Quota

Bit 31 (ER.QEX) indicates that the user's disk quota has beén exhausted. The user
receives the message

[EXCEEDING QUOTA file structure name]

Exceeded Time Limit

Bit 30‘ (ER.TLX) indicates that the user's run fime limit (as set by a previous

SET TIME command) has been exceeded. This bit is used only by non-batch
jobs. The user receives the message

? TIME LIMIT EXCEEDED

3.1.4 Suspending

3.1.4.1 SLEEP AC, or CALLI AC, 31 - This UUO temporarily stops the job and continues it auto-
matically ofter the elapsed real-time (in seconds) indicated by the contents of the AC. There is

an implied maximum of approximately 68 sec (82 sec in 50-Hz countries) or 1 min. A program that
requires a longer SLEEP or HIBER ﬁrﬁe should use the HIBER UUO with no clock request and then call
DAEMON, via the .CLOCK function (refer to Paragraph 3.7.2), to wake it.

3.1.4.2 HIBER AC, or CALLI AC, 722 - The HIBERNATE UUO allows a job to become dormant
until a specified event occurs. The possible events that can wake a hibernating job are: 1) input
activity from the user's TTY or any TTY INITed by this job (both line mode and character mode),

2) PTY activity for any PTY currently INITed by this job, 3) the time-out of a specified amount
of sleep time, or 4) the issuance of a WAKE UUO directed at this job either by some other job with
wake-up rightsor by this job at interrupt level.

The HIBERNATE UUO must contain in the left half of AC the woke-condition enable bits and in the
right half the number of ms for which the job is to sleep before it is awakened.

1 This bit depends on FTTLIM which is normally off in the DECsystem=-1040.
2This UUO depends on FTHIBWAK which is normally off in the DECsystem=-1040.

3-7 / March 1973

MONITOR CALLS -392-

The call is as follows:

MOVSI AC, enable bits ;get HIBERNATE conditions
HRRI AC, sleep time inumber of ms to sleep
HIBER AC, jor CALLI AC, 72

error return
normal return

The HIBERNATE UUO enable condition codes are as fol lows:

Bits Meaning
18-35 Number of ms sleep time. It is rounded up to an even

multiple of jiffies (maximum being 2 “ jiffies). Zero
means no clock request (i.e., infinite sleep).

15-17 WAKE UUOQ protection code:
Bit 17 (HB.RWT) = 1, project codes must match.
Bit 16 (HB.RWP) = 1, programmer codes must match.
Bit 15 (HB.RWJ) = 1, only this job can wake itself.

13-14 Wake on TTY input activity:
Bit 14 (HB.RTC) = 1, wake on character ready.
Bit 13 (HB.RTL) = 1, wake on line of input ready.

12 (HB .RPT) Wake on PTY activity since last HIBERNATE.
0 (HB.SWP) Causes job to be swapped out immediate ly.

An error return is given if the UUO is not implemented. The SLEEP UUO should be used in this case.

A normal retum is given after an enabled condition occurs.

Jobs either logged=in as [1,2] or running with the JACCT bit on can wake any hibernating job regard-
less of the protection code. This allows privileged programs, which are the only jobs that can wake

certain system jobs, to be written.

A RESET UUO always clears the protection code and wake-enable bits for the job. Therefore, until
the first HIBERNATE UUO is called, there is no protection against wake~up commands from other
jobs. To guarantee that no other job wakes the job, @ WAKE UUO followed by a HBERNATE UUO
with the desired protection code should be executed. The WAKE UUO ensures that the first HBER-
NATE UUO always returns immediately, leaving the job with the correct protection code.

3.1.4.3 WAKE AC, or CALLI AC, 73' - The WAKE UUO allows one job fo activate a dormant job
when some event occurs. This feature can be used with Batch so that when a job wants a core dump
taken, it can wake up a dump program. Also, real-time process control jobs can cause other process
control jobs to run in response to a specific alarm condition. The WAKE UUO can be called For‘u

RTTRP job running at interrupt level, thereby allowing a real-time job to wake its background portion

]This UUO depends on FTHIBWAK which is normally off in the DECsystem-1040.

3-8 March 1973

-393- MONITOR CALLS

quickly in order to respond to some real-time condition. (Refer to Paragraph 3.8.1.2 for the

- restrictions on accumulal'ors when using the RTTRP UUO at interrupt level.)

The call is as follows:

‘MOVE AC, JOBNUM ;humber of job to be awakened

WAKE AC, ;or CALLI AC, 73

error return

normal return -
An error retutn is given if the proper wake privileges are not specuf‘ed. There is a wake bit associated
with each job. If any of the enabled conditions specified in the last HIBERNATE UUO occurs, then
the wake bit is set. The next time a HBERNATE UUO is executed, the wake bit is cleared and the
HIBERNATE UUO returns immediately. The wake bit eliminates the problem of a job going to sleep

and miissing any wake conditions.

On a normal return, the job has been awdkened and has started at the location of the normal retum

of the HIBER UUO that cdused it to become dormant .,

3.2 CORE CONTROL
For various reasons, privileged jobs may desire to be locked in core so that they are never to be con-
sidered for swapping or shuffling, Some examples of these jobs are as follows:

Real-time jobs These jobs require immediate access to the processor in response
to on interrupt from an 1/O device.

Display jobs The display must be refreshed from a display buffer in the user's
core area in order to keep the display picture flicker-free.

Batch Batch throughput may be enhanced by locking the Batch job
controller in core.

Performance analysis ~ Jobs monitoring the activities of the system need to be locked
in core so that they can be invoked quickly with low overhead
in order to record activities of the monitor.

3.2.1 Definitions

In swcppvng and non-swapping systems, unlocked jobs can occupy only the physical core not occupied
by |ocked jobs. Therefore, locked jobs and timesharing jobs contend with one another for physical
. core memcry. In order to control this contention, the system manager is provided with a number of

system parameters as described below.

Total User Core is the physical core that can be used for locked and unlocked jobs. This value is

equal to total physical core minus the monitor size.

CORMIN is the guaranteed amount of contiguous core that d single unlocked job can have. This value

is o constant system parameter and is defined by the system manager at monitor generation time using

5.06 Monitor 3-9 March 1973

MONITOR CALLS -394~
MONGEN, It can be changed at monitor startup time using the ONCE ONLY dialogue. This value

can range from 0 to Total User Core.

CORMAX is the largest contiguous size that an unlocked job con be. It is a time=-varying system
parameter that is reduced from its initial setting as jobs are locked in core. In order to satisfy the
guaranteed size of CORMIN, the monitor never allows a job to be locked in core if this action would
result in CORMAX becoming less than CORMIN. The initial setting of CORMAX is defined at monitor
generation time using MONGEN and can be changed at monitor startup time using the ONCE ONLY
dialogue. CORMAX can range from CORMIN to Total User Core. A guaranteed amount of core
available for locked jobs can be made by setting the initial value of CORMAX to less than Total User

Core.

3.2.2 LOCK AC, or CALLI AC, 60"

This UUO provides a mechanism for locking jobs in user memory. The user may specify if the high
segment, low segment, or both segments are to be locked, and whether the core is to be physically
contiguous. Note that on KA10-based systems, core is always allocated contiguously, and that the

job may be moved to an extremity of user core before it is locked.

A job may be locked in core if all of the following are true:
a. The job has the LOCK privilege (set from the accounting file ACCT.SYS by LOGIN).

b. The job, when locked, would not prevent another job from expanding to the guaranteed
limit, CORMIN. ‘ '

c. The job, when locked, would not prevent an existing job from running. Note that
unlocked jobs can exceed CORMIN .,

d. The job when mapped, if specifying exec mapping, would not exceed the maximum
amount of exec virtual address space available for locking (KI10 only).

The call is:
MOVE AC, [XWD high seg. code, low seg. code]
LOCK AC ;or CALLI AC, 60
error return ;AC contains an error code

normal return

The segment codes are a series of bits which specify the way in which the high segment (LH code)
and the low segment (RH code) are to be locked. The order and position of the bits in the left half
correspond to the order and pasition of the bits in the right half; that is, to obtain the bit number for
the high segment, subtract 18 from the comresponding bit for the low segment. The bits are shown

be|ow.

]This UUOQ depends on FTLOCK which is normally off in the DECsystem-1040,

5.06 Monitor 3-10 March 1973

-395- MONITOR CALLS

Bit 17 (high segment) If 1, lock the segment in the manner indicated by
Bit 35 (low segment) the following bits.

If 0, do not lock the segment; the following bits
are ignored.

Bit 16 (high segment) If 0, map contiguously in the exec virtual memory

Bit 34 (low segment) (always implied on the KA10). This causes the
segment to be added to the exec virtual address
space so that it can be executed in exec mode. For
example, this is required when exec mode real-time
trapping (RTTRP) is used On the KI10, the amount
of exec virtual address space used by locked jobs
is a limited resource with a defined maximum per
processor. If mapping the segment would cause the
maximum to be exceeded, the LKNEM% error
retum is given. The maximum amount available can
be obtained from the CPU variable GETTAB table
for each processor (GETTAB word %CVEVM). The
current amount used can also be obtained from the
table (%CVEVU).
If 1, do not map in exec virtual memory.

Bit 15 (high segment) If 0, lock in contiguous physical memory locations

Bit 33 (low segment) (always implied on the KA10). This causes the
segment to be moved and remopped, if necessary,
so that its physical core is contiguous. On the
KA10 system, the segment is also moved to one end
of user core in order to minimize fragmentation of
memory .

If 1, do not attempt physical contiguity.

If the user requests a segment to be locked in contiguous physical memory, the monitor attempts to
lock the segment as low in physical memory as possible. When the segment is locked below 112K,
physical and virtual contiguity are equivalent, and thus in this case, virtual contiguity does not

require the exec virtual memory resource to achieve contiguity.

On a KA10-based system, physical memory is always allocated contiguously and user segments are

directly addressable in exec mode, and therefore, bit codes 1,3,5 and 7 are synonomous.

The setting of bits 33 and 34 (bifs 15 and 16) is compatible with the implementation of the LOCK
UUO on a KA10-based sysferﬁ. That is, code 1 is the most restrictive, so that a program coded for
the KA10 system that implicitly uses these properties will also run on the K110 system. Applications
that do not require all properties can add the appropriate bits to the LOCK UUO's calling sequence.

On a normal return, the job is locked in core. If there is a high segment, the LH of AC contains its
absolute address in units of pages (one page is 512 words). The value can be converted to a word

address by shifting it left nine bits. If there is no high segment, the LH of AC contains zero. The

RH of AC contains the absolute address of the low segment, shifted right nine bits.

5.06 Monitor 3-11 March 1973

MONITOR CALLS -396-

On an error retum, the job is not locked in core and AC either is unchanged or contains an error
code. The AC is unchanged when the LOCK UUQ is executed in monitors previous to the implemen-
tation of the UUO. An error code indicates the condition that prevented the job from being locked.

The error codes are as follows:

Emor Code Name Explanation

0 LKNIS% The UUO is not included in this system because it has
not been defined with MONGEN or because the appro-
priate feature test switch is off.

1 LKNLP% The job does not have locking privileges, or RTTRP
privileges, if required.

2 LKNCA% If the job were locked in core, it would not be possible to
|
run the largest existing non-locked job. (Applies only to
swapping systems.)

3 LKNCM% If the job were locked in core, it would not be possible fo

meet the guaranteed largest size for an unlocked job, that
is, CORMAX would be less than CORMIN.

4 LKNEM% The mode of locking requested exec virtual memory mapping
but the allowable amount of exec mapping has been exhausted.
NOTE

The CORE UUQO may be given for the high segment of a locked
job only if it is removing the high segment from the addressing
space. When the segment is locked in core, the CORE UUO and
the CORE command with a non-zero argument cannot be satisfied
and, therefore, always give an error return. The program should
determine the amount of core needed for the execution and request
this amount before executing the LOCK UUO.

Although memory fragmentation is minimized by both the LOCK UUO and the shuffler, the locking
algorithm always allows job locking, even though severe fragmentation may take place, as long as
1) all existing jobs can continue to run, and

2) at least CORMIN is available as a contiguous space (see Figure 3-1E).

Therefore, it is important that system managers use caution when granting locking privileges. The

following are guidelines for minimizing fragmentation when using the LOCK UUO.

3.2.2.1 KA10 Systems - The guidelines for KA10 systems are:
a. There is no memory fragmentation if two jobs or less are locked in core.

b. There is no fragmentation if the locked jobs do not relinquish their locked status
(i.e., no job terminates that has issued a LOCK UUO). In general, jobs with
locking privileges should be production jobs.

5.06 Mon itor 3-12 March 1973

-397- MONITOR CALLS

c¢. If a job issuing a LOCK UUO is to be debugged and production jobs with locking
privileges are to be run, the job to be debugged should be initiated and locked in
core first, since it will be locked at the top of core. Then, the production jobs
should be initiated since they will all be locked at the bottom of core. This pro-
cedure reserves the space at the top of core for the job being debugged and
guarantees that there is no fragmentation as it locks and unlocks.

d. With a suitable setting of CORMIN and the initial setting of CORMAX in relation
to Total User Core, the system manager can establish a policy which guarantees

1) a maximum size for any unlocked job (CORMIN),

2) o minimum amount of total lockable core for all jobs (Total User Core -
CORMAX), and

3) the amount of core which locked and unlocked jobs can contend for on a
fir;f—come-ﬁrsf-serve basis (Total User Core - initial CORMAX + CORMIN),

3.2.2.2 Core Allocation Resource = Because routines that lock jobs in core use the swapping and
core allocation routines, they are considered a sharable resource. This resource is the semipermanent
core allocation resource (mnemonic=CA). When a job issues a LOCK UUO and the system is currently
engaged in executing a LOCK UUO for another job, the job enters the queue associated with the core
allocation resource. Because a job may share a queue with other jobs and because swapping and
shuffling may be required to position the job to where it is to be locked, the actual execution time

needed to complete the process of locking a job mighf be on the order of seconds.

When it has been established that a job can be locked, the low segment number and the high segment
number (if any) are stored as flags to activate the locking routines when the swapper and shuffler are
idle. The ideal position for the locked job is also stored as a goal for the locking routines. In KA10
swapping systems, the ideal position is always achieved to guarantee minimum fragmentation. In
nonswapping systems, minimum fragmentation is achieved only if the ideal position does not contain

an active segment (see Figure 3-1).

In swapping systems, after the job is locked in core, the locking routine determines the size of the

new largest contiguous region available to unlocked jobs. This value will be greater than or equal
to CORMIN. If this region is less than the old value of CORMAX, then CORMAX is set equal to

the size of the new reduced region. Otherwise, CORMAX remains set to its old value.

3.2.2.3 UNLOK. AC, or CALLI AC, 120]— This UUO provides a mechanism for d job to unlock
itself without doing a RESET UUO. The user can specify if one or both segments are to be unlocked.

The call is:
MOVSI AC, 1 ;1f high segment is to be unlocked
MOVSI AC, 0 ;if no high segment, or if high segment
;is not to be unlocked
HRRI AC, 1 . 3if low segment is to be unlocked.
HRRI AC, O ;if low segment is not to be unlocked.
UNLOK. AC, ;or CALLI AC, 120

error return
normal return

]This UUO depends on FTLOCK which is normally off in the DECsystem-1040.

3-13 March 1973

MONITOR CALLS

A BEFORE
B N L L L L T

1
!
! MCNITOR
1]

- e

z---'.------.------.---'I’!
V1IP0I 708
YI01 0070007777707 727771777°
N AR RN AN A

H --—«----.--g---—--------!
VO TIME=SHARING JOB !
I ISSGING LOZK ULO '
lecmrocaerromesnsnnrnemwn !
NILLILILIII I
V2712077001777 777072777777F)
V1110770707272 7070777277777)
V0717077707777 707777777728
Y17707727700772077702777777°
V107220070077 7272007777777°
Y2071 770772042777774777/77!
YI0127770748700777070707777!
V172270010777 70207077/7777)
Y1007700747027000707777277°
Y0070 7777700270077777/77:
YI1127770770700272007771777%
/1771707080027 7727777777°%
Y1711 1770077000772727777)

HE R R L]

B) BEFQORE

' LR R N R R K N N R AR
'

! MCNITOR

1
i--.-‘.--u-‘-.-----..—--u
VIPIIIILINIIII I

NI
Y020 20072702040702770407777°

M [}

TIMEmSWHARING J0OB !

155UING LOCK Lin0 '
R T I T L T XTI
V1210100277700 7000777777°
YI/1E17 777707777020 700777777)
1002771707770 772¢0777777°
YL 0008700747777/
Y1007 077877270770777777%
VIIIETIIII 0000010077
YIPIIIII P71 07770
Y120/0107077720727772777/7777°
PP 2LI L1170 77247777)

2w ew am -

SI0LP1EL70077727707477077 0.

Y1110 00200000717777)
V1111077000707 07177

|nncmeravronsnarvanvonwee!

! LOCKED JOR !
]
1

cm s

o

¢
O

[B S N I T T T I I

2
[
L IR SN B T T S I T I T I T . I |

R I B A O T4 L2

-398-

AFTER

' .‘---n--a--o----.---ﬁoﬂcz

' MON]TOR

PN,

e L L el bl il
VII1202000707020¢807070777°
YILIIIILIEIEL NN
VIIIIIIIIII 1100700022077
V2110070207777 721777107777!
VIIIIILI727707707007077777%
VILILILIIIN NI
YILIILIIINIIPP T
VITIIIIIIIIIIN N
VIIIISIIENE I
i e
NN R d i As:
CILILILI I NEII L7
NITLLLINPIII1E000777
YIILLLIIIITN 1777
ILIIISIPLI0P7070002777/7)
SIIIIIIIILNINIIN I
NI
VIIIPIII107 70000770
lercwnmmeencanncnnwnare=w!
' LJQCKED JO= !
H !
! !

ERE R DR R LR L L L A Rl e Rl

MON1TOR

LOCKER JOB

[]
'
'
]
H
v
.
1]
.

Y4 nw e w em 2w ve

| . Ll ok h ke il R
IIIIIILIIIIII1000007707
YIII117174727720000077777!
VL1177
YIISIIIIIEINII N7
CILIIILIII7 00070717
VNNV TR NN
VILEIIILIII AN
YIFIIII PN
NN VNN NI
CIIIIIIIIIIIII07707177 1}
CJILIIIIIII Y
CIIIIIIINI 077
VIIIIII77 7007707072077
VIILIIIIIIII N7
YIIIIIIIILI P11 17777
NN aieids

| . L. L L L L X T

:
! LOCKED JCh
1
)

.
]
H
M
i
P L L L L L L L L TN

Figure 3-1 Locking Jobs In Core on KA10 Systems

3-14

P 9 ® > 22 2 42 T S+ 39 s ?

March 1973

[ISP T T T« B I R N B I I T B

C) BEFQRE
!-----------..u--.----q-!
! . !
! MONJTOR !
1
! LOCKED JCH !
! !
! *

Y1140 0707720227020700070727°
YI017727707770041470777777°
: -"Q"-.---~.-.'---ﬂ--..-!
TIME=SHARING JOB A
! I1SSUING LOCK uuo !
-qdn-------n-----quqiu-!
Y00007072077777077772777
Y0010 207777702777777777247)
V1770077777000 227707770777°
NLLIILIIIIII77722007007
SI0I70202007077207077077771°
Y270 2020707177202272770277°
VOLLLIE) 10107771077 772777°
s
SI01010770070702077277277
SLIIIIII0IIIN0I12207007)

ML L L L L L LT Y YN |

! LOCKED JOB '
! !
HEL R E P T Y T T T ey pupupup i
D) BEF ORE

!--.—----u--u---—-nnou.u!
!

! MON]1TOR

'

L i
YIPIIII 727007007727 77700
Y1077 70707207270077727777!

!----ﬂ~~-—--..n---n-----:

! LOCKED J0B :

) “ [)
), i

2w rw ew sm

’---nn-;-—..-,--.--.—--a!
Y277207777700701774707777%
Y1117 10077007027707077277)
e T T
TIME=SHARINSG JOB !
ISSUING LOCK Juo !

1
*

. s m-

-.w------n-CO-----QM;--:
Y0110 001700770270727777!
NILIILILIII 01101400727
SILLILINI N0 0120747100°

Y001 777700/22800072707007707Y

Y0112 02007000707020777272°
!---—o‘c---.-n--g--uv---nu!
PLOTKEDR J03 !
. !
.

lomncnswvwronenrarmtcamm!

) -
(@]

-399-

> T 2 9292 2?2

L R B A I)

L 2 I I I I Y

T 45 9 3 2

MAX

X
b
>

MONITOR

AFTER

-a--.uuq--q..-----.-nnog

MONTTOR

LAALE LAY LYY Y P X LN

LOCKED JOB

LEEL L L LR LELE LN LELE LA LY]

LOCKED JOB

N oy s 2w em s sw s w2

.w e B BT Gw e e .

[Y T P T P T
YOLL11007777070770777¢777
1112000707720 27007¢02777)
YIII17 7022072770078 00777
YIIIIIII2077770700070777)
YIPLIIIII7 0000007710207
YILLIII1I100000000100777
SI01P7777720770707077270777
Y1111 17727001287/0077)
Y1117 100770000480274077
Y1110 770770007707777777
Y1010 0070770770772007770277%
YII1I7172020707777077777277)
YIEL10172772700700270707778
Imrecernsmrarernwwcavemae!
+ LOCKED J0B
[}
1]

halad A Al B L L R L L LR Rl A R B X Rl]

.. - o

AFTER

HE Y P T L L L P Y T |

MON]TOR

-

- -

!-------n---n.---on-n-n-z

YIILII110700707007707007777
SILI0I01700771707772/77272771)

BE XL R R R L LY RS P LT, |

! LCCKED JOB !
|

AL LELEE T LI LALLM

LOCKED JOB

2w ew va ma
. .- -

!
|oomencsnerscnnnreranncal
Y1111 7200000770007777778
Y27/ 707720772707070777777%
Y1110 0027070070/4777007778
YILLLIP1107077720022727077
SII/117727720477072777440777%
Y1177 07277770700702777777)
1117010070177 77727777777)
E///////////////////////s
LOCKED J0B H

|
!

- -

LA TR P P R Y P

Figure 3-1 Locking Jobs In Core on KA10 Systems (Cont)

3-15

CALLS

9]
O

LR SR 2 2R 20 B EE R I IR I I W
X
>
x

-
.

CORMAX
)

P > 3 4 4 9

March 1973

MONITOR CALLS

E) Unlikely Fragmentation Case

REFCRE
:--n--uu.t.--.----u.-n—-‘
: !
! MG ITOR !
! !
S
! TIME-SHARING JOB !
VOISSUING LOCK uuo !

!--n---------------.----!
NIL111 100007000770 7777
YOPLLII02700787270707277777)
V1127727700027 70272¢07777!
V0102771707708 7070747/777°
NLL12IL11200707770000777
Y007 2707120772770727707777°
V01007700007 2277720777777

R R T T Ry o |

' LOCKED JOs !
lemarmevercacacnacsannre!
Y007000770772027270770777777°
V1172000 0000070027407777)
V1107070000777 76/2777777
SI117277007077777777777777°
Y1170 7007700707770777777)
Y1817 777077122772727277777!
losumaraaw L LT TR T T
! LOCKED JOCS§ !
]]
!

—Cmam.- amr—— LY T wr e |

+ 2 22 2D 9> 2 e

-400-

AFTER

i
! MOMITOR !
! !
leronwenenrenenesesesare]
VIIIIII707000707700077717}
111007220007 720270777¢4777)
YILIIIIIEINI0070001077078
SI00077070707007727207700777)
V1117120777770 7000777177¢7)
VIIIIIIINII1I00701011077 7
SI001170070777707000777)
V1117177220 0720002070777)
VIIIIIIIIPIIN100717717)
VI11007772770701072077770777)

!o--------—----..------ﬂg

! LOCKED JOB !

!-----n------.---f--ﬂ---!

! LOCKED JOB

- . e

locnsmcasarononananasnre

V2777000770 77007700717777°
VIVIIII1177070070000707778

'--.------‘---—-----.--F!

! LOCKED JOE !
(] H
!

.n.----o-.---....'-..'&.!

Figure 3-1 Locking Jobs In Core on KA10 Systems (Cont)

(9
o
T 9 % D e P Hs eX
=
>
x

An error return is given if the UUQ is not implemented. If this is the case, a job can relinquish its

locked status when either the user program executes an EXIT or RESET UUO, or the monitor performs
an implicit RESET for the user. Implicit RESETS occur when

a. The user program issues a RUN UUO, or

b. The user types any of the following monitor commands: R, RUN, GET, SAVE,
SSAVE, CORE 0, and any system program~invoking command.

NOTE

If several jobs are sharing a locked high segment, the
high segment is unlocked only when the SN%LOK bit is
turned off for all jobs sharing the segment (i.e., when all
jobs which executed the LOCK UUOQ have performed the
unlock function) (refer to GETTAB table 14).

On a normal return, fthe segment (or job) is unlocked and becomes a candidate for swapping and

shuffling. Any meter points (METER.UUO) are deactivated end, if the low segment is unlocked, any

real-time devices are RESET. CORMAX is increased to reflect the new size of the largest contiguous

region available to unlocked jobs. However, CORMAX is never set to a greater value than its initial

sefting.

March 1973

-1401- MONITOR CALLS

3.2.3 CORE AC, or CALLI AC, 11

This UUO provides a user program with the ability to expand and confract its core size as its memory
requirements change. To allocate core in either or both segments, the left half of AC is used to
specify the highest user address to be assigned to the high segment and the right half is used to specify
the highest user address in the low segment. The monitor will assign the smallest amount of core which
will satisfy the request. If the left half-of AC contains O, the high segment core assignment is not
changed. If the left half of AC is non-zero and is either less than 400000 or the length of the low
segment, whichever, is greater, the high segment is eliminated. If this is executed from the high seg-
ment, qﬁ iiléga| memory error message is printed when the monitor attempts to return control to the
illegal address.

A RH of 0 leaves the low segment core assignment unaffected. The monitor clears new core before

assigning it to the user; therefore, privacy of information is ensured.

The error retum is given if:

1) The LH is greater than or equal to 400000 and the system does not have a
two-segment capability.

2) The LH is greater than or equal to 400000 ond the user has been meddling
without write access privileges (refer to Paragraph 6.2.3).

3) The LHand the RH are both zero.

In swapping systems, this programmed operator retums the maximum number of 1K core blocks (all of
core minus the monitor, unless an installation chooses to restrict the amount of core) available to the
user. By restricting the amount of core available to users, the number of jobs in core simultaneously
is increased. In nonswapping systems, the number of free and dormant 1K blocks is retumed; therefore,

the CORE UUO and the CORE command retum the same information.

For compatibility, the K110 also returns the number of 1K blocks available even though core is allo-
cated in 512-word pages. The value rétumed is truncated fo the nearest multiple of 1K (e.g., if 21
pages are available, the value retumed in 10K). [f it is necessary to obfain the exact amount of core
available in units of pages, the user can examine the monitor location CORMAX (in GETTAB table
12) with the GETTAB UUO (refer to Paragraph 3.6..3.4).‘ CORMAX is the maximum number of words

available to the user and thus can be converted to either pages or K.

The call is:

MOVE AC [XWD HIGH ADR or 0, LOW ADDR or 0] _‘
CORE AC, ;or CALLI AC, 11

error return
normal return

3-17 March 1973

MONITOR CALLS -402-

The CORE UUO re-assigns the low segment (if RH is non-zero) and then re-assigns the high segment
(if LH is non-zero). If the sum of the new low segment and the old high segment exceeds the maximum
amount of core allowed to a user, the error retum is given, the core assignment is unchanged, and the
maximum core available to the user for high and low segments (in 1K blocks) is returned in the AC.

In a nonswapping system, the number of free and dormant 1K blocks is returned.

If the sum of the new low segment and the new high segment exceeds the maximum amount of core
allowed to a user, the error retum is given, the new low segment is assigned, the old high segment
remains, and the maximum core available to the user in 1K blocks is returned in the AC. Therefore,
to increase the low segment and decrease the high segment at the same time, two separate CORE
UUO:s should be used to reduce the chances of exceeding the maximum size allowed to a user job.

If the new low segment extends beyond 377777, the high segment shifts up into the virtual addressing
space instead of being overlaid. If a long low segment is shortened to 377777 or less, the high seg~
ment shifts from the virtual addressing space to 400000 instead of growing longer or remaining where
it was. If the high segment is a program, it does not execute properly after a shift unless it is a self-

relocating program in which all fransfer instructions are indexed.

If the high segment is eliminated by a CORE UUO, a subsequent CORE UUO, in which the LH is
greater than 400000, will create a new, nonsharable segment rather than re-establishing the old high
segment. This segment becomes sharable after it has been:

a. Given an extension .5SHR.

b. Written onto the storoge device.

c. Closed so that a directory entry is made.

d. Initialized from the storage device by GET, R, or RUN commands or RUN or GETSEG

UUO:s.

The loader and the SAVE and GET commands use the above sequence to create and initialize new

sharable segments,

A user program which expands core should compare its highest desired address with its highest legal
address obtained from the Job Data Area location .JBREL (refer to Chapter 1), If the desired address
is greater than the highest legal address, the program should execute a CORE UUQO for the new desired
address (not for the highest old legal address plus 512 or 1024). The monitor then updates .JBREL by
the number of words in its basic core allocation unit (i.e., 1024 words on the KA10 processor or 512
words on the KIT0 processor). Subsequent compares of the desired address and the highest legal address
do not cause a CORE UUO until the next increase of core is required. If used this way, a CORE

UUQO will execute on both the KA10 and KI10 processors and will require less monitor CPU time
because the number of CORE UUOs needed will be minimized.

The following example illustrates the method for obtaining core only when needed.

5.06 Monitor 3-18 March 1973

-403- MONITOR CALLS

$SUBROUTINE TO GET CORE ONLY WHEN NEEDED
sCALL: MOVE Tl, HIGHEST DESIRED ADDRESS
H PUSHJ P, CHKCOR

H RETURN HERE UNLESS NO MORE CORE

CHKCOR: CAMLE Tl,.JBREL## $ GREATER THAN HIGHEST LEGAL ADDRESS?
© POPJ Py $ NOy, PRESENT CORE BIG ENOUGH.
CORE Tl, $YES, GET NEXT INCREMENT OF CORE,
JRST ERROR s NOT AVAILABLE,
POPJ P, $ WEXT INCREMENT ASSIGNED.

3.2.4 SETUWP AC, or CALLI AC, 36

This UUO allows a user program to set or clear the hardware user-mode write protect bit and to obtain
the previous setting. It must be used if a user program is to modify the high segment.
The call is:

SETUWP AC, ;OR CALLI AC, 3

error return

normal return
If the system has a two-register capability, the normal return will be given unless the user has been
meddling without write privileges, in which case an error return will be given. A normal refum is
given whether or not the program has a high segment, because the reentrant software is designed to
allow users to write programs for two-register machines, which will run under one-register machines.
Compatibility of source and relocatable binary files is, therefore, maintained between one-register

and two-register machines.

If the system has a one-register capability, the error retum (bit 35 of AC=0) is given. This error return
allows the user program to find out whether or not the system has a two-segment capability. The user
program specifies the setting of the user-mode write protect bit in bit 35 of AC (write protect = 1,
write privileges = 0). The previous setting of the user-mode write protect bit is returned in bit 35

of AC, so that any user subroutine can preserve the previous setting before changing it. Therefore,
nested user subroutines, which either set or clear the bit, can be written, provided the subroutines

save the previous value of the bit and restore it on returning to its caller.

3.3 SEGMENT CONTROL
3.3.1 RUN AC, or CALLI AC, 35

This UUO has been implemented so that programs can transfer control to one another. Both the low

and high segments of the user's addressing space are replaced with the program being called.

The call is:

MOVSI AC, starting address increment

HRRI AC, adr of six-word argument block

RUN AC, or CALLI AC, 35
error return (unless HALT in LH)

[normal retum is not here, but to start-

ing address plus increment of new program]

5.06 Monitor 3-19 March 1973

MONITOR CALLS -404-

The arguments contained in the six-word block are:

E: SIXBIT/logical device name/
SIXBIT/filename/ ;for either or both high and low files

SIXBIT/ext. for low file/ . ;ifLH=0, .LOW is assumed if high
segment exists, .SAV is assumed if
high segment does not exist.

0 .
XWD proj. ne., prog. no. ;if= 0, use current user's pro{, prog
XWD 0, optional core ;RH = new highest user address to be
assignment assigned to low segment.
LH is ignored rather than setting high
segment.

A user program usually will specify only the first two words and set the others to 0. The RUN UUO
destroys the contents of all of the user's ACs and releases all the user's I/O channels; therefore, argu=-

ments or devices cannot be passed to the next program.

The RUN UUO to certain system programs (e.g., LOGIN, LOGOUT) automatically sets the approp-
riate privileged bits (JACCT and JLOG). These bits are not set (or are turned off if they were set)
for programs that are not privileged programs from device SYS or for programs whose starting address

offset is greater than 1. Assigning a device as SYS does not cause these bits to be set.

The RUN UUO clears all of core. However, programs should not count on this action, and must still
initialize core to the desired value to allow programs to be restarted by a 1C, START sequence with-

out having to do 1/O.

Programs on the system library should be called by using device SYS with a zero project-programmer
number instead of device DSK with the project-programmer number [1, 4]. The extension should also
be 0 so that the calling user program does not need to know if the called system program is reentrant

or not.

The LH of AC is added to and stored in the starting address (.JBSA) of the new program before control
is transferred to it. The command C followed by the START command restarts the program at the lo-

cation specified by the RUN UUO, so that the user can start the current system program over again.

The user is considered to be meddling with the program (refer to Paragraph 3.3.5) if the LH of AC is
not 0 or 1 unless the program being run is execute=only for this job. In this case, the offset is treated

as 0.

Programs accept commands from a terminal or a file, depending on how they were started, due to
control by the program calling the RUN UUO. The following convention is used with all of DEC's
standard system programs: 0 in LH of AC means type an osterisk and accept commands from the terminal.
A 1 means accept commands from a command file, if it exists; if not, type an asterisk and accept

commands from the terminal. The convention for naming system program command files is that

3-20 March 1973

-405- MONITOR CALLS

the filename be of the form

#HHIILTMP
where 1II are the first three (or fewer if three do not exist) characters of the name of the program
doing the LOOKUP, and ### is the decimal character expansion (with leading zeroes) of the binary
Job number. The job number is included to allow a user to run two or more jobs under the same
pmiecf;progrc;mmer number, For example,

009PIP. TMP
039MAC . TMP

Decimal numbers are used so that a user listing his directory can see the same number as the PJOB
command types. These command files are temporary and may, therefore, be deleted by the KJOB

program (refer to KJOB command and Appendix C in DECsystem-10 Operating System Commands).

At times it is necessary to remember the arguments that a user typed in to invoke a program (i.e, the
arguments on a GET or RUN éommand). For example, the COBOL program needs these arguments

in order to GETSEG the next overlay from the same place. In all monitors, when the program is
first started, this information can be obtained from the following accumulators:

ACO (.SGNAM) contains the filename.

AC7 (.SGPPN) contains the directory name.

AC11 (.SGDEV) contains the device name. .

AC17 (.SGLOW) contains the extension of the low segment.
Note that the starting address should be changed by the program so that a 1C, START sequence will
not.destroy the remembered arguments in the ACs. This information should not be used when desiring

to save the current segment name (GETTAB should be used in this case), but rather when obtaining

the call arguments before calling the next segment.

The RUN UUO can give an error return with an error code in AC if any errors are detected; thus, the
user program may attempt to recover from the error and/or give the user a more informative message

on how to proceed. Some user programs do not go to the bother of including error recovery code.

The monitor detects this and does not give an error return if the LH of the error return location is a
HALT instruction. If this is the case, the monitor simply prints its standard error message for that type
of error and returns the user's terminal to monitor mode. This optional error recovery procedure also
allows a user program to analyze the error code received and then execute a second RUN UUO with

a HALT if the error code indicates an error for which the monitor message is sufficiently informative or

one from which the user program cannot recover,

The error codes are an extension of the LOOKUP, ENTER, and RENAME UUO error codes and are

defined in the S.MAC monitor file. Refer to Appendix E for an explanation of the error codes.

3-21 March 1973

MONITOR CALLS -406-

The monitor does not attempt an error return to a user program after the high or low segment containing
the RUN UUO has been overlaid. The UUO should be placed in the low segment in case the error

is discovered after the high segment has been released.

To successfully program the RUN UUO for all size systems and for all system programs with a size that
is not known at the time the RUN UUO is coded, it is necessary to understand the sequence of opera-
tions the RUN UUO initiates. Assume that the job executing the RUN UUO has both a low and a high
segment. (It can be executed from either segment; however, fewer emors can be returned to the user

if it is executed from the high segment.)
The sequence of operations for the RUN UUO is as follows:

1. Does a high segment already exist with desired name?
If yes, go to 30.
INIT and LOOKUP filename .SHR. If not found, go to 10.
Read high file into top of low segment by extending it. (Here the old segment
and new high segment and old high segment together may not exceed the maxi~
mum user core legally available to this job at the time of the UUO nor may it
cause the total amount of virtual core assigned fo all users to exceed the size
of the swapping space.)

REMAP the top of low segment replacing old high segment in logical addressing
space.

If high segment is shardble (.SHR) store its name so others can share it.

Always go to 40 or return fo user if GETSEG UUO.

0. LOOKUP filename .HGH. If not found, go to 41 or error return to user if
GETSEG UUO. '
Read high file info top of low segment by extending it. (The old low segment
and new high segment and old high segment together may not exceed the maxi-
mum user core legally available to this job at the time of the UUO nor may it
cause the total amount of virtual core assigned to all users to exceed the size
of the swapping space.)
Check for I/O emors. If any, error return to user unless HALT in LH of return.
Go to 41,

30, Remove old high segment, if any, from logical addressing space.
Place the sharable segment in user's logical addressing space. Go to 40 or re-
turn to user if GETSEG UUO. :

35. Remove old high segment, if any, from logical addressing space.
(Go to 41).

40. Copy vestigial job data area into job data area.
Does the new high segment have a low file
(LH of .JBCOR >137)?
If not, go to 45.

41, LOOKUP filename .SAV or .LOW or user specified extension. Error if not
found. Return to user if there is no HALT in LH of error return, provided that
if the CALL is from the high segment, it is still the original high segment and
has not been removed from the user's addressing space. Otherwise, the monitor
prints one of the following error messages:

3-22 March 1973

-407- MONITOR CALLS

?NOT A SAVE FILE)
?filename .SAV NOT FOUND
?TRANS MISSION ERROR
?LOOKUP FAILURE n

?nK OF CORE NEEDED

?NO START ADR

and stops the job.

Reassign low segment core according to size of file or user specified core argu~
ment, whichever is larger. Previous low segment is overlaid. Read low file
into beginning of low segment. Check for /O errors. If there is an error print
error message and do not retum fo user. If there are no errors, perform START.

45, Reassign low segment core according to larger of user's core argument or argument
when file saved RH of .JBCOR).

NOTE
To be guaranteed of handling the largest number of errors ;
the cautious user should remove his high segment from high
logical addressing space (use CORE UUO with a one in LH
of AC). The error handling code should be put in the low
segment along with the RUN UUO and the size of the low
segment reduced to 1K. A better idea would be to have
the error handling code written once and put in a seldom
used (probably nonsharable) high segment, which could be
gotten in high segment using GETSEG UUO (see below)
when on error retum occurs to low segment on a RUN UUO.

3.3.2 GETSEG AC, or CALLI AC, 40

This UUO has been implemented so that a high segment can be initialized from a file or shared segment
without affecting the low segment. It is used for shared data segments, shared program overlays, and
run-time routines such as FORTRAN or COBOL object time systems, This programmed operator works

exactly like the RUN UUO with the following exceptions:

a. No attempt is made to read a low file.

b. The accumulators are not preserved. The only change made to JOBDAT is to set
the left half of .JBHRL to 0 (a SAVE command then saves all of the high segment)
and the right half to the highest legal user address.

¢. If an error occurs, control is returned to the location ‘of the error return, unless the
left half of the location contains a HALT instruction.

d. On a normal return, the control is returned to two locations following the UUO, whether
it is called from the low or high segment. It should be called from the low segment unless
the normal return coincides with the starting address of the new high segment.

e. User channels 1 through 17 are not released so the GETSEG UUO can be used for pro-
gram overlays, such as the COBOL compiler. Channel 0 is released because it is used
by the UUO.

3-23 ‘ March 1973

MOMNITOR CALLS -408-

f. .JBSA and .JBREN are zeroed if they point to a high segment that is being removed.
This produces the message:

?NO START ADDRESS
if a START or REENTER command is given.

Refer to steps 1 through 30 of the RUN UUO description (Paragraph 3.3.1) for details of GETSEG
UUO operation.

3.3.3 REMAP AC, or CALLIAC, 37

This UUO takes the top part of a low segment and remaps it into the high segment. The previous high
segment (if any) will be removed from the user's addressing space. The new low segment will be the
previous low segment minus the amount remapped.

The call is:

MOVEI AC, desired highest adr in low segment
REMAP AC, ;or CALLI AC, 37

error return

normal return
The monitor rounds up the address to the nearest core allocation unit of either]02410 (20008) words
on KA10-based systems or 512]0 (10008) words on KI10-based systems. If the argument exceeds the
length of the low segment, remapping will not take place, the high segment will remain unchanged
in the user's addressing space, and the error return will be taken. The error return will also be taken
if the system does not have a two-register capobility. The content of AC is unchanged. The content
of . JBREL (refer to Paragraph 1.2.1) is set to the new highest legal user address in the low segment.
The LH of .JBHRL is set to 0 (a SAVE command then saves all of the high segment) and the RH is set
to the highest legal user address in the high segment (401777 or greater or 0). The hardware reloca-

tion will be changed, and the user-mode write profect bit will be set.

This UUO is used by the LOADER to load reentrant programs, which make use of all of physical core.
Otherwise, the LOADER might exceed core in assigning additional core and moving the data from the
low to the high segment with a BLT instruction. The GET command also ‘uses this UUO fo perform
1/O into the low segment instead of the high segment.

3.3.4 Testing for Sharable High Segments

Oceasionally, it is desirable for a program fo determine whether its high segment is sharable. If the
high segment is sharable, the program may decide not to modify itself. The following code tests
the high segment whether or not 1) the system has a high segment capability or 2) the job has a high

segment.

3-24 March 1973

~409- MOWITOR CALLS

HRROI T, .GTSGN ;see if high segment is sharable
GETTAB T, ;look at.monitor .GTSGN table
JRST A2 ;table or UUO not present
TLNN T, (SN%SHR) +is sharable bit on ?

JRST NOTSHR ;no, go ahead and modify here

;if high segment is sharable.

3.3.5 Modifying Shared Segments and Meddling

A high segment is usually write-protected, but it is possible for a user program to turn off the user
write=protect bit or to increase or decrease o shared segment's core assignment by using the SETUWP

or CORE UUO. These UUOs are legal from the high or low segment if the sharable segment has not
been "meddled" with, unless the user has write vprivileges for the file that initialized the high segment.
Even the malicious user can have the privilege of running such a program, ollfhough he does not have

the access rights to modify the file used to initialize the sharable segment.

Meddling is defined as any of the following, even if the user has privileges to write the file which

initialized the sharable segment.

a. START or CSTART commands with an argument.

b. DEPOSIT command in the low or high segment.

c. RUN UUO with anything other than a 0 or 1 in LH of AC as a starting address increment.
d. GETSEG UUO.

It is not considered meddling to perform any of the above commands or UUOs with a nonsharable pro-
gram. [t is never considered meddling to type 1C followed by START (without an argument), CONT,
CCONT, CSTART (without an argument), REENTER, DDT, SAVE, or E command,

When a sharable program is meddled with, the monitor sets the meddle bit for the user. An error return

is given when the clearing of the user write-protect bit is attempted with the SETUWP UUO or when

the reassignment of core for the high segment (except to remove it completely) is attempted with the

CORE UUO. An attempt to modify the high segment with the DEPOSIT command causes the message
OUT OF BOUNDS |

to be printed. If the user write-protect bit was not set when the user meddled, it will be set to pro~-
tect the high segment in case it is being shared. The command and the two UUOs are allowed in spite

of meddling, if the user has the access privileges to write the file which initialized the high segment.

A privileged programmer is able to supersede a sharable program, which is in the process of being
shared by a number of users. When a successful CLOSE, OUTPUT, or RENAME UUO is executed for
a file with the same directory name and filename (previous name if the RENAME UUO is used) as the
segment being shared, the name of the segment is set to 0. New users do not share the older version,
but they do share the newer version. This requires the monitor to read the newly created file only

once to initialize it. The monitor deletes the older version when all users are finished sharing it.

3-25 March 1973

MORITOR CALLS -410-

Users with access privileges are able to write programs that access sharable data segments via the
GETSEG UUO (which is meddling) and then turn off the user write-protect bit using SETUWP UUO.
With DECtape, write privileges exist if it is assigned to the job (cannot be a system tape) or is not

assigned to any job and is not a system tape.

When control can be transferred only to a small number of entry points (two), which the shared program
is prepared to handle, then the shared program can do anything it has the privileges to do, although

the person running the program does not have these privileges.

The ASSIGN (and the DEASSIGN, DISMOUNT/REMOV, FINISH, KJOB commands if the device was
previously assigned by console) command clears all shared segment names currently in use, which were
initialized for the device, if the device is removable (DTA, MTA). Otherwise, new users could con-
tinue to share the old segment indefinitely, even if a new version were mounted on the device.
Therefore, it is possible to update the library during regular timesharing, if the programmer has

access privileges.
3.4 PROGRAM AND PROFILE IDENTIFICATION

3.4.1 SETNAM AC, or CALLI AC, 43

This UUO is used by the LOADER. The content of AC contains a left-justified SIXBIT program name,
which is stored in a monitor job table. The information in the table is used by the SYSTAT program
(refer to Table 3-1 in .Paragroph 3.6.3.3). This UUO clears the "SYS:" program bit JB.LSY (used by
Batch), clears the execute-only bit, and outputs a SET WATCH VERSION number (refer to
DECsystem-10 Operating System Commands).

3.4.2 SETUUO AC, or CALLI AC, 75]

This UUO is used to set various system or job parameters. To set system parameters, the user must be

logged in under [1, 2] or the job must be running with the JACCT bit set, Refer to the Specifications

section of the DECsystem-10 Software Notebooks for a complete description of the privileged functions.

The contents of AC contain a function code in the left half and an argument in the right half. The
call is:

MOVE AC, [XWD function, argument]

SETUUO AC, ;or CALLI AC, 75
error refurn

normal return

]This UUO depends on FTSET which is normally off in the DECsystem-1040, If FTSET is on,
individual functions depend on the other feature test switches as noted in the text.

5.06 Monitor 3-26 March 1973

-411- MONITOR CALLS

The functions and arguments are as follows:

Function Name Argument
-0 “STCMX CORMAX, Privileged function.

STCMN CORMIN. Privileged function.
.STDAY DAYTIME. Privileged function (FTSEDAT).
.STSCH SCHED. Privileged function.

.STCDR CDR (input name counter for this job). Not a privileged
function. If AC is non-zero, the content is the same as
the next input name. If AC is 0, the current counter is
returned in AC (FTSPL).

5 .STSPL SPOOL for this job. Not a privilege'dv function unless
the user is unspooling devices. Bits are bits 31-35 of
.GTSPL (FTSPL). '

MOLDON -

Bit 35 JS.PLP line printer spooling
Bit 34 JS.PPL plotter spooling
Bit 33 JS.PPT paper tape punch spooling
Bit 32 JS.PCP card punch spooling
Bit 31 JS.PCR" card reader spooling
6 STWTC WATCH for this job. Not a privileged function. Bifs
are bits 1-6 of .GTWCH (FTWATCH).
Bit 1 JW.WDY watch time of day
Bit 2 JW.WRN watch run time
Bit 3 JW.WWT waich wait time
Bit 4 JW.WDR watch disk reads
Bit 5 JW.WDW watch disk writes
Bit 6 JW.WWR watch version numbers.
7 .STDAT DATE. Privileged function (FTSEDAT).
10 .STOPR OPR. Privileged function.
l .STKSY KSYS. Privileged function (FTSUUO).
12 .STCLM CORE limit. Privileged function (FTTLIM).
13 .STTLM TIME limit for this job. Privileged function (FTTLIM).
14 .STCPU CPU specification for this job. The following bits
: select the CPU on which the job is allowed to run.
Bit 35 SP.CRO CPUO
Bit 34 SP.CR1 CpPU1
Bit 33 SP.CR2 CPU2
Bit 32 SP.CR3 CPU3
Bit 31 SP.CR4 CPU4
Bit 30 SP.CR5 CPU5
15 .STCRN CPU runnability. Privileged function.
16 LSTLMX LOGMAX. Privileged function,

3-27 ‘ March 1973

MONITOR CALLS 112~

Function Name Argument
17 .STBMX BATMAX. Privileged function.
2 .STBMN BATMIN. Privileged function.
21 .STDFL DSKFUL for this job. Not a privileged function. An

argument of 0 (.DFPSE) causes a pause and an argument
of 1 (.DFERR) causes an error when the disk is full or the
user's quota is exceeded. The current setting can

be determined by issuing an argument other than 0 o 1.
The value returned is either 0 or 1 depending on whether
PAUSE or ERROR is set. The initial setting is ERROR.

The error retum is given if 1) the UUO is not implemented, 2) the user does not have the correct

privileges for the function specified, or 3) the argument specified is invalid.

On a normal return, AC remains unchanged.

3.4.3 LOCATE AC, or CALLI AC, 62

This UUO is used to change the logical station associated with the user's job. The call is:

MOVEI AC, station number
LOCATE AC, ;or CALLI AC, 62

error return
normal return

The station number requested is contained in AC as follows:
-1 changes the job's location to the physical station of the job's
controlling terminal.
0 chonges the job's location to the central station.

n changes the job's location to remote station n.

The normal return is taken if the UUQ is implemented, the station is defined, and the station is in
contact. Subsequent generic device specifications are at the new station. The error return is taken

if the UUO is not implemented or the specified station is illegal or nof in contact.

3.5 INTER-PROGRAM COMMUNICATION

3.5.1 TMPCOR AC, or CALLI AC, 442

This UUO allows a job to leave several short files in core from the running of one user program or

system program to the next. These files are referenced by a three-character filename and are unique

]This UUOQ depends on FTREM which is normally off in the DECsystem-1040.
2This UUOQ depends on FTTMP which is normally off in the DECsystem-1040.

5.06 Monitor 3-28 March 1973

-413- MONITOR CALLS

to each job. All files are deleted when the job is killed. This system of temporary storage improves
response time and reduces the number of disk operations. If this UUO fails, the file specification
DSK:nnnNAM.TMP, where nnn is the job number and NAM is the three~character filename, should
be used for temporary disk storage.

Each temporary file appears to the user as one dump mode buffer. The actual size of the file, the
number of temporary files a user can have ¢ and the total core a user can use for temporary storoge
are parameters determined at MONGEN time. All temporary files reside in a fixed area, but the

space is dynamically allocated among different jobs and several different files for any given [ob

The call is;

MOVE AC, [XWD CODE, BLOCK]

TMPCOR AC, jor CALLI AC, 44
error return

normal return

BLOCK: XWD NAME, 0 » ;NAME is filename
IOWD BUFLEN, BUFFER ;user buffer area
;(zero for no buffer)
The AC must be set by the user program prior to execution of the UUO and is changed by the UUO on
retum to a value that depends on the particular function performed. Functions of the TMPCOR UUO

are presented in the following paragraphs.

3.5.1.1 CODE = 0 (.TCRFS), Obtain Free Space - This is the only form of the UUO that does not
use a two=-word parameter block and, therefore, the contents of AC are ordinarily set to 0. A normal
retum is given (unless the UUO is not implemented), and the number of the free words available to

the user is returned in AC.

3.5.1.2 CODE=1(, TCRRF), Read File = If the specified file is not found, the number of free
words available for temporary files is retumed in AC and the error return is taken. If the specified
file is found, the length of the file in words (that is, the length in BUFLEN when writing the file
rounded up to the next highest multiple of four) is returned in AC, and as much of the file as possible
is copied into the user's buffer. The user may check for truncation of the file by comparing the
contents of AC with BUFLEN,

3.5.1.3 CODE=2 (.TCRDF), Read and Delete File - This function is similar to CODE = 1, except

that if the specified file is found, it is deleted and its space is reclaimed.

3-29 March 1973

I“ONITOR CALLS -414-
3.5.1.4 CODE 3 (.TCRWF), Write File - If a file exists with the specified name, it is deleted

and its space reclaimed. The requested size of the file is the value in BUFLEN rounded up to the
next highest multiple of four. If there is enough space

a. The file is written.

b. The number of remaining blocks is returned in AC.

c. The normal retum is taken.

If there is not enough space to completely write the file
a. The file is not written.
b. The number of free words available to the user is retumed in AC.

c. The error return is taken.

3.5.1.5 CODE = 4 (.TCRRD), Read Directory = The number of different files in the temporary file
area of the job is returned in AC. An enfry is made for each file in the user's buffer area until either
there is no more space or all files have been. listed. The error return is never taken. The user may
check for truncation of the entries by comparing the con‘rents of AC with BUFLEN. The format of a
directory entry is as follows:

XWD NAME, SIZE
where NAME is the filename and SIZE is the file length in words.

3.5.1.6 CODE =5 (.TCRDD), Read and Clear Directory - This function is similor to CODE = 4,

except that any files in the temporary storage area of the job are deleted and their space is reclmmed

This UUO is used by the LOGOUT program.
3.6 ENVIRONMENTAL INFORMATION

3.6.1 Timing Information

The 5.05 and later monitors use fwo time and two date sfandards. The time accounting is performed
by two clocks. The APR clock, driven by the power source frequency (60 Hz in North America,

50 Hz in most other countries), is accurate over long periods of time. For this reason, it is used to
keep the time of day, e.g., for the TIMER UUO. It can also be used for runtime accounting measure=
ment (i.e., keeping track of the processor time each job uses). However, there will be some loss of

accuracy since the time intervals in which a job runs are often less than the period of the APR clock.

3-30 March 1973

. -415- MONITOR CALLS

The DK 10 clock, a 100000 Hz clock, is accurate over short periods of time. It is used to perform

runtime accounting, and thereby achieves greater accuracy than the APR clock.

I The traditional DECsystem-10 date (returned with the DATE UUO) is'a 15-bit integer. This integer is
incremented by 1 each day, by 31 each month (regardless of the actual number of days in the month),
and by 12*31 each year (also regardless of the actual number of days in the year). This date format
is easy to resolve into year-month-day; however, the difference between two dates in this format is

| not necessarily the actual number of days between them.

A universal daté—fime standard (GETTAB table 11, item 53) is also used in which the left half of the
word is the date and the right half is the time. The date is uniformly incremented each day (at
midnight, Greenwich Mean Time) with 1 being November 18, 1858. This date is consistent with the
Smithsonian Astronomical Date Standard and other computer systems. The time is a fraction of a day.
Thus, the 36-bit quantity is in units of days with a binary point between the left and right halves.
The resolution is approximately 1/3 of a second; that is, the least significant bit (bit 35) represents
approximately 1/3 of a second. Since the time is Greenwich Mean Time (GMT), all installations

" have a date-time reference which is independent of location and local time conventions.

For convenience, the monitor maintains a set of GETTAB values which gives the local date and time

in terms of year, month, day, hours, minutes, and seconds (GETTAB table 11, items 56-63).

I 3.6.1.1 DATE AC, or CALLI AC, 14 - A 15-bit binary integer computed by the formula
date=((year-1964)x12+(month-1))x31+day~1
represents the date.

This integer representation is returned right justified in AC.

3.6.1.2 TIMER AC,or CALLI AC, 22 - This UUO returns the time of day, in clock ticks (jiffies),
right justified in AC. A jiffy is 1/60 of a second (16.6 milliseconds) for 60-cycle power and 1/50
of a second (20 milliseconds) for 50-cycle power. The MSTIME UUO should normally be used so

that the time is not a function of the cycle.

3.6.1.3 MSTIME AC, or CALLI AC, 23 - This UUO returns the time of day, in milliseconds, right
justified in AC.

3-31 June 1973

MORITOR CALLS -416-

3.6.2 Job Status Information

3.6.2.1 RUNTIM AC, or CALLI AC, 27 - The accumulated running time (in milliseconds) of the
fob number specified in AC is returned right justified in AC, If the job number in AC is zero, the
running time of the currently running job is retumed. If the job number in AC does not exist, zero

is returned.
3.6.2,2 PJOB AC, or CALLI AC, 30 - This UUO returns the job number right justified in AC.

3.6.2.3 GETPPN AC, or CALLI AC, 24 - This UUO returns in AC the project-programmer pair of
the job. The project number is a binary number in the left half of AC, and the programmer number
is a binary number in the right half of AC. If the program has the JACCT bit set, a skip return is

given if the old project-programmer number is also logged in on another job.

3.6.2,4 OTHUSR AC, or CALLI AC, 77 - This UUO is used to determine if another job is logged
in with the same project~-programmer number as the job éxecuﬁng the UUO. The non-SKIP return
is given if
1) the UUO is not implemented, in which case the AC remains unchanged, or
2) the UUO is implemented and no other jobs are logged in with the same‘
project=programmer number, in which case the AC contains the project-
programmer number of the job executing the UUO,
The SKIP retum is given if the UUO is implemented and other jobs are logged in with the same
project-programmer number. The AC contains the project-programmer number of the job executing
the UUO., This UUO is used by KJOB.

3.6.,3 Menitor Examination

3.6.3.1 PEEK AC, or CALLI AC, 33 - This UUO allows a user program to examine any location in
the monitor. It is used by SYSTAT, FILDDT, and DATDMP and could be used for on-line monitor
debugging. The PEEK UUO requires bit 16 (JP.SPA - examine all of core) and/or bit 17 (JP.SPM -
examine the monitor) to be set in the privilege word . GTPRV.
The call is:
MOVEI AC, exec address ;TAKEN MODULO SIZE OF MONITOR
PEEK AC, ;OR CALLI AC, 33

This call retums with the contents of the monitor location in AC.

3.6.3.2 SPY AC, or CALLI AC, 42 - This UUO is used for efficient examination of the monitor

during timesharing. Any number of K of physical core (not limited to the size of the monitor) is

3-32 March 1973

-417- MONITOR CALLS

placed into the user's logical high segment. This amount cannot be saved with the monitor SAVE
command (only the low segment is saved), c;onnof be increased or decreased by the CORE UUO
(error return taken), or cannot have the user-mode write-protect bit cleared (error return taken).
The call is:

MOVEI AC, highest physical core location desired
SPY AC, ' jor CALLI AC, 42

error return
normal return

Any program that is written to use the SPY UUO should try the PEEK UUO if it receives an error
retum. The SPY UUO requires bit 16 (JP.SPA - examine all of core) and/or bit 17 (JP.SPM -

examine the monitor) to be set in the privilege word . GTPRV.

3.6.3.3 POKE. AC, or CALLI AC, 'l'|4.l - This UUO is used by a privileged user to alter one loca-
tion in the monitor at a fime. The POKE. UUO requires bit 4 (JP.POK) to be set in the privilege
word .GTPRV.

The call is:

MOVE AC, [3,,ADR]

POKE. AC, ;or CALLIAC, 114
error return

normal return

ADR: monitor location
old value
new value

The error retumn is given if:
The user is not privileged; AC contains 0.

The value specified in ADR+1 as the old value is not the same as the actual value
contained in the monitor location; AC contains 1.

The address specified is not a valid monitor address; AC contains 2.

3.6.3.4 GETTAB AC, or CALLI AC, 41 - This UUO provides a mechanism which will not vary
from monitor to monitor for user programs fo examine the contents of ¢ertain monitor locations.
The call is:

MOVE AC, [XWD index, table number]

GETTAB AC, ;or CALLI AC, 41
error return

normal return

]This UUO depends on FTPOKE which is normally off in the DECsystem-1040.

3-33 ' March 1973

MONITOR CALLS -418-

The left half of AC contains a job number or some other index to a table. Some job numbers may
refer to high segments of programs by using arguments greater than the highest job number for the
current monitor. A LH of -1 indicates the current job number. A LH of -2 references the job's high
segment. An error return is given if there is no high segment or if the hardware cf\d software are

non—reentrant. The right half of AC contains a table number from the list of monitor data tables and
parameters in Table 3-1. The entries in these tables are globals in the monitor subroutine COMMON.

The actual values of the core addresses of these locations are subject to change and can be found in
the LOADER storage mop for the monitor. The complete description of these globals is found in the
listing of COMMON.

The customer is allowed to add his own GETTAB tables to the monitor. A negative right half should

be used to specify such customer-added tables.

An error return leaves the AC unchanged ond is given if the job number or index number in the left
half of AC is too high, the table number in the right half of AC is too high, or the user does not have
the privilege of accessing the specified table.

A normal retum supplies the contents of the requested table in AC,or a zero if the table is not defined

in the current monitor.

The SYSTAT program makes frequent use of this UUO,
NOTE

Many GETTAB tables have information in the undescribed
bits. This information is likely to change and should be
ignored. Although the field may currently be zero, there
is no reason to believe that it will always be zero.

3-34 Marvh 1973

-419-

MONITOR CALLS
Table 3~1

GETTAB Tables

Table Numbers

(RH of AC) Table Names Explanation

00 .GTSTS Job status word; index by job or segment number.

01 .GTADR Job relocation and protection; index by job or
segment number

02 .GTPPN Project and programmer numbers; index by job or
segment number

03 .GTPRG User program name; index by job or segment

' number.

04 .GTTIM Total run time used in units of jiffies; index by
job number. The value of a jiffy can-be obtained
from bit 6 of the STATES word (item 17 in the
.GTCNF table).

05 .GTKCT Kilo-Core ticks of job; index by job number.

06 .GTPRV Privilege bits of job; index by job number, refer
to Paragraph 3.6.3.4.1.

07 .GTSWP Swapping parameters of job; index by job or seg-
ment number,

10 LGTTTY Terminal-to=job translation; index by job number.

1 .GTCNF Configuration table; index by item number, refer
to Paragroph 3.6.3.4.2,

12 GTNSW Nonswapping data; index‘by item number, refer to
Paragraph 3.6.3.4.3.

13 .GTSDT Swapping data; index by item number, refer to
Paragraph 3.6.3.4.4.

14 .GTSGN High segment tdble; index by job number.
Bit 0 = 0, then bits 18-35 are index of high segment
(if bits 18=35 = 0, then there is no high segment).
Bit 0 = 1, then bits 18-35 are number of K to spy on.
Bit 1 (SN%SHR) = 1 if job has a high segment that
is shardble.)
Bit 5 (SN%LOK) = 1 if job has a high segment that
is locked.

15 .GTODP Once-only disk parameters; index by item number,
refer to Paragraph 3.6.3.4.5.

16 .GTLDV 5-series monitor disk pctrlamefers; index by item
number, refer to Paragraph 3.6.3.4.6.

5.06 Monitor 3-35 March 1973

MONITOR CALLS -420-

Table 3-1 (Cont)
GETTAB Tables

Table Numbers
(RH of AC) Table Names Explanation

17 .GTRCT Disk blocks read by job; used by DSK command:
a. Bits 0-11 = incremental blocks
b, Bits 12-35 = total blocks since start of job.
Index by job number. Job 0 indicates the number
of blocks swapped in.

20 .GTWCT Disk blocks written by job:
a. Bits 0-11 = incremental blocks.
b. Bits 12-35 = total blocks since start of job.
Index by job number. Job 0 indicates the number
of blocks swapped out.

21 .GTDBS Reserved for future.

22 .GTTDB Reserved for future.

23 «GTSLF Table of GETTAB addresses (GETTAB immediate);
index by GETTAB table number, refer to
Paragraph 3.6.3.4.7.

24 .GTDEV Device or file structure name of sharable high seg-
ment. Index by high segment number.

25 .GTWSN Two~character SIXBIT names for job queues; index
by item numbers, refer to Paragraph 3.6.3.4.8.

26 .GTLOC Job's logical station; index by job number.

27 -GTCOR Physical core allocation. One bit per one K of
core if system does not include LOCK UUO. Two
bits per entry if system includes LOCK UUO. A
non-zero entry indicates core in use.

30 .GTCOM Table of SIXBIT names of monitor commands.

31 .GTNM1 First half of name of user in SIXBIT; index by job
number.

32 .GTNM2 Last half of name of user in SIXBIT; index by job
number.

33 .GTCNO Job's charge number; index by job number.

34 .GTTMP Job's TMPCOR pointers; index by job number.

35 .GTWCH Job's WATCH bits; index by job number, refer to
Paragraph 3.6.3.4.9. ’

36 .GTSPL Job's spooling control bits; index by job number,
refer to Paragraph 3.6.3.4.10.

37 .GTRTD Job's real-time status word; index by job number.

3-36 March 1973

-421- MOHITOR CALLS

Table 3-1 (Cont)
GETTAB Tables

Table Numbers
(RH of AC)

Table Nomes

Explanation

40

41
42

43
44

45
46
47
50

51

52
53

.GTLIM

.GTQQQ
-GTQJB

.GTCM2
.GTCRS

.GTISC
.GTOSC
.GTSsSC
.GTRSP

.GTSYS

<GTWHY
.GTTRQ

Job's time limit in {iffies and Batch status; index by
job number. '

a. Bits 1-9 (JB.LCR) = job's core limit.

b. Bit 10=1 (JB.LBT) if a Batch job.

c. Bit 11 =1 (JB.LSY) if program comes from SYS.
Set on R command or equivalent. Cleared on R
command (or equivalent) or SETNAM UUO.

d. Bits 12-35 (JB.LTM) = job's time limit.

Timésharing scheduler's queue headers.

Timesharing scheduler's queue that job is in; index
by job number.

Table of SET command names.

Status of hardware taken on a crash,

0: CR.SAP=CONI AR,

1: CR.SPI= CONIPI,

2: CR,SSW = DATAI APR

The remainder of the table contains the status of
the various devices.

Swapper's input scan list of queves.
Swapper's output scan list of queues.
Scheduler's scan list of queuves.

Response counter table. Time in jiffies when user
started to wait for his job to run, This time is
cleared when the job is first given to the processor
by the scheduler.

System variables which are independent.of CPU,
Word 0 (%SYERR) = system wide hardware error count.
Word 1 (%SYCCO) = number of times COMCNT
was off.

Word 2 (%SYDEL) = number of error-logging dis-
abled errors.

Word 3 (%SYSPC) = LH is a 3-letter code of the
last STOPCD.) '

RH is the address +1 of the last STOPCD executed.
Word 4 (%SYNDS) = number of debug STOPCDs.
Word 5 (%SYNJS) = number of job STOPCDs.
Word 6 (%SYNCP) = total number of commands
processed by the system since it was started.

Operafor why comments in ASCIZ.

Total time job was in run queues whether it was
running or not.

5.06 Monitor

3-37 March 1973

MONITOR CALLS

-422-

Table 3-1 (Cont)

GETTAB Tables

Table Numbers
(RH of AC) Table Names Explanation

54 .GTSPS Job status word of second processor.
Bit 29 (SP.SCO0) = SET CPU command can be used.
Bit 35 (SP.CRO) = SET CPU UUQ can be used.
Bits for other processors can be obtained by shifting
left 1 bit per processor.

55 .GTCOC CPUO CDB constants; index by item number, refer
to Paragraph 3.6.3.4.11.

56 .GTCOV CPUO CDB variables; index by item number, refer
to Paragraph 3.6.3.4.12,

57 .GTCIC CPUT CDB constants; index by item number; see
.GTCOC.

60 .GTC1V CPUT CDB variables; index by item number; see
.GTCOV.

61 .GTC2C CPU2 CDB constants; index by item number; see
.GTCOC.

62 .GTC2V CPU2 CDB variables; index by item number; see
.GTCOV.

63 .GTC3C CPU3 CDB constants; index by item number; see
.GTCOC.

64 .GTC3V CPU3 CDB variables; index by item number; see
.GTCOV.

65 «GTCAC CPU4 CDB constants; index by item number; see
.GTCOC.

66 .GTC4V CPU4 CDB varicbles; index by item number; see
.GTCOV.

67 .GTC5C CPU5 CDB constants; index by item number, see
.GTCOC.

70 .GTC5V CPU5 CDB variables; index by item number; see
.GTCOV.

71 +GTFET Current setting of all features defined in F.MAC,
index by item number, refer to Paragraph 3.6.3.4. 14,

72 .GTEDN Table of ersatz device names (e.g., NEW, LIB)
with their corresponding project-programmer num-
bers. The search lists of these devices can be
obtained from the PATH.UUO.

5,06 Monitor

3-38 March 1973

-U423- MONITOR CALLS

3.6.3.4.1 Entries in Table 6- .GTPRV (Privilege Table)

Each job has a one-word entry to indicate job privileges. The privilege bits are as follows:

3.6,

Bit
1-2
3

Mnemonic

JP.DPR

JP.MET
JP.POK
JP.CCC

JP.HPQ
JP.NSP
JP.RTT

JP.LCK
JP.TRP

JP.SPA
JP.SPM

Meaning
Highest disk priority for this job.
Job is allowed to execute the METER,UUO.
Job is allowed to execute the POKE.UUO.

Job is allowed to change its CPU specification
via a command or UUO.

Highest high-priority queue available to this job.
Job is allowed to unspool devices.

Job is allowed to execute the RTTRP UUO.

Job is allowed fo execute the LOCK UUO.

Job is allowed to execute the TRPSET UUO.

Job is allowed to PEEK and SPY on all of core.
Job is allowed to PEEK and SPY on the monitor.

3.4.2 Entries in Table 11 = . GTCNF (Configuration Table)

Item

0

Location

%CNFGO

%CNFG4
%CNDTO
%CNDT1

%CNTAP
%CNTIM

%CNDAT
%CNSIZ.
%CNOPR
%CNDEV
%CNSIN

%CNTWR

Use

Name of system in ASCIZ.

Date of system in ASCIZ.

Name of system device (SIXBIT).

Time of day in jiffies.

Today's date (15-bit format).

Highest location in monitor +1.

Name of OPR TTY (SIXBIT).

LH is start of DDB (device~data-block) chain.

LH::—# of high segmenfs, R'-I:+# OF iObS
(counting NULL job).

Non-zero if system has two-register hardware and
software .

3-39 . June 1973

MONITOR CALLS

I’rﬂ Location
17 %CNSTS
20 %CNSER
21 %CNNSM

5.06 Monitor

-424-

Use

Location describing feature switches of this system
in LH, and current state in RH.

Assembled according to MONGEN dialog and
S.MAC:
Bit 0=1 if disk system (ST%DSK)
Bit 1=1 if swap system (ST%SWP)
Bit 2=1 if LOGIN system (ST%LOG)
Bit 3=1 if full duplex software (ST%FTT)
Bit 4=1 if privilege feature (ST%PRV)
Bit 5=1 if assembled for choice of reentrant or non-
reentrant software at monitor load time (ST%TWR)
Bit 6=1 if clock is 50 cycle instead of 60 cycle
(ST%CYC)
Bit 7=9 type of disk system (ST%TDS):
if 0, 4=series disk system.
if 1, 5-series disk system.
if 2, spooled disk.
Bit 10=1 if independent programmer numbers be-
tween project (INDPPN is non-zero) (ST%IND)
Bit 11=1 if image mode on terminal (8-bit SCNSER)
(ST%IMG)
Bit 12=1 if dual processor system (ST%DUL)
Bit 13=1 if multiple RIBs supported (ST% MRB)
Bit 14=1 if high precision time accounting (ST%HPT)
Bit 15 =1 if overhead excluded from time account-
ing (ST%EMO)
Bit 16=1 if real~time clock (ST%RTC)

Bit 17=1 if built to handle FOROTS (ST%MBF)

Set by the privileged operator command, SET

SCHED:

Bit 27=1 means no operator (ST%NOP)

Bit 28=1 means unspooling devices (ST%NSP)

Bit 29=1 means assigning devices (ST%ASS)

Bit 33=1 means only Batch jobs may LOGIN (except
from CTY or OPR) (ST%BON)

Bit 34=1 means no remote LOGINs (ST%NRL)

Bit 35=1 means no more LOGINs except from CTY
or OPR (ST%NLG)

Serial number of PDP-10 processor. Set by
MONGEN dialog.

Number of nanoseconds per memory cycle for memory
system. If the GETTAB fails, the number of nano-
seconds per memory cycle is t D1000. Used by
SYSTAT o compute shuffling time.

3-40 March 1973

[tem

22

23
24
25
26

27
30

31
32

33

34

35
36
37

40

41

Location

%CNPTY

%CNFRE
%HCNLOC
%CNSTB
%CNOPL

%CNTTF
%BCNTTC

%BCNTTN
%BCNLNS

%CNLNP

%CNVER

%CNDSC

%CNDLS
%CNCCI
%CNSGT

%CNPOK

-425- MONITOR CALLS

Use
PTY pdrameters for Batch.

LH = the number of the first invisible terminal
(which is one greater than the number of the CTY)
RH = the rumber of PTY's in the system configura-
tion,

AOBJN word to use bit map in monitor for alloca-
ting 4-word core blocks.

LH=0, RH=address in monitor for free 4-word core
block areas. (This is never changed while
monitor runs).

Link to STB chain for remote Batch,

Address of the line data block (LDB) of the
operator's terminal.

Pointer to TTY free chunks.

LH=number of TTY chunks.
RH=address of first TTY chunk.

Number of free TTY chunks.

Pointer to current TTY as seen by the command
decoder.

Pointer to examine TTY line table, including
remote terminals. _

LH= -total number of TTY lines.
RH=beginning of line table.

Version of monitor. (Stored in location 137 of
monifor as a'save file when monitor is not running.)
Bits 0~17 reserved for customer.

Bits 18-23 monitor level (e.g., 5)

Bits 24-29 monitor release (e.g., 3).

Bits 30-35 used for internal development.

If the GETTAB fails, the monitor is a version
previous to 5,03

Pointer to data set control table.
LH = -length of table.
RH = beginning of control table.

Last received interrupt from the DC10,
Last received infefrupt from the 6801.

Last dormant segment which was deleted to free a
segment number.

Address of last location changed in monitor by the
POKE.UUO.

3-41 March 1973

MOHITOR CALLS

Item

42

43

44

45

46

47

50
51
52
53

54
55

56
57
60

61
62
63

Location

%CNPUC

%CNWHY

%CNTIC

%CNPDB

%CNRTC

%CNCHN

%CNLMX

% CNBMX

%CNBMN

%CNDTM

%CNLNM
%CNBNM

%CNYER
%CNMON
%CNDAY

%CNHOR
%CNMIN
%CNSEC

-426-

Use

LH = the number of the job which successfully
executed the POKE.UUO last. ‘
RH = the number of successful POKE.UUOs executed.

The reason for the last reload (SIXBIT unabbreviated
operafor enswer). Refer to ONCE in the DEC-
system-10 Software Notebooks.

The number of clock ticks per second. This is the
time-of-day clock. The number is obtained by
conducting a simple experiment at monitor load
time. A different clock con be used for increm-
ental run time accounting (refer to %CNRTC
below).

The pointer to the process data block (PDB) pointer
tables.

The run time clock rate (jiffies per second). That
is, the rate of the clock used to measure the run
time of the job and the system statistics (null, lost,
and overhead time). This is the precision of the
measurement, not the units of measurement.

The pointer fo the list of channel (DF10) data
blocks.

LH = the address of the 1st channel data block.
RH = unused.

LOGMAX. The maximum number of jobs allowed
to LOGIN.

BATMAX. The maximum number of Batch jobs
allowed to LOGIN.

BATMIN. The guaranteed number of Batch jobs
(i.e., the number of jobs reserved for Batch).

The universal date—time standard (refer to
Paragraph 3.6.1).

LOGNUM. The number of jobs curren_ﬂy logged-~-in.

BATNUM. The number of Batch jobs cumently
logged-in.

LOCYER. The year,
LOCMON. The month (Jan=1, Feb=2, etc.).

LOCDAY. The local day of the month (1, 2,
3500e)e

LOCHOR. The local hour in 24-hr format.
LOCMIN. Minutes(0, 1,. .., 59).
LOCSEC. Seconds (0, 1, . . ., 59).

3-42 March 1973

ftem

64

65

66

Location

%CNGMT

%CNDBG

%CNFRU

=427~ MONITOR CALLS

Use

Offset for the universal date-time standard in order
to convert it to local time from Greenwich Mean
Time (not yet implemented).

Debugging status word.

Bit 0=1 System debugging (ST%DBG).

Bit 1=1 Reload on debug stop code (ST%RDC).
Bit 2=1 Reload on job stop code (ST%RJE).

Amount of free core currently in use by the
monitor.

3.6.3.4.3 Entries in Table 12 - . GTNSW (Nonswapping Data)

With the 5.05 and later monitors, no new entries will be added to the . GTNSW table because many

of the pdrqmeters in this fdble are dépendenf upon the processor used and therefore are different for

each processor in a multiprocessor system. GETTAB tables 51-70 exist for new parameters as well as

the .GTNSW parameters.

Item
0
7

10

n
12

13
14

15
16
17
20
21
22

5.06 Monitor

Location

%NSCMX

%NSCLS
%NSCTL

% NSSHW
%NSHLF

%NSUPT
%NSSHF
%NSSTU
%NSHJB
%NSCLW
%NSLST

Use
Obsolete,

unspecified data,

CORMAX., Size in words of largest legal user
job +1 (Low seg+high seg). -

Byte pointer to last free block.

Total freet+dormant+idle K physical core left
(virtual core).

Job number shuffler has stopped.

Absolute address of job dbove lowest hole, 0 if
no job.

Time system has been up in jiffies.

Total number of words shuffled by system.
Number of job using SYS if not a disk.
Highest job number currently assigned.
Total number of words cleared by system.

Total number of clock ticks when null job ran and
other jobs wanted fo but could not because:

d. Swapped out or on way in or out.

b. Monitor waiting for I/O to stop so it can shuffle
or swap,

c. Job being swapped out because of expanding
core.

3-43 March 1973

*

I

i
t

ONITOR CALLS

Item

23
24

25

26
27

30

31

32

33

34
35
36

37
40
4
2

43 -

44

Location

%NSMMS
%NSTPE

%NSSPE

%NSMPC
% NSMPA

%NS MPW

%NS MPP

%NSEPO

% NSEPR

%NSNXM
%NSKTM
%NSCMN

%NSABC
% NSABA
% NSLJR

9% NSACR

%NSNCR

%NSSCR

4

8

Use
Size of physical memory in words.

Total number of user parity errors (memory) since
system was loaded.

Total number of spurious (refer to Paragraph 7.7)
parity errors (memory).

Total number of multiple parity errors {memory).

The absolute location of the last user mode mem-
ory parity error.

The contents of the last user mode memory parity
error.

The user PC of the last user mode memory parity
error,

Total number of PDL OVR's at UUO level in exec
mode which were riot recovered.

Number of PDL OVR's at UUO level which were
recovered by assigning extended list.

Highest legal value of CORMAX.
Count-down timer for SET KSYS UUC.

Amount of core guaranteed to be available after
locking jobs in core (CORMINY).

Count of number of address breaks handled.
Contents of data switches on last address break.
Last job that ran if different from the current job.

Accumulated CPU response. Total number of
jiffies that all users waited for their jobs to
initially run after either a command was issued
which ran a job (program) or terminal input was
given that removed the job from a TTY input wait
state.

Number of CPU responses for all usérs waiting for
jobs to run (refer to %NSACR above). Dividing

the value of %NSACR by the value of %NSNCR
gives the average response time since system startup.

Accumulated squares‘ of the CPU response times

‘obtained from %NSACR.

3-44 March 1973

-428- MOMITOR CALLS

3.6.3.4.4 Entries in Table 13 - .GTSDT (Swapping Data)

Item

0
1

Location
%SWBGH
%SWFIN

%SWFRC
%SWFIT
%SWWRT

%SWERC

%SWPIN

Use
Number of K in biggest hole in core.

-Job number of job being swapped out,
+Job number of job being swapped in.

Job being forced to swap out.
Job waiting to be fit into core.

Amount of virtual core left in system in K
(initially set to number of K of swapping space).

LH=number of swap read or write errors,
RH=error bits (bits 18-21 same as status bits) +
number of K discarded.

-1 if job swapped in (monitors which swap process
data blocks (PDBs) only).

3.6.3.4.5 Entries in Table 15 = ,GTODP (Once~Only Disk Parameters)

Item

0
1

3.6.3.4.6 Entries in
Item

0
1

5.06 Monitor

Location
%QODSWP
% ODKA45S

%ODPRT
%ODPRA

Use
Unused, contains zero in 5-series monitors.

K of disk words set aside for swapping on all units
in active swapping list,

In—core protect time mulfiplies size of job in K-1.

In—core protect time added to above result after
multiply.

Table 16 = .GTLVD (5-series Monitor Disk Parameters)

Location
%LDMFD
%LDSYS

%LDFFA
%LDHLP

%LDQUE

%LDSPB

Use
Project-programmer number for UFDs only [1,1].

Project-programmer number for device SYS [1,4].
In 4-series monitors [1,1].

Proiect-progrqmrﬁer number for FAILSAFE [1,2].

Project-programmer number for SYSTAT and HELP
[2,5].

Project-programmer number for spooling programs
[3,31.

a. - LH=address of first PPB block.
b. RH=address of next PPB block to be scanned.

3-45 March 1973

MORITOR CALLS

Item

6

10

11
12
13
14

15

16
17

20
21

22
23

24

25

Location

%LDSTR

%LDUNI

%LDSWP

%LDCRN
%LDSTP
%LDUFP
%LDMBN

%LDQUS

%LDCRP
%LDSFD

%LDSPP
%LDSYP

%LDSSP
%LDMNU

%LDMXT

%LDNEW

Use

a. LH=address of first file structure data block.,

b. RH=relative address of next file structure data
block, i.e., the address within the data block
which points to the actual address of the next
data block.

a. LHeaddress of data block of first unit in system.
b. RH=relative address of data block of next unit
in system.

a. LH=address of first unit for swapping in system.
b. RH=relative address of next unit for swapping
in system.

Number of 4-word access blocks for disk systems
allocated at ONCE - only time.

Standard file protection code (057), can be changed
by installation. In 4-series monitors (055).

Standard UFD protection code (775), can be
changed by installation. In 4-series monitors (055).

Number of monitor buffers allocated at once-only
time (2). In 4-series monitors, 1.

SIXBIT name of file structure containing 3,3.UFD
for spooling and OMOUNT queues. In 4-series
monitors, DSK.

UFD used for storing system crashes. In 4-series
monitors, [10,1].

Maximum number of nested SFD's which the monitor
allows to be created.

Protection of spooled output files (bits 0-7).

Standard protection for files in SYS: (155) except
for files with an extension of .SYS.

Standard protection for files in SYS: with an
extension of .SYS (157).

Maximum negative argument to USET[which reads
extended RIBs.

Maximum number of blocks fransferred with one
I/O operation (one IOWD). Normally 100000 but
can be defined at MONGEN to be smaller so that
a job doing high priority disk 1/O will be locked
out for a shorter period of time (since it can be
locked out for as long as the channel is busy).

Project-programmer number for experimental

SYS [1,5].

3-46 March 1973

-431- ' MONITOR CALLS

ifem Location) Use

26 %LDOLD Project-programmer number for library of super-
seded system programs [1,3].

27 , %LDUMD Project-programmer number for user mode diagnos-

, tics [6,6].

30 %LDNDB Default number of disk buffers in a buffer ring.

3.6.3.4.7 Entries in Tablé 23 - ,GTSLF (GETTAB Immediate).

This table is useful for a program that uses the SPY UUO for eﬂ':iciency and needs the core address of
the monitor tables. Absolute location 151 in the monitor contains the address of the beginning of

this table.

The format of each entry is as follows:

LH=Bjits 0-8 = maximum item number in table.
Bit 9 = data may be process data.
Bit 10 = data may be segment data.
Bits 14-17 = a monitor AC.

RH=executive-mode address of table (item 0).

Examples:

XWD ITEM + JBTMXL, JOBSTS
XWD ITEM + TTPMXL, TTYTAB

3.6.3.4.8 Entries in Table 25 - .GTWSN (Two-character SIXBIT names for job quevues)

Word 0
Bits 0-11 = contain the two SIXBIT character mnemonic of job state code 0.
Bits 12-23 = contain the two SIXBIT character mnemonic of job state code 1.
Bits 24-35 = contain the two SIXBIT character mnemonic of job state code 2.
Word 1

Bits 0-11 = contain the mnemonics of job state code 3.
Bits 12-23 = contain the mnemonics of job state code 4.
Bits 24-35 = contain the mnemonics of job state code 5.
etc.

The job state codes for a disk system are as fol lows:

RN = one of the run queues.

WS = I/O wait satisfied.
TS = TTY I/O wait satisfied.
DS - disk I/O wait satisfied.
AU ' - disk alter UFD wait.

5.06 Monitor 3-47 March 1973

MONITOR CALLS -432-

MQ - disk monitor buffer wait.

DA - disk storage allocation wait.
CB - disk core block scan wait.

D1 - DECtape control wait.

D2 - second DECtape control wait.
DC - data control wait.

MT - magnetic tape control wait.
CA - core allocation wait (to be locked).
10 - /O wait.

Tl - TTY 1/O wait.

DI - disk 1/O wait.

SL - sleep wait.

NU - null state,

ST - stop (1 C) state.

JD - DAEMON wait.

These state codes are printed by SYSTAT. Note that SYSTAT displays other codes based on analysis,

such as the following:

TO - TTY output.
tC - job stopped.
tw - command wait,
ow - operator wait.
HB - hibernate.

3.6.3.4.9 Entries in Table 35 - .GTWCH (WATCH Table)

Each job has a one-word entry to indicate the WATCH bits. The bits for each word are as follows:

Bit Mnemonic

JW.WDY
JW.WRN
JW.WWT
JW.WDR
JW.WDW
JW.WVR

G hWN — |

3.6.3.4,10 Entries in Table 36 - .GTSPL (Spooling Table)

Meaning
Watch time of day.
Watch run time.
Watch wait time.
Watch disk reads.
Watch disk writes.
Watch versions.

Each job has a one-word entry to indicate the spooling control bits. These bits are as follows:

Bit_ Mnemonic

35 JS.PLP

34 JS.PPL

33 JS.PPT-

32 JS.PCP

31 JS.PCR
24-26 - JS.PRI

3-48

Meaning
Line printer spooling.
Plotter spooling.
Paper tape punch spooling.
Card punch spooling.
Card reader spooling.
Disk priority.

March 1973

-433- MOWITOR CALLS
3.6.3.4.11 Entries in Table 55 - .GTCOC (CPUO CDB constants table)

The items in this table correspond to the items in the constants table for each processor.

CPU1 Table 57 - .GTCIC
CPU2 Table 61 - ,GTC2C
. CPU3 Table 63 - .GTC3C
CPU4 . Table 65 - .GTC4AC
CPU5 Table 67 - .GTC5C
Item Location Use
0 %CCPTR LH=pointer to next CDB, or 0 if this is the last
, CDB.
RH=unused.

1 %CCSER APR serial number.

2 : %CCOKP ' If less than or equal to zero, CPU is running ok.
If greater than zero, CPU has stopped running
correctly.

Contents of word is the number of jiffies CPU has
been stopped.
%CCTOS Trap offset for KA10 interrupt locations (0.or 100),
%CCLOG Logical CPU name in SIXBIT (CPUn).
%CCPHY Physical CPU name in SIXBIT (CPAn, CPIn, or
‘ CPén).
6 %CCTYP Type of processor (LH for customers, RH for DEC)

1 (.CC166) = PDP-6
2 (.CCKAX) = KA10
3 (.CCKIX) = K110

7 %CC MPT Relative GETTAB pointer to memory parity bad
address subtable. Refer to Paragraph 3.6.3.4.13.

Bits 0-8 maximum relative entry in sub-
table

Bits 18~35 relative address of first word in
subtable in CPU varidble GETTAB
(.GTCOV).

If word is O, the subtable has been conditionally
_assembled out of the monitor.

10 %CCRTC Real time clock (DK10) DDB. If word is O, there
is no real time clock on this CPU.
11 %CCRTD Real time clock DDB if high precision time account-

ing. If 0, there is no high precision time account-
ing on this CPU,

3-49 March 1973

MONITOR CALLS

ltem

12

13

3.6.3.4.12

Location

%CCPAR

%CCRSP

-434-

Use

Relative GETTAB pointer to memory parity subtable.
Refer to Paragraph 3.6.3.4.13.

Bits 0-8 maximum relative entry in
subtable.
Bits 18-35 relative address of first-word in

subtable in CPU variable
GETTAB. (.GTCOV).

If word is 0, the subtable has been conditionally
assembled out of the monitor.

Relative GETTAB pointer to response subtable.
Refer to Paragraph 3.6.3.4.13.

Bits 0-8 Maximum relative enfry in
subtable.

Bits 18-35 relative address of first word in
subtable in CPU variable GETTAB
(.GTCOV).

Entries in Table 56 = .GTCOV (CPUO CDB Variable Table)

The items in this table correspond to the items in the variables table for each processor.

Item

12
14

15

16

CPU1 Table 60
CPU2 Table 62
CPU3 Table 64
CPU4 Table 66
CPU5 Table 70
Location
%CVUPT
%CVLST

%CVTPE

%CVSPE

% CVMPC

LGTCV
.GTC2V
.GTC3V
.GTC4V
.GTCSV

Use
Uptime in [iffies for this CPU.
Lost time in jiffies for this CPU.

Total memory parity error words cletected during all
CPU sweeps on this CPU while processor was in
exec or user mode. If the system halts, this
location has already been updated.

Total spurious memory parity errors detected on this
CPU (i.e., errors which did not reoccur when the
CPU swept through core). Can occur on a read-
pause-write which rewrites memory or on a channel-
detected parity not found on the sweep (refer to
%CVPCS in parity subtable.)

Multiple memory parity errors for this CPU. That
is, the number of time the operator pushed
CONTINUE after a serious memory parity halt.,

LH = 1 if serious error on this bad parity (must halt).
LH is cleared on CONTINUE or STARTUP.

3-50 March 1973

Item

17

20

21

27
30
31
32-34

35
36
37

40

41
42

43
44

45

5.06 Monitor

Location

%CVMPA

%CVMPW

%CVMPP

%CVABC
%CVABA
%CVLIR

“%CVSTS

%CVRUN
%CVNUL

%CVEDI

%CVJOB
%CVOHT

%CVEVM

%CVEVU

%CVLLC

35- | MONITOR CALLS

Use

Memory parity address for this CPU. That is,
first bad physical memory address found when the
monitor swept through core after processor or
channel detected first parity error.

Memory parity word for this CPU. That is, contents
of first bad word found by monitor when it swept
through core after the processor or channel detect-
ed first bad parity.

Memory parity PC for this CPU. That is, PC of
last memory parity (not counting sweep through
core).

Address bredk count on this CPU.
Address break address on this CPU.
Last job run on this CPU including the null job.

Obsolete. Refer to items 20-23 in the Response
Subtable.

Stop timesharing on this CPU. Contains job
number which performed the TRPSET UUO.

Operator-controlled scheduling for this CPU
(OPSER: SET RUN command).

" Bit 0 (CV%RUN) = 1 do not run jobs on this CPU.

Null time in jiffies for this CPU.

LH = exec PC so that offending instruction can be
corrected.

RH = number of exec "don't care" interrupts (i.e.,
user enabled APR interrupts which monitor causes
(AOV, FOV).

Current job running on this CPU (0 is null job).

- Overhead time in jiffies for this CPU. Includes

clock queue processing, short command processing,
swopping and scheduling decisions, and software
context switching. Does not include UUO
execution or I/O interrupt time, since these times
are not overhead.

(KI10 only) Maximum amount of exec virtual address
space to be used for mapping user segments on a
LOCK UUO.

(K110 only) Current amount of exec virtual address
space being used for mapping user segments on a
LOCK UUO.

On a dual processor system, the count of the number
of times a CPU has looped in the CPU interlock
while waiting for it to be relinquished by the

second CPU.

3-51 March 1973

MONITOR CALLS ~436-

Item Location Use

46 %CVTUC Total number of UUOs executed on this CPU from
exec and user mode.

47 %CVTIC Total number of job context switches from one job
to a different job, including the null job, on this
CPU.

3.6.3.4.13 GETTAB Subtables ~ Via the GETTAB mechanism, GETTAB subtables make monitor—
collected data available to user programs and, at the same time, allow the installation fo decide

if it wants fo use more monitor table space without invalidating any user programs. These subtables

are included in all systems except the DECsystem-1040. However, they may be excluded by changing
the appropriate conditional assembly switches with MONGEN. It is anticipated that only installations

that need the core space for other uses will decide to exclude the subtables.

To reference a subtable, the user program first does a GETTAB UUO to obtain the pointer to the sub-
table (refer to Paragraph 3.6.3.4.11). Then the program does a second GETTAB to get the desired

item in the subtable. If the pointer is zero, the desired subtable is not included in the system,

The following example illustrates the method for obtaining the accumulated response times for CPU N

for all users that waited for their jobs fo initially run after TTY input was given.

XCCRSP=axwD 13,55 JWORD AND TABLE NUMBER FOR RESPONSE SUBTABLE
ACVRAIs=3 /SUBTABLE INDEX FOR ACCUMULATED TTY INPUT UUD
H RESPONSE.
2GTCOVRa56 JGETTAB TABLE FOR CPU® VARIABLES
MOVEI Ti,N FCPU NUMBER (@)1,400s5)
LSH T1,N FCONSTANTS TABLE GETTAB INDEX MOVES UP BY TWOS,
MOVE T2, [XCCRSP) {RELATIVE GETTAB POINTER WORD FOR RESPONSE
i SUBTABLE FUR CPU@,
ADD T2,T1 iFORM GETTAB ARGUMENT FOR CPU N,
GETTAB T2, iGET RELATIVE POINTER TO RESPONSE SUBTABLE,
JRST NONE fNOT THERE (MONITOR IS ONE BEFORE 5,@5)
JUMPE T2,NONE PIF @, SUBTABLE NOT INCLUDED IN THIS
i LOAD. OF THE MONITOR,
ADDI T2,%CVYRAI FFORM DESIRED INDEX IN SUBTABLE WITH
i RESPECT TOQ VARIABLE GETTAB,
HEL T2,T2 FRELATIVE ADDRESS OF SUBTABLE WITH

i RESPECT 7O VARIABLE TABLE,
HRRI T2,.GTCOV(TL) JFORM PROPER GETTAB FOR CPU VARIABLES,
GETTAB T2, iGET RESPONSE TIME,
JRST NONE FNOT THERE, THIS SHOULD NOT HAPPEN SINCE
i ZERD TEST ON RELATIVE POINTER FAILED,
HERE WITH RESPONSE IN T2

Response Subtdable

The response subtable is pointed fo by %CCRSP in the constants table for each processor. This sub-
table is under the conditional assembly switch FTRSP. Refer to Paragraph 3.6.3.4.3 for additional

response information.

5.06 Monitor 3-52 ' March 1973

Item

10

1

12

13

14

15
16

5,06 Monitor

Location
%CVRSO

%CVRNO
%CVRHO

%CVRLO

%CVRSI

%CVRNI
%CVRHI

%CVRLI

%CVRSR

%CVRNR

%CVRHR

%CVRLR

%CVRSX

%CVRNX
%CVRHX

-437- MONITOR CALLS

Use

Accumulated TTY output UUO responses, That is,
the total number of jiffies users have spent waiting
for their jobs to do a TTY output UUO (on CPUO)
after either a command was issued which ran a job
or terminal input was given that removed the job
from a TTY input wait state.

Number of TTY output UUO respdnses for this CPU,

The high-order sum of the squares of TTY output UUO
responses. Used for computing standard deviation. -

The low=order sum of the squares of TTY output UUO
responses .

Accumulated TTY input UUO responses for this CPU.
That is, the total number of jiffies users have spent
waiting for their jobs to do a TTY input UUO (on
CPUO) ofter either a command was issued which

ran a job or terminal input was given that removed
the job from a TTY input wait state.

Number of TTY input UUO responses for this CPU.

The high-order sum of the squares of TTY input UUO
responses, Used for computing standard deviation.

The low-order sum of the squares of TTY input UUO
responses.,

Accumulated CPU quantum requeue responses. That
is, total number of jiffies users spent waiting for
their jobs to exceed the CPU quantum on this CPU
after either a command was issued which ran o job
or terminal input was given that removed the job
from a TTY input wait state.

Number of CPU quantum requeve responses for this
CPU.

The high-order sum of the squares of CPU quantum
requeve response. Used for computing standard
deviation.

The low=-order sum of the squares of CPU quantum
requeue response.

Accumulated response terminated by the first
occurrence of one of the above 3 events (TTY
output, TTY input, or CPU quantum requeue).

Number of such responses in %CVRSX.

The high~order sum of the squares of responses in
%CVRSX. Used for computing standard deviation.

3-53 March 1973

MONITOR CALLS

ltem

F—

17

20

21

22

23

Parity Subtable

Location

%CVRLX

%CVRSC

%CVRNC

%CVRHC

% CVRLC

-438-

Use

The low-order sum of the squares of responses in
%CVRSX.

Accumulated CPU responses on this CPU. Total
number of jiffies that users waited for their jobs

to run after either a command was issued which
ran a job or terminal input was given that removed
the job from a TTY input state.

Number of CPU responses for all users waiting for
their jobs to run. Dividing this value into the
value of %CVRSC gives the average response time
since the system was started. '

The high-order sum of the squares of CPU responses
on this CPU.

The low-order sum of the squares of CPU responses
on this CPU.

The parity table is pointed to by %CCPAR in the constants table for each processor. This subtable is
under the conditional assembly switch FTMEMPAR. Refer to Paragraphs 3.6.3.4.3 and 7.7 for

additional parity information.

Item

0

10

11

5.06 Monitor

Location

%CVPLA

%CVPMR

%CVPTS

%CVPSC
%CVPUE

%CVPAA

%CVPAC

%CVPOA

%CVPOC

%CVPCS

Use
Highest bad memory parity address on last sweep of

memory. Used to tell operator the range of bad
addresses .

Relative address (not virtual address) in the high or
low segment of the last memory parity error.

Number of parity errors on the last sweep of core.
Set to 0 at beginning of the sweep.

Number of parity sweeps by the monitor.

Number of user-enabled parity errors. Refer to
Paragraph 3.1.3.1.

The AND of bad addresses on the last memory parity
sweep.

The AND of bad contents on the last memory parity
sweep.

The OR of bad addresses on the last memory parity
sweep.

The OR of bad contents on the last memory parity
sweep.

Number of spurious parity erors. (The APR sweep
found no bad parity but the channel had requested
the sweep rather thanthe processor). This indicates
a channel memory port problem.

3-54 March 1973

439- MONITOR CALLS

Bad Address Subtable

The bad address table is pointed to by %CCMPT in the constants table for each processor. This sub-
table is under the conditional assembly switch FTMEMPAR and contains the bad addresses on the last
memory parity sweep. It is not cleared and the number of valid entries is kept in %CVPTS in the

parity subtable.

3.6.3.4.14 Entries in Table 71 = .GTFET (Feature Table)

This table provides the user with a mechanism for determining the current settings of all features defined
in F.MAC

Item Location Use

0 - %FTUUO UUOs
Bit 26 = 1 if control-C intercept (FCCIN).
Bit 27 =1 if JOBSTS and CTLJOB
UUOs are implemented (F%PTYU).
Bit 28 = 1 if PEEK UUO implemented (F%PEEK).
Bit 29 =1 if POKE., UUO implemented (F%POKE).
Bit 30 =1 if JOB continue (F%JCON).
Bit 31 = 1 if spooling supported (F%SPL).
Bit 32 =1 if job privileges supported (F%PRV).
Bit 33 =1 if DAEMON supported (F%DAEM).
Bit 34 =1 if GETTAB exists (FGETT).
Bit 35 =1 if 2-register relocation (F%2REL).

1 %FTRTS Real time and scheduling features
Bit 27 = 1 if swapper (F%SWAP).
Bit 28 = 1 if shuffler (F%SHFL).
Bit 29 = 1 if DK10 service (F%RTC).
Bit 30 =1 if LOCK UUOQ implemented (FP6LOCK).
Bit 31 = 1 if TRPSET UUO implemented (F%TRPS).
Bit 32 =1 if real-time traps implemented (F%RTTR).
Bit 33= 1 if SLEEP UUO implemented (F%SLEE).
Bit 34 =1 if HIBER and WAKE UUOs supported

(F%HIBW).

Bit 35= 1 if high priority queues supported (F%HPQ)

2 %FTCOM Commands
Bit 23 =1 if COMPIL commands (F%CCL).
Bit 24 = 1 if COMPIL~class (F%CCLX).
Bit25=1 if QUEUE (F%QCOM).
Bit 26 = 1if SET UUO and command (F%SET).
Bit27=1if VERSION (F%VERS).
Bit 28 = 1 if Batch control file commands (F%BCOM).
Bit 29 = 1 if SET DAYTIME and SET DATE (F%SEDA).
Bit 30 =1 if WATCH (FAWATC).

3-55 March 1973

MONITOR CALLS

11513_1 Location
3 %FTACC
4 %FTERR
5 %FTDEB
6 %FTSTR

5.06 Monitor

-440-

Use

Bit 31 = 1 if FINISH and CLOSE (F%FINI).
Bit 32 = 1 if REASSIGN (F%REAS).

Bit 33=1ifE and D (FREXAM).

Bit 34 = 1 if SEND (F%TALK).

Bit 35= 1 if ATTACH (F%ATTA).

Accounting information

Bit 31 = 1 if time and core limits (F%TLIM).

Bit 32 = 1 if charge number (F%CNO).

Bit 33 = 1 if user name (FFAUNAM).

Bit 34 = 1 if kilo-core-ticks accumulation (F%KCT).
Bit 35 = 1 if run~time computation (F%TIME).

Error control and intemnal options

Bit 26 = 1 if swapping process data block (F%PDBS).

Bit 27 = 1 if KI10 features at startup time (F%KI10).

Bit 28 = 1 if METER. UUO supported (F%METR).

Bit 29 = 1 if execute-only files (FEXON).

Bit 30 = 1 if illegal instruction message checks for
for KI10 instructions (F%KII).

Bit 31 =1 if code to load BOOTS from disk
(F%BOOT).

Bit 32 = 1 if more than one swopping device
(F%2SWP).

Bit 33 =1 if DAEMON error logging (F%EL).

Bit 34 = 1 if multi-processor code loaded (F%MS).

Bit 35 =1 if memory parity error recovery
(F%MEMP).

Debugging features

Bit 28 = 1 if response time measurement (F%RSP).

Bit 29 = 1 if why reload code (FoWHY).

Bit 30 = 1 if patch space left in tables (F%PATT).

Bit 31 = 1 if back-tracking information left in
COMMON (F%TRAC).

Bit 32 =1 if monitor halts on error (F%HALT).

Bit 33 = 1 if redundancy checking for internal errors
(F%RCHK).

Bit 34 = 1 if monitor write protected (FloMONP).

Bit 35 = 1 if monitor check summing (F%CHEC).

File structure parameters

Bit 21 =1 if NUL device (F%NUL).
Bit22=1if LIB/SYS/NEW (F%LIB).

Bit 23 = 1 if disk priority transfers (F%DPRI).
Bit 24 = 1 if append to last block (F%APLB).
Bit 25=1 if append implies read (F%AIR).

Bit 26 = 1 if generic device search (F%GSRC).
Bit 27 = 1 if rename across directories (F%DRDR).
Bit 28 = 1 if SEEK UUO (F%DSEK).

Bit 29 =1 if super USETI/USETO (F%DSUP).
Bit 30 = 1 if disk quotas (F%DQTA).

3-56 March 1973

441~ MONITOR CALLS

Item Location Use

Bit 31= 1 if multiple file structures (F%STR).
Bit 32 = 1 if 5-series UUOs (F%5UUO).

Bit 33 =1 if physical-only 1/O (F%PHYO).
Bit 34 = 1 if sub-file directories (F%SFD).
Bit 35= 1 if STRUUO functions (F%eMOUN).

7 %FTDSK Internal disk parameters
Bit 21 =1 if DEBUG CB interlock (F%CBDB)
Bit 22 = 1 if LOGIN system (F%LOGI).
Bit 23 = 1 if disk system (F%DISK).
Bit 24 = 1 if race-condition prevention in FILFND
(F%FFRE).
Bit 25 = 1 if swop read error recovery (F%SWPE).
Bit 26 = 1 if bad block marking (F%DBBK).
Bit 27 =1 if UFD compressor (F%DUFC).
Bit 28=1if disk error simulation (F%DETS).
Bit 29 = 1 if extended RIBs supported (F%DMRB).
Bit 30 = 1 if smaller allocation for disk core blocks
(F%DSMC).
Bit 31 =1 if allocation optimization (F%DALC).
“Bit 32 = 1if disk usage statistics (F%DSTT).,
Bit 33 = 1 if hung disk recovery (F/oDHNG).
Bit 34 = 1 if disk off~line recovery (F%DBAD).
\ Bit 35 = 1 if latency optimization (F%DOPT).

10 %FTSCN Scanner options

Bit 27 = 1 if TTY BLANK command (F%TBLK).

Bit 28 = 1 if page and display knowledge
(FHTPAG).

Bit 29 =1 if automatic dialer supported (F%DTAL).

Bit 30 = 1 if special line control (F%SCLC).

Bit 31 =1 if hardware (DC10 or DC68) scanner
(F%SCNR).

Bit 32 = 1 if modem control (F/eMODM).

Bit 33 = 1 if single scanner 630 (F%630H).

Bit 34 = 1if U.K, modem supported (F%GPO2),

Bit 35=1if real half-duplex terminals (F%HDPX).

1" %FTPER I/O Parameters
Bit 27 = 1 if CDP trouble intercept (F%CPTR).
Bit 28 =1 if CDR trouble intercept (F%CRTR).
Bit 29 = 1 if CTY1 supported (F%CTY1).
Bit 30 = 1 if remote station supported (F%REM).
Bit 31 = 1if LPT error recovery (F%LPTR).
Bit 32 = 1 if device errors to operator (F%OPRE).
Bit 33 =1 if CDR super~image mode (F%CDRS).
Bit 34 = 1 if MTA density and buffer size (FeMTSE).
Bit 35= 1 if TMPCOR area (F%TMP).

5.06 Monitor : 3-57 i March 1973

MONITOR CALLS -44y2-

3.6.4 Configuration Information

3.6.4.1 SWITCH AC, or CALLI AC, 20 - This UUO returns the contents of the central processor
data switches in AC. Caution must be exercised in using the data switches because they are not an

allocated resource and are always available to all users.

3.6.4.2 LIGHTS AC, or CALLI AC, -1 - This UUO displays the contents of AC in the console
lights.

3.7 DAEMON AC, OR CALLI AC, 102"

This UUO requests the DAEMON program to perform a specified function for the user program. The
call is:

MOVE AC, [XWD length (n+1), ADR] -
DAEMON AC, ;or CALLI AC, 102

error refturn
normal return

ADR: function
argl
arg2

.
.

Gl'gn

The length of the argument list can be zero if the number of arguments is fixed. The first word of the
argument list is the code for the requested function. Non-privileged functions of the DAEMON UUO
are presented in the following paragraphs. Refer to the Specifications section of the DECsystem-10

Software Notebooks for a description of the privileged functions.

3.7.1 .DCORE Function

This function causes DAEMON to write a dump file of the job's core area. The call is:

ADR: 1 ;o DCORE function
SIXBIT/dev/
SIXBIT/file/
SIXBIT/ext/
0
XWD ppn
SIXBIT/SFD1/

SIXBIT/SFDN/

]This UUO depends on FTDAEM which is normally off in the DECsystem- 1040,

3-58 March 1973

-4y3- MONITOR CALLS

If an argument is omitted, the default is the same as in the DCORE command (refer to DECsystem=~10

Operqting System Commands).

3.7.2 .CLOCK Function

This function causes DAEMON to enter a request in the clock queue in order to wake the job after the
specified number of seconds has elapsed. The UUO returns as soon as the request is entered. The
HIBER UUO with no clock request (refer to Paragraph 3.1.4.2) should then be used to place the job

in the sleep queue.

The call is:
MOVEI AC, BLOCK
DAEMON AC,
JRST ERROR
SETZ AC,
HIBER AC,
JRST ERROR
ERROR: ... ;simulate the DAEMON UUO
; with the SLEEP UUQ.
BLOCK: 2 ;.CLOCK function
+seconds ;number of seconds to sleep.

If the job already has a request in the clock queue, the new request supersedes the current request.

Thus, jobs desiring to be awakened several times should issue one request for the soonest wake time.

There is no mexximum on the amount of time a job can sleep and therefore, this UUO is useful when a
sleep time of more than 63 seconds is desired (the SLEEP and HIBER UUOs have an implied maximum of
63 seconds). A request specifying O seconds clears the job's entry in the clock queue and immediately
wakes the job. Note that the resolution of the timer may be several seconds slaw if the system is

heavily loaded.

3.7.3 Returns

The error retum is given if the UUO is not implemented, DAEMON is not running, or DAEMON can-
not complete the requested function, If the UUO is not implemented or DAEMON is not running, AC
remains unchanged. If DAEMON cannot complete the request, AC contains one of the following error
codes: |

1 DMILF% Hegal function.

2 DMACK% Address check. The argument block is outside of

user core or in the job data area.
DMWNA% Wrong number of arguments.
4 DMSNH% Impossible UUO failure (should never happen).
(Cont on next page)

5.06 Monitor 3-59 March 1973

MONITOR CALLS -4~

5 DMCWF% Cannot write file. An OPEN or INIT failed.

6 DMNPV% No privileges. An attempt was made to write
in the accounting files without having the proper
privileges.

7 DMFFB% FACT format is bad.

10 DMPTH% Invalid path specification.

The normal return is taken if the requested function is successfully completed.
3.8 REAL-TIME PROGRAMMING

3.8.1 RTTRP AC, or CALLI AC, 57"

The real-time trapping UUO is used by timesharing users to dynamically connect real-time devices to
the priority interrupt system, to respond fo these devices at interrupt level, to remove the devices
from the interrupt system, and to change the PI level on which the devices are associated. The
RTTRP UUO can be called from UUO level or from interrupt level. This is a privileged UUO that
requires the job to have real~time privileges (granted by LOGIN) and to be locked in core (accom-
plished by LOCK UUO). These real-time privileges are assigned by the system manager and obtained
by the monitor from ACCT. SYS. The privilege bits required are:
1) JP.LCK (Bit 14) ~ allows the job to be locked in core.
2) JP.RTT (Bit 13) - allows the RTTRP UUO to be executed.
WARNING
Improper use of features of the RTTRP UUO can cause the
system to fail in a number of ways. Since design goals of
this UUO were to give the user as much flexibility as
possible, some system integrity had to be sacrificed. The
most common errors are protected against since user pro-
grams run in user mode with all ACs saved. It is recom-
mended that debugging of real-time programs not be done
when system integrity is important. However, once these

programs are debugged, they can run simultaneously with
batch and timesharing programs.

Real-time jobs control devices one of two ways: block mode or single mode. In block mode, an en-
tire block of data is read before the user's interrupt program is run. In single mode, the user's interrupt
program is run every time the device interrupts. Furthermore, there are two types of block mode:

fast block mode and normal block mode. These differ in response times. The response time to read a
block of data in fast block mode is 6.5 ps per word and in normal block mode, 14.6 s per word.

(This is the CPU time to complete each data transfer.) In all modes, the response time measured from

the receipt of the real-time device interrupt to the start of the user control program is 100 s.

]This UUO depends on FTRTTRP which is normally off in the DECsystem—-1040.

5.06 Monitor 3-60 March 1973

-445- MONITOR CALLS

The RTTRP UUO dllows a real-time job to either put a BLKI or BLKO instruction directly on a PI
level (block mode) or add a device to the front of the monitor PI channel CONSO skip chain (single
mode). Since the BLKI and BLKO are executed in exec mode, a KI10-based system requires that the
job be mapped in exec virtual memory, in addition to being locked (refer to the LOCK UUO). When
an interrupt occurs from the real-time device in single mode or at the end of a block of data in block
mode, the monitor saves the current state of the machine, sets the new user virtual memory and APR
flags, and traps to the user's interrupt routine. The user services his device and then returns control

to the monitor to restore the previous state of the machine and to dismiss the inferrupt.

In fast block mode the monitor places the BLKI/BLKO instruction directly in the PI trap location fol-
lowed by a JSR to the context switcher. This action requires that the PI channel be dedicated to the
real-time job during any transfers. In normal block mode the monitor places the BLKI/BLKO instruc-
tion directly ofter the real-time device's CONSO instruction in the CONSO skip chain (refer to
"Chapter 7). ‘

Any number of real-time devices using either single mode or normal block mode can be placed on any
available PI channel. The average extra overhead for each real-time device on the same channel is

5.5 ps per interrupt.
The call is:

MOVEI AC, RTBLK sAC contains address of data block.

RTTRP AC, sor CALLI AC, 57, put device on PI level.
error refurn ;AC contains an error code.

normal return ;PI is set up properly.

The data block depends on the mode used. In single mode the data block is:

RTBLK: XWD PICHL, TRPADR ;PI channel (1-6) and trap address.
EXP APRTRP ;APR frap address.
CONSO DEV, BITS ;CONSO chain instruction.
0 ;no BLKI/BLKO instruction.

The data block in fast block mode is:

RTBLK: XWD PICHL, TRPADR ;PI and trap address when BLKO done.
EXP APRTRP ;APR trap address.
BLKO DEV, BLKADR sBLKI or BLKO instruction.
0 ;BLKADR points to the IOWD of

;block to be sent.

The data block in normal block mode is:

RTBLK: XWD PICHL, TRPADR ;channel and trap address.
EXP APRTRP sAPR trap address.
CONSO DEV, @BITMSK ;control bit mask from user area.
BLKI DEV, BLKADR :BLKI instruction.

3-61 March 1973

MONITOR CALLS -446-

On multiprocessor systems, the real-time trap UUO applies only to the processor specified by the job's
CPU specification (refer to the SET CPU command or the SET UUO). If the specification indicates
more than one processor, the specification is changed to indicate CPUO. Note that the PI channel
(PICHL) and processor traps (APRTRP) are only for the indicated CPU.

3.8.1.1 Data Block Mnemonics - The following mnemonics are used in describing the data block

associated with the RTTRP UUO.

PICHL = PICHL is the PI level on which the device is to be placed. Levels 1-6 are legal depending
on the system configuration. If PICHL = 0, the device is removed from all levels. When a device is
placed on a PI level, normally all other occurrences of the device on any Pl level are removed. If
the user desires the same device on more than one PI level simultaneously (i.e., a data level and an
emor level), he can issue the RTTRP UUO with PICHL negative. This indicates to the system that any
other occurrence of this device (on any PI level) is not to be removed. Note that this addition to a

PI level counts as a real-time device, occupying one of the possible real-time device slots.

TRPADR - TRPADR is the location trapped to by the real-time interrupt (JRST TRPADR). Before the
trap occurs, all ACs are saved by the monitor and can be overwritten without concern for their con-

tents.

APRTRP - APRTRP is the frap location for all APR traps. When an APR trap occurs, the monitor
simulates a JSR APRTRP. The user gains control from an APR trap on the same Pl level that his real-
time device is on. The monitor always traps to the user program on illegal memory references, non-
existent memory references, and push-down overflows. This allows the user to properly turn off

his real-time device if needed. The monitor also traps on the conditions specified by the APRENB
UUO (see Paragraph 3.1.3.1). No APR errors are detected if the interrupt routine is on a Pl level
higher than or equal to the APR interrupt level.

DEV - DEV is a real-time device code.

BITS - BITS is the bit mask of all interrupt bits of the real-time device and must not contain any other
bits. If the user desires control of this bit mask from his user area, he may specify one level of in-
direction in the CONSO instruction (no indexing), i.e., CONSO DEV, @ MASK where MASK is
the location in the user area of the bit mask. MASK must not have any bits set in the indirect or

index fields.

BLKADR - BLKADR is the address in the user's area of the BLKI/BLKO pointer word. Before returning
to the user, the monitor adds the proper relocation factor to the right half of the pointer word. Data

can only be read into the low segment above the protected job data area, i.e., above location 114.

3-62 March 1973

-447- MONITOR CALLS

Since the pointer word is in the user's area, the user can set up a new pointer word when the word
count goes to 0 at interrupt level, This allows fast switching be_fweén buffers. When the user desires
to set up his own pointer word, the right half of the word must be set as an exec virtual instead of a
user virtual address. The job's relocation value is returned from both the LOCK UUO and the first
RTTRP UUO executed for setting the BLKI/BLKO instruction. If this pointer word does not contain a
legal address, a portion of the system might be overwritten. A check should be made to determine if
the negative word count in the left half of the pointer word is too large. If the word count extends
beyond the user's own areq, ‘fhe device may‘cayse a non-existent memory interrupt, or may overwrite
a timesharing job. If all of the dbove precautions are taken, this method of setting up the pointer

word is much faster and more flexible than issuing the RTTRP UUO at interrupt level.

3.8.1.2 Interrupt Level Use of RTTRP = The format of the RTTRP UUO at interrupt level is similar

to the format ot user level except for two restrictions:

1) AC 16 and AC 17 cannot be used in the UUO call (i.e., CALLI 16, 57 is
illegal at interrupt level).

2) All ACs are overwritten when the UUOQ is executed at interrupt level. There-
fore, the user must save any desired ACs before issuing the RTTRP UUO. This
restriction is used to save time at interrupt level.

CAUTION

If an interrupt level routine executes a RTTRP UUO that
affects the device currently being serviced, no additional
UUOs of any kind (including RTTRP) can be executed dur-
ing the remainder of the interrupt. At this point, any sub-
sequent UUO dismisses the interrupt.

3.8.1.3 RTTRP Returns - On a normal return, the job is given user IOT privileges. These privileges
allow the user to execute all restricted instructions including the necessary 1/O instructions to con-
trol his device. '

The IOT privilege must be used with caution because improper use of the 1/O instructions could halt
the system (i.e., HALT on the KAT10; CONO APR, 0; DATAO APR, 0; CONO PI, 0 on the KA10
and KI10; and CONO PAG, 0 or DATAO PAG, 0 on the KI10). Note that a user can obtain just
the user IOT privilege by issuing the RTTRP UUO with PICHL = 0.

An error return is not given to the user until RTTRP scans the entire data block to find as many errors

as possible. On return, AC may contain the following emor codes.

3-63 March 1973

MONITOR CALLS

Narme

RTINP%
RTCPU%

RTDIU%
RTIAU%
RTINL%
RTSLE%
RTILF%
RTPWI%
RTEAB%
RTTAB%
RTPNB%
RTPNA%

-448-

Code Value Meaning
Bit 24=1 4000 Job not privileged.
Bit 25=1 2000 Not permitted on CPU1. (This is a temporary error

condition reflecting the fact that the initial release
of the 5.05 monitor will not support the RTTRP UUO

on CPUT).
Bit 26=1 1000 Device already in use by another job.
Bit 27=1 400 Illegal AC used during RTTRP UUO at interrupt level.
Bit 28=1 200 Job not locked in core.
Bit 29=1 100 System limit for real-time devices exceeded.
Bit 30=1 40 Ilegal format of CONSO, BLKO, or BLKI insfruction.
Bit 31=1 20 BLKADR or pointer word illegal.
Bit 32=1 10 Error address out of bounds.
Bit 33=1 4 Trap address out of bounds.
Bit 34=1 2 PI channel not currently available for BLKI/BLKO's.
Bit 35=1 1 PI channel not available (restricted use by system).

3.8.1.4 Restrictions -

5.06 Monitor

1)

2)

3)

Devices may be chained onto any PI channel that is not used for BLKI/BLKO in-
structions by the system or by other real~time users using fast block mode. This
includes the APR channel. Normally PI levels 1 and 2 are reserved by the
system for magnetic tapes and DECtapes. PI level 7 is always reserved for the
system.

Each device must be chained onto a PI level before the user program issues the
CONO DEV, PIA to set the device onto the interrupt level. Failure to observe
this rule or failure to set the device on the same PI level that was specified in
the RTTRP UUO could hang the system.

If the CONSO bit mask is set up and one of the corresponding flags in a device
is on, but the device has not been physically put on its proper PI level, a trap
may occur to the user's interrupt service routine. This occurs because there is
a CONSO skip chain for each PI level, and if another device interrupts whose
CONSO instruction is further down the chain than that of the real-time device,
the CONSO associated with the real-time device is executed. If one of the
hardware device flags is set and the corresponding bit in the CONSO bit mask
is set, the CONSO skips and a trap occurs to the user program even though the
real-time device was not causing the interrupt on that channel. To avoid this
situation the user can keep the CONSO bit mask in his user area (refer to
Paragraph 3.8.1.1). This procedure allows the user to chain a device onto the
interrupt level, keeping the CONSO bit mask zero until the device is actually
put on the proper PI level with a CONO insfruction. This situation never
arises if the device flags are turned off until the CONO DEV, PIA can be
executed.

3-64 March 1973

-449- MONITOR CALLS

4) The user should guard against putting programs on high priority interrupt levels
* which execute for long periods of time. These programs could cause real-time
programs at lower levels to lose data..

5) The user program must not change any locations in the protected job data area
(locations 20-114), because the user is running at interrupt level and full con-
text switching is not performed.

6) If the user is using the BLKI/BLKO feature, he must restore the BLKI/BLKO
pointer word before dismissing any end-of-block interrupts. This is accom-
plished with another RTTRP UUO or by directly modifying the absolute pointer
word supplied by the first RTTRP UUO. Failure to reset the pointer word
could cause the device to overwrite all of memory.

3.8.1.5 Removing Devices from a PI Channel - When PICHL=0 in the data block (see Paragraph
3.8.1.1), the device specified in the CONSO instruction is removed from the interrupt sys'reh. If
the user removes a device from a PI chqi.n, he must also remove thg device from the PI level (CONO

DEV, 0).

A RESET, EXIT, or RUN UUO from the timesharing levels removes all devices from the interrupt levels
(see Paragraph 3.2.2.4). These UUOs cause a CONO DEV, 0 to be executed before the device is

removed. Monitor commands that issue implic;it RESETS also remove real-time devices (e.g., R, RUN,
GET, CORE 0, SAVE, SSAVE).

3.8.1.6 Dismissing the Interrupt - The user program must always dismiss the interrupt in order to al-
low monitor to properly restore the state of the machine. The interrupt may be dismissed with any
UUO other than the RTTRP UUO or, on the KA10, any instruction that traps to absolute location 60.
The standard method of dismissing the interrupt is with a UJEN instruction (op code 100). This

instruction gives the fastest possible dismissal.

3.8.1.7 Examples

sckokokkokkokkk EXAMPLE 1 skokacksokskkoksk
SINGLE MODE

TITLE RTSNGL - PAPER TAPE READ TEST USING CONSC CHAIN

PIOFF=40@ 3TURN PI SYSTEM OFF

PION=200 "3TURN PI SYSTEM ON
TAPE=400 3NO MORE TAPE IN READER IF TAPE=0
BUSY=20 3DEVICE IS BUSY READING
DONE=10 3A CHARACTER HAS BEEN READ
PDATA: Z 3LOCATION WHERE DATA IS READ INTO

3-65 March 1973

MONITOR CALLS

PTRTST:

RTBLK:

PTRCSO:
DONFLG:
RTBLK1 ¢

TRPADR @

APRTRP:
TDONE ¢

FAILED:

RESET
MOVE CXWD 1,11
LOCK

JRST FAILED
SETZM PTRCSO
SETZM DONFLG
MOVEI RTBLK
RTTRP

JRST FAILED
MOVEI 1,DONE
HLRZ 2,RTBLK
TRO 2,BUSY
CONO PI,PIOFF
MOVEM 1,PTRCSO
CONO PTR,(2)
CONO PI,PION
MOVEI S

SLEEP

SKIPN DONFLG
JRST .-3

EXIT

XWD S,TRPADR
EXP APRTRP

CONSO PTR,ePTRCSO

z

z
z
z
z
CONSO PTRsO

z

CONSO PTR,TAPE
JRST TDONE

DATAI PTR,PDATA
UJEN

z

MOVEI RTBLKI
CONO PTR,2
RTTRP

JFCL

SETOM DONFLG
SETZM PTRCSO
UJEN

-450-

$RESET THE PROGRAM

3LOCK BOTH HIGH AND LOW SEGMENTS
3LOCK THE JOB IN CORE

3LOCK UUO FAILED

3MAKE SURE CONSO BITS ARE ZERO
S3INITIALIZE DONE FLAG

3GET ADDRESS OF REAL TIME DATA BLOCK
3PUT REAL TIME DEVICE ON THE PI LEVEL
SRTTRP UUO FAILED

3SET UP CONSO BIT MASK

3GET PI NUMBER FROM RTBLK

3SET UP CONO BITS TO START TAPE GOING
3GUARD AGAINST ANY INTERRUPTS

3STORE CONSO BIT MASK

3TURN PTR ON

JALLOW INTERRUPTS AGAIN

3SET UP TO SLEEP FOR 5 SECONDS

3JHAVE WE FINISHED READING THE TAPE
3NO GO BACK TO SLEEP

3P1 CHANNEL AND TRAP ADDRESS

3APR ERROR TRAP ADDRESS

3 INDIRECT CONSO BIT MASK = PTRCS0
3NO BLKI/O INSTRUCTION

3CONSO BIT MASK

3PI LEVEL TO USER LEVEL COMM.
3DATA BLOCK TO REMOVE PTR
3FROM PI CHANNEL

3JEND OF TAPE?

3YESs GO STOP JOB
SREAD IN DATA WORD
3DISMISS THE INTERRUPT

3APR ERROR TRAP ADDRESS

3JSET UP TO REMOVE PTR

3TAKE DEVICE OFF HARDWARE PI LEVEL
3REMOVE FROM SOFTWARE Pl LEVEL
3IGNORE ERRORS :
3MARK THAT READ IS OVER

3CLEAR CONSO BIT MASK

3DISMISS THE INTERRUPT

TTCALL 3,(ASCIZ/RTTRP UUO FAILED!/)

EXIT

END PTRTST

3-66 March 1973

BLKTST

RTBLK:

POINTR?®
OPOINT:
TABLE ¢

DONFLG:
RTBLK1 ¢

TRPADR:2

APRTRP
TDONE @

-451-

MONITOR CALLS

sokokkokkkokkok EXAMPLE 2 sokokskokskosdkorskok

FAST BLOCK MODE

TITLE RTFBLK - PAPER TAPE READ TEST IN BLKI MODE

TAPE=400
BUSY=20
DONE=10

RESET

MOVE L[XWD 1,11
LOCK

JRST FAILED
SETZM DONFLG
MOVEI RTBLK
RTTRP

JRST FAILED
HLRZ 2,RTBLK
TRO 2,BUSY
CONO PTR»(2)
MOVEI 5
SLEEP

SKIPN DONFLG
JRST -3
EXIT

XWD 6sTRPADR
EXP APRTRP

BLKI PTR»POINTR
z

I0WD S>TABLE
I0WD 5.TABLE
BLOCK S

z

z

z

CONSO PTR.0
z

CONSO PTR,TAPE
JRST TDONE
MOVE OPOINT
MOVEM POINTR
UJEN

z

MOVEI RTBLK1
CONO PTR,®
RTTRP

JFCL

SETOM DONFLG

. UJEN

FAILED:

$NO MORE TAPE IN READER IF TAPE=®
JDEVICE IS BUSY READING
3A CHARACTER HAS BEEN READ

3RESET THE PROGRAM

3LOCK BOTH HIGH AND LOW SEGMENTS
3LOCK THE JOB IN CORE

3LOCK UUO FAILED

3INITIALIZE DONE FLAG

3GET ADDRESS OF REAL TIME DATA BLOCK
3PUT REAL TIME DEVICE ON THE PI LEVEL

3RTTTP UUQ FAILED

3GET P1 NUMBER FROM RTBLK

3SET UP CONO BITS TO START TAPE GOING
3TURN PTR ON _

3SET UP TO SLEEP FOR 5 SECONDS

3HAVE WE FINISHED READING THE TAPE
$NO GO BACK TO SLEEP

3P1 CHANNEL AND TRAP ADDRESS
3APR ERROR TRAP ADDRESS
3READ A BLOCK AT A TIME

3SPOINTER FOR BLKI INSTRUCTION
JORIGINAL POINTER WORD FOR BLKI1
3TABLE AREA FOR DATA BEING READ
3P1 LEVEL TO USER LEVEL COMM.
3DATA BLOCK TO REMOVE PTR

3FROM PI CHANNEL

3END OF TAPE?

3YES» GO STOP JOB

3GET ORIGINAL POINTER WORD
JRESTORE BLKI POINTER WORD
SDISMISS THE INTERRUPT

3APR ERROR TRAP ADDRESS

3SET UP TO REMOVE PTR

3TAKE DEVICE OFF HARDWARE PI LEVEL
$REMOVE FROM SOFTWARE PI LEVEL

3 IGNORE ERRORS

3MARK THAT READ IS OVER

3D1ISMISS THE INTERRUPT

TTCALL 3,[ASCIZ/RTTRP UUO FAILED!/]

EXIT

END BLKTST

3-67 March 1973

MONITOR CALLS

*dokdokkkkkk EXAMPLE 3 sskkokokokokkkk
NORMAL BLOCK MODE

BLKTST:

RTBLK:

POINTR:
OPOINT:
TABLE:

DONF LG
RTBLK1 2

TRPADR ¢

APRTRP:
TDONE ¢

FAILED:

-452-

TITLE RTNBLK - PAPER TAPE READ TEST IN BLKI MODE

TAPE=400
BUSY=20
DONE=10

RESET

MOVE (XWD 1,113
LOCK

JRST FAILED
MOVEI RTBLKI
RTTRP

JRST FAILED
CONO PTR.®
SETZM DONFLG
MOVEI RTBLK
RTTRP

JRST FAILED
MOVE POINTR
MOVEM OPOINT
HLRZ 2,RTBLK
TRO 2,BUSY
CONO PTR»s<(2)
MOVEI 5
SLEEP

SKIPN DONFLG
JRST «-3
EXIT

XWD 6,TRPADR
EXP APRTRP
CONSO PTR.DONE
BLKI PTR,POINTR

10WD S5,TABLE
z

"BLOCK 5

z
zZ
z
CONSO PTR»0
z

CONSO PTR,TAPE
JRST TDONE
MOVE OPOINT
MOVEM POINTR
UJEN

z

MOVEI RTBLK1
CONO PTR»©
RTTRP

JFCL

SETOM DONFLG
UJEN

3NO MORE TAPE IN READER IF TAPE=0
3DEVICE IS BUSY READING
3A CHARACTER HAS BEEN READ

310 RESET

3LOCK BOTH HIGH AND LOW SEGMENTS
3LOCK THE JOB IN CORE

3LOCK UUO FAILED

3GET ADDRESS OF REAL TIME BLOCK

3GET USER IOT PRIVILEGE

3UUO FAILED!

$CLEAR ALL PTR FLAGS

BJINITIALIZE DONE FLAG

3GET ADDRESS OF REAL TIME DATA BLOCK
3PUT REAL TIME DEVICE ON THE PI LEVEL
3RTTRP UUC FAILED

3GET RELOCATED POINTER WORD FOR LATER
3STORE FOR INTERRUPT LEVEL USE

3GET PI NUMBER FROM RTBLK

3SET UP CONO BITS TO START TAPE GOING
3TURN PTR ON

3SET UP TO SLEEP FOR S SECONDS

3HAVE WE FINISHED KEADING THE TAPE
3NO GO BACK TO SLEEP

3PI CHANNEL AND TRAP ADDRESS
3APR ERROR TRAP ADDRESS
SWAIT ONLY FOR DONE FLAG
3SREAD A BLOCK AT A TIME

3POINTER FOR BLKI INSTRUCTION

3TABLE AREA FOR DATA BEING READ
3P1 LEVEL TO USER LEVEL COMM.
3DATA BLOCK TO REMOVE PTR

3FROM PI CHANNEL

SEND OF TAPE?
3YES» GO STOP JOB -

3GET ORIGINAL POINTER LOCATION
35STORE IN POINTER LOCATION
3DISMISS THE INTERRUPT

3APR ERROR TRAP ADDRESS

$SET UP TO REMOVE PTR

3TAKE DEVICE OFF HARDWARE PI LEVEL
3REMOVE FROM SOFTWARE PI LEVEL

3 IGNORE ERRORS

3MARK THAT READ IS OVER

3DISMISS THE INTERRUPT

TTCALL 3,[ASCIZ/RTTRP UUO FAILED!/]

EXIT

END BKJTST

3-68 March 1973

453~ MONITOR CALLS

3.8.2 RTTRP Executive Mode Trapping

In special cases, the real-time user requires a faster response time than that offered by the RTTRP UUO
when executed in user mode. To accommodate these cases, the user can specify a special status bit in
the RTTRP UUO call, which gives the program control in exec mode (refer to Paragraph 2.1.3). Exec-
mode trapping gives response times of less than 10 ps to real-time interrupts. To use this exec-mode
trapping, the job must have real-time privileges (granted by LOGIN) and be locked in core (accom-
plished by the LOCK UUO). On KI10-based systems, the job must also be mapped contiguously in
exec virtual memory (refer to the LOCK UUO). The privilege bits required are:

1) JP.TRP (Bit 15)
2) JP.LCK (Bit 14)
3) JP.RTT (Bit 13)

Several restrictions must be placed on user programs in order to achieve this level of response. On
receipt of an interrupt, program control is transferred to the user's real-time program without saving
ACs and with the processor in exec mode. Therefore, the user program must save and restore all ACs
that are used, must not execute any UUOs, and cannot leave exec mode. This means that the programs
must be self-relocating (i.e., through the use of an index or base register).

CAUTION

Improper use of the exec mode feature of the RTTRP UUO
can cause the system to fail in a number of ways., Un-
like the user mode feature of RTTRP, errors are not pro-
tected against since the programs run in exec mode with
no ACs saved.

To specify RTTRP exec-mode trapping, bit 17 of the second word in the data block (RTBLK) must be

set to 1. This implies that no context switching is to be done and that a JSR TRPADR is to be used to
enter the user's real-time interrupt routine. The user program must save and restore all ACs and should
dismiss the interrupt with a JRSTF @ TRPADR. This instruction must be set up prior to the start of the
real-time device as an absolute or unrelocated instruction. This con be done because the LOCK UUO
returns the absolute addresses of the low and high segments after the job is locked in a fixed place

in memory .

The exec-mode trapping feature can be used with any of the standard forms of the RTTRP UUO: single

mode, normal block mode, and fast block mode.

5.06 Monitor - 3-69 March 1973

MONITOR CALLS
3.8.2.1 Example

RTEXEC :

SLEEP:

RTBLK:

TRPADR 3
EXCHWD s

RETURN:
JENWD 2

APRTRP:
TDONE 3

FAILED:

DONFLG:
PDATA:
INCEX 2

TITLE RTEXEC

PIA=5
DONE=10
BUSY=20
TAPE=400
I=1

AC=2

454~

OPDEF HIBERNATE [CALLI 72]

RESET
SETZM DONFLG

MOVE AC,[XWD 1,11

LOCK AC»

JRST FAILED
HRRZS AC

LSH AC,»9

MOVEM AC, INDEX

ADDM AC>EXCHWD
ADDM AC, JENWD
MOVEI AC,RTBLK
RTTRP AC»

JRST FAILED
CONO PTR,20+F1A
MOVEI AC,1tD1dB@Q
HIBERNATE AC.»
JRST FAILED
SKIPN DONFLG
JRST SLEEP

EXIT

XWD PIA,TRPADR
XWD 1 APRTRP
CONSG TRSDONE
?

2.
EXCH '1,INDEX
CONSO PTR,TAFPE
JRST TDONECI?

DATAI PTR,PDATAC(CI)

EXCH I, INDEX(I)
JRSTF @TRPADR

2

CONO PTR,O
SETOM DONFLGC(I)
JRST RETURNCI)

SRESET THE PROGRAM
SINITIALIZE THE DONE FLAG

3LOCK THE JOB IN CORE

3ABSOLUTE ADDRESS OF JOB IS RETUKRNED
3IN AC

3ERKOR RETURN

3GET ONLY LOW SEGMENT ADDKESS
3JUSTIFY ADDKESS

3SAVE BASE ADDRESS FOR USE AT INTEKRRUPT

FLEVEL

SRELOCATE INTERRUPT LEVEL PROGRAWM
SRELOCATE RETURN INSTRUCTION
3CONNECT REAL TIME DEVICE

3TO THE PI SYSTEM

3SRTTRP UUO FAILED

3START REAL TIME DEVICE READING
3SLEEP

3FOR 12 MILLISECONDS

3FAILED

31S THE INTERRUPT LEVEL PROGRAM DONE
3NO» GO BACK TO SLEEP

3YES, EXIT

3BIT 17 SAYS TRAP IN EXEC MODE

3 JSR TRPADR IS DONE UPON INTERRUPT
3SET UP INDEX REGISTER

3TAPE FINISHED?

3YES, STOP THE READER

3NO» READ IN THE NEXT CHARACTER
SRESTORE AC'S USED

3DISMISS THE INTERRUPT

3JAPR ERRORS WILL TRAP HERE
3TAKE THE READER OFF LINE
3MARK THAT THE TAPE IS FINISHED
360 DISMISS THE INTERRUPT

TTCALL 3,[ASCIZ/UUO0 FAILURE/1]

EXIT

e

END RTEXEC

3FLAG TO SPECIFY END OF JOB
3DATA WORD
JBASE INDEX REGISTER

3-70 Morch 1973

-1455- MONITOR CALLS

3.8.3 TRPSET AC, or CALLI AC, 25'

The TRPSET fecm‘.u'e may be used to guarantee some of the fast response requirements of real-time users.
In order to achieve fast response to interrupts, this feature temporarily suspends the running of other
jobs during its use. This limifs the class of problems to be solved to cases where the user wants to
transfer data in short bursts at predefined times. Thereforé, because the data transfers are short, the
time during which timesharing is stopped is also short, and the pause probably will not be noticed by

the timesharing users.

The TRPSET UUO allows the user program to gain control of the interrupt locations. If the user does
not have the TRPSET privileges (JP.TRP, bit 15), an error return to the next location after the CALLI
is always given, and the user remains in user mode. Timesharﬁng is turned back on. If the user has
the TRPSET privileges, the central processor is placed in user I/O mode. If AC contains zero, time-
sharing is turned on if it was turned off. If the LH of AC is within the range 40 through 57 of the
central processor, all other jobs are stopped from being scheduled and the specified executive PI lo-
cation (40-57) is patched to trap directly to the user. In this case, the monitor moves the contents
of the relative location specified in the right half of AC, converts the user virtual address to the
equivalent exec virtual address, and stores the address in the specified executive PI location. Ona
K110-based system, this requires that the user segment accessed during the interrupt be locked and
mapped contiguously in the exec virtual memory (refer to the LOCK UUQ). If the segment does not

meet these requirements, the error return is given.

On a multiprocessor system, the TRPSET UUO applies to the processor specified by the job's CPU
specification (refer to the SET CPU command or the SET UUO). If the specification indicates only
CPU1, an error retum is given if the job is not locked in core. When the specification indicates

more than one processor, the specification is changed to indicate CPUO (the master processor).

Thus, the user can set up a priority interrupt trap into his relocated core area. On a normal return,

AC contains the previous contents of the address specified by LH of AC, so that the user program may
restore the original contents of the PI location when the user is through using this UUO. If the LH of
AC is not within the range 40 through 57, an error return is given just as if the user did not have the

privileges. The basic call is:

MOVE AC,[XWD N» ADRJ
TRPSET AC,

ERROR RETURN

NORMAL RETURN

ADR & JSR TRAP , :Instruction to be stored

;in exec Pl location

;after relocation added to it.
TRAP & o ;Here on interrupt from exec.

1This UUO depends on FTTRPSET which is normally off in the DECsystem=-1040.
5.06 Monitor 3-71 March 1973

MONITOR CALLS -1456-

The monitor assumes that user ADR contains either a JSR U or BLKI U, where U is a user virtual
address; consequently, the monitor adds a relocation to the contents of location U to make it an
absolute IOWD (i.e., an exec virtual .address). Therefore, a user should reset the contents of U
before every TRPSET call.

A RESET UUO returns the user to normal user mode. The following instruction sequence is used to

place the real-time device RTD on channel 3.

INT46¢ BLKI RTDs INBLOK ;relocation constant
;for user is added

INT47: JSR XITINT ;to RH when instructions

. ;are placed into 46 and 47,
START: MOVEI AC., INT46

HRL1 AC.,46

TRPSET AC»

JRST EXITR serrvor refturn

MOVE AC» [(XWD 47, INT47) ;normal retum

TRPSET AC.»

JRST EXITR serror return

. ;normal retum
XITINT: @ ;PC saved .

o« . sinterrupt dismiss routine

To maintain compatibility between a KA10-based system and a KI10-based system, the interrupt routine
should be executed in exec mode. However, for convenience, the routine can be executed in user
mode in order to avoid relocation to exec virtual memory. This is possible on KA10-based systems if
care is taken when dismissing the interrupt (see example below). On KI10-based systems, if there is

a possibility that the interrupt may occur during the job's background processing, the interrupt routine
must be executed in exec mode (and thus must be locked and exec-mapped with the LOCK UUO). In
particular, if the job is executing a UUO at background level, the use of UJEN at interrupt level may
cause an error. On KI10-based systems it is recommended that the TRPSET interrupt routines always

be coded to run in exec mode (refer to the RTTRP UUO for programming techniques.)

On KA10-based system, the interrupt routine can be coded to run in user mode if the following pro-
cedure is observed. If the interrupt occurs while some other part of the user's program is running, the
user may dismiss from the interrupt routine with a JEN @ XITINT, However, if the machine is in
exec mode, a JEN instruction issued in user mode does not work because of memory relocation. This
is solved by a call to UJEN (op code 100). This UUO causes the monitor to dismiss the interrupt from
exec mode. In this case, the address field of the UJEN instruction is the user location when the
retum PC is stored (i.e., UJEN XITINT). The following sequence enables the user program to decide

whether it can issue a JEN to save time or dismiss the interrupt with a UUO call.

3-72 March 1973

-457- MONITOR CALLS
Example (KA10-based system only):

XITINT: @ ;PC with bits in LH

JRST 1,.+1 ;essential instruction,
;returns machine to
suser mode.

MOVEM AC» SAVEAC ‘ ;save accumulator AC
. \ sservice interrupt here
: A
MOVE AC» XITINT ;get PC with bits
SETZM EFLAG
TLNN AC. 10000 ;was machine in user
N ;mode at entry ?
SETOM EFLAG ;no
MOVE AC» SAVEAC ;RESTORE saved AC
SKIPE EFLAG
UJEN XITINT ;not in user mode at entry
JEN @ XITINT

SAVEAC: @

EFLAG$ /]

On énfering the routine from aBs‘o'uf; 47 with a JSR to XITINT -+ REL (Where REL. is the relocation
constant), the préceés'or enters vex'ec mo'dé“. The first executed instruction in the user's routine must,
fherefblfe, reset the user mode flag, thereby encbling relocation and protection. The user must pro-
ceed with caution whénchanéing channel interrupt chains under timesharing, making certain that the

real-time job can co-exist with other timesharing iobs.

3.8.4 UJEN (Op Code 100)

This op code dismisses a user I/O mode inferfupf if one is in progress. If the interrupt is from user
mode, a JRST 12, instruction dyl‘smisse's the intertupt. If the interrupt came from executive mode,
however, this operator is used to dismiss the interrupt. The monitor restores all accumulators, and
exécutes JEN @ U wheré user location U contains the program counter as stored by a JSR instruction

when the interrupt occurred.

3.8.5 HPQ AC, or CALLI AC, 71"

The HPQ UUO is used by privileged useérs to place their jobs in a higH-‘pridrHy scheduler run queve.

These queues are always scanned by the scheduler before the normal run queues, and any runndble job

M his UUO depends on FTHPQ which is normally off in the DECsystem-1040.

3-73 Mearch 1973

MONITOR CALLS -453-

in one of these queues is executed before all other jobs in the system. In addition, these jobs are
given preferential access to sharable resources (e.g., shared device controllers). Thus, real-time

associated jobs can receive fost response from the timesharing scheduler.

Jobs in high-priority queues are not examined for swap-out until all other queues have been scanned.
If a job in a high-priority queue must be swapped, the lowest priority job is transferred first, and the
highest priority job last. If the highest priority job is swapped, then that job is the first fo be swapped
in for immediate execution. Therefore, in addition to being scanned before all other queues for job
execution, the high-priority queues are examined after all other queues for swap-out and before all

queuves for swap=in.

The HPQ UUO requires as an argument the high-priority queue number of the queue to be entered.
The lowest high-priority queue is 1, and the highest priority queue is equivalent to the number of
queuves that the system is built for. The call is as follows:

MOVE AC, HPQNUM ;get high=priority queue number
HPQ AC, ;or CALLI AC, 71

error refurn

normal return
On an error return, AC contains -1 if the user did not have the comrect privileges. The privilege bits
are 6 through 9 in the privilege word (.GTPRV). These four bifs specify a number from 0-17 octal,
which is the highest priority queue attainable by the user.

On a normal return, the job is in the desired high-priority queue. A RESET or an EXIT UUO retums
the job to the high-priority queue specified in the last SET HPQ command. A queuve number of 0 as

an argument places the job back to the fimesha;'ing level.

3.9 METER.AC, OR CALLI AC, IH'

This UUO provides a mechanism for system performance metering by allowing privileged users to
dynamically select and collect performance statistics from the monitor. The mulitifunction UUO
controls all aspects of the metering facility in order that the user can collect, present, or reduce data
for performance analysis or can tune individual jobs or the entire system. The METER. UUOQ requires

JP.MET (bit 3) to be set in the privilege word .GTPRV.

1
This UUO depends on FTMETR which is normally off in the DECsystem-1040.

5.06 Monitor 3-74 March 1973

-459- MONITOR CALLS

The general call iss

MOVE AC, [XWD N, ADR]

METER.AC, ;or CALLI AC, 111
error return .

normal return

where

N is the number of arguments in the argument list.

ADR is the beginning of the argument list.
If N is 0, the default number of arguments depends on the particular function used. Arguments in the
list can be 1) arguments for the monitor, 2) values returned from the monitor, or 3) a combination of
both. The first word of the argument block is the code for the particular function. The detailed
descriptions of the various functions of the METER. UUO are presented in the METER. Specification

in the Software Notebooks; the following is a list of the functions available.

Function Code Name Description
0 «MEFCI Initialize meter channel
1 . MEFCS Obtain meter channel status
2 . MEFCR Release meter channel
3 .MEFPL Initialize meter points
4 . MEFPS Obtain meter point status
5 . MEFPR Release meter points

On an error return, the appropriate error code is returned in AC. Refer to the METER. Specification

for the error codes.

On a normal return, AC is perserved.

3-75 March 1973

-461- MORITOR CALLS

CHAPTER 4
I/0 PROGRAMMING

All user-mode 1/O programming is controlled by monitor programmed operators. I/0O is directed by

a. Assocfcﬁng a device and a ring of buffers with one of the user's 1/0 channels (INIT,
OPEN). '

b. Optionally selecting a file (LOOKUP, ENTER).
c. Passing buffers of data to or from the user program (IN, INPUT, OUT, OQUTPUT).

Device specification may be delayed from program-generation time until program-run time because

the monitor

a. Allows o logical device name to be associated with a physical device (ASSIGN or MOUNT
monitor command).

b. Treats operations that are not pertinent o a given device as no-operation code.

For example: a rewind directed to a line printer does nothing, and file selection operations for de-

vices without a filename directory are always successful.

4.1 1/0 ORGANIZATION
4,1.1 Files

A file is an ordered set of data on a peripheral device. The extent of a file on input is determined by
an end-of-file condition dependent on the device. For example: a file is terminated by reading an
end-of-file gap from magnetic tape, by an end-of-file card from a card reader, or by depressing the
end-of-file switch on a card reader (refer to Chapter 5). The extent of a file on output is determined
by the amount of information written by the OUT or OUTPUT programmed operators up through and
including the next CLOSE or RELEAS operator.

4.1.2 Job 1/O Initialization
The monitor programmed operator

CALL [SIXBIT /RESET/] or CALLI O

MONITOR CALLS -462-

should normally be the first instruction in each user program. It immediately stops all I/O transmis-
sions on all devices without waiting for the devices to become inactive. All device allocations made
by the INIT and OPEN operators are cleared and, unless the devices have been assigned by the
ASSIGN or MOUNT moniter command, the devices are returned to the monitor facilities pool. The
content of the left half of . JBSA (program bredk) is stored in the right half of .JBFF so that the user
buffer area is reclaimed if the program restarts. The left half of .JBFF is cleared. Any files that
have not been closed are deleted on disk. Any older version with the same filename remains. The
user-mode write-protect bit is automatically set if a high segment exists, whether it is sharable or not;
therefore, a program cannot inadvertently store into the high segment. Additional functions of the
RESET UUO include 1) unlocking the job if it was locked, 2) releasing dny real-time devices, 3) re-
setting any high-priority queues set by the HPQ UUO to the value set by the HPQ command, 4) re-

suming timesharing if it was stopped as a result of a TRPSET UUO with a non-zero argument, 5) reset-
ting the action of the HIBER and APRENB UUOs, and 6) clearing all PC flags except USRMOD.

4.2 DEVICE SELECTION

For all 1/O operations, a specific device must be associated with a software |/O channel. This speci-
fication is made by an argument of the INIT or the OPEN programmed operators. The INIT or the
OPEN programmed operators may specify a device with a logical name that is associated with a par-
ticular physical device by the ASSIGN or MOUNT monitor command. Some system programs, e.g.,
LOGOUT, require 1/O to specific physical devices regardless of what logical names have been as-
signed. Therefore, on an OPEN UUQ, if the sign bit of word 0 of the OPEN block is 1 (UU. PHS),
the device name is taken as a physical name only, and logical names are not searched. A given de-
vice remains associated with a software 1/O channel until released (refer to Paragraph 4.8.1) or until
another INIT or OPEN is performed for that channel. Devices are separated into two categories:
those with no filename directory (refer to Chapter 5) and those with at least one filename directory
(refer to Chapter 6).

Assignable devices (i.e., non-disk and non-spooled devices) in the monitor's pool of available
resources are designated as being either unrestricted or restricted. An unrestricted device can be
assigned directly by any job via the ASSIGN command or INIT or OPEN UUOQ. A restricted device
can be assigned directly only by a privileged job (i.e., a job logged in under [1,2] or running with

the JACCT bit set). However, anon-privileged user can have a restricted device assigned to him indi-
rectly via the MOUNT command. This command allows operator intervention for the selection or
denial of a particular device; thus the operator can control the use of assignable devices for the non-
privileged user. This is particularly useful when there are multiprogramming batch and interactive jobs
competing for the same devices. The restricted status of a device is set or removed by the operator with
the OPSER commands :RESTRICT and :UNRESTRICT, which use the privileged UUOs, DVRST. and
DVURS., (refer to UUOPRYV in the DECsystem=10 Software Notebooks).

4,2.1 Nondirectory Devices

For nondirectory devices {(e.g., card reader and punch, line printer, paper-tape reader and punch,

and user terminal), selection of the device is sufficient to allow 1/O operations over the associated

5.06 Monitor 4-2 March 1973

-4i63- MONITOR CALLS

software channel, All other file specifiers, if given, are ignored. Magnetic tape, o nondirectory

device, requires, in addition to the name, that the tape be properly positioned. It is advisable to
use the programmed operators that select a file, so that q directory device may be substituted for a
nondirectory device at run time.

4.2.2 Directory Device

For directory devices (e.g., DECtape and disk), files are addressable by name. I the device has a
single file directory (e.g., DECtape) the device name and filename are sufficient information to de-
termine a file. If the device has multiple file directories (e.g., disk) the name of the file directory

must also be specified. These names are specified as arguments to the LOOKUP, ENTER, and RENAME

programmed operators.

4.2.3 Device Initialization

The OPEN (operation code 050) and INIT (operation code 041) programmed operators initialize a de-
vice and associate it with a software I/O channel number for the job. These UUOs perform almost
identical functions; the OPEN UUO is a reentrant form of INIT and is preferred for this reason. In
addition to the device name, these programmed operators accept, as arguments, an initial file status

and the location of the input and output buffer headers. The calls are:

OPEN D,SPEC - INIT D,STATUS

error return SIXBIT /dev/

normal return XWD OBUF, IBUF
. error return

. normal refurn

SPEC: EXP STATUS
SIXBIT /dev/
XWD OBUF, IBUF

The normal return is taken if a device is selected, and if the device is associated with a software /O

channel. The error return is taken if the requested device is in use, if the requested device does not -

exist, or if the device is restricted and has not been assigned with the MOUNT command.

4.2.3.1 Data Channel = These programmed operators establish a correspondence between the device
and a 4-bit channel number, D. Most of the other input/output operators require this channel number

as an argument. If a device is already assigned to channel D, it is released (refer to Paragraph 4.8.1).

4.2.3.2 Device Name ~ The device name, dev, is either a logical or physical device name, with
logical names taking precedence over physical names. With multiple stations, the method of device

selection depends on the format of the specified SIXBIT device name.

If devn (e.g., LPT7, CDR3) is specified, the monitor attempts to select the device specifically re-

quested.

5.05 Monitor 4-3 June 1972

MONITOR CALLS -4bh-

If devSnn (e.g., CDPS14, PTPS12) is specified, the monitor attempts to select any device of the de-
sired type at the requested station. If a device of the desired type has been previously assigned to
this job at the requested station and is not INITed on another channel, it will be selected in prefer=

ence to an unassigned device.

If dev (e.g., LPT, DTA) is specified, the monitor attempts to select a device of the desired type at
the job's logical station. If all devices of this type are in use, the error return is taken. If no device
of the desired type exists at the user's logical station, the monitor attempts to select the device at the
central station. If the desired type of device has already been assigned to the job at the appropriate
station (either the job's logical station or the central station) and is not INITed on another channel, it

will be selected instead of an unassigned device.

In non-disk systems, if the specified device is the system device SYS, the job is ploced into a system
device wait queue and continues to run when SYS becomes available. In disk systems where the sys-

tem device is one or more file structures, control retums immediately.

The job may pause with the message
?STATION nn NOT IN CONTACT

if the requested station is not in contact with the central station. After station nn has established

contact with the central station, the user types CONTINUE for a return to job execution.

4.2.3.3 Initial File Status - The file status, including the data mode, is set to the value of the sym-
bol STATUS. Thereafter, bits are set by the monitor and may be tested and reset by the user via
monitor programmed operators. Bits 30-35 of the file status are normally set by an OPEN or INIT
UUO. Refer to Table 4-3 in Paragraph 4.6.2 for the file status bits. If the data mode is not legal
(refer to Chapters 5 and 6) for the specified device, the job is stopped and the monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,

where dev is the physical name of the device and addr is the location of the OPEN or INIT operator

on the user's terminal. The terminal is left in monitor mode.
4.2.3.4 Data Modes - Data transmissions are either unbuffered or buffered. (Unbuffered mode is

sometimes referred to as dump mode.) The mode of transmission is specified by a 4-bit argument to the

INIT, OPEN, or SETSTS programmed operator. Tables 4-1 and 4-2 summarize the dota modes.

4-4

-1465- MONITOR CALLS

Table 4-1
Buffered Data Modes

Octal Code Name Meaning
0 JIOASC ASCII. Seven bit bytes packed left justified, five characters
per word .
1 JOASL ASCII line. Same as 0, except that the buffer is terminated

by a FORM, VT, LINE-FEED, or ALTMODE character. Dif-
fers from ASCII on TTY (half-duplex software) and PTR only.

2-7 Unused.

10 JIOIMG Image. A device dependent mode. Thirty=six bit bytes.
The buffer is filled with data exactly as supplied by the de-
vice.

11-12 Unused.
i3 JOIBN Image binary. Thirfy=six bit bytes. This mode is similar to

binary mode, except that no automatic formatting or check-
summing is done by the monitor.

14 JOBIN Binary. Thirty=six bit bytes. Thisis blocked format con=
sisting of a word count, n (the right half of the first data
word of the buffer), followed by n 36-bit data words.
Checksum for cards and paper fape.

Table 4~2
Unbuffered Data Modes

Octal Code Name Meaning

15 .10IDP Image dump. A device dependent dump mode . Thirty=six
bit bytes.
16 .JODPR Dump as records without core buffering. Data is transmitted

between any contiguous blocks of core and one or more stan-
dard length records on the device for each command word in
the command list. Thirty=six bit bytes.

17 JODMP Dump one record without core buffering . - Data is transmitted
between any.contiguous block of core and exactly one rec-
ord of arbitrary length on the device for each command word
in the command list. Thirty=six bit bytes.

4.2.3.5 Buffer Header = Symbols OBUF and IBUF, if non-zero specify the location of the first word
of the 3=word buffer ring header block for 6ufpuf and input, respectively. Buffered data modes utilize
a ring of buffers in the user area and the priority. interrupt system to permit the user to overlap compu-=

tation with his data transmission. Core memory in the user's area serves as an intermediate buffer

5.04 Monitor 4-5 January 1972

MONITOR CALLS -466-

between the user's program and the device. The buffer storage mechanism consists of a 3=word buffer
ring header block for bookkeeping and a data storage area subdivided into one or more individual buf-
fers linked together to form a ring. During input operations, the monitor fills o buffer, makes that
buffer available to the user's program, advances to the next buffer in the ring, and fills that buffer if
it is free. The user's program follows the monitor, either emptying the next buffer if it is full or wait-

ing for it to fill.

During output operations, the user's program and the monitor exchange roles; the user program fills the
buffers and the monitor empties them. Only the headers that will be used need to be specified. For

instance, the output header need not be specified, if only input is to be done. Also, data modes 15,
16, and 17 require no header. If either of the buffer headers or the 3-word block starting at location

SPEC lies outside the user's allocated core areaT, the job is stopped and the monitor prints

[LLEGAL UUO AT USER addr

(addr is the address of the OPEN or INIT operator) on the user's terminal, leaving the terminal in mon-

itor mode.

The first and third words of the buffer header are set to zero. The left half of the second word is set

up with the byte pointer size field in bits 6 through 11 for the selected device-data mode combination.

If the same device (other than disk) is INITed on two or more channels, the monitor retains only the
buffer headers mentioned in the last INIT (a 0 specification does not override a previous buffer header
specification). Other 1/O operations to any of the channels involved act on the buffers mentioned in

the last INIT previous to the I/O operations,

4.3 RING BUFFERS
4.3.1 Buffer Structure

The ring buffer (see Figure 4-1) is comprised of a buffer ring header block and buffer rings.

4.3.1.1 Buffer Ring Header Block - The location of the 3=word buffer ring header block is specified
by an argument of the INIT and OPEN operators. Information is stored in the header by the monitor
in response to the user execution of monitor programmed operators. The user's program finds all the
information required to fill and empty buffers in the header. Bit position O of the first word of the

header is a flag, which, if 1, means that no input or output has occurred for this ring of buffers. The

T Buffer headers may not be in the user's ACs; however, the buffer headers may be in location above
-JBPFI (refer to Table 11 in Paragraph 1.2.1).

4-6

-467- MONITOR CALLS

right half of the first word is the address of the second word of the buffer currently used by the user's
program. The second word of the header contains a byte pointer to the current byte in the current
buffer. The byte size is determined by the data mode. The third word of the header contains a number
of bytes remaining in the buffer. A program may not use a single buffer header for both input and out~-
put, nor may a single buffer ring header be used for more than one 1/0 function at a time. Users can-
not use the same buffer ring for simultaneous input and output; only one buffer ring is associated with

each buffer ring header.

BUFFER RING
USE BIT FILE STATUS
o 13 | size BUF2 [+]
BOOKKEEPING| woRD COUNT
DATA
BUFFER RING
HEADER BLOCK
USE BIT o b FILE STATUS
BiT BUFFER. BUF 2: | | size BUF 3
"IBOOKK
BUFFER POINTER WORD ¢ | WORD COUNT
BYTE COUNTER
DATA
USE BIT FILE STATUS
sur o) | size BUF1 |+
" | BOOKKEEPING
worp | WORD COUNT
DATA
10-0339

Figure 4-1 User's Ring of Buffers

4.3.1.2 Buffer Ring = The buffer fing is estoblished by the INBUF and QUTBUF operators, or, if
none exists when the first IN, INPUT, OUT, or OUTPUT operator is executed, a 2-buffer ring is set
up. The effective address of the INBUF and OUTBUF operators specifies the number of buffers in the
ring. The location of the buffer ring is specified by the contents of the right half of .JBFF in the

user's job data area. The monitor updates . JBFF to point to the first location past the storage area.

MONITOR CALLS -468-

All buffers in the ring are identical in structure. The right half of the first word contains the file sta-
tus when the monitor advances fo the next buffer in the ring (see Figure 4-2), Bit 0 of the second
word of a buffer, the use bit, is a flag that indicates whether the buffer contains active data. This
bit is set to 1 by the monitor when the buffer is full on input or being emptied on output, and set to 0
when the buffer is empty on output or is being filled on input. In other words, if the use bit =0, the
buffer is available to the filler; if the use bit = 1, the buffer is available to the emptier. The use bit
brevenl‘s the monitor and the user's program from interfering wifh‘ each other by attempting to use the
same buffer simultaneously. Buffers are advanced by the UUOs and not by the user's program. The
use bit in each buffer should never be éhunged by the user's program except by means of the UUOs.
Bits 1 through 17 of the second word of the buffer contain the size of the data area of the buffer plus
1. The size of this data area depends on the device. The right half of the third word of the buffer is
reserved for a count of the number of words that actually contain data. The left half of this word is

reserved for other bookkeeping purposes, depending on the particular device and the data mode.

FILE STATUS FIRST WORD
USE ADDRESS OF SECOND
BiT —» | SIZE OFE WORD OF NEXT BUFF-| SECOND WORD
DATA AREA | ER IN RING
BOOKKEEPING | WORDS COUNT, N THIRD WORD
N DATA WORDS DATA AREA
B UNUSED

10-0592

Figure 4-2 Detailed Diagram of Individual Buffer

4.,3.2 Buffer Initialization

Buffer data storage areas may be established by the INBUF and O UTBUF programmed operators, or by
the first IN, INPUT, OUT, or OUTPUT operator, if none exists at that time, or the user may set up

his own buffer data storage area.

4.3.2.1 Monitor Generated Buffers = Each device has an associated standard buffer size (refer to
Chapters 5 and 6). The monitor programmed operators INBUF D,n (operation code 064) and

OUTBUF D,n (operation code 065) set up a ring of n standard size buffers associated with the input
and output buffer headers, respectively, specified by the last OPEN or INIT operator on data channel

-469- MOMITOR CALLS
D. If n =0 on either INBUF or OUTBUF, the default number of buffers for the specified device is set
up. If no OPEN or INIT operator has been performed on channel D, the monitor stops the job and

prints

I/O TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the INBUF or OUTBUF operator) on the user's terminal leaving the terminal in

the monitor mode.

The storage space for the ring is taken from successive locations, beginning with the location speci-
fied in the right half of .JBFF. This location is set fo the program breck , which is the first free loca-
tion above the program area, by RESET. If there is insufficient space fo set up the ring, the monitor
automatically attempts to expand the user's core allocation by 1K. If this fails, the monitor stops the

job and prints

ADDRESS CHECK FOR DEVICE dev AT USER addr

(dev is the physical name of the device associated with channel D and addr is the location of the

INBUF or OUTBUF operqfoi') on the user's terminal, leaving the terminal in monitor mode.

This message is also printed when an INBUF (OUTBUF) is attempted if the last INIT or OPEN UUO

on channel D did not specify an input (output) buffer header.

The ring is set up by setting the second word of each buffer with a zero use bit, the appropriate data
area size, and the link to the next buffer. The first word of the buffer header is set with a 1 in the

ring use bit, and the right half contains the address of the second word of the first buffer.

4.3.2.2 User Generated Buffers = The following code illustrates an alternative to the use of the
INBUF programmed operator. Analogous code may replace OUTBUF. This user code operates similar-

ly to INBUF. SIZE must be set equal fo the greatest number of data words expected in one physical

record .
GO: OPEN 1,0PNBLK ;INITIALIZE ASCH MODE
JRST NOTAVL ;THE 400000 IN THE LEFT HALF
' ;MEANS THE BUFFER WAS NEVER
MOVE @5 [XWD 400000,BUF1+1] ;REFERENCED.

;SET UP NON-STANDARD BYTE

MOVEM @, MAGBUF ;SIZE
MOVE @» [POINT BYTSIZs0,35]

;MAGNETIC TAPE UNIT 0
MOVEM @, MAGBUF+1 ,INPUT ONLY
JRST CONTIN

(continued on next page)

5.04 Monitor 4-9 ' ‘ January 1972

MONITOR CALLS -470-

OPNBLK: @

;GO BACK TO MAIN SEQUENCE
iéSBéTéﬂé‘éﬂé ;SPACE FOR BUFFER RING HEADER
MAGBUF: BLOCK 3 ;BUFFER 1, 1ST WORD UNUSED
;LEFT HALF CONTAINS DATA AREA
BUF1: 2 ;SIZE+1, RIGHT HALF HAS
XWD SIZE+1sBUF2+] ;ADDRESS OF NEXT BUFFER
;SPACE FOR DATA, 1ST WORD
;RECEIVES WORD-COUNT. THUS
BLOCK SIZE +1 ;ONE MORE WORD IS RESERVED
;THAN IS REQUIRED FOR DATA
;ALONE
;SECOND BUFFER
BUF2: 0 THIRD BUFFER
XWD SIZE+1,BUF3+1 ! '
BLOCK SIZE+1 ;RIGHT HALF CLOSES THE RING
BUF3: %}

XWD SIZE+1,BUF1+1
BLOCK SIZE+1

4.4 FILE SELECTION (LOOKUP and ENTER)

The LOOKUP (operation code 076) and ENTER (operation code 077) programmed operators select a
file for input and output, respectively. These operators are not necessary for nondirectory devices;
however, it is good programming practice to always use them so that directory devices may be substi-
tuted at run time (refer to ASSIGN command). The monitor gives the normal retum for a LOOKUP
or ENTER to a nondirectory device; therefore, user programs can be coded in a dev‘ice-independenf

fashion.

4.4.1 The LOOKUP Operator
LOOKUP selects a file for input on channel D.

LOOKUP D,E
error return
normal return

E: SIXBIT/file/ ifilename, 1 to 6 characters, left-justified
SIXBIT/ext/ ;filename extension, 0 fo 3

icharacters, left-justified

;The remaining words in the argument block

_— jare ignored for nondirectory devices. Refer
ito Paragraph 6.1.5.1 for the DECtape
;LOOKUP and Paragraph 6.8.2.1 for the
;disk LOOKUP.

—

If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the job,
prints

1/0 TO UNASSIGNED CHANNEL AT USER LOC addr

4-10 June 1973

-471- MONITOR CALLS

and returns the user's terminal to monitor mode. The input side of channel D is closed if not already

closed. The output side is not affected.

On DECtape, LOOKUP searches the device directory as 'specified by an INIT. On disk, the user's
file directory as specified by the contents of location E+3 is searched. Refer to Paragraph 6.1.5.1
for details of a DECtape LOOKUP and Paragraph 6.8.2.1 for details of a disk LOOKUP.

If the device is a directory device and the file is found, the normal return is taken and information
concerning the file is retumed in location E+1 through E+3. Thé normal return is always taken if the
device associated with the channel D does not have a directory. The error return is taken if 1) the
file is not found, 2) the file is found but the user does not have access to it (refer to Paragraph 6.2.3
for the description of file access codes), or 3) the device associated with channel D is a non=input

device. Refer to Appendix E for the error codes returned in bits 18-35 of location E+1.

4.4,2 The ENTER Operator

ENTER selects a file for output on channel D.
ENTER D, E

error refurn
normal return

E: SIXBIT/FiIe/ ;filename, 1 through 6
;characters, left-justified
SIXBIT/ext/ ;filename extension, O through 3 characters,

v ;left=justified
S ;The remaining words in the argument block are
—_ ;ignored for nondirectory devices. Refer to
;Paragraph 6.1.5.2 for the DECtape ENTER
;and Paragraph 6.8.2.1 for the disk ENTER.

If no device has been associated with channel D by an INIT or OPEN UUO, the monitor stops the
job, prints
1/O TO UNASSIGNED CHANNEL AT USER LOC addr

and returns the user's terminal fo monitor mode. The output side of channel D is now closed (if it was
not closed); the input side is not affected. On DECtape, ENTER searches the device directory as
specified by an INIT. On disk, the user's file directory, as specified by the contents of location

E+3, is searched.

If the device does not have a directory, the normal return is always taken. On directory devices, if
the file is found and is not being written or renamed, the file is deleted (the user must have access
privileges to the file), and the storage space on the device isreclaimed. On DECtape, this deletion

must occur immediately on ENTER to ensure that space is available for writing the new version of the

4-11 June 1973

MONITOR CALLS -472-

file. On disk, the deletion of the previous version does not accur until output CLOSE time, provided
bit 30 of CLOSE is O (refer to Paragraph 4.7.7). Consequently, if the new file is aborted when par-
tially written, the old version remains. The normal return is taken, and the monitor makes the file

entry, and records file information.

The error retum is taken if:
a. The filename in location E is 0.
b. The file is found but is being written or renamed.

c. The user does not have access to the file, os supplied by the file if it exists or
by the UFD if the file does not exist.

d. The device associated with channel D is a non-output device.

Refer to Paragraph 6.8.2.1 for details of a disk ENTER and Paragraph 6.1.5.2 for details of a DEC-
tape ENTER. Refer to Appendix E for the error codes returned in bits 18-35 of location E+1,

4.4.3 RENAME Operator

The RENAME (operation code 055) programmed operator is used
a. To alter the filename, filename extension, and file access privileges

b. To delete a file associated with channel D on a directory device

RENAME D,E
error refturn
normal return

E: SIXBIT/file/ sfilename, 1 to 6 characters
SIXBIT/ext/ ;filename extension, 0 to 3
;characters.

—_ ;The remaining words in the

—_— ;argument block are ignored
;for nondirectory devices.
;Refer to Paragraph 6.1.5.3
;for the DECtape RENAME
;and Paragraph 6.8.2.1 for
;the disk RENAME.

If no device has been associated with channel D, the monitor stops the job, prints
1/0O TO UNASSIGNED CHANNEL AT USER LOC addr

and returns the user's terminal to monitor mode.

The normal return is given if:
a. The device specified is a nondirectory device.

If the filename specified in location E is 0, the file is deleted after all
read references are completed.

c. If the filename specified in location E and the filename extension specified in
the left half of location E+1 are the same as the current filename and filename
extension, the access protection bits are set to the contents of bits 0 to 8 of
location E+2.

4-12 June 1973

-473- MONITOR CALLS

d, If the filename/filename extension specified differ from the current filename/filename
extension, a search is made for the specified filename and filename extension. If a
match is not found (]) the filename is changed to the filename in location E, (2) the
filename extension is changed to the filename extension in the left half of location
E+1, (3) the access protection bits are changed to the contents of bits 0-8 of location
E+2, ond (4) the access date is unchanged.

The error return is given if:

a. No file is selected on channel D.

b. The specified file is not found.

c. The file is found but fs being written, superseded, or renamed.

d. The file is found but the user does not have the privileges to RENAME the file.

e. The fllename/fllencme extension specﬂ’led differ from the current filename/filename
' exfensmn, a search is made for the specified filenome and filename extension. If a
motch is found, the error return is taken.

f. The UFD is deleted.

Refer to Appendix E for the error codes returned in bits 18-35 of location E+1. Refer to Paragraph
6.1.5.3 for details of a DECtape RENAME and Paragraph 6.8.2.1 for details of a disk RENAME.

Examples
General Device Initialization
INIDEV: : ;JSR HERE
OPEN 3,0PNBLK CHANNEL 3
JRST NOTAVL WHERE TO GO IF DTA5S IS BUSY

;FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM
REQUIREMENTS

MOVE ©, JOBFF

MOVEM 8, SVJBFF ;SAVE THE FIRST ADDRESS OF THE BUFFER
;RING IN CASE THE SPACE MUST BE
;RECLAIMED
INBUF 3,4 ;SET UP 4 INPUT BUFFERS -
OUTBUF 3,1 SET UP 1 OUTPUT BUFFER
LOOKUP 35 INNAM INITIALIZE AN INPUT FILE
JRST NOTFND WHERE TO GO IF THE INPUT FILENAME IS
;sNOT IN THE DIRECTORY
ENTER 3, OUTNAME ,INITIALIZE AN OQUTPUT FILE
JRST NOROOM ;WHERE TO GO IF THERE IS NO ROOM IN
;THE DIRECTORY FOR A NEW FILENAME
JRST @INIDEV ;RETURN TO MAIN SEQUENCE
OPNBLK: 14 BINARY MODE
SIXBIT/DTAS/ ;DEVICE DECTAPE UNIT 5
XWD OBUF, IBUF BOTH INPUT AND QUTPUT
OBUF ¢ BLOCK 3 SPACE FOR OUTPUT BUFFER HEADER
IBUF ¢ BLOCK 3 SPACE FOR INPUT BUFFER HEADER

(continued on next page)

5.06 Monitor ' 4-13 March 1973

MONITOR CALLS -474-

: XBIT/NAME/ ;FILE NAME
AN giXBiT/EXT/ ;FILE NAME EXTENSION (OPTIONALLY 0),
;RIGHT HALF WORD RECEIVES THE
;FIRST BLOCK NUMBER
2 ;RECEIVES THE DATE

2 ;UNUSED FOR NONDUMP /0
QUTNAM: SIXBIT/NAME/ ;SAME INFORMATION AS IN INNAM

SIXBIT/EXT/

(4]

7]

4.5 DATA TRANSMISSION
The programmed operators

{NPUT D,E ond IN D ,E
normal return
error return

transmit data from the file selected on channel D to the user's core area. The programmed operators

OUTPUT D,E and OUT D ,E
normal return
error return

transmit data from the user's core area to the file selected on channel D. If specified, E is the

effective address of the next buffer to be written. If E is not specified, the next buffer in the

sequence is implied.
If no OPEN or INIT operator has been performed on channel D, the monitor stops the job and prints
I/O TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator) on the user's terminal
and the terminal is left in monitor mode. If the device is a multiple~directory device and no file is se-
lected on channel D, bit 18 of the file status is set to 1, and control returns to the user's program.
Control always returns to the location immediately following an INPUT (operation code 066) and an
OUTPUT (operation code 067). A check of the file status for end-of-file and error conditions must
then be made by another programmed operator. Note that to trap on a hardware write=locked device,
the user should use location .JBINT (refer to Paragraph 3.1.3.2). Following an INPUT, the user pro-
gram should check the word count of the next buffer to determine if it contains data. Control returns to
the location immediately following an IN (operation code 056) if no end=-of=file or error condition ex-
ists (i.e., if bits 18 through 22 of the file status are all 0). Control returns to the location immediate~
ly following an OUT (operation code 057) if no error condition or end~of=tape exists (i.e., if bits 18
through 21 and bit 25 are all zero). Otherwise, control returns to the second location following the
IN or OUT. Note that IN and OUT UUOs are the only ones in which the error return is a skip ond the

normal return is not a skip.

4-14 March 1973

-475- MONITOR CALLS
4.5.1 Unbuffered Data Modes

Data modes 15, 16, and 17 utilize a command list to specify areas in the user's allocated core to be
read or written, The effective address E of the IN, INPUT, OUT, and OUTPUT programmed operators
point to the first word of the command list. Three types of entries may occur in the command list.

a. IOWD n, loc - Causes n words from loc through loctn=1 to be transmitted. The next

command is obtained from the next location following the IOWD. The assembler pseudo-
op IOWD generates XWD =n, loc=1.

'b. XWD 0, y - Causes the next command to be taken from location y. Referred fo as a
GOTO word. Up to three consecutive GOTO words are allowed in the command list.
After three consecutive GOTO words, an I/O instruction must be written.

c. 0= Terminates the command list.

Each IOWD which causes data to be transferred writes a separate record. Thus, for devices other than
DECtape, the following two examples produce the same result,

1) OUTPUT D, [IOWD 100, BUF1
' I?WD 100, BUF2
Y4

2) OUTPUT D, [lC])WD 100, BUF1
z

OUTPUT D, [IOWD 100, BUF2
. Z]

For DECtape (where space is dn important consideration), the first example writes one block, and the

second writes two,

The monitor does not return program control fo the user until the command list has been completely
processed. If an illegal address is encountered while processing the list, the job is stopped and the

monitor prints

ADDRESS CHECK AT USER addr
on the user's terminal and the terminal is left in monitor mode.
Example: Dump Output

Dump input is similar to dump output. This routine outputs fixed-length records.

DMPINI: @ #JSR HERE TO INITIALIZE A FILE
OPEN @,@PNBLK ;CHANNEL 0
JRST NOTAVL JWHERE TO GO IF MTA2 IS BUSY
JRST @ DMPINI . ;RETURN
DMPOUT: @ ;JSR HERE TO OUTPUT THE OUTPUT AREA
OUTPUT @,CUTLST sSPECIFIES DUMP OUTPUT ACCORDING
;TO THE LIST AT OUTLIST
STATZ @, 740000 , ;CHECK ERROR BITS
CALLISIXBIT /EXIT/1 ;QUIT IF AN ERROR OCCURS
JRST @DMPOUT ;RETURN

5.05 Monitor 4-15 June 1972

MONITOR CALLS -476-

DMPDON: O ;JSR HERE TO WRITE AN END OF FILE
CLOSE 0. ;sWRITE THE END OF FILE
STATZ 0, 740000 ;CHECK FOR ERROR DURING WRITE
;END OF FILE OPERATION
CALLISIXBIT /EXIT/1 ;QUIT IF ERROR OCCURS
RELEAS @ ;RELINQUISH THE DEVICE
JRST @DMPDON ;RETURN
OPNBLK: 16 ;DUMP MODE ,
SIXBIT /MTA2/ sMAGNETIC TAPE UNIT 2
2 ;NO RING BUFFERS
OUTLST: 1I0WD BUFSIZ,BUFFER ;SPECIFIES DUMPING A NUMBER OF
sWORDS EQUAL TO BUFSIZ, STARTING
(7] ;AT LOCATION BUFFER
;SPECIFIES THE END OF THE COMMAND
;LIST
BUFFER: BLOCK BUFSIZ +OUTPUT BUFFER, MUST BE CLEARED

;:AND FILLED BY THE MAIN PROGRAM
4.5.2 Buffered Data Modes

In data modes 0, 1, 10, 13, and 14 the effective address E of the INPUT, IN, OUTPUT and OUT
programmed operators may be used to alter the normal sequence of buffer reference. If E is 0, the
address of the next buffer is obtained from the right half of the second word of the current buffer.

If E is non-zero, it is the address of the second word of the next buffer to be referenced. The buffer
pointed to by E can be in an entirely separate ring from the present buffer. Once a new buffer loca-
tion is established, the following buffers are taken from the ring started ot E. Since buffer rings are

not changed if I/O activity is pending, it is not necessary to issue a WAIT UUO.

4.5.2.1 Input - If no input buffer ring is established when the first INPUT or IN is executed, a
2-buffer ring is set up (refer to Paragraph 4.3.2).

Buffered input may be performed synchronously or asynchronously at the option of the user. If bit 30

of the file status is 1, each INPUT and IN programmed operator performs the following:

(1) Clears the use bit in the second word of the buffer with an address in the right half
of the first word of the buffer header, thereby making the buffer available for re-
filling by the monitor.

(2) Advances to the next buffer by moving the contents of the second word of the current
buffer to the right half of the first word of the 3-word buffer header.

(3) Returns control to the user's program if an end-of-file or error condition exists.
Otherwise, the monitor starts the device, which fills the buffer and stops transmission.

(4) Computes the number of bytes in the buffer from the number of words in the buffer
(right half of the first data word of the buffer) and the byte size, and stores the re-
sult in the third word of the buffer header.

(5) Sets the position and address fields of the byte pointer in the second word of the
buffer header, so that the first data byte is obtained by an ILDB instruction.

(6) Returns control to the user's program.

Thus, in synchronous mode, the position of a device (e.g., magnetic tape), relative to the current
data, is easily determined. The asynchronous input mode differs in that once a device is started, suc-

cessive buffers in the ring are filled ot the interrupt level without stopping transmission until a buffer

4-16 March 1973

-477- MONITOR CALLS

whose bit is 1 is encountered. Control returns to the user's program after the first buffer is filled. The
position of the device, relative to the data currently being processed by the user's program, depends

on the number of buffers in the ring and when the device was last stopped.

Example: General Subroutine to Input One Character

JGET == ROUTINE TO GET ONE BYTE FROM THE INPYT FILE

} NULLS (@) WIlLL BE OISCARDED
sCALLS JSP AJGET
) END=OF=FILE RETURN
H RETURN WITH BYTE IN v
GET: SOSGE 18+2 JDECREMENT THE BYTE COUNT
JRST CETBF JBUFFER EMPTY~--GET ANOTHER QNE
1LDB C,I8+1 JSOMETHING THERE==GET 1IT
JUMPN C,1(A) JRETURN IF NOT NULL
pa# IF NULLS ARE SIGNIFICANT, THIS
. s SHOULD BE A JRST 1(A)
JRST GET JNULL=-=LOOP FOR ANOTHER CHARACTER

JHERE WHEN INPUT BUFFER 1S EMPTY
sASK THE MONITOR FOR THE NEXT BUFFER AND JUMP BACK
JRETURN TO USER IF END=CF=FlLE

GETBF: IN 1y $GET BUFFER FROM MONITOR
JRST GET }JNO ERRORS OR EOF=-=JUMP BACK
GETSTS 1.¢C JGET ERROR STATUS
TRNN C,74B23 JSEE IF ANY ERRQRS
JRST GETBFE }JNO-=GO CHECK EOF

j#® INSERT ERROR ROUTINE HERE
| FOR EXAMPLE, TYPE C IN OCTAL
I WITH MESSAGE GIVING FILE NAMEs ETC,

TRZ c,74823 JCLEAR ERROR BITS
SETSTS 1.(C) JTELL MONITOR
GETBFE! TRNE c,1822 JSEE IF END OF FILE
JRST (A) JYES=-~GIVE NON-SKIP RETURN
JRST GET INO==JUMP BACK TO PROCESS DATA

4.5.2.2 Output - If no output buffer ring has been established (i.e., if the first word of the buffer
header is 0), when the first OUT or OUTPUT is executed, a 2-buffer ring is set up (refer to Paragraph
4.3.2). If the ring use bit (bit O of the first word of the buffer header) is 1, it is set to 0, the current
buffer is cleared to all Os, and the position and addréss fields of the buffer byte pointer (the second
word of the buffer header) are set so that the first byte is properly stored by an IDPB instruction. The
byte count (the third word of the buffer header) is set to the maximum of bytes that may be stored in_
the buffer, and control is returned to the user's program. Thus, the first OUT or OUTPUT initializes

the buffer header and the first buffer, but does not result in data transmission.

If the ring use bit is 0 and the bit 31 of the file status is 0, the number of words in the buffer is com-
puted from the address field of the buffer byte pointer (the second word of the buffer header) and the
buffer pointer (the first word of the buffer header), and the result is stored in the right half of the third

5.05 Monitor 4-17 June 1.972

MONITOR CALLS -478-

word of the buffer. If bit 31 of the file status is 1, it is assumed that the user has already set the word
count in the right half of the third word. The buffer use bit (bit 0 of the second word of the buffer) is
set fo 1, indicating that the buffer contains data to be frunsmiﬂed to the device. If the device is not
currently active (i.e., not receiving data), it is siarted. The buffer header is advonced to the next
buffer by setting the buffer pointer in the first word of the buffer header. If the buffer use bit of the
new buffer is 1, the job is put into a wait state until the buffer is emptied at the interrupt level. The
buffer is then cleared to Os, the buffer byte pointer and byte count are initialized in the buffer header,

and control is returned to the user's program.

Example: General Subroutine to Output One Character

$PUT == ROUTINE TO PUT ONE BYTE INTO THE OUTPUT FILE

ICALL: MOVE C,BYTE
; JSP A,PUT
H RETURN
PUT: S0S86 0B+2 JADVANCE BYTE COUNTER
JRST PUTBF }JUMP IF BUFFER FULL (OR FIRSI CALL)
PUTC: 1DPB C,0B+14 JPUT BYTE INTO BUFFER
JRST {A) JRETURN TO CALLER ’

}JUMP HERE WHEN BUFFER IS FULL AND THE NEXT QNE 1S NEEDED
JGIVE THE MONITOR THE BUFFER AND JUMP BACK

PUTEF! oyT a, JIGIVE BUFFER TO MON]TOR
JRST PUTC INO ERRORS==JUMP BACK
MOVEM CISAVECH JERROR=-SAVE AC FOR STATUS CHECKING
GETSTS 0,C IGET ERROR STATUS

j## INSERT QUTPUT ERROR ROUTINE HERE
H FOR EXAMPLE, TYPE C IN OCTAj
i WITH MESSAGE GIVING FILE NAME, ETC,

TRZ 174323 iCLEAR ERROR BITS

SETSTS 04¢C)» ITELL MONITOR

MOVE CrSAVEC JRESTORE CHARACTER

JRST PUTC JJUMP BACK TO PROCESS CHARACTER

4.5.3 Synchronization of Buffered I/0

In some instances, such as recovery from transmission errors, it is desirable fo delay until a device

completes its I/O activities. The programmed operator

WAIT D, or CALLI D, 10
returns control to the user's program when all data transfers on channel D have finished. This UUO
does not wait for a magnetic tape spacing operation, since no data transfer is in progress. An
MTAPE D, O (refer to Paragraph 5.5.3) should be used to wait for the magnetic tape controller to be
freed ofter completing spacing and 1/O activity on magnetic tape. In addition, the UUO does not
wait for physical 1/O to the terminal to be completed; it waits only until the user's buffer is empty.
Therefore, the usual motive for the WAIT UUO, error recovery , does not apply to the terminal. If no
device is associated with data channel D, control returns immediately. After the device is stopped,
the position of the device relative to the data currently being processed by the user's program can be

determined by the buffer use bits.

5.05 Monitor -4-18 June 1972

4.6 STATUS CHECKING AND SETTING -479- MONITOR CALLS

The file status is a set of 18 bits (right=half word), which reflects the current state of a file transmis-
sion. The initial status is a parameter of the INIT and OPEN operators. Thereafter, bits are set by

the monitor, and may be tested and reset by the user via the STATZ, STATO, and SETSTS monitor
programmed operators. Table 4-3 defines the file status bits. All bits, except the end-of-file bit,

are set immediately by the monitor as the conditions occur, rather than being associated with the buffer
currently being used. However, the file status is stored with each buffer so that the user can deter-
mine which bufferful produced an error. The end-of-file bit is set when the user attempts to read past
the last block of data (i.e., it is set on an IN or INPUT UUO for which there is no corresponding data;

Table 4-3
File Status Bits

- Bit Meaning

18 Improper mode (IO.IMP). Attempt to write on a software write-locked
tape or file structure, or a software detected redundancy failure occurred.
Usually set by monitor.

19 Hard device detected error (IO.DER), other than data parity error. This

is a search, power supply, or channel memory parity error. The device is
in error rather than the data on the medium. However, the data read into
core or written on the device is probably incomrect. Usually set by monitor.

20 Hard data error (I0.DTE). The data read or written has incorrect parity
as detected by hardware (or by software on CDR, PTR). The user's data
is probably non-recoverable even after the device is fixed. Usually set
by monitor. '

21 Block too large (I0.BKT). A block of data from a device is too large to
fit in a buffer; a block number is too large for the unit; the file structure
(DSK) or unit (DTA) has filled; or the user's quota on the file structure has
been exceeded. Usually set by monitor.

22 End of file (IO.EOF). The user program has requested data beyond the last
record or block with an IN or INPUT UUO, or USETI has specified a block
beyond the last data block of the file. When set, no data has been read in-
to the input buffer. Usually set by monitor.

23 1/O active (10.ACT). The device is actively transmitting or receiving data.
Always set by monitor. .
24-29 Device dependent parameters. Refer to Chapters 5 and 6 and Appendix D for
detailed information about each device. Usually set by user.
30 Synchronous input (IO.SYN). Stops the device after each buffer is filled.

Usually set by user.

31 - User word count (I0.UWC). Forces the monitor to use the word count in the
third word of the buffer (output only). The monitor normally computes the word
count from the byte pointer in the buffer header. Usually set by user.

32-35 Data mode (IO.MOD). Refer to Tables 4-1 and 4-2. Usually set by user.

5.06 Monitor 4-19 \ March 1973

MONITOR CALLS -480-

the previous IN or INPUT UUO obtained the end of the data). Therefore, when this bit is set, no data
has been placed in the input buffer.

The programmed operators discussed in this section are the software equivalents of the hardwired in-
structions CONO, CONI, CONSO, and CONSZ. A more thorough description of bits 18 through 29
for each device is given in Chapters 5 and 6 and in Appendix D.

4.6.1 File Status Checking

The file status (refer to Table 4~3) is retrieved by the GETSTS (operation code 062) and tested by the
STATZ (operation code 063) and STATO (operation code 061) programmed operators. In each case,
the accumulator field of the instruction selects a data channel. If no device is associated with the

specified data channel, the monitor stops the job and prints
I/O TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the GETSTS, STATZ, or STATO programmed operator) on the user's terminal

and the terminal is left in monitor mode.

GETSTS D, E stores the file status of data channel D in the right half and 0 in the left half of loca~

tion E.
STATZ D, E skips, if all file status bits selected by the effective address E are 0.
STATO D, E skips, if any file status bit selected by the effective address E is 1.

4.6.2 File Status Setting

The initial file status is a parameter of the INIT and OPEN programmed operators; however, the file
status may be changed by the SETSTS (operation code 060) programmed operator. Error status bits
IO.ERR (I0.IMP, 10.DER, I0.DTE, and 10 .BKT) must be cleared by this programmed operator if the
user is attempting an error recovery. In addition, the SETSTS UUO can be used to clear the end=of~
file bit, but this is not sufficient to clear the end=of=file condition. Further inputs will not occur un-
til the end-of-file condition (determined by an internal monitor flag IOEND) is cleared by a CLOSE
or INIT UUO,

SETSTS D, E waits until the device on channel D stops transmitting data and replaces the current file
status, except bit 23, with the effective address E. If the new data mode, indicated in the right four

bits of E, is not legal for the device, the job is stopped and the monitor prints
ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr

(dev is the physical name of the device and addr is the location of the SETSTS operator) on the user's

terminal and the terminal is left in monitor mode. If the user program changes the data mode, it must

4-20

-481~ MONITOR CALLS

also change the byte size for the byte pointer in the input buffer header (if any) and the byte size and
item count in the output buffer header (if aﬁy). The output item count should be changed by using the
count already placed there by the monitor and dividing or multiplying by the appropriate conversion
factor, rather than assuming the length of a buffer. Incorrect 1/O may result if a data mode change
requires a different buffer length, SETSTS does not change buffer lengths. The mode specified in the

INIT is used to determine buffer sizes even though the buffer ring has not been created.

4.7 FILE TERMINATION

File transmission is terminated by the CLOSE D, N (operation code 070) programmed operator. N is
usually zero, but individual options may be selected independently to control the effect of the CLOSE.

Usually a given channel is OPEN for file transmission in only one direction, and CLOSE has the effect
of either closing input if INPUTs have been done or closing output if OQUTPUTs have been done. How-
ever, disk and DECtape may have a single channel OPEN for both INPUT and OUTPUT, in which case

the first two options below are useful.

4.7.1 CLOSED,0

The output side of channel D is closed (bit 35=0). In unbuffered data modes, the effect is to execute
a device dependent function. In buffered data modes, if a buffer ring exists, the following operations

are performed:

“a. All data in the buffers that has not been transmitted to the device is written.
Device dependent functions are performed.

c. The ring use bit (bit O of the first word of the buffer header) is set to 1 indicating that
the buffer ring is available,

d. The buffer byte count (the third word of the buffer header) isseft to 0.

e. Control returns to the user program when transmission is complete.

The input side of channel D is also closed (bit 34=0). The end-of-file flag is always cleared. Further
action depends on the data mode in unbuffered data modes, the effect is to execute a device dependent

function. In buffered data modes, if a ring buffer exists, the following operations are performed:

Wait until device is inactive.

The use bit of each buffer (bit 0 of the second word) is cleared indicating that the buffer
is empty.

c. The rihg use bit of the buffer header (bit O of the first word of the buffer header) is set to
1 indicating that the buffer ring is available.

d. The buffer byte count (the third word of the buffer header) is set to 0.

e. Control returns to the user program.

4-21

MONITOR CALLS -1482-

On output CLOSE, the unwritten blocks at the end of a disk file are automatically deallocated (bit
33=0): On input CLOSE, the access date of a disk file is updated (bit 32=0).

4,7.2 CLOSED,1 (Bit 35=1, CL.OUT)

The closing of the output side of channel D is suppressed. Other actions of CLOSE are unaffected.

4.7.3 CLOSE D,2 (Bit 34=1, CL.IN)

The closing of the input side of channel D is inhibited; other actions of CLOSE are unaffected.

4.7.4 CLOSED,4 (Bit 33=1, cL.DLL) |

The unwritten blocks at the end of a disk file are not deallocated. This capability is provided for

users who specifically allocate disk space and wish fo retain it.

4.7.5 CLOSED,10 (Bit 32=1, CL.ACS)"

The updating of the access date on CLOSE input is inhibited. This capability is intended for use with
FAILSAFE, so that files can be saved on magnetic tape without causing the disk copy fo appear as if it

has been accessed.

4.7.6 CLOSE D,20 (Bit 31=1, CL.NMB) '

The deleting of the NAME block and the access tables in monitor core on CLOSE input is inhibited if
a LOOKUP was done without subsequent INPUT. This bit is used by the COMPIL program to retain the
core block in order to speed up the subsequent access by the system program called by COMPIL.

4.7.7 CLOSE D,40 (Bit 30=1, CL.RST)'

The deleting of the original file, if any, is inhibited if an ENTER which creates or supersedes was
done. The new copy of the file is discarded. This bit is used by the queve manager (QMANGR) to

create a file or a unique name and not supersede the original file.

4.7.8 CLOSE D,100 (Bit 29=1,CL.DAT)

The NAME block and access tables are deleted from the disk data base and the space is returned to

free core.

T Meaningful with disk files only, ignored with non-disk files.

5.05 Monitor 4-22 June 1972

-483- MONITOR CALLS

Any combinations of the above bit settings are legal.

Example: Terminating a File

DROPDV: @ ;JSR HERE
CLOSE 3., ,\I/\II\IRI;BEI_ END OF FILE AND TERMINATE
STATZ 3 740000 " ;RECHECK FINAL ERROR BITS
JRST OUTERR) ;ERROR DURING CLOSE
RELEAS 3 ;RELINQUISH THE USE OF THE

;DEVICE, WRITE OUT THE DIRECTORY

MOVE @, SVJBFF
MOVEM @, JOBFF ' ;RECLAIM THE BUFFER SPACE
JRST @ DROPDV ;RETURN TO MAIN SEQUENCE

4.8 DEVICE TERMINATION AND REASSIG NMENT
4.8.1 RELEASE

When all transmission between the user's program and a device is finished, the program must relinquish

the device by performing a

RELEASE D,

RELEASE (operation code 071) returns control immediately, if no device is associated with data chan=
nel D. Otherwise, both input and output sides of data channel D are CLOSEd and the correspondence
between channel D and the device, which was established by the INIT or OPEN programmed operators,
is terminated. Any errors that occurred are recorded in the BAT block if a super USETI/USETO was
used with channel D. If the device is neither associated with another data channel nor assigned by the
ASSIGN or MOUNT monitor command, it is returned to the monitor's pool of available facilities.

Control is returned to the user's program.

4.8.2 RESDV. AC, or CALLI AC, 117

This UUO allows a user program fo reset a single channel. It is similar to the RELEASE UUO except
any files and buffers are not closed. Files that are open on the channel are deleted; any older ver-
sion with the same filename remains. All I/O transmissions on the channel are stopped, and device
allocations made by the INIT or OPEN UUOs on the specified channel are cleared. The device is re-
turned fo the monitor pool unless it has been assigned by the ASSIGN or MOUNT monitor command.
The call is:

MOVEI AC, channel number

RESDV. AC, ; or CALLI AC, 117

error refurn
normal refturn

5.04 Monitor 4-23 January 1972

MONITOR CALLS -484-
On an error return, either the AC is unchanged if the UUQ is not implemented, or AC contains =1 if

there is no device associated with the channel .

On a normal return, the channel is reset.

4.8.3 REASSIGN AC, or CALLI AC, 21

This UUO reassigns a device under program control to the specified job and clears the directory cur-
rently in core, but does not clear the logical name assignment. A device can be reassigned if it is as=
signed fo the current job, or if it is both not assigned to any job and is not detached. A RELEASE UUO
is performed unless the job issuing the UUO is reassigning the device to itself by specifying =1 in AC

or is deassigning the device by specifying 0 in AC. If the device is restricted when it is deassigned with
a 0 in AC, it is returned fo the restricted pool of devices and can be reassigned to a non-privileged job
by a privileged job. (This is the method by which the MOUNT command is implemented.)

The call is:

MOVE AC, job number

MOVE AC+1, [SIXBIT /DEVICE/] ;or MOVEI AC+1, channel number
REASSIGN AC, ;or CALLI AC, 21
return ;error and normal

If on return the contents of AC = 0, the specified job has not been initialized. If the contents of
ACH+1=0, the device has not been assigned to the new job, the device is the job's controlling terminal,
the logical name is duplicated, or the logical name is a physical name in the system and the job reas-

signing the device is either logged in under a different project-programmer number or is not the operator.

4.8.4 DEVLNM AC, or CALLI AC, 1071

This UUO sets the logical name for the specified device. Upon call of the UUO, AC contains either

the device name or the channel number associated with the device. The call is:

MOVE AC, [SIXBIT /dev/] ;or MOVEI AC, channel no.
MOVE AC+1, [SIXBIT /log.name/]
DEVLNM AC, ;or CALLI AC, 107

error return
normal return

On an error retum, AC contains one of the following:

AC = unchanged if the UUO s not implemented.

AC = -1 if a non-existent device or channel number was specified.

AC = -2 if the logical name is already in use.

AC = -3 if device is neither assigned by a console command (ASSIGN,
MOUNT) nor by the program (INIT, OPEN).

On a normal return, AC and AC+1 are unchanged.

]This UUO depends on FT5UUO which is normally off in the DECsystem-1040,
5.06 Monitor 4-24 March 1973

-485- | MONITOR CALLS
4.9 EXAMPLES '

4,9.1 File Reading

The following UUQ sequence is required to read a file:

OPEN Establishes a file structure-channel correspondence for a
set of file structure channel correspondences).

LOOKUP Establishes a file-channel correspondence. Invokes
a search of the UFD. Returns information from the file system.

INBUF (Optional) Sets up 1 to N ring buffers in the top of core,
expand core if necessary.

INPUT Sefs up 2-buffer ring if no INBUF was done.

INPUT ' Requests buffers of data from the monitor.

CLOSE Breoks file-channel correspondence.

RELEASE Breoks device-channel correspondence.

4.9.2 File Writing

The following UUO sequence is required to write a file:

OPEN Forms file structure-channel correspondence (or a sef
of file structure channel correspondences).

ENTER Forms file=channel correspondence. The monitor creates
some temporary storage for interlocking and shared access
purpose for the filename. No directory entry is made.

OUTPUT
OUTPUT Passes buffers of data to monitor for fransmission to storage device.
' Should not be used for the final buffer because CLOSE completes

the action of ENTER.

CLOSE Completes the action of ENTER, Adds filename to file system.
Normally returns allocated, but unused, blocks to the file
system.,

RELEASE Breaks device-channel correspondence.

4-25

MONITOR CALLS -486-
4.9.3 File Reading/Writing

TITLE FILTRN =-- SAMPLE I/0 PROGRAM

3JA PROGRAM THAT READS 7-BIT ASCII CHARS FROM FILE INFILE.DAT

30N DEVICE DATA AND OUTPUTS THEM TO FILE OUTFIL.LST ON DEVICE LIST
SNOTE THAT DEVICES DATA AND LIST ARE LOGICAL NAMES. THUS

3THE PHYSICAL NAMES ARE DETERMINED AT RUN TIME TO PROVIDE DEVICE

3 INDEPENDENCE .

3BOTH INPUT AND OUTPUT FILES ARE ACCESSED SEQUENTIALLY.

START: RESET 3JDEVICE RESET (IN CASE PROGRAM
3 1S RESTARTED)
OPEN 1,0 1 SCONNECT DEVICE DATA TO PROG ON CH 1

SIXBIT /DATA/
XWD ©0,IBUF1] 3INBUF1 1S THE INPUT BUFFER HEADER
HALT . JERROR RETURN
OPEN 2,(1 3CONNECT DEVICE LIST TO CH 2
SIXBIT /LIST/ ‘
XWD OBUF2,8] 30BUF2 IS OUTPUT BUFFER HEADER
HALT

LOOKUP 1.,L1 3OPEN FILE INFILE.DAT FOR INPUT
HALT . 3ERROR RETURN

ENTER 2,E2 30PEN FILE OUTFIL.LST FOR OUTPUT
HALT .

INBUF. 1,3 3CREATE 3 INPUT BUFFERS

3SINCE NO BUFFERS SPECIFIED FOR OUTPUT
35 ON FIRST OUTPUT THE MONITOR WILL
3 MAKE 2

STHIS 1S THE BASIC I1/0 LOOP FOR THE JOB

NEWCHR: JSR GET 3GO GET ONE INPUT CHARACTER
JSR PUT 3G0O PUT THE CHARACTER RECEIJIVED
JRST NEWCHR 3LOOP FOR NEXT ONE

3GET -~ ROUTINE TO GET ONE CHARACTER FROM THE INPUT
3IT ENDS THE PROGRAM AT INPUT END-OF-FILE

GET ¢ z SENTRY/EXIT

GET1: SOSGE IBUF 142 31S INPUT BUFFER EMPTY?
JRST GETBF 3YES--INPUT FROM DEVICE
I1LDB 35 IBUF1+1 3GET A CHARACTER FROM INPUT BUFFER
JUMPE 3,GET1 $IF NULL., THROW IT AWAY AND GET NEXT

3 CHARACTER. THIS IS CONVENTIONAL FOR
3 ASC1I DATA.

JRST eGET 3JRETURN WITH CHARACTER IN AC 3
GETBF : IN 1, 3D0. INPUT FROM DEVICE
JRST GETI JLOOP IF NO ERRORS AND NOT EOF
STATZ 1,74B23 3SEE IF ERROR READING
HALT . 3YES--GIVE UP
FINISH: CLOSE 1, JEOF--CLOSE INPUT
CLOSE 2, 3CLOSE OUTPUT
RELEAS 1, SRELEASE DEVICE DATA
RELEAS 2, SRELEASE DEVICE LIST
EXIT SEXIT TO MONITOR

(continued on next page)

5.04 Monitor 4-26 January 1972

-487-

MONITOR CALLS

3PUT--KOUTINE TO PUT ONE CHAKATTER ONTO THE OUTPUT

PUT ¢

PUTC:

PUTBF ¢

z

SOSG OBUF2 +2
JRST PUTBF
IDPB 3,0BUF2+1
JRST ePUT

ouTt 2,
JRST PUTC
HALT

3DATA STORAGE AREA

L1z

B
-

IBUF1 ¢
OBUF2 ¢

SIXBIT /INFILE/
SIXBIT /DAT/

4

z

SIXBIT /OQUTFIL/
SIXBIT /LST/

z

z

BLOCK 3
BLOCK 3

END START

4.10 DEVICE INFORMATION

4.10.1 DEVSTS AC, or CALLI AC, 54

SENTRY/ZEXIT

31S OUTPUT BUFFER FULL?
3YES=--GO OUTPUT IT

3PUT CHARACTER IN BUFFER
SRETURN

3OUTPUT BUFFEK TO DEVICE
30K, NOW STORE CHARACTER IN BUFFER
3GIVE UP IF OUTPUT ERROR

SINPUT FILE NAME

SINPUT EXTENSION

3PROTECTION AND CREATION DATE RETURNED
3 INPUT DIRECTORY. © MEANS MY OWN

30UTPUT FILE NAME

SOUTPUT EXTENSION

3JPROTECTION CAN GO HERE. @ MEANS STD.
3O0UTPUT DIRECTORY. @& MEANS MY OWN

3 INPUT BUFFER HEADER
30UTPUT BUFFER HEADER

This UUO refrieves the DEVSTS word of the device data block for an INITed device. The DEVSTS

word is used by a device service routine to savé the results of a CONI after each interrupt from the
device. Refer to Appendix D for the device status bits, Devices that use the DEVSTS UUO are the
following: CDR, CDP, MTA, DTA, PTR, PTP, DSK, LPT, and PLT.

The cdll is:

MOVEI AC, channel number of device

DEVSTS AC,
error refurn
normal return

;or MOVE AC, [SIXBIT /dev/]

;or CALLI AC, 54

;UUQ not implemented for any devices
;AC contains the DEVSTS

;word of the DDB.

On return, the contents of the DEVSTS word is returned in AC. Therefore, if the device service rou-

tine does not store a CONI, useless information may be returned to user. Note that an error return is

not indicated if the device service routine does not use the DEVSTS word for its intended purpose. De-
vices with both a control and data interrupt store the controller CONI (MTS, DTS, DSK, DSK2, DPC,

DPC2).

! This UUO depends on FTSUUO which is normally off in the DECsystem-1040.

5.04 Monitor

4-27 February 1972

MONITOR CALLS -4388-
The DEVSTS UUO is not meaningful when used in asynchronous buffered I/O mode unless @ WAIT UUO

(see Paragraph 4.5,3) is issued first to ensure synchronization of the actual data transferred with the

device status returned.

4,10.2 DEVCHR AC, or CALLI AC, 4

This UUO allows the user to determine the physical characteristics associated with a device nome.
When the UUO is called, AC must contain either the logical or physical device name as a left-justified
SIXBIT quantity, or the channel number of the device as a right-justified quantity,

The call is:
MOVE AC, [SIXBIT/DEV/] ;or MOVEI AC, channel number of device
DEVCHR AC, ;or CALLI AC A4
refurn

If the device is not found or the channel is not INITed, the contents of AC is zero on refurn. If the

device is found, the following information is returned in AC.

Name Bit Explanation

DV.DRI Bit 0 =1 DECtape directory is in core. This bit is cleared by an ASSIGN
) or DEASSIGN fo that unit.

DV.DSK Bit 1 =1 Device is a disk.

DV.CDR Bit2=1 De\;ice is a card reader (DV.IN = 1) or card punch (DV.OUT

=1).

DV.LPT Bit 3=1 Device is a line printer.

DV.TTA Bit 4 =1 TTY is controlling a job.

DV.TTU Bit 5 =1 TTY is in use as a user terminal (even if detached).

DV.T1B Bit 6 =1 Free bit left from SCNSRF.

DV.DIS Bit7 =1 Device is a display.

DV.LNG Bit 8 =1 Device has a long dispatch table (that is, UUOs other than

INPUT, OUTPUT, CLOSE, and RELEASE perform real actions).

DV.PTP Bit 9 =1 Device is a paper-tape punch.

DV.PTR Bit 10 =1 Device is a paper~tape reader.

DV.DTA Bit 11 =1 Device is a DECtape.

DV.AVL Bit 12 =1 Device is available to this job or is already assigned to this job.

DV.MTA Bit 13 =1 Device is a magnetic tape.

DV.TTY Bit 14 =1 Device is a TTY.

DV.DIR Bit 15 =1 Device has a directory (DTA or DSK).

(continued on next page)

5.04 Monitor 4-28 January 1972

~489- MONITOR CALLS
Name Bit Explanation

DV.IN Bit 16 =1 Device can perform input.
DV.OUT Bit 17 =1 Device can perform output.
DV.ASC Bit 18 =1 Device is assigned by a console command.
DV.ASP Bit 19 =1 Device is assigned by program (INIT or OPEN).

‘ Remaining If bit 35-n contains a 1, then mode n is legal for that device.

bits The mode number (0 through 17) must be converted to decimal
(e.g., mode 17g is represented by bit 35-1510 or bit 20).

| 4,10.3 DEVTYP AC, or CALLI AC, 53

The device-type UUO is used to determine properfiés of devices. This UUO accepts, as an argument,

a device name in SIXBIT or a right-justified channel number. The call is:

MOVE AC, [SIXBIT/dev/]
DEVTYP AC,

error return

normal return

;or MOVEI AC, channel no.
;or CALLI AC, 53

The error retum:is given if the UUO is not implemented. In this case, the DEVCHR UUO should be

used. On a normal return, if AC=0, the specified device does not exist or the channel is not INITed.

If the device exists, the following information is returned in AC.

Name Bit Explanation
TY .MAN Bit0=1 LOOKUP/ENTER mandatory.
Bits 1-11 Reserved for the future.

TY .AVL Bit 12=1 Device is available to this job. ‘

TY .SPL Bit 13=1 Spooled on disk. (Other bits reflect properties of real
device, except variable buffer size.)

TY .INT Bit 14=1 Interactive device (output after each break character).

TY .VAR . Bit15=1 Capable of variable buffer size (user can set his own

~ buffer lengths).

TY.IN Bit 16 =1 Capable of input.

TY .OUT Bit 17 =1 Capable of output.

TY .JOB Bits 18-26 Job number that currenfly has device INITed or
ASSIGNed.

5.06 Monitor

(continued on next page)

4-29 March 1973

MONITOR CALLS -490-

Code 0 (.TYDSK)
Code 1 (.TYDTA)
Code 2 (.TYMTA)
Code 3 (.TYTTY)
Code 4 (.TYPTR)
Code 5 (.TYPTP)

Name Bit Explanation
Bits 27-28 Reserved for the future.
TY .RAS Bit 29 Device is a restricted device (i.e., can be assigned
only by a privileged job or the MOUNT command).,
TY .DEV Bits 30-35 Device type code.

Disk of some sort
DECtape
Magnetic tape
TTY or equivalent
Paper-tape reader
Paper-tape punch

Code 6 (.TYDIS) Display
Code 7 (.TYLPT) Line printer
Code 10 (.TYCDR) Card reader
Code 11 (.TYCDP) Card punch
Code 12 (.TYPTY) Pseudo~-TTY
Code 13 (.TYPLT) Plotter

Code 14-57
Code 60-77

Reserved for Digital
Reserved for customer

' 4.10.4 DEVSIZ AC, or CALLI AC, 101

This UUO is used to determine the buffer size for a device if the user wants to allocate core himself.

The call is:

MOVE AC, [EXP LOC]
DEVSIZ AC,

error return

normal return

LOC: EXP STATUS
LOC+1: SIXBIT /dev/

sor CALLI AC, 101

sfirst word of the OPEN block
;second word of the OPEN block

The error return is given if the UUO is not implemented. On a normal return, AC contains one of

the following values:

If the mode is illegal, AC contains -2.
If the device does not exist, AC contains -1.
If the device exists, but its data mode is dump mode, AC contains 0.,

If the device exists and the data mode is legal, AC contains in bits
0-17 the default number of buffers, and in bits 18-35 the default buf-
fer size (including the first three words of the buffer).

5.06 Monitor 4-30 March 1973

-491- MONITOR CALLS
4.10.5 WHERE AC, or CALLI AC, 63'

This UUO returns the pHysical station number of the specified device. When the UUO is called,
AC contains either the channel number of the device as a right=justified quantity, or the device name
as a left=justified SIXBIT quantity. The call is:

MOVE AC, [SIXBIT /dev/] ;or MOVEI AC, channel no.

WHERE AC, ;or CALLI AC, 63

error return
normal return

If OPR is specified as the device name, the station number at which the job is logically located is
returned; if OPRO is specified, the station number of the central station is returned; and if TTY is

specified, the station number at which the job's TTY is located is returned.

On a normal return, the LH of AC contains the station's status, and the RH of AC contains the station
number associated with the device. The station's status is represented by the following bits:

Bit 13=1 if the station is dial-up (RM.SDU).
Bit 14=1 if the station is loaded (.RMSUL).
Bit 15=1 if the station is in the loading procedure (.RMSUG).
Bit 16 =1 if the station is down (.RMSUD).
Bit 17=1 if the station is not in contact (.RMSUN).
The error retum is taken if the UUO is not implemented, the specified channel is not INITed, or the

requested device does not exist.

4.10.6 DEVNAM AC, or CALLI AC, 64

This UUO returns the physical name of a device obtained through either a generic INIT/OPEN or o
logical device assignment. When the UUO is called, AC contains either channel number of the de-

vice as a right-justified quontity, or the device name as a left-justified SIXBIT quantity. The call is:

MOVE AC, [SIXBIT /dev/] ;or MOVEI AC, channel no.
DEVNAM AC, . sor CALLI AC, 64

error return '

normal refurn

The normal return is taken if the specified device is found, and AC contains the SIXBIT physical

device name,

The error return is taken if the UUO is not implemented (AC is unchanged), the specified channel

is not INITed, or no such device exists.

1 This UUO depends on FTREM which is normally off in the DECsystem=1040.

5.06 Monitor 4-31 March 1973

CHAPTER 5
I/0 PROGRAMMING FOR
NONDIRECTORY DEVICES

-1493-

MONITOR CALLS

This chapter explains the unique features of each standard nondirectory 1/O device. ‘Each device

accepts the programmed operators explained in Chapter 4, unless otherwise indicated. Table 5-11is a

summary of the characteristics of all nondirectory devices. Buffer sizes are given in octal and include

three bookkeeping words. The user may determine the physical characteristics associated with a logi=

cal device name by calling the DEVCHR UUO (refer to Paragraph 4,10.2).

Table 5-1
Nondirectory Devices"
. . Buffer
Devi Physical |Controller Unit Programmed Data S
evice Name Number Number Operators Modes 'ze
P (Oetal)t

Card Punch |CDP - CP10A OUTPUT, OUT | A,AL,I, IB,B‘ 35
Card Reader] CDR,CDR1 - CR10A INPUT, IN A,AL,1,IB, 36

461 (PDP-6) B, SI
Console Cc1Yy - LT33A, LT33B |INPUT, IN A,AL, I 23
Terminal LT35A, LT37AC | OUTPUT, OUT

626 (PDP-6)
Display DIS - VR30, VP10 INPUT, OUTPUT | ID Dump only

3408, 30
Line Printer| LPT,LPT1 LP10C OUTPUT A AL, I 37
Magnetic MTAO,MTA1} TM10A TU20A,TU20B |INPUT, IN A, AL, 1 203+t
Tape eesr MTA7 | TMI10B TU30A,TU30B | OUTPUT, OUT |IB, B

516(PDP-6 MTAPE DR, D

Paper-Tape | PTP - PC09 . OQUTPUT, OUT | A,AL, I 43
Punch 761(PDP-6) 1B, B
Paper-Tape | PTR - PC09 INPUT, IN A, AL, 1 43
Reader 760(PDP-6) IB, B

"Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A

DEVSIZ UUO may be employed.

T1The buffer size for magnetic tape may be changed with the SET BLOCKSIZE monitor command (refer

to the DECsystem-10 Operating System Commands).

5-1

June 1972

MONITOR CALLS -49h-

Table 5-1 (Cont)
Nondirectory Devices

Device Physical [Controller Unit Programmed Data B;f ::r
Name Number Number Operators Modes (Octal)t
Plotter PLT XY10 XY10A OUTPUT, OUT | A, AL, I 46
XY108 1B, B
Pseudo-TTY | PTY - - INPUT, IN A, AL 23
OUTPUT, OUT
Terminal TTYO, TTY1,{DCI10 LT33A,LT338B INPUT, IN A, AL, 1 23
..., TTY177 | DC68A LT35A,LT37AC | OUTPUT, OUT
630(PDP-6)| VT06 TTCALL
HLBUH"er sizes are subject to change and should be calculated rather than assumed by wser programs. A
DEVSIZ UUO may be employed.

5.1 CARD PUNCH

The device mnemonic is CDP; the buffer size is dependent on the data mode.

Data Mode Buffer Size
A, AL 238 (208 data) words - 80 7-bit ASCII characters
1,18 368 (338 data) words ~ 80 12-bit bytes

B 358 (328 data, 338 punched) words = 26 data words,

word count and checksum punched.

5.1.1 Concepts

The header card is the first card of an ASCII file and identifies the card code used (refer ’rc; Appendix C).
This card is not punched for data modes other than ASCII. The header card has the same punches in all
columns. This punch depends on the card code used; for example, in DEC026, the header card has
12-2-4~8 punched in columns 1-80.

The end-of-file (EOF) card is the last card of each output file. This card is punched for all data modes.
The end-of-file card has a 12-11-0~1-6-7-8-9 punch in columns 1 through 80.

5.1.2 Data Modes

5.1.2.1 ASCII, Octal Code 0 - ASCII characters are converted to card codes and punched (up to 80
characters per card). Tabs are simulated by punching from 1 to 8 blank columns; form-feeds and car-

riage returns are ignored.

5-2

-495- MONITOR CALLS

Line-feeds cause a card to be punched. All other nontranslatable ASCII characters cause a question
mark to be punched, Cards can be split between buffers. Attempting to punch more than 80 columns
per card causes the error bit 10 ,BKT (bit 21 of status word) to be set, The CLOSE will punch the last
partial card and then punch an EOF card.

Cards are normdlly punched With DEC026 card codes. If bit 29 (octal 100) of the status word is on
(from INIT, OPEN ,n or SETSTS), cards are punched with DEC029 codes (refer to Appendix C). The
first card of any file (the header card) indicates the card code used (12-0~-2-4-6-8 punched in column
1 for DEC029 card codes; 12-2~4-8 punched in column 1 for DEC026 card codes).

5.1.2.2 ASCII Line, Octal Code 1 ~ The same as ASCII mode.

5.1.2.3 Image, Octal Code 10 - In image mode, each buffer contains 27 words, each of which
contains three 12-bit bytes. Each byte corresponds to one card column. Since there is room for 81
columns in the buffer (3 x 27) and there are only 80 columns on a card, the last word contains only 2
bytes of data; the third byte is thrown away. If the byte size is set by the program to be 12-bit bytes
(the monitor normally sets 36-bit bytes), the program must skip the last byte in the buffer. Image
binary causes exactly one card to be punched for each output. A program should not force an output
every 80 columns since, if the program is in spooled mode, it will waste a large amount of disk space.

The CLOSE punches the last partial card and then punches an EOF card.
5.1.2.4 Image Binary, Octal Code 13 - Same as Image.

5.1.2.5 Binary, Octal Code 14 - Column 1 contains the word count in rows 12-3. A 7-9 punch is in
column 1. Column 2 contains a checksum as described for the paper-tape reader (refer to Paragraph
5.7.1.5); columns 3 through 80 contain up to 26 data words, 3 columns per word. Binary causes ex-
actly one card to be punched for each output. The CLOSE punches the last partial card and then
punches an EOF card.

5.1.3 Special Programmed Operator Service

Following a CLOSE, an EOF card is punched. Columns 2 through 80 of the header card and the EOF
card contain the same punches that appear in column 1 of the respective card for easy file identifica-

tion. These laced punches are ignored by the card reader service routine.

After each interrupt, the card punch stores the results of a CONI in the DEVSTS word of the device
data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to
Paragraph 4.10.1).

5.04 Monitor , 5-3 January 1972

MONITOR CALLS - -496-
5.1.4 File Status (Refer to Appendix D)

The file status of the card punch is shown below,

Standard Bits

18 21 24 27 30

T

SET BY USER

—

19 21 23
SET

10-0546
Bit 19 -10.DER Punch error
Bit 21 - IO.BKT Reached end-of-card with data remaining in buffer.
Bit 23 - IO.ACT Device is active.
18 20 22 ‘ 24 er
wwseo [T JIT 1 (T
Device Dependent Bits
29
SET BY USER I]]]]]l

10-0547

Bit 29 - 10.D29 If 1, punch DEC029 card codes in ASCII mode.

If 0, punch DEC026 codes.

5.2 CARD READER

The card reader device mnemonic is CDR; the buffer size is 368 (338 d&fa) words.

5.2.1 Concepts

For ASCII input, a header card can be the first card of the file and identifies the card code used
(DEC026 or ANSI standard). The header card is used only when changing from or back to installation
standard on ASCII input. The header card must not be present with any other data modes; if present,

the header card is treated as incorrect format or read as data. Refer to Appendix C for the card codes.

5.05 Monitor 5-4 June 1972

‘ - -497- MONITOR CALLS
An EOF card may have one Qf three forms: 12-11-0-1 punched in column 1, 6~7-8-9 punched in
column 1, or a logical OR of the two punched in column 1. Columns 2 through 80 are ignored. The
EOF card has the same effect as the EOF key on the card reader. This key must be depressed or the

end-of~file card must be present at the end of each input file for all data modes.

To be compatible with PDP-11 operating systems, the DECsystem=10 card reader service accepts several
other header card-code cards and EOF cards. Only column 1 is looked at; columns 2-80 are ignored.

Punched by DECsystem=10 Also accepted
EOF 12-11-0-1-6-7-8-91 12-11-0-1
6-7-8—9
DEC026 12-2-4-8 12-11-8-9
ANSI 12-0-2-4-6-8 _ 12-0-7-9

5.2,2 Data Modes
5.2.2.1 ASCIl, Octal Code 0 - All 80 columns of each card are read and translated to 7-bit ASCII

code. Blank columns are translated to spaces. At the end of each card a carriage return/line feed is
appended. As many complete cards as can fit are placed in the input buffer, but cards are not split

between two buffers. Using the standard=sized buffer, only one card is placed in each buffer.

Cards are normally translated as DEC026 card codes (refer to PDP=-10 System Reference Manual). If a
DEC029 header card is encountered, any following cards are translated as DEC029 codes (refer to
Appendix C) until fhe 029 conversion mode is turned off. The 029 mode is turned off either by a RELEASE
command or by a DEC026 header card. Columns 2 through 80 of both of these cards are ignored.

5.2.2.2 ASCII Line, Octal Code 1 = This mode is the same as ASCII mode.

5.2.2.3 Image, Octal Code 10 - All 12 punches in all 80 columns are packed into the buffer as 12-
bit bytes. The first 12-bit byte is in column 1. The last word of the buffer contains columns 79 and 80
as the left and middle bytes, respectively. The EOF button is processed as in ASCHl mode. Cards are not

split between two buffers.
5.2.2.4 Image Binary, Octdl Code 13 = This mode is the same as Image.

5.2,2.5 Binary, Octal Code 14 - Card column 1 must contain a 7-9 punch to verify that the cord is
in binary format. Column 1 also contains the word count in rows 12 through 3. The absence of the 7-9
punch results in setting the 10.IMP (bit 18 of status word) flag in the card reader status word. Card
columh 2 must contain a 12-bit checksum as described for the paper-tape binary format. Columns 3
through 80 contain binary data, 3 columns per word for up to 26 words. Cards are not split between two
buffers. The EOF button is processed the some as in ASCIl mode.

5.2.2.6 Super=lmage, Octal Code HOH - Super-image mode may be initialized by setting bit 29 of
the card reader's 1OS word. This mode causes the 36 bits read from the 1/O bus to be BLKI'd directly
to the user's buffer. For this mode, the default size of the input buffer is 81 10 Words (8010 data words).

T These_cards are symmetric in the sense that the pattern of the punches is the same if the card is turned
H_upside down.)
This mode depends on FTCDRSI which is normally off in the DECsystem-1040.

5,05 Monitor 5-5 June 1972

MONITOR CALLS -498-

5.2.3 Special Programmed Operator Service

The card reader, after each interrupt, stores the results of a CONI in the DEVSTS word in the device

data block. The DEVSTS UUOQ is used to return the contents of the DEVSTS word to the user (refer to
Paragraph 4.10.1).

5.2.4 File Status (Refer to Appendix D)

The file status of the card reader is shown below.
Standard Bits

18 21 24 27 30 33 35

18 21 24
SET

e wonrron {111 Y]

10-0548

Bit 18 - 10.IMP 7-9 punch absent in column lofa presumed binary cord.
The card reader is stopped.

Bit 19 - 10.DER Photocell error, card motion error, data missed. The card
reader is stopped.

Bit 20 - 10.DTE Computed checksum is not equal to checksum read on binary
card. The card reader is stopped.

Bit 22 - 10.EOF EQF card read or EOF button pressed.
Bit 23 - 10.ACT Device is active.

18 21 24 27 30 33 35

10-0549

Device-Dependent Bits

18 21 24 27 29 30 33 35

serovse] | 1 L. 1]

10-0649

Bit 29 - 10.SIM Super-Image mode.

5-6

. -499- MONITOR CALLS
5.3 DISPLAY WITH LIGHT PEN

The device mnemonic is DIS; there is no buffer because the display uses device-dependent dump mode

only.

5.3.1 Data Modes

For IMAGE DUMP, Octal Code 15, an arbitrary length in the user area may be displayed on the scope.
The command list format is as described in Chapter 4 with the addition for the Type 30, VR30 and VP10
display, that, if RH =0, and LH # 0, then LH specifies the intensity for the following data (4 fo 13).

5.3.2 Background

During timesharing on a heavily~loaded system, the monitor service routine for the Type 30, VR30,
and VP10 guarantees a flicker-free picture on the display if the job is locked in core. To maintain
this picture, the picture data must be available for the display at least every two iffies. If the system
is lightly loaded, it is not necessary to keep the job in core. When the job is swapped, a minimum

amount of flicker may occur, but the job has high priority to be swapped-in again.

5.3.3 Display UUOs

The 1/0O UUO:s for both displays operate as follows:

INIT D, 15 ;MODE 15 ONLY
SIXBIT /DIS/ ;DEVICE NAME
0 ;NO BUFFERS USED
ERROR RETURN ;DISPLAY NOT AVAILABLE
NORMAL RETURN
CLOSED, - ;STOPS DISPLAY AND
or ;RELEASES DEVICE AS
RELEAS D, ;DESCRIBED IN CHAPTER 4

5.3.3.1 INPUT D, ADR - If a light pen hit has been detected since the last INPUT command, then
C(ADR) is set to the location of last light pen hit. If no light pen hit has been detected since last
INPUT command, then C(ADR) is set to =1.

5.3.3.2 OUTPUT D, ADR - ADR specifies the first address of a table of pointers. This table is

composed of pointers with the following format:

[o] 1718 35

LH ' RH

10-0550

5.04 Monitor 5-7 January 1972

MONITOR CALLS
For the Type 30, VR30 and VP10 Displuy:

-500-

If LH = 0 and RH = 0, then this is the end of the command list.
If LH #0 and RH =0, then LH is the desired intensity for the following data or commands.

The intensity ranges from 4 to 13, where 4 is the dimmest and 13 is
the brightest.

If LH = 0O and RH# 0, then RH is the address of the next poinfer. Successive pointers are

interpreted beginning af RH.

IfF LH # 0 and RH #0, then ~LH words beginning at address RH + 1 are output as data to

the display. The format of the data word is the following:

0 78 1718 25 26 35

I y~-coord l I x-coord |

10-0551

For the Type 340B Display:

If RH = 0, then this is the end of the command list.

If LH =0 ond RH# 0, then RH is the address of the next pointer. Successive pointers are

interpreted beginning at RH.

If LH# 0 and RH #0, then -LH words beginning at address RH+1 are output as data to the

display. The format of the data word is described in the. Precision
Incremental CRT Display Type 340 Maintenance Manual.

An example of a valid pointer list for the VR=30 display is:

OUTPUT

LISTs:

LIST1:

B3
C:

SUBP1:
SuB2:

D> LIST 3OUTPUT DATA
SPOINTED TO BY LIST

XWD 5, @ 3INTENSITY 5 (DIMD

10WD 1 A SPLOT A

10wWD 5,SUBP1 $PLOT SUBPICTURE 1

XWD 1350 3JINTENSITY 13 (BRIGHT)

10WD 1,C 3PLOT C

10WD 2.,SUBP2 3PLOT SUBPICTURE 2

XWD @,LIST1 3sTRANSFER TO LIST 1

XWD 10,0 3INTENSITY 10 (NORMAL)

10WD 1,B sPLOT B

10WD 15D 3SPLOT D

XWD 2,0 JEND OF COMMAND LIST

OUTPUT D» LIST 3OUTPUT DATA
3POINTED TO BY LIST

XWD 6+6 5Y= 6s X=6

XWD 70,105 5Y= 78, X=105

XWD 105,70 5Y= 105, X=70

XWD 1000,200 3Y=1000 ., X=200

BLOCK 5 3SUBPICTURE 1

BLOCK 2 3SUBPICTURE 2

5-8

=501~ MONITOR CALLS

An example of a valid pointer list for the Type 3408 Display is:

OUTPUT

L1IST: I0wD
Iowp
IOWD
IowD
IowD
I0WD
I0wD

LIST1: 1I10WD

I0wD
I0WD
I0oWD
XWD
At X=6
B: X=105
C: X=70
D: X=1000

SUBP1: BLOCK
SUBP2: BLOCK

D, LIST

15A
S5sSUBP1
1.C
5.SUBP1
15B
2,SUBP2
D>LIST1

15D
S5,SUBP1
1,A
2, SUBP2
a0
Y=6

Y=105
Y=-200

5
2

SOUTPUT DATA POINTED
3TO BY POINTER IN LIST

3SET STARTING POINT TO (6s6)
3DRAW A CIRCLE

3SET STARTING POINT TO (785185)
3sDRAW A CIRCLE

3SET STARTING POINT TO (105, 79)
3DRAW A TRIANGLE

3TRANSFER TO LIST1

3SET STARTING POINT TO
3C1005-200)

3DRAW A CIRCLE

3SET STARTING POINT TO (656)
3DRAW A TRIANGLE

3STOP

3DRAW A CIRCLE
3DRAW A TRIANGLE

The example shows the fléxibilify of this format. The user can display a subpicture by setting up @

pointer. He can also display the same subpicture in nﬁany different places by setting up pointers to

the subpicture, each preceded by a pointer to commands for the display to reset its coordinates,

5.3.4 File Status (See Appendix D)

The file status of the display is shown below.

Standard Bits

SET BY USER

SFT BY MONITOR

Bit 23 -10.ACT

UNUSED

Device Dependent Bits = None.

18 21 24 27 30 33 35

T

23

1T

Device is active.

10-0582

18

TN TR

10-0553

MONITOR CALLS -502-
5.4 LINE PRINTER

The device mnemonic is LPT; the buffer size is 378 (368 data) words.

5.4.1 Data Modes

5.4.1.1 ASCIl, Octal Code 0 - ASCII characters are transmitted to the line printer exactly as they
appear in the buffer. Refer to the PDP-10 System Reference Manual for a list of the vertical spacing

characters.

5.4.1.2 ASCII Line, Octal Code 1 - This mode is exactly the same as ASCII and is included for pro-
gramming convenience. All format control must be performed by the user's program; this includes
placing a RETURN, LINE-FEED sequence at the end of each line.

5.4.1.3 Image, Octal Code 10 - This mode is the same as ASCII mode.

5.4.2 Special Programmed Operator Service

The first output programmed operator of a file and the CLOSE at the end of a file cause an extra form-

feed to be printed to keep files separated.

After each interrupt, the line printer stores the results of a CONI in the DEVSTS word of the device
data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to
Paragraph 4.10.1).

5.4.3 File Status (See Appendix D)
The file status of the line printer is shown below.

Standard Bits

27 29 30 33 35

wrovwen [T 11 TR

Bit 29 - 10, SFF Suppress FORM FEEDS on an OPEN or RELEASE
23
SET BY MONITOR]I[“L
10-0554
Bit 23 - I0.ACT Device is active.

woseo [T OREIN T 1 1

10-0588
Device dependent bits - None.

5.04 Monifor 5-10 January 1972

~503- MONITOR CALLS
5.5 MAGNETIC TAPE

Magnetic tape format is industry compatible, 7- or 9-channel 200, 556, and 800 bits/in. (see
description below). The device mnemonic is MTAO, MTA1, ..., MTA7; the buffer size is 2038 (2008
data) words. The user may change the density and/or the blocksize of a magnetic tape by using the
SET DENSITY and SET BLOCKSIZE monitor commands (refer to the DECsystem-10 Operating System

Commands).

5.5.1 Data Modes

5.5.1.1 ASCII, Octal Code 0 - Data appears to be written on magnetic tape exactly as it appears in
the buffer. No processing or checksumming of any kind is performed by the service routine. The parity
checking of the magnetic tape system is sufficient assurance that the data is correct. Normally, all
data, both binary and ASCII, is written with odd parity and at 800 bits per inch unless changed by the
installation. A maximum of 2004 words per record is allowed if the monitor has set up the buffer ring.
If the user builds his own buffers, he may specify any number of words per record. The word count is
not written on the tape. If an 1/O error occurs or an end-of-tape is reached, reading ahead ceasing

on input and implied output ceases on output.

5.5.1..2 ASCII Line, Octal Code 1 - The mode‘ is the same as ASCII,

5.5.1.3 Image, Octal Code 10 - The mode is the same as ASCII, but data consists of 36-bit words.
5.5.1.4 Image Binary, Octal Code 13 - The mode is the same as Image.

5.5.1.5 Binary, Octal Code 14 - The mode is the same as Image.

5.5.1.6 DR (Dump Records), Octal Code 16 - Standard fixed length records (128 words is the standard
unless installation standard is changed at MONGEN time) are read into or written from anywhere in
the user's core area without regard to the standard buffering scheme. Control for read or write opera-
tions must be via a command list in core memory. The command list format is described in Chapter 4.
For input operations a new record is read for each word in the command list (except GOTO words); if
the record terminates before the command word is satisfied, the service routine reads the next records.
If the command word runs out before the record terminates, the remainder of the record is ignored.
For each output command word, enough standard length records are followed by one short record to
exactly write all of the words on the tape. If an 1/O error occurs or the end-of-tape is reached, no
additional commands are retrieved from a dump mode command list, and I/O is terminated. When the
end of file is. read, the user receives the standard EOF return (the error retumn from the INPUT or

IN UUO) ond the 10.EOF bit is set in the file status word. This bit can be retrieved with the GETSTS

5-11 March 1973

MONITOR CALLS -504-

UUO. The EOF character (178 for 7-channel tapes or 238 for 9-channe! tapes) is read into the user's
buffer. The next INPUT or IN UUO will read the next record on the tape.

5.5.1.7 D (Dump), Octal Code 17 - Variable length records are read into or written from anywhere
in the user's core area without regard to the standard buffering scheme, Control for read or write oper-
ations must be via a command list in core memory. The command list format is cle;cribed in Chapter 4.
For input operations a new record is read for each word in the command list (except GOTO words); if
the record terminates before the command word is satisfied, the service routine skips to the next com-
mand word. If the command word runs out before the record terminates, the remainder of the record

is ignored. For each output command word, exactly one record is written. Refer to »Paragraph 5.5.1.6

for the description of EOF handling in dump mode.

5.5.2 Magnetic Tape Format

Magnetic tape format can generally be described as unlabelled, industry-compatible format. That is,
as far as the user is concerned, the tape contains only data records and EOF marks, which signal the

end of the data set or the end of the file.

An EOF mark consists of a record containing a 178 (for 7-channel tapes) or a 238 (for 9-channel tapes).

. EOF marks are used in the following manner:

a. No EOF mark precedes the first file on a magnetic tape.
b. An EOF mark follows every file.

¢. Two EOF marks follow a file if that file is the last or only file on the tape.

Files are sequentially written on and read from a magnetic tape. A file consists of an integral number
of physical records, separated from each other by interrecord gaps (area on tape in which no data is

written). There may or may not be more than one logical record in each physical record.

3.5.3 Special Programmed Operator Service

CLOSE performs a special function for magnetic tape. When an output file is closed (both dump and
nondump), the I/0 service routine automatically writes two EOF marks and backspaces over one of
them. If another file is opened, the second EOF mark is wiped out leaving one EOF mark between
files. At the end of the in-use portion of the tape, however, a double EOF character, which is de-

fined as the logical end of tape, appears.

After each interrupt, the magnetic tape service routine stores the results of & CONI in the DEVSTS
word. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to
Paragraph 4.10.1),

5-12 March 1973

-505- MONITOR CALLS
5.5.3.1 MTAPE UUO - The MTAPE programmed operator provides for tape manipulation functions

such as rewind, backspace record, backspace file, and 9-channel tape initialization. The format is
MTAPE D, FUNCTION

where D is the device channel on which the magnetic tape unit is initialized. FUNCTION is selected

according b Table 5-2.

Table 5-2
MTAPE Functions
Symbol Function - Action

MTWAT. 0] No operation; wait for spacing and 1/O to finish.

MTREW, 1 Rewind to load point.

MTEOF. 3 Write EOF.

MTSKR. 6 Skip one record.

MTBSR. 7 Backspace record.

MTEOT. 10 Space to logical end of tape; terminates at either two
consecutive EOF marks or at the end of first record
beyond end of tape marker. -

MTUNL. 1 Rewind and unload.

MTBLK. 13 Write 3 in. of blank tape.

MTSKF, 16 Skip one file; implemented by a series of skip record

: _ operations,

MTBSF. 17 Backspace files; implemented by a series of backspace
record operations.

MTDEC. 100 Initialize for Digital-compatible 9-channel.T

MTIND. 101 Initialize for industry-compatible 9-channel fape.”

1.Digitcxl-compaﬁlale mode writes (or reads) 36 data bits in five frames of a 9-track
* magnetic tape. It can be any density, any parity, and is not industry compatible.
This mode is in effect until a RELEAS D, or a MTIND.D, is executed.

Hlndustry-comp_atib|e 9-channel mode writes (or reads) 32 data bits per word in four
frames-of a 9-track magtape and ignores the low order four bits of a word. It must
be 800 bits/in. density, odd parity.

MTAPE waits for the magnetic tape unit to complete the action in progress before performing the in-
dicated function, including no operation (0). Bits 18 through 25 of the status word are then cleared,
the indicated function is initiated, and control is immediately returned to the user's program. It is
important to remember that when performing buffered input/output, the 1/O service routine can be
réudj_ng several blocks ahead of the user's program. MTAPE affects only the physical position of the
ra};g and does not change the data that has already been read into the buffers. Thérefore, an INPUT

5.04 Monitor 5-13 _ January 1972

MONITOR CALLS -506-

or OUTPUT following a MTAPE may not retrieve the buffer containing the block requested. However,
a single buffer ring retrieves the expected block since the device must stop after each INPUT or
OUTPUT. Alternatively, if bit 30 {O.SYN) of the file status word is set via the INIT or SETSTS UUO,
the device stops after each buffer is filled on an INPUT or OUTPUT. Thus, the MTAPE will apply to
the buffer supplied on the next INPUT or OUTPUT.

MTAPE functions must be followed by MTAPE 0 if subsequent operations depend on the completion of
the MTAPE function. If this is not done, subsequent input and output UUOs are ignored until the
magnetic tape control is freed. This problem occurs frequently in programs that issue a REWIND at
the beginning of the program. The tape may actually be positioned at the beginning of the tape;

however, the processing of the MTAPE function may cause the first input to be ignored.

Issuing a backspace file command to a magnetic tape unit moves the tape in the reverse direction until

the tape has:

a. passed the end of file mark
b. reached the beginning of the tape.

The end of the backspace file operation positions the tape heads either immedictely in front of a file

mark or at the beginning of the tape.

In most cases it is desirable to skip forward over this file mark. This is decidedly not the case if the
beginning of the tape is reached; in this case, giving a skip file command would skip the entire first
file on the tape stopping at the beginning of the second file, rather than leaving the tape positioned

at the beginning of the first file. Therefore, a typical (incorrect) sequence for backspace file would
be:

MTBSF. MT, ;Backspace file

WAIT MT, ;Wait for completion
STATO MT.,4000 iBeginning of fa.e?
MISKF+ MT, ;No, skip over file mark

It is necessary to wait after the backspace file instruction to ensure that the tape is moved to the EOF
mark or the beginning of the tape before testing to see whether or not it is the beginning of the tape.
The instruction WAIT MT, cannet be used for this purpose; it waits only for the completion of 1/O
transfer operation. (Backspace file is a spacing operation, not an 1/0 transfer operation,) Instead,

use the following sequence for backspace file:

MTAPE MT»17 ;Backspace file

MTAPE MT,0 ;Wait for completion
STATO MT.40800 ;Beginning of tape?
MTAPE MT»16 :No, skip over tile mark.

5.04 Monitor 5-14 January 1972

-507- MONITOR CALLS

The device service routine must wait until the magnetic tape control is free before processing the
MTAPE MT, 0 command, which tells the tape control to do nothing. Thus, the service routine achieves
the waiting period necessary for the completion of the previous operation and the proper positioning of

the tape.

5.5.3.2 MTCHR. AC, or CALLI AC, 112'l - This UUO returns the characteristics (presently only
the density is returned) of the specified magnetic tape drive. The density of the drive can be speci-
fied by setting bits 27 and 28 in the status word when the drive is INITed and can be changed with
the SET DENSITY command. The call is: |

MOVE AC, SIXBIT/dev/] . ;or MOVEI AC, channe! number
MTCHR. AC, sor CALLI AC, 112
error return o '

normal return

In determining the densif); to return, the monitor examines the initial file status specified with the
INIT UUO and returns the indicated density value. If this value is zero, the monitor then determines
if the user specified a density with the SET DENSITY system command. If no density has been speci-

fied in this way, the monitor returns the system default density.

The MICHR. UUO is used to obtain more complete information than that returned with the GETSTS
UUO. The GETSTS UUO returns only the density specified in the INIT UUO and if the density is
specified as zero (for the system default), zero is retumed, not the actual system default. The den-
‘sify specified in the SET DENSITY command cannot be returned with the GETSTS UUO.

The error return is ‘given if' the UUO is not implemented (AC remains unchanged) or if there is no de-

vice on the specified channel or.if the device is not a magnetic tape (AC contains -1).

On a normal return, bits 34 and 35 of AC contain the current density of the magnetic tape drive:

AC contains 1 200 bpi
AC contains 2 556 bpi
AC contains 3 800 bpi

5.5.4 9-Channel Magtape

Nine~channel magtape may be written and read in two ways: normal Digital-compatible format and

industry~compatible format.

1This UUQ depends on FT5UUO which is normally off in the DECsystem-1040.

5-15 : March 1973 |

MOMITOR CALLS -508-

5.5.4.1 Digital-Compatible Mode - Digital-compatible mode, the usual mode, allows old 7-channel
user mode programs fo read and write 9-channel tapes with no modification. Digital-compatible mode
writes 36 data bits in five bytes of a nine track magtape. It can be any density, and parity, and is not
industry compatible. The software mode is specified in the usual manner during initialization or with
a SETSTS. User mode 1/O is handled precisely as 7-track magtape. It is assumed that most DEC

magtapes will be written and read in Digital-compatible mode.

For the data word in core there are 5 magnetic tape bytes per 36-bit word. Parity bits are unavailable
to the user. Bits are written on tape as shown above; bits 30 and 31 are written twice and tracks 8 and
9 of byte 5 contain 0. On reading, parity bits and tracks 8 and 9 of byte 5 are ignored, the OR §f
bits (B30) is read into bit 30 of the data word, the OR of bits (B31) is read into bit 31.

Data Word on Tape

Tracks

9 8 7 6. 5 4 3 2 |
BO B1 B2 B3 B4 B5 B6 B7 P
B8 B9 B10 B11 B12 B13 B14 B15 P
B16 B17 B18 B19 B20 B21 B22 B23 P
B24 B25 B26 B27 B28 B29 (B30) (B31) P
0 0 (830) (B31) B32 B33 B34 B35 P
P= Purify

BN = Bit N in core.

5.5.4.2 Industry-Compatible Mode - For reading and writing industry-compatible 9-channel magtapes,
an MTAPE D, 101 UUO must be executed to set the status. MTAPE D, 101 is meaningful for 9-channel
magtape only and is ignored for all other devices. In the left half of the status word, bit 2 (which |
cannot be read by the user program) may be cleared, thus, the device is returned to 9-channel Digital-
compotible status by a RELEAS, a call to EXIT, or an MTAPE D, 100 UUO. These MTAPE UUOs ¢:;cf

only as a switch to and from industry-compatible mode and affect I/O status only by setting the density
to 800 bits/in. and odd parity.

On INPUT, four 8-bit bytes are read into each word in the buffer, left iusﬁfiéd, with the remaining

four bits of the word containing character parity error indicators corresponding to the 8-bit bytes.

On OUTPUT, the leftmost four 8-bit bytes of each word in the buffer are written out in four frames,

with the remaining four rightmost bits of the word being ignored.

5-16 Murch 1973

-509- MONITOR CALLS
Data Word on Tape
Tracks
9 8 7 6 5 4 3 2 1
BO B1 B2 B3 B4 B5 B6 B7 B32
B8 B9 B10 B11 B12 B13 B14 B15 B33
B16- B17 B18 B19 B20 B21 B22 B23 B34
B24 B25 B26 B27 B28 B29 B30 B31 B35

For data word in core, four magnetic tape bytes carry four 8-bit bytes from the data word. Parity bits

are obtained as shown above when reading. The rightmost four bits (32-35) are ignored on writing.

5.5.4.3 Changing Modes ~ MTAPE CH, 101. automatically sets density at 800 bits (i.e., 800 eight-
bit bytes) per inch and sets odd parity. Note that buffer headers are set up, when necessary by the

monitor in the usual manner according to the 1/O mode in which the device is initialized. In order to

operate on eight=bit bytes, the user must insert the byte size in the byte pointer before the first IN or

our.

5-16a

March 1973

-511- MONITOR CALLS

5.5.5 File Status (refer to Appendix D)

The file status of the magnetic tape is shown below.

Standard Bits

SET BY USER

SET BY MONITOR

Bit 18 - 10.IMP

Bit 19 - 10.DER
Bit 20 - 1O.DTE
Bit 21 - 10.BKT
Bit 22 - 10.EOF

Bit 23 - 10.ACT

Device Dependent Bits

SET BY USER

Bit 26 - IO.PAR

Bit 27-28 - 10.DEN

Bit 29 - IO.NRC

18 21 . 24 27 30 33 35

T

18 21 24

(T

10-0556

Unit was write~locked when output was attempted,
or illegal operation was specified to the magnetic-
tape control. :

Data was missed, tape is bad, or transport is hung.
Parity error.
Record read from tape exceeds buffer size.

EOF mark encountered, A 17, (for 7-channe! tapes) or a
238 (for 9=channel tapes) appears in buffer.

Device is active.

18 21 - 24 26 27 30 33 35

10-0557

1/O perity. 0 for odd parity, 1 for even parity. Odd
parity is preferred. Even parity should be used only
when creating a tape to be read in binary coded deci-
mal (BCD) on another computer.

/0O density. 00 = System standard. Defined at
MONGEN time and can be changed
with the SET DENSITY command.

01 = 200 bits/in.
10 = 556 bits/in.
11 = 800 bits/in.

1/O no read check. Suppress automatic error correction
if bit 29 is 1. Normal error correction repeats the de-
sired operation 10 times before setting an error status bit.

5-17 March 1973

MONITOR CALLS -512-

18 21 24 25 27 30 33 35

SET BY MONITOR W

10-0558
Bit 24 - 10.BOT I/O beginning of tape. Unit is at beginning of tape mark.
Bit 25 - 10.EOT I/O tape end. Physical end of tape mark encountered.

5.6 PAPER-TAPE PUNCH

The device mnemonic is PTP; the buffer size is 438 (408 data) words.

5.6.1 Data Modes

5.6.1.1 ASCII, Octal Code 0 - The eighth hole is punched when necessary in order to make even
parity. Tape-feed without the eighth hole (000) is inserted after form-feed. A rubout is inserted

after each vertical or horizontal tab. Null characters (000) appearing in the buffer are not punched.

5.6.1.2 ASCII Line, Octal Code 1 - The mode is the same as ASCIl mode. Format control must be

performed by the user's program.

5.6.1.3 Image, Octal Code 10 - Eight-bit characters are punched exactly as they appear in the

buffer with no additional processing.

5.6.1.4 Image Binary, Octal Code 13 - Binary words taken from the output buffer are split into six
6-bit bytes and punched with the eighth hole punched in each line. There is no format control or
checksumming performed by the 1/0 routine. Data punched in this mode is read back by the paper-
tape reader in the IB mode.

5.6.1.5 Binary, Octal Code 14 - Each bufferful of data is punched as one checksummed binary block
as described for the paper-tape reader. Several blank lines are punched after each bufferful for visual

clarity.

5.6.2 Special Programmed Operator Service

The first output programmed operator of a file causes approximately two fanfolds of blank tape to be
punched as leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No

EOF character is punched automatically.

After each interrupt, the paper-tape punch stores the results of a CONI in the DEVSTS word of the
device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user
(refer to Paragraph 4.10.1).

-513- MONITOR CALLS
5.6.3 file Status (Refer to Appendix D)

The file status for the paper-tape punch is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY MONITOR ' zﬁﬂﬂ .
owusen (NI D ||

Device Dependent Bits - None.

5.7 PAPER-TAPE READER

The device mnemonic is PTR; the buffer size is 438 (408 data) words.

5.7.1 Data Modes (Input Only)
NOTE

To initialize the paper-tape reader, the input tape must
be threaded through the reading mechanism and the FEED
button must be depressed.

5.7.1.1 ASClI, Octal Code 0 - Blank tape (000), RUBOUT (377), and null characters (200) are
ignored. All other characters are truncated to seven bits and appear in the buffer. The physical end

of the paper tape serves as an EOF, but does not cause a character to appear in the buffer.

5.7.1.2 ASCII Line, Octal Code 1 - Character processing is the same as for ASCII mode. The buffer
is terminated by LINE FEED, FORM, or VT.

5.7.1.3 Image, Octal Code 10 - There is no character processing. The buffer is packed with 8-bit
characters exactly as read from the input tape. Physical end of tape is the EOF indication but does

not cause a character to appear in the buffer.

MONITOR CALLS -514-

5.7.1.4 Image Binary, Octal Code 13 - Characters not having the eighth hole punched are ignored.
Characters are truncated to six bits and packed six to the word without further processing. This mode

is useful for reading binary tapes having arbitrary blocking format.

5.7.1.5 Binary, Octal Code 14 - Checksummed binary data is read in the following format. The
right half of the first word of each physical block contains the number of data words that follow and
the left contains half a folded checksum. The checksum is formed by adding the data words using 2's
complement arithmetic, then splitting the sum into three 12-bit bytes and adding these using 1's com-
plement arithmetic to form a 12-bit checksum. The data error status flag (refer to Table 4-3 in
Paragraph 4.6.2) is raised if the checksum miscompares. Because the checksum and word count appear
in the input buffer, the maximum block length is 40. The byte pointer, however, is initialized so as

not to pick up the word count and checksum word.

Again, physical end of tape is the EOF indication, but does not result in putting a character in the
buffer.

5.7.2 Special Programmed Operator Service

After each interrupt, the paper-tape reader stores the results of a CONI in the DEVSTS word of the
device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user
(refer to Paragraph 4.10.1).

5.7.3 File Status (Refer to Appendix D)
The file status of the paper-tape reader is shown below.
Standord Bits

18 21 24 27 30 33 35

18 20 22 23

sevevwonron 1 [T [l

10-056t
Bit 18 - 10.IMP Binary block is incomplete.
Bit 20 - 10.DTE Bad checksum in binary mode.
Bit 22 - 10.EOF Physical end of tape is encountered. No charocter
is stored in the buffer.
Bit 23 - 10.ACT Device is active.

5-20

-515- MONITOR CALLS

1819 21

wwseo | {1 {1 JIHHERTEEE

N 10-0862

Device dependent bits = None

5.8 PLOTTER

The device mnemonic is PLT; the buffer size is 438 (408 data) words. The plotter takes 6-bit characters

with the bits of each character decoded as follows:

: X +X +Y -y
PEN PEN DRUM DRUM CARRIAGE | CARRIAGE
RAISE LOWER uP DOWN LEFT RIGHT
10-0563

Do not combine PEN RAISE or LOWER with any of the position functions. (For more details on the

incremental plotter, refer to the PDP-10 System Reference Manual.)

5.8.1 Data Modes

5.8.1.1 ASCII, Octal Code 0 - Five 7-bit characters per word are transmitted to the plotter exactly
as they appear in the buffer. The plotter is a 6-bit device; therefore, the leftmost bit of each charac-

ter is ignored.

5.8.1.2 ASCII Line, Octal Code 1 - This mode is identical to ASCII mode.

5.8.1.3 IMAGE, Octal Code 10 - Six 6-bit characters per word are transmitted to the plotter ex-
actly as they appear in the buffer.

5.8.1.4 IMAGE BINARY, Octal Code 13 - This mode is identical to Image mode.
5.8.1.5 BINARY, Octal Code 14 - This mode is identical to Image mode.

5.8.2 Special Programmed Operator Service -

The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user data is
sent to the plotter. The CLOSE operator causes the plotter pen to be lifted after all user data is sent
to the plotter, These two pen-up commands are the only modifications the monitor makes to the user

output file.

5-21

MONITOR CALLS -516-

After each interrupt, the plotter stores the results of a CONI in the DEVSTS word of the device data
block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to
Paragraph 4.10.1).

5.8.3 File Status (Refer to Appendix D)
The file status of the plotter is shown below.

Standard bits

18 21 24 27 30 33 35

erarsen] i

23

SET BY MONITOR I l W l I

10-0564

Bit 23 - 10.ACT Device is active.

wuseo [T (ITTIRUIE

10-0565

Device dependent bits = None

5.9 PSEUDO-TTY

The device mnemonic is PTYO, PTY1, ..., PTYn. (The number of pseudo-TTYs is specified at
MONGEN time.) The buffersize is 238 (208 data) words.

5.9.1 Concepts

Each job in the DECsystem-10 is usually initiated by a user at a physical terminal. Except in the
case of a DETACH operation, the job remains under the control of the user's terminal until it is ter-
minated by either the KJOB command or the LOGOUT UUO. For each physical terminal there is a
block of core in the monitor, containing information about the physical terminal and including two
buffers as the link between the physical terminal and the job. It is through these buffers that the

terminal sends input to the job, and the job returns output to the terminal.

5.06 Monitor 5-22 March 1973

-517- ’ MONITOR CALLS

Sometimes it is desirable to allow a job in the DECsystem~10 to be initiated by a program instead of

by a uger. Since a program cannot use a physical terminal in the way a user can, some means must be
provided in the monitor for the program to send input to and accept ou’rpuf from the job it is controlling.
The monitor provides this capability via the pseudo-TTY (PTY). The PTY is a simulated terminal and is
not defined by hardware, Like hardware-defined terminals, each PTY has a block of core associated
with it. This block of core is used by the PTY in the same manner as a hardware-defined terminal uses
its block of core. Figure 5-1 shows the parallel between a hardware-defined terminal and a software~
defined PTY.

. DEVICE TTY,
usen - e fedo] 22 L commeoes
o ' DEVICE TTYn l
e _J MONITOR I
DEVICE TTY, l
N <—l-> DEVICE PTY e > OR 1+ CONTROLLED
I DEVICE TT¥Ym I
10-0545

Figure 5-1 Pseudo-TTY

The controlling program, most commonly the batch processor, uses the PTY in the same way a user uses
a physical device. It initiates the PTY, inputs characters to and waits for output from the PTY, and
closes the PTY using the appropriate programmed operators.. The job controlled by the program per-
forms 1/O to the PTY as though the PTY were a physical terminal.

A controlled job may go into a loop and not accept any input from its associated buffer; therefore, it
is not possible for the controlling program to simply rely on waiting for activity in the controlled job.
A controlling program may also wish to drive more than one controlled job, and be able to respond to
any of these jobs; therefore, the controlling program cannot wait for any particular PTY. For these
two reasons, the PTY differs from other devices in that it is never in a 1/O wait f;tafe. Timing is ac-
complished by the HIBER UUO and the status bits of the PTY,

5.9.2 The HIBER UUO

The HIBER UUOQ (refer to Paragraph 3.1.4.2) allows the controlling program to temporarily suspend its
operation until either there is activity in the controlled job or the specified amount of sleep time runs

out, whichever occurs first. If bit 12 in the AC is set in the HIBER UUO call, any PTY activity since

5-23

MONITOR CALLS -518-

the last HIBER UUO causes the controlling program to be awakened. If no PTY activity occurs before
the limit of sleep time is reached, the controlling program is activated, and it checks the controlled
job’s run time or other criteria to determine whether the job should be interrupted. If the job should
be interrupted, the controlling program may output two control=C characters to stop the job. (A
timesharing user stops a running job in the same way.) If the job should not be interrupted, the con-

trolling progrom should repeat the HIBER UUO.

If bit 12 in AC is not set, unnecessary delays might result if activity occurred on a PTY while the
controlling job was sleeping. To avoid these delays, a check is made when a PTY status bit changes
to determine if the controlling program is in a sleep. If it is, the sleep time is cleared so the con-

trolling program can service the PTY,

5.9.3 File Status Refer to Appendix D)
The file status of the pseudo-TTY is shown below.

Standard Bits

18 21 24 27 30 33 35

21 23

SET BY MONITOR M

10-0570
Bit 21 - 10.BKT
Bit 23 - 10.ACT Device is active.
Device Dependent Bits
18 21 24 27 30 33 35
SET BY MONITOR HIUMMM
10-0571
Bit 24 - 10.PTI Job is in @ TTY input wait. The controlling job
should perform an OUTPUT to the PTY.
Bit 25 -10,PTO The TTY buffer has output to be read by an
[INPUT from the PTY.
Bit 26 - 10.PTM Any characters typed into the TTY buffer (by

OUTPUT to the PTY) are read by the monitor
command decoder instead of by the controlled
job (i.e., the controlled job is in monitor mode).

5-24

-519- MONITOR CALLS

5.9.4 Special Programmed Operator Service

5.9.4.1 OUT, OUTPUT UUO:s - The first OUTPUT operation after an INIT or OPEN causes the
special actions of the RELEASE UUO (refer to Paragraph 5.9.4.3) and then the following normal out-

put operations.

a. Characters from the controlling prégram's buffer ring are placed in the input buffer
of the TTY linked to the PTY.

b. The IO.PTI bit is cleared. ‘
c. The IO.PTM bit is set or cleared as determined by the state of the TTY.

The following are exceptions to the normal output action:

a. NULLS (ASCII 000) are discarded.

b. 1f more OUTPUTS are performed than are accepted by the controlled job and if the limit
on this excess is exceeded, the 10.BKT bit is set and the remainder of the controlling
program's buffer is discarded.

c. Lower case characters sent to the controlled job are translated to upper case if the ap-
propriate bit in the TTY is set.

5.9.4.2 IN, INPUT UUOs - Characters are read from the output buffer of the TTY and are placed
in the buffer ring of the conttolling program. If there are no characters to read, an empty buffer is

returned. The INPUT UUOQ does not cause a WAIT,

All the available characters are passed to the controlling program. 1f there are more characters fo
read than can fit in the buffer of the controlling program, the IO.PTO bit remains set and another
INPUT should be done. If the output buffer of the TTY is exhausted by the INPUT UUO, the 10.PTO

bit is cleared.

5.9.4.3 RELEASE UUO - The RELEASE UUO causes the following speciql actions:

a. Any characters in the output buffer of TTY are discarded.
b. If the controlled job is still attached to TTY, it is detached.

c. The PTY is disassociated from the software channel.

CAUTION

Haphazard use of the PTY and subsequent RELEASE opera-
tions may leave detached jobs tying up core and other sys-
tem resources.

5.9.4,4 JOBSTS UUO - This UUO .provides status information about devices TTY and/or the con-

trolled job in order to allow complete and accurate checking of a controlled job.

5,06 Monitor) 5-25 March 1973

MONITOR CALLS -520-
The call is:

MOVEI AC, user channel number ;or MOVNI AC, job number
JOBSTS AC, ;or CALLI AC, 61

error return

normal return

When the UUO is called, AC contains a number n specifying the job and/or the TTY to be checked.
If n is from O to 17, the specified TTY and job are those currently INITed on the user's channel n.

If n is negative, the job to be checked is job number (-n).

The error retumn is given if one of the following is true:

a. the UUO is not implemented. If this is the case, check the 1/0 status word.
b. nis out of range.

c. there is no PTY INITed on chonnel n.

Otherwise the normal retum is given and AC contains the fol lowing status information:

Name Bit Explanation
JB.UJA Bit0=1 Job number is assigned.
JB,ULI Bit 1=1 Job is logged in.
JB.UML Bit2=1 TTY is at monitor level.
JB.UOA Bit3=1 TTY output is available.
JB.UDI Bit 4=1 TTY is at user level and in input wait, or TTY is at monijtor

level and can accept a command. In other words, there is
no command awaiting decoding or being delayed, the job is
not running, and the job is not stopped waiting for operator
device action.

JB.UJC Bit 5= 1 JACCT is set. In particular, tC1C will not work.
Bits 6-17 Reserved for the future.
JB.UJN Bits 18-35 Job number being checked or 0 if no job number is assigned.

I 5.9.4.5 CTLJOB UUO - This UUO is used to determine the job number of the program (job) that is
controlling the specified job, if any.

The call is:

MOVE AC, job number ;-1 means user’s job
CTLJOB AC, ;or CALLI AC, 65
error return

normal return

5.06 Monitor 5-26 March 1973

-521- 'MONITOR CALLS

On a normal return, AC contains the job number of the program (job) that is controlling the controlled

job. If AC = -1, the specified job is not being controlled via a PTY.

An error return is given if the UUO is not implemented or the job number is too large.

5.10 TERMINALS

The device mnemonic is TTYO, TTY1, ..., TTY176, TTY177, CTY; the buffer size is 238 (208 data)

words.

Line number n of the Data Line Scanner DC10, PDP-8 680 System, or PDP-8/1 DC68A System is refer-
red to as TTYn. The console terminal is CTY. The DECsystem-10 monitor automatically gives the

logical name TTY to the user's terminal when a job is initialized.

Terminal device names are assigned dynamically. For inferconsole communication by program, one
of the two users must type DEASSIGN TTY to make the terminal available to the other user's program
as an I/O device. Typing ASSIGN TT¥n is the only way to reassign a terminal that has been de-

assigned.

In a full-duplex terminal service, the two functions of a console, typein and typeout, are handled
independently, and do not need to be handled in the strict sense of output first and then input. For
example: if two operations are desired from PIP, the request for the second operation can be typed
before receiving the asterisk after completion of the first. To stop unwanted output, a Control O is
typed. Also, the command Control C does not stop a program instantly; the Control C will be delayed
until the program requests input from the keyboard, and then the program will be sfopped. When a
program must be stopped instantly, as when it gets into a loop, Control C typed twice stops the pro-

gram.

If, during oufpﬁf operations on a half-duplex terminal (not a local copy terminal), an echo-check
failure occurs (i.e., the received character was not the same as the transmitted char&cfer), the I/O
routine suspends output until the user types the next character. If that character is 1C, the terminal
is immediately placed in monitor mode. If it is 10, all TTY output buffers that are currently full are
fgnored, thus cutting the output short, All other characters cause the service routine fo continue
output. The user may cause a deliberate echo check by typing in while typeout is in progress. For
example, to return fo monitor control mode while typeout is in progress, the user must type any char-

acter ("X", for example) until an echo check occurs and output is suspended; then he fypeé tC.

Programs waiting for TTY output are awakened ten characters before the output buffer is empty, causing
them to be swapped in sooner and preventing pauses in typing. Programs waiting for TTY input will be

awakened ten characters before the input buffer is filled, thus reducing the possibility of lost typein.

5-27

MONITOR CALLS -522-
5.10.1 Data Modes

5.10.1.1 ASCII, Octal Code 0 and ASCII Line, Octal Code 1 - The input handling of all control
characters is as follows. Characters with ASCII codes of 000 to 037 echo as tx and are passed to the

program as a control character unless noted otherwise.

000 NULL Ignored on input; suppressed on output,

001 tA No special action.

002 tB No special action.

003 tC Not passed to program. The user's terminal is switched to

monitor mode the next time input is requested by the program.
Two successive tCs cause the terminal to be immediately
switched to monitor mode. Performs a U and a 1O. For
user program control of 1C, refer to Paragraph 3.1.3.2.

004 tD (EOT) Not echoed; therefore typing in a control-D (EOT) does not
cause a full-duplex data phone to hang up.

005 tE (WRU) No special action.

006 tF No special action.

007 tG (Bell) Echoes as Bell and is a break character.

010 tH (Bockspace) Echoes as backspace.

on tI (TAB) Echoes as a TAB or an equivalent number of spaces. Refer
to the SET TTY TAB command.

012 tJ (Linefeed) Echoes as a linefeed and is a break character.

013 tK (Vertical tab) Echoes as a vertical tab or 4 linefeeds. Refer to the SET
TTY FORM command.

014 tL (Form) Echoes as a FORMFEED or 8 linefeeds. Refer to the SET
TTY FORM command.

015 tM (tarriage Passed to program if terminal is in a paper-tape input mode;

return) otherwise, supplies a linefeed echo, is passed to program as

a CR and LF, and is a break character due to the LF.

016 tN No special action.

017 to Not passed to program. Complements output suppression bit

allowing users to turn output on or off. INPUT, INIT, and
OPEN clear the output suppression bit. This bit is also
cieared by any other INPUT=class operation, such as DDTIN
and TTCALLS 0, 2, 4, and 5, by input test TTCALLS 13 and
14, and by returning to monitor command level via 1Cor
EXIT operations. Echoed as tOfollowed by carriage return/

linefeed.
020 tP No special action.
021 tQ (XON) Starts paper-tape mode if .TTY TAPE command has been
v given; refer to Paragraphs 5.10.8 and 5.10.9.
022 R (TAPE) No special action.
023 tS (XOFF) Ends paper-tape mode; refer to Paragraphs 5.10.8 and 5.10.9.

5.04 Monitor 5-28 Jonuary 1972

v -523- MONITOR CALLS
024 tT (NO TAPE) No special action.

025 tu Deletes input line back to last break character. Echoed
as U followed by a carriage retum/linefeed; is a break
character. Passed to program if full character-set mode

is true.

026 v No special action,

027 tW No special action, '

030 tX No special action,

031 Y No special action.

032 V4 Acts as EOF on TTY input. Echoes as tZ followed by car-
riage return/linef’eed. Is o break character.

033 t[(ESC) The standard ASCII escape. Echoed as $; is a break character.

034 t\ No special action.

035 t] No special action,

036 tt "No special action.

037 t- No special action.

040-137 Printing characters, no special action.

140-174 Lower case ASCII; translated to upper case, unless lower
case mode is on. Echoes as upper case if translated to
upper case.

175 and 176 Old versions of altmode; converted to the standard

escape (033) unless in full character set mode INIT
or TRMOP. UUO) or no ALTmode conversion is speci-
fied (TRMOP. UUO or SET TTY NO ALT command).

177 RUBOUT or DELETE:
Completely ignored if in paper-tape mode (XON).

Break character, passed to program if either DDT
mode or full character-set mode is true,

¢. Otherwise (ordinary case) causes a character to be
deleted for each rubout typed. All the characters
deleted are echoed between a single pair of back-
slashes. If no characters remain to be deleted, echoes
as a carriage return/linefeed.

On output, all characters are typed just as they appear in the output buffer with the exception of TAB,
VT, and FORM, which are processed the same as on type-in. Programs should avoid sending tD, be-

cause it may have catastrophic effects (e.g., it may hang up certain data sets).

5.10.1.2 Image, Octal Code 10 - Image mode is legal for TTY input and output, except for terminals
controlled by pseudo-TTYs (refer to Paragraph 5.9). Note that the terminal to be INITed in image
mode must be ASSIGNed to a job. An attempt to do input to an unassigned terminal receives an error
“retum with the IO.IMP bit set in the file status word. Image mode is available only in the 5.02

monitor and later.

5.06 Monitor 5-20 March 1973

MONITOR CALLS -524-

Because, on input, any sequence of input characters must be allowed, tC and tZ may not cause their
usual escape functions. This means that if the user program accepts all characters and does not release
the terminal from image mode, no typein will release the user from this state; consequently, the ter~-
minal would effectively become dead to the system. The break character cannot be used to escape
from this situation, because DC10 and the 630 do not detect the break character. To solve this de-
sign problem, an image input state is defined. If during the image input state, no characters are re-~
ceived for 10 seconds the end-of-file is forced. After another 10 seconds, the image input state is
terminated by SCNSER (scanner service) and a tC is simulated. Therefore, if the user discovers that

his program has failed because of this condition, he simply stops typing until a tC appears.

The image input state begins when the program goes into I/O wait because of an INPUT UUO in image
mode. It ends when the program executes any non-image terminal output operation. If no output is

desired, the TTCALL UUO can be executed to output a null string.

When using image mode input to read binary tapes, echoing should be suppressed by setting bit 28 in
the TTY status word.

NOTE

Because there are no break characters in image mode, characters
are transferred a character at a time instead of a line at a time.
Therefore, an input buffer may only have one character in it
when control is returned to the user program.

On output, the low-order eight bits of each word in the user's buffer are output. These characters
are transmitted exactly as supplied by the user. Parity is neither checked nor added, and filler char-
acters are not generated. Image mode affects buffered output (INIT, OUTPUT UUOs) only, except
for one TTCALL function (refer to Paragraph 5.10. 3).

5.10.2 DDT Submode |

To allow a user's program using buffered 1/O and the DDT debugging program to use the same terminal
without interferring with one another, the TTY service routine provides the DDT submode. This mode
does not affect the TTY status if it is initialized with the INIT operator. It is not necessary to use
INIT to perform 1/O in the DDT submode. 1/0 in DDT mode is always to the user's terminal and not

to any other device.

In the DDT submode, the user's program is responsible for its own buffering. Input is usually one
character at a time, but if the typist types characters faster than they are processed, the TTY service

routine supplies buffers full of characters at the same time.

1The usage described in this section is obsolete; new programs should use the TTCALL UUO
(refer to Paragraph 5.10.3).

5.06 Monitor 5-30 March 1973

-525- MONITOR CALLS

To input characters in DDT mode, use the sequence

MOVEI AC.BUF
CALL AC» [SIXBIT/DDTIN/]

BUF is the first.address of a 21-word block in the user's area. The DDTIN operator delays, if necessary,
until one character is typed in. Then all characters (in 7-bit packed format) typed in since the pre-
vious occurrence of DDTIN are moved to the user's area in locations BUF, BUF+1. The character string
is always terminated by a null character (000). RUBOUTSs are not processed by the service routine but
are passed on to the user. The special control characters 1O and tU have no effect. Other characters

are processed as in ASCII mode.
To perform output in DDT mode, use the sequence

MOVEI AC,BLUF
CALL AC,I[SIXBIT /DDTOUT/1]

BUF is the first address of a string of packed 7-bit characters terminated by a null (000) character.
The TTY service routine delays until the previous DDTOUT operation is complete, then moves the
entire character string into the monitor, begins outputting the string, and restarts the user's program.

Character processing is the same as for ASCI mode output.

5.10.3 Special Programmed Operator Service

The TTCALL UUO is used to extend the capabilities of the terminal. The TTCALL operations are per-
formed for a physical terminal (not a logical hame TTY) and most operations reference the terminal

controlling the job which executed the UUO. (There are exceptions, such as in the case of GETLCH.)

The general form of the TTCALL (operation code 051) programmed operator is as follows:
TTCALL AC, ADR

The AC field describes the particular function desired, and the argument (if any) is contained in ADR.
ADR may be an AC or any address in the low segment above the job data area (137). It may be in
high segment for AC fields 1 and 3. The functions are:

5.06 Monitor 5-31 March 1973

MONITOR CALLS -526-

AC Field Mnemonict Action

0 INCHRW Input character and wait

1 OUTCHR Output a character

2 INCHRS Input character and skip

3 OUTSTR OQutput a string

4 INCHWL : Input character, wait, line mode

5 INCHSL Input character, skip, line mode

6 GETLCH Get line characteristics

7 SETLCH Set line characteristics

10 RESCAN Reset input stream to command

H CLRBFI Clear type-in buffer

12 CLRBFO Clear type-out buffer

13 SKPINC Skip if o character can be input

14 SKPINL Skip if a line can be input

15 IONEQOU Output as an image character

16-17 (Reserved for expansion)
+The TTCALL mnemonics ore defined in a separate MACRO assembler table,
which is scanned if an undefined OP CODE is found. If the.symbol is found
in the TTCALL table, it is defined as though it had appeared in an appro-
priate OPDEF statement, for example:
TYPE: OUTCHR CHARAC
If OUTCHR is undefined, it will be assembled as though the program con-
tained the statement:
OPDEF OQUTCHR TTCALL 1,

This facility is available in MACRO V.44 and later.

INPUT and INPUT TEST operations (TTCALLs 0, 2, 4, 5, 13 and 14) also clear the effect of the pre-
vious 1O type in.

5.10.3.1 INCHRW ADR or TTCALL 0, ADR - This command inputs a character into the low-order

seven bits of location ADR. If there is no character yet typed, the program waits.

5.10.3.2 OUTCHR ADR or TTCALL 1, ADR - This command outputs to the user's terminal the char-
acter in location ADR. Only the low order 7 bits of the contents of ADR are used. The remaining

bits do not need to be zeroes.

If there is no room in the output buffer, the program waits until room is available. ADR may be in

high segment.

5.06 Monitor 5-32 March 1973

-527- - MONITOR CALLS
5.10.3.3 INCHRS ADR or TTCALL 2, ADR - This command is similar to INCHRW, except that it

skips on a successful return, and does not skip if there is no character in the input buffer; it never

puts the ioB into a wait,

TTCALL 2,ADR
JRST NONE
JRST DONE

5.10.3.4 OUTSTR ADR or TTCALL 3, ADR - This command outputs a string of characters in ASCIZ

format:

TTCALL 3,MESSAGE
MESSAGE: ASCIZ /TYPE THIS OUT/

ADR may be in high segment.

5.10.3.5 INCHWL ADR or TTCALL 4, ADR - This command is the same as INCHRW, except that it
decides whether or not to wait on the basis of lines rather than characters; as such, it is the preferred
way of inputting characters, because INCHRW causes a swap to occur for each character rather than
each line (compare DDT and PIP input). In other words, INCHWL refurns the next character in the

line if a break character has been fyped..I If a break character has not been typed, INCHWL waits.

Repeated uses of INCHWL return each of the successive characters of the line.

Note that a control-C character in the input buffer is sufficient to satisfy the condition of a pending
line. Therefore, when the input is done, the control-C is interpreted and the job is stopped. This
definition of a line also applies to TTCALL 5, and TTCALL 14, .

5.10.3.6 INCHSL ADR or TTCALL 5, ADR - This command is the same as INCHRS, except that its

decision whether to skip is made on the basis of lines rather than characters.

5.10.3.7 GETLCH ADR or TTCALL 6, ADR - This command takes one argument, from Iocatioh ADR,
and returns one word, also in ADR. The argument is a number, representing a TTY line. Bits 18 and
19 of the line number are ignored since terminal numbers begin at 200000, If the argument is negative,
the line number controlling the program is assumed. If the line number is greater than those defined

in the system, a zero answer is retumed.

]If the input buffer becomes nearly filled, the waifing-of-line condition is satisfied even though no
break character appears. This is true of all line-mode input operations.

5.04 Monitor 5-33 January 1972

MONITOR CALLS -528-

The normal answer format is as follows:

Name E:L Meaning_
GL.ITY 0 Line is a pseudo TTY.
GL.CTY i Line is the CTY.
GL.DsSP 2 Line is the display console.
GL.DSL 3 Line is the dataset data line.
4 Obsolete.
GL.HDP 5 Line is half-duplex.
GL.REM 6 Line is a remote TTY.
GL.RBS 7 Line is at a remote batch station.
GL.LIN 11 A line has been typed in by the user.
12 Obsolete.
GL.LCM 13 Lower case input mode is on.
GL.TAB 14 Terminal has tabs.
GL.LCP 15 ;Ise?:;:ﬂc;r;:;{f is not echoed, because device
GL.PTM 16 Control Q (paper-tape) switch is on.
17 Obsolete.
18-35 200000 + line number.

5.10.3.8 SETLCH ADR or TTCALL 7, ADR - This command allows a program to set and clear some of
the bits for GETLCH, They may be changed only for the job's controlling TTY. Bits 13, 14, 15, and

16 can be modified. Bits 18 and 19 of the line number argument are ignored.

Example:
SETC AC 1
CETLCH AC
TLZ ACSBIT 13
TLO AC,RIT 14

SETLCH A

5.10.3.9 RESCAN or TTCALL 10, O - This command is intended for use only by the COMPIL program.
It causes the input buffer to be rescanned from the point where the last command began. If bit 35 of E
is 1, the error return is given if there is a command in the input buffer. If the input buffer is empty,
the skip return is given. Obviously, if the UUO is executed other than before the first input, that

command may no longer be in the buffer. ADR is not used, but it is address checked.

5.10.3.10 CLRBFI or TTCALL 11, 0 - This command causes the input buffer to be cleared as if the
user had typed a number of CONTROL Us. It is intended to be used when an error has been detected

(e.g., if a user did not want any commands that he might have typed ahead to be executed).

5.06 Monitor 5-34 March 1973

~529- MONITOR CALLS

5.10.3.11 CLRBFO or TTCALL 12, 0 - This command causes the output buffer to be cleared as if
the user had typed CONTROL O. It should be used rarely, because usually one wants to see all out-

put, up to the point of an error. This command is included primarily for completeness.

5.10.3.12 SKPINC or TTCALL 13, 0 - This command skips if the user has typed at least one
character. It does not skip if no characters have been typed; however, it never inputs a character.
It is useful for a computer-based program that wants to occasionally check for input and, if any, go

off to another routine (such as FORTRAN operating system) to actually do the input.

5.10.3.13 SKPINL or TTCALL 14, 0 - This command is the same as SKPINC, except that a skip

occurs if the user has typed at least one line.

5.10.3.14 IONEOU ADR or TTCALL 15, E - This command outputs the low-order eight bits of the

contents of E as an image character to the terminal.

5.10.4 GETLIN AC, or CALLI AC, 34 - This UUO returns the SIXBIT physical name of the terminal
that the job is attached to.

The call is:

GETLIN AC, ;OR CALLI AC, 34
The name is returned left justified in the AC. If the job issuing the UUO is currently defdched, the
left half of AC contains a 0 on retum. The right half of AC contains the right half of the pi'nysical
name of the terminal to which the job was most recently attached. Therefore, by testing the left half
of AC, jobs can determine if they are attached to a terminal.
Example:

CTY or TTY3 or TTY30

This UUO is used by the LOGIN program to print the TTY name.

5.10.5 TRMNO. AC, or CALLI AC, 115'

This UUO is used to obtain the number of the terminal currently controlling a parficular job. This
terminal number can then be used as the argument to the GETLCH (refer to Paragraph 5.10.3.7) and
TRMORP, (refer to quagmph 5.10.6) UUO:s,

]This UUO depends on FTS5UUO which is normally off in the DECsystem-1040.

5.04 Monitor 5-35 February 1972

MONITOR CALLS -530-
The call is:

MOVE AC, job number

TRMNO. AC, ;or CALLI AC, 115
error refurn

normal return

On a normal return, the right half of AC contains the universal 1/0 index (.UXxxx) for the terminal.
The range of values is 200000 to 200777 octal. The symbol .UXTRM (octal value 200000) is the offset

for the terminal indices.

On an error return, if the AC is unchanged, the UUO is not implemented. If the AC contains zero,

one of three errors occurred:

1) The job is currently detached and therefore, no terminal is controlling it.
2) The job number is unassigned; i.e., there isno such job.

3) The job number is out of range and therefore illegal.

The particular error condition can be determined from the JOBSTS UUO (refer to Paragraph 5.9.4.4).
For example,
MOVEL AC, number
TRMNO. AC,
JRST .42
JRST OK
JUMPN AC, not implemented
MOVNI AC, number
JOBSTS AC,
JRST illegal number

JUMPL AC, detached
JRST no job assigned.

5.10.6 TRMOP. AC, or CALLI AC, 1161

This UUO allows the user to conirol, examine, and modify information about any terminal connected
to the system. Many of the functions of this UUO are extensions to the TTCALL input and output
functions (refer to Paragraph 5.10.3). Certain functions are privileged, or require that the user have
the terminal ASSIGNed. Generally, any function is legal for the terminal on which the job issuing
the UUO is running. In addition, any READ or SKIP function is legal for any terminal if the job
issuing the UUO 1) has the privilege bit JP.SPM set, 2) is running with the JACCT bit set, or 3) is
logged in as [1,21. A SET or output function is legal for any terminal if the job 1) has, the privilege
bit JP.POK set, 2) is running with the JACCT bit set, or 3) is logged~in as [1,2].

! This UUO depends on FTSUUO which is normally off in the DECsystem-1040.

5.04 Monitor 5-36 January 1972

The call is:

-531- MONITOR CALLS

MOVE AC, [XWD N, ADR]

TRMOP. AC,
error return
normal return

ADR: function code

;or CALLI AC, 116

ADR+1: universal 1/O index

ADR is the address of the argument block and N is the length (N must be at least 2). The first word of

the argument block contains the code for the requested function. The second word contains the uni-

versal 1/0O index of the terminal to be affected (,UXTRM + line number). This index is in the same

format as returned by the TRMNO. UUO (refer to Paragraph 5.10.5). Remaining arguments in the

argument block depend on the particular function used.

Function codes are defined within the following ranges:

0000-0777 .

1000-1777
2000-2777
3000-3777

Perform a specific action.

Read a parameter.

Set a parameter.

Reserved for DEC customers.

The functions within the range 0000-0777 are as follows:

.TOSIP
.TOSOP
.TOCIB
.TOCOB
.TOOUC
.TOOIC

.TOOUS
.TOINC
.TOIIC

.TODSE
.TODSC

.TODSF

5.04 Monitor

1
2
3
4
5
6

10
1

12
13

14

Skip if terminal input buffer is not empty.

Skip if terminal output buffer is not empty.

Clear terminal input buffer.

Clear terminal output buffer.

Output character to terminal from ADR+2 (not yet implemented).

Output image mode (8-bit) character from ADR+2 (not yet im-
plemented).

Output ASCIZ string to terminal from address at ADR+2 (not yet
implemented).

Input character from terminal to AC, normal mode (not yet
implemented).

Input character from terminal to AC, image mode (not yet im-
plemented).

Enable modem for outgoing call.

Enable and place outgoing call on modem with dialer. Phone
number of up to 17 digits is stored in 4-bit bytes in ADR+2 and
ADR+3 and is terminated by a 17 byte. If caller must wait for

a second dial tone (e.g., after dialing a 9), a 16 byte results

in a 5 second wait.

Hang up modem (i.e., disconnect call).

5-37 . January 1972

MONITOR CALLS -532-

The READ (1000-1777) and SET (2000-2777) functions are parallel; i.e., if function 1002 reads a
particular parameter, then function 2002 sets the same parameter. Values for the READ functions are
retumed in AC; arguments to the SET functions are given in ADR+2. One-bit quantities are not
range-checked; instead bit 35 of ADR+2 is stored. The following description of the READ function

codes indicate if there is a corresponding SET function code.

Read Code Range Description Corresponding SET

1000 1 bit Output in progress (.TOOIP) No

1001 1 bit Terminal at monitor mode (.TOCOM) No

1002 1 bit Paper tape mode (.TOXON) Yes

1003 1 bit Lower case (if set, no lower case) Yes
(.TOLCT)

1004 1 bit Slave switch (.TOSLV) Yes

1005 1 bit Tab switch (if 0 = spaces, if 1 = tab) Yes
(.TOTAB)

1006 1 bit Form switch (if O = linefeeds, if 1= Yes
formfeeds) (.TOFRM)

1007 1 bit Local copy switch (if set, no echo) Yes
(.TOLCP)

1010 1 bit Free CR-LF switch (if set, no CR-LF) Yes
(. TONFC)

1011 0 to 377 Horizontal position of carriage - No
(.TOHPS)

1012 16. to 200. Carriage width (.TOWID) Yes

1013 1 bit TTY GAG bit (if set, NO GAG) Yes
(.TOSND)

1014 1 bit Half-duplex line (.TOHLF) Yes, privileged

1015 1 bit Remote line (. TORMT) Yes, privileged

1016 1 bit Display terminal (.TODIS) Yes, privileged

1017 Oto3 Filler class (.TOFLC) Yes

1020 1 bit Paper tape enabled (.TOTAP) Yes

1021 1 bit Paged display mode (also set and Yes
cleared by SET TTY PAGE)(.TOPAG)

1022 1 bit Suspended output (need XON to re- Yes

sume) (also set by XOFF, formfeed, or
page size exceeded, if paged display
mode)(.TOSTP) Not implemented.

1023 0 to 63. Page size (number of lines) (also set by Yes
SET TTY PAGE)(.TOPSZ) Not implemented.

1024 0 to 63. Page counter (number of lines output Yes
this page)(.TOPCT)

1025 1 bit Suppress blank lines on output (0 = Yes

normal output and 1 = suppress multiple
linefeeds) and convert formfeeds and

vertical tabs to linefeeds (also set and
cleared by SET TTY BLANK).TOBLK)

5.06 Monitor 5-38 March 1973

-533- MONITOR CALLS

‘Read Code Range Description Corresponding SET
1026 1 bit Suppress ALTmode conversion on input Yes

(0-=175 and 176 converted to 033 and
T = no conversion) (also set and cleared

by SET TTY ALT)(.TOALT)

On an error return, AC is either unchanged or contains an error code.

AC Name . Meaning
unchanged UUO is not implemented.

0 The requested function is not implemented.
1 TOPRC% User is not privileged to perform this function.
2 TORGB% Argument is out of range.
3 TOADB% Argument list length or address is illegal.
4 TOIMP% Dataset activity to a non-dataset terminal.
5 TODIL% Subfunction failed (e.g., call not properly completed from dialer).

5.10.7 File Status (Refer to Appendix D)
The file status of the terminal is shown below.

Standard Bits

18 21 24 27 30 33 35
SET BY USER ‘ JMHMMMMMM
23
SET BY MONITOR Hﬂﬂ[I l
10-0566
Bit 18 - 1O.IMP TTY is not assigned to job (for image mode input
processing).
Bit 23 - IO.ACT Device is active.
18 22 24 26
UNUSED
10- 0567
Device Dependent Bits
18 21 24 27 30 33 35
SET BY USER M
10-0568
Bit 27 - 10.TEC This bit causes 001 through 037, 175, and 176 (octal)
to echo the character exactly as received by the monitor.
There is no special echo (e.g., $ortx).
Bit 28 - 10.SUP Suppresses echoing on the terminal,
Bit 29 - 10.FCS Full character set. Pass all characters except iower case

andt C. Lower case is controlled by the SET TTY LC
command and its corresponding TRMOP. UUO function.

5.06 Monitor 5-39 March 1973

MONITOR CALLS ~534-

1819 21 24 28 30 33 35

SET BY MONITOR [“][M[I]MII] I

Bit 19 -10.DER Ignore interrupts for threefourths of a second.
Bit 20 - IO.DTE Echo failure has occurred on output.
Bit 21 - 10.BKT Character was lost on typein.

10-0569

5.10.8 Paper-Tape Input from the Terminal (Full-Duplex Software)

Paper-tape input is possible from a terminal equipped with a paper-tape reader that is controlled by
the XON (t1Q) and XOFF (1S) characters. When commanded by the XON character, the terminal
service reads paper fapes, starting and stopping the paper tape as needed, and continuing until the
XOFF character is read or typed in. While in this - mode of operation, any RUBOUTS will be discarded
and no free line feeds will be inserted after carriage retums. Also, TABS and FORMFEEDS will not be
simulated on a Teletype Model 33 to ensure output of the reader control characters. To use paper
tape processing, the terminal with a paper-tape reader must be connected by a full-duplex connection

and only ASCII paper tapes should be used.

The correct operating sequence for reading a paper tape in this way is as follows:

R PIP))
#DSKIFILE«TTY:1Q)

THIS IS WHAT IS ON TAPE
MORE OF THE SAME

LAST LINE tZ

*tC

5.10.9 Paper-Tape Output at the Terminal (Full-Duplex Software)

Paper-tape output is possible on any terminal-mounted paper-tape punch, which is controlled by the
TAPE, AUX ON ('R) and FARE; AUX OFF (1T) characters. The punch is connected in parallel with
the keyboard printer, and therefore, when the punch is on, all characters on the keyboard are punched

on tape.

LT33B or LT33H Teletypes can have the reader and punch tumed off and on under program control.
When commanded by the AUX ON character, the TTY service punches paper tapes until the AUX OFF
character is read or typed in. The AUX OFF character is the last character punched on tape.

When writing programs to output to the terminal paper-tape punch, the user should punch several
inches of blank tape before the AUX OFF character is transmitted. This last character may then be
torn off and discarded.

5-40

CHAPTER 6
I/0 PROGRAMMING FOR DIRECTORY DEVICES

-535-

This chapter explains the unique features of the standard directory devices.

MONITOR CALLS

Each device accepts the

programmed operators explail'{ed in Chapter 4, unless otherwise indicated. Table 6-1 isa summary of

the characteristics of the directory devices.

keeping words.

Buffer sizes are given in octal and include three book-

The user may determine the physical characteristics associated with a logical device

name by calling the DEVCHR UUO (refer to Paragraph 4.10.2).

Table 6~1

Directory Devices

Devi Physical Controller | Unit Programmed Data gu frer
evice izes
_ Name Number Number Operators Modes 1,
(Octal)
DECtape | DTAO, DTAI,| TDI0 TU55 INPUT, IN A,AL,I 202
...,DTA7 551(PDP-6) | 555(PDP-6) | OUTPUT, OUT B,B
DTBO, DTBI, LOOKUP, ENTER | DR,D
...,DTB7TT MTAPE, USETF,
USETO, USETI
UTPCLR
Fixed-~ DSK, FHA, |RCI10 RD10 INPUT, IN AAL,I 203
Head FHAO, ..., RM10B OUTPUT,. OUT B,IB
Disk FHA3 LOOKUP, ENTER | DR,D
RENAME, SEEK
USETO, USETI
Disk Pack | DSK, DPA, RP10 RPO1 INPUT, IN A,AL,I 203
DPAO, ..., RPO2 OUTPUT, OUT B,IB
DPA7 LOOKUP, ENTER | DR,D
RENAME, SEEK
USETO, USETI

TBuFFer sizes are subject to change and should be calc
A DEVSIZ UUO may be employed.

1'Recognized if dual DECtape controller is supported,

ulated rather than assumed by user programs.

5.05 Monitor

6~1

June 1972

MONITOR CALLS -536-
6.1 DECTAPE

The device mnemonic is DTAO, DTAT, ..., DTA7; the buffer size is 2028 words (1778 user data, 2008

transferred). On systems with dual DECtape controllers, the drives on the second controller have the
mnemonic DTBO, DTB1, ..., DTB7.

6.1.1 Data Modes

Two hundred words are written. The first word is the link plus word count. The following 1778 words

are data supplied to and from user programs.

6.1.1.1 Buffered Data Modes - Data is written on DECtape exactly as it appears in the buffer and
consists of 36-bit words. No processing or checksumming of any kind is performed by the service rou-
tine. The self-checking of the DECtape system is sufficient assurance that the data is correct. Refer

to Paragraph 6.1.2 for further information concerning blocking of information.

6.1.1.2 Unbuffered Data Modes - Data is read into or written from anywhere in the user's core area

without regard to the standard buffering scheme. Control for read or write operations must be via a

command list in core memory. The command list format is described in Chapter. 4. On the KI10, if the

IOWD list is modified as the result of 1/O performed (i.e., an INPUT UUO reads into the IOWD list)

and the word count of any of the IOWDs read into the list is greater than the following value:
(maximum word count specified in original list-2)/512 + 2

then the job is stopped and the monitor types

ADDRESS CHECK AT USER adr

File-structured dump mode data is automatically blocked into standard-length DECtape blocks by the
DECtape service routine. Each block read or written contains 1 link word plus 1 to 1775 data words.
Unless the number of data words is an exact multiple of the data portion of a DECtape block (1778),
the remainder of the last block written after each output programmed operator is wasted. The input pro=
grammed operator must specify the same number of words that the corresponding output programmed
operator specified to skip over the wasted fractions of blocks.

6.1.2 DECtape Format

A standard reel of DECtape consists of 578 (1 1028) prerecorded blocks each capable of storing 128
(2008) 36-bit words of data. Block numbers that label the blocks for addressing purposes are recorded
between blocks. These block numbers run from 0 to ”018. Blocks 0, 1, and 2 are normally not used
during timesharing and are reserved for a bootstrap loader. Block 100]0 (1448) is the directory block,
which contains the names of all files on the tape and information relating to each file. Blocks 3IO

through 9910 (1-1438) and 101 10 through 577]0 (145-11018) are usable for data.

If, in the process of DECtape /O, the 1/O service routine is requested to use a block number larger

than 110]8 or smaller than 0, the monitor sets the 10,BKT flag (bit 21) in the file status and returns.

5.05 Monitor 6=2 June 1972

-537- - MONITOR CALLS
6.1.3 DECtape Directory Format

The directory block (block 10010) of a DECtape contains directory information for all files on fhat

tape; a maximum of 22 files can be stored on any one DECtape (see Figure 6-1).

BLOCK 1 2 3 4 5 g 7
ofx [*] T T T 7]
BIT 35 CONTAINS
HIGH ORDER DIGITS
OF GREATION DATES
83 worps{ 6% '
66 _
'»en 35 UNUSED
o) | [[+T+[+[+]
83 FILENAME 1

22 WORDS 84 FILENAME 2

105] EXTENSION | xx LOW DATE 1
106] EXTENSION 2 ##% {OW DATE 2

22 WORDS
126
127 TAPE LABEL
10 L
NOTES:
* Reserved for system, contains 36 as does block 144g for the
directory.

*% For zero-compressed files, this area holds the number of 1K
blocks (-1) needed to load the file (up to 64K).

+ Represents blocks 1102 through 1105, which are not available
contains 378

10-0572
Figure 6-1 DECtape Directory Format

The first 83 words (0 through 8210) of the directory block contains slots for blocks 1 through 577 on a
DECtape. Each slot occupies five bits (seven slots are stored per word) and represents a given block
on the DECtape. Each slot contains the n‘umber of the file (1-268) occupying the given block. This
allows for 581 slots (83 words x 7 slots per word). The four extra slots represent nonexistent blocks
1102 through 11058.

Bit 35 of the first 66 words (0 through 65]0) of the directory block contain the high order 3 bits of

the 15-bit creation date of each file on the DECtape. (Note that the low order 12 bits of the creation
date of each file are contained in words 105 through]26]‘0. This split format allows for compatibility
among monitors and media as old as 1964.) The high order 3 bits of the 15-bit creation date for file 1
are contained in bit 35 of words 0, 22, and 44. Word 44 contains the first (most significant) digit; word

6-3 June 1973

MONITOR CALLS -538-

22 contains the second and word 0 contains the third. The high order digits for file 2 are contained
in bit 35 of words 1, 23, and 45 with the digits in the same order as described for file 1. The high

order digits for the remaining files are organized in the same fashion.

Words 83 through 104]0 of the directory block contain the filenames of the 22 files that reside on the
DECtape. Word 83 contains the filename for file 1, word 84 contains the filename for file 2. File-

names are stored in SIXBIT code.

The next 22 words of the directory block (werds 105 through 126, O) primarily contain the filename
extensions and the low order part of the creation dates of the 22 files that reside on the DECtape, in

the same relafive order as their filenames. The bits for each word are as follows:

Bits O - 17]0 The filename extension in SIXBIT code.

Bits 18 - 23]0 The number of 1K blocks minus 1 needed to load the
file (maximum value is 63). This information is stored
for zero~compressed files only.

The low order 12 bits of the date on which the file
was creafed. (Note that the high order digits are
encoded in bit 35 of words O through 65,.). The
creation date is computed with the following formula:
((year-1964) * 12 + (month-1)) * 31 + day -1

Bits 24 - 35]0

Word 127]0 of the directory block is the tape label.

The message

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n
occurs when any of the following conditions are detected:

A parity error occurred while reading the directory block.
b. No slots are assigned to the file number of the file.

c. The tape block, which may be the first block of the file (i.e., the first block for the
file encountered while searching backwards from the directory block), cannot be
read.

Ordinary user programs never manipulate DECtape directories explicitly since the LOOKUP and ENTER
programmed operators (refer to Paragraphs 6.1 .5.1and 6.1.5.2) automatically record all necessary
entries in the directory for the user. These programmed operators have all the capability needed to
process the name and creation date of a file. However, a small number of special purpose programs

do process directories by explicit action rather than using the LOOKUP and ENTER operators. For
such programs, the following examples illustrate methods for 1) assembling the 15-bit creation date
and 2) storing the 15-bit creation date. The number of the file (an integer from 1 to 22) is in register

P1 and the directory block begins at location DIRECT.

6-4 June 1973

-539-

Example 1 Special Purpose Assembly of the Creation Date

LDB
MOVEI
TDNE
TRO
TDNE
TRO
TDNE
TRO

T1, [POINT 12, DIRECT+ tD104 (P1), 35]
T2, 1

T2, DIRECT-1 (P1)
T1, 1B23

T2, DIRECT+ tD21 (P1)
T1, 1B22

T2, DIRECT+tD43 (P1) -
T1, 1B21 '

Example 2 Special Purpose Storage of the Creation Date

DPB
MOVEI

ANDCAM

TRNE
IORM

ANDCAM

TRNE
IORM

ANDCAM

TRNE
IORM

T1, [POINT 12, DIRECT+tD104 (P1), 35]
T2, 1

T2, DIRECT-1 (P1)
T1, 1B23

T2, DIRECT-1 (P1)
T2, DIRECT+1tD21 (P1)
T1, 1822

T2, DIRECT+1D21 (P1)
T2, DIRECT+1D43 (P1)
T1, 1B21

T2, DIRECT+tD43 (P1)

6.1.4 DECtape File Format

A file consists of any number of DECtape blocks.

MONITOR CALLS

;GET LOW PART

;SET UP TO TEST LOW BIT
;IF SET IN DIRECTORY
;THEN SET BIT IN DATE
;REPEAT FOR EACH BIT IN
;HIGH PART OF DATE

’

.
?

;SAVE LOW PART

;SET UP TO MARK LOW BIT
;CLEAR DIRECTORY BIT

;IF BIT IN DATE SET,

;SET DIRECTORY BIT

;REPEAT FOR EACH BIT IN

7
i

.
4

 ;HIGH PART OF DATE

END

Each block contains the following:

Word 0

Words 1 through 177

B B B
: L L L
: sescocsecencocse K K K evecsce
¢:i:> 1 2 3 15?
DIRECTORY - BEGIN
' 10-0573
Figure 6-2 Format of a File on Tape
Left half The link. The link is the block number of the next

block in the file. If the link is zero, this block is

the last in the file.

Right half Bits 18 through 27: the block number of the first
block of the file. Bits 28 through 35: a count of
the number of words in this block that are used

(maximum 1778) .

8

Data packed exactly as the user placed in his buffer
or in dump mode files, the next 177 words of memory.

June 1973

FONITOR CALLS -540-

LINK FIRST BLOCK WORD
NUMBER COUNT
DATA
10-0574

Figure 6-3 Format of a DECtape Block

6.1.4.1 Block Allocation = Normally, blocks are allocated by starting with the first free block
nearest the directory and going backwards to the front of the tape (block 0). When the end of the
tape is reached, the direction of the scan is reversed. Blocks are not written contiguously; rather
they are separated by a spacing factor. This allows the drive to stop and restart to read the next
block of the file without having to back up the tape. The spacing factor is normally four, but for
dump mode and UGETF followed by an ENTER, the spacing factor is two (refer to Paragraph 6.1.6.3).

6.1.5 1/O Programming

DECtape is a directory device; therefore, file selection must be performed by the user before data is

transferred. File selection is accomplished with LOOKUP and ENTER UUOs. The UUO format is as

follows:
Uuo D, E

where D specifies the user channel associated with this device, and E points to a four-word parameter

block. The parameter block has the following format:

£ [rFee
HIGH BLOCK
E+1 EXT DATE] o l *
#OFIK | LOW
E+2) 0 aLocxsl DATE
E+3| -N ADR-1

10-0875

{continued on next page)

6-6 June 1973

541~ MONITOR CALLS

where
FILE is the filename in SIXBIT ASCII.

EXT is the filename extension in SIXBIT ASCII.
| HIGH DATE contains the high order 3 bits of the creation date.
BLOCK # is the number of the first block of the file.

of 1K blocks is the number of blocks needed to load the file
if the file is a zero-compressed file (bits 18-23). :

LOW DATE contains the low order 12 bits of the date on which
the file was originally created (bits 24-35). The format is the
same as that used by the DATE UUO.

-N is the negative word length of the zero-compressed file.
ADR-1 is the core address of the first word of the file minus 1.

Location E + 3 is used for zero-compressed files.

6.1.5.1 LOOKUP D, E - The LOOKUP programmed operator sets up an iﬁpur file on channel D.
The contents of |oc<;|ﬁon- E and E + 1 (left half) are matched against the filenames and filename exten-
sions in the DECtape directory. If no match is found, the error return is taken (refer to Appendix E).
If a match is found, locations E + 1 through E + 3 are filled‘by the monitor, and the normal return is
taken (refer to Table 6-2). Refer to Section d. of ‘Pcragrdph 6.2.8.1 for sample code of assembling

| the 15-bit creation date.

Table 6-2
LOOKUP Parameters
On Call On Return
Parameter UseJr Contents Parameter Use'r Contents
E A SIXBIT /FILE/ E \% SIXBIT /FILE/
E+1 A SIXBIT /EXT/ E+1 v LH = SIXBIT /EXT/

RH = high order 3

bits of 15-bit cre-
ation date (Bits 18~20)
unused (Bits 21-25)

first block ¥ (Bits 26-35)

E+2 I - E+2 \% LH=0
RH = # of 1K blocks
(Bits 18-23) 11

low order 12 bits of
15-bit creation date
(Bits 24-35)1t

E+3 | I - E+3 v IOWD LENGTH,
ADR+t

A = argument from user program, V = value from monitor, 1= ignored.

t1For zero-compressed fi |esvon|)v/.

6-7 June 1973

MONITOR CALLS

=542~

The first block of the file is then found as Fo||ows:‘

a. The first 83 words of the DECtape directory are searched backwards, beginning
with the slot immediately prior to the directory block, until the slot containing
the desired file number is found .

b. The block associated with this slot is read in and bits 18 through 27 of the first
word of the block (these bits contain the block number of the first block of the
file) are checked. If the bits are equal to the block number of this block, then
this block is the first block; if not, then the block with that block number is
read as the first block of the file.

6.1.5.2 ENTERD, E - The ENTER programmed operator sets up an output file on channel D. The

DECtape directory is searched for a filename and filename extension that match the contents of

location E and the left half of location E + 1. If no match is found and there is room in the directory,

the monitor records the information in locations E through E +2 in the DECtape directory (refer to

Table 6-3). An error return is given if there is no room in the directory for the file (refer to Appendix

E). Refer to Paragraph 6.2.8.3 for a special note on error recovery. If a match is found, the new

entry replaces the old éntry, the old file is reclaimed immediately, and the monitor records the file

information. This process is called superseding and differs from the process on disk in that, because

to Section d. of Paragraph 6.2.8.1 for sample code for setting the 15-bit creation date.

| of the small size of DECtape, the space is reclaimed before the file is written rather than after. Refer

Table 6-3
ENTER Parameters
On Call On Return
Parameter Use f Contents Parameter Use f Contents

E A SIXBIT /FILE/ E \% SIXBIT /FILE/

E+1 A LH = SIXBIT /EXT/ E+1 \% LH = SIXBIT /EXT/
RH = high order 3 RH = high order 3
bits of 15-bit cre- bits of 15-bit cre~
ation date (bits ation date (bits
18-20). 18-20).

E+2 A RH = low order 12 E+2 \% RH = low order 12
bits of desired 15~ bits of 15-bit cre-
bit creation date ation date (bits
or 0. (0 implies 24-35).
current date)

E+3 I - E+3 1 -

TA = argument from user program, V = value from monii’or, I = ignored.

6-8

June 1973

-543-
6.1.5.3 RENAME D, E - The RENAME programmed operator alters the filename or filename extension

MONITOR CALLS

of an exisi;ing‘file, or deletes the file directory from the DECtape associated with channel D. If lo-

cation E contains a 0, RENAME deletes the directory of the specified file; otherwise, RENAME

searches for the file and enters the information specifiéd in location E and E + 1 into the DECtape

directory (refer to Table 6-4). RENAME must be preceded by a LOOKUP or an ENTER, to select the
file that is to be RENAMED, and a CLOSE. The error return is given if a LOOKUP has not been done

| (refer to Appendix E). Refer to Paragraph 6.2.8.3 for a special note on error recovery.

Table 6-4
RENAME Parameters
On Call On Retum
Parameter | Use t Contents ‘Parameter Use t Contents

E A SIXBIT /FILE/ E A SIXBIT /FILE/ -
or 0

E+1 A LH = SIXBIT /EXT/ E+1 Y , LH = SIXBIT /EXT/
RH = high order 3 RH = high order 3
bits of 15-bit cre- bits of 15-bit cre-
ation date (bits ation date (bits
.18-20). 18-20).

E+2 A RH = low order 12 E+2 \ RH = low order 12
bits of 15-bit cre- bits of 15-bit cre~-
ation date or 0 (0 ation date (bits
implies current date). 24-35).

E+3 I - E+3 I -

TA = arguﬁnent from user program, V = value from monitor, I = ignored.

Unlike on disk, a DECtape RENAME works on the last file LOOKUPed and ENTERed for the device,

not the last file for this channel.

DECtape is as follows:

"LOOKUP

CLOSE D,
RENAME

or

ENTER
CLOSE D,
RENAME

D,E

D,E1l

D,E

D,El

The UUO sequence required to successfully RENAME a file on

June 1973

MONITOR CALLS =544~

6.1.5.4 INPUT, OUTPUT, CLOSE, RELEASE - When performing nondump input operations, the
DECtape service routine reads the links in each block to determine what block to read next and when
to raise the EOF flag.

When an QUTPUT is given, the DECtape service routine examines the left half of the third word in the
output buffer (the word containing the word count in the right half). If this half contains -1, it is
replaced with a 0 before being written out, and the file is thus terminated. If this half word is greater
than 0, it is not changed and the service routine uses it as the block number for the next OUTPUT. I
this half word is 0, the DECtape service routine assigns the block number of the next block for the
next QUTPUT.

6-8b June 1973

, -545- MONITOR CALLS
For both INPUT and QUTPUT, block 100 (the directory) is treated as an exception case. If the user's

program gives

USETID, 1448

to read block 100, it is freated as a 1-block file.

The CLOSE operator places a -1 in the left half of the first word in the last output buffer, thus termi-
nating the file. ‘

The RELEASE operator writes the copy of the directory, which is normally kept in core onto block 100,
but only if any changes have been made. Certain console commands, such as KJOB or CORE 0,
perform an implicit RELEASE of all devices and, thus, write out a changed directory even though the
user's program failed to give a RELEASE. |

6.1.6 Special Programmed Operator Service

Several programmed operators are provided for manipulating DECtape. These UUOs allow the user to

manipulate block numbers and fo handle directories.

6.1.6.1 USETID, E - Thé USETI programmed operator sets the DECtape on channel D to input block
E next. Since the monitor reads as many buffers as it can on INPUT, ‘it is difficult to determine which
buffer the monitor is processing when the USETI is given. Therefore, the INPUT following the USETI
may not obtain the buffer containing the block specified. However, if a single buffer ring is used,
the desired‘block is retrieved since the device must stop after each INPUT. Alternatively, if bit 30
(1I0.SYN) of the file status word is set via an INIT, OPEN, or SETSTS UUO, the device stops after
each bufferful of data on an INPUT so that the USETI will apply to the buffer supplied by the next
INPUT.

6.1.6.2 USETO D, E - The USETO programmed operator sets the DECtape on channe! D to output
block E next. With multiple-buffered 1/O, the output following the USETO may not apply to the
buffer containing the specified block, since the monitor fransfers as many buffers as possible with each
OUTPUT. Therefore, a single buffer ring should be used, or bit 30 (I0.SYN) of the file status word
should be set. Refer to Paragraph 6.1.6.1.

6.1.6.3 UGETF D, E - The UGETF programmed operator places the number of the next free block of

the file in the user's location E.

5.04 Monitor 6-9 January 1972

MONITOR CALLS -546~
If UGETF is followed by an ENTER, the monitor modifies its algorithm in the following manner:

1) the first block is written nearest the front of the tape instead of nearest
the directory.

2) the spacing factor is changed to 2 instead of 4 so that very large programs
can fit almost entirely in a forward direction.

This feature allows user programs, such as PIP, to write SAV format files which can be read by the

executive mode utility program TENDMP (see the DECsystem-10 Software Notebooks).

6.1.6.4 UTPCLR AC, or CALLI AC, 13 - The UTPCLR programmed operator clears the directory of
the DECtape on the device channel specified in the AC field. A cleared directory has zeroes in the
first 83 words except in the slots related to blocks 0, 1, 2, and IOO]0 and nonexistent blocks 1102

through 11058. Only the directory block is affected by UTPCLR. This programmed operator is a no-

operation if the device on the channel is not a DECtape.

6.1.6.5 MTAPE D, 1 and MTAPE D, 11 - MTAPE D, 1 rewinds the DECtape and moves it into the end
zone at the front of the tape. MTAPE D, 11 rewinds andunloads the tape, pulling the tape completely
onto the left~hand reel, and clears the directory-in-core bit. These commands affect only the physical
position of the tape, not the logical position. When either is used, the user's job can be swapped out
while the DECtape is rewinding; however, the job cannot be swapped out if an INPUT or QUTPUT is

done while the tape is rewinding.

6.1.6.6 DEVSTS UUO - After each interrupt, the DECtape service routine stores the results of a
CONI in the DEVSTS word of the device data block. The DEVSTS UUOQ is used to return the contents
of the DEVSTS word to the user (refer to Paragraph 4.10.1).

6.1.7 File Status (Refer to Appendix D)

The file status of the DECtape is shown on the next page.

6-10

547~ f MONITOR CALLS

Standard Bits -
18 21 24 27 30 33 35

10-0576
Bit 18 - 10,IMP An attempt was made to read block 0 in nonstandard
' dump mode .
Bit 19 - 10.DER Data was missed.
X Bit 20 - 10.DTE Parity error.
Bit 21 - 10.BKT Block number is too large or tape is full on QUTPUT.
Bit 22 - 10,EOF EOF mark encountered on input. No special character
appears in buffer.
Bit 23 - IO.ACT Device is active.
18 21 24 27 30 33 38
unuseo || j[ﬂmmm []
10-0877
Device Dependent Bits
18 21 24 2728 2930 33 35.

SET BY USER I l [[M; I ‘,

10-0578

Bit 28 - 10.5SD DECtape is in semi-standard 1/O mode. The setting of
this bit is recognized only if bit 29 (nonstandard 1/O mode)
is on. Semi-standard mode is similar to nonstandard mode
except, 1) block numbers are checked for legality, and
2) the tape is started in the same direction as it was pre-
viously going.

Bit 29 - 10.NSD DECtape is in a nonstandard-1/O mode format as opposed
to standard-1/O mode. No file-structured operations are
performed on the tape. Blocks are read or written se-
quentially; no links are generated (output) or recognized
(input). The first block to be read or written must be set
by a USETI or USETO. In nonstandard-1/O mode, up to
200g words per block are read or written as user data (as
opposed to the standard mode of 1 link plus word count
followed by 1778 words). No dead reckoning is used on
a search for a block number as the tape may be composed
of blocks shorter than 200 words. The ENTER, LOOKUP,
and UPTCLR UUO:s are treated as no-ops. Block 0 of the
tape may not be read or written in dump mode if bit 29
is on, because the data must be read in a forward direction
and block 0 normally cannot be read forward.

5.04 Monitor i 6-11 January 1972

MONITOR CALLS -548-

6.1.8 Important Considerations

When positioning to a desired block on DECtape, the technique of dead reckoning is used. This means
that the DECtape service routine starts the DECtape spinning and computes the time it should take fo
reach the desired block. Meanwhile, the service routine performs a service for arother user, if any,
and then returns just before the computed time has elapsed. If the desired block hasnot been reached,
this process is repeated until it is successful . This technique is used to keep the controller free for

other uses while the DECtape is spinning..

When an attempt is made fo write on a write-locked tape or to access a drive that has no tape mounted,

the message
DEVICE DTAn OPERATOR zz ACTION REQUESTED

is given to the user. When the situation has been rec tified, CONT may be typed to proceed. However,
if this message is output because of an attempt to write on a wri te-locked tape and any operation that
causes a RESET to be performed (e.g., a GET or RUN command) is then executed, a RELEASE will be
done on the DECtape. This RELEASE causes any attempt to write the directory to output the same
message. To avoid the second output of the message, the user should ASSIGN the DECtape again thus
causing the DECtape service routine not to write the directory on the RELEASE.

The DECtape service routine reads the directory from a tape the first time it is required to perform a
LOOKUP, ENTER, or UGETF; the directory image remains in core until a new ASSIGN command is
executed from the console. To inform the DECtape service routine that a new tape has been mounted
on an assigned unit, the user uses an ASSIGN command. The directory from the old tape can be trans-
ferred fo the new tape, thus destroying the information on that tape unless the user reassigns the DEC-

tape transport every fime he mounts a new reel .

Although DECtape is a file-structured blocked device, there is a limit to the number of files that may
be opened simultaneously on a single DECtape. A given DECtape may be OPENed or INITed on two
software channels (maximum) at the same time, once for INPUT and once for OUTPUT. An attempt to
INIT on two channels for INPUT or two channels for OUTPUT generates no error indication, and only

the most recent INIT is effective. This restriction explains why the following examples do not work .

Example 1:

. FILCOM
*TTYs=DTAI:P1l,DTAl:P2

FILCOM accepts the command string but the comparison does not work because the DECtape cannot

be associated with the input side of two software channels at the same fime.

6-12 March 1973

-549- MONITOR CALLS

Example 2:

«R MACRO
#DTA1 :BINsDTAL :LST+DTA2 :PROG

MACRO accepts the command string but does not produce the desired results because a single DECtape
cannot be associated with the output side of two software channels at the same time. However, the

following example works, because only one file is opened for reading and one file for writing.

R MACRO .
#DTA1 ¢tBIN«DTA1 :SOURCE

6.2 DISK

The device mnemonic is DSK, FHA, DPA; the buffer size is 2038 (2008 data) words.

6.2.1 Data Modes

6.2.1.1 Buffered Data Modes - Data is written on the disk exactly as it appears in the buffer. Data

consists of 36-bit words.

CAUTION

All buffered mode operations utilize a 200 octal word
data buffer. Attempts to set up non-standard buffer
sizes are ignored. In particular, attempting to use
buffer sizes smaller than 200 words for input result in
data being read in past the end of the buffer destroy-
ing what information was there (e.g., the buffer
header of the next buffer).

6.2.1.2 Unbuffered Data Modes - Data is read into or written from anywhere in the user's core area
without regard to the normal buffering scheme. Control for read or write operations must be via a
command list in core memory. .The command list format is described in Chapter 4. The disk control
automatically measures dump data into standard-length disk blocks of 200 octal words. Unless the
number of data words is an exact multiple of the standard length of a disk block (200 words) after each

command word in the command list, the remainder of that block is wasted.

6.2.2 Structure of Disk Files

The file structures of a disk system minimize the number of disk seeks for sequential or random access
during either buffered or unbuffered 1/0. The assignment of physical space for data is performed auto-

matically by the monitor when logical files are written or deleted by user programs. Files may be any

6-13

MONITOR CALLS ~550-

length, and each user may have as many files as he wishes, as long as disk space is available and the
user has not exceeded his logged-in quota. Users or their programs do not need to give initial
estimates of file length or number of files. Files may be simultaneoulsy read by more than one user at
a time, thus allowing data sharing. A new version of a file may be recreated by one user while other
users continue to read the old version, thus allowing for smooth replacement of shared programs and

data files. Finally, one user may selectively update portions of a file, rather than create a new one.

6.2.2.1 Addressing by Monitor - The file structure described in this section is generally transparent

to the user, and a detailed knowledge of this material is not essential for effective user-mode use of

the disk. One set of disk-independent file handling routines in the monitor services all disks and drums.
This set of routines interprets and operates upon file structures, processed disk UUOs, queves disk re-
quests, and makes optimization decisions. The monitor deals primarily with logical units within file
structures and converts to physical units in the small device-dependent routines just before issuing 1/0
commands. All queues, statuses, and flags are organized by logical unit rather than by physical unit.
The device-dependent routines perfofm the 1/O for specific storage devices and translate logical block

numbers to physical disk addresses.

All references made to disk addresses refer to the logical or relative addresses used by the system and
not to any physical addressing scheme involving records, sectors, or tracks, that may perfain to a par-
ticular physical device. The basic unit that may be addressed is a logical disk block, which consists
of 2008 36-bit words.

6.2.2.2 Storage Allocation Table (SAT) Blocks - Unique to each file structure is a file named
SAT.SYS. This file reflects the current status of every addressable block on the disk . Only the
monitor can modify the contents of SAT.SYS as a result of file creation, deletion, or space allocation,
although this file may be read by any user. The SAT file consists of bits indicating both the portion of
file storage in use and the portion that is available. To reduce the size of SAT.SYS, each bit can be
used to represent a contiguous set of blocks called a cluster. Monitor overhead is decreased by as-

signing and releasing file storage in clusters of blocks rather than single blocks.

If a particular bits is on, it indicates that the corresponding cluster is bad or nonexistent or has been
allocated to a file. It may or may not contain data (i.e., files may contain allocated but unwritten
clusters). If the bit is off, it indicates that the corresponding cluster is empty, or available to be

written on.

It is recommended that cluster sizes should even ly divide blocks on a unit. In the 5.02 monitor, the
refresher rounds up the number of clusters to the next highest full cluster. In the 5.03 and later

monitors, the refresher truncates to the largest number of full clusters. With truncation, the last few

5.04 Monitor 6-14 January 1972

-551- MONITOR CALLS

blocks are not included in the addressing space, but may be used for swapping; therefore, they are not
part of SWAP.SYS even though they are in the swapping space. In addition, any bad blocks in the
extra blocks are not included in SWAP.SYS.

6.2.2.3 File Directories - A directory is a file which contains as data pointers to other files on the

disk. There are three levels of directories in each file structure:

a. The master file directory (MFD).
b. The user file directories (UFDs).
c. The sub-file directories (SFDs).]

The master file directory consists of two-word entries; the entries are the names of the user file direc-
fories on the file structure. The first word of each entry contains the project-programmer number of
the user. The left half of the second word of each entry contains the mnemonic UFD in SIXBIT and
the right half contains a pointer to the first cluster of the user file directﬁry (see Figure 6-4). The
main function of the master file directory is to serve as a directory of individual user file directories.

A continued MFD is the MFDs on all file structures in the job's search list.

MASTER FILE USER FILE DATA FILES
DIRECTORY DIRECTORIES
1 i FILET
UFD ext | -
10 10 FILE 2 /‘]__l
UFD | ExT_| ,
20 20 FILE 3 /
UFD ExT |
L] L]
L] *
. : .
FILE X
=l —
 FILEY
ext |
FILEZ
ext |
: .
:
L]
10-0843

Figure 6-4 Basic Disk File Organization for Each File Structure

]Sub-Fi le directories depend on FTSFD which is normally off in the DECsystem-1040.

5,04 Monitor 6-15 ‘ January 1972

MONITOR CALLS -552-

The entries within a user file directory are the names of files existing in a given project~programmer
number area within the file structure. The first word of each entry contains the filencme in SIXBIT.
The left half of the second word contains the filename extension in SIXBIT, and the right half contains
a pointer to the first cluster of the file (see Figure 6-4). This pointer specifies both the unit and the
super—cluster of the file structure in which the file appears. The right half of the directory entry is

referred to as a compressed file pointer (CFP). A continued UFD is all the UFDs for the same project-

programmer number on all file structures in the job's search list.

When the user is logged-in, each file structure for which he has a quota contains a UFD for his project=
programmer number. Each UFD contains the names of all the user's files for that file structure only.
UFDs are created only by privileged programs (i.e., LOGIN in response to a LOGIN command, and
OMOUNT in response to a MOUNT command). A user is not prevented from attempting fo read a file
in another user's UFD on a file structure for which he does not have a UFD., Whether or not the user is

successful depends on the protection specified for the file being referenced.

As an entry in the user file directory, the user can include a sub-file directory (SFD). The sub-file
directory is similar to the other types of directories in that it contains as data all the names of files
within the directory. This directory is pointed to by a UFD or a higher-level SFD nested in any
arbitrary tree structure. The maximum number of nested SFDs allowed is defined via a MONGEN
question and can be obtained from a GETTAB table (GETTAB table .GTLVD, item 17). Files can be
written or read in SFDs nested deeper than the maximum but SFDs cannot be created. (There is an
absolute maximum of 6, including the UFD.) Unlike UFDs, a sub-file directory can be created by
any program. A continued SFD, or sub-directory, is all of the SFDs on all file structures in the job's

search list with the same name and path.

This third level of directory allows groups of files belonging to the same user to be separate from each
other. This is useful when organizing a large number of files according to function. In addition,
simultaneous batch runs of the same program for a single user can use the same filenames without

conflicting with each other. As long as the files are in different sub-file directories, they are unique.

A file is uniquely identified in the system by a file structure name, a directory path, a filename and

an extension. The directory path is an ordered list of directory names, starting with a UFD, which
uniquely specifies a directory without regard to a file structure. The PATH, UUO is used to set or

read the default directory path for a job (refer to Paragraph 6.2.9.1). Default paths can be a job's
UFD, an SFD in a job's UFD, a UFD different from the job's UFD, or an SFD in another UFD. If a
default path is not specified, it is the job's UFD. The notation FILE.EXT [PPN,A,B,...,N] designates
the file named FILE.EXT in the UFD [PPN] in the SFD N, which is in the SFD..., which is in the

SFD A. The path to the file named FILE.EXT is [PPN,A,B,...,N].

5.04 Monitor 6-16 January 1972

MONITOR CALLS

-553-

2¥50-01

uoypzIubBIQ) 8|14 dsiq §-9 94nbiy

viva

[ass

Z371d

— 3
Tix3 Tass [1x3 | ass
23114 o Tuxa 23714 23714 ln_ll [ixa 'ERIT] _ _
N 23113 N N A3714 N
I v1va 045 818 038 ary Viva 045 813 045 _ _
— g‘l _ —
_
viva
1
- Toa [aas —
V3713 LERL
B :] _ " _
. — | asn —
Tixa o ol
[ERT) N _
= | _
_a: woiq FnoH
N
ool %0019
Tsxs) _
— — weave - | [aan
[sss oF ol
— NV _
g [sxs [aan
_ UM _ < B
T | sas] [aan
JIES INOH [aan v | Toan
ivs | sas v |1 : | gan ' l
N s [| v N
viva s [viva o _ viva iy
$3713 8380 _ ANOLD3¥1Q 3114 ¥ISN _ AHOLD3IHIA 3714 HILSYN

January 1972

6-17

5.04 Monitor

MONITOR CALLS -554-

To improve disk access and core searching times, only UFD names are kept in the MFD (project-
programmer number 1,1). All system programs and monitor file structure files are contained in another
projec t-programmer number directory called the system library. For convenience both to users typing
commands and to user programs, device name SYS is interpreted as the system library; therefore, no
special programming is required to read as a specific file from device SYS. In command strings, the
abbreviation SYSx: represents the system library on file structure DSKx; i.e., SYSA: represents the

system library on DSKA,

6.2.2.4 File Format - All disk files (including directories) are composed of two parts:

a. pure data.

b. information needed by the system to refrieve this data.

Each data block contains exactly 2008 words. If a partially filled buffer is output to the disk by a
user, a full block is written with trailing zeros filling in to make 2008 words. A partial block input
later appears to have a full 2008 data words. Word counts associated with individual blocks are not

retained by the system except in the case of the last block of the file.

There are three links in the chain by which the system references data on the disk. This chain is
transparent to the user, who might look on the directory as having four-word entries analogous to DEC-
tapes. The first link is the two~word directory entry that points to the second link, the retrieval infor-
mation block (RIB). The RIB, in turn, points to the third link, the individual data blocks of the file

(see Figure 6-5).

The retrieval block contains all the pointers to the entire file. Retrieval information associated with
each file is stored and accessed separately from the data; therefore, system reliability is increased
because the probability of destroying the retrieval information is reduced. System performance is im-

proved because the number of positionings necessary for random access is reduced.

For recovery purposes, a copy of the refrieval information block is written immediately after the last
data block of the file when a CLOSE is completed. If the first RIB is lost or bad, the monitor can
recover by allowing a recovery program to use the second RIB; therefore, a data file of n blocks has
two additional overhead blocks: relative block 0, containing the primary RIB; and relative block

n + 1, containing the redundant RIB (refer to Appendix H).

6.2.3 Access Protection

Nine bits of the retrieval information of o file are used to indicate the protection of that file. This
protection is necessary because the disk is shared by many users, each of whom may desire to keep

certain files from being written on, read, or deleted by other users. The nine bits are divided into

5.04 Monitor 6-18 January 1972

-555- | MONITOR CALLS

three classes because the users are divided into three categories: 1) the owner of the file, 2) the users
with the same project number as the owner, and 3) all other users.

Ordinarily, the owner of a file is any user whose programmer number is the same as the programmer num-
ber of the UFD containing the file, regardless of whether the two project numbers match. Therefore, in
order to maintain only one owner for each file, the installation should not assign the same programmer
number to different users, no matter how many projects the installation has. A user working on more

than one project, but having the same programmer number, can reference all his files as an owner under

each of his project-programmer numbers.

However, some installations may decide that a user is the owner of a file only when both the project
and programmer numbers under which the user is logged in match the pair identifying the UFD. If this
is the case, the same programmer number can be assigned to different users in different projects. This
allows the task of assigning programmer numbers to be delegated to project léaders without concern for
duplication since the project numbers will be different from one project to another. However, a user

working on more than one project cannot have the same owner access fo all files that he has written.
The definition of the owner of a file is specified at monitor generation time with MONGEN(INDPPN).
No matter how the installation defines an owner, project numbers 0 to 7 are always independent of

the project-programmer number (i.e., a user with a project number from 0 to 7 is considered the own-

er of all files with that project number).

A member of the owner's project is any user whose logged-in-project number is the same as the owner's,
proj y proj

regardless of his programmer number.

The three bits associated with each category of users are encoded as follows:

Code Access Protection

7 ‘ Greatest protection, which means no access privileges.
However, the owner may LOOKUP the file so that he
can change the protection to a less restrictive code via
a RENAME. Thus for the owner, this code is equivalent
to codes 6 and 5.

6 Execute-only. This disables user meddling and examining
(DUMP, DCORE, D, E, SAVE, SSAVE, START n, CSTART n,
DDT, COREn) with the error message PILLEGAL WHEN
EXECUTE ONLY. An error retumn is given on a LOOKUP
to an execute-only file to all users except the owner of the file.

Read, execute.

Append, read, execute.

Update, append, read, execute.
Write, update, -append, read, execute.

Rename, write, update, append, read, execute.

O —~= N W b O

Change protection, rename, write, update, append, read,
execute.

5.06 Menitor 6-19 March 1973

MONITOR CALLS -556-

The following example illustrates the nine-bit protection field of a file that has a protection of 057.

owner project all other

members users
4 N A—— - - -

ofofoiqfrfo]n 1 1 1

This code means:

1) The owner has complete privileges (code 0).

2) The project members have read and execute privileges (code 5).

3) Al other users have no access privileges (code 7).
The greatest protection a file can have is 7, and the least is 0. Usually the owner's field is O or 1.
However, it is always possible for the owner of a file to change the access protection associated with
the file even if the owner-protection is not set to 0. Thus codes 0 and 1 are equivalent when they ‘
appear in the owner's field. Access protection can be changed by executing a RENAME UUO or By
using the PROTECT monitor command as follows:

PROTECT file.ext <nnn >))

When an ENTER UUO specifies a protection code of 000 and the file does not exist, the monitor sub-
stitutes the standard protection code as defined by the installation. The normal system standard is
057, This protection prevents users in different projects from accessing another user's files; however,
a standard protection of 055 is recommended for in-house systems where privacy is not as important

as the capability of sharing files among projects. No program should be coded to assume knowledge
of the standard protection. If it is necessary to use this standard, it should be obtained through the
GETTAB UUO.

To preserve files with LOGOUT, a protection code of 1 in the owner's field should be associated with
the files. LOGOUT preserves all files in a UFD for which the protection code for the owner is greater
than zero. The PRESERVE monitor command can be used to obtain a protection code of 1 in the owner's

field.

6.2.3.1 UFD and SFD Privileges - The protection code associated with each file completely describes
the access rights to that file independently of the protection code of the UFD. UFDs and SFDs may be
read in the same manner as files but cannot be written explicitly, because they contain RIB pointers to
particular disk blocks. For UFD and SFD privileges, users are divided into the same three categories

as for files. Each category has three independent bits:

Bit Access Privileges

4 Allow LOOKUPs in UFD or SFD.
2 Allow CREATEs in UFD or SFD.
1 Allow the UFD or SFD to be read as a file.

5.06 Monitor 6-20 March 1973

-557- MONITOR CALLS
The owner is permitted to control access to his own UFD and SFD. It is always legal for the owner to
issue a RENAME to change the protection of his directories. Any program can create or delete SFDs;

however, only privileged programs are allowed to create, supersede, or delete a UFD. The monitor

checks for the following types of privileged programs:

a. Jobs logged in under project-programmer number [1,2] (FAILSAFE).
b. Jobs running with the JACCT bit set in JBTSTS (LOGIN, LOGOUT).

6-20a March 1973

-559- MONITOR CALLS
Privileged programs are allowed to:
a. Create UFDs (and SFDs).
b. Delete UFDs {(and SFDs).
Set privileged LOOKUP, ENTER, and RENAME arguments.

d. Ignore file protection codes.

0

UFD and SFD privileges are similar with the exception being that SFDs can be RENAMEd and deleted
by both privileged programs and the owner of the SFD if his protection byte is 7.
6.2.4 Disk Quotas]

Each project-programmer number in each file structure is associated with two quotas that limit the

number of blocks that can be stored under the UFD in the particular file structure. The quotas are:

a. Logged-in quota.
b. Logged-out quota.

When the user logs in, he automatically starts using his logged-in quota. Because this is not a
guaranteed amount of space, the user competes with other users for it. The logged-out quota is the
amount of space that the user must be within in order to log off the system. Normally, the logged-out

quota is less than or equal to the logged=in quota, so that the user must delete temporary files.

If a user exceeds his logged-in quota, the monitor types the following message:
[EXCEEDING QUOTA ON fs]

where fs is theiname of the file structure. The message appears in square brackets (like the TECO core
expansion message) fo suggest a warning rather than an error. Unlike most monitor messages, this
message indicates that the user program may continue to run, and the console remains in user mode.
The user program can no longer create or supersede files (ENTER gives an error return). Files already
ENTERed are allowed to continue for a specified number of blocks. This amount is calied the over=

drawn amount and is a parameter of the file structure. The overdrawn amount specifies the number of

blocks by which the logged-in UFD may exceed its logged-in quota. When the user exceeds the over-
drawn amount, the 10.BKT bit is set, and further OUTPUTs are not allowed.. A CLOSE operates suc-
cessfully, including the writing of the last buffers and the RIBs.

When the user logs in, the LOGIN program reads the logged-in quota from the file AUXACC.SYS for
" all public file structures in which the user is allowed to have a UFD. This information is passed to the
monitor where it is kept in core. If the quota has changed since the user logged in last, LOGIN up-
dates (or creates) the RIB of each UFD with the new quotas.

]Quota checking depends on FTDQTA which is normally off in the DECsystem-1040.

5.04 Monitor 6-21 January 1972

ONITOR CALLS -560-

6.2.5 Simultaneous Access

In its core area, the monitor maintains two four-word blocks called access blocks. These blocks control
simultaneous access fo a single file by a number of user channels. All active files have access blo;ks
that contain file status information. The access blocks ensure that a maximum of one user channel

supersedes or updates a given file at a given time.

6.2.6 File Structure Names

Each file structure has a SIXBIT name specified by the operator at system initialization time. This name
can consist of four or less alphanumeric characters and must not duplicate any device, unit, or existing
file structure name or its abbreviation. The recommended names for the file structures in the public

pool are DSKA, DSKB, ..., DSKN (in order of decreasing speed).

When a specific file structure is INITed (e.g., DSKA), LOOKUP and ENTER searches are restricted
to that file structure. Usually a channel is INITed with the generic name DSK, in which case all file

structures in the active search list of the job are searched (refer to Paragraph 6.2.7).

6.2.6.1 Logical Unit Names -~ When a single file structure name is specified, the set of all the uniis
in that file structure is implied; however, it is possible to specify a particular logical unit within a

file structure (e.g., DSKAO, DSKAT, DSKA2 are three logical units in the file structure DSKA). The
monitor deals with file structures rather than with individual units; therefore, when reading files,
specifying a logical unit within a file structure is equivalent to specifying the file structure itself. The
monitor locates the file regardless of which unit it is on within q file structure. However, in writing a
file, the monitor uses the logical unit name as a guide in allocating space and will, if possible, write
the file on the unit specified. In this way, a user can apportion files among different units for increased

fhrdughpuf.

6.2.6.2 Physical Controller Class Names - In addition to DSK, single file structure names (DSKA),
and logical unit names (DSKAQ), it is possible fo specify a class of controllers. If the system has one
controller of the type specified, the result is the same as if the user had specified the physical control-

ler name. The controller classes supported by DEC are:

DR (future drum), FH, DP

6.2.6.3 Physical Controller Names - It is possible to specify any of the units on a particular con-
troller. The monitor relates that name to the file structures, which contain at least one unit on the
specified controller. More than one file siructure may be specified when a physical controller name

is used. The controllers that DEC supports are:
DRA, DRB (future drum), FHA, FHB, DPA, DPB
6.2.6.4 Physical Unit Names - When a physical controller name is specified, ail units on that con-

troller are implied. It is possible to specify a physical unit name on a particular controller. The

physical unit names that DEC supports are:

6-22 March 1973

-561- MONITOR CALLS

DRAO, DRBO Reserved for future drum (RX10).

FHAO, ..., FHA3 Mixture of Burroughs fixed-head disks (RD10)
and Bryant drums (RM10B) on RC10 control .

FHBO, ..., FHB3 Mixture of Burroughs fixed-head disks (RD10)
and Bryant.drums (RM10B) on second RC10
control . ‘

DPAQ, ..., DPA7 Mixture of RP02 and RPO3 disk packs on RP10
control.

DPBO, ..., DPB7 Mixture of RP02 and RPO3 disk packs on sécond

RP10 control.

6.2.6.5 Unit Selection on Output ~ If the user specifies a file structure name on an ENTER, the
monitor chooses the emptiest unit on the file structure which does not currently have an open file
(UFD's are not considered opened) for the job. This selection improves disk throughput by distributing
files for a particular job on different units. For example, in a MACRO assembly with two output files
and one input file, it is probable that the monitor would allocate the output files on units separate
from each other and from the input file. If this were the only job running, there would be almost no
seeks. Therefore, to take advantage of this, programs should LOOKUP input files before ENTERing

output files.

6.2.6.6 Abbreviations - Abbreviations may be used as arguments to the ASSIGN command and the
INIT and OPEN UUOs. The abbreviation is checked for a first match when the ASSIGN, INIT, or
OPEN is executed. The file structure or device eventually represented by the particular abbreviation
depends on whether a LOOKUP or ENTER follows. A LOOKUP applies to as wide a class of units as
possible, whereas an ENTER applies fo a restricted set to-allow files to be written on particular units

at the user's option. For example, consider the following configuration:

File Structure Physical Unit
DSKA = FHAO, FHAT, FHA2
DKSB = FHBO, FHBI
DSKC = DPAO, DPAT1, DPA2, DPA3
DSKD = DPBO, DPB1, DPB2
PRVA = DPB3

Table 6-5 shows the file structures and units implied by the various names and abbreviations.

6-23 March 1973

MONITOR CALLS -562-
Table 6-5
File Structure Names

Argument Supplied to File Structures or Units Implied
ASSIGN, MOUNT, INIT, OPEN LOOKUP ENTER
D, DS, DSK Generic DSK according to job search
list (refer to Paragraph 6.2.7)
P, PR, PRV, PRVA DPB3 DPB3
F, FH, FHA DSKA, DSKB FHAO
FHB DSKB FHBO
FHAO DSKA FHAO
FHBO DKSB FHBO
oP DKSC, DSKD, PRVAT DSKC
DPA DSKC DSKC
DPB DSkD, PRVAT DSKD
DPAO DSKC DPAO
DPB2 DSKD DPB2
DPB3 PRVA PRVA
TOnIy if user has done a MOUNT,

6.2.7 Job Search List

To a user, a file structure is like a device; that is, a file structure or a set of file structures may be
specified by an INIT or OPEN UUO or by the first argument of the ASSIGN or MOUNT command. A

console user specifies a file structure by naming the file structure and following it with a colon.

There is a flexible naming scheme that applies to file structures; however, most user programs INIT
device DSK, which selects the appropriate file structure, unless directed to do otherwise by the user.
The appropriate file structure is determined by a job search list. A job search list is divided into two

parts:
a. an active search list (usually referred to as the job search list), and

b. a passive search list.

The active search list is an ordered list of the file structures that are to be searched on a LOOKUP or
ENTER when device DSK is used. The passive search list is an unordered list of file structures main-

tained by the monitor for LOGOUT time. At this time, LOGOUT requires that the fotal allocated

6-24

-563- MONITOR CALLS

blocks on each UFD in both the active and passive search lists be below the logged-out quota. Each
job has its own active search list (established by LOGIN) with file structures in the order that they
appear in the administrative control file AUXACC.SYS. Thus, a user has a UFD for his project-
programmer number in each file structure in which LOGIN allows him to have files. With the MOUNT
command , mounted file structures may be added to the active search list. The following is an example

of a search list:

DSKB, DSKA, FENCE, DSKC

DSKB and DSKA comprise the active search list. These file structures are represented by generic name
DSK for this job. DSKC is the name of a file structure that was previously in the active search list.

FENCE represents the boundary between the active and passive search list.

Each file structure in a job search list may be modified by setting one of two flags with the
JOBSTR UUO:

a. Do not create in this structure if just generic DSK is specified.

b. Do not write in this structure.

Setting the "do not create" flag indicates that no new files are to be created on this file structure un-

less explicitly stated. For example: if the "don't create” flag is set
DSKA: FOO «

allows FOO to be created on DSKA, but
DSK: FOO + |

does not. For LOOKUPs on device DSK, the monitor searches the structures in the order specified by
the job search list. For ENTERs when the filename does not exist (creating, see below), the file is
placed on the first file structure in the search list that has space and does not have the "do not create”
flag set. For ENTERs when the filename already exists on any file structure in the search list (super-
seding, see below), the file is placed on the same structure that contains the older file. If the write-
lock bit is set for the file structure, a write-lock error (ERWLK %) is given on the supersede. Because
superseding is treated differently from creating, a user may explicitly place a file on a particular file
structure, for ex9mp|e, a fast one with the do not create bit set, so that subsequent supersedes will re-

main on that file structure even though generic DSK is used.

6.2.8 User Programming

Three types of writing on the disk may be distinguished. If a user does an ENTER with a filename
which did not previously exist in his UFD, he is said to be creating that file. If the filename previous-

ly existed in his UFD, he is said to be superseding that file; the old version of the file stays on the disk

6-25

MONITOR CALLS -564-

(and is available to anyone who wants to read it) until the user does the output CLOSE. At the time
of the CLOSE, the user's UFD is changed to point to the new version of the file and the old version is
either deleted immediately or marked for deletion later if someone is currently reading it; the space
occupied by deleted files is always reclaimed in the SAT tables (refer fo Paragraph 6.2.2.2). Finally,
if a user does a LOOKUP followed by an ENTER (the order is important) on the same filename on the
same user channel, he will be able to modify selected blocks of that file, using USETO and USETI
UUOs (refer to Paragraph 6.2.9.2) without creating an entirely new version; this third type of writing,
called updating, eliminates the need to copy a file when making a small number of changes. A
LOOKUP followed by an ENTER and QUTPUT (in that order) writes the output at the beQinning of the
file. To append information to the file, a USETI -1 is used before the OUTPUT.

As a standard practice, user programs should read, create, and supersede (new file with same filename)
files on different user channels. However, for compatibility with DECtapes, it is possible to read and
create, or read and supersede, two files on the same user channel as fong as all OUTPUTs and the
CLOSE output are done before the LOOKUP and the first input, or vice versa. In other words, a
CLOSE UUO is required between successive LOOKUPs and ENTERs unless updating is intended.

The actual file structure of the disk is generally transparent to the user. In programming for 1/O on
the disk, a format analogous to that of DECtapes is used; that is, the user assumes a four-word directory
entry similar in form to the first four words of retrieval information. The UUO format is approximately

the same as for DECtapes:
UUO D,E

where UUO is an /O programmed operator, and D specifies the user channel associated with this
device. E points either fo a four-word directory eniry or an extended argument block in the user's

program.

6.2.8.1 Four-Word Arguments for LOOKUP, ENTER, RENAME UUOs - The four-word argument

block has the following format:

E [NamE
E+1| ExT 'D:'IFGEHEI DATE |

E+2] PROT l] ' TIME ID:TOE‘”Z OR

E+3 Zﬁafg :Z%GBREA: MER 1 E+s 0 ADR

10-0593

where

NAME is the filename in SIXBIT, or, if a UFD, is the project number in the
left half and the programmer number in the right half.

EXT is the filename extension in SIXBIT ASCIL. (continued on next page)

6-26 ' June 1973

-565- MONITOR CALLS

HIGH DATE 2 contains the high order 3 bits of the date on which the
file was originally created (bits 18-20).

DATE 1 is the date the file was last referenced (RENAME, ENTER, or
INPUT) in the format of the DATE UUO (bits 21-35).

"PROT is the protection code for the file (bits 0-8).
M is the data mode (ASCH, binary, dump) (bits 9-12).

TIME is the time that the file was originally created, represented as
the number of minutes past midnight of the creation date (bits 13-23).

LOW DATE 2 is the low order 12 bits of the date (in the same format
as the DATE UUO) on which the file was originally created (bits 24-35).

NOTE

~ The two-part format for DATE 2 (creation date) is used to maintain
compatibility with moriifors and media as old as 1964,

The programmed operators (UUOs) operate as follows:

a. ENTER UUO - ENTER D, E causes the monitor to store the four-word directory en-
try for later entry into the proper UFD or SFD when user channel D is closed or
released.

NAME The filename must be nonzero; otherwise, an
_ error return results.

EXT The filename extension may be zero; if so, the
: monitor leaves it as zero.

HIGH DATE 2 If a nonzero date is obtained by concatenating
the high order 3 bits in this field with the low
order 12 bits in LOW DATE 2, then the monitor
uses that value as the creation date for the file.
If the date is zero, the monitor supplies the high
_order digits of the current date from the overflow
in E+ 2.

DATE 1) The date may be zero, in which case the moni-
tor substitutes the current date. The date must
not be in the future; if this is so, the current
date is used.

PROT If the protection code is 0, the monitor sub~
stitutes the installation standard as specified
at MONGEN time. If the protection code is
0 and this ENTER is superseding a file, the,
protection of the new file is copied from the
old file. RENAME may be used to change the
protection after a file has been completely

" written and when it is being closed.

M The data mode is supplied by the monitor. It
was set by the user in the last INIT or SETSTS
UUO on channel D.

6-27 June 1973

MONITOR CALLS -566-

TIME, LOW DATE 2 If these are 0, and bits 18-20 of E + 1 are zero
the monitor supplies the current date and time
as the creation date and time for the file. The
high order digits of the creation date overflow
to bits 18-20 of E + 1 (HIGH DATE 2). If
either is nonzero, the monitor uses the HIGH
DATE 2 supplied by the user in E + 1 and the
TIME and LOW DATE 2 supplied in E+ 2.
Thus, files may be copied without changing
the original creation time and date.

PROJECT NUMBER If this word is 0, the file will be written in the

PROGRAMMER NUMBER default directory. (For example, if the default
path is [10, 10, A], the file will be written in
SFD A which is contained in [10, 10] .UFD.)
The default path is determined by the PATH.
UUO (refer to Paragraph 6.2.9.1). If a de-
fault path has not been specified via the
PATH. UUOQ, it is the job's UFD (i.e., the
project-programmer number under which the
user is logged in).

If this word is a project-programmer number,
the file will be written in the UFD specified
(i.e., sub-directories will not be scanned).
This allows the program to write in the disk
area under which the job is logged in although
the default directory is different. Note that
it is generally not possible to create (ENTER)
files in another user's area of the disk, be-
cause UFDs are usually protected from all but
the owner when creating files.

If this word is XWD 0, ADR, the file will be
written according to the path specified by ADR.
The argument block beginning at ADR is the
same as in the PATH. UUO (refer to Paragraph
6.2.9.1) except that the first ftwo arguments
(ADR and ADR + 1) are ignored. The scan
switch (ADR + 1) is not needed since if the file
is found in the specified directory, it will be
superseded, and if not found, it will be created
af the end of the path of the specified directory,
even if a file with the same name appears in an
upper=level directory. A path specification

in the ENTER block overrides any default path
specification given in the PATH. UUO.

With certain types of error returns peculiar to the disk, the right half of E + 1 is
set to a specific number to indicate the error that caused the return. For ex-
ample, if the extension UFD is specified and bit 18 (RP.DIR) of the file status
status word is not set, the right of E + 1 is sef to 2 (protection failure). Refer
to Paragraph 6.2.8.3 for a special note on error recovery. Refer to Appendix

E for the error codes returned on the ENTER UUO.

6-28 June 1973

-567-" MONITOR CALLS

When issuing a supersede ENTER (an ENTER after a LOOKUP on the same chan-
nel), the user should check that locations E through E + 3 are as he desires.

When an ENTER is executed by the monitor on a file that exists, a new file by
‘that name ' is written, and those bits in the SAT blocks that correspond to the
blocks of the old file are zeroed when the CLOSE (or RELEAS) UUQ is execufed
provided that bit 30 of the CLOSE is O (refer to Paragraph 4.7.7). Space is
thereby retrieved and available to other users after the new file has been success-
fully written. If a file structure is INITed on channel D, the monitor maximizes
the job's throughput by selecting the emptiest unit for which the job has no opened
files (refer to Paragraphs 6.2.6.5and 6.2.6.6).

b. LOOKUP UUO - LOOKUP D, E causes the monitor to read the appropriate UFD or
SFD. If a later version of the file is being written, the old version pointed to by
the UFD is read. ’

NAME o The same as on an ENTER,

EXT ' The s&me 65 on an ENTER.

DATE 1, PROT, M, These arguments are ignored. ‘The monitor
TIME, LOW and HIGH returns these quantities to the user in E + 1
DATE 2 ' and E + 2,

PROJECT NUMBER If this word is 0, the file will be read from

PROGRAMMER NUMBER - . the user's default directory path. The entire
. path is searched only if the scan switch is sef
via the PATH, UUOQ (refer to Paragraph
6.2.9.1). If a default path has not been
specified, it is the project-programmer num-
ber under which the user is logged in. If a
project-programmer number is specified,
the file will be read from the UFD specified
(i.e., sub=directories will not bé scanned).
Thus, it is possible to read files in other
user's directories, provided the file's pro-
‘tection mask permits reading and the UFD
permits LOOKUPs. If this word is XWD 0,
ADR, the file will be read according to the
* path specified by ADR. The argument

block beginning at ADR is the same as in
the PATH. UUO except that the first argu-
ment is: ignored, and the second argument,
if 0, uses the default value of the scan-
ning switch {refer to the PATH. UUQO). A
path specification in the LOOKUP block
overrides any default path specification
given in the PATH, UUO.

5.04 Monitor 6-29 June 1973

MONITOR CALLS -563-

The monitor returns the negative word count (or positive block count for files
larger than 217 words) in the LH of E + 3, 0 in RH of E + 3 when the four-word
argument block is given. As a result, the monitor treats a negative project-
programmer number as if it were 0, however, this will not always be true;
therefore, programs must be written to either clear E + 3 before doing a
LOOKUP, ENTER, or RENAME or set E + 3 to the desired project-programmer
number. In the future, a negative project-programmer number may. be used

to indicate SIXBIT alphabetic characters for project and programmer initials.

The numbers placed in the RH of E + 1 on an error return have a significance
analogous to that described for the ENTER UUO (refer to Appendix E).

If the file is currently being superseded, the old file is used.

c. RENAME UUO - RENAME D, E is used to alter the filename, the filename ex-
tension and/or protection of a file, or to delete a file from the disk. This UUO
can be used to change the name of an SFD, but an attempt to change the exten-
sion or project-programmer number associated with an SFD, the name, ex-
tension, or project-programmer number associated with a UFD, or the project-
programmer number of a device with an implied project-programmer number
(e.g., SYS:, NEW:, OLD:) results in a protection eror. To RENAME «a file,

a LOOKUP or ENTER must first be done to identify the file for the RENAME

UUO. Locations E through E + 2 are as described for ENTER. IfE + 3= 0, there
is no change in the directory of the file. If E + 3 is the default project-programmer
number, the file is renamed in that UFD. If E + 3 has a different project-programmer
number than the one in which the file is LOOKUPed or ENTERed (i.e., E+ 3

is not the default project-programmer number), the monitor deletes the directory
entry from the old directory (UFD or SFD) and inserts the directory entry into the
specified UFD, provided the user has the privileges to delete files from the old
directory, and to create files in the new UFD. (This is an efficient way to move

a file from one UFD to another, since no I/O needs to be done on the data blocks
of the file.) IfE + 3= XWD 0, ADR, the file is renamed into a new SFD or UFD
according fo the path specified by ADR (Refer to the PATH.UUO.) Therefore,
the only way to RENAME a file into a SFD-different from the one which it is in

to give an explicit path via an argument block.

A CLOSE is optional because RENAME performs a CLOSE. However, a
CLOSE should not be issued between a LOOKUP and RENAME if the file is
not in the default path or cannot be obtained from the default path by scan~
ning because CLOSE erases all memory of the path of a file. If a CLOSE is
performed and the file is not in the default path, the RENAME returns the FILE
NOT FOUND error. 1n addition, disk accesses are minimized if a CLOSE
does not precede a RENAME.

RENAME enters the information specified in E through E + 2 into the retrieval
information and proper directory. If the confents of E is zero, RENAME has
the effect of deleting the file. Although only a privileged job can delete a
UFD, any job can delete an SFD. If the directory is not empty or if a job is
currently using the directory, the RENAME returns the DIRECTORY NOT
EMPTY error. (Refer to Appendix E for the error codes.) Refer to Paragraph
6.2.8.3 for a special note on error recovery.

6-30 June 1973

-569- MONITOR CALLS

When issuing a RENAME UUQ, the user must ensure that the status at locations

E through E + 3 are as he desires. An ENTER or LOOKUP must have preceded the
RENAME; therefore, the contents of E through E + 3 will have been altered, or
filled if the E is the same for all UUOs.

Examples - The sample code below can be used o assemble the 15-bit creation
date of a disk (or DECtape) file in register T1 after a successful LOOKUP. The
. four-word argument block begins at location E.

LDB T1, [POINT 12, E+2, 35] ;GET LOW-ORDER PART
LDB T2, [POINT 3, E+1, 20] ;GET HIGH-ORDER PART
DPB T2, [POINT 3, T1, 23] ;MERGE THE TWO PARTS

The following sample code illustrates seffing the 15-bit creation date in the
four-word ENTER argument block from the value in register T1.

DPB T1, [POINT 12, E+2, 35] ;STORE LOW-ORDER PART
ROT T1, -tD12 ;POSITION HIGH PART
DPB T1, [POINT 3, E+1, 20] ;STORE HIGH-ORDER PART

6-30a June 1973

-571- f
6.2.8.2 Extended Arguments for LOOKUP, ENTER, RENAME UUOs - A number of qu

been added to the existing four-word block. The user program may specify exactly the

IONITOR CALLS

antities have

humber of

words in the argument block . If the left half of E is 0 and the right half of E is three origreater, the

right half of E is interpreted as the count of the number of words which follow. If the.ri‘ight half of

E is less than three, a file=not-found return is given because the user program is not supplying enough

arguments, Allowed arguments supplied by the user program are returned by the monitor as values.

If the user program supplies arguments that are not allowed, the monitor ignores these ariguments and

supplies values on return. Table 6-6 indicates the arguments that may be supplied by a luser program.

Table 6-6
Extended LOOKUP, ENTER, and RENAME Arguments
!
Rel. Loc | Symbol Lookup greafe, Update Arguments and Value.
vpers | Rename _
0 .RBCNT A A A Count of arguments following
.RBPPN A0 A0 A0 Directory name (project=-programmer no.) or
pointer
RBNAM | A A A | Filename in SIXBIT |
.RBEXT A A A File extension (LH) i
\Y A0 A High order 3 bits of 15-bit creation date
(bits 18-20)
, Access date (bits 21-35)
4 .RBPRV v A0 A Privilege (bits 0-8)
\ \% A Mode (bits 9-12)
\% A0 A Creation time (bits 13-23)
A A0 A Low order 12 bits of 15-bit cregtion date
. (bits 24-35)
5 .RBSIZ \% \% A Length of file in data words written
. (+no. words)
.RBVER -V A A Octal version number (36 bits)
.RBSPL A A A Filename to be used in output sPooling.
10 .RBEST Y A A Estimated length of file (+no. ﬂ:locks)
11 .RBALC Vv A A Highest relative block number within the file
allocated by user or monitor tofile.

a value.

default value.

A = Argument (supplied by privileged or nonprivileged user program) and returned b

A0 = Argument like A with the addition that a 0 argument causes the monitor to subs

y monitor as

titute a

6-31

V = Value (returned by monitor) cannot be set even by privileged program, monitor fgnores
argument .
Al = Argument if privileged program (ignored if nonprivileged). i
' ‘ (conﬁnuec{ on next page)

June 1973

MONITOR CALLS

-572-

Table 6-6 (Cont)
Extended LOOKUP, ENTER, and RENAME Arguments

Rel. Loc | Symbol | Lookup greate Update Arguments and Value
upers | Rename

12 .RBPOS Vv A A Logical block no. of first block to allocate
within F.S,

13 .RBFT1 \Y A A Future nonprivileged argument - reserved
for DEC

14 .RBNCA \Y A A Nonprivileged argument reserved for
customer to define

15 .RBMTA v AT Al | Tape label if on backup tape

16 .RBDEV Vv vV \Y Logical unit name on which the file is located

17 .RBSTS v Al Al | 1) LH=Combined status of all files in UFD
2) RH=Status of this file

20 .RBELB \Y v v Bad logical block within error unit

21 .RBEUN \% Y/ \' 1) LH=Logical unit no. within F.S. of bad

unit (0,,,N).
2) RH=No. of consecutive blocks in bad
region)

22 .RBQTF \Y Al Al | (UFD-only) FCFS logged=in quota in blocks

23 .RBQTO \Y Al Al | (UFD-only) logged-out quota in blocks

24 .REQTR \% Al - A1 | (UFD-only) reserved logged-in quota

25 .RBUSD \Y Al Al | (UFD-only) no. of blocks used at last
logout

26 .RBAUT \ Al Al | Author project-programmer number (creator

‘ “or superseder)

27 .RBNXT v Al A1 | Next file structure name if file continued

30 .RBPRD \Y Al Al | Predecessor file structure name if file con-
tinved

31 .RBPCA Al Al Privileged argument word reserved for each
customer to define as he wishes

32 .RBUFD \% \% \Y Logical block number within F.S. (not
cluster no.) of the RIB of the UFD in which
the name of this file appears

33 .RBFLR Vv V] \ Relative block number in file of first block

: in RIB

34 .RBXRA Y \% \% Extended RIB address

35 .RBTIM \% \% Vv Creation date in universal date~time standard
(refer to Paragraph 3.6)

A = Argument (supplied by privileged or nonprivileged user program) and returned by monitor as
a value.

A0 = Argument like A with the addition that a 0 argument causes the monitor to substitute a
default value.

V = Value (returned by monitor) cannot be set even by privileged program, monitor ignores
argument.

Al = Argument if privileged program (ignored if nonprivileged).

6-32

-573- MONITOR CALLS

The following explanation is a more complete description of the terms used in Table 6-6.

.RBPPN

.RBNAM

.RBEXT

-RBPRV

.RBSIZ

.RBVER

.RBSPL

.RBEST

LH=octal project number (right=justified).

RH=octal programmer number .

The project-programmer number is of the UFD in which the file is to be

LOOKedUP, ENTERed, or RENAMEd. . To LOOKUP the MFD, .RBPPN

must contain a 1 in the left half and a 1 in the right half indicating that

“the filename (.RBNAM) is to be LOOKedUP in project 1, programmer 1's

UFD (the MPD). ‘

SIXBIT filename, left justified with trailing nulls. If the MFD or UFD
is being LOOKedUP, ENTERed, or RENAMEd, this location contains
the project-programmer number. If a SFD is being LOOKedUP,
ENTERed, or RENAMEd, i‘his location contains the directory name.
The argument can be 0 only on a RENAME, in which case the file is
deleted. If the filename is not left justified on ENTER, most programs
are unsuccessful on a subsequent LOOKUP. The monitor cannot left-
justify the argument because it may be an octal project-programmer
number . ’

LH=SIXBIT filename extension, left justified with trailing nulls. Null
extensions are discouraged because they convey no information. If the
extension is not left justified on ENTER, most programs are unsuccessful
on a subsequent LOOKUP. RH, bits 18-20 = high order 3 bits of 15-bit
creation date, bits 21-35=access date in standard format. If an error

“return is given, bits 18-35 are set to an error code by the monitor before

the error (no skip) return is taken. - Refer to Paragraph 6.2.8.3 for a
special note on error recovery.

Bits 0-8=protection codes. (RB.PRV) . ‘

Bits 9-12=data mode in which file is created. (RB.MOD)

Bits 13-23=creation time in minutes since midnight. (RB.CRT)

Bits 24-35=low order 12 bits of 15-bit creation date in standard format.
(RB.CRD) '

Written length of file. The word is the positive number of words wriften
in the file. For extended arguments, this word is never used for project-
programmer numbers. (The four-word block remains compatible so that
LH=-number of words in file, RH=0.) This argument is ignored, and a
value is always returned.

Octal version number like the contents of location 137 in the job data area.

LH=patch level (A=1, B=2, etc.).
Set by monitor except in the case of privileged programs.

RH=octal version number, never converted to decimal. This argument

is accepted, except on a LOOKUP. If a user program wishes fo increase
the version number by 1 on each UPDATE, it should add 1 to location

E + 6 between the LOOKUP and the ENTER.

Filename to be used to label the output on a device which is being
spooled. The filename is taken from the ENTER to the device, or is 0
if an ENTER was not done. '

Estimated length of file in positive number. of blocks. On an ENTER,
FILSER uses this value as the number of blocks to allocate for the file.
If the estimated number of blocks is too low, incremental allocation
is done.

6-33 June 1973

MONITOR CALLS
.RBALC

.RBPOS

.RBFTI
.RBNCA
.RBMTA

.RBDEV

-RBSTS

5.06 Monitor

=574~

Number of 128-word blocks, N, to be allocated to the file after completion
of ENTER or RENAME. This number includes the RIBs of the file. N is
equivalent to last relative block of the file.

A 0 means do not change allocation rather than deallocate all the blocks
of the file. All of the data blocks can be deallocated by superseding the
file and doing no outputs before the CLOSE. This argument can be used
to allocate additional space onto the end of the file, deallocate pre-
viously allocated but unwritten space, or truncate written data blocks.

The smallest unit of disk space that the monitor can allocate is a cluster
of 128-word blocks. Typically small devices use a cluster size of 1
block. If N is not the last block of a cluster, the monitor rounds up,
thereby adding a few more blocks than the user requested.

Logical block number, L, of the first block to be allocated for a new
group of clusters appended to the file. A logical block number is
specified with respect to the entire file structure. Logical block num-
bers begin with logical block number 0. This feature combined with
DSKCHR UUQ allows a user program to allocate a file with respect to
tracks and cylinders for maximum efficiency when the program runs
alone. Because SAT blocks, swapping space, and bad blocks are
scattered throughout a file structure, programs using this feature

must be prepared to handle such contingencies. It is discouraged for
any programs to depend on blocks actually used for allocation to
operate without errors.

Future nonprivileged argument reserved for DEC.
Nonprivileged argument reserved for customer definition.

A 36-bit tape label if file has been put on magnetic tape. If allocated

space is 0, then file was deleted from disk when it was copied on mag-

netic tape. Argument is accepted only from privileged programs; other-
wise, it is ignored.

The logical name of the unit on which the file is located. Ignored as an
argument, returned as a value.

File status word

LH=status of UFD. Bit 0=1 RP.LOG) if the user is logged in and is set
by LOGIN. LOGOUT clears this bit. ‘

RH=status of file.

Bit 18=1 RP.DIR) if file is a directory file; needed to protect- the system
from a user who might fry to modify a directory file. The protection error
is given if extension UFD is given on an ENTER or RENAME and

this bit is not set. '

Bit 19=1 RP.NDL) if file cannot be deleted, renamed, or superseded,
even by a privileged program or.by a user logged in under [1,2].

Bit 21=1 RP.NFS) if file should not be dumped by FAILSAFE because
certain files are needed before FAILSAFE can run.

Bit 22=1 RP.ABC) if file always has bad checksum (because the monitor
never recomputes the checksum) e.g., SWAP.SYS, SAT.SYS.

Number of 128-word blocks, N, to be allocated to the file after completion
of ENTER or RENAME. This number includes the RIBs of the file. N is

equivalent to last relative block of the file.
(continued on next page)

6-34 March 1973

-575- MONITOR CALLS

.RBSTS (Conf) Bit 26=1 (RP.CMP) if UFD compressmg.
Bit 32=1 (RP.BFA) if file is bad because of a FAILSAFE

restore,
Bit 33=1 (RP.CRH) if file qu‘cliosed after a crash.

Bit 35=1 (RP.BDA) if file is bad because of damage |
assessment. - ’

The following bits appedr in both the LH and RH of this location:

Bit 11 (RP.URE) and bit 29 RP.FRE) = 1'if any file in this UFD (or this
file) has had a hard data error while reading. (The 10.DTE bit has been
set.) An enh'y is made in the BAT block 0 thaf the bad region is not
reused. :

Bit 10 (RP‘ UWE) and bit 28 RP.FWE) = 1 if any file in this UFD (or this
file) has had a hard data error while writing. (The 10.DTE bit has been
set.) ‘An entry is made in the BAT block so that I‘he bad region is not
reused. .

Bit 9 -RP. UCE) and bit 27 RP.FCE) = 1 if any file in this UFD (or this
file) has had a software checksum error or redundancy check error.
(The IO IMP bit has been set.)

NOTE

Device errors (10. DER) are not flagged in the file status
word because they refer to a device and disappear when
a device is fixed. -

.RBELB Logical block number within the unit on whlch last date error (10.DTE)
occurred, as opposed to: block within file structure. Set by the monitor
in the RIB on a CLOSE when the hardware detects either a hard bad
parity error or two seqrch errors while reading or writing the file. Device
errors, ‘checksum, and redundancy errors are not stored here "This argu-
ment is ignored, and'a vqlue is returned.

.RBEUN LH=!ogxcc|| unit number wifhm file structure on which last bad region
was derecfed

* RH=number of bad blocks i in the last-detected bad region. The bad
region may extend beyond the file. This argument is ignored, and a
value is returned. :

.RBQTF Meaningful for UFD only . Contains first-come~first-served logged-in
quota. ‘This.quota is the. maximum number of data and RIB blocks that
can be in this direcfory in this structure while the user is logged in.
The UFD. and its RIB are not counted. . Argument is lgnored unless it is
froma pnwleged program. - ‘

.RBQTO Meqmngf‘ul for UFD only. Conrams logged-out quota. This quofu is the
maximum number. of datd and RIB blocks that can be left in this directory
in'this file structure after the user logs off. LOGOUT requures the user
to be below thrs quota to log off. LOGIN stores these quotas in the RIB
of the UFD, so that LOGOUT does not have to scan ACCT.SYS at
LOGOUT time to find the quofa Argument is |gnorecl unless it is from

a privi Ieged prcgram

6-35

MONITOR CALLS -576-

.RBQTR Meaningful for UFD only. (Reserved for the future.) Contains reserved
logged-in quota. This quota-is the guaranteed number of blocks the user
has when he logs in. Argument is ignored unless it is from a privileged
program.

.RBUSD Meaningful for UFD only. Contains number of data and RIB blocks used
: in this directory in this file structure by the user when he last logged off.
LOGIN reads this word so that it does not have to LOOKUP all files
in order fo set up the number of blocks the user has written. LOGIN
sets bit 0 of the file status word (.RBSTS) and LOGOUT clears it in
order to indicate whether LOGOUT has stored the quantity. Argument
is ignored unless it is from a privileged program.

.RBAUT Contains project-programmer number of the creator or supersecer of the
file, as opposed to owner of file. Usually the author and the awner are
the same. Only when a file is created in a different directory are these
different. This argument is used by Batch for vahdqhng queue entries in
other directories. Argument is ignored unless it is from a privileged program.

.RBNXT ‘Reserved for future.

.RBPRD Reserved for future.

.RBPCA Privileged argument reserved for customer definition,

.RBUFD The logical block number (not cluster number) in the file structure of the
RIB of the UFD in which the name of this file appears.

.RBFLR The relative block number of the file to which the first pointer of this RIB
points. It is used for multiple RIBs (i.e., O for prime RIB).

.RBXRA The extended RIB address (logical unit number and cluster address of next
RIB in a multiple-RIB file).

.RBTIM The date and time of creation of the file in the universal date-time standard

(refer to Paragraph 3.6). That is, the LH contains the date cnd the RH
contains the time as a fraction of a day.

6.2.8.3 Error Recovery for ENTER and RENAME UUOs - Error codes for the LOOKUP, ENTER, and
RENAME UUOs are returned in the right half of location E + 1 of the four-word argument block and
in the right half of location E + 3 (.RBEXT) in the extended argument block. This means that the
error code overwrites the high order 3 bits of the creation date and the entire access date. Since the
vast majority of programs recover from these errors either by aborting or by reinitializing the entire
argument block, this overwriting of data does not cause any problems. However, a small number of
programs may aftempt recovery by fixing just the incorrect part of the argument block and then re-
trying the UUO. These programs should always restore the right half of location E + 1 before retrying
an ENTER or a RENAME UUO. (In order to eliminate problems for programs recovering from errors
for files with zero creation dates, which is the most common case, error codes are restricted to a
maximum of 15 bits even though the entire right half of E + 1 is used. In addition, the 5.06B and
later monitors force access dates to be greater than or equal to the creation date, but never greater

than the current date.) -

6-36 June 1973

-577- MONITOR CALLS

6.2.9 Special Programmed Operator Service

The following are special programmed operator service UUOs.

6.2.9.1 PATH. AC, or CALLI AC, HO] = This UUO sets or reads the default directory path, or reads
the current directory path oh a channel. The call ist

MOVE AC, [XWD n, ADR]
PATH. AC

error refurn

normal return

ADR: arg
scan switch

ppn
SFD, name

S_FD2 name
ADRin-1: 0

The first word of the argument block contains one of the following:
C (ADR) = SIXBIT deyice name, or XWD 0, D2
Return the current path for the specnfled device or channel D,

C (ADR) = XWD JOB, -1
Return the default dlrecrory path,

C (ADR) = -2
Define the default directory path.
C (ADR) = -3

Define the additional path to be searched when a file is not found in the user's
dorectory path.

C (ADR) =XwD JOB, -4
Return the additional path to be searched when a Flle is not found in the user's
directory path.

]This UUO depends on FTSFD which is normally off in the DECsystem-1040.
2Noi'e that this function of the PATH. UUO is available even if FTSED is tumed off.

6-36a June 1973

-579- MONITOR CALLS

If the left half of ADR is a job number N and the right half of ADR is =1 or -4, the returned values are
for either
1) job N if 0&N< the highest legal job number, or

2) the current job if N is outside the above range (i.e., N< 0 or N > the highest legal
job number). :

When defining a path within a UFD (C(ADR) = ~2), ADR+1 is the scan switch, ADR+2 is the default
project=-programmer number, and the remainder of the argument block up to the first zero word defines
the default path. The scan switch determines whether or not the monitor scans for the file on a LOOKUP.
If the switch is 1, the monitor examines the specified directory only; higher level directories are not
searched. If the switch is 2, the following occurs:

1) The monitor searches the UFD or SFD s ecified by the path (either explicit
or default path). If the file is found, the scan is terminated.

2) If the file is not found, the monitor backs up one directory along the path and continues
the scan (i.e., it scans the directory in which the current SFD appears). The scan is
terminated when the UFD is searched or when the file is found.

Sconning allows directories to be nested since any file not found in the current SFD is obtained auto=
matically from a higher level directory. This is useful when'a user has a default directory in use con-
taining files he is currently working on and a higher level directory containing -checked-out -routines.
Since SEDs are continued across file structures but the depth of the nesting of directories is not neces-
sarily the same on each file structure, each scan searches the file structures that are 1) in the job's
search list and 2) have SFDs to the depth specified in the path. The file structures are searched in the
same order as they appear in the search list,

On an ENTER, the scan switch is ignored; if the file is found in the specified directory, it will be
superseded. If the file is not found, it will be created at the end of the path in the specified directory
whether or not a file with the same name appears in a higher level directory.

When defining the additional path to be used after the user's directory path is searched (C(ADR) = -3),
ADR+1 indicates if SYS (bit 35 = 1) or experimental SYS (bit 34 = 1) is to be scanned, and ADR+2 is
the project=programmer number to be used for a user library. These locations are used as follows. If
the file is not found in the user's directory path on a LOOKUP DSK:, the directory specified in
ADR+2 is searched for the file. This directory must be a UFD and allows users with different directory
paths to share a common directory of files. If the file is not found in the library and if bit 35 of
ADR+ is set, the system library (SYS:[1,4]) is searched. In oddition on a LOOKUP SYS:, if bit 34
of ADR+1 is set, the directory area [1,5] is searched before the system library area [1,41. The [1,5]
area is called the experimental SYS area (NEW:) and can be used to separate software that is near the

end of the development and testing stages from the standard system software on the system library [1,4].

When returning a path, ADR+1 contains the following:

bits 34 and 35 the scan switch '

bit 33=1 if experimental SYS (NEW:)is searched
bif 32=1 if SYS is searched

bit 31=1 if there is a user library

(continued on next page)

5.06 Monitor 6-37 March 1973

MONITOR CALLS
bit 30=1

bits 27-29

and ADR+2 through ADRn-1 is the path. If the path is less than n-1 words, a zero word is stored at

the end. If ADR contains a device name or channel number when the UUO is called, the file structure

-580-

if the user-supplied project-programmer number is to be
ignored on a LOOKUP or ENTER UUO and the implied
project=-programmer number of the device is to be used
(e.g., 0,41 if SYS; [1,51 if NEW)., The implied project-
programmer number is returned in ADR +2,

the type of search list:

0 a non=-standard search list (e.g., DSKA)
1 job search list

2 ALL search list

3 SYS search list

l name or ersatz device name is returned in ADR depending on the name specified (e.g., SYS is

returned only if C(ADR) =SYS and the job does not have a device with the logical name SYS). If a
LOOKUP or ENTER has been done on the specified device or channel number, the following is

returned in the argument block:

I ADR:

ADR+1:
ADR+2:
ADR+3:

ADI.?+m:

the SIXBIT name of the file structure or ersatz device

the scan switch.

the actual project-programmer number associated with the file.
the actual path of the file.

0 the end of the path if m <n-1.

If no LOOKUP or ENTER has been done, the following is returned:

| ADR:
ADR+:

I ADR+2:
ADR+3:
ADR+m:

On an error return,

SIXBIT DSK or ersatz device name.

the scan switch.

the job's default project-programmer number (or the project-
programmer number of the ersatz device).

the default path to the file,

0 the end of the path if m <n-1

AC is unchanged if the UUO is not implemented. (SFD remains a reserved extension,
but all SFD code disappears.) The GETTAB which returns the maximum number of
SFDs allowed returns 0 or fails. The default path is the user's project-programmer

number.

AC is 0 if the device or channel number does not represent a disk.

AC is =1 if a SFD in the path specification is not found.

5.06 Monitor

(continued on next page)

6-38 March 1973

Examples
1

2)

3)

-581- MOHITOR CALLS

This example sets the default path to [27,235,SUB] with no scanning in effect.

MOVE 1, [XWD 5, Al

PATH. 1,

error

normal
A: =2

1

27,235

suUB

0
Refer to Figure 6-6. The pafh plus filename for file A is X,MAC [10,63]. The
path plus filename for file B is Y.CBL [14,5]. The path plus Fllename for file C
is Z,ALG [14,5,M1,

Refer to Figure 6-7. The job's search list is DSKA/N, DSKB, DSKC and the default
path is [PPN, A, B, C, DI.

A) LOOKUP DSK: with no mofches scans in order: DSKA:D (.SFD), DSKA:C,
DSKB:C, DSKA:B, DSKB:B, DSKA:A, DSKB:A, DSKA:PPN (. UFD) DSKB PPN

DSKC:PPN.
B) LOOKUP DSK: FILE2 finds DSKA: FILE2 [PPN, A, B, Cl.

(continued on next page)

6-38a March 1973

-583- MONITOR CALLS

[osn:[|.1].,urfo_J }

X-MAC Y-CBL

Z-ALG
100837

Figure 6-6 Directory Paths on a Single File Structure

DSKB: [1,1].UFD

DSKC: [1,1].UFD

DSKC: PPN.UFD

DSKA:[1,1]. UFD

DSKB: PPN. UFD

DSKA:PPN.UFD

, L 1 [|
l FILElJ ITSFD I I A SFﬂ ITSFD l FLEﬂ F.SFD l . I FILE il

I I
|F|LE2 I [FILEEJ [B.SFDl [B.SFLI [FILSJ
‘ '

C.SFDI [D.SFD'

| I
FILE 2 FD’ [' L I
l E,J rD-S J I FILE 7J I(FT_E e)l F,LE 2 l

| I
I?LE 4J [FILE il l(FlLE 1)]

10~0838

Figure 6-7 Directory Paths on Multiple File Structures

5.06 Monitor 6-39 March 1973

MONITOR CALLS -584-

C) LOOKUP DSKB: FILE2, or LOOKUP DSKC: FILE2 fails.

D) ENTER DSK: FILE9 receives an error since no file structure has both the
no-create bit off and the directory structure [PPN, A, B, C, D].

E) ENTER DSKA: FILE1 creates the file at the end of the path on DSKA (the
file designated by (FILE1) in diagram).

If the default path is [PPN, A, B, C]:

A) ENTER DSK: FILE6 creates DSKB: FILES [PPN, A, B, C] (the file desig-
nated by (FILES) in diagram).

B) ENTER DSK: FILE2 supersedes FILE2 in DSKA: [PPN, A, B, C]

C) LOOKUP DSK: FILE4 fails.

D) ENTER DSK: FILE7 supersedes FILE7 in DSKB: [PPN, A, B, CJ.
4) The user defines the following path.
MOVE 1, [XWD 5,Al

PATH. 1,
error
MOVE 1, [XWD 3,B]
PATH. 1,
error
A: -2 Define the default directory path
2 Scanning is in effect
10,63 7 The UFD [10,63]
NAME The SFD [NAME]
0 The default path is [10,63, NAME]
B: -3 Define an additional path,
3 Both experimental SYS and SYS are searched.
10,7 The user library is [10,7]

If the user is logged in as [10,10] and does a LOOKUP DSK: FILTST, the following directories are

searched in order:

[NAME, SFD]

[10,63. UFD] f job's search list,
[10,7. UFD]

[1,5. UFD] system's search list.
(1,4, UFD] }

If the user is logged in as [10,10] and does a LOOKUP DSK: PRJFIL [10,155], the following direc-

tories are searched:

[10,155. UFD] }

{10,7. UFD] job's search list
(1,5. UFD]

{1,4. UFD] } system's search list

6.2.9.2 USETI and USETO UUOs - The function of these UUOs is to nofify the disk service routines
that a particular relative block (instead of the next block in sequence) is to be used on the following
INPUT or OUTPUT on the specified channel. USETI and USETO do not perform 1/O; they simply
change the current position of the file. Note that each INPUT or OUTPUT also logically advances
the file; therefore, to reread or rewrite the same block a USETI (or USETO) must be given before each
INPUT (or OUTPUT).

5.05 Monitor 6-40 June 1972

} -585- MONITOR CALLS
Since the monitor reads (writes) as many buffers as it can on INPUT (OUTPUT), it is difficult to
determine which buffer the monitor is processing when the USETI (USEI'O) is given, Thus, the INPUT
(OUTPUT) following the USETI (USETO) may not read (write) the buffer containing the block specnﬁed
with the USETI (USETO). However, a single buffer ring reads (writes) the desired block since the de-
vice must stop after each INPUT (OUTPUT). Alternatively, if bit 30 of the status word 1O .SYN) is
set via an INIT, OPEN, or SETSTS UUO, the device stops after each buffe}fui of data on an INPUT
(OUTPUT) so that the USETI (USETO) will apply to the buffer supplied on the next INPUT (OUTPUT).

The calls are:
USETI D, N and USETO D,N

where D is the channel number, and N designates a block relative to the beginning of the file. N can

be in the following ranges:

N ‘ Block Represented
1-7777778 Blocks of the file
0 Prime (]sf) RIB
-2, oo -108 Extended (2nd to the 8th) RIB
-1 Last block accessed (USETO) or end of file (USETI),

Note that the 18-bit effective address used for N is interpreted as both an unsigned positive integer and
a signed (2's complement) integer. This is required since, with extended RIBs, there can be more than
3777774 (largest positive signed integer) blocks in a file. The exact interpretation of N depends upon
the context of the USETI/USETO (i.e., reading, writing, updating).

When reading or writing a file, USETI precedes an INPUT and USETO precedes an OUT‘PUT (i.e.,
USETI is i"egcd for a non=privileged program unless a LOOKUP has been done, and USETO is illegal
for a non-privileged program unless an ENTER has been done). However, there are special cases when
updating a file (both a LOOKUP and an ENTER have been done) when USETI may be fol lowed by an
OUTPUT and USETO may be followed by an INPUT. The action performed on a USETI or USETO de-

pends on the value of N,

When N is a block number less than or equal to the current size of the file in blocks (i.e., N is a block
that has been previously written), USETI or USETO points to block N in order to read or write that
block on the next INPUT or OUTPUT. '

]The number of extended RIBs allowed on the system can be changed with MONGEN and can be ob-
tained from a GETTAB table (.GTLVD, item 23). Extended RIBs depend on FTMRIB which is normally
off in the DECsystem-1040.

5,04 Monitor 6-41 January 1972

MONITOR CALLS -586-

When N is a block number greater than the current size of the file in blocks, USETI followed by an
INPUT receives the end-offile return (e.g., if the file is 5 blocks long, USETI with n=7 receives

the end of file return). On o USETO followed by an OUTPUT, the monitor allocates the intervening
blocks, writes zeroes in the first new block up to block N-1, and then writes block N. For example,

if the file is 2 blocks long, USETO with n=4 writes zeroes in block 3 and the data on the QUTPUT in
block 4. If the number of blocks requested cause the disk to be filled or the user's quota.to be exceeded,
as many blocks as allowed will be allocated and the 10.BKT bit will be set in the status word. In
addition, in update mode, USETI followed by an OUTPUT appends the data to the end of the file

(i.e., makes the file larger), USETO followed by an INPUT allocates and zeroes the first new block

up to block N-1 and then receives the end-of=file return.

When N=0 on reading, writing, and updating, USETI and INPUT read the prime RIB, and USETO ond
OUTPUT receive the 10.BKT error. In addition, in update mode, USETO and INPUT read the prime
RIB, and USETI and OUTPUT receive the 10.BKT error.

When N=-2 to -108, a USETI and INPUT read the indicated extended RIB (=2 is the 2nd RIB,...,
-]08 is the 8th RIB). USETO followed by an OUTPUT attempts to allocate a large number of blocks
(since N is interpreted as an unsigned integer) and therefore is not recommended because the user's

disk quota will probably be exceeded.

When N=-1, USETO and OUTPUT rewrite the last block in which /O was performed. USETI and IN-
PUT receive the end of file return. In addition, in update mode, USETI followed by OUTPUT oppends
the data to the end of the file, and USETO and INPUT read the last block in which I/O was performed.

The user can append data to the last block of an append-only file by specifying a USETO followed by
an OUTPUT to the last b|ock.] The monitor then reads the block (of N words) into a monitor buffer,
copies words N+1 through 200 from the user's buffer into the monitor buffer, and rewrites the block.
The current length of the block can be obtained from the LOOKUP/ENTER block, It is not necessary
to read the last block of the file before appending to it because the data already existing in the block
is not changed.

When appending data to the last block of a file, the 10.BKT bit is set and no output is done if

1) Any block before the last block is written,
2) The last block already contains 200 words.

3) Fewer blocks are written than the current size of the block.

If the last block is written with a buffer-mode OUTPUT, the size of the last block becomes 200 words,
and therefore, cannot be appended to.

Append-only files can be read only if FTAIR is on. Note that BASIC stores data at the beginning
of files that it must read and therefore, to run BASIC, FTAIR must be turned on.

,This feature depends on FTAPLB, which is normally off in the DECsystem=1040. Therefore a new
block must be written in order to append to a file.

5.05 Monitor 6-42 June 1972

-587- MONITOR CALLS
If no previous LOOKUP or ENTER has been done, these UUOs are considered to be super-USETI and

super-USETO which are available only to privileged programs. If the program is non-privileged,
super-USET! and super-USETO cause the 10.BKT bit to be set in the status word. These privileged
UUOs are documented in UUOPRY.RNO in the DECsystem~10 Software Notebooks.

6.2.9.3 SEEK UUO‘ - This UUO, when used in conjunction with USETI and USETO, allows user pro=
grams control over the time at which positioning operations occur. Following a regular USETI or
USETO, positioning is to the cylinder containing the requested relative block within a file. Following
a super-USETI or super-USETO, positioning is to the cylinder containing the specified disk block.

The call is:

SEEK AC, ; or CALLI D, 56

refurn

D specifies a software channel number, The SEEK UUOs are honored by the monitor only if the unit
_ for which they are issued is idle. If the unit is in any other state, the SEEK UUO is a no~operation.

SEEK UUOs issued for public file structures are treated in the same way as private file structures.
This allows users fo debug programs using a public disk pack and later run the same programs using a

private disk pack.
The following is proper UUO sequence for issuing a SEEK.
For output ‘
a. USETO to select a block (relative or actual)
b. SEEK to request positioning
c.
d.

computations
OUTPUT to request actual output

For input

a. USETI to select a block (relative or actual)
b. SEEK to request positioning

c. computations :

d. INPUT to request actual input.

6.2.9.4 RESET UUO - This UUO causes files that are in the process of being written, but have not
been CLOSEd or RELEASed, to be deleted; the space is reclaimed. If a previous version of the file
with the same name and extension existed, it remains unchanged on the disk (and in the UFD). If the
programmer wishes to retain the newly created file and to delete the older version, he must CLOSE or
RELEASe the file before doing a RESET UUO.

This UUO depends on FTDSEK which is normally off in the DECsystem=-1040,

5.04 Monitor 6-43 January 1972

MONITOR CALLS -588-

6.2.9.5 DEVSTS UUO - After each interrupt, FILSER stores the results of @ CONI in the DEVSTS
word of the device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word
to the user (refer to Paragraph 4,10.1).

6.2.9.6 CHKACC UUO] = This UUO allows programs to check the user's access to a particular file.

The call is:

MOVE AC, [EXP LOC]

CHKACC AC, jor CALLI AC, 100
error return

normal return

The LH of LOC contains the code for the type of access to be checked and the RH of LOC contains a
9-bit protection field. If the access code contained in the LH of LOC is greater or equal to 7, then
the RH of LOC is interpreted as UFD privilege bits. LOC+1 contains the project-programmer number

of the directory, and LOC+2 contains the project-programmer number of the user.

The type of access to be checked is represented by one of the following codes:

0 .ACCPR Change protection.

1 .ACREN Rename.

2 ACWRI Write,

3 .ACUPD Update.

4. .ACAPP Append.

5 ,ACRED Read.

6 .ACEXO Execute only.

7 .ACCRE Create in UFD.

10 .ACSRC Read directory as a file.

The error return is given if the UUO is not implemented. On a normal return, AC contains 0 if access

is allowed or =1 if access if not allowed.
6.2.9.7 STRUUO AC, or CALLI AC, 50 - This UUO manipulates file structures and is intended pri-
marily for monitor support programs.

The call is:

MOVE AC, [XWD N, LOC]

STRUUO AC, jor CALLI AC, 50
error return ;AC contains an error code
normal return ;AC contains status information

N is the number of words in the argument list starting at location LOC. For the functions with a fixed

length argument list, N may be 0,

The first word of the argument list specifies the function to be performed. Function 0 (.FSSRC) is the

only unprivileged function; the remaining functions are available only to jobs logged=-in under [1, 2]

]This UUO depends on FT5UUQ which is normally off in the DECsystem~1040.

5.05 Monitor 6-44 June 1972

_589- ~ MONITOR CALLS

or to programs running with the JACCT bit set. Refer to the Specifications section of the DECsystem~-
10 Software Notebooks for a complete description of the privileged functions and their appropriate

error codes.

The present functions are as follows:

Function Name

0 .FSSRC Define a new search list for this job. This is the only
unprivileged function.

1 .FSDSL Define a new search list for any job or for the system.
Privileged function.

» .FSDEF Define a new file structure. Privileged function.

3 .FSRDF Redefine an existing file structure. Privileged function.

4 .FSLOK Prevent any further new INITs, ENTERs, or LOOKUPs.
Privileged function.

5 .FSREM Remove file structure from system. Privileged function.

6 .FSULK ~ Test and set UFD interlock. Privileged function.

7 .FSUCL ~ Clear UFD interlock. Privileged function.

10 .FSETS Simulate disk hardware errors, Privileged function.

6.2.9.7.1 Function 0 ,FSSRC - This function allows a new file structure search list to be specified
for the job issuing the UUO. The call is:

MOVE AC, [XWD N, LOC]
STRUUO AC,

error return

normal return

LOC: 0 ‘ ;. FSSRC
LOC+1: first file structure name
LOC+2: O

LOC+3: status bits

LOC+4: second file structure name
LOC+5: O
LOC+6: status bits

The argument list consists of word triplets, which specify the new search list order to replace the cur-
rent search list. The current search list may be determined with the JOBSTR UUO. The first word
contains a left-justified file structure name in SIXBIT. The second word is not used at present. The

third word contains the following status bits:

Bit 0 = 1 if software write=protection is requested for this file structure.

Bit1=11if files are not to be created on this file structure unless the specific
file structure is specified in on ASSIGN command or in an INIT or
OPEN UUO.,

The user may use the MOUNT command to odd a new Ffile structure name to his search list. The
MOUNT program

5,04 Monitor 6-45 February 1972

MONITOR CALLS -590-

a. Requests the file structure to be mounted (if it is not already mounted).

b. Creates a UFD for the user if he has a logged=in quota in file SYS: QUOTA.SYS
on that file structure.

A user cannot create files on a file structure unless he or the project-programmer number specified has
a UFD on that file structure. However, by using the .FSSRC function, the user may add a file structure
name to his search list if the file structure is mounted and either the user has a UFD for that file struc=
ture or he does not want to write on that file structure. If the user attempts to delete a file structure
name from his search list by the .FSSRC function, the monitor-moves the file structure name from the
active search list to the passive search list, The DISMOUNT command must be used to remove the file
structure from the active or passive search list. The DISMOUNT command causes the mount count to

be decremented, signifying that the user is finished with the file structure, and checks that the user

has not exceeded his logged-out quota on the file structure.

Table 6-7

.FSSRC Error Codes
Symbol Code Explanation
FSILF% 0 Illegal function code.
FSSNF% 1 One or more file structures not found.
FSSSA% 2 One or more file structures single access only.
Egn‘s"f:/" 4 Too many entries in search list.
FSRSL% 17 File structure is repeated in a search list definition.

6.2.9.8 JOBSTR AC, or CALLI AC, 47] - This UUO returns the next file structure name in the job's
search list along with other information about the file structure. Programs like DIRECT use this UUO to
list a user's directory correctly and specify in which file structures the files occur, as well as the order
in which they are scanned.
The call is:

MOVE AC, [XWD N,LOC]

JOBSTR AC, ;or CALLI AC, 47

error return
normal return

LOC is the address of the N-word argument block. When the UUO is called, the first word should be

one of the following:

-1 to return the first file siructure name in the search list.
a file structure name fo return the next file structure following the specified name.

c. O toreturn the file structure name immediately following the FENCE. Refer to
Paragraph 6.2.7.

]In the DECsystem=-1040, FTSTR is normally off so that there is only one file structure on the system.
However, this UUO is implemented and returns the file structure name or -1.

6-46

-591- ‘MONITOR CALLS

On return, the first word contains:

a. the first file structure name in the search list if -1 was spécified.

b. the next file structure name appearing after the specified‘ncme or after the FENCE
(if O was specified).

0 if the item after the specified name is the FENCE.

d. -1 if there are no more file structure names in the search list, or the search list is
empty.)

The second word contains 0 (reserved for a future argument), and the third word contains status bits.

Current status bifs are:

Bit0=1 if software write protection is in effect for this job.

Bit 1 =1 if files are.not to be created on this file structure, when a
multiple file structure name is specified in dn INIT or OPEN
UUO. Files can be created if a specific file structure or
physical unit is specified.

The following is an example of reading a job's search list.

SETOM LOC . iplace =1 in LOC to get st
, S ;name in search list,
LOOP:MOVEI'AC; LOC ssetup AC.

JOBSTR AC, ;do the UUO.,

JRST ERROR serror return.

MOVE AC, LOC ;get file structure name returned.

JUMPE AC, FENCE ;jump if-it is the FENCE.,

AOJE AC, END ;jump if end of search list (-1).

L ' ;LOC has next file structure name.

JRST LOOP ;repeat with next file structure name.
LOC: -1 ;file structure name.

0 sreserved for future use.

0 sstatus bits.

6.2.9.9 GOBSTR AC, or CALLI AC, 66 - This UUO returns successive file structure names in the
search list of either an arbitrary job or the system. The GOBSTR UUO is a generalization of the
JOBSTR UUO (see Paragraph 6.2.9.8), It isa privileged UUO unless information being requested is
either about the system search list or the jobs logged-in under the same project=programmer number as
the calling job's number. For example, the KJOB program needs information about the search lists

of jobs logged in under the same project-programmer number as the job logging out. The privilege bits
required are either JP.SPA (bit 16) or JP.SPM (bit 17) of the privilege word (.GTPRV).

The call is:

MOVE AC, [XWD N,LOC]

GOBSTR AC, sor CALLI AC, 66

error return. ;AC contains an error code
normal return

5.04 Monitor 6-47 ‘ January 1972

MONITOR CALLS -592-

When the UUO is called, AC specifies the length (N) and address (LOC) of an argument list. N may
be 0, 3, 4, or 5 where N = 0 has the same effect as N = 3. Only the arguments included by N(LOC,
LOC+H,...,LOC+N-1) are used or returned. The argument list is as follows:

LOC: job number ;job whose search
;list is desired.
XWD proj, prog ;project-programmer

;number of above job.
SIXBIT /file structure name/ ;or =1 or O.
0 ;currently unused.
Status ;status bits are the same
;as in JOBSTR UUO.

If the job number = -1, the number of the job issuing the UUO is used. If the job number = 0, the
given project-programmer number is ignored and the system search list is used. When the given

project-programmer number is -1, the project-programmer number of the job issuing the UUO is used.

On an error return, AC contains one of the following error codes:

Code Meaning

3 If LOC+2 is not 0, =1, or a file structure name in jobs
search list.

6 If job number (LOC) and project-programmer
number (LOC +1) do not correspond.

10 If job issuing the UUO is not privileged.

12 If the length specified for the argument list is not
valid.

6.2.9.10 SYSSTR AC, or CALLI AC, 46 - This UUO provides a simple mechanism to obtain all the
file structure names in the system. The proper technique to access all files in all UFDs is fo access the
MFD on each file structure separately. Monitor support programs use this UUO to access all the files

in the system.

The call is:
MOVEI AC, 0 or the last value returned by previous SYSSTR
SYSSTR AC, ;or CALLL AC, 46

error return
normal return

An error return is given if either

a. The UUO is not implemented

b. The argument is not a file structure name

On a normal return, the next public or private file siructure name in the system is returned in AC. A

retumn of 0 in AC on a normal refurn means that the list of file structure names has been exhausted. If

5.06 Monitor 6-48 March 1973

_503- | MONITOR CALLS

0 is specified as an argument, the first file siructure name is returned in AC. The argument cannot be

a physical disk unit name or a logical name .

6.2.9.11 SYSPHY AC, or CALLI AC, 51‘ - This UUO returns all bhysicdl disk units in the system,
The SYSPHY UUO is similar to the SYSSTR UUO (see Paragraph 6.2.9.10).

The call is:

MOVEI AC, Oor the last u_nﬁ name returried by prevtbus SYSPHY

SYSPHY AC, ; or CALLI AC, 51
error return ;hot implemented or not a physical disk
normal return , ;unit name

On the first call AC should be 0 to request the retumn of the first physical unit name. On subsequent
calls, AC should contain the previously returned unit name.

An error return is given if AC does not contain a physical disk unit name as zero. On a normal return,
the next physical unit name in the system is returned in AC. A retumn of 0 in AC indicates that the
list of physical units has been exhausted.

6.2.9.12 DEVPPN AC, or CALLI AC, 55' - This UUO allows user program to obtain the project-
programmer number associated with a disk device. The device argument inen can be a logical device
name, o physical device name, or one of the special devices called ersatz devices. (Refer to DEC-

system-10 Operating System Commands for the list of system devices.)

When the UUO is cailed, AC must contain either the device name as a leftjustified SIXBIT quantity,

or the channel number of the device as a ﬁghf-iusﬁfied quantity,

The call is:

MOVE AC, [SIXBIT /DEV/] ;or MOVYEI AC, channel number
DEVPPN AC, jor CALLI AC, 55

error return

normal return

The error return is taken if:

]This UUO depends on FTSUUO which is normally off in the DECsystem=-1040.

5.06 Monitor 6-49 March 1973

MONITOR CALLS -594-

a. The UUO is not implemented; therefore, the contents of AC remain the same on
return. In this case, obtain the appropriate project-programmer number as follows:

1. For the user's area, use the GETPPN UUQ (refer to Paragraph 3.6.2.3).

2. For the special ersatz devices,use the default project-programmer numbers
appearing in the following list.

Device Project-programmer Number

ALL: User's project-programmer number
BAS: [5,11

COB: [5,2]

DSK: User's project-programmer number
HLP: [2,5]

LIB: Set by each user

MXI: [5,3]

NEW: “ 4 5]

OLD: [1,3]

SYS: 1,4]

b. The device does not exist or the channel is not INITed; therefore, zero is
returned in AC.

c. The device is not a disk; the user's project-programmer number is returned in AC.

If a legal device is specified, the normal return is given and the project-programmer number associated
with the device is retumed in AC. However, if the user has device NEW: enabled in his search list
and device SYS: is given as the argument to the DEVPPN UUO, the project-programmer number
retumed is [1,5].

5.06 Monitor 6-50 March 1973

~595- MONITOR CALLS

The following is an example for reading a UFD if either device SYS or the user's area is specified.

MOVEL

GETTAB
MOVE

MOVEM

MOVE

MOVEM

DEVPPN
JRST

JBACK HERE WITH
GOTPPNI MOVEM

OPEN
~JRST
LOOKUP
~JRST
IN
JRST
JRST

JHERE IF DEVPPN
GETPPX: CAMN

Ari6

Ay
Ayfis,ld
A,MFDPPN

A, DEVNAM
A,MODE+1
Ay
GETPPX

FGET MFO PROJECT-PROGRAMMER NUMBER
$NO CHANGE IF NO GETTAB

} IN CASE OF LEVEL C

?STORE MFD DIRECTORY NUMBER

JGET DEVICE NAME TYPED BY USER
STORE FOR OPEN

FGET PROJECT PROGRAMMER NUMBER

! NOT IMPLEMENTED OR NO SUCH DEVICE

IMPLIED PPN IN A

A, PPN

I,MODE
ERROR
I,PPN
ERROR
1,
USEIT
ERROR

FAILS

JSTORE PPN IMPLIED BY DEVICE NAME

JTRY TO QPEN DEVICE
INOT AVAILABLE

fTRY TO LOOKUP UFD
INOT THERE

JREAD FIRST BLOCK

160 DO USEFUL WORK
JERRQOR OR END OF FILE

A, [SIXBIT /SYS/) }SEE IF DEVICE NAME SYS:

JRST GETPPS JYES==GQ HMANDLE SYS:
GETPPN A, INO==GET OWN PPN
JFCL JCIN CASE OF JACCT)
JRST GOTPPN }OK==PROCEED ABOVE
GETPPSt MOVE AyL1,,16] JFIND SYSI PPN
GETTAB A, JFROM MONITOR TABLES
MOVE A, [1,,1) FCIN CASE OF LEv, C)
JRST GOTPPN j0K==PROCEED ABOVE
MODE 3 14 FBINARY READ
' a JDEVICE NAME
@0 INBUFH JBUFFER HEADER
PPN} 0 ;DIRECTORY. NAME

SIXBIT /UFD/

@
MFOPPNS 1,,1

FEXTENSION
JLOOKUP UFD IN MFD

6-50a March 1973

-597- MONITOR CALLS
6.2.9.13 DSKCHR AC, or CALLI AC, 45 - The disk characteristics UUO provides necessary infor=
mation for allocating storage efficiently on different types of disks. Most programs are able to use the
generic device name DSK rather than \sp_ecial. disk names; however, this UUO is needed by special

monitor support programs,

This UUO accepts, as arguments, names of file structures (e.g., DSKA), types of controllers (e.g.,
DP), controllers (e.g.,DPA), logical units (e.g., DSKA3), physical disk units (e.g., DPA3), or
logical device names (e.g., ALPHA). If the argument in LOC specifies more than one unit, the values
returned in AC are for the first unit of the specified set. If the argument specifies more than one file
structure (i.e., DSK or logical device name for disk), the first unit of the first file structure is returned.

The call iss

MOVE AC, [XWD+N,LOC] ;N is the number of locations
: S ;of arguments and values starting
;at location LOC

DSKCHR AC, ;or CALLI AC, 45
error return ;not a disk
normal return

On a normal refurn, AC contains status information in the left half and configuration information in
the right half. The left half bits have been chosen so that the normal state is 0,

Name Bit Explanation

DC.RHB Bit0=1 The monitor must reread the home block before the next
operation to ensure that the pack ID is correct. The
monitor sets this bit when a disk pack goes off-line.

DC.OFL | Bit1=1 The unit is off-line.

DC.HWP Bit2 =1 The unit is hardware write-profected,

DC.SswpP Bit3=1 The unit belongs to a file structure that is write-
protected by software for this job.

DC. SAF Bit4=1 The unit belohgs to a single-access file structure.

DC.ZMT Bit 5 =1 The unit belongs to a file siructure with a mount count

that has gone to zero (i.e., no one is using the file
structure) . Available in 5.02 monitors and later.

‘Bit6=1 Resgrved for the future.
DC.STS Bits 7 and 8 Unit status
.DCSTD =11 The unit is down.
.DCSTN =10 No pack is mounted.

=01 Reserved for the future.

.DCSTP =00 A pack is mounted.
DC.MSB Bit 9 =1 The unit has more than one SAT block..
DC.NNA Bit10=1" The unit belongs to a file structure for which the

operator has requested no new INITs, LOOKUPs, or
ENTERs; set by privileged STRUUO function.

DC.AWL Bit 11 =1 The file structure is write-locked for all jobs.

Bits 12 - 14 _Reserved for future expansion.

6~51

MONITOR CALLS -598-

Name Bit Explanation

DC.TYP Bits 15 - 17 The code identifies which type of argument was passed
to the monitor in location LOC.

DC.DCN Bits 18 - 20 Data channel number that software believes hardware
is connected to; first data channel is 0.

DC.CNT Bits 21 - 26 Controller type:

.DCCFH =1 FH (Burroughs disk, Bryant drum) controller RC 10

- .DCCDP =2 DP (Memorex disk packs) controller RP10

DC.CNN Bits 27 - 29 Controller number; first controller of each type starts at
0(e.g., DPA=0, DPB =1)

DC.UNT Bits 30 - 32 Unit type; a controller-dependent field used to distin-

guish various options of a unit on its controller.
If bits 21 - 26 and bits 30 - 32 then type is

1 0 RD 10 Burroughs disk (.DCUFD)
1 1 RM10B Bryant drum (.DCUFM)
2 1 RPO2 disk pack (.DCUD2)

2 2 RPO3 disk pack (.DCUD3)
DC.UNN Bits 33 - 35 Physical unit number within controller; first unit-is 0

The user program supplies in location LOC a left-justified, SIXBIT disk name which may be one of the

following:
.DCTDS 0 generic disk name
.DCTAB 1 subset of file structures because of file structure abbreviation
.DCTFS 2 file structure name
.DCTUF 3 unit within a file structure
.DCTCN 4 controller type
.DCTCC 5 controller
.DCTPU 6 physical disk unit name

or a logical name for one of the above assigned by the ASSIGN or MOUNT monitor command.

On a normal return, the monitor returns values in the following locations:

LOC+1 (.DCUFT) The number of blocks left of the logged-in job quota before the UFD
of the job is exhausted on the unit specified in LOC. If negative,
the UFD is overdrawn. [f the negative number is 400000 000000,
the UFD has not been accessed since LOGIN; therefore, the monitor
does not know the quota.

LOC+2 (.DCFCT) The number of blocks on a first~come first-served basis left for all
users in the file structure.

LOC+3 (.DCUNT) The number of blocks left for all users on the specified unit.
LOC+4 (.DCSNM) The file structure name to which this unit belongs.
LOC+5 (.DCUCH) Characteristic sizes

a. Bits 0-8 are the number of blocks/cluster (DC.UCC)

b. Bits 9-17 are the number of blocks/track (DC.UCT)

¢. Bits 18-35 are the number of blocks/cylinder (DC.UCY)
(see Appendix F).

6-52

-599- " MONITOR CALLS

LOC+6 (.DCUSZ) The number of 128-word blocks on the specified unit.

LOC+7 (.DCSMT) The mount count for the file structure. The mount count is the number
: - of jobs that have done a MOUNT command for this file structure with-
out executing a DISMOUNT command; it is a use count.

LOC+10 (.DCWPS) The number of words containing data bits per SAT block on this unit.
LOC+11 (.DCSPU) Number of SAT blocks per unit.
LOC+12 (.DCK4S) Number of K allocated for swapping.

LOC+13 (.DCSAJ) - Zero if none or more than one job has this file structure mounted.
XWD -1, ,n if only job n has file structure mounted but it is not single
access. XWD 0, ,n if job has file structure mounted and it is single
access.. . »

LOC+14 (.DCULN) The unit's logical name (e.g., DSKBO).

LOC+15 (.DCUPN) The unit's physical name (e.g., DPAO).

LOC+16 (.DCUID) The unit's ID (e.g., 2RP003).

LOC+17 (.DCUFS) The first logical block used for swapping on this unit.

6.2.9.14 DISK. AC, or CALLI AC, 121 - The DISK. UUQ is a general-purpose call designed for
setting and examining parameters of the disk and file systems. Ifs present function allows the user to
assign a priority for disk operations (data transfers and head positionings) either for a user 1/0O channel
or for his iob (all 1/0 channels). Therefore, when a disk operation is initiated, the request with the
highest priority is selected. If there is more than one request with the same priority, the one most

satisfying disk optimization is chosen (refer to Chapter 7).

The range of permissible disk priorities is -3 to +3 with 0 being the normal timesharing priority. Thus,
"a job can request a lower than normal priority (e.g., when the job is a background job). The maximum
priority (greater than 0) that the user is allowed to assign is set by bits 1 and 2 (JP.PRI) of the privilege
word .GTPRV. '

The call is:

MOVE AC, [XWD function, ADR]
DISK. AC, ;or CALLI AC, 121
error return
normal return
The present function is
Function Name Description

0 .DUPRI Set the disk priority

ADR contains, in the right half, the desired priority (-3 to +3) and in the left half, one of the

following:

LH (ADR) =n Sets the priority for channel n (n is from 0 to 17).
LH (ADR) = -1 Sets the priority for all channels OPENed by the job.
LH (ADR) = -2 Sets the priority for the entire job.

5.05 Monitor 6~53 June 1972

MONITOR CALLS

-600-

When a priority is set for a channel, it overrides any priority set for the job and remains in effect
until the channel is RELEASed. When set for the job, the priority remains in effect until RESET
by another DISK. UUO or the SET DSK PRI command (refer to DECsystem-10 Operating System

Commands).

6.2.9.15 Simultaneous Supersede and Update - Files that may be simultaneously superseded or up-

dated by several different users should be treated with care. The problem arises when one user has o

copy of information to be superseded by another user. For example, file F contains a count of the

number of occurrences of a certain event. The count is 10 at a given time. When two users observe

separate instances of the event, each fries to increment the count.

Supersede - Incorrectly

Job 1
LOOKUP A,F

READ COUNT (=10)
ADD 1 (=11)

ENTER B, F
WRITE OUT (=11)
CLOSE B,

In this example, job 2 ignored job 1's increment.

Supersede - Correctly

Job 1

ENTERB, F
LOOKUP A, F

INPUT A, (=10)
ADDI (=11)
OUTPUT B, (=11)
CLOSE B,

Job 2

LOOKUP C, F
READ COUNT (=10)
ADD 1 (=11)

ENTER D, F (Fail)
ENTERD, F
WRITE OUT (=11)
CLOSE D,

(Succeed)

Job 2

ENTERD, F (Fail)

ENTER D, F
LOOKUP C, F
INPUT C, (=11)
ADDI (=12)
OUTPUT D, (=12)
CLOSE D,

(Succeed)

In this example, both jobs performed the ENTER FIRST; therefore, incorrect copies were not made and

the increment of each job was recorded properly .

5.05 Monitor

6-54

June 1972

-601- MONITOR CALLS

The similar problem with a update can be avoided by never using the information returned by the

LOOKUP:

Job 1

LOOKUP A, F
INPUT A,

ENTERA, F
OUTPUT
CLOSE

Job 2

LOOKUP B, F
INPUT B,

ENTER B, F
Here any information

from the LOOKUP and

(Fail)

6.2.10 File Status (refer to Appendix D)

The file status of the disk is shown below.

SET BY USER

SET BY MONITOR

Bit 18 - 10.IMP

f.

INPUT must be discarded.
18 21 24 27 30 33 35
18

|

10-0580

1)

a. ' INPUT UUO attempted on a read-protected file

INPUT UUO when no LOOKUP was done (or
super-USETI/USETO previously attempted by
nonprivileged user)

OUTPUT UUO when no ENTER was done (or
super-USETI/USETO previously attempted by
nonprivileged user)

Software-detected checksum error

Software-detected redundancy error in SAT block or
RIB, or -

Buffered mode 1/O attempted after super-USETl/
USETO.

g. OUTPUT UUO attempted on a write-locked unit.

Bit 19 - 10.DER
Bit 20 - 10.DTE

Search error, power supply failure

Disk or data channel parity error.

Checksum failure on INPUT.

Bit 21 - 10.BKT a.

Quota is exhausted (past overdrawn)
File structure is exhausted
RIB is full

Super-USETI/USETO block is too large for the file
structure

(continued on next page)

6-55 March 1973

MONITOR CALLS -602-

Bit 21 - IO.BKT e. More than 777777 blocks were read with one super-
(cont) USETI/USETO

f. Block number specified is too low for writing in a
file that has an append protection code (4). The
block number must be greater than the current
highest block number of the file. Not set on a
USETI or USETO.

g- A super-USETI or USETO was issued by a non-privileged

program,
Bit 22 - 10.EOF EOF encountered on INPUT. No special character appears in
the buffer.
Bit 23 - IO.ACT Device is active
18 21 24 27 30 33 35
woseo [T TIINNNT 1]
18 21 24 27 2930 33 35

SET BY uszal I I l m l]

10-0836

Bit 29 - IO.WHD Write disk pack headers
6.2.11 Disk Packs

A disk pack system combines disk and the DECtape features. Some packs (similar to individual DEC-

tapes) are designed to be private, assignable, and removable. The other packs make up part or all of
the public disk storage area where system programs and user files are stored. These disk packs belong
to file structures in the storage pool and cannot be assigned to any single user. The system library and

shared on-line storage is maintained and swapping storage is assigned within the public disk pack area.

The only distinction between public and private packs is that private packs are intended to be removed
from the system during regular operation. Public packs usually stay on-line all the time. However,

the file structure format for public and private disk packs is identical .

User programs can exercise much greater control over private packs. For example, a program may
attempt to position the arms of disk packs in anticipation of future I/O (refer to Paragraph 6.2.9.3).
This capability is useful to a program that is aware of the contents of a disk and is able to use this
information to optimize positioning. The program may also specify the position of files on the disk by

using the allocate arguments of the extended LOOKUP, ENTER, and RENAME UUO:s.

Private packs may be accessed by more than one job (multi-access) or restricted to only one job (single
access). To access a private file structure, the user must type the MOUNT monitor command. If the

private file structure is already mounted, on-line, and multi-access, the user receives an immediate

6-56 March 1973

-603- MONITOR CALLS

response and may start using the private pack. When the user is finished using the private file struc-
ture, he should type the DISMOUNT monitor command. If no other job is using the file structure, a

message is typed to the operator informing him that the drives belonging to the file structure are free.

6.2.11.1 Removable File Structures = All file structures arg designed as if they could be removed

from the system; therefore, disk packs are handled the same as other types of disks.

6.2.11.2 Identification - Disk packs have identifying information written on the home block, a
block on every unit identifying the file structure to which the unit belongs and its position within the
file structure. Part of this information is the pack ID, a one- to six-character SIXBIT name uniquely
identifying the disk pack. The MOUNT and OMOUNT programs check that the operator has mounted
the proper packs by comparing the pack ID in the home block with the information stored in the system
administration file STRLST.SYS.

6.2.11.3 1BM Disk Pack Compatibility - The data format of IBM disk packs has variable-length
sectors and no sector headers. DEC format has fixed-length sectors (128 words) and specially written
sector headers. Latency optimization is employed to improve system throughput (refer to Paragraph

7.3). DEC's significantly simpler hardware confroller is used without reducing user capabilities.

To transfer data from a IBM pack system to a DEC pack system, a simple program in a higher-level
language should be written for both machines. The program then reads the IBM disk pack on the IBM
computer and writes the files onto magnetic tape. The magnetic tape is then transferred to a DEC

computer and read by another program, which writes the files onto the DEC RPO1 or RP02 packs.

6.3 SPOOLING OF UNIT RECORD I/O ON DISK

Devices capable of spooling (card reader, line printer, card punch, paper-tape punch, and plotter)
have an associated bit in the job's .GTSPL word. If this bit is on when the device is ASSIGNed or
INITed, the device is said to be in spool mode. While in this mode, all 1/O for this device is inter-
cepted and written onto the disk rather than onto the device. System spooling programs later do the
actual 1/O transfer to the device.

Spooling allows more efficient use of the device because users cannot tie it up indefinitely. In
addition, since the spooling devices are generally slow and the jobs that are to be spooled are usually

large, the jobs do not spend unnecessary time in core.

6-57

MONITOR CALLS -604-
6.3.1 Input Spooling

If a LOOKUP is given after the INIT of the card reader, it is ignored and an automatic LOOKUP is
done, using the filename given in the last SET CDR command and the filename extension of .CDR.
After every automatic LOOKUP, the name in the input-name counter .GTSPL is incremented by 1 so

that the next automatic LOOKUP will use the correct filename.

6.3.2 Output Spooling
If an ENTER is done, the filename specified is stored in the RIB in location .RBSPL so that the output
spooler can label the output. Therefore, programs should specify a filename if possible.
If an ENTER is not done, an automatic ENTER is given, using a filename in the general form
XXXYYY .22Z

where xxx is a three~character name manufactured by the monitor fo make the
9-character name unique.

yyy is (1) an appropriate station number Snn if a generic device name is
INITed or 2) a unit number if a specific unit is INITed.

zzz is the generic name of the device-type (LPT, CDP, PTP, or PLT).

Output spooling should not concern the user because all requests are queued when the user logs off the

system. The files are moved to the output queues before the logged-out quota is computed.

6-58

605~ MONITOR CALLS

CHAPTER 7
MONITOR ALGORITHMS

7.1 JOB SCHEDULING

The number of jobs that may be run simultaneously must be specified in creating the DECsystem-10
Monitor. Up to 127 jobs may be specified. Each user accessing the system is assigned a job number.

In a multiprogramming system all jobs reside in core, and the scheduler decides what jobs should run.
In a swapping system, jobs exist on an external storage device (usually disk or drum) as well as in
core. The scheduler decides not only what job is to run but also when a job is to be swapped out onto

the disk (drum) or brought back into core.

In a swapping system, jobs are retained in queues of varying priorities that reflect the status of the
jobs at any given moment. Each job number possible in the system resides in only one queue at any
time. A job may be in one of the following queues:

a. Run queues = for runnable jobs waiting to execute. (There are three run queues of

different levels of priorities.) V :

b. I/O wait queue - for jobs waiting While doing 1/0.

c. 1/O wait satisfied queue - for jobs waiting to run after finishing 1/0.

d. Sharable device wait queue - for jobs waiting to use sharable devices.

e. TTY wait queue - for jobs waiting for input or output on the user's console.

f. TTY wait satisfied queuve - for jobs that completed a TTY operation and are await=-
ing action. :

g. Stop queue - for processes that have been completed or aborted by an error and
are awaiting a new command for further action.

h. Null queve = for all job numbers that are inactive (unassigned).

Each queue is addressed through a toble. The position of a queue address in a table represents the
priority of the queue with respect to the other queues. Within certain queues, the position of a job
determines its priority with respect to the other jobs in the same queue. For example, if a job is first in
the queve for o sharable device, it has the highest priority for the device when it becomes availdble.
However, if a job is in an I/O wait queue, it remains in the queue until the 1/O is completed.
Therefore, in an I/O wait queue, the job's position has no significance. The status of a job changes

each time it is placed into o different queue.

_ 5.04 Monitor ‘ 7-1 January 1972

MONITOR CALLS -606-

Each job, when it is assigned to run, is given a quantum time. When the quanfuh time expires, the
job ceases to run and moves to a lower priority run queuve. The activities of the job currently running
may cause it to move out of the run queue and enter one of the wait queues. For example: when a
currently running job begins input from a DECtape, it is placed in the 1/O wait queue, and the input
is begun. A second job is set to run while the input of the first job proceeds. If the second job then
decides to access a DECtape for an 1/O operation, it is stopped because the DECtape control is busy,
and it is put in the queue for jobs waiting to access the DECtape control. A third job is set to run.
The input operation of the first job finishes, making the DECtape control available to the second job.
The 1/O operation of the second job is initiated, and the job is transferred from the device wait queue
to the 1/O wait queue. The first job is transferred from the 1/O wait queue to the highest priority run
queuve. This permits the first job to preempt the running of the third job. When the quantum time of
the first job becomes zero, it is moved into the second run queue, and the third job runs again until

the second job completes its I/O operations.

Data transfers also use the scheduler to permit the user to overlap computation with data transmission.
In unbuffered modes, the user supplies an address of a command list containing pointers to relative

locations in the user area to and from which data is to be transferred. When the transfer is initiated,
the job is scheduled into an 1/O wait queue where it remains until the device signals the scheduler

that the entire transfer has been completed.

In buffered modes, each buffer contains a use bit to prevent the user and the device from using the
same buffer at the same time (refer to Paragraph 4.3). If the user overtakes the device and requires
the buffer currently being used by the device as his next buffer, the user's job is scheduled into an
1/O wait queue. When the device finishes using the buffer, the device calls the scheduler to reacti-
vate the job. If the device overtakes the user, the device is stopped at the end of the buffer and is

restarted when the user finishes with the buffer.

Scheduling occurs at each clock tick (1/60th or 1/50th of a second) or may be forced at monitor level
between clock ticks if the current job becomes blocked (unrunnable). The asynchronous swapping al-
gorithm is also called at each clock tick and has the task of bringing a job from disk into core. This
function depends on
a. The core shuffling routine, which consolidates unused areas in core to make suffi-
cient room for the incoming job,

b. The swapper, which creates additional room in core by transferring jobs from core
to disk.

Therefore, when the scheduler is selecting the next job to be run, the swapper is bringing the next job
fo be run into core. The transfer from disk to core takes place while the central processor continues

computation for the previous job.

-607- : MONITOR CALLS
7.2 PROGRAM SWAPPING

Program swapping is performed by the monitor on one or more units of the system independent of the

file structures that may also use the units. Swapping space is allocated and deallocated in clusters of
1K words (exactly); this size is the increment size of the memory relocation and protection mechanism.
Directories are not maintained, and retrieval information is retained in core. Most user segments are
written onfo the swapping units as configuous units. Swapping time and retrieval information is, there-
fore, minimized. Segments are always read completely from the swapping unit into core with one 1/0
operation. The swapping space on all units appears as a single system file, SWAP.SYS, in directory
SYS in each file structure. This file is protected from all but privileged programs by the standard file

protection mechanism (refer to Paragraph 6.2.3).

The reentrant capability reduces the demands on core memory, swapping space, swapping channel,
and storage channel; however, to reduce the use of the storage channel, copies of sharable segments
are kept on the swapping device. This increases the demand for swapping space. To prevent the
swapping space from being filled by user's files and to keep swapped segments from being fragmented,
swapping space is preallocated when the file structure is refreshed. The monitor dynamically achieves
the space-time balance by assuming that there is no shortage of swapping space. Swapping space is
never used for anything except swapped segments, and the monitor keeps a single copy of as many seg-
ments as possible in this space. (The maximum number of segments that may be kept may be increased
by individual installations but is always at least as great as the number of jobs plus one.) If a shar-

able segment on the swapping space is currently unused, it is called a dormant segment. An idle seg~

ment is a sharable segment that is not used by users in core; however, at least one swapped~out user

must be using the segment or it would be a dormant segment.

Swapping disregards the grouping of similar units into file structures; therefore, swapping is done on a
unit basis rather than a file structure basis. The units for swapping are grouped in a sorted order, re-

ferred to as the active swapping list. The total virtual core, which the system can allocate to users,

is equal to the total swapping space preallocated on all units in the active swapping list. In comput-
ing virtual core, sharable segments count only once, and dormant segments do not count at all. The

monitor does not allow more virtual core to be granted than the system has capacity to handle.

When the system is started, the monitor reads the home blocks on all the units that it was generated to
handle. The monitor determines from the home blocks which units are members of the active swapping
list. This list may be changed at once~only time. The change does not require refreshing of the file

structures, as long as swapping space was preallocated on the units when they were refreshed. All of
the units with swapping space allocated need not appear in the active swapping list. For example: a
drum and disk pack system should have swapping space allocated on both drum and disk packs. Then,

if the drum becomes inoperable, the disk packs may be used for swapping without refreshing.

7-3

FOHITOR CALLS -608-

Users cannot proceed when virtual core is exhausted; therefore, FILSER is designed to handle a variety
of disks as swapping media. The system administrator allocates additional swapping space on slower
disks and virtually eliminates the possibility of exhausting virtual core; therefore, in periods of heavy
demand, swapping is slower for segments that must be swapped on the slower devices. It is also unde-
sirable to allow dormant segments to take up space on high-speed units. This forces either fragmenta=
tion on fast units or swapping on slow units; therefore, the allocation of swapping space is important

to overall system efficiency.

The swapping allocator is responsible for assigning space for the segment the swapper wants to swap
out. It must decide

a. Onto which unit to swap the segment.

b. Whether to fragment the unit if not enough contiguous space is available.

c. Whether to make room by deleting a dormant segment.
d. Whether to use a slower unit.

The units in the active swapping list are divided into swapping classes, usually according to device
speed. For cimplicity, the monitor assumes that all the units of class O are first followed by all the
units of class 1. Swapping classes are defined when the file structures are refreshed and may be

changed at once-only time.

When attempting to allocate space to swap out a low or high segment, the monitor performs the follow=
ing:
Step Procedure
1 The monitor looks for contiguous space on one of the units of the

first swapping class.

2 The monitor looks for noncontiguous space on one of the units in
the same class.

3 The monitor checks whether deleting one or more dormant segments
would yield enough contiguous or noncontiguous space.

If all of these measures fail, the monitor repeats the process on the next swapping class in the active
swapping list. If none of the classes yield enough space, the swapper begins again and deletes
enough dormant segments to fragment the segment across units and classes. When a deleted segment is

needed again, it is retrived from the storage device.

7-4

-603- MONITOR CALLS
7.3 DEVICE OPTIMIZATION

7.3.1 Concepts

Each 1/O operation on a unit consists of two steps: positioning and data transferring. To perform 1/O,
the unit must be positioned, unless it is already on a cylinder or is a non=positioning device. To posi-
tion a unit, the controller cannot be performing a data transfer. If the controller is engaged in a data
transfer, the positioning operation of moving the arm to the desired cylinder cannot begin until the

data transfer is complete.

The controller ensures that the arms have actually moved to the correct cylinder. This check is called
verification, and the time réquired is fixed by hardware. If verification fails, the controller interrupts
the processor, and the software recalibrates the positioner by moving it to a fixed place and beginning
again. When verification is complete, the controller reads the sector headers to find the proper sector
on which to perform the operation. This operation is called searching. Finally, the data is transferred
to or from the desired sectors. To understand the optimization, the transfer operation includes verifi-
cation, searching, and the actual transfer. The time from the initiation of the transfer operation to
the actual beginning of the transfer is called the latency time. The channel is busy with the control~

ler for the entire transfer time; therefore, it is important for the software to minimize the latency time

The FILSER code, the routines that queue disk requests and make optimization decisions, handles any
number of channels and controllers and up to eight units for each confroller.] Optimization is de~

signed fo keep:

a. As many channels as possible performing data transfers at the same time.

b. As many units positioning on all controllers, which are not already in position for
a ddta transfer.

Several constraints are imposed by the hardware. A channel can handle only one data transfer on one
control at a time. Furthermore, the control can handle a data transfer on only one of its units at a
time. However, the other units on the control can be positioning while a data transfer is taking place
provided the positioning commands were issued prior to the data transfer. Positioning requests for a
unit on a controller that is busy doing a data transfer for another of its units must be queued until the
data transfer is finished. When a positioning command is given to a unit through a controller, the
cﬁntroller is busy for only a few microseconds; therefore, the software can issue a number of position-
ing commands to different units as soon as a data transfer is comblefe. All units have only positioning
mechanism that reaches each point; therefore, only one positioning operation can be performed on a

-unit af the same time. All other positioning requests for a unit must be queued.

! Disk latency optimization depends on FTDOPT which is normally off in the DECsystem=1040. If
this switch is off, all requests are handled on a first~come first-served basis.

5.04 Monitor 7-5 January 1972

MONITOR CALLS -610-

The software keeps a state code in memory for each active file, unit, controller, and channel, to re-
member the status of the hardware. Reliability is increased because the software does not depend on

the status information of the hardware. The state of a unit is as follows:

I Idle; No positions or transfers waiting or being performed.

SW Seek Wait; Unit is waiting for control to become idle so that it can in-
itiate positioning (refer to Paragraph 6.2),

S Seek; Unit is positioning in response to a SEEK UUO; no transfer of
data follows.

PW Position Wait; Unit is waiting for control to become idle so that it can
initiate positioning.

P Position; Unit is positioning; transfer of data follows although not nec-
essarily on this controller.

™w Transfer Wait; Unit is in position and is waiting for the controller/
channel to become idle so that it can transfer data.

T Transfer; Unit is transferring; the controller and channel are busy per-
forming the operation.

Table 7-1 lists the possible states for files, units, controllers, and channels.

Table 7-1
Software States

FileT Unit Controller Channel
1 1 I I

SW

S
PW PW
P P
™ ™w
T T T T
TCannot be in § or SW state because SEEKs are ignored if the

unit is not idle.

7.3.2 Queuing Strategy

When an I/Q request for a unit is made by a user program because of an INPUT or OUTPUT UUO, one
of several things can happen at UUO level before control is returned to the buffer=strategy module in
UUOCON, which may, in turn, pass control back to the user without rescheduling. If an I/O request

requires positioning of the unit, either the request is added to the end of the position=-wait queue for

-611- MONITOR CALLS

the unit if the control or unit is busy, or the positioning is initiated immediately. If the request does
not require positioning, the data is transferred immediately. If the channel is busy, the request is
added to the end of the transfer-wait queue for the channel. The control gives the processor an inter-
rupt after each phase is completed. Optimization occurs at interrupt level when a position-done or

fransfer=-done interrupt occurs.

7.3.2.1 Position=Done Interrupt Optimization ~ The following action occurs only if a transfer-done
interrupt does not occur first. Data transfer is started on the unit unless the channel is busy transfer-
ring data for some other unit or control. If the channel is busy, the request goes to the end of the

transfer-wait queve for that channel.

7.3.2.2 Transfer~Done Interrupt Optimization = When o transfer-done interrupt occurs, all the
position~done interrupts inhibited during the data transfer are processed for the controller, and the re-
quests are placed at the end of the transfer-wait queue for the channel. All units on the controller
are then scanned. The requests in the position-wait queues on each unit are scanned to see the re-
quest nearest the current cyclinder. Positioning is begun on the unit of the selected request. All re-
quests in the transfer-wait queue for all units on the channel that caused the interrupt are then
scanned and the latency time is measured. The request with the shortest latency time is selected, and

the new transfer begins.

7.3.3 Fairness Considerations

When the system selects the best task to run, users making requests to distant parts of the disk may not

be serviced for a long time. The disk software is designed to make a fair decision for a fixed percent-
age of time. Every n decisions the disk software selects the request at the front of the position-wait or
transfer-wait queue and processes it, because that request has been waiting the longest. The value of

n is set to 10 (decimal) and may be changed by redefining symbols with MONGEN .

7.3.4 Channel Command Chaining

7.3.4.1 Buffered Mode - Disk accesses are reduced by using the chaining feature of the data chan-
nel. Prior to reading a block in buffered mode, the device independent routine checks to see if there
is another empty buffer, and if the next relative block within the file is a consecutive logical block
within the unit. If both checks are true, FILSER creates a command list to read two or more consecu-
tive blocks into scattered core buffers. Corresponding decisions are made when writing data in buf-
fered mode, and, if possible, two or more erarafe buffers are written in one operation. The command

chaining decision is not made when a request is put into a position-wait or transfer-wait queve;

7-7

MONITOR CALLS -612-

instead, it is postponed until the operation is performed, thus increasing the chances that the user
program will have more buffers available for input or output. The default size of the channel com=
mand list is 20 decimal words, and can be changed by redefining CCWMAX with MONGEN.

7.3.4.2 Unbuffered Mode - Unbuffered modes do not use channel chaining, and therefore, read or
write one command word ot a time. Each command word begins at the beginning of a 128-word block.
If a command word does not contain an even multiple of 128 words, the remaining words of the last

block are not read, if reading, and are written with zeroes, if writing.

7.4 MONITOR ERROR HANDLING

The monitor detects a number of errors. If a hardware error is detected, the monitor repeats the oper-
ation ten times. If the failure occurs eleven times in a row, it is classified as a hard error. If the op~

eration succeeds after failing one to ten times, it is a soft error.

7.4.1 Hardware Detected Errors

Hardware detected errors are classified either as device errort or as data errors. A device error indi-
cates a malfunction of the controller or channel. A data error indicates that the hardware parity did
not check or a search for a sector header either did not succeed or had bad parity (the user's data is
probably bad).

A device error sets the IO .DER bit in the channel status word, and a data error sets the IO .DTE bit.

Disk units may have imperfect surfaces; therefore, a special non=timesharing diagnostic program,
MAP, is provided to initially find all the bad blocks on a specified unit. The logical disk addresses of
any bad regions of one or more bad blocks are recorded in the bad allocation table (BAT) block on the
unit. The monitor allocates all storage for files; therefore, it uses the BAT block to avoid allocating
blocks that have previously proven bad. The MAP program writes two copies of the BAT block because
the BAT block might be destroyed. If the MAP program is not used, the monitor discovers the bad re-
gions when it tries fo use them and adds this information to the BAT block. However, the first user of

the bad region loses that part of his data.

A hard data error usually indicates a bad surface; therefore, the monitor never returns the bad region
to free storage. This results in the bad region causing an error only once. The bad unit and the logi-
cal disk address are stored in the retrieval information block (RIB) of the file when the file is CLOSEd
or RESET and the extent of the bad region is determined. The origin and length of the bad region is
stored in the bad allocation table (BAT) block.

5.04 Monitor 7-8 January 1972

-613- MONITOR CALLS

7.4.2 Software Detected Errors

The monitor makes a number of software checks on itself. [t checks the folded checksum (refer to Ap-
pendix H) computed for the first word of every group and stored in the retrieval pointer. The monitor
also checks for inconsistencies when comparing locations in the retrieval information block with ex-
pected values (filename, filename extension, project-programmer number, special code, logical block
number). The monitor checks for inconsistencies in the storage allocation table block when comparing
the number of free clusters expected with the number of zeroes. A checksum error or an inconsistency
error in the SAT block or RIB normally indicates that the monitor is reading the wrong block. When
these errors occur, the monitor sets the improper mode error bit (IO, IMP) in the user channel! status

word and returns control to the user program.

7.5 DIRECTORIES

7.5.1 Order of Filenames

In 5.02 and earlier monitors, the names of newly created files are appended to the directory if the di-
rectory does not contain more than 64 filenames. If the directory contains more than 64 filenames, a
second block is used for the new filenames. When filenames are deleted from the first block, entries
from the second block are not moved into the first. When additional new Ffiles are created, their.names
are added to the end of the first block of the directory instead of the end of the directory. Thus, the

order of the filenames in the directory may not be according to the date of creation.

In 5.03 and later monitors, if FTDUFD =1, files are always entered in the directory in the order in
which they are created. In the DECsystem=1040, FTDUFD is normally off indicating that the order of

filenames is the same as in the 5.02 and earlier monitors.

7.5.2 Directory Searches

Table space in core memory is used to reduce directory searching times. The JBTPPB table contains
pointers to a list of four-word blocks for the user's project=programmer number, one block for each file

structure on which the user has a UFD.

Four-word name and access blocks contain copies of LOOKUP information for recently-accessed files
and may reduce disk accesses to one directory read for a LOOKUP on a recently-active file. Recent

LOOKURP failures are also kept in core, but are deleted when space is needed.

7.6 PRIORITY INTERRUPT ROUTINES
7.6.1 Channel Interrupt Routines

Each of the seven PI channels has two abolute locations associated with it in memory: 40+2n and
41+42n, where n is a channel number (1-7). When an interrupt occurs on a channel, control is immed; -

ately transferred to the first of the two associated locations (unless an interrupt on a higher priority

5.05 Monitor 7-9 June 1972

MONITOR CALLS -614-

channel is being processed). For fast service of a single device, the first location contains either a
BLKI or BLKO instruction. For service of more than one device on the same channel, the first loca=
tion contains a JSR to location CHn in the appropriate channel interrupt routine. The JSR ensures

that the current state of the program counter is saved.

Each channel interrupt routine (mnemonic name, CHANn, where n is the channel number) consists of

three separate routines:
CHn: The contents of the program counter is saved in location ChHn.

CHn+1 contains a JRST to the first device service routine in
the interrupt chain.

SAVCHn: The routine to save the contents of a specified number of ac-
cumulators. It is called from the device service routines with
a JSR.

XITCHn: The routine to restore saved accumulators. Device service

routines exit to XITCHn with a POPJ PDP, if SAVCHn was
previously called.

7.6.2 Interrupt Chains

Each device routine contains a device interrupt routine DEVINT where DEV is the three-letter mne-
monic for the device concerned. This routine checks to determine whether an interrupt was caused by
device DEV. The interrupt chain of a given channel is a designation for the logical positioning of

each device interrupt routine associated with that channel.

The monitor flow of control on the interrupt level through a chain is illustrated below. Channel 5 is

used in the example.

Monitor Routine Relevant Code Explanation
Absolute 52/JSR CH5 ;control transferred here
Locations 53/ : ;on interrupt

)
CHANS5 CH5: 0 ;contents of PC saved here
JRST PTPINT ;control transfers to first
! ;link in interrupt chain
PTPINT: CONSO PTP,PTPDON ;if PDP done bit is
PTPSER JRST LPTINT ;on, PTP was cause

;of interrupt -
;otherwise, go to

) ;next device.
LPTINT: CONSO LPT,LPTLOV+LPTERR+LPTDON
LPTSER JEN @ CH5 ;three possible bits
. ;may indicate that

;LPT caused interrupt

7-10

-615- MONITOR CALLS
When a real=time device is added to the interrupt chain (CONSO skip chain) by a RTTRP UUO (refer
to Paragraph 3.8.1), the device is added to the front of the chain. After putting a real-time device
on Channel 5 in single mode (refer to Paragraph 3.8.1), the chain is as follows:

Monitor Routine Relevant Code Explanation
Absolute 52/JSR CH5 ;control transferred here
Locations 53/ ;on interrupt

}
CHANS5 CH5: 0 ;contents of PC saved here
JRST RDTINT ;control transfers to first
4 ;link in interrupt chain

RTDEV RTDINT: CONSO RTD,BITS
JRST PTPINT
JRST <context switcher and
dispatch for real-time
interrupts > ‘

PTPINT: CONSO PTP,PTPDON ;if PTP done bit is
PTPSER JRST LPTINT ;on, PTP was cause
. ;of interrupt -
;otherwise, go to
} ;next device.
LPTINT:CONSO LPT, LPTLOV+LPTERR+LPTDON

LPTSER JEN @ CH5 ;three possible bits
b ;may indicate that
;LPT caused interrupt

After putting a real-time device on channel 5 in normal block mode (refer to Paragraph 3.8.1), the

chain is as follows:

Monitor Routine Relevant Code Explanation
Absolute 52/JSR CH5 ;control transferred here
Locations 53/ ‘ ;on interrupt

!
CHANS CH5: 0 ;contents of PC saved here
JRST RTDINT :;control transfers to first
¢ ;link in interrupt chain

RTDEV RTDINT:CONSO RTD,BITS
JRST PTPINT
BLKI RTD,POINTR
JRST <context switcher >
JEN @ CH5

{continued on next page)

7-1

MORITOR CALLS ~616-

Monitor Routine Relevant Code Explanation
PTPINT: CONSO PTP,PTPDON ;if PTP done bit is
PTPSER JRST LPTINT ;on, PTP was cause
. ;of interrupt -
;otherwise, go to
i ;next device.
LPTINT:CONSO LPT, LPTLOV+LPTERR+LPTDON
LPTSER JEN @ CH5 ;three possible bits
. ;may indicate that

;LPT caused interrupt.

After putting a real-time device on channel 6 in fast block mode (vefer to Paragraph 3.8.1), the chain

is as follows:

Monitor Routine Relevant Code Explanation
Absolute 54/BLKO RTD,POINTR ;control transferred
Locations 55/JSR CH6 ;here on interrupt
CHANG6 CH6: 0 ;contents of PC saved

JRST <context switcher > ;control transfers to

;context switcher.

The exec mode trapping feature can be used with any of the standard forms of the RTTRP UUO: single
mode, normal block mode, and fast block mode. The following examples illustrate the chain when

used with each of the three modes.

Single Mode (Exec Mode)

Monitor Routine Relevant Code Explanation
Absolute ~ 52/JSRCH5 ;control transferred here
Locations 53/ , ;on interrupt

!
CHANS5 CH5: 0 ;contents of PC saved here
JRST RDTINT ;control transfers to first
¢ ;link in interrupt chain
RTDEV RTDINT: CONSO RTD, BITS
JRST PTPINT
JSR TRPADR
JEN @ CH5

(continued on next page)

7-12

-617- MONITOR CALLS
Single Mode (Exec Mode) (Cont)

Monitor Routine Rélevant Code Explanation
, PTPINT:CONSO PTP,PTPDON ;if PTP done bit is
PTPSER JRST LPTINT ;on, PTP was cause
. ;of interrupt -
. ;otherwise, go to
4 ;next device.
. LPTINT:CONSO LPT, LPTLOV+LPTERR+LPTDON
LPTSER JEN @ CH5 ;three possible bits
. ;may indicate that
. ‘ iLPT caused interrupt

Norral Block Mode (Exec Mode)

Monitor Routine Relevant Code EXplandffon
Absolute 52/JSR CH5 ;control transferred here
Locations 53/ ;on interrupt

N k N l)
CHANS5 ‘CH5: 0 ;contents of PC saved here
JRST RTDINT ;control transfers to first
L ;link in interrupt chain
RTDEV RTDINT:CONSO RTD, BITS

JRST PTPINT

3LKI RTD,POINTR

SR TRPADR
JEN @ CH5
: PDPINT: CONSO PTP,PTPDON ;if PTP done bit is
PTPSER JRST LPTINT - ;on, PDP was cause
. ;of interrupt -
. ;otherwise, go to
i ;next device.
LPTINT:CONSO LPT,LPTLOV+LPTERR+LPTDON ,
LPTSER JEN @ CH5 ithree possible bits
. ;may indicate that

;LPT caused interrupt.

Fast Block Mode (Exec Mode)

Monitor Routine Relevant Code Explanation
Absolute 54/BLKO RTD,POINTR :;control transferred here
Locations 55/JSR CHé6 ‘ ;on interrupt

1

(continued on next page)

7-13

MONITOR CALLS -618-
Fast Block Mode (Exec Mode) (Cont)

Monitor Routine Relevent Code Explanation
CHANGé CHé6: 0 ;contents of PC saved here
JRST RDTINT ;control transfers to first
4 ;link in interrupt chain
RTDEV RTDINT: JSR TRPADR
JEN @ CHé

7.7 MEMORY PARITY ERROR ANALYSIS, REPORTING, AND RECOVERY]

The memory parity error analysis and recovery software allows the machine to run with PARITY STOP
off, thereby gaining increased CPU speed (10% more on the KA10 processor and 100% more on the
K110 processor), better error reporting, and improved failsoft recovery. The analysis software considers
fts goals to be
1) Never jeopardize the system or the user program by allowing if to continue with bad
data from memory.

2) Always maintain the running of the system with the maximum number of users as possible
as long as there is no possibility of violating the integrity of the system or the user
program.

In either case, complete information is printed for the operator so that he can reconfigure the memories
and reload the system when necessary. Additional information is recorded on the disk by DAEMON

for field service in order that the cause of the error can be located and fixed.

7.7.1 Description of Analysis

The error analysis software differentiates between user mode and executive mode when a parity error
occurs. If the processor is executing in user mode and the user is enabled for parity trapping (refer
to Paragraph 3.1.3.1), control is transferred to the user's routine, Otherwise, the execution of the

user's job is stopped and the user receives the error messages

PERROR IN JOB n
?MEM PAR ERR AT USER PC nnnnnn

Simultaneously, a request is made for the lowest priority channel routine to sweep through core in
order to locate all words with bad memory parity, in case there is more than one word. During the
sweep, all locations with bad parity are rewritten, so that subsequent references usually will not re-

ceive a parity error. After the sweep of core is completed, all jobs (including the current job) with

]This feature depends on FTMEMPAR which is nor}nq||y off in the DECsystem=1040,

5.05 Monitor 7-14 June 1972

-619- MONITOR CALLS

parity errors in their low segments receive the above ERROR IN JOB message. All jobs with errors

in their high segments are swopped out if the high segment has the hardware user-mode write protect
bit set, since a copy exists on the swapping space. In this case recovery occurs for all jobs sharing

the high segment except for the currently running job. If the hiéh segment is not write protected for

a job (so that there is no copy on the disk), if the ‘high segment is locked, or if one of the sharing
job's low segment is locked, oll jobs sharing the high segment are stopped and receive an error message
since no recovery is possible. In addition, the segment name is cleared so that new users will receive

a new copy from the file system on a R, RUN, or GET command or a RUN or GETSEG UUO.

If the processor is in executive mode when the error occurs, the analysis procedure depends on the

value of the PC., Two conditions are recognized as not being harmful:

1) a parity error during the Pl 7 sweep of memory.

2) a parity error during the storing of data words around the location of a channel-detected
memory parity error, :

If the PC is at the BLT instruction which moves user core to facilitate core allocation, the bad word
is determined from the BLT pointer. If the pointer is in the protected part of the job data area, this
area is cleared so the monitor will not attempt to use the bad words, since they contain executive
mode addresses. In either case, the user's job is stopped and an error message is 'oufput to the user,
In addition, the memory sweep procedure is invoked to find additional words with bad parity.

If the PC is an executive mode location and there are no Pls in progress, the UUO is run to completion,
the current user receives an error message, and the memory sweep procedure is invoked. If the sweep
routine detects bad parity in an address within the monitor or detects no words with bad parity (because
they have been rewritten on a read-pause=write instruction), the routine prints on the CTY (instead

of OPR), ‘

PEXEC PARITY HALT
?n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CPUn FOR JOBx [programl

and then HALTs. This message is printed without using the interrupt system in order to maximize the
chances of the message being output, Although the operator can attempt to continue the system by
pushing the CONT conso!|e switch, this is not a recommended operator procedure (e.g., the monitor
may have incorrect data thereby causing more damage). (Refer to MEMPAR in Notebook 8 of the
DECsystem=10 Software Notebooks for complete operator instructions on memory parity error recovery.)

If a Pl is in progress when the parity error is detected, a sweep of core is made at the high priority
APR Pi level. If a word with bad parity is discovered in the monitor area or no parity errors are
found, the monitor prints the above mésscge to the operator and halts. The finding of words without
bad parity is considered serious because the read=-pause=write class instructions rewrite memory before
the parity inferrupt occurs so that the parity error is usually corrected. In this case, the operator re-

ceives the message

?0 MEM PAR ERRORS

5.06 Monitor 7-15 March 1973

MONITOR CALLS -620-

On all recoverable or non-recoverable parity errors, the operator receives on either OPR or CTY a

message similar to the following:
n MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CPUn for JOBx [program]

preceded by 5 bells. This alerts him to potential problems and gives him the necessary information for
reconfiguring the memories. In addition, the operator is notified of the jobs that have been stopped
in case they are crucial to the operation of the system. If they are, he can take appropriate action

to restart them,

If the DF10 channel detects a memory parity error while reading for file 1/O from memory, the user's
job is not stopped and the user does not receive an error message. Instead the error is treated as a

device error and the 10, DER error bit is set. However, the operator receives the message
n MEM PAR ERRS FROM acaaaaa TO bbbbbb ON CHANNEL n

where n is the logical channel number starting with the fastest device as defined by MONGEN. For
example, the fastest disk unit is on the first channel and the magnetic tape TM10B control is on the last

channel.

If the DF10 channel detects a memory parity error while swapping a job out of core, the user's job is

stopped and the user receives the following error message:

?ERROR IN JOB n
?SWAP OUT CHN MEM PAR ERR

The operator receives the message

?m MEM PAR ERRS FROM aaaaaa TO bbbbbb ON CHANNEL n FOR JOB x [prog]

If the error is detected in a high segment on the swap out, all jobs using the high segment receive the
error message. The high segment name is cleared so that new users will receive a new copy of the

segment from the file system.
On all parity errors detected by the processors or the channels, DAEMON is awakened to correct the

information stored by the monitor's analysis routine. DAEMON writes this information in the hardware

log file on the disk for the use of field service in diagnosing and solving the problem.

5.05 Monitor 7-16 _ June 1972

-621- MONITOR CALLS

APPENDIX A
DECTAPE COMPATIBILITY
BETWEEN DEC COMPUTERS

The following chart illustrates the ability to read the indicated tapes with a suitable program. In
general, the standard software of machines of one family will not read tapes written by the standard

software of machines of a different family.

The standard tapes of the PDP-1, PDP-4, PDP-6, PDP-7, PDP-9, PDP-10, PDP-11, and PDP-15
consist of 578 blocks of 128 36=bit words (256 18-bit words). The standard tapes of the PDP-15 and
the PDP-8 family consist of 4096 blocks of 129 12-bit words (43 36-bit words).

-622-

MONITOR CALLS

*UO140BIIP 95I9A31 B4 UL

BulAOW B|IYM LDHLIM 21D YOIYM SHO0|q Ul JOPIO 9519431 U} DJOP SBJLIM BIDMYOS G- PUD 6~ddd 41 €
*9U0Z pud. 3y

woly BuIyDIDaS LUBYM 3D0|q 45D} IO §S11§ BY4 Puly JOUUDD (sauiyopw Jayso Ajgeqosd pup) (| PUP 9~dGd Yl °Z

*adDy)3Q Ysim ajqupdwonut st yoiym adojy N sasn Ajuo DN ISP *2dpH3Qq 2sn Jouund §/8-dad C L SIION
*3|GO}IPAD UOYDWIOJUL ON =7
*g~DNI7 40 Z1=-dad ue Buiglam s10jaq aujyopw
Joyjoup UC payPWIoY 3q ysnw sadoy)3Qg " aqispdwosul st yoiym jowsoy adoHN [T Ul 24 sadoy g-ONIT
puo Z|=d@d PIOPUD)S. °jouloy adDi)N]T WO PUD Of 4IDAUCD O} JSiXa aiompipy (puoydo pup woibosyy = 3
*Buipoaa Joyo pup Buliiim 94049 2UOP 3 §sNw sUCKD|ND|DD faul| ul
WASHOBYD 10-9A1SN[OXS By Buyp|NDDD 10§ MOS 00 SI p=dd 4PY+ 4doxa (D) Uy sp suop g A|gpqaud oy =
cwn$HPays pewwpiboxd yymauopaquod = D
*SJOLID WNSHOIYD PR3O IPUl Burouby 3 x_:o suopaquo) = §
feuopaquo) = Y AN
v E| A4 v v 3 A4 v v 2 \4 \4 a Z Gl-dad
3 \4 3 3 3 A4 El El E] E] 1 3 3 z 34-2Lo1
® 21-dad
v 3 v v v 3 v v \4 o] g A4 a z Li-dad
v 3 v v v 3 v v v 2 v v a z 0l-dad
v El \4 v v 3 v v v 2 v \4 a z 6-dad
E| v 3 3 3 v E| E] 3 3 9 3 3 z Ja4laAuTy
? 8-DNI1
v 3 v v v El v v v b g v a Z 1/8~dad
v 3 v v v 3 v A4 v 2 2 v a 4 1'1/8-dad
v 3 v \4 v 3 v v A4 2 4 v a Z 8-dad
2 3 J o] o] E] o] b 2 v o) 2 v 4 £-dQd
v 3 v \4 v 3 \4 \4 v o] \4 v a 4 9-ddd
v 3 v v \4 3 v v \4 o] 9 v a z $-ddd
a 3 a a a 3 a a a \4 a a v Z ¥-dQd
z 4 z z 4 z Z z z 4 4 z z v t~dad
aAllqg
95NL sdodNIT 96Nl
‘ssnL 9enl puy ‘ssnl 9enl 9snl oSNt 9SNL 9GNL 9GnlL
96NL‘SSNL 4=Zi01| 9snl 95NL gsNL 'GSNL| o4daAu) Puy | 96nL‘SSnL | ‘S6NLYSSS |“SSNLY6SS | SSNLISSS |SENL SSS |“GSNL “SSS | “SSnL “SSS
puy puy Puy Puy puy [puoido| 38QL puy puy puy puy puy puy puy
S101'2001 Lot | Lol olat 2001 PuyY ‘d-80D1 {80017 1001 100L°255| V-05§ 899 (444 0SS V065055
Sl-dad Zl~dad | 1i~dad 0l-dad 6-dad | 8-DNIT |3/8-d0d | 1'1/8~dQd 8-ddd £~dQd 9-dad G-dQd ¥-dad 1-dad

A=2

-623- MONITOR CALLS

APPENDIXB
WRITING REENTRANT USER PROGRAMS

B.1 DEFINING VARIABLES AND ARRAYS

The LOADER simplification makes it some\&hof more difficult fo define variables and arrays. The easiest
way to define variables and arrays, so the resulting relocatable binary can be loaded on a one- or two-
segment machine, is to put them all in a separate subprogram as internal global symbols using Block 1
and Block N pseudo=-ops. All other subprograms refer to this data as external global locations. Most
reentrant programs have at least two subprograms, one for the definition of low segment locations and
one for instructions and constants for the high segment. (This last subprogram must have either a HISEG
pseudo-op or a TWOSEG jaseudo-op followed by RELOC 400000.) Programs are self~initializing; there-
fore, they clear the low segment when they are started although the monitor clears core when it assigns

it to a user.

Block 1 and Block N pseudo=ops cause the LOADER to leave indications in the job data area (LH of
JOBCOR) so a monitor SAVE command will not write the low segment. This is advantageous in sharable
programs for two reasons. It reduces the number of files in small DECi’ape directories (the maximum is
22 files). Also, 1/O is accomplished only on the first user's GET that initializes the high segment,

but not on any subsequent user's GETs for either the high or low segment.

B.2 EXAMPLE OF TWO-SEGMENT REENTRANT PROGRAM
LOW SEGMENT SUBPROGRAM:

TITLE LOW - EXAMPLE OF LGW SEGMENT SUE-PKOGKAM

JOBVER=137
LOC JOBVER
3 3VERS TON3
RELOC 0
INTERNAL LOWBEG,DATAsDATA1>DATAZ » TARLE » TABLE 1
LOWBEG :
DATA 3 BLOCK 1

DATAL @ BLOCK 1
DATAZ : BLOCK 1

TARBLE ¢ BLOCK 19

TABELE1: BLOCK 1@

LOWEND -« -1 SLAST LOCATION TO BE CLEARED
END :

B-1

MONITOR CALLS -624-

HIGH SEGVMENT SUBPRCGRAM:

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB-PROGRAM
HISEG 50k TWOSEG
SRELOC 40090%
EXTERN LCWBEG,LCWEND

T=1
BFEGIN: SETZM™ LGWREG : JCLEAK DATA AREA
MOVET TLLOWRBECG+1
HKLT TsLOWBEG
BLT Ts>LCWEND
MOYE T»DATAT ;COMPUTE
ADDIT 1s1

MCVEM T, DATAZ

FND HEGIN 3STAKTING ADDKESS

B.3 CONSTANT DATA

Some reentrant programs require certain locations in the low segment to contain constant data, which
does not change during execution. The initialization of this data happens only once after each GET,
instead of aofter each START; therefore, programmers are tempted to place these constants in the sub-
program that contains the definition of the variable data locations. This action requires the SAVE
command to write the constants out and the GET command to load the constants again; therefore, the
constant data should be moved by the programs from the high segment to the low segment when the rest
of the low segment is being initialized. The exception is when the amount of code and constants in
the high segment needed to initialize the low segment constants take up too much room in the high
segment. In this case, it is best to have 1/O in the low segment on each GET. A rule fo follow in
deciding between this high segment core space and the low segment GET I/O time is: put the code
in the high segment.if it does not put the high segment over the next 1K boundary .

B.4 SINGLE SOURCE FILE

A second way of writing single save file reentrant programs is to have a single source file instead of
two separate ones. This is more convenient, although it involves conditional assembly and, therefore,
produces two different relocatable binaries. A number of system programs have been written this way.
The idea is to have a conditional switch which is 1 if a reentrant assembly and 0 if a non-reentrant

assembly .

MONITOR CALLS

-625-

ANIWOAS *HOIKW NI SIVHALIY ind!
© AN3W93S -H9IH 0L wavat

93¢ anN3

111
<007134>3uNd NI

Y34y Y1vd 40 QN3¢ 13VLIYQ
4 8270+ dD078 :378Yl
i . 1 %iong IR AR A1]
dfildviS NO .QI¥¥Y340 NOILvo07 Lsuidi 18Y1VQ
INIWO3e MOT 04 ¥ILNNOD NOILVD0I3M L3S <£907134>734nd N4t
[
L]
No1ivaod 1SV 0L dnt f«3viva‘e 114
NOT93Y vivd ¥V3I1D MONS aviva W2L3s
Cyeavivottavival‘o JAOK

0/ Y 13S3Nd

L1383y 1938

NOTLVI013Y IN3W93S HIIH 340 1yViS{ <¢Poogay 2073u>!3dAd NI

- SAN3IW93S oML 123dX3 0L ¥3AV0T 973t
GINT 430NN 3¥nd 41 ANVHINIIY 3WNSSY!

YIBWNN NOTSHIAL

<¢93SOML> *3uNd N4l
€T=23Und>*34Nd 430N41

34A4H3AE0F NYILNI

pelolictY
2eg¢ dX3

<.e1=43A80F> 207
2OBA= WYHOOHd INYHINISH 32MA0S 3NO OW3IQ « Ow3Q 3711l

T 39vd TLeddy=-2 BSipT $0'by OHOVW ZROA- WVHOOMd LNYYLINIIY

, 83720y
, 122208

892206
1202300

+Tecoee

w@@&&Qv
+62000%
wV&&m&v
802328
L236983
LERBY

poea8e

2L00ge

03sN 3403 Me

beepz@ S1 ¥V3iW8 Wyxoudd

81921y S1 »v3yg *93s-1H

031031330 syoyu3 ON

e
(2BAVBR S LCCRBEY %
L2383y 2%
L3632y T2
re
vi2ene 62
4 ,£72428 g2
Razzed ,mawmma L2
Ed0egd L TEEOA0 92
JTH8028 G2
1BACBAE be
(U Y2E &8
2
JRERE88 Te
Be
gunege ,9473%F 6%
C2Ezed .03y 87
Pags08 JYaEday L1
gUr16e ,£8428pF 67
PRCzEe ,2204%y 61
peizaz . i
BRELY2 £7
2T

1BECEHY TT
LG000Y g%

6

g

z

9

iBBE3A6 &

gcedeen (L1280 ¢

Letede ¢

4

T

_ ow3a
30¥NCS 3IND 0W3A - C0w3Q

B-3

-627- MONITOR CALLS
APPENDIX C
CARD CODES
Table C-1
ASCII Card Codes
ASCII Octcl Card ASCII Octal Card

Character Code Punches Character Code Punches
NULL 00 12-0~-9-8-1 @ 100 8-4
CTRL=-A 01 12-9-1 A 101 12-1
CTRL-B 02 12-9-2 B 102 12-2
CTRL=-C * 03 12-9-3 C 103 12-3
CTRL-D 04 9-7 D 104 12-4
CTRL-E 05 0-9-8-5 E 105 12-5
CTRL-F 06 0-9-8-6 F 106 12-6
CTRL=-G 07 0-9-8-7 G 107 12-7
CTRL-H 10 11-9=6 H 110 12-8
TAB 1 12-9-5 I 111 12-9
LF 12 0-9-5 J 112 11=1
\'4] 13 12-9-8-3 K 113 11=2
FF 14 12-9-8-4 L 114 11-3
CR 15 12-9=8-5 M 115 11-4
CTRL=-N 16 12-9=8-6 N 116 11-5
CTRL-O 17 12-9-8-7 (@) 117 11-6
CTRL-P 20 12=11-9=8-1 P 120 1-7
CTRL-Q 21 11-9-1 Q 121 11-8
CTRL-R 22 11-9-2 R 122 11=9
CTRL-S 23 11-9-3 S 123 0-2
CTRL-T 24 9=8-4 T 124 0-3
CTRL-U 25 9-8-5 U 125 0-4
CTRL~V 26 9=2 \" 126 0-5
CTRL-W 27 0-9-6 w 127 0-6
CTRL~X 30 11-9-8 X 130 0-7
CTRL-Y 31 11~9-8-1 Y 131 0-8
CTRL-Z 32 9-8-7 A 132 0-9
ESCAPE 33 0-9-7 1 133 12-8-2
CTRL-\ 34 11-9-8-4 \ 134 0-8-2
CTRL-] 35 11=-9-8-5] 135 11-8-2
CTRL~t 36 11-9-8-6 tA 136 11-8-7
CTRL-~ 37 11-9-8-7 - 137 0-8-5
SPACE 40 NT 140 8-1
NOTE: The ASCII character ESCAPE (octal 33) is also CTRL~{ on a terminal.

C-1

MONITOR CALLS

-628-

Table C-1 (Cont)
ASCII Card Codes

ASCII Octal Card ASCII Octal Card
Character Code Punches Character Code Punches
| 41 12~8-7 a 141 12-0-1
" 42 8-7 b 142 12-0-2
43 8-3 c 143 12-0-3
$ 44 11-8-3 d 144 12-0-4
% 45 0-8-4 e 145 12-0-5
& 46 12 f 146 12-0-6
' 47 8-5 g 147 12-0-7
(50 12-8-5 h 150 12-0-8
) 51 11-8-5 i 151 12-0-9
* 52 11-8-4 i 152 12-11-1
+ 53 12-8-6 k 153 12-11-2
, 54 0-8-3 | 154 12-11-3
- 55 11 m 155 12-11-4
. 56 12-8-3 n 156 12-11-5
/ 57 0-1 ° 157 12-11-6
0 60 0 p 160 12-11-7
1 61 1 q 161 12-11-8
2 62 2 r 162 12-11-9
3 63 3 s 163 11-0-2
4 64 4 t 164 11-0-3
5 65 5 u 165 11-0-4
6 66 6 v 166 11-0-5
7 67 7 w 167 11-0~6
8 70 8 x 170 11-0-7
9 71 9 y 171 11-0-8
: 72 8~2 z 172 11-0-9
; 73 11-8-6 { 173 12-0
< 74 12-8-4 | 174 12-11
= 75 8-6 } 175 11-0
> 76 0-8-6 ~ 176 11-0-1
? 77 0-8-7 DEL 177 12-9-7

NOTE: The ASCII characters } and ~(octal 175 and 176) are treated by the monitor as
ALT-MODE and are often considered the same as ESCAPE.

-629-

Toble C-2
DEC-029 Card Codes

MONITOR CALLS

Card

Octal Octal Card
Character Code Punches Character Code Punches
SPACE 40 @ 100 8-4
| 41 11-8-2 A 101 12-1
" 42 8-7 B 102 12-2
43 8-3 C 103 12-3
$ 44 11-8-3 D 104 12-4
% 45 0-8-4 E 105 12-5
& 46 12 F 106 12-6
! 47 8-5 - G 107 12-7
(50 12-8-5 H 110 12-8
) 51 11-8-5 I m 12-9
* 52 11-8-4 J 112 11-1
+ 53 12-8=6 K 113 11-2
’ 54 0-8-3 L 114 11-3
- 55 1 M 115 11-4
. 56 12-8-3 N 116 11-5
/ 57 0-1 O 117 11=-6
0 60 0 P 120 11-7
1 61 1 Q 121 11-8
-2 62 2 R 122 11-9
3 63 3 °S 123 0-2
4 64 4 T 124 0-3
5 65 5 u 125 0-4
6 66 6 \% 126 0-5
7 67 7 W 127 0-6
8 70 8 X 130 0-7
9 71 9 Y 131 0-8
: 72 8-2 VA 132 - 0-9
; 73 11-8-6 [133 12-8-2
< 74 12-8-4 \ 134 11-8-7
= 75 8-6] 135 0-8-2
> 76 0-8-6 tA 136 12-8-7
? 77 0-8-7 - 137 0-8-5

I

NOTE: Octal codes 0-37 and 140~177 are the same punches as ASCII,

MONITOR CALLS

-630-

Table C-3

DEC~026 Card Codes

Octal Card Octal Card
Character Code Punches Character Code Punches
SPACE 40 @ 100 8-4
l 41 12-8-7 A 101 12-1
" 42 0-8-5 B 102 12-2
43 0-8-6 C 103 12-3
$ 44 11-8-3 D 104 12-4
% 45 0-8-7 E 105 12-5
& 46 11-8-7 F 106 126
! 47 8-6 G 107 12-7
(50 0-8-4 H 110 12-8
) 51 12-8-4 I m 12-9
* 52 11-8-4 J 112 11-1
+ 53 12 K 113 11-2
’ 54 0-8-3 L 114 11-3
- 55 1 M 115 11-4
. 56 12-8-3 N 116 11-5
/ 57 0-1 (o] 17 11-6
0 60 0 p 120 11-7
1 61 1 Q 121 11-8
2 62 2 R 122 11=2
3 63 3 S 123 0-2
4 64 4 T 124 0-3
5 65 5 U 125 0-4
6 66 6 \% 126 0-5
7 67 7 w 127 0-6
8 70 8 X 130 0-7
9 71 9 Y 131 0-8
: 72 11-8-2/11-0 Z 132 0-9
; 73 0-8-2 [133 11-8-5
< 74 12-8-6 \ 134 8-7
= 75 8-3] 135 12-8-5
> 76 11-8-6 tA 136 8-5
? 77 12-8-2/12-0 - 137 8-2

NOTE: Octal codes 0-37 and 140-177 are the same punches as ASCII.

c-4

MONITOR CALLS

-631-

S1S139
S1S13s sa
S1S13O
S1s13s sia
S1S139
SISL3S ¥Ad
S1S139
S1S13s d4ad

uolouUny 921AS(]

abipn
aig| oor| *oMd
QALY jo| oy |Astind Joug| o0
o O_ pug| >oolg qs1Q|Y24pag | alIpm
junon
piop | 4nduj $pooy
apop bipQg Jesn | oulg a3 1M
EINFEV
o/l
SpPOoW pibQg
uoyng Joug
4013 wns young
9AMDY | PIpD 2P9YD [passiyy 6~£
SPOW o/1| 403 Awuig| ojpg| oN
induj pBowy, ,
apow bipQg JuAg jiedng
payonal
2013
SAlOY uaym Joug
spoy O_ pipQg younyg
uno) paoo .
PIOM 620
Spow piprQ 195y J3a
GE| ¥¢ | €€ | ¢ 1€ 0e 6Z 8¢ £Z 9C o4 1A £€e 44 1z 0c 6l 8L
silg snjpbyg ad1AaQ
1-a ®|9el
L]

March 1973

D-1

-632-

MONITOR CALLS

S1S139
SIS13S ¥ld
S1S139
S1S13as did
S1S139
SISi3s 11d
S1S139
S1S13S VIW
S1S139
S1S13S 1d1
S1S139
sisi3s vid
uo1§ouNn 4 231A3(]

adoj JoLg sj9d
BALDY jo wns IEOUC_
o/1} pu3 F1P3YD 2oid
ynduj
apowy biog suhg
N TE
juno? o/
PIOMm
apow pyoQ EE-10
0>m.—0<
o/l
junon
PIOM
apow bipQ 180
uoyy
Buy -p1adQy
-putmay] sjidf Buoy [eB2y)
julod juiog|aanoy jo oo} | somgjpessiyy| 207
- puil peo| /1| Pu3jpioday| Ainog| pipQl B4m
junon) Aoy
piop | nduj | Ayoy uaA]
spow pipQg Josn | oukg oN| Ansuegadoj | ojtap
SAlDY
o/l
junon spoay
pIop wiog
apow pioQg 1950 ssaaddng
obp
Siid) ool
TR jo| coN| doumg|pessiy| 3007
O/1| Pu3| yoig| Aiog| pipa| d4LM
epow va&
dungi O
Junod painj| pio
piop | 4nduj | -onystpupyg
sapoy pipQg 195 | ouhg| -uoN |-1weg
GE | Y€ | €| ¢ L€ 0¢ 6 8¢ L 9 14 144 154 (44 1c 0¢ 6l 8l
$}1g SNIDJS 3d1A8(]
——— {4uod) |-q 2I9°L

March 1973

D-2

MOHITOR CALLS

-633_

*41q snypojs Yoo3 Jo uoiydisosap 845|dwod Y4 104 9 pup G sisydoyn) Ul SUOIOIS B31ASP ayplidoiddp 9y} 0} 4040y :g BJON

‘0 @N|PA By} dADY SADMID PINOYS §41G Pasnup) 37 ajoN

"(SLS13D) Jopuow ayy Aq ges Aj|owiou asoyy. woly 4ounsip 0 §1S13S 40 ‘NIJO ‘LINI Uo woiboid wsn 9y Aq 45 A]|pwlou siiq
asoy} moys o} pajoindas i oM} oY) “uaaemoy {(Ge-8l) sHq [|P uingas Abw ONN SLSLIO pup £ 419 4dooxa sy1q [1o 4s Abw O SLSIIS L 240N

S1S139

SIS13S ALl
S1S139 .
S1S13S Ald

UOI}OUN] 3D1AS(Q

yndui
spow
obow
o}
pou
jso7 | an Jdna -Bissy|.
SINRE Joyop Hpipg | -sopup| soN
o/1 =y foyog | sJoubf| ALl
19g ssaid
junod 4940p | ssaud | ~dng
piop | 4ndupf-soy | —dng | ¢ jof
apoyy ooQ dosM) | SUAS ' |n4| oyo3 | oyog
abio
- |esuods | 00|
SPOW| =9y [HPM oAy “ON
Jojtuow| ALL| ALd] O/1 $0|g
Spoy bipQg
GE| vE | e | 8. Le o€ 6 | 8C Lz 9T G¢ | ¥T €C 4 0¢ 6l 8l
s}ig snJoig IolAaQg
(o)) [-a 8j9eL
R]

March 1973

-635- MONITOR CALLS

APPENDIX E
ERROR CODES

The error codes in Table E-1 are returned in AC on RUN and GETSEG UUOs, in location E + 1 on
4-word argument blocks of LOOKUP, ENTER, and RENAME UUOs, and in the right half of location
E + 3 on extended LOOKUP, ENTER, and RENAME UUOs. The codes are defined in the S.MAC

monitor file;

Table E-1
Error Codes
Symbol Code - Explanation
ERFNF% 0 File not found, illegal filename (0,*), filenames do not
match (UPDATE), or RENAME ofter a LOOKUP failed.
ERIPP% 1 UFD does not exist on specified file structures. (Incor-
rect project-programmer number.)
ERPRT% 2 Protection failure or directory full on DTA,
ERFBM% 3 File being modified (ENTER, RENAME),
ERAEF% - 4 Already existing filename (RENAME) or different filename
(ENTER aofter LOOKUP).
ERISU% 5 Illegal sequence of UUOs (RENAME with neither LOOKUP
. nor ENTER, or LOOKUP after ENTER).
ERTRN% 6 a. Tronsmissién, device, or data error (RUN, GETSEG
only). .

b. Hardware-detected device or data error detected
while reading the UFD RIB or UFD data block.

c. Software-detected data inconsistency error detected
while reading the UFD RIB or file RIB,

ERNSF% 7 Not a saved file (RUN, GETSEG only).

ERNEC% 10 Not enough core (RUN, GETSEG only).

ERDNA% 1 Device not available (RUN, GETSEG only).

ERNSD% 12 No such device (RUN, GETSEG only).

ERILU% 13 Illegal UUO (GETSEG only). No two-register relocation
capability.

(continued on next page)

5.04 Monitor : E-1 ’ January 1972

MONITOR CALLS -636-

Table E-1 (Cont)
Error Codes

Symbol Code Explanation

ERNRM% 14 No room on this file structure or quota exceeded (over-
drawn quota nof considered).

ERWLK% 15 Write=lock error. Cannot write on file structure.

ERNET% 16 Not enough table space in free core of monitor.

ERPOA% 17 Partial allocation only.

ERBNF% 20 Block not free on allocated position.

ERCSD% 21 Cannot supersede an existing directory (ENTER).

ERDNE% 22 Cannot delete a non-empty directory (RENAME),

ERSNF% 23 Sub-directory not found (some SFD in the specified path
was not found).

ERSLE% 24 Search list empty (LOOKUP or ENTER was performed on
generic device DSK and the search list is empty).

ERLVL% 25 Cannot create a SFD nested deeper than the maximum
allowed level of nesting.

ERNCE% 26 No file structure in the job's search list has both the
no-create bit and the write-lock bit equal to zero and
has the UFD or SFD specified by the default or explicit
path (ENTER on generic device DSK only).

ERSNS% 27 GETSEG from a locked low segment to a high segment
which is not a dormant, active, or idle segment. (Seg-
ment not on the swapping space.) '

5.04 Monitor E-2 January 1972

-637- MONITOR CALLS

APPENDIX F
COMPARISON OF DISK-LIKE DEVICES

Table F-1

Disk Devices
Device Name Fixed-Head Disk Drum Removable Disk Pack(s)
Manufacturer Burroughs Bryant ‘ Memorex, ISS
Device Type RD10 RM10B RPO2 RPO3
Controller RC10 RC10 RP10 RP10
Maximum Disks per 4 4 8 8
Controller : ‘
Maximum Controllers 2 2 3 3
per System \
Hardware Mnemonic DSK DSK DPC DPC
Software Mnemonic FHA, FHB FHA, FHB DPA, DPB, DPA, DPB,
DPC DPC
Capacity Minimum .5 .345 5.2 10.4
(X10**6 words)
Maximum (1 control) 2 1.38 41.4 82.8
(X10**6 words)
Blocks/Track 20 30 10 10
Blocks/Cylinder - 4000 2700 200 400
Blocks/Unit 4000 2700 40000 80000
Rotational 1800 3600 2400 2400
Speed (rpm)
Revolution 33 17 25 25
Time (msec)
128-Word Blocks/ 20 v 30 10 . 10
Revolution
Transfer Rate ps word 13 4.3 15 15

F=1 March 1973

MONITOR CALLS

-638-

Table F~1 (Cont)
Disk Devices

Device Name Fixed-Head Disk Drum Removable Disk Pack(s)
Manufacturer Burroughs Bryant Memorex, ISS
Device Type RD10 RM108B RPO2 RPO3
Controller RC10 RC10 RP1Q RP10
Seek Time
Average (msec) 0 0 50 50
Minimum (msec) 0 0 20 20
Maximum (msec) 0 0 80 80
Swapping Times (msec) (includes 30 ms verify)
1K 25 13 84 84
4K 73 27 144 144
10K 154 54 - 256 264
25K 358 120 589 589

NOTE

Although the Bryant drum is a drum in every sense, its soft-
ware mnemonic is still FHA because it is connected to the
system through the fixed head disk control.

F-2

March 1973

APPENDIX G

-639-

MAGNETIC TAPE CODES

MONITOR CALLS

Table G-1
ASCII Codes and BCD Equivalents
Character Character
ASCII Symbol BCD ASCII Symbol BCD
040 blank 20 100 @ 57
041] 52 101 A 61
042 " 17 102 B 62
043 # 32 103 C 63
044 $ 53 104 D 64
045 % 77 105 E 65
046 & 35 106 F 66
047) 14 107 G 67
050 (34 110 H 70
1M I 71
051) 74
112 J 41
052 * 54
113 K 42
053 + 60 :
; 114 L 43
054 33 .
’ 115 M 44
055 - 40
116 N 45
056 y 73 117 O 46
057 / 21 _ .
060 g 12 120 P 47
, . 121 Q 50
061 1 01
122 R 51
062 2 02
123 S 22
063 3 03
g 124 T 23
064 4 04
‘ 125 U 24
065 5 05 ;
126 v 25
066 6 06 127 W 26
067 7 07 :
070 8 16 130 X 27
131 Y 30
071 9 11
- 132 z 31
072 : 15
133 [75
073 ; 56
. 134 \ 36t
074 < 76
. 135 1 55
075 5 13 o
136 t illegal
076 > 16 137 ! o
077 ? 72 :
t Code used for all illegal codes.

MONITOR CALLS -640-

When converting from ASCII to BCD, the following is done for ASCII codes 000~037 and 140-177:

000 ignored ,

001-010 same as ASCII 134.
on same as ASCII 040,
012-014 constitutes end of line.
015 ignored.

016~031 same as ASCII 134.
032 end of file.

033-037 same as ASCII 134,
140 same as ASCII 134,
141=172 same as ASCII 101-132,
173=176 same as ASCII 134.
177 ignored.

-641- | MONITOR CALLS

APPENDIX H
FILE RETRIEVAL POINTERS

Sequential and random file access are handled more efficiently by the monitor if all the information
describing the file can be kept in core at once. To understand this effect, it is necessary to know how

the manitor accesses files.

With each named file, UFD, and MFD, the monitor writes a special block containing necessary infor-
mation needed to retrieve the data blocks that constitute the file. This block is called a retrieval

information block, or RIB.

Retrieval pointers in the RIB describe contiguous blocks of file storage space called groups. Each pointer

occupies one word and has one of three forms:

a. A group pointer
b. An EOF pointer

c. A change of unit pointer.

H.1 A GROUP POINTER
A group pointer has three fields:

a. ‘A cluster count
b, A folded checksum

c. A cluster address within a unit. The width of each field may be specif’ed at
refresh time; therefore, the same code can handle a wider variety of sizes of
devices.

The cluster count determines the number of consecutive clusters that can be described by one pointer.
The folded checksum is computed for the first word of the first block of the group. Its main purpose

is to catch hardware or software errors when i'he’wrori_g block is read. The folded checksum is not a
check on the h;:xrdware purﬁ'y ;iréuitry. The size of the cluster address field depends on the largesl;
unit size in the file structure and on the cluster size. A cluster address is converted to a logical block

address by multiplying by the number of blocks per cluster.

MONITOR CALLS -642-
H.1.1 Folded Checksum Algorithm

This algorithm takes the low order n=bit byte, repeatedly adds it to the upper part of the word, and
then shifts. The code is:

LOOP ¢ ADD T1,T
LDB " T»LOW ORDER N BITS OF Ti
LSH T1,~N JRIGHT SHIFT BY N BITS
JUMPN T1,L00P
DONE 3ANSWER IN T

This scheme elminated the usual overflow problem associated with folded checksums and terminates as

soon as there are no more bits fo add.

H.2 END-OF-FILE POINTER

The EQOF is indicated by a zero word.

H.3 CHANGE OF UNIT POINTER

A file structure may comprlse more than one unit; therefore, the retrieval information block must indi-
cate which unit the logical block is on. Because a file can sfarl' on one device and move to another,
a method of indicating a change from one unit to another in the middle of the file is necessary. To
show this movement, a zero count field indicates that the right half of the word specifies a change in
unit. A zero count field contains a unit number with respect to the file structure. The first retrieval
pointer, with respect to the RIB, always specifies a unit number. Bit 18 is 1 fo guarcntee that the word

is non-zero; otherwise it might be confused with an EOF pointer.

H.4 DEVICE DATA BLOCK

The monitor keeps a copy of up to 10 retrieval pointers in core ot once. Therefore, if a file is allocated
in 10 or less contiguous blocks (i.e., described in 10 or less pointers), all of the retrieval information

can be kept in core and no additional accesses to the RIB are necessary .

H.5 ACCESS BLOCK

For each active file, the monitor keeps eight words of storage called an access block. These access
blocks remain dormant in monitor core after a file is closed and are reclaimed only when the core space
is necessary . Therefore, if a 4~word LOOKUP is done after a file has been active, access to the UFD
and RIB blocks will not require I/O.

	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642

